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Abstract

Broadly speaking, this thesis is devoted to model selection applied to ordinary differential
equations and risk estimation under model selection. A model selection framework was de-
veloped for modelling time course data by ordinary differential equations. The framework
is accompanied by the R software package, episode. This package incorporates a collection
of sparsity inducing penalties into two types of loss functions: a squared loss function rely-
ing on numerically solving the equations and an approximate loss function based on inverse
collocation methods. The goal of this framework is to provide effective computational tools
for estimating unknown structures in dynamical systems, such as gene regulatory networks,
which may be used to predict downstream effects of interventions in the system. A recom-
mended algorithm based on the computational tools is presented and thoroughly tested in
various simulation studies and applications.

The second part of the thesis also concerns model selection, but focuses on risk estimation,
i.e., estimating the error of mean estimators involving model selection. An extension of Stein’s
unbiased risk estimate (SURE), which applies to a class of estimators with model selection,
is developed. The extension relies on studying the degrees of freedom of the estimator, which
for a broad class of estimators decomposes into two terms: one ignoring the selection step
and one correcting for it. The classic SURE assumes that the estimator in question is almost
differentiable and it therefore only accounts for the first term of the decomposition. In order to
account for the second term the continuum of models arising when the selection procedure has
a tuning parameter is studied. By exploiting the duality between varying the tuning parameter
for fixed observations and perturbing the observations for fixed tuning parameter, an identity
is derived for a class of estimators which support the extension of SURE. The resulting
corrected version of SURE is generally fast to compute and for the lasso-OLS estimator it
shows promising results when compared to risk estimation via cross validation.
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Resumé

Denne afhandling omhandler modelselektion i ordinære differentialligninger og risk -estimation
under modelselektion. Vi etablerer et estimationssetup for ordinære differentialligninger hvori
modellen b̊ade selekteres og estimeres. Dette setup er understøttet af R pakken episode, som
inkorporerer en familie af penaliseringsmetoder der inducerer modelselektion. Disse penalis-
eringsmetoder kan anvendes p̊a to typer af inferens: en baseret p̊a numeriske løsninger af
differentialligningerne og en baseret p̊a en approksimation ved hjælp af inverse collocation.
Pakken indeholder værktøjerne til at estimere ukendte strukturer i dynamiske systemer, som
for eksempel genregulatoriske netværk, og gør det derved muligt at prædiktere intervention-
seffekter i systemet. En konkret algoritme baseret p̊a disse værktøjer præsenteres og anvendes,
samt gennemtestes i en række simulationsstudier.

Den anden halvdel af afhandlingen tager ogs̊a udgangspunkt i modelselektion, men fokus er
flyttet til risk-estimation, alts̊a estimation af fejlen for middelværdiestimatorer som involverer
modelselektion. En udvidelse af Stein’s unbiased risk estimat (SURE), som kan anvendes p̊a
en række estimatorer med indbygget modelselektion, etableres. Denne udvidelse beror p̊a
frihedsgraderne for estimatoren, som kan dekomponeres i to led: ét som ignorerer modelse-
lektionen og ét som korrigerer for den. Den klassiske SURE har den st̊aende antagelse at
estimatoren er næsten differentiabel og tager derfor kun højde for det første led. For at es-
timere det andet led er det nøvendigt at nærstudere det kontinuum af modeller der opst̊ar
n̊ar modelselektionen afhænger af en tuningparameter. Ved at udnytte den dualitet der er
imellem at justere tuningparameteren for fast observation og perturbere observationen for
fast tuningparameter, opn̊ar vi en ligning som holder for en række modelselektionsmetoder.
Den korrigerede udgave af SURE er relativ hurtig at evaluere og for lasso-OLS estimatoren
viser den lovende resultater sammenlignet med risk-estimation ved hjælp af krydsvalidering.
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1

Introduction

Planetary motions, changes in atmospheric pressure, raindrops falling to the ground, cellular
dynamics and chemical reactions. These are all concrete examples of dynamical systems;
they exist all around us, ranging from macroscopic to microscopic scales. Dynamical systems
involve concrete or abstract objects, which evolve over time according to some fixed ”rules”.
The focus of this thesis is twofold: to develop a model selection framework for ordinary
differential equations (a particular type of dynamical systems) and to quantify and estimate
the risk in model selection.

To motivate the first, consider gene regulatory networks in systems biology, which we briefly
outline: Within living cells segments of DNA are copied into mRNA (messenger ribonucleic
acid) sequences by the enzyme RNA polymerase. This is called the transcription process.
The mRNA sequences reaching the ribosomes determine the production of gene products
(RNA and proteins). This is called the translation process. Some of these gene products, as
well as other molecular regulators within the cell, may in turn regulate the transcription of
the mRNA sequences from their respective site on the DNA. The system evolves over time
according to these internal and external gene regulations ([5]).

While the uncertainty of planetary motions and the changes in atmospheric pressure can pri-
marily be ascribed to unknowns in the state of the system, the uncertainty in gene regulatory
networks is of a different nature — it is structural. The primary challenge is identifying which
genes influence the transcription of given mRNA sequences (through their associated gene
products). The first point of interest in this thesis is therefore learning ODE systems with
unknown structures.

The second statistical topic addressed in this thesis is risk estimation, i.e., estimation of
the error of an estimator. The framework considered is risk estimation of mean estimators
under a squared loss. This is the framework in which Steins unbiased risk estimate (SURE)
applies, provided that the mean estimator is almost differentiable (see [7] and [19]). While all
almost differentiable estimators are continuous, the results in this thesis also apply to certain
mean estimators with discontinuities. Discontinuous estimators are rather common in data
adaptive model selection and the results are therefore particularly suited for risk estimation
under model selection.
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2 Chapter 1. Introduction

1.1 Systems of ordinary differential equations

Ordinary differential equation (ODE) systems are continuous dynamical systems with the
simplifying assumption that the infinitesimal change of a state variable x over time t only
depends on the current position of x. Mathematically, let x(t) denote the position of the
state, x ∈ Rd, at time t. Then x : R→ Rd, viewed as a function of t, is a solution to an ODE
if

dx

dt
= f(x), (1.1)

where f : Rd → Rd is a smooth d-dimensional field. Much mathematical research has been
put into showing existence and uniqueness of solutions to (1.1) under various conditions,
see e.g., [15] and [18]. However, existence and uniqueness of the systems in question will
be given little attention in this thesis. Most attention will be directed at the use of ODEs
in statistical modelling and model selection. The following subsections motivate the use of
ODEs for modelling aggregated systems.

1.1.1 Aggregated dynamics

The use of ordinary differential equations for modelling dynamical systems is often motivated
by some underlying physical laws governing the observed system. Even though thermody-
namic laws dictates that certain biological or chemical systems follow stochastic (partial)
differential equations, the dynamic is often reduced to follow that of ordinary differential
equations with no intrinsic noise. This reduction is typically justified through an aggrega-
tion argument. Two of such are outlined below: one focusing on aggregating the dynamics
of chemical combonents in a population of similarly behaving cells and another one focusing
on chemical kinetics in a well stirred solution in which the number of molecules is large. A
reduction to deterministic ODE systems simplifies the inference and considerably reduces the
computational burden.

Aggregation of cellular dynamics

Reduction of stochastic cell dynamics to deterministic systems is considered in [14]. Here the
dynamic of a single cell is assumed to follow the dynamic of a stochastic delay differential
equation (SDDE)

dX = f(FX)dt+ σ(FX)dBt, (1.2)

where X is a d-dimensional process, FX(t) = {X(s)|s ≤ t} denotes its history and f and σ are
drift and diffusion functions, respectively. Realistically, the experimental setup only allows
for observing the aggregate population of cells. Luckily, the diffusion term of the average
of independent realisations of (1.2) vanishes as the population size increases and thus the
aggregate population dynamics follow a deterministic delayed differential equation.

However, as pointed out in [14] unless the drift and expectation commute (E(f(FX)) =
f(FE(X))) the aggregate population dynamics will not share the same drift as that of the
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individual cells. Most nonlinear drifts do not commute with the expectation and thus (1.2)
might need to be simplified by a linearisation.

Linear noise approximation in chemical kinetics

Another approach of reducing stochastic systems to deterministic systems is the linear noise
approximation (LNA) used in chemical kinetics, as described in [22]. On molecular level the
abundances of d chemical species (e.g., H2O, NaCl, etc) in a well stirred solution are assumed
to follow a d-dimensional jump markov process, Nt.

Among these chemical species R reactions drive the transition of one set of species (the
reactants) to another (the products), e.g., HCl + NaOH → H2O + NaCl. We let vr ∈ Rd
denote the net change in number of molecules, given that reaction r takes place. The jump
intensity, λr, of reaction r depends on the abundance of its reactants prior to the time of
reaction. Let P (n, t|N0) denote the probability distribution of Nt = n given the initialisation
N(0) = N0. The Kolmogorov forward equations then states that:

∂P (n, t|N0)

∂t
=

R∑

r=1

λr(n− vr)P (n− vr, t|N0)− λr(n)P (n, t|N0) (1.3)

The linear noise approximation relies on an increasing total number of molecules, which we
assume is proportional to the volume of the solution, Ω. The concentration process X = N/Ω
then assymptotically follows the distribution of x + ξ/

√
Ω, as Ω → ∞ (for details see [22]).

Here x follows a deterministic ordinary differential equation (ODE) given by the field and
initial conditions:

dx

dt
=

R∑

r=1

vrγr(x), x(0) = x0 (1.4)

where γr(x) := λr(Ωx)/Ω are the rate functions and the limit x0 = limΩ→∞N0/Ω is assumed
to exist. The noise process then follows a time-inhomogenous Ornstein Uhlenbeck process

dξt =

(
R∑

r=1

vr∂γr(xt)

)
ξtdt+

R∑

r=1

vr
√
γr(xt)dB

r
t , ξ(0) = 0 (1.5)

where (Br)Rr=1 are i.i.d. brownian motions. Thus, ξ is a zero mean Gaussian process with a
computationally tractable time-dependent spatial covariance structure. However, the covari-
ance structure is only analytically available if the matrices (vr∂γr(x))r,x commute. Conclu-
sively, as Ω → ∞, the concentration process X is the sum of a solution to an ODE and a
Gaussian noise process.

Mass action kinetics refers to a class of polynomial ODE systems on the form (1.4), where
γr is a monomial for each r. Each index r represents a chemical reaction on the form:

a1X1 + ...+ adXd → b1X1 + ...+ bdXd, (1.6)
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where (ai)
d
i=1 and (bi)

d
i=1 are non-negative integers, called the stoichiometric coefficients. The

net change of molecules due to reaction (1.6) is v = (ai− bi)di=1. For each reaction r = 1, ..., R
let Ar ∈ Nd denote the reactant stoichiometric coefficients and let Br ∈ Nd denote the product
stoichiometric coefficients. In mass action kinetics the rate function γr for reaction r is given

by the monomial γr(x) = krx
Ar = kr

∏d
i=1 x

Ar(i)
i for some non-negative rate constant kr ≥ 0.

The full system thus reads:

dx

dt
=

R∑

r=1

kr(Ar −Br)xAr , x(0) = x0. (1.7)

Extending the above chemical kinetics framework to include rational rate functions is of-
ten required when modelling gene regulatory networks. These rate functions are also called
hill functions or hill-type functions. The rational form typically appears when reducing a
larger mass action kinetics model with latent coordinates to the smaller system consisting
of the observed coordinates only. This reduction is carried out through a quasi-stationary
approximation, in which certain reactions are assumed to equilibrise instantly, see e.g., [16].

1.1.2 Learning ODE systems

We consider a parametrised d-dimensional ODE given by:

dx

dt
= f(x, θ), x(0) = x0 (1.8)

with initial condition x0 ∈ Rd and a smooth function f : Rd × Rp → Rd. This thesis primar-
ily focuses on parametric frameworks, however non-parametric methods for learning ODE
systems is also an active area of research, most notably are the methods by [4] and [23].

Let (yi)
n
i=1 be noisy observations at discrete time points (ti)

n
i=1. Inference based on the squared

loss

`y(θ) =
1

2

n∑

i=1

‖yi−x(ti)‖22, subjected to x(ti)−x0 =

∫ ti

0
f(x(s), θ) ds, for i = 1, ..., n (1.9)

is a classic approach ([1], [13]) and is refered to as the least squares method or the gold
standard method. Note that the constraint in (1.9) implies that the solution curve x(t) depends
on θ ∈ Rp and x0 ∈ Rd. The least squares method has a straight forward interpretation: it
favours mean structures within the ODE class, (1.8), which provide small empirical variances.

Evaluating the loss function requires solving the ODE system, which in most nonlinear sys-
tems are carried out using a numerical solver (see e.g. [17] for a comprehensive overview). If
`y is optimised using gradient based methods then the computational burden primarily lies
in evaluating the derivatives of x with respect to θ and x0. This is because the derivatives
zθ = ∂θx and zx0 = ∂x0x are solutions to even larger ODE systems on Rd×p and Rd×d,
respectively. These ODEs are called the sensitivity equations and are given by:

dzθ
dt

= ∂xf(x, θ)zθ + ∂θf(x, θ), zθ(0) = 0d×p,

dzx0
dt

= ∂xf(x, θ)zx0 , zx0(0) = Id,

(1.10)
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where 0d×p denotes the d×p-dimensional 0-matrix and Id is the d-dimensional identity matrix.

Avoiding this computational burden is a motivation for considering the inverse collocation
methods, which completely avoid numerically solving the ODE systems. The name is derived
from collocation methods in numerical analysis, which refer to a class of methods for solving
ODE systems numerically. It goes as follows; in the ODE system

dx

dt
= f(x(t), θ), x(0) = x0, (1.11)

the parameter vector θ is assumed known. Moreover, a finite set of collocation points C ⊆ R
are chosen, as well as a vector space V of functions on R with values in Rd. A numerical
solution, x̃ ∈ V, is sought that minimises the distance ||dx̃dt (t)−f(x̃(t), θ)|| between

(
dx̃
dt (t)

)
t∈C

and (f(x̃(t), θ))t∈C . Typically, V consists of functions with coordinates in span(ϕj) for a choice
of finitely many basis functions ϕj : R → R and the norm is the 2-norm on Rd. Collocation
methods thus solve the forward problem of computing the solution of (1.11) for a known θ.

By inverse collocation methods we refer to a class of estimators of the parameter θ, given
the observed trajectory x, that solve the inverse problem using the collocation idea. These
methods exist in many versions ([2], [3], [6], [9], [12], [21]) and are known under many other
names, e.g., gradient matching, trajectory matching or smooth-and-match estimators. How-
ever, they all rely on the same two-step procedure: 1) approximate the data, y, by an element
in V to get an estimate of the full trajectory x̂; 2) base the estimation of θ on the trajectory
x̂ as if it was the true trajectory, by minimising the distance between the position, gradient
or integral at a given set of collocation points. Typically, x̂ is obtained as a smoother or an
approximation of y via a basis expansion.

One example of an inverse collocation method is the gradient matching method ([2], [21]),
which minimises the approximate loss function:

1

2

∑

t∈C

∥∥∥∥
dx̂

dt
(t)− f(x̂(t), θ)

∥∥∥∥
2

2

, (1.12)

where the coordinates of x̂ are approximated via a basis expansion. Though the inverse
collocation methods are faster to compute, the resulting estimates of θ may still strongly
depend on y through the choice of smoothing scheme y 7→ x̂.

Each parameter coordinate in (1.8) corresponds to a smaller component in the ODE structure.
For instance, in the mass action kinetics framework each rate parameter kr encode the rate
of a single reaction. And more importantly, that reaction is only present in the system if kr
is strictly positive. If little to no prior knowledge of the system exists, the parameter space
must be large enough to provide a sufficiently flexible ODE system. Choosing the level of
flexibility is up to the data analyst. For instance in a mass action kinetics framework, one
could choose the set of all catalytic reactions, i.e.,

Xs +Xc → Xp +Xc

with s, c, p ∈ {1, ..., d} and s 6= c 6= p. The experimental setting or underlying theory may
reduce this set of reactions to those that are physically possible, or perhabs suggest a more
appropriate set of reactions.



6 Chapter 1. Introduction

In this parametric framework, learning the structure of the dynamics of x from noisy obser-
vations thus amounts to sparse estimation of θ. There exist a vast selection of tools for sparse
estimation, particularly within linear regression. One approach — which is used in this thesis
— is to include a sparsity enforcing penalty function in the loss function. Examples of such
penalties include: lasso ([20]), elastic net ([25]), smoothly clipped absolute deviation (SCAD,
by [8]) or minimax concave penalty (MCP, by [24]).

1.2 Risk estimation under model selection

In risk estimation we are concerned with the following problem: let Y be an n-dimensional
random variable with finite expectation µ ∈ Rn. For an estimator of the mean vector µ̂ :
Rn → Rn, which given the observation Y returns the estimate of µ, we define the risk of µ̂ as

Risk(µ̂) := E‖µ− µ̂(Y )‖22, (1.13)

provided that µ̂(Y ) has finite second moment. The risk of an estimator is a measure of how
close its estimates are to the true mean vector on average. Risks relying on other loss functions
than the squared loss also exist, but are not considered here.

If Y also has finite second moment we can expand the squared norm in (1.13) and obtain:

Risk(µ̂) = E‖Y − µ̂(Y )‖22 −
n∑

i=1

V Yi + 2

n∑

i=1

cov(Yi, µ̂i(Y )). (1.14)

The first term is the expected residual sum of squares, the second term only depends on the
marginal variances of Y and the last term measures the linear dependence between Y and its
fitted values under µ̂.

Cross validation and bootstrapping are two general methods for estimating risks. In cross
validation, the data is split into folds and the estimator is trained on subsets of the folds (as-
suming that it is possible) and validated on the remaining folds. In bootstrapping the risk is
estimated by applying the estimator to replicated data drawn from some distribution, which
appropriately resemples the distribution of Y . Both methods have their advantages and draw-
backs, but both rely on applying the estimator multiple times, which may be computationally
intensive. In this thesis we will focus on an alternative risk estimator, the computationally
lighter Stein’s unbiased risk estimator (SURE, see [7] and [19]).

1.2.1 Degrees of freedom and Steins unbiased risk estimate

Assuming that V Yi = σ2 for each i = 1, ..., n, (1.14) reads

Risk(µ̂) = E‖Y − µ̂(Y )‖22 − nσ2 + 2σ2df(µ̂), (1.15)

where

df(µ̂) :=

n∑

i=1

cov(Yi, µ̂i(Y ))

σ2
(1.16)



1.2. Risk estimation under model selection 7

are the degrees of freedom of the estimator.

Consider the example of an estimator µ̂ = ΠV , which is the orthogonal projection onto
some fixed subspace V of Rn. This example includes all ordinary least squares estimators in
regression with pre-specified design matrices. If the coordinates of Y are uncorrelated, then
the degrees of freedom of µ̂ is

df(ΠV ) =
tr(Cov(Y,ΠV Y ))

σ2
= tr(ΠV ) = dim(V ), (1.17)

where tr denotes the trace operator. This example shows that (1.16) coincides with the usual
terminology from linear models that the degrees of freedom equals the dimension of predictor
space. It is important to stress that the intuitive notion of degrees of freedom as the dimension
of the ”fitting” space does not extend to nonlinear estimators. In fact even if Y is Gaussian,
degrees of freedom are not guaranteed to be finite, see e.g. [10] for examples and a discussion
of this.

Assuming that Y is Gaussian with uncorrelated coordinates, i.e., Y ∼ N (µ, σ2In), one can
recover the degrees of freedom from the local behaviour of µ̂ if it is almost differentiable. By
Definition 1 in [19] almost differentiability means that for each coordinate function µ̂i : Rn →
R there exists a function gi : Rn → Rn such that for all z ∈ Rn

µ̂i(y + z)− µ̂i(y) =

∫ 1

0
〈z; gi(y + tz) dt, (1.18)

for almost all y ∈ Rn. Almost differentiable functions are tightly linked to Sobolev functions
— functions for which weak derivatives exist having this partial integration property. The
function gi is essentially the weak derivative of µ̂i and we let ∂iµ̂i denote the ith coordinate
of gi. With these we define the divergence of µ̂:

div(µ̂) :=
n∑

i=1

∂iµ̂i. (1.19)

If the estimator is almost differentiable and Y ∼ N (µ, σ2In), then Stein’s Lemma (Lemma 2
in [19]) yields

df(µ̂) = E(div(µ̂)). (1.20)

We refer to dfS := E(div(µ̂)) as Stein’s degrees of freedom. Combined with (1.15) it yields
Stein’s unbiased risk estimate (SURE):

SURE := ‖Y − µ̂(Y )‖22 − nσ2 + 2σ2div(µ̂)(Y ). (1.21)

The divergence operator originates from physics and has an interesting interpretation: for a
smooth field f : Rn → Rn, define the flow F : R× Rn → Rn by

F (t, x) = x+

∫ t

0
f(F (s, x)) ds, (1.22)
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which has the property ∂tF (0, x) = f(x). For a compact borel measurable set Ω ⊆ Rn let
volF (t,Ω) := Ln(F (t,Ω)) denote its volume. Here Ln denotes the Lebesgue measure on Rn.
By the Change of Variable Theorem

volF (t,Ω) =

∫

Ω
JF (t, F (−t, z)) dz, (1.23)

where JF := |det(∂xF )| denotes the Jacobian of x 7→ F (t, x). Standard results from analysis
and linear algebra yields

det(∂xF (t, x)) = det ((∂xF )(0, x) + t∂t∂xF (0, x) + tε(t, x))

= det (I + t∂xf(x) + tε(t, x))

= 1 + t · tr(∂xf(x) + ε(t, x)) +O(t2),

(1.24)

for some ε vanishing at t = 0. Hence div(f)(x) = tr(∂xf(x)) = ∂tJF (0, x), which in terms of
(1.23) shows

∂tvolF (0,Ω) =

∫

Ω
div(f)(z) dz. (1.25)

In other words, div(f) measures the infinitesimal change in volumes due to moving them via
the flow F . In light of this interpreation, the intuition behind the expectation E(div(µ̂)(Y ))
is that it measures of the average strength of the dependence between Y and µ̂(Y ), if µ̂ is
sufficiently smooth.

In order for (1.20) to hold the almost differentiability requirement is absolutely essential, as
the main argument in proving (1.20) is a partial integration argument. If for instance the es-
timator is discontinuous, which is often the case for data adaptive model selection, the partial
integration argument no longer applies and the identity likely breaks. The second goal of this
thesis is therefore to characterise the difference df(µ̂) − dfS(µ̂) for a class of discontinuous
estimators µ̂. Furthermore, the goal is also to investigate if such a characterisation can be
used to extend SURE to estimators involving data adaptive model selection.



2
Summaries and contributions

The thesis consists of five research papers written during my PhD studies at University of
Copenhagen in the time period from November 2014 until October 2017. To clear out any
potential confusion, during this period I changed my name from Frederik Riis Mikkelsen to
Frederik Vissing Mikkelsen. Each of the five papers can be read independently and their
respective titles and summaries are as follows:

I Learning Large Scale Ordinary Differential Equation Systems

This is the primary paper concerning model selection in ODE systems. Here we present
the following modelling framework: assume that time course data, y, is drawn from
a finite set of environments {1, ..., E} representing the interventions, i.e., y = (ye)Ee=1

with ye consisting of ne time points in environment e. With similarly organised weights
w = (we)Ee=1, we consider the loss function

`y(θ) :=
1

2

E∑

e=1

ne∑

i=1

d∑

l=1

wei,l (y
e
l (ti)− xel (ti, θ ◦ ce))2 + λ

p∑

j=1

vjpen(θj), (2.1)

where pen(·) is a sparsity enforcing penality function with coordinate-wise weights (vj)j
and xe solves (1.8). We assume that the effective parameter θ ◦ ce in environment e is
a hadamard product of the baseline parameter θ and the environment-specific scales ce.
This framework is used in the accompanying R package episode and it allows for different
types of time course data, including both perturbed and intervened data, to enter the
estimation procedure simultaneously.

We propose the adaptive integral matching (AIM) algorithm, which first employes an in-
verse collocation method to produce initial parameter estimates for a family of smoothers.
The initial estimates are then used to adapt weights and scales in (2.1) and finally
the initial estimates are refitted by passing them as initialisations in minimising (2.1).
Through extensive simulation studies AIM shows strong network and reaction recovery
in both mass action kinetics systems and a full scale model of glycolysis in Saccharomyces
cerevisiae. Furthermore, AIM proves state-of-the-art network recovery for the in silico
phosphoprotein abundance data from the eighth DREAM challenge.

The supplementary material referenced in the paper can be found at https://arxiv.

org/abs/1710.09308.
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II Computational Aspects of Parameter Estimation in Ordinary Differential
Equation Systems

This short paper primarily concerns the computational aspects of fitting ODE systems to
time course data. The most popular methods are outlined and discussed and a combina-
tion of two of these methods is proposed. In this combined approach the computationally
light integral matching method is used to propose descent directions for the more compu-
tationally intensive least squares method. Consequently, the combined method enjoys the
statistical properties of the least squares approach while being faster. These results partly
laid the foundation for reducing the computational burden in the R package episode.

III A Model Based Rule for Selecting Spiking Thresholds in Neuron Models

This paper addresses the problem of selecting spiking thresholds in single neuron ODE
based models. When modelling the electrical potential of neurons via ODE systems, the
electrical potential exhibits all its local maxima on the null cline of the system. The
magnitude of these local maxima are exactly what determines the spiking behaviour of
the neuron. In this paper approximate separatrices mimicking the ’all-or-none’ principle
of neuron spiking are found by identifying the points on the null cline with maximal
divergence. We propose spiking thresholds obtained by projecting these maximisers onto
the coordinate representing the electrical potential. The proposed method is applied to
six different single neuron ODE models and yields spiking thresholds in line with those
typically used in practice. Besides dealing with ODE systems in a neuron modelling
framework, this paper also relates to the rest of the thesis in its use and interpreta-
tion of the divergence operator. This operator is essential in the papers concerning risk
estimation.

IV Degrees of Freedom for Piecewise Lipschitz Estimators

In this paper we develop a representation of the difference df(µ̂)−dfS(µ̂) for a wide class
of mean estimators µ̂. This class concerns estimators which can be written on the form

µ̂ =
N∑

i=1

1Ui µ̂i, (2.2)

where (Ui)
N
i=1 is a finite collection of disjoint open sets on Rn with

⋃
i U i = Rn and

each µ̂i : U i → Rn is locally Lipschitz. An estimator on the form (2.2) is allowed to
be discontinuous, in the sense that µ̂i and µ̂j may disagree on their common boundary
U i ∩ U j for i 6= j. This class fits perfectly in the framework of data adaptive model
selection; the regions (Ui)i represent selection events and the estimators (µ̂i)i represent
the estimation procedures conditional on the selection, i.e., the post-selection estimators.

Under a weak set of regularity conditions one can establish

df(µ̂) = dfS(µ̂) +
1

2

∑

i 6=j

∫

∂Ui∩∂Uj

ψ〈ηi; µ̂j − µ̂i〉 dHn−1, (2.3)

where ψ denotes the density function of Y ∼ N (µ, σ2In), ηi denotes the unit outer
normal to ∂Ui and Hn−1 is the n − 1-dimensional Hausdorff measure. On its own (2.3)
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yields no immediate way of estimating the quantity df(µ̂)−dfS(µ̂) for a single realisation
y of Y . However, it is possible to construct an estimator of df(µ̂)−dfS(µ̂) using (2.3) for
the lasso-OLS estimator in regression. The lasso-OLS, µ̂λl−OLS, applies the OLS estimator
restricted to the predictors chosen by the lasso estimator ([20]) with tuning parameter
λ > 0. For this specific estimator we derive the identity

df(µ̂λl−OLS) = dfS(µ̂λl−OLS)− λ∂λdfS(µ̂λl−OLS). (2.4)

The Steins degrees of freedom for the lasso-OLS estimator, dfS(µ̂λl−OLS), equals the ex-
pected dimension of the space selected by the lasso estimator. Using this and (2.4) we
develop a corrected version of SURE. In an extensive simulation study we show that tun-
ing the lasso-OLS estimator using the corrected SURE yields estimates which, compared
to 5- and 10-fold cross validation, are close to the true mean.

V Extending ’SURE’ to Estimators with Data Adaptive Model Selection via
Flows

In this paper we seek to extend SURE to other data adaptive model selection procedures
than lasso-OLS. This is achieved by establishing a framework in which identities similar
to (2.4) can be obtained. We assume that the estimator µ̂t depends on a tuning parameter
t ∈ R and that it is on the form:

µ̂t =
N∑

i=1

1F (t,Ui)µ̂
t
i. (2.5)

Here (Ui)
N
i=1 still represents the selection events and µ̂ti : U i → Rn a locally Lipschitz

post-selection estimator. The essential component of (2.5) is the function F : R×Rn →
Rn, which we assume is a flow (see e.g., [11] for a definition).

Under a set of regularity conditions and assumptions on the boundaries (∂Ui)
N
i=1 and

the field x 7→ ∂tF (0, x), one can establish

df(µ̂) = dfS(µ̂) + ∂tE(H(t, Y )), (2.6)

where H : R × Rn → R is a function only depending on t and the observation y. An
explicit formula for H is provided in the paper.

Four different estimators for which (2.5) holds are considered: marginal screening, relaxed
lasso, best subset selection and singular value decomposition with a hard threshold on
the singular values. For all but best subset selection, (2.6) is established. Moreover, for
best subset selection ∂tE(H(t, Y )) can still be viewed as a partial correction of dfS(µ̂).
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LEARNING LARGE SCALE ORDINARY DIFFERENTIAL

EQUATION SYSTEMS

FREDERIK VISSING MIKKELSEN AND NIELS RICHARD HANSEN

Abstract. Learning large scale nonlinear ordinary differential equation (ODE)

systems from data is known to be computationally and statistically challenging.
We present a framework together with the adaptive integral matching (AIM)

algorithm for learning polynomial or rational ODE systems with a sparse net-
work structure. The framework allows for time course data sampled from

multiple environments representing e.g. different interventions or perturba-

tions of the system. The algorithm AIM combines an initial penalised integral
matching step with an adapted least squares step based on solving the ODE

numerically. The R package episode implements AIM together with several

other algorithms and is available from CRAN. It is shown that AIM achieves
state-of-the-art network recovery for the in silico phosphoprotein abundance

data from the eighth DREAM challenge with an AUROC of 0.74, and it is

demonstrated via a range of numerical examples that AIM has good statisti-
cal properties while being computationally feasible even for large systems.

1. Introduction

We consider the problem of modelling time course data sampled from a dynami-
cal system in different environments. We model data via ordinary differential equa-
tions (ODEs), with a particular emphasis on learning the network of the system’s
constituents. This setting arises for instance in systems biology with biochemi-
cal reactions and molecular networks (Wilkinson 2006, Oates & Mukherjee 2012,
Babtie et al. 2014, Hill et al. 2016), where a reaction network or a gene regula-
tory network may either be partially known or completely unknown. Learning such
ODE networks from data is highly relevant as they provide a means for predicting
downstream effects of interventions in the system.

Our main contribution is a framework and the corresponding R package episode
for learning polynomial and rational ODE systems, which is directly applicable
to experimental data. Extensive numerical experiments have lead us to propose
the adaptive integral matching (AIM) algorithm, though the R package includes
several other learning algorithms. The framework and the learning algorithm AIM
are useful when there exists little to no prior knowledge of the system in question
and a fully data-driven network recognition is needed. However, the framework
does also allow for incorporating prior knowledge into the estimation procedure as
will be illustrated.

The paper is organised as follows. Section 2 motivates the ODE network estima-
tion problem with the small EnvZ/OmpR system. Section 3 defines the statistical

Key words and phrases. ODE; Network inference; Inverse collocation; Nonlinear least squares;

Systems biology; Chemical kinetics.
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framework and Section 4 reviews two standard approaches to parameter estima-
tion in ODE systems: the least squares method and the inverse collocation methods.
Then the AIM algorithm that combines both approaches is presented together with
the functionality of the R package episode developed for this paper. In Section 5
we apply our proposed method to two large scale dynamical systems: the in silico
protein phosphorylation network used in the eighth DREAM challenge (Hill et al.
2016), and a full scale model of glycolysis in Saccharomyces cerevisiae (Hynne et al.
2001). Finally, in Section 6 we present two extensive simulation studies that com-
pare the performance of AIM to other methods proposed in the literature.

2. The ODE Network Estimation Problem

We illustrate the problem addressed in this paper by a simple and concrete
dynamical system: the EnvZ/OmpR system. It is present among a wide range of
bacteria and is particularly well studied in Escherichia coli (Bernardini et al. (1990),
Batchelor & Goulian (2003), Shinar & Feinberg (2010)). In this system the histidine
kinase EnvZ responds to changes in the osmolarity resulting from extracellular
impermeable compounds. It responds by controlling the phosphorylation of the
regulator, OmpR, which itself proceeds to regulate the transcription of certain
genes, including ompF and ompC. These two genes act as porins responsible for
regulating the cellular diffusion across the membrane.

