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Summary

This thesis consists of three articles:

In the first article, we studied how Gröbner bases and binomiality of the steady
state ideal behave with respect to the addition or removal of intermediate species
to a reaction network. This work is currently submitted, and available on arXiv:
Sadeghimanesh and Feliu (2018a).

After gaining a knowledge about binomiality of networks with intermediates in the
first article, the second article studies multistationarity of reaction networks with
intermediates and that have a core binomial network. This work is also submitted,
and available on arXiv: Sadeghimanesh and Feliu (2018b).

The last work concerns the use of Kac-Rice formulas to study and divide the pa-
rameter region of a reaction network according to the number of steady states. A
nice implication of this work is the definition of a measure of robustness for multi-
stationarity. A preliminary draft of this work is presented here, Sadeghimanesh and
Feliu (2018c).
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Dansk resumé

Denne afhandling best̊ar af tre artikler:

I den første artikel studerede vi, hvorledes Gröbner-baser og binomialitet af
ligevægts-idealet opfører sig under tilføjelse eller fjernelse af mellemliggende spe-
cier i et reaktionsnetværk. Dette arbejde er i øjeblikket indsendt og tilgængeligt p̊a
arXiv: Sadeghimanesh and Feliu (2018a).

Efter at have f̊aet viden om binomialitet af netværk med mellemprodukter i den
første artikel, studeres i den anden artikel multistationaritet af reaktionsnetværk
med mellemprodukter indeholdende et indre binomialnetværk. Dette arbejde er ogs̊a
indsendt og tilgængeligt p̊a arXiv: Sadeghimanesh and Feliu (2018b).

Det sidste arbejde vedrører anvendelsen af Kac-Rice-formler til at studere og
opdele parameteromr̊adet for et reaktionsnetværk i henhold til antallet af stabile
tilstande. En tiltalende implikation af dette arbejde er definitionen af et m̊al for ro-
bustheden af multistationaritet. Et foreløbigt udkast af dette arbejde er præsenteret
her, Sadeghimanesh and Feliu (2018c).
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1
Introduction

One can say that the study of chemical reaction networks, CRNs, started with the
introduction of the Law of mass-action, in the works of the Norwegian mathematician
and chemist, Maximilian Guldberg and the Norwegian chemist, Peter Waage, written
in Danish in 1864 for the first time. Mass-action kinetics is based on molecular
collisions. In simple words, it assumes that the number of times a reaction happens
is proportional to the concentration of the reactants and for a fixed set of conditions
there is a reaction rate constant which is the constant of proportionality.

When a reaction takes place, the concentrations of the species in the chemical
experiment change, giving rise to a dynamical system. To study the dynamics of
a CRN, one key step is the study of its equilibria, steady states. In 1972, works
from Horn and Jackson (1972), and Feinberg (1972) introduced the mathematical
framework for CRNs.

Mathematical results on CRNs have a vast area of applications in ecology, epi-
demiology, sociophysics, genetics, cancer, pharmacokinetics, etc. Questions of inter-
est in CRN theory are related to the detection of qualitative behaviors including
persistence, number of steady states, stability of steady states and oscillations, and
the region in the parameter space where these behaviors take place. This thesis fo-
cuses on multistationarity, that is the possibility of having more than one steady
state. Multistationarity plays the role of memory in cells and is also needed to pro-
duce switch-like behaviors, Kothamachu et al. (2015); Conradi and Flockerzi (2012).
Classical results regarding the detection of multistationarity are the deficiency zero
and deficiency one theorems, the deficiency one algorithm and the higher deficiency
algorithm Feinberg (1987, 1988); Ellison (1998). These results answer whether a net-
work satisfying some conditions is capable of exhibiting multistationary or not and
are implemented in a software called CRNToolbox (Ji et al. (2015)). In the case the
network is multistationary, the software provides one choice of parameters for which
the network has several steady states. Another class of results focus on an injectiv-
ity condition which precludes the possibility of multistationarity (see Craciun and
Feinberg (2005); Feliu (2015); Müller et al. (2016)). In Pérez Millán and Dickenstein
(2018) multistationarity of a class of networks called MESSI networks is studied.

1



2 Chapter 1. Introduction

Other than the detection of multistationarity, giving the region in the parameter
space or at least a choice of parameters that produce multistationary behavior has
also its importance for the experimentalists. In this direction there are works us-
ing cylindrical algebraic decomposition such as Bradford et al. (2017) or numerical
homotopy methods such as Harrington et al. (2016).

As it can be seen from these works, there are many algorithms arising in the study
of CRNs. A major problem when studying realistic examples is the high number
of variables and parameters. This makes complexity of computations beyond the
power of current computers. Thus model reduction strategies are desirable. One
type of model reduction such as in Feliu and Wiuf (2012, 2013a,b), eliminates a
class of species called intermediates and gives a smaller network. Then under some
conditions the properties of the smaller network such as multistationarity, remain
valid for the original network. An advantage of these methods is that the smaller
network has a smaller number of variables and parameters and so computations
can be done faster. Similarly, Joshi and Shiu (2013) look for minimal networks
with specific behavior such as multistationarity, that can transmit this behavior to
another network whenever they appear as a motif inside them. Further Banaji and
Pantea (2017) present a list of procedures that one can use to extend a network to
a larger network preserving multistationarity.

This thesis also, besides answering its target questions, provides new algorithms
to optimize the computation time.

1.1 Thesis structure

In Chapter 2 the definition of a CRN is presented. Then it proceeds to introduce the
questions that this thesis wants to study. A quick review on the former approaches
in the literature is given together with a quick review on some tools used in the
new algorithms introduced in the three papers of the thesis. In Chapter 3 a short
summary of the results of the papers of this thesis is presented. In this chapter we use
the notation Theorem I.3.4 to denote Theorem 3.4 of paper 1. Chapter 4 discusses
some possible future work. A bibliography for the references of Chapters 1-4 comes
afterwards. Finally, the papers containing our contributions are collected, each one
equipped with its own bibliography.



2
Background on Chemical Reaction

Network Theory and
Computational Algebra

This chapter introduces briefly what a Chemical Reaction Network (CRN) is and
what questions this thesis aims at studying, with the help of a biological example.
The example that is going to be used is a gene regulatory network. So before giving
the example, we briefly explain how a protein is produced in a cell in simple words.
First, a promoter and transcription factor(s) attach to DNA at a suitable start
transcription site. Then they start to read the DNA and make an mRNA molecule
from nucleotides. The mRNA gets some modifications and in case of eukaryotes,
mRNA leaves the nucleus. Afterwards ribosomes use these recipes and assemble the
corresponding protein from amino acids. Proteins are subsequently used in processes
inside the cell or leave the cell. Protein and mRNA molecules degrade at some rate.

Now consider two proteins A and B, such that the expression of A suppresses
B and vice versa. Let MA, PA, E and DA stand for mRNA, protein, transcription
factors and promoter of protein A respectively and MB, PB, F and DB analogous
for protein B. Assume that the promoter of protein A, DA, has two binding sites
that molecules of PB can bind cooperatively, meaning that binding one protein will
make it easier for the second protein to bind (for more about cooperatively binding,
see Section 3.3 of Ingalls (2012)). If one of these binding sites is occupied by protein
B, then the promoter cannot attach to DNA and initiate the process of transcription
of protein A. Let Db

A and Dbb
A denote DA when one or two of its binding sites are

occupied by protein B. The first reaction in our model is

DA + E
k−−→ DA + E +MA. (2.1)

It encodes that one molecule of DA and one molecule (a set of molecules) of E should
meet (attach to the DNA) and then under a rate k they become one molecule of DA,
one molecule of E and a molecule of MA. In other words, one DA and one E will
produce one MA without being used themselves. The rate k is called the reaction

3
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DA + E
k1−−→ DA + E +MA DB + F

k2−−→ DB + F +MB

MA
k3−−→MA + PA MB

k4−−→MB + PB

MA
k5−−→ 0 MB

k6−−→ 0

PA
k7−−→ 0 PB

k8−−→ 0

DA + PB
k9−−⇀↽−−
k11

Db
A DB + PA

k10−−⇀↽−−
k12

Db
B

Db
A + PB

k13−−⇀↽−−
k15

Dbb
A Db

B + PA
k14−−⇀↽−−
k16

Dbb
B

Figure 2.1: Gene regulatory network of proteins A and B with inhibitory effect on
expression of each other.

rate constant. The next reaction is

MA −−→MA + PA (2.2)

which stands for the production of protein A in the ribosome. The number of ribo-
somes is assumed to be constant and hence not modeled. Then there are degradation
reactions for MA and PA,

MA −−→ 0 and PA −−→ 0. (2.3)

Denoting 0 at the right side of a reaction means the molecules in the left side are
degraded or exit the environment (such as the cell). Finally, inhibitory bindings of
protein B to the promoter of A are modeled as

DA + PB −−⇀↽−− Db
A and Db

A + PB −−⇀↽−− Dbb
A . (2.4)

The symbol −−⇀↽−− indicates that the reaction is reversible, so DA + PB −−⇀↽−− Db
A

consists of the two reactions DA + PB −−→ Db
A and Db

A −−→ DA + PB. We use ki
with subindex i for the i-th reaction to denote reaction rate constants. Figure 2.1
represents all reactions of our model together, by repeating (2.1), (2.2), (2.3) and
(2.4) for protein B.

Figure 2.1 gives an example of a CRN. Formally a CRN consists of three finite
sets:

• A set of species denoted by S, here

S = {MA,MB, PA, PB, E, F,DA, DB, D
b
A, D

b
B, D

bb
A , D

bb
B}.

• A set of complexes denoted by C. A complex is a linear combination of species
with non-negative integer coefficients appearing in one side of a reaction such
as DA + E, MA or 0.
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• A set of reactions denoted by R ⊆ C × C. A reversible reaction is considered
as two irreversible reactions.

Every reaction has two sides, the complex in the left side of the reaction is called
reactant (or educt) and the complex in the right side is called product. Assume
S = {X1, . . . , Xn}. Then a complex, c, has the form c1X1+· · ·+cnXn. The coefficient
ci in this representation is called the stoichiometric coefficient of the species Xi in
the complex c. The complex c is also represented by the vector (c1, . . . , cn) and we
denote this vector again by the symbol c.

2.1 ODE system of the network and steady states

ODE system of evolution of concentration of species. Denote the concen-
tration of species with lower-case letters, for example mA denote the concentration
of MA. The occurrence of a reaction changes the value of these variables. Consider

the reaction DA + PB
k9−−→ Db

A. Each time this reaction happens, one molecule of
DA and one molecule of PB are consumed and one molecule of Db

A is produced.
Under mass action law, which is one of the many choices for the kinetics (see the
subsection on other kinetics), each reaction happens with a rate proportional to the
concentrations of the species in the reactant. If the reactant is a1X1 + · · · + anXn

and the reaction rate constant is k, then the rate of this reaction is kxa11 . . . xann . Let
ẋi denotes the derivative of the concentration of the species Xi with respect to time.
Then the variation of the concentration of the species in a CRN under mass action
kinetics is modeled by the following ordinary differential equation (ODE) system.

ẋi = Fk,i(x) =
∑

∑n
j=1 ajXj

k−−→∑n
j=1 bjXj∈R

(bi−ai)kxa11 . . . xann , i = 1, . . . , n, x ∈ Rn
≥0.

(2.5)
The non-negative orthant is forward invariant with respect to the ODE system (2.5),
Sontag (2001); (Feinberg, 1987, Appendix I); (Banaji and Pantea, 2016, Lemma
B.1). It means that if the initial condition of (2.5) belongs to Rn

≥0, then so does the
trajectory for any positive time. The same holds for Rn

>0. There are other properties
regarding the behavior of trajectories of the ODE system of the network with a
positive initial condition called persistence and permanence. These are not the topic
of this thesis and we refer the reader to de Freitas et al. (2016); Gnacadja (2011a,b,c);
Craciun et al. (2013). The ODE system for our gene regulatory network of proteins
A and B is shown in Figure 2.2.

Conservation laws. By looking at the equations in Figure (2.2), one easily
notices that

ė = ḟ = 0 and ḋA + ḋbA + ˙dbbA = ḋB + ḋbB + ˙dbbB = 0.
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



ṁA = k1dAe− k5mA

ṁB = k2dBf − k6mB

ṗA = k3mA − k7pA − k10dBpA + k12d
b
B − k14d

b
BpA + k16d

bb
B

˙pB = k4mB − k8pB − k9dApB + k11d
b
A − k13d

b
ApB + k15d

bb
A

ė = 0

ḟ = 0

ḋA = −k9dApB + k11d
b
A

˙dB = −k10dBpA + k12d
b
B

ḋbA = k9dApB − k11d
b
A − k13d

b
ApB + k15d

bb
A

˙dbB = k10dBpA − k12d
b
B − k14d

b
BpA + k16d

bb
B

˙dbbA = k13d
b
ApB − k15d

bb
A

˙dbbB = k14d
b
BpA − k16d

bb
B .

Figure 2.2: The ODE system of the gene regulatory network of proteins A and B in
Figure 2.1 under the assumption of mass action kinetics.

This means that for each trajectory, there exist constants T1, . . . , T4 such that

e = T1, f = T2, dA + dbA + dbbA = T3, dB + dbB + dbbB = T4.

These linear invariants are called conservation laws and their constants are called
constants of conservation laws. Since these linear combinations of concentrations
of the species remain constant along the trajectories of the ODE, one can deter-
mine constants of conservation laws from the initial conditions of the ODE system.
Remember the vector representation of complexes with its entries being the stoi-
chiometric coefficients of the species. Let N be the matrix having c′ − c for the i-th
column if c → c′ is the i-th reaction. The matrix N is called the stoichiometric
matrix. Of course the stoichiometric matrix depends on the order of reactions and
species. Let ψ(x) be the vector having xc11 . . . xcnn as its i-th entry if c is the reactant
of the i-th reaction. Then the functions Fk,i(x) in (2.5) can be computed by

N diag(k)ψ(x) = (Fk,1(x), . . . , Fk,n(x))t (2.6)

where diag(k) is the matrix with k = (k1, . . . , k|R|) on its diagonal and zero elsewhere.
It is clear from (2.5) and (2.6) that if v is a vector in the kernel of N t, then v · ẋ = 0
or equivalently v · x is a linear invariant of trajectories of our ODE.

Definition 1. Let N be a reaction network with stoichiometric matrix N and n
species. The rank of the network is rank(N). Let d be the corank of N , that is
n − rank(N). A matrix Z ∈ Rd×n whose rows form a basis of ker(N t) is called a
matrix of conservation laws. A stoichiometric compability class for a given initial
condition x0 is defined as

{x ∈ Rn
≥0 | Zx = Zx0}.
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By (Feinberg, 1995a, Remark 3.4) the stoichiometric compability classes are for-
ward invariant with respect to our ODE system.

Steady states. To find the steady states of the ODE system one solves the
system of equations obtained from Equation (2.5) by letting ẋi = 0. Since the
concentration of the species cannot be complex numbers or even negative reals, only
non-negative real solutions are meaningful. Moreover, in many applications we do
not want fully consumption or extinction of a species. So by steady state in this
thesis, we mean an equilibrium where all xi’s are positive. Because the reaction rate
constants are (positive) real numbers, the expression Fk,i(x) in (2.5) is a polynomial
in R[x]. This polynomial is called the steady state polynomial of Xi. If the reaction
rate constants are treated as parameters, then the steady state polynomials are in
R(k)[x] and we drop k from their subindex, Fi(x). The ideal generated by the steady
state polynomials is called the steady state ideal and is denoted by I. It is clear that
I can be generated by rank(N ) polynomials because n−rank(N ) of the steady state
polynomials can be written as linear combinations of the rest.

For example, in the gene regulatory network of proteins A and B, the steady
state polynomials of E, F , Db

A and Db
B can be ignored when one studies steady

states. The steady state ideal of this network is

I =〈k1dAe− k5mA, k2dBf − k6mB, k3mA − k7pA, k4mB − k8pB

k9dApB − k11d
b
A, k10dBpA − k12d

b
B, k13d

b
ApB − k15d

bb
A , k14d

b
BpA − k16d

bb
B〉.

The number of steady states in a stochiometric compability class is important.
Hence we have the following definition.

Definition 2. A network is multistationary if there exist k ∈ RR>0 and T ∈ Rd such
that the system

Fk,1(x) = · · · = Fk,n(x) = 0, Zx− T = 0 (2.7)

has more than one positive solution. In other words, there is more than one posi-
tive steady state in a stoichiometric compability class for a choice of reaction rate
constants. A monostationary network is a network that has one steady state in each
stoichiometric compability class.

The system of equations to study multistationarity of the gene regulatory network
of proteins A and B is as follows;

k1dAe− k5mA = 0 k2dBf − k6mB = 0
k3mA − k7pA = 0 k4mB − k8pB = 0
k9dApB − k11d

b
A = 0 k10dBpA − k12d

b
B = 0

k13d
b
ApB − k15d

bb
A = 0 k14d

b
BpA − k16d

bb
B = 0

e = T1 f = T2

dA + dbA + dbbA = T3 dB + dbB + dbbB = T4.

(2.8)
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There are some classes of steady states like detailed balancing equilibria and
complex balanced equilibria that have been studied for a long time. For example
if a network equipped with mass action kinetics has a complex balancing equilib-
rium, then it is monostationary, see Horn and Jackson (1972); Feinberg (1987) For
reading more about these classes of equilibriums we refer the reader to Horn and
Jackson (1972); Horn (1972); Feliu et al. (2018); Craciun et al. (2009); Müller and
Regensburger (2012).

2.2 Intermediates

A type of species useful in model reduction strategies is called intermediate.

Definition 3. A species Y is an intermediate if

1. the stoichiometric coefficient of Y in every complex other than

Y = (1)Y +
∑

X∈S\{Y }
(0)X

is zero,

2. there exists a reaction with Y as its reactant,

3. there exists a reaction with Y as its product.

In the gene regulatory network of Figure 2.1, the species Dbb
A and Dbb

B are in-
termediates. Intermediate species are abundant in realistic examples. For example,
in the ERK activation network (Sadeghimanesh and Feliu, 2018a, Figure 1), 15 of
29 species are intermediates or in the MAPK network (Sadeghimanesh and Feliu,
2018a, Example 2.6), 6 of 11 species are intermediates.

Definition 4. Let N = (S, C,R) and Ñ = (S̃, C̃, R̃) be two reaction networks. The

network Ñ is called an extension of N via the addition of intermediates Y1, . . . , Ym
if

(i) Y = {Y1, . . . , Ym} is a set of intermediates of Ñ .

(ii) S ∪ Y ⊆ S̃ and C ∪ Y ⊆ C̃.

(iii) c→ c′ ∈ R if and only if there is a sequence of reactions

c0 −−→ c1, c1 −−→ c2, . . . , cn−1 −−→ cn (2.9)

in R̃ with c0 = c, cn = c′ and c1, . . . , cn−1 ∈ Y if n > 1.



2.3. Detection of multistationarity 9

In this case N is called the core network of Ñ .

Depending on the property of the network that we are studying, we may change
item (ii) of Definition 4 to S∪Y = S̃ and C∪Y = C̃. The elements of S̃−Y are called

non-intermediates and the elements of C̃ −Y are called non-intermediate complexes.
A non-intermediate complex c is an input for an intermediate Y if there is a set of
reactions like in (2.9) in R̃ with c0 = c, cn = Y and c1, . . . , cn ∈ Y . An intermediate
Y is called an `-input intermediate if there are ` inputs for Y .

Consider the following simple network

X1 +X2 −−⇀↽−− Y1 −−→ Y2 −−⇀↽−− X1 +X3.

The species Y1 and Y2 are intermediates. The non-intermediate complex X1 +X2 is
an input for both Y1 and Y2 while X1 +X3 is only an input for Y2. Therefore Y1 is a
1-input intermediate and Y2 is a 2-input intermediate. The core network associated
with this network consists of just one reaction X1 + X2 −−→ X1 + X3. We use a
tilde above symbols to denote objects related to extended networks, for example
Ĩ denotes the steady state ideal of Ñ . But for the reaction rate constants of the
extended network we use κ instead of k̃.

There are many properties of networks that are preserved by adding or removing
intermediates, mainly studied within the group Mathematics of Reaction Networks
at University of Copenhagen. To name a few, one can mention lifting of multista-
tionarity and multistability Feliu and Wiuf (2013a), the relation to persistence and
monotonicity de Freitas et al. (2016, 2017), and trajectories Cappelletti and Wiuf
(2017) and in stochastic modeling Cappelletti and Wiuf (2016). There is also a gen-
eralization of intermediates called non-interacting species, see Feliu and Wiuf (2012);
Sáez et al. (2017). We contribute to this by studying the effect of intermediates on
Gröbner bases Sadeghimanesh and Feliu (2018a).

2.3 Detection of multistationarity

One of the applications of multistationarity is to build switch-like behavior in bi-
ological circuits. Consider the gene regulatory network of proteins A and B. One
can build a biological switch using this network in the following way. Assume that
there exists a suitable choice of parameter values such that there are two (stable)
steady states with ratio of the concentration of PA to the concentration of PB at one
of these two steady states higher than a threshold a and in the other steady state,
lower than another threshold b (b ≤ a). Then one steady state corresponds to the
switch being on and the other to the switch being off.
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A well-known software for chemical reaction network theory is CRNToolbox Ji
et al. (2015). The CRNToolbox software uses results such as deficiency one and
higher deficiency algorithms, deficiency zero and deficiency one theorems, to check
multistationarity of a network. For example, we consider the deficiency one algo-
rithm, which applies to deficiency one networks that are regular (Feinberg, 1995b,
conditions R.1-R.3). If the network satisfies the required assumptions, then the algo-
rithm assigns a set of vectors and a set of partitions on the set of complexes. For each
pair of a vector and a partition, the algorithm forms a system of linear inequalities
in n variables (n number of species). The network is multistationary if and only if
at least one of these systems has a nonzero solution, whose sign agree entry-wise
with the sign of a vector in the column space of the stoichiometric matrix (Feinberg,
1995b, Corollary 4.1). Another software to test multistationarity is CoNtRol Donnell
et al. (2014).

Giving the gene regulatory network of proteins A and B to CRNToolbox, it
reports that the network has deficiency four and is suitable for the application of the
higher deficiency algorithm. Then, it reports that there are reaction rate constants
that give rise to two or more steady states. It also provides one example of such
reaction rate constants

k1 = 1.7182818, k2 = 2 k3 = 1, k4 = 1, k5 = 1,
k6 = 1, k7 = 1, k8 = 1, k9 = 1.7182818, k10 = 2,
k11 = 1.7182818, k12 = 2, k13 = 1, k14 = 3.1639534, k15 = 0.63212055,
k16 = 5.4365636,

and gives two steady states corresponding to this reaction rate constants. The chosen
constants of the conservation laws can be calculated from the steady states the
software provides. In the first steady state

mA = 1, mB = 1, pA = 1, pB = 1, e = 1,
f = 1, dA = 0.5819767, dB = 0.5, dbA = 1, dbB = 1.5819767,
dbbA = 0.31606027, dbbB = 0.18393972,

and in the second steady state

mA = 2.7182818, mB = 0.36787944, pA = 2.7182818, pB = 0.36787944,
e = 1, f = 1, dA = 1.5819767, dB = 0.18393972,
dbA = 1, dbB = 0.5819767, dbbA = 0.31606027, dbbB = 0.5.

In some cases, the system (2.7) can be simplified to the study of one univariate
polynomial like in Kothamachu et al. (2015). In such cases one can use Descartes’ rule
of sign or Sturm’s theorem to study the number of positive roots of the polynomial.
There are also new generalizations of Descartes’ rule of signs for multivariate system
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of polynomials such as (Müller et al., 2016, Theorem 1.5) or Bihan and Dickenstein
(2017).

Binomial networks. Looking at Equation (2.8), the polynomials other than the
four conservation laws are binomials, that is have at most two terms. Therefore one
can use methods developed to study binomial systems. An ideal is called a binomial
ideal if it admits a basis consisting of only binomials. A network with binomial
steady state ideal is called a binomial network. By Corollary 1.2 in Eisenbud and
Sturmfels (1996) to check whether an ideal is binomial one needs to compute a
reduced Gröbner basis. But computing Gröbner bases can be time consuming. This
is one of the concerns that the first paper in this thesis deals with.

Results of Müller et al. (2016) in general can only preclude multistationarity, but
when the steady states are solutions to a binomial system, those results can be used
to detect multistationarity as well. These results use some conditions which we call
(surj), (sign) and (det). As an example of this case, Pérez Millán et al. (2012) uses
the (surj) and (sign) conditions to detect multistationarity of binomial networks,
when binomiality can be detected by linear algebra. Pérez Millán and Dickenstein
(2018) use the same ideas and the (det) condition, but only focus on MESSI networks
that are also binomial.

The (surj) condition is equivalent to ker(N)∩Rn
>0 6= ∅ (see Lemma 2.5 in Sadeghi-

manesh and Feliu (2018b)). To check this condition we use an algorithm in Appendix
B of Schilling et al. (2000), which we explain now.

Let N be the stoichiometric matrix of the network and idm the identity matrix
of size m. Define T0 to be the matrix

[
id|R| N t

]
. Then choose one of the nonzero

columns of the matrix in the right side. We form a new matrix T1 as follows. Keep
the rows of T0 whose entries in the chosen column are zero. Consider all rows with
nonzero entries in the chosen column. For each pair of these rows that have different
signs in that column, say ri and rj, introduce a new vector r′i,j = |aj|ri+ |ai|rj where
ai and aj are entries of ri and rj in the chosen column respectively. Remove all rows
of T0 with nonzero entries in the chosen column and add the new r′i,j vectors as new
rows to T1. Now take T1 and construct T2 in the same way. Proceed in this way
until the right side matrix becomes a zero matrix. Let A be the set of vectors that
are rows of the left matrix. If the support of a vector of A, vi, is a subset of the
support of another vector of A, vj, then remove vi from A. The set A is an extremal
generating set for ker(N) ∩ Rn

≥0. The set ker(N) ∩ Rn
≥0 is nonempty if and only if

sum of vectors in its extremal generating set belongs to Rn
>0.

Let ei be the vector having 1 in its i-th entry and 0 elsewhere. We apply the
above algorithm on the stoichiometric matrix of the gene regulatory network of the
proteins A and B, and the order of dealing with columns of the right hand side
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matrices Ti as 1, 2, 7, 8, 9, 11, 3, 4. Then an extremal generating set is

{e1 + e5, e2 + e6, e9 + e11, e10 + e12, e13 + e15, e14 + e16, e3 + e7, e4 + e8}.

(surj) is equivalent with
∑

v∈A v ∈ R|R|>0 which holds for this example.

This algorithm is a variant of the double description method for computing
extreme rays of a polyhedral cone, see Motzkin et al. (1953); Fukuda and Prodon
(1996), and in the context of reaction networks Gagneur and Klamt (2004).

2.4 Parameter region of multistationarity

Knowing that a network is multistationary, one needs the parameter region where
the network has more than one positive steady state. In this section we discuss
the explored strategies to find the region of multistationarity. Consider the gene
regulatory network of proteins A and B. For making it possible to illustrate in
figures what follows, we fix all parameters except two of them. Assume we have
some control on the reaction rate constants k7 and k8, which are the most important
ones, since they include the extraction of the proteins from the cell too. For the rest
of parameters let

k1 = k2 = k3 = k4 = 1, k5 = 0.0082, k6 = 0.0149, k9 = k10 = 0.01, k11 = k12 = 10000,
k13 = 2, k14 = 25, k15 = 1, k16 = 9, T1 = T2 = T3 = 1, T4 = 4.

(2.10)

We look for values of k7 and k8 that make the network to be multistationary in
the box 0 ≤ k7, k8 ≤ 0.1. The CRNToolbox, and most of the other methods do not
have any input for conditions on reaction rate constants such as restricting to some
inequalities as a box, or fixing a parameter etc.

A simple idea is to choose a large number of random choices for (k7, k8), solve the
system of steady states and draw a colored point on the (k7, k8)-plane, depending
on the number of solution. See Figure 2.3.

Since there are perturbations in experimental environment, one may want to
consider an average number of steady states in a neighborhood of each point. So
maybe instead of the above idea, one divides the box to some smaller sub-boxes,
repeats the computation for the sub-boxes, and then associates the average number
of solutions to each sub-box. Figure 2.4 is an implementation of this idea.

There are other methods that provides system of polynomial inequalities for the
parameters describing the region of multistationarity. Some of such methods use
Descartes’ rule of signs, Sturm’s theorem Conradi et al. (2017), polyhedral methods
Giaroli et al. (2018); Bihan et al. (2018). But looking at a system of polynomial
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Figure 2.3: 1000 random sample points from the box [0, 0.1]× [0, 0.1] with uniform
distribution for (k7, k8) are chosen. Then the system (2.8) is evaluated at (2.10)
and these points. The random points are colored by yellow, black and sky blue if
the system obtained by evaluation at them has three, two or one positive solutions
respectively.

inequalities does not often tell us about the geometry of the region directly such as
connectedness.

Cylindrical Algebraic Decomposition. A deterministic method is to use
cylindrical algebraic decomposition (CAD). This method gives the exact boundaries
between different regions in the parameter space where the system has different
number of steady states. Figure 2.5 shows the result of using CAD for our example.

Before explaining CAD, we review the definition of discriminant variety. The
discriminant variety of a parametric system is a variety in the parameter space where
the system with parameters chosen from this variety has a solution with multiplicity
greater than one. Consider the following simple multivariate parametric system:

{
x2 − y3 = 0
xy − T = 0.

(2.11)

Variables are x and y and the parameter is T . When T 6= 0, the system has one real
solution with multiplicity one, and when T = 0, the system has one real solution
with multiplicity 2. Hence it is expected that the discriminant variety is T = 0.
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Figure 2.4: The box [0, 0.1]× [0, 0.1] is divided into 100 equal smaller boxes. For each
sub-box, 10 random points with uniform distribution are chosen. Then the system
(2.8) is evaluated at (2.10) and the random points in the sub-box. Finally, the
average number of positive solutions for the points in the sub-boxes are calculated
and assigned to the sub-boxes. Strong yellow means that the average number of
positive solutions is three and white means it is one.

When the coefficient field of the polynomial ring of equations of the system is
a perfect field, the concepts singularity and nonsmoothness are the same Cutkosky
(2004). Since R is a field of characteristic zero, it is a perfect field. Therefore to com-
pute the singular locus of the solutions set of the system, one can use the Jacobian
matrix. The Jacobian matrix of (2.11) is;

Jxf =

[
2x −3y2

y x

]
.

Since the solution set of the system is a zero-dimensional variety and there are 2
variables, the singular locus is the common solutions to the system (2.11) and the
`-fitting ideal of the Jacobian matrix with ` = 2 − 0 = 2. The `-fitting ideal of a
matrix with polynomial entries, is the ideal generated by `-minors of the matrix. In
examples from CRN the system, (2.7) usually has a zero-dimensional solution set as
well. The system (2.7) is always possible to be reduced to a square system, in that
case we only need to add the determinant of the Jacobian matrix to the system for
finding the discriminant variety. Now the last step is to eliminate the variables from
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Figure 2.5: Applying CAD on the system (2.8) after being evaluated at (2.10). CAD
divides the positive orthant into several cells, five of them are open cells and only
one of these open cells have three positive solutions. Intersection of this cell with
the box [0, 0.1]× [0, 0.1] is colored in yellow.

the singular locus variety.

