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Abstract

This thesis is about analysis of heavy-tailed time series. We discuss tail properties of
real-world equity return series and investigate the possibility that a single tail index is
shared by all return series of actively traded equities in a market. Conditions for this
hypothesis to be true are identified.

We study the eigenvalues and eigenvectors of sample covariance and sample auto-
covariance matrices of multivariate heavy-tailed time series, and particularly for time
series with very high dimensions. Asymptotic approximations of the eigenvalues and
eigenvectors of such matrices are found and expressed in terms of the parameters of the
dependence structure, among others.

Furthermore, we study an importance sampling method for estimating rare-event
probabilities of multivariate heavy-tailed time series generated by matrix recursion. We
show that the proposed algorithm is efficient in the sense that its relative error remains
bounded as the probability of interest tends to zero. We make use of exponential twisting
of the transition kernel of an Markov additive process, and take advantage of asymptotic
theories on products of positive random matrices.

Resumé

Denne afhandling handler om en analyse af tidsrækker med tunge haler. Vi diskuterer
haleegenskaber af real-world equity return series og undersøger muligheden for at et
enkelt haleindeks deles af alle return seriers af aktivt handlede aktier i et marked.
Betingelser for denne hypotese til være sande er identificeret.

Vi studerer egenværdier og egenvektorer af observerede kovarians- og auto-kovarians-
matricer af multivariate tung-halede tidsrækker, og især til tidsrækker med meget høje
dimensioner. Asymptotiske tilnærmelser af egenværdierne og egenvektorer af sådanne
matricer findes og udtrykkes i afhængighedens parameterstruktur.

Vi studerer også en importance sampling metode til estimering sandsynligheder af
sjældne begivenheder for multivariate tung-halede tidsrækker genereret af matrice rekur-
sioner. Vi viser, at den foreslåede algoritme er effektiv i den forstand, at dens relative fejl
forbliver begrænset, när sandsynligheden af interesse konvergerer til nul. Vi gør brug af
eksponentiel vridning af overgangskernen til en Markov additive process og tager fordel
af asymptotiske teorier om produkter af positive tilfældige matricer.
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Chapter 1

Introduction

The phenomenon of heavy-tailedness is widely observed in many disciplines of science,
for example, phase transition of matter and black body radiation as studied in physics,
neuronal avalanches in biology, claim sizes of insurance mathematics and stock returns in
finance. The last application is indeed the focus of this thesis. To discuss the phenomena
in precise terms, we introduce the concept of regular variation.

1.1 Regular variation

The concept of regular variation is defined by the following scaling property: if a function
f on (0,∞) satisfies

lim
x→∞

f(cx)
f(x) = cα ∀c > 0,

then we say f is regularly varying with index α. f can be written in the form f(x) = L(x)
xα ,

where L(x) is a slowly varying function, i.e. limx→∞
L(cx)
L(x) = 1, ∀c > 0. We call a random

variable X regularly varying with index α ≥ 0 if it satisfies the tail balance condition in
the limit x→∞.

P(X > x) ∼ p+
L(x)
xα

, P(X < −x) ∼ p−
L(x)
xα

, for some p+, p− ≥ 0, p+ + p− = 1

When expanded to multiple dimensions, the scaling property of regular variation is
better described in terms of vague convergence to a spectral measure µα: if a random
vector X satisfies

P(X/|X| ∈ ·, |X| > cx)
P(|X| > x)

v→ c−αµα(·), x→∞,∀c > 0,

then we say X is regularly varying with index α. Here µα is a probability measure on the
unit sphere [29]. It is called the spectral measure of X and α is again the tail index. If
X is regularly varying with index α, then each component and each linear combination
of its components are regularly varying with the same index α. This follows from Feller
[61], p. 278. Cf. also Jessen and Mikosch [81], lemma 3.1, and Embrechts et. al. [58],
lemma 1.3.1.

Clearly, estimating the tail index α of a sequence X1, X2, . . . of regularly varying
variables is particularly important for understanding the behavior of a heavy-tailed series.
A standard method proposed for this purpose is due to Hill [71]:

α̂H =
[

1
k

k∑
i=1

log
(

X(i)

X(k+1)

)]−1

, (1.1)

where X1, X2, . . . , Xn is a sample whose tail index is the subject of estimation, and
X(i) is the i-th upper order statistic of the sample. Several authors have contributed to

1



2 1. Introduction

showing the weak consistency and asymptotic normality of the estimator α̂H , under the
assumptions k → ∞, k/n → 0 as n → ∞. See Theorem 6.4.6 of Embrechts et. al. [58]
for details.

Figure 1.1 shows the Hill estimates of the tail indices of daily stock return series
from 3 sectors of the Standard & Poor’s 500 index1. The 2.5% and 97.5% quantiles
of the asymptotic normal distribution of the estimates are also given. One can see the
confidence bands are fairly large compared with the estimated values. This certainly
raises the question of how similar they really are and if/how their variations can be
explained by economic arguments.

Random variables with regularly varying tails have some very nice features: if X1
and X2 are both positive and regularly varying with indices α1 and α2, respectively, then
a1X1+a2X2, for a1, a2 > 0, is regularly varying with index min{α1, α2} (cf. Mikosch and
Jessen [81]). Moreover, if X1, X2 are iid, P(a1X1+a2X2 > u) ∼ P(a1X1 > u)+P(a2X2 >
u).

Now consider p return series Xi,t, i = 1, 2, . . . , p; t = 1, . . . , n. Suppose each of
these series is a linear combination of K factors Yj,t, j = 1, 2, . . . ,K, the j-th of which
is regularly varying with index αj . Then by the summation property, each and every
{Xi,t} is regularly varying with index min1≤j≤K αj . In practice a factor Yi,t is estimated
as Ŷj,t =

∑p
i=1 aj,iXi,t, where (aj,1, aj,2, . . . , aj,p)′ is the j-th eigenvector of the sample

covariance matrix of {Xi,t}, i = 1, . . . , p; t = 1, . . . , n, i.e. the eigenvector associated
with the j-th largest eigenvalue. For this reason, it is important to understand the eigen
system of the sample covariance matrix of {Xi,t}. This topic is addressed in chapters 4
and 5 of this thesis.

When a product of independent positive random variables, say X1X2, involves one
with regularly varying tails, a useful result is that of Breiman [27]: assume X1 is regularly
varying with index α and there exists ε > 0 such that EXα+ε

2 < ∞. Then P(X1X2 >
x) ∼ EXα

2 P(X1 > x). More generally, if X1, X2 are regularly varying with the same tail
index α or if P(X2 > x) = o(P(X1 > x)), then X1X2 is regularly varying with index α.

In addition to Breiman’s result, the following is also well-known, assuming X1, X2
are positive independent random variables and X1 is regularly varying with index α:

1. if X2 is regularly varying with index α or limx→∞
P (X2>x)
P(X1>x) = 0, then X1X2 is

regularly varying with index α.

2. if X1, X2 are iid and EXα
1 =∞, then P(X1X2>x)

P(X1>x) →∞

3. if X1, X2 are iid and EXα
1 <∞, then the only possible limit of P(X1X2>x)

P(X1>x) is 2EXα
1 .

For an extensive summary of the regular variation properties of functions of regularly
varying random variables, see Mikosch and Jessen [81].

The notion of a regularly varying strictly stationary process is also of interest. Orig-
inally introduced by Davis and Hsing [39] for univariate processes, the concept was
extended to multivariate processes by Davis and Mikosch [42]: an Rd-valued strictly
stationary process Xt is said to be regularly varying with index α, if for each h ≥ 0,

P
[
x−1(X0, X1, . . . , Xh) ∈ ·

]
P(|X0| > x)

v→ ν(h)
α (·), x→∞

1An American stock index comprising around 500 companies.
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Figure 1.1: Hill estimates α̂50 of the lower tail-indices α of daily return series in sectors of
the S&P 500 index. The data span from 1 January 2010 to 31 December 2014 and comprise
n = 1304 observations. The graphs from top to bottom correspond to the “Energy”, “Consumer
Staples” and “Information Technology” sectors. Each circle corresponds to a Hill estimate α̂50;
the gray triangles above and below it mark the 97.5% and 2.5% quantiles of its approximate
normal distribution; see (2.4) and the discussion following it for an interpretation. The lower and
upper red lines mark the medians of the 2.5% and 97.5% quantiles, respectively, evaluated from
all stocks in the sector. The data are taken from Yahoo Finance; the labels on the horizontal
axes are Yahoo symbols of the stocks.

where ν(h)
α a non-null Radon measure on Rd(h+1) \ {0} that is homogeneous of order −α,

i.e. ∀c > 0,∀S ⊂ Rd(h+1) \ {0}, ν(h)
α (cS) = c−αν

(h)
α (S). | · | could be any given vector

norm.
Basrak and Segers [15] proved an equivalence condition for regular variation of a



4 1. Introduction

strictly stationary process: an Rd-valued strictly stationary process {Xt} is regularly
varying with index α if and only if there exists an Rd-valued sequence {Θi}i=0,1,... and a
Pareto(α) random variable Z, i.e. P(Z > x) = x−α,∀x ≥ 1, independent of {Θi}

P
[
x−1(X0, X1, . . . , Xh) ∈ ·

∣∣ |X0| > x
] w→ P(Z(Θ1, . . . ,Θh) ∈ ·), x→∞,∀h ≥ 0

The sequences {Θi}i=0,1,... and {ZΘi}i=0,1,... are called the spectral tail process and the
tail process of {Xt}, respectively.

A recent remarkable result from Mikosch and Wintenberger [90] regarding strictly
stationary regularly varying processes is quoted below:

Theorem 1.1. Let (Yt) be an Rd-valued strictly stationary sequence , Sn = Y1 + · · ·+Yn
and (an) be such that nP(|Y | > an) → 1. Also write for ε > 0, Y t = Yt1(|Yt| ≤ εan),
Y t = Yt − Y t and

Sl,n =
l∑
t=1

Y t Sl,n =
l∑
t=1

Y t .

Assume the following conditions:

1. (Yt) is regularly varying with index α ∈ (0, 2) \ {1} and spectral tail process (Θj).

2. A mixing condition holds: there exists an integer sequencemn →∞ kn = [n/mn]→
∞ and

Ee it
′S
n
/an −

(
Ee it

′S
mn,n

/an
)kn
→ 0 , n→∞ , t ∈ Rd . (1.2)

3. An anti-clustering condition holds:

lim
l→∞

lim sup
n→∞

P
(

max
t=l,...,mn

|Yt| > δan | |Y0| > δan
)

= 0 , δ > 0 (1.3)

for the same sequence (mn) as in 2.

4. If α ∈ (1, 2), in addition E[Y ] = 0 and the vanishing small values condition holds:

lim
ε↓0

lim sup
n→∞

P
(
a−1
n |Sn − E[Sn]| > δ

)
= 0 , δ > 0 (1.4)

and
∑∞
i=1 E[|Θi|] <∞.

Then a−1
n Sn

d→ ξα for an α-stable Rd-valued vector ξα with log characteristic function∫ ∞
0

E

[
exp

(
i y t′

∞∑
j=0

Θj

)
− exp

(
i y t′

∞∑
j=1

Θj

)
− i y t′1(1,2)(α)

]
d(−yα) , t ∈ Rd . (1.5)

Remark 1.2. If we additionally assume that Y is symmetric, which implies E[Y ] = 0,
then the statement of the theorem also holds for α = 1.

Using theorem 1.1 we prove in chapter 4 joint convergence in distribution of eigenval-
ues of a sample covariance matrix of stochastic volatility processes (see §1.4) to α/2-stable
random variables.
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1.2 Stochastic recurrence equation

One of the most important dynamical mechanisms that lead to regularly varying random
vectors is a stochastic recursion of the following form:

Xt = AtXt−1 +Bt, t ∈ Z (1.6)

where Xt is a d-dimensional random vector, At is a d × d random matrix and Bt is a
d-dimensional vector, random or deterministic. The sequence {(At, Bt)}t∈Z is iid. The
stationary solution to (1.6) satisfies the fixed-point equation X d= AX+B, where X and
(A,B) are generic elements of the {Xt}t∈Z and {(At, Bt)}t∈Z sequences.

Kesten [84] showed that, when At is almost surely non-negative, has no row or column
of only zeros, and Bt is almost surely non-negative and is not equal to the null vector
with probability 1, then the solution X to the equation X d= AX+B is regularly varying
with a positive index α, assuming the following conditions (M) and (A):

• Condition (M)

1. The top Lyapunov exponent

γ = inf
n≥1

1
n
E log ‖An · · ·A1‖

is negative.
2. There exists α > 0 such that

1 = λ(α) = lim
n→∞

1
n

logE‖An · · ·A1‖α

3. E(‖A1‖α log+ ‖A1‖) <∞
4. E|B1|α <∞

• Condition (A) : the group generated by

{log ρ(s) : s = An · · ·A1 for some n ≥ 1}

is dense in R, where ρ(s) denotes the spectral radius of matrix s.

Upon these conditions, Kesten’s theorem gives

uαP(u−1X ∈ ·) v→ ν(h)
α (·) (1.7)

where ν(h)
α is a non-null Radon measure on Rd+\{0} with the property ∀a > 0, ν(h)

α (aA) =
a−αν

(h)
α (A).

In addition to non-negative matrices, two other classes of random matrices have
been shown to lead to power-law tails via the recurrence relation (3.2). Alsmeyer and
Mentemeier [3] considered invertible matrices whose distribution has a density. Let
M(d,R) denote a metric space of d × d matrices with real entries that are invertible
with probability 1. They replaced Kesten’s condition E(‖A‖α log+ ‖A‖) < ∞ with a
stronger counterpart E[‖A‖α(log+ ‖A‖+ log ‖A−1‖)] <∞, and lifted the condition (A).
In addition, they assumed
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1. For any open set U ⊂ Sd−1 and any u ∈ Sd−1, ∃n ≥ 1 such that

P
( ∏

i=1Aiu

|
∏
i=1Aiu|

∈ U
)
> 0.

2. There exist N ≥ 1, c, ε > 0 and an invertible matrix Ā ∈M(d,R) such that for any
set C ⊂M(d,R), it holds true P(AN · · ·A1 ∈ C) ≥ c|Bε(Ā)∩C|, where | · | denotes
the Lebesgue measure and Bε(Ā) is the ball with radius ε centered at Ā.

These assumptions are termed conditions (id). Furthermore, they assumed that there
was no point in Rd such that the recurrence equation (3.2) was stuck at this point with
probability 1: P(Ax+B = x) < 1 for all x ∈ Rd. With these assumptions, they showed

lim
u→∞

uαP(〈x,X〉 > u) = eα(x)

where x ∈ Sd−1 and eα(·) is a continuous function on Sd−1.
The second of the (id) conditions, which is satisfied when the distribution of A has

a Lebesgue density, can actually be lifted if stronger moment conditions are imposed on
A and B, and in addition, a proximity condition is satisfied by the support of A. This
is the result of Guivarc’h and Le Page [65]. Let GA denote the semi-group generated by
{Πn : Πn = An · · ·A1, Ai ∈M(d,R)}. The authors assumed

1. There is no finite unionW of proper sub-spaces of Rd that satisfies ∀a ∈ GA, aW =
W .

2. GA contains a proximal element, i.e. an element a whose largest singular value is
an algebraically simple eigenvalue of a.

These two assumptions are termed (ip) conditions. Replacing the (id) conditions of
Alsmeyer and Mentemeier with (ip) and the moment conditions of the former with

E(‖A‖α+δ) <∞, E(‖A‖α‖A−1‖δ) <∞, E(|B|α+δ) <∞ for some δ > 0,

Guivarc’h and Le Page proved the vague convergence result of (1.7).

1.3 GARCH models

Introduced by Bollerslev [24] in 1986, Generalized Autoregressive Conditional Heteroscedas-
ticity (GARCH) models have been hugely popular for modeling volatility of financial time
series and have inspired numerous variants. A GARCH(p, q) model is a stationary process
{Xt}t∈Z satisfying

Xt = σtZt, (1.8)

σ2
t = ω +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , (1.9)

where {Xt} is a model for return series of stock prices, foreign exchange rates, inter-
est rates, etc; {Zt} is an iid, mean 0, unit-variance sequence, σ2

t is the variance of the
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distribution of Xt conditional on {(Xi, σ
2
i )}i<t; ω, {αi}pi=1, {βi}

q
i=1 are non-negative pa-

rameters of the model. Written in matrix form, as shown in (3.13), the GARCH(p, q)
recurrence equation is of the form of (1.6). With appropriate conditions,

(σ2
t , . . . , σ

2
t−q+1, X

2
t−1, . . . , X

2
t−p+1)

is shown to be a positive Harris recurrent Markov chain (cf. Bollerslev [24] and Bu-
raczewski et al. [29]), whose stationary distribution has regularly varying tails. The tail
index α is given by

Λ(α) = lim
n→∞

1
n

logE‖An · · ·A1‖α = 0, (1.10)

where {Ai}i∈Z are iid matrices whose entries are functions of {αi}pi=1, {βi}
q
i=1 and {Z2

t }:

At =



α1Z
2
t−1 + β1 β2 · · · βq−1 βq α2 α3 · · · αp−1 αp

1 0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 1 0 0 0 · · · 0 0

Z2
t−1 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 1 0


(1.11)

While GARCH models have been very successful for modeling financial time series, they
do have their drawbacks. For example, the tail index is very sensitive to the model
parameters {αi}pi=1 and {βi}qi=1. In applications, these parameters need to be estimated
from a sample and are always uncertain to some extent. For this reason, there can
be a significant discrepancy between the tail index obtained via (1.10) with the model
parameters substituted for their sample estimates and the Hill estimate (1.1).

There exist various extensions of the univariate GARCH model to the multivariate
case. The most notable one is perhaps the constant conditional correlation (CCC) model
of Bollerslev [25] and Jeantheau [80]. In the bivariate case, CCC is the model

Xt =
(
X1,t
X2,t

)
=
(
σ1,t 0
0 σ2,t

) (
Z1,t
Z2,t

)
= Σt Zt , t ∈ Z .

Thus both return components Xi,t have the form of a univariate stochastic volatility
model Xi,t = σi,tZi,t with non-negative volatility σi,t and an iid bivariate noise sequence
(Zt) with zero mean and unit variance components. We also have the specification

Yt =
(

σ2
1,t
σ2

2,t

)
=

(
α01
α02

)
+
(

α11 α12
α21 α22

) (
X2

1,t−1
X2

2,t−1

)
+
(

β11 β12
β21 β22

) (
σ2

1,t−1
σ2

2,t−1

)
=

(
α01
α02

)
+
(

α11Z
2
1,t−1 + β11 α12Z

2
2,t−1 + β12

α21Z
2
1,t−1 + β21 α22Z

2
2,t−1 + β22

) (
σ2

1,t−1
σ2

2,t−1

)
,(1.12)

for positive α0i and suitable non-negative αij , βij , i, j = 1, 2. Writing

Bt =
(

α01
α02

)
and At =

(
α11Z

2
1,t−1 + β11 α12Z

2
2,t−1 + β12

α21Z
2
1,t−1 + β21 α22Z

2
2,t−1 + β22

)
,
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we see that we are again in the framework of a stochastic recurrence equation but this
time for vector-valued Bt and matrix-valued At:

Yt = At Yt−1 + Bt , t ∈ Z . (1.13)

Kesten [84] also provided the corresponding theory for stationarity and tails in this case.
Stărică [107] dealt with the corresponding problems for CCC-GARCH processes, making
use of the theory in Kesten [84], Bougerol and Picard [26] and its specification to the tails
of GARCH models in Basrak et al. [14]. Stărică [107] assumed the Kesten conditions
for the matrices At. These conditions ensure that the product matrices A1 · · ·An have
positive entries for sufficiently large n. Then Kesten’s theory implies that all components
of the vector Xt have power-law tails with the same index α and also that the finite-
dimensional distributions of the process (Xt) are regularly varying with index α.

Various GARCH modifications are derived by considering linear combinations of
CCC-GARCH models. The property of multivariate regular variation of multivariate
GARCH ensures that, after linear transformations, the new process in all components
has again power-law tails with the same index as the original GARCH process; see Basrak
et al. [14]. Models which are constructed in this way are the Orthogonal GARCH model
of Alexander and Chibumba [2], its generalization GO-GARCH by van der Weide [113],
the Full Factor GARCH model of Vrontos et al. [116] and the Generalized Orthogonal
Factor GARCH model of Lanne and Saikkonen [87]. These models are characterized by
their treatment of each series as a linear combination of factors, and each of the factors
is modeled as a GARCH process; see Silvennoinen and Teräsvirtä [104].

Not all choices of α- and β-parameters in the model (1.12) allow for an application
of the Kesten theory. For example, assume that only the diagonal elements αii and
βii are positive. Then At is diagonal and, hence, the condition that A1 · · ·An have
positive entries for sufficiently large n cannot be satisfied. In the latter situation, both
(X1,t) and (X2,t) are univariate GARCH processes. Assuming the conditions of the
univariate Kesten-Goldie theorem for each component process, (X1,t) and (X2,t) have
power-law tails with indices α1 and α2, respectively, given by the solutions to the equa-
tions E[(αiiZ2

i,t + βii)αi/2] = 1, i = 1, 2. In this model, one can introduce dependence
between the two component series (X1,t) and (X2,t) by assuming dependence between
the noise variables Z1,t and Z2,t. Another situation when the Kesten theory fails appears
when At is an upper or lower triangle matrix: then the products A1 · · ·An are always
of the same triangular type. Similar remarks apply when one considers a CCC model
in general dimension. Of course, one may argue that the latter models are not natural:
they are degenerate since they do not allow for a linear relationship between all squared
volatilities on a given day.

1.4 Stochastic volatility models

With the availability of high-frequency data, a different approach than that of GARCH
has been popularized for modeling volatility of financial time series and has led to greatly
improved accuracy of prediction. This is the approach of stochastic volatility models.

In the pioneering work of Clark [33], the author modeled the logarithmic price Yt as a
subordinated stochastic process: Yt = Vτt , t ≥ 0, where Vi is a Brownian motion. τt is a
real-valued, non-negative, non-decreasing sequence with τ0 = 0. It models a time change.
As pointed out by Shephard and Andersen [101], the log-price process {Yt} is serially
uncorrelated although potentially dependent, provided that Vt and τt are independent.
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Later authors, e.g. Back [8] chose to model the log-price process as a semi-martingale,
with increments of the martingale component modeled as a product process:

Yt = Y0 +At +Mt,

where {At} is a finite-variation process and {Mt} is a martingale and hence {Yt} is a
semi-martingale. {σt} is non-negative and {Zt} is an iid process with zero mean and
unit variance. {σt} and {Zt} are independent of each other.

For discrete time models, Taylor [110] was the first to propose a product process for
modeling the martingale part Mt of Yt:

Mt −Mt−1 = σtZt, t ∈ Z

A convenient choice of σt is

log σt =
∑
l∈Z

ψlηt−l, t ∈ Z (1.14)

where {ψl}l∈Z is a sequence of real numbers with at least one non-zero element, {ηt}t∈Z is
an iid sequence of random variables with zero-mean and finite variance. By Kolmogorov’s
3-series theorem, the infinite series above converges if and only if

∑
l∈Z ψ

2
l < ∞, and in

this case {σt} is stationary. In particular, if {ηi}i∈Z is normally distributed with zero
mean, {σt}t∈Z has log-normal marginal distributions.

If, however, the sequences {Zt}t∈Z or {σt}t∈Z are regularly varying with index α and
some additional conditions are satisfied, {Xt} is also regularly varying with the same
index. Specifically, if {Zt} is regularly varying and {σt} has a lighter tail, the conclusion
follows from Breiman’s lemma [27]. See §4.3 of Janßen et al. [79], i.e. chapter 4 of this
thesis for more details.

There are a few advantages in using stochastic volatility models. They are among
the simplest models allowing for conditional heteroscedasticity (cf. Andersen et al. [4]);
nevertheless, they greatly improve the accuracy of predicting future volatilities by taking
advantage of high frequency data. Specifically, for the semi-martingale {Yt} we have

[Yδ]t =
bt/δc∑
j=1

(Yjδ − Y(j−1)δ)2 P→ [Y ]t, δ → 0. (1.15)

The object [Yδ]t is called the realized quadratic variation in time series literature. The
convergence in probability follows directly from the definition of quadratic variation [Y ]t:

[Y ]t = lim
∆t→0

n∑
i=1

(Yti − Yti−1)2

where 0 = t0 < t1 < t2 < · · · < tn = t and ∆t = sup1≤i≤n(ti− ti−1). Furthermore, Jacod
[76] and Barndorff-Nielsen and Shephard [12] proved a central limit theorem:

[Yδ]t − [Y ]t√
2δ
∫ t

0 σ
2
sds

d→ N(0, 1), δ → 0.

If the process of expected return has continuous sample path and Mt is a stochastic
volatility process, it has been shown that [Y ]t = [M ]t and [Yδ]t

P→
∫ t

0 σ
2
sds. Meanwhile,
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Itô’s formula gives, for a semi-martingale {Yt},

Y 2
t = [Y ]t + 2

∫ t

0
YsdYs

= [Y ]t + 2
∫ t

0
YsdAs + 2

∫ t

0
YsdMs,

EY 2
t = E[Y ]t + 2E

(∫ t

0
YsdAs

)
≈ E[Y ]t, when t is small. (1.16)

(1.16) and (1.15) show that EY 2
t , or in other words, the forecast of future squared return,

can be obtained as E[Yδ]t, i.e. the forecast of future realized quadratic variation.

1.5 Contributions of this thesis

In this section we summarize our results from the research papers.

1.5.1 Tail parameters of equity return series
In chapter 2 we consider a minimal market where a riskless bond and an equity are the
only assets available to investors. We model the investor’s preference of the equity with
Generalized Disappointment Aversion (GDA), an idea envisaged by Gul [66] and gener-
alized by Routledge and Zin [99]. Specifically, in the GDA theory a rational investor’s
behavior is characterized by his attempt to maximize the GDA functional U(F ):

U(F ) = EF [u(C)]− bEF [u(δ)− u(C)1{C<δ}]

where C is the investor’s wealth evaluated at a fixed date, δ is the level of disappointment
– if C falls below δ, the investor becomes disappointed. b parametrizes the growth of his
disappointment. F is the distribution function of the return of the investor’s portfolio.
In the aforementioned minimal market, F is the distribution function of the equity’s
return. The subscript F of EF reminds us that the expectation is taken with respect to
the distribution function F .

We have established that, in the case of an equity return series with two-sided, func-
tionally independent Pareto tails, GDA preference functionals are monotone increas-
ing/decreasing with the tail index/scale parameters. Thus in a market dominated by
such equities, the investors would pursue the largest tail index in the market, leading to
a shared common tail index for all equities.

The empirical results presented in section 2.2 suggest this may well be the case for
the “Consumer Staples” sector of S&P 500, given the Hill estimates of tail indices shown
in figure 1.1 and the largely positive results of tests for equal tail indices shown in figure
2.3.

On the other hand, we have also seen that, when the left and the right tails have
the same indices, investor preference over the equity has more sophisticated variations
in the parameter space including the tail parameters of the equity, the interest rate,
the investor’s risk appetite as captured by his utility function, and his threshold of
disappointment.

We also acknowledge that our model of the market and the investor is a simple one,
not accounting for the dependence between equities, nor the categorization of investors
and their interactions. These are potential topics of future work.
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1.5.2 Importance sampling estimator of GARCH(p,q) rare event
probability

In §1.2 we have seen how power-law tails can arise e.g. by Kesten’s theorem in the
stationary distribution of a Markov chain {Vt}t≥0 described by a stochastic recurrence
equation. In §1.3 we have introduced GARCH(p, q) processes as examples of such Markov
chains. By Kesten’s theorem, the stationary distribution of a GARCH(p, q) process has
power-law tails asymptotically, i.e. P(|V | > x) = cx−α + o(x−α), c > 0, α > 0 as x→∞.
While a nice result, this theorem does not allow us to compute, in precision, the proba-
bility P(|V | > x). A numerical procedure is needed for this purpose. A straightforward
approach is of course direct Monte Carlo: we simulate the first n steps of {Vt}t≥0 and
approximate P(|V | > x) as

P(|V | > x) ≈ 1
n−K

n∑
t=n−K+1

1{|Vt|>x} (1.17)

where we discard the first K steps of the simulated sample path so that the empirical
distribution of {Vt}t≥n−K+1 is closer to the stationary distribution π of {Vt}.

The difficulty of this naive approach is that, when x is large, the event {|V | > x}
happens very rarely, making the variance of the estimate too big to be of any use.
A method to overcome this difficulty is importance sampling: we introduce a Markov
additive process {(Yt, St)}t≥0, |Yt| = 1 on the unit sphere:

B = (ω, 0, · · · , 0)′,
Vt = (σ2

t , σ
2
t−1, · · · , σ2

t−q+1, X
2
t−1, · · · , X2

t−p+1)′ = AtVt−1 +B,

Yt = At · · ·A1V0

|At · · ·A1V0|
= AtYt−1

|AtYt−1|
,

lt = log |AtYt−1|,

St = log |At · · ·A1V0| =
t∑
i=1

li + log |V0|,

where Xt = σtZt (see (1.8)). For convergence we also use the notation

At · Yt−1 := AtYt−1

|AtYt−1|
.

The matrices {At}t≥1 are defined by (1.11). For more details, see §3.2. Vt, our object of
main interest, is a function of the path {(Yi, li)}1≤i≤t. To increase the chance of observing
{|Vt| > x}, we adopt a dual change of the transition kernel of {(Yt, lt)}t≥0. Before the
first occurrence of {|Vt| > x} we simulate (Yt, lt) according to a shifted transition kernel,
whose induced probability measure is denoted Pα:

Pα [(Yt, lt) ∈ dy × dl|Yt−1 = w]

= eαl
rα(y)
rα(w)P [(Yt, lt) ∈ dy × dl|Yt−1 = w] , (1.18)

where P denotes the probability with respect to the probability measure π, the stationary
probability measure of {Vt}. rα is a right eigenfunction of the operator Pα, which is



12 1. Introduction

defined by its action on a test function g : Sd−1 → R+:

Pαg(x) =
∫
dom(Z)

|A(z2)x|αg(A(z2) · x)fZ(z)dz.

rα is the right eigenfunction of Pα associated with the eigenvalue λ(α) = eΛ(α) = 1, i.e.
Pαrα(x) = rα(x). The function Λ(α) is defined by (1.10), fZ is the density function of
Z and A(z2) is the matrix (1.11) with Z2

t−1 substituted for z2.
Conditional on (Yt−1, lt−1), the only source of randomness to Yt comes from Zt−1.

Hence the shift of conditional probability distribution shown in (1.18) is equivalent to
shifting the distribution of Zt−1. We have

Pα(Zt−1 ∈ dz|Yt−1 = w) = |A(z2)w|α rα(A(z2) · w)
rα(w) P(Zt−1 ∈ dz).

Note that {Zt} is an iid sequence in the original measure. An expected value with respect
to Pα is related to its counterpart with respect to P via

E[g(Yt, lt)] = Eα
[
g(Yt, lt)e−αlt

rα(Yt−1)
rα(Yt)

]
. (1.19)

Let us define Tx = min{t ≥ 1 : |Vt| > x}. Once the first excursion of |Vt| above x has
occurred, i.e. t > Tx, we change the transition kernel back to the original and continue
the simulation until the process returns to a designated set C = {v : |v| ≤ M}, where
the positive number M is chosen in accordance with the function Λ. We denote the
successive times of {Vt} returning to the set C as 0 = K0 < K1 < K2 < · · · . It can
be shown that {(VKm+1 ,

∑Km+1−1
i=Km 1{|Vi|>x})}m≥0 is a positive Harris recurrent Markov

chain for all x ≥ 0. Let Nx =
∑K1−1
i=0 1{|Vi|>x}. We show by the law of large numbers

for Markov chains
P(|V | > x) = π(C)Eη(Nx)

where η is π restricted to the set C, i.e. ∀S ⊆ C, η(S) = π(S)/π(C). Eη means the
expectation is taken only on condition V0 ∼ η. Finally by (1.19),

P(|V | > x) = π(C)EηNx = EDη Ex,

where
Ex = π(C)Nx|ATx · · ·A1V0|−α

rα(Y0)
rα(YTx)1{Tx<K1}

is our importance sampling estimator. EDη , D for “dual”, is to remind us that the
expectation is taken with respect to the shifted transition kernel as given by (1.19),
and then with respect to the original transition kernel. In §3.5 we show

lim sup
x→∞

EDη E2
x

[P(|V | > x)]2 <∞

In plain words, the estimator Ex has bounded relative error. See Asmussen and Glynn
[6], §1 for definition of bounded relative error. The method presented in this paper is a
multivariate generalization of Collamore et al. [36]. The reader is referred to it for the
treatment of the one-dimensional problem.
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1.5.3 Eigenvalues of the sample covariance matrix of a stochastic
volatility model

In §1.4 we have introduced stochastic volatility models and discussed their connection to
realized quadratic variation and their improved predictive power derived thereby. But
there we have only discussed univariate models. In fact, the generalization to multivariate
models is rather straightforward. In chapter 4 we adopt the following multivariate model:

Xi,t = σi,tZi,t 1 ≤ i ≤ p, t ∈ Z,

log σi,t =
∑
k,l∈Z

ψk,lηi−k,t−l 1 ≤ i ≤ p, t ∈ Z,

where {Zi,t} and {ηi,t} are iid fields of random variables. They are independent of each
other. The distribution of η, a generic element of {ηi,t}, satisfies P(eη > x) ∼ x−αL(x),
where α > 0 and L(x) is a slowly varying function. The coefficients {ψk,l} are real and
satisfy

∑
k,l∈Z |ψk,l| <∞.

Depending on the tails of {σi,t} and {Zi,t}, two situations can arise. When {Zi,t}t∈Z
is a regularly varying sequence with index α ∈ (0, 4) and dominates the tail, we show
that each of the sequences {Xi,t}t∈Z, 1 ≤ i ≤ p and each of {Xi,tXj,t}t∈Z, 1 ≤ i < j ≤ p
are regularly varying with index α, assuming suitable conditions on {σi,t}.

Define the matrix X
X = {Xi,t}1≤i≤p, 1≤t≤n

and let X′ denote the transpose of X. Then

XX′ =
{

n∑
t=1

Xi,tXj,t

}
1≤i,j≤p

.

Using theorem 1.1 of Mikosch and Wintenberger [90] (see theorem 1.1 of this thesis), we
prove

a−2
n

(
n∑
t=1

X2
i,t − n1(2,4)(α)EX2

)
1≤i≤p

d→ (ξi,α/2)1≤i≤p

and

a−2
n

n∑
t=1

Xi,tXj,t
P→ 0 for i 6= j.

where {an}n≥1 is such that nP(|X| > an) → 1 as n → ∞, and {ξi,α/2}1≤i≤p is an iid
sequence of α/2-stable random variable. See chapter 4 for details. Built on this result,
we show that XX′ is approximated by its diagonal:

a−2
n ‖XX′ − diag(XX′)‖ P→ 0. (1.20)

where ‖ · ‖ denotes the spectral norm. Following (1.20), we have

a−2
n (λ(1), . . . , λ(p))

d→ (ξ(1),α/2, . . . , ξ(p),α/2)

where λ(i) is the i-th upper order statistic of the eigenvalues of the matrix XX′ and
ξ(i),α/2 is the i-th upper order statistic of the iid sequence {ξi,α/2}1≤i≤p.

When σi,t dominates the tail of Xi,t = σi,tZi,t and satisfies a few more technical
conditions, we show that each of the sequences {σi,t}t∈Z, 1≤i≤p is regularly varying
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with index α. Moreover, in contrast to the previous case, we show that the sequence
{σi,tσj,t}t∈Z,1≤i,j≤p is regularly varying with index α/ψi,j , where ψi,j = maxk,l(ψk,l +
ψk+i−j,l). For d ≥ 1, the d-variate sequence {(σik,tσjk,t)1≤k≤d}t∈Z is regularly varying
with index α/(max1≤k≤d ψ

ik,jk).
This result then allows us to approximate the matrix of XX′ by {X̃i,j}1≤i,j≤p, where

X̃i,j =
n∑
t=1

Xi,tXj,t1{1≤i,j≤p,ψi,j=2}

A notable difference from the previous case is that the matrix a−2
n {X̃i,j}1≤i,j≤p can

have non-vanishing values on its off-diagonal entries in the limit n → ∞, implying its
eigenvalues in this limit may not be solely determined by its diagonal entries.

1.5.4 Extreme value analysis for the sample auto-covariance
matrices of time series

Janßen et al. [79] investigated the sample covariance matrix of the time series {Xi,t}t∈Z,
1 ≤ i ≤ p for stochastic volatility models assuming the dimension of the matrix p is fixed.
It is also of interest to look into the sample covariance and the sample auto-covariance
matrix when the dimension p tends to infinity at some rate as the number of observations
n tends to infinity. This is the subject of Davis et al. [38] which we summarize in this
section.

We are interested in the model

Xi,t =
∑
k,l∈Z

hk,lZi−k,t−l, i, t ∈ Z (1.21)

where {Zi,t}i,t∈Z is a field of iid random variables and hk,l is an array of real coefficients.
We assume {Zi,t} is regularly varying with index α ∈ (0, 4) and∑

k,l∈Z
|hk,l|δ <∞

for some δ ∈ (0,min{α/2, 1}). This condition ensures that the infinite series in (1.21) is
almost surely absolutely convergent. Since each {Xi,t}t∈Z is a linear combination of the
sequences {Zi,t}t∈Z that are regularly varying with index α, each of {Xi,t}t∈Z is regularly
varying with index α.

Define matrices
X(s) = {Xi,t+s}1≤i≤p; 1≤t≤n s ≥ 0,

and assume that
p

nβ`(n) →∞, n→∞,

where β ≥ 0 and ` is a slowly varying function. If β = 0, we assume in addition
`(n) → ∞, n → ∞. We intend to understand the behavior of the singular values of the
matrix X(0)X(s), i.e. the square roots of the eigenvalues of X(0)X(s)X′(s)X′(0).

Corresponding to the time-lagged matrices X(s), we also introduce the time-lagged
coefficient matrices. Define

H(s) = {hk,l+s}k,l∈Z
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and denote by v1(s) ≥ v2(s) ≥ · · · the singular values of the matrix H(0)H(s) =
{
∑
l∈Z hi,lhj,l+s}i,j∈Z. We have established the following point process convergence result

upon appropriate conditions (see theorem 5.10 of chapter 5):

p∑
i=1

εa−2
np (λ(i)(0),...,λ(i)(s))

d→
∞∑
i=1

∞∑
j=1

εΓ−2/α
i

(vj(0),...,vj(s))
.

where {anp}n,p∈Z is a sequence of positive real numbers such that npP(Z > anp)→ 1, n→
∞. εx is the Dirac measure with unit mass at x and Γi =

∑i
k=1Ek, where {Ek}1≤k≤i is an

iid sequence of Exp(1) random variables. In particular, we see a−2
npλ(1)(0) d→ E

−2/α
1 v1(0),

i.e. asymptotically a−2
npλ(1)(0) has a scaled Fréchet(α/2) distribution.

These results extend and generalize previous work by Soshnikov [105] and Auffinger
et al. [7] who deal with the case of iid Xi,t, assuming regular variation with α ∈ (0, 4).
This work also generalizes Davis et al. [45] as well as Davis et al. [44] who deal with the
linear model (1.21) under suboptimal conditions on the growth rate of p→∞.

In this paper, large deviation results for sums of regularly varying random variables
are consequently used; see Nagaev [92]. This is in contrast to the papers by Soshnikov
[105] and Auffinger et al. [7] who only deal with the case when p/n → γ ∈ (0,∞). The
large deviation approach allows one to determine the dominating parts of the sample
covariance matrix XX′ and the sample auto-covariance matrices. Typically these parts
are given by functionals of {Z2

i,t}.
In the case of a finite 4th moment of {Xi,t}, the theory changes completely. A typical

result in this case is proved by Johnstone [83]: if p/n→ γ ∈ (0,∞), then

λ(1) − µnp
σnp

d→W1 ∼ F1,

where the constants µnp and σnp are given by

µnp = (
√
n− 1 +√p)2,

σnp = (
√
n− 1 +√p)

(
1√
n− 1

+ 1
√
p

)1/3
.

