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Abstract

In this thesis, we study partial dynamical systems and graph algebras arising from finitely
separated graphs. The thesis consists of an introduction followed by three papers, the first of
which is joint work with Pere Ara.

In Article [A], we introduce convex subshifts, an abstract generalisation of the partial dynamical
systems associated with finite separated graphs. We define notions of a finite and infinite type
convex subshift and show that all such dynamical systems arise from a finite bipartite separated
graph up to a suitable type of equivalence. We then study various aspects of the ideal structure
of the tame separated graph algebras for finite bipartite graphs: We represent the lattice of
induced ideals by graph-theoretic data, compute all ideals of finite type in the reduced setting,
and characterise both simplicity and primitivity.

In Article [B], we introduce a generalisation of Condition (K) to finitely separated graphs and
show that it is equivalent to the partial action being essentially free as well as either of the
tame algebras having the exchange property. We also demonstrate that Condition (K) is very
restrictive, and as a consequence, the tame algebras are separative whenever they are exchange
rings.

Finally, Article [C] completely characterises nuclearity of the tame graph C∗-algebras in terms

of a graph-theoretic property. We also show that the full and reduced tame graph C∗-algebras

coincide if and only if they are nuclear, and that otherwise the full algebra is in fact non-exact.

Resumé

Denne afhandling omhandler dynamiske systemer og grafalgebraer hørende til endeligt separ-
erede grafer. Afhandlingen best̊ar af en introduktion og tre artikler, hvoraf den første er udar-
bejdet i samarbejde med Pere Ara.

I Artikel [A] introducerer vi konvekse delskift, som er en abstrakt generalisering af de partielle
dynamiske systemer hørende til endelige, separerede grafer. Vi inddeler alle konvekse delskift i
endelig og uendelig type og viser, at ethvert delskift af endelig type kan realiseres som virkningen
hørende til en endelig, todelt, separeret graf op til en passende form for ækvivalens. Vi undersøger
dernæst en række aspekter af idealstrukturen i de tamme grafalgebraer: Vi repræsenterer gitret af
inducerede idealer ved grafteoretiske data, bestemmer alle idealer af endelig type i det reducerede
tilfælde og karakteriserer s̊avel simplicitet som primitivitet.

I Artikel [B] introducerer vi en generalisering af Betingelse (K) for endeligt separerede grafer
og viser, at den er ækvivalent til essentiel frihed for den partielle virkning s̊avel som exchange-
egenskaben for de tamme algebraer. Vi viser ogs̊a at Betingelse (K) er ganske restriktiv, og det
følger heraf, at de tamme algebraer er separative, n̊ar de er exchange-ringe.

Endeligt gives der i Artikel [C] en komplet karakterisering af nuklearitet for de tamme graf-C∗-
algebraer ved en grafteoretisk egenskab. Vi viser ligeledes, at den fulde og den reducerede tamme
graf-C∗-algebra er sammenfaldende, hvis og kun hvis de er nukleære, og at den fulde algebra i
modsat fald er ikke-eksakt.
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Part I

Thesis overview



In this first part of the thesis, we provide an overview of the results of the three articles
that follow and put them into context. We first review the development of classical
graph algebras and present the main motivation for studying the more general class of
separated graph algebras. We then elaborate on the existing theory of separated graph
algebras, before turning attention to our own results. Finally, we comment on the future
of the subject.

1. Classical graph algebras

By a directed graph, we shall mean a quadruple E = (E0, E1, r, s), where E0 and E1

are sets, and r and s are functions E1 → E0. The elements of E0 are called vertices
while the elements of E1 are called edges, and r and s determine the range and source
of any edge. A vertex v is called a sink if s−1(v) = ∅, a source if r−1(v) = ∅, and regular
if 0 < |r−1(v)| <∞. The graph is referred to as being column-finite if |r−1(v)| <∞ for
every v ∈ E0, and it is plainly finite if both E0 and E1 are finite sets.

To any directed graph E, one may associate a graph C∗-algebra C∗(E) as the universal
C∗-algebra for certain generators and relations represented by the graph. Since we will
refer to this definition many times, we might as well just present it right away:

Definition. Let E denote any directed graph. The graph C∗-algebra C∗(E) is the
universal C∗-algebra for generators E0 t E1 with relations

(V) uv = δu,vv and u = u∗ for u, v ∈ E0.
(E) es(e) = r(e)e = e for e ∈ E1.

(CK1) e∗f = δe,fs(e) for all e, f ∈ E1.
(CK2) v =

∑
e∈r−1(v) ee

∗ for all regular vertices v.

The reader should note that we are applying the so-called Raeburn convention, so paths
will have to be read from the right.

The basic idea when building complicated objects, such as C∗-algebras, from simple
combinatorial objects, such as graphs, is of course to be able to understand properties
of the complicated ones in terms of properties of the simpler ones. And, if the construc-
tion is to be truly meaningful, the complicated objects must also enjoy some interesting
properties. The class of graph C∗-algebras certainly meet both these requirements. One
can tell many things about C∗(E) by merely looking at E in terms of ideal structure,
(non-stable) K-theory, and the real and stable rank to just name some. On the other
hand, it is a rather big class, containing for instance all AF-algebras and Kirchberg
algebras with free K1-group up to Morita equivalence. Having a unified theory for
such diverse C∗-algebras, which are closed under many constructions, provides a nat-
ural playground for C∗-algebraists to build interesting examples and guide the general
theory of C∗-algebras. For instance, graph C∗-algebras continue to inspire new ideas
and provide a prominent test case within classification theory of non-simple separable,
nuclear C∗-algebras.

While the general modern-day definition of C∗(E) did not appear until around 2000,
the field of graph C∗-algebras ought to be considered 20 years older, starting with the
introduction of what became known as Cuntz-Krieger algebras in [16]. Specifically, to
each n×n-matrix A with {0, 1}-entries, no zero rows or columns, and satisfying a certain
Condition (I), Cuntz and Krieger associated a unique C∗-algebra OA generated by n
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partial isometries under various relations on their initial and final projections. An Huef
later discarded Condition (I), demanding instead that OA is universal with respect to
its defining generators and relations [2]. While many authors noted that the matrix A
could be regarded as the adjacency matrix of a graph with n vertices, it was not until the
work of Kumjian, Pask, Raeburn and Renault [25] in 1997 that graphs properly entered
the picture, and in the follow-up paper [24] by the first three authors, the modern-day
definition of the graph C∗-algebra of a column-finite graph finally appeared. The class
of Cuntz-Krieger algebras could now be viewed as exactly the graph C∗-algebras of
finite graphs with no sinks or sources – incidentally, Kumjian, Pask and Raeburn did
not themselves use the term graph C∗-algebras, but referred instead to Cuntz-Krieger
algebras of directed graphs. With this generalisation, an old friend such as the Toeplitz
algebra now became an instance of this theory, and Coburn’s Theorem became merely an
application of the so-called Cuntz-Krieger Uniqueness Theorem. The definition of C∗(E)
for an arbitrary directed graph, E, would appear soon after in the paper [18] by Fowler,
Laca and Raeburn, thereby giving the field its modern-day framework. While there
are many subtleties in passing from column-finite to arbitrary graphs, we will mostly
be concerned with the column-finite case throughout this introduction. We should also
mention that while graph algebras always meant graph C∗-algebras until 2005, there has
been a remarkable interest in purely algebraic counterparts called Leavitt path algebras
since their introduction in [1] by Abrams and Pino. Given any field with involution K
(some even work over an arbitrary commutative ring), one can define the Leavitt path
algebra LK(E) to be the K-algebra with exactly the same set of generators and relations
as C∗(E). Many results from graph C∗-algebras have been reproved in this context, and
today the two viewpoints constantly interact and inspire one another.

It was observed from the very beginning by Cuntz and Krieger that their algebras were
intimately related to symbolic dynamics. Specifically, they showed that if the two-sided
shift spaces XA and XB, determined by matrices A and B, are flow equivalent, then
the Cuntz-Krieger algebras OA and OB are stably isomorphic. In [15], Cuntz further
deepened the relationship, showing that, under a certain Condition (II), all ideals of
OA corresponded to open and shift-invariant subspaces of XA. When Kumjian, Pask,
Raeburn and Renault later initiated the use of graphs, they did so by representing
C∗(E) as a groupoid C∗-algebra C∗(GE) for a certain graph groupoid GE : Any point
in GE is a triple (x, k, y), where x = (xn)n≥1 and y = (yn)n≥1 are infinite paths in
E, and k is an integer such that there exists N ∈ N for which xi = yi+k whenever
i ≥ N . While they had to restrict to column-finite graphs without sources, this approach
would later be generalised by Paterson to arbitrary graphs [28]. The most striking
and direct relation between the graph C∗-algebras and symbolic dynamics, however, is
the identification of C∗(E) as a crossed product C0(∂E) o F(E1) for a partial action
θE : F(E1) y ∂E of the free group generated by the edge set on the so-called boundary
path space. Such a description first emerged in work of Exel and Laca [17] for what
has later been dubbed Exel-Laca algebras; these were an attempt at overcoming the
assumption of column-finiteness, and so they in particular contain all graph C∗-algebras
of column-finite graphs. In this case, ∂E is the set of all infinite paths in E along with
all finite paths starting in a source (including the sources themselves), and the action
is essentially just the shift: An edge e may act on a path x = (xn)n≥1 if and only if
s(e) = r(x1), in which case θEe (x) = ex, while an inverse edge e−1 can act only on
elements ex by θEe−1(ex) = x. Moreover, an edge e can act on a source v by θEe (v) = e if
and only if r(e) = v. This description of C∗(E) together with Exel’s theory of crossed
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products for partial actions allows one to easily prove the classical results on ideal
structure, the Cuntz-Krieger uniqueness theorem, and nuclearity of C∗(E). Moreover,
the Leavitt path algebra LK(E) may also be regarded as arising from this partial action
as it is isomorphic to the algebraic crossed product CK(∂E) o F(E1), where CK(∂E)
denotes the algebra of compactly supported, locally constant functions ∂E → K. This
common dynamical description of LK(E) and C∗(E) explains many of their similarities.

The success of graph C∗-algebras has inspired various generalisations, including the
C∗-algebras associated with topological graphs as defined and studied by Katsura in
[19, 20, 21, 22], the higher-rank graphs of Kumjian and Pask [23], and – the main topic
of this thesis – the separated graphs of Ara, Exel and Goodearl [5, 6, 7, 8]. Most
of these generalisations seem to be motivated by the desire to include classes of C∗-
algebras with more general behaviour while maintaining most of the results available for
classical graph C∗-algebras. For instance, any Kirchberg algebra may be described as
a topological graph C∗-algebra, and higher rank graphs give rise to both the irrational
rotation algebras and the Bunce-Deddens algebras. The separated graph algebras differ
in this regard: As we will see, they do not behave like ordinary graph algebras in many
ways, and they are really invented to deal with a specific problem that we shall now
describe.

2. The Fundamental Separativity Problem

A von Neumann algebra is simple (as a C∗-algebra) if and only if it is a factor of type
In for n < ∞, II1 or type III. In particular, either every non-zero projection is finite
or they are all infinite. It was an open problem whether a similar dichotomy holds
in the C∗-setting until Rørdam constructed a simple, separable, unital, nuclear C∗-
algebra containing both a non-zero finite and an infinite projection in [29]. However,
as Rørdam noted himself, his example is not of real rank zero: A C∗-algebra is said to
have real rank zero if any self-adjoint element can be approximated by one with finite
spectrum. C∗-algebraists often refer to this property as having many projections, and
from this perspective, such algebras resemble von Neumann algebras – indeed every von
Neumann algebra has real rank zero. He then went on to pose the questions if there
exist simple, real rank zero C∗-algebras containing both a non-zero finite and an infinite
projection – and if so, can one add nuclearity to the list of properties?

The first of Rørdam’s question is naturally related to problems that have arisen in ring
theory. A ring R is said to be (von Neumann) regular if for all x ∈ R, there exists
y ∈ R with xyx = x. This property is equivalent to being absolutely flat, i.e. that every
module over A is flat. It was shown in [9] by Ara, Goodearl, O’Meara and Pardo that a
number of open problems concerning regular rings have positive answers in the presence
of separativity : A ring is called separative if its non-stable K-theory V(R) is a separative
semigroup, that is if

2a = a+ b = 2b⇒ a = b

for a, b ∈ V(R). Consequently, they formulated what is now known as the Fundamental
Separativity Problem (for regular rings): Is every regular ring separative? They focused
on regular rings since the above mentioned open problems had originally been formulated
in this context, but in fact their results concerned the larger class of exchange rings. A
unital ring R is called an exchange ring if for every x ∈ R, there exists an idempotent
e ∈ R with e ∈ Rx and 1 − e ∈ R(1 − x), and a C∗-algebra is an exchange ring if
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and only if it has real rank zero (see [9, Theorem 7.2] and [4, Theorem 3.8]). As such,
exchange rings may be regarded as a general framework for studying both regular rings
and real rank zero C∗-algebras. In the context of C∗-algebras, Ara, Goodearl, O’Meara
and Pardo obtained (a)-(d) below for unital real rank zero C∗-algebras, while (e) was
proved in [10, Theorem 3.1].

Theorem. Let A be a unital C∗-algebra with real rank zero, and assume that A is
separative.

(a) If A is finite, then A is stably finite.
(b) If A is simple and finite, then A has stable rank 1.
(c) The stable rank of A is either 1, 2, or ∞.
(d) The stable rank of A is finite if and only if the following cancellation property

holds for projections p, q ∈M∞(A):

1⊕ 1⊕ p ∼ 1⊕ q ⇒ 1⊕ p ∼ q.
(e) The natural map U(A)/U(A)◦ → K1(A) is an isomorphism.

We should note that (a) follows from a simple observation using only separativity, and
that injectivity in (e) only makes use of real rank zero [26, Lemma 2.2]. Whether any
of the statements hold universally within the class of real rank zero C∗-algebras is still
unknown, but outside this class they all fail. Rørdam’s example shows that (a) can fail
even when A is simple and nuclear, and for any n = 2, 3, 4, . . . ,∞, Villadsen constructed
a finite, simple C∗-algebra of stable rank n [31].

The separativity problem is known to have a positive answer in a number of cases, of
which we mention a few:

(1) If A has stable rank 1, then V(A) will even be cancellative by [12, Proposition
6.5.1] and hence separative.

(2) If V(A) enjoys n-cancellation, i.e. if na = nb implies a = b, then A is certainly
separative. This includes all Rickart C∗-algebras – and therefore all AW ∗-
algebras – by [3, Theorem 2.7],

(3) Any graph C∗-algebra is separative. This was established for finite graphs in
[11] by showing that V(C∗(E)) is a finitely generated refinement monoid, hence
separative by results of Brookfield [13, Theorem 4.5 and Corollary 6.8]. Since
separativity passes to limits and any graph C∗-algebra can be approximated
by graph C∗-algebras of finite graphs, the result follows.

(4) Any extremally rich C∗-algebra of real rank zero is separative by [14, Comment
2.3 and Theorem 3.10].

Despite the above, it seems to be the common belief that the separativity problem has
a negative answer for both regular rings and C∗-algebras. The main difficulty in con-
structing (candidates to) counterexamples is that we usually infer real rank zero of a
given C∗-algebra by showing that it is somehow built from other C∗-algebras that are
known to have real rank zero, and in this case, separativity will pass from the building
blocks to the C∗-algebra in question. In order to properly attack the separativity prob-
lem, one therefore needs a class of non-separative building blocks with real rank at least
one that can somehow be put together without gaining separativity, while at the same
time obtaining real rank zero. Separated graph algebras is an attempt at obtaining such
building blocks.
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3. Separated graph algebras

A separated graph is a pair (E,C) consisting of a directed graph E and a separation
C. Formally, a separation is a disjoint union C =

⊔
v∈E0 Cv, where Cv is a partition

of r−1(v) into non-empty subsets for all v ∈ E0. Informally, one can think of C as a
coloring of the edges, where one only cares about whether two edges have the same color
if they have the same range. We shall say that (E,C) is finitely separated if every X ∈ C
is finite, that is if only finitely many edges of the same color have the same range, and we
will focus exclusively on such graphs. Note that we can always regard a directed graph
as a separated graph by giving it the trivial separation T , where Tv = r−1(v) whenever
v is not a source. In this case, finitely separated simply means column-finite. The term
“separated graph” was coined by Ara and Goodearl in [8], where they introduced and
studied Leavitt paths algebras of such objects. Their basic idea was to generalise the
definition of classical graph algebras in a completely different direction than the already
existing generalisations to obtain algebras with more general non-stable K-theory. For
any column-finite directed graph E, the non-stable K-theory V(L(E)) ∼= V(C∗(E)) has
precisely the form one would hope for: It is simply the abelian monoid M(E) generated
by the vertices E0 under the relations v =

∑
e∈r−1(v) s(e) whenever v is not a source.

As was noted above, this monoid is always separative, and so classical graph algebras
cannot provide a counterexample to the Fundamental Separativity Problem. However,
if instead one considers the abelian monoid M(E,C) where, for every v ∈ E0 \ E0

source,
the single relation v =

∑
e∈r−1(v) s(e) is replaced by the set of relations v =

∑
e∈X s(e)

for X ∈ Cv, then much more general abelian monoids – in fact all conical ones – can
be obtained. This observation acts as a guideline for how one should alter the Cuntz-
Krieger relations to the setting of separated graphs. Rather than summing over the
entire set r−1(v) in (CK2), one should simply sum over each X ∈ Cv, and while it is not
quite clear how (CK1) should be adapted, there is no need to require e∗f = δe,fs(e) if
e and f do not have the same color. Ultimately, Ara and Goodearl defined LK(E,C)
and C∗(E,C) as follows:

Definition. Let (E,C) denote any finitely separated graph, and consider some field K
with involution. The Leavitt path algebra LK(E,C) is the universal ∗-algebra (over K)
and C∗(E,C) is the universal C∗-algebra generated by E0 t E1 with relations

(V) uv = δu,vv and u = u∗ for u, v ∈ E0.
(E) es(e) = r(e)e = e for e ∈ E1.

(SCK1) e∗f = δe,fs(e) for all X ∈ C and e, f ∈ X.
(SCK2) v =

∑
e∈X ee∗ for all v ∈ E0 and all X ∈ Cv.

Using results of Bergman, Ara and Goodearl were in fact able to compute V(LK(E,C))
and show that it is canonically isomorphic to M(E,C) as described above [8, Theorem
4.3]. In particular, any conical abelian monoid can be realised as V(LK(E,C)) for an
appropriate finitely separated graph (E,C), and so these algebras seem like excellent
building blocks for attacking the separativity problem. Unfortunately, the relationship
between the non-stable K-theories V(LC(E,C)) and V(C∗(E,C)) is still unknown. Ara
and Goodearl have conjectured that the embedding LC(E,C) ↪→ C∗(E,C) induces
an isomorphism, but so far no progress has been made on this important question.
However, they were in fact able to compute the K-theory of C∗(E,C) [7, Theorem
5.2], generalising the well known formulas for classical graph C∗-algebras, by applying a
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theorem of Thomsen on K-theory of universal amalgamated free product C∗-algebras.
It is worth noting that K1(C

∗(E,C)), being a kernel, is always torsion-free.

The next major evolutionary step in the theory of separated graph algebras happened
with the introduction of tame separated graph algebras by Ara and Exel in [5]. A set
of partial isometries S is called tame if every element of the multiplicative semigroup
〈S∪S∗〉 is also a partial isometry, and the fact that E1 is generally not tame in LK(E,C)
and C∗(E,C) led them to the following definition.

Definition. Let (E,C) denote a finitely separated graph. The abelianised Leavitt path
algebra Lab

K (E,C) is the universal ∗-algebra and the universal tame graph C∗-algebra
O(E,C) is the universal C∗-algebra generated by E0 t E1 with relations (V), (E),
(SCK1), (SCK2) and E1 being tame.

While the above definition makes perfect sense for all separated graphs, we have chosen
to focus exclusively on finitely separated ones. In fact, Ara and Exel only considered
finite and bipartite separated graphs in [5], since this is the realm to which their main
construction naturally applies. We remark that the assumption of bipartiteness is a
very minimal restriction. Indeed, given any separated graph algebra, the two-by-two
matrices over this algebra can be realised as the corresponding separated graph algebra
of an appropriate bipartite separated graph [5, Proposition 9.1].

The tame algebras are much more accessible than their non-tame extentions since they
admit descriptions as crossed products for a partial action θ(E,C) : F(E1) y Ω(E,C)
on a totally disconnected locally compact Hausdorff space. This was first proven by
Ara and Exel in [5] whenever (E,C) is finite and bipartite, and we extend the result to
finitely separated graphs in [B, Theorem 2.10]. For trivially separated graphs (E, T ),

the partial action θ(E,T ) is easily seen to be conjugate to the canonical partial action
of F(E1) on the boundary path space ∂E, and so this result recovers one of the most
useful descriptions of classical graph algebras as a very special case. As an important
consequence, there is also a reduced tame graph C∗-algebra.

Definition. Let (E,C) denote a finitely separated graph. The reduced tame graph C∗-
algebra Or(E,C) is the reduced crossed product Or(E,C) := C0(Ω(E,C)) or F(E1).

To any finite and bipartite separated graph (E,C), the main construction of [5] associates
a sequence of such graphs (En, C

n) with (E,C) = (E0, C
0) and s(E1

n) = r(E1
n+1) for

which there are natural surjective ∗-homomorphisms

LK(En, C
n)→ LK(En+1, C

n+1) and C∗(En, C
n)→ C∗(En+1, C

n+1).

The kernel of the compositions LK(E,C) → LK(En, C
n) and C∗(E,C) → C∗(En, C

n)
are proven to be exactly the ideal generated by all commutators [αα∗, ββ∗], where α
and β are products of edges and adjoint edges of length at most n, and so it follows that

Lab
K (E,C) ∼= lim−→LK(En, C

n) and O(E,C) ∼= lim−→C∗(En, C
n).

Using the computation of non-stable K-theory by Ara and Goodearl, they were finally
able to show that each monoid homomorphism V(LK(En, C

n)) → V(LK(En+1, C
n+1))

defines a unitary embedding, hence so does V(LK(E,C))→ V(Lab
K (E,C)), and that the

limit lim−→V(LK(En, C
n)) ∼= V(Lab

K (E,C)) has the refinement property. In conclusion,
passing to the tame quotient, one gets a much more well-behaved and easily accessible
algebra while at the same time refining the non-stable K-theory. For this reason, the
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tame algebras should be regarded as better building blocks for attacking the separativity
problem than their non-tame extensions.

The results of [5] allowed Ara and Exel to answer a question posed by Rørdam and
Sierakowski on relative type semigroups. Given a (partial) action θ : Gy Ω of a discrete
group G on a totally disconnected, locally compact Hausdorff space Ω, let K = K(Ω)
denote the collection of compact open subsets K ⊂ Ω. The relative type semigroup
S(Ω, G,K) is the abelian monoid generated by the elements of K with relationsK1tK2 =
K1+K2 for all K1,K2 ∈ K and θg(K) = K whenever g ∈ G and K ∈ K is in the domain
of θg. In [30], Rørdam and Sierakowski studied purely infiniteness of the crossed product
C(Ω)orG for essentially free actions of an exact group on the Cantor set. They proved
that if the type semigroup is purely infinite, then so is the crossed product, and if,
moreover, one assumes the type semigroup to be almost unperforated (meaning that
(n+ 1)a ≤ n · b implies a ≤ b for all n ≥ 2), then these conditions are equivalent. Since
no actions on the Cantor set had ever been shown to have a non-almost unperforated
type semigroup at that time, they asked if such actions exist at all. In [5, Theorem 7.4],
Ara and Exel were able to prove that the canonical monoid homomorphism

S(Ω(E,C),F(E1),K)→ V(CK(Ω(E,C)) o F(E1)) = V(Lab
K (E,C),

given by 1K 7→ [1Kδ1], is in fact an isomorphism. As a consequence, any conical abelian
monoid may be embedded into a type semigroup, hence any cancellation property can
fail for an appropriate action.

In the subsequent paper [6], Ara and Exel used the above approximation result together
with Ara and Goodearl’s computation of K∗(C∗(E,C)) to compute K∗(O(E,C)) for
any finitely separated graph (E,C). On the level of K0, the quotient mapping induces
a split monomorphism with a free abelian cokernel, and on K1, it simply induces an
isomorphism. Using a partial action version of the Pimsner-Voiculescu sequence proven
by McClanahan in [27], they finally observed that K∗(O(E,C)) ∼= K∗(Or(E,C)). In
particular, K1(O(E,C)) ∼= K1(Or(E,C)) is always torsion-free.

4. The approach and results of this thesis

The partial dynamical system associated to a finitely separated graph is a rather odd
one at first sight, and its highly technical nature may easily lead one to think that its
usefulness is limited. However, this is far from the truth, and we consistently embrace it
as the natural approach to studying the tame algebras associated with finitely separated
graphs. We will see how it allows for translation of many graph-theoretical properties
into dynamical and algebraic phenomena, and, in fact, most of our results rely heavily
on this approach.

We single out one part of the thesis as particularly important for properly understanding
the essence and generality of these dynamical systems: our study of convex subshifts as
defined in [A, Section 3]. A convex subshift, loosely speaking, is the shift action on a
compact space of rooted trees whose edges are directed and labelled with a given, finite
alphabet. Shifting simply means changing the root, and formally, a convex subshift
is regarded as a partial action of the free group generated by the alphabet. Inspired
by the classical study of subshifts, we introduce notions of finite and infinite type: A
convex subshift is of finite type if it can be obtained from the space of all trees by
forbidding finitely many balls, or equivalently, if there exists a natural number N such



15

that one can determine whether a given tree belongs to the space by only inspecting
the subtrees of radius N – in this case, we say that the convex subshift is N -step.
If a convex subshift is not of finite type, naturally it is of infinite type. While the
partial actions of separated graphs may seem somewhat arbitrary, the general notion
of a convex subshift should appear fairly natural. However, by definition the former is
a 1-step instance of the latter, and the main result of [A, Section 3] is an analogue of
a classical result on graph representations of finite type subshifts: Any convex subshift
of finite type can be represented (up to Kakutani equivalence) as the partial action of
a finite bipartite separated graph. So rather than being somewhat special dynamical
systems, the partial actions of separated graphs are in fact quite general. In addition,
we can show a curious interplay between the viewpoint of convex subshifts and the main
construction of [5]. Recall that for any finite bipartite separated graph (E,C), there is
an associated sequence of such graphs (En, C

n) for which (E0, C
0) = (E,C). It follows

from [5, Theorem 5.7] that the tame algebras of (En, C
n) do not depend on n, but the

specific relationship between the corresponding dynamical systems was not understood.
It turns out that θ(En,Cn) is an instance of a natural construction in the realm of convex
subshifts, specifically it is the n-ball shift of θ(E,C), a generalisation of the higher block
shifts from classical shift spaces. In particular, we recover [5, Theorem 8.3], which states
that the vertices of En naturally correspond to n-balls of configurations in Ω(E,C).

Another major theme of this thesis is the study of open and invariant subspaces of
the configuration space Ω(E,C) and the ideals they induce in the tame algebras. For
a column-finite directed graph E, the lattice of open and invariant subspaces of the
boundary path space ∂E is isomorphic to the lattice of hereditary and saturated vertex
subsets, so one can read off all information from the graph. There is a similar notion
of hereditary and C-saturated subsets, and to any such set H, one can can naturally
associate an open invariant subspace Ω(E,C)H ⊂ Ω(E,C). There is also a notion of

a quotient graph (E/H,C/H), and the partial actions θ(E,C)|Z with Z := Ω(E,C) \
Ω(E,C)H and θ(E/H,C/H) are essentially the same. On the level of tame algebras, we
see that the quotient by the ideal I(H) generated by H is exactly the corresponding
tame algebra of (E/H,C/H) [A, Theorem 5.5]. However, these subspaces Ω(E,C)H are
usually far from the only open and invariant ones. Even so, when (E,C) is finite and
bipartite, we can in fact describe the lattice of open and invariant subspaces in terms
of graph-theoretic data – we merely have to consider a much larger graph. Recall that
s(E1

n) = r(E1
n+1) for every n, so the graphs (En, C

n) can naturally be glued together
to give an infinite-layer graph (F∞, D∞), which we refer to as the separated Bratteli
diagram of (E,C). In particular, there is a notion of hereditary and D∞-saturated
subsets of F 0

∞, and these exactly correspond to the open and invariant subspaces of
Ω(E,C) by [A, Theorem 4.7]. Moreover, the complement Ω(E,C) \Ω(E,C)H of such a
subspace is of finite type if and only if H is of finite type, that is if H is the hereditary
and D∞-saturated closure of H(n) := H ∩ E0

n for some n.

While the lattice of open and invariant subspaces is too complicated to be determined
directly from the graph itself, we show that many properties of the dynamical systems
and algebras do in fact admit on-the-nose characterisations. This includes:

(S) Ω(E,C) being a Cantor space (for finite graphs), [A, Proposition 9.6].

(D1) Minimality of θ(E,C), [B, Corollary 4.11].

(D2) Topological freeness of θ(E,C), [5, Theorem 10.5].
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(D3) Essential freeness of θ(E,C),[B, Theorem 6.13].
(A1) Simplicity of any of the separated graph algebras, [A, Theorem 8.1] and [B,

Section 4].
(A2) The exchange property of any of the tame algebras, [B, Theorem 6.13].
(A3) Primeness of Lab

K (E,C) and Or(E,C) (for finite graphs satisfying (S)), [A,
Theorem 9.10].

(A4) Nuclearity and exactness of O(E,C) and Or(E,C), [C, Theorem 5.1].

Some of these properties, specifically (D1), (D3), (A1) and (A2), can only occur in rather
special situations. As a result, we can show that tame separated graph algebras are only
building blocks for attacking the separativity problem – they do not themselves provide a
counterexample. Despite the fact that θ(E,C) is usually not essentially free, when (E,C)
is finite and bipartite, we can completely describe the finite type ideals J / Or(E,C)
[A, Theorem 7.17]: We say that J is of finite type if (J ∩ C(Ω(E,C))) or F = I(H)
for a hereditary and D∞-saturated set H of finite type. This description relies on a
weakening of topological freeness that we call relative strong topological freeness, and
which is always enjoyed by θ(E,C). Incidentally, this approach also allows one to reprove
some of the fundamental results on classical graph C∗-algebras with very little work. The
most subtle of the above characterisations is that of nuclearity and exactness, to which
[C] is entirely dedicated. We establish a graph-theoretic Condition (N ) characterising
nuclearity of O(E,C) and Or(E,C), and also prove that this is equivalent to the regular
representation O(E,C) → Or(E,C) being an isomorphism. Moreover, we show that
O(E,C) is even non-exact when (E,C) does not satisfy Condition (N).

The earlier work of Ara, Exel and Goodearl, as sketched in the previous section, has
required little inspection of the graph-theoretic properties of separated graphs. This
changes dramatically when properly entering the dynamical domain, and so a key chal-
lenge has been the establishment of reasonable language and notation. Indeed, termi-
nology can greatly affect ones ability to comprehend a theory, and, if well-chosen, will
often allow one to obtain leaner and more elegant proofs. In addition, good terminology
is all the more important when working with a naturally technical subject matter. The
author would therefore like to express his hopes that the readers will find the thesis
somewhat accessible in spite of its technical character.

5. A few problems for the future

We finally sketch some problems to be investigated further in the future.

The central question that motivated the study of separated graph algebras, whether or
not one can construct a counterexample to the separativity problem, is of course still
wide open. From [B, Theorem 6.13], it is apparent that one must consider quotients of
the tame algebras corresponding to infinite type convex subshifts, which we have not
studied at all. However, this is too vast a class to be investigated in full generality
(for instance it contains all two-sided shift spaces as a tiny subclass), so one should
rather study specific particularly well-behaved examples. Exploring whether some of
the standard techniques for constructing infinite type subshifts can be adapted would
be a first step in this direction. If one can understand the forbidden balls of an infinite
type convex subshift F y Ω, then our theory will – in principle – allow one to compute
the non-stable K-theory of the associated algebra CK(Ω)oF as a concrete direct limit.
However, even for a minimal convex subshift, it is rather unclear how one would go
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about checking the exchange property/real rank zero of the associated algebras, and it
is quite likely that new techniques will have to be developed for this.

Another problem is related to the latter of Rørdam’s questions: Say that (E,C) is a finite
bipartite separated graph, and H is an infinite type hereditary and D∞-saturated subset
of (F∞, D∞). Setting H(n) := H∩E0

n, is it then possible for lim−→n
Or(En/H

(n), Cn/H(n))

to be nuclear even though every (En/H
(n), Cn/H(n)) does not satisfy Condition (N)?

The author suspects that it is, although unaware of any examples. If it is not, then
one should not expect to obtain nuclear C∗-algebras with exotic non-stable K-theory.
Indeed, it seems very likely that the monoid M(E,C) is both almost unperforated and
separative whenever (E,C) satisfies Condition (N).

It remains unknown if the map V(LC(E,C)) → V(C∗(E)) is an isomorphism, and this
thesis does not offer any new insights into this important problem. Perhaps it is easier
to decide whether or not the map V(Lab

C (E,C)) → V(Or(E,C)) is an isomorphism
since the tame algebras are far more accessible, but even this question seems extremely
difficult. A related problem is if all ideals of Or(E,C) generated by projections are
induced – while we prove that this is true for all ideals of finite type, our methods do
not seem to cover the general case.

In another direction, it would be natural to study tame separated graph algebras of ar-
bitrary separated graphs. The dynamical description ought to generalise by considering
local configurations of the form

s−1(v) ∪ {e−1X : X ∈ Cv, |X| <∞} ∪ {e−1X : X ∈ S}
for S ⊂ {X ∈ Cv : |X| =∞}, and the notion of breaking vertices should have a natural
analogue in the separated setting. Quite a few of our results seem to generalise with
minimal effort, while others might require new techniques, similar to those developed
for non-column-finite graphs.
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CONVEX SUBSHIFTS, SEPARATED BRATTELI DIAGRAMS, AND
IDEAL STRUCTURE OF TAME SEPARATED GRAPH ALGEBRAS

PERE ARA AND MATIAS LOLK

Abstract. We introduce a new class of partial actions of free groups on totally disconnected
compact Hausdorff spaces, which we call convex subshifts. These serve as an abstract frame-
work for the partial actions associated with finite separated graphs in much the same way as
classical subshifts generalize the edge shift of a finite graph. We define the notion of a finite
type convex subshift and show that any such subshift is Kakutani equivalent to the partial
action associated with a finite bipartite separated graph. We then study the ideal structure of
both the full and the reduced tame graph C*-algebras, O(E,C) and Or(E,C), of a separated
graph (E,C), and of the abelianized Leavitt path algebra Lab

K (E,C) as well. These algebras
are the (reduced) crossed products with respect to the above-mentioned partial actions, and
we prove that there is a lattice isomorphism between the lattice of induced ideals and the
lattice of hereditary D∞-saturated subsets of a certain infinite separated graph (F∞, D∞)
built from (E,C), called the separated Bratteli diagram of (E,C). We finally use these tools
to study simplicity and primeness of the tame separated graph algebras.
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This of course includes the more traditional setting of globally defined group actions, and is
in turn generalized by the often useful setting of C*-algebras associated to étale topological
groupoids [45, 41, 27, 2, 35, 48].

In [26, Section 5], Exel describes any Cuntz-Krieger C*-algebra OA as a crossed product
of a commutative C*-algebra by a partial action of a non-abelian free group. This may be
interpreted as follows. Given a {0, 1}-matrix A ∈ Mp({0, 1}), one may consider the one-
sided shift of finite type XA consisting of the infinite sequences (xn) ∈ {1, . . . , p}N such that
A(xn, xn+1) = 1 for all n. Then, a partial action of the free group Fp on the space XA can
be naturally defined so that OA ∼= C(XA) o Fp. (This action is spelled out at the beginning
of Section 3.) This description can be generalized to the more general context of graph
C*-algebras, see e.g. [25, Theorem 37.8], [31].

One may also consider two-sided subshifts X ⊆ {1, . . . , p}Z (see e.g. [37]), where the shift
map is a true homeomorphism, and thus the associated C*-algebra is simply the crossed
product C(X ) o Z, where the action is induced by the shift. The C*-algebra associated to
a given two-sided shift is quite different from the C*-algebra associated to the corresponding
one-sided shift. For instance, in the case of the full shift on {1, . . . , p}, we get the Cuntz
algebra Op from the one-sided shift, and we get the group C*-algebra C∗(Zp o Z) of the
lamplighter group Zp o Z from the two-sided shift.

In this paper, we propose a unified approach to one-sided and two-sided subshifts, under
the general notion of a convex subshift. Given a finite alphabet A, define C(A) to be the
space of all the (right-)convex subsets of the free group F(A) on A which contain 1. Then
the full convex shift on A is defined using the natural action of F(A) on C(A) (see Definition
3.1 for the precise definition). A convex subshift is just the restriction of the full convex shift
to a closed invariant subspace, and we say that a convex subshift is of finite type if it can be
obtained by forbidding finitely many balls (or patterns).

We show that this notion is equivalent to the study of the dynamical systems associated
to separated graphs, a concept recently coined by the first-named author and Ruy Exel [7].
Recall that a separated graph is a pair (E,C) consisting of a directed graph E and a set
C =

⊔
v∈E0 Cv, where each Cv is a partition of the set of edges whose terminal vertex is

v. By [7, Theorem 9.1], the study of the dynamical systems associated to separated graphs
can be reduced to the case of bipartite separated graphs, which are those separated graphs
(E,C) such that E0 = E0,0 t E0,1 is the disjoint union of two layers E0,0 and E0,1, and
s(E1) = E0,1, r(E1) = E0,0, where s and r are the source and range maps respectively.
Given a finite bipartite separated graph (E,C), there exists a partial action θ(E,C) of the free
group F = F(E1) on a zero-dimensional metrizable compact space Ω(E,C) such that the
tame C*-algebra O(E,C) is isomorphic to the partial crossed product C(Ω(E,C)) o F ([7])
– this in turn allows for the definition of a reduced tame graph C∗-algebra Or(E,C) as the
corresponding reduced crossed product. A similar result holds for the abelianized Leavitt
path algebra Lab

K (E,C) over a field with involution K, allowing us to study both types of
algebras at the same time.
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One of our main results is Theorem 3.25, where we prove that any convex subshift of finite
type is Kakutani equivalent to the dynamical system coming from a finite bipartite separated
graph. This provides a far-reaching generalization of the well-known result that every shift
of finite type is conjugate to an edge shift of a finite graph [37, Chapter 2].

The K-theory of the C*-algebras associated to separated graphs has been computed in [8].
For a finite bipartite separated graph (E,C), the K0-group of both the reduced and the full
tame graph C*-algebras of (E,C) can be computed in terms of an infinite separated graph
(F∞, D∞), which is the union of a sequence of finite bipartite separated graphs (En, C

n).
The infinite separated graph (F∞, D∞) has a structure which resembles very much the one
of a usual Bratteli diagram. This leads us to define the new concept of a separated Bratteli
diagram (Definition 2.8), and to refer to the graph (F∞, D∞) as the separated Bratteli diagram
associated to (E,C).

Given a crossed product O = A o G, we say that an ideal J / O is induced if J =
(J ∩ A) o G, and we denote by Ind(O) the lattice of induced ideals. We show that the
structure of induced ideals of the tame graph algebras of a finite separated graph (E,C) is
completely determined by its associated separated Bratteli diagram (F∞, D∞). Concretely
we obtain lattice isomorphisms

Ind(Lab
K (E,C)) ∼= Ind(O(E,C)) ∼= Ind(Or(E,C)) ∼= H(F∞, D

∞),

where H(F∞, D∞) is the lattice of hereditary D∞-saturated subsets of F 0
∞ (see Theorem 4.7).

This generalizes the well-known result for ordinary graph C*-algebras [16, 17].
In sharp contrast with the situation for ordinary graphs, the quotient algebraO(E,C)/I(H)

of an ideal generated by a hereditary D∞-saturated subset H can be described in terms of
the tame algebra of a separated graph only when H is of finite type, meaning that H can be
generated by a hereditary Cn-saturated subset of vertices of the separated graph (En, C

n) for
some n ≥ 0. Otherwise, the quotient O(E,C)/I(H) can be described by means of a crossed
product of a free group on a compact invariant subset of Ω(E,C), but it will in general not
be a tame graph C*-algebra of a separated graph. Even so, its K-theory can be computed
by using a corresponding separated Bratteli diagram (F∞/H,D∞/H) (Theorem 6.4). This
justifies the introduction of general separated Bratteli diagrams, and indicates that interesting
examples (some of them of a pathological behaviour) can occur if we allow the consideration
of hereditary D∞-saturated of infinite type; see the comment after Example 6.9.

We present in some detail an example which is connected with the full two-sided shift.
We believe this example is very useful to understand the various aspects of the theory that
have been described above. It is also the example that allows to study the group algebra of
the lamplighter group from the perspective of the theory of separated graphs. Using this,
and generalizing [12], the first-named author and Joan Claramunt have obtained a concrete
approximation of this group algebra by a sequence of finite-dimensional algebras [6].

We also study general (i.e. not necessarily induced) ideals of Or(E,C). We say that an
ideal J is of finite type if the corresponding induced ideal I(H) = (J∩C(Ω(E,C)))orF arises
from a hereditary D∞-saturated set H of finite type. By studying a weakening of topological
freeness that we dub relative strong topological freeness, we are able to compute the lattice
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of finite type ideals. We also observe that our techniques, when applied to non-separated
graphs, yield a complete characterization of the ideal structure.

We close the paper by using our tools to perform a study of simplicity and primeness in
tame graph algebras of separated graphs.

In this paper, we consider three types of tame graph ∗-algebras associated to separated
graphs, namely the full tame graph C*-algebra O(E,C), the reduced tame graph C*-algebra
Or(E,C), and the abelianized Leavitt path algebra Lab

K (E,C) over a field with involution K.
All three types of algebras have been introduced in [7]. The first two types generalize graph
C*-algebras [44], in the sense that, denoting by T the trivial partition on each r−1(v), we
have O(E, T ) = Or(E, T ) = C∗(E), where C∗(E) is the graph C*-algebra of E. The third
type generalizes Leavitt path algebras [4, 14], in the sense that Lab

K (E, T ) = LK(E), where
LK(E) is the Leavitt path algebra of E.

Contents. We now describe the contents of the paper in more detail. In section 2, we
recall relevant definitions and constructions from the existing theory of algebras associated
with separated graphs, in particular the main results of [7]. We also introduce the notion of
a separated Bratteli diagram. In section 3, we introduce a class of partial actions that we call
convex subshifts. These serve as an abstract framework for the partial actions associated with
finite separated graphs in much the same way as classical subshifts generalize the edge shift
of a finite graph. We define the notion of a finite type convex subshift and show that any
such subshift is Kakutani equivalent to the partial action associated with a finite bipartite
separated graph (Theorem 3.25). Using the language of convex subshifts, we are also able
to explain the precise relationship between the partial action of a finite bipartite separated
graph (E,C) and its successors (En, C

n) for n ≥ 1 (Theorem 3.22). In section 4, we begin our
investigation of the lattice of induced ideals of the algebras Lab(E,C), O(E,C) and Or(E,C).
The main result (Theorem 4.7) identifies this lattice with the lattice L(M(F∞, D∞)) of order
ideals of the monoid M(F∞, D∞), as well as the lattice of hereditary and D∞-saturated
subsets of (F∞, D∞), providing both an algebraic and a graph theoretic perspective. In the
following section, we study the specific ideals associated with hereditary and C-saturated
subsets of (E,C), and we show that the corresponding quotients arise as separated graph
algebras from the quotient graph (Theorem 5.5). In section 6, we combine the work of
the previous sections to describe the quotient by an arbitrary induced ideal as a limit of
separated graph algebras (Proposition 6.2), and we provide a dynamical description of this
approximation. We also pay significant attention to a concrete example that illustrates the
general theory (Examples 6.7, 6.9, and 6.10). In particular, we show that the crossed product
of a two-sided finite type subshift can be realised as a full corner of the tame graph C*-
algebra associated with a finite bipartite separated graph (Proposition 6.8). We proceed to
study general ideals of finite type in section 7, and we provide a complete characterisation in
terms of graph theoretic data (Theorem 7.12). This relies on an abstract study of relatively
strongly topologically free partial actions that we initiate. We then study V-simplicity of the
separated graph algebras in section 8, showing that (up to Morita equivalence) the tame
graph C*-algebras degenerate to either classical graph C*-algebras or group C*-algebras of
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free groups if M(F∞, D∞) ∼= V(Lab(E,C)) is order simple (Theorem 8.1). In section 9, we
finally establish a criterion for Ω(E,C) to be a Cantor space (Proposition 9.6), and in this
setting we characterize primeness of the algebras Lab

K (E,C) and Or(E,C) (Theorem 9.10).

2. Preliminary definitions

In this preliminary section, we will recall all the relevant definitions and constructions from
the theory of algebras associated with separated graphs. The reader should note that we use
the same conventions as in [7] and [8], but opposite to those of [11] and [10]. One important
consequence is that all paths should be read from the right.

Definition 2.1. ([11]) A separated graph is a pair (E,C) where E = (E0, E1, r, s) is a directed
graph, C =

⊔
v∈E0 Cv, and Cv is a partition of r−1(v) (into non-empty subsets) for every vertex

v. In case v is a source, i.e. r−1(v) = ∅, we take Cv to be the empty family of subsets of
r−1(v). Given an edge e, we shall use the notation Xe for the element of C containing e.

If all the sets in C are finite, we say that (E,C) is a finitely separated graph. This necessarily
holds if E is column-finite (that is, if r−1(v) is a finite set for every v ∈ E0.)

The set C is a trivial separation of E in case Cv = {r−1(v)} for each v ∈ E0 \ Source(E).
In that case, (E,C) is called a trivially separated graph or a non-separated graph.

Finally, (E,C) is called bipartite if the vertex set admits a partition E0 = E0,0 tE0,1 with
s(E1) = E0,1 and r(E1) = E0,0.

As the first of many different algebras assocated with separated graphs, we now define the
Leavitt path algebra.

Definition 2.2. Let (K, ∗) be a field with involution. The Leavitt path algebra of the sepa-
rated graph (E,C) with coefficients in the field K is the ∗-algebra LK(E,C) with generators
{v, e | v ∈ E0, e ∈ E1}, subject to the following relations:

(V) vv′ = δv,v′v and v = v∗ for all v, v′ ∈ E0 ,
(E) r(e)e = es(e) = e for all e ∈ E1 ,

(SCK1) e∗e′ = δe,e′s(e) for all e, e′ ∈ X, X ∈ C, and
(SCK2) v =

∑
e∈X ee

∗ for every finite set X ∈ Cv, v ∈ E0.

The Leavitt path algebra LK(E) is just LK(E,C) where Cv = {r−1(v)} if r−1(v) 6= ∅ and
Cv = ∅ if r−1(v) = ∅. An arbitrary field can be considered as a field with involution by taking
the identity as the involution. However, our “default” involution over the complex numbers
C will be the complex conjugation, and we will write L(E,C) := LC(E,C).

We now recall the definition of the graph C*-algebra C∗(E,C), introduced in [10].

Definition 2.3. The graph C*-algebra of a separated graph (E,C) is the C*-algebra C∗(E,C)
with generators {v, e | v ∈ E0, e ∈ E1}, subject to the relations (V), (E), (SCK1), (SCK2).
In other words, C∗(E,C) is the enveloping C*-algebra of L(E,C).

In case (E,C) is trivially separated, C∗(E,C) is just the classical graph C*-algebra C∗(E).
There is a unique *-homomorphism L(E,C) → C∗(E,C) sending the generators of L(E,C)
to their canonical images in C∗(E,C). This map is injective by [10, Theorem 3.8(1)].
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Since both LK(E,C) and C∗(E,C) are universal objects with respect to the same sets of
generators and relations, they can be studied in much the same way. A remarkable difference
is that the non-stable K-theory V(LK(E,C)) has been computed for any separated graph
(E,C), while the structure of V(C∗(E,C)) is still unknown. However, it is conjectured
in [10] that the natural map L(E,C) → C∗(E,C) induces an isomorphism V(L(E,C)) →
V(C∗(E,C)). See [5, Section 6] for a short discussion on this problem. We now describe
V(LK(E,C)) as the graph monoid of (E,C).

