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Leibniz Universität Hannover

Gabor Wiese
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Abstract

In this thesis we study the slopes of the Atkin’s Up operator acting on
overconvergent modular forms. In the case of tame level 1 and for
p ∈ {5, 7, 13}, we compute a quadratic lower bound for the Newton polygon of
Up. The methods of proof are explicit and rely on a certain deformation of the
Up operator and its characteristic power series. This gives us the possibility to
compute the smallest possible slope for p ∈ {5, 7} and to prove necessary and
sufficient conditions on the weight such that the dimension of the cuspidal
space is 1. This result allows us to exhibit some p-adic analytic families of
modular forms in the framework of Coleman’s theory. We then formulate a
conjecture that would allow us to extend our analysis to all the congruence
classes modulo p− 1. Finally, in the appendix, we present the results of some
numerical experiments and we provide numerical evidence for the conjecture.

Resumé

I denne afhandling studerer vi hældninger af Up-operatoren virkende p̊a
overkonvergente modulformer. I tilfældet af tamt niveau 1 og p ∈ {5, 7, 13}
bestemmer vi en kvadratisk, nedre grænse for Newton-polygonen for Up.
Bevismetoderne er eksplicitte og beror p̊a en bestemt deformation af
Up-operatoren og dens karakteristiske potensrække. Dette giver os mulighed
for at bestemme den mindst mulige hældning for p ∈ {5, 7} og for at bevise
nødvendige og tilstrækkelige betingelser for vægten s̊aledes, at dimensionen af
spidsrummet er 1. Dette resultat gør det muligt for os at fremvise nogle
p-adisk analytiske familier af modulformer indenfor rammerne af Colemans
teori. Derefter formulerer vi en formodning, der ville tillade en udvidelse af
vores analyse til alle kongruensklasser modulo p− 1. Endelig præsenterer vi i
et appendiks resultaterne af nogle numeriske eksperimenter, og vi giver
numerisk evidens for formodningen.
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Chapter 1

Introduction

1.1 Overview

Fix p > 2 an odd prime number and let Cp be the completion of an algebraic
closure of Qp with normalized valuation vp such that vp(p) = 1. Fix once and
for all an embedding Q ↪→ Cp.
A p-adic, or generalized, weight κ = (s, [a]) is a continuous C∗p-valued
character of Z∗p that can be represented as

κ(x) = τa(x) 〈x〉s

where 〈x〉 is the one-unit part of x, τ is the Teichmüller character, a is a
representative of a congruence class in Z

(p−1)Z and s ∈ Cp with vp(s) ≥ 1
p−1 − 1.

The weight space W is then a disjoint union of p− 1 connected components
W[a] obtained fixing the congruence class [a]. The ring Z embeds then

diagonally in W and if κ = (k, [k]) for some k ∈ Z, we have that κ(x) = xk.
Let K be a finite extension of Qp and let B be its ring of integers. For k ∈ Z
denote by Mk(N,B) the space of classical modular forms of weight k over
Γ1(N) ∩ Γ0(p) and such that the coefficients of their q-expansion are in B.
For r ∈ B, Katz introduced in [Kat73] the space Mk(N,B, r) of p-adic
overconvergent modular forms of weight k and growth condition r and showed
that Mk(N,B, r) has the structure of a p-adic Banach space. We have that

Mk(N,B, r) ⊇Mk(N,B).

The Atkin U
(k)
p operator acts on Mk(N,B, r) and its effect on q-expansions is

U (k)
p

( ∞∑
n=0

anq
n

)
=

∞∑
n=0

anpq
n.

The operator U
(k)
p is compact on Mk(N,B, r) and stable on the subspace of

cusp forms Sk(N,B, r).
In this thesis we mostly deal with tame level N = 1.

We can then construct the characteristic power series P (T ) of the U
(k)
p

operator restricted to cusp forms. We then analytically extend this
characteristic power series to P[a](k, T ) for all generalized weights κ = (k, [a])
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1.1. Overview

in a given connected component W[a] of the weight space. In Section 4.1.1 we
describe the construction of P (T ) and P[a](κ, T ) with more details.
Let

P[a](k, T ) = 1 +

∞∑
m=1

C[a](m, k)Tm.

The Newton polygon of P[a](k, T ) is then defined as the lower convex hull of
the set of points {(

m, vp
(
C[a](m, k)

))}
.

This is also called the Newton polygon of U
(k)
p and its slopes are called the

slopes of U
(k)
p or slopes of overconvergent cusp forms. We recall some facts

about Newton polygons and their construction in Section 4.1.2.
Wan shows in [Wan98] that for p ≥ 5 there is a parabola lying below the

Newton polygon of U
(k)
p for all k ∈ Z and all levels. He also shows that the

quadratic term of the parabola is 6
p+1 for tame level 1 and p ∈ {5, 7, 13}.

Smithline in [Smi00] extends Wan’s result for all primes and levels and gives a
general formula to calculate the quadratic term of the parabola.
In the case of tame level 1, p ∈ {5, 7, 13} and for the connected component
W[0] of the weight space we extend their results by computing explicitly the
linear and constant terms. We are also able to compute the parabola for more
general weights k.

Theorem 1.1. For p ∈ {5, 7, 13} and k ∈ Zp we have the following lower
bound on the valuation of the coefficients C[0](m, k) of the characteristic power
series P[0](k, T ):

vp
(
C[0](m, k)

)
≥
(

6

p+ 1

)
m2 −

(
1− 6

p+ 1

)
m− 1.

For p ∈ {5, 7}, but more generally k ∈ Cp such that vp(k) ≥ 0, the valuation of
each coefficient C[0](m, k) of the characteristic power series P[0](k, T ) satisfies

vp
(
C[0](m, k)

)
≥
(

6

p+ 1
− 1

2

)
m2 −

(
3

2
− 6

p+ 1

)
m− 1.

If an eigenform f has q-expansion

f =

∞∑
n=0

anq
n

and is normalized such that a1 = 1, then its p-adic slope is α = vp(ap).
Coleman proves in [Col97, B5.7.1] the existence of p-adic analytic families of
cuspidal eigenforms of fixed positive slope α, namely families of the form

F (κ) =

∞∑
n=1

an(κ)qn,

where each of the an(κ) is an analytic function on the weight space W such
that, for sufficiently large k ∈ Z, the series F (k) specializes to the q-expansion
of a classical cusp form of fixed slope α. He also proves in [Col97, B3.5] that if

12



1.1. Overview

the dimension of the space of cuspidal eigenforms of weight k0 and slope α is 1
then there exists an integer M ∈ Z with the following property: for every
sufficiently large k1 ∈ Z such that

k0 ≡ k1 mod (p− 1)pn+M for every n ∈ N

there exists a unique classical cusp form F (k1) over Γ0(p) of weight k1 and
slope α. Moreover the following congruence holds:

F (k0) ≡ F (k1) mod pn+1,

where F (k0) is the unique normalized cuspidal form of slope α and weight k0.
When p = 2 the problem is analyzed by Emerton in [Eme98] and Coleman in
[Col97, Appendix II]. When p = 3 the problem is studied by Coleman, Stevens
and Teitelbaum in [CST98] and by Smithline in [Smi00].
In this context, as an application of Theorem 1.1, for p ∈ {5, 7} and for tame
level 1 we are able to prove necessary and sufficient conditions on the weight k
such that the cuspidal space has dimension 1 and to compute the slopes as
well as the integers M in these cases.