W1 is a Tracy-Widom random variable with distribution function F1 defined by

F1(s) = exp
{
−1

2

∫ ∞
s

[q(x) + (x− s)q2(x)]dx
}
.

q is defined as the solution to the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x),
q(x) ∼ Ai(x) as x→∞.

where Ai(x) is the Airy function. In the heavy-tailed case considered in this thesis,
asymptotic results about the eigenvalues are easier to derive than in the light-tailed case,
i.e. when 4th moments are finite.





Chapter 2

Do return series have power-law tails with
the same index?

Thomas Mikosch, Casper de Vries & Xiaolei Xie
technical report

Abstract

We consider an investor with preferences that accord with Generalized Disap-
pointment Aversion (GDA). Such an investor cares about downside risk and we
assume he recognizes the heavy tail feature of asset return distributions. We ar-
gue that when a market is dominated by rational investors of this kind, the return
distributions of equities that are actively traded in this market may have nearly
equal tail-indices due to monotonicity of the GDA preference with respect to the
tail index. We give conditions upon which the GDA preference is monotone and
hence suggests an equal tail index for all actively traded stocks.

We also estimate tail indices and scale parameters of S&P 500 stocks and test
the hypothesis that two given stock return series have the same tail index. The
results vary across different sectors of the index.

2.1 Introduction

It is one of the stylized facts of financial econometrics that returns of speculative prices are
heavy-tailed. There is no agreement in the literature about how heavy these tails really
are. For example, Barndorff-Nielsen and Shephard [11] and Eberlein [54] favor “semi-
heavy” tails which are comparable with those of a gamma distribution. On the other
hand, tails of returns have been studied in great detail in the extreme value community.
Among extreme value specialists there is general agreement that returns Xt have tails of
power-law-type, i.e.,

P(Xt > x) ∼ c+ x−αup and P(Xt < −x) ∼ c− x−αlow , x→∞ , (2.1)

where c±, αup and αlow are positive constants.1 See for example, Embrechts et al. [58],
Jansen and de Vries [77], Mikosch [88], Resnick [97]. In the extreme value literature it is
common to replace the constants c± by suitable slowly varying functions; cf. Embrechts
et al. [58], Chapter 3. In this paper, for the sake of argument, we stick to the condition
(2.1).

There are some good theoretical reasons for the appearance of power-law tails in situa-
tions where certain moments of data are believed to be infinite. Tails of type (2.1) describe
the maximum domain of attraction of the Fréchet distribution Φαup(x) = exp(−x−αup)

1Here and in what follows, f(x) ∼ g(x) for positive functions f and g means that f(x)/g(x)→ 1 as
x→∞.

17
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for x > 0, i.e., scaled maxima of an iid sequence (Xt) with upper tail described in (2.1)
converge in distribution to Φαup . Equivalently, power-law tails are prescribed by the
generalized Pareto distribution which is the limit distribution of the excesses of Xt above
high thresholds, i.e., for a suitable positive scaling function a(u),

P((Xt − u)/a(u) > x | Xt > x)→ (1 + x/αup)−αup , u→∞ .

The aforementioned results are considered very natural for iid and weakly dependent
strictly stationary sequences of random variables (Xt); in the world of extremes they are
the analogs of the central limit theorem from the world of sums.

In the literature on extremes for return data one finds the statement that estimated
values α̂up and α̂low of the tail-indices αup and αlow, respectively, typically have the
tendency that α̂up > α̂low. This observation is often explained by the fact that investors
are more prone to negative than to positive news in the market. Moreover, in the
literature the estimated tail-indices α̂ (both in the left and right tails) are typically found
in the range (2, 4). For an illustration, see Figure 2.1 where estimates α̂low in three
sectors of the Standard & Poors 500 index are shown. The estimates are based on 1304
observations of daily return data from 4 January 2010 to 31 December 2014.

When looking at Figure 2.1 one might ask the following questions:

• In view of the wide asymptotic confidence bands for the estimators of tail-indices,
are the tail-indices from different series really distinct?

• Are there some theoretical reasons supporting the fact that the tail-indices from
different series are not distinct?

In this paper, we try to find some answers to these questions.
The estimator of the tail-index α > 0 in the model

P(Xt > x) ∼ c x−α , x→∞ ,

favored in the literature is the Hill estimator; the graphs in Figure 2.1 are based on this
estimator. We introduce this estimator in Section 2.2 and discuss some of its virtues
and vices. In addition to tail-index estimation we also discuss the related problem of
estimation of the scale parameters in the tail (these are the constants c+ and c− in
(2.1)).

In Section 2.3 we discuss the theoretical problem of appearance of power-law tails
in models for daily or, more generally, low-frequency return data. In particular, in Sec-
tion 2.3.1 we address the power-law tails of univariate and multivariate GARCH models
as potential models for a set of return data from distinct assets. As a matter of fact, un-
der mild conditions, the aforementioned models have power-law tails due to their relation
with so-called stochastic recurrence equations. Moreover, some of the standard multivari-
ate GARCH models as the CCC ensure that the component-wise marginal distributions
have power-law tails with the same index.

In Section 2.3.2 we discuss an economic argument for the fact that return data of
similar assets (such as return series in a given sector of the S&P 500 index) may have
tail-indices which are close to each other. We argue based on a utility function approach.
We explicitly recognize the behavioral concern for downside risk in an investor’s evalua-
tion of a portfolio using the framework of Generalized Disappointment Aversion (GDA)
introduced by Routledge and Zin [99]. GDA is an extension of the concept of Disap-
pointment Aversion (DA) of Gul [66] who derived DA from first principles (axiomatic).

In Section 2.4 we summarize the discussion of the previous sections.
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2.2 Power-law tails of return series: some empirical results

In this section, we assume the model (2.1) for the tails of the marginal distribution of
a univariate return series (Xt). For the sake of argument, we assume that this series
constitutes a strictly stationary sequence. In what follows, we focus on the left tail of the
distribution, i.e., on the losses. However, it is common to present the tail-index estimators
for positive data. Therefore we will multiply the losses Xt by minus one, swapping the
negative with the positive values. For simplicity, we also suppress subscripts in the
notation:

P(−Xt > x) ∼ c x−α , x→∞ , (2.2)

where we assume that the two parameters – the tail-index α and the scale parameter c
– are positive. They play crucial roles for the understanding of the risk hidden in the
data, hence for asset allocation and risk management. These parameters are market
characteristics and provide a simple but useful description of the risk, for example in
terms of high quantiles such as Value-at-Risk. Alternatively, these parameters can be
used for model building of the equities in the market such as the GARCH model; see
Section 2.3.

2.2.1 Hill estimates of lower tail-indices
Various estimators of the tail-index α in the model (2.2) have been proposed in the
literature; see Embrechts et al. [58], de Haan and Ferreira [67], Resnick [97]. The most
popular among them was introduced by Hill [71]. Given a sample −X1, . . . ,−Xn whose
marginal distribution satisfies (2.2), calculate the order statistics X(1) ≤ · · · ≤ X(n) and
construct the Hill estimator:

α̂k =
(1
k

k∑
i=1

log
X(n−i+1)

X(n−k)

)−1
.

Here k is the number of upper order statistics in the sample used for the estimation.
The estimator α̂k is a maximum-likelihood estimator of α based on the k upper order
statistics in the pure Pareto model (recall that we multiplied the data by minus one)

P(−Xt > x) = Kα

xα
, x > K , (2.3)

under the hypothesis that we do not know the (high) threshold value K. The estimator
has “good” theoretical properties such as asymptotic consistency and asymptotic nor-
mality. These properties hold under strict stationarity assumptions on the data; Drees
and Rootzén [52] give perhaps most general conditions for dependent sequences and de
Haan and Ferreira [67] provide a complete asymptotic theory in the iid case.

A major problem for Hill estimation is the choice of the number k of upper order
statistics. As a matter of fact, if k is too large the order statistics are too close to the
center of the distribution of the −Xt, leading to a bias of the estimator. On the other
hand, by construction, α̂k is an average of k log-differences of the data. Therefore, the
variance of the estimator is the larger the smaller k. For these reasons, asymptotic theory
requires to choose k = kn kn → ∞ and kn/n → 0 as n → ∞. This fact does not make
the estimation of α an easy matter: one has to choose a “small” value k which is not
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“too large”. For practical purposes, a so-called Hill plot is recommended where α̂k is
plotted for a variety of k-values, corresponding to some high quantile X(n−k) of the data.
Then k is chosen from a region in the plot where α̂k is relatively stable. For example,
in Figure 2.1 we have chosen k = 50 from a sample of size n = 1304, corresponding to
the 96%-quantile of the data. In general, the estimation of the tail-index is an art and
requires some expertise; for some guidance see Embrechts et al. [58], Resnick [97] and
Drees et al. [53].

In Figure 2.1, we exhibit 95% asymptotic confidence bands derived from the central
limit theorem

√
k
(
α̂k − α

) d→ N(0, α2) , (2.4)

i.e., α̂k is asymptotically unbiased and has variance α2/k. Since k/n → 0 this means
that the confidence bands are significantly larger than the classical 1/

√
n-rates. This fact

is one explanation for the fact that it is difficult to say something meaningful about the
true value of α. There exist various other reasons why one should not have 100% trust in
the confidence bands shown in Figure 2.1. Indeed, (2.4) holds under rather subtle second
order conditions on the tail P(Xt > x) which cannot be verified on data. However, given
a theoretical model such as the GARCH, these conditions can be verified based on the
theoretical properties of the model. If they are not satisfied the Hill estimator may exhibit
significant bias; see Embrechts et al. [58] and Resnick [96] for illustrations of this fact
leading to so-called “Hill horror plots”. Moreover, the Hill estimator is rather sensitive to
non-stationarity of the data and to dependence. For example, results in Drees [51], and
Drees and Rootzén [52] show that the asymptotic variance of the Hill estimator can be
significantly larger than in the iid case. Since return data are dependent, the asymptotic
confidence bands should be even wider than exhibited in Figure 2.1. Again, only under
he assumption of a concrete model like GARCH these confidence bands can be evaluated
and therefore the bands shown in Figure 2.1 just show some benchmark which holds in
the iid case and under additional conditions on the tail asymptotics.

In Figure 2.1 we see significant overlap of the confidence intervals of the Hill estimates
of the losses in the “Energy” and “Consumer Staples” sectors of the S&P 500 index, as
well as those of a large portion of losses in the “Information Technology” sector. This
fact indicates that the returns in each sector may have comparable tail-indices.

Hoga’s [72] test about the change of extreme quantiles in a sample may provide some
further insight about how similar these tail-indices are. Different tail-indices are likely to
result in different extreme quantiles. Nevertheless, changes in the extreme quantiles may
also result from changing scale parameters in the tail. Therefore we first investigate the
scale parameters of daily stock returns in the same sectors of S&P 500 before we apply
the test.

2.2.2 Hill estimates of lower-tail scale parameters
We assume the pure Pareto model (2.3) with scale parameter K > 0. Hill [71] proposed
the maximum-likelihood estimator of K derived from the joint distribution of k upper
order statistics in the sample; cf. Embrechts et al. [58], p. 334. It is given by

K̂k =
(
k

n

)1/α̂k
X(n−k) .
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Figure 2.1: Hill estimates α̂50 of the lower tail-indices α of daily return series in sectors of
the S&P 500 index. The data span from 1 January 2010 to 31 December 2014 and comprise
n = 1304 observations. The graphs from top to bottom correspond to the “Energy”, “Consumer
Staples” and “Information Technology” sectors. Each circle corresponds to a Hill estimate α̂50;
the gray triangles above and below it mark the 97.5% and 2.5% quantiles of its approximate
normal distribution; see (2.4) and the discussion following it for an interpretation. The lower and
upper red lines mark the medians of the 2.5% and 97.5% quantiles, respectively, evaluated from
all stocks in the sector. The data are taken from Yahoo Finance; the labels on the horizontal
axes are Yahoo symbols of the stocks.

Using the asymptotic normality property of upper order statistics (cf. de Haan and
Ferreira [67], Theorem 2.2.1), one can show

√
k (K̂k −K) d→ N

(
0, (K/α)2) and

√
k (K̂α

k −Kα) d→ N
(
0,K2α) ,
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where the tail-index α is regarded as known. From the above asymptotic normality
property, confidence bands of K̂k and K̂α̂

k can be constructed. Estimates K̂k in the
“Energy”, “Consumer Staples” and “Information Technology” sectors of the S&P 500
index are computed using this method. The results are shown in Figure 2.2. One can see
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Figure 2.2: Estimates of K̂k (top) and K̂α̂
k (bottom) on log10-scale of stocks in sectors of the

S&P 500 index. The estimates are ordered according to the corresponding estimated α-values.
The points are the estimated values, the bars the asymptotic 95%-confidence intervals; the
confidence bands of the corresponding Hill estimates α̂k of these sectors are shown in Figure 2.1.

that K generally takes a rather small value. For the more volatile sectors of “Energy”
and “Information Technology”, the average value of K is around 0.01, while for the more
stable sector of “Consumer Staples”, the average value is around 0.005. Due to the
smallness of K, mild variations of α would lead to huge variations of Kα, as shown in
the 2nd row of Figure 2.2.

Secondly, it appears that there is positive dependence between the values of α and
K. As argued in Section 2.3.3, this is consistent with the assumption that the return
series have Pareto tails on both sides with the tail parameters on each side independent
of those on the other.

Thirdly, Figure 2.2 shows that, on average, the values of K in the “Energy” and
“Information Technology” sectors are larger than those in the “Consumer Staples” sector.
For a given loss probability, a larger value ofK implies that large losses are more probable.
Thus one can conclude that these two sectors are considerably riskier than the “Consumer
Staples” sector. This is of course a confirmation of one’s economic instinct.

Yet another indication from Figure 2.2 is that, while the “Energy” and the “Infor-
mation Technology” sectors are similar in riskiness, the dependence between α and K is
stronger in “Energy”. As discussed in Section 2.3.2 below, when moving along a curve
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of equal preference in the direction of increasing α, the parameter K also increases. So
the strong positive dependence seen in the “Energy” sector suggests that these stocks
might have very similar investor preferences. This in turn may be attributed to stronger
business relations between the energy enterprises. While two IT companies may provide
a variety of products and services and do not depend on each other, two energy compa-
nies are more likely to depend on each other via relations of supplier and customer or
otherwise to compete with each other if they are on the same link of the chain of energy
production and distribution.

2.2.3 A test for equal tail-indices based on Hill estimation
Suppose we have two independent strictly stationary positive series X1, . . . , Xn and
Y1, . . . , Yn with corresponding distribution functions FX and FY that have power-law
tails with indices αX and αY , respectively. From (2.4) one can deduce

√
k

(
α̂X − αX
α̂Y − αY

)
d→
(
ZX
ZY

)
∼ N

(
0,diag(α2

X , α
2
Y )
)

(2.5)

where α̂X and α̂Y are Hill estimators of αX and αY ; we suppress their dependence on k.
Then it follows from the continuous mapping theorem

√
k[(α̂X − αX)− (α̂Y − αY )] d→ ZX − ZY ∼ N(0, α2

X + α2
Y ) . (2.6)

This relation allows one to construct an asymptotic test under the null hypothesis
αX = αY and with test statistic α̂X − α̂Y . We apply this test to the equities in the
“Energy”, “Consumer Staples” and “Information Technology” sectors of the S&P 500
index. The results are shown in the top row of Figure 2.3. They indicate that tail-indices
of equities in the “Energy” or “Information Technology” sectors are more variable than in
the “Consumer Staples” sector, as the null hypothesis is rejected more often for members
of these two former sectors. Moreover, these figures suggest that the test based on the
Hill estimator is quite powerful in distinguishing between tail-indices. In contrast to the
test presented in Section 2.2.4 the present test results in more rejections for the “Energy”
and the “Information Technology” sectors.

As a caution, one should bear in mind that (2.5) is valid on condition that the X-
and Y - series are independent of each other (or weakly dependent on each other), which
is generally untrue for two return series in the same market.

2.2.4 A test for a change in the extreme tail
Here we apply a test from a recent paper by Hoga [72]. This test has been developed
for a different kind of problem. Given a strictly stationary time series X1, . . . , Xn with a
marginal distribution F with right power-law tail, the goal is to test whether there is a
structural break of the extreme quantiles F−1(1−p) for values p very close to zero. If the
tail-index or the scale parameter in a distribution of type (2.3) change inside a sample,
then it is likely that the extreme quantiles change as well. We will test for a change of
tail-index or scale parameter in this indirect way.

The null hypothesis of the test in [72] is that there is no change of the extreme
quantiles F−1(1 − p) for p = pn → 0 in any subsample with indices t ∈ (n t0, n(1 − t0))
where t0 is a fixed number in (0, 0.5). Writing x̂p(a, b) for an estimator of the extreme
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Figure 2.3: Top row: Test for pairwise equality of tail-indices of losses in the “Energy”,
“Consumer Staples” and “Information Technology” sectors of S&P 500. The test statistic
in α̂X − α̂Y is based on Hill estimates of αX and αY . The green, blue and red points
correspond to pairs of stock in a sector when the test statistic is outside the intervals
[q0.075, q0.925], [q0.05, q0.95], [q0.025, q0.975], respectively, where qp is the p-quantile of the
limiting N(0, α2

X + α2
Y )-distribution of the test statistic in (2.6). Grey points stand for

pairs for which the test statistic is inside [q0.075, q0.925]. Bottom row: Test for changing
tail-index or scale parameter of losses using Hoga’s test based on concatenated series of
pairs of stocks. The green, blue and red points correspond to pairs of stock in a sector
when the test statistic Tn exceeds the 85%-, 90%-, 95%-quantile of the limit distribution.
Grey points stand for pairs for which the test statistic is below the asymptotic 85%-
quantile. Black points represent pairs for which the computation of Tn fails for given
precision requirements and time limits. The same number (50) of upper order statistics
is used for both tests.

(1 − p)-quantile based on the subsample with indices t ∈ (na, nb), the test statistic is
given by

Tn = sup
s∈[t0,1−t0]

[
s(1− s) log

(
x̂p(0, s)/x̂p(s, 1)

)]2∫ s
t0

[
r log

(
x̂p(0, r)/x̂p(0, s)

)]2
dr +

∫ 1−t0
s

[
(1− r) log

(
x̂p(r, 1)/x̂p(s, 1)

)]2
dr

(2.7)

Under the null hypothesis, (Tn) converges to a complicated functional of Brownian
motion on [0, 1]; the asymptotic quantiles need to be evaluated by simulation.

When applied to our problem we would like to test whether there is a change of
the tail-index or scale parameter in (2.3) in each of the S&P 500 series in the distinct
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sectors. We also want to get some indication about a possible change of tail-index or
scale parameter from one series to another within a given sector. For this reason, we
choose any pair of series within a sector and concatenate each of the paired series. Then
we run the test on the concatenated series. Of course, despite the fact that we test
changes of tail-index or scale parameter in a very indirect way – there may be many
other reasons for the change of extreme quantiles in a sample – we also concatenate
two rather distinct series. Even if we assume that the two series come from related
models (such as GARCH), the parameters of these models will in general not be the
same. Moreover, the concatenation of two strictly stationary time series is in general not
strictly stationary. Therefore we have to be careful with interpretations of the results of
the tests.

In Figure 2.4 we show the values of the test statistic Tn (horizontal bars) for t0 = 0.1
and daily return series of stock in the “Energy” and “Consumer Staples” sectors of the
S&P 500 index. The “null hypothesis” is that the tail-index and scale parameter remain
the same throughout the selected period of time. For most stocks, the hypothesis cannot
be rejected even at the 85% level. This fact may be an indication that the distribution
inside a series is rather homogeneous. Alternatively, it may show that the power of the
test is very low. A possible reason for this suspicion is that the convergence rate of (Tn)
to its limit is very slow, i.e., the asymptotic distribution is not representative for the
distribution of Tn for the chosen n; for some simulation evidence, see below.

To check whether any pair of stocks shares the same tail-index and scale parameter
we concatenate any two series and apply the aforementioned test on the concatenated
series. For the “Energy” and the “Consumer Staples” sector we summarize the results in
the bottom row of Figure 2.3. These graphs show that the “null hypothesis” of an equal
tail-index and scale parameter is rejected for more pairs in the “Energy” sector than it
is for those in the “Consumer Staples” sector. This suggests that lower tail-indices of
stocks in the “Energy” sector are more spread out than those of the “Consumer Staples”
sector. Also observe that while 3 stocks, say A, B and C, test in favor of the relations
αA = αB , αA 6= αC , it often happens that another test on B and C is supportive of
αB = αC . Again, this is due to the limited power of the test. Based on such results, one
may guess that αB lies between αA and αC . The test is unable to recognize the smaller
differences between αA, αB on one hand and between αB , αC on the other hand.

To get an idea about the power of the test we run it on a sample concatenated from
two independent iid samples of the same size n = 1304 as the S&P 500 series. Both pieces
are t-distributed with distinct degrees of freedom. The results are shown in Figure 2.5:
the power of the test is the smaller the larger the minimum tail-index in the concatenated
pair.

A major problem of this test is the asymptotic distribution of the test statistic under
the null hypothesis. The rate at which the finite-sample distribution tends to its limit is
not known. To find out about this problem we compared the distributions of T1304 for
t-distributed Xt with α = 3 and α = 4 degrees of freedom with the limit distribution of
Tn. The estimated density functions are shown on the right of Figure 2.5. As seen in
the graph, the asymptotic distribution assigns significantly more mass to the tail than
the distributions of Tn do. For comparison, we list a few quantiles of these distribu-
tions in Table 2.1, showing major differences between the asymptotic and finite-sample
distributions.

Figure 2.6 points at another shortcoming of the test: we show Tn for an arbitrarily
chosen random permutation of the concatenated data from two different stocks. In this
case the null hypothesis that two series have the same tail-index is rejected much more
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Figure 2.4: Test statistic Tn from (2.7) for the stocks in the “Energy” and “Consumer
Staples” sectors of S&P 500. The green, blue and red lines correspond to the 85%, 90%
and 95% quantiles of the limit distribution of Tn. They are derived by simulations from
the limit distribution.
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Figure 2.5: Left: Test of concatenated t-samples with different degrees of freedom α.
Numbers on the axes are the degrees of freedom in the subsamples. For an interpretation
of the colored bullets, see the caption for the bottom row of Figure 2.3. The graph shows
the limited power of the test. In particular, if both degrees of freedom are relatively large
it loses the capability of distinguishing between the distributions. Right: Comparison of
the asymptotic distribution of the test statistic Tn in (2.7) under the null hypothesis and
the distribution of Tn for n = 1304 iid t-distributed Xt with 3 and 4 degrees of freedom.
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Quantiles

Distribution of Xt 80% 85% 90% 95%
Asymptotic 47.48 59.61 78.90 113.12
t(3) 23.30 28.27 35.04 46.75
t(4) 25.76 31.13 38.81 56.32

Table 2.1: Quantiles of the test statistic Tn for n = 1304 t-distributed samples with
α = 3 and α = 4 degrees of freedom as well as the corresponding quantiles for the
limiting distribution of Tn. In particular, there are huge differences between the three
distributions for the higher quantiles.

often, as a comparison with the bottom graphs of Figure 2.3 shows. If the data in the
concatenated series were iid a random permutation would not change the distribution of
Tn. Thus the value of the test statistic Tn strongly depends on the dependence structure
of the underlying data and therefore a test based on Tn may be misleading.
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Figure 2.6: Test for changing tail-index or scale parameter of losses using Hoga’s test
based on concatenated series of pairs of stocks. A random permutation is applied to
the observations of each series. The green, blue and red points correspond to pairs of
stock in a sector when the test statistic Tn exceeds the 85%-, 90%-, 95%-quantile of the
limit distribution. Grey points stand for pairs for which the test statistic is below the
asymptotic 85%-quantile. Black points represent pairs for which the computation of Tn
fails for given precision requirements and time limits.
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2.3 Some theoretical arguments for equality of tail-indices

2.3.1 Multivariate GARCH models whose components have equal
tail-indices

Among the models for returns the generalized autoregressive conditionally heteroscedas-
tic (GARCH) model is certainly most popular because it is parsimonious, captures various
of the stylized facts of real return data and can also be modified in various directions
to capture specific behavior of time series such a asymmetry, skewness, long memory;
see for example Andersen et al. [4], Part 1, for a collection of results on GARCH-type
models. The original univariate GARCH model of Bollerslev [24] is a stochastic volatility
model of the type Xt = σt Zt, where (Zt) is an iid mean-zero unit-variance sequence.
In the simple case of a GARCH the squared volatility satisfies the stochastic recurrence
equation

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 = α0 + (α1Z

2
t−1 + β1)σ2

t−1 , t ∈ Z . (2.8)

Here α0 > 0, α1, β1 are non-negative constants. For suitable choices of α1, β1 the equa-
tion (2.8) can be solved and the solution (σ2

t ) constitutes a strictly stationary sequence,
implying that (Xt) is strictly stationary itself. A remarkable property of the process (σt)
is that it has a power-law tail of the form

P(σt > x) ∼ c x−α , x→∞ , (2.9)

for some positive c > 0 and a positive tail-index α which is the unique solution of
the equation E[(α1Z

2
1 + β1)α/2] = 1 provided that the solution exists and some mild

assumptions on the distribution of Zt hold. This result follows by an application of
the Kesten-Goldie theorem; see Kesten [84], Goldie [64], cf. Buraczewski et al. [29] for
a recent textbook treatment. The latter result ensures power-law tails for the strictly
stationary solution (Yt) to the stochastic recurrence equation

Yt = At Yt−1 +Bt , t ∈ Z , (2.10)

for an iid sequence of pairs (At, Bt), t ∈ Z, with non-negative components satisfying
E[Aα/21 ] = 1. In the model (2.8) we can choose Yt = σ2

t , At = α1 Z
2
t−1 + β1 and Bt = α0

to achieve (2.9). In turn, by an application of Breiman’s lemma (see [29], p. 275) it
follows that

P(±Xt > x) ∼ E[(Zt)α±]P(σt > x) , x→∞ ,

implying power-laws for the right and left tails of Xt caused by the power-law tail of σt.
A GARCH process of the order (p, q) can be embedded in a multivariate equation of

the type (2.10), where (At) are iid random matrices and B = Bt is a constant vector.
Again, the Kesten theory [84] applies, implying that the marginal and finite-dimensional
distributions of the GARCH process are regularly varying with a positive index α. We
refrain from explaining the notion of multivariate regular variation which is needed in
this context. For further details, see Buraczewski et al. [29] where the Kesten theorem
and regular variation of GARCH processes are explained in detail.

There exist various extensions of the univariate GARCH model to the multivariate
case. For the sake of argument, we stick here to the constant conditional correlation



2.3. Some theoretical arguments for equality of tail-indices 29

(CCC) model of Bollerslev [25] and Jeantheau [80], and we only consider a special bi-
variate case. It is the model

Xt =
(
X1,t
X2,t

)
=
(
σ1,t 0
0 σ2,t

) (
Z1,t
Z2,t

)
= Σt Zt , t ∈ Z .

Thus both return components Xi,t have the form of a univariate stochastic volatility
model Xi,t = σi,tZi,t with non-negative volatility σi,t and an iid bivariate noise sequence
(Zt) with zero mean and unit variance components. We also have the specification

Yt =
(

σ2
1,t
σ2

2,t

)
=

(
α01
α02

)
+
(

α11 α12
α21 α22

) (
X2

1,t−1
X2

2,t−1

)
+
(

β11 β12
β21 β22

) (
σ2

1,t−1
σ2

2,t−1

)
=

(
α01
α02

)
+
(

α11Z
2
1,t−1 + β11 α12Z

2
2,t−1 + β12

α21Z
2
1,t−1 + β21 α22Z

2
2,t−1 + β22

) (
σ2

1,t−1
σ2

2,t−1

)
,(2.11)

for positive α0i and suitable non-negative αij , βij , i, j = 1, 2. Writing

Bt =
(
α01
α02

)
and At =

(
α11Z

2
1,t−1 + β11 α12Z

2
2,t−1 + β12

α21Z
2
1,t−1 + β21 α22Z

2
2,t−1 + β22

)
,

we see that we are again in the framework of a stochastic recurrence equation but this
time for vector-valued Bt and matrix-valued At:

Yt = At Yt−1 + Bt , t ∈ Z . (2.12)

Kesten [84] also provided the corresponding theory for stationarity and tails in this case.
Stărică [107] dealt with the corresponding problems for CCC-GARCH processes, making
use of the theory in Kesten [84], Bougerol and Picard [26] and its specification to the tails
of GARCH models in Basrak et al. [14]. Stărică [107] assumed the Kesten conditions
for the matrices At. These conditions ensure that the product matrices A1 · · ·An have
positive entries for sufficiently large n. Then Kesten’s theory implies that all components
of the vector Xt have power-law tails with the same index α and also that the finite-
dimensional distributions of the process (Xt) are regularly varying with index α.

Various GARCH modifications are derived by considering linear combinations of
CCC-GARCH models. The property of multivariate regular variation of multivariate
GARCH ensures that, after linear transformations, the new process in all components
has again power-law tails with the same index as the original GARCH process; see Basrak
et al. [14]. Models which are constructed in this way are the Orthogonal GARCH model
of Alexander and Chibumba [2], its generalization GO-GARCH by van der Weide [113],
the Full Factor GARCH model of Vrontos et al. [116] and the Generalized Orthogonal
Factor GARCH model of Lanne and Saikkonen [87]. These models are characterized by
their treatment of each series as a linear combination of factors, and each of the factors
is modeled as a GARCH process; see Silvennoinen and Teräsvirtä [104].

Not all choices of α- and β-parameters in the model (2.11) allow for an application
of the Kesten theory. For example, assume that only the diagonal elements αii and
βii are positive. Then At is diagonal and, hence, the condition that A1 · · ·An have
positive entries for sufficiently large n cannot be satisfied. In the latter situation, both
(X1,t) and (X2,t) are univariate GARCH processes. Assuming the conditions of the
univariate Kesten-Goldie theorem for each component process, (X1,t) and (X2,t) have
power-law tails with indices κ1 and κ2, respectively, given by the solutions to the equa-
tions E[(αiiZ2

i,t + βii)κi/2] = 1, i = 1, 2. In this model, one can introduce dependence
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between the two component series (X1,t) and (X2,t) by assuming dependence between
the noise variables Z1,t and Z2,t. Another situation when the Kesten theory fails appears
when At is an upper or lower triangle matrix: then the products A1 · · ·An are always
of the same triangular type. Similar remarks apply when one considers a CCC model
in general dimension. Of course, one may argue that the latter models are not natural:
they are degenerate since they do not allow for a linear relationship between all squared
volatilities on a given day.

2.3.2 A utility based argument for equal tail-indices
In this section we give an argument based on economic theory that suggests equality of
tail-indices for equity return series. We follow an approach by Routledge and Zin [99]
who introduced the notion of Generalized Disappointment Aversion (GDA). We consider
the risky payoff C of an investor and assume that it has a continuous distribution on
(0,∞) with distribution function FC . Let u be a utility function assumed to be increasing
and concave on (0,∞). Following Routledge and Zin [99], the utility of an agent with
GDA preferences is given by

ũ = E[u(C)]− b
∫ δv

0

[
u(δ v)− u(x)

]
FC(dx) ,

where δ and v are positive constants, and b ≥ 0. Here v can be thought of as the
certainty payoff equivalent to the risky payoff C; δ tunes the threshold of disappointment
in proportion to v; b determines the extra weight given to the expected return of C
when C is below the disappointment threshold δv. If b = 0, preferences are the classical
expected utility. If δ = 1 and b > 0 preferences follow Gul’s [66] disappointment aversion
which were generalized by Routledge and Zin [99].

An agent guided by the utility function u will seek to maximize the functional ũ.
Routledge and Zin assumed a power-law utility function

u(x) = −1
ξ
x−ξ , ξ > 0 . (2.13)

For the sake of argument, we assume that an investor initially has one unit of wealth.
He invests 1− φ ∈ (0, 1) units in a risk-free bond with interest rate r > 0 and φ units in
a risky asset with return X over one time unit, i.e.,

C(X) = (1− φ) e r + φ eX . (2.14)

Then we have

ũ(FX , φ) = E[u(C)] + bE
[
u(C)1{(}C ≤ δv)

]
− b u(δ v)FX(q) ,

where FX is the distribution function of X and

q = log
(

e r + δ v − e r

φ

)
.

Note that C ≤ δv if and only if X ≤ q.
Naturally, if an agent invests in a risky asset instead of a riskless bond, he expects

to obtain a higher (on average) return from the risky asset than he is guaranteed from
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the riskless bond. In our notation, this means δ v > e r or q > r. For given b, δ, v, the
functional ũ depends only on φ and FX , ũ = ũ(FX , φ). We assume that

ũmax = ũmax(FX) = max
0≤φ≤1

ũ(FX , φ)

exists and that the maximum is achieved at a unique φ̂ ∈ (0, 1).

2.3.3 Pareto-distributed returns
Since we are interested in the influence of heavy-tailed losses on the preferences of an
investor we assume the following toy model. We consider the case whenX has a two-sided
Pareto distribution given by

FX(x) =

 p
(

K
K−x

)α
x ≤ 0 ,

1− (1− p)
(

K′

K′+x

)β
x > 0 ,

(2.15)

where α, β > 0, K,K ′ > 0, 0 < p < 1. We also write fX for the density function of FX .
We have

ũ(FX , φ) = αKα p

∫ 0

−∞
u
(
(1− φ)e r + φe x

) 1 + b

(K − x)α+1 dx

+β (K ′)β (1− p)
∫ ∞

0
u
(
(1− φ)e r + φ e x

) 1 + b1{(}x < q)
(K ′ + x)β+1 dx

−b u(δv)FX(q) . (2.16)

We observe the following property whose proof is given in Appendix 2.C.

Lemma 2.1. Assume the two-sided Pareto model (2.15), that there is no functional rela-
tionship between α,K and β,K ′ and the utility function u is increasing and differentiable.
Then ∂ũmax

∂α > 0 and ∂ũmax
∂K < 0.

We conclude that ũmax increases with α and decreases with K. Therefore there is a
curve of equal preference on the (α,K)-plane. Moving along this curve in the direction
of increasing α, one expects the values of K to increase too, i.e., the estimated values
of α and K should appear positively dependent. Figure 2.8 illustrates this scenario for
ξ = 1/2, 4 for the power-utility function (2.13). In fact, this positive dependence is
indeed observed for some real return data, e.g. the “Energy”, “Consumer Staples” and
“Information Technology” sectors of the S&P 500 index; see Figure 2.2.

A particularly interesting case occurs when FX is symmetric, i.e., when α = β,
K = K ′ and p = 0.5. Then (2.15) turns into

ũ(FX , φ) = α

2K
α(1 + b)

∫ ∞
0

u(C(x))
[
1− b

1+b1{x≥q}
]

+ u(C(−x))

(K + x)α+1 dx

−bu(δv)FX(q) . (2.17)

This situation is not covered by Lemma 2.1: for the proof of the latter result we used
Lemma 2.2 whose assumptions are not satisfied in the present situation. Indeed, the
integrand

Uall(x) = u(C(x))
[
1− b

1 + b
1{(}x ≥ q)

]
+ u(C(−x))
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is not monotone.2
We resort to numerical methods to gain some understanding of how ũ(FX , φ) changes

with α. The value of φ̂ can be calculated by numerical integration and optimization with
respect to φ for given values of K,K ′, α, β. This is shown in Figure 2.7 for the power
utility function (2.13) both for fixed K ′, β and for K = K ′, α = β. The corresponding
values ũmax(α,K) are shown in Figure 2.8. If K ′ and β are fixed, both ũmax(α,K) and φ̂
increase with α and decrease with K. This is in agreement with Lemma 2.1. In contrast,
when K = K ′ and α = β ũmax(α,K) decreases with α but is rather insensitive with
respect to K. On the other hand, φ̂ is not monotone with respect to α or K. For each
fixed K, it peaks at an α-value somewhere below 1. For realistic values α ∈ (2, 4), φ̂
is a small value below 5%. Since ũmax(α,K) decreases with α, investors who seek to
maximize ũmax(α,K) will prefer the smallest α in the market, resulting in similar values
of α for different equities.
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Figure 2.7: The 1st and 2nd graphs show φ̂, the optimal equity allocation as a function
of α and K in the two-sided Pareto model (2.15) for fixed K ′ = 0.012, β = 1.4. The 3rd
and 4th graphs show φ̂ as a function of α and K with β = α and K ′ = K. We choose
the utility function u from (2.13) for ξ = 1/2 and ξ = 4, b = 0.01 in all cases.

2To see this we may plug (2.13) in Uall and re-write it as

Uall(x) = −
φ−ξ

ξ

{(
1−

b

1 + b
1{(}x ≥ q)

)[
a+ ex

]−ξ
+
[
a+ e−x

]−ξ
︸ ︷︷ ︸

U(x)

}
,

where a = (1− φ)er/φ. Direct computation gives

U ′(x) = −
(a+ ex)−ξ−1ξex

1 + b1{(}x ≥ q)
+ (a+ e−x)−ξ−1ξe−x , x 6= q

The function U(x), hence Uall, is not monotone because U ′(x) > 0 for all large x while U(x) decreases
in a small neighborhood of q.
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The economitrical differences be-
tween the two utility functions are
illustrated in the graph to the left.
We see that u(x) grows slower and
saturates later for small ξ than for
large ξ. The latter case represents an
agent who is more tolerant about low
consumption and seeks wealth more
aggressively. In other words, he is
less risk-averse than one with a larger
ξ. Such an agent will therefore in-
vest more heavily in equity, as shown
in Figure 2.7. Note that, while φ̂
changes nearly in the same way in
both graphs, the scales in the graphcs
are very different.
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Figure 2.8: The 1st and 2nd graphs show ũmax(α,K), as a function of α and K in the
two-sided Pareto model (2.15) with K ′ = 0.012, β = 1.4. Clearly, ũmax(α,K) increases
with α and decreases with K when K ′ and β are fixed. The 3rd and 4th graphs show
ũmax(α,K) as a function of α and K with β = α and K ′ = K. We choose the utility
function u from (2.13) for ξ = 1/2 and ξ = 4. b = 0.01 in all cases.

If the parameter b is very small the GDA preference is closely approximated by the
mean-utility preference, corresponding to b = 0. In this case, we show in the proof of
Lemma 2.5 that the function Uall(x) may increase or decrease depending on particular
conditions on the values of ξ and (1− φ)er/φ:

1. If max{a, 1} < ξ, Uall(·) is monotone decreasing.

2. If a < ξ < 1 and (a+ y−)/(ay−+ 1) < y
(1−ξ)/(1+ξ)
− , Uall(·) is monotone decreasing.

3. If ξ < a < 1, Uall(·) is monotone increasing.

4. If 1 < ξ < a and (a+ y+)/(ay+ + 1) > y
(1−ξ)/(1+ξ)
+ , Uall(·) is monotone increasing.

5. In other cases, Uall(·) is not monotone.
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where

a = (1− φ)er

φ

y± =
a2 − ξ ±

√
(a2 − 1)(a2 − ξ2)
a(ξ − 1)

Moreover, it is also easily checked that, when x ∈ (0,K(e1/α − 1)], the density function
in the integral of (2.17) increases with α; when x ∈ (K(e1/α−1),∞) it decreases with α.
Following the arguments for Lemma 2.1, and applying Lemma 2.2, it can be seen that
ũmax(α,K) increases/decreases with α when Uall(x) decreases/increases.

