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Abstract

The main topics of this thesis are the geometric features of systolic com-
plexes arising from the actions of hyperbolic isometries. The thesis consists of
an introduction followed by two articles.

Given a hyperbolic isometry h of a systolic complex X, our central theme is
to study the minimal displacement set of h and its relation to the actions of h on
X and on the systolic boundary ∂X. We describe the coarse-geometric structure
of the minimal displacement set and establish some of its properties that can be
seen as a form of quasi-convexity. We apply our results to the study of geometric
and algebraic-topological features of systolic groups. In addition, we provide new
examples of systolic groups.

In the first article we show that the minimal displacement set of a hyperbolic
isometry of a systolic complex is quasi-isometric to the product of a tree and
the real line. We use this theorem to construct a low-dimensional model for the
classifying space EG for a group G acting properly on a systolic complex, and
to describe centralisers of hyperbolic isometries in systolic groups.

In the second article we are interested in the induced action of h on the
systolic boundary, and particularly in the fixed points of this action. The main
theorem gives a characterisation of the isometries acting trivially on the boundary
in terms of their centralisers in systolic groups.



Resumé

Hovedemnerne i denne afhandling er de geometriske egenskaber ved systoliske
komplekser, som opstår fra virkningerne af hyperbolske isometrier. Afhandlingen
består af en introduktion efterfulgt af to artikler.

Givet en hyperbolsk isometri h af et systolisk kompleksX er vores hovedtema
at studere h’s minimale forskydningsmængde og dens relation til virkningerne af
h på X og på den systoliske rand ∂X. Vi beskriver den minimale forskydnings-
mængdes grov-geometriske struktur og fastlægger nogle af dens egenskaber, som
kan betragtes som en form for kvasi-konveksitet. Vi anvender vores resultater til
at studere geometriske og algebraisk-topologiske egenskaber ved systoliske grup-
per. Desuden giver vi nye eksempler på systoliske grupper.

I den første artikel viser vi at den minimale forskydningsmængde for en hy-
perbolsk isometri af et systolisk kompleks er kvasi-isometrisk med produktet af
et træ og den reelle akse. Vi bruger denne sætning til at konstruere en lavdimen-
sional model af det klassificerende rum EG for en gruppe G med proper virkning
på et systolisk kompleks, og til at beskrive centralisatorerne af hyperbolske iso-
metrier i systoliske grupper.

I den anden artikel interesserer vi os for den inducerede virkning af h på den
systoliske rand og især for fixpunkterne under denne virkning. Hovedsætningen
giver en karakterisering af de isometrier som virker trivielt på randen ud fra deres
centralisatorer i systoliske grupper.
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Introduction

This thesis is concerned with geometric aspects of systolic complexes connected to
the actions of hyperbolic isometries. We are in particular interested in applications of
these aspects to the study of systolic groups. The thesis consists of an introduction
and the following two articles.

A. Classifying spaces for families of subgroups for systolic groups.

B. Hyperbolic isometries and boundaries of systolic complexes.

In the introduction we recall the theory of systolic complexes and highlight those
of its aspects which are relevant to our study. We also discuss connections to other
approaches to nonpositive curvature, particularly to the theory of CAT(0) spaces and
groups, in order to put our results in a broader context. We conclude the introduction
with a brief presentation of the two articles and a discussion of perspectives for future
research.

Nonpositively curved groups

One of the main topics in geometric group theory is the study of nonpositively curved
groups, understood in a broad sense. This includes classical notions of fundamental
groups of nonpositively curved Riemannian manifolds, combinatorial theory of small
cancellation groups, as well as more modern approaches, like CAT(0) or δ–hyperbolic
groups and their generalisations. Due to an observation of Gromov, a special place
among CAT(0) spaces is occupied by CAT(0) cubical complexes. Namely, for a simply
connected cubical complex the standard piecewise Euclidean metric is CAT(0) if and
only if a certain combinatorial condition is satisfied (flagness of vertex links). Many
of the crucial theorems in the theory of CAT(0) cubical complexes can be proven
without referring to the CAT(0) metric, and using the combinatorial structure only.

9



10 Introduction

Furthermore, a combinatorial approach has been used to cubulate (i.e., equip with
a geometric action on a CAT(0) cubical complex) numerous groups, as well as to
establish various conjectures that remain open for arbitrary CAT(0) groups (e.g., Tits
alternative, finiteness of asymptotic dimension).

The question arose whether there is a similar characterisation of nonpositive cur-
vature for simplicial complexes. A partial, yet very inspiring answer to that question
is the theory of systolic complexes and groups, sometimes referred to as Simplicial
Nonpositive Curvature (SNPC).

Simplicial Nonpositive Curvature

A systolic complex is a simply connected simplicial complex whose vertex links satisfy
a certain condition called 6–largeness. A systolic group is a group acting geometri-
cally on a systolic complex. The condition of 6–largeness is in spirit very similar to
the Gromov’s link condition, i.e., it is local, combinatorial and easily checkable, and
together with simple connectedness it implies contractibility. However, it does not
imply the nonpositive curvature of the standard piecewise Euclidean metric.

Systolic complexes were first introduced by V. Chepoi under the name of bridged
complexes [Che00], although their 1–skeleta, the bridged graphs, had appeared much
earlier in graph theory [SC83,FJ87]. The definition of bridged graphs in a way captures
the spirit of nonpositive curvature, as it can be stated in terms of the convexity of
metric balls. Consequently, from the combinatorial viewpoint, systolic complexes are
rather natural candidates for ‘nonpositively curved’ simplicial complexes.

The theory of systolic complexes and groups in its current shape was developed by
Januszkiewicz-Świa̧tkowski [JŚ06] and, independently, by Haglund [Hag03] and it has
been intensively studied from a group-theoretical perspective ever since. The main
advantage of the combinatorial definition is that it is relatively easy to verify whether
a given simplicial complex is systolic, while on the other hand, it seems practically
impossible to check whether its piecewise Euclidean metric is CAT(0). In particular,
a combinatorial approach led to numerous constructions of interesting groups, e.g.,
hyperbolic Coxeter groups of large virtual cohomological dimension [JŚ03, Osa13a],
groups having strong fixed point properties [ABJ+09], and spaces, e.g., negatively
curved compact branched coverings of pseudomanifolds [JŚ06], finite developments of
billiard tables [JŚ10].

It is worth noting that despite being similar to other classes of nonpositively
curved spaces, systolic complexes display certain asymptotic properties which are
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rather unexpected and exotic (especially in higher dimensions). The most prominent
of these properties is the Asymptotic Hereditary Asphericity discussed later in this
introduction. In particular, these properties imply that in many aspects systolic
groups behave very differently from the classical nonpositively curved groups like,
for example, lattices in Isom(Hn) (cf. [JŚ07]).

Over the last decade the theory of systolic complexes has been further developed,
with a particular emphasis on its metric aspects. Many nonpositive curvature-like
properties of systolic complexes and groups have been established and their exotic
features have been formalised and put into a proper framework.

Relationship to δ–hyperbolic, small cancellation and

CAT(0) groups

The theory of systolic complexes and groups is closely connected to other approaches
to nonpositively curved groups. The most notable is the analogy between SNPC and
the CAT(0) geometry which we discuss in more detail.

Before doing so we need to recall some terminology. The condition of 6–largeness
is a special case of the condition of k–largeness, which is defined for any k > 6. This
leads to the notions of k–systolic complexes and k–systolic groups (we identify the
terms ‘systolic’ and ‘6–systolic’). If k > m then k–largeness implies m–largeness, and
thus all k–systolic complexes and groups are in particular systolic.

δ–hyperbolic groups

A large subclass of systolic complexes, namely the 7–systolic complexes, are δ–hy-
perbolic. In fact, finding a simple combinatorial condition implying δ–hyperbolicity
was one of the motivations for the condition of k–largeness (see [JŚ06]). In general
a systolic complex does not have to be δ–hyperbolic, as it may contain flats. When
one passes to systolic groups, the existence of flats is the only obstruction [Prz07] (the
analogous characterisation holds for CAT(0) groups). On the other hand, most of
the classical hyperbolic groups of dimension at least 3 are not systolic, thanks to the
aforementioned Asymptotic Hereditary Asphericity property of systolic groups.

Let us mention that the existence of flats in systolic complexes is essential to
our study. Namely, in the hyperbolic case various aspects of systolic complexes and
groups reduce to the known properties and constructions for hyperbolic groups, e.g.,
the systolic boundary reduces to the Gromov boundary.
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Small cancellation theory

In [JŚ06] the authors claim that SNPC may be seen as a higher-dimensional version
of the small cancellation theory. This was made precise by D. Wise, who showed
that any C(k) small cancellation group is k–systolic [Wis03]. In article A we extend
Wise’s result to the case of graphical small cancellation groups. In dimension 2 the
converse also holds, i.e., to a 2–dimensional k–systolic complex one associates a dual
cell complex that satisfies the C(k) graphical small cancellation condition.

These two approaches are also similar when it comes to the methods. The funda-
mental tools used to study systolic complexes are the minimal surfaces, which can be
seen as simplicial analogues of the van Kampen diagrams used in the small cancellation
theory.

CAT(0) spaces and groups

The theory of systolic complexes and groups is to a large extent parallel to the theory of
CAT(0) spaces and groups. In dimension 2 it simply reduces to the CAT(0) geometry,
i.e., a 2–dimensional simplicial complex is systolic if and only if its standard piecewise
Euclidean metric is CAT(0). In higher dimensions these two theories differ, as one
can easily construct the appropriate (counter) examples. The situation becomes much
more difficult when one considers groups. There are plenty of CAT(0) groups which
are not systolic, but there is no systolic group which is known not to be CAT(0). It
is somewhat surprising how faithfully the condition of 6–largeness captures the key
aspects of nonpositive curvature.

Consequently, over the years, for numerous properties of CAT(0) spaces, systolic
analogues have been established. This includes, among others, the Cartan-Hadamard
Theorem [Che00,JŚ06], the Fixed Point Theorem [Prz08,CO15], the Flat Torus The-
orem [Els09a], the classification of isometries [Els09b] and the existence of a boundary
which is an EZ–structure [OP09]. The results for systolic complexes and groups pre-
sented in this thesis are also to some degree analogous to the known results in CAT(0)

geometry.

However, in some aspects systolic complexes behave better than CAT(0) spaces.
This is mostly due to their combinatorial nature (which makes them actually more
similar to the CAT(0) cubical complexes). For example, similarly to CAT(0) cubical
groups, systolic groups are biautomatic [JŚ06,Świ06], while it is an open question for
arbitrary CAT(0) groups.
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Asymptotic Hereditary Asphericity

One of the most significant properties of systolic complexes, which distinguishes them
from other classes of nonpositively curved spaces, is the so-called Asymptotic Heredi-
tary Asphericity (AHA), introduced in [JŚ07]. It is a coarse property of metric spaces
that describes asymptotic behaviour of spheres. In an AHA space, all spheres of di-
mension at least 2 are metrically uniformly ‘slim’. This assertion can easily be shown
to hold for spaces of (asymptotic) dimension at most 2, as in this case there is no
room to map an n–sphere with n > 2 in an ‘essential’ way. What is surprising is that
systolic complexes are AHA regardless of their dimension.

The AHA property implies many of the aforementioned exotic features of systolic
complexes and groups, including the nonexistence of nonpositively curved manifold
subgroups of dimension greater that 2, restrictions on AHA products, and a peculiar
topology at infinity (see [JŚ07,Osa07]). One could say that AHA spaces in many ways
behave like 2–dimensional objects. In particular, it follows that systolic groups do not
contain subgroups isomorphic to Zn for n > 2 and systolic complexes do not contain
flats of dimension greater than 2. The further study of AHA spaces and groups was
undertaken in [OŚ15]. Along with other results, it is shown there that AHA imposes
certain restrictions on the topology of systolic boundaries.

In our work we do not explicitly invoke the AHA property; however, it is lurking
behind many of our arguments. For example, in article A we use the SkFRC property
which is a direct consequence of AHA, see [JŚ07].

Hyperbolic isometries

A substantial part of the theory of systolic complexes concerns their metric aspects
(the metric under consideration is the combinatorial metric on the 1–skeleton). An
isometry (that is, a simplicial automorphism) h of a systolic complex X is called
hyperbolic if it does not fix any simplex of X. The main object used to study the
action of h on X is the minimal displacement set of h, which is a subcomplex of X
spanned by all the vertices of X that are moved by h the minimal distance. In the case
of CAT(0) spaces, the geometry of the minimal displacement set is well understood,
and it determines many aspects of the action of h on X (see [BH99]). Particularly, if h
is an element of a group G acting geometrically onX, then various algebraic properties
of h in G are reflected in the geometric properties of the minimal displacement set.
An important role in this correspondence is played by the centraliser of h in G whose
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action on X preserves the minimal displacement set of h.

The main theme of this thesis is to study the geometry of the minimal displacement
set in the setting of systolic complexes, with a view to the particular applications to
the classifying spaces for families of subgroups (article A) and to the study of actions
of systolic groups on systolic boundaries (article B).

In the case where X is a CAT(0) space, the minimal displacement set of h is a
convex (and hence isometrically embedded and CAT(0)) subspace of X and it splits
as a product Y ×R where Y is a convex subspace, and such that h acts trivially on Y
and as a translation on R (any h–invariant line {y} × R is called an axis of h). The
above result is the so-called Product Decomposition Theorem (see [BH99]) and it is a
very useful tool that gives a control on the action of h on X. Among its applications
there are classical theorems in the CAT(0) geometry like the Flat Torus Theorem or
the Solvable Subgroup Theorem, as well as more modern results which we discuss
later.

In the systolic setting the minimal displacement set does not have all of the de-
sired metric properties. It is an isometrically embedded systolic subcomplex of X,
however, it is not convex (in fact not even quasi-convex) [Els09b]. The lack of convex-
ity is the main difficulty which we encounter in article B. Furthermore, the minimal
displacement set does not have to consist of the axes of h, i.e., there are examples
of hyperbolic isometries that have no invariant geodesic lines at all (however, for any
such isometry one of its powers has an axis). Also, much less is known about the
structure of the minimal displacement set. In article A we determine this structure
up to quasi-isometry, thus establishing the systolic Product Decomposition Theorem.

Theorem (A, Theorem A). The minimal displacement set of a hyperbolic isometry
of a uniformly locally finite systolic complex is quasi-isometric to the product T × R
of a tree and the line.

Compared to the CAT(0) case our result may be seen as both weaker and stronger.
The splitting in the CAT(0) case is isometric and it is obtained within the ambient
space X. Ours is an abstract splitting, and only up to quasi-isometry. However, in the
CAT(0) case the first factor can be an arbitrary CAT(0) space, whereas in our case
it is a tree. This restriction is due to the AHA property of systolic complexes and it
has deep consequences for certain algebraic properties of h, that we explore in article
A. In article B, instead of its structure, we focus on the coarse-geometric aspects of
the minimal displacement set that stem from the fact that it is not convex.
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A. Classifying spaces for families of subgroups for systolic

groups (joint with Damian Osajda)

A classifying space of a groupG for a family of its subgroups F is a certain homotopical
invariant of G which classifies actions of G with stabilisers in F . If F consists of just
the trivial subgroup, then the classifying space for F is the same as the free contractible
G–space EG. Among nontrivial families, the two main cases of interest are the family
of all finite subgroups of G and the family of all virtually cyclic subgroups of G, where
the respective classifying spaces are denoted by EG and EG. The significance of EG
and EG comes from the fact that homology of these spaces appears in respectively
Baum-Connes and Farrell-Jones isomorphism conjectures. Therefore, one would like
to construct simple, finite-dimensional models for EG and EG, and in particular relate
their dimension to other notions of dimension of G (virtual cohomological dimension,
asymptotic dimension, etc.).

The space EG is by now a classical object and for the majority of (interesting)
groups, finite-dimensional models for EG have been constructed [Lüc05]. The space
EG gained recognition more recently, and it has been intensively studied over the
last decade. The standard approach to models for EG is the construction of Lück-
Weiermann [LW12], which builds a model for EG out of a model for EG and certain
classifying spaces associated to infinite cyclic subgroups of G. This approach has been
used in the vast majority of cases, including the case of CAT(0) groups [Lüc09]. For
δ–hyperbolic groups a finite-dimensional model for EG was constructed in [JPL06],
where the authors used what later turned out to be a special case of the construction
in [LW12].

In this article we construct a finite-dimensional model for the classifying space
EG where G is a group acting properly on a systolic complex. Given such an action,
an infinite order element h of G is precisely a hyperbolic isometry of the systolic
complex. The key point in the construction of [LW12] is to find a ‘nice’ model for
ECG(h)/〈h〉, where CG(h) is the centraliser of h in G. For this, one uses the action
of CG(h) on the minimal displacement set of h. In the CAT(0) case, the Product
Decomposition Theorem implies that CG(h)/〈h〉 acts properly on a CAT(0) space Y ,
and thus one can take Y as ECG(h)/〈h〉 (see [Lüc09]). In our approach, the systolic
Product Decomposition Theorem implies that CG(h)/〈h〉 is virtually free, which gives
a 1–dimensional model for ECG(h)/〈h〉 and in consequence a much nicer model for
EG, when compared with a generic CAT(0) group.
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Theorem (A, Theorem C). Let G be a group acting properly on a uniformly locally
finite d–dimensional systolic complex. Then there exists a model for EG of dimension

dimEG =

{
d+ 1 if d 6 3,

d if d > 4.

We also study connections between small cancellation theory and SNPC. Follow-
ing ideas of D. Wise we show that any group acting properly and/or cocompactly on
a graphical small cancellation complex acts in the same way on a systolic complex. It
follows that any such group has an at most 2–dimensional model for EG. For groups
with a 2–dimensional model for EG that satisfy some mild finiteness conditions, a
3–dimensional model for EG was constructed in [Deg17]. However, there are groups
acting properly on graphical small cancellation complexes that do not satisfy condi-
tions needed in [Deg17], and thus our approach gives new models for EG. The main
point of our theorem though, is that systolicity implies many properties of ‘metric na-
ture’ that are difficult to establish using combinatorial methods of small cancellation
theory.

B. Hyperbolic isometries and boundaries of systolic

complexes

The boundary at infinity ∂X of a systolic complex X was constructed in [OP09]. The
construction is ideologically very similar to the visual boundary of a CAT(0) space
or to the Gromov boundary of a δ–hyperbolic space. In the two latter cases, the
study of groups via their induced action on the boundary turned out to be a very
fruitful approach. A general picture is that the topology of the boundary is reflected
in the algebraic properties of a group, and often one obtains this correspondence by
studying the dynamics of the action of individual (hyperbolic) elements. In particular
this approach was used to connect the topology of the boundary with the existence
of a splitting of a group as a direct product [Rua01] or as an amalgamated product
[Bow98,PS09].

In the systolic setting the action of a group on the boundary has not yet been
investigated. We undertake this task in our article, with the focus on the actions
of hyperbolic isometries. In the CAT(0) or δ–hyperbolic case, the starting point of
analysing the dynamics of a hyperbolic isometry h on the boundary is the observation
that h has two canonical fixed points h+∞ and h−∞. These points are given by the
endpoints of an axis of h in the first case and a quasi-axis of h in the second case.
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We show the existence of these two fixed points in the systolic setting (which is
not that straightforward, as in this case an axis of h does not immediately determine
two points on the boundary). We also characterise hyperbolic isometries that act as
the identity on the boundary, in a similar way as it is done for CAT(0) groups in
[Rua01].

Theorem (B, Theorem 1). Let G be a group acting geometrically on a systolic complex
X, and let h ∈ G be a hyperbolic isometry. Then h acts trivially on the boundary ∂X
if and only if the centraliser CG(h) has finite index in G.

The approach in [Rua01] uses the action of CG(h) on the minimal displacement set
of h. In our case the minimal displacement set is not convex and therefore it cannot
be effectively used to study geodesic rays (that represent points of the boundary). We
thus replace it with the K–displacement set, which consists of vertices that are moved
by h the distance at most K, for some K > 0. Choosing the appropriate K allows us
to circumvent the lack of convexity and proceed analogously as in [Rua01].

Perspectives for future research

Splittings of systolic groups over virtually cyclic subgroups

A theorem of Bowditch [Bow98] states that a one-ended hyperbolic group G splits over
a virtually cyclic subgroup if and only if the Gromov boundary of G has a cut-pair.
Papasoglu-Swenson [PS09] prove an analogous result for a group acting geometrically
on a CAT(0) space X (in this case the Gromov boundary is replaced with the visual
boundary of X). We would like to establish a systolic analogue of these theorems
following the approach of [PS09]. This approach uses a variety of properties of CAT(0)
boundaries which are not known in the systolic setting. In article B we establish some
of these properties.

The key idea in [PS09] is to make use of a metric structure of the boundary and
study the dynamics of the action of a hyperbolic isometry h on the Tits boundary of
the CAT(0) spaceX (rather than the visual boundary). The main result says that this
action is the so-called π–convergence action. To establish π–convergence the authors
use, among others, the fact that an angle between two geodesic rays in a CAT(0)

space, despite its global nature, can be defined locally.
In our case one has to first define a version of a Tits metric on the systolic boundary.

This can be done in the same way as in the CAT(0) case, thanks to the contracting
properties of geodesic rays used to define the systolic boundary (see [OP09]). However,
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since the systolic boundary has a ‘coarse-geometric definition’ it seems difficult to find
a good local notion of an angle. This is the main (expected) difficulty in establishing
a systolic version of π–convergence.

An interesting side question arises. A classical theorem in CAT(0) geometry states
that the Tits boundary of a CAT(0) space is a CAT(1) space (see [BH99]). We
believe that the same holds for the Tits boundary of systolic complexes. Moreover,
we expect that Asymptotic Hereditary Asphericity imposes further restrictions on the
Tits metric, namely that any geodesic triangle of circumference less than 2π is in fact
a tripod. This would be a metric counterpart to a theorem of Osajda-Świa̧tkowski
[OŚ15] which says that the systolic boundary contains no 2–disks.

Minimal displacement set for generalisations of Simplicial Nonpositive
Curvature

There are various generalisations of Simplicial Nonpositive Curvature, which include
weakly systolic complexes [Osa13b] and bucolic complexes [BCC+13]. One could define
and study the minimal displacement set of hyperbolic isometries of these complexes
and, e.g., try to establish a Product Decomposition Theorem.

In the setting of weakly systolic complexes, one does not have the entire minimal
surface theory [Els09a] which we use in article A, but there are some partial results
(e.g., the classification of minimal surfaces or the ‘Projection Lemma’). Also, these
complexes are not necessarily AHA, so in order to determine the coarse geometry of
the factor Y in the product Y ×R, one may need to use techniques different from ours.
Nonetheless, it is still conceivable that Y is a tree. This would allow us to proceed as
in article A and construct a finite-dimensional model for the classifying space EG for
weakly systolic groups.
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CLASSIFYING SPACES FOR FAMILIES OF SUBGROUPS FOR

SYSTOLIC GROUPS

DAMIAN OSAJDA AND TOMASZ PRYTU LA

Abstract. We determine the large scale geometry of the minimal displacement

set of a hyperbolic isometry of a systolic complex. As a consequence, we describe

the centraliser of such an isometry in a systolic group. Using these results, we

construct a low-dimensional classifying space for the family of virtually cyclic sub-

groups of a group acting properly on a systolic complex. Its dimension coincides

with the topological dimension of the complex if the latter is at least four. We show

that graphical small cancellation complexes are classifying spaces for proper actions

and that the groups acting on them properly admit three-dimensional classifying

spaces with virtually cyclic stabilisers. This is achieved by constructing a systolic

complex equivariantly homotopy equivalent to a graphical small cancellation com-

plex. On the way we develop a systematic approach to graphical small cancellation

complexes. Finally, we construct low-dimensional models for the family of virtu-

ally abelian subgroups for systolic, graphical small cancellation, and some CAT(0)

groups.
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1. Introduction

Let G be a group and let F be a family of subgroups of G, that is, a collection

of subgroups which is closed under taking subgroups and conjugation by elements of

G. A classifying space for the family F is a G–CW–complex EFG with stabilisers

in F , such that for any subgroup F ∈ F the fixed point set (EFG)F is contractible.

When the family F consists of just a trivial subgroup, the classifying space EFG is

the universal free G–space EG, and if F consists of all finite subgroups of G then

EFG is the so-called classifying space for proper actions, commonly denoted by EG.

Recently, much attention has been attracted by the classifying space EG for the family

of all virtually cyclic subgroups. One reason for studying EG is its appearance in

the formulation of the Farrell-Jones conjecture concerning algebraic K- and L-theory

(see e.g. [Lüc05]).

It can be shown that the classifying space EFG always exists and that it is unique

up to a G–homotopy equivalence [Lüc05]. A concern is to provide specific models

that are as “simple” as possible. One, widely used, measure of such simplicity is

the (topological) dimension. For example, having a low-dimensional model for EG

enables one to better understand its homology that appears in the left-hand side of the

assembly map in the formulation of the Farrell-Jones conjecture. Low-dimensional

models for EG were constructed for many classes of groups including hyperbolic

groups [JPL06], groups acting properly on CAT(0) spaces [Lüc09], and many two-

dimensional groups [Deg17]. In all of these constructions the minimal dimension of

EG is related to the minimal dimension of EG. However, the discrepancy between

these two may be arbitrarily large [DP14]. Finally, it is an open question whether

2
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finite-dimensional models for EG exist for all groups admitting a finite dimensional

model for EG.

The main purpose of the current article is to construct low-dimensional models for

EG in the case of groups acting properly on systolic complexes.

A simply connected simplicial complex is systolic if it is a flag complex, and if every

embedded cycle of length 4 or 5 has a diagonal. This condition may be treated as an

upper curvature bound, and therefore systolic complexes are also called “complexes of

simplicial non-positive curvature”. They were first introduced by Chepoi [Che00] un-

der the name bridged complexes. Their 1–skeleta, bridged graphs, were studied earlier

in the frame of Metric Graph Theory [SC83,FJ87]. Januszkiewicz-Świa̧tkowski [JŚ06]

and Haglund [Hag03] rediscovered, independently, systolic complexes and initiated the

exploration of groups acting on them. Since then the theory of automorphisms groups

of systolic complexes has been a powerful tool for providing examples of groups with

often unexpected properties, see e.g. [JŚ07,OŚ15].

An exotic large-scale geometric feature of systolic complexes is their “asymptotic

asphericity” – asymptotically, they do not contain essential spheres. Such a behaviour

is typical for complexes of asymptotic dimension one or two, but systolic complexes

exist in arbitrarily high dimensions. The asphericity property is the crucial phenom-

enon used in our approach in the current article. First, we use it to determine the

large-scale geometry of the minimal displacement set of a hyperbolic isometry of a

systolic complex.

Recall that an isometry (i.e. a simplicial automorphism) h of a systolic complex

X is called hyperbolic if it does not fix any simplex of X. For such an isometry one

defines the minimal displacement set Min(h) to be the subcomplex of X spanned by

the vertices which are moved by h the minimal combinatorial distance.

Theorem A (Theorem 3.4 and Corollary 4.7). The minimal displacement set of a

hyperbolic isometry of a uniformly locally finite systolic complex is quasi-isometric to

the product T × R of a tree and the line.

This theorem can be viewed as a systolic analogue of the so-called Product De-

composition Theorem for CAT(0) spaces [BH99, Theorem II.6.8]. Unlike the CAT(0)

case where the splitting is isometric and it is realised within the ambient space, we

provide only an abstract quasi-isometric splitting. This is mainly due to the lack

of a good notion of products in the category of simplicial complexes. However, our

theorem may be seen as more restrictive, since in the CAT(0) case instead of a tree

one can have an arbitrary CAT(0) space.

3
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This restriction is used to determine the structure of certain groups acting on the

minimal displacement set. If a group G acts properly on a systolic complex, then

one can easily see that the centraliser of a hyperbolic isometry acts properly on the

minimal displacement set. If the action of G is additionally cocompact, i.e. G is a

systolic group, Theorem A allows us to describe the structure of such centraliser. This

establishes a conjecture by D. Wise [Wis03, Conjecture 11.6].

Theorem B (Corollary 5.8). The centraliser of an infinite order element in a systolic

group is commensurable with Fn × Z, where Fn is the free group on n generators for

some n > 0.

Theorem B extends also some results from [JŚ07, OŚ15, Osa15] concerning nor-

mal subgroups of systolic groups. Theorem A is the key result in our approach to

constructing low-dimensional models for EG for groups acting properly on systolic

complexes. We follow a “pushout method” to construct the desired complex using

low-dimensional models for EG. In [CO15] it is shown that if a group acts properly

on a d–dimensional systolic complex X then the barycentric subdivision of X is a

model for EG. We then follow the strategy of W. Lück [Lüc09] used for constructing

models for EG for CAT(0) groups. The key point there is, roughly, to determine

the structure of the quotient NG(h)/〈h〉 of the normaliser of a hyperbolic isometry h.

Using similar arguments as in the proof of Theorem B, we show that this quotient is

locally virtually free. This is a strong restriction on NG(h)/〈h〉 which leads to better

dimension bounds, when compared with the CAT(0) case.

Theorem C (Theorem 5.1). Let G be a group acting properly on a uniformly locally

finite d–dimensional systolic complex. Then there exists a model for EG of dimension

dimEG =

{
d+ 1 if d 6 3,

d if d > 4.

In Section 8 we provide several classes of examples to which our construction ap-

plies.

