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Abstract

Visual attention has been extensively studied in psychology, but some fundamental questions
remain controversial. We focus on two questions in this study. First, we investigate how a
neuron in visual cortex responds to multiple stimuli inside the receptive field, described by
either a response-averaging or a probability-mixing model. Second, we discuss how stimuli
are processed during visual search, explained by either a serial or a parallel mechanism.

Here we present novel mathematical methods to answer the psychology questions from a
neural perspective, combining the formulation of neural explanations for the visual attention
theories and spiking neuron models for single spike trains. Statistical inference and model
selection are performed and various numerical methods are explored. The designed methods
also give a framework for neural coding under visual attention theories. We conduct both
analysis on real data and theoretical study with simulations.

Our findings are shown in separate projects. First, the probability-mixing model is favored
over the response-averaging model, shown by analysis on experimental data from monkeys.
Second, both parallel and serial processing exist, with a tendency of being parallel in the
beginning and a tendency of being serial later on, shown by another set of experimental data
from monkeys. Third, we show that the probability-mixing and response-averaging model
can be separated and parameters can be successfully estimated for either model in a more
realistic biophysical system, supported by simulation study. Finally, we present the decoding
of multiple temporal stimuli under these visual attention theories, also in a realistic biophysical
situation with simulations.
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Dansk resume

Visuel opmærksomhed er et intenst forskningsfelt indenfor kognitiv psykologi, men visse
fundamentale spørgsmål er stadig kontroversielle. Vi fokuserer p̊a to spørgsmål i denne
afhandling. Først undersøger vi hvordan en neuron i det visuelle cortex reagerer n̊ar flere
stimuli præsenteres i neuronens receptive felt, enten ved brug af en model hvor responsen
antages at være et gennemsnit over responsen ved de enkelt stimuli, eller ved brug at en
sandsynlighedsmodel, hvor responsen er som ved et af de enkelte stimuli, og hvilket stimuli
bestemmes udfra en vis sandsynlighedsfordeling. Dernæst diskuterer vi hvordan visuelle
stimuli bearbejdes, enten ved den s̊akaldte serielle eller den s̊akaldte parallelle mekanisme.

Vi præsenterer nye matematiske metoder til at svare p̊a disse psykologiske spørgsmål ud
fra et neuralt perspektiv, hvor vi kombinerer neurale forklaringsmodeller for de forskellige
teorier indenfor visuel opmærksomhed med statistiske modeller for m̊alinger af neural elektrisk
aktivitet. Vi laver statistisk inferens og modelvalg og forskellige numeriske metoder undersøges.
Metoderne sætter ogs̊a en ramme for neural afkodning under de forskellige teorier fra visuel
opmærksomhed. Vi analyserer b̊ade eksperimentelt data og laver teoretiske studier med
simuleret data.

Vores resultater præsenteres i forskellige manuskripter. Først finder vi at den sandsynlighed-
steoretiske model passer bedre til data end modellen, der tager gennemsnit over responser,
hvilket vises ved analyser af neurofysiologisk data fra aber. Dernæst finder vi at b̊ade seriel
og parallel processering synes at finde sted, med en tendens til at være parallel lige efter
stimulus præsenteres, og senere lader processeringen til at blive mere seriel, vist ved analyse af
et andet neurofysiologisk datasæt m̊alt p̊a aber. Efterfølgende viser vi at de to modeller kan
adskilles og parametre kan estimeres for begge modeller i et mere realistisk biologisk system,
understøttet af et simulationsstudie. Endelig præsenterer vi afkodning af multiple tidsligt
varierende stimuli under disse teorier fra visuel opmærksomhed, ogs̊a i en realistisk biofysisk
situation ved simulationer.
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Chapter 1

Introduction

Visual attention is a cognitive process during which important visual information from a
complicated environment is efficiently selected. Visual attention is usually studied in psychology
via behavioral tasks, by proposing hypothesis and analyzing the behavioral results. Though
intuitive and straightforward, the behavioral analysis does not explain how attention works
on a more detailed biological level. This is where this research project is motivated. We want
to explain the macro behavior of visual attention from the micro perspective of single neurons,
the processing units of our nervous system.

The receptive field (RF) of a neuron in the visual system is defined as the spatial area in
which stimulation changes the firing pattern of the neuron. In higher visual processing areas,
for example visual area V5/MT and IT, the RF of a neuron can be very large (Smith et al.,
2001; Gattass et al., 2005), integrating multiple stimuli from the visual world (Orhan and
Ma, 2015). The interesting question is how the relevant information is obtained from these
multiple stimuli from a single neuron perspective. To answer this, we revisit two classical and
fundamental questions in the field of visual attention: how the multiple competing stimuli are
attended and how they are processed. Both questions have been long debated with opposing
theories in psychology. We reexplain these theories from a neural perspective.

The psychological Theory of Visual Attention (TVA) proposed by Bundesen (1990) provides
a unified computational mechanism to explain visual cognition and attentional selection. In
TVA, attentional selection is performed by the two mechanisms of filtering and pigeonholing,
which gives the attentional weights of objects and the processing speed of categorization though
mathematical equations. TVA explains a wide range of empirical findings from behavioral
studies (Bundesen, 1990). The Neural Theory of Visual Attention (NTVA) (Bundesen et al.,
2005) is an interpretation of TVA at a single neuron level. The attentional weights and the
processing speed from TVA correspond to the probabilities of neurons attending to the objects
and neuronal firing rate. NTVA explains a wide range of neurophysiological findings under
visual attention (Bundesen et al., 2005). Here we base our mathematical neural models on
NTVA and apply the models to both empirical and simulated single-neuron data.
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2 CHAPTER 1. INTRODUCTION

1.1 Neural methods for visual attention

Attending multiple stimuli

Two opposing models have been proposed to explain neuronal attention to multiple stimuli in
a RF. In the response-averaging model (Reynolds et al., 1999), the response of a neuron to
multiple stimuli is a weighted average of responses to each single stimulus. By contrast, in the
probability-mixing model based on NTVA (Bundesen et al., 2005), a neuron responds to each
single stimulus with probabilities. Suppose there are K stimuli, denoted as S = {Sk}k=1,2,...,K .
The response of a neuron to any stimulus Sk is I(Sk). Following the response-averaging
model, I(S) =

∑K
k=1 I(Sk)βk, where {βk} are weights satisfying

∑K
k=1 βk = 1. Following the

probability-mixing model, I(S) = I(Sk) with probability αk, where we have
∑K

k=1 αk = 1.
The response-averaging model treats all stimuli as a single integrated object, while the
probability-mixing model preserves each individual stimulus.

Processing multiple stimuli

How multiple stimuli are processed has been explained by two opposing mechanisms, the
serial and parallel processing (see Bundesen and Habekost (2008); Nobre and Kastner (2013)
for reviews). Though extensive studies have been conducted using behavioral methods, this
question remains highly controversial. We introduce a novel neural perspective to distinguish
between serial and parallel processing, under the hypothesis of probability mixing where a
neuron only attends to a single stimulus at a time. In serial processing, all neurons with the
same RF attend to the same stimulus at any given time, and they may switch together to
another stimulus after finishing processing the current stimulus. In parallel processing, each
neuron may attend to any stimulus independently, and all stimuli are processed in parallel.

Stimulus and observation

The stimulus and observation are the input and output of our analysis. Think of the brain
as a black box containing the visual attention hypotheses. We input the stimulus into the
black box, which then outputs neural observation. We construct mathematical models for
the stimulus and observation, and study the brain black box. Various types of stimuli can be
used. In experiments, we can use isolated static images, moving bars, random dot patterns
containing many small moving dots, and so on. In simulations, we can use deterministic
stimulus described by functions, e.g. a constant or sinusoidal function, or stochastic stimuli
following a stochastic process, e.g. a Brownian motion. Regarding neural observation, we
consider the neural spike train, which is a discrete sequence of times indicating neuronal
spiking events. The spiking observation is extremely noisy and big variance is observed both
within a trial and across trials. Traditional methods depend on spiking rate averaged across
trials, avoiding the variance and extracting important information. However, by averaging
across trials we may lose useful information. It could be the variance that actually matters.
Our methods are implemented by modeling each single spike train, in the above neural
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frameworks of visual attention.

1.2 Research contribution

Our aim is to explore, develop and verify neural models for visual attention at a single neuron
level. In particular, we want to compare the probability-mixing and response-averaging model
and distinguish between the parallel and serial processing with neural explanations. We also
want to explore the neural code relating neural spikes to complicated external stimuli by
applying visual attention theories.

The main contribution of this research is developing novel probabilistic models and statistical
methods for the visual attention hypotheses using observations of each single neuron at
each single trial. We combine the visual attention theories from psychology and the spike
train models from computational neuroscience. The results provide conclusion and further
insights regarding both psychological meanings and mathematical properties. We present
our contribution in four papers, whether published, submitted or in preparation. Paper
I compares the response-averaging and probability-mixing model using experimental data.
Paper II studies serial and parallel processing and how to distinguish between the two, also
using experimental data. Both papers use relatively simple and approximate models for neural
observations. Papers III and IV, on the other hand, employ more realistic but challenging
models and are conducted in a more theoretical way with simulation studies. Paper III provides
systematic methods of parameter estimation and model selection for the response-averaging
and probability-mixing models. Paper IV works on stimulus reconstruction discussing both
serial and parallel processing hypotheses.

The thesis is structured as follows. Chapter 2 introduces the mathematical background
including various basic topics on probabilistic models and statistical methods used in the
thesis. Chapter 3 presents the application of mathematical models to neuroscience and
psychology. Models for spike trains and methods for visual attention are shown first, and then
the topic of neural coding under visual attention hypotheses is discussed. Chapter 4 gives the
overview of the published papers and on-going projects, as well as future prospects. Finally,
all papers and manuscripts are attached.
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Chapter 2

Mathematical Background

This chapter gives a brief introduction to various mathematical topics.

2.1 Point processes

For the topic of point process, we refer the reader to a comprehensive introduction by Daley
and Vere-Jones (2003). A point process describes the discrete occurrences of phenomena in
either time or space, in one or more dimensions. The realization of a point process contains
subsequent isolated points. We consider one dimensional point processes describing events on a
time line. For this one dimensional process, we have the following four equivalent descriptions:

(a) counting measures;

(b) nondecreasing integer-valued step functions;

(c) sequences of points;

(d) sequences of intervals.

We now provide notation for the (a), (c) and (d) descriptions. A point process described by a
sequence of time points is denoted by

{ti}i=0,1,2,..., (2.1)

with t0 < t1 < t2 < · · · . Alternatively, a sequence of time intervals is denoted by

{τi}i=1,2,..., (2.2)

where τi = ti − ti−1 is the ith interval. Let N(A) denote the number of occurrences inside a
time interval A:

N(A) = #{i; ti ∈ A}. (2.3)

5



6 CHAPTER 2. MATHEMATICAL BACKGROUND

Further, we simplify N([0, t)) on the interval [0, t) as N(t) for a positive time t > 0.

The conditional intensity function (CIF) describes the probability of an event occurring in a
short interval around some time t, conditional on the past event times Ht = {ti; ti < t}. The
CIF can be defined by

λ(t|Ht) = lim
∆t→0

Pr(N(t+ ∆t)−N(t) = 1|Ht)

∆t
. (2.4)

The interval ∆t is so small that there can at most be one event within ∆t. It follows that the
probability of observing an event in the time interval [t, t+ ∆t) is given by λ(t|Ht)∆t.

Consider a finite point process realization {ti}i=0,1,...,N inside an observation interval [0, T ]
satisfying 0 ≤ t0 and tN ≤ T . It can be shown (Daley and Vere-Jones, 2003) that the likelihood
of such realization, with relevant model parameters θ, is given by

L({ti}i=0,1,...,N ; θ) =

[
N∏

i=1

λ(ti|Ht; θ)

]
exp

{
−
∫ T

0
λ(s|Hs; θ)ds

}
. (2.5)

2.1.1 Examples of point processes

Example 2.1.1 (Renewal process). Consider the interval description {τi} for a point process.
If all the inter-event intervals are independent and identically distributed (i.i.d.), then this point
process is a renewal process. In such processes, every time an event occurs, the probability of
a subsequent event resets (the process starts over).

The likelihood of renewal processes are extremely simple since all observed data are i.i.d. Here
we show three examples of the renewal process, with different features and applications.

Example 2.1.2 (Poisson process). If the inter-event interval τ follows an exponential distri-
bution with a constant rate parameter λ, we then have a Poisson process with rate λ, which
is a widely used point process in many scientific areas. By letting the CIF of a point process
be a constant λ, we obtain a Poisson process with rate λ. A central property of the Poisson
process is being memoryless with a constant CIF. We also obtain a realization of Poisson
process when we sample points uniformly from a fixed interval.

Example 2.1.3 (Gamma process). If the inter-event interval τ follows a Gamma distribution
with a shape parameter α and a rate parameter β, then the renewal process is a Gamma
process. With two parameters, the Gamma process gives more flexibility than the Poisson
process and the CIF is a function of time.

Example 2.1.4 (First-passage times of Wiener process). If we let the distribution of τ be an
inverse Gaussian distribution, the renewal process becomes a sequence of first-passage times
of a Wiener diffusion process (Chhikara, 1988). The two parameters of the inverse Gaussian
distribution are related to the drift and diffusion parameters of the Wiener process and the
constant passage threshold.
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For more complicated situations, it might not be appropriate to assume the renewal property.
We then require more general point processes.

Example 2.1.5 (Cox process). If the CIF of the Poisson process is not a constant but also
a stochastic process itself, then we have a Cox process (Cox, 1955). In applications the
stochastic CIF often models a latent state in a system, and the point process events are
the observed data. Cox processes include a large collection of such latent-observed models
depending on the choice of the stochastic CIF.

Example 2.1.6 (Hawkes process). The Hawkes process (Hawkes, 1971) is often referred to
as the self-exciting process, because its CIF contains direct effects of the history of event
times. An example of such CIF after discretization is given by

λ(t|Ht) = λ0 exp



a0 +

h∑

j=1

aj(N(t− (j − 1)∆t)−N(t− j∆t))



 , (2.6)

where λ0 is a base intensity parameter, a0 is an offset parameter, and {aj}j=1,2,...,h are
weight parameters for the history covering events up to h∆t ago subject to an appropriate
discretization time ∆t. Depending on the weights, we obtain different effects of the past
events. For example, the effect at a certain delay time could be excitatory if the weight is
greater than 0, inhibitory if less than 0, or nonexistent if equal to 0. By adjusting the weight
parameters, we may obtain a large variety of self-exciting processes. Papers I and II employ
Hawkes processes of similar types.

2.2 Diffusion processes

A diffusion process is a continuous time stochastic process satisfying the strong Markov
property with almost surely continuous sample paths. The classic literature by Karlin and
Taylor (1981) introduces diffusion processes highlighting boundary problems and various
differential equations. Diffusion processes are usually formulated as the solution of stochastic
differential equations in modern literature (see e.g. Oksendal (2013) for an introduction).

2.2.1 Stochastic differential equation

Many phenomena arising in various disciplines contain noise and deterministic differential
equations do not suffice. Stochastic differential equations (SDEs) extend the models to a
stochastic context. A typical SDE driven by Gaussian white noise is given by

dXt = µ(x, t)dt+ σ(x, t)dBt, (2.7)

where µ(x, t) and σ(x, t) are continuous deterministic functions, and B(t) denotes the standard
Brownian motion which brings stochasticity. The term dBt

dt = Wt gives Gaussian white noise
and we have

B(t2)−B(t1) ∼ N(0, |t2 − t1|), (2.8)
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i.e. a normal distribution with mean 0 and variance |t2 − t1|. The solution of the SDE is a
diffusion process {X(t); t ≥ 0}. The function µ(x, t) gives the infinitesimal drift coefficient
and σ2(x, t) gives the infinitesimal variance (diffusion coefficient).

Example 2.2.1 (Wiener process). A very simple and widely used diffusion process is the
Wiener process, which is the solution to an SDE for which the drift and diffusion coefficients
are constant:

dXt = µdt+ σdBt. (2.9)

If µ = 0 and σ = 1 we obtain the standard Wiener process, equal to the standard Brownian
motion.

Example 2.2.2 (Ornstein-Uhlenbeck process). Another popular diffusion process is the
Ornstein-Uhlenbeck (OU) process, the solution to the following SDE

dXt = θ(µ−Xt)dt+ σdBt, (2.10)

where θ > 0. The feature of the OU process is a tendency of moving towards a mean value µ,
which finds application in many biological and financial areas.

Example 2.2.3 (Feller process). The Feller process (Feller et al., 1951) is given by the
solution of the SDE

dXt = θ(µ−Xt)dt+ σ
√
XtdB, (2.11)

with µ, θ > 0. The notable feature is that the sample path is non-negative, because when
X(t) approaches 0 the variance becomes very small and X(t) will then evolve towards µ. The
Feller process was originally introduced by Feller et al. (1951) to model population growth. It
is also called the Cox-Ingersoll-Ross process (Cox et al., 1985) in financial literature.

2.2.2 Transition functions and related PDEs

Consider the diffusion process {X(t); t ≥ 0} given by the solution of the SDE

dXt = µ(x, t)dt+ σ(x, t)dBt. (2.12)

Denote the transition distribution function for the transition from X(s) = x to X(t) = y as

P (x, y, s, t) := Pr(X(t) ≤ y|X(s) = x), (2.13)

for t ≥ s, and the transition density function as

p(x, y, s, t) :=
dP (x, y, s, t)

dy
. (2.14)

The transition density function p(x, y, s, t) satisfies the Kolmogorov backward equation, given
by the PDE

∂p

∂s
=

1

2
σ2(x, s)

∂2p

∂x2
+ µ(x, s)

∂p

∂x
. (2.15)
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The transition distribution function P (x, y, s, t) also satisfies the same PDE

∂P

∂s
=

1

2
σ2(x, s)

∂2P

∂x2
+ µ(x, s)

∂P

∂x
. (2.16)

In addition to the backward equation, the transition density p(x, y, s, t) also satisfies the
Kolmogorov forward equation

∂p

∂t
=

1

2

∂2

∂y2

[
σ2(y, t)p

]
− ∂

∂y
[µ(y, t)p] , (2.17)

also referred to as the Fokker-Planck equation. Unlike the backward equation, the transition
distribution function P (x, y, s, t) for a general diffusion process does not satisfy the same
forward equation. However, if we set a lower reflecting boundary x− < x for the diffusion
process, then we can derive a forward PDE for P (x, y, s, t) given by (Li et al., 2016; Iolov
et al., 2014; Hurn et al., 2005)

∂P

∂t
=

1

2
σ2(y, t)

∂2P

∂y2
− µ(y, t)

∂P

∂y
. (2.18)

This equation for P (x, y, s, t) is used in both paper III and IV.

The pertinent variables for the backward equations are s and x, the initial state of the
transition, while for the forward equations are t and y, the final state of the transition. So
the names ”backward” and ”forward” follow. The forward and backward equations are used
in different scenarios depending on whether we know the starting state or the final state of
the transition.

The solution of these PDEs gives the transition probability function, which is useful for e.g.
parameter estimation. However, analytical solution exists only for simple diffusion processes
such as the Brownian motion or the OU process. For a general diffusion process where
the drift and diffusion coefficients are given by complicated nonlinear functions, we need to
solve the PDEs numerically, which requires boundary conditions. The forward and backward
equations we have here belong to parabolic equations, whose numerical solution requires
a time condition and two space boundary conditions. The finite-difference method (Press,
2007) of the parabolic equation amounts to solving a tridiagonal system, for which there
exist efficient algorithms and parallelism on GPUs applies (for example see a performance
benchmark by Andreetta et al. (2015)).

The boundary conditions of p(·) or P (·) are related to the diffusion processes. We can set a
upper and lower boundary for the diffusion path, in general either absorbing or reflecting,
which gives corresponding boundary expressions for p(·) or P (·). On the time dimension,
we set a initial condition for the forward equations or a final condition for the backward
equations. See paper III for examples of numerically solving the two forward equations by
setting appropriate boundary conditions.
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2.2.3 First passage time

The first passage time (FPT) of a diffusion process (Redner, 2001; Ricciardi and Sato, 1990)
is the first time when the diffusion path passes a threshold different from the initial value.
Consider the diffusion process {X(t); t ≥ 0}. If X(s) = x at time s and we set a upper
threshold E > x, the FPT is defined by

TE := inf{t > s;X(t) ≥ E,X(s) = x}. (2.19)

Denote the distribution function of the FPT by

F (t, s) = Pr(TE ≤ t), (2.20)

and the density function of the FPT by

f(t, s) =
dF (t, s)

dt
. (2.21)

Obtaining the FPT probabilities is important for parameter estimation using first passage
observation data. Here we introduce two methods to calculate the FPT probability functions
using PDEs and integral equations (IEs), respectively. Papers III and IV employ these
methods.

PDE method

The key idea is to link the FPT probability to the transition probability of diffusion processes.
The probability that the diffusion path starting from time s has not yet reached the threshold
E at time t is the FPT survival probability 1−F (t, s). Meanwhile, it is also the probability of
transitions starting from X(s) = x to any value below the boundary X(t) < E, PE(x,E, s, t),
subject to an absorbing boundary at E. We use the subscript E to denote the absorbing
boundary at E. The absorbing boundary ensures that the PE(x,E, s, t) here only contains
diffusions not yet reached the threshold during interval (s, t). Thus, we have 1− F (t, s) =
PE(x,E, s, t), and the expanded expression gives

f(s, t) =
∂F (t, s)

∂t
= −∂PE(x,E, s, t)

∂t
= − ∂

∂t

∫ E

−∞
pE(x, y, s, t)dy. (2.22)

This links the transition distribution and density function to the FPT distribution and density
function. The transition functions can be obtained by numerically solving the forward or
backward equations with an absorbing boundary at E (with other appropriate boundary
conditions). Then the FPT density function is calculated via numerical integration and
differentiation.

IE method

In the IE approach, we rely on the Volterra equations of the first and second kind. The FPT
density function is inside the integral term. Here we use the original threshold-free transition
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density function, p(x, y, s, t), which describes the transition from X(s) = x to X(t) = y
subject to no boundary.

The first-kind Volterra IE (Fortet equation) combines the FPT density f(t, s) with p(x, y, s, t)
using the law of total probability:

p(x,E, s, t) =

∫ t

s
f(t′, s)p(E,E, t′, t)dt′. (2.23)

The second-kind Volterra IE is given by

f(t, s) = −2ψ(x,E, s, t) + 2

∫ t

s
f(t′, s)ψ(E,E, t′, t)dt′, (2.24)

where

ψ(x, y, s, t) =
∂

∂t

∫ y

−∞
p(x, y′, s, t)dy′. (2.25)

The advantage of the second-kind IE is that it provides better numerical stability and accuracy
by overcoming a singularity issue when t→ s (Li et al., 2016; Paninski et al., 2008).

The solution of the IEs directly gives the FPT density f(t, s). For the numerical solution,
we need to set an initial condition where f(s, s) = 0. Then f(t, s) at any time t > s can be
evaluated through forward evolution of the IE.

Note that in order to solve the IEs efficiently, we need analytical expression for the threshold-
free transition density p(x, y, s, t). Furthermore, for the second-kind IE we need analytical
expression for the time-derivative of the space-integration of p(x, y, s, t), i.e. ψ(x, y, s, t).
Fortunately, for the Weiner and the OU processes, the explicit analytical expression for
p(x, y, s, t) exists and is a Gaussian. See for example the SDEs in papers III and IV.

2.3 Parameter estimation

A central part of statistical inference is parameter estimation, where we obtain the optimal
guess of the parameters for a statistical model based on observed data. The estimation theory
is well-established in statistics.

2.3.1 Frequentist and Bayesian

The frequentist and Bayesian are two perspectives for the parameter inference. From a
freqentist point of view, the parameters of some model are fixed and the observed data are
random variables, and we need to give an optimal guess of the parameters based on the data.
A typical way is to find the maximum likelihood estimator which gives the distribution that
best describes the data (maximizing the likelihood). The uncertainty of the estimator is
explained by the confidence interval. The Bayesian point of view, on the other hand, treats
the parameters also as random variables like observed data. The uncertainty of the estimation



12 CHAPTER 2. MATHEMATICAL BACKGROUND

is explained via the parameter distribution conditional on the data. Bayesian inference aims
at finding this parameter distribution, typically through Monte Carlo sampling. Instead of the
full distribution, we can also find the optimal value that maximizes the parameter distribution,
which is called maximum a posteriori (MAP).

2.3.2 Maximum likelihood estimation

Denote the observed data as z = {z1, z2, . . . , zn} and the parameters of a model as θ. The
likelihood function of the data is defined by the joint probability:

L(z; θ) = P (z|θ). (2.26)

The likelihood function is seen as a function of parameters θ. For discrete models, we use
the probability mass function and for continuous models, we use the probability density
function. In practice, P (·) can contain both at the same time depending on the models. The
log-likelihood is usually used:

`(z; θ) = logL(z; θ). (2.27)

In maximum likelihood estimation (MLE), we aim at finding the optimal θ values that
maximize the (log-) likelihood function:

θ̂ = arg max
θ

`(z; θ), (2.28)

which is called the ML estimator. The MLE is particularly appealing for parameter estimation
since, under certain conditions of the model, the ML estimator possesses the following
properties as the data size n go to infinity:

1. Consistency: the ML estimator converges to the true parameter θ∗ in probability,

θ̂
P−→ θ∗;

2. Asymptotic normality: the distribution of θ̂ converges to a normal distribution, θ̂
d−→

N(θ∗, σ2
θ), where the asymptotic variance σ2

θ can be calculated from the Fisher informa-
tion;

3. Efficiency: the ML estimator, among all well-behaved estimators, has the smallest
variance.

The search of the ML estimator θ̂ falls into the discipline of numerical optimization (Nocedal
and Wright, 2006), for which the mathematical theories are extensively studied and there
exist various types of algorithms. Mostly used are the iterative methods that converge to the
solution within a finite number of steps. Some algorithms require calculating the derivatives,
i.e. the Jacobian and the Hessian matrix, while others are derivative-free. A common problem
of numerical optimization is the local minimum problem, where the solution falls to a local
minimum or saddle point and the true global minimum is missed. Global optimization
algorithms (Horst et al., 2000) are some of the efforts taken to fight against the local minimum
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problem. Performing multiple local optimizations with different initial values are commonly
used by people, which is also a central idea for some global optimization algorithms. To obtain
better results, we can first perform the global optimization, and then use the global optimum
as the initial point and perform the local algorithm to achieve a higher accuracy.

2.3.3 Bayesian inference

In Bayesian inference, we aim at finding the distribution of parameters conditional on data,
P (θ|z), called the posterior distribution. Following Bayes’ theorem, we have

P (θ|z) =
P (z|θ)P (θ)

P (z)
∝ P (z|θ)P (θ). (2.29)

The distribution of parameters P (θ) is called the prior distribution, representing our prior
knowledge or proposal of the parameters, and P (z|θ) is the likelihood of data conditional on
the choice of parameters, which is identical to the likelihood function in MLE.

A common method to find the full posterior distribution is the Markov chain Monte Carlo
(MCMC) approach, where parameters are sampled via a Markov chain and are then plugged
into the Metropolis-Hastings rejection algorithm (Hastings, 1970). Another method, somewhat
corresponding to the MLE, is to find the optimal parameter that maximize the posterior
distribution, called the MAP estimator:

θ̂MAP = arg max
θ
{logP (θ|z)}. (2.30)

Searching for the MAP estimator can be done by numerical optimization methods.

2.3.4 Expectation Maximization and log-sum-exp

In many cases, there are unobserved or latent data during parameter inference. Sometimes
the model itself includes latent variables that are not observable, and sometimes the data
quality is low and some observations are simply missing. The ordinary MLE calculates the
marginal likelihood of only the observed data, which is often intractable due to e.g. integrals
or numerical issues. The expectation maximization (EM) algorithm (Dempster et al., 1977)
seeks to maximize the marginal likelihood iteratively with the help of the complete likelihood,
the joint probability of observed and latent data.

Denote z′ the latent data, and the complete likelihood is given by P (z, z′|θ). The EM algorithm
consists of iterations. Given a starting position θ0 at iteration 0, the following two steps are
performed in subsequent iterations i = 1, 2, . . . :

1. (E-step) Obtain the expectation of the log-likelihood of complete data, with respect to
the conditional distribution of z′ given z and previous parameter estimates θi−1:

Q(θ|θi−1) = Ez′|z,θi−1

[
logP (z, z′|θ)

]
. (2.31)
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2. (M-step) Find the optimal parameters maximizing Q(θ|θi−1):

θi = arg max
θ

Q(θ|θi−1), (2.32)

which is the estimates for the current iteration i.

It can be shown that following the EM iterations the marginal likelihood is non-decreasing.

A common situation, where the EM algorithm applies, is fitting mixture models. The marginal
likelihood of a mixture model always contains product of sums, which becomes log of sums
during MLE with the log-likelihood. This usually causes numerical over- or under-flow issues.
With the EM algorithm, the indexes of mixture are treated as the latent variable and the log
of sums disappears in the expectation Q(θ|θi−1).

An alternative way to overcome the numerical issue in mixture models is the log-sum-exp
trick (Press, 2007). Consider a situation where we want to calculate the log of sums, log

∑
i xi,

where xi are calculated from some distribution according to a model. If the data size is
big, directly calculating xi can give very big and intractable results, while calculating log xi
provides elegant and tractable results. We can calculate the log of sums by providing only
log xi:

log
∑

i

xi = a+ log
∑

i

exp{log xi − a}, (2.33)

where a = maxi(log xi). The numerical issues are then avoided. Though both EM and
log-sum-exp overcome the numerical issue, we find EM is statistically more efficient (with
smaller variance) through data augmentation than direct MLE with the marginal likelihood;
see Paper III for examples of comparison.

2.4 Model selection and checking

Apart from parameter estimation for a particular model, in statistical inference we are often
faced with a large collection of models and we need to perform model selection to find the best
model. This extends the idea of optimization from the parameter space to a broader model
space. The most widely used model selection methods are the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC); see Burnham and Anderson (2002) for a
detailed discussion regarding AIC, BIC and other information theoretic approaches. For the
best-fitting model after model selection, we also want to assess its goodness of fit (GOF) by
performing model checking (model assessment, validation).

2.4.1 AIC and BIC

Akaike information criterion

Denote our model of interest by M with parameters θ, and the number of parameters equals
K. Denote by G the truth for data generation (with no parameters). The observed data is
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denoted by z = {z1, z2, . . . , zn} with data size n.

The AIC is based on an approximately unbiased estimation of the Kullback-Leibler (KL)
divergence between M and G, I(G,M), using the likelihood evaluated at the ML estimator
(Akaike, 1974). Asymptotically as n→∞, if the model M is sufficiently ”good” in the sense
that the KL divergence between M and G is small enough, we have

logL(z; θ̂)−K = C − Êθ̂[I(G,Mθ̂)]. (2.34)

θ̂ is the ML estimator for θ, and Mθ̂ is the model M under the ML estimator. L(z; θ̂) evaluates
the likelihood for the ML estimator. The right hand side contains a constant C and the
estimator of the relative expected KL divergence between M and G. The AIC is given by

AIC = −2 logL(z; θ̂) + 2K, (2.35)

which is a linear transformation of Êθ̂[I(G,Mθ̂)] with scale 2. Thus, a smaller AIC means
smaller KL divergence between the considered model M and the truth G.

Bayesian information criterion

The BIC (Schwarz et al., 1978) is derived through the posterior distribution of the model M
given the data z. Under uniform prior for all models, we have

P (M |z) ∝ P (z|M)p(M) ∝ p(z|M) =

∫
P (z|θ,M)P (θ|M)dθ. (2.36)

The BIC is given by
BIC = −2 logP (z|M). (2.37)

For data size n→∞, the BIC can be approximated using the ML estimator θ̂ for model M
as:

BIC ≈ −2 logL(z; θ̂) +K log n+ C, (2.38)

where the likelihood L(·) is calculated using the model M . The constant C is omitted in
practical calculations. The BIC turns out equivalent to the minimum description length
(MDL) proposed by Rissanen (1998).

Model probability

AIC stands for the relative KL information and BIC is related to the posterior distribution of
the model M . A result for both AIC and BIC is the expression for the posterior probability
of the ith model Mi:

P (Mi|z) ∝ exp

{
−1

2
∆i

}
, (2.39)

where ∆i is the difference between the AIC (BIC) of Mi and the minimal AIC (BIC). Then
we have the weight (probability) of each model among all considered models:

wi =
exp

{
−1

2∆i

}
∑

j exp
{
−1

2∆j

} . (2.40)
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An important consequence is that for both AIC and BIC among different models, only the
difference ∆i matters. For two models, if ∆ = 2, then the stronger model is 2.718 times as
likely as the weak model. For a difference ∆ = 7, the stronger model becomes 33.12 times as
likely. A rule of thumb is that if the difference between two models is greater than 10, then
the result is strongly significant meaning no support for the weaker model (Burnham and
Anderson, 2002).

2.4.2 Model checking

Model selection gives the stronger model and shows how much more likely the stronger model
is than the other weaker ones. However, model selection does not show how well the model
fits the data. Here we introduce some generic methods for assessing GOF.

Uniformity test

The uniformity test comes from a well-known transformation. With the ML estimator θ̂, we
calculate

ui = Pr(z ≤ zi|θ̂), (2.41)

for each data point zi, i = 1, 2, . . . . If the model under its ML estimator is correct in the sense
that it describes the data sufficiently well, then the residuals {ui} will approximately follow
the standard uniform distribution U(0, 1). Thus, {ui} are called uniform residuals. Evaluating
the uniformity of those residuals grants us a GOF assessment. To check for the equality of
the reference standard uniform distribution to the empirical residual distribution, we may
employ Quantile-Quantile (QQ) plots or probability-probability (PP) plots for intuitive and
straightforward comparison. In addition, the Kolmogorov-Smirnov (KS) test serves as a
statistical hypothesis test for comparing two distributions. The calculation of {ui} requires
calculating the cumulative distribution function (CDF), whether analytically or numerically.

RMSD

In many cases, it may be difficult or expensive to calculate the CDF using a model, but easy
to obtain the prediction of the data or the prediction of some statistic of the data. Usually in
such data there are an input part and an output part, z = {zin, zout}. Suppose that we can
easily obtain

ẑout = E[zout|zin, θ̂], (2.42)

the prediction of zout given zin, or

Ŝ(zout) = E[S(zout)|zin, θ̂], (2.43)

the prediction subject to some statistic S(·). To assess the goodness of prediction, we can
use the root mean square deviation (RMSD; or root mean square error, RMSE) between the
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prediction and the observation:

RMSDθ̂ =
√
E[(zout − ẑout)2] (2.44)

RMSDS
θ̂

=

√
E[(S(zout)− Ŝ(zout))2]. (2.45)

Cross validation

If we calculate the ML estimator from some data and apply model checking to the same data,
we can run into the problem of overfitting, obtaining better GOF assessment than we should
have. A common method to avoid overfitting is to perform cross validation. A k-fold cross
validation means separating data randomly into k parts and we run model fitting for k times.
Every time we systematically leave one part out, and fit the model using the other k− 1 parts.
Then we check the GOF of the fitted model using the left out part. The GOF results are then
merged together from all k runs. The cross validation procedure applies to both uniformity
test and RMSD evaluation.

2.5 State-space models

State-space models (SSMs), also known as hidden Markov models (HHMs), are widely used
hidden-observed models in many areas. A SSM consists of a hidden Markov chain {Xt; t ≥ 0}
and observed data {Yt; t ≥ 0} depending on {Xt}. We consider SSMs in discrete time,
i.e. t = 0, 1, . . . . In some cases, we set a maximal time T representing the observation
interval: t = 0, 1, . . . , T . We denote time-adjacent variables by Xa:b = {Xt; a ≤ t ≤ b} and
Ya:b = {Yt; a ≤ t ≤ b}. Denote by θ the parameters contained in the SSM.

Since {Xt} is a Markov chain, we have

P (Xt+1|X0:t) = P (Xt+1|Xt). (2.46)

For the observation {Yt} we consider two types of models. The first is the standard HHM
where {Yt} are independent conditional on {Xt}:

P (Yt+1|Y0:t, X0:t+1) = P (Yt+1|Xt+1). (Model I) (2.47)

The second is a dependent HMM where {Yt} are not independent even conditional on {Xt}:

P (Yt+1|Y0:t, X0:t+1) = P (Yt+1|Xt+1, Y0:t), (Model II) (2.48)

referred to as the Markov-switching model (Hamilton and Raj, 2013; Krishnamurthy and
Ryden, 1998). Figure 2.1 illustrates the structure of the two models. Model I has a more
simple structure and is more widely used in applications. In many other applications (see
e.g. Paper IV; Hamilton (1989); Kim et al. (1999)), we will have to preserve the dependency
between {Yt} and use Model II. If {Xt} are discrete variables we have a discrete SSM, and if
{Xt} follow a continuous distribution we have a continuous SSM. The discrete SSM is much
easier to handle than the continuous one due to finite and traversable state space.



18 CHAPTER 2. MATHEMATICAL BACKGROUND

X1 X2 X3 · · ·

Y1 Y2 Y3

X1 X2 X3 · · ·

Y1 Y2 Y3 · · ·

Model I Model II

Figure 2.1: Diagrams of Model I and Model II.

In the following sections, we introduce general sequential Monte Carlo (SMC) methods and
algorithms for the continuous SSM. The discrete version is discussed later. All the SMC
methods here apply to both Model types I and II. See Kantas et al. (2015) for a recent review
of SMC methods for SSMs and Cappé et al. (2009) for comprehensive theories in statistical
inference of SSMs.

We start by introducing the following notation:

X0:t|Y0:t = y0:t ∼ p(x0:t|y0:t); (Filtering) (2.49)

Xt|Y0:t = y0:t ∼ p(xt|y0:t); (Filtering at t) (2.50)

Xt|Y0:T = y0:T ∼ p(xt|y0:T ); (Smoothing at t) (2.51)

Y0:T ∼ p(y0:T ). (Likelihood) (2.52)

2.5.1 Filtering

Here we assume the parameters θ are known. Our goal is to obtain the posterior distribution
of the hidden states p(x0:t|y0:t), which is a high-dimensional distribution for a long time series.
We decompose the filtering probability as follows

p(x0:t|y0:t) =
p(x0:t−1|y0:t−1)

p(yt|y0:t−1)
p(xt|xt−1)p(yt|xt, y0:t−1). (2.53)

For Model I the term p(yt|xt, y0:t−1) = p(yt|xt). In the following we assume Model I for
simplicity. The decomposition grants us a sequential way to sample the filtering distribution.
Suppose a proposal distribution where xt can be easily sampled, denoted by q(xt|xt−1, yt) for
t > 0 and q0(x0|y0) for t = 0. The filtering distribution can be sampled using a sequential
importance sampling (SIS) method, where we sample xt from q(·) and the importance weights
are given by

w0(x0) =
p0(x0)p(y0|x0)

q0(x0|y0)
(2.54)

wt(xt) =
p(xt|xt−1)p(yt|xt)
q(xt|xt−1, yt)

. (2.55)
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Sampling at each time t with size N (N ”particles”), the full filtering distribution can be
explored. One problem in SIS using a finite number of sampling size is degeneracy, meaning
that as time goes on the variance of the N importance weights approaches 0 and very few
particles make a difference. To counter this, we resample particles at each iteration, removing
unimportant samples, which gives the sequential importance sampling resampling (SISR)
method (Doucet et al., 2000) shown in Algorithm 2.5.1. Replacing the proposal distribution
q(xt|xt−1, yt) by the transition density of the hidden Markov chain, p(xt|xt−1), the weight
wt(xt) reduces to p(yt|Xt), and the corresponding SISR is referred to as the bootstrap filter
(Gordon et al., 1993). In addition to resampling, another method attempting to further avoid
particle degeneracy is using auxiliary variables and calculating one-step ahead weights. The
yielded algorithm is called the auxiliary particle filter (APF) (Pitt and Shephard, 1999).

Algorithm 2.5.1 SISR

Initialization: At t = 0 for all i ∈ {1, 2, . . . , N}:
1: Sample Xi

0 ∼ q0(x0|y0)

2: Calculate W i
0 = w0(Xi

0) and W̃ i
0 =

W i
0∑N

i W i
0

Iteration: At t = 1, 2, . . . for all i ∈ {1, 2, . . . , N}:
3: Resample using

{
W̃ i
t−1

}
, giving

{
X̃i

0:t−1

}

4: Sample Xi
t ∼ q(xt|X̃i

t−1, yt) and Xi
0:t = {X̃i

0:t−1, X
i
t}

5: Calculate W i
t = wt(X

i
t) and W̃ i

t =
W i

t∑N
i W i

t

Using the Monte Carlo samples, we then have the following approximations for the filtering
and likelihood calculation (Kantas et al., 2015; Cappé et al., 2009). The filtering distribution
is approximated using particles as

p̂(dx0:t|y0:t) =
N∑

i=1

W̃ i
t δXi

0:t
(dx0:t), (2.56)

where δ is the Dirac measure. The posterior mean is often used as the prediction of the hidden
states:

Ê[g(X0:t)|y0:t] =

N∑

i=1

W̃ i
t g(Xi

0:t) (2.57)

for some relevant function g(·). In addition to the full filtering distribution, we can also
approximate the filtering distribution at t by marginalization:

p̂(dxt|y0:t) =
N∑

i=1

W̃ i
t δXi

t
(dxt). (2.58)

For the approximation of the filtering distribution at t, univariate kernel density smoothing
over {Xi

t} can be employed with weights {W̃ i
t }. Another result from SISR is the approximation

of the likelihood at t:

p̂(yt|y0:t−1) =
1

N

N∑

i=1

W i
t , (2.59)
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using the un-normalized weights {W i
t }. The full likelihood is given by

p̂(y0:T ) = p̂(y0)
T∏

t=1

p̂(yt|y0:t−1). (2.60)

2.5.2 Smoothing

Again we assume the parameters θ are known. The goal of smoothing is to obtain the
distribution of Xt conditional on all observations {y0:T }, p(xt|y0:T ). A straightforward way is
a simple marginalization after filtering up to T :

p̂(dxt|y0:T ) =

N∑

i=1

W̃ i
T δXi

t
(dxt). (2.61)

If the observation is not up to T but t+ l with some lag l, we still have the approximation

p̂(dxt|y0:T ) ≈
N∑

i=1

W̃ i
t+lδXi

t
(dxt), (2.62)

which is called the fixed-lag smoothing (Doucet et al., 2000). The theory behind is the
so-called forgetting property of SSMs (Cappé et al., 2009).

The smoothing through marginalization endures problems due to particle degeneracy and
resampling. The variety of Xt becomes extremely limited after a large l. The method below
aims at directly calculating the smoothing probability without using marginalization. The
algorithm is based on the following decomposition:

p(xt|y0:T ) = p(xt|y0:t)

∫
p(xt+1|xt)

p(xt+1|y0:T )∫
p(xt+1|xt)p(xt|y0:t)dxt

dxt+1. (2.63)

Observe that p(xt|y0:t) is the filtering density at t and p(xt+1|y0:T ) is the smoothing density
at t+ 1. This provides a method for calculating the smoothing distribution: We first perform
an ordinary forward filtering to obtain p(xt|y0:t) for all t = 0, 1, . . . , T , and then a backward
smoothing to obtain p(xt+1|y0:T ) for t = T − 1, T − 2, . . . , 0. This method is referred to as
the forward-filtering backward-smoothing (FFBS) algorithm. In particle implementation, we
approximate the integrals with Monte Carlo samples, and the smoothing weights are given by

Ṽ i
t = W̃ i

t

N∑

j=1

p(xjt+1|xit)Ṽ j
t+1∑N

l=1 p(x
j
t+1|xlt)W̃ l

t

. (2.64)

The approximation of the smoothing distribution using FFBS is:

p̂(dxt|y0:T ) =
N∑

i=1

Ṽ i
t δXi

t
(dxt). (2.65)

Alternatives to the FFBS are the generalized two-filter (Briers et al., 2010) and the forward
smoothing algorithm (Del Moral et al., 2010).
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2.5.3 Parameter estimation for SSMs

In the above we have assumed the parameters θ are known. Here we briefly introduce methods
to estimate θ for a general SSM.