Definition 2.4. Given a finitely separated graph (E,C), the graph monoid M(E,C) is the
abelian monoid with generators av for v ∈ E0 and relations av =

∑
e∈X as(e) for all v ∈ E0

and X ∈ Cv.
Note that there is a natural map M(E) → V(LK(E,C)) given by av 7→ [v], and this is in

fact an isomorphism by [11, Theorem 4.3].
One issue with the algebras LK(E,C) and C∗(E,C) is that the set of partial isometries

represented by the edges E1 is not tame, that is, products of edges and their adjoints are
not in general partial isometries. This motivated Ruy Exel and the first named author to
introduce certain quotients Lab

K (E,C) and O(E,C) of LK(E,C) and C∗(E,C), respectively,
that we shall now describe.

Definition 2.5. For a finitely separated graph (E,C), let S denote the multiplicative sub-
semigroup of LK(E,C) generated by E1 ∪ (E1)∗, and define an ideal (respectively a closed
ideal)

J = 〈αα∗α− α | α ∈ S〉 = 〈[αα∗, ββ∗] : α, β ∈ S〉
of LK(E,C) (respectively of C∗(E,C)). Then we set

Lab
K (E,C) := LK(E,C)/J and O(E,C) := C∗(E,C)/J.

Observe that modding out J precisely forces E1 to be tame in these quotients.

We now recall the main construction of [7] which will play an important role in what is to
come.

Definition 2.6. Let (E,C) denote a finite bipartite separated graph, and write

Cu = {Xu
1 , . . . , X

u
ku}

for all u ∈ E0,0. Then (E1, C
1) is the finite bipartite separated graph defined by

• E0,0
1 := E0,1 and E0,1

1 := {v(x1, . . . , xku) | u ∈ E0,0, xj ∈ Xu
j },

• E1 := {αxi(x1, . . . , x̂i, . . . , xku) | u ∈ E0,0, i = 1, . . . , ku, xj ∈ Xu
j },

• r1(αxi(x1, . . . , x̂i, . . . , xku)) := s(xi) and s1(αxi(x1, . . . , x̂i, . . . , xku)) := v(x1, . . . , xku),
• C1

v := {X(x) | x ∈ s−1(v)}, where

X(xi) := {αxi(x1, . . . , x̂i, . . . , xku) | xj ∈ Xu
j for j 6= i}.
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A sequence of finite bipartite separated graphs {(En, Cn)}n≥0 with (E0, C
0) := (E,C) is then

defined inductively by letting (En+1, C
n+1) denote the 1-graph of (En, C

n). Finally, (Fn, D
n)

denotes the union
⋃n
i=0(En, C

n), and (F∞, D∞) is the infinite layer graph

(F∞, D
∞) :=

∞⋃

n=0

(Fn, D
n) =

∞⋃

n=0

(En, C
n).

Observe that (Fn, D
n) is a finite separated graph, while (F∞, D∞) is a finitely separated

graph.

By [7, Theorem 5.1 and Theorem 5.7], there are canonical surjective ∗-homomorphisms
∗-homomorphisms

LK(En, C
n)→ LK(En+1, C

n+1) and C∗(En, C
n)→ C∗(En+1, C

n+1)

such that

LabK (E,C) ∼= lim−→
n

LK(En, C
n) and O(E,C) ∼= lim−→

n

C∗(En, C
n).

On the level of monoids, the induced monoid homomorphism

M(En, C
n) ∼= V(LK(En, C

n))→ V(LK(En+1, C
n+1) ∼= M(En+1, C

n+1)

is a unitary embedding, which refines the defining relations of M(En, C
n). Consequently, the

quotient map LK(E,C)→ Lab
K (E,C) induces a (universal) refinement

M(E,C) ∼= V(LK(E,C))→ V(Lab
K (E,C)) ∼= M(F∞, D

∞).

One of the main advantages of dealing with the quotients Lab
K (E,C) and O(E,C) is that,

by [7, Corollary 6.12], they admit descriptions as crossed products

Lab
K (E,C) ∼= CK(E,C) o F and O(E,C) ∼= C(Ω(E,C)) o F

of a topological partial action θ(E,C) : F y Ω(E,C), referred to as the canonical partial
(E,C)-action. Here, F is the free group generated by E1, Ω(E,C) is a certain compact,
zero-dimensional, metrisable space, and CK(Ω(E,C)) denotes the ∗-algebra of continuous
functions Ω(E,C) → K when K is given the discrete topology, that is, the ∗-algebra of
locally constant functions Ω(E,C) → K. Every vertex v ∈ F 0

∞ corresponds to a compact
open subset Ω(E,C)v ⊂ Ω(E,C) such that Ω(E,C) =

⊔
v∈E0

n
Ω(E,C)v for all n.

The crossed product description enables the definition of yet another tame graph C∗-
algebra.

Definition 2.7. Let (E,C) denote a finite bipartite separated graph. Then Or(E,C) is the
reduced crossed product C(Ω(E,C)) or F of the canonical partial (E,C)-action.

The separated graph (F∞, D∞) resembles very much the structure of a Bratteli diagram
[18], but incorporating separations (and up to a change of the convention of the direction of
the arrows). We formalize this with the following definition.
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8 PERE ARA AND MATIAS LOLK

Definition 2.8. A separated (or colored) Bratteli diagram is an infinite separated graph
(F,D). The vertex set F 0 is the union of finite, non-empty, pairwise disjoint sets F 0,j, j ≥ 0.
Similarly, the edge set F 1 is the union of a sequence of finite, non-empty, pairwise disjoint
sets F 1,j, j ≥ 0. The range and source maps satisfy r(F 1,j) = F 0,j and s(F 1,j) = F 0,j+1 for
all j ≥ 0.

A Bratteli diagram is just a separated Bratteli diagram with the trivial separation. The
graph (F∞, D∞) associated to a finite bipartite separated graph (E,C) is an example of a
separated Bratteli diagram, and we will refer to it as the separated Bratteli diagram of the
separated graph (E,C). We will find later other examples of separated Bratteli diagrams,
related to quotients of tame graph C*-algebras, see Theorem 6.4.

The graph monoid of a Bratteli diagram (F,D) is the graph monoid M(F,D) of the finitely
separated graph (F,D), see Definition 2.4. The Grothendieck group G(F,D) of the monoid
M(F,D) is an analogue of the dimension group associated to a Bratteli diagram, but it is not
a dimension group in general. It is quite sensible to equip G(F,D) with the structure of a
pre-ordered abelian group, taking G(F,D)+ := ϕ(M(F,D)), where ϕ : M(F,D) → G(F,D)
is the canonical map.

The separated Bratteli diagram of a finite bipartite separated graph computes the K0 of
the tame graph algebras of the graph, as follows.

Theorem 2.9. Let (E,C) be a finite bipartite separated graph, and let (F∞, D∞) be its
separated Bratteli diagram.

(1) There is a natural group isomorphism

K0(O(E,C)) ∼= K0(Or(E,C)) ∼= G(F∞, D
∞).

(2) There is a natural isomorphism V(Lab
K (E,C)) ∼= M(F∞, D∞), and so an isomorphism

of pre-ordered abelian groups

K0(Lab
K (E,C)) ∼= G(F∞, D

∞)

for any field with involution K.

Proof. (2) follows from [7, Theorem 5.1], and (1) follows from [8, Theorem 4.4(c), Corollary
6.9]. �

In the following, we shall recall a very handy description of the canonical partial (E,C)-
action introduced in [7], although we will make a slight change to the original definition,
coherent with the conventions of [38] and [39]. We remark that while we only consider finite
bipartite graphs, the dynamical picture can be extended to arbitrary finitely separated graphs
[38, Definition 2.6 and Theorem 2.10]. For a comprehensive study of the general theory of
partial actions and their crossed products, we refer the reader to [25].

Definition 2.10. Suppose that (E,C) is a separated graph, and let Ê denote the double of
E, i.e. the graph with

Ê0 := E0, Ê1 := E1 t (E1)−1, r̂(e) := r(e) = ŝ(e−1) and r̂(e−1) := s(e) =: ŝ(e).
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A path in the double of E (with the convention that a path is read from the right to the left)
is called an admissible path if

• e 6= f for every subpath ef−1,
• Xe 6= Xf for every subpath e−1f .

We define the range and source of an admissible path to simply be the range and source in
the double, and we view the vertices as the set of trivial admissible paths.

A closed path in (E,C) is a non-trivial admissible path α with r(α) = s(α), and α is called
a cycle if the concatenated word αα is an admissible path as well. Either way, we shall say
that α is based at r(α) = s(α). A cycle is called simple if the only vertex repetition occurs
at the end.

Definition 2.11. Suppose that (E,C) is finite bipartite separated graph, and let F denote
the free group on E1. Given ξ ⊂ F and α ∈ ξ, the local configuration ξα of ξ at α is defined
as

ξα := {σ ∈ E1 t (E1)−1 | σ ∈ ξ · α−1}.
Then Ω(E,C) is the set of ξ ⊂ F satisfying the following:

(a) 1 ∈ ξ.
(b) ξ is right-convex : In view of (a), this exactly means that if eεnn · · · eε11 ∈ ξ for ei ∈ E1

and εi ∈ {±1}, then eεmm · · · eε11 ∈ ξ as well for any 1 ≤ m < n.
(c) For every α ∈ ξ, one of the following holds:

(c1) ξα = s−1(v) for some v ∈ E0,1.
(c2) ξα = {e−1

X | X ∈ Cv} for some v ∈ E0,0 and eX ∈ X.

Observe that for ξ ∈ Ω(E,C), every α ∈ ξ is an admissible path. Ω(E,C) is made into
a topological space by regarding it as a subspace of {0, 1}F. Thus it becomes a compact,
zero-dimensional, metrisable space, and a topological partial action θ = θ(E,C) : F y Ω(E,C)
with compact open domains is then defined by setting

• Ω(E,C)α := {ξ ∈ Ω(E,C) | α−1 ∈ ξ},
• θα(ξ) := ξ · α−1 for ξ ∈ Ω(E,C)α−1 .

This partial action is equivalent to the one defined in [7] under the map ξ 7→ ξ−1. We choose
to invert the elements as we want a common terminology and notation for both the algebraic
and the topological setting. The compact, open sets corresponding to the vertices of E are
given by

Ω(E,C)v =

{
Ω(E,C)e−1 for some e ∈ s−1(v) if v ∈ E0,1
⊔
e∈X Ω(E,C)e for some X ∈ Cv if v ∈ E0,0 ,

and we note that this is independent of e and X by (c1) and (c2), respectively. The reader
may think of Ω(E,C)v as the set of configurations ”starting” in v, and we shall regard 1 ∈ ξ
as the trivial path v when ξ ∈ Ω(E,C)v. See Remark 3.23 for a description of Ω(E,C)v when
v ∈ E0

n for n ≥ 1.
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3. Convex subshifts

Given a finite alphabet A and any set F of finite words in A, one can consider the space
XF ⊂ AN of infinite one-sided sequences that do not contain any words from F . In classical
symbolic dynamics, XF is then usually turned into a dynamical system by equipping it
with the one-sided shift σ, but for the purpose of constructing interesting algebras, one would
typically add additional dynamical structure. Specifically, a sequence may not only be shifted
to the left, but new letters may also be introduced in the beginning, provided that we stay
inside XF , of course.

Formally, this dynamical system can be regarded as a partial action with the free group
F(A) acting on XF : If a ∈ A and x ∈ XF , then a can act on x by a.x = ax whenever
ax ∈ XF , while the inverse a−1 can act on points ax ∈ XF by a−1.ax = x = σ(ax). It is
a standard fact that any subshift of finite type (meaning that F is finite) arises as the edge
shift of some finite graph E with no sinks, and the graph C∗-algebra may then be recovered
as the partial crossed product C∗(E) ∼= C(XF) o F(A) (see for instance [25, Theorem 36.20]
or [19, Theorem 3.1]). If E is a finite directed graph, one can also consider the boundary path
space ∂E, where – in addition to the set of right infinite paths – one also includes the set of
finite paths ending in a sink. Then there is natural partial action of F(E1) on ∂E defined as
above, and we still have C∗(E) ∼= C(∂E) o F(E1). In fact, a similar description exists for
arbitrary graphs.

In this section, we shall introduce a class of partial actions that one might consider as a
generalisation of both the above partial actions on one-sided sequence spaces (including those
of infinite type) and the boundary path spaces of finite graphs. We will see later (Example
6.7, Proposition 6.8) that also two-sided shifts can be recasted in this language. The basic
idea is to give up the linear nature of a sequence and allow trees instead. The dynamics
still arise from shifting, but there are usually many possible shifting directions with no one
being canonical. We will refer to these dynamical systems as convex subshifts for reasons that
should become apparent soon.

The motivation for introducing such systems is two-fold: On one hand, it provides a frame-
work for the dynamical systems associated with finite separated graphs in which one has
far more flexibility. On the other hand, the dynamical systems of finite bipartite separated
graphs encompass a vast class of convex subshifts, in fact all finite type convex subshifts up
to Kakutani-equivalence (see Theorem 3.25). As such, convex subshifts are to finite bipartite
separated graphs as one-sided subshifts are to finite graphs. Finally, we shall see how the
construction of (En, C

n) from (E,C) corresponds to a natural construction in the realm of
convex subshifts.

The contents of this section are closely related to classical subshifts of free groups on the
alphabet {0, 1}. Indeed, any convex subshift is the restriction of a free group subshift to a
partial action, but the convexity requirement that we impose is not of finite type; hence a
convex subshift would typically be regarded as an infinite type subshift. Moreover, it is most
beneficial for us to define everything from scratch so that the formal framework of convex
subshifts is similar to that of partial actions associated with separated graphs.
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Throughout this section, A will be a finite alphabet and F = F(A) will be the free group
on A. Though some definitions still make sense for infinite alphabets, we choose to deal only
with finite ones for the sake of simplicity.

Definition 3.1. Denote by C = C(A) the set of right-convex subsets ξ ⊂ F for which 1 ∈ ξ.
As in Definition 2.11, right-convexity in this setting simply means that if aεnn · · · aε11 ∈ ξ for
ai ∈ A and εi ∈ {±1}, then aεmm · · · aε11 ∈ ξ as well for all 1 ≤ m < n. We topologize C as
a subspace of P(F) ∼= {0, 1}F, making it into a compact, zero-dimensional, and metrizable
space (with many isolated points). The full convex shift on A is then the partial action F y C
given by

• Cα := {ξ ∈ C | α−1 ∈ ξ} for all α ∈ F.
• α.ξ := ξ · α−1 for ξ ∈ Cα−1 .

Viewing each ξ ∈ C as a tree, rooted in 1 and labelled relative to the root, the action of any
α ∈ ξ on ξ is thus simply given by moving the root to α and relabelling accordingly.

Remark 3.2. We could also define C to be the set of left-convex subsets with

Cα = {ξ ∈ C | α ∈ ξ} and α.ξ = α · ξ,
but we choose the above convention to match the one used for separated graphs. It is also
very convenient that with our convention, α can act on ξ if and only if α ∈ ξ (as opposed to
α−1 ∈ ξ). By [29, Section 4] and [28, Proposition 4.5], the full convex shift is conjugate to
the universal action for semi-saturated partial representations of F.

Definition 3.3. A convex subshift is the restriction of the full convex shift F y C to any
closed invariant subspace Ω ⊂ C.
Definition 3.4. An n-ball is an element B ∈ C such that |α| ≤ n for every α ∈ B, together
with the radius r(B) = n; a ball is then simply an n-ball for some n. Note that B as a set
does not determine the radius r(B), so one has to specify this. Now if ξ ∈ C, we can always
consider the n-ball

ξn := {α ∈ ξ : |α| ≤ n},
and if B is a given n-ball, we shall write ξ 6≡ B if (α.ξ)n 6= B for all α ∈ ξ. Finally, if Ω is
any convex subshift, we will write

Bn(Ω) := {ξn | ξ ∈ Ω} and B(Ω) :=
⊔

n≥0

Bn(Ω)

for the set of allowed n-balls and allowed balls, respectively.

With all the relevant terminology in place, we can give an example of a convex subshift.

Definition 3.5. Let F denote any set of balls; we can then define a convex subshift by

ΩF := {ξ ∈ C | ξ 6≡ B for all B ∈ F},
and we shall refer to this as the convex subshift obtained from forbidding F .

In fact, this is not an example, but rather the example.
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Proposition 3.6. If F y Ω is a convex subshift, then Ω = ΩF for some set of balls F .

Proof. Define F to be all the balls that do not occur in Ω, i.e. let

F := B(C) \ B(Ω).

Clearly Ω ⊂ ΩF , so let us consider the reverse inclusion. Given any ξ ∈ ΩF and n ≥ 1, it is
enough to check that ξn = ηn for some η ∈ Ω since Ω is closed. But since ξn /∈ F , we must
have ξn ∈ Bn(Ω), so ξn = ηn for some η ∈ Ω as desired. �
Definition 3.7. A convex subshift F y Ω is of finite type if Ω = ΩF for some finite set of
forbidden balls F . Observe that for such a convex subshift, we can safely assume that all
balls of F have the same radius R; we recognize this by saying that Ω is R-step. Observe that
in this situation, Ω is generated by BR(Ω) in the following sense: An element ξ ∈ C belongs
to Ω if and only if (α.ξ)R ∈ BR(Ω) for all α ∈ ξ.

Before venturing on, we need to discuss how one might compare partial actions of different
groups.

Definition 3.8. Consider partial actions θ : G y Ω and θ′ : H y Ω′ of discrete groups
on topological spaces. Then θ and θ′ are called dynamically equivalent and we shall write
θ ≈ θ′, if their transformation groupoids Gθ and Gθ′ (see for instance [39, Example 2.3]) are
isomorphic as topological groupoids. We now spell out exactly what this means: There is a
homeomorphism ϕ : Ω→ Ω′ and continuous maps

a :
⋃

g∈G
{g} × Ωg−1 → H and b :

⋃

h∈H
{h} × Ω′h−1 → G

such that

(1) ϕ(x) ∈ Ω′a(g,x)−1 and ϕ(g.x) = a(g, x).ϕ(x),

(2) ϕ−1(y) ∈ Ωb(h,y)−1 and ϕ−1(h.y) = b(h, y).ϕ−1(y),
(3) b(a(g, x), ϕ(x)) = g and a(b(h, y), ϕ−1(y)) = h,
(4) a(g′g, x) = a(g′, g.x)a(g, x) if g.x ∈ Ωg′−1 ,
(5) b(h′h, y) = b(h′, h.y)b(h, y) if h.y ∈ Ωh′−1

for all g ∈ G, h ∈ H, x ∈ Ωg−1 , y ∈ Ω′h−1 .

Remark 3.9. Given a locally compact Hausdorff étale groupoid G, one can associate to it
both a universal and a reduced groupoid C∗-algebra (see [45]), denoted C∗(G) and C∗r (G),
respectively. If G = Gθ for a partial action θ : Gy Ω of a discrete group on a locally compact
Hausdorff space, then there are identifications C∗(Gθ) ∼= C0(Ω)oθG and C∗r (Gθ) ∼= C0(Ω)oθ,rG
by [2, Theorem 3.3] and [35, Proposition 2.2]. For an ample groupoid G and any field K with
involution, there is also a purely algebraic analogue KG, known as the Steinberg algebra of G
[47]. If a partial action θ as above acts on a totally disconnected space, then Gθ is ample and
KGθ ∼= CK(Ω) oθ G, where CK(Ω) denotes the algebra of compactly supported continuous
functions Ω→ K, when K is endowed with the discrete topology. Hence if two partial actions
θ and θ′ as above are dynamically equivalent, i.e. Gθ ∼= Gθ′ , then they have isomorphic crossed
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products by base-preserving isomorphisms. In this light, groupoids provide a very flexible
framework for identifying the crossed products of partial actions.

Definition 3.10. Consider partial actions θ : G y Ω and θ′ : H y Ω′ of discrete groups
on topological spaces along with a group homomorphism Ψ: G → H. A continuous map
ϕ : Ω→ Ω′ is then called Ψ-equivariant if

(1) ϕ(Ωg) ⊂ Ω′Ψ(g) for all g ∈ G,

(2) ϕ(g.x) = Ψ(g).ϕ(x) for all x ∈ Ωg−1 .

The pair (ϕ,Ψ) is called a conjugacy if Ψ is an isomorphism and ϕ admits a Ψ−1-equivariant
inverse. However, conjugacy is often too rigid a notion and we therefore introduce another
type of equivalence in between conjugacy and dynamical equivalence: The pair (ϕ,Ψ) is called
a direct dynamical equivalence if

(a) ϕ is a homeomorphism,
(b) Ωg ∩ Ωg′ = ∅ for all g 6= g′ with Ψ(g) = Ψ(g′),
(c) Ω′h =

⋃
Ψ(g)=h ϕ(Ωg) for all h ∈ H,

and in this case we will write θ
≈−→ θ′.

Now let us see that our choice of name and notation is justified.

Proposition 3.11. If θ
≈−→ θ′, then θ ≈ θ′.

Proof. Apply the notation from above. We then set a(g, x) := Ψ(g) for all g ∈ G, x ∈ Ωg−1 ,
and given h ∈ H, y ∈ Ω′h−1 , we define b(h, y) to be the unique element of G satisfying

Ψ(b(h, y)) = h and y ∈ ϕ(Ωb(h,y)−1).

Then
ϕ−1(h.y) = ϕ−1(Ψ(b(h, y)).y) = b(h, y).ϕ−1(y)

and
b(a(g, x), ϕ(x)) = b(Ψ(g), ϕ(x)) = g,

so (1)-(4) of Definition 3.8 surely hold. Finally, if h′ ∈ H and h.y ∈ Ω′h′−1 , then

Ψ(b(h′, h.y)b(h, y)) = h′h

and

y ∈ h−1.
(
ϕ(Ωb(h′,h.y)) ∩ Ω′h

)
= Ψ(b(h, y))−1.

(
ϕ(Ωb(h′,h.y)) ∩ Ω′Ψ(b(h,y))

)

= ϕ
(
b(h, y)−1.(ϕ(Ωb(h′,h.y)) ∩ Ω′Ψ(b(h,y)))

)
= ϕ

(
Ωb(h,y)−1b(h′,h.y)−1 ∩ Ωb(h,y)−1

)
,

hence
b(h′h, y) = b(h′, h.y)b(h, y)

as desired. �
Remark 3.12. If (ϕ,Φ) is a direct dynamical equivalence from θ : G y Ω to θ′ : H y Ω′,
then the induced isomorphisms CK(Ω)oG→ CK(Ω′)oH and C0(Ω)o(r)G→ C0(Ω′)o(r)H
are simply given by fδg 7→ f ◦ ϕ−1|Ω′

Φ(g)
δΦ(g) with inverses fδh 7→

∑
Φ(g)=h f ◦ ϕ|Ωgδg.
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In fact, any dynamical equivalence is a result of two direct dynamical equivalences:

Proposition 3.13. If θ ≈ θ′ for partial actions of G and H, respectively, then

θ
≈←− γ

≈−→ θ′

for some partial action γ of G×H.

Proof. By otherwise replacing θ′ with the conjugate partial action ϕ◦θ′◦ϕ−1, we may assume
that θ and θ′ act on the same space Ω and ϕ = idΩ. Writing ag := a(g,−) and bh := b(h,−),
we then first define domains by

Ω(g,h) := a−1
g−1(h−1) = b−1

h−1(g−1)

for (g, h) ∈ G × H. To see that the above equality holds, assume that x ∈ a−1
g−1(h−1), i.e.

x ∈ Ωg with a(g−1, x) = h−1. Then x ∈ Ωh and

b(h−1, x) = b(a(g−1, x), x) = g−1,

hence x ∈ b−1
h−1(g−1), so a−1

g−1(h−1) = b−1
h−1(g−1) from symmetry. Then define the action of

(g, h) by

(g, h).x := g.x = a(g, x).x = h.x

for all x ∈ Ω(g,h)−1 . It is straightforward to verify that this does indeed define a partial action
γ : G × H y Ω. Then simply observe that the pairs (idΩ, πG) and (idΩ, πH), where πG and
πH denote the projections onto G and H, respectively, are direct dynamical equivalences. �

Returning to the world of convex shifts, we recall that any n-step subshift X can be recoded
into being 1-step using higher block shifts; one simply replaces the original alphabet with the
n-blocks Bn(X) via the map

x 7→ [x1 . . . xn][x2 . . . xn+1][x3 . . . xn+2] . . . .

In the following, we shall make a similar construction in the world of convex shifts – although
with blocks replaced by balls.

Construction 3.14. Let θ : F y Ω denote any convex subshift, let n ≥ 1 and consider the
finite alphabet

A[n : Ω] :=
{[

(a.ξ)n
a←− ξn

]
| ξ ∈ Ω, a ∈ A such that a ∈ ξ

}
,

where each
[
(a.ξ)n

a←− ξn
]

is just a formal symbol. As every symbol is typically represented

by many different configurations ξ, we will simply use the notation [B
a←− B′] where B,B′ ∈

Bn(Ω) in the future. We then consider the corresponding free group F[n : Ω] := F(A[n : Ω]) and
introduce the notation

[B′
a−1

←−− B] := [B
a←− B′]−1.
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Observe that if Ω ⊂ Λ is an inclusion of convex subshifts over A, then we obtain corresponding
inclusions A[n : Ω] ⊂ A[n : Λ] and F[n : Ω] ⊂ F[n : Λ]. When Ω = C is the full convex shift, we will
simply write A[n] := A[n : C] and F[n] := F[n : C], and define a group homomorphism

Ψn : F[n] → F given by Ψn([B
a←− B′]) := a.

By a slight abuse of notation, we will also refer to Ψn when we really mean the restriction of
Ψn to the subgroup F[n : Ω].

Our aim is to define a replacement for the above block-encoding, more specifically a map

φn : C(A)→ C(A[n]).

Given ξ ∈ Ω, we first set φn(ξ, 1) := 1 ∈ F[n] and proceed to define φn(ξ, α) ∈ F[n] for
1 6= α ∈ ξ. Writing α = sm · · · s1 and Bk = ((sk · · · s1).ξ)n for k ≤ m so that B0 = ξn and
Bm = (α.ξ)n, we then set

φn(ξ, α) := [Bm
sm←− Bm−1] · [Bm−1

sm−1←−−− Bm−2] · · · [B1
s1←− B0],

allowing us to define φn by

φn(ξ) := {φn(ξ, α) | α ∈ ξ}.
It is clear from the construction that φn(ξ) is a right-convex subset of F[n] containing 1, so
that φn(ξ) ∈ C(A[n]). Observe that if ξ ∈ Ω, then φn(ξ, α) ∈ F[n : Ω] for all α ∈ ξ, so that φn
restricts to a map Ω → C(A[n : Ω]). The n-ball subshift θ[n] of θ is then simply the restricted
action of F[n : Ω] on the image Ω[n] := φn(Ω). We observe that φn has a Ψn-equivariant inverse
ψn : Ω[n] → Ω given by

ψn(η) := {Ψn(β) | β ∈ η},
and as both φn and ψn are obviously continuous, they are in fact homeomorphisms of Ω and
Ω[n]. In particular, it follows that Ω[n] is compact and invariant under the action of F[n : Ω],
hence a convex subshift.

Using the same notation as above, we also define a map

Ψ̃n : {β ∈ η | η ∈ C[n]} = {φn(ξ, α) | ξ ∈ C, α ∈ ξ} → C
by

Ψ̃n

(
[Bm

sm←− Bm−1] · · · [B1
s1←− B0]

)
:=

m⋃

k=0

(sk · · · s1)−1.Bk

and note that Ψ̃n(φn(ξ, α)) ⊂ ξ for all α ∈ ξ. Consequently,

ψn(η) =
⋃

β∈η
Ψ̃n(β)

for any η ∈ C[n].

In the following we shall see that passing to higher ball shift does indeed allow one to
recode any finite type convex shift into a 1-step convex shift. First though, we have to deal
with the higher ball shifts of the full convex shift.
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Lemma 3.15. The n-ball subshift F[n] y C[n] of the full convex shift is 1-step.

Proof. It should be clear from the above construction that the 1-balls in C[n] are exactly the
sets of the form

{[B(s)
s←− B]}s∈B ∪ {1}

for some B,B(s) ∈ Bn(C) such that [B(s)
s←− B] ∈ A[n] ∪ (A[n])−1 for all s ∈ B, and we claim

that these sets in fact generate C[n] as a 1-step convex subshift of F[n] y C(A[n]). To this end,
we let η ∈ C(A[n]) and assume that (β.η)1 is of this form for any β ∈ η. Now set

ξ := {Ψn(β) | β ∈ η}
and observe that ξ ∈ C: we ultimately wish to show that η = φn(ξ) ∈ C[n]. Letting B ∈ Bn(C)
denote the n-ball as above corresponding to η1, we will first show that ξn = B. Observe that
if

[B′m
sm←− Bm−1][B′m−1

sm−1←−−− Bm−2] · · · [B′2
s2←− B1][B′1

s1←− B] ∈ η,
then our assumption implies that Bk = B′k and sk 6= s−1

k+1 for all 1 ≤ k ≤ m−1. In particular,
|Ψn(β)| = |β| for all β ∈ η, so that

ξn = {Ψn(β) | β ∈ ηn}.
Now if

β = [Bm
sm←− Bm−1][Bm−1

sm−1←−−− Bm−2] · · · [B2
s2←− B1][B1

s1←− B] ∈ ηn,
then of course Ψn(β) = sm · · · s1 ∈ B, and if, conversely, sm · · · s1 ∈ B for m ≤ n, then an
inductive application of our standing assumption implies the existence of some β as above,
hence ξn = B as desired. Finally, applying our observation to β.η for some arbitrary

β = [Bm
sm←− Bm−1][Bm−1

sm−1←−−− Bm−2] · · · [B2
s2←− B1][B1

s1←− B] ∈ η,
we see that (Ψn(β).ξ)n = Bm, and so η = φn(ξ) from the way that φn is defined.

�
The next lemma shows that if n < R, then we can recover the R-ball ξR from the (R−n)-

ball φn(ξ)R−n.

Lemma 3.16. If ξ ∈ C and n < R, then

ξR =
⋃

β∈φn(ξ)R−n

Ψ̃n(β).

Proof. We apply the notation of the above construction with m ≤ R − n. For the inclusion
⊃, it is enough to check that

(sk · · · s1)−1.Bk ⊂ ξR

for all k ≤ m, and this holds simply because Bk ⊂ (sk · · · s1).ξR. For the reverse inclusion,
take γ ∈ ξR. If |γ| ≤ R− n, then γ ∈ Ψn(φn(ξ)R−n) ⊂ ⋃β∈φn(ξ)R−n Ψ̃n(β), so we may assume

that |γ| > R− n and write γ = µα with |α| = R− n. But then µ ∈ (α.ξ)n, so

γ = µα ∈ α−1.(α.ξ)n ⊂
⋃

β∈φn(ξ)R−n

Ψ̃n(β).
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�
Definition 3.17. Let n < R and B ∈ BR(C); we then define

B[n] := φn(B)R−n = {φn(B,α) | α ∈ B, |α| ≤ R− n} ∈ BR−n(C[n]).

Lemma 3.18. If n < R, B ∈ BR(C) and ξ ∈ C, then

ξR = B if and only if φn(ξ)R−n = B[n].

Proof. Assuming ξR = B, we immediately see that

φn(ξ)R−n = {φn(ξ, α) | α ∈ ξ}R−n = {φn(ξ, α) | α ∈ ξ, |α| ≤ R− n}
= {φn(B,α) | α ∈ B, |α| ≤ R− n} = B[n].

On the other hand, if φn(ξ)R−n = B[n], then

ξR =
⋃

β∈φn(ξ)R−n

Ψ̃n(β) =
⋃

β∈φn(B)R−n

Ψ̃n(β) = BR = B

by Lemma 3.16. �
Corollary 3.19. The allowed R-balls of the n-ball shift of a convex subshift θ : F y Ω is
given by

BR(Ω[n]) = {B[n] | B ∈ BR+n(Ω)}.
Moreover, if Ω is R-step and n < R, then Ω[n] is (R−n)-step. In particular, Ω[R−1] is 1-step.

Proof. The first claim follows immediately from Lemma 3.18. For the second one, we must
also refer to Lemma 3.15. �

We can now prove that every finite type convex subshift can be recoded into a 1-step convex
subshift.

Proposition 3.20. If θ : F y Ω is a convex subshift and n ≥ 1, then θ[n] ≈−→ θ. In particular,
any finite type convex subshift is directly dynamically equivalent to a 1-step convex subshift.

Proof. We have already established that the map ψn is a Ψn-equivariant homeomorphism
Ω[n] → Ω. Now assume that

β = [Bm
sm←− Bm−1] · [Bm−1

sm−1←−−− Bm−2] · · · [B1
s1←− B0]

and
β′ = [B′m

sm←− B′m−1] · [B′m−1

sm−1←−−− B′m−2] · · · [B′1
s1←− B′0]

are distinct elements of F[n : Ω] satisfying Ψn(β) = Ψn(β′). Then Bk 6= B′k for some k, and
(
(sk · · · s1).ψn(η)

)n
= Bk 6= B′k =

(
(sk · · · s1).ψn(η′)

)n

for all η ∈ Ω
[n]
β , η′ ∈ Ω

[n]
β′ , hence Ω

[n]
β ∩ Ω

[n]
β′ = ∅ as desired. Finally, given any α ∈ F and

ξ ∈ Ωα, we can consider φn(ξ) ∈ Ω[n]. Then β := φn(ξ, α) ∈ φn(ξ) satisfies Ψn(β) = α and

ξ = ψn(φn(ξ)) ∈ ψn(Ω
[n]
β ),
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hence Ωα =
⋃

Ψn(γ)=α ψn(Ω
[n]
γ ). We conclude that θ[n] ≈−→ θ. The second part of the claim now

follows directly from Proposition 3.11 and Corollary 3.19. �
One issue we have not yet dealt with is the identification of the n-ball shift and the n-fold

1-ball shift of a given convex subshift.

Proposition 3.21. Consider any convex subshift θ : F y Ω. Then the n-ball convex subshift
θ[n] is conjugate to the n-fold 1-ball convex subshift θ[1]···[1].

Proof. We will show that θ[n+1] ∼= θ[1][n] for all n ≥ 1 from which the claim follows inductively.
We first define a map Φ: A[n+1: Ω] → A[1 : Ω][n : Ω[1]] by

Φ([B2
s←− B1]) :=

[
B

[1]
2

B1
2

s←−B1
1←−−−−− B

[1]
1

]
=
[
φ1(B2)n

φ1(B1,s)←−−−−− φ1(B1)n
]
,

which is easily seen to be a bijection by Lemma 3.19, so we obtain an induced isomorphism
Φ: F[n+1: Ω] → F[1 : Ω][n : Ω[1]]. The pair (ϕ,Φ), where ϕ : C(A[n+1: Ω])→ C(A[1 : Ω][n : Ω[1]]) is given
by

ϕ(η) := {Φ(β) | β ∈ η},
then defines a conjugacy. In order to see that it restricts to a conjugacy Ω[n+1] → Ω[1][n], it
suffices to check that

ϕ(B[n+1]) = B[1][n]

for all R ≥ 1 and B ∈ BR+n+1(Ω) due to Corollary 3.19. Recalling that

B[n+1] = φn+1(B)R = {φn+1(B,α) | α ∈ B, |α| ≤ R}
and

B[1][n] = φn(φ1(B)R+n)R = {φn(φ1(B), φ1(B,α)) | α ∈ B, |α| ≤ R},
in fact we only have to verify that

Φ(φn+1(B,α)) = φn(φ1(B), φ1(B,α))

for all α ∈ B with |α| ≤ R. Writing α = sm · · · s1 and

tk :=
[
(sk · · · s1.B)1 sk←− (sk−1 · · · s1.B)1

]
= φ1(sk−1 · · · s1.B, sk)

so that
φ1(sk · · · s1.B) = tk · · · t1.φ1(B) and φ1(B,α) = tm · · · t1,

we then see that

Φ(φn+1(B,α)) = Φ
([

(sm · · · s1.B)n+1 sm←− (sm−1 · · · s1.B)n+1
]
· · ·
[
(s1.B)n+1 s1←− Bn+1

])

=
[
φ1(sm · · · s1.B)n

φ1(sm−1···s1.B,sm)←−−−−−−−−−−− φ1(sm−1 · · · s1.B)n
]
· · ·
[
φ1(s1.B)n

φ1(B,s1)←−−−−− φ1(B)n
]

=
[
(tm · · · t1.φ1(B))n

tm←− (tm−1 · · · t1.φ1(B))n
]
· · ·
[
(t1.φ1(B))n

t1←− φ1(B)n
]

= φn(φ1(B), tm · · · t1) = φn(φ1(B), φ1(B,α))

as desired. �
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The following theorem explains the precise relationship between the partial actions θ(E,C)

and θ(En,Cn), adding a dynamical dimension to [7, Theorem 8.3]. Note that while [7, Theorem
5.7] implies

Lab(En, C
n) ∼= Lab(E,C) and O(En, C

n) ∼= O(E,C)

for any finite bipartite graph and n ≥ 1, the corresponding result for Or is not immediate.

Theorem 3.22. If (E,C) is a finite bipartite graph and n ≥ 1, then θ(En,Cn) is conjugate to
the n-ball convex subshift (θ(E,C))[n]. In particular, there are base-preserving isomorphisms

Lab(En, C
n) ∼= Lab(E,C), O(En, C

n) ∼= O(E,C) and Or(En, Cn) ∼= Or(E,C)

induced from the direct dynamical equivalence

θ(En,Cn) ∼= (θ(E,C))[n] ≈−→ θ(E,C).

The isomorphisms on Lab
K and O coincides with the ones induced by Φn as defined in [7].

Moreover, there is a canonical bijective correspondence

E0
n 3 v 7→ B(v) ∈ Bn(Ω(E,C)),

and the homeomorphism Ω(En, C
n)→ Ω(E,C)[n] → Ω(E,C) restricts to a homeomorphism

Ω(En, C
n)v → {ξ ∈ Ω(E,C) | ξn = B(v)}

for all v ∈ E0
n.

Proof. Set A := E1 and Ω := Ω(E,C) for notational simplicity; by Proposition 3.21, it suffices
to verify our claims for n = 1. Observe first that B1(Ω) = B0

1(Ω) t B1
1(Ω), where

B0
1(Ω) :=

{
{1}t{x1, . . . , xku}−1 | u ∈ E0,0, xj ∈ Xu

j

}
and B1

1(Ω) := {{1}ts−1(v) | v ∈ E0,1},
using the standard notation. The alphabet A[1 : Ω] is therefore given by

A[1 : Ω] =
{[
{x1, . . . , xku}−1 xi←− s−1(s(xi))

]
| u ∈ E0,0, xj ∈ Xu

j , i = 1, . . . , ku
}

and we can define an isomorphism Φ: F[1 : Ω] → F(E1
1) by

[
{x1, . . . , xku}−1 xi←− s−1(s(xi))

]
7→ αxi(x1, . . . , x̂i, . . . , xku)−1.

Since both convex shifts are 1-step, we simply have to check that Φ induces a bijection

B1(Ω[1])→ B1(Ω(E1, C
1)), B 7→ Φ(B).

We first build some notation: Given any u ∈ E0,0 and (x1, . . . , xku) ∈∏ku
j=1X

u
j , we define

B0
1(x1, . . . , xku) :=

{[
{1} t s−1(s(xi))

x−1
i←−− {1} t {x1, . . . , xku}−1

]
: i = 1, . . . , ku

}
.

Also, for all xi ∈ Xu
i , we set

Z(xi) :=
{
{x1, . . . , x̂i, . . . , xku}−1 | xj ∈ Xu

j , j 6= i
}

and define

B1
1(v, {z(e)}e∈s−1(v)) :=

{[
{1} t z(e)

e←− {1} t s−1(v)
]
: e ∈ s−1(v)

}
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for any v ∈ E0,1 and z(e) ∈ Z(e). It is easily checked that B1(Ω[1]) = B0
1(Ω[1]) t B1

1(Ω[1]),
where

B0
1(Ω[1]) :=

{
B0

1(x1, . . . , xku) | u ∈ E0,0, (x1, . . . , xku) ∈
ku∏

j=1

Xu
j

}

and

B1
1(Ω[1]) :=

{
B1

1(v, {z(e)}e∈s−1(v)) | v ∈ E0,1, z(e) ∈ Z(e)
}
.

Now observe that

Φ(B0
1(x1, . . . , xku)) = {1} t

{
αxi(x1, . . . , x̂i, . . . , xku) | i = 1, . . . , ku

}

= {1} t s−1
1 (v(x1, . . . , xku))

hence Φ maps B0
1(Ω[1]) onto the 1-balls of type (c1) (cf. Definition 2.11). Likewise, we see

that

Φ(B1
1(v, {z(e)}e∈s−1(v))) = {1} t

{
αe(z(e))−1 | e ∈ s−1(v)

}
,

so Φ maps B1
1(Ω[1]) onto the 1-balls of type (c2). We conclude that the pair (ϕ,Φ) with

ϕ : Ω[1] → Ω(E1, C
1) given by

ϕ(ξ) := {Φ(α) | α ∈ ξ}
is a conjugacy of F[1 : Ω] y Ω[1] and F(E1

1) y Ω(E1, C
1). Consequently, there is a direct

dynamical equivalence θ(En,Cn) ∼= (θ(E,C))[n] ≈−→ θ(E,C), which induces base-preserving isomor-
phisms by Remark 3.9. It follows from Remark 3.12 that the isomorphisms on Lab and O are
exactly the ones of [7].

We now turn to the second part of the claim and set

B(v) :=

{
{1} t s−1(v) if v ∈ E0,0

1 = E0,1

{1} t {x1, . . . , xku}−1 if v = v(x1, . . . , xku) ∈ E0,1
1

for every v ∈ E0
1 ; this clearly defines a bijective correspondence between E0

1 and B1(Ω(E,C)).
Note that the homeomorphism Ω(E1, C

1)→ Ω(E,C) is induced by the group homomorphism
F(E1

1)→ F(E1) given by αxi(x1, . . . , x̂i, . . . , xku) 7→ x−1
i , and it is easily checked that it maps

Ω(E1, C
1)v onto {ξ ∈ Ω(E,C) | ξ1 = B(v)}. �

Remark 3.23. Theorem 3.22 shows that for v ∈ E0
n with n ≥ 1, the subspace Ω(E,C)v may

be described as Ω(E,C)v = {ξ ∈ Ω(E,C) | ξn = B(v)}.
Any partial action on a topological space may be viewed as the restriction of a global

action [1, Theorem 2.5]. The globalisation is not Hausdorff in general [1, Proposition 2.10],
but whenever it is, one may consider the relationship between the C∗-algebras of the partial
action and its globalisation. However, it is also of natural interest to study restrictions of
partial actions, in particular in cases where there is no Hausdorff globalisation, and they play
a natural role in our main theorem about convex subshifts.

42



IDEAL STRUCTURE 21

Definition 3.24 (See also [21, Definition 3.1], [36, Definition 2.17]). If θ : Gy Ω is a partial
action on a topological space and U ⊂ Ω is an open subset, then we denote by θ|U the
restricted partial action Gy U with domains

Ug := θg(U ∩ Ωg−1) ∩ U,
and U is called G-full if

X = {g.x | g ∈ G, x ∈ U ∩Xg−1}.
Finally, two partial actions θ : Gy Ω and γ : H y Ω′ are called Kakutani-equivalent if there
exist clopen subspaces K ⊂ Ω and K ′ ⊂ Ω′, resp. G- and H-full, such that θ|K ≈ γ|K′ .

If θ : G y Ω and θ′ : G y Ω′ are Kakutani equivalent partial actions on totally discon-
nected, locally compact spaces, then the groupoids Gθ and Gθ′ are Kakutani equivalent in the
sense of [21, Definition 3.1] and hence groupoid equivalent by [21, Theorem 3.2]. It follows
that there are Morita-equivalences

CK(Ω) oθ G ∼M CK(Ω) oθ′ H and C0(Ω)oθ,(r) ∼M C0(Ω′) oθ′,(r) H,

see for instance [40, Theorem 2.8], [48, Theorem 13] and [20, Theorm 5.1].
We can now state and prove the second main theorem about convex subshifts.

Theorem 3.25. If θ : F y Ω is a convex subshift of finite type, then there is a finite bipartite
separated graph (E,C) such that θ(E,C) and θ are Kakutani equivalent.

Proof. By Proposition 3.20, we may assume that Ω is 1-step. Now let A
[1 : Ω]
+ and A

[1 : Ω]
− denote

disjoint copies of the alphabet A[1 : Ω] with subscripts + and −, and define a finite bipartite
separated graph (E,C) by

• E0,0 := B1(Ω) and E0,1 = A[1 : Ω],

• E1 := A
[1 : Ω]
+ t A[1 : Ω]

− ,

• r([B a←− B′]+) := B and r([B
a←− B′]−) := B′,

• s([B a←− B′]+) := s([B
a←− B′]−) = [B

a←− B′],
• CB := {XB(s) | 1 6= s ∈ B} for all B ∈ E0,0, where for a ∈ A

XB(a−1) := {[B a←− B′]+ | B′ ∈ E0,0 such that B
a←− B′},

XB(a) := {[B′ a←− B]− | B′ ∈ E0,0 such that B′
a←− B}.

Then consider the group homomorphism Φ: F(E1)→ F[1 : Ω] given by

Φ([B
a←− B′]+) := [B

a←− B′] and Φ([B
a←− B′]−) := 1

as well as the compact open F(E1)-full subspace

K :=
⊔

u∈E0,0

Ω(E,C)u.

Equipping K with the restricted partial action θ(E,C)|K : F(E1) y K, we claim that ϕ : K →
Ω[1] given by

ϕ(ξ) := {Φ(α) | α ∈ ξ}

43



22 PERE ARA AND MATIAS LOLK

defines a Φ-equivariant homeomorphism, making the pair (ϕ,Φ) into a direct dynamical
equivalence. First, let us check that ϕ even maps into Ω[1], so take any ξ ∈ K. Observe that
any length two admissible path α ∈ ξ is of the form

[B
a←− B′]+[B

a←− B′]−1
− or [B

a←− B′]−[B
a←− B′]−1

+ ,

and these are mapped to [B
a←− B′] and [B

a←− B′]−1, respectively. It follows that any α ∈ ξ
of length four is mapped to a length two word, hence any α ∈ ξ of length 2n is mapped to a
word of length n. Note also that if α ∈ ξ has odd length, then

α = [B
a←− B′]−1

+ β or α = [B
a←− B′]−1

− β

for some [B
a←− B′] ∈ A[1 : Ω], and in the latter case, Φ(α) = Φ(β). In the former case, there

is a unique extension of length |α| + 1 inside ξ, namely [B
a←− B′]−[B

a←− B′]−1
+ β ∈ ξ, and

Φ(α) = Φ([B
a←− B′]−α), so in conclusion

ϕ(ξ) = {Φ(α) : α ∈ ξ, |α| is even}.
In particular, ϕ is continuous and ϕ(ξ)1 = Φ(ξ2), so we only need to check that Φ(ξ2) ∈
B1(Ω[1]) for any ξ ∈ K. Assuming that ξ ∈ Ω(E,C)B, for every 1 6= s ∈ B there is
B(s) ∈ B1(Ω) such that

Φ(ξ2) = {1} t {[B a←− B(a−1)]−1 | a ∈ A ∩B−1} t {[B(a)
a←− B] | a ∈ A ∩B}

= {1} t {[B(s)
s←− B] | 1 6= s ∈ B},

and this is exactly an element of B1(Ω[1]). At this point we have verified that ϕ is a well-defined
continuous Φ-equivariant map, and we now turn to the construction of an inverse. Define a
group homomorphism Σ: F[1 : Ω] → F(E1) and a continuous Σ-equivariant map σ : Ω[1] → K
by

Σ([B
a←− B′]) := [B

a←− B′]+[B
a←− B′]−1

− and σ(η) := conv{Σ(β) | β ∈ η},
where conv(H) for a set H ⊂ F(E1) denotes the convex closure. Observing that Φ is a one-
sided inverse of Σ, it follows that Σ is injective and hence that σ is a continuous Σ-equivariant
map into C(E1); but, we still have to verify that σ maps into K. Since σ(η)2 = conv(Σ(η1))
for all η ∈ Ω[1], it suffices to check that conv(Σ(η1)) ∈ B2(Ω(E,C)). By construction, η1 is of
the form

η1 = {1} t {[B(s)
s←− B] | 1 6= s ∈ B}

= {1} t {[B a←− B(a−1)]−1 | a ∈ A ∩B−1} t {[B(a)
a←− B] | a ∈ A ∩B}

for some B,B(s) ∈ B1(Ω), so

Σ(η1) = {1} t {[B a←− B(a−1)]−[B
a←− B(a−1)]−1

+ | a ∈ A ∩B−1}
t {[B(a)

a←− B]+[B(a)
a←− B]−1

− | a ∈ A ∩B}.
Taking the convex closure of this, we clearly obtain a 2-ball of Ω(E,C), hence

σ(η) ∈ Ω(E,C)B ⊂ K
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as desired. We now claim that ϕ and σ are in fact mutual inverses. Noting that Σ(Φ(α)) = α
for α ∈ ξ of even length, we indeed have

σ(ϕ(ξ)) = conv{Σ(Φ(α)) | α ∈ ξ, |α| is even} = conv{α | α ∈ ξ, |α| is even} = ξ

and

ϕ(σ(η)) = ϕ(conv{Σ(β) | β ∈ η}) = {Φ(Σ(β)) | β ∈ η} = η.