〈x2 − y3, xy − T, 2x2 + 3y3〉 ∩ R[T ] = 〈T 2〉.

Note that the solution set of T 2 = 0 and T = 0 agree.

In order to change the number of real solutions of a system, parameters should
cross the discriminant variety. A simple example is the system x2 + bx + c = 0.
The discriminant variety of this system is defined by b2 − 4c = 0. But crossing the
discriminant variety does not always change the number of real solutions as it is the
case for (2.11). For system (2.7) of a CRN, other than the change in the number of
real solutions, one should take into account where the sign of the solutions change.
CAD computes polynomials defining the discriminant variety. Then it eliminates
parameters from it one by one. At each step it keeps the leading coefficients of the
polynomials, the resultants and the discriminants with respect to the eliminated
parameter. It proceeds until we have a union of univariate polynomial systems on
the last parameter. It solves them and takes a sample point between every two con-
secutive roots. Then it evaluates the bivariate polynomial systems of one step back
in the projection phase and obtains univariate systems on another parameter. Pro-
ceeding this way back until covering all parameters, the result is a set of points and
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polynomial inequalities associated with each point in the lifting phase. These poly-
nomial inequalities define open cells that are completely inside one of the connected
components of the complement of the discriminant variety. Therefore the number of
real solutions to the original system is the same for every two parameter choices in
the same cell. To know the number of real points in each cell, it is enough to solve
the system at the given sample point.

There is a Maple package called RootFinding[Parametric] Liang et al. (2009)
that computes this discriminant variety. The goal of this package is to compute
CAD using ideas and algorithms explained in Corvez and Rouillier (2004); Lazard
and Rouillier (2007).

The number of open cells can be more than the number of components of the
complement of the discriminant variety. The number of cells grows very fast, spe-
cially, it is doubly exponential in the sum of the number of variables and parameters
(England et al., 2015, Theorem 5). Therefore the problem with CAD is that it only
works well for small systems.

Homotopy continuation and numerical algebraic geometry. Numerical
homotopy methods are methods based on homotopy path tracking and numerical
methods of ODE solving to study solutions of systems of equations. We explain the
idea on a simple example. Consider the following simple system consisting of one
polynomial equation in one variable and no parameter:

f(x) = 2x2 + 2x− 1 = 0.

Instead of solving f(x) = 0 directly, we consider a simpler system

g(x) = x2 − 1 = 0.

The system g(x) = 0 has two simple roots x = ±1. Define a map H(x, t), t ∈ [0, 1]
satisfying H(x, 0) = g(x) and H(x, 1) = f(x), for example tf(x) + (1− t)g(x). Now
the idea is to track solutions of g(x) = 0 along H(x, t) = 0 until the solutions of
f(x) = 0. To do that, we define an ODE system with trajectories playing the role
of paths connecting these solutions. If x1(t) and x2(t), t ∈ [0, 1] denote these two
paths, then for every t ∈ [0, 1] we have H

(
xi(t), t

)
= 0, i = 1, 2. Taking derivative

with respect to t we have

∂H
(
x(t), t

)

∂t
= 0 =⇒ ∂H

(
x(t), t

)

∂x(t)

dx(t)

dt
+
∂H
(
x(t), t

)

∂t
= 0

=⇒ ∂H

∂x
|x=x(t)x

′(t) +
∂H

∂t
|x=x(t) = 0.

Therefore in our case we get the following differential equation

x′(t) =
−x(t)

tx(t) + x(t) + t
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with the initial conditions x(0) = ±1. Now use a numerical ODE solving method.
For illustration, we consider the Euler method. Let h = 1

n
and ti = i

n
, i = 0, 1, . . . , n,

and use

x(ti) = x(ti−1) + hx′(ti−1), i = 1, . . . , n

recursively to approximate the end points of the two paths. Taking n = 10 we
get x1(1) = 0.3204874924 and x2(1) = −1.375719799. Increasing n to 100, we get
x1(1) = 0.3616822442 and x2(1) = −1.366972812. The exact solutions to f(x) = 0

are x1 = 1−
√

3
2
' 0.3660254038 and x2 = −1−

√
3

2
' −1.366025404.

This was just an example to get familiar with numerical homotopy methods. To
read more about numerical homotopy methods see Sommese et al. (2005); Bates
et al. (2013). An advantage of numerical homotopy methods is that for big and
complicated systems they are faster than solving the system directly. These methods
can be used to study the discriminant variety of the system as well. For example one
can mention algorithms 1 and 2 in Harrington et al. (2016). (Griffin and Hauenstein,
2005, Proposition 8) uses numerical homotopy methods to find real critical solutions
to the system. (Harrington et al., 2016, Algorithm 1) uses such results to find the
discriminant variety of a system of polynomials with only one parameter, which is
a finite set of points in a line.

(Harrington et al., 2016, Algorithm 2) targets polynomial systems with two pa-
rameters, p and q. Denote the vector of variables with x, and the system with
Fp,q(x) = 0. Let ∆(x, p, q) denote the set of polynomials arising from the `-fitting
ideal of the Jacobian matrix of the system as discussed before with `= number of
variables - dimension of the variety. For a fixed random point (a, b) ∈ R2 and a new
parameter d ∈ R, define the following system

Fp,q(x) = 0, ap+ bq − d = 0, ∆(x, p, q) = 0, (2.12)

with one parameter d and x, p and q as variables. The solutions of (2.12) are the
intersections of the line ap+bq = d in the (p, q)-plane with the discriminant variety of
the original system. The critical points of (2.12), which can be found by (Harrington
et al., 2016, Algorithm 1), determine where the number of intersection points of the
line ap + bq = d and the discriminant variety change. Therefore, it suffices to take
sample values of d between every two consecutive such critical values. Restricting
the original system to parameters on the lines ap+ bq = d?, where the d?’s are either
critical or chosen sample values for d, converts the system to a polynomial system
with one-dimensional parameter space, since q = d?−ap

b
. Now, by (Harrington et al.,

2016, Algorithm 1) one finds the critical values of the restricted one-dimensional
system. Gathering the information obtained from these computations one can draw
the discriminant variety for the original system in the (p, q)-plane.
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The problem with these algorithms is that they are not practical for higher-
dimensional parameter spaces. One needs to fix all parameters except a few to use
these algorithms or to modify them with some other methods.

Kac-Rice formula. Marc Kac used a formula to compute the expected number
of solutions to a univariate polynomial with random coefficients in Kac (1943). Later
this formula got extended, see (Adler and Taylor, 2007, Theorem 11.2.1). Here we
derive a simple form of this formula, which is used in the third paper of this thesis.

Let δx be the Dirac delta function at x,

δx(u) =

{
1 if u = x,
0 if u 6= x.

Assume f is a well-behaved function for the following computations, such as a poly-
nomial. First note that ∫

R
δx(y)f(y)dy = f(x).

Now let I ⊆ R be an interval in which f(t) = 0 has only one isolated simple solution,
Then, by a change of variables

1 =

∫

R
δ0(y)dy =

∫

I

δ0

(
f(t)

)
|f ′(t)|dt.

If all positive solutions of f(t) = 0 are simple (have multiplicity one), then

|f−1(0) ∩ R>0| =
∫ ∞

0

δ0

(
f(t)

)
|f ′(t)|dt.

Now let f(t) be a random polynomial, for example, such that its coefficients are
polynomials in random parameters. Assume the density distribution functions are
well-behaved for the following computations. Since f(t) is a random polynomial,
its derivative is also a random polynomial. Let pt(x, y) and pt(x) denote the joint
density distribution of

(
f(t) = x, f ′(t) = y

)
at a given t, and density distribution of

f(t) = x at a given t respectively. Then

E
(
|f−1(0) ∩ R>0|

)
=

∫

y

∫

x

(∫ ∞

0

δ0(x)|y|dt
)
pt(x, y)dxdy

=

∫ ∞

0

∫

y

( ∫

x

δ0(x)|y|pt(x, y)dx
)
dydt

=

∫ ∞

0

∫

x=0,y

|y|pt(0, y)dydt

=

∫ ∞

0

E(|y| | x = 0)pt(0)dt

=

∫ ∞

0

E
(
|f ′(t)| | f(t) = 0

)
pt(0)dt.
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This formula is known as the Kac-Rice formula.

Monte-Carlo method for computing integrals. For numerical higher dimen-
sional integration the one-dimensional ideas such as Riemannian sum or Simpson’s
rule get very slow. One method which is usually faster than one-dimensional ideas
for multiple integration is Monte-Carlo integration. The idea is simple. Let I be the
following multiple integration on a region M ⊆ Rn;

I =

∫

M

f(x1, . . . , xn)dx1 . . . dxn.

Choose a probability distribution on M and let p(x1, . . . , xn) be the density function
of this distribution. Then

I =

∫

M

f(x)
p(x)

p(x)dx = E
(f(x)
p(x)

)
.

Then by the law of Large Numbers, for a big enough N ∈ N and x(1), . . . , x(N) being
N random samples of the random vector x, we have

I ' 1

N

N∑

i=1

f(x(i))

p(x(i))
. (2.13)

Let Î denote the sum in (2.13). Then the standard error of this approximation is

ê =

√√√√
∑N

i=1

(f(x(i))

p(x(i))
− Î
)2

N(N − 1)
. (2.14)

To read more about Monte-Carlo method we refer the reader to Owen (2013).

2.5 Other kinetics

Mass action kinetics is suitable when some conditions hold for the network such as
having a homogeneous and dilute solution. There are other kinetics that can be used
when different assumptions on the solution and environment of the network hold.
An example of such kinetics is generalized mass action kinetics. The ODE system
of the network in this kinetics is written as for mass action kinetics, with the only
difference that the monomials of each reaction are not necessarily determined by
the stoichiometric vector of the reactant. So when the network is equipped with
the generalized mass action kinetics, an extra complex called kinetic complex is
associated with each reaction. To read more about this kinetics we refer the reader
to Müller and Regensburger (2012).
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Other than kinetics that are introduced for different solutions, there are kinetics
that are introduced when one reduces the network and uses approximations. Two
well-known such kinetics are Michaelis-Menten and Hill kinetics. Michaelis–Menten
kinetics is used when there is a separation of time scale in some enzymatic reactions
like

X1 + E −−⇀↽−− Y −−→ X2 + E.

In this reaction, the species X1 forms an intermediate complex with the enzyme E
and then is modified to the species X2. But if the reactions X1 + E −−⇀↽−− Y occur
at a faster scale then after writing the ODE system using mass action and using
approximations, one can replace the above enzymatic reactions with X1 −−→ X2

with a fractional rate αx1
β+x1

. To read how to do this in detail we refer the reader to

(Ingalls, 2012, Subsection 3.1.1).

We explain how Hill-kinetics arise from an approximation of the ODE system
written with mass action kinetics with the gene regulatory network of proteins A
and B. Remember that in our model the inhibitory bindings on promoters were
cooperative. A cooperative binding means occupation of a binding site facilitates
occupation of the other binding site and the affinity to bind is higher than unbinding.
Mathematically speaking in our model it means

0� k9

k11

� k13

k15

and 0� k10

k12

� k14

k16

. (2.15)

Consider the system (2.8). Using equations k9dApB − k11d
b
A = 0 and k13d

b
ApB −

k15d
bb
A = 0 and the conservation law dA + dbA + dbbA = T3 one can write

dA =
T3

1 + k9
k11
pB + k13

k15
p2
B

. (2.16)

Using (2.15) one can approximate Equation (2.16) as follows

dA ≈
T3

1 + k13
k15
P 2
B

.

Using this approximation in the steady state polynomial of MA one has

ṁA =
(k1T1T3)

1 + (k13
k15

)p2
B

− k5mA.

The first term is a Hill function. Hill kinetics arises from eliminating some inter-
mediates in cooperative bindings, which is a similar approach to Michaelis–Menten
kinetics. To read more about Hill kinetics see Bhaskaran et al. (2015) and (Ingalls,
2012, Subsection 3.3).
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2.6 Closing

The results in the papers of this thesis deal with several tasks and questions. To give
an overview of the motivation behind these three papers we highlight five tasks:

Given a reaction network;

• compute a reduced Gröbner basis for its steady state ideal.

• detect if it is a binomial network.

• detect if it is multistationary.

• give a choice of parameters in a given box in the parameter space for which
the network exhibits multistationary behavior.

• decide what parameter choices are more robust to produce a specific number
of steady states.
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3
Contribution to the state of the

art

3.1 Summary of contributions

As mentioned in Section 2.3, regarding detecting binomiality of the steady state
ideal of a network one can use reduced Gröbner basis. Because the computation of
Gröbner bases usually takes a long time, it is always preferred to use alternative
methods. There are works and attempts to give better alternative methods mostly
using linear algebra such as Conradi and Kahle (2015). Not using Gröbner bases,
makes these methods fast, but they provide only sufficient conditions for binomiality.
Our work in the first paper provides a sufficient and necessary condition to check
binomiality by exploiting the properties of intermediate species. It is faster than
computing a reduced Gröbner basis of the steady state ideal of the original network.
In this work we also provide faster algorithms to compute reduced Gröbner bases of
the steady state ideal of networks with intermediate species.

The second paper targets detection of multistationarity. There are several works
introducing methods to detect multistationarity of networks with binomial steady
state ideal, but usually in papers on injectivity of polynomial systems and papers
studying a class of binomial networks. So we gathered the literature on how to detect
multistationarity of a binomial network in one place. Further, we introduced a new
algorithm to study multistationarity of a network with intermediate species and a
binomial core network, which are not necessarily binomial themselves.

Finally we start studying the parameter region of multistationarity and ques-
tions related to parameter choice for producing a multistationary behavior. In this
direction there are many works. The works can be divided into two categories. One
group give exact descriptions of the region in the parameter space where the network
exhibits multistationary behavior, but they are limited to low-dimensional parame-
ter space. So one needs to fix all parameters except one or two and then implement
these methods to find a suitable description for the remaining parameters. Another
group of methods use random sampling and solving the system in many points.

23
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These approaches are very time consuming. We suggested using the Kac-Rice for-
mula and introduce new algorithms to study questions regarding parameter region
of multistationarity. A more interesting new idea introduced in this work is a mea-
sure of robustness with respect to the number of steady states. We provide a tool to
compare two parameter choices that produce the same number of steady states. Our
algorithm decides which parameter choice is stronger under pertubations without
knowing the description of the region in the parameter space where the network has
that number of steady states.

3.2 Overview of Paper 1

Remember that the definition of intermediates, core and extended networks was
given in Section 2.2. Before going into any result, we briefly explain the reduction
process via eliminating intermediate species. Consider the following simple network.

X0 +X2
κ1−−⇀↽−−
κ2

Y1
κ3−−→ Y2

κ4−−⇀↽−−
κ5

X1 +X2

X1
κ6−−→ X0.

The species Y1 and Y2 are intermediates. The steady state polynomials of these two
species are

F1 = FY1(y, x) = κ1x0x2 − κ2y1 − κ3y1,

F2 = FY2(y, x) = κ3y1 − κ4y2 + κ5x1x2.

The system F1 = F2 = 0 is linear with respect to y1 and y2.

(κ2 + κ3)y1 + (0)y2 = κ1x0x2

(−κ3)y1 + (κ4)y2 = κ5x1x2.

Solving this linear system, we have

y1 = κ1
κ2+κ3

x0x2, y2 = κ5
κ4
x1x2 + κ3κ1

κ4(κ2+κ3)
x0x2.

Let µi,c denote the coefficient of the monomial corresponding to the non-intermediate
complex c in the solution of yi. So

µX0+X2,1 = κ1
κ2+κ3

, µX1+X2,1 = 0, µX0+X2,2 = κ3κ1
κ4(κ2+κ3)

, µX1+X2,2 = κ5
κ4
,

µX1,1 = 0, µX0,1 = 0, µX1,2 = 0 µX0,2 = 0.

As it can be seen, µi,c is nonzero only when c is an input for Yi. After eliminating
Y1 and Y2 from the network, the core network is

X0 +X2
k1−−→ X1 +X2, X1

k2−−→ X0.
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Define the following map

{
φ : R[k][x] → R(κ)[y, x]

kc→c′ 7→ φc→c′(κ) = κc→c′ +
∑m

i=1 κYi→c′µi,c.

Here m denote the number of intermediates. If {φc→c′(κ) | c → c′ ∈ R} (R is the
set of reactions for the core network) is algebraically independent over R, then the
map φ can be extended to R(k)[x]. Denote it by Φ. Finally define the following
polynomials

Hi(y, x) = yi −
∑

c input for Yi

µi,cx
c.

While reducing a network via the elimination of its intermediates, to keep infor-
mation of the original network we need three objects together; the core network, the
map Φ, the set of polynomials Hi(x, y). Gröbner bases of the steady state ideal of
the extended network and the steady state ideal of the core network are related as
the following theorem states.

Theorem 1 (Theorem I.3.4). Fix a monomial order on R(k)[x] associated with an

n × n matrix Q, and let G be a Gröbner basis of I with this order. Then, G̃ =
Φ(G) ∪ {Hi(y, x)} is a Gröbner basis of Ĩ with the monomial order on R(κ)[y, x]
associated with the matrix

Q̃ =

[
idm 0
0 Q

]
, (3.1)

where idm is the identity matrix of size m.

If G is reduced, then Φ(G)∪
{
yi−rem

(∑
c∈C µi,cx

c,Φ(G)
)}

is the reduced Gröb-

ner basis of Ĩ.

By rem(f,B) we mean a remainder of the division of a polynomial f by a set of
polynomials B. The remainder is unique if B is a Gröbner basis.

Theorem 1 suggests a new algorithm to compute (reduced) Gröbner basis for the
steady state ideal of networks with intermediates.

Algorithm 2.

Input: A network with intermediates and a monomial order such as lex, gr-
lex, grevlex, etc. or if the non-intermediate species are already determined, an
arbitrary monomial order on them.

Output: A (reduced) Gröbner basis for the steady state ideal in the monomial

order associated with the matrix Q̃.
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Procedure:

1. Find intermediates.

2. Solve the linear system of intermediates to get µi,c’s and Hi’s.

3. Simplify the network by eliminating intermediates to get the core net-
work.

4. Compute (reduced) Gröbner basis of the steady state ideal of the core
network in the given monomial order associated with the matrix Q in the
input. Denote this Gröbner basis by G.

5. Let G̃ = Φ(G)∪{Hi | i = 1, . . . ,m} (or G̃ = Φ(G)∪{rem
(
Hi,Φ(G)

)
|

i = 1, . . . ,m} for the reduced case). Return G̃ as the output.

The ERK activation network is used as an example, Example I.3.5, to demon-
strate that using Algorithm 2 is faster than computing a Gröbner basis of the ex-
tended network directly. Comparison of methods is given in Remarks I.3.6 and I.3.7.

One application of Gröbner bases in CRN is in model discrimination Gunawar-
dena (2007); Manrai and Gunawardena (2008); Karp et al. (2012); Harrington et al.
(2012); Meshkat et al. (2016). When several models are suggested, one way to ex-
clude wrong models is to use invariants. Invariants are relations, including only
some observable species, that are satisfied at steady states. A correct model should
have invariants compatible with the experimental observations. Corollary I.3.8 ex-
plains how one can save time using Theorem 1 to compute invariants of a model not
involving the concentration of intermediates.

Another application of Gröbner bases is to detect if an ideal can be generated
by binomials. Remember from Section 2.3 that there are methods developed to
study multistationarity of binomial networks. Theorem I.3.10 suggests a less time
consuming method to detect binomiality of the steady state ideal of the extended
networks.

Theorem 3 (Theorem I.3.10). Let N be a reaction network and Ñ an extension of
it via the addition of m intermediates Y1, . . . , Ym.

The steady state ideal Ĩ is binomial if and only if

• I is binomial, and,

• for any reduced Gröbner basis G of I and for every i = 1, . . . ,m, the remainder
of the division of

∑
c∈C µi,cx

c by Φ(G) has at most one term.

Corollary I.3.11 is a result of Theorem 3 that states that an extended network
with 1-input intermediates has a binomial steady state ideal if and only if its core
network has a binomial steady state ideal.
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Section I.4 is devoted to the study of the algebraic independence condition of
the set {φc→c′(κ) | c → c′ ∈ R2} over R. Lemma I.4.4 makes this condition equiva-
lent with the algebraic independence of several smaller subsets. Corollary I.4.6 and
Lemma I.4.7 go further and show that the algebraic independence condition of many
of those smaller subsets hold. In fact they cover the algebraic independence condi-
tion of typical realistic examples. Therefore most of the time just by looking at the
graphical representation of the network one can see that this condition holds and
there is no need to do any computation.

Finally Section I.5 investigates if there exist similar results discussed so far for
model reductions using removal of enzymes instead of removal of intermediates. An
enzyme is a species for which the stoichiometric coefficients on both sides of every
reactions are equal. For example in the gene regulatory network of proteins A and
B in Figure 2.1, the species E and F are enzymes.

We finish this section by applying the above discussion on the gene regulatory
network of proteins A and B.

Example 1. Consider the network in Figure 2.1. The species Dbb
A and Dbb

B are
intermediates. The algebraically independence condition holds by Corollary I.4.6.
The core network after removal of Dbb

A and Dbb
B and the complexes Db

A + PB and
Db
B+PA has two new intermediates Db

A and Db
B. We removed the isolated complexes

because they are no longer involved in any reaction and thus not affecting the steady
state ideal. The algebraically independence condition again holds by the same reason.
The new core network after removal of Db

A and Db
B and the complexes not involved

in any reaction has the following ODE system;

ṁA = k1dAe− k5mA ṁB = k2dBf − k6mB

ṗA = k3mA − k7pA ṗB = k4mB − k8pB
ė = ḟ = ḋA = ḋB = 0.

The steady state ideal is trivially binomial since the steady state polynomials are
already binomials. Because in both reduction steps, intermediates are 1-input, by
Theorem 3 the original network is also binomial.

The theorem in fact provides more than just detecting binomiality. Adding steady
state polynomials of Db

A and Db
B of the middle extended network and the steady state

polynomials of Dbb
A and Dbb

B of the original extended network, which are binomials,
to the binomial generator of the final core network, will give a binomial basis of the
steady state ideal.
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3.3 Overview of Paper 2

Recall the definition of intermediates, inputs, extended and core networks from Sec-
tion 2.2. A specific simple but important type of extended networks are called canon-
ical extensions.

Definition 5 (Definition II.3.2). Let N be a network and C = {c1, . . . , cm} ⊆ C.
The canonical extension of N associated with C, denoted by ÑC = (S̃, C̃, R̃), is the
extension of N via the addition of 1-input intermediates Y1, . . . , Ym such that

R̃ = R∪
{
ci 
 Yi

}m
i=1
.

The canonical network associated with C = C is called the largest canonical network.

From results of Feliu and Wiuf (2013a) under a condition called the generalized
realization condition, multistationarity of an extended network is equivalent to mul-
tistationarity of a canonical extension with the same core network and the same set
of inputs. Other than the generalized realization condition, there is another condi-
tion in Feliu and Wiuf (2013a) called the realization condition, these conditions are
studied in Section II.5. One method to check these conditions is to use CAD. But as
it is mentioned in Section 2.4, CAD is applicable on small size examples. Similar to
Section I.4, in Section II.5, these realization conditions of the original network are
shown to be equivalent with realization conditions of several smaller subnetworks.
Proposition II.5.3 introduces some classes of subnetworks for which these conditions
hold.

A binomial network is called complete if it fulfills (surj) and its steady state ideal
has a basis consisting of rank(N ) binomials. Assume that the steady state ideal of
the network is generated by rank(N ) binomials

pi(k)x
ci,1
1 . . . xci,nn − p′i(k)x

c′i,1
1 . . . x

c′i,n
n , i = 1, . . . , rank(N ).

Define the following matrices

M =
[
ci,j − c′i,j

]
∈ Rrank(N )×n and Γ =

[
M diag(λ)

Z

]
, (3.2)

where λ = (λ1, . . . , λn) is a vector of auxiliary indeterminates. Lemma II.3.9 and
Proposition II.3.10 show that a canonical extension of a complete binomial network
is again a complete binomial network. Thus one has Theorem II.3.11.

Theorem 4 (Theorem II.3.11). Let N be a complete binomial network and Ñ an
extended network satisfying the generalized realization condition with the input set
C ⊆ C. Then Ñ is multistationary if and only if det(Γ̃C) is either identically zero
or has both positive and negative coefficients.
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Lemma II.4.1 relates det(Γ) of extended and core binomial networks. Theorem
II.4.2 restates Theorem 5.1 of Feliu and Wiuf (2013a), that is an extended network
of a multistationary network is multistationary, but with different assumptions.

Theorem 5 (Theorem II.4.2). Let Ñ be a binomial extension of a complete binomial
network N via the addition of intermediates and let Γ be as in (3.2) for N . Assume

in addition that (surj) holds for Ñ . If N is multistationary and det(Γ) 6= 0, then Ñ
is multistationary.

Definition 6 (Definition II.4.5). Let N be a reaction network with the set of com-
plexes C. Let Mult be the set of all subsets of complexes C ⊆ C for which the
canonical extension ÑC of N associated with C is multistationary. Denote the set
of minimal elements of Mult with respect to inclusion by Circuits.

The set Mult is called the multistationarity structure of N and the elements of
Circuits are called circuits of the multistationarity structure of N .

Since the multistationarity structure of a multistationary network is just the
whole power set of C, we focus on core networks that are not multistationary. Lem-
mas II.4.6 and II.4.7 build the steps towards Algorithm II.4.8. This algorithm takes a
complete binomial core network that is not multistationary as the input and gives the
multistationarity structure as the output. Remark II.4.10 compares the use of Algo-
rithm II.4.8 with other search approaches for finding the multistationarity structure.
Section II.4.3 applies Algorithm II.4.8 on the core n-site phosphorylation network,
Equation (II.18).

Theorem 6 (Theorem II.4.12). An extension of the core n-site phosphorylation net-
work via the addition of intermediates satisfying the generalized realization condition
is multistationarity if and only if there exists an intermediate having at least one of
X0 + E, . . . , Xn−2 + E,Xn + F, . . . , X2 + F among its inputs.

Below we compare Algorithm II.4.8 with CRNToolbox:

• To find the multistationarity structure of a reaction network using CRNTool-
box one needs to give 2m networks to the software (or at least as many as
needed to use the 1st or the 2nd approaches in Remark II.4.10). But using
Algorithm II.4.8, it is possible to get the multistationarity structure in one go.

• The other advantage of Algorithm II.4.8 is that one can do symbolic compu-
tation such as finding the multistationarity structure of the n-site phosphory-
lation for arbitrary n.
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• The CRNToolbox only determines whether the network is multistationary
while Algorithm II.4.8 determines which complexes can cause multistationarity
by being input of an intermediate. Therefore to change the multistationarity
of the network you know what intermediate(s) should be added or removed.

We finish this section by applying the above discussion on our simple gene reg-
ulatory network of Chapter 2.

Example 2. Consider the network in Figure 2.1. As mentioned in Example 1 this
network is the result of extending the second core network in Figure 3.1. Contrary to
Section 3.2, here we do not remove the isolated complexes from the graph of the net-
work. By Definition 5, both of these two extensions are canonical, so the generalized

DA + E
k1−−→ DA + E + MA DB + F

k2−−→ DB + F + MB

MA
k3−−→ MA + PA MB

k4−−→ MB + PB

MA
k5−−→ 0 MB

k6−−→ 0

PA
k7−−→ 0 PB

k8−−→ 0
DA + PB DB + PA

,

DA + E
k1−−→ DA + E + MA DB + F

k2−−→ DB + F + MB

MA
k3−−→ MA + PA MB

k4−−→ MB + PB

MA
k5−−→ 0 MB

k6−−→ 0

PA
k7−−→ 0 PB

k8−−→ 0

DA + PB

k9−−−⇀↽−−−
k11

Db
A DB + PA

k10−−−⇀↽−−−
k12

Db
B

Db
A + PB Db

B + PA

Figure 3.1: From left to right, the second core and the first core networks.

realization condition holds. The second core network is a complete binomial network
and det(Γ) = λ1λ2λ3λ4. By Theorem II.2.7, it is not multistationary. Running Algo-
rithm II.4.8 on this network, we get that an extension of it is multistationary if and
only if it has both complexes DA+PB and DB+PA as inputs. Therefore the first core
network is already multistationary and so are its extensions including the original
network. As a conclusion we do not only detect that the network is multistationary,
but also figured out that the reason is the inhibitory bindings, without them, the
network is not multistationary.

3.4 Overview of Paper 3

Recall the discussion on parameter regions of multistationarity from Section 2.4.
CRNToolbox only provides one parameter choice and is not possible to impose con-
ditions on the parameters in this software. Therefore CRNToolbox is not a software
to study the region of multistationarity. There are four other methods mentioned in
Section 2.4;

1- solving the system in random points from the parameter space,
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2- solving the system in random points in sub-boxes and taking average of the
number of steady states for each sub-box,

3- CAD,

4- using numerical homotopy methods to approximate the discriminant variety.

In this section we refer to these methods as methods 1-4. Section III.2 reviews
method 2. Section III.3 introduces a new method to study the region of multista-
tionarity of CRNs using the Kac-Rice formula. For some networks, studying the
positive solutions of the system (2.7) can be reduced to studying the positive roots
of a univariate polynomial f(t). An example of this case is the network in Example
III.1.2 which is studied in Kothamachu et al. (2015); Conradi et al. (2017). Theorem
III.3.1 states the Kac-Rice formula in the setting needed to study positive roots of
a univariate polynomial with coefficients being polynomials of parameters, in our
case reaction rate constants and constants of conservation laws. Proposition III.3.2
simplifies this formula for the case that f(t) is linear in one parameter, k1, and
the coefficient of k1 is always positive for any acceptable (positive) choice of other
parameters and t.

Proposition 7 (Proposition III.3.2). Let f : R>0 → R be a polynomial map with
coefficients being polynomials in k1, . . . , km. Assume that each parameter ki follows
a continuous random distribution with support in R>0 and density ρi, that ρi is
continuous except maybe in a finite number of points. Assume also that k1, . . . , km
are independently distributed. Further assume that fk(t) = h1(k2, . . . , km, t)k1 +
h2(k2, . . . , km, t) is linear in k1, and that h1(k2, . . . , km, t) is a polynomial in t, k2, . . . , km
with all coefficients positive. Let

g(k2, . . . , km, t, x) =
x− h2(k2, . . . , km, t)

h1(k2, . . . , km, t)
.