2.4 Conclusion

We have established that, in the case of an equity return series with two-sided, func-
tionally independent Pareto tails, investor preference functionals are monotone increas-
ing/decreasing with the tail index/scale parameters. Thus in a market dominated by
such equities, the investors would pursue the largest tail index in the market, leading to
a shared common tail index for all equities.

The empirical results presented in section 2.2 suggest this may well be the case for
the “Consumer Staples” sector of S&P 500, given the Hill estimates of tail indices shown
in figure 2.1 and the largely positive results of tests for equal tail indices shown in figure
2.3.

On the other hand, we have also seen that, when the left and the right tails have
the same indices, investor preference over the equity has more sophisticated variations
in the parameters’ space including the tail parameters of the equity, the interest rate,
the investor’s risk apetite as captured by his utility function, and his threshold of disap-
pointment.

We also acknowledge that our model of the market and the investor is a simple one,
not accoounting for the dependence between equities, nor the categorization of investors
and their interactions. These are potential topics of future work.

2.A A monotonicity lemma

Lemma 2.2. Assume distribution function F (x, θ) parameterized by θ ∈ Θ ⊆ R has sup-
port (a, b) ⊆ R, and in addition F (x, θ) has density function f(x, θ) that is differentiable
with respect to θ for all θ ∈ Θ. Let X ∼ F and assume function h(·) is defined on (a, b)
and is monotone throughout this interval. Moreover, we assume h(x) and f(x, θ) satisfy∫ b

a

∣∣∣∣∂f(x, θ)
∂θ

∣∣∣∣ dx <∞ and
∫ b

a

∣∣∣∣h(x)∂f(x, θ)
∂θ

∣∣∣∣ dx <∞ (2.18)

Then the following holds true:

1. If h(·) is decreasing and ∃x0 ∈ (a, b) such that ∂f
∂θ (x, θ) > 0 for x ∈ (a, x0) while

∂f
∂θ (x, θ) < 0 for x ∈ (x0, b), then

∂Eh(X)
∂θ

> 0
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2. If h(·) is increasing and ∃x0 ∈ (a, b) such that ∂f
∂θ (x, θ) < 0 for x ∈ (a, x0) while

∂f
∂θ (x, θ) > 0 for x ∈ (x0, b), then

∂Eh(X)
∂θ

> 0

Remark 2.3. Two other cases follow trivially from lemma 2.2:

1. If h(·) is increasing and ∂f
∂θ satisfies the same conditions of the 1st case of lemma

2.2, ∂Eh(X)
∂θ < 0. This immediately follows from applying 1st case of lemma 2.2 to

−h(·).

2. By the same argument, if h(·) is decreasing and ∂f
∂θ satisfies the same conditions of

the 2nd case of lemma 2.2, ∂Eh(X)
∂θ < 0.

Proof. Firstly, by dominated convergence theorem, conditions (2.18) imply, for all S ⊆
(a, b),

∂

∂θ

∫
S

f(x, θ)dx =
∫
S

∂

∂θ
f(x, θ)dx

∂

∂θ

∫
S

h(x)f(x, θ)dx =
∫
S

h(x) ∂
∂θ
f(x, θ)dx

Thus we have

∂Eh(X)
∂θ

= ∂

∂θ

∫ b

a

h(x)f(x, θ)dx

=
∫ b

a

h(x)∂f
∂θ

(x, θ)dx

=
∫ x0

a

h(x)∂f
∂θ

(x, θ)dx︸ ︷︷ ︸
I1

+
∫ b

x0

h(x)∂f
∂θ

(x, θ)dx︸ ︷︷ ︸
I2

x0 being located in the interior of (a, b) and h(·) being monotone imply h(x0) <∞.

1. When h(x) is decreasing on (a, b) and ∂f
∂θ (x, θ) > 0 on (a, x0)

I1 > h(x0)
∫ x0

a

∂f

∂θ
(x, θ)dx

Similarly, because ∂f
∂θ (x, θ) < 0 for x ∈ (x0, b) and h(x) is decreasing, we have

I2 =
∫ b

x0

−h(x0)
∣∣∣∣∂f∂θ (x, θ)

∣∣∣∣ dx > −h(x0)
∫ b

x0

∣∣∣∣∂f∂θ (x, θ)
∣∣∣∣ dx

Finally we have

∂Eh(X)
∂θ

> h(x0)
∫ b

a

∂f

∂θ
(x, θ)dx = h(x0) ∂

∂θ

∫ b

a

f(x, θ)dx = 0
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2. If h(·) is increasing and ∃x0 ∈ (a, b) such that ∂f
∂θ (x0, θ) < 0 on (a, x0) while

∂f
∂θ (x0, θ) > 0 on (x0, b), by similar arguments, one can show

∂Eh(X)
∂θ

> 0

2.B When equity returns follow Student’s t-distribution

It is a common practice to use Student’s t-distribution to model the stationary distribu-
tion of equity returns. So it is of interest to find out what implications this distribution
has when it is combined with the PDA preference. Formally we assume

f(x;α) = c(α)
(

1 + x2

α

)−(α+1)/2

where α > 1 and
c(α) =

Γ(α+1
2 )

Γ(α/2)
√
απ

In the same way as for (2.17), we can write ũ(F, φ) as

ũ(F, φ) = (1 + b)
∫ ∞

0

{
u(C(x))

[
1− b

1 + b
1{x≥q}

]
+ u(C(−x))

}
︸ ︷︷ ︸

Uall

f(x, α)dx

−bu(δv)FX(q) (2.19)

where C(·) is defined in (2.14). As shown in lemma 2.5, when b = 0 and u(·) takes the
power-form of (2.13), Uall is monotone depending on the values of ξ and (1 − φ)er/φ.
As given in lemma 2.4, there is a point x0 > 0 such that ∂f

∂α (x0, α) = 0 and ∀x ∈
(0, x0), ∂f∂α (x, α) > 0 and ∀x ∈ (x0,∞), ∂f

∂α (x, α) < 0. Thus it remains to verify∫∞
0 |

∂f
∂α (x, α)|dx <∞ and

∫∞
0 |Uall(x) ∂f∂α (x, α)|dx <∞ if we are to apply lemma 2.2.

As computed in the proof of lemma 2.4, ∂f∂α (x, α) is given by (2.20). It is also shown
there d

dαc(α) > 0. Thus for
∫∞

0 |
∂f
∂α (x, α)|dx <∞ it suffices to show∫ ∞

0

x2

(x2 + α)(1 + x2/α)α/2+1/2 dx <∞

We may write ∫ ∞
0

x2

(x2 + α)(1 + x2/α)α/2+1/2 dx

=
(∫ 1

0
+
∫ ∞

1

)
x2

(x2 + α)(1 + x2/α)α/2+1/2 dx

= I1 + I2

Clearly

I1 <

∫ 1

0

1
α
dx <∞
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while

I2 =
∫ ∞

1

1
1 + α/x2

1
(1/x2 + 1/α)(α+1)/2

dx

xα+1

<

∫ ∞
1

α(α+1)/2 dx

xα+1 <∞

So we conclude
∫∞

0 |
∂f
∂α (x, α)|dx <∞. To see

∫∞
0 |Uall(x) ∂f∂α (x, α)|dx <∞, we note

ξ|Uall(x)| < [(1− φ)er + ex]−ξ + [(1− φ)er + e−x]−ξ

< 1 + (1− φ)−ξe−rξ

Since
∫∞

0 |
∂f
∂α (x, α)|dx <∞, it follows from the above inequality

∫∞
0 |Uall(x) ∂f∂α (x, α)|dx <

∞. Thus by lemma 2.2, ũmax is monotone increasing/decreasing with α when Uall(·) is
monotone decreasing/increasing. Accordingly, an investor guided by the utility function
will seek the largest/smallest α observed in the market.

If however b > 0, Lemma 2.2 is not applicable anymore. Nonetheless, numerical
analysis lends some insight. As shown in figure 2.9, φ̂ is monotone increasing for all 4
values of b, while ũmax(α) is increasing with α when b is relatively large, but decreasing
with α when b is small. We note that a sizable value of b indicates a conservative,
risk-averse investor.

Lemma 2.4. Let f denotes the density function of the Student’s t-distribution, i.e.

f(x;α) = c(α)
(

1 + x2

α

)−(α+1)/2

where α > 1 and
c(α) =

Γ(α+1
2 )

Γ(α/2)
√
απ

Then there exists x0 > 0 such that ∂f
∂α (x0, α) = 0 and ∀x ∈ (0, x0), ∂f∂α (x, α) > 0 and

∀x ∈ (x0,∞), ∂f∂α (x, α) < 0.

Proof. Straightforward computation gives

∂f(x, α)
∂α

= c(α)x2(α+ 1) + (2αx2 + 2α2)c′(α)− αc(α)(x2 + α) log(1 + x2/α)
2α(x2 + α)(1 + x2/α)α/2+1/2

:= P (x2, α)
2α(x2 + α)(1 + x2/α)α/2+1/2 (2.20)

While the denominator of the right side of ∂f(x,α)
∂α is always positive, its numerator

P (x2, α) has a single root:

x2
0 = α exp

{
W

[
−
(

1 + 1
α

)
e−1−2c′(α)/c(α)−1/α

]
+ 1 + 1

α
+ 2c′(α)

c(α)

}
− α (2.21)

whereW (·) is the principle branch of the LambertW function. and c′(·) is the derivative
of c(·). To check the right side of (2.21) for positivity, we first note c′(α) > 0:

c′(α) = πΓ(α/2 + 1/2) {α [Ψ(α/2 + 1/2)−Ψ(α/2)]− 1}
2Γ(α/2)(πα)3/2
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Figure 2.9: φ̂ (left) and ∂ũmax
∂α (right). top: ξ = 1/2. bottom: ξ = 4.

where Ψ(·) is the digamma function:

Ψ(x) = d log[Γ(x)]
dx
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Ψ(x)

As shown in the figure to the left, Ψ(x) is increas-
ing for x > 0. This immediately follows from the
series representation

Ψ(x+ 1) = −γ +
∞∑
n=1

x

n(n+ x) x 6= −1,−2,−3, . . .

which gives

∂Ψ(x+ 1)
∂x

=
∞∑
n=1

1
(n+ x)2 > 0

See Abramowitz and Stegun [1], p.259, formula
6.3.16. Therefore Ψ(α/2 + 1/2) − Ψ(α/2) > 0.
So we have

α [Ψ(α/2 + 1/2)−Ψ(α/2)]− 1
≥ 1× [Ψ(1/2 + 1/2)−Ψ(1/2)]− 1
= log(4)− log(e)
> 0

Thus c′(α) > 0. Furthermore, we recall W (·) is
increasing on its principle branch. So

W

[
−
(

1 + 1
α

)
e−1−2c′(α)/c(α)−1/α

]
+ 1 + 1

α
+ 2c′(α)

c(α)

> W

[
−
(

1 + 1
α

+ 2c′(α)
c(α)

)
e−1−2c′(α)/c(α)−1/α

]
+ 1 + 1

α
+ 2c′(α)

c(α)
= W (−ye−y) + y

where
y = 1 + 1

α
+ 2c′(α)

c(α) > 1

Now notice
log(ye−y) = log(y)− y

is a decreasing function for y > 1. Thus −ye−y is an increasing function. Hence we have

W (−ye−y) + y > W (−e−1) + 1 = 0

Now it is clear

α exp
{
W

[
−
(

1 + 1
α

)
e−1−2c′(α)/c(α)−1/α

]
+ 1 + 1

α
+ 2c′(α)

c(α)

}
− α > 0

Now that we have established that ∂f
∂α (x, α) = 0 has a single positive root, it remains to

determine the sign of ∂f∂α (x, α) on the two sides of the root. For this purpose we observe

P (0, α) = 2α2c′(α) > 0 (2.22)
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So we want to investigate ∂P
∂x (x, α):

∂P

∂x
(x, α) = 2αc′(α) + c(α)− αc(α) log

(
1 + x

α

)
(2.23)

Clearly, ∂P∂x (0, α) > 0. Hence from (2.22) and (2.23) it is clear

sign
[
∂f

∂α
(x, α)

]
=
{

1 0 < x < x0
−1 x > x0

where x0 is the positive root of (2.21).

2.C Proof of Lemma 2.1

Proof. Let
φ̂ := argmax

0<φ≤1
ũ(FX , φ) (2.24)

We have
ũmax(FX) = ũ(FX , φ̂)

It follows

dũmax(FX)
dα

= ∂ũ(α, φ)
∂α

∣∣∣∣
φ=φ̂

+ ∂ũ(α, φ)
∂φ

∣∣∣∣
φ=φ̂

∂φ̂

∂α
(2.25)

The definition (2.24) implies for all α

∂ũ(α, φ)
∂φ

∣∣∣∣
φ=φ̂

= 0 (2.26)

So the second term of (2.25) vanishes. It remains to show the first term is positive. From
(2.16), it follows

∂ũ(α, φ)
∂α

= ∂

∂α
E[u((1− φ)er + φex)1{X<0}]

The function u((1− φ)er + φex) is obviously increasing with x. It follows

∂fX(x;α,K)
∂α

= ∂

∂α

αKα

(K − x)α+1 = − Kα

(K − x)α+1

[
α log

(
1− x

K

)
− 1
]

It is easily checked

∂

∂α

αKα

(K − x)α+1

{
> 0 when x < K(1− e1/α) < 0
< 0 when K(1− e1/α) < x < 0

This is the second case of lemma 2.2. So we have ∂ũ(α,φ)
∂α > 0. As for ∂ũmax(FX)

∂K , by the
same argument, it suffices to show ∂ũ(K,φ)

∂K < 0. We have

∂ũ(K,φ)
∂K

= ∂

∂K
E
[
u((1− φ)er + φex)1{X<0}

]
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and
∂fX(x;α,K)

∂K
= ∂

∂K

αKα

(K − x)α+1 = −αKα−1 αx+K

(K − x)α+2

Clearly,
∂

∂K

αKα

(K − x)α+1

{
> 0 when x < −K/α < 0
< 0 when −K/α < x < 0

So by the 1st case of Remark 2.3 we conclude ∂ũ(K,φ)
∂K < 0.

2.D Lemma 2.5

Lemma 2.5. Let u(·) and C(·) be defined as in (2.13) and (2.14) respectively. Define

Uall = u(C(x)) + u(C(−x)) x ≥ 0

a = (1− φ)er

φ

y± =
a2 − ξ ±

√
(a2 − 1)(a2 − ξ2)
a(ξ − 1)

The following holds true:

1. If max{a, 1} < ξ, Uall(·) is monotone decreasing.

2. If a < ξ < 1 and (a+y−)/(ay−+ 1) < y
(1−ξ)/(1+ξ)
− , Uall(·) is monotone decreasing.

3. If ξ < a < 1, Uall(·) is monotone increasing.

4. If 1 < ξ < a and (a+ y+)/(ay+ + 1) > y
(1−ξ)/(1+ξ)
+ , Uall(·) is monotone increasing.

5. In other case, Uall(·) is not monotone.

Proof. It is convenient to re-write Uall as

Uall = −φ
−ξ

ξ


[

(1− φ)
φ

er + ex
]−ξ

+
[

(1− φ)
φ

er + e−x
]−ξ

︸ ︷︷ ︸
U(x)


Thus the monotonicity of Uall(x) is the opposite of U(x). For convenience of writing, let
a = (1− φ)er/φ. First of all, we find the conditions on which U(x) is monotone. Direct
differentiation yields

∂U(x)
∂x

= −(a+ ex)−ξ−1ξex + (a+ e−x)−ξ−1ξe−x

∂U(x)
∂x = 0 is equivalent to

a+ y

ay + 1 = y
1−ξ
1+ξ

log(a+ y)− log(ay + 1)︸ ︷︷ ︸
f(y)

= 1− ξ
1 + ξ

log(y)



42 2. Tail parameters of equity return series

where we have defined y = ex, and f(y), g(y) as above. Observe

∂(f − g)(y)
∂y

= a(ξ − 1)y2 + 2(ξ − a2)y + a(ξ − 1)
(1 + ξ)(a+ y)(ay + 1)y (2.27)

∂(f−g)(y)
∂y = 0 has two roots when ξ 6= 1

y± =
a2 − ξ ±

√
(a2 − 1)(a2 − ξ2)
a(ξ − 1)

1. If min{1, ξ} < a < max{1, ξ}, y± are not real, ∂(f−g)(y)
∂y = 0 has no solution on

(1,∞); (f − g)(y) is monotone on (1,∞).

a) If in addition ξ > 1, i.e. 1 < a < ξ, (f − g)(y) is monotone increasing on
(1,∞), because the coefficient of the y2 term of the numerator of (2.27), i.e.
a(ξ − 1) is positive. We note f(1) = g(1) = 0; thus on (1,∞), there is no
solution to f(y) = g(y). It can be concluded that U(·) is monotone on (0,∞).
Furthermore

∂U(x)
∂x

∣∣∣∣
x=0

= 0

For a small ε > 0, the sign of ∂U(x)
∂x on (0, ε) is thus the same as ∂2U(x)

∂x2

∣∣∣
x=0

:

∂2U(x)
∂x2

∣∣∣∣
x=0

= 2(a+ 1)−ξ−2(ξ − a) > 0

Thus ∂U(x)
∂x > 0 for x ∈ (0,∞); Uall is monotone decreasing.

b) If instead ξ < 1, i.e. ξ < a < 1, by a similar argument as in the previous case,
Uall is monotone increasing on (0,∞).

2. If a < min{1, ξ} and ξ > 1, i.e. a < 1 < ξ, it is clear

y− =
a2 − ξ −

√
(a2 − 1)(a2 − ξ2)
a(ξ − 1) < 0

It remains to compare y+ with 1 to determine whether ∂(f−g)(y)
∂y = 0 has a solution

on (1,∞). Assume y+ > 1. Then

a2 − ξ +
√

(a2 − 1)(a2 − ξ2) > a(ξ − 1)
2a(ξ − 1)(a+ 1)(a− ξ) > 0 (2.28)

This contradicts the assumption a < ξ and ξ > 1. Hence y+ < 1. So we conclude
(f − g)(y) is monotone increasing on (1,∞). Following the same analysis as in the
case (1.a), one can see Uall is monotone decreasing.

3. If a < min{1, ξ} and ξ < 1, i.e. a < ξ < 1, it is clear y− > 0 and y+ < y−.
Moreover, y− > 1 is equivalent to√

(a2 − 1)(a2 − ξ2) > a2 − ξa+ a− ξ = (a+ 1)(a− ξ)
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The last inequality is obviously true in this case. So y− > 1. ∂(f−g)(y)
∂y has a

maximum at y− ∈ (1,∞). We know (f − g)(y−) is a maximum because (2.27)
shows that, for y > y−, ∂(f−g)(y)

∂y < 0.

If (f − g)(y−) < 0, (f − g)(y) = 0 has no solution on (1,∞). Hence U(·) is
monotone on both (0,∞). The same analysis as in the case (1.a) shows Uall is
monotone decreasing on (0,∞).
If (f − g)(y−) > 0, (f − g)(y) = 0 must have a solution on (y−,∞). So U(·) is not
monotone.

4. a > max{1, ξ} and ξ > 1, i.e. 1 < ξ < a. By the same argument that leads
to (2.28), we see y+ > 1. From (2.27) it is clear (f − g)(y+) is a minimum. If
(f −g)(y+) > 0, there is no solution to (f −g)(y) = 0 on (1,∞); U(x) is monotone.
By the same analysis as in the case (1.a), we know U(x) is monotone decreasing
and Uall is monotone increasing.
if (f − g)(y+) < 0, there must be a solution to (f − g)(y) = 0 on (y+,∞). Uall is
not monotone.





Chapter 3

Rare event simulation for GARCH(p,q)
processes
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Abstract

We propose an efficient importance sampling estimator for the rare event prob-
ability P(|V | > u) where V is a vector following the stationary distribution of a
GARCH(p, q) process. Recall Vt = AtVt−1+B is the matrix recurrence equation of a
GARCH(p, q) process. We emanate the process {Vt} from a set C = {V : |V | ≤M}
for some predefined positive constant M , and then we introduce a dual change
of measure for the originally iid matrices {At}: for t < Tu = min{i > 0 :
|Vi| > u}, we exponentially tilt the distribution of At|Xt−1, where X0 = V0 and
Xt =

∏t

i=1 X0/|
∏t

i=1 X0|, so that |AtXt−1|ξ is more likely to take on large values
and hence |Vt| is more likely to exceed u. Once the exeedance has happened, we
change the distribution of {At} back to the original and continue the process until
Vt returns to the set C. Along each simulated path emenating from C and ending
in C we compute Nu =

∑K

i=1 1{|Vi|>u}, where K = min{i > 0 : |Vi| ≤M}.
The pursuit estimate of P (|V | > u) is then a weighted average of Nu computed

along each path. The weight depends on the path.

3.1 Introduction

Since the seminal papers by Bollerslev [24] and Taylor [111] (cf. also Andersen et al
[4]), the GARCH (Generalized Autoregressive Conditional Heteroscedasticity) model has
been widely used in finance and economics, and has inspired numerous variants such as
GJR-GARCH of Glosten et al [63], Asymmetric GARCH of Engle and Ng [60] and the
Quadratic GARCH of Sentana [100], among others. The basic GARCH model of Boller-
slev [24] and Taylor [111] defines the conditional variance via the stochastic recurrence
equation

Rt = σtZt

σ2
t = ω +

p∑
i=1

αiR
2
t−i +

q∑
j=1

βjσ
2
t−j (3.1)

where {Rt}t∈Z is the return series in question; {Zt}t∈Z is an iid sequence of random
variables with zero mean and unit variance; the distribution function of Zt is assumed
to have a density. ω, αi, i ∈ {1, . . . , p} and βj , j ∈ {1, . . . , q} are constant parameters. A
process defined by (3.1) is called a GARCH(p, q) process. When p = q = 1,

σ2
t = ω + (α1Z

2
t−1 + β1)σ2

t−1

45
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When p > 1 or q > 1, the GARCH(p, q) process is given by a matrix recurrence equation
(cf. Davis and Mikosch [41]). Define d = p + q − 1 and we can write the recurrence
equation as

Vt = AtVt−1 +Bt (3.2)
where Vt and Bt are d-dimensional vectors; At are d × d matrices. The sequences At
and Bt are both iid. Of course, Bt are really constant vectors, but we postpone this
specialization for now and generalize the equation (3.2) to the broader context of matrix
recursions. There is already a rich literature on this subject. Kesten [84] showed that,
when At and Bt were almost surely non-negative, had no row or column of only zeros,
and there was a positive probability that Bt was strictly positive, the strictly stationary
solution to the equation V d= AV +B had power-law tails for its marginal distributions,
assuming the following conditions (M) and (A):

• Condition (M)

1. The top Lyapunov exponent

γ = inf
n≥1

1
n
E log ‖An · · ·A1‖

is negative.
2. There exists ξ > 0 such that

1 = λ(ξ) = lim
n→∞

1
n

logE‖An · · ·A1‖ξ

3. E(‖A1‖ξ log+ ‖A1‖) <∞
4. E|B1|ξ <∞

• Condition (A) : The group generated by

{log ρ(s) : s = An · · ·A1 for some n ≥ 1}

is dense in R, where ρ(s) denotes the spectral radius of matrix s.

Upon these conditions, Kesten’s theorem gives

uξP(u−1V ∈ ·) v→ µξ(·) (3.3)

where µξ is a non-null Radon measure on Rd+\{0} with the property µξ(aA) = a−ξµξ(A).
Recently, Collamore and Mentemeier [37] extended Kesten’s result and gave an ex-

plicit expression for µξ:

lim
u→∞

uξE
[
f(u−1V )

]
= C

λ′(ξ)

∫
Sd−1
+ ×R

e−ξsf(esx)`ξ(dx)ds (3.4)

where C is a constant (cf. eq.(2.15) of Collamore and Mentemeier [37]), f(·) is any
bounded continuous function on Rd+ \ {0} and `ξ is a probability measure on Sd−1

+ . Its
definition is also found in (3.16).

From (3.4) a representation for µξ(·) immediately follows

µξ(·) = C

λ′(ξ)Lξ(·)
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Here Lξ is a non-null Radon measure on Rd+\{0} that satisfies, for all bounded continuous
function f(·) on Rd+ \ {0}:∫

Rd+\{0}
f(x)Lξ(dx) =

∫
Sd−1
+ ×R

e−ξsf(esx)`ξ(dx)ds

A key ingredient of Collamore and Mentemeier’s approach is Hennion’s uniform conver-
gence result on the product of iid random matrices [70]:

lim sup
n→∞

{
1
n

1{n>T} |log〈y,An · · ·A1x〉 − γ| : x, y ≥ 0, |x| = 1, |y| = 1
}

= 0

where
T = min{n ≥ 1, An · · ·A1 > 0}. (3.5)

Conditions (I, II, III) of hypothesis 1 and (ii) of remark 3.1 imply T as defined in (3.5) is
almost surely finite. Cf. Buraczewski et al [29], example 4.4.13, Kesten [84], eq.(2.56) and
Hennion [70], lemma 3.1., T is almost surely finite. Here x ≥ 0 means every component
of x is non-negative.

In addition to non-negative matrices, two other classes of random matrices have been
shown to lead to power-law tails via the recurrence relation (3.2). Alsmeyer and Mente-
meier [3] considered invertible matrices whose distribution has a density. Let M(d,R)
denote the space of d × d matrices with real entries that are invertible with probability
1. They replaced Kesten’s condition E(‖A‖ξ log+ ‖A‖) < ∞ with a stronger counter-
part E[‖A‖ξ(log+ ‖A‖+ log ‖A−1‖)] <∞, and lifted the condition (A). In addition, they
assumed

1. The Markov chainXn on Sd−1, namelyXn = AnXn−1/|AnXn−1|, is irreducible, i.e.
for any open set U ⊂ Sd−1 and any u ∈ Sd−1, ∃n ≥ 1 such that P(Xnu ∈ U) > 0.

2. There exist N ≥ 1, c, ε > 0 and an invertible matrix Ā ∈M(d,R) such that for any
set C ⊂M(d,R), it holds true P(AN · · ·A1 ∈ C) ≥ c|Bε(Ā)∩C|, where | · | denotes
the Lebesgue measure.

These assumptions are termed conditions (id). Furthermore, they assumed that there
was no point in Rd such that the recurrence equation (3.2) was stuck at this point with
probability 1: P(AX + B = X) < 1 for all X ∈ Rd and all A ∈ M(d,R). With these
assumptions, they showed

lim
u→∞

uξP(〈x, V 〉 > u) = eξ(x)

where x ∈ Sd−1 and eξ(·) is a continuous function Sd−1 → R+.
The second of the (id) conditions, which is satisfied when the distribution of A has a

Lebesgue density, can actually be lifted if stronger moment conditions are imposed on A
and B, and in addition, a proximity condition is satisfied by the support of A. This is
the result of Guivarc’h and Le Page, et al [65]. Let GA denote the semi-group generated
by {Πn : Πn = An · · ·A1, Ai ∈M(d,R)}. The authors assumed

1. There is no finite union W of proper subspaces of Rd that satisfies ∀a ∈ GA, aW =
W .

2. GA contains a proximal element, i.e. an element a whose largest singular value is
an algebraically simple eigenvalue of a.
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These two assumptions are termed (ip) conditions. Replacing the (id) conditions of
Alsmeyer and Mentemeier with (ip) and the moment conditions of the former with

E‖A‖ξ+δ <∞, E(‖A‖ξ‖A−1‖δ) <∞, E(|B|ξ+δ <∞), for some δ > 0

Guivarc’h and Le Page et al.proved the same vague convergence result of (3.3).
In the special case of GARCH(p, q), Bollerslev [24] showed that the equation X

d=
AX +B has a unique, strictly stationary solution with finite variance if and only if

p∑
i=1

αi +
q∑
j=1

βj < 1 (3.6)

In the rest of this paper, we always assume condition (3.6) is satisfied. For convenience
of narration, let π denote this unique stationary probability measure and let V ∼ π,
Z ∼ µZ . More generally we write µU for the probability measure of U , no matter what
type of object U may be.

Buraczewski et al.[29] (proposition 4.3.1) derived the support of π assuming the con-
dition of Bollerslev 3.6. We omit the formula here and refer to it as χ hereafter.

In addition to (3.6), we assume:

Hypothesis 1. All the following conditions hold:

(I) ∃s > 0 such that 1 < E(α1Z
2 + β1)s <∞

(II) If p, q ≥ 2, there exists an non-empty open set S ⊂ suppµZ .

(III) αp > 0 and βq > 0.

Clearly, these conditions are satisfied when Z has normal or t distributions.

Remark 3.1. From hypothesis 1, a few implications immediately follow

(i) (3.1) implies

σ2
t ≥ ω

1−
q∑
j=1

βj

−1

= σ2
min > 0

Then it follows χ ⊆ [σ2
min,∞)q × [0,∞)p−1, so Vn ∈ χ for all n ≥ 0. Since the

random variable Z2
n−1 is assumed to have a continuously differentiable distribution

function, P(Z2
n−1 = x) = 0 for all x ∈ supp µZ2 . Furthermore, Z2

n−1 uniquely
determines the matrix An, so it follows P(Av +B = v) = 0 for all v ∈ χ.

(ii) (3.6) implies the top Lyapunov exponent of An

γ = inf
n≥1

1
n
E (log ‖An · · ·A1‖) (3.7)

is negative. Cf. Buraczewski et al [29], prop. 4.1.12.

(iii) That 0 /∈ χ and An has a Lebesgue density implies the stationary distribution π is
absolutely continuous with respect to Lebesgue measure. This immediately follows
from lemma 4.2.2 of Buraczewski et al.[29].
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(iv) Condition (III) ensures that, with probability 1, every row and column of the matrix
An has at least one postive component.

The implications (i), (ii), (iii) are in fact the conditions of proposition 4.2.1 of Bu-
raczewski et al [29], from which we conclude Vn is an aperiodic, positive Harris chain
that is in addition π-irreducible on χ. Moreover, from (I) it follows 0 < ∃ξ < s such that

λ(ξ) = lim
n→∞

(E‖An · · ·A1‖ξ)1/n = 1 (3.8)

and
E‖A‖ξ <∞ (3.9)

The existence of ξ together with Conditions (ii, iv) and (I, II) allow the application of
Kesten’s theorem (cf. Buraczewski et al [29], example 4.4.13).

Although the probability P(〈x̃, y〉 > u) has been given asymptotically by Kesten’s
theorem, one often wishes to know this probability more precisely, due to the importance
of risk management. Now that more detailed analytic description of the probability is
unknown, one has to resort to numerical methods. But the occurrence of 〈x̃, V 〉 > u
for a large u is a rare event; a naive Monte-Carlo approach will be very inefficient. Cf.
Asmussen and Glynn [6]. One way to increase the efficiency of Monte-Carlo methods is
importance sampling.

The idea of importance sampling with exponential shift dates back to Siegmund [103],
who devised an algorithm for estimating the excursion probability of 1D random walk
with iid increments. Following his work, various importance sampling algorithms have
been proposed for rare event simulation in a variety of problems.

Let Wn =
∑n
i=1Xn be a random walk. Blanchet and Glynn [22] proposed a state-

dependent importance sampling algorithm to estimate the tail of max{Wn, n ≥ 1} and
showed that their estimator had bounded relative error (cf. Asmussen and Glynn [6]).
In the case of light tailed increments, their estimator recovers that of Siegmund.

In 2010, Blanchet and Liu [23] presented an importance sampling algorithm for the
first passage time of a multidimensional random walk with heavy-tailed increments.

However, to our best knowledge, no importance sampling estimator has been proposed
in the literature for the computation of P(〈x̃, V 〉 > u) or for the more general problem
when the defining recurrence equation of Vn i.e. (3.2) is more general than that of
GARCH(p, q). We present a solution in this paper.

When p = q = 1, Vn reduces to a scalar. An importance sampling estimator was
proposed and shown to be efficient in the sense of bounded relative error by Collamore
et al.[36]. We consider our work as a multivariate extension to theirs.

3.2 Statement of results

Our solution involves associating a Markov Additive process (Xn, Sn) to the Markov
chain Vn:

Xt = AtAt−1 · · ·A1Ṽ0

|AtAt−1 · · ·A1Ṽ0|
, X0 = Ṽ0 (3.10)

St = log |At · · ·A1Ṽ0| (3.11)
lt = St − St−1 = log |AtXt−1| (3.12)
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where ṽ = v/|v| for a vector v. From the GARCH(p, q) recurrence relation

σ2
t

σ2
t−1
...

σ2
t−q+2
σ2
t−q+1
R2
t−1

R2
t−2
...

R2
t−p+2

R2
t−p+1


=



α1Z
2
t−1 + β1 β2 · · · βq−1 βq α2 α3 · · · αp−1 αp

1 0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 1 0 0 0 · · · 0 0

Z2
t−1 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 1 0





σ2
t−1
σ2
t−2
...

σ2
t−q+1
σ2
t−q
R2
t−2

R2
t−3
...

R2
t−p+1
R2
t−p


+



ω
0
...
0
0
0
0
...
0
0


(3.13)

it is obvious that, by define mapping

g : (x, y, l) ∈ Sd−1 × Sd−1 × R→ R+ 3
〈eq+1, e

ly〉
〈e1, x〉

one has the relation Z2
n−1 = g(Xn−1, Xn, ln). Let

Fn = B(X0, X1, . . . , Xn, l1, l2, . . . , ln)

where B(·) denotes the σ-field generated by ·. It is clear B(Vn) ⊆ Fn. Let P denote the
transition kernel of (Xn, Sn). We have

P (x, dy × dl) = P(Xn ∈ dy, ln ∈ dl|Xn−1 = x) = P(Z2
n−1 ∈ g(x, dy, dl))

Note g(Sd−1,Sd−1,R) = ImgZ2, where ImgZ2 denotes the image of Z2. Choose a set
S ⊂ Sd−1 such that

inf
w∈g(S,Sd−1,R)

fZ2(w) > 0

We have

P (x, dy × dl) ≥ 1S(x) inf
w∈g(S,dy,dl)

fZ2(w)|g(S, dy, dl)|

where fZ2(·) is the density function of Z2 with respect to the Lebesgue measure and | · |
denotes the Lebesgue measure. It is easy to see∫

Sd−1×R
inf

w∈g(S,dy,dl)
fZ2(w)|g(S, dy, dl)| <∞

Clearly ∫
Sd−1×R

inf
w∈g(S,dy,dl)

fZ2(w)|g(S, dy, dl)| ≤
∫
Sd−1×R

∫
g(S,dy,dl)

fZ2(w)dw

=
∫
g(S,Sd−1,R)

fZ2(w)dw <

∫
ImgZ2

fZ2(w)dw = 1

Let
δ =

∫
Sd−1×R

inf
w∈g(S,dy,dl)

fZ2(w)|g(S, dy, dl)| < 1

and
ν(dy × dl) = 1

δ
inf

w∈g(S,dy,dl)
fZ2(w)|g(S, dy, dl)|
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Now that ν(Sd−1 × R) = 1, ν(·) is a probability measure. We have the minorization
condition

P (x, dy × dl) ≥ δ1S(x)ν(dy × dl) (3.14)

By Ney and Nummelin [93], lemma 3.1, (3.14) implies the MA-process (Xn, Sn) has a
regenerative structure:

(1) There exist random variables 0 < τ0 < τ1 < . . . , i = 0, 1, 2, . . . such that τi+1 − τi,
are iid.

(2) The blocks

(Xτi , Xτi+1, . . . , Xτi+1−1, lτi , lτi+1, . . . , lτi+1−1) i = 0, 1, 2, . . .

are independent of each other.

(3)
P[(Xτi , lτi) ∈ S × Γ|Fτi−1] = ν(S × Γ)

Furthermore, (3.14) means P (x, dy × dl) can be decomposed as

P (x, dy × dl) = P ′(dx, dy × dl) + δ1S(x)ν(dy × dl)

Thus the MA-process regenerates only when it is in S and in this case it regenerates with
probability δ. That is

P[(Xn, Sn) regenerates |Xn−1 = x] = δ1S(x)

There is yet another useful property of the iid matrices An. Define mapping

A·x : (A, x) ∈ Img (A)× Sd−1 → Sd−1 3 Ax

|Ax|

and operator Pθ for θ ∈ R, f : Sd−1 → R+:

Pθf(x) = E
[
|Ax|θf(A·x)

]
(3.15)

By Lemma 2.2 of Collamore and Mentemeier [37], (3.9) means λ(ξ) = 1 is the spectral
radius of Pξ and there is a unique, strictly positive eigenfunction rξ(·) associated with
λ(ξ) i.e. Pξrξ(x) = λ(ξ)rξ(x). Moreover, rξ is max{ξ, 1}-Hölder continuous, implying
rξ is bounded from above and below by positive constants. From now on, we use the
notations

r̄ξ = sup
x∈Sd−1

rξ(x), rξ = inf
x∈Sd−1

rξ(x)

There is also an eigenmeasure `ξ on B(Sd−1) associated with the operator Pξ that
corresponds to the eigenvalue λ(ξ) = 1 and eigenfunction rξ:

E
[
|Ax|ξ`(A· dx)

]
= `ξP

ξ(dx) = λ(ξ)`ξ(dx) (3.16)

The eigenfunction rξ and eigenmeasure `ξ are called right eigenfunction and left eigen-
measure, respectively. They satisfy the identity `ξrξ =

∫
Sd−1 rξ(x)`ξ(dx) = 1. Cf. Col-

lamore and Mentemeier [37], Lemma 2.2.
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Naively one would estimate P(|V | > u) as n−1∑n
i=1 1{|Vi|>u}, applying the law of

large numbers. The difficulty with this naive method is that, when u is large, |Vi| > u
happens very rarely, resulting in a large variance of the estimator. To tackle this problem,
we use importance sampling and exponentially shift the transition kernel of the MA
process (Xi, Si), i.e. the conditional probability P (x, dy × dl), until |Vt| > u. Let

P θ(x, dy × dl) = eθl

λ(θ)
rθ(y)
rθ(x)P (x, dy × dl)

Since the matrix At depends only on Z2
t−1, shifting the transition kernel of (Xt, St) is

equivalent to shifting the conditional distribution of Z2
t−1. It follows from the above

equation
Pθ(Z2

t−1 ∈ dw|Xt−1 = x)
P(Z2

t−1 ∈ dw|Xt−1 = x) = |A(w)x|θ

λ(θ)
rθ(A(w)·x)

rθ(x) (3.17)

where Pθ(·|·) denotes the shifted conditional probability measure.
Now we are ready to introduce our importance sampling estimator. Define M and

{Ki}i=0,1,... as in lemma 3.5. We start the process Vt from within C = {v ∈ χ : |v| < M}
and let V0 ∼ η, where the probability measure η is defined as

η(S) = π(S)/π(C) ∀S ∈ B(C)
Let

Rn := sup{i ≥ 0 : Ki ≤ n}
Tu = inf{n ≥ 1 : |Vn| > u}

Nu :=
K1−1∑
i=0

1{Vi>u}

Eu = π(C)Nu1{Tu<K1}e
−ξSTu rξ(X0)

rξ(XTu)
Eu is our estimator. We have

Theorem 3.2. The estimator Eu is unbiased, i.e.
P(|V | > u) = EDη Eu (3.18)

The superscript D, short for “dual”, is to remind us that the expectation is taken
with respect to the shifted kernel Pξ before the threshold is exceeded, and with respect
to the original kernel P thereafter. The subscript η means that V0 is drawn from the
distribution η.

