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Resumé

Denne afhandling omhandler statistiske metoder til brug ved diffusionsmodeller inden for
finansmatematik med diskrete observationer. Det primeere fokus er pa asymptotisk teori i
forbindelse med hgjfrekvent data, navnligt inden for rammen af estimationsfunktioner. Ph.d.-
afhandlingen bestar af 3 artikler, alle udarbejdet med henblik pa udgivelse i et matematisk
tidsskrift. Den forste artikel er et studie af hgjfrekvent asymptotik for preediktionsbaserede es-
timationsfunktioner med diskret-observerede diffusionsprocesser og er et samarbejde med min
Ph.d.-vejleder, Michael Sgrensen. Som hovedbidrag etablerer vi greensessetninger for funk-
tionaler af diffusionsprocesser der opfylder p-mixing-betingelsen og anvender resultaterne
til at udlede eksistens af en konsistent, asymptotisk normal estimator for en bred klasse
af preediktionsbaserede estimationsfunktioner. Den anden artikel indeholder en udvidelse af
den asymptotiske teori fra vores fgrste artikel til det besleegtede tilfeelde hvor vi observerer
integralet af diffusionsprocessen. Udvidelsen baserer sig pa udviklinger af funktionaler af
diffusions- og integrerede diffusionsprocesser. Integrerede diffusioner er af naturlig interesse
inden for finansiel matematik, hvor den observerbare volatilitet ofte anvendes til at filtrere en
sti af den skjulte integrerede volatilitet. Den tredje og sidste artikel beskriver en parametrisk
klasse af tidstransformerede diffusionsprocesser med henblik pa at modellere risiko-spredte
aktieindicer. Modellen er drevet af en enkelt Brownsk bevaegelse, der repraesenterer den under-
liggende usikkerhed pa markedet. Fokus er pa relevante statistiske problemstillinger relateret
til modelkonstruktionen og iseer behandler vi estimation af de ukendte modelparametre, samt
konstruerer en simulations-baseret ikke-parametrisk test for den implicitte én-faktor hypotese
for en bred klasse af kontinuerte It6 semimartingaler med stokastisk volatilitet.






Abstract

Broadly speaking, this thesis is devoted to statistical methods for discretely observed diffusion
processes in finance. The main emphasis is on developing asymptotic theory for diffusions
observed at high frequency, especially within the framework of estimating functions. The
thesis consists of three papers, all intended for journal publication. The first paper is a
study of high-frequency asymptotics for prediction-based estimating functions with discretely
observed diffusion models and is joint work with my PhD advisor, Michael Sgrensen. As our
main contribution, we establish limit theorems for functionals of p-mixing diffusion processes
and apply the results to derive existence of a consistent and asymptotically normal estimator
for a tractable class of prediction-based estimating functions. The second paper contains
an extension of our asymptotic results of the first paper to the case of discretely observed
integrated diffusion processes. The extension relies on expansion results for functionals of
diffusion and integrated diffusion processes. Integrated diffusions are of apparent interest in
finance, where realized volatility or variations thereof are often used to construct a trajectory
of the latent integrated volatility. The third and final paper deals with the construction of
a parametric class of time-changed diffusion models aimed at modeling of diversified stock
indices. The models are driven by a single Brownian motion that models the non-diversifiable
risk of the underlying market. Emphasis is on relevant statistical problems related to the
model construction and, in particular, we consider estimation of the parameters and construct
a simulation-based nonparametric test for the implicit one-factor hypothesis for a large class
of continuous It6 semimartingales with stochastic volatility.
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Summary

The thesis consists of three research papers written during my PhD studies at University of
Copenhagen in the time period from May 2014 until August 2017. Each paper can be read
independently. Their respective titles and abstracts are as follows:

1. Prediction-Based Estimation for Diffusion Models with High-Frequency Data.
This paper deals with prediction-based estimation for general, parametric diffusion
models (X;) with an unknown parameter § € © C R? We suppose that (X;) is ob-
served at equidistant time points ' = iA,, for some A, > 0, and consider the ergodic
high-frequency asymptotic scenario where A,, — 0 and nA, — oo. Subject to weak
regularity conditions on (Xy), we prove existence of a consistent and asymptotically
normal estimator 6, for a large class of prediction-based estimating functions. The
proof of asymptotic normality requires the additional rate assumption nA2 — 0. To
complement the asymptotic results, we construct an explicit estimating function for the
square-root (CIR) model and a simulation-based extension for the volatility process of
a 3/2 model from finance. The latter illustrates a simple way to encompass diffusion
models for which analytic moment conditions are not readily available into the estima-
tion framework. The respective finite-sample behaviour of both estimating functions is
evaluated based on simulated paths.

2. Inference for Integrated Diffusions Observed at High Frequency. In this paper,
we suppose we observe a discretization {It?}?zo of an integral process I; = fot X.ds,
where (X;) is a time-homogeneous diffusion with an unknown parameter # € © C R?
that we wish to estimate. The observation times {¢'} are assumed to be deterministic
and equidistant, i.e. ¢} = iA,, for some A, > 0, and we consider the high-frequency
asymptotic scenario where A,, — 0 and nA,, — co. Subject to mild regularity condi-
tions on (X;), we prove existence of a consistent and asymptotically normal estimator
0,, for a tractable class of prediction-based estimating functions. The proofs are based
on power expansions for diffusion and integrated diffusion models and asymptotic nor-
mality is obtained under the additional rate assumption nA2 — 0. Our results are of
particular interest in finance, where realized volatility or variations thereof are often
used to construct a trajectory of the latent integrated volatility process.
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3. One-Factor Models for Diversified Stock Indices with High-Frequency Ob-
servations. In this paper we construct a class of continuous-time stochastic volatility
models aimed at modeling the dynamics of diversified stock indices. The models are of
parametric diffusion-type and are driven by a single Brownian motion that models the
non-diversifiable risk of the underlying market. For the construction we utilize the con-
cept of stochastic market time and, in particular, the base process and the random time
change are dependent processes in our setup. Our emphasis is on high-frequency econo-
metric issues related to the model class. We propose a two-step method for estimating
the finite-dimensional parameter and construct a simulation-based test for the implicit
one-factor hypothesis for a large class of continuous It6 semimartingales with stochas-
tic volatility. The one-factor test is based on a nonparametric measure of instantaneous
leverage effect, where the one-factor model corresponds to perfect negative correlation.
We illustrate the methodology using simulated data, as well as high-frequency observa-
tions of the S&P 500.
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Introduction

The amount of research literature devoted to statistical analysis of high-frequency data has
exploded within the last few decades, driven by the availability of detailed transaction data
from algorithmic trading in finance. The three papers that constitute this thesis fall within
the interdisciplinary field of finance, probability theory and statistics commonly referred
to as high-frequency statistics or high-frequency financial econometrics, depending on the
particular research emphasis. Whereas the emblematic problems of high-frequency statistics
are parametric and nonparametric estimation for discretely observed (discretized) continuous-
time stochastic processes, the econometrics literature covers a wide class of filtering and
testing problems of special relevance for high-frequency data in finance. Our main focus is on
parametric problems for different types of diffusion models and the contributions are, in this
sense, classical by nature.

1.1 Discussion

Diffusion processes are widely used in many scientific areas, particularly in finance. While
the processes are characterized in terms of continuous-time dynamics, available time series
are always observed at discrete points in time. To bridge the gap between the general theory
of continuous-time stochastic processes and applications with discrete observations, statisti-
cal methods for discretely observed processes is an active area of research, and the recent
availability of high-frequency data has spiked considerable interest into the construction of
estimators and test statistics with nice asymptotic properties as the time between consecutive
observations A, goes to zero.

In the first paper (Chapter 2), we study parametric inference for discretely observed diffusion
models (X;) that satisfy a stochastic differential equation of the form

where (By) is standard Brownian motion and the unknown parameter of interest 6 belongs to a
subset © C R%. Since the preferred method of maximum likelihood estimation is untractable
for most diffusion models (1.1) applied in practice, a wide range of alternative methods
have been proposed and applied successfully. The Markov property of (X;) enables numer-
ous types of quasi-likelihood, including contrast functions (Florens-Zmirou (1989), Yoshida
(1992), Genon-Catalot and Jacod (1993), Hansen and Scheinkman (1995), Kessler (1997)),
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2 Chapter 1. Introduction

estimating functions (Bibby and M. Sgrensen (1995), Kessler and M. Sgrensen (1999), Kessler
(2000), Jakobsen and M. Sgrensen (2017)), likelihood expansions (Dacunha-Castelle and
Florens-Zmirou (1986), Ait-Sahalia (2002), C. Li (2013)), Markov-chain Monte Carlo (Elerian,
Chib, and Shephard (2001), Eraker (2001), Roberts and Stramer (2001)) and simulated like-
lihood (Beskos, Papaspiliopoulos, Roberts, and Fearnhead (2006), Beskos, Papaspiliopoulos,
and Roberts (2009), Bladt and M. Sgrensen (2014)). Complementing the purely paramet-
ric contributions, nonparametric estimation of the drift a( -) and the diffusion coefficient
b%(-) from discrete observation of (X;) has been studied by Ait-Sahalia (1996a), Hansen,
Scheinkman, and Touzi (1998), Hoffmann (1999a), Gobet, Hoffmann, and Reif§ (2004) and
Comte, Genon-Catalot, and Rozenholc (2007) under the assumption of strict stationarity
of (X;). Estimation for nonstationary, recurrent diffusion processes is considered by Bandi
and Phillips (2003). With high-frequency observation of (X;) on a finite time horizon [0, 7],
estimation of the diffusion coefficient has been considered by Genon-Catalot, Larédo, and Pi-
card (1992), Florens-Zmirou (1993), Hoffmann (1999a,b), Jacod (2000) and Reno (2008). A
survey of nonparametric estimation methods with an extensive list of references is Fan (2005).

In the second paper (Chapter 3), we consider integrated diffusion models (I;);>¢ of the general
form

dl;, = Xt
dXt = a(Xt,H)dt—l—b(Xt,H)dBt,

where (X}) takes values in an open interval (/,7) C R and once again the parameter of interest
6 € © C R% Although to a lesser extent than for discretely observed diffusions of the form
(1.1), parametric estimation for integrated diffusions has also been the topic of many papers
in econometrics and statistics, the former in the guise of continuous-time stochastic volatility
models. If we consider the simple stochastic volatility model

S, = \/udW,, (1.2)

where (W;) denotes a standard Brownian motion, the availability of high-frequency data
generated by (S;) enables us to filter a trajectory of the latent integrated volatility

/Ot vsds (1.3)

and view it as an observable process, possibly with measurement error. This has lead to the
construction of estimators for integrated processes in the case where v; = v,(6) for a parameter
6 € © C RY, e.g. if the volatility dynamics itself is described by a time-homogeneous diffusion
process

dve = p(vg; 0)dt + o (ve; 0)dBy.

Known diffusion models for the volatility dynamics include the GARCH(1,1) diffusion model
in Nelson (1990), the square-root (CIR) process in Heston (1993) and the 3/2 diffusion in
Drimus (2012). Parametric estimation based on realized power variations that approximate
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the integrated volatility (1.3) have been studied by e.g. Bollerslev and Zhou (2002), Barndorff-
Nielsen and Shephard (2002a) and Todorov (2009), the latter in a general method-of-moment
(GMM) framework for a large class of stochastic volatility models with jumps. On a related
note, the recent paper by J. Li and Xiu (2016) appears to be the first to develop high-
frequency (infill) asymptotics for GMM estimators of parameters in the diffusion coefficient
of the volatility process by preliminary filtering of the spot volatility instead. On the statistical
side, Ditlevsen and M. Sgrensen (2004) illustrate a simple way to construct explicit Godambe
optimal prediction-based estimating functions for (X;) belonging to the tractable class of
Pearson diffusions defined in Forman and M. Sgrensen (2008), and Baltazar-Larios and M.
Serensen (2010) propose a simulated EM-algorithm to obtain maximum likelihood estimators
for integrated diffusions contaminated by noise. A third, and for our paper highly influential,
approach based on expansion results for small values of A, was proposed by Gloter (2000,
2006). His construction of contrast estimators utilizes the basic observation that, as A,, — 0,
Ay
A;l Xsds ~ X(i—l)An
(i—1)An

which allows for the derivation of high-frequency limit theorems for integrated diffusions. Non-
parametric estimation of the drift a( - ) and diffusion coefficient b?( - ) from high-frequency
observations of (I;) was studied by Comte, Genon-Catalot, and Rozenholc (2009).

Lastly, building on recent work by Ignatieva and Platen (2012) and Platen and Rendek
(2012b), the third paper (Chapter 4) considers a class of time-changed square-root diffusion
processes S; = X, where the base process (X;) is defined as a strong solution of the stochastic
differential equation

dX;, = B(1 — Xy)dt + /X, dW;

for a carefully constructed Brownian motion (W;). We model the time evolution 7 = ()
using the mathematical concept of time change, specifically by letting 7 be an integral w.r.t.
a latent market activity process (M;) that takes values in (0, 00), i.e. we define

) = /0 M, (w)ds. (1.4)

The use of time change as a means to construct stochastic volatility models in finance is
widely accepted; see e.g. A. Veraart and Winkel (2010) for a concise review. Notably, the
idea of replacing t-time by a stochastic market time goes back to Clark (1973), who was the
first to model asset price dynamics using time-changed Brownian motion. His approach was
extended by Ané and Geman (2000) to include a more general definition of market time. The
use of time-changes obtained by integrating over a positive stochastic process as in (1.4) has
been studied by e.g. Carr et al. (2003) for the construction of Lévy processes with stochastic
volatility. Whereas many continuous-time processes with a natural time-change representation
are defined in such a way that the base process (X;) and the time change 7 are independent,
our construction of (W;) by means of the Dubins-Schwarz representation for continuous local
martingales implies that they are dependent processes in our setup. Examples where the time
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change is independent of the base process includes Clark (1973), Madan and Seneta (1990)
and Barndorff-Nielsen (1997) for Lévy processes, or Ané and Geman (2000) and Carr et al.
(2003) for models with stochastic volatility.

1.2 Main contributions

In the following we briefly describe the individual contribution of each paper in more math-
ematical detail and emphasize how the results relate to the general discussion above.

In the first paper, we let (X;) take values in an open interval (I,7) C R and suppose that the
process is stationary under the probability measure Py for an invariant initial distribution
Xo ~ ug. For estimation purposes we observe a single discretization

X07Xt’f7' . '7Xt27

and we assume that the observation times are deterministic and equidistant and write ¢} =
1A, for the appropriate A,, > 0. To encompass consistent estimation of both drift and diffu-
sion parameters into the asymptotic theory, we consider the ergodic high-frequency sampling
scenario

n—oo, A,—0, n-A,— o0, (1.5)

where the time horizon T, = nA,, increases with the number of observations. The construc-
tion of estimators 6, is carried out in the framework of prediction-based estimating functions.
These estimating functions were proposed by M. Sgrensen (2000, 2011) as a versatile esti-
mation framework for non-Markovian diffusion-type models and generalize the martingale
estimating functions pioneered by Bibby and M. Sgrensen (1995). We show that, with a
restriction to finite-dimensional predictor spaces, the estimating functions of this paper lie
outside the class of approximate martingale estimating functions defined in M. Sgrensen
(2017), but still yield consistent and asymptotically normal estimators under mild regularity
conditions on (X;). Asymptotic normality requires the additional rate assumption nA;gz — 0.
Whereas the use of prediction-based estimating functions for inference in diffusion models
(1.1) comes at a loss of efficiency compared to other estimation methods, the asymptotic
results of this paper provide the foundation for our study of (non-Markovian) integrated dif-
fusions observed at high frequency in Chapter 3.

The second paper extends the asymptotic results for prediction-based estimating functions of
the first paper to the related observational scheme of discretely observed integrated diffusions
(It)t>0 of the form

dly = Xdt

We observe a single discretization {It;l }, of the integrated process at deterministic, equi-
distant points in time and once again consider the ergodic high-frequency sampling scenario
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(1.5). The latent diffusion process (X;) is strictly stationary under the probability measure
Py for an invariant distribution Xg ~ pg. A more appropriate, equivalent observation scheme
is obtained for the transformed variables
1Ay
Yi= A7 (Ip ~ Iy, ) = A7 X, ds (1.6)
(i—1)A,

where ¢ = 1,...,n. Whereas low-frequency asymptotic results for prediction-based estimating
functions with integrated observations follow from general results in M. Sgrensen (2000), high-
frequency asymptotics require quite a bit of effort. Our proofs rely on preliminary functional
versions of the classic Euler approximation

Xpo | Fon N (Xt?_l + Ana(Xen ;0), Agb*(Xen 9))
and the similar result that

1 1
}/i |ft:}71 ~ N <Xt;11 + A"§Q(Xt?71 N 0), Anng(Xt?,l; 9))

for small values of A,,, combined with the asymptotic theory for diffusion models developed
in Chapter 2. We show that, under suitable regularity conditions, consistency and asymptotic
normality of prediction-based estimators 6,, is once again attained within the ergodic scenario
(1.5). Asymptotic normality requires the strong additional rate assumption nA2 — 0.

Our emphasis in the final paper is on high-frequency econometric issues related to the index
model (.S;). For estimation purposes, we show that we can view (S;) as the observable marginal
of a bivariate diffusion model

dS, = B(1— S)Mdt+ /S M,dB,
th = a(Mt)dt + b(Mt)dBt,

where (M;) denotes the market activity process in (1.4). We propose a two-step method for
estimating the mean-reversion parameter § > 0 in the dynamics of (S;), as well as any pa-
rameter v € I' C RY that appears in (M;). Initially, we demonstrate how to filter a trajectory
of (M) or 7 using a Lamperti transformation which, in turn, enables us to estimate 7 using
any of standard methods for time-homogeneous diffusion processes described in Section 1.1.
Secondly, we deal with the estimation of 5 which, despite our ability to filter (M;) or, equiva-
lently, 7 from the discretization of (S;), remains complicated due to the dependence between
the base process (X;) and 7. Our proposed estimator exploits the common driving Brownian
motion (B;) to construct an explicit estimating equation which can be solved for 3. Finally,
we construct a simulation-based test for the implicit one-factor hypothesis for a large class
of continuous It6 semimartingales with stochastic volatility. The test is fully nonparametric
and based on a normalized measure of instantaneous leverage effect proposed by Kalnina and
Xiu (2017), where the one-factor model corresponds to perfect negative correlation.
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Prediction-Based Estimation for Diffusion
Models with High-Frequency Data

EMIL S. JORGENSEN AND MICHAEL SORENSEN

UNIVERSITY OF COPENHAGEN

ABSTRACT. Prediction-based estimating functions provide a versatile framework
for parameter estimation in discretized diffusion-type models. This paper deals
with prediction-based estimation for general, parametric diffusion models (X)
with an unknown parameter §# € © C R%. We suppose that (X;) is observed at
equidistant time points t;' = iA,, for some A,, > 0, and consider the ergodic high-
frequency asymptotic scenario where A,, — 0 and nA, — oco. Subject to weak
regularity conditions on (X¢), we prove existence of a consistent and asymptot-
ically normal estimator 0, for a large class of prediction-based estimating func-
tions. The proof of asymptotic normality requires the additional rate assumption
nA3 — 0. To complement the asymptotic results, we construct an explicit esti-
mating function for the square-root (CIR) model and a simulation-based extension
for the volatility process of a 3/2 model from finance. The latter illustrates a sim-
ple way to encompass diffusion models for which analytic moment conditions are
not readily available into the estimation framework. The respective finite-sample
behaviour of both estimating functions is evaluated based on simulated paths.

Keywords: Diffusion process, high-frequency data, infinitesimal generator, po-
tential operator, prediction-based estimating functions, p-mizing.
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2.1 Introduction

Diffusion processes are often used to model the behaviour of stochastic dynamical systems,
especially in finance. These processes are characterized in terms of probabilistic behaviour
in continuous time, but for most applications we only observe the system at discrete points
in time. The ability to fit a particular diffusion model to a discrete set of observations is
crucial if we are to, e.g., predict future values of a given time series, and statistical methods
for discretely observed (discretized) stochastic processes is an active area of research. In
particular, the recent availability of high-frequency data has generated considerable interest
in the asymptotic behaviour of estimators and test statistics as the time between consecutive
observations goes to zero.

In this paper, we study parametric inference for diffusion models that satisfy a stochastic
differential equation of the form

dX; = a(Xt; Q)dt + b(Xt; O)dBt, (21)

where (B) is standard Brownian motion and the parameter of interest 6 belongs to a subset
O C R%. We suppose that (X;) takes values in an open interval (I,7) C R and is stationary
under the probability measure Py for an invariant initial distribution Xy ~ ug. For estimation
purposes we observe a single discretization

XOth{U"'aXt?la

and we assume that the observation times are deterministic and equidistant, i.e. ¢ = iA,
for some A,, > 0. To encompass consistent estimation of both drift and diffusion parameters
into the asymptotic theory, we consider the ergodic high-frequency sampling scenario

n—oo, A,—0, n-A,— o0, (2.2)

where the time horizon T,, = n/\,, increases with the number of observations.

The construction of estimators 6,, is carried out within the framework of prediction-based
estimating functions. These estimating functions were proposed by M. Sgrensen (2000, 2011)
as a versatile estimation framework for non-Markovian diffusion-type models and generalize
the martingale estimating functions pioneered by Bibby and M. Sgrensen (1995). We show
that, with a restriction to finite-dimensional predictor spaces, the estimating functions of
this paper lie outside the class of approximate martingale estimating functions defined in
M. Sgrensen (2017), but still lead to both consistent and asymptotically normal estimators
under mild regularity conditions on (X¢). The latter requires the additional rate assumption
nA3 — 0. Whereas the use of prediction-based estimating functions for diffusion models (2.1)
comes at a loss of efficiency compared to other estimation methods, the asymptotic results
of this paper provide the foundation for our study of (non-Markovian) integrated diffusions
observed at high frequency in Chapter 3.

Parametric estimation for discretely observed diffusion processes has been the topic of many
papers in econometrics and statistics. Since the preferred method of exact maximum likeli-
hood is untractable for most diffusion models applied in practice, a wide range of alternative
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methods have been proposed and applied successfully. The Markov property of (X;) enables
many types of quasi-likelihood, including contrast functions (Florens-Zmirou (1989), Yoshida
(1992), Genon-Catalot and Jacod (1993), Hansen and Scheinkman (1995), Kessler (1997)),
estimating functions (Bibby and M. Sgrensen (1995), Kessler and M. Sgrensen (1999), Kessler
(2000), Jakobsen and M. Sgrensen (2017)), likelihood expansions (Dacunha-Castelle and
Florens-Zmirou (1986), Ait-Sahalia (2002), C. Li (2013)), Markov-chain Monte Carlo (Ele-
rian, Chib, and Shephard (2001), Eraker (2001), Roberts and Stramer (2001)) and simulated
likelihood (Beskos, Papaspiliopoulos, Roberts, and Fearnhead (2006), Beskos, Papaspiliopou-
los, and Roberts (2009), Bladt and M. Sgrensen (2014)).

Complementing the parametric literature, nonparametric estimation of the drift a( - ) and
the diffusion (volatility) coefficient b?( - ) from discrete observation of (X;) has been studied
by Ait-Sahalia (1996a), Hansen, Scheinkman, and Touzi (1998), Hoffmann (1999a), Gobet,
Hoffmann, and Rei8 (2004) and Comte, Genon-Catalot, and Rozenholc (2007) under the
assumption of strict stationarity of (X;). Estimation for nonstationary, recurrent diffusion
processes is considered by Bandi and Phillips (2003). With high-frequency observation of
(X¢) on a finite time horizon [0, T, estimation of the diffusion coefficient has been considered
by Genon-Catalot, Larédo, and Picard (1992), Florens-Zmirou (1993), Hoffmann (1999a,b),
Jacod (2000) and Reno (2008). An excellent survey of nonparametric estimation methods
with an extensive list of references is Fan (2005).

The structure of the paper is as follows. In Section 2.2 we present the general notation used
throughout the paper, define a tractable class of prediction-based estimating functions, and
formulate our general assumption on (X;) for the asymptotic theory. Section 2.3 is devoted
to limit theorems for functionals

Valf) =2 375Xy )
=1

and, in particular, we establish a Gaussian central limit theorem (CLT) for f belonging to a
large class of functions. The variance of the Gaussian limit involves the potential of f which is
characterized as the solution of a probabilistic Poisson-type differential equation. Asymptotic
results are provided in Section 2.4. In Section 2.5 we construct Monte Carlo-based estimators
for the asymptotic variances obtained in Section 2.4. To complement the asymptotic results,
we construct an explicit estimating function for the square-root process of Cox, Ingersoll, and
Ross (1985) and a simulation-based extension for the volatility process of a 3/2 model from
finance. Numerical results are provided in Section 2.7. Section 2.8 concludes. All proofs are
deferred to Section 2.9 and Section 2.10 contains some auxiliary results applied in the proofs.