The EnvZ/OmpR system is heavily studied and the whole regulation process
described above is the product of numerous studies, each of which were carefully
designed to isolate specific mechanisms and investigate them individually. How-
ever, various networks in systems biology are only partially understood or not even
discovered yet. In this paper we do not assume that the system in question was
carefully dissected and studied as a sum of local mechanisms. We simply assume
that the system was observed under different perturbations or interventions and
solve the network estimation problem globally.

The EnvZ/OmpR system is driven by the six coupled ordinary differential equa-
tions (see e.g., Batchelor & Goulian (2003)):

(1)

d[(EnvZ-P)OmpR]

dt
=k1[EnvZ-P][OmpR]− (k−1 + kt)[(EnvZ-P)OmpR]

d[EnvZ(OmpR-P)]

dt
=k2[EnvZ][OmpR-P]− (k−2 + kp)[EnvZ(OmpR-P)]

d[EnvZ-P]

dt
=k−1[(EnvZ-P)OmpR]− k−k[EnvZ-P] + kk[EnvZ]

− k1[EnvZ-P][OmpR]

d[EnvZ]

dt
=k−k[EnvZ-P]− kk[EnvZ] + (kp + k−2)[EnvZ(OmpR-P)]

+ kt[(EnvZ-P)OmpR]− k2[EnvZ][OmpR-P]

d[OmpR]

dt
=k−1[(EnvZ-P)OmpR]− k1[EnvZ-P][OmpR]

+ kp[(EnvZ)OmpR-P]

d[OmpR-P]

dt
=kt[(EnvZ-P)OmpR]− k2[EnvZ][OmpR-P]

+ k−2[EnvZ(OmpR-P)]

which is a mass action kinetics (MAK) system. See Section 6 for details. In these
equations, EnvZ-P and OmpR-P denote the phosphorylation of EnvZ and OmpR,
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Figure 1. Simulated time course data (a) from the EnvZ/OmpR
system with two perturbations and two interventions. Networks
estimated from the perturbed data (b), the intervened data (c)
and all data (d). Edges colouring scheme: true positive (green),
false positive (red), false negative (gray).
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respectively. These systems are characterised by a set of reactions, e.g.,

EnvZ(OmpR-P)
kp−→ OmpR + EnvZ.

The AIM algorithm works by searching through a large set of candidate reactions.
Figure 1 shows simulated data at 26 time points and the network recovered

from these data via the AIM algorithm (specifically, Algorithm 4.2 in Section 4.3).
The networks were recovered from a search space consisting of all MAK systems
constructed from reactions on the form

(2)

X → Y, X + Y → Z or Z → X + Y,

with X,Y, Z ∈
{

EnvZ(OmpR-P), (EnvZ-P)OmpR,

EnvZ,EnvZ-P,OmpR,OmpR-P

}
.

The true parameter values in (1) were drawn at random from a normal distribution
with mean 3 and the initial conditions were drawn uniformly at random from the
interval [5, 10]. The AIM algorithm was here tuned to report reaction networks
consisting of eight reactions.

This example illustrates that correct recovery of the network of reactions can
benefit from combining several types of data sets. It was thus paramount to develop
statistical and computational tools for recovering the network from time course
data sampled under different perturbations and/or interventions, thus unifying the
estimation process and circumventing the need for highly specific and specialised
experiments with individual estimation procedures.

3. Statistical Framework

We consider a d-dimensional ODE given by:

(3)
dx

dt
= f(x(t), θ), x(0) = x0

with initial condition x0 ∈ Rd and the smooth field f : Rd×Rp → Rd parameterised
by θ ∈ Rp. In terms of f we define a corresponding network with nodes 1, . . . , d and
an edge from node l to node i if and only if ∂fi/∂xl 6= 0. For many parameterised
ODE systems a nonzero coordinate in θ corresponds to the presence of one or a few
edges in the network, thus if we enforce sparsity in θ we also enforce sparsity in the
network. This is, for instance, the case for the polynomial and rational fields that
are currently implemented in the R package episode, see Table 1. In the setting
of this paper, the focus is therefore on p being large but the true parameter being
sparse. In some of the examples we consider, p is of the order 12, 000 with θ having
as little as 0.65% of the parameters being nonzero.

We assume that the process x is observed at discrete time points (ti)
n
i=1 with

i.i.d. noise (εi)i,

y(ti) = x(ti) + εi.

Using a sparsity enforcing penalty function pen, e.g., `1, elastic net, SCAD or MCP,
we will consider the penalised least squares loss function

(4) `y(θ) :=
1

2

n∑

i=1

d∑

l=1

wi,l(yl(ti)− xl(ti, θ))2 + λ

p∑

j=1

vjpen(θj),

where v = (vj)j are penalty weights and w = (wi,l)i,l are observation weights.
Strong distributional assumptions on the errors, εi ∈ Rd, are not necessary, but we
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note that the least squares loss doesn’t account for potential correlation among the
d coordinates. However, differences in the error variances among the coordinates
are accounted for by the observation weights, which are chosen adaptively by the
proposed AIM algorithm.

Finally, we allow for observations of the same system under different interven-
tions. We assume that the interventions are encoded in the ODE system through
a Hadamard product of the parameter θ. More precisely, let {1, ..., E} be a finite
set of environments representing the interventions and let the data y consist of E
sub-datasets (ye)Ee=1 with ne time points in environment e. Define the environment
specific observation weights similarly. The effective parameter of the ODE system
in environment e is θ ◦ ce, where θ ∈ Rp is the baseline parameter corresponding to
the unconstrained/unintervened system and ce ∈ Rp is a vector of coordinatewise
scale factors.

Typically, the scale factors ce are binary. For instance, if in environment e the
lth coordinate of x is inhibited from affecting the ith coordinate, then coordinate j
of ce is set to zero if and only if ∂2fi/∂θj∂xl 6= 0. This inhibiting mode-of-action
of an intervention is commonly used in gene regulatory networks in which certain
proteins can inhibit the translation of some genes (see e.g., Fire (1999), Elbashir
et al. (2001)). The loss function taking this type of intervention into account thus
reads

(5) `y(θ) :=
1

2

E∑

e=1

ne∑

i=1

d∑

l=1

wei,l (y
e
l (ti)− xel (ti, θ ◦ ce))2 + λ

p∑

j=1

vjpen(θj).

Direct optimisation of (5) is challenging as this is generally a non-convex optimi-
sation problem with many local minima, and most nonlinear ODEs will have to be
solved numerically just to evaluate (5). In the following section we will introduce
methods that mitigate some of the difficulties.

4. Methods

4.1. The least squares method. Direct minimisation of (5) above is called the
(penalised) least squares method. This is sometimes referred to as the gold stan-
dard approach, see, e.g., Chen et al. (2016). As noted above, evaluating x in (5)
typically requires a numerical ODE solver, which makes the least squares method
computationally heavy. We refer to Sauer (2006) for a comprehensive overview of
numerical ODE solvers, and to Appendix A for details on how to optimise (5) while
keeping computation time to a minimum.

4.1.1. Issues. The penalised least squares method suffers from three main problems:
it is computational demanding, it is a non-convex optimisation problem, and the
solution depends on the choice of parameter scale (the choice of penalty weights).

The numerical solution of (3) is fundamentally a sequential problem, thus each
evaluation of x is computationally heavy with only limited parallelisation options.
Moreover, the derivative of x with respect to θ or x0 solves another ODE, called
the sensitivity equations, of dimensions d2 and dp, respectively (see Appendix A for
details).

The loss function (4) is non-convex even in the simplest case of a linear ODE,
since linearity of the vector field f does not imply that the solution to the ODE is
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linear. For nonlinear ODE systems we cannot even expect that (5) has a unique
local minimiser for small λ.

The dependence on parameter scale is a general problem for penalised nonlinear
least squares. The scales on which the parameters are penalised are essential for
what parameters the sparsity inducing penalty selects. All other equal, parameters
for which x is more sensitive is typically chosen over those for which x is less
sensitive. This is a clear issue for correct network inference. In linear regression, it
is common to standardise the predictors to bring the parameters on a common scale,
but no immediate method exists for standardising the parameters in the nonlinear
least squares function (5). It appears that any such method would depend on the
unknown θ.

The inverse collocation methods introduced below address the three main prob-
lems of the least squares method.

4.2. Inverse collocation methods. In numerical analysis, collocation methods
are a class of methods for solving ODE systems numerically. It goes as follows; in
the ODE system

(6)
dx

dt
= f(x(t), θ), x(0) = x0

the parameter vector θ is assumed known. Moreover, a finite set of collocation
points C ⊆ R are chosen, as well as a vector space V of functions. A numerical
solution, x̃ ∈ V, is sought that makes ‖dx̃dt (t) − f(x̃(t), θ)‖ small in the collocation
points for some norm. That is, the numerical solution is found by minimising a
distance between

(
dx̃
dt (t)

)
t∈C and (f(x̃(t), θ))t∈C . Typically, V = span(ϕj) for a

choice of finitely many basis functions ϕj : R → R and the norm is the 2-norm on
Rd. Collocation methods thus solve the forward problem of computing the solution
of (6) for a known θ.

By inverse collocation methods we refer to a class of estimators of the parameter
θ, given the observed trajectory x, that solve the inverse problem using the collo-
cation idea. These methods exist in many versions (Varah (1982), Brunel (2008),
Liang & Wu (2008), Calderhead et al. (2009), Gugushvili & Klaassen (2012), Don-
delinger et al. (2013)) and are known under many other names, e.g., gradient match-
ing, trajectory matching or smooth-and-match estimators. However, they all rely
on the same two-step procedure: 1) approximate the data, y, by an element in V to
get an estimate of the full trajectory x̂; 2) base the estimation of θ on the trajectory
x̂ as if it were the true trajectory, by minimising the distance between the position,
gradient or integral at a given set of collocation points. Typically, x̂ is obtained as
a smoother or an approximation of y via a basis expansion.

One example of an inverse collocation method is the gradient matching method
(Varah (1982), Brunel (2008)), which minimises the approximate loss function:

(7)
1

2

∑

t∈C

∥∥∥∥
dx̂

dt
(t)− f(x̂(t), θ)

∥∥∥∥
2

2

.

This method considerably reduces the computational cost compared to the least
squares method, since it does not require solving the ODE system. Moreover, if
f is linear in θ the optimisation problem becomes a linear least squares problem,
which thus avoids all the three problems with the least squares method.
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Later Dattner & Klaassen (2015) proposed minimising

(8)
1

2

∑

t∈C

∥∥∥∥x̂(t)− x0 −
∫ t

0

f(x̂(s), θ) ds

∥∥∥∥
2

2

,

since the ODE system can be characterised as solving

(9) x(t2)− x(t1) =

∫ t2

t1

f(x(s), θ) ds, for all t1, t2 ∈ R.

instead. This requires numerical integration, which is often more stable than numer-
ical differentiation, and under certain assumptions

√
n-consistency is guaranteed,

as by Gugushvili & Klaassen (2012). Also, in this method the smoothed trajectory
x̂ does not have to be differentiable.

Note that in all of the above methods the collocation time points in C do not
have to coincide with the observation time points of y. However, adding more time
points in (7) and (8) will not necessarily decrease the variance of the estimator, as
that mostly comes down to the y-x̂ relation, i.e., the smoothing operation.

Nonparametric inverse collocation methods also exist, most notably are those
by Wu et al. (2014) and Chen et al. (2016). Here the authors do not assume a
parametric form of the field f , but approximate it by a nonparametric basis. In
the former the authors consider the loss function

(10)
1

2

∑

t∈C

d∑

l=1


dx̂l
dt

(t)−
∑

j,k

ψk(x̂j(t))θljk




2

,

with (ψk)Kk=1 a finite set of basis functions and (θljk)ljk estimable parameters. In
Chen et al. (2016) the integrals are considered instead:

(11)
1

2

∑

t∈C

d∑

l=1


x̂l(t)− xl(0)−

∑

j,k

Ψk(x̂j)(t)θljk




2

,

with Ψk(x)(t) :=
∫ t
0
ψk(x(s)) ds. Note that both nonparametric methods assume f

to be additive in the coordinates of x.
Finally, we note that the generalised profiling method described by Ramsay

et al. (2007) is another variation on the inverse collocation method. It is inspired
by functional data analysis and the main difference lies in that the smoothing step
is θ-dependent and thus becomes part of the optimisation step.

Penalised versions of the inverse collocation methods – as alternatives to min-
imising (4) – have also been proposed by e.g., Lu et al. (2011) and Wu et al. (2014)
to promote sparse solutions.

4.2.1. Issues. Though the inverse collocation methods remedy most issues of the
least squares approach (in fact all of those discussed above, if the ODE is θ-linear),
the inverse collocation methods also have their share of issues. Most notably, the
results become dependent on the initial approximation (the smoother), which will
introduce a bias without a clear trade-off in terms of a reduced variance. To il-
lustrate this we present a small simulation study. Consider the classic Michaelis-
Menten kinetics modelling the chemical reaction system (see Michaelis & Menten
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(1913))

(12) E + S
kf−⇀↽−
kr

ES
kcat−−→ E + P

in which the enzyme (E) forms a complex (ES) through a binding interaction with
the substrate (S), which further releases the product (P) along with the freed en-
zyme. The abundances of the four compounds x = (xE, xES, xP, xS) satisfy an ODE
with p = 3 positive parameters (kf , kr, kcat):

(13)

dxE
dt

= −kfxExS + krxES + kcatxES
dxP
dt

= kcatxES

dxES

dt
= kfxExS − krxES − kcatxES

dxS
dt

= −kfxExS + krxES.

This classical ODE model is linear in the parameters and thus well suited for
the inverse collocation methods. We generated data at n = 10, 25, 100 equidistant
time points from the true trajectory with i.i.d. additive Gaussian noise. The data
set was replicated 250 times and for each of them we applied a Gaussian kernel
smoother with a range of bandwidths followed by the method proposed by Dattner
& Klaassen (2015) to obtain parameter estimates. A summary of the resulting
estimators is presented in Figure 2.

From Figure 2 we notice a bias which severely increases with the bandwidth,
while the variance is only moderately reduced. Moreover, the bias hardly seems to
change with the number of observations, unless the bandwidth is zero (equivalent
to a linear interpolation smoother). Intuitively, this is no surprise: the purpose
of smoothers, as indicated by their name, is to smooth the data. This is often
manifested in a reduced pointwise variance, V(x̂y(t)) ≤ V(y(t)) for t ∈ R, and an
increased autocovariance, Cov(x̂y(t), x̂y(s)) ≥ Cov(y(t), y(s)), for t, s ∈ R close.
Together this results in underestimated slopes. Since the slopes are essentially
what is being modelled in ODE systems we would expect the resulting parameter
estimates to have a large bias.

The least squares method and inverse collocation with zero bandwidth have the
smallest biases. However for moderate and large noise levels the variance of the
least squares method decreases faster with the number of observations. Though the
inverse collocation methods with large bandwidths have slightly smaller variance,
the least squares method still outperforms them, except for some settings with
n = 10 and σ = 0.1.

Finally, inverse collocation methods suffer from one additional issue; they require
fully observed processes to work. There is no obvious way of producing smoothed
curves for latent coordinates and all coordinates are required in (7) and (8). This
problem is revisited in Section 5.3.

4.3. Adaptive Integral Matching. We propose combining an inverse colloca-
tion method with the least squares method in such a way that we benefit from
both methods. Inverse collocation methods are computationally lighter and pro-
duce good approximate parameter estimates, while not fully enjoying the statistical
qualities of the least squares estimator. The least squares method is computation-
ally expensive and suffers heavily from multiple local minimas, while generally
performing better if the latter problems are alleviated.

Before presenting our suggestion of a combined estimator, we introduce a modifi-
cation of the inverse collocation method by Dattner & Klaassen (2015). We propose
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Figure 2. Medians and 5% and 95% percentiles of inverse colloca-
tion estimator considered by Dattner & Klaassen (2015). The ker-
nels were scaled such that the quartiles are at ±0.25× bandwidth.
Data is simulated from (13) with x0 = (10, 2, 2, 10) and a time
range of 1. The true parameters are marked with horizontal lines.
The dashed lines on the left are the corresponding medians and
percentiles of the least squares method.

the collocation method that consists of minimising the following approximate loss
function

(14)

˜̀̂x(θ) :=
1

2

E∑

e=1

ne−1∑

i=1

d∑

l=1

wei,l

(
x̂el (ti+1)− x̂el (ti)−

∫ ti+1

ti

fl(x̂
e(s), θ ◦ ce) ds

)2

+ λ

p∑

j=1

vjpen(θj),

where x̂e is the smoothed curve based on the data from environment e, and x̂ =
(x̂e)Ee=1 denotes the collection of smoothed curves for each environment. The above
differs from (8) by integrating between consecutive time points instead of integrating
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from 0 to t. This has two positive side effects: 1) it prevents errors between the
true trajectory and its estimate x̂ from accumulating; 2) the initial condition x0
is no longer estimated. This is highly preferable as the initial condition is often a
nuisance parameter and in a penalised setup the optimisation procedure often sets
x0 to compensate for the restricted freedom in θ. We refer to the estimator

(15) θ̂x̂λ := arg min
θ

˜̀̂x(θ)

as the integral matching estimator and stress that it depends on the smoother, x̂.

From an integral matching estimate, θ̂x̂λ, we adapt the scales (ce)e and, optionally,
the weights (we)e. The new adapted scales are proportional to

(16) ce ◦



∥∥∥∥∥

(∫ ti+1

ti

∂θjf(x̂e(s), θ̂ ◦ ce) ds
)

i,e

∥∥∥∥∥

−1

2



j

, for e = 1, ..., E.

If the field is linear in θ, then the updated scales only depend on the smoother.

If the field is not θ-linear one uses θ̂ = θ̂x̂λ for a small λ. The scales are thus
standardised by the column norms of the first order Taylor approximation of the
integrals in (14). If f is linear in θ, this coincides with standardising the columns
in a penalised linear least squares problem. This adaptation of the scales ensures
that parameters are locally on the same scale and thus penalised in a fair manner
in the subsequent least squares estimation. Similarly, the new adapted weights are
proportional to

(17)
(wei,l)i,e

∑E
e=1

∑ne−1
i=1 wei,l

(
x̂el (ti+1)− x̂el (ti)−

∫ ti+1

ti
fl(x̂e(s), θ ◦ ce) ds

)2

for l = 1, ..., d, i.e., inversely proportional to the empirical variances for each species.
This adapts the variance structure across species for the subsequent estimation.
This leads to the adaptive integral matching (AIM) algorithm:

Algorithm 4.1 (AIM). Input: Time course data from E environments, y =
(ye)Ee=1, each sampled at (ti)

ne
i=1 timepoints. Similarly structured observation weights

w = (we)Ee=1, along with penalty weights, v ∈ Rp+, and environment-specific scales

(ce)
E
e=1. Smoothed trajectories (x̂e)e evaluated on a fine grid of time points.

(1) Apply the integral matching estimator, (15), to obtain initial estimates θ̂x̂λ
for a sequence of λ values.

(2) Adapt the scales and weights according to (16) and (17).

(3) Refit by minimising (5) using the adapted weights and θ̂x̂λ as initial value.

In step (3) the penalty term may be scaled down or removed entirely to reduce the
bias induced by the penalty, and the parameter space may be restricted to reduce
the computational costs. Algorithm 4.2 below presents a particular incarnation of
the refitting step. In Appendix A additional techniques to reduce the computation
time are presented.

4.3.1. Implementation. As part of this paper, software for optimising (5) and (14)
(used in Algorithm 4.1) is available in the R package episode. In the latter optimi-
sation problem the user supplies the smoothed trajectories (x̂e)e evaluated on a fine
grid of time points and the software then optimises (14) using numerical integra-
tion over the supplied grid. By keeping this modular form, the user has complete
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Figure 3. Visualisation of the stratified ranking in Algorithm 4.2
applied to the EnvZ/OmpR data from Section 2. Four smoothers
were employed and each proposed a sequence of candidate mod-
els for varying tuning parameter (top). The loss values of the
candidate models are stratified according to model size (bottom).
For each model size the candidate with minimal loss is found and
marked with a black border (top).

freedom in choosing a suitable smoother. It is possible not to smooth the data at
all, which corresponds to x̂e linearly interpolating the observations ye.

We recommend subjecting a whole family of smoothers to Algorithm 4.1 in
order to alleviate potentially high variance and multiple local minima issues. The
resulting version of the AIM algorithm that we suggest and have tested extensively
consists of the following steps:

Algorithm 4.2. Input: Time course data from E environments, y = (ye)Ee=1,
each sampled at (ti)

ne
i=1 timepoints. Similarly structured observation weights w =

(we)Ee=1, along with penalty weights, v ∈ Rp+, and environment-specific scales (ce)
E
e=1.

(1) Produce a family of smoothed curves {x̂}, from data y, where the smoother
is applied to each environment separately: x̂ = (x̂e)

E
e=1.

(2) For each x̂ apply Algorithm 4.1 with the refitting step implemented as fol-

lows: define the support estimator Ŝx̂λ = supp(θ̂x̂λ) and compute the unpe-
nalised least squares estimate

(18) θ̃x̂λ := arg min
θ:supp(θ)=Ŝx̂λ

1

2

E∑

e=1

ne∑

i=1

d∑

l=1

wei,l (y
e
l (ti)− xel (ti, θ ◦ ce))2.

over the restricted parameter space determined by λ and x̂.
(3) Stratify the refitted estimates (θ̃x̂λ)λ,x̂ by the number of non-zero parameters.

For each strata rank the resulting estimates by their loss value at optimum.
See Figure 3 for an illustration of this step.
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The purpose of the stratified ranking is to produce a sequence of models indexed
by the number of nonzero parameters. This is primarily important for comparison
purposes in the subsequent sections.

Currently, the R package episode implements AIM and other learning algorithms
for mass action kinetics (described below), which encode all polynomial fields, power
law kinetics, which encode all polynomial fields in a different way and two larger
classes of ODE systems assuming a rational form of the field. As for penalties, `1,
`2, elastic net, SCAD and MCP are implemented. Moreover, the package handles
missing values and allows for box-constrained optimisation as well. Table 1 provides
a schematic overview of the features in episode. The tools in episode are flexible and
modular and the Algorithms 4.1 and 4.2 are primarily recommendations on how to
combine them. When using the episode package for the least squares method, i.e.,
optimising (5), suitable initialisations are required and the resulting estimates may
depend on these. The tools are thus designed to easily pass the integral matching
estimates as initialisations for the least squares method.
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ODE Models

MAK Mass Action Kinetics
dx

dt
= (B −A)Tdiag(xA)k,

with A,B ∈ Nr×d0 fixed and k ∈ Rr+ estimable.

PLK Power Law Kinetics
dx

dt
= θxA,

with A ∈ Nr×d0 fixed and θ ∈ Rd×r estimable.

RLK Rational Law Kinetics
dx

dt
= θ

xA

1 + xB
,

with A,B ∈ Nr×d0 fixed, the fraction evaluated elemen-
twise and θ ∈ Rd×r estimable.

RMAK Rational Mass Action Kinetics

dx

dt
= CT

θ1x
A

1 + θ2xA
,

with A ∈ Nb×d0 and C ∈ Nr×d0 fixed, the fraction evalu-
ated elementwise and θ1, θ2 ∈ Rr×b estimable.

Data Structures

Inhibition Species i is inhibited from reacting with species j in
environment e: Set lth coordinate of ce ∈ Rp to 0 if
∂θlfij 6= 0, and 1 otherwise.

Activation Species i only reacts with species j in environment e: If
∂θlfij 6= 0 set ce(l) = 1 and ce′(l) = 0 for all e 6= e′.

Stimulation Reaction rate of reaction l is increased by factor k in
environment e: Set ce(l) = k.

Misc Missing data. Partially observed processes only sup-
ported by exact estimation.

Estimation Components

Penalties `1, `2, elastic net, SCAD, MCP and no penalty.

Weights Both observation and penalty weights.

Loss Can minimise both least squares loss (5) and integral
matching loss (14). The minimiser of the latter loss
function can easily be passed as initialisation for min-
imising the former.

Parameter
Constraints

Box constraints for all estimable parameters are avail-
able.

Misc. Automatic adaptation of parameter scales and observa-
tion weights.

Table 1. Overview of features in the R package episode.
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5. Applications

In this section we study two concrete large scale dynamical systems. One is the
in silico protein phosphorylation network used in the eighth DREAM challenge,
and the other is glycolysis in Saccharomyces cerevisiae. Both of these systems are
like the EnvZ/OmpR system based on mass action kinetics, which is first reviewed
briefly. However, in these applications it is not all components of the mass action
system that is observed, and rational fields are used to model the dynamics of the
observed species.

5.1. Mass Action Kinetics. We consider a chemical kinetics framework of ODE
systems. Assuming that we have d chemical species, e.g., NaCl, H2O or proteins,
labelled X = (X1, ..., Xd). A set of r = 1, ..., R reactions on the form:

(19) a1X1 + ...+ adXd → b1X1 + ...+ bdXd,

govern the dynamics of the species. Here (ai)
d
i=1 and (bi)

d
i=1 are non-negative

integers, called the stoichiometric coefficients. For reaction r = 1, ..., R let Ar, Br ∈
Nd0 denote the vector of left hand and right hand side stoichiometric coefficients,
respectively. The net change of molecules due to reaction r is vr = Br −Ar.

Let x = (x1, ..., xd) ∈ Rd+ denote the vector of abundances of each chemical
species. If the total number of molecules is sufficiently large, we can model the
dynamics of x as

(20)
dx

dt
=

R∑

r=1

vrγr(x(t)), x(0) = x0.

See Wallace et al. (2012) for details on its derivation. The laws of mass action
kinetics (see, e.g., Horn & Jackson (1972)) states that

(21) γr(x) = krx
Ar ,

where kr ≥ 0 is a rate constant and xa is shorthand for Πd
i=1x

ai
i for any two

non-negative vectors in Rd. The stoichiometric matrices A and B are the R × d-
dimensional matrices with the rth row being Ar and Br respectively. The matrix
notation of (20) is

(22)
dx

dt
= (B −A)Tdiag(xA)k, x(0) = x0,

where k = (kr)
R
r=1 and xA = (xAr )Rr=1.

Ideally, all chemical reaction systems should approximately be a mass action
kinetics system. However, in complex reaction networks this may not be the case
for the observable species. For gene regulatory networks, say, some proteins may
exist in different forms depending on whether an inhibitor or activator is bound to
its associated sites, which is not directly observable. In such cases a quasi-stationary
approximation is often employed to reduce a full mass action system to a system
for the observable variables only. The quasi-stationary approximation assumes that
the chemical species, X, can be divided into two subsets, XL and XO, the latent
and observed species:

(23)

dxL
dt

= fL(xL, xO)

dxO
dt

= fO(xL, xO).
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Under the quasi-stationary assumption, i.e., the dynamics of xL is faster than xO,
the dynamics of x can be approximated by the ODE system

(24)
dxO
dt

= fO(x̃L(xO), xO),

where x̃L(xO) is the restriction of xL to the manifoldMxO := {xL | fL(xL, xO) = 0}
for all values of xO. In certain settings, including fast binding on gene-sites in gene
regulatory networks, this approximation is reasonable and the right hand side of
(24) is rational. See Santillan (2008) for a detailed treatment. This is the main
motivation for including rational systems in our framework and in the R package
episode, and its usage will be illustrated by the two applications below.

5.2. in silico phosphoprotein abundance data. In this section we compare
AIM to state-of-the-art network inference methods in systems biology. The eighth
DREAM challenge (Hill et al. (2016)) aimed at advancing causal inference of sig-
nalling networks in protein phosphorylation. One of the challenges presented the
participants with time course data from a complex in silico dynamical model of a
protein signalling network. The species were given anonymous labels and thus no
prior knowledge of the network was given.

The data consisted of 20 environments produced using combinations of three
inhibitors (or no inhibitor) and two types of stimuli each with two strengths. The
targets of the inhibitors were provided and encoded in AIM through the scales (ce)e
in Algorithm 4.2. In light of the rational ODE systems discussed in Section 6, AIM
fitted the ODE system given by the field

(25)
dx

dt
= θdiag(xA)diag(1 + xB)−1,

where A and B are R×d-dimensional matrices and θ ∈ Rd×R estimable coefficients.
The rows of A and B ((ar)r, (br)r), ran over all non-negative integer d-tuples
summing to at most one. Thus the search space consisted of first order rational
functions.

Besides the final DREAM challenge submissions, AIM was compared to two
additional methods. The first was the integral matching (IM) estimator, given in
(15). This method represents the use of a penalised inverse collocation method
to select the network. The second method was the least squares estimator using
a SCAD penalty (SCAD), which was obtained by optimising (5) for a decreasing
sequence of λ, initialised in θ = 0. The continuation principle was used, i.e., the
optimum found at the previous value of λ was re-used as initialisation for next value
of λ.

The performance of AIM was assessed using the DREAMTools Python package
provided by Cokelaer et al. (2015) and containing the tools used to assess the
original challenge submissions. AIM got a AUROC score of 0.737, which makes
AIM the second best solution overall among the 65 submissions and notably better
than the two ODE-based submissions. An overview of the performances of AIM,
IM and SCAD, along with the final submissions for the eighth DREAM challenge
is presented in Figure 4.

5.3. Glycolysis in Saccharomyces cerevisiae. Hynne et al. (2001) presented a
full scale chemical kinetics model for glycolysis in Saccharomyces cerevisiae, con-
structed from experimental substrate measurements. While Hynne et al. (2001)
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Figure 4. The AUROC scores of all final submissions in the in
silico network recognition challenge in the eighth DREAM chal-
lenge (Hill et al. (2016)) (gray and black bars), along with three of
the methods considered in this paper.

knew the metabolic pathway a priori and focused on estimating unknown rate pa-
rameters, we will apply AIM to identify the network from simulated data. In total,
d = 22 chemical species enter the glycolysis cycle in an elaborate metabolic network,
see Figure 6.

The dynamical model considered by Hynne et al. (2001) does not fall into the
class of mass action kinetics models. All mass action kinetics models have polyno-
mial fields, but the ODE field consider by Hynne et al. (2001) is rational. More
precisely, the field is (20) with rate functions on the form

(26) γr(x) =
〈ar;xAr 〉
〈br;xBr 〉

, Ar ∈ Nαr×d0 , Br ∈ Nβr×d0 , αr and βr ∈ N,

with 〈·; ·〉 denoting the standard inner product and ar ∈ Rαr , br ∈ Rβr estimable
coefficients.

For a parametric model on the form (26) to be generic enough to include the
model considered by Hynne et al. (2001), the polynomials 〈ar;xAr 〉, 〈br;xBr 〉 need
to have an order of at least 3. Hence, if no prior knowledge on the glycolysis is
given, at least p = 2d(1 + d + d2 + d3) = 490, 820 parameters are needed. It
is possible to use AIM with half a million parameters for polynomial systems as
given by (21). However, the rational ODE systems are far more sensitive than the
polynomial, which in practice results in far longer computations for the numerical
solvers and a higher variance of the resulting estimator. Thus a model search space
of dimension 490,820 is currently not feasible for rational systems, and we will
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therefore consider three scenarios for fitting this system using either prior knowledge
or an approximate and smaller model search space.

We consider two different prior knowledge scenarios: 1) knowing what complexes

can be formed in the system, i.e., what terms Ar ∈ Nαr×d0 , Br ∈ Nβr×d0 may appear
in the rational field. Even with this prior knowledge, we know very little about the
network, since we do not know what complexes drive what reactions. In the system
of Hynne et al. (2001) there are in total 46 complexes. 2) we know a superset of
the complexes. In this setting we include an additional 46 false complexes drawn
at random.

In the third scenario we restrict AIM to a smaller parametric model, which will
not include the true model. Hence the purpose of this scenario is partly to study
the performance of AIM on large and realistic ODE systems and partly to study
the robustness to model misspecification. The restricted model space assumes rate
functions on the form

(27) γr(x) =
krx

ar

1 + xbr
,

with ar ∈ Nd0 and br ∈ Nd0 covering all first order terms (i.e., all combinations of non-
negative integers summing to at most 1) and kr estimable coefficient. This produces
a total of p = d(d+ 1)2 = 11, 638 parameters. By assuming fixed coefficients in the
denominator of the rate functions, we obtain an ODE field which is linear in the
parameters.

5.3.1. Simulation study design. Using the reactions and rate functions listed in
Table 1 and 2 in Hynne et al. (2001), we numerically solved the ODE system with
parameters in Tables 4-7 in Hynne et al. (2001).

We considered E = 5, 10, 15, 20 environments each given its own inhibition.
These were produced as follows: 20 distinct chemical species were selected at ran-
dom, one for each of the maximal number of environments. In each environment
the selected species were inhibited, i.e., the species did not form any complexes with
the other species and were thus prevented from reacting with the other species.

The trajectories ran for 5 minutes, at which the system had settled at a stationary
point. The trajectories were observed at 30 log-equidistant time points with additive
Gaussian noise, with standard deviations σ = 0.1, 0.25, 0.5. The signal of this
system is approximately 3, hence the lower noise level.