While unbiased, the estimator Eu is also efficient, i.e. its relative error is bounded.
Cf. Asmussen and Glynn [6]. This constitutes the next theorem:

Theorem 3.3. Let M and Ki, i = 0, 1, 2, . . . be defined as in Lemma 3.5 and 0 < b < 1
be the constant shown to exist by lemma 3.5. Assume b1−ξ/s < eγ , where s is the positive
constant satisfying condition (I) of hypothesis 1 and γ is the top Lyapunov exponent
defined by (3.7). Then the estimator Eu has bounded relative error, i.e.

lim sup
u→∞

var(Eu)
[P(|V | > u)]2 <∞

In §3.3 we show that, with certain shifted kernels, the MA-process drifts towards a
set of bounded |Vt|. This is a crucial fact for the consistency and efficiency of Eu. Then
in §3.4 we prove theorem 3.2 and in §3.5 we prove theorem 3.3.
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3.3 Vn drifts towards a small set

3.3.1 A drift condition
Lemma 3.4. Let 0 < θ < ξ. Then there exist 0 < bθ < 1,Mθ > 0 such that

E
[
|Vn|θrθ(Ṽn)1{|Vn−1|>Mθ}

∣∣Fn−1
]
≤ bθ|Vn−1|θrθ(Ṽn−1) (3.19)

Proof. λ(·) is a convex continuous function (cf. Buraczewski et al [29], §4.4.3), so λ(0) =
1 = λ(ξ) implies λ(θ) < 1. By Buraczewski et al.[28] Proposition 3.1, an eigenfunction
rθ(·) and an eigenmeasure `θ(·) exist for the operator Pθ. In particular, the right
eigenfunction can be represented as

rθ(x) = c(θ)
∫
Sd−1
〈x, y〉θ`∗θ(dy)

Thus we have

E
[
|Vn|θrθ(Ṽn)1{|Vn−1|>Mθ}|Fn−1

]
(3.20)

= 1{|Vn−1|>Mθ}E
[
c(θ)

∫
Sd−1
〈Vn, y〉θ`∗θ(dy)|Fn−1

]
= 1{|Vn−1|>Mθ}E

[
c(θ)

∫
Sd−1

(〈AnVn−1, y〉+ 〈B, y〉)θ`∗θ(dy)|Fn−1

]
case 1. If θ ≤ 1, by subadditivity we have

E
[
c(θ)

∫
Sd−1

(〈AnVn−1, y〉+ 〈B, y〉)θ`∗θ(dy)|Fn−1

]
≤ E

[
c(θ)

∫
Sd−1
〈AnVn−1, y〉θ`∗θ(dy)|Fn−1

]
+ E

[
c(θ)

∫
Sd−1
〈B, y〉θ`∗θ(dy)|Fn−1

]
= E

[
|Vn−1|θ|AnṼn−1|θc(θ)

∫
Sd−1
〈An· Ṽn−1, y〉θ`∗θ(dy)|Fn−1

]
+ |B|θrθ(B̃)

= |Vn−1|θE
[
|AnṼn−1|θrθ(An· Ṽn−1)

∣∣Fn−1
]

+ |B|θrθ(B̃)
= |Vn−1|θλ(θ)rθ(Ṽn−1) + |B|θrθ(B̃)

= |Vn−1|θrθ(Ṽn−1)λ(θ)
[
1 + |B|θrθ(B̃)

λ(θ)|Vn−1|θrθ(Ṽn−1)

]
Then we have

E
[
|Vn|θrθ(Ṽn)1{|Vn−1|>Mθ}|Fn−1

]
≤ |Vn−1|θrθ(Ṽn−1)λ(θ)

[
1 + |B|θrθ(B̃)

λ(θ)|Vn−1|θrθ(Ṽn−1)

]
1{|Vn−1|>Mθ}

≤ |Vn−1|θrθ(Ṽn−1)λ(θ)
[
1 + |B|

θrθ(B̃)
λ(θ)Mθrθ

]
Since λ(θ) < 1, there exists

Mθ = |B|θrθ(B̃)
[1− λ(θ)]rθ

+ ε (3.21)
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for an ε > 0 such that
bθ = λ(θ)

[
1 + |B|

θrθ(B̃)
λ(θ)Mθrθ

]
< 1 (3.22)

Thus (3.19) holds.

case 2. If θ > 1, applying Minkowski’s inequality to the RHS of (3.20) gives

E
[
c(θ)

∫
Sd−1

(〈AnVn−1, y〉+ 〈B, y〉)θ`∗θ(dy)|Fn−1

]
≤

{[
E
(
c(θ)

∫
Sd−1
〈AnVn−1, y〉θ`∗θ(dy)|Fn−1

)]1/θ

+
[
E
(
c(θ)

∫
Sd−1
〈B, y〉θ`∗θ(dy)|Fn−1

)]1/θ
}θ

≤
{
|Vn−1|λ(θ)1/θrθ(Ṽn−1)1/θ + |B|rθ(B̃)1/θ

}θ
≤ |Vn−1|θrθ(Ṽn−1)

[
λ(θ)1/θ + |B|rθ(B̃)1/θ

|Vn−1|rθ(Ṽn−1)

]θ
Thus, as in the previous case, we have

E
[
|Vn|θrθ(Ṽn)1{|Vn−1|>Mθ}|Fn−1

]
≤ |Vn−1|θrθ(Ṽn−1)

[
λ(θ)1/θ + |B|rθ(B̃)1/θ

|Vn−1|rθ(Ṽn−1)

]θ
1{|Vn−1|>Mθ}

≤ |Vn−1|θrθ(Ṽn−1)
[
λ(θ)1/θ + |B|rθ(B̃)1/θ

Mθrθ

]θ
Choose

Mθ = |B|rθ(B̃)1/θ

(1− λ(θ)1/θ)rθ
+ ε for some ε > 0 (3.23)

bθ =
[
λ(θ)1/θ + |B|rθ(B̃)1/θ

Mθrθ

]θ
< 1

Then we have

E
[
|Vn|θrθ(Ṽn)1{|Vn−1|>Mθ}|Fn−1

]
≤ bθ|Vn−1|θrθ(Ṽn−1)

We have proved the lemma.

The conclusion of lemma 3.4 allows us to bound the return time of Vn to the set
C = {v ∈ χ, |v| < M}, where max is a postive constant. This is the next lemma.
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3.3.2 A bound on the return time to C
Lemma 3.5. Let Θ be a proper subset of (0, ξ), i.e. inf Θ > 0 and sup Θ < ξ. Define

M = sup
θ∈Θ

Mθ (3.24)

K0 = 0, Ki = inf{n > Ki−1 : |Vn| ≤M}, i ≥ 1 (3.25)

Then there exist 0 < b < 1 and ρ > 0 such that for n ≥ 1,

P(Kj+1 −Kj > n) ≤ bnρ (3.26)

Proof. Iterating (3.19) yields, for j ≥ 0, n > 1 and θ ∈ Θ,

E

[
|VKj+n|θrθ(ṼKj+n)

n−1∏
i=1

1{|VKj+i|>Mθ}

∣∣∣∣∣FKj+1

]
≤ bn−1

θ |VKj+1|θrθ(ṼKj+1)

Because {Kj+1 −Kj > n− 1} ⊆
⋂Kj+n−1
i=Kj+1 {|Vi| > Mθ},

E
[
|VKj+n|θrθ1{Kj+1−Kj>n−1}

∣∣FKj+1
]
≤ bn−1

θ |VKj+1|θ r̄θ,
E
[
|VKj+n|θrθ1{Kj+1−Kj>n−1}

]
≤ bn−1

θ E|VKj+1|θ r̄θ (3.27)

If θ < 1, by subadditivity we have

E|VKj+1|θ ≤ E
(
|AKj+1VKj |θ + |B|θ

)
= E

(
|AK+1ṼK |θ|VK |

)
≤MθE‖AK+1‖θ

Since 0 < θ < ξ and E‖AK+1‖0 = 1, E‖AK+1‖ξ <∞, it follows by continuity E‖Ak+1‖θ <
∞. So

E|VKj+1|θ ≤MθE‖A‖θ + |B|θ

If θ ≥ 1, by Minkowski inequality we have

(E|VK+1|θ)1/θ ≤ (E|AK+1VK |θ)1/θ + |B| ≤M(E|AK+1ṼK |θ)1/θ + |B|
≤ M(E‖A‖θ)1/θ + |B|,

E|VK+1|θ ≤
[
M(E‖A‖θ)1/θ + |B|

]θ
<∞

Then it follows from (3.27) for n ≥ 1,

V θrθP(Kj+1 −Kj > n− 1) ≤ E
[
|VKj+n|θrθ1{Kj+1−Kj>n−1}

]
≤ bn−1

θ E|VKj+1|θ r̄θ

That is
P(Kj+1 −Kj > n) < bnθ ρθ (3.28)

where

ρθ = r̄θ

rθV
θ
×

{
MθE‖A‖θ + |B|θ θ < 1[
M(E‖A‖θ)1/θ + |B|

]θ
θ ≥ 1

Since the inequality (3.28) holds for all θ ∈ Θ, we have for n ≥ 1,

P(Kj+1 −Kj > n) ≤ inf
θ∈Θ

bnθ ρθ ≤
(

inf
θ∈Θ

bθ

)n
sup
θ∈Θ

ρθ

Thus (3.26) holds with
b = inf

θ∈Θ
bθ, ρ = sup

θ∈Θ
ρθ (3.29)
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3.4 The estimator is unbiased

In this section we prove theorem 3.2.

Proof. By the strong law of large numbers for Markov chains,

1
n

n∑
i=0

1{|Vi|>u}
a.s.→ P(|V | > u)

Define Rn = sup{i ≥ 0 : Ki ≤ n}. Then one can write

1
n

n∑
i=1

1{|Vi|>u} = 1
n

KRn−1∑
i=0

1{|Vi|>u} +
n∑

i=KRn

1{|Vi|>u}

 (3.30)

For the 2nd term on the right side, we show in the following

1
n

n∑
i=KRn

1{|Vi|>u}
a.s.→ 0 (3.31)

This is, by definition, for all ε > 0

P

 ∞⋃
N=1

∞⋂
n=N

 1
n

n∑
i=KRn

1{|Vi|>u} ≤ ε


 = 1

By Borel-Cantelli lemma, it suffices to show

∞∑
n=1

P

 1
n

n∑
i=KRn

1{|Vi|>u} > ε

 <∞
Clearly

∞∑
n=1

P

 1
n

n∑
i=KRn

1{|Vi|>u} > ε

 ≤
∞∑
n=1

P

 1
n

KRn+1−1∑
i=KRn

1{|Vi|>u} > ε


≤

∞∑
n=1

P (KRn+1 −KRn > bεnc)

It suffices to show
∞∑

n=d1/εe

P (KRn+1 −KRn > bεnc) <∞

By Lemma 3.5, P(Kj+1 −Kj > k) < bnρ for k ≥ 1. Thus

∞∑
n=d1/εe

P (KRn+1 −KRn > bεnc) <
∞∑

n=d1/εe

bbεncρ <∞
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This shows (3.31) holds. For the 1st term on the right side of (3.30), we have

1
n

KRn−1∑
i=0

1{|Vi|>u} = Rn
n

1
Rn

Rn∑
i=1

Ki−1∑
j=Ki−1

1{|Vi|>u}

It can be shown (VKi ,
∑Ki−1
j=Ki−1

1{|Vi|>u}) is a positive Harris chain. Moreover

E

 Ki−1∑
j=Ki−1

1{|Vj |>u}

 ≤ E(Ki −Ki−1) <
∞∑
n=1

nbn0ρ0 <∞

Therefore, by the law of large numbers for Markov chains,

Rn
n

1
Rn

Rn∑
i=1

Ki−1∑
j=Ki−1

1{|Vi|>u}
a.s.→ π(C)EηNu

Hence 1
n

∑n
i=1 1{|Vi|>u}

a.s.→ π(C)EηNu. On the other hand, by the very definition of Nu,
EηNu = Eη

(
Nu1{Tu<K1}

)
. We have

Eη
(
Nu1{Tu<K1}

)
=

∫
(Sd−1×R)K1−1

Nu1{Tu<τ}
Tu∏
i=1

e−ξli
rξ(xi−1)
rξ(xi)

Pξ(xi−1, dxi × dli)
K1−1∏
i=Tu+1

P (xi−1, dxi × dli)

= EDη

[
Nu1{Tu<K1}e

−ξSTu rξ(X0)
rξ(XTu)

]
Thus we have proved the theorem.

3.5 The estimator has bounded relative error

In this section we prove that the estimator Eu is efficient, i.e. theorem 3.3.

Proof. The assertion is implied by, for all X0 ∈ C,

lim sup
u→∞

EDX0
E2
u

[P(|V | > u)]2 <∞

For notational simplicity, we omit the subscript X0 and write ED for EDX0
in the rest of

the proof. By Kesten’s theorem [84], P(|V | > u) ∼ Cu−ξ. Hence, to prove the assertion,
one needs to check

lim sup
u→∞

u2ξEDE2
u <∞

That is,

lim sup
u→∞

ED
[
u2ξN2

u1{Tu<K1}e
−2ξSTu

r2
ξ(X0)

r2
ξ(XTu)

]
<∞

We note Vt =
∑t
n=0At · · ·An+1B and |VTu | > u. Moreover rξ is bounded from above

and below by positive constants. So it suffices to show

lim sup
u→∞

ED
∣∣∣∣∣

Tu∑
n=0

N
1/ξ
u ATu · · ·An+1B

|ATu · · ·A1X0|
1{Tu<K1}

∣∣∣∣∣
2ξ < ∞ (3.32)
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In the rest of the proof, we write c, c1, c2, . . . for constants whose values have no impor-
tance and depend on the context. Moreover, we use the notation

Πi,j =
{
AiAi−1 · · ·Aj i ≥ j
1 i < j

If 2ξ > 1, by Minkowski’s inequality it suffices to show

lim sup
u→∞

∞∑
n=0

(
ED
∣∣∣∣N1/ξ

u

ΠTu,n+1B

|ΠTu,1X0|
1{n≤Tu<K1}

∣∣∣∣2ξ
)
<∞

The sum on the left side is bounded by

c

∞∑
n=0

ED
(
|ΠTu,n+1Xn|2ξN2

u1{n≤Tu<K1}

|ΠTu,n+1Xn|2ξ|Πn,1X0|2ξ

)

≤ c

∞∑
n=0

E
(
|ΠTu,n+1Xn|ξ

|Πn,1X0|ξ
N2
u1{n≤Tu<K1}

)
If 2ξ < 1, due to subadditivity, the sum on the left side of (3.32) is bounded by

∞∑
n=0

ED
(
|ΠTu,n+1B|2ξ

|ΠTu,1X0|2ξ
N2
u1{n≤Tu<K1}

)

≤ c

∞∑
n=0

ED
(
|ΠTu,n+1Xn|2ξ

|ΠTu,1X0|2ξ
N2
u1{n≤Tu<K1}

)

≤ c

∞∑
n=0

E
(
|ΠTu,n+1Xn|ξ

|Πn,1X0|ξ
N2
u1{n≤Tu<K1}

)
This is the same sum as in the previous case except for the multiplicative constant. So
in either case we need to show

lim sup
u→∞

∞∑
n=0

E
(
|ΠTu,n+1Xn|ξ

|Πn,1X0|ξ
N2
u1{n≤Tu<K1}

)
<∞ (3.33)

We write the sum of (3.33) as
∞∑
n=0

∞∑
m=n

E
[
|Πm,n+1Xn|ξ

|Πn,1X0|ξ
N2
u1{m<K1}1{Tu=m}

]
Since ‖Πn+m,n+1‖ → 0 a.s. as m → ∞ (cf. Buraczewski et al.[29], theorem 4.1.3), it is
useful to consider the family of sets S1(ε) for each ε > 0:

S1(ε) = {∃N1 ≥ 1, such that ∀m ≥ N1, ‖Πn+m,n+1‖ < ε} (3.34)

Note
P(S1(ε)) = 1

Thus we have
∞∑
n=0

∞∑
m=n

E
[
|Πm,n+1Xn|ξ

|Πn,1X0|ξ
N2
u1{m<K1}1{Tu=m}1{S1(ε)}

]
= D (3.35)
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Let’s temporarily specialize the general norm to 1-norm. In this case

|Πn,1X0|1 =
d∑
i=1

d∑
j=1

Πn,1(i, j)X0(j)

= d
∑
k

X0(k)
d∑
i=1

1
d

d∑
j=1

Πn,1(i, j)X0(j)∑
kX0(k)

where Πn,1(i, j) refers to the (i, j)-th component of matrix Πn,1 and X0(j) to the j-th
component of X0. By theorem 2 of Hennion [70], for every ε > 0:

P
(
∃N2 > T such that sup

n≥N2

∣∣∣∣ 1n log
[
|Πn,1X0|1
d|X0|1

]
− γ
∣∣∣∣ < ε

)
= 1

which implies

P
(
∃N2 > T such that ∀n ≥ N2, |Πn,1X0|1 > d|X0|1e(γ−ε)n

)
= 1

By equivalence of vector norms on Rd, |Πn,1X0| ≥ c1|Πn,1X0|1 and |X0|1 ≥ c2|X0| = c2
for some constants c1, c2 > 0. Thus we may define sets S2(ε):

S2(ε) =
{
∃N2 > T such that ∀n ≥ N2, |Πn,1X0| > c · d · e(γ−ε)n

}
where c > 0 is a constant. With S2(ε) defined as such, we have P(S2(ε)) = 1. Now that
we have P(S1(ε)) = 1 and P(S2(ε)) = 1, we may restrict the expectation in (3.35) to the
set S1(ε) ∩ S2(ε), i.e.

D =
∞∑
n=0

∞∑
m=n

E
[
|Πm,n+1Xn|ξ

|Πn,1X0|ξ
N2
u1{m<K1}1{Tu=m}1{S1(ε)∩S2(ε)}

]

=
(
N2−1∑
n=0

n+N1−1∑
m=n

+
N2−1∑
n=0

∞∑
m=n+N1

+
∞∑

n=N2

n+N1−1∑
m=n

+
∞∑

n=N2

∞∑
m=n+N1

)

E
[
|Πm,n+1Xn|ξ

|Πn,1X0|ξ
N2
u1{m<K1}1{Tu=m}1{S1(ε)∩S2(ε)}

]
= D1 + D2 + D3 + D4

To show D <∞, it suffices to show Di <∞ for each i = 1, 2, 3, 4. D1 sums only finitely
many terms, so it suffices to show for each fixed n and m,

E
[
|Πm,n+1Xn|ξ

|Πn,1X0|ξ
N2
u1{m<K1}1{Tu=m}1{S1(ε)∩S2(ε)}

]
<∞ (3.36)

Firstly, we observe |Πn,1X0| is bounded from below by a positive constant for any n <∞

|Πn,1X0|2 > d−1/2 min
l
X0(l)‖Πn,1‖2 > 0

The first inequality is due to Kesten [84]. Thus (3.36) is implied by

E
[
‖Πm,n+1‖ξN2

u1{m<K1}
]
<∞
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By Hölder’s inequality, the left side of the above inequality is bounded by

(E‖Πm,n+1‖pξ)1/p[E(N2q
u 1{m<K1})]

1/q

≤ (E‖A‖pξ)(m−n)/p[E(K2q
1 1{m<K1})]

1/q

where p, q > 1 and 1/p + 1/q = 1. Because E‖A‖s < ∞ for some s > ξ as assumed in
condition (I), p can be chosen sufficiently close to 1 such that E‖A‖pξ <∞. Meanwhile

E(K2q
1 1{m<K1}) ≤

∞∑
i=m+1

i2qP(K1 > i− 1) ≤
∞∑

i=m+1
i2qρ0b

i−1
0 <∞

where we have used lemma 3.5 to reach the last line.
As for D2, we note ‖Πm,n+1‖1{S1(ε)} < ε for m ≥ n+N1, and for n < N2, |Πn,1X0| >

0. So for D2 <∞, it suffices to show
N2−1∑
n=0

∞∑
m=n+N1

E(N2
u1{K1>m}) <∞

The left side is bounded by
N2−1∑
n=0

∞∑
m=n+N1

∑
i=m+1

i2P(K1 > i− 1)

=
N2−1∑
n=0

∞∑
m=n+N1

(c2m2 + c1m+ c0)bm0 <∞

where c0, c1, c2 are constants.
For D3, we have for n ≥ N2, |Πn,1X0|1{S1(ε)} > c · de(γ−ε)n. Thus

D3 <

∞∑
n=N2

n+N1−1∑
m=n

E
[
e(ε−γ)n

cd
‖Πm,n+1‖ξN2

u1{K1>m}

]

≤ 1
cd

∞∑
n=N2

e(ε−γ)n
n+N1−1∑
m=n

∞∑
i=m+1

i2E
[
‖Πm,n+1‖ξ1{K1=i}

]
≤ 1

cd

∞∑
n=N2

e(ε−γ)n
n+N1−1∑
m=n

∞∑
i=m+1

i2[E‖Πm,n+1‖pξ]1/p[P(K1 > i− 1)]1/q

≤ 1
cd

∞∑
n=N2

e(ε−γ)n[E‖A‖pξ]−n/p
n+N1−1∑
m=n

[E‖A‖pξ]m/p
∞∑

i=m+1
i2ρ1/q

o b
(i−1)/q
0

The last sum over i evaluates to (c2m2+c1m+c0)bm/q0 . So, by Cauchy-Schwarz inequality
we have

D3 ≤ c3ρ
1/q
o

∞∑
n=N2

e(ε−γ)n[E‖A‖pξ]−n/p ×

(
n+N1−1∑
m=n

[E‖A‖pξ]2m/pb2m/q0

)1/2(n+N1−1∑
m=n

(c2m2 + c1m+ c0)2

)1/2
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where c3 is a positive constant. Since positive multiplicative constants do not affect
the finiteness, we shall no longer keep track of their values but recycle the symbols
c, c0, c1, c2, . . . to denote different constants in different contexts. In this notation, the
second sum over m is bounded by c4(n+N1 − 1). We have

D3 ≤ c

∞∑
n=N2

e(ε−γ)n[E‖A‖pξ]−n/p(n+N1 − 1)
(
n+N1−1∑
m=n

[E‖A‖pξ]2m/pb2m/q0

)1/2

To show D3 <∞, it is sufficient to show
∞∑

n=N2

ne(ε−γ)nb
n/q
0 <∞

Condition (I) gives E‖A‖s < ∞. So we may choose p = s/ξ, i.e. q = (1 − ξ/s)−1. We
have assumed b

1/q
0 e−γ < 1, so there exists ε > 0 as small as to make e(ε−γ)nb

1/q
0 < 1.

Therefore the last inequality holds. We have shown D3 <∞.
To see D4 <∞, we observe

|Πm,n+1Xn|ξ

|Πn,1X0|ξ
1{S1(ε)∩S2(ε)} < ce(ε−γ)n

using the previous convention about multiplicative constants. Thus, to show D4 <∞, it
suffices to show

∞∑
n=N2

e(ε−γ)n
∞∑

m=n+N1

E(N2
u1{m<K1}) <∞

The left side is bounded by

c

∞∑
n=N2

e(ε−γ)n
∞∑

m=n+N1

∞∑
i=m+1

i2bi−1
0

≤ c

∞∑
n=N2

e(ε−γ)n
∞∑

m=n+N1

(c2m2 + c1m+ c0)bm0

≤ c

∞∑
n=N2

e(ε−γ)nbn+N1
0 [c2(n+N1)2 + c1(n+N1) + c0]

Since b0 < 1, it is clear b0 < b
1/q
0 . As argued in the case of D3, b1/q0 eε−γ < 1. So the last

sum is finite. Thus D4 <∞ and

D = D1 + D2 + D3 + D4 <∞

The proof is complete.

3.6 Estimation of tail index

3.6.1 The algorithm
The idea is to estimate log[λ(α)] according to

log[λ(α)] = lim
n→∞

1
n

log (E|Πn,1X0|α) (3.37)
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and then solve log[λ(ξ)] = 0 for ξ. The difficulty with brute-force simulation and esti-
mation is that, when n is large, the variance of |Πn,1X0|α is very large too, resulting
in uselessly inaccurate estimations. Vanneste [114] proposed an importance sampling
algorithm using a resampling step: we divide the estimation of log[λ(α)] into n steps
and we simulate K realizations of An, . . . , A1 and X0, X1, . . . , Xn. We denote the l-th
realization with an superscript l. The estimator Eα for log[λ(α)] is as follows:

Eα = 1
n

n∑
i=1

log
(

1
K

K∑
l=1
|AliX

wl,i−1
i−1 |α

)
(3.38)

where Ali, X l
I denote the l-th realization of Ai and Xi respectively, and the random

variable wl,i−1 has conditional distribution

P(wl,i−1 = j|w1,i−2, . . . , wK,i−2) =
aji−1
bi−1

aji−1 = |Aji−1X
wj,i−2
i−2 |α

bi−1 =
K∑
l=1

ali−1

Figure 3.1 shows a possible realization of the resampling procedure and algorithm 1
outlines an implementation of Eα. The norm | · | is not restricted to any particular form,
but obviously must be consistent with one’s choice of the norm when computing the right
eigenfunction, which is detailed in §3.8.1.
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Figure 3.1: A possible realization of the re-sampling procedure. n = 3, K = 4. A number
in a parenthesis indicates the probability of the unit vector above it being chosen to the
next step.

Note for an GARCH(p, q) processes, the Ai matrices have dimension d × d, where
d = p+ q − 1, and the Xi are d-dimensional unit vectors.
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Algorithm 1 Algorithm for estimating log[λ(α)] = limn→∞
1
n log (E|Πn,1|α)

procedure Eα(n,K)
Define K d-dimensional vectors X1, . . . , XK

Define K d-dimensional vectors Y 1, . . . , Y K

Define K-dimensional vector a← (1, 1, . . . , 1) . Initialize the weights
for i from 1 to K do . Generate initial unit vectors

for k from 1 to d do
Generate a U(0, 1) variable U
Xi(k)← U . Xi(k) is the k-th component of Xi

end for
Xi ← Xi/|Xi|

end for
Λ← 0
for j from 1 to n do

Define K-dimensional vector Q
Q(k)←

∑k
i=1 a(i) for all k = 1, 2, . . . ,K

Generate K d× d random matrices A1, . . . , AK .
for k from 1 to K do

Generate a U(0, Q(K)) variable U .
l← min{1 ≤ i ≤ K : Q(i) > U}
Y k ← AkX l

a(k)← |Y k|
Y k ← Y k/a(k)
a(k)← a(k)α

end for
For all k = 1, . . . ,K, Xk ← Y k

Λ← Λ + 1
n log

(
Q(K)
K

)
end for
Λ← Λ + 1

n log
[

1
K

∑K
k=1 a(k)

]
return Λ

end procedure

3.7 Sampling from the shifted conditional distribution

While the Radon-Nikodym derivative of the shifted conditional probability measure with
respect to the original measure is given by (3.17), the procedure of sampling from the
shifted conditional distribution is not trivial. For this purpose, we first draw a sequence
of χ2(1) random variables, call them Z2

1 , Z
2
2 , . . . , Z

2
K . Then for each 1 ≤ i ≤ K, we

compute

Wi = |A(Z2
i ) ·Xi−1|ξrξ(A(Z2

i ) ·Xi−1)
rξ(Xi−1)

Finally we draw a sample Z ′2 from the sequence Z2
1 , Z

2
2 , . . . , Z

2
K , such that

P(Z ′2 = Z2
i ) = Wi∑K

j=1Wj

Then the matrix At from the shifted distribution conditional on Xt−1 is A(Z ′2).
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3.8 An example: GARCH(2,1) processes

As an example of the algorithms described in the previous sections, we consider GARCH(2,1)
processes. In this particular case we have

σ2
t = ω + α1R

2
t−1 + α2R

2
t−2 + β1σ

2
t−1

Or in matrix forms(
σ2
t

R2
t−1

)
=

(
α1Z

2
t−1 + β1 α2
Z2
t−1 0

)(
σ2
t−1

R2
t−2

)
+
(
ω
0

)
(3.39)

Vt = AtVt−1 +B

where Rt is the t-th observation of the sequence in question and Zt are i.i.d N(0, 1)
random variables. In the following we check the conditions of theorem 3.3 against this
process.

As mentioned in remark 3.1, Bollerslev’s assumption α1 + α2 + β1 < 1 implies that
the top Lyapunov exponent associated with the model (3.39) is negative. In the following
we check the condition of theorem 3.3 with regard to this model.

Lemma 3.6. Assume Zt are i.i.d N(0, 1) random variables. Then b1−ξ/s < eγ , where b
is defined in lemma 3.5, ξ is the tail index of the stationary distribution of the markov
chain Vt as defined by (3.39) and γ is the top Lyapunov exponent of the matrices At in
(3.39).

Proof. First of all, we note s of condition (I), hypothesis 1 can be arbitrarily large since
Zt are i.i.d N(0, 1) random variables. Therefore b1−ξ/s < eγ holds if b < eγ . To show
the latter inequality holds, it suffices to show there exists θ ∈ (0, ξ) such that bθ < eγ ,
where bθ is defined in lemma 3.4.

If θ < 1, bθ is given by (3.22):

bθ = λ(θ)
[
1 + |B|

θrθ(B̃)
λ(θ)Mθrθ

]
Because Mθ can be chosen arbitrarily large, bθ < eγ holds if λ(θ) < eγ , or equivalently
log(λ(θ)) < γ. Applying theorem 2 of Hennion [70] gives, for an arbitrary fixed ε > 0,
there exists N > T such that for all n > N , 1

n log ‖Πn,1‖ < γ + ε. This implies

1
n

log
(
E‖Πn,1‖θ

)
< θ(γ + ε)

Thus
log(λ(θ)) = lim

n→∞

1
n

log
(
E‖Πn,1‖θ

)
< θ(γ + ε)

Thus, if θ is chosen such that 0 < θ < γ
γ+ε < 1, we have bθ < eγ . The proof is

complete.

3.8.1 Evaluation of the right eigenfunction
Recall that, for 0 < θ < ξ, the right eigenfunction rθ(·) corresponding to eigenvalue λ(θ)
of the operator Pθ defined in (3.15) satisfies

E
[
|Ax|θrθ(A·x)

]
= Pθrθ(x) = λ(θ)rθ(x) (3.40)
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In the following we take | · | as the Euclidean norm. Then x can be written as x =
(cosw, sinw)>, w ∈ (0, π/2) and

Ax =
(
α2 sinw + (Z2

t α1 + β1) cosw
Z2 cosw

)
Let A · x = (cosϕ, sinϕ)>. Then

Z2
t = tanϕ(α2 sinw + β1 cosw)

cosw(1− α1 tanϕ) (3.41)

dZ2
t

dϕ
= (α2 sinw + β1 cosw) sec2 ϕ

cosw(1− α1 tanϕ)2

Using (3.41) we can write

|Ax|θ = (α2
2 + β2

1)θ/2
sinθ

(
w + arctan β1

α2

)
cosθ ϕ(1− α1 tanϕ)θ

It also becomes clear from (3.41)

x ∈
{

(cosw, sinw)> : w ∈ Ω =
[
0, arctan 1

α1

)}
t = 0, 1, 2, . . .

Define
hθ(w) : w ∈ Ω→ (rθ, r̄θ) 3 rθ((cosw, sinw)>)

Then (3.40) can be rewritten as

λ(θ)hθ(w) =
∫

Ω
(α2

2 + β2
1)θ/2

sinθ
(
w + arctan β1

α2

)
cosθ ϕ(1− α1 tanϕ)θ fχ

2

[
tanϕ(α2 sinw + β1 cosw)

cosw(1− α1 tanϕ)

]
×

hθ(ϕ) (α2 sinw + β1 cosw) sec2 ϕ

cosw(1− α1 tanϕ)2 dϕ

λ(θ)hθ(w) =
∫

Ω
Hθ(w,ϕ)hθ(ϕ)dϕ (3.42)

where fχ2(·) is the probability density function of the χ2 distribution; the function
Hθ(w,ϕ) has been defined for convenience. We may approximate the last integral with
a sum and the function hθ(·) with a vector:

λ(θ)hθ(i∆n) ≈ ∆n

n−1∑
j=0

Hθ(i∆n, j∆n)hθ(j∆n)

where ∆n = arctan(1/α1)
n . Thus λ(θ) can be found as the spectral radius of matrix

∆nHθ(i∆n, j∆n) and {hθ(i∆n)}i=1,2,...,n as the associated eigenvector (cf. Collamore
and Mentemeier [37], lemma 2.2).
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3.8.2 The algorithm
In this section we describe the implementation of the proposed estimator Eu. In previous
sections we have shown that Eu is efficient for GARCH(2, 1) and described how the right
eigenfunctions can be approximately evaluated. It remains to choose the set C = {v ∈
χ, |Vn| < M}. As given in (3.24), M = supθ∈ΘMθ while Mθ is in turn given by (3.21) or
(3.23). One viable option is to choose Mθ such that bθ = 1+λ(θ)

2 < 1. For the range of θ,
which is denoted Θ, we take Θ = [0.1, 0.1 + 0.99× (ξ − 0.1)], where ξ is the tail index.

Before coding the algorithm of estimating P(|V | > u), we first need a procedure for
simulating a sample path under the dual transition kernel of the MA-process (Xt, St).
For convenience, let A(W ) denotes the matrix At that appears in (3.39) with Z2

t−1 = W .
We describe the procedure in algorithm 2.

With a procedure established for simulating a sample path under the dual transition
kernel, we are at a position to describe the procedure for estimating P(|V | > u). We
present it as algorithm 3.

3.8.3 Simulaton and Results
In this section we present estimation results of the algorithm outlined in §3.8.2 when ap-
plied to a few real-world GARCH(2, 1) time series. Table 3.1 lists the estimated parame-
ters of the S& P 500 index and the Dow Jones Industrial Average index. Judging by the
Akaike Information Criterior, the two series are indeed better described by GARCH(2, 1)
models than by the simpler GARCH(1, 1) models. In the following table 3.2 we tabulate

ω α1 α2 β1 ξ AIC
SP500 GARCH(1, 1) 7.4 ×10−6 0.15 0.72 -7.0270
SP500 GARCH(2, 1) 9.2 ×10−6 0.088 0.097 0.65 -7.0274
DJIA GARCH(1, 1) 5.6 ×10−6 0.16 0.73 3.76 -7.1720
DJIA GARCH(2, 1) 7.3 ×10−6 0.075 0.13 0.65 4.12 -7.1752

Table 3.1: GARCH(1, 1) and GARCH(2, 1) models of returns of Standard & Poor 500
index (SP500) and the Dow Jones Industrial Average index (DJIA). The price data are
downloaded from Yahoo and cover the period 2012-01-01 to 2014-12-31. 753 observations
are included. AIC stands for Akaike Information Criterior. The model parameters are
estimated using the fGARCH package [31] of the R language.

the values of u, M , and P(|V | > u) for the SP500 and DJIA series described in table 3.1.
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Algorithm 2 Algorithm for simulating a sample path under the dual kernel
procedure sim(u, V0) . Simulate a path under the dual kernel

V ← V0
X ← V0/|V0|
B ← (ω, 0)>
(Nu, S, I,m)← (0, 0, 0, 0)
loop

Generate U(0, 1) r.v. U
if I = 0 then . u is not exceeded. Sample from the shifted distribution

draw W |X from the shifted distribution as described in §3.7
else . u is exceeded. Sample from the original distribution

draw W from χ2(1) distribution
end if
V ← A(W )V +B
if I = 0 then . Once u is exceeded, X,S don’t need to be computed.

S ← log |A(W )X|
X ← A(W )X

|A(W )X|
end if
if I = 0 and |V | ≤M then . The chain returns to C before exceeding u.

(Nu, S)← (0, 0)
m← m+ 1

else if I = 0 and |V | > M then
if |V | > u then . u is exceeded for the 1st time

Nu ← Nu + 1
I ← 1

end if
else if I = 1 and |V | ≤M then

break
else if I = 1 and |V | > u then

Nu ← Nu + 1
end if

end loop
p← Nu exp(−ξS)rξ(V0/|V0|)/rξ(X)
q ← m+ 1
return (p, q)

end procedure
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Algorithm 3 Algorithm for estimating P(|V | > u)
procedure Eu(u,K)

Define W0 = ( ω
1−β1

, 0)> . Create a sample of η : η(S) = π(S)/π(C), S ⊆ C
Define B = (ω, 0)>.
for i from 1 to 1000 do

Generate χ2(1) random variable Z2
i

generate random matrix Ai(Z2
i ).

Wi ← AiWi−1 +B
end for
for i from 1 to 800 do . Discard the first 20% of the sample.

Wi ←Wi+200
end for
Discard all Wi for which |Wi| > M .
N ← number of remaining Wi

Define a vector E of length K.
n← 0
for i from 1 to K do . Simulate K sample paths according to the dual transition

kernel
Generate U(0, N) random variable U
k ← dUe
(p, q)← sim(u,Wk) . Simulate a sample path
Ei ← p
n← n+ q;

end for
π(C)← N/1000
Êu ← π(C)

n

∑K
i=1Ei . Êu is our estimate of P(|V | > u)

return Êu
end procedure

u P(|V | > u) u P(|V | > u)
6 2.16× 10−2 17 4.03× 10−4

7 1.06× 10−2 18 3.25× 10−4

8 6.37× 10−3 19 2.41× 10−4

9 4.06× 10−3 20 2.08× 10−4

10 2.95× 10−3 50 4.78× 10−6

11 2.04× 10−3 51 4.43× 10−6

12 1.55× 10−3 52 3.65× 10−6

13 9.92× 10−4 53 3.96× 10−6

14 7.94× 10−4 53 3.77× 10−6

15 6.24× 10−4 54 3.42× 10−6

16 5.09× 10−4 55 3.05× 10−6

Table 3.2: Estimates of P(|V | > u) for the GARCH(2, 1) model of DJIA. M = 4.65,
ξ = 4.12.
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Abstract

We consider a multivariate heavy-tailed stochastic volatility model and analyze
the large-sample behavior of its sample covariance matrix. We study the limiting
behavior of its entries in the infinite-variance case and derive results for the ordered
eigenvalues and corresponding eigenvectors. Essentially, we consider two different
cases where the tail behavior either stems from the iid innovations of the process
or from its volatility sequence. In both cases, we make use of a large deviations
technique for regularly varying time series to derive multivariate α-stable limit dis-
tributions of the sample covariance matrix. While we show that in the case of
heavy-tailed innovations the limiting behavior resembles that of completely inde-
pendent observations, we also derive that in the case of a heavy-tailed volatility
sequence the possible limiting behavior is more diverse, i.e. allowing for depen-
dencies in the limiting distributions which are determined by the structure of the
underlying volatility sequence.

4.1 Introduction

4.1.1 Background and Motivation
The study of sample covariance matrices is fundamental for the analysis of dependence
in multivariate time series. Besides from providing estimators for variances and covari-
ances of the observations (in case of their existence), the sample covariance matrices
are a starting point for dimension reduction methods like principal component analysis.
Accordingly, the special structure of sample covariance matrices and their largest eigen-
values has been intensively studied in random matrix theory, starting with iid Gaussian
observations and more recently extending results to arbitrary distributions which satisfy
some moment assumptions like in the four moment theorem of Tao and Vu [109].

However, with respect to the analysis of financial time series, such a moment assump-
tion is often not suitable. Instead, in this work, we will analyze the large sample behavior
of sample covariance matrices under the assumption that the marginal distributions of
our observations are regularly varying with index α < 4 which implies that fourth mo-
ments do not exist. In this case, we would expect the largest eigenvalues of the sample
covariance matrix to inherit heavy-tailed behavior as well; see for example Ben Arous

69
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and Guionnet [18], Auffinger et al. [7], Soshnikov [105, 106], Davis et al. [38], Heiny and
Mikosch [68] for the case of iid entries. Furthermore, in the context of financial time se-
ries we have to allow for dependencies both over time and between different components
and indeed it is the very aim of the analysis to discover and test for these dependencies
from the resulting sample covariance matrix as has for example been done in Plerou
et al. [95] and Davis et al. [44, 45]. The detection of dependencies among assets also
plays a crucial role in portfolio optimization based on multi-factor prizing models, where
principal component analysis is one way to derive the main driving factors of a portfolio;
cf. Campbell et al. [30] and recent work by Lam and Yao [86].