Theorem 1.2. Let p = 5, and let k0 and k1 be integers in 4Z such that k0 ≥ 4
and k1 ≥ 4. Assume furthermore that

v5(k0 − 8) = v5(k1 − 8) ≤ 1.

Then there exist unique classical normalized cuspidal eigenforms F (k0) and
F (k1) over Γ0(5) of slope{

α
(5)
[0] (k0) = α

(5)
[0] (k1) = 1 if v5(k0 − 8) = v5(k1 − 8) = 0

α
(5)
[0] (k0) = α

(5)
[0] (k1) = 2 if v5(k0 − 8) = v5(k1 − 8) = 1.

Moreover the following congruences hold:{
v5 (F (k0)− F (k1)) ≥ v5(k0 − k1) + 1 if α

(5)
[0] (k0) = 1

v5 (F (k0)− F (k1)) ≥ v5(k0 − k1) if α
(5)
[0] (k0) = 2.

Similarly, the following results holds for p = 7.

Theorem 1.3. Let p = 7, and let k0 and k1 be integers in 6Z such that k0 ≥ 3
and k1 ≥ 3. Assume furthermore that

v7(k0 − 6) = v5(k1 − 6) = 0.

Then there exist unique classical normalized cuspidal eigenforms F (k0) and
F (k1) over Γ0(7) of slope

α
(7)
[0] = 1.

Moreover the following congruence holds:

v7 (F (k0)− F (k1)) ≥ v7(k0 − k1) + 1.

For a slightly more precise version of the statements we refer to Theorems 4.16
and 4.17.
This results can also be compared with the former Gouvêa-Mazur conjecture.
The conjecture, stated in [GM92], can be formulated as follows:
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1.2. Overconvergent p-adic modular forms

Conjecture 1.4 (Gouvêa - Mazur). Let d(k, α) be the dimension of the space
spanned by the cuspidal eigenforms of weight k and slope α ∈ Q. Then if
k0, k1 ∈ Z are both at least 2α+ 2 and such that

k0 ≡ k1 mod (p− 1)pn

for some integer n ≥ α, then

d(k0, α) = d(k1, α).

Buzzard and Calegari provided remarkable counterexamples to the conjecture
in [BC04]. Nevertheless, in many of the computed instances the conjecture
seems to be even too weak.
Theorem 1.2 for example shows that, in the case of slope α = 2, we can have
that d(k0, 2) = d(k1, 2) = 1 under less restrictive assumptions. In fact this
holds true if

k0 ≡ k1 mod 4 · 5

instead of congruence modulo 4 · 52 as the conjecture would have required.
The methods of proofs of our results are mostly explicit and rely on the fact
that the modular curve X0(p) has genus zero.

In Chapter 2 we compute the action of the U
(0)
p operator on classical modular

functions and extend the computation to overconvergent modular functions
using a specific basis for the space Sk(1, B, r).
In Chapter 3, using a result of Coleman, we deform the weight zero operator
to U∗p to extend the computations to every weight k. To do so we use a result
of Coleman about some specific Eisenstein series and their overconvergence
rate; this restricts our computations to the congruence class of 0 modulo p− 1.
In Chapter 4 we introduce the characteristic power series of the U∗p operator
and recall some basic facts about Newton polygons. Using a formula for the
trace of the Up operator due to Koike, we calculate the parabolas of Theorem
1.1. We apply the result in the framework of Coleman’s theory of p-adic
analytic families to prove a slightly more general version of Theorems 1.2 and
1.3. We then formulate a conjecture on a specific weight 1 Eisenstein series
that allows us to extend our analysis to all the congruence classes [a] modulo
p− 1 and the associated connected components W[a] of the weight space.
In the appendices, we explain how to use Koike’s formula to do numerical
experiments. We then proceed to test our results by exhibiting lists of classical
eigenforms of the predicted slopes and the congruences between then. We
conclude by showing the numerical evidence for the conjecture formulated in
Chapter 4.

1.2 Overconvergent p-adic modular forms

In this section we shall recall some basic facts about overconvergent p-adic
modular forms, mostly following the presentations given by Wan in [Wan98]
and by Gouvêa in [Gou88]. The main references for the theory of p-adic
modular forms are [Ser73], [Ser75], [Kat73], [Gou88] and [Col97].
Let p ≥ 5 be a prime and fix an embedding Q ↪→ Cp. The construction of
overconvergent p-adic modular forms is possible also when p = 2, 3, but it is

14



1.2. Overconvergent p-adic modular forms

slightly different. The resulting theory is analogous, see [Kat73] for more
details.
Let Ep−1 be the classical Eisenstein series of weight p− 1; for p ≥ 5 it is a lift
to characteristic zero of the Hasse invariant. Let K be a finite extension of the
field Qp and let B be its ring of integers. Let N be a positive integer such that
p - N . In this thesis, we mostly deal with with N = 1. Let Mk(N,B) be the
space of classical modular forms of weight k over Γ1(N) whose q-expansion
have coefficients in B: it is a free B-module of finite rank. For every positive
j ∈ N, there exists a free B-submodule Aj(N,B) of Mk+j(p−1)(N,B) such that

Mk+j(p−1)(N,B) ∼= Ep−1 ·Mk+(j−1)(p−1)(N,B)⊕Aj(N,B).

Note that the isomorphism is non-canonical, as it depends on a non-canonical
section of the map given by multiplication by Ep−1 between the classical spaces

Mk+j(p−1)(N,B)
·Ep−1−−−−→Mk+(j+1)(p−1)(N,B);

see [Kat73, Lema 2.6.1] for more details.
Set A0(N,B) = Mk(N,B). For an element r ∈ B denote by Mk(N,B, r) the
space of r-overconvergent p-adic modular forms of classical weight k. Any
form f ∈Mk(N,B, r) can be written uniquely in the form

f =
∑
j≥0

βj

Ejp−1
,

where βj ∈ Aj(N,B) and vp
(
r−jβj

)
→∞ in the sense that the valuation of

the q-expansions coefficients of βj grows rapidly enough as j goes to infinity.
This is called the Katz expansion of f . Conversely, every element f with a
Katz expansion is in Mk(N,B, r). Moreover if r = r1r2 we have the inclusion

Mk(N,B, r) ↪→Mk(N,B, r1),

see [Gou88, Corollary I.2.7] for further details.
If r is invertible in B, the space Mk(N,B, r) is the space of p-adic modular
forms in the sense of Serre [Ser73]. It turns out that the space is too large to

have a good spectral theory for the U
(k)
p operator, hence we have to restrict to

subspaces with vp(r) > 0. In this case each of the spaces Mk(N,B, r) is a
finite M0(N,B, r)-module.
The space Mk(N,K, r) = Mk(N,B, r)⊗K has the structure of a p-adic
Banach space, obtained by taking Mk(N,B, r) as the unit ball in Mk(N,K, r).
One important operator acting on the space Mk(N,B, 1) is the Frobenius
operator V . Geometrically, the V operator can be seen as the pullback of a
particular lifting of the usual Frobenius operator in characteristic p, hence it is
a map of degree p. On q-expansions is given by

V

( ∞∑
n=0

anq
n

)
=

∞∑
n=0

anq
np.

On classical forms, this maps on q-expansions maps classical forms of level N
to modular forms of level Np. As classical modular forms of level Np are
p-adically of level N , it makes sense as an operator on p-adic modular forms,

15



1.2. Overconvergent p-adic modular forms

but one should note that in general V is not stable on Mk(N,B, r), as it
reduces the rate of overconvergence. See [Gou97, II.2] for the details of the
geometric definition of the operator V and its properties.