2.2 Preliminaries

In this section we introduce the notation used throughout the paper, define a tractable class
of prediction-based estimating functions, recall some core notions from probability theory,
and formulate our main assumptions on the diffusion model (X;) and the parameter space ©
for the asymptotic theory.
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2.2.1 Notation

Aligned with the econometric and statistical literature on parametric inference for stochastic
processes, our general notation is as follows:

1. The parameter of interest §# € © C R? for d > 1. We denote the true parameter by 6.

2. We denote the state space of X by (S, %(S)) and assume throughout that S is an open
interval in R, i.e. S = (I,r) for —oo < [ < r < oo, endowed with its Borel o-algebra

AB(S).
3. For short, we write ug(f) = [q f(x)uo(dz) for functions f : S — R and denote by

ZP(ug) the space of equivalence classes of p-integrable functions w.r.t. the invariant
measure jp. In particular, | f||, denotes the canonical norm on £ () defined by

i1 = ([ f2($)ue(dx)>1/2.

4. For random variables Y and Z defined on a probability space (Q2, F,P), we write Y <¢ Z
if there exists a constant C' > 0 such that Y < C - Z, P-almost surely.

To define some function spaces of interest, we say that f : .S x © — R is of polynomial growth
in z if for every 6 € O, |f(z;0)| <c¢ 1+ |z|¢ for x € S.

5. We denote by Cg’k(S x 0), j,k >0, the class of real-valued functions f(z;0) satisfying
that

- f is j times continuously differentiable w.r.t. x;
- f is k times continuously differentiable w.r.t. 01, ..., 04;

- f and all partial derivatives 6%18511 . .-a;f;f, g1 < j, k1 + -+ kg <k, are of
polynomial growth in z.

Similarly, we define C}(S).
6. For use in the appendices, R(A, z;6) denotes a generic function such that
[R(A, 2;0)| <¢ F(30), (2.3)

where F is of polynomial growth in x. We sometimes write Ry(A,z;60) to emphasize
that the remainder term R(A, z;0) also depends on the true parameter 6.
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2.2.2 Prediction-based estimating functions

The general theory of prediction-based estimating functions was developed by M. Sgrensen
(2000) and later reviewed and extended in M. Sgrensen (2011). In this paper we consider
estimating functions of the general form

n N
Gn(0) =D > mim1g [fi(Xep) = Fim1,5(0)] (2.4)

i=q j=1

where {f; }éV: | is a finite set of real-valued functions in .#?(pg) and for every j € {1,..., N},
#i—1,(0) denotes the orthogonal £ (1g)-projection of fi(Xin) onto a finite-dimensional sub-
space

Pi—1j = Span{l, f (Xt?_1) eeon f (th_qj)} C L% (up) (2.5)

for a fixed ¢; > 0. The coefficients m;_; ; are d-dimensional column vectors with entries
belonging to P;_1 ;.

The collection of subspaces {P;_1;}i; are referred to as predictor spaces. In this sense, what
we predict are values of fj(thn) for each 7 > ¢ := maxj<j<n q;. Most prediction-based
estimating functions applied in practice are of this particular form; see e.g. M. Sgrensen (2000)
for applications to discretized stochastic volatility models, and Ditlevsen and M. Sgrensen
(2004) for the case of integrated diffusions.

Since the predictor space P;_1; is closed, the £2(ug)-projection of fi(Xin) onto Py ; is
well-defined and uniquely determined by the normal equations

Eo (m [f5(Xen) — 7i1,5(0)]) =0, (2.6)

for all m € P;_1 j; see e.g. Rudin (1987). Here and in everything that follows, Eg( - ) denotes
expectation w.r.t. the underlying probability measure Py. Moreover, by restricting ourselves
to predictor spaces of the form (2.5), as well as only diffusion models (X;) that are stationary
under Py, the orthogonal projection 7;_; ;(0) = dn(H);fFZZ-_Lj where

Zi1;= (1,fj (Xt?_l) o f (Xt?_qj))T (2.7)
and dn(G)]T is the unique (g; + 1)-dimensional coefficient vector
n(0)] = (@n(0)j0,@n(0)j1 - .-, @n(6)jq,)
determined by the moment conditions
E, [qu_l,jfj (thj)} ~E, [qu_l,jzgj_l,j] in(6); = 0. (2.8)

Note that in the simplest case where ¢; = 0, P;—1; = span{1} and it follows immediately
from the normal equations (2.6) that 7;_1 ;(0) = ue(f;)-

We obtain an estimator 6, by solving the estimating equation
Gnr(0)=0

and often refer to én as a G -estimator.
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Remark 2.2.1. If we define an equivalence relation ~ on the set of estimating functions
of the form (2.4) by G,, ~ Hy, if and only if H, = M,G,, for an invertible d x d-matrix
M, equivalent estimating functions yield identical estimators 0, In particular, estimators
obtained from equivalent estimating functions share the same asymptotic properties. We
freely apply this property in the proofs of Section 2.4.

2.2.3 Probabilistic notions

Two notions from the theory of stochastic processes play a central role in this paper; the
infinitesimal generator of a diffusion process (X;), and the dependence property known as
p-mixing. We briefly introduce both concepts below.

Infinitesimal generator With any weak solution of (2.1), we associate a family of oper-
ators (PY)i>o where for f € 2 (up),

Plf(z) =Eo (f(Xe) | Xo =),

and the operator that maps a function f onto Pff is known to satisfy a number of useful
properties; see e.g. Hansen and Scheinkman (1995). In particular, P : 22(ug) — Z2(ue)
and the semigroup property Pf o P/ = Pteﬂ holds for all ¢,s > 0.

The (infinitesimal) generator Ay of a diffusion (X;) is defined as the limiting operator
Plf—f

_1; t
Aof = lm —=—
whenever the limit Agf is well-defined in .#?(ug). The domain of Ay is the collection D 4, of
all elements f € Z?(jug) for which Agf exists.

For diffusion processes there is a well-known connection between the generator Ay and the
drift and diffusion coefficients of (X;); using Itd’s formula, it can be shown subject to regu-
larity conditions on (X;) that Agf = Lo f, where

Lof () = alws6)0, () + 31°(w: 0)22 1 () (2.9

for f belonging to a large subset of the domain D 4,. For our purposes it suffices to note that
whenever (X;) satisfies Condition 2.2.2 below, C2(S) C Dy, and the explicit representation
Agf = Lof holds for all f e C>(S5); see e.g. Kessler (2000).

Recall that A € R is an eigenvalue of Ay if
Aof = Af

for some f € D4,. The collection of all eigenvalues is known as the spectrum of Ay and
will be denoted by .#(Ag). From spectral theory it is known that . (Ay) C (—o0,0]. If
L (Ap) C (—o0, —A*]U {0} for some \* > 0, the generator Ay is said to have a spectral gap.
In particular, whenever the diffusion process (X;) is ergodic and reversible under Py, the
existence of a spectral gap \* > 0 is equivalent to (X;) satisfying the p-mixing property; see
Genon-Catalot, Jeantheau, and Larédo (2000). In Section 2.3 we apply this equivalence to
establish the existence of the potential Uy(f) for a large class of functions f.
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Mixing For general stochastic processes, mixing coefficients provide a way of measuring
how dynamic dependence decays over time. Various notions, including a-, 8- and p-mixing,
appear in the literature and are often used to establish central limit theorems for processes
that are not martingales; see e.g. Doukhan (1994).

For a general probability space (2, F,P) and o-algebras A, B C F, the p-mixing coefficient
p(A, B) :=sup {|Corr(X,Y)|: X € £%(Q,AP),Y € £*(Q,B,P)},

where X and Y are random variables having values in R. Hence, by considering the o-algebras
Fii=0(Xs:8<t)and F! := o(X,: s > t) generated by a stochastic process (X;) defined
on the same space, we construct a dynamic measure of dependence

pX(t) =Ssupp (fSaFtJrS) ;
s>0
which, for a stationary Markov process, takes the simple form
px () = p (o(Xo), o(X,)).. (2.10)

A process (X¢) is said to be p-mizing if px (t) — 0 as t — 0. A review of mixing properties for
stationary Markov processes can be found in Genon-Catalot, Jeantheau, and Larédo (2000).

2.2.4 Assumptions

To derive asymptotic results for diffusion models of the general form (2.1), we impose some
mild dependence and regularity conditions on (X;). In particular, the following condition is
sufficient to establish limit theorems for functionals

n

%Zf(Xt;L_l),

=1

for f : S — R belonging to a suitable class of functions. We return to this topic in Section 2.3.
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Condition 2.2.2. For any 0 € O, the stochastic differential equation
dX; = a(Xy;0)dt + b(Xy; 0)dB, Xo ~ pg
has a weak solution (£, F, (F3),Pg, (B:), (X)) with the property that
- (Xy) is stationary, p-mizing under Py.
Moreover, the a priori given triplet (a,b, pg) satisfies the regqularity conditions
ca,be (S x0),
- a(z; 0)[ + [b(x; 0) <c 1+ [z,
- b(z;0) >0 forx e S,
. fS |z|*pp(dx) < oo for all k> 1.

The reader can consult e.g. Kallenberg (2002) for a concise introduction to weak solutions of
stochastic differential equations. For the discretized filtration {Fi»}, we let FJ' := Fi» and
the notation pg = pg,, Po = Py,, etc., is applied throughout the paper.

Of course, we want Condition 2.2.2 to hold for the true, but unknown, parameter 5. A
conventional convexity restriction on © ensures that we obtain asymptotic normality of our
prediction-based estimators 6, in Section 2.4 from standard arguments.

Condition 2.2.3. The parameter 6 € © C R? and it holds that

- by € int(@),

- © is conver.

Here int(©) denotes the interior of O, i.e. the union of all open sets contained in O.

2.3 Limit theory for discretized diffusions

This section is devoted to limit theorems for functionals
1 n
i=1

where f takes values in R and {X»}7, is a discretization of a diffusion process (X;) that
satisfies Condition 2.2.2. In Section 2.3.1 we state a law of large numbers for a large class of
functions f. The CLT requires a bit more caution and stronger regularity assumptions on f.
We define a suitable class of functions % in Section 2.3.2 and formulate and prove a CLT
in Section 2.3.3. The results are given w.r.t. the true probability measure Py.
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2.3.1 Law of large numbers

For the asymptotic theory in Section 2.4, it suffices to establish pointwise convergence of
Vi (f). The following result follows from the continuous-time ergodic theorem; see Corollary
10.9, Kallenberg (2002).

Lemma 2.3.1. Let f € C5(S). Then,

Va(f) 2% po(f)-

Lemma 2.3.1 will be applied frequently in proofs later on. Conversely, the only application
of our subsequent CLT (Proposition 2.3.4) in this paper is to establish asymptotic normality
of Gp-estimators in Section 2.4. This enables us to restrict attention to a smaller, more
appropriate class of functions f; indeed, the normal equations (2.6) imply that any prediction-
based estimating function of the form (2.4) is unbiased, i.e.

Eq (Gn(e)) =0, (2'12)

and, correspondingly, we only consider functions f : S — R for which py(f) = 0 for the
remainder of this section.

2.3.2 Potential operators for diffusion models

The variance of the Gaussian limit distribution in Proposition 2.3.4 involves the potential of
the function f which we define as

Up(f)(z) = /0 " P f(aydt (2.13)

for an implicit choice of diffusion model (X3).

By construction, the potential (2.13) has a natural operator interpretation. To identify a
domain and codomain for the operator f +— Uy(f), we apply that the generator Ay of (X})
has a spectral gap A > 0 under Condition 2.2.2. This leads to a well-known bound for the
transition operator which we formulate as a separate lemma. In the following,

L5 (o) = {f : S = R pg(f*) < oo, pa(f) =0}

Lemma 2.3.2. Let f € £Z(ng). Then,

|P2s], < e 1, (2.14)

for allt > 0.
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As a consequence, ||[Up(f)|l, < oo for any f € £Z(ug) and we see that the potential operator
Us : 5 (16) — £ (11g)

is well-defined. It follows immediately from the defining property (2.13) that Uy is linear in
the sense that

Ug(af + Bg) = alUp(f) + BUs(9)
for scalars o, 3 € R and f, g € Z2(up).

In this paper we generally restrict ourselves to the set of functions
A ={f €CXS): pa(f) =0,Up(f) € CXS)}, (2.15)

which ensures that Lo(Up(f)) is well-defined, Ag(Up(f)) = Lo(Up(f)) and S C L (po).
The following result characterizes the potential Uy(f) as the solution of the so-called Poisson
equation for any f € %2.

Proposition 2.3.3. Let f € 7. Then, Uy(f) is a solution of the Poisson equation, i.e.

Lo(Up(f)) = =1,
where Ly denotes the differential operator (2.9) corresponding to the generator of (X).

For our purposes, the existence of Uy(f) for f € £2(uy) is ensured by the p-mixing assump-
tion on (Xy). General results on existence and regularity implications of the potential Uy(f)
for diffusion processes (X;) and f : S — R can be found in Pardoux and Veretennikov (2001).

2.3.3 Central limit theory

With Proposition 2.3.3 in place, we obtain the following CLT for V;,(f). The proof requires
the additional rate assumption that nA3 — 0. Consistent with the general notation, we write
Uo = Uy, 3 = %(2), etc., for the true parameter 6.

Proposition 2.3.4. Let f € #2. If nA3 — 0, then

V nAnVn(f) =/ nl, <:L Z f(th1)> @} N(O,Vo(f)) )
=1

where
Vo(f) = po ([0:Uo(f)b( - 5600)]%) = 20 (fUo(f)) - (2.16)

Remark 2.3.5. Compared to the low-frequency sampling scenario where A, = A > 0, the
integral construction of Uy(f) in (2.13) can be interpreted as the limit as A — 0 of the
discrete-time potential,

o

Up(f) =AY Piaf,

k=0
and the role of Up(f) in Proposition 2.3.4 is similar to that of Ug(f) in the classic central
limit theorem for functionals %Z?:l f(X(i—1)a); see e.g. Theorem 1, Florens-Zmirou (1989).
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2.4 Asymptotic theory

In this section we present our main asymptotic results for prediction-based estimators. The
proofs are based on general asymptotic theory for estimating functions in M. Sgrensen (2012).
For the most part, we restrict the discussion to estimating functions of the form (2.4) with
N =1 and, for simplicity, write

Gn(0) = Z i1 [f(Xen) — 7i1(0)] (2.17)

P;—1 for the corresponding predictor spaces, etc. The extension to multiple predictor functions
{fj};v:l is considered in Section 2.4.3.

2.4.1 Simple predictor spaces

The simplest class of estimating functions of the form (2.17) is obtained for ¢ = 0, in which
case P;_1 = span{l}. In this case, the orthogonal projection 7;_1(8) = ug(f) and the one-
dimensional predictor space P;_1 enables us to estimate a parameter § € © C R. Consistently,
we suppose that d = 1 in the following and study the one-dimensional estimating function

n

Gn(0) = [f(Xen) — po(f)] - (2.18)

i=1

For the asymptotic theory to carry through, we impose the following regularity conditions on
Gp.

Condition 2.4.1. Suppose that

- (@) = flz) = mo(f) € A,
-0 ug(f) ecCl.
By applying the limit theorems provided in Section 2.3, we easily identify conditions that

ensure consistency and asymptotic normality of G,-estimators for estimating functions that
satisfy Condition 2.4.1.
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Theorem 2.4.2. Assume Condition 2.4.1 and suppose that Oppg(f) # 0 and that the iden-
tifiability condition

(1o — po)(f) # 0,
holds for all 0 # 0.

- There exists a consistent sequence of Gn-estimators (én) which, as n — 00, is unique
in any compact subset IC C © containing 6y with Py-probability approaching one.

- If, moreover, nA2 — 0, then

Vi (B2 = 00) 225 N (0,100m0(1)] 2 Vo(F) ) (2.19)
where

Volf) =2 /S £ (@) Uo(*) (x)po (d).

2.4.2 1-lag predictor spaces

The inclusion of past observations into the predictor space P;_1 raises the mathematical com-
plexity dramatically. Our main result in this section (Theorem 2.4.5) shows that for ¢ = 1,
prediction-based G,-estimators remain consistent and asymptotically normal under suitable
regularity conditions.

For ¢ = 1, the basis vector Z;_1 = (l,f(Xtyil))T and the normal equations (2.8) take the

form u
v (< féfo) )f (XA")> e ( f&o) f?@) ) ( 2:22%? ) -
As a consequence, Ti—1(0) = an(0)o + an(0)1f(Xer ),

where a,(6)o and a,(#)1 are uniquely determined by the moment conditions

an(@)o = po(f) (1 —an(0)1),

i), = EFCFXa)] = k()
L Varg f(Xo) 7

and consistent with a two-dimensional predictor space P;_1, we suppose that d = 2 in the
following and study the estimating function

Ga(0) =" ( f(Xlt?_l) ) F(Xip) = anl0)0 = an(0)1f (X )| (2.20)

=1

As part of the proof of Lemma 2.4.4 below, we show that the projection coefficient a,,(0) has
a power expansion

in(0) = ( 0 ) + A, < _Kﬁfgg)e(f) ) + A2R(A0), (2.21)
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where |R(Ap;60)| < C(6) and the constant K ¢(6) is explicitly given by

Ky (0) = HoULoS)

= Var, FCX) (2.22)

This observation enables us to formulate a set of regularity conditions on G,, for the asymp-
totic theory:

Condition 2.4.3. Suppose that

- fi(2) = K(00) [no(f) — f2)] € A7,
- f3(x) = f(@)Lof(x) — Kp(00) f(x) [f(z) — po(f)] € A,
O po(f) €C, 0 — Kp(0) €C and

sup [|Ggr R(An; 0)| < C(M), (2.23)
oeM

for a compact, convexr subspace M containing 6y and A, sufficiently small.

The matrix norm || - || in (2.23) can be chosen arbitrarily and we suppose for convenience that
|| - || is submultiplicative. The following lemma essentially implies the existence of a consistent
sequence of Gj,-estimators in Theorem 2.4.5. As the proof is somewhat long, we formulate it
as a separate result.

Lemma 2.4.4. Assume that Condition 2.4.3 holds. Then, for any 6 € ©,

. Po o o K5(0) (o — 10)(f)
()™ Gin(0) = (60;6) = < no(FLof) — K5(6) [o(f2) — po(fe(f)] )

and, moreover,

sup [|(n &)~ 9yr G (0) — W (B)]| =% 0 (2.24)
e M

where

_ 1 po(f) O, [Ky(O)po(f)] O, [K(0)pa(f)]
W”“(w(f) uo<f2>>( COnK6) 0K (6) )
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Theorem 2.4.5. Assume Condition 2.4.3 and suppose that W (0) is non-singular and that
the identifiability condition

7(00;0) # 0,
holds for all 8 # 6.

- There exists a consistent sequence of Gn-estimators (én) which, as n — 00, is unique
in any compact subset IC C © containing 6y with Po-probability approaching one.

- If, moreover, nA2 — 0, then

nh, (én - 90) o5 Ny (0, [W(B0) Vo (£)(W (66) )], (2.25)
where
* . 2 ov
i [ o (@O 00 Colp) |
Cou(f) po ([0:Uo(f5) + FOL 1262 -5 60) )
with

Cov(f) = po (0:Un(f1) [0:Uo(f3) + f0: F16°( - 5 60)) -
Remark 2.4.6. If we denote the estimating function (2.20) as
Gn(0) = g(Ap, X, Xn_50),
i=1

the proof of Lemma 2.4.4 shows that
Ey (g(Am RCIRCIRL) ’ f!‘_l) = Nng*(Xep 30) + ALR(Ay, Xip 56)

for a non-zero function ¢g* and 6§ € ©. Therefore, the estimating functions in this section
lie outside the class of approximate martingale estimating functions defined in M. Sgrensen
(2017). In particular, the proof of asymptotic normality in Theorem 2.4.5 requires a bit of
work since the remainder term obtained by compensating G, is non-negligible.

2.4.3 Multiple predictor functions and optimal estimation

Estimating functions with multiple predictor functions,

n N
Gnu(0) = i [£5(Xen) — %1 5(0)] (2.26)

i=q j=1

appear frequently in practice; see Section 2.6. In the following, we indicate how to extend
the asymptotic theory from estimating functions with a single predictor function (2.17) to
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the more general case (2.26) and briefly consider optimal estimation in relation to over-
identification of the parameter § € © C R,

As emphasized in M. Sgrensen (2011), the estimating functions (2.26) have a more compact
vector representation

Gl Zzl 1[ (Xen) — T1(0)] (2.27)

where F(z) = (fi(z),..., fy(@)", Ti_1(0) = (#i11(0), ..., 7i_1.x(0))" and

Zicia Ogg1 oo O
Ogo+1 Zi-1,2 -+ Ogyp1

Zig=| o0 TR R (2.28)
Ogv+1 Ogy+1 -+ ZiciN

Recall that Z;_; ; denotes the column vector (2.7) of basis elements of P;_1 ; and the nota-
tion Oy, 41 denotes a column vector of length g; + 1 containing zeroes only. Consistently, the
dimension of Z; 1 in (2.28) is d x N where d := N + Z 1 ¢;- The coefficient matrix A, (0)
is d x d to match a d-dimensional parameter 6.

A strong property of the vector representation (2.27) is that it enables us to extend the proofs
in Section 2.9 from estimating functions with a single predictor function (2.17) to estimating
functions of the more general form (2.26) by imposing that A,(0) — A(f) as n — oo and
examining the normalized sum

v, XZZZ L [F(Xe) ~T0)]

where V,, is a diagonal d x d matrix,

. 1 1 N N
Vi = ding (o000 e oD, 00

(J)

and v,’ L 0 are appropriate normalization rates, e.g. o9 — =1 or vfﬁ?ﬂj = (nA,)7!

n,Rj

The regularity condition d < d is necessary for € to be identified by the estimating equation
Gn(0) = 0 and we say that 0 is over-identified if d < d. Whereas Z; 1, F' and ﬁi,l(G) are
fully determined by our choice of predictor functions { fj}j.vzl and corresponding predictor
spaces {P;_1,};, the coefficient matrix A, () can be chosen optimally if d < d. The Godambe
optimal estimating function G}, within the class (2.27) is the element for which the asymptotic
variance of én in the error distribution

Vil (b - 90) 2o Ny (o, AVAR(én)>
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is smallest; see e.g. Godambe and Heyde (1987) or the monograph Heyde (1997). For our
purposes, the optimality discussion in Section 3 in M. Sgrensen (2011) covers the class of
estimating functions (2.27) considered in this paper and Proposition 3.2 in M. Sgrensen
(2011) shows how to evaluate the optimal coefficient matrix A (6).

2.5 Estimating the asymptotic variance

Estimation of the asymptotic variance (AVAR) of 6, is necessary for the construction of
confidence intervals in practice. In this section we construct a Monte Carlo-based estimator
for the class of estimating functions

Gn(0) = [f(Xen) — po(f)] (2.29)

=1

defined in Section 2.4.1 and propose a feasible extension for the predictor spaces studied in

~

Section 2.4.2. Moreover, we derive an upper bound for AVAR(#,,) for estimating functions
(2.29) by invoking the mixing property of (X;) and show that it is tight by estimating the
mean of an Ornstein-Uhlenbeck process.

2.5.1 Simple predictor spaces

For the construction we suppose that 7" is a random variable defined on an auxiliary proba-
bility space (©2', ', IP.) such that T' ~ exp(7) and consider the product extension

Q=0xQ, F=FaF), 1@977:IF’9><P’7.

In particular, this implies that
B f(X0) = [ F(X0)(@)Bo(02) = [ F(X0)(w)Po(d) = Baf (X0

for any f € £ (uy) and, similarly, we freely interchange expectation w.r.t. INP’Q,y and P, when-
ever they coincide in the following.

As shown in Theorem 2.4.2,

~ 2p0 (f*Uo(f7))

AVAR(6,) = B () (2.30)
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for f* = f — po(f). To construct an explicit estimator, we note that for any g € %2,

Lo ([ Pratarar ) ot
= [ ([ st@rtowat) pota)
= [ ([ strtsmata) ) a
= [ ([ o8 (030 | X0 = ) ) )
(

S
[ B (000060 | X0 = ) pole) ) at

I
&
8

1o (9Ua(9))

= [ B o0)g(x0) at,

where we apply Fubini’s theorem to interchange the order of integration. Moreover, since
the canonical extensions of (X;) and T to variables on ) are independent under the product
measure Py ., it holds that

o (gUs(g) = /0 T Eo (9(X0)g(Xy)) dt
- /0 " Oty (g(Xo)g(Xe) ye " dt
= 4 /0 T Bon (T g(Xo)g(Xr) | T = 1) et

= 7B [Bas (7 g(Xo)o(Xr) | T)]
= 7 'Eoy [ g(X0)g(X1)] .