Each prior knowledge setting had an associated model search space for which
AIM was applied. The data was separated into environments, in each of which
all but the inhibited species evolved over time. AIM was applied to each environ-
ment individually, and the resulting subnetworks were averaged to produce the full
network estimates.

5.3.2. Results. The ROC curves for the network estimator were calculated for each
of the 100 replications. The average curves are in Figure 5. Not surprisingly the
performance decreased with increasing noise, but more importantly we see a clear
improvement with the number of environments. The estimated network and the
true network are summarised in Figure 6. We note that the approximate model has
the overall worst performance in terms of network recovery, while the two models
that incorporate prior knowledge by restricting the search space perform better.
Though we do identify aspects of the network reasonably well, it is also evident
that there is room for improvement, especially when no prior knowledge is used.
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Figure 5. Pointwise average of the ROC curves, stratified accord-
ing to noise level and number of environments.
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Figure 6. The true glycolysis network (upper). The graph with
the two most reported children for each node (lower). True edges
are green. E = 20, σ = 0.25 and second setting with superset of
complexes known.
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6. Simulation Studies

In this section we return to the mass action kinetics systems:

(28)
dx

dt
= (B −A)Tdiag(xA)k, x(0) = x0,

where k = (kr)
R
r=1 and xA = (xAr )Rr=1, and R ∈ N denotes the number of reactions.

When the stoichiometric matrices A and B are either not known at all or only
partially known, we seek to identify them from a larger set of candidate reactions.
We test the performance of AIM in such a challenge through two simulation studies.

6.1. Simulation Study I. In this section we compare AIM to another ODE net-
work recovery algorithm GRADE, provided by Chen et al. (2016). GRADE is a
nonparametric inverse collocation method. It replaces a parametric form of f with
a basis function expansion assuming an additive form, i.e., any given coordinate of
f depends on the other coordinates in an additive manner. GRADE was shown
quite effective in simulation studies and applications by Chen et al. (2016).

6.1.1. Simulation study design. The setting of this simulation study is a replicate
of the simulation study in Section 5.3 in Chen et al. (2016). We consider five
independent Lotka-Volterra systems, i.e., for k = 1, ..., 5 we let

(29)

dx2k−1
dt

= 2x2k−1(t)− vx2k−1(t)x2k(t)

dx2k
dt

= vx2k−1(t)x2k(t)− 2x2k−1(t).

Note that the above ODE can be cast as a mass action kinetics system with 10
species and 15 reactions.

For each of the E environments we drew the initialisation uniformly at ran-
dom from [0, 4] and solved (29) for t ∈ [0, 5]. Observations were extracted at
t = 0, 0.1, 0.2, ..., 5 with additive Gaussian noise. AIM was applied with a single
linear interpolation smoother and GRADE used a spline smoother for smoothing
the data and a monomial basis expansion of size 3 in (11).

AIM searched ODE solutions using mass action kinetics reactions on the form

(30)

Xi +Xj → 2Xi, i, j = 1, ..., 10, i 6= j.

Xi → 2Xi, i = 1, ..., 10.

Xi → 0, i = 1, ..., 10.

The search space thus consisted of p = 110 reactions.
The following simulation parameters were used:

Parameter

E

v

σ

Values

2 4 8

1 3 5 7

0.5 1 2

Description

Number of environments

Interaction parameter

Standard deviation of additive noise

The noise level was intentionally relatively large, as this ODE system is far easier to
recover than those of the other systems considered in this paper. Each simulation
was replicated 100 times.
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6.1.2. Results. The ROC curves were derived for each simulation setting and method.
A summary of the ROC curves is presented in Figure 7 for v = 5. Similar summaries
for the remaining values of v are found in the supplementary material.
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Figure 7. Pointwise median and 5th and 95th percentiles of ROC
curves for the Lotka-Volterra system with v = 5, stratified accord-
ing to noise level and number of environments.

Across all noise levels, number of environments and interaction parameters we see
that AIM generally performs better than GRADE. We ascribe this to the additivity
assumption in GRADE, as we see improvements for decreasing v. Surprisingly, AIM
works to an acceptable degree even for σ = 2, which corresponds to a signal-to-noise
ratio of 1.
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6.2. Simulation Study II. In this section we report the results from an extensive
simulation study, whose purpose was to quantify how well AIM (in its concrete
form of Algorithm 4.2) identifies the correct reaction network.

6.2.1. Estimators. AIM was compared to an exhaustive gradient matching method
(EGM), inspired by Babtie et al. (2014). See Appendix A for details on its imple-
mentation. Even though it relies on an inverse collocation method, this approach
is computationally expensive as it selects the reactions based on best subset selec-
tion applied to each species separately. This computer intensive inverse collocation
method attempts to get the most information out of the approximate loss function,
by finding global minima on lower dimensional subspaces.

Solving the best subset selection problem for each species separately only induces
the global best subset selection solution if each coordinate of θ induces a single edge
in the network. This property holds for linear ODE systems and does not hold for
most mass action kinetics systems. This simulation study restricts the attention to
reactions on the form Xi + Xj → 2Xi, i 6= j, hence each reaction corresponds to
a bidirectional edge between node i and j – as well as a self-edge in both nodes.
Thus, in this particular simulation study, EGM will provide the same networks as
a best subset selection performed over all possible reactions. EGM was not applied
to the examples considered in Section 5, as the number of species was too large for
an exhaustive search to be computationally feasible.

Each method reported estimated reaction networks consisting of up to 5d reac-
tions. EGM used the Gaussian process smoother described in Babtie et al. (2014),
IM used a linear interpolation smoother and AIM used both smoothers. In order
to produce additional initialisations for AIM, the integral matching estimates from
each smoother were produced with and without standardising the coordinates of
the process. Both AIM and IM used the elastic net penalty (Zou & Hastie (2005))
with α = 0.25.

6.2.2. Simulation study design. Data was drawn from reaction networks composed
of reactions on the form:

(31) Xi +Xj → 2Xi

where i, j = 1, ..., d and i 6= j, with a total number of reactions at p = d(d − 1).
Time course data from E environments were drawn. Each environment was given
its own initial condition produced as follows: between one and four distinct chemical
species were selected at random. In each environment all but the selected species
were knocked down by 50% from their equilibrium value and the initial abundance
of the selected species were increased by the total mass knocked down. The initial
conditions were rescaled to have an average of 5. Since the total number of molecules
is preserved by reactions on form (31), the average signal strength is approximately
5.

Data were sampled at t = 0 and t = 2i/2, for i = −5,−4, ..., 2, 3, all with additive
Gaussian noise. Each species i = 1, ..., d was given α = 1, 2 true reactions, i.e., a
total of dα reactions on the form (31) had rate parameter 1 and the remaining 0.

The following simulation parameters were used:
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Parameter

d

α

E

n

σ

Values

7 9 11

1 2

2 4 8

10

0.1 0.5 1

Description

Number of species

Number of true reactions per species

Number of environments

Number of data points per environment

Standard deviation of additive noise

For each combination of the simulation parameters, 100 replications of the above
simulation experiments were conducted.

6.2.3. Results. We first report the recovery of the true network. For each replicate
and simulation parameter combination the receiver operating characteristic (ROC)
curves of the network were derived. Pointwise averages over the replicates are
illustrated in Figure 8 for d = 9 and α = 1. The remaining curves can be found in
the supplementary material.

From Figure 8 we see that AIM consistently recovered the network better than
the other methods. IM and SCAD were the worst performing methods with SCAD
improving the most with increasing number of environments, though not reaching
the level of EGM and AIM.

These tendencies are repeated in the other figures in the supplementary material,
with an overall decrease in performance for α = 2. Figure 9 provides an overview of
the area under the ROC curves (AUROC) across simulation settings. AIM generally
had the largest median AUROC values across all settings. For all methods we also
see improvements when increasing the number of environments and that increasing
the number of species for most scenarios decreases the performance. Generally, for
all methods the network recovery performances dropped considerably for α = 2.

Next we report the recovery of the true reactions. We visualise their performance
by their precision-recall curves. In Figure 10 the pointwise averaged precision-recall
curves for d = 9 and α = 1 are presented. The remaining curves can be found in
the supplementary material.

From Figure 10 we see that EGM recovered most correct reactions early in the
recovery for E large. But after recovering 20–35% of the true reactions AIM sur-
passed EGM in reaction recovery performance. All methods improved considerably
with increasing number of environments. These results match what we observed
for the network recovery to some degree.

The network ROC curves and the reaction precision-recall curves together sug-
gest that EGM recovers the first few reactions and network edges accurately, but
AIM is more accurate when more reactions are reported.
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Figure 8. Pointwise averaged ROC curves of the network esti-
mates for d = 9 and α = 1, stratified according to noise level and
number of environments.
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ified according to the simulation settings.
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The mean squared error of the estimated reaction networks were also assessed.
A single model was selected for each method by minimising the mean squared error
on an independent test set. The squared error between the trajectories produced by
the selected model and the true trajectory at each time point was derived. Medians
of the mean squared error are presented in Figure 11.

We see that the methods using the ODE-based loss (AIM and SCAD) have
much smaller mean squared error than the methods based on the approximate loss.
That the mean squared error is so large for IM and EGM can be explained as a
bias phenomenon similar to the one observed for the Michaelis-Menten example as
illustrated in Figure 2. IM without a penalty and a linear interpolation smoother
– as used in this simulation study – is expected to be relatively unbiased but with
a large variance. However, the sparsity enforcing penalty introduced an additional
bias, and the resulting trajectories of the fitted ODE did not match the truth
very well in general (data not shown). For EGM the conclusion is the same, but
the argument is the other way around. This method used a Gaussian process
smoother, which should decrease the variance of the parameter estimates, but the
under-estimated slopes introduced a stronger bias. Again, the resulting trajectories
of the ODE fitted using EGM did not match the truth very well. Though the mean
squared error suggests that the approximate loss functions provide quantitatively
incorrect estimates, we did find qualitatively correct network and reaction recovery
for those methods.
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Figure 11. Medians of the mean squared error between the tuned
trajectories and the true trajectory for E = 4.

Finally we report computation times. The median computation time over 10
replications can be found in Figure 12 for two collections of reactions: Xi +Xj →
2Xi, i 6= j and Xi +Xj → Xi +Xk, j 6= i 6= k. The model search space size of the
latter grows faster with the number of species and it quickly becomes a challenge
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for EGM. In fact EGM was excluded for d > 5 due to infeasible computation times.
For d small, AIM is somewhat slow, however in terms of scalability with d AIM
resembles IM more than EGM.
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7. Discussion

Collocation based estimation of parameters in ODE systems is computationally
less demanding than the least squares method that relies on numerical solutions
of the ODE systems. Calderhead et al. (2009) demonstrated this in a Bayesian
setting and proposed a collocation method based on Gaussian processes, Babtie
et al. (2014) relied on a Gaussian process collocation based search of the model
space similar to the EGM method that we have implemented, and Chen et al. (2016)
relied on penalised collocation based estimation for their method GRADE (Graph
Reconstruction via Additive Differential Equations). Based on these and similar
results we sought to develop a scalable inference framework for mass action systems,
but we found several challenges, and the present paper represents a synthesis of how
we dealt with these challenges. We discuss below how the most important challenges
were addressed.

7.1. Bias. We found that penalised collocation methods were computationally fast,
but even if they did recover qualitatively the correct network and reactions for
realistic data sizes, the resulting parameter estimates were biased. The bias was
induced partly by the initial smoothing and partly by the penalisation, and the
fitted model would not reproduce very accurately the solution trajectories of the
true data generating ODE system. Moreover, the results would be sensitive to the
precise choice of initial smoother. We found that among the collocation methods,
our proposed integral matching (IM) estimator obtained by minimising (14) has
reasonable statistical properties.

7.2. Penalised least squares. To test if penalised least squares methods are feasi-
ble for large systems we implemented a number of algorithms for numerical minimi-
sation of the penalised least squares loss including the proximal gradient algorithm
with screening as presented in Appendix A.2. Sparsity and screening combined
with fast solvers of the sensitivity equations makes it possible to apply these algo-
rithms even for fairly large systems. However, the sparsity inducing penalty still
induces a bias of the resulting estimates, which can also be quite dependent on the
initialisation of the optimisation algorithm due to local minima of the objective
function. We illustrated that least squares with the SCAD penalty achieved rather
accurate estimates in terms of mean squared error from the true trajectories, but
in terms of network recovery it was inferior to the other methods considered – in
particular IM, which is much faster.

7.3. Parameter scale. A parameter in an ODE system typically controls the rate
of a reaction, and the bias induced by the penalty results in reaction rates being
underestimated. It is our experience that the bias induced by the penalty can have
quite substantial effects for nonlinear ODE systems, and the choice of parameter
scale determines this bias together with the combined effect of the penalty term.
Standardisation as used in regression models, e.g. in the R package glmnet (Fried-
man et al. 2010), for bringing the parameters on a common scale is not directly
applicable. We suggest adaptive rescaling as given by (16), which does require a
pilot estimate of the unknown parameter unless f is linear in θ. However, we did
not find this to be a data-driven panacea for the choice of parameter scale, and
we ended up concluding that the unpenalised estimator given by (18) had better
statistical properties in our experiments.
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7.4. Combining methods. Our combined AIM algorithm uses the fast collocation
method IM to obtain good initialisation parameters for the least squares method.
Moreover, AIM in the form of Algorithm 4.2 – which we have extensively tested –
uses multiple smoothers to achieve an even greater variety of initialisations, and it
introduces sparsity in the least squares method by restricting the parameter space.
The stratified ranking was proposed as a way to aggregate the resulting models
into a sequence of models indexed by the number of nonzero parameters. Clearly,
alternative aggregations are possible, e.g. using a weighted average. Moreover, the
simulation study in Section 6.2 found that EGM performed slightly better than
AIM for the first couple of reactions. As EGM performs the first couple of search
iterations fairly quickly, a hybrid approach for initialisation suggests itself using
EGM for the first couple of reactions and IM for the remaining reactions. We
have not investigated if alternative aggregation schemes or hybrid approaches for
initialisation could further improve the statistical properties of the algorithm.

7.5. Network recovery. We demonstrated that AIM has good network recovery
properties in a number of different examples and compared to several alternatives.
In the Lotka-Volterra example it was, for instance, demonstrated that AIM was
far superior to GRADE (Chen et al. 2016). This is perhaps unsurprising given
that GRADE assumes an additive form of f , but we emphasise this to argue that
additivity is a quite strong assumption, which is unlikely to hold for many ODE
systems of practical relevance.

AIM also performed well in the recovering of the in silico network of protein
phosphorylation, and it was superior in terms of AUROC to IM and SCAD consid-
ered in this paper as well as the two ODE-based solutions that participated in the
eighth DREAM challenge. We did not participate in the challenge, but AIM would
have been ranked second among all participants. We note that the top-ranked
submissions including the winning team did not rely on a mechanistic model – the
submission only required network edge weights. The winning team constructed
edge weights via tests for nonlinear functional relations without the constraints of
an ODE system, and were in this way better able to capture the correct network
structure (see Supplementary material on Team 7 in Hill et al. (2016)). However,
such methods are not capable of predicting e.g. intervention or perturbation effects.
It is clearly of interest to utilise such network estimates as prior information for
learning ODE systems, and we demonstrated how this can be done in our frame-
work for the discovery of the glycolysis network. For the DREAM challenge it would
make an unfair comparison if we were to piggyback on the published top-ranked
network for this particular data set, hence we ran AIM in this example without any
prior network restrictions.

7.6. Conclusion. The AIM algorithm was presented and demonstrated to have
good statistical properties for realistic data structures and sizes. The implementa-
tion of AIM also demonstrated that it is possible to learn large ODE systems via
least squares methods – even if this is computationally heavy. Further improve-
ments may be possible, e.g. to account for a more complicated noise structure than
additive, uncorrelated noise. In the light of the linear noise approximation, de-
scribed in detail by Wallace et al. (2012), the noise in mass action kinetics systems
scales with the signal. We have partially addressed this by rescaling the obser-
vation weights as given by (17), which will adjust the weights according to the
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variance of each species. However, we have not investigated ways to adjust for a
more complicated variance structure.

Our intention with AIM and the associated R package episode is to provide a
thoroughly tested, applicable and useful framework for learning ODE systems using
state-of-the-art methods. This should be of use to experimentalists, and it should
be able to serve as a benchmark for further developments. The R package cur-
rently supports polynomial and rational systems in certain parameterisations, and
it is implemented in a modular way that allows for easy addition of new parame-
terised families of ODE systems. Doing so, the entire framework consisting of data
structures, ODE solvers and optimisers including AIM are then directly available.
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Appendix A. Computational Aspects

A.1. Sensitivity equations and approximative gradients. Let x : R → Rd
solve the ODE

(32)
dx

dt
= f(x, θ), x(0) = x0.

The derivative of x with respect to θ ∈ Rp, i.e., the matrix valued function xθ :
R→ Rd×p, solves another ODE system:

(33)
dxθ
dt

=
∂f

∂x
(x, θ)xθ +

∂f

∂θ
(x, θ), xθ(0) = Od×p,

where Od×p is the d× p-dimensional zero-matrix. Analogously, the derivative of x
with respect to x0, xx0

: R→ Rd×d, solves the ODE:

(34)
dxx0

dt
=
∂f

∂x
(x, θ)xx0 , xx0(0) = Id,

with Id the n-dimensional identity matrix. The equations (33) and (34) are called
the sensitivity equations of (32). Notice that once the original system is solved, the
columns of the sensitivity equations can be solved independently.

The sensitivity equations are often solved simultaneously with the original system
(32). Even if (32) requires a computationally intensive solver (e.g., a solver with
adaptive step length or implicit solvers), the sensitivity equations often only require
simple solvers like the Euler scheme to be accurate. There are two reasons for this.
Firstly, the sensitivity equations are (time-inhomogeneous) affine ODE systems
which are often less sensitive. Secondly, the exact gradient is not necessary to
optimise a smooth function – an approximate gradient pointing in roughly the
same direction will suffice.

A method for deriving even faster approximate gradients to

(35) `y :=
∑

t∈C
‖yt −

∫ t

0

f(x(s, θ), θ)ds‖22

was proposed by Mikkelsen (2015) and inspired by inverse collocation methods. It
goes as follows: assuming that θ0 is the current value of θ in the optimisation, then
minimise

(36) θ 7→
∑

t∈C
‖yt −

∫ t

0

f(x(s, θ0), θ)ds‖22

to produce the next step. Though these approximate solutions are not guaranteed to
improve the original loss function, they still produce fast and approximate descent
directions. If the approximate solution does not improve the loss function, it is
suggested to take one classic gradient-based step before retrying the approximate
solution.

The above approach is equivalent to using the Gauss-Newton method on the
original loss function, but ignoring the first term of the right hand side of (33),
when calculating the differentials.

A.2. Proximal gradient and screening methods. The penalised ODE loss
function

(37) `y(θ) :=
1

2

n∑

i=1

d∑

l=1

wi,l(yl(ti)− xl(ti, θ))2 + λ

p∑

j=1

vjpen(θj),
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is optimised using a proximal gradient method, as described in Hale et al. (2008)
for `1 penalties. For non-convex penalties, like SCAD and MCP, this method is
combined with the majorisation method by Fan & Li (2001).

The proximal gradient method for (37) thus starts with initialisation θ0 and the
proceeds with

(38) θk+1 = prox(θk, pk, τ), for k = 0, 1, ...

where the proximal operator is defined as

(39) prox(θ, p, τ) := sign(θ − τp) ◦max(0, |θ − τp| − λµ(θ)).

The vector pk is the derivative of 1
2

∑n
i=1

∑d
l=1 wi,l(yl(ti)− xl(ti, θ))2 at θk, i.e.,

(40) pk := −
n∑

i=1

d∑

l=1

wi,l(yl(ti)− xl(ti, θk))
dxl
dθ
|θ=θk(ti)

and the sensitivity equation is solved using the approximative methods described
above. For non-convex penalties, the majorisation amounts to replacing the penalty

weights in each step by vj ◦ d
2pen
dθ2j

(θj).

In (38) the step length τ is chosen through backtracking. Moreover, not all
coordinates of θ changes in each step of (38). This is due to the sparsity inducing
property of the proximal operator. In practice this means that many coordinates of
the derivatives pk are calculated (using computationally intensive numerical solvers)
and then never used. Computations are thus saved if occasionally the ODE system
is screened for strong variables as follows: at every nth step all coordinates of pk are
evaluated. If θk = prox(θk, pk, 1) (up to some numerical accuracy) then stop, else
identify the active set A = {i | θki 6= 0 or θki 6= prox(θki , p

k
i , 1)} and run proximal

gradient algorithm on A only until next screening.

A.3. Exhaustive Gradient Matching. Inspired by Babtie et al. (2014) exhaus-
tive gradient matching applies a best subset selection of parameters for explaining
the dynamics of each chemical species individually. The individual results are then
combined into a parameter estimate of the full ODE system.

For an ODE system given by the field f(x, θ), then each coordinate of the solution
satisfies

(41)
dxl
dt

= fl(x, θ), l = 1, ..., d

where fl is the lth coordinate of f and θ ∈ Rp. Given smoothed curves x̂ = (x̂l)
d
l=1

for each coordinate, then the approximate inverse collocation loss function is

(42) `(θ) :=
1

2

d∑

l=1

∑

t∈C

(
dx̂l
dt

(t)− fl(x̂(t), θ)

)2

.

If the field is linear in the parameters the above becomes the sum of squares,

(43) `(θ) =
d∑

l=1

‖Yl −Xlθ‖22.

where Yl =
(
x̂l
dt (t)

)
t∈C andXl =

(
∂fl
∂θ (x̂(t))

)
t∈C

is a concatenation of the θ-gradients

of the field over the time points.
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The exhaustive gradient matching method (EGM) goes as follows: for each l =

1, ..., d construct Yl =
(
x̂l
dt (t)

)
t∈C and X. =

(
∂fl
∂θ (x̂(t))

)
t∈C

. For any K ⊆ {1, ..., p}
let XKl denote the K columns of Xl and let θK ∈ R|K|. For k = 1, ...,K find the
subset Klk ⊆ {1, ..., p} with |Klk| = k such that

(44) min
θK
i
k

1

2
‖Yl −XKkl θKk‖22

is minimal.
Each species now has a sequence of subsets of increasing size, (Klk)Kk=0. They are

combined into a sequence of subsets representing the full system, (Kk)dKk=0, by the
union

(45) Kk :=
d⋃

i=1

Klαi(k).

The k-dependent tuple α(k) = (αl(k))dl=1 ∈ {1, ...,K}d is given by the recursion

(46) α(0) = (0)dl=1, α(k + 1) = α(k) + el∗ , k = 0, ...,Kd− 1

where the increments el∗ is 1 at coordinate l∗ and zero elsewhere. The coordinate
l∗ is chosen such that

(47) min
θ:j /∈⋃dl=1 Klγi⇒θj=0

`(θ), γ = α(k) + el∗

is minimal, i.e., the species whose next subset improves the loss the most determines
the next full subset Kk+1.

The EGM estimator becomes the best subset selection estimator of (42) if and
only if each coordinate of the parameter vector θ affects only one edge in the
network. This is the case for linear ODE systems and, if ignoring self-edges, also
the case for the systems studied in Section 6.2. However, for most ODE systems a
single coordinate often affects multiple network edges simultaneously.
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Abstract: Ordinary differential equation (ODE) systems are widely applicable in
many branches of the natural sciences. They are especially valuable for analysing
entire networks of processes with no internal noise. Though simple from a statis-
tical point of view, the applicability of these models are usually hindered by their
computational complexity. In this work I present a selection of current methods
to cope with the computational aspects of estimating parameters in ODE systems.
Based on some of these methods, I present an algorithm for finding maximum
likelihood estimates (MLE) with certain computational qualities.

Keywords: ODE systems, parameter estimation, non-linear least squares, com-
putational statistics
AMS subject classifications: 62J02.

1 Introduction

We have in mind a d-dimensional ordinary differential equation system:

ẋ = f(x, θ), x ∈ Rd (1)

parametrised by a p-dimensional vector θ ∈ Rp. For given θ, a solution to (1) is a
function ψθ : R→ Rd, such that

ψθ(t) = ψθ(0) +

∫ t

0

f(ψθ(s), θ) ds, for all t ∈ R. (2)

We observe the state of the system at discrete time points 0 = t1 < t2 < ... < tn
with independent Gaussian noise:

yj = ψθ(tj) + εj , εj
i.i.d.∼ N (0, σ2Id) (3)

for j = 1, ..., n. The negative log-likelihood is directly available (σ2 is omitted):

`y(θ) =
1

2

n∑

j=1

‖yj − ψθ(tj)‖22. (4)

This modelling framework for ODE systems is therefore quite simple from a statis-
tical point of view. However, as explained below, optimising (4) is rather difficult
from a computational angle.

∗Corresponding author: frm@math.ku.dk
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2 The Optimisation Problem

Finding the maximum likelihood estimator reduces to solving a non-linear least
squares problem, due to (4). However, evaluating the likelihood requires solutions
of the underlying ODE system. Various numerical methods for finding approxima-
tive solutions exist, but are relatively time consuming. Specifically, employing an
explicit Runge-Kutta scheme of size s (see e.g. section 17 in [5] for details) the
number of evaluations of f is sT

δ . Here δ is the step size and T is the time span. For
such a scheme the global truncation error is O (Tδp), for some scheme-dependent
p ≤ s. Using an implicit Runge-Kutta scheme, instead, leads to a smaller global
truncation error, but raises the number of evaluations of f and is O

(
dsT
δ

)
in best

case scenarios.
The number of f -evaluations is substantial for assessing the computational com-

plexity of evaluating `y. Though linear in each variable (considering 1/δ as mea-
suring the mesh), the number of f -evaluations is typically large. Consequently, in
order to optimise (4) efficiently, a minimal number of evaluations of `y is prefer-
able, especially when the observed time points cover a large time span or the ODE
system is stiff.

3 Methods

3.1 Gauss-Newton Approach (shooting)

From a numerical optimisation perspective, `y has the valuable property of being
a sum of squares. Thus the classical Gauss-Newton algorithm is typically a first
choice for the optimisation scheme. The Gauss-Newton algorithm has the same
rate of convergence as most second order approximation algorithms, but requires
no computations of the hessian matrix (see e.g. section 10 in [6] for details).
However, calculating the gradient of `y:

∇θ`y(θ) = −
n∑

j=1

(yj − ψθ(tj))′Dθψ(tj) (5)

amounts to deriving Dθψ. This differential is typically only available as a solution
to the matrix differential equation system

˙Dθψ =
∂f

∂x
(ψ(t), θ)Dθψ +

∂f

∂θ
(ψ(t), θ). (6)

Consequently, employing the Gauss-Newton algorithm requires solving (1) and (6)
simultaneously at each step. Using an explicit Runge-Kutta scheme of size s, this
amounts to evaluating f , ∂f

∂x and ∂f
∂θ , sT

δ times at each step of the optimisation.
Subsequently, for large and complex systems, evaluating the gradient of `y is either
extremely time consuming or close to impossible.

There are numerous variations of the above approach (see, e.g., [3] for a more
sophisticated version). They are often referred to as shooting methods, inspired
by the shooting method from boundary value problems. These methods typically
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rely on general optimisation algorithms and will therefore not exploit all essential
features of ODE systems. The remaining algorithms incorporate these features by
considering, e.g., the functional nature of the data.

3.2 Generalised Smoothing Approach (collocation)

Certain implicit Runge-Kutta schemes are so-called collocation methods. They
rely on the principle that an approximative solution to (1) can be found in some
finite dimensional function space, typically spanned by a set of spline functions.
The collocation method therefore amounts to finding an element of the function
space that satisfy (1) in some pre-specified time points, called collocation points.
This approach is the inspiration to various parameter estimation methods in ODE
systems. The following method is due to Ramsay et. al, see [4]:

This approach relies on the approximation of ψθ given by

ψθ(t) ≈ ϕ(t)′ĉθ for t ∈ [0, tn]. (7)

Here ϕ is a vector of univariate basis functions, which combined with the vector ĉθ
of coefficients yields an approximative solution to (1). The parameter dependence
θ 7→ ψθ is therefore passed on to θ 7→ ĉθ. The least squares criterion:

J(c, θ) =
∑

j

‖yj − ϕ(tj)
′c‖22 + λ

∫ tn

t1

‖ϕ̇(t)′c− f(ϕ(t)′c, θ)‖22 dt (8)

is proposed, where λ > 0 is a tuning parameter shifting the weight between the
data fitting criterion and the so-called fidelity measure of ϕ′c. Applying profiling
methods to (8), ĉθ appears as the minimum of c 7→ J(c, θ). If f is linear in x, the
minimisation problem reduces to a linear least squares problem, thus providing an
analytical expression for θ 7→ ĉθ.

By introducing this approach, some of the tools of functional data analysis is
suddenly available, which provide new insightful views on the estimation problem.
However, it is worth considering the influence of the choice of ϕ on the inference.
Moreover, the relation between optimising a family of semi-norms parametrised by
λ (the criterion J in (8)) and the actual MLE defined through (4) is not completely
clear. Finally, for non-linear systems, optimising c 7→ J(c, θ) and θ 7→ J(ĉθ, θ) using
gradient based methods still require evaluating ∂f

∂x and ∂f
∂θ many times (depending

on how the integral in (8) is approximated).

3.3 Gradient/integral Matching

The core principle of this method is: if the whole noiseless curve ψ is observed,
then θ can be inferred by minimising

∫ tn

t1

∥∥∥ψ̇(t)− f(ψ(t), θ)
∥∥∥
2

2
dt, or

∫ tn

t1

∥∥∥∥ψ(t)− ψ(t1)−
∫ t

t1

f(ψ(s), θ)ds

∥∥∥∥
2

2

dt. (9)
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We therefore consider the estimator, that takes a non-parametric estimate of ψ, ψ̂,
and returns the value of θ minimising (9):

ψ̂ 7→ arg min
θ

∫ tn

t1

∥∥∥∥ψ̂(t)− ψ(t1)−
∫ t

t1

f(ψ̂(s), θ)ds

∥∥∥∥
2

2

dt. (10)

If ψ(t1) is unknown, it can be included in the parameter vector θ. In [1] the author
proves that if the above map is applied to a consistent non-parametric estimator,
the resulting estimator of θ is also consistent, under mild regularity assumptions.
Additionally, he also finds conditions for asymptotic normality.

This approach truly flourishes when applied to systems in which f is linear in
θ (and not necessarily linear in x). In such cases (10) reduces to a linear least
squares problem, which can be solved even for very large and complex systems,
i.e., for large n and p. Furthermore, one can introduce, e.g., `1-penalties to (10)
and apply the method to systems with p >> nd and still have computationally
stable methods for finding solutions.

Brewer et al. ([2]) proposed an iterative procedure exploiting the qualities of
this type of gradient matching. More precisely, they consider a fitting criterion
resembling that of [4]:

∑

j

‖yj − ϕ(tj)
′c‖22 + λ

∑

r

‖ϕ̇(tr)
′c− f(ϕ(tr)

′c̃, θ)‖22 (11)

where r is allowed to run over a finer (or coarser) grid than j. The iterations consist
of letting c̃ be fixed and then estimate (c, θ) as the linear least squares estimates of
(11). The estimate of c then enters as c̃ in the next iteration. By applying gradient

matching iteratively one avoids choosing a specific ψ̂, as opposed to a non-iterative
gradient matching.

Similarly to the generalised smoothing approach, this method has the following
important strength: the optimisation problem and the ODE-solution problem are
separated. Thus evaluating the fitting criterion is inexpensive and evaluating the
gradient (typically) requires less calculations of ∂f

∂x and ∂f
∂θ .

The method described above is applicable to many non-trivial systems and can
handle large and sparse models. However, there are things to consider: the iterative
procedure is still dependent on the choice of ϕ. It is also unclear how optimising
the criterion (11) is related to the MLE given through (4). Finally, it is nontrivial
whether this sequence of iterative estimates of (c, θ) converge to the optimum of
(11) (if it converges at all).

4 Combining Algorithms

Returning to the original problem of minimising (4), we required relatively few
evaluations of `y and ∇`y. In this section we consider a new algorithm based on
the above, which yields the actual MLE (a quality of the shooting methods) and
still exploits the computationally attractive aspects of gradient matching.

Firstly, given a current estimate of θ, denoted θk in the iterative procedure, we
calculate an approximative solution curve ψθk . Then we perform integral matching
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Initialisation:
k = 0

θ0 provided
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Direction:
Find descent

direction pk, e.g.,
Gauss-Newton

Stop
‖pk‖ < δ
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via line search
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Update:
k := k + 1
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Initialisation:
k = 0
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‖pk‖ ≥ δ
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Update:
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θk := θk + αpk

α ≥ ε

Figure 1: Flowcharts of a generic line search algorithm with and without an oracle.

between the curve and the observations. The resulting estimate of θ:

θoraclek = arg min
θ

n∑

j=1

∥∥∥∥yj − ψ(t1)−
∫ tj

t1

f(ψθk(s), θ)ds

∥∥∥∥
2

2

. (12)

is called the oracle estimate. We denote poraclek = θoraclek − θk the oracle direction.
In general it is not certain that `y(θoraclek ) < `y(θk), hence a backtracking of poraclek

must be employed in order to gain a descent:

θk+1 = θk + αporaclek

for some α ∈ [0, 1]. However, it is not even certain that poraclek is a descent direction!
In which case, the backtracking will fail to find a positive α within numerical
tolerance. In this case, no benefit from the oracle is gained. The algorithm then
passes on to some classic optimisation scheme, e.g., Gauss-Newton. Once a single
Gauss-Newton update is done, the algorithm returns to the oracle for the next
iterate. A generic line search optimisation algorithm with and without an oracle
are visualised by two flowcharts in figure 1.