Then the Kac-Rice integral is

∫ ∞

0

E
(
|f ′(t)| | f(t) = 0

)
pt(0)dt =

∫ ∞

0

A(t) ·B(t)dt,

where, for ρ̄(k2, . . . , km, t) = ρ1(g(k2, . . . , km, t)) · ρ2(k2) · . . . · ρm(km) we have

A =

∫

Rm−1
>0

|f ′k(t)|k1=g(k2,...,km,t,0)
| ρ̄(k2,...,km,t)∫
Rm−1

>0
ρ̄(s2,...,sm,t)ds2...dsm

dk2 . . . dkm,

B =

∫

Rm−1
>0

ρ̄(k2, . . . , km, t)

h1(k2, . . . , km, t)
dk2 . . . dkm.
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The idea of using the Kac-Rice formula to find the region of multistationarity is
explained in Example III.3.3. To be able to compare the result with the result ob-
tained by method 3, the example implements the new method on a two-dimensional
parameter space. The method divides the box of interest to sub-boxes and then
computes the average number of steady states in each sub-box with the Kac-Rice
integral and equipping the parameters with uniform distribution.

The first difference of this approach with method 2 is that the Kac-Rice integral
gives the exact expected number of steady states, see Example 3 below. One may
instead of computing the Kac-Rice integral exactly, which is not always possible, use
numerical integration. Both for using 1-dimensional numerical integration methods
or higher dimensional numerical integrations such as Monte-Carlo, it is only needed
to evaluate the integrand function in sample points, while in method 2 (or method 1)
one needs to solve the system in the sample points which needs more computations.
The advantage of this new method to methods 3 and 4 is clear due to these methods
are not practical for higher dimensional parameter spaces. But using this new method
one can store the expected number of steady states of sub-boxes in an n-dimensional
array.

Example 3. Consider the following simple network:

X
c−−⇀↽−−
d

0, 2X
a−−→ 3X. (3.3)

There is only one steady state polynomial and no conservation law. The system (2.7)
is

f(t) = at2 − bt+ c.

To compute the average number of steady states of this network in the parameter
region restricted to the box [0, 1]× [0, 1]× [0, 1], we equip the parameters a, b, c with
the uniform distribution U([0, 1]) independently. The system f(t) = 0 has infinite
positive solutions when a = b = c = 0, one positive solution when a = 0, b, c 6= 0
or c = 0, a, b 6= 0 or a 6= 0, b2 = 4ac (the double root is treated as one root). All of
these regions are of measure zero. There are two remaining regions, which are not
of measure zero.

In the region between the planes a = 0, b = 0 and c = 1 and the surface b2 = 4ac,
the system f(t) = 0 has two positive roots and outside of all mentioned regions it
has no real root. Thus

E(|f−1(0) ∩ R>0|) = 2

∫ 1

0

∫ 1
4
∧1

0

∫ 1

2
√
ac

db dc da

= 2(

∫ 1

1
4

∫ 1
4a

0

∫ 1

2
√
ac

db dc da+

∫ 1
4

0

∫ 1

0

∫ 1

2
√
ac

db dc da)

= 2( ln(2)
6

+ 5
36

).
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Now we use the Kac-Rice formula. Since f(t) is linear in a (and c) with coefficients
independent of b, c (and a, b), we can use the Equation III.(8) and write

E(|f−1(0) ∩ R>0|) =

∫ 1

0

1

1

∫ 1

0

∫ 1

0

|f ′(t)|c=bt−at2χ[0,1](bt− at2)da db dt

+

∫ ∞

1

1

t2

∫ 1

0

∫ 1

0

|f ′(t)|
a=

bt−c
t2
χ[0,1](

bt−c
t2

)dc db dt.

Now by solving 0 < bt− at2 < 1 assuming 0 < a, b, t < 1 one has

∫ 1

0

∫ 1

0

∫ 1

0

|f ′(t)|c=bt−at2χ[0,1](bt− at2)da db dt =

∫ 1

0

∫ t

0

∫ 1
t
b

0

|f ′(t)|c=bt−at2da db dt

+

∫ 1

0

∫ 1

t

∫ 1

0

|f ′(t)|c=bt−at2da db dt.

Similarly, by solving 0 < bt−c
t2

< 1 assuming 0 < b, c and 1 < t one has

∫ ∞

1

1

t2

∫ 1

0

∫ 1

0

|f ′(t)|
a=

bt−c
t2
χ[0,1](

bt−c
t2

)dc db dt =

∫ ∞

1

∫ 1
t

0

∫ tb

0

1

t2
|f ′(t)|

a=
bt−c
t2
dc db dt

+

∫ ∞

1

∫ 1

1
t

∫ 1

0

1

t2
|f ′(t)|

a=
bt−c
t2
dc db dt.

These last integrals can be computed exactly and we have

E(|f−1(0) ∩ R>0|) = 2( 1
18

+ 1
12

+ ln(2)
6

) = 2( ln(2)
6

+ 5
36

).

Section III.3.3 introduces a new concept “measure of robustness” which deter-
mines how deep in a parameter region with a fixed number of steady states the
point is without knowing the description of the region. The idea is to compute the
expected number of steady states for a small neighborhood of the point and then
increasing the size of the neighborhood until the expected number of steady states
drops. This will happen if the neighborhood intersect another region of parameters
where the network has less number of steady states.

If one wants to compute such a quantity using methods 3 and 4, if possible, one
needs to find the polynomial inequalities defining the region and then computing the
distance of the point from the boundaries of this region. Trying to implement the
same idea but using the same approach of methods 1 and 2, again one needs to do
more computations due to he needs to solve the system in sample points. Using Kac-
Rice integral he needs to evaluate the integrand function in sample points. Example
III.3.5 computes the measure of robustness for two points from the multistationarity
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region depicted in the 2-dimensional parameter region in Examples III.2.1 and III.3.3
to compare the result with visual figures. We exemplify by computing measure of
robustness with 8 parameters to show that this approach is not limited to small size
systems, as for methods 3 and 4. Section III.4 discusses the numerical methods used
for computation of the integrals.



4
Perspective

In this chapter we discuss some perspective suggested by the work done in the papers
I-III.

Gröbner basis. As it is mentioned in the introduction of the first paper, the
Algorithm 2 can be used for arbitrary parametric ideals. Instead of intermediates
one needs to find variables that appear linearly in a set of generators of the ideal.
But then one needs to know how to define Φ and what conditions are necessary on
Φ to have an equivalent version of Theorem I.3.4. A future work is to find what
conditions are needed, also how to check them. For example, we used the graphical
representation of the network to check the algebraic independence of {φc→c′ | c →
c′ ∈ R}, while it is not the case for an arbitrary parametric ideal which is not the
steady state ideal of a network.

In Section I.5 we saw that enzymes are not as well-behaved as intermediates for
studying Gröbner bases. So one cannot formulate a similar result as Theorem I.3.4
for enzymes. But instead one can think about the existence of a condition under
which an analogous result becomes true. For example, in the case of the ERK acti-
vation network (Figure I.1) eliminating intermediates and enzymes recursively and
considering a monomial order having enzymes smaller than non-enzymes and inter-
mediates larger than non-intermediates, one gets a reduced Gröbner basis with 27
polynomials which has an even smaller number of polynomials than the number of
steady state polynomials.

Regarding Gröbner bases, not only computation time is an issue. As it can be
seen with different monomial orders, the reduced Gröbner basis can have different
number and different lengths (number of terms in each polynomial) of polynomials.
It is not worthful for a biologist to use a reduced Gröbner basis of the steady state
ideal instead of the steady state polynomials if it has too many polynomials or too
long polynomials. Using the monomial order given in Theorem I.3.4 we got less
number of polynomials with shorter lengths in Example I.3.5 than in the reduced
Gröbner basis in the grevlex order. A future work can be to investigate this property
formally.

35
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Multistationarity of networks with binomial core network. In Section II.4.3,
Algorithm II.4.8 is applied on the n-site distributive sequential phosphoryliation core
network. Future work can be to implement this algorithm on other class of networks
with binomial core networks, for example when there is a cascade of n-site phospho-
rylations.

Region of multistationarity and measure of robustness. In the third paper
the Kac-Rice formula, Theorem III.3.1, is given for a univariate polynomial. A future
work can be giving the Kac-Rice formula in the setting of studying multistationarity
of CRNs similar to Theorem III.3.1, but for a multivariate polynomial system. In
the Kac-Rice formula of (Adler and Taylor, 2007, Theorem 11.2.1) one needs the
number of polynomials in the system be equal to the number of variables. This is
always possible for CRNs. Let n = |S| and d = n − rank(N ). In (2.7), d of the
steady state polynomials can be removed since they are linear combinations of the
rest. Then the system (2.7) is a square system with n polynomials and n variables.

Another future work is to implement the method with other distributions such as
truncated normal and log-normal distributions. It is more natural to use truncated
normal distribution when studying measure of robustness or effect of perturbation.

And finally working on the speed of numerical integrations. For different distribu-
tions, the Monte-Carlo method has a different speed of convergence. Even with the
same type of distribution but different parameters of distribution, the speed can be
different. There are many methods in the literature to choose better distributions to
increase the speed of Monte-Carlo integration. Increasing the speed of convergence
of the Monte-Carlo method means that one needs fewer number of sample points
and so less number of evaluation of the integrand function. Therefore it will reduce
the time needed to implement the introduced methods of paper 3, in particular of
the measure of robustness.
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GRÖBNER BASES OF REACTION NETWORKS WITH

INTERMEDIATE SPECIES

AMIRHOSEIN SADEGHIMANESH1, ELISENDA FELIU1,2

Abstract. In this work we consider the computation of Gröbner bases of the
steady state ideal of reaction networks equipped with mass-action kinetics. Specif-
ically, we focus on the role of intermediate species and the relation between the
extended network (with intermediate species) and the core network (without in-
termediate species).

We show that a Gröbner basis of the steady state ideal of the core network
always lifts to a Gröbner basis of the steady state ideal of the extended network by
means of linear algebra, with a suitable choice of monomial order. As illustrated
with examples, this contributes to a substantial reduction of the computation
time, due mainly to the reduction in the number of variables and polynomials.
We further show that if the steady state ideal of the core network is binomial,
then so is the case for the extended network, as long as an extra condition is
fulfilled. For standard networks, this extra condition can be visually explored
from the network structure alone.

Keywords: binomial ideals, mass-action kinetics, steady state ideal, invariant,
Gröbner basis

Introduction

Parametric polynomial systems of equations arise in the natural sciences when
modeling ecosystems, cell behavior, the spread of an illness, and molecular inter-
actions within the cell, to name a few examples. In these scenarios questions of
interest often boil down to describing the solutions to these systems for varying
values of the parameters. Although only non-negative solutions are typically mean-
ingful, the standard tool in computational algebraic geometry to study algebraic
varieties, namely Gröbner bases, has proven useful. However, due to the parametric
coefficients, the computation of a reduced Gröbner basis can be time consuming
for realistic examples, which typically involve many variables and parameters. The
computation time depends mainly on the degree of the polynomials, the number of
variables and coefficients, the choice of the monomial order and the used method
[1, 2, 5, 9, 29]. These universal considerations target generic polynomial systems,
but, in applications, the structure of the particular system of interest might favor
one method or one monomial order over another.

1Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100
Copenhagen, Denmark.

2Corresponding author: efeliu@math.ku.dk
Date: October 10, 2018.
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We focus on a specific type of polynomial systems that arise when modeling chemi-
cal reaction networks with mass-action kinetics [10, 12]. Specifically, the evolution of
the concentrations of the species of a chemical reaction network in time is described
under mass-action by a system of ordinary differential equations in Rn

dxi
dt = fκ,i(x), i = 1, . . . , n

with fκ,i(x) polynomial. The monomials of each fκ,i(x) depend on the reaction
network structure alone, and the coefficients depend on the reaction rate constants
κ, which are often unknown and thus treated as parameters. The steady states, or
equilibrium points, of the system are the non-negative points of the variety defined
by the steady state ideal Iκ = 〈fκ,1(x), . . . , fκ,n(x)〉.

The question of restricting to non-negative steady states remains challenging and
no straightforward solutions have been proposed. Despite of this, Gröbner bases
have been for example used for model discrimination [13, 14, 18–20]. They are
also used to decide whether the steady state ideal is binomial, that is, whether any
reduced Gröbner basis consists of polynomials with at most two terms. If this is the
case, then methods to detect the existence of multiple steady states can be applied
[22, 25].

In this work we exploit the specific structure of the steady state ideal, which
reflects the structure of the reaction network, to guide the selection of good monomial
orders and to compute reduced Gröbner bases faster. Specifically, we consider a
frequent and nicely-behaved class of species introduced in [11] called intermediate
species (or intermediates, for short). Intermediates give rise to linear terms in the
steady state polynomials, and they can be removed from a reaction network resulting
in a smaller core network with only the non-intermediates. A key property is that
steady states of the core network can be lifted to steady states of the extended
network.

The first main result of this work is Theorem 3.4, where we show how to obtain
a Gröbner basis of the extended network from one of the core network using linear
algebra. The result implicitly gives good monomial orders, namely, those for which
the concentration of the intermediates are larger than for the non-intermediates, and
are lexicographic in the variables corresponding to the intermediates. Example 3.5
illustrates the computational advantage of using our approach compared with other
methods. Additionally, we conclude that the analysis of the steady state ideal of the
core network is sufficient for model discrimination.

The second main result, Theorem 3.10, addresses how to decide whether the
steady state ideal is binomial. We show that if the steady state ideal of the core
network is binomial, then this is also the case for the steady state ideal of the
extended network provided an extra condition is fulfilled. In typical networks, this
extra condition can be readily checked from the network structure alone. When the
core network has a homogeneous steady state ideal (which happens frequently for
realistic reaction networks), then one can employ the linear algebra-based method
introduced in [4] to detect whether the steady state ideal of the core network is
binomial. Then, combined with our result, we obtain a faster method to address
whether the steady state ideal of the original network is binomial, which does not
rely on the computation of a Gröbner basis.
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The key property behind our results is that intermediates define a square linear
subsystem of full rank among the steady state polynomials. Its solution and posterior
substitution into the remaining polynomials gives rise to a smaller ideal in the non-
intermediates. A Gröbner basis of the small ideal can then be lifted to a Gröbner
basis of the original ideal. Our approach can be theoretically applied to arbitrary
parametric ideals, after detection of linear subsystems among a set of generators.
However, technical conditions that are necessary for our results to hold might not be
straightforward to check, since we overcome this difficulty by exploiting the network
structure.

The structure of the paper is as follows. We start by introducing reaction networks
and basic concepts such as the steady state ideal. Intermediates are introduced in
Section 2. In Section 3 we address Gröbner bases of networks with intermediates,
discuss binomial steady state ideals and relate our work to [4]. In Section 4 a
technical condition of algebraic independence of a set of rational functions, which is
assumed in the former sections, is discussed. Finally, in the last section, we discuss
another class of special species, namely enzymes, that might lead to similar results
concerning the computation of Gröbner bases.

1. The steady state ideal of a reaction network

We follow the formalism of [11]. See also [10, 12] for an introduction to reaction
networks. Subscripts ≥ 0, > 0 on R (resp. Z) refer to the non-negative and positive
real numbers (resp. integer numbers).

A reaction network is an ordered triple N = (S, C,R) where S, C and R are three
sets called the set of species, complexes and reactions, respectively. Here S is a finite
set and C is a finite set of linear combinations of elements of S with coefficients in
Z≥0. A reaction is an ordered pair of complexes (c, c′) in C2, usually denoted as
c→ c′. For the reaction c→ c′, the complex c is called the reactant and c′ is called
the product.

A digraph is associated with a reaction network as follows. The vertex set is C
and there is a directed edge from the reactant to the product of every reaction. If
both reactions c→ c′ and c′ → c for two complexes c and c′ exist, then the notation
c
 c′ is used and the reaction is said to be reversible.

Complexes that are not part of any reaction or species that are not part of any
complex do not appear in the digraph. Therefore, the reaction network cannot
uniquely be determined from the digraph alone. For simplicity, however, we often
introduce a reaction network by its digraph and implicitly assume that the set of
complexes equals the set of vertices and the set of species consists of the species that
appear in at least one complex.

Write S = {X1, . . . , Xn}, such that the set of species is implicitly ordered. Then
a complex c is of the form c1X1 + · · ·+ cnXn, which we also write in vector form as
c = (c1, c2, . . . , cn) ∈ Zn≥0. With this representation, ci is called the stoichiometric
coefficient of Xi in c.

Example 1.1. Let S = {X1, X2, X3, X4}, C = {X1 + X3, X4, X2 + X3}, R =
{X1 + X3 → X4, X4 → X1 + X3, X4 → X2 + X3}. The network N = (S, C,R) is
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represented with the following digraph

X1 +X3 −−⇀↽−− X4 −−→ X2 +X3.

The complexes X1+X3 and X4 appear both as reactants and products while X2+X3

appears only as a product.

We next construct a system of Ordinary Differential Equations (ODEs) that mod-
els the variation of the concentration of each species in time and introduce the
relevant polynomials Fi(x) that are the focus of this work. We denote the concen-
tration of each species Xi in lower-case xi. For each reaction c → c′, we introduce
a parameter kc→c′ , and a polynomial Fi(x) is associated with every species Xi as
follows:

Fi(x) =
∑

c→c′∈R
(c′i − ci)kc→c′ xc ∈ R(k)[x],(1)

where xc = xc11 . . . xcnn . Here x = (x1, . . . , xn) and R(k) is the field of rational
functions with variables kc→c′ and real coefficients. The symbol k stands for the
parameter vector

k = (kc→c′ | c→ c′ ∈ R).

For a chosen positive value k? ∈ RR>0 of the parameter vector, we let Fk?,i(x) ∈
R[x] denote the image of Fi(x) under the evaluation map

R[k]→ R, kc→c′ 7→ k?c→c′ .

With this choice of k?, the ODE system of the reaction network under mass-action
kinetics is

ẋi = Fk?,i(x), i = 1, . . . , n, x ∈ Rn≥0.(2)

The value k?c→c′ > 0 is called the reaction rate constant of c → c′ and is usually
depicted as a label of the reaction in the associated digraph. By [27], if the starting
condition of (2) belongs to Rn>0 (resp. Rn≥0), then so does the trajectory for all
positive times in the interval of definition.

The steady states of the network are the common zeros of Fk?,i(x), i = 1, . . . , n.
In applications, only non-negative real solutions have meaning and mostly, positive
steady states are interesting, meaning all concentrations are positive. Since the
values of the reaction rate constants are in general unknown, they are treated as
parameters of the system. Thus we aim at studying the zeros of the system of
polynomials Fi(x) = 0, for i = 1, . . . , n in R(k) and specially the positive zeros after
specifying values for k.

Definition 1.2. Let N = (S, C,R) be a reaction network with S = {X1, . . . , Xn}.
(a) Fi(x) ∈ R(k)[x] is called the steady state polynomial of Xi.
(b) The ideal generated by the steady state polynomials of all the species in the

network in the ring R(k)[x] is called the steady state ideal of the network:

IN =
〈
Fi(x) | i = 1, . . . , n

〉
⊆ R(k)[x].
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The set of steady states for a vector of reaction rate constants k? is thus the
solution set to any basis (set of generators) of IN specialized to k?.

It follows from (1) and (2) that for all x ∈ Rn, the vector

Fk(x) = (Fk,1(x), . . . , Fk,n(x))

lies in the vector subspace S = span({c − c′ | c → c′ ∈ R}) ⊆ Rn. If s = dim(S),
then n− s of the steady state polynomials can be written as linear combinations of
the remaining s polynomials. We conclude that it is always possible to find a basis
of IN with cardinality dim(S).

Example 1.3. (continued from Example 1.1) The ODE system of the reaction
network with digraph

X1 +X3
k1−−⇀↽−−
k2

X4
k3−−→ X2 +X3

is

ẋ1 = −k1x1x3 + k2x4 ẋ2 = k3x4

ẋ3 = −k1x1x3 + k2x4 + k3x4 ẋ4 = k1x1x3 − k2x4 − k3x4.
In this case dim(S) = 2, k = (k1, k2, k3) and the steady state ideal is

IN =
〈
− k1x1x3 + k2x4, k3x4

〉
⊆ R(k)[x].

2. Intermediates and steady states

In this subsection we introduce a special type of species of interest: intermediates.

Definition 2.1. We say that Y ⊆ S is a subset of intermediates if each Y ∈ Y
fulfills:

• Y ∈ C and the stoichiometric coefficient of Y in all other complexes is zero,
and
• there exists at least one reaction having Y as reactant and at least one

reaction having Y as product.

Each Y ∈ Y is called an intermediate.

Whenever a set of intermediates Y is given, we partition the set of species into
two disjoint subsets Y = {Y1, . . . , Ym} and X = {X1, . . . , Xn} of non-intermediates.
We assume further that the set of species is ordered such that the species Y1, . . . , Ym
are first. With this convention, we let (y, x) denote the concentration vector of all
species: x is the concentration vector of the species in X and y of the species in Y.
A complex is either an intermediate in Y or it contains only non-intermediates. In
the latter case we say that c is a non-intermediate complex.

Note that given Y, we refer to the intermediates of the network as the species in
Y, even though there might be other species in X , regarded as non-intermediates,
that fulfill the two items in Definition 2.1.

Example 2.2. The most common mechanism involving intermediates is of the fol-
lowing form:

X + E −−→ Y −−→ X ′ + E
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or variations of it by letting one or both reactions being reversible. Isomerism
mechanisms among intermediates are also common:

Y −−→ Y ′ Y −−⇀↽−− Y ′.
Combination of these mechanisms yields to more elaborate networks involving in-
termediates, as in Examples 2.6 and 3.5 below.

Definition 2.3. Let Y be a set of intermediates and Y ∈ Y.

• A non-intermediate complex c is called an input for Y if there is a directed
path from c to Y in the digraph associated with the network, such that all
vertices other than c belong to Y.
• Y is called an `-input intermediate if there are ` inputs for Y .

Example 2.4. Consider the following network with Y = {Y1, Y2, Y3}:
X1 +X2 −−→ Y1 −−⇀↽−− Y2 −−⇀↽−− Y3 −−→ X3 +X4.

There are two non-intermediate complexes, X1 +X2 and X3 +X4. The species Y1,
Y2, Y3 are all 1-input intermediates. Note that Y2 is however the product of two
reactions.

Consider now the following network with Y = {Y }:
X1 +X2 −−⇀↽−− Y −−⇀↽−− X3 +X4.

The species Y is a 2-input intermediate and X1 +X2 and X3 +X4 are both inputs
for Y .

2.1. Intermediates and steady states. Let Ñ be a reaction network with a set
of intermediates Y = {Y1, . . . , Ym}. Consider the steady state polynomials of the
intermediates and denote the parameter vector of reaction rate constants by κ (the
reason why will be made clear below). By definition, for every intermediate Yi, the
variable yi is only part of the monomial yi in (1). Thus, the system with m equations

F1(y, x) = · · · = Fm(y, x) = 0

is linear in y1, . . . , ym. It is shown in [11] that this system has a unique solution for
fixed positive values of κ and x, which is further positive. The solution is of the
form

yi =
∑

c∈C
µi,c x

c, where µi,c ∈ R≥0(κ), i = 1, . . . ,m.

The explicit dependence of µi,c on κ is omitted from the notation for simplicity. An
explicit description of µi,c can be found using the Matrix-Tree theorem on a suitable
labeled digraph, see [11].

Example 2.5. Consider the following reaction network with X = {X1, X2, X3} and
Y = {Y1, Y2, Y3}:

X1 +X2
κ1 /o
κ2

Y1
κ3 //

κ5 ""

Y2
κ4 // 2X2

Y3
κ6 /o
κ7

κ8
;;

2X1

κ9

OO
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The linear system in y1, y2, y3 that the steady state polynomials of Y1, Y2, Y3 define
is:

κ1x1x2 − (κ2 + κ3 + κ5)y1 = 0,

κ3y1 − κ4y2 = 0,

κ5y1 − (κ6 + κ8)y3 + κ7x
2
1 = 0,

and its solution is

y1 = κ1
κ2+κ3+κ5

x1x2, y2 = κ1κ3
κ4(κ2+κ3+κ5)

x1x2,

y3 = κ1κ5
(κ6+κ8)(κ2+κ3+κ5)

x1x2 + κ7
κ6+κ8

x21.

This gives

µ1,X1+X2
= κ1

κ2+κ3+κ5
, µ1,2X1

= 0, µ1,2X2
= 0,

µ2,X1+X2
= κ1κ3

κ4(κ2+κ3+κ5)
, µ2,2X1

= 0, µ2,2X2
= 0,

µ3,X1+X2
= κ1κ5

(κ6+κ8)(κ2+κ3+κ5)
, µ3,2X1

= κ7
κ6+κ8

, µ3,2X2
= 0.

Example 2.6. The following digraph corresponds to the Mitogen-Activated Protein
Kinase cascade (MAPK) given in [3]:

X0 + E
κ1−−⇀↽−−
κ2

Y1
κ3−−→ X1 + E

κ4−−⇀↽−−
κ5

Y2
κ6−−→ X2 + E

X2 + F
κ7−−⇀↽−−
κ8

Y3
κ9−−→ Y4

κ10−−⇀↽−−
κ11

X1 + F
κ12−−⇀↽−−
κ13

Y5
κ14−−→ Y6

κ15−−⇀↽−−
κ16

X0 + F.

Species Y1, . . . , Y6 are intermediates. The non-zero coefficients µi,c are:

µ1,X0+E = κ1
κ2+κ3

, µ2,X1+E = κ4
κ5+κ6

, µ3,X2+F = κ7
κ8+κ9

,

µ4,X2+F = κ7κ9
(κ8+κ9)κ10

, µ4,X1+F =κ11
κ10
, µ5,X1+F = κ12

κ13+κ14
,

µ6,X1+F = κ12κ14
(κ13+κ14)κ15

, µ6,X0+F =κ16
κ15
.

2.2. Extended and core networks.

Definition 2.7. Let N = (S, C,R) and Ñ = (S̃, C̃, R̃) be two reaction networks.

We say that Ñ is an extension of N via the addition of intermediates Y1, . . . , Ym if

(i) Y = {Y1, . . . , Ym} is a set of intermediates of Ñ .

(ii) S ∪ Y ⊆ S̃ and C ∪ Y ⊆ C̃.
(iii) c → c′ ∈ R if and only if there is a directed path from c to c′ in the digraph

associated with Ñ , such that all vertices other than c and c′ belong to Y (there
might be none).

In this case N is called the core network of Ñ .

Example 2.8. The core network associated with the network in Example 2.5 is:

X1 +X2
k1 //

k2 &&

2X2

2X1

k3

;;
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Example 2.9. The core network of the network in Example 2.6 has digraph

X0 + E
k1−−→ X1 + E

k2−−→ X2 + E X2 + F
k3−−→ X1 + F

k4−−→ X0 + F.

Notations κ, Ĩ, F̃ are used to address reaction rate constants, steady state ideal
and steady state polynomials of the extended network respectively. This notation is
fixed from now on whenever we study extensions via the addition of intermediates.

Given Ñ an extension of N via the addition of intermediates Y1, . . . , Ym, we define
a map

φ : R[k] −→ R(κ)
kc→c′ 7−→ φc→c′(κ),

such that for every reaction c→ c′ ∈ R, φc→c′(κ) is the rational function

φc→c′(κ) = κc→c′ +
m∑

i=1

κYi→c′ µi,c,(3)

where it is understood that κc→c′ = 0, κYi→c′ = 0 if respectively c→ c′, Yi → c′ do

not belong to R̃. Note that φc→c′(κ) 6= 0 for all c → c′ by Definition 2.7(iii) and
that φc→c′(κ) is a rational function with positive coefficients.

The map φ extends to a map

Φ: R[k][x]→ R(κ)[y, x].

For example, if Fi is a steady state polynomial of N , Φ(Fi) is the polynomial ob-
tained by replacing kc→c′ by the rational function φc→c′(κ). If the rational functions
φc→c′(κ) are algebraically independent over R, then φ extends to a map of polyno-
mial rings

Φ: R(k)[x]→ R(κ)[y, x].

We explore in Section 4 ways to check whether the algebraic independence condition
holds, and provide types of intermediates for which it holds and no extra check is
required.

We introduce the following polynomials

Hi(y, x) = yi −
∑

c∈C
µi,c x

c ∈ R(κ)[y, x], i = 1, . . . ,m.(4)

Theorem 2.10. ([11, Theorems 3.1 and 3.2]) Let Ñ be an extension of N via the
addition of intermediates Y1, . . . , Ym.

(i) The coefficient µi,c is nonzero if and only if the non-intermediate complex c is

an input for Yi in Ñ .
(ii) The set of steady state polynomials of non-intermediate species and the poly-

nomials H1, . . . ,Hm in (4) form a basis of Ĩ.

(iii) F̃i

(∑
c∈C µ1,c x

c, . . . ,
∑

c∈C µm,c x
c, x1, . . . , xn

)
= Φ(Fi(x)) for i = 1, . . . , n.

Statements (ii) and (iii) of the previous theorem constitute the proof of the fol-
lowing corollary.
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Corollary 2.11. Let B be the set of steady state polynomials of N . Then

Ĩ =
〈

Φ(B) ∪ {H1(y, x), . . . ,Hm(y, x)}
〉
.

We conclude this section with basic properties of Φ.

Lemma 2.12. With the notation above, assume φc→c′(κ) for all c → c′ ∈ R are
algebraically independent over R. Let B = {f1, . . . , f`} and B′ = {f ′1, . . . , f ′`′} be two
sets in R(k)[x].

(i) If f ∈ 〈B〉, then Φ(f) ∈ 〈Φ(B)〉.
(ii) If 〈B〉 = 〈B′〉, then 〈Φ(B)〉 = 〈Φ(B′)〉. Thus Φ(〈B〉) is well defined.

Proof. (i) Write f =
∑`

j=1 αjfj with αj ∈ R(k)[x]. Then

Φ(f) =
∑̀

j=1

Φ(αj)Φ(fj) ∈ 〈Φ(B)〉.

(ii) It is enough to show inclusion ⊆, since the other inclusion is analogous. If
g ∈ 〈Φ(B)〉, we have

g =
∑̀

i=1

λiΦ(fi), λi ∈ R(κ)[y, x].

Since fi ∈ 〈B′〉, we have by (i) that Φ(fi) ∈ 〈Φ(B′)〉. In particular, g is an algebraic
combination of the polynomials Φ(f ′1), . . . ,Φ(f ′`′) with coefficients in R(κ)[y, x]. Thus
g ∈ 〈Φ(B′)〉. �

3. Gröbner bases and intermediates

Typically, the values of the reaction rate constants are unknown and reaction
networks of interest involve a considerable number of variables. As a consequence,
finding a Gröbner basis of the steady state ideal over the field R(κ) can be a de-
manding task, and sometimes even impossible with standard computers. However,
the presence of intermediates, a common feature of reaction networks, can reduce
the computation time substantially, by exploiting the structure of the steady state
polynomials associated with intermediates given in Theorem 2.10. The main result
of this section is Theorem 3.4. Example 3.5 illustrates how the computation time
can be reduced by applying our results.

We start with some concepts from computational algebraic geometry.