As a consequence, if {T;}X, denote independent exp(vy) variables under P’ and {Xz(fz)} the
values of independent trajectories of (X;) under Py with initial value Xy = x, the estimator

1 p i
-1 T; (4) (4)

TR g e’y (on ) g (XTZZ ) (2.31)
converges I@’gﬁ—almost surely towards g (gUp(g)) as K — oo for any g € 2.

Based on this observation, the following algorithm can be used in practice to estimate

A~

AVAR(D,,):
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MONTE CARLO ESTIMATION
1. Determine én,
2. Simulate K independent variables T; ~ exp(7y) for a fized v > 0,
3. Simulate t — Xt(l) on [0, T;] under Py ,

4. Evaluate

Remark 2.5.1. If the transition density of (X;) is known, the use of an exact simulation
scheme reduces step 3 to sampling Xél) under Py and, subsequently, Xj(fi). Alternatively, an

appropriate discretization scheme is necessary to simulate the value of X%)

In addition, the mixing property of (X;) leads to the following upper bound for AVAR(én).

Proposition 2.5.2. Suppose that (X;) and G, (0) satisfy Condition 2.2.2 and Condition 2.4.1,
respectively, and let Ao denote the spectral gap of (X;) under Py. Then,

AVAR(6,) < <2> Vary f(Xo)

%) ool (2.33)

Example 2.5.3. The Ornstein-Uhlenbeck process
dXt = K/(T] — Xt)dt + det,

is a well-known diffusion model that satisfies Condition 2.2.2. It was introduced in finance
by Vasicek (1977) to model interest rate dynamics. In particular, the invariant distribution

of (X¢) under Py is pg ~ N (77, %)

If we suppose that the values of x and £ are known, estimation of 7 provides an illustrative

example where we can determine AVAR(6,,) explicitly and attain the (feasible) upper bound
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of Proposition 2.5.2. To identify 1, we choose f(x) = z and by direct calculation,
U@ = [ B (X0 | Xo =) dt
= /OOO[EO(XMX():?U)—HO} dt
= /000 [xe_“t + no (1 — e_“t) — 770] dt

= (:p—no)/ e "tdt
0

~ (z—mo)
_ eom)
As a consequence,
o) =L [ ot = & (2.34)
Ho 0 w Ju Mo)" Ko 242 ’
and, in turn,
. ¢ 2
AVAR(d,) = <K> .

That we attain the bound (2.33) follows by observing that 0,E¢(Xo) = 1, Vary(Xo) = %
and applying that the spectral gap A\g = k.

2.5.2 1-lag predictor spaces

For the prediction-based estimating functions in Section 2.4.2, Theorem 2.4.5 shows that the
asymptotic variance

AVAR(0,) = W (80) Vo (f)(W (80) )7, (2.35)
where
_ L po(f) 0o, [Kp(D)po(f)] Oy [Ky(0)pa(f)]
WO =iy i ) (ot Lo )
and
Vo(f) Ko ([3on(ff)b( : ;90)]2> p1o (0:Uo(f}) [0:U0(f3) + fO-F10*( - ;60))
o(f) =

o o (10:U0(f5) + S0 120 :60))

To construct an estimator in this case, two important issues need be addressed. Firstly, since

~ pe(fLof)
Ki(0) = Varg f(Xo)’

the partial derivatives Jp, [Ky (0n) 1, ()] and Op; K #(6,) may be approximated using h-step
difference quotients for a fixed h > 0. Note, however, that if the evaluation of K is based
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on simulation, it is crucial to apply the same pseudo-random sequence from 1, to avoid
numerical instability.

Secondly, although f{ and f5 are easily approximated by replacing 6y with 6, as in (2.32),
only

po (10:U0(F)BC - 500))%) = 1o (SEUO(£1)) (2:36)

can be approximated using an estimator of the type (2.31). The remaining entries of Vy(f)
contain integrals involving 0, Uy (f{) and 0, Up(f5). Reasoning as in Section 2.5.1, our solution
will be to construct a pointwise estimator of 9,Uy(g)(x) for general g € J#;? using the
difference quotient as an approximation. This, in turn, enables us to approximate the integrals
w.r.t po by sampling from Ko, - Specifically, for h > 0 small,

Up(g)(z + h) — Uy(g)(x)
h

92Up(g)(x) ~

and re-applying the product space (Q, F, If”g;y) defined in Section 2.5.1,

Ug(9)(y) = /0 Plg(y)dt
= 57! /0 e"Eg (9(X1) | Xo =y)ye " dt

0 ~
= fy_l/o Eq,, (e“/tg(Xt) } Xo= y) ye 7t dt

= 7 'Ep, (Tg(Xr) | Xo =y)

1 < (i)
—1 T; (7
v ?26’7 g(XTi

=1

Q

X =),

where we explicitly emphasize the dependence on y. Hence, if we sample independent variables
{T;}E | and apply a fixed seed for the evaluation of {X%_)}, we obtain the pointwise estimator

K
8T 4()(x) = () = > ™ [g (X

i=1

£ =)

X =w4h) - g(Xf)

2.6 Applications in finance

To complement the asymptotic theory, we construct an explicit estimating function for the
square-root (CIR) process and a simulation-based extension for the volatility process of a
3/2 model from finance. While explicit prediction-based estimating functions are generally
available for the versatile class of Pearson diffusions defined in Forman and M. Sgrensen
(2008), the latter illustrates a simple way to encompass diffusion models for which analytic
moment conditions are not readily available into the estimation framework.
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Example 1 The square-root model
dX; = H(’I’] — Xt)dt + &/ Xd By, (237)

is widely used in many scientific areas. In finance, it was introduced as a model for interest
rate dynamics by Cox, Ingersoll, and Ross (1985) and famously adopted by Heston (1993) to
model the volatility of financial assets in relation to options pricing.

Under Py, the process has a unique invariant Gamma distribution with density

wo(x) = Fﬂ(z)xaleﬁx, r e Ry (2.38)

2Km
é‘T
a > 1, the square-root process (2.37) satisfies Condition 2.2.2. A clear exposition of the fact
that (X;) is p-mixing under Py can be found in Genon-Catalot, Jeantheau, and Larédo (2000).

for a = and § = %’2‘ In particular, if Xg ~ pp and we impose the Feller condition

To estimate the full parameter 8 = (k,n,£), we apply the pair of predictor spaces where
Xy is projected onto P;—11 = span{l, Xy»  }, and X2 onto P12 = span{1}. As shown in
Section 2.4, this yields the projections

Ti—11(0) = Eg(Xo) [1 — @n(0)11] + @n(0)11 Xer |,

where )

Eg [XoXa,] — Eg(Xo)
VargXo

and 7;_12(0) = @,(0)20 = Eg(X3). The first and second moment of the invariant Gamma

distribution are Eg(Xo) =7 and Ey(X3) =17 (77 + %), respectively, and using that

52(1 _ eann) ) 4,€€an71
X Xo~vZ—-7"7-—7-—- —— - X
Ap ‘ 0 Ak X2a 52(1 — G_RA") 0]

i (8)11 = (2.39)

where Xfl()\) denotes a non-central x2-distribution with d degrees of freedom and non-centrality
parameter A > 0, the conditional expectation

Eg (XAn | .7:0) = X(]e_KA" +n (1 — G_HA") ,

and, hence, by the tower property,

& A 2 A s NE: A

This shows that G, (6)1; = e **" and we obtain the explicit estimating function

1 0 Xon — kAR _ —KkAR
m =1 (1 e ) e Xin )
G (9) = E Xt?, 0 ! 2 v
s 0 ( X =0 (n+5)

3

(2.40)
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Example 2 Motivated by the empirical findings in Ait-Sahalia (1996b), Ahn and Gao
(1999) model interest rate dynamics using a diffusion process

dX, = kXy(n — Xy)dt + €X2dB,, (2.41)

where 0 = (k,n,&) € Ri. Notably, this process differs from a square-root process by having
a nonlinear drift term but remains a tractable choice for volatility dynamics; see e.g. Drimus
(2012) for pricing and hedging of options under the so-called 3/2 model.

By Itd’s formula, the inverse V; = 1/X; is a square-root model

dVy = (1 + & — knVy)dt — £/ VidBy,

from which we easily derive stationarity and mixing properties of (X;); under Py, the process
has an invariant inverse Gamma distribution with density

wo(z) = I‘B(Z) x_a_le_g, re Ry (2.42)

2:4+€%) 14 B = 2n

for a = & 52". Moreover, since

2(k +€%)
€2
(Vi) satisfies the Feller condition for any 6 € R3. Hence, it follows from the construction

of the mixing coefficient px(¢) in (2.10) that with X ~ pp, the diffusion model (2.41) is
p-mixing as it generates the same o-algebras as (V}).

>1e26+&2>0,

As a property of the inverse Gamma distribution, the v’th moment of pyg is finite if and only
if & > v, which translates to the explicit parameter restriction

26+ (2 — v)E2 > 0.
In particular, the second moment is always finite, but for v > 3 we must choose

(v—=2) 5
K> —-E".
5 &
To construct an estimating function, we again consider the predictor spaces where we project
Xin onto Pi11 = Span{l,thgl} and an onto Pj_12 = span{l}. The first and second
moments are Ey(Xo) = 25% and Ep(X3) = 21,17522, respectively, and by transforming the
non-central x2-density of (V;), one can show that

Eg (Xa, | Fo)=c-q ' e ™ M(q,q+1,u),

where M(a,b,x), b > a > 0, denotes the confluent hypergeometric function

1
M(a,b.2) = 5= ) /0 ey (1 — )b dy, (2.43)
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and
_ 2km
) = @ty
q(0) = 2k +8%) 1,

€2
uw(Xp;0) = Xgl-oc-oefnAn

By the tower property,
Eg(XoXa,)=c-q " g (Xo-e™ - M(q,q+1,u)). (2.44)

The unconditional moment in (2.44) does not have a closed-form analytic representation in
terms of 6, but can easily be approximated by simulating from the invariant distribution, i.e.

K
1 E L |
Eo(XoXa,) e g -2 Y & (q, g+ 1,a0), (2.45)
i=1

where {X’éi)}fil are i.i.d. random variables drawn from (2.42). Simulated moment estimators
have been studied by e.g. Duffie and Singleton (1993) to address this type of problems.

Hereby, we obtain the simulated estimating function

1 0 2K ~ ~
~ - X — 5k (1= @n(0)11) — @n(0)11 Xen.
Gn(6) :Z X 0 ( 2r+€ 2 _ 2w ), (2.46)
i=1 0o 1 G 2s+e?
where
K 2

_ 26 +)2 | 1 1) —a® (i 21

W(0)g; = ——>L ¢, LN X ~M(, 1, (1))_ ’
an(0)11 €2 c-q K; 5 e g9+ 1,4 ot €2

and we obtain an estimator by solving G,,(6) = 0.

2.7 Numerical results

Based on simulated trajectories, we evaluate the finite-sample behaviour of the estimating
functions derived in Section 2.6. We do this for varying values of A,, while keeping the time
horizon T fixed. Both processes are simulated exactly by sampling from the transition density
of a square-root process; see e.g. Broadie and Kaya (2006).
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Example 1 (cont.) By solving G,,(f) = 0 for the estimating function (2.40), we obtain
the estimators

—nAnth_XO
- 7Zth 1—6 HA)’

n n
0 = YK, X (1) Y Xy Y
=1 =1 =1

. 2% | [1 &
2 2 ~2
¢ = 5w )

which are easily found numerically. As a measure of performance, we evaluate the empirical
mean and standard deviation of our estimators based on N = 50, N = 200 and N = 500
trajectories of (X;). The time horizon 7' = 200 is fixed. A summary of our simulation study
is given in Table 2.1. With no exceptions, the estimator seems to approximate the true
parameter 0y = (1,10, 4) well.

>

TABLE 2.1

SUMMARY: SIMULATED SQUARE-ROOT PROCESS

N A, i 7 3

mean s.d. mean s.d. mean s.d.
50 1/2 1.07 0.20 9.85 0.76 3.97 0.26
50 1/4 1.05 0.18 10.03 0.90 3.98 0.13
50 0.1 1.03 0.16 9.97 0.82 3.99 0.10
200 1/2 1.07 0.21 10.03 0.90 3.97 0.22
200 1/4 1.05 0.17 10.02 0.89 3.99 0.14
200 0.1 1.04 0.15 9.98 0.89 4.00 0.10
500 1/2 1.06 0.20 10.00 0.91 4.00 0.24
500 1/4 1.05 0.17 9.97 0.87 3.99 0.15
500 0.1 1.04 0.16 10.02 0.90 4.00 0.10

Notes: (i) The standard deviation of 1} is relatively large. This is due to our choice of
& > k, which causes the trajectories {th} ' o to fluctuate substantially around the mean.
For smaller values of &, the standard deviation decreases sharply, as expected.

Example 2 (cont.) For simulated estimating functions, we rely on numerical optimization
in order to determine 6,,. The defining property Gy (0 ) = 0 may equivalently be formulated
as

Gn(0,)TGn(0,) =0 € R,
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and in practice we determine 0, by solving the minimization problem

~ ~

0, = arg min G,,(9)" G,,(6) (2.47)
oeK

on some bounded subset K C ©. Note that for the implementation of G,(6) it is crucial to
apply the same inverse Gamma sample (i.e. the same seed) for each value of 6; this ensures
that the mapping 6 — én(H) is sufficiently smooth for the optimization algorithm to converge.
For our simulation study we choose 6y = (10,7,3). A typical trajectory of (X;) is shown in
Fig. 2.2 and our numerical results are summarized in Table 2.3.

Remark 2.7.1. To initialize the optimization algorithm reasonably close to the true param-
eter 6y we can, for small values of A,,, apply the empirical approximations

1
Eo(X2) it Xin
n o= ~ :
Eg(Xo) — >0y Xon |

2
[log X7 N E?:l (logX n — logX;L_1>

& = ~ ;
f(;T XS ds An Z?:l Xt?71
and subsequently solve Ey(Xy) = 22_’22 w.r.t. K.

40

30
L

(x)

10
1

bl dsdborbawtan bisidibos

I T
0 50 100 150 200

t

FIGURE 2.2: A typical realization of (X;) for 6y = (10,7, 3). In particular, the nonlinear drift
term implies rapid mean-reversion when the process is above the stationary mean Eq(X() ~
4.83. Here A, = 1/2 and T = 200.
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TABLE 2.3

SUMMARY: SIMULATED 3/2 DIFFUSION

~

K A, K 7 13
500 1/2 9.86 6.50 2.82
500 1/4 10.10 7.08 3.17
500 1/8 10.08 6.92 2.94
1000 1/2 10.02 6.42 2.45
1000 1/4 10.11 7.17 3.29
1000 1/8 10.24 7.7 3.93
2000 1/2 10.20 6.53 2.90
2000 1/4 10.24 7.12 3.24
2000 1/8 10.22 6.98 3.06

Notes: (i) The constant K determines the accuracy of the moment approximation; see
(2.45). (i1) The values of k, 1 and & are from particular realizations of (X;) but suffice to
illustrate convergence.

2.8 Extensions and concluding remarks

An extension of interest would be to include observation error into the asymptotic theory,
corresponding to microstructure noise; see e.g. Ait-Sahalia, Mykland, and Zhang (2005) and
Gloter and Jacod (2001a,b) for results in this direction. For discretized diffusions, the use
of finite-dimensional predictor spaces implies a loss of efficiency compared to the martingale
approach in M. Sgrensen (2017), however, for non-Markovian models, martingale methods
are no longer tractable and an extension of the asymptotic theory to discretely observed
integrated diffusion processes is provided in Chapter 3. Prediction-based estimating functions
can also be applied for inference in diffusion-type stochastic volatility models, but requires
the use of a different set of high-frequency limit theorems.

2.9 Appendix A: Proofs

Proof of Lemma 2.53.2. By Theorem 2.4 in Genon-Catalot, Jeantheau, and Larédo (2000),
the mixing coefficient

[Li®
1112

and since (X) is reversible under Condition 2.2.2, Theorem 2.6 in Genon-Catalot, Jeantheau,
and Larédo (2000) implies that py (t) = e, where A > 0 denotes the spectral gap of Ag. In

px (t) = sup { f € .,%2(#9)} :
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particular,
Hl t9fH2 —\t
< [
Il —

for any f € L3 (up). O

Proof of Proposition 2.5.5. Let Uén) (f)= fon PP f dt. By Property P4 in Hansen and Scheinkman
(1995), Uén)(f) € Dy, for each n € N and

lim Ay (U5 (f)) = tim [PEf — f] =1,

n—00 n—o0

where limits are w.r.t. || - ||, and the latter equality holds since
. 9 . —An

< =0.

Jim ‘ P f ’2 < |IFly lim e 0

Moreover, by Jensen’s inequality, Fubini’s theorem and Lemma 2.3.2,

oo -vs ol = [ (] OOPtef(x)dt)zue(da:)
- /S ( / 001{t > nya~teM P! f(x))\e_/\tdt)zug(dx)

0

< /S ( / T > a2 (! f(:z:))2 e M dt) 1o(dz)

0

- /Ooo (/51{75 > pIa~leM (Pff(x)fw(dx)> at
= Al /nooeAt (/S (Ptef(a;)>2ug(dx)) dt
S AR LA

< NS [ e

= A2 flze
which shows that Ue(n)(f) converges to Uy(f) in .£?(ug) as n — oo and, taking n = 0,

1T (H)lly < X715 - (2.48)

Using that Ay is closed and linear, we conclude that Ag (Up(f)) = Lo (Up(f)) = —f; see e.g.
Property P7, Hansen and Scheinkman (1995). O
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Proof of Proposition 2.3.4. The proof is an application of the continuous-time central limit
theorem for martingales. Firstly, we note that

1 /nAn 1 n iAp
f(Xs)ds = f(Xs)ds
nAy Jo (%:) Vnly, ; (i-1)An, (Xe)

1 n Ay
- ; / F(X0) = (X )| ds +v/ndaVa(f),

(i—1)A,
and our first step will be to show that
1 n iAp

Vnly, ; (i—1)A,

F(X0) = [(Xer,)] ds = op, (1), (2.49)

If welet A; := (iié"lL)An [f(XS) - f(Xt;v;l)} ds, Fubini’s theorem combined with Lemma 2.10.2
implies that

An
EO (A@ | ]:;n_l) = /0 (I R(U, thnil; 90) du §c AiF(Xt;ll;eo)

for a generic function F(x;6p) of polynomial growth in z. Hence, under the additional rate
assumption nA3 — 0, it follows by Lemma 2.3.1 that

1 n 1 & P
Eo (A; | FI')) <c mAD2ZNTF(Xm :605) = 0.
m; 0( ‘ z—l) _C(n n) n; ( t 0)
Moreover, for all k£ > 1, Jensen’s inequality implies that
k Rl 1 [ ’
A = kg [ ) = )] as
1Ay
< AR [T - £ s
(i—-1)A, -
< AL osup [f(Xen ) — F(Xen I,
u€[0,A4]
and, hence, by Lemma 2.10.1,
1 « 1 «
A > Eo (JAP | Ay < An— > Eo < Sap ]!f(thglJru) — f(Xep )P | E’H)
=1 =1 u y=n
= 221N R X 100 B0
=1

The desired conclusion (2.49) now follows immediately from Lemma 9 in Genon-Catalot and
Jacod (1993).
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Furthermore, Proposition 2.3.3 and It6’s formula applied to Up(f) imply that

(N = ) + [ ' Lo(Uo())(Xe)ds + / ' 0,U0()(X)b(X s 60)dB,

= Uo(F)(Xo) /f ds+/ 0,Uo(f)(X2)b(Xs: 60)dB,
and, since Up(f) € £%(po),
\/W J)ds = \/W/ 0.Uo(f)(X)b(Xs; 60)dBs + 08, (1), (2.50)

The stochastic integral on the r.h.s. of (2.50) is easily shown to be a true martingale under
Py and by the pointwise ergodic theorem

1 " 2 ;. Po 2
| UK ds 5 o (0.l 00)F).

Collecting our observations,

VA VL(f) = \/nT Xs)ds + op,(1) (2.51)
- m / 0.Uo(£)(Xo)b(X; 00)dBy + 0mo(1)  (2.52)
2y N (0, 0 (10U (£)b( - :60)1%))

where convergence in law under Py follows from the continuous-time martingale central limit
theorem; see e.g. Theorem 6.31, Héusler and Luschgy (2015).

The alternative expression for the asymptotic variance Vy(f) in (2.16) follows from the result
that

T
\% /0 F(X2)ds 225 N (0, uo(fUn(£))) (2.53)

as T — oo for any f € ,,2”02 (10) and, hence, in particular for f € %’62; see e.g. Theorem 2.2 in
Genon-Catalot, Jeantheau, and Larédo (2000). The reader can consult Lemma VIII.3.68 in
Jacod and Shiryaev (2003) for details about the proof. O

Proof of Theorem 2.4.2. To prove the eventual existence of a consistent sequence of G-
estimators (6,,), we argue that the equivalent estimating function

Ha(6) = 5 3 [F(Xer) = ()]
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satisfies the regularity conditions of Theorem 1.58 in M. Sgrensen (2012); by Lemma 2.3.1,

P,
Hy(0) = H(0) = (1o — po)(f),
and since OpH,,(0) = —Ogug(f) for every n € N,

sup [9g Hp (0) + Oope(f)| = 0,
0co

and existence follows from continuity of the map 6 — 09y H,(6) and the additional assumption

Oapig(f) # 0.

Moreover, if we denote by B:(fy) the closed ball with radius ¢ > 0 centered at p, the
identifiability assumption H(0) # 0 for all § # 6y together with continuity of 6 — H(0)

implies that

IP’O( inf  |H(0)| > o> =1
0K\ Be (60)

for arbitrary € > 0 and any compact subset K C © that contains 6y. Hence, by Theorem 1.59
in M. Sgrensen (2012), any sequence of Gy,-estimators must either be consistent or converge
to the boundary of ©, Pg-almost surely. In particular, we conclude that 6,, will be unique
in any compact subset K C © that contains 6y with Pg-probability approaching one as n — oo.

To establish asymptotic normality, a first order Taylor expansion of H,, implies that

0 = /nAnHy,(0o) + 0 Hy (6%) /A (6, — ) (2.54)

for some 6} between 6,, and 6y and, by Proposition 2.3.4,

AN 2
ViBa ) = VB4 (T2) (s - (o)

= V/nAVL(fY) + op, (1)
205 N(0,V0(f))

where

Volf) =2 /S £ (@) Un(f) (o).

Since 0pH,(07) o, —0guo(f) as n — oo, the continuous mapping theorem applied to (2.54)
yields the result. O

Proof of Lemma 2.4.4. For simplicity, we define

Hy(0) =

1 n
D 9(An Xpp, Xy 10) (2.55)
" i=1



2.9. Appendix A: Proofs 37

where g = (g1, g2)" is given by

G1(An, Xyn, Xpn 50) = f(Xip) — an(0)o — an(0)1f(Xer ), (2.56)

92(Bns Xup, Xip 30) = F(Xep ) [F(Xip) = au(0)0 — n(O)1 f(Xez,)],  (257)
corresponding to the entries of G,.
Our first step will be to verify the coefficient expansion (2.21) of a, () into powers of A,,. By
applying Lemma 2.10.2,

Ey (f(Xa,) | Fo) = f(Xo) + AnLyf(Xo) + ALR(An, Xo36),

which implies that

Eq [f(X0)f(Xa,)] = Eo[f(Xo)Eo(f(Xa,) | Fo)]
= po(f?) + Anpio(fLof) + ALR(An; 0),

where |R(Ay;0)] < C(0) for a constant C' > 0. This yields the A,-expansion

in(0)) = Eq [f(Xoyji?ZQO; [Me(f)]2 =1+ AK(0) + A%R(An; 9), (2.58)

and, as a consequence,

in(0)0 = —AnK (0o (f) + AL R(An; 6). (2.59)

In turn, this enables us to expand Eg [gl(An, Xt?,Xt;Ll;H) ’ ]-}"_1} into powers of A, since
Eo (f(Xen) | Fy) = f(Xen )+ AnLof (Xen ) + AZR(Ap, Xin 3 6p),
which together with (2.58) and (2.59) implies that

Eo {gl(Ath” Xt” 1% ‘ 1]
= Eo (f(Xe) | Fy) — an(0)o — an(0)1f (X )
= A, (zo F(Xm )+ Kf(0) [ue(f) —f (Xt?_l)]> + A% Ro(An, Xin ;0). (2.60)

Hence, by Lemma 2.3.1,

A ZEO {Ql(An,th»thLﬁe) ‘ fz‘n—l]

- fz.cofxtn ) K0 3 [mol) = )] + 52D RolB, Xer 30

i=1 i=1

— K7(0)(1o — o) (f),
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where, in particular, the contribution from the first term vanishes since po(Lof) = 0; see e.g.
Hansen and Scheinkman (1995).