As a follow-up, we consider the family VAB of all virtually abelian subgroups. To

the best of our knowledge there have been no known general constructions of low-

dimensional classifying spaces for this family, except for cases reducing to studying

the family of virtually cyclic groups (as in the case of hyperbolic groups). In the realm

of systolic groups we are able to provide such constructions in the full generality.

Theorem D (Theorem 5.9). Let G be a group acting properly and cocompactly on a

d–dimensional systolic complex. Then there exists a model for EVABG of dimension

max{4, d}.

4
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The most important tool used in the latter construction is the systolic Flat Torus

Theorem [Els09a]. As an immediate consequence of the methods developed for prov-

ing Theorem D, we obtain the following.

Theorem E (Corollary 5.13). Let G be a group acting properly and cocompactly

by isometries on a CAT(0) space X of topological dimension d > 0. Furthermore,

assume that for n > 2 there is no isometric embedding En → X where En is the

Euclidean space. Then there exists a model for EVABG of dimension max{4, d+ 1}.

In particular, this result applies to lattices in rank–2 symmetric spaces thus an-

swering a special case of a question by J.-F. Lafont [Cha08, Problem 46.7].

Classical examples of groups acting properly on systolic complexes are small cancel-

lation groups [Wis03]. Note that small cancellation groups are not always hyperbolic

and only for some of them a CAT(0) structure is provided. There is a natural con-

struction by D. Wise of a systolic complex associated to a small cancellation complex.

Therefore, Theorem C and Theorem D apply in the small cancellation setting.

In the current article we explore the more general and more powerful theory of

graphical small cancellation, attributed to Gromov [Gro03]. Furthermore, instead of

studying small cancellation presentations, we consider a slightly more general sit-

uation of graphical small cancellation complexes and their automorphism groups.

Our approach is analogous to the one by McCammond-Wise [MW02] in the classical

small cancellation theory. We initiate the systematic study of graphical small cancel-

lation complexes, in particular in Section 6 we prove their basic geometric properties.

The theory of groups acting properly on graphical small cancellation complexes pro-

vides a powerful tool for constructing groups with prescribed features. Examples

include finitely generated groups containing expanders, and non-exact groups with

the Haagerup property, both constructed in [Osa14].

Towards our main application, which is constructing low-dimensional models for

classifying spaces, we define the Wise complex of a graphical small cancellation com-

plex. It is the nerve of a particular cover of the graphical complex. We show that

the Wise complex of a simply connected C(p) graphical complex is p–systolic (Theo-

rem 7.12), and that the two complexes are equivariantly homotopy equivalent in the

presence of a group action (Theorem 7.11). The latter result is achieved by the use

of an equivariant version of the Borsuk Nerve Theorem, which we prove on the way

(Theorem 7.3). As a corollary we obtain the following.

Theorem F (Corollary 7.14). Let G be a group acting properly and cocompactly on

a simply connected C(p) graphical complex for p > 6. Then G acts properly and

cocompactly on a p–systolic complex, i.e. G is a p–systolic group.

5
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The result above allows one to conclude many strong features of groups acting geo-

metrically on graphical small cancellation complexes. Among them is biautomaticity,

proved for classical small cancellation groups in [GS91b], and for systolic groups in

[JŚ06].

Using the above techniques we are able to construct low-dimensional models for

classifying spaces for groups acting properly on graphical small cancellation com-

plexes.

Theorem G (Theorem 7.15). Let a group G act properly on a simply connected

uniformly locally finite C(6) graphical complex X. Then:

(1) the complex X is a 2–dimensional model for EG,

(2) there exists a 3–dimensional model for EG,

(3) there exists a 4–dimensional model for EVABG, provided the action is addi-

tionally cocompact.

Organisation. The article consists of two main parts. The first part (Sections 2–

5) is concerned mostly with geometry of systolic complexes. In Section 2 we give a

background on systolic complexes and on classifying spaces for families of subgroups.

We also recall a general method of constructing classifying spaces for the family

of virtually cyclic subgroups developed in [LW12]. In Section 3 we show that the

minimal displacement set of a hyperbolic isometry of a systolic complex splits up to

quasi-isometry as a product of a real line and a certain simplicial graph. Section 4 is

devoted to proving that this graph is quasi-isometric to a simplicial tree. The proof

relies on the aforementioned asymptotic asphericity properties of systolic complexes.

Finally in Section 5, using the method described in Section 2 we construct models for

EG and EVABG for groups acting properly on systolic complexes.

In the second part (Sections 6–7) we study graphical small cancellation theory. In

Section 6 we initiate systematic studies of small cancellation complexes and show their

basic geometric properties. In Section 7 we prove that the dual complex of a graphical

small cancellation complex is systolic. Then we use this fact to construct models

for EG, EG and EVABG for groups acting properly on graphical small cancellation

complexes.

We conclude with Section 8 where we provide various examples of groups to which

our theory applies.

Acknowledgements. We would like to thank Dieter Degrijse for many helpful
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careful proofreading of the manuscript.
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2. Preliminaries

2.1. Classifying spaces with finite or virtually cyclic stabilisers. The main

goal of this section is, given a group G, to describe a method of constructing a model

for a classifying space EG out of a model for EG. The presented method is due to W.

Lück and M. Weiermann [LW12]. After giving the necessary definitions we describe

the steps of the construction, some of which we adjust to our purposes.

A collection of subgroups F of a group G is called a family if it is closed under

taking subgroups and conjugation by elements of G. Three examples which will be

of interest to us are the family FIN of all finite subgroups, the family VCY of all

virtually cyclic subgroups, and the family VAB of all virtually abelian subgroups.

Let us define the main object of our study.

Definition 2.1. Given a group G and a family of its subgroups F , a model for the

classifying space EFG is a G–CW–complex X such that for any subgroup H ⊂ G the

fixed point set XH is contractible if H ∈ F , and empty otherwise.

In order to simplify the notation, throughout the article let EG denote EFING

and let EG denote EVCYG. This is a standard, commonly used notation.

A model for EFG exists for any group and any family; moreover, any two mod-

els for EFG are G–homotopy equivalent. For the proofs of these facts see [Lüc05].

However, general constructions always produce infinite dimensional models. We will

now describe the aforementioned method of constructing a finite dimensional model

for EG out of a model for EG and appropriate models associated to infinite virtually

cyclic subgroups of G. Before doing so, we need one more piece of notation. If H ⊂ G
is a subgroup and F is a family of subgroups of G, let F ∩ H denote the family of

all subgroups of H which belong to the family F . More generally, if ψ : H → G is a

homomorphism, let ψ∗F denote the smallest family of subgroups of H that contains

ψ−1(F ) for all F ∈ F .

Consider the collection VCY \ FIN of infinite virtually cyclic subgroups of G. It

is not a family since it does not contain the trivial subgroup. Define an equivalence

relation on VCY \ FIN by

H1 ∼ H2 ⇐⇒ |H1 ∩H2| =∞.

7
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Let [H] denote the equivalence class of H, and let [VCY \ FIN ] denote the set of

equivalence classes. The group G acts on [VCY \ FIN ] by conjugation, and for a

class [H] ∈ VCY \ FIN define the subgroup NG[H] ⊆ G to be the stabiliser of [H]

under this action, i.e.

NG[H] = {g ∈ G | |g−1Hg ∩H| =∞}.

The subgroup NG[H] is called the commensurator of H, since its elements conjugate

H to the subgroup commensurable with H. For [H] ∈ [VCY \FIN ] define the family

G[H] of subgroups of NG[H] as follows

G[H] = {K ⊂ G | K ∈ [VCY \ FIN ], [K] = [H]} ∪ {K ∈ FIN ∩NG[H]}.

In other words G[H] consists of all infinite virtually cyclic subgroups of G which have

infinite intersection with H and of all finite subgroups of NG[H]. In this setting we

have the following.

Theorem 2.2. [LW12, Theorem 2.3] Let I be a complete set of representatives [H]

of G–orbits of [VCY \ FIN ] under the action of G by conjugation. Choose arbitrary

models for ENG[H] and EG[H]NG[H] and an arbitrary model for EG. Let the space

X be defined as a cellular G–pushout
∐

[H]∈I G×NG[H] ENG[H]
i−−−−→ EG

y∐
[H]∈I idG×NG[H]f[H]

y
∐

[H]∈I G×NG[H] EG[H]NG[H] −−−−→ X

such that f[H] is a cellular NG[H]–map for every [H] ∈ I, and i is an inclusion of

G–CW–complexes. Then X is a model for EG.

Existence of such pushout follows from universal properties of appropriate classify-

ing spaces, and the fact that if the map i fails to be injective, one can replace it with

an inclusion into the mapping cylinder. For details see [LW12, Remark 2.5]. This

observation leads to the following corollary.

Corollary 2.3. [LW12, Remark 2.5] Assume that there exists an n–dimensional

model for EG, and for every [H] ∈ [VCY \ FIN ] there exists an n–dimensional

model for EG[H]NG[H], and an (n− 1)–dimensional model for ENG[H]. Then there

exists an n–dimensional model for EG.

In what follows we need our groups to be finitely generated. The commensurator

NG[H] in general does not have to be finitely generated. The following proposition

allows us to reduce the problem of finding various models for EFNG[H] to the study

of its finitely generated subgroups.

8

32



CLASSIFYING SPACES FOR SYSTOLIC GROUPS

Proposition 2.4. If for every finitely generated subgroup K ⊂ NG[H] there exists a

model for EG[H]∩KK with dimEG[H]∩KK 6 n, then there exists an (n+1)–dimensional

model for EG[H]NG[H]. The same holds for models for ENG[H].

Proof. The proof is a straightforward application of Theorem 4.3 in [LW12], which

treats colimits of groups. The group NG[H] can be written as a colimit NG[H] =

colimi∈IKi of a directed system {Ki}i∈I of all of its finitely generated subgroups

(since NG[H] is countable, this system is countable as well). Since the structure

maps are injective and since every subgroup F ∈ G[H] is finitely generated, it is

contained in the image of some ψi : Ki ↪→ G. Again by the injectivity of ψi, we have

ψ∗i G[H] = G[H] ∩Ki. The claim follows from Theorem 4.3 in [LW12]. �

The following condition will allow us to find infinite cyclic subgroups which are

normal in K.

Definition 2.5. [Lüc09, Condition 4.1] A group G satisfies condition (C) if for every

g, h ∈ G with |h| =∞ and any k, l ∈ Z we have

ghkg−1 = hl =⇒ |k| = |l|.

Lemma 2.6. Let K ⊂ NG[H] be a finitely generated subgroup that contains some

representative of [H] and assume that the group G satisfies condition (C). Choose an

element h ∈ H such that [〈h〉] = [H] (any element of infinite order has this property).

Then there exists k > 1, such that 〈hk〉 is normal in K.

Proof. Let s1, . . . , sm be generators of K. Since K ⊂ NG[H], for any si we have

s−1
i hkisi = hli for some ki, li ∈ Z \ {0}. Then the condition (C) implies that li = ±ki

for all i ∈ {1, . . . ,m}. Thus k defined as
∏n
i=1 ki has the desired property. �

In order to treat short exact sequences of groups we need the following result.

Proposition 2.7. [DP14, Corollary 2.3] Consider the short exact sequence of groups

0 −→ N −→ G
π−→ Q −→ 0.

Let F be a family of subgroups of G and H be a family of subgroups of Q such that

π(F) ⊆ H. Suppose that there exists a integer k > 0, such that for every subgroup

H ∈ H there exists a k–dimensional model for EF∩π−1(H)π
−1(H). Then given a

model for EHQ, there exists a model for EFG of dimension k + dimEHQ.

2.2. Systolic complexes. In this section we establish the notation and define sys-

tolic complexes and groups. We do not discuss general properties of systolic com-

plexes, the interested reader is referred to [JŚ06]. We also give basic definitions re-

garding metric on simplicial complexes, including notation which is slightly different

from the one usually used.

9

33



D. OSAJDA AND T. PRYTU LA

Let X be a simplicial complex. We assume that X is finite dimensional and uni-

formly locally finite. For a subset of vertices S ⊆ X(0) define the subcomplex spanned

by S to be the maximal subcomplex of X having S as its vertex set. We denote this

subcomplex by spanS. We say that X is flag if every set of pairwise adjacent vertices

spans a simplex of X. For a simplex σ ∈ X, define the link of σ as the subcomplex

of X that consists of all simplices of X which do not intersect σ, but together with

σ span a simplex of X. A cycle in X is a subcomplex γ ⊂ X homeomorphic to the

1–sphere. The length |γ| of the cycle γ is the number of its edges. A diagonal of a

cycle is an edge connecting two of its nonconsecutive vertices.

Definition 2.8. [JŚ06, Definition 1.1] Let k > 6 be a positive integer. A simplicial

complex X is k–large if it is flag and every cycle γ of length 4 6 |γ| < k has a

diagonal.

We say that X is k–systolic if it is connected, simply connected and the link of

every simplex of X is k–large.

One can show that k–systolic complexes are in fact both k–large and flag. In the

case when k = 6, which is the most interesting to us, we abbreviate 6–systolic to

systolic. Note that if m > k then m–systolicity implies k–systolicity.

Now we introduce the convention used throughout this article regarding the metric

on simplicial complexes. Some of our definitions are slightly different from the usual

ones, however they seem to be more convenient here in order to avoid technical

complications.

Convention 2.9. (Metric on simplicial complexes). Let X be a simplicial complex.

Unless otherwise stated, when we refer to the metric on X, we mean its 0–skeleton

X(0), where the distance between two vertices is the minimal number of edges of an

edge-path joining these two vertices. Notice that for flag complexes, the 0–skeleton

together with the above metric entirely determines the complex. By an isometry we

mean a simplicial map f : Y → X, which restricted to 0–skeleta is an isometry with

respect to the metric defined above. In particular, any simplicial isomorphism is an

isometry. A geodesic in a simplicial complex is defined as a sequence of vertices (vi)i∈I
such that d(vi, vj) = |i − j| for all i, j ∈ I, where I ⊆ N. Note that we allow I = N,

i.e. a geodesic can be infinite in both directions. A graph is a 1–dimensional simplicial

complex. In particular, graphs do not contain loops and multiple edges.

Remark 2.10. For a graph the usually considered metric is the geodesic metric where

every edge is assigned length 1. If X is a simplicial complex, then the restriction of

the geodesic metric on the graph X(1) to X(0) is precisely the metric we defined above.
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Let v0 be a vertex of X. Define the combinatorial ball of radius r ∈ N, centred at

v0 as a subcomplex

Bn(v0, X) = span{v ∈ X | d(v0, v) 6 n},

and a combinatorial sphere as

Sn(v0, X) = span{v ∈ X | d(v0, v) = n}.

We finish this section with basic definitions regarding group actions on simplicial

complexes. Unless stated otherwise, all groups are assumed to be discrete and all

actions are assumed to be simplicial, i.e. groups act by simplicial automorphisms.

We say that the action of G on a simplicial complex X is proper if for every vertex

v ∈ X and every integer n > 0 the set

{g ∈ G | gBn(v,X) ∩Bn(v,X) 6= ∅}

is finite. When X is uniformly locally finite this definition is equivalent to all vertex

stabilisers being finite. We say that the action is cocompact if there is a compact

subset K ⊂ X that intersects every orbit of the action.

A group is called systolic if it acts properly and cocompactly on a systolic com-

plex. However, most of the time we are concerned with proper actions that are not

necessarily cocompact.

2.3. Quasi-isometry. Let (X, dX) and (Y, dY ) be metric spaces. A (not necessarily

continuous) map f : X → Y is a coarse embedding if there exist real non-decreasing

functions ρ1, ρ2 with limt→+∞ρ1(t) = +∞, such that the inequality

ρ1(dX(x1, x2)) 6 dY (f(x1), f(x2)) 6 ρ2(dX(x1, x2))

holds for all x1, x2 ∈ X. If both functions ρ1, ρ2 are affine, we call f a quasi-isometric

embedding. Given two maps f, g : X → Y we say that f and g are close if there

exists R > 0 such that the inequality dY (f(x), g(x)) 6 R holds for all x ∈ X. We

say that the coarse embedding f : X → Y is a coarse equivalence, if there exists a

coarse embedding g : Y → X such that the composite g ◦ f is close to the identity

map on X and g ◦f is close to the identity map on Y . Analogously, a quasi-isometric

embedding f : X → Y is called a quasi-isometry, if there exists a quasi-isometric

embedding g : Y → X such that the appropriate composites are close to identity

maps.

The following criterion will be very useful to us: a coarse embedding (quasi-

isometric embedding) f : X → Y is a coarse equivalence (quasi-isometry) if and only

if it is quasi-onto, i.e. there exists R > 0 such that for any y ∈ Y there exists x ∈ X
with dY (y, f(x)) 6 R.
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3. Quasi-product structure of the minimal displacement set

In this section we describe the structure of the minimal displacement set associated

to a hyperbolic isometry of X. We prove that this subcomplex of X is quasi-isometric

to the product of the so-called graph of axes and the real line. This may be viewed

as a coarse version of the Product Decomposition Theorem for CAT(0) spaces (see

[BH99]). Our arguments rely on the work of T. Elsner in [Els09a] and [Els09b].

Let h be an isometry of a simplicial complex X. Define the displacement function

dh : X(0) → N by the formula dh(x) = dX(x, h(x)). The translation length L(h) is

defined as

L(h) = min
x∈X(0)

dh(x).

If h does not fix any simplex of X, then h is called hyperbolic. In such case one has

L(h) > 0. For a hyperbolic isometry h, define the minimal displacement set Min(h)

as the subcomplex of X spanned by the set of vertices where dh attains its minimum.

Clearly Min(h) is invariant under the action of h. If X is a systolic complex, we have

the following.

Lemma 3.1. [Els09b, Propositions 3.3 and 3.4] Let h be a hyperbolic isometry of a

systolic complex X. Then the subcomplex Min(h) is a systolic complex, isometrically

embedded into X.

An h–invariant geodesic in X is called an axis of h. We say that Min(h) is the

union of axes, if for every vertex x ∈ Min(h) there is an h–invariant geodesic passing

through x, i.e. Min(h) can be written as follows

Min(h) = span{
⋃
γ | γ is an h–invariant geodesic}. (3.1)

In this case, the isometry h acts on Min(h) as a translation along the axes by the

number L(h).

Proposition 3.2. Let h be a hyperbolic isometry of a systolic complex X. Then the

following hold:

(i) [Els09b, Proposition 3.1] For any n ∈ Z \ {0}, the isometry hn is hyperbolic.

(ii) [Els09b, Theorem 3.5] There exists an n > 1 such that there is an hn–invariant

geodesic in X.

(iii) [Els09b, Remark, p. 48] If there exists an h–invariant geodesic then for any

vertex x ∈ Min(h) there is an h–invariant geodesic passing through x, i.e. the

isometry h satisfies (3.1).

(iv) If h satisfies (3.1) then so does hn for any n ∈ Z \ {0}.
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Proof. Observe that (iv) follows from (iii) and the fact that an h–invariant geodesic

is hn–invariant. �

For two subcomplexes X1, X2 ⊂ X, the distance dmin(X1, X2) is defined to be

dmin(X1, X2) = min{dX(x1, x2) | x1 ∈ X1, x2 ∈ X2}.

Note that in general dmin is not even a pseudometric. We are ready now to define

the graph of axes.

Definition 3.3. (Graph of axes). For a hyperbolic isometry h satisfying (3.1), define

the simplicial graph Y (h) as follows

Y (h)(0) = {γ | γ is an h–invariant geodesic in Min(h)},
Y (h)(1) = {{γ1, γ2} | dmin(γ1, γ2) 6 1}.

Let dY (h) denote the associated metric on Y (h)(0) (see Convention 2.9).

The main goal of this section is to prove the following theorem.

Theorem 3.4. Let h be a hyperbolic isometry of a uniformly locally finite systolic

complex X, such that the translation length L(h) > 3, and the subcomplex Min(h) is

the union of axes. Then there is a quasi-isometry

c : (Y (h)× Z, dh)→ (Min(h), dX), (3.2)

where the metric dh is defined as

dh((γ1, t1), (γ2, t2)) = dY (h)(γ1, γ2) + |t1 − t2|,

and dX is the metric induced from X.

In the remainder of this section let h be a hyperbolic isometry of X such that

Min(h) is the union of axes. By Lemma 3.1 it is enough to prove Theorem 3.4 in case

where Min(h) = X. In order to define the map c we parameterise geodesics in Y (h),

i.e. to each γ ∈ Y (h) we assign an origin γ(0) and a direction. After this is done, the

geodesic γ can be viewed as an isometry γ : Z→ X, and the map c can be defined as

c(γ, t) = γ(0 + t). Before we describe the procedure of parameterising γ, we need to

establish the following metric estimate between dY (h) and dX .

Lemma 3.5. Let γ1 and γ2 be h–invariant geodesics. Then:

(i) For any vertices x1 ∈ γ1 and x2 ∈ γ2 we have dY (h)(γ1, γ2) 6 dX(x1, x2) + 1.

(ii) For any vertex x1 ∈ γ1 there exists a vertex x2 ∈ γ2 with dX(x1, x2) 6
(L(h) + 1)dY (h)(γ1, γ2).
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Proof. (i) We proceed by induction on dX(x1, x2). If dX(x1, x2) = 0 then γ1 and γ2

intersect, hence dY (h)(γ1, γ2) 6 1. Assume the claim is true for dX(xi, xj) 6 n, and let

dX(x1, x2) = n+ 1. Let xn be the vertex on a geodesic in X between x1 and x2, with

dX(x1, xn) = n. Choose a geodesic γn ∈ Y (h) passing through xn (such a geodesic

exists since h satisfies (3.1)). By inductive hypothesis we have dY (h)(γ1, γn) 6 n+ 1

and clearly dY (h)(γn, γ2) 6 1, hence the claim follows from the triangle inequality.

(ii) It suffices to prove the claim in the case where dY (h)(γ1, γ2) = 1. Let x1 ∈ γ1 be

any vertex. The vertex x2 is chosen as follows. Let x′1 ∈ γ1 be the vertex realising the

distance between γ1 and γ2 (i.e. it is either the vertex of intersection, or the vertex

on the edge joining these two geodesics). Choose x′1 to be the closest vertex to x1

with this property. Due to h–invariance of γ1 and γ2, the distance dX(x1, x
′
1) is not

greater than L(h) (even L(h)
2 in fact). If γ1 and γ2 intersect, define x2 to be x′1. If

not then γ1 and γ2 are connected by an edge, one of whose endpoints is x′1. Define

the vertex x2 ∈ γ2 to be the other endpoint of that edge. �

For an h–invariant geodesic γ ⊂ X define the linear order ≺ on the set of vertices

of γ, by setting x ≺ h(x) for some (and hence all) x ∈ γ. Fix a geodesic γ0 and

identify the set of its vertices with Z, such that the order ≺ agrees with the natural

order on Z.

Consider the family of combinatorial balls {Bn(−n,X)}n∈N, where−n ∈ γ0. Notice

that we have Bn(−n,X) ⊆ Bn+1(−(n + 1), X), i.e. the family {Bn(−n,X)}n∈N is

ascending. The following lemma is crucial in order to define the origin γ(0) of γ.

Lemma 3.6. Let γ be an h–invariant geodesic. Then there exists a vertex v ∈ γ such

that for any vertex w contained in the intersection

(
⋃

n>0

Bn(−n,X)) ∩ γ

we have w ≺ v.

Proof. Observe first that for any n > 0 we have

sup
≺
{Bn(−n,X) ∩ γ0} = 0 ∈ γ0,

therefore taking 0 as v proves the lemma for γ = γ0. For an arbitrary γ, we proceed

by contradiction. Assume conversely, that the supremum sup
≺
{Bn(−n,X)∩ γ} is not

attained at any vertex of γ. Therefore every vertex of γ belongs to Bn(−n,X) for

some n > 0.

Let x ∈ γ be a vertex which is at distance at most K = (L(h)+1)dY (h)(γ0, γ) from

0 ∈ γ0. Lemma 3.5.(ii) assures that such a vertex exists. For any m > 0 consider
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vertices hm(x) and hm(0). By our assumption there exists n > 0 such that hm(x) is

contained in Bn(−n,X) (see Figure 1). Therefore by the triangle inequality we get

dX(−n, hm(0)) 6 n+K.

On the other hand we have

dX(−n, hm(0)) = n+ L(hm),

since γ0 is a geodesic. For L(hm) > K this gives a contradiction. �

n L(hm) γ0

−n 0 hm(0)

γ

L(hm)x hm(x)

6 n
K K

Figure 1. The vertex hm(x) cannot belong to Bn(−n,X) and be

arbitrarily far from x at the same time.

Definition 3.7. Let γ ⊂ X be an h–invariant geodesic. Define the vertex γ(0) as

γ(0) = max
≺

(
⋃

n>0

Bn(−n,X) ∩ γ). (3.3)

The set of vertices of (
⋃
n>0

Bn(−n,X)∩γ) is bounded from above by Lemma 3.6 hence

the maximal vertex exists. Observe that for γ0 we have γ0(0) = 0.

Having geodesics parameterised, we need the following two technical lemmas that

describe certain metric inequalities, which are needed to prove Theorem 3.4.

Lemma 3.8. Let γ0, γ be as in Definition 3.7 and assume that L(h) > 3 and

dY (h)(γ0, γ) > 2L(h) + 4. Then there exists an n0 ∈ N, such that for all n > n0

and for all t > 0 we have

n+ t− 1 6 dX(−n, γ(t)) 6 n+ t+ 1. (3.4)

Proof. The idea is to reduce the problem to the study of E2
∆, the equilaterally tri-

angulated Euclidean plane. To do so, we construct an h–equivariant simplicial map

f : P → X, which satisfies the following properties:

(1) the complex P is an h–invariant triangulation of a strip R× I, and P can be

isometrically embedded into E2
∆,
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(2) the boundary ∂P is mapped by f onto the disjoint union γ0 t γ such that the

restriction of f to each boundary component is an isometry,

(3) for every pair of vertices u, v ∈ P there is an inequality

dP (u, v)− 1 6 dX(f(u), f(v)) 6 dP (u, v).

The construction of such a map is given in the proofs of Theorems 2.6 and 3.5

(case 1) in [Els09b]. It requires that L(h) > 3 and dY (h)(γ0, γ) > 2L(h) + 4, and this

is the only place where we need these assumptions.

Fix an embedding of P into E2
∆. Since the restriction of f to each boundary

component is an isometry, let us keep the same notation for the preimages under f

of γ0 and γ. For a vertex v ∈ ∂P let ∠(v) denote the number of triangles of P which

contain v. We have the following two cases to consider:

(i) for every vertex v of γ we have ∠(v) = 3,

(ii) there exists a vertex v of γ with ∠(v) 6= 3.

We treat the case (ii) first. Steps of the proof are indicated in Figure 2. Let v0 be a

vertex of γ such that ∠(v0) = 2 and v0 ≺ γ(0). Denote by v−1 the vertex of γ that is

adjacent to v0 and v−1 ≺ v0. Introduce a coordinate system on E2
∆ by setting v−1 to

be the base point and letting e1 = −−−→v−1v0 and e2 = −−−→v−1w, where w is the unique vertex

which lies inside P and is adjacent to both v−1 and v0. We will write v = (xv, yv)

for the coordinates of a vertex v in basis e1, e2. It follows from the choice of the

coordinate system and the fact that the strip P is h–invariant, that for all k ∈ Z we

have

γ(k + 1) = γ(k) + e1 or γ(k + 1) = γ(k) + e2, (3.5)

and both possibilities occur an infinite number of times. In particular, the second

coordinate yγ(k) of γ(k) is a non-decreasing function of k such that

yγ(k) → −∞ as k → −∞. (3.6)

By property (3) of the map f , the distance dE2
∆

(γ0, γ) is bounded from above by

dX(γ0, γ) + 1. This implies that the geodesic γ0 also satisfies (3.5) and (3.6) (i.e. it

runs parallel to γ, see Figure 2). Hence, there exists k0, such that for k > k0 the

coordinate yγ0(−k) is strictly less than yv0 , which is in turn less than yγ(0), since v0 ≺
γ(0). Therefore for each r > dP (γ0(−k), v0) the combinatorial sphere S(γ0(−k), r)

intersects γ|[0,∞) exactly once, where γ|[0,∞) denotes the geodesic ray obtained by

restricting the domain of γ to non-negative integers. In particular, if S(γ0(−k), r) ∩
γ|[0,∞) = γ(s) for some s > 0, then S(γ0(−k), r + 1) ∩ γ|[0,∞) = γ(s+ 1).

Take ñ0 such that for any n > ñ0 we have γ(0) = max
≺

(B(−n, n)∩γ)(0). By property

(3) of the map f , for such n we have dE2
∆

(−n, γ(0)) ∈ {n, n+1}. Set n0 = max{ñ0, k0}.
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For n > n0 and for t > 0 we have dE2
∆

(−n, γ(t)) = dE2
∆

(−n, γ(0))+t ∈ {n+t, n+1+t}.
Therefore the claim follows from property (3).

Case (i) is proven analogously. Using the notation of case (ii) we introduce the

coordinate system as follows. Put w = γ(0), v−1 = γ(−1) and let v0 be the unique

vertex which lies outside of P and is adjacent to both v−1 and w. The rest of the

proof is the same as in case (ii). �

v0v−1

w γ(0)

e1

e2

γ0(−k0)

γ0(−k)

S(γ0(−k), r + 1)

S(γ0(−k), r + 2)

S(γ0(−k), r + 3)

S(γ0(−k), r)

S(γ0(−k), l)

Figure 2. Geodesics and combinatorial spheres in the coordinate system.