Another important p-adic operator is U
(k)
p . The study of this operator and its

eigenvalues will be the main focus of the following sections. It can be defined
from the operator V in the following way:

p · U (k)
p = Tr(V ).

On q-expansions, U
(k)
p acts as

U (k)
p

( ∞∑
n=0

anq
n

)
=

∞∑
n=0

anpq
n.

Hence we have that, for f ∈Mk(N,B, r),

U (k)
p (V (f)) = f.

The operator U
(k)
p is a compact operator on the full space Mk(N,B, 1), but, in

general, is not stable on Mk(N,B, r) if vp(r) > 0.
Nevertheless, if vp(r) <

p
p+1 one has that

U (k)
p (Mk(1, B, r)) ⊆Mk(1, B, rp)⊗K = Mk(1,K, rp).

On the other hand, we have the following inclusion:

ι : Mk(N,B, rp) ↪→Mk(N,B, r).

Then the U
(k)
p operator can be seen acting on Mk(N,B, r) via ι ◦ U (k)

p and we
have the following result, cf. [Wan98, Lemma 2.2].

Proposition 1.5. Let r such that 0 < vp(r) <
p
p+1 . Then the U

(k)
p operator

induces a compact endomorphism on the p-adic Banach space Mk(N,K, r).

Moreover U
(k)
p is stable on the subspace of cusp forms Sk(N,B, r).

When the weight is clear from the context, we will often write the U
(k)
p

operator simply as Up.
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Chapter 2

The Up operator in weight
zero

2.1 The action of Up on classical modular
functions

Let p be one of the primes 2, 3, 5, 7, 13. These are the primes p for which the
modular curve X0(p) has genus 0. We first recall some notions about the
Hauptmoduln and their link to the modular j−invariant. These are classical
results due to Klein, cf. [Kle78], but a helpful and recent reference is the paper
[Mai09] by Maier.

Proposition 2.1. Let p ∈ {2, 3, 5, 7, 13} and let η be the Dedekind η function.
The function

tp(z) =

(
η(pz)

η(z)

) 24
p−1

is a generator for the function field of X0(p).

If j is the classical j-invariant, we have

j =
Hp(tp)

tp
(2.1)

for a certain polynomial Hp of degree degHp = p+ 1. These polynomials are
as follows:

H2(x) = (28x+ 1)3,

H3(x) = (35x+ 1)3(33x+ 1),

H5(x) = (55x2 + 2 · 53x+ 1)3,

H7(x) = (74x2 + 5 · 72x+ 1)3(72x2 + 13x+ 1),

H13(x) = (134x4 + 7 · 133x3 + 20 · 132x2 + 19 · 13x+ 1)3(13x2 + 5x+ 1),

as given in [Mai09, Section 3].

17



2.1. The action of Up on classical modular functions

Remark. Maier in [Mai09] uses a slightly different normalization for the
Hauptmodul than we do, and hence his formulas are a bit different, but
equivalent to the ones above.

In the rest of this section we obtain the modular equation and use it to

recursively compute the action of the U
(0)
p operator on powers of tp. The

importance of this technique will be explained in section 2.2. We follow the
reasoning as in [Smi00, Section 3.3], but we shall provide a few more details
and use a slightly different language.
Let V be the operator acting on q-expansion by q 7→ qp as introduced in
Section 1.2. Then V (j) is a classical modular function on Γ0(p). Let Wp be
the Atkin-Lehner involution on X0(p), given by the action of the matrix

ωp =

(
0 −1
p 0

)
.

Since j is invariant under the action of the full modular group SL2(Z), in
particular it is invariant under the action of the matrix

S =

(
0 1
−1 0

)
.

We have immediately that
V (j) = j ◦Wp.

As a consequence, using (2.1) we get the following relation:

Hp(V (tp))

V (tp)
= V (j) = j ◦Wp =

Hp (tp ◦Wp)

tp ◦Wp
.

Recalling that ∆(z) = (2π)12η(z)24, where ∆ is the classical modular form of
weight 12 and level 1, we obtain:

tp ◦Wp =

 ∆
(
− 1
z

)
∆
(
− 1
pz

)
 1

p−1

=

 (
1
z

)12
∆ (z)(

1
pz

)12
∆ (pz)


1

p−1

= p−
12

p−1

(
η(z)

η(pz)

) 24
p−1

=
(
p

12
p−1 tp

)−1
= Gp(tp),

where Gp is the rational function Gp(x) =
(
p

12
p−1x

)−1
.

Thus we see that
(x, y) = (tp, V (tp))

is a solution to the equation

− Hp(Gp(x))

Gp(x)
+
Hp(y)

y
= 0. (2.2)

Clearly, this equation is identically satisfied by (x, y) = (x,Gp(x)). Note also
that the polynomials Hp are of degree p+ 1, have constant term equal to 1
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2.1. The action of Up on classical modular functions

and leading coefficient p
12p
p−1 . Hence, if we multiply the equation (2.2) by xpy

and then divide by p
12

p−1 (Gp(x)− y) = 1− p
12

p−1xy, we obtain an equation of
the form

Fp(x, y) = 0, (2.3)

where Fp(x, y) ∈ Z[x, y] is a polynomial of degree p and monic with respect to
x. We can express Fp as follows:

Fp(x, y) = xp +

(
p−1∑
s=1

a(p)s (y)xp−s

)
− y

with certain polynomials a
(p)
s (y) of degree at most p and without constant

term. We refer to Appendix A for an explicit list of these polynomials for
p = 2, 3, 5, 7, 13.

As p
12

p−1 tptpV (tp) 6= 1, we conclude that

(x, y) = (tp, V (tp))

is also a solution to the equation (2.3).
As V is a map of degree p, cf. Section 1.2, it follows that there are precisely p
solutions α1, . . . , αp that satisfy

V (αi) = tp, i = 1, . . . , p.

Thus, for every i = 1, . . . , p, we have that

Fp (V (αi) , V (tp)) = 0.

Whence, as Fp ∈ Z[x, y],
Fp (αi, tp) = 0.

It follows that the αi’s are precisely the roots of the monic polynomial of
degree p

F (x, tp).

Recall from Section 1.2, that by definition the Up operator is related to the
trace of the Frobenius operator V by pUp = TrV , hence

pUp (tp) =

p∑
i=1

αi = −a(p)1 (tp) .

Note now that for any n ∈ N we have exactly p solutions β1, . . . , βp such that

V (βi) = tnp , i = 1, . . . , p.

It is clear that, for i = 1, . . . , p.

βi = αni

So

pUp
(
tnp
)

=

p∑
i=1

αni
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2.1. The action of Up on classical modular functions

can be computed recursively in terms of the a
(p)
s (tp) by Newton’s formulas: let

uj = pUp
(
tjp
)
, then we have

uj + a
(p)
1 (tp)uj−1 + · · ·+ a

(p)
j−1(tp)u1 + ja

(p)
j (tp) = 0,

that is
uj = −

(
a
(p)
1 (tp)uj−1 + · · ·+ a

(p)
j−1(tp)u1 + ja

(p)
j (tp)

)
, (2.4)

with the conventions a
(p)
p (y) = −y and a

(p)
j (y) = 0 for j > p.

As a result, we find that

Up
(
tjp
)

=
∑
i

c
(p)
ij t

i
p

for certain coefficients c
(p)
ij that we can compute with a recursive method.

A simple result on the coefficients c
(p)
ij is the following:

Proposition 2.2. Let the coefficients c
(p)
ij be as above. Then c

(p)
ij 6= 0 only if

j

p
≤ i ≤ pj.