To apply Lemma 9 in Genon-Catalot and Jacod (1993), it remains to show that
1 o 2
5 S E [gl(An,th X | ‘ ] = op, (1). (2.61)
i=1

From the coefficient expansions (2.58) and (2.59), it follows that
Ti—1(0) = an(0)o + an(0)1 f(Xer ) = f(Xin |) + AnR(An, Xyn 10),
which, in turn, yields the decomposition
BB X X 10) = [10X) — 10X )] 4
[£(X0) = F(Xi )] AnR(An, Xip360) + AZR(AW, Xip36). (2:62)
For the first term, Lemma 2.10.1 implies that

1 < 9 11 a Po
Az Do (11 X) = S )P | | = S0 3D Bl Ko 500) 20

where we apply that nA,, — co. Similarly,

1 n )
n2A,, ZR(An,Xt?_l;H)Eo [|f(Xt;L) — (X ) ‘ }—i_l]
i=1
A}/Z 1 n
a nAn ﬁ ; RO(An7 Xt?—l ) 0)
= O]PO(l)v
and, finally,
1 & .
n2? Z R(Ap, Xin 50) =0,

i=1
which together implies (2.61). Thus,

1 « P
A Zgl(Aantfb-Lvthb-Ll;e) = K1(0)(1o — o) (f)-
=1

Similarly for ga(Ap, Xin, Xyn ;0), it follows easily from (2.60) that
Eo [QQ(Athgl,Xt;"gl;a) ‘ }—in_1]

= A, (f(Xt?_l)EOf(Xt?_l) — K5(0)f(Xip ) {f(Xt?_l) - Me(f)D
+ AZRo(An, Xpn 30),
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and, hence,

~y > |:g2(An7Xt?7Xt?_l§0) ’ }711} 2 wo(fLof) — Kp(8) [uo(f2) — mo(f)me(f)] -
™ i=1

Moreover, since g%(An,Xt?,Xt?_l;G) = f2(Xt?_1)g%(An, Xip, Xyn ;0), we easily see that

1 < .
7'L2A2 ZEO |:g§<An7Xt;naXt;”_176) ‘ fi—l] = 0P0(1)~
n =1

To establish the limit of 9yr H,,(0), we write

H,( A ZZZ 1 [f(Xen) = ZF 1dn(0)]
which shows that

Byr Hy (0

i— —186Tdn(9) = Zn(f)An(e)v

where Z,,(f) == 13" | Z; 1 ZF | and A,(0) :== —A, 10y, (). By Lemma 2.3.1,

B 1 o(f)
Zn(f) — Z(f) = < no(f)  po(f?) )

and applying the power expansion (2.21),

A,(6) = Oy < Kyt (?Jf‘(%()f ) > Ay R(An:0) — Or < K (g}%()f ) ) . A(6),

which holds for all # € M under the regularity assumption (2.23). Collecting our observations,

0 U o) (0 S Oo] 9 KOl
i@ 2 2040 = (i) 1oi? ) (ML) Mo ):

To argue that the convergence is uniform over M, note that

10 Hn(0) = Z(F)AO = [[Za(f)An(8) = Z(F)AO)]]
= 1Zn(f)An(0) — Zn(f)A(0) + Zn(F)A(0) — Z(F)A(D)]|
12n()[An(0) = AO)|| + [[[Zn(f) = Z(F)]AO)]

IA

and, in particular,

120 ()] sup [[An(0) = AO)]| + 1Zn(f) = Z(F)]| sup [A@)] -
oeM oeM

sup ||Gpr Hn(0) — Z(f)A0)] <
oecM
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By continuity of norms, ||Z,(f )|| SNZO, N120(f) — Z(f)| = o, (1) and (2.24) follows by
observing that

sup [|An(0) — A(0)]| = An sup [|9pr R(An; 0)|| <c(rm) An =0
M oM

and applying continuity of 6 — A(0). O

Proof of Theorem 2.4.5. We continue with the notation (2.55)-(2.57) introduced above. Ex-
istence of a consistent sequence of G,-estimators (én) follows from Lemma 2.4.4 and Theo-
rem 1.58 in M. Sgrensen (2012). Moreover, by the same reasoning as in the proof of Theo-
rem 2.4.2, the identifiability assumption 7(6p; €) # 0 for 6 # 6y and continuity of 6 — ~(6p; 0)
imply that the solution 6,, will be unique in any compact subset XL C © that contains #y with
Po-probability approaching one as n — oo.

To establish asymptotic normality for nA? — 0, we again rely on a first order Taylor expan-
sion

nA, H, (00) 4+ 8gr Hy (0%)/nA (6, — 6p),

where 0% lies between 6, and 6y, dyr H,, (07) o, W(6y) and the main difficulty is to show
that

VA H(0) 2% Na(0,Vo(f))
Reusing the coefficient expansions (2.58) and (2.59), we find that
91(An, Xy, Xyn 5600) = f(Xen) = f(Xen )+ Anfi (Xen ) + AZR(Ap, Xin 3 60)

where f] is defined in Condition 2.4.3. Hence,

Mzgl ATL?th th laGO)

n n

[f(Xty)— f( X }Jr\/nT Va(f7) + Ai)l/Q-%ZR(An,th_l;eo)

i=1 i=1

and recognizing the first term as a telescoping sum, Proposition 2.3.4 implies that

mZgl (D, Xep, X 300) = /0B Va(F7) + opy (1)

Yo

2 N (0, o ([0:Uo(f7)b( - 5 60)1%)) -

The second entry of v/nA,, - H,(6y) requires a bit more work; by Itd’s formula,

f(Xip) = f( X ) = AnLof(Xen ) + Ai(0o) + M;(0o),
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where

iAnp
o = [ e - Lo )] s

i—1)A,

1Ay
Mi(6) = /( " e XX, 0)dB,

and, hence, by applying the expansions (2.58) and (2.59) as above,
92(Ap, Xip, Xyn 360) =
F(Xen )Ai(00) + A fs (Xen ) + f(Xen )M;(60) + AL R(Ap, Xyn |

A straightforward extension of the proof of (2.49) implies that

= 3" (X ) Ai(l0) = oy (1)
=1

since nAf’l — 0 and, as a consequence,

292 A, Xy, Xpn 500) = /0D Va(f3) +

1 n
\/nA v\, ;ﬂxt

To gather the non-negligible terms, we argue as in (2.51)-(2.52) that

\/nA Vi (f3)

nAp
= \/nT / f2 dS + OIPO(l)

= M 8 Uo(f3)(Xs)b(Xs;60)dBs + op, (1)

1

n Ay
e [ AU BB, + o, 1),

Vi, i=1

which, in turn, yields the stochastic integral representation

i—1)A

:6o).

M (0o) + op, (1).

1 n
Jnh, ;%(An,Xty,Xtyl;@o) =
1 n 1An
nA Z/( 1)A |:6 Uo(fék)(XS) + f(th_1>8wf(Xs)] b(Xs§ HO)st + O]P’o(l)-
noj=1 7 HAan

At this point, we can apply the CLT for martingale difference arrays; see e.g. Hausler and

Luschgy (2015). To shorten notation in the following, we let

1A
7= /( [0.U0(5)(X0) + F(Xip,)0uF(X.)] B(X,:60)dB,,

i—1)An



42 Chapter 2. Estimation for Diffusion Models

and introduce

h(z) = [0:Uo(f3) (@) + f(2)0u f ()] b (2 6p).
Firstly, by the conditional It6 isometry, Tonelli’s theorem and Lemma 2.10.2,

1 n
nA ZEO ((Zi)Q ‘ ]:zln—l)
" oi=1

n Ay 9
LA ZEO (/( [axUO(fg)(Xs) + f(Xt?_l)a’Bf(Xs)} b?(Xs;600) ds

i—1)Ap

-

Ffl) ds

= A /(A B  [2:00(55)00) + £ )0 (X0)]” #(Xei60)

Ap
= nAn Z/O [h(Xt;Ll) +u- R(u, Xt?,l; 90)] du

= % ; h(Xen ) + op, (1)
2 o ([0:U0(f3) + f0u ST 02( - 360) )

Moreover, for any g € Cg(S’) and k£ > 2, the Burkholder-Davis-Gundy inequality, Jensen’s
inequality, Tonelli’s theorem and Lemma 2.10.2, respectively, imply that

k
Eo ( znl)
iA, k/2
E, (( / 92<Xs>ds> f‘”)
(i—1)An

iAp
A2 Ko ( [ latxortas f‘")
(i—1)Ap,

iAnp
= At [ (x| A 4

1An
/ 9(X,)dB,
(i—1)An

IN

IN

Ap
= Al [ (a0 )+ e Rl Xop 360)) du

<o AFPlg(Xpn P+ AEPTUR(X 5 00),
so based on the inequality

Zi|* <c
3
+ 1 f (X )P

3

)

iAp
| 0l ()b o)
(i—1)An

iAp
/ Do f (X,)b(Xs: 00)d B,
(i-1)An

)
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we conclude that

1 = .
a2 B (12| i)
" i=1

n

11 .

=c ﬁﬁz [|31U0(f2)(Xt;:1)!3+\f(thal)\3|azf(Xt;:1)|3 b(Xen 5 60)I° + oy (1)
=1

Fo, .

By the martingale CLT for triangular arrays,

T D (B Xop X 180) 2 N (0,0 ([000(5) + SO 200)) ) (203)
" =1

Finally, we apply the Cramér-Wold device to establish joint convergence in law; using the
martingale decomposition

Zgl Ap, Xpny Xin 5600) = 9:Uo(f7)(Xs)b(Xs; 60)dBs + opy (1),

1 Z”: "
\/nA \/’I?,An i1 (i—-1H)A

a minor modification of the proof of (2.63) shows that

1 & 1 <
. Ap, Xpn, Xm0 : Ap, Xin, Xyn 50
C1 \/m Zz;gl( tz tz—l 0) + €2 \/m ;gz( tz t171 0)
1« [
= = [ (BT )X + el (X )00 (X)) X.i 80)Bs + or, (1)
no=1 Yt

Do

= N (O,Mo ([@:Uo(clff +eafy) + caf O fP 03 ;90)>)

for arbitrary constants c1,ce € R. In particular, we apply linearity of the potential operator
f = Uo(f) to write

10:Un(f1) + c20:Uo(f2) = 0xUo(c1 f1 + c2f3).

Proof of Proposition 2.5.2. By the general inequality (2.48),

1Us(9)lly < A" llgll

where A > 0 denotes the spectral gap of (X;) under Py and g € 57 is arbitrary. Therefore,
by the Cauchy-Schwarz inequality,

2
lgll2

1o (9Us(9))] < llgll2 1Us(9)ll2 < =

and, as a special case,

) Varof(Xo)
AVAR(9r) = = o < (A()) Bl
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2.10 Appendix B: Moment expansions

The proofs in Section 2.9 rely on conditional moment expansions for diffusion models and
the following results are essentially taken from Gloter (2000) and Florens-Zmirou (1989),
respectively. Rough proofs are provided for completeness. In the sequel, 8 € O is arbitrary
and we assume for convenience that 0 < A < 1.

Lemma 2.10.1. Let f € C)(S). For any k > 1,

Eg ( S[upA] f (Xers) = F(X) P ‘ ft) <, AR (14 ]X))
s€|0,

Proof. We start by showing the result for f(z) = = and since

1/2
;t)

Eg < sup | Xits — Xy
S€[0,4]

Fi| <Eg| sup [Xpps — Xif?
s€[0,A]

by Holder’s inequality, it suffices to consider k£ > 2.

Firstly, since

| Xirs — Xi| =

)

t+s t+s
/ a(Xy; 0)du + / b(Xy; 0)dB,
t t

we easily derive that

Eg ( sup | Xpps — XolF ' ft) <c

s€[0,A]
t+s
Eg | sup / a(Xy;0)du| | Fy | +Eg | sup
sel0,A] 1/t s€[0,A]

k k

t+s
/ b(X,: 6)dB,
t

ft) |

To bound the drift component, it follows by Jensen’s inequality that

t+s 1 t+s
Eg | sup / a(Xy;0)du| | F| = Eg| sup s* / a(Xy;0)du
se0,a] 1/t s€[0,A] ¢

s

t+s

< Eg| sup sk_l/ |a(Xu;9)|k du
s€[0,4] t

k k

)
:

and, using the linear growth assumption of a(x; ) in Condition 2.2.2,

la(Xy: 0)|F <c (14| X)) <c 1+ |X)F + | X0 — X,
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which yields the upper bound

t+s
Eg ( sup / a(Xy; 0)du ]-"t>
s€[0,A] [/t

t+s
<c Ey ( sup sk_l/ (1 + 12X+ X — Xt|k) du
t

Fi
s€[0,A]
}‘t>

t+A
- A’“(1+Xt|’“)+A’“_1/ Ey (|Xu—Xt|k’]-"t> du
t

k

t+A
_ E9<Ak_1/ (1+|Xt|k+|Xu—Xt|k> du
t

A
< Ak/2(1+’Xt|k)+/ Eo ( sup IXt+s—Xt!’“‘ft> du, (2.64)
0

s€[0,u]
where we apply Tonelli’s theorem to interchange the order of integration.

By similar reasoning, we bound the local martingale component using Jensen’s inequality and
a conditional version of the Burkholder-Davis-Gundy inequalities; see e.g. Jacod and Protter

(2012). For k > 2,
ft>

)

t+A
<¢c AR, (/ <1+|Xt|k+|Xu—Xt\k) du
t

k

t+s
Eg | sup / b(Xy;0)dB,
s€[0,A] [Vt

t+A
<c Ey / bQ(Xu,H) du Fi
t

t+A
< AR, (/ b(X; 0)|* du
t

k/2

)

( sup | Xpps — Xy|F ‘ ]-"t> du. (2.65)

A
< Ak/2(1+‘Xt‘k)+/ Ey
s€[0,u]

0

Since the upper bounds (2.64) and (2.65) coincide, we conclude that
A
Eo | sup |Xers — Xef¥ | Fo | <o AM2(1+ X)) +/ Eg | sup [Xips — Xo|" | 7 | du
s€[0,A] 0 s€(0,u]

and, at this point, the desired result

Eq ( sup | Xpvs — Xe|¥
s€[0,A]

ft> <o AF2(1 4 |X))°, (2.66)

holds by a Grénwall-type inequality; see e.g. Theorem 1.3 in Bainov and Simeonov (1992).
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For general f, the first order Taylor expansion

f(Xigs) = [(Xt) + On f(XT) (Xpgs — Xi),

is satisfied for some X* between X; and Xy, . Hence,

Eg ( sup | f(Xeps) — f(Xp) [P
s€[0,A]

ft) ~E, ( sup [0 f(X*)(Xops — X) ¥ ‘ ﬂ)

s€[0,A]
and since 0, f is of polynomial growth,

sup [0, (X" <o 141X + sup [Xeps — X[
s€[0,A] s€(0,A]

and a double application of (2.66) yields the result. O

Lemma 2.10.2. Suppose that a(z;0) € Cf,k’o(Sx@), b(x;0) € Czk’O(Sx@) and f € Cz(kﬂ)(S)
for some k > 0. Then,

k z'
Eo (f (Xita) | Ft) = Z F(Xe) + AFTR(A, X450).
— il

Proof. We only consider k = 0, the general case may be shown by induction; see Lemma 1.10,
M. Sgrensen (2012). By It6’s formula,

t+A t+A
F(Xera) = F(X0) + / Lof(X)ds + / O f(X.)b(X.; 0)dB,

and since 0, f and b( - ;0) are of polynomial, respectively linear, growth in z, the stochastic
integral is a true (F;)-martingale w.r.t. Py and

A
By (F(Xeea) | 7)) = 1)+ [ B (Lof (Xer) | F3)
0
Moreover, since Ly f is of polynomial growth in z,
1Lof(Xipu)| <o 14Xt + | Xipu — Xi|©

and, hence,
A
A_1/ Eg (Lof(Xttu) | Fr) du = R(A, X35 0),
0

by a simple application of Lemma 2.10.1. O
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ABSTRACT. Prediction-based estimating functions provide a general framework
for parametric inference in discretized diffusion-type models. In this paper, we
suppose we observe a discretization {It;;}?:o of an integral process I; = fot Xsds,
where (X) is a time-homogeneous diffusion with an unknown parameter § € © C
R¢ that we wish to estimate. The observation times {tI'} are assumed to be de-
terministic and equidistant, i.e. tj = ¢A, for some A, > 0, and we consider the
high-frequency asymptotic scenario where A,, — 0 and nA, — oo. Subject to
mild regularity conditions on (X;), we prove existence of a consistent and asymp-
totically normal estimator 6,, for a tractable class of prediction-based estimating
functions. The proofs are based on power expansions for diffusion and integrated
diffusion models and asymptotic normality is obtained under the additional rate
assumption nAZ — 0. Our results are of particular interest in finance, where re-
alized volatility or variations thereof are often used to construct a trajectory of
the latent integrated volatility process.

Keywords: FEuler-1t6 expansion, high-frequency data, integrated diffusion, poten-
tial operator, prediction-based estimating functions, p-mizing.
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3.1 Introduction

Diffusion processes are widely used in many scientific areas, particularly in finance. While the
processes are characterized in terms of continuous-time dynamics, available time series are
always observed at discrete points in time. To bridge the gap between theory and applications,
statistical methods for discretely observed (discretized) continuous-time stochastic processes
is an active area of research today, and the recent availability of high-frequency data has
spiked considerable interest into the construction of estimators and test statistics with nice
asymptotic properties as the time between consecutive observations goes to zero.

This paper deals with parametric inference for integrated diffusion models (I;)¢>o of the
general form

dl, = Xdt (3.1)
dXt = a(Xt,H)dt—l—b(Xt,Q)dBt,

where (X;) takes values in an open interval (/,7) C R and the parameter of interest # € © C
R? for some d > 1. We suppose we observe a single discretization {It?}?zo of the integrated
process at deterministic, equidistant points in time and write t' = ¢A,, for the appropriate
A, > 0. To encompass consistent estimation of both drift and diffusion parameters, we
consider the ergodic high-frequency sampling scenario

n—o00, A,—0, n-A,— oo, (3.3)

and suppose that the latent diffusion process (X;) is strictly stationary under the probability
measure Py for an invariant distribution Xy ~ ug. A more appropriate, equivalent observation
scheme is obtained for the transformed variables
1Ay
Y = A (Itln - It;_l) = A X, ds (3.4)
(i—1)A,

where ¢ = 1,...,n. Note that for every fixed value of A,, the sequence {Y;}?°, inherits
stationary under Py from that of (X).

For the construction of estimators én, we apply prediction-based estimating functions. This
class of estimating functions was proposed by M. Sgrensen (2000, 2011) as a versatile frame-
work for parametric inference in non-Markovian diffusion-type models, and integrated diffu-
sions were considered by Ditlevsen and M. Sgrensen (2004) as a special case. As their main
contribution, Ditlevsen and M. Sgrensen (2004) illustrate a simple way to construct explicit
Godambe optimal prediction-based estimating functions for (X;) belonging to a tractable
class of models that includes the Ornstein-Uhlenbeck process and the square-root process of
Cox, Ingersoll, and Ross (1985). Low-frequency asymptotic results follow easily from general
results in M. Sgrensen (2000). The main contribution of this paper is a formal derivation of
feasible high-frequency limit theorems for a large class of prediction-based estimating func-
tions. Our proofs rely on the asymptotic results for diffusion models derived in Chapter 2 and
we show that, under suitable regularity conditions, consistency and asymptotic normality is
attained within the ergodic scenario (3.3).



3.1. Introduction 49

Parametric estimation for discretely observed diffusion models (X;) of the form (3.2) is the
topic of many papers. Since the preferred method of maximum likelihood is infeasible for
most models applied in practice, a wide range of alternative methods have been proposed and
applied successfully. The Markov property of (X;) enables most types of quasi-likelihood, in-
cluding contrast functions (Yoshida (1992), Hansen and Scheinkman (1995), Kessler (1997)),
estimating functions (Bibby and M. Sgrensen (1995), Kessler (2000)), likelihood expansions
(Dacunha-Castelle and Florens-Zmirou (1986), Ait-Sahalia (2002)), Markov-chain Monte
Carlo (Elerian, Chib, and Shephard (2001), Roberts and Stramer (2001)) and simulated
likelihood (Beskos, Papaspiliopoulos, Roberts, and Fearnhead (2006)) to name a few.

Although to a lesser extent, parametric inference for integrated diffusions has also been the
topic of many papers in econometrics and statistics, the former in the guise of continuous-
time stochastic volatility models. If we for illustrative purposes consider the simple stochastic
volatility model

dS; = /v dWr, (3.5)

where (W) denotes a standard Brownian motion, the availability of high-frequency observa-
tions of (S;) enables us to filter out a trajectory of the latent integrated volatility

/0 ods (3.6)

and view it as an observable process.! This property has lead to the construction of estimators
for integrated processes in the case where v; = v¢(6) for a parameter # € © C R? that we
wish to estimate, e.g. if the volatility dynamics are described by a time-homogeneous diffusion
process
dvy = a(v; 0)dt + b(v; 0)dBy.
Examples of the latter include the GARCH(1,1) diffusion model in Nelson (1990), the square-
root (CIR) process in Heston (1993) and the 3/2 diffusion in Drimus (2012). Estimation based
on realized power variations that approximate the integrated volatility (3.6) have been stud-
ied by e.g. Bollerslev and Zhou (2002), Barndorff-Nielsen and Shephard (2002a) and Todorov
(2009), the latter in a general GMM framework for a large class of stochastic volatility mod-
els with jumps. On a related note, the recent paper by J. Li and Xiu (2016) appears to
be the first to develop high-frequency (infill) asymptotics for GMM estimators of parame-
ters in the diffusion coefficient of the volatility process by preliminary filtering of the spot
volatility instead. On the statistical side, the paper by Ditlevsen and M. Sgrensen (2004) was
summarized above and Baltazar-Larios and M. Sgrensen (2010) propose a simulated EM-
algorithm to obtain maximum likelihood estimators for integrated diffusions contaminated
by (microstructure) noise. A third, and for this paper highly influential, approach based on
expansion results for small values of A,, was proposed by Gloter (2000, 2006). His construction
of contrast estimators utilizes the basic idea that, as A,, — 0,
1Ay
Y= A" Xods ~ Xpn |
(i—1)Ap

Nonparametric filtering of integrated volatility from high-frequency financial time series is an emblematic
problem in financial econometrics. The reader can consult e.g. Ait-Sahalia and Jacod (2014) for a recent
monograph with an extensive list of references.
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which allows for the derivation of high-frequency limit theorems for integrated diffusions.

Finally, nonparametric estimation of the drift a( - ) and diffusion coefficient b( - ) in (3.2) from
high-frequency observations of (I;) was studied by Comte, Genon-Catalot, and Rozenholc
(2009). Their results are based on earlier work on nonparametric estimation for diffusion
models in Comte, Genon-Catalot, and Rozenholc (2007).

The paper is organized as follows. In Section 3.2 we present the notation used throughout,
formulate our general assumption on (X;) for the asymptotic theory, and define a tractable
class of prediction-based estimating functions. Section 3.3 contains functional versions of the
classic Euler approximation

Xt? |]:t?71 =~ N (th-il + Ana(thl; 9), Anb2(thl71 N 9))

and the similar result that

1 1
Y, ‘th_l ~N (Xt?_l + A”ia(Xt?—l ; 9), Anng(Xt;‘_1§ 9))

for small values of A,,. The latter approximation was essentially pointed out by Gloter (2000).
Formally, these approximations take the form of power expansions and we refer to them as
FEuler-Ité expansions in this paper. They serve as building blocks for the asymptotic results
in Section 3.5. Section 3.4 is devoted to limit theorems for integrated diffusions which, when-
ever possible, illustrate the advantage of working directly with the integrated observations.
Section 3.6 concludes. Proofs are deferred to Section 3.7 and we include any auxiliary results
in Section 3.8.

3.2 Preliminaries

In this section we present the general notation used throughout the paper, formulate our
main assumption on the underlying diffusion model (X;), and define a tractable class of
prediction-based estimating functions.

3.2.1 Notation

1. The true parameter is denoted by 6.

2. We denote the state space of (X;) by (S, 4(S)) and allow S to be an arbitrary open
interval, i.e. S = (I,r) for —oo <1 < r < 0o, equipped with its Borel o-algebra Z(S).