3.1. Monomial orders and Gröbner bases. We follow the notation on Gröbner
bases from [5]. We give here a brief overview of the results required in this text.

Given a monomial order on R = K[x1, . . . , xn], let LM(f) and LT(f) denote
respectively the leading monomial and leading term of f . That is, LT(f) = αLM(f)
if α is the coefficient of the greatest monomial of f . Then, for a subset A ⊆ R, one
defines LT(A) =

{
LT(f) | f ∈ A

}
and LM(A) =

{
LM(f) | f ∈ A

}
. Clearly,

〈LT(A)〉 = 〈LM(A)〉.(5)
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For an ideal I, the initial ideal is the ideal generated by the leading terms of the
elements of I, 〈LT(I)〉. A subset G ⊆ I is called a Gröbner basis for I if

〈
LT(I)

〉
=
〈

LT(G)
〉
, (equiv.

〈
LM(I)

〉
=
〈

LM(G)
〉
).

A Gröbner basis is a basis of I as well. Further, G is a reduced Gröbner basis if
additionally for every element g ∈ G none of its terms can be divided by the leading
monomial of an element in G− {g}, and the coefficient of LM(g) is 1.

Whether a basis of an ideal is a Gröbner basis depends on the chosen monomial
order. Given an ideal and a monomial order, the Gröbner basis is not unique but
there is a unique reduced Gröbner basis (see [5]).

We will use the following lemma, which follows from Lemma 2.3.1 and Theorem
2.3.2 of [15].

Lemma 3.1. Let B be a basis of I. If the leading monomials of every pair f, g ∈ B
are relatively prime, then B is a Gröbner basis.

All monomial orders are defined via a matrix in the following way (though not all
matrices M define a monomial order in this way, [5, 26]). For M ∈ Rn×n with full
rank, the associated order fulfills xc1 > xc2 if the first non-zero entry of the vector
M(c1 − c2) is positive

A typical order is the lexicographic monomial order, lex. After choosing a variable
order xa1 > · · · > xan , lex(xa1 , . . . , xan) is the order defined by the matrix with 1 in
positions (i, ai) for all i = 1, . . . , n and zero otherwise.

Another monomial order of interest is the graded reverse-lexicographic order,
abbreviated grevlex. With this order, xc1 > xc2 if the total degree of the first
monomial is larger than the second. If they are equal, then the monomial with the
smallest variable with least exponent is the greatest one. Grevlex with order of
variables x1 > · · · > xn is defined by the matrix




1 1 . . . 1 1
0 0 . . . 0 −1
0 0 . . . −1 0
...

...
. . .

...
...

0 −1 . . . 0 0



.

The choice of order plays an important role in the computation time for Gröbner
bases, performing lex typically worse than grevlex. However, lex, as any other
elimination type order, has a crucial property on elimination of variables. Given a
partitioning of the set of variables, {x1, . . . , xn} = {xj1 , . . . , xjn−s} ∪ {xi1 , . . . , xis},
a monomial order is of elimination type if xj` , for ` = 1, . . . , n−s, is larger than any
monomial inK[xi1 , . . . , xis ] [6, §3.1, Exercise 5]. Clearly, lex(xj1 , . . . , xjn−s , xi1 , . . . , xis)
is of elimination type. If G is a Gröbner basis of I with respect to an elimination type
order as above, then G∩K[xi1 , . . . , xis ] is a Gröbner basis of I ∩K[xi1 , . . . , xis ] with
respect to the induced monomial on K[xi1 , . . . , xis ], which for lex is lex(xi1 , . . . , xis).

3.2. Gröbner bases and intermediates. In this subsection we fix a reaction
network N and an extension Ñ via the addition of intermediates Y1, . . . , Ym. We
show that any Gröbner basis of the steady state ideal of N can be extended to one of
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Ñ by simply adding the polynomials H1, . . . ,Hm given in Equation (4). By default,
we order the variables y1 > · · · > ym > x1 > · · · > xn. We start with some general
lemmas.

Lemma 3.2. Let I = 〈f0, f1, . . . , fs〉 ⊆ K[y, x1, . . . , xn] be an ideal such that fi ∈
K[x1, . . . , xn] for i = 1, . . . , s and f0 = y + f ′0, with f ′0 ∈ K[x1, . . . , xn]. Consider a
monomial order defined by a matrix M whose first row is

(
1 0 . . . 0

)
. Then

〈
LT(I)

〉
=
〈
y
〉

+
〈

LT(〈f1, . . . , fs〉)
〉
.

Further given G ⊆ K[x1, . . . , xn], G is a Gröbner basis of 〈f1, . . . , fs〉 if and only
if {f0} ∪G is a Gröbner basis of I.

Proof. By the choice of monomial order, the monomial y is larger than any monomial
not involving y. Consider a reduced Gröbner basis G′ of 〈f1, . . . , fs〉. Then the
leading terms of the elements in G′ are relatively prime with each other and with
the leading term of f0. Since {f0} ∪G′ is a basis of I, then by Lemma 3.1 {f0} ∪G′
is a Gröbner basis of I. Now, the initial ideal of I is generated by the leading terms
of {f0} ∪G′. So:

〈LT(I)〉 = 〈LT({f0} ∪G′)〉 = 〈{y} ∪ LT(G′)〉 = 〈y〉+ 〈LT(G′)〉
= 〈y〉+ 〈LT(〈f1, . . . , fs〉)〉.

This proves the first part of the lemma.
For the second part, note that

〈y〉+ 〈LT(G)〉 = 〈{LT(f0)} ∪ LT(G)〉 = 〈LT({f0} ∪G)〉.
Using this equality and the first part of the lemma, we have {f0} ∪G is a Gröbner
basis of I if and only if 〈y〉+〈LT(G)〉 = 〈y〉+〈LT(〈f1, . . . , fs〉)〉. Since y is not part of
any polynomial in G, this equality holds if and only if 〈LT(G)〉 = 〈LT(〈f1, . . . , fs〉)〉,
i.e. G is a Gröbner basis of 〈f1, . . . , fs〉. �

Recall that we write I ⊆ R(k)[x1, . . . , xn] and Ĩ ⊆ R(κ)[y1, . . . , ym, x1, . . . , xn] for

the steady state ideals of N and Ñ respectively. For the rest of the section, we
assume that the rational functions φc→c′(κ) are algebraically independent over
R, such that Φ(A) is defined for all subsets A of R(k)[x].

For an arbitrary basis B of I, define

B̃ = Φ(B) ∪
{
H1(y, x), . . . ,Hm(y, x)

}
⊆ R(κ)[y, x].(6)

Lemma 3.3. If B is a basis of I ⊆ R(k)[x], then B̃ is a basis of Ĩ ⊆ R(κ)[y, x].

Proof. Let B′ be the set of steady state polynomials of N . By Corollary 2.11

Ĩ =
〈

Φ(B′) ∪ {H1(y, x), . . . ,Hm(y, x)}
〉
.

Let nowB be an arbitrary basis of I. Then 〈B〉 = I = 〈B′〉 and thus by Lemma 2.12(ii),
〈Φ(B)〉 = 〈Φ(B′)〉. Therefore
〈

Φ(B) ∪ {H1(y, x), . . . ,Hm(y, x)}
〉

=
〈

Φ(B′) ∪ {H1(y, x), . . . ,Hm(y, x)}
〉

= Ĩ .

This completes the proof. �
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Let rem(p,B) be the remainder of the division of the polynomial p by a set of
polynomials B.

Theorem 3.4. Fix a monomial order on R(k)[x] associated with an n × n matrix

Q, and let G be a Gröbner basis of I with this order. Then, G̃ is a Gröbner basis of

Ĩ with the monomial order on R(κ)[y, x] associated with the matrix

Q̃ =

(
Idm 0

0 Q

)
,(7)

where Idm is the identity matrix of size m.

If G is reduced, then Φ(G)∪
{
yi−rem

(∑
c∈C µi,cx

c,Φ(G)
)}

is the reduced Gröbner

basis of Ĩ.

Proof. First note that by the monomial order given by Q̃, we have y1 > · · · > ym > xi
for all i = 1, . . . , n. Also, the polynomial Hi has degree one in yi and none of the
elements of Φ(G) ∪ {Hj | j 6= i} involves yi.

Let us assume we have shown that Φ(G) is a Gröbner basis of 〈Φ(G)〉 with the
given order, that is

〈
LT(〈Φ(G)〉)

〉
=
〈

LT(Φ(G))
〉
.(8)

Then by Lemmas 3.2 and 3.3, Φ(G)∪{H1(y, x), . . . ,Hm(y, x)} is a Gröbner basis of

Ĩ. Therefore the first part of the statement holds provided (8) holds.
Let us show (8). We start by noting that for a subset J in R(k)[x], the set LM(J)

consists only of monomials in x1, . . . , xn, and thus is naturally included in R(κ)[y, x]
as well. Further

LM(J) = LM(Φ(J)).(9)

Let G′ be a reduced Gröbner basis of I. Since G′ is reduced, pairs of monomials
in LM(G′) = LM(Φ(G′)) are relatively prime. Since Φ(G′) is a basis of 〈Φ(G′)〉,
then by Lemma 3.1 and Equation (5), it is actually a Gröbner basis and (8) holds
for G′. Now, consider an arbitrary Gröbner basis G of I. In R(k)[x] it holds

〈LM(G)〉 = 〈LM(G′)〉.(10)

This means that every monomial in 〈LM(G′)〉 is divisible by a monomial in 〈LM(G)〉
and viceversa [5, §2.4, Lemma 2]. Since this fact holds also in R(κ)[y, x], (10) holds
also in R(κ)[y, x]. Combined with (9) this gives

〈
LM(Φ(G))

〉
=
〈

LM(Φ(G′))
〉
.

By Lemma 2.12(ii), 〈G〉 = 〈G′〉 in R(k)[x] implies 〈Φ(G)〉 = 〈Φ(G′)〉. Thus in
R(κ)[y, x] we have

〈
LM(Φ(G))

〉
=
〈

LM(Φ(G′))
〉

=
〈

LM(〈Φ(G′)〉)
〉

=
〈

LM(〈Φ(G)〉)
〉
.

This shows that (8) holds.
The second part of the lemma is clear from the definition of a reduced Gröbner

basis and using that Φ(G)∪{yi− rem
(∑

c∈C µi,cx
c,Φ(G)

)
} is also a Gröbner basis.

�
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X1 +X2
κ1−−⇀↽−−
κ2

X3
κ3−−→ X2 +X4

X4 +X18
κ37−−⇀↽−−
κ38

X25
κ39−−→ X18 +X26

X5 +X26
κ40−−⇀↽−−
κ41

X27
κ42−−→ X4 +X5

κ4−−⇀↽−−
κ5

X6
κ6−−→ X1 +X5

X4 +X7
κ7−−⇀↽−−
κ8

X8
κ9−−→ X4 +X9

κ10−−⇀↽−−
κ11

X10
κ12−−→ X4 +X11

X5 +X11
κ13−−⇀↽−−
κ14

X12
κ15−−→ X5 +X9

κ16−−⇀↽−−
κ17

X13
κ18−−→ X5 +X7

X11 +X14
κ19−−⇀↽−−
κ20

X15
κ21−−→ X11 +X16

κ22−−⇀↽−−
κ23

X17
κ24−−→ X11 +X18

X18 +X19
κ25−−⇀↽−−
κ26

X20
κ27−−→ X16 +X19

κ28−−⇀↽−−
κ29

X21
κ30−−→ X14 +X19

X18 +X22
κ31−−⇀↽−−
κ32

X23
κ33−−→ X16 +X22

X5 +X16
κ34−−⇀↽−−
κ35

X24
κ36−−→ X5 +X14

X18 +X28
κ43−−⇀↽−−
κ44

X29
κ45−−→ X18 +X19

X19
κ46−−→ X28

Figure 1. Reaction network of Example 3.5.

From the computational point of view, Theorem 3.4 is very useful. Instead of

computing a Gröbner basis of Ĩ directly, one can first compute a Gröbner basis
G for the core network, with a smaller number of variables and polynomials, then
add the polynomials yi −

∑
c∈C µi,cx

c, and, finally, simplify them using polynomial
division by Φ(G). The second step involves only linear algebra. A possible issue
here is to verify that the rational functions φc→c′ are algebraically independent. We
provide in Section 4 a list of network structures involving intermediates for which
the condition is fulfilled.

Example 3.5. An interesting example to show the advantage of using Theorem 3.4

is Example 4.4 of [4]. We consider the reaction network Ñ with associated digraph
given in Figure 1.

This reaction network has 29 species and 46 reactions. Therefore the steady
state ideal is generated by 29 polynomials in 29 variables and 46 parameters. Using
Singular [7] and monomial order grevlex with x1 > · · · > x29 (the same monomial
order that is used in [4]), it took between 110 and 115 seconds1 to compute the
reduced Gröbner basis. This basis consists of 169 polynomials.

1Information about the processor: Intel(R) Core(TM) i5-3570 CPU @3.4GHz 3.4GHz with
8GB RAM. We report the interval of obtained times after several runs of Singular, computed
in milliseconds.
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Now we consider the monomial order introduced in Theorem 3.4 for the removal
of the 15 intermediates:

X3, X6, X8, X10, X12, X13, X15, X17, X20, X21, X23, X24, X25, X27, X29.

The original network Ñ is an extension of the following core network N with 14
species and 16 reactions:

X1 +X2
k1−−→ X2 +X4 X5 +X26

k3−−→ X4 +X5
k4−−→ X1 +X5

X4 +X18
k2−−→ X18 +X26 X4 +X7

k5−−→ X4 +X9
k6−−→ X4 +X11

X18 +X22
k13−−→ X16 +X22 X5 +X11

k7−−→ X5 +X9
k8−−→ X5 +X7

X5 +X16
k14−−→ X5 +X14 X11 +X14

k9−−→ X11 +X16
k10−−→ X11 +X18

X18 +X28
k15−−→ X18 +X19 X18 +X19

k11−−→ X16 +X19
k12−−→ X14 +X19

X19
k16−−→ X28.

The functions φc→c′ are algebraically independent over R by Corollary 4.6 in Sec-
tion 4. We consider grevlex with x1 > · · · > x28 for the monomials corresponding
to N . The monomial order in Theorem 3.4 is then associated with the following
matrix

Q̃ =




1 0
. . .

0 1

0

0

1 1 . . . 1 1
0 0 . . . 0 −1
0 0 . . . −1 0
...

...
...

...
0 −1 . . . 0 0




,

and order of variables

x3 > x6 > x8 > x10 > x12 > x13 > x15 > x17 > x20 > x21 > x23 > x24
> x25 > x27 > x29 > x1 > x2 > x4 > x5 > x7 > x9 > x11 > x14 > x16
> x18 > x19 > x22 > x26 > x28.

The reduced Gröbner basis of Ĩ with this monomial order has 33 polynomials and
it takes about 96 seconds to compute it directly with Singular. Alternatively the
strategy outlined in Theorem 3.4 can be applied. The steady state ideal I of N is
generated by 11 polynomials in 14 variables and 16 parameters. Using Singular, the
reduced Gröbner basis of I has 18 polynomials and its computation takes less than a
millisecond. The computation time for the polynomials Hi(y, x) is neglectable, since
they are found by solving 15 independent linear equations. Therefore the reduced
Gröbner basis of the ideal of the original system has 18+15=33 polynomials and can
be computed in less than a millisecond.

We conclude that in general, regarding computational time, the monomial order
introduced in Theorem 3.4 is a good choice for networks with intermediates, and
further, by applying the strategy of Theorem 3.4 we reduce the computation time
considerably, compared with direct computation of the reduced Gröbner basis.
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Remark 3.6. Theorem 3.4 holds regardless the choice of method to compute a
Gröbner basis. Since the computation of the polynomials Hi is simple linear alge-
bra, even for the fastest available methods for the computation of Gröbner bases,
decomposing the computation as in Theorem 3.4 should be faster than direct com-

putation of the basis of the steady state ideal of Ñ .

Remark 3.7. For polynomials with integer coefficients, it is usually faster to com-
pute a Gröbner basis using the so-called p-modular approach, see e.g. [23, 29]. These
methods first choose a so-called lucky prime and compute a Gröbner basis of the
ideal in Zp[x]. Then the coefficients of this Gröbner basis are lifted to a Gröbner
basis in Q[x]. For the sake of comparison, we also computed how long it takes to find
a Gröbner basis using p-modular approaches on the extended network in Example
3.5 with grevlex and x1 > · · · > x29. Using the largest prime number in Singular,
p = 32003, it takes 127 seconds to compute the Gröbner basis over Z32003. Since
coefficients in the starting basis are 1 or −1, one may think that p = 2 is a lucky
prime. It took 97 seconds to compute the Gröbner basis over Z2. These times are
larger than the times reported in Example 3.5 (and these Gröbner bases still need
to be lifted to Q(κ)[y, x]).

An important consequence of Theorem 3.4 concerns parameter-free model dis-

crimination. In this setting one seeks elements of the steady state ideal Ĩ involving
only the concentrations of species that are experimentally measurable. These ele-
ments are called invariants. Each invariant implies that there is a set of monomials
that lie on a hyperplane, and the hypothesis of coplanary is then tested using exper-
imental data [13, 14, 18–20]. This approach is attractive because it does not require
knowing the values of the reaction rate constants.

Experimentally measurable species do not typically involve intermediates. In this
case, Theorem 3.4 tells us that invariants on the non-intermediate species can be
computed directly from the core network, using elimination ideals.

Corollary 3.8. Let N be a reaction network and Ñ an extension of it via the ad-
dition of m intermediates Y1, . . . , Ym. Let Xi1 , . . . , Xip be non-intermediates. Then

Ĩ ∩ R(κ)[xi1 , . . . , xip ] = Φ(I ∩ R(k)[xi1 , . . . , xip ]).

Proof. For simplicity, assume {i1, . . . , ip} = {n−p+1, . . . , n} and let x = (xn−p+1, . . . , xn).
Consider the monomial order lex(y1, . . . , ym, x1, . . . , xn) on R(κ)[y, x], and lex(x1, . . . , xn)

on R(k)[x]. Let G be a Gröbner basis of I. By Theorem 3.4, G̃ is a Gröbner basis

of Ĩ. By the properties of lex and Lemma 2.12(ii) we have

Ĩ ∩ R(κ)[x] = 〈G̃ ∩ R(κ)[x]〉 = 〈Φ(G ∩ R(k)[x])〉 = Φ(I ∩ R(k)[x]).

This concludes the proof. �
Note that the monomial order on R(κ)[y, x] given in Theorem 3.4 is of elimination

type with respect to the partition {y1, . . . , ym} ∪ {x1, . . . , xn}.
Example 3.9. Consider the network in Example 2.6 and its core network in Ex-
ample 2.9. In order to find invariants of the extended network involving the con-
centration of the non-intermediate species E,X0, X1, X2, we consider the ideal I ∩
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R(k)[e, x0, x1, x2], which is generated by the polynomial

e (k1k3x0x2 − k2k4x21).
We have

φ(k1, k2, k3, k4) =
(
κ1κ3
κ2+κ3

, κ4κ6
κ5+κ6

, κ7κ9
κ8+κ9

, κ12κ14
κ13+κ14

)
.

The functions φc→c′ are algebraically independent over R by Corollary 4.6. By

Corollary 3.8 the ideal Ĩ ∩ R(κ)[e, x0, x1, x2] is generated by the polynomial

e
(
κ1κ3
κ2+κ3

κ7κ9
κ8+κ9

x0x2 − κ4κ6
κ5+κ6

κ12κ14
κ13+κ14

x21

)
.

3.3. Detecting binomial steady state ideals. A binomial is a polynomial having
at most two terms. An ideal is said to be binomial if it admits a set of generators con-
sisting of binomials only. By [8, Corollary 1.2], an ideal is binomial if and only if any
reduced Gröbner basis (with respect to any monomial order) consists of binomials.

It is of biological relevance in the study of reaction networks to determine whether
there exists a choice of reaction rate constants k for which there are multiple positive
steady states in some coset x0 + S defined by the vector subspace S that contains
the image of Fk (see Section 1). This property is termed multistationarity. If the
steady state ideal is binomial, then there exist efficient ways to determine whether
the network admits multistationarity [22, 24, 25]. This leads to the problem of
determining whether an ideal is binomial, and in case it is, of finding a binomial
basis of it. As noted, both questions can be addressed by finding a Gröbner basis
of the steady state ideal of the network. Thus, for networks with intermediates, our
results can be applied also to detect binomial steady state ideals.

Recall that we are assuming that the rational functions φc→c′(κ) are algebraically
independent over R.

Theorem 3.10. Let N be a reaction network and Ñ an extension of it via the
addition of m intermediates Y1, . . . , Ym.

The steady state Ĩ is binomial if and only if

• I is binomial, and,
• for any reduced Gröbner basis G of I and for every i = 1, . . . ,m, the remain-

der of the division of
∑

c∈C µi,cx
c by Φ(G) has at most one term.

Proof. Fix any monomial order on R(k)[x1, . . . , xn] associated with an n×n matrix

Q and consider the monomial order with matrix Q̃ from Theorem 3.4. Let G be the
reduced Gröbner basis of I and

G̃′ = Φ(G) ∪
{
yi − rem

(∑

c∈C
µi,cx

c,Φ(G)
)}

the reduced Gröbner basis of Ĩ (cf. Theorem 3.4). Using that an ideal is binomial
if and only if any reduced Gröbner basis consists of binomials, the theorem is a
consequence of the following two facts:

• By definition, G̃′ consists of binomials if and only if Φ(G) is a set of binomials
and the remainder of the division of

∑
c∈C µi,cx

c by Φ(G) has at most one
term.
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• By the algebraic independence of φc→c′ , Φ(G) consists of binomials if and
only if G does.

�

Since the polynomial
∑

c∈C µi,cx
c has exactly one term for 1-input intermediates,

we readily obtain the following corollary.

Corollary 3.11. Let N be a reaction network and Ñ an extension of it via the

addition of m 1-input intermediates Y1, . . . , Ym. Then Ĩ is binomial if and only if I
is binomial.

Since 1-input intermediates are the most abundant form of intermediates found
in realistic networks, this corollary implies that in order to check whether a steady
state ideal is binomial, we can often remove intermediates and check whether the
steady state ideal of the core network is binomial.

Example 3.12. Consider the network in Example 2.5 and its core network given in
Example 2.8. The functions φc→c′ are algebraically independent over R by Example
4.1. Since the steady state ideal of N is

〈−(k1 − k2)x1x2 − 2k3x
2
1, (k1 − k2)x1x2 + 2k3x

2
1〉,

the core network has a binomial steady state ideal. The reduced Gröbner basis for
this ideal with monomial order lex(x1, x2, x3) is

G =
{
x21 − (k1−k2)

2k3
x1x2

}
.

We apply Theorem 3.10 to conclude that the steady state ideal of the extended net-
work is also binomial. The intermediates Y1, Y2 are 1-input intermediates and hence
the remainder condition of the theorem is automatically fulfilled. For the interme-
diate Y3, rem

(
µ3,X1+X2

x1x2 +µ3,X2+X3
x2x3,Φ(G)

)
has a single term with monomial

x1x2. Therefore we conclude that the extended network also has a binomial steady
state ideal.

The following example shows that extended networks with multi-input interme-
diates might not have binomial steady state ideals, even though their core networks
have.

Example 3.13. Consider the network given in Example 2.6 and its core network
given in Example 2.9. The steady state ideal of the core network is binomial with
basis B = {k1x0e− k4x1f, k2x1e− k3x2f}. The intermediates Y4 and Y6 are 2-input
intermediates. The remainder of the division of µ4,X2+Ex2f + µ4,X1+Fx1f by Φ(G)
for G the reduced Gröbner basis of I with the monomial order lex(x2, x1, x0, f, e) is

κ11
κ10
x1f + κ7κ9

κ8κ10+κ9κ10
x2f,

which has two terms. Therefore by Theorem 3.10 the steady state ideal of the
network in Example 2.6 is not binomial.

Remark 3.14. In [4], a method for determining whether a homogeneous ideal is
binomial is introduced. The method avoids the computation of Gröbner bases and
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is regarded as a fast method. If the steady state ideal of the core network is ho-
mogeneous, then Theorem 3.10 or Corollary 3.11 in combination with this method
provide a fast procedure to detect binomial steady state ideals.

Interestingly, steady state polynomials of core networks are often homogeneous of
degree two, since it is common that non-intermediate species appear in complexes
of the form Xi +Xj , yielding quadratic terms in the steady state polynomials. This
is for example the case for so-called Post-Translational Modification Networks [28].

4. Algebraic independence

In this section we discuss how to check whether the functions φc→c′ are alge-
braically independent over R and provide classes of intermediates for which this prop-
erty holds. Consider a set of rational functions A =

{f1
g1
, . . . , fmgm

}
⊆ R(x1, . . . , xn).

By §III.7, Theorem III, in [16], the set A is algebraically independent over R if and

only if the rank of the associated Jacobian matrix
(
∂(fi/gi)
∂xj

)
i,j

over R(x) is m.

Another way to check algebraic independence that requires the computation of a
Gröbner basis is as follows. Let ϕ be the function on Rn minus the zero locus of the
product g1 · · · gm defined by

x = (x1, . . . , xn) 7→
(
f1(x)

g1(x)
, . . . ,

fm(x)

gm(x)

)
.

By §3.3, Theorem 2, in [6], the closure of Im(ϕ) is the variety associated with the
ideal

J :=
〈
g1T1 − f1, . . . , gmTm − fm, 1− yg1 · · · gm

〉
∩ R[T1, . . . , Tm].

Since the sets of polynomials vanishing on a set and on its closure agree (see [6] after
Definition 2 in §4.4), A is algebraically independent over R if and only if J = {0}.
Example 4.1. The functions φc→c′ of Examples 2.5 and 2.8 are

φX1+X2→2X2
(κ) = κ4 µ2,X1+X2

+ κ8 µ3,X1+X2
= κ1κ3

κ2+κ3+κ5
+ κ1κ5κ8

(κ6+κ8)(κ2+κ3+κ5)
,

φX1+X2→2X1
(κ) = κ6 µ3,X1+X2

= κ1κ5κ6
(κ6+κ8)(κ2+κ3+κ5)

,

φ2X1→2X2
(κ) = κ9 + κ8 µ3,2X1

= κ9 + κ7κ8
κ6+κ8

.

We find that J = {0}. Hence the algebraic independence condition holds for the net-
work in Example 2.8. Alternatively, one easily checks that the associated Jacobian
matrix has rank 3.

The computations above can be simplified by taking into account what parameters
occur in each of the rational functions.

Definition 4.2. Let Ñ be an extension of N via the addition of the intermediates
{Y1, . . . , Ym}. Consider the digraph associated with Ñ . Let Y1, . . . ,Yt′ denote the
vertex sets of the connected components of the subgraph induced by the subset of
vertices {Y1, . . . , Ym}.

Let R′ ⊆ R be the subset of reactions of the core network that are not in R̃.
These reactions arise necessarily from paths through intermediates. We say that
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two reactions r1 : c1 → c′1, r2 : c2 → c′2 ∈ R′ overlap if there exist paths through
intermediates

c1 → Yi1 → · · · → Yip → c′1, c2 → Yj1 → · · · → Yjq → c′2
with all intermediates belonging to the same set Yi.

Consider the equivalence relation on R′ generated by the overlap relation: r ∼ r′
if and only if there exist r0 = r, r1, . . . , rp = r′ such that ri, ri+1 overlap for all
i = 0, . . . , p−1. LetR′1, . . . ,R′t be the equivalence classes of this equivalence relation.

Example 4.3. Consider the network in Example 2.8. The set R′ consists of two
reactions X1 + X2 → 2X2 and X1 + X2 → 2X1. The subgraph of the digraph

associated with Ñ induced by the set of intermediates is connected. Thus the two
reactions of R′ are equivalent and there is one equivalence class.

Lemma 4.4. The set {φc→c′(κ) | c → c′ ∈ R} is algebraically independent over R
if and only if the set {φc→c′(κ) | c → c′ ∈ R′i} is algebraically independent over R
for all i = 1, . . . , t.

Proof. Since R′i ⊆ R for all i = 1, . . . , t, the forward implication is clear.
To prove the reverse implication, assume that the sets Ti = {φc→c′(κ) | c → c′ ∈

R′i} are algebraically independent over R for all i = 1, . . . , t. By construction, the
sets of parameters appearing in the rational functions φc→c′(κ) are disjoint for two
reactions in different equivalence classes. Therefore the union of the sets T1, . . . , Tt
is algebraically independent over R. Furthermore if c → c′ ∈ R \ R′, then the
parameter κc→c′ appears only in φc→c′(κ). As a consequence the set

t⋃

i=1

Ti ∪ {φc→c′(κ) | c→ c′ ∈ R \ R′} = {φc→c′(κ) | c→ c′ ∈ R}

is algebraically independent over R. �
Example 4.5. Consider the network in Example 4.3. The algebraic independence
of the functions φc→c′(κ) for all reactions c → c′ in R follows in this case from the
algebraic independence of the functions φc→c′(κ) for the reactions X1 + X2 → 2X2

and X1 +X2 → 2X1.

Corollary 4.6. If R′ = ∅ or each of the equivalence classes R′1, . . . ,R′t consist of
one reaction, then the rational functions φc→c′(κ) are algebraically independent over
R.

For the networks in Example 2.6 and Example 3.5, each of the equivalence classes
consist of one reaction. Therefore, by Corollary 4.6, the algebraic independence
condition holds.

We next show that the algebraic independence condition holds for specific classes
of intermediates without the need of doing any extra computation.

Lemma 4.7. For the following extension networks, with intermediates Y1, . . . , Ym,
the set {φc→c′(κ) | c→ c′ ∈ R} is algebraically independent over R.

(i) c ←−→ Y1 ←−→ Y2 ←−→ . . . ←−→ Ym ←−→ c′, provided {Y1, . . . , Ym} is a set
of intermediates and where ←−→ means the reaction can be irreversible or
reversible.
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(ii)
c1

c2

c0 Y1 Y2 . . . Ym

`1

DD

`2

<<

`p ""

...

cp

with an arbitrary digraph structure among the complexes c0, Y1, . . . , Ym such
that there exists a directed path from c0 to Ym.

(iii)

c0
κ1 /o
κ2

Y1
κ3 /o
κ4

`1,1
��

`1,t1

��

Y2
κ5 /o
κ6

`2,1
��

`2,t2

��

. . .
κ2m−1/o
κ2m

Ym
`m,1
��

`m,tm

��

c1,1 c2,1 cm,1

...
...

...

c1,t1 c2,t2 cm,tm

where some of the reactions with label κ2i might not exist, and for each 1 ≤
i ≤ m, either ti ≥ 0.

Proof. We start by recalling how to find µi,c using a labeled digraph (see proof
of Theorem 2 of the electronic supplementary material of [11]). For each non-

intermediate complex c, consider the labeled digraph Ĝc with vertex set {Y1, . . . , Ym, ?}
and labeled edges Yi

κYi→Yj−−−−→ Yj if Yi → Yj ∈ R̃, ?
κc→Yi

xc

−−−−−→ Yi if c → Yi ∈ R̃ and

Yi
βi−→ ? with βi =

∑
Yi→c′ κYi→c′ if βi 6= 0.