This algorithm maintains the convergence properties of the Gauss-Newton al-
gorithm, while benefiting from computational advantages possessed by the oracle.
In practice the oracle mostly provides excellent descent directions and the Gauss-
Newton part will only be invoked to verify that the final iterate is an approximative
local minima.
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5 Discussion and Further Work

The new combined algorithm presented above has been implemented and tested on
simulated data from mass action kinetics models. The results look promising both
for large and small σ2, along with high and low frequency data. In these studies the
oracle always provided a descent direction. Intuitively this is not true in general, as
the algorithm will perform poorly for stiff or chaotic systems. The computationally
heavy part of the algorithm is the Gauss-Newton part. Consequently, it is of
high interest to find conditions that ensure the oracle alone provides the descent
directions necessary to find MLE.

Additionally, the algorithm can be extended to parameter estimation with
forced sparsity, e.g., using `p penalties. This is relevant for estimating unknown
model structures. However, when introducing such penalties the algorithm has to
be revised in order to accommodate potential lack of smoothness.

Acknowledgements: A great thanks to Professor Niels Richard Hansen and Mar-
tin Vincent of Department of Mathematical Sciences at University of Copenhagen
for guidance and many insightful discussions.
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Abstract. Determining excitability thresholds in neuronal models is of high
interest due to its applicability in separating spiking from non-spiking phases

of neuronal membrane potential processes. However, excitability thresholds

are known to depend on various auxiliary variables, including any conductance
or gating variables. Such dependences pose as a double-edged sword; they are

natural consequences of the complexity of the model, but proves difficult to

apply in practice, since gating variables are rarely measured.
In this paper a technique for finding excitability thresholds, based on the

local behaviour of the flow in dynamical systems, is presented. The technique

incorporates the dynamics of the auxiliary variables, yet only produces thresh-
olds for the membrane potential. The method is applied to several classical

neuron models and the threshold’s dependence upon external parameters is

studied, along with a general evaluation of the technique.

1. Introduction. One of the most essential properties of a neuronal model is its
ability to capture both the active spiking phases (fast large-amplitude oscillations)
and the inactive resting phases (weakly nonlinear oscillations), [4]. The concept
of excitability thresholds, which in general is not well defined, is an ad hoc charac-
teristic separating these two ”domains”. Excitability threshold are, nevertheless,
essential in many applications, e.g., when studying membrane potentials data is
often separated into active and inactive phases and analysed accordingly.

A vast selection of literature exists on the subject of choosing spiking thresh-
olds in neuronal models. These include both experimentally based approaches and
purely theoretical constructions based on some class of models. The focus of this
paper is the latter. For experimentally based solutions see, e.g., [19] for a thorough
presentation and benchmarking of some of the most common methods.

Some of the theoretical model based approaches rely on differential geometry
and prove highly relevant in the context of detecting distinctive behaviour in dy-
namical systems, see e.g., [7]. A classical approach is studying the inflection sets of
the system, i.e., the region of the state space at which trajectories have vanishing
curvature. This approach for detecting excitability thresholds was first proposed in
1976 ([15]), where it was applied to the BonhoefferVan der Pol model. It was later
reintroduced in [16] in connection to canards in chemical systems. For thorough

2010 Mathematics Subject Classification. Primary: 37C10, 65L05; Secondary: 92C20.
Key words and phrases. Dynamical Systems, Hodgkin-Huxley, Excitability, Neuron Modelling,

Spiking, Threshold Selection.
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treatment in relation to excitability and canards, see e.g., [4] and [21]. As discussed
in [4], inflection methods are limited to planar systems.

Another type of model based threshold characterisation relies on studying the
steepest slope of the membrane potential process. This, however, crucially depends
on the state of the gating variables. Such dependences is studied in [18], in which the
authors provide a threshold equation that yields an instantaneous threshold value
as a function of the underlying ionic channel conductance. In [20] the excitability
threshold in neuronal models is successfully captured as manifolds in the state space
and thus stressing the dependence of the threshold on activation and inactivation
variables.

The technique presented in this paper focuses on multidimensional neuronal mod-
els, in which an excitability threshold solely for the membrane potential is desired.
This is favourable, as the gating variables are rarely measured. Though the tech-
nique produces a threshold independent of the gating variables, it still captures the
overall dynamics of the system.

The paper is outlined as follows: in section 2 the general framework is established
along with the fundamental assumptions of the model. Moreover, the excitability
threshold technique is motivated and derived. In section 3 the threshold rule is
applied to six different neuron models for varying parameter settings. Finally, the
advantages, drawbacks and general evaluation of the method are considered in sec-
tion 4.

2. Framework and Construction. Let E and Θ denote open subsets of Rd and
Rp, respectively. Let f : E × Θ 7→ Rd be a C1-function and consider the initial
value problem:

ẋ = f(x, θ), x(0) = x0, (1)

with x0 ∈ E and θ ∈ Θ. A solution or trajectory of (1) is a function ϕ : R×E×Θ→
E satisfying

ϕ(t, x0, θ) = ϕ(0, x0, θ) +

∫ t

0

f(ϕ(s, x0, θ), θ) ds, for all t ∈ R. (2)

We say that f constitutes a dynamical system on the state space E. Standard
existence and uniqueness results for solutions to (1) can be found in, e.g., [17].
Unless relevant, θ will be dropped from the notation.

We will consider any neuronal model given as a dynamical system. We assume
the first coordinate of x represents the electrical potential, denoted by v. Let u
denote the additional variables. We therefore have the tensor structure: x = (v, u),
f = (fv, fu) and ϕ = (ϕv, ϕu). Additionally, we assume f is C2.

In the following we need the manifold:

N := {x ∈ E | fv(x) = 0} , (3)

known as the v-nullcline. Any trajectory of the system has its marginal v-stationary
points on N . Consequently, all spikes occur on the manifold N , thus stressing the
importance of N in relation to excitability thresholds.

In figure 1 trajectories in reverse time of different system are plotted (see section
3 and appendix A for details). Though they are initialised on equally spaced points
on N we observe clustering of the trajectories.

Because the flow is in reverse, trajectories will be highly sensitive towards initial
conditions if initialised close to the clustered trajectories. Trajectories to the left
curve towards the inactive regime and trajectories to the right curve towards the



66 FREDERIK RIIS MIKKELSEN

−60 −40 −20 0

−60

−55

−50

−45

−40

−40 −20 0 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b)

−60 −40 −20 0

0.40

0.45

0.50

0.55

0.60

0.65

0.70

−2 −1 0 1 2

−0.5

0.0

0.5

1.0

1.5

(c) (d)

Figure 1. State space of different bi-dimensional models with
drawn nullclines. The dotted lines are trajectories initialised on
N and runs in negative time flow. (a) the Abbott-Kepler reduc-
tion, (b) the Morris-Lecar model, (c) the Kokoz-Krinskii reduction,
(d) the Fitzhugh-Nagumo model.

active regime. Hence, in this figure, the clustered trajectories are closely related
to the inflection sets of the state spaces. Additionally, they are also closely linked
to the manifolds studied in [20]. This clustering of trajectories is therefore closely
linked to the transition between active and inactive phases and thus builds the
foundation of the threshold technique outlined below.

Generally, the clustering is characterised by how the flow scales volumes. In figure
1 equally spaced initialisations on N (corresponding to equal volumes) are squeezed
together or separated from each other by the flow. Consequently, clustering of
trajectories occurs when volumes are considerably scaled down by the reverse flow,
or, scaled up by the non-reversed flow.
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Formally, the scaling of volumes is quantified by the Jacobian of the flow x 7→
ϕ(t, x):

J(t, x) := |det(∂xϕ(t, x))| . (4)

In order to make this characteristic tractable, we consider the infinitesimal scaling
of volumes at t = 0. Standard results yield:

det(∂xϕ(t, x)) = det (∂xϕ(0, x) + t∂t∂xϕ(0, x) + tε(t, x))

= det (I + t [∂xf(x) + ε(t, x)])

= 1 + t · trace(∂xf(x) + ε(t, x)) +O(t2)

(5)

for some function ε vanishing at t = 0. Consequently,

∂tJ(0, x) = ∇f(x), (6)

where ∇ is the divergence operator. Motivated by the above, the proposed thresh-
old, vthr, is given by

vthr := πv

(
argmax

x∈N
∇f(x)

)
, (7)

where πv is the projection onto the v-coordinate.
Clearly, the applicability of vthr relies on existence and uniqueness of a maximal

argument for ∇f(x) on N . For instance, vthr does not exist in linear systems.
However, as seen in section 3, vthr is well defined in the classical neuron models.
Moreover, heat maps of ∇f for four bi-dimensional models is presented in figure 2.

As mentioned, one of the most important properties of a neuronal model is its
ability to capture both active and inactive phases and their separate distinctive be-
haviour. Furthermore, the transition between the two regimes must be fast, other-
wise the model does not sufficiently reflect the ”all-or-none”-principle of excitability
in neurons. From the model’s perspective this implies that only finely tuned initial-
isations exhibits local v-maxima that can neither be considered active nor inactive.
Such crossings of N are exactly those having large values of ∇f and thus captured
by (7). Therefore vthr is well defined if the model considered sufficiently mimics the
”all-or-none” principle.
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(a) (b)

(c) (d)

Figure 2. Heat maps of ∇f on the state space of different bi-
dimensional models with drawn null-clines: (a) the Abbott-Kepler
reduction, (b) the Morris-Lecar model, (c) the Kokoz-Krinskii re-
duction, (d) the Fitzhugh-Nagumo model. Darker colours mean
larger ∇f value.
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3. Examples. In the following we investigate vthr for different models and param-
eter configurations. In practice vthr is determined by studying the marginalisation

v 7→ sup
u:(v,u)∈N

∇f(v, u). (8)

The models considered here are: the Hodgkin-Huxley (HH) model ([8]), the Connor-
Stevens (CS) model ([2]), the Abbot-Kepler (AK) reduction ([1], [10]), the Kokoz-
Krinskii (KK) reduction ([11]), the Morris-Lecar (ML) model ([13]) and the Fitzhugh-
Nagumo (FHN) model ([6], [14]). All models considered are specified in appendix
A.

In the case of the Hodgkin-Huxley and the Connor-Stevens model computing vthr
is especially simple, as evaluating (8) amounts to solving a linear programming (lp)
problem. All models, except for the Fitzhugh-Nagumo model, do not admit closed
form expressions for vthr and are evaluated numerically. The results for varying
input current, I, are visualised in figure 3. The excitability threshold suggested
by the above technique lies at the typically proposed level for the different models.
Moreover, the threshold increases with I.

For the Hodgkin-Huxley and the Connor-Stevens model a sudden change occur
around I = 3.3 and I = −4.9, respectively. As indicated, these are not discon-
tinuities, but are the results of changing active constraints in the lp problem of
evaluating (8). The sudden change is not associated with bifurcations (the closest
bifurcation takes place at I = 9.78 for the HH model, see [12]). In fact, the thresh-
old rule seems to be unaffected by any of the bifurcations occurring when tuning
I. This emphasises that vthr is not related to whether the system promotes spiking
behaviour or not, but how local v-maxima are separated by the dynamics.

Finally, we consider the Fitzhugh-Nagumo model. Straightforward calculations
yield vthr = 0, hence the threshold in this particular model is independent of the
parameters. Again, this stresses the interpretation of vthr; it measures where the
mimicking of the ”all-or-none”-principle is most prominent in the model. Hence,
for varying parameters, v = 0 still acts as the separation of local v-maxima.

4. Discussion. In the above an excitability threshold for the membrane potential
in neuronal models has been presented. It applies to multidimensional neuronal
models given as ODEs and is relatively easy to evaluate. The threshold rule relies
on the same classic considerations behind other threshold rules, e.g., [4] and [20].
While still incorporating the full dynamics of the system, it provides thresholds in
v only. Additionally, requirements of bi-dimensionality, imposed in e.g., [4], is not
necessary.

A drawback of the threshold rule is that it may not fully capture the complexity
of models, as more sophisticated manifold based threshold rules do, e.g., as in [20].
However, the above presented technique applies to situations in which only the
membrane potential is observable.

Finally, the main drawback of the technique is that it only applies whenever
argmax

x∈N
∇f(x) is well defined. However, as pointed out in section 2, if the neuron

model captures the ”all-or-none”-principle sufficiently well, then ∇f will be large
whenever a transition from inactive to active phases occurs.
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Figure 3. Values of vthr for varying input current I and different
models. The models are Hodgkin-Huxley (HH), Connor-Stevens
(CS), Abbott-Kepler (AK), Kokoz-Krinskii (KK) and Morris-Lecar
(ML).
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Appendix A. Models.

A.1. The Hodgkin-Huxley Model. The Hodgkin-Huxley model, first presented
in 1952 (see [8]), is the most influential model in neuroscience. It is a four-
dimensional dynamical model governed by the following dynamics:

v̇ =
I − gL(v − VL)− gNam

3h(v − VNa)− gKn4(v − VK)

C
,

ṅ =
n∞(v)− n
τn(v)

, ṁ =
m∞(v)−m

τm(v)
, ḣ =

h∞(v)− h
τh(v)

.

(9)

Here τx = 1/(αx + βx) and x∞ = αx/(αx + βx) for x = n,m, h and

αn(v) =
v+55
100

1− exp
(
− v+55

10

) , βn(v) =
exp

(
−v+55

10

)

8
,

αm(v) =
v+40
10

1− exp
(
− v+40

10

) , βm(v) = 4 exp

(
−v + 65

18

)
,

αh(v) = 0.07 exp

(
−v + 65

20

)
, βh(v) =

1

1 + exp
(
− v+35

10

) .

(10)

The parameters are listed in table 1 and taken from [12].

Table 1. Parameter values for the Hodgkin-Huxley model.

Parameter Value Parameter Value

gNa 120 mS/cm2 VNa 50 mV

gK 36 mS/cm2 VK −77 mV

gL 0.3 mS/cm2 VL −54.4 mV

C 1 µF/cm2

A.2. The Fitzhugh-Nagumo Model. The first phenomenological model resem-
bling the Hodgkin-Huxley dynamics was proposed by Fitzhugh ([6]) and Nagumo
et. al ([14]) independently. It reads:

v̇ = v − v3

3
− u+ I,

u̇ =
v + a− bu

τ
.

(11)

The parameters used in figure 1 and 2 are a = 0.7, b = 0.8, I = 0.5 and τ = 12.5.

A.3. The Connor-Stevens Model. The Connor-Stevens model ([2]) extends the
model of Hodgkin and Huxley with a transient potassium current.

v̇ =
I − gL(v − VL)− gNam

3h(v − VNa)− gKn4(v − VK)− gAa3b(v − VA)

C
,

ṅ =
n∞(v)− n
τn(v)

, ṁ =
m∞(v)−m

τm(v)
, ḣ =

h∞(v)− h
τh(v)

,

ȧ =
a∞(v)− a
τa(v)

, ḃ =
b∞(v)− b
τb(v)

.

(12)
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Here τx = 1/(αx + βx) and x∞ = αx/(αx + βx) for x = n,m, h and

αn(v) =
0.02(v + 45.7)

1− exp (−0.1(v + 45.7))
, βn(v) = 0.25 exp (−0.0125(v + 55.7)) ,

αm(v) =
0.38(v + 29.7)

1− exp (−0.1(v + 29.7))
, βm(v) = 15.2 exp (−0.0556(v + 54.7)) ,

αh(v) = 0.266 exp (−0.05(v + 48)) , βh(v) =
3.8

1 + exp (−0.1(v + 18))
,

a∞(v) =

[
0.0761 exp(0.0314(v + 94.22))

1 + exp(0.0346(v + 1.17))

] 1
3

, τa(v) = 0.3632 +
1.158

1 + exp(0.0497(v + 55.96))
,

b∞(v) =

[
1

1 + exp(0.0688(v + 53.3))

]4
, τb(v) = 1.24 +

2.678

1 + exp(0.0624(v + 50))
.

(13)

The parameters are listed in table 2 and taken from [3].

Table 2. Parameter values for the Connor-Stevens model.

Parameter Value Parameter Value

gNa 120 mS/cm2 VNa 55 mV

gK 20 mS/cm2 VK −72 mV

gL 0.3 mS/cm2 VL −17 mV

gA 47.7 mS/cm2 VA −75 mV

C 1 µF/cm2

A.4. The Kokoz-Krinskii Reduction. Kokoz and Krinskii provided a more re-
alistic model mimicking the dynamics of the Hodgkin-Huxley model in [11]. It relies
on two reductions: m is assumed instantaneous and the sum of the slower variables
h and n remain constant at level K. The dynamics therefore reduces to

v̇ =
I − gL(v − VL)− gNam∞(v)3(K − n)(v − VNa)− gKn4(v − VK)

C
,

ṅ =
n∞(v)− n
τn(v)

.

(14)

We set K = 0.8 and the rest of the specifications are as in section A.1.

A.5. The Morris-Lecar Model. Another classical example of a conductance
based neuron model is the Morris-Lecar model, see [13] for details. The dynamics
are as follows:

v̇ =
I − gL(v − VL)− gCam∞(v)(v − VCa)− gKu(v − VK)

C
,

u̇ = α(v)(1− u)− β(v)u,
(15)
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where

m∞(v) =
1

2

(
1 + tanh

(
v − V1
V2

))
,

α(v) =
1

2
φ cosh

(
v − V3

2V4

)(
1 + tanh

(
v − V3
V4

))
,

β(v) =
1

2
φ cosh

(
v − V3

2V4

)(
1− tanh

(
v − V3
V4

))
.

(16)

The parameter values used in this example are taken from [5] and are given in table
3.

Table 3. Parameter values for the Morris-Lecar model.

Parameter Value Parameter Value Parameter Value

V1 −1.2 mV gCa 4.4 µS/cm2 VCa 120mV

V2 18 mV gK 8 µS/cm2 VK −84 mV

V3 2 mV gL 2 µS/cm2 VL −60 mV

V4 30 mV C 20 µF/cm2 φ 0.04 ms−1

A.6. The Abbot-Kepler Reduction. The reduction of the Hodgkin-Huxley model
given below is just one of many possible reductions. They all follow the same prin-
ciple proposed by Abbot and Kepler ([1], [10]). In this paper we consider

v̇ =
I − gL(v − VL)− gNam∞(v)3h∞(u)(v − VNa)− gKn∞(u)4(v − VK)

C
,

u̇ = α(v, u)
h∞(v)− h∞(u)

τh(v)h′∞(u)
+ (1− α(v, u))

n∞(v)− n∞(u)

τn(v)n′∞(u)
,

(17)

where

α(v, u) =

(
gNam∞(v)3h′∞(u)(v − VNa)

)2

(gNam∞(v)3h′∞(u)(v − VNa))
2

+ (4gKn∞(u)3n′∞(u)(v − VK))2
. (18)

The rest is specified in section A.1.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: frm@math.ku.dk



IV
Degrees of Freedom for Piecewise Lipschitz

Estimators

Frederik Vissing Mikkelsen

Department of Mathematical Sciences

University of Copenhagen

Niels Richard Hansen

Department of Mathematical Sciences

University of Copenhagen

Publication details

Accepted in Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques (2017).
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DEGREES OF FREEDOM FOR PIECEWISE LIPSCHITZ

ESTIMATORS

FREDERIK RIIS MIKKELSEN AND NIELS RICHARD HANSEN

Abstract. A representation of the degrees of freedom akin to Stein’s lemma

is given for a class of estimators of a mean value parameter in Rn. Contrary
to previous results our representation holds for a range of discontinues estima-

tors. It shows that even though the discontinuities form a Lebesgue null set,

they cannot be ignored when computing degrees of freedom. Estimators with
discontinuities arise naturally in regression if data driven variable selection is

used. Two such examples, namely best subset selection and lasso-OLS, are

considered in detail in this paper. For lasso-OLS the general representation
leads to an estimate of the degrees of freedom based on the lasso solution path,

which in turn can be used for estimating the risk of lasso-OLS. A similar esti-

mate is proposed for best subset selection. The usefulness of the risk estimates
for selecting the number of variables is demonstrated via simulations with a

particular focus on lasso-OLS.

1. Introduction

Representations of the effective dimension of a statistical model have been stud-
ied extensively in many different frameworks. For classical model selection criteria
such as AIC and Mallows’s Cp the dimension of the parameter space is used to
adjust the empirical risk for its optimism so as to provide a fair model score across
different dimensions. A number of extensions to models or methods without a well
defined dimension exist, such as the trace of the smoother matrix for scatter plot
smoothers, see e.g. [13], and the use of the divergence of a sufficiently differentiable
estimator based on Stein’s lemma as described in [5]. Stein’s lemma was used by
Zou et al. [28] and Tibshirani and Taylor [25] to demonstrate that for the lasso es-
timator in a linear regression model with Gaussian errors, the number of estimated
non-zero parameters is an appropriate estimate of the effective dimension.

It is well known that neither Mallows’s Cp nor AIC or related information crite-
ria correctly adjust for the optimism that results from selecting one model among
a number of models of equal dimension. The usage of such methods for model
selection without adequate adjustments was called “a quiet scandal in the statisti-
cal community” by Breiman [1], who proposed a bootstrap based method for risk
estimation as an alternative. Ye [27] defined the notion of generalized degrees of
freedom for an estimator of the mean in a Gaussian model and showed how to use
this number for risk estimation. The results by Ye apply to discontinuous estima-
tors that involve model selection, but his proposal for computing the degrees of
freedom was similarly to Breiman’s based on refitting models to perturbed data.

2010 Mathematics Subject Classification. 62J05, 62J07.

Key words and phrases. best subset selection, lasso-OLS, degrees of freedom, Stein’s Lemma.
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If the estimator satisfies the differentiability requirements for Stein’s lemma,
Lemma 2 in [21], the divergence of the estimator w.r.t. the data is an unbiased
estimate of the degrees of freedom in the generalized sense of [27]. This was used
by Donoho and Johnstone [4], Meyer and Woodroofe [18], Zou et al. [28], Kato [14]
and Tibshirani and Taylor [25] among others to derive formulas for the degrees of
freedom of estimators that are Lipschitz continuous.

For estimators with discontinuities Stein’s lemma generally breaks down and the
divergence will not be an unbiased estimate of the degrees of freedom. Note that
an estimator can be continuous or even differentiable almost everywhere – it can
be a projection locally – and still be defined globally in such a way that it has non-
ignorable discontinuities. This is, in particular, the case in regression when data
adaptive variable selection is used to select among a number of projection estima-
tors. Best subset selection is one central example, but variable selection procedures
lead in general to non-ignorable discontinuities. A variable selection procedure ef-
fectively divides the sample space into a finite number of disjoint regions, with the
estimator being a projection, say, on each region. The resulting estimator consist-
ing of a selection step and a projection step will generally be discontinuous on the
boundary between two regions.

Tibshirani [24] recently made headway with the computation of the degrees of
freedom for some discontinuous estimators. Specifically, he considered a linear re-
gression model with an orthogonal design and showed how to compute the degrees
of freedom for hard thresholding, which for orthogonal designs is equivalent to the
Lagrangian formulation of best subset selection. He also gave an extension of Stein’s
lemma to some discontinuous estimators, though it was not shown if this extension
applies to subset selection estimators. Hansen and Sokol [12] gave a different gen-
eralization of Stein’s lemma for all estimators that are metric projections onto a
closed set. This generalization applies to subset selection and other estimators with
non-convex constraints, but did not lead to a readily computable representation of
the contribution to the degrees of freedom that are due to the discontinuities of the
metric projection.

The first main contribution of this paper is the general Theorem 2.4, which is
a version of Stein’s lemma for estimators that are locally Lipschitz continuous on
each of a finite number of open sets, whose union makes up Lebesgue almost all of
Rn. This is a broad class of estimators containing a number of regression estimators
that include variable selection. Compared to existing results, Theorem 2.4 holds
under verifiable conditions without putting restrictions on the design matrix such
as orthogonality.

As a main example the lasso-OLS estimator in a linear regression setup is in-
vestigated in detail in Section 3. The lasso-OLS estimator consists of two steps:
variable selection using lasso followed by ordinary least squares estimation using
the selected variables. This estimator was referred to as the LARS-OLS hybrid in
[6], and it is a limit case of the relaxed lasso as considered in [17]. We follow the
terminology of [2], p. 34, and call it the lasso-OLS estimator.

The second main contribution of this paper is a derivation of a computable
estimate of the degrees of freedom – and thus the risk – for lasso-OLS, which only
involves the computation of a single lasso solution path and corresponding OLS
estimators along the path. Simulation studies reported in Section 4 demonstrated
that the resulting risk estimate leads to reliable model selection across a range of
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different designs and parameter settings, and that the risk estimate itself has smaller
mean squared error than the computationally more demanding cross-validation
estimate.

For the Lagrangian formulation of best subset selection it is also demonstrated
that Theorem 2.4 holds, but the situation is more complicated than for lasso-OLS.
However, it is possible to derive an approximation, which is exact for orthogonal
designs, as shown in Section 5.

The proof of Theorem 2.4 and some auxiliary technical results are in the appen-
dix.

2. A general representation of degrees of freedom

Throughout the paper we consider the multivariate Gaussian model N (µ, σ2I)
on Rn with µ the unknown parameter, and we let µ̂ : Rn → Rn denote an estimator

of µ. A typical application is to linear regression estimators of the form Xβ̂ where X

denotes an n×p matrix and β̂ denotes an estimator of the parameters in the linear

regression model. When the estimator β̂ sets some of the parameters to exactly
zero we say that the estimator does variable selection. The lasso, [22], is an example
of a globally Lipschitz continuous estimator that does variable selection, while best
subset selection is a discontinuous estimator that does variable selection. The lasso-
OLS – as studied intensively in Section 3 – is another example of a discontinuous
regression estimator that does variable selection. Though discontinuous regression
estimators that do variable selection constitute the main motivation for the present
paper, the general results are more conveniently formulated in terms of estimators
of the mean µ without reference to the regression setup.

Letting Y ∼ N (µ, σ2I) the risk of the estimator is defined as

Risk(µ̂) := E‖µ− µ̂(Y )‖22,

provided that µ̂(Y ) has finite second moment, which will thus be assumed through-
out. The risk is a quantification of the error of µ̂, and tuning parameters are often
chosen by minimising an estimate of the risk. Our main interest is to estimate the
risk under the Gaussian model. The following definition introduces two notions
of degrees of freedom that are useful when we want to estimate the risk. In the
definition, ψ(y;µ, σ2) denotes the density for the N (µ, σ2I) distribution and 〈·, ·〉
denotes the standard inner product on Rn. The divergence operator is also needed.
It is the differential operator defined as

div(f) =

n∑

i=1

∂ifi

for f : Rn → Rn Lebesgue almost everywhere differentiable and with ∂i denoting
the partial derivative w.r.t. the ith coordinate.

Definition 2.1. For a measurable map µ̂ : Rn → Rn such that µ̂(Y ) has finite
second moment the degrees of freedom of µ̂ is

(1) df(µ̂) :=
n∑

i=1

cov(Yi, µ̂(Y )i)

σ2
=

∫ 〈y − µ, µ̂(y)〉
σ2

ψ(y;µ, σ2)dy.
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If µ̂ is differentiable in Lebesgue almost all points and div(µ̂) has finite first moment
Stein’s degrees of freedom of µ̂ is

(2) dfS(µ̂) := E(div(µ̂)(Y )).

A simple expansion of the risk yields

(3) Risk = E‖Y − µ̂(Y )‖22 − nσ2 + 2σ2df(µ̂).

Hence ‖Y − µ̂(Y )‖22 − nσ2 + 2σ2d̂f is an unbiased risk estimate if d̂f is an unbiased

estimate of df(µ̂). In practice, σ2 must be estimated as well and a bias of d̂f can
also be preferable if it reduces the variance. Hence exact unbiasedness of a risk
estimate based on (3) is of secondary interest, but it is of interest to find adequate
corrections of the squared error ‖Y − µ̂(Y )‖22 that can be used for model assessment
and comparison.

If µ̂ is almost differentiable then df(µ̂) = dfS(µ̂) due to Stein’s lemma (Lemma 2
in [21]), in which case div(µ̂)(Y ) is an unbiased estimate of df(µ̂). However, most
estimators with discontinuities are not almost differentiable, and for such estimators
it is not clear if div(µ̂)(Y ) is a useful estimate of the degrees of freedom. Indeed,
our main result, Theorem 2.4, provides a representation of df(µ̂) − dfS(µ̂), which
is nonzero for a range of estimators. The result provides the theoretical basis for
establishing more adequate estimates of the degrees of freedom and thus the risk.
Furthermore, Theorem 3.2 provides a quite remarkable connection between df(µ̂)
and dfS(µ̂) for the lasso-OLS estimator, which can be used to derive an estimate of
df(µ̂). This result is directly applicable in practice and provides fast and accurate
risk estimation without the need for cross-validation, say.

Our main result is derived under the assumptions on the estimator as stated
below. To fix notation we let B(x, r) denote the closed ball in Rn of radius r and
center x. Additionally, we letHn−1 denote the n−1 dimensional Hausdorff measure
– a generalisation of the surface measure of n− 1 dimensional hypersurfaces in Rn
(see e.g. [7] for details).

Assumption 2.2. The estimator µ̂ can be written as µ̂ =
∑N
i=1 1Ui µ̂i for a collec-

tion of open and disjoint sets {Ui}Ni=1 with
⋃N
i=1 U i = Rn. Additionally, for each

i = 1, ..., N :

(a) The map µ̂i : U i → Rn is locally Lipschitz.
(b) The random variable 1Uidiv(µ̂i)(Y ) has finite first moment and ‖µ̂i‖ is polyno-

mially bounded on Ui.
(c) The function r 7→ Hn−1 (∂Ui ∩B(0, r)) is polynomially bounded.

Remark 2.3. The following points are worth noting:

a) Boundary values of the estimator. Assumption 2.2(c) implies that the
boundaries of the sets Ui are Lebesgue null sets, and thus that Rn\⋃i Ui has
Lebesgue measure zero. The estimator µ̂ is here defined to be zero on this
null set, but with Y having an absolutely continuous distribution its value on
a null set is irrelevant. Note, however, that Assumption 2.2(a) ensures that µ̂i
is uniquely defined on ∂Ui. In a concrete case there may be a natural way to
define µ̂ on the common boundary between Ui and Uj , say, but we make no
abstract attempt to select between µi and µj on the boundary.

b) Degrees of freedom. Assumption 2.2(a) implies by Rademacher’s theorem
(Theorem 3.1.6 and 3.1.7 in [9]) that div(µ̂i) is defined Lebesgue a.e.. Combining
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this with Assumption 2.2(b) we conclude that under Assumption 2.2 both df(µ̂)
and dfS(µ̂) are well defined.

c) Existence of normal vectors. Assumption 2.2(c) implies that the sets Ui
have locally finite perimeter (see Theorem 5.11.1 in [7]), thus a measure the-
oretic outer unit normal ηi is defined on a subset of ∂Ui. In fact, by Lemma
A.2 Assumption 2.2(c) only needs to hold for the reduced boundary ∂∗Ui (see
Definition 5.7 and Lemma 5.8.1 in [7]). Whenever ∂Ui is smooth the measure
theoretic unit normal coincides with the usual pointwise unit normal.

Estimators that involve data driven variable selection will generally fulfil As-
sumption 2.2 with each Ui corresponding to a set of selected variables. Example
2.5 provides a thorough characterization of Ui in the lasso-OLS setup. Moreover,
a similar characterization of Ui is given in Example 3.4 for a class of estimators
defined via minimisation of a penalized loss function.

The conditions in Assumption 2.2 are typically easy to verify, except perhaps
the third condition, as it involves bounding Hausdorff measures. Appendix A.1
provides some results that can be helpful for verifying the third condition. For
estimators satisfying Assumption 2.2 we have the following representation of the
degrees of freedom.

Theorem 2.4. If µ̂ satisfies Assumption 2.2 then

(4) df(µ̂) = dfS(µ̂) +
1

2

∑

i 6=j

∫

Ui∩Uj
〈µ̂j − µ̂i, ηi〉ψ( · ;µ, σ2) dHn−1,

where ηi denotes the measure theoretic outer unit normal to ∂Ui.

The proof is in Appendix A.2. The essential part is an application of a gener-
alized version of Gauss-Green’s formula combined with a dominated convergence
argument. Note that though U i ∩U j is a Lebesgue null set – on which µ̂ is defined
to be zero – µ̂j and µ̂i are uniquely defined by Assumption 2.2(a) and generally
non-zero and different, cf. also Remark 2.3(a).