3. Inshort, we write ug(f) = [q f(x)pg(dx) for functions f : S — R and denote by 2P ()
the space of equivalence classes of p-integrable functions w.r.t. the invariant measure

He-
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. For any diffusion process (X;), the potential is defined as the operator f — Uy(f),

where

Up(5)@) = [ Plrta)a (37)
and (Pﬁ)tzo denotes the family of transition operators,
P f(z) =Ep (f(X:) | Xo = ).

For random variables Y and Z defined on a probability space (€2, F,P), we write Y <¢ Z
if there exists a constant C' > 0 such that Y < C'- Z, P-almost surely.

To define some function spaces of particular interest, recall that f: S x ©® — R is said to be
of polynomial growth in x if | f(z;0)| <¢ 1+ |z|¢ for all 2 € S.

6. We denote by Cg’k(S x ©), j,k > 0, the class of real-valued functions f(x;#) such that

- f is j times continuously differentiable w.r.t. x;
- f is k times continuously differentiable w.r.t. 1, ...,0y;

- f and all partial derivatives 6%18511 . --8g§f, g1 < j, k1 + -+ kg <k, are of
polynomial growth in z.

Similarly, we define CJ(S).

We let
A = {f € Cy(S) = uo(f) = 0. Up(f) € Co(S)}- (3.8)

The infinitesimal generator of (X;) is denoted by Ay and the corresponding domain
by D.4,. For this paper, it suffices to note that if (X;) satisfies Condition 3.2.1 below,
Cz(S ) C D4, and the explicit representation Agf = Ly f, where

£0f () = a(r:0)0. 1) + L1 (2:6)02 () (3.9

holds for all f € CZQ,(S); see e.g. Kessler (2000).
Finally, for use in the appendices, R(A, z;6) denotes a generic function such that
R(A, ;0)| <c F(x:0), (3.10)

where F' is of polynomial growth in z.

3.2.2 Model assumption

To establish asymptotic results for integrated diffusions of the general form (3.1)-(3.2), we
impose the following dependence and regularity conditions on (X;):
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Condition 3.2.1. For any 0 € O, the stochastic differential equation
dXt = CL(Xt; H)dt + b(Xt, H)dBt, Xo ~ g

has a weak solution (2, (F%), Py, (Bt), (X)) for which

- Xo is independent of (Bt),
. ‘Ft =0 (X07 (BS)SSt);

- (Xy) is stationary, p-mizing under Py.
Moreover, the a priori triplet (a,b, ug) satisfies the reqularity conditions

ca,be (S x0),
+a(@; 0) + [b(x; 0)| <c¢ 1+ |z],
- b(x;0) >0 forx e S,

- Jslz|Fug(dz) < oo for all k> 1.

For the discretized filtration {Fi»} we let 7' := Fyn. In particular, we want Condition 3.2.1
to be satisfied for the true, unknown, parameter 6y. The following restriction on © ensures
that we obtain asymptotic normality of the prediction-based estimators 6,, in Section 3.5 by
standard arguments.

Condition 3.2.2. Suppose that
- fp € int(O);

- O is convex.

Here int(©) denotes the interior of ©. The notation pg = pg,, Po = Py,, etc., is applied
throughout the paper.

3.2.3 Prediction-based estimating functions

Prediction-based estimating functions were proposed by M. Sgrensen (2000, 2011) as a versa-
tile estimation framework for non-Markovian diffusion-type models. In this paper, we consider
the class of estimating functions

n N
Gn(0) = D > w1 [fi(Yi) = #ii1(60)] (3.11)

i=q+1 j=1
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where { fj}éyzl is a finite set of real-valued functions in .#2?(jg) and for each j € {1,..., N},
#i—1,;(0) denotes the orthogonal .Z?(pg)-projection of f;(¥;) onto a finite-dimensional sub-
space

Pi—1; =span {1, f; (Yic1),..., f; (Yig,) } C 2L (1) (3.12)

where ¢; > 0. The coefficients 7;_; ; that appear in (3.11) are d-dimensional column vectors
with entries in P;_1 ;.

The collection {P;_1 ;}i; are known as predictor spaces. Hence, what we predict are values
of f;(Y;) for i > ¢+ 1 where ¢ := maxi<j<n ¢;. Since every predictor space P;_1 ; is closed,
the 2 (ug)-projection of f;(Y;) onto P;_1 ; is well-defined and uniquely determined by the
normal equations

By (7 [£;(Yi) = Ti-1,5(0)]) = 0 (3.13)

for all ™ € P;_1 j. Moreover, by restricting our attention to stationary diffusion models (X)
and predictor spaces of the form (3.12), the orthogonal projection #;_1 ;(0) = @, (0)T Z;_1 ;

J
where

Ziag=(Lf5 (Vi) s /5 (Vi)

and dn(G)? denotes the (¢; + 1)-dimensional coefficient vector
n(0)] = (n(0)j0,@n(0)j1 - .-, dn(0)5q,)

determined by the moment conditions
Eg [Zg,,5fj(Yg;41)] —Eo [quJZ;,j} in(0); = 0. (3.14)

Note that in the simplest case of ¢; = 0, P;—1,; = span{1} and it follows immediately from
the normal equations (3.13) that 7,1 ;(0) = Eq f;(Y1).

We obtain an estimator 6, by solving the estimating equation
Gn(0)=0
and refer to én as a G,,-estimator.

Remark 3.2.3. For most diffusion models, the distribution of Y; is difficult to determine
for a fixed A, > 0. Therefore, the evaluation of moments in (3.14) poses a difficult problem,
with no general solution. As noted by Ditlevsen and M. Sgrensen (2004), a restriction to
polynomial predictor functions f;(y) = Y5, Bj € N, often enables us to find the necessary
moments by integrating over mixed moments of (X;) and leads to explicit prediction-based
estimating functions for the Pearson diffusions defined in Forman and M. Sgrensen (2008).
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3.3 Euler-It6 expansions

This section is devoted to power expansions for functionals of diffusion and integrated diffusion
processes observed over a small time interval ¢} —¢!' | = A,,. Essentially, the following results
provide a bridge between the asymptotic theory in Chapter 2 and that of the present paper
as a somewhat lengthy, but straightforward, extension. The results are formulated w.r.t. an
arbitrary probability measure Py.

3.3.1 Diffusion processes

The following expansion appears in various guises in the literature on statistical inference for
stochastic differential equations; see e.g. Kessler (1997).

Proposition 3.3.1. Let f € Cﬁ(S). Then, there ewist F'-measurable random variables €1 ;
and €2, such that

FXum) = f(Xen )+ AY20, f(Xun Ib(Xpn 50)e1,i + €2, (3.15)
where

- e1, ~N(0,1) and independent of F* ,,

- €9, satisfies the moment expansions

Eg (g2 | Fit1) = AnLof (Xen ) + AZR(Ap, Xn36), (3.16)
Eg (531 | Fit) = AL R(An, Xip 50). (3.17)

3.3.2 Integrated diffusions

To establish a similar result for functionals of the integrated process, we rely on earlier work
by Gloter (2000) as well as k’th order Taylor expansions of the form

. Co1
0L (X (Vi — Xgp ) + gaﬁf(zz”)(Yi - Xer ), (3.18)

for some s € (0,1).

The following lemma provides an upper bound for the remainder term in (3.18) for a given
k>1.
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Lemma 3.3.2. Let f: S — R be of polynomial growth. Then, for any k > 1,

Eo (1120 = Xep )| FLy) <o AE20+ X )0 (3.19)

In particular, if f € C3(S5),
fYi) = f(Xer )+ 0:£(Z])(Yi — Xin )
and Lemma 3.3.2 implies that

By (170%3) = F(Xep ) | Fitt) <o A2+ Xy )5 (3.20)

Our main result in this section is a generalization of Proposition 2.2 in Gloter (2000). Note
the strong resemblance with Proposition 3.3.1.

Proposition 3.3.3. Let f € Cg(S). Then, there exist F'-measurable random variables &1 ;
and &2 ; such that

FY3) = f(Xep ) + D20 f (Xep D0(Xey 30061 + Ead (3.21)
where
- &1.i ~N(0,1/3) and independent of F 4,

- &o4 satisfies the moment expansions

Eg (2 | Fly) = AnHof (Xen ) + AY2R(An, Xin 30), (3.22)
Eo (&5 | Fit1) = ALR(Ap, Xin 30), (3.23)
with . )
Hof(z) = gﬁef(fc) - 552(9:; 0)02f(x). (3.24)
In particular,
1

Eg (€1,i1,) = 2

where €1; denotes the variable that appears in the Euler-Ito expansion (3.15).

3.4 Limit theory for integrated diffusions

As a simple application of the Euler-It6 expansion (3.21) and the corresponding bound (3.20),
we derive in this section a law of large numbers (LLN) and a central limit theorem (CLT') for
a class of functionals

Sy, (3.20)
i=1

where f : .S — R satisfies appropriate regularity conditions. For the remainder of the paper,
all results are formulated w.r.t. the true probability measure Py.
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Lemma 3.4.1. Let f € C;(S) and suppose that (X;) satisfies Condition 3.2.1. Then,

fo ) 2% po(f).

The content of Lemma 3.4.1 appears in a slightly stronger version in Proposition 2 of Gloter
(2006). Remarkably, the additional rate assumption nA3 — 0, which was necessary to ob-
tain a CLT for functionals of diffusion processes in Chapter 2, is again sufficient to ensure
convergence in law towards the same Gaussian limit.

Lemma 3.4.2. Let f € S} and assume that (X;) satisfies Condition 3.2.1. If nA3 — 0,

then
VA, (i me)) 205 N(0,V0())
=1

where

Vo(f) = o ([0:Uo(£)b( - ;600)]*) = 240 (fUs(£)) - (3.27)

Remark 3.4.3. The asymptotic variance (3.27) in Lemma 3.4.2 involves the potential Uy(f),
which is characterized as the solution g of the Poisson-type differential equation

Lo(g) = —f,

where £ denotes the differential operator (3.9) corresponding to the generator of (X;). We
refer to Section 2.3.2 for a detailed discussion of potential operators for p-mixing diffusion
models.

3.5 Asymptotic theory

This section contains our main asymptotic results for G,,-estimators of the prediction-based
estimating functions described in Section 3.2. The proofs are based on general asymptotic
theory for estimating functions in M. Sgrensen (2012). We confine the discussion to estimating
functions of the form (3.11) where N = 1 and, for simplicity, write

Ga(0) = D mia [F(V0) = Fia (0] (3.28)

{Pi_1}; for the corresponding predictor spaces, etc. The extension to estimating functions
with multiple predictor functions { f]} ', was briefly discussed in Section 2.4.3.



3.5. Asymptotic theory 57

3.5.1 Simple predictor spaces

The simplest class of estimating functions of the form (3.28) occurs for ¢ = 0. In this case,
the orthogonal projection 7;—1(0) = Egf(Y1) and the one-dimensional predictor space P;_1
allows us to estimate a (sub)-parameter § € © C R. Consistently, we suppose that d = 1 in
the following and consider the estimating function

n

Gn(0) =D _[f(Yi) —Eaf(Y1)]. (3.29)

=1

The basic principle that enables us to study the asymptotic properties of G-estimators is to
expand G, into powers of A,. In the simple case that we consider here, such an expansion
follows easily from Proposition 3.3.3 since

F(V1) = F(Xo) + AY20: f(Xo)b(Xo; 0)€11 + €21
for any f € CZA;(S) and, in particular,
Eof (Y1) = po(f) +Eo(&21) = po(f) + AnR(Ans0), (3.30)

where |R(A,;0)] < C(0) < oc.

For the asymptotic theory we impose the following regularity conditions on G,,:

Condition 3.5.1. Suppose that

- fH(x) = fx) = po(f) € A,
- 0 pg(f) €C

- For a connected neighbourhood M of 8y and A,, sufficiently small,

sup |OpR(Ap;0)| < C(M). (3.31)
oeM

For estimating functions that satisfy Condition 3.5.1, existence of a consistent, asymptotically
normal G,-estimator 6,, holds under mild identifiability conditions:
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Theorem 3.5.2. Assume Condition 3.5.1 and suppose that Oppg(f) # 0 and that the iden-
tifiability condition
(o — po)(f) #0

holds for all 6 # 0.

- There exists a consistent sequence of Gn,-estimators (én) which, as n — 00, is unique
in any compact subset KK C © containing 0y with Po-probability approaching one.

- If, moreover, nA2 — 0, then

Vil (b= 80) 2 N (0, 000 (£)] 2 Vo)) (3.32)

where

Vo(f) =2 /S £ (@)U f*) (@) ol dz).

Remark 3.5.3. The identifiability conditions in Theorem 3.5.2 coincide with the findings in
Chapter 2. In particular, we obtain the same Gaussian limit distribution, which enables us
to re-apply the Monte Carlo algorithm proposed in Section 2.5.1 to estimate the asymptotic
variance in (3.32).

3.5.2 1-lag predictor spaces

Our main result shows that for ¢ = 1, prediction-based G,-estimators remain consistent and
asymptotically normal under appropriate regularity conditions.

For ¢ = 1, the basis vector Z; 1 = (1, f(¥;_1))T and the normal equations (3.14) take the

form
(i )109) = ( iy 400 ) (i) -0

As a consequence,
7i-1(0) = an(0)o + an(0)1f(Yiz1),

where Gy, ()0 and @, (6)1 are uniquely determined by the moment conditions

an(0)o = Eof(Y1) (1 —an(0)1), (3.33)
. 2

Consistent with a two-dimensional predictor space P;_1 we suppose that d = 2 in the following
and consider the estimating function

6u®) =3 ( yyr_yy ) 0D = 0 (0ho = a0 @) i) (3.5
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where, unlike in Section 3.5.1, the expansion of GG, into powers of A,, poses a difficult problem.

Based on the Euler-It6 expansions of Section 3.3, we start by expanding the projection coef-
ficients a,(0)o and a,(0); in (3.33)-(3.34). As the proof is a bit long, we formulate the result
as a separate lemma.

Lemma 3.5.4. For [ € Cg(S), the projection coefficient an(0) = (dn(0)0,dn(0)1)" has a
power expansion

i (6) = ( ; ) +A, ( Kﬁfzgf(f ) ) + A32R(A,: 6) (3.36)
where |R(Ay;0)] < C(6) and the constant
K7(6) = Varaf (X0) ™ [ua(F2a) + o (00 :0)0.17)|. (3.37)

Recall that a similar power expansion of a,(f) was shown for discretely observed diffusion
models in Chapter 2 which, for comparison, differs mainly by not having the additional term

Va?“gf(Xo)_léNG ([b( : %9)8:vf]2)

in the expression for K ().

Condition 3.5.5. Suppose that

- fEC(9),

- fi(@) = Ky (0o) [uo(f) — f(2)] € 4,

- f3(@) = f(x)Lof (x) + §[b(w; 00)0uf ()]* — Ky (Bo) f () [f(x) — po(f)] € 7,
-0 pg(f)eCt, 00— Ks(0) €Cl and

sup ||0pr R(Ay; 0)|| < C(M), (3.38)
e M

for a compact, convexr subspace M containing 6y and A, sufficiently small.

The matrix norm || - || in (3.38) can be chosen arbitrarily and we suppose for convenience that
|| - || is submultiplicative. The following lemma ensures the existence of a consistent sequence
of G,-estimators in Theorem 3.5.7.
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Lemma 3.5.6. Assume that Condition 3.5.5 holds. Then, for any 0 € ©,

(n20) " Gn(8) 2% (60 6)

where
Ly K¢ (0) (1o — p0)(f)
7(B0;6) = ( Ho(£Lof) + Lo (0 5000 %) — K1(0) [0(f?) — ol F)raa(f)] > - (839)
Moreover,
sup [|(nAn) " 9gr Gn(8) — W(0)|| = 0 (3.40)
feM

where the uniform limit

(o welD) )\ [ O K Ous(F)] 6, KO o)
W<9)_<uo(f) uo(f2)>< ConKi0) 0K () )

Theorem 3.5.7. Assume Condition 3.5.5 and suppose that W () is non-singular and that
the identifiability condition

V(6o; 0) # 0
holds for all 0 # 0.

- There exists a consistent sequence of Gn-estimators (én) which, as n — 00, is unique
in any compact subset IC C © containing 6y with Py-probability approaching one.

- If, moreover, nA%2 — 0, then

Vi, (B = 60) 2 N (0. [W(60)~ VoW (60)™)]). (3.41)
where
3xUo(f1)b( - ;60))? Cov
i [ 1o (@D 0)F) o |
Cou( ) po (10:U0(15) + FOu 11 V2( - :60) )
with

Cov(f) = po (8:Uo(f7) [8:Uo(f3) + fO£]10%( -5 60)) -

Remark 3.5.8. Compared to the findings in Chapter 2, the lower order O(Ai/ 2) of the
remainder term in the expansion (3.36) of @,(f) forces us to assume nA2 — 0. The same
assumption appears in Gloter (2006) to ensure asymptotic normality for a class of minimum
contrast estimators with integrated observations.
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3.6 Extensions and concluding remarks

For integrated diffusions observed on [0, 1], Gloter and Gobet (2008) prove that the statistical
model satisfies the LAMN property and that the optimal rate of any estimator of a parameter
in the diffusion coefficient b( - ;) is \/n. The ergodic scenario of this paper has yet to be
considered, however, as we do not distinguish between drift and diffusion parameters in (3.2),
the v/nA,, rate of the previous section is all we could hope for. In comparison, the minimum
contrast estimators in Gloter (2006) attain a rate of v/nA,, for parameters in the drift and
v/n for diffusion parameters, similar to the efficient estimators in M. Sgrensen (2017).

One extension of interest would be to include a jump component into the dynamics of (X;),
corresponding to jumps in volatility. This extension has the particular feature that jumps in
(X:) lead to changes in the trend of (I;) and not to path discontinuities. As a consequence,
threshold estimators developed for processes with jumps observed at high frequency (see e.g.
Mancini (2009)) are not directly transferable. The first to propose a general test for the
presence of volatility jumps using change-point theory are Bibinger, Jirak, and Vetter (2017).
How and whether the same principle can be applied for parametric inference is an interesting
topic of further research.

3.7 Appendix A: Proofs

Proof of Proposition 3.3.1. By 1t6’s formula,

iy 1Ay
F) = 1 )+ [ Laf(t)ds s [ o fXOMX. 0B,
(i—1)A, (i-1)A,
and letting
iAn
8171' = A;1/2/ st, (342)
(i—1)A,

1Ay
A = / Lof(Xs)ds,
.

1Ap
B = /( ) [0, F(X)b(Xe:0) — 0, F(Xip J0(Xz,:6)] dB,,
i—1)A,

€2, = A+ B,
we obtain an expansion of the form
f(Xap) = f(Xep )+ A}Lmaxf(Xt;Ll)b(Xt;tl;9)51,i + €24

where, clearly, £1; and ey ; are F*-measurable and &1 ; ~ N (0, 1) and independent of F/" .
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The conditional moment expansions (3.16)-(3.17) of 3 ; require a bit more effort; by applying
Fubini’s theorem followed by Lemma 2.10.2,

iAp
Eg (A; | Fly) = /( Eo (Lof(Xs) | Fiy) ds

i—1)A,

= [T R (s ) | )

A

= / [ﬁef(Xt;Ll) +u - R(u, thzl;Q)] du
0

= AnLof(Xin )+ ALR(An, X 50).

Moreover, since Ey (fg [0 f(X)b(X; 0)) ds) = g ([b(-;0)0,f]%) -t < oo, the stochastic
integral f(f 0. f(X5)b(Xs; 0)dB;s constitutes a true Pg-martingale on [0, 00) and, in turn,

t
M= [0 (X)NCXG0) - 00 f Xy (X ,30)] .
0
satisfies the martingale property Eq (M; | F5) = M for t > s >t ;. In particular,
By (Bi | FiL1) = B (Mia, — M-na, | FiLi) =0,
which verifies (3.16).

For moments of order k > 2, we write

[7ANS

A= AnLof(Xi )+ /( ) [£0f(X) ~ Lof(Xsy )] ds (3.43)
i—1)A,
and observe that, by Jensen’s inequality,
iAn k
/ [ﬁef(Xs) - ‘Cé’f(Xt;Ll)} ds
(i_l)An
iAp
< AL-A |Lof(Xs) = Lof (Xep )" ds
(i—1)Ap o
< AL sup [Lof (Xip 1u) — Lof (Xip )"
u€[0,An]

Hence, by Lemma 2.10.1,

By (|4il* | L))

<a A§(1+\Xt?_1!)c’“+Aﬁ-Ee< %ui]lﬁef(Xt¢_1+u>—ﬁef(Xt?_lﬂk‘ Z‘l>
ue|0,An

<c, An(L+ Xy )

k
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or, equivalently,
Eo (141" | FLy) = ARR(An, Xip10).

Similarly, if we let h(x;0) = 0, f(z)b(z;0), the Burkholder-Davis-Gundy inequality (see e.g.
Jacod and Protter (2012)), Jensen’s inequality and Lemma 2.10.1 imply that for all £ > 2,

Eo (IBi" | 722)

iAn k

= B[ [ra0) Xy i0)]aB | A
(i—1)An
A , 72

<c, Eq / [h(Xs;e)—h(Xt;:l;@)} ds i1
(i=1)An

IN

1Ay
AR2 R, (Agl /( s 1 (Xs;0) — h(Xip ;0" ds

(2

)

< AF2LUER, ( sup |h(Xen 13 0) — h(Xen ;0)[F ' f;”_1>
UG[O,AH]
<c, An(L+|Xg )
and since |ea;|* <¢, |Ai|* + | Bil*,

Eo (leaal® | Fiy) = ALR(An, Xy ,30)

with k = 2 as a special case. O

Proof of Lemma 3.3.2. By Jensen’s inequality,

iAp
Y — X P < AT Xy — Xpn [Fds < sup [ Xen yu — Xen |*
(i—-1)A, uw€[0,An]

and, hence, Lemma 2.10.1 implies that

By (1% — X, [* | Fiy) <o A2+ 12X, D (3.44)

Moreover, since f is of polynomial growth,
F(ZD)* <cp 1+ [ X 9% +]Y; — Xn |95

and the result follows by a double application of (3.44). O
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Proof of Proposition 3.3.3. We start by proving the result for the identity map f(z) = z. In
this case, 9, f = 1, 92f = 0 and the Euler-It6 expansion (3.21) takes the form

Yi= X  + A}I/Zb(Xt;Ll;Q)ffi +&.4 (3.45)

where asterisks (%) have been added to distinguish the remainder terms from the general
case. In particular, we must have

1
Eo (&, | Fity) = Ania(Xt?_l;G) + A32R(A,,, Xpn 50). (3.46)

By applying the auxiliary Lemma 3.8.1 to the stochastic integral,

1Ay s s
Yi—Xip | = A;l </ a(Xy;6)du —l—/ b(Xu;H)dBu> ds
" (i-1)An \J(i-1)A, (i-1)An

iAp s iAp
= Al ds/ a(Xy; 0)du+ At (1A, — $)b(Xs; 0)dBs,
(i-1)An (i-1)An (i-1)An

and, in turn, this yields an expansion of the form (3.45) by letting

Ay
E)lk,i = A;3/2 /( m (1A — s)dBs,

1A s
A = A ds/ a(Xy; 0)du,
(

(i—1)Anp i—1)An
iA’VL

B = Al [b(XS;G)—b(thl;G) (i, — 5)dBs,
(Gi—1)An i

§&: = Ai+ B

To verify the properties of {7 ; and &3 ;, respectively, we observe directly that both variables
are measurable w.r.t. ', {7, is Gaussian and independent of ;' ; and, by the martingale

property of fé(iAn — 8)dBs, Eg(&7 ;) = 0. Moreover, by Ito’s isometry
[7ANS 1
Eo((£1:)%) = 4,7 (iA, —s)*ds = .
’ (i—1)Ap, 3

As in the proof of Proposition 3.3.1, the conditional moment expansions of &; ; require some

effort. From the martingale property of fot b(Xs;0)(iA,, — s)dBs, we conclude that

-

ff—l) - A}Z/Qb(Xt;Ll;e)Ee (& | Fiy)

Eo (Bi | Fi"1)

iAn
- A;l -Ey (/( A [b(XS;G) — b(thgl;@)} (1A, — s)dBs

1Ay

= AP (/ b(Xs;0)(iA, — 5)dBs
(i_l)An

= 0.
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Therefore, Eo(&3 ;| F* 1) = Eg(A;i | F]* 1) and a double application of Fubini’s theorem followed
by Lemma 2.10.2 shows that

iAn s
B (4| F) = A [ s [ B (a0 0) | R du

(i-1)An i~1)A,
(AN s—tit

— A ds / E, (a(Xt;L ) ‘ ]:f_l) dv
(i-1)Ay, 0
1Ay 5=t 4

= Al ds/ [G(Xt?,ﬁa) +vR(v,Xt?71;9)} dv
(i—1)An 0

1 Ay s—t7
= Ania(th_l; 0) + A" ds/ ' vR(v, Xy ;0)dv
An 0

(i-1)
and the moment expansion (3.46) follows since
1Ap s—t7
At ds/ vR(v, Xy ;0)dv = A2R(Ap, X ;5 0)
(i—1)Anp, 0 i i

by direct verification.?