For every vertex v of Ĝc define θ(v) as the set of all spanning trees rooted at v.2

Given such a tree τ , let π(τ) be the product of the labels of the edges of τ . Then

µi,c =

∑
τ∈θ(Yi) π(τ)

∑
τ∈θ(?) π(τ)

.(11)

(i) If one of the reactions is irreversible, then the core network consists of exactly one
reaction, either c→ c′ or c′ → c, and the set {φc→c′(κ) | c→ c′ ∈ R} is algebraically
independent over R.

If all reactions are reversible, we write

c
κ1−−⇀↽−−
κ2

Y1
κ3−−⇀↽−−
κ4

Y2
κ5−−⇀↽−−
κ6

. . .
κ2m−1−−−−⇀↽−−−−
κ2m

Ym
κ2m+1−−−−⇀↽−−−−
κ2m+2

c′,

and we have φc′→c(κ) = κ2µ1,c′ , φc→c′(κ) = κ2m+1µm,c. By the expressions for µ1,c′
and µm,c in (11), both rational functions have the same denominator and κ2m+1 is not
part of their numerator. Therefore, algebraic independence of κ2µ1,c′ and κ2m+1µm,c

2a spanning tree is rooted at v if v is the only vertex with no outgoing edges
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follows from the algebraic independence of the numerators of these two rational
functions. Since κ2m+1 is a factor of φc→c′(κ) and is not part of the numerator of
φc′→c(κ), the two functions φc→c′(κ), φc′→c(κ) are algebraically independent over R.

(ii) We have φc0→ci(κ) = `iµm,c0 for i = 1, . . . , p. Thus the set {φc0→ci | 1 ≤ i ≤ p}
is algebraically independent over R if and only if {`i | 1 ≤ i ≤ p} is, which clearly
holds.

(iii) The reactions of the core network are of the form c0 → ci,j . We consider the

graph Ĝc0 (removing the edges for which there is no reaction):

?

κ1xc0 00 Y1
κ3 /

κ2+
∑t1

j=1 `1,j

rr

Y2κ4
o

κ5 /

∑t2
j=1 `2,j

tt

. . .
κ6
o

κ2m−1/ Ymκ2m
o

∑tm
j=1 `m,j

vv

We have φc0→ci,j (κ) = `i,jµi,c0 . The denominators of the rational functions µi,c0 as
given in (11) agree. Therefore it is enough to check that the polynomials ρi,j :=
`i,j
∑

τ∈θ(Yi) π(τ) for all i, j are algebraically independent over R.

For each 1 ≤ i ≤ m, there exists a spanning tree rooted at Yi involving an edge
of the form Yj → ? only for j 	 i. Now consider the smallest index i such that
there exists a complex ci,j . The parameter `i,j appears in a polynomial ρi1,i2 only
for i1 = i. Hence the polynomials ρi1,i2 are algebraically independent if and only if
they are for i1 > i. We proceed in the same way now considering the smallest index
k > i such that there exists a complex ck,j . This process terminates in at most m
steps.

�

Corollary 4.6 and Lemma 4.7(i) show that typical rational functions arising from
realistic networks, such as those built from the mechanism in Example 2.2, fulfil the
algebraic independence condition.

5. Another class of species: enzymes

In this final section we consider another class of species for which reduction mech-
anisms have also been defined, namely enzymes, and study how Gröbner bases of
extended and reduced networks relate.

5.1. Enzymes. A species E ∈ S is an enzyme if for every reaction the stoichiometric
coefficient of E in the reactant and the product agree [21]. This automatically
gives that the steady state polynomial of E is identically zero, and implies that the
concentration of E is constant in time and only depends on the initial amount e0 of
E. For example, E and F are enzymes in the network of Example 2.9.

The core network obtained by removal of E consists of simply removing E from
each side of the reaction (this is an example of an embedded network, see [17]). For
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example, a reaction

X1 + E
κ1−→ X2 + E becomes X1

k1−→ X2.(12)

After fixing the initial amount of enzyme e0, the steady states of the extended
network satisfying that the concentration of E is e0 agree with the steady states of
the core network with k1 = e0κ1.

This might lead one to think that enzymes are redundant and that similar prop-
erties as those that hold for intermediates also hold for enzymes. For example, one
might think there is an easy way to obtain a Gröbner basis of the steady state ideal
of the extended network from one of the core network, or that a binomial steady
state ideal remains binomial upon removal of intermediates. But this is not the case,
as the following examples illustrate.

Example 5.1. Let N be the network

2X
k1 //

k3

223X
k2 // X

A binomial basis of the steady state ideal is {−2k2x
3 + (k1 − k3)x2}. Now consider

the following network by adding one enzyme E:

2X
κ1−−→ 3X

κ2−−→ X 2X + E
κ3−−→ X + E.

A reduced Gröbner basis of its steady state ideal is {x3− κ1
2κ2

x2+ κ3
2κ2

x2e}, and hence
this ideal is not binomial.

The previous example suggests the following: Consider a reaction as in (12). One
might obtain a Gröbner basis of the steady state ideal of the extended network
by considering a Gröbner basis of the steady state ideal of the core network and
substituting the parameter κ1 by k1e. The following example gives a negative answer
to this question.

Example 5.2. Let N be the following network

X1 k1
(( 0 3X1

k3 // X2.

2X1 k2

66

The set of steady state polynomials is

{−k1x1 − 2k2x
2
1 − 3k3x

3
1, k3x

3
1}.

With every arbitrary monomial order on R(k)[x], the reduced Gröbner basis of the
steady state ideal is {x1}.

Let now N ′ be the extension of N via the enzyme E:

X1 k1
(( 0 3X1 + E

k3 // X2 + E.

2X1 k2

66
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The set of steady state polynomials of N ′ is

{−κ1x1 − 2κ2x
2
1 − 3κ3x1e, κ3x

3
1e}.

The steady state ideal is different from 〈x1〉. Thus, there is not a monomial order
on R(κ)[x, e] for which the reduced Gröbner basis can be obtained from the set {x1}
by making the substitution k3 = κ3e.

Example 5.3. When a binomial basis of the steady state ideal is obtained from
linear combinations of the steady state polynomials (see [4]), then the steady state
ideal of the core network is binomial if and only if that of the extended network is.
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[25] M. Pérez Millán, A. Dickenstein, A. Shiu, and C. Conradi. Chemical reaction
systems with toric steady states. Bull. Math. Biol., 74(5):1027–1065, 2012.

[26] L. Robbiano. Term Orderings on the Polynomial Ring. Lecture Notes in Com-
puter Science, 204(93):513–517, 1985.

[27] E. D. Sontag. Structure and stability of certain chemical networks and applica-
tions to the kinetic proofreading model of T-cell receptor signal transduction.
Institute of Electrical and Electronics Engineers. Transactions on Automatic
Control, 46(7):1028–1047, 2001.

[28] M. Thomson and J. Gunawardena. The rational parameterization theorem for
multisite post-translational modification systems. J. Theor. Biol., 261:626–636,
2009.

[29] F. Winkler. A p-adic approach to the computation of Gröbner bases. J. Symb.
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Abstract

This work addresses whether a reaction network, taken with mass-action kinetics,
is multistationary, that is, admits more than one positive steady state in some stoi-
chiometric compatibility class. We build on previous work on the effect that removing
or adding intermediates has on multistationarity, and also on methods to detect multi-
stationarity for networks with a binomial steady state ideal. In particular, we provide
a new determinant criterion to decide whether a network is multistationary, which
applies when the network obtained by removing intermediates has a binomial steady
state ideal. We apply this method to easily characterize which subsets of complexes
are responsible for multistationarity; this is what we call the multistationarity struc-
ture of the network. We use our approach to compute the multistationarity structure
of the n-site sequential distributive phosphorylation cycle for arbitrary n.

Keywords: binomial ideal, phosphorylation cycle, multistationarity, model re-
duction, determinant criterion, toric

Introduction

Given a reaction network, an intermediate is a species that does not interact with any
other species, is produced by at least one reaction, and consumed by at least one reaction.
Typical intermediates Y arise in Michaelis-Menten type mechanisms as

c −−⇀↽−− Y −−→ c′,

where c, c′ are arbitrary complexes. Removal of the intermediates of a network yields a
new network, called the core network, as introduced in [8] (and further generalized in [15]).
For example, removal of Y from the mechanism above gives the reaction c→ c′.

We consider mass-action kinetics, such that the system of ordinary differential equa-
tions (ODEs) modeling the evolution of the concentrations of the species in time is poly-
nomial. As shown in [8, Theorem 5.1], multistationarity of the core network implies
multistationarity of the original (extended) network, provided a technical realization con-
dition is satisfied. Further, whether an extended network is multistationary depends only
on the set of complexes of the core network that react to an intermediate. These complexes
are called inputs. The subsets of complexes that give rise to multistationarity define the
multistationarity structure of the core network.

In this work we present an approach to find the multistationarity structure of core
networks, and thereby provide a fast way to decide whether a given extension network

1Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copen-
hagen, Denmark

2Corresponding author: efeliu@math.ku.dk
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is multistationary or not; indeed, it suffices to find the set of inputs of our network and
check whether it belongs to the multistationarity structure.

The method applies to core networks that are binomial (the ideal generated by the
steady state polynomials is binomial). For these networks, a method to decide on multi-
stationarity was introduced in [13], based on the computation of sign vectors. Under some
extra assumptions, another method relying on the computation of a symbolic determinant
and inspection of the sign of its coefficients is presented in [12] (see Theorem 2.7).

The first main result of this paper is Theorem 3.11, where we combine the results
in [8, 12] into a new determinant criterion for multistationarity that applies to extended
networks for which the core network is binomial, even though the original network might
not be binomial.

The second main result is Theorem 4.2, which removes the technical realization con-
dition in [8] for concluding that an extended network is multistationary provided the core
network is. Instead, we require that both the core and the extended networks are binomial
(in a compatible way).

The third main contribution is Algorithm 4.8, which returns the multistationarity
structure of a binomial core network based on the determinant criterion. The algorithm
relies on the study of the signs of a polynomial obtained after the computation of the
determinant of a symbolic matrix. Our approach is more direct than testing if the extended
network is multistationary for all subsets of input complexes. We apply our method to
find the multistationarity structure of the n-site distributive sequential phosphorylation
cycle for arbitrary n in §4.3. This illustrates how our results allow us to study a family of
networks at once.

We conclude with an investigation of when the technical realization conditions in [8] are
satisfied. In particular, we show that the conditions hold for typical types of intermediates
like the Michaelis-Menten mechanism above.

The structure of the paper is as follows. In §1 we introduce basic concepts on reaction
networks and multistationarity. In §2 we introduce (complete) binomial networks and the
determinant criterion for determining multistationarity. In §3 we focus on intermediates
and give the determinant criterion for multistationarity applicable to extended networks
with a binomial core network. In §4 we link multistationarity of the core and extended
networks, and in particular study the multistationary structure. Finally, in §5 we expand
on how to check the realization conditions.

Notation. Subscripts ≥ 0, > 0 for R refer to the non-negative and positive real num-
bers. The sets {1, . . . ,m} and {m1, . . . ,m2} are respectively denoted by [m] and [m1,m2].
In particular [m] = [1,m]. The cardinality of a set A is denoted by |A|.

Consider two vectors u, v ∈ Rn. The scalar product of u and v is denoted by u · v.
The vector vu is defined as

∏n
j=1 v

uj
j , and for a matrix M ∈ Rn×m with column vectors

u(i), i ∈ [m], the vector vM is the vector whose i-th entry is vu
(i)

. We let diag(v) be the
diagonal matrix with diagonal v and

Mv = M diag(v).

The sign vector of v, σ(v) ∈ {−1, 0, 1}n, is defined for i ∈ [n] as

σ(v)i =





1 if vi > 0
0 if vi = 0
−1 if vi < 0.
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1 Reaction networks

In this section we briefly introduce the ingredients from chemical reaction network theory
needed in the sequel. See for example [5, 10]. A reaction network, also called a network,
is a triplet of finite sets N = (S, C,R). The three sets are called respectively the set of
species, complexes and reactions. The elements of C are finite linear combinations of the
species with non-negative integer coefficients. The set of reactions consists of ordered pairs
(c, c′) of complexes, denoted c→ c′.

After fixing an order on S, write S = {X1, . . . , Xn}. We identify a complex c ∈ C with
the vector in Rn whose i-th entry is the coefficient of Xi in c. Therefore a complex c is
either given as

∑
X∈S cXX or by the corresponding vector (again denoted c).

There is a natural digraph associated with a network, with vertex set C and edge set R.
We often identify the reaction network with the digraph for simplicity. The stoichiometric
matrix N is an |S|×|R|matrix whose column vectors are c′−c for each reaction c→ c′ ∈ R.
This matrix depends on a fixed order of the set of reactions. The (real) column space of
N is called the stoichiometric subspace and is denoted by S. Its dimension, that is, the
rank of N , is the rank of the network.

In this work we consider so-called mass-action kinetics. Under this assumption, the
evolution of the concentration of the species in time is modeled by means of a polynomial
ODE system as follows. First, a positive real number kc→c′ is assigned to each reaction
c → c′. This number is called the reaction rate constant and often written as a label of
the reaction in the associated digraph. We interchangeably write ki = kc→c′ if c → c′ is

the i-th reaction and write the vector of reaction rate constants k ∈ R|R|>0 , if the order of
R is relevant, and k ∈ RR>0 otherwise.

Next, we let x = (x1, . . . , xn) denote the vector of the concentrations of X1, . . . , Xn;
note that in examples we simply use corresponding lower-case letters to denote concentra-
tions. Given x ∈ Rn, we define the vector ψ(x) ∈ R|R| as

ψ(x)i = xc, if c→ c′ is the i-th reaction.

Now the ODE system associated with the network and k ∈ R|R|>0 is

dx

dt
= Fk(x), where Fk(x) = Nkψ(x), x ∈ Rn≥0. (1)

Recall that Nk = N diag(k).
The solution to (1) with an initial condition x0 ∈ Rn≥0 is confined to the stoichiometric

compatibility class of x0: (x0 + S) ∩ Rn≥0 [6, Remark 3.4]. Equations for these classes are
found as follows. Let d be the corank of the network, that is, d = n− rank(N). A matrix
Z ∈ Rd×n whose rows form a basis of the orthogonal complement S⊥ of S is called a
matrix of conservation laws. Then the set (x0 + S) ∩ Rn≥0 agrees with the set

{u ∈ Rn≥0 | Zu = Zx0}.

A positive steady state is a solution to the system Fk(x) = 0 in Rn>0. Since we would
like to treat the values of k as unknown, we view the polynomials Fk,i(x) as polynomials
in the ring R(k)[x] by regarding k as parameters instead of positive real numbers. When
we do this, we write Fi(x). Then F1(x), . . . , Fn(x) are called the steady state polynomials
of the network, and the ideal I they generate is the steady state ideal :

I =
〈
F1(x), . . . , Fn(x)

〉
⊆ R(k)[x].
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Throughout this work, given an element or subset B of R(k)[x], we denote by Bk the
specialization of B to a given value of k.

It is always possible to find a basis (a set of generators) of the steady state ideal of a
network with cardinality equal to the rank of the network. Indeed, d of the steady state
polynomials are redundant since they can be expressed as a linear combination of the n−d
remaining polynomials.

Definition 1.1. We say that a reaction network is multistationary if there exists a strictly

positive vector k ∈ R|R|>0 such that the system Fk,i(x) = 0, i ∈ [n], has more than one
positive solution in a stoichiometric compatibility class. Alternatively, given a matrix of
conservation laws Z, the system

Nkψ(x) = 0 and Zx = T

has at least two positive solutions for some positive k and T ∈ Rd.

2 Binomial networks and multistationarity

In this section we discuss and expand known results on determining whether a network is
multistationary when the steady state ideal is binomial. The main references are [12, 13].
An ideal is binomial if it admits a binomial basis, that is, a basis with all polynomials
having at most two terms. It is well known that an ideal is binomial if and only if
the reduced Gröbner basis in an arbitrary monomial order consists only of binomials [3,
Corollary 1.2].

We start with an observation on changing bases in R(k)[x] for k = (k1, . . . , kr) and
x = (x1, . . . , xn). For a set of polynomials A in a polynomial ring K[x], we let V (A) ⊆ Kn

denote its solution set, which agrees with V (〈A〉). If B and B′ are bases of the same
ideal I in R(k)[x], then V (B) = V (B′) ⊆

(
R(k)

)n
. However, this does not imply that the

specializations to real values k ∈ Rr agree, that is, it can happen that V (Bk) 6= V (B′k) ⊆
Rn. Since we want to study the steady state ideal in R(k)[x] but obtain results for specific
values of k, we introduce the following definition.

Definition 2.1. Let N be a reaction network and B ⊆ R(k)[x] the set of steady state
polynomials. A basis B′ of the steady state ideal of N is called admissible if for every
k ∈ RR>0 it holds that V (Bk) = V (B′k). The network N is a binomial network if the steady
state ideal has an admissible binomial basis.

We consider a sufficient condition to decide whether the solution sets of two parametric
systems agree for any specialization of the parameters, and in particular, for when a basis
of the steady state ideal is admissible. Let B = {f1, . . . , f`} and B′ = {f ′1, . . . , f ′`′}. We
consider representations of B in terms of B′ and vice versa, that is, we write

fi =
∑

j∈[`′]

hij
hi
f ′j , for i ∈ [`], and f ′i =

∑

j∈[`]

h′ij
h′i
fj , for i ∈ [`′], (2)

with hi, h
′
i ∈ R[k] and hi1, . . . , hi`′ , h

′
i1, . . . , h

′
i` ∈ R[k][x]. Note that these representations

might not be unique.

Lemma 2.2. With the notation above, given two bases B and B′ of an ideal in R(k)[x],

if k? is not in the zero set of (
∏`
i=1 hi)(

∏`′
i=1 h

′
i), then 〈Bk?〉 = 〈B′k?〉.

4



Proof. For all i ∈ [`] and j ∈ [`′] we have that
hk?,ij
hk?,i

,
h′
k?,ji

h′
k?,j
∈ R[x] and the equalities in (2)

specialize to k?. Hence Bk? ⊆ 〈B′k?〉 and B′k? ⊆ 〈Bk?〉 and so 〈Bk?〉 = 〈B′k?〉.

In particular, if (
∏`
i=1 hi)(

∏`′
i=1 h

′
i) has no positive solution, then V (Bk) = V (B′k) for

all positive k.

Example 2.3. Consider the following reaction network

X1
k1−→ 2X1

k3←− X2 X1
k2−→ 2X2

k4←− X2.

The set of steady state polynomials is

B =
{

(k1 − k2)x1 + (2k3)x2, (2k2)x1 + (−k3 + k4)x2
}
,

and the set B′ = {x1−x2, x1−2x2} is another basis of the steady state ideal in R(k)[x]. We
have that (a, b) ∈ R2

>0 belongs to V (Bk) with k = (2 ba+1, 1, 1, 2ab+1). But V (B′k)∩R2
>0 = ∅

for every choice of k. Hence B′ is not an admissible basis.

The connection between binomial ideals and multistationarity is as follows. Consider
a system of binomial equations in R(k)[x], say

p1(k)xc1 − p′1(k)xc
′
1 = 0, . . . ps(k)xcs − p′s(k)xc

′
s = 0. (3)

If one of the equations has only one term, or the two terms of a binomial have the same
sign, then the system does not admit positive solutions. If pi 6= 0 and p′i 6= 0 in R(k), the
positive solutions to (3) are the positive solutions of the following system

xc1−c
′
1 =

p′1(k)
p1(k)

, . . . xcs−c
′
s = p′s(k)

ps(k)
.

Letting

γ(k) :=




p′1(k)
p1(k)

...
p′s(k)
ps(k)


 and M :=



c1 − c′1

...
cs − c′s




t

∈ Rn×s, (4)

the set of positive solutions of (3) for a positive vector k such that pi(k) 6= 0 for all i ∈ [s]
is {

x ∈ Rn>0 | xM = γ(k)
}
. (5)

Let M ′ be a matrix whose rows form a basis of the orthogonal complement of the row
space of M . The solution set of xM = γ(k) is non-empty if and only if M ′ ln

(
γ(k)

)
= 0,

where ln
(
γ(k)

)
is defined component-wise. To see why, take the logarithm of both sides,

M t ln(x) = ln
(
γ(k)

)
, and impose that ln

(
γ(k)

)
belongs to the image of M t.

The parametrization in (5) of positive solutions of a binomial system (3) makes it
possible to use results of [12, 13] for detecting multistationarity of binomial networks.

Theorem 2.4 ([12], Proposition 3.9 and Corollary 3.11). Let N be a binomial network.
Let M and γ(k) be as in (4), obtained from an admissible binomial basis B of I, and Z
be a matrix of conservation laws. Consider the following conditions:

(surj) Surjectivity condition: for all x ∈ Rn>0 there exists k ∈ RR>0 such that xM = γ(k)
(equivalently, x ∈ V (Bk)).

(sign) Sign Condition: there exist u, v ∈ Rn\{0} such that M tu = Zv = 0 and σ(u) = σ(v).

Then we have:
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(i) Assume (surj) is satisfied. Then N is multistationary if and only if (sign) holds.

(ii) If (sign) does not hold, then N is not multistationary.

Lemma 2.5 ([13]). A binomial network N with stoichiometric matrix N satisfies (surj)

if and only if kerN ∩ R|R|>0 6= ∅.

Proof. The solution set of an admissible binomial basis agrees with the solution set of the
set of steady state polynomials for every k ∈ RR>0. Therefore (surj) is equivalent to the
statement

for all x ∈ Rn>0, there exists k ∈ R|R|>0 such that Nkψ(x) = 0.

Now Nkψ(x) = 0 is equivalent to diag(k)ψ(x) ∈ kerN ∩ R|R|>0 . Thus if kerN ∩ R|R|>0 = ∅,
then (surj) fails. Conversely given v ∈ kerN ∩ R|R|>0 and any x ∈ Rn>0, by taking k = v

ψ(x)

(defined component-wise), we see that (surj) holds.

Networks fulfilling the condition of the lemma above are often called consistent. Using

Lemma 2.5 we can check (surj) algorithmically. For a matrix N , U = ker(N) ∩ R|R|≥0 is a

convex set. A set of vectors in R|R|≥0 is an extremal generating set for U if their non-negative
linear combinations generate U and none of them is a non-negative combination of the
rest. Then U contains a strictly positive vector if and only if the sum of the vectors in an
extremal generating set is positive. To find an extremal generating set for a convex set
one can use existing algorithms, e.g. [16, Appendix B].

Let N be a binomial reaction network with an admissible binomial basis B. Let M be
the exponent matrix in the parametrization of its positive steady states as in (5), and Z
be a matrix of conservation laws. For λ = (λ1, . . . , λn) a vector of indeterminates, define

Γ =

[
M t
λ

Z

]
∈ (R[λ])n×n (6)

and consider the following conditions:

(rank) Rank Condition: The number of elements of B, equivalently the number of columns
of M , is equal to the rank of the network.

(det) Determinant Condition: Viewed as a polynomial in λ, det(Γ) is either zero or has
at least one positive and at least one negative coefficient.

Note that by [12, Lemma 2.11], det(Γ) is a polynomial in λ that is linear or constant
in each λi. Theorem 2.13 of [12] states that provided (rank) is fulfilled, then (sign) holds
if and only if (det) holds. Combining this with Theorem 2.4, if (surj) and (rank) are
satisfied, then N is multistationary if and only if (det) holds. This yields to the following
definition and theorem.

Definition 2.6. A binomial network N is complete if (surj) and (rank) hold for an ad-
missible binomial basis.

Theorem 2.7 (Determinant criterion for complete binomial networks). Consider a com-
plete binomial network, and let M be as in (5) obtained from an admissible binomial
basis of the steady state ideal that satisfies both (surj) and (rank). Then the network is
multistationary if and only if (det) holds.

Example 2.8. Consider the following network modeling a simple biological circuit:

X1
κ1←− 0

κ7←− X2 X1 + E
κ2−−⇀↽−−
κ3

Y1
κ4−→ X2 + E 2X1 + E

κ5−−⇀↽−−
κ6

Y2.
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An admissible binomial basis of the steady state ideal is

B =
{
κ1 − κ2κ4

κ3+κ4
x1e,

κ2κ4
κ3+κ4

x1e− κ7x2, κ2x1e− (κ3 + κ4)y1, κ5x
2
1e− κ6y2

}
.

The matrices M , Z and N are

M =




1 1 −1 −2
0 −1 0 0
1 1 −1 −1
0 0 1 0
0 0 0 1



, Z =

[
0 0 1 1 1

]
, N =




1 −1 1 0 −2 2 0
0 0 0 1 0 0 −1
0 −1 1 1 −1 1 0
0 1 −1 −1 0 0 0
0 0 0 0 1 −1 0



.

The set P = {(1, 1, 0, 1, 0, 0, 1), (0, 1, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, 0)} is an extremal generat-
ing set for ker(N) ∩R7

≥0. Since the sum of the vectors in P has all entries positive, (surj)
holds by Lemma 2.5. Now taking u = v = (−1, 0, 1, 0,−1), the condition (sign) holds.
Therefore by Theorem 2.4 this network is multistationary.

Alternatively, we have rank(N) = 4 and B has 4 elements; hence (rank) holds and this
binomial network is complete. We have

det(Γ) =

∣∣∣∣∣∣∣∣∣∣

λ1 0 λ3 0 0
λ1 −λ2 λ3 0 0
−λ1 0 −λ3 λ4 0
−2λ1 0 −λ3 0 λ5

0 0 1 1 1

∣∣∣∣∣∣∣∣∣∣

= λ1λ2λ3λ4 − λ1λ2λ4λ5.

The network is multistationary by Theorem 2.7 since (det) holds.

3 Intermediates and multistationarity

In this section we introduce a particular type of species, intermediates, and extended
and core networks obtained by adding or removing intermediates. We proceed to present
results on multistationarity of extended and core networks from [8] and specifically for
binomial networks from [14].

3.1 Intermediates

A species Y is an intermediate if it is also a complex, that is belongs to C, only appears
in the complex Y , and further both the outdegree and indegree of Y are at least one
in the digraph of the network [8]. Given a set of intermediates Y = {Y1, . . . , Ym}, let
X = S \ Y = {X1, . . . , Xn} be the set of non-intermediates. Then S is the disjoint union
of X and Y. From now on, the species are ordered such that intermediates are after
non-intermediates. Then by (x, y) we mean the vector (x1, . . . , xn, y1, . . . , ym). A complex
that is not an intermediate is called a non-intermediate complex.

Given an intermediate Y , an input for Y is a non-intermediate complex c such that
there exists a directed reaction path from c to Y with all vertices other than c being
intermediates. The intermediate Y is an `-input intermediate if it has ` inputs [14].

Definition 3.1 ([8]). Let N = (S, C,R) and Ñ = (S̃, C̃, R̃) be two reaction networks. We
say that Ñ is an extension of N via the addition of intermediates Y1, . . . , Ym if

(i) Y = {Y1, . . . , Ym} is a set of intermediates of Ñ .

(ii) S ∪ Y = S̃ and C ∪ Y = C̃.
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(iii) c→ c′ ∈ R if and only if there is a directed path from c to c′ in the digraph associated
with Ñ , such that all vertices other than c and c′ belong to Y (there might be none).

In this case N is called the core network of Ñ .

Notations κ, and symbols with tilde are used to refer to reaction rate constants and the
corresponding objects of the extended network respectively. Let N be a reaction network
and Ñ an extension of it via the addition of m intermediates, Y1, . . . , Ym. Choose an
input complex ci for each intermediate Yi and let

[
c1 . . . cm

]
∈ Rn×m be the matrix

whose columns are c1, . . . , cm. It follows from Theorem 2.1 of [8] that if Z is a matrix of
conservation laws for N , then a matrix of conservation laws for Ñ is

Z̃ =
[
Z Z

[
c1 . . . cm

] ]
∈ Rd×(n+m). (7)

In particular the corank of N and Ñ agree and the rank of Ñ is the rank of N plus m.
We next introduce a simple type of extended networks via the addition of intermediates

that are useful in the study of multistationarity, see Theorem 3.11.

Definition 3.2. Let N be a network and C = {c1, . . . , cm} ⊆ C. The canonical extension
of N associated with C, denoted by ÑC = (S̃C , C̃C , R̃C), is the extension of N via the
addition of 1-input intermediates Y1, . . . , Ym such that

R̃C = R∪
{
ci 
 Yi | i ∈ [m]

}
.

The canonical extension associated with C = C is called the largest canonical extension.

We now review the key results in [8] that relate the steady states of extended and core
networks. We start by studying the steady state polynomials of the two networks. Let Ñ
be an extension of N via the addition of intermediates Y1, . . . , Ym and C ⊆ C be the set
of input complexes. The steady state polynomials associated with the intermediates yield
a system Fn+1(x, y) = · · · = Fn+m(x, y) = 0 that is linear in y and square. As shown in
[8], the solution to this linear system is of the form

yi =
∑

c∈C
µi,cx

c, i ∈ [m] (8)

where µi,c is a rational function in R(κ) with all non-zero coefficients positive (see also
(22)). Consider the following map

φ : R[k] −→ R(κ)
kc→c′ 7−→ φc→c′(κ) = κc→c′ +

∑m
i=1 κYi→c′ µi,c,

(9)

where it is understood that κc→c′ = 0 and κYi→c′ = 0 if c→ c′ and Yi → c′ do not belong to

R̃ respectively. Then the steady state polynomials F, F̃ of N and Ñ for non-intermediate
species relate in the following way

F̃κ,i

(
x,
∑

c∈C
µ1,cx

c, . . . ,
∑

c∈C
µm,cx

c
)

= Fφ(k),i(x), i ∈ [n].

Given f/g ∈ R(k) such that φ(g) 6= 0, then φ(f/g) is well defined in R(κ). If G ∈ R(κ)[x]
is a polynomial in x such that all coefficients are rational functions with non-vanishing
denominator upon applying φ, then we consider the polynomial Φ(G) in R(κ)[x, y] obtained
by applying φ on the coefficients of G. In particular, if the rational functions φc→c′ are
algebraically independent over R, then there is no polynomial with coefficients in R that
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identically vanishes when evaluated on the image of φ. Then the map φ extends to
a map of polynomial rings Φ: R(k)[x] → R(κ)[x, y]. Strategies to check this algebraic
independence condition as well as classes of intermediates that satisfy it are described in
[14, §4]. In particular the rational functions φc→c′ are algebraically independent over R
for all canonical extensions by [14, Corollary 4.6].

In order to introduce Theorem 3.3 below, we need to consider the following conditions.
Let ω1, . . . , ωd be a basis of S⊥ and C ′ ⊆ C consist of the complexes c such that ωj · c 6= 0
for some j ∈ [d] (i.e. c /∈ S). We define two realization conditions on the reaction rate
constants of N and Ñ :

(i) Realization condition:

For all k ∈ RR>0, there exists κ ∈ RR̃>0 such that k = φ(κ).