γ0

−n 0

γ1

γ1(0)

γ2

γ2(0) x

Sn(−n,X)

n

k

n

Figure 3. Geodesics and their origins.

We need one more metric estimate.

Lemma 3.9. Let γ1, γ2 be h–invariant geodesics in X. Assume additionally, that the

translation length L(h) > 3. Then we have the following inequality

dX(γ1(0), γ2(0)) 6 2(L(h) + 1)dY (h)(γ2, γ2) + 2(2L(h) + 4)(L(h) + 1).
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Proof. Let L denote the translation length L(h) and let D denote the distance

dY (h)(γ1, γ2). We claim that there exists a vertex x ∈ γ2 such that

dX(x, γ1(0)) 6 (L+ 1)D + L

and γ2(0) ≺ x. By Lemma 3.5.(ii) there is a vertex x ∈ γ2 which is at distance at

most (L+ 1)D from γ1(0). If γ2(0) ≺ x does not hold, we do the following. Let α be

a geodesic joining γ1(0) and x. Apply the isometry hm to α, where m is the smallest

integer such that hm(x) � γ2(0). Then the concatenation of a geodesic segment

joining γ2(0) and hm(x) with geodesic hm(α) is a path joining γ2(0) and hm(γ1(0))

of length at most (L+ 1)D + L. Therefore we can switch roles of γ1 and γ2 and set

x to be hm(γ1(0)). This proves the claim.

Let k denote the distance dX(γ2(0), x). We will show that k 6 dX(x, γ1(0)) + 1

(see Figure 3). In order to apply Lemma 3.8, assume that dY (γ0, γ2) > 2L + 4, and

choose n large enough, such that γi(0) = max
≺

(Bn(−n,X) ∩ γi)(0) for i ∈ {1, 2} and

n > n0, where n0 is the constant appearing in the formulation of Lemma 3.8 (clearly

the same holds for any n1 > n). By Lemma 3.8 we have

dX(−n, x) > n+ k − 1.

By the triangle inequality applied to the vertices −n, γ1(0) and x we get

dX(−n, x) 6 n+ dX(γ1(0), x).

Combining the two above inequalities gives us

k 6 dX(γ1(0), x) + 1.

By the triangle inequality the distance dX(γ1(0), g2(0)) is at most dX(γ1(0), x) + k

hence we have

dX(γ1(0), γ2(0)) 6 2dX(γ1(0), x) + 1 6 2(L+ 1)D + 2L+ 1.

This proves the lemma under the assumption that dY (γ0, γ2) > 2L+ 4.

If for both γ1 and γ2 we have dY (γ0, γi) 6 2L + 4, then by directly comparing γi

with γ0, one can show that

dX(γ0(0), γi(0)) 6 2dY (h)(γ0, γi)(L+ 1)

for i ∈ {1, 2}. Using the triangle inequality one gets

dX(γ1(0), γ2(0)) 6 2dY (h)(γ0, γ1)(L+1)+2dY (h)(γ0, γ2)(L+1) 6 2(2L+4)(L+1). �

We are now ready to prove Theorem 3.4.
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Proof of Theorem 3.4. Define the map c : (Y (h)× Z, dh)→ (Min(h), dX) as

c(γ, t) = γ(0 + t),

where γ(0 + t) is the unique vertex of γ satisfying γ(0) ≺ γ(0 + t) and dX(γ(0), γ(0 +

t)) = t. We will show that for every two points (γ1, t1) and (γ2, t2) of Y (h) × Z we

have the following inequality

ρ1(dh((γ1, t1), (γ2, t2))) 6 dX(c(γ1, t1), c(γ2, t2)) 6 ρ2(dh((γ1, t1), (γ2, t2))),

where ρ1 and ρ2 are non-decreasing linear functions.

We first find the function ρ2. Without loss of generality we can assume that

|t1| 6 |t2| and let α be a geodesic joining γ1(t1) and γ2(t2). Denote L(h) by L and

apply the isometry hm to α, where m is chosen such that dX(γ1(0), hm(γ1(t1))) 6
L, and m has the smallest absolute value among such numbers. We then have

dX(hm(γ2(t2)), γ2(0)) 6 |t1 − t2|+ L. Hence, by the triangle inequality we get

dX(γ1(t1), γ2(t2)) = dX(hm(γ1(t1)), hm(γ2(t2))) 6 |t1− t2|+L+L+dX(γ1(0), γ2(0)).

By Lemma 3.9 we obtain

dX(γ1(t1), γ2(t2)) 6 |t1 − t2|+ 2L+ 2(L+ 1)dY (h)(γ2, γ2) + 2(2L+ 4)(L+ 1)

6 2(L+ 1)(dY (h)(γ2, γ2) + |t1 − t2|) + 2(2L+ 4)(L+ 1) + 2L

= 2(L+ 1)dh((γ1, t1), (γ2, t2)) + 2(2L+ 4)(L+ 1) + 2L.

We are left with finding ρ1. Let K denote the distance dY (h)(γ1, γ2) + |t1 − t2|. If

dY (h)(γ1, γ2) > 1
10(2(L+1))K, then by Lemma 3.5.(i) we have

dX(γ1(t1), γ2(t2)) > dY (h)(γ2, γ2)− 1 > 1

10(2(L+ 1))
K − 1. (3.7)

If dY (h)(γ2, γ2) < 1
10(2(L+1))K then one has |t1 − t2| > 1

2K. In this case, using the

same argument with translation by hm and the reverse triangle inequality, we obtain

dX(γ1(t1), γ2(t2)) + L > |t1 − t2| − L− dX(γ1(0), γ2(0)). (3.8)

By Lemma 3.9 we have

dX(γ1(0), γ2(0)) 6 2(L+ 1)dY (h)(γ2, γ2) + 2(2L+ 4)(L+ 1),

which combined with our assumption gives

dX(γ1(0), γ2(0)) 6 2(L+1)
1

10(2(L+1))
K+2(2L+4)(L+1) =

1

10
K+2(2L+4)(L+1).

Putting this in the inequality (3.8) yields

dX(γ1(t1), γ2(t2)) + L > 1

2
K − L− 1

10
K − 2(2L+ 4)(L+ 1),
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hence finally

dX(γ1(t1), γ2(t2)) > 9

20
K − 2L− 2(2L+ 4)(L+ 1). (3.9)

In both (3.7) and (3.9), the following inequality holds

dX(γ1(t1), γ2(t2)) > 1

20(L+ 1)
K − 2L− 2(2L+ 4)(L+ 1).

This proves that c is a quasi-isometric embedding. We note that by Proposi-

tion 3.2.(iii) the map c is surjective on the vertex sets, hence a quasi-isometry. �

4. Filling radius for spherical cycles

The purpose of this section is to prove that the graph of axes defined in Section 3 is

quasi-isometric to a simplicial tree. Our main tool is the SkFRC property of systolic

complexes introduced in [JŚ07]. It is a coarse (i.e. quasi-isometry invariant) property

that, intuitively, describes “asymptotic thinness of spheres” in a given metric space.

We use numerous features of SkFRC spaces established in [JŚ07], some of which we

adjust to our setting. The crucial observation is Proposition 4.6, which says that

an S1FRC space satisfying certain homological condition is quasi-isometric to a tree.

This extends a result of [JŚ07], which treats only the case of finitely presented groups.

Let (X, d) be a metric space. Given r > 0, the Rips complex Pr(X) is a simplicial

complex defined as follows. The vertex set of Pr(X) is the set of all points in X.

The subset {x1, . . . , xn} spans a simplex of Pr(X) if and only if d(xi, xj) 6 r for

all i, j ∈ {1, . . . , n}. Notice that if R > r then Pr(X) is naturally a subcomplex of

PR(X).

In what follows we consider simplicial chains with arbitrary coefficients. For de-

tailed definitions see [JŚ07].

A k–spherical cycle in a simplicial complex X is a simplicial map f : Sk → X

from an oriented simplicial k–sphere to X. Let Cf denote the image through f of the

fundamental (simplicial) k–cycle in Sk. A filling of a k–spherical cycle f is a simplicial

(k+ 1)–chain D such that ∂D = Cf . Let supp(f) denote the image through f of the

vertex set of Sk, and let supp(D) denote the set of vertices of all underlying simplices

of D.

Definition 4.1. A metric space (X, d) has filling radius for spherical cycles con-

stant (or (X, d) is SkFRC) if for every r > 0 there exists R > r such that any

k–spherical cycle f which is null-homologous in Pr(X) has a filling D in PR(X) sat-

isfying supp(D) ⊂ supp(f).
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Proposition 4.2. [JŚ07, p. 16] Let (X, dX) be SkFRC and let f : (Y, dY )→ (X, dX)

be a coarse embedding. Then (Y, dY ) is SkFRC.

Lemma 4.3. [JŚ07, Theorem 4.1, Lemma 5.3] Let X be a systolic complex. Then X

is SkFRC for any k > 2.

The following lemma describes the behaviour of property SkFRC with respect to

products. It was originally proved in [JŚ07] only for products of finitely generated

groups. However, it is straightforward to check that the lemma holds for arbitrary

geodesic metric spaces. The metric on a product is chosen to be the sum of metrics

on the factors.

Lemma 4.4. [JŚ07, Proposition 7.2] Let k ∈ {0, 1}. Assume that (X, dX) is not

SkFRC and that there is r > 0 such that every k–spherical cycle f : Sk → X is null-

homotopic in Pr(X). If (Y, dY ) is unbounded then the product (X, dX) × (Y, dY ) is

not Sk+1FRC.

The following criterion is the key tool that we use in the proof of Proposition 4.6.

Lemma 4.5. [Man05, Theorem 4.6] Let (X, d) be a geodesic metric space. Then the

following are equivalent:

(1) X is quasi-isometric to a simplicial tree,

(2) (bottleneck property) there exists δ > 0, such that for any two points x, y ∈ X
there is a midpoint m = m(x, y) with d(x,m) = d(m, y) = 1

2d(x, y), and such

that any path from x to y in X contains a point within distance at most δ

from m.

Proposition 4.6. Let X be a graph which is S1FRC and assume that there exists

r > 0, such that any 1–spherical cycle in P1(X(0)) is null-homologous in Pr(X
(0)).

Then X is quasi-isometric to a simplicial tree.

Note that to use Proposition 4.5 formally we need to consider a geodesic metric dg

on X – see Remark 2.10. Proposition 4.6 will be true for our standard metric d as

well, since clearly (X(0), d) is quasi–isometric to (X, dg).

Proof. Let R > r be such that every 1–spherical cycle f : S1 → X that is null-

homologous in Pr(X) has a filling D in PR(X) with supp(D) ⊂ supp(f).

We proceed by contradiction. Suppose that X is not quasi-isometric to a tree. Let

δ be a natural number larger than 5R. Then, by the bottleneck property (Proposi-

tion 4.5), there exist two vertices v and w, a midpoint m between them, and a path α

between v and w omitting Bδ(m,X). Without loss of generality we can assume that

m is a vertex. Let γ denote a geodesic between v and w that contains m.
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Let a = d3δ/4e and b = bδ/2c. We define subcomplexes A = PR(γ ∩ Ba(m,X)),

and B = PR(α ∪ (γ \Bb(m,X)) of PR(X). We claim that the following hold:

(1) A and B are path-connected,

(2) A ∩B has the homotopy type of two points,

(3) A ∪B = PR(α ∪ γ).

Assertion (1) is straightforward. For (2) observe that

A ∩B = PR(γ ∩ (Ba(m,X) \Bb(m,X)))

and that γ ∩ (Ba(m,X) \Bb(m,X)) consists of two geodesic segments that are sepa-

rated by at least 2b > R. The Rips complex of a geodesic segment is easily seen to be

contractible. For (3) we clearly have A∪B ⊂ PR(α∪γ). To prove the other inclusion

we need to show that for any edge in PR(α ∪ γ) both of its endpoints are either in A

or in B. This follows from the definition of A and B, as for any two vertices x and y

with x ∈ A \B and y ∈ B \A we have d(x, y) > a− b > R.

Now let α and γ be the continuous paths obtained from α and γ by connect-

ing consecutive vertices by edges. Let αγ be the 1–spherical cycle in P1(X(0)) ob-

tained by their concatenation. By our assumption the cycle αγ has a filling D in

PR(supp(αγ)) = PR(α ∪ γ) = A ∪ B and thus [αγ] = 0 in H1(A ∪ B). However, in

the Mayer-Vietoris sequence for the pair A,B the boundary map

H1(A ∪B)→ H0(A ∩B)

sends [αγ] to a non-zero element. This gives a contradiction and hence finishes the

proof of the proposition. �

Finally we are ready to prove the main result of this section.

Corollary 4.7. For a hyperbolic isometry h satisfying (3.1) and L(h) > 3, the graph

of axes (Y (h), dY (h)) is quasi-isometric to a simplicial tree.

Proof. We will show that (Y (h), dY (h)) satisfies the assumptions of Proposition 4.6.

First, we show that there exists an r > 0, such that any 1–spherical cycle in

P1(Y (h)(0)) is null-homotopic in Pr(Y (h)(0)). Let f : S1 → P1(Y (h)(0)) be such a

cycle. We will show that f is null-homotopic in P2(Y (h)(0)) by constructing a sim-

plicial map p : Min(h)→ P1(Y (h)(0)) and a 1–spherical cycle f̃ : S1 → Min(h), which

is null-homotopic in Min(h), and such that p ◦ f̃ is homotopic to f in P2(Y (h)(0)).

Let γ0, . . . , γm be vertices of the image of f appearing in this order (i.e. γi and γi+1

are adjacent and γ0 = γm). For every i ∈ {0, . . . ,m − 1} pick a vertex xi ∈ Min(h),

such that xi ∈ γi and xi 6= xj if i 6= j. Since γi and γi+1 are adjacent in Y (h), by

definition of Y (h) there exist vertices yi and zi+1 in Min(h) such that yi ∈ γi and
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zi+1 ∈ γi+1 and yi, and zi+1 are adjacent in Min(h) (this can always be done, even if

adjacency of γi and γi+1 in Y (h) follows from the fact that they intersect in Min(h)).

Let αi be the path defined as the concatenation of the segment [xi, yi] of γi, the edge

{yi, zi+1} and the segment [zi+1, xi+1] of γi+1. Define f̃ as the concatenation of paths

αi for all i ∈ {0, . . . ,m− 1} (see Figure 4).

Min(h) P1(Y (h)(0))

γ0

γ1

γi

p−→

γ0

γ1

y0

z1

ziyi

ym−1

z0 x0

xi

Figure 4. Cycles f̃ and f .

Define the map p : Min(h) → P1(Y (h)(0)) on vertices by x 7→ γx, where γx is an

h–invariant geodesic passing through x (such a geodesic in general is not unique, we

choose one for each vertex). We claim that p is a simplicial map. Indeed, if vertices x

and y form an edge in Min(h), then this edge connects geodesics γx and γy, hence by

definition of the graph Y (h) vertices γx and γy are adjacent. Since both complexes

are flag, the claim follows.

The complex Min(h) is systolic, hence in particular it is simply connected. Thus

the cycle f̃ is null-homotopic and so is p ◦ f̃ , since p is simplicial. It remains to prove

that cycles f and p ◦ f̃ are homotopic in P2(Y (h)(0)). To see that, notice that if v

is a vertex in the image of f̃ and v ∈ γi then its image p(v) is at distance at most 1

from γi.

We are left with showing that the graph of axes (Y (h), dY (h)) is S1FRC. We

proceed as follows. By Lemma 3.1 the minimal displacement set Min(h) is systolic,

hence S2FRC by Lemma 4.3. By Theorem 3.4 we have a quasi-isometry

c : (Y (h)× Z, dh)→ (Min(h), dX).

Therefore by Lemma 4.2 we conclude that the product (Y (h) × Z, dh) is S2FRC.

Finally, since Z is unbounded and since any 1–spherical cycle in Y (h)(0) is null-

homotopic in P2(Y (h)(0)), Lemma 4.4 implies that (Y (h), dY (h)) is S1FRC. �

For the sake of completeness we include the following well-known result.

Lemma 4.8. Let G be a finitely generated group which acts properly by isometries

on a quasi-tree (Q, dQ). Then G is virtually free.
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Proof. Fix a finite generating set S of G and let dS denote the associated word metric.

Since the action of G is proper, the orbit map

(G, dS)→ (Q, dQ)

is a coarse embedding. Composing it with a quasi-isometry

(Q, dQ)→ (T, dT )

gives a coarse embedding ofG into a tree T . LetX denote the image of this embedding

with the metric restricted from T . The subspace X is quasi-connected, thus an

appropriate thickening NR(X) is a connected subset of a tree, hence a tree. Clearly

NR(X) is quasi-isometric to X. The composition

G→ X → NR(X)

is a coarse equivalence of geodesic metric spaces, hence a quasi-isometry; see e.g.

[Roe03, Lemma 1.10]. This implies that G is δ–hyperbolic, and its Gromov boundary

is 0–dimensional. It follows that G is virtually free. �

5. Classifying spaces for systolic groups

5.1. Classifying space with virtually cyclic stabilisers. In this section we gather

results from Sections 2, 3 and 4 in order to prove Theorem 5.1.

Theorem 5.1. Let G be a group acting properly on a uniformly locally finite systolic

complex X of dimension d. Then there exists a model for EG of dimension

dimEG =

{
d+ 1 if d 6 3,

d if d > 4.

In the remainder of this section, let G be as in the statement of the above theorem.

The model for EG we construct is given by the cellular G–pushout of Theorem 2.2.

Therefore we need to construct a model for EG and for every commensurability class

of infinite virtually cyclic subgroups [H], models for ENG[H] and EG[H]NG[H]. The

first model was constructed by P. Przytycki [Prz09, Theorem 2.1], and later “refined”

by V. Chepoi and the first author.

Theorem 5.2. [CO15, Theorem E] The systolic complex X is a model for EG.

In order to construct models for the commensurators NG[H] we need a little prepa-

ration. First we show that the group G satisfies Condition (C) of Definition 2.5. Using

this, in every finitely generated subgroup K ⊆ NG[H] that contains H we find a suit-

able normal cyclic subgroup, and show that the quotient group acts properly on a

quasi-tree. This together with Propositions 2.4 and 2.7 allows us to construct the

desired models.
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Lemma 5.3. The group G satisfies condition (C) of Definition 2.5.

Proof. The proof is a slight modification of the one given in [Lüc09, proof of Theorem

1.1]). Take arbitrary g, h ∈ G such that |h| =∞, and assume there are k, l ∈ Z such

that g−1hkg = hl. We have to show that |k| = |l|. Since the action of G on X is

proper, the element h acts as a hyperbolic isometry and by Proposition 3.2.(ii) there

is an hn–invariant geodesic γ ∈ X for some n > 1. We get the claim by considering

the following sequence of equalities for the translation length:

|k|L(hn) = L(hnk) = L(g−1hnkg) = L(h
±nl) = |l|L(hn).

The first and the last of the equalities follow from the fact, that the translation

length of an element can be measured on an invariant geodesic, the second one is an

easy calculation and the third one is straightforward. �

Lemma 5.4. Let K be a finitely generated subgroup of G, and h ∈ K a hyperbolic

isometry satisfying (3.1), such that 〈h〉 is normal in K. Then the proper action of G

on X induces a proper action of K/〈h〉 on the graph of axes Y (h).

Proof. Since 〈h〉 is normal in K, the subcomplex Min(h) is invariant under K. Indeed,

if dX(x, hx) = L(h), then for any g ∈ K we have

dX(gx, hgx) = dX(x, g−1hgx) = dX(x, h
±1x) = L(h).

Since h satisfies (3.1), the subcomplex Min(h) is spanned by the union of h–

invariant geodesics. The group K acts by simplicial isometries, hence it maps h–

invariant geodesics to h–invariant geodesics. This gives an action of K on the set of

vertices of Y (h). This action extends to the action on the graph Y (h), because the

adjacency relation between vertices of Y (h) is preserved under simplicial isometries.

The subgroup 〈h〉 acts trivially, hence there is an induced action of the quotient group

K/〈h〉.
It is left to show that the latter action is proper. For any vertex γ ∈ Y (h) we show

that its stabiliser StabK/〈h〉(γ) is finite. Denote by π the quotient map K → K/〈h〉,
and consider the preimage π−1(StabK/〈h〉(γ)). Elements of π−1(StabK/〈h〉(γ)) are

precisely these isometries, which map geodesic γ to itself. Thus we can define a map

p : π−1(StabK/〈h〉(γ)) → D∞, where D∞ is the infinite dihedral group, interpreted

as the group of simplicial isometries of the geodesic line γ. We claim that the kernel

ker(p) is finite. Indeed, the kernel consists of elements which act trivially on the whole

geodesic γ, hence it is contained in the stabiliser StabG(x) of any vertex x ∈ γ. The

group StabG(x) is finite, since the action of G on X is proper. Therefore the group

π−1(StabK/〈h〉(γ)) is virtually cyclic, as it maps into a virtually cyclic group D∞ with
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finite kernel. The infinite cyclic group 〈h〉 is contained in π−1(StabK/〈h〉(γ)), hence

the quotient group π−1(StabK/〈h〉(γ))/〈h〉 = StabK/〈h〉(γ) is finite. �

Lemma 5.5. Let K be a finitely generated subgroup of NG[H] that contains H. Then

there is a short exact sequence

0 −→ 〈h〉 −→ K −→ K/〈h〉 −→ 0,

such that h ∈ H is of infinite order and the group K/〈h〉 is virtually free.

Proof. Choose an element of infinite order h̃ ∈ H satisfying the following two condi-

tions:

(i) the set Min(h̃) is the union of axes (see (3.1)),

(ii) the translation length L(h̃) > 3.

Both (i) and (ii) can be ensured by rising h̃ to a sufficiently large power. Indeed,

by Proposition 3.2.(ii) there exists n > 1 such that h̃n satisfies condition (i). If

L(h̃n) 6 3 then replace it with h̃4n. The element h̃4n satisfies both conditions (see

Proposition 3.2.(iv)). Notice that if an element satisfies conditions (i) and (ii) then,

by Proposition 3.2.(iv) so does any of its powers. Since G satisfies Condition (C), by

Lemma 2.6 there exists an integer k > 1 such that 〈h̃k〉 is normal in K.

Put h = h̃k. By Lemma 5.4 the group K/〈h〉 acts properly by isometries on the

graph of axes (Y (h), dY (h)), which is a quasi-tree by Corollary 4.7. Finally, Lemma 4.8

implies that the group K/〈h〉 is virtually free. �

Lemma 5.6. For every [H] ∈ [VCY \ FIN ] there exist

(i) a 2–dimensional model for EG[H]NG[H],

(ii) a 3–dimensional model for ENG[H].

Proof. By Proposition 2.4 it is enough to construct for every finitely generated sub-

group K ⊆ NG[H], a 1–dimensional model for EG[H]∩KK and a 2–dimensional model

for EK. Notice that every finitely generated subgroup K ′ of G is contained in the

finitely generated subgroup K that contains H (take K = 〈K ′, H〉). Therefore it is

enough to consider only finitely generated subgroups of G that contain H.

By Lemma 5.5 for any such K there is a short exact sequence

0 −→ 〈h〉 −→ K
π−→ K/〈h〉 −→ 0,

where K/〈h〉 is virtually free. The key observation is that the group K/〈h〉 acts prop-

erly on a simplicial tree [KPS73, Theorem 1] and therefore a tree is a 1–dimensional

model for EK/〈h〉. The claim follows then from Proposition 2.7 in the following way.

First notice that for every subgroup H ∈ G[H] the image π(H) is finite.
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The preimage under π of any finite subgroup F ∈ K/〈h〉 is a virtually cyclic group

containing 〈h〉. In this case the intersection π−1(F )∩〈h〉 is infinite, hence by definition

of G[H] the group π−1(F ) belongs to the family π−1(F ) ∩ G[H]. Thus the one point

space is a 0–dimensional model for EG[H]∩π−1(F )π
−1(F ). This proves (i).

To prove (ii) notice that since π−1(F ) is virtually cyclic, it acts on the real line with

finite stabilisers [JPL06, Proposition 4]. Therefore a line is a 1–dimensional model

for Eπ−1(F ). �

Proof of Theorem 5.1. By Corollary 2.3 choosing a model for EG, and for every [H] ∈
[VCY\FIN ] models for ENG[H] and EG[H]NG[H], gives a model for EG that satisfies

the following inequality

dimEG 6 max{dimEG, sup
[H]
{dimENG[H]}+ 1, sup

[H]
{dimEG[H]NG[H]}}.

If d > 4, then by Theorem 5.2 and Lemma 5.6 we have

dimEG 6 max{d, 4, 2} = d.

If d 6 3, we can take the model for EG as a model for ENG[H] instead of the one

provided by Lemma 5.6, and obtain

dimEG 6 max{d, d+ 1, 2} = d+ 1. �

5.2. Centralisers of cyclic subgroups. As a corollary of our results we give the de-

scription of centralisers of infinite order elements in systolic groups, i.e. groups acting

properly and cocompactly on systolic complexes, therefore confirming a conjecture of

D. Wise.

Proposition 5.7. Let G be a group that acts properly on a systolic complex X and

let h ∈ G be of infinite order. Suppose that K is a finitely generated subgroup of the

centraliser CG(h) and 〈h〉 ⊂ K. Then K is commensurable with Fn × Z where Fn

denotes the free group on n generators for some n > 0.

Proof. The group CG(h) is contained in the commensurator NG[〈h〉], hence so is K.

Thus by Lemma 5.5 there is a short exact sequence

0 −→ 〈hm〉 −→ K
p−→ V Fn −→ 0,

where V Fn is a virtually free group and m is some positive integer. Taking the free

subgroup Fn ⊂ V Fn gives rise to the following

0 −→ Z −→ p−1(Fn)
p−→ Fn −→ 0.

Since Fn is free, the above sequence splits. Therefore, as a central extension, p−1(Fn)

is of the form Z×Fn. This finishes the proof, as [K : p−1(Fn)] 6 [V Fn : Fn] <∞. �
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Corollary 5.8. [Wis03, Conjecture 11.6] Let G be a systolic group. Then for any

element h ∈ G of infinite order, the centraliser CG(h) is commensurable with Fn × Z
for some n > 0.

Proof. The group G is biautomatic by [JŚ06, Theorem E], and it follows that the

centraliser CG(h) is biautomatic as well [GS91a, Proposition 4.3]. In particular CG(h)

is finitely generated. Thus the claim follows from Proposition 5.7. �

5.3. Virtually abelian stabilisers. In this section we study the family of all virtu-

ally abelian subgroups of a group G. We show that if G is systolic, then there exists

a finite dimensional model for the classifying space for this family. This is due to a

very special structure of abelian subgroups of systolic groups, which is in turn a con-

sequence of the systolic Flat Torus Theorem. Our construction also carries through

for certain CAT(0) groups.

Given a group G, let VAB denote the family of all virtually abelian subgroups of G

and let VABfg denote the family of all finitely generated virtually abelian subgroups of

G. Every subgroup in the family VABfg contains a finite-index free abelian subgroup

of rank n > 0, therefore if we denote by VABn the family of all virtually abelian

subgroups of rank at most n, we obtain the following filtration of the family VABfg:

VAB0 ⊂ VAB1 ⊂ VAB2 ⊂ . . .

Notice that VAB0 = FIN and VAB1 = VCY. Moreover, if G is a systolic group

then by Theorem 5.12.(1) it does not contain free abelian groups of rank higher than

2, and therefore the above filtration reduces to

FIN ⊂ VCY ⊂ VAB2 = VABfg.

Moreover, in Proposition 5.14 we show that every virtually abelian subgroup of a

systolic group is in fact finitely generated, and therefore for systolic groups we have

VABfg = VAB. The following is the main theorem of this section.

Theorem 5.9. Let G be a group acting properly and cocompactly on a d–dimensional

systolic complex. Then there exists a model for EVABG of dimension max{4, d}.

The construction which we use is a pushout construction of [LW12] (cf. Section 2.1)

applied to the inclusion of families VCY ⊂ VAB. More precisely we want to apply

[LW12, Corollary 2.8] which requires the collection of subgroups VAB \ VCY of G to

satisfy the following two conditions:

(NM1): any H ∈ VAB \ VCY is contained in a unique maximal M ∈ VAB \ VCY,

(NM2): for any maximal subgroup M of VAB \ VCY we have NG(M) = M .
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These conditions correspond to conditions MVCY⊂VAB and NMVCY⊂VAB of [LW12,

Notation 2.7]. We will keep our notation for the sake of clarity.

Lemma 5.10. Let G be a systolic group. Then G satisfies conditions (NM1) and

(NM2).

Assuming the lemma, we proceed with the construction of the desired model.

Proof of Theorem 5.9. LetM denote the complete set of representatives of conjugacy

classes in G of subgroups which are maximal in VAB \VCY. Since G satisfies (NM1)

and (NM2), it follows from [LW12, Corollary 2.8] that a model for EVABG is given

by the cellular G–pushout

∐
M∈MG×M EM

i−−−−→ EG
y∐

M∈M pM

y
∐
M∈MG/M −−−−→ EVABG,

where i is an inclusion of CW–complexes and pM is the canonical projection

G×M EM → G×M ∗ ∼= G/M.