To show that Eg(({’;’i)Q | Fr ) = A2R(A,, Xyn 50), we apply that

iAn k
A" < AT ds
(i_l)An

< sup

s€[0,Ar]
for all kK > 1 by Jensen’s inequality. Moreover, for any ¢ > 0,

t+s
Eg | sup / a(Xy;0)du| | F
s€[0,An] [Vt

t+s
Eg( sup skl/ la(Xy; 0)[F du
t

Fi
S€[0,A]
]-'t>

and by the linear growth assumption of a( - ;6) in Condition 3.2.1,

t +s
/ a(Xy; 0)du
¢

n
1—1

k
/ a(Xy; 0)du
(

i—1)An

k

IN

t+Ap
— K, <A§—1/ la(Xy; 0)|F du
t

|la(Xu; 0)|k <c, 1+ |Xt‘k + [ Xy — Xt‘k

*In fact, we see that the higher order expansion Eg(&,|F/ ;) = An%a(Xt?_l;e) + AiR(Ath?_l;g)
holds. The use of AimR(An,Xt;L

+,;0) will be clear when we generalize to arbitrary f € Cﬁ(S).
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which, in turn, shows that

t+s
Eg( sup / a(Xy; 0)du ]:t>
s€[0,AR] I/t

t+An,
<cy AZ(1+|Xt‘k)+Afl_l/ Ey (|Xu—Xt|k‘}‘t) du
t

k

<c, Aﬁ(lHXt\)CwAZ-Ee( sup \Xm—Xt\’“‘ft)
UG[O,An}

<o, AR(L+]X)%,

k

where the final inequality follows from Lemma 2.10.1. In particular,

i +s
/ a(Xy;0)du

n
ti*l

k
Fr

11—

Eo <|A1]k ‘ .7:1-’11> < Ey sup

1] e AR+ X )
SG[O,An]

To obtain a similar bound for ]B2|k , we apply that the integral process

M, = /O [b(Xei6) — bCXey 56)] (i, — s)dB.

satisfies the martingale property Eg (M, | Fs) = M, fort > s > t?' ;. Hence, by the Burkholder-
Davis-Gundy inequality, Jensen’s inequality and Lemma 2.10.1,

iAn k
B (1BF| FLy) = Eo (Al / [b(Xs50) = b(Xip ;0)| (1A — 5)dBy| | FiLy
(i—1)Ay,
A, , 12
<c. Eo / [b(Xs;e)—b(thl;e)} ds] Fr,
(i_l)An
<o, AR+ |Xp N

for all £ > 2 and, as a consequence,

Eo ((€,)° | Fit1) <c AL(1+ X )C.

The extension to arbitrary f € C;"(S) is based on Taylor expansions of the general form
(3.18): firstly, a third order Taylor expansion combined with the Euler-It6 expansion

Vi — Xpn = AYP0(Xen 0)E5+ 65,

derived above, implies that
201 1
V) = D (X (Y= X Y+ 20 f(Z])(Yi — X )
4 ] (3 7 6 [3
7=0

= f(Xe )+ A%L/2aél?f(Xt?;1)b(Xt?il;e)gl,i + &2,
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where
Ay

b= 6= A /( . (i, — s)dB, (3.47)

and the remainder term &, = >5_, &5 for
&) = 0uf (X )
€ = Dy (X (X1 0)(6)°
€ = SOSN8
&) = AVROF(Xy b(Xe 1008
&) = LI Xy, )

That &> ; is measurable w.r.t. /" follows by measurability of each constituent, in particular
that of Z' = Xt;—ll +s(Y; — thl), and therefore it only remains to show that & ; satisfies
the moment expansions (3.22) and (3.23), respectively.

By applying the conditional moment expansions
Eq (Sz’fﬁl) = 0,
B (607 | 7)) = 3
Bo (65, | FI) = Anga(Xup 50) + AV R(A, Xip,:6),
(&7 | Fy) = ALZR(An, Xen 50), (3.48)

it follows immediately that

By (&)
Ey (&5
By (&5

Furthermore, by Holder’s inequality,

1
) = Auza(Xe :0)0uf (X )+ AY2R(A, Xip 0,

1
i— 1) = Angag%f(Xt;l_l)bz(Xt?_l;9),

m) = AZR(An Xip;0).

Bo (65565 | Fu) | < Bo (6502 | Fi) By (6502 | Fi)'? = ApR(An, Xin 36),

which shows that
E, ( (4)

1) = AY2R(An Xy ,50)

and, by Lemma 3.3.2,
EG (55751)

1_1) — AYPR(An, Xin 56).
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Collecting our observations,

Eo (&2, | Fi1)
5
= ZEG (é{? ?—1)
k=1
1

1
= A, <2a(Xtyl;0>axf<Xt?1> + 6b2<Xt;1;6>8§f(Xtyl>) + AYPR(An, Xin 50)

1 1
= A, <2£ef<th_1> - me(Xt;_l;@a%f(Xt;_l)) + AVPR(An, X 30)
= AnHof(Xen )+ AYPR(An, Xin ;0).
Similarly, to argue that Eg(fii | Fy) = AZR(Ap, Xyn 5 0), we use that
1 n
fYi) = f(Xe )+ 0uf(Xen )(Yi = Xin ) + iagf(zi )(Yi — Xy )
= f(Xpn )+ AP0, f(Xen b(Xen ;0)61 + Ea
where the remainder term &> ; takes the explicit form
* 1 n
2,0 = Ouf(Xep )65, + iaif(Zi )(Yi — X ).

In particular, this implies that

& <c 0uf(Xep )(E5:)° + 02 (Z1)P (Y — Xip )

and, in turn,

Eo (&3 | Fit1) = ALR(An, Xep 3 0)
by applying (3.48) and Lemma 3.3.2, respectively.

Finally, by the defining properties (3.42), (3.47) and the It6 isometry,

Ay iAnp
Eo(e1i€1:) = By (An1/2 / dB - A73/? / (z’An—s)st>
(

i—1)A, (i—1)A,

iAn

1
5

Proof of Lemma 3.4.1. By Lemma 2.3.1, it suffices to show that

%Z [f(Yi) — [(Xep )| = oy (1) (3.49)
=1
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and applying the upper bound (3.20) for conditional expectations,

%ZEO (\f( f( X ) ‘ ) = A:ﬂ% > R(An, Xun500) = op, (1),
i=1 i=1

ZEO (1£0%) = £ )P | F) = By 7RG, Xip 3 00) = o, (1),
i=1

and, at this point, the desired conclusion (3.49) follows from the useful Lemma 9 in Genon-
Catalot and Jacod (1993). O

Proof of Lemma 3.4.2. Due to Proposition 2.3.4, it is sufficient to show that
Vil - Z [ F(Xen )] = op, (1), (3.50)

which for comparison is a strengthening of (3.49). To prove the stronger statement (3.50),
note that by Proposition 3.3.3,

Vi, - ZEO( f(Xn | ‘]—"@ 1) = niAy, - fZEO 521 Fity)

= /nA3. - ; R(Ap, Xin 500)
= OPo(l)v

where we apply that nA3 — 0 and once again the higher order bound (3.20) ensures that

n ) ALY
Sn ZEO (1705 = £(Xe )2 | Fy) = 527 R(An, Xap360) = o, (1)
i=1
The conclusion (3.50) follows from Lemma 9 in Genon-Catalot and Jacod (1993). O

Proof of Theorem 3.5.2. By applying the first order expansion (3.30) of Eqf (Y1) together
with Lemma 3.4.1, we see that

Ha0) = 3" [F0) ~ Eof (1)
i=1
= S U0 ~ ()] + BaR(Bai) (3:51)
i=1

H(0) = (0 — po)(f)
and for all § € M,
OpHp(0) = —0gEo f(Y1) = —0Ogpa(f) + AnOg R(Ap; 0) — —Oppa(f)-
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Moreover, subject to Condition 3.5.1,

sup [0 Hn(0) + gpo(f)| = An sup |99 R(An; 0)| <cag) An — 0,
peM M

and the eventual existence of a consistent sequence of G,-estimators (én) now follows from
Theorem 1.58 in M. Sgrensen (2012). That the estimator 6,, will be unique in any compact
subset K C O that contains 6y with Py-probability approaching one as n — oo follows from
Theorem 1.59 in M. Sgrensen (2012) by applying continuity of 6 — H(#) and the identifia-
bility assumption H () # 0 for 0 # 6.

To establish asymptotic normality, note that (3.51) and the additional rate assumption
nA3 — 0 ensure that

VA, - Hy(8)) = /nA,- <i2f*(yi)> + V/nA3R(A,; 6p)
=1
= /nA,- (;Zﬁ‘(i@)) + op, (1)
=1

2o N(0,Vo(f)),

where convergence in law follows directly from Lemma 3.4.2 since f* € J3.

At this point, the result follows from the first order Taylor expansion

0 = /nA, Hy,(6o) + 09 Hyn(05) /A (6, — 0p),

where 0} lies between 6,, and 6, by standard arguments. O
Proof of Lemma 3.5.4. We break the proof into four steps as follows:

- Step 1: Expand [Eyf(Y1)]%, Egf2(Y1) and Eq [f(Y7)f(Y2)] into powers of A,

- Step 2: Eliminate Hy from the expansions,

. Step 3: Show that d,(0); = 1+ A, K;(0) + AY?R(A,;0),

- Step 4: Conclude that a,(0)o = —A, K (0)pe(f) + A?L/2R(An; 0).

Step 1 By direct application of Proposition 3.3.3, we find that

wo(f) + Aupts(Ho ) + AY2R(A;0)]
= pe(f)* + An2u0(fHue(Hof) + AY2R(A,;6), (3.52)

[Eo f(Y1)]?
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and, similarly,
Eof>(V1) = po(f?) + Dnpo(Hof?) + AY2R(A,;0). (3.53)

The expansion of the mixed moment Eg[f (Y1) f(Y2)] is more elaborate and rests on our ability
to expand each individual term in

Eolf (Y1) (Y2)] =
Eg | (£(X0) + A0, F(Xo)b(X0: )61 + 2,1 ) (F(Xa,) + AN, f(Xa, 0(Xa,50)612 + €22 |

by utilizing the conditional moment expansions of Section 3.3. When evaluating conditional
moments of the form Eg (¢9(Xa,,) | Fo), we sometimes replace the use of Proposition 3.3.1 with
that of Lemma 2.10.2 as it prevents us from imposing stricter differentiability restrictions on f.

TERM 1: By Proposition 3.3.1,
f(Xa,) = f(Xo) + A’}L/2aﬂ3f(X0)b(—X0; 9)61,1 +ée21 (3.54)
and applying the tower property of conditional expectations,
B [f(X0)f(Xa.)] = #o(f*) + Anpo(fLof) + ALR(An; 0).
TERM 2: To argue that
AYEg [£(X0)0x f(Xa,)b(Xa,;0)é1.2] =0, (3.55)

we observe that
Eo [f(X0)02f(Xa,)b(Xa,; 0)Eq (€12 [ Fa,)] =0
since &1 2 ~ N(0,1/3) and independent of Fa, by Proposition 3.3.3.

TERM 3: By applying the moment expansion (3.22) followed by Lemma 2.10.2,

Eg [f(X0)§22] = Eg[f(Xo)Eq (&22 ] Fa,)]
= AEg [f(Xo)Hof (Xa,)] + AY R(A;6)
= AnEg [f(X0)Eg (Hof (Xa,) | Fo)l + AY?R(Ay;0)
= Dppo(fHof) + AY2R(A,;0).

TERM 4: To expand
AY?Eq [0, f(X0)b(Xo; 0)&1,1 f(Xa,)]

the tower property is no longer directly applicable. Instead, we again rely on the Euler-Ito
expansion (3.54) of Proposition 3.3.1 and observe that

A2y [0, f(X0)b(Xo; 0)€11f(Xa,)] =
AnEp [0 f (Xo)b(Xo: 0)[*61,1211] + A5/ B (00 (X0)b(Xo; 0)61 122.1]
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To evaluate the first term, the isometry (3.25) implies that Eg (§1,1€1,1 | Fo) = 1/2 and, hence,
AnEg [[0:F(X0)b(Xo0;0)*€11e11] = AnEog [[02f(X0)b(Xo; 0)]*Eg (§1,161,1 | Fo)]
An%ue (b( - ;0)0. /1) -
Moreover, by Holder’s inequality and the conditional moment expansion (3.17),

1/2

By (11621 | Fo) | < Bo (€21 | Fo)/* By (31 | Fo) /> = AuR(An, X3 6),

and, as a consequence,
AY?Eg [0:f(X0)b(Xo; 0)Eqg (€112 | Fo)] = AY2R(A,; 6).

All in all,

AYEy [02f (X0)b(Xo; 0)61,1 f(Xa,)] = Anéue ([b(-:0)0.f17) + AYPR(A,;6).  (3.56)

TERM 5: By Proposition 3.3.3,
Eg 02 f (X0)b(Xo0; 0)€1,10:f (XA, )b(Xa,;0)Eg (S12 | Fa,)] = 0.

TERM 6: By Holder’s inequality,

1/2 1/2

[Eg (£1,162,2 | Fo) | <Eg (&1 | Fo) " Eg (&5 | Fo)

and due to the tower property,
Eo (&35 | Fo) =Eo [Eg (&2 | Fa,) | Fo] =Eg [AZR(An, Xa,;0) | Fo] = A2 R(An, Xo;6)
and we conclude that

AL2E, [0, F(X0)b(Xo; 0)Eg (€11622 | Fo)] = AY2R(A,;6).

TERM 7: For the expansion of Eg [f(Xa,,)&2,1], we again apply the Euler-Ité expansion (3.54)
of f(Xa,); firstly, by Proposition 3.3.3,

Eg [f(X0)§21] = Eg[f(Xo)Eg (§21 | Fo)l
= Anpg(fHof) + AY2R(A;0)

and by Holder’s inequality, Eq (e1.1&21 | Fo) = ApR(Ay, Xo;6), from which it follows that
APEg [0, f (X0)b(Xo; 0)Eg (e1,162,1 | Fo)l = AY?R(A;0).
Similarly, we see that Eg(e2,182,1) = A2R(A,;0) and, in turn,

Eo [f(Xa,)62,1] = Anpo(fHof) + AY2R(A; 0). (3.57)
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TERM 8: By Proposition 3.3.3,

Eg [£210:f(Xa,)0(Xa,;0)Eg (§12 | Fa,)] = 0. (3.58)

TERM 9: Combining Hoélder’s inequality, the tower property and Proposition 3.3.3,

1/2

By (¢2.160.0) | < Bo [Bg (€21 | Fo)]"* Bo [Bo (25 | Fan)]"? = A2R(A,;06).

Gathering the observations of TERM 1-9, we conclude that

Eof(Y1)f(Ya) =
Ho(f?) + An (ue(fﬁef) + 200(FHof) + 10 (10 ;9)axf]2)> + AYPR(A; 0). (3.59)

Step 2 To eliminate Hy from the expansion of [Eyf(Y1)]%, Eof?(Y1) and Eg [f(Y1)f(Y2)],
respectively, we examine pg(Hg f), po(fHof) and pg(Hg f?) more closely in terms of the defin-
ing property (3.24).

For the invariant distribution pg and the generator of (X3), it holds that pg(Lef) = 0 for all
f € Da,; see e.g. Hansen and Scheinkman (1995). Hence,

po(Hof) = 5o (¥ -:0)02) (3.60)

and it follows immediately that

poFHof) = spo(FLaf) — 1spo (fE2(-36)02F) (3.61)

Moreover, since 0, f? = 2f0, f and 02f =2 [fO2f + (0..1)?],

Hof (@) = SLof*(x) — 15t(w:0)02 1 (x)
= %a(af;; 0)0, f2(x) + éb%; )92 % (x)

= F(@)alw: 000 f (@) + 3 F@) (w000 (@) + 3 b(a; 00, (2)]

= F@)Lof(x) — ¢ F@) R () + 5 b 00 ()

which shows that

1

o (Ho?) = 1a(FLof) = o (J2(-30)020) + po (0 000F) . (362
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In turn, this enables us to write

[Eo f(Y1)]?
= po(f)? + An2u0(flre(Hof) + AY2R(A,;0)

= o) = Duga(ro (P 0)02F) + AV2R(A;6), (369

Egf2(Y1)
= 1o(f?) + Dupo(Hof?) + AYPR(A; )
= o)+ B (ol Laf) ~ i (P 500025) + o (000227
+ AYPR(A;0), (3.64)
and, lastly,
Eof(Y1)f(Y2)

= po(F?) + An (Me(fﬁof) +2u0(FHo ) + S0 (I ;9)8$f]2)) + AP R(An0)

= o)+ Do (ol FLaf) = oo (FC-50)32) + oo (- 3000.11))

+ AY2R(A;0). (3.65)

Step 3 From the moment expansions (3.63)-(3.65) derived above, it follows that

Eof(Y1)f(Y2) — [Egf(Y1)]?

n®r = Varg f(Y1)
14 A Vargf(Xo) 1M1 (0) + AY*R(A,; 0)
= - 373 (3.66)
1+ AnVaTgf(Xo) 1M2(9) + An R(An, 9)
where
Mi(6) = 2ua(FLaf)+ grolFia (P2~ 30)02F) — cpuo (F(0)020) + gy (50000 fT7)
Mo6) = po(FLof)+ spo(Fhg (B2 50002) — po (025 00021) + sy (I )0 T
In particular, .
My(0) — M2(0) = po(fLof) + GHo (1b( - 50)0..f1%)
and by Taylor expanding the power fraction in (3.66), we obtain the expansion
an(0)r = 1+ AVargf(Xo) ™ [M1(6) — Ma(6)] + AY*R(An; 0)
= 1+ AKp(0) +AY2R(A,;0), (3.67)

where Kf(0) is that of (3.37).
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Step 4 Since Eyf (Y1) = po(f) + A R(Ay; ), the expansion of a,(6); in (3.67) implies that
in(0)o = Eof(Y1) (1 = an(0)1) = —AnKp(0)pa(f) + AYZR(A;0). (3.68)

O]

Proof of Lemma 3.5.6. In the following, we let

1 n
Hn(e) = TLAn ;Q(ATL?}/;u}/’i—lve))
where g = (g1, 92)7 is given by
91(An, Y5, Yio1;0) = f(Yi) = an(0)o — an(0)1f(Yi-1), (3.69)

92(8n, Y3, Yi1;0) = f(Yie1) [f(Ye) — an(0)o — @n(0)1f(Yi-1)],

corresponding to the entries of G,,.

Firstly, by applying the power expansion (3.36) of a,,(6) derived in Lemma 3.5.4,

91(A,Y;,Yi_1;0)
= f(Y3) — an(0)0 — @n(0)1 f(Yic1)
= f(Y3) = F(Yic1) + AnKp(0) [o(f) — F(Yie1)] + AY2R(A,, Yi1;0) (3.70)

and, hence, by the LLN for integrated diffusions (Lemma 3.4.1),

1 n
(An7Yi>Yi— ;0)
nl\,, Zz;gl 1
= ) = O+ 5 S KGO o) — F(Yia)] + AV S R(AL Vi)

=2 =2
— Kp(0) (1o — po)(f)-

Conversely, for the second vector component

1 n
A ZQQ(Ain?Yi—Ne)y (3.71)
" i=2

the contribution from the first term is no longer asymptotically negligible and the proof more
extensive. To shorten notation in the following, we let

&' = Ouf(Xap )(Xep 560)e1,
B = Ouf(Xip )b(Xip 500)61,
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which, in turn, enables us to write the expansions of Section 3.3 under the true probability
measure Py as

FXm) = f(Xen )+ A2ED +ea, (3.72)
fYG) = f(Xe )+ AVPE + &, (3.73)

By inserting the expansion (3.73) directly into (3.69) and applying the power expansion of
an(0), we find that

91(An, Y3, Yi1;0) = f(Xep ) — f(Xep ) +
AnK(0) (po(f) — f(Xt;LQ)} + AP (B —E1) + Ra(An, (Xo)sepn i), 00:0),  (3.74)
where the remainder term R; has a semi-explicit representation of the form

Ri(An, (Xs)sepn ,.em,00:0) =
(&2,i — &2,i-1) — A:}}L/2Kf(9)5?—1 — A Kp(0)62,-1 + A32R(A,, Yi-1;0). (3.75)

In turn, this enables us to expand
92(An, Y3, Yi130) = (f(Xtyﬂ) +AY%Er L+ 52,1'71) 91(An, Y, Yi1;0)
by decomposing the functional increment of (X;) in (3.74) as

FXen ) = f(Xpn ) = AYPER | + o210 = AnLof(Xin ) + Ai—1(60) + Mi—1(6o),

where the first expression follows from (3.72) and the latter holds by It6’s formula with

iAn
a@) = [ [eafx) - Lorx )] s
(i—1)An

(AN
M(0) = /( | e (XX 0)4B,

Specifically, we obtain the A-expansion
> k
gQ(An7Y27E—1;9> = Zgé )(AH7E7K—1;0)7 (376)
k=1

where each constituent gék), k =1,2,3, has a representation

I(An, Vi, Vi3 0)
= f(Xe ) 91(An, Y3, Yi1;0)

= Anf(Xap )Lof(Xap )+ f(Xan ) )Mi—1(00) + An Ky (0) f(Xen ) |1o(f) — f(Xt;LQ)]
+ Rgl) (An, (Xs)sepn ,.im), 003 6)
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for a remainder term

Rgl) (Anv (XS)SE[t" ] 907 9) =

i—27

F(Xen ) Ai1(00) + A2 F (X ) (B = E10) + f(Xur,) - Ra(Aa, (X )sefen, an)» 00 0),

57 (An, Y3, Yiini0) = AM2E0 . g1(A Y, Yilr0)
= An (€L - 1) B+ RY (A, (Xs)seer 1715 003 0)
where
R (D, (Xo)seppn  in)s00;0) = AY?E a5 1 +
AYPEL K (0) [ue(ﬂ — f(Xt;g?)} + AREED |+ ANYPED Ry (A, (X s, ar): 005 0),

and
9 (An, Y3, Yie130) = 21 g1(Dn, Vi, Yie150) = R (A, (X sepen 127,003 60)
respectively.
Collecting the terms,
92(Am ma }/;:—1; 9)
3
= Y i (An, Vi Vi1 0)
k=1
= Anf(Xep )Lof (Xap,) + F(Xap ) Mica(0) + AnE s (0)f (Xiz_,) |1o(f) = F(Xer,)|
+ An (&L —EL) By + Ra(An, (Xs)sepr ,am15 003 0), (3.77)
where the (somewhat dramatic) remainder term
: k
Ra(An, (XS)SE[t;LWt?P 0o0; 0) = ZR(2 )(Am (Xs)se[t;’;wt?]v 00 6).
k=1

At this point, tedious reasoning based on Lemma 9 in Genon-Catalot and Jacod (1993)

ensures that
n

1

S D Ra(Bu, (Xdsetr a7 00:6) = 08, (1) (3.78)
i=2
and, furthermore,
1 n
A Z RQ(Anv (Xs)se[tﬁQ,t?]v 90; 0) = OPO(l) (379)

=2
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under the additional rate assumption nA2 — 0.3 To see that the strong rate assumption
nA2 — 0 is necessary to obtain (3.79) we can, e.g., consider the last remainder term in (3.75)
since

# - 3/2 ) — 2_1 - .
m;An R(Ananflae)_\/nfn n;R(An,Kl,H)

As the proofs of (3.78) and (3.79) are both very long and not very insightful, they are omitted.

To determine the limit in probability of (3.71), we consider each term in the A-expansion
(3.77) separately: by Lemma 2.3.1,

% > F(Xe )Lof (X ) 20 po(fLof)
i—2

and, analogously, we have
S KO0 () [mo(F) — )] 2 K (0) o Fmo(F) — o £2)]
i=2

Furthermore, by construction

1 « 1 -
- > Eo (6] —EPEP | Fy) = - Z 02 f (Xen )b(Xen 100)]*Eo ((e1,i — €14)én | Fia)
=1 =1

n

and since &1; ~ N(0,1/3), the isometry (3.25) implies that

Eo ((e1 — &1,0)é1 | Fit1) =Eo ((e1 — &1,i)€1,0) = é (3.80)
and
*ZEO —EnE} | A ) éNO([b(';QD)afo)’

Therefore, by observing from the construction of e;1; in (3.42) and &;; in (3.47) that the
difference €1 ; — &1 ; remains Gaussian, Holder’s inequality implies that

1 - —n\2/—n
2 ZEO (& —EM*EN? | FLy)

= % > [0:f (Xan )(Xen 560)]* - B ((51,2‘ — &7 8, Erh)
=1
= 0P0<1)7

3The latter observation is redundant for the proof at hand, however necessary to obtain asymptotic nor-
mality in Theorem 3.5.7. We state it here for convenience.
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and
S5 Er = E D o (B3 60)0:T)

i=1
by Lemma 9 in Genon-Catalot and Jacod (1993).