If µ̂ satisfies Assumption 2.2 and is continuous then (4) reduces to df(µ̂) =
dfS(µ̂), which is Stein’s lemma for a class of locally Lipschitz continuous estima-
tors. The boundary integrals therefore account for potential jumps of µ̂ across the
boundary of any two adjacent regions Ui and Uj . For two-step procedures consist-
ing of a model selection step followed by a parameter estimation step, dfS generally
only accounts for the contribution to the degrees of freedom by the estimation step,
and the boundary integrals account for the contribution from the selection step.

The following example illustrates how to verify Assumption 2.2 for the lasso-OLS
estimator, which is the estimator that will also be the main focus of the subsequent
section.

Example 2.5 (The lasso-OLS estimator). Let X be an n×p-matrix. For any subset
A ⊆ {1, ..., p}, XA denotes the matrix whose columns are those of X indexed by A,
and similarly, βA ∈ R|A| denotes (βi)i∈A for β ∈ Rp. We let

S := {S = col(XA) | A ⊆ {1, ..., p}}

denote the set of subspaces spanned by columns of X. The orthogonal projection
onto a subspace S ∈ S is denoted by ΠS .
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A lasso estimator µ̂λlasso(y) with tuning parameter λ > 0 is defined as µ̂λlasso(y) =

Xβ̂λ where

β̂λ ∈ arg min
β

1

2
‖y −Xβ‖22 + λ‖β‖1.

We do not make any assumptions on X, and therefore it may happen that multiple

β̂λ-solutions exist. For a solution β̂λ, the support, supp(β̂λ) ⊆ {1, ..., p}, is called

an active set. The lasso estimator µ̂λlasso(y) = Xβ̂λ belongs to the space col(XA) for

A = supp(β̂λ), and it follows by Lemma 7 in [25] that there exists a Lebesgue null
set N , such that col(XA) is invariant with respect to the choice of the active set of

solutions for y 6∈ N . The map Ŝλ : Rn \N → S returning col(XA) when there is a

solution β̂λ with active set A = supp(βλ) is therefore well defined. The lasso-OLS
estimator µ̂λl-OLS := ΠŜλ is defined as the projection onto the space selected by the
lasso, and is thus well-defined Lebesgue almost everywhere.

By defining the disjoint selection events

UλS := (Ŝλ = S)

for each S ∈ S, we immediately see from Lemma 6 in [25] that each selection event

is open and that Rn =
⋃
S∈S U

λ

S . We can safely ignore any empty UλS . From the

proof of Lemma 6 in [25] we see that ∂UλS ⊆ (
⋃
T∈S U

λ
T )c is a finite union of affine

subspaces of dimensions ≤ n−1, and r 7→ Hn−1(∂UλS ∩B(0, r)) is thus polynomially
bounded. This follows by elementary considerations, but it is also a consequence
of Lemma A.1. Consequently,

µ̂λl-OLS =
∑

S∈S
1UλSΠS almost everywhere,

and it satisfies all conditions in Assumption 2.2. Figure 1 provides an illustration
of the partition of Rn for n = p = 2 for different choices of angles between the
columns in X.

Note that since µ̂λl-OLS = ΠS on the open set UλS , its divergence equals dim(S),
hence Stein’s degrees of freedom is

dfS(µ̂λl-OLS) = E(dim(Ŝλ)).

From Lemma 3 in [23] it follows that dim(Ŝλ) = |supp(β̂λ)| whenever the columns
of X are in general position, which is useful for practical computations.

�

The arguments above are based on results in [25], but see also [15] for related
characterizations of the selection events for lasso.

3. Risk estimation for lasso-OLS

It is not obvious how the general formula in Theorem 2.4 for df(µ̂) can be used for
computing or estimating the degrees of freedom. The first term of (4), dfS(µ̂), may
be estimated by div(µ̂)(Y ), but the second term is more difficult. In this section we
show how this second term can be related to the derivative of λ 7→ dfS(µ̂λl-OLS) for
lasso-OLS. First we recapitulate the computations in [24] of the degrees of freedom
for lasso-OLS with X orthogonal, which will reveal the general formula shown
below.
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Figure 1. Illustrations of the decomposition of R2 into the four
sets U1

∅ , U1
{1}, U

1
{2} and U1

{1,2} according to the lasso estimator

with λ = 1. The set U1
∅ consists of the points shrunk to zero,

the sets U1
{1} and U1

{2} to the points where either the second or

the first coordinate, respectively, is shrunk to zero and U1
{1,2} to

the set where none of the coordinates are shrunk to zero. The
decomposition depends on the angle between the two columns in
X.

Example 3.1 (Continuation of Example 2.5). Assume that n = p and X = I. In
this case it is well known that the lasso and the lasso-OLS estimators become the
soft and hard thresholding estimators, respectively. That is,

µ̂λlasso,i =

{
Yi − λ sign(Yi) if |Yi| > λ

0 otherwise
and µ̂λl-OLS,i =

{
Yi if |Yi| > λ

0 otherwise
.



DEGREES OF FREEDOM FOR PIECEWISE LIPSCHITZ ESTIMATORS 83

We can write up closed form expressions for df(µ̂λl-OLS) and dfS(µ̂λl-OLS):

dfS(µ̂λl-OLS) =

∫
ψ(y;µ, σ2)

∑

i

1(|yi|>λ) dy =
∑

i

∫

(|yi|>λ)
ψ(yi;µi, σ

2) dyi

=
∑

i

Φ

(−λ− µi
σ

)
+

(
1− Φ

(
λ− µi
σ

))
,

and as in [24]

df(µ̂λl-OLS) =
∑

i

∫ ∞

λ

ψ(yi;µi, σ
2)
yi(yi − µi)

σ2
dyi +

∫ −λ

−∞
ψ(yi;µi, σ

2)
yi(yi − µi)

σ2
dyi

=
∑

i

[
−ψ(yi;µi, σ

2)yi
]∞
λ

+

∫ ∞

λ

ψ(yi;µi, σ
2) dyi

+
[
−ψ(yi;µi, σ

2)yi
]−λ
−∞ +

∫ −λ

−∞
ψ(yi;µi, σ

2) dyi

= λ
∑

i

(
ψ(λ;µi, σ

2) + ψ(−λ;µi, σ
2)
)

+ dfS(µ̂λl-OLS).

Letting ∂λ denote the differential operator with respect to λ we observe that

(5) df(µ̂λl-OLS) = dfS(µ̂λl-OLS)− λ∂λdfS(µ̂λl-OLS),

which is a striking identity. This is because the formula for df(µ̂λl-OLS), though
explicit, involves the unknown parameter µ and is not readily estimable. But we
have the divergence estimator,

∑
i 1(|yi|>λ), of dfS(µ̂λl-OLS), and if we from this

can estimate its derivative as well, the formula above suggests how to estimate
df(µ̂λl-OLS). �

The remarkable fact that we will show is that (5) holds without the orthogonality
assumption on X.

Theorem 3.2. For the lasso-OLS estimator defined in Example 2.5 it holds that

(6) df(µ̂λl-OLS) = dfS(µ̂λl-OLS)− λ∂λdfS(µ̂λl-OLS)

where ∂λ denotes differentiation w.r.t. λ.

Theorem 3.2 suggests that df(µ̂λl-OLS) can be estimated by differentiation of an
estimate of dfS(µ̂λl-OLS). The divergence estimate of Stein’s degrees of freedom is,
however, not differentiable as a function of λ, and we need to somehow smooth it.
To this end it is convenient to reparametrise the penalization in terms of δ = log(λ),
so that with

h(δ) := dfS(µ̂
exp(δ)
l-OLS ),

then

df(µ̂
exp(δ)
l-OLS ) = h(δ)− h′(δ).

In simulations h was found to be monotonically decreasing, and thus h′ to be nega-
tive, but we cannot prove that this is generally the case. The integral representation
of h′ from Theorem 2.4 is not particularly helpful as the integrand can, in fact, be
negative. Based on our computational observations – and to reduce variance of the
resulting estimate – our proposal is based on the assumption that h′ is negative. It
is effectively a kernel smoother that estimates the intensity of jumps for a monotone
jump process.
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We note that dim(Ŝexp(δ)) is an unbiased estimate of h(δ) and that the function

δ 7→ dim(Ŝexp(δ)) is a step function. The problem of estimating the derivative,
h′, of its mean is thus analogous to estimating the intensity for a jump process
with one main difference; the step function can have jumps of negative as well as
positive sign, though most jumps will be negative. Our proposed estimate ignores
the positive excursions of the step function and is computed as follows:

• Compute the jump points, λi and jump sizes, ∆i := infλ<λi dim(Ŝλ) −
dim(Ŝλ+), of the decreasing function λ 7→ infλ′<λ dim(Ŝλ

′
) for i = 1, . . . ,M .

• Apply a kernel density smoother to the points δi = log(λi) for i = 1, . . . ,M
counted with the multiplicities ∆i. In the simulations presented in this
paper an adaptive Gaussian kernel density smoother was used (see Section
10.4.3.2 in [11]).
• Rescale the density estimate by the total number of jumps, that is, by∑M

i=1 ∆i.

As mentioned above, we can think of the proposed estimate of h′ as a non-
parametric estimate of the intensity of the jumps for a monotonically decreasing
jump process. Alternatively, we can think of it as smoothing the jumps by a
sigmoidal function (the anti-derivative of the kernel) to obtain a smooth estimate
of Stein’s degrees of freedom, which can then be differentiated. Note that even
if ∆i may always be 1 in theory, the jumps are in practice computed on a grid
and may thus be larger than 1, which the procedure accounts for. The estimate of

−λ∂λdfS(µ̂λl-OLS) resulting from the procedure above is denoted by ∂̂.

Using dim(Ŝλ)+ ∂̂ as an estimate of degrees of freedom leads to the risk estimate

(7) R̂iskdf := ‖Y − µ̂λl-OLS‖22 − nσ2 + 2σ2
(

dim(Ŝλ) + ∂̂
)
.

For an example of the above estimate see Figure 2, where ∂̂ and R̂iskdf are applied
to a single realization of Y along with an average over 1000 replications.

To prove Theorem 3.2 we prove a more general intermediate result for estimators
that are parametrised in a similar way by a tuning parameter. We use in the
following D to denote the differential operator w.r.t. y.

Proposition 3.3. Let q > 0 and suppose that µ̂λ =
∑
i 1Uλi µ̂i where

(8) Uλi = λqU1
i , for all i = 1, ..., N.

Assume that div(µ̂i) is locally Lipschitz and both div(µ̂i) and D(div(µ̂i)) are poly-
nomially bounded for each i = 1, ..., N . If µ̂1 satisfies Assumption 2.2 then
(9)

−λ
q
∂λdfS(µ̂λ) =

1

2

∑

i 6=j

∫

U
λ
i ∩U

λ
j

(
div(µ̂j)(y)− div(µ̂i)(y)

)
〈y, ηi〉ψ(y;µ, σ2) dHn−1(y).

Proof. First observe that ∂Uλi ∩B(0, r) = λq(∂U1
i ∩B(0, r/λq)), hence if µ̂1 satisfies

Assumption 2.2 so does µ̂λ for all λ. Next, the change of variable formula yields

dfS(µ̂λ) =

∫
ψ(y)div(µ̂λ)(y) dy =

∑

i

∫

Uλi

ψ(y)div(µ̂i)(y) dy

=
∑

i

∫

U1
i

λqn (ψdiv(µ̂i)) (λqz) dz.
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Figure 2. Left: Realization of the estimates of degrees of freedom

d̂fS = dim(Ŝλ) and d̂f = dim(Ŝλ)+∂̂ as well as the correction term

∂̂ as a function of log(λ) (top) and corresponding estimates of the
risk (bottom). Right: Similar to the left but mean values of the
estimates obtained by averaging over 1000 samples along with the
degrees of freedom df = df(µ̂λl-OLS) obtained from the 1000 samples
using the covariance definition (1). The design parameters were:
σ = 0.5, n = p = 100, γ = 1, α = 0.1 and the design type was (S)
with constant correlation of ρ = 0.1 (see Section 4).

Here ψ = ψ(·;µ, σ2) to ease notation.
The last integrand is differentiable w.r.t. λ (for Lebesgue a.a. z) and its deriva-

tive is

qnλqn−1 (ψdiv(µ̂i)) (λqz) + λqn
〈
D (ψdiv(µ̂i)) (λqz), qλq−1z

〉

=
q

λ
λqn (n (ψdiv(µ̂i)) (λqz) + 〈D (ψdiv(µ̂i)) (λqz), λqz〉) ,
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which is dominated in a neighbourhood of λ by an integrable function due to the
polynomial bounds. Hence, by the change of variable formula

λ

q
∂λdfS(µ̂λ) =

∑

i

∫

U1
i

λqn (n (ψdiv(µ̂i)) (λqz) + 〈D (ψdiv(µ̂i)) (λqz), λqz〉) dz

=
∑

i

∫

Uλi

n (ψdiv(µ̂i)) (y) + 〈D (ψdiv(µ̂i)) (y), y〉 dy

=
∑

i

∫

Uλi

n (ψdiv(µ̂i)) (y) + 〈(ψDdiv(µ̂i) + div(µ̂i)Dψ) (y), y〉 dy

=
∑

i

∫

Uλi

ψ(y)div (ydiv(µ̂i)(y)) + 〈Dψ(y), ydiv(µ̂i)(y)〉 dy.

The last line is identified as dfS(µ̃λ)− df(µ̃λ), where

µ̃λ(y) :=
∑

i

1Uλi (y)ydiv(µ̂i)(y).

Finally (9) follows by applying Theorem 2.4 to µ̃λ (which also satisfies Assumption
2.2). �

Example 3.4. There are naturally occurring examples besides the lasso selection
sets that satisfy (8). Consider still a linear regression setup with X an n×p-matrix.
Let ` denote the penalized loss function

`(y, β, λ) =
1

2
‖y −Xβ‖22 + λPen(β),

for some penalty function Pen : Rp → R and define the sets

(10) UλA = int

{
y ∈ Rn

∣∣∣∣ inf
β:supp(β)=A

`(y, β, λ) = inf
β
`(y, β, λ)

}
,

for each A ⊆ {1, ..., p}. Hence any y ∈ UλA has A as an active set. If Pen is positive
homogeneous of degree k ∈ [0, 2) then

`
(
λ

1
2−k y, λ

1
2−k β, λ

)
= λ

2
2−k ` (y, β, 1) .

Hence UλA = λ
1

2−kU1
A holds for all A ⊆ {1, ..., p} and λ > 0. The (quasi) norms,

Pen(β) = ‖β‖kk for k ∈ (0, 2), and Pen(β) = ‖β‖0 = |supp(β)| are examples of
positive homogeneous penalties. For these penalties only k ∈ [0, 1] will result in
variable selection. With Pen(·) = ‖ · ‖1 we see that for lasso the sets UλS in 2.5
satisfy (8) with q = 1.

�

Proof of Theorem 3.2. Let (UλS )S∈S be defined as in Example 2.5, where it was
also shown that Assumption 2.2 holds for the lasso-OLS estimator. Moreover, from
Example 3.4 we see that UλS = λU1

S for all λ > 0 and S ∈ S. By Theorem 2.4 we
know that the left hand side of (6) is

(11)

df(µ̂λl-OLS)− dfS(µ̂λl-OLS)

=
1

2

∑

S1 6=S2

∫

U
λ
S1
∩UλS2

〈(ΠS2
−ΠS1

)y, ηS1
(y)〉ψ(y) dHn−1(y).
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It will first be established that U
λ

S1
∩ UλS2

for S1 6= S2 is a Hn−1 null set unless
S1 and S2 are nested and their dimensions differ by one.

By definition µ̂λlasso ∈ S on UλS , and by continuity of µ̂λlasso (a consequence of

Lemma 3 in [25]) we conclude that the same is true on U
λ

S . Hence for S1, S2 ∈ S

(12) µ̂λlasso ∈ S1 ∩ S2 on U
λ

S1
∩ UλS2

.

For A ⊆ {1, ..., p} and s ∈ {−1, 1}|A| we define the set

LA,s := {u ∈ Rn | XT
Au = λs}.

It now follows from the first order subgradient conditions for lasso that

(13) y − µ̂λlasso ∈
⋃

A⊆{1,...,p}:
col(XA)=S

⋃

s∈{−1,1}|A|
LA,s

for all y ∈ UλS . Note that the dimension of the above set is n− dim(S). Since the

set is closed and µ̂λlasso is continuous, (13) holds for y ∈ UλS as well. We therefore
conclude that

(14)

y − µ̂λlasso ∈




⋃

A⊆{1,...,p}:
col(XA)=S1

⋃

s∈{−1,1}|A|
LA,s


 ∩




⋃

A⊆{1,...,p}:
col(XA)=S2

⋃

s∈{−1,1}|A|
LA,s




⊆
⋃

A⊆{1,...,p}:
col(XA)=S1+S2

⋃

s∈{−1,1}|A|
LA,s

for all y ∈ UλS1
∩ UλS2

and S1, S2 ∈ S.
From (12) and (14) we deduce that

(15) U
λ

S1
∩ UλS2

⊆ S1 ∩ S2 +
⋃

A⊆{1,...,p}:
col(XA)=S1+S2

⋃

s∈{−1,1}|A|
LA,s

for S1, S2 ∈ S. Consequently, if S1 6= S2 then Hn−1
(
U
λ

S1
∩ UλS2

)
= 0, unless S1

and S2 are nested and their dimensions differ by 1.
We can therefore assume S1 ⊆ S2 and dim(S2) = dim(S1) + 1. Furthermore,

S2 	 S1 = (S1 + S2)	 (S1 ∩ S2) is orthogonal to any of the faces S1 ∩ S2 +LA,s in

(15) and thus also orthogonal to U
λ

S1
∩UλS2

. This implies that ηS1
= (ΠS2

−ΠS1
)ηS1

and hence (11) becomes

df(µ̂λl-OLS)− dfS(µ̂λl-OLS)

=
∑

S1⊆S2,
dim(S2)=dim(S1)+1

∫

U
λ
S1
∩UλS2

〈y, ηS1(y)〉ψ(y) dHn−1(y)

=
∑

S1⊆S2,
dim(S2)=dim(S1)+1

∫

U
λ
S1
∩UλS2

[div(ΠS2)− div(ΠS1)]︸ ︷︷ ︸
=dim(S2)−dim(S1)=1

〈y, ηS1(y)〉ψ(y) dHn−1(y)

= −λ∂λdfS(µ̂λl-OLS)

by Proposition 3.3. �
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4. Simulation Study

We report in this section the results from an extensive simulation study, whose

purpose was to quantify how R̂iskdf given by (7) performs as an estimate of the risk
and in terms of selecting the penalty parameter λ. Its performance was compared to
alternatives for risk estimation and tuning, and the resulting lasso-OLS estimator
was compared to the lasso estimator. Throughout, the R package glmnet, [10], was
used to compute the lasso solution path. This section is divided into subsections
describing estimators and risk estimates, the design of the simulation study, and
the results of the simulation study.

4.1. Estimators and risk estimates. The first alternative risk estimate for lasso-
OLS is

(16) R̂iskdfS = ‖Y − µ̂λl-OLS‖22 − nσ2 + 2σ2dim(Ŝλ),

which does not adjust for the variable selection performed by lasso-OLS. The second

alternative is K-fold cross-validation (denoted R̂iskCV-K) with K = 5, 10. This risk
estimate is given by

(17) R̂iskCV-K :=

K∑

k=1

‖Yk −Xkβ̂
λ
l-OLS(Y−k, X−k)‖22 − nσ2,

where Yk and Xk denote the entries of Y and rows of X, respectively, corresponding
to the kth fold, and similarly, Y−k and X−k denote the entries and rows not in the
kth fold.

The lasso estimator was tuned by minimising the risk estimate

(18) R̂isklasso = ‖Y − µ̂λlasso‖22 − nσ2 + 2σ2dim(Ŝλ).

For tuning ∈ {df,dfS,CV-5,CV-10, lasso} we let λ̂tuning denote the value of λ

that minimises R̂isktuning. The risk of the resulting estimator is denoted

Risk(tuning) := E‖µ− µ̂λ̂tuning

l-OLS ‖22
for all but the lasso-tuning, whose risk instead is

Risk(lasso) := E‖µ− µ̂λ̂lasso

lasso ‖22.
When the true mean is µ = Xβ with supp(β) = A we refer to ΠA as the oracle-

OLS estimator. This usage of the oracle terminology is in accordance with e.g. [8].
Its risk is

E‖µ−ΠAY ‖22 = σ2rank(XA).

The results from the simulation study are reported in terms of Risk(tuning)/(σ2n)
for each tuning method, which can then be compared to rank(XA)/n – the fraction
of nonzero parameters.

All simulations were carried out assuming either that σ2 was known or using the

following estimator of σ2: first the lasso path λ 7→ µ̂lasso(λ) was calculated, then λ̂
was selected by minimising the generalized cross-validation criterion

gcv(λ) =
‖Y − µ̂λlasso‖22(
1− dim(Ŝλ)

n

)2 ,
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and σ2 was finally estimated as

σ̂2 =
‖Y − µ̂λ̂lasso‖22
n− dim(Ŝλ)

.

The main reason for choosing this estimator was computational efficiency, as the
lasso path must be calculated for lasso-OLS anyway. Thus this variance estimate
has virtually no extra computational costs. See also [20] for a comprehensive com-
parison of variance estimators.

4.2. Simulation study design. In the simulation study the mean was given as
Xβ with

βi =

{
γi−1 if i ≤ dnαe
0 otherwise

for different choices of the dimension n, the n× p design matrix X and the param-
eters γ and α.

Two simulation designs were implemented with parameters as follows:

Parameter

σ

α

n

p

γ

X

ρ

Values for simulation study I

0.5

0.1

50 100 200 400 800

200 2000 20000

1

S

0.1

Values for simulation study II

0.1 0.2 0.5 1 2

0 0.05 0.1 0.3 0.5

100 200

n

1 0.9

O S E

0 0.1 0.4 0.7

The parameter ρ and the values of the design require some explanation. The
three different design types are:

• Orthogonal (O), where X = I.
• Simulated (S), where the columns of X are standard normally distributed

with one of the following correlation structures:
– Autoregressive setup: corr(Xi, Xj) = ρ|i−j| for all i 6= j.
– Constant correlation setup: corr(Xi, Xj) = ρ for all i 6= j.

• Empirical (E), where the rows and columns are randomly selected from the
240×377 matrix of microRNA expression values as used in the earlier study
by [26].

The columns of the simulated and empirical designs were standardized to have norm
one to obtain a comparable signal-to-noise ratio across the three designs.

The risk estimates were based on 1000 samples for each combination of the
parameters, which were generated as follows. For each of the 1000 samples a design
matrix X was created/simulated and a single realization of Y ∼ N (Xβ, σ2In) was

drawn. For each sample the losses ‖µ− µ̂λ̂lasso

lasso ‖22 and ‖µ− µ̂λ̂tuning

l-OLS ‖22 for the different
tuning methods were computed. The risks were estimated as the average of the
losses over the 1000 samples.

In order to assess robustness to deviations from the Gaussian noise assumption,
we replicated the second study design with two types of non-Gaussian noise: a t-
distribution with 3 degrees of freedom, and a skew normal distribution with shape
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parameter 3. Location and scale parameters were set so that the noise distribution
had mean 0 and variance σ2.

4.3. Results from study I. We first report on the accuracy of the risk estimates.
Figure 3 shows the risk estimates as a function of λ for 50 samples along with
a Monte Carlo estimate of the true risk. Cross-validation appears to give more

variable estimates of the risk than R̂iskdf across the entire range of λ-values. This
is true even when the variance is estimated, though estimation of the variance does

appear to degrade the performance of the risk estimates. We note that R̂iskdf does

not appear to be much more variable than R̂isklasso, though the former relies on
the additional smoothed term for the estimation of degrees of freedom.

Figure 4 shows mean squared errors (MSEs) for the risk estimates. The figure
shows the integrated mean sequared error as well as the mean squared error in the
optimal λ (the λ that minimizes risk as estimated from the Monte Carlo estimate of
the risk based on 1000 replications). The cross-validation risk estimates generally

have the largest MSEs, while R̂iskdf has considerably smaller MSEs. This is true
even when the variance is estimated except for n = 50 and p = 2000, 20000. From

this figure we see that R̂iskdf does have a larger MSE than R̂isklasso. Moreover, for
n/p large the estimation of σ does not affect the MSE of the risk estimates much.

For this simulation study we also recorded the number of selected predictors as
well as the computational time for evaluating and tuning the different estimators.
The results can be found as Figure 1 in the supplementary material [19]. The
lasso-OLS estimator selects fewer predictors than lasso, but when the variance is
estimated, the number of selected predictors is increased – this is particularly so
when n/p is small. The lasso estimator using (18) for tuning is fastest, which is un-
surprising as the computation of the lasso path is part of all estimators. Moreover,
the lasso-OLS estimator using (7) for tuning is about a factor 4 faster than using
5-fold cross-validation for tuning and about a factor 8 faster than 10-fold cross-
validation. Thus the added computation of the smoothed term to the estimate of
degrees of freedom in (7) has an insignificant effect on the computation time.
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Figure 3. Risk estimates R̂iskdf , R̂iskCV-5, R̂iskCV-10 and

R̂isklasso (gray lines) for 50 samples as a function of λ. The black
lines are Monte Carlo estimates of the true risks. The design pa-
rameters were: n = 200, p = 2000, σ = 0.5, γ = 1, α = 0.1, and
the design type was (S) with a constant correlation of ρ = 0.1 (see
Section 4.2).



92 F. R. MIKKELSEN AND N. R. HANSEN

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

p : 200 p : 2000 p : 20000
Integrated M

S
E

 of R
isk

M
S

E
 of R

isk at optim
um

50 100 200 400 800 50 100 200 400 800 50 100 200 400 800

10

100

1000

10000

100000

10

100

1000

n

Method ● ●CV−10 CV−5 lasso df    σ known estimated

Figure 4. Integrated mean squared error (top) and mean squared

error at the optimal value of λ, λ̂ (bottom) of the risk estimates

R̂iskdf , R̂iskCV-5, R̂iskCV-10 and R̂isklasso. The integrated mean

squared error was computed over the interval [λ̂/10, 10λ̂] of log(λ)-
values. The design parameters were: σ = 0.5, γ = 1, α = 0.1, and
the design type was (S) with a constant correlation of ρ = 0.1 (see
Section 4.2)
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4.4. Results from study II. Firstly, we discuss the comparison of the two tuning
methods df and dfS for the lasso-OLS estimator. The purpose of this comparison is
to highlight the effect of correctly adjusting for the variable selection in the estima-

tion of degrees of freedom via the term ∂̂. Secondly, we discuss the comparison of
df to CV-5, CV-10 and lasso. The purpose of this second comparison is two-fold. It
provides a comparison of our proposed tuning method, df, to cross-validation based
tuning, and it provides a comparison of lasso-OLS to lasso in terms of predictive
performance.

Figure 5 shows the results for the two tuning methods df and dfS in the orthog-
onal and empirical designs with γ = 1 and n = 100. The results for all the other

design parameters can be found in [19]. Tuning λ by using dim(Ŝλ) + ∂̂ as an esti-

mate of degrees of freedom is generally superior to using dim(Ŝλ) and in the worst
cases at least comparable. The differences are largest for the lowest signal-to-noise

ratios. The benefit of using dim(Ŝλ) + ∂̂ generally increases with the dimension n,
and it increases with decreasing signal-to-noise ratio. Furthermore, when the num-
ber of non-zero parameters is large and the signal-to-noise ratio is low (specifically,

γ = 0.9, α large and σ large), µ̂λ̂df

l-OLS clearly outperforms the oracle-OLS estimator,

while µ̂
λ̂dfS

l-OLS is comparable or worse than the oracle-OLS estimator. Neither of the
estimators performs well for small variances and large signal-to-noise ratios. For
the orthogonal design the estimation of the variance incurs a clear performance
loss, which is not the case for the other designs. We ascribe this to the variance
estimator being particularly poor for the orthogonal design.

Figure 6 shows the results for df, CV-5, CV-10 and lasso for the orthogonal
and empirical designs with γ = 1 and n = 100. The results for the remaining
design parameters are found in [19]. For the orthogonal design cross-validation is

not an appropriate tuning method, since R̂iskCV-K is constant in λ. This relates to
the fact that the folds cannot be considered replications of the same distribution.
Consequently, for the orthogonal design, the tuning methods based on degrees of
freedom have clear advantages. On the other hand, the estimation of σ has a quite
large negative effect for precisely the orthogonal design.

When restricting attention to the non-orthogonal designs we observe that the
tuning methods are quite comparable (see [19]). None of the tuning methods are
generally superior or inferior to the others and their performance depends on both
design type, signal-to-noise ratio and the signal decay parameter γ. The lasso
estimator deviates most from the others, which is mainly due to this being a different
estimator. It performs best at low signal-to-noise ratios, while lasso-OLS using
either cross-validation of df tuning performs better at high signal-to-noise ratios
(α large, σ small and γ = 1). Cross-validation appears to perform best for highly
correlated designs (ρ large).

The results for the non-Gaussian error distributions are included in [19] as well.
There are no major differences when compared to the Gaussian error distribution,
with the most notable change being that lasso losses some of its performance for
the t-distributed noise. The tuning based on df seems to be less affected. Still, all
the tuning methods are generally comparable except for orthogonal designs. Since
cross-validation does not rely on a Gaussian noise assumption, these results suggest
that our proposed tuning method based on df is appropriate even in non-Gaussian
settings.
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Figure 5. Risk relative to σ2n for the estimators µ̂
λ̂dfS

l-OLS and

µ̂λ̂df

l-OLS for orthogonal and empirical designs with n = 100 and
γ = 1. The dashed line is dnαe/n ' α, the relative risk for the
oracle-OLS estimator.
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l-OLS, µ̂λ̂CV-5

l-OLS,

µ̂λ̂CV-10

l-OLS and µ̂λ̂lasso

lasso for orthogonal and empirical designs with n =
100 and γ = 1. The dashed line is dnαe/n ' α, the relative risk
for the oracle-OLS estimator.
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5. Best Subset Selection

Example 3.4 demonstrates that (8) holds for other estimators than lasso-OLS,
and Theorem 3.3 holds, in particular, for best subset selection in the Lagrangian
formulation, which corresponds to Pen(·) = ‖·‖0 in Example 3.4. Theorem 3.2 does,
however, only partly extend to best subset selection. In this section we demonstrate
that this may still provide a practically useful estimate of degrees of freedom.

The best subset selection estimator of µ with tuning parameter λ > 0, denoted
by µ̂λbs, is

µ̂λbs = Xβ̂λ where β̂λ = arg min
β

1

2
‖Y −Xβ‖22 + λ‖β‖0.

It can be written on the form µ̂λbs =
∑
A∈{1,...,p} 1UλAΠA (Lebesgue a.e.), where

(19)

UλA :=

{
y ∈ Rn

∣∣∣∣ λ|A| −
1

2
‖ΠAy‖22 < min

B∈{1,...,p}\A
λ|B| − 1

2
‖ΠBy‖22

}
, A ⊂ {1, ..., p}.

It is straightforward to verify that µ̂λbs fulfils Assumption 2.2 except 2.2(c), which
follows by Lemma A.1 in the appendix. Hence Theorem 2.4 applies to µ̂λbs.

From (19) we note that the outer unit normal to ∂UλA1
on U

λ

A1
∩ UλA2

equals
(ΠA2

−ΠA1
)y normalized to have norm 1. Theorem 2.4 yields

df(µ̂λbs)− dfS(µ̂λbs) =
1

2

∑

A1 6=A2

∫

U
λ
A1
∩UλA2

〈(ΠA2 −ΠA1)y, (ΠA2 −ΠA1)y〉
‖(ΠA2

−ΠA1
)y‖2

ψ(y) dHn−1(y)

=
1

2

∑

A1 6=A2

∫

U
λ
A1
∩UλA2

‖(ΠA2
−ΠA1

)y‖2 ψ(y) dHn−1(y),

which proves that df > dfS for best subsection selection. Moreover, Proposition 3.3
and Example 3.4 yields

−2λ∂λdfS(µ̂λbs) =
1

2

∑

A1 6=A2

∫

U
λ
A1
∩UλA2

ψ(y)
〈y, (ΠA2 −ΠA1)y〉
‖(ΠA2 −ΠA1)y‖2

(|A2| − |A1|) dHn−1(y).