Proof. This follows by induction on j using the recursion formula. Assume
that the maximum nonzero power of tp on the right hand side of the formula
(2.4) is at most imax(j) = pj.
Now consider

uj+1 = −
(
a
(p)
1 (tp)uj + · · ·+ a

(p)
j (tp)u1 + (j + 1)a

(p)
j+1(tp)

)
.

Then, as the degree of the polynomials aps(y) is at most p, it is clear that the
maximum nonzero power of tp in the formula for uj+1 is at most
jp+ p = (j + 1)p = imax(j + 1).
Similarly, assume that for any j′ ≤ j, the minimum nonzero power of tp in the
formula for uj′ is at least

imin(j′) =

⌈
j′

p

⌉
.

As the polynomials aps(y) are without constant term, the minimum nonzero
power of tp that can appear in the formula for uj+1 is the same as the
minimum possible nonzero power of tp in the product app(tp)uj−p+1. Hence

imin(j + 1) = 1 +

⌈
j − p+ 1

p

⌉
=

⌈
j + 1

p

⌉
.

The following result about the coefficients c
(p)
ij is part of [Smi00, Proposition

3.3.3].

Proposition 2.3 (Smithline). Let p ∈ {2, 3, 5, 7, 13}. For the coefficients c
(p)
ij

above we have
vp

(
c
(p)
ij

)
≥ γp · (pi− j)− 1,

where

γp =
12

p2 − 1
.
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2.1. The action of Up on classical modular functions

In [Smi00] the proof of this statement is sketched for the case p = 3 whereas
the other cases are left to the reader.
We have verified the proposition for each p ∈ {2, 3, 5, 7, 13} using the direct
method shown below in Proposition 2.5 for p = 5 (and using some automation,
specifically Maple [Map15], to compute the recurrence formulas).

Remark. We found that the bound of Proposition 2.3 is sharp in many
instances, for each of the primes p = 2, 3, 5, 7, 13.

Let now p = 5, t = t5, U
(0)
5 = U , as(t) = a

(5)
s (t5) and c

(5)
ij = cij . Then, using

Newtons’s formula (2.4) we have the following relations:

U(1) =1,

5 · U(t) =− a1(t),

5 · U(t2) =− a1(t)U(t)− 2a2(t),

5 · U(t3) =− a1(t)U(t2)− a2(t)U(t)− 3a3(t),

5 · U(t4) =− a1(t)U(t3)− a2(t)U(t2)− a3(t)U(t)− 4a4(t),

as well as the following recurrence formula for j ≥ 5:

U(tj) = −a1(t)U(tj−1)−a2(t)U(tj−2)−a3(t)U(tj−3)−a4(t)U(tj−4)+ tU(tj−5).

Once again, cf. Appendix A for an explicit display of the polynomials as(y).
As a result we obtain the recurrence formula for the coefficients cij :

Proposition 2.4. The coefficients cij satisfy the following recursion formula:

ci,j =32527ci−1,j−1 + 225513ci−2,j−1 + 32577ci−3,j−1 + 2 · 3 · 510ci−4,j−1
+ 512ci−5,j−1 + 225213ci−1,j−2 + 32547ci−2,j−2 + 2 · 3 · 57ci−3,j−2
+ 59ci−4,j−2 + 325 · 7ci−1,j−3 + 2 · 3 · 54ci−2,j−3 + 56ci−3,j−3

+ 2 · 3 · 5ci−1,j−4 + 53ci−2,j−4 + ci−1,j−5

for j ≥ 5 with the convention that cij = 0 for i < 0.

Proposition 2.5. For the coefficients cij = c
(5)
ij we have the following lower

bound on the 5-adic valuation:

v5(cij) ≥
1

2
· (5i− j)− 1.

Proof. We can compute the coefficients cij for j = 0, 1, 2, 3, 4 and verify the
lower bound directly (recall that cij = 0 when i > 5j by Proposition 2.2 ).
After that, the bound can be established by induction on i as follows. Put

h(i, j) =
1

2
· (5i− j)− 1

and suppose that the we have v5(cij) ≥ h(i, j) whenever j < m. To establish
the lower bound on v5(ci,m) for all i, we use the recurrence formula from
Proposition 2.4, applying the induction hypothesis to every term on the right
hand side. For example we can compute

v5
(
32527ci−1,m−1

)
≥ 2 + h(i− 1,m− 1) =

1

2
· (5i−m)− 1 = h(i,m).

We find that this holds for every term of the recurrence formula and the result
follows.
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2.2. The action of Up on overconvergent modular functions

2.2 The action of Up on overconvergent
modular functions

We want to express the action of the U
(0)
p operator on overconvergent modular

forms of weight zero as explicitly as possible. Take now p ∈ {2, 3, 5, 7, 13}. Let
B be the ring of integers of a finite extension of Qp. Let tp be a generator of
the function field of X0(p) as in section 2.1 and recall now the following result
due to Loeffler [Loe07, Corollary 2.2],

Proposition 2.6 (Loeffler). For any r such that 0 ≤ vp(r) < p
p+1 , the space

S0(1, B, r) of p-adic cusp functions of weight 0, tame level 1 and growth
condition r has an orthonormal basis{(

tp
d

)i}∞
i=1

for any d ∈ Cp such that vp(d) = − 12
p−1vp(r).

Remark. Following [Col97, A1] if E is a p-adic Banach space over B, a subset
{ei : i ∈ N} ⊂ E is said to be an orthonormal basis if every element x of E can
be expressed uniquely as a sum

x =
∑
i∈N

aiei

such that limi→∞ vp(ai) =∞ and such that for every i we have ‖ei‖ = 1 with
respect to the norm of E. It is then clear that Proposition 2.6 implies that
{(tp)i}i≥1 is an orthonormal basis. By abusing the language, we will also call
the {(

tp
d

)i}∞
i=1

an orthonormal basis of S0(1, B, r).

Now choose r such that 0 ≤ vp(r) < 1
p+1 , hence we have that

− 12
p2−1 < vp(d) ≤ 0. Recall from Section 1.2 that the image of

r−overconvergent modular functions via the Up operator are
rp−overconvergent modular functions. As 0 ≤ vp(rp) < p

p+1 , we can express

the action of the Up operator on S0(1, B, r) in term of this basis:

Up

((
tp
d

)j)
=
∞∑
i=0

c
(p)
ij (d)

(
tp
d

)i
.

For some coefficients c
(p)
ij (d) depending on d.

As we have

Up

((
1

d

)i)
=

(
1

d

)i
,

it is then clear that we have

c
(p)
ij (d) = di−jc

(p)
ij (2.5)

where the coefficients c
(p)
ij are as in section 2.1.
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2.2. The action of Up on overconvergent modular functions

Crucial Remark. In general, it can be quite hard to compute the
overconvergence rate of a given p-adic modular form. On the other hand, if
p ∈ {2, 3, 5, 7, 13} and the weight is zero, we can check its rate of
overconvergence thanks to Proposition 2.6. A p-adic modular function f is
r-overconvergent if it has a unique expression in terms of the orthonormal basis

f =

∞∑
i=0

dibi

(
tp
d

)i
for some coefficients bi and d taken as above such that vp(d

ibi) ≥ 0 for every i.
Hence, in this case, we can check the overconvergence rate by looking at
growth rate of the valuation of the coefficients bi.

Remark. In the following sections, we will often ask to make a suitable choice
of d instead of r. It is clear that these choices are equivalent in the context of
Proposition 2.6.