Letting F := Im(Σ) ≤ F(E1) so that Σ = Φ|−1
F , we conclude that the partial actions F y K

and F[1 : Ω] y Ω[1] are conjugate. Finally observing that, by the above observations, Kα = ∅
for all α ∈ F(E1) \ F , we conclude that (ϕ,Φ) is indeed a direct dynamical equivalence

θ(E,C)|K ≈−→ θ[1], from which we obtain the desired direct dynamical equivalence as the com-

position θ(E,C)|K ≈−→ θ[1] ≈−→ θ. �
In view of the above theorem, the study of convex subshifts of finite type boils down to the

study of dynamical systems associated with finite bipartite graphs, at least up to Katutani
equivalence. In the following sections, we shall see how one can extract information about
the open/closed invariant subspaces from the graph, illustrating the usefulness of having a
graph representation.

We end this section with an application of Theorem 3.25 to a pair of concrete examples.

Example 3.26. Given a finite alphabet A, there is of course a finite bipartite separated
graph (E,C) corresponding to the full convex shift on A as in Theorem 3.25. However, one
can check that |E0| = 4(|A|4 + |A|2) and |E1| = 8|A|4, so even when |A| = 2 this is a fairly
sizable graph. We shall therefore refrain from drawing it here.

Example 3.27. Consider the alphabet A = {a, b} and the 1-step subshift F2 y Ω with
B1(Ω) = {u, v}, where u = {1, a±1, b±1} and v = {1, a±1, b} as illustrated just below. We will

u = a

b

a

b

v = a a

b

then describe the separated graph (E,C) of Theorem 3.25. We have

E0,1 = A[1 : Ω] = {[u a←− u], [u
b←− u], [v

a←− u], [u
a←− v], [u

b←− v], [v
a←− v]}

and E1 = A
[1 : Ω]
+ t A[1 : Ω]

− with

r−1(u) = {[u a←− u]±, [u
b←− u]±, [v

a←− u]−, [u
a←− v]+, [u

b←− v]+},
r−1(v) = {[v a←− u]+, [u

a←− v]−, [u
b←− v]−, [v

a←− v]±},
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and the source map is simply the projection E1 = A
[1 : Ω]
+ t A[1 : Ω]

− → A[1 : Ω] = E0,1. The
separation is given by

Cu = {Xu(a), Xu(a
−1), Xu(b), Xu(b

−1)} and Cv = {Xv(a), Xv(a
−1), Xv(b)},

where

Xu(a) = {[u a←− u]−, [v
a←− u]−}, Xu(a

−1) = {[u a←− u]+, [u
a←− v]+},

Xu(b) = {[u b←− u]−}, Xu(b
−1) = {[u b←− u]+, [u

b←− v]+},
Xv(a) = {[u a←− v]−, [v

a←− v]−}, Xv(a
−1) = {[v a←− u]+, [v

a←− v]+},
Xv(b) = {[u b←− v]−} .

We can therefore picture (E,C) as follows:

u v

[u
a←− u] [u

b←− u] [v
a←− u] [u

a←− v] [u
b←− v] [v

a←− v]

4. The lattice of induced ideals

In this section, we describe the lattice of induced ideals of the algebras Lab(E,C), O(E,C)
and Or(E,C) for (E,C) finite and bipartite in terms of graph-theoretic data, specifically
certain sets of vertices in the infinite layer graph (F∞, D∞) (see Definition 2.6).

We first settle the meaning of the various types of ideals that we shall encounter. When
dealing with C*-algebras, we will consider only closed ideals, so that the word ideal will mean
closed ideal in this case. For a general ring R, an ideal I / R is called a trace ideal if it is
generated by the entries of some set of idempotent matrices over R, and we denote the lattice
of trace ideals by Tr(R). The lattice of idempotent-generated ideals Idem(R) then sits as a
sublattice of Tr(R). Given a crossed product (algebraic or C∗-algebraic, reduced or universal)
O = Ao(r) G, we say that an ideal J / O is induced if J = (J ∩A)o(r) G, and we denote by
Ind(O) the lattice of induced ideals. Finally, if M is an abelian monoid, then a submonoid
I ⊂ M is called an order-ideal if x+ y ∈ I implies x, y ∈ I. The lattice of order ideals of M
will be denoted by L(M).

The basic tools in our analysis are the following results.

Theorem 4.1. [11, Proposition 10.10] For any ring R, there is a lattice isomorphism

L(V(R))) ∼= Tr(R).

Moreover, if V(R) is generated by the classes [e] of idempotents of R, then Tr(R) = Idem(R).
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Theorem 4.2 ([25]). Let G y A be a partial action of a discrete group G on a C∗-algebra.
Then the map J 7→ J ∩ A defines a bijective correspondence between Ind(A o(r) G) and the
lattice of invariant ideals of A. Moreover, if I is an invariant ideal of A, then

(AoG)/(I oG) ∼= (A/I) oG,

and if G is exact, then (Aor G)/(I or G) ∼= (A/I) or G as well.

Proof. If J is an ideal of Ao(r) G, then J ∩A is a G-invariant ideal of A by [25, Proposition
23.11], and if I is an invariant ideal of A, then Io(r)G is an ideal of Ao(r)G by [25, Proposi-
tion 21.12 and 21.15]. In particular, we have the above mentioned bijective correspondence.
Moreover, (AoG)/(I oG) ∼= (A/I) oG by [25, Proposition 21.15], and in case G is exact,
then (Aor G)/(I or G) ∼= (A/I) or G as well by [25, Theorem 21.18]. �
Remark 4.3. We note that it is straightforward to prove a result completely analogous to
Theorem 4.2 for partial actions on ∗-algebras.

We now recall some definitions from [11], adapted to our choice of conventions. These
notions generalize the classical notions of hereditary and saturated subsets of vertices, cf.
[44, Chapter 4], to the separated setting.

Definition 4.4. [11, Definition 6.3] Let (E,C) be a finitely separated graph. A subset H of
E0 is said to be hereditary if for any e ∈ E1, we have r(e) ∈ H implies s(e) ∈ H, and H is
said to be C-saturated if for any v ∈ E0 and X ∈ Cv, s(X) ⊂ H implies v ∈ H. We denote
by H(E,C) the lattice of hereditary C-saturated subsets of E0.

Theorem 4.5. Let (E,C) be a finite bipartite separated graph. Then there are lattice iso-
morphisms

Idem(Lab
K (E,C)) ∼= L(M(F∞, D

∞)) ∼= H(F∞, D
∞).

If H ∈ H(F∞, D∞), the ideal I(H) of Lab
K (E,C) associated to H through this isomorphism is

the ideal generated by all the projections πn,∞(v), where v ∈ H ∩E0
n, and πn,∞ : L(En, C

n)→
Lab
K (E,C) is the natural quotient map.

Proof. By [7, Corollary 5.9], we have an isomorphism V(Lab(E,C)) ∼= M(F∞, D∞). In partic-
ular, V(Lab(E,C)) is generated by the classes of the idempotents in Lab(E,C) corresponding
to the vertices in F∞. By Theorem 4.1, we obtain

L(M(F∞, D
∞)) ∼= L(V(Lab(E,C))) ∼= Tr(Lab(E,C)) = Idem(Lab(E,C)).

On the other hand, by [11, Corollary 6.10], we have L(M(F∞, D∞)) ∼= H(F∞, D∞), so that
we finally obtain a lattice isomorphism Idem(Lab(E,C)) ∼= H(F∞, D∞). �

Let Ω be a zero-dimensional metrizable locally compact Hausdorff space, and let K = K(Ω)
be the subalgebra of P(Ω) consisting of all the compact open subsets of Ω. Let θ : Gy Ω be a
partial action of a discrete group G by continuous transformations on Ω such that Ωg ∈ K for
all g ∈ G. Observe that K is then automatically G-invariant. The (relative) type semigroup
S(Ω, G,K) has been defined in [7, Definition 7.1], see also [34] and [46]. The semigroup
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S(Ω, G,K) is indeed a conical refinement monoid, and we obtain the following description of
its lattice L(S(Ω, G,K)) of order ideals.

Lemma 4.6. Let θ : G y Ω be a partial action of a discrete group G by continuous trans-
formations on Ω such that Ωg ∈ K for all g ∈ G. Then there are mutually inverse, order-
preserving maps

ϕ : L(S(Ω, G,K))→ OG(Ω), ψ : OG(Ω)→ L(S(Ω, G,K)),

ϕ(I) =
⋃
{K ∈ K | [K] ∈ I}, ψ(U) = 〈[K] | K ∈ K, K ⊆ U〉,

where OG(Ω) is the lattice of G-invariant open subsets of Ω, and, for T ⊆ S(Ω, G,K), 〈T 〉
stands for the order ideal of S(Ω, G,K) generated by T .

Proof. Write S := S(Ω, G,K) and take I ∈ L(S). Clearly U := ϕ(I) is an open subset of Ω.
If x ∈ Ωg−1 ∩ U for some g ∈ G, then there is K ∈ K with [K] ∈ I such that x ∈ Xg−1 ∩K.
But now we have θg(x) ∈ θg(Ωg−1 ∩K) with

[θg(Ωg−1 ∩K)] = [Ωg−1 ∩K] ≤ [K] ∈ I,
and so [θg(Ωg−1 ∩K)] ∈ I because I is an order ideal of S. It follows that U is G-invariant.

Let U be an invariant open subset of Ω. Then ψ(U) ∈ L(S) by definition of ψ. It is
clear that ϕ and ψ are order-preserving maps. We have to show that (ϕ ◦ ψ)(U) = U and
(ψ ◦ ϕ)(I) = I for U ∈ OG(X) and I ∈ L(S). For U ∈ OG(Ω), let K ∈ K be such that
[K] ∈ ψ(U). Then there are K1, . . . , Kr ∈ K such that Kj ⊆ U for j = 1, . . . , r and

[K] ≤ [K1] + [K2] + · · ·+ [Kr].

Using the refinement property of S and the definition of the type semigroup, one obtains a
decomposition K = tni=1K

′
i such that K ′i ∈ K for each i, and g1, . . . , gn ∈ G such that, for

each i, K ′i ⊆ Ωg−1
i

and θgi(K
′
i) ⊆ Kj for some j = 1, . . . , r. It follows that

K ′i ⊆ θg−1
i

(Kj ∩ Ωgi) ⊆ θg−1
i

(U ∩ Ωgi) ⊆ U,

where the last containment follows from the fact that U is G-invariant. We deduce that
K ⊆ U , and so ϕ(ψ(U)) ⊆ U . The other containment U ⊆ ϕ(ψ(U)) follows from the fact
that Ω has a basis of compact open subsets.

Finally, let I ∈ L(S). It is clear that I ⊆ ψ(ϕ(I)). To show the reverse inclusion, it is
enough to check that, if K ∈ K and K ⊆ ϕ(I), then [K] ∈ I. By compactness of K, there
are K1, . . . , Kr ∈ K such that [Ki] ∈ I and K ⊆ ∪ri=1Ki, and thus

[K] ≤ [K1] + · · ·+ [Kr] ∈ I.
Since I is an order ideal of S, we see that [K] ∈ I, as desired. �

We can now obtain a description of the lattice of induced ideals of tame graph algebras.

Theorem 4.7. Let (E,C) be a finite bipartite separated graph. Then there is a lattice iso-
morphism

Ind(Lab(E,C)) ∼= Ind(O(r)(E,C)) ∼= L(M(F∞, D
∞)) ∼= H(F∞, D

∞).
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Moreover for H ∈ H(F∞, D∞), we have

Lab(E,C)/I(H) ∼= CK(Z) oθ|∗Z F and O(r)(E,C)/I(H) ∼= C(Z) o(r),θ|∗Z F,
where Z := Ω(E,C) \ U with U :=

⋃
v∈H Ω(E,C)v.

Proof. It follow from [7, Theorem 7.4] that there is a natural isomorphism

S := S(Ω(E,C),F,K) ∼= M(F∞, D
∞).

Combining this with Theorem 4.2 (or Remark 4.3), [11, Corollary 6.10] and Lemma 4.6, we
obtain

Ind(Lab(E,C)) ∼= Ind(O(r)(E,C)) ∼= OF(Ω(E,C)) ∼= L(S) ∼= L(M(F∞, D
∞)) ∼= H(F∞, D

∞).

The last part follows from Theorem 4.2 and the definitions of the lattice isomorphisms. �
Remark 4.8. We believe it is likely that Theorem 4.5 generalizes to the setting of tame
graph C*-algebras, at least for the reduced ones. This would mean that we have a lattice
isomorphism

Proj(Or(E,C)) ∼= L(M(F∞, D
∞)) ∼= H(F∞, D

∞),

where Proj(Or(E,C)) denotes the lattice of ideals of Or(E,C) which are generated by their
projections. By Theorem 4.7, this is equivalent to saying that every ideal generated by
projections is induced. In Section 7, we will prove this for ideals I / Or(E,C) of finite type.

5. The ideals associated to hereditary C-saturated subsets of (E,C)

In this section, we will analyze the induced ideals of Lab(E,C), O(E,C) and Or(E,C)
arising from hereditary C-saturated subsets of E0, as opposed to the general study of ideals
corresponding to hereditary D∞-saturated subsets of (F∞, D∞). By Theorem 3.22, (E,C)
and (En, C

n) give rise to the same algebras for all n ≥ 0, so we can apply the corresponding
results to any hereditary Cn-saturated subset of the separated graph (En, C

n).
First, we shall give a concrete description of the hereditary and D∞-saturated closure of a

subset H ∈ H(E,C) inside (F∞, D∞).

Lemma 5.1. Let (E,C) be a finite bipartite separated graph and take H ∈ H(E,C). Let

H1 := {s1(X(x)) | x ∈ E1 and s(x) ∈ H} ∪ (H ∩ E0,0
1 ).

Then H1 ∈ H(E1,C1) and H ∪H1 ∈ H(F1,D1) is the hereditary closure of H inside (F1, D
1).

Proof. H1 is clearly hereditary; if r1(e) ∈ H∩E0,0
1 = H∩E0,1, then e ∈ X(x) for some x ∈ E1

with s(x) = r1(e), hence s1(e) ∈ s1(X(x)) ⊆ H1. Next, we show C1-saturation. Suppose that
s(X(x)) ⊆ H1 for some x ∈ E1, and write w := s(x). Also, set x = xi ∈ Xu

i with u := r(x)
and Cu = {Xu

1 , . . . , X
u
i , . . . , X

u
ku
}. If ku = 1, then necessarily w ∈ H by the definition of H1,

so suppose that ku > 1. If for some j 6= i, we have s(xj) ∈ H for all xj ∈ Xu
j , then u ∈ H by

C-saturation, and so s(x) = s(xi) ∈ H because H is hereditary. Thus, we may assume that,
for all j 6= i, there exists xj ∈ Xu

j such that s(xj) /∈ H. Now, consider the vertex

v := v(x1, . . . , xi−1, xi, xi+1, . . . , xku) ∈ E0,1
1 .
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Then v ∈ H1 because v = s(αxi(x1, . . . , xi−1, xi+1, . . . , xku)) ∈ s(X(xi)) = s(X(x)) ⊆ H1.
But by the definition of H1, there must be k ∈ {1, . . . , ku} such that s(xk) ∈ H. Hence k = i
and w = s(xi) ∈ H, as desired. It is now clear that H ∪ H1 ∈ H(F1, D

1), and H ∪ H1 is
obviously nothing but the hereditary closure of H inside (F1, D

1). �

Notation 5.2. Given H ∈ H(E,C), we define a sequence Hn ∈ H(En, C
n) in an inductive

way, so that

Hn := {s(X(x)) | x ∈ E1
n−1 and s(x) ∈ Hn−1} ∪ (Hn−1 ∩ E0,0

n ).

Then, by Lemma 5.1, H∞ :=
⋃∞
n=0Hn ∈ H(F∞, D∞) is the hereditary closure of H inside

(F∞, D∞).

We have thus showed the following lemma:

Lemma 5.3. Let (E,C) be a finite bipartite separated graph. Then there is an injective
order-preserving map

H(E,C)→ H(F∞, D
∞)

sending H ∈ H(E,C) to H∞ ∈ H(F∞, D∞). Moreover, the ideal I(H) of Or(E,C) generated
by H is precisely the ideal I(H∞), and similar statements hold for O(E,C) and for Lab

K (E,C).

We also mention the following easy description of the open, invariant subspace associated
with H ∈ H(E,C) in terms of configuration spaces. Recall that if ξ ∈ Ω(E,C)v, then 1 ∈ ξ
is regarded as the trivial path v, so that r(1) = v in this situation.

Lemma 5.4. Let (E,C) be a finite bipartite graph and let H ∈ H(E,C). Then
⋃

v∈H∞
Ω(E,C)v = {ξ ∈ Ω(E,C) | r(α) ∈ H for some α ∈ ξ}.

Proof. Since I(H) = I(H∞), we have

U = θF

( ⋃

v∈H
Ω(E,C)v

)
= {ξ ∈ Ω(E,C) | r(α) ∈ H for some α ∈ ξ}.

�

Given a finitely separated graph (E,C) and a hereditary C-saturated subset H of E0, we
denote by E/H the subgraph of E with (E/H)0 := E0 \H and (E/H)1 := {e ∈ E1 | s(e) /∈
H}. Similarly, for any subset X ⊆ E1, define

X/H := X ∩ s−1(E0 \H).

For v ∈ (E/H)0, we set

(C/H)v := {X/H | X ∈ Cv},
which is a partition of r−1

E/H(v), and C/H :=
⊔
v∈E0\H(C/H)v. Observe that X/H 6= ∅ for all

X ∈ Cv with v ∈ E0 \H, because H is C-saturated.
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Theorem 5.5. Let (E,C) be a finite bipartite separated graph and let H ∈ H(E,C). Then
there is a natural ∗-algebra isomorphism

Lab
K (E,C)/I(H) ∼= Lab

K (E/H,C/H).

Likewise, there are natural C*-algebra isomorphisms

O(E,C)/I(H) ∼= O(E/H,C/H) and Or(E,C)/I(H) ∼= Or(E/H,C/H).

Proof. As observed in the proof of [11, Corollary 3.12], it is easy to show using universal
properties that the map sending v + I(H) 7→ v for v ∈ (E/H)0 and e + I(H) 7→ e for
e ∈ (E/H)1 extends to a ∗-isomorphism

C∗(E,C)/I(H) −→ C∗(E/H,C/H).

Likewise, we obtain a ∗-isomorphism LK(E,C)/I(H) ∼= LK(E/H,C/H) for any field with
involution K. It is straightforward to check that

(
E1/H1, C

1/H1) =
(
(E/H)1, (C/H)1

)
.

Indeed we have that (E1/H1)0,0 = (E/H)0,1 = ((E/H)1)0,0 and that (E1/H1)0,1 is the set of
all the vertices v(x1, x2, . . . , xk) such that xi ∈ Xi/H for all i, where Cv = {X1, X2, . . . , Xk}
for some v ∈ E0,0 \ H = (E/H)0,0. This shows that (E1/H1)0 = ((E/H)1)0, and similarly
(E1/H1)1 = ((E/H)1)1 and C1/H1 = (C/H)1. We thus obtain the following commutative
diagram

L(E,C)/I(H) L(E/H,C/H)

L(E1, C
1)/I(H1) L(E1/H1, C

1/H1) L((E/H)1, (C/H)1)

∼=

∼= ∼=
,

where all the maps are the canonical ones. Applying this observation inductively gives iden-
tifications L(En, C

n)/I(Hn) ∼= L((E/H)n, (C/H)n) commuting with the connecting homo-
morphisms, and hence we obtain an isomorphism

Lab(E,C)/I(H) = Lab(E,C)/I(H∞) ∼= Lab(E/H,C/H)

of the limits. The same proof applies to O.
We now give a proof for Or, which uses the dynamical interpretation of these algebras.

Let F′ denote the free group on (E/H)1, which we can regard as a subgroup of F. Let
U :=

⋃
v∈H∞ Ω(E,C)v be the open invariant subset of Ω(E,C) associated to H∞, and set

Z := Ω(E,C) \ U . By Theorem 4.7, we have

Or(E,C)/I(H) = Or(E,C)/I(H∞) ∼= C(Z) or,θ|∗Z F.

Let us denote by θ′ the restriction of θ to Z. If x ∈ E1 and s(x) ∈ H, then the domain and
codomain of θ′x is empty, so we have that

Or(E,C)/I(H) ∼= C(Z) or,(θ′)∗ F′,
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and we only have to show that the action θ′ of F′ on Z is conjugate to θ(E/H,C/H). Observe
that by Lemma 5.4,

Z = {ξ ∈ Ω(E,C) | r(α) /∈ H for all α ∈ ξ}.
We now claim that in fact Z = Ω(E/H,C/H), so let ξ ∈ Ω(E/H,C/H). Since every α ∈ ξ
satisfies r(α) ∈ (E/H)0 = E0 \H, we simply need to verify that the local configurations ξα
are either of type (c1) or (c2) with respect to (E,C). Assume first that ξ is of type (c1) with
respect to (E/H,C/H), i.e. that ξα = s−1

E/H(r(α)). Now since H is hereditary, we must have

ξα = s−1
E/H(r(α)) = s−1(r(α)),

so ξα is indeed of type (c1) with respect to (E,C). Next, assume that ξα is of type (c2) with
respect to (E/H,C/H), i.e. that ξα = {e−1

X/H | X/H ∈ (C/H)r(α)} for some eX/H ∈ X/H.

From H being C-saturated, we have (C/H)r(α) = {X/H | X ∈ Cr(α)}, so setting eX := eX/H
for all X ∈ Cr(α),

ξα = {e−1
X/H | X/H ∈ (C/H)r(α)} = {e−1

X | X ∈ Cr(α)}

is of type (c2) with respect to (E,C). The converse inclusion is completely straightforward and
does not use (explicitly) the assumptions about H being hereditary and C-saturated. Finally,
since the dynamics is completely determined by the configurations, and the configuration
spaces agree, we conclude that the two partial action are in fact conjugate.

Observe that, by Theorem 4.7 and Remark 4.8(1), the same proof applies to O and Lab

respectively, so we obtain a second proof for those. �

6. The ideals associated to hereditary D∞-saturated subsets of (F∞, D∞)

Recall from Section 4 that every induced ideal of a tame graph algebra corresponds to a set
H ∈ H(F∞, D∞). In this section, we shall describe the induced ideal, or rather its quotient,
in terms of the intersections H ∩ E0

n. We shall also consider a number of examples.
The proof of the following lemma is straightforward.

Lemma 6.1. Let H ∈ H(F∞, D∞), and, for each n ≥ 0, set H(n) := H ∩ E0
n. Then H(n) is

a hereditary Cn-saturated subset of E0
n, and H = ∪∞n=0H

(n).

We now describe the hereditary and D∞-saturated closure of H(n) inside (F∞, D∞): Fol-

lowing Notation 5.2, we will denote by H
(n)
∞ the hereditary closure of H(n) in F 0

∞, that is,

H
(n)
∞ = ∪m≥nH(n)

m , where

H(n)
m = {s(X(x)) | x ∈ E1

m−1 and s(x) ∈ H(n)
m−1} ∪ (H

(n)
m−1 ∩ E0,1

m−1).

Observe that H
(n)
∞ is just the hereditary closure of H(n) in F 0

∞, but we proved in Lemma
5.1 that it is (D≥n)-saturated, that is, if v ∈ F 0,m with m ≥ n and X ∈ Cm

v are such that
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s(X) ⊆ H
(n)
∞ , then v ∈ H(n)

∞ . Now define

Hn := (H ∩ F 0
n−1) ∪H(n)

∞ = (
n−1⋃

i=0

H(i)) ∪H(n)
∞

and observe that Hn is exactly the hereditary and D∞-saturated closure of H(n) inside
(F∞, D∞). Note also that F∞ \H has the structure of a separated Bratteli diagram, which
we denote by (F∞/H,D∞/H). Here

(F∞/H)0,n = F 0,n \H, D∞/H =
∞⊔

n=0

Cn/H(n).

Proposition 6.2. Let (E,C) denote a finite bipartite separated graph, let H ∈ H(F∞, D∞)
and apply the above notation. Also, let Un denote the open invariant subspace of Ω(E,C)
corresponding to Hn, and set Zn := Ω(E,C) \ Un as well as Z :=

⋂∞
n=0 Zn. Then

Or(E,C)/I(H) ∼= C(Z) or F ∼= lim−→
n

C(Zn) or F ∼= lim−→
n

Or(En/H(n), Cn/H(n)),

where the connecting homomorphisms are simply induced from restriction of functions. The
same statement holds with O or Lab in place of Or.
Proof. Since Hn is the hereditary and D∞-saturated closure of H(n), we have I(Hn) = I(H(n))
as ideals of Or(E,C). It follows that

Or(En/H(n), Cn/H(n)) ∼= Or(En, Cn)/I(H(n)) ∼= Or(E,C)/I(Hn) ∼= C(Zn) or F
from Theorem 3.22 and Theorem 5.5. Now let U denote the open invariant set corresponding
to H. We have H =

⋃∞
n=0H

n by construction, so U =
⋃∞
n=0 Un and Z = Ω(E,C) \U . Thus,

we obtain the identification

Or(E,C)/I(H) ∼= C(Z) or F,
and clearly C(Z) or F ∼= lim−→n

C(Zn) or F. The same proof applies to O and Lab. �

Remark 6.3. Recall from Theorem 3.22 that every v ∈ E0
n for n ≥ 1 corresponds to an

n-ball B(v) ∈ Bn(Ω(E,C)). The open set Un of Proposition 6.2 may therefore be described
as the set of configurations ξ ∈ Ω(E,C) satisfying the following: There is some v ∈ H(n) and
α ∈ ξ for which θα(ξ)n = B(v). In other words, we can describe the set Zn as

Zn = {ξ ∈ Ω(E,C) | ξ 6≡ B(v) for all v ∈ H(n)}.
Thus, the descending filtration (Zn)n exactly removes the configurations with forbidden n-
balls at the n’th step. In particular, we see that the restricted action θ|Z : F y Z is of finite
type in the sense of Definition 3.7 if and only if H = Hn for some n ≥ 0.

As another consequence, we see that every convex shift θ : F y Ω can be represented, up
to Kakutani equivalence, by a separated Bratteli diagram: If (E,C) is the graph representing
the full convex shift (see Example 3.26), then θ is Kakutani equivalent to the restriction of
θ(E,C) to some closed invariant subspace Z. It follows that θ may be described as above
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by the separated Bratteli diagram (F∞/H,D∞/H), where H ∈ H(F∞, D∞) corresponds to
U := Ω(E,C) \ Z.

We now describe K0 of these quotient algebras in terms of their associated separated
Bratteli diagrams.

Theorem 6.4. Let (E,C) be a finite bipartite separated graph, let H be a proper heredi-
tary D∞-saturated subset of F∞, and let (F∞/H,D∞/H) be its associated separated Bratteli
diagram.

(1) There is a natural group isomorphism

K0(O(E,C)/I(H)) ∼= K0(Or(E,C)/I(H)) ∼= G(F∞/H,D
∞/H).

(2) There is a natural isomorphism V(Lab
K (E,C)/I(H)) ∼= M(F∞/H,D∞/H), and so an

isomorphism of pre-ordered abelian groups

K0(Lab
K (E,C)/I(H)) ∼= G(F∞/H,D

∞/H)

for any field with involution K.

Proof. We adopt the above notation. It is straightforward to check that, for n ≥ 1 we have

M(F≥n/H
(n)
∞ , D≥n/H(n)

∞ ) ∼= M(F∞/H
n, D∞/Hn)

and

G(F≥n/H
(n)
∞ , D≥n/H(n)

∞ ) ∼= G(F∞/H
n, D∞/Hn).

Therefore, it follows from Theorem 2.9 and an easy calculation that there are commutative
diagrams

K0(O(En/H
(n), Cn/H(n)))

∼=−−−→ G(F∞/Hn, D∞/Hn)y
y

K0(O(En+1/H
(n+1), Cn+1/H(n+1)))

∼=−−−→ G(F∞/Hn+1, D∞/Hn+1)

for all n ≥ 1. Using Proposition 6.2, we obtain

K0(O(E,C)/I(H)) ∼= lim−→
n

K0(O(En/H
(n), Cn/H(n)))

∼= lim−→
n

G(F∞/H
n, D∞/Hn)

= G(F∞/H,D
∞/H).

This gives (1) for O. The same arguments give, using Theorem 2.9, the result for Or and for
Lab. �

We record some useful properties of the monoid M(F∞/H,D∞/H).
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Proposition 6.5. Let (E,C) be a finite bipartite separated graph, let H be a proper heredi-
tary D∞-saturated subset of F∞, and let (F∞/H,D∞/H) be its associated separated Bratteli
diagram. Then we have a natural monoid isomorphism

M(F∞/H,D
∞/H) ∼= M(F∞, D

∞)/M(H),

where M(H) is the order-ideal of M(F∞, D∞) generated by H. In particular, M(F∞/H,D∞/H)
is a refinement monoid.

Proof. The isomorphism follows from [10, Construction 6.8]. Since M(F∞, D∞) is a refine-
ment monoid, the quotient monoid M(F∞, D∞)/M(H) is also a refinement monoid, by [13,
Lemma 4.3]. �

We now consider a number of examples.

Example 6.6. For integers 1 ≤ m ≤ n, define the separated graph (E(m,n), C(m,n)), where

(1) E(m,n)0 := {v, w} (with v 6= w).
(2) E(m,n)1 := {α1, . . . , αn, β1, . . . , βm} (with n+m distinct edges).
(3) s(αi) = s(βj) = v and r(αi) = r(βj) = w for all i, j.
(4) C(m,n) = C(m,n)v := {X, Y }, where X := {α1, . . . , αn} and Y := {β1, . . . , βm}.

See Figure 1 just below for a picture in the case m = 2, n = 3. We refer the reader to [9] and
[7, Example 9.3] for more information on this example.

u

v

Figure 1. The separated graph (E(2, 3), C(2, 3))

The C*-algebrasOm,n andOrm,n studied in [9] are precisely the C*-algebrasO(E(m,n), C(m,n))
and Or(E(m,n), C(m,n)), respectively, in the notation of the present paper. It was shown in
[9] that these two C*-algebras are not isomorphic, and we will now show that the C*-algebra
Orm,n is not simple if m ≥ 2. Let (E,C) := (E(m,n), C(m,n)). It is clear that H(E,C) only

contains the trivial sets ∅, E0.
Adopting the notation of [9], we write

Ωu := Ω(E,C) = Xu t Y u,

where Xu = tni=1H
u
i = tmj=1V

u
j , and Y u is homeomorphic to each of the sets Hu

i , V u
j by

homeomorphisms hui : Y u → Hu
i and vhj : Y u → V u

j . The maps hui , v
u
j are the universal maps

defining the universal (m,n)-dynamical system. Indeed, we have hui = θαi and vuj = θβj for
all i, j.
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Let us now describe the separated graph (E1, C
1). We have E0,0

1 = {w} and

E0,1
1 = {wij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Now there are n + m elements in C1
w, namely Xi := X(αi) and Yj := X(βj) for i = 1, . . . , n

and j = 1, . . . ,m. Note that |Xi| = m and |Yj| = n. Moreover, s(Xi) = {wij : j = 1, . . . ,m}
and s(Yj) = {wij : i = 1, . . . , n}.

If m = n ≥ 2, then set H := {wij : i 6= j} . Then H is a maximal hereditary and C1-
saturated subset of E0

1 . Moreover, (E1/H,C
1/H) consists of n cycles based at the vertex w,

so that

Orn,n/I(H) ∼= Or(E1/H,C
1/H) ∼= Mn+1(C∗red(Fn)),

which is a simple C*-algebra. However On,n/I(H) ∼= C∗(Fn) is not simple. (Incidentally,
note that this gives another proof that Orn,n 6= On,n for n ≥ 2.)

If 2 ≤ m < n, then set

H := {wij : i 6= j and 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1} ∪ {wim : 1 ≤ i ≤ m− 1}.

Then H is again a maximal hereditary C1-saturated subset of E0
1 . However, in this case

the quotient C*-algebra Orm,n/I(H) is not even V-simple, as we will show in Section 8. It is

therefore clear that the universal (E1/H,C
1/H)-system is not equivalent to the (m,n)-system

(X, Y ) considered in the proof of [9, Proposition 3.9]. Indeed, observe that v−1
i ◦ hi = idY for

i = 1, . . . ,m− 1 in that example, and this is not necessarily true in a (E1/H,C
1/H)-system.

The (m,n)-dynamical system just mentioned shows that the algebra Mm+1(On−m+1) ∼=
Mn+1(On−m+1) is a simple quotient of Om,n, where Ok denotes the usual Cuntz algebra.
Indeed, we can define a surjective ∗-homomorphism Om,n →Mm+1(On−m+1) by

αi 7→
{

1⊗ ei+1,1 if i = 1, . . . ,m− 1
si−m+1 ⊗ em+1,1 if i = m, . . . , n

, βj 7→ 1⊗ ej+1,1 for j = 1, . . . ,m,

w 7→ 1⊗e1,1 and v 7→∑m+1
j=2 1⊗ej,j. However, it is not clear to the authors whether the same

algebra Mm+1(On−m+1) appears as a simple quotient of the reduced tame C*-algebra Orm,n.

We now present an example relating our theory with classical symbolic dynamics; hopefully,
it can also serve as an exemplification of the general theory of the previous sections. We
only consider the case where the alphabet is {0, 1}, but similar statements can be made for
an arbitrary finite alphabet, considering a corresponding variation of the separated graph
considered below.

Example 6.7. Let (E,C) be the separated graph described in Figure 2, with Cv = {X, Y }
and X = {α0, α1} and Y = {β0, β1}.
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0 1

v

β0 β1

α0 α1

Figure 2. The separated graph underlying the lamplighter group

This example has been considered in [7, Example 9.7], where it is observed that

vO(F,D)v ∼= C(X ) oσ Z, vLab
K (F,D)v ∼= CK(X ) oσ Z,

where X = {0, 1}Z and σ is the usual shift homeomorphism on X . Note that O(E,C) =
Or(E,C) in this case. Indeed it can be easily seen that (E,C)-dynamical systems are in one-
to-one correspondence with usual dynamical systems (Y , ϕ), where ϕ is a homeomorphism of
the compact Hausdorff space Y , with the additional information of a partition Y = Y0tY1 of
Y into clopen subsets Y0,Y1. To obtain the corresponding (E,C)-system, take Ω := Y ′ t Y ,
where Y ′ = Y ′0 t Y ′1 is a disjoint copy of Y , and where Ωv := Y , Y ′i correspond to the
vertices labeled by i, the maps αi correspond to the identification of elements of Y ′i with
elements of Yi, and the maps βi are induced by the homeomorphism ϕ. It is easily checked
that v(C(Ω) o F)v ∼= C(Y) oϕ Z in this situation. The unique equivariant continuous map
Ω → Ω(E,C) predicted by [7, Corollary 6.11], restricted to Y , is the fundamental map in
symbolic dynamics (see e.g. [37, §6.5]) sending each element x in Y to the sequence (an)n∈Z
recording to which of the sets Y0 or Y1 belongs ϕn(x), that is, an = i ⇐⇒ ϕn(x) ∈ Yi, for
n ∈ Z.

We here give a dynamical interpretation in terms of the associated canonical sequence
{(En, Cn)} of bipartite separated graphs. Let X = {0, 1}Z as above. For a finite word
a1a2 · · · an ∈ {0, 1}n, we will write

[a1a2 · · · ai−1aiai+1 · · · an] := {x ∈ X : xj−i = aj for j = 1, 2, . . . , n}.
The space Ω(E,C) is of the form Ω(E,C) = X ′ t X , where X ′ ∼= X = {0, 1}Z. By a

slight abuse of language, we will identify X ′ with X notationally, so that we will obtain
two partitions of the space {0, 1}Z into clopen subsets for each separated graph (En, C

n),
corresponding to the sets of vertices E0,0

n and E0,1
n respectively, and maps between these

clopen subsets corresponding to the edges E1
n.

The first layer of the sequence {(En, Cn)}n≥0 corresponds to a trivial decomposition X 0 = X
and to the decomposition

X 1
0 = [0], X 1

1 = [1].

The maps corresponding to the edges are the maps αi : X 1
i → X and βi : X 1

i → X defined by
αi = id|X 1

i
and βi = σ|X 1

i
. We describe now the clopen sets corresponding to the separated

graph (En, C
n) for any n ≥ 1. Let w = a1a2 · · · an ∈ {0, 1}n be a word of length n. If n = 2m
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is even, define
X n
w := [a1 · · · amam+1am+2 · · · a2m].

If n = 2m+ 1 is odd, define

X n
w := [a1 · · · amam+1am+2 · · · a2m+1].

The set F 0
n = E0,0

n has exactly 2n elements, and thus F 0
n+1 = E0,1

n has exactly 2n+1 elements.
The vertices in E0,0

n correspond to a decomposition

X =
⊔

w∈{0,1}n
X n
w .

Let n = 2m and take w ∈ {0, 1}n. Then Cn
w = {Xw

1 , X
w
2 }, where Xw

1 = {αn+1
w0 , αn+1

w1 }
and Xw

2 = {βn+1
0w , βn+1

1w }. The edges αn+1
wi correspond to the maps, denoted in the same way,

αn+1
wi : X n+1

wi → X n
w , where each is simply the identity on the respective domain. Similarly,

the edges βn+1
iw correspond to the maps βn+1

iw : X n+1
iw → X n

w given by the restriction of σ to the
respective domains.

Now let n = 2m + 1 and take w ∈ {0, 1}n. In this case, we have Cn
w = {Xw

1 , X
w
2 }, where

Xw
1 = {αn+1

0w , αn+1
1w } and Xw

2 = {βn+1
w0 , βn+1

w1 }. The edges αn+1
iw again correspond to the maps,

denoted in the same way, αn+1
iw : X n+1

iw → X n
w , acting as the identity on the respective domains,

while the edges βn+1
wi correspond to the maps βn+1

wi : X n+1
wi → X n

w given by the restriction of
σ−1 to the respective domains.

Now it is quite easy to observe that Ω(E,C)v ∼= X canonically. Indeed, by [8, p. 3008], we
have Ω(E,C)v ∼= lim←−(F 0,2j

∞ , r2j), and in this case, the maps r2j : F 0,2j
∞ → F 0,2j−2

∞ are the maps

sending awb to w, where w ∈ {0, 1}2j−2 and a, b ∈ {0, 1}.
We can now relate the ideals of O(E,C) with some sets of words, and the quotients of
O(E,C) with the subshifts of the shift (X , σ). Recall from [37, Chapter 1] that a subshift of
X = {0, 1}Z is a subspace XF which can be described as the set of all elements x in X not
containing any block from a fixed family F of finite words in the alphabet {0, 1}. (A block
of x is a finite subsequence of consecutive terms in x.) The family F is called the family of
forbidden words of the subshift. By [37, Theorem 6.1.21], the subshifts of X are exactly the
invariant closed subsets of X . A subshift Z is said to be of finite type if there exists a finite
set F such that Z = XF .

Proposition 6.8. Let (E,C) be the separated graph described in Example 6.7, and adopt the
notation used there.

(1) For each subset F of words, there is a unique hereditary D∞-saturated subset HF of
the separated graph (F∞, D∞) such that F and HF generate the same subshift, that is
XF = XHF .

(2) XF is a shift of finite type if and only if there is some n <∞ such that HF is generated
by H := HF ∩ E0

n. In this case, θ(En/H,Cn/H) and σ are Kakutani equivalent, so in
particular there are Morita-equivalences

CK(XF) oσ Z ∼ Lab
K (En/H,C

n/H) and C(XF)×σ Z ∼ O(En/H,C
n/H).
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Proof. (1): By Example 6.7, the set of vertices of the graph F∞ can be identified with the set
of all finite words in the alphabet {0, 1}.

Given a set F of words, the space XF is a closed invariant subset of X . One can easily
show that

X \ XF =
∞⋃

n=0

⋃

w∈Wn

⋃

j∈Z
σj(X n

w),

where for each n ≥ 0, the set Wn is the set of words of length n containing a block coming from
F , and X n

w are the subsets of X defined in Example 6.7. Observe that the set W :=
⋃∞
n=0 Wn

is precisely the hereditary closure of F in the graph F∞. The set HF is the D∞-saturation
of W , and it generates the same open invariant subset as F and as W . We therefore have
XF = XHF . The uniqueness of HF comes from Theorem 4.7.

(2): The first statement follows immediately from (1). Using the above identification of
θ(En,Cn), we see that

⊔
v∈E0,0∩H Ω(En, C

n)v = XF , so that the restriction of θ(En/H,Cn/H) to
the full, clopen subspace ⊔

v∈E0,0
n \H

Ω(En/H,C
n/H)v

is directly dynamically equivalent to σ via the group homomorphism F((En/H)1)→ Z given
by

• αn+1
wi 7→ 0 and βn+1

iw 7→ 1 if n is even,
• αn+1

iw 7→ 0 and βn+1
wi 7→ −1 if n is odd.

In particular, θ(En/H,Cn/H) and σ are Kakutani equivalent, so we obtain Morita equivalences
as above. This concludes the proof. �
Example 6.9. The cycles in the different graphs (En, C

n) are determined by the complements
of some hereditary Cn-saturated subsets of E0

n. They correspond to periodic orbits in the
shift (X , σ). For instance, consider the word w = 0110, which is primitive, that is, it is not a
square. The successive rotations of w are the words

w1 = w, w2 = 1100, w3 = 1001, w4 = 0011.

Consider the separated graph (E3, C
3), and the C3-saturation H of the set

E0,1
3 \ {w1, w2, w3, w4}.

It is easily seen that E0,1
3 \H = {w1, w2, w3, w4}, and E0,0

3 \H = {v1, v2, v3, v4}, where

v1 = 110, v2 = 100, v3 = 001, v4 = 011.

The separated graph (E3/H,C
3/H) is essentially given by a cycle of length 4. We have

O(E,C)/I(H∞) ∼= O(E3/H,C
3/H) ∼= M8(C(T)).

Note that if we start with a word which is not primitive, for instance w = 0101, then
there is a non-trivial C2-saturation H2 induced by H in (E2, C

2), and there is a non-trivial
C1-saturation H1 induced by H2 in (E1, C

1), which is such that E0,1
1 \H1 = {10, 01} (that is,

H1 = {00, 11}), and everything is reduced to the 2-cycle generated by 01.
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The periodic orbits give trivial examples of minimal subshifts. More interesting examples
are provided by the minimal Cantor subshifts, whose underlying space is a Cantor set. By [49],
every strong orbit equivalence class of minimal Cantor systems contains a minimal Cantor
subshift. By combining this with [30, Theorem 2.1], we see that, for every ∗-isomorphism
class of C∗-algebra crossed products C(Ω) o Z of minimal actions on the Cantor set Ω,
there is a representative coming from a minimal subshift. These C∗-algebras are classified by
their ordered Grothendieck groups with distinguished order-units, which may be any simple
dimension group with order-unit (see [30, Theorems 1.12 and 1.14]). See also [23] and [33]
for further information about the conjugacy classes of minimal subshifts. We remark that
these examples imply that, in spite of the results in [38], the theory of separated graph C*-
algebras leads to non-trivial examples (i.e. not coming from ordinary directed graphs) of
simple nuclear C*-algebras with stable rank one and real rank zero, since it is well-known
that the C*-algebras associated to minimal Cantor systems enjoy these properties (see [42]
and [24, p. 184]). By the results of the second-named author ([38]) this is not possible for the
tame C*-algebra of a separated graph, but we see now that, factoring out a suitable maximal
ideal generated by projections of the algebra O(E,C) appearing in Example 6.8, we may
obtain such examples.

The following example appears for instance in [22].

Example 6.10 (The even shift). Consider the subshift Y of (X , σ) defined by taking as a
set of forbidden words F = {012n+10 | n ≥ 0}. That is, in a word of Y there is always
an even number of consecutive 1’s between two 0’s. In this case, we have H(2) = {010},
H(4) = {01110}∪H ′4, where H ′4 is the family of words of length 4 or 5 containing as subwords
the word 010. In general

H(2i) = {012i−10} ∪H ′2i,
where H ′2i is the set of words of length 2i or 2i + 1 containing some subword of the form
012j−10 with j < i. This gives rise to a subshift which is not finite.

7. A complete description of the ideals of finite type

In this section, we completely determine the structure of the finite type ideals of Or(E,C):

Definition 7.1. Let (E,C) denote a finite bipartite separated graph and let (F∞, D∞) be
the separated Bratteli diagram of (E,C). Given an arbitrary ideal J / Or(E,C), there is
some HJ ∈ H(F∞, D∞) for which I(HJ) = (J ∩ C(Ω(E,C))) or F. We will say that any
H ∈ H(F∞, D∞) is of finite type if H = Hn for some n ≥ 0, and an ideal J is of finite
type if HJ is so. Finally, the lattices of finite type vertex sets and ideals will be denoted by
Hfin(F∞, D∞) and Ifin(Or(E,C)), respectively.

Given any partial action θ : Gy Ω and a point x ∈ Ω, the stabiliser of x is the subgroup

Stab(x) := {g ∈ G | x ∈ Ωg−1 and θg(x) = x}.
Recall that θ is called topologically free if, given any open subspace U and any 1 6= g ∈ G,
there exists x ∈ U with g /∈ Stab(x). If θ is topologically free, then C0(Ω) or G has the
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intersection property by [25, Theorem 29.5], i.e. any non-zero ideal J / C0(Ω) or G has
non-trivial intersection C0(U) = J ∩ C0(Ω) 6= {0}. It follows that J contains the non-zero
induced ideal I := C0(U)or G, but it does not tell us anything about the quotient J/I. The
problem arises when the restriction of θ to Z := Ω \U is not topologically free, and a partial
action is said to be essentially free if all such restrictions are topologically free. However,
while topological freeness of θ(E,C) is quite frequent (we recall the characterisation given in
[7] just below), essential freeness is extremely rare as shown in [38]. In this section, we will
introduce a weakening of topological freeness that still allows one to obtain information about
the ideals, and show that it is always enjoyed by θ(E,C). In particular, the restriction θ(E,C)|Z
to any closed invariant subspace Z of finite type will also have this property. From these
observations, we can completely characterize the structure of finite type ideals of Or(E,C).
It is also worth noting that our methods, when applied to non-separated graphs, yield a
complete description of the ideals of the graph C∗-algebra.

We first recall Condition (L) of [7], using a slightly different terminology:

Definition 7.2. Consider any finite bipartite separated graph (E,C). A vertex v ∈ E0 is
said to admit a choice if there exists an admissible path β = eα with s(β) = v, and an
element Xe 6= X ∈ Cr(e) with |X| ≥ 2. The graph is said to satisfy Condition (L) if for every
simple cycle σ, the base vertex s(σ) admits a choice.

Theorem 7.3 ([7, Theorem 10.5]). Let (E,C) denote a finite, bipartite separated graph.
Then θ(E,C) is topologically free if and only if (E,C) satisfies Condition (L).

We now introduce the appropriate weakening of topological freeness.

Definition 7.4. Let θ : Gy Ω be any partial action of a discrete group on a locally compact
Hausdorff space. For any x ∈ Ω, we shall say that θ is

• topologically free in x if, given any 1 6= g ∈ Stab(x) and an open neighbourhood U of
x, there exists y ∈ U with g /∈ Stab(y).
• strongly topologically free in x if, given any 1 6= g1, . . . , gn ∈ Stab(x) and any open

neighbourhood U of x, there exists y ∈ U with g1, . . . , gn /∈ Stab(y).

We will denote by ΩTF the set of points x ∈ Ω in which θ is topologically free. If θ is strongly
topologically free in every x ∈ ΩTF, it is said to be relatively strongly topologically free.

Observe that if x is an interior point of ΩTF, then θ is automatically strongly topologically
free in x. In particular, topologically free partial actions are strongly topologically free in all
points.