The literature on the asymptotic behavior of sample covariance matrices derived from
dependent heavy-tailed data is, however, relatively sparse up till now. Starting with the
analysis of the sample autocorrelation of univariate linear heavy-tailed time series in
Davis and Resnick [46, 47], the theory has recently been extended to multivariate heavy-
tailed time series with linear structure in Davis et al. [44, 45], cf. also the recent survey
article by Davis et al. [38]. But most of the standard models for financial time series
such as GARCH and stochastic volatility models are non-linear. In this paper we will
therefore focus on a class of multivariate stochastic volatility models of the form

Xit = σit Zit , t ∈ Z , 1 ≤ i ≤ p, (4.1)

where (Zit) is an iid random field independent of a strictly stationary ergodic field (σit)
of non-negative random variables; see Section 4.2 for further details. Stochastic volatility
models have been studied in detail in the financial time series literature; see for example
Andersen et al. [4], Part II. They are among the simplest models allowing for conditional
heteroscedasticity of a time series. In view of independence between the Z- and σ-fields
dependence conditions on (Xit) are imposed only via the stochastic volatility (σit). Often
it is assumed that (log σit) has a linear structure, most often Gaussian.

In this paper we are interested in the case when the marginal and finite-dimensional
distributions of (Xit) have power-law tails. Due to independence between (σit) and (Zit)
heavy tails of (Xit) can be due to the Z- or the σ-field. Here we will consider two cases:
(1) the tails of Z dominate the right tail of σ and (2) the right tail of σ dominates the
tail of Z. The third case when both σ and Z have heavy tails and are tail-equivalent
will not be considered in this paper. Case (1) is typically more simple to handle; see
Davis and Mikosch [40, 41, 43] for extreme value theory, point process convergence and
central limit theory with infinite variance stable limits. Case (2) is more subtle as regards
the tails of the finite-dimensional distributions. The literature on stochastic volatility
models with a heavy-tailed volatility sequence is so far sparse but the interest in these
models has been growing recently; see Mikosch and Rezapour [89], Kulik and Soulier
[85] and Janßen and Drees [78]. In particular, it has been shown that these models offer
a lot of flexibility with regard to the extremal dependence structure of the time series,
ranging from asymptotic dependence of consecutive observations (cf. [89]) to asymptotic
independence of varying degrees (cf. [85] and [78]).

4.1.2 Aims, main results and structure
After introducing the general model in Section 4.2 we first deal with the case of heavy-
tailed innovations and a light-tailed volatility sequence in Section 4.3. The first step in
our analysis is to describe the extremal structure of the corresponding process by deriving
its so-called tail process; see Section 4.2.3 and Proposition 4.1. This allows one to apply
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an infinite variance stable central limit theorem from Mikosch and Wintenberger [90] (see
Appendix 4.6) to derive the joint limiting behavior of the entries of the sample covariance
matrix of this model. This leads to the main results in the first case: Theorems 4.3 and
4.6. They say, roughly speaking, that all values on the off-diagonals of the sample
covariance matrix are negligible compared to the values on the diagonals. Furthermore,
the values on the diagonal converge, under suitable normalization, to independent α-
stable random variables, so the limiting behavior of this class of stochastic volatility
models is quite similar to the case of iid heavy-tailed random variables. This fairly
tractable structure allows us also to derive explicit results about the asymptotic behavior
of the ordered eigenvalues and corresponding eigenvectors which can be found in Sections
4.3.3 and 4.3.4. In particular, we will see that in this model the eigenvectors are basically
the unit canonical basis vectors which describe a very weak form of extremal dependence.
With a view towards portfolio analysis, our assumptions imply that large movements of
the market are mainly driven by one single asset, where each asset is equally likely to be
this extreme driving force.

In the second case of a heavy-tailed volatility sequence combined with light-tailed
innovations, which we analyze in Section 4.4, we see that the range of possible limiting
behaviors of the entries of the sample covariance matrix is more diverse and depends on
the specific structure of the underlying volatility process. We make the common assump-
tion that our volatility process is log-linear, where we distinguish between two different
cases for the corresponding innovation distribution of this process. Again, for both cases,
we first derive the specific form of the corresponding tail process (see Proposition 4.14)
which then allows us to derive the limiting behavior of the sample covariance matrix en-
tries, leading to the main results in the second case: Theorems 4.16 and 4.20. We show
that the sample covariance matrix can feature non-negligible off-diagonal components,
therefore clearly distinguishing from the iid case, if we assume that the innovations of
the log-linear volatility process are convolution equivalent. We discuss concrete exam-
ples for both model specifications and the corresponding implications for the asymptotic
behavior of ordered eigenvalues and corresponding eigenvectors at the end of Section 4.4.

Section 4.5 contains a small simulation study which illustrates our results for both
cases and also includes a real-life data example for comparison. From the foreign exchange
rate data that we use, it is notable that the corresponding sample covariance matrix
features a relatively large gap between the largest and the second largest eigenvalue and
that the eigenvector corresponding to the largest eigenvalue is fairly spread out, i.e., all its
components are of a similar order of magnitude. This implies that the model discussed in
Section 4.3 may not be that suitable to catch the extremal dependence of this data, and
that there is not one single component that is most affected by extreme movements but
instead all assets are affected in a similar way. We perform simulations for three different
specifications of models from Sections 4.3 and 4.4. They illustrate that the models
analyzed in Section 4.4 are capable of exhibiting more diverse asymptotic behaviors of
the sample covariance matrix and in particular non-localized dominant eigenvectors.

Some useful results for the (joint) tail and extremal behavior of random products are
gathered in Appendix 4.7. These results may be of independent interest when study-
ing the extremes of multivariate stochastic volatility models with possibly distinct tail
indices. We mention in passing that there is great interest in non-linear models for log-
returns of speculative prices when the number of assets p increases with the sample size
n. We understand our analysis as a first step in this direction.
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4.2 The model

We consider a stochastic volatility model

Xit = σit Zit , i, t ∈ Z , (4.2)

where (Zit) is an iid field independent of a strictly stationary ergodic field (σit) of non-
negative random variables. We write Z, σ, X for generic elements of the Z-, σ- and
X-fields σ and Z are independent. A special case appears when σ > 0 is a constant:
then (Xit) constitutes an iid field.

For the stochastic volatility model as in (4.1) we construct the multivariate time series

Xt = (X1t, . . . , Xpt)′, t ∈ Z, (4.3)

for a given dimension p ≥ 1. For n ≥ 1 we write Xn = vec
(
(Xt)t=1,...,n

)
∈ Rp×n and

consider the non-normalized sample covariance matrix

Xn(Xn)′ = (Sij)i,j=1,...,p , Sij =
n∑
t=1

XitXjt , Si = Sii . (4.4)

4.2.1 Case (1): Z dominates the tail
We assume that Z is regularly varying with index α > 0, i.e.,

P(Z > x) ∼ p+
L(x)
xα

and P(Z < −x) ∼ p−
L(x)
xα

, x→∞ , (4.5)

where p+ and p− are non-negative numbers with p+ + p− = 1 and L is a slowly varying
function. If we assume E[σα+δ] <∞ for some δ > 0 then, in view of a result by Breiman
[27] (see also Lemma 4.24), it follows that

P(X > x) ∼ E[σα]P(Z > x) and P(X < −x) ∼ E[σα]P(Z < −x) , x→∞ , (4.6)

i.e., X is regularly varying with index α. Moreover, we know from a result by Embrechts
and Goldie [57] that for independent copies Z1 and Z2 of Z, Z1Z2 is again regularly
varying with index α; cf. Lemma 4.24. Therefore, using again Breiman’s result under
the condition that E[(σi0σj0)α+δ1(i 6= j) + σα+δ

i0 ] <∞ for some δ > 0, we have

P(±XitXjt > x) ∼
{

E[(σit σjt)α]P(±Zi Zj > x) i 6= j ,

E[σα]P(Z2 > x) i = j ,
x→∞ . (4.7)

4.2.2 Case (2): σ dominates the tail
We assume that σ ≥ 0 is regularly varying with some index α > 0: for some slowly
varying function `,

P(σ > x) = x−α `(x) ,

and E[|Z|α+δ] <∞ for some δ > 0. Now the Breiman result yields

P(X > x) ∼ E[Zα+]P(σ > x) and P(X < −x) ∼ E[Zα−]P(σ > x) , x→∞ .
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Since we are also interested in the tail behavior of the products XitXjt we need to be
more precise about the joint distribution of the sequences (σit). We assume

σit = exp
( ∞∑
k,l=−∞

ψkl ηi−k,t−l

)
, i, t ∈ Z , (4.8)

where (ψkl) is a field of non-negative numbers (at least one of them being positive)
(without loss of generality) maxkl ψkl = 1 and (ηit) is an iid random field a generic
element η satisfies

P
(
e η > x) = x−α L(x) , (4.9)

for some α > 0 and a slowly varying function L. We also assume
∑
k,l ψkl < ∞ to

ensure absolute summability of log σit. A distribution of η that fits into this scheme is
for example the exponential distribution; cf. also Rootzén [98] for further examples and
extreme value theory for linear processes of the form

∑∞
l=−∞ ψl ηt−l.

4.2.3 Regularly varying sequences
In Sections 4.3.1 and 4.4.1 we will elaborate on the joint tail behavior of the sequences
(σit), (Xit), (σitσjt), and (XitXjt). We will show that, under suitable conditions, these
sequences are regularly varying with positive indices.

The notion of a univariate regularly varying sequence was introduced by Davis and
Hsing [39]. Its extension to the multivariate case does not represent difficulties; see Davis
and Mikosch [42]. An Rd-valued strictly stationary sequence (Yt) is regularly varying
with index γ > 0 if each of the vectors (Yt)t=0,...,h, h ≥ 0, is regularly varying with index
γ, i.e., there exist non-null Radon s µh on [−∞,∞]d(h+1)\{0} which are homogeneous
of order −γ such that

P(x−1(Yt)t=0,...,h ∈ ·)
P(‖Y0‖ > x)

v→ µh(·) . (4.10)

Here v→ denotes vague convergence on the Borel σ-field of [−∞,∞]d(h+1)\{0} and ‖ · ‖
denotes any given norm; see Resnick’s books [96, 97] as general references to multivariate
regular variation.

Following Basrak and Segers [15], an Rd-valued strictly stationary sequence (Yt) is
regularly varying with index γ > 0 if and only if there exists a sequence of Rd-valued
random vectors (Θh) independent of a Pareto(γ) random variable Y , i.e., P(Y > x) =
x−γ , x > 1, for any k ≥ 0,

P(x−1(Y0, . . . ,Yk) ∈ · | ‖Y0‖ > x) w→ P
(
Y (Θ0, . . . ,Θk) ∈ ·

)
, x→∞ . (4.11)

We call (Θh) the spectral tail process of (Yt) and (YΘh) the tail process. We will use
both defining properties (i.e., (4.10) and (4.11)) of a regularly varying sequence.

4.3 Case (1): Z dominates the tail

4.3.1 Regular variation of the stochastic volatility model and its
product processes

Proposition 4.1. We assume the stochastic volatility model (4.2) and that Z is regularly
varying with index α > 0 in the sense of (4.5).
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1. If E[σα+ε] < ∞ for some ε > 0 the sequence (Xit)t∈Z is regularly varying with
index α and the corresponding spectral tail process (Θi

h)h≥1 vanishes.

2. For any i 6= j, if E[(σi0σj0)α+ε] <∞ for some ε > 0 then the sequence (XitXjt) is
regularly varying with index α and the corresponding spectral tail process (Θij

h )h≥1
vanishes.

Remark 4.2. If E[(σikσjl)α+εik,jl ] < ∞ for some εik,jl > 0 and any (i, k) 6= (j, l) it is
also possible to show the joint regular variation of the processes (XitXjt), i 6= j, with
index α. The description of the corresponding spectral tail process is slightly tedious. It
is not needed for the purposes of this paper and therefore omitted.

Proof. Regular variation of the marginal distributions of (Xit) and (XitXjt) follows from
Breiman’s result; see (4.6) and (4.7). As regards the regular variation of the finite-
dimensional distributions of (Xit), we have for h ≥ 1,

P(|Xih| > x | |Xi0| > x) = P(min(|Xi0|, |Xih|) > x)
P(|Xi0| > x)

≤ P(max(σi0, σih) min(|Zi0|, |Zih|) > x)
P(|Xi0| > x) → 0 , x→∞ .

In the last step we used Markov’s inequality together with the moment condition E[σα+ε] <
∞ and the fact that min(|Zi0|, |Zih|) is regularly varying with index 2α. This means that
Θi
h = 0 for h ≥ 1.
Similarly, for i 6= j, h ≥ 1,

P(|XihXjh| > x | |Xi0Xj0| > x) ≤ P(max(σi0σj0, σihσjh) min(|Zi0Zj0|, |ZihZjh|) > x)
P(|Xi0Xj0| > x) → 0 .

In the last step we again used Markov’s inequality, the fact that Zi0Zj0 is regularly
varying with index α (see Embrechts and Goldie [57]; cf. Lemma 4.24(1) below), hence
min(|Zi0Zj0|, |ZihZjh|) is regularly varying with index 2α, and the moment condition
E[(σi0σj0)α+ε] <∞. Hence Θij

h = 0 for i 6= j, h ≥ 1.

4.3.2 Infinite variance stable limit theory for the stochastic
volatility model and its product processes

Theorem 4.3. Consider the stochastic volatility model (4.2) and assume the following
conditions:

1. Z is regularly varying with index α ∈ (0, 4) \ {2}.

2.
(
(σit)t=1,2,...

)
i=1,...,p is strongly mixing with rate function (αh) for some δ > 0,

∞∑
h=0

α
δ/(2+δ)
h <∞ . (4.12)

3. The moment condition

E[σ2 max(2+δ,α+ε)] <∞ (4.13)

holds for the same δ > 0 as in (4.12) and some ε > 0.
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Then

a−2
n

(
S1 − cn, . . . , Sp − cn

) d→ (ξ1,α/2, . . . , ξp,α/2) , (4.14)

where (ξi,α/2) are iid α/2-stable random variables which are totally skewed to the right,

cn =
{

0 α ∈ (0, 2) ,
nE[X2] α ∈ (2, 4) , (4.15)

and (an) satisfies nP(|X| > an)→ 1 as n→∞.

Remark 4.4. From classical limit theory (see Feller [61], Petrov [94]) we know that
(4.14) holds for an iid random field (Xit) with regularly varying X with index α ∈ (0, 4).
In the case α = 2 one needs the special centering cn = nE[X21(|X| ≤ an)] which often
leads to some additional technical difficulties. For this reason we typically exclude this
case in the sequel.

Remark 4.5. It follows from standard theory that α-mixing of (σit) with rate function
(αh) implies α-mixing of (Xit) with rate function (4αh); see Davis and Mikosch [43].

Proof. Recall the definition of (Xt) from (4.3). We will verify the conditions of Theo-
rem 4.22 for X2

t = (X2
it)i=1,...,p, t = 0, 1, 2, . . ..

(1) We start by verifying the regular variation condition for (Xt); see (4.11). We will de-
termine the sequence (Θh) corresponding to (Xt). We have for t ≥ 1, with the max-norm
‖ · ‖,

P
(
‖Xt‖ > x | ‖X0‖ > x

)
≤

P
(
‖Xt‖ > x ,∪pi=1{|Xi0| > x}

)
P(‖X0‖ > x)

≤
p∑
i=1

P
(
‖Xt‖ > x , |Xi0| > x

)
P(‖X0‖ > x)

≤
p∑
i=1

p∑
j=1

P
(
|Xjt| > x , |Xi0| > x

)
P(|X| > x)

≤
p∑
i=1

p∑
j=1

P
(

max(σjt, σi0) min(|Zjt|, |Zi0|) > x
)

P(σ|Z| > x) .

We observe that by Breiman’s result and in view of the moment condition (4.13), for
t ≥ 1 and some positive constant c,

P
(

max(σjt, σi0) min(|Zjt|, |Zi0|) > x
)

P(σ|Z| > x) ∼ c P(min(|Zjt|, |Zi0|) > x)
P(|Z| > x) ,

and the right-hand side converges to zero as x → ∞. We conclude that Θh = 0 for
h ≥ 1. We also have for i 6= j,

P(|Xi0| > x , |Xj0| > x)
P(|X| > x) ≤

P
(

max(σi0, σj0) min(|Zi0|, |Zj0|) > x
)

P(σ|Z| > x) → 0 , x→∞ .

Then, in a similar way, one can show

P(X0/‖X0‖ ∈ · | ‖X0‖ > x) w→ P(Θ0 ∈ ·) = 1
p

p∑
i=1

(
p+εei(·) + p−ε−ei(·)

)
.(4.16)
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where ei are the canonical basis vectors in Rp, εx is Dirac measure at x and p± are the
tail balance factors in (4.5).

We conclude that the spectral tail process (Θ(2)
h ) of (X2

t ) is given by Θ(2)
h = 0 for

h ≥ 1 and from (4.16) we also have

P(Θ(2)
0 ∈ ·) = 1

p

p∑
i=1

εei(·) . (4.17)

In particular, the condition
∑∞
i=1 E[‖Θ(2)

i ‖] <∞ in Theorem 4.22(4) is trivially satisfied.

(2) Next we want to prove the mixing condition (4.46) for the sequence (X2
t ). We start

by observing that there are integer sequences (ln) and (mn) kn αln → 0, ln = o(mn) and
mn = o(n). Then we also have for any γ > 0,

kn P
( ln∑
t=1

X2
t1(‖Xt‖ > εan) > γa2

n

)
≤ kn ln P(‖Xt‖ > εan) ≤ c ln/mn = o(1) . (4.18)

Relation (4.46) turns into

Ee is
′a−2
n

∑n

t=1
X2
t1(‖Xt‖>εan) −

(
Ee is

′a−2
n

∑mn

t=1
X2
t1(‖Xt‖>εan))kn → 0 , s ∈ Rp .

In view of (4.18) it is not difficult to see that we can replace the sum in the former char-
acteristic function by the sum over the index set Jn = {1, . . . ,mn− ln,mn+1, . . . , 2mn−
ln, . . . , } ⊂ {1, . . . , n} and in the latter characteristic function by the sum over the index
set {1, . . . ,mn− ln}. Without loss of generality we may assume that n/mn is an integer.
Thus it remains to show that the following difference converges to zero for every s ∈ Rp:∣∣∣E[e is′a−2

n

∑
t∈Jn

X2
t1(‖Xt‖>εan)]− (E[e is′a−2

n

∑mn−ln
t=1

X2
t1(‖Xt‖>εan)])kn∣∣∣

=
∣∣∣ kn∑
v=1

E
[ v−1∏
j=1

e is
′a−2
n

∑jmn−ln
t=(j−1)mn+1

X2
t1(‖Xt‖>εan)

×
(
e is
′a−2
n

∑vmn−ln
t=(v−1)mn+1

X2
t1(‖Xt‖>εan) − E

[
e is
′a−2
n

∑vmn−ln
t=(v−1)mn+1

X2
t1(‖Xt‖>εan)])]

×
kn∏

j=v+1
E
[
e is
′a−2
n

∑jmn−ln
t=(j−1)mn+1

X2
t1(‖Xt‖>εan)]∣∣∣ .

In view of a standard inequality for covariances of strongly mixing sequences of bounded
random variables (see Doukhan [49], p. 3) the right-hand side is bounded by c knαln
which converges to zero by construction. Here and in what follows, c stands for any
positive constant whose value is not of interest. Its value may change from line to line.
This finishes the proof of the mixing condition.

(3) Next we check the anti-clustering condition (4.47) for (Xt) with normalization (an),
implying the corresponding condition for (X2

t ) with normalization (a2
n). By similar meth-
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ods as for part (1) of the proof, assuming that ‖ · ‖ is the max-norm, we have

P
(

max
t=l,...,mn

‖Xt‖ > γan | ‖X0‖ > γan
)

≤
mn∑
t=l

P
(
‖Xt‖ > γan | ‖X0‖ > γan

)
≤ c

mn∑
t=l

p∑
i=1

p∑
j=1

P
(
|Xit| > γan , |Xj0| > γan

)
P(|Z| > γan)

≤ c

mn∑
t=l

p∑
i=1

p∑
j=1

P
(

max(σit, σj0) min(|Zit|, |Zj0|) > γan
)

P(|Z| > γan)

≤ c

mn∑
t=l

p∑
i=1

p∑
j=1

P
(
σit min(|Zit|, |Zj0|) > γan

)
P(|Z| > γan) .

By stationarity the probabilities on the right-hand side do not depend on t ≥ l. Therefore
and by Breiman’s result, the right-hand side is bounded by

cmn

P
(

min(|Zit|, |Zj0|) > γan
)

P(|Z| > γan) = O((mn/n)[n P(|Z| > an)]) = o(1) .

This proves (4.47) for (Xt).
(4) Next we check the vanishing small values condition (4.48) for the partial sums of
(X2

t ) and α ∈ (2, 4). It is not difficult to see that it suffices to prove the corresponding
result for the component processes:

lim
ε↓0

lim sup
n→∞

P
(∣∣∣ n∑

t=1

(
X2
it1(|Xit| ≤ εan)− E[X2

it1(|Xit| ≤ εan)]
)∣∣∣ > γa2

n

)
= 0 , (4.19)

γ > 0 , i = 1, . . . , p .

We have

a−2
n

n∑
t=1

σ2
itE
[
Z2
it1(|Xit| ≤ εan) | σit]− a−2

n nE[X2
it1(|Xit| ≤ εan)]

= a−2
n

n∑
t=1

(σ2
it − E[σ2

it])E[Z2]− a−2
n

n∑
t=1

(
σ2
itE[Z2

it1(|Xit| > εan) | σit]− E[X2
it1(|Xit| > εan)]

)
= I1 + I2 .

The sequence (σ2
it) satisfies the central limit theorem with normalization

√
n. This

follows from Ibragimov’s central limit theorem for strongly mixing sequence whose rate
function (αh) satisfies (4.12) and has moment E[σ2(2+δ))] <∞ (see (4.13)); cf. Doukhan
[49], p. 45. We know that

√
n/a2

n → 0 for α ∈ (2, 4). Therefore I1
P→ 0. We also have

E[I2
2 ] ≤ n

a4
n

E
[
σ4(E[Z21(|X| > εan) | σ])2]

+2 n

a4
n

n∑
h=1
|cov(σ2

i0E
[
Z2
i01(|X2

i0| > εan) | σi0], σ2
ihE
[
Z2
ih1(|X2

ih| > εan) | σih])|

= I3 + I4 .
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In view of the moment conditions on σ and since E[Z2] <∞, I3 ≤ c(n/a4
n)→ 0. In view

of Doukhan [49], Theorem 3 on p. 9, we have

I4 ≤ c
n

a4
n

n∑
h=1

α
δ/(2+δ)
h (E|σ|2(2+δ))2/(2+δ) → 0 .

Thus it suffices for (4.19) to prove

lim
ε↓0

lim sup
n→∞

P
(∣∣∣ n∑

t=1

(
σ2
itE[Z2

it1(|Xit| ≤ εan) | σit]−X2
it1(|Xit| ≤ εan)

)∣∣∣ > γ a2
n

)
= 0 , γ > 0 .

The summands are independent and centered, conditional on the σ-field generated by
(σit)t=1,...,n. An application of Čebyshev’s inequality conditional on this σ-field and
Karamata’s theorem yield, as n→∞,

E
[
P
(∣∣∣ n∑

t=1

(
σ2
itE[Z2

it1(|Xit| ≤ εan) | σit]−X2
it1(|Xit| ≤ εan)

)∣∣∣ > γ a2
n

∣∣(σis))]
≤ c a−4

n E
[ n∑
t=1

var(X2
it1(|Xit| ≤ εan) | σit) | (σis)

]
≤ c n ε4 E[|X/(εan)|41(|X| ≤ εan)]→ c ε4−α .

The right-hand side converges to zero as ε ↓ 0.
This proves that all assumptions of Theorem 4.22 are satisfied. Therefore the random

variables on the left-hand side of (4.14) converge to an α-stable random vector with log
characteristic function∫ ∞

0
E
[
e i y t′

∑∞
j=0

Θ(2)
j − e i y t′

∑∞
j=1

Θ(2)
j − i y t′1(1,2)(α/2)

]
d(−yα/2)

=
p∑
j=1

1
p

∫ ∞
0

E
[
e i y tj − i y tj1(1,2)(α/2)

]
d(−yα/2) , t = (t1, . . . , tp)′ ∈ Rp,

where we used (4.17) and that Θ(2)
h = 0 for h ≥ 1. One easily checks that all summands

in this expression are homogeneous functions in tj of degree α/2. Therefore, the limiting
random vector in (4.14) has the same distribution as the sum

∑p
j=1 ejξj,α/2 for iid ξj,α/2

which are α/2-stable and totally skewed to the right (because all the summands in Sj
are non-negative).

4.3.3 Eigenvalues of the sample covariance matrix
We have the following approximations:

Theorem 4.6. Assume that one of the following conditions holds:

1. (Xit) is an iid field of regularly varying random variables with index α ∈ (0, 4). If
E[|X|] <∞ we also assume E[X] = 0.

2. (Xit) is a stochastic volatility model (4.2) satisfying the regular variation, mixing
and moment conditions of Theorem 4.3. If E[|Z|] <∞ we also assume E[Z] = 0.
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Then, with Xn as in (4.4),

a−2
n ‖Xn(Xn)′ − diag(Xn(Xn)′)‖2

P→ 0 ,

where ‖ · ‖2 is the spectral norm and (an) is a sequence nP(|X| > an)→ 1.

Proof. Part (1). Recall that for a p × p matrix A we have ‖A‖2 ≤ ‖A‖F , where ‖ · ‖F
denotes the Frobenius norm. Hence

a−4
n ‖Xn(Xn)′ − diag(Xn(Xn)′)‖22 ≤ a−4

n ‖Xn(Xn)′ − diag(Xn(Xn)′)‖2F
=

∑
1≤i 6=j≤p

(
a−2
n Sij

)2
. (4.20)

In view of the assumptions, (XitXjt)t=1,2,..., i 6= j, is an iid sequence of regularly varying
random variables with index α which is also centered if E[|X|] < ∞. We consider two
different cases.
The case α ∈ (0, 2). According to classical limit theory (see Feller [61], Petrov [94]) we
have for i 6= j, b−1

n Sij
d→ ξα, (see (4.4) for the definition of Sij) where ξα is an α-stable

random variable and (bn) is chosen nP(|X1X2| > bn)→ 1 for independent copies X1, X2
of X. Since (bn) and (a2

n) are regularly varying with indices 1/α and 2/α, respectively,
the right-hand side in (4.20) converges to zero in probability.
The case α ∈ [2, 4). In this case the distribution of X1X2 is in the domain of attraction
of the normal law. Since X1X2 has mean zero we can apply classical limit theory (see
Feller [61], Petrov [94]) to conclude that b−1

n Sij
d→ N , where (bn) is regularly varying

with index 1/2 and N is centered Gaussian. Since bn/a2
n → 0 we again conclude that

the right-hand side of (4.20) converges to zero in probability.

Part (2). We again appeal to (4.20). Let γ < min(2, α). Then we have for i 6= j, using
the independence of (XitXjt) conditional on ((σit, σjt)) and that the distribution of Z is
centered if its first absolute moments exists, that

a−2γ
n E

[∣∣Sij∣∣γ | ((σit, σjt))] ≤ c
n

a2γ
n

1
n

n∑
t=1

(σitσjt)γ(E|Z|γ)2 ,

cf. von Bahr and Esséen [115] and Petrov [94], 2.6.20 on p. 82. In view of the moment
condition (4.13) we have E[(σiσj)γ ] <∞ and n/a2γ

n → 0 if we choose γ sufficiently close
to min(2, α). Then the right-hand side converges to zero in view of the ergodic theorem.
An application of the conditional Markov inequality of order γ yields a−2

n Sij
P→ 0 . This

proves the theorem.

Corollary 4.7. Assume that (Xit) is either

1. an iid field of regularly varying random variables with index α ∈ (0, 4) and E[X] = 0
if E[|X|] <∞, or

2. a stochastic volatility model of regularly varying random variables with index α ∈
(0, 4) \ {2} satisfying the conditions of Theorem 4.6(2).

Then

a−2
n max

i=1,...,p

∣∣λ(i) − S(i)
∣∣ P→ 0 ,
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where (λi) are the eigenvalues of Xn(Xn)′, λ(1) ≥ · · · ≥ λ(p) are their ordered values and
S(1) ≥ · · · ≥ S(p) are the ordered values of S1, . . . , Sp defined in (4.4). In particular, we
have

a−2
n

(
λ(1) − cn, . . . , λ(p) − cn

) d→
(
ξ(1),α/2, . . . , ξ(p),α/2

)
, (4.21)

where (cn) is defined in (4.15) for α 6= 2 and in Remark 4.4 for α = 2, (ξi,α/2) are iid
α/2-stable random variables given in Theorem 4.3 for the stochastic volatility model and
in Remark 4.4 for the iid field, and ξ(1),α/2 ≥ · · · ≥ ξ(p),α/2 are their ordered values.

Proof. We have by Weyl’s inequality (see Bhatia [20]) and Theorem 4.6,

a−2
n max

i=1,...,p

∣∣λ(i) − S(i)
∣∣ ≤ a−2

n ‖Xn(Xn)′ − diag(Xn(Xn)′)‖2
P→ 0 . (4.22)

If (Xit) is an iid random field (see Remark 4.4) or a stochastic volatility model satisfying
the conditions of Theorem 4.6(2) we have (4.14). Then (4.22) implies (4.21).

Remark 4.8. If α ∈ (2, 4) we have E[X2] <∞. Therefore (4.21) reads as

n

a2
n

(λ(i)

n
− E[X2]

)
i=1,...,p

d→ (ξ(i),α/2)i=1,...,p . (4.23)

We notice that n/a2
n → ∞ for α ∈ (2, 4) since (n/a2

n) is regularly varying with index
1− 2/α. In particular, if tr(Xn(Xn)′) denotes the trace of Xn(Xn)′ we have for i ≤ p,

λ(i)

tr(Xn(Xn)′) =
λ(i)/n

(λ1 + · · ·+ λp)/n
P→ 1
p
. (4.24)

The joint asymptotic distribution of the ordered eigenvalues (λ(i)) is easily calculated
from the distribution of a totally skewed α/2-stable random variable ξ1,α/2; in particular,
the limit of (a−2

n (λ(1) − cn)) has the distribution of max(ξ1,α/2, . . . , ξp,α/2).
For applications, it is more natural to replace the random variables Xit by their

mean-centered versions Xit −Xi, where Xi = (1/n)
∑n
t=1Xit, instead of assuming that

they have mean zero. The previous results remain valid for the sample-mean centered
random variables Xit, also in the case when X has infinite first moment.

4.3.4 Some applications: Limit results for ordered eigenvalues and
eigenvectors of the sample covariance matrix

In what follows, we assume the conditions of Corollary 4.7.

4.3.4.1 Spacings

Using the joint convergence of the normalized ordered eigenvalues (λ(i)) we can calculate
the limit of the spectral gaps:(λ(i) − λ(i+1)

a2
n

)
i=1,...,p−1

d→
(
ξ(i),α/2 − ξ(i+1),α/2

)
i=1,...,p−1 . (4.25)

We notice that the ordered values ξ(i),α/2 and linear functionals thereof (such as
ξ(i),α/2 − ξ(i+1),α/2) are again jointly regularly varying with index α/2. This is due to
the continuous mapping theorem for regularly varying vectors; see Hult and Lindskog
[74, 75], cf. Jessen and Mikosch [81].
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4.3.4.2 Trace

For the trace of Xn(Xn)′ we have

a−2
n

(
tr(Xn(Xn)′)− p cn

)
= a−2

n

p∑
i=1

(Si − cn)

= a−2
n

p∑
i=1

(λi − cn) d→ ξ1,α/2 + · · ·+ ξp,α/2
d= p2/αξ1,α/2 .

Moreover, we have the joint convergence of the normalized and centered (λ(i)) and
tr(Xn(Xn)′) = λ1 + · · ·+ λp. In particular, we have the self-normalized limit relations

( λ(i) − cn
tr(Xn(Xn)′)− p cn

)
i=1,...,p

d→
( ξ(i),α/2

ξ1,α/2 + · · ·+ ξp,α/2

)
i=1,...,p ,

and for α ∈ (2, 4), by the strong law of large numbers,

np

a2
n

( λ(i) − cn
tr(Xn(Xn)′)

)
i=1,...,p

d→
ξ(i),α/2

E[X2] .

4.3.4.3 Determinant

Since λi−cn are the eigenvalues of Xn(Xn)′−cnIp, where Ip is the p×p identity matrix,
we obtain for the determinant

det
(
a−2
n (Xn(Xn)′ − cn Ip)

)
=

p∏
i=1

a−2
n (λ(i) − cn)

d→ ξ(1),α/2 · · · ξ(p),α/2 = ξ1,α/2 · · · ξp,α/2 .

For α ∈ (2, 4), we also have

1
a2
nc
p−1
n

(
det(Xn(Xn)′)− cpn

)
=

p∑
i=1

a−2
n

(
λ(i) − cn

) i−1∏
j=1

λ(j)

cn

d→
p∑
i=1

ξ(i),α/2 =
p∑
i=1

ξi,α/2
d= p2/α ξ1,α/2 ,

where we used (4.23).

4.3.4.4 Eigenvectors

It is also possible to localize the eigenvectors of the matrix a−2
n Xn(Xn)′. Since this

matrix is approximated by its diagonal in spectral norm, one may expect that the unit
eigenvectors of the original matrix are close to the canonical basis vectors. We can write

a−2
n Xn(Xn)′eLj = a−2

n S(j) eLj + εn W ,

where W is a unit vector orthogonal to eLj , Lj is the index of S(j) = SLj and

εn = a−2
n ‖
(
Xn(Xn)′ − S(j)

)
eLj‖`2

P→ 0 ,
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from Theorem 4.6 and by equivalence of all matrix norms. According to Proposition
A.1 in Benaych-Georges and Peché [19], there is an eigenvalue a−2

n λ(j) of a−2
n Xn(Xn)′ in

some εn-neighborhood of a−2
n S(j). Define

Ωn = {a−2
n |λ(j) − λ(l)| > dn , l 6= j} ,

for dn = kεn for any fixed k > 1. Then limn→∞ P(Ωn) = 1 because of (4.25) and
dn

P→ 0. Hence, for large n, a−2
n λ(j) and a−2

n λ(l) have distance at least dn with high
probability. Another application of Proposition A.1 in [19] yields that the unit eigenvector
V associated with a−2

n λ(j) satisfies the relation

lim sup
n→∞

P
(
‖V− VLjeLj‖`2 > δ

)
≤ lim sup

n→∞
P
(
{‖V− VLjeLj‖`2 > δ} ∩ Ωn

)
+ lim sup

n→∞
P(Ωcn)

≤ lim sup
n→∞

P
(
{2 εn/(dn − εn) > δ} ∩ Ωn

)
= 1{2/(k−1)>δ} .

For any fixed δ > 0, the right-hand side is zero for sufficiently large k. Since both V and
eLj are unit eigenvectors this means that ‖V− eLj‖`2

P→ 0.

4.3.4.5 Sample correlation matrix

In Remark 4.8 we mentioned that we can replace the variables Xit by their sample-mean
centered versions Xit −Xi without changing the asymptotic theory. Similarly, one may
be interested in transforming the Xit as follows:

X̃it = Xit −Xi

σ̂i
, σ̂2

i =
n∑
t=1

(Xit −Xi)2 .

Then the matrix

X̃n(X̃n)′ =
( n∑
t=1

X̃itX̃jt

)
i,j=1,...,p ,

is the sample correlation matrix. We write λ̃i, i = 1, . . . , p, for the eigenvalues of X̃n(X̃n)′
and λ̃(1) ≥ · · · ≥ λ̃(p) for their ordered values.

We notice that the entries of this matrix are all bounded in modulus by one. In
particular, the diagonal consists of ones. We do not have a complete limit theory for the
eigenvalues λ̃i. We restrict ourselves to iid (Xit) to explain the differences.

Lemma 4.9. Assume that (Xit) is an iid field of random variables.

1. If E[X2] <∞ then
√
n max
i=1,...,p

|λ̃i − 1| = OP(1) .

2. If X is regularly varying with index α ∈ (0, 2) then

a2
n

bn
max
i=1,...,p

|λ̃i − 1| = OP(1) ,



4.4. Case (2): σ dominates the tail 83

where (an) and (bn) are chosen P(|X| > an) ∼ P(|X1X2| > bn) ∼ n−1 for iid copies
X1, X2 of X.

Remark 4.10. Notice that the lemma implies λ̃i
P→ 1 for i = 1, . . . , p, and the analog

of relation (4.24) remains valid.

Proof. Part(1) We assume without loss of generality that 1 = E[X2]. Then by classical
limit theory,
√
n
(
X̃n(X̃n)′ − diag(X̃n(X̃n)′)

)
=
√
n
(
X̃n(X̃n)′ − Ip

)
=

(
1(i 6= j)

n−1/2∑n
t=1(Xit −Xi)(Xjt −Xj)
(σ̂i/
√
n)(σ̂j/

√
n)

)
d→

(
Nij1(i 6= j)

)
,

where Nij , 1 ≤ i < j ≤ n, are iid N(0, 1) and Nij = Nji. By Weyl’s inequality,
√
n max
i=1,...,p

∣∣∣λ̃(i) − 1
∣∣∣ ≤ √n‖X̃n(X̃n)′ − Ip‖2 = OP(1) .

Part(2) If X is regularly varying with index α ∈ (0, 2), we have that (a−2
n σ̂2

i ) con-
verges to a vector of iid positive α/2-stable random variables (ξi), while for every i 6= j,
b−1
n

∑n
t=1(Xit − Xi) (Xjt − Xj)

d→ ξij and the limit ξij is α-stable. Then by Weyl’s
inequality

a2
n

bn
max
i=1,...,p

∣∣∣λ̃(i) − 1
∣∣∣ ≤ a2

n

bn
‖X̃n(X̃n)′ − Ip‖2 = OP(1) .

4.4 Case (2): σ dominates the tail

In this section we assume the conditions of Case (2); see Section 4.2.2. Our goal is to
derive results analogous to Case (1): regular variation of (Xit), infinite variance limits for
Sij and limit theory for the eigenvalues of the corresponding sample covariance matrices.
It turns out that this case offers a wider spectrum of possible limit behaviors and that we
have to further distinguish our assumptions about the distribution of η. So, in addition
to (4.9) we assume that either

E[e ηα] =∞ (4.26)
or

lim
x→∞

P(η1 + η2 > x)
P(η1 > x) = c ∈ (0,∞) ⇔ lim

x→∞

P(e η1 · e η2 > x)
P(e η1 > x) = c ∈ (0,∞) (4.27)

hold, where η1 and η2 are independent copies of η.

Remark 4.11. Following Cline [34], we call the distribution of a random variable η con-
volution equivalent if e η is regularly varying and relation (4.27) holds. The assumptions
(4.26) and (4.27) are mutually exclusive, since the only possible finite limit c in (4.27) is
given by c = 2E[e ηα]; see Davis and Resnick [47]. There are, however, regularly vary-
ing distributions of e η which satisfy E[e ηα] < ∞ but not (4.27). An example is given
in Cline [34], p. 538; see also Lemma 4.24(3) for a necessary and sufficient condition
ensuring (4.27).
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As we will see later, relations (4.26) and (4.27) cause rather distinct limit behavior of
the sample covariance matrix. In particular, (4.27) allows for non-vanishing off-diagonal
elements of the normalized sample covariance matrices, in contrast to Case (1).

For notational simplicity, define

ψ = max
k,l

ψkl and Λ = {(k, l) : ψkl = ψ} .

Recall that for convenience we assume that ψ = 1; if the latter condition does not hold
we can replace (without loss of generality) the random variables ηkl by ψηkl and the
coefficients ψkl by ψkl/ψ. For given (i, j), we define

ψij = max
k,l

(ψkl + ψk+i−j,l) . (4.28)

Notice that 1 ≤ ψij ≤ 2. For d ≥ 1, we write i = (i1, . . . , id), j = (j1, . . . , jd) for elements
of Zd. For given i and j we also define

ψi,j = max
1≤l≤d

ψil,jl .