Proposition 2.7. Let p ∈ {2, 3, 5, 7, 13} and let d ∈ Cp be such that

−γp = − 12

p2 − 1
< vp(d) < 0.

Then the following lower bound on the valuation of the coefficients c
(p)
ij (d)

holds:
vp

(
c
(p)
ij (d)

)
≥ γp · (pi− j) + 1 + vp(d) · (i− j).

Proof. It is an immediate consequence of Proposition 2.3 and the relation
(2.5).
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Chapter 3

Deformation of the Up

operator to any weight k

3.1 Coleman’s trick and deformation

We want to construct a deformed version of the Up operator, denoted by U∗p ,
that in a sense interpolates p-adically the action of the usual Up operator on
spaces of overconvergent p-adic modular forms of different weights.
The key observation is due to Coleman and it is used in [Col97, Section B3].
One can also see [Smi00, Theorem 2.3.2] as a reference.

Proposition 3.1 (Coleman’s trick). Let k1 and k2 be in Z. Let B be a finite
extension of Qp and let r ∈ B such that

0 ≤ vp(r) <
1

p+ 1
.

Let U
(k1)
p and U

(k2)
p be the Up operator acting on p-adic modular modular

forms of weight respectively k1 and k2. Let G be a modular form of weight
k1 − k2 such that the modular function

g =
G

V (G)

is a 1−unit in the ring M0(N,B, r).

Then the operators U
(k1)
p (·) and U

(k2)
p (g·) are conjugate.

Crucial Remark. In order to gain explicitness from the use of Proposition
3.1, we have to make suitable choices of the form G and we need to explicitly
compute the rate of overconvergence of the modular function g = G

V (G) . The

latter, in general, is a very difficult task.

Definition 3.2. Let G and g be as in Proposition 3.1 and let k′ ∈ Z be the
weight of G. The U∗p operator acts on modular forms fk of varying weight

k ∈ Z as a deformation of the U
(0)
p operator as follows:

U∗p (fk) = U (0)
p

(
g

k
k′ · fk

)
.
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3.2. The U∗p operator for tame level 1, p = 5, 7, 13 and [a] = [0]

Note that the definition of U∗p depends on k, even if it is omitted in the
notation.
It is then clear by the definition that U∗p only makes sense if their weight is a
multiple of k′. For this reason, suitable choices of the form G have to made.

3.2 The U ∗p operator for tame level 1, p = 5, 7, 13
and [a] = [0]

The goal of this section is to construct explicitly the U∗p operator, as defined in
section 3.1, in the case of tame level 1 and p = 5, 7, 13. The specific choice of
the series

ep−1 =
Ep−1

V (Ep−1)

that we will make will limit this construction to the connected component
W[0], the one associated to the congruence class [0] modulo p− 1.

Remark. For p = 2, 3 one can not take the series Ep−1 as a lift of the Hasse
invariant, but a similar construction of the deformed U∗p operator can be done.
See [Eme98] for p = 2; the case p = 3 has been analyzed in [CST98] and
[Smi00].

In this case, a suitable choice of the modular form G as introduced in
Proposition 3.1 is given by the following result, due to Coleman, cf. [Col97,
Section B]. An explicit proof was provided by Wan [Wan98, Lemma 2.1].

Proposition 3.3 (Coleman). Let p ≥ 5. For any r such that

0 ≤ vp(r) <
1

p+ 1

the function

ep−1 =
Ep−1

V (Ep−1)

is a 1-unit in the ring M0 (1, B, r).

An immediate consequence is the following statement.

Corollary 3.4. Let p ∈ {5, 7, 13}. For any r such that

0 ≤ vp(r) <
1

p+ 1

the function

ep−1 =
Ep−1

V (Ep−1)

is an r-overconvergent modular function of level 1 and expansion

ep−1 = 1 +

∞∑
i=1

dibi

(
tp
d

)i
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3.2. The U∗p operator for tame level 1, p = 5, 7, 13 and [a] = [0]

with tp as in Chapter 2 and d such that

vp(d) = − 12

p− 1
vp(r).

Furthermore, for every i ∈ N

vp (bi) ≥
12

p2 − 1
i = γp · i.

Proof. As p ∈ {5, 7, 13} and as ep−1 is a modular function, it must have an
expansion in term of the Hauptmopdul tp. As ep−1 is r-overconvergent, the
condition on d follows from Proposition 2.6.

Finally, as ep−1 is overconvergent we must have that vp
(
dibi

)
≥ 0 by

Proposition 2.6. Hence it follows that

vp (bi) > −vp(d) · i ≥ 12

p2 − 1
i.

For the remaining of the section, unless specified, let p ∈ {5, 7, 13}.
Let k ∈ Cp and assume. Consider, purely formally at first, the expansion of

e
k

p−1

p−1 via the binomial series:

e
k

p−1

p−1 =

∞∑
n=0

( k
p−1
n

)
xn

where

x = ep−1 − 1 =

∞∑
i=1

dibi

(
tp
d

)i
.

Still purely formally we then can express

e
k

p−1

p−1 = 1 +

∞∑
n=1

αn(d, k)

(
tp
d

)n
(3.1)

with

αn(d, k) = dn
n∑
i=1

( k
p−1
i

)∑
bτ1σ1
· · · bτiσi

where the inner sum is taken over all σs, τs ∈ N such that

σ1τ1 + σ2τ2 + · · ·+ σsτs = n.

We want now to estimate the p-adic valuation of αn(d, k). The expression
(3.1) makes sense when k ∈ Z and k ≡ 0 mod p− 1. On the other hand, we
can extend the coefficients αn(d, k) formally to all k ∈ Cp by continuity. This
extension will be helpful in the following chapter when we will use geometric
techniques to study the deformed operator U∗p .
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3.2. The U∗p operator for tame level 1, p = 5, 7, 13 and [a] = [0]

Proposition 3.5. For every n ≥ 1, k ∈ Cp and vp(k) ≥ 0 the following
inequality holds:

vp (αn(d, k)) ≥
(
vp(d) + γp −

1

p− 1

)
n,

where γp = 12
p2−1 as before.

Proof. From the definition of αn(d, k) above, it follows that

vp (αn(d, k)) ≥ vp(d) · n+ min
1≤i≤n

{
vp

(( k
p−1
i

))
+ γp · n

}
,

as the valuation of each of the products bτ1σ1
· · · bτiσi

is greater or equal than

γp · n by Corollary 3.4. Note now the trivial lower bound vp(i!) ≤ i
p−1 , hence

vp

(( k
p−1
i

))
≥ vp

(
1

i!

)
≥ − i

p− 1
,

therefore the minimum occurs when i = n and we have

vp (αn(d, k)) ≥
(
vp(d) + γp −

1

p− 1

)
n.

Corollary 3.6. When p ∈ {5, 7}, the expression (3.1) defines an r-
overconvergent modular function whenever r is chosen such that

0 ≤ vp(r) <
1

p+ 1
− 1

12

and k is specialized to an integer in Z.

Proof. Such a choice of r implies that

− 12

p− 1

(
1

p+ 1
− 1

12

)
< vp(d) ≤ 0

using Proposition 2.6. This implies, together with the inequality given in
Proposition 3.5, that the valuation of the coefficients αn(d, k) is positive, as

γp −
1

p− 1
=

12

p2 − 1
− 1

p− 1
=

12

p− 1

(
1

p+ 1
− 1

12

)
.