Remark 7.5. We will now expand a bit on the situation for θ(E,C), and we first borrow a bit
of graph theory from [38, Section 3]. If v ∈ E0 does not admit a choice, every closed path
α based at v has a unique word decomposition α = γ−1βγ for a (possibly trivial) admissible
path γ and a cycle β, and we will say that α is a simple closed path if γ does not repeat a
vertex, and β is a simple cycle. The set

Fv := {closed paths based at v} ∪ {1}
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defines a subgroup Fv ≤ F, and every closed path based at v is a reduced product of simple
closed paths. It follows that such v admits a unique simple closed path (up to inversion)
if and only if Fv ∼= Z. Moreover, Ω(E,C)v = {ξ} is a one-point set and Stab(ξ) = Fv, so
ξ /∈ Ω(E,C)TF if and only if v admits a closed path. It follows from the proof of [7, Theorem
10.5] that every η ∈ Ω(E,C) \ Ω(E,C)TF is of the form η = θγ(ξ) for some γ ∈ ξ with ξ as
above – in particular, the complement Ω(E,C) \ Ω(E,C)TF is discrete.

Before we progress any further, let us consider a somewhat trivial, but not uninteresting,
example.

Example 7.6. If θ : Gy Ω is any partial action, and x ∈ ΩTF satisfies Stab(x) ∼= Z, then θ
is automatically strongly topologically free in x. Indeed, given 1 6= g1, . . . , gn ∈ Stab(x), we
may write gi = gki with g a generator of Stab(x), and we can safely assume that ki > 0 for
all i. For any open neighbourhood U of x, we consider h := gk1···kn ∈ G and pick y ∈ U with
h /∈ Stab(y) using topological freeness in x. Then we obviously have gi /∈ Stab(y) as well, so
θ is indeed strongly topologically free in x.

The main result of [39] is a characterisation of nuclearity and exactness of O(r)(E,C) in
terms of a graph theoretic Condition (N ). Another equivalent condition is that every stabiliser
of θ(E,C) is either trivial or isomorphic to Z, so from the above example we obtain the following
proposition:

Proposition 7.7. If (E,C) satisfies Condition (N ), then the restriction of θ(E,C) to any
closed invariant subspace is relatively strongly topologically free.

For general separated graphs, we can only handle restrictions to closed invariant subspaces
of finite type.

Proposition 7.8. If (E,C) is any finite bipartite separated graph, then θ(E,C) is relatively
strongly topologically free.

Proof. Whenever we write βα for admissible paths α and β in the following, we shall mean
the concatenated product, that is, we do not allow for cancellation. Now consider any ξ ∈
Ω(E,C)TF and g1, . . . , gn ∈ Stab(ξ), assuming, without loss of generality, that no pair gi, gj
of distinct elements generate a rank one subgroup. For every i, we may write gi = µ−1

i σiµi for
cycles σi. Since the action is topologically free in ξ, there exist admissible paths βi and edges
xi with |Xxi | ≥ 2, such that x−1

i βiµi ∈ ξ. Either x−1
i βiσi or x−1

i βiσ
−1
i must be admissible, and

without loss of generality, we can assume the former. Now given any open neighbourhood U
of ξ, we have

ξ ∈ Ω(E,C)B := {η ∈ Ω(E,C) | B ⊂ η} ⊂ U

for a sufficiently big ball B := ξN . We may of course assume that N > |x−1
i βiµi| for all i.

Picking li ≥ 1 such that |σlii µi| ≥ N and xi 6= yi ∈ Xxi , we then consider the set

ω := B ∪ {y−1
i βiσ

li
i µi | i = 1, . . . , n}.
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It should be clear that there exists η ∈ Ω(E,C) with ω ⊂ η, so in particular η ∈ U . Finally,
observe that gi /∈ Stab(η) by construction since x−1

i βiµi ∈ B ⊂ η and

x−1
i βiµi /∈ η · µ−1

i σ−lii µi = θ
g
li
i

(η),

so θ is indeed strongly topologically free in ξ. �

Now let us instead consider a non-example.

Example 7.9. For n ∈ Z, we define f 1
n, f

2
n ∈ {0, 1}Z

2
by

f 1
n(a, b) =

{
0 if b > n
1 if b ≤ n

and f 2
n(a, b) =

{
0 if a > n
1 if a ≤ n

.

Then the Z2-shift on {0, 1} restricts to an action θ : Z2 y Ω on the compact Hausdorff space
Ω := {f 1

n, f
2
n, 0, 1 | n ∈ Z}. Every f in is isolated with f in → 0 for n → −∞ and f in → 1 for

n→∞. By construction, Stab(f 1
n) = Z⊕ 0 and Stab(f 2

n) = 0⊕ Z for all n, so ΩTF = {0, 1}.
However, θ is not strongly topologically free in 0 or 1 since any f in is either fixed by a or b.
In conclusion, relative strong topological freeness is not automatic.

Remark 7.10. We have no examples of partial actions of free groups that are not relatively
strongly topologically free, but we suspect that such examples exist. However, it is notable
that whenever a partial action θ : F y Ω of a free group is topologically free in x, and we
consider only two elements g1, g2 ∈ Stab(x), then given any open neighbourhood U of x we
can find y ∈ U with g1, g2 /∈ Stab(y). Indeed, we may assume that g1 and g2 do not generate
a free subgroup of rank one, so that the commutator [g1, g2] = g−1

1 g−1
2 g1g2 is non-trivial.

Let Vi be an open neighbourhood of x so that θgi(Vi) ⊂ U and consider V := U ∩ V1 ∩ V2.
Applying topological freeness with respect to [g1, g2], we obtain y ∈ V with [g1, g2] /∈ Stab(y).
Obviously, we cannot have g1, g2 ∈ Stab(y), and if g1, g2 /∈ Stab(y), then we are done. We
may therefore assume that exactly one of g1 and g2 belongs to Stab(y). If g1 ∈ Stab(y), we
consider y 6= y′ := θg2(y) ∈ U instead. Observe that if g1 ∈ Stab(y′), then

θ[g1,g2](y) = θg−1
1 g−1

2 g1
(y′) = θg−1

1 g−1
2

(y′) = θg−1
1

(y) = y,

which contradicts our choice of y. We conclude that g1, g2 /∈ Stab(y′) as desired. In case
g2 ∈ Stab(y), we apply the exact same argument with g1 and g2 reversed: this is possible
since [g2, g1] = [g1, g2]−1 /∈ Stab(y).

It is evident from the definition that Ω \ ΩTF is an open invariant subspace, so there is a
corresponding “obstruction ideal”:

Definition 7.11. Given a partial action θ : Gy Ω of a discrete group on a locally compact
Hausdorff space, we define an ideal Jo = Joθ := C0(Ω \ ΩTF) or G of C0(Ω) or G.

We now put relative strong topological freeness to work. The proof of the following theorem
is modelled over that of [25, Theorem 29.5], but the statement is somewhat more general.
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Theorem 7.12. Let θ : G y Ω denote a partial action of a discrete group G on a locally
compact Hausdorff space. Suppose that G is exact and that θ is relatively strongly topologically
free. If J ∩ C0(Ω) = {0} for an ideal J / C0(Ω) or G, then J ⊂ Jo.

Proof. Assuming that J 6⊂ Jo, we take any a ∈ J \ Jo and consider w := a∗a ∈ J \ Jo. Now
consider the commutative diagram

C0(Ω) or G C0(ΩTF) or G

C0(Ω) C0(ΩTF)

p∗

p

E F

,

where E and F are the canonical conditional expectations. By exactness of G, we have
ker(p∗) = Jo, hence p∗(w) 6= 0. Faithfulness of F then implies

p(E(w)) = F (p∗(w)) 6= 0,

so f := E(w) attains a non-zero value on ΩTF. Let x0 ∈ ΩTF be such that |f(x0)| =

supx∈ΩTF |f(x)| and take any 0 < ε < |f(x0)|
2

. By Urysohn’s Lemma (applied to the one
point compactification of Ω), there exists u ∈ C0(Ω) with 0 ≤ u ≤ 1, u(x0) = 1 and u(x) = 0
whenever |f(x)| ≥ |f(x0)|+ε/4. Consider z := uw ∈ J\Jo and note that E(z) = uE(w) = uf ,
hence |f(x0)| ≤ ‖E(z)‖ ≤ |f(x0)| + ε/4. We claim that there exists a function h ∈ C0(Ω)
such that

(1) 0 ≤ h ≤ 1,
(2) ‖hE(z)h‖ > ‖E(z)‖ − ε,
(3) ‖hzh− hE(z)h‖ < ε.

To see this, we first pick b ∈ C0(Ω)oalgG with ‖z−b‖ < ε/4 and write b = b1+
∑

g∈T bgδg for a

finite set T ⊂ G\{1}. If T = ∅, then the claim is easily verified, so we may assume that T 6= ∅.
Since θ is strongly topologically free in x0, we can find x1 ∈ Ω with |b1(x1) − b1(x0)| < ε/4
and T ∩ Stab(x1) = ∅. We may apply [25, Lemma 29.4] for every g ∈ T to obtain hg ∈ C0(Ω)
with 0 ≤ hg ≤ 1, hg(x1) = 1 and ‖hg(bgδg)hg‖ < ε

2|T | . Setting h :=
∏

g∈T hg, (2) then follows

from the calculation

‖hE(z)h‖ > ‖hE(b)h‖ − ε/4 = ‖hb1h‖ − ε/4
≥ |h(x1)b1(x1)h(x1)| − ε/4 = |b1(x1)| − ε/4
> |b1(x0)| − ε/2 > |E(z)(x0)| − 3ε/4 = |f(x0)| − 3ε/4

≥ ‖E(z)‖ − ε.
In order to check (3), we first observe that

‖hbh− hb1h‖ = ‖
∑

g∈T
h(bgδg)h‖ ≤

∑

g∈T
‖hg(bgδg)hg‖ < ε/2,
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hence

‖hzh− hE(z)h‖ ≤ ‖hzh− hbh‖+ ‖hbh− hb1h‖+ ‖hb1h− hE(z)h‖ < ε.

Having verified the claim, we let π denote the quotient map C0(Ω) or G→ (C0(Ω) or G)/J .
Since z ∈ J and J ∩ C0(Ω) = 0, we have

‖E(z)‖ < ‖hE(z)h‖+ ε = ‖π(hE(z)h− hzh)‖+ ε

≤ ‖hE(z)h− hzh‖+ ε < 2ε.

But at the same time, ‖E(z)‖ ≥ |f(x0)| > 2ε, a contradiction. �
We need to specialize the above theorem a bit before we can apply it to our setting. The

following is an ever useful observation.

Lemma 7.13. Let θ : Gy Ω denote a partial action of a discrete group on a locally compact
Hausdorff space. If x ∈ Ω is isolated, then

1x(C0(Ω) o(r) G)1x ∼= C∗(r)(Stab(x)),

where 1x denotes the indicator function in x.

Proof. By [9, Proposition 6.1 and Corollary 6.3], we have embeddings

C∗(r)(Stab(x)) ∼= C({x}) o(r) Stab(x) ↪→ C0(Ω) o(r) Stab(x) ↪→ C0(Ω) o(r) G,

and the composition clearly maps onto the corner 1x(C0(Ω) o(r) G)1x. �
Definition 7.14. Let θ : G y Ω denote a partial action on a locally compact Hausdorff
space, and suppose that U ⊂ OG(Ω) is a collection of open invariant subsets U ⊂ Ω for which
the restriction θ|ZU to ZU := Ω \ U satisfies the following two conditions:

(1) θ|ZU is relatively strongly topologically free,
(2) the space WU := ZU \ ZTF

U is discrete.

Observe that if U ⊂ V for U, V ∈ U , then WU \ V ⊂ WV . For any U , we may therefore
choose a set of representatives ΛU for the orbit space WU/G such that ΛU \V ⊂ ΛV whenever
U ⊂ V . We then introduce a set

IU(θ) :=
{(
U, (IxU)x∈ΛU

)
| U ∈ U , IxU is a proper ideal of C∗r (Stab(x))

}

and equip it with the partial order(
U, (IxU)x∈ΛU

)
≤
(
V, (IxV )x∈ΛV

)
⇔ U ⊂ V and IxU ⊂ IxV for all x ∈ ΛU \ V.

For notational simplicity, we will usually write I•U = (IxU)x∈ΛU , and we finally write IU(C0(Ω)or

G) for the collection of ideals J / C0(Ω) or G satisfying J ∩C0(Ω) = C0(U) for some U ∈ U .

Corollary 7.15. Let θ : G y Ω denote a partial action of an exact group on a locally com-
pact Hausdorff space with the setup from Definition 7.14. Then there is a canonical order
isomorphism

IU(θ)→ IU(C0(Ω) or G), (U, I•U) 7→ J(U, I•U),

with the following properties:
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(1) J(U, I•U) ∩ C0(Ω) = C0(U).
(2) The quotient J(U, I•U)/(C0(U) or G) is canonically Morita equivalent to

⊕
x∈ΛU

IxU .

Proof. Let us write JoU := Joθ|ZU
. By Definition 7.14(2), every orbit in WU is clopen, so there

is a canonical identification

JoU
∼=
⊕

x∈ΛU

C0(G.x) or G.

From Lemma 7.13, C∗r (Stab(x)) sits as a full corner of C0(G.x) or G for all x ∈ ΛU , and we
let ĨxU denote the ideal generated by IxU inside C0(G.x) or G. We may then define an ideal

ĨU :=
⊕

x∈ΛU
ĨxU / JoU , and letting πU denote the quotient map C0(Ω) or G→ C0(ZU) or G,

we finally set J(U, I•U) := π−1
U (ĨU). We proceed to verify the properties of the map (U, I•U) 7→

J(U, I•U), assuming that U ⊂ V . Observe that the quotient map

πU,V : C0(ZU) or G→ C0(ZV ) or G

maps C∗r (G.x) or G to {0} if x ∈ V , and that it maps C0(G.x) or G ⊂ JoU identically
to C0(G.x) or G ⊂ JoV otherwise. It follows that (U, I•U) ≤ (V, I•V ) if and only if J(U, I•U) ⊂
J(V, I•V ). Both (1) and (2) should be obvious from the above, and injectivity is immediate from
these. To see that our map is surjective, take any ideal J /C0(Ω)orG with J∩C0(Ω) = C0(U)
for U ∈ U , and consider JU := J/(C0(U)orG) / C0(ZU)orG. Since θ|ZU is assumed relatively
strongly topologically free, we see that JU ⊂ JoU from Theorem 7.12. In particular, we may

write JU ∼=
⊕

x∈ΛU
ĨxU for ideals ĨxU / C0(G.x) or G. Observe that ĨxU must be proper, for

otherwise we would have x ∈ U . Setting IUx := 1x(Ĩ
x
U)1x, we finally have J(U, I•U) = J . �

We are almost ready to put our results to use at this point, but we still need to introduce
some bookkeeping.

Construction 7.16. Consider any finite bipartite separated graph (E,C), and let (F∞, D∞)
be its Bratteli diagram. We denote by C(E,C) the set of vertices v ∈ E0 which admit no
choices and a simple cycle α such that every closed path based at v is a power of α, modulo
the relation

u ∼ v ⇔ u and v belong to the same cycle.

It follows from Remark 7.5 that C(E,C) is in canonical bijective correspondence with the
orbit space W/F for

W := {ξ ∈ Ω(E,C) \ Ω(E,C)TF | Stab(ξ) ∼= Z}.
Observe that there is a natural map C(E,C) → C(E1, C

1) given by [v] 7→ [v] whenever
v ∈ E0,1, and that it is in fact a bijection. This can either be seen by direct arguments, by
Theorem 3.22, or most easily by [38, Lemma 5.2]. Consequently, if H ∈ Hfin(F∞, D∞) satisfies
H = Hn, we may identify C(En/H

(n), Cn/H(n)) with C(Em/H
(m), Cm/H(m)) whenever m ≥

n; formally, we do this by setting

C(H) := lim−→
m≥n

C(Em/H
(m), Cm/H(m)).
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Observe that whenever H1 ⊂ H2 for H1, H2 ∈ Hfin(F∞, D∞), we have an inclusion

{c ∈ C(H1) | c 6⊂ H2} ⊂ C(H2).

Indeed, whenever m ≥ n for sufficiently large n, we have representations

C(H1) = C(Em/H
(m)
1 , Cm/H

(m)
1 ) and C(H1) = C(Em/H

(m)
2 , Cm/H

(m)
2 ),

and H
(m)
1 ⊂ H

(m)
2 . Consequently, there in an inclusion

{c ∈ C(Em/H
(m)
1 , Cm/H

(m)
1 ) | c 6⊂ H

(m)
2 } ⊂ C(Em/H

(m)
2 , Cm/H

(m)
2 ),

and this does not depend on m. Letting Op(T) denote the collection of proper open subsets
of T, we finally define a set

Ifin(E,C) =
{

(H,T ) | H ∈ Hfin(F∞, D
∞), T ∈ Op(T)C(H)

}

and equip it with the partial ordering

(H1, T1) ≤ (H2, T2)⇔ H1 ⊂ H2 and T1(c) ⊂ T2(c) for all c ∈ C(H1) with c 6⊂ H2.

Theorem 7.17. For any finite bipartite separated graph (E,C), there is a canonical lattice
isomorphism

Ifin(E,C)→ Ifin(Or(E,C)) , (H,T ) 7→ I(H,T ),

with the following properties:

(1) HI(H,T ) = H.
(2) The quotient I(H,T )/I(H) is Morita equivalent to

⊕
c∈C(H) C0(T (c)).

In particular, a finite type ideal of Or(E,C) is generated by its projections if and only if it is
induced.

Proof. Let U := {Ω(E,C)H | H ∈ Hfin(F∞, D∞)} and observe that Corollary 7.15 may be
applied thanks to Remark 7.5, Proposition 7.8 and Theorem 7.12. Since Fn is C∗-simple for
all n ≥ 2 [43], we see that IxU = 0 whenever Stab(x) 6∼= Z, and proper ideals of C∗r (Z) ∼= C(T)
correspond to proper open subsets T ⊂ T. Finally, if H = Hn and U = Ω(E,C)H , then the
orbits of points ξ ∈ WU with stabiliser Z correspond canonically to the elements of C(H). The
above statement is therefore exactly the conclusion that can be drawn from Corollary 7.15. �

Remark 7.18. We have no hope of achieving a similar result for arbitrary ideals of Or(E,C)
except in special cases. Indeed, we suspect that for an infinite type subspace Z, the restriction
θ(E,C)|Z : F y Z need not be relatively strongly topologically free, and one can easily find
examples where the space Z \ ZTF is not discrete.

We finally apply our results to classical graph C∗-algebras to provide a new proof for the
description of the ideal lattice first obtained by Hong and Szymański in [32]. We first recall
a bit of terminology and a few results.
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Definition 7.19 ([16]). Let E denote any directed graph and denote the set of hereditary
and saturated subsets by H(E). For any H ∈ H(E), there is a set of breaking vertices for H
given by

Hfin
∞ := {v ∈ E0 \H : |r−1(v)| =∞ and 0 < |r−1(v) ∩ s−1(E0 \H)| <∞},

and pairs (H,B) with B ⊂ Hfin
∞ are called admissible. For any such pair, one defines a

quotient graph E/(H,B) as

(E/(H,B))0 := (E0 \H) ∪ {β(v) | v ∈ Hfin
∞ \B},

(E/(H,B))1 := s−1(E0 \H) ∪ {β(e) | e ∈ E1, s(e) ∈ Hfin
∞ \B}

with r, s extended by r(β(e)) := r(e) and s(β(e)) := β(s(e)). We finally order the admissible
pairs (H,B) by

(H1, B1) ≤ (H2, B2)⇔ H1 ⊂ H2 and B1 \B2 ⊂ H2.

Theorem 7.20. Let E denote any directed graph. There exists a partial action θE : F y ∂E
of F := F(E1) on a totally disconnected, locally compact Hausdorff space ∂E with the following
properties:

( 1) C∗(E) ∼= C0(∂E) o F(E1) canonically.
(2) There is a canonical lattice isomorphism

{(H,B) | H ∈ H(E) and B ⊂ Hfin
∞ } → OF(∂E), (H,B) 7→ U(H,B),

and θE|∂E\U(H,B) ≈ θE/(H,B) for every admissible pair (H,B). In particular,

C∗(E)/I(H,B) ∼= C∗(E/(H,B)),

where I(H,B) is the ideal induced from U(H,B).

Proof. (1) is proven in [25, Chapter 37], and (2) follows from the description of gauge-invariant
ideals in [16] (one can also prove (2) directly with fairly little work). �

As for the separated graphs, we have to introduce some bookkeeping:

Definition 7.21. For any directed graph E, we let C(E) denote the set of vertices v ∈ E0

which admit a cycle without any entries, modulo the relation

u ∼ v ⇔ u and v belong to the same cycle.

Observe that if (H,B) is an admissible pair, then C(E/(H,B)) = C(E/H) since the additional
vertices in E/H are all sources. Given any H ∈ H(E), we set C(H) := C(E/H) and observe
that if H1 ⊂ H2, then we have an inclusion

{c ∈ C(H1) | c 6⊂ H2} ⊂ C(H2).

We may in turn define a lattice

I(E) := {(H,B, T ) | H ∈ H, B ⊂ Hfin
∞ , T ∈ Op(T)C(H)}
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ordered by

(H1, B1, T1) ≤ (H2, B2, T2)⇔(H1, B1) ≤ (H2, B2) and T1(c) ⊂ T2(c)

for all c ∈ C(H1) with c 6⊂ H2.

Finally, we denote the ideal lattice of C∗(E) by I(C∗(E)), and given any J ∈ I(C∗(E)), we
write (HJ , BJ) for the admissible pair satisfying J ∩ C0(∂E) = C0(U(HJ , BJ)).

Theorem 7.22. For any directed graph E, there is a canonical lattice isomorphism

I(E)→ I(C∗(E)), (H,B, T ) 7→ I(H,B, T ),

with the following properties:

(1) HI(H,B,T ) = H and BI(H,B,T ) = B.
(2) The quotient I(H,B, T )/I(H,B) is Morita equivalent to

⊕
c∈C(H,B) C0(T (c)).

Proof. Let U := OF(∂E) and observe that Corollary 7.15 applies due to Theorem 7.20 and
Example 7.6, since any stabiliser is either trivial or isomorphic to Z. For any U = U(H,B) ∈
U , the orbits of points x ∈ WU with Stab(x) ∼= Z correspond to the elements of C(H), so
Corollary 7.15 reduces to the above statement. �
Remark 7.23. Observe that Theorem 7.12 also provides a new proof of Szymański’s general
Cuntz-Krieger Uniqueness Theorem [50] when applied to the boundary path space action θE.

Remark 7.24. We finally remark that Theorem 7.12 has an analogue for algebraic crossed
products CK(Ω) oG, where CK(Ω) denotes the algebra of compactly supported locally con-
stant function Ω→ K when K is given the discrete topology. The assumptions will have to
be slightly different: on one hand, there is no need for exactness of the group, but on the other
hand, one needs the space Ω to be totally disconnected to have sufficiently many continuous
functions. The proof should be a bit simpler, although one will have to avoid C∗-techniques.
The description of the lattice of ideals of the Leavitt path algebra LK(E) of an arbitrary
graph E, obtained in [3, Theorem 2.8.10], can also be obtained using this approach.

8. V-simplicity

We continue our investigation of the ideal structure with the study of V-simplicity, that is,
we want to compute the algebras of graphs (E,C) for which the monoid M(F∞, D∞) is order
simple. By Theorem 4.7, this is equivalent to saying that I∩C(Ω(E,C)) = 0 for every proper
ideal I of Or(E,C), or H(F∞, D∞) = {∅, F 0

∞}. We will simply say that (E,C) is simple in
this case, and any of the algebras O(E,C), Or(E,C) and Lab(E,C) will be called V-simple.
The second named author proves similar results in [38, Section 4] by studying minimality of
the partial action θ(E,C); our study here, on the other hand, is purely graph-theoretical.

We state the main result of this section right away:

Theorem 8.1. Let (E,C) be a simple finite bipartite separated graph. Then LK(E,C) =
Lab
K (E,C) and C∗(E,C) = O(E,C), and one of the following holds:
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(1) LK(E,C) is isomorphic to a simple Leavitt path algebra, and C∗(E,C) is isomorphic
to a simple graph C∗-algebra of a non-separated graph.

(2) LK(E,C) is Morita-equivalent to K[Fn] and C∗(E,C) is Morita-equivalent to C∗(Fn),
where Fn is a free group of rank n with 1 ≤ n <∞.

In the latter case, Or(E,C) is Morita equivalent to C∗r (Fn).

From Theorem 8.1 and the fact that the reduced group C*-algebra C∗r (Fn) of a free group
Fn of rank n > 1 is simple [43], we obtain:

Corollary 8.2. Let (E,C) be a finite bipartite separated graph. If Or(E,C) is V-simple, then
either Or(E,C) is isomorphic to a simple C∗-algebra, or it is Morita equivalent to C(T).

We develop the proof in various steps. We begin with a simple observation.

Lemma 8.3. Let (E,C) be a finite bipartite separated graph. Then (E,C) is simple if and
only if H(En, C

n) = {∅, E0
n} for all n ≥ 0.

Proof. Let n ≥ 0 be given. It follows from Lemma 5.3 that there is an injective order-
preserving map H(En, C

n)→ H(F∞, D∞), so H(En, C
n) is trivial if H(F∞, D∞) is trivial.

Conversely assume that H(En, C
n) is trivial for all n ≥ 0. If H ∈ H(F∞, D∞), then

H = ∪n=0H
(n), where H(n) := H ∩ E0

n ∈ H(En, C
n) for all n. If H(n) = E0

n for some n, then
H = F 0

∞. Otherwise H(n) = ∅ for all n, so H = ∅. �
A useful property of the separated graphs (En, C

n) associated to a finite bipartite separated
graph (E,C) is the following: if X ∈ Cn

v and n ≥ 1, then s(x) 6= s(y) whenever x, y are
different elements of X. This follows immediately from the definition of these graphs.

We now obtain some necessary conditions for V-simplicity.

Lemma 8.4. Let (E,C) be a simple finite bipartite separated graph. Then for all v ∈ F 0
∞,

there is at most one X ∈ D∞v such that |X| > 1.

Proof. It suffices to show the result for all v ∈ E0,0. Suppose there exist distinct X, Y in Cv
such that |X| > 1 and |Y | > 1. Take a vertex

w := v(x1, y1, z1, . . . , zt) ∈ E0,1
1 ,

where x1 ∈ X, y1 ∈ Y and zi ∈ Zi, where Cv = {X, Y, Z1, . . . , Zt}. The singleton {w} is then
hereditary and C1-saturated in E1, because the elements X of C1 having edges that start at
w are of the form X = X(x), where x ∈ {x1, y1, z1, . . . , zt}, and so they all have more than
one element, and moreover the sources of the vertices of X are all different. So H(E1, C

1) is
non-trivial, contradicting Lemma 8.3. �

At this point we can already show the coincidence between the universal graph algebras
and their tame quotients.

Corollary 8.5. If (E,C) is a simple finite bipartite separated graph, then the natural maps
LK(E,C)→ Lab

K (E,C) and C∗(E,C)→ O(E,C) are isomorphisms.
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Proof. Let n ≥ 0. By Lemma 8.4, we have [ee∗, ff ∗] = 0 for e, f ∈ E1
n. Therefore it follows

from [7, Theorem 5.1(a)] that the maps LK(En, C
n) → LK(En+1, C

n+1) and C∗(En, Cn) →
C∗(En+1, C

n+1) are isomorphisms. Since this holds for each n ≥ 0, we get LK(E,C) ∼=
Lab
K (E,C) and C∗(E,C) ∼= O(E,C). �

Lemma 8.6. Let (E,C) be a simple finite bipartite separated graph. Then, for all w ∈ E0,1
n

with n ≥ 1, there exists X ∈ Cn such that |X| = 1 and s(X) = {w}.
Proof. The only point where we use that n ≥ 1 is the property that all the source vertices
of edges coming from the same set X ∈ C are distinct. Thus, it suffices to prove the result
for an arbitrary finite bipartite separated graph (E,C) such that, for every X ∈ C, we have
s(x) 6= s(y) whenever x, y are distinct elements of X. Using this condition, we get that if
w ∈ E0,1 and |X| > 1 for all X ∈ C such that w ∈ s(X), then {w} is a non-trivial hereditary
and C-saturated subset of (E,C), which contradicts our hypothesis. �
Definition 8.7. Let (E,C) be a simple finite bipartite separated graph. A vertex v ∈ E0,0

is said to be of type A in case there is a (unique) X ∈ Cv such that |X| > 1, and v is said to
be of type B in case |X| = 1 for all X ∈ Cv. Note that, by Lemma 8.4, every vertex v ∈ E0,0

is either of type A or of type B.
If v ∈ E0,0 is of type A, we denote by Xv the unique element in Cv having more than one

element.

Lemma 8.8. Let (E,C) be a simple finite bipartite separated graph. Then for each w ∈ E0,1

there exists at most one X ∈ C such that |X| = 1, s(X) = {w}, and X ∈ Cv for a vertex
v ∈ E0,0 of type A.

Proof. Suppose that X, Y are distinct, X ∈ Cv, Y ∈ Cv′ , for v, v′ vertices of type A, that
|X| = |Y | = 1, and that s(X) = s(Y ) = {w}. Let X = {x} and Y = {y}. Then X(x) and
X(y) are two distinct elements of C1

w, and |X(x)| > 1, |X(y)| > 1 because there are X ′ ∈ Cv
and Y ′ ∈ Cv′ with |X ′| > 1 and |Y ′| > 1. This contradicts Lemma 8.4. �

We say that a type B vertex v is of type B1 if, given any w ∈ E0,1, there is at most one
X ∈ Cv such that |X| = 1 and s(X) = {w}. Say that v is type B2 in case v is not type B1.

The following definitions apply to a general finite bipartite separated graph (E,C). Recall
that, for e ∈ E1, we denote by Xe the unique element of C such that e ∈ Xe.

Definition 8.9. Let (E,C) be a finite bipartite separated graph. An admissible path γ is
said to a 1-path in case all the edges e ∈ E1 appearing in the path (with exponent ±1) satisfy
that |Xe| = 1. Length zero paths are also considered 1-paths. Two vertices v, w of E are said
to be 1-connected, denoted by v ∼ w, if there is a 1-path from v to w. A 1-cycle is a 1-path
which is also a cycle.

Remark 8.10. Observe that the relation ∼ on E0 is an equivalence relation. In fact one
can easily show that if γ1, γ2 are 1-paths with r(γ1) = s(γ2), then the reduced product γ2 · γ1

(i.e. the path obtained after cancellation of terms ee−1 or e−1e in the concatenation of γ2

and γ1) is also a 1-path, which gives the transitivity of the relation ∼. It is obvious that ∼
is symmetric and reflexive.
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Lemma 8.11. Let (E,C) be a simple finite bipartite separated graph. The following hold:

(a) Two distinct vertices of type A are not 1-connected.
(b) The vertices of type A and the vertices of type B2 are not 1-connected.
(c) Let v be a vertex of type A and let w a vertex of type B such that there is a 1-cycle

based at w. Then v is not 1-connected to w.

Proof. (a) Let v, v′ be two distinct vertices of type A. We show that v is not 1-connected to
v′ by induction on the length of a minimal 1-path between v and v′. Suppose that there is
a path e2e

−1
1 from v to v′ such that |Xei | = 1 for i = 1, 2. Let w be the vertex in E0,1 such

that {w} = s(Xe1) = s(Xe2). Then X(e1) and X(e2) are two different elements of C1
w having

more than one element each, contradicting Lemma 8.4.
Assume that there are no 1-paths of length ≤ 2(n− 1) between two vertices of type A, and

let γ be a path of length 2n between two vertices v, v′ of type A. Write γ = e2ne
−1
2n−1 · · · e2e

−1
1 ,

where each Xei has only one element (namely ei). Then the vertices w,w′ of E1 such that
{w} = s(Xe1) and {w′} = s(Xe2n) are of type A in E1, because v and v′ are of type A
(in E), and moreover there is a 1-path in E1 from w to w′ of length 2(n − 1), leading to a
contradiction. This shows that there is no 1-path of length ≤ 2n between distinct vertices of
type A.

(b) Let v be a vertex of type A and let v′ be a vertex of type B2. We show that v is
not 1-connected to v′ by induction on the length of a minimal 1-path between v and v′.
Suppose that there is a path e2e

−1
1 from v to v′ such that |Xei | = 1 for i = 1, 2. Then in the

separated graph (E1, C
1), we have a vertex w with {w} = s(Xe1) = s(Xe2) and X, Y ∈ C1

w,
where X = X(e1) and Y = X(e2). If there is Z ∈ Cv′ such that Z 6= Xe2 , |Z| = 1 and
s(Z) = s(Xe2), then setting Z = {z}, we get X(z) 6= Y and s(X(z)) = s(Y ). Now let
Y = {y′} and X(z) = {z′}. Note that, since v is of type A, we have |X| = |X(e1)| > 1. In
conclusion, we have that C1

w has at least three sets X, Y,X(z), with |X| > 1, |Y | = |X(z)| = 1
and s(Y ) = s(X(z)). Thus, in (E2, C

2) we have a vertex {w′} = s(Y ) = s(X(z)) with Cw′
containing two sets X(y′) and X(z′) with more than one element. This contradicts Lemma
8.4.

Assume now that there is no Z ∈ Cv′ such that Z 6= Xe2 , |Z| = 1 and s(Z) = s(Xe2). Since
v′ is of type B2 by hypothesis, there are two distinct sets Z, T ∈ Cv′ such that |Z| = |T | = 1
and s(Z) = s(T ). Now the vertex w is type A in (E1, C

1), and the vertex w′ = s(Z) = s(T )
is type B2 in (E1, C

1). Indeed, if w′ is of type A, then there is an edge f from w′ to a vertex
v′′ ∈ E0,0 of type A such that |Xf | = 1, and then we could apply the argument in the above
paragraph to the 1-path f−1z, where Z = {z}, to arrive at a contradiction. Moreover there is
a 1-path e′2(e′1)−1 from w to w′ such that X(e2) = {e′1} and X(z) = {e′2}. Set T = {t}. Then
|X(z)| = |X(t)| = 1 and s(X(z)) = s(X(t)) in (E1, C

1), so that we are in the same situation
as before, but replacing (E,C) with (E1, C

1). Consequently, we arrive at a contradiction with
the fact that H(E3, C

3) only contains the trivial subsets.
This shows the case where the length of the path is 2. If we have a path of length 2n, then

it gives rise to a path of length 2n− 2 between a vertex of type A and a vertex of type B2 in
the graph (E2, C

2), leading to a contradiction.
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(c) The proof is similar to the proof of (b), we leave the details to the reader. �
In the following lemma, we describe the V-simple algebras corresponding to graphs with

only vertices of type A.

Lemma 8.12. Let (E,C) be a simple finite bipartite separated graph, and suppose that the
source vertices of edges coming from the same set X ∈ C are all distinct. If all the vertices in
E0,0 are of type A, then LK(E,C) = Lab

K (E,C) is isomorphic to a Leavitt path algebra LK(E),
and C∗(E,C) = O(E,C) is isomorphic to a graph C*-algebra C∗(E) of a non-separated graph

E with H(E) = {∅, E0}.
Proof. By Lemma 8.6 and Lemma 8.8, for each w ∈ E0,1 there exists a unique Y ∈ C such
that |Y | = 1 and s(Y ) = {w}. We denote by yw the unique edge in such a group Y . It is
clear that E1

− := E1 \ {yw | w ∈ E0,1} and E1
+ := {yw | w ∈ E0,1} defines a non-separated

orientation in the sense of [38, Definition 3.8], so LK(E,C) ∼= LK(E) and C∗(E,C) ∼= C∗(E)
by [38, Proposition 3.11], where E is the graph obtained from (E,C) by inverting all the
edges of E1

+. Moreover, E contains no hereditary and saturated subsets since (E,C) contains
no hereditary and C-saturated subsets. �
Lemma 8.13. Let (E,C) be a simple finite bipartite separated graph. Assume that v ∈ E0

is of type B, and that v is not 1-connected to a vertex of type A. Then v is a full projection
and there are identifications

vLab(E,C)v ∼= K[Fv], vO(E,C)v ∼= C∗(Fv) and vOr(E,C)v ∼= C∗r (Fv),
where Fv is the group of closed paths based at v.

Proof. From (E,C) being simple, we see that v is full. We claim that Ω(E,C)v is in fact a
one-point space. If it were not, then there would exist some admissible path eγ with s(γ) = v
along with X ∈ Cr(e) satisfying |X| > 1 and X 6= Xe. We can of course assume that eγ
is minimal with these properties. Assuming that γ passes through a type A vertex, we can
write γ = γ2γ1, where γ1 is the maximal initial subpath for which r(γ1) is of type A. But then
eγ2 is a 1-path between vertices of type A, contradicting Lemma 8.11. We deduce that eγ is
itself a 1-path, so that v is 1-connected to a type A vertex, in conflict with our assumption.
It follows that the partial action θ(E,C) restricts to the trivial global action Fv y Ω(E,C)v,
hence

vLab
K (E,C)v ∼= CK(Ω(E,C)v) o Fv ∼= K o Fv ∼= K[Fv]

and
vO(r)(E,C)v ∼= C(Ω(E,C)v) o(r) Fv ∼= Co(r) Fv ∼= C∗(r)(Fv)

by Lemma 7.13. �
We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. Passing, if necessary, to (E1, C
1), we can assume that for each X ∈ C

we have that s(x) 6= s(x′) whenever x, x′ are distinct elements of X. If E0,0 consists entirely
of vertices of type A, then we can reach (1) by Lemma 8.12. If E0,0 contains both vertices
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of type A and of type B, and a vertex of type A is 1-connected to a vertex of type B, then
its 1-connected component cannot contain any 1-cycle, by Lemma 8.11. In that case, the
vertices of type B in it will vanish in the graph (En, C

n) for some n.
Indeed, let v be a vertex of type A and let γ be a non-trivial 1-path starting at v. By

Lemma 8.11(a), all vertices in E0,0 visited by γ are of type B. If the 1-connected component
of v does not contain 1-cycles, then all the vertices visited by γ must be distinct. So we may
assume that γ is of maximal length. Suppose for instance that

γ = e2re
−1
2r−1 · · · e2e

−1
1

is of even length. Then the vertex s(e1) is of type A in (E1, C
1), and there is a 1-path

γ′ = (e′2r)
−1e′2r−1 · · · (e′2)−1 of length 2r − 1 in (E1, C

1), where each e′i belongs to X(ei), for
i = 2, . . . , 2r. Moreover all the 1-paths of (E1, C

1) starting at s(e1) are of this form, and we
conclude that the 1-connected component of the vertex s(e1) only contains 1-paths of length
≤ 2r − 1. The case where γ is of odd length is treated in the same way. Now let n be the
maximum of the lengths of all the maximal 1-paths starting at vertices of type A in (E,C).
The above argument shows that the graph (En, C

n) has the property that no vertex of type
A is 1-connected to a vertex of type B.

So we can assume, in addition, that no vertex of type A is 1-connected to a vertex of type
B. But then Lemma 8.13 applies. �

9. Primeness

Recall that a ring is called prime if the product of any two non-zero ideals is non-zero. In
this final section, we characterize primeness of the algebras Lab

K (E,C) and Or(E,C) in purely
graph theoretical terms when the configuration space Ω(E,C) is a Cantor space. In order to
check this hypothesis, we also develop a test for the existence of isolated points.

We first introduce a partial version of a well known concept.

Definition 9.1. A partial action θ : G y Ω is called topologically transitive if for any two
non-empty open subsets U,U ′ ⊂ G, there exists g ∈ G such that θg(U ∩ Ωg−1) ∩ U ′ 6= ∅.

The main technical tool for our analysis is the fact that for a topologically free partial
action θ : Gy Ω on a totally disconnected compact Hausdorff space, the algebras CK(Ω)oG
and C(Ω)orG are prime if and only if θ is topologically transitive. This should be clear from
the fact that both these crossed products enjoy the intersection property (see [15, Lemma
4.2] and [25, Theorem 29.5]).

Throughout this section, we will write id(α) and td(α) for the initial (i.e right most) and
terminal (i.e. left most) edge, respectively, of a non-trivial admissible α when viewed as a

path in the double Ê.

Definition 9.2. Let (E,C) denote a finite bipartite separated graph. If B ∈ Bn(Ω(E,C)),
then we define a clopen subspace by

Ω(E,C)B := {ξ ∈ Ω(E,C) | ξn = B},
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and we will say that B is an n-ball at v, where v ∈ E0 is such that Ω(E,C)B ⊂ Ω(E,C)v.
By the boundary of B, we shall mean the set

∂B := {td(α) | α ∈ B is maximal}.
Definition 9.3. Let (E,C) denote a finite bipartite graph, and consider a path closed subset
A ⊂ E1 ∪ (E1)−1, that is, a subset satisfying

id(α) ∈ A⇒ td(α) ∈ A
for any admissible path α. From (E,C) being bipartite, this may also be phrased as follows:

• If ef−1 is admissible and f−1 ∈ A, then e ∈ A.
• If e−1f is admissible and f ∈ A, then e−1 ∈ A.

We will say that such A is ∂-closed if the following holds:

(1) Assume |s−1(v)| ≥ 2 and let e ∈ s−1(v). If s−1(v) \ {e} ⊂ A, then e−1 ∈ A as well.
(2) Assume |Cv| ≥ 2 and let X ∈ Cv. If Y −1 ∩A 6= ∅ for any Y ∈ Cv \ {X}, then X ⊂ A

as well.

It is clear that an intersection of ∂-closed sets is again ∂-closed, so every A ⊂ E1 ∪ (E1)−1 is
contained in a minimal ∂-closed subset A. We then associate a set of vertices to A by

V (A) := {v ∈ E0,0 | X−1 ∩ A 6= ∅ for all X ∈ Cv} ∪ {v ∈ E0,1 | s−1(v) ⊂ A}.
Lemma 9.4. Let (E,C) denote a finite bipartite separated graph, and consider a path closed
subset A ⊂ E1 ∪ (E1)−1. Then v ∈ V (A) if and only if there exists some n ≥ 1 and an n-ball
B ∈ Bn(Ω(E,C)) at v such that ∂B ⊂ A.

Proof. First suppose that v /∈ V (A). We will show that ∂B 6⊂ A for any n ≥ 1 and any n-ball
B at v, and we shall argue by induction on n. If n = 1, then this is clear by definition of
V (A). Assuming that it holds for some n ≥ 1, consider any (n+ 1)-ball B and write

Bn := {α ∈ B : |α| ≤ n}.
From our inductive assumption, there exists a maximal admissible path α ∈ Bn such that
td(α) /∈ A. If α is also maximal in B, then surely ∂B 6⊂ A, so we may assume that it is not.
We then divide into the two cases r(α) ∈ E0,0 and r(α) ∈ E0,1. In the former, we can write
α = eβ, and there exists some Xe 6= Y ∈ Cr(α) with Y −1 ∩ A = ∅. By definition of Ω(E,C),
we then have y−1α ∈ B for some y ∈ Y . In the other case, we may instead write α = e−1β.
Since e−1 /∈ A, we see that f /∈ A for some e 6= f ∈ s−1(r(α)), and we consider the path
fα ∈ B. Either way, we have found an element of the boundary ∂B which is not contained
in A, so in particular not in A.

For the converse implication, we first introduce a bit of handy notation, specifically we
define a partition A =

⊔∞
m=0Am. First set A0 := A, let m ≥ 0 and assume that Ak has been

defined for all k ≤ m. Then for any e ∈ E1, we declare that e−1 ∈ Am+1 if

e−1 /∈
m⊔

k=0

Ak, |s−1(s(e))| ≥ 2 and s−1(s(e)) \ {e} ⊂
m⊔

k=0

Ak.
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Similarly, e ∈ Am+1 if

e /∈
m⊔

k=0

Ak, |Cr(e)| ≥ 2 and Y −1 ∩
m⊔

k=0

Ak 6= ∅ for any Y ∈ Cr(e) \ {Xe}.

Now set

T := {e ∈ E1 : |Cr(e)| = 1} ∪ {e−1 ∈ (E1)−1 : |s−1(s(e))| = 1}
and observe that A ∩ T = A ∩ T . Whenever σ ∈ A, we write mσ for the number satisfying
σ ∈ Amσ , and if X−1 ∩ A 6= ∅ for some X ∈ C, we set mX := min{mx−1 | x−1 ∈ X−1 ∩ A}.
Given v ∈ V (A), we then define

nv :=

{
max{me | e ∈ s−1(v)}+ 1 if v ∈ E0,1

max{mX | X ∈ Cv}+ 1 if v ∈ E0,0 ,

claiming that ∂B ⊂ A for an nv-ball B at v. Specifically, we will show that whenever n ≤ nv,
there is an n-ball Bn at v satisfying ∂Bn ⊂

⊔nv−n
k=0 Ak, and we proceed by induction over n.

For n = 1, this is clear. Assuming that the claim has been verified for some 1 ≤ n < nv, and
letting i be such that v ∈ E0,i, we consider the cases of i+ n being odd and even, separately.
If it is odd, then there is a unique (n+ 1)-ball Bn+1 containing Bn given by

Bn+1 = Bn ∪
{
eα : α ∈ Bn, |α| = n and e ∈ s−1(r(α)) \ {td(α)−1}

}

with boundary

∂Bn+1 = (∂Bn ∩ T ) ∪
⋃

f∈∂Bn\T
s−1(s(f)) \ {f},

so it follows immediately from the above definition and A being path closed that ∂Bn+1 ⊂⊔nv−n−1
k=0 Ak. If i+ n is even, then ∂Bn \ T ⊂ E1, and for any f ∈ ∂Bn \ T , Y ∈ Cr(f) \ {Xf},

we can choose an edge ef,Y ∈ Y such that e−1
f,Y ∈

⊔nv−n−1
k=0 Ak. Now define an (n + 1)-ball

Bn+1 by

Bn+1 := Bn ∪
{
e−1
td(α),Y α : α ∈ Bn, |α| = n and Y ∈ Cr(α) \ {Xtd(α)}

}

and observe that

∂Bn+1 = (∂Bn ∩ T ) ∪
{
e−1
f,Y | f ∈ ∂Bn \ T and Y ∈ Cr(f) \ {Xf}

}
,

hence ∂Bn+1 ⊂
⊔nv−n−1
k=0 Ak as desired. Considering the particular case n = nv and B := Bnv ,

we finally see that ∂B ⊂ A. �
Definition 9.5. Let (E,C) denote a bipartite separated graph. A choice path is an admissible
path α = eβ such that there exists Xe 6= X ∈ Cr(α) with |X| ≥ 2. Given any edge f ∈ E1,
we will say that f is a dead end if there is no choice path starting with f , and likewise f−1

is a dead end if no choice path starts with f−1.

Proposition 9.6. Let (E,C) denote a finite bipartite separated graph, and define

ADE := {dead ends of E1 ∪ (E1)−1}.
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Then Ω(E,C)v contains an isolated point if and only if v ∈ V (ADE). Consequently, Ω(E,C)
is a Cantor space if and only if V (ADE) = ∅.
Proof. Observe first that A := ADE is path closed. It follows from Lemma 9.4 that v ∈ V (A)
if and only if there exists a ball B at v such that ∂B ⊂ A. If this is the case, then Ω(E,C)B
is a one-point space, so Ω(E,C)v does indeed contain an isolated point. If v /∈ V (A), then
given any ball B at v, there exists σ ∈ ∂B which is not a dead end. Consequently, Ω(E,C)B
contains at least two configurations, so Ω(E,C)v does not contain any isolated points. �
Remark 9.7. It is worth mentioning that if Ω(E,C) is a Cantor space, then θ(E,C) is auto-
matically topologically free. Indeed, by [7, Theorem 10.5], θ(E,C) is topologically free if and
only if for every vertex v ∈ E0,1 on a cycle, there exists some e ∈ s−1(v) which is not a dead
end. And if no such e existed, then Ω(E,C)v would be a one-point space.

Definition 9.8. Let (E,C) denote a finite bipartite separated graph. We will say that two
sets A,A′ ⊂ E1 ∪ (E1)−1 can be linked if there exist σ ∈ A, σ′ ∈ A′ and an admissible path α
such that the concatenation σ−1ασ′ is admissible. If this is not the case, then the pair A,A′

is unlinkable. Morover, it is maximal unlinkable if for any larger pair A ⊂ D, A′ ⊂ D′ we
have

D and D′ are unlinkable⇒ A = D,A′ = D′.

Finally, (E,C) is said to have the Linking Property if ∂B and ∂B′ can be linked for any two
balls B,B′ ∈ B(Ω(E,C)).

Lemma 9.9. If (E,C) has the Linking Property, then θ(E,C) is topologically transitive, and
if Ω(E,C) is a Cantor space, then the reverse implication holds as well.