For col(XA1
) ⊆ col(XA2

) and rank(XA2
) = rank(XA1

) + 1, we see that the inte-
grands in the two identities above coincide. Hence, if we define

A1 :=

{
A1, A2 ⊆ {1, ..., p}

∣∣∣∣
col(XA1) ⊆ col(XA2) and

rank(XA2
) = rank(XA1

) + 1

}
and

A2 :=

{
A1, A2 ⊆ {1, ..., p}

∣∣∣∣col(XA1
) 6= col(XA2

) and
(A1, A2) /∈ A1

(A2, A1) /∈ A1

}
,

then
df(µ̂λbs)− dfS(µ̂λbs) = −2λ∂λdfS(µ̂λbs) +R

where

R =
1

2

∑

(A1,A2)∈A2

∫

U
λ
A1
∩UλA2

〈(ΠA2 −ΠA1 )y,
(
ΠA2 −ΠA1 − (|A2| − |A1|)In

)
y〉∥∥(ΠA2

−ΠA1
)y
∥∥
2

ψ(y) dHn−1(y)

The usefulness of this hinges on R being small. For X orthogonal we have already
demonstrated that R = 0 as µ̂λbs then coincides with lasso-OLS, and in this case

U
λ

A1
∩ UλA2

has Hausdorff measure zero for all (A1, A2) ∈ A2. For non-orthogonal
X this is no longer true, see Figure 7. For best subset selection there will generally
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Figure 7. Illustrations of the decomposition of R2 into the four
sets U1

∅ , U1
{1}, U

1
{2} and U1

{1,2} according to the best subset selec-

tion estimator in the Lagrangian formulation with λ = 1. The set
U1
∅ consists of the points projected onto the 0-dimensional space

{0}, the sets U1
{1}, U

1
{2} to the projections onto one of the two

1-dimensional subspaces and U1
{1,2} to the identity map. The de-

composition depends on the angle between the two columns in X.

be boundaries of non-zero Hausdorff measure between many more of the sets U
λ

A

– boundaries that correspond to including or excluding more than one predictor
at the time or replacing predictors. Compare this with lasso-OLS and Figure 1.
However, by continuity in X we have R→ 0 for X tending to an orthogonal matrix,
and we can expect R to be small for matrices that are not too far from orthogonal
matrices. Thus we expect

(20) dfS(µ̂λbs)− 2λ∂λdfS(µ̂λbs)

to be a useful approximation for df(µ̂λbs) also for non-orthogonal X.
Using the same procedure for estimating the correction −2λ∂λdfS(µ̂λbs) as out-

lined in Section 3 – using 2∂̂ instead of ∂̂ – we used simulations to investigate if
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Figure 8. Left: Realization of the estimates of degrees of freedom

d̂fS = dim(Ŝλ) and d̂f = dim(Ŝλ) + 2∂̂ as well as the correction

term ∂̂ as a function of log(λ) for best subset selection (top) and
corresponding estimates of the risk (bottom). Right: Similar to
the left but mean values of the estimates obtained by averaging
over 1000 samples along with the degrees of freedom df = df(µ̂λbs)
obtained from the 1000 samples using the covariance definition (1).
The design parameters were: σ = 0.5, n = p = 30, γ = 1, α = 0.1
and the design type was (S) with constant correlation of ρ = 0.1
(see Section 4).

(20) was actually a good approximation of df(µ̂λbs). Figure 8 shows the results us-
ing the same configurations as in Figure 2, except that n was lowered to 30 due to
computational constraints. The conclusion from this and other similar simulations
(not shown) is that even with non-orthogonal designs, (20) is a practically useful
approximation. That is, −2λ∂λdfS(µ̂λbs) accounts for the majority of the increase
in the degrees of freedom due to variable selection.
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6. Discussion

We have provided a new representation of degrees of freedom for a broad class
of discontinuous, piecewise Lipschitz estimators. This representation provides us
with a deeper insight into the effect of variable selection, among other things, on
the effective dimension of the statistical model and the estimator used. We have
demonstrated that for lasso-OLS it was, moreover, possible to derive a practically
useful estimator of the degrees of freedom based on the general representation, and
we also suggest that a similar estimator can be useful for best subset selection. The
estimator was based on relating the derivative of λ 7→ dfS(µ̂λ) to the discontinuities
of the estimator µ̂λ as expressed via the integral representation of df(µ̂λ)−dfS(µ̂λ).
This does, indeed, make some intuitive sense as the first expresses the mean jump
of degrees of freedom per unit change of λ and the other (in some sense) the mean
discontinuity of degrees of freedom per unit change of y. Changing λ for fixed y
or changing y for fixed λ are dual operations, and it is not surprising that we can
relate the numbers.

A simulation study demonstrated that the risk of the lasso-OLS estimator can
be estimated effectively by using our proposed estimate of degrees of freedom. Our
proposal did not incur any substantial computational penalty, nor did it incur a
substantial increase in the variance of the risk estimate. The simulation study also
showed that lasso-OLS can be effectively tuned by minimising our proposed risk es-
timate, and that the resulting computations are faster than using cross-validation.
The resulting lasso-OLS estimator selects fewer predictors than lasso with a com-
parable predictive performance, but it is computationally more expensive.

If we were to generalize our results to other estimators that include a tuning
parameter, we expect that it is only the derivative of the part of dfS(µ̂λ) that
corresponds to jumps that can be related to df(µ̂λ)− dfS(µ̂λ). That is, in general,
λ 7→ div(µ̂λ) will have jumps as well as smooth but non-constant pieces, and it is
only the expectation of the jump part that we expect can be related to df(µ̂λ) −
dfS(µ̂λ). We believe that our suggested estimator of degrees of freedom may actually
be generalizable to a number of discontinuous estimators involving variable selection
as well as shrinkage. The requirement will be that the estimator has one or more
tuning parameters and that it is computed on a grid or along a path of these. Then
we can potentially estimate the derivative of the divergence of the estimator as a
function of the tuning parameter(s). It is an ongoing research project to investigate
this in detail.

For best subset selection we did not provide any bounds on the residual R in
the approximation of df(µ̂λ) − dfS(µ̂λ). It would, indeed, be very interesting to
investigate this approximation in more detail. It would, in particular, be interesting
to understand if it in any way can be seen as a “first order approximation” and
whether there are higher order terms worth including in some cases.

Finally, we have restricted attention to Gaussian noise in the theoretical deriva-
tions. Like Stein’s classical lemma, Theorem 2.4 crucially relies on this assumption.
Our simulation study demonstrated some robustness towards deviations from this
assumption. However, extensions of Stein’s lemma to non-Gaussian distributions
do exist (see, e.g., [3]), but further investigations are required to determine if similar
extensions can be made in the more general framework presented in this paper.
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7. Supplementary Material

The results from the entire simulation study as well as the R-code are available
online http://doi.org/10.5281/zenodo.321847, [19].

Appendix A. Additional results and Proofs

A.1. Semialgebraic sets. Observe that for A and B subsets of Rn it holds that

(21)

∂A = ∂(Ac),

∂(A ∪B) ⊆ ∂A ∪ ∂B,
∂(A ∩B) ⊆ ∂A ∪ ∂B.

Especially, the family of sets

(22)

{
E ∈ B(Rn)

∣∣∣∣∣
r 7→ Hn−1 (∂E ∩B(0, r))

is polynomially bounded

}

is stable under complement, finite union and finite intersection. This is a useful
observation when we want to verify Assumption 2.2(c).

The following Lemma shows that semialgebraic sets belong to the family given
by (22). A semialgebraic set is finite union of finite intersections of sets of the form
(P = 0) and (Q > 0), where P and Q are polynomials. A multivariate polynomial
is of the form (using multi-index notation)

P (x) =
∑

α∈A
aαx

α, aα ∈ R for each α ∈ A,

with A ⊆ Nn finite.

Lemma A.1. If E is semialgebraic then r 7→ Hn−1 (∂E ∩B(0, r)) is polynomially
bounded.

Proof. By the stability under finite set operations of the family given by (22) it
suffices to show that r 7→ Hn−1 ((P = 0) ∩B(0, r)) is polynomially bounded for
any nonzero polynomial P . But this follows from Corollary 1 in [16], which implies
that

Hn−1((P = 0) ∩B(0, r)) ≤ deg(P )π
n+1
2

Γ
(
n
2

) rn−1

for any nonzero polynomial P with deg(P ) = max
aα 6=0

|α| denoting the degree of P . �

A.2. Proof of Theorem 2.4. The following Lemma characterizes the outer unit
normal vectors ηi for i = 1, . . . , N .

Lemma A.2. Under Assumption 2.2 the following holds:

(a) ηi = 0 Hn−1 a.e. on ∂Ui \
⋃
j 6=i U j for each i = 1, ..., N .

(b) ηi = −ηj Hn−1 a.e. on ∂Ui ∩ ∂Uj with i 6= j.
(c) ηi = 0 Hn−1 a.e. on ∂Ui ∩ ∂Uj ∩ ∂Uk with i, j, k distinct.

Proof. Firstly, note that the unit outer normal ηi on ∂Ui vanishes outside the
measure theoretic boundary ∂∗Ui, see Definition 5.8 in [7]. Moreover, these two
types of boundaries relates to the reduced boundary ∂∗Ui (see Definition 5.7 in [7])
by the inclusions:

∂∗Ui ⊆ ∂∗Ui ⊆ ∂Ui.
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Furthermore, Hn−1(∂∗Ui \ ∂∗Ui) = 0 (see Lemma 5.8.1 in [7]). All in all, we see
that the Lemma holds if we can show the following claims:

(23)

∂∗Ui ⊆
⋃

l 6=i
U l

ηi = −ηj on ∂∗Ui ∩ ∂∗Uj
∂∗Ui ∩ ∂∗Uj ∩ ∂∗Uk = ∅

holds for all i, j, k distinct.
To prove the claims, define for each i and r > 0 the sets

Uri (x) = {y | r(y − x) + x ∈ Ui},
Hi(x) = {y | 〈ηi, y − x〉 ≤ 0}.

Note that {Uri (x)}i are still disjoint. By Theorem 5.7.1 in [7]

1Uri (x)
r→0−−−→ 1Hi(x) in L1

loc(Rn) for all x ∈ ∂∗Ui.
Therefore, if there existed x ∈ ∂∗Ui ∩ ∂∗Uj ∩ ∂∗Uk for i, j, k distinct, then

(24) 1Uri (x)∪Urj (x)∪Urk (x)
r→0−−−→ 1Hi(x) + 1Hj(x) + 1Hk(x) in L1

loc(Rn),

which is impossible as the right hand side is not Lebesgue a.e. an indicator. By
the same argument one can deduce that ηi = −ηj must hold for x ∈ ∂∗Ui ∩ ∂∗Uj
and that any x ∈ ∂∗Ui cannot belong to the open set (

⋃
l 6=i U l)

c. �

Proof of Theorem 2.4. For i = 1, ..., N Gauss-Green’s formula (see Theorem 5.8.1
in [7] and Theorem 4.5.6 in [9]) gives that

(25)

∫

Ui

div(f) dm =

∫

∂Ui

〈f, ηi〉 dHn−1

for all Lipschitz continuous vector fields f with compact support. Here ηi denotes
the outer unit normal of ∂Ui, which is well defined and nonzero on a subset of ∂Ui
and zero everywhere else by definition.

Let (gr)r be a sequence of smooth functions with

gr(x) =

{
1 if x ∈ B(0, r)

0 if x /∈ B(0, r + 1)

and (gr)r and (Dgr)r uniformly bounded. Since µ̂i is Lipschitz continuous on
U i ∩ B(0, r + 1) Kirzbraun’s theorem ensures that µ̂i has a Lipschitz extension,
µ̂ri : Rn → Rn. Then fr = grψµ̂

r
i is Lipschitz continuous with compact support

and grµ̂
r
i = grµ̂ on Ui. Then (25) applied to fr yields

∫

∂Ui

grψ〈µ̂i, ηi〉 dHn−1 =

∫

Ui

grψdiv(µ̂i) dm+

∫

Ui

〈grDψ + ψDgr, µ̂i〉 dm.

Due to Assumption 2.2 all integrands above are dominated by integrable functions,
and by letting r →∞ Lebesgue’s Dominated Convergence Theorem yields∫

∂Ui

ψ〈µ̂i, ηi〉 dHn−1 =

∫

Ui

ψdiv(µ̂i) dm+

∫

Ui

〈Dψ, µ̂i〉 dm.

By summing over i we get

(26) df(µ̂) = dfS(µ̂)−
∑

i

∫

∂Ui

ψ〈µ̂i, ηi〉dHn−1.
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By Lemma A.2 we see that

df(µ̂) = dfS(µ̂)−
∑

j 6=i

∫

∂Ui∩∂Uj
ψ〈µ̂i, ηi〉dHn−1

= dfS(µ̂) +
1

2

∑

j 6=i

∫

∂Ui∩∂Uj
〈µ̂j − µ̂i, ηi〉ψdHn−1.

Since ηi vanishes on ∂Ui ∩ ∂Uj \ (U i ∩ U j) for i 6= j we have proven (4). �
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EXTENDING ’SURE’ TO ESTIMATORS WITH DATA

ADAPTIVE MODEL SELECTION VIA FLOWS

FREDERIK VISSING MIKKELSEN AND NIELS RICHARD HANSEN

Abstract. For a class of estimators of mean value parameters in Rn, which

involve data adaptive model selection, we present a representation of the de-
grees of freedom. This representation readily yields an estimator of the degrees

of freedom, which subsequently provides a natural extension of Stein’s unbi-

ased risk estimate (SURE) to a class of estimators with data adaptive model
selection. Four examples of estimators, for which the classic SURE does not

apply, are considered in detail in this paper: marginal screening, relaxed lasso,

best subset selection and singular value decomposition with a hard threshold
on the singular values. The representation of the degrees of freedom relies on

linking the data to a tuning parameter via a flow. Using such flows, the de-

pendence between the data and the estimates for fixed tuning parameter can
be understood by the dual operation, i.e., having the data fixed and varying

the tuning parameter.

1. Introduction

Risk estimation is a key concept in statistical modelling. It provides means for
assessing the error of a given estimator and in statistical settings with multiple
competing estimators it provides model selection criteria. The empirical risk does
not account for the flexibility of the model and is often too optimistic. For classic
model selection criteria, such as AIC and Mallows’s Cp, the dimension of the pa-
rameter space is used to adjust for the optimism of the empirical risk and provide
a fair model score across different dimensions. These selection criteria are suit-
able for linear models, in which the dimension of the parameter space is directly
linked to the flexibility of the linear predictor. Extensions to models or methods
outside of this setting exist. An example of such is the use of the divergence of
sufficiently differentiable estimators based on Stein’s lemma as described by Efron
(2004). Stein’s lemma was also used by Zou et al. (2007) and Tibshirani & Taylor
(2012) to demonstrate that for the lasso estimator in a linear regression model with
Gaussian errors, the number of estimated non-zero parameters is an appropriate
estimate of the effective dimension.

It is well known that neither Mallows’s Cp nor AIC or similar information cri-
teria correctly adjust for the optimism resulting from selecting one model from a
collection of models of equal dimension. The usage of such methods for model se-
lection without adequate adjustments was called “a quiet scandal in the statistical
community” by Breiman (1992), who proposed a bootstrap based method for risk
estimation as an alternative. Ye (1998) defined the notion of generalised degrees
of freedom for an estimator of the mean in a Gaussian model and showed how to
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use this number for risk estimation. The results by Ye apply to discontinuous es-
timators involving model selection, but his proposal for computing the degrees of
freedom was similarly to Breiman’s based on refitting models to perturbed data.

If the estimator satisfies the differentiability requirements for Stein’s lemma
(Lemma 2 by Stein (1981)), then applying the divergence operator to the estimator
yields an unbiased estimate of the generalised degrees of freedom. Correcting the
empirical risk by this estimate yields Stein’s unbiased risk estimate (SURE), as
used by Donoho & Johnstone (1995) and Xie et al. (2012). Furthermore, Meyer &
Woodroofe (2000), Zou et al. (2007), Kato (2009), Tibshirani & Taylor (2012) and
Candès et al. (2013) among others used the divergence operator to derive formulas
for the degrees of freedom of estimators that are Lipschitz continuous.

For estimators with discontinuities Stein’s lemma generally breaks down and the
divergence will no longer be an unbiased estimate of the degrees of freedom. Dis-
continuities of the estimator in particular appear in regression when data adaptive
variable selection is used to select among a number of projection estimators. Best
subset selection is one central example, but variable selection procedures in gen-
eral lead to non-ignorable discontinuities. A variable selection procedure effectively
divides the sample space into a number of disjoint regions, with the estimator be-
ing, say, a projection on each region. The resulting estimator will generally be
discontinuous on the boundaries between regions.

Recent developments in computations of degrees of freedom for discontinuous
estimators include that of Tibshirani (2015). Here the author considered linear
regression models with orthogonal design and showed how to compute the degrees
of freedom for the hard threshold operator. This operation is equivalent to the La-
grangian formulation of best subset selection for orthogonal designs. Additionally,
an extension of Stein’s lemma to some discontinuous estimators was presented,
though it was not shown if this extension applies to subset selection estimators.
Mikkelsen & Hansen (2017) recently derived a general representation of degrees of
freedom for piecewise Lipschitz estimators and used it to compute the degrees of
freedom for the lasso-OLS estimator: an estimator which applies the OLS estimator
restricted to the predictors selected by the lasso estimator by Tibshirani (1996).

The main contribution of this paper is Theorem 4.6 and its associated Corollary
4.7. These results provide a formula for the contribution to the degrees of freedom
that are due to discontinuities of the selection procedure. They rely on perturbing
the observation space by a flow. For a broad class of selection procedures we define
a function H, depending on the observation y and a tuning parameter t. Through
studying the behaviour of H in the tuning parameter direction, one is able to recover
the associated behaviour in the y direction. By the specific construction of H the
recovered behaviour in the y direction equals the part of the degrees of freedom
that are due to the discontinuities arising from the selection procedure.

Before defining the function H in Section 3 we motivate the use of degrees of
freedom in risk estimation in Section 2. The assumptions required for recovering of
the degrees of freedom via H are presented in Section 4, followed by four examples
in Section 5: marginal screening, relaxed lasso, best subset selection and singular
value decomposition with a hard threshold on the singular values. All examples,
except for best subset selection, satisfy all the conditions for Corollary 4.7. For
best subset selection, only a partial recovery of the degrees of freedom is possible.
Proofs and some auxiliary results are in the appendix.
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2. Model Selection and Stein’s Unbiased Risk Estimate

We consider a multivariate normally distributed random variable Y ∼ N (µ, σ2I)
and let µ̂ : Rn → Rn denote an estimator of the unknown mean vector µ. The risk
of the estimator is defined as

Risk(µ̂) := E‖µ− µ̂(Y )‖22,
provided that µ̂(Y ) has finite second moment. The risk measures the average
squared error on the estimator and is therefore desirable to estimate. Risk esti-
mators with good statistical properties can for instance be used to select tuning
parameters.

Our main interest is to estimate the risk under the Gaussian model, which we
obtain through two types of degrees of freedom. When defining these, ψ(y;µ, σ2)
denotes the density of Y and 〈·, ·〉 denotes the standard inner product on Rn.
Furthermore, the divergence operator is defined as

div(f) =
n∑

i=1

∂ifi

for f : Rn → Rn Lebesgue almost everywhere differentiable and with ∂i denoting
the partial derivative w.r.t. the ith coordinate.

Definition 2.1. Let µ̂ : Rn → Rn be a measurable map. If µ̂(Y ) has finite second
moment the degrees of freedom of µ̂ is

(1) df(µ̂) :=
n∑

i=1

cov(Yi, µ̂(Y )i)

σ2
=

∫ 〈y − µ, µ̂(y)〉
σ2

ψ(y;µ, σ2)dy.

If µ̂ is differentiable in Lebesgue almost all points and div(µ̂) has finite first moment
the Stein’s degrees of freedom of µ̂ is

(2) dfS(µ̂) := E(div(µ̂)(Y )).

The degrees of freedom naturally arise through a simple expansion of the risk

(3) Risk = E‖Y − µ̂(Y )‖22 − nσ2 + 2σ2df(µ̂).

Hence ‖Y − µ̂(Y )‖22 − nσ2 + 2σ2d̂f is an unbiased risk estimate provided that d̂f

is an unbiased estimate of df(µ̂). Having a bias in d̂f may also be preferable if it
sufficiently reduces the variance.

If µ̂ is almost differentiable then df(µ̂) = dfS(µ̂) due to Stein’s lemma (Lemma
2 in Stein (1981)), in which case div(µ̂)(Y ) becomes an unbiased estimate of df(µ̂)
and yields SURE (Stein’s Unbiased Risk Estimator):

(4) ‖Y − µ̂(Y )‖22 − nσ2 + 2σ2div(µ̂)(Y )

The problem, however, is that most estimators involving data adaptive model
selection are discontinuous. In particular they are not almost differentiable, and
for such estimators it is not clear if div(µ̂)(Y ) is a useful estimate of the degrees of
freedom. In this paper, we will study the bias

(5) df(µ̂)− dfS(µ̂)

for a range of estimators involving model selection. Recently, Mikkelsen & Hansen
(2017) provided a representation of (5), which involves a sum of boundary inte-
grals. This representation on its own yields no immediate estimator of (5), but the
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authors were able to do so for the specific lasso-OLS estimator, µ̂λl-OLS. For this
particular estimator, which applies the OLS estimator restricted to the set of pre-
dictors selected by the lasso estimator (Tibshirani (1996)) with tuning parameter
λ > 0, we have the striking identity:

(6) df(µ̂λl-OLS)− dfS(µ̂λl-OLS) = −λ∂λdfS(µ̂λl-OLS)

where ∂λ denotes the differential with respect to λ. This equation is quite inter-
esting, because dfS(µ̂l-OLS) is the expected dimension of the model selected by the
lasso (Lemma 3 in Tibshirani (2013)). These dimensions are readily available, when
evaluating the lasso estimator. The identity (6) was used by Mikkelsen & Hansen
(2017) to derive a correction for SURE. Furthermore, through an extensive simu-
lation study the authors measured the effect of tuning lasso-OLS via the corrected
SURE, the uncorrected SURE and 5- and 10-fold cross validation. The results
showed that tuning via the corrected SURE led to estimates that were generally
closer to the true mean than estimates tuned via uncorrected SURE. Moreover,
the corrected SURE and both types of cross validation led to estimates that were
comparably close to the true mean. However, the SURE based methods were faster
to compute than the cross validated methods.

In this paper we seek to establish identities similar to (6) for other estimators
involving model selection. We show that for some model selection estimators µ̂t, in
which the selection events are determined by a tuning parameter t ∈ R in a certain
way, one has the identity

(7) df(µ̂t)− dfS(µ̂t) = ∂tE(H(t, Y )),

where H is a real-valued function defined on R × Rn. We provide an explicit
formula for H in the following section. In the lasso-OLS case, −H(t, y) reduces to
the dimension of the model selected by the lasso estimator for tuning parameter
λ = et (up to an additive constant, see Example 5.2 for details). This agrees with
(6). A visualisation of (7) applied to marginal screening in Example 5.1 is presented
in Figure 1.

3. Constructing and applying H

Consider a finite set of models M = {M1, ...,MN}. A selection procedure with

tuning parameter t ∈ R is a map M̂t : Rn → M; given an observation y model

M̂t(y) is chosen. The sets (M̂t = M)M∈M are called the selection events.
We assume that each model M ∈ M has an associated post-selection estimator

µ̂M , which is applied to the observation y given that M̂t(y) = M , and we assume
that each of these are locally Lipschitz. In a linear regression setting, a typical
example of a post-selection estimator is an OLS estimator on some subset of the

predictors provided by the selection procedure M̂t. As we will see, the specific
choice of the post-selection estimators are not that important. They do matter
in terms of how H is defined, but the validity of (7) is mostly a question of the
selection procedure.
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Figure 1. Monte Carlo estimates of df, dfS and −E(H(t, Y ))
for marginal screening in Example 5.1 using 10.000 replications.
H was shifted vertically to be in the frame. The design matrix,
X ∈ R12×10, had i.i.d. standard Gaussian entries, σ = 0.25 and
µ = Xβ, where the first four coordinates of β were 1, the remain-
ing 0. The derivative of E(H(t, Y )) was approximated by finite
differencing.
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The most important property we require for the selection procedure M̂t in order
for (7) to hold is the following: there exists a C2 flow, i.e., a C2-function F :
R× Rn → Rn with the properties

(8)
F (0, y) = y, for all y ∈ Rn,

F (t+ s, y) = F (s, F (t, y)), for all s, t ∈ R and y ∈ Rn,

connecting the tuning parameter and the selection procedure:

(9) M̂t(y) = M̂0(F (−t, y)), for all t ∈ R and almost all y ∈ Rn.

The above connection is visualised in Figure 2. Note that all flows are invertible in
the second coordinate: F (−t, F (t, y)) = y for all t ∈ R and y ∈ Rn, i.e., F (−t, ·) is
the inverse of F (t, ·). The function f : Rn → Rn given by f(y) = ∂tF (0, y) is called
the field of the flow.

●

y

−1

0

1

2

3

−1 0 1 2 3

(M0=M1)  (M0=M2)  (M0=M3)  (M0=M4)

Figure 2. Partition of R2 by some generic selection procedure.
An observation y lies on its trajectory t 7→ F (−t, y) (black line).
Under (9), the selection events for t = t0 are transformations of
the selection events for t = 0. However, it is often more useful to
think of y being transformed instead.
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Example 3.1. Condition (9) does not hold for arbitrary selection procedures,
but Example 3.4 in Mikkelsen & Hansen (2017) showcases some examples. More
precisely, they consider a regression with X an n×p design matrix and the penalised
loss function

`(y, β, t) =
1

2
‖y −Xβ‖22 + etPen(β)

where Pen : Rp → R is positive homogeneous of degree k ∈ [0, 2) (this includes
the quasi-norms Pen(β) = ‖β‖kp with 0 < k < 2, p > 0 and Pen(β) = ‖β‖0 =
|supp(β)|). If the selection procedure selects the model based on the support of β
at optimum, i.e.,
(10)

(M̂ t = M) =

{
y ∈ Rn

∣∣∣∣ inf
β:supp(β)=M

`(y, β, λ) = inf
β
`(y, β, λ)

}
, M ⊆ {1, ..., p},

then (9) holds with the flow F (t, y) = e
t

2−k y.

For M ∈ M let UM = int(M̂0 = M) denote the interior of the selection event

for t = 0. If the selection event (M̂0 = M) has locally finite perimeter (which will

be made precise in Section 4) we can assume that the boundary ∂(M̂0 = M) is
Lebesgue null. Most meaningful selection events have locally finite perimeter; one
would typically need either a fractal-like structure or boundaries that oscillate with
increasing frequency in order for this assumption to break. So for any meaningful

selection procedure, UM represents the selection event UM = int(M̂0 = M) almost

surely. If (9) holds then int(M̂t = M) = F (t, UM ) for all t ∈ R and M ∈ M. The
combined estimator µ̂t, which applies the selection procedure and the subsequent
post-selection estimators is on the form

(11) µ̂t(y) =
∑

M∈M
1F (t,UM )(y)µ̂M (t, y),

almost surely. Note that the post-selection estimators are allowed to depend on the
tuning parameter t ∈ R.
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3.1. Definition of H. In order to define H, we assume that the selection procedure

satisfies (9) and that for almost all y the left and right limits of t 7→ M̂t(y) exist in

all t ∈ R. Let M−t (y) := lims↗t M̂s(y) and M+
t (y) := lims↘t M̂s(y) denote the left

and right limit of the selection procedure, respectively.
For a given observation y, let (tk)k denote the jump points of the selection

procedure, i.e, the values of t for which M̂−t 6= M̂+
t . Let U tk− := F (tk, UM−tk

) and

U tk+ := F (tk, UM+
tk

) denote the associated left and right selection events. For each

jump point tk, y belongs to the intersection of the boundaries

∂U tk− ∩ ∂U tk+,

which is an (n− 1)-dimensional surface in Rn. These surfaces are typically defined
by some equation arising from a set of KKT conditions, some threshold operator
or proximal operator. Either way, a (y-dependent) normal vector ηk of this surface
in y is almost surely well defined (up to a scalar). Now, define the value of H as

(12) H(t, y) =

{∑
k:0<tk<t

〈ηk;µ̂tk−0(y)−µ̂tk+0(y)〉
〈ηk;f(y)〉 if t > 0

∑
k:t<tk<0

〈ηk;µ̂tk+0(y)−µ̂tk−0(y)〉
〈ηk;f(y)〉 if t < 0.

If a term has zero denominator we set that term to zero by convention. Note that
whether ηk points inwards or outwards is irrelevant for the value of H, so is its
length (as long as it is non-zero). See Figure 3 for a visualisation of H.

In practice, if ∂U tk− ∩ ∂U tk+ is characterised by a manifold (Gk = 0) for some
smooth Gk : Rn → R, then the gradient ∇Gk qualifies as a normal vector (provided
it is non-zero). In order to evaluateH we only need to evaluate the trajectory t 7→ µ̂t

and identify the flow, the jump points and a normal vector at each jump point.
We interpret t 7→ H(t, y) as the accumulated difference between neighbouring

post-selection estimators on the trajectory t 7→ F (t, y) relative to how the field
penetrates the boundary between the neighbouring regions. The denominators only
depend on the selection events (UM )M∈M and the flow F , while the numerators
depend on the post-selection estimators as well. The contribution from a given
term is minimal if the field is perpendicular to the boundary.
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Figure 3. Visualisation of H in a generic setting on R2. (a)
The jump points are identified when the trajectory t 7→ F (−t, y)
intersects the boundaries. The normal vectors are marked at the
crossings. (b) The selection procedure evaluated on the trajectory
t 7→ F (−t, y). (c) The function t 7→ H(t, y), the jump sizes are
determined by the normal vectors, the field and the difference in
post-selection estimators across neighbouring regions.
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3.2. Estimating ∂tE(H(t, Y )). For fixed y the function t 7→ H(t, y) is a step func-
tion. Thus estimating ∂tE(H(t, Y )) from a single realisation of Y is not straightfor-
ward. One method is to extend the approach of Mikkelsen & Hansen (2017) to this
setting. Their approach relies on smoothing the step function before differentiat-
ing, which is analogous to estimating a weighted intensity for a jump process. The
resulting estimate is not guaranteed to be unbiased, but smoothing appropriately
may considerably reduce the variance. This approach was proven quite fruitful in
the simulation study of Mikkelsen & Hansen (2017).

Let µ̂ be an estimator on the form (11) and let H be defined as in (12). If
t 7→ E(H(t, Y )) is differentiable (which it is under Assumption 4.4 given below),
then the following algorithm provides and estimate of ∂tE(H(t, Y )) given a single
realisation y of Y :

Algorithm 3.2. Input: observation y, estimator µ̂t given by (11) with selection

procedure M̂t and flow F satisfying (9).

(1) Evaluate the field f at y.

(2) Identify the jump points (tk)k, i.e., the t ∈ R where M̂−t 6= M̂+
t .

(3) Evaluate the outer normal vectors (ηk)k of the boundaries

∂U tk− ∩ ∂U tk+,

at y for each jump point tk.
(4) Evaluate the weights

wk =
〈ηk; µ̂tk−0(y)− µ̂tk+0(y)〉

〈ηk; f(y)〉
for each tk.

(5) Apply a weighted kernel density smoother to (tk) with weights (wk) for all
k where wk > 0. Denote the kernel density estimate by p+(t). Analogously,
let p−(t) denote a kernel density estimate applied to (tk) with weights (−wk)
for all k where wk < 0.

(6) Scale p+ with the total sum of positive weights, i.e.,
∑
k:wk>0 wk. And

similarly, scale p− with the total sum of negative weights, i.e.,
∑
k:wk<0 wk

Output: ∂̂t := p+(t) + p−(t), an estimate of (∂tE(H(t, Y )))t.

In the next section we describe how to show (7) for an estimator µ̂. If (7) is
established, we propose the risk estimator

(13) R̂isk := ‖Y − µ̂t(Y )‖22 − nσ2 + 2σ2(div(µ̂t)(Y ) + ∂̂t),

where ∂̂t is obtained from Algorithm 3.2. (13) is a natural extension of SURE, (4),
to estimators with data adaptive model selection.
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4. Properties of H

For notational simplicity, from this section and onwards we index selection events
and post-selection estimators by i = 1, ..., N instead of M ∈ M = {M1, ...,MN}.
Before presenting the conditions and the associated proof of (7), we first recall the
decomposition of the degrees of freedom given by Mikkelsen & Hansen (2017). In
this paper we extend the original framework to include a wider range of estimators.

4.1. Decomposition of degrees of freedom. Consider i = 1, 2, ... models, each
represented by an open selection event Ui ⊆ Rn and a post-selection estimator
µ̂i : U i → Rn. We assume that the selection events are disjoint and

⋃
i U i = Rn.

We then define the estimator µ̂ =
∑
i 1Ui µ̂i, which given a selection event y ∈ Ui

applies the post-selection estimator µ̂i to the observation y. Let Hn−1 denote the
n−1 dimensional Haussdorf measure on Rn and Ln denote the Lebesgue measure on
Rn. The estimator µ̂ is required to satisfy the following rather weak assumptions:

Assumption 4.1. The estimator µ̂ can be written as µ̂ =
∑∞
i=1 1Ui µ̂i for a col-

lection of open and disjoint sets {Ui}∞i=1 with
⋃∞
i=1 U i = Rn and a collection of

post-selection estimators {µ̂i}∞i=1, where each µ̂i : U i → Rn is locally Lipschitz.
Additionally:

(a) The relative boundaries are covered, i.e.,

U i \ int(U i) ⊆
⋃

j 6=i
U j , i = 1, 2, ...