One method is to evaluate the pseudo-marginal, the approximation of the marginal likelihood
L(y0:T ; θ) = p(y0:T |θ) using the SMC method (2.60) shown before. The ML estimator, given
by

θ̂ = arg max
θ

logL(y0:T ; θ), (2.66)

can be obtained by iterative numerical optimization algorithms. In situations where the
gradient ∇θ logL(y0:T ; θ) can be explicitly evaluated at θk for iteration k using e.g. the
Fisher information, we can perform the steepest gradient ascent algorithm (Cappé et al.,
2009). When the gradient is not explicitly available, we can evaluate it numerically using the
finite-difference method. Furthermore, the gradient-free algorithms are also available to obtain
the ML estimator. Note that for MLE with SMC, the original SISR is not suitable because it
yields discontinuous likelihood function evaluations due to resampling. Techniques (Hürzeler
and Künsch, 2001; Malik and Pitt, 2011) should be taken to overcome the discontinuous
problem. In addition to MLE, the pseudo-marginal likelihood can be used inside the Baysian
inference framework, for calculating the Metropolis-Hasting rejection probabilities (Lin et al.,
2000).

Another method is to maximize the pseudo-marginal using the EM algorithm based on Monte
Carlo sampling (MCEM) (Wei and Tanner, 1990). For a general SSM, at iteration k in
EM the expectation Q(θ|θk−1) with respect to the distribution p(x0:T |θk−1, y0:T ) can not be
obtained analytically. The MCEM approach calculates Q(θ|θk−1) by integrating over the
SMC approximation of the filtering distribution p(x0:T |θk−1, y0:T ) with parameters θk−1. The
estimates θk at step k can then be obtained through optimization.

2.5.4 SMC with parameter learning

In many applications, we are interested in the filtering or smoothing distribution, but we
have unknown parameters θ or the parameters θ are assumed changing over time. In the
SMC procedure, we will also estimate parameters by on-line parameter learning. To this end,
we can simply augment the state space and define the new states as X ′t = {Xt, θt}, i.e., the
parameters are also part of the states. Let the proposal of θt be

θt ∼ N(θt−1, σ
2), (2.67)

i.e., propagation with Gaussian white noise. Then ordinary particle filters e.g. SISR and
APF can be employed over the new states X ′t. The filtering distribution is the joint distribu-
tion p(x0:t, θ0:t|y0:t). Both the state distribution p(x0:t|y0:t) and the parameter distribution
p(θ0:t|y0:t) can be obtained by marginalization. Besides filtering, the corresponding smoothing
distributions for xt and θt can also be obtained from p(xt, θt|y0:T ).

However, the artificial propagation of θ using Gaussian noise with some arbitrary variance σ2

introduces information loss over time (Liu and West, 2001). To overcome this, Liu and West
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(2001) proposed an extension of the APF where θ are propagated following a kernel density
smoothing approach. It then follows that the parameters θt are sampled with

θt ∼ N(φθt−1 + (1− φ)θ̄t−1, h
2vt−1), (2.68)

where θ̄t−1 and vt−1 are the mean and the variance of the posterior p(θt−1|y0:t−1), evaluated
by particle approximation. The constants φ = (3δ − 1)/2δ and h2 = 1 − φ2 are evaluated
using a discount factor δ ∈ (0, 1], typically around 0.95 to 0.99. The discount factor δ defines
the kernel location shrinkage (Liu and West, 2001) and scaling size by changing the mean and
the variance of the Gaussian. This kernel smoothing approach was later extended by Rios and
Lopes (2013) to overcome possible issues of parameter degeneracy (Carvalho et al., 2010).

2.5.5 Discrete and hybrid SSM

Before, we have been focusing on continuous SSMs. We have a discrete SSM if the states {Xt}
follow discrete distributions with some probability mass function P (X0:t = x0:t) = f(x0:t).
Discrete SSMs are much easier to deal with since we can explicitly calculate the filtering and
smoothing distributions by traversing all possible discrete states, assuming, of course, the
number of states is not too big. The likelihood can be obtained likewise, which enables us to
perform accurate parameter estimation via MLE or EM.

In other cases, we may need to use hybrid SSMs whose state space contains both continuous and
discrete distributions. We will again have to perform particle approximation for the continuous
distributions. Regarding the discrete ones, we have two options: treat a discrete distribution
just like a continuous one and let a particle contain one discrete value, or marginalize out the
discrete state by a summation over all possible values. The appropriate option can be used
depending on specific situations.

The SMC methods for discrete, continuous and hybrid SSMs apply to both models of type I
and II, with only a trivial difference in evaluating p(yt|xt, y0:t) during forward filtering. Paper
II employs a discrete SSM with three layers, and Paper IV uses a hybrid SSM augmented
with parameters. Both are of Model II type. The SSM in Paper II has very weak dependence
within {Yt} conditional on {X0:t} while the SSM in Paper IV has relatively stronger and
longer dependence.



Chapter 3

Neural Models for Visual Attention

Neurons are the basic processing units in our nerve system. The function of a neuron is to
generate, receive and propagate signals. Neurons store signals in the form of action potentials,
also called spikes, which can travel along neuronal synapses from one neuron to the next. A
temporal sequence of spikes is called a spike train. The generation of spike trains is related to
external stimuli. Here we only consider visual stimuli, and the processing of the stimuli are
described by theories in visual attention. Spike train models and visual attention theories are
the two basic components for our neural encoding models.

Neural coding (Rieke, 1999; Brown et al., 2004) refers to the connection between external
stimuli and neural responses (e.g. spike trains). In neural encoding, we construct models
mapping from stimuli to neural responses, through parameter estimation and model selection.
In neural decoding, by contrast, we infer the stimuli based on neural responses using the
constructed encoding model.

In this chapter we first introduce probabilistic models and statistical methods for spike trains
and visual attention. Then we discuss in general the construction of encoding models and
possible methods for stimulus decoding. The neural coding here is performed for visual stimuli
under visual attention theories.

3.1 Spike train models

Neurons generate spikes through membrane voltage, which is controlled by various ion channels
across the membrane. The voltage is extremely dynamic, affected by presynaptic spikes as
well as the neuron itself. A spike is formed when the voltage rapidly rises very high and
falls back to normal in a short time interval. From a mathematical point of view, a spike
train is a time series of spiking events with a hidden underlying dynamical system for the
membrane voltage. The influential Hodgkin-Huxley (HH) model by Hodgkin and Huxley
(1952) describes the voltage with ion currents through four differential equations, which is
formulated following biophysical characteristics of the membrane. Though developed more
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than 60 years ago, the HH model is still frequently used nowadays for studying neuronal
dynamics. However, for situations where we only have spike train observations, the HH model
is difficult to deal with due to a hidden complex ionic system. Thus, we need to establish
approximate models bypassing detailed ion channels. The books by Gerstner and Kistler
(2002) and Gerstner et al. (2014) contain comprehensive introduction of various realistic and
approximate spiking neuronal models. Here we briefly describe two models used throughout
the thesis: the point process model and the leaky integrate-and-fire (LIF) model.

3.1.1 Point process model

A spike train, without considering its underlying biophysical characteristic, is simply a point
process of spiking events. Point process models (Kass et al., 2014) for spike trains describe
the discrete events, and the underlying firing mechanism is approximated into the conditional
intensity function (CIF) which gives the probability of spiking within a short interval ∆t. See
Section 2.1 for a mathematical description of point processes and the CIF.

A widely applied model of the CIF is a Hawkes model incorporating autoregressive spiking
history (Truccolo et al., 2005; Pillow et al., 2008). With the same notation as Section 2.1,
this neural CIF after time discretization is given by

λ(t|Ht) = exp



λ0(t) + a0 +

h∑

j=1

aj(N(t− (j − 1)∆t)−N(t− j∆t))



 . (3.1)

The base intensity term λ0(·) describes the base firing rate, which is a function of time and/or
external stimulus given by the visual attention models. The discretization interval ∆t is often
set to 1 ms, roughly the duration of a neuronal spike. The autoregressive order h can be set
according to the type of neurons in the experiment, and AIC or BIC can be used to select h.
For population of neurons, we may need to take into account the interaction between neurons,
and the interaction enters the CIF in the autoregressive form of other neurons’ spiking history.
An important feature of such CIF models is that, when fitting spike train data, the model
can be formulated as a generalized linear model (GLM) (Truccolo et al., 2005) and the model
fitting procedure will be simple and efficient.

3.1.2 LIF model

The LIF model attempts to achieve a more detailed biophysical realism but still remains
tractable. There is a large collection of different types of LIF models: deterministic or
stochastic, linear or nonlinear, one or more dimensional, etc (see Burkitt (2006); Sacerdote and
Giraudo (2013) for reviews). Here we present a stochastic LIF model incorporating spiking
history effects.

In the LIF model, the membrane voltage is described by a diffusion process (see Section 2.2),
which is the solution to the following OU-type SDE

dXt = (−γ(Xt − µ) + Is(t) + Ih(t))dt+ σdBt. (3.2)
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The diffusion {X(t)} models the stochastic evolution of the (dimensionless) voltage. The
term Is(t) is the response to stimuli, and in this model the response equals the stimulus
numerically, Is(t) = S(t), and is given by the visual attention models. The history effect is
given by Ih(t) =

∑
τ∈Ht

kh(t − τ), where Ht represents the history spike times up to time

t and kh(∆) = η1e
−η2∆ − η3e

−η4∆ is a spike response kernel given by the difference of two
decaying exponentials. So the history effect Ih(t) is a convolution of discrete history spikes
using the kernel kh(∆). The rest terms γ, µ and σ are parameters.

In this model, the voltage starts from a reset value, X(0) = x0, and evolves stochastically
driven by effects from stimuli, spiking history and Gaussian white noise. Once X(t) passes a
threshold value, xth, a spike is generated at time t and the voltage is immediately reset to x0.
Thus, the spike train is a sequence of first passage times of the underlying diffusion process
with respect to a certain threshold. By changing parameters of the response kernel, we can
create different types of patterns in the spike train (Li et al., 2016), and we are then able to
model various types of real spiking phenomena.

3.2 Visual attention

We aim at explaining visual attention for multiple stimuli from a neural perspective. Here
we present the mathematical approaches for the neural explanations of the visual attention
theories. First we introduce the development of the psychological Theory of Visual Attention
(TVA) and the Neural Theory of Visual Attention (NTVA). Then we discuss the statistical
methods for probability mixing versus response averaging and parallel versus serial processing
inspired by the neuronal interpretation of NTVA.

3.2.1 TVA and NTVA

The book by Bundesen and Habekost (2008) presents a comprehensive introduction to the
development and application of TVA and NTVA. Here we briefly summarize the key points.

TVA

TVA (Bundesen, 1990) is an effort to develop a unified computational mechanism of visual
attention. Elegant mathematical equations are employed to account for visual cognition and
attentional selection. TVA consists of a combined mechanism of filtering and pigeonholing,
described respectively by a weight equation and a rate equation. Filtering effectively selects
relevant objects having a particular feature by increasing their weights through the weight
equation. Pigeonholing classifies the selected objects into a particular category by increasing
the processing speed of that category through the rate equation. Combining filtering and
pigeonholing, TVA successfully explains a wide range of empirical findings, including focused
attention for selecting targets over distractors and divided attention for processing multiple
simultaneous targets; see Bundesen (1990); Bundesen and Habekost (2008) and literature
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therein.

TVA is a psychological model focusing on behavioral analysis without touching the interpreta-
tion in a neuronal level. In this thesis work, however, we need to investigate how attentional
selection is conducted from a neuronal perspective.

Single neurons in visual attention

Empirical studies in neurophysiology have revealed the effects of visual attention on single
neurons, summarized in the following four types (Bundesen and Habekost, 2008). First, when
presented by multiple competing stimuli, neurons show strong variability in firing rate, affected
by the attended object (Moran and Desimone, 1985; Chelazzi et al., 1998, etc). Second, when
presented by a single stimulus, neuronal firing rate scales depending on the attention to the
object (Treue and Trujillo, 1999, etc). Third, neurons show baseline shifts in firing rate when
nothing is presented yet but a stimulus is expected to appear (Chelazzi et al., 1998, etc).
Last, neurons sharing the same attended stimulus show increased synchronization in their
activities (Fries et al., 2001, etc). Many cognitive models have been proposed to interpret
these empirical findings in a neuron level, among which are the gain control models (e.g.
Hillyard et al. (1998); Reynolds (2005)) and bias competition models (e.g. Desimone and
Duncan (1995)), but none has managed to account for all the four aspects (Bundesen and
Habekost, 2008). NTVA, on the other hand, is a successful attempt to cover all the empirical
findings.

NTVA

NTVA (Bundesen et al., 2005) is an interpretation of TVA in a single neuron level. A central
assumption in NTVA is that a neuron can only represent a single object at any given time. Both
filtering and pigeonholing in TVA find their corresponding neuronal explanation. In filtering,
the attentional weight of a stimulus from TVA gives the probability that a neuron represents
the stimulus. For multiple stimuli, a neuron can attend to any stimulus, but has a tendency
(higher probability) of attending to the target rather than the distractors. In pigeonholing,
the scaling of processing speed for a particular categorization from TVA corresponds to the
scaling of the firing rate of neurons responsible for making that categorization. Thus, in NTVA
filtering increases the number of neurons representing a particular object and pigeonholing
increases the firing rate of neurons performing a particular categorization.

NTVA explains all the four types of empirical findings mentioned previously and fits a broad
range of experimental data; see Bundesen et al. (2005) and literature therein. First, for
multiple stimuli filtering predicts that neurons can attend to the target as well as distractors
with probabilities given by the weights. We expect strong variability of firing rate from
multiple simultaneous neurons attending to different stimuli and from the same neuron during
attention reallocation. Second, for single stimulus pigeonholing predicts a scaling of the firing
rate of a neuron when the attention is directed to a feature signaled by the neuron. Third, the
baseline activity shift can be explained by the Visual Short Term Memory (VSTM) mapping
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in NTVA. Finally, NTVA predicts the increase of firing synchronization when neurons are
receiving input from the common lower-level cells.

As a summary, TVA and NTVA provide a general unified computational mechanism to
think and interpret visual attention, which explains the empirical neurophysiological findings
extremely well. In this thesis work, we develop our statistical methods based on NTVA, and
apply the methods to single-neuron data.

3.2.2 Probability mixing and response averaging

Probability mixing and response averaging are two opposing hypotheses for attention of
multiple stimuli. The probability-mixing model is closely related to NTVA by applying
the attentional weight and the bias parameter, which can be explained by filtering and
pigeonholing; see Paper I for the discussion of their relation. The response-averaging model
arises from the research done by Reynolds et al. (1999) which was later formulated as the
normalization model in Reynolds and Heeger (2009). Reynolds et al. (1999) showed that the
empirical firing rates of neurons presented by a stimulus pair, averaged across trials, was equal
to a weighted average of the firing rates responding to each single stimulus. The selection
between probability mixing and response averaging is an attempt not only to answer the
fundamental question regarding neuronal response to multiple stimuli but also to verify the
hypothesis of NTVA that a neuron only represents a single object at a time.

As in the Introduction section, we denote K isolated stimuli by S = {Sk; k = 1, 2, . . . ,K}, and
the response of a neuron to S or any Sk by I(S) and I(Sk). The stimulus S can be temporal
such that S is a function of time. The meaning of ”response” varies in different context. It
may refer to the firing rate in most empirical analysis and simple neuron models. While in the
more biophysical models, the response refers to the effect of presynaptical spikes caused by
the stimulus, and thus it enters the model as a contribution to the membrane voltage change
(Li et al., 2016). In the probability-mixing model, we have

I(S) = I(Sk) with probability αk, (3.3)

and in the response-averaging model, we have

I(S) =
1

K

K∑

k=1

I(Sk)βk. (3.4)

In both models, the response to single stimulus is given by

I(Sk) = v(Sk)a(Sk) + Ik. (3.5)

Here, v(Sk) gives the base response to the stimulus Sk as a tuning function of the strength
of Sk, which is often modeled by a Gaussian or a Von Mises (circular Gaussian) function in
empirical analysis (Shokhirev et al., 2006). The term a(Sk) gives the attentional bias from
particular experimental settings. For example, if there is a cued stimulus and Sk is the same
as the cue, then the neuronal attention will be directed to Sk and the bias a(Sk) can become
bigger than 1. Finally, Ik represents a constant offset response irrelevant to the strength of
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Sk and attentional bias. The formulation here corresponds to the rate equation in NTVA
(Bundesen and Habekost, 2008; Bundesen et al., 2005). To separate the probability-mixing
and respone-averaging model, we have to conduct single trial analysis rather than averaging
across trials. Indeed, the average firing rate across trials will be identical for the two models
with the same parameter values, and the actual difference resides in the variance across trials.

Dip test

Following the probability-mixing model, the repeated trial spike trains for the same neuron
under the same condition may attend different stimuli, and the firing rates from all repetitions
form a multimodal distribution. While following the response-averaging model, all repetitions
share the same response and the firing rates will follow a unimodal distribution. The Dip test
(Hartigan and Hartigan, 1985) is a statistical test for unimodality of an empirical distribution,
where the null hypothesis is that the distribution is unimodal. Dip tests can be used for a
straightforward empirical test on the firing rates of repetitions. A significant p-value means
multimodality and the probability-mixing is favored. In practical application, the firing rate
data may be too scarce for a reliable test, and we can instead apply the unimodal test on the
inter-spike intervals (ISIs).

Attentional switching

If a neuron is presented to multiple stimuli for a long duration, in the probability-mixing
model the attentional target may switch, even if the probability parameters stay the same.
For example, Fiebelkorn et al. (2013) found that the sustained attention can fluctuate as
frequently as 4 to 8 Hz. This random switching may be modeled by a Markov chain with
appropriate discretized time step. The state space is the index of stimuli. With constant or
temporal transition probability matrix of the Markov chain, we can describe various types
of switching mechanisms, e.g. memoryless or autoregressive switching. Taking a sufficiently
small time step, we can also well approximate continuous-time switching.

3.2.3 Parallel and serial processing

Parallel and serial processing explain, from different hypotheses, how multiple stimulus objects
are processed after stimulus presentation. Countless behavioral and decision-making tasks
have been analyzed for the comparison between parallel and serial processing (Bundesen
and Habekost, 2008; Nobre and Kastner, 2013), but the neural explanation behind the
two processing mechanisms is rarely touched. We first very briefly summarize the previous
behavioral studies on parallel versus serial processing, and then present a short introduction
of the neural methods used in the thesis work.

The behavioral studies mainly focused on mean response times, response time distributions
and their relation to the display size. In the experiments by Sternberg (1966, 1969a,b);
Schneider and Shiffrin (1977), the observer needed to identify the target from distractors and
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respond as quickly as possible with a positive (target present) or a negative (target absent)
answer, and the response times were recorded. Treisman et al. (1977) conducted similar
research but applied more detailed discrimination between the target and the distractors,
introducing single-feature search with one physical feature to distinguish the target and
conjunction search combining two physical features. The mean response times were found to
follow linear functions of the display size, which can be easily explained by a simple serial
processing mechanism. However, as Townsend and Ashby (1983) analyzed, the serial model
can be mimicked by a parallel model with limited processing capacity, in which not all objects
can be processes at the same time and response times can be described by linear functions
of the display size. Later Bricolo et al. (2002) employed highly inefficient tasks, and fitted
response times to theoretical distributions using Gaussians and Exponentials. They found
evidence for serial processing in different experimental schemes and the simple mimicry using
parallel processing with limited capacity cannot explain all their experimental data. A new
multi-feature whole-report paradigm was introduced by Bundesen et al. (2003) and further
applied in Kyllingsbæk and Bundesen (2007), where the observer needed to process two
separate features from each of two objects. Results showed evidence of processing only one
feature from each of the two objects before interruption. This partial processing from both
objects strongly favored parallel processing.

As discussed above, with the classical interpretation for parallel and serial processing, behav-
ioral studies have produced results supporting both processing mechanisms. Here we apply
more direct neural explanation, combining visual attention theories and neural spike train
analysis. We describe parallel and serial processing with a unified neural framework, modeling
single neurons with attentional switching. The difference of the two processing mechanisms
from a neural perspective resides in whether neurons tend to attend to the same stimulus at
the same time or they tend to split the attention independently. Our neural framework is
based on probability mixing and NTVA, where a neuron only attends to a single stimulus at
any given time with probabilities. The core idea to distinguish between parallel and serial
processing is presented below.

Consider a case where there are in total N simultaneous neurons responding to 2 stimuli.
The N neurons are homogeneous so that they are not distinguishable. Denote the attentional
target of any neuron by X, and X ∈ {1, 0} is a binary variable representing stimulus 1 or 2.
We favor serial processing if we observe any of the following two cases.

1. Strong correlation: the correlation between the attentions of any two neurons Xi and
Xj , Cor(Xi, Xj), approaches 1;

2. Extreme probability: the probability of any neuron attending to stimulus 1 is extreme,
i.e. P (X = 1) approaches 0 or 1.

If neither happens, i.e. Cor(Xi, Xj) is sufficiently different from 1 and P (X = 1) is sufficiently
different from both 0 and 1, we favor parallel processing. Therefore, parallel and serial
processing can be distinguished by calculating Cor(Xi, Xj) and P (X = 1).

Another method is to use a single statistic. Denote the probability mass function (PMF) of
the number of neurons attending to stimulus 1 by P (#{i;Xi = 1} = n) = f(n). If f(n) near
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0 or N is larger than elsewhere then we prefer serial processing, and if f(n) near N/2 is larger
then we prefer parallel processing. To describe such behavior of f(n), we use a deviation
statistic DN given by

DN =

∑N
n=0 |n−N/2|f(n)

N/2
. (3.6)

The statistic DN ∈ [0, 1] gives the expected deviation between the number of neurons attending
to stimulus 1 and half of the total neuron number. It can also be explained as the deviation
between the observed processing mechanism and the perfect parallel processing with uniform
weights among stimuli. The bigger DN is, the more we favor serial processing; and vice versa.
To remove the dependence of DN on the neuron number N , we can evaluate the asymptotic
version

D∗ = lim
N→∞

DN , (3.7)

which can be calculated explicitly for certain models.

To calculate the criteria of correlations, probabilities, and the deviation statistics, we model
single-neuron data using visual attention theories with spiking neuron models, and infer
parameters describing neuronal attention. The criteria can be calculated using the inferred
parameters. Both processing mechanisms are described by the same model, but distinguished
by parameters. See Paper II for the details of the models.

The methods introduced above applies only to cases of 2 stimuli. If there are more stimuli,
apart from the neural model itself which becomes harder to fit, we also need to consider more
cases and more dimensions for the correlation, the PMF, etc, to distinguish between parallel
and serial processing. The methods quickly suffers from the curse of dimensionality as the
number of stimuli goes bigger. We stick to the situation according to the studied experiment
and do not pursue a generalization for higher dimensions in the current study.

3.3 Neural coding with visual attention

All the studies with neural modeling in this thesis, in a broad sense, belong to neural coding.
We either conduct encoding by parameter estimation and model selection, or perform decoding
by inferring stimulus and attention. The results of both encoding and decoding give us
explanations on relevant questions in neuroscience or psychology. In the following we discuss
general approaches for encoding and decoding using neural spike data under the visual
attention hypotheses.

3.3.1 Encoding

Suppose we have stimuli denoted by X, spike train data Y , and model parameters θ. Denote
by Z the latent attentional variables and possible hidden variables in the spiking neuron
model if any. In the encoding model, X is first plugged into the visual attention model giving
processed stimulus information, which is then taken by the spiking neuron model generating
spikes. For example the visual attention hypotheses enter the CIF model (3.1) through the
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base firing rate term λ0(·) and the LIF model (3.2) through the stimulus response term Is(·).
Here X and Y are known from experiments, Z is latent and unknown, and θ is unknown and
to be estimated.

For parameter estimation, we may obtain the ML estimator

θ̂ = arg max
θ

logP (X,Y |θ), (3.8)

where P (X,Y |θ) is the marginal likelihood

P (X,Y |θ) =

∫
P (X,Y |Z, θ)P (Z|θ)dZ. (3.9)

In models where the attentional variables are discrete, the integral can be evaluated using
sums. When Z includes continuous variables from e.g. complex neuron spiking models, the
pseudo-marginal method can be employed by sampling Z; see parameter estimation of SSMs
in 2.5.3. Besides straightforward MLE, we may also apply the EM algorithm by maximizing

Q(θ|θ′) = EZ|X,Y,θ′ [logP (X,Y, Z|θ)]. (3.10)

Again, if the conditional expectation is difficult to compute, we may employ sampling
following the MCEM method. For example, Ditlevsen et al. (2014) provided inference for
the two dimensional stochastic Morris-Lecar neuronal model under partial observations by
maximizing the pseudo-marginal likelihood with EM using SMC particle filtering. The
conditional likelihood of data given latent variables, P (X,Y |Z, θ), can be obtained by the
likelihood of spike trains under the corresponding model, e.g. the likelihood formula for point
processes (Truccolo et al., 2005; Kass et al., 2014) and the first-passage time solution for LIF
models (Paninski et al., 2004, 2008, 2007; Iolov et al., 2014; Li et al., 2016). Apart from the
above likelihood methods, parameter estimation of certain LIF encoding models can also be
conducted by minimizing an error function based on the Fortet’s equation (Ditlevsen and
Lansky, 2007; Lansky and Ditlevsen, 2008; Ditlevsen and Ditlevsen, 2008), and using moment
estimators derived by formulating martingales (Ditlevsen and Lansky, 2005, 2006).

Regarding model selection, ordinary methods can be applied, for example AIC and BIC. For
model checking, we can apply uniform residual tests and the predictive error of spike trains
Y . The later can be the RMSD of firing rates, the RMSD of ISIs, or some spike train metric
(distance between spike trains; see e.g. Victor and Purpura (1997); van Rossum (2001)). The
uniformity test of point process models can be performed on the time rescaling transformations
(Brown et al., 2002; Haslinger et al., 2010) that give standard Poisson processes if the model
is correct.

After neural encoding, apart from a ready-to-use neural model, we draw meaningful explana-
tions or even central conclusions regarding both visual attention and neural spiking mechanism
(see Papers I and II) from the parameter estimates.

3.3.2 Decoding

Consider the encoding model with the same notation as the above encoding section. In
decoding, Y and θ are known, Z is unknown, and X can be known or unknown in different
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situations. In addition, we may also have unknown parameters η that could include the
hyperparameters of stimuli, non-constant parameters (e.g. trial-dependent or time-dependent),
etc. In a typical situation, X is unknown and we need to obtain the posterior distribution of
{X,Z, η}:

P (X,Z, η|Y, θ). (3.11)

Sometimes we are interested in only the stimuli X, or only the attention information Z, and
sometimes we want to know both. This can be done by marginalization:

P (X,Z|Y, θ) =

∫
P (X,Z, η|Y, θ) dη, (3.12)

P (X|Y, θ) =

∫∫
P (X,Z, η|Y, θ) dη dZ, (3.13)

P (Z|Y, θ) =

∫∫
P (X,Z, η|Y, θ) dη dX. (3.14)

Another situation is that we also have knowledge about the input stimuli X and need to
decode the neuronal attention, i.e., the distribution

P (Z|X,Y, θ) =

∫
P (Z, η′|X,Y, θ) dη′, (3.15)

where η′ does not contain hyperparameters from X since we have the full information about
X.

If the stimuli are constant and the dimension of {X,Z, η} is small, we can apply MAP
estimation on e.g. distribution (3.11):

{X̂, Ẑ, η̂}MAP = arg max
X,Z,η

logP (X,Z, η|Y, θ), (3.16)

or even on the marginals if the integrals can be easily evaluated. MCMC can also be used to
get the full distribution.

However, in most real applications e.g. brain-machine interfaces (BMI) (Lebedev and Nicolelis,
2006; Waldert et al., 2009), X is temporal and needs to be decoded in real time. This leads to
the SSM formulation of decoding. SSMs have become a central idea in decoding tasks since
the pioneering work by Brown et al. (1998) applying point processes in decoding with spike
trains; also see Paninski et al. (2010) for a review of SSMs in neuroscience and the literature
therein.

Suppose we want to decode X and Z, and the states for the SSM are {Xt, Zt, ηt; t ≥ 0}. It
amounts to obtaining the filtering or smoothing distribution given by

P (Xt, Zt, ηt|Y0:t, θ) (3.17)

and
P (Xt, Zt, ηt|Y0:T , θ), (3.18)

respectively. The particle methods introduced in Section 2.5, in particular methods for hybrid
SSMs with parameter learning, can be employed to approximate the filtering or smoothing
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distributions. The decoding of stimuli or attention is then obtained. In addition to the SMC
methods, for simple spiking models e.g. point processes, the optimal decoding estimation can
be obtained at each time step numerically through MAP estimator {X̂t, Ẑt, η̂t}MAP , or even
analytically via Gaussian approximation on the posterior distribution; for example see Brown
et al. (1998); Eden et al. (2004).

Filtering distribution gives online decoding where estimates are calculated immediately after
receiving the observation at t. The full smoothing gives offline decoding after receiving the
full observation up to T . Finally, there is also ”semi-online” decoding, where estimates of a
past time t− l are calculated based on the observation up to t through the partial smoothing
distribution, P (Xt−l, Zt−l, ηt−l|Y0:t, θ). Semi-online decoding are used when we allow for some
lag l before reporting estimates and desire better accuracy.

Decoding of visual attention provides posterior inference of what could have happened
regarding neuronal attention given concrete observations, for example P (Zs|Y0:t, θ), s ≤ t. By
contrast, the encoding model show neurons’ general property and prior knowledge of what
could happen in the future providing stimuli, for example P (Zt|Xt, θ).
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Chapter 4

Overview and Prospects

We first provide an overview for each project individually, and then propose possible future
development.

4.1 Overview of studies

4.1.1 Paper I

Paper I presents the statistical model selection between the response-averaging and the
probability-mixing model from experimental spike train data from the middle temporal (MT)
visual area of rhesus monkeys. A mixture of two isolated random dot patterns are used as
the stimuli and neural spike trains are recorded as the observation. For the spike train of
each single trial, we employ the point process encoding model incorporating the processed
stimulus information by the visual attention models. After parameter estimation, the selection
between the two visual attention model is performed using AIC, BIC, uniformity tests, and
predictability by RMSD of firing rates. Furthermore, we also conduct empirical selection using
the dip unimodality test on ISIs. In addition to main model selection analysis, the possibility
of attentional switching and neuronal population correlation are explored as well.

All model selection methods show the probability-mixing model is favored. The unimodality
empirical analysis also suggests increased multimodality under stimulus mixtures. The possible
attentional switching seems not to affect the model selection. The population correlation is
rare, but could be due to the limited sample size.

4.1.2 Paper II

In Paper II we distinguish between serial and parallel processing in visual search using spike
trains from simultaneously recorded neurons in monkey prefrontal cortex. The stimuli are
two static images located on both sides of the vision. Again we employ the point process
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encoding model for spike trains. Regarding the two visual search hypotheses, we apply
a HMM with Binomial distributions, a unified model to describe both serial and parallel
processing depending on the parameter setting. The model is based on a neural explanation
assuming probability mixing. To distinguish between the two hypotheses, we use the neuronal
correlation of attention, the probability of attention, and the deviation statistic Dn. From the
parameter estimates in the encoding stage, we assess how the neuron performs visual search
in general, and from the attention estimation in the decoding stage, we infer how the neuron
could have allocated the attention given observations. In addition to the Binomial-HMM
model, we also tried a correlated Binomial model for neuronal attention, following the same
strategy to distinguish between serial and parallel processing.

Results of this study show evidence of both serial and parallel processing at all time steps.
However, we find, the simultaneously recorded neurons tend to split attention between
both stimuli in the early stage after stimulus onset, suggesting stronger parallel processing.
Afterwards they tend to focus together on the same stimulus, indicating serial processing.
Further, in the early stage neurons show a tendency of attending to the contralateral stimulus.
The above finding is based on simultaneous neurons in one location, which already show
parallel processing. From the perspective of the whole brain with two hemispheres, both
showing tendency for the contra side, we may conclude strong evidence of parallel processing
in the early stage of visual search.

4.1.3 Paper III

Paper III performs model selection between response averaging and probability mixing using
a LIF encoding model incorporating long-term spike history effects on spike trains. The study
is done in a more theoretical way with simulations. We conduct the parameter estimation
using various numerical methods for diffusions, and perform the model selection with AIC,
BIC and uniformity tests. The distinguishability of response averaging and probability mixing
is systematically explored, using different response kernels, stimulus types, weight parameters,
stimulus dissimilarities and data sizes.

The simulation study shows that parameter estimation of both response averaging and
probability mixing can be successfully done for all settings. Intuitively, the distinguishability
relies on sufficient data size, stimulus dissimilarity and weight parameters. However, the
required sufficiency of settings, we find, is surprising low for a high accuracy of correct model
selection. In addition to the main goal of model selection between the two visual attention
hypotheses, as a side contribution we also establish a LIF model with tunable response kernels
for various types of spiking patterns, and compare the efficiency and accuracy of parameter
estimation of four numerical methods using PDEs and IEs.

4.1.4 Paper IV

In Paper IV we conduct decoding of multiple stimuli given spike trains under probability
mixing using the LIF model. Two decoding scenarios are considered. The first is based on an
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interval of fixed attention with unknown number of stimuli, for which we propose a decoding
algorithm by clustering spike trains and decoding each categories, bypassing the deficiency of
mixture models. The second is a more realistic situation with temporal stimulus mixture and
switching attentions. We formulate SSMs for stimuli and attention, and employ various SMC
particle methods. For population decoding, we consider both serial and parallel processing.
The former assumes fully correlation among neurons and decodes only one stimulus component
at a given time, while the latter assumes fully independence among neurons and can decode
multiple components given sufficient data.

For the first scenario, our simulation study indicates the proposed algorithm performs better
than the basic method using mixture models. For the second scenario, we systematically
compare various particle methods in situations with different stimulus numbers and spike
train numbers. Though all methods achieve good decoding results with small RMSD values,
their performance difference varies depending on the situations.

4.1.5 Contribution summary

This thesis study brings a novel methodology development combining mathematical spiking
neuron models for single spike trains with formulated neural explanations of visual attention
theories. We perform both application to experimental data and theoretical study with
simulations, and obtain interpretation and insights in both neuroscience/psychology and
mathematics. The study also provides a framework of neural coding under visual attention,
extending the already extensively studied topics of neural encoding and decoding by taking
into account how complicated stimuli are processed by the brain through attention. We
hope this idea of understanding visual attention by mathematical modeling of single neurons
provides a worthy and promising new perspective, which could draw more attention from
researchers and receive further inspiring ideas.

4.2 Prospects

4.2.1 Real data analysis

Based on the two studies on experimental data presented in Papers I and II, we could have
the following extensions.

1. Currently we have only been using the point process model with the CIF defined in
an autoregressive manner, which provides a GLM framework. We could approximate
further for even more efficient model fitting, for example using the renewal process
models. In addition, the history autoregressive order in the CIF can be decided by
model selection with AIC/BIC, as in Truccolo et al. (2005).

2. We may consider the full spike train, instead of the short interval of around 500ms
right now. The full spike train can be as long as 3000ms in Paper I and 2000ms in
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Paper II. That will give us more robust estimation of the spiking activity, in particular,
the spontaneous activity. However, we will need to consider the stimulus change and
attentional switching during the whole recording period.

3. In Paper I the model checking procedure could also include a decoding analysis of the
direction of stimuli, besides the RMSD of firing rates currently used.

4. The response-averaging and probability-mixing model can be further extended such
that we consider the background as a third stimulus and consider the whole stimulus
pair also as a single stimulus object. This gives a mixture of more than two stimuli.
Likewise, the parallel and serial processing may also take into account the fixation point
and other noisy effects.

5. As said in Paper II, we only consider the separation of serial and parallel processing
based on two stimuli. If for example we consider other objects in the vision, such as the
central dot, there will be more than two stimuli. A theoretical study may be conducted
to generalize our original methods and consider any number of stimuli. Techniques need
to be developed to avoid the curse of dimensionality.

4.2.2 Simulation study

In the simulation studies in Papers III and IV, we aim at more complex models and scenarios
and evaluate the applicability in theory.

1. To improve the efficiency of numerical computation, the solution of PDEs can be
rearranged using matrix multiplications and implemented in parallel on GPU devices.

2. We have found different performances among the four numerical methods using PDEs
and IEs for parameter estimation. We may conduct further theoretical study on the
efficiency and accuracy of the numerics, which could lead to for example optimal designs
of grid sizes in different scenarios for the four methods. This will be a contribution to
the general first-passage time problem.

3. We have not considered encoding in an attention-switching case with long spike trains,
though the decoding is indeed performed with attention switching. With high dimen-
sional latent attentional variables, the encoding will include parameter estimation of
general SSMs, for which we can apply the methods introduced in the previous chapters.
Besides attention switching, other extensions may be colored non-Gaussian noise, two
or more dimensional LIF models, etc.

4. For particle filtering with parameter learning, besides the kernel smoothing method by
Liu and West (2001), we may also employ the idea of the SMC2 algorithm (Chopin
et al., 2013), where we perform a particle filter in the parameter space and each particle
itself also runs a particle filter in the latent state space.
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4.2.3 Additional topics

A general serial/parallel processing model with attentional switching

The Binomial-HMM model used in Paper II for serial and parallel processing, and the neuronal
switching model used in Paper IV for decoding serial and parallel populations, rely on different
assumptions, but the two can be unified in a more general HMM model, shown in Figure 4.1.

C1 C2 C3

X1
1 X2

1 X1
2 X2

2 X1
3 X2

3

d1
1 d2

1 d1
2 d2

2 d1
3 d2

3

. . .

. . .

. . .

. . .

. . .

. . .

Ct ∈ {1, 2}: hidden state at t

Xi
t ∈ {1, 2}: attentional target at t for neuron i

dit: observation at t of neuron i

Figure 4.1: Diagram of a generalized HMM model for attention switching.

The difference between this generalized version and the Binomial-HMM is that there is direct
dependence between Xi

t and Xi
t−1, i.e. the attentional target of the same neuron now follows

a Markov chain along time steps given {C1:t}. While in the Binomial-HMM {X1:t} are
conditionally independent given hidden states {C1:t}. We simplify the model as such because
the Binomial-HMM is easier to fit with simpler structure and less parameters, especially
considering limited data size and big noise in experimental spike trains. Though being simpler,
the Binonial-HMM still models neuronal correlations and can describe both serial and parallel
processing. In the attention switching model for parallel processing in Paper IV, there are
dependencies among {X1:t}, but we discard the hidden states Ct. So the attention switching
of each neuron follows a Markov mechanism and all neurons are independent. Note that with
on-line parameter learning of the transition probabilities we can still achieve the temporal
effects brought by the states Ct.

Single neuron approach for decision making

Decision making is another widely studied topic in psychology. The most famous computational
method for decision making is the drift-diffusion model (DDM) (Smith, 2000), where the
decision procedure is described by a Wiener process with non-zero drift and diffusion coefficients.
The Wiener process accumulates evidence, and a decision is made once it passes the threshold.
A common paradigm in research is the two-alternative forced choice task (2AFC), where the
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brain needs to choose one from two alternatives. For the DDM with 2AFC, the evidence can be
either positive or negative representing tendency to either choice, and there are two threshold
values for making the two choices. This is a first-passage time problem with two boundaries.
Solving the Fokker-Planck equation for the diffusion with two absorbing boundaries gives us
the first-passage time probability of reaching either boundary. Further, we may solve another
differential equation and obtain the probability of the diffusion reaching one boundary before
the other (Karlin and Taylor, 1981).

However, a convincing detailed neural explanation of decision making is lacking; current
research in neural theory mainly focus on the lateral intraparietal cortex (LIP) which controls
the eye movement. The firing rate of LIP neurons averaged across trials was found to follow
the DDM (Gold and Shadlen, 2007). The average firing rate evolves stochastically as a Wiener
process and the decision is made when the firing rate reaches a threshold. On the other hand,
Latimer et al. (2015) proposed that the firing rate of a LIP neuron could jump to a threshold
value instantaneously, instead of slowly accumulating. The average of jumping steps across
trials also gives the stochastic accumulating behavior. The difference of the two models resides
in single spike trains, somewhat similar to our study on response averaging and probability
mixing. Their proposal was verified and supported by statistical inference based on single
spike trains using spiking neuron models, and model selection using DIC. Though the new
approach is difficult to be immediately digested and the validity is questioned by researchers
using spike train averaging (Shadlen et al., 2016; Latimer et al., 2016), the emerging novel
methods for decision making modeling single spike trains have brought illuminating ideas.

Incorporating probability mixing and NTVA, a new study for decision making may be based
on single spike train modeling of visual cortex neurons. We assume each neuron attend to only
one stimulus at any given time, and the resources allocated to a stimulus may be represented
by the number of neurons attending to it, possibly also weighted by the firing rate of each
neuron. Combined with the neural explanation of serial and parallel processing, we may
infer/decode the resource allocation of each stimulus for a given time interval. The temporal
resource allocation can be related to the evidence term in either DDM or the stepping model
for the decision making procedure. This is a preliminary idea, though, and the validity still
needs to be checked in details.
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A fundamental question concerning representation of the visual world in our brain

is how a cortical cell responds when presented with more than a single stimulus.

We find supportive evidence that most cells presented with a pair of stimuli respond

predominantly to one stimulus at a time, rather than a weighted average response.

Traditionally, the firing rate is assumed to be a weighted average of the firing rates to

the individual stimuli (response-averaging model) (Bundesen et al., 2005). Here, we also

evaluate a probability-mixing model (Bundesen et al., 2005), where neurons temporally

multiplex the responses to the individual stimuli. This provides a mechanism by which the

representational identity of multiple stimuli in complex visual scenes can be maintained

despite the large receptive fields in higher extrastriate visual cortex in primates. We

compare the two models through analysis of data from single cells in the middle temporal

visual area (MT) of rhesus monkeys when presented with two separate stimuli inside their

receptive field with attention directed to one of the two stimuli or outside the receptive

field. The spike trains were modeled by stochastic point processes, including memory

effects of past spikes and attentional effects, and statistical model selection between the

two models was performed by information theoretic measures as well as the predictive

accuracy of the models. As an auxiliary measure, we also tested for uni- or multimodality

in interspike interval distributions, and performed a correlation analysis of simultaneously

recorded pairs of neurons, to evaluate population behavior.