Proof. Assume first that (E,C) has the Linking Property. Then given any two open sets
U,U ′ ⊂ Ω(E,C), there are balls B,B′ such that Ω(E,C)B ⊂ U and Ω(E,C)B′ ⊂ U ′. Since
B and B′ can be linked, there exist σ ∈ ∂B, σ′ ∈ ∂B′ and an admissible path α for which
σ−1ασ′ is admissible. Let γ ∈ B and γ′ ∈ B′ be such that td(γ) = σ and td(γ

′) = σ′, and set
β := γ−1αγ′. The situation is depicted below in Figure 3.

1 β
σ′ σ−1

α

Figure 3. B′ (to the left) and B (to the right) linked by the admissible path α.
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It follows that

∅ 6= θβ(Ω(E,C)B ∩ Ω(E,C)β−1) ∩ Ω(E,C)B′ ⊂ θβ(U ∩ Ω(E,C)β−1) ∩ U ′,
so θ(E,C) is indeed topologically transitive. Conversely, assume now that θ(E,C) is topologically
transitive and Ω(E,C) is a Cantor space. Consider any two balls B,B′ and assume without
loss of generality that both have radius n. If β ∈ F with |β| < 2n is such that

θβ
(
Ω(E,C)B ∩ Ω(E,C)β−1

)
∩ Ω(E,C)B′ 6= ∅,

then take any two distinct points ξ, ξ′ in this open set, using the assumption about isolated
points. By the Hausdorff property, these can be separated by open neighbourhoods U1, U

′
1

of ξ and ξ′, respectively, contained in the above intersection. We have θβ−1(U1) ⊆ Ω(E,C)B,
U ′1 ⊆ Ω(E,C)B′ , and

θβ
(
θβ−1(U1) ∩ Ω(E,C)β−1

)
∩ U ′1 = ∅.

By applying this procedure sufficiently many times, we see that there are non-empty open
subsets V ⊆ Ω(E,C)B and V ′ ⊆ Ω(E,C)B′ , such that

θβ
(
V ∩ Ω(E,C)β−1

)
∩ V ′ = ∅

for all β ∈ F with length |β| < 2n. However, by topological transitivity, there is some
β ∈ F for which this intersection is non-empty, so |β| ≥ 2n. It follows that B and B′ can be
linked. �

We are now in a position to characterize primeness.

Theorem 9.10. Assume that Ω(E,C) is a Cantor space. Then either algebra Lab
K (E,C) or

Or(E,C) is prime if and only if V (A) = ∅ or V (A′) = ∅ for all maximal unlinkable pairs
A,A′ ⊂ E1 ∪ (E1)−1.

Proof. Observe that, by maximality, A and A′ as above are path closed. By Remark 9.7,
θ(E,C) is topologically free, so Lab

K (E,C) and Or(E,C) are both prime if and only if θ(E,C) is
topologically transitive, which is again equivalent to the Linking Property by Lemma 9.9. So
we really have to check that the Linking Property is equivalent to the above condition. But
this is clear from Lemma 9.4. �
Remark 9.11. It is of course also natural to ask if interesting prime algebras can be con-
structed from a finite bipartite separated graph (E,C), where the configuration space Ω(E,C)
does contain isolated points. However, this is not the case: For sufficiently big n, there must
exist a vertex v ∈ E0,1

n such that Ω(En, C
n)v is a one-point space, i.e. every e ∈ s−1(v) is

a dead end. By topological transitivity, the orbit of this single point is dense, so in par-
ticular v can be connected to any other vertex by an admissible path. But then (En, C

n)
must satisfy Condition (C) of [38, Definition 3.5]. Note that v cannot admit exactly one
simple closed path (up to inversion), for then it would generate an ideal Morita equivalent to
K[Z] or C(T), depending on the situation, by 7.13. If v does not admit a closed path, then
both algebras degenerate to graph algebras of a non-separated graph by [38, Theorem 5.7].
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Finally, if v admits at least two simple closed paths (up to inversion), then it generates an
ideal Morita equivalent with the group algebra K[Fv] in the algebraic setting and C∗r (Fv) in
the C∗-algebraic (here Fv denotes the group of all closed paths based at v), and the quotient
is a classical graph algebra.

Example 9.12. We now apply our work to a few examples:

(1) If (E,C) = (E(m,n), C(m,n)) as in Example 6.6, then ADE = ∅ and every pair of
edges can be linked, so Ω(E,C) is a Cantor space and the algebras Lab

m,n and Orm,n are
prime.

(2) Consider the graph (E,C) as pictured just below:

x1

x2y1 y2

y3

Note that ADE = {y−1
3 } has closure ADE = {x1, x2, y

−1
1 , y−1

2 , y−1
3 }, so V (ADE) = ∅. It

follows that Ω(E,C) is a Cantor space. However, the set A := {x−1
1 , x−1

2 , y1, y2, y3} is
not linked to itself and V (A) = {s(y3)}, so the algebras are not prime.

(3) Now consider the following variation of the above graph:

x1
x2

x3y1 y2

y3

Once again we have V (ADE) = ∅, so Ω(E,C) is indeed a Cantor space. Observe that
there is a unique pair of maximal unlinkable subsets, namely

A = A′ := {x1, x2, x3, y
−1
1 , y−1

2 , y−1
3 },

and V (A) = ∅. It follows that Lab
K (E,C) and Or(E,C) are prime in this case.

Remark 9.13. We finally remark that topological transitivity of θ(E,C) can be phrased very
simply in terms of the separated Bratteli diagram (F∞, D∞). Since the vertices of F∞ corre-

spond to the balls of Ω(E,C), and there is a direct dynamical equivalence θ(En,Cn) ≈−→ θ(E,C)

for any n, the partial action θ(E,C) is topologically transitive if and only if for all n, any
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two vertices u, v ∈ E0
n can be connected by an admissible path in (En, C

n), or, alternatively,
that any two vertices in F∞ lay over a common vertex w ∈ F 0

∞. Consequently, one can give
another proof of Theorem 9.10 by checking that the graph theoretical condition passes from
(E,C) to (E1, C

1).
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[32] J.H. Hong and W. Szymański, The primitive ideal space of the C -algebras of infinite graphs, J. Math.

Soc. Japan 56 (2004), 4564.
[33] S-M. Høynes, F inite-rank Bratteli-Vershik diagrams are expansive - -a new proof,

arXiv:1411.3371v1[math.DS].
[34] D. Kerr, P. W. Nowak, Residually finite actions and crossed products, Ergodic Theory and Dynamical

Systems 32 (2012), 1585–1614.
[35] X. Li, Partial transformation groupoids attached to graphs and semigroups, arXiv:1603.09165 [math.OA].
[36] X. Li, Dynamic characterizations of quasi-isometry, and applications to cohomology, arXiv:1604.07375v3

[math.GR].
[37] D. Lind, B. Marcus, An introduction to symbolic dynamics and coding. Cambridge University Press,

Cambridge, 1995.
[38] M. Lolk, Exchange rings and real rank zero C∗-algebras associated with finitely separated graphs, preprint

2017.
[39] M. Lolk, On nuclearity and exactness of the tame C∗-algebras associated with finitely separated graphs,

preprint 2017.
[40] P. S. Muhly, J. N. Renault and D. P. Williams, Equivalence and isomorphism for groupoid C∗-algebras,

J. Operator Theory 17 (1987), 3–22.
[41] A. L. T. Paterson, Graph inverse semigroups, groupoids and their C*-algebras, J. Operator Theory 48

(2002), 645–662.
[42] I. F. Putnam, On the topological stable rank of certain transformation group C*-algebras, Ergodic Theory

Dynam. Systems 10 (1990), 197–207.
[43] Robert T. Powers, Simplicity of the C∗-algebra associated with the free group on two generators, Duke

Math. J. 42 (1975), no. 1, 151–156.
[44] I. Raeburn, Graph algebras. CBMS Regional Conference Series in Mathematics, 103. Published for

the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 2005.

[45] J. Renault, A groupoid approach to C-algebras, Lecture Notes in Mathematics, 793. Springer, Berlin,
1980.

[46] M. Rørdam, A. Sierakowski, Purely infinite C*-algebras arising from crossed products, Ergodic Theory
and Dynamical Systems 32 (2012), 273–293.

[47] B. Steinberg, A groupoid approach to discrete inverse semigroup algebras, Adv. Math. 223 (2010), 689727.

81



60 PERE ARA AND MATIAS LOLK

[48] A. Sims and D. P. Williams, Renault’s equivalence theorem for reduced groupoid C∗-algebras, J. Operator
Theory 68 (2012), 223–239.

[49] F. Sugisaki, On the subshift within a strong orbit equivalence class for minimal homeomorphisms, Ergodic
Theory Dynam. Systems 27 (2007), 971–990.
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EXCHANGE RINGS AND REAL RANK ZERO C∗-ALGEBRAS
ASSOCIATED WITH FINITELY SEPARATED GRAPHS

MATIAS LOLK

Abstract. We introduce a generalisation of Condition (K) to finitely separated graphs and
show that it is equivalent to essential freeness of the associated partial action as well as the
exchange property of any of the associated tame algebras. As a consequence, we can show
that any tame separated graph algebra with the exchange property is separative.

Introduction

A finitely separated graph is a directed graph with a partition of the edges into finite subsets,
which might be thought of as an edge-colouring, so that edges with distinct ranges have
different colours. Ara and Goodearl first introduced Leavitt path algebras LK(E,C) and graph
C∗-algebras C∗(E,C) associated with a separated graph (E,C) in [6] and [5], respectively,
and showed that any conical abelian monoid may be realised as the non-stable K-theory
V(LK(E,C)) of a Leavitt path algebra of a finitely separated graph. They also conjectured
that the inclusion LC(E,C) ↪→ C∗(E,C) induces an isomorphism on non-stable K-theory,
but this important problem remains open. While the edges and their adjoints define partial
isometries in these algebras, their products need not be partial isometries – we say that E1 is
not a tame set of partial isometries in LK(E,C) and C∗(E,C). This led Ara and Exel to define
quotients LK(E,C)� Lab

K (E,C) and C∗(E,C)� O(E,C) in which E1 is exactly forced to
be tame, as well as a further reduced quotient Or(E,C) in the C∗-setting. Amazingly, passing
to these much more well behaved quotients only enriches the non-stable K-theory (at least
on the level of Leavitt path algebras) in the sense that the induced monoid homomorphism
V(LK(E,C))→ V(Lab

K (E,C)) is a refinement. Moreover, if the above conjecture holds, then
the canonical embedding Lab

C (E,C) ↪→ O(E,C) will induce an isomorphism on non-stable
K-theory as well.

Following [1], a ring R (possibly non-unital) is called an exchange ring if for any x ∈ R, there
exists an idempotent e ∈ R and elements r, s ∈ R such that e = xr and e = s+x−xs. For the
class of C∗-algebras, this property coincides with the (to C∗-algebraists more familiar) notion
of real rank zero [1, Theorem 3.8]. The Fundamental Separativity Problem for exchange
rings (see [20], [7])) asks whether every exchange ring R is separative, that is whether the
cancellation property

2a = a+ b = 2b⇒ a = b

Date: May 12, 2017.
Key words and phrases. Separated graph, graph algebra, simplicity, exchange ring, real rank zero, essen-

tially free, Condition (K), separativity.
Supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation

(DNRF92).
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holds in the non-stable K-theory V(R). A positive answer to this problem would provide
positive answers to a number of open problems in both ring-theory and operator algebras
[7, Sections 6 and 7]. In light of the highly general non-stable K-theory of separated graph
algebras, it is therefore natural to ask when the tame algebras Lab

K (E,C), O(E,C) and
Or(E,C) are exchange rings. The main result of the present paper provides a somewhat
discouraging, but not unexpected, answer to this question: If any one of these is an exchange
ring, then it will be a classical graph algebra in case (E,C) is finite and approximately a
classical graph algebra in case (E,C) is only finitely separated. In particular, it will be
separative. On our way to proving this result, we also take a minor detour (Section 4) to
obtain a characterisation of simplicity for these algebras, and the conclusion is similar to the
one above: Any of the algebras LK(E,C), Lab

K (E,C), C∗(E,C) and O(E,C) can only be
simple if it is in fact a classical graph algebra, while Or(E,C) may also be Morita equivalent
to the reduced group C∗-algebra C∗r (Fn) for n ≥ 2. This result (although only in the setting of
finite separated graphs) is also obtained by Ara and the author in [8], but with quite different
arguments.

Our proofs of the above mentioned results rest heavily on a dynamical description of the
tame algebras Lab

K (E,C), O(E,C) and Or(E,C). This was first obtained for finite bipartite
graphs in [2] by Ara and Exel, and we generalise this description to finitely separated graphs
in Section 2. In Section 3, we investigate when LK(E,C) and C∗(E,C) degenerate to graph
algebras of non-separated graphs, and we combine the results of Section 2 and 3 to characterise
simplicity of the various algebras in Section 4. We then study degeneracy of the tame algebras
Lab
K (E,C), O(E,C) and Or(E,C) in Section 5, before characterising the exchange property

of the various algebras as well as essential freeness of the associated partial action in terms
of a graph-theoretic Condition (K) in Section 6.

1. Preliminary definitions

In this section, we recall the necessary definitions and results from the existing theory on
algebras associated with separated graphs.

Definition 1.1. A separated graph (E,C) is a graph E = (E0, E1, r, s) together with a
separation C =

⊔
v∈E0 Cv, where each Cv is a partition of r−1(v) into non-empty subsets. If v

is a source, i.e. if r−1(v) = ∅, then we simply take Cv to be the empty partition, and for any
e ∈ E1, the set in Cr(e) containing e will be denoted [e]. As soon as we start building various
objects out of separated graphs, we will only consider finitely separated ones, meaning that
every X ∈ C is finite. Finally, any directed graph E may be regarded as a separated graph
by giving it the trivial separation Tv = {r−1(v)} for all v ∈ E0 \ E0

source. Note that in this
case, finitely separated simply means column-finite.

A complete subgraph (F,D) of (E,C) is a subgraph such that Dv = {X ∈ Cv | X ∩ F 1 6= ∅}
for every v ∈ F 0. The inclusion of a complete subgraph defines a morphism in the category
of finitely separated graphs (see [6, Definition 8.4] for details on the appropriate notion
of morphism), and every finitely separated graph is the direct limit of its finite complete
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subgraphs [6, Proposition 3.5 and Definition 8.4]. Moreover, as all the constructions from
separated graphs are functorial and preserve direct limits, it is often sufficient to consider
only finite graphs.

Definition 1.2. Let K denote any field. The Leavitt path algebra LK(E,C) associated with a
finitely separated graph (E,C) is the ∗-algebra (over K) generated by E0tE1 with relations

(V) uv = δu,vv and u = u∗ for u, v ∈ E0,
(E) es(e) = r(e)e = e for e ∈ E1,

(SCK1) e∗f = δe,fs(e) if [e] = [f ],
(SCK2) v =

∑
e∈X ee

∗ for all v ∈ E0 and X ∈ Cv,
and the graph C∗-algebra C∗(E,C) is the universal C∗-algebra with respect to these genera-
tors and relations. In other words, C∗(E,C) is the enveloping C∗-algebra of LC(E,C). The
reader should be aware that we use the convention of [2], [3], [8] and [23], often referred to
as the Raeburn-convention, opposite to that of [5] and [6] – consequently, paths will have to
be read from the right. J
Note that if C = T , then (SCK1) and (SCK2) are simply the ordinary (CK1) and (CK2)
axioms for classical graph algebras, so LK(E,C) = LK(E) and C∗(E, T ) = C∗(E). It was
observed in [6, Proposition 3.6] and [5, Proposition 1.6] that the assignments (E,C) 7→
LK(E,C) and (E,C) 7→ C∗(E,C) extend to continuous functors from the category of finitely
separated graphs.

Recall that a set of partial isometries S is set to be tame if all products of elements from
S ∪ S∗ are also partial isometries.

Definition 1.3 ([3, Definition 2.4]). Let (E,C) denote a finitely separated graph. Then
Lab
K (E,C) is the ∗-algebra (over K) and O(E,C) is the universal C∗-algebra generated by

E0tE1 with relations (V), (E), (SCK1), (SCK2), and E1 being tame. We refer to Lab
K (E,C)

as the abelianised Leavitt path algebra of (E,C) and to O(E,C) as universal tame graph C∗-
algebra of (E,C). Since we invoke more relations than above, there are canonical quotient
maps

LK(E,C)→ Lab
K (E,C) and C∗(E,C)→ O(E,C).

It was proven in [3, Proposition 7.2] that the assignment (E,C) 7→ O(E,C) extends to a
continuous functor, and the same proof applies to (E,C) 7→ Lab

K (E,C).

Definition 1.4. A separated graph (E,C) is called bipartite if there exists a partition of the
vertex set E0 = E0,0 t E0,1 with s(E1) = E0,1 and r(E1) = E0,0. J
Whenever (E,C) is a separated graph, there is a canonical bipartite replacement B(E,C) as
defined in [2, Proposition 9.1] and [3, Definition 7.4]. By [3, Proposition 7.5], the assignment
(E,C) 7→ B(E,C) is functorial and there are natural isomorphisms of functors

M2 ◦ C∗ ∼= C∗ ◦B and M2 ◦ O ∼= O ◦B,

where M2 is the functor taking A to M2(A), and the same proof applies to LK and Lab
K .

Therefore, one can often restrict to finite bipartite graphs, which was exactly the setup of [2].
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Moreover, if (E,C) is finite and bipartite, then there is a sequence of finite, bipartite separated
graphs (En, C

n) as defined in [2, Construction 4.4], such that Lab
K (E,C) ∼= lim−→n

LK(En, C
n)

and O(E,C) ∼= lim−→n
C∗(En, Cn) for appropriate connecting ∗-homomorphisms. We have

(E,C) = (E0, C
0), and every (En+1, C

n+1) is constructed in the same way from (En, C
n), so

all the graphs (En, C
n) give rise to the same tame algebras.

While only finite bipartite separated graphs were considered in [2], one can associate a par-
tial action θ(E,C) : F y Ω(E,C) to any finitely separated graph (E,C). Here F is the free
group generated by the edge set E1, and Ω(E,C) is a zero-dimensional, locally compact and
metrisable space (see Definition 2.6). We will verify in Theorem 2.10 that [2, Corollary 6.12]
generalises, i.e. that

Lab
K (E,C) ∼= CK(Ω(E,C)) o F and O(E,C) ∼= C0(Ω(E,C)) o F

for all finitely separated graphs (E,C), where CK(Ω(E,C)) is the ∗-algebra of locally constant,
compactly supported functions Ω(E,C)→ K. This allows for the definition of a reduced tame
C∗-algebra as defined in [3, Definition 6.8].

Definition 1.5. If (E,C) is a finitely separated graph, then the reduced tame C∗-algebra
associated with (E,C) is the reduced crossed product Or(E,C) := C0(Ω(E,C)) or F.

Definition 1.6. Let E denote a graph. A non-trivial path in E is a finite, non-empty
sequence of edges α = enen−1 · · · e2e1 satisfying r(ei) = s(ei+1) for all i = 1, . . . , n − 1. A
subpath of α is simply a subsequence emem−1 · · · ej+1ej, and the range and source of α is
defined by r(α) := r(en) and s(α) := s(e1). We will sometimes use the notation α : u → v
for a path with source u and range v, and we shall regard the vertices E0 as the set of trivial
paths with r(v) := v =: s(v).

The double Ê of E is the graph obtained from E by adding an edge e−1 going in the reverse
direction for any e ∈ E1. Namely, Ê is the graph with vertices Ê0 := E0 and edges

Ê1 := E1 t {e−1 | e ∈ E1},
where r and s are extended from E1 by r(e−1) := s(e) and s(e−1) := r(e). The map

E0 t E1 → E0 t Ê1 given by v 7→ v and e 7→ e−1

then extends canonically to an order-reversing, order two bijection of the paths of Ê, denoted
by α 7→ α−1.

Now if (E,C) is a separated graph, an admissible path α in (E,C) is a path in the double Ê,
such that

(1) any subpath e−1f with e, f ∈ E1 satisfies [e] 6= [f ],
(2) any subpath ef−1 with e, f ∈ E1 satisfies e 6= f ,

and the set of admissible paths of (E,C) is denoted P(E,C). If α is a non-trivial admissible
path, we shall use the notation id(α) and td(α) for the initial (i.e. rightmost) and terminal
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(i.e. leftmost) symbol of α, respectively; for instance

id(ef−1) = f−1 and td(ef−1) = e.

Letting π : Ê1 → E1 denote the projection given by π(e) := e =: π(e−1), we then set

i(α) := π(id(α)) as well as t(α) := π(td(α)).

If α is an admissible path and X, Y ∈ C, we shall say that X−1α, respectively, X−1αY is an
admissible composition if x−1α, respectively, x−1αy is admissible for some (hence any) x ∈ X
and y ∈ Y . We finally introduce a partial order ≤ on P(E,C) given by

β ≤ α⇔ β is an initial subpath of α.

In particular, whenever s(α) = s(β), there is a maximal initial subpath α ∧ β ≤ α, β. J
We shall use the exact same terminology as above when inverse edges e−1 are replaced by
adjoint edges e∗.

Notation 1.7. Given admissible paths α and β in (E,C), we will write βα for the concate-
nated product, which may or may not be an admissible path. However, one may also view α
and β as elements of the free group F on E1, in which a product can also be formed, allowing
for cancellation of edges and their inverses. To distinguish notationally between these two
products, we will always write β · α when the product is formed in F.

Remark 1.8. Note that in light of the defining relations of C∗(E,C), any non-zero product
α ∈ C∗(E,C) of elements from E1 t (E1)∗ can be written as

α = αnαn−1 · · ·α2α1,

where each αi is a non-trivial admissible path, and

(1) id(αi+1) ∈ E1 and td(αi) = id(αi+1)∗,
(2) |[id(αi+1)]| ≥ 2

for all i = 1, . . . , n− 1.

Definition 1.9. A non trivial admissible path α in a separated graph is called a closed path
if r(α) = s(α), and it is called a cycle if αα is an admissible path as well. In either case, we
shall say that α is based at r(α) = s(α). An admissible path α will be referred to as simple
if it does not meet the same vertex twice, i.e. if r(α1) = r(α2) for α1, α2 ≤ α implies α1 = α2,
while a cycle is called a simple cycle if the only vertex repetition occurs at the end, that is if
α1 < α2 ≤ α and r(α1) = r(α2) implies α1 = s(α) and α2 = α. Any closed path α is called
base-simple if s(α) is only repeated at the end. J
As for non-separated graphs, there is a notion of hereditary and saturated sets, giving rise to
ideals in our algebras.

Definition 1.10 ([6, Definition 6.3 and Definition 6.5]). Let (E,C) denote a finitely separated
graph. A set of vertices H ⊂ E0 is called hereditary if r(e) ∈ H implies s(e) ∈ H for all
e ∈ E1, and it is called C-saturated if for all v ∈ E0 and X ∈ Cv, s(X) ⊂ H implies v ∈ H.
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We will write H(E,C) for the lattice of hereditary and C-saturated sets. Finally, for any
such H ∈ H(E,C), we define a quotient graph (E/H,C/H) by

• E/H)0 := E0 \H and (E/H)1 := r−1(H),
• (C/H)v := {X/H | X ∈ Cv} where X/H := X ∩ r−1(H),

with the range and source restricted from E.

2. Dynamical systems associated with finitely separated graphs

In this section, we generalise Ara and Exel’s dynamical description of the tame algebras
Lab
K (E,C) and O(E,C) in [2] to finitely separated graphs, allowing us to define Or(E,C) for

such graphs. We also address the relationship between the partial actions θ(E,C) and θB(E,C)

associated to a finitely separated graph and its bipartite sibling, respectively. First, however,
we will recall the basics of partial actions.

Definition 2.1. A partial action θ : G y Ω of a discrete group G on a topological space Ω
is a family of homeomorphisms of open subspaces {θg : Ωg−1 → Ωg}g∈G, such that

• θg(Ωg−1 ∩ Ωh) ⊂ Ωgh for all g, h ∈ G,
• θg(θh(x)) = θgh(x) for all g, h ∈ G and x ∈ Ωh−1 ∩ Ωh−1g−1 ,

and we will always assume Ω to be locally compact Hausdorff. Completely similarly, one can
define the concept of a partial action on a (C)∗-algebra, demanding that the domains should
be (closed) ideals. Hence, θ as above translates into a partial C∗-action θ∗ : G y C0(Ω)
given by C0(Ω)g := C0(Ωg) and θ∗g(f) := f ◦ θ−1

g for all g ∈ G. As for global actions, one
can associated both a full and a reduced crossed product, and there is a canonical surjective
∗-homomorphism

C0(Ω) oG→ C0(Ω) or G,

called the regular representation. We will often write o(r) to indicate that a given statement
concerns both crossed products. If the space Ω is totally disconnected and K is any field with
involution, there is also a meaningful, purely algebraic partial action θ∗ : Gy CK(Ω) on the
∗-algebra CK(Ω) of compactly supported, locally constant functions, and this gives rise to a
single algebraic crossed product CK(Ω) oG. We refer the reader to [18] for a comprehensive
treatment of crossed products associated with partial actions.

Returning to the topological setting, a subspace U ⊂ Ω is called invariant if θg(x) ∈ U for all
g ∈ G and x ∈ U ∩Ωg−1 . Observe that whenever U is open and invariant, then Z := Ω \U is
closed and invariant, so θ naturally restricts to partial actions of both U and Z, giving rise
to sequences

0→ CK(U) oG→ CK(Ω) oG→ CK(Z) oG→ 0

and

0→ C0(U) o(r) G→ C0(Ω) o(r) G→ C0(Z) o(r) G→ 0.

On the level of full crossed products and in the purely algebraic context, this sequence is
always exact, but for reduced crossed products, one must also require the group to be exact
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[18, Theorem 22.9]; as we are really only interested in free groups, this is not a problem. The
orbit through any x ∈ Ω is the set

θG(x) := {θg(x) | g ∈ G such that x ∈ Ωg−1},
and the action is called minimal if every orbit is dense in Ω, or equivalently if the only open
invariant subspaces are the trivial ones. The action is called topologically free if for every
1 6= g ∈ G, the set of fixed points

Ωg := {x ∈ Ωg−1 | θg(x) = x} ⊂ Ω

has empty interior. Minimality is of course a necessary condition for simplicity of any of the
above crossed products, and if the action is topologically free, then it is also sufficient in both
the algebraic and reduced context (see [8, Remark 3.9], [12, Lemma 3.1 and Theorem 4.1]
and [18, Corollary 29.8]). A partial action is called essentially free if the restriction to every
closed invariant subset is topologically free. Essential freeness (together with exactness of the
group in the reduced setting) guarantees that all ideals of the algebraic and reduced crossed
product are induced from open invariant subspaces (see [16, Corollary 3.7] and [18, Theorem
29.9]).

Now if U ⊂ Ω is any open subspace (not necessarily invariant), we may still define a restricted
partial action θ|U : G y U with domains Ug := θg(U ∩ Ωg−1) ∩ U . Following [15] and [22],
such a restriction will be called full (or G-full) if Ω = {θg(x) | g ∈ G, x ∈ U ∩ Ωg−1}. J

We now recall a number of different types of equivalences between partial actions.

Definition 2.2. Suppose that θ : Gy Ω and θ′ : H y Ω′ are partial actions and Φ: G→ H
is a group homomorphism. A continuous map ϕ : Ω→ Ω′ is called Φ-equivariant if

• ϕ(Ωg) ⊂ Ω′Φ(g) for all g ∈ G,

• θ′Φ(g)(ϕ(x)) = ϕ(θg(x)) for all g ∈ G and x ∈ Ωg−1 .

If G = H and Φ = idG, then ϕ is simply called equivariant (or possibly G-equivariant). The
pair (ϕ,Φ) is called a conjugacy if ϕ is a homeomorphism, Φ is an isomorphism, and ϕ−1 is
Φ−1-equivariant. However, conjugacy is often too rigid a notion and we therefore consider
a few other types of equivalences: Following [8], the pair (ϕ,Φ) is called a direct dynamical
equivalence if

(a) ϕ is a homeomorphism,
(b) Ωg ∩ Ωg′ = ∅ for all g 6= g′ with Φ(g) = Φ(g′),
(c) Ω′h =

⋃
Φ(g)=h ϕ(Ωg) for all h ∈ H.

If, moreover, Φ is injective, the pair (ϕ,Φ) will be called a direct quasi-conjugacy. Dynamical
equivalence and quasi-conjugacy are then simply the equivalence relations on partial actions
generated by these two non-symmetric relations. It should be obvious that any dynamical
property is preserved by dynamical equivalence. In fact, by [8, Proposition 3.11 and Propo-
sition 3.13], dynamical equivalence is exactly the same as isomorphism of the transformation
groupoids Gθ and Gθ′ . Finally, borrowing from [22] and [15], θ and θ′ are called Kakutani
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equivalent if there exist full, clopen subspaces K ⊂ Ω and K ′ ⊂ Ω′ such that the restric-
tions θ|K and θ′|K′ are dynamically equivalent. As was noted just below [8, Definition 3.24],
Kakutani equivalence implies Morita equivalence of the associated crossed products. J
The following results about full subspaces and Kakutani equivalence will be useful later.

Lemma 2.3. Suppose that θ : Gy Ω is a partial action on a locally compact Hausdorff space,
and let U ⊂ Ω denote an open, full subspace. Then there is a bijective correspondence

{open θ-invariant subsets of Ω} → {open θ|U -invariant subsets of U} given by V 7→ U ∩ V.
Moreover, for any open and θ-invariant V ⊂ Ω, the following hold:

(1) U ∩ V is full in V .
(2) U ∩ (Ω \ V ) is full in Ω \ V .

Proof. Any intersection U ∩V clearly defines an open θ|U -invariant subset of U , so we simply
have to build an inverse. Suppose that W ⊂ U is open and θ|U -invariant, and define an open
and θ-invariant subset of Ω by

V :=
⋃

g∈G
θg(W ∩ Ωg−1).

Observe that if x ∈ W ∩ Ωg−1 , then either θg(x) /∈ U or θg(x) ∈ W , hence

U ∩ V =
⋃

g∈G
U ∩ θg(W ∩ Ωg−1) = W.

Now whenever y ∈ V , then by fullness of U , we have y = θh(x) for some h ∈ G and
x ∈ U ∩ Ωh−1 . From invariance, we see that x ∈ V , so y ∈ θh(U ∩ V ∩ Ωh−1). Consequently

⋃

g∈G
θg(U ∩ V ∩ Ωg−1) = V,

so the above map is indeed a bijective correspondence, and (1) holds. (2) then follows
immediately from (1) and fullness of U . �
Lemma 2.4. Topological freeness is preserved under Kakutani equivalence.

Proof. Obviously, topological freeness is preserved under direct dynamical equivalence, so
we simply have to show that a partial action θ is topologically free if and only if a G-full
restriction θ|K to a clopen subspace K ⊂ Ω is topologically free. Assume the latter and take
some x ∈ Ωg along with an open neighbourhood U ⊂ Ωg−1 of x. By fullness, there exists
some h ∈ G and y ∈ K ∩ Ωh−1 such that x = θh(y). We then define an open neighbourhood
of y in K by

V := θh−1(U ∩ θh(K ∩ Ωh−1))

and observe that y ∈ Kh−1gh. Now since θ|K is topologically free, we can find y′ ∈ V ∩Kh−1g−1h

such that θh−1gh(y
′) 6= y′. Setting x′ := θh(y

′) ∈ U , we then have

x′ = θh(y
′) 6= θh(θh−1gh(y

′)) = θgh(y
′) = θg(x

′)

as desired. The other implication is trivial. �
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Corollary 2.5. Essential freeness is preserved under Kakutani equivalence.

Proof. Once again, it suffices to verify the claim for a partial action θ : G y Ω and the
restriction θ|K to a clopen, full subset K ⊂ Ω. But then the claim follows immediately from
Lemma 2.3 and Lemma 2.4. �

We now describe the partial action giving rise to a crossed product description of O(E,C).

Definition 2.6. Suppose that (E,C) is a finitely separated graph, and let F denote the free
group on E1. Also, denote by E0

iso the set of isolated vertices with the discrete topology.
Given ξ ⊂ F and α ∈ ξ, the local configuration ξα of ξ at α is the set

ξα := {σ ∈ E1 t (E1)−1 | σ ∈ ξ · α−1}.

Then Ω(E,C) is the disjoint union of E0
iso and the set of ξ ⊂ F satisfying the following:

(a) 1 ∈ ξ.
(b) ξ is right-convex. In view of (a), this exactly means that if eεnn · · · eε11 ∈ ξ for ei ∈ E1

and εi ∈ {±1}, then eεmm · · · eε11 ∈ ξ as well for any 1 ≤ m < n.
(c) For every α ∈ ξ, there is some v ∈ E0 and distinguished eX ∈ X for each X ∈ Cv,

such that

ξα = s−1(v) t {e−1
X | X ∈ Cv}.

Ω(E,C) is made into a topological space by regarding it as a subspace of {0, 1}FtE0
iso. Thus

it becomes a zero-dimensional, locally compact Hausdorff space, which is compact if and only
if E0 is a finite set. A topological partial action θ = θ(E,C) : F y Ω(E,C) with compact-open
domains is then defined by setting

• Ω(E,C)α := {ξ ∈ Ω(E,C) \ E0
iso | α−1 ∈ ξ} for α 6= 1,

• θα(ξ) := ξ · α−1 for ξ ∈ Ω(E,C)α−1 .

In case (E,C) is a finite bipartite graph, this partial action is conjugate to the one defined in
[2] under the map ξ 7→ ξ−1. We choose to invert the configurations so that the terminologies
related to the algebras and the dynamical systems agree. We set Ω(E,C)s(e) := Ω(E,C)e−1 for
every e ∈ E1 and Ω(E,C)u :=

⊔
e∈X Ω(E,C)e for every X ∈ Cu. Note that this is well-defined

due to the above condition (c). If u is an isolated vertex, we simply set Ω(E,C)u := {u}.
Finally, in the case of a trivial separation, we will write Ω(E) := Ω(E, T ) and θE := θ(E,T ).

Remark 2.7. The partial action θE is easily seen to be conjugate to the canonical par-
tial action of F on the boundary path space ∂E (see [14] and adjust the definition to the
Raeburn-convention). However, there are also graphs with non-trivial separations that give
rise to boundary path space actions. Indeed, Proposition 3.11 and Proposition 3.20 together
identifies a class of such graphs, where the identification is made by an actual conjugacy.
Relaxing conjugacy to dynamical equivalence and considering only finite bipartite graphs, we
further strengthen this result with Theorem 5.7.
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Remark 2.8. If (F,D) is a complete subgraph of (E,C), then there is a natural F(F 1)-
equivariant surjection p :

⊔
v∈F 0 Ω(E,C)v → Ω(F,D) given by

p(ξ) =

{
ξ ∩ F(F 1) if ξ ∈ Ω(E,C)v for v /∈ F 0

iso

v if ξ ∈ Ω(E,C)v for v ∈ F 0
iso

.

Consequently, it induces F(F 1)-equivariant embeddings

CK(Ω(F,D))
p∗−→ CK

( ⊔

v∈F 0

Ω(E,C)v
)
↪→ CK(Ω(E,C))

and

C0(Ω(F,D))
p∗−→ C0

( ⊔

v∈F 0

Ω(E,C)v
)
↪→ C0(Ω(E,C))

from which we obtain ∗-homomorphisms

CK(Ω(F,D)) o F(F 1)→ CK(Ω(E,C)) o F(F 1)→ CK(Ω(E,C)) o F(E1)

and

C0(Ω(F,D)) o(r) F(F 1)→ C0(Ω(E,C)) o(r) F(F 1)→ C0(Ω(E,C)) o(r) F(E1).

Finally, observe that taking the limits over the finite complete subgraphs with inclusions, we
have

CK(Ω(E,C)) ∼= lim−→
(F,D)

CK(Ω(F,D)) and C0(Ω(E,C)) ∼= lim−→
(F,D)

C(Ω(F,D))

for any finitely separated graph (E,C), and if E0
iso = ∅, we have the same approximations

when considering only finite complete subgraphs (F,D) with F 0
iso = ∅. J

We introduce a bit of terminology related to the closed subspaces of Ω(E,C), while the
definition of Ω(E,C) is still fresh in mind.

Definition 2.9. An (E,C)-animal is a right-convex subset ω ⊂ ξ of a configuration ξ ∈
Ω(E,C) \ E0

iso such that {1} ( ω. It is called finite if it has finite cardinality, and for any
animal ω, we can define a compact subset of Ω(E,C) by

Ω(E,C)ω := {ξ ∈ Ω(E,C) | ω ⊂ ξ},
which is open if ω is finite. Given any non-empty subset {1} 6= S ⊂ F such that α · β−1

is an admissible path for any pair of distinct α, β ∈ S ∪ {1}, observe that the right-convex
closure 〈S〉 := conv(S ∪ {1}) of S ∪ {1} inside F defines an (E,C)-animal. In order to
avoid confusion, the reader should also note that we have the slightly annoying identity
Ω(E,C)α = Ω(E,C){α−1}.

The balls are a particularly important type of animals: An n-ball is simply a set of the form
ξn := {α ∈ ξ : |α| ≤ n} together with the radius n (we sometimes want to distinguish balls
with the same underlying set and different radii). If (E,C) is finite, then any finite animal
is contained in a ball, and the compact-open subsets Ω(E,C)B corresponding to the balls B
form a basis for the topology. We will denote the set of n-balls by Bn(Ω(E,C)). J
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We now prove that θ(E,C) does in fact provide a dynamical description of Lab
K (E,C) and

O(E,C). While the original proof from [2] proceeds in a constructive manner, applying the
machinery of [19] to translate the defining relations into restrictions on the local configurations
ξα for ξ ∈ P(F) with 1 ∈ ξ, we will aim for a more direct and conceptually easier, but also
somewhat unmotivated proof.

Theorem 2.10. For any finitely separated graph (E,C), there are canonical isomorphisms

Lab
K (E,C) ∼= CK(Ω(E,C)) o F and O(E,C) ∼= C0(Ω(E,C)) o F.

Proof. We may assume without loss of generality that E0
iso = ∅. Denote by 1α and 1v the

indicator function on Ω(E,C)α = {ξ ∈ Ω(E,C) | α−1 ∈ ξ} (remember the slightly confusing
inversion) and Ω(E,C)v, respectively, and write uα := 1αδα for all α ∈ F. We then consider
the elements ue and pv := 1v in CK(Ω(E,C)) o F for e ∈ E1 and v ∈ E0, claiming that
they form a tame (E,C)-family. (V) and (E) are both clear, while (SCK1) follows from the
calculation

u∗euf = ue−1uf = θ∗e−1(1e1f )ue−1f = δe,f1e−1 = δe,fps(e)
whenever [e] = [f ]. Noting that ueu

∗
e = ueue−1 = 1e for e ∈ E1, we also see that
∑

e∈X
ueu

∗
e =

∑

e∈X
1e = pv

for any v ∈ E0 and X ∈ Cv, so that (SCK2) is satisfied. Now let α denote any reduced
product of edges and inverse edges α = αn · · ·α1. We then introduce the notation e := e,
e−1 := e∗ and α := αn · · ·α1, and claim that

uα := uαn · · ·uα1 = uα.

Assuming the claim holds for products of length n − 1 and writing β = αn−1 · · ·α1, we see
that

uα = uαnuβ = 1αn1αuα = uα,

where we used right-convexity to conclude that 1αn1α = 1α. It follows that

uαu
∗
α = uαu

∗
α = 1α,

so in particular the set {ue | e ∈ E1} is tame. From universality, we therefore obtain a
∗-homomorphism ϕ : Lab

K (E,C)→ CK(Ω(E,C)) o F given by e 7→ ue and v 7→ pv.

We now begin the construction of an inverse by first building a ∗-homomorphism

ρ : CK(Ω(E,C))→ Lab
K (E,C).

To this end, let (F,D) denote any finite complete subgraph with F 0
iso = ∅, let n ≥ 1 and write

1B :=
∏

α∈B
1α−1 ∈ CK(Ω(F,D))

for any B ∈ Bn(Ω(F,D)); 1B is merely the indicator function on the subspace Ω(F,D)B. We
then define finite-dimensional subalgebras

B(F,D)
n := span{1B | B ∈ Bn(Ω(F,D))} ⊂ CK(Ω(F,D))
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along with inclusions φ
(F,D)
n : B

(F,D)
n → B

(F,D)
n+1 given by

φ(F,D)
n (1B) =

∑

B⊂B′∈Bn+1(Ω(F,D))

1B′ ,

and observe that CK(Ω(F,D)) = lim−→n
B

(F,D)
n . Now if (F,D) ⊂ (G,L), then the inclusion of

Remark 2.8 restricts to an inclusion B
(F,D)
n ↪→ B

(G,L)
n , which makes the diagram

B
(F,D)
n B

(F,D)
n+1

B
(G,L)
n B

(G,L)
n+1

φ
(F,D)
n

φ
(G,L)
n

commute. In conclusion, defining a ∗-homomorphism out of CK(Ω(E,C)) is the same as

defining a family of ∗-homomorphisms out of the algebras B
(F,D)
n that respects both the

horizontal and vertical maps above. Now consider the self-adjoint linear map

ρ(F,D)
n : B(F,D)

n → Lab
K (E,C) given by ρ(F,D)

n (1B) =
∏

α∈B
α∗α,

which is well-defined since E1 ⊂ Lab
K (E,C) is tame (see for instance [18, Proposition 12.8]).

Checking that ρ
(F,D)
n is also multiplicative exactly amounts to showing

ρ(F,D)
n (1B1)ρ

(F,D)
n (1B2) = 0

for all B1 6= B2. Since

ρ(F,D)
n (1B) ≤ ρ(F,D)

m

(
1Bm

)
,

where Bm := {α ∈ B : |α| ≤ m}, for all m ≤ n, we may assume that Bn−1
1 = Bn−1

2 .
Consequently there is some β ∈ B1, B2 of length |β| = n − 1 and X ∈ Cr(β) with distinct
x1, x2 ∈ X such that α1 := x−1

1 β ∈ B1 and α2 := x−1
2 β ∈ B2. We see that

α1
∗α1α2

∗α2 = x1β
∗βx∗1x2β

∗βx2 = 0,

so ρ
(F,D)
n (1B1)ρ

(F,D)
n (1B2) = 0 as well. In order to see that these ∗-homomorphisms respect both

the vertical and horizontal inclusions above, simply note that both follow from an inductive
application of the following observations. Given any finite (E,C)-animal ω, the following
hold:

(1) If 1 6= β ∈ ω and ωβ ∩X−1 = ∅ for some X ∈ Cr(β), then
∏

α∈ω
α∗α =

∑

x∈X

∏

α∈ω∪{x−1β}
α∗α.
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(2) If 1 6= β ∈ ω and e /∈ ωβ for some e ∈ s−1(r(β)), then
∏

α∈ω
α∗α =

∏

α∈ω∪{eβ}
α∗α.

We thereby obtain a unique ∗-homomorphism ρ : CK(Ω(E,C))→ Lab
K (E,C) characterised by

ρ(1α) = αα∗ for any α ∈ F. Now observe that

ϕ ◦ ρ(1α) = ϕ(αα∗) = uαu
∗
α = 1α

for any α, so the composition ϕ◦ρ is nothing but the inclusion CK(Ω(E,C)) ↪→ CK(Ω(E,C))o
F. Since E1 is tame in Lab

K (E,C), by the implication (iii)⇒(i) of [18, Proposition 12.13] which
holds in an arbitrary unital ∗-algebra, there is a semi-saturated partial representation σ of F
on the unitalisation of Lab

K (E,C) given by σ(α) := α for all α 6= 1, so that ρ(1α) = p(α) :=
σ(α)σ(α)∗. We claim that the pair (ρ, σ) is a covariant representation. It suffices to check
that

σ(α)ρ(1α−11β)σ(α)∗ = ρ(θ∗α(1α−11β))

for all α, β ∈ F, and from [18, Proposition 9.8(iii)], we have p(β)σ(α)∗ = σ(α)∗p(αβ). We
now see that

σ(α)ρ(1α−11β)σ(α)∗ = σ(α)p(α−1)p(β)σ(α)∗ = σ(α)p(β)σ(α)∗ = σ(α)σ(α)∗p(α · β)

= p(α)p(α · β) = ρ(1α1α·β) = ρ(θα(1α−11β))

as desired, so there is an induced ∗-homomorphism ρ × σ : CK(Ω(E,C)) o F → Lab
K (E,C).

Since

(ρ× σ) ◦ ϕ(e) = ρ× σ(1eδe) = ee∗e = e

for all e ∈ E1, we have (ρ× σ) ◦ ϕ = id. Moreover, the fact that ϕ ◦ ρ is simply the inclusion
CK(Ω(E,C)) ↪→ CK(Ω(E,C)) o F together with the observation

ϕ ◦ (ρ× σ)(uα) = ϕ(αα∗α) = ϕ(α) = uα = uα

for all α ∈ F implies that ϕ◦(ρ×σ) = id as well. It follows that Lab
K (E,C) ∼= CK(Ω(E,C))oF

as desired, and the C∗-case is completely similar. �

We now see that the ∗-homomorphisms coming from inclusions of complete subgraphs are
simply those of Remark 2.8.

Lemma 2.11. Let (E,C) denote a finitely separated graph, and consider an embedding of a

complete subgraph (F,D)
ι
↪→ (E,C). Then the ∗-homomorphisms

Lab
K (ι) : Lab

K (F,D)→ Lab
K (E,C) and O(ι) : O(F,D)→ O(E,C)

are exactly the ones of Remark 2.8. Consequently, there is a unique ∗-homomorphism

Or(ι) : Or(F,D)→ Or(E,C)

making the diagram
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O(F,D) O(E,C)

Or(F,D) Or(E,C)

O(ι)

Or(ι)

commute.

Proof. Simply observe that Lab
K (ι) and O(ι) agree with the homomorphisms of Remark 2.8

on the generators. �
We can also characterise θ(E,C) by a very useful universal property, corresponding to the
universal property of O(E,C). Recall that whenever {θa | a ∈ A} is a family of homeomor-
phisms of open subspaces of a space Ω, there is a canonical partial action of F(A) on Ω: If
α = aεnn · · · aε11 is a reduced word, then θα := θεnan · · · θε1a1 , where · denotes the maximal com-
position of two functions. It is verified in [18, Proposition 4.7] that this does indeed define a
partial action.

Definition 2.12. Suppose that Ω is a locally compact Hausdorff space and (E,C) is a finitely
separated graph. An (E,C)-action on Ω is the canonical action of F = F(E1) induced by a
family {θe : Ωe−1 → Ωe | e ∈ E1} of partial homeomorphisms of compact open subspaces with
the following properties:

(1) There is a decomposition Ω =
⊔
v∈E0 Ωv for compact open subspaces Ωv ⊂ Ω.

(2) If e ∈ E1, then Ωs(e) = Ωe−1 .
(3) If v ∈ E0 and X ∈ Cv, then Ωv =

⊔
e∈X Ωe.

An (E,C)-action θ : F y Ω is called universal if, given any other (E,C)-action θ′ : F y Ω′,
there exists a unique F-equivariant continuous map f : Ω′ → Ω such that f(Ω′v) ⊂ f(Ωv) for
any isolated vertex v (this will automatically hold for any other vertex due to equivariance).
Observe that a universal (E,C)-action is unique up to canonical conjugacy. Finally, if C = T ,
we will simply suppress the separation, referring instead to an E-action. J
The following can be obtained from Theorem 2.10 by applying duality, but we choose to a
give a concrete proof for clarity.

Proposition 2.13. The partial action θ(E,C) is the universal (E,C)-action for any finitely
separated graph (E,C). If θ : F y Ω is any other (E,C)-action, then the unique equivariant
map f : Ω→ Ω(E,C) satisfying p(Ωv) ⊂ Ω(E,C)v for v ∈ E0

iso is given by

p(x) =

{
Fx := {α ∈ F | x ∈ Ωα−1} if x ∈ ⊔v∈E0\E0

iso
Ωv

v if x ∈ Ωv for v ∈ E0
iso

.