4.4.1 Regular variation
We start by showing that the volatility sequences are regularly varying.

Proposition 4.12. Under the aforementioned conditions and conventions (including
that either (4.26) or (4.27) hold),

1. each of the sequences (σit)t∈Z, i = 1, 2, . . ., is regularly varying with index α,

2. each of the sequences (σitσjt)t∈Z, i, j = 1, 2, . . ., is regularly varying with corre-
sponding index α/ψij,

3. For d ≥ 1 and i, j ∈ Z, the d-variate sequence ((σik,tσjk,t)1≤k≤d)t∈Z is regularly
varying with index α/ψi,j.

Remark 4.13. Part (3) of the proposition possibly includes degenerate cases in the sense
that for some choices of (ik, jk), (σik,tσjk,t) is regularly varying with index α/ψik,jk >
α/ψi,j.

Part (3) implies (2) in the case d = 1. Part (2) implies (1) by setting i = j and observ-
ing that, by non-negativity of σ, regular variation of (σ2

it) with index α/2 is equivalent
to regular variation of (σit) with index α.

Proof. To give some intuition we start with the proof of the marginal regular variation
of σ, although it is just a special case of (1). We have

σit = e
∑

(k,l)∈Λ
ηi−k,t−l e

∑
(k,l)6∈Λ

ψklηi−k,t−l =: σit,Λσit,Λc . (4.29)

We first verify that σ = σΛσΛc is regularly varying with index α. Since |Λ| <∞ by our
assumptions, and in view of Embrechts and Goldie [57], Corollary on p. 245, cf. also
Lemma 4.24(1) below, the product σΛ is regularly varying with index α. The random
variable σΛc is independent of σΛ. Similarly to Mikosch and Rezapour [89] (see also the
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end of this proof for a similar argumentation) one can show that σΛc has moment of
order α+ ε for sufficiently small positive ε. Therefore, by Breiman’s lemma [27],

P(σ > x) ∼ E[σαΛc ]P(σΛ > x) , x→∞ .

This proves regular variation with index α of the marginal distributions of (σit).
In the remainder of the proof we focus on (3). For a given choice of i, j, t ∈ Zd, we

write

Λi,j,t = {(m,n) : ψil−m,tl−n + ψjl−m,tl−n = ψi,j for some 1 ≤ l ≤ d}. (4.30)

We will show that the random vector (σi1,t1σj1,t1 , . . . , σid,tdσjd,td) =: σ′ is regularly
varying with index α/ψi,j which proves (3). Note that

σi,tσj,t =
∏
(k,l)

exp(ψklηi−k,t−l)
∏

(k′,l′)

exp(ψk′l′ηj−k′,t−l′)

=
∏

(m,n)

exp((ψi−m,t−n + ψj−m,t−n)ηm,n)

and write
σ = A Z (4.31)

where

A = diag




∏
(m,n)∈Λci,j,t

e ηm,n(ψi1−m,t1−n+ψj1−m,t1−n)

...∏
(m,n)∈Λci,j,t

e ηm,n(ψid−m,td−n+ψjd−m,td−n)


′ ,

Z =


∏

(m,n)∈Λi,j,t

e ηm,n(ψi1−m,t1−n+ψj1−m,t1−n)

...∏
(m,n)∈Λi,j,t

e ηm,n(ψid−m,td−n+ψjd−m,td−n)

 .

where diag((a1, . . . , ak)) is any diagonal matrix with diagonal elements a1, . . . , ak. We
notice that A and Z are independent.

Consider iid copies (Yj) of e η. There exist suitable numbers (aij)1≤i≤d,1≤j≤p with
p = |Λi,j,t| the components of Z have representation in distribution

∏p
j=1 Y

aij
j , 1 ≤ i ≤ d.

By assumption, Yj is regularly varying with index α and satisfies either assumption
(4.52) or E[Y αj ] = ∞. Furthermore, for each j there exists one 1 ≤ i ≤ d such that
aij = amax = ψi,j by the definition of Λi,j,t. An application of Proposition 4.26 shows
that Z is regularly varying with index α/ψi,j and limit measure µZ which is given as µ
in Proposition 4.26 (ii) (if (4.26) holds) or Proposition 4.26 (i) (if (4.27) holds). Now,
choose ε, δ > 0 such that

ψil−m,tl−n + ψjl−m,tl−n
ψi,j (1 + δ) < 1− ε, (m,n) ∈ Λci,j,t, 1 ≤ l ≤ d,
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which is possible by the definition of Λi,j,t and the summability constraint on the coeffi-
cients. Then we have

E
[
‖A‖α(1+δ)/ψi,j

op

]
≤

d∑
l=1

∏
(m,n)∈Λci,j,t

E
[
e ηm,nα(1+δ)(ψil−m,tl−n+ψjl−m,tl−n)/ψi,j

]

≤
d∑
l=1

∏
(m,n)∈Λci,j,t

E
[
e ηm,nα(1−ε)

](1+δ)(ψil−m,tl−n+ψjl−m,tl−n)/((1−ε)ψi,j)
<∞,

where we used Jensen’s inequality for the penultimate step and the summability condition
of the coefficients for the final one. Thus we have verified all conditions of the multivariate
Breiman lemma in Basrak et al. [13], implying that σ inherits regular variation from Z
with corresponding index α/ψi,j and limit measure µσ(·) = E[µZ(A−1·)].

Proposition 4.14. Assume that the aforementioned conditions (including either (4.26)
or (4.27)) hold and that in addition E[|Z|α+δ] <∞ for some δ > 0. Then the following
statements hold:

1. Each of the sequences (Xit)t∈Z, i ∈ Z, is regularly varying with index α.
If (4.26) holds then the corresponding spectral tail process satisfies Θi

t = 0 a.s.,
t ≥ 1, and P(Θi

0 = ±1) = E[Zα±]/E[|Z|α].
If (4.27) holds, then for any Borel set B = B0 × · · · ×Bn ⊂ Rn+1,

P((Θi
t)t=0,...,n ∈ B) (4.32)

=
∑

(u,v)∈Λ(0)
i

1
|Λ(0)
i |

E
[
1
((

1((u, v) ∈ Λ(t)
i ) Xit
|Xi0|

)
t=0,...,n

∈ B
)
|Xi0|α

]
E[|Xi0|α] ,

where Λ(t)
i = {(u, v) : ψi−u,t−v = 1}, t = 0, . . . , n.

2. Each of the sequences (XitXjt)t∈Z, i, j ∈ Z, is regularly varying with index α/ψij.
If (4.26) holds then the corresponding spectral tail process satisfies Θij

t = 0 a.s.,
t ≥ 1, and P(Θij

0 = ±1) = E[(ZiZj)α/ψ
ij

± ]/E[|ZiZj |α/ψ
ij ].

If (4.27) holds, then for any Borel set B = B0 × · · · ×Bn ⊂ Rn+1,

P((Θij
t )t=0,...,n ∈ B) (4.33)

=
∑

(u,v)∈Λ(0)
i,j

1
|Λ(0)
i,j |

E
[
1
((

1((u, v) ∈ Λ(t)
i,j )

XitXjt
|Xi0Xj0|

)
t=0,...,n

∈ B
)
|Xi0Xj0|α/ψ

ij

]
E[|Xi0Xj0|α/ψij ]

,

where Λ(t)
i,j = {(u, v) : ψi−u,t−v + ψj−u,t−v = ψij}, t = 0, . . . , n.

3. For d ≥ 1 and i, j ∈ Zd, the d-variate sequence ((XiktXjkt)1≤k≤d)t∈Z is jointly
regularly varying with index α/ψi,j.
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Remark 4.15. 1. Equation (4.32) shows that in this case the distribution of (Θi
t)t≥0

is a mixture of |Λ(0)
i | distributions, where each distribution gets the weight 1/|Λ(0)

i |.
Heuristically speaking, a distribution in this mixture that corresponds to a specific
(u, v) ∈ Λ(0)

i has interpretation as the distribution of (Xit/|Xi0|)t≥0, given that
we have seen an extreme observation of |Xi0| caused by an extreme realization of
e ηu,v . The variables e ηu,v , (u, v) ∈ Λ(0)

i , are those which have a maximum exponent
(equal to 1) in the product

∏
(u,v) exp(ψi−u,−vηu,v) = σi0. They are therefore the

factors which are most likely to make σi0, hence Xi0, extreme.
An analogous interpretation can be derived from (4.33) for the distribution of
(Θij

t )t≥0.

2. Note that for fixed i, j, the inner indicator functions in (4.32) and (4.33) are positive
only for finitely many t. Hence there are only finitely many t ≥ 1 such that
P(Θi

t 6= 0) > 0 and P(Θ(ij)
t 6= 0) > 0.

3. Using similar techniques as in the proof of cases (1) and (2) below, one can also
give an explicit expression for the resulting d-dimensional spectral tail process of
((XiktXjkt)1≤k≤d)t∈Z in (3). However, due to its complexity, we refrain from stating
it here.

Proof. We start by showing that all mentioned sequences are regularly varying. Exem-
plarily, we show this for case (2). Very similar arguments can be used for the two other
cases. For n ≥ 0 write

(XitXjt)′t=0,...,n = diag
(
(ZitZjt)′t=0,...,n

)
· (σitσjt)′t=0,...,n .

Since ψij ≥ 1 our moment assumption on Z implies that E[|Z|α/ψij+δ] < ∞ for some
δ > 0. Then Proposition 4.12 allows us to apply the aforementioned multivariate Breiman
lemma, yielding the regular variation of the vector (XitXjt)t=0,...,n with index α/ψij .
From the first definition given in Section 4.2.3, this implies the regular variation of the
sequence.

As for the derivation of the explicit form of the spectral tail process in (1) and (2), we
restrict ourselves to derive the distribution of the spectral tail process (Θij

t )t≥0 in part
(2); part (1) is similar.

If µσij

n denotes the vague limit measure of (σi,0σj,0, . . . , σi,nσj,n)′ the multivariate
Breiman lemma yields the vague limit measure µXij

n of (Xi,0Xj,0, . . . , Xi,nXj,n)′ given
by

µXij

n (B) = cE
[
µσij

n (×nt=0(Bt/(ZitZjt)))
]

= cE

[
µ̃σij

n

(
×nt=0

(
BtZ

−1
it Z

−1
jt∏

(u,v)∈Λc
i,j,n

e ηu,v(ψi−u,t−v+ψj−u,t−v)

))]
(4.34)

for any µXij

n -continuity Borel set B = ×nt=0Bt ∈ [−∞,∞]n+1\{0} bounded away from 0,
Λi,j,n is equal to Λi,j,t as defined in (4.30) with i = (i, . . . , i), j = (j, . . . , j), t = (0, . . . , n),
and µ̃σij

n is the limit measure of the regularly varying vector( ∏
(u,v)∈Λi,j,n

e ηu,v (ψi−u,t−v+ψj−u,t−v)
)
t=0,...,n

, (4.35)
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see the proof of Proposition 4.12. The distribution of the tail process of (XitXjt) (cf.
Section 4.2.3) is then determined by

P((YΘij
t )t=0,...,n ∈ B) = lim

x→∞

P((XitXjt/x)t=0,...,n ∈ B, |Xi0Xj0|/x > 1)
P(|Xi0Xj0|/x > 1) (4.36)

=
µXij

n (B ∩
(
[−∞,∞]\[−1, 1]× [−∞,∞]n)

)
µXij

n

(
[−∞,∞]\[−1, 1]× [−∞,∞]n

) .

The concrete forms of µ̃σij

n , hence of µXij

n , now depend on whether (4.26) or (4.27) holds.
We first assume (4.26). Note that Λi,j,n = ∪nt=0Λ(t)

i,j , where Λ(t)
i,j = {(u, v) : ψi−u,t−v +

ψj−u,t−v = ψij}. Indeed, we easily see that Λ(t)
i,j = Λ(0)

i,j + (0, t), t = 1, . . . , n. We apply
Proposition 4.26(ii) to derive the specific form of the limit measure µ̃σij

n of (4.35). Each
component of this vector contains |Λ(0)

i,j | factors with maximal exponent ψij . For the t-th
component, those are the factors exp(ηu,v(ψi−u,t−v + ψj−u,t−v)), (u, v) ∈ Λ(t)

ij . Hence
peff = |Λ(0)

i,j | and Peff = {Λ(0)
i,j + (0, t), t = 0, . . . , n}. By (4.57), the measure µ̃σij

n , up to a
constant multiple, is given by

µ̃σij

n (B)

= c

n∑
s=0

∫ ∞
0

P
[(

1(ψi−u,t−v + ψj−u,t−v = ψij ∀ (u, v) ∈ Λ(s)
i,j )zψ

ij

∏
(u,v)∈Λi,j,n\Λ(s)

i,j

e ηu,v(ψi−u,t−v+ψj−u,t−v)
)

0≤t≤n
∈ B

]
να(dz)

= c

n∑
s=0

∫ ∞
0

P
[(

1(t = s)zψ
ij

∏
(u,v)∈Λi,j,n\Λ(s)

i,j

e ηu,v(ψi−u,t−v+ψj−u,t−v)
)

0≤t≤n
∈ B

]
να(dz),

where να(dx) = αx−α−1dx. The s-th measure in the sum above is concentrated on the s-
th axis. Therefore the limit measure µ̃σij

n is concentrated on the axes. By (4.34), this im-
plies that µXij

n is concentrated on the axes as well. Therefore µXij

n (B∩([−∞,∞]\[−1, 1])×
[−∞,∞]n) = 0 as soon as one Bi, 1 ≤ i ≤ n, in B = ×ni=0Bi is bounded away from 0.
With (4.36) this gives YΘij

t = 0 a.s. for t ≥ 1 and therefore Θij
t = 0 a.s. for t ≥ 1. The

law of Θij
0 follows from the univariate Breiman lemma.

Next assume (4.27). By Proposition 4.26(i), the vague limit measure µ̃σij

n is up to a
constant given by

µ̃σij

n (B)

=
∑

(u,v)∈Λi,j,n

∫ ∞
0

P
[(

1((u, v) ∈ Λ(t)
i,j )z

ψij

∏
(ũ,ṽ)∈Λi,j,n
(ũ,ṽ)6=(u,v)

e (ψi−ũ,t−ṽ+ψj−ũ,t−ṽ)ηũ,ṽ
)
t=0,...,n

∈ B
]
να(dz).
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For sets B such that B ∩ ({0} × [−∞,∞]n) = ∅ it suffices thereby to sum only over
(u, v) ∈ Λ(0)

i,j instead over all (u, v) ∈ Λi,j,n = ∪nt=0Λ(t)
i,j . For these sets we have by

Breiman’s lemma (cf. (4.34)),

µXij

n (B)/c

=
∑

(u,v)∈Λ(0)
i,j

∞∫
0

P
[
(1((u, v) ∈ Λ(t)

i,j )z
ψij

∏
(ũ,ṽ)6=(u,v)

e (ψi−ũ,t−ṽ+ψj−ũ,t−ṽ)ηũ,ṽZitZjt)t=0,...,n ∈ B
]
να(dz)

=
∑

(u,v)∈Λ(0)
i,j

∞∫
0

P
(

(1((u, v) ∈ Λ(t)
i,j )z

ψijXitXjte−ψ
ijηu,v )t=0,...,n ∈ B

)
να(dz),

where we used that if (u, v) ∈ Λ(t)
i,j , then∏

(ũ,ṽ)6=(u,v)

e (ψi−ũ,t−ṽ+ψj−ũ,t−ṽ)ηũ,ṽ = σitσjt
e (ψi−u,t−v+ψj−u,t−v)ηu,v

= σitσjt

e ψijηu,v
.

Fubini’s Theorem and a substitution finally simplify this expression to∑
(u,v)∈Λ(0)

i,j

E
[∫ ∞

0
1
((

1((u, v) ∈ Λ(t)
i,j )z

ψijXitXjte−ψ
ijηu,v

)
t=0,...,n

∈ B
)
να(dz)

]

=
∑

(u,v)∈Λ(0)
i,j

E
[ ∫ ∞

0
1
((

1((u, v) ∈ Λ(t)
i,j )y

XitXjt

|Xi0Xj0|

)
t=0,...,n

∈ B

)

|Xi0Xj0|α/ψ
ij

e−αηu,vν α

ψij
(dy)

]
.

Note that the range of the inner integral in the last expression can be changed from
(0,∞) to (1,∞), if B ∩ [−1, 1]× [−∞,∞]n = ∅. Therefore, by writing

B̃0 = B0 \ [−1, 1] , B̃t = Bt, t ≥ 1, B̃ = ×nt=0B̃t ,

we get from (4.36) that

P
(
(YΘij

t )t=0,...,n ∈ B
)

= µXij

n (B̃)
µXij

n (([−∞,∞]\[−1, 1])× [−∞,∞]n)

=

∑
(u,v)∈Λ(0)

i,j

E
[∫∞

1 1B
(
y
XitXjt
|Xi0Xj0|1Λ(t)

i,j

(u, v)
)
t=0,...,n

|Xi0Xj0|α/ψ
ije−αηu,vν α

ψij
(dy)

]
∑

(u,v)∈Λ(0)
i,j

E
[
|Xi0Xj0|α/ψije−αηu,v

]

=
∑

(u,v)∈Λ(0)
i,j

1
|Λ(0)
i,j |

E
[
1B
(
y
XitXjt
|Xi0Xj0|1Λ(t)

i,j

(u, v)
)
t=0,...,n

|Xi0Xj0|α/ψ
ij

]
E
[
|Xi0Xj0|α/ψij

] ,
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where Y is a Pareto(α/ψij) random variable, independent of all other random variables
in the expression. For the last equation, we expanded both numerator and denominator
by multiplying with E(eαηu,v ), noting that for (u, v) ∈ Λ(0)

i,j the random variable eαηu,v

is independent both of the indicator function and of |Xi0Xj0|α/ψ
ij

e−αηu,v . From the law
of the tail process (YΘij

t ) we can now see that the law of the spectral tail process (Θij
t )

satisfies (4.33).

4.4.2 Infinite variance stable limit theory for the stochastic
volatility model and its product processes

In the following result we provide central limit theory with infinite variance stable limits
for the sums Sij ; see (4.4).

Theorem 4.16. We consider the stochastic volatility model (4.2) and assume the spe-
cial form of (σit) given in (4.8) with ψ = 1. For given (i, j), define a sequence (bn)
nP(|Xi0Xj0| > bn)→ 1 as n→∞. Assume the following conditions:

1. The conditions of Proposition 4.14 hold, ensuring that E[|Z|α/ψij+ε] <∞ for some
ε > 0 and (XitXjt) is regularly varying with index α/ψij and spectral tail process
(Θij

h ).

2. (σitσjt) is α-mixing with rate function (αh) and there exists δ > 0 such that αn =
o(n−δ).

3. Either

(i) α/ψij < 1, or

(ii) i 6= j, α/ψij ∈ [1, 2) and Z is symmetric, or

(iii) i = j, α/ψii = α/2 ∈ (1, 2) and the mixing rate in (2) satisfies supn n
∑∞
h=rn αh <

∞ for some integer sequence (rn) nrn/b2n → 0 as n→∞.

Then

b−1
n (Sij − cn) d→ ξij,α/ψij , (4.37)

where ξij,α/ψij is a totally skewed to the right α/ψij-stable random variable and

cn =
{
nE[X2] i = j and α ∈ (2, 4) ,
0 i 6= j or α/ψij < 1 ,

Remark 4.17. 1. If (αh) decays at an exponential rate one can choose rn = C logn
for a sufficiently large constant C. Then supn n

∑∞
h=rn αh < ∞ and nrn/b2n → 0

hold. These conditions are also satisfied if αh ≤ cn−(1+γ) for some γ > 0, rn = Cnξ

for some ξ > 0 and 1/γ ≤ ξ < 2ψij/α− 1.

2. The sequence (XitXjt) inherits α-mixing from (σitσjt); see Remark 4.5.

3. It is possible to prove joint convergence for 1 ≤ i, j ≤ p in (4.37). Due to different
tail behavior for distinct (i, j) the normalizing sequences (bn) = (bijn ) typically
increase to infinity at different rates. Then it is only of interest to consider the
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joint convergence of those Sij whose summands XitXjt have the same tail index
α/ψij . More precisely, it suffices to consider those Sij with the property that
XitXjt is tail-equivalent to X2

it. The joint convergence follows in a similar way as
in the proof below, by observing that Theorem 4.22 is a multivariate limit result.
The joint limit of Sij in (4.37) with equivalent tails of index α̃ (say) is jointly
α̃-stable with possible dependencies in the limit vector.

4. The strongest normalization is needed for Si = Sii. Recall that the summands X2
it

of Si are regularly varying with index α/2, i.e., ψii = 2. Let (an) be nP(|X| >
an)→ 1. Under the conditions of Theorem 4.16, we have that a−2

n (Si−cn) d→ ξi,α/2,
i = 1, . . . , p for a jointly α/2-stable limit. If α/2 < α/ψij for some i 6= j, then
bn/a

2
n → 0, hence a−2

n Sij
P→ 0. It is possible that XitXjt is regularly varying with

index α/2 but nevertheless bn/a2
n → 0; see Example 4.18 which deals with the case

E[e αη] =∞.

Proof. We apply Theorem 4.22 to the sequence (XitXjt), cf. also Remark 4.23.

(1) The regular variation condition on (XitXjt) with index α/ψij is satisfied by assump-
tion. Moreover, Θh = 0 for sufficiently large h; see Remark 4.15.

(2) The assumption about the mixing coefficients in condition (2) implies that for a suffi-
ciently small ε ∈ (0, 1) and mn = n1−ε there exists an integer sequence ln = o(mn) such
that knαln → 0. For this choice of mn and ln, the proof of the mixing condition for the
sums of the truncated variables

Sij =
n∑
t=1

XitXjt1(|XitXjt| > εbn)

is now analogous to the proof of the corresponding property in Theorem 4.3.

(3) We want to show that

lim
l→∞

lim sup
n→∞

n

mn∑
t=l

P
(
|XitXjt| > bn , |Xi0Xj0| > bn

)
= 0 (4.38)

for mn = n1−ε as above. Write

σitσjt =
∏

(m,n)

exp((ψi−m,t−n + ψj−m,t−n)ηm,n)

and set Λε,t = {(m,n) : ψi−m,t−n + ψj−m,t−n ≥ 8−1ψijε}, t ∈ Z. Without loss of
generality we assume that l is so large that Λε,t ∩Λε,0 is empty for all t ≥ l. Then write
for t ≥ l,

σitσjt = σit,jt,Λε,t · σit,jt,Λε,0 · σit,jt,Λcε,0,t , σi0σj0 = σi0,j0,Λε,0 · σi0,j0,Λε,t · σi0,j0,Λcε,0,t ,

where
σit1,jt1,Λε,t2 =

∏
(m,n)∈Λε,t2

exp((ψi−m,t1−n + ψj−m,t1−n)ηm,n).
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We conclude that (σit,jt,Λε,t ,σit,jt,Λε,0 , σi0,j0,Λε,0 , σi0,j0,Λε,t) and (σit,jt,Λcε,0,t ,σi0,j0,Λcε,0,t)
are independent. We have

P
(
|XitXjt| > bn , |Xi0Xj0| > bn

)
≤ P

(
max(|Zi0Zj0|, |ZitZjt|) max(σit,jt,Λcε,0,t , σi0,j0,Λcε,0,t)

min(σi0,j0,Λε,0σi0,j0,Λε,t , σit,jt,Λε,tσit,jt,Λε,0) > bn
)
.

The distribution of max(σit,jt,Λcε,0,t , σi0,j0,Λcε,0,t) is stochastically dominated uniformly for
t ≥ l by a distribution which has moment of order 8α/(ψijε) > 2α/ψij . Furthermore,

min(σi0,j0,Λε,0σi0,j0,Λε,t , σit,jt,Λε,tσit,jt,Λε,0)

≤ min
( ∏

(m,n)∈Λε,0∪Λε,t

exp((ψi−m,−n + ψj−m,−n)(ηm,n)+),

∏
(m,n)∈Λε,0∪Λε,t

exp((ψi−m,t−n + ψj−m,t−n)(ηm,n)+)
)

≤ min
( ∏

(m,n)∈Λε,0

exp(ψij(ηm,n)+)
∏

(m′,n′)∈Λε,t

exp(8−1ψijε(ηm′,n′)+),

∏
(m′,n′)∈Λε,t

exp(ψij(ηm′,n′)+)
∏

(m,n)∈Λε,0

exp(8−1ψijε(ηm,n)+)
)

≤ min
( ∏

(m,n)∈Λε,0

exp((ψij + 8−1ψijε)(ηm,n)+),
∏

(m,n)∈Λε,t

exp((ψij + 8−1ψijε)(ηm,n)+)
)
.

The right-hand side is regularly varying with index 2α/(ψij(1 + 8−1ε)). A stochastic
domination argument and an application of Breiman’s lemma show that uniformly for
l ≤ t ≤ mn,

mn nP
(
|XitXjt| > bn , |Xi0Xj0| > bn

)
= n2−εo

(
b−2α/(ψij(1+4−1ε))
n

)
= n2−εo(n−2/(1+2−1ε)) = o(1)

which yields (4.38).

(4) We check the vanishing small values condition. For any fixed δ, we write

XitXjt = XitXjt1(|XitXjt| ≤ δbn) , i 6= j ,

X2
it = X2

it1(X2
it ≤ δbn)− E[X2

it1(X2
it ≤ δbn)] ,

Sij =
n∑
t=1

XitXjt , Si = Sii .

Assume α/ψij ∈ [1, 2), i 6= j. Then, by symmetry of the random variables Zit and
Karamata’s theorem for any γ > 0 as n→∞, E[Sij ] = 0 and

P(|Sij | > γbn) ≤ (γbn)−2var(Sij)
= n (γbn)−2E[(XitXjt)2]
∼ γ−2 δ2−α ,

and the right-hand side converges to zero as δ ↓ 0.
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For i = j and α/ψii > 1 we need a different argument. We have by Čebyshev’s
inequality,

P(|Si| > γ bn) ≤ γ−2b−2
n var

(
Si
)

= γ−2 (n/b2n)
∑
|h|<n

(1− h/n) cov(X2
i0, X

2
ih) .

For |h| ≤ h0 for any fixed h0, (n/b2n)|cov(X2
i0, X

2
ih)| vanishes by letting first n→∞ and

then δ ↓ 0. This follows by Karamata’s theorem. Standard bounds for the covariance
function of an α-mixing sequence (see Doukhan [49], p. 3) yield

(n/b2n)
∑

rn≤|h|<n

|cov(X2
i0, X

2
ih)| ≤ c δ2n

∑
rn≤|h|<n

αh ,

where rn → ∞ is chosen supn n
∑
rn≤|h|<∞ αh < ∞ and nrn/b2n → 0. The right-hand

side converges to zero by first letting n→∞ and then δ ↓ 0. It remains to show that

In = (n/b2n)
∑

h0<|h|≤rn

(1− h/n) cov(X2
i0, X

2
ih)

is asymptotically negligible. We have

|In| ≤ (n/b2n)
∑

h0<|h|≤rn

E[X2
i0X

2
ih1(X2

i0 ≤ δbn, X2
ih ≤ δbn)] + c n rn/b

2
n

≤ (n/b2n)
∑

h0<|h|≤rn

E[X2
i0X

2
ih] + o(1) ,

where we used that n rn/b2n → 0. We will show that the summands on the right-hand
side are uniformly bounded by a constant if h0 is sufficiently large. Then limn→∞ In = 0.

We observe that by Hölder’s inequality,

E[X2
i0X

2
ih] = cE[σ2

i0 σ
2
ih]

= cE
[
e

2
∑

(k,l)∈Γξ
ψkl(ηi−k,−l+ηi−k,h−l)e

2
∑

(k,l)6∈Γξ
ψkl(ηi−k,−l+ηi−k,h−l)]

≤ c
(
E
[
e

2r
∑

(k,l)∈Γξ
ψkl(ηi−k,−l+ηi−k,h−l)])1/r

(
E
[
e

2s
∑

(k,l)6∈Γξ
ψkl(ηi−k,−l+ηi−k,h−l)])1/s

,

where Γξ = {(k, l) : ψik > ξ} for some positive ξ, s, t 1/r+1/s = 1. Since σ2
i0 has moments

up to order α/ψii ∈ (1, 2) and (ηi−k,−l)(k,l)∈Γξ and (ηi−k,h−l)(k,l)∈Γξ are independent for

sufficiently large h we can choose r > 1 close to one E
[
e 2r
∑

(k,l)∈Γξ
ψkl(ηi−k,−l+ηi−k,h−l)]

is finite. This implies that we choose s sufficiently large. On the other hand, for fixed s
we can make ξ so small that E

[
e 2s
∑

(k,l)6∈Γξ
ψkl(ηi−k,−l+ηi−k,h−l)] is finite and uniformly

bounded for sufficiently large h. Fine tuning ξ and s, we may conclude that limn→∞ In =
0 as desired.

By Theorem 4.22 and Remark 4.23 the result now follows; see also the end of the
proof of Theorem 4.3 for the form of the resulting limit law.
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Example 4.18. We assume that E[e αη] = ∞, hence e 2η does not have a finite α/2-th
moment. Using Lemma 4.24(5), calculation shows that for i 6= j with ψij = 2,

lim
x→∞

P(|Xi0Xj0| > x)
P(X2 > x) = 0 (4.39)

Define (an) nP(|X| > an) → 1. We may conclude from (4.39) and Theorem 4.16 that
for i 6= j we have a−2

n Sij
P→ 0 although both Xi0Xj0 and X2 are regularly varying with

index α/2.
By Theorem 4.16 and Remark 4.17 we conclude that

a−2
n (Si − cn)i=1,...,p

d→ (ξi,α/2)i=1,...,p , (4.40)

where the limit vector consists of α/2-stable components. The spectral tail process (Θh)h≥1
of the sequence Xt = (X1t, . . . , Xpt)′, t = 1, 2, . . ., vanishes. This follows by an argument
similar to the proofs of Propositions 4.14 and 4.26 under condition (4.26). A similar
argument also yields that

lim
x→∞

P(|Xi0| > x , |Xj0| > x)
P(|X| > x) = 0 , i 6= j .

Therefore the the distribution of Θ0 is concentrated on the axes and has the same form
as Θ(2)

0 in (4.17). As in the proof of Theorem 4.3 this implies that the limit random
vector in (4.40) has iid components.

We conclude that the limit theory for Sij, 1 ≤ i, j ≤ p, are very essentially the same
in Case (1) and in Case (2) when the additional condition E[e αη] =∞ holds.

Example 4.19. Assume that (4.27) holds. We may conclude from Theorem 4.16 that
a−2
n Sij

P→ 0 for i 6= j if ψij < 2. The crucial difference to the previous case appears
when ψij = 2 for some i 6= j. In this case, not only the (a−2

n (Si − cn)), i = 1, 2, . . . ,
have totally skewed to the right α/2-stable limits but we also have a−2

n Sij
d→ ξij,α/2 for

non-degenerate α/2-stable ξij,α/2. From (4.28) we conclude that if ψij = 2 appears then
ψi
′j′ = 2 for all |i′− j′| = |i− j|. This means that non-degenerate limits may appear not

only on the diagonal of the matrix a−2
n (Sij − cn) but also along full sub-diagonals.

In this case, the distribution of Θ0 from the spectral tail process of the sequence
Xt = (X1t, . . . , Xpt)′ does not have to be concentrated on the axes—in contrast to Exam-
ple 4.18. This implies that the limiting α/2-stable random variables ξi,α/2, i = 1, . . . , p,
are in general not independent. However, similar to the arguments at the end of the
proof of Theorem 4.3, one can show that the distribution of the limiting random vec-
tor (ξi,α/2)i=1,...,p is the convolution of distributions of α/2-stable random vectors which
concentrate on hyperplanes of Rp of dimension less or equal than |{(m,n) : ψmn = 1}|.

4.4.3 The eigenvalues of the sample covariance matrix of a
multivariate stochastic volatility model

In this section we provide some results for the eigenvalues of the sample covariance matrix
Xn(Xn)′ under the conditions of Theorem 4.16. We introduce the sets

Γp = {(i, j) : 1 ≤ i, j ≤ p such that ψij = 2} , Γcp = {(i, j) : 1 ≤ i, j ≤ p}\Γp

and let (an) be nP(|X| > an)→ 1.
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Theorem 4.20. Assume that the conditions of Theorem 4.16 hold for (Xit, Xjt), 1 ≤
i, j ≤ p, and α ∈ (0, 4). Then

a−2
n

∥∥Xn(Xn)′ − X̃n
∥∥

2
P→ 0 , n→∞ ,

where X̃n is a p× p matrix with entries

X̃ij =
n∑
t=1

XitXjt1((i, j) ∈ Γp) , 1 ≤ i, j ≤ p .

Moreover, if E[e αη] =∞ we also have

a−2
n

∥∥Xn(Xn)′ − diag(Xn(Xn)′)
∥∥

2
P→ 0 , n→∞ .

Proof. We have

a−4
n

∥∥Xn(Xn)′ − X̃n
∥∥2

2 ≤
∑

(i,j)∈Γcp

(
a−2
n Sij

)2
.

For (i, j) ∈ Γcp we have i 6= j and the sequence (XitXjt) is regularly varying with
index α/ψij > α/2. In view of Theorem 4.16 the right-hand side converges to zero in
probability.

In the case when E[e αη] =∞ we learned in Example 4.18 that a−2
n Sij

P→ 0 whenever
i 6= j. This concludes the proof.

For any p× p non-negative definite matrix A write λi(A), i = 1, . . . , p, for its eigen-
values and λ(1)(A) ≥ · · · ≥ λ(p)(A) for their ordered values. For the eigenvalues of
Xn(Xn)′ we keep the previous notation (λi),

Corollary 4.21. Assume the conditions of Theorem 4.20 and α ∈ (0, 4)\{2}. Then

a−2
n max

i=1,...,p

∣∣λ(i) − λ(i)(X̃n)
∣∣ P→ 0 . (4.41)

and

a−2
n

(
λ(i) − nE[X2]1(α ∈ (2, 4))

)
i=1,...,p

(4.42)

d→
(
λ(i)
(
(ξkl,α/21((k, l) ∈ Γp))1≤k,l≤p

))
i=1,...,p

,

where (ξij,α/2)(i,j)∈Γp are jointly α/2-stable (possibly degenerate for i 6= j) random vari-
ables. Moreover, in the case when E[e αη] =∞ we have

a−2
n

(
λ(i) − nE[X2]1(α ∈ (2, 4))

)
i=1,...,p

d→
(
ξ(i),α/2

)
i=1,...,p , (4.43)

where (ξi,α/2)i=1,...,p are iid totally skewed to the right α/2-stable random variables with
order statistics ξ(1),α/2 ≥ · · · ≥ ξ(p),α/2.

Proof. Relation (4.41) is an immediate consequence of Theorem 4.20 and Weyl’s inequal-
ity; see Bhatia [20]. We conclude from Theorem 4.16 and Remark 4.17(3) that

a−2
n

(
Sij − nE[X2] 1(α ∈ (2, 4))

)
(i,j)∈Γp

d→
(
ξij,α/2

)
(i,j)∈Γp

. (4.44)

Then (4.42) follows. Relation (4.43) is a special case of (4.42). If E[e αη] = ∞ then,
in view of Example 4.18, only the diagonal elements in (4.44) have non-degenerate iid
α/2-stable limits.
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Some conclusions

By virtue of this corollary and in view of Section 4.3.3 the results for the eigenvalues
in Case (1) and in Case (2) when E[e αη] = ∞ are very much the same. Moreover, the
results in Section 4.3.4 remain valid in the latter case.

If (4.27) holds, Case (2) is quite different from Case (1); see Example 4.19. In this
case not only the diagonal of the matrix Xn(Xn)′ determines the asymptotic behavior of
its eigenvalues and eigenvectors. Indeed, if ψij = 2 for some i 6= j, then at least two sub-
diagonals of Xn(Xn)′ have non-degenerate α/2-limits and these sub-diagonals together
with the diagonal determine the asymptotic behavior of the eigenspectrum. The limiting
diagonal elements are dependent in contrast to Case (1). This fact and the presence
of sub-diagonals are challenges if one wants to calculate the limit distributions of the
eigenvalues and eigenvectors.

4.5 Simulations and data example

In this section we illustrate the behavior of sample covariance matrices for moderate
sample sizes for the models discussed in Sections 4.3 and 4.4 and we compare them
with a real-life data example. These data consist of 1567 daily log-returns of foreign
exchange (FX) rates from 18 currencies against the Swedish Kroner (SEK) from January
4th 2010 to April 1st 2016, as made available by the Swedish National Bank. To start
with, the Hill estimators of the tail indices αij , 1 ≤ i, j,≤ 18, of the cross products
XitXjt, 1 ≤ i, j,≤ 18, are visualized in Figure 4.1.
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In particular, the Hill estimators on
the diagonal (corresponding to the se-
ries X2

it, 1 ≤ i ≤ 18) of the values
αi/2, where αi is the tail index of
the ith currency, are of similar size
although not identical. Even if all se-
ries had the same tail index the Hill
estimator exhibits high statistical un-
certainty which even increases for se-
rially dependent data, cf. Drees [50].

Figure 4.1: Estimated tail indices of cross products for the FX rates of 18 currencies
against SEK. The indices are derived by Hill estimators with threshold equal to the
97%-quantile of n = 1567 observations.

A way to make the data more homogeneous in their tails is to rank-transform their
marginals to the same distribution. We do, however, refrain from such a transformation
to keep the correlation structure of the original data unchanged.
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It is clearly visible that some off-diagonal components of the matrix have an estimated
tail index which is comparable to the on-diagonal elements. This implies that the tails
of the corresponding off-diagonal entries Sij , i 6= j, of the sample covariance matrix may
be of a similar magnitude as the on-diagonal entries Si. This is in stark contrast to the
asymptotic behavior of the models analyzed in Section 4.3.
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Figure 4.2: Normalized and ordered eigenvalues (left) and eigenvector corresponding to
largest eigenvalue (right) of real and simulated data, with n = 1567, p = 18. Based on
FX rate data of 18 foreign currencies against SEK.
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Figure 4.3: Based on a stochastic volatility model with heavy-tailed innovation sequence.

Figure 4.2 shows the ordered eigenvalues of the sample covariance matrix (normal-
ized by its trace) and the eigenvector of the FX rate data corresponding to the largest
eigenvalue. There exists a notable spectral gap between the largest and second largest
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Figure 4.4: Based on a stochastic volatility model with heavy-tailed volatility sequence
that satisfies assumptions of Example 4.18
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Figure 4.5: Based on a stochastic volatility model with heavy-tailed volatility sequence
that satisfies assumptions of Example 4.19

eigenvalues and the unit eigenvector corresponding to the largest eigenvector has all pos-
itive and non-vanishing components. For comparison and to illustrate the variety of
the models discussed above we also plot corresponding realizations of three model spec-
ifications from Sections 4.3 and 4.4. In all cases we choose p = 18 and n = 1567 in
accordance with the data example. We assume throughout a moving average structure
in the log-volatility process log σit in (4.2). More specifically,

σit = exp(
18∑
k=1

ηi−k,t), 1 ≤ i ≤ 18, t ∈ Z. (4.45)
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In accordance with the model properties discussed in Section 4.3, we first assume iid
standard Gaussian ηi,t and iid Zit with a Student-t distribution with t = 3 degrees of
freedom. Figure 4.3 shows the normalized eigenvalues and the first unit eigenvector from
a realization of this model. We notice a relatively large gap between the first and second
eigenvalue and, in accordance with Section 4.3.4.4, we see that the first unit eigenvector
is relatively close to a unit basis vector. Figure 4.4 shows the corresponding realizations
for the model (4.45) with a specification according to Example 4.18, i.e., Exponential(3)-
distributed iid ηi,t (meaning that P(ηi,t > x) = exp(−3x), x ≥ 0, which implies α = 3
and E[e 3η] =∞) and iid standard Gaussian Zit. Compared to the first simulated model,
we see a slower decay in the magnitude of the ordered eigenvalues and a more spread
out first unit eigenvector. This observation illustrates that although the limit behavior
of this model and the one analyzed before should be very similar (cf. Example 4.18),
convergence to the prescribed limit appears slower for the heavy-tailed volatility sequence
than for the heavy-tailed innovations. Finally, Figure 4.5 shows a simulation drawn from
(4.45) where the ηi,t are iid such that P(ηi,t > x) ∼ x−2 exp(−3x), x → ∞, and the
Zit are iid standard Gaussian. Again, α = 3, but direct calculations show that the
distribution of ηi,t is convolution equivalent, i.e., it satisfies (4.27) instead of (4.26). The
graphs are in line with the analysis in Example 4.19 and illustrate a very spread out
dominant eigenvector. We note that while none of the three very simple models analyzed
in the simulations above is able to fully describe the behavior of the analyzed data, the
two models with heavy-tailed volatility and light-tailed innovations are able to explain
a non-concentrated first unit eigenvector of the sample covariance matrix and therefore
non-negligible dependence between components as seen in the data.