Corollary 3.7. If k ∈ Zp, then for p ∈ {5, 7, 13}, the expression (3.1) defines
an r-overconvergent modular function whenever r is chosen such that

0 ≤ vp(r) <
1

p+ 1

and k is specialized to an integer in Z.
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3.2. The U∗p operator for tame level 1, p = 5, 7, 13 and [a] = [0]

Proof. If k ∈ Zp, we have that

vp

(( k
p−1
i

))
≥ 0,

hence we can refine the lower bound on the valuation of the coefficients
αn(d, k) of Proposition 3.5:

vp (αn(d, k)) ≥ (vp(d) + γp)n

for every n ≥ 1. Then the expression

e
k

p−1

p−1 = 1 +

∞∑
n=1

αn(d, k)

(
tp
d

)n
defines an r-overconvergent modular function for the chosen r.

Remark. When p = 13, the number

1

p+ 1
− 1

12

is negative, hence the result of Corollary 3.6 does not have an analogous.
Nevertheless, if we restrict our assumption of k ∈ Cp to p-adic integers we can
still obtain some bounds on the Newton polygon of U∗13, using Corollary 3.7.
On the other hand, we will need to consider weights k outside of some p-adic
discs, i.e. we will need to impose conditions like vp(k − b) < 1 for some b.
With k ∈ Zp, the corresponding regions of the weight space would be trivial.
This is one of the obstruction to using the methods here presented to get
accurate information about the 13-adic family. See Lemma 4.15 and the proof
of Theorem 4.16 for details. In the case of p = 13 one could possibly describe
the 13-adic family by choosing a suitable (but not too large) extension of Zp as
a domain for the weights.

We summarize these results in the next proposition.

Proposition 3.8. Suppose that p ∈ {5, 7} and k ∈ Cp with vp(k) ≥ 0.
Consider the expression

e
k

p−1

p−1 =

∞∑
n=0

αn(d, k)

(
t

d

)n
.

Then, whenever 0 ≤ vp(r) < 1
p+1 −

1
12 and d is chosen such that

vp(d) = − 12
p−1vp(r) we have for every n ∈ N:

vp(αn(d, k)) ≥
(
γp −

1

p− 1
+ vp(d)

)
n.

Moreover the expression e
k

p−1

p−1 defines an r-overconvergent modular function if
k is specialized to an integer in Z.
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3.3. Computing the action

If p ∈ {5, 7, 13} and k ∈ Zp, 0 ≤ vp(r) < 1
p+1 and d is chosen such that

vp(d) = − 12
p−1vp(r) we have instead the following bound on the valuation of the

coefficients αn(d, k)

vp(αn(d, k)) ≥ (γp + vp(d))n.

Moreover the expression e
k

p−1

p−1 defines an r-overconvergent modular function if
k is specialized to an integer in Z.

Corollary 3.9. Let p, r, d, ep−1 be as in Proposition 3.8. Let k ∈ Z such that
k ≡ 0 mod p− 1. Then the deformed operator U∗p introduced in Definition 3.2
is defined by the formula

U∗p (f) = U (0)
p

(
e

k
p−1

p−1f

)
for r-overconvergent functions f .

Note again that the definition of U∗p depends on k even though k is suppressed
from the notation.

3.3 Computing the action

For p = 5, 7, 13, let U∗p be the deformed operator as defined in the previous
section. Consider now the basis of Sk(1, B, r){(

tp
d

)j}∞
j=1

as defined by Proposition 2.6 and let tp = t and ep−1 =
Ep−1

V (Ep−1)
as before. The

action of the U∗p operator on this basis is then given by the formula

U∗p

((
t

d

)j)
= U (0)

p

(
e

k
p−1

p−1

(
t

d

)j)
=

∞∑
n=0

(
αn(d, k) · U (0)

p

((
t

d

)j+n))

=

∞∑
n=0

(
αn(d, k)

∞∑
i=0

ci,j+n(d)

(
t

d

)i)
,

where the coefficients ci,j(d) are as introduced in Section 2.1, namely

ci,j(d) = di−jc
(p)
i,j .

In the following we will suppress the prime p from the notation when it is clear
from the context.
Note now that the inner sum in the formula above is in fact finite, as we have
ci,j+n(d) = 0 for i > p(j + n), cf. Proposition 2.2. Hence we can interchange
the two sums and we obtain

U∗p

((
t

d

)j)
=

∞∑
i=0

ci,j(d, k)

(
t

d

)i
(3.2)
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where

ci,j(d, k) =

∞∑
n=0

αn(d, k)ci,j+n(d).

Again, the latter sum is in fact a finite sum since ci,j+n(d) = 0 when
j + n > pi by Proposition 2.2.
Note that we denote by ξp the row vector

ξp =

(
1,
tp
d
,

(
tp
d

)2

, . . .

)
,

we can express the formula (3.2) more compactly as

U∗p
(
ξTp
)

= M∗p (ξp)

where M∗p = (ci,j(d, k)) is the infinite matrix representing the action of U∗p .
The following Proposition describes some lower bounds on the valuation of the
coefficients ci,j(d, k) that will be helpful in Chapter 4.

Proposition 3.10. Suppose that p ∈ {5, 7}, k ∈ Cp with vp(k) ≥ 0 and r such
that 0 ≤ r < 1

p+1 −
1
12 . Let γp = 12

p2−1 . Then:

vp (ci,j(d, k)) ≥
(
γp −

1

p− 1

)
(pi− j)− 1 + vp(d)(i− j)

uniformly in k.
Suppose that p ∈ {5, 7, 13}, k ∈ Zp and r such that 0 ≤ r < 1

p+1 . Let

γp = 12
p2−1 . Then:

vp (ci,j(d, k)) ≥ γp(pi− j)− 1 + vp(d)(i− j).

uniformly in k.

Proof. Combining the definition of ci,j(d, k) with Propositions 3.8 and 2.7 with
the fact that ci,j+n(d) = 0 when j > pi− n, we can obtain the first inequality:

vp(ci,j) ≥ min
0≤n≤pi−j

{αn(d, k) + vp (ci,j+n(d))}

≥ min
0≤n≤pi−j

{(
γp −

1

p− 1
+ vp(d)

)
n+ (pi− j − n)γp − 1 + vp(d)(i− j − n)

}
= min

0≤n≤pi−j

{
γp(pi− j)−

n

p− 1
− 1 + vp(d)(i− j)

}
=

(
γp −

1

p− 1

)
(pi− j)− 1 + vp(d) · (i− j),

as the minimum occurs when n = pi− j.
The second inequality follows easily using the second part of Proposition 3.10:

vp(ci,j) ≥ min
0≤n≤pi−j

{αn(d, k) + vp (ci,j+n(d))}

≥ min
0≤n≤pi−j

{(γp + vp(d))n+ (pi− j − n)γp − 1 + vp(d)(i− j − n)}

= γp(pi− j)− 1 + vp(d) · (i− j).
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Chapter 4

Main results and
conjectures

4.1 Characteristic power series, Newton
polygons

4.1.1 The characteristic power series of the Up operator

To study the Up operator and its spectral theory, it is very helpful to consider
its characteristic power series.
For p ≥ 5, let Up be the operator acting on p-adic modular forms of weight k.
As Up is a compact operator acting on the p-adic Banach space Mk(1, B, r),
following the general theory of [Ser62, Section 5] we can define the

characteristic power series of U
(k)
p = Up restricted to the space of cusp forms

Sk(1, B, r):

P (T ) = det

(
1− TUp

∣∣∣
Sk(1,B,r)

)
,

that is the p-adic analogue of the Fredholm determinant for p-adic Banach
spaces.
We can summarize the important properties about the power series P (T ) with
the following proposition, cf. [Gou88, Section II.3.4]

Proposition 4.1. Let P (T ) be the characteristic power series of Up restricted
to Sk(1, B, r). Then λ 6= 0 is an eigenvalue for Up if and only if P

(
λ−1

)
= 0

and the dimension of the eigenspace of cusp forms corresponding to λ is
precisely the multiplicity of λ−1 as a root of P (T ).
Moreover, the power series P (T ) defines a p-adic entire function and can be
expressed in terms of the trace of the powers of the Up operator as

P (T ) = exp

(
−
∞∑
n=1

(
Tr ((Up)

n
)Tn

n

))
.