(ii) Generalized realization condition:

For all k ∈ RR>0 and r ∈ RC′>0, there exists κ ∈ RR̃>0 such that

k = φ(κ) and rc =
∑

i∈[m]

µi,c for all c ∈ C ′.

Note that µi,c depends as well on κ in the last statement. In §5 we focus on how to check
whether these realization conditions are satisfied. The proof of the next theorem is found
in [8]. The first part is Theorem 5.1, and the second part is discussed in the text.

Theorem 3.3 ([8]). Let Ñ be an extension of N via the addition of intermediates Y1, . . . , Ym.

(i) If the realization condition holds, then multistationarity of N implies multistation-
arity of Ñ .

(ii) Let C ⊆ C be the set of inputs of Y1, . . . , Ym. If the generalized realization condition
holds for Ñ , then Ñ is multistationary if and only if the canonical extension ÑC is
multistationary.

Definition 3.4. Let N be a reaction network and C ⊆ C. The canonical class associated
with C is the set of all extensions of N via the addition of intermediates with input set C
that satisfy the generalized realization condition.

Proposition 3.5. The generalized realization condition holds for canonical extensions.
Therefore, a canonical class is not empty.

Proof. Let Ñ be the canonical extension of a networkN associated with C = {c1, . . . , cm} ⊆
C. For every i ∈ [m], we have µi,c =

κci→Yi
κYi→ci

if c = ci and zero otherwise. Since no two

intermediates have a common input, the generalized realization condition holds if for every

k ∈ RR>0 and r ∈ Rm>0, there exists κ ∈ RR̃>0 such that

kc→c′ = κc→c′ for all c→ c′ ∈ R and ri =
κci→Yi
κYi→ci

for all i ∈ [m].

This condition clearly holds.

Theorem 3.3 implies that multistationarity of an extended network Ñ satisfying the
generalized realization condition is equivalent to multistationarity of any network in the
same canonical class of Ñ , in particular of the canonical extensions in the class. Canonical
extensions have a simple structure and preserve some important properties of N as we
will see below. Hence they are chosen as representatives of the class.
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Example 3.6. The following digraph defines a reaction network corresponding to the
Mitogen-Activated Protein Kinase cascade [2]:

X0 + E
κ1−−⇀↽−−
κ2

Y1
κ3−→ X1 + E

κ4−−⇀↽−−
κ5

Y2
κ6−→ X2 + E

X2 + F
κ7−−⇀↽−−
κ8

Y3
κ9−→ Y4

κ10−−⇀↽−−
κ11

X1 + F
κ12−−⇀↽−−
κ13

Y5
κ14−−→ Y6

κ15−−⇀↽−−
κ16

X0 + F.
(10)

If we consider Y1, . . . , Y6 as intermediates, then the associated core network is

X0 + E
k1−→ X1 + E

k2−→ X2 + E X2 + F
k3−→ X1 + F

k4−→ X0 + F.

The generalized realization condition holds by Example 5.2 in §5. The canonical extension
in the canonical class of (10) is the following network:

Y1

�
O Y2

�
O

X0 + E // X1 + E // X2 + E

Y3

�
O Y4

�
O Y5

�
O

X2 + F // X1 + F // X0 + F.

3.2 Binomial networks and intermediates

In this subsection, building on the results in [14], we relate the condition (det) for the
core and extended network. This leads to a determinant criterion for multistationarity of
extended networks with a complete binomial core network.

Let Ñ be an extension of a binomial reaction network N via the addition of interme-
diates Y1, . . . , Ym. For a binomial basis B of the steady state ideal I ⊆ R(k)[x] of N , let
rem(f,B) denote the remainder of the division of a polynomial f by B. Assume Φ(B) is
well defined and consider

B̃ = Φ(B) ∪
{
yi −

∑

c∈C
µi,cx

c, i ∈ [m]
}
, (11)

B̃′ = Φ(B) ∪
{
yi − rem

(∑

c∈C
µi,cx

c,Φ(B)
)
, i ∈ [m]

}
. (12)

If the set on the right-hand side of the union in either B̃ or B̃′ consists of binomials, then
they have the form

Φ(B) ∪
{
yi − pi(κ)xαi , i ∈ [m]

}
(13)

where pi(κ) ∈ R(κ) and αi is a vector of non-negative integers. If all intermediates are
1-input, then a binomial basis of Ĩ is

B̃ = Φ(B) ∪ {yi − µi,cxci , i ∈ [m]}, (14)

where ci is the only input of Yi, and this basis is admissible provided B is an admissible
binomial basis of I and Φ(B) is defined. This applies in particular to canonical extensions.

Definition 3.7. Let N be a binomial reaction network and Ñ an extension of it via the
addition of intermediates. Ñ is a binomial extension of N if there exists an admissible
binomial basis B of N such that Φ(B) is well defined, no coefficient of B becomes zero
under Φ, and further, either B̃ or B̃′ is an admissible binomial basis of Ñ .
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Remark 3.8. If the functions φc→c′ are algebraically independent over R, then Φ(B) is
well defined and no coefficient of B vanishes. By [14, Lemma 3.3], (11) and (12) are bases of
the steady state ideal of the extended network Ĩ ⊆ R(κ)[x, y], and if B is admissible, then
so is B̃. To decide whether B̃′ is also admissible, it suffices to check that the representations
of yi − rem

(∑
c∈C µi,cx

c,Φ(G)
)

in terms of B̃ and that of yi −
∑

c∈C µi,cx
c in terms of B̃′

are well defined for all κ (c.f. Lemma 2.2).
Further, by [14, Theorem 3.10], the steady state ideal Ĩ of Ñ is binomial if and only

if the steady state ideal I of N is binomial and for any reduced Gröbner basis G of I,
rem

(∑
c∈C µi,cx

c,Φ(G)
)

has at most one term for all i ∈ [m].

Lemma 3.9. Let Ñ be a binomial extension of a binomial network N . Condition (rank)
holds for Ñ if and only if it holds for N .

Proof. Let B and B be admissible binomial bases of the steady state ideals of N and
Ñ respectively, such that B is either B̃ in (11) or B̃′ in (12). Then |B| = |B| + m. If
n − d is the rank of N , then by (7) and the text below it, the condition (rank) for Ñ is
n+m− d = |B| = |B|+m, which is the rank condition for N , |B| = n− d.

It follows from the lemma above that a binomial extension of a complete binomial
network satisfying (surj) is a complete binomial network. In general, for an arbitrary
extended network Ñ , we cannot guarantee that (surj) holds provided it holds for N .
However, it does for canonical extensions.

Proposition 3.10. Let N be a binomial network. Any canonical extension ÑC of N is
a binomial extension. Further, (surj) holds for N with an admissible binomial basis B if
and only if (surj) holds for ÑC with B̃ as in (11). Therefore, a canonical extension of a
complete binomial network is also complete.

Proof. By [14, Corollary 4.6], the functions φc→c′ are algebraically independent for canon-
ical extensions. By (14) and Remark 3.8, ÑC is a binomial extension.

For the second part of the proposition, write C = {c1, . . . , cm}. Denote the reaction
rate constants of N by k1, k2, . . . , kr following the order of the reaction set. The network
ÑC has r + 2m reactions. We denote the reaction rate constants of the reactions of ÑC
that are also in N with κ1, . . . , κr and of the other reactions by ci

κr+2i−1−−−−−⇀↽−−−−−
κr+2i

Yi for i ∈ [m].

Then µi,ci = κr+2i−1

κr+2i
. Let M be the matrix constructed in (4) for the basis B. Now (surj)

holds for ÑC if for every (x, y) ∈ Rn+m>0 there exists (κ1, . . . , κr+2m) ∈ Rr+2m
>0 such that

xM = γ(κ) and yi
xci = κr+2i−1

κr+2i
for all i ∈ [m]. Since the first part of the system does not

depend on κr+1, . . . , κr+2m, the second part is always satisfied independently from the first
part by letting κr+2i = xci and κr+2i−1 = yi. The first part of the system is exactly the
same as (surj) for N after replacing ki by κi. Hence (surj) holds for ÑC if and only if it
holds for N . The last statement follows from Lemma 3.9.

Recall that criterion (det) can be used to determine multistationarity for complete
networks, c.f. Theorem 2.7. Consider a binomial extension Ñ of a complete binomial
network N . The steady state ideal of Ñ has an admissible binomial basis B̃ of the form
(13), with B an admissible binomial basis of the steady state ideal of N . Let M ∈ Rn×s
be the exponent matrix associated with the binomials in B, c.f. (4). Since no coefficient
of B becomes zero under φ, the exponents of the monomials in B and Φ(B) agree. Hence
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the exponent matrix M̃ associated with the binomials in B̃ has the following form:

(M̃)t =




M t 0

−α1
...
−αm

Im


 ∈ R(s+m)×(n+m).

Using (7), the corresponding matrices Γ and Γ̃ in (6), for N and Ñ respectively, are:

Γ =

[
M t
λ

Z

]
∈ Rn×n, Γ̃ =




M t
λ 0

−α1
...
−αm

λn+1 0
. . .

0 λn+m
Z Zct1 . . . Zctm



∈ R(n+m)×(n+m), (15)

where Z is a matrix of conservation laws for N , c1, . . . , cm are chosen inputs for Y1, . . . , Ym
and λ = (λ1, . . . , λn). If ÑC is a canonical extension, then αi = ci in Γ̃, c.f. (14), in which
case we denote the matrix by Γ̃C .

The results in this subsection combined with Theorem 3.3(ii) imply that we can use
(det) to detect multistationarity of networks that are not necessarily binomial, but such
that the core network is binomial and complete.

Theorem 3.11 (Determinant criterion for extensions of complete binomial networks). Let
N be a complete binomial network and Ñ an extended network in the canonical class as-
sociated with C ⊆ C. Then Ñ is multistationary if and only if det(Γ̃C) is either identically
zero or has both positive and negative coefficients.

Proof. By Theorem 3.3(ii), Ñ is multistationary if and only if ÑC is. Now ÑC is a complete
binomial network and the matrix Γ̃C is defined as in (6) for an admissible binomial basis
of the steady state ideal that satisfies both (surj) and (rank). Thus ÑC is multistationary
if and only if (det) holds with the matrix Γ̃C by Theorem 2.7.

Example 3.12. (Continued from Example 3.6) The network in Example 3.6 is not bino-
mial by [14, Example 3.13], but the core network is a complete binomial network. The
extended network belongs to the canonical class associated with C = {X0+E,X1+E,X2+

F,X1 + F,X0 + F}. With a suitable choice of basis B, the matrix Γ̃C is as follows:




−λ1 λ2 0 −λ4 λ5 0
0 −λ2 λ3 −λ4 λ5
−λ1 0 0 −λ4 0 λ6 0

0 −λ2 0 −λ4 0 λ7
0 0 −λ3 0 −λ5 λ8
0 −λ2 0 0 −λ5 λ9
−λ1 0 0 0 −λ5 0 λ10

1 1 1 0 0 1 1 1 1 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 0 1 1 1




.

The polynomial det(Γ̃C) has terms with different signs. Therefore by Theorem 3.11, the
network in (10) is multistationary.
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4 Lifting multistationarity and the multistationarity struc-
ture

In this section we use the following notation: for J ⊆ [n] and λ an n-tuple of indetermi-
nates/numbers, we define λJ =

∏
i∈J λi.

4.1 Lifting multistationarity

Theorem 3.3 tells us that multistationarity of the core network implies multistationarity of
the extended network if the realization condition is satisfied. In this scenario we informally
say that multistationarity is lifted. In this subsection we show that multistationarity
is lifted for binomial extensions of complete binomial networks, even if the realization
condition is not satisfied. Before that, we start with a lemma on the structure of Γ̃.

Lemma 4.1. Let Ñ be a binomial extension of a complete binomial network N via the
addition of intermediates Y1, . . . , Ym, and let Γ, Γ̃ be as in (15). Then

det(Γ̃) = λ[n+1,n+m] det(Γ) + p′(λ),

where p′(λ) is a polynomial in λ such that none of its terms is divisible by λ[n+1,n+m].

Proof. Let s = rank(N) and Γ̃[s+1,s+m],[n+1,n+m] be the submatrix of Γ̃ obtained by re-
moving the rows with index in [s+ 1, s+m] and the columns with index in [n+ 1, n+m].
By the generalized Laplacian expansion of det(Γ̃) along rows s+1, . . . , s+m we have that

det(Γ̃) = λ[n+1,n+m] det
(
Γ̃[s+1,s+m],[n+1,n+m]

)
+ p′(λ) = λ[n+1,n+m] det(Γ) + p′(λ),

where p′(λ) is a polynomial in λ. By construction, p′(λ) does not have any monomial
multiple of λ[n+1,n+m].

Theorem 4.2 (Lifting multistationarity). Let Ñ be a binomial extension of a complete
binomial network N via the addition of m intermediates Y1, . . . , Ym and let Γ, Γ̃ be as in
(15). Assume in addition that (surj) holds for Ñ . If N is multistationary and det(Γ) 6= 0,
then Ñ is multistationary.

Proof. Let λ = (λ1, . . . , λn+m) and λ̄ = (λ1, . . . , λn). Since N is multistationary and
complete, by Theorem 2.7 we have that det(Γ) is a polynomial in λ1, . . . , λn with two terms
of different non-zero sign, namely αλ̄u and −βλ̄v with α, β > 0 and u, v ∈ Zn≥0. By Lemma

4.1, det(Γ̃) has two terms with different non-zero sign αλ̄uλ[n+1,n+m] and −βλ̄vλ[n+1,n+m].

Since Ñ is a complete binomial network, Ñ is multistationary by Theorem 2.7.

We finish this subsection with an example where Theorem 4.2 allows us to conclude
that an extended network is multistationary, while the realization condition is not satisfied
(and hence Theorem 3.3 cannot be applied).

Example 4.3. Consider the following network N :

X0 + E
k1−→ X1 + E

k2−→ X2 + E

X2 + F
k3−→ Y1

k4−→ X1 + F
k5−→ X0 + F

2E

5E

k6 88
k7 //

k8
&&

3E E.

k9ff
k10oo

k11
xx

4E
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N has rank 4 and the steady state ideal has the following admissible binomial basis with 4
elements: B = {−k1x0e+k5x1f,−k2x1e+k3k4x2f, k4y1−k3x2f, (k9+2k10+3k11)e−(3k6+
2k7+k8)e

5}. Since (1, 1, 1, 1, 1, 4, 5, 6, 6, 5, 4) ∈ ker(N)∩R11
>0, (surj) holds. ThereforeN is a

complete binomial network. Using (det), we see that N is multistationary and det(Γ) 6= 0.
Now consider the following extension Ñ of N via the addition of one intermediate Y2:

X0 + E
κ1−→ X1 + E

κ2−→ X2 + E

X2 + F
κ3−→ Y1

κ4−→ X1 + F
κ5−→ X0 + F

5E κ6

&&
2E

Y2

κ8 88
κ9 //

κ10
&&
3E

E

κ7 88

4E.

This network does not satisfy the realization condition (see §2.2 in the electronic supple-
mentary material of [8]). The well-defined set B̃′ = Φ(B) ∪ {y2 − 4κ7e

3κ8+2κ9+κ10
} in (12)

makes Ñ a binomial extension. Further (1, 1, 1, 1, 1, 5, 5, 4, 2, 4) ∈ ker(Ñ)∩R10
>0, and hence

(surj) holds for Ñ . By Theorem 4.2, we conclude that Ñ is also multistationary.

4.2 Multistationarity structure

In this subsection we introduce the multistationarity structure of a core network, consisting
of the subsets of complexes that give rise to multistationarity when being the input of some
intermediate. Note that if C1 ⊆ C2 ⊆ C, then ÑC2 is a binomial extension of ÑC1 . Using
this and Lemma 4.1, we devise a strategy to determine the multistationarity structure
of complete binomial networks by computing the determinant of Γ̃C corresponding to the
largest canonical extension. We start with an example that illustrates the approach.

Example 4.4. Consider the network in Example 2.8, where Y1 and Y2 are intermediates.
The associated core network is

X1
k1←− 0

k3←− X2 X1 + E
k2−→ X2 + E 2X1 + E, (16)

which gives C = {0, X1, X1+E,X2+E, 2X1+E,X2}. An admissible binomial basis of the
steady state ideal of (16) is {k1 − k2x1e, k2x1e− k3x2}. Since the rank of (16) is two and

(1, 1, 1) ∈ ker(N)∩R3
>0, (16) is a complete binomial network. The polynomial det(Γ̃C) for

the largest canonical extension ÑC is as follows:

det(Γ̃C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ1 0 −λ3 0
λ1 −λ2 λ3
0 0 0 λ4 0
−λ1 0 0 λ5
−λ1 0 −λ3 λ6

0 −λ2 −λ3 λ7
−2λ1 0 −λ3 λ8

0 −λ2 0 0 λ9
0 0 1 0 0 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −λ1λ2λ3λ4λ5λ6λ7λ9
+λ1λ2λ3λ4λ5λ6λ8λ9
+λ1λ2λ4λ5λ6λ7λ8λ9.

Since NC is a binomial extension of all canonical extensions, and all canonical extensions
are complete, we can use Lemma 4.1 to find det(Γ̃C) for all C ∈ C. For example, the 3rd
and 5th complexes form the set C = {X1 +E, 2X1 +E} and det(Γ̃C) is the coefficient of
λ4λ5λ7λ9 in det(Γ̃C):

det
(
Γ̃{X1+E,2X1+E}

)
= −λ1λ2λ3λ6 + λ1λ2λ6λ8.

For any subset J ⊆ {4, . . . , 9}, the coefficient of λJ in det(Γ̃C) is det(Γ̃C) for the set of
complexes ci such that i+ 3 /∈ J .
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By Theorem 3.11, all networks in the canonical class associated with {X1+E, 2X1+E}
are multistationary. In particular, the network in Example 2.8 belongs to this canonical
class (and hence is multistationary), since it satisfies the generalized realization condition:

for every (k, r) ∈ R3+2
>0 there exists κ ∈ R7

>0 such that

k1 = κ1, k2 = κ2κ4
κ3+κ4

, k3 = κ7, r1 = κ2
κ3+κ4

, r2 = κ5
κ6
.

Motivated by this example, we proceed as follows.

Definition 4.5. Let N be a reaction network, with set of complexes C. Let Mult be the
set of all subsets of complexes C ⊆ C for which the canonical extension ÑC of N associated
with C is multistationary. Denote the set of minimal elements of Mult with respect to
inclusion by Circuits. The set Mult is called the multistationarity structure of N and the
elements of Circuits are called the circuits of multistationarity of N .

By Theorem 3.3(i), the sets Mult and Circuits associated with a complete binomial
network determine each other. Let DN = det(Γ̃C), that is the determinant of Γ̃ associated
with the largest canonical extension of N . We assume that the set of complexes is ordered
C = {c1, . . . , cm}.

Lemma 4.6. Assume N is a complete binomial network. Then C ∈ Mult if and only
if the coefficient of

∏
ci∈C−C λn+i in DN is zero or has two terms with different non-zero

sign.

Proof. We assume without loss of generality that C = {c1, . . . , ct} and C−C = {ct+1, . . . , cm}.
By Lemma 4.1 applied to the complete binomial network ÑC and the binomial extension
ÑC , we have

DN = det(Γ̃C)λ[n+t+1,n+m] + p′(λ),

where λ[n+t+1,n+m] does not divide any term of p′. Hence det(Γ̃C) is the coefficient of
λ[n+t+1,n+m] in DN . The statement now follows by Theorem 2.7.

Lemma 4.7. Let N be a complete binomial network that is not multistationary. Then
C ∈ Mult if and only if a term of DN is a multiple of

∏
ci∈C−C λn+i with sign different

than the sign of multiples of λ[n+1,n+t] in DN .

Proof. Assume C = {c1, . . . , ct} and C −C = {ct+1, . . . , cm}. We consider N , ÑC and ÑC ,
and note that each network is a binomial extension of the previous. We apply Lemma 4.1
twice and obtain

DN = det(Γ̃C)λ[n+t+1,n+m] + p′ =
(

det(Γ)λ[n+1,n+t] + p′′
)
λ[n+t+1,n+m] + p′.

Since N is not multistationary, then by Theorem 2.7, det(Γ) is non-zero and all terms have
the same sign. Hence the coefficient of λ[n+1,n+m] is a polynomial where all coefficients
have the same sign, σ. Now by Lemma 4.6, C ∈ Mult if and only if the coefficient of
λ[n+t+1,n+m] has terms with different sign. Therefore C ∈ Mult if and only if there is a
term in p′′ with sign −σ. This proves the lemma.

We are now ready to introduce an algorithm to determine the multistationarity struc-
ture of a complete binomial network. If the network is multistationary, then all canonical
extensions are multistationary and hence Circuits = {∅}, and Mult is the set of all subsets
of C. If N is not multistationary, then we use the following algorithm.

Algorithm 4.8.
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Input: A complete binomial network N that is not multistationary.

Output: Circuits for N .

Procedure:

Initializing step: Circuits = ∅.
1. Compute DN and let σ be the sign of any term divisible by λ[n+1,n+m].

2. For every term T = αλu of DN with sign −σ:

2a. Define C = {ci | un+i = 0, i = 1, . . . ,m}.
2b. Add C to Circuits if no subset of C is already in Circuits, and subse-
quently remove the supersets of C from Circuits, if any.

Step 2 can be analyzed directly on the exponents u of the terms with sign −σ: restrict
u to the components n + 1, . . . , n + m and choose the corresponding sets C yielding to
vectors with maximal support.

Example 4.9. Consider the following complete binomial networks:

N1 :
X0 + E −−→ X1 + E −−→ X2 + E
X2 + F −−→ X1 + F −−→ X0 + F,

N2 :
S0 + E −−→ S1 + E S1 + F −−→ S0 + F
P0 + E −−→ P1 + E P1 + F −−→ P0 + F,

N3 :
S0 + E −−→ S1 + E S1 + F −−→ S0 + F
P0 + S1 −−→ P1 + S1 P1 + F −−→ P0 + F.

We order the species ofN1 asX0, X1, X2, E, F and forN2,N3 we consider P0, P1, S0, S1, E, F .
Complexes are ordered as they appear in the reaction network from left to right and from
up to down. For suitable choices of admissible binomial bases, we obtain the following
exponent matrices M1,M2,M3 for the three networks respectively, c.f. (4):

M t
1 =

[
−1 1 0 −1 1

0 −1 1 −1 1

]
, M t

2 =

[
0 0 −1 1 −1 1
−1 1 0 0 −1 1

]
, M t

3 =

[
0 0 −1 1 −1 1
−1 1 0 −1 0 1

]
,

and we choose the following matrices of conservation laws:

Z1 =




1 1 1 0 0
0 0 0 1 0
0 0 0 0 1


 , Z2 = Z3 =




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 .

Using this data, we construct the matrices Γ̃1, Γ̃2, Γ̃3 defined as in (15) for the largest
canonical extensions associated with N1,N2,N3 and find their determinants DN1 , DN2

and DN3 . We have σ = 1 for all three cases. The sets of monomials with negative
coefficients in the determinant of DN1 , DN2 and DN3 are respectively

A1 =
{
λ{1,2,3,4,7,8,10,11}, λ{1,2,3,5,7,8,10,11}, λ{1,2,4,5,7,8,10,11}, λ{1,2,4,7,8,9,10,11}, λ{1,3,4,5,7,8,10,11},

λ{2,3,4,5,7,8,10,11}, λ{2,3,5,6,7,8,10,11}
}
,

A2 =
{
λ{1,4,5,6,7,8,10,12,13,14}, λ{2,3,5,6,8,9,10,11,12,14}

}
,

A3 =
{
λ{1,3,4,5,6,7,9,12,13,14}, λ{1,3,4,5,6,7,10,12,13,14}, λ{1,3,4,5,6,8,9,12,13,14}, λ{1,3,4,5,6,7,9,11,12,14},

λ{1,3,4,5,6,7,10,11,12,14}, λ{1,3,4,5,6,8,9,11,12,14}, λ{1,3,4,5,7,9,10,11,12,14}, λ{1,3,4,5,8,9,10,11,12,14},

λ{1,3,4,6,7,8,9,12,13,14}, λ{1,3,4,6,7,8,10,12,13,14}, λ{1,3,4,6,7,8,9,11,12,14}, λ{1,3,4,6,7,8,10,11,12,14},

λ{1,3,4,6,8,9,10,11,12,14}, λ{2,4,6,7,8,9,10,11,12,14}
}
.
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According to the algorithm, the monomial λ{1,2,3,4,7,8,10,11} in A1 gives rise to the set
C1 = {c6, c9}, while the monomial λ{1,2,4,7,8,9,10,11} yields C2 = {c6}. Thus C2 belongs to
Circuits1 while C1 does not. Proceeding in this way for all monomials, we obtain

Circuits1 ={{c6}, {c9}} = {{X0 + E}, {X2 + F}},
Circuits2 ={{c1, c7}, {c3, c5}} = {{S0 + E,P1 + F}, {S1 + F, P0 + E}},
Circuits3 ={{c7}, {c3, c5}, {c4, c5}} = {{P1 + F}, {S1 + F, P0 + S1}, {S0 + F, P0 + S1}}.

We conclude that motifs (g), (i) and (k) in [7] are multistationary, since they are extensions
of N1,N2,N3 respectively, which satisfy the generalized realization condition and the set
of inputs of their intermediates belong to the respective multistationarity structures.

As illustrated by these three examples, the elements of the set of circuits might not
have the same cardinality.

Remark 4.10. Algorithm 4.8 provides a direct way to detect the sets of complexes that
contribute to multistationarity. The method is appealing because, for small networks, the
multistationarity structure can be found by simple visual inspection of one multivariate
polynomial. The alternative strategy for finding the multistationarity structure would
consist in searching for the circuits by computing det(Γ̃C) for the canonical extensions.
One could start from one of the smallest subsets C of C and compute det(Γ̃C). If this
polynomial had terms with different sign or were zero, we would add C to Circuits, and
remove C and all its supersets from C before proceeding in the same way with the next
set. The search could alternatively start from the largest subsets C of C and compute
det(Γ̃C). If the determinant did not have terms with different sign or is zero, then we
would remove all subsets of C from C. If it had terms with different signs, then we would
check the subsets of C with one less element. If none of them were multistationary, then
we would add C to Circuits and remove all its subsets from the search.

Going from small to large sets has the advantage of involving the computation of
smaller determinants. Our algorithm requires the computation of only one determinant,
but it can be large. So, for large networks, it might be advantageous to adopt the search
approach starting with small sets described here.

4.3 n-site phosphorylation network

In this section we find the multistationarity structure of the n-site distributive sequential
phosphorylation network given as follows (see e.g. [13, 17]):

X0 + E −−⇀↽−− Y1 −−→ X1 + E −−⇀↽−− . . . −−→ Xn−1 + E −−⇀↽−− Yn −−→ Xn + E
Xn + F −−⇀↽−− Yn+1 −−→ Xn−1 + F −−⇀↽−− . . . −−→ X1 + F −−⇀↽−− Y2n −−→ X0 + F.

(17)

By removing the intermediates Y1, . . . , Y2n, the core network associated with the n-site
phosphorylation network is

N :
X0 + E

k1−→ X1 + E
k2−→ . . .

kn−1−−−→ Xn−1 + E
kn−→ Xn + E

Xn + F
kn+1−−−→ Xn−1 + F

kn+2−−−→ . . .
k2n−1−−−−→ X1 + F

k2n−−→ X0 + F.
(18)

Since (1, . . . , 1) is in the kernel of the stoichiometric matrix of N , (surj) holds. Further,
the rank of N is n and an admissible binomial basis of the steady state ideal is

B :=
{
− k1x0e+ k2nx1f, . . . ,−knxn−1e+ kn+1xnf

}
.
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Therefore (rank) also holds and N is a complete binomial network. By Proposition 5.3
(ii), the generalized realization condition holds for the n-site distributive sequential phos-
phorylation networks given in (17).

We order the set of species as X0, X1, . . . , Xn, E, F , and denote the complexes of the
core network as

c1 = X0 + E, . . . cn+1 = Xn + E, cn+2 = Xn + F, . . . c2n+2 = X0 + F.

The largest canonical network consists of the reactions of N together with the reactions
ci −−⇀↽−− Yi. The matrix M t

λ ∈ Rn×(n+3) associated with B and a choice of Z ∈ R3×(n+3) are

M t
λ =




−λ1 λ2 0 −λn+2 λn+3

−λ2 λ3 −λn+2 λn+3

. . .
. . .

...
...

0 −λn λn+1 −λn+2 λn+3


 , Z =




1 · · · 1 0 0
0 . . . 0 1 0
0 . . . 0 0 1


 .

Proposition 4.11. For the n-site phosphorylation network with n ≥ 2, we have

Circuits = {{ci} | i 6= n, n+1, 2n+1, 2n+2} =
{
X0+E, . . . ,Xn−2+E, Xn+F, . . . ,X2+F

}
.

If n = 1, then Circuits = ∅, since the largest canonical extension is not multistationary.

Proof. The case n = 1 follows by computing the determinant of the largest canonical
extension and checking that it is non-zero and that all coefficients have the same sign.

Hence assume that n ≥ 2. It is enough to first show that {ci} ∈ Circuits if i 6=
n, n+ 1, 2n+ 1, 2n+ 2 and then that {cn, cn+1, c2n+1, c2n+2} 6∈ Mult.

So let i ∈ [n+ 1] and define

Ω(i) =




−1 1 0 −1 1 0
. . .

. . .
...

...
...

−1 1 −1 1 0
−1 1 −1 1 0

. . .
. . .

...
...

...
0 −1 1 −1 1 0
0 · · · 0 −1 0 · · · 0 −1 0 1




∈ R(n+1)×(n+4),

where the −1 in the last row is in the i-th column. Then we have that

Γ̃{ci} =




Ω(i) diag(λ1, . . . , λn+4)

1
Z 0

0


 ∈ R(n+4)×(n+4).

For J ⊆ [n + 4] of cardinality 3, we denote by Ω(i)J the (n + 1) × (n + 1) submatrix of
Ω(i) obtained by deleting the columns with index in J . We expand the determinant of
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Γ̃{ci} along the last three rows and obtain

det
(
Γ̃{ci}

)
=

n+1∑

j=1

(−1)5n+14+j

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
det
(
Ω(i){j,n+2,n+3}

)
λ[n+4]\{j,n+2,n+3}+

n+1∑

j=1

(−1)5n+16+j

∣∣∣∣∣∣

1 0 1
0 0 1
0 1 0

∣∣∣∣∣∣
det
(
Ω(i){j,n+3,n+4}

)
λ[n+4]\{j,n+3,n+4}+

(−1)6n+18

∣∣∣∣∣∣

0 0 1
1 0 1
0 1 0

∣∣∣∣∣∣
det
(
Ω(i){n+2,n+3,n+4}

)
λ[n+4]\{n+2,n+3,n+4}

=
n+1∑

j=1

(−1)n+j det
(
Ω(i){j,n+2,n+3}

)
λ[n+4]\{j,n+2,n+3}+

n+1∑

j=1

(−1)n+j+1 det
(
Ω(i){j,n+3,n+4}

)
λ[n+4]\{j,n+3,n+4}+

det
(
Ω(i){n+2,n+3,n+4}

)
λ[n+4]\{n+2,n+3,n+4}.