Keywords: probability-mixing, response-averaging, primate visual cortex, multiple stimuli, point process, model

selection

1. INTRODUCTION

The receptive field (RF) of a neuron in the visual system is the region within the visual field in
which stimulation can affect the neuron’s response. To understand visual information processing,
it is fundamental to understand how the benefits of large RFs (integrating spatial information to
allow encodingmore complex and spatially extensive visual stimuli) are achieved without the loss of



Li et al. Neurons Alternate between Multiple Responses

spatial precision caused by combining the responses to multiple
stimuli in the RF into one response of the neuron.

In primary visual cortex, RFs are small, allowing for a
direct high-resolution representation of stimulus position in
retinotopic coordinates. Moving up the hierarchy of extrastriate
visual areas, both in the temporal and dorsal pathways, RF
sizes grow substantially (Smith et al., 2001; Gattass et al.,
2005). This is generally seen as an adaptation to the functional
specialization of these areas for more complex aspects of the
visual environment, creating a need for integrating information
over larger spatial areas, such as when encoding faces (Kanwisher
and Yovel, 2006) in the ventral pathway or optic flow
patterns (Gilmore et al., 2007) in the dorsal pathway. However,
the benefit of spatial integration comes with the cost of
a loss of information about the individual features when
multiple stimuli fall in the RF, which happens frequently
in mid- or high-level visual cortical areas (Orhan and Ma,
2015).

Most single-cell studies on processing in extrastriate visual
cortex have focused on single stimuli, and most studies of
responses to multiple stimuli have viewed the recorded activities
as an integration of the responses that would have been evoked
by each of the stimuli presented alone. This approach has
led to the observation that the average firing rate to multiple
stimuli is not the sum but rather a weighted average of the
responses evoked by the individual stimuli when these are
presented alone (Recanzone et al., 1997; Britten and Heuer,
1999; Reynolds et al., 1999; Zoccolan et al., 2005; Busse
et al., 2009; Lee and Maunsell, 2009; MacEvoy et al., 2009;
Reynolds and Heeger, 2009; Nandy et al., 2013). Here we
show that looking only at the responses to multiple stimuli
averaged across many trials has obscured the possibility that
neurons multiplex the responses to the individual stimuli in
time, shifting between response states dominated by individual
stimuli (Bundesen et al., 2005; Bundesen and Habekost,
2008).

Reynolds et al. (1999) showed that a typical cell in visual area
V2 or V4 responds to a pair of objects in its classical RF by
adopting a rate of firing which, averaged across trials, equals a
weighted average of the firing rates when objects are presented
alone. We analyzed two opposing models, the two models being
prototypes for how multiple stimuli are being processed on
the single trial level, and both leading to the observed average
behavior over trials. In the response-averaging model (e.g.,
Reynolds et al., 1999), the firing rate of a cell to a pair of stimulus
objects in its classical RF is a weighted average of the firing rates
to the individual objects. By contrast, in the probability-mixing
model (Bundesen et al., 2005), the cell responds to the pair of
objects as if only one of the objects were present in any given trial.
Here we compare the abilities of the two models to account for
spike trains recorded from single cells in area MT in response to
(a) unidirectional moving random dot patterns (RDPs) presented
singly in the RF and (b) nonoverlapping bidirectional pairs of
such patterns in the RF. For unidirectional patterns, the two
models coincide. Results from bidirectional pairs support the
probability-mixing model over the response-averaging model.

2. MATERIALS AND METHODS

2.1. Experimental Procedures
The comparison between the response-averaging model and the
probability-mixing model was performed by analysis of spike
trains recorded from single cells in area MT. The data and
computer code are available at Li et al. (2016). In this study,
two rhesus monkeys were trained to perform visual tasks (see

Figure 1A). Before each trial of the main experiment, a fixation
spot (small red square) appeared in the middle of a computer
screen. The monkey was trained to maintain its gaze on the
fixation spot throughout each trial. It initiated a trial by pressing
a lever. Immediately afterwards a cue was presented, which
specified a target stimulus. The target, which could be either
a RDP (attend-in condition) or the fixation spot (attend-fix

condition), was later presented during the trial shown alone or
together with distracting RDPs. The monkey was rewarded with
a drop of juice for detecting a transient change in the target and
responding by releasing the lever within 150–650 ms after the

change.
In the attend-fix condition, the color of the fixation spot

changed from red to gray when the monkey pressed the lever.
The monkey was supposed to keep attention on the fixation

spot. After 600 ms, two distractor RDPs were presented inside
the RF of the recorded MT neuron and two were presented
outside the RF (see Figure 1A). Each distractor pattern could

change its motion (by increase in speed with 67% or clock-
or counterclockwise change in direction by 45◦) for a period
of 130 ms beginning at a randomly chosen moment between
800 and 2400 ms after the onset of the RDPs. The monkey

was required to detect a luminance change in the fixation spot
which occurred within the same time window. For all cells,
spike trains were recorded when two nonoverlapping patterns
were simultaneously present in their RFs. For the majority of
cells, spike trains were also recorded when only one pattern was
present in the RF (at one of two locations, aperture 1 or 2, used
for the bidirectional stimulation; see the unidirectional conditions
fix1 and fix2 in Figure 1A).

In the attend-in condition, the fixation spot remained red
during the whole trial. The cue was a moving RDP in aperture 1
presented for 600 ms. It had the same location and moved in the
same direction as the target RDP. After the cue, a blank screen
was shown for 800 ms (delay) followed by a display of the target
RDP accompanied by three distractor RDPs. The first change in
motion within the trial took place between 400 and 1200 ms after
the onset of the patterns and could occur in either the target or
one of the distractors. The transient change in speed or direction
of motion was the same as the change used in the attend-fix
condition. The target change took place inside aperture 1 in the
RF of the recorded neuron.

In the bidirectional conditions, direction of motion in
aperture 2 was always 120◦ clockwise relative to that in aperture
1 (see Figure 1A). To determine a direction tuning curve for
a neuron in a given condition (see Figure 2), both motion
components were varied in steps of 30◦. In all cells, full
tuning curves were determined for the attend-fix and attend-in
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FIGURE 1 | Experimental setup and possible results. (A) Visual stimuli and behavioral tasks. The lower left shows an example of the stimulus layout in the RF. The

classical RF of an MT neuron is indicated by dashed ovals (not visible on the screen). Bidirectional motion patterns composed of two adjacent separated RDPs that

moved within two stationary virtual apertures were used both inside and outside the RF. Apertures 1 and 2 were placed within the RF. In the bidirectional-motion

condition attend-in, the monkey was required to detect a transient change in either speed or direction of motion of the cued target RDP. In the bidirectional-motion

condition attend-fix and unidirectional motion conditions fix1 and fix2, the monkey was required to detect a transient change in the luminance of the fixation spot. (B)

Possible results. Illustration of the difference between the probability-mixing model and the response-averaging model by spike trains generated by stimulus pairs and

single stimuli, respectively. The spike trains are taken from two neurons indicated in the scatter plots in Figure 4A as a square (apparent probability-mixing) and a

triangle (apparent response-averaging). (C) Histograms of the empirical firing rates of the data in (B).
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FIGURE 2 | Tuning curves. Gaussian tuning curves (full-drawn lines) fitted to

the average firing rates (dots) at each direction of movement and for each

experimental condition of the 84 neurons that were tested in both bi- and

uni-directional trials. In the analysis, each neuron has its own tuning curve,

here an average curve is shown for illustration. The directions of movements in

apertures 1 and/or 2 are shown by green and yellow arrows, respectively,

along the x-axis. The two vertical dotted lines indicate the stimulus directions

that were closest to the preferred direction, in aperture 1 (right) and aperture 2

(left). An example of the periodic Gaussian function, Equation (7), is shown in

the insert on bottom-right, with parameters A = 15,D = 0, σ = 1.2, r0 = 5.

conditions. Recording of responses to the unidirectional
components of the bidirectional stimuli, when each of the
components was presented alone, provided two additional tuning
curves.

2.1.1. Monkey Training and Surgery
Two male rhesus monkeys (Macaca mulatta) were extensively
trained to perform visual attentional tasks. The animals were
implanted with a custom-made titanium implant to prevent
head movements during training and recording, and a recording
chamber (Crist Instruments, Hagerstown, MD, USA) on top of
a craniotomy over the left (monkey C) or the right (monkey H)
parietal lobe. The chamber positions were based on anatomical
MRI scans.

All animal procedures of this study have been approved by
the responsible regional government office [Niedersächsisches
Landesamt für Verbraucherschutz und Lebensmittelsicherheit
(LAVES)] under the permit numbers 33.42502/08-07.02 and
33.14.42502-04-064/07. The animals were group-housed with
other macaque monkeys in facilities of the German Primate
Center in Goettingen, Germany in accordance with all applicable
German and European regulations. The facility provides the
animals with an enriched environment (including a multitude of
toys and wooden structures; Calapai et al., 2016), natural as well
as artificial light, exceeding the size requirements of the European

regulations, including access to outdoor space. Surgeries were
performed aseptically under isoflurane anesthesia using standard
techniques (see Martinez-Trujillo and Treue, 2004), including
appropriate peri-surgical analgesia and monitoring to minimize
potential suffering. The German Primate Center has several staff
veterinarians that regularly monitor and examine the animals
and consult on any procedures. During the study the animals
had unrestricted access to food and fluid, except on the days
where data were collected or the animal was trained on the
behavioral paradigm. On these days the animals were allowed
unlimited access to fluid through their performance in the
behavioral paradigm. Here the animals received fluid rewards
for every correctly performed trial. Throughout the study the
animals’ psychological and medical welfare was monitored by
the veterinarians, the animal facility staff and the lab’s scientists,
all specialized on working with non-human primates. The two
animals were healthy at the conclusion of our study and were
used in follow-up studies.

2.1.2. Experimental Procedure
Single unit action potentials were recorded extracellularly with
single tungsten electrodes (FHC, Inc., Bowdoinham, ME, USA)
after penetration of the dura with a sharp guide tube. The
electrode was advanced using a hydraulic micropositioner (David
Kopf Instruments, Tujunga, CA, USA). Impedances ranged from
0.5 to 2.8 M�. Neuronal activity was amplified and filtered
(bandpass 150–5000 Hz). Action potentials in the majority
of recorded units were sorted online using the Plexon data
acquisition system (Plexon Inc., Dallas, TX, USA). In the first
recording sessions action potentials were isolated using a window
discriminator (BAK Electronics Inc., Mount Airy, MD, USA).
Area MT was identified by its anatomical position, the high
proportion of direction-selective cells, and the typical size-
eccentricity relationship of RFs. Eye positions were monitored
using a video-based eye tracking system (ET-49, Thomas
Recording, Giessen, Germany). Eye positions were sampled at
230 Hz, digitized and stored at 200 Hz. Fixation was controlled
during the recordings to stay within a window of 1.2◦ radius
around the fixation spot.

2.1.3. Visual Stimuli
The experiments were conducted using an Apple Macintosh
computer running custom software and a Sony Trinitron (22′′)
monitor with 75 Hz refresh rate. The monkey viewed the display
binocularly in a dimly lit room from a distance of 57 cm. The
spatial resolution of the display was 40 pixels per degree of visual
angle. The shape of the RF, as well as its preferred direction and
speed were estimated in a separate mapping and tuning session
performed before the main task. The bidirectional stimuli were
two RDPs presented within stationary adjacent virtual apertures
matching the excitatory part of the RF (see Figure 1A). Another
pair of RDPs was presented far outside the RF in the opposite
visual hemifield symmetrically to the first pair with respect to
the fixation point. Each RDP had a density of 10 dots per
square degree. The width of each dot was 6 min of arc. All
dots were white (luminance 85 cd/m2) and were displayed on
a gray background (luminance 15 cd/m2). The basic speed of
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the dots in the RDP was matched to the preferred speed of the
neuron, usually between 4 and 16◦/s. The 12 directions of the
patterns used to recover the tuning curve were chosen such that
one of them was well-aligned with the preferred direction of the
neuron.

See also Kozyrev et al. (under revision) for more details
on monkey training and surgery, experimental procedures, and
visual stimuli.

2.2. Data Used for Analysis
The recorded spike trains covered about the first 3000 ms of each
trial. Figure 3 shows all spike trains from an example neuron.
The periods of fixation, cue, delay, and intervals extracted for
analysis are indicated with different colors. The onset of the target
is indicated by the red dashed lines. Clear delay and burst effects
are seen: When the RDP appears on the screen, the neuron has
after a short delay a period of bursting behavior. We excluded
the first 200 ms because of a large variability in the strength
and length of the initial transient period around 50–200 ms.
The latter was probably dependent on adaptation to the cue and
other factors which are not considered by the relatively simple
models we tested here. Thus, only the time interval from 200
to 700 ms after the onset of the RDPs were analyzed. Excluding
the transient response epoch in the analysis is widely done,
and this time window is also used by Katzner et al. (2009) and
Martınez-Trujillo and Treue (2002) as the period where the MT
neurons show robust attentional modulation. In case the speed
or direction of motion of an RDP changed before 700 ms, the
analysis interval terminated when the change occurred.We chose
this interval for analysis in order to bypass the delay and burst
periods and analyze an approximately constant firing rate.

In total 166 neurons have been recorded. However, we
required at least two spike trains for each condition to include
a neuron into further analysis, which resulted in 109 analyzed
neurons. Summary statistics on number of trials and neurons
can be found in Table 1. In an attend-out condition, the target
always moved in either the preferred or the null direction
of the recorded neuron, and the stimulus in the RF always
moved in the preferred direction. Accordingly, the results from
the attend-out condition could not be analyzed on a par with
results from the other conditions. These data were therefore
discarded. Regarding behavioral performance, we only included
trials where the monkey detected the transient change and
responded correctly (see Experimental procedures).

2.3. Notation
Index d indicates the 12 directions: d ∈ {0, π

6 ,
2π
6 , . . . , 11π6 },

and l ∈ {1, 2} indicates (the location of) the stimulus, which is
either aperture 1 or aperture 2. The index c ∈ C indicates the
experimental condition; C = {attend-fix, attend-in, fix1, fix2}.
In condition fix1, the unidirectional RDP appears in aperture 1,
and in fix2, the RDP appears in aperture 2. Consider the time
interval (0,T] extracted for analysis, where for simplicity we set
the start point 200 ms after onset of the stimulus to be at time
0, and thus T ≤ 500 ms. The interval contains a sequence of N
spikes: 0 < t1 < t2 < · · · < tN < T, where ti is the time of
occurrence of the ith spike. We write τ = (0, t1, t2, . . . , tN ,T),

and N(t) denotes the number of spikes that occurred in the time
interval (0, t] for 0 < t ≤ T.

2.4. Data Analysis
The spike trains were modeled as stochastic point processes
(Truccolo et al., 2005; Kass et al., 2014, chap. 19). The conditional
intensity function (Daley and Vere-Jones, 1988) of a general
point process model is defined by

λ(t|Ht) = lim
1t→0

Pr(N(t + 1t)− N(t) = 1|Ht)

1t
, (1)

where Ht denotes the spike history up to time t. Then λ(t|Ht)1t
approximates the probability of observing a spike in (t, t + 1t]
for 1t small.

The likelihood of observing spike train τ is (Daley and Vere-
Jones, 1988; Kass et al., 2014)

L(τ ; θ) =

[

N
∏

i= 1

λ(ti|Hti; θ)

]

exp

{

−

∫ T

0
λ(s|Hs; θ)ds

}

(2)

where θ is a vector of model specific parameters, which should be
estimated from data. The parameter vector θ for the two models
will be specified in Section 2.5. In practice the measurements of
the spike times are discrete, indicating whether or not they occur
in time intervals of length 1t = 1 ms, where 1t is so small that it
contains at most one spike and the conditional intensity function
can be assumed constant within each interval. We approximate
the integral in Equation (2) by a discrete sum and obtain

L(τ ; θ) ≈

[

N
∏

i= 1

λ(ti|Hti; θ)

]

exp











−

T
1t

∑

n= 1

λ(n1t|Hn1t; θ)1t











.

(3)

Truccolo et al.‘ modeled the spike train as a discrete sequence
of conditional Bernoulli events, and obtained the same result as
Equation (3) through probability mass functions (Truccolo et al.,
2005).

Spike trains from different trials are assumed independent,
and the likelihood of the entire data set will therefore be the
product of individual likelihoods of the form (equation 2).
Parameters are assumed constant for all trials from a neuron, but
can differ from neuron to neuron. The estimation can therefore
be done individually for each neuron. For each neuron, the
likelihood of the recorded spike trains was computed by use of the
conditional intensity function assuming, in turn, the response-
averaging and the probability-mixing models.

The conditional intensity function is modeled with three
components: (1) a base firing rate, rl, computed using Gaussian
tuning curves (see below), which describes the effect of stimulus
l and its direction of movement; (2) a scaling function depending
on time, a(t); and (3) the effects of the spike history, h(Ht). It is
assumed to be of the following form:
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FIGURE 3 | All recorded spike trains from example neuron. Spikes are shown as points. The extraction intervals indicate the data used for analysis. They varied

in length between trials in the attend-in condition, in which the imperative change in the target RDP could happen <700 ms after the onset of the stimulus. At time 0

the monkey pressed a lever to start a trial. The dashed red lines indicate the onset of the target. To the left are shown the presented RDPs, for readability only every

second stimulus is shown.

λ(t|Ht) = rl exp
{

a(t)+ h(Ht)
}

. (4)

The trend in the firing rate is modeled linearly (Cox and
Lewis, 1966), a(t) = γ0t, where γ0 is a parameter. Since
the firing rate decreases over time, γ0 is expected to be
negative.

For the history component we use linear addition of the spikes
in the pastm time units:

h(Ht) =

m
∑

i= 1

γi1Nt−i1t , (5)

Frontiers in Computational Neuroscience | www.frontiersin.org 6 December 2016 | Volume 10 | Article 141



Li et al. Neurons Alternate between Multiple Responses

TABLE 1 | Summary statistics of sample sizes.

Number of Quantiles of number of trials

Condition combinations Min 10% 50% 90% Max

Neurons × stimuli

fix1 84× 12 2 3 4 6 7

fix2 84× 12 2 3 4 6 7

attend-fix 109× 12 2 3 4 7 16

attend-in 109× 12 3 8 12 18 31

Neurons

fix1 84 25 34 48 69 84

fix2 84 25 34 48 70 84

attend-fix 109 25 36 55 85 186

attend-in 109 61 90 138 207 272

The neurons measured in conditions fix1 and fix2 are a subset of the neurons measured

during the other two conditions.

where 1Nt ∈ {0, 1} denotes whether or not there is a spike in the
interval [t, t + 1t). Parameter γi is a spike response weight and
quantifies the effect of having a spike i steps back in time. If it
is negative, the effect is inhibitory, if it is positive it is excitatory.
In the data analysis, m = 10 has been used. We have repeated
the analysis with other memory lengths, but for larger m, the
estimates of γi were close to zero, and the estimates of other
parameters were stable, not changing the conclusions from the
analysis, see Figure 9F.

The final model for the conditional intensity function used in
the analysis is thus:

λ(t|Ht) = rl exp

[

γ0t +

10
∑

i= 1

γi1Nt−i1t

]

. (6)

A Gaussian tuning curve is used to model the firing rate
r as function of direction of motion d, with mean in the
preferred direction,D, of the neuron. The preferred direction was
estimated in a separate mapping and tuning session performed
before the main task. For simplicity, we therefore set D = 0, and
measure the direction of the stimulus RDP in deviation from the
preferred direction. Since the stimulus is a direction (an angle),
the rate function should be periodic with period 2π , and we apply
the method given by Shokhirev et al. (2006), see also Treue S. and
Trujillo J. (1999). For a neuron responding to stimulus l moving
in direction d, the firing rate is given by

rl = f (d|Al, σl, r0) = Al exp

[

−
‖ d − D ‖22π

2σ 2
l

]

+ r0, (7)

where Al denotes the amplitude (directional gain), σl denotes the
standard deviation (selectivity of the preferred direction), and
r0 is the spontaneous firing rate in absence of a stimulus. The
first two depend on the stimulus. The function ‖ d − D ‖2π=

mod(d − D + π , 2π) − π ensures that the firing rate is periodic
and symmetric around D. Figure 2 shows the mean firing rates
fitted by Gaussian tuning curves. The unidirectional cases are

modeled by single Gaussian curves, and the bidirectional cases
are modeled by a mixture of two Gaussian curves. Along the
x-axis, an upward arrow indicates the preferred direction. The
insert illustrates the periodic function.

2.4.1. Stimulus Weights in Bidirectional Conditions
In the attend-fix condition two RDPs are shown in the RF, one
in aperture 1 and one in aperture 2. The neuron may favor
one location over the other, which is modeled by assigning
a weight to each location. These weights will be modified
in the attend-in condition, where the weight to the attended
location is expected to increase. Let wc,l denote the weight of
stimulus l under a bidirectional experimental condition c, such
that wc = wc,1 + wc,2 denotes the sum of the weights. Let
pc = wc,1/wc and 1 − pc = wc,2/wc denote the normalized
weights.

2.4.2. Attentional Scaling Parameters
In the attend-in condition, a prior cue shows a replica of the
stimulus to be attended (stimulus 1) including its location and
direction of movement. The cue causes a multiplicative increase
in the rate of firing in response to the cued stimulus (the
stimulus in aperture 1). Sometimes the cue also changes the
rate of firing in response to the uncued stimulus (stimulus 2).
We use a scaling parameter al multiplying the amplitude Al

to model such attentional effects for stimulus l. The resulting
firing rate is rl = f (d|alAl, σl, r0). Without loss of generality,
the scaling parameter a may be assumed to have a value of 1
in conditions attend-fix, fix1, and fix2, in which directions of
movement are irrelevant to the task to be performed by the
monkeys.

2.5. Models
Let the rates of firing of the recorded cell be r1 and r2, respectively,
when objects 1 and 2 are presented alone in the classical RF of
the cell.

The probability-mixing model assumes a neuron responds to
one and only one of the stimuli within its RF at a time, and the
probability of responding to a particular stimulus depends on
the weight of that stimulus. Hence, the probability that a neuron
under a bidirectional experimental condition c reacts to stimulus
l is given by pc. Thus,

r =

{

r1, with probability pc
r2, with probability 1− pc

, (8)

where rl is given by Equation (7), except that Al is substituted by
alAl in the attend-in condition. The likelihood of all data from
one neuron is then

L(θ) =
∏

c∈C

12
∏

k= 1

mc,k
∏

j= 1

(

pcL(τc,k,j; θ1)+ (1− pc)L(τc,k,j; θ2)
)

, (9)

where pc = 1 in the fix1 condition, pc = 0 in the fix2 condition,
the individual likelihoods L(·; ·) are given by Equation (2), and
θl contains the stimulus specific parameters (Al, σl, al) besides
the common parameters (r0, pattend−in, pattend−fix, γ0, γ1, . . . , γ10).
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Thus, θ contains all 20 parameters. Here τc,k,j denotes the spike
train under the cth condition, kth direction and jth trial, where
mc,k is the number of trials under the specific experimental
condition.

A numeric overflow issue arises when computing the log
likelihood, since it may contain the logarithm of the sum
of two small numbers, log(δ1 + δ2). This happens especially
when the spike train is long, and the current parameters in
the optimization algorithm are far from the optimal ones.
We apply the log-sum-exp formula (Press, 2007): log(δ1 +

δ2) = log∗ δ + log(elog δ1−log∗ δ + elog δ2−log∗ δ), where log∗ δ =

max(log δ1, log δ2).
The response-averaging model assumes the firing rate to be a

weighted average rate over all stimuli,

r = pcr1 + (1− pc)r2. (10)

The likelihood is

L(θ) =
∏

c∈C

12
∏

k= 1

mc,k
∏

j= 1

L(τc,k,j; θ). (11)

The number of parameters in the response-averaging
model is one less than the probability-mixing model,
because in the attend-in case not all three parameters
(pattend−in, a1, a2) can be identified. We define b1 =

pattend−in a1 and b2 = (1 − pattend−in) a2. In Table 2

the parameters entering in θ for the two models are
summarized.

In the unidirectional conditions, the response-averaging
model and the probability-mixing model make the same
predictions, and the firing rate is given by Equation (7). In the

TABLE 2 | Parameters entering the parameter vector θ of the two models.

Model Parameter Explanation

Common γ0 Decay constant

(γ1, γ2, . . . , γ10) Spike response weights

(A1,D1, σ1) Parameters for the tuning

curve of stimulus 1

(A2,D2, σ2) Parameters for the tuning

curve of stimulus 2

r0 Spontaneous firing rate

pattend−fix Probability/weight of

stimulus 1 in attend-fix

Probability-mixing pattend−in Probability of stimulus 1 in

attend-in

a1 Attentional scaling of

stimulus 1

a2 Attentional scaling of

stimulus 2

Response-averaging b1 = pattend−in · a1 Identifiable parameter for

stimulus 1

b2 = (1− pattend−in) · a2 Identifiable parameter for

stimulus 2

bidirectional conditions, the predictions of the two models differ
as follows. In the response-averaging model, the firing rate to a
stimulus pair in the attend-fix condition is a weighted average
of the responses (firing rates) obtained to the individual stimuli
in the unidirectional conditions (given by equation 7). However,
the firing rate to a stimulus pair in the attend-in condition
is a weighted average of scaled versions of the responses to
the individual stimuli in the unidirectional conditions, where
the scaling factor (gain factor) for a stimulus varies with the
location of the stimulus (aperture 1, which showed the stimulus
to be attended, vs. aperture 2, which showed a stimulus to be
ignored). In the probability-mixing model, the firing rate to a
stimulus pair in the attend-fix condition is a probability mixture
of the responses (firing rates) to the individual stimuli in the
unidirectional conditions. The firing rate to a stimulus pair in
the attend-in condition is a probability mixture of scaled versions
of the responses to the individual stimuli in the unidirectional
conditions, where the scaling factor (gain factor) for a stimulus
again varies with the location of the stimulus (aperture 1 vs.
aperture 2).

2.5.1. Diagnostic Neurons
Whereas, some neurons are highly diagnostic in distinguishing
between the response-averaging and the probability-mixing
model when a certain pair of stimuli is presented in apertures
1 and 2 (see Figure 1A), responses of other neurons cannot be
used for distinguishing between the two models. One example
of a neuron that fails to distinguish between the models is a
neuron that almost always responds as if only the stimulus in
aperture 1 is present. Such a neuron behaves (to an arbitrarily
good approximation) in accordance with a response-averaging
model in which the response to the stimulus in aperture 1 is
weighted much stronger than the response to the stimulus in
aperture 2. At the same time, the neuron behaves in accordance
with a probability-mixing model in which the probability of
responding to the stimulus in aperture 1 is nearly 1. This,
however, does not mean aperture 2 is not inside the RF, since
the neuron does respond when a single stimulus is present
in either aperture 1 or 2 alone. The above example occurs if
one stimulus has a much stronger attentional weight than the
other.

Another example of a neuron that cannot be used for
distinguishing between the two models is a neuron in which the
rate of firing is nearly the same for the stimulus in aperture 1 as
for the stimulus in aperture 2. Regardless of the distribution of
weights across the two stimuli, the neuron behaves in accordance
with both a response-averaging model (averaging equals single
firing rates) and a probability-mixing model (mixing equals
single firing rates). In our experimental setup this is never the
case, since the bidirectional stimuli always differ with 120 , and
for all neurons there are trials where this difference force firing
rates to be different, as seen from the Gaussian tuning curves in
Figure 2.

Examples of neurons that are highly diagnostic in
distinguishing between the response-averaging and the
probability-mixing model are neurons with close to equal
weighting of stimuli in apertures 1 and 2 but very different
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responses to the two stimuli. Figure 1B exemplifies the expected
behavior of such neurons according to the probability-mixing
model and according to the response-averaging model,
respectively. Figure 1C shows histograms of empirical firing
rates of the corresponding spike trains in Figure 1B. As can be
seen, according to the probability-mixing model, the neuron
responds either to stimulus one or to stimulus two, which
generates a wide variation in firing rates (bimodal distribution).
In contrast, by the response-averaging model, the responses to
stimulus pairs all have similar rates (unimodal distribution). We
defined a diagnostic neuron based on the estimated probabilities
(in the probability-mixing model) or the weights (in the
response-averaging model). These two example neurons are
indicated by a square and a triangle, respectively, in Figure 4.
We call a neuron diagnostic if either the two pattend−fix estimates
from the two models both are between 0.2 and 0.8, or if pattend−in

in the probability-mixing model fulfills the same criterion. This
provides 90 diagnostic neurons, out of the 109 analyzed neurons.

All analyses were performed on the entire data set, but where
relevant, we indicate partial results only including the diagnostic
neurons, and we highlight the type of neuron in the figures.

Note that whether a neuron is diagnostic or not does not
reflect how well the models fit the data of that neuron. It only
indicates that diagnostic neurons behave differently under the
two models, whereas non-diagnostic neurons behave similarly
under the two models, and contain little information for model
selection.

2.5.2. Relation of Probability-Mixing Model to NTVA
The probability-mixing model is closely related to the Neural
Theory of Visual Attention (NTVA) (Bundesen et al., 2005;
Bundesen and Habekost, 2008). Attentional weights and the ways
they are computed and used are the same in the probability-
mixing model as in NTVA. In particular, in both the probability-
mixing model and NTVA, the probability that an MT neuron
represents an object x in its classical receptive field equals

FIGURE 4 | Model selection and model checking. (A) Differences in BIC, AIC, and RMSD values between the probability-mixing model and the

response-averaging model (the former minus the latter). In all three cases, a smaller value means a better fit, so negative differences favor the probability-mixing

model, whereas positive differences favor the response-averaging model. The squared and the triangled points are the example neurons from Figure 1B. The table on

top provides the total saturated AIC, saturated BIC and RMSD values for each model. (B) QQ-plots of uniform residuals on interspike level (top) and on spike count

level (bottom) for both models based on all observed data. The inserts are histograms (top) and density plots (bottom) of the uniform residuals. (C) The same as in (B)

but calculating the uniform residuals on only bidirectional data.
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the attentional weight of object x divided by the sum of the
attentional weights of all objects in the receptive field of the
neuron. Also, the nature of attentional weights is the same in
the two models. Thus, in both models, the attentional weights
may depend on many different features of the objects, including
features computed in areas other than MT.

Consider a trial in which an MT neuron that prefers motion
in direction D represents a stimulus l, moving in direction d.
Given that the neuron represents stimulus l, it responds as though
stimulus l were the only object in its receptive field. By the
rate equation of NTVA, the activation of the neuron, v(l,D),
equals the product of the strength of the sensory evidence that
stimulus l moves in direction D, η(l,D), and the bias in favor
of seeing movement in direction D, βD. In the current article,
among others (Bundesen and Habekost, 2008), a base rate, r0,
is effectively added to the product of η(l,D) and βD. Thus,
according to NTVA,

v(l,D) = η(l,D)βD + r0, (12)

where η(l,D) may be given by

η(l,D) = Al exp

[

−
‖ d − D ‖22π

2σ 2

]

(13)

as suggested by Equation (7). By NTVA, η(l,D) is independent of
attention, but the bias parameter βD depends on the attentional
condition. In conditions attend-fix, fix1, and fix2, directions
of motion are task-irrelevant, whence βd (a measure of the
importance of seeing motion in direction d) is a small number,
say, β0, for all directions d. In condition attend-in, however,
the stimulus in aperture 1 moves in the cued direction, whence
β for its actual motion direction (= the cued direction) has a
large value (say, β1). Thus, the categorization that the stimulus
in aperture 1 moves in the cued direction is supported by both
sensory evidence and perceptual bias. By contrast, in the same
condition, the stimulus in aperture 2 moves in a direction that
diverges from the cued direction by 120◦, whence β for its actual
motion direction has a smaller value (say, β2).

By Equations (12) and (13), the predicted firing rates remain
constant if all β values are multiplied by a positive constant
k while all amplitude parameters Al are divided by the same
constant k. Accordingly, without loss of generality, β0 can be set
to a value of 1 if (i) β1 and β2 are changed in direct proportion
to β0 and (ii) amplitude parameters A1 and A2 are changed in
inverse proportion to β0. After these rescalings, the resulting
values of β1 and β2 can be identified with scaling parameters a1
and a2, respectively. That is, a1 = β1/β0 and a2 = β2/β0.

Finally, we can extend NTVA to account for effects of
presentation time t and spike historyHt by letting v(l,D, t|Ht) be
the conditional intensity function for a spike train and assuming
that

v(l,D, t|Ht) = v(l,D) exp

[

γ0t +

10
∑

i= 1

γi1Nt−i1t

]

, (14)

where v(l,D) is given by Equation (12).

In the suggested interpretation, the cue shown in the attend-in
condition cues a particular direction of motion to be attended by
pigeonholing (i.e., by setting β high for this direction) (Bundesen
et al., 2005; Bundesen and Habekost, 2008). In addition to
being used for pigeonholing, the cue can also be used for
filtering (Bundesen et al., 2005; Bundesen and Habekost, 2008),
in particular, filtering by location (by giving high attentional
weight to stimuli that are located in aperture 1) and/or filtering
by direction of motion (giving high attentional weight to stimuli
that are moving in a particular direction).

2.6. Model Selection by Relative Goodness
of Fit and Cross-Validation
The main aim of our article is to compare the abilities of the
probability-mixing and the response-averagingmodels to explain
the data. To select the best-fitting model, we use the Bayesian
Information Criterion (BIC) and the Akaike information
criterion (AIC), which compare likelihood values correcting
for the number of parameters (Burnham and Anderson, 2002).
Since only the difference of AIC (BIC) can be used for model
comparison (Burnham and Anderson, 2002; Claeskens and
Hjort, 2008), we subtract out the null deviance from the AIC
(BIC) values for both models while preserving the difference. The
null deviance is defined by −2 log(L0), where L0 is the likelihood
value of the null model assuming that all spike trains from one
neuron have the same firing rate. Given the two models, the
weight in favor of the model with the lowest AIC (BIC) value
is given by 1/(1 + exp(−1/2)) (Burnham and Anderson, 2002;
Claeskens and Hjort, 2008), where 1 is the difference between
the two AIC (BIC) values, and the weight in favor of the model
with the highest value is given by exp(−1/2)/(1+ exp(−1/2)).
Heuristically, the weight can be interpreted as the probability
of the model to be the best among the considered models, in
the sense of Kullback-Leibler information loss (Burnham and
Anderson, 2002; Claeskens and Hjort, 2008).

This approach of statistical model selection to determine
the most plausible model, each offering opposing biological
explanations, using advanced statistical point process models to
analyze single spike trains instead of trial-averaged responses,
was also employed recently in Latimer et al. (2015). Here they
determine whether firing rates during decision-making in the
macaque lateral intraparietal area are gradually accumulating
evidence toward a decision threshold, or whether decisions are
taken as instantaneous jumps in the firing rates.

Model selection was done on individual neurons. However,
assuming that the neurons we tested accomplished the same
kind of processing but were statistically independent, the overall
likelihood in favor of the probability-mixing and the response-
averaging model, respectively, equals multiplication of the
likelihoods of all of the individual neuron, or equivalently,
summation of log-likelihood values, corresponding to
summation of AIC (and approximately summation of BIC)
values. We therefore also obtained overall AIC (BIC) values for
the two models from the overall likelihoods, the numbers of
parameters summed across all neurons, and the sample sizes of
the data.
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In addition to AIC and BIC criteria, we use the root mean
squared deviation (RMSD) between observed and predicted
firing rates and uniformity tests for general goodness of fit.

Empirical and theoretical firing rates can be compared to judge
the goodness of fit. A quantitative measure is the RMSD between
empirical and predicted rates for all spike trains of a neuron:

RMSD =

√

√

√

√

1

K

K
∑

i= 1

(ri − r̂i)2, (15)

where K is the total number of spike trains. The empirical rate,
r, is given by r = N/T, where N is the number of spikes, and
T is the total time of the spike train. The theoretical rate, r̂, was
estimated by

r̂ =
1

T

∫ T

0
λ(t|Ht , θ̂)dt. (16)

In the probability-mixing model, stimulus decoding is first
applied. Stimulus decoding in a mixture model is finding which
stimulus, l∗, the neuron is most probably responding to given a
spike train and the estimated parameters. This is a classification
problem, and solved by the stimulus that maximizes the posterior
probability of l given the spike train τ and estimated parameters
θ̂ : l∗ = argmaxlP(l|τ , θ̂). Thus, in Equation (16) the classified
stimulus is used.

2.7. Model Control by Uniform Residuals
2.7.1. Uniformity Test
A commonmethod is to apply the time rescaling theorem (Brown
et al., 2002; Haslinger et al., 2010). For a spike train τ , the
transformations

Zi =

∫ ti+ 1

ti

λ(s|Hs)ds (17)

for i = 1, 2, . . . ,N − 1 are exponentially distributed with rate
parameter 1, and thus,

Z =

∫ T

0
λ(s|Hs)ds (18)

is the total time of a Poisson process with rate parameter 1 having
N events. The above is true if and only if λ(s|Hs) represents
the true conditional intensity function. This provides uniformity
tests both on interspike interval level: Fexp(Zi|1) ∼ U(0, 1),
where Fexp(Zi|1) is the exponential distribution function with
rate 1, and on spike count level: Fpois(N|Z) ∼ U(0, 1), where
Fpois(N|Z) is the Poisson distribution function with parameter
Z. In the latter case, the discrete distribution is approximated by
the uniform distribution by taking the average value of Fpois(N|Z)
and Fpois(N − 1|Z).

Intuitively, if and only if the model correctly describes
the observed neuronal behavior, providing the correct spiking
probability at each discretized time step 1t, the transformation
Equation (18) is distributed as a standard Poisson process. We
verify the similarity between the transformation and the standard
Poisson process, by checking the uniform residuals calculated on

the two levels described above against a uniform distribution, by
Quantile-Quantile (QQ) plots and histograms. If QQ-plots fall
close to the indentity line, it indicates that themodel describes the
true neuronal behavior well, as well as if histograms are standard
uniform, i.e., it has approximately equal number of residuals
within each bin in the interval (0, 1).

2.8. Unimodality Tests
The response-averaging model predicts a unimodal distribution
of firing rates, whereas the probability-mixing model predicts
a multimodal distribution when the neuron is exposed to
bidirectional stimuli and firing rates to unidirectional stimuli are
different. The unimodality test is a statistical test for unimodality
of an empirical distribution, i.e., whether the distribution shows
a single mode or multiple modes. The dip test (Hartigan and
Hartigan, 1985) is one method to perform the unimodality test.
A significant p-value of a dip test rejects the hypothesis that there
is a single mode and indicates multiple modes in the empirical
distribution. Thus, we can perform the dip test as an empirical
measure for the probability-mixing or the response-averaging
model. We tried to employ dip tests to test for unimodality of
a distribution on the firing rates, but the data are too sparse
to provide useful information. One particular obstacle is that
when estimating empirical firing rates (by spike counts) on
discretized intervals, if these intervals are too narrow, only a
few spikes or none will be present in most intervals. Then the
empirical firing rates only take a few distinct values, repeated
many times, and the test always turns out positive since the
rates seem to follow a discrete distribution. If intervals are not
narrow, there will only be a few data points, not enough for a test.
Instead, as an auxiliary measure, we tested unimodality of the
distribution of interspike intervals (ISIs). There is no reason to
expect the ISI distribution to be unimodal, even if the distribution
of firing rates is, since memory effects may create complex
behavior in the distribution of ISIs. However, if a particular
neuron does not show a multimodal ISI distribution while being
exposed to a unidirectional stimulus, but the distribution changes
to multimodal when bidirectional stimuli are presented, there
is some indication that this multimodality could be caused
by the bidirectional stimuli, supporting the probability mixing
model.

3. RESULTS

Our basic observations were sequences of action potentials
(spike trains) emitted by individual MT neurons in the
different conditions of the experiment in response to visual
movement in different directions. Models were fitted to the
spike train data by maximum likelihood estimation using
numerical optimization algorithms. A global optimization
with the dividing rectangles algorithm (Jones et al., 1993)
was first performed, and the resulting estimates were then
used as initial values for a local optimization with the
Nelder-Mead simplex algorithm (Nelder and Mead, 1965),
providing the final estimates. All parameters were estimated
simultaneously.
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3.1. Results from Model Selection by
Relative Goodness of Fit and
Cross-Validation
To select one of the two models, we calculated the RMSD,
AIC, and BIC values. The lower plots in Figure 4A shows, for
each individual neuron, the difference between the AIC (BIC)
value given the best-fitting probability-mixing model and the
AIC (BIC) value given the best-fitting response-averaging model,
with the color indicating neurons with many observed spikes
(more than 2400 spikes, cyan) or few observed spikes (<2400
spikes, magenta; the spike counts include all spikes from the given
neuron inside the observation windows in the four experimental
conditions). Diagnostic neurons are indicated with dots, non-
diagnostic neurons are indicated with crosses. Values below 0
favor the probability-mixing model, values above 0 favor the
response-averaging model. The difference in AIC (BIC) values
is plotted against the sum of the negative log-likelihood values
from the two models normalized by number of spikes, such
that data points to the left are more trustworthy (approximately
coinciding with those with larger sample sizes). Two dotted
lines are drawn at ±10, representing the difference value of
10. This is the value suggested in Burnham and Anderson
(2002) as the critical value for the less plausible model to
have essentially no support in the data compared with the
better model. A few neurons (depicted near the bottom of
the plot) seemed highly diagnostic in distinguishing between
the response-averaging and the probability-mixing model. Many
other neurons failed to distinguish between the two models
(neurons with values near zero). This could be due to limited
sample sizes, since the cyan neurons are more trustworthy with
larger sample sizes, and indeed tend to fall below 0. Furthermore,
as expected, the non-diagnostic neurons typically have values
around 0.

The values resulting from analyzing all neurons together are
shown as AIC0 (BIC0) in the table at the top of Figure 4A.
These values can be interpreted as the explanatory evidence in
the models compared to the null model (Harrell, 2001), see
Section 2.5 for definition of the null model. Furthermore, the
differences between the two AIC (BIC) values, 1AIC (1BIC),
are indicated in the same table, both for all neurons, and
for diagnostic neurons only. The overall AIC and BIC values,
aggregating all the information from individual neurons, are
much smaller for the probability-mixing model than for the
response-averaging model, so both the AIC and the BIC strongly
favor the probability-mixing model. Indeed, both (absolute)
differences are greater than 1 = 1000. Thus, given the two
models, according to both the AIC and the BIC criteria, the
weight in favor of the probability-mixing model is 1/(1 +

exp(−1/2)) ≈ 1, and the weight in favor of the response-
averaging model is exp(−1/2)/(1 + exp(−1/2)) ≈ 0, see
Section 2.6.

The upper plot in Figure 4A shows the difference between
the RMSD between observed and predicted firing rates for
the best-fitting probability-mixing model and the RMSD for
the best-fitting response-averaging model. The RMSD values
were calculated using 10-fold cross-validation on spike trains

of each neuron. For most of the neurons, the RMSD for
the best-fitting probability-mixing model was smaller than the
RMSD for the best-fitting response-averaging model, and this
is particularly obvious for more trustworthy neurons, and for
diagnostic neurons. The RMSD for all data for both models
are shown in the top table. As the AIC and the BIC, the
RMSD criterion also favors the probability-mixing model. The
RMSD results are more consistently in favor of the probability-
mixing model for all diagnostic neurons compared with the AIC
and BIC results. Note the different perspectives of these model
selection methods: RMSD measures the predictive accuracy
while AIC (BIC) measures the information loss of the proposed
model from the truth. We conclude that the probability-
mixing model predicts behavior of independent trials better
or at least as well as the response-averaging model on all
neurons.

The overall conclusion is that the analysis supports
the probability-mixing over the response-averaging
model.