Proof. It is clear that θ(E,C) is itself an (E,C)-action, and that the restriction of p to
⊔
v∈E0

iso
Ωv

is the unique map satisfying p(Ωv) ⊂ Ω(E,C)v. Considering any x ∈ ⊔v∈E0\E0
iso

Ωv, it is also
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clear that Fx is a right-convex set containing 1. We have x ∈ Ωv for a unique v ∈ E0, so
x ∈ Ωe−1 if and only if e ∈ s−1(v), and x ∈ ΩeX for a unique eX ∈ X for all X ∈ Cv. Hence
the local configuration of Fx at 1 is given by

s−1(v) t {e−1
X | X ∈ Cv}

as in Definition 2.6(c). Now if α ∈ Fx, then we may apply this observation to θα(x) to see that

Fxα = Fθα(x)
1 is of the same type, thus Fx ∈ Ω(E,C). Equivariance and continuity of x 7→ Fx is

obvious, and if ϕ : Ω→ Ω(E,C) is any equivariant map, then necessarily ϕ(x) = Fϕ(x) ⊃ Fx.
Now since Fx,Fϕ(x) ∈ Ω(E,C), we must have Fϕ(x) = Fx, and so ϕ(x) = Fx = p(x). �
Remark 2.14. Note that if (F,D) is a complete subgraph of (E,C), and θ is the restric-
tion of θ(E,C) to

⊔
v∈F 0 Ω(E,C)v, then the map p from Remark 2.8 is exactly the map p of

Proposition 2.13. J
Now that we have a dynamical system associated to every finitely separated graph, we will
shortly consider the relationship between the dynamics of (E,C) and its bipartite sibling
B(E,C) as defined in [3, Definition 7.4]. First though, we have to introduce a bit of termi-
nology.

Definition 2.15. For any topological Ω, we will write
−→
Ω = Ω1 t Ω0, where each

Ωi = {ξi | ξ ∈ Ω}
is simply a copy of Ω. Given a partial homeomorphism ϕ of Ω, we define a partial homeo-
morphism −→ϕ : dom(ϕ)1 → im(ϕ)0 by −→ϕ (ξ1) = ϕ(ξ)0. Now if θ : F(A) y Ω is a partial action
induced from a family of partial homeomorphisms {θa}a∈A, we define the double action of θ

to be the partial action
−→
θ : F(A) ∗ Z y

−→
Ω induced by the family {−→θa}a∈A and σ :=

−→
idΩ.

Proposition 2.16. Consider a partial action θ as in Definition 2.15. For any i = 0, 1, there

is a direct quasi-conjugacy θ → −→θ |Ωi and a direct dynamical equivalence
−→
θ |Ωi → θ.

Proof. We only consider the case i = 1; the other one is completely analogous. Denote the
generator of Z by s so that F(A) ∗Z = F(A∪{s}), and consider the injective homomorphism

Φ: F(A)→ F(A∪{s}) given by Φ(a) = s−1a for all a ∈ A as well as the embedding ϕ : Ω→ −→Ω
onto Ω1. Then (−→

θ
)

Φ(a)
=
(−→
θ
)
s−1a

= σ−1 ◦ −→θa = ϕ ◦ θa
for all a ∈ A, so (ϕ,Φ) is a conjugacy of θ and the restricted partial action im(Φ) y Ω1. It
simply remains to check that Ω1

β = ∅ for all β ∈ F(A∪ {s}) \ im(Φ). Observe that such β, as
a reduced word, must contain a subword either of one of the forms sa, as, aa′ for a, a′ ∈ A
or an inverse of one of these. In every case, we see that Ω1

β = ∅, as desired. Since Φ−1 can
be extended to a group homomorphism Ψ: F(A ∪ {s}) → F(A), namely Ψ(a) = a for a ∈ A
and Ψ(s) = 1, we see that (ϕ−1,Ψ) defines a direct dynamical equivalence

−→
θ |Ω1 → θ. �

We now relate the partial actions of (E,C) and B(E,C).
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Proposition 2.17. Let (E,C) denote a finitely separated graph and write (Ẽ, C̃) := B(E,C)

as well as θ := θ(E,C). Then there is a direct dynamical equivalence θ(Ẽ,C̃) → −→θ . In particular,

θ(Ẽ,C̃) and θ are Kakutani equivalent.

Proof. Recall that (Ẽ, C̃) is the finitely separated bipartite graph given by

• Ẽ0,i := {vi | v ∈ E0} for i = 0, 1,
• Ẽ1 := {ẽ | e ∈ E1} ∪ {hv | v ∈ E0},
• r̃(ẽ) := r(e)0 and s̃(ẽ) := s(e)1 for all e ∈ E1,
• r̃(hv) := v0 and s̃(hv) := v1 for all v ∈ E0,
• C̃v0 := {{hv}, X̃ | X ∈ Cv} where X̃ := {ẽ | e ∈ X} for all v ∈ E0.

As above, we denote the generator of the factor Z by s, and we will write Ω := Ω(E,C). We

first define an (Ẽ, C̃)-action γ on
−→
Ω by

•
(−→

Ω
)
vi

:= Ωi
v for all v ∈ E0 and i = 0, 1,

•
(−→

Ω
)
ẽ−1 := Ω1

e−1 ,
(−→

Ω
)
ẽ

:= Ω0
e and γẽ :=

−→
θe for all e ∈ E1,

•
(−→

Ω
)
h−1
v

:= Ω1
v,
(−→

Ω
)
hv

:= Ω0
v and γhv :=

−−→
idΩv = σ|Ω1

v
for all v ∈ E0.

Observe that there is a direct dynamical equivalence (id,Φ): γ → −→θ , where Φ(e) = e and

Φ(hv) = s for all e ∈ E1 and v ∈ E0. Now, by the universal property of θ(Ẽ,C̃), there is a

unique F(Ẽ1)-equivariant continuous map ϕ :
−→
Ω → Ω(Ẽ, C̃), and we claim that this is in fact a

conjugacy. To see this, we first define injective group homomorphisms Ψ1,Ψ0 : F(E1)→ F(Ẽ1)
by

Ψ1(e) = h−1
r(e)ẽ and Ψ0(e) = ẽh−1

s(e),

and observe (just as in Proposition 2.16) that the identification Ω ∼= Ωi together with Ψi

defines a direct quasi-conjugacy θ → γ|Ωi . Next, define an (E,C)-action γi on

Ωi(Ẽ, C̃) :=
⊔

v∈E0

Ω(Ẽ, C̃)vi

for i = 0, 1 by

• Ωi(Ẽ, C̃)v := Ω(Ẽ, C̃)vi for all v ∈ E0,

• Ωi(Ẽ, C̃)e±1 := Ω(Ẽ, C̃)Ψi(e±1) and γie := θ
(Ẽ,C̃)

Ψi(e)
for all e ∈ E1.

From the universal property of (E,C) and the observations just above, there is a unique
F(E1)-equivariant continuous map ψi : Ωi(Ẽ, C̃) → Ωi, and ψi ◦ ϕ|Ωi = idΩi by uniqueness.
Setting ψ := ψ1 t ψ0 : Ω(Ẽ, C̃) → Ω so that ψ ◦ ϕ = id−→

Ω
, we claim that ψ is in fact F(Ẽ1)-

equivariant. By construction, it is equivariant under both im(Ψ1) and im(Ψ0), so we simply
have to check that it is also equivariant under the action of every hv, i.e. that the diagram

100



EXCHANGE RINGS AND REAL RANK ZERO C∗-ALGEBRAS 17

Ω1(Ẽ, C̃) Ω0(Ẽ, C̃)

Ω1 Ω0

⊔
v∈E0 θ

(Ẽ,C̃)
hv

σ

ψ1 ψ0

commutes. Note that all four entries carry partial actions of F(E1), and that the maps
are all equivariant with respect to these actions. Since the action of F(E1) on Ω0 is the
universal (E,C)-action, uniqueness of F(E1)-equivariant maps Ω1(Ẽ, C̃) → Ω0 guarantees
that the diagram actually commutes. We conclude that ϕ ◦ ψ is F(Ẽ1)-equivariant, hence
ϕ ◦ ψ = idΩ(Ẽ,C̃) as desired. �
We finally observe that hereditary and C-saturated subsets, just as for finite bipartite sepa-
rated graphs, give rise to ideals in the tame algebras. When ξ ∈ Ω(E,C)v is a configuration,
we regard 1 ∈ ξ as the trivial path v and so r(1) := v by convention.

Definition 2.18. Given a hereditary and C-saturated subset H ⊂ E0, we define

Ω(E,C)H := {ξ ∈ Ω(E,C) | r(α) ∈ H for some α ∈ ξ}.
Theorem 2.19. Let (E,C) denote a finitely separated graph, and consider a hereditary and
C-saturated set of vertices H ⊂ E0. Then Ω(E,C)H is an open and invariant subspace, and
there is a direct quasi-conjugacy θ(E/H,C/H) → θ(E,C)|Z where Z := Ω(E,C) \Ω(E,C)H . Let-
ting I(H) denote the induced ideal in the various algebras, which is exactly the ideal generated
by H, we therefore have isomorphisms

Lab
K (E,C)/I(H) ∼= Lab

K (E/H,C/H) and O(r)(E,C)/I(H) ∼= O(r)(E/H,C/H).

Proof. Simply observe that the proof of [8, Theorem 5.5] (or rather the second part of it)
generalises with minimal effort. �

3. Degeneracy of LK(E,C) and C∗(E,C)

In this section, we give a sufficient condition for LK(E,C) and C∗(E,C) to be isomorphic to
a graph algebra of a non-separated graph; we regard this as a degenerating situation since
these algebras are well studied. This isomorphism is always implemented by reversing certain
edges of the separated graph, a technique also used by Duncan in [17]. The concepts and
theorems of this section will be used heavily in subsequent sections on simplicity and the
exchange property.

First we will need to introduce the following essential definitions.

Definition 3.1 ([8, Definition 9.5]). Let (E,C) denote a finitely separated graph. An ad-
missible path α is called a choice path if there is an admissible composition X−1α for some
X ∈ C with |X| ≥ 2.
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Definition 3.2. Let (E,C) denote a finitely separated graph. We shall say that e ∈ E1

admits a choice if there is a choice path α satisfying id(α) = e, while an inverse edge e−1

admits a choice if |[e]| ≥ 2, or if there is a choice path α with id(α) = e−1. A set X ∈ C then
admits a choice if e−1 admits a choice for some e ∈ X, and finally a vertex v ∈ E0 is said to
admit exactly

|{e ∈ s−1(v) | e admits a choice}|+ |{X ∈ Cv | X admits a choice}|
choices. J
The important distinction – as we will see – is between those vertices that admit no, those
that admit exactly one, and those that admit at least two choices. The following easy lemma
guarantees that the equivalence relation of being on the same cycle respects this distinction.

Lemma 3.3. Let (E,C) denote a finitely separated graph. If u and v are on the same cycle,
then

(1) u admits no choices if and only v admits no choices,
(2) u admits exactly one choice if and only v admits exactly one choice,
(3) u admits at least two choices if and only if v admits at least two choices.

Proof. Say that βα is a cycle with s(α) = u and r(α) = v. Observe that if σ ∈ r−1(u)−1 ∪
s−1(u) admits a choice at u, then so does either id(β) or td(α)−1, as either σβ or σα−1 is
admissible. Now assume that σ, τ ∈ r−1(u)−1 ∪ s−1(u) give rise to two different choices at u.
If σβ is not admissible, then both τβ and σα−1 must be admissible, hence v admits at least
two choices as well. Likewise we may assume, without loss of generality, that τβ is admissible,
thereby verifying (3). (2) now follows automatically. �
Definition 3.4. If α is a cycle passing through v, then we will say that α admits

(1) no choices, if v admits no choices,
(2) exactly one choice, if v admits exactly one choice,
(3) at least two choices, if v admits at least two choices.

By Lemma 3.3, this is independent of the choice of v on α.

Definition 3.5. Let (E,C) denote a finitely separated graph. We will say that (E,C) satisfies
Condition (C) if every v ∈ E0 admits at most one choice. J
Recall that a non-separated graph E is said to satisfy Condition (L) if for every cycle α =
en · · · e1, there is some 1 ≤ k ≤ n and f 6= ek with r(ek) = r(f). The edge f is usually
referred to as an entry of α. It is well known that C∗(E) is simple if and only if E satisfies
Condition (L) and has only trivial hereditary and saturated subsets. Ara and Exel defined
Condition (L) for finite bipartite separated graphs in [2], and as it will play an important
role in the next few sections, we now redefine it in the language of this paper for arbitrary
finitely separated graphs.

Definition 3.6 ([2, Definition 10.2]). A finitely separated graph (E,C) is said to satisfy
Condition (L) if any simple cycle admits a choice.
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Theorem 3.7 ([2, Theorem 10.5]). Let (E,C) denote a finitely separated graph. Then θ(E,C)

is topologically free if and only if (E,C) satisfies Condition (L).

Proof. The strategy from [2, Theorem 10.5] easily generalises to arbitrary finitely separated
graphs. �

Definition 3.8. A non-separated orientation of a finitely separated graph (E,C) is a decom-
position E1 = E1

− t E1
+ such that [e] = {e} for every e ∈ E1

+ and one of the following holds
for any v ∈ E0:

(1) E1
− ∩ r−1(v) ∈ Cv and E1

+ ∩ s−1(v) = ∅.
(2) E1

− ∩ r−1(v) = ∅ and |E1
+ ∩ s−1(v)| ≤ 1.

This is a special case of an orientation, which is defined in [23, Definition 3.11]. We shall
often regard the partition E = E1

− t E1
+ as a map o : E1 → {−1, 1} with

o(e) :=

{
1 if e ∈ E1

+

−1 if e ∈ E1
−

.

An admissible path of the form

eo(en)
n e

o(en−1)
n−1 · · · eo(e2)

2 e
o(e1)
1

will then be called positively oriented, while a path of the form

e−o(en)
n e

−o(en−1)
n−1 · · · e−o(e2)

2 e
−o(e1)
1

will be called negatively oriented. By [23, Lemma 3.12], every admissible path α decomposes
as α = α−α+, where α+ and α− are positively and negatively oriented, respectively. J

The point of a non-separated orientation is that it allows us to turn a separated graph into
a non-separated one.

Definition 3.9. Assume that (E,C) is a finitely separated graph. If (E,C) admits a non-
separated orientation E1 = E1

− t E1
+, then we can define a corresponding column-finite

directed graph E = (E
0
, E

1
, r, s) by E

0
= {v | v ∈ E0}, E1

= {e | e ∈ E1},

r(e) =

{
r(e) if e ∈ E1

−
s(e) if e ∈ E1

+
and s(e) =

{
s(e) if e ∈ E1

−
r(e) if e ∈ E1

+
.

J
Before considering the relationship between the dynamics and algebras of (E,C) and E, we
first record a graph-theoretical lemma for later use.

Lemma 3.10. Assume that o is a non-separated orientation of (E,C), and let E denote the
resulting non-separated graph. The map

en en−1 · · · e2 e1 7→ e−o(en)
n e

−o(en−1)
n−1 · · · e−o(e2)

2 e
−o(e1)
1

is a bijection between the paths of E and the negatively oriented paths of (E,C).
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Proof. First observe that r(e) = r(e−o(e)) and s(e) = s(e−o(e)) for all e ∈ E1, so the above

correspondence takes inverse paths of E to paths in the double Ê, and vice versa. We simply
have to check that the paths in the double are also admissible, i.e. that if ei ∈ E1

− and
ei+1 ∈ E1

+, then [ei] 6= [ei+1]. But this is clear since either X ⊂ E1
− or X ⊂ E1

+ for all
X ∈ C. �

Proposition 3.11. Assume that (E,C) is a finitely separated graph with a non-separated
orientation, and let E denote the resulting non-separated graph. Then θ(E,C) is conjugate to
θE : F y Ω(E),

LK(E,C) = Lab
K (E,C) ∼= L(E) and C∗(E,C) = O(E,C) ∼= C∗(E).

Moreover, a subset H ⊂ E0 is hereditary and C-saturated if and only if H = {v | v ∈ H} is
hereditary and saturated in E.

Proof. First, observe that we can define an (E,C)-action γ on Ω(E) by

• Ω(E)v := Ω(E)v for v ∈ E0,

• Ω(E)e±1 := Ω(E)e∓1 and γe := θE
e−1 for e ∈ E1

+,

• Ω(E)e±1 := Ω(E)e±1 and γe := θEe for e ∈ E1
−,

as well as an E-action σ on Ω(E,C) by

• Ω(E,C)v := Ω(E,C)v for v ∈ E0,

• Ω(E,C)e±1 := Ω(E,C)e∓1 and σe := θ
(E,C)

e−1 for e ∈ E1
+,

• Ω(E,C)e±1 := Ω(E,C)e±1 and σe := θ
(E,C)
e for e ∈ E1

−.

We then obtain equivariant maps Ω(E)→ Ω(E,C) and Ω(E,C)→ Ω(E) from the universal
properties, and by uniqueness, these must be mutual inverses. Consequently,

O(E,C) ∼= C0(Ω(E,C)) o F ∼= C0(Ω(E)) o F ∼= C∗(E).

Likewise, one can check that pv = v for v ∈ E0 and

te =

{
e if e ∈ E1

−
e∗ if e ∈ E1

+

for e ∈ E1 defines an E-family inside C∗(E,C), so that the isomorphism C∗(E) → O(E,C)
factors through C∗(E,C) as a surjection. It follows that C∗(E) ∼= C∗(E,C) as well. The
same argument applies to the Leavitt path algebras.

For the last part of the proposition, suppose that H ⊂ E0 is hereditary and C-saturated with
respect to (E,C). In order to check that H is hereditary in E, we assume that r(e) ∈ H.

If e ∈ E1
−, then r(e) = r(e) ∈ H and so r(e) ∈ H. It follows that s(e) = s(e) ∈ H, so

let us instead assume that e ∈ E1
+. Then s(e) = r(e) ∈ H, so s(e) ∈ H. C-saturation

and [e] = {e} imply r(e) ∈ H, hence s(e) = r(e) ∈ H as well. To see that H is saturated,
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suppose that s(r−1(v)) ⊂ H for some v ∈ E0 with r−1(v) 6= ∅. First assume that v satisfies
Definition 3.8(1). Then r−1(v) = {e | e ∈ E1

− ∩ r−1(v)} and

s(r−1(v)) = {s(e) | e ∈ E1
− ∩ r−1(v)} ⊂ H,

so s(E1
− ∩ r−1(v)) ⊂ H. C-saturation now implies v ∈ H as well. Assuming instead that v

satisfies (2) of Definition 3.8, we must have E1
+ ∩ s−1(v) = {e} and r−1(v) = {e} for some e,

hence s(r−1(v)) = {r(e)} ⊂ H, i.e. r(e) ∈ H. We deduce that v = s(e) ∈ H from H being
hereditary, so v ∈ H as desired. The other implication can easily be proven by analogous
arguments, and we therefore leave it to the reader. �
While the concept of a non-separated orientation is quite handy for technical purposes, it is
certainly not a very natural one. Instead we shall give a sufficient graph-theoretic condition
for the existence of such an orientation below in Proposition 3.20. First though, we need a
number of minor technical results to introduce and apply the notion of a simple closed path.

Lemma 3.12. If α is a closed path based at a vertex v, which admits no choices, then neither
does any vertex on α.

Proof. This is obvious. �
Lemma 3.13. Assume that v admits no choices and that α, β are admissible paths with
r(α) = s(β) = v. Then the reduced product β · α is an admissible path.

Proof. Set γ := α−1 ∧ β and write α = γ−1α′, β = β′γ. We then need to verify that the
reduced product β · α = β′α′ is admissible. By construction, we must have r(α′) = s(β′) and
td(α′)−1 6= id(β′), so assuming that td(α′) ∈ E1 and id(β′) ∈ (E1)−1, we must simply check
that [id(β′)−1] 6= [td(α′)]. But this is evident as v would otherwise admit a choice. �
Proposition 3.14. Assume that a vertex v ∈ E0 admits no choices. Then every closed path
α based at v decomposes uniquely as α = γ−1βγ for a cycle β, and

Fv := {closed paths based at v} ∪ {1}
forms a free subgroup Fv ≤ F.

Proof. For the first part, set γ := α ∧ α−1 and write α = γ−1βγ – we then claim that β is a
cycle. If it were not, then we would have id(β) ∈ (E1)−1, td(β) ∈ E1, [td(β)] = [id(β)−1] and
td(β) 6= id(β)−1, hence r(β) would admit a choice, contradicting Lemma 3.12. The second
part of the claim is immediate from Lemma 3.13 and the Nielsen-Schreier Theorem. �
Definition 3.15. Assume that v ∈ E0 admits no choices. Then a non-trivial closed path α
based at v is called a simple closed path if α = γ−1βγ for a simple admissible path γ and a
simple cycle β. Obviously, if α is a simple closed path, then so is α−1, and so we say that v
admits

1

2
·
∣∣{simple closed paths α based at v

}∣∣ =
∣∣∣{simple closed paths α based at v}

α ∼ α−1

∣∣∣
simple closed paths up to inversion.
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Proposition 3.16. Assume that v ∈ E0 admits no choices. Then every closed path based at
v is a reduced product of simple closed paths based at v.

Proof. We claim that any closed path α based at v admits a decomposition

α = α′ · γ−1βγ,

where γ is a simple admissible path, β is a simple cycle, and α′ is a closed path based at v
with |α′| < |α|. An inductive application of this claim surely proves the lemma.

To prove the claim, take β′ ≤ α to be minimal with the property that there exists some γ < β′

with r(γ) = r(β′), and write β′ = βγ. Then γ is a simple admissible path by construction,
and β is a closed path such that the base vertex admits no choices, as seen from Lemma 3.12.
Since the only vertex repetition on β happens at the endpoints, it follows from the first
part of Proposition 3.14 that β is a cycle, hence a simple cycle. It follows immediately from
minimality that γ−1 ·β = γ−1β, and the concatenation is admissible due to Lemma 3.13. Now
write α = σβγ and define α′ := σ · γ. Lemma 3.13 guarantees that α′ is admissible, hence a
closed path, and we clearly have α = α′ · γ−1βγ. Finally observing that

|α′| ≤ |σ|+ |γ| < |α|,
the proof is complete. �
Remark 3.17. If v admits no choices, and if Λ is a set of representatives for the set of simple
closed paths based at v modulo inversion, then Fv is generated by Λ due to Proposition 3.16.
However, Fv need not be freely generated by Λ. For instance, both vertices in the graph

admit three simple closed paths up to inversion, yet Fv ∼= F2 for either vertex v. But this is
not a problem since we only need to distinguish between the three cases

• |Λ| = 0 in which Fv = {1},
• |Λ| = 1 in which Fv ∼= Z,
• |Λ| ≥ 2 in which Fv ∼= Fn for some 2 ≤ n ≤ ∞.

J
We will also need the following somewhat odd corollary.

Corollary 3.18. Assume that v ∈ E0 admits no choices and at most one simple closed path
up to inversion. If v admits a cycle α, then it admits a unique simple cycle, β, up to inversion,
and α = βn for some n ∈ Z.

Proof. If α is a cycle based at v, then α = βn for a simple closed path β due to Proposi-
tion 3.16. But then β must be a cycle as well, hence a simple cycle. �
The proof of Proposition 3.20 is fairly technical and requires the treatment of four different
types of edges. We recommend having the following example in mind when reading through
the proof of the proposition.
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Example 3.19. In the following graph, all edges have been labelled with both the type and
a choice of non-separated orientation as defined in the proof of Proposition 3.20:

(1,−) (3,+) (3,+)

(1,−)
(3,−)

(1,+)

(1,−)
(2,−)

(1,+)

(2,+)

(4,+)(4,−)

The resulting non-separated graph is:

J
In the following, we will say that an edge e is on a path α, if either of the letters e or e−1 are
present in the symbol expansion of α.

Proposition 3.20. Let (E,C) denote a finitely separated Condition (C ) graph, and assume
that every vertex admitting no choices admits at most one simple closed path up to inversion.
Then (E,C) can be equipped with a non-separated orientation.

Proof. The construction of o(e) for e ∈ E1 will proceed in the following four steps:

(1) Either e or e−1 admits a choice (equivalently, r(e) admits a choice).
(2) e is not of type (1), but e is on a (simple) cycle.
(3) e is not of type (1) or (2), but e is on a (simple) closed path.
(4) e is not of type (1), (2), or (3), i.e. neither e nor e−1 admits a choice, and e is not on

a closed path.

Type (1): We simply set

o(e) =

{
1 if e admits a choice
−1 if e−1 admits a choice

.

Observe that if v ∈ E0 admits a choice, then exactly one of e and e−1 admits a choice for
every e ∈ r−1(v)∪s−1(v), so before defining o on the remaining edges, we might as well check
that it satisfies Definition 3.8 at such v. If o(e) = 1, i.e. if e admits a choice, then either some
f ∈ s−1(r(e)) with f 6= e or some X ∈ Cr(e) with e /∈ X admits a choice. And since every
vertex admits at most one choice, we must have [e] = {e}. Likewise, Definition 3.8(1) and
(2) hold simply because every vertex admits at most one choice.
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Type (2): Define an equivalence relation on the set of type (2) edges by

e ≈ f ⇔ e and f are on the same (simple) cycle.

Observe that ≈ is transitive due to Corollary 3.18. Now choose a representative e for each
equivalence class modulo ≈ as well as a simple cycle

α = eεnn e
εn−1

n−1 · · · eε22 e
ε1
1

that e is on. We then set o(ei) := εi for all i = 1, . . . , n; this is well-defined, because α is
simple.

Type (3): If e is a type (3) edge, then e = i(α) for a (up to inversion) unique simple closed
path α. This allows us to define o(e) so that eo(e) = id(α); note that this does not depend on
the choice of α over α−1 by Proposition 3.14.

Observe that if u ∈ E0 admits a closed path but no choices, then we have defined o on all
edges e ∈ r−1(u)∪s−1(u). Before defining the orientation of a type (4) edge, we will therefore
check that Definition 3.8 is satisfied at such u. We should distinguish between two cases;
when u admits and does not admit a cycle.

First assume that u admits a simple cycle α = eεnn e
εn−1

n−1 · · · eε22 e
ε1
1 , and that the orientation is

defined as above. Note that no e ∈ r−1(u) admits a choice for then u would it self admit a
choice, but if e ∈ s−1(u), then e−1 admits a choice if and only if |[e]| ≥ 2. Now by construction

o(e) =





−1 if e ∈ s−1(u) and |[e]| ≥ 2
ε1 if e = e1

εn if e = en
−1 if e ∈ s−1(u) is not on a cycle
1 if e ∈ r−1(u) is not on a cycle

.

Simply observing that

o−1(−1) ∩ r−1(u) =

{
∅ if ε1 = 1
{e1} if ε1 = −1

and

o−1(1) ∩ s−1(u) =

{
{e1} if ε1 = 1
∅ if ε1 = −1

,

we then see that Definition 3.8 is satisfied at u.

Next, assume that u is not on a cycle, but that α = γ−1βγ is a closed path based at u.
Observe again that all e ∈ r−1(u) are of type (3), but that e ∈ s−1(u) is of type (1) if
|[e]| ≥ 2, and otherwise it is of type (3). If id(α) ∈ (E1)−1, then e−1αe defines a closed path
for all e ∈ r−1(u), e 6= i(α), hence o(i(α)) = −1 and o(e) = 1. Moreover, if e ∈ s−1(u), then
either |[e]| ≥ 2 or e is of type (3) and eαe−1 defines a closed path, hence o(e) = −1 either
way. We conclude that Definition 3.8(1) is satisfied in this case, and similarly one can check
that Definition 3.8(2) is satisfied when id(α) ∈ E1.
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Type (4): Finally, let U ⊂ E0 denote the set of u ∈ E0 admitting no choices and no closed
paths, and define an equivalence relation on U by

u ∼ v ⇔ there is an admissible path of type (4) edges u→ v.

For every equivalence class, we then pick a unique representative. If e is any edge of type (4),
and u is the representative of the equivalence class of r(e), then there is a unique admissible
path α with r(α) = u and i(α) = e, and we define o(e) so that eo(e) = id(α). Verifying that o
satisfies Definition 3.8 is completely analogous to what we did just above. �
Corollary 3.21. Let (E,C) denote a finitely separated graph satisfying both Condition (C )
and Condition (L). Then (E,C) has a non-separated orientation for which the resulting graph
E satisfies Condition (L).

Proof. Assume that v ∈ E0 does not admit a choice, and assume in order to reach a con-
tradiction that v admits a closed path α = γ−1βγ with β a cycle. Then s(β) admits a
choice by assumption, hence so does v by Lemma 3.12. The claim then follows by invoking
Proposition 3.20. �

4. A characterisation of simplicity

In this section, we compute all graph algebras of finitely separated graphs giving rise to
minimal partial actions, and as a result, we are able to characterise simplicity of these C∗-
algebras. A similar result is obtained in [8, Theorem 8.1] for finite bipartite graphs, but
the two proofs are quite different. Indeed, the one in [8] proceeds via a graph-theoretic
investigation of the separated Bratteli diagram (F∞, D∞), while the below proof combines
the contents of Section 3 with a simple dynamical observation (Lemma 4.3).

Definition 4.1. Let (E,C) denote a finitely separated graph. If X, Y ∈ C satisfy |X|, |Y | ≥
2, then a choice connector between X and Y is an admissible path α for which Y −1αX an
admissible composition. If (E,C) does not satisfy Condition (C), we define the maximal
choice distance to be

mCD(E,C) := sup{n | there exists a choice connector of length n}.
J

We have the following trivial, but quite handy, observation.

Lemma 4.2. Given any set A ⊂ E1 t (E1)−1, the function sA : Ω(E,C)→ Z+ given by

sA(ξ) := |{id(α) : α ∈ ξ, td(α) ∈ A}|
is lower semi-continuous, i.e. lim infη→ξ sA(η) ≥ sA(ξ) for any ξ ∈ Ω(E,C).

Proof. This is obvious. �
Lemma 4.3. Let (E,C) denote a finitely separated graph. If θ(E,C) is minimal, then (E,C)
satisfies Condition (C ).
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Proof. We argue by contraposition, assuming that (E,C) does not satisfy Condition (C).
Consider any admissible composition Y −1αX with |X|, |Y | ≥ 2, fix some x ∈ X, y ∈ Y and
set A := {x−1, y−1}. Also, pick any configuration ξ with {x−1, y−1α} ⊂ ξ, so that sA(ξ) ≥ 2.
We may then construct a configuration η with the property td(β) 6= x−1, y−1 for all β ∈ η.
Indeed, starting from any vertex and constructing η inductively, one may simply refrain
from choosing x−1 when reaching r(x), and similarly for y (see Example 4.4 for what such a
configuration might look like). It follows that sA(θα(η)) ≤ 1 for any α ∈ η, so in particular

ξ /∈ θF(η) by Lemma 4.2. �
Example 4.4. Consider the separated graph

x

x′ y′

y

which does not satisfy Condition (C). In this case, there is only the following choice of a
configuration η as in the proof of Lemma 4.3:

1· · · · · ·x′xx′ x′ xy′ y′y′ yy

A configuration η as in the proof of Lemma 4.3.
J

The rest of this section essentially just exploits Condition (C) in order to apply the results
of Section 3. However, before we can give the first application of this property, we will
need to introduce yet another graph-theoretic notion that will come in handy in the proof of
Proposition 4.6.

Definition 4.5. An admissible path α is called forced if [e] = 1 for all edges e, such that e−1

(or e∗ when regarding α as an element of a graph algebra) is in the symbol expansion of α.
Observe that α∗α = s(α) whenever α is forced.

Proposition 4.6. If (E,C) satisfies Condition (C ), then

LK(E,C) = Lab
K (E,C) and C∗(E,C) = O(E,C).

Proof. We simply have to verify that α = αα∗α in LK(E,C) for all products of elements from
the set E1 ∪ (E1)∗ ⊂ LK(E,C). Recall from Remark 1.8 that any such non-zero α is of the
form α = αn · · ·α1, where each αi is a non-trivial admissible path satisfying

• id(αi+1) ∈ E1 and td(αi) = id(αi+1)∗,
• |[id(αi+1)]| ≥ 2

for all i = 1, . . . , n − 1. We first claim that Condition (C) implies n ≤ 2. Indeed if n ≥ 3,
then id(α2) ∈ E1 and td(α2) ∈ (E1)∗, so |α2| ≥ 2 and we can consider the admissible path
α′2 obtained from removing the initial and terminal symbol (if |α2| = 2 so that α2 = e∗f for
e, f ∈ E1, we set α′2 := r(f)). Then α′2 will be a choice connector, contradicting Condition
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(C). If n = 1, then α = α1 must be of the form α = σ2σ
∗
1, where both σ1 and σ2 are forced,

and consequently

αα∗α = σ2σ
∗
1σ1σ

∗
2σ2σ

∗
1 = σ2σ

∗
1 = α.

Assuming n = 2 instead, both α∗1 and α2 must be forced, and so the situation is the same as
in the case n = 1. �
We include a proof of following observation, which is also used in various forms in [8], for
clarity.

Proposition 4.7. Let (E,C) denote a finitely separated graph, assume that v ∈ E0 admits
no choices. Then there are identifications

vLab
K (E,C)v ∼= K[Fv] and vO(r)(E,C)v ∼= C∗(r)(Fv),

where K[Fv] is the group ring of Fv with coefficient in K.

Proof. Observing that Ω(E,C)v is a one-point space and that the partial action of F restricts
to the trivial global action Fv y Ω(E,C)v, we deduce that

vLab
K (E,C)v ∼= CK(Ω(E,C)v) oalg Fv ∼= K oalg F ∼= K[Fv]

and

vO(r)(E,C)v ∼= C(Ω(E,C)v) o(r) Fv ∼= Co(r) Fv ∼= C∗(r)(Fv),
by invoking [8, Lemma 7.13]. �
Having made all the preparations, we are now able to describe all algebras associated with
finitely separated graphs for which the partial action is minimal.

Theorem 4.8. Let (E,C) is a finitely separated graph. If (E,C) satisfies Condition (C ) and
H(E,C) = {∅, E0}, then exactly one of the following holds:

(1) Every cycle admits exactly one choice. In that case

LK(E,C) = Lab
K (E,C)

is isomorphic to a simple Leavitt path algebra L(E), and

C∗(E,C) = O(E,C) ∼= Or(E,C)

is isomorphic to a simple graph C∗-algebra C∗(E).
(2) There is a vertex, which admits no choices and exactly one simple closed path up to

inversion. Then LK(E,C) = Lab
K (E,C) is isomorphic to a Leavitt path algebra LK(E)

and Morita equivalent to the algebra of Laurent polynomials K[Z] = K[x, x−1], while
C∗(E,C) = O(E,C) ∼= Or(E,C) is isomorphic to a graph C∗-algebra C∗(E) and
Morita equivalent to C(T).

(3) There is a vertex v ∈ E0, which admits no choices and at least two simple closed paths
up to inversion. In that case, there are Morita equivalences

LK(E,C) = Lab
K (E,C) ∼ K[Fv], C∗(E,C) = O(E,C) ∼ C∗(Fv)

111



28 MATIAS LOLK

and Or(E,C) ∼ C∗r (Fv), where Fv denotes the free subgroup of rank at least two
consisting of all the closed paths based at v as well as the empty word.

Proof. First, we recall that the quotient maps LK(E,C) → Lab
K (E,C) and C∗(E,C) →

O(E,C) are isomorphisms in any case by Proposition 4.6 (strictly speaking, we only need to
invoke the result for case 3). Now, if every cycle admits exactly one choice, then we obtain (1)
immediately by Corollary 3.21. If this is not the case, then some v ∈ E0 admits a closed path
but no choices, so Proposition 4.7 applies. Moreover, as v generates E0 as a hereditary and
C-saturated set, it defines a full projection in LK(E,C), C∗(E,C) and the quotients, hence
they are all Morita-equivalent to their respective corners obtained by cutting down with v.
If v admits at least two simple closed paths up to inversion, then neither can be a multiple
of the other, hence Fv will be a free group of rank at least two.

Finally, we observe that if there is only one simple closed path based at v, then no u ∈ E0

can admit at least two simple closed paths and no choices, for then C(T) and C∗(Fn) would
be Morita-equivalent for some n ≥ 2. Now Proposition 3.20 applies to give (2). �

As a consequence, we can completely characterise the simple C∗-algebras associated with
finitely separated graphs.

Corollary 4.9. Let (E,C) denote a finitely separated graph. Then the algebras LK(E,C)
and Lab

K (E,C) as well as the C∗-algebras C∗(E,C) and O(E,C) are simple if and only if the
following holds:

(1) (E,C) satisfies Condition (C ),
(2) H(E,C) = {∅, E0},
(3) every cycle admits exactly one choice.

In that case, LK(E,C) = Lab
K (E,C) is isomorphic to the Leavitt path algebra and

C∗(E,C) = O(E,C) ∼= Or(E,C)

is isomorphic to the graph C∗-algebra of a non-separated graph.

Proof. If either algebra is simple, then θ(E,C) is minimal. By Lemma 4.7 and Theorem 2.19,
this implies that (E,C) satisfies Condition (C) and contains only trivial hereditary and C-
saturated subsets. Now the result is immediate from Theorem 4.8, since (full) group algebras
of free groups are not simple. �

Corollary 4.10. Let (E,C) denote a finitely separated graph. Then the C∗-algebra Or(E,C)
is simple if and only if

(1) (E,C) satisfies Condition (C ),
(2) H(E,C) = {∅, E0},

and one of the following holds:

(3a) Every cycle admits exactly one choice. In that case, Or(E,C) is isomorphic to a
classical graph C∗-algebra.
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(3b) There is a vertex v ∈ E0, which admits no choices and at least two simple closed
paths up to inversion. In that case, Or(E,C) is Morita-equivalent to C∗r (Fv), where
Fv denotes the free subgroup of rank at least two consisting of all the closed paths based
at v as well as the empty word.

Proof. The proof is completely similar to that of Corollary 4.9, except that C∗r (Fn) is in fact
simple for every 2 ≤ n ≤ ∞ [25]. �

Finally, we can also characterise minimality of θ(E,C):

Corollary 4.11. Let (E,C) denote a finitely separated graph. Then θ(E,C) is minimal if and
only if (E,C) satisfies Condition (C ) and H(E,C) = {∅, E0}.
Proof. One implication follows immediately from 2.19 and Lemma 4.3. For the other one,
note that Theorem 4.8 applies, and that if (1) or (3) of the Theorem 4.8 holds, then θ(E,C)

must be minimal due to simplicity of the graph algebras. Assuming (2) instead, there is a
vertex v which admits no choices. Since v generates E0 as a hereditary and C-saturated set,
we see that Ω(E,C) is nothing but the orbit of the one-point set Ω(E,C)v, hence minimal. �

5. Degeneracy of the tame algebras

In Section 3, we saw that the Leavitt path algebra and graph C∗-algebra degenerate under
certain conditions, including Condition (C). On the other hand, even very simple separated
graphs without Condition (C) can produce quite complicated algebras. For instance, if (E,C)
denotes the graph

v

of [2, Example 9.4], then C∗(E,C) is Morita equivalent to the universal unital C∗-algebra
generated by two projections , namely

vC∗(E,C)v ∼= C2 ∗C C2 ∼= {f ∈ C([0, 1],M2(C)) | f(0), f(1) diagonal},
while O(E,C) ∼=

⊕4
i=1 M3(C). Indeed, (E1, C

1) is the trivially separated graph

to which we can apply the standard formula for finite non-separated graphs without cycles.
In this short section, we shall explore when the tame algebras degenerate to graph algebras
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of non-separated graphs by combining our work in Section 3 with the fact that (En, C
n) and

(E,C) produce the same tame algebras. We briefly recall the definition of (E1, C
1).

Definition 5.1 ([2, Construction 4.4]). Let (E,C) denote a finite bipartite separated graph,
and write

Cu = {Xu
1 , . . . , X

u
ku}

for all u ∈ E0,0. Then (E1, C
1) is the finite bipartite separated defined by

• E0,0
1 := E0,1 and E0,1

1 := {v(x1, . . . , xku) | u ∈ E0,0, xj ∈ Xu
j },

• E1 := {αxi(x1, . . . , x̂i, . . . , xku) | u ∈ E0,0, i = 1, . . . , ku, xj ∈ Xu
j },

• r1(αxi(x1, . . . , x̂i, . . . , xku)) := s(xi) and s1(αxi(x1, . . . , x̂i, . . . , xku)) := v(x1, . . . , xku),
• C1

v := {X(x) | x ∈ s−1(v)}, where

X(xi) := {αxi(x1, . . . , x̂i, . . . , xku) | xj ∈ Xu
j for j 6= i}.

We also define a map r : E0
1 → E0 by r(v) := v for v ∈ E0,0

1 = E0,1 and

r(v(x1, . . . , xku)) := u

for all u ∈ E0,0 and (x1, . . . , xku) ∈∏ku
i=1X

u
i . J

The following technical lemma will prove most useful.

Lemma 5.2. Assume that (E,C) is a finite bipartite graph. The assignments v 7→ r(v) and
αe(∗) 7→ e−1 extend to a length-preserving surjective map Ψ: P(E1, C

1)→ P(E,C) with the
following properties

(1) If α, β ∈ P(E1, C
1) satisfy r(α) = s(β), then Ψ(β)Ψ(α) is admissible if and only if

βα is admissible.
(2) If α ∈ P(E,C) with r(α), s(α) ∈ E0,1, then

r1(Ψ−1(α)) = {r(α)} and s1(Ψ−1(α)) = {s(α)}.
(3) If α ∈ P(E,C) with r(α) ∈ E0,0 and s(α) ∈ E0,1, so that we may write α = xβ for

x ∈ E1, then

r1(Ψ−1(α)) = s1(X(x)) and s1(Ψ−1(α)) = {s(α)}.
(4) If α ∈ P(E,C) is non-trivial with r(α), s(α) ∈ E0,0, so that we may write α = xβy−1

for x, y ∈ E1, then

(r1, s1)(Ψ−1(α)) = s1(X(x))× s1(X(y)).

(5) Let xα ∈ P(E,C) and consider a lift β ∈ Ψ−1(α). Then xα is a choice path if and only
if |X(x)| ≥ 2 and X(x)−1β is an admissible composition in (E1, C

1). Consequently,
any v ∈ E0,1 = E0,0

1 admits the same number of choices in (E,C) and (E1, C
1).

(6) The restriction of Ψ to the set of closed paths based at vertices admitting no choices
is injective.

Proof. We extend the assignment αe(∗) 7→ e−1 to a group homomorphism Ψ: F(E1
1)→ F(E1),

and claim that for e, f ∈ E1
1 , the following hold:

114



EXCHANGE RINGS AND REAL RANK ZERO C∗-ALGEBRAS 31

(a) If r(e) = r(f), then e−1f is admissible if and only if Ψ(e−1)Ψ(f) is admissible,
(b) If s(e) = s(f), then ef−1 is admissible if and only if Ψ(e)Ψ(f−1) is admissible.

To this end, write e = αxi(x1, . . . , x̂i, . . . , xk) and f = αyj(y1, . . . , ŷj, . . . , yl). In situation (a),
we have

s(xi) = r
(
αxi(x1, . . . , x̂i, . . . , xk)

)
= r
(
αyj(y1, . . . , ŷj, . . . , yl)

)
= s(yj),

hence Ψ(e−1)Ψ(f) = xiy
−1
j is admissible if and only if xi 6= yj. And since r(e) = r(f), we note

that e−1f is admissible if and only if X(xi) = [e] 6= [f ] = X(yj), which is certainly equivalent
to xi 6= yj. Moving on to (b), we have

v(x1, . . . , xk) = s
(
αxi(x1, . . . , x̂i, . . . , xk)

)
= s
(
αyj(y1, . . . , ŷj, . . . , yl)

)
= v(y1, . . . , yl),

so Ψ(e)Ψ(f−1) = x−1
i xj is admissible if and only if i 6= j, which is equivalent to e 6= f , or ef−1

being admissible. It follows that the restriction of Ψ to P(E1, C
1) along with the assignment

of the vertices defines a length-preserving map P(E1, C
1)→ P(E,C) satisfying (1). Observe,

in view of (1), that it is enough to check (2) for admissible paths α = x−1
i xj of length two,

and such α lifts to a path in ef−1 with

e := αxi(x1, . . . , x̂i, . . . , xk) and f := αxj(x1, . . . , x̂j, . . . , xk),

where xl ∈ Xu
l is arbitrary for l 6= i, j. (3) and (4) then follow immediate by applying (2) to

β and invoking (1). In particular, Ψ is surjective. Now consider claim (5) and assume that
X(x)−1β is an admissible composition with |X(x)| ≥ 2. Then xα is in the image of Ψ, hence
admissible. Moreover, |X(x)| ≥ 2 implies that there is some [x] 6= X ∈ Cr(x) with |X| ≥ 2, so
xα is in fact a choice path. The reverse implication uses the exact same arguments. Finally,
consider claim (6) and recall that if α is a closed path and s(α) does not admit any choices,
then neither does any vertex on α. Consequently, Ψ is injective on the set of edges and
vertices that such α may pass through. But then Ψ is surely injective on the set of all such
closed paths. �

Corollary 5.3. Let (E,C) denote a finite bipartite separated graph. If 2 ≤ mCD(E,C) <∞,
then

mCD(E1, C
1) = mCD(E,C)− 2,

and if mCD(E,C) = 0, then (E1, C
1) satisfies Condition (C ).

Proof. Simply observe from Lemma 5.2(5) that if β ∈ P(E1, C
1) and α := Ψ(β), then β is a

choice connector in (E1, C
1) between X(x) and X(y) if and only if xαy−1 is a choice connector

in (E,C). �

In the following lemma, finiteness of E is crucial.

Lemma 5.4. Let (E,C) denote a finite separated graph, and assume that every cycle admits
at most one choice. Then mCD(E,C) <∞.
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Proof. Assume in order to reach a contradiction that there is a choice connector α of length
|α| ≥ 3 · |E0|. Then α must pass some vertex v ∈ E0 three times, i.e. there are closed paths
β and γ based at v such that γβ is admissible. Since v is on a choice connector, it cannot
admit any cycles, hence neither β nor γ are cycles. But then γβ must itself be a cycle, giving
us our desired contradiction. �
Corollary 5.5. Let (E,C) denote a finite bipartite separated graph. If every cycle admits at
most one choice, then (En, C

n) will satisfy Condition (C ) for sufficiently large n.

Proof. This is immediate from Lemma 5.4 and Corollary 5.3. �
We now make the final preparations before obtaining the main theorem of this section.

Lemma 5.6. Let (E,C) denote a finite bipartite graph, and assume that every vertex without
a choice admits at most one simple closed path up to inversion. Then (E1, C

1) satisfies the
same property.

Proof. Assume that v ∈ E0
1 does not admit a choice. Without loss of generality, we may

assume that v ∈ E0,0
1 = E0,1 since every non-trivial path must pass a vertex in this layer. By

Lemma 5.2(5), v does not admit a choice in (E,C) either, hence it admits at most one simple
closed path up to inversion in (E,C). It follows from Lemma 5.2(6) that v admits at most
one simple closed path up to inversion in (E1, C

1) as well. �
Theorem 5.7. Let (E,C) denote a finite bipartite separated graph. If every cycle admits at
most one choice, and every vertex without a choice admits at most simple closed path up to
inversion, then (En, C

n) admits a non-separated orientation for sufficiently large n. Conse-
quently, there exists a finite non-separated graph F := En and a direct dynamical equivalence
θF → θ(E,C). In particular,

Lab
K (E,C) ∼= LK(F ) and O(E,C) ∼= Or(E,C) ∼= C∗(F ).

Proof. By Corollary 5.5 and Lemma 5.6, (En, C
n) will satisfy the requirements of Proposi-

tion 3.20 for sufficiently large n, so the result follows by combining Proposition 3.11 and [8,
Theorem 3.22]. �

6. The exchange property, real rank zero and essentially free actions

Recall that a non-separated graph E is said to satisfy Condition (K ) if every vertex on a
cycle admits at least two simple cycles. The main point of Condition (K) is that it implies
Condition (L) and is preserved when passing to any quotient graph E/H. It is well known that
it is equivalent to LK(E) being an exchange ring [10, Theorem 4.5], C∗(E) having real rank
zero [21, Theorem 3.5], and the graph groupoid being essentially principal [24, Proposition
8]. In this section, we introduce the appropriate generalisation of Condition (K) to finitely
separated graphs and prove an analogous result: Condition (K) is equivalent to Lab

K (E,C)
being an exchange ring, real rank zero of both O(E,C) and Or(E,C), and essential freeness
of θ(E,C).
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We refer the reader to [1, Theorem 1.2 and Definition 1.3] and [13, Theorem 2.6] for various
equivalent definitions of exchange rings and real rank zero C∗-algebras, respectively. By
[1, Theorem 3.8], these two concepts agree for C∗-algebras. The class of exchange rings is
closed under ideals, quotients, extensions where idempotents can be lifted modulo the ideal
[1, Theorem 2.3], corners [4, Corollary 1.5], direct limits, and Morita equivalence between
idempotent rings (C∗-algebras for instance) [4, Theorem 2.3].