If we now consider the weight k as a variable in a given connected component
W[a] of the weight space, we can study the spectral theory of the deformed U∗p
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operator introduced in Definition 3.2. Let M∗p (k) be the matrix of its action
on Sk(1, B, r) and consider its two-variable power series

P[a](k, T ) = det(1− TM∗p (k)) = 1 +

∞∑
m=1

C[a](m, k)Tm,

Where each of the coefficient C[a](m, k) is now a power series in k:

C[a](m, k) =

∞∑
i=0

βik
i,

with vp(βi)→∞ as i→∞.

Remark. The U∗p operator and its matrix M∗p (k) are defined only for k ∈ Z.
On the other hand, formally we can extend by continuity the coefficients of the
matrix M∗p (k) to any k ∈ Cp. This allows us to consider the series P[a](κ, T )
formally for any κ ∈ W. In the next sections, we will make use of some
geometric techniques later in this chapter, before specializing the results back
to k ∈ Z.

4.1.2 Newton polygons

Newton Polygons are a classical tool that is extremely helpful in p-adic
analysis. For a classical reference see [Gou97, Section 6.4].

Definition 4.2. Let K be a finite extension of Qp and let F (T ) =
∑
aiT

i be
a power series with coefficients in K such that a0 6= 0 and vp(ai)→∞ as
i→∞. The Newton polygon of F is the lower convex hull of the set of points

{(i, vp(ai))} .

Given a line segment of extremes (i0, vp(ai0)) and (i1, vp(ai1)), its length l is
the length of the projection on the first axis: l = i1 − i0 and its slope α, as
expected, is given by

α =
vp(ai1)− vp(ai0)

i1 − i0
.

The most important results about Newton Polygons is described in the
following proposition, cf. [Gou97, Corollary 6.4.11].

Proposition 4.3. Let F (T ) be a power series as above, and let α1, α2, . . . be
the slopes of the line segments of its Newton polygon. Let l1, l2, . . . be the the
length of the line segments. Then for every j ≥ 1, the series has exactly lj
roots of valuation −αj.

4.2 Results for p = 5, 7, 13

The goal of this section is to study the U∗p operator for p = 5, 7, 13 via the
Newton polygons of its characteristic power series P[0](k, T ), as defined in
Section 4.1.
The idea is to find under which conditions on the weight k, the U∗p -eigenspace
associated to the smallest possible slope has dimension 1. Combining
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Propositions 4.1 and 4.3, this amounts to prove under what assumptions on
the weight k the length of the first segment of the Newton polygon of
P[0](k, T ) is 1. Finally, using Coleman’s theory about p-adic analytic families
of fixed finite slope, we will be able to prove the Theorems of Section 1.1.

4.2.1 Lower bounds for the Newton polygon

One more helpful tool that we will need in the following are Serre’s estimates
on p-adic compact operator. The original result is in [Ser62, Section 6, Lemme
3], but a presentation in a similar setting can be found in [Kil08, Theorem 13].

Proposition 4.4 (Serre). Let P[a](k, T ) = 1 +
∑
C[a](m, k) be the

characteristic power series of the U∗p operator restricted to cusp forms as
defined in Section 4.1.1 and let ci,j(d, k) be the coefficients of the matrix M∗p
describing its action, as defined in Section 3.3. Define

si(d, k) = inf
j
{vp(ci,j(d, k))} .

Then we have, for every m ≥ 1

vp
(
C[a](m, k)

)
≥

m∑
i=0

si(d, k).

Proposition 4.5. Let p ∈ {5, 7}, P[0](k, T ), ci,j(d, k) and si(d, k) as in
Proposition 4.4. Assume k ∈ Cp and that vp(k) ≥ 0. Furthermore assume that
k is in the component W[0] of the weight space corresponding to the class [0]
modulo p− 1. Then we can choose d such that

si(d, k) ≥ i
(

12

p+ 1
− 1

)
− 1.

Proof. Using the bounds for ci,j(d, k) provided by Proposition 3.10, it is clear
that, for fixed i, the minimum occurs when j is as large as possible. By
Proposition 2.2 this happens when j = pi, as for j > pi we have instead that
ci,j(d, k) = 0. Hence:

si(d, k) = inf
j
{vp(ci,j(d, k))} ≥ i(1− p) · vp(d)− 1.

Recalling that d is such that vp(d) = − 12vp(r)
p−1 by Proposition 2.6; we can then

choose r such that 0 ≤ vp(r) < 1
p+1 −

1
12 thanks to Proposition 3.10. This

implies that we can choose d ∈ Cp such that

vp(d) = − 12

p2 − 1
+

1

p− 1
+ ε

for some arbitrarily small positive real number ε. It follows that:

si(d, k) ≥ −i(p− 1) · vp(d)− 1

≥ −i(p− 1) ·
(
− 12

p2 − 1
+

1

p− 1
+ ε

)
− 1

≥ −i
(
− 12

p+ 1
+ 1 + ε(p− 1)

)
− 1.
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As we can take ε to be arbitrarily small, we obtain the inequality we
wanted.

Proposition 4.6. Let p ∈ {5, 7, 13}, P[0](k, T ), ci,j(d, k) and si(d, k) as in
Proposition 4.4. Assume k ∈ Zp and that k is in the component W[0] of the
weight space corresponding to the class [0] modulo p− 1. Then we can choose d
such that

si(d, k) ≥ i
(

12

p+ 1

)
− 1.

Proof. The proof is the same as for Proposition 4.5, but using the second part
of Proposition 3.10.

We can now prove the bounds on the valuation of the characteristic power
series of the Up operator as stated in Section 1.1.

Theorem 4.7. For p ∈ {5, 7}, k ∈ Cp and vp(k) ≥ 0 the valuation of each
coefficient C[0](m, k) of the characteristic power series P[0](k, T ) is bounded by

vp
(
C[0](m, k)

)
≥
(

6

p+ 1
− 1

2

)
m2 −

(
3

2
− 6

p+ 1

)
m− 1.

For p ∈ {5, 7, 13}, and k ∈ Zp the valuation of each coefficient C[0](m, k) of the
characteristic power series P[0](k, T ) is bounded by

vp
(
C[0](m, k)

)
≥
(

6

p+ 1

)
m2 −

(
1− 6

p+ 1

)
m− 1.

Proof. From Proposition 4.5 one has immediately

vp
(
C[0](m, k)

)
≥

m∑
i=0

i

(
12

p+ 1
− 1

)
− 1

≥ 1

2

(
12

p+ 1
− 1

)
·m(m+ 1)−m− 1

=

(
6

p+ 1
− 1

2

)
m2 −

(
3

2
− 6

p+ 1

)
m− 1.

The second part is proven in the same way from Proposition 4.6.