(b) The selection events have locally finite perimeter, i.e.,

Hn−1(∂Ui ∩K) <∞, i = 1, 2, ...

for all K ⊆ Rn compact.
(c) The random variable 〈Y −µ; µ̂(Y )〉 has finite first moment and the random vari-

able div(µ̂)(Y ) =
∑∞
i=1 1Ui(Y )div(µ̂i)(Y ) is either almost surely non-negative

or has finite first moment.
(d) The boundary integrals are finite:

∞∑

i=1

∫

∂Ui

|〈ηi; µ̂i〉|ψ dHn−1 <∞

where ηi denotes the unit outer normal to ∂Ui.

Remark 4.2. Note that the above assumptions differ from the original assumptions
by Mikkelsen & Hansen (2017) in that we allow for a countably infinite collection
of disjoint selection events and associated post-selection estimators and that the
polynomial bounds have been replaced by integrability assumptions. Moreover,
note

(a) The relative boundary condition, (a), automatically holds when the collection
{Ui}i is finite, since

⋃
j 6=i U j is closed and (U i)i cover the whole space. For the

infinite case, the condition may break in some pathological examples. Moreover,
this condition is only used in the proof of Lemma A.1 and for that proof to
hold we only need

U i \


int(U i) ∪

⋃

j 6=i
U j



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to be Hn−1-null for each i = 1, 2...
(b) The locally finite perimeter condition, (b), automatically holds for semi-algebraic

sets, i.e., if the selection events are determined by a finite number of polynomial
equalities and inequalities, see Lemma A.3. One can weaken the condition to

Hn−1(∂Ui ∩ (〈ηi; µ̂i〉 6= 0) ∩K) <∞, i = 1, 2, ...

for all K ⊆ Rn compact. The price of this weakened condition is that it depends
on the post-selection estimator and not only the selection events.

(c) The moment conditions, (c), are standard and completely analogous to the
original moment conditions for Stein’s Lemma.

(d) The convergence of the absolute boundary integrals is often the most difficult
condition to verify, but it automatically follows from the other conditions via
Lemma A.4 if a few additional conditions hold.

The decomposition theorem of Mikkelsen & Hansen (2017) states

Theorem 4.3. If µ̂ satisfies Assumption 4.1 then

(14) df(µ̂) = dfS(µ̂) +
1

2

∑

i 6=j

∫

Ui∩Uj
〈µ̂j − µ̂i, ηi〉ψ( · ;µ, σ2) dHn−1,

where ηi denotes the measure theoretic outer unit normal to ∂Ui. Moreover, all
quantities in (14) are finite.

We provide the proof of Theorem 4.3 under the weaker assumptions in the ap-
pendix. The above theorem has been extended to the case of countably infinite
selection events, however we will only prove properties of ∂tE(H(t, Y )) when it
is constructed from an estimator µ̂ with a finite number of selection events. The
reason for the extended version of the decomposition theorem, is that we apply it
to a possibly infinite case in the proof of Theorem 4.6 given below.

4.2. Establishing df − dfS = ∂tE(H(t, Y )). We return to the setting in Section
3 with a finite number of selection events (Ui)

N
i=1. Before proceeding we define the

set

(15) Φ :=

{
z ∈

⋃

i

∂Ui

∣∣∣∣∣ 〈η(z); f(z)〉 6= 0

}
.

Geometrically, z ∈ Φ if it belongs to some boundary ∂Ui and the field at z is not
tangent to the boundary in z. We stress that the set Φ only depends on the selection
events (Ui)i and the flow F , in particular it does not depend on the post-selection
estimator. The importance of Φ will soon become apparent.

The following assumptions are required to prove Theorem 4.6 below.

Assumption 4.4. The estimator µ̂ : R×Rn → Rn with tuning parameter t ∈ R can

be written as µ̂(t, y) =
∑N
i=1 1F (t,Ui)(y)µ̂i(t, y) for a collection of open and disjoint

sets {Ui}Ni=1 with
⋃N
i=1 U i = Rn and a C2 flow F : R× Rn → Rn. Furthermore,

(a) For each t ∈ R the estimator µ̂(t, ·) satisfies Assumption 4.1.
(b) For each t ∈ R the mapping Gt : y 7→ H(t, y)f(y) satisfies Assumption 4.1.
(c) Almost surely the number of jump points, (tk)k, is finite.
(d) The surface ∂Ui is Hn−1-almost-everywhere C2 for all i = 1, ..., N .
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(e) For each t0 ∈ R there exists δ > 0 and g1, g2 : Rn → R such that g1(Y ), g2(Y )
both have finite first moment and

|〈Gt(y); y〉| ≤ g1(y), |div(Gt)(y)| ≤ g2(y)

for all (t, y) with t ∈ [t0 − δ; t0 + δ] and y ∈ F (t,Φ).

Remark 4.5. Condition (d) is an extremely weak condition and almost follows
from (a). More precisely, Theorem 5.7.2 in Evans & Gariepy (1992) gives that ∂Ui is
Hn−1-almost-everywhere C1, whenever Ui has locally finite perimeter. Assumption
4.4 is most easily verified via Lemma 4.8 given below.

Theorem 4.6. If µ̂ satisfies Assumption 4.4 then

(16) ∂tE(H(t, Y )) =
1

2

∑

i 6=j

∫

F (t,Ui)∩F (t,Uj)∩F (t,Φ)

〈µ̂j − µ̂i, ηi〉ψ( · ;µ, σ2) dHn−1,

where ηi denotes the measure theoretic outer unit normal to ∂F (t, Ui).

Once we have established (16) via Theorem 4.6, we see the importance of Φ
— it characterises which parts of the boundary integrals we can recover via H.
Comparing (16) with

df(µ̂t)− dfS(µ̂t) =
1

2

∑

i6=j

∫

F (t,Ui)∩F (t,Uj)

〈µ̂j − µ̂i, ηi〉ψ( · ;µ, σ2) dHn−1

from Theorem 4.3, we immediately see that if the integrand in (16) vanishes outside
of F (t,Φ), then we can conclude (7). We state this as a Corollary:

Corollary 4.7. If µ̂ satisfies Assumption 4.4 and

(17) 〈ηi; µ̂j − µ̂i〉 = 0 Hn−1-a.e. on U i ∩ U j ∩ Φc

for all i 6= j, then

(18) df(µ̂t) = dfS(µ̂t) + ∂tE(H(t, Y )).

Verifying conditions (a) and (c) in Assumption 4.4 is quite easy and often shown
using Lemma A.3, Lemma A.4 and Remark 4.2. However, condition (b) and (e) in
Assumption 4.4 may prove difficult and the following lemma may be consulted:

Lemma 4.8. If the estimator µ̂ : R × Rn → Rn with tuning parameter t ∈ R can

be written as µ̂(t, y) =
∑N
i=1 1F (t,Ui)(y)µ̂i(t, y), where:

(a) The selection events (Ui)i are semi-algebraic and open.
(b) The function F is a C2-flow and for each t ∈ R both y 7→ ‖F (t, y)‖ and

y 7→ ‖∂yF (t, y)‖ are polynomially bounded. Moreover, almost surely the number
of jumps (tk)k is bounded.

(c) For each t ∈ R and i = 1, ..., N the post-selection estimator µ̂i(t, ·) : F (t, U i)→
Rn is locally Lipschitz and ‖µ̂i‖ is polynomially bounded. Moreover, either the
random variables (1F (t,Ui)div(µ̂i(t, Y )))i are all almost surely non-negative or
they all have finite first moment.

(d) For each i, j = 1, ..., N with j 6= i the function

(19) hij(t, y) =
〈ηi(y); µ̂i(t, y)− µ̂j(t, y)〉

〈ηi(y); f(y)〉
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defined on the manifold (t, y) ∈ {(t, y) | y ∈ F (t, Ui) ∩ F (t, Uj) ∩ F (t,Φ)}
is locally Lipschitz and for each t0 ∈ R there exist δ > 0, such that both
supt∈[t0−δ;t0+δ] |hij | and supt∈[t0−δ;t0+δ] ‖∂yhij‖ are polynomially bounded.

Then µ̂ satisfies Assumption 4.4.

The above lemma is applied throughout the paper and it is the main method
for applying Theorem 4.6 and Corollary 4.7. The proof of the lemma is postponed
to the appendix. Note that the assumptions in Lemma 4.8 are quite transparent
in terms of which conditions depend on the selection events and which depend on
the post-selection estimators. If a given estimator µ̂ satisfies the assumptions of
Lemma 4.8, then one would only need to verify (c) and (d) if the post-selection
estimators are replaced.

5. Applications in selection procedures with tuning parameters

In this section we consider estimators µ̂t with data adaptive selection procedures
and a tuning parameter t ∈ R, such that

(20) df(µ̂t) = dfS(µ̂t) + ∂tE(H(t, Y ))

can be proven via Corollary 4.7. There are plenty of other estimators for which
Theorem 4.6 applies. Assumption 4.4 is generally quite weak, thus the main re-
quirement of the estimator is that the selection procedure and the tuning parameter
interplays through a flow, i.e., model i is selected if and only if Y ∈ F (t, Ui) for
some smooth flow F . If such a flow exists and Assumption 4.4 holds, then Corollary
4.7 only amounts to checking (17). Even if (17) is not true we can still conclude
that

df(µ̂t) =dfS(µ̂t) + ∂tE(H(t, Y ))

+
1

2

∑

i 6=j

∫

F (t,Ui)∩F (t,Uj)\F (t,Φ)

〈µ̂j − µ̂i, ηi〉ψ( · ;µ, σ2) dHn−1

and thus think of dfS(µ̂t)+∂tE(H(t, Y )) as a higher order approximation of df(µ̂t).
In the following we consider four examples: marginal screening, relaxed lasso,

best subset selection and singular value decompositions with a hard threshold on
the singular values. Three first are all examples from linear regression, in which we
consider a fixed n× p-dimensional design matrix X and an estimatable coefficient
vector β ∈ Rp. The columns of X are refered to as predictors. In regression, model
selection comes down to selecting the predictors. Hence the models are indexed by
subsets A ⊆ {1, ..., p} of the predictor indeces. For every such subset A ⊆ {1, ..., p},
with size |A|, let XA denote the design matrix restricted to the columns listed in A
and let βA ∈ R|A| denote the coefficients restricted to the coordinates listed in A.
Similarly, X−A denotes X{1,...,p}\A and β−A denotes β{1,...,p}\A. Finally, let ΠXA

denote the orthogonal projection onto XA.
Additionally, we introduce the following linear algebra notation: for n × m-

matrices B let B+ denote the Moore-Penrose inverse of B and let span(B) denote
the span, i.e., the image of linear function x 7→ Bx defined on Rm. Similarly,
let span>(B) and span≥(B) denote the image of Rn>0 := {x ∈ Rm | x > 0} and
Rn≥0 := {x ∈ Rm | x ≥ 0}, respectively.

In the examples we will also provide explicit formulas for H. Changing (12) by
an additive constants does not change properties of ∂tE(H(t, Y )). We therefore
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specify H on the form

H(t, y) =
∑

k:tk<t

〈ηk; µ̂tk−0(y)− µ̂tk+0(y)〉
〈ηk; f(y)〉 , t ∈ R

instead.

Example 5.1 (Marginal screening). We make the assumption on X that no pair
of the columns (xi)

p
i=1 are identical up to a change of sign. Marginal screening is a

two-step estimator with tuning parameter t ∈ R. At first the inner products 〈y;xi〉
between the observation y and the columns of X are evaluated. The inner products
can be viewed as measures of marginal association between the observations and
the predictors. The first step of the marginal screening estimator identifies the
predictors whose inner product exceeds et in magnitude. This is called the active
set :

(21) At :=
{

1 ≤ i ≤ p
∣∣ |〈y;xi〉| > et

}
.

In the second step, a linear model is fitted to the active set only, i.e., µ̂tms := ΠXAt .
Firstly, we identity the flow. For each A ⊆ {1, ..., p} let UA denote the affine sets

(22) UA :=

{
y ∈ Rn

∣∣∣∣∣
|〈y;xi〉| > 1 if i ∈ A
|〈y;xi〉| < 1 if i /∈ A

}
.

Clearly, UA is open and
⋃
A⊆{1,...,p} UA = Rn. Moreover, y ∈ etUA implies At = A

and we see that

µ̂tms =
∑

A⊆{1,...,p}
1F (t,UA)ΠXA

holds Lebesgue almost everywhere, where F (t, y) = ety is the flow. For y ∈ Rn the
number of crossings between regions of t 7→ F (−t, y) is at most p.

For the outer normal vectors, note that

∂F (t0, UA) ⊆ {y | |〈y;xi〉| = et0 for some 1 ≤ i ≤ p}.
Clearly the outer normal at y, η(y), is proportional to xi for an xi with |〈y;xi〉| =
et0 . The set of y for which multiple xi satisfy the equality is an affine set of
dimension n − 2, thus η is well defined Hn−1 almost everywhere on ∂F (t0, UA).
The field is simply f(y) = ∂tF (0, y) = y. These two observations together show
that for y ∈ ∂F (t, UA) we have 〈η(y); f(y)〉 ∝ et and we conclude that Φ \⋃A ∂UA
is Hn−1-null.

From the above we conclude (a)-(c) in Lemma 4.8. To verify condition (d)
observe that if y ∈ ∂F (t0, UA1) ∩ ∂F (t0, UA2) for some t0 ∈ R and A1, A2 ⊆
{1, ..., p}, then we must have |〈y;xj〉| = et0 for all j ∈ A14A2. By a dimensionality
argument we conclude that A14A2 is a singleton and we assume without loss of
generality that A2 = A1 ∪ {j} for some j /∈ A1. Therefore,

(23) hA1,A2(t0, y) =
〈xj ; (ΠA1

−ΠA2
)y〉

〈xj ; y〉
=
〈ΠA1

xj ; y〉
〈xj ; y〉

− 1,

which is always between −1 and 0, so it is polynomially bounded. Moreover, its
derivative with respect to y is

(24) ∂yhA1,A2(t, y) =
ΠA1

xj − xjhA1,A2
(t, y)

〈xj ; y〉
.
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So supt∈[t0−δ;t0+δ] ‖∂yhA1,A2
(t, y)‖ ≤ 2‖xj‖2e−t0+δ and the right hand side is con-

stant in y and especially polynomially bounded. Lemma 4.8 holds and we conclude
that

(25) df(µ̂tms) = dfS(µ̂tms) + ∂tE(H(t, Y )),

where

(26) H(t, y) =
∑

i:|〈y;xi〉|<et
1−
〈y; ΠA|〈y;xi〉|xi〉
〈y;xi〉

.

Example 5.2 (Relaxed lasso). This example is an extension of Example 2.5 by
Mikkelsen & Hansen (2017), in which the lasso-OLS estimator is considered. This
estimator performs the OLS estimator on the model selected by the lasso estimator
(by Tibshirani (1994)). An extension of this estimator is the relaxed lasso estimator
proposed by Meinshausen (2007). This example showcases how changing the post-
selection estimators will change H, but not the validity of (20).

The lasso estimator µ̂tlasso(y) with tuning parameter t ∈ R is defined as µ̂tlasso(y) =

Xβ̂t where

β̂t ∈ arg min
β

1

2
‖y −Xβ‖22 + et‖β‖1.

Likewise, µ̂tlasso,A(y) denotes the lasso estimator with support restricted to A ⊆
{1, ..., p}, i.e., µ̂tlasso,A(y) = XAβ̂

t
A where

β̂tA ∈ arg min
βA

1

2
‖y −XAβA‖22 + et‖βA‖1.

We make the assumption that the columns of X are in general position, thus making

β̂t unique for all y and all t ∈ R (see, e.g., Lemma 3 by Tibshirani (2013)). With

this assumption we can define the active set At := supp(β̂t) for all y and t ∈ R.

The relaxed lasso estimator is given by µ̂t,φrl := Xβ̂
t+log(φ)
At , where φ ∈ [0, 1) is a

second tuning parameter. In other words, the relaxed lasso estimator first applies
the lasso estimator and then refits data using another lasso estimator with the
smaller tuning parameter t+ log(φ) and the support determined by the first lasso
step. Having φ = 0 corresponds to the lasso-OLS estimator. It was shown by
Meinshausen (2007) that the relaxed lasso has attractive statistical properties and
that it is computationally lighter than bridge estimators, which minimises the loss
given in Example 3.1 with the concave penalty Pen(β) = ‖β‖γγ , 0 < γ < 1.

Fix φ ∈ [0, 1) and consider the selection events for µ̂t,φrl . For A ⊆ {1, ..., p} let

(27)

UA :=int(At = A)

=int

{
y ∈ Rn

∣∣∣ inf
βA

1

2
‖y −XAβA‖22 + ‖βA‖1 = inf

β

1

2
‖y −Xβ‖22 + ‖β‖1

}

denote the interior of the selection event (At = A) for the first lasso step. We refer
to Example 2.5 in Mikkelsen & Hansen (2017) for a proof that UA is an affine set
and thus semi-algebraic. Since ‖ · ‖1 is a positive homogeneous penalty we see from
Example 3.1 that F (t, UA) is the selection event (At = A), where F (t, y) = ety.

Once the first lasso step has been executed, the post-selection estimator is an-
other evaluation of the lasso estimator or, in the case φ = 0, the OLS estimator
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with fixed support. Thus given the selection event (Ât = A), the post-selection
estimator is

µ̂A =

{
µ̂t+log φ

lasso,A if 0 < φ < 1

ΠA if φ = 0

In either case the post-selection estimator is Lipschitz continuous. That µ̂t+log φ
lasso,A is

Lipschitz continuous follows from Lemma 3 in Tibshirani & Taylor (2012), which

states that id−µ̂t+log φ
lasso,A is a projection onto a convex polytope. Lipschitz continuous

functions have bounded derivatives, thus conditions (a)-(c) holds in Lemma 4.8.
Before characterising the normal vectors, note that in light of Sections 2.2 and

2.3 in Tibshirani (2013) we can re-write the selection events as

(28)

UA =
⋃

s∈{−1,1}|A|
UA,s, with

UA,s = span>0(XAdiag(s)) + {w ∈ col(XA)⊥ | ‖XT
−Aw‖∞ < 1}+ (XT

A)+s.

Hence UA can be decomposed into regions representing different signs, s, of the
active parameters. Each of these regions can be decomposed into an element in
the positive span of XAdiag(s), an element w from a polytope embedded in the the
orthogonal complement of the column space of XA and a constant vector depending
on the sign, (XT

A)+s.
For pairs of subsets A1, A2 ⊆ {1, ..., p} with UA1

, UA2
non empty and distinct,

consider UA1
∩ UA2

. If y belongs to this intersection, then it is the limit of two
sequences from each set, i.e.,

(29)
y = lim

n→∞
XA1

diag(sA1
)α1
n + lim

n→∞
w1
n + (XT

A1
)+sA1

y = lim
n→∞

XA2
diag(sA2

)α2
n + lim

n→∞
w2
n + (XT

A2
)+sA2

for some sA1
∈ {−1, 1}|A1|, sA2

∈ {−1, 1}|A2| fixed and sequences (α1
n)n ⊂ R|A1|

>0 ,

(α2
n)n ⊂ R|A2|

>0 , (w1
n)n ⊂ col(XA1

)⊥ and (w2
n)n ⊂ col(XA2

)⊥. By continuity of the
unique lasso solutions the fitted value of y is in the span of XA1∩A2

and consequently
we have
(30)

UA1 ∩ UA2 ⊆
⋃

s∈{−1,1}|A1∪A2|

(
span≥0(XA1∩A2

diag(sA1∩A2
)) + (XT

A1∪A2
)+s

+ {w ∈ col(XA1∪A2)⊥ | ‖XT
−(A1∪A2)w‖∞ ≤ 1}

)

where sA1∩A2
are the signs in s ∈ {−1, 1}|A1∪A2| corresponding to the indeces

A1 ∩ A2. Analogously, any element in the right hand side of (30) also belongs to
UA1

∩UA2
by suitably choosing sequences in (29). In order for UA1

∩UA2
to have

dimension n−1 it must hold that either A1 ⊂ A2 or A2 ⊂ A1 and the ranks of XA1

and XA2 differ by one. In this case, we see from the right hand side of (30) that
the normal vector belongs to col(XA2

) 	 col(XA1
) if A1 ⊂ A2. Provided that it is

non-zero η = (ΠA2
−ΠA1

)y is a candidate normal vector at y ∈ UA1
∩UA2

. To show
that it is non-zero, observe that by (30) there is some sign vector s ∈ {−1, 1}|A2|

such that

(31) (ΠA2 −ΠA1)y = (ΠA2 −ΠA1)(XT
A2

)+s = (ΠA2 −ΠA1)(diag(s)XT
A2

)+1.

If the right hand side is zero, then it means that (diag(s)XT
A2

)+1 belongs to
col(XA1

), which contradicts the general position assumption. Hence η = (ΠA2
−
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ΠA1
)y is non-zero and only depends on y through the active set and sign vector

and

(32) 〈η; y〉 = et‖(ΠA2
−ΠA1

)(diag(s)XT
A2

)+1‖22, for all y ∈ F (t, UA1
) ∩ F (t, UA2

)

where s is the sign vector sign(XT
A(y − µ̂etlasso(y))). This in particular shows that

Φ \⋃A ∂UA is Hn−1-null.

If y ∈ F (t, UA1
) ∩ F (t, UA2

) the jump quantity (19) reads

(33)

hA1,A2
(t, y) =

〈η; µ̂A1(y)− µ̂A2(y)〉
〈η; y〉 =

〈(ΠA2 −ΠA1)y; µ̂A1(y)− µ̂A2(y)〉
〈(ΠA2

−ΠA1
)y; y〉

=

{ 〈(ΠA2
−ΠA1

)y;µ̂A1
(y)−µ̂A2

(y)〉
〈(ΠA2

−ΠA1
)y;y〉 if 0 < φ < 1

−1 if φ = 0

or, equivalently:

(34) hA1,A2(t, y) = −
〈µ̂−∞lasso,A2

(y)− µ̂−∞lasso,A1
(y); µ̂

t+log(φ)
lasso,A2

(y)− µ̂t+log(φ)
lasso,A1

(y)〉
〈µ̂−∞lasso,A2

(y)− µ̂−∞lasso,A1
(y); µ̂−∞lasso,A2

(y)− µ̂−∞lasso,A1
(y)〉 ,

where µ̂−∞lasso,A = ΠA corresponds to the limit of the relaxed lasso as φ→ 0. We saw

in (32) that the denominator equals etc, where c is one of finitely many positive
constants. In particular, for all T ∈ R the functions

y 7→ sup
t∈[−T ;T ]

|hA1,A2(t, y)|, y 7→ sup
t∈[−T ;T ]

‖∂yhA1,A2(t, y)‖

are polynomially bounded by the Lipschitz continuity of the lasso estimator. By
Lemma (4.8) and Corollary 4.7 we conclude that (20) holds.

Let A−t and A+
t denote the left and right limit of t 7→ At. For given y with jump

points (tk)k from the first lasso step, the function H reads:
(35)

H(t, y) =
∑

k:tk<t

(1A+
tk
⊂A−tk

− 1A+
tk
⊃A−tk

)
〈(ΠA−tk −ΠA+

tk

)y; µ̂
tk+log(φ)

lasso,A−tk
(y)− µ̂tk+log(φ)

lasso,A+
tk

(y)
〉

‖ΠA−tk y −ΠA+
tk

y‖22
.

Example 5.3 (Best subset selection). The Lagrange formulation of the best subset
selection estimator of µ with tuning parameter t ∈ R, µ̂tbs, is given by

(36) µ̂tbs = Xβ̂t where β̂t = arg min
β

1

2
‖Y −Xβ‖22 + et|supp(β)|.

This estimator also fits the framework of Theorem 4.6. However, we will soon
realise that (18) does not hold.

By Example 3.1 we have that µ̂tbs =
∑
A⊆{1,...,p} 1F (t,UA)ΠA (Lebesgue a.e.),

where F (t, y) = et/2y and

(37)
UA :=

{
y ∈ Rn

∣∣∣∣ |A| −
1

2
‖ΠAy‖22 < min

B∈PA
|B| − 1

2
‖ΠBy‖22

}
,

where PA := {B ⊆ {1, ..., p} | col(XB) 6= col(XA)},
for all A ⊆ {1, ..., p}. The sets (UA)A are directly determined by quadratic equations
and are thus semi-algebraic. The post-selection estimators are linear, so we have
already verified condition (a)-(c) in Lemma 4.8.
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To verify the last condition of Lemma 4.8, we identify the normal vectors. As-
sume y ∈ F (t, UA1

)∩F (t, UA2
) for some A1, A2 ⊆ {1, ..., p}. If the column space of

XA1
and XA2

are equal, col(XA1
) = col(XA2

), then
∫

F (t,UA1
)∩F (t,UA2

)

〈µ̂A2 − µ̂A1 ; ηA1〉 dHn−1 = 0,

and we can safely ignore that case. By construction we have

(38) − 1

2
‖ΠA1

y‖22 + et|A1| = −
1

2
‖ΠA2

y‖22 + et|A2|,

or equivalently, ‖ΠA2
y‖22 − ‖ΠA1

y‖22 = 2et(|A2| − |A1|). Thus η = ΠA2
y − ΠA1

y
qualifies as a normal vector and

〈η; f(y)〉 =
1

2
〈ΠA2

y −ΠA1
y; y〉 =

1

2
(‖ΠA2

y‖22 − ‖ΠA1
y‖22) = et(|A2| − |A1|)

which is 0 if and only if |A1| = |A2|. Hence
⋃

i

∂Ui \ Φ =
⋃

(A1, A2) ∈ P
UA1

∩ UA2
,

where

P :=

{
A1, A2 ⊆ {1, ..., p}

∣∣∣∣∣ |A1| = |A2|, col(XA1) 6= col(XA2)

}

denotes all pairs of subsets of {1, ..., p} having same size and but indexing differ-
ent column spaces. Let (A1, A2) /∈ P. The jump term hA1,A2

from (19) defined

whenever y ∈ F (t, UA1
) ∩ F (t, UA2

) simplifies to

hA1,A2(t, y) = −‖ΠA2y −ΠA1y‖22
et(|A2| − |A1|)

.

Differentiating hA1,A2 with respect to y gives

∂yhA1,A2(t, y) = −2(ΠA2
−ΠA1

)y

et(|A2| − |A1|)
.

For any compact subset of the tuning parameter space, K ⊆ R, there exists a
polynomial p bounding both supt∈K ‖hA1,A2

‖ and supt∈K ‖∂yhA1,A2
‖. Assumption

4.4 holds by Lemma 4.8.

For given y we derive the value of H(t, y). For k = 0, ...,min(n, p) let Âk denote

the best subset of size k, i.e., |Âk| = k and

‖ΠÂk
y‖22 ≥ ‖ΠAy‖22, for all A ⊆ {1, ..., p} with |A| = k.

Then in the Lagrange formulation of the best subset selection problem, (36), the

jump times (tk)
min(n,p)−1
k=0 used in H are given by

(39) 2etk = ‖ΠÂk+1
y‖22 − ‖ΠÂk

y‖22,
using (38). Hence H reads:

(40) H(t, y) = 2
∑

k:tk<t

‖ΠÂk+1
y −ΠÂk

y‖22
‖ΠÂk+1

y‖22 − ‖ΠÂk
y‖22

,

up to an additive constant.
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From Theorem 4.6 and the above we conclude that

df(µ̂tbs) =dfS(µ̂tbs) + ∂tE(H(t, Y ))

+
1

2

∑

(A1,A2)∈P

∫

F (t,UA1
)∩F (t,UA2

)

‖ΠA2y −ΠA1y‖2 dHn−1(y).

Here H is given in (40) and dfS(µ̂tbs) = E(div(µ̂tbs)(Y )) = E(rank(Xsupp(β̂t))), i.e.,

the expected size of the selected model.

Example 5.4 (Singular value decomposition with hard threshold on the singular
values). Let Y be a p × q-dimensional matrix with p ≥ q and n := pq. Assuming
that

vec(Y) ∼ N (vec(µ), σ2In),

for some p × q matrix µ, this framework still fits in the above setting by the
vectorisation-operator, vec. The singular value decomposition (SVD) of Y is given
by

Y =

q∑

k=1

dkukv
T
k

with ordered singular values d1 ≥ d2 ≥ ... ≥ dq ≥ 0. With probability one the
singular values are distinct. The hard threshold SVD estimator of µ with tuning
parameter t ∈ R is given by

µ̂th.svd :=

q∑

k=1

1dk≥etdkukv
T
k ,

which only selects components whose singular value exceeds the threshold et. We
will argue that the hard threshold SVD estimator satisfy (20) through Lemma 4.8
and Corollary 4.7.

Firstly, we realise that the selection events are:

(41)
U t0 := {Y ∈ Rn | d1 < et}
U tr := {Y ∈ Rn | dr+1 < et < dr}, r = 1, ..., q − 1,

and the post-selection estimators are the reduced rank estimators:

µ̂r =
r∑

k=1

dkukv
T
k , r = 0, ..., q − 1.

The divergence of the reduced rank estimator is:

div(µ̂r) = pr +
r∑

i=1

q∑

j=r+1

d2
i + d2

j

d2
i − d2

j

,

which is easily derived from e.g. formula (9) in Candès et al. (2013). We see that
the divergence of µ̂r is almost surely non-negative.

Let p(Y, λ) = det(YTY− λI) denote the characteristic polynomial of YTY, as

a function of both the matrix Y and λ ∈ R. Then λ is an eigenvalue of YTY if and
only if p(Y, λ) = 0. Since the squared singular values are the eigenvalues of YTY
we can conclude two things: 1) U ti = etU0

i for i = 0, ..., q − 1 and t ∈ R. 2)

Ui := U0
i = {Y ∈ Rn | p(Y, d2

i+1) = 0 = p(Y, d2
i ), d

2
i+1 < 1 < d2

i }
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is semi-algebraic for each i = 1, ..., q−1 and a similar argument applies to U0 := U0
0 .

Hence µ̂th.svd =
∑q−1
i=0 1F (t,Ui)µ̂i, where F (t, y) = y.

We have therefore verified all conditions in Lemma 4.8, except for (d). For that
we first derive the normal vectors. Let Y ∈ F (t, U i)∩F (t, U j) with i < j and t ∈ R
fixed. Then

dj+1 ≤ et ≤ dj ≤ di+1 ≤ et ≤ di,
thus dk = et for all k with j − 1 ≤ k ≤ j. Hence F (t, U i) ∩ F (t, U j) is at most

n− (j− i)-dimensional. We are therefore only concerned with F (t, U j−1)∩F (t, U j)
for j = 1, ..., q − 1. Moreover, by the same dimensionality argument we can assure
that for Hn−1-almost all Y in F (t, U j−1) ∩ F (t, U j)





d2 < d1 = et if j = 1

dj+1 < dj = et < dj−1 if j = 2, ..., q − 2

dq−1 = et < dq−2 if j = q − 1

Let Y be such a point and let ujv
T
j be the jth component of Y. By continuity of

the components, we can find an ε > 0 such that Y + εZ ∈ F (t, U j−1) ∩ F (t, U j)
for all vec(Z) ⊥ vec(ujv

T
j ). This implies that ηj = vec(ujv

T
j ) serves as a normal

vector of F (t, U j−1) ∩ F (t, U j) at Y. In particular, the inner product 〈ηj ; f(y)〉 =
〈ηj ; Y〉 = dj = et is positive. We therefore have Φ \ ⋃i ∂Ui is Hn−1-null and the
jump sizes are:

(42) hj,j−1(Y) =
〈ujvTj ; µ̂j(Y)− µ̂j−1(Y)〉

〈ujvTj ; Y〉 =
〈ujvTj ; djujv

T
j 〉

〈ujvTj ; Y〉 = 1

which trivially satisfy (d). We conclude that (20) holds by Lemma 4.8 and Corollary
4.7. From (42) we see that H simply equals (up to an additive constant) the number
of singular values smaller than et.

6. Discussion

We have provided a method for estimating df − dfS for a class of estimators
involving data adaptive model selection. For these estimators we have extended
the classic divergence operator approach for estimating the degrees of freedom and
thereby obtained the adjustments needed for applying SURE to certain estimators
with model selection. The method relies on the function H with the property
that, under certain regularity conditions, ∂tE(H(t, Y )) equals some or all of the
boundary integrals representing df − dfS in Theorem 4.3. This formulation of
df − dfS through ∂tE(H(t, Y )) expresses the duality between changing the tuning
parameter t for fixed observation y and changing y for fixed t.

Four examples of estimators with data adaptive model selection were considered.
Three of which had the identity df − dfS = ∂tE(H(t, Y )). For the remaining
example, best subset selection, it was still possible to derive an approximation
which is of higher order than that in Section 5 of Mikkelsen & Hansen (2017),
which only covers nested model. The new approximation also covers non-nested
models with different dimensions.