1
n

By the same argument,

— Zf (Xip ) Mi(60) = oz, (1),

where we apply that Eo (M;(6p) | F/1) = 0 and, with h(z) = 0, f(x)b(x; 6p), it follows from
the conditional It6 isometry, Tonelli’s theorem and Lemma 2.10.2 that

)

iAn
— / Eo (h*(Xs) | Fi-y) ds
(.

iAp
Eo (M7 (60) | Fity) = Eo (/( h?(X,)ds

- W2(Xp,) + - Ru, X ,300)| du
0
= Anh2 (thnil) + A,QLR(A”, thil ; 90)

and, therefore,

nzAQZE()( (Xen )MZ(6o) (f“” )

1
= Z P (X (X )+ 3 Z R(An, Xin ;60)

nA n ,
=1

= Olpo(l).

Gathering our observations,

1
nA,

3 (A0, Vi Yie1;0) 7%

1=2

ol FLof) + 5p0 (B :60)0uf1%) = K7(0) [mo(£2) — ol Hraa(1)]

which verifies (3.39).

To identify the limit of dyr H,,(6), we write

Hy(0) = nin ZZz‘—l [f(Yi) = 2L an(0)]
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which implies that

gz Hy (0

i— ‘—180Tdn(9) = Zn(f)An(e)a

where Z,,(f) == 13" , Z; 1 ZF | and A,(0) :== —A,'0prd,(6). By Lemma 3.4.1,

B L po(f)
Zn(f) — Z(f) = < po(f)  po(f?) )

and applying the power expansion (3.36) of a, (),

An(8) = Bpr ( Ky (f{)ﬁfg()f ) ) + AY20,0 R(An; 6) = Br ( Ky (?]f‘(%()f ) > . A(6).

Hence, it follows that

Byr Ha(0) 2% Z(f)A(6) = po(f) ) < Oy [Ky(0)po(f)] - Oy [Kf(0) o (f)] >

1
( po(f) no(f?) —00, K5 () —09, K5 (6)

by the continuous mapping theorem. To argue that the convergence is uniform over M under
Condition 3.5.5, note that

10pr Hn(0) = Z(HAO = [12n(f)An(8) = Z(HAG)]
= 1Zn(f)An(0) = Zn(f)A(O) + Zn(F)A(0) — Z(F)A(D)]|
120 (N)[An(0) = A + [[[2n(F) = Z(F)]AO)]]

~— ~—

IN

and, in particular,

sup ||0gr Hy(0) — Z(f)AO)|| < | Zn ()] sup [[An(0) — AO)|| + 1 Zn(f) = Z(f)] sup [AO)]-
feM feM feM

Therefore, (3.40) follows by observing that

sup [[4n(6) = A@)| = AL/ sup e B(An; O] Soia i = 0
eM

and applying continuity of || - || and 6 — A(#), respectively. O
Proof of Theorem 3.5.7. We continue with the notation from the proof of Lemma 3.5.6. Ex-
istence of a consistent sequence of Gy,-estimators (6,,) follows directly from Lemma 3.5.6 and

Theorem 1.58 in M. Sgrensen (2012). Moreover, asymptotic normality of 0,, can be shown by
Taylor expanding H,,(f) once we establish that

N, - Hy(60) 22 Na (0, Vo(f)). (3.81)
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From the A-expansion of g;(A,,Y;, Y;—1;0) in (3.70), it follows that

291 (Ap, Y3, Yi1;60)

\/nA
1 1 « 1 «
= —_— Y Y - * 11— A2 - A?’MY 9
A [f( D]+ vVn (anQ 1, 1)) n H;R( 1;00)

n

— Juh, (izfm_lo + opy (1)

=2
2oy N (0, o (10U0(F1)b( - 60)]2))

where convergence in law is true by Lemma 3.4.2 since ff € J3.

In turn, our proof that

- 7 2,2
ALY Yi_1:00) = N (0, 0, Uo(fo O f170%( - ;6 3.82
Vo 2 1500) “2 N (0,0 ([0:U0(55) + £ 02 :600) ) (382)
is based on the observation that
; ””—11nA8XbX-92 1
EQI =) B = ey 2 A0S (X Xy 60+ ono (1)

(3.83)
which follows from Lemma 9 in Genon-Catalot and Jacod (1993) by applying that

(&1 =B 0) By = [0 f (Xen )0(Xen 500)) (e1,i-1 — E1,im1) Enim1,

and, in particular,

=n = {0 1
Eo (( 1 — & 1) =i—1 ‘ ‘7:7;—2) = 6[5mf(Xt;’,2)b(Xt§L2§ ‘90)]2~

Combining the equivalence (3.83) with the A-expansion of ga2(A,,Y;, Yi—1;60p) in (3.77) and
the vanishing condition (3.79) of the corresponding remainder term, we see that

1 n
M ZQQ(ATH Y:ia }/ifl; 90)
" =2

= Vnl, (711 ng*(th_Q)) + \/nlfzf(Xt?_z)Mi_l(Ho) + op, (1)
i=2 =2

N (;;fﬂxw_l)) ﬁZ;f (X JMi(60) + 05, (1), (3.84)
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and to gather the non-negligible terms in (3.84), we initially observe that

1
Xs)d
\/nAn 0 ) ’

1 n 1Ay
R £(X,)d
Vnl, ; (i—1)An fi () ds
1 . * 1 . i * *
= Vnl, <n ;]3 (Xt?1)> + Vo ;/(il)An {f2 (Xs) = f2(Xen )| ds (3.85)

= /nA, <:L2f§(Xt;"1)> + op, (1),
=1

where we only use that f5 € Cg(S).4 Furthermore, since fj € # under Condition 3.5.5,
Proposition 2.3.3 implies that

Lo (Uo(f3)) =—f2 (3.86)

and, therefore, by [t6’s lemma

Do(F)(X0) = Uolf)(Xo) + /0 Lo(Un(f3))(X5)ds + / 0.Un(f)(X,)b( X 00)dBs

= Un(f5)(Xo) /O f3(Xa)ds + / 0, U (13)(X)b(X; 00)d B

As a consequence,

( Zfz Xin ) = \/nT/ X,)ds + op, (1)

- m / 0uU(f2)(X.)b(Xs: 00)dBs + 05, (1)
1 1Ay

- nAn;/(i—l)A 9:Uo(f3)(X5)b(Xs; 60)dBs + opy (1),

1 n
\/nTZg2(AmY;27}/i—1§90)
=2

_ /oA, (iZf;(Xt;l)> +
=1

n A,
= \/anZ/( A [(%Uo(f;)(Xs)+f(Xt?_l)8xf(Xs) b(Xs;60)dBs + op, (1),
n =1 V= 1)An

4A proof that the latter term in (3.85) is, in fact, asymptotically negligible under Py is contained in the
proof of Proposition 2.3.4.

—— > £z, )Mil6o) + 0p, (1)
" i=1
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and, at this point, the asymptotic normality in (3.82) can be shown by applying the central
limit theorem for martingale difference arrays in Hiusler and Luschgy (2015).

The proof of joint normality can be carried out as in Chapter 2 by applying the Cramér-Wold
device. 0

3.8 Appendix B: Auxiliary results

Lemma 3.8.1. Let (Xt)t>0 be a continuous semimartingale on (Q, F, (F:),P) and suppose
that (Hy)i>o is (Ft)-adapted and continuous. For any t > t* > 0,

t s t
/ < Huqu> ds = / (t — s)HydXs.
e \Jtr t*

Proof. Let Z; = fg H.dX;. By stochastic integration-by-parts,

t ¢
tZ; :/ sdZ, +/ Zsds
0 0
t t s t
/ sts:/ </ Huqu> ds:/ (t — s)Hsd X,
0 0 0 0

which verifies the result for t* = 0. For t* > 0,

t s t
/ < Huqu) ds = / (ZS — Zt*) ds
t* t* t*

t t*
= / (Zs_Zt*) ds—/ (Zs—Zt*) ds
0 0

and, in particular,

¢ t*
- / (t — s)HodX, — / (t" — $)HodXs — Zpe (t—1%), (3.87)
0 0
and the result follows by decomposing the middle term
t* t*
/ (t* — $)HydX, — / [t — s — (t — )] HydX,
0 0
t*
_ / (t — $)Hod Xy — Zpe (¢ — 1)
0

and re-inserting into (3.87). O

SThese exact derivations can be found on pp. 41-43.
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One-Factor Models for Diversified Stock
Indices with High-Frequency Observations

EMIL S. JORGENSEN

UNIVERSITY OF COPENHAGEN

ABSTRACT. In this paper we construct a class of continuous-time stochastic volatil-
ity models aimed at modeling the dynamics of diversified stock indices. The mod-
els are of parametric diffusion-type and are driven by a single Brownian motion
that models the non-diversifiable risk of the underlying market. For the construc-
tion we utilize the concept of stochastic market time and, in particular, the base
process and the random time change are dependent processes in our setup. Our
emphasis is on high-frequency econometric issues related to the model class. We
propose a two-step method for estimating the finite-dimensional parameter and
construct a simulation-based test for the implicit one-factor hypothesis for a large
class of continuous It6 semimartingales with stochastic volatility. The one-factor
test is based on a nonparametric measure of instantaneous leverage effect, where
the one-factor model corresponds to perfect negative correlation. We illustrate the
methodology using simulated data, as well as high-frequency observations of the
S&P 500.

Keywords: Diffusion process, diversification, high-frequency data, leverage effect,
one-factor model, stochastic volatility, time change.
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4.1 Introduction

A central concept in modern portfolio theory is the so-called numéraire or growth optimal
portfolio which, for a given financial market, is characterized as the portfolio that attains
the maximum long-term growth rate; see e.g. Platen (2011). For investment purposes, this
particular characterization shows that any investor with the objective of maximizing her or his
long-term wealth should invest according to the optimal weighting described by the numéraire.
Unfortunately, typical semimartingale restrictions on the underlying market dynamics lead
to closed-form expressions for the optimal weights that are difficult to estimate from available
time series; see e.g. Platen (2002) for explicit derivations in the case of diffusion models and
Fan, Y. Li, and Yu (2012) for related results on estimation of the instantaneous volatility
matrix. The practical difficulty concerning estimation of the optimal weighting has motivated
a stream of literature devoted to approximating the numéraire portfolio by means of a different
methodology.!

Practitioners of long-term, risk aversive investment strategies typically aim to construct a
large portfolio in such a way that

(i) the individual risks that drive the underlying assets are largely uncorrelated,

i1) each asset is given a small wei raction to ensure robustness against market down-
ii h t is gi 1l weight fraction t bust gainst ket d
turns,

and recent developments in quantitative finance have shown that naive diversification in the
sense of (ii) does, in fact, provide a reasonable approximation of the numéraire portfolio if the
market is well-securitized in a formalized variant of (i). A general diversification theorem was
established in Platen and Heath (2006) for a large class of semimartingale-based portfolios
and Platen and Rendek (2012a) contains a similar result for the special case of equi-weighted
indices of financial markets.

A liquid class of tradeable portfolios is provided by market capitalization weighted indices
(MCIs) such as the Danish OMXC20CAP or the S&P 500. Therefore, for long-term investors,
e.g. asset managers or pension funds, it is of great interest to know whether or not the market
capitalization weighting provides a reasonable approximation to the corresponding numéraire
portfolio. By the diversification theorem (Theorem 10.6.5) in Platen and Heath (2006), the
answer to this question is affirmative as long as the index is composed of a large number
of constituents and the underlying market well-securitized. Whereas the small number of
stocks that constitute the OMXC20CAP seem to pose a potential diversification problem,
we expect the S&P 500 to satisfy both (i) and (ii) to a large extent. The market condition
(i) has spiked considerable interest into the construction of diversified indices with highly
securitized markets and, e.g., Le and Platen (2006) construct a so-called world stock index
based on diversification of 104 existing sector indices and argue that it leads to a reasonable
approximation of the numéraire. The fact that diversification provides a feasible approach

!Besides its apparent role in portfolio optimization, the numéraire portfolio also serves as benchmark for a
general approach to derivative pricing in Platen (2006) and Platen and Heath (2006).
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to approximating the numéraire portfolio motivates a general study of diversified portfolio
dynamics and, in particular, the dynamics of diversified stock indices which we examine in
this paper.

Building on earlier work by Ignatieva and Platen (2012) and Platen and Rendek (2012b),
this paper considers a class of time-changed square-root diffusion processes for modeling the
normalized index dynamics. A square-root diffusion coefficient was identified by Ignatieva
and Platen (2012) as a good fit for the stock index constructed in Le and Platen (2006),
and the extension by stochastic time change was proposed by Platen and Rendek (2012b)
to provide a better match for the stylized facts. The model is driven by a single Brownian
motion that represents the non-diversifiable market risk and falls within the class of one-factor
continuous-time stochastic volatility models.

Our emphasis will be on high-frequency econometric issues related to the model class. In par-
ticular, we consider estimation of the unknown model parameters and construct a simulation-
based test for the implicit one-factor hypothesis for a large class of continuous It6 semimartin-
gales with stochastic volatility. The latter is based on a normalized measure of instantaneous
leverage effect, where the one-factor model corresponds to perfect negative correlation.

The structure of the remainder of the paper is as follows. In Section 4.2 we define a class
of time-changed square-root diffusion processes. The time-changed model has a useful char-
acterization as the observable component of a one-factor bivariate diffusion model which
we emphasize in Section 4.2.2. Section 4.3 is devoted to a preliminary study of the model-
implied volatility dynamics and leverage effects. In Section 4.4 we consider estimation of
the unknown model parameters specifically aimed at the availability of high-frequency data.
Section 4.5 deals with the construction of a simulation-based one-factor test for a large class
of continuous-time stochastic volatility models. Important findings from an extensive Monte
Carlo study are summarized in Section 4.6 and an empirical study of pre-processed 5-minute
data of the S&P 500 is contained in Section 4.7. Section 4.8 concludes.

4.2 One-factor index models

In this section we construct a class of continuous-time stochastic volatility models for mod-
eling the dynamics of diversified stock indices. Due to diversification, these indices often
display an average exponential growth which we model as a separate deterministic process.
Section 4.2.1 presents a model (S;) for the normalized index dynamics based on the math-
ematical concept of time change and in Section 4.2.2 we characterize (S;) as the observable
component of a partially observed bivariate diffusion model.

4.2.1 Time-change construction

The use of time change as a means to construct stochastic volatility models in finance is widely
accepted; see e.g. A. Veraart and Winkel (2010) for a concise review. For any continuous-
time process (X;) and an increasing, nonnegative process (7;) defined on a probability space
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(Q, F,P), the process
Si(w) = X7y () (W) (4.1)

is said to be a time-changed process with base process (X;) and time change (13).

To ensure that the time-changed process (S;) remains tractable for a given (X;), additional
restrictions on (73) are typically imposed. The following condition ensures that we can apply
standard results from stochastic calculus throughout the paper.

Definition 4.2.1. A stochastic process T' = (T%) is said to be a time change w.r.t. a given
filtration & = (G;) if each of the following properties hold:

- To =0,
-t — T}(w) is continuous and increasing,

- for every t, the random variable T; constitutes a ¢-stopping time.

In particular, the stopping-time assumption in Definition 4.2.1 allows us to construct a new
filtration ¥y = (Gr,) composed of the o-fields of observable events up to time 7}; see e.g.
Chapter 7, Kallenberg (2002).

The idea of replacing t-time by a stochastic market time goes back to Clark (1973), who was
the first to model asset price dynamics using time-changed Brownian motion. His approach
was later extended by Ané and Geman (2000) to include a more general definition of market
time. In this paper, we model the time evolution of diversified stock indices as an integral
w.r.t. a latent market activity process (M;) having values in Ry := (0, 00), i.e. we define

) = /0 M, (w)ds (4.2)

and we suppose throughout that (M) is a time-homogeneous diffusion process that satisfies
the following regularity conditions:

Condition 4.2.2. The stochastic differential equation
ClMt = a(Mt)dt + b(Mt)dBt, MO ~ U (43)

where (By) denotes a (P, # )-Brownian motion w.r.t. some filtration % = (F), has a unique
strong solution (M) such that

- (My) is strictly stationary under P,

. fooo Myds = oo, P-almost surely.
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The integral assumption fooo Mgsds = oo provides a natural growth condition on the market
time 7 and note that under Condition 4.2.2, 7 is continuous, increasing and .#-adapted with
70 = 0. The use of time-changes obtained by integrating over a positive stochastic process has
been studied by e.g. Carr et al. (2003) for the construction of Lévy processes with stochastic
volatility.
To construct the base process (X¢), we let

pr =1inf{s : 7y >t} = {s: 75 = t}, (4.4)
corresponding to inverse market time. By doing so,

Tpe = Pry =1

and clearly the stochastic process p = (p;) is continuous, increasing, and constitutes a family
of F-stopping times. The latter follows by observing that

{pe <up={t <7} eFy
for any ¢t and all u > 0 and, hence, we see that p defines a time change w.r.t. the market

filtration .# in accordance with Definition 4.2.1.

We model X; =S, as a strong solution of the stochastic differential equation
dXt == ﬁ(]. - Xt)dt + Xtth, XO = X0 (45)

where the underlying filtered space is (2, F,.#,,P) and (W}) denotes the following care-
fully constructed (IP,.#,)-Brownian motion: since (B;) and (M;) are both adapted to .#, the
integral process

t
It:/ /M,dB,
0

defines a continuous (P, .%)-local martingale null at zero. Therefore, by applying the Dubins-
Schwarz representation of continuous local martingales (Theorem V.1.6, Revuz and Yor
(1999)), the time-changed integral

Pt
Ipt:/ V/MsdBs = W, (4.6)
0

defines a Brownian motion w.r.t. the inverse market filtration .%,.

At this point, we obtain our class of one-factor stochastic volatility models
St = Xr, (4.7)

by time-changing (X;) with the .#,-time change 7, corresponding to market time. To see that
7 constitutes a time change w.r.t. .%,, it suffices to observe that

{n <up={t <pu} €Fp,
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for any ¢ and all u > 0. Note that, by construction, the time-changed process (S;) in (4.7)
will be adapted to the original market filtration .# and, in particular, we have the explicit
relation

t
WTt:It:/ /M, dB;, (4.8)
0

which is true up to indistinguishability under P. The relation (4.8) captures the basic assump-
tion that diversified stock indices are driven only by a single Brownian motion that models
non-diversifiable market risk.

Remark 4.2.3. Many continuous-time models with a natural time-change representation
are defined in such a way that the base process and the time change are independent; see
e.g. Clark (1973), Madan and Seneta (1990) and Barndorff-Nielsen (1997) for examples of
Lévy processes, or Ané and Geman (2000) and Carr et al. (2003) for models with stochastic
volatility. The Dubins-Schwarz construction of (W;) in (4.6) implies that the base process
(X:) and the stochastic time change 7 are dependent processes in our setup.

4.2.2 Stochastic differential form
One way to view (S;) is as the observable marginal of a bivariate diffusion model for (S, M). In

the following, we rely on auxiliary results in Revuz and Yor (1999) for time-changed Lebesgue-
Stieltjes integrals (Proposition V.1.4) and time-changed It6 integrals (Proposition V.1.5).

Up to P-indistinguishability, the time-changed process
Tt Tt
X, = :po+ﬂ/ (1-Xs) ds+/ v XdWy
0 0
t t
= xo+ﬁ/ (1X~,—S)d7'5+/ VX dW,,,
0 0

and applying the defining property of market time dry = M;dt, together with the Dubins-
Schwarz construction dW,, = v/ M;dB;, we see that

t t
St:xo—l—ﬁ/ (I—SS)Msds+/ v/ SsM,dBs.
0 0

As a consequence, the bivariate stochastic process (S, M) has a t-time stochastic differential
representation of the form

ds, = B(1— Sy)Mdt+ /S MdB, (4.9)

where Sy = z¢ and My ~ p with g being the invariant distribution of (M;) under P.
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Remark 4.2.4. A few comments regarding the construction of (X;) seem to be in order.
Firstly, subject to the Feller condition 8 > 1/2 in (2.1), the value of the asymptotic mean

lim E(Xt ’X():JZ()) =1
t—o0
has been chosen to match our particular choice of normalization; see Section 4.7.2 for an

example of how we normalize using empirical observations of the S&P 500.

Furthermore, for a given parametric diffusion model M; = M;(y) where v € T' C R, the
natural generalization

dXt = 5(1 —Xt)dt+0\/ Xtth, (411)

imposes an over-parametrization on (S, M) in the sense that 6 — Py, where
0 :=(B,0,7) €O C Ri x R?

is no longer an injection. To see this, we map M; — M, = o02M,, B+ B = B/c? and observe
that
dS; = B(1 — S;) Mydt + \/ S; M;dB;.

Popular market activity models (M;) that lead to this type of over-parametrization include
the square-root process of Cox, Ingersoll, and Ross (1985), the GARCH(1,1) diffusion model
in Nelson (1990) and the 3/2 diffusion in Ahn and Gao (1999). Hence, the bivariate rep-
resentation (4.9)-(4.10) of (S, M) shows that our implicit choice of ¢ = 1 in (4.11) poses
no restriction on the class of time-changed square-root diffusion processes considered in this

paper.

4.3 Model implications

Before turning to statistical matters related to (S;), we emphasize some of its key probabilistic
properties in this section. Our main interests are model-implied volatility dynamics and
leverage effects.

4.3.1 Volatility

To examine the volatility dynamics of (S;), let v, = S;M; denote its spot volatility process
derived in (4.9) and note that, by stochastic integration by parts,

t t
vy = SoMy + / SsdM +/ MdSs + (S, M), ,
0 0
where (-, - )t denotes the continuous quadratic covariation process and, in particular,

dvt — <Stb(Mt) —I— \/&7]\4#/3) dBt + dt—term. (412)

Stochastic volatility models where the asset and the volatility are driven by the same, singular
Brownian motion are known as one-factor models.
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4.3.2 Continuous leverage effect

Empirical studies often indicate a strong negative correlation between asset returns and their
volatility; see e.g. Christie (1982) or Bollerslev, Litvinova, and Tauchen (2006). This property
is known in the financial literature as the leverage effect and is often modelled by assuming
that the observable asset (S;) and its underlying volatility process (v;) are driven by corre-
lated Brownian motions; see e.g. the seminal paper by Heston (1993).

To define a nonparametric measure of leverage effect that can be applied to most path-
continuous continuous-time processes applied in finance, including the index models defined in
Section 4.2, we work with a class of processes commonly used in high-frequency econometrics;
see Ait-Sahalia and Jacod (2014).

Definition 4.3.1. A one-dimensional process (.S;) is said to be a continuous It6 semimartin-
gale (w.r.t. 9) if (S;) is ¥-adapted and

Sy = So—l—/otbsds—i—/ot\/@st,
where
- (by) is 9-progressive with fot |bs| ds < o0,
- (vt) is ¥-progressive with fg vgds < o0,
- (By) is a Brownian motion w.r.t. ¢4.

The restriction to continuous It6 semimartingales enables us to characterize the leverage
effect in terms of the instantaneous correlation

d(X,Y), /dt
V(d(X), /dt)(d(Y), /dt)’

well-defined for arbitrary continuous It6 semimartingales (X;) and (Y;). In particular, if we
suppose that (S;) is a stochastic volatility process

Cor(X,Y), = (4.13)

t t
Sy So + / bsds + / \/?Tsst
0 0

¢ t ~
vy = v0+/ bsds+/ \/ UsdBs,
0 0

where (S¢) and the latent volatility process (vt) are both continuous It6 semimartingales with
Cor(B, B); = p for some p € [—1, 1], then

Cor(S,v); = PV = p. (4.14)

VUi
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The instantaneous correlation (4.13) is defined in e.g. Mykland and Zhang (2012), with a
recent extension to Itd semimartingales with jumps in terms of the continuous part of the
integrated covariation [X,Y] in Kalnina and Xiu (2017). The extension in Kalnina and Xiu
(2017) provides a simple way to include both asset and volatility jumps into the dynamics
of (S;) without altering the defining property (4.14). We use this observation to construct a
nonparametric estimator j, of p in Section 4.5.