We see from this expansion that the coefficient of λ[n+4]\{1,n+2,n+3} is (−1)n+1 det
(
Ω(i){1,n+2,n+3}

)
.

We have that

Ω(i){1,n+2,n+3} =




1 0 0

−1
. . .

. . .
. . .

...
. . .

. . .

0 −1 1 0
0 · · · −1 · · · 0 1




∈ R(n+1)×(n+1), (19)

where the −1 in the last row is in position i− 1 if i > 1 and is not there if i = 1. Clearly,
(−1)n+1 det

(
Ω(i){1,n+2,n+3}

)
= (−1)n+1.

Consider now the coefficient of λ[n+4]\{n+1,n+3,n+4}, which is (−1)n+n+1+1 det
(
Ω(i){n+1,n+3,n+4}

)
.

We have that

Ω(i){n+1,n+3,n+4} =




−1 1 0 −1

−1
. . .

. . .
. . .

...
. . . 1

0 −1 −1
0 · · · −1 · · · 0 1




∈ R(n+1)×(n+1),

where the −1 in the last row is in position i if i ≤ n, and there is no −1 if i = n + 1.
Replacing the last row of Ω(i){n+1,n+3,n+4} with minus the sum of the rows from i to n,
we obtain the matrix




−1 1 0 −1

−1
. . .

...
. . . 1 −1

0 −1 −1
0 n− i



∈ R(n+1)×(n+1).
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It follows that the coefficient of λ[n+4]\{n+1,n+3,n+4} is (−1)n(n− i).
This shows that if i < n, then the coefficients of λ[n+4]\{n+1,n+3,n+4} and λ[n+4]\{1,n+2,n+3}

have opposite non-zero signs, and hence {ci} is a circuit. For n+ 1 < i ≤ 2n the claim fol-
lows by the symmetry of the network after interchanging E and F and sending X0, . . . , Xn

to Xn, . . . , X0.

All that remains is to show that C = {cn, cn+1, c2n+1, c2n+2} 6∈ Mult. The matrix

Γ̃C ∈ R(n+7)×(n+7) is:



−λ1 λ2 0 −λn+2 λn+3

−λ2 λ3
. . .

. . .
...

...
... 0

. . . λn 0 −λn+2 λn+3

0 −λn λn+1 −λn+2 λn+3

0 0 · · · · · · −λn 0 −λn+2 0 λa 0
0 0 · · · · · · 0 −λn+1 −λn+2 0 λb
0 −λ2 · · · · · · 0 0 0 −λn+3 λc
−λ1 0 · · · · · · 0 0 0 −λn+3 0 λd

1 1 · · · · · · 1 1 0 0 1 1 1 1
0 0 · · · · · · 0 0 1 0 1 1 0 0
0 0 · · · · · · 0 0 0 1 0 0 1 1




.

By performing row operations, we transform Γ̃C into a block triangular matrix with diag-
onal blocks of size n and 7, respectively, as follows:

• Subtract the sum of the rows 1, . . . , n from the (n+ 4)-th row.

• Subtract the sum of the rows 2, . . . , n from the (n+ 3)-th row.

• Subtract the n-th row from the (n+ 1)-th row.

• Add to the (n+ 5)-th row the following linear combination of the first n rows:

n∑

i=1

(
1
λ1

+ · · ·+ 1
λi

)
fi,

where fi is the i-th row.

After these operations, which preserve the determinant, we obtain the following matrix:



−λ1 λ2 0 0 −λn+2 λn+3

. . .
. . .

...
...

... 0
. . . λn 0 −λn+2 λn+3

0 −λn λn+1 −λn+2 λn+3

0 · · · · · · 0 −λn+1 0 −λn+3 λn+4 0
0 · · · · · · 0 −λn+1 −λn+2 0 λn+5

0 · · · · · · 0 −λn+1 (n− 1)λn+2 −nλn+3 λn+6

0 · · · · · · 0 −λn+1 nλn+2 −(n+ 1)λn+3 0 λn+7

0 · · · · · · 0 1 + z1λn+1 −z2λn+2 z2λn+3 1 1 1 1
0 · · · · · · 0 0 1 0 1 1 0 0
0 · · · · · · 0 0 0 1 0 0 1 1




,

where

z1 =
n∑

i=1

1
λi
, z2 =

n∑

i=1

n−i+1
λi

.
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The determinant of Γ̃C is therefore equal to (−1)nλ[n] times the determinant of the inferior
diagonal block of size 7×7 of the matrix above. We compute this determinant and obtain
the following expression:

λn+2λn+4λn+6λn+7(1 + (z1 + z2)λn+1) + λn+1λn+4(λn+5λn+7 + λn+6λn+7 + λn+5λn+6)

+ λn+1λn+5λn+6λn+7(1 + z1λn+4 + z2λn+2) +
(
(n z1 − z2)λn+1 + n

)
λn+3λn+4λn+5λn+7

+
(
(n z1 + z1 − z2)λn+1 + n+ 1

)
λn+3λn+4λn+5λn+6 + λn+4λn+5λn+6λn+7

+
(
z1λn+1λn+2λn+3 + λn+1λn+2 + λn+1λn+3 + λn+2λn+3

)(
(n+ 1)λn+4λn+6 + nλn+4λn+7

+ nλn+5λn+6 + (n− 1)λn+5λn+7

)
.

Since nz1 ≥ z2 and n ≥ 2, this determinant is strictly positive. Hence, the determinant of
Γ̃C has sign (−1)n. By Theorem 2.7, we conclude that {cn, cn+1, c2n+1, c2n+2} 6∈ Mult.

In view of Proposition 4.11 and Theorem 3.3(ii) we obtain the following theorem.

Theorem 4.12. Let Ñ be an extension of the core n-site phosphorylation network in (18)
via the addition of intermediates that satisfies the generalized realization condition. Then
Ñ is multistationary if and only if at least one of X0+E, . . . ,Xn−2+E,Xn+F, . . . ,X2+F
is an input of an intermediate.

Note that the network in Example 3.6 is an extension of the 2-site phosphorylation
network, with set of inputs C = {X0 + E,X1 + E,X2 + F,X1 + F,X0 + F}. This net-
work satisfies the generalized realization condition by Example 5.2. By Theorem 4.12, we
conclude that the network is multistationary.

For the n-site phosphorylation network for a fixed n, Algorithm 4.8 requires the com-
putation of one large determinant. The search approach described in Remark 4.10, stops
after computing 2n + 14 determinants, if we start with the small subsets, while it stops
after computing

3∑

i=1

(
2n− 2

i

)
+

2n+2∑

i=4

(
2n+ 2

i

)

determinants if we start with large subsets. For example, if n = 2, 3, the first approach
requires the computation of 18 and 20 determinants, and the second approach requires the
computation of 25 and 177 determinants respectively. In these cases, the computation of
the determinants takes negligible time, and therefore our algorithm is the fastest strategy.

5 Realization conditions

In this section we discuss methods to decide whether the realization conditions are satisfied.
The two realization conditions concern the surjectivity of a rational map on the positive
orthant. Specifically, let Ñ be an extension of N via the addition of the intermediates
Y1, . . . , Ym and C ′ be the set of input complexes that do not belong to the stoichiometric

subspace. Consider the following maps from RR̃>0:

φ(κ) =
(
φc→c′(κ) | c→ c′ ∈ R

)
∈ RR>0, (20)

φ′(κ) =
(
φ(κ),

(∑
i∈[m]

µi,c(κ) | c ∈ C ′
))
∈ RR>0 × RC

′
>0. (21)

The generalized realization condition is equivalent to the surjectivity of φ′ and the real-
ization condition to the surjectivity of φ. So let f = (f1

g1
, . . . , fmgm ) be an arbitrary map

from Rn>0 to Rm>0, defined by rational functions fi
gi
∈ R(x1, . . . , xn). Consider the ideal
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I =
〈
g1y1 − f1, . . . , gmym − fm, 1− z

∏m
i=1 gi

〉
⊆ R[y1, . . . , ym, x1, . . . , xn, z]. As discussed

in §2.3 of the electronic supplementary material of [8], if I ∩ R[y1, . . . , ym] 6= {0}, then f
is not surjective, but the reverse does not necessarily hold.

Another approach is to use Cylindrical Algebraic Decomposition (CAD) [1, 9, 11].
Consider the parametric multivariate system of equations (x1, . . . , xn, z) ∈ V (I) with
y1, . . . , ym treated as parameters and all variables and parameters constrained to be real
and positive. The map f is surjective if and only if this system has at least one positive
real solution when evaluated at the sample parameter point of all cells obtained after
performing CAD. This approach fully characterizes whether f is surjective, but CAD is
computationally expensive. In particular, the number of cells is doubly exponential in
the number of variables and parameters, and depends also on the degree and number of
polynomials in the system [4, Theorem 5]. Therefore the use of CAD is impractical already
in relatively small examples.

Example 5.1. We consider the following core network and its extension via the addition
of one intermediate Y :

N :
c3

c1

55

))
c2

ii

uu
c4

Ñ :

c1
))

c3
Y

55

))
c2

55
c4.

Using CAD on the system of equations describing the realization condition, we obtain
three cells. The sample point of each cell yields a system with infinitely many positive
solutions. Therefore the realization condition holds.

In view of the difficulties of checking the realization conditions in practice, we start
by understanding how the coefficients µi,c are found. Let Ñ be an extension of N via

the addition of intermediates Y1, . . . , Ym. Consider the digraph associated with Ñ and let
Y1, . . . ,Yt′ denote the vertex sets of the connected components of the subgraph induced by
the subset of vertices {Y1, . . . , Ym}. For each non-intermediate complex c and intermediate
Yi, consider the labeled digraph Gi,c with vertex set Y` ∪ {?} if Yi ∈ Y`. Labeled edges

are Yi
κYi→Yj−−−−→ Yj if Yi → Yj ∈ R̃, ?

κc→Yi−−−−→ Yi if c → Yi ∈ R̃ and Yi
βi−→ ? with βi =∑

Yi→c′ κYi→c′ if βi 6= 0. For each vertex v of Gi,c, define Θi,c(v) to be the set of all
spanning trees rooted at v, that is, v is the only vertex with zero outdegree. Given a tree
τ , let π(τ) be the product of all labels of the edges of τ . Then

µi,c =

∑
τ∈Θi,c(Yi)

π(τ)
∑
τ∈Θi,c(?)

π(τ) . (22)

The numerator of µi,c is linear in the reaction rate constants of the form κc→Yj , and these
reaction rate constants do not appear in the denominator. To read more about properties
of the µi,c’s and how to compute them using the Matrix-Tree theorem, see [8].

The components of φ and φ′ might not depend on the reaction rate constants of all
reactions in the network. Specifically, from (22) and (9) it follows that φc→c′ depends on
c→ c′, if this reaction belongs to R̃, and possibly on the reactions involving intermediates
in the sets Yj such that there exists a path from c to c′ with all intermediates in Yj .
So for each reaction, we consider the union of these relevant sets of intermediates Yj .
Then φc1→c′1 and φc2→c′2 do not depend on a common reaction rate constant if the sets of
intermediates corresponding to c1 → c′1 and c2 → c′2 are disjoint. In this way we obtain a

partition of R̃ into subsets of reactions, that is, subnetworks, for which surjectivity of the
map φ can be checked independently on each smaller network.

We proceed similarly for φ′, but in this case the relevant sets of intermediates Yj are
those for which there exists a path from c to at least one Yi ∈ Yj (or equivalently, µi,c 6= 0).
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Example 5.2. We consider the generalized realization condition for Example 3.6. By the
discussion above, this condition needs to be checked independently on the following three
subnetworks:

N1 : X0 + E
κ1−−⇀↽−−
κ2

Y1
κ3−→ X1 + E N2 : X1 + E

κ4−−⇀↽−−
κ5

Y2
κ6−→ X2 + E

N3 : X2 + F
κ7−−⇀↽−−
κ8

Y3
κ9−→ Y4

κ10−−⇀↽−−
κ11

X1 + F
κ12−−⇀↽−−
κ13

Y5
κ14−−→ Y6

κ15−−⇀↽−−
κ16

X0 + F.

For the three subnetworks the generalized realization condition holds due to Proposi-
tion 5.3(ii) below.

We next show that the realization condition holds for specific classes of intermediates
without the need to do any extra computations.

Proposition 5.3. The realization condition holds for the following types of extension
networks via the addition of intermediates Y1, . . . , Ym.

(i)

c

`0

��
Y1

`1

!!
. . . Ym

`m // c′

with an arbitrary digraph structure among the complexes c, Y1, . . . , Ym such that there
is a path from c to all Yi, and where some reactions with label `i might not exist.

(ii) c←→ Y1 ←→ Y2 ←→ . . . ←→ Ym ←→ c′, provided {Y1, . . . , Ym} is a set of interme-
diates, and where ←→ means the reaction can be either irreversible or reversible.
These networks satisfy also the generalized realization condition. Further, a union
of subnetworks of this form such that the sets of intermediates of each subnetwork
do not intersect, satisfies also the generalized realization condition.

(iii)
c1

c0 Y1 . . . Ym

`1 55

`p ))

...

cp

with an arbitrary digraph structure among the complexes c0, Y1, . . . , Ym such that
there exists a directed path from c0 to Ym.

Proof. (i) The realization condition is equivalent to the scalar-valued map `0 +
∑m

i=1 `iµi,c
being surjective. This map is linear in `0, κc→Y1 , . . . , κc→Ym (some might be zero, but at
least one is non-zero). Hence the statement is clear.

(ii) We start with the case with only one such block. We write

Ñ : c
κ1−−⇀↽−−
κ2

Y1
κ3−−⇀↽−−
κ4

Y2
κ5−−⇀↽−−
κ6

. . .
κ2m−1−−−−⇀↽−−−−
κ2m

Ym
κ2m+1−−−−⇀↽−−−−
κ2m+2

c′. (23)

If not all reactions are reversible, then we assume that the reaction of the core network is
c → c′. This means that all reactions with label with odd subindex are present, and the
reverse reactions might or might not be present.
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We can assume without loss of generality that neither c → c′ nor c′ → c belong to Ñ
(if a map is surjective between two positive orthants, adding an extra variable that sums
to one component preserves surjectivity).

We have that φc→c′(κ) = κ2m+1µm,c(κ) and φc′→c(κ) = κ2µ1,c′(κ) (the latter being
zero in the irreversible case). Throughout we assume that the set C ′ used to define φ′

equals {c, c′}. This is the worst case scenario.
We show by induction on m that this network satisfies the generalized realization

condition. For m = 1, if all reverse reactions are present we have that

φ′(κ1, κ2, κ3, κ4) =
(
φc→c′ , φc′→c, µ1,c, µ1,c′

)
=
(
κ1κ3
κ2+κ3

, κ2κ4
κ2+κ3

, κ1
κ2+κ3

, κ4
κ2+κ3

)
.

A missing reverse reaction corresponds to setting the reaction rate constant equal to zero,
and projecting φ′ away from the components that become zero. We confirm using CAD
that this map is surjective when restricted to the positive orthants, in the four scenarios
obtained by considering none, one or both reverse reactions.

Assume now that (23) satisfies the generalized realization condition for m − 1. We
view Ñ as an extended network of

N : c
κ1−−⇀↽−−
κ2

Y2
κ5−−⇀↽−−
κ6

. . .
κ2m−1−−−−⇀↽−−−−
κ2m

Ym
κ2m+1−−−−⇀↽−−−−
κ2m+2

c′,

via the addition of one intermediate Y1. If we let κ̃ = (κ1, κ2, κ3, κ4), this gives rise to the
following relevant functions

µ̃1,c(κ̃) = κ1
κ2+κ3

, µ̃1,Y2(κ̃) = κ4
κ2+κ3

, κ1 = κ3µ̃1,c(κ̃), κ2 = κ2µ̃1,Y2(κ̃). (24)

By the case m = 1, the right-hand sides of these equalities define a surjective map when
restricted to the positive orthant (by omitting the zero components if some reaction rate
constants are set to zero). In turn, N is an extended network of c −−⇀↽−− c′ via the addition
of the intermediates Y2, . . . , Ym. By the induction hypothesis, N satisfies the generalized
realization condition. Let µi,c, µi,c′ for i = 2, . . . ,m correspond to this extension.

Recall that µi,c and µi,c′ are the coefficients of xc and xc
′

respectively after writing
y1, . . . , ym in terms of x by solving the steady state equations corresponding to the inter-
mediates. This system can be solved iteratively, by first finding y1 and then y2, . . . , ym. If
we let ϕ(κ) =

(
κ3µ̃1,c(κ̃), κ2µ̃1,Y2(κ̃), κ5, κ6, . . . , κ2m+2

)
, it follows that

µi,c = µi,c(ϕ(κ)), µi,c′ = µi,c′(ϕ(κ)), for i = 2, . . . ,m.

For i = 1, iterative elimination of y1 and y2 = µ2,c(ϕ(κ))xc + µ2,c′(ϕ(κ))xc
′

gives that

y1 = µ̃1,Y2(κ̃)y2 + µ̃1,c(κ̃)xc = µ̃1,Y2(κ̃)µ2,c′(ϕ(κ))xc
′
+
(
µ̃1,Y2(κ̃)µ2,c(ϕ(κ)) + µ̃1,c(κ̃)

)
xc.

Hence

µ1,c(κ) = µ̃1,Y2(κ̃)µ2,c(ϕ(κ)) + µ̃1,c(κ̃), µ1,c′(κ) = µ̃1,Y2(κ̃)µ2,c′(ϕ(κ)).

Therefore φ′(κ) =
(
κ2m+1µm,c(κ), κ2µ1,c′(κ),

∑m
i=1 µi,c(κ),

∑m
i=1 µi,c′(κ)

)
can be written as

φ′(κ) =
(
κ2m+1µm,c(ϕ(κ)), κ2µ̃1,Y2(κ̃)µ2,c′(ϕ(κ)),

∑m

i=2
µi,c(ϕ(κ)),

∑m

i=2
µi,c′(ϕ(κ))

)

+
(
0, 0, µ̃1,Y2(κ̃)µ2,c(ϕ(κ)) + µ̃1,c(κ̃), µ̃1,Y2(κ̃)µ2,c′(ϕ(κ))

)
.

Let (k1, k2, rc, rc′) ∈ R4
>0, with k2 = 0 in the irreversible case and rc′ = 0 if c′ is

not an input of any intermediate. Write rc = rc,1 + rc,2, rc′ = rc′,1 + rc′,2 such that
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rc′,2 < rc,2 and rc,1, rc,2, rc′,1, rc′,2 > 0 (= 0 as appropriate). We want to show that
(k1, k2, rc, rc′) = φ′(κ) for some κ. First note that by the induction hypothesis, we can
find κ =

(
κ1, κ2, κ5, . . . , κ2m+2) such that

(k1, k2, rc,1, rc′,1) =
(
κ2m+1µm,c(κ), κ2µ2,c′(κ),

∑m

i=2
µi,c(κ),

∑m

i=2
µi,c′(κ)

)
.

By the last two equalities in (24), the decomposition of φ′(κ) above and the definition of
ϕ, all we need is to show that there exists κ̃ = (κ1, κ2, κ3, κ4) such that

κ1 = κ3µ̃1,c(κ̃), κ2 = κ2µ̃1,Y2(κ̃),

rc,2 = µ̃1,Y2(κ̃)µ2,c(κ) + µ̃1,c(κ̃), rc′,2 = µ̃1,Y2(κ̃)µ2,c′(κ).

This gives in particular that κ = ϕ(κ). Since κ has now been fixed, we want

κ1 = κ3µ̃1,c(κ̃), κ2 = κ2µ̃1,Y2(κ̃), µ̃1,Y2(κ̃) =
rc′,2

µ2,c′(κ)
> 0, µ̃1,c(κ̃) = rc,2 − rc′,2 > 0.

Since the generalized realization condition holds for m = 1, there exist κ1, . . . , κ4 such
that this system holds (or the equivalent system if some reactions are irreversible). This
finishes the proof for the case where there is only one block.

If there are several blocks with the same structure as (23), then we simply need to
notice that φ′ can be written as the Cartesian product of the corresponding map for each
block, and

∑m
i=1 µi,c can be split as a sum of the µi,c’s of each block. Since the generalized

realization condition holds for each block, it also holds for the whole network by splitting
rc accordingly for each complex c.

(iii) The core network has p reactions c0 → c1, . . . , c0 → cp. We have φc0→ci(κ) = `iµm,c0 .
The denominator of µm,c0 is a multiple of

∑p
i=1 `i and µ0 = (

∑p
i=1 `i)µm,c0 does not

depend on any `i. Note that the scalar-valued function µ0 is positive and linear in
(κc0→Y1 , . . . , κc0→Ym). Hence by varying the reaction rate constants different from `i,
µ0 covers R>0. With this we have that given k1, . . . , kp > 0, we define `i = ki and choose
the rest of reaction rate constants such that µ0 =

∑p
i=1 ki. Then φc0→ci(κ) = ki, showing

that φ is surjective.
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M. Košta, O. Radulescu, T. Sturm, and A. Weber. A case study on the parametric occurrence
of multiple steady states. In Proceedings of the International Symposium on Symbolic and
Algebraic Computation, ISSAC, pages 45–52. Association for Computing Machinery, 2017.

[3] D. Eisenbud and B. Sturmfels. Binomial ideals. Duke Math. J., 84(1):1–45, 1996.

[4] M. England, R. Bradford, and J. H. Davenport. Improving the use of equational constraints
in cylindrical algebraic decomposition. In Proceedings of the International Symposium on
Symbolic and Algebraic Computation, ISSAC, pages 165–172. Association for Computing Ma-
chinery, 2015.

25



[5] M. Feinberg. Lectures on chemical reaction networks. Available online at http://www.crnt.
osu.edu/LecturesOnReactionNetworks, 1980.

[6] M. Feinberg. The existence and uniqueness of steady states for a class of chemical reaction
networks. Arch. Ration. Mech. Anal., 132(4):311–370, 1995.

[7] E. Feliu and C. Wiuf. Enzyme-sharing as a cause of multi-stationarity in signalling systems.
J. R. Soc. Interface, 9(71):1224–1232, 2012.

[8] E. Feliu and C. Wiuf. Simplifying biochemical models with intermediate species. J. R. Soc.
Interface, 10(87):20130484, 2013.

[9] J. Gerhard, D. Jeffrey, and G. Moroz. A package for solving parametric polynomial systems.
ACM Commun. Comput. Algebra, 43(3/4):61–72, 2010.

[10] J. Gunawardena. Chemical reaction network theory for in-silico biologists. Available online
at http://vcp.med.harvard.edu/papers/crnt.pdf, 2003.

[11] D. Lazard and F. Rouillier. Solving parametric polynomial systems. J. Symb. Comput.,
42(6):636–667, 2007.

[12] S. Müller, E. Feliu, G. Regensburger, C. Conradi, A. Shiu, and A. Dickenstein. Sign conditions
for injectivity of generalized polynomial maps with applications to chemical reaction networks
and real algebraic geometry. Found. Comput. Math., 16(1):69–97, 2016.
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[14] A. H. Sadeghimanesh and E. Feliu. Gröbner bases of reaction networks with intermediate
species. arXiv: 1804.01381, 2018.
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Abstract

In this work we explore parameter regions for multistationarity in chemical reaction
networks under mass-action kinetics. We further introduce a measure to address how
robust a parameter point is with respect to multistationarity, or any given number of
steady states. Our approach uses the Kac-Rice formula for the expected number of
positive roots a polynomial has, when the coefficients of the polynomial are functions
of the parameters, and these parameters follow a given random distribution.

Introduction

Mathematical models of biological systems typically involve a large number of parameters.
One might be able to determine an approximate value for some of the parameters or to give
some sensible bounds, while for the rest the value is completely unknown. Additionally,
parameter values might change depending on the environment and from individual to
individual. Combined with the fact that mathematical models can display completely
opposite behaviors only after changing the values of the parameters, it makes little sense
to study mathematical models for a specific parameter choice, without an understanding
of how sensible the conclusions are to the choice. This leads to the use of sensitivity
analysis, often performed by varying one parameter at a time.

The ideal situation, however, is to have a full understanding of how the model behaves
with respect to the parameter values. That is, given a property of interest, such as does
the system converge to a steady state?, we would like an explicit partition of the parameter
space into the regions where the answer is yes, and the regions where the answer is no.
Unfortunately, one can rarely find such a partition.

The scope of this work is to address the question how many positive steady states does
the system have?. We focus on mathematical models of the evolution of the concentration
of species subject to the occurrence of some reactions. With this in mind, we consider
Ordinary Differential Equations (ODEs) obtained under the assumption of mass-action
kinetics, although our approach can be applied to any choice of algebraic kinetics (poly-
nomials or rational functions).

With this setting, we have a system of polynomial equations

Fk(x) = 0, x ∈ Rn, (1)

depending on a vector of parameters k ∈ Ω ⊆ Rm, and the question reduces to partition Ω
according to the number of positive solutions the system has. Seed work in this direction
has focused on the question does the system has at least two positive steady states for
some choice of k?, a property termed multistationarity. There exist numerous methods
to determine whether the answer is yes or no, for example [8, 11, 12, 15–18, 21, 24, 26].
As a consequence, for moderately sized systems, this problem can be regarded as solved.
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Finding parameter regions where the system displays multistationarity is a much
harder question. Most of the existing methods to determine whether multistationarity
exists, return an example parameter value for which the system has at least two positive
solutions, but offer no possibility to restrict the point to a region of interest, for example.
Only very recently, some approaches to partially understand the region of multistationarity
are starting to be developed, e.g. [5, 7, 9].

Theoretically, it is possible using Cylindrical Algebraic Decomposition (CAD) to par-
tition the parameter space into regions where the number of positive solutions is constant
[4]. However, this approach has a high computational cost and becomes unfeasible already
for small systems with three or four parameters and three or four variables. Neverthe-
less, whenever computational issues can be resolved, this method gives an explicit answer
to our question, as for example successfully applied in [6] and also in the present work.
Other approaches involve numerical algebraic geometry [20]. But even if the parameter
region of interest can be described, the high number of parameters makes it impossible to
understand the region, and determine, for example, whether the region is connected, or
explore the neighborhood of a point.

In this work we explore the use of Kac-Rice formulas to study the parameter space.
Kac introduced in [22] a formula to compute the expected number of roots a univariate
polynomial with random coefficients has. Later on, this formula was extended to compute
the expected number of solutions a random field has on a manifold under some conditions
[1]. This yielded to a formula now known as the Kac-Rice formula, and which expresses
the expected number of solutions to the system by means of some integrals. The Kac-Rice
formula has found applications in many areas such as in regression [27], the theory of
random matrices [2], number theory [14] or enumerative geometry [3] to name a few.

Here, we start by showing that if the polynomial system (1) is “nice” enough, meaning
that its positive solutions are in one-to-once correspondence with the positive roots of one
polynomial, then, combined with Monte-Carlo integration, we can find a good approxi-
mation to the number of solutions the system has, even when the number of parameters
is not small.

Secondly, we use this formula to introduce a measure of robustness of multistationarity,
or more specifically, of a given number of steady states. This is motivated by the following
issue. Given a parameter point for which the system has N steady states, how much can
one perturb the point such that the system still has N solutions? From the applications
point of view, one would like parameter values that can be substantially perturbed and
still preserve the same properties. For illustration, consider Figure 3 and the two points
marked in the yellow region. For both points, the system has three positive solutions,
but clearly, the point to the right is more robust, as it remains in the yellow region under
bigger perturbations. In order to answer this question without finding and plotting the
region, and also for high number of parameters, we use again the Kac-Rice formula, with a
suitable distribution of the parameters around the given point. In this way we explore the
neighborhood of the point at once, by numerically computing one integral. We exemplify
our method with a running example toy model extracted from [23], and afterwards test
the approach with relevant biological examples.

Notation. Subscripts ≥ 0, > 0 for R refer to the non-negative and positive real numbers.

1 A parametric polynomial system

In this section we give a brief overview of reaction networks and introduce the polynomial
systems of interest.

2



1.1 Reaction networks and multistationarity

A reaction network is a triplet of finite sets N = (S, C,R). The set S = {X1, . . . , Xn}
is called the set of species. The set C consists of vectors c in Rn≥0, interpreted as linear
combinations of species with non-negative integer coefficients, c =

∑n
i=1 ciXi. Each such

c is called a complex. The set R consists of ordered pairs of complexes (c, c′) represented
by an arrow c −−→ c′ and is called the set of reactions.

Under the assumption of mass-action kinetics, the evolution of the concentrations of
the species in time is modeled by means of a polynomial system of ODEs as follows.
Each reaction c → c′ is associated a positive real number kc→c′ , called the reaction rate
constant. These values are gathered in a vector k = (kc→c′ | c → c′ ∈ R) ∈ RR>0. The
concentration of each species is denoted by corresponding lower-case letters xi and we let
x = (x1, . . . , xn) denote the vector of concentrations. The rate of the reaction c → c′ is
assumed to be described by the monomial kc→c′xc, where xc =

∏n
i=1 x

ci
i and 00 = 1. By

considering the net production of each species in each reaction, the concentration of the
species in time vary according to

ẋi = Fk,i(x), i = 1, . . . , n where Fk,i(x) =
∑

c→c′∈R
(c′i − ci)kc→c′xc. (2)

Both the non-negative orthant Rn≥0 and the positive orthant Rn>0 are forward-invariant
by the trajectories of this system; that is, if the initial condition is in the non-negative
(resp. positive) orthant, then so is the solution. Furthermore, this system might have
linear invariant sets given as follows. Consider the vector subspace S of Rn generated
by the vectors c′ − c for each reaction c → c′ (this is called the stoichiometric subspace).
Since Fk(x) = (Fk,1(x), . . . , Fk,n(x)) belongs to S, trajectories are confined to the sets
(x0 +S)∩Rn≥0, called stoichiometric compatibility classes, where x0 is the initial condition
of the system. Equations for these classes are found by considering a basis {ω1, . . . , ωd}
of the orthogonal complement S⊥ of S. Specifically, the class (x0 + S) ∩Rn≥0 is described
by the equations

ωi · x = ωi · x0, i = 1, . . . , d.

Each such equation is called a conservation law and the constant Ti := ωi · x0 is called a
total amount.

The steady states of the ODE system (2) are the non-negative solutions to the system
Fk,i(x) = 0, i = 1, . . . , n. Thus each Fk,i is called a steady state polynomial. We say the
steady state is positive if all coordinates are different from zero. Then, the steady states
within the stoichiometric compatiblity class described by total amounts T1, . . . , Td for a
choice of basis of S⊥ are the solutions to the system of equations

Fk,i(x) = 0, i = 1, . . . , n, ω1 · x = T1 . . . ωd · x = Td. (3)

Due to the conservation laws, d steady state polynomials are redundant in (3) and they
can be removed from the system. This implies that the system of equations of interest is
always transformed into a square system of size n.