By Theorem 5.1 there exists a d–dimensional model for EG as long as d > 4. It

follows from [LW12, Theorem 5.13.(iii)] that there exists a 3–dimensional model for

EM (since M contains a finite-index subgroup isomorphic to Z2) and it is in fact

a model of the lowest possible dimension. The existence of the map i follows from

the universal property of the classifying space EG. To ensure that i is injective, we

replace it with an inclusion into the mapping cylinder (cf. Corollary 2.3). Finally,

we have that G/M has dimension 0. Therefore applying the above pushout to these

models gives us a model for EVABG of dimension max{0, 4, d}. �

It remains to prove Lemma 5.10. The main tool that we use in the proof is the

systolic Flat Torus Theorem of T. Elsner. Before stating the theorem we need to

recall some terminology. For details we refer the reader to [Els09a].

Definition 5.11. Let E2
∆ denote the equilaterally triangulated Euclidean plane. A

flat in a systolic complex X is a simplicial map F : E2
∆ → X which is an isometric

embedding. We will identify F with its image and treat it as a subcomplex of X.

We say that two flats are equivalent if they are at finite Hausdorff distance. This

gives an equivalence relation on the set of all flats which we call a flat equivalence.

Let Th(F ) denote the subcomplex of X spanned by all the flats that are equivalent

to F . We call Th(F ) the thickening of F . Any two equivalent flats are in fact at
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Hausdorff distance 1 [Els09a, Theorem 5.4]. Therefore for any F ′ that is equivalent

to F , the inclusion F ′ ↪→ Th(F ) is a quasi-isometry.

If H ⊂ G is a free abelian subgroup of a systolic group G we define minimal

displacement set of H as follows

Min(H) =
⋂

h∈H\{e}
Min(h).

Theorem 5.12 (Flat Torus Theorem). [Els09a, Theorem 6.1] Let G be a systolic

group and let H ⊂ G be a free abelian subgroup of rank at least 2. Then:

(1) the group H is isomorphic to Z2,

(2) there exists an H–invariant flat F , unique up to flat equivalence,

(3) we have Min(H) = Th(F ) for an H–invariant flat F .

Proof of Lemma 5.10. (NM1) First we show that any rank 2 virtually abelian sub-

group H ⊂ G is contained in a maximal one. This is equivalent to the statement that

any ascending chain of rank 2 virtually abelian subgroups H1 ⊂ H2 ⊂ . . . stabilises,

i.e. we have Hi = Hi+1 for i sufficiently large.

Suppose H1 ⊂ H2 ⊂ . . . is such a chain and let A be a finite-index subgroup of

H1 isomorphic to Z2. Since for every i the group Hi contains a finite-index subgroup

isomorphic to Z2, it follows that the index of A in Hi is finite. We will show that this

index is bounded from above by a constant which is independent of i.

By [Els09a, Corollary 6.2] the group Hi preserves the thickening of an Ai–invariant

flat Fi where Ai is a certain finite-index subgroup of Hi. Since A and Ai are finite-

index subgroups of Hi, so is their intersection A∩Ai. By Theorem 5.12.(2) there exists

an A–invariant flat F . Note that A∩Ai ∼= Z2 and both F and Fi are A∩Ai–invariant.

Therefore, again by Theorem 5.12.(2), we have Th(Fi) = Th(F ). Therefore any Hi

preserves Th(F ).

Now, since G acts properly and cocompactly, for any integer R > 0 there exists

an integer NR such that for every vertex v ∈ X the cardinality of the set {g ∈ G |
d(gv, v) 6 R} is at most NR. Since A acts cocompactly on F and since Th(F ) is

quasi-isometric to F , there is an integer R > 0 such that for any vertex w ∈ F , the

orbit of a combinatorial ball BR(w,X) under A covers the thickening Th(F ). Fix a

vertex v ∈ F . For any h ∈ Hi there exists a ∈ A such that d(v, ahv) 6 R. It follows

that the index of A in Hi is bounded by NR.

Now we prove the uniqueness. Assume that H1 and H2 are maximal subgroups

in VAB \ VCY that contain H. By [Els09a, Corollary 6.2.(2)] there are flats F1 and

F2 such that H1 = StabG(Th(F1)) and H2 = StabG(Th(F2)). By [Els09a, Corollary

6.2.(1)] there exists a flat F , unique up to flat equivalence, such that H preserves
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Th(F ). Since H is contained in both H1 and H2, the thickenings Th(F1) and Th(F2)

are both H–invariant. Hence we have Th(F1) = Th(F2) = Th(F ) and therefore

H1 = H2.

(NM2) Let H ∈ VAB \ VCY be a maximal subgroup and let A′ be a finite-index

subgroup of H that is isomorphic to Z2. Define the subgroup A ⊂ H as the inter-

section of all subgroups of H of index [H : A′]. Since H is finitely generated, there

is finitely many of subgroups of this kind. Therefore A ⊂ H is a rank 2 free abelian

subgroup of finite index, and by construction A is a characteristic subgroup of H.

It follows that the group NG(H) normalises A, and hence it preserves the subcomplex

Min(A).

The action of NG(H) on Min(A) is proper and therefore the induced action of

NG(H)/A on Min(A)/A is proper. By Theorem 5.12.(3) we have Min(A) = Th(F )

where F is an A–invariant flat. This implies that the action of A on Min(A) is

cocompact. Since the quotientNG(H)/A acts properly on a compact space Min(A)/A,

it follows that NG(H)/A is a finite group. Therefore NG(H) is a rank 2 virtually

abelian group and hence we have NG(H) = H by the maximality of H. �

The methods used above apply also to a certain class of CAT(0) groups, namely the

groups acting geometrically on CAT(0) spaces that do not contain flats of dimension

greater than 2. For details about CAT(0) spaces and groups we refer the reader to

[BH99].

Corollary 5.13. Let G be a group acting properly and cocompactly by isometries on

a complete CAT(0) space X of topological dimension d > 0. Furthermore, assume

that for n > 2 there is no isometric embedding En → X where En is the Euclidean

space. Then there exists a model for EVABG of dimension max{4, d+ 1}.

Among the CAT(0) spaces satisfying the assumptions of the above corollary there

are CAT(0) spaces of dimension 2, e.g. CAT(0) square complexes, and rank–2 sym-

metric spaces. In particular, the corollary applies to lattices in rank–2 symmetric

spaces, thus answering a special case of a question by J.-F. Lafont [Cha08, Problem

46.7]. On the other hand, our approach fails if X contains flats of dimension bigger

than 2. The construction of models for EVABG in this case would require techniques

significantly different from ours.

Proof of Corollary 5.13. By [Lüc09] there exists a model for EG of dimension at most

d+ 1. Since X does not contain isometrically embedded En for n > 2 it follows from

the Flat Torus Theorem [BH99, Theorem II.7.1] that G does not contain free abelian

subgroups of rank bigger than 2. This together with the fact that every virtually
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abelian subgroup of G is finitely generated [BH99, Corollary II.7.6] implies that the

family VAB reduces to VAB2. It remains to show that conditions (NM1) and (NM2)

are satisfied. The proof of this is analogous to the proof of Lemma 5.10. The “ex-

istence” part of (NM1) follows from [BH99, Theorem II.7.5]. Both the “uniqueness”

part of (NM1) and condition (NM2) follow from [BH99, Corollary II.7.2]. �

We finish this section with the aforementioned proposition.

Proposition 5.14. Let G be a group acting properly and cocompactly on a finite

dimensional systolic complex X. Then every virtually abelian subgroup of G is finitely

generated.

Proof. It is enough to prove that every abelian subgroup A of G is finitely generated.

Since G acts properly and cocompactly on X, there is a uniform bound on the order

of finite subgroups of G. Therefore the torsion subgroup of A must be finitely gen-

erated. Now let A′ ⊂ A be the torsion-free part and let rk(A′) denote its rank. By

Theorem 5.12.(1) we have rk(A′) 6 2.

If rk(A′) = 1 then we claim that A′ ∼= Z. To show this, by the classification

of torsion-free abelian groups of rank 1, it is enough to show that for any a ∈ A′

there are only finitely many positive integers n, such that there exists b ∈ A′ with

a = nb. Suppose we have a = nb for some b and n. Since both a and b are hyperbolic

isometries of X, we can compare their translation lengths. If b has an axis, then it is

straightforward to see that L(nb) = n·L(b). If b has no axis, then by [Els09b, Theorem

1.3] it has a “thick axis” of thickness k 6 dimX, and using [Els09b, Fact 3.7] one

easily checks that L(nb) >
⌊
n
k

⌋
· L(b). Therefore, in both cases the following holds:

L(a) = L(nb) >
⌊n
k

⌋
· L(b) >

⌊n
k

⌋
. (5.1)

Since k 6 dimX, for a fixed element a there are only finitely many positive integers

n satisfying (5.1). Therefore we get that A′ ∼= Z.

If rk(A′) = 2 then proceeding as in the proof of Lemma 5.10.(NM2) we obtain

that A′ acts properly and cocompactly on a thickening of an A′′–invariant flat where

A′′ ⊂ A′ is a subgroup isomorphic to Z2. Therefore A′/A′′ is finite and thus A′ is

finitely generated. �

Remark 5.15. All results in this section hold under the following weakened assump-

tions. Instead of a cocompact action we assume that X is uniformly locally finite

(which is automatically true if the action is cocompact) and that there is a uniform

bound on the order of finite subgroups of G.
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In the CAT(0) case, instead of a cocompact action we assume that X is proper,

the action is via semisimple isometries and the set of translation lengths of hyperbolic

elements is discrete at 0.

6. Graphical small cancellation complexes

In this section we begin the study of graphical small cancellation complexes. Our

goal is to show that for any group G acting properly on graphical small cancellation

complex, there is a (canonical) systolic complex on which G acts properly, and use

the latter to construct low-dimensional models for various classifying spaces for G.

This requires substantial preparations, including notation and terminology.

We begin with introducing combinatorial and graphical 2–complexes. Then we

state and prove a version of the so-called Lyndon-van Kampen Lemma, and use it to

establish certain combinatorial properties of graphical small cancellation complexes.

In Section 7 we define the dual complex of a graphical small cancellation complex and

show that these two are G–homotopy equivalent, where G is any group that acts on a

graphical small cancellation complex. Finally we give the construction of classifying

spaces for families FIN ,VCY and VAB for graphical small cancellation groups.

6.1. Combinatorial 2–complexes. The purpose of this section is to give the basic

definitions and to establish terminology regarding combinatorial 2–complexes. In our

exposition we mainly follow [MW02].

A map X → Y of CW–complexes is combinatorial if its restriction to every open

cell of X is a homeomorphism onto an open cell of Y . A CW–complex is combinatorial

if the attaching map of every n–cell is combinatorial for a suitable subdivision of the

sphere Sn−1. An immersion is a combinatorial map that is locally injective.

Unless otherwise stated, all combinatorial CW–complexes that we consider are 2–

dimensional and all the attaching maps are immersions. We will refer to them simply

as “2–complexes”. Consequently all the maps between 2–complexes are assumed to

be combinatorial.

Notice that according to the above definition, a graph may contain loops and

multiple edges, as opposed to graphs considered in Sections 2–5.

Example 6.1 (Presentation complex). Let 〈S|R〉 be a group presentation. The

presentation complex is a 2–complex that has a single 0–cell, a directed labeled 1–cell

for each generator s ∈ S, and a 2–cell attached along the closed combinatorial path

corresponding to each relator r ∈ R.
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A polygon is a 2–disc with the cell structure that consists of n vertices, n edges

and a single 2–cell. For any 2–cell C of 2–complex X there exists a map R → X,

where R is a polygon and the attaching map for C factors as S1 → ∂R→ X. In the

remainder of this section by a cell we will mean a map R→ X where R is a polygon.

An open cell is the image in X of the single 2–cell of R.

A path in X is a combinatorial map P → X where P is either a subdivision of the

interval or a single vertex. If P is a vertex, we call path P → X a trivial path. If the

target space is clear from the context, we will refer to the path P → X as “the path

P”. The interior of the path is the path minus its endpoints. Let P−1 denote the

path P traversed in the opposite direction. Given paths P1 → X and P2 → X such

that the terminal point of P1 is equal to the initial point of P2, their concatenation

is an obvious path P1P2 → X whose domain is the union of P1 and P2 along these

points. A cycle is a map C → X, where C is a subdivision of the circle S1. The cycle

C → X is non-trivial if its image is not a tree. Therefore a homotopically non-trivial

cycle is non-trivial, but the converse is not necessarily true. A path or cycle is simple

if it is injective on vertices. Notice that a simple cycle (of length at least 3) is non-

trivial. A length of a path P or a cycle C denoted by |P | or |C| respectively is the

number of 1–cells in the domain. A subpath Q → X of a path P → X (or a cycle)

is a path that factors as Q → P → X such that Q → P is an injective map. Notice

that the length of a subpath does not exceed the length of the path.

A disc diagram is a contractible finite 2–complex D with a specified embedding into

the real plane. We call D nonsingular if it is homeomorphic to the 2–disc. Otherwise

D is called singular. The area of D is the number of 2–cells. The boundary cycle

∂D is the attaching map of the 2–cell that contains the point {∞}, when we regard

S2 = R2 ∪ {∞}. A boundary path is any path P → D that factors as P → ∂D → D.

An interior path is a path such that none of its vertices, except for possibly endpoints,

lie on the boundary of D.

If X is a 2–complex a disc diagram in X is a map D → X.

The following definition is crucial in small cancellation theory.

Definition 6.2. A piece in a disc diagram D is a path P → D for which there exist

two different lifts to 2–cells of D, i.e. there is a commutative diagram

P −−−−→ Riy
y

Rj −−−−→ D
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where Ri → D and Rj → D are 2–cells and the maps P → Ri and P → Rj are

different (although it might be that Ri = Rj).

Now we turn to graphical complexes.

Definition 6.3. Let Γ → Θ be an immersion of graphs and assume that Θ is con-

nected. For convenience we will write Γ as the union of its connected components

Γ =
⊔

i∈I
Γi,

and refer to the connected graphs Γi as relators.

A thickened graphical complex X is a 2–complex with 1–skeleton Θ and a 2–cell

attached along every immersed cycle in Γ, i.e. if a cycle C → Γ is immersed, then in

X there is a 2–cell attached along the composition C → Γ→ Θ.

The term “thickened” comes from the fact, that for any connected component Γi,

we have a “thick cell” Th(Γi) which is formed by gluing 2–cells along all immersed

cycles in Γi. As long as Γi is not a tree, there is infinitely many 2–cells in Th(Γi). This

definition may seem odd, however, it allows us to avoid certain technical complications

in the proof of a version of the Lyndon-van Kampen Lemma in Section 6.2.

Definition 6.4. Let X be a thickened graphical complex. A piece in X is a path

P → X for which there exist two different lifts to Γ, i.e. there is a commutative

diagram
P −−−−→ Γiy

y
Γj −−−−→ X

such that the maps P → Γi and P → Γj are different.

6.2. The Lyndon-van Kampen Lemma.

Definition 6.5. Let X be a thickened graphical complex. A disc diagram D → X

is reduced if for every piece P → D the composition P → D → X is a piece in X.

Observe that the definitions of a piece in D and in X are different (cf. Definition 6.2

and Definition 6.4). We use the same name as it will always be clear out of context

what piece we consider.

Lemma 6.6 (Lyndon-van Kampen Lemma). Let X be a thickened graphical complex

and let C → X be a closed homotopically trivial path. Then

(1) there exists a (possibly singular) disc diagram D → X such that the path C

factors as C → ∂D → X, and C → ∂D is an isomorphism,
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(2) if a diagram D → X is not reduced, then there exists a diagram D′ → X

with smaller area and the same boundary cycle in the sense that there is a

commutative diagram:

∂D′ ∂D

X,

∼=

(3) any minimal area diagram D → X such that C factors as C
∼=−→ ∂D → X is

reduced.

Proof. (1) Since C is null-homotopic, there exists a disc diagram D → X such that

the map C → X factors as C → D → X and C → D is the boundary cycle of D

(see [ECH+92, Section 2.2] for a proof).

(2) Since D → X is not reduced, there is a piece P → D such that P → D → X

is not a piece. Let R1 → D and R2 → D be the 2–cells such that P factors through

both of them.

We will first treat the case when R1 = R2. Let p1, p2 : P → R1 denote the two

different maps. Since P → D → X is not a piece, the map ∂R1/(p1 ∼ p2)→ X lifts

to Γ (the graph ∂R1/(p1 ∼ p2) is the quotient of the boundary of R1, obtained by

identifying the images p1(P ) and p2(P ) pointwise). Assume that P is maximal, i.e. it

is not a proper subpath of a piece P ′ → D. The attaching map for R1 can be written

as the concatenation PS1P
−1S2 → D, such that S1 and S2 are closed paths, see

Figure 5. Either S1 or S2 bounds a (possibly singular) subdiagram D′ of D, assume

that it is S1. Remove from D the open cell R1 together with the path P (retaining

its initial vertex) and the subdiagram D′ bounded by S1. Call the resulting complex

D′′ (formally D′′ is not a diagram as it is not contractible). Observe that D′′ has a

hole, whose boundary cycle is precisely S2.

The lift S2 → Γ (given by S2 → ∂R1/(p1 ∼ p2) → Γ) is immersed everywhere,

except for possibly at its initial vertex. Write S2 → D as Q1SQ2 → D where Q1 and

Q2 are the maximal paths such that lifts Q1 → Γ and Q−1
2 → Γ are the same.

Now consider the quotient D̃ of D′′ obtained by identifying the domains of Q1 and

Q2. The boundary cycle of a hole is now equal to S, and by construction S lifts to an

immersed cycle S → Γ. Therefore we can glue to D̃ a 2–cell R̃ determined by S → Γ.

The area of the resulting diagram D̃ ∪ R̃ is smaller than the one of D.

Now suppose that P → D factors through two distinct cells R1 → D and R2 → D.

Assume that P is maximal and consider the lift ∂R1 ∪P ∂R2 → Γ. Let S1 → D and

S2 → D be paths such that the concatenations PS1 → D and PS2 → D are attaching

maps for R1 and R2 respectively. Consider the lift S1S
−1
2 → Γ of the closed path
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S2S2

R1P

S1 D′
−→

S

Q2 Q1

∼=−→

S

Q2Q1

−→

S

Q−1
2 = Q1

R̃

Figure 5. Replacing the open cell R1 and the subdiagram D′ ∪ IntP

with the 2–cell determined by the cycle S.

S1S
−1
2 → D. If the paths S1 → Γ and S2 → Γ are equal, then we cut out from D

open cells R1 and R2 together with the interior of the image of the path P and we

“sew up” the resulting hole. For a proof of this see [MW02, Lemma 2.16].

We may therefore assume that S1 → Γ and S2 → Γ are not equal. Write S1 → Γ

as the concatenation J1S
′
1T1 → Γ and S2 → Γ as J2S

′
2T2 → Γ, such that J1 = J2 and

T1 = T2 and both pairs are chosen to be maximal among paths having this property,

see Figure 6. The subpaths S′1 and S′2 cannot be trivial since S1 is not equal to S2,

and therefore the concatenation S′1S
′
2
−1 → Γ is a closed immersed path.

Remove from D open cells R1 and R2 together with the interior of the image of

the path P , and consider the quotient D′ of D obtained by identifying domains of

paths J1 and J2 and of paths T1 and T2 respectively. The resulting diagram D′ has

a hole, whose boundary cycle lifts to the closed immersed path S′1S
′
2
−1 → Γ. Hence

we can attach the 2–cell R̃ along this path, thus removing the hole. This establishes

(2) as the area of the resulting diagram is smaller than the area of D.

J1

T1

R1

S′1 −→ −→

T2

J2

R2

S′2P

J1

T1

S′1

T2

J2

S′2
R̃

J1 = J2

T1 = T2

S′1 S′2

Figure 6. Replacement procedure.

(3) Let D → X be a minimal area diagram and suppose that it is not reduced.

Then applying (2) gives a diagram of lower area and with the same boundary cycle,

which contradicts the minimality of D. �
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6.3. Properties of graphical small cancellation complexes. In this section we

define C(p) and C ′(λ) small cancellation conditions and prove basic results about

relators in graphical small cancellation complexes.

Definition 6.7. Let X be a thickened graphical complex, and let p be a positive

integer and λ a positive real number. We say that X satisfies the

• C(p) small cancellation condition if no non-trivial cycle C → X that factors

as C → Γi → X is the concatenation of less than p pieces.

• C ′(λ) small cancellation condition if for every piece P → X that is a subpath

of a simple cycle C → Γi → X we have |P | < λ · |C|.
We abbreviate the C(p) small cancellation condition to the “C(p) condition” and call

X a “C(p) thickened graphical complex” (we use the same abbreviations in the C ′(λ)

case). Mostly we will be concerned with the C(p) condition for p > 6. Notice that

if p > q then the C(p) condition implies the C(q) condition. Therefore some results

will be stated and proven in the C(6) case only.

If D is a disc diagram we define small cancellation conditions in a very similar way,

except that a piece is understood in the sense of Definition 6.2. For clarity we include

the definition.

Definition 6.8. Let D be a disc diagram. We say that D satisfies the

• C(p) small cancellation condition if no boundary cycle ∂R of a 2–cell R is the

concatenation of less than p pieces.

• C ′(λ) small condition if for every piece P that factors as P → ∂R → D for

some 2–cell R, we have |P | < λ · |∂R|.

One can show that the C ′(λ) condition implies the C(
⌊

1
λ

⌋
+ 1) condition. This

follows from the fact that it is enough to check the C(p) condition on simple cycles.

Proposition 6.9. If X is a C(p) (respectively C ′(λ)) thickened graphical complex

and D → X is a reduced disc diagram, then D is C(p) (respectively C ′(λ)) diagram.

Proof. The assertion follows immediately from the definitions of a reduced map and

a piece. �

The next lemma is the crucial tool in small cancellation theory. It describes the

possible shapes of the C(6) disc diagrams. Before stating the lemma we need the

following definition.

Let D denote a disc diagram. A spur is an edge of a boundary path of D that

has a vertex of valence 1. In this case the boundary path is not immersed. Let i > 0

be an integer. A 2–cell R → D is called an i–shell if its boundary cycle ∂R is the
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concatenation P1 · · ·PiQ, such that every Pj is a simple interior path (and hence a

piece), and Q is a simple boundary path of D. We call Q the outer path of ∂R.

E

E′

RR′ D

Figure 7. Diagram D with spurs E and E′, a 0–shell R′ and a 3–shell R.

Theorem 6.10 (Greendlinger’s Lemma). [MW02, Theorem 9.4] Let D be a C(6)

disc diagram. Then one of the following holds:

(1) D is a single 0–cell or it has exactly one 2–cell,

(2) D has at least two spurs or/and i–shells with i 6 3.

The statement of Theorem 6.10 is actually weaker than the quoted Theorem 9.4

of [MW02], which distinguishes two further subcases of case (2). We present the

simplified statement for the sake of clarity, as it is sufficient for our purposes.

Lemma 6.11. Let X be a simply connected C(6) thickened graphical complex. Then

the following hold:

(i) For every relator Γi, the map Γi → X is an embedding.

(ii) The intersection of (the images of) any two relators is either empty or it is a

finite tree.

(iii) If three relators pairwise intersect then they triply intersect and the intersec-

tion is a finite tree.

Proof. (i) Assume conversely that Γi → X is not an embedding. Therefore there

exist two distinct vertices of Γi which are mapped to a single vertex of X. Let

P → Γi be a path joining these vertices. We can assume that P is an immersion. By

construction P is non-closed and the projection P → Γi → X is closed. Since X is

simply connected, the path P → X is homotopically trivial. By Lemma 6.6.(1) there

exists a disc diagram D → X with the boundary cycle P → X. Assume that D is

chosen such that the area of D is minimal among all examples of paths P of this type.

Hence by Lemma 6.6.(3) diagram D is reduced, and therefore by Proposition 6.9 it

satisfies C(6) condition.

Thus one of the assertions of Theorem 6.10 applies to D. Clearly D cannot be

trivial as in that case the path P would be trivial. It also does not contain spurs
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since P → X is an immersion. Thus it consists of either a single 2–cell or it contains

at least one i–shell R with i 6 3 and outer path Q, such that the endpoint of P → X

is not contained in the interior of Q.

In the case when D consists of a single 2–cell, its boundary path P → D → X lifts

to a closed path in some Γj . This lift cannot be equal to the path P → Γi we started

with, since by the assumption P → Γi is not a closed path. Hence P → X is a piece

and since it is a non-trivial closed path, this violates the C(6) hypothesis.

Now suppose R is an i–shell with i 6 3 and the interior of its outer path Q → X

avoids the endpoint of P → X, see Figure 8. We claim that Q → X is a piece. If it

is not the case, then the lift Q→ Γi determined by the path P → Γi extends to a lift

∂R→ Γi.

P
QR

Γi

D

Figure 8. Diagram D with an i–shell R.

Thus we can remove from D the open cell R together with the interior of the path

Q, and obtain a lower area diagram D′ whose boundary path P ′ lifts to a non-closed

path in Γi. If the resulting path P ′ → Γi is not immersed, we can fold the boundary

of D′ until all back-tracks are removed. The obtained diagram D′ contradicts the

minimality of D and hence proves the claim.

Given that Q→ X is a piece, observe that the cycle ∂R→ X is the concatenation

of at most 4 pieces as R → D is an i-shell with i 6 3. This contradicts the C(6)

hypothesis and hence establishes (i).

(ii) Given a relator Γi recall that a thick cell Th(Γi) is a 2–complex obtained by

gluing 2–cells along all immersed cycles in Γi. We shall argue by contradiction. Let

Γ1 and Γ2 be two relators that meet along maximal disjoint connected subgraphs U

and V and let

C = Th(Γ1) ∪UtV Th(Γ2)

be a 2–complex obtained by gluing Th(Γ1) and Th(Γ2) along U and V . Note that

there is an immersion C → X and consider the closed immersed path P → C → X

such that P → C is a generator for the fundamental group π1(C) ∼= Z. Let D → X be

a disc diagram whose boundary cycle is P and assume that the area of D is minimal
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among all examples of this type. Hence D is a non-trivial diagram without spurs and

the map D → X is reduced. By Theorem 6.10 there is an i–shell R in D with i 6 3

(if D consists of a single 2–cell we treat this cell as a 0–shell). Let Q denote the outer

path of R in D.

We claim that any edge of Q is a piece in X. To show this assume the contrary,

that there is an edge E → Q that is not a piece. Without loss of generality we can

assume that the image of E in C (determined by the path P → C) is contained in

the relator Γ1. Since E → X is not a piece, there exists a lift of the boundary ∂R

to Γi extending the lift E → Γ1. Therefore as in the case (i) above, we can remove

from D the open cell R together with the interior Int(Q) and obtain a lower area

diagram D′ whose boundary path P ′ is obtained from P by pushing the subpath Q

through R. The paths P and P ′ are homotopic in C and therefore P ′ is a generator

for π1(C). Thus D′ is a lower area counterexample which contradicts the minimality

of D and hence proves the claim (if D consists of a single 2–cell R, then Q is equal to

the entire boundary ∂R and therefore pushing Q through R collapses D to a trivial

cycle, hence contradicting the fact that U and V are disjoint).

Hence the path Q → X is the concatenation of n pieces, where n is a positive

integer. Since R is an i–shell with i 6 3, the C(6) hypothesis implies that n > 3. The

only situation when this can happen (up to changing roles of Γ1 and Γ2) is when the

path Q → X travels in Γ1 then passes to Γ2 through the subgraph U and it comes

back to Γ1 through the subgraph V . More precisely the path Q has a subpath that

is the concatenation U ′WV ′ where U ′ and V ′ are paths in Γ1 which are not entirely

contained in Γ1 ∩ Γ2 and W is path in Γ2 such that its initial vertex belongs to the

subgraph U and its terminal vertex belongs to the subgraph V , see Figure 9.

U

V

P

U ′

V ′

W

Γ2Γ1

D R

Figure 9. The outer path of the i–shell R is the concatenation U ′WV ′.

Notice that if both endpoints of W belong to one component of Γ1∩Γ2, say U (but

W is not entirely contained in U), then we have a contradiction, as taking any path
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W ′ → U connecting endpoints of W gives a cycle WW ′ → X that is a concatenation

of 2 pieces.

Hence assume that we are in the situation shown in Figure 9. We have two cases

to consider:

a) The path U ′WV ′ → X is not closed. Let Γ3 denote the relator containing a

lift of the cycle ∂R and let U and V be the maximal connected components

of Γ1 ∩ Γ3 that contain paths U ′ and V ′ respectively. We claim that the

intersection U ∩ V is empty. Assume it is not the case and pick a path

T → U ∪ V ⊂ Γ1 ∩ Γ3 joining the endpoint of V ′ to the origin of U ′. The

concatenation U ′WV ′T → X is then a closed path that is the concatenation

of two pieces: W (lifts to Γ2 and Γ3) and V ′TU ′ (lifts to Γ1 and Γ3). This

is a contradiction provided that the cycle U ′WV ′T → X is non-trivial, i.e.

its image is not a tree. However, if it was trivial then T would be equal to

(U ′WV ′)−1 and hence there would be a path in Γ1 ∩ Γ2 joining subgraphs U

and V , contradicting the assumption that U and V are disjoint. Consequently,

the intersection U ∩ V is empty.

Thus we can replace C with C ′ = Th(Γ1) ∪UtV Th(Γ3) and D with D′ =

D \ (Int(R) ∪ Int(Q)) and the path P with the path P ′ obtained by pushing

the subpath Q through R. After removing possible back-tracks (in order for

P ′ to be an immersion), we get a lower area counterexample.

b) The path U ′WV ′ → X is closed. Let Γ3 be the same as in case a) above.