For the one-factor models (S;) defined in Section 4.2,

Cor(S, v); = sgn (m [Stb(Mt) 4 \/&T@D € {~1,1} (4.15)

corresponding to perfectly negative, respectively, positive correlation. Since the values of (.S¢)
and (My) are nonnegative by construction, it is clear from (4.15) that if b( - ) > 0, the model-
implied leverage effect in the sense of (4.14) is p = 1. To identify conditions on the diffusion
coefficient b( - ) that ensure perfect negative correlation we note that

COI‘(S,’U)t = -1« Stb(Mt) + StMtB <0,

b(M,) < —,/Af. (4.16)

Example 4.3.2. Consider the GARCH(1,1)-type diffusion model

which is equivalent to

th = /i(’f] — Mt)dt — thdBt, (417)

where £ > 0,7 > 0 and, in particular, £ > 0 to ensure that the diffusion coefficient b(x) = —&-x
is strictly negative. After basic calculations, we see that the inequality (4.16) is satisfied if
and only if
M,
>4 =
Example 4.3.3. If we instead consider a 3/2 diffusion model of the form
dM; = kM, (n — My)dt — EM/*dB,, (4.18)
where k > 0, 7 > 0 and £ > 0, we see that the inequality (4.16) holds for

1
> —. 4.19
£> = (1.19)
Since, in practice, St ~ 1 due to our preliminary normalization of the index, the parameter
restriction (4.19) is satisfied whenever the market trajectory is sufficiently volatile. For the
empirical data that we consider in Section 4.7, a value of & > 2 seems to be sufficient to
ensure perfect negative correlation; see Fig. 4.16.
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Remark 4.3.4. For classical parametric stochastic volatility models where the leverage effect
is supposed constant, empirical studies of the S&P 500 indicate that p =~ —0, 75; see e.g. Ait-
Sahalia and Kimmel (2007). Roughly the same estimate was obtained by Kalnina and Xiu
(2017) in a nonparametric framework with stochastic leverage in the sense of A. Veraart and
L. Veraart (2012). A basic assumption in this paper is that diversified stock indices are driven
by a single Brownian motion, corresponding to perfect negative leverage effect, i.e. p = —1.
This is similar to the construction of the Heston-Nandi model discussed in e.g. Gatheral
(2006).

4.4 Parameter estimation

In the following we propose a two-step method for estimating the mean-reversion parameter
B> 0 in the dynamics of (S;), as well as any parameter v € I' C R? that may appear in the
latent market activity process My = M, (). We suppose we observe a discretization

Sigs-- -+ S

n

where the observation times {¢;}!" , are deterministic and equidistant and we write ¢; = iA
for the appropriate A > 0. In Section 4.4.1 we show how to filter a trajectory of (M;) or
7 using a Lamperti transformation. This enables us to estimate v using standard methods
for time-homogeneous diffusion processes. Section 4.4.2 deals with the estimation of 8 which,
despite our ability to filter 7 from the discretization of (S;), is complicated due to dependence
between the base process (X;) and 7. Our proposed estimator exploits the common driving
Brownian motion to construct an estimating equation which can be solved for .

4.4.1 Market activity

As a tractable property of the index model, we can apply the explicitness of the Lamperti
transform (see e.g. Ait-Sahalia (2002)) of the base process

dX; = B (1 — X;) dt + /X dW,

to filter a trajectory of the market activity as follows: the transformed process h(X;), where

h(z) = /OI y~ 2 dy = 2v/x, (4.20)

is a unit diffusion with a representation

—

dh(Xy) =

Voo [5(1 S X)) - ﬂ dt + AW,

Therefore, the time-changed process

dh(S;) = [5(1 _5) - ﬂ Mydt + dW,,

B-
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and, in particular,

(h(S)), = (h(X)),, = /0 M,ds = 7.

This enables us to filter a trajectory of market time 7 as

Fo= 30 (h(S) — hiS, 0) =43 (S - /5 ) (1.21)
j<i

J<i

for A > 0 sufficiently small; see e.g. Theorem 1.4.47, Jacod and Shiryaev (2003). Estimation
for discretely observed integrated diffusion processes fot M ds where

dMy; = a(My;y)dt + b(My; v)dB

and v € T' ¢ R? was considered in Chapter 3 as well as by Ditlevsen and M. Sgrensen
(2004) within the framework of prediction-based estimating functions. The general theory
of prediction-based estimating functions was developed by M. Sgrensen (2000, 2011) and, in
particular, explicit prediction-based estimating functions are available for the class of Pear-
son diffusions defined in Forman and M. Sgrensen (2008). Contrast estimators for drift and
diffusion parameters of integrated diffusions were studied by Gloter (2006).

An alternative approach in the presence of high-frequency observations of (S;) is to filter
the instantaneous market activity {My,}", by averaging over blocks containing [, < n
neighbouring observations. The use of overlapping blocks has a smoothing effect on {My, }I*
and is frequently applied for filtering of spot volatility in high-frequency econometrics. The
method only requires continuity of ¢ — M;(w) through
1 ti+h 1
Mi () = fim [ M) ds = fim 1 ()~ 7 (),

which yields the pointwise estimator
~ 1
Yol A

for 7 defined in (4.21). At this point, any of the numerous methods for estimation in stationary
parametric diffusion models can be applied to estimate ~y; see e.g. H. Sgrensen (2004) for a
survey of a selection of these methods.

4.4.2 Mean-reversion

Estimation of the mean-reversion parameter S > 0 poses a difficult problem. The basic
idea in the following is to utilize the Dubins-Schwarz relation dW,, = /MdB; to derive an
estimating equation for 8 based on Lamperti transformations. Specifically, we show that

d MDY (U g 4 dieterm (4.23)
(it )= ()
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for suitable functions h; and ho which, in turn, enables us to estimate § by preliminary
filtering and estimation of (M) as outlined in Section 4.4.1. We illustrate the estimation
method for the 3/2 diffusion considered in Example 4.3.3 and discuss the modification to
other diffusion models (M) at the end of the section.?

AS shown in Section 441,
1\t /—St t 4 t Tt .

for hy(z) = 24/x, regardless of our choice of (M;). Moreover, by Itd’s formula applied to
ha(z) = &' log(),

dha(M;) = (’? - (’g + g) Mt> dt — dW,,, (4.25)

which establishes (4.23).

To construct an estimating equation for 3, note that by (4.25) and the construction of hg,

(B ) L e (M
Wnn—ftn <£+2>Ttn & log<M0>,

and, similarly, it follows from (4.24) that
tn
We, = 2(VS, — V) _/
= 2 (\/ St, — \/570)

\/151 [ﬂ(l s - ﬂ M, ds

1
B(1 — Ss—]Msds
i=1Yti-1 'V 5|: ) 4

— Sy, ) M 1 My
2 (/51 = /50) - MZ ﬁMAZW

Equating the two yields the (approximate) estimating equation

K1) k& - My,
e (Nz) T € o (MJ

2<\/STH—\/S>U) BAZ F fAZm (4.26)

%

Q

which we solve for 8 using 7, given by (4.21), filtered values of {My, }i; obtained via (4.22)
and an estimated value 4, = (fn, 7, &n) of the unknown parameter v € T' of the market
activity process.

2 A similar construction as (4.23) in terms of (B;) is possible, however, the one-factor model (S, M) requires
a different approach than the multivariate Lamperti approach in Ait-Sahalia (2008) for reducible diffusions.
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Remark 4.4.1. The same estimation approach can be applied if (M;) is either a square-root
diffusion process
th =K (77 - Mt) dt — 6\/ MtdBt (427)

or the GARCH(1,1) diffusion from Example 4.3.2. The only difference is that we need to
replace ha(z) = ¢ 1log(x) with ho(z) = ¢ 'z and ha(z) = 26~ /x, respectively, to obtain a
unit diffusion as in (4.25).

4.5 Testing the one-factor hypothesis

This section is devoted to the construction of a nonparametric test for determining whether or
not a one-factor model is appropriate for modeling of diversified stock indices. We formulate
the test for continuous stochastic volatility models of the general form

t t
Sy = SO+/bsds+/ VUsdBs
0 0
t~ t B
v = vo+/ bsds+/ \/1773st,
0 0

where both the discretely observed asset (S;) and the volatility process (v;) are assumed to
be continuous Ité semimartingales with Cor(B, B); = p for p € [—1,1]. We are interested in
the null hypothesis

Ho:p=—1, (4.28)

corresponding to a one-factor model driven by (B;), versus the general alternative H; : p #
—1. Since we are testing for a parameter value at the boundary, the derivation of an asymp-
totic error distribution for any particular estimator p, poses a challenging problem and, as a
simpler alternative, we simulate the empirical distribution of p in this paper.

For the construction of a nonparametric estimator p, from discrete observations

St Sy

n

we follow Section 3 in Kalnina and Xiu (2017). However, whereas Kalnina and Xiu (2017)
allow leverage to be stochastic, our (simpler) objective is to construct a global estimator p,
by averaging over all observations. We divide the construction into 4 steps, starting with
filtering of the latent spot volatility using a local block average as in (4.22) and subsequently
defining an estimator for the spot covariation d (S,v), /dt, the spot volatility d (S), /dt and
the spot volatility of volatility d (v), /dt, respectively, to obtain an estimator for

_ d(S,v), /dt
P Sy, jdb)(d vy, db)

as discussed in Section 4.3.
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STEP 1: To filter the local spot volatility, we fix [,, < n and let

A~ ~

Ur; = lnlA <<S>ti+ln~A N <S>ti) ’

where

<‘§>tj = Z(Stk - Stk—1)27

k<j

which is often referred to as realized volatility in the econometrics literature; see e.g. Barndorff-
Nielsen and Shephard (2002b).

STEP 2: To obtain an estimator for spot volatility at terminal time ¢, = nA, we let

1 |
Un = A = A D (Sh = Sh )

n .
k<n

STEP 3: Our estimator for the spot volatility of the volatility process at terminal time is

3 n—In

~ % . ) 9 4 .
Un =TI T A Z |:(vtj+ln — ;)" = lvgj} . (4.29)
n 7=0 n

STEP 4: Finally, we construct an estimator for the spot covariation as

n—In

* 2 ~ ~
‘=T A Z [(Stj+ln - Stj) X (Utj+ln - vtj)] ) (4.30)

where the factor 2 has been added to accommodate the bias identified in Section 2.3 of Wang
and Mykland (2014).3

Combining STEP 1-4 yields the nonparametric estimator

fr = — (4.31)

The correction terms for ¢ in (4.29) and ¢, in (4.30) are consistent with findings in Vetter
(2015) and Wang and Mykland (2014), respectively, and are due to the preliminary estimation
of volatility in STEP 1. In particular, the use of integrated covariation measures for discretely
observed processes, see e.g. Barndorff-Nielsen and Shephard (2004a) or Zhang (2011), would
lead to inconsistency of p, as A — 0. The spot estimators defined in STEP 1-4 can be
modified to encompass jumps in (S¢) using thresholding as in Mancini (2009) or Mancini,
Mattiussi, and Reno (2015), or bipower variation; see e.g. Barndorff-Nielsen and Shephard
(2004b, 2006).

3The factor 2 does not appear in the spot covariation estimator in Section 3 of Kalnina and Xiu (2017)
who apply a subsequent bias-correction for their estimator of integrated stochastic leverage.
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Remark 4.5.1. The estimator of p in (4.31) is rather crude. Compared to the construction
in Kalnina and Xiu (2017), we avoid sub-dividing the dataset into non-overlapping blocks of
length [,, < L,, < n by considering the full set of observations (i.e. we choose L, = n). A
better option may be to proceed exactly as in Kalnina and Xiu (2017) and eventually define
pn as the average value obtained over all blocks of length L,,.

With the construction of p,, we obtain a simulation-based test for a one-factor hypothesis as
follows:

ONE-FACTOR BOOTSTRAP TEST

1. Evaluate py, from the discretization Sy, ..., S, ,

. n .
2. Stmulate N trajectories {S’t(f)} . under Ho and evaluate ﬁg),
1=

3. If pp, lies within the 95% quantile of the empirical distribution of {;353)}?:1, accept
Ho.

Remark 4.5.2. Note that in applications with a parametric model S; = S;(6) for § € © C R,
simulation under Hg requires preliminary estimation of 6.

4.6 Monte Carlo results

To study the behaviour of the proposed estimators and test statistic, we consider in this
section the special case where (S;) is given by the stochastic differential equation

dS, = B(1— S)Mdt+ /S, M,dB,
dM, = kM,(n— M,)dt — M /*dB,.

In Section 4.6.1 we outline the discretization scheme used for simulating the process, Sec-
tion 4.6.2 is devoted to the estimation method and, finally, Section 4.6.3 examines the
simulation-based one-factor test described in Section 4.5.

4.6.1 Path visualization

To simulate the time-changed process (S;) we apply a truncated Milstein discretization of
the one-factor representation of (S, M); see Chapter 10, Kloeden and Platen (1999). Letting
A =t;—t;_1 and AB; = B, — By, , ~ N(0,A), it follows that

< Sti ) _ < Sti—l )_|_< /B(]‘_Stifl)Mtifl >A—|—< ,*/Stiflj\{tifl )ABZ

Mti Mt¢71 ’{Mtiﬂ (77 - Mtiﬂ) _‘SMtSi_Zl

X < My, (1-€5/50 ) )(ABE—A%

32 2
15 Mti—l
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where /- denotes a truncated version of the square-root function, i.e. v/x = y/max(0, x).

In the following we fix 5 = 1, v = (k,n, &) = (10, 7,3) and consider the time interval [0, 1] with
a discretization step A ~ 9.51 - 1075, corresponding to 5-minute observations over a l-year
period. This yields a total of 105,120 observations with initial values Sy = 1 and My ~ 4.83,
the latter being the stationary mean of (M;). A sample trajectory of (Sy) is shown in Fig. 4.1.

r
0.0

15

FIGURE 4.1: Monte Carlo discretization of (S¢) on [0, 1].

From the discretization of (M;), a simple approximation of instantaneous market time
t; i t; i
Ty, = / Mods =) Mds~ A M, (4.32)
0 j=17ti—1 j=1

and both processes are shown in Fig. 4.2 and Fig. 4.3, respectively. Of course, these discretiza-
tions are not available for estimation and testing purposes, however, as shown in Section 4.4.1,
the explicitness of the Lamperti transform of S,, = X; enables us to filter out a trajectory of
(M) from the discretization of (S;).
Finally, we construct the latent spot volatility

Uti = Stq; Mti

and plot the result in Fig. 4.4.

4.6.2 Estimation

In this section we study the behaviour of the two-step estimator described in Section 4.4. A
preliminary undocumented simulation study of the 3/2 diffusion model reveals that long time
series of 5-minute observations are necessary for reliable estimation of the drift parameters
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FIGURE 4.2: Monte Carlo discretization of FIGURE 4.3: Approximate market time
3/2 market activity process (My). {m,} obtained from {M;,} by (4.32).
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FIGURE 4.4: Discretization of the latent spot volatility v, = Sy M.

« and 7). Consistent with our findings, we choose the fixed time horizon [0, 5/2] in the following.

Given a discretization of (S;), our first step is to filter out the market activity { M, }™, using
overlapping blocks of length [,, - A of approximate market time; see (4.22). The outcome of a
particular experiment is shown in Fig. 4.5.

For the parameter v = (k, 7, &) of the 3/2 diffusion (M;), we apply the differential form

dlog(M;) = (m - (FL + 5;) Mt> dt — &/ M,dB;

to construct a natural estimator for £ obtained by equating observed and theoretical quadratic
variation as )
o i [log (¥0,) —log (¥, )
§n = — (4.33)
A Zi:l Mti—l
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FIGURE 4.5: Time series of the true (simulated) market activity process {My,} (black) to-
gether with the filtered observations {My,} (blue). As expected, the two trajectories follow
each other very closely. The smoothing factor [, is fixed at 100.

and, at this point, the explicit estimating functions defined in Section 4 of Kessler (2000) can
be used to estimate x and n; letting g(z) = (z,log(z))” yields the two-dimensional estimating
function

Gulr) =3 g (1,,) = 3 ,.@ (m_mil (n-11,.,)
=1 )

i=1

where £, denotes the infinitesimal generator of (M;). Hence, after solving the estimating
equation G, () = 0, we obtain the explicit estimators

1 n r2
A n Zizl Mti—l
1 n Y ’
E ZZ:I Mti—l
1 n r2
PO Rt i M
Rpn = §§n

1 n 9 2
<5 Zi:l Mti—l)

-1

-1

Finally we solve the estimating equation (4.26) for 5 using estimated terminal market time
#r given by (4.21). Our findings are summarized in Table 4.6.*

4Note that estimation of the diffusion parameter & cannot be done using the estimating functions in Kessler
(2000). As described in Section 5 of Hansen and Scheinkman (1995), simple moment equations can only be
used to identify parameters in the invariant distribution of (M).
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TABLE 4.6

SUMMARY: TWO-STEP ESTIMATION OF ¥ AND [

~ A~

6 T Rn ﬁn §n 511
1 12.25 9.59 7.18 2.99 0.90
1 11.87 11.21 6.72 3.05 1.36
1 11.81 9.90 6.96 3.06 1.42
2 11.98 11.33 6.75 3.05 2.21
2 11.94 11.08 6.76 3.04 2.57
2 12.36 10.73 7.00 2.99 1.54
3 12.33 11.71 6.82 2.99 2.35
3 12.00 8.92 7.29 3.04 3.75
3 12.11 11.67 6.74 3.02 3.13

Notes: (i) The true parameter v = (10,7,3). The values of the estimators 7, and B, are
from particular realizations of (S¢) but suffice to illustrate convergence.

4.6.3 Testing the one-factor hypothesis

The index model (S;) is a one-factor model by construction. In this section, we study the
behaviour of the nonparametric test described in Section 4.5. To simulate the model under
Ho, we apply the estimated values 59 = (9.59, 7.18,2.99) and Bo = 0.90 obtained in Table 4.6.
Moreover, for the particular discretization that lead to 49 and Bo, the value of the test statis-
tic pp, = —0.82.

In the following, we simulate N = 410 trajectories {St(f )}?:0 on the time horizon [0, 1] and
in each case evaluate ﬁﬁf ). The choice of time horizon [0, 1] reduces computational time. As
described in STEP 1 of Section 4.5, the evaluation of ﬁ,(nf ) uses preliminary filtering of the
spot volatility {v,} and a particular discretization {St(zj )} is shown in Fig. 4.7 with a visual
comparison of the latent volatility process and its filtered counterpart in Fig. 4.8. The outcome

of the test is summarized in Fig. 4.9.

4.7 Empirical study: S&P 500

Whereas daily time series are available from numerous open source providers, access to re-
search platforms is necessary for aggregation of high-frequency (intraday) financial data.’

®A standard open source provider is Yahoo! Finance (https://finance.yahoo.com).


https://finance.yahoo.com
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FIGURE 4.7: A Monte Carlo discretization of (S;) on [0, 1].

FIGURE 4.8: Time series of the true volatility process {vs, } (black) together with the filtered
observations {0, } (blue). The smoothing factor I, is fixed at 100.

The market data we apply in this section is pre-processed tick-by-tick transaction data of the
SPDR S&P 500 ETF retrieved from Wharton Research Data Services. A detailed description
of the pre-processing is given in Section 6.4 in Jonsson (2016) and consists of a two-step clean-
ing and subsequent downsampling to avoid irregular spacing. By downsampling to 5-minute
observations, the effect of microstructure noise on the efficient value (price) of the index is
negligible in practice; see e.g. Chapter 2, Ait-Sahalia and Jacod (2014). The down-sampled
market data consists of 368,724 price quotes and provides the basis for our empirical study.%
We plot the data in Fig. 4.10.

5The SPDR S&P 500 ETF provides a liquid tradeable proxy of the S&P 500 Index and is fully suitable for
our statistical purposes.
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FIGURE 4.9: Empirical distribution of p, under Hy : p = —1. For simulating the model,
we apply the fixed set of null parameters 49 = (9.59,7.18,2.99) and Bo = 0.90. Of all the
values of {ﬁ%)}le, two fell outside the sensible area [—1,1] and had to be rejected and
resampled. The width of the empirical distribution can potentially be reduced by simulating
longer trajectories which requires a substantial amount of computational time. As the value
of the test statistic p, = —0.82 lies well within the 95% quantile of the empirical distribution,
we cannot reject the one-factor hypothesis, as expected.
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FIGURE 4.10: Log-transformed 5-minute observations of the SPDR S&P 500 ETF. The pre-
processed time series consists of 368, 724 price quotes spread uniformly across all trading days
(9:30 - 16:00) from January 2, 1996, till December 31, 2013.

4.7.1 A closer look at the facts

As a preliminary step, we examine a few relevant qualitative properties of the SPDR, S&P 500
ETF using nonparametric filtering methods. Specifically, we consider spot volatility, index
jumps and the leverage effect.
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Spot volatility To allow for jumps in the empirical index data, we use a local block average
based on realized bipower variation to construct a daily measure of volatility, i.e. we let

1
b = 3 (BV(S) 1 — BV(S)), i1
where t; denotes the start of trading day ¢ — 1, h is the length of a trading day and

7T
BV(S)tj = 9 Z |Stk - Stk71| : |Stk71 - Stk72"

k<j

The outcome is shown in Fig. 4.11.

r T T T T T T T T T T T T T T T T T 1
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FIGURE 4.11: Filtered daily spot volatility {0;} of the SPDR S&P 500 ETF.

Index jumps Our motivation for studying jump dynamics in the empirical data is two-fold.
Firstly, the ability to remove index returns containing jumps shoud lead to better estimation
of the time-changed index model (.S;) introduced in Section 4.2 and, secondly, Kalnina and Xiu
(2017) argue that truncation of jumps stabilizes estimation of the continuous leverage effect.
In this paper, we follow Lee and Mykland (2008) who propose a simple nonparametric test
statistic for detecting infrequent jumps in high-frequency asset returns. The test is valid for all
continuous It6 semimartingales with an independent jump component (J;) and a summary of
our findings for the SPDR S&P 500 ETF data is given in Fig. 4.12. Other nonparametric tests
for the presence of asset jumps in high-frequency financial data include Barndorff-Nielsen and
Shephard (2006) and Ait-Sahalia and Jacod (2009).

Continuous leverage effect To indicate the negative correlation between index returns
and increments of the latent volatility process, we plot the normalized index (Section 4.7.2)
together with the filtered daily spot volatility in Fig. 4.13.
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FIGURE 4.12: Visual comparison between the log-transformed SPDR S&P 500 ETF data
(black) and a purely continuous component obtained by removing index returns containing
jumps (blue). The jumps of the SPDR S&P 500 ETF have been removed using the test
statistic proposed in Section 1 of Lee and Mykland (2008) with a significance level of 1%.
The length of the rolling window used for preliminary estimation of spot volatility is K = 270.

AN

FIGURE 4.13: Normalized index data (black) together with the filtered trajectory of the spot
volatility (blue). Visually, there seems to be an asymmetry between increments of the index
and its volatility, corresponding to a negative leverage effect. The spot volatility has been
reduced by a factor 20 for illustrative convenience.

4.7.2 Index normalization

As mentioned in Section 4.2, we normalize the index dynamics by subtracting a deterministic
trend. The inclusion of a deterministic exponential trend is consistent with macroeconomic
growth data displaying the evolution of US national GDP during the time period 1950-2017
(Fig. 4.14), as well as the log-transformed historical time series of daily closing values of the
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S&P 500 for the same period (Fig. 4.15). The normalized time series is shown in Fig. 4.16.

FRED -~ — Gross Domestic Product
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FIGURE 4.14: Log-scaled US national GDP, FIGURE 4.15: Log-transformed time series
1950-2017. Retrieved from FRED, Fed- of daily closing values ($US) of the S&P

eral Reserve Bank of St. Louis; https:// 500 during the time period 03/01/1950 till
fred.stlouisfed.org/series/GDP, July 30/12/2016.

4, 2017.
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FIGURE 4.16: Time series of the normalized 5-minute data of the SPDR S&P 500 ETF.
Before normalization, index returns containing jumps have been removed; see Section 4.7.1.

4.8 Extensions and concluding remarks

First and foremost, it remains to be seen how the estimators proposed in Section 4.4 and
the one-factor test described in Section 4.5 behave on the empirical dataset. Another, more
challenging, extension of apparent interest would be to derive the asymptotic distribution for
the nonparametric leverage effect estimator p,, under Hy as A — 0. The simulation study in
Section 4.6 seems to support our choice of bias-correction in Section 4.5, but a mathematical
derivation would provide us with much needed clarification here.


https://fred.stlouisfed.org/series/GDP
https://fred.stlouisfed.org/series/GDP
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