In order to compute explicitly the coefficients C[a](m, k), by Proposition 4.1 it

is enough to compute the trace of powers of the operator U
(k)
p . This can be

done with Koike’s formula, cf. [Koi75]:

Tr
((
U (k)
p

)n)
= −

∑
0≤u<

√
pn

(u,p)=1

H(u2 − 4pn) · (γ(u))k

γ(u)2 − pn
− 1, (4.1)

where H(D) denotes the Hurwitz class number of D, and γ(u) is the unique
p-adic unic root of the equation

x2 − ux+ pn = 0.
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We refer to Appendix B for the details about the formula. For the purpose of
this section, it is enough to know that a PARI/GP [PG17b] implementation of
the formula allows us to compute the coefficients C[a](m, k) up to a desired
p-adic precision for specific class [a] modulo p− 1; again refer to Appendix B
for the details about the computational part.

Remark. In this chapter, if λ1, λ2 ∈ Cp with the notation

λ1 ≡ λ2 mod pδ

for some integer δ, we mean

vp(λ1 − λ2) ≥ δ.

for the normalized valuation vp.

4.2.2 The smallest slope when p = 5 and [a] = [0]

Let p = 5. Due to the fact that we used e4 = E4

V (E4)
in the construction of the

U∗5 operator in Section 3.2, we can do the computations for weights k ∈ C5

such that v5(k) ≥ 0 and such that k is in the component W[0] of the weight
space associated to the class [0] modulo 4: for the remaining of this section, we
always assume that k belongs to W[0].
The following statements describe the smallest possible slope of the Newton
polygon of P[0](k, T ) in this setting.

Proposition 4.8. Let k ∈ C5 with v5(k) ≥ 0 and furthermore assume that
v5(k − 8) < 2. Let C[0](1, k) be the first coefficient of the characteristic power
series P[0](k, T ) of U∗5 restricted to cusp forms. Then

v5
(
C[0](1, k)

)
= 1 + v5(k − 8) < 3.

Proof. Using Koike’s formula (4.1), we get the following polynomial:

C[0](1, k) ≡ 60− 20k + 25k2 mod 53

≡ 20(3− k) + 25k2 mod 53.

Hence
v5
(
C[0](1, k)

)
≥ min{1 + v5(3− k), 2 + 2v5(k)}.

And surely the inequality above is an equality if v5(3− k) = 0 or
v5(3− k) > 1, because in this cases v5(k) = 0).
If we assume instead 0 < v5(k − 3) ≤ 1, to be able to compute v5

(
C[0](1, k)

)
mod 53 we need to impose v5

(
C[0](1, k)

)
< 3, that is

20(3− k) + 25k2 6≡ 0 mod 53

4(3− k) + 5k2 6≡ 0 mod 52

Since we are assuming 0 < v5(k − 3) ≤ 1, it is enough to check the cases
k ≡ 8, 13, 18, 23 mod 25. By checking all this possibilities, we see that
C[0](1, k) ≡ 0 mod 53 only if k = 8 mod 52. It follows that, as long as
v5(k − 8) < 2,

v5
(
C[0](1, k)

)
= 1 + v5(k − 8).
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Remark. Clearly, we could get more refined version of Proposition 4.8 by
computing C[0](1, k) modulo higher power of 5 and finding sharper conditions
on k. On the other hand, the result here obtained is enough to compute the
length of the first segment of the Newton polygon, as shown in the following.

If we specialize the bound of Theorem 4.7 to p = 5, we get that for every
m ≥ 1.

v5
(
C[0](m, k)

)
≥ 1

2
m2 − 1

2
m− 1.

To prove that the length of the first segment of the Newton polygon of
P[0](k, T ) is 1, is equivalent to prove that for every m > 1

v5
(
C[0](m, k)

)
m

> v5
(
C[0](1, k)

)
.

By using Proposition 4.8, we can assume that v5
(
C[0](1, k)

)
< 3 whenever

v5(k − 8) < 2, the problem then amounts to solve the following inequality:

v5
(
C[0](m, k)

)
≥ 1

2
m2 − 1

2
m− 1 ≥ 3m,

that is m > 7.
The missing cases are m = 2, 3, 4, 5, 6, 7, and we can compute them with
Koike’s formula.

The case m = 2

Using Koike’s formula we can compute C[0](2, k):

C[0](2, k) ≡ 54(4 · 5 + 9k + 6k2 + 24k3 + 21k5 + 3 · 5k5) mod 56.

By inspection, we see that{
v5
(
C[0](2, k)

)
≥ 5, if k ≡ 0, 1, 2, 3 mod 5

v5
(
C[0](2, k)

)
= 4, if k ≡ 4 mod 5

It follows that the inequality v5
(
C[0](2, k)

)
> 2 · v5

(
C[0](1, k)

)
holds true if

k ≡ 4 mod 5, as in this case we have that v5(k − 8) = 0, hence
v5
(
C[0](1, k)

)
= 1 by Proposition 4.8.

By further inspection, assuming k 6≡ 4 mod 5, one can see that{
v5
(
C[0](2, k)

)
≥ 6, if k ≡ 8, 12, 16, 20 mod 52

v5
(
C[0](2, k)

)
= 5, otherwise.

It follows that the inequality v5
(
C[0](2, k)

)
≥ 6 > 2 · v5

(
C[0](1, k)

)
holds true

if k ≡ 8, 12, 16, 20 mod 52.
On the other hand, if k ≡ 0, 1, 2, 5, 6, 7, 10, 11, 15, 17, 21, 22 mod 52 we have
that v5(k − 8) = 0 and the required inequality also holds by Proposition 4.8.
Finally, if k ≡ 3, 13, 18, 23 mod 52 we have that v5(k − 8) = 1 and the
inequality is still true.
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The case m = 3

Using Koike’s formula we can compute:

C[0](3, k) ≡ 58k2(3 + 3k + 4k2 + 2k4 + 2k5 + k6) mod 59.

By inspection we note that

v5(3 + 3k + 4k2 + 2k4 + 2k5 + k6) ≥ 1 if k ≡ 1, 2, 3, 4 mod 5.

On the other hand, if k ≡ 0 mod 5 we have that v5(k2) ≥ 2, hence for all k
such that v5(k) ≥ 0 we have that

v5
(
C[0](3, k)

)
≥ 9 > 3 · C[0](1, k)

as required.

The cases m = 4, 5, 6, 7

Using Koike’s formula as above, we get that for each k such that v5(k) ≥ 0:

C[0](4, k) ≡ 0 mod 512,

C[0](5, k) ≡ 0 mod 515,

C[0](6, k) ≡ 0 mod 518,

C[0](7, k) ≡ 0 mod 521.

This implies that, if m ∈ {4, 5, 6, 7}, then v5
(
C[0](m, k)

)
≥ 3m and the

inequality is verified for all m.
We summarize this discussion with the following statement.

Proposition 4.9. Let k ∈ C5, v5(k) ≥ 0 and assume that k ∈ W[0].
Furthermore assume that v5(k − 8) < 2. Then the first segment of the Newton
polygon of the characteristic power series of the U∗5 operator restricted to cusp
forms has length one. Furthermore, the slope of this segment is

α
(5)
[0] (k) = 1 + v5(k − 8).

Remark. The result is optimal, in the sense that the computations above
imply that if v5(k − 8) ≥ 2 then the minimal slope is at least 3 and the
dimension of the cuspidal space is strictly bigger then one.

4.2.3 The smallest slope when p = 7 and [a] = [0]

We want to obtain statements for p = 7 similar to those found in Section 4.2.2
for p = 5. The method is essentially the same. Once again, as we used the
series e6 = E6

V (E