Acknowledgements

Thomas Mikosch’s and Xiaolei Xie’s research is partly supported by the Danish Re-
search Council Grant DFF-4002-00435 “Large random matrices with heavy tails and
dependence”. Parts of the paper were written when Mohsen Rezapour visited the De-
partment of Mathematics at the University of Copenhagen December 2015–January 2016.
He would like to thank the Department of Mathematics for hospitality.

4.6 Some α-stable limit theory

In this paper, we make frequently use of Theorem 4.3 in Mikosch and Wintenberger [90]
which we quote for convenience:

Theorem 4.22. Let (Yt) be an Rp-valued strictly stationary sequence, Sn = Y1 + · · ·+
Yn and (an) be nP(‖Y‖ > an) → 1. Also write for ε > 0, Yt = Yt1(‖Yt‖ ≤ εan),
Yt = Yt −Yt and

Sl,n =
l∑
t=1

Yt Sl,n =
l∑
t=1

Yt .

Assume the following conditions:

1. (Yt) is regularly varying with index α ∈ (0, 2) \ {1} and spectral tail process (Θj).
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2. A mixing condition holds: there exists an integer sequencemn →∞ kn = [n/mn]→
∞ and

Ee it
′S
n
/an −

(
Ee it

′S
mn,n

/an
)kn
→ 0 , n→∞ , t ∈ Rp . (4.46)

3. An anti-clustering condition holds:

lim
l→∞

lim sup
n→∞

P
(

max
t=l,...,mn

‖Yt‖ > δan | ‖Y0‖ > δan
)

= 0 , δ > 0 (4.47)

for the same sequence (mn) as in (2).

4. If α ∈ (1, 2), in addition E[Y] = 0 and the vanishing small values condition holds:

lim
ε↓0

lim sup
n→∞

P
(
a−1
n ‖Sn − E[Sn]‖ > δ

)
= 0 , δ > 0 (4.48)

and
∑∞
i=1 E[‖Θi‖] <∞.

Then a−1
n Sn

d→ ξα for an α-stable Rp-valued vector ξα with log characteristic function∫ ∞
0

E
[
e i y t′

∑∞
j=0

Θj − e i y t′
∑∞

j=1
Θj − i y t′1(1,2)(α)

]
d(−yα) , t ∈ Rp . (4.49)

Remark 4.23. If we additionally assume that Y is symmetric, which implies E[Y] = 0,
then the statement of the theorem also holds for α = 1.

4.7 (Joint) Tail behavior for products of regularly varying
random variables

In this paper, we make frequently use of the tail behavior of products of non-negative
independent random variables X and Y . In particular, we are interested in conditions
for the existence of the limit

lim
x→∞

P(XY > x)
P(X > x) = q . (4.50)

for some q ∈ [0,∞]. We quote some of these results for convenience.

Lemma 4.24. Let X and Y be independent random variables.

1. If X and Y are regularly varying with index α > 0 then XY is regularly varying
with the same index.

2. If X is regularly varying with index α > 0 and E[Y α+ε] < ∞ for some ε > 0 then
(4.50) holds with q = E[Y α].

3. If X and Y are iid regularly varying with index α > 0 and E[Y α] <∞, then (4.50)
holds with q = 2E[|Y |α] iff

lim
M→∞

lim sup
x→∞

P(XY > x,M < Y ≤ x/M)
P(X > x) = 0 . (4.51)
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4. If X and Y are regularly varying with index α > 0, E[Y α+Xα] <∞, limx→∞ P(Y >
x)/P(X > x) = 0 and (4.51) holds, then (4.50) holds with q = E[|Y |α].

5. Assume that E[|Y |α] =∞. Then (4.50) holds with q =∞.

Proof. (1) This is proved in Embrechts and Goldie [57].
(2) This is Breiman’s [27] result.
(3) This is Proposition 3.1 in Davis and Resnick [46].
(4) This part is proved similarly to (3); we borrow the ideas from [46]. For M > 0 we
have the following decomposition
P(XY > x)
P(X > x) = P(XY > x, Y ≤M)

P(X > x) + P(XY > x,M < Y ≤ x/M)
P(X > x) + P(XY > x, Y > x/M)

P(X > x)

∼ E[Y α1(Y ≤M)] + P(XY > x,M < Y ≤ x/M)
P(X > x) + E[(X ∧M)α] P(Y > x)

P(X > x)

= E[Y α1(Y ≤M)] + P(XY > x,M < Y ≤ x/M)
P(X > x) + o(1) .

Here we applied Breiman’s result twice. The second term vanishes by virtue of (4.51).
Thus q = E[Y α].
(5) The same argument as for (4) yields as x→∞,

P(XY > x)
P(X > x) ≥ P(XY > x, Y ≤M)

P(X > x) ∼ E[Y α1(Y ≤M)] .

Then (4.50) with q =∞ is immediate.

Lemma 4.25. Let Y1, . . . , Yp ≥ 0 be iid regularly varying random variables with index
α > 0. Assume that

lim
t→∞

P(Y1 · Y2 > t)
P(Y1 > t) = c ∈ (0,∞) . (4.52)

Then for any a1, . . . , ap ≥ 0 such that amax := maxj=1,...,p aj > 0 and any v > 0 we have

lim
t→∞

P(
∏p
i=1 Y

ai
i > vt)

P(Y amax
1 > t) =

∑
j:aj=amax

lim
s→0

lim
t→∞

P(
∏p
i=1 Y

ai
i > vt, Y amax

j > st)
P(Y amax

1 > t) (4.53)

and

lim
s→0

lim sup
t→∞

P(
∏p
i=1 Y

ai
i > vt,maxj=1,...,p Y

amax
j ≤ st)

P(Y amax
1 > t) = 0. (4.54)

Proof. In view of Davis and Resnick [47] the only possible value for c in (4.52) is 2E[Y α1 ]
(which implies that E[Y α1 ] <∞). Furthermore, we note that the product

∏
j:aj=amax

Y
aj
j

is regularly varying with index −α/amax; see Embrechts and Goldie [57], Corollary on
p. 245. By Breiman’s lemma this implies that

lim
t→∞

P(
∏p
i=1 Y

ai
i > vt)

P(Y amax
1 > t)

= lim
t→∞

P(Y amax
1 > vt)

P(Y amax
1 > t)

P(
∏p
i=1 Y

ai
i > vt)

P(Y amax
1 > vt)

= v−α/amax
( ∏
j:aj 6=amax

E[Y αaj/amax
j ]

)
lim
t→∞

P(
∏
j:aj=amax

Y amax
j > vt)

P(Y amax
1 > vt) .
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By Lemma 2.5 in Embrechts and Goldie [56] (cf. also Chover, Ney and Wainger [32]) this
equals

v−α/amax
( ∏
j:aj 6=amax

E[Y αaj/amax
j ]

)
|{j : aj = amax}|E[Y α1 ]|{j:aj=amax}|−1.

On the other hand, we have

∑
j:aj=amax

lim
s→0

lim
t→∞

P(
∏p
i=1 Y

ai
i > vt, Y amax

j > st)
P(Y amax

1 > t)

=
∑

j:aj=amax

lim
s→0

lim
t→∞

P(Y amax
j min(s−1, v−1∏

k 6=j Y
ak
k ) > t)

P(Y amax
j > t)

=
∑

j:aj=amax

lim
s→0

E[(min(s−1, v−1
∏
k 6=j

Y akk ))α/amax ]

= v−α/amax
∑

j:aj=amax

∏
k 6=j

E[Y αak/amax
k ]

= v−α/amax
( ∏
j:aj 6=amax

E[Y αaj/amax
j ]

)
|{j : aj = amax}|E[Y α1 ]|{j:aj=amax}|−1,

where we applied Breiman’s lemma in the second step to the bounded random variable
min(s−1, v−1∏

k 6=j Y
ak
k ), and the monotone convergence theorem in the penultimate

step. This proves (4.53). To prove (4.54) note that for s > 0,

P(
∏p
i=1 Y

ai
i > vt)

P(Y amax
1 > t)

≥
P(
∏p
i=1 Y

ai
i > vt,maxj=1,...,p Y

amax
j ≤ st)

P(Y amax
1 > t)

+
∑

j:aj=amax

P(
∏p
i=1 Y

ai
i > vt, Y amax

j > st)
P(Y amax

1 > t)

−
P(
∏p
i=1 Y

ai
i > vt, Y amax

j1
> st, Y amax

j2
> st for some j1 6= j2)

P(Y amax
1 > t) , s > 0.

The last summand on the right-hand side converges to 0 as t → ∞ by independence
of the Y ′j s. Moreover, the left-hand term and the second term on the right-hand side
become equal by first t → ∞ and then s → 0, in view of (4.53). Therefore the first
right-hand term vanishes by first t→∞ and then s→ 0. This proves the statement.

Proposition 4.26. Let Y1, . . . , Yp ≥ 0 be iid regularly varying with index α and (aij) ∈
[0,∞)n×p, n, p ≥ 1, be such that max1≤i≤n aik = amax := maxi,j aij > 0 for any 1 ≤ k ≤
p.

(i) Assume that (4.52) holds. Then the random vector

Y :=
( p∏
j=1

Y
aij
j

)
1≤i≤n (4.55)
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is regularly varying with index α/amax. Furthermore, up to a constant the limit
measure µ of Y is given by

∑p
j=1 µj , where for any Borel set B ∈ [0,∞]n bounded

away from 0 and να(dz) = αz−α−1dz,

µj(B) =
∫ ∞

0
P
((

1(aij = amax)zamax
∏
k 6=j

Y aikk

)
1≤i≤n

∈ B
)
να(dz).(4.56)

(ii) Assume that E[Y α1 ] =∞. Set

peff := max
i
|{1 ≤ j ≤ p : aij = amax}| ,

Peff := {A ⊂ {1, . . . , p} : |A| = peff ∧ ∃ i : ∀ j ∈ A : aij = amax} .

Then the random vector Y in (4.55) is regularly varying with index α/amax. Fur-
thermore, up to a constant the limit measure µ of Y is equal to

∑
A∈Peff

µA, where
for any Borel set B ∈ [0,∞]n bounded away from 0,

µA(B) =
∫ ∞

0
P
((

1(aij = amax ∀ j ∈ A)zamax
∏
k/∈A

Y
aik
k

)
1≤i≤n

∈ B
)
να(dz) . (4.57)

Proof. (i) Let B ∈ [0,∞]n be a Borel set bounded away from 0. For s > 0 we have

P(Y ∈ tB)
P(Y amax

1 > t) =
P(Y ∈ tB,maxj=1,...,p Y

amax
j ≤ st)

P(Y amax
1 > t) +

p∑
j=1

P(Y ∈ tB, Y amax
j > st)

P(Y amax
1 > t)

−
P(Y ∈ tB, Y amax

j1
> st, Y amax

j2
> st, for some j1 6= j2)

P(Y amax
1 > t) . (4.58)

Since B is bounded away from 0, there exists v > 0 and 1 ≤ i ≤ n such that B ⊂
{(x1, . . . , xn) ∈ [0,∞]n : xi > v}. From Lemma 4.25, (4.54) the first summand in (4.58)
therefore tends to 0 by first t → ∞ and then s → 0. Furthermore, the third summand
converges to zero as t→∞ by independence of the Y ′j s. We are thus left to show

lim
s↘0

lim
t→∞

P(Y ∈ tB, Y amax
j > st)

P(Y amax
1 > t) = µj(B), 1 ≤ j ≤ p,

with µj as in (4.56). For s > 0 write

lim
t→∞

P(Y ∈ tB, Y amax
j > st)

P(Y amax
1 > t)

= s−α/amax lim
t→∞

P(Y ∈ tB | Y amax
j > st)

= s−α/amax lim
t→∞

P

((Y amax
j

st

) aij
amax

s
aij
amax t

aij
amax

−1
∏
k 6=j

Y
aik
k

)
1≤i≤n

∈ B
∣∣∣∣ Y amax

j > st


= s−α/amax

∫ ∞
1

P

(1(aij = amax)sy
∏
k 6=j

Y
aik
k

)
1≤i≤n

∈ B

 να/amax(dy).
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Substituting sy by z in the integral finally gives

lim
s↘0

lim
t→∞

P(Y ∈ tB, Y amax
j > st)

P(Y amax
1 > t)

=
∫ ∞

0
P

1(aij = amax)zamax
∏
k 6=j

Y aikk


1≤i≤n

∈ B

 να(dz).

(ii) Note first that under our assumptions for any 1 ≤ n1 < n2 ≤ p,

lim
t→∞

P(
∏n2
j=1 Yj > t)

P(
∏n1
j=1 Yj > t)

= lim
t→∞

∫ ∞
0

P(
∏n1
j=1 Yj > t/y)

P(
∏n1
j=1 Yj > t)

P

∏n2
j=n1+1

Yj (dy)

≥ E

 n2∏
j=n1+1

Y αj

 =∞ (4.59)

by Fatou’s lemma and the regular variation of
∏n1
j=1 Yj . Write now

Y =
∑

1≤i≤n
|{j:aij=amax}|=peff

p∏
j=1

Y
aij
j ei +

∑
1≤i≤n

|{j:aij=amax}|<peff

p∏
j=1

Y
aij
j ei, (4.60)

where ei stands for the i-th unit vector. The first sum can also be written as∑
A∈Peff

diag((1(aij = amax ∀ j ∈ A)
∏
k/∈A

Y aikk )1≤i≤n)
∏
j∈A

Y amax
j =:

∑
A∈Peff

YA, (4.61)

where for each summand the random matrix and the random factor are independent
and for the non-zero entries of the matrix we have aik < amax since k /∈ A. Thus, by
the multivariate version of Breiman’s lemma each YA is a multivariate regularly varying
vector with limit measure µA (up to a constant multiplier) as in (4.57) and normalizing
function P (

∏peff
i=1 Y

amax
i > x). Furthermore, for A,A′ ∈ Peff with A 6= A′ and i, i′ such

that aij = amax ∀ j ∈ A and ai′j = amax ∀ j ∈ A′ we have

P(YA
i > x,YA′

i′ > x)
P(
∏peff
i=1 Y

amax
i > x)

(4.62)

=
P((
∏
j∈A∩A′ Yj)amax

∏
j∈(A∩A′)c Y

aij
j > x, (

∏
j∈A∩A′ Yj)amax

∏
j∈(A∩A′)c Y

ai′j
j > x)

P(
∏peff
i=1 Y

amax
i > x)

.

By Janßen and Drees [78], Theorem 4.2 (in connection with Remark 4.3 (ii) and the minor
change that our random variables are regularly varying with index α instead of 1), the
numerator behaves asymptotically like P((

∏
j∈A∩A′ Yj)amax > x), since κ0 = a−1

max, κj =
0, j ∈ (A ∩A′)c is the unique non-negative optimal solution to

κ0 +
∑

j∈(A∩A′)c
κj → min!

under
κ0amax +

∑
j∈(A∩A′)c

κjaij ≥ 1, κ0amax +
∑

j∈(A∩A′)c
κjai′j ≥ 1.
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This is because min(aij , ai′j) < amax and max(aij , ai′j) ≤ amax for all j ∈ (A ∩ A′)c.
Since A 6= A′, we have |A∩A′| < peff and thus, by (4.59), the expression (4.62) converges
to 0 as x→∞. Therefore, each component of YA is asymptotically independent of each
component of YA′ and thus the sum in (4.61) is multivariate regularly varying with limit
measure

∑
A∈Peff

µA and normalizing function P(
∏peff
i=1 Y

amax
i > x). Since the second

sum in (4.60) consists by (4.59) only of random vectors for which P(‖
∏p
j=1 Y

aij
j ei‖ >

x) = P(
∏p
j=1 Y

aij
j > x) = o(P(

∏peff
i=1 Y

amax
i > x)), we have that Y is regularly varying

with index α/amax and limit measure
∑
A∈Peff

µA by Lemma 3.12 in Jessen and Mikosch
[81].





Chapter 5

Extreme value analysis for the sample
autocovariance matrices of heavy-tailed
multivariate time series

Richard Davis, Johannes Heiny,
Thomas Mikosch & Xiaolei Xie
Extremes 19, 3 (2016), 517–547.

Abstract

We provide some asymptotic theory for the largest eigenvalues of a sample co-
variance matrix of a p-dimensional time series where the dimension p = pn converges
to infinity when the sample size n increases. We give a short overview of the litera-
ture on the topic both in the light- and heavy-tailed cases when the data have finite
(infinite) fourth moment, respectively. Our main focus is on the heavy-tailed case.
In this case, one has a theory for the point process of the normalized eigenvalues
of the sample covariance matrix in the iid case but also when rows and columns
of the data are linearly dependent. We provide limit results for the weak conver-
gence of these point processes to Poisson or cluster Poisson processes. Based on this
convergence we can also derive the limit laws of various functionals of the ordered
eigenvalues such as the joint convergence of a finite number of the largest order
statistics, the joint limit law of the largest eigenvalue and the trace, limit laws for
successive ratios of ordered eigenvalues, etc. We also develop some limit theory for
the singular values of the sample autocovariance matrices and their sums of squares.
The theory is illustrated for simulated data and for the components of the S&P 500
stock index.

keywords: Regular variation, sample covariance matrix, dependent entries, largest
eigenvalues, trace, point process convergence, cluster Poisson limit, infinite variance sta-
ble limit, Fréchet distribution. subject class: Primary 60B20; Secondary 60F05 60F10
60G10 60G55 60G70

5.1 Estimation of the largest eigenvalues

5.1.1 The light-tailed case
One of the exciting new areas of statistics is concerned with analyses of large data
sets. For such data one often studies the dependence structure via covariances and
correlations. In this paper we focus on one aspect: the estimation of the eigenvalues of
the covariance matrix of a multivariate time series when the dimension p of the series
increases with the sample size n. In particular, we are interested in limit theory for the
largest eigenvalues of the sample covariance matrix. This theory is closely related to

107
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topics from classical extreme value theory such as maximum domains of attraction with
the corresponding normalizing and centering constants for maxima; cf. Embrechts et
al. [58], Resnick [96, 97]. Moreover, point process convergence with limiting Poisson and
cluster Poisson processes enters in a natural way when one describes the joint convergence
of the largest eigenvalues of the sample covariance matrix. Large deviation techniques find
applications, linking extreme value theory with random walk theory and point process
convergence. The objective of this paper is to illustrate some of the main developments
in random matrix theory for the particular case of the sample covariance matrix of
multivariate time series with independent or dependent entries. We give special emphasis
to the heavy-tailed case when extreme value theory enters in a rather straightforward
way.

Classical multivariate time series analysis deals with observations which assume values
in a p-dimensional space where p is “relatively small” compared to the sample size n.
With the availability of large data sets p can be “large” relative to n. One of the possible
consequences is that standard asymptotics (such as the central limit theorem) break
down and may even cause misleading results.

The dependence structure in multivariate data is often summarized by the covari-
ance matrix which is typically estimated by its sample analog. For example, principal
component analysis (PCA) extracts principal component vectors corresponding to the
largest eigenvalues of the sample covariance matrix. The magnitudes of these eigenvalues
provide an empirical measure of the importance of these components.

If p, n are fixed, a column of the p× n data matrix

X = Xn =
(
Xit

)
i=1,...,p;t=1,...,n

represents an observation of a p-dimensional time series model with unknown parameters.
In this section we assume that the real-valued entries Xit are iid, unless mentioned
otherwise, and we write X for a generic element. One challenge is to infer information
about the parameters from the eigenvalues λ1, . . . , λp of the sample covariance matrix
XX′. In the notation we suppress the dependence of (λi) on n and p. If p and n are
finite and the columns of X are iid and multivariate normal, Muirhead [91] derived a
(rather complicated) formula for the joint distribution of the eigenvalues (λi).

For p fixed and n → ∞, assuming X has centered normal entries and a diagonal
covariance matrix Σ, Anderson [5] derived the joint asymptotic density of (λ1, . . . , λp).
We quote from Johnstone [83]: “The classic paper by Anderson [5] gives the limiting
joint distribution of the roots, but the marginal distribution of the largest eigenvalue is
hard to extract even in the null case” (i.e., when the covariance matrix Σ is proportional
to the identity matrix).

It turns out that limit theory for the largest eigenvalues becomes “easier” when the
dimension p increases with n. Over the last 15 years there has been increasing interest
in the case when p = pn → ∞ as n → ∞. In most of the literature (exceptions are El
Karoui [55], Davis et al. [44, 45] and Heiny and Mikosch [68]) one assumes that p and n
grow at the same rate:

p

n
→ γ for some γ ∈ (0,∞). (5.1)

In random matrix theory, the convergence of the empirical spectral distributions
(Fn−1XX′) of a sequence (n−1XX′) of non-negative definite matrices is the principle
object of study. The empirical spectral distribution Fn−1XX′ is constructed from the
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eigenvalues via

Fn−1XX′(x) = 1
p

#{1 ≤ j ≤ p : n−1λj ≤ x}, x ∈ R, n ≥ 1.

In the literature convergence results for the sequence of empirical spectral distributions
are established under the assumption that p and n grow at the same rate. Suppose that
the iid entries Zit have mean 0 and variance 1. If (5.1) holds, then, with probability one,
(Fn−1XX′) converges to the celebrated Marčenko–Pastur law with absolutely continuous
part given by the density,

fγ(x) =
{ 1

2πxγ
√

(b− x)(x− a) , if a ≤ x ≤ b,
0 , otherwise,

(5.2)

where a = (1 − √γ)2 and b = (1 + √γ)2. The Marčenko–Pastur law has a point mass
1 − 1/γ at the origin if γ > 1, cf. Bai and Silverstein [9, Chapter 3]. The point mass
at zero is intuitively explained by the fact that, with probability 1, min(p, n) eigenvalues
λi are non-zero. When n = (1/γ) p and γ > 1 one sees that the proportion of non-
zero eigenvalues of the sample covariance matrix is 1/γ while the proportion of zero
eigenvalues is 1− 1/γ.

While the finite second moment is the central assumption to obtain the Marčenko–
Pastur law as the limiting spectral distribution, the finite fourth moment plays a crucial
role when studying the largest eigenvalues

λ(1) ≥ · · · ≥ λ(p) (5.3)

of XX′, where we suppress the dependence on n in the notation.
Assuming (5.1) and iid entries Xit with zero mean, unit variance and finite fourth

moment, Geman [62] showed that

λ(1)

n

a.s.→
(
1 +√γ

)2
, n→∞ . (5.4)

Johnstone [83] complemented this strong law of large numbers by the corresponding
central limit theorem in the special case of iid standard normal entries:

n2/3 (√γ)1/3(
1 +√γ

)4/3(λ(1)

n
−
(
1 +

√
p
n

)2) d→ TW , (5.5)

where the limiting random variable has a Tracy–Widom distribution of order 1. Notice
that the centering

(
1 +

√
p
n

)2 can in general not be replaced by (1 + √γ)2. This dis-
tribution is ubiquitous in random matrix theory. Its distribution function F1 is given
by

F1(s) = exp
{
− 1

2

∫ ∞
s

[q(x) + (x− s)q2(x)] dx
}
,

where q(x) is the unique solution to the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x) ,

where q(x) ∼ Ai(x) as x→∞ and Ai(·) is the Airy kernel; see Tracy and Widom [112] for
details. We notice that the rate n2/3 compares favorably to the

√
n-rate in the classical
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(a) Standard normal entries
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(b) Entry distribution: P(X =
√

3) = P(X = −
√

3) =
1/6, P(X = 0) = 2/3. Note EX = 0, E[X2] = 1,
E[X3] = 0 and E[X4] = 3, i.e., the first 4 moments of X
match those of the standard normal distribution.

Figure 5.1: Sample density function of the largest eigenvalue compared with the Tracy–
Widom density function. The data matrix X has dimension 200× 1000. An ensemble of
2000 matrices is simulated.

central limit theorem for sums of iid finite variance random variables. The calculation
of the spectrum is facilitated by the fact that the distribution of the classical Gaus-
sian matrix ensembles is invariant under orthogonal transformations. The corresponding
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computation for non-invariant matrices with non-Gaussian entries is more complicated
and was a major challenge for several years; a first step was made by Johansson [82].
Johnstone’s result was extended to matrices X with iid non-Gaussian entries by Tao and
Vu [108, Theorem 1.16]. Assuming that the first four moments of the entry distribution
match those of the standard normal distribution, they showed (5.5) by employing Lin-
deberg’s replacement method, i.e., the iid non-Gaussian entries are replaced step-by-step
by iid Gaussian ones. This approach is well-known from summation theory for sequences
of iid random variables. Tao and Vu’s result is a consequence of the so-called Four
Moment Theorem, which describes the insensitivity of the eigenvalues with respect to
changes in the distribution of the entries. To some extent (modulo the strong moment
matching conditions) it shows the universality of Johnstone’s limit result (5.5). Later we
will deal with entries with infinite fourth moment. In this case, the weak limit for the
normalized largest eigenvalue λ(1) is distinct from the Tracy–Widom distribution: the
classical Fréchet extreme value distribution appears. In Figure 5.1 we illustrate how the
Tracy–Widom approximation works for Gaussian and non-Gaussian entries of X and in
Figure 5.2 we also illustrate that this approach fails when E[X4] =∞.

Figure 5.1 compares the sample density function of the properly normalized largest
eigenvalue estimated from 2000 simulated sample covariance matrices XX′ (n = 1000, p =
200) with the Tracy–Widom density. If X has infinite fourth moment and further regu-
larity conditions on the tail hold then the Tracy–Widom limiting law needs to be replaced
by the Fréchet distribution; see Section 5.1.2 for details. Figure 5.2 illustrates this fact
with a simulated ensemble whose entries are distributed according to the heavy-tailed
distribution from (5.32) below with α = 1.6.

5.1.2 The heavy-tailed case
So far we focused on “light-tailed” X in the sense that its entries have finite fourth mo-
ment. However, there is statistical evidence that the assumption of finite fourth moment
may be violated when dealing with data from insurance, finance or telecommunications.
We illustrate this fact in Figure 5.3 where we show the pairs (αL, αU ) of lower and upper
tail indices of p = 478 log-return series composing the S&P 500 index estimated from
n = 1, 345 daily observations from 01/04/2010 to 02/28/2015. This means we assume
for every row (Xit)t=1,...,n of X that the tails behave like

P(Xit > x) ∼ cU x−αU and P(Xit < −x) ∼ cL x−αL , x→∞ ,

for non-negative constants cL, cU . We apply the Hill estimator (see Embrechts et al. [58],
p. 330, de Haan and Ferreira [67], p. 69) to the time series of the gains and losses in
a naive way, neglecting the dependence and non-stationarity in the data; we also omit
confidence bands. From the figure it is evident that the majority of the return series
have tail indices below four, corresponding to an infinite fourth moment. The behavior
of the largest eigenvalue λ(1) changes dramatically when X has infinite fourth moment.
Bai and Silverstein [10] proved for an n× n matrix X with iid centered entries that

lim sup
n→∞

λ(1)

n
=∞ a.s. (5.6)

This is in stark contrast to Geman’s result (5.4).
In the heavy-tailed case it is common to assume a regular variation condition:

P(X > x) ∼ p+
L(x)
xα

and P(X < −x) ∼ p−
L(x)
xα

, x→∞ , (5.7)
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Figure 5.2: Sample distribution function of the largest eigenvalue λ(1) compared to the
Fréchet distribution (solid line) with α = 1.6. The data matrices have dimension 200×
1000 and iid entries with infinite fourth moment. The results are based on 2000 replicates.

where p± are non-negative constants p+ + p− = 1 and L is a slowly varying function. In
particular, if α < 4 we have E[X4] =∞. The regular variation condition on X (we will
also refer to X as a regularly varying random variable) is needed for proving asymptotic
theory for the eigenvalues of XX′. This is similar to proving limit theory for sums of iid
random variables with infinite variance stable limits; see for example Feller [61].

In (5.2) we have seen that the sequence (Fn−1XX′) of empirical spectral distributions
converges to the Marčenko–Pastur law if the centered iid entries possess a finite second
moment. Now we will discuss the situation when the entries are still iid and centered,
but have an infinite variance. Here we assume the entries to be regularly varying with
index α ∈ (0, 2). Assuming (5.1) with γ ∈ (0, 1] in this infinite variance case, Belinschi et
al. [16, Theorem 1.10] showed that the sequence (Fa−2

n+pXX′) converges with probability
one to a non-random probability measure with density ργα satisfying

ργα(x)x1+α/2 → αγ

2(1 + γ) , x→∞,

see also Ben Arous and Guionnet [18, Theorem 1.6]. The normalization (ak) is chosen
P(|X| > ak) ∼ k−1 as k →∞. An application of the Potter bounds (see Bingham et al.
[21, p. 25]) shows that a2

n+p/n→∞.
It is interesting to note that there is a phase change in the extreme eigenvalues in going

from finite to infinite fourth moment, while the phase change occurs for the empirical
spectral distribution going from finite to infinite variance.
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Figure 5.3: Tail indices of log-returns of 478 time series from the S&P 500 index. The
values (α̂L, α̂U ) of the lower and upper tail indices are provided by Hill’s estimator. We
also draw the line α̂U = α̂L.

The theory for the largest eigenvalues of sample covariance matrices with heavy tails
is less developed than in the light-tailed case. Pioneering work for λ(1) in the case of iid
regularly varying entries Xit with index α ∈ (0, 2) is due to Soshnikov [105, 106]. He
showed the point process convergence

Nn =
p∑
i=1

εa−2
npλi

d→ N =
∞∑
i=1

εΓ−2/α
i

, n→∞ , (5.8)

under the growth condition (5.1) on (pn). Here

Γi = E1 + · · ·+ Ei , i ≥ 1 , (5.9)

and (Ei) is an iid standard exponential sequence. In other words, N is a Poisson point
process on (0,∞) with mean measure µ(x,∞) = x−α/2, x > 0. Convergence in distri-
bution of point processes is understood in the sense of weak convergence in the space of
point measures equipped with the vague topology; see Resnick [96, 97]. We can easily
derive the limiting distribution of a−2

npλ(k) for fixed k ≥ 1 from (5.8):

lim
n→∞

P(a−2
npλ(k) ≤ x) = lim

n→∞
P(Nn(x,∞) < k) = P(N(x,∞) < k) = P(Γ−2/α

k ≤ x)

=
k−1∑
s=0

(
µ(x,∞)

)s
s! e−µ(x,∞), x > 0.
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In particular,

λ(1)

a2
np

d→ Γ−α/21 , n→∞ ,

where the limit has Fréchet distribution with parameter α/2 and distribution function

Φα/2(x) = e−x
−α/2

, x > 0 .

We mention that the tail balance condition (5.7) may be replaced in this case by the
weaker assumption P(|X| > x) = L(x)x−α for a slowly varying function L. Indeed, it
follows from the proof that only the squares X2

it contribute to the point process limits of
the eigenvalues (λi). A consequence of the continuous mapping theorem and (5.8) is the
joint convergence of the upper order statistics: for any k ≥ 1,

a−2
np

(
λ(1), . . . , λ(k)

) d→
(
Γ−2/α

1 , . . . ,Γ−2/α
k

)
, n→∞ .

It follows from standard theory for point processes with iid points (e.g. Resnick [96,
97]) that (5.8) remains valid if we replace Nn by the point process

∑p
i=1
∑n
t=1 εX2

it
/a2
np
.

Then we also have for any k ≥ 1,

a−2
np

(
X2

(1),np, . . . , X
2
(k),np

) d→
(
Γ−2/α

1 , . . . ,Γ−2/α
k

)
, n→∞ , (5.10)

where

X2
(1),np ≥ · · · ≥ X

2
(np),np

denote the order statistics of (X2
it)i=1,...,p;t=1,...,n.

Auffinger et al. [7] showed that (5.8) remains valid under the regular variation condi-
tion (5.7) for α ∈ (2, 4), the growth condition (5.1) on (pn) and the additional assumption
E[X] = 0. Of course, (5.10) remains valid as well. Davis et al. [45] extended these results
to the case when the rows of X are iid linear processes with iid regularly varying noise.
The Poisson point process convergence result of (5.8) remains valid in this case. Different
limit processes can only be expected if there is dependence across rows and columns.

In what follows, we refer to the heavy-tailed case when we assume the regular variation
condition (5.7) for some α ∈ (0, 4).

5.1.3 Overview
The primary objective of this overview is to make a connection between extreme value
theory and the behavior of the largest eigenvalues of sample covariance matrices from
heavy-tailed multivariate time series. For time series that are linearly dependent through
time and across rows, it turns out that the extreme eigenvalues are essentially determined
by the extreme order statistics from an array of iid random variables. The asymptotic
behavior of the extreme eigenvalues is then derived routinely from classical extreme value
theory. As such, explicit joint distributions of the extreme order statistics can be given
which yield a plethora of ancillary results. Convergence of the point process of extreme
eigenvalues, properly normalized, plays a central role in establishing the main results.

In Section 5.2 we continue the study of the case when the data matrix X consists
of iid heavy-tailed entries. We will consider power-law growth rates on the dimension
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(pn) that is more general than prescribed by (5.1). In Section 5.3 we introduce a model
for Xit which allows for linear dependence across the rows and through time. The point
process convergence of normalized eigenvalues is presented in Section 5.3.4. This result
lays the foundation for new insight into the spectral behavior of the sample covariance
matrix, which is the content of Section 5.4.1.

Sections 5.4.1 and 5.4.3 are devoted to sample autocovariance matrices. Motivated by
[86], we study the eigenvalues of sums of transformed matrices and illustrate the results
in two examples. These results are applied to the time series of S&P 500 in Section 5.4.2.
Appendix 5.A contains useful facts about regular variation and point processes.

5.2 General growth rates for pn in the iid heavy-tailed case

This section is based on ideas in Heiny and Mikosch [68] where one can also find detailed
proofs.

Growth conditions on (pn)
In many applications it is not realistic to assume that the dimension p of the data and the
sample size n grow at the same rate. The aforementioned results of Soshnikov [105, 106]
and Auffinger et al. [7] already indicate that the value γ in the growth rate (5.1) does
not appear in the distributional limits. This obervation is in contrast to the light-tailed
case; see (5.4) and (5.5). Davis et al. [44, 45] and Heiny and Mikosch [68] allowed for
more general rates for pn → ∞ than linear growth in n. Recall that p = pn → ∞ is
the number of rows in the matrix Xn. We need to specify the growth rate of (pn) to
ensure a non-degenerate limit distribution of the normalized singular values of the sample
autocovariance matrices. To be precise, we assume

p = pn = nβ`(n), n ≥ 1, (Cp(β))

where ` is a slowly varying function and β ≥ 0. If β = 0, we also assume `(n) →
∞. Condition Cp(β) is more general than the growth conditions in the literature; see
[7, 44, 45].

Theorem 5.1. Assume that X = Xn has iid entries satisfying the regular variation
condition (5.7) for some α ∈ (0, 4). If E[|X|] < ∞ we also suppose that E[X] = 0. Let
(pn) be an integer sequence satisfying Cp(β) with β ≥ 0. In addition, we require

min(β, β−1) ∈ (α/2− 1, 1] for α ∈ [2, 4), (C̃β(α))

Then
p∑
i=1

εa−2
npλi

d→
∞∑
i=1

εΓ−2/α
i

, n→∞ , (5.11)

where the convergence holds in the space of point measures with state space (0,∞)
equipped with the vague toplogy; see Resnick [97].
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A discussion of the case β ∈ [0, 1]

We mentioned earlier that in the heavy-tailed case, limit theory for the largest eigenvalues
of the sample covariance matrix is rather insensitive to the growth rate of (pn) and that
the limits are essentially determined by the diagonal of this matrix. This is confirmed
by the following result.

Proposition 5.2. Assume that X = Xn has iid entries satisfying the regular variation
condition (5.7) for some α ∈ (0, 4). If E[|X|] <∞ we also suppose that E[X] = 0. Then
for any sequence (pn) satisfying Cp(β) with β ∈ [0, 1] we have

a−2
np ‖XX′ − diag(XX′)‖2

P→ 0 , n→∞ ,

where ‖ · ‖2 denotes the spectral norm; see (5.22) for its definition.

Proposition 5.2 is not unexpected for two reasons:

• It is well-known from classical theory (see Embrechts and Veraverbeke [59]) that for
any iid regularly varying non-negative random variables Y, Y ′ with index α′ > 0,
Y Y ′ is regularly varying with index α′ while Y 2 is regularly varying with index
α′/2. Therefore X2 and X11X12 are regularly varying with indices α/2 and α,
respectively.

• The aforementioned tail behavior is inherited by the entries of XX′ in the following
sense. By virtue of Nagaev-type large deviation results for an iid regularly varying
sequence (Yi) with index α′ ∈ (0, 2) where we also assume that E[Y0] = 0 if E[|Y0|] <
∞ (see Theorem 5.21) we have that P(Y1+· · ·+Yn > bn)/(nP(|Y0| > bn)) converges
to a non-negative constant provided bn/a

′
n → ∞, where P(|Y0| > a′n) ∼ n−1 as

n → ∞. As a consequence of the tail behaviors of X2
it and XitXjt for i 6= j and

Nagaev’s results we have for (bn) bn/a2
n →∞,

P
(
(XX′)ij > bn

)
P
(
(XX′)ii − cn > bn

) ∼ nP(X11X12 > bn)
nP(X2 > bn) → 0 , n→∞ ,

where cn = 0 or nE[X2] according as α ∈ (0, 2) or α ∈ (2, 4). This means that the
diagonal and off-diagonal entries of XX′ inherit the tails of X2

it and XitXjt, i 6= j,
respectively, above the high threshold bn.

Proposition 5.2 has some immediate consequences for the approximation of the eigen-
values of XX′ by those of diag(XX′). Indeed, let C be a symmetric p × p matrix with
eigenvalues λ1(C), . . . , λp(C) and ordered eigenvalues

λ(1)(C) ≥ · · · ≥ λ(p)(C) . (5.12)

Then for any symmetric p× p matrices A,B, by Weyl’s inequality (see Bhatia [20]),

max
i=1,...,p

∣∣λ(i)(A+B)− λ(i)(A)
∣∣ ≤ ‖B‖2 .

If we now choose A+B = XX′ and A = diag(XX′) we obtain the following result.

Corollary 5.3. Under the conditions of Proposition 5.2,

a−2
np max

i=1,...,p

∣∣λ(i) − λ(i)(diag(XX′))
∣∣ P→ 0 , n→∞ .
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Thus the problem of deriving limit theory for the order statistics of XX′ has been
reduced to limit theory for the order statistics of the iid row-sums

D→i = (XX′)ii =
n∑
t=1

X2
it , i = 1, . . . , p ,

which are the eigenvalues of diag(XX′). This theory is completely described by the point
processes constructed from the points D→i /a2

np i = 1, . . . , p. Necessary and sufficient
conditions for the weak convergence of these point processes are provided by Lemma 5.22
which in combination with the Nagaev-type large deviation results of Theorem 5.21 yield
the following result; see also Davis et al. [44].