Our goal is to understand how the number of positive solutions to this system depends
on k = (kc→c′ | c → c′ ∈ R) ∈ RR>0 and T1, . . . , Td. Thus, we view system (3) as a
parametric polynomial system in the two types of parameters: reaction rate constants and
total amounts. This gives rise to the following map

RR>0 × Rd → N ∪ {+∞} (4)

(k, T ) 7→ #{x ∈ Rn>0 | x is a solution to (3)}.
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The image of this map partitions the parameter space RR>0×Rd. In particular, motivated
by the following definition, we are interested in the set of parameters that give rise to
more than one positive solutions.

Definition 1.1. A reaction network is called multistationary if there exists (k, T ) ∈
RR>0 × Rd such that system (3) has at least two positive solutions. The set of all points
(k, T ) ∈ RR>0×Rd for which the system of equations (3) has more than one positive solution
is called the region of multistationarity.

Example 1.2. The following reactions define a reaction network representing a simplified
model of a hybrid Histidine-Kinase [23]:

X1
k1−−→ X2

k2−−→ X3
k3−−→ X4

X3 +X5
k4−−→ X1 +X6

X4 +X5
k5−−→ X2 +X6

X6
k6−−→ X5.

The steady state polynomials are

Fk,1(x) = k4x3x5 − k1x1, Fk,2(x) = k5x4x5 + k1x1 − k2x2,

Fk,3(x) = −k4x3x5 + k2x2 − k3x3, Fk,4(x) = k3x4 − k5x4x5,

Fk,5(x) = −k4x3x5 − k5x4x5 + k6x6, Fk,6(x) = k4x3x5 + k5x4x5 − k6x6.

The stoichiometric subspace S ⊆ R6 is generated by the vectors (−1, 1, 0, 0, 0, 0), (0,−1, 1, 0, 0, 0),
(0, 0,−1, 1, 0, 0) ,(0, 0, 0, 0, 1,−1), from where it follows that a basis of S⊥ is

{(1, 1, 1, 1, 0, 0), (0, 0, 0, 0, 1, 1)}.

Since Fk,4(x) and Fk,6(x) can be written as linear combinations of the rest of the steady
state polynomials, we replace them with the two conservation laws. Therefore the system
of parametric polynomial equations we want to investigate is

k4x3x5 − k1x1 = 0,

k5x4x5 + k1x1 − k2x2 = 0,

−k4x3x5 + k2x2 − k3x3 = 0,

−k4x3x5 − k5x4x5 + k6x6 = 0,

x1 + x2 + x3 + x4 − T1 = 0,

x5 + x6 − T2 = 0.

It is shown in [23] that the positive solutions to this system are in one-to-one correspon-
dence with the positive solutions to the following univariate polynomial of degree three in
t = x5:

f(t) = (k1k4k5k6 + k2k4k5k6)t3 + (T1k1k2k4k5 − T2k1k4k5k6

− T2k2k4k5k6 + k1k2k5k6 + k1k3k5k6)t2 + (T1k1k2k3k5 − T2k1k2k5k6

− T2k1k3k5k6 + k1k2k3k6)t− T2k1k2k3k6. (5)

Thus, in this example, the goal is to study the number of positive solutions to a degree
3 polynomial as function of the eight parameters k1, . . . , k6 > 0 and T1, T2. Observe that
we necessarily have T1, T2 > 0 for positive solutions to exist.
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1.2 Region of multistationarity

As stated in the introduction, there are numerous methods that answer the yes-no question
of “is a network multistationary?”, however, other questions regarding specific issues of the
parameter space are more complex to deal with. For example, we would like to understand
whether the region of multistationarity is connected, convex, etc., but this is out of reach
with current techniques even for small networks. In this work we are specifically interested
in the following questions:

(i) Find a parameter point for which the network exhibits multistationarity in a given
region of interest.

(ii) Find a parameter point such that system (3) has N positive solutions

(iii) Find the maximum number of solutions to system (3).

(iv) Determine the robustness of a parameter point with respect to multistationarity, in
the sense of understanding whether small perturbations to the parameters would
imply loosing multistationarity.

The region of interest in question (i) arises often from real applications, by taking
into consideration the realistic values of k and T for the systems we model. The coarse
approach, seen often in practice, is to sample in the parameter space, solve the system of
interest for each choice of parameters, and record the number of positive solutions. This
is often done in the literature for about 104 parameter choices, which, considering the
number of parameters even small networks contain, is far from accurate. Also, because
the regions with the maximum number of steady states might have weird shapes and be
hard to hit by sampling.

A more accurate approach would be to first divide the parameter region into many
small sub-boxes. Then, one takes one or many sample points in each sub-box, solves the
system of interest and takes the average number of solutions of each system. This method
requires solving the system for considerably many parameter choices in order to cover
realistically the parameter space. It is very slow and inefficient.

Another strategy is to use numerical homotopy as in [20, Algorithms 1 and 2]. The
idea is to use numerical homotopy ideas to get a description of the discriminant locus,
that is, the boundary between different regions of the parameter space where the number
of steady states change. But the ideas are not easily applicable to higher dimensional
parameter spaces and are best suited when all parameters except one or two parameters
are fixed.

In what follows we investigate two other approaches: CAD, which gives the exact
answer but is impractical as the number of parameters grow; and the use of the so-called
Kac-Rice formula to approximate the number of solutions of the system in each sub-box
as above. The latter can also be used to assess how close a parameter point is to loose
multistationarity after small perturbations are applied to it.

2 Cylindrical Algebraic Decomposition

In this section we explore the use of CAD to partition the parameter space according to
the number of solutions to system (3), see [4, 10]. The starting point to apply CAD is
system (3), together with the inequalities x1, . . . , xn > 0 and kc→c′ > 0 for all c→ c′ ∈ R.
We might also have Ti > 0 for some i, if all coefficients of ωi are non-negative. In this
system, x1, . . . , xn are our variables, and k, T the parameters.
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CAD involves the computation of the discriminants and resultants of systems of poly-
nomials to divide the parameter space into cells, such that the number of solutions of the
system of equalities and inequalities is constant within each cell. Then by picking a sample
point from each cell and solving the system, we get the number of solutions for all the
parameters in the cell. The union of the cells with more than one solution is the region
of multistationarity. Each cell has an exact description using polynomial equalities and
inequalities. Here we focus only on open cells, in which case there are only inequalities.

Although theoretically this method fully partitions the parameter space as desired, it
is impractical because the number of cells grows very fast: it is double exponential in the
total number of variables and parameters, and depends also on the number of polynomials
and the degree of the system [13]. Thus a standard computer has only memory to handle
small systems.

CAD consists of two phases: the projecting phase and the lifting phase. If the number
of indeterminates (variables and parameters) is u, the projecting phase proceeds through
u− 1 steps, such that at each step one indeterminate is eliminated and a system involving
only the remaining indeterminates is constructed. So at the last step, we are left with a
collection of polynomials in one indeterminate.

The lifting phase proceeds as follows. We find the roots to each of the polynomials
in the last step that fulfill the inequalities we started with and order them. We pick a
point in each interval these roots define. We evaluate at each of these points the collection
of polynomials obtained in the step u − 2 of the projecting phase, which involve this
indeterminate and one more. These become polynomials in one indeterminate, and hence
we can solve them as in the first step. We repeat these steps until we are back to the original
system and are left with a number of sample points for all parameter indeterminates. We
find the number of solutions to the original system after evaluating it at each sample point.

We illustrate the CAD approach using Example 1.2.

Example 2.1. Consider the polynomial given in Equation (5), whose positive solutions
are in one-to-one correspondence with the positive solutions to (3). Even though we
only have one polynomial of degree three in one variable, t, having eight parameters,
k1, . . . , k6, T1, T2 makes the system too large for CAD in a standard computer.

Instead, we fix the reaction rate constants k and understand the region in the parame-
ters (T1, T2) according to the number of positive roots of the polynomial. In [7] it is shown
that there exists a choice of (T1, T2) ∈ R2

>0 for which the network is multistationary if and
only if k1 < k3. So we fix the following reaction rate constants (from [23, Fig. 2C]):

(k1, . . . , k6) = (0.7329, 100, 73.29, 50, 100, 5). (6)

Evaluating the univariate polynomial (5) at (6) gives a polynomial fT1,T2(t) of degree 3 in
t, whose coefficients depend on the two parameters T1 and T2:

fT1,T2(t) =(2518322.5)t3 +
(
(366450)T1 − (2518322.5)T2 + 63502.1205

)
t2

+
(
(537142.41)T1 − (63502.1205)T2 + 26857.1205

)
t− (26857.1205)T2.

(7)

The study of this polynomial is addressable using CAD. The output is 6 open cells in the
(T1, T2)-space, such that one of them has 3 positive solutions and the rest one positive
solution. The steps of CAD are as follows.

Projecting phase:

• The indeterminate t is eliminated and we obtain a degree four polynomial in T1 and
T2. Name this polynomial h2(T1, T2).
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Figure 1: The yellow region is the region where system (3) for the network in Example
2.1 and the choice of k in (6) has three positive solutions. The number of solutions is one
in the white region (and there are two solutions on the boundary of the yellow region).

• The indeterminate T2 is eliminated and we obtain a degree eleven polynomial in T1

(which is the discriminant of h2 with respect to T2). Name this polynomial h1(T1).

Lifting phase:

• h1(T1) factors as the product of a degree three polynomial to the cube and two linear
polynomials. The two linear factors do not have positive roots. The degree three
polynomial has only one positive real root β. So we pick two sample points α1, α2

for T1, one smaller and one larger than β.

• In this step the sample values for T1 are substituted into the polynomial h2. The
result is a univariate polynomial in T2. For α1, the resulting polynomial has two
linear factors and a factor of degree two, which does not have a real root. Only one
of the two linear factors has a positive real root. This gives rise to two cells. For α2,
the resulting polynomial factors as the product of four linear polynomials, three of
which admit a positive root. This gives rise to four cells.

Now, there are 6 open cells and a sample point (T1, T2) for each cell. We substitute
the sample point into fT1,T2(t) in (7) and find the positive roots. For one sample point,
fT1,T2(t) has exactly three positive roots, while for the other five, fT1,T2(t) has one positive
root. Therefore, the region in T1, T2 for this choice of k where the system 3 has three
positive solutions is given by one of the cells. In particular, the region is described by the
inequalities T1 > β and imposing T2 to be between the second and third roots of a degree
three bivariate polynomial in T1, T2 after letting T1 > β, see Figure 1.

This example illustrates how to use CAD when the number of parameters is small. As
opposed to other coarse methods involving sampling or numerical approaches, CAD gives
an exact description of the region of interest. In combination with other methods that
provide partial answers on the regions of multistationarity, one can obtain pretty accurate
descriptions of them.

For example, in [7] a strategy to obtain parameter regions only on the reaction rate
constants is presented, and illustrated with numerous examples (like Example 1.2 here).
This allows a user to select realistic values of the reaction rate constants for the network
under study. Once this values are selected, CAD can be applied on the total amounts,
and, if d is small, a simple figure can be used to lead the selection of realistic values of T .
Note also that, in the practical setting of an experiment in vitro, total amounts might be
easier to control than reaction rate constants.
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3 Parameter regions using Kac-Rice formulas

In this section we introduce a new approach to address the parameter space and in par-
ticular questions (i)-(iv) posed in Subsection 1.2. The strategy is based on the Kac-Rice
formula.

3.1 The Kac-Rice formula

We consider a polynomial fk(t) in one variable t whose coefficients are polynomials in
some parameters k1, . . . , km. We assume the parameters are independently distributed,
following distributions with densities ρi(ki) for i = 1, . . . ,m with support in R>0.

The notation pt(u) is used for the density of fk(t) = 0 for a fixed t, given as
(
P (fk(t) ≤

x)′x
)
|x=u

. We let E
(
#(f−1

k (0)∩R>0)
)

be the expected number of zeroes of fk in the positive

orthant, and E
(
|f ′k(t)| | fk(t) = 0

)
the expected value of |f ′k(t)| (absolute value of f ′k(t))

over the set fk(t) = 0 for a fixed t.
The following theorem is a consequence of [1, Theorem 11.2.1] applied to the given

setting.

Theorem 3.1. Let f : R>0 → R be a polynomial map with coefficients being polynomials
in k1, . . . , km. Assume that each parameter ki follows a continuous random distribution
with support in R>0 and density ρi, that ρi is continuous except maybe in a finite number
of points. Assume also that k1, . . . , km are independently distributed. Then

E
(
#(f−1

k (0) ∩ R>0)
)

=

∫ ∞

0
E
(
|f ′(t)| | f(t) = 0

)
pt(0)dt.

The formula in the theorem is called the Kac-Rice formula, and the expression on the
right-hand side is called the Kac-Rice integral. The left-hand side of the equality gives the
estimated number of positive roots the polynomial has depending on the distribution the
parameters follow. By choosing a uniform distribution in some box, then we are finding
the mean number of positive solutions when the parameters belong to the box.

In the following special situation, where fk(t) is linear in the parameter k1 and the
coefficient of k1 is strictly positive, then the computations of the Kac-Rice integral take
the following nice form.

Proposition 3.2. With the hypothesis in Theorem 3.1, assume that fk(t) = h1(k2, . . . , km, t)k1+
h2(k2, . . . , km, t) is linear in k1, and that h1(k2, . . . , km, t) is a polynomial in t, k2, . . . , km
with all coefficients positive. Let

g(k2, . . . , km, t, x) =
x− h2(k2, . . . , km, t)

h1(k2, . . . , km, t)
.

Then the Kac-Rice integral is

∫ ∞

0
E
(
|f ′(t)| | f(t) = 0

)
pt(0)dt =

∫ ∞

0
A(t) ·B(t)dt,

where, for ρ̄(k2, . . . , km, t) = ρ1(g(k2, . . . , km, t)) · ρ2(k2) · . . . · ρm(km) we have

A =

∫

Rm−1
>0

|f ′k(t)|k1=g(k2,...,km,t,0)
| ρ̄(k2,...,km,t)∫

Rm−1
>0

ρ̄(s2,...,sm,t)ds2...dsm
dk2 . . . dkm,

B =

∫

Rm−1
>0

ρ̄(k2, . . . , km, t)

h1(k2, . . . , km, t)
dk2 . . . dkm.
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Proof. Note that we have fk(t) ≤ x if and only if k1 ≤ g(k2, . . . , km, t, x) and that fk(t) = 0
if and only if k1 = g(k2, . . . , km, t, 0). Recall that pt(0) =

(
P (fk(t) ≤ x)′x

)
|x=0

. We have

P (fk(t) ≤ x) = P (k1 ≤ g(k2, . . . , km, t, x))

=

∫

Rm−1
>0

(∫ g(k2,...,km,t,x)

−∞
ρ1(k1)dk1

)
ρ2(k2) · . . . · ρm(km)dk2 . . . dkm.

By Leibniz’s integration rule we have

(
d
dx

∫ g(k2,...,km,t,x)

0
ρ1(k1)dk1

)
|x=0

= ρ1(g(k2, . . . , km, t, 0)) d
dx(g(k2, . . . , km, t, x)) |x=0,

=
ρ1(g(k2, . . . , km, t, 0))

h1(k2, . . . , km, t)
,

where the first equality holds whenever ρ1 is continuous at g(k2, . . . , km, t, 0). Since the
equation g(k2, . . . , km, t, 0) = a has a finite number of solutions in t and our densities
are continuous outside a finite set of points, we can ignore these points when taking the
integral over t. So we consider

pt(0) =

∫

Rm−1
>0

ρ̄(k2, . . . , km, t)

h1(k2, . . . , km, t)
dk2 . . . dkm.

Fix now t and let Jk(t) = f ′k(t)|k1=g(k2,...,km,t,0)
. Then

E(|f ′k(t)| | fk(t) = 0) =

∫

Rm−1
>0

|Jk(t)| ρfk(t)=0(k2, . . . , km)dk2 . . . dkm,

where ρfk(t)=0(k2, . . . , km) is the density of the joint distribution of k2, . . . , km in fk(t) = 0.
We consider the conditional density on the measure zero solution set of fk(t) = 0 and
obtain that

ρfk(t)=0(k2, . . . , km) = 1∫
Rm−1
>0

ρ̄(s2,...,sm,t)ds2...dsm
ρ̄(k2, . . . , km, t).

And finally the Kac-Rice integral is as stated

∫ ∞

0
E
(
|f ′(t)| | f(t) = 0

)
pt(0)dt =

∫ ∞

0

(∫

Rm−1
>0

|Jk(t)| ρ̄(k2,...,km,t)∫
Rm−1
>0

ρ̄(s2,...,sm,t)ds2...dsm
dk2 . . . dkm

)

·
(∫

Rm−1
>0

ρ̄(k2, . . . , km, t)

h1(k2, . . . , km, t)
dk2 . . . dkm

)
dt.

Note that if h1(t) = h1(k2, . . . , km, t) does not depend on k2, . . . , km, then the Kac-Rice
integral simplifies to

∫ ∞

0

1

h1(t)

∫

Rm−1
>0

|f ′k(t)|k1=g(k2,...,km,t)
| ρ̄(k2, . . . , km, t, 0)dk2 . . . dkmdt. (8)
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3.2 Finding regions of multistationarity

As already discussed, the Kac-Rice formula can be used to approximate the region of
multistationarity by considering a grid in the parameter region and assuming uniform
distributions in each box of the grid. This can be performed as long as the Kac-Rice
integral can be computed.

To illustrate this, consider the reaction network in Example 1.2 with the choice of
reaction rate constants in (6). Again, we consider T1, T2 as parameters, and equip them
with uniform distributions in a box: T1 ∼ U([a7, b7]) and T2 ∼ U([a8, b8]). We write the
polynomial fT1,T2(t) in (7) as fT1,T2(t) = α(t)T1 − β(t)(T2 − t) with

α(t) = 366450t2 + 537142.41t,

β(t) = 2518322.5t2 + 63502.1205t+ 26857.1205.

In the notation of Proposition 3.2, this gives h1(t) = α(t) and h2(T2, t) = −β(t)(T2 − t).
We are in the scenario where we can use (8). Therefore, the Kac-Rice integral is

∫ ∞

0

1

α(t)

∫ b8

a8

|JT2(t)|
b7 − a7

χ[a7,b7]

(β(t)(T2−t)
α(t)

)
dT2 dt,

where JT2(t) = f ′T1,T2(t)
|T1=

β(t)(T2−t)
α(t)

and χ[a,b]

(
y
)

is the indicator function being 1 if

y ∈ [a, b] and 0 otherwise. In order to compute this integral for fixed values of a7, b7, a8, b8,
we use numerical integration, see Section 4.

Let us assume we are interested in the region of multistationarity in the box [0, 5]×[0, 5]
in (T1, T2)-space. We make a grid of this box by dividing each edge into 10 equal parts,
such that we obtain 100 sub-boxes. We then compute the Kac-Rice integral above with
T1 ∼ U([ai, ai+1]), T2 ∼ U([bj , bj+1]) for each of the sub-boxes. We get, for each sub-box,
the mean number of positive steady states the network has when T1, T2 belong to the sub-
box. In order to visualise this, we color the sub-box with a graduation of yellow: strong
yellow means we get the number three, and white means we get one. The strongest the
yellow is, the closer the number is to three and vice versa. The result is shown in Figure
2.

Clearly, Figure 2 approximates Figure 1, which shows the exact region where there are
three positive steady states. In Figure 2 the sub-boxes that cross the thick line separating
the yellow and white regions in Figure 1 have a lighter color, because the sub-box contains
parameters with both one and three positive steady states. By making the size of the
sub-boxes smaller, we would get more accurate approximations of Figure 1.

This example illustrates how the Kac-Rice formula can be used to approximate the
parameter region. The advantage is that the numerical integrals we need to compute
require, in principle, less computer power than performing CAD. That is, we could study
the parameter region for multistationarity for our example, by varying more parameters.
Computing one integral for each sub-box is also faster and more accurate than sampling
over all the parameter space and finding the number of positive solutions.

This approach can also be used to numerically assess whether multistationarity occurs
in a given box. One might consider a coarse division of the this box and compute the
integrals in each sub-box. If some sub-box gives a number larger than one, then we could
proceed to subdivide this box and repeat the process, until we can assert with confidence
that there is indeed a small region with more than two positive steady states. Further,
this approach can be also used to numerically determine the maximal number of positive
steady states the network admits.
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Figure 2: Approximate mean number of positive steady states in the parameters T1, T2

for the network in Example 1.2 with reaction rate constants in (6). The mean number is
found using the Kac-Rice formula. The strong yellow color means three positive steady
states and the white color means one positive steady state; the color bar of the diagram
is shown on the left.

3.3 Measure of robustness

In practice, when designing small circuits that are multistationary, we would like to choose
parameter values that yield multistationarity, and such that this property is not lost by
small perturbations. In plain words, we would like to know how much “inside” the region
of multistationarity our parameter point is. Here we focus on comparing the robustness
of different parameter choices with respect to the number of positive steady states.

For a small number of parameters, and with an explicit description of the parameter
region, one might proceed as follows. Consider Example 2.1. The choices (2, 1.75) and
(4, 3) for (T1, T2) both provide multistationarity with three positive steady states. How-
ever, (4, 3) can be perturbed more than (2, 1.75) and still remain in the yellow region in
Figure 3. Specifically, the supremum of the radius of the balls centred at each of the points
that are in the region with three steady states is largest for (4, 3). Or equivalently, the
distance of the point to the closer thick black line is largest for (4, 3). Thus, we would
say that (4, 3) is more robust than (2, 1.75) with respect to multistationarity, and further,
by finding the distance of each of the points to the black line in separating the regions in
Figure 3, we can give a measure of robustness.

Figure 3: Two points (2, 1.75) and (4, 3) in the region of multistationarity of Example 2.1.
A larger neighborhood of the second point is inside the yellow region than for the first
point.

An approximation of this computation can be performed using the Kac-Rice formula to
measure robustness of a parameter point with respect to multistationarity, when nothing
is known about the region of multistationarity. The idea is the following. We consider

11



Figure 4: In both graphs the vertical axis represents E(#(f−1(0) ∩ R>0)) for the trun-
cated normal distribution, and the horizontal axis represents 2 + log10 σ

2. The left graph
corresponds to the point (T1, T2) = (4, 3) and the right graph corresponds to the point
(T1, T2) = (2, 1.75). For both points, the normal distribution has support in the box
[T1 − 1.75, T1 + 1.75]× [T2 − 1.75, T2 + 1.75].

random distributions giving high probability to a neighborhood of the point, and find the
expected number of positive steady states according to the distribution. We then increase
the size of the neighborhood and plot the expected number of positive steady states with
respect to the size, and observe when the expected number decreases.

Specifically, we propose to use the following three distributions:

• Uniform distributions on a box around the parameter point, and we increase the size
of the box.

• Normal distributions centred at the parameter point, truncated symmetrically such
that the support is in R>0, and we increase the variance.

• Log-normal distributions centred at the parameter point and we increase the vari-
ance.

With the uniform distribution we will simply find the expected number of positive steady
states in boxes around the point. Since we want that the parameters to be independently
distributed, we cannot use a uniform distribution on a ball around the point. For the two
other distributions, we give more importance to small perturbations than larger pertur-
bations. This makes sense if our starting parameter point is realistic but determined with
some uncertainty due to experimental or numerical errors, or inaccuracies of the model.
The log-normal distribution would additionally take into account the order of magnitude
of the parameter value.

We consider Example 1.2 again with the points (4, 3) and (2, 1.75), and the truncated
normal distribution. By increasing the variance σ2 from 0.01 to 100, the expected number
of positive steady states is as shown in Figure 4. We observe that (4, 3) is more robust
than (2, 1.75) because the expected number of steady states drops for a larger variance.
We can also deduce from the figure how large the variance can be before we might loose
multistationarity.

We knew this already by looking at Figure 3. The advantage of using this approach
is that we can make the same study with several parameters. To illustrate this, we have
considered the following two points

(k1, . . . , k6, T1, T2) = (10, 110, 50, 40, 90, 12, 7, 9.25),

(k1, . . . , k6, T1, T2) = (5, 100, 75, 50, 100, 10, 6.5, 7.5),
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Figure 5: In both graphs the vertical axis represents E(#(f−1(0) ∩R>0)) for the uniform
distribution U(

∏8
i=1[pi − d, pi + d]), and the horizontal axis represents 2 + log10 d. The

left graph corresponds to the point p = (10, 110, 50, 40, 90, 12, 7, 9.25) and the right graph
corresponds to the point p = (5, 100, 75, 50, 100, 10, 6.5, 7.5).

and studied their robustness with respect to the number of positive steady states using
the uniform distribution. By varying the size of the support of the distribution as

[p1 − d, p1 + d]× · · · × [p8 − d, p8 + d],

where p is the chosen parameter point and increasing d from 0.01 to 1, we have obtained
that the mean number of positive steady states is as shown in Figure 5. By inspection of
the figure, we conclude that the second point is more robust.

The same analysis could be carried out using the log-normal distribution or a truncated
normal distribution. Which one to consider depends on whether the order of magnitude
needs to be taken into account, or whether we want to give more relevance to the parameter
points around our start point.

4 Methods for numerical integration

Although in some cases one might be able to find the exact value of the Kac-Rice integral,
in most cases one needs to rely on the numerical computation of the integral. In this case,
depending on the dimension of the Kac-Rice integral, we have applied one of the following
methods:

(i) If the integral involves a single or double integration, we use the approximation of
the integral as a Riemannian sum, combined with the following decompositions of
unbounded integrals to a sum of bounded integrals:

∫ ∞

0
g(x)dx =

∫ 1

0
g(x)dx+

∫ 1

0

1
x2
g( 1
x)dx, (9)

∫ ∞

−∞
g(x)dx =

∫ 1

0

1
x2
g(− 1

x)dx+

∫ 1

0
g(−x)dx

∫ 1

0
g(x)dx+

∫ 1

0

1
x2
g( 1
x)dx.

(ii) If the dimension of the integral is larger, then we use Monte-Carlo integration. [25,
Chapter 1].

The idea of Monte-Carlo integration is as follows (for more details, see [25]). Let I be
an integral on a region M ⊆ Rn of the form

I =

∫

M
f(x1, . . . , xn)dx1 . . . dxn.
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We start by choosing a probability distribution on M with density function p(x) =
p(x1, . . . , xn). Then, we have that

I =

∫

M

f(x)

p(x)
p(x)dx = E

(
f(x)
p(x)

)
. (10)

For N ∈ N, consider random samples x(1), . . . , x(N) of the random vector x following the
probability distribution. By the Law of Large Numbers, if N is large enough, then I is
approximated as

I ' 1

N

N∑

i=1

f(x(i))

p(x(i))
. (11)

Further, the standard error of this approximation can also be found. Let Î denote the
sum in the right hand side of (11). Then the standard error of the approximation is

ê =

√√√√
∑N

i=1

(f(x(i))

p(x(i))
− Î
)2

N(N − 1)
. (12)

We apply the approximation given in (11) to the Kac-Rice integral I in Proposition 3.2
as follows. By considering the expressions of A and B in Proposition 3.2, we need to
consider one integral on R>0 in t and three integrals with domain Rm−1

>0 in the parameters,
namely

I1 =

∫

Rm−1
>0

ρ1(g(k2, . . . , km, t, 0))ρ2(k2) · . . . · ρm(km)dk2 . . . dkm,

I2 =

∫

Rm−1
>0

|f ′k(t)|k1=g(k2,...,km,t,0)
| ρ1(g(k2, . . . , km, t, 0))ρ2(k2) · . . . · ρm(km)dk2 . . . dkm,

I3 =

∫

Rm−1
>0

ρ1(g(k2, . . . , km, t, 0))ρ2(k2) · . . . · ρm(km)

h1(k2, . . . , km, t)
dk2 . . . dkm.

We need now to choose a probability distribution on the domain of our integrals. First
we note that the integration over t in the Kac-Rice integral can sometimes be considered
as a bounded integral. In our example, t is the concentration of X5, x5, which must
be smaller than T2 for positive solutions to fk(t) = 0 to exist. Thus, when considering
robustness around one point, we might restrict t to a fixed number. If the integration over
t is bounded in [0, b], we sample using the uniform distribution U([0, b]). Alternatively one
can use an exponential distribution with parameter λ, E(λ), where λ is chosen such that
the quantile of 1 − ε for a small ε ∈ [0, 1] is b. If the integral is unbounded, then we use
the decomposition given in (9) for

∫∞
0 g(t)dt, and use the uniform distribution on [0, 1].

For the integrals over Rm−1
>0 in the parameters k2, . . . , km, we use the same distribution

assigned to them, ρi(ki) in the notation of Proposition 3.2. This gives that for the three
integrals I1, I2, I3, the quotients Q1, Q2, Q3 corresponding to f(x)/p(x) in (10) become

Q1 =
ρ1(g(k2, . . . , km, t, 0))ρ2(k2) · . . . · ρm(km)

ρ2(k2) · · · · · ρm(km)
= ρ1(g(k2, . . . , km, t, 0)),

Q2 = |f ′k(t)|k1=g(k2,...,km,t,0)
| ρ1(g(k2, . . . , km, t, 0)),

Q3 =
ρ1(g(k2, . . . , km, t, 0))

h1(k2, . . . , km, t)
.
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In order to sample from given distributions, we can use build-in functions of the soft-
ware we use. We have done it in the following way. For each distribution, we sample
one point ε uniformily in the interval [0, 1], and consider the quantile with respect to the
distribution, that is, consider the value in R>0 with cumulative probability ε. We do this
for the m− 1 parameters and t, and obtain sample points ti, k2i , . . . , kmi for i = 1, . . . , N .
We sample for large N until ê is small enough. In the computations performed here, the
stop criterion is N > 1000 and ê < 10−2.

This method easily allows to be parallelized, by distributing the N sample points into
the different processors the server has, and letting each processor evaluate the functions
in the point.

Methods. The computations in this work are performed with Maple 2018. The package

RootFinding is used for CAD and plotting the regions of multistationarity [19]. We use the

Statistics package for sampling and the package Grid for doing parallel computations.
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[26] M. Pérez Millán, A. Dickenstein, A. Shiu, and C. Conradi. Chemical reaction systems
with toric steady states. Bull. Math. Biol., 74(5):1027–1065, 2012.

[27] J. E. Taylor, J. R. Loftus, and R. J. Tibshirani. Inference in adaptive regression via
the kac-rice formula. Ann. Statist., 44(2):743–770, 2016.

17




	Introduction
	Thesis structure

	Background on Chemical Reaction Network Theory and Computational Algebra
	ODE system of the network and steady states
	Intermediates
	Detection of multistationarity
	Parameter region of multistationarity
	Other kinetics
	Closing

	Contribution to the state of the art
	Summary of contributions
	Overview of Paper 1
	Overview of Paper 2
	Overview of Paper 3

	Perspective
	Bibliography
	Gröbner bases of reaction networks with intermediate species
	The multistationarity structure of networks with intermediates and a binomial core network
	Region of multistationarity and measure of robustness