Then we get a contradiction as U ′WV ′ → X is the concatenation of two

pieces: V ′U ′ and W . Notice that the terminal vertex of V ′ and the initial

vertex of U ′ lift to the same vertex of Γ3 for otherwise Γ3 → X is not an

embedding what contradicts (i).

This shows that the intersection Γ1∩Γ2 is connected. Notice that there is no simple

cycles in Γ1 ∩ Γ2 as any simple cycle C → Γ1 ∩ Γ2 would be a piece itself. Therefore

Γ1 ∩ Γ2 is a tree.

(iii) Let Γ1, Γ2 and Γ3 be relators that pairwise intersect but do not triply intersect,

and let U12, U13 and U23 be respective maximal connected subgraphs along which they

intersect. Notice that the Uij are disjoint from each other as otherwise there would

be a triple intersection. Let C denote the union of Th(Γ1), Th(Γ2) and Th(Γ3) along

subgraphs U12, U13 and U23 and let P → C → X be an immersed path such that

P → C is a generator for π1(C). Let D → X be a disc diagram for P and suppose

that the area of D is minimal among all examples as above. Thus D → X is reduced.

Proceeding as in the proof of (ii) we conclude that D contains an i–shell R with i 6 3,

with outer path Q, such that every edge of Q is a piece. Since R is an i–shell with
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i 6 3, the C(6) hypothesis implies that Q has a subpath V1V2V3 such that V1, V2 and

V3 are non-trivial paths in Γ1, Γ2 and Γ3 respectively, neither of them being contained

entirely in an appropriate double intersection, and such that the origin of V2 belongs

to U12 and the endpoint of V2 belongs to U23, see Figure 10.

P

V3V1

V2

U12 U23

U13

Γ3

Γ1

Γ2

D

R

Figure 10. The outer path of the i–shell R is the concatenation V1V2V3.

Similarly as in (ii) we consider two cases:

a) The path V1V2V3 → X is not closed. Let Γ4 denote the relator containing

a lift of the cycle ∂R. We claim that the triple intersection Γ1 ∩ Γ3 ∩ Γ4

is empty. Assume conversely that there exists a vertex v ∈ Γ1 ∩ Γ3 ∩ Γ4.

Choose paths T1 → Γ1 ∩ Γ4 → X joining v to the initial vertex of V1 and

T2 → Γ3 ∩ Γ4 → X joining the terminal vertex of V3 to v. These paths

exist because by (ii) the intersections Γ1 ∩ Γ4 and Γ3 ∩ Γ4 are connected.

The concatenation T1V1V2V3T2 → X is a non-trivial closed path that is the

concatenation of three pieces: T1V1, V2 and V3T2. This contradicts the C(6)

hypothesis and hence proves the claim.

Now let V1 be the connected component of Γ1 ∩ Γ4 that contains path V1

and let V3 be the connected component of Γ3 ∩Γ4 that contains path V3. We

replace C with C ′ which is the union of Th(Γ1), Th(Γ3) and Th(Γ4) along

the subgraphs U13, V1 and V3. We replace D with D′ = D \ (Int(R)∪ Int(Q))

and the path P with the path P ′ obtained by pushing the subpath Q through

R. This gives a lower area counterexample.

b) The path V1V2V3 → X is closed. Then it is the concatenation of 3 pieces,

hence we get a contradiction with the C(6) hypothesis.

It remains to show that the intersection Γ1 ∩ Γ2 ∩ Γ3 is a tree. First we show that

it is connected. Assume the converse and let u and v be vertices lying in different

connected components of Γ1 ∩ Γ2 ∩ Γ3. Since double intersections are connected we

can pick paths P → Γ1∩Γ2 and Q→ Γ1∩Γ3 both joining u to v. The concatenation
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PQ−1 is then a closed path which is non-trivial since u and v lie in different connected

components of Γ1 ∩ Γ2 ∩ Γ3. Since PQ−1 is the concatenation of two pieces we get a

contradiction. Therefore Γ1 ∩ Γ2 ∩ Γ3 is connected. The proof that it is a tree is the

same as in case (ii) above. �

Lemma 6.12. Let X be a simply connected C(6) thickened graphical complex and

consider a finite collection of relators {Γi → X}i∈{0,...,n}. If for every i, j ∈ {0, . . . , n}
the intersection Γi∩Γj is non-empty then the intersection

⋂
i∈{0,...,n} Γi is a non-empty

tree.

Proof. Consider first the intersection Γ0∩(Γ1∪. . .∪Γn). This intersection is connected

by Lemma 6.11.(ii)(iii). We claim that Γ0 ∩ (Γ1 ∪ . . . ∪ Γn) is a tree.

Assuming the claim we proceed with the proof of the lemma. By Lemma 6.11.(ii)(iii)

all intersections {Γ0 ∩ Γi}i∈{1,...,n} are pairwise intersecting, non-empty subtrees of a

tree Γ0 ∩ (Γ1 ∪ . . . ∪ Γn). Therefore by the Helly property of trees the intersection⋂
i∈{0,...,n} Γi is a non-empty tree.

It remains to prove the claim. Assume conversely that there is a non-trivial simple

cycle C → Γ0 ∩ (Γ1 ∪ . . . ∪ Γn). Let Γj be any relator different from Γ0 through

which C passes and let Pj be a maximal subpath of C that lifts to Γj . Choose Pi and

Pk to be the paths that lift to Γi and Γk respectively, such that the concatenation

PiPjPk is a maximal subpath C with these properties (for Γj fixed), see Figure 11.

If PiPjPk = C then we get a contradiction with the fact that X is a C(6) complex

(the same happens if already PiPj or PjPk is equal to C).

C
Q

vj

vl

Γj

Γk

Γi

Γl

Figure 11. Cycle C partially covered by relators.

Hence assume that it is not the case and let Pl be the subpath of C that lifts

to Γl and appears right after Pk. Choose vertices vj ∈ Pj and vl ∈ Pl, such that

vl /∈ Pk ∪ Pi.
Since the intersection Γj ∩Γ0 ∩Γl is non-empty, there is a path Q→ Γ0 ∩ (Γj ∪Γl)

joining vj to vl. If Q is equal to the subpath of C from vj to vl which contains Pk

then we get a contradiction with the choice of Pk, as in such case Pl appears right
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after Pj and covers a larger portion of C. Similarly if Q is equal to the subpath of

C from vj to vl which contains Pi then we get a contradiction with the choice of Pi.

Otherwise the concatenation of the subpath of C from vj to vl containing Pk with

Q is a non-trivial cycle in Γ0 that is covered by the images of three relators Γj ,Γk

and Γl. This contradicts the C(6) condition and therefore finishes the proof of the

claim. �

7. Dual of a C(p) complex is p–systolic

Let X be a simply connected C(p) thickened graphical complex X and suppose

that p > 6. The purpose of this section is to construct a p–systolic simplicial complex

W (X) such that any group acting on X, acts naturally on W (X). Furthermore,

after replacing X with a “non-thickened” graphical complex X ′ we show that X ′

and W (X) are G–homotopy equivalent. This replacement is necessary, as in general

the thickened complex contains non-trivial 2–spheres, whereas systolic complexes are

contractible. Roughly speaking, the non-thickened graphical complex has the same

1–skeleton as the thickened one, but instead of thick cells, it has topological cones

glued along relators. The non-thickened complex, combinatorially being equivalent to

the thickened one, has better topological properties (in particular it is contractible).

7.1. Equivariant nerve theorem. Our main tool in showing that X and W (X)

are G–homotopy equivalent is the Equivariant Nerve Theorem. This theorem is for-

mulated in the abstract language of G–posets, therefore we begin by recalling some

terminology.

A G–poset is a partially ordered set with an order-preserving action of a group G.

A geometric realisation of a poset X is a simplicial complex |X| whose n–simplices

are chains x0 6 y1 6 . . . 6 xn in X. If X is a G–poset then its geometric realisation

|X| is naturally a G–simplicial complex. All topological notions applied to a poset

X are to be understood as corresponding notions applied to its geometric realisation

|X|. For an element y of a poset Y define the subposet

Y6y = {x ∈ Y | x 6 y}.

The following theorem is an equivariant analogue of the celebrated Quillen’s “The-

orem A”.

Theorem 7.1 ([TW91, Theorem 1]). Let G be a group and let f : X → Y be a

G–map between G–posets X and Y . If for every y ∈ Y , the preimage f−1(Y6y) is

Gy–contractible then f is a G–homotopy equivalence.
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Let (X,6) be a poset. We say that a subset U ⊂ X is closed with respect to 6, if

for any x ∈ U and any y such that y 6 x, we have y ∈ U . A cover of a poset (X,6)

is a family U of subsets of X, such that every U ∈ U is closed with respect to 6, and⋃
U∈U U = X.

The nerve N(U) of a cover U is a simplicial complex whose vertex set is U , and

vertices U0, . . . , Un span an n–simplex of N(U) if and only if
⋂

06i6n Ui 6= ∅. If G

acts on X and for any element U ∈ U and any g ∈ G we have gU ∈ U then we say

that U is G–cover. In this case the G–action on X induces the G–action on N(U).

In particular, element g ∈ G stabilises a simplex σ of N(U) if and only if g leaves the

intersection
⋂
U∈σ U ⊂ X invariant.

Definition 7.2. A G–cover U of a G–poset X is G–contractible if for any simplex σ

of N(U), the subposet
⋂
U∈σ U is a Gσ–contractible subposet of X, where Gσ denotes

the G–stabiliser of σ.

The following result and its proof are immediate equivariant analogues of [Smi11,

Theorem 4.5.2]. To the best of our knowledge there is no proof of this theorem in the

literature.

Theorem 7.3 (Equivariant Nerve Theorem). Let G be a group and let X be a G–

poset. Let U be a G–contractible cover of X. Then N(U) is G–homotopy equivalent

to |X|.

Proof. We work with the face poset N ′(U) of N(U), with the reversed inclusion order.

More precisely, the elements of N ′(U) are simplices of N(U), i.e. tuples {Ui}i∈I such

that
⋂
i∈I Ui 6= ∅ and {Ui}i∈I 6 {Uj}j∈J in N ′(U) if and only if J ⊆ I.

The geometric realisation of N ′(U) is homeomorphic to N(U) and the G–action on

N(U) induces a G–action on N ′(U). We define the map f : X → N ′(U) as

f(x) = {U ∈ U | x ∈ U}.

This is a map of posets since if y 6 x then y ∈ U whenever x ∈ U , by closedness of

U . It is straightforward to check that f is a G–map.

Let UI = {Ui}i∈I be an element of N ′(U). If x ∈ f−1(N ′(U)6UI
) then x ∈ U , for

every U ∈ UI . Therefore

f−1(N ′(U)6UI
) =

⋂

U∈UI

U =
⋂

i∈I
Ui.

Since the cover U is G–contractible, each preimage f−1(N ′(U)6UI
) is GUI

–contract-

ible. Therefore, by Theorem 7.1, the map f is a G–homotopy equivalence. �
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In the remainder of this section we show how to apply Theorem 7.3 to the case

of C(p) graphical complexes. For this we need to introduce the “non-thickened”

graphical complex.

Let Γ be a finite graph. A cone on Γ is the quotient space

C(Γ) = Γ× [0, 1]/Γ× {1}.

Definition 7.4. Let ϕ : Γ → Θ be an immersion of graphs and assume that Θ is

connected. Write Γ as the union of its connected components Γ =
⊔

Γi and let ϕi

denote the composition Γi → Γ→ Θ. Therefore ϕ = tϕi.
A graphical complex X is a 2–complex obtained by gluing a cone C(Γi) along each

ϕi : Γi → Θ:

X = Θ ∪ϕ
⊔

i∈I
C(Γi).

For a map Γi → X a cone-cell is the corresponding map C(Γi)→ X.

Notice that X is not a 2–complex in the sense of Section 6.1. However, one can

put a structure of a combinatorial 2–complex on X (or even a simplicial complex)

by appropriately subdividing every cone. For most of our purposes though, it will be

enough to treat entire cone-cells as “2–cells”. Consequently we would like to treat the

graph Θ as the 1–skeleton of X. In particular, any path P → X necessarily factors

as P → Θ→ X.

Remark 7.5. To an immersion of graphs ϕ : Γ → Θ we assigned two complexes: a

thickened graphical complex (see Definition 6.3) and a graphical complex (see Defi-

nition 7.4). Let us denote them by Th(X) and X respectively. We emphasise that

both constructions depend only on the map ϕ : Γ→ Θ and therefore one construction

determines another.

Moreover, notice that the fundamental groups of Th(X) and X are isomorphic.

Indeed one can construct a map Th(X)→ X which is the identity on 1–skeleton, and

which sends 2–cells of Th(X) to the cone-cells of X. After a suitable subdivision this

map becomes combinatorial, and one can easily show that it induces an isomorphism

on fundamental groups.

We now proceed with the definitions of small cancellation conditions for a graphical

complex. Notice that both definitions of a piece (Definition 6.4) and of small cancella-

tion conditions (Definition 6.7) for a thickened graphical complex depend only on the

map Γ→ Θ. Therefore we can use the exact same definitions for a graphical complex.

For the sake of completeness we include the following (tautological) definition.
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Definition 7.6. Let X be a graphical complex and let Th(X) denote the correspond-

ing thickened graphical complex. A path P → X is a piece if the corresponding path

P → Th(X) is a piece. Consequently we say that X satisfies C(p) or C ′(λ) condition

if Th(X) does so.

Remark 7.7. Definition 7.6 together with the fact that π1(Th(X)) ∼= π1(X) implies

that Lemma 6.11 and Lemma 6.12 hold for a C(6) graphical complex X as well.

From now on a graphical complex will always be understood in the sense of Defi-

nition 7.4. We proceed with the definition of the aforementioned simplicial complex

W (X).

Definition 7.8. Let X be a simply connected C(p) graphical complex for p > 6.

Assume that X is the union of its cone-cells, i.e. that every edge and vertex of X is

in the image of C(Γi)→ X for some relator Γi. Notice that by Lemma 6.11.(i) every

map Γi → X is an embedding, and therefore we can identify a cone-cell C(Γi) → X

with its image. Let

U = {C(Γi) | Γi ⊂ Γ}
be the covering of X by its cone-cells. Define the simplicial complex W (X) to be the

nerve of the covering U. This complex was introduced by D. Wise in the classical

C(p) setting [Wis03], therefore we will refer to W (X) as the Wise complex.

Notice that any cellular G–action on X (i.e. cellular on 1–skeleton and maps cone-

cells to cone-cells) induces a simplicial G–action on W (X). Our goal is to show that

in fact X and W (X) are G–homotopy equivalent. To show this, we will present X

as a realisation of a certain G–poset, and we will find a G–cover of this poset whose

nerve will be isomorphic to W (X). The claim will then follow from Theorem 7.3.

Remark 7.9. We remark that the assumption in Definition 7.8 is not very restrictive.

Indeed, if X contains such “free edges”, i.e. edges not contained in any cone-cell, one

can consider a new complex X ′ obtained by gluing to X a cone over every free edge

(this cone is homeomorphic to the triangle in this case). The complex X ′ satisfies

the assumptions of Definition 7.8 and any cellular G–action on X induces a cellular

G–action on X ′. It is straightforward to check that the quotient map X ′ → X which

retracts every cone over the free edge onto this edge is a G–homotopy equivalence.

Let X be as in Definition 7.8. We define an associated poset X as follows. Elements

of X are cone-cells, edges, and vertices of X ordered by inclusion. The geometric

realisation |X | of the poset X is homeomorphic to X, and if G acts on X then there

is an induced action on X , and the homeomorphism is equivariant.
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Let U be the cover of X given by

U = {X6c | c is a cone-cell of X}.

By construction the cover U is closed with respect to 6 and it is straightforward to

check that it is a G–cover of X . Observe that the geometric realisation of any element

X6c of U is homeomorphic to the cone-cell c. Therefore the nerve N(U) is isomorphic

to the complex W (X).

Lemma 7.10. The G–cover U is G–contractible.

Proof. For any σ ∈ N(U) the geometric realisation of the intersection
⋂
U∈σ U is a

tree by Lemma 6.12, hence it is Gσ–contractible. �

The above discussion together with Lemma 7.10 and Theorem 7.3 gives the following.

Theorem 7.11. Let X be simply connected C(6) graphical G–complex satisfying the

assumptions of Definition 7.8. Then X is G–homotopy equivalent to the simplicial

complex W (X).

7.2. Graphical small cancellation groups are systolic. In this section we show

that if X satisfies the C(p) small cancellation condition then the complex W (X) is

p–systolic, and we use the latter to construct models for the classifying spaces EG

and EVABG for a group G acting properly on X.

Theorem 7.12. Suppose p > 6 and let X be a simply connected C(p) graphical

complex. Then its Wise complex W (X) is p–systolic.

Proof. The idea as well as the strategy of the proof come from D. Wise who proved

this theorem for classical C(6) complexes (cf. Theorem 10.6 in [Wis03]). We need

to show that W (X) is simply connected, flag and that links of vertices of W (X) are

p–large.

Simple connectedness of W (X) follows from Theorem 7.11. To show that W (X)

is flag, suppose that v0, . . . , vn are vertices of W (X) which are pairwise adjacent.

We claim that these vertices span an n–simplex of W (X). Let C(Γ0), . . . , C(Γn) be

the corresponding cone-cells in X. By our assumption we have Γi ∩ Γj 6= ∅ for all

0 6 i, j 6 n (cone-cells can intersect only at the relators). Thus by Lemma 6.12

the intersection
⋂n
i=1 Γi is non-empty, and therefore the vertices v0, . . . , vn span an

n–simplex of W (X).

It remains to show that for any vertex v ∈ W (X) the link W (X)v is p–large. Let

(v1, . . . , vn) be a cycle in W (X)v of length less than p. This corresponds to a sequence

C(Γ1), . . . , C(Γn) of cone-cells such that Γi ∩ Γi+1 6= ∅ and all Γi intersect a fixed

relator Γ.
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The intersection Γ∩ (Γ1∪ . . .∪Γn) is a connected graph (cf. proof of Lemma 6.12).

We claim that it is a tree. Indeed, any non-trivial cycle in Γ ∩ (Γ1 ∪ . . . ∪ Γn) is a

concatenation of at most n pieces, which contradicts the C(p) hypothesis as n < p.

Now choose vertices ui ∈ Γ ∩ Γi ∩ Γi+1 and let Pi → Γ ∩ Γi be a non-backtracking

path joining ui−1 to ui. The concatenation of paths P1P2 · · ·Pn is a cycle in the tree

Γ ∩ (Γ1 ∪ . . . ∪ Γn). It is straightforward to check that there are two nonconsecutive

paths Pj and Pk that intersect, see Figure 12 on the right. Therefore the cone-cells

C(Γj) and C(Γk) intersect and this gives a diagonal (vj , vk) in a cycle (v1, . . . , vn) in

W (X)v. �

Γ2Γ1

Γ4Γ5

Γ3Γ6 Γ

v1

v

v2

v3

v4v5

v6

Γ1

Γ3Γ4

Γ2Γ5
Γ

v

v1

v2

v3v4

v5

Γ5

Γ1

Γ3
Γ4

Γ2

Γ

v

v1
v2

v3
v4

v5

Figure 12. Vertex links of W (X) and the corresponding subcom-

plexes of a C(6) complex X. On the left there is an illegal configura-

tion leading to a cycle of length 5 without diagonals. In the middle

and on the right legal configurations are shown.

Definition 7.13. We say that a graphical complex X is (uniformly) locally finite,

if after subdividing each cone-cell C(Γi) into triangles spanned by the edges of Γi

and the apex of the cone C(Γi), the resulting complex is a (uniformly) locally finite

simplicial complex.

It follows directly from the construction that X is uniformly locally finite if and

only if W (X) is so. Consequently, since X and W (X) are G–homotopy equivalent,

the G–action on X is proper if and only if the G–action on W (X) is proper. Finally,

the G–action on X is cocompact if and only if the G–action on W (X) is so. These

observations lead to the following corollary, which is interesting in its own right.

Corollary 7.14. Let G be a group acting properly and cocompactly on a simply

connected C(p) graphical complex for p > 6. Then G acts properly and cocompactly

on a systolic complex, i.e. G is a systolic group.
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Being systolic implies many properties including e.g. biautomaticity [JŚ06, Theo-

rem 13.1]. For further results see e.g. [JŚ06,JŚ07,Prz09,Osa15,OŚ15] and references

therein.

We now state and prove the main theorem of this section.

Theorem 7.15. Let a group G act properly on a simply connected uniformly locally

finite C(6) graphical complex X. Then:

(1) the complex X is a model for EG,

(2) there exists a 3–dimensional model for EG,

(3) there exists a 4–dimensional model for EVABG, provided the action is addi-

tionally cocompact.

Proof. (1) By Theorem 7.11 the group G acts properly on a uniformly locally finite

systolic complex W (X), and hence by Theorem 5.2 the complex W (X) is a model

for EG. Therefore X is a model for EG as well, since X and W (X) are G–homotopy

equivalent.

(2) By Corollary 2.3 it is enough to find for every [H] ∈ [VCY \ FIN ] a 2–

dimensional models for ENG[H] and EG[H]NG[H]. By (1) the complex X may serve

as a model for ENG[H]. Notice that G acts properly on a systolic complex W (X),

hence by Lemma 5.6.(i) there exists a 2–dimensional model for EG[H]NG[H].

(3) Since G acts properly and cocompactly on a systolic complex, by Lemma 5.10 it

satisfies conditions (NM1) and (NM2) (cf. Section 5.3). Therefore proceeding exactly

as in the proof of Theorem 5.9, we obtain a model for EVABG of dimension max{4, d}
where d is the dimension of a model for EG. By (2) the latter can be chosen to be

at most 3, hence the claim. �

8. Examples

In this section we provide few classes of examples of groups to which our theory

applies. When relevant, we mention that our constructions give new bounds on

dimensions of classifying spaces.

8.1. Graphical small cancellation presentations. A graphical presentation P =

〈S | ϕ〉 is a graph

Γ =
⊔

i∈I
Γi,

and an immersion

ϕ : Γ→ RS ,

where every Γi is finite and connected, and RS is a rose, i.e. a wedge of circles

with edges (cycles) labelled by a set S. Alternatively, the map ϕ : Γ → RS , called a
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labelling, may be thought of as an assignment: to every edge of Γ we assign a direction

(orientation) and an element of S.

A graphical presentation P defines a group

G = G(P) = π1(RS)/ 〈〈ϕ∗(π1(Γi))i∈I〉〉 .

In other words G is the quotient of the free group F (S) by the normal closure of the

group generated by all words (over S∪S−1) read along cycles in Γ (where an oriented

edge labelled by s ∈ S is identified with the edge of the opposite orientation and the

label s−1). A piece is a path P labelled by S such that there exist two immersions

p1 : P → Γ and p2 : P → Γ, and there is no automorphism Φ: Γ → Γ such that

p1 = Φ ◦ p2. The presentation P satisfies the C(p) small cancellation condition, for

p > 6, if no cycle in Γ is covered by less than p pieces; see eg. [Gru15] for a systematic

treatment.

Consider the following graphical complex (see Definition 7.4):

X = RS ∪ϕ
⊔

i∈I
C(Γi).

The fundamental group of X is isomorphic to G. In the universal cover X̃ of X

there might be multiple copies of cones C(Γi) whose attaching maps differ by lifts of

Aut(Γi). After identifying all such copies, we obtain the complex X̃∗. The group G

acts geometrically, but not necessarily freely on X̃∗. If P is a C(p) graphical small

cancellation presentation then the complex X̃∗ is a C(p) small cancellation complex.

Moreover, the complex X̃∗ satisfies the assumptions of Definition 7.8 as long as the

map ϕ : Γ → RS is surjective. This happens precisely when the presentation P has

no free generators.

Graphical small cancellation presentations provide a powerful tool for constructing

groups with often unexpected properties, see e.g. [Osa14]. For such groups with

torsion our result concerning the model for EG is new. If a C(6) graphical small

cancellation group is torsion-free then it admits a model for EG of dimension at

most three, by the work of D. Degrijse [Deg17, Corollary 3]. There are however C(6)

graphical small cancellation groups to which Degrijse’s result does not apply. In such

cases our constructions of low-dimensional EG and EVABG are the only general tools

available.

8.2. Groups acting on VH–complexes. Not all groups acting geometrically on

graphical small cancellation complexes possess graphical small cancellation presenta-

tions. The simplest example is Z2. It acts simply transitively on a tessellation of the

plane by regular hexagons (a simple example of a C(6) complex), but possesses no

graphical C(6) presentation. The following class of examples is more interesting.
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The notion of VH–complexes was introduced by D. Wise [Wis96]. Recall that a

square complex X, i.e. a combinatorial 2–complex whose cells are squares, is a VH–

complex if the following holds. The edges of X can be partitioned into two classes V
and H called vertical and horizontal edges respectively, such that every square has

two opposite vertical and two opposite horizontal edges.

Let X be a simply connected VH–complex that is a CAT(0) space with respect to

the standard piecewise Euclidean metric. We now show how to turn X into a simply

connected C(6) graphical small cancellation complex. Subdivide every square into 24

triangles as shown in Figure 13 on the left. More precisely, the subdivision is invariant

Figure 13. The subdivision of a VH–square into 24 triangles (left),

and the C(6) graphical small cancellation complex structure on a

CAT(0) VH–complex. Two cones on relators are highlighted: one

with a vertical and one with a horizontal apex.

with respect to VH–isometries of the square, the vertical edges are subdivided into

four sub-edges each, and the horizontal edges are subdivided into two sub-edges each.

This defines a triangulation of X. Call the vertices of this triangulation, being mid-

points of vertical and horizontal edges vertical and horizontal apexes, respectively.

Consider links of apexes. Such a link is a graph of girth 12. Two such links intersect

in a subgraph (possibly empty) of diameter at most 2; see Figure 13 on the right.

Therefore, the complex X has a structure of the union of cones on links of apexes

(relators). This defines the C(6) graphical small cancellation complex X∗. It is clear

that every VH–automorphism, i.e. an automorphism respecting types of edges of X

induces an automorphism of X∗.
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Theorem 8.1. Let X be a simply connected VH–complex. Then the complex X∗

is a C(6) graphical small cancellation complex. In particular, every group of VH–

automorphisms of X acts by automorphisms on X∗. One action is proper and/or

cocompact if and only if the other is so.

T. Elsner and P. Przytycki [EP13] showed that a group acting properly or geometri-

cally on a simply connected VH–complex acts, respectively, properly or geometrically

on a 3–dimensional systolic complex. Theorem 8.1 together with Theorem 7.12 pro-

vide a higher dimensional systolic complex in such a case. Nevertheless, the theorem

above equips VH–groups with a new 2–dimensional structure, extending in a way the

Elsner-Przytycki result.

Of course, VH–complexes carry a natural CAT(0) metric so that constructions of

the corresponding low-dimensional models for EG and EG are available by [Lüc09].

Our results provide a 4–dimensional model for EVABG for groups acting geometrically

on such complexes.

8.3. Lattices in Ã2–buildings. Here we present another example of a group acting

properly on a graphical small cancellation complex. An Ã2–building is a building with

apartments isomorphic to the equilaterally triangulated plane E2
∆, see Definition 5.11.

Consider such a building Y . Let Y ′ be its barycentric subdivision. Define a dual

graph Θ of Y as follows. Vertices of Θ are edges of Y and triangles of Y . There is

an edge in Θ between every edge of Y and a triangle of Y containing this edge; see

Figure 14.

The link in Y ′ of any vertex of Y is a 12–large graph (a subdivision of a spherical

building) that may be considered as a subgraph of Θ. The complex Y ′ is thus obtained

by attaching cones on such links to the graph Θ. Two such cones intersect in a set of

diameter at most 2. Therefore Y ′ may be seen as a C(6) graphical small cancellation

complex. Lattices in Isom(Y ) act naturally on Y ′. Notice that such lattices may be

very different from groups in the previous example because they may have Kazhdan’s

property (T).

Each Ã2–building possesses a natural structure of a systolic 2–dimensional complex

or even a CAT(0) complex. Our results provide a 4–dimensional model for EVABG

for lattices in its isometry group.

In fact, by exactly the same construction as above one equips any 2–dimensional

p–systolic complex with a structure of a C(p) graphical complex.

8.4. A 3–dimensional systolic example. As the last example we present a non-

hyperbolic group G acting geometrically on a 3–dimensional systolic pseudomanifold

X which does not admit a G–invariant CAT(0) metric.
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Figure 14. A part of an Ã2–building together with a part of its dual

graph (thick gray).

We start with a simplex of groups G54, introduced by J. Świa↪tkowski in [Świ06] (for

some details on complexes of groups we refer the reader to [JŚ06, Świ06]). Let T54 be

a 6–large triangulation of the flat 2–torus consisting of 54 equilateral triangles; see

Figure 15 on the right (with the opposite sides of the hexagon and the appropriate

vertices identified). Let G54 be a group of automorphisms of T54 generated by reflec-

tions with respect to edges of triangles. For the G54–action on T54 the stabilisers of

triangles are trivial, the stabilisers of edges are isomorphic to Z2, and the stabilisers

of vertices are isomorphic to the dihedral group D3. The quotient T54/G54 is a single

triangle.

The 3–simplex of groups G54 is defined as follows. The group of the 3–simplex

is trivial, the triangle groups are Z2, the edge groups are D3, the vertex groups are

G54 and the inclusion maps correspond to inclusions of respective stabilisers in the

G54–action on T54; see Figure 15 on the left.