3.2. Results from Model Control by Uniform
Residuals
The computations of AIC and BIC values show that the
probability-mixing model fits the data better than does the
response-averaging model, but neither information criterion tells
us the absolute (as distinct from the relative) goodness of fit. For
either model, goodness of fit to the spike trains of the neurons
was evaluated by uniformity tests, both on interspike level and
on spike count level (see Section 2). We merged all results based
on Equation (17) from all spike trains of all neurons, to obtain
uniform residuals on the interspike interval level, and all results
based on Equation (18) to obtain uniform residuals on the spike
count level. The uniform residuals were checked graphically in
Figure 4B by histograms and QQ plots against the standard
Uniform distribution. The histograms and plots of events at
the interspike interval level show nearly the same goodness of
fit for the probability-mixing model and the response-averaging
model, but the histograms and plots of events at the spike
count level show better fits for the probability-mixing model
compared with the response-averaging model, as can be seen
from the cyan QQ-plot being closer to the identity line, and
cyan histograms being more uniform than the magenta ones in
the lower plots. However, neither model is perfect. If a model
is correct we expect the uniform residuals to lie on the identity
line, which is not strictly the case for either one of the two
models. We conjecture that this was partly caused by boundary
effects inducing bias because the observation intervals were never
longer than 500 ms. To check this, we conducted a simulation
study, first simulating from both models using the estimated
parameters, with observation intervals of both 500 and 2000 ms,
and then estimating with both models (Figure 5). The interval
of 2000 ms was chosen to be large enough for boundary effects
to be negligible. The results suggested that the misfits could
be explained, in part, by finite sample effects. Another feature
not accounted for in the model is overdispersion, i.e., that the
data show a larger variance than predicted by the model. This

Frontiers in Computational Neuroscience | www.frontiersin.org 12 December 2016 | Volume 10 | Article 141



Li et al. Neurons Alternate between Multiple Responses

FIGURE 5 | Simulations. The same as Figure 4B, but on simulated data, using the estimated parameters, and simulating from either of the two models, with

observation windows of 500 ms (left panel with four figures) and of 2000 ms (right panel with the other four figures), respectively. Upper and lower panels show results

at interspike and spike count levels, respectively. Panels in columns 1 and 3 show results for the data simulated from the probability-mixing model, panels in columns

2 and 4 show results for the data simulated from the response-averaging model.

occurs for example if parameter values fluctuate from trial to
trial, whereas the model assumes these constant. We therefore
also plotted the uniform residuals using only the bidirectional
data (Figure 4C), and the fit clearly improved, suggesting
overdispersion.

In the analysis it is implicitly assumed that under the
probability-mixing model, the represented object does not
change during the course of a trial of 500 ms. This is done
to obtain more statistical validity, but might be questionable
from a biological point of view. For example, Fiebelkorn et al.
(2013) found that sustained attention naturally fluctuates with
a periodicity of 4–8 Hz, with reweighting between different
objects occuring at 4 Hz. To check the validity of using the
full length of the 500 ms interval, we also tried splitting the
data, reanalyzing separately on the first (0–250ms) and on the
second (250–500 ms) halves. The analysis was conducted the
same way as for the full 500 ms interval. The results on RMSD,
AIC, and BIC are shown in Figure 6 for the first half (Figure 6A)
and the second half (Figure 6B). There are only small and not
relevant differences between the two halves for each criterion.
At both halves, the RMSD favors the probability-mixing model,
particularly for neurons with a large number of observations. The
AIC and BIC also show similar distribution patterns between
the two halves. A paired Wilcoxon signed-rank test was done
for the differences 1AIC at the first half against the second
half with the null hypothesis being that 1AIC does not change
between halves. The obtained p-value is 0.858, implying no
evidence of changes in 1AIC. The test on 1BIC gives p = 0.830,

FIGURE 6 | Model selection on first and second halves of the observed

time intervals. Differences in BIC, AIC, and RMSD values between the

probability-mixing model and the response-averaging model (the former minus

the latter). (A) Analysis on first 250 ms of the observed time intervals (first half

of the data). (B) Analysis on next 250 ms of the observed time intervals

(second half of the data). Compare to Figure 4A for analysis of the full interval.
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leading to the same conclusion. To summarize, the conclusions
are essentially the same as for the full interval, and model
fitting on the shorter intervals provide no extra information.
Thus, we analyze the full 500 ms interval exploiting the entire
data.

3.3. Results for Unimodality Tests
In Figure 7, dip tests of unimodality of the ISI distribution are
illustrated for each neuron in each of the 12 direction-of-motion
stimulus pairs. Each lattice point in the mesh figure represents
one test, and blue lattice points (upper panels) show results that
are statistically significant (p < 0.05) against unimodality (i.e.,
indicating at least two modes). In the upper left panel, data
from the unidirectional stimulus conditions fix1 and fix2 are
combined for the 84 neurons tested in these conditions. They
were combined after normalizing by multiplying the ISIs by the
average firing rate of the corresponding neuron and condition, so
that the average firing rate of any neuron in any condition was
1. This was done in order not to observe an artificial bimodal
distribution, caused by different response properties in aperture
1 and 2. Similar results are obtained by splitting in the two
aperture conditions without normalization (results not shown).
The bidirectional stimulus conditions were not normalized. Of
the 1008 tests on unidirectional stimulus data, 6.05% were
positive. This is close to the expected 5% from the coverage
properties of the test, so it appears that under unidirectional
stimulus, the ISI distributions are not multimodal. In the two
upper panels to the right, data from the bidirectional stimulus
attend-fix and attend-in are shown for the same 84 neurons
(below the black line) and for the remaining 25 neurons (above
the black line), which were not tested during unidirectional
stimulus. Of the 1008 tests on bidirectional stimulus data from
those neurons that were also tested in the unidirectional stimulus
conditions, 6.8% (attend-fix) and 14.3% (attend-in) were positive.
Including also the 25 neurons only tested in the bidirectional
stimulus conditions, these numbers were 10.6 and 19.6% out
of 1308 tests, respectively. Note that fewer significant lattice
points appear in the attend-fix condition than in the attend-in
condition, which is probably due to smaller sample sizes; see
Table 2. The yellow lattice points are those corresponding to
condition 5, where the stimulus in aperture 1 is 120◦ from the
preferred direction, and the stimulus in aperture 2 is −120◦

from the preferred direction. This is the only condition where on
average the firing rates for the two stimuli are equal, see the green
and orange tuning curves on Figure 2, and thus, no bimodality
is expected for most of the neurons in this condition. Indeed,
in this case only 7.3 and 9.2% were significant. Condition 11,
where the stimulus directions are ±60◦, could also be expected
to have equal firing rates for the two stimuli, and thus no
multimodality, but since the firing rates are higher here, small
differences in tuning curves for the two apertures result in
large differences in firing rates, and thus, multimodality can
still occur. In all three upper panels, most p-values are non-
significant. However, compared with unidirectional stimulus
conditions, more significant p-values appear in bidirectional
stimulus conditions, mainly in condition attend-in, suggesting
that stimulus plurality caused multimodality. This is illustrated

in the lower panels, where changes from either significant to non-
significant (red, 2.6% for attend-fix, 1.4% for attend-in) or from
non-significant to significant (green, 3.4% for attend-fix, 9.6% for
attend-in) p-values are indicated.

3.4. Population Behavior of
Probability-Mixing
In the probability-mixing model, a neuron attends to only one
of a plurality of stimuli. A natural question is then whether in
any given trial, individual neurons within a critical population
behave consistently or independently. We therefore investigated
correlations of nearby neurons. In the data, at most two neurons
were recorded simultaneously, and there are 25 such neuron
pairs. The two neurons do not necessarily have the same
preferred direction of motion, but they differ at most 60◦ in
their preferred direction. If neurons act consistently, we expect
higher correlations for those pairs with the same preferred
direction. We calculated the correlation of the firing rates of
each neuron pair at different RDP-motion stimulus pairs using
Spearman’s correlation coefficient and Spearman’s correlation
test. Conditions attend-in and attend-fix are combined to make
the sample size larger. The idea is that if two neurons have
highly correlated attended stimuli, the correlation coefficient of
rates will be large; otherwise, the coefficient will be near 0: Let
two vectors X = (X1,X2, . . . ,Xn) and Y = (Y1,Y2, . . . ,Yn)
denote the firing rates of two neurons from n trials at a given
stimulus pair. The corresponding Xi and Yi are the firing rates
of two neurons in the same trial i. Since there are two stimuli,
Xi and Yi could represent either stimulus. If the firing rates of
the two neurons are positively correlated, then Xi and Yi likely
represent the same stimulus. If the firing rates are negatively
correlated, then Xi and Yi likely represent opposite stimuli.
In both situations, non-zero correlation between X and Y is
expected, assuming two stimuli generate sufficiently different
firing rates. On the other hand, if the attended stimuli are not
correlated, nor will the firing rates X and Y be correlated.

The top left panel in Figure 8 shows the heat map of
Spearman’s correlation coefficients, and the top right panel
shows the stronger positive correlations in red and stronger
negative correlations in blue. The bottom left shows p-values
from Spearman’s correlation test for correlation being 0. The
bottom right shows significant p-values in blue. The ratio of
significant p-values over all 12× 25 cells is 11.7%.

Most correlations are weak. However, we find a few stronger
correlations in some neuron pairs, with a slight trend toward
higher positive correlations for those with the same preferred
direction, and negative correlations for those with differing
preferred directions. The conclusions have to be interpreted with
caution, though, since data on simultaneously recorded neurons
are scarce.

3.5. Parameter Estimates from Maximum
Likelihood
Parameter estimates, see Table 2 for a summary of model
parameters, are illustrated in Figure 9 comparing the probability-
mixingmodel with the response-averagingmodel and comparing
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aperture 1 with aperture 2. The upper panels, Figures 9A,B,
provide the sum ofA (directional gain) and r0 (firing rate without
stimulus) from the Gaussian tuning curve, i.e., the maximal
firing rate. The estimates from the probability-mixingmodel tend
to be smaller than the estimates from the response-averaging
model. Figures 9C,D cover only the probability-mixing model,
because the weights and attentional scaling parameters are
not identifiable in the response-averaging model. In Figure 9C

the probabilities of responding to aperture 1 in the attend-fix
condition (pattend−fix) are plotted against the probabilities of
responding to aperture 1 in the attend-in condition (pattend−in).
As expected, the probability of responding to aperture 1 is
increased when attention is directed toward it, i.e., pattend−in

tends to be larger than pattend−fix and also larger than 0.5. In
Figure 9D attentional effects for aperture 2 (a2) are plotted
against effects for aperture 1 (a1) in the attend-in condition.
The effect of the cue is clearly detected: a1 tends to be larger
than a2, and also larger than 1, i.e., attention increases the firing
rate. In Figure 9E the identifiable parameters b1 and b2 in the
response-averaging model are plotted against the corresponding
values calculated from estimates in the probability-mixingmodel.
Again, aperture 1 (b1) yields larger values than aperture 2 (b2),
which is expected because of the cue. In Figure 9F the 10
spike response weight parameter estimates from the conditional

intensity function are plotted. We use median values and
quantiles. The first value γ1 is much more negative than the
others, implying that a spike suppresses a spike in the next
instance, corresponding to the refractory period. The spike
response weight values decay to zero, illustrating the length of
the memory of the spike history.

4. DISCUSSION

Responses of sensory neurons to multiple presentations of
identical stimuli can be highly variable (“cortical variability”;
Goris et al., 2014; Cui et al., 2016). In this article we focus
on one possible source of such cortical variability, namely,
variation in which stimulus a sensory neuron responds to
at a given time in a certain trial. Specifically, we aimed
to determine if neurons in extrastriate visual cortex encode
the presence of more than one distinct stimulus in their
receptive field by alternating between response states, each
predominantly representing one of the stimuli in the receptive
field (Bundesen et al., 2005). We found evidence in support
of such a multiplexing behavior by analyzing spike trains
of individual trials (rather than average responses across
trials) from neurons in visual cortical area MT of rhesus

FIGURE 7 | Results of dip tests. (Upper panels) Dip tests of each neuron at each condition for single stimulus trials (left panel) and stimulus mixture trials (middle

and right panels) are illustrated. Each lattice point represents one test, and blue lattices are statistically significant (p < 0.05) against unimodality for the corresponding

neuron and condition. The yellow lattice points are those corresponding to condition 5, where the stimulus in aperture 1 is 120◦ from the preferred direction, and the

stimulus in aperture 2 is −120◦ from the preferred direction. This is the only condition where on average the firing rates for the two stimuli are equal, see the green and

orange tuning curves on Figure 2, and thus, no bimodality is expected. (Lower panels) Changes from either significant to non-significant (red) or from non-significant

to significant (green) p-values.
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FIGURE 8 | Correlation of firing rates between neuron pairs. The x-axes represent the 12 conditions and the left y-axes represent the 25 neuron pairs that are

simultaneously recorded. Each lattice point in the mesh corresponds to one neuron pair at one condition. The 25 neuron pairs are ordered by the difference in degrees

between the pair’s preferred directions (0, 30, or 60◦) shown in the right y-axes. If they differ in their preferred direction, then when one of the neurons is presented

with its preferred direction, the other is not, and vice versa. So we expect less correlation in that case, whereas if they share the same preferred direction, there is more

reason to believe they might be correlated. (Left panel) shows correlation coefficients. (Right panel) shows in blue significant p-values at a 5% level for the

two-sided test of zero correlation.

monkeys. Our approach is based on recent advances in statistics
(chap. 19, Kass et al., 2014) that allowed us to distinguish
responses from trial to trial. Employing statistical model selection
using AIC, BIC, and RMSD, and model control using time
rescaling and uniformity tests we find support for probability-
mixing, i.e., serial switches between response states, distinct
from the response-averaging suggested by pooling responses
across multiple trials. Unimodality tests provide further support
for multiplexing behavior by showing that stimulus plurality
increases the probability of statistically significant multimodality
of the interspike interval distribution.

For decades responses of sensory neurons in primate visual
cortex have been investigated with single stimuli and their
parametric variation. This has resulted in a very detailed
understanding of the input-output-relationship of neurons in
well-studied areas like primary visual cortex V1, area V4 along
the temporal processing pathway and, most relevant for the
current study, the middle-temporal area MT in the dorsal
pathway.

More recently, particularly in MT, studies have focused
on neuronal responses when multiple moving stimuli are
present (spatially separated or in spatially coincident motion as
transparent random dot patterns or sine wave gratings) in a
given receptive field. Such studies have investigated “sensory”
conditions, i.e., when none of the stimuli were behaviorally
relevant (Snowden et al., 1991; Recanzone et al., 1997; Britten
and Heuer, 1999; Treue et al., 2000; Majaj et al., 2007), as well
as “attentional” conditions, i.e., task designs where one of the
stimuli were behaviorally relevant (Seidemann and Newsome,
1999; Treue and Trujillo, 1999; Patzwahl and Treue, 2009;
Niebergall et al., 2011a,b; Ni et al., 2012). All of these studies
implicitly or explicitly assume that neurons always respond to
multiple stimuli in their receptive field with a single response
state that represents an integration (averaging with or without
scaling or gain control) of the individual stimulus responses.

Here we successfully challenge this assumption by providing
evidence for the ability of neurons to maintain distinct
representations of the stimuli inside a given receptive field.

This ability to encode multiple stimuli by separate response
states of individual neurons endows the visual system with a
powerful feature, not present if the neurons combine themultiple
stimulus responses into a common response. Indeed, once the
responses have been averaged over all stimuli, reconstructing
single stimuli from average responses at later stages of processing
seems difficult if not impossible (Orhan and Ma, 2015). This is a
core issue in understanding cortical representations of complex
scenes, since they often have multiple stimuli placed in the
same receptive field, particularly in the large receptive fields
common in higher extrastriate cortical areas. If such neurons
would integrate all stimuli inside their receptive field such
“stimulus mixing” would severely compromise the brain’s ability
to maintain spatially detailed representations in natural vision
(Orhan and Ma, 2015). The multiplexing we observe instead
allows the information about which stimulus caused a particular
neuronal response to be preserved and maintained across a series
of processing stages from primary visual cortex through areas in
extrastriate cortex.

Beyond this benefit, the temporal multiplexing of information
provides a unique opportunity to selectively modulate the
individual representations of the various stimuli contributing to
a neuron’s response. Such a reweighing has been suggested by
models of attention since the perceptual effect of visual attention
can often be described as an increase in the perceptual strength
of attended stimuli at the expense of the perceptual strength of
unattended stimuli.

One of these attention models, the Neural Theory of Visual
Attention (NTVA; Bundesen et al., 2005), a neural interpretation
of the mathematical Theory of Visual Attention (TVA; Bundesen,
1990), explicitly proposes that a neuron, when presented with
a plurality of stimuli in its RF, responds to only one of them
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FIGURE 9 | Parameter estimates. The plots compare the probability-mixing model with the response-averaging model and aperture 1 with aperture 2. (A) The sum

of A and r0 from the response-averaging model is plotted against the probability-mixing model, using cyan for aperture 1 and magenta for aperture 2. The data

densities are plotted on the top and on the right side, with dashed lines indicating the means. (B) We use the same estimates as in (A), but plot aperture 2 against

aperture 1, and use cyan for the probability-mixing model and magenta for the response-averaging model. (C,D) are only for the probability-mixing model, since these

parameters are not all identifiable in the response-averaging model. (C) The probabilities of responding to aperture 1 in the attend-fix condition (pattend−fix ) are plotted

against attend-in condition (pattend−in). (D) Attentional effects for aperture 2 (a2) are plotted against aperture 1 (a1). (E) The identified parameters b1 and b2 in the

response-averaging model are plotted against the corresponding values calculated from estimates in the probability-mixing model. (F) The medians of 10 spike

response weight parameters from the conditional intensity function are plotted, together with the central 50 and 80% of the empirical distributions. We also fitted

models with a memory of 20 ms, and the resulting estimates are plotted in the insert figure.

at a time. This hypothesis has not been tested before but
was suggested by Bundesen et al. (2005) for computational
and biological reasons (survival value), and it fits in with the
way in which attentional modulations of sensory processing

(in particular, so-called “filtering”) are explained in NTVA.
In TVA stimulus representations race (compete) to become
encoded into visual short-term memory (VSTM) before it is
filled up. This race is influenced (biased) by attentional weights
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and perceptual biases, so that certain objects and features
have higher probabilities of being perceived (encoded into
VSTM). Thus the TVA presaged what later became known
as the biased competition model of attention (Desimone and
Duncan, 1995; Reynolds et al., 2000). Our data suggest that
biased competition accounts of attentional responses need to
be extended to allow for an alternation between response
states rather than a single response state representing the
outcome of the biased competition between the different stimulus
representations.

The TVA is also compatible with the feature similarity
gain model (Treue and Trujillo, 1999; Martinez-Trujillo and
Treue, 2004). This model proposes that attention modulates
brain activity by multiplicatively scaling neuronal responses with
gain factors. The magnitude of a given gain factor represents
the similarity between the stimulus preferences of the neuron
and the currently attended features. In this model a selective
enhancement or suppression of individual stimuli (based either
on the stimulus’ spatial location or its features Xue et al., 2016)
is achieved on the population level because attention to a given
feature increases the responses of all neurons preferring the same
or similar features. In the TVA, the gain factor in question is
the multiplicative perceptual bias toward feature i (βi), which
is applied to neurons that are coding feature i. Incorporating
the observed multiplexing into the feature similarity gain model
would further elaborate the approach of the model to selective
enhancement of attended features and locations.

Our observation that neuronal responses alternate between
response states is reminiscent of the hypothesis that stimulus
sampling under continuous attentional allocation follows a
periodic process (Busch and VanRullen, 2010). While this
potential link is intriguing, our data did not allow us to
test the duration of individual response states to see whether
they match the 7 Hz oscillations observed in the Busch
and VanRullen study. On the other hand, the analysis of
our small set of recordings from neuronal pairs suggests
that neurons that share sensory preferences (with respect to
motion direction in our case) tend to encode the same of
two stimuli at a given time while neurons with different
preferences tend to anti-correlate in their response states.
This supports the hypothesis that the whole population of
neurons responding to a given stimulus configuration tends
to alternate their individual response states in a coordinated
fashion.

The serial multiplexing we observe also allows us to account
for other observations when multiple stimuli are combined
within the same receptive field. This is most apparent for the
case in which two RDPs moving in different directions are
spatially superimposed, creating the percept of two surfaces
sliding across each other. As documented in Treue et al.
(2000), combining two directions with an angular separation
of 30–60◦ creates a stimulus in which the two component
motions are easily distinguishable perceptually, but causes a
neural population response (averaged across trials) that is

single-lobed, suggestive of a single direction in the receptive
field. While the perception of two directions under such
conditions can be explained by assuming a particular decoding
mechanism, our observed multiplexing of the individual
stimulus representations provides other types of explanation
for the apparent discrepancy between neural responses and
perception. Additionally, the distinct encoding of the twomotion
surfaces through separate response states might also allow the
visual system to separately manipulate the individual stimulus
representations as apparent in the perceptual (Marshak and
Sekuler, 1979) and physiological (Helmer et al., 2016) repulsion
of the perceived angular separation in such transparent motion
patterns.

In summary, this study suggests and documents a neuronal
coding scheme that temporally multiplexes information from
multiple stimuli within the receptive fields of neurons in
extrastriate visual cortex. This allows nervous systems to enjoy
the benefits of large receptive fields (spatial integration of
information to achieve more complex selectivities) without
suffering from the disadvantage that large receptive fields pool the
responses to multiple stimuli and thus lose critical information
about their individual contribution to the cell’s overall response.
Such a system could also reconcile the observation of perceptual
separability of multiple stimuli (such as surfaces in transparent
motion) with the apparent pooling of information within
the spatial extent of receptive fields in extrastriate visual
cortex.
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Abstract

Serial and parallel processing in visual search have been long debated in psychology but the
processing mechanism remains an open issue. Serial processing allows only one object at a time to
be processed, whereas parallel processing assumes that various objects are processed simultaneously.
Here we present novel neural models for the two types of processing mechanisms based on analysis of
simultaneously recorded spike trains using electrophysiological data from prefrontal cortex of rhesus
monkeys while processing task-relevant visual displays. We combine mathematical models describing
neuronal attention and point process models for spike trains. The same model can explain both serial
and parallel processing by adopting different parameter regimes. We present statistical methods to
distinguish between serial and parallel processing based on both maximum likelihood estimates and
decoding analysis of the attention when two stimuli are presented simultaneously. Results show that
both processing mechanisms are in play for the simultaneously recorded neurons, but neurons tend
to follow parallel processing in the beginning after the onset of the stimulus pair, whereas they tend
to serial processing later on.

keywords: parallel processing, serial processing, spike train, visual attention, probability mixing, prob-
abilistic modeling, statistical inference, point processes, prefrontal cortex, decoding

1 Introduction

A fundamental question in theories of visual search is whether the process is serial or parallel for given
types of stimulus material (for comprehensive reviews, see Bundesen and Habekost (2008); Nobre and
Kastner (2013)). In serial search, only one stimulus is attended at a time, whereas in parallel search,
several stimuli are attended at the same time. The question of serial versus parallel search has been
extensively investigated by behavioral methods in cognitive psychology, but it is still highly controver-
sial. In this article, we briefly review extant empirical methods and their results and then present and
exemplify a new method for distinguishing between serial and parallel visual search. The method is
based on analysis of spike trains measured in prefrontal cortex of rhesus monkeys while being exposed
to a pair of stimuli, which the animal should detect and later respond to with a saccade towards a target
object.

1.1 Behavioral methods for distinguishing between serial and parallel visual
search

Analyses of effects of display set size on mean response times

In typical experiments on visual search, the task of the observer is to indicate as quickly as possible if a
certain type of target is present in a display. Positive (target present) and negative (target absent) mean
response times are analyzed as functions of the display set size (the number of items in the display). The
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method of analysis was laid out by Sternberg (1966, 1969a,b) and further developed by Schneider and
Shiffrin (1977). The foundation is as follows.

In a simple serial model, items are scanned one at a time. When an item is scanned, it is classified as
a target or a distractor. The order in which items are scanned is independent of their status as targets
versus distractors. A negative response is made when all items have been scanned and classified as
distractors. Thus, the number of items processed before a negative response is made equals the display
set size, N . Furthermore, the rate of increase in mean negative response time as a function of display
set size N equals the mean time taken to process one item, ∆t.

In a self-terminating simple serial search process, a positive response is made as soon as a target is found.
Because the order in which items are scanned is independent of their status as targets or distractors, the
number of items processed before a positive response is made varies at random between 1 and N with a
mean of (1 + N)/2. Thus, the rate of increase in mean positive response time as a function of display
set size N equals one half of the mean time taken to process one item, ∆t/2.

Treisman et al. (1977) introduced an influential distinction between feature and conjunction search. In
feature search, the target possesses a simple physical feature (e.g., the color red) that distinguishes the
target clearly from all of the distractors. In this case search is fast and little affected by display set size.
In conjunction search, the target differs from the distractors by possessing a particular conjunction of
physical features (e.g., both a particular color and a particular shape), but the target is not unique in
any of the component features of the conjunction (i.e., in color or in shape). For example, the target can
be a red B with black Bs and red Xs as distractors.

In typical experiments on conjunction search, positive and negative mean response times have been
approximately linear functions of display set size with substantial slopes and positive-to-negative slope
ratios of about 1:2. This pattern of results accords with predictions from self-terminating simple serial
models, and Treisman and her colleagues have proposed that conjunction search is done by scanning
items one at a time. Experiments on feature search with low target-distractor discriminability have
yielded similar results (Treisman and Gormican, 1988).

Analyses of effects of display set size on error rates and response time distributions

In a parallel model of attention, several stimuli can be attended at the same time. The first detailed par-
allel model of visual processing of multi-element displays was the independent channels model proposed
by Eriksen and his colleagues (e.g., Eriksen and Lappin (1965); Eriksen and Spencer (1969)). It was
based on the assumption that display items presented to separated foveal areas are processed in parallel
and independently up to and including the stage of pattern recognition. The independent channels model
has been used to account for effects of display set size on error rates.

The linear relations between mean response time and display set size predicted by simple serial models
are difficult to explain by parallel models with independent channels. However, the linear relations can
be explained by parallel models with limited processing capacity. The following example of mimicry
between serial and parallel models was published independently by Atkinson, Holmgren, and Juola and
Townsend in 1969.

Consider a display of items that are processed in parallel. Let the processing speed for an item (i.e., the
hazard function for the processing time of the item) equal the amount of processing capacity allocated
to the item (cf. Bundesen (1990)). Suppose (a) the total processing capacity spread across items in
the display remains constant, and (b) whenever an item completes processing, the capacity that was
allocated to the item is instantaneously redistributed among any items that remain to be completed.
If so, then the mean time taken to complete the parallel processing of the display increases as a linear
function of the display set size, mimicking the behavior of a simple serial processor (see Townsend and
Ashby (1983), for further analyses of serial-parallel model mimicry).

Bricolo et al. (2002) found evidence of self-terminating serial processing by analysis of response time
distributions in a speeded task with highly inefficient search. Search arrays were drawn in light gray
against a dark background and consisted of mutually highly similar crosses. A target cross was present
in 50% of the trials, and mean response times were approximately linearly increasing functions of display
set size with slopes that were twice as steep for target-absent trials (nearly 200 ms per item) as for
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target-present trials (100 ms per item). Response time distributions for target-absent responses of
individual observers were closely fitted by convolutions of a Gaussian (base response time) distribution
with exponential distributions (one for each item in the display). Response time distributions for target-
present responses were fitted as probability mixtures of convolutions of the Gaussian distribution with
1, . . . , N exponential distributions, respectively, for displays with N items (some responses being based
on the first item that was scanned, others on the second item, and so on). Similar results were obtained
in a paradigm in which the position of the target within arrays of constant size was varied instead of
varying the number of items. Observers were cued to start search from a particular end of the array,
which yielded a position effect that was comparable in size to the display set size effect found in the first
experiment. Both the serial model for the first experiment and the serial model for the second experiment
could be mimicked by parallel models. However, whereas the parallel model for the set size experiment
assumes that processing capacity is reallocated whenever an item finishes processing by being classified
as a distractor, the parallel model for the position experiment assumes no reallocation of processing
capacity during a trial. It seemed not possible to account for both experiments by a single, reasonably
simple parallel model.

Demonstrations of mental states of partial information about each of a multitude of stimuli

Bundesen et al. (2003) introduced a multi-feature whole-report paradigm for investigating serial versus
parallel processing: Suppose two features must be processed from each of two stimuli (i.e., a total of
four features). Let processing be interrupted before all of the four features have completed processing.
If, and only if, processing is parallel, there will be cases in which just one feature from each of the
two stimuli completes processing before the interruption. This event, in which the observer has only
partially encoded each of the two stimuli, should never happen when processing is serial. Thus, states
with partial information from more than one stimulus are strong indicators of parallel processing. In
the experiment of Bundesen et al. (2003) (see Kyllingsbæk and Bundesen (2007) for replications and
extensions), observers were presented with brief exposures of pairs of colored letters and asked to report
both the color and the identity of each letter. The results showed strong evidence of states of partial
information from each of the two stimuli (e.g., information of just the identity of one of the letters and
just the color of the other one), and the results were fitted strikingly well by a simple parallel-processing
model assuming mutually independent processing of the four features.

1.2 Method based on analysis of spike trains

As exemplified above, previous methods for distinguishing between serial and parallel visual search have
been based on behavioral data, and the evidence obtained by these methods has been somewhat indirect.
In this article, we present a new method for distinguishing between serial and parallel visual search, a
method based on analysis of electrophysiological data. The method relies on the probability-mixing
model for single neuron processing (Li et al., 2016), derived from the Neural Theory of Visual Attention
(Bundesen and Habekost, 2008), which states that when presented with a plurality of stimuli a neuron
only responds to one stimulus at any given time. By probabilistic modeling and statistical inference using
multiple simultaneously recorded spike trains, we infer and decode what each of the recorded neurons
are responding to, providing a mean to distinguish between parallel processing and serial processing on
a neuronal level. The new method appears more direct than previous methods.

Consider an experiment in which we record the action potentials or spikes from each of a number of
visual cortical neurons of the same type (e.g., a set of functionally similar MT neurons with overlapping
receptive fields; see, e.g., Li et al. (2016)). Suppose two stimuli (Stimulus 1 and 2) are both within the
classical receptive fields of all of the recorded neurons, but otherwise the receptive fields are empty. In
this situation, we may test whether processing is parallel in the sense that on any given trial, some of
the recorded neurons represent Stimulus 1 throughout the trial, while others, working concurrently (”in
parallel”) with the first ones, represent Stimulus 2 throughout the trial. We may assume that a neuron
represents Stimulus 1 rather than Stimulus 2 if the likelihood of the observed spike trains becomes higher
by assuming that the neuron represents Stimulus 1. We may also test whether processing is strictly serial
(i.e., one stimulus at a time) by testing, for example, whether there is a time interval ∆1 in which all
of the MT neurons represent Stimulus 1 and a time interval ∆2, nonoverlapping with ∆1, in which all
of the MT neurons represent Stimulus 2. Again, we may assume that a neuron represents Stimulus 1
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rather than Stimulus 2 if the likelihood of the observed spike trains becomes higher by assuming that
the neuron represents Stimulus 1.

Strictly parallel processing of two or more stimuli such that processing begins and ends at precisely the
same times may hardly be expected in a biological system. The same is true of strictly serial processing;
not every one of the neurons from which we record may represent Stimulus 1 in time interval ∆1, and
not every one may represent Stimulus 2 in time interval ∆2. In analyses of biological systems, strictly
parallel processing and strictly serial processing must be regarded as idealizations. However, we will
show how to measure the goodness of approximation of search processes in the brain to simple serial and
parallel search.

2 Materials and Methods

Here we present two models that relate the theories of visual attention to neuronal behavior, providing a
tool to distinguish or quantify between parallel and serial processing through spike train analysis. Under
the assumption of serial processing, the neurons are correlated, acting together as a population. This
dependence can arise through two different pathways: 1) There exists an underlying variable driving the
neurons towards attending to the same stimulus, creating a dependence, even if the neurons are condi-
tionally independent given the state of this underlying variable. 2) The neurons are directly positively
correlated, driving them to synchronize their attention.

The first pathway can be described by a hidden Markov model, where the hidden Markov chain describes
different states influencing the neuronal attention. If time is discretized and there are two stimuli, this
leads to a mixture of Binomials at each discretized time step, where the Binomial distributions give
the probabilities of attending each stimulus, and these probabilities depend on the hidden state of the
Markov chain. The second pathway can be represented by a correlated Binomial model, a mixture of an
ordinary Binomial and a modified Bernoulli, which is used independently at each discretized time step.
For both models, the attended stimulus for each neuron is unobserved, and the inference is based on
spike trains. We estimate parameters by maximum likelihood estimation (MLE) by marginalizing out the
unobserved attention variables. The estimated parameters in either model describe neuronal properties
and are used to obtain a prior measurement of the degree of parallel or serial processing. For both
models, we also perform a decoding analysis, where we apply the fitted model to the data and obtain the
posterior probabilities of the latent attention variables. This is an estimate of which stimuli the neurons
were most probably attending to given their observed spike trains. The decoding of attentional behavior
gives a posterior measurement of the degree of parallel or serial processing. The diagram in Figure 2.1
summarizes the flow of the analysis including parameter estimation, decoding and interpretation. We
start by introducing the statistical methods to distinguish between parallel and serial processing, then
we present the two models, and finally, we present the experimental data used in the analyses.

Figure 2.1: Flow diagram of the analysis.
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2.1 Distinguishing between parallel and serial processing

In this Section we define different prior measures of the degree of serial and parallel processing based
on the estimated parameters of the models when a population of n neurons are presented with two
non-overlapping stimuli in their receptive fields. These measures will vary with time, i.e., depend on the
time since stimulus onset, but for ease of notation, we suppress time from the notation here. Later we
will introduce the time dependency. We assume a homogeneous situation where all neurons follow the
same distribution and are exchangeable, except for individual firing rates as responses to single stimuli.
First, we consider the marginal distribution of the attended stimulus for each neuron. Let p denote
the marginal probability of attending to one of the stimuli, say stimulus 1, such that the probability
of attending stimulus 2 is 1 − p. If the neurons are independent, then the probability that all neurons
attend the same stimulus is pn + (1 − p)n, and if the neurons are positively correlated, this is a lower
bound of the probability that all neurons attend the same stimulus. Thus, p provides a measure of the
tendency of serial or parallel processing. A narrow distribution (extreme probability, p either close to
0 or 1) favors serial processing, since in this case most neurons will attend the same stimulus. On the
contrary, a wide distribution (non-extreme probability, p close to 0.5) favors parallel processing, since in
this case neuronal attention will tend to split between the two stimuli. Second, we consider correlations
between neurons. Since the neurons are exchangeable, the correlation coefficient, denoted by ρ, between
any two neurons (pairwise correlation) is identical. Stronger positive correlation implies more tendency
to serial processing, no matter what the probability of each stimulus is. Thus, if either the correlation
is strong (ρ close to 1) or p is close to 0 or 1, serial processing is favored, while if both the correlation
is weak and the probability is not extreme, parallel processing is favored. We summarize the different
cases in Table 2.1.

Table 2.1: Effects of neural attentional probability and correlation to serial and parallel processing. Extreme
probability implies a probability close to 0 or 1, and strong correlation implies a correlation close to 1.

Extreme probability Non-extreme probability
Strong correlation Serial Serial
Weak correlation Serial Parallel

We now propose a single statistic as an alternative measure to distinguish between serial and parallel
processing. Again, we suppose to have a stimulus mixture of two components and a population of n
neurons attending to the mixture. The number of neurons, X, attending to the first stimulus follows a
distribution with probability mass function (PMF) f(x) for x ∈ {0, 1, . . . , n}, such that P (X = x) = f(x),
which depends on the specific model. A distribution centered around n/2 indicates apparent parallel
processing, and a distribution centered at 0 and/or n indicates apparent serial processing. Note that
this population distribution incorporates both the marginal probability of attention of the single neurons
and the correlation between neuron pairs. We define a statistic Dn as a measure of the degree of serial
or parallel processing, given by

Dn =

∑n
x=0 |x− n/2|f(x)

n/2
. (2.1)

The statistic Dn can be explained as a normalized expected deviation between the number of neurons
attending to one stimulus and the half of the total number of neurons, or the deviation between the
expected processing mechanism and the perfect parallel processing with uniform weights on stimuli. If
we split the neuron population according to which stimulus they attend giving two proportions (summing
to 1), then Dn is the average difference between the two proportions, and it can take values between 0
and 1. The smaller Dn is, the more parallel processing is favored. The Dn statistic depends on the total
number of neurons n. However, if we consider specific models for the PMF, for example the Binomial
models introduced below, the dependence of n can be removed by using the asymptotic version

D∗ = lim
n→∞

Dn.

To summarize, to measure the degree of serial and parallel processing by the estimated model (prior
measurement), we can use the attentional probability, the correlation of neuronal attention, and the
deviation statistic Dn or D∗.
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2.2 Hidden Markov Model and a Mixture of Binomial Distributions

In this Section we present a model where some underlying variable drives the attention of the neurons.
To combine the visual attention hypotheses with neuronal dynamics, we adopt a hidden Markov model
(HMM). We discretize the duration of the trial into T smaller intervals and the HMM is defined over the T
time steps. This model is based on the basic probability-mixing model for the attention of single neurons
employed in Li et al. (2016), where a neuron responds to a stimulus mixture with certain probabilities,
such that the single neuron at any given time represents only one of the stimuli in the mixture. We let
these probabilities, which can be interpreted as attentional weights, depend on the underlying hidden
Markov chain, which introduces correlation between neurons, even if they are conditionally independent
given the hidden state, and the probabilities evolve over time following the dynamics of the hidden
Markov chain. Note that this implies that within each of the T intervals, model parameters governing the
stochastic neuronal activity (the spike train generation) are constant. For simplicity we use two hidden
states, but more could be used. A transition between hidden states introduces a weight reassignment of
the attention to the stimuli, and thus, new laws for the generation of spike trains.

Let Ct ∈ {c1, c2} denote the hidden state at time t, let Xi
t ∈ {0, 1} denote the attended stimulus of

neuron i at time t for i = 1, . . . , n, and let dit denote the observed spike train of neuron i in the t’th
interval. Figure 2.2 shows a diagram of the HMM when T = 3. Conditional on Ct, {Xi

t}i=1,...,n are
independent. We set Xi

t = 1 when neuron i attends stimulus 1 at time t, and Xi
t = 0 when attending

stimulus 2.

C1 C2 C3

X1
1 X2

1 Xn
1 X1

2 X2
2 Xn

2 X1
3 X2

3 Xn
3

d1
1 d2

1 dn1 d1
2 d2

2 dn2 d1
3 d2

3 dn3

. . .

. . .

. . .

. . .

. . .

. . .

Ct ∈ {c1, c2}: hidden state at t

Xi
t ∈ {0, 1}: attended stimulus at t for neuron i.

dit: observation of spike train in interval t of neuron i

Figure 2.2: Diagram of the HMM for neuronal attentions from a group of n neurons to a mixture of two stimuli,
using T = 3 discretized time steps.

Let the initial distribution of the Markov chain be given by λλλ and the transition probability matrix
(TPM) by ΓΓΓ:

λλλ =
[
λ 1− λ

]
,

ΓΓΓ =

[
γ11 1− γ11

γ21 1− γ21

]
, (2.2)

where 0 ≤ λ, γ11, γ21 ≤ 1. The TPM ΓΓΓ depends on the stimulus pair, but the initial distribution λλλ is
only related to the location of the attended stimulus and is thus the same for all stimulus pairs. We
denote by ΓΓΓm the TPM of condition m.

Conditional on Ct, neurons are independent. Denote the probability of attending to stimulus 1 given
state c by αc1 = P (Xi

t = 1|Ct = c), yielding the matrix:

AAA =

[
αc11 1− αc11

αc21 1− αc21

]
. (2.3)
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Attention probabilities and correlations Calculating the probability distribution of Xi
t is straight-

forward following the HMM. Let P (Ct = c1) = πt and P (Ct = c2) = 1 − πt denote the distribution of
the hidden state, and P (Xi

t = 1) = pt and P (Xi
t = 0) = 1 − pt denote the distribution of the attended

stimulus at time t. Then

[
πt 1− πt

]
= λλλΓΓΓt−1; (2.4)

[
pt 1− pt

]
= λλλΓΓΓt−1AAA. (2.5)

Straightforward calculations yield the correlation ρt between two neurons Xi
t and Xj

t :

pt = πtαc11 + (1− πt)αc21; (2.6)

Var(Xi
t) = πtαc11 + (1− πt)αc21 − (πtαc11 + (1− πt)αc21)2; (2.7)

Cov(Xi
tX

j
t ) = πtαc11αc11 + (1− πt)αc21αc21 − (πtαc11 + (1− πt)αc21)2

= πt(1− πt)(αc11 − αc21)2; (2.8)

ρt =
Cov(Xi

tX
j
t )

√
Var(Xi

t)

√
Var(Xj

t )
. (2.9)

The values pt and ρt can be used to measure the degree of serial and parallel processing as explained in
Table 2.1.

A mixture of two Binomials Investigating the HMM structure, at each time point t we can
view the neuronal attention behavior for the n neurons as a mixture of two Binomial distributions,
Bin2(πt, αc11, αc21, n), by marginalizing out the hidden state Ct. The weight of the first Binomial com-
ponent is πt, and the probability parameter of the cth Binomial is αc1 for c = c1, c2. The number of
Binomial trials equals the number of simultaneously recorded neurons n. The PMF for a mixture of two
Binomials is

fBin2(x|πt, αc11, αc21, n) = πtfBin(x|αc11, n) + (1− πt)fBin(x|αc21, n), (2.10)

where fBin(·) is the PMF of the Binomial distribution.

Figure 2.3 illustrates the mixture of two Binomials using n = 10 neurons for different parameter sets.
The probability p and the correlation ρ are also calculated for each case. The figure illustrates how the
probability and the correlation affect serial and parallel processing. Only when p is not close to 0 or 1
and the correlation is weak, shown in the bottom-right panel, the 10 neurons tend to split between the
two stimuli, indicating parallel processing. Otherwise, a large majority of neurons attend to the same
stimulus, suggesting serial processing.

The Dn statistic is calculated using Equation (2.1). For the mixture of two Binomials in (2.10), the
asymptotic version is given by

D∗ = lim
n→∞

Dn = 2 (πt|αc11 − 0.5|+ (1− πt)|αc21 − 0.5|) . (2.11)

The corresponding Dn and D∗ values are also shown in Figure 2.3. In 3 of the 4 cases, the non-asymptotic
statistic is equal to the asymptotic version, even if n is as small as 10. In the last case (bottom-right panel)
we see that D∗ < Dn, so if more neurons are involved, we expect even more clear parallel processing for
the given parameters.
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Figure 2.3: The PMF of a mixture of two Binomials for different parameter settings.