For all of the examples considered in Section 5 the tuning parameter t in H
coincides with the tuning parameter already present in the selection procedure
(through the reparametrisation t = log λ). This is not a requirement for applying
Theorem 4.6 and Corollary 4.7; one can always fix the originial tuning parameter
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of the estimator (if any) and perturb the estimator by some flow. As long as the
conditions of Theorem 4.6 and Corollary 4.7 apply, this approach is valid. However,
if the tuning parameter of the estimator coincides with the time parameter for some
flow, then one can apply the results for all tuning parameter values collectively.

The degrees of freedom estimator, and associated risk estimator, derived in
Mikkelsen & Hansen (2017) for the lasso-OLS estimator was proven quite fruit-
ful in practice. It is still ongoing research to investigate if the extended degrees
of freedom and associated risk estimator presented in this paper perform just as
well. Simulation studies similar to those by Mikkelsen & Hansen (2017) need to
be employed to compare the risk estimator to other risk estimators, such as those
deriving from cross validation or bootstrap based methods.
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Appendix A. Proofs and Additional Results

A.1. Proof of Theorem 4.3. The following lemma characterises the outer unit
normal vectors ηi for i = 1, 2, . . . and the proof is almost identical to its finite
equivalent (Lemma A.2 by Mikkelsen & Hansen (2017)):

Lemma A.1. Under Assumption 4.1 the following holds:

(a) ηi = 0 Hn−1 a.e. on ∂Ui \
⋃
j 6=i U j for each i = 1, 2, ....

(b) ηi = −ηj Hn−1 a.e. on ∂Ui ∩ ∂Uj with i 6= j.
(c) ηi = 0 Hn−1 a.e. on ∂Ui ∩ ∂Uj ∩ ∂Uk with i, j, k distinct.

Proof. Firstly, note that the unit outer normal ηi on ∂Ui vanishes outside the
measure theoretic boundary ∂∗Ui, see Definition 5.8 in Evans & Gariepy (1992).
Moreover, these two types of boundaries relates to the reduced boundary ∂∗Ui (see
Definition 5.7 in Evans & Gariepy (1992)) by the inclusions:

∂∗Ui ⊆ ∂∗Ui ⊆ ∂Ui.
Furthermore, Hn−1(∂∗Ui\∂∗Ui) = 0 (see Lemma 5.8.1 in Evans & Gariepy (1992)).
All in all, we see that the Lemma holds if we can show the following claims:

(43)

∂∗Ui ⊆
⋃

l 6=i
U l

ηi = −ηj on ∂∗Ui ∩ ∂∗Uj
∂∗Ui ∩ ∂∗Uj ∩ ∂∗Uk = ∅

holds for all i, j, k distinct.
To prove the claims, define for each i and r > 0 the sets

Uri (x) = {y | r(y − x) + x ∈ Ui},
Hi(x) = {y | 〈ηi, y − x〉 ≤ 0}.

Note that {Uri (x)}i are still disjoint. By Theorem 5.7.1 in Evans & Gariepy (1992)

1Uri (x)
r→0−−−→ 1Hi(x) in L1

loc(Rn) for all x ∈ ∂∗Ui.
Therefore, if there existed x ∈ ∂∗Ui ∩ ∂∗Uj ∩ ∂∗Uk for i, j, k distinct, then

(44) 1Uri (x)∪Urj (x)∪Urk (x)
r→0−−−→ 1Hi(x) + 1Hj(x) + 1Hk(x) in L1

loc(Rn),

which is impossible as the right hand side is not Lebesgue a.e. an indicator. By the
same argument one can deduce that ηi = −ηj must hold for x ∈ ∂∗Ui ∩ ∂∗Uj and

that ηi = 0 on ∂Ui ∪ int(U i). The first claim thus follows directly from the relative
boundary assumption. �

We now present the proof of Theorem 4.3 in the extended framework of a count-
able set of selection events:

Proof of Theorem 4.3. For i = 1, 2, ... Gauss-Green’s formula (see Theorem 5.8.1 in
Evans & Gariepy (1992) and Theorem 4.5.6 in Federer (1969)) gives that

(45)

∫

Ui

div(f) dLn =

∫

∂Ui

〈f, ηi〉 dHn−1

for all Lipschitz continuous vector fields f with compact support. Here ηi denotes
the outer unit normal of ∂Ui, which is well defined and nonzero on a subset of ∂Ui
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and zero everywhere else by definition. Let (gr)r be a sequence of smooth functions
with

gr(x) =

{
1 if x ∈ B(0, r)

0 if x /∈ B(0, r + 1)

and (gr)r and (Dgr)r uniformly bounded. Since µ̂i is Lipschitz continuous on
U i ∩ B(0, r + 1) Kirzbraun’s theorem ensures that µ̂i has a Lipschitz extension,
µ̂ri : Rn → Rn. Then fr = grψµ̂

r
i is Lipschitz continuous with compact support

and grµ̂
r
i = grµ̂ on Ui. Then (45) applied to fr yields

(46)

∫

∂Ui

grψ〈µ̂i, ηi〉 dHn−1 =

∫

Ui

grψdiv(µ̂i) dLn +

∫

Ui

〈grDψ + ψDgr, µ̂i〉 dLn.

Due to Assumption 4.1 all integrands above are either dominated by integrable
functions or monotonely increasing in r. By letting r →∞ Lebesgue’s Dominated
Convergence Theorem and the Monotone Convergence Theorem yields

(47)

∫

∂Ui

ψ〈µ̂i, ηi〉 dHn−1 =

∫

Ui

ψdiv(µ̂i) dLn +

∫

Ui

〈Dψ, µ̂i〉 dLn.

When summing over i, both the left-most and right-most sums are absolutely con-
vergent by assumption. The middle term is either absolutely convergent or a sum
of positive terms. Either way, all terms are absolutely convergent. Thus Lebesgues
Dominated Convergence Theorem shows that

(48) df(µ̂) = dfS(µ̂)−
∞∑

i=1

∫

∂Ui

ψ〈µ̂i, ηi〉dHn−1,

with all terms finite. Using the absolute convergence we see from Lemma A.1 that

(49)

df(µ̂) = dfS(µ̂)−
∞∑

i=1

∑

j:j 6=i

∫

∂Ui∩∂Uj
ψ〈µ̂i, ηi〉dHn−1

= dfS(µ̂) +
1

2

∑

j 6=i

∫

∂Ui∩∂Uj
〈µ̂j − µ̂i, ηi〉ψdHn−1.

Since ηi vanishes on ∂Ui ∩ ∂Uj \ (U i ∩ U j) for i 6= j we have proven (14). �

A.2. Proof of Theorem 4.6 and Lemma 4.8. Before proving Theorem 4.6 we
first present and prove the following result regarding derivatives of integrals of
functions over parametrised integration domains:

Theorem A.2. Let h : Rn → R be locally Lipschitz and F : I × Rn → Rn be
C2, where I ⊆ R open and Fλ := F (λ; ·) is a diffeomorphism for each λ ∈ I. Let
U ⊆ Rn be open with locally finite perimeter. For each λ ∈ I define the function
fλ : Rn → Rn by

(50) fλ(y) = ∂λF |(λ,F−1
λ (y)), y ∈ Rn.

If for each λ0 ∈ I
(1) hfλ0 is Lebesgue integrable on Fλ0(U).
(2) h〈fλ0

; η〉 is Hn−1-integrable on ∂Fλ0
(U), where η is the unit outer normal

on ∂Fλ0
(U).
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(3) There exists a neighbourhood N ⊆ I of λ0 and g : Rn → R Lebesgue
integrable such that

1Fλ(U)|div(hfλ)| ≤ g, for all λ ∈ N
then

(51) ∂λ

∫

Fλ(U)

h(y) dy =

∫

∂Fλ(U)

h · 〈η; fλ〉 dHn−1, for each λ ∈ I.

Proof. Fix λ0 ∈ I and let N be the associated neighbourhood. By the change of
variable formula we have

(52)

∫

Fλ0 (U)

h(y) dy =

∫

U

h(Fλ0
(z)) · JFλ0

(z) dz

where JFλ = |det(DFλ)| denotes the Jacobian of the change-of-variable mapping.
We now study the derivative of the integrand with respect to λ in the right hand
side of (52):
(53)
∂λ ((h ◦ Fλ) · JFλ) = (h ◦ Fλ) · ∂λJFλ + 〈Dh ◦ Fλ; ∂λFλ〉 · JFλ

= (h ◦ Fλ) · JFλ · tr
(
(DFλ)−1∂λDFλ

)
+ 〈Dh ◦ Fλ; ∂λFλ〉 · JFλ

= [(h · div(fλ) + 〈Dh; fλ〉) ◦ Fλ] · JFλ
= [div(hfλ) ◦ Fλ] · JFλ

Hence ∫

U

|∂λ ((h ◦ Fλ) · JFλ)| (z) dz
∣∣∣
λ=λ0

=

∫

Fλ0 (U)

|div(hfλ0)(y)| dy.

By assumption the integrand of the right hand side is bounded over N by an
integrable function and we can interchange differentiation and integration of the
right hand side in (52):

(54) ∂λ

∫

Fλ(U)

h(y) dy
∣∣∣
λ=λ0

=

∫

Fλ0 (U)

div(hfλ0
)(y) dy.

Carrying out the above argument for all λ ∈ I we get

(55) ∂λ

∫

Fλ(U)

h(y) dy =

∫

Fλ(U)

div(hfλ)(y) dy.

For the final step, we fix λ ∈ I and use Gauss-Green’s formula (see Theorem
5.8.1 in Evans & Gariepy (1992) and Theorem 4.5.6 in Federer (1969)), which states

(56)

∫

U

div(ϕ) dLn =

∫

∂U

〈ϕ; η〉 dHn−1

for all Lipschitz continuous vector fields ϕ with compact support and η denote the
unit outer normal on ∂U and m the Lebesgue measure. Let (er)r be a sequence of
smooth functions with

er(x) =

{
1 if x ∈ B(0, r)

0 if x /∈ B(0, r + 1)

and (er)r and (Der)r uniformly bounded. Then ϕr = erhfλ is Lipschitz continuous
with compact support. Then (56) applied to ϕr and Fλ(U) (which also has locally
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finite perimeter) yields
∫

Fλ(U)

erdiv(hfλ) + 〈Der;hfλ〉 dLn =

∫

∂Fλ(U)

erh〈fλ, η〉 dHn−1.

By assumption all integrands above are dominated by integrable functions, and by
letting r →∞ Lebesgue’s Dominated Convergence Theorem yields

∫

Fλ(U)

div(hfλ) dLn =

∫

∂Fλ(U)

h〈fλ, η〉 dHn−1

which combined with (55) ends the proof. �

Using this intermediate result we prove Theorem 4.6:

Proof of Theorem 4.6. Firstly, we consider the field y 7→ ∂tF (0, y), the normal
vectors and the set Φ. If y ∈ ∂F (t, Ui) for some i = 1, ..., N and t ∈ R, then
y = F (t, z) for some unique z ∈ ∂Ui, (z = F (−t, y)). Let ηi(y) denote a normal
vector of ∂F (t, Ui) in y and let ηi(z) denote a normal vector of ∂Ui in z. An
application of the chain rule shows that ηi(y) equals ∂yF (−t, y)T ηi(z) (up to a
scalar). Additionally, by differentiating the identity F (−t, F (t, y)) = y with respect
to t we obtain ∂yF (−t, y)∂tF (t, F (−t, y)) = ∂tF (−t, y) for all (t, y) ∈ R × Rn.
Hence,
(57)
〈ηi(y); f(y)〉 = 〈ηi(y); ∂tF (t, F (−t, y))〉 ∝ 〈ηi(z); ∂tF (−t, y)〉 = 〈ηi(z); f(z)〉.

For the two equalities we used the fundamental property of smooth flows that the
trajectories, t 7→ F (t, y), are integral curves of the field, y 7→ ∂tF (0, y), see e.g.,
Proposition 9.7 by Lee (2012), which means ∂tF (t, y) = ∂tF (0, F (t, y)) holds for all
(t, y) ∈ R× Rn.

Besides being important for interpreting (50) when F is a flow, (57) also shows
that

(58) F (t,Φ) =

{
y ∈

⋃

i

F (t, ∂Ui)

∣∣∣∣∣ 〈η(y); f(y)〉 6= 0

}
,

which illustrates the purpose of Φ: for a given t ∈ R the set F (t,Φ) consists exactly
of all points y for which the jump terms of H equal

(59) H(t+ 0, y)−H(t− 0, y) =
〈η(y); µ̂t+0(y)− µ̂t−0(y)〉

〈η(y); f(y)〉 .

Outside of F (t,Φ) the difference in H is zero by convention. Let

Ψ :=

{
y ∈ Rn

∣∣∣∣∣ F (t, y) ∈ Φ, whenever F (t, y) ∈
⋃

i

∂Ui

}
,

i.e., points y for which no jump term in H have zero denominator.
For z ∈ Rn define the function

(60) ι(z) :=
N∑

i=1

i1Ui(z),

which indicates the selection event, i.e., y ∈ F (t, Ui) if and only if ι(F (−t, y)) = i.
None of i = 1, ..., N are selected if y ∈ ⋃i ∂F (t, Ui), which holds if and only if
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ι(F (−t, y)) = 0. For y ∈ Ψ set τ0(y) := 0 and a+
0 (y) = ι(y) and define recursively:

(61)

τ+
k (y) := inf{t > τ+

k−1(y) | ι(F (−t, y)) 6= a+
k−1(y)}

a+
k (y) :=

{
lims↘τ+

k (y) ι(F (−s, y)) if τ+
k (y) < +∞

a+
k−1(y) else

τ−k (y) := sup{t < τ−k−1(y) | ι(F (−t, y)) 6= a−k−1(y)}

a−k (y) :=

{
lims↗τ−k (y) ι(F (−s, y)) if τ−k (y) > −∞
a−k−1(y) else

, k = 1, 2, ...

The above limits are well defined since the field of the flow is not tangent with the
boundaries. Starting at t = 0 the sequences (τ±k (y))k=∞

k=1 denotes the jump times of
t 7→ ι(F (−t, y)), which can also be interpreted as the time of crossing of y across
the boundaries {∂F (t, Ui)}i. The two neighbouring regions that y cross at τ+

k (y),

are the left and right limits, limt→τ+
k (y) ι(F (−t, y)), or a+

k−1(y) and a+
k (y) (reverse

order for τ−k ).

Consider the set of double-ended sequences in {1, ..., N}, {1, ..., N}Z\{0} and
let α : Ψ → {1, ..., N}Z\{0} denote the function y 7→ ((a−k )k=1

∞ , (a+
k )∞k=1). On

{1, ..., N}Z\{0} define the equivalence relation given by: a ∼ b if and only if sl(a) = b
for some l ∈ Z, where sl is the shift operator. Let ∆ denote the set of equivalence
classes. For each a ∈ ∆ define the sets

(62) Va := {y ∈ Ψ | ∃t ∈ R : α(F (t, y)) ∼ a} .

These are again equivalence classes on Ψ given by the relation: x ∼ y if and only
if the trajectories of x and y traverse the same sequence of selection events up to
a time shift. To see this, notice that α(y) ∼ α(F (t, y)) for all t ∈ R and y ∈ Ψ.
Consequently, (Va)a∈∆ are invariant with respect to the flow:

(63) F (t, Va) = Va, for all t ∈ R,

for each a ∈ ∆. By Assumption 4.4(c) there is a countable collection of equivalence
classes, (Va)a∈A, covering almost all of Ψ, i.e., Ln(Ψ \⋃a∈A Va) = 0 where A ⊆ ∆
countable.

Next, fix a ∈ A. The flow passes through finitely many of the boundaries ∂Uak
indexed by a. By Theorem 5.7.2 in Evans & Gariepy (1992) each boundary can be
decomposed in to

(64) ∂Ui =
∞⋃

j=1

Ki
j ∪Ni

where Ki
j is a compact subset of a C1 hypersurface and a Ni is a Hn−1 null set.

Since the flow only passes through a finite number of boundaries, there are at most
countably many possible sequences of C1 hypersurface to pass through, (Kak

jk
)k.

Hence by further refining the cover (Va)a∈A, with A ⊆ ∆ × N countable, we can
assure that Ln(Ψ \ ⋃a∈A Va) = 0 still holds and for each a ∈ A the trajectories

F (R, x) pass through the same C1 boundary-segments for all x ∈ Va. Since the
refinement of the cover (Va)a∈A did not mix the different trajectories, the invariance
(63) still holds.
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Next, we wish to show that if y ∈ ∂F (t, Ui) for some t ∈ R and y ∈ Ψ, then there
exists a map y 7→ t(y) defined in some neighbourhood in Ψ of y, Ny, such that

(65) w ∈ ∂F (t(w), Ui), for all w ∈ Ny
Firstly, for some j and z ∈ Ki

j we have y = F (t, z) and Ki
j ⊆ (G = 0) for some C2

function G : Rn → R. Hence in some sufficently small neighbourhood of y, (65) is
equivalent to G(F (−t(w), w)) = 0, for all w in that neighbourhood. The Implicit
Function Theorem, (Theorem 9.27 by Rudin (1976)), shows that the map t(·) is C2

if DG|′−t,y∂tF (−t, y) 6= 0. To show this, note that F (−t, F (t, z)) = z for all t ∈ R
and z ∈ Rn, hence

(66) ∂tF (−t, y) = ∂xF (−t, y)∂tF (t, z), for all t ∈ R, y, z ∈ Rn s.t. y = F (t, z).

Since y ∈ Ψ we therefore get

DG|′−t,y∂tF (−t, y) = DG|′−t,y∂xF (−t, y)∂tF (t, z) = 〈η(y); ∂tF (t, F (−t, y))〉 6= 0,

and the Implicit Function Theorem applies. From (65) and Assumption 4.4(d)
we conclude that each term entering H is locally Lipschitz on Va. Moreover, for
i = 1, ..., N and t ∈ R fixed, the terms entering H are fixed on Va ∩ F (t, Ui).
Consequently, on Va ∩ F (t, Ui) the function H is differentiable and only depends
implicitly on t, through the domain Va ∩ F (t, Ui).

Fix a ∈ A and i = 1, ..., N , then Theorem A.2 applied to h = Hψ and F (t, U) =
F (t, Va ∩ Ui) = Va ∩ F (t, Ui) gives

(67) ∂t

∫

Va∩F (t,Ui)

ψ(y)H(y) dy =

∫

∂(Va∩F (t,Ui))

ψH · 〈η; f〉 dHn−1,

since ft(y) = ∂tF |t,F−1(y) = ∂tF |t,F (−t,y) = ∂tF (0, y) = f(y). All the integra-
bility conditions in Theorem A.2 follow directly from Assumption 4.4(b)+(e) and
Theorem 4.3.

Consider the integration domain of the right hand side of (67); ∂(Va∩F (t, Ui)) ⊆
∂Va∪∂F (t, Ui). For a point y ∈ ∂Va \∂F (t, Ui) we have 〈η(y); f(y)〉 = 0, since η(y)
must be orthogonal to the flow (a consequence of the invariance, F (t, ∂Va) = ∂Va,
t ∈ R). Hence (67) becomes

(68) ∂t

∫

Va∩F (t,Ui)

ψ(y)H(y) dy =

∫

Va∩∂F (t,Ui)

ψH · 〈ηi; f〉 dHn−1.

Next, we sum over a ∈ A. For that, fix t0 ∈ R and let δ and g1, g2 be given as in
Assumption 4.4(e). Applying Theorem 4.3 to Gt we have
∫

∂(Va∩F (t,Ui))

ψH · 〈η; f〉 dHn−1 =

∫

Va∩F (t,Ui)

ψ(y)

〈
Gt(y);

y − µ
σ2

〉
dy −

∫

Va∩F (t,Ui)

ψ(y)div(Gt)(y) dy.

Hence∣∣∣∣∣∂t
∫

Va∩F (t,Ui)

ψ(y)H(y) dy

∣∣∣∣∣ ≤
∫

Va∩F (t,Ui)

ψ(y)g1(y) dy +

∫

Va∩F (t,Ui)

ψ(y)g2(y) dy.
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for all t ∈ [t0 − δ; t0 + δ]. By the Weierstrass M-test and Lebesgues Dominated
Convergence Theorem we conclude that

(69) ∂t

∫

F (t,Ui)

ψ(y)H(t, y) dy =

∫

∂F (t,Ui)

ψH · 〈ηi; f〉 dHn−1.

Finally, we sum over i = 1, ..., N and (69) becomes
(70)

∂tE(H(t, Y )) =
∑

i

∫

∂F (t,Ui)

ψ(y)H(t, y)〈ηi; f(y)〉 dHn−1(y)

=
1

2

∑

i 6=j

∫

F (t,Ui)∩F (t,Uj)∩F (t,Φ)

ψ(y)〈ηi(y); µ̂j(y)− µ̂i(y)〉 dHn−1(y).

In the above we used that for Hn−1-almost all y ∈ F (t, Ui) ∩ F (t, Uj), ηi = −ηj
(Lemma A.1) and that the difference in H across the neighbouring regions F (t, Ui)
and F (t, Uj), given in (59) is exactly the term accounting for this crossing, i.e.,
〈ηi(y);µ̂j(y)−µ̂i(y)〉
〈ηi(y);f(y)〉 if y ∈ F (t,Φ), and 0 if y /∈ F (t,Φ). �

Finally, we present the proof of Lemma 4.8:

Proof of Lemma 4.8. Firstly, if the number of crossings is bounded it is also finite
for almost all y. Secondly, the boundaries are Hn−1 almost everywhere C2, since
they are semi-algebraic. This shows Assumption 4.4(c)+(d). Next we show that
µ̂(t, ·) satisfies Assumption 4.1 for all t. Condition 4.1(a) holds by Remark 4.2(a)
since we only consider finitely many selection events. Condition 4.1(b) follows from
the polynomial bound provided by Lemma A.3. Since both µ̂(Y ) and div(µ̂)(Y ) are
finite sums of stochastic variables with finite first moment (or, alternatively, in the
latter case non-negative) Assumption 4.1(c) is clear. Finally, Assumption 4.1(d) is
a direct application of Lemma A.4, which applies because of the polynomial bound
provided by Lemma A.3.

Next, we show Assumption 4.4(e) and that Gt fulfills Assumption 4.1 for all t.
Reconstruct the refined cover of Rn, (Va)a, from the proof of Theorem 4.6. Let
Wa,i = Ui ∩ Va and µ̃a,i(t, y) = H(t, y)f(y), then

Gt =
∑

a,i

1F (t,Wa,i)µ̃a,i.

We will prove that this representation of Gt satisfies Assumption 4.1. On each
F (t,Wa,i) the finite number of terms added in H are fixed and among ((hij)j 6=i)Ni .
Each of which are locally Lipschitz, thus µ̃a,i is also locally Lipschitz. Furthermore,
by assumption both µ̃a,i and div(µ̃a,i) are polynomially bounded.

The selection events (Wa,i)a,i are again disjoint (since (Ui)i are disjoint) and
their closure cover Rn. Each boundary ∂Ui can be divided into a finite number
of smooth manifolds, since Ui is semi-algebraic. That combined with the bounded
number of crossings of (∂Ui)i shows that the cover (Va)a is finite. Thus (Wa,i)a,i
is also finite and both Gt and div(Gt) are polynomially bounded, which imply As-
sumption 4.4(e). Consequently, Assumption 4.1(c) also holds for Gt. Furthermore,
Assumption 4.1(a) also holds for Gt by Remark 4.2(a).

For Assumption 4.1(b), note that ∂F (t,Wa,i) = ∂(Va ∩ F (t, Ui)) ⊆ ∂Va ∩
F (t, Ui) ∪ Va ∩ ∂F (t, Ui). As pointed out in the proof of Theorem 4.6 〈ηi; µ̃a,i〉 =
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H(t, y)〈ηa,i; f(y)〉 = 0 on ∂Va ∩ F (t, Ui). This and Lemma A.3 yields
(71)
Hn−1 (∂F (t,Wa,i) ∩ (〈ηi; µ̃a,i〉 6= 0) ∩B(0, r)) ≤ Hn−1 (∂F (t, Ui) ∩B(0, r)) ≤ p(r)
for some polynomial p. Therefore, in light of Remark 4.2(b), (Wa,i)a,i satisfies
Assumption 4.1(b). Finally, Lemma A.4 applies and yields Assumption 4.1(d) for
Gt. This concludes the proof. �

A.3. Additional Lemmas. Concerning condition (b) in Assumption 4.1 the fol-
lowing observation is useful: for A and B subsets of Rn and F a flow it holds
that

(72)

∂F (t, A) = ∂(F (t, A)c),

∂F (t, A ∪B) ⊆ ∂F (t, A) ∪ ∂F (t, B),

∂F (t, A ∩B) ⊆ ∂F (t, A) ∪ ∂F (t, B).

Especially, the family of sets

(73)

{
E ∈ B(Rn)

∣∣∣∣∣H
n−1 (∂F (t, E) ∩B(0, r)) < +∞, for all r > 0

}

{
E ∈ B(Rn)

∣∣∣∣∣
there exists a polynomial p s.t.

Hn−1 (∂F (t, E) ∩B(0, r)) ≤ p(r), for all r > 0

}

are all stable under complement, finite union and finite intersection. Here B(Rn)
denote the Borel σ-algebra on Rn.

Below we present a lemma for verifying Assumption 4.1(b) for semi-algebraic
selection regions. Recall that a semialgebraic set is a finite union of finite intersec-
tions of sets of the form (P = 0) and (Q > 0), where P and Q are polynomials. A
multivariate polynomial is of the form (using multi-index notation)

P (x) =
∑

α∈A
aαx

α, aα ∈ R for each α ∈ A,

with A ⊆ Nn finite.

Lemma A.3. Let F : Rn → Rn be a C1-diffeomorphism with ‖F−1‖ and ‖DF‖
polynomially bounded. For every semi-algebraic set U ⊆ Rn there exist a polynomial
p : R→ R such that

Hn−1 (∂F (U) ∩B(0, r)) ≤ p(r)
for all r > 0.

Proof. By the stability under finite set operations of the family given by (73) it
suffices to show that r 7→ Hn−1 (F ((P = 0)) ∩B(0, r)) is polynomially bounded for
any nonzero polynomial P . Let πj : Rn → R denote the projection onto the jth

coordinate and let π−j : Rn → Rn−1 denote the projection onto all but the jth

coordinate. Fix a non-zero polynomial P : Rn → R. There exists a finite number
of polynomials (pi)

N
i=1 on Rn−1 and coordinates (ji)

N
i=1 ∈ {1, ..., n}N , such that if

P (x) = 0 then for some i = 1, ..., N we have πji(x) = fi(π−jix). For notational
simplicity we assume ji = 1 for all i. Defining gi : Rn−1 → Rn as gi(z) = (fi(z), z),
then

F ((P = 0)) ⊆
⋃

i

im(F ◦ gi).
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With Ar = π−ji(F
−1(B(0, r))) ⊆ Rn−1 the area formula (Theorem 3.3.1 in Evans

& Gariepy (1992)) now yields

(74)

Hn−1 (F ((P = 0)) ∩B(0, r)) ≤
N∑

i=1

∫
H0
(
Ar ∩ (F ◦ gi)−1({y})

)
dHn−1(y)

=

N∑

i=1

∫

Ar

J(F ◦ gi)(z) dz

=

N∑

i=1

∫

Ar

(JF )(gi(z))
√

1 + ‖Dgi(z)‖2 dz.

Since r 7→ supz∈Ar ‖z‖, ‖gi‖, ‖Dgi‖ and JF are polynomially bounded, we conclude
that the left hand side of (74) is polynomially bounded in r. �

Assumption 4.1(d) is likely the most difficult to verify. The following lemma
provides a short cut:

Lemma A.4. Condition (d) in Assumption 4.1 follows from the remaining condi-
tions in Assumption 4.1 if ‖µ̂i‖ and

r 7→ Hn−1 (∂Ui ∩ (〈ηi; µ̂i〉 6= 0) ∩B(0, r)) , r > 0

are polynomially bounded for each i = 1, 2, ... and either the collection (Ui)i is finite
or
∑
i 1Uidiv(µ̂i)(Y ) has finite first moment.

Proof. For some x ∈ ∂Ui with 〈ηi(x); µ̂i(x)〉 < 0 we can find rx ∈ (0, 1) such that

〈ηi(y); µ̂i(y)〉 < 0 holds for all y ∈ B(x, rx) ∩ ∂Ui. Let A ⊆ ∂Ui ∩ (〈ηi; µ̂i〉 > 0)
denote the set where it is possible. Due to continuity of µ̂i and that ηi is Hn−1-
a.e. continuous (Theorem 5.7.2 in Evans & Gariepy (1992)) we conclude that
Hn−1(∂Ui \A) = 0. Next, construct the set

Ni :=
⋃

x∈A
B(x, rx) ∩ Ui.

Let R > 0 be arbitrary. Using the Vitali covering lemma there exists CR ⊆ A ∩
B(0, R) countable such that Ni ∩ B(0, R) ⊆ ⋃x∈CR B(x, 5rx) and (B(x, rx))x∈CR
disjoint. If Hn−1(∂Ui ∩ (〈ηi; µ̂i〉 < 0) ∩B(0, R)) > 0 then

(75)

Hn−1 (∂Ni ∩B(0, R)) ≤ Hn−1

( ⋃

x∈CR
∂B(x, 5rx) ∩B(0, R)

)

≤
Hn−1

(⋃
x∈CR ∂B(x, 5rx) ∩B(0, R)

)

Hn−1 (∂Ui ∩ (〈ηi; µ̂i〉 < 0) ∩B(0, R))
Hn−1 (∂Ui ∩B(0, R))

≤
Hn−1

(⋃
x∈CR ∂B(x, rx) ∩B(0, R)

)

Hn−1
(⋃

x∈C ∂Ui ∩B(x, rx) ∩B(0, R)
)5n−1Hn−1 (∂Ui ∩B(0, R))

≤ 2πΓ
(n

2

)
5n−1Hn−1 (∂Ui ∩B(0, R)) .

In the second last step we used the following two observations: for x ∈ B(0, R) the
fraction of the sphere ∂B(x, crx) which is inside B(0, R) increases when c decreases.
Secondly, the surface measure of the full sphere is proportional to cn−1. In the final
step of (75) we used the following: if a surface, ∂Ui, passes through a ball such that
it intersects the origin, then the surface area contained inside the ball is at least
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equal to the surface area of a hyperplane having the same property. Thus the ratio
in the second last step is at most equal to the ratio between the surface area of a
ball and the surface area of a cross section through the origin, which is 2πΓ

(
n
2

)
.

From (75) we conclude that if Assumption 4.1(b) holds for Ui, then so it does
for Ni. Consequently, we can replicate the first half of the proof of Theorem 4.3 for
Ni right up until (46):∫

∂Ni

grψ〈µ̂i, ηi〉 dHn−1 =

∫

Ni

grψdiv(µ̂i) dLn +

∫

Ni

〈grDψ + ψDgr, µ̂i〉 dLn,

where (gr)r and (Dgr)r uniformly bounded and gr = 1 on B(0, r) and vanishes
outside B(0, r+1). The right hand side integrands are either bounded by integrable
functions or monotonely increasing in R due to Assumption 4.1(c). As for the left
hand side, note

∫

∂Ni

ψ|〈µ̂i, ηi〉| dHn−1 ≤
∞∑

r=1

∫

∂Ni∩B(0,r)\B(0,r−1)

|〈µ̂i, ηi〉| dHn−1e−ar

for some a > 0. By assumption the integrals in the last sum are bounded by a
polynomial only depending on r, and the whole sum is finite. Lebesgues Dominated
Convergence Theorem and The Monotone Convergence Theorem yield

(76)

∫

∂Ni

ψ〈µ̂i, ηi〉 dHn−1 =

∫

Ni

ψdiv(µ̂i) dLn +

∫

Ni

〈Dψ, µ̂i〉 dLn.

A similar argument applies to Pi := Ui \N i. Using this and Lemma A.1 we get∫

∂Ui

ψ|〈ηi; µ̂i〉| dHn−1 =

∫

∂Pi∩∂Ui
ψ〈ηi; µ̂i〉 dHn−1 −

∫

∂Ni∩∂Ui
ψ〈ηi; µ̂i〉 dHn−1

=

∫

∂Pi

ψ〈ηi; µ̂i〉 dHn−1 −
∫

∂Ni

ψ〈ηi; µ̂i〉 dHn−1

=

∫

Pi

ψdiv(µ̂i) dLn +

∫

Pi

〈Dψ, µ̂i〉 dLn

−
∫

Ni

ψdiv(µ̂i) dLn −
∫

Ni

〈Dψ, µ̂i〉 dLn

≤
∫

Ui

ψ|div(µ̂i)| dLn +

∫

Ui

|〈Dψ, µ̂i〉| dLn

By summing over i we get
∞∑

i=1

∫

∂Ui

ψ |〈ηi; µ̂i〉| dHn−1 ≤
∫
ψ|div(µ̂)| dLn +

∫
|〈Dψ, µ̂〉| dLn <∞

by Assumption 4.1(c). If ψ|div(µ̂)| is not Lebesgue integrable by assumption, then
(Ui)i is finite and thus ψ|div(µ̂)| is a finite sum of terms, each of which are Lebesgue
integrable due to (76) and its Pi-equivalent. �
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