Definition 6.1. A finitely separated graph (E,C) is said to satisfy Condition (K ) if every
vertex v ∈ E0 on a cycle satisfies the following:

(1) v admits exactly one choice.
(2) v admits at least two base-simple cycles up to inversion.

It is apparent that any finite bipartite Condition (K) graph (E,C) satisfies the assumptions
of Theorem 5.7, so that O(E,C) will degenerate to a graph C∗-algebra C∗(F ) with F := En
for some n. However, in order to conclude that F satisfies the usual Condition (K), we first
have to check that it is preserved when passing from (E,C) to (En, C

n). J

Dealing with base-simple cycles is somewhat complicated in the realm of separated graphs
since cycles need not decompose into a product of base-simple cycles. However, when we add
Definition 6.1(1) to the equation, this problem disappears.

Lemma 6.2. Let (E,C) denote a finitely separated graph. If v ∈ E0 admits exactly one
choice, then any cycle based at v is a concatenated product of base-simple cycles

Proof. First observe that whenever γ is a cycle based at v, exactly one of id(γ) and td(γ)−1

admits a choice. Now take any cycle α based at v and let β ≤ α denote the minimal closed
initial subpath: It suffices to check that β must be a cycle. Assume in order to reach a
contradiction that it is not, and take a minimal cycle βn · · · β1 ≤ α written as a concatenated
product of base-simple closed paths with β1 = β. Observe that, by minimality, both βnβ1

and β−1
n β1 are cycles. Now if id(β) admits a choice, then so does id(β−1

n ) = td(βn)−1 and vice
versa, contradicting the above observation applied to γ = βnβ1. �

Remark 6.3. It is easy to check that a finitely separated graph (E,C) satisfies Condition
(K) if and only if its bipartite sibling B(E,C) satisfies Condition (K). We leave this to the
reader.

Lemma 6.4. Let (E,C) denote a finite bipartite graph. If (E,C) satisfies Condition (K ),
then so does (E1, C

1).

Proof. Suppose that v ∈ E0
1 admits a cycle α in (E1, C

1); by otherwise replacing v with
another vertex on α, we may assume that v ∈ E0,0

1 . Then v admits the cycle Ψ(α) in (E,C),
hence it admits exactly one choice and at least two distinct base-simple cycles in (E,C) by
assumption. Using Lemma 5.2(5), we conclude that it admits exactly one choice in (E1, C

1)
as well, and lifting these cycles arbitrarily to (E1, C

1) using Lemma 5.2(2), we obtain two
distinct base-simple cycles based at v in (E1, C

1) as desired. �

117



34 MATIAS LOLK

Lemma 6.5. Let (E,C) denote a finitely separated graph satisfying Condition (K ). If H is a
hereditary and C-saturated set, then the quotient graph (E/H,C/H) satisfies Condition (K )
as well.

Proof. Assume that v ∈ (E/H)0 = E0 \ H admits a cycle in (E/H,C/H). Then v admits
at least two distinct base-simple cycles in (E,C), and noting that for every cycle α, either
α or α−1 is forced, we see that these cycles are contained in (E/H,C/H) as well. Now if β
is a minimal choice path with s(β) = v, then β too must be contained in (E/H,C/H), so v
admits exactly one choice in (E/H,C/H) as well. �

We will now apply the main result of Section 5.

Corollary 6.6. Let (E,C) denote a finite bipartite separated graph satisfying Condition (K ).
Then there exists a finite non-separated graph F with Condition (K ) and a direct dynamical
equivalence θF → θ(E,C). Consequently, θ(E,C) is essentially free,

Lab
K (E,C) ∼= LK(F ) and O(E,C) ∼= Or(E,C) ∼= C∗(F ).

In particular, Lab
K (E,C) is an exchange ring and O(E,C) ∼= Or(E,C) has real rank zero.

Proof. The first part follows immediately from Theorem 5.7 with F = En. Moreover, En
satisfies Condition (K) by Lemma 6.4, hence so does F by Lemma 3.10. It follows from
[10, Theorem 4.5] and [21, Theorem 3.5] that LK(F ) is an exchange ring and C∗(F ) has
real rank zero, respectively. Moreover, the ideals of C∗(F ) are exactly those generated by
hereditary and saturated subsets of F 0, which correspond to the hereditary and Cn-saturated
subsets of E0

n by Proposition 3.11. It follows that the closed and invariant subsets of Ω(En, C
n)

exactly correspond to the hereditary and Cn-saturated subsets of E0
n. Now since (En/H,C

/H)
satisfies Condition (K) for any such H by Lemma 4.3, we see that θ(En,Cn) is essentially
free using Theorem 3.7. Finally, θ(E,C) must then be essentially free since there is a direct
dynamical equivalence θ(En,Cn) → θ(E,C) by [8, Theorem 3.22]. �

Corollary 6.7. Let (E,C) denote a finite separated graph satisfying Condition (K ). Then
θ(E,C) is essentially free,

Lab
K (E,C) ∼= LK(F ) and O(E,C) ∼= Or(E,C) ∼= C∗(F )

for a finite graph F with Condition (K ). In particular, Lab
K (E,C) is an exchange ring and

O(E,C) ∼= Or(E,C) has real rank zero.

Proof. Applying Corollary 6.6 to B(E,C), it follows from Corollary 2.5 and Proposition 2.17
that θ(E,C) is essentially free as well. Moreover, there are isomorphisms

M2(Lab
K (E,C)) ∼= Lab

K (B(E,C)) ∼= LK(F ) and M2(O(E,C)) ∼= O(B(E,C)) ∼= C∗(F ),

where F is a graph satisfying Condition (K), by [2, Proposition 9.1]. We may then apply [11,
Theorem 6.1] (along with the final comment in the introduction of [11]) to obtain a graph G
for which Lab

K (E,C) ∼= LK(G) and O(E,C) ∼= C∗(G). �
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In order to extend Corollary 6.7 to arbitrary finitely separated graphs, we need to be able to
approximate any such Condition (K) graph by its finite complete Condition (K) subgraphs.

Lemma 6.8. Every finitely separated Condition (K ) graph is a direct limit of its finite com-
plete Condition (K ) subgraphs.

Proof. Let (E,C) denote a finitely separated Condition (K) graph with a finite complete
subgraph (F,D). We then claim that there is an intermediate finite complete subgraph
(F,D) ⊂ (G,L) ⊂ (E,C) satisfying Condition (K), and we first observe that if v ∈ F 0

admits a cycle α in (F,D), then it automatically admits a choice in (F,D) as well: By
assumption, it admits exactly one choice in (E,C), so if β is a minimal path with s(β) = v
leading to a choice X, then either x−1β ≤ α or x−1β ≤ α−1 for some x ∈ X. From (F,D)
being a complete subgraph, it follows that X ∈ D, so v admits exactly one choice in (F,D)
as well.

Now assume that v admits only one base-simple cycle in (F,D) up to inversion, and consider
some other base-simple cycle eεnn · · · eε11 based at v in (E,C). We then extend the subgraph by
the set of edges

⋃n
i=1[ei] as well as the ranges and sources of these edges to a finite complete

subgraph. Observe that all the added vertices either admit no or at least two base-simple
cycles up to inversion, so applying this procedure sufficiently many times leaves us with a
finite complete subgraph (G,L) satisfying Condition (K). �

Corollary 6.9. Let (E,C) denote a finitely separated graph satisfying Condition (K ). Then
the partial action θ(E,C) is essentially free, and there are finite non-separated Condition (K )
graphs (Fn)n≥1 such that

Lab
K (E,C) ∼= lim−→

n

LK(Fn) and O(E,C) ∼= Or(E,C) ∼= lim−→
n

C∗(Fn)

for appropriate connecting homomorphisms. In particular, Lab
K (E,C) is an exchange ring and

O(E,C) ∼= Or(E,C) has real rank zero.

Proof. By Lemma 6.8, we can find an increasing union of finite complete Condition (K)
subgraphs (Gn, L

n) of (E,C) such that (E,C) = lim−→n
(Gn, L

n). Then Lab
K (Gn, L

n) ∼= LK(Fn)

and O(r)(Gn, L
n) ∼= C∗(Fn) for some non-separated graph Fn satisfying Condition (K) by

Corollary 6.7. Recalling from [3, Proposition 7.2] that O is a continuous functor and that the
same proof applies to Lab

K , we see that

Lab
K (E,C) ∼= lim−→

n

LK(Fn) and O(E,C) ∼= Or(E,C) ∼= lim−→
n

C∗(Fn),

and as the exchange property passes to limits, it follows from Lemma 6.8 and Corollary 6.7
that Lab

K (E,C) is an exchange ring, and O(E,C) ∼= Or(E,C) has real rank zero.

We move on to checking essential freeness. Assume that Ω ⊂ Ω(E,C) is a closed invariant
subspace and ξ ∈ Ω is fixed by 1 6= α ∈ F. Taking any finite animal ω ⊂ ξ with α ∈ ω, we

must verify that θ
(E,C)
α (η) 6= η for some η ∈ Ω ∩ Ω(E,C)ω. By Lemma 6.8, there is a finite
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complete Condition (K) subgraph (F,D) of (E,C) such that ω ⊂ F(F 1), and we consider the
canonical surjective F(F 1)-equivariant continuous map

p : Ω(E,C)F 0 =
⊔

v∈F 0

Ω(E,C)v → Ω(F,D)

given by p(η) = η ∩ F(F 1). Then Ω′ := p(Ω(E,C)F 0 ∩ Ω) is a closed invariant subspace of
Ω(F,D), and p(ξ) ∈ Ω′ is fixed by α. Moreover, Ω(F,D)ω ∩ Ω′ is an open neighbourhood of

p(ξ) in Ω′, so by essential freeness there is some ζ ∈ Ω(F,D)ω ∩ Ω′ with θ
(F,D)
α (ζ) 6= ζ. Now

any lift η ∈ Ω of ζ will do the job. �
Having proved the positive part of the main result of this section, we now begin an investi-
gation of finitely separated graphs not satisfying Condition (K). The lemma just below takes
care of the situation in which a cycle admits at least two choices.

Lemma 6.10. Let (E,C) denote a finitely separated graph. If some cycle admits at least two
choices, then there is a configuration ξ ∈ Ω(E,C) with stabiliser Stab(ξ) ∼= Z, such that ξ is

isolated in θF(ξ).

Proof. Observe that one of the following holds:

(1) There is a cycle α and an admissible path β with the following properties:
(a) Both compositions βα and βα−1 are admissible.
(b) td(β) = x−1 for some x ∈ E1 with |[x]| ≥ 2.

(2) There is a cycle α with subpaths x−1 ≤ α and y−1β ≤ α−1 such that |[x]|, |[y]| ≥ 2.

In case of (1), we consider the animal ω := 〈βαn | n ∈ Z〉. Being α-periodic, we may extend
it to an α-periodic configuration ξ such that td(γ) = x−1 entails γ ∈ ω (see also Example 6.11
for what such ξ might look like for a particular graph). For the sake of completeness, let us
carry out the actual construction of such ξ: First consider the finite animal 〈td(α)−1, α, β〉
and extend it arbitrarily to a configuration η such that td(γ) = x−1 for γ ∈ η entails γ ∈
〈td(α)−1, α, β〉: This can be done as in the proof of Lemma 4.3 by never choosing to go down
x−1 when extending. Then consider the animal

χ := {γ ∈ η | γ 6≥ td(α)−1, α}
and define ξ :=

⊔
n∈Z χ · αn. It should be clear that ξ ∈ Ω(E,C), and by construction it is

fixed by α. Let γ ∈ ξ and assume that td(γ) = x−1; we may then write γ = γ′ · αn uniquely
with γ′ ∈ χ and n ∈ Z. Now if td(γ

′) = td(γ) = x−1, we have γ′ < α or γ′ ≤ β by construction
of η, and if td(γ

′) 6= td(γ), then γ′ must be cancelled out completely by αn, hence γ′ < α. In
either case, we see that γ ∈ ω as required. It follows that s{x−1}(θγ(ξ)) ≤ 2 whenever γ ∈ ξ
is not a power of α, while s{x−1}(ξ) = 3. We conclude from Lemma 4.2 that ξ is isolated in
the closure of its own orbit and that Stab(ξ) ∼= Z.

Now consider (2), and assume without loss of generality that (1) does not hold. In this
case, the animal ω = 〈αn | n ∈ Z〉 can be extended uniquely to a configuration ξ, which is
necessarily α-periodic. Setting A := {x−1, y−1}, we see that sA(θγ(ξ)) = 1 for all γ /∈ ω while

sA(ξ) = 2, so ξ is once again isolated in θF(ξ) and has stabiliser Stab(ξ) ∼= Z. �

120



EXCHANGE RINGS AND REAL RANK ZERO C∗-ALGEBRAS 37

Example 6.11. We will now consider the separated graph

g h

e

f

x x′

satisfying (1) in the proof of Lemma 6.10, and see what the configuration ξ might look like.
We take α to be the cycle α = fe and β to be the path β = x−1g, so the animal ω and the
configuration ξ may be pictured as below:

1 αα−1

βα−1 β βα

· · · · · ·
e e ef f f

g g g

x x x

An animal ω as in the proof of Lemma 6.10.

1 αα−1

βα−1 β βα

· · · · · ·
e e ef f f

g g g
h h

x x xx′ x′

A configuration ξ as in the proof of Lemma 6.10.

J
Next, we consider the situation in which a vertex admits exactly one choice and one base-
simple cycle up to inversion.

Lemma 6.12. Let (E,C) denote a finitely separated graph, and assume that v ∈ E0 admits
exactly one choice and exactly one base-simple cycle up to inversion. Then there is H ∈
H(E,C) with v /∈ H, such that v admits a cycle but no choices in (E/H,C/H).

Proof. Let α denote the unique base-simple cycle based at v such that α−1 is forced. By
possibly translating the cycle, we may assume that there is X ∈ Cv with |X| ≥ 2 such that
td(α) = x−1 for some x ∈ X. Now define

H := {u ∈ E0 | there is no forced path v → u}
and observe that H is hereditary: If e ∈ E1 and s(e) /∈ H, i.e. if there is a forced path
β : v → s(e), then e · β is a forced path v → r(e) as well, hence r(e) /∈ H. In order to check
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that H is also C-saturated, we assume that u /∈ H with β : v → u forced, and take any
Y ∈ Cu. If Y = {y} is a singleton or y := td(β)−1 ∈ Y , then y−1 · β is forced as well, so
s(y) /∈ H. If |Y | ≥ 2, then we must have β = v and X = Y so that s(x) /∈ H. We conclude
that H is indeed a hereditary and C-saturated subset. We proceed to check that v does not
admit any choices in the quotient graph (E/H,C/H), and it suffices to verify that X/H = {x}
as the same argument may be applied to any other vertex on α. If there were some other
x′ ∈ X/H, then, by definition of H, there would exist a forced path β : v → s(x′). But then
x′β would a cycle, which is clearly not a power of α, so we have reached a contradiction. �

Finally, we are ready to patch everything together and obtain our main theorem.

Theorem 6.13. Let (E,C) denote a finitely separated graph. The following are equivalent:

(1) (E,C) satisfies Condition (K ).
(2) θ(E,C) is essentially free.
(3) O(E,C) has real rank zero.
(4) Or(E,C) has real rank zero.
(5) Lab

K (E,C) is an exchange ring.
(6) O(E,C) is the direct limit of real rank zero graph C∗-algebras of finite non-separated

graphs.
(7) Lab

K (E,C) is the direct limit of Leavitt path algebras of finite non-separated graphs with
the exchange property.

If (E,C) is finite, then we may replace (6) and (7) with the conditions

(6’) O(E,C) is isomorphic to a real rank zero graph C∗-algebra of a finite non-separated
graph.

(7’) Lab
K (E,C) is isomorphic to a Leavitt path algebra of a finite non-separated graph with

the exchange property.

Proof. In any case, (1) implies (2)-(7) due to Corollary 6.9, and if (E,C) is finite, then (6’)
and (7’) follow from Corollary 6.7. Now suppose that (E,C) does not satisfy Condition (K).
Then there is a vertex v on a cycle such that one of the following holds:

(i) v admits no choices,
(ii) v admits exactly one choice and one base-simple cycle up to inversion,
(iii) v admits at least two choices.

In the case of (i), the compact-open subspace Ω(E,C)v is nothing but an isolated point with
stabiliser Fv, so the partial action is not even topologically free. Moreover, as we observed in
Proposition 4.7,

vLab
K (E,C)v ∼= K[Fv], vO(E,C)v ∼= C∗(Fv) and vOr(E,C)v ∼= C∗r (Fv),

so neither is an exchange ring. If (ii) holds, then there is hereditary and C-saturated subset
H ⊂ E0 as in Lemma 6.12, giving rise to an invariant closed subspace on which the restricted
action is directly quasi-conjugate to the partial action θ(E/H,C/H) by Theorem 2.19. The
quotient graph (E/H,C/H) satisfies (i), so the first case applies. Finally, Lemma 6.10 applies
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to (iii) to give a point ξ with non-trivial stabiliser, such that ξ is isolated in Ω := θF(ξ). We
immediately see that the restricted partial action is not topologically free,

1ξ
(
CK(Ω) o F

)
1ξ ∼= K[Z] and 1ξ

(
C(Ω) o(r) F

)
1ξ ∼= C(T).

It follows that none of the above crossed product are exchange rings, so neither are Lab
K (E,C),

O(E,C) and Or(E,C). �

Corollary 6.14. Let (E,C) denote a finitely separated graph. If either of the algebras
Lab
K (E,C), O(E,C) and Or(E,C) is an exchange ring, then it is also separative.

Proof. This is immediate from Theorem 6.13 and [9, Theorem 3.5, Proposition 4.4 and The-
orem 7.1]. �

The above corollary shows that the tame algebras of finitely separated graphs do not provide
a solution to the Fundamental Separativity Problem for exchange rings. However, as was
noted in [8], the crossed product C(X )oσZ of any two-sided subshift is Morita equivalent to a
quotient of a separated graph C∗-algebra, corresponding to the restriction of the partial action
to a closed invariant subspace. In particular, interesting real rank zero C∗-algebras, which are
not graph C∗-algebras, may arise from separated Bratteli diagrams (see [8, Definition 2.8]).
The question therefore remains if one can find a finite bipartite separated graph (E,C) and a
hereditary D∞-saturated subset of the associated separated Bratteli diagram, corresponding
to a closed invariant subspace Ω ⊂ Ω(E,C) of infinite type (in the sense of [8, Section 3]),
such that the monoid

V(Lab
K (E,C)) ∼= M(F∞/H,D

∞/H) ∼= lim−→
n

M(En/H
(n), Cn/H(n)),

where H(n) := H ∩ E0
n, is non-separative and the limit algebras

lim−→
n

Lab(En/H
(n), Cn/H(n)) ∼= CK(Ω) o F and lim−→

n

Or(En/H(n), Cn/H(n)) ∼= C(Ω) or F

are exchange rings. One strategy would be to start out with a suitable graph (E,C), for which
the monoid M(E,C) is non-separative, and then try to remove more and more obstructions to
the exchange property the bigger n gets, while still maintaining injectivity of the composition

M(E,C)→M(En, C
n)→M(En, /H

(n), Cn/H(n)).

One could then hope to remove all obstructions to the exchange property in the limit algebras.
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ON NUCLEARITY AND EXACTNESS OF THE TAME C∗-ALGEBRAS
ASSOCIATED WITH FINITELY SEPARATED GRAPHS

MATIAS LOLK

Abstract. We introduce a graph theoretic property called Condition (N) for finitely sepa-
rated graphs and prove that it is equivalent to both nuclearity and exactness of the associated
universal tame graph C∗-algebra.

Introduction

A finitely separated graph is a directed graph with a partition of the edges into finite sub-
sets, which might be thought of as an edge colouring, so that edges with distinct ranges
have different colours. To any such graph (E,C), Ara and Exel introduced a C∗-algebra
O(E,C) in [4, 5], referred to as the universal tame C∗-algebra of (E,C). It is generated by
the vertices and the edges of the graph with relations similar to the ordinary Cuntz-Krieger
relations, taking into account the colouring, so that the edge set E1 defines a tame set of par-
tial isometries. Among many other results, they provided a very useful dynamical description
of O(E,C) when (E,C) is finite and bipartite, and this was generalised to finitely separated
graphs by the author in [17]. Specifically, O(E,C) may be identified with a universal crossed
product C0(Ω(E,C)) o F for a partial action θ(E,C) of a free group F = F(E1) on a locally
compact, zero-dimensional Hausdorff space Ω(E,C). The potency of these partial actions
was immediately demonstrated when they were used to answer a question of Rørdam and
Sierakowski [20] about relative type semigroups in the negative [4, Section 7].

Recently, Ara and the author have introduced the more general notion of a convex subshift
[9, Section 3] and shown that all convex subshifts of finite type arise, up to Kakutani equiva-
lence, as the partial action associated with a finite bipartite graph. As such, finitely separated
graphs may be viewed as combinatorial models for a wide class of partial actions, which in-
cludes both one-sided and two-sided shift spaces, but which also includes many new and
previously unstudied dynamical systems.

Nuclearity and exactness of O(E,C) have not been systematically studied before, but both
nuclearity and non-exactness have been observed in a number of examples. If E is any
column-finite graph, it may be regarded as a finitely separated graph by equipping it with
the trivial separation T , and in this case, the tame C∗-algebra O(E, T ) is simply the classical
graph C∗-algebra C∗(E), hence nuclear. Likewise, if X is any two-sided subshift of finite
type, then the crossed product C(X )oZ is Morita equivalent to O(E,C) for an appropriate
finite bipartite separated graph by [9, Proposition 6.8], so in this case O(E,C) is nuclear
as well. In the other direction, one can easily identify C∗(Fn) with a tame separated graph

Date: May 12, 2017.
Key words and phrases. Separated graph, graph algebra, amenable partial action, exactness, nuclearity.
Supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation

(DNRF92).
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C∗-algebra: the graph is nothing but a single vertex with n loops of different colours. A much
more interesting class of non-exact examples were considered by Ara, Exel and Katsura in
[6], where they studied C∗-algebras Om,n for 2 ≤ m < n < ∞ that might be considered as
two-parameter versions of the Cuntz algebras.

In this paper, we characterise nuclearity and exactness in terms a graph-theoretic property
that we call Condition (N). To this end, we first introduce a notion of topological amenabil-
ity for partial actions, and prove, using the theory of groupoid C∗-algebras, that a partial
action of a discrete group on a locally compact Hausdorff space is topologically amenable
if and only if the corresponding crossed products are nuclear (Theorem 2.8). Given any
finitely separated graph (E,C), we then identify two complementary subgraphs (EBr, C

Br)
and (EBF, C

BF), called the branching subgraph and the branch free subgraph, respectively.
The C∗-algebra O(EBr, C

Br) naturally appears as a quotient of O(E,C), and in Section 3, we
prove that both nuclearity and exactness of O(EBr, C

Br) is equivalent to Condition (N). We
can use the approach of [6] to establish necessity (Proposition 3.7), but sufficiency takes more
work: The main step is the construction of a proper orientation of the branching subgraph
(Theorem 3.17) in the presence of Condition (N). In Section 4, we prove that O(EBF, C

BF)
is always nuclear, and that nuclearity of O(EBr, C

Br) and O(EBF, C
BF) implies nuclearity of

O(E,C), before putting everything together in section 5 to obtain our main theorem (Theo-
rem 5.1). We finally study a number of examples.

1. Preliminary definitions

In this section, we recall the necessary definitions and results from the existing theory on
algebras associated with separated graphs in a slightly condensed version – the reader may
consult [9, Section 2] and [17, Section 1] for more details. Most importantly, we describe the
C∗-algebra O(E,C) as a universal crossed product for a partial action.

Definition 1.1. A finitely separated graph (E,C) is a graph E = (E0, E1, r, s) together with
a separation C =

⊔
v∈E0 Cv, where each Cv is a partition of r−1(v) into non-empty finite

subsets. In case r−1(v) = ∅, we simply take Cv to be the empty partition, and for any edge
e ∈ E1, we will denote the element of C containing e by [e].

Example 1.2. Below is an example of a finite separated graph:

2

2

3

2

2

130



NUCLEARITY AND EXACTNESS 3

We gladly use the same colour for edges with different ranges when depicting separated graphs
– otherwise one would need nine colours here – so the colouring should only be understood
as a partition of the edges going into a given vertex. The numbering indicates the number of
edges, so that we may simply write a number, say 42, instead of visually representing each of
the 42 edges. This particular graph will serve as our main example throughout the paper.J
Recall that a set of partial isometries S is called tame if every product formed from S ∪ S∗
is again a partial isometry.

Definition 1.3 ([5, Definition 2.4]). Let (E,C) denote a finitely separated graph. The
universal tame graph C∗-algebra O(E,C) is the universal C∗-algebra generated by E0 t E1

with relations

(V) uv = δu,vv and u = u∗ for u, v ∈ E0,
(E) es(e) = r(e)e = e for e ∈ E1,

(SCK1) e∗f = δe,fs(e) if [e] = [f ],
(SCK2) v =

∑
e∈X ee

∗ for all v ∈ E0 and X ∈ Cv,
(T) E1 ⊂ O(E,C) is tame.

The reader should note that we use the convention of [4], [5], [9] and [17], often referred to
as the Raeburn-convention, opposite to the one used in [7] and [8].

Remark 1.4. A subgraph (F,D) of (E,C) is called complete if

Dv = {X ∈ Cv | X ∩ F 1 6= ∅}
for every v ∈ F 0, and by universality there is an induced ∗-homomorphism O(F,D) →
O(E,C). Since every finitely separated graph is the direct limit of its finite complete sub-
graphs (see [8, Section 3] for the precise meaning of this), and O is a continuous functor from
the category of finitely separated graphs [5, Proposition 7.2], we see that O(E,C) may always
be approximated by C∗-algebras O(F,D) for (F,D) a finite separated graph. J
We now recall a bit of terminology related to separated graphs from [17].

Definition 1.5. Let (E,C) denote a (finitely) separated graph. The double Ê of E is the

graph given by Ê0 := E0 and Ê1 = E1t{e−1 | e ∈ E1} with range and source maps extended
by r(e−1) := s(e) and s(e−1) = r(e). An admissible path α in (E,C) is a path (read from the

right) in Ê such that

(1) any subpath ef−1 with e, f ∈ E1 satisfies e 6= f ,
(2) any subpath e−1f with e, f ∈ E1 satisfies [e] 6= [f ].

We regard the vertices v ∈ E0 as the trivial admissible paths with r(v) := v =: s(v), and if
α is a non-trivial admissible path, we will write id(α) and td(α) for the initial and terminal
symbol of α, respectively; for instance

id(ef
−1) = f−1 and td(ef

−1) = e.

We then extend the range and source functions to admissible paths by the formulas r(α) :=
r(td(α)) and s(α) := s(id(α)). For admissible paths α and β, we will denote the concatenation
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by βα, and we will always write β · α if we allow for cancellation of mutual inverses.

A closed path in (E,C) is a non-trivial admissible path α with r(α) = s(α), and α is called
a cycle if the concatenation αα is an admissible path as well. Either way, we shall say that
α is based at r(α) = s(α), and α is called base-simple if r(β) 6= s(α) for all proper subpaths
s(α) < β < α. We finally define a natural partial order ≤ on the set of admissible paths by

β ≤ α⇔ β is an initial subpath of α,

and whenever s(α) = s(β), we write α ∧ β ≤ α, β for the maximal initial subpath. J
The notion of a partial action is fundamental to this work, and so we briefly recall the
essentials.

Definition 1.6. A partial action θ : G y Ω of a discrete group G on a topological space Ω
is a family of homeomorphisms of open subspaces {θg : Ωg−1 → Ωg}g∈G, such that

• θg(Ωg−1 ∩ Ωh) ⊂ Ωgh for all g, h ∈ G,
• θg(θh(x)) = θgh(x) for all g, h ∈ G and x ∈ Ωh−1 ∩ Ωh−1g−1 .

For any point x ∈ Ω, we will write Gx := {g ∈ G | x ∈ Ωg−1} for the group elements that
can act on x. Now if θ′ : G y Ω′ is another partial action, then a map ϕ : Ω → Ω′ is called
G-equivariant if

• ϕ(Ωg) ⊂ Ω′g for all g ∈ G,
• θ′g(ϕ(x)) = ϕ(θg(x)) for all g ∈ G and x ∈ Ωg−1 .

Similarly to the above, one can define the concept of a partial action on a C∗-algebra, de-
manding that the domains should be closed two-sided ideals. Hence, if Ω is a locally compact
Hausdorff space, then θ translates into a partial C∗-action θ∗ : G y C0(Ω). As is the case
for global actions, one can associate both a full and a reduced crossed product to a partial
action, and there is a canonical surjective ∗-homomorphism

C0(Ω) oG→ C0(Ω) or G,

called the regular representation. We refer the reader to [13] for a comprehensive treatment
of the theory of partial actions and their crossed products. J
We now proceed to describe the partial dynamical system associated with a finitely separated
graph, introduced in [4] for finite bipartite graphs and extended to the more general setting
in [17].

Definition 1.7 ([17, Definition 2.6]). Suppose that (E,C) is a finitely separated graph, and
let F denote the free group on E1. Given ξ ⊂ F and α ∈ ξ, the local configuration ξα of ξ at
α is the set

ξα := {s ∈ E1 t (E1)−1 | s ∈ ξ · α−1}.
Then Ω(E,C) is the disjoint union of the discrete space E0

iso and the set of ξ ⊂ F satisfying
the following:

(a) 1 ∈ ξ.
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(b) ξ is right-convex : In view of (a), this exactly means that if eεnn · · · eε11 ∈ ξ for ei ∈ E1

and εi ∈ {±1}, then eεmm · · · eε11 ∈ ξ as well for any 1 ≤ m < n.
(c) For every α ∈ ξ, there is some v ∈ E0 and eX ∈ X for each X ∈ Cv, such that

ξα = s−1(v) t {e−1
X | X ∈ Cv}.

Ω(E,C) is made into a topological space by regarding it as a subspace {0, 1}FtE0
iso. One can

easily check that it becomes a zero-dimensional, locally compact Hausdorff space, which is
compact if and only if E0 is a finite set. A topological partial action θ = θ(E,C) : F y Ω(E,C)
with compact-open domains is then defined by setting

Ω(E,C)α := {ξ ∈ Ω(E,C) | α−1 ∈ ξ} and θα(ξ) := ξ · α−1

for α ∈ F and ξ ∈ Ω(E,C)α−1 . It follows from (a), (b) and (c) above that Ω(E,C)α is
non-empty if and only if α is an admissible path. We finally set Ω(E,C)s(e) := Ω(E,C)e−1

for every e ∈ E1 and

Ω(E,C)v :=
⊔

e∈X
Ω(E,C)e

for every X ∈ Cv. Note that in case X ∈ Cv and v = s(e), these two definitions coincide. If
v is isolated, we simply set Ω(E,C)v := {v}. The reader may think of Ω(E,C)v as the set of
configurations “starting” in v, and we have Ω(E,C) =

⊔
v∈E0 Ω(E,C)v. J

We will also need the notion of an animal.

Definition 1.8 ([17, Definition 2.9]). An (E,C)-animal is a right-convex subset ω ⊂ ξ of a
configuration ξ ∈ Ω(E,C) \ E0

iso such that {1} ( ω. It is called finite if it is a finite set, and
we can define a compact subset of Ω(E,C) by

Ω(E,C)ω := {ξ ∈ Ω(E,C) | ω ⊂ ξ},
which is open if ω is finite. It is easy to check that if {1} 6= S ⊂ F is any non-empty subset
such that α · β−1 is admissible for distinct α, β ∈ S ∪ {1}, then the right-convex closure
〈S〉 := conv(S ∪ {1}) of S ∪ {1} inside F defines an (E,C)-animal. We warn the reader that
we have the somewhat confusing identity Ω(E,C)α = Ω(E,C){α−1}.

Our main tool for studying the tame universal C∗-algebra of a separated graph is the following
result, which was first obtained for finite bipartite separated graphs in [4].

Theorem 1.9 ([17, Theorem 2.10]). Let (E,C) denote a finitely separated graph. Then there
is a canonical isomorphism of C∗-algebras O(E,C) ∼= C0(Ω(E,C)) o F. J
As a consequence of this theorem, there is also a natural reduced tame C∗-algebra.

Definition 1.10 ([5, Definition 6.8]). The reduced tame graph C∗-algebra of a finitely sepa-
rated graph (E,C) is the reduced crossed product Or(E,C) := C0(Ω(E,C)) or F. J
Just as for non-separated graphs, there are certain sets of vertices that naturally correspond
to ideals.
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Definition 1.11 ([8, Definition 6.3 and Definition 6.5]). Let (E,C) denote a finitely separated
graph. Given any subset of vertices H ⊂ E0, the full subgraph (EH , C

H) of H is given by
E0
H := H,

E1
H := {e ∈ E1 | r(e), s(e) ∈ H}

with restricted range and source maps, and separation CH := {X ∩ E1
H | X ∩ E1

H 6= ∅}.
The set H is called hereditary if r(e) ∈ H implies s(e) ∈ H for any e ∈ E1, and it is called
C-saturated if s(X) ⊂ H for X ∈ Cv implies v ∈ H. The set of hereditary and C-saturated
subsets H ⊂ E0 is denoted H(E,C), and for all H ∈ H(E,C), we also have a quotient graph
(E/H,C/H); this is simply the full subgraph of E0 \H. J

Modding out the ideal generated by a hereditary and C-saturated subset, one obtains the
tame graph C∗-algebra of the corresponding quotient graph.

Theorem 1.12 ([9, Theorem 5.5], [17, Theorem 2.19]). Let (E,C) denote a finitely separated
graph and consider any H ∈ H(E,C). The ideal I(H) in O(E,C) generated by H is the ideal
induced from the open and invariant subspace U(H) := θF

(⊔
v∈H Ω(E,C)v

)
, and there is a

canonical isomorphism O(E,C)/I(H) ∼= O(E/H,C/H). J

Recall that in the non-separated setting, the ideal I(H) corresponding to a hereditary and
saturated set canonically contains C∗(EH) as a full corner. This fails in the separated setting
for two reasons:

(1) The canonical map

p :
⊔

v∈H
Ω(E,C)v → Ω(EH , C

H)

of [17, Remark 2.8] is usually not injective.
(2) There are usually admissible paths α with r(α), s(α) ∈ H, which are not entirely

contained in (EH , C
H).

In section 4, we will consider certain hereditary and C-saturated subsets H, where situation
(2) does not occur. We will then show that nuclearity of O(E,C) can be inferred from
nuclearity of O(EH , C

H) and O(E/H,C/H) in spite of (1).

2. Topologically amenable partial actions

In this section, we define the notion of topological amenability for partial actions of discrete
groups on locally compact Hausdorff spaces. Using the machinery of groupoids, we then check
that our definition is equivalent to nuclearity of the crossed product C∗-algebras. The author
would like to thank Claire Anantharaman-Delaroche for suggesting a groupoid approach to
this problem.

We first present the necessary definitions from groupoid theory. The reader is referred to [18]
for a comprehensive treatment of topological groupoids and their C∗-algebras.
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Definition 2.1. A groupoid G is a set with a distinguished subset G(0) ⊂ G, range and source
maps r, s : G → G(0) and a partial composition

{(α, β) ∈ G × G | s(α) = r(β)} = G(2) 3 (α, β) 7→ α · β,
such that

(1) r(α · β) = r(α) and s(α · β) = s(β) for (α, β) ∈ G(2),
(2) r(α) = α = s(α) for all α ∈ G(0),
(3) r(α) · α = α = α · s(α) for all α ∈ G,
(4) (α · β) · γ = α · (β · γ) for (α, β), (β, γ) ∈ G(2),
(5) for all α ∈ G, there is α−1 ∈ G such that

α · α−1 = r(α) and α−1 · α = s(α).

We shall use the fiber notation Gx := r−1(x) for x ∈ G(0). J
Alternatively, a groupoid can be defined as a small category in which all morphisms are
invertible: Letting G denote the collection of morphisms and identifying the objects G(0) of
the category with the collection of identity morphisms, we have natural range and source
maps as above, an associative partial composition and inverses. However, for our purposes it
is easier to stress all the axioms explicitly as we shall immediately impose extra structure.

Definition 2.2. A topological groupoid G is a groupoid equipped with a topology such that all
the operations (i.e. range, source, composition and inversion) are continuous when G(0) ⊂ G
is given the subspace topology. Moreover, G is called an étale groupoid, if r and s are local
homeomorphisms. J
The reason for passing to groupoids is that we can encode a partial action into a groupoid.

Example 2.3 (Transformation groupoid). Consider a partial topological action θ : G y Ω
of a discrete group G on a locally compact Hausdorff space Ω. To any such partial action,
we can associate a groupoid Gθ as follows: Set

Gθ := {(g, x) ∈ G× Ω | x ∈ Ωg−1} , G(0)
θ := {1} × Ω,

and define range and source maps r, s : Gθ → G(0)
θ by

r(g, x) := (1, θg(x)) and s(g, x) := (1, x).

Then α = (g, x) ∈ Gθ and β = (h, y) ∈ Gθ are composable if and only if x = θh(y), in which
case we set

α · β = (g, x) · (h, y) := (gh, y).

We define an inversion by (g, x)−1 = (g−1, θg(x)), and giving Gθ the subspace topology of
G × Ω, it is easily checked that it becomes an étale locally compact Hausdorff groupoid,
called the transformation groupoid of θ. In the future we shall always identify G(0) = {1}×Ω
and Ω. J
In the following, whenever µ is a measure supported on Gs(α), α · µ is the measure supported
on Gr(α) defined by α · µ(A) := µ(α−1 · A).
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Definition 2.4 ([19, Definition 2.6]). Let G denote a locally compact Hausdorff groupoid.
A topological approximate invariant mean on G is a net (mi)i∈I , where each mi is a family
(mx

i )x∈G(0) , m
x
i being a probability measure on Gx = r−1(x), such that

(1) for all i ∈ I and f ∈ Cc(G), the map G(0) 3 x 7→
∫
Gx f dm

x
i is continuous,

(2) supα∈K ‖α ·ms(α)
i −mr(α)

i ‖ → 0 for all compact subsets K ⊂ G,

where the norm expression of (2) denotes the total variation of the measures. The groupoid
G is said to be topologically amenable if it admits a topological approximate invariant mean.

Remark 2.5. Topological amenability has a number of different definitions in the literature,
one being the existence of a topological invariant density (see [19, Definition 2.7]). This is
also the approach in [12, Section 5.6], but by [3, Proposition 2.2.13] these two definitions
are equivalent in the presence of a continuous Haar system, which Gθ always possesses [2,
Proposition 2.2]. J
We now specialise to partial actions of a discrete group G on a locally compact Hausdorff
space. To this end, define

Prob(G) := {µ ∈ `1(G) | µ ≥ 0 and ‖µ‖1 = 1}.
Then G acts on Prob(G) by g.µ(h) := µ(hg).

Definition 2.6. Consider a partial action θ : G y Ω of a discrete group G on a locally
compact Hausdorff space Ω. A topological approximate invariant mean for θ is a net (mi)i∈I ,
where eachmi is a family (mx

i )x∈Ω withmx
i ∈ Prob(G) supported onGx = {g ∈ G | x ∈ Ωg−1},

such that

(1) for all i ∈ I and g ∈ G, the map Ωg−1 3 x 7→ mx
i (g) is continuous,

(2) supx∈K ‖g.mx
i −mθg(x)

i ‖1 → 0 for any g ∈ G and all compact subsets K ⊂ Ωg−1 ,

where the norm expression in (2) is the usual norm on `1(G). The partial action is said to be
topologically amenable if it admits a topological approximate invariant mean. J
Note that for global actions, the above definition of topological amenability is equivalent
to the classical one, see for instance [12, Definition 4.3.5]. In order to verify that it is the
appropriate generalisation to partial actions, we simply check that it is indeed a special case
of Definition 2.4.

Proposition 2.7. A topological partial action θ : G y Ω of a discrete group on a locally
compact Hausdorff space is topologically amenable in the sense of Definition 2.6 if and only
if the transformation groupoid Gθ is topologically amenable in the sense of Definition 2.4.

Proof. Given a topological approximate invariant mean (mi)i∈I on Gθ, define µxi ∈ Prob(G)
by µxi (g) := mx

i (g
−1, θg(x)) for all g ∈ Gx, and set µxi (g) := 0 for g /∈ Gx. By assumption, mx

i

is supported on the discrete set

Gxθ = r−1(x) = {(g−1, θg(x)) ∈ G× Ω | g ∈ Gx},
which is mapped bijectively to Gx under the map (g−1, θg(x)) 7→ g, so µxi is well-defined. To
check (1) for some given i ∈ I and g ∈ G, fix x0 ∈ Ωg−1 . Then we may take a neighbourhood
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x0 ∈ U ⊂ Ωg−1 and a compactly supported continuous function f ∈ Cc({g−1}×Ωg) ⊂ Cc(Gθ)
satisfying 0 /∈ f({g−1} × θg(U)). Now by assumption, the function

x 7→
∫

Gxθ
fdmx

i =
∑

h∈Gx
f(h−1, θh(x)) ·mx

i (h
−1, θh(x)) = f(g−1, θg(x)) · µxi (g)

is continuous, hence so is U 3 x 7→ µxi (g). For (2), observe first that

g.µxi (h) = µxi (hg) = mx
i (g
−1h−1, θhg(x)) = (g, x) ·mx

i

(
h−1, θh(θg(x))

)

for all g ∈ G, x ∈ Ωg−1 and h ∈ Gθg(x) = Gx · g−1. Given any compact set K ⊂ Ωg−1 , we
therefore have

sup
x∈K

∥∥g.µxi − µθg(x)
i

∥∥
1

= 2 · sup
x∈K

∥∥g.µxi − µθg(x)
i

∥∥ = 2 · sup
γ∈{g}×K

∥∥γ ·ms(γ)
i −mr(γ)

i

∥∥→ 0

as desired. We conclude that (µi)i∈I is indeed a topological approximate invariant mean for θ.
The reverse implication is almost identical: Given a topological approximate invariant mean
(µi)i∈I for θ, we set

mx
i (g, y) :=

{
µxi (g

−1) if x = θg(y)
0 otherwise

and observe that mx
i is indeed a probability measure supported on Gxθ . Let f ∈ Cc(Gθ) and

observe that F :=
{
g ∈ G | f({g−1} × Ωg) 6= {0}

}
is a finite subset; we then have

∫

Gxθ
fdmx

i =
∑

g∈F∩Gx
f(g−1, θg(x))µxi (g)

for all x ∈ Ω = G(0)
θ . While every summand x 7→ f(g−1, θg(x))µxi (g) is continuous on Ωg−1 ,

the set F ∩ Gx need not vary continuously. To get around this, fix some x0 ∈ Ω and set
Fx0 := F ∩Gx0 ; we may of course assume that Fx0 ( F . From f being compactly supported,
there exist open neighbourhoods Ug of x0 for all g ∈ F \ Fx0 such that either

• Ug ∩ Ωg−1 = ∅, or
• Ug ∩ Ωg−1 6= ∅ and f

(
{g−1} × θg(Ug ∩ Ωg−1)

)
= {0}.

Defining an open neighbourhood of x0 by U :=
⋂
g∈F\Fx0

Ug, we then have

∫

Gxθ
fdmx

i =
∑

g∈Fx0

f(g−1, θg(x))µxi (g)

for all x ∈ U . Since x 7→ µxi (g
−1) is continuous in x0 for every g ∈ Fx0 , we conclude that

x 7→
∫
Gxθ
fdmx

i is indeed continuous. (2) follows just as above by noting that every compact

set K ⊂ Gθ is of the form
⊔n
i=1{gi} ×Ki for group elements g1, . . . , gn and compact subsets

Ki ⊂ Ωg−1
i

. �
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The real reason for our digression to groupoids is that one can associate a full and a reduced
groupoid C∗-algebra C∗(G) and C∗r (G) to any étale locally compact Hausdorff groupoid, and
in the case G = Gθ, there are canonical isomorphisms

C∗(Gθ) ∼= C0(Ω) oθ G and C∗r (Gθ) ∼= C0(Ω) oθ,r G,

proven in [2, Theorem 3.3 (2)] and [16, Proposition 2.2]. We thus obtain the following for
free.

Theorem 2.8. Consider a partial action θ : Gy Ω of a discrete group on a locally compact
Hausdorff space. Then C0(Ω)or G is nuclear if and only if θ is topologically amenable in the
sense of Definition 2.6, and in that case, the regular representation

C0(Ω) oG→ C0(Ω) or G

is an isomorphism. In particular, C0(Ω) oG is nuclear if and only if C0(Ω) or G is nuclear.

Proof. In view of Remark 2.5 and Proposition 2.7, the first part follows immediately from
[12, Theorem 5.6.18 and Corollary 5.6.17]. Finally, if the full crossed product is nuclear, then
so is the reduced, since nuclearity passes to quotients. �

In the setting of global actions, topological amenability can always be pulled back by contin-
uous equivariant maps. In the partial setting, however, one has to be a little more careful.

Definition 2.9 ([14, Definition 2.2]). Suppose that G acts partially on Ω and Ω′ and that
f : Ω → Ω′ is equivariant, so that Gx ⊂ Gf(x) for all x ∈ Ω. Then f is called d-bijective if
Gf(x) = Gx for all x ∈ Ω.

Proposition 2.10 ([14, Proposition 2.4]). Assume that θ : G y Ω and θ′ : G y Ω′ are
partial actions of a discrete group on locally compact Hausdorff spaces, and that f : Ω → Ω′

is a continuous, equivariant and d-bijective map. If θ′ is topologically amenable, then so is θ.

Proof. Let (mi)i∈I denote a topological approximate invariant mean for θ′ and define µxi :=

m
f(x)
i for all x ∈ Ω and i ∈ I. First observe that each µxi is a probability measure on Gx since

f is d-bijective, and that Ωg−1 3 x 7→ µxi (g) is continuous, being the composition of f and
Ω′g−1 3 y 7→ my

i (g). Finally, if K ⊂ Ωg−1 is compact, then

sup
x∈K
‖g.µxi − µθg(x)

i ‖1 = sup
x∈K
‖g.mf(x)

i −mf(θg(x))
i ‖1 = sup

y∈f(K)

‖g.my
i −m

θ′g(y)

i ‖1 → 0,

hence θ is indeed topologically amenable. �

One particular simple situation giving rise to a topological approximate invariant mean is the
existence of a topological Følner net for the action.

Definition 2.11. Let θ : G y Ω denote a partial action of a discrete group on a locally
compact Hausdorff space, and denote by F(G) the set of non-empty finite subsets of G en-
dowed with the discrete topology. A topological Følner net for θ is a net (Fi)i∈I of continuous
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(i.e. locally constant) functions Fi : Ω → F(G), x 7→ F x
i , such that F x

i ⊂ Gx for all x ∈ Ω,
and for every g ∈ G and all compact subsets K ⊂ Ωg−1 ,

sup
x∈K

|F x
i · g−1 \ F θg(x)

i |
|F x
i |

→ 0.

J
Here is the observation that justifies Definition 2.11.

Proposition 2.12. Let θ : G y Ω denote a partial action of a discrete group on a locally
compact Hausdorff space. If θ has a topological Følner net, then it is topologically amenable.

Proof. Assume that (Fi)i∈I is a topological Følner net for θ, and define

mi : Ω→ Prob(G) by mx
i :=

1

|F x
i |
· 1Fxi ,

where 1F is the characteristic function on a set F . Then each mx
i is certainly a probability

measure with support F x
i ⊂ Gx, satisfying (1) of Definition 2.6. In order to check (2), let

g ∈ G and compact K ⊂ Ωg−1 be given. We then have

‖g.mx
i −mθg(x)

i ‖1 =
|F x
i · g−1 \ F θg(x)

i |
|F x
i |

+
|F θg(x)
i \ F x

i · g−1|
|F θg(x)
i |

+ |F x
i · g−1 ∩ F θg(x)

i | ·
∣∣ 1

|F x
i · g−1| −

1

|F θg(x)
i |

∣∣

=
|F x
i · g−1 \ F θg(x)

i |
|F x
i |

+
|F θg(x)
i · g \ F θg−1 (θg(x))

i |
|F θg(x)
i |

+ |F x
i · g−1 ∩ F θg(x)

i | ·
∣∣|F θg(x)

i | − |F x
i · g−1|

∣∣
|F x
i | · |F

θg(x)
i |

≤ 2 · |F
x
i · g−1 \ F θg(x)

i |
|F x
i |

+ 2 · |F
θg(x)
i · g \ F θg−1 (θg(x))

i |
|F θg(x)
i |

for all x ∈ K. Setting K ′ := θg(K) ⊂ Ωg, we deduce that

sup
x∈K
‖g.mx

i −mθg(x)
i ‖1 ≤ 2 · sup

x∈K

|F x
i · g−1 \ F θg(x)

i |
|F x
i |

+ 2 · sup
y∈K′

|F y
i · g \ F

θg−1 (y)

i |
|F y
i |

→ 0.