2.3 Correlated Binomial model

In this Section we present the correlated Binomial model where the neurons are assumed directly cor-
related. It was studied in Luceño (1995); Diniz et al. (2010), and is denoted by CBin(n, p, ρ), where
n is the number of correlated Bernoulli trials (simultaneously recorded neurons in our model setting),
0 ≤ p ≤ 1 is the success probability, and ρ is the correlation coefficient. In this model the number
of successes x follows a mixture of two distributions. One is an ordinary Binomial distribution with
parameters n and p. The other is a fully correlated distribution where x ∈ {0, n}, which can be viewed
as a modified Bernoulli distribution with support {0, n} with parameter p. The weight of the Bernoulli
component is the correlation coefficient ρ. The probability mass function is given by

fCBin(x|n, p, ρ) = (1− ρ)fBin(x|n, p) + ρp
x
n (1− p)n−x

n I{0,n}(x), (2.12)

where I{0,n}(x) is an indicator function which equals 1 for x ∈ {0, n} and 0 otherwise.

We discretize the observation interval as before, and at each discretized time step, we apply a correlated
Binomial distribution. We assume the distribution at the first step identical for all stimulus pairs, since
this is the initiation of the processing mechanism before the specific stimuli are perceived, but at all
later steps, the distribution depends on the stimulus pair. Thus, at t = 1 the simultaneously recorded
neurons follow CBin(n, p1, ρ1), and at t > 1 they follow CBin(n, pt,m, ρt,m) for stimulus pair m. We
do not assume a dependence structure over time, as in the HMM, and the behavior at each time step is
independent of the behavior at other time steps. Instead, the correlation between simultaneously recorded
neurons are modeled directly by the parameter ρ in the correlated Binomial distribution. Compared with
the HMM, where the correlation is described through the attentional reassignment with a Markov chain,
the correlated Binomial model is more direct.
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Here in the correlated Binomial model, we denote by Ct the hidden index, indicating either the Binomial
(Ct = c1) or the Bernoulli (Ct = c2) component in the mixture.

Measuring the degree of serial and parallel processing For the correlated Binomial model, the
probability of attention is directly obtained from the parameter pt,m, and the correlation is obtained
from ρt,m. The asymptotic version of the deviation statistic D∗ is given by

D∗ =
(1− ρ)|p− 0.5|+ 0.5ρ

0.5
. (2.13)

Figure 2.4 shows for different parameter values the PMF of the correlated Binomial distribution. The
Dn and D∗ are also indicated.
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Figure 2.4: The PMF of the correlated Binomial distribution for different parameter settings.

2.4 Decoding

Decoding means to infer the attended stimulus from the observations and the estimated parameters. For
readability, we suppress time and neuron indicator from the notation, denoting the hidden state by C,
the attended stimulus by X and the data by d. The posterior of X given d is

P (X|d) =
∑

c

P (X|C = c, d)P (C = c|d). (2.14)

The strategy is to first estimate P (C|d) and then P (X|C, d) conditional on C. We are particularly
interested in the PMF and the deviation statistic of the attended stimuli, which we can calculate using

9



P (X|C, d) for different states C. In the following, the decoding is explained for the two models in more
detail.

Decoding in the Binomial-HMM

First we decode the hidden states Ct in the Binomial-HMM model. It is performed at each discretized
time step following the forward-backward algorithm. Let dNk

s:t denote the spike trains in intervals s to t,
for 1 ≤ s ≤ t ≤ T in trial k, where Nk denotes the simultaneous neurons recorded in the trial k. The
probability of Ct conditional on the observed spike trains at all time intervals 1 : T can be expressed as

P (Ct|dNk

1:T ) ∝ P (dNk

t+1:T |Ct)P (Ct|dNk
1:t ), (2.15)

where

P (Ct|dNk
1:t ) ∝ P (dNk

t |Ct)
∑

Ct−1

P (Ct|Ct−1)P (Ct−1|dNk
1:t−1) (2.16)

is the forward probability, calculated recursively by a forward sweep over 1 : T , and

P (dNk

t+1:T |Ct) =
∑

Ct+1

P (dNk

t+2:T |Ct+1)P (dNk
t+1|Ct+1)P (Ct+1|Ct) (2.17)

is the backward probability, calculated recursively by a backward sweep over T : 1. When calculating
the forward and backward probabilities, the likelihood conditional on the hidden state, P (dNk

t |Ct), is
obtained by conditioning on {Xi

t}i∈{Nk}:

P (dNk
t |Ct) =

∏

i∈Nk

∑

Xi
t∈{0,1}

P (dit|Xi
t)P (Xi

t |Ct). (2.18)

After decoding the hidden state P (Ct|dNk

1:T ), the next is to decode {Xi
t}i∈{Nk} conditional on Ct:

P (Xi
t |dNk

t , Ct) = P (Xi
t |dit, Ct) ∝ P (dit|Xi

t , Ct)P (Xi
t |Ct). (2.19)

For each data set in trial k, dNk

1:T , we have thus obtained the posterior probability of the hidden states

P (Ct|dNk

1:T ) and the attended stimulus of each spike train P (Xi
t |dit, Ct), at all time steps t = 1, . . . , T .

This yields the marginal posterior P (Xi
t |dNk

1:T ) =
∑
Ct∈{c1,c2} P (Xi

t |dit, Ct)P (Ct|dNk

1:T ).

At each time step t, conditional on Ct, spike trains are independent and the posterior probabilities
P (Xi

t |dit, Ct) are different from spike train to spike train. Thus, for the attended stimuli of all neurons
we have a Poisson Binomial distribution, a generalization of the ordinary Binomial distribution where
each Bernoulli trial has a distinct success probability (Hodges and Le Cam, 1960). The PMF of the
Poisson Binomial distribution is calculated numerically using methods from Hong (2013). Marginalizing
out Ct ∈ {c1, c2}, at each time step t we then have a mixture of two Poisson Binomial distributions. The
PMF of this mixture distribution can be regarded as probabilities of the number of neurons that have
attended stimulus one, conditional on their observed spike trains. Furthermore, the deviation statistic
Dn can also be obtained from the PMF.

Decoding in the Correlated Binomial

In the correlated Binomial model, the attended stimuli of all simultaneous spike trains at one time
step follow a correlated Binomial distribution, a mixture of an ordinary Binomial and a fully correlated
Bernoulli. Data between different time steps and different trials are independent. Thus, decoding can
simply be done independently for each discretized time step in each trial. Now, let Ct be an index
indicating either the Binomial or the Bernoulli component in the mixture. As previous, we first decode
Ct by calculating P (Ct|dNk

t ), then find the PMF by calculating P (Xi
t |dit, Ct).

Following the correlated Binomial model,

P (Ct|dNk
t ) ∝ P (dNk

t |Ct)P (Ct), (2.20)

where we calculate the two cases Ct = c1 and Ct = c2 following the two components as in eq. (2.28)
to be shown later. Then for each case of Ct we decode the attended stimulus Xi

t . When Ct = c1,

10



i.e., the Binomial case, Xi
t is obtained for each spike train independently with P (Xi

t |dit, Ct = c1) ∝
P (dit|Xi

t , Ct = c1)P (Xi
t |Ct = c1), resulting in a Poisson Binomial distribution. When Ct = c2, i.e., the

fully correlated Bernoulli case, the attended stimuli of all neurons are the same, which is obtained by
P (Xt|dNk

i , Ct = c2) ∝ P (dNk
i |Xt, Ct = c2)P (Xt|Ct = c2), and the result is still a modified Bernoulli.

Finally, the PMF is a mixture of a Poisson Binomial and a modified Bernoulli.

2.5 Experimental Data

To distinguish between parallel and serial processing, we use the neural spike train data recorded from
neurons in prefrontal cortex of two rhesus monkeys presented with two visual stimuli in experiments
conducted by Kadohisa et al. (2013). They studied dynamic attentional construction, and found that in
the early stage after stimulus onset when processing competing stimuli, the global attention is distributed
among all objects with each neuron having a tendency towards its contralateral hemifield. In the late
stage, the global attention is reallocated and neurons are redirected to the target stimulus. The data
contain multiple simultaneously recorded neurons responding to two competing stimuli. The data are
organized in daily sessions, and each session consists of a different set of recorded neurons. We only
analyze the sessions where at least five neurons are recorded to have enough data to distinguish between
parallel and serial processing, yielding a total of 48 sessions. Figure 2.5 shows a typical trial of the
experiment. Each trial began with a central cue indicating the target object of the specific trial. Two
different cues were paired with two alternative targets. After a brief delay, a choice display was presented
for 500 ms containing two objects to the right and left of the fixation point. The objects could be either
the cued target (T), an inconsistent non-target (NI) because it was used as a target on other trials, a
consistent nontarget (NC) never serving as a target, or nothing but a gray dot (NONE). In the following
we call a combination of two stimuli a condition. Table 2.2 shows the 12 possible conditions. The stimuli
locations were denoted by whether they were contra- or ipsilateral with respect to the recorded neuron.
For illustration purposes, in the figures left represents contralateral and right ipsilateral. After a brief
delay, the monkey was rewarded with a drop of liquid for a saccade to the T location, or if no T had
been presented, for maintaing fixation (no-go response) for later reward. Figure 2.6 A shows an example
of the structure of the data in one session. In this example, five neurons are simultaneously recorded.
One condition is repeated in multiple trials, and each trial might record some or all of the five neurons.
To get an overall idea of the sample sizes, histograms in Figure 2.6 B and C show the average number
of trials per condition over the 48 sessions, and the average number of simultaneously recorded neurons
per trial over sessions, respectively.

Figure 2.5: The trial setup in the experiment conducted by Kadohisa et al. (2013). Following fixation on a central
red dot, each trial began with a central cue indicating the target object. The cue was paired with two alternative
targets. After a brief delay, a choice display was presented containing two objects to the right and left of the
fixation point. The objects could be either the cued target (T), an inconsistent non-target (NI) because it was
used as a target on other trials, a consistent nontarget (NC) never serving as a target, or nothing but a gray dot
(NONE). After a brief delay, the monkey was rewarded with a drop of liquid for a saccade to the T location (in
the cases shown to the left), or if no T had been presented (cases shown in the middle), for maintaing fixation
(no-go response) for later reward. To the right are shown two examples of stimuli combinations.
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Table 2.2: The 12 conditions used in the trials (combinations of stimuli). Conditions can be merged into three,
indicated by table cells: target in the contralateral side, target in the ipsilateral side, and all combinations with
no target. Contra- and ipsilateral sides are with respect to the recorded neuron.

condition 1 2 3 4 5 6 7 8 9 10 11 12
con T T T NI NC NONE NI NI NC NC NONE NONE
ipsi NI NC NONE T T T NC NONE NONE NI NI NC
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Figure 2.6: Sample sizes. A: Example of number of trials and recorded neurons in a daily session. The cross
symbol (×) indicates that the neuron is recorded in the given trial. In this session, five neurons are recorded.
Condition 1 was used in 23 trials, and Trial 1 and 2 each uses three neurons, but not the same ones. B: Average
number of trials per condition in 48 sessions. C: Average number of neurons per trial in 48 sessions. In all
sessions, at least 5 neurons are recorded. Histograms are based on 48 numbers (one for each session).

We will analyze the choice phase where the two stimuli are shown. In Figures 2.7 and 2.8 are shown
the recorded spike trains of two example cells during this phase and 100 ms around it. The red line
is a kernel smoothing of firing rates over time, plotted on top of the spike trains. The 12 subplots
show the 12 conditions with the titles indicating stimulus on the contra- (left) and ipsilateral (right)
sides with respect to the recorded neuron. The two figures show two complementary neurons. The
neuron ”MN110411task 3 0” in Figure 2.7 favors the target with a higher firing rate for T, and its
attention starts from the contralateral stimulus and is later redirected to the target stimulus, following
the overall tendency of most neurons reported by Kadohisa et al. (2013). On the other hand, the neuron
”mj081029a 8 0” in Figure 2.8 shows a tendency to the ipsilateral stimulus in the early stage, and later
the attention is again redirected to the target stimulus. Further, for this neuron there are more variability
between trials under the same condition.
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Figure 2.7: Spike trains recorded from an example cell (neuron MN110411task 3 0). Raster plots recorded under
12 conditions, indicated in the title of the subplot, together with a kernel smoothing estimate of the firing rate
shown in red. The left stimulus in the title indicates the stimulus of the contralateral side, and the right indicates
the stimulus on the ipsilateral side with respect to the recorded neuron. The dashed lines indicate the interval of
the choice phase where two stimuli are shown.
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Figure 2.8: Spike trains recorded from an example cell (mj081029a 8 0). Raster plots recorded under 12 conditions,
indicated in the title of the subplot, together with a kernel smoothing estimate of the firing rate shown in red. The
left stimulus in the title indicates the stimulus of the contralateral side, and the right indicates the stimulus on
the ipsilateral side with respect to the recorded neuron. The dashed lines indicate the interval of the choice phase
where two stimuli are shown.
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The above figures present repeated trials of a single neuron, but not simultaneously recorded spike trains
in single trials. In Figure 2.9, we show simultaneously recorded neurons in two conditions of the session
”MN110411”. Different trials are shown in two colors alternately, and all simultaneously recorded spike
trains within one trial are shown in the same color. The comparison of serial and parallel processing
catches the difference among simultaneously recorded neurons within one trial in terms of their attended
stimulus, which is hard or impossible to analyze by traditional methods by averaging across neurons and
trials. We thus develop a new methodology modeling each single spike train and the correlation between
spike trains. The serial and parallel processing can be distinguished using the estimated parameters.

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

15
0

T − NONE

Time/s

S
pi

ke
 tr

ai
ns

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

15
0

NONE − T

Time/s

S
pi

ke
 tr

ai
ns

Figure 2.9: Spike trains of simultaneously recorded neurons in session ”MN110411” for two conditions. Each
point in the figure denotes a spike at the time indicated by the x-axis. Different trials are presented alternately
using the red and blue colors, and the simultaneously recorded spike trains within one trial are shown in the same
color. The left and right panels show two different conditions.

To account for neuronal response times, we discard the first 100 ms after stimulus onset, using the
interval from 100 to 500 ms in the choice phase when estimating the parameters of the two models.

2.6 Likelihood functions

The spike trains are modelled by point processes using conditional intensity functions (CIF) (Daley and
Vere-Jones, 2003; Kass et al., 2014), see also Li et al. (2016). Suppose a spike train d in the interval
[Ts, Te] contains the spike times d = {t1, t2, . . . } with Ts ≤ t1 < t2 < · · · ≤ Te, and that it attends to the
same stimulus during the entire interval. The probability of d given the attended stimulus Xt is given
by (Kass et al., 2014; Truccolo et al., 2005)

P (d|Xt) =

[∏

τ∈d
h(τ |Hτ ;Xt)

]
exp

{
−
∫ Te

Ts

h(s|Hs;Xt)ds

}
, (2.21)

14



where Hs is the spike history up to time s, and h(s|Hs;Xt) is the conditional intensity function, which
we model using

h(s|Hs;Xt) = r exp



β0s+

10∑

j=1

βj∆Ns−ju



 . (2.22)

The base firing rate r is neuron specific and a function of the attended stimulus and the location (contra-
or ipsilateral). For each neuron, there are 7 rate parameters, representing T, NI and NC at either side,
and a parameter for NONE. The exponential term models the influence of past spikes on the neuronal
activity. For simplicity, we assume that only past spikes of the neuron itself have an effect. All neurons
are assumed to share the same set of β parameters βj , j = 0, 1, 2, . . . , 10. The constant u = 1ms is
the discretization unit and ∆Ns−ju ∈ {0, 1} denotes whether there is a spike at j time units before the
current time s. Finally, β0s models an exponential decay of the firing rate over time from time 0 when
stimuli appear.

Let M denote the considered conditions (stimulus pairs) and let |M| denote the number of conditions.
For simplicity, we do not always distinguish between all 12 conditions shown in Table 2.2, but sometimes
merge them into classes depending on our emphasis, such that there will be fewer parameters to estimate.
In particular, we will consider the three classes of conditions indicated in the table, defined by whether
there is a target in the stimulus pair, and if there is, whether it is contra- or ipsilateral. Under condition
m, let the set Km contain all the conducted trials. In trial k, let the set Nk contain all the simultaneously
recorded neurons and let dNk

t denote the spike trains from these neurons in the t’th interval. Each Nk is
a subset of the set of all neurons N used in the session, Nk ⊆ N , because not all neurons are used in all
trials.

Model fitting in the Binomial-HMM The likelihood function of all spike trains in one session is
given by

L =
∏

m∈M

∏

k∈Km

{
λλλPPP (dNk

1 |C1)

T∏

t=2

[
ΓΓΓmPPP (dNk

t |Ct)
]}

. (2.23)

We denote the conditional probability of the Nk spike trains at time t given Ct by a diagonal matrix:

PPP (dNk
t |Ct) =

[
P (dNk

t |Ct = c1) 0

0 P (dNk
t |Ct = c2)

]
. (2.24)

By conditioning on XNk
t , we obtain

P (dNk
t |Ct = c) =

∏

i∈Nk

[
P (dit|Ct = c)

]

=
∏

i∈Nk

[
P (Xi

t = 1|Ct = c)P (dit|Xi
t = 1) + P (Xi

t = 0|Ct = c)P (dit|Xi
t = 0)

]

=
∏

i∈Nk

[
αc1P (dit|Xi

t = 1) + (1− αc1)P (dit|Xi
t = 0)

]
, (2.25)

or in matrix notation:

P (dNk
t |Ct = c) =

∏

i∈Nk

{
IIIcAAA

[
P (dit|Xi

t = 1)
P (dit|Xi

t = 0)

]}
, (2.26)

IIIc =

{[
1 0

]
, c = c1[

0 1
]
, c = c2

, (2.27)

where P (dit|Xi
t) is given in (2.21). We obtain maximum likelihood estimates of the parameters by

maximizing the likelihood function. The parameters to be inferred are summarized in Table 2.3.
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Table 2.3: Parameters to be estimated for each session in the Binomial-HMM model.

Name Explanation Dimension
λλλ =

[
λ 1− λ

]
Initial distribution, the same 1

for all conditions M

ΓΓΓm =

[
γm11 1− γm11

γm21 1− γm21

]
Transition probability matrix 2|M|

for each condition m ∈M

AAA =

[
α11 1− α11

α21 1− α21

]
Conditional probability of 2

neuronal attention

r
Base firing rates, different 7|N |

for each neuron in N

β
Weights in the CIF model, the same 11

for all neurons N

Model fitting in the correlated Binomial model Under the correlated Binomial model, the si-
multaneously recorded neurons follow a mixture of a Binomial and a modified Bernoulli. The likelihood
of the spike trains in condition m at time t in trial k, dNk

t , is given by

Pm(dNk
t ) =(1− ρt,m)

∏

i∈Nk

[
P (dit|Xi

t = 1)pt,m + P (dit|Xi
t = 0)(1− pt,m)

]

︸ ︷︷ ︸
Binomial

+

ρt,m

{
pt,m

∏

i∈Nk

P (dit|Xi
t = 1) + (1− pt,m)

∏

i∈Nk

P (dit|Xi
t = 0)

}

︸ ︷︷ ︸
modified Bernoulli

, (2.28)

where P (dit|Xi
t) is given in (2.21). Then the likelihood of the data of an entire session is given by:

L =
∏

m∈M

∏

k∈Km

T∏

t=1

Pm(dNk
t ). (2.29)

The parameters of this model are summarized in Table 2.4.

Table 2.4: Parameters that need to be estimated for the independent correlated Binomial model.

Name Explanation Dimension

ρt,m
Correlation coefficients at each condition |M| · (T − 1) + 1

m ∈M and time t = 1, . . . , T

pt,m
Probability parameter at each condition |M| · (T − 1) + 1

m ∈M and time t = 1, . . . , T

r
Base firing rates, one 7|N |

for each neuron in N

β
Weights in the CIF model, the same 11

for all neurons N

We summarize the differences of the Binomial-HMM and the correlated Binomial model in Table 2.5.
In both models, it is assumed that in the early stage, i.e., the first discretized interval from 100 ms to
100 + 400/T ms, neuronal attention is only affected by the position of stimuli (ipsi- or contralateral) and
not by stimulus types (T, NI, NC or NONE). This assumption is supported by the empirical findings by
firing rate averaging showing attentional reallocation over time (Kadohisa et al., 2013). It is also assumed
that under the same stimulus types, the attentional parameters are identical, implying that in all the
trials of one condition, neurons follow the same attentional probabilities. There may be differences from
trial to trial, but the trials follow the same distribution.
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Table 2.5: Differences of the Binomial-HMM and the correlated Binomial model.

Binomial-HMM Correlated Binomial
Motivation Extends the probability-mixing

model with dynamic weight re-
assignment.

Treats neuronal attention as cor-
related Binomial variables.

Neuronal correlation Described through the Markov
chain.

Modeled directly by parameters.

Parameter dimension 14 + 2|M|+ 7|N | 13 + 2|M|(T − 1) + 7|N |

Meaning of C Hidden state of the Markov
chain, each state giving different
stimulus weights.

State of neurons being either
completely independent or fully
positively correlated.

3 Results

We present here the parameter estimates and decoding for both models fitted to the spike train data.
The models are fitted to each of the 48 sessions independently. For a discretization with T steps, we
assign equal length, 400/T ms, to all time intervals. We use two different discretizations of T = 3 and 5,
and two different classes of conditions with either all 12 or only 3 classes determined by whether there
is a target in the stimulus pair, and in that case, whether it is contra- or ipsilateral (see Table 2.2).

3.1 Parameter estimation in Binomial-HMM

Figure 3.1 illustrates parameter estimates for the Binomial-HMM. In a and b we show results with
discretization T = 3, and in c we also present results for T = 5.

Figure 3.1a shows the probability of attending to the stimulus at the contralateral side, pt = P (Xt = 1),
for different conditions for each time step, as kernel density plots from all 48 estimates. Three line
types (solid, dashed and dotted) indicate the three time steps, and four colors represent four types of
conditions. At t = 1 all conditions follow the same distribution, so there is a single black curve. For the
subsequent time steps, the condition types are: stimulus pairs with T on the ipsilateral side; stimulus
pairs with T on the contralateral side; stimulus pairs with NONE on the ipsilateral side; and stimulus
pairs with NONE on the contralateral side. The figure illustrates that neuronal attention slightly prefers
the contralateral stimulus in the beginning right after stimulus onset (the black density curve is centered
slightly towards larger values than 0.5), and later on tends to follow T and avoid NONE. Note that
here we conduct model inference using all 12 conditions, and combine similar conditions together for
presentation.

In Figure 3.1b, the estimates of the correlation ρt are plotted against the estimates |pt − 0.5| (difference
of the probability of the contralateral stimulus from 0.5, or probability ”extremeness”) for each of the
three time steps t = 1, 2, 3, on top of a two-dimensional kernel density estimate (bandwidth: 0.15) of
the points as heatmaps. There are 48 estimates in the left panel at t = 1, and 48 × 12 estimates in
the middle and right panels from 12 conditions in 48 sessions. At t = 1 before applying the TPM all
conditions follow the same distribution. A straight line is plotted on the anti-diagonal line for easier
reading. The lower left region of the heatmap represents a tendency of parallel processing, and all other
regions represent a tendency of serial processing. In all panels, but most accentuated in the left panel, a
big portion of the estimates fall in the lower left region, and at later times, the estimates tend to move
to the other regions. This implies that, in an early stage stimuli tend to be processed in parallel. Later
on more and more neurons share the same attended stimulus in the form of serial processing. There
is evidence supporting both processing mechanisms for all time steps throughout the whole spike train.
Moreover, we see that over time, the correlation tends to get smaller while the probability becomes more
extreme.

17



In Figure 3.1c we investigate the asymptotic deviation statistic D∗. The average D∗ is calculated over
the 48 session estimates for each condition. The left panel shows the D∗ values obtained from parameter
estimates using all 12 conditions with T = 3. The middle and right panels show results for T = 5, the
midle panel using the 3 classes of merged conditions, and the right panel using all 12 conditions. In
all cases, D∗ grows larger over time, implying stronger serial processing. Further, different settings of
discretization and condition merging give different results. The differences caused by using T = 5 instead
of T = 3 may be due to smaller sample sizes (shorter spike trains with only few spikes).
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Figure 3.1: Results for the Binomial-HMM. Figures a and b are obtained using T = 3 and 12 conditions. Figure
c uses also T = 5 and the 3 merged conditions. a) Kernel density estimation of the estimates of P (X = 1),
i.e. the probability of a neuron attending to the contralateral stimulus. b) Correlation estimates vs probability
extremeness estimates at the different time steps, on top of a two-dimensional kernel density estimate as heatmaps.
c) Estimates of D∗ for T = 3 with all 12 conditions (left), T = 5 with the 3 merged conditions (middle), and
T = 5 with all 12 conditions (right).

3.2 Parameter estimation in correlated Binomial

The estimates of the correlated Binomial model is shown in Figure 3.2. Figure explanations are as in
Figure 3.1. We obtain similar results as for the Binomial-HMM. In Figure 3.2b, we see apparent parallel
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processing at t = 1, while later on the correlation for most estimates goes to either 1 or 0, and the
probability becomes more extreme.

The correlated Binomial model is essentially a mixture model of an independent and a fully correlated
component. From figure b we find that at t > 1, in most of the 48× 12 estimates the weight parameter
of the mixture (i.e. the correlation coefficient) is very close to either 1 or 0, meaning one component is
dominating over the other. This is because of the small number of simultaneously recorded neurons in
most trials (see Figure 2.6), which is insufficient for obtaining good estimates in a mixture model. This is
a weakness of the correlated Binomial model since it only contains two extreme components representing
either full independence or full correlation. Model fitting of the correlated Binomial model on limited
sample sizes can bias the correlation parameter. To check this presumption, we looked at the estimates
from session ”MN110411”, the right-most neuron in the right panel of Figure 2.6 with the largest number
of simultaneously recorded neurons, and found that the estimates of the correlation lie almost uniformly
across 0 to 1, indicating that the estimates of either 0 or 1 of the correlation in other sessions can be an
artefact of small sample sizes.
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Figure 3.2: Results for the correlated Binomial model. See caption of Figure 3.1 for explanation.
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3.3 Decoding

Here we decode the attended stimulus of each neuron conditional on the observed spike trains. The
parameters used in the decoding algorithms are the estimated parameters obtained by MLE. In the
Binomial-HMM model we show results using both T = 3 and T = 5, and in the correlated Binomial
model using only T = 3.

Figure 3.3 shows the decoding of the attended stimulus for an example trial containing 10 simultaneously
recorded spike trains in session ”MN110411”, condition NONE-T. The three rows show decoding of the
same data set, with the upper panel using Binomial-HMM with T = 3, the middle panel using Binomial-
HMM with T = 5 and the lower panel using the correlated Binomial model with T = 3. The left panel
shows the data (10 simultaneously recorded spike trains in a trial) together with dashed lines indicating
the discretization. In the middle panel, the table named ”P (X = 1|d)” gives the posterior probability of
each spike train attending the contra stimulus at each time step, with the dashed lines indicating the time
steps corresponding to the left panels. Estimates in red color indicate higher probability of attending the
contralateral stimulus and blue color indicates higher probability of attending the ipsilateral stimulus.
Note that the target is located in the ipsilateral side. The table named ”P (C = c1|d)” gives the posterior
probability of the hidden state being c1. For the Binomial-HMM, the hidden state indicates the index of
the Binomial component, and for the correlated Binomial model, the first hidden state is the independent
Binomial component and the second is the fully correlated Bernoulli component. Since the hidden state
means something different in the two models, the P (C = c1|d) values are different. The right panel shows
the PMF of the number of neurons attending to the contralateral stimulus conditional on the spike train
data for each time step, with the Dn values shown in the legend. These values are calculated by eq.
(2.1) using the estimated f(x) from the right panels.

In Figure 3.4 we combine all Dn values from all trials in all sessions, and plot the kernel density estimate
for each time step (upper panel) as well as the evolution of the average of Dn over time (lower panel).
In the upper panel, different line types indicates different time steps. If a trial has few simultaneously
recorded spike trains, the Dn values will be biased. Thus, we only consider data with at least a certain
minimum of simultaneously recorded spike trains. The minimum number is denoted by n in the top left
legend. We have tried two options, n = 2 and n = 5, respectively. Also note that the minimum number
n in a trial here is different from the number of simultaneously recorded neurons in a session, because in
most trials not all simultaneously recorded neurons are used. We selected data such that the number of
simultaneously recorded neurons in a session is at least 5, but in most trials the simultaneously recorded
spike trains can be fewer. The Dn values estimated from trials with n = 5 (shown in red) are smaller
than the values estimated from trial with n = 2 (shown in blue), which is expected because using a
smaller number of spike trains when calculating Dn creates more bias towards overestimating Dn. On
the other hand, using n = 5 yields less data than n = 2 and is less trustworthy. In the lower panel are
shown the corresponding plots of average Dn over time for each decoding model for n = 2. Note that the
similar plots in Figures 3.1c and 3.2c are prior measures based on estimated parameters, and the plots
here in the lower panel are posterior measures based on the decoded attended stimulus. In all models
and both choices of n, there is evidence of both parallel and serial processing at all time steps. Over
time, Dn tends to be larger, meaning a larger degree of serial processing. Finally, as found previously,
differences of Dn between certain conditions are often larger than differences between time steps.

4 Discussion

In this study we combine the point process neuron models describing spike trains with the neural inter-
pretations of serial and parallel processing hypotheses in visual search. We propose a Binomial-HMM
and a correlated Binomial model to describe neuronal attention in neurophysiological measurements from
prefrontal cortex in rhesus monkeys. Results show that parallel processing is favored in some sessions
while serial processing is favored in other sessions, and there is evidence for both parallel and serial
processing at all discretized time steps. Considering the overall result, the D∗ values suggest a tendency
towards parallel processing in the early stage after stimulus onset, and serial processing in the late stage.
This means that, right after stimulus onset, neurons tend to split to attend different stimuli, and later
neurons become more synchronized sharing the same attended stimulus. Furthermore, at the early stage
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Figure 3.3: Decoding of an example trial using different models. Here all models use all 12 conditions. The
top panel shows the results of the Binomial-HMM model using T = 3. The middle panel shows the Binomial-
HMM model with T = 5. The bottom panel shows the correlated model with T = 3. In the left are shown the
simultaneously recorded spike trains from a trial in session ”MN110411”, and in the middle and right are shown
the relevant results calculated from parameter estimates; see the text for details.

neurons prefer the contralateral stimulus, while in the late stage neurons favor the T and avoid NONE,
which agrees with the study conducted by averaging across spike trains (Kadohisa et al., 2013).

Decoding analysis provides posterior probabilities of neuronal attentions at each time step for each trial,
yielding an estimate of the PMF and therefore also Dn. This can be used to analyze attentional behavior
for any given simultaneously recorded spike trains in future trials. The conclusions regarding parallel and
serial processing from the overall distribution of Dn on all trials and sessions from the decoding analysis
are the same as in the prior analysis using only parameter estimates. Note that although both the prior
and posterior analysis provide similar results, the conclusions regarding neuronal attentional properties
should be drawn from the prior analysis based on the MLE. The MLE gives the optimal estimation of the
neuronal properties based on all the available data. The decoding analysis, on the other hand, estimates
what the neuron’s attention could have been during a specific trial based on the data from this trial, and
the uncertainty of the decoding is represented by posterior distributions.
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Figure 3.4: Decoding results of Dn over all trials in all sessions. The left and middle panels show results for the
Binomial-HMM with T = 3 and T = 5, respectively. The right panel shows results for the correlated Binomial
model with T = 3. The upper panel provides Dn averaged over all conditions of the whole data, and the lower
panel separates between the 12 different conditions. See the text for details.

The article by Kadohisa et al. (2013) reported parallel processing in the early stage considering the whole
brain including both hemispheres. The same conclusion is drawn from our analysis, where we find that
the neurons prefer the contralateral stimulus in the early stage, and integrating both hemispheres gives
simultaneous parallel processing. Furthermore, there exists not only such parallel processing considering
the whole brain, but also parallel processing based on neurons in a single recording site, as supported
by our finding. Though the simultaneously recorded neurons in one location show a tendency towards
the contralateral stimulus in the early stage, there is strong evidence showing they split their attention
between stimuli located on both sides in a parallel way.

The models here are fitted to the specific data set from Kadohisa et al. (2013) and the model struc-
ture contains the experimental conditions specific for this data set. However, with trivial adjustments,
the models also apply to generic neurophysiologal data that consist of simultaneously recorded spike
trains. Currently the models and methods only support two stimuli, and a future extension could be the
generalization to an arbitrary number of stimuli.

The two models, the Binomial-HMM and the correlated Binomial model, give different results regarding
the measurements of the degree of serial and parallel processing, both in parameter estimates and decod-
ing analysis. This is partly because the two models are based on different assumptions. The biological
reality of attention, which we try to describe with models, is complicated, and the two models approx-
imate the reality and explain neural attention from different perspectives. Further, the experimental
data are noisy with limited sample size and the models contain a large number of parameters, which
leads to large variance of estimators. For one trial or session, the difference between the two models
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could be large, but the overall results of the two models over a large number of sessions produce similar
conclusions. It makes more sense to have comparisons under the same model. For example, we compare
different conditions or different time steps only under the same model.

Another issue is the variability in results from different sessions for the same model. We assume the whole
prefrontal area follow a probabilistic model and we want to estimate the model parameters. However, in
each session we only have a small subset with 5 to 20 simultaneously recorded neurons from a recording
site, and the number is even smaller for single trial (Figure 2.6), with each neuron having its distinct firing
rate and attentional pattern (Figures 2.7 and 2.8). Thus, there is a large variance of the estimates from
session to session, and we obtain the overall result by averaging and applying kernel density estimation.
To obtain more stable and accurate results we will need to use a larger simultaneously recorded population
of neurons.
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Abstract A fundamental question concerning the way the visual world is represented
in our brain is how a cortical cell responds when its classical receptive field contains
a plurality of stimuli. Two opposing models have been proposed. In the response-
averaging model, the neuron responds with a weighted average of all individual stim-
uli. By contrast, in the probability-mixing model, the cell responds to a plurality of
stimuli as if only one of the stimuli were present. Here we apply the probability-
mixing and the response-averaging model to leaky integrate-and-fire neurons, to de-
scribe neuronal behavior based on observed spike trains. We first estimate the param-
eters of either model using numerical methods, and then test which model is most
likely to have generated the observed data. Results show that the parameters can be
successfully estimated and the two models are distinguishable using model selection.
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1 Introduction

The receptive field of a neuron in the visual system can be defined as the spatial area in
which stimulation changes the firing pattern of the neuron. In primary visual cortex,
receptive fields are small, with typical values of, for example, 0.5–2 deg of visual
angle near the fovea. Moving up the hierarchy of extrastriate visual areas along either
the dorsal [1] or the temporal [2] pathway, receptive field sizes grow substantially
[3, 4], reaching, for example, a value of about 30 deg in the inferotemporal cortex.
A plausible explanation is that since these areas process more complex aspects of the
visual environment, information has to be integrated over larger spatial areas, such
as when encoding faces [5] in the ventral pathway or optic flow patterns [6] in the
dorsal one. Typically, receptive fields that are so big will contain a plurality of distinct
stimulus objects rather than just a single stimulus object [7]. The way a cortical cell
responds when its classical receptive field contains a plurality of stimuli is a basic
question concerning the way the visual world is represented in our brain.

1.1 Probability-Mixing and Response-Averaging

In a pioneering study, Reynolds et al. [8] found that a typical cell in visual area V2
or V4 in monkeys responded to a pair of objects in its classical receptive field by
adopting a rate of firing which, averaged across trials, equaled a weighted average of
the responses to the individual objects when these were presented one at a time, with
greater weight on an object the more attention was directed to the object. Reynolds
et al. accounted for their data by proposing that on each individual trial, the firing
rate of a cell to a plurality of stimulus objects equaled a weighted average of the
firing rates to the individual objects when these were presented alone. Bundesen et al.
[9, 10] proposed an alternative explanation of the data of Reynolds et al. by pointing
out that the effects observed in firing rates that were averaged across trials could be
explained by assuming that on each individual trial, when a plurality of objects were
presented, the cell responded as if just one of the objects was presented alone, so that
across trials, the response of the cell was a probability mixture of the responses to the
individual objects when these were presented alone.

In the response-averaging model proposed by Reynolds et al. [8] (see also [11–
18]), the neuron responds with a weighted average of the responses to single stimuli.
By contrast, in the probability-mixing model proposed by Bundesen et al. [9], the
neuron responds at any given time to only one of the single stimuli with certain prob-
abilities. Suppose the stimulus S(t) presented to the neuron consists of K separated
single stimuli, denoted by S1(t), . . . , SK(t). In the response-averaging model, the
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neuron responds with a weighted average of responses to single stimuli,
∑

k βkIk(t),
with βk being the weights, and

∑
k βk = 1. Here Ik(t) denotes the effects that Sk

has on the spiking neuron model, which we set to be the stimulus current. In the
probability-mixing model, the response of the neuron equals one of the responses
the neuron would have had if only a single stimulus was presented according to a
probability mixture with probabilities α1, . . . , αK , and

∑
k αk = 1.

In our previous study [19], we compared the abilities of the probability-mixing
model and the response-averaging model to account for spike trains (i.e., times of
action potentials obtained from extracellular recordings) recorded from single cells
in the middle temporal visual area (MT) of rhesus monkeys. Point processes were
employed to model the spike trains. Results supported the probability-mixing model.

In this article, we combine the probability-mixing and the response-averaging
model with the leaky integrate-and-fire (LIF) model, to describe neuronal behavior
based on observed spike trains. This is cast in a general setting, where the stimulus
S(t) is represented as an input current to the neuron. The spike train data are simu-
lated using the LIF model, responding either to a single stimulus or to a stimulus pair.
In the case of stimulus pair, both response averaging and probability mixing are used.
The first goal of the paper is to estimate parameters of either of the two models from
spike train data. The second goal is to test which of the two models are most likely to
have generated the observed data.

1.2 The Leaky Integrate-and-Fire Model

The LIF models have been extensively applied to model the membrane potential evo-
lution in single neurons in computational neuroscience (for reviews, see [20, 21]).
The model has some biophysical realism while still maintaining mathematical sim-
plicity. The simplest LIF model is an Ornstein–Uhlenbeck (OU) process with con-
stant conductance, leak potential, and diffusion coefficient. More biophysical real-
ism can be obtained by allowing for post-spike currents generated by past spikes
[22]. Here we use post-spike currents generated via three types of kernels [23, 24]:
bursting, decaying, and delaying kernel, all modeled by the difference between two
decaying exponentials, but any kernel could be used.

1.3 Temporal Stimulus

Constant stimuli are simple to handle and are widely used in both experiments and
modeling work. However, real world stimuli are generally time varying. If they for
example contain oscillatory components, the generated spike trains might also con-
tain oscillations in the firing rates. Here we use three types of stimuli: oscillatory
stimuli described by sinusoidal functions, pulsing stimuli modeled by piecewise con-
stant functions, and stochastic stimuli described by OU processes.

1.4 Method Summary

We combine the models describing neuronal response to a plurality of stimuli, namely
the probability-mixing model and the response-averaging model, with the LIF frame-
work, for different types of stimuli and response kernels. Parameter estimation is
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done by maximum likelihood using first-passage time probabilities of diffusion pro-
cesses [25]. We solve the first-passage time problem by numerically solving either a
partial differential equation (PDE), the Fokker–Planck equation, or an integral equa-
tion (IE), the Volterra integral equation. Numerical solutions of these equations have
been extensively explored and applied in the computations of neuronal spike trains
[26–28]. Inspired by these previous studies, we apply four numerical methods, in-
cluding two Fokker–Planck related PDEs and two kinds of Volterra IEs, and com-
pare the performance of the four methods. We also describe and compare two al-
ternative methods for maximizing the likelihood function of the probability-mixing
model, which are direct maximization of the marginal likelihood and the expectation–
maximization (EM) algorithm. Finally, we show that the probability-mixing model
and the response-averaging model can be distinguished in the LIF framework, by
comparing parameter estimates and through uniform residual tests.

2 Leaky Integrate-and-Fire Model with Stimuli Mixtures

The evolution of the membrane potential is described by the solution to the following
stochastic differential equation:

dX(t) = b
(
X(t), t

)
dt + σ dW(t)

= (−γ
(
X(t) − μ

) + I (t) + H(t)
)
dt + σ dW(t),

X(0) = x0; X
(
t+j

) = x0,

tj = inf
{
t > tj−1 : X(t) = xth

}
for j ≥ 1, t0 = 0,

(1)

where t+j denotes the right limit taken at tj . The drift term b(·) contains three cur-
rents: the leak current −γ (X(t) − μ), where γ is the decay rate and μ is the reversal
potential, the stimulus-driven current I (t), and the post-spike current H(t). The po-
tential X(t) evolves until it reaches the threshold, xth, where it resets to x0. Since the
membrane potential X(t) is not observed, but only the spike times d = (t1, t2, . . .),
we can use any values for threshold and reset suitable for the numerical calculation.
The noise is described by the standard Wiener process, W(t), and the diffusion pa-
rameter, σ . The interspike intervals (ISIs) are defined by tj+1 − tj .

The stimulus current I (t) is shaped from the external stimulus current through a
stimulus kernel ks(t) as I (t) = ∫ t

−∞ ks(t −s)S(s) ds, where S(s) denotes the external
current at time s. Similarly, the post-spike current arises from past spikes through a
response kernel kh(t) by H(t) = ∫ t

−∞ kh(t − s)I(s) ds. Here I(s) = ∑
τ∈d δ(s − τ)

describes the spike train, where δ(·) denotes the Dirac delta function.
In this work, the stimulus kernel is assumed without memory, such that ks(t) =

δ(t). Then the stimulus current I (t) is completely determined by the stimulus at
time t , e.g., I (t) = S(t). The response kernel is assumed to be the difference of two
exponentials decaying over time,

kh(t) = η1e
−η2t − η3e

−η4t (2)
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Fig. 1 Realization of spike trains for different combinations of response kernels and stimuli. Top panels
show the three stimulus types; sinusoidal, piecewise constant and Ornstein–Uhlenbeck process. Left panels
show the burst, decay and delay response kernels. The nine middle panels illustrate spike train patterns for
the different combinations of response kernels and stimuli. The patterns produced by each response kernel
are apparent; the bursts of spikes for the burst kernel, the firing rate adaptation of the decay kernel, and the
refractory period by the delay kernel (no short ISIs). Likewise, the patterns produced by each stimulus are
apparent; periodicity by the sinusoidal, abrupt changing intensities by the piecewise constant, and slowly
fluctuating changes in intensity by the random stimulus

with four positive parameters, η = (η1, η2, η3, η4). By adjusting the parameters, dif-
ferent kernels are obtained. Note that in practice the four parameters are not identi-
fiable, because different parameter sets can result in very similar kernels. Therefore,
when we later verify parameter estimates we will not check each individual estimate,
but only plot the estimated shape of the kernel function, which is the quantity of
interest.

Three types of kernels are used, shown in the left panels of Fig. 1. The bursting
kernel is characterized by being positive in the beginning, then turning negative, and
finally converging toward 0, which happens when η1 > η3 and η2 > η4. It follows
that the most recent spikes have excitatory effects for the current spike probability,
but the accumulation of past spikes has inhibitory effects, resulting in rhythmic spik-
ing with bursts. The decaying kernel only has one negative exponential by setting
η1 = 0. The parameters η3 and η4 are small such that the inhibitory effects are small
but long-lasting, making the firing rate decay slowly over time. The delaying ker-
nel has parameters η1 < η3 and η2 < η4. It is negative in the beginning, then turns
positive, and finally converges to 0. The most recent spikes have inhibitory effects,
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neutralized later on by the accumulation of excitatory effects, resulting in delaying
the immediate formation of a new spike after a spike, preventing short ISIs, which
models the refractory period. In the center panels example spike trains for the differ-
ent kernels and different stimuli are illustrated.