Since G54 is a locally 6–large simplex of groups (see [JŚ06, Section 6]) it is devel-

opable by [JŚ06, Theorem 6.1]. Its fundamental group G = π1(G54) acts geometrically

(with the corresponding stabilisers of faces) on an infinite 3–dimensional systolic pseu-

domanifold X, whose vertex links are all isomorphic to the torus T54. The quotient

of this action is a 3–simplex.

Using Świa↪tkowski’s construction we now define a new simplex of groups G∗54, whose

fundamental group acts on the barycentric subdivision X ′ of the pseudomanifold X,

transitively on 3–simplices. It is obtained by assigning appropriate groups to faces of

a simplex of the barycentric subdivision of the 3–simplex underlying G54. Let G∗54 be

a group of isometries of the barycentric subdivision T ′54 of the torus T54 generated by

reflections with respect to all edges. That is, besides the elements of G54 we consider

also reflections with respect to lines like, for example, the dashed ones in Figure 15.
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T54G54
A

A

A

B

B

B

Z2 Z2

D3 D3

D3

D3

G54

G54

G54

G54

C

C

Figure 15. The simplex of groups G54 (left), and the local develop-

ment T54 (the development of the triangle of groups in the link of a

vertex).

Observe that in this case the stabiliser of a triangle in T ′54 is trivial, stabilisers of edges

are Z2, and the stabilisers of vertices are as follows: the stabiliser of a barycentre of

a triangle of T54 is D3; the stabiliser of a barycentre of an edge of T54 is Z2
2; the

stabiliser of a vertex of T54 is D6. The 3–simplex of groups G∗54 is now defined as

follows. We consider a 3–simplex in the barycentric subdivision of a tetrahedron P

underlying G54, see Figure 16. The 3–simplex group is trivial. The triangle faces

groups are Z2. The assignment of the edge and vertex groups is shown in Figure 16.

D3

Z2
2

Z2
2

D3 D6

Z2
2

P

G∗
54

D3 × Z2

D6 × Z2

S4

Figure 16. The simplex of groups G∗54.

The fundamental group G of G∗54 acts on X ′ with the corresponding stabilisers of

cells and with the quotient being a 3–simplex in the barycentric subdivision of X.
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Proposition 8.2. The complex X does not admit a G–invariant CAT(0) metric.

Proof. Suppose such a metric exists. By the high transitivity of the G–action every

edge of X has the same length. It follows that all triangles in X are equilateral.

Hence, by the CAT(0) property, angles between edges in triangles are at most π
3 , that

is, the angle length of every edge in the link of a vertex of X does not exceed π
3 .

Every such link is isomorphic to the barycentric subdivision T ′54 of T54 and the vertex

group G∗54 acts transitively on edges. Therefore, all the edges in T54 have the same

length. Consider now the straight line connecting the vertices labeled C in Figure 15.

This is a homotopically non-trivial loop in the link of length strictly less that 2π. It

follows from the fact that, by the CAT(1) property of the link, every segment of this

line contained in a single triangle has length smaller then the length π
3 of edges of

this triangle. This contradicts the fact that the metric is CAT(0). �

It is relatively easy to observe that X contains flats and hence the group G is

not hyperbolic [Wie08]. We believe that G acts geometrically on a high dimensional

CAT(0) cube complex. It seems that methods developed in the current article provide

the only way of constructing low-dimensional models for the classifying spaces EG

and EVABG. There are other examples of non-hyperbolic systolic groups (of high

dimension) to which our theory applies.

References
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HYPERBOLIC ISOMETRIES AND BOUNDARIES OF SYSTOLIC

COMPLEXES

TOMASZ PRYTU LA

Abstract. Given a group G acting geometrically on a systolic complex X and

a hyperbolic isometry h ∈ G, we study the associated action of h on the sys-

tolic boundary ∂X. We show that h has a canonical pair of fixed points on the

boundary and that it acts trivially on the boundary if and only if it is virtually

central. The key tool that we use to study the action of h on ∂X is the notion

of a K–displacement set of h, which generalises the classical minimal displacement

set of h. We also prove that systolic complexes equipped with a geometric action

of a group are almost extendable.

1. Introduction

A systolic complex is a simply connected simplicial complex whose vertex links

satisfy a certain combinatorial condition called 6–largeness. The condition of 6–

largeness serves as an upper bound for the combinatorial curvature, and thus systolic

complexes may be seen as combinatorial analogues of metric spaces of nonpositive

curvature, the so-called CAT(0) spaces. Systolic complexes were first introduced in

[Che00] under the name of bridged complexes, although their 1–skeleta had appeared

much earlier in metric graph theory (see e.g., [SC83]). In this article we are interested

in systolic complexes that are equipped with a geometric action of a group. Any such

group is called a systolic group. The theory of systolic complexes and groups, as

developed in [JŚ06], is to a large extent parallel to the theory of CAT(0) spaces and

groups. In particular, over the last fifteen years many of the nonpositive curvature-

like properties of systolic complexes have been established (see [Che00, JŚ06,Els09a,

Els09b, Els09c, OP16] and references therein). On the other hand, a combinatorial

approach led to constructions of examples of systolic groups whose behaviour is very

different from the classical nonpositively curved groups [JŚ06].

An important invariant of a CAT(0) space X is its boundary at infinity ∂X. The

boundary is a topological space which, as a set, consists of equivalence classes of

geodesic rays in X, such that asymptotic rays are equivalent. One topologises it in a

Date: April 4, 2017.
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Key words and phrases. Systolic complex, boundary at infinity, hyperbolic isometry.
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way that two geodesic rays are ‘close’ if they fellow travel ‘long time’. Any G–action

by isometries on X gives rise to a G–action by homeomorphisms on ∂X. It turns out

that many algebraic properties of a group are reflected in topological properties of

the boundary and in the action itself.

In this article we study this correspondence in the setting of systolic complexes.

The boundary for systolic complexes was constructed in [OP09]. The construction is

similar to the one for CAT(0) spaces, however it is much more technical. The points

of the systolic boundary are also represented by geodesic rays in (the 1–skeleton of)

a systolic complex X, but not every geodesic ray in X gives a point in the boundary:

in order to ensure good properties of the boundary, a choice of a certain subclass of

geodesics was necessary. This is mainly due to the fact that arbitrary geodesics in

a systolic complex do not satisfy any form of the Fellow Traveller Property (indeed,

two geodesics of length D with the same endpoints may get D
2 apart). In [OP09]

the authors introduce good geodesics and good geodesic rays, and define the systolic

boundary ∂X as a set of equivalence classes of good geodesic rays in X. The topology

on ∂X is defined analogously as in the CAT(0) case. Both good geodesics and good

geodesic rays are preserved by simplicial automorphisms of X, and therefore any sim-

plicial G–action on X induces a G–action (by homeomorphisms) on ∂X. Intuitively,

a good geodesic ray is a geodesic ray which, whenever contained in a flat F , follows

the CAT(0) geodesic in F . In particular good geodesic rays have the desired metric

properties, similar to those of geodesic rays in CAT(0) spaces.

An isometry (i.e., a simplicial automorphism) h of a systolic complexX is hyperbolic

if it does not fix any simplex of X. Note that if G acts geometrically on X then every

infinite order element of G is a hyperbolic isometry of X. The main point of this

article is to study the associated action of h on the systolic boundary ∂X. We start

by determining when this action is trivial (i.e., when h acts as the identity on ∂X).

Denote by CG(h) the centraliser of h in G. The following is the systolic analogue of

a result of K. Ruane for CAT(0) spaces [Rua01].

Theorem 1 (Theorem 4.5). Let G be a group acting geometrically on a systolic

complex X, and let h ∈ G be a hyperbolic isometry. Then h acts trivially on the

boundary ∂X if and only if the centraliser CG(h) has finite index in G.

The canonical object used to study the action of h onX is the minimal displacement

set of h, which is a subcomplex of X spanned by all the vertices which are moved

by h the minimal (combinatorial) distance. This distance is called the translation

length of h and it is denoted by L(h). Due to a ‘coarse nature’ of ∂X, in order to

study the action of h on ∂X it is convenient to replace the minimal displacement set

2
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by its coarse equivalent – the K–displacement set of h, for some K > L(h), which is

a subcomplex of X spanned by all the vertices that are moved by h the distance at

most K. The K–displacement set has all the desired (from our point of view) features

of the minimal displacement set, while it has the advantage of being more flexible as

one can let K vary.

The proof of Theorem 1 is based on the interplay between K–displacement sets of

h (for different values of K) and the centraliser CG(h). In particular, the ‘if’ direction

essentially boils down to showing the following two facts:

(1) Any point in ∂X represented by a geodesic ray that lies inside some K–dis-

placement set of h is fixed by h.

(2) The centraliser CG(h) acts cocompactly on any K–displacement set of h.

The ‘only if’ direction is more involved. In this case we are given the information

about the action on the boundary, and we need to extract the information about the

action on the complex. For this we need X to satisfy the following property. We say

that X is almost extendable if there exists a constant E > 0 such that for every pair

of vertices x, y in X there is a good geodesic ray issuing from x and passing within

distance E from y. The following theorem is also of independent interest.

Theorem 2 (Theorem 3.2). Let X be a noncompact systolic complex, on which a

group G acts geometrically. Then X is almost extendable.

The proof of this theorem relies on the study of topology at infinity of systolic

complexes. It is similar to the proof of an analogous theorem for CAT(0) spaces

[Ont05]. The main difference is that our proof uses the notion of connectedness at

infinity, whereas the one in [Ont05] uses cohomology with compact supports. The

key fact is that in the setting above, the complex X is not 1–connected at infinity

(see [Osa07]).

In the second part of the article we consider arbitrary hyperbolic isometries of

X (not necessarily the virtually central ones). One can still ask whether such an

isometry h has any fixed points in ∂X. In the setting of CAT(0) spaces, a hyperbolic

isometry h has an axis, that is, an h–invariant geodesic line, and this axis determines

two fixed points of h in ∂X. In our situation h also has a kind of axis (see [Els09b]),

but unfortunately this axis does not have to determine an h–invariant good geodesic.

In fact, an h–invariant good geodesic may not exist. However, we do prove that h

has a pair of fixed points in ∂X.
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Theorem 3 (Proposition 6.2). Let G be a group acting geometrically on a systolic

complex X and let h ∈ G be a hyperbolic isometry. Then:

(1) there exist points h−∞ and h+∞ in the boundary ∂X which are fixed by h,

(2) for any vertex x ∈ X we have (hn · x)n → h+∞ and (h−n · x)n → h−∞ as

n→∞ in the compactification X = X ∪ ∂X.

The second statement shows that h+∞ and h−∞ are in a certain sense the canonical

fixed points of h. To find h+∞ and h−∞ we construct an ‘almost h–invariant’ good

geodesic in X, by which we mean a geodesic that is contained in some K–displacement

set of h. This requires analysing the construction of good geodesics. We go through

the steps of the construction and show that given any two vertices x and y in the

minimal displacement set of h, a good geodesic between x and y is contained in a

K–displacement set where K is independent of distance between x and y. Then we

construct a bi-infinite good geodesic as a limit of finite good geodesics contained in

the K–displacement set.

In order to prove the second part of Theorem 3 we also study good geodesics

contained in the flats of X. In particular, we give a simple criterion for a geodesic

contained in a flat to be a good geodesic and we show that any geodesic that is good

in the flat is also good in the complex X.

We believe that the results presented in this article may be used in the further

study of systolic groups via their boundaries. Theorems 1 and 3 are the first steps in

analysing the dynamics of the action of h on ∂X, which in the CAT(0) setting plays

the key role in e.g., [PS09], where the topology of ∂X is related to splittings of G over

2–ended subgroups. Theorem 2 seems to be of a more general nature; its CAT(0)

counterpart has been widely used in the study of CAT(0) groups and boundaries.

Organisation. The article consists of an introductory Section 2, where we give back-

ground on systolic complexes and boundaries, and of the two main parts. In the first

part, which occupies Sections 3 and 4, we prove Theorem 2 and after establishing

basic facts about K–displacement sets we give a proof of Theorem 1. In the second

part (Sections 5 and 6) we first sketch the construction of good geodesics, and then

we prove Theorem 3.
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2. Systolic complexes and their boundaries

In this section we give some background on systolic complexes and their boundaries.

We also fix the terminology and notation that is used throughout the article.

2.1. Systolic simplicial complexes. Let X be a simplicial complex. We assume

that X is finite dimensional and uniformly locally finite, i.e., there is a uniform bound

on the degree of vertices in X. We equip X with the CW–topology, and always treat

it as a topological space (we do not make a distinction between an abstract simplicial

complex and its geometric realisation). Let X(k) denote the k–skeleton of X. In

particular X(0) is the vertex set of X. For any subset A ⊂ X(0), a subcomplex

spanned by A is the largest subcomplex of X that has A as its vertex set. We denote

this subcomplex by span(A). A map f : X → Y of simplicial complexes is simplicial

if f(X(0)) ⊂ Y (0) and whenever vertices x0, x1, . . . , xn span a simplex of X then their

images f(x0), f(x1), . . . , f(xn) span a simplex of Y . Note that a simplicial map is

continuous, and in particular a simplicial automorphism is a homeomorphism of X.

In this article we will be particularly interested in metric aspects of simplicial

complexes.

Definition 2.1. We endow the vertex set X(0) with a metric, where the distance

d(x, y) between vertices x and y is defined to be the combinatorial distance in the

1–skeleton, i.e., the minimal number of edges of an edge–path joining x and y.

For two subcomplexes A,B ⊂ X, we define the distance d(A,B) to be the minimal

distance between vertices a ∈ A and b ∈ B.

Whenever we refer to the metric on X we mean the metric on X(0) defined above.

Consequently, a geodesic in X is a sequence of vertices (v0, v1, . . . , vn) such that for

any 0 6 i, j 6 n we have d(vi, vj) = |j − i|. Analogously we define a geodesic that

is infinite in one or both ends. In the first case we call it a geodesic ray, in the

second case: a geodesic line or a bi-infinite geodesic. Observe that a simplicial map

is 1–Lipschitz and any simplicial automorphism is an isometry of X.

We now briefly recall the notions needed to define systolic complexes. We say that

X is flag if every set of vertices of X pairwise connected by edges spans a simplex

of X. A flag simplicial complex is completely determined by its 1–skeleton X(1) or,

equivalently, by its vertex set X(0) and the metric d defined above. For a vertex

v ∈ X the link of v is a subcomplex Lk(v,X) of X, that consists of all the simplices

5
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of X that do not contain v, but together with v span a simplex of X. A cycle in X is

the image of a simplicial map f : S1 → X from the triangulation of the 1–sphere to

X. A cycle is embedded if f is injective. Let γ be an embedded cycle. The length of

γ, denoted by |γ| is the number of edges of γ. A diagonal of γ is an edge in X that

connects two nonconsecutive vertices of γ.

We are ready to define systolic complexes. Our main reference for the theory of

systolic complexes is [JŚ06].

Definition 2.2. Given a natural number k > 6, a simplicial complex X is k–large

if every embedded cycle γ in X with 4 6 |γ| < k has a diagonal. We say that X is

∞–large if it is k–large for every k > 6.

Definition 2.3. A simplicial complex X is k–systolic if it is simply connected and

if for every vertex v ∈ X the link Lk(v,X) is flag and k–large. If k = 6 then we

abbreviate 6–systolic to systolic.

A k–systolic complex is flag and k–large [JŚ06, Proposition 1.4 and Fact 1.2(4)].

Note that if k 6 m then ‘m–systolic’ implies ‘k–systolic’. In this article we will be

interested in the (most general) case of k = 6. This case is of particular importance

in the theory, as for k > 7 one shows that k–systolic complexes are δ–hyperbolic

[JŚ06, Theorem 2.1].

The condition of k–largeness, when applied to the link of a vertex v ∈ X, serves

as a kind of upper bound for the curvature around v. In particular complexes with

6–large links are called complexes of simplicial nonpositive curvature (SNPC). Con-

sequently, systolic complexes can be thought of as simplicial analogues of CAT(0)

metric spaces.

Definition 2.4. Let v ∈ X be a vertex and let n be a positive integer. Define the

ball of radius n centred at v by Bn(v,X) = span{x ∈ X(0) | d(x, v) 6 n} ⊂ X. Define

the sphere of radius n centred at v by Sn(v,X) = span{x ∈ X(0) | d(x, v) = n}. For

a subcomplex A ⊂ X define the ball of radius n around A by

Bn(A,X) =
⋃

v∈A(0)

Bn(v,X).

We also refer to Bn(A,X) as an n–neighbourhood of A in X.

A subcomplex A ⊂ X is convex if for every two vertices x, y ∈ A any geodesic

between x and y in X is contained in A. Note that since geodesics in X are not

necessarily unique, a subcomplex A ⊂ X can be isometrically embedded and not

convex.

6
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Proposition 2.5. Let X be a systolic complex. Then the following hold:

(1) For any convex subcomplex A ⊂ X the ball Bn(A,X) is convex and con-

tractible [JŚ06, Corollary 7.5]. In particular for any vertex v ∈ X the ball

Bn(v,X) is convex and contractible.

(2) The complex X is contractible [JŚ06, Theorem 4.1(1)].

We finish this section with some terminology regarding group actions on simplicial

complexes. Let G be a (discrete) group acting on a simplicial complex X. We assume

that G acts via simplicial automorphisms. We say that the action is:

• proper if for every vertex v ∈ X the stabiliser Gv is finite,

• cocompact if there exists a compact subset K ⊂ X such that G ·K = X,

• geometric if it is proper and cocompact.

A group is called systolic if it acts geometrically on a systolic complex.

2.2. Boundaries of systolic complexes. Given a (noncompact) systolic complex

X one can define the boundary at infinity (or shortly the boundary) ∂X of X. Anal-

ogously to the cases of δ–hyperbolic and CAT(0) spaces, the boundary for systolic

complexes is given by a set of equivalence classes of geodesic rays, such that asymp-

totic rays are equivalent. In this section we give the definition of the boundary and

briefly discuss its key features that are needed in this article. For more details we

refer the reader to [OP09].

The main difference from δ–hyperbolic and CAT(0) cases is that, instead of arbi-

trary geodesic rays, to define the boundary one uses a canonically defined subcollec-

tion of the so-called good geodesic rays. To define good geodesic rays one first defines

good geodesics. The actual definition of good geodesics (which is quite involved) is

needed only in Section 6, and therefore we give this definition in Section 5.

In order to follow the arguments in Sections 3 and 4 it is enough to know that a

good geodesic is a certain geodesic in X, and that the subclass of good geodesics has

the following properties:

(1) for any two vertices there exists a (not necessarily unique) good geodesic

joining these vertices,

(2) any subgeodesic of a good geodesic is a good geodesic,

(3) any simplicial automorphism of X maps good geodesics to good geodesics.

A good geodesic ray is a geodesic ray, such that any of its finite subgeodesics is a

good geodesic. By (3) any simplicial automorphism of X maps good geodesic rays to

good geodesic rays.

Let R denote the set of all good geodesic rays in X. For a vertex O ∈ X let RO
denote the set of all good geodesic rays starting at O.
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Definition 2.6. Let X be a systolic complex. Define the boundary of X to be the

set ∂X = R/ ∼ where for rays η = (v0, v1, . . .) and ξ = (w0, w1, . . .) we have η ∼ ξ if

and only if there exists K > 0, such that for every i > 0 we have d(vi, wi) 6 K.

Define the boundary of X with respect to the basepoint O to be the set ∂OX =

RO/ ∼, where ∼ is the same equivalence relation as above. In both cases let [η]

denote the equivalence class of η.

For any vertex O ∈ X there is a bijection ∂X → ∂OX [OP09, Corollary 3.10].

In particular this means that for every geodesic ray η ⊂ X and for every vertex

O ∈ X there is a ray ξ ⊂ X starting at O such that [η] = [ξ] in ∂X. This fact will

be used many times in this article. The set X = X ∪ ∂OX can be equipped with

a topology that extends the standard topology on X, and turns X into a compact

topological space [OP09, Propositions 4.4 and 5.3]. For any two vertices O,O′ ∈ X
there is a homeomorphism between X∪∂OX and X∪∂O′X [OP09, Lemma 5.5]. Any

simplicial action of a group on X extends to an action by homeomorphisms on X

[OP09, Theorem A(4)].

In this article we will mostly be concerned with the induced action on the boundary,

not on the entire X. Moreover, we will be interested in the action on the boundary

seen as a set, not as a topological space. For this, we can use a slightly simpler

definition.

Definition 2.7. Suppose that a group G acts simplicially on X. We define an action

of G on the set ∂X as follows. Let [η] ∈ ∂X where η = (v0, v1, . . .). Then define

g · [η] = [g · η] where g · η = (g · v0, g · v1, . . .). It is straightforward to check that this

is well defined and it defines an action of G on ∂X.

One can also verify, that via the bijection ∂X → ∂OX the action described above

agrees with the action on ∂OX defined in [OP09].

We conclude this section with certain metric properties of good geodesics. The

following is a crucial property, which can be seen as a coarse version of CAT(0)

inequality for good geodesics.

Theorem 2.8. [OP09, Corollary 3.4] Let (v0, v1, v2, . . . , vn) and (w0, w1, w2, . . . , wm)

be good geodesics in a systolic complex X such that v0 = w0. Then for any 0 6 c 6 1

we have

d(vbcnc, wbcmc) 6 c · d(vn, wm) +D,

where D is a universal constant.

This leads to the following corollary, which will be very useful to us.
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Corollary 2.9. Let η = (v0, v1, v2, . . .) and ξ = (w0, w1, w2, . . .) be good geodesic rays

in a systolic complex X. If [η] = [ξ] in ∂X then for every i > 0 we have

d(vi, wi) 6 d(v0, w0) + 2D + 1,

where D is the constant appearing in Theorem 2.8.

Proof. Since [η] = [ξ], there is a constant K > 0 such that for all i we have d(vi, wi) 6
K. Fix i > 0, pick n > K and let z = (z0 = v0, z1, z2, . . . , wni) be a good geodesic

joining v0 and wni. By Theorem 2.8 applied to (v0, v1, v2, . . . , vni) and z we have

d(vi, zi) 6
1

n
d(vni, wni) +D 6 K

n
+D 6 1 +D. (2.1)

Applying Theorem 2.8 to z and (w0, w1, w2, . . . , wni) (with the direction reversed)

we obtain that d(zi, wi) 6 d(v0, w0) + D. This, together with (2.1) and the triangle

inequality gives the claim. �

3. Almost extendability of systolic complexes

In this section we study a property of metric spaces called the almost extendability.

This property can be defined for arbitrary geodesic metric spaces. The definition we

present is adjusted to the setting of systolic complexes.

Definition 3.1. A systolic complex X is almost extendable, if there exists a constant

E > 0 such that for any two vertices x and y of X, there is a good geodesic ray

starting at y and passing within distance E from x.

It is easy to construct systolic complexes (in fact, trees) that are not almost ex-

tendable. For example, let T denote the half-line R+ with the interval of length n

attached to every integer n ∈ R+. The standard triangulation turns T into a systolic

complex in which every combinatorial geodesic is a good geodesic. One can easily see

that T is not almost extendable. When we equip a systolic complex with a geometric

action of a group then the situation changes.

Theorem 3.2. Let X be a noncompact systolic complex, on which a group G acts

geometrically. Then X is almost extendable.

The analogous theorem is true in the CAT(0) setting [Ont05, Theorem B], and it

is an exercise in the setting of δ–hyperbolic groups (see [Ont05]). Our proof is similar

to the one for CAT(0) spaces, however, it can be seen as more direct. The main

difference is that instead of cohomology with compact supports, our proof uses the

notion of connectedness at infinity. We begin by recalling this notion.
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Definition 3.3. Let Y be a topological space and let n > −1 be an integer. We

say that Y is n–connected at infinity if for every −1 6 k 6 n the following condition

holds: for every compact set K ⊂ Y there exists a compact set L ⊂ Y such that

K ⊂ L and every map Sk = ∂Bk+1 → Y \ L extends to a map Bk+1 → Y \K.

For k = −1 we define S−1 = ∅ and B0 = {∗}. In particular Y is (−1)–connected

at infinity if and only if it is not compact.

Note that if Y is a simplicial complex then (in view of the Simplicial Approximation

Theorem) in the above definition it is enough to consider only simplicial maps.

The following theorem of D. Osajda is the crucial ingredient in the proof of Theo-

rem 3.2.

Theorem 3.4. [Osa07, Theorem 3.2] Let X be a noncompact systolic complex, on

which a group G acts geometrically. Then X is not 1–connected at infinity.

Proof of Theorem 3.2. First we show that it is enough to prove the following claim.

Claim 1. Let p be a fixed vertex. Then there exists a constant E′ such that, for any

g ∈ G there is a good geodesic ray starting at p and passing within E′ from g · p.

Indeed, let x and y be arbitrary vertices of X. By cocompactness there exists

R > 0 and elements g1, g2 ∈ G such that we have d(g1 · p, x) 6 R and d(g2 · p, y) 6 R.

By Claim 1 there exists a good geodesic ray η starting at p and passing within E′

from g−1
1 g2 ·p. Then the ray g1 · η starts at g1 ·p and passes within E′ from g2 ·p, and

hence it passes within E′ +R from y. Now let ξ be a good geodesic ray starting at x

and such that [ξ] = [g1 ·η]. Write g1 ·η = (g1 ·p = v0, v1, . . .) and ξ = (x = w0, w1, . . .).

Then by Corollary 2.9 for every i > 0 we have

d(vi, wi) 6 d(g1 · p, x) + 2D + 1 6 R+ 2D + 1.

Since g1·η passes within E′+R from y, we have that ξ passes within E′+R+R+2D+1

from y. Therefore Claim 1 implies the theorem (with constant E = E′ + R + R +

2D + 1).

The rest of the proof is devoted to proving Claim 1. We need a little preparation.

In what follows, for a good geodesic or a good geodesic ray η we will denote its vertices

by η(i), for i > 0, i.e., η = (η(0), η(1), η(2), . . .). In other words, the geodesic η may

be seen as a map N → X. We still treat η as a subset of X; the above notation is

introduced only to simplify the exposition.

For a good geodesic η let lη denote the supremum of natural numbers l, such that

η can be extended to a good geodesic on the interval [0, l] = {0, 1, . . . , l} ⊂ N. Note

that lη does not have to be attained, in that case we write lη = ∞. Observe that
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if lη < ∞ then there is an extension of η to the interval [0, lη]. If lη = ∞ then by

the fact that X ∪ ∂X is compact, there is an extension of η to the interval [0,∞),

i.e., the geodesic η can be extended to a good geodesic ray. For vertices x, y ∈ X let

[[x, y]] denote a good geodesic between these two vertices. Note that such a geodesic

in general is not unique.

Now we begin the proof of Claim 1. We proceed by contradiction. Assume that

Claim 1 does not hold, then we have the following:

(∗) For every r > 0 there exists gr ∈ G such that for every vertex x ∈ Br(gr · p,X)

we have l[[p,x]] <∞ for every good geodesic [[p, x]].

Claim 2. For every r > 0 we have

sup{l[[p,x]] | [[p, x]] where x ∈ Br(gr · p,X)} <∞.

(The supremum is taken over all possible good geodesics that start at p and end at

a vertex of Br(gr · p,X).)

To prove Claim 2, assume conversely that there exists a sequence of good geodesics

([[p, xi]])i with xi ∈ Br(gr ·p,X), such that l[[p,xi]] →∞ as n→∞. Let ηi denote a good

geodesic extending [[p, xi]] to the interval [0, l[[p,xi]]] (we choose one for each i). Using

a diagonal argument, out of the sequence (ηi)i one constructs an infinite geodesic

ray ξ that issues from p, and such that for any interval [0, l] we have ξ
∣∣
[0,l]

= ηi for

some i = il (cf. [OP09, Proposition 5.3]). In particular, the ray ξ intersects the ball

Br(gr · p,X), which contradicts (∗).

Claim 3. For every r > 0 there exists r′ > r such that for every vertex y ∈ X \
Br′(p,X), every good geodesic [[p, y]] misses the ball Br(gr · p,X), i.e., we have

[[p, y]] ∩Br(gr · p,X) = ∅.

Note that we have p /∈ Br(gr · p,X), for otherwise we would get a contradiction

with (∗) as there always is a geodesic ray issuing from p (since X is noncompact).

Let r′ = sup{l[[p,x]] | [[p, x]] where x ∈ Br(gr · p,X)}. Then the claim follows from the

definition of r′.

Claim 4. The complex X is 1–connected at infinity.

First observe that since X is noncompact, it is (−1)–connected at infinity. Let

K ⊂ X be a compact subset. Take M > 0 such that K ⊂ BM (p,X) and consider the

ball BM+D+2(p,X), where D is the constant appearing in Theorem 2.8 (the reason

why we need to pass to the larger ball will become clear later on).

Pick r > M + D + 2. By Claim 3 (after ‘translating its statement by g−1
r ’) there

exists r′ > r such that every good geodesic joining a vertex y ∈ X \ Br′(g−1
r · p,X)
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with g−1
r · p, misses the ball Br(p,X). Set L = Br′(g

−1
r · p,X). By construction we

have K ⊂ L, and g−1
r · p ∈ L \K.

Suppose f : S0 → X \ L is a simplicial map. Let v1 and v2 be the two vertices in

the image of f . For i ∈ {0, 1} let ηi be a good geodesic joining g−1
r · p with vi. Both

ηi miss the ball Br(p,X) (and hence they miss K) and therefore their union defines

a map F : B1 → X \K that extends f . This shows that X is 0–connected at infinity.