Lemma 5.4. Assume the conditions of Proposition 5.2 hold. Then
p∑
i=1

εa−2
np (D→

i
−cn)

d→
∞∑
i=1

εΓ−2/α
i

, n→∞ ,

where (Γi) is defined in (5.9) and cn = 0 if E[D→] =∞ and cn = E[D→] otherwise.

In this result, centering is only needed for α ∈ [2, 4) when n/a2
np 6→ 0. Under the

additional condition C̃β(α), n/a2
np → 0 in view of the Potter bounds; see Bingham et

al. [21, p. 25]. Combining Lemma 5.4 and Corollary 5.3, we conclude that Theorem 5.1
holds for β ∈ [0, 1].

Extension to general β

Next we explain that it suffices to consider only the case β ∈ [0, 1] and how to proceed
when β > 1. The main reason is that the p × p sample covariance matrix XX′ and the
n×n matrix X′X have the same rank and their non-zero eigenvalues coincide; see Bhatia
[20, p. 64]. When proving limit theory for the eigenvalues of the sample covariance matrix
one may switch to X′X and vice versa, hereby interchanging the roles of p and n. By
switching to X′X, one basically replaces β by β−1. Since min(β, β−1) ∈ [0, 1] for any
β ≥ 0, one can assume without loss of generality that β ∈ [0, 1]. This trick allows one
to extend results for (pn) satisfying Cp(β) with β ∈ [0, 1] to β > 1. We illustrate this
approach by providing the direct analogs of Proposition 5.2 and Corollary 5.3.

Proposition 5.5. Assume that X = Xn has iid entries satisfying the regular variation
condition (5.7) for some α ∈ (0, 4). If E[|X|] <∞ we also suppose that E[X] = 0. Then
for any sequence (pn) satisfying Cp(β) with β > 1 we have

a−2
np ‖X′X− diag(X′X)‖2

P→ 0 , n→∞ ,

where ‖ · ‖2 denotes the spectral norm.

Note that for β > 1 we have limn→∞ p/n =∞. This means that X′X has asymptot-
ically a much smaller dimension than XX′ and therefore it is more convenient to work
with X′X when bounding the spectral norm.

Corollary 5.6. Under the conditions of Proposition 5.5,

a−2
np max

i=1,...,n

∣∣λ(i) − λ(i)(diag(X′X))
∣∣ P→ 0 , n→∞ .

Now, Theorem 5.1 for β > 1 is a consequence of Corollary 5.6.
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5.3 Introducing dependence between the rows and columns

For details on the results of this section, we refer to Davis et al. [44], Heiny and Mikosch
[68] and Heiny et al. [69].

5.3.1 The model
When dealing with covariance matrices of a multivariate time series (Xn) it is rather
natural to assume dependence between the entries Xit. In this section we introduce a
model which allows for linear dependence between the rows and columns of X:

Xit =
∑
l∈Z

∑
k∈Z

hklZi−k,t−l , i, t ∈ Z , (5.13)

where (Zit)i,t∈Z is a field of iid random variables and (hkl)k,l∈Z is an array of real num-
bers. Of course, linear dependence is restrictive in some sense. However, the particular
dependence structure allows one to determine those ingredients in the sample covariance
matrix which contribute to its largest eigenvalues. If the series in (5.13) converges a.s.
(Xit) constitutes a strictly stationary random field. We denote generic elements of the
Z- and X-fields by Z and X, respectively. We assume that Z is regularly varying in the
sense that

P(Z > x) ∼ p+
L(x)
xα

and P(Z ≤ −x) ∼ p−
L(x)
xα

, x→∞ , (5.14)

for some tail index α > 0, constants p+, p− ≥ 0 with p+ +p− = 1 and a slowly varying L.
We will assume E[Z] = 0 whenever E[Z2] < ∞. Moreover, we require the summability
condition ∑

l∈Z

∑
k∈Z
|hkl|δ <∞ (5.15)

for some δ ∈ (0,min(α/2, 1)) which ensures the a.s. absolute convergence of the series
in (5.13). Under the conditions (5.14) and (5.15), the marginal and finite-dimensional
distributions of the field (Xit) are regularly varying with index α; see Embrechts et al.
[58], Appendix A3.3. Therefore we also refer to (Xit) and (Zit) as regularly varying
fields.

The model (5.13) was introduced by Davis et al. [45], assuming the rows iid, and in
the present form by Davis et al. [44].

5.3.2 Sample covariance and autocovariance matrices
From the field (Xit) we construct the p× n matrices

Xn(s) = (Xi,t+s)i=1,...,p;t=1,...,n , s = 0, 1, 2, . . . , (5.16)

As before, we will write X = Xn(0). Now we can introduce the (non-normalized) sample
autocovariance matrices

Xn(0)Xn(s)′ , s = 0, 1, 2, . . . . (5.17)

We will refer to s as the lag. For s = 0, we obtain the sample covariance matrix. In what
follows, we will be interested in the asymptotic behavior (of functions) of the eigen- and



5.3. Introducing dependence between the rows and columns 119

singular values of the sample covariance and autocovariance matrices in the heavy-tailed
case. Recall that the singular values of a matrix A are the square roots of the eigenvalues
of the non-negative definite matrix AA′ and its spectral norm ‖A‖2 is its largest singular
value. We notice that Xn(0)Xn(s)′ is not symmetric and therefore its eigenvalues can
be complex. To avoid this situation, we use the squares

Xn(0)Xn(s)′Xn(s)Xn(0)′ (5.18)
whose eigenvalues are the squares of the singular values of Xn(0)Xn(s)′. The idea of
using the sample autocovariance matrices and functions of their squares (5.18) originates
from a paper by Lam and Yao [86] who used a model different from (5.13). This idea is
quite natural in the context of time series analysis.

In Theorem 5.7 below, we provide a general approximation result for the ordered
singular values of the sample autocovariance matrices in the heavy-tailed case. This
result is rather technical. To formulate it we introduce further notation. As before,
p = pn is any integer sequence converging to infinity.

5.3.3 More notation
Important roles are played by the quantities (Z2

it)i=1,...,p;t=1,...,n and their order statistics
Z2

(1),np ≥ Z
2
(2),np ≥ . . . ≥ Z

2
(np),np, n, p ≥ 1 . (5.19)

As important are the row-sums

D→i = D
(n),→
i =

n∑
t=1

Z2
it , i = 1, . . . , p; n = 1, 2, . . . , (5.20)

with generic element D→ and their ordered values
D→(1) = D→L1

≥ · · · ≥ D→(p) = D→Lp , (5.21)
where we assume without loss of generality that (L1, . . . , Lp) is a permutation of (1, . . . , p)
for fixed n.

Finally, we introduce the column-sums

D↓t = D
(n),↓
t =

p∑
i=1

Z2
it , t = 1, . . . , n; p = 1, 2, . . . ,

with generic element D↓ and we also adapt the notation from (5.21) to these quantities.

Matrix norms

For any p× n matrix A = (aij), we will use the following norms:

• Spectral norm:

‖A‖2 =
√
λ(1)(AA′) , (5.22)

• Frobenius norm:

‖A‖F =
( p∑
i=1

n∑
j=1
|aij |2

)1/2
.

We will frequently make use of the bound ‖A‖2 ≤ ‖A‖F . Standard references for matrix
norms are [17, 20, 73, 102].
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Singular values of the sample autocovariance matrices

Fix integers n ≥ 1 and s ≥ 0. We recycle the λ-notation for the singular values
λ1(s), . . . , λp(s) of the sample autocovariance matrix Xn(0)Xn(s)′, suppressing the de-
pendence on n. Correspondingly, the order statistics are denoted by

λ(1)(s) ≥ · · · ≥ λ(p)(s) . (5.23)

When s = 0 we typically write λi instead of λi(0).

The matrix M(s)

We introduce some auxiliary matrices derived from the coefficient matrix H = (hkl)k,l∈Z:

H(s) = (hk,l+s)k,l∈Z, M(s) = H(0)H(s)′ s ≥ 0 .

Notice that
(M(s))ij =

∑
l∈Z

hi,lhj,l+s, i, j ∈ Z. (5.24)

We denote the ordered singular values of M(s) by

v1(s) ≥ v2(s) ≥ · · · . (5.25)

Let r(s) be the rank of M(s) so that vr(s)(s) > 0 while vr(s)+1(s) = 0 if r(s) is finite,
otherwise vi(s) > 0 for all i. We also write r = r(0).

Under the summability condition (5.15) on (hkl) for fixed s ≥ 0,
∞∑
i=1

(vi(s))2 = ‖M(s)‖2F =
∑
i,j∈Z

∑
l1,l2∈Z

hi,l1hj,l1+shi,l2hj,l2+s

≤ c
( ∑
l1,l2∈Z

∑
i∈Z
|hi,l1hi,l2 |

)2
≤ c

∑
l1∈Z

∑
i∈Z
|hi,l1 | <∞ . (5.26)

Therefore all singular values vi(s) are finite and the ordering (5.25) is justified.
Here and in what follows, we write c for any constant whose value is not of interest.

Normalizing sequence

We define (ak) by

P(|Z| > ak) ∼ k−1 , k →∞ ,

and choose the normalizing sequence for the singular values as (a2
np) for suitable sequences

p = pn →∞.

Approximations to singular values

We will give approximations to the singular values λi(s) in terms of the p largest ordered
values for s ≥ 0,

δ(1)(s) ≥ · · · ≥ δ(p)(s) ,
γ→(1)(s) ≥ · · · ≥ γ→(p)(s) ,

γ↓(1)(s) ≥ · · · ≥ γ
↓
(n)(s) ,
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from the sets {
Z2

(i),npvj(s) , i = 1, . . . , p ; j = 1, 2, . . .
}
,{

D→i vj(s), i = 1, . . . , p ; j = 1, 2, . . .
}
,{

D↓t vj(s), t = 1, . . . , n ; j = 1, 2, . . .
}
,

respectively.

5.3.4 Approximation of the singular values
In the following result we povide some useful approximations to the singular values of
the sample autocovariance matrices of the linear model (5.13).

Theorem 5.7. Consider the linear process (5.13) under

• the regular variation condition (5.14) for some α ∈ (0, 4),

• the centering condition E[Z] = 0 if E[|Z|] <∞,

• the summability condition (5.15) on the coefficient matrix (hkl),

• the growth condition Cp(β) on (pn) for some β ≥ 0.

Then the following statements hold for s ≥ 0:

1. We consider two disjoint cases: α ∈ (0, 2) and β ∈ (0,∞), or α ∈ [2, 4) and β

satisfying C̃β(α). Then

a−2
np max

i=1,...,p
|λ(i)(s)− δ(i)(s)|

P→ 0, n→∞. (5.27)

2. Assume β ∈ [0, 1]. If α ∈ (0, 2], E[Z2] = ∞ or α ∈ [2, 4), E[Z2] < ∞ and
β ∈ (α/2− 1, 1] then

a−2
np max

i=1,...,p
|λ(i)(s)− γ→(i)(s)|

P→ 0, n→∞.

Assume β > 1. If α ∈ (0, 2], E[Z2] = ∞ or α ∈ [2, 4), E[Z2] < ∞ and β−1 ∈
(α/2− 1, 1]. Then

a−2
np max

i=1,...,p
|λ(i)(s)− γ↓(i)(s)|

P→ 0, n→∞.

Remark 5.8. The proof of Theorem 5.7 is given in Heiny et al. [69]. Part (2) of this
result with more restrictive conditions on the growth rate of (pn) is contained in Davis
et al. [44]. These proofs are very technical and lengthy.

Remark 5.9. If we consider a random array (hkl) independent of (Xit) and assume that
the summability condition (5.15) holds a.s. then Theorem 5.7 remains valid conditionally
on (hkl), hence unconditionally in P-probability; see also [44].
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5.3.5 Point process convergence
Theorem 5.7 and arguments similar to the proofs in Davis et al. [44] enable one to derive
the weak convergence of the point processes of the normalized singular values. Recall the
representation of the points (Γi) of a unit rate homogeneous Poisson process on (0,∞)
given in (5.9). For s ≥ 0, we define the point processes of the normalized singular values:

Nλ,s
n =

p∑
i=1

εa−2
np (λ(i)(0),...,λ(i)(s)) . (5.28)

Theorem 5.10. Assume the conditions of Theorem 5.7. Then (Nλ,s
n ) converge weakly in

the space of point measures with state space (0,∞)s+1 equipped with the vague topology.
If either α ∈ (0, 2], E[Z2] =∞ and β ≥ 0, or α ∈ [2, 4), E[Z2] <∞ and C̃β(α) hold then

Nλ,s
n

d→ N =
∞∑
i=1

∞∑
j=1

εΓ−2/α
i

(vj(0),...,vj(s))
, n→∞. (5.29)

Proof. Regular variation of Z2 is equivalent to

n pP(a−2
npZ

2 ∈ ·) v→ µ(·), (5.30)

where v→ denotes vague convergence of Radon measures on (0,∞) and the measure µ is
given by µ(x,∞) = x−α/2, x > 0. In view of Resnick [96], Proposition 3.21, (5.30) is
equivalent to the weak convergence of the following point processes:

p∑
i=1

n∑
t=1

εa−2
npZ

2
it

=
np∑
i=1

εa−2
npZ

2
(i),np

d→
∞∑
i=1

εΓ−2/α
i

= Ñ , n→∞ ,

where the limit Ñ is a Poisson random measure (PRM) with state space (0,∞) and mean
measure µ.

Since a−2
npZ

2
(p),np

P→ 0 as n→∞, the point processes
∑p
i=1 εa−2

npZ
2
(i),np

converge weakly
to the same PRM:

p∑
i=1

εa−2
npZ

2
(i),np

d→
∞∑
i=1

εΓ−2/α
i

, n→∞ . (5.31)

A continuous mapping argument together with the fact that
∑∞
i=1(vi(s))2 < ∞ (see

(5.26)) shows that

∞∑
j=1

p∑
i=1

εa−2
npZ

2
(i),np(vj(0),...,vj(s))

d→
∞∑
j=1

∞∑
i=1

εΓ−2/α
i

(vj(0),...,vj(s))
.

If the assumptions of part (1) of Theorem 5.7 are satisfied an application of (5.27)
(also recalling the definition of (δ(i)(s))) shows that (5.31) remains valid with the points
(a−2
npZ

2
(i),np(vj(0), . . . , vj(s))) replaced by (a−2

np (λ(i)(0), . . . , λ(i)(s)).
The only cases which are not covered by Theorem 5.7(1) are α ∈ (0, 2), β = 0 and

α = 2, E[Z2] =∞, β ≥ 0. In these cases we get from Theorem 5.21 that

pP(a−2
npD

→ > x) ∼ p nP(Z2 > a2
npx)→ µ(x,∞) , x > 0 ,
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i.e., pP(a−2
npD

→ ∈ ·) v→ µ(·). It follows from Lemma 5.22 that
∑p
i=1 εa−2

npD
→
i

d→ Ñ . As
before, a continuous mapping argument in combination with the approximation obtained
in Theorem 5.7(2) justifies the replacement of the points (a−2

npD
→
(i)(vj(0), . . . , vj(s))) by

(a−2
np (λ(i)(0), . . . , λ(i)(s))) in the case β ∈ [0, 1]. If β > 1 one has to work with the

quantities (D↓i )i=1,...,n instead of (D→i )i=1,...,p and one may follow the same argument as
above. This finishes the proof.

5.4 Some applications

5.4.1 Sample covariance matrices
The sample covariance matrix Xn(0)Xn(0)′ = XX′ is a non-negative definite matrix.
Therefore its eigenvalues and singular values coincide. Moreover, vj = vj(0), j ≥ 1, are
the eigenvalues of M = M(0).

Theorem 5.7(1) yields an approximation of the ordered eigenvalues (λ(i)) of XX′ by
the quantities (δ(i)) which are derived from the order statistics of (Z2

it). Part (2) of this
result provides an approximation of (λ(i)) by the quantities (γ→/↓(i) ) which are derived
from the order statistics of the partial sums (D→/↓i ).

In the following example we illustrate the quality of the two approximations.

Example 5.11. We choose a Pareto-type distribution for Z with density

fZ(x) =
{ α

(4|x|)α+1 , if |x| > 1/4
1 , otherwise. (5.32)

We simulated 20, 000 matrices Xn for n = 1, 000 and p = 200 whose iid entries have
this density. We assume β = 1. Note that M = M(0) has rank one and v1 = 1. The
estimated densities of the deviations a−2

np (λ(1) −D→(1)) and a−2
np (λ(1) − Z2

(1),np) based on
the simulations are shown in Figure 5.4. The approximation error is very small indeed.
According to the theory,

a−2
np sup

i
|D→(i) − λ(i)|+ a−2

np sup
i
|Z2

(i),np − λ(i)|
P→ 0 ,

but for finite n the (D→(i)) sequence yields a better approximation to (λ(i)). By construc-
tion, the considered differences have a tendency to be positive but Figure 5.4 also shows
that the median of the approximation error for a−2

np (λ(1) −D→(1)) is almost zero.

Theorem 5.10 and the continuous mapping theorem immediately yield results about
the joint convergence of the largest eigenvalues of the matrices a−2

npXnX′n for α ∈ (0, 2)
and α ∈ (2, 4) when β satisfies C̃β(α). For fixed k ≥ 1 one gets

a−2
np

(
λ(1), . . . , λ(k)

) d→
(
d(1), . . . , d(k)

)
,

where d(1) ≥ · · · ≥ d(k) are the k largest ordered values of the set {Γ−2/α
i vj , i =

1, 2, . . . , j = 1, . . . , r}. The continuous mapping theorem yields for k ≥ 1,

λ(1)

λ(1) + · · ·+ λ(k)

d→
d(1)

d(1) + · · ·+ d(k)
, n→∞ . (5.33)
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Figure 5.4: Density of the approximation errors for the eigenvalues of a−2
npXX′. The

entries of X are iid with density (5.32) and α = 1.6.

An application of the continuous mapping theorem to the distributional convergence
of the point processes in Theorem 5.10 in the spirit of Resnick [97], Theorem 7.1, also
yields the following result; see Davis et al. [44] for a proof and a similar result in the
case α ∈ (2, 4).

Corollary 5.12. Assume the conditions of Theorem 5.7. If α ∈ (0, 2] and E[Z2] = ∞,
then

a−2
np

(
λ(1),

p∑
i=1

λi

)
d→
(
v1 Γ−2/α

1 ,

r∑
j=1

vj

∞∑
i=1

Γ−2/α
i

)
,

where Γ−2/α
1 is Fréchet Φα/2-distributed. and

∑∞
i=1 Γ−2/α

i has the distribution of a posi-
tive α/2-stable random variable. In particular,

λ(1)

λ1 + · · ·+ λp

d→ v1∑r
j=1 vj

Γ−2/α
1∑∞

i=1 Γ−2/α
i

, n→∞ . (5.34)

Remark 5.13. The ratio
λ(1) + · · ·+ λ(k)

λ1 + · · ·+ λp
, k ≥ 1 ,

plays an important role in PCA. It reflects the proportion of the total variance in the data
that we can explain by the first k principal components. It follows from Corollary 5.12
that for fixed k ≥ 1,

λ(1) + · · ·λ(k)

λ1 + · · ·+ λp

d→
d(1) + · · ·+ d(k)

d(1) + d(2) + · · · .

Unfortunately, the limiting variable does in general not have a clean form. An exception
is the case when r = 1; see Example 5.16. Also notice that the trace of XX′ coincides
with λ1 + · · ·+ λp.
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To illustrate the theory we consider a simple moving average example taken from
Davis et al. [44].
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Figure 5.5: Distribution function of (λ(1)−λ(2))/λ(1) for iid data (left) and data generated
from the model (5.35) (right). In each graph we compare the empirical distribution func-
tion (dotted line, based on 1000 simulations of 200× 1000 matrices with Z-distribution
(5.32)) with the theoretical curve (solid line).

Example 5.14. Assume that α ∈ (0, 2) and

Xit = Zit + Zi,t−1 − 2(Zi−1,t − Zi−1,t−1) , i, t ∈ Z . (5.35)
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In this case, the non-zero entries of H are

h00 = 1, h01 = 1, h10 = −2 and h11 = 2.

Hence M = HH′ has the positive eigenvalues v1 = 8 and v2 = 2. The limit point process
in (5.29) is

N =
∞∑
i=1

ε8Γ−2/α
i

+
∞∑
i=1

ε2Γ−2/α
i

,

so that
a−2
np

(
λ(1), λ(2)

) d→
(
8Γ−2/α

1 , 2Γ−2/α
1 ∨ 8Γ−2/α

2
)
.

Using the fact that U = Γ1/Γ2 has a uniform distribution on (0, 1) we calculate

P(2Γ−2/α
1 > 8Γ−2/α

2 ) = P(Γ1/Γ2 < 2−α) = 2−α ∈ (1/4, 1).

In particular, we have for the normalized spectral gap

a−2
np

(
λ(1) − λ(2)

) d→ 6 Γ−2/α
1 1{Γ14α/2<Γ2} + 8

(
Γ−2/α

1 − Γ−2/α
2

)
1{Γ14α/2>Γ2}

and for the self-normalized spectral gap (see also Example 5.15 for a detailed analysis)

λ(1) − λ(2)

λ(1)

d→ 6
8 1{Γ12α<Γ2} +

(
1− (Γ1/Γ2)2/α)1{Γ12α>Γ2}

= 3
4 1{U2α<1} +

(
1− U2/α)1{U2α>1} = Y .

The limit distribution of the spectral gap has an atom at 3/4 with probability 2−α,
i.e., P(Y = 3/4) = 2−α, and

P(Y ≤ x) = 1− (1− x)α/2, x ∈ (0, 3/4).

In the iid case the limit distribution of the self-normalized spectral gap has distribution
function F (x) = 1− (1−x)α/2 for x ∈ [0, 1]. This means that the atom disappears if the
entries are iid. Figure 5.5 compares the distribution function of Y with F for α = 0.6;
the atom at 3/4 is clearly visible.

Along the same lines, we also have

(a−2
npλ(1), λ(2)/λ(1))

d→ (8 Γ−2/α
1 ,

1
4 1{U<2−α} + U2/α 1{U≥2−α})

and hence the limit distribution of λ(2)/λ(1) is supported on [1/4, 1) with mass of 2−α at
1/4. The histogram of the ratio

(
λ(2)/λ(1)

)2/α based on 1000 replications from the model
(5.35) with noise given by a t-distribution with α = 1.5 degrees of freedom, n = 1000
and p = 200 is displayed in Figure 5.6. Observing that 2−α = 0.3536 . . ., the histogram
is remarkably close to what one would expect from a sample from the truncated uniform
distribution, 2−α 1{U<2−α} + U 1{U≥2−α}. The mass of the limiting discrete component
of the ratio can be much larger if one conditions on a−2

npλ(1) being large. Specifically, for
any ε ∈ (0, 1/4) and x > 0,

lim
n→∞

P(ε < λ(2)/λ(1) ≤ 1/4|λ(1) > a2
npx) = P(Γ1/Γ2 ≤ 2−α|Γ1 < (x/8)−α/2) = G(x) .
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Figure 5.6: Histogram based on 1000 replications of
(
λ(2)/λ(1)

)2/α from model (5.35).

The function G approaches 1 as x → ∞ indicating the speed at which the two largest
eigenvalues get linearly related; see Figure 5.7 for a graph of G in the case α = 1.5. In
addition, from Remark 5.13, we also have

λ(1)

λ1 + · · ·+ λp

d→ 4
5

Γ−2/α
1∑∞

i=1 Γ−2/α
i

.

Clearly, the limit random variable is stochastically smaller than what one would get in
the iid case; see (5.34).

Example 5.15. The previous example also illustrates the behavior of the two largest
eigenvalues in the general case when the rank r of the matrix M is larger than one. We
have in general

λ(2)

λ(1)

d→ v2

v1
1{U<(v2/v1)α/2} + U2/α 1{U≥(v2/v1)α/2} .

In particular, the limiting self-normalized spectral gap has representation

λ(1) − λ(2)

λ(1)

d→ v1 − v2

v1
1{U<(v2/v1)α/2} + (1− U2/α) 1{U≥(v2/v1)α/2} .

The limiting variable assumes values in (0, 1− v2/v1] and has an atom at the right end-
point. This is in contrast to the iid case and to the case when r = 1 (hence v2 = 0)
including the case of iid rows and the separable case; see Example 5.16.
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Figure 5.7: Graph of G(x) = P(Γ1/Γ2 ≤ 2−α|Γ1 < (x/8)−α/2) when α = 1.5.

Example 5.16. We consider the separable case when hkl = θkcl, k, l ∈ Z, where (cl),
(θk) are real sequences such that the conditions on (hkl) in Theorem 5.7 hold. In this
case,

M =
∑
l∈Z

c2l (θiθj)i,j∈Z .

Note that r = 1 with the only non-negative eigenvalue

v1 =
∑
l∈Z

c2l
∑
k∈Z

θ2
k .

In this case, the limiting point process in Theorem 5.10 is a PRM on (0,∞) with mean
measure of (y,∞) given by (v1/y)α/2, y > 0. The normalized eigenvalues have similar
asymptotic behavior as in the case of iid entries. For example, the log-spacings have the
same limit as in the iid case for fixed k,(

log λ(1) − log λ(2), . . . , log λ(k+1) − log λ(k)
) d→ − 2

α

(
log(Γ1/Γ2), . . . , log(Γk/Γk+1)

)
.

The same observation applies to the ratio of the largest eigenvalue and the trace in the
case α ∈ (0, 2):

λ(1)

tr(XX′) =
λ(1)

λ1 + · · ·+ λp

d→ Γ−2/α
1∑∞

i=1 Γ−2/α
i

.

We also mentioned in Example 5.15 that the distributional limit of the self-normalized
spectral gap has no atom as in the iid case.
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5.4.2 S&P 500 data
We conduct a short analysis of the largest eigenvalues of the univariate log-return time
series which compose the S&P 500 stock index; see Section 5.1.2 for a description of
the data. Although there is strong empirical evidence that these univariate series have
power-law tails (see Figure 5.3) we do not expect that they have the same tail index.
One way to proceed would be to ignore this fact because the tail indices are in a close
range and the differences are due to large sampling errors for estimating such quantities.
One could also collect time series with similar tail indices in the same group. In this
case, the dimension p decreases. This grouping would be a rather arbitrary classification
method. We have chosen a third way: to use rank transforms. This approach has its
merits because it aims at standardizing the tails but it also has a major disadvantage:
one destroys the covariance structure underlying the data.

Given a p × n matrix (Rit)i=1,··· ,p;t=1,··· ,n, we construct a matrix X via the rank
transforms

Xit = −
[

log
( 1
n+ 1

n∑
τ=1

1{Riτ≤Rit}
)]−1

, i = 1, . . . , p; t = 1, . . . , n .
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Figure 5.8: The logarithms of the ratios λ(i+1)/λ(i) for the S&P 500 series after rank
transform. We also show the 1, 50 and 99% quantiles (bottom, middle, top lines, respec-
tively) of the variables log((Γi/Γi+1)2).

If the rows Ri1, . . . , Rin were iid (or, more generally, stationary ergodic) with a contin-
uous distribution then the averages under the logarithm would be asymptotically uniform



130 5. Sample autocovariance matrices

●

●

●

●
●

●

●
●

●

● ●

●

●
●

●
● ●

●

●
●

●

● ●
●

● ● ● ●
● ●

● ● ● ● ●
● ●

● ●
●

● ● ● ● ● ●
●

●
●

0 10 20 30 40 50

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

i

lo
g(

λ (
i+

1)
λ (

i))

Figure 5.9: The logarithms of the ratios λ(i+1)/λ(i) for the original (non-rank trans-
formed) S&P 500 log-return data. We also show the 1, 50 and 99% quantiles (bottom,
middle, top lines, respectively) of the variables log((Γi/Γi+1)2/2.3); see also Figure 5.8
for comparison.

on (0, 1) as n→∞. Hence Xit would be asymptotically standard Fréchet Φ1-distributed.
In what follows, we assume that the aforementioned univariate time series of the S&P
500 index have undergone the rank transform and that their marginal distributions are
close to Φ1; we always use the symbol X for the resulting multivariate series.

In Figure 5.8 we show the ratios of the consecutive ordered eigenvalues (λ(i+1)/λ(i))
of the matrix XX′. This graph shows the rather surprising fact that the ratios are close
to one even for small values i. We also show the 1, 50 and 99 % quantiles of the variables
((Γi/Γi+1)2/α) calculated from the formula

P
(
(Γi/Γi+1)2/α ≤ x

)
= xi·α/2, x ∈ (0, 1) . (5.36)

For increasing i, the distribution is concentrated closely to 1, in agreement with the strong
law of large numbers which yields Γi/Γi+1

a.s.→ 1 as i→∞. The asymptotic distributions
(5.36) correspond to the case when the matrix M has rank r = 1. It includes the iid and
separable cases; see Example 5.16. The shown asymptotic quantiles are in agreement
with the rank r = 1 hypothesis.

For comparison, in Figure 5.9 we also show the ratios (λ(i+1)/λ(i)) for the non-
rank transformed S&P 500 data and the 1, 50 and 99% quantiles of the variables
log((Γi/Γi+1)2/α), where we choose α = 2.3 motivated by the estimated tail indices
in Figure 5.3. The two graphs in Figure 5.8 and Figure 5.9 are quite similar but the
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smallest ratios for the original data are slightly larger than for the rank-transformed
data.

5.4.3 Sums of squares of sample autocovariance matrices
In this section we consider some additive functions of the squares of An(s) = Xn(0)Xn(s)′
given by An(s)An(s)′ for s = 0, 1, . . .. By definition of the singular values of a matrix
(see (5.23)), the non-negative definite matrix An(s)An(s)′ has eigenvalues (λ2

i (s))i=1,...,p.
The following result is a corollary of Theorem 5.7.

Proposition 5.17. Consider the linear process (5.13) under the conditions of Theo-
rem 5.7. Then the following statements hold for s ≥ 0:

(1) We consider two disjoint cases: α ∈ (0, 2) and β ∈ (0,∞), or α ∈ [2, 4) and β

satisfying C̃β(α). Then

a−4
np max

i=1,...,p
|λ2

(i)(s)− δ2
(i)(s)|

P→ 0, n→∞.

(2) Assume β ∈ [0, 1]. If α ∈ (0, 2], E[Z2] = ∞ or α ∈ [2, 4), E[Z2] < ∞ and
β ∈ (α/2− 1, 1], then

a−4
np max

i=1,...,p
|λ2

(i)(s)− (γ→(i)(s))2| P→ 0, n→∞.

Assume β > 1. If α ∈ (0, 2], E[Z2] = ∞ or α ∈ [2, 4), E[Z2] < ∞ and β−1 ∈
(α/2− 1, 1]. Then

a−4
np max

i=1,...,p
|λ2

(i)(s)− (γ↓(i)(s))
2| P→ 0, n→∞.

To the best of our knowledge, sums of squares of sample autocovariance matrices were
used first in the paper by Lam and Yao [86]; their time series model is quite different
from ours.

Proof. Part (1). The proof follows from Theorem 5.7 if we can show that

a−2
np max

i=1,...,p

(
λ(i)(s) + δ(i)(s)

)
= OP(1) n→∞ .

We have by Theorem 5.10,

a−2
np max

i=1...,p
λ(i)(s) = a−2

npλ(1)(s)
d→ c ξα/2 , (5.37)

where ξα/2 has a Φα/2 distribution. In view of Theorem 5.7(1) we also have

a−2
np max

i=1...,p
δ(i)(s)

d→ c ξα/2 .

Therefore, again using Theorem 5.7(1), we have

a−4
np max

i=1,...,p
|λ2

(i)(s)− δ2
(i)(s)|

≤
[
a−2
np max

i=1,...,p
|λ(i)(s)− δ(i)(s)|

] [
a−2
np max

i=1,...,p

(
|λ(i)(s)|+ |δ(i)(s)|

)] P→ 0, n→∞.
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This proves part (1).
Part (2). Now assume β ∈ [0, 1] and α ∈ (0, 2], E[Z2] = ∞ or α ∈ [2, 4), E[Z2] < ∞
and β ∈ (α/2 − 1, 1]. Then (5.37) is still true and we have by Theorem 5.7(2) and
Theorem 5.10

a−2
np max

i=1...,p
γ→(i)(s)

d→ c ξα/2 .

We then have

a−4
np max

i=1,...,p
|λ2

(i)(s)− (γ→(i)(s))2|

≤
[
a−2
np max

i=1,...,p
|λ(i)(s)− γ→(i)(s)|

] [
a−2
np max

i=1,...,p

(
λ(i)(s) + γ→(i)(s)

)] P→ 0 , n→∞.

The proof of the remaining part is similar and therefore omitted.

Now, using Proposition 5.17 and a continuous mapping argument, we can show limit
theory for the eigenvalues

w(1)(s0, s1) ≥ · · · ≥ w(p)(s0, s1) , 0 ≤ s0 ≤ s1 ,

of the non-negative definite random matrices
s1∑
s=s0

An(s)An(s)′ . (5.38)

Proposition 5.18. Assume 0 ≤ s0 ≤ s1 and the conditions of Theorem 5.7 hold. If
α ∈ (0, 4) and β ∈ (0, 1] ∩ (α/2− 1, 1] then

a−4
np max

i=1,...,p
|w(i)(s0, s1)− ω(i)(s0, s1)| P→ 0, n→∞,

where ω(i)(s0, s1) are the ordered values of the set {Z4
(i),npvj(s0, s1), i = 1, . . . , p; j =

1, 2, . . .} and (vj(s0, s1)) are the ordered eigenvalues of
∑s1
s=s0 M(s)M(s)′.

Example 5.19. Recall the separable case from Example 5.16, i.e., hkl = θkcl, k, l ≥ 0,
where (cl), (θk) are real sequences such that the conditions on (hkl) in Theorem 5.7 hold.
Write Θij = θiθj . It is symmetric and has rank one; the only non-zero eigenvalue is
γθ(0) =

∑∞
k=0 θ

2
k. Hence Θ is non-negative definite. We get from (5.24) that

M(s) = γc(s) Θ, s ≥ 0 ,

where

γc(s) =
∞∑
l=0

clcl+s , s ≥ 0 .

The matrix M(s) has the only non-zero eigenvalue γc(s)γθ(0). The factors (γc(s)) can
be positive or negative; they constitute the autocovariance function of a stationary linear
process with coefficients (cl). Accordingly, M(s) is either non-negative or non-positive
definite. Now we consider the non-negative definite matrix

s1∑
s=s0

M(s) M(s)′ =
s1∑
s=s0

γ2
c (s) ΘΘ′ .
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Figure 5.10: The largest eigenvalues of the sums of the squared autocovariance matrices
compared with the sums of the largest eigenvalues of these matrices for the S&P 500
data for different values s1. The two values are surprisingly close to each other; mind
the scale of the y-axis. We also show their ratios.

This matrix has rank 1 and its largest eigenvalue is given by

Cc,θ(s0, s1) =
s1∑
s=s0

γ2
c (s) γ2

θ (0) .



134 5. Sample autocovariance matrices

An application of Proposition 5.18 yields that the ordered eigenvalues of

a−4
np

s1∑
s=s0

An(s)An(s)′

are uniformly approximated by the quantities

a−4
npZ

4
(i),npCc,θ(s0, s1) , i = 1, . . . , p . (5.39)

Since

Cc,θ(s0, s1) =
s1∑
i=s0

Cc,θ(i, i)

one gets the remarkable property that

a−4
np max

i=1,...,p

∣∣∣λ(i)

( s1∑
s=s0

An(s)An(s)′
)
− Z4

(i),npCc,θ(s0, s1)
∣∣∣

= a−4
np max

i=1,...,p

∣∣∣ s1∑
s=s0

λ(i)(An(s)An(s)′)− Z4
(i),npCc,θ(s0, s1)

∣∣∣+ oP (1) .

In particular, for s1 ≥ s0 we get the weak convergence of the point processes towards a
PRM:

p∑
i=1

ε
a−4
np

(
λi

(∑s0
s=s0

An(s)An(s)′
)
,...,λi

(∑s1
s=s0

An(s)An(s)′
))

d→
∞∑
i=1

ε
Γ−4/α
i

(
Cc,θ(s0,s0),...,Cc,θ(s0,s1)

) .
Example 5.20. In Figure 5.10 we calculate the largest eigenvalues λ(1)

(∑s1
s=0 An(s)An(s)′

)
for s1 = 0, . . . , 5 as well as the sums of the largest eigenvalues

∑s1
s=0 λ(1)

(
An(s)An(s)′

)
the log-return series from the S&P 500 index described in Section 5.1.2. The data are not
rank-transformed. We notice that the two values are surprisingly close across the values
s0 = 0, . . . , 5. This phenomenon could be explained by the structure of the eigenvalues
in Example 5.19. Also note that the largest eigenvalue An(0)An(0)′ makes a major
contribution to the values in Figure 5.10; the contribution of the squares An(s)An(s)′,
s = 1, . . . , 5, to the largest eigenvalue of the sum of squares is less substantial.

5.A Auxiliary results

Let (Zi) be iid copies of Z whose distribution satisfies

P(Z > x) ∼ p+
L(x)
xα

and P(Z ≤ −x) ∼ p−
L(x)
xα

, x→∞ ,

for some tail index α > 0, where p+, p− ≥ 0 with p+ + p− = 1 and L is a slowly varying
function. If E[|Z|] <∞ also assume E[Z] = 0. The product Z1Z2 is regular varying with
the same index α and P(|Z1Z2| > x) = x−αL1(x), where L1 is slowly varying function
different from L; see Embrechts and Goldie [57]. Write

Sn = Z1 + · · ·+ Zn , n ≥ 1,

and consider a sequence (an) such that P(|Z| > an) ∼ n−1.
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5.A.1 Large deviation results
The following theorem can be found in Nagaev [92] and Cline and Hsing [35] for α > 2
and α ≤ 2, respectively; see also Denisov et al. [48].

Theorem 5.21. Under the assumptions on the iid sequence (Zt) given above the follow-
ing relation holds

sup
x≥cn

∣∣∣∣ P(Sn > x)
nP(|Z| > x) − p+

∣∣∣∣→ 0 ,

where (cn) is any sequence satisfying cn/an → ∞ for α ≤ 2 and cn ≥
√

(α− 2)n logn
for α > 2.

5.A.2 A point process convergence result
Assume that the conditions at the beginning of Appendix 5.A hold. Consider a sequence
of iid copies (S(t)

n )t=1,2,... of Sn and the sequence of point processes

Nn =
p∑
t=1

ε
a−1
npS

(t)
n
, n = 1, 2, . . . ,

for an integer sequence p = pn → ∞. We assume that the state space of the point
processes Nn is R0 = [R ∪ {±∞}]\{0}.

Lemma 5.22. Assume α ∈ (0, 2) and the conditions of Appendix 5.A on the iid se-
quence (Zt) and the normalizing sequence (an). Then the limit relation Nn

d→ N holds
in the space of point measures on R0 equipped with the vague topology (see [96, 97])
for a Poisson random measure N with state space R0 and intensity measure µα(dx) =
α|x|−α−1(p+1{x>0} + p−1{x<0})dx.

Proof. According to Resnick [96], Proposition 3.21, we need to show that pP(a−1
npSn ∈

·) v→ µα, where
v→ denotes vague convergence of Radon measures on R0. Observe that we

have anp/an →∞ as n→∞. This fact and α ∈ (0, 2) allow one to apply Theorem 5.21:

P(Sn > xanp)
nP(|Z| > anp)

→ p+x
−α and P(Sn ≤ −xanp)

nP(|Z| > anp)
→ p− x

−α , x > 0 .

On the other hand, nP(|Z| > anp) ∼ p−1 as n→∞. This proves the lemma.
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