2.1 Current from Stimulus Mixture

Suppose that inside the receptive field of the neuron there are at least two separated
non-overlapping stimuli, which we will call a stimulus mixture. According to the
probability-mixing model [9], the neuron responds to only one stimulus at any given
time with certain probabilities. Thus, for a total of K stimuli, the stimulus-driven
current, I (t), follows a probability mixture:

I (t) = Sk(t), with probability αk (3)

for k = 1, . . . ,K and
∑K

k=1 αk = 1. Recall that the stimulus kernel ks(t) = δ(t) and
thus, the current caused by the kth stimulus Ik(t) = Sk(t). According to the response-
averaging model [11], the current is a weighted average of all stimuli currents:

I (t) =
K∑

k=1

βkSk(t). (4)

The leak current and the spike response current do not depend on the stimuli.
In the top panels of Fig. 1 three types of stimuli are illustrated. A sinusoidal stim-

ulus is defined by

S(t) = s1 sin(s2t + s3) + s4 (5)

with four parameters ssin = (s1, s2, s3, s4) describing the stimulus. Note that it also
covers a constant stimulus for s1 = 0. A piecewise constant stimulus is defined by

S(t) =

⎧
⎪⎪⎨

⎪⎪⎩

s1, t1 ≤ t < t2,

s2, t2 ≤ t < t3,

. . . ,

sn, tn ≤ t < tn+1,

(6)

with parameters spw = (s1, s2, . . . , sn, t1, t2, . . . , tn+1). A stochastic stimulus is given
by an OU process described by the SDE:

dS(t) = (
s1 − S(t)

)
dt + s2 dW(t) (7)

with two parameters sOU = (s1, s2). We assume throughout that the stimuli currents
are known. Spike patterns from combinations of different types of stimuli and re-
sponse kernels are shown in Fig. 1. Clear bursting, decaying and delaying effects can
be seen.

Two example spiking patterns together with their voltage traces generated from
either a sinusoidal or a constant stimulus together with a bursting post-spike kernel
are shown in Fig. 2. There are bursts of spikes occasionally even under constant
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Fig. 2 Illustration of voltage
traces resulting from a bursting
response kernel and sinusoidal
stimuli. (a) Bursting response
kernel in Eq. (2) with
parameters η = (50,25,40,15).
(b) Examples of sinusoidal
stimuli in Eq. (5). Blue: constant
with s0 = (0, ·, ·,60). Red:
s1 = (10,12,1,50). Green:
s2 = (20,8,0,50). (c) An
example realization of
membrane potential evolution,
Eq. (1), responding to the
sinusoidal signal s1, and
(d) responding to the constant
signal s0

stimulus caused by the bursting response kernel. A sinusoidal stimulus causes long
bursts, and in addition, the bursting kernel causes a clear separation of small burst
periods also within the long bursting period.

3 Maximum Likelihood Estimation Using First-Passage Time
Probabilities

Our objective here is to estimate the parameters μ and σ from (1), the response kernel
function kh in (2) represented by the parameter vector η, and either the probability
vector of the stimuli in the mixture, α = (α1, . . . , αK), under the probability-mixing
model, or the vector of weights in the average, β = (β1, . . . , βK), in the response-
averaging model. The estimation of the decay rate γ is difficult when there is no
access to the membrane potential, but only spike times are observable, as discussed in
[29, 30]. We therefore assume γ is known. The vector of all parameters in the model is
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thus θ , where θ = (μ,σ,η,α) in the probability-mixing model, and θ = (μ,σ,η,β)

in the response-averaging model. The stimulus is assumed known and the stimulus
parameter vector s is therefore not estimated.

A similar LIF model with different stimulus and response kernels on single piece-
wise constant stimuli was used in Paninski et al. [24]. They showed that parameters
can be estimated using MLE by solving the Fokker–Planck equation, covering also
discussion of non-white noise and interneuronal interactions. The model was later
applied to experimental data collected from retina of macaque monkeys [31]. Here
we estimate parameters in the LIF model for various temporal stimuli and differ-
ent response kernels, using four different numerical methods to calculate the likeli-
hood function, within the framework of either the probability-mixing or the response-
averaging model.

Suppose we observe N spike trains, D = (d1, . . . , dN), all responding to the
same stimulus mixture, where the ith spike train consists of Ni spike times, di =
(t i1, . . . , t

i
Ni

). The j th ISI of the ith spike train is then given by t ij+1 − t ij . Assume that
each measured spike train, i.e., each trial, is sufficiently short, such that, under the
probability-mixing model, the neuron is only responding to one stimulus within the
stimulus mixture, not switching the response within the trial.

3.1 First-Passage Times and Probability Distributions

Modeling the spike train data as threshold crossings of the underlying diffusion pro-
cess representing the unobserved membrane potential belongs to the so-called first-
passage time problem [32, 33]. For models with no effects from past spikes, such that
ISIs are assumed i.i.d., one approach is to build loss functions using the Fortet equa-
tion [29, 30]; see also [34]. A more general method, which allows for the post-spike
effects in model (1), is to use maximum likelihood estimation (MLE) from numer-
ical solutions of PDEs or IEs for the conditional distribution of the spike times or
equivalently, the ISIs.

We use the following notation for the probability density functions (PDFs) and
cumulative distribution functions (CDFs) of interest:

f
(
x, t |Ht , θ, S(t)

)
(time-evolving PDF of the membrane potential),

F
(
x, t |Ht , θ, S(t)

)
(time-evolving CDF of the membrane potential),

g
(
t |Ht , θ, S(t)

)
(PDF of the spike time),

G
(
t |Ht , θ, S(t)

)
(CDF of the spike time).

All the above distributions depend on the spike history up to time t , denoted by
Ht , the parameter vector θ and the stimulus S(t). In the following, we sometimes
suppress these dependencies in the notation for readability. We write gk(t; θ) =
g(t |Ht , θ, Sk(t)) for the probability density of the spike time when the neuron is
only presented with the single stimulus k.

The probability that the neuron has not yet fired at time t , 1 −G(t), is equal to the
probability that the membrane potential has not yet reached xth, F(xth, t). Thus, the
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probability density of a spike time is given by [24, 27, 35]

g(t) = − ∂

∂t
F (xth, t) = − ∂

∂t

∫ xth

−∞
f

(
x′, t

)
dx′. (8)

The solution of the Fokker–Planck equation provides f (x, t) and F(x, t), and
therefore also g(t). The solution of the Volterra integral equation directly provides
g(t) [36]. Calculating g(t) enables us to do MLE, as explained in Sects. 3.5 and 3.6
below.

3.2 Fokker–Planck Equation

The PDF of Xt in Eq. (1) with a resetting threshold, f (x, t), solves the Fokker–Planck
equation, defined by the following PDE [21, 27, 33]:

∂tf (x, t) = −∂x

(
b(x, t)f (x, t)

) + σ 2

2
∂2
xxf (x, t), (9)

with absorbing boundary condition f (xth, t) = 0 and initial condition f (x,0) =
δ(x − x0). To solve the equation numerically we also impose a reflecting bound-
ary condition at a small value x = x−, where the flux equals 0: J (x−, t) =
−b(x−, t)f (x−, t) + σ 2∂xf (x−, t)/2 = 0. We call this method the Fokker–Planck
PDF method.

Another approach is to formulate the PDE for the CDF, i.e., F(x, t) [27, 35] (see
Appendix A.2):

∂tF (x, t) = −b(x, t)∂xF (x, t) + σ 2

2
∂2
xxF (x, t), (10)

with equivalent boundary conditions: ∂xF (xth, t) = 0, F(x−, t) = 0, and initial con-
dition: F(x,0) = H(x − x0), where H(·) is the Heaviside step function. This is then
called the Fokker–Planck CDF method.

Both PDEs are solved numerically using the Crank–Nicholson finite difference
method, together with the Thomas algorithm efficiently solving tridiagonal systems
[37]. Whichever method we use, we can always obtain the PDF (CDF) from the CDF
(PDF) by numerical differentiation (integration).

3.3 Volterra Integral Equation

The first-kind Volterra IE (Fortet equation) combines the first-passage time PDF g(t)

with the threshold-free membrane potential PDF f ∗(x, t |v, s) using the law of total
probability [29, 30]:

f ∗(xth, t |x0,0) =
∫ t

0
f ∗(xth, t |xth, s)g(s) ds. (11)

For the OU model (1), the threshold-free PDF f ∗(x, t |v, s) is Gaussian [33, 38]:

f ∗(x, t |v, s) = 1√
2πV (t |s) exp

{

− (x − M(t |v, s))2

2V (t |s)
}

, (12)
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with mean

M(t |v, s) = ve−γ (t−s) +
∫ t

s

Itotal(u)e−γ (t−u) du (13)

and variance

V (t |s) = σ 2

2γ

(
1 − e−2γ (t−s)

)
. (14)

The total current is denoted by Itotal(t) = γμ + I (t) + H(t).
The initial condition for the IE is g(0) = 0. Using this, we can solve the equation

recursively and obtain g(t).
The second-kind Volterra IE is defined by [39]

g(t) = −2ψ(xth, t |x0,0) + 2
∫ t

0
ψ(xth, t |xth, s)g(s) ds, (15)

where

ψ(x, t |v, s) = ∂t

∫ x

−∞
f ∗(x′, t |v, s

)
dx′

= f ∗(x, t |v, s)

[

γ x − Itotal(t) − σ 2

2V (t |s)
(
x − M(t |v, s)

)
]

. (16)

A modification of ψ(x, t |v, s) is proposed to avoid a singularity when t → s [36, 39]
(see Appendix A.3):

φ(x, t |v, s) = 1

2
f ∗(x, t |v, s)

[

γ x − Itotal(t) − σ 2

V (t |s)
(
x − M(t |v, s)

)
]

. (17)

The second Volterra IE can also be solved numerically. It requires more computation
time than the first-kind, but has higher accuracy.

3.4 Computational Time Complexity

For both the Fokker–Planck PDE and the Volterra IE methods, the time complexity is
directly related to the grid size for the numerical solution. Specifically, suppose that
the grid size of the time discretization is n and the size of the space discretization
is m. Then the Fokker–Planck method has complexity on the order of O(mn) and the
Volterra method is on the order of O(n2) (native implementation requires O(n3), but
techniques are applied to reduce the complexity to O(n2); see [36]). Furthermore,
the computation is largely affected by the response kernel used. A discretization is
applied to approximate the nonlinear kernel by a piecewise constant function with
sufficiently small segmentation length. The values of the constant segments are cal-
culated and stored in a data vector when the parameters are updated. Then inside an
optimization loop, the kernel function is evaluated by referring to this data vector.
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3.5 Marginal Likelihood of the Probability-Mixing Model

Under the probability-mixing model, the marginal likelihood function of the ith spike
train di = (t i1, . . . , t

i
Ni

) for a mixture of K stimuli is given by

L(θ;di) =
K∑

k=1

αk

Ni∏

j=1

gk

(
t ij ; θ

)
, (18)

and thus the marginal log-likelihood of all N spike trains D = (d1, . . . , dN) is

�(θ;D) =
N∑

i=1

log

(
K∑

k=1

αk

Ni∏

j=1

gk

(
t ij ; θ

)
)

. (19)

Marginal refers to the observed data D; see Sect. 3.5.1 below for a definition of the
full data. MLEs are then obtained by maximizing (19). The log-likelihood function
consists of logarithms of sums, and the calculations are prone to encounter numerical
over- or underflow issues. To overcome this, we apply the log-sum-exp formula [37].

3.5.1 Optimizing the Likelihood Using the Expectation-Maximization Algorithm

As an alternative to optimizing directly the log-likelihood function (19), the EM al-
gorithm [40] is well suited to solve optimization problems for mixture models and is
simple to implement. The EM algorithm treats the unknown stimulus mixture com-
ponent which the neuron responds to as unobserved data, or latent variables. We write
Y = (y1, . . . , yN) where yi ∈ {1,2, . . . ,K}, for the latent variables indicating which
single stimulus each spike train is responding to. The full data then include both the
observed spike trains D and the unobserved stimuli response Y .

The EM algorithm is an iterative procedure. In each iteration, the expectation of
the full data log-likelihood conditional on the parameters from the previous iteration,
is maximized to obtain the optimal parameters for the current iteration. The algorithm
runs until convergence, i.e., the difference of parameter estimates is sufficiently small
between two adjacent iterations. We use the notation θ for the current parameter to
estimate, and θ−1 for the parameter estimated in the previous iteration, and likewise
for the components of the probability vector α, i.e., αk and (αk)−1.

In each iteration, the conditional expectation of the full data log-likelihood is (see
Appendix A.1 for the derivation),

Q(θ |θ−1) = E
[
logLc(θ;D,Y)|θ−1,D

]

=
N∑

i=1

[
K∑

k=1

P(yi = k|θ−1, di)

(

logαyi
+

Ni∑

j=1

logg
(
t ij |yi, θ

)
)]

, (20)

where the conditional probability is obtained using the Bayes formula:

P(yi = k|θ−1, di) = (αk)−1
∏Ni

j=1 g(t ij |yi = k, θ−1)
∑K

l=1(αl)−1
∏Ni

j=1 g(t ij |yi = l, θ−1)
. (21)
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The EM algorithm requires the calculation of the likelihood of the spike train for all
components in the mixture. Thus, the EM algorithm has (approximately) the same
time complexity regarding the number of evaluations of density functions as the cal-
culation of the marginal likelihood.

3.6 Likelihood of the Response-Averaging Model

In the response-averaging model, the neuron responds to a weighted average of stim-
uli, and the model does not follow a probability mixture. The likelihood is given by

L(θ;D) =
N∏

i=1

Ni∏

j=1

g
(
t ij ; θ

)
, (22)

where g(t) is now the probability density of spiking at time t when the neuron is
responding to a weighted average of all K stimuli,

∑K
k=1 βkSk(t).

3.7 Model Checking: Uniformity Test

The goodness-of-fit can be verified by uniformity tests using the CDF G(t) for all
spike times in D. If the model perfectly describes the data, then the residuals

zi
j = G

(
t ij

)
(23)

follow a standard uniform distribution, zi
j ∼ U(0,1). We then merge all the residuals

for a specific model, and test the residuals against the uniform distribution. Quantile–
quantile (QQ) plots and the Kolmogorov–Smirnov (KS) test can be employed to
check for uniformity.

4 Simulation Study

To illustrate the approach, we first detail the simulation study of the bursting kernel
and the sinusoidal stimulus. Then results using the other types of kernels and stimuli
are briefly illustrated and summarized.

Traces from model (1) using the bursting response kernel shown in Fig. 2(a), and
one of the two sinusoidal stimuli shown in Fig. 2(b) or a mixture thereof was simu-
lated according to the Euler–Maruyama scheme with a time step size of 0.1 ms. The
process was run until reaching the threshold xth where the time was recorded. The
process was then reset to x0 and started again, while the stimulus continued without
any interruption, and the previously recorded spike times entered in the calculation
of the post-spike currents. This was continued until the spike train was 4 s long, con-
taining around 60 to 70 spikes. Table 1 shows the values of the parameters used for
simulation and numerical computation.

Parameter estimation was split in two, in agreement with how a typical experiment
would be conducted. First we simulated spike trains responding to single stimuli.
Note that in this case the probability-mixing and the response-averaging models are
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Table 1 Parameter values used in the simulation study

Category Parameter Value Explanation

Sinusoidal stimulus s1 (10,12,1,50) First stimulus

s2 (20,8,0,50) Second stimulus

Unknowns to estimate η (50,25,40,15) Bursting response kernel

α (0.4,0.6) Probability mixing

β (0.4,0.6) Response averaging

μ 0.5 Reversal potential

σ 1 Diffusion parameter

Numerical computation �t 0.002 Time discretization

�x 0.02 Space discretization

x− 0 Lower reflecting boundary

Neuronal characteristics x0 0.4 Reset potential

xth 1 Spike threshold

γ 100 Decay rate

the same, and α = β = 1 are one-dimensional. The data set contains 10 spike trains,
with five attending the first single stimulus and the other five attending the second
single stimulus. Using this data set, we estimated parameters of the response kernel,
η, and parameters of the diffusion model, μ and σ .

Second, we simulated spike trains using a mixture of the two sinusoidal stimuli.
Two data sets were simulated, one data set consisting of 10 spike trains following the
probability-mixing model, and another data set consisting of 10 spike trains following
the response-averaging model. To check if the two models could be distinguished,
we fitted the data using the probability-mixing model and the response-averaging
model on both data sets, resulting in four combinations. During this stage, we fixed
the response kernel parameters η to values estimated in the first step, and estimated
again μ, σ , as well as α or β , depending on the model. There are therefore two sets
of estimates of μ and σ for each trial. The purpose is threefold; first of all, these
parameters might slightly drift in a real neuron when changing the stimulus (even if
we do not change them in the simulation); second, it is of interest to understand the
statistical accuracy and uncertainty of these parameter estimates when inferred in the
two experimental settings; and third, comparing estimates from both single stimulus
and stimulus mixtures can serve as model control, as explained below. When fitting
the probability-mixing model on the data generated from this same model, we used
both the marginal MLE and the EM algorithm. The above simulation and estimation
procedure was repeated 100 times, generating 100 sets of estimates.

The simulation study serves different purposes. First, the four numerical meth-
ods to obtain the PDFs of the spike times, namely the first Volterra, second Volterra,
Fokker–Planck PDF, and Fokker–Planck CDF, should be evaluated and compared.
This is done on single stimulus spike train data. Second, the quality of the parameter
estimates should be assessed, as well as how important it is to use the correct model
for the estimation. This is conducted using spike trains simulated from stimulus mix-
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Fig. 3 Four example ISI probability density functions, g(t), calculated with four methods using different
grid sizes. The column panels show the four different ISIs, with the spike history indicated in the top (with
different times axes) of each column, and the sinusoidal stimulus for the corresponding time periods. The
panels in the four lower rows show solutions of the different PDEs and IEs using increasing grid sizes in
each row. In the three lower rows, the density function from the panels above using the second Volterra
method with high accuracy is plotted as the reference line. As expected, the solutions become less accurate
as the grid size increases. The second row from the bottom, indicated with a star in the upper right corner,
shows the grid size used for estimation in the main analysis, which leads to decent approximations for all
four methods

tures. Also the performance of the marginal MLE and the EM algorithm in the case
of the probability-mixing models should be compared. Third, it should be evaluated
if it is possible to detect which of the two models generated the data. Results from
these three analyses are presented in the following.

4.1 Numerical Solutions of the Partial Differential and Integral Equations

Figure 3 shows the PDFs of four example ISIs, i.e., for four different histories of
past spikes, calculated by the four numerical methods, first Volterra, second Volterra,
Fokker–Planck PDF and Fokker–Planck CDF, under single stimulus trials. Time has
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been set to 0 at the last spike time. The examples are taken from a spike train attending
to the single stimulus s1. Each column shows one example ISI, with the spike history
indicated above the column (with different time axes) and the corresponding sinu-
soidal stimulus (same time axes as the PDFs), for four different grid sizes. The four
boxed panels in each column show the solutions of the PDEs and the IEs for the ISI
on top. A reference dashed black line obtained with high accuracy has been added in
all panels for comparison. The grid size is given by �t for the time discretization, and
�x for the space discretization, and varies from row to row. As expected, for large
grid sizes (small number of bins), the performance of the four methods differ (see the
three lower rows of boxed panels), but the four results converge for decreasing grid
sizes (see the upper row of boxed panels). We find that the first Volterra method is
more sensitive to the grid size, while the Fokker–Planck PDF method is the most ro-
bust. In the parameter estimation below, we use �t = 0.002 s and �x = 0.02 shown
in the row indicated with a star.

Figure 4(a) and (b) show the time-evolving PDF and CDF of Xt from the numeri-
cal solutions of the Fokker–Planck equation, for the ISI of the first column of Fig. 3.
Time has been set to 0 at the last spike time. At 0, the PDF equals the (discretized)
Dirac delta function, and the CDF equals the Heaviside step function, since at spike
times, the voltage always resets to a fixed value, x0. As time increases, the PDF shows
how the probability flows out at the threshold; and the CDF at the voltage threshold
illustrates the survival probability.

Figure 4(c) shows in the upper panels three examples of spike times PDFs, g(t),
and the lower panels show a corresponding example trace for each, plotted on top of
their time-evolving PDFs of X(t), f (x, t), as heat-images. The three ISIs are taken
from the left, middle left, and middle right panels of Fig. 3.

4.2 Results from Single Stimulus Trials

Parameter estimates of μ and σ from the 100 repetitions are shown in Fig. 5 as box-
plots. In the lower panels, the time elapsed and the number of loops for optimization
are also plotted. The means and standard deviations of parameter estimates are given
in Table 2. The first Volterra method is less stable and less accurate, which is expected
due to the lower accuracy in solving the spike time PDFs shown in Fig. 3. The second
Volterra performs best for the estimation of σ , and the Fokker–Planck PDF performs
best for μ, while the Fokker–Planck CDF does not perform as well as any of the two.
On the other hand, the first Volterra and the Fokker–Planck CDF are less computa-
tional expensive. The Fokker–Planck CDF method is used in later analysis of stimulus
mixtures, considering both accuracy and efficiency, though the Fokker–Planck PDF
with a finer grid is used when performing KS-tests for model selection below. We
also find that different methods result in different systematic estimation bias. When
estimating μ some methods tend to overestimate and others tend to underestimate,
whereas when estimating σ all methods have a tendency to overestimate.

In Fig. 6, the 100 estimated response kernels from the four methods are plotted
together as colored lines. The parameters of the kernel are in practice not identifiable,
so we evaluate by plotting the shape of the kernel function. All methods achieved
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Fig. 4 Solutions of the PDEs and the IEs and example traces. The time-evolving (a) PDF, f (x, t), and
(b) CDF, F(x, t), from the solutions of the Fokker–Planck equation for the ISI in the left column of Fig. 3.
(c) Three example ISIs taken from the left, middle left and middle right columns of Fig. 3. The upper
panels show the PDFs with red lines indicating the spike times. The lower panels show the time-evolving
voltage PDFs as a heat image together with the realization of the voltage path. The brighter region in the
heat image corresponds to larger PDF values. The time when the voltage trace hits the threshold in the heat
image corresponds to the spike time shown in the upper panel as a red line. Note that in the upper panel,
the time intervals with larger ISI PDF values are where the probability (bright region) flows faster out of
the threshold in the lower panel

good results, capturing the overall shape. The two PDE methods obtained slightly
better results, whereas the IE methods are systematically biased.

In Fig. 7(a) are QQ-plots of the uniform residuals calculated using the transforma-
tion from Eq. (23) for the four methods. The uniform residuals are pooled together
from all 100 repetitions. Again, all four methods are competitive but biased, with a
different bias for PDE methods and for IE methods. This bias, arising from the nu-
merical approximations, has to be taken into account when later testing which model
generated the data, forcing us to use a finer and computationally more expensive grid
size.
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Fig. 5 Parameter estimates and computational time. Upper panels: Box-plots of parameter estimates for
μ (left) and σ (right) from 100 repetitions of single stimulus data. The red lines are the true values used in
the simulations. Lower panels: The time elapsed and number of loops for the optimization

Table 2 Average ± standard
deviation of 100 parameter
estimates from single stimulus
data

μ σ

True value 0.5 1

First Volterra 0.4800 ± 0.01095 1.076 ± 0.06913

Second Volterra 0.5066 ± 0.01287 1.020 ± 0.07281

Fokker–Planck PDF 0.4981 ± 0.00730 1.060 ± 0.04567

Fokker–Planck CDF 0.4889 ± 0.00698 1.065 ± 0.04442

4.3 Distinguishing Between Response-Averaging and Probability-Mixing

The following results show that the two models can be distinguished for parameter
values such that the two models are sufficiently different, which will be defined be-
low in Sect. 4.6. Each model is fitted using the Fokker–Planck CDF method, both
on data simulated according to the correct model as well as the wrong model. Fig-
ure 8 shows the estimation of μ, σ , and α or β , depending on the model, and Ta-
ble 3 reports the means and standard deviations of estimates. Accurate estimation is
achieved only if we apply the correct model to the corresponding data, the wrong
model fitted to data generated by the other model clearly shows bad results. This
implies that it is important to use the correct model for reliable inference, but we
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Fig. 6 Estimates of the
response kernel from 100
simulated data sets fitted to
single stimulus data with the
four numerical methods, each
method has its own color. The
dashed black curve is the true
kernel used in the simulations

Fig. 7 Model control. (a) QQ plots of the uniform residuals calculated using the transformation in Eq. (23)
for the four methods fitted on single stimulus data and a grid size of �t = 0.002 s and �x = 0.02. The
uniform residuals are pooled together from all 100 repetitions of the simulations. The bias is different for
PDE methods and for IE methods, seen from how the points deviate from the identity line. (b) QQ plots of
the uniform residuals of the probability-mixing (PM) model and the response-averaging (RA) model fitted
on data simulated from both models responding to a stimulus mixture. For example, RA fitted on PM data
means fitting the response-averaging model to data simulated from the probability-mixing model. From
the QQ-plots a wrong model can be rejected

Fig. 8 Parameter estimates of the probability-mixing (PM) model and the response-averaging (RA) model
fitted to data simulated from both models responding to a stimulus mixture. For example, PM-RA means
parameter estimates of the probability-mixing model fitted to data simulated from the response-averaging
model
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Table 3 Average ± standard deviation of 100 parameter estimates using the response-averaging (RA)
model and the probability-mixing (PM) model on data sets simulated according to the two models

μ σ α1 (PM)/β1 (RA)

True value 0.5 1 0.4

RA on RA data 0.4876 ± 0.00658 1.067 ± 0.04441 0.3888 ± 0.01564

PM on RA data 0.3553 ± 0.01087 2.077 ± 0.06482 0.0017 ± 0.00467

RA on PM data 0.3288 ± 0.01191 2.429 ± 0.09216 0.3098 ± 0.02161

PM on PM data (Marginal) 0.4891 ± 0.00844 1.062 ± 0.05609 0.4013 ± 0.01636

PM on PM data (EM) 0.4889 ± 0.00813 1.063 ± 0.05410 0.3988 ± 0.01012

Fig. 9 Estimates of μ and σ estimated from stimulus mixture data under either the probability-mixing or
the response-averaging model plotted against the estimates from single stimulus data, for 100 repetitions.
The straight lines are identity lines, the dashed lines are the true values used in the simulations. Different
colors differentiate which model is fitted on which data for the stimulus mixture. The estimates from a
stimulus mixture differ significantly from the estimates from a single stimulus when the model is wrong

can also use this to distinguish the two models. If estimates of μ and σ change con-
siderably from estimation on single stimulus data to estimation on stimulus mixture
data, then one should suspect that the used model is wrong. This is illustrated in
Fig. 9, where scatterplots of estimates from stimulus mixture data assuming a spe-
cific model is plotted against estimates from single stimulus data. The straight lines
are identity lines. When the correct model is used, estimates are clustered around
the identity line, but clearly separated away from the identity line if the model used
for fitting is wrong. To formalize the model selection procedure, QQ plots of uni-
form residuals using Eq. (23) from all 100 repetitions are shown in Fig. 7(b), where
points away from the identity line indicate the model is wrong. The lines for the
wrong model selections are clearly worse than the correct models, but even the cor-
rect models show a significant deviation from the identity lines, which would turn
out as also the correct model being rejected in a KS-test. This is most probably due
to the numerical approximations, as also seen in Fig. 7(a). To check this, we con-
ducted the same estimation procedure with the Fokker–Planck PDF method using
a finer grid of �t = 0.0005 s and �x = 0.01, and repeated for 20 times. Results
are reported in Table 4, where it is clear that with a finer grid, the KS-test works
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Table 4 Rejection (p < 0.05) rate based on the Kolmogorov–Smirnov test for uniformity done on each
repetition

Method Low accuracy* High accuracy**

RA on RA data 32/100 1/20

RA on PM data 100/100 20/20

PM on RA data 100/100 20/20

PM on PM data 32/100 0/20

*Fokker–Planck CDF method with �t = 0.002 s and �x = 0.02

**Fokker–Planck PDF method with �t = 0.0005 s and �x = 0.01

Fig. 10 Scatter plots of the estimates using the EM algorithm against MLE with the marginal probability
for 100 repetitions. The dashed lines are the true values used in the simulations. The two methods give
almost the same results for μ and σ , whereas some zero-mean random fluctuations are seen for α. In this
case, the EM algorithm appears to be the most precise

as desired with high power to detect deviations from the correct model. We sug-
gest that for parameter estimation a very fine grid is not needed, whereas for model
control, the numerical approximation of the spike time PDF has to be precise. To
conclude, the two models are distinguishable for the parameter settings explored
here.

4.4 Probability-Mixing with EM

In the previous section, the marginal MLE was used when fitting the probability-
mixing model. Here we compare the performance of the marginal MLE and the EM
algorithm on the probability-mixing model fitted to the corresponding data. Figure 10
shows scatterplots of estimates obtained by the two methods, and the last two rows
in Table 3 show the means and standard deviations. The two methods provide similar
results, and have the same accuracy for all three parameters. However, the variance
of the EM algorithm is slightly smaller, particularly for α. The computational burden
in one loop of the numerical optimization for the two methods is approximately the
same.
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Fig. 11 Parameter estimates of single stimuli for different combinations of response kernels and stimuli.
Top panels show the estimates of μ (left) and σ (right) as box plots. The x-axis shows the nine combi-
nations, for example Burst-Const means the burst kernel with a piecewise constant stimulus, Delay-OU
means the delay kernel with a stochastic stimulus generated by the OU process, and so on. The delay
kernel induces the largest variance in parameter estimates. Middle and bottom panels show the estimates
of the three types of response kernels. Different colors distinguish between the three stimulus types

4.5 Generalizations

In this section we only apply the Fokker–Planck CDF method and analyze the model
for different types of response kernels and stimuli.

Single stimulus. We analyze nine combinations of response kernels and stimuli.
For each combination we simulate 10 spike trains following one single stimulus. Fig-
ure 1 shows the combinations and the realizations of spike trains. On these spike
trains parameters and response kernels are estimated. The simulations are then re-
peated 100 times. For the stochastic stimulus, we use a single realization so that the
stimulus is identical in all repetitions and the statistical performance of the estima-
tors can be assessed. The estimates of parameters and response kernels are shown in
Fig. 11. The estimates using the delay kernel have larger variance, possibly due to our
specific choice of kernel parameters that makes the spiking rate less sensitive to stim-
ulus strength (see bottom panels of Fig. 1). The estimates of parameters and kernels
for all combinations are acceptable. The parameters used for the response kernels and
stimuli are shown in Table 5.
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Table 5 Parameter values for all response kernels and stimuli used in the single stimulus study for the
generalized analysis

Category Parameter value

Stimulus, s Sinusoidal (10,12,1,50)

Piecewise constant (50,70,50,30,50,60,0,1.3,1.7,2.3,2.7,3.8,5)

OU process (50,20)

Response kernel, η Bursting (50,25,40,15)

Decay (0,0,2,0.5)

Delay (20,8,50,15)

Fig. 12 Realization of spike trains for a stimulus mixture consisting of two OU processes for three types of
response kernels, assuming either probability-mixing (left) or response-averaging (right). In the top panels,
the left shows the two stimuli, and the right shows the weighted average of the two. For the 10 spike trains
simulated from the probability-mixing model, four respond to the same stimulus and six respond to the
other

Stimulus mixtures. We use two OU processes as stimuli, and apply all three types
of response kernels. The top panels of Fig. 12 show the two stochastic stimuli,
and their weighted average. The latter is what neurons respond to according to the
response-averaging model. For each combination, we simulate 10 spike trains, using
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Fig. 13 Parameter estimates for a stimulus mixture consisting of two OU processes for three types of
response kernels, assuming either probability mixing or response averaging. In the left panel is shown
the estimates of the OU-based LIF model, and in the right panel is shown the Feller-based LIF model.
In both left and right panels, the x-axis shows 12 cases combining response kernels, probability mixing
and response averaging. For example, Decay, PM-RA means fitting the probability-mixing model to data
simulated from the response-averaging model, using the decay kernel

identical stimuli in each repetition. Results are shown in the left panels of Fig. 13,
where both the probability-mixing (PM) model and the response-averaging (RA)
model are fitted to data generated from both models. When fitting the probability-
mixing model, only the EM algorithm is applied. We employ the same strategy as in
the main analysis: we first estimate parameters on data generated from single stochas-
tic stimuli, and then fix the response kernel and estimate the other parameters on data
generated from stochastic stimulus mixture. The results for all three kernels on a
stochastic stimulus mixture are the same as the main analysis above using the burst-
ing kernel and sinusoidal stimuli: we obtain accurate estimates of all parameters only
if we apply the correct model to the corresponding data.

State dependent noise. Finally, the diffusion term in the LIF model (1) was modi-
fied to include the square root of X(t) as in the Feller model [41–43], yielding

X(t) = (−γ
(
X(t) − μ

) + I (t) + H(t)
)
dt + σ

√
X(t) dW(t). (24)
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Fig. 14 Difference of DIC between correct and incorrect models. We calculate the difference of DIC
between fitting the correct model to the corresponding data and fitting the incorrect model to the same
data, and plot the difference as box-plots for 100 repetitions. The x-axis shows different combinations of
kernel and data. For example, Burst, PM means the difference of DIC between using correct model (PM)
and incorrect model (RA) on PM data, under the burst kernel. Likewise, Delay, RA means the difference
of DIC between using correct model (RA) and incorrect model (PM) on RA data, under the delay kernel.
Blue stands for the OU-based LIF model and red stands for the Feller-based model. A difference of −10
is shown as a dashed line. A difference greater than ±10 is regarded as strong evidence of supporting one
model over the other [44]

Table 6 Rejection (p < 0.05) rate based on the Kolmogorov–Smirnov test for uniformity, using different
response kernels with the mixture of stochastic stimuli

RA-RA RA-PM PM-RA PM-PM

OU Burst 22/100 99/100 100/100 19/100

Decay 1/100 100/100 83/100 1/100

Delay 30/100 77/100 97/100 34/100

Feller Burst 23/100 100/100 95/100 22/100

Decay 0/100 100/100 81/100 1/100

Delay 30/100 84/100 100/100 37/100

Results of both the OU-based and the Feller-based LIF models are shown

The same analysis as in the previous section was repeated using two OU processes as
stimuli and three types of response kernels. Results are shown in the right panels of
Fig. 13, which are almost the same as the results using the original LIF model shown
in the left panels.

Model selection. In stimulus mixture analysis, model selection is conducted for
both the OU-based and the Feller-based LIF models. In Fig. 14 we compare the de-
viance information criterion (DIC) between the correct and the incorrect model. The
DIC difference equals −2 times the difference of the log-likelihoods, because the
two models have the same number of parameters. The correct model is strongly sup-
ported in every case. Table 6 shows rejection (p < 0.05) ratios using KS-tests for all
combinations in the stimulus mixture analysis. We also tried other pairs of stochastic
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stimulus mixtures (results not shown) and found that the more similar the two stim-
uli are, the more the rejection ratios tend to decrease, whether using the correct or
the incorrect model, and if two stimuli are more different, all rejection ratios tend to
increase, including rejections of the true model. Finally, as expected the KS-test re-
jection ratio is sensitive to data size: using smaller number of spike trains reduces the
rejection ratio. In particular, the rejection of fitting the PM model to RA data (PM-
RA) with the decay kernel, and fitting the RA model to PM data (RA-PM) with the
delay kernel, is extremely sensitive to similarity of stimuli and data size. This makes
the KS-tests less robust. Thus, we recommend using the KS-tests together with other
model selection methods for more reliable conclusions.

4.6 Model Selection Accuracy

The results above show that parameters can be inferred and the correct model can be
determined for the specific parameter choices used in the simulations. Here we ex-
plore the model selection accuracy for varying parameter values including the weight,
stimulus dissimilarity, stimulus strength and number of spike trains. In the following
analysis, we use the bursting response kernel, a mixture of two stochastic stimuli and
the Fokker–Planck CDF method. To introduce a stimulus dissimilarity, a sinusoidal
perturbation is added to one of two identical OU processes, S̃(t) = S(t) + a sin(10t),
where t is measured in seconds and a is the perturbation size. To change the stimulus
strength, the OU processes are linearly scaled using S̃(t) = bS(t) where b denotes
the scaling size.

We focus on model selection accuracy without reporting parameter estimates.
Model selection is denoted successful if the DIC for the true model is more than 2
smaller than the wrong model. This is the value suggested in [44] to indicate substan-
tial empirical support for the selected model compared to the other model. Figure 15
explores model selection results as a function of parameter values, and provides an
overall picture how these parameters affect model selection. The conveyed message
verifies our intuition: model selection is more reliable if the stimuli are more differ-
ent, the weights are more even, the stimulus difference is stronger or the sample size
is larger (a larger number of spike trains). The first three make the responses of the
two models more different, and the last provides more statistical power. Furthermore,
the thresholds of these parameter values in terms of successful model selection are
surprisingly low. A weight value of 0.2 and a perturbation size around 6 (i.e., around
10 % of the stimulus strength) are sufficient to ensure a decent selection. For a more
even weight of 0.4, only a perturbation size of 3 (around 5 %) is necessary to pro-
vide good model selection for both RA and PM data. Indeed, 5 % perturbation in a
stimulus is undetectable by a simple graphical inspection of the spike trains (bottom
panels in the figure), but the finer statistical analysis can detect the difference between
the models. Even with small weight and stimulus dissimilarity, model selection can
be improved by using stronger stimuli or enlarging the sample size with more spike
trains. Note that these analyses are easily generalized for a given problem at hand
by first estimating the response kernel of a given neuron under a given stimulus, and
then simulating data with this response kernel and stimulus, varying parameters of
the two models. That will indicate for which parameter values the model selection
can be trusted.
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Fig. 15 Model selection accuracy. Successful selection is defined as a DIC difference greater than 2, and
the proportion of correctly identified models is calculated over 100 repetitions. Note that a not correctly
identified model in most cases means that the DIC difference was smaller than 2, not that the wrong
model was selected. Top left: proportion of correctly identified models with weights from 0.1 to 0.5 and
perturbation size from 1 to 10 for RA data, using 10 spike trains. Top right: the same for PM data. Middle
left: proportion of correctly identified models for number of spike trains of 6 to 18 and stimulus scaling
from 0.6 to 1.4 for RA data, using a weight of 0.3 and a perturbation size of 3, shown in green in the
top panels. Middle right: the same for PM data. Bottom left: the two stimuli curves (black and red) with
perturbation size 3 (sinusoidal curve shown in blue) used for the cases shown in green in top panels.
Bottom right: example spike trains following either RA or PM, using the two stimuli shown in the left,
with weight 0.3

5 Discussion

5.1 Estimation of the Decay Rate

We have shown that parameter inference can be successfully conducted for the
probability-mixing and the response-averaging model on corresponding data incor-
porating different response kernels for LIF neurons. The decay rate γ has been as-
sumed known. We also attempted to estimate all parameters including γ (results not
shown), but the optimization often finds local minima and leads to low accuracy. The
estimation of γ seems to suffer from identifiability problems, due to only observing
spike times and not the underlying membrane potential. Nevertheless, to estimate γ

we may fix it at different values and run the optimization procedure for the rest of
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the parameters, and then compare the model fit for the different γ values. This is not
pursued here.

5.2 Bias of the Numerical Methods

We found that the parameter estimates and the QQ plots from the four methods suf-
fer from over- and underestimation issues. The MLE is based on the first-passage
time probabilities, which we obtain using four numerical methods, Fokker–Planck
PDF, Fokker–Planck CDF, first Volterra and second Volterra. Because of the intrinsic
differences between these methods, discretization leads to different biases of the cal-
culated spike time PDFs. As seen from Fig. 3, when increasing the grid size, the first
Volterra and the Fokker–Planck CDF methods tend to increase the PDF value in the
beginning of the ISI, while the second Volterra tends to slightly decrease it. The low
accuracy of the first Volterra method arises from a singularity of f ∗(x, t |v, s) when
v = x and t → s. However, by removing the singularity the second Volterra is more
accurate for numerical computations.

5.3 Efficiency of Numerical Methods

We choose the Fokker–Planck CDF method for estimation of mixtures, because it
achieves a well-behaved balance between accuracy and computational burden. Ta-
ble 2 also shows that this method has the smallest variance on parameter estimates.

Although the first Volterra method is the computationally fastest, it has poor con-
vergence, as seen from the number of loops in the bottom right panel in Fig. 5. Over-
all, the PDE methods tend to converge faster than the IE methods.

The performance is affected by the grid size. The estimates in Fig. 5 uses �t =
0.002 s and �x = 0.02. This discretization setting generally achieves acceptable
computation times and statistical accuracy, but as shown in Sect. 4.3, a finer grid is
needed for model selection. One may tweak the grid sizes in order to obtain separate
settings for each of the four methods to obtain comparable efficiency and accuracy.
However, considering that in practical data the errors come from many sources like
measurement errors and approximate modeling, the optimal discretization on simu-
lated data is of less importance and interest. Thus, we suggest the current setting as
providing a generally good balance, and we will not investigate this further.

5.4 EM for Better Estimation of Mixture Probabilities

Figure 10 shows that the estimation of the mixture probability parameter α is slightly
less stable for the marginal MLE than for the EM algorithm. The EM algorithm im-
plicitly enlarges the data size by using latent variables for the mixture probability, re-
ferred to as data augmentation [45]. The complete-data log-likelihood function used
in the M step does not contain logarithms of sums, making the estimation more stable.
By iteratively updating the expectation in the E step and obtaining stable estimation
in the M step, the EM algorithm improves the stability when inferring the probability-
mixing model, and in general, mixture models.

Although the EM algorithm performs better, it is only slightly better for α and the
improvement is negligible or non-existent for μ and σ . This is because we only use
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two components in the mixture, which does not generate notable differences between
the marginal MLE and the EM algorithm. A larger advantage of the EM algorithm
can be expected under more complex stimulus mixtures. Furthermore, the response
kernel is fixed, and the two methods use the same initial values for μ and σ (obtained
from the single stimulus trials) in the optimization procedure, which also contributes
to the similarity of results between the two methods.

5.5 Extension of Noise

In this paper a one-dimensional stochastic differential equation model driven by a
Wiener process for the membrane potential has been considered, which arises as an
approximation to Stein’s model [46], leading to the OU model, or to the extended
model including reversal potentials, proposed by Tuckwell [41], leading to the Feller
model [42]. The model does not take into account specific dynamics of synaptic input
or ion channels, which affects the dynamics, see, e.g., [47–49], where the autocorre-
lations of the synaptic input is shown to be an important factor. This is partially ac-
counted for in our model through the memory kernels. Incorporating autocorrelated
synaptic input or ion channel dynamics would lead to a multi-dimensional model.
In principle, the first-passage time probabilities could then be obtained by solving
multi-dimensional Fokker–Planck equations [24]. However, the statistical problem is
further complicated by the incomplete observations, since typically only the mem-
brane potential is measured, as studied in [50]. In even more realistic models non-
Gaussian noise can be included, for example combining the diffusion process with
discrete stochastic synaptic stimulus arrivals, leading to a jump-diffusion process,
whose Fokker–Planck equation is generalized as an integro-differential equation [51].
Solving multi-dimensional or generalized Fokker–Planck equations are significantly
more expensive and exact MLE becomes less appealing. This is not pursued here.