Now let f : S1 → X \ L be a simplicial map. Let (v0, v1, . . . , vn, vn+1 = v0) be the

vertices of the image of f appearing in this order, i.e., for all i vertices vi and vi+1

are adjacent. For every i ∈ {0, . . . , n} let ηi be a good geodesic joining g−1
r · p and

vi. Observe that no ηi intersects the ball Br(p,X). We will use ηi’s to construct the

required extension of f to the disk B2.

For any i consider the cycle αi ⊂ X which is the union

αi = ηi ∪ ηi+1 ∪ [vi, vi+1].

We will show that αi can be contracted to a point in its (D + 2)–neighbourhood.

First note that either ηi and ηi+1 have the same length, or their lengths differ by 1.

In the first case put k = d(g−1
r · p, vi) = d(g−1

r · p, vi+1). Since ηi and ηi+1 start at

the same vertex and end at vertices that are adjacent, it follows from Theorem 2.8

that for any j ∈ {0, 1, . . . , k} we have

d(ηi(j), ηi+1(j)) 6 D + 1.

For any j ∈ {0, . . . , k} let βij be a geodesic between ηi(j) and ηi+1(j) (note that βi0
is the vertex g−1

r · p and βik is the edge [vi, vi+1]). Now for every j ∈ {0, . . . , k − 1}
consider a cycle γij defined as

γij = βij ∪ [ηi+1(j), ηi+1(j + 1)] ∪ βij+1 ∪ [ηi(j), ηi(j + 1)].

By construction γij is contained in the ball BD+2(ηi(j), X) and therefore it can be con-

tracted inside BD+2(ηi(j), X), as balls in X are contractible (see Proposition 2.5.(1)).

These contractions of γij for all j ∈ {0, . . . , k} form a contraction of αi inside the ball

BD+2(ηi, X) around the geodesic ηi. (Formally, by a contraction we mean a simpli-

cial map from a simplicial disk f : B2 → BD+2(ηi, X) such that f maps the boundary

∂B2 isomorphically onto αi.)

In the second case, assume that ηi+1 is longer than ηi, i.e., we have d(g−1
r ·p, vi) = k

and d(g−1
r · p, vi+1) = k+ 1. In this case the concatenation ηi ∪ [vi, vi+1] is a geodesic.

Then it follows from [JŚ06, Lemma 7.7] that ηi+1(k) and vi are adjacent, and therefore

ηi+1(k), vi and vi+1 span a 2–simplex. Now ηi and ηi+1

∣∣
[0,k]

are of the same length

and their endpoints vi and ηi+1(k) are adjacent. Proceeding as in the first case we
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obtain a contraction of the cycle

ηi ∪ ηi+1

∣∣
[0,k]
∪ [vi, ηi+1(k)]

inside the ball BD+2(ηi, X). Adding the 2–simplex [vi, ηi+1(k), vi+1] we obtain the

desired contraction of αi = ηi ∪ ηi+1 ∪ [vi, vi+1].

Finally, contractions of αi for all i ∈ {0, . . . , n} form the contraction of (v0, . . . vn, v0)

that is performed in the (D+2)–neighbourhood of the union of all ηi’s. Since every ηi

misses the ball Br(p,X), the (D + 2)–neighbourhood of ηi misses the ball BM (p,X)

as r > M + D + 2, and hence it misses K as K ⊂ BM (p,X). We conclude that the

constructed contraction of (v0, . . . , vn, v0) defines the extension of f that misses K.

This finishes the proof of Claim 4.

This gives a contradiction with Theorem 3.4 and hence proves Claim 1. �

4. Isometries acting trivially on the boundary

In this section, given a group G acting geometrically on a systolic complex X, we

investigate which elements of G act trivially on the boundary ∂X. Before proving

the main theorem which characterises such elements in terms of their centralisers in

G, we introduce the terminology and briefly discuss the tools needed in the proof.

4.1. Hyperbolic isometries and their K–displacement sets. Let h be an isom-

etry (i.e., a simplicial automorphism) of a systolic complex X. We say that h is

hyperbolic if it does not fix any simplex of X. If h is hyperbolic, then any of its

powers is hyperbolic as well ([Els09b]). To such h one associates the displacement

function dh : X(0) → N defined as dh(x) = d(x, h · x). The minimum of dh (which is

always attained) is called the translation length of h and is denoted by L(h).

Definition 4.1. Let h be a hyperbolic isometry of a systolic complex X. The minimal

displacement set Min(h) is the subcomplex ofX spanned by all the vertices ofX which

are moved by h the minimal distance, i.e.:

Min(h) = span{x ∈ X(0) | d(x, h · x) = L(h)}.

More generally, for a natural number K > L(h) define the K–displacement set as

DispK(h) = span{x ∈ X(0) | d(x, h · x) 6 K}.

Clearly we have DispK(h) ⊂ DispK′(h) for K 6 K ′ and DispL(h)(h) = Min(h).

Let us mention that Min(h) is a systolic complex on its own, and its inclusion into

X is an isometric embedding ([Els09b]). We do not know whether the same is true for
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DispK(h) for K > L(h). In this article we are interested only in the coarse-geometric

behaviour of DispK(h).

Observe that if x ∈ X is a vertex such that d(x,DispK(h)) 6 C for some C > 0,

then by the triangle inequality we have d(x, h · x) 6 K + 2C. This means that

BC(DispK(h), X) ⊆ DispK+2C(h). In the presence of a geometric action of a group,

the (partial) converse also holds.

Lemma 4.2. Let G be a group acting geometrically on a systolic complex X and

suppose that h ∈ G is a hyperbolic isometry. Pick K > L(h). Then there exists

C > 0 such that for all K ′ 6 K we have DispK(h) ⊂ BC(DispK′(h), X).

The lemma is an easy consequence of the following theorem.

Theorem 4.3. Let G act geometrically on a systolic complex X, and let h ∈ G

be a hyperbolic isometry. Then for any K > L(h) the centraliser CG(h) ⊂ G acts

geometrically on the subcomplex DispK(h) ⊂ X.

Proof. The proof is a verbatim translation of K. Ruane’s proof of a similar result for

CAT(0) spaces [Rua01, Theorem 3.2]. The original proof treats only the case where

DispK(h) = Min(h), however it is straightforward to check that it carries through for

any DispK(h). We include the proof for the sake of completeness.

First we check that CG(h) leaves DispK(h) invariant. Let x ∈ DispK(h) be a vertex

and take g ∈ CG(h). Then we have

d(g · x, hg · x) = d(g · x, gh · x) = d(x, h · x) 6 K

and thus g · x ∈ DispK(h). Observe that the action of CG(h) on DispK(h) is proper,

since the action of G on X is proper. We only need to check cocompactness. We

proceed by contradiction. Assume that there is no compact subset of DispK(h) whose

CG(h)–translates cover DispK(h), and pick a vertex x0 ∈ DispK(h). Then there exists

a sequence of vertices (xn)∞n=1 of DispK(h) such that d(CG(h)·x0, xn)→∞ as n→∞.

Let D ⊂ X be a compact set containing x0 such that G ·D = X, and let (gn)∞n=1 be

a sequence of elements of G such that gn · xn ∈ D. We can assume (by passing to a

subsequence if necessary) that gn 6= gm for n 6= m. Indeed, we have

d(x0, g
−1
n · x0) > d(x0, xn)− diamD →∞ as n→∞.

Now consider the family of elements {gnhg−1
n }n>1 of G. We claim that the dis-

placement functions dgnhg−1
n

are uniformly bounded on D. Let y ∈ D be a vertex.
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We have

dgnhg−1
n

(y) = d(y, gnhg
−1
n · y)

6 d(y, gn · xn) + d(gn · xn, gnhg−1
n (gn · xn))

+ d(gnhg
−1
n (gn · xn), gnhg

−1
n · y)

= d(y, gn · xn) + d(gn · xn, gnh · xn) + d(gnh · xn, gnhg−1
n · y)

6 diam(D) +K + diam(D).

Since G acts properly, it must be gnhg
−1
n = gmhg

−1
m for n 6= m (after passing to

a subsequence). Therefore for all n 6= m we have that g−1
m gn ∈ CG(h). Now for any

n 6= 1 we get

d(xn, g
−1
n g1 · x0) 6 d(xn, g

−1
n g1 · x1) + d(g−1

n g1 · x1, g
−1
n g1 · x0) 6 diam(D) + d(x0, x1).

This gives a contradiction since g−1
n g1 ∈ CG(h), and by the choice of xn we have

that d(xn, CG(h) · x0)→∞ as n→∞. �

We are ready now to prove Lemma 4.2.

Proof of Lemma 4.2. Pick any K ′ 6 K and let x0 ∈ DispK′(h) be a vertex. By

Theorem 4.3 the centraliser CG(h) acts cocompactly on DispK(h). Hence there exists

R > 0 such that DispK(h) ⊂ CG(h) ·BR(x0, X). Since CG(h) ·x0 ⊂ DispK′(h), taking

R as C proves the lemma. �

Remark 4.4. We believe that in Lemma 4.2 one can obtain a concrete distance es-

timate, i.e., in the formula DispK′(h) ⊂ BC(DispK(h), X) one can express C as an

explicit function of K and K ′. However, for our purposes, the existence of any con-

stant C is sufficient.

4.2. Trivial action on the boundary. In this section we characterise hyperbolic

isometries that act trivially on the boundary as being virtually central. More precisely,

we show the following.

Theorem 4.5. Let G be a group acting geometrically on a systolic complex X, and

let h ∈ G be a hyperbolic isometry. Then h acts trivially on the boundary ∂X if and

only if the centraliser CG(h) has finite index in G.

The theorem is a systolic analogue of a theorem of K. Ruane for CAT(0) spaces

[Rua01, Theorem 3.4]. In a certain way, our situation is more restrictive. Namely,

by [OP16, Corollary 5.8] the centraliser CG(h) is commensurable with the product

Fn × Z, where Fn is the free group on n generators for some n > 0. It follows that

either of the assertions of Theorem 4.5 holds true if and only if the group G itself is

commensurable with Fn × Z.
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Proof of Theorem 4.5. “if” direction. By Theorem 4.3 the centraliser CG(h) acts

cocompactly on the minimal displacement set Min(h)⊂ X. Since the index [G : CG(h)]

is finite, it follows that the action of CG(h) on X is cocompact as well. Therefore

there exists a constant K > 0 such that for any vertex x ∈ X, there is a vertex

y ∈ Min(h) with d(x, y) 6 K. Hence, by the triangle inequality, for any x ∈ X we

have d(x, h · x) 6 L(h) + 2K.

Now let η = (v0, v1, v2, . . .) be a good geodesic ray in X. For any i > 0 we have

d(vi, h · vi) 6 L(h) + 2K and hence [η] = [h · η] in ∂X.

“only if” direction. Choose a vertex y ∈ X and let x ∈ X be an arbitrary

vertex. By Theorem 3.2 there exists a good geodesic ray η = (v0, v1, v2, . . .) such that

v0 = y and for some i > 0 we have d(vi, x) 6 E, where E is a constant independent

of x and y.

The isometry h acts trivially on the boundary, so we have [η] = [h · η]. Applying

Corollary 2.9 we obtain

d(vi, h · vi) 6 d(v0, h · v0) + 2D + 1,

where D is the constant appearing in Theorem 2.8. In other words, we have vi ∈
DispK(h) where K = d(v0, h ·v0) + 2D+ 1. Since d(vi, x) 6 E, the triangle inequality

implies that x ∈ DispK+2E(h) (see the discussion after Definition 4.1). Because x was

arbitrary, we have X = DispK+2E(h). By Theorem 4.3 the centraliser CG(h) acts

cocompactly on X and so it has finite index in G. �

We obtain the following corollary.

Corollary 4.6. Let G be a torsion-free group, acting geometrically on a systolic

complex X. Then G acts trivially on ∂X if and only if G ∼= Z or G ∼= Z2.

Proof. If G is isomorphic to either Z or Z2 then every element of G is central, and by

Theorem 4.5 it acts trivially on ∂X.

Now assume that G acts trivially on ∂X. Since G is torsion-free, all of its elements

are hyperbolic, and therefore by Theorem 4.5 every element is virtually central. Pick

h ∈ G. By [OP16, Corollary 5.8] the centraliser CG(h) contains a finite-index sub-

group H ∼= Fn × Z, where Fn is the free group on n generators for some n > 0. We

must have n 6 1 for otherwise no non-trivial element of Fn would be virtually central

in G. This means that H is isomorphic to either Z or Z2. Now since H has finite

index in CG(h) and CG(h) has finite index in G we get that H has finite index in G.

If H ∼= Z then G is a virtually cyclic torsion-free group, and hence it must be

isomorphic to Z. If H ∼= Z2 then G is a torsion-free group that contains Z2 as a

finite-index subgroup. Such G must be isomorphic to either Z2 or to the fundamental

16

100



HYPERBOLIC ISOMETRIES AND BOUNDARIES

group of the Klein bottle. Since the latter contains elements that are not virtually

central, we conclude that G ∼= Z2. �

5. Good geodesics

The proofs in Section 6 require going through the construction of good geodesics

(unlike proofs in previous sections, where only certain ‘formal’ properties were needed).

In this section we give a sketch of this construction.

In order to define good geodesics we first describe the construction of Euclidean

geodesics. This construction is fairly involved, and hence it is divided into a few

steps. Our exposition is based on [OP09, Sections 7–9] (we refer the reader there

for the proofs of various statements discussed below). Throughout this section let X

be a systolic complex. Some notions appearing in the construction are presented in

Figures 1 and 2 in Section 6 (in the special case of X = E2
∆).

5.1. Directed geodesics. Let x, y ∈ X be two vertices and put n = d(x, y). A

directed geodesic from x to y is a sequence of simplices (σi)
n
i=0 such that σ0 = x,

σn = y and the following two conditions are satisfied:

(1) any two consecutive simplices σi and σi+1 are disjoint and together they span

a simplex of X,

(2) for any three consecutive simplices σi−1, σi, σi+1we have

Res(σi−1, X) ∩B1(σi+1, X) = σi,

where Res(σi−1, X) is the union of all simplices of X that contain σi−1.

A directed geodesic from x to y always exists and it is unique. One can show that

σi ⊂ Si(x,X) ∩ Sn−i(y,X), and therefore any sequence of vertices (vi)
n
i=0 such that

vi ∈ σi is a geodesic. Finally, as the name suggests, directed geodesics in general are

not symmetric – usually a directed geodesic from x to y is not equal to a directed

geodesic from y to x.

5.2. Layers. The intersection Si(x,X) ∩ Sn−i(y,X) is called the layer i between x

and y and it is denoted by Li. For any i the layer Li is convex and ∞–large. (Layers

in fact can be defined in the same way for any two convex subcomplexes V and W

such that for every v ∈ V and w ∈W one has d(v, w) = n for some fixed n > 0.)

Convention 5.1. Suppose that (σi)
n
i=0 is a directed geodesic from x to y and (τi)

n
i=0

is a directed geodesic from y to x. We introduce the following convention: despite

(σi)
n
i=0 and (τi)

n
i=0 go in the opposite directions, we index simplices of (τi)

n
i=0 in the

same direction as for (σi)
n
i=0, i.e., τ0 = x, τ1, . . . , τn−1, τn = y.
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Observe that both σi and τi are contained in the layer Li. Define the thickness

of layer Li (with respect to (σi)
n
i=0 and (τi)

n
i=0) to be the maximal distance between

vertices of σi and τi (since layers are convex, this distance is always realised inside

Li). The layer is thin if its thickness is at most 1, and it is thick otherwise.

A pair of indices (j, k) such that 0 < j < k < n and j < k − 1 is called a thick

interval if layers Lj and Lk are thin, and for every i such that j < i < k the layer Li is

thick. If for some i we have j < i < k then we say that i belongs to the interval (j, k).

5.3. Characteristic surfaces. Let (j, k) be a thick interval and let si ∈ σi and

ti ∈ τi be vertices such that for any j 6 i 6 k the distance between si and ti is equal

to the thickness of layer Li. Consider the sequence of vertices

(sj , sj+1, . . . , sk−1, sk, tk, tk−1, . . . , tj+1, tj , sj).

Observe that any two consecutive vertices in the above sequence are adjacent and

therefore this sequence defines a closed loop which we denote by γ. In fact γ is

always an embedded loop (this amounts to saying that sj 6= tj and sk 6= tk).

Let S : ∆ → X be a minimal surface spanned by γ, i.e., a simplicial map from a

triangulation of a 2–disk ∆ such that:

(1) the boundary of ∆ is mapped isomorphically to γ,

(2) the disk ∆ consists of the least possible number of triangles (among all disks

∆′ for which there exists a simplicial map S′ : ∆′ → X satisfying (1)).

We call S : ∆ → X a characteristic surface (for the thick interval (j, k)) and we call

∆ a characteristic disk. It is a standard fact that a minimal disk is always systolic,

i.e., every of its internal vertices is incident to at least 6 triangles.

The cycle γ does not have to be unique, and hence there could be many charac-

teristic surfaces. For any two characteristic surfaces S : ∆ → X and S′ : ∆′ → X

the disks ∆ and ∆′ are isomorphic. We can thus identify all such disks and denote

the characteristic disk by ∆. Now for any simplex ρ ∈ ∆ the images S(ρ) for all

possible characteristic surfaces span a simplex of X, which we denote S(ρ). This as-

signment, called the characteristic mapping, respects inclusions, i.e., if ρ1 ⊆ ρ2 then

S(ρ1) ⊆ S(ρ2).

5.4. Geometry of characteristic disks. For any i such that j 6 i 6 k, let vi and

wi be vertices of ∆ that are preimages of si and ti respectively, for some characteristic

surface S : ∆→ X. In fact vertices vi and wi are uniquely defined and the sequence

(vj , vj+1, . . . , vk−1, vk, wk, wk−1, . . . , wj+1, wj , vj)

constitutes the boundary of the disk ∆.
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Denote by E2
∆ the equilateral triangulation of the Euclidean plane. Clearly E2

∆

viewed as a simplicial complex is systolic. One shows that the characteristic disk

∆ can be isometrically embedded in E2
∆ (such disk is called flat). Moreover, after

embedding ∆ ⊂ E2
∆, the edges [vj , wj ] and [vk, wk] are parallel, and consecutive layers

in ∆ between them are contained in straight lines of E2
∆ (treated as subcomplexes of

E2
∆), that are parallel to the lines containing [vj , wj ] and [vk, wk]. In particular for

any i the vertices vi and wi lie on a straight line inside E2
∆. The subpath of this line

between vi and wi is the unique geodesic between vi and wi in ∆, which we denote

by viwi. The geodesic viwi is in fact equal to the entire layer i in ∆ (between the

edges [vj , wj ] and [vk, wk]).

Finally, for any characteristic surface S : ∆ → X (and hence for a characteristic

mapping S : ∆→ X as well) the image of the geodesic viwi is contained in the layer

i in X. Also, any characteristic surface S : ∆ → X restricted to viwi is an isometric

embedding.

5.5. Euclidean diagonals. Given the characteristic disk ∆, for every i ∈ {j, . . . , k}
let v′i and w′i be points on the unique geodesic between vi and wi in ∆, that are at

distance 1
2 from vi and wi respectively. In particular v′j = w′j and v′k = w′k. Consider

a piecewise linear loop defined as the concatenation of straight segments between

consecutive points in the sequence

(v′j = w′j , v
′
j+1, . . . v

′
k−1, v

′
k = w′k, w

′
k−1, . . . , w

′
j+1, w

′
j = v′j),

and let ∆′ be a polygonal domain inside ∆ enclosed by this loop. We call ∆′ the

modified characteristic disk. We endow ∆′ with a path metric induced from the

Euclidean metric on E2
∆
∼= E2. Observe that ∆′ is simply connected, and therefore

this path metric is in fact a CAT(0) metric. (The disk ∆′ does not have to be a

convex subset of E2
∆ with respect to the Euclidean metric on E2

∆, and therefore a

CAT(0) geodesic inside ∆′ does not have to be a straight line.)

The Euclidean diagonal of ∆ is a sequence of simplices (ρi)
k−1
j+1 of ∆ defined as

follows. Let α be a CAT(0) geodesic in ∆′ between points v′j = w′j and v′k = w′k. For

every i such that j < i < k choose vertices on the geodesic viwi, that are closest to

the point of intersection α ∩ viwi. For any i, it is either a single vertex, in that case

we put ρi to be that vertex, or in the case when α goes through the barycentre of

some edge of viwi, then we put ρi to be this edge. One can show that the Euclidean

diagonal for ∆ satisfies the following two conditions:

(1) for any i such that j < i < k − 1 simplices ρi and ρi+1 span a simplex,

(2) vertices vj , wj , σj+1 span a simplex and vertices vk, wk, ρk−1 span a simplex

(in particular ρj+1 and ρk−1 are necessarily vertices).
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5.6. Euclidean geodesics. We are ready now to define Euclidean geodesics.

Definition 5.2. The Euclidean geodesic between vertices x and y in X, such that

d(x, y) = n is the sequence of simplices (δi)
n
i=0 defined as follows. For any i such that

0 < i < n, if the layer Li is thin then set

δi = span{σi, τi},

where σi and τi are the simplices of the directed geodesics between x and y that are

contained in layer Li. For any i such that the layer Li is thick, consider the thick

interval (j, k) that contains i and put

δi = S(ρi),

where ρi is the simplex of Euclidean diagonal that is contained in the layer i in the

characteristic disk for (j, k), and S denotes the characteristic mapping. Finally let

δ0 = x and δn = y.

By definition, consecutive simplices of the Euclidean geodesic (δi)
n
i=0 are contained

in consecutive layers between x and y. Unlike for directed geodesics, not every two

consecutive simplices δi, δi+1 span a simplex of X. However, the following holds.

Proposition 5.3. [OP09, Remark 3.1] Suppose (δi)
n
i=0 is a Euclidean geodesic be-

tween vertices x and y. Then there exists a sequence of vertices (vi)
n
i=0 such that

vi ∈ δi and (vi)
n
i=0 is a geodesic.

Also note that Euclidean geodesics are symmetric with respect to their endpoints.

We now present two theorems describing the crucial properties of Euclidean geodesics.

The first one, roughly speaking, says that Euclidean geodesics are coarsely closed

under taking subsegments. The second one is a coarse form of a CAT(0) inequality

for Euclidean geodesics.

Theorem 5.4. [OP09, Theorem B] Let (δi)
n
i=0 be a Euclidean geodesic between ver-

tices x and y. Take j, k ∈ {0, . . . , n} with j < k and let (ri)
k
i=j be a geodesic such that

ri ∈ δi for i ∈ {j, . . . , k}. Let (δj,ki )ki=j denote the Euclidean geodesic between vertices

rj and rk. Then for every i ∈ {j, . . . , k} for any vertices vi ∈ δi and ui ∈ δj,ki we have

d(vi, ui) 6 C,

where C > 0 is a universal constant.

Theorem 5.5. [OP09, Theorem C] Let x, y and ỹ be vertices of X with d(x, y) = n

and d(x, ỹ) = m. Let (vi)
n
i=0 and (ṽi)

m
i=0 be geodesics such that for all appropriate i we
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have vi ∈ δi and ṽi ∈ δ̃i, where (δi)
n
i=0 and (δ̃i)

m
i=0 are the Euclidean geodesics between

x and y and between x and ỹ respectively. Then for any 0 6 c 6 1 we have

d(vbcnc, ṽbcmc) 6 c · d(vn, ṽm) + C,

where C > 0 is a universal constant.

5.7. Good geodesics. From now on let C > 0 be a fixed constant which satisfies

the assertions of both Theorem 5.4 and Theorem 5.5. In particular this means that

C > 200 ([OP09, p. 2877]). Having an explicit lower bound will be needed in Section 6.

Theorem 5.4 presents a model behaviour, which motivates the definition of good

geodesics.

Definition 5.6 (C ′–good geodesic). Let (vi)
n
i=0 be a geodesic in X. For j, k ∈

{0, . . . , n} let (δj,ki )ki=j denote the Euclidean geodesic between vertices vj and vk. We

say that (vi)
n
i=0 is a C ′–good geodesic if for every two vertices vj and vk, for every

i ∈ {j, . . . , k} for any vertex ui ∈ δj,ki we have

d(vi, ui) 6 C ′,

where C ′ > 0 is a positive constant. An infinite geodesic is a C ′–good geodesic if

every of its finite subgeodesics is a C ′–good geodesic. Observe that for a C ′–good

geodesic any of its subgeodesics is a C ′–good geodesic as well.

Definition 5.7 (Good geodesic). A geodesic (vi)i (finite or infinite) is a good geodesic

if it is a C–good geodesic.

In particular, by Theorem 5.4 any geodesic arising from Proposition 5.3 is a good

geodesic. Consequently, any two vertices of X can be joined by a good geodesic (cf.

[OP09, Corollary 3.3]).

We finish this section with the following two remarks.

Remark 5.8. By going through the steps of the construction, one observes that the

directed, Euclidean, and good geodesics are preserved by simplicial automorphisms

of X.

Remark 5.9. The main goal of the construction outlined in this section is to establish

Theorem 2.8. This theorem plays the key role in showing various properties of the

boundary in [OP09]. Theorem 2.8 follows easily from Definition 5.7, Proposition 5.3

and Theorem 5.5. In particular, the constant D appearing in Theorem 2.8 may be

taken to be 3C.
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6. Fixed points on the boundary

The purpose of this section is to show that every hyperbolic isometry h of a systolic

complex X fixes a pair of points on the boundary. These two points, denoted by h+∞

and h−∞ are the canonical fixed points of h, in the sense that for any vertex x ∈ X
we have (hn · x)n → h+∞ and (h−n · x)n → h−∞ as n→∞ in X = X ∪ ∂X.

To obtain h+∞ and h−∞ we show that there exists a bi-infinite good geodesic γ

such that γ and h ·γ are asymptotic. In principal, one could expect a stronger result,

namely the existence of an h–invariant good geodesic. However, there are examples

of systolic complexes where a hyperbolic isometry has no invariant geodesics at all

[Els09b, Example 1.2]. It is true though, that for every hyperbolic isometry h there

is a geodesic γ, such that h · γ and γ are Hausdorff 1–close [Els09b, Theorem 1.3].

Unfortunately, in our construction the distance between h ·γ and γ depends on L(h).

Theorem 6.1. Let X be a systolic complex on which a group G acts geometrically.

Let h ∈ G be a hyperbolic isometry. Then either there exists a bi-infinite good geodesic

which is contained in DispK(h) for some K = K(h) and DispK(h) is h–cocompact,

or there exists an h–invariant good geodesic.

We now state and prove the main result of this section assuming Theorem 6.1.

Proposition 6.2. Let G be a group acting geometrically on a systolic complex X and

let h ∈ G be a hyperbolic isometry. Then:

(1) there exist points h−∞ and h+∞ in the boundary ∂X which are fixed by h,

(2) for any vertex x ∈ X we have (hn · x)n → h+∞ and (h−n · x)n → h−∞ as

n → ∞ in the compactification X = X ∪ ∂OX, where O ∈ X is some base

vertex.

Since for any two vertices O,O′ ∈ X there is a homeomorphism between X ∪ ∂OX
and X ∪ ∂O′X (see Subsection 2.2), the choice of O does not really matter. In order

to simplify the argument we will choose O during the proof.

Proof. To show that a sequence (xn)∞n=0 converges to a point [ξ] ⊂ ∂OX in X, it is

enough to find a sequence (vn)∞n=0 ⊂ ξ, such that d(vn, O)→∞ as n→∞ and such

that d(vn, xn) is uniformly bounded (see [OP09, Definition 4.1]).

By Theorem 6.1 there either exists a bi-infinite good geodesic γ ⊂ DispK(h) and

DispK(h) is h–cocompact, or there exists an h–invariant good geodesic γ. We first

give the proof assuming that there exists a good geodesic γ which is h–invariant.

Choose a vertex O ∈ γ and parametrise vertices of γ by integers such that γ(0) = O

and h·γ(0) = γ(L(h)). Then γ splits into two good geodesic rays γ
∣∣
[0,+∞]

and γ
∣∣
[0,−∞]
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starting at O. Define h+∞ = [γ
∣∣
[0,+∞]

] and h−∞ = [γ
∣∣
[0,−∞]

]. Since γ is h–invariant,

for every i > 0 we have

d(γ
∣∣
[0,±∞]

(i), h · γ
∣∣
[0,±∞]

(i)) = L(h),

and thus both h+∞ and h−∞ are fixed by h.

Let x ∈ X be an arbitrary vertex and let M = d(x,O). For any n > 0 we have:

(1) hn ·O ∈ γ
∣∣
[0,+∞]

,

(2) d(hn ·O,O)→∞ as n→∞,

(3) d(hn · x, hn ·O) = M .

This implies that hn · x→ [γ
∣∣
[0,+∞]

] = h+∞ and h−n · x→ [γ
∣∣
[0,−∞]

] = h−∞.

In the case where γ ⊂ DispK(h) is a bi-infinite good geodesic and DispK(h) is

h–cocompact we proceed similarly as above. Choosing a vertex O ∈ γ splits γ into

two good geodesic rays. We denote them by γ
∣∣
[0,+∞]

and γ
∣∣
[0,−∞]

, even though we did

not specify how we choose an orientation of γ (it will become clear from the proof).