�
Given a partial action θ : G y Ω with certain properties, one might desire a global action
with the same properties. In terms of purely dynamical properties, this can always be ac-

complished by considering the minimal globalisation θ̃ : G y Ω̃ of [1, Theorem 2.5]. While

the space Ω̃ resembles Ω locally, it might have very different global properties. The Haus-

dorff property might not even pass from Ω to Ω̃ [1, Example 2.9], but if the domains are
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clopen, such pathological examples do not exist [1, Proposition 2.10]. However, compactness
will usually not be preserved, and so it is natural to ask if there exist “good” compactifica-

tions of θ̃. One particular case of interest is that of a topologically amenable partial action
θ : G y Ω on a compact Hausdorff space with clopen domains. By the above, the minimal
globalisation is topologically amenable and acts on a locally compact Hausdorff space. A

good compactification of θ̃ in this context would be a topologically amenable one, and so the
one-point compactification is not desirable if G is non-amenable. Below, we will provide a
good compactification in this setup for right-convex partial actions of a free group.

Definition 2.13. A partial action F y Ω of a free group is called convex if

Fx = {α ∈ F | x ∈ Ωα−1}
is a right-convex subset of F for all x ∈ Ω. J
We will need the following technical lemma.

Lemma 2.14. Consider a continuous, surjective map of Hausdorff spaces p : Ω → Υ, and
assume that for any y ∈ Υ, there exists an open neighbourhood U of y for which p−1(U) is
compact. If C is any compactification of Υ, then Ωt∂Υ is a Hausdorff compactification of Ω
when equipped with the smallest topology making Ω ↪→ Ωt ∂Υ open and pt id : Ωt ∂Υ→ C
continuous.

Proof. We first show that Ωt∂Υ is Hausdorff, so consider any pair of distinct points x1, x2 ∈
Ωt ∂Υ. Since Ω is open in Ωt ∂Υ, we may assume that at least one of the points belongs to
∂Υ. Then p t id(x1) 6= p t id(x2), so they can be separated by Υ t ∂Υ being Hausdorff and
continuity of pt id. In order to demonstrate compactness, take any net (xi)i∈I in Ωt∂Υ and
consider the net (yi)i∈I with yi = pt id(xi). By compactness of C, it has a convergent subnet
(yi)i∈J and we denote the limit point by y. If y ∈ Υ, then there exist an open neighbourhood

U of y for which p−1(U) is compact, and since p−1(U) contains a subnet of (xi)i∈I , it has a
convergent subnet. Assume instead that y ∈ ∂Υ. Then, since every open neighbourhood of
y inside Ω t ∂Υ is of the form (p t id)−1(U) for an open neighbourhood y ∈ U ⊂ C, we see
that (xi)i∈J converges towards y. �
Theorem 2.15. Suppose that θ : F y Ω is a convex partial action of a free group of rank at
least two on a compact Hausdorff space with clopen domains. Then there exists a Hausdorff

compactification Ω̂ of Ω̃ and an extension θ̂ : F y Ω̂ of θ̃, such that the restriction θ̂ : F y Ω̂\Ω̃
is conjugate to the canonical boundary action F y ∂F. In particular, if θ is topologically

amenable, then so is θ̂.

Proof. Recall that

Ω̃ =
F× Ω

∼ , where (α, x) ∼ (β, y)⇔ x ∈ Ωα−1β and y = θβ−1α(x).

The action is simply induced from the group, θ̃β([α, x]) = [βα, x], and Ω embeds as a clopen

subspace by the map ι : Ω → Ω̃, ι(x) = [1, x]. Now since θ is assumed convex, to each pair
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(α, x) ∈ F×Ω there is unique minimal word σ(α, x) ∈ F such that σ(α, x)−1 ·α ∈ Fx, and it is
straightforward to check that σ respects the relation ∼. We claim that σ is also continuous,
so consider any pair (α, x). Assuming first that σ(α, x) = 1, we note that {α} × Ωα−1 is an
open neighbourhood of (α, x) on which σ attains the value 1. If σ(α, x) 6= 1, we write αx for
the maximal subword (read from the right) of α satisfying αx ∈ Fx and denote the following
letter by s. Then σ is constant on the open neighbourhood

{α} ×
(
Ωα−1

x
\ Ω(sαx)−1

)
,

where we invoke the assumption of clopen domains, hence it is indeed continuous. In conclu-

sion, σ drops to a continuous map σ : Ω̃ → F. Also observe that if β ∈ F does not contain
σ([α, x])−1 as a subword (read from the right), then

σ(θ̃β([α, x])) = σ([β · α, x]) = β · σ([α, x]).

Now define Ω̂ := Ω̃ ∪ ∂F as a set and equip it with the smallest topology that makes the

inclusion Ω̃ ↪→ Ω̂ open and the map σ ∪ id : Ω̂ → F ∪ ∂F continuous. By Lemma 2.14, this

makes Ω̂ into a compact Hausdorff space, and we extend the action by the ordinary action
of F on its boundary. It follows immediately from the above observation that the action on

Ω̃ is compatible with that on the boundary, and so we obtain a short exact sequence

0→ C0(Ω̃) o F→ C(Ω̂) o F→ C(∂F) o F→ 0.

Since both the ideal and the quotient are nuclear, we conclude that the extension is nuclear

as well, hence θ̂ is topologically amenable. �

3. Condition (N) and proper orientability of the branching subgraph

In this section, we introduce Condition (N) for finitely separated graphs and prove that
it is equivalent to both exactness and nuclearity of the C∗-algebra associated to a certain
subgraph. But first, we introduce quite a bit of terminology.

Definition 3.1. A non-trivial admissible path α in a separated graph (E,C) is said to allow
a return if there is an admissible path β making βα a closed path, and a set X ∈ Cv then
allows a return if e−1 allows a return for some e ∈ X. A vertex v ∈ E0 is called a branching
vertex if

|{e ∈ s−1(v) | e allows a return}|+ |{X ∈ Cv | X allows a return}| ≥ 3,

and a branching vertex v is said to admit a local orientation if one of the following holds:

(1) There exists Xv ∈ Cv such that for every base-simple closed path α at v, either
id(α) ∈ X−1

v or td(α) ∈ Xv.
(2) There is an edge ev ∈ s−1(v) such that for every base-simple closed path α at v, either

id(α) = ev or td(α) = e−1
v .

Observe that if v is a branching vertex satisfying (1), then it does not satisfy (2) and Xv is
unique. Likewise, if v is a branching vertex satisfying (2), then it does not satisfy (1) and
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ev is unique. We will therefore refer to the branching vertices admitting local orientations as
either type (1) or (2).

Lemma 3.2. If v is a branching vertex admitting a local orientation, then it satisfies either
Definition 3.1(1 ) or Definition 3.1(2 ) for arbitrary closed paths α based at v.

Proof. We verify the claim for Definition 3.1(1); the proof in the second case is exactly
the same. If α is an arbitrary closed path, we can decompose into base-simple closed paths
α = αn · · ·α1. Assuming that the claim holds for all products of n−1 base-simple closed paths,
we either have id(α) = id(αn−1 · · ·α1) ∈ X−1

v , in which case we are done, or td(αn−1) ∈ Xv.
In the latter case, we must have id(αn) 6∈ X−1

v so td(α) = td(αn) ∈ Xv. �
Remark 3.3. If v admits a local orientation, one should regard X−1

v or ev (depending on
the type of v) as the proper exits of v, while the rest of s−1(v)t r−1(v)−1 should be regarded
as entries. Then any cycle based at v will depart from v using one and arrive at v using the
other, so there is a canonical orientation of the cycle, i.e. a canonical choice between itself
and its inverse. This is why we call it a local orientation. J
We now have the language to define Condition (N).

Definition 3.4. A finitely separated graph (E,C) is said to satisfy Condition (N ) if any
branching vertex v ∈ E0 admits a local orientation. J
It is worth noting that Condition (N) trivially passes to subgraphs.

Example 1.2 (continued). Below, we have marked the branching vertices in blue:

2

2

3

2

2

The reader may check that this graph actually satisfies Condition (N) as the right branching
vertex is of type (1), and the left ones are of type (2). J
Rather than simply negating the above definition, we would also like to have a constructive
understanding of what it means for a graph not to satisfy Condition (N). For clarity, we first
introduce the following technical lemma.

Lemma 3.5. Let P and S denote sets with the following structure: There are functions
ι, τ : P → S, an associative partial composition

{(α2, α1) ∈ P 2 | ι(α2) 6= τ(α1)} → P , (α2, α1) 7→ α2α1,
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NUCLEARITY AND EXACTNESS 15

and a function P 3 α 7→ α−1 ∈ P , such that

ι(α2α1) = ι(α1), τ(α2α1) = τ(α2), ι(α−1) = τ(α), and τ(α−1) = ι(α).

Moreover, assume that for all α1, α2, α3 ∈ P ,

|ι({α1, α2, α3})| ≤ 2 or |τ({α1, α2, α3})| ≤ 2.

If |ι(P )| = |τ(P )| ≥ 3, then there is a unique s ∈ S satisfying s ∈ {ι(α), τ(α)} for all α ∈ P .

Proof. Take α1, α2, α3 ∈ P with distinct ι(αi)’s and define E(α) := {ι(α), τ(α)} for all α ∈ P .
We first claim that E(αi) ∩ E(αj) 6= ∅ for all i, j, and without loss of generality we may take
i = 1 and j = 2. Assume in order to reach a contradiction that E(α1) ∩ E(α2) = ∅. If
ι(α1) 6= τ(α1), then

|ι({α1, α
−1
1 , α2})| = |τ({α1, α

−1
1 , α2})| = 3,

hence ι(α1) = τ(α1), and similarly we must have ι(α2) = τ(α2). We deduce that either

E(α1) ∩ E(α3) = ∅ or E(α2) ∩ E(α3) = ∅,
and without loss of generality we may assume the former. But then

|ι({α1, α2, α
−1
3 α1α3})| = |τ({α1, α2, α

−1
3 α1α3})| = 3,

giving us our desired contradiction. We now even claim that

E(α1) ∩ E(α2) ∩ E(α3) 6= ∅.
Assuming the contrary, we can arrange that

τ(α1) = ι(α2), τ(α2) = ι(α3), and τ(α3) = ι(α1)

by applying the first part and possibly interchanging the indices and taking inverses, hence

|ι({α1, α2, α3})| = |τ({α1, α2, α3})| = 3.

We conclude that
E(α1) ∩ E(α2) ∩ E(α3) = {s}

for some s ∈ S. This implies that there are distinct s1, s2 6= s and i 6= j such that E(αi) =
{s, s1} and E(αj) = {s, s2}. Now if α ∈ P is arbitrary, then by taking suitable inverses
β = αε, βi = αεii , and βj = α

εj
j (i.e. ε, εi, εj ∈ {−1, 1}), we can arrange that

|ι({β, βi, βj})| = 3.

This allows us to apply the above conclusions, hence

∅ 6= E(β) ∩ E(βi) ∩ E(βj) ⊂ E(αi) ∩ E(αj) = {s}.
We deduce that E(β) ∩ E(βi) ∩ E(βj) = {s}, so in particular s ∈ E(β) = E(α). Uniqueness of
s is clear from E(αi) ∩ E(αj) = {s}. �
Proposition 3.6. A finitely separated graph (E,C) does not satisfy Condition (N ) if and
only if there is a branching vertex v ∈ E0 and cycles α = δγ and β = εγ based at v with
γ = α ∧ β < α, β, such that β · α−1 = εδ−1 and βα are cycles.
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Proof. It is clear that if such α and β exist, then v does not admit a local orientation. Now
let v denote any branching vertex in (E,C) and assume instead that such α and β do not
exist. Letting π denote the map s−1(v) t r−1(v)−1 → s−1(v) t Cv given by π(e) := e and
π(e−1) := [e], we define sets P := {closed paths based at v} and S := s−1(v)tCv along with
maps ι, τ : P → S given by ι(α) := π(id(α)) and τ(α) := π(td(α)−1). Obviously, given two
closed paths α1, α2 ∈ P , the concatenated product α2α1 is in P if and only if ι(α2) 6= τ(α1).
In fact, the only assumption of Lemma 3.5 which is not obviously satisfied is that either
|ι({α1, α2, α3})| ≤ 2 or |τ({α1, α2, α3})| ≤ 2 for all triples α1, α2, α3 ∈ P . Assume in order to
reach a contradiction that

|ι({α1, α2, α3})| = |τ({α1, α2, α3})| = 3

for one such triple. Then α := α−1
2 α1 and β := α−1

3 α1 are cycles with α ∧ β = α1 < α, β
such that both β · α−1 = α−1

3 α2 and βα = α−1
3 α1α

−1
2 α1 are cycles as well, contradicting our

assumption. It now follows immediately from Lemma 3.5 that v admits a local orientation. �

With the above characterisation at hand, we can already prove that Condition (N) is a
necessary condition for exactness of O(E,C).

Proposition 3.7. Let (E,C) denote a finitely separated graph and consider the statements

(1) The C∗-algebra O(E,C) is exact.
(2) Every stabiliser of the partial action θ(E,C) is amenable (hence trivial or cyclic).
(3) (E,C) satisfies Condition (N ).

Then (1)⇒ (2)⇒ (3).

Proof. Assuming that (E,C) does not satisfy Condition (N), there are cycles α and β as in
Proposition 3.6. Observe that any reduced product of α’s, β’s and their inverses is admissible,
and denote by F the free subgroup of F generated by α and β. If F were of rank 1, then
we would have α = γm and β = γn for some cycle γ and non-zero integers m,n. As βα is
admissible, we see that m and n have the same sign, contradicting α∧β < α, β. We conclude
that F ∼= F2. Now ω := 〈F 〉 defines an (E,C)-animal, and we can find a configuration
ξ ∈ Ω(E,C)ω with F ≤ Stab(ξ). Formally, this construction can be carried out as follows:
Take any η ∈ Ω(E,C) with {α, β, td(α)−1, td(β)−1} ⊂ η and consider the animal

χ := {γ ∈ η | γ 6≥ α, β, td(α)−1, td(β)−1}.
Then one may verify that ξ :=

⊔
σ∈F χ · σ defines a configuration, and by construction

F ≤ Stab(ξ), so (2) does not hold. It finally follows that O(E,C) is non-exact by [6,
Proposition 7.1(i)]. �

The aim of the rest of this paper is to prove that Condition (N) in fact implies nuclearity of
O(E,C). Roughly speaking, the idea is to decompose the graph into one part ’spanned’ by
the branching vertices, and a complementary part containing no branching vertices, and then
deal with these two subgraphs separately. In the remainder of this section, we will treat the
former graph.
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Definition 3.8. Given any finitely separated graph (E,C), define a relation on E0 by u( v
if there is an admissible path α : u→ v and a cycle β based at v, such that α−1βα is admissible.
Note that ( is transitive, but in general it is not reflexive, symmetric or antisymmetric. In
fact, u( u if and only if u admits a cycle as we may take α = u.

Definition 3.9. Let (E,C) denote a finitely separated graph. The branching subgraph
(EBr, C

Br) is the full subgraph with vertex set

E0
Br :=

{
u ∈ E0 | u( v for a branching vertex v

}
.

Remark 3.10. Note that if there is a closed path based at u passing through a branching
vertex v, then automatically u( v.

Example 1.2 (continued). The branching subgraph of our example is as indicated below:

2

3

2

J
Next, we introduce the notion of a (proper) orientation.

Definition 3.11. Let (E,C) denote a finitely separated graph. A proper orientation of
(E,C) is a decomposition E1 = E1

+ t E1
− such that, for every v ∈ E0, one of the following

holds:

(1) E1
− ∩ r−1(v) ∈ Cv and E1

+ ∩ s−1(v) = ∅.
(2) E1

− ∩ r−1(v) = ∅ and |E1
+ ∩ s−1(v)| = 1.

If (2) is replaced by the weaker assumption

(2’) E1
− ∩ r−1(v) = ∅ and |E1

+ ∩ s−1(v)| ≤ 1,

then it will simply be called an orientation. We shall often regard an orientation as a map
o : E1 → {−1, 1}, where

o(e) =

{
1 if e ∈ E1

+

−1 if e ∈ E1
−

,

and as in [9], an admissible path of the form

eo(en)
n e

o(en−1)
n−1 · · · eo(e2)

2 e
o(e1)
1

will be referred to as positively oriented, while an admissible path of the form

e−o(en)
n e

−o(en−1)
n−1 · · · e−o(e2)

2 e
−o(e1)
1
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is called negatively oriented. J
We first mention a pair of trivial, yet important, observations.

Lemma 3.12. Assume that (E,C) is oriented. Then every path α is of the form α = α−α+,
where α+ and α− are (possibly trivial) positively and negatively oriented paths, respectively.

Proof. We simply have to check that if f εe−o(e) is admissible, then ε = −o(f). Assume first
that o(e) = −1; then r(e) must satisfy Definition 3.11(1) since E1

− ∩ r−1(v) 6= ∅. Now if
ε = 1 so that s(f) = r(e), then necessarily o(f) = −1 = −ε. Conversely if ε = −1, then
r(f) = r(e) with [e] 6= [f ], so o(f) = 1 = −ε. The case o(e) = 1 is completely similar. �
Lemma 3.13. Assume that (E,C) is properly oriented and let ξ ∈ Ω(E,C). Then for every
n ≥ 1, there is a unique positively oriented admissible path ξn ∈ ξ of length n.

Proof. This is clear from Definition 3.11. �
We can now easily prove that properly oriented graphs give rise to topologically amenable
actions.

Proposition 3.14. If (E,C) is properly oriented, then the partial action θ(E,C) admits a
topological Følner sequence.

Proof. Define F ξ
n := {ξk | k ≤ n} for all ξ ∈ Ω(E,C) and n ≥ 1, using the notation of

Lemma 3.13. Given any α ∈ F and ξ ∈ Ω(E,C)α−1 , we write α = α−α+ and, for the sake of
notational simplicity, set η := θα+(ξ). Then α−1

− is positively oriented, so

F ξ
|α+|+n = {β | 1 < β ≤ α+} t F η

n · α+ and F
θα(ξ)
|α−|+n = {β | 1 < β ≤ α−1

− } t F η
n · α−1

−

for all n ≥ 1. We see that

F ξ
|α+|+n · α

−1 = {β | α−1
− ≤ β < α−1} t F η

n · α−1
−

hence ∣∣F|α|+n · α−1 \ F θα(ξ)
|α|+n

∣∣
∣∣F ξ
|α|+n

∣∣ ≤ |α|
|α|+ n

with the upper bound converging to 0 as n→∞ uniformly on Ω(E,C)α−1 . �
In view of the above result, our goal is to extend the local orientations of a Condition (N) graph
into a proper orientation of the entire branching subgraph. This requires some preparation,
which we provide just below. First though, we need a bit more terminology.

Definition 3.15. A vertex v is called weakly branching if there is a cycle passing through
both v and a branching vertex, and an edge e is called critical if e does not allow a return
and r(e) is weakly branching.

Lemma 3.16. Let (E,C) denote a finitely separated graph. Any edge e ∈ E1
Br satisfies exactly

one of the following:

(1) e is on a cycle passing through a branching vertex.
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(2) e is critical.
(3a) If α is a closed path in (EBr, C

Br), based at r(e) and passing through a branching
vertex, then id(α) ∈ [e]−1.

(3b) If α is a closed path in (EBr, C
Br), based at s(e) and passing through a branching

vertex, then id(α) = e.

Proof. It is clear that the above statements are mutually exclusive. In order to see that they
cover all edges, assume that e ∈ E1

Br does not satisfy (2), (3b) or (3a). Then we can take
closed paths α1, α2 in (EBr, C

Br) passing through branching vertices, such that s(α1) = s(e),
s(α2) = r(e), id(α1) 6= e and id(α2) /∈ [e]−1. We may assume that td(α1) 6= e−1, so eα1e

−1 is
admissible as well as td(α2) 6= e. Observe that if e−1α2 is admissible, then α1α1e

−1α2e is a
cycle passing through a branching vertex, so let us assume it is not. Then β2 is a cycle, so
r(e) is weakly branching. It follows from e being non-critical that e admits a return, and we
let β denote an admissible path for which βe is a closed path. Finally, if td(β) 6= e−1, then
βα2e is a cycle, and if td(β) = e−1, then α1βe is a cycle, so we obtain (1) either way. �
Example 1.2 (continued). Just below, we have marked the weakly branching (but non-
branching) vertices as red and marked every non-type (1) edge with its type in parentheses:

(3b)

(2)

(3a)
2

3

2

J
Now we are ready to build a proper orientation of the branching subgraph.

Theorem 3.17. If (E,C) is a finitely separated graph satisfying Condition (N ), then the
branching subgraph (EBr, C

Br) admits a proper orientation. In particular, the tame C∗-algebra
O(EBr, C

Br) is nuclear.

Proof. To simplify the notation, let us assume that any vertex u ∈ E0 satisfies u ( v for
some branching vertex v, i.e. that (E,C) is its own branching subgraph. Now let v denote
a branching vertex and let e ∈ r−1(v) ∪ s−1(v) be of type (1) as stated in Lemma 3.16. We
then first define an orientation ov(e) of e relative to v by

ov(e) :=





−1 if v is of type (1) and either e ∈ Xv or s(e) = v
1 if v is of type (1), r(e) = v and e 6∈ Xv

1 if v is of type (2) and either e = ev or r(e) = v
−1 if v is of type (2), s(e) = v and e 6= ev
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Note that if e is a loop, i.e. if r(e) = s(e), then r(e) is necessarily of type (1) and e ∈ Xr(e), so
the above is well-defined. Next, we define the orientation of arbitrary type (1) edges. Given
any cycle α = eεnn · · · eε11 based at v, observe that ov(e1) = ε1 if and only if ov(en) = εn since
eε11 e

εn
n is admissible. We can therefore extend the orientation at v by declaring

oα(ei) :=

{
εi if ov(e1) = ε1

−εi if ov(e1) = −ε1
,

and consequently oα(ei) = oα−1(ei). We claim that the orientation is in fact independent of
the cycle in question, but in order to see this, we need the following claim:

Claim: If eε22 αe
ε1
1 : v → u is an admissible path between branching vertices which may be

extended to a cycle, then ov(e1) = ε1 if and only if ou(e2) = ε2.

Proof of claim. Observe that in all situations, if ov(e1) 6= ε1, then there is a closed path γ
based at v making eε22 αe

ε1
1 γe

−ε1
1 α−1e−ε22 admissible. If u is type (1), this implies eε22 ∈ Xu so

ε2 = 1 6= −1 = ou(e2), and if u is type (2), then e−ε22 = eu so ε2 = −1 6= 1 = ou(e2). This
proves one implication. To obtain the other, consider any extension f δ22 βf

δ1
1 e

ε2
2 αe

ε1
1 to a cycle.

If ε1 = ov(e1), then δ2 = ov(f2) as well by the above, so ou(f1) = δ1 by the first implication.
Using the above observation once more, we finally arrive at ou(e2) = ε2 as well. �
Now if α = α2eα1 and β = β2eβ1 are cycles based at branching vertices v and u, respectively,
then α2eβ1β2eα1 is a cycle based at v passing through u, so evidently oα(e) = oβ(e) by the
above claim. We conclude that setting o(e) := oα(e) for any choice of cycle α is well-defined.
Finally, for edges of other types we simply set

o(e) :=

{
−1 if e is of type (2) or (3a)
1 if e is of type (3b)

,

so all that remains is to check the axioms.

First take u ∈ E0 to be weakly branching; we then divide into the following two situations:

(i) There is some type (1) edge e ∈ r−1(u) with o(e) = −1.
(ii) There is some type (1) edge e ∈ s−1(u) with o(e) = 1.

As any weakly branching vertex admits a cycle passing through a branching vertex, and every
such cycle is either positively or negatively oriented by construction, clearly one of these will
always hold. Observe also that both cannot hold at u: If there were type (1) edges e ∈ r−1(u)
and f ∈ s−1(u) with o(e) = −1 and o(f) = 1, then taking any positively oriented cycle α
with id(α) = e−1, we would have td(α) 6= f−1. But then u is branching, and the assumption
contradicts the definition of o at u. Hence (i) and (ii) are mutually exclusive.

Assuming (i), we claim that u actually satisfies Definition 3.11(1). If there were some f ∈
s−1(v) with o(f) = 1, then by the above f would be of type (3b). But as u = s(f) admits
a cycle, this is surely not the case, hence o−1(1) ∩ s−1(u) = ∅. Next, assume [f ] = [e]; we
must show that o(f) = −1. If f is of type (1), there is a cycle α with id(α) = f−1. Taking
any positively oriented cycle β with id(β) = e−1, we see that the cycle βα must be positively
oriented, hence o(f) = −1. Now as the orientation of any type (2) or type (3a) edge is −1, it
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simply remains to check that f is not of type (3b). Assuming that it is, there exists a closed
path β based at u making f−1βf admissible. Taking some negatively oriented admissible
path α : v → u with v branching and td(α) = e, we then see that α−1βα is a closed path.
However, this is impossible since α is negatively oriented. We conclude that o(f) = −1 as
desired. Finally, we must show that o(f) = 1 if r(f) = u and [f ] 6= [e]. Supposing first that
f is of type (1), we can take a cycle α with id(α) = f−1. Now if td(α) ∈ [e], then necessarily
o(f) = 1, and if td(α) /∈ [e], then u is branching, in which case the claim is clear. Next, we
show that f cannot be of type (2). If u is branching, this is obvious, so let us assume it is not.
Then we may take an admissible path α : u→ v with v branching and id(α) = e−1 as well as
a closed path β based at v, such that α−1βα is admissible. Now observe that f−1α−1βαf is
a closed path, so f is not of type (2). It is also clear that f cannot be of type (3a), hence
o(f) = 1. We conclude that o−1(−1)∩r−1(u) = [e], so o does indeed satisfy Definition 3.11(1)
at u. Having done the harder case in details, we leave it to the reader to check that if (ii)
holds for some weakly branching vertex u, then Definition 3.11(2) is satisfied at u.

Finally, assume that u ∈ E0 is not weakly branching, and let α : u → v and β : v → v be
implementing the relation u( v for some branching vertex v. We once more divide into two
different scenarios:

(a) The initial symbol satisfies id(α) ∈ (E1)−1.
(b) The initial symbol satisfies id(α) ∈ E1.

We only consider (a) and leave (b) to the reader. First observe that if α′ : u → v′ and
β′ : v′ → v′ implement the relation u( v′ for a branching vertex v′, then necessarily id(α

′) ∈
(E1)−1 and [id(α)−1] = [id(α

′)−1]; otherwise α′−1β′α′α−1βα would be a cycle passing through a
branching vertex. Now whenever [e] = [id(α)−1], we claim that such α′ and β′ with id(α

′) = e−1

exist. Assuming this is not the case for one such edge e, there is an admissible path α′e : u→ v′

and a cycle β′ : v′ → v′ with v′ branching, such that e−1α′−1βα′e is admissible. But then α′

and β′ contradict the observation we have just made. We conclude that Definition 3.11(1) is
indeed satisfied at u, thereby concluding the proof. �

4. The Branch Free Subgraph

In this section, we study the subgraph obtained as the complement of the branching subgraph,
and our ultimate goal is to prove that the associated C∗-algebra is nuclear.

Definition 4.1. Let (E,C) denote a finitely separated graph. The branch free subgraph
(EBF, C

BF) is the full subgraph with vertex set E0
BF := E0 \ E0

Br, and the acyclic subgraph
(EAc, C

Ac) is the full subgraph with vertex set

E0
Ac := E0 \ {u ∈ E0 | u( v for some v}

Note that by definition, E0
Ac ⊂ E0

BF.

Example 1.2 (continued). This is the branch free subgraph of our example:
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2

2

Note that it cannot be given an orientation as one can ’change direction’ using the doubled
blue or green edges. J
Before investigating these two subgraphs more closely, we introduce a very useful notion in
the study of nuclearity.

Definition 4.2. Let (E,C) denote a finitely separated graph. A hereditary and C-saturated
subset H ⊂ E0 will be called return free if every admissible path α with r(α), s(α) ∈ H is
entirely contained in (EH , C

H).

Proposition 4.3. Let (E,C) denote a finitely separated graph. If H ∈ H(E,C) is return
free and both O(EH , C

H) and O(E/H,C/H) are nuclear, then so is O(E,C).

Proof. By Theorem 1.12, there is a short exact sequence

0→ I(H)→ O(E,C)→ O(E/H,C/H)→ 0,

and since nuclearity passes to extensions, we simply have to verify that I(H) is nuclear. Note
that Ω(E,C)H :=

⊔
v∈H Ω(E,C)v is an F-full clopen subspace of U(H), so I(H) is Morita

equivalent to the crossed product C(Ω(E,C)H) o F for the restricted action θ(E,C)|Ω(E,C)H

(see [9, Definition 3.24] for the appropriate definitions and references). Since H is assumed
return free, the domain of any path α ∈ F \ F(E1

H) is empty, hence

C(Ω(E,C)H) o F ∼= C(Ω(E,C)H) o F(E1
H).

Now observe that as in [17, Remark 2.8], there is a canonical d-bijective, F(E1
H)-equivariant

surjective map Ω(E,C)H → Ω(EH , C
H) given by

ξ 7→
{
ξ ∩ F(E1

H) if ξ ∈ Ω(E,C)v for v /∈ (EH)0
iso

v if ξ ∈ Ω(E,C)v for v ∈ (EH)0
iso

.

Since the partial action θ(EH ,C
H) is topologically amenable by assumption, so is the partial

action F(E1
H) y Ω(E,C)H by Proposition 2.10. It follows that C(Ω(E,C)H) o F and, in

turn, I(H) is nuclear. �
With the above proposition in mind, the following lemma simplifies our task tremendously.

Lemma 4.4. E0
BF and E0

Ac are return free hereditary and C-saturated sets for any finitely
separated graph (E,C).
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Proof. We only consider the case of E0
BF as the proofs are virtually identical, and we first

verify that it is hereditary. Assuming that s(e) ∈ E0
Br for some e ∈ E1, there is an admissible

path α : s(e)→ v and a cycle β based at v such that α−1βα is admissible. Setting γ := α ·e−1,
we see that γ−1βγ is admissible as well, hence r(e) ∈ E0

Br.

We move on to checking C-saturation, so let u ∈ E0
Br and consider any X ∈ Cu. Take α and

β as above implementing the relation u( v for some branching vertex v. If id(βα) ∈ X−1,
then we certainly have s(X) ∩ E0

Br 6= ∅, so we may assume that βαx is admissible for any
x ∈ X. But then (αx)−1β(αx) implements the relation s(x)( v, so in fact s(X) ⊂ E0

Br. We
conclude that E0

BF is indeed C-saturated.

Finally, we claim that E0
BF is return free. Assume in order to reach a contradiction that there

actually is an admissible path α with r(α), s(α) ∈ E0
BF, which is not contained in the branch

free subgraph. Taking α to be minimal with these properties, we can write α = e−1
2 βe1 for

e1, e2 ∈ E1 \ (E1
Br ∪E1

BF) and β an admissible path in the branching subgraph. Then we can
take admissible paths αi : r(ei)→ vi, with vi a branching vertex, and cycles βi based at vi for
i = 1, 2 making α−1

i βiαi admissible. As s(ei) ∈ E0
BF, we must have id(αi) ∈ [ei]

−1 for i = 1, 2.
But then (α2βe1)−1β2(α2βe1) is admissible, contradicting v1 ∈ E0

BF. �
We easily obtain nuclearity in the acyclic case.

Proposition 4.5. The tame C∗-algebra O(EAc, C
Ac) is locally AF for any finitely separated

graph (E,C). In particular, it is nuclear.

Proof. We claim that O(E,C) is locally AF whenever (E,C) admits no cycles, and by conti-
nuity of O, we may assume (E,C) to be finite. Now simply observe that any admissible path
has length at most 3 · |E0|; otherwise it would contain a cycle. It follows that Ω(E,C) is a
finite space and Ω(E,C)α 6= ∅ for only finitely many α ∈ F, hence O(E,C) = C(Ω(E,C))oF
is finite dimensional. �
Now we are ready to deal with the final obstacle before the main theorem.

Theorem 4.6. O(EBF, C
BF) is nuclear for any finitely separated graph (E,C).

Proof. We claim thatO(E,C) is nuclear whenever (E,C) is a finitely separated graph without
branching vertices, and by continuity of O, we might as well assume (E,C) to be finite.
Moreover, as O(EAc, E

Ac) is nuclear by Proposition 4.5, we may further reduce to the quotient
graph (E/H,C/H) for H := E0

Ac due to Proposition 4.3 and Lemma 4.4. In conclusion, we
may take (E,C) to be a finite graph such that for all u ∈ E0, u( v for some v ∈ E0.

Let V ⊂ E0 denote the set of vertices admitting a cycle and write v1 ∼ v2 for v1, v2 ∈ V if
there is a cycle passing through both v1 and v2. This is clearly an equivalence relation, and
we will prove the theorem by induction over |V /∼|, the number of equivalence classes. For
the induction start, assume |V /∼| = 1. We claim that for any ξ ∈ Ω(E,C), viewing it as a
tree, there is a bi-infinite linear subset F ξ ⊂ ξ with the following properties

(1) F θα(ξ) = F ξ · α−1 whenever α ∈ ξ,
(2) dist(F ξ, 1) ≤ 3|E0| in the ordinary tree metric of ξ,
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(3) ξ 7→ F ξ
n := F ξ ∩ ξn+3|E0| is locally constant for any n,

where ξk := {β ∈ ξ : |β| ≤ k}. It should be clear from these properties that (Fn) will be
a topological Følner sequence, hence O(E,C) will be nuclear by Theorem 2.8 and Proposi-
tion 2.12. Specifically, define

F ξ := {α ∈ ξ | r(α) ∈ V },
where r(1) := v for v such that ξ ∈ Ω(E,C)v by convention. In order to see that F ξ enjoys
the above properties, we first need to verify the following minor claim.

Claim: Let X ∈ C. If for some e ∈ X there exists an admissible path γ with id(γ) = e−1

and r(γ) ∈ V , then any f ∈ X has this property.

Proof of claim. Let e ∈ X and γ be as above, and assume in order to reach a contradiction
that some f ∈ X does not have the above property. Then, since s(f) ( v for some v ∈ V ,
there is an admissible path αf : s(f)→ v and a cycle β : v → v such that α−1βα is admissible.
Now by v ∼ r(γ), the admissible path γα−1 can be extended to a closed path based at v. But
from α−1βα being admissible, we may then conclude that v is branching, a contradiction. �
One immediate consequence of the claim (and the assumption that any u satisfies u( v for
some v) is that any ξ ∈ Ω(E,C) is necessarily infinite. Now observe that if an admissible
path passes a vertex three times (including the source and range), then that vertex must
admit a cycle. In particular, there is some α ∈ F ξ with |α| ≤ 3|E0|. Another consequence
of the claim is that for all α ∈ F ξ, at least two neighbours of α in ξ are contained in F ξ. It
therefore only remains to check that F ξ is contained a linear subset. Assume in order to reach
a contradiction that this is not the case for some ξ ∈ Ω(E,C). Then, by possibly replacing ξ
with a translate, we can find non-trivial admissible paths α1, α2, α3 ∈ ξ with r(αi) ∈ V such
that the concatenation α−1

i αj is admissible for i 6= j. We claim that u := s(αi) ∈ V . If this
were not the case, then we could take a non-trivial admissible path α : u→ v and a cycle β at
v implementing the relation u( v for some v ∈ V . We may then apply the same argument
as above in the proof of the claim to show that v is branching, a contradiction. Now since
u ∈ V and u ∼ r(αi) for i = 1, 2, 3, each αi may be extended to a closed path. But then u
is branching – we conclude that F ξ is indeed a bi-infinite linear subset. It is obvious that it
satisfies (1) and (3), and we have already seen that (2) holds as well, thereby concluding the
proof of the induction start.

For the inductive step, let |V /∼| ≥ 2 and suppose that the claim holds whenever the number
of equivalence classes is at most |V /∼|−1. We let the relation( descend to the equivalence
classes u, v ∈ V /∼ by

u( v⇔ u( v for some u ∈ u and v ∈ v,

and note that if u ( v, then u′ ( v for any u′ ∼ u. Now observe that ( becomes
antisymmetric on the set of equivalence classes, so there exist u, v ∈ V /∼ with u 6( v.
Defining H := {u ∈ E0 | u 6( v for any v ∈ v}, it is then straightforward to check that
H is a return free hereditary and C-saturated set. Being return free, any cycle in (E,C) is
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properly contained in one of the graphs (EH , C
H) and (E/H,C/H), and since u ⊂ H and

v ⊂ (E/H)0, the two graphs satisfy the inductive assumption. We conclude that O(EH , C
H)

and O(E/H,C/H) are both nuclear, hence so is O(E,C) by Proposition 4.3. This finishes
the inductive step and, in turn, the proof. �
Example 1.2 (continued). Decomposing our branch free subgraph as in the above proof
will leave us with the two subgraphs

2

2

each of which produces nuclear C∗-algebras.

Remark 4.7. In the above proof, we relied on an inductive argument to prove that for a finite
graph without branching vertices (E,C), the quotient graph (E/H,C/H) for H := E0

Ac gives
rise to a nuclear C∗-algebra. It is also possible to prove this claim directly by construction
a very natural topological Følner sequence (Fn), where F ξ

n is simply the n-ball ξn := {α ∈
ξ : |α| ≤ 1}. However, we prefer the above proof due to the noteworthy technical difficulties
that arise when verifying the Følner property of this sequence.

5. The main theorem and examples

In this final section, we give a short proof of the main theorem and finally consider a few
examples of Condition (N) graphs and their graph monoids.

Note that quite a few of the implications in the main theorem follow from general theory.
Indeed, the implications (3) ⇔ (4) ⇒ (2) are immediate from Theorem 2.8, which is an
application of the groupoid C∗-algebra theory of Renault and Anantharaman-Delaroche, while
(2)⇒ (5) follows from Exel’s theory of partial crossed products, specifically [13, Proposition
25.12], since free groups are exact [12, Proposition 5.1.8].

Theorem 5.1. For any finitely separated graph (E,C), the following are equivalent:

(1) (E,C) satisfies Condition (N ).
(2) The regular representation O(E,C)→ Or(E,C) is an isomorphism.
(3) The C∗-algebra Or(E,C) is nuclear.
(4) The C∗-algebra O(E,C) is nuclear.
(5) The C∗-algebra O(E,C) is exact.
(6) Every stabiliser of the partial action θ(E,C) is amenable (hence trivial or cyclic).
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Proof. We have already proven (5) ⇒ (6) ⇒ (1) in Proposition 3.7, so in light of the above
comments, it remains only to verify (1) ⇒ (4). But by Proposition 4.3 and Lemma 4.4,
it suffices to show that O(EBr, C

Br) and O(EBF, C
BF) are nuclear, and this was done in

Theorem 3.17 and Theorem 4.6, respectively. �
We obtain the following purely graph-theoretic consequence of the above theorem. Recall
from [4] that if (E,C) is finite and bipartite, then one can associate a sequence (En, C

n) of
finite bipartite graphs to (E,C) = (E0, C

0), such that O(E,C) ∼= lim−→n
C∗(En, Cn) for certain

connecting homomorphisms.

Corollary 5.2. Let (E,C) denote a finite bipartite graph. Then (En, C
n) satisfies Condition

(N ) for some n if and only if it does so for all n.

Proof. This is immediate from Theorem 5.1 since O(Em, C
m) ∼= O(En, C

n) for all m,n. �
We finally consider some examples.

Example 5.3. If |s−1(v)| + |Cv| ≤ 2 for any v ∈ E0, then (E,C) contains no branching
vertices and therefore satisfies Condition (N) trivially. This covers examples such as

,

which were considered in [4, Example 9.5, 9.6, 9.7] as well as [9, Example 6.7].

Example 5.4. If E is any column-finite graph, then E clearly satisfies Condition (N) when
regarded as a trivially separated graph. In fact, o(e) := −1 for all e ∈ E1 defines an
orientation, but unless E contains no sources, it is not a proper orientation. This can be
circumvented in two different ways: Either one mods out by the acyclic subgraph as we have
done above, or one adds heads to all sources. Either way, the new graph will admit a proper
orientation, giving another proof of nuclearity of classical graph C∗-algebras of column-finite
graphs.

Example 5.5. If (E,C) := (E(m,n), C(m,n)) for some 2 ≤ m ≤ n <∞ is the graph

u

v

m n

as in [4, Example 9.3], so that (E,C) gives rise to the (m,n)-dynamical systems of [6], then
u is a branching vertex without a local orientation. We therefore recover the fact from [6,
Theorem 7.2] that Om,n := O(E,C) is non-exact. J
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For every finitely separated graph (E,C), there is a natural graph monoid M(E,C) as defined
in [8]: It is the universal abelian monoid with generators E0 and relations v =

∑
e∈X s(e) for all

v ∈ E0 and X ∈ Cv. By [8, Proposition 4.4], every conical abelian monoid can be represented
as M(E,C) for an appropriate finitely separated bipartite graph (E,C). Conversely, the
graph monoid M(E) of a non-separated column-finite graph is always quite well-behaved:
Whenever E is finite, M(E) is a refinement monoid by [10, Proposition 4.4], hence primely
generated by [11, Corollary 6.8]. It follows that M(E) satisfies the extensive list of properties
given by [11, Theorem 5.19], of which many pass to direct limits. Since any column-finite
graph E is a direct limit of its finite complete subgraphs and the assignment E 7→ M(E) is
continuous by [10, Lemma 3.4], the monoid M(E) satisfies all such properties. Among these
are

• Unperforation: If n · a ≤ n · b, then a ≤ b for all integers n ≥ 2.
• Pseudo-cancellation: If a+ c ≤ b+ c, then there is some a1 with a1 + c ≤ c for which
a ≤ b+ a1.

Below we shall see two basic examples of finite bipartite separated graphs satisfying Condi-
tion (N) for which the graph monoids do not enjoy unperforation and pseudo-cancellation,
respectively.

Recall that M(E) ∼= V(LK(E)) ∼= V(C∗(E)) by [10, Theorem 3.5 and Theorem 7.1]. In the
separated setting, we have M(E,C) ∼= V(LK(E,C)) due to [8, Theorem 4.3], and the quotient
map LK(E,C)→ Lab

K (E,C) induces a refinement V(LK(E,C))→ V(Lab
K (E,C)) by [4, Corol-

lary 5.9]. However, it is still an open problem whether the inclusion LC(E,C) ↪→ C∗(E,C)
induces an isomorphism V(LC(E,C)) → V(C∗(E,C)). If this happens to be the case, then
V(Lab

C (E,C)) ∼= V(O(E,C)) as well by [4, Theorem 5.7], in which case there will be a natural
refinement M(E,C)→ V(O(E,C)).

Example 5.6. Consider the Condition (N) graph

w

u v

e0

e1 f0

f1

of [4, Example 9.5] and denote it by (E,C). Then

M(E,C) = 〈u, v, w | 2u = w = 2v〉 ∼= 〈u, v | 2u = 2v〉,
but u 6≤ v and v 6≤ u, so M(E,C) is not unperforated. It follows from [4, Theorem 7.4]
that the relative type semigroup S(Ω(E,C),F,K) of the partial action θ(E,C) is isomorphic to
V(Lab

K (E,C)), so in particular, M(E,C) unitarily embeds into the type semigroup, and this
will be unperforated as well. We will now identify the partial action θ(E,C) up to Kakutani
equivalence (see [15, Definition 2.14]) with a concrete partial F2-action. Consider the sequence
space X := {0, 1}Z along with the clopen subspaces

Xi. := {x ∈ X | x−1 = i} and X.i := {x ∈ X | x0 = i}
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for i = 0, 1. We then define partial homeomorphisms ϕL : X0. → X1. and ϕR : X.0 → X.1
given by

ϕL(. . . x−3x−20.x0x1x2 . . .) := (. . . x1x01.x−2x−3x−4 . . .)

ϕR(. . . x−3x−2x−1.0x1x2 . . .) := (. . . x3x2x1.1x−1x−2x−3 . . .)

and consider the semi-saturated partial action θ : F[L,R] y X induced by ϕL and ϕR. Then
θ is quasi-conjugate (see [17, Definition 2.2]) to the restriction θ(E,C)|Ω of θ(E,C) to the full
(see [9, Definition 3.24]) clopen subspace Ω := Ω(E,C)w as follows. Observe first that every
configuration ξ ∈ Ω may be represented by an ordered pair (ξred, ξblue) of infinite admissible
paths

ξred := . . . fi−4f
−1
i−4
ei−3e

−1
i−3
fi−2f

−1
i−2
ei−1e

−1
i−1

and ξblue := . . . ei3e
−1
i3
fi2f

−1
i2
ei1e

−1
i1
fi0f

−1
i0

,

for ik ∈ {0, 1}, where 0 := 1 and 1 := 0. ξred represents the part of the configuration that
initially travels by the inverse of a red edge, while ξblue initially travels by the inverse of a
blue edge. An element α ∈ F may act on ξ if and only if α ≤ ξred or α ≤ ξblue, and the result

θ
(E,C)
α (ξ) lies in Ω if and only if α is of even length. If α denotes the simple cycle α = ei−1e

−1
−1,

we have

θ(E,C)
α (ξ)red = . . . fi2f

−1
i2
ei1e

−1
i1
fi0f

−1
i0
ei−1e

−1
i−1

and θ(E,C)
α (ξ)blue = . . . fi−4f

−1
i−4
ei−3e

−1
i−3
fi−2f

−1
i−2
,

and a similar situation occurs for α = fi0f
−1
i0

. Now consider the group homomorphism

Ψ: F[L,R] → F given by Ψ(L) = e−1
1 e0 and Ψ(R) = f−1

1 f0, as well as the homeomorphism
ψ : X → Ω defined by ψ(x) = (ξredx , ξbluex ), where

ξredx := . . . fx−4f
−1
x−4
ex−3e

−1
x−3
fx−2f

−1
x−2
ex−1e

−1
x−1

and ξbluex := . . . ex3e
−1
x3
fx2f

−1
x2
ex1e

−1
x1
fx0f

−1
x0
.

It is clear from our above observation that the pair (ψ,Ψ) defines a quasi-conjugacy θ →
θ(E,C)|Ω, so θ and θ(E,C) are indeed Kakutani equivalent.

Example 5.7. Finally, consider the graph

w

u v

m n

with m ≥ 2, n ≥ 1, and denote it by (E,C). Then

M(E,C) = 〈u, v, w | w = u+ v = m · u+ n · v〉 ∼= 〈u, v | u+ v = m · u+ n · v〉,
and we claim that M(E,C) does not enjoy pseudo-cancellation as above with

a := (m− 1) · u, b := v and c := u.

These elements surely satisfy the assumption, namely that

a+ c = m · u ≤ m · u+ n · v = u+ v = b+ c,
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so if pseudo-cancellation were present, then there should exist some a1 ∈ M(E,C) with
a1 + c ≤ c and a ≤ b+ a1. However, the first inequality entails a1 = 0, hence

(m− 1) · u = a ≤ b = v,

which is absurd. It follows that the type semigroup S(Ω(E,C),F,K) is not pseudo-cancellative
either. Contrary to Example 5.6, we have no simple description of the partial action θ(E,C)

as the configurations are much more complicated in this case. J
Example 5.6 and Example 5.7 show that one should expect to find nuclear tame separated
graph C∗-algebras of a rather different nature than that of classical graph C∗-algebras, in
particular with a more general projection structure. However, while both unperforation and
pseudo-cancellation may fail in the graph monoid M(E,C) of a Condition (N) graph, the
author expects that it will always enjoy the following important cancellation properties:

• Almost unperforation: If (n+ 1) · a ≤ n · b for some n ≥ 2, then a ≤ b.
• Separation: If 2a = a+ b = 2b, then a = b.

Observe that if any monoid theoretic property, which passes to limits, holds for all finite
bipartite Condition (N) graphs (E,C), then it will automatically hold for

S(Ω(E,C),F,K) ∼= V(Lab(E,C)) ∼= lim−→
n

M(En, C
n)

as well by Corollary 5.2 and [4, Corollary 5.9]. As a consequence, the author expects θ(E,C)

to not be topologically amenable whenever it presents a counterexample to the topological
version of Tarski’s theorem considered in [4, Section 7].
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