5.6 The Response-Averaging Model

The response-averaging model used here is slightly different from the response-
averaging model by Reynolds et al. [8]. In our model the average is calculated over
the currents for each stimulus, while in their model the average is calculated over the
firing rates for each stimulus. The reason is as follows. In a spiking neuron model like
the LIF model, the generation of each single spike rather than the firing rate is mod-
eled. Whether in the probability-mixing model, the response-averaging model or any
other model, the spiking is affected by stimuli only through currents. Our model is
formulated based on this idea, using a unified spike-generating mechanism for both
the probability-mixing and the response-averaging model. The resulting firing rate
averaged over a time window from a weighted average of single stimuli, will also be
a weighted average of firing rates from single stimuli but with different weights. Our
response-averaging model therefore provides the same consequence in terms of firing
rates as the model by Reynolds et al.

5.7 Model Selection of Probability-Mixing and Response-Averaging

We finish by addressing the possible model selection methods for probability mix-
ing and response averaging on real data. We have shown that the probability-mixing
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and the response-averaging models can be clearly distinguished if fitted on simulated
data. However, real data will likely not follow exactly one of the two models, but one
of the models might give a better description of the data than the other. We might
need to design more sophisticated methods for model checking and model selection.
Apart from conducting uniformity tests based on the uniform residuals from the trans-
formation (23), such as the KS-test as we have done, we can compare the Akaike
information criterion (AIC) and Bayesian information criterion (BIC) between the
two models. We have used a unified DIC method due to equal number of parameters,
but AIC and BIC should be used if two models have differing numbers of parame-
ters. Furthermore, the model can also be checked by evaluating the performance of
prediction (of spikes) and decoding (of stimuli), using methods such as root mean
squared deviation (RMSD) between empirical and predicted values. See [19] for the
use of these approaches to distinguish between the two models on experimental data
from the middle temporal visual area of rhesus monkeys.
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Appendix

A.1 The EM Algorithm for Stimulus Mixtures

The complete likelihood for the full data (D,Y ) is

Lc(θ;D,Y) =
N∏

i=1

Ni∏

j=1

g
(
t ij , yi |θ

)

=
N∏

i=1

P(yi |θ)

Ni∏

j=1

g
(
t ij |yi, θ

)

=
N∏

i=1

αyi

Ni∏

j=1

g
(
t ij |yi, θ

)
. (25)
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A.1.1 Expectation Step

The expectation of the full data log-likelihood conditional on the previous parameters
θ−1 and the observed data D is

Q(θ |θ−1) = E
[
logLc(θ;D,Y)|θ−1,D

]

= E

[
N∑

i=1

(

logαyi
+

Ni∑

j=1

logg
(
t ij |yi, θ

)
)

∣
∣
∣θ−1,D

]

=
N∑

i=1

[

E

(

logαyi
+

Ni∑

j=1

logg
(
t ij |yi, θ

)∣∣
∣θ−1,D

)]

=
N∑

i=1

[
K∑

k=1

P(yi = k|θ−1, di)

(

logαyi
+

Ni∑

j=1

logg
(
t ij |yi, θ

)
)]

. (26)

The conditional probability of the latent variable is obtained from Bayes formula:

P(yi = k|θ−1, di) = P(yi = k|θ−1)
∏Ni

j=1 g(t ij |yi = k, θ−1)
∑K

l=1 P(yi = l|θ−1)
∏Ni

j=1 g(t ij |yi = l, θ−1)

= (αk)−1
∏Ni

j=1 g(t ij |yi = k, θ−1)
∑K

l=1(αl)−1
∏Ni

j=1 g(t ij |yi = l, θ−1)
. (27)

A.1.2 Maximization Step

In the Maximization step, the new parameter θ is obtained by optimizing the condi-
tional expectation Q(θ |θ−1). A new iteration is then initiated using θ as the previous
parameter. The loops run until θ and θ−1 are sufficiently close.

A.2 The Fokker–Planck CDF Method

Plugging f (x, t) = ∂xF (x, t) into the Fokker–Planck PDE

∂tf (x, t) = −∂x

(
b(x, t)f (x, t)

) + σ 2

2
∂2
xxf (x, t) (28)

gives

∂t ∂xF (x, t) = −∂x

[

b(x, t)∂xF (x, t) − σ 2

2
∂x∂xF (x, t)

]

. (29)

Integrating both sides w.r.t. x yields

∂tF (x, t) = −b(x, t)∂xF (x, t) + σ 2

2
∂2
xxF (x, t) + C(t). (30)
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Recall the lower reflecting boundary at x = x−, where F(x−, t) = 0 and thus
∂tF (x, t)|x=x− = 0. We also see that the flux equals 0, so

J
(
x−, t

) = −b
(
x−, t

)
f

(
x−, t

) + σ 2

2
∂xf (x, t)|x=x−

= −b(x, t)∂xF (x, t)|x=x− + σ 2

2
∂2
xxF (x, t)|x=x−

= 0. (31)

Thus, C(t) = 0, and we obtain the PDE for F(x, t):

∂tF (x, t) = −b(x, t)∂xF (x, t) + σ 2

2
∂2
xxF (x, t). (32)

A.3 Removing the Singularity in the Second-Kind Volterra Equation

The singularity arises because f ∗(x, t |v, s) diverges when v = x and t → s. This can
be resolved by the method proposed by [39]. Note that the substitution of ψ(x, t |v, s)

in Eq. (15) with any function of the form

φ(x, t |v, s) = ψ(x, t |v, s) + λ(t)f ∗(x, t |v, s) (33)

will also satisfy the second Volterra equation, since

p(t) = −2ψ(x, t |v, s) − 2λ(t)f ∗(x, t |v, s) + 2
∫ t

0
ψ(xth, t |xth, s)p(s) ds

+ 2λ(t)

∫ t

0
f ∗(xth, t |xth, s)p(s) ds

= −2ψ(x, t |v, s) + 2
∫ t

0
ψ(xth, t |xth, s)p(s) ds, (34)

where we have applied the first Volterra equation, Eq. (11).
We then set φ(x, t |v, s) to 0 as t → s by letting

λ(t) = − lim
t→s

ψ(x, t |v, s)

f ∗(x, t |v, s)

= − lim
t→s

[

γ x − Itotal(t) − σ 2

2V (t |s)
(
x − M(t |x, s)

)
]

= −γ x + Itotal(t) + lim
t→s

[

γ
x − xe−γ (t−s) − ∫ t

s
Itotal(u)e−γ (t−u)du

1 − e−2γ (t−s)

]

= −γ x + Itotal(t) + γ lim
t→s

[
gxe−γ (t−s) − Itotal(t)e

−γ (t−t)

2γ e−2γ (t−s)

]

= Itotal(t) − γ x

2
. (35)
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Then we have

φ(x, t |v, s) = 1

2
f ∗(x, t |v, s)

[

γ x − Itotal(t) − σ 2

V (t |s)
(
x − M(t |v, s)

)
]

, (36)

and the singularity will be removed when v = x and t → s.
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Abstract

Neural coding relates neural observations to external stimuli using computational methods. For
encoding we estimate parameters and construct the optimal neural models, and for decoding we infer
the stimuli back from observed data. Here we perform neural decoding for a mixture of multiple stim-
uli using the leaky integrate-and-fire model describing neural spike trains, under the visual attention
hypothesis of probability mixing in which the neuron only attends to a single stimulus at any given
time. We propose a new algorithm to decode deterministic stimuli and develop various sequential
Monte Carlo particle methods to decode stochastic stimuli. The likelihood of spike trains is obtained
through the first-passage time probabilities obtained by solving the Fokker-Planck equations. We
show by simulation studies that both the deterministic and stochastic stimuli can be successfully
decoded, and different particle methods give different performances depending on the scenarios.

keywords: neural decoding, visual attention, probability mixing, spike train, state space model, particle
filter

1 Introduction

Neural coding is the science of characterizing the relationship between a stimulus presented to a neuron
or an ensemble of neurons, and the neuronal responses. Neural encoding refers to the map from stimulus
to response, i.e., how the neurons respond to a specific stimulus. For example, if we can construct an
encoding model, it can be used to predict responses to other stimuli. This was the subject of our previous
paper (Li et al., 2016a). Neural decoding refers to the reverse map, from response to stimulus, and the
challenge is to reconstruct a stimulus, or certain aspects of that stimulus, from the evoked spike train.
Neural coding is extensively studied in computational neuroscience.

Our aim here is to decode complicated multiple stimuli from neural spike trains. We combine bio-
physical spiking neural models with visual attention theories, bridging computational neuroscience and
psychology. Following the visual attention model, complicated multiple stimuli are viewed as probabil-
ity mixtures. For deterministic stimuli, the standard decoding method is unstable and inefficient, and
we propose a new cluster decoding algorithm overcoming the deficiencies. For stochastic stimuli, we
explore various sequential Monte Carlo methods, for both single neurons and an ensemble of simulta-
neously recorded neurons. The two visual search mechanisms in psychology, the parallel and the serial
processing, are applied after decoding neuron ensembles.

1.1 Neural Decoding

Given neural observations, the decoding process reconstructs the unknown stimulus information encoded
by the neural system. Neural decoding plays an important role in understanding the mechanisms of
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neurons and the brain. Well-performing algorithms of decoding constitute necessary components of
brain-machine interfaces (Lebedev and Nicolelis, 2006; Waldert et al., 2009). Different methods have
been explored to study neural decoding. Some methods focus on regression-related approaches building
linear models between spike trains and the corresponding stimulus by optimal linear estimation (OLE)
(Georgopoulos et al., 1986; Rieke, 1999). Machine learning methods are also employed to stimulus
decoding, such as artificial neural networks (Warland et al., 1997), kernel regression (Eichhorn et al.,
2003), and a recently developed approach using kernel-based neural metrics (Brockmeier et al., 2014).
These methods employ general statistical techniques and omit the specific spike-generating mechanism of
neural response. On the other hand, stimulus decoding may directly employ spiking neural models that
describe the spike generating mechanisms from stimuli (Koyama et al., 2010; Paninski et al., 2007; Pillow
et al., 2011; Truccolo et al., 2005). Various encoding models can be used. Approximate methods using
point processes treat the spikes in a spike train as sequential random events, which can be equivalently
formulated as generalized linear models (GLM) for model fitting (Truccolo et al., 2005; Kass et al., 2014).
Meanwhile, there are also biophysically-motivated methods like integrate-and-fire models, which study
the stochastic evolution of the membrane potential. In decoding tasks, these encoding models are used
in the posterior distribution to obtain the optimal stimuli. The decoding of constant stimulus can be
obtained from the posterior distribution using maximum a posteriori (MAP) or Monte Carlo methods.
The decoding of temporal stimulus can be discretized as a sequence of constant decoding tasks, which
can be solved by Kalman filtering (Wu et al., 2006) or particle sequential Monte Carlo methods (Paninski
et al., 2010; Kelly and Lee, 2003; Brockwell et al., 2004; Shoham et al., 2005).

1.2 Modeling Visual Attention

Stimulus Mixture and Probability Mixing

We define a stimulus mixture to be multiple non-overlapping stimuli inside the receptive field of a
neuron. We assume that the neuronal response to a stimulus mixture follows the probability-mixing
model (Bundesen et al., 2005; Li et al., 2016a), where the neuron responds at any given time to only
one of the single stimuli in the mixture with certain probabilities. This model enables us to accurately
perform decoding, i.e., to recover the single stimulus that caused the response.

Neural Explanation of Parallel and Serial Processing

The two opposing visual search mechanisms of parallel and serial processing have been long debated
in psychology and empirical behavioral experiments have shown evidence supporting both mechanisms
(Bundesen and Habekost, 2008; Nobre and Kastner, 2013; Townsend, 1990; Fific et al., 2008). According
to serial processing, multiple objects are processed sequentially by the brain, and according to parallel
processing, multiple objects are processed concurrently in parallel. We explain parallel and serial pro-
cessing from a neural perspective, based on the Neural Theory of Visual Attention (NTVA) (Bundesen
et al., 2005) stating that a neuron can only represent a single object at any time. It follows that in serial
processing, all neurons in the high level visual cortex must respond to the same single object at any
given time. While in parallel processing, neurons can split the attention, responding to different objects
at the same time. Here we do not aim to select one mechanism over the other. Rather, we will assume
either mechanism, and perform decoding in both cases.

Deterministic and Stochastic Stimulus

We assume two types of stimuli. A stimulus is deterministic if it contains negligible noise and can be
expressed using a deterministic function, for instance a constant or a sinusoidal stimulus. A stimulus is
stochastic if it contains strong and inevitable noise apart from a deterministic trend, for example a stim-
ulus described by a stochastic diffusion process. Decoding deterministic stimuli amounts to estimating
the parameters defining the deterministic function, and decoding stochastic stimuli requires obtaining
parameter estimates as well as a high-dimensional stimulus distribution at all time steps.

Two Attentional Regimes: Fixed Attention and Markov Switching

Consider the case where a neuron is responding to a mixture of multiple stimuli following the probability-
mixing model. One possible situation is that the neuronal response is fixed, responding to the same

2



stimulus component in the mixture during the whole trial. Another possible situation is that the neuron
switches between stimuli, only responding to a certain stimulus for some time whereafter it switches
to another stimulus, and the switching is random following a Markov chain with certain transition
probabilities. In both situations, the neuron can only respond to one single stimulus in the mixture at a
time.

1.3 Leaky Integrate-and-Fire Model

The leaky integrate-and-fire (LIF) models are simple diffusion models for the dynamics of the membrane
potential in single neurons (Burkitt, 2006; Sacerdote and Giraudo, 2013), the most common being an
Ornstein-Uhlenbeck (OU) process with constant conductance, leak potential, and diffusion coefficient.
The model can be extended by incorporating post-spike currents with a spike-response kernel function
(Kistler et al., 1997). Here we first focus on a bursting response kernel (Gerstner et al., 1996) (rhythmic
spiking), then we try two other kernels causing a decay of the spiking rate (adaptation) and a delay
of spike formation (refractory period). We have previously used these kernels for studying parameter
estimation in LIF models responding to a plurality of stimuli in the same visual attention framework (Li
et al., 2016a).

1.4 Method Summary

We apply decoding for stimulus mixtures in a LIF encoding framework with the probability-mixing visual
attention model. We consider two cases: 1) decoding simple mixtures of deterministic stimuli with fixed
neuronal attention, and 2) decoding complex mixtures of stochastic stimuli with Markov attentional
switching. In the deterministic case, we first apply the original Bayesian decoding using maximum a
posteriori (MAP), then propose a decoding algorithm specific for mixtures by applying k-means clustering
to spike trains. In the stochastic case, we formulate a state-space model and employ different particle
filtering and smoothing techniques, approximating the posterior distribution of the stimulus at each
discretized point in time. We also investigate two hypotheses of the theory of visual search, namely the
serial processing and the parallel processing, for decoding of neuron populations.

2 Encoding Model

The encoding model is the same as used in Li et al. (2016a). We will briefly repeat it here for convenience.

2.1 The Leaky Integrate-and-Fire Model

The evolution of the membrane potential is described by the solution to the following stochastic differ-
ential equation:

dX(t) = b(X(t), t)dt+ σdW (t)

= (−a(X(t)− µ) + I(t) +H(t)) dt+ σdW (t), (2.1)

X(0) = x0 ; X(t+j ) = x0

tj = inf{t > tj−1 : X(t) = xth} for j ≥ 1, t0 = 0,

where t+j denotes the right limit taken at tj . The drift term b(·) contains three currents: the leak current
−a(X(t)− µ), where a > 0 is the decay rate and µ is the reversal potential, the stimulus driven current
I(t), and the post-spike current H(t). The potential X(t) evolves until it reaches the threshold, xth,
where it resets to x0. The membrane potential X(t) is not measured, only the spike times d = (t1, t2, . . . )
are observed. Thus, the scaling of X is arbitrary, and we can use any values for threshold and reset.
We set x0 = 0 and xth = 1 such that X is measured in units of the distance between reset and spike
threshold. The noise is modelled by the standard Wiener process, W (t), with diffusion parameter, σ > 0.
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The stimulus current I(t) is shaped from the external stimulus S(t) through a stimulus kernel ks(t);

I(t) =
∫ t
−∞ ks(t − s)S(s)ds. The post-spike current arises from past spikes convoluted with a response

kernel kh(t); H(t) =
∫ t
−∞ kh(t − s)I(s)ds. Here I(s) =

∑
τ∈d δ(s − τ) represents the spike train, where

δ(·) denotes the Dirac delta function.

We assume a stimulus kernel without delay, such that ks(t) = δ(t), implying that I(t) = S(t). The
response kernel is assumed to be the difference of two exponentials decaying over time,

kh(t) = η1e
−η2t − η3e

−η4t (2.2)

with four positive parameters, η = (η1, η2, η3, η4). By adjusting the parameters, different kernels are
obtained. Three types of kernels are used here, described in Table 2.1 and shown in the left panels of
Fig. 5.1. In the center panels example spike trains generated from the different kernels and different
stimuli are illustrated.

Table 2.1: Characteristics of response kernels used in the encoding model.

Kernel Description Parameter Interpretation

first positive, η1 > η3, recent spikes have excitatory effects,

Bursting then negative, η2 > η4 accumulation of spikes has inhibitory effects,

then vanishing resulting in rhythmic spiking with bursts

Decaying first negative, η1 = 0, inhibitory effects are small but long-lasting,

then vanishing η3, η4 small making the firing rate decay slowly over time

first negative, η1 < η3, recent spikes have inhibitory effects,

Delaying then positive, η2 < η4 accumulation of spikes has excitatory effects,

then vanishing preventing short interspike intervals (refractory period)

2.2 Likelihood of a Spike Train

Suppose there are a total of K stimuli inside the receptive field of the neuron, S = (S1, . . . , SK). Ac-
cording to the probability-mixing encoding model, the stimulus-driven current, I(t), follows a probability
mixture:

I(t) = Sk(t), with probality αk, (2.3)

for k = 1, . . . ,K, where
∑K
k=1 αk = 1. Then the probability of a spike train d generated under the

exposure of the K stimuli is also a mixture distribution,

p(d|S, α) =

K∑

k=1

αkp(d|Sk), (2.4)

where p(d|Sk) is the probability of generating spike train d from the single stimulus Sk. It equals the
product of the probability densities of all spike times within d, where the dependence between spike
times is accounted for by conditioning on the history of past spike times, Hti−1

,

p(d|Sk) =
∏

i

g(ti|Sk,Hti−1
), (2.5)

where g(ti|Sk,Hti−1) is the conditional probability density of spiking at time t given the kth stimulus
and the spike history up to the previous spike time ti−1. The probability density g(·) can be obtained
from the density of the first-passage time of model (2.1), which we calculate by numerically solving the
Fokker-Planck equation; see Appendix A. Assume we repeat the experiment M times with the same
stimulus mixture, and thus record M spike trains. Denote by D = (d(1), . . . , d(M)) the data set of all the
measured spike trains. If spike trains are assumed independent, then the likelihood is

p(D|S, α) =
M∏

m=1

p(d(m)|S, α) =
M∏

m=1

K∑

k=1

αk

Nm∏

i=1

g(tmi |Sk,Hmti−1
), (2.6)

where tmi is the ith spike time in the mth spike train, which has Nm spikes, and Hmti−1
is the spike history

of the mth spike train up to the previous spike time.
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3 Decoding of Deterministic Stimuli with Fixed Attention

First, we assume that the neuron attends the same stimulus Sk(t) during a single trial, i.e., for the whole
period of one observed spike train. Later we will allow for the neuron to change attention during a single
trial. Here, we use a constant or a sinusoidal deterministic stimulus. The sinusoidal stimulus is defined
by the four parameters function Sk(t) = sk1 sin(sk2t+ sk3) + sk4 , which also covers a constant stimulus by
setting sk1 = 0.

In decoding tasks, all the parameters related to the encoding model are assumed known, for example
inferred from previous experiments. In our case, these parameters are the LIF parameters, namely the
decay rate a, the diffusion parameter σ, and parameters of the response kernel η. All parameters related to
the stimulus are unknown, namely parameters for the sinusoidal stimulus mixture sk = (sk1 , . . . , s

k
4), k =

1, . . . ,K, and the weights of each stimulus component (attentional parameters) α = (α1, . . . , αK). The
decoding task is then to infer K and the (5K)-dimensional parameter vector θ = (s1, . . . , sK , α), which
completely defines the attended stimulus, since it is deterministic. We will later relax the assumptions,
allowing for switching between attended stimuli not only from trial to trial but also during a single trial,
as well as stochastic stimulus mixtures.

3.1 Direct Bayesian Decoding with MAP

A standard way of decoding the optimal stimuli is by maximum a posteriori (MAP) estimation (Dayan
and Abbott, 2001). The input to the decoding algorithm is spike trains responding to an unknown
stimulus, assuming the encoding model known, as well as the distribution of possible stimuli, p(S).
Decoding using MAP estimation can in principle easily be applied if the number of mixtures and the
probabilities of the single stimuli in the mixture distribution are known. However, when no such detailed
information about the stimuli is available, the MAP estimation becomes computationally prohibitive,
and is not robust, as we will now explain.

Assume we observe M spike trains D, obtained from multiple non-simultaneous experimental repetitions,
under some unknown stimulus mixture. The number of stimuli K in the mixture and their weight values
α are assumed unknown. Then the decoding algorithm should not only estimate the stimulus S, but
also K giving the dimension of the problem, as well as α as nuisance parameters. For fixed K, the
MAP decoding maximizes the joint posterior probability of S and α, given the data D and the inferred
encoding model:

p(S, α|D) ∝ p(D|S, α)p(S, α) (3.1)

where p(D|S, α) is given in (2.6). The distribution p(S, α) can be chosen to fit the specific problem.
Here we use a uniform distribution. Because K is unknown, the decoding algorithm should be run
for multiple K = 1, 2, . . ., and the optimal K is chosen to be the one that minimizes the Bayesian
Information Criterion (BIC) value, which chooses the model with the highest likelihood value penalized
by the number of parameters.

One problem of the Bayesian MAP decoding for a mixture when K is unknown is the many parameters,
which renders the optimization unstable, especially for high values of K and complicated temporal
stimuli. Another problem is that the time complexity increases drastically as the number of components
becomes large. The computing time TMAP is almost completely determined by the calculation of the
conditional probability densities of spike times in (2.5). Define the time needed for the calculation of the
probability of one spike train under a single stimulus component to be a time unit. For M spike trains
and K stimuli in the mixture, the time for one calculation of the likelihood function in the numerical
optimization is then M ·K time units. Suppose the optimization procedure for M spike trains and K
stimuli needs to calculate the likelihood function mM,K times to converge. Then mM,K increases as
M and K increase, because both imply more terms in the likelihood1. Thus, for the whole decoding

1The number of calculations depends on many other things, for example on the initial values. Here we ignore those
refinements, and consider only the case where larger data size M and mixture number K increase the complexity of the
likelihood function, which slows down the rate of convergence.
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algorithm, where we impose K ≤ k∗ for some positive integer k∗, the computing time is of the order:

TMAP = O
(

k∗∑

K=1

M ·K ·mM,K

)

≥ O
(
M ·mM,1 ·

k2
∗ + k∗

2

)
. (3.2)

Thus, the Bayesian MAP decoding takes more thanO(M ·mM,1·k2
∗) time units, which grows quadratically

in the maximum number of considered mixtures, k∗.

3.2 New Decoding Algorithm for Stimulus Mixtures: Cluster Decoding

Here we propose an alternative decoding algorithm for stimulus mixtures, which we will call Cluster
Decoding. The idea is to avoid the computational complexities caused by the mixture distribution
through a clustering algorithm. The settings are the same as for the MAP decoding. First we decode
for each spike train d the optimal single stimulus without using probability mixtures, i.e., assuming that
αj = 1 for some j = 1, . . . ,K, and αi = 0 for i 6= j. This yields M decoded stimuli, one for each of the
M spike trains. For each spike train i = 1, . . . ,M , we define a characteristic vector vvvi of size M with
each element vji, j = 1, . . . ,M , being

vji =

{
`ji, `ji ≥ 0

exp(`ji)− 1, `ji < 0
, (3.3)

where `ji is the log-likelihood value of spike train i responding to the decoded stimulus j. The plot of
function (3.3) is shown in Figure 3.1. The vectors for all i constitute a matrix, [vvv1, vvv2, . . . , vvvM ]. The
idea is that if two spike trains were generated by the same stimulus component, they will have similar
characteristic vectors. When the log-likelihood value is less than 0, the original likelihood value, exp(`ji),
will be used to avoid too large negative log-likelihood values.

Figure 3.1: Plot of function (3.3). The x-axis is the
log-likelihood value of the ith spike train responding
to the stimulus decoded from the jth spike train,
and the y-axis is the corresponding characteristic
value.
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Based on the characteristic vectors, the spike trains are then clustered into k categories, using unsu-
pervised clustering algorithms. We employ k-means for clustering using Euclidean distances between
characteristic vectors. The best cluster result of k-means is obtained by trying out different initial values
and minimizing the cluster variance (Hastie et al., 2009, chpt. 14). The spike trains in the same cluster
are then assumed to attend to the same stimulus, and therefore used together to decode the stimulus
in the next step. This yields k decoded stimuli, not necessarily a subset of the first M decoded stimuli,
providing the estimated stimulus mixture containing k components, Sk = (S1

k, S
2
k, . . . , S

k
k ), where the

subscript k denotes the currently considered number of components.
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The clustering is done for different numbers of categories k, and each will be assigned a score in order
to obtain the best value of k. We use the BIC value as the score defined by

BICk = −2`k + kn0 logMISI , (3.4)

where `k is the log-likelihood value of the optimal stimuli using k categories, n0 is the base parameter
number to describe a single stimulus (n0 = 4 for the sinusoidal stimuli), and MISI is the total number of
interspike intervals (ISIs) in all spike trains (instead of the number of spike trains because the likelihood
function is based on the ISI probability density). The k with smallest score will be chosen. The flow of
the proposed decoding algorithm is shown in the diagram of Figure 3.2.

Construct char-
acteristic vectors,
[vvv1, vvv2, vvv3, vvv4, vvv5]

[vvv1, vvv2, vvv3, vvv4, vvv5]

S1 = (S1
1)

BIC1

[vvv1, vvv2, vvv3, vvv4, vvv5]

S2 = (S1
2 , S

2
2)

BIC2

[vvv1, vvv2, vvv3, vvv4, vvv5]

S3 = (S1
3 , S

2
3 , S

3
3)

BIC3

. . .

k̂ = arg min
k

BICk

Ŝ = Sk̂

k = 1 k = 2 k = 3 . . .

Figure 3.2: Flow diagram of the cluster decoding algorithm. In the blocks, different colors indicate clustered spike
trains. In the first step shown in the upper panel, characteristic vectors are constructed by decoding each spike
train. For illustration, the number of spike trains is M = 5. In the second step, shown in the middle panels, the
M spike trains are clustered in k = 1, 2, 3, . . . clusters. For each cluster, a stimulus component is decoded based
on the spike trains within the cluster. The BIC values are also calculated. Finally, in the lower panel, the k that
minimizes the BIC value is chosen, and the corresponding stimuli are used as the decoding result.

Note that the classification of spike trains happens before the estimation of the stimuli. In the MAP
decoding, the spike trains are classified to some already known or already estimated mixtures, whereas
the cluster decoding algorithm first classifies the spike trains into unknown categories, then the categories
are estimated.

Comparison of stability and computing times between cluster decoding and direct MAP
decoding

The MAP decoding suffered two major problems when applied to probability mixtures: stability and
complexity. With respect to stability, the cluster decoding algorithm does not include the probability
mixture, so the optimization stage is more stable. However, the additional clustering stage could generate
extra variance. As for the complexity, we now analyze the computing time for the new algorithm. During
preparation when constructing the characteristic vectors, the time is M ·m1,1 +M2, the sum of decoding
each single spike train and calculating the characteristic vectors. Assume that the number of spike trains,
M , is much smaller than any m values, which is most often the case – and if not fulfilled, the computing
time is small and not an issue. Then we ignore M2 and obtain the approximate computing time M ·m1,1.
The computing time for k-means can be ignored compared with the numerical computation of the ISI
probabilities. The k-means algorithm clusters the M spike trains into k categories with number of spike
trains M1,M2, . . . ,Mk, respectively, then the decoding time is

∑k
i=1Mi · mMi,1 ≤ mM,1

∑k
i=1Mi =
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mM,1 ·M . Thus, the total time for the whole cluster decoding algorithm, trying out mixture numbers
in the set {1, . . . , k∗}, is

Tcluster ≤ O (M ·m1,1 + k∗ ·mM,1 ·M) . (3.5)

Only when k∗ = 1, i.e., when there is no mixture and only one single stimulus, the speed of the new cluster
decoding algorithm is slower than the MAP decoding. In practice, when k∗ = 1 the cluster decoding and
the MAP decoding coincide, since we do not need clustering for one component. For k∗ > 1, the cluster
decoding is expected to be much faster. Furthermore, the difference in computing times grows rapidly
with increasing k∗, the maximal number of allowed stimuli in the mixture distribution.

4 Decoding of Stochastic Stimulus Mixtures with Markov Switch-
ing

To model more natural stimuli that the neuronal system might be exposed to, we now let the stimulus be
stochastic, and allow for the neurons to switch attention between stimulus also within a single trial. We
discretize the time interval of a trial in smaller intervals of length v, and assume that the neurons can only
switch attention between intervals, but will attend the same stimulus during any of these small intervals.
Fiebelkorn et al. (2013) found that sustained attention naturally fluctuates with a periodicity of 4–8 Hz,
thus, at most switching attention after 125ms. In the simulations presented later, we set v = 100ms.
Denote by Cn the index of the attended stimulus at the nth time point, Cn ∈ {1, . . . ,K}, n = 1, . . . , N ,
such that v N is the length of the total observation interval, and let Sn denote the stochastic realization
of the attended stimulus at the nth time point. In the decoding algorithm, it is assumed that Sn is
constant, thus approximating the stochastic stimulus process by a piecewise constant process. Assume
the neuron switches attention between two consecutive time intervals following a Markov chain with
transition probability matrix (TPM) ΓΓΓ. Denote the elements of ΓΓΓ by λkl for k, l = 1, . . . ,K. Thus,
λkl = P (Cn = l |Cn−1 = k) is the probability that at time n the attended stimulus is Sl, given that the
neuron attended stimulus Sk at time n− 1.

The stochastic stimuli are described by Ornstein-Uhlenbeck (OU) processes. For a mixture of K stimuli
S = (S1, . . . , SK), the kth stimulus component is governed by the stochastic differential equation (SDE):

dSk(t) = [βk − Sk(t)]dt+ γdW (t), (4.1)

where βk and γ are parameters, and W (t) is a standard Wiener process. Only the drift parameter βk is
stimulus specific, the diffusion parameter γ is assumed the same for all stimuli in the mixture.

The parameters describing the stimulus are unknown, namely γ, β = (β1, β2, . . . , βK) and the TPM ΓΓΓ, so
that θ = (γ, β,ΓΓΓ). For simplicity, the mixture number K is assumed to be known. If K is unknown, then
the algorithm is run with different k = 1, 2, . . . , and the k that minimizes the BIC is chosen. We focus on
various Monte Carlo techniques for decoding, including the bootstrap filter, the auxiliary particle filter
with parameter learning, fixed-lag and fixed-interval smoothing, etc; see Kantas et al. (2015) for a review
of such methods. The goal is not only to decode which stimulus is attended, Cn, but also the stochastic
realization of Sn for n = 1, . . . , N . We will present on-line methods, where parameter estimates are
updated sequentially as observations become available. We also explore smoothing techniques, where
some delay is allowed before the stimulus is reported.

In the following sections, we first establish sequential Monte Carlo methods for decoding of single spike
train data, then we discuss decoding of simultaneously recorded spike trains, and include extensions to
continuous-time switches, for example following a Poisson process. In most of the simulations, we use the
bursting response kernel, see Table 2.1. Finally, we include extensions of other spike response kernels.

4.1 State space model

We use a state-space model to describe the evolution of the stochastic stimuli. The state space is extended
to not only include the stimuli S, but also the unknown stimulus-related parameters, which are included
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for the construction of the decoding algorithms. The full states are then

ΓΓΓn (TPM)

Cn (index of attended stimulus)

γn (common diffusion parameter of all stimuli)

βn = (β1
n, . . . , β

K
n ) (drift parameter of each stimulus)

Sn = (S1
n, . . . , S

K
n ) (value of each stimulus)

(4.2)

The subscript n stands for the current time in the state evolution. Note that, even if ΓΓΓ, γ and β are
constant in model (4.1), the filters will at each time point update information regarding their value, and
thus, they are allowed to change at each time point. Hopefully, they converge towards their true values
as more spikes are used in the decoding algorithm. The propagation of states at time n is given by:

λkl,n ∼ Ntr(λkl,n−1, Vλ);
K∑

l=1

λkl,n = 1, λkl,n ≥ 0

Cn ∼ ΓΓΓ(Cn−1); Cn ∈ {1, . . . ,K}
γn ∼ Ntr(γn−1, Vγ); γn > 0

βkn ∼ N(βn−1, Vβ);

Skn ∼ N(Mk
n , V

k
n );

(4.3)

for k, l = 1, . . . ,K. The state propagation is explained as follows. All elements of the TPM follow
a truncated Gaussian distribution within (0, 1) with variance Vλ, subject to the constraint that rows
sum to 1. The index of the attended stimulus is sampled from a multinomial distribution given by row
Cn−1 of the TPM, ΓΓΓ(Cn−1). The parameters γn and βn are updated using Gaussian distributions with
variance Vγ and Vβ , respectively. Since γn > 0, a positive truncated Gaussian distribution is used. The
strength of each stimulus, Skn, is updated according to the OU model, following a Gaussian distribution
with mean Mk

n = (Skn−1 − βkn)e−∆t + βkn and variance V kn = γ2
n(1− e−2∆t)/2.

The likelihood of the spike train given the parameters is obtained from the encoding model. Let dn =
(t1, . . . , tLn

) denote the spike train within the duration of the nth interval, where it can happen that dn
is empty if no spikes were fired. Since the intervals are short, we need to take into account boundary
effects, i.e., the time from the left boundary of the interval to the first spike, and the time from the last
spike to the right boundary. Let Tb and Te denote the beginning and the end of the interval, respectively.
Then if dn is non-empty, Tb ≤ t1 < · · · < tLn ≤ Te. The likelihood of dn is then

p(dn|SCn
n , S

Cn−1

n−1 ,HTb
) =

Ln∏

l=2

g(tl|SCn
n ,Htl−1

) (complete ISIs inside the interval)

× g(t1|SCn
n , S

Cn−1

n−1 ,HTb
) (left boundary)

×
[

1−
∫ Te

tLn

g(τ |SCn
n ,HtLn

)dτ

]
(survival probability at right boundary)

(4.4)

If there are no spikes in the interval, the likelihood is given by the survival probability:

p(dn|SCn
n , S

Cn−1

n−1 ,HTb
) = 1−

∫ Te

Tb

g(τ |SCn
n , S

Cn−1

n−1 ,HTb
)dτ. (4.5)

4.1.1 A bootstrap particle filter

Particle filtering approximates the posterior mean using I particles, where each particle is a sample from
the state space at all time points, where we write Sn,i for the value of Sn for particle i, and likewise
for the other state variables. Then the stimulus at time n is approximated by the empirical distribution
of the particles, Ŝn =

∑I
i=1 Sn,iw̄n,i ≈

∫
Snp(Sn|d1:n)dSn, where the w̄n,i is the normalized weight of
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particle i satisfying w̄n,i ∝ p(S1:n,i|d1:n) and
∑I
i w̄n,i = 1. Here, d1:n = (d1, . . . , dn) and likewise for

S1:n,i.

Using the state evolution and the likelihood of observation, a bootstrap particle filter (BF) is formulated
in Algorithm 4.1. In this particle filter, each particle has the attended target Cn as a state, and only the
information about the attended stimulus is used to calculate the weights. In the first step at n = 1, the
states are initialized by sampling from uniform distributions. The attention state C is sampled from a
discrete uniform distribution containing indexes of all K stimuli, U{1, · · · ,K}, and the other states are
sampled from continuous uniform distributions, whose intervals are given in the Result section.

In this filter and the subsequent filters, we resample particles using systematic resampling, which is
conducted as follows. Denote by Uj , for j = 0, 1, . . . , I−1, a total of I random grid variables. A uniform
variable Ū is sampled from U(0, 1]. The grid variables follow

Uj =
j + Ū

I
, j = 0, 1, . . . , I − 1. (4.6)

The number of duplicates for particle i, i = 1, 2, . . . , I, after resampling is

Wi =

∣∣∣∣∣

{
j;Uj ∈ (

i−1∑

l=1

w̄l,
i∑

l=1

w̄l], j = 0, 1, . . . , I − 1

}∣∣∣∣∣ , (4.7)

i.e., the number of grid variables that fall into the ith increment of the cumulative sum of the normalized
weights. It follows that

∑I
i Wi = I and Wi ≥ 0 for i = 1, 2, . . . , I. Afterwards, we set the weight of all

resampled particles to 1/I.

Algorithm 4.1 Bootstrap particle filter, BF

Initialization: at n = 1
1: for particle i = 1, . . . , I do
2: Set elements of ΓΓΓ to 1/K
3: C1,i ∼ U{1, . . . ,K}; γ1,i ∼ U(0,maxγ); βk1,i ∼ U(0,maxβ); Sk1,i ∼ U(0,maxS), k = 1, . . . ,K

4: Calculate the weights, wi = p(d1|SC1,i

1,i )
5: end for
6: Calculate normalized weights, w̄i = wi/

∑
i wi

Iteration: for n = 2, . . . , N
7: Resample particles (systematic resampling)
8: for particle i = 1, . . . , I do
9: Propagate states: first ΓΓΓn,i, then Cn,i, γn,i, βn,i, and finally, Sn,i, from distributions (4.3)

10: Calculate the weights, wi = p(dn|SCn,i

n,i , S
Cn−1,i

n−1,i ,Hn−1)
11: end for
12: Calculate normalized weights, w̄i = wi/

∑
i wi

13: Estimate attended stimulus, Ŝn =
∑I
i=1 w̄iS

Cn,i

n,i

4.1.2 Auxiliary particle filter with parameter estimation

In the bootstrap filter, the resampling weights are calculated from the past observation. A more rea-
sonable idea is to calculate the weights based on the current observation. In the auxiliary particle filter
(APF) (Pitt and Shephard, 1999), the resampling relies on auxiliary variables, for example, the likelihood
of the current observation conditional on the expected states:

un = wn−1p(dn|µCn
n ), (4.8)

where

µn = E(SCn
n |SCn

n−1, θn−1). (4.9)

The idea is that the resampling based on the current observation provides particles that are distributed
more closely to the posterior at the following time point. Therefore, the weights degenerate less and the
effective number of particles is larger.
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The stimulus model contains fixed hyperparameters θ that are estimated using artificial propagation,
which introduces information loss over time (Liu and West, 2001). To overcome this, we propagate the
hyperparameter γn using kernel smoothing as proposed by Liu and West (2001). The propagation of γn
follows the Gaussian distribution

γn+1 ∼ N(ψγn + (1− ψ)γ̄n, h
2vn), (4.10)

where γ̄n and vn are the mean and the variance of the posterior p(γ|d1:n), evaluated from particles at time
n. In practice, we use a truncated version of the Gaussian distribution in (4.10) since the parameter γ is
positive. The constants ψ = (3δ− 1)/2δ and h2 = 1−ψ2 are evaluated using a discount factor δ ∈ (0, 1],
typically around 0.95−0.99 (Liu and West, 2001). For the parameters ΓΓΓn and βn, which depend on each
stimulus component, we use the same propagation distribution as before, because of label switching in
mixture models (Fearnhead, 2004; Stephens, 2000). It is difficult to evaluate the posterior of elements of
ΓΓΓn and βn because each particle can label each component differently.

The APF with kernel smoothing of parameters is formulated in Algorithm 4.2.

Algorithm 4.2 Auxiliary particle filter with kernel smoothing, APF

Initialization: at n = 1
1: for particle i = 1, . . . , I do
2: Set elements of ΓΓΓ to 1/K
3: C1,i ∼ U{1, . . . ,K}; γ1,i ∼ U(0,maxγ); βk1,i ∼ U(0,maxβ); Sk1,i ∼ U(0,maxS), k = 1, . . . ,K
4: end for

Iteration: for n = 2, . . . , N
5: for particle i = 1, . . . , I do
6: Propagate ΓΓΓn,i and then Cn,i

7: Calculate µ
Cn,i

n,i = E(S
Cn,i

n,i |S
Cn,i

n−1,i, θ
Cn,i

n−1,i)

8: Calculate the first-stage weight, ui = wip(dn|µCn,i

n,i , S
Cn−1,i

n−1,i ,Hn−1)
9: end for

10: Resample particles (systematic resampling) using {ui}, giving a new set of particles N
11: for particle j ∈ N do
12: propagate γn,j using (4.10), then βn,j , and finally Sn,j

13: Evaluate the weight, wj = p(dn|SCn,j

n,j , S
Cn−1,j

n−1,j ,Hn−1)/p(dn|µCn,j

n,j , S
Cn−1,j

n−1,j ,Hn−1)
14: end for
15: Normalize weights and output estimate

4.1.3 Particle filtering with marginal likelihood

In Algorithms 4.1 and 4.2 we use the attended target C as a hidden state, and the weights are evaluated
conditional on C. Alternatively, we can marginalize out C in each particle, and use all S = (S1, . . . , SK)
to calculate the marginal likelihood as the weight:

p(dn|Hn−1) =
K∑

j=1

p(dn|Cn = j,Hn−1)P (Cn = j|Hn−1)

=
K∑

j=1

(
K∑

i=1

P (Cn−1 = i|Hn−1)λij,n

)
p(dn|Cn = j,Hn−1). (4.11)

Here we suppress the dependency of S for readability in the term P (dn|Sn, Sn−1,Hn−1) as well as other
relevant terms. Also note that in the marginal probability we depend on all stimuli S instead of a
component given by C as in Eq. (4.4). The probability p(Cn−1 = i|Hn−1), conditional on the history
up to the previous interval, Hn−1, is calculated recursively at each time step by Bayes’ theorem:

P (Cn−1 = i|Hn−1) ∝ p(dn−1|Cn−1 = i,Hn−2)P (Cn−1 = i|Hn−2)

= p(dn−1|Cn−1 = i,Hn−2)
K∑

k=1

P (Cn−2 = k|Hn−2)λki,n−1. (4.12)
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Due to label switching, each particle could label the stimulus components differently. It is then difficult
to output the correct results (Fearnhead, 2004). Here we use a simple method. The stimuli in each
particle are sorted first, then the posterior mean is calculated for the sorted stimuli. The hope is that
after sorting, each particle relabels the components in the same order. The algorithm of a bootstrap
particle filter with marginal likelihood is formulated in Algorithm 4.3.

For single spike trains, we cannot decode all components of the stimulus mixture because only one
is attended at a time. Therefore marginal likelihood is less appealing for single spike train decoding.
However, if we have multiple independent observations at each time point, marginal likelihood will be
more appropriate.