Consequently, let h+∞ = [γ
∣∣
[0,+∞]

] and h−∞ = [γ
∣∣
[0,−∞]

]. Both γ
∣∣
[0,+∞]

and γ
∣∣
[0,−∞]

are contained in DispK(h) and therefore for every i > 0 we have

d(γ
∣∣
[0,±∞]

(i), h · γ
∣∣
[0,±∞]

(i)) 6 K,

and hence h fixes both h+∞ and h−∞.

Let x ∈ X be an arbitrary vertex and let M = d(x,O). Since DispK(h) is h–

cocompact and γ is bi-infinite it follows that there exists R > 0 such that

DispK(h) ⊂ BR(γ,X).

Consider the sequence (hn ·O)n. We do not necessarily have (hn ·O)n ⊂ γ
∣∣
[0,∞]

, but

for any n > 0 there exists a vertex vn ∈ γ
∣∣
[0,∞]

with d(hn · O, vn) 6 R. Then, by

the triangle inequality we have d(O, vn) → ∞ as n → ∞ since d(O, hn · O) → ∞ as

n→∞. Finally, for any n > 0 we have

d(hn · x, vn) 6 d(hn · x, hn ·O) + d(hn ·O, vn) 6M +R,

and therefore hn · x→ [γ
∣∣
[0,+∞]

] = h+∞ and h−n · x→ [γ
∣∣
[0,−∞]

] = h−∞. �

It remains to prove Theorem 6.1. Since the proof is fairly long we outline it first.

Outline of the proof of Theorem 6.1. Observe that the action of h on X preserves

Min(h). We consider two cases: when Min(h) is h–cocompact and when it is not

h–cocompact. These two cases will lead to the two respective claims of the theorem.

In the first case we show in Lemma 6.3 that for any two vertices x, y ∈ Min(h) the

Euclidean geodesic between these vertices is contained in DispK(h) for some K > 0.

This is achieved by showing that both directed geodesics between these vertices, and
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characteristic disks spanned by those geodesics, belong to DispK(h). The main tool in

the proof of Lemma 6.3 is the Fellow Traveller Property of directed geodesics. Then

we construct the desired good geodesic, roughly, as a limit of good geodesics between

vertices h−n · x and hn · x for a fixed vertex x ∈ Min(h).

In the second case, since CG(h) acts geometrically on Min(h), we deduce that

there is a hyperbolic isometry g that commutes with h, such that 〈g, h〉 ∼= Z2. Thus

by the systolic Flat Torus Theorem there is a flat F ⊂ X on which the subgroup

〈g, h〉 acts by translations. Then using Lemma 6.4 we find an h–invariant C ′–good

geodesic inside F (treated as a systolic complex on its own), for a certain C ′ > 0.

By Lemma 6.5 any C ′–good geodesic in F is a (C ′ + 10)–good geodesic in X. In the

above procedure we are able to choose C ′ so that C ′+ 10 is less than C and therefore

the constructed (C ′ + 10)–good geodesic is a good geodesic in X.

Before giving the proof of Theorem 6.1 we state and prove the three lemmas men-

tioned above.

Lemma 6.3. Consider two vertices x, y ∈ Min(h) ⊂ X and let (δi)
n
i=0 be the

Euclidean geodesic between x and y. Then we have (δi)
n
i=0 ⊂ DispK(h), where

K = 9 · L(h) + 6.

Proof. Let (σi)
n
i=0 be a directed geodesic from x to y (i.e., σ0 = x and σn = y).

Then, by the Fellow Traveller Property [JS06, Proposition 11.2] applied to directed

geodesics (σi)
n
i=0 and (h · σi)ni=0, for each i ∈ {0, . . . , n} for any vertex s ∈ σi we have

d(s, h · s) 6 3 ·max{d(x, h · x), d(y, h · y)}+ 1 = 3 · L(h) + 1,

since x, y ∈ Min(h). Put K ′ = 3 · L(h) + 1. By the above inequality we get that

(σi)
n
i=0 ⊂ DispK′(h).

Now let (σi)
n
i=0 be as above, and let (τi)

n
i=0 be the directed geodesic from y to x (see

Convention 5.1). Clearly, by the argument above, we also have (τi)
n
i=0 ⊂ DispK′(h).

If for some i ∈ {0, . . . , n} the layer Li is thin, then by definition δi = span{σi, τi} and

therefore it is contained in DispK′(h), since both σi and τi are so. If the layer Li is

thick then we proceed as follows.

Take any vertex z ∈ δi. We claim that there exist vertices si ∈ σi and ti ∈ τi and a

geodesic α between si and ti, such that z lies on α. Indeed, consider a thick interval

that contains i, let ∆ be an appropriate characteristic disk and let viwi be a geodesic

in ∆ that is the layer i in ∆. Any characteristic surface S : ∆ → X restricted to

viwi is an isometric embedding. Moreover, any vertex of δi lies in the image S(viwi)

for some such surface. Take a surface S : ∆ → X such that z ∈ S(viwi) and put

si = S(vi), ti = S(wi) and let α = S(viwi). This proves the claim.
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Put m = d(si, ti) and let (ρj)
m
j=0 be a directed geodesic from si to ti (actually, here

the direction is not important). Let (uj)
m
j=0 be a geodesic such that uj ∈ ρj for every

j ∈ {0, . . . ,m} (in particular u0 = si and um = ti).

Since the layer Li is convex, both α and (uj)
m
u=0 are contained in Li. Since Li is∞–

large, any two geodesics with the same endpoints are Hausdorff 1–close [JŚ06, Lemma

2.3]. Therefore α and (uj)
m
j=0 are 1–close. Finally, by the Fellow Traveller Property

(applied to (ρj)
m
j=0 and (h · ρj)mj=0) for any j ∈ {0, . . . ,m} we have

d(uj , h · uj) 6 3 ·max{d(si, h · si), d(ti, h · ti)}+ 1 6 3 ·K ′ + 1,

since both si and ti belong to DispK′(h). Because α and (uj)
m
j=0 are 1–close and z ∈ α,

the above inequality implies that d(z, h·z) 6 3·K ′+1+2 and hence z ∈ Disp3K′+3(h).

Since z ∈ δi was arbitrary we obtain that δi ⊂ Disp3K′+3(h) for any i such that Li is

thick. This, together with the assertion that δi ⊂ DispK′(h) for any i such that Li is

thin, finishes the proof of the lemma, as 3 ·K ′ + 3 = 9 · L(h) + 6. �

In the next lemma we study the equilaterally triangulated Euclidean plane E2
∆.

We view it simultaneously as a systolic simplicial complex and as a CAT(0) metric

space (cf. Subsections 5.4 and 5.5). We denote the CAT(0) distance between points

of E2
∆ by dE2 in order to distinguish it from the standard (combinatorial) distance d.

Lemma 6.4. Let h be a hyperbolic isometry of E2
∆ and let γ ⊂ E2

∆ be an h–invariant

geodesic. Suppose that β is a CAT(0) geodesic (i.e., a straight line) such that γ and

β are Hausdorff K–close with respect to the CAT(0) distance, for some K > 0. Then

γ is a (4K√
3

+ 1)–good geodesic.

Proof. We first give the idea of the proof. We observe that for any thick interval

in E2
∆ there is a unique characteristic surface. After identifying the characteristic

disk ∆ with its image, the CAT(0) geodesic α in the modified characteristic disk ∆′

is uniformly close to β, and this distance depends only on K. This will imply the

lemma as the simplices of the Euclidean geodesic are 1–close to α, and γ is K–close

to β. The case of thin layers will follow easily from the methods used to prove the

case of thick intervals.

We now begin the proof. Let x and y be any two vertices of γ. Let (σi)
n
i=0 be the

directed geodesic from x to y and let (τi)
n
i=0 be the directed geodesic going in the

opposite direction (again, simplices of (τi)
n
i=0 are indexed in the same direction as for

(σi)
n
i=0, see Convention 5.1). One checks that these geodesics have the form shown

in Figure 1.

For k ∈ {0, 1, . . . , n} let lk denote the infinite line in E2
∆ that contains σk and τk.

In particular, for k ∈ {1, . . . , n−1} the line lk contains the layer Lk between x and y.
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l2m+1

x

y

σ1
σ2

σ3

σ2m−1

σ2mσ2m+1 σn−1σn−2

(σi)
n
i=0

(τi)
n
i=0

τ1 τ2 τn−2m
τn−2m+1

σ2m

τn−2m+2

τn−1τn−2

Figure 1. Generic form and position of the directed geodesics (σi)
n
i=0

and (τi)
n
i=0 in E2

∆.

Note that the geodesic (σi)
n
i=0 splits into two parts: the part (σi)

2m
i=0, where σi is a

vertex for even i and an edge for odd i, and the part (σi)
n
i=2m+1, which consists entirely

of vertices. Now observe that if 2m ∈ {0, 2, n−1, n} then for every k ∈ {1, . . . , n−1}
the layer Lk with respect to (σi)

n
i=0 and (τi)

n
i=0 is thin. If 2m = n − 2 then for k ∈

{1, 2m+1} the layer Lk is thin, and for k ∈ {2, . . . , 2m} the layer Lk is thin for k even,

and thick of thickness 2 for k odd. The above five cases (2m ∈ {0, 2, n− 2, n− 1, n})
will be dealt with at the end.

Now assume that 2 < 2m < n − 2. In this case for k ∈ {1, 2, n − 1, n − 2} layers

Lk are thin and (2, n − 2) is a thick interval (i.e., layers L3, L4, . . . , Ln−3 are thick).

Let S : ∆→ E2
∆ be a characteristic surface for the interval (2, n− 2). The image of S

is presented in Figure 2. Observe that S is the unique characteristic surface for this

interval, and that it is an isometric embedding. Therefore we can identify ∆ with

S(∆) and treat it as a subcomplex of E2
∆.

Let α denote the CAT(0) geodesic in the modified characteristic disc ∆′ ⊂ ∆ ⊂ E2
∆

between the midpoints of edges [σ2, τ2] and [σn−2, τn−2]. Denote these midpoints by

v2 and vn−2 respectively. Let α′ be a CAT(0) geodesic joining x and y. Both α and

α′ are shown in Figure 2. Note that α′ does not appear in the construction of the

Euclidean diagonal; it is an auxiliary geodesic that will be used to estimate distances

between α and β.

Introduce a coordinate system on E2
∆ by setting x as the base vertex, and vectors

−→xτ1 and −→xw, where w is the vertex of σ1 that does not belong to τ1, as the base vectors

(see Figure 2). Note that both α and α′ are contained in the sector of E2
∆ bounded

by x and half-lines emanating from x in the directions of −→xτ1 and −→xw. Moreover, the

Euclidean angle between α and −→xτ1 and the Euclidean angle between α′ and −→xτ1 are
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lk

y

σ1
σ2

σ3

σ2m−1

σ2m σk(= σ2m+1) σn−1

(σi)
n
i=0

σn−2

(τi)
n
i=0

τ1 τ2 τn−2m
τn−2m+1

σ2m

τn−2m+2

τn−1τn−2

x −→xτ1

−→xw v2

vn−2

α
α′

q2

qn−2

vk qk

S(∆)

∆′

Figure 2. Image of the characteristic surface S : ∆ → E2
∆ and the

modified characteristic disc ∆′. Geodesics α and α′ and the coordinate

system. The CAT(0) distance between vk and qk is at most 1
2 .

both between 0◦ and 30◦. In particular α′ intersects the interior of edges [σ2, τ2] and

[σn−2, τn−2]. Call the intersection points q2 and qn−2 respectively.

Note that the CAT(0) distances between v2 and q2 and between vn−2 and qn−2 are

less than 1
2 . For k ∈ {2, . . . , n − 2} let qk and vk denote the intersection points of

α and α′ respectively with the layer Lk (see Figure 2). Since the edges [σ2, τ2] and

[σn−2, τn−2] are parallel to all the layers, by elementary Euclidean geometry, for any

k ∈ {2, . . . , n− 2} we have:

dE2(qk, vk) 6 max{dE2(q2, v2), dE2(qn−2, vn−2)} 6 1

2
. (6.1)

Now consider the CAT(0) geodesic β. First we determine the position of β with

respect to the base vectors −→xτ1 and −→xw. Since both −→xw and −→xτ1 coordinates of y are

greater than the coordinates of x, and since γ is h–invariant, it follows that there

are vertices z ∈ γ such that (x, y, z) lie on γ in this order and both coordinates of z

are arbitrarily large. Since β stays K–close to γ, it follows that the Euclidean angle

directed counter-clockwise from −→xτ1 to β is between 0◦ and 60◦. Examples of possible

geodesics β and γ are shown in Figure 3.

It follows that β intersects every line lk at a single point, which we denote by pk.

For any k ∈ {1, . . . , n− 1} let tk be a vertex of γ that belongs to layer Lk (and hence

to the line lk), and let t0 = x and tn = y. By assumption, geodesic β passes within

the CAT(0) distance K from any tk. Then, since the directed angle from −→xτ1 to β is

between 0◦ and 60◦, we claim that for any k ∈ {0, . . . , n} we have:

dE2(pk, tk) 6
2K√

3
. (6.2)
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σ2m−1

σ2m σk(= σ2m+1) σn−1

(σi)
n
i=0

σn−2

(τi)
n
i=0

τ1 τ2 τn−2m
τn−2m+1

σ2m

τn−2m+2

τn−1τn−2

x −→xτ1

−→xw v2

vn−2

α
α′

q2

qn−2

vk qk
pk

p0

pn

tk

γ
β

Figure 3. Examples of (parts of) geodesics β and γ and their position

with respect to α and α′. Distances between vertices vk, qk, pk, tk are

measured on the line lk.

To obtain the constant 2K√
3

(= K
cos30◦ ) one checks the extreme cases where β is parallel

to either −→xτ1 or −→xw. In particular we have dE2(p0, x) 6 2K√
3

and dE2(pn, y) 6 2K√
3
.

Now since α′ connects x and y and since β passes through p0 and pn it follows that

for k ∈ {0, . . . , n} we have:

dE2(pk, qk) 6
2K√

3
. (6.3)

Denote by (δi)
n
i=0 the Euclidean geodesic between x and y. By definition, for thin

layers we have δ1 = σ1, δ2 = [σ2, τ2], δn−2 = [σn−2, τn−2] and δn−1 = τn−1. For thick

layers we have δi = ui where ui ∈ Li is a vertex that is at distance less than 1
2 from

vi or δi = [ui, u
′
i] if ui, u

′
i ∈ Li and dE2(ui, vi) = dE2(u′i, qk) = 1

2 . In any case, for

k ∈ {3, . . . , n− 3} for any vertex uk ∈ δk we have:

dE2(uk, vk) 6
1

2
. (6.4)

Finally, by combining (6.1), (6.2), (6.3) and (6.4) for any k ∈ {3, . . . , n−3} for any

uk ∈ δk we have:

dE2(tk, uk) 6 dE2(tk, pk) + dE2(pk, qk) + dE2(qk, vk) + dE2(vk, uk)

6 2K√
3

+
2K√

3
+

1

2
+

1

2

=
4K√

3
+ 1.

(6.5)

Since all the distances above are measured on the line lk, the same estimate holds for

the standard (combinatorial) distance.
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For k ∈ {2, n− 2} we have δk = [σk, τk] and one observes that dE2(qk, σk) 6 1 and

dE2(qk, τk) 6 1. Combining this with (6.2) and (6.3) we obtain the same estimate as

in (6.5). Now for k ∈ {1, n − 1}, let qk be the point of intersection α′ ∩ δk. By a

direct observation we see that for any vertex uk ∈ δk we have dE2(vk, uk) 6 1, and

thus again we obtain the same estimate as in (6.5).

We conclude that for any k ∈ {1, . . . , n− 1} for any uk ∈ δk we have

d(tk, uk) 6
4K√

3
+ 1.

Since x and y were arbitrary, this proves that γ is a (4K√
3

+ 1)–good geodesic.

For the remaining cases, where geodesics (σi)
n
i=0 and (τi)

n
i=0 are close to each other

(2m ∈ {0, 2, n−2, n−1, n}), we proceed analogously. One observes that the auxiliary

CAT(0) geodesic α′ joining x and y passes at the CAT(0) distance at most 1 from

all the vertices of (δi)
n
i=0 in all the appropriate layers. The rest of the argument goes

the same as in the first case (i.e., one combines the above observation with (6.2) and

(6.3) and obtains the same estimate as in (6.5)). �

A flat in a systolic complex X is an isometric embedding F : E2
∆ ↪→ X.

Lemma 6.5. Let F : E2
∆ ↪→ X be a flat, and suppose that γ ⊂ E2

∆ is a C ′–good

geodesic (where E2
∆ is treated as a systolic complex on its own). Then F (γ) is a

(C ′ + 10)–good geodesic in X.

Proof. Pick any two vertices x, y ∈ E2
∆, let (δi)

m
i=0 ⊂ E2

∆ be the Euclidean geodesic

between x and y in E2
∆, and let (δ̃i)

m
i=0 ⊂ X be the Euclidean geodesic between F (x)

and F (y) in X. To prove the lemma it is enough to prove the following claim.

Claim. For any i ∈ {0, 1, . . . ,m} for any two vertices zi ∈ δi and z̃i ∈ δ̃i we have

d(F (zi), z̃i) 6 10.

The rest of the argument is devoted to proving the claim. Let (σi)
n
i=0 and (τi)

n
i=0

be directed geodesics in E2
∆ going respectively from x to y and from y to x, and let

(σ̃i)
n
i=0 and (τ̃i)

n
i=0 be the corresponding directed geodesics between F (x) and F (y)

in X (see Convention 5.1). As in Lemma 6.4, we will first deal with the case when

there is a single thick interval for (σi)
n
i=0 and (τi)

n
i=0, i.e., with the notation from

Lemma 6.4, for (σi)
n
i=0 we assume that 2 < 2m < n− 2.

Consider the thick interval (2, n − 2) and for every i ∈ {2, 3, . . . , n − 2} choose

vertices si ∈ σi and ti ∈ τi that realise the thickness of layer i in E2
∆. Let S : ∆→ E2

∆

be a characteristic surface for the cycle

α = (s2, s3, . . . , sn−2, tn−2, tn−1, . . . , t2, s2).
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Observe that S is the unique characteristic surface for the interval (2, n − 2), and

that it is an isometric embedding. Therefore we will identify the characteristic disk

∆ with its image S(∆) ⊂ E2
∆.

The map F
∣∣
∆

: ∆ → X does not have to be a characteristic surface for geodesics

(σ̃i)
n
i=0 and (τ̃i)

n
i=0, e.g., not all of the vertices of F (α) belong to the appropriate

simplices of (σ̃i)
n
i=0 and (τ̃i)

n
i=0. A priori we do not even know whether (2, n− 2) is a

thick interval for these geodesics.

We will now show how to modify F to obtain a characteristic surface for (σ̃i)
n
i=0

and (τ̃i)
n
i=0. The idea is that the images F ((σi)

n
i=0) and F ((τi)

n
i=0)) are 1–close to

the geodesics (σ̃i)
n
i=0 and (τ̃i)

n
i=0 respectively, and therefore a small perturbation of

the map F would give the desired characteristic surface. We will now make this

idea precise. For every i ∈ {2, 4, 6, . . . , 2m} choose any vertex ui ∈ σ̃i and for every

i ∈ {n− 2m,n− 2m+ 2, n− 2m+ 4, . . . , n− 2} choose any vertex wi ∈ τ̃i. Then by

[Els09c, Lemma 3.9] (applied simultaneously to geodesics (σi)
n
i=0 and (τi)

n
i=0) there

exists a flat F ′ : E2
∆ → X such that:

(1) for i ∈ {2, 4, . . . , 2m} we have F ′(σi) = ui,

(2) for i ∈ {n− 2m,n− 2m+ 2, . . . , n− 2} we have F ′(τi) = wi,

(3) for every vertex x ∈ E2
∆ not considered in (1) and (2), we have F ′(x) = F (x),

(4) for every 0 6 i 6 n we have F ′(σi) = Im(F ′) ∩ σ̃i and F ′(τi) = Im(F ′) ∩ τ̃i.
Images of F and F ′ are shown in Figure 4.

F (x)

F (y)

F (σ2)

F (σ4)

F (σ2m)

F (σ2i)

F (σ2m−2)

F (τn−2m)

F (τn−2m+2)

F (τ2i)

F (τn−2)

F (τn−4)
u2

u4

u2i

u2m−2

u2m

wn−2m

wn−2m+2

w2i

wn−4

wn−2
F (E2

∆)

Figure 4. Images of flats F and F ′. The part of F ′(E2
∆) which differs

from F (E2
∆) is red.

Observe that for i ∈ {2, 4, . . . , 2m} vertices F (σi) and F ′(σi) = ui are connected.

Indeed, since F and F ′ agree on all the neighbours of σi in E2
∆, taking a pair of

neighbours v1, v2 ∈ E2
∆ of σi that are not adjacent gives a 4–cycle

(F (v1), F (σi), F (v2), F ′(σi)).
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Since X is 6–large, this cycle has a diagonal. It cannot be [F (v1), F (v2)] since F is an

isometric embedding, and v1 and v2 are not adjacent. Thus it must be [F (σi), F
′(σi)].

Analogously, for any i ∈ {n−2m,n−2m+2, . . . , n−2} vertices F (τi) and F ′(τi) =

wi are connected. The above assertions, together with property (3) of the map F ′,

imply that for any vertex x ∈ E2
∆ we have

d(F (x), F ′(x)) 6 1.

We claim that for any 2 6 i 6 n− 2 the vertices F ′(si) ∈ σ̃i and F ′(ti) ∈ τ̃i realise

the thickness of layer i for (σ̃i)
n
i=0 and (τ̃i)

n
i=0 in X, and so layers L3, L4, . . . , Ln−3 are

thick, and layers L2 and Ln−2 are thin. This follows essentially from the fact that

F ′ : E2
∆ → X is an isometric embedding. Similarly, one can show that layers L1 and

Ln−1 in X are thin. Finally, we conclude that

F ′
∣∣
∆

: ∆→ X

is a characteristic surface for the thick interval (2, n − 2) for geodesics (σ̃i)
n
i=0 and

(τ̃i)
n
i=0 in X. Let (ρi)

n−3
i=3 be the Euclidean diagonal for ∆ ⊂ E2

∆ and denote by (δi)
m
i=0

the Euclidean geodesic between vertices x and y in E2
∆. We have δi = span{σi, τi} for

i ∈ {1, 2, n−2, n−1}. For all remaining i we have δi = ρi (since ∆ ∼= S(∆) ⊂ E2
∆ is the

unique characteristic surface for the thick interval (2, n−2)). For any i ∈ {0, 1, . . . , n},
for any vertex zi ∈ δi we have

d(F (zi), F
′(zi)) 6 1. (6.6)

For any i ∈ {0, 1, . . . , n}, for any vertices zi ∈ δi and z̃i ∈ δ̃i we claim that

d(F ′(zi), z̃i) 6 1. (6.7)

This follows for i ∈ {1, 2, n−2, n−1} from the property (4) of the map F ′ : E2
∆ → X.

Namely we have that F ′(σi) ⊂ σ̃i and F ′(τi) ⊂ τ̃i, and by definition δi = span{σi, τi}
and δ̃i = span{σ̃i, τ̃i}. For i ∈ {3, 4, . . . , n − 3} by definition of a Euclidean geodesic

and the fact that F ′
∣∣
∆

is a characteristic surface for (σ̃i)
n
i=0 and (τ̃i)

n
i=0 we obtain

that F ′(ρi) ⊂ δ̃i.
Finally, combining (6.6) and (6.7), for any i ∈ {0, 1, . . . , n} for any two vertices

zi ∈ δi and z̃i ∈ δ̃i we have

d(F (zi), z̃i) 6 2.

This finishes the proof of the claim under the assumption that 2 < 2m < n− 2.

Now assume 2m ∈ {0, 2, n − 2, n − 1, n}. In this case any layer Li ⊂ E2
∆ has

thickness at most 2. By [Els09c, Proposition 3.8] (which is a weaker formulation

of [Els09c, Lemma 3.9] used above) for any vertices si ∈ σi and ui ∈ σ̃i we have

d(F (si), ui) 6 2. The same estimate holds for vertices of τi and τ̃i. It follows from
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the triangle inequality, that for any i ∈ {0, 1, . . . , n} the thickness of the layer i in X

is at most 6.

Observe that by definition of the Euclidean geodesic, any simplex δi lies between

simplices σi and τi in the layer Li ⊂ E2
∆. More precisely, the distance between any

vertex zi ∈ δi and any vertex ui ∈ σi is less than the thickness of Li. Clearly the same

estimate holds for vertices of δ̃i and σ̃i, if one replaces thickness of Li by thickness

of layer i in X. From these considerations we conclude that for any i ∈ {0, 1, . . . , n},
for any zi ∈ δi and z̃i ∈ δ̃i and for any vertices si ∈ σi and ui ∈ σ̃i we have:

d(F (zi), z̃i) 6 d(F (zi), F (si)) + d(F (si), ui) + d(ui, z̃i) 6 2 + 2 + 6 = 10.

This estimate is by no means optimal. �

We are ready now to prove Theorem 6.1.

Proof of Theorem 6.1. Case 1: Min(h) is h–cocompact. Let K be the constant

appearing in Lemma 6.3. Since Min(h) is h–cocompact, by Lemma 4.2 the subcom-

plex DispK(h) is h–cocompact as well. Pick a vertex x ∈ Min(h) ⊂ DispK(h), and for

any n > 0 consider vertices h−n ·x, hn ·x ∈ Min(h). Note that d(h−n ·x, hn ·x) is not

necessarily equal to 2n ·L(h), but we can assume that it is even (by passing to a sub-

sequence of the form ni = ik for some k > 1 if necessary, see [Els09b, Theorem 1.1]).

Put mn = 1
2 · d(h−n · x, hn · x) and let (δni )mn

i=−mn
be the Euclidean geodesic between

h−n · x and hn · x. By Lemma 6.3 we have (δni )mn
i=−mn

⊂ DispK(h). Since DispK(h) is

h–cocompact, there exists R > 0 such that for every n the geodesic (δni )mn
i=−mn

inter-

sects the ball BR(x,X). Let in be an integer such that δnin is a simplex of (δni )mn
i=−mn

that intersects BR(x,X) (such in is not unique in general, we choose one for each n).

By replacing R with R+ 1 we can assume that δnin ⊂ BR(x,X).

Since the ball BR(x,X) contains only finitely many simplices, there are infinitely

many n such that δnin is equal to a fixed simplex of BR(x,X). Denote this simplex

by δ̃0. Now since the sphere S1(δ̃0, X) is finite, among geodesics (δni )mn
i=−mn

for which

δnin = δ̃0 there are infinitely many such that δnin+1 is equal to a fixed simplex δ̃1

and δnin−1 is equal to a fixed simplex δ̃−1. By continuing this procedure for spheres

Sk(δ̃0, X) for k > 1, we obtain a bi-infinite sequence of simplices

(δ̃i)
∞
i=−∞ ⊂ DispK(h),

such that any of its finite subsequences is a Euclidean geodesic.

By Proposition 5.3 for any finite subsequence, say (δ̃i)
m
i=−m, there exists a geodesic

γm = (vi)
m
i=−m such that vi ∈ δ̃i. By Theorem 5.4 any γm is a good geodesic. By a

diagonal argument, from the sequence (γm)∞m=0 we can extract a bi-infinite geodesic

γ = (vi)
∞
i=−∞, which is a good geodesic, as any of its finite subgeodesics is contained in
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a good geodesic γm for some m > 0. Since for every i ∈ N we have vi ∈ δ̃i ⊂ DispK(h),

we conclude that γ ⊂ DispK(h).

Case 2. Min(h) is not h–cocompact. By [OP16, Corollary 5.8] the centraliser

CG(h) is commensurable with the product Fn×Z, such that the subgroup 〈h〉 ⊂ CG(h)

is commensurable with the ‘Z’ factor of the latter. By Theorem 4.3 the group CG(h)

acts cocompactly on Min(h). Since Min(h) is not h–cocompact, we conclude that

n > 1, and so there exists an element g ∈ CG(h) such that 〈g, h〉 ∼= Z2. By the Flat

Torus Theorem ([Els09a, Theorem 6.1]) there exists a flat F : E2
∆ → X whose image

is preserved by the action of 〈g, h〉. We will now construct an h–invariant geodesic

γ ⊂ F (E2
∆) which satisfies the assumptions of Lemma 6.4.

Take any vertex x ∈ F (E2
∆) and consider a CAT(0) geodesic γ′ in F (E2

∆) that passes

through vertices x and h · x. The isometry h acts on F (E2
∆) ∼= E2 as a translation

along γ′ by distance equal to the CAT(0) length of segment γ′
∣∣
[x,h·x]

. Let α be any

(combinatorial) geodesic between x and h · x that is Hausdorff 1–close to γ′
∣∣
[x,h·x]

.

(To obtain such α one proceeds similarly as when defining the Euclidean diagonal in

a characteristic disk in Subsection 5.5.) Define γ as

γ =
⋃

n∈Z
(hn · α).

By definition γ is an h–invariant geodesic, that is Hausdorff 1–close to a CAT(0)

geodesic γ′ in F (E2
∆). By Lemma 6.4 we get that γ is a ( 4√

3
+ 1)–good geodesic in

F (E2
∆). Lemma 6.5 implies that γ is a ( 4√

3
+ 11)–good geodesic in X. This implies

that γ is a good geodesic in X since we have 4√
3

+ 11 < C, where C is the constant

appearing in Definition 5.7 (cf. the discussion at the beginning of Subsection 5.7). �
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