Algorithm 4.3 Bootstrap particle filter with marginal likelihood, mBF

Initialization: at n = 1
1: for particle i = 1, . . . , I do
2: Set elements of ΓΓΓ to 1/K
3: γ1,i ∼ U(0,maxγ); βk1,i ∼ U(0,maxβ); Sk1,i ∼ U(0,maxS), k = 1, . . . ,K
4: Calculate the weights, wi = p(d1|S1,i)
5: end for
6: Calculate normalized weights, w̄i = wi/

∑
i wi

Iteration: for n = 2, . . . , N
7: Resample particles (systematic resampling)
8: for particle i = 1, . . . , I do
9: Propagate states: first ΓΓΓn,i, then γn,i, βn,i and finally Sn,i from distributions (4.3)

10: Calculate the weights, wi = p(dn|Sn,i, Sn−1,i,Hn−1)
11: end for
12: Calculate normalized weights, w̄i = wi/

∑
i wi

13: Estimate all Sn = (S1
n, . . . , S

K
n ) using Ŝkn =

∑N
i=1 w̄iS

k
n,i on sorted stimulus components

4.1.4 Auxiliary particle filtering with parameter estimation and marginal likelihood

The idea of APF and parameter learning using kernel smoothing can also be applied to the particle filter
with marginal likelihood. We calculate the first-stage weights using marginal likelihood:

un = wn−1p(dn|µn), (4.13)

where µn is the expectation of all components of Sn:

µn = E(Sn|Sn−1, θn−1). (4.14)

The calculation of the marginal likelihood p(dn|µn) follows the same way as in equations (4.11) and
(4.12). Again, only the propagation of the common parameter γn is done using the kernel smoothing
method by Liu and West (2001) due to label switching. The algorithm is formulated in Algorithm 4.4.
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Algorithm 4.4 Auxiliary particle filter with kernel smoothing and marginal likelihood, mAPF

Initialization: at n = 1
1: for particle i = 1, . . . , I do
2: Set elements of ΓΓΓ to 1/K
3: γ1,i ∼ U(0,maxγ); βk1,i ∼ U(0,maxβ); Sk1,i ∼ U(0,maxS), k = 1, . . . ,K
4: Calculate the weights, wi = p(d1|S1,i)
5: end for

Iteration: for n = 2, . . . , N
6: for particle i = 1, . . . , I do
7: Calculate µn,i = E(Sn,i|Sn−1,i, θn−1,i)
8: Calculate the first-stage weight, ui = wip(dn|µn,i, Sn−1,i,Hn−1)
9: end for

10: Resample particles (systematic resampling) using {ui}, giving a new set of particles N
11: for particle j ∈ N do
12: propagate γn,j using (4.10), then βn,j , ΓΓΓn,j and finally Sn,j
13: Evaluate the weight, wj = p(dn|Sn,j , Sn−1,j ,Hn−1)/p(dn|µn,j , Sn−1,j ,Hn−1)
14: end for
15: Normalize weights and output estimate based on sorted stimulus components

4.2 Decoding From Multiple Spike Trains

Now we consider multiple neurons simultaneously recorded in one trial providing multiple spike trains.
Since stochastic stimuli contain inevitable noise and are not reproducible by repetitions in real applica-
tions, all estimates of the stimuli depend entirely on the spike trains from one trial. Thus, the attentional
behavior of the simultaneously recorded neurons is of great importance for understanding the full infor-
mation of stimuli.

For multiple, simultaneously recorded spike trains we consider two opposing hypotheses for visual search
in neuronal attention, namely the serial and the parallel processing. In serial processing, all stimuli are
processed sequentially. The neural interpretation is that all neurons attend to the same stimulus at the
same time, and switch to another all together. Therefore, all spike trains would have similar spiking
patterns. On the contrary, in parallel processing, stimuli are processed in parallel. Each neuron attends
its own stimulus and can switch to another stimulus independently of the other neurons. The spike trains
are then distinct from each other.

For stimulus decoding using particle methods, serial processing essentially means an increase of the
sample size at each time point, making the decoding more accurate. However, it only decodes the
attended stimulus at any time, and the data contain no information about the other stimuli at that time
point. For M spike trains, D = {d(m)|m = 1, . . . ,M}, the likelihood function with the serial processing
assumption within a small interval is then

p(Dn |SCn
n , S

Cn−1

n−1 , {H(m)
n−1}m=1,...,M ) =

M∏

m=1

p(d(m)
n |SCn

n , S
Cn−1

n−1 ,H(m)
n−1). (4.15)

The right hand side is evaluated using expression (4.4).

In parallel processing each spike train has its own attended stimulus. Stimulus decoding can then estimate
multiple components of the mixture. Each single stimulus is decoded independently using Algorithms
4.1 or 4.2, which produces estimates of each neuron’s attended stimulus at each time point, and then the
results from all spike trains give an empirical distribution of the stimulus mixture at each time point.
Then we run cluster analysis at each time point in one-dimensional space based on the estimates of stimuli.
Since there are outliers (see Result section), we apply k-medoids clustering (Kaufman and Rousseeuw,
2009; Hastie et al., 2009, chpt. 14) using the square root of Euclidean distance as the dissimilarity
measure. The k-medoids clustering is preferred over k-means because k-medoids can be more robust
against outliers (Hastie et al., 2009). Furthermore, the square root of the Euclidean distance puts less
weight on extreme outliers than the Euclidean distance. Finally, we use the median of each cluster as
the estimate for each component of the stimulus mixture.
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Another decoding method for parallel processing is to exploit the marginal likelihood since we have
multiple independent observations. Now each particle can decode all stimulus components, and all
decoded components will be used for the output estimation. When calculating the weights, we need the
likelihood, which is the product of the marginal likelihoods of all spike trains:

p(Dn|Sn, Sn−1, {H(m)
n−1}m=1,...,M ) =

M∏

m=1

p(d(m)
n |Sn, Sn−1,H(m)

n−1), (4.16)

and the right hand side is evaluated using equation (4.11).

Adjusting auxiliary variables for large data size. In Algorithms 4.2 and 4.4 based on APF for
population decoding, the auxiliary variables are calculated using the likelihood, which can take extreme
values if the sample size is large, e.g., when the data contain multiple spike trains. The consequence is
that only few particles with extreme weight values survive the resampling, reducing the posterior variance
and leading to the degeneracy of parameter learning (Rios and Lopes, 2013; Carvalho et al., 2010). To
slow down the degeneracy, we use the geometric mean of the likelihood value over the number of spike

trains, p̃(Dn|µn, Sn−1, {H(m)
n−1}m=1,...,M ) =

(∏M
m=1 p(d

(m)
n |µn, Sn−1,H(m)

n−1)
)1/M

, when calculating the

auxiliary variables in Algorithms 4.2 and 4.4.

4.3 Particle smoothing

The above online algorithms return estimates of stimuli by approximating the filtering probability con-
ditional on the observation up to the current time, p(S1:n|D1:n). An alternative is offline methods that
make use of future observations or the entire data set when estimating the stimuli at a certain time
point. This posterior is referred to as the smoothing distribution. A full-length smoothing reports the
posterior of the stimulus at any time n conditional on all observations over 1 : N , p(Sn|D1:N ), but
we can also apply partial smoothing when only certain delays are allowed. Say we need to report the
stimulus after a delay of n∗ time points, then we can decode the stimulus at time n using partial smooth-
ing, p(Sn−n∗ |D1:n). Thus, filtering does real-time online decoding, while smoothing does semi-online
decoding with some delay or offline decoding after the full observation. Here we pursue the semi-online
decoding allowing a delay of n∗ before reporting the stimulus. Two smoothing methods have been tried,
the fixed-lag smoothing and the fixed-interval smoothing (Doucet et al., 2000).

In the fixed-lag smoothing estimates, we simply marginalize the filtering probability p(S1:n|D1:n) at
time n − n∗, estimating Sn−n∗ with the current weights when calculating the posterior mean, Ŝn−n∗ =∑N
i=1 Sn−n∗,iw̄n,i. This requires additional memory to store the history of S.

In fixed-interval smoothing we apply the forward-filtering backward-smoothing algorithm, and calcu-
late the smoothing distribution p(Sn−n∗ |D1:n) for the desired time n − n∗ instead of using the joint
filtering distribution p(S1:n|D1:n). The smoothing distribution p(Sn−n∗ |D1:n) is obtained using recursive
backward smoothing from n after a full forward filtering up to n (Doucet et al., 2000); see Appendix B.

4.4 Continuous-time switching

All the decoding algorithms assume that neuronal attention is fixed within intervals of duration 100ms,
and only switches between two intervals. To test how strong this assumption is, we also simulate spike
trains with continuous-time switching, i.e., the attentional switching does not need to take place exactly
between two intervals. One example is that the switching follows a Poisson process, which is what we
use in this paper. If this is the case, then decoding with discretization will be less accurate. However,
if the switching rate is sufficiently low such that the average inter-switch interval is much longer than
a discretized interval, the Poisson attentional switching is well approximated by the approach based on
discretization.

A fixed TPM on discretized time points approximates the Poisson switching model well due to the
memoryless property of the Poisson process. However, since the TPM is updated at each time point as

14



latent states, the model is easy to extend to non-Poissonian switching allowing for memory effects by
adapting the TPM for a specific model. This is not pursued here.

5 Results

Throughout the following examples, we use the parameters for the LIF encoding model shown in Table
5.1. Figure 5.1 illustrates some realizations of spike trains generated from the encoding model using
different response kernels and stimuli.

Table 5.1: Parameters of the LIF encoding model used in the simulations.

Parameter Value Explanation

a 100 decay rate in LIF model

x− 0 reflecting boundary of Fokker-Planck equation

xth 1 firing threshold of potential

x0 0.4 reset potential

µ 0.5 resting potential

σ 1 diffusion parameter in LIF model

ηburst (50, 25, 40, 15) burst response kernel

ηdecay (0, 0, 2, 0.5) decay response kernel

ηdelay (20, 8, 50, 15) delay response kernel

∆t 0.002s time discretization in numerical solution

∆x 0.02 potential discretization in numerical solution

n∗ 10 intervals time delay for particle smoothing (10 intervals = 1s)

5.1 Deterministic Mixtures

The MAP decoding and the cluster decoding algorithm for mixtures are applied to constant and sinusoidal
mixtures using the bursting response kernel. In all the following results for deterministic mixtures, ten
spike trains of length 5s are simulated, illustrating M = 10 (non-simultaneous) recordings of spike trains
responding to the same stimuli in a real experiment. The simulation is repeated 20 times, and each
simulated data set is used for the decoding analysis. In the simulation study, for the maximal mixture
number k∗ we always use the true mixture number plus one, k∗ = K + 1. We try out the possible
numbers in {1, 2, . . . , k∗} and select the one with the minimum BIC.

The decoding performance can be evaluated by comparing the estimation of stimulus strength with the
true strength. In addition, the classification of spike trains for the stimulus mixture can also be evaluated.
We define two statistics. Denote by Pn the ratio of the number of decodings that correctly predict the
true mixture number, over the total number of decodings. Denote by Pc the ratio of the decodings that
make correct clustering of all spike trains, over the number of decodings with correct mixture number
calculated in the previous step. These statistics are numbers between 0 and 1, and the closer to 1, the
more correct the classification.

Figure 5.2 shows the decoding using the MAP (upper panel) and the cluster algorithm (lower panel)
for constant stimuli containing 2 or 3 components, with the statistics Pn and Pc shown in the top-
left corner. The true stimuli are shown as lines in different colors, and the estimates are plotted as
histograms. Performances of the two algorithms are comparable, for both spike train classification and
stimulus estimation, even if the cluster algorithm performs slightly better, as indicated by the Pn and
Pc statistics. When the two stimuli are very close (middle column panel), the classification becomes
difficult, but we still obtain good estimation of the strength. Table 5.2 lists the stimulus and attentional
weight parameters used for simulation.
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Figure 5.1: Realizations of spike trains. The left panel shows the three response kernels. The top panel shows
different types of stimuli. Then spike trains are shown in each combination of response kernel and stimulus.

Table 5.2: Stimulus parameters used in Figure 5.2.

Panel Left Middle Right

Stimulus index 1 2 1 2 1 2 3

Strength 66 71 70 71 66 56 71

Weight 0.4 0.6 0.4 0.6 0.3 0.2 0.5

Now we conduct decoding of both algorithms for sinusoidal stimuli. In many cases, the decoding of
sinusoidal stimuli suffers from identification problems, because both the stimuli and the bursting kernel
will cause oscillations in the spiking dynamics. The numerical optimization can easily choose stimuli
that can generate similar spiking patterns but are far from the true stimuli. Thus, we also tried to fix
the frequency (the parameter s2) of the stimuli, assuming it known.

Figure 5.3 shows the decoding using the MAP and the cluster algorithms for sinusoidal stimuli. The left
three column panels use mixtures of two stimuli with different parameters while the right panel uses a
mixture of three. In this figure we compare different algorithms and settings, where the MAP decoding
without fixing s2 is shown in the top panel, the MAP decoding fixing s2 in the middle upper panel, the
cluster decoding without fixing s2 in the middle lower panel, and finally the cluster decoding fixing s2 in
the bottom panel. The decoding performance for both algorithms is much improved when the frequency
parameter s2 is fixed. Before fixing s2, the MAP decoding tends to make too fluctuating estimates while
the cluster decoding tends to make too flat estimates, and both work poorly. Comparing the results
after fixing s2, we find the cluster decoding achieves better accuracy and stability than MAP, for both
stimulus strength estimation and spike train classification. Focusing on the different stimulus settings
in the upper middle and the bottom panels, for two similar stimuli we again see poor classification of
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Figure 5.2: The MAP and the cluster decoding algorithms applied to constant stimulus mixtures. The upper panel
shows the results of the MAP decoding and the lower panel shows the cluster decoding. Blue, red, and green
solid lines show the true stimuli. Histograms show the decoding results. The Pn and Pc ratios are classification
statistics; see the main text. The closer these numbers are to 1, the more correct the classification.

spike trains but accurate estimation of the stimulus strength and shape. By contrast, when two stimuli
are different, classification can perform better even though we cannot always obtain accurate stimulus
estimation (left figure in the lower middle panel). The parameters used in the simulation are shown in
Table 5.3.

Table 5.3: Stimulus parameters used in Figure 5.3.

Panel Left Left middle Right middle Right

Stimulus

Index
1 2 1 2 1 2 1 2 3

s1 20 10 10 12 10 12 20 20 10

s2 8 8 8 8 8 8 8 8 8

s3 0 1 1 0 0 0 0 2 1

s4 60 60 60 60 60 60 60 60 60

Weight 0.4 0.6 0.4 0.6 0.5 0.5 0.3 0.4 0.3

Finally, we compare the efficiency of the MAP and the cluster decoding algorithms in Figure 5.4, where
we show the elapsed time in seconds for a decoding estimation. We merge the simulation studies shown
above into four groups for both constant and sinusoidal stimuli: MAP decoding for two stimuli (MAP2)
and three stimuli (MAP3), cluster decoding for two stimuli (Cluster2) and three stimuli (Cluster3). For
example, Cluster2 for sinusoidal stimuli includes the simulations with the cluster decoding algorithm
using all three types of parameter settings, both with and without fixing s2. The figure clearly shows
that the cluster decoding is significantly faster, and it also suffers much less from increasing the number
of stimuli.

The performance of MAP could potentially be improved by employing the Expectation Maximization
(EM) algorithm rather than using the marginal likelihood here. However, the EM iterations will spend
much longer time than the marginal likelihood method, considering especially the unknown number of
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Figure 5.3: The MAP and the cluster decoding algorithms on sinusoidal stimuli with 2 or 3 components. Blue,
red, and green solid lines show the true stimuli. Light grey lines show the decoding results. The four row panels
from top to bottom represent respectively MAP without fixing s2, MAP fixing s2, cluster decoding without fixing
s2, and cluster decoding fixing s2. Different column panels represent different stimulus parameters shown in Table
5.3. The Pn and Pc ratios are classification statistics; see the main text. The closer these numbers are to 1, the
more correct the classification.

stimuli K. We do not pursue it here.

5.2 Stochastic Mixtures

In each of M = 10 trials we simulate K new stimuli according to the OU model. Each spike train is
generated using the simulated stimuli within the period [1, 6]s (a period of 5s after 1s burn-in). The
time step size of generating the stimulus is 0.01s. We then decode the stochastic mixtures from the spike
trains.

The root mean squared deviation (RMSD) between true and decoded stimuli is used to evaluate the
performance. Since the stochastic stimuli are simulated with steps of 0.01s and we approximate the
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Figure 5.4: Boxplots of elapsed time for decoding simulations. All simulation studies in Figures 5.2 and 5.3 are
included and merged into groups. The labels on x-axis represent the decoding algorithm and the number of stimuli;
see the main text.

stochastic process with a discretized piecewise constant function with steps of 0.1s, the RMSD will
always be greater than 0. To take this into account, a relative root mean square deviation (rRMSD) is
used to measure the decoding accuracy:

rRMSD =

√
1

10N

∑N
n=1

∑10
l=1(Ŝn − Sn,l)2

√
1

10N

∑N
n=1

∑10
l=1(Ŝ∗n − Sn,l)2

. (5.1)

where N is the number of discretized intervals, Sn,l denotes the true stimulus, different for each n

and l, Ŝn is the prediction of the stimulus and Ŝ∗n is an artificial stimulus that minimizes the RMSD,

Ŝ∗n = 1
10

∑10
l=1 Sn,l. Then the best achievable value of rRMSD is 1.

The effective sample size (ESS) measures the weight degeneracy of the sequential Monte Carlo methods.
The ESS at time n for I particles is given by

(Neff )n =
1

∑I
i=1 (w̄n,i)

2
. (5.2)

If the weights are evenly spread, then (Neff )n = I takes its maximum value. The smaller ESS is, the
less effective are the particles in representing the distribution.

The performance of different particle methods are compared using rRMSD, ESS and the trace of param-
eter learning over time.

We tried stimulus mixtures of K = 1, 2 and 3 components. A mixture of 1 component implies that the
neuron’s attention is fixed at the single stimulus. We set the TPM for the mixture of two to

ΓΓΓ2 =

[
0.8 0.2

0.2 0.8

]
, (5.3)

and for the mixture of three to

ΓΓΓ3 =




0.5 0.2 0.3

0.3 0.5 0.2

0.2 0.3 0.5


 . (5.4)

Table 5.4 shows the β parameters used for each component and the common γ values for each mixture.

19



Table 5.4: Stimulus parameters, β and γ, of the stochastic stimulus mixtures using OU processes.

Mixture number one two three

Stimulus index 1 1 2 1 2 3

β 70 65 75 60 70 80

γ 20 20 20

During initialization, the values of γ, β and the stimulus strength S are uniformly sampled from U(0, 40),
U(0, 200) and U(0, 200), respectively. The variances for the algorithmic updating of Γ, γ and β are
Vλ = 0.01, Vγ = 1 and Vβ = 4, respectively. For the AFP algorithm with kernel smoothing, we use
δ = 0.95. Throughout the experiments, the number of particles is I = 500. The delay time for particle
smoothing is n∗ = 10 intervals equal to 1s.

To represent various types of algorithms in single neuron and population decoding, we use the notation
explained as follows. An algorithm is denoted by a unified term

{,i,m} {BF,APF} {,g} - {F,lag,FB} . (5.5)

A possible prefix i or m stands for the individual decoding or the marginal likelihood decoding in parallel
processing. The main term BF or APF means the filtering algorithm. A possible suffix of g stands
for using the geometric mean for the likelihood value. Finally, the last part represents whether we use
filtering (F), fixed-lag smoothing (lag) or fixed-interval smoothing with the forward-backward algorithm
(FB).

5.2.1 Single Spike Train

In single spike train experiments, the decoding trials are repeated 50 times. In each trial new stimuli
are generated and one spike train is simulated following the stimulus mixture. Then all decoding is
conducted only on this single spike train.

Figure 5.5 illustrates decoding examples for single spike trains using the online BF. Shown in the figure
are single spike trains and the corresponding decoding results (left) together with kernel smoothing
approximations of the posterior distributions (middle and right) at selected time points (dashed lines
in left figures), using stochastic mixtures of 1, 2 and 3 components in the upper, middle and lower
row panels. In Figure 5.6 are shown decoding examples for two stimuli, using online filtering, fixed-lag
smoothing and fixed-interval smoothing with a delay of n∗ = 10 for the upper, middle and lower row
panels. The same spike train is used for the three methods.

Boxplots of rRMSD values from 50 repetitions are shown in Figure 5.7. Various combinations of three fil-
tering methods (online filtering, fixed-lag smoothing and fixed-interval smoothing), two particle methods
(BF and APF) and three component sizes (K = 1, 2 and 3) are tried. The decoding performance tends
to be better when there are less number of stimulus components and when we use delayed smoothing
rather than online filtering. The benefit of APF is not observed for K = 1 and K = 2, but becomes
notable when K = 3.

Figure 5.8 shows the ESS of different particle methods for different number of components. The ESS
is calculated for all time steps, so the boxplots cover 2500 samples for all 50 repetitions at all 50 time
steps. The ESS of APF outperforms BF only when K = 3. When K = 2, the medians of APF and BF
are comparable but the variance of BF is smaller. When K gets larger, the weight degeneracy quickly
becomes a problem for BF, but the weights are less sensitive to K for APF. This finding here corresponds
to the finding in the rRMSD plots in Figure 5.7.

Finally, in Figure 5.9 we show examples of the time trajectory of parameter learning for γ, the diffusion
parameter in the OU model of the stimuli. Parameter learning converges faster using APF when there
is more than one stimulus, but the learning is not as fast as the parameter degeneracy (observed and
explained in the following population decoding).

20



● ●● ● ●● ●●● ● ●● ●● ● ● ● ● ●●●●●● ● ● ●● ● ●●●●● ● ●●● ● ● ●● ● ●●●● ● ● ● ● ● ● ● ●● ● ●● ● ● ● ●● ● ● ●●● ● ● ● ● ●●●●●●●●●● ● ●● ●●● ●●●● ●● ●● ● ●●●●●●● ● ● ● ● ●●● ●● ● ●●●● ●●●● ● ●● ●●● ● ● ●●● ● ●●●●●●● ●●● ●● ●● ●●●●●●●● ● ●● ●●● ● ●●●●● ● ●●●●● ● ● ● ● ●●● ●●●● ● ● ●●●● ● ●● ● ●●● ●●●●● ● ● ● ● ●● ● ●● ● ● ● ●●

40
60

80
10

0

Time/s

S
tim

ul
us

 s
tr

en
gt

h

1 2 3 4 5

K=1 rRMSD = 1.584

40 60 80 100

0.
00

0.
06

0.
12

Stimulus
40 60 80 100

0.
00

0.
06

0.
12

Stimulus

● ●●●●●● ●● ● ● ● ● ● ●● ●●●● ● ● ● ● ●●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●●●●● ● ● ● ●● ● ●●●●●● ● ● ● ●●●●● ●●●●● ● ● ● ●● ● ● ● ● ● ●●● ● ● ● ● ● ●●● ●●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●●● ● ● ●● ● ● ●● ● ● ●●● ● ● ● ●● ●●● ● ●●●● ● ●● ●

40
60

80
10

0

Time/s

S
tim

ul
us

 s
tr

en
gt

h

1 2 3 4 5

K=2 rRMSD = 1.849

40 60 80 100

0.
00

0.
06

0.
12

Stimulus
40 60 80 100

0.
00

0.
06

0.
12

Stimulus

● ● ●● ● ● ●● ● ● ● ●●●●●●●● ● ●●●●●●●● ● ● ● ●● ●● ● ● ● ●●●●●●● ●● ● ●● ● ●●●● ● ● ●●● ●●●●●●●●●● ● ●●● ● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ● ● ● ● ●●●●● ● ● ● ● ● ●●●● ● ● ● ●●●● ● ● ● ● ●● ● ● ●●●● ● ● ●● ●●●●●● ●

40
60

80
10

0

Time/s

S
tim

ul
us

 s
tr

en
gt

h

1 2 3 4 5

K=3 rRMSD = 2.688

40 60 80 100

0.
00

0.
06

0.
12

Stimulus
40 60 80 100

0.
00

0.
06

0.
12

Stimulus

Figure 5.5: Decoding of stochastic stimulus mixtures using BF with filtering from a single spike train responding
to stimulus mixtures containing 1 (upper panel), 2 (middle panel) or 3 (lower panel) components. Blue curves
show all the stimulus components in the mixture, and the black curve switching between the blue curves indicate
the attended stimulus. Red piecewise-constant lines show the decoding results as the posterior mean, with each
constant interval being 100 ms long. The light red shaded area indicates the posterior distribution at each time
step. The spike train is plotted above each decoding figure as sequences of dots. The rRMSD values are shown
on the top-right corner of each figure. In the right side of each panel, the empirical posterior distributions at
selected time points indicated by dashed lines in the left panels are shown, computed from weighted kernel density
smoothing using the particles. The red vertical line indicates the posterior mean, i.e., the decoding estimates
shown in the left panels.

● ● ● ●●●●●● ●●● ● ●● ● ● ●● ● ● ● ● ● ●●●●●● ●● ●● ● ●●● ● ●● ●●●● ●● ●●●●●● ● ● ● ●●●● ● ● ●● ● ●●● ● ●●●●● ● ●●●●● ● ●●● ●● ● ●●●●●●●● ●●●●●● ●●● ●●●●● ●● ●●●●● ● ● ●● ● ●●●● ●● ● ●● ●●● ● ● ● ● ● ●● ●●● ●● ● ● ● ● ●● ●●● ● ●● ● ● ● ●● ●●●●●● ● ● ●● ● ● ●● ●●●● ● ●● ●●● ● ● ● ● ● ●●

40
60

80
10

0

Time/s

S
tim

ul
us

 s
tr

en
gt

h

1 2 3 4 5

BF−F rRMSD = 1.949

40 60 80 100

0.
00

0.
04

0.
08

0.
12

Stimulus
40 60 80 100

0.
00

0.
04

0.
08

0.
12

Stimulus

40
60

80
10

0

Time/s

S
tim

ul
us

 s
tr

en
gt

h

1 2 3 4 5

BF−lag rRMSD = 1.829

40 60 80 100

0.
00

0.
04

0.
08

0.
12

Stimulus
40 60 80 100

0.
00

0.
04

0.
08

0.
12

Stimulus

40
60

80
10

0

Time/s

S
tim

ul
us

 s
tr

en
gt

h

1 2 3 4 5

BF−FB rRMSD = 1.758

40 60 80 100

0.
00

0.
04

0.
08

0.
12

Stimulus
40 60 80 100

0.
00

0.
04

0.
08

0.
12

Stimulus

Figure 5.6: Decoding of stochastic stimulus mixtures from a single spike train by BF with filtering, BF-F (upper
panel), fixed-lag smoothing, BF-lag (middle panel) and fixed-interval smoothing, BF-FB (lower panel). The three
panels show the decoding of the same spike train. See caption of figure 5.5 for explanation.
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Figure 5.7: The rRMSD values of decoding stochastic mixtures with K = 1, 2 and 3 components using different
particle methods, calculated from 50 repetitions. In the labels of the x-axis, F: filtering, Lag: fixed-lag smoothing,
FB: fixed-interval smoothing using the forward-backward algorithm. For example, APF-Lag means using APF
and reporting estimates using fixed-lag smoothing.

Figure 5.8: ESS of BF and APF with K = 1, 2, 3
stimuli, shown in boxplots for 2500 samples of 50
repetitions at 50 time steps. The labels in the x-axis
show the number of stimuli. For example, APF-2
means using APF with 2 stimuli.
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5.2.2 Multiple Spike Trains

In population decoding of multiple spike trains, we use a mixture of two stimuli also of length 5s. In
each trial we simulate new stimuli and 20 simultaneous spike trains, and we conduct 50 repetitions.
Population decoding assumes either serial processing or parallel processing.

A decoding example following serial processing is shown in figure 5.10. The figure compares filtering,
fixed-lag smoothing and fixed-interval smoothing, all using BF. In the top of the figure are shown the 20
spike trains used for decoding, which follow similar spiking patterns because all of them attend to the
same stimulus assuming serial processing.

A decoding example following parallel processing is shown in Figure 5.11. Spike trains can be quite
distinct due to different attended stimuli. All stimuli can be simultaneously decoded at each time point.
Two decoding methods are used. First we apply individual decoding of each spike train, obtaining 20
estimates which are clustered into two categories. The median of each category is the final estimate.
The histograms to the right show how the 20 estimates are distributed at two selected time points.
Sometimes one category contains less estimates than the other. This occurs when the two components
are different in strength and most spike trains happen to attend to one stimulus component, or when
the two components have similar strength and outliers form a second category. A category with few
estimates is marked by a red color and stars if ≤ 5% of the total size. Starred estimates should be
ignored to avoid the effect of outliers and the other category will be used as the decoding result for
both components. The stars at 4.9s in the middle panel captures a situation where the two stimuli are
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Figure 5.9: Examples of parameter learning of γ over time. The solid line is the mean of 500 particles, and
dashed lines show ± the standard deviation. The red lines are the true values.
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Figure 5.10: Decoding from 20 spike trains on a stimulus mixture with two components assuming serial processing.
Decoding is done by BF with online filtering (upper middle panel), fixed-lag smoothing (lower middle panel) and
fixed-interval smoothing (lower panel).

close. The second method for parallel population decoding is to use marginal likelihood. All stimulus
components are decoded due to multiple independent observations at each time point, shown in the lower
panel.
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Figure 5.11: Decoding from 20 spike trains using BF assuming parallel processing. In the top panel 20 spike
trains are shown. In the middle panel is shown the method using individual decoding and clustering. Short gray
bars show the individual decoding results of stimulus at each time point from 20 spike trains. Thick bars show
the medians of clustered categories. A more red color of the thick bars means less number of estimates inside
the corresponding category. We mark by two stars if less than or equal to 5% (in this case, 5% × 20 = 1). The
histograms to the right show the distribution of 20 estimates with red lines indicating the medians. Blue curves
show the true stimuli. In the lower panel is shown BF with marginal likelihood. For graphical reasons, we plot the
two dimensional posterior estimation of the two stimuli in one dimension. For both decoding methods assuming
parallel processing, all stimulus components are decoded at each time point.

In Figure 5.12 the rRMSD from 50 repetitions of different methods are shown as boxplots. Population
decoding using multiple spike trains generally performs better than single spike train decoding. For
serial processing, APF performs worse than BF, and for parallel processing APF performs as well as or
better than BF, judging from rRMSD results. For both serial and parallel population processing methods,
smoothing yields little or no improvement over filtering. However, the exception is the individual decoding
methods for parallel processing, of course, since they are based on decoding of single stimuli. Indeed,
significant improvement is observed when using smoothing instead of filtering for iBF and iAPF. The
reason for the performances of BF, APF, filtering and smoothing can be partly found from the ESS values
shown in Figure 5.13. Most notably, the ESS values are much smaller than the ESS values of single spike
train results (Figure 5.8), due to extreme weights for larger sample sizes. This can lead to inaccurate
approximations of the marginalization in fixed-lag smoothing and the integrals in the forward-backward
algorithm. The smoothing performance is more affected by the small ESS than filtering. Furthermore,
for serial processing BF has better ESS with higher median and smaller variance than APF, whereas for
parallel processing, APF has better ESS. This explains the different performances of BF and APF in
serial and parallel processing in Figure 5.12. Finally, regarding using geometric means, we do not observe
much improvement of APFg and mAFPg over APF and mAPF. Using geometric means have positive
effects since the ESS’s are larger and the parameter degeneracy slows down (Figure 5.14) with APFg
and mAFPg. However, the geometric mean changes the resulting posterior distribution and introduces
a bias.

In Figure 5.14, parameter learning of γ is plotted for different methods. The APF algorithm for serial
population decoding suffers from parameter degeneracy. Parameter degeneracy of APF with kernel
smoothing (Liu and West, 2001) under large sample sizes has been reported in previous studies (Rios
and Lopes, 2013), which is a phenomenon where the parameter distribution quickly becomes narrow or
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Figure 5.12: The rRMSD values using different particle methods for serial and parallel processing, calculated from
50 repetitions. In the labels of the x-axis, APFg: APF with geometric mean, iBF: individual decoding using BF,
iAPF: individual decoding using APF, mBF: BF with marginal likelihood, mAPF: APF with marginal likelihood,
mAFPg: APF with marginal likelihood and geometric mean. For example, APFg-FB means using APF with
geometric mean, and reporting estimates using fixed-interval smoothing by the forward-backward algorithm.

Figure 5.13: ESS using different methods in
serial and parallel processing, shown in box-
plots for 2500 samples of 50 repetitions at 50
time steps. The labels in the x-axis show the
methods used. For example, parallel-mAPFg
means using mAPF with geometric mean for
parallel processing.
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collapses to a Dirac delta function. If parameter learning degenerates too fast before it receives sufficient
data to achieve a good estimate, the parameter can be fixed at values far from the true one, reducing the
decoding accuracy. Using the geometric mean slows down the degeneracy for serial processing. Other
parameter learning methods have previously been studied using sufficient statistics, which may avoid the
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degeneracy problem (Rios and Lopes, 2013; Carvalho et al., 2010); it is not pursued here. For particle
filtering with marginal likelihood on parallel population decoding, there is not a large difference between
APF and BF in terms of degeneracy.
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Figure 5.14: Examples of parameter learning of γ over time. The solid line is the mean of 500 particles, and
dashed lines show ± the standard deviation. The red lines are the true value.

5.3 Approximating continuous-time switching

Here we simulate the attentional switching in continuous time following a Poisson process. With the same
setup and methods as above, we conduct the population decoding with parallel processing. In Figure 5.15
is shown the decoding result of parallel population decoding, and in Figure 5.16 are shown two examples
of single spike train decoding selected from the 20 spike trains in Figure 5.15. The posterior distribution
to the right are taken from the switching time indicated by dashed lines. With a low Poisson switching
rate, the decoding accuracy is not severely affected for parallel population decoding. For single spike
train decoding, the estimate at switching times tend to be somewhere between the two values before and
after the switch (first spike train in the upper panel in Figure 5.16), but sometimes the estimation can
be far from the true stimulus (second spike train at 0.8s in the lower panel in Figure 5.16).

5.4 Decoding with the delay and decay kernel

In the above analysis, we have been using the burst response kernel which generates rhythmic and
oscillatory bursting spiking patterns. Now we also try parallel population decoding using the decay and
the delay kernel, shown in Figures 5.17 and 5.18, respectively. Again we use the same setup and methods.
For the delay kernel, good performance is achieved, comparable with the burst kernel. For our current
specification of the decay kernel, the spiking rate decreases greatly over time and we have to use stronger
stimulus, but there are still long ISIs (e.g. in the middle region from 2s to 4s) which reduce the decoding
accuracy.
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Figure 5.15: Decoding from 20 spike trains using BF assuming parallel processing. In each spike train, neuronal
attention switches at continuous times following a Poisson process.
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Figure 5.16: Decoding of two example single spike trains selected from Figure 5.15 using BF. Neuronal attention
switches at continuous times following a Poisson process. Example switching times are indicated by dashed lines.
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Figure 5.17: Decoding from 20 spike trains using BF assuming parallel processing. The decay response kernel is
used in the LIF model.
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Figure 5.18: Decoding from 20 spike trains using BF assuming parallel processing. The delay response kernel is
used in the LIF model.

6 Discussion

We have shown how to decode mixtures of multiple stimuli in the framework of visual attention under the
hypothesis of probability mixing, which assumes the neuron responds to only one single stimulus at any
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time. The opposing hypothesis is response averaging (Reynolds and Heeger, 2009), which assumes the
neuron responds to a weighted average of the mixture. In this case, the decoding of each single stimulus
would be much harder or impossible due to the difficulty in identifying each single stimulus based on
the estimate of the weighted average, and information of individual stimulus characteristics would not
be identifiable. This is an argument for why the neural system probably follows the probability-mixing
hypothesis, as we also show in Li et al. (2016b).

The case of deterministic mixtures expands the capability of decoding to mixtures of an unknown number
of components. The new proposed cluster decoding algorithm that first clusters the spike trains into k
categories and then decodes without probability mixtures, is more efficient and stable than direct MAP
decoding with weights as nuisance parameters. The decoding with an unknown number of components
can potentially be applied to decoding of complicated visual scenes, to find out how many components
the neurons would treat the visual scene as.

When decoding stochastic mixtures, we successfully decode the attended stimulus component using a
single spike train or using population data under serial processing. Using population data under parallel
processing enables us to obtain information of all stimulus components. Various types of particle methods
are employed and compared. Interestingly, we find that the more complicated techniques using APF and
kernel-based parameter learning do not necessarily perform better than basic methods using BF, and
smoothing, conditional on more observations, does not necessarily perform better than filtering. This is
related to sample size and model complexity.

For a limited number of particles (500 in our case), smoothing performance is closely related to ESS and
how extreme the weights are. If the sample size is increased, weights become extreme and ESS decreases.
After n∗ = 10 times of resampling, the values {Sin−n∗ ; i = 1, . . . , I} used in fixed-lag smoothing only
contain very few or only one unique value, so the accuracy will be affected. The forward-backward
algorithm is also affected because the backward sweep requires the integration using the past particles.
Therefore, for a large sample size smoothing can perform worse than filtering.

The performance of APF compared with BF has previously been studied; see e.g. Johansen and Doucet
(2008); Douc et al. (2009); Whiteley and Johansen (2010). APF applies new proposal weights to resample
particles by an early introduction of subsequent distributions, as a variance reduction approach: the
estimation variance is reduced if we achieve a good prediction of subsequent weights and thus larger
ESS. When the sample size is large, distributions become narrow and the first-stage weight in APF
cannot provide good prediction of the subsequent distribution; meanwhile, the more complicated two-
stage numerical calculations under a limited particle size could yield more variance and bias. Therefore,
the variance reduction can perform worse for a large sample size. When the model is more complicated,
so are the prior and transition distributions of the states. It becomes difficult for BF to have good
samples with a limited number of particles. APF, on the other hand, gains advantage by introducing
the subsequent states information, and therefore suffers less from the increased model complexity than
BF. Increased model complexity also makes the distributions less narrow under a large sample size due
to higher dimensions. In summary, APF is more favored for smaller sample sizes and more complex
models. In our case, population decoding contains a bigger sample size than single spike train decoding.
Increasing the stimulus number K yields higher dimensions and thus a more complex model. With the
same K, parallel processing with mAPF (using full stimulus information) has larger dimensions than
serial processing with APF (using partial stimulus information).

In our simulations of parallel processing, the stimulus number K is much less than the number of
simultaneously recorded spike trains, and each stimulus component has sufficiently large probability to
be attended. Consequently, at all time points each component is likely to be attended by some neurons
and we decode all stimulus components. If, on the other hand, K is too large, or the probability of
attending to one of more components is very small, the decoded stimuli will not likely form as many as
K clusters. In that case we could try out different K values for the clustering analysis, and report the
k∗ which minimizes the BIC. This means that among all K stimuli, k∗ are most likely attended by the
recorded neurons and we decode those k∗ attended stimuli.
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Appendix

A Probability of ISIs

Suppose the membrane potential x resets to x0 at time 0, and the spike time t > 0. We use the following
notation:

f(x, t|S,Ht−) (time-evolving probability density of voltage)

F (x, t|S,Ht−) (time-evolving cumulative distribution of voltage)

g(t|S,Ht−) (probability density of spiking at t, i.e., PDF of the ISI)

G(t|S,Ht−) (cumulative distribution of spiking at t, i.e., CDF of the ISI)

All the above probabilities depend on the stimulus S and the spike history up to the previous spike, Ht−.
In the following, we suppress S and Ht− in the notation for readability.

The probability that the neuron has not yet fired at time t, 1 − G(t), is equivalent to the probability
that the potential has not yet reached xth, F (Xth, t). Thus, the probability density of an ISI is

g(t) = − ∂

∂t
F (xth, t) = − ∂

∂t

∫ xth

−∞
f(x′, t)dx′. (A.1)

The transition probability density with a resetting threshold follows the Fokker-Planck equation, defined
by the following partial differential equation (PDE):

∂tf(x, t) = −∂x(b(t)f(x, t)) +
σ2

2
∂2
xxf(x, t), (A.2)

with absorbing boundary condition f(xth, t) = 0 and initial condition f(x, 0) = δ(x−x0). For numerical
reasons, we also approximate by setting a reflecting boundary condition at a small value x = x−, where
the flux equals 0.

Now we formulate a PDE based on the CDF, F (x, t) (Li et al., 2016a; Iolov et al., 2014; Hurn et al.,
2005). Plugging f(x, t) = ∂xF (x, t) into (A.2) gives

∂t∂xF (x, t) = −∂x
[
b(x, t)∂xF (x, t)− σ2

2
∂x∂xF (x, t)

]
. (A.3)

Integrating both sides with respect to x yields

∂tF (x, t) = −b(x, t)∂xF (x, t) +
σ2

2
∂2
xxF (x, t) + C(t). (A.4)

At the lower reflecting boundary x = x−, we have F (x−, t) = 0 and thus ∂tF (x, t)|x=x− = 0. The flux
equals 0, so

J(x−, t) = −b(x−, t)f(x−, t) +
σ2

2
∂xf(x, t)|x=x−

= −b(x, t)∂xF (x, t)|x=x− +
σ2

2
∂2
xxF (x, t)|x=x−

= 0. (A.5)

Thus, C(t) = 0, and we obtain the PDE for F (x, t):

∂tF (x, t) = −b(x, t)∂xF (x, t) +
σ2

2
∂2
xxF (x, t), (A.6)

with boundary conditions ∂xF (xth, t) = 0, F (x−, t) = 0, and initial condition F (x, 0) = H(x − x0),
where H(·) is the Heaviside step function.

The PDE is solved numerically using Crank-Nicholson finite difference method by discretizing time and
potential with grid size ∆t and ∆x.
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B Forward-Filtering Backward-Smoothing

Suppose a general hidden Markov process X1:T and observations Y1:T . The smoothing distribution at
time t can be expressed using

p(Xt|Y1:T )

=p(Xt|Y1:t,Yt+1:T
)

=
p(Yt+1:T |Xt, Y1:t)p(Xt|Y1:t)

p(Yt+1:T |Y1:t)

=p(Xt|Y1:t)

∫
p(Xt+1|Xt)p(Yt+1:T |Xt+1, Y1:t)

p(Yt+1:T |Y1:t)
dXt+1

=p(Xt|Y1:t)

∫
p(Xt+1|Xt)

p(Xt+1|Y1:T )

p(Xt+1|Y1:t)
dXt+1

=p(Xt|Y1:t)

∫
p(Xt+1|Xt)

p(Xt+1|Y1:T )∫
p(Xt+1|Xt)p(Xt|Y1:t)dXt

dXt+1. (B.1)

Approximating the integrals using I particles, the smoothing weight of particle i is

w̄∗t,i ≈ w̄t,i
∑

j

p(Xt+1,j |Xt,i)w̄∗t+1,j∑
l p(Xt+1,j |Xt,l)w̄t,l

, (B.2)

where w̄t,i is the normalized filtering weight at time t for particle i, which is calculated using the bootstrap
filter and auxiliary particle filter algorithms introduced in the main text.

The transition distribution denoted by p(Xt+1,j |Xt,i) varies depending on what we use for the states
Xt. In our case, if we include the attention state C, i.e. X = (ΓΓΓ, C, γ, β, S), then for β and S we only
need βC and SC . Otherwise, if X = (ΓΓΓ, γ, β, S) when applying the marginal likelihood, then all β and
S should be used. The calculation of the transition density p(Xt+1,j |Xt,i) follows the propagation given
in 4.3.

Following equation (B.2), to obtain the smoothing weights we do normal filtering to have the filter-
ing weights at all time points, then run backward smoothing using (B.2) recursively to calculate the
smoothing weights at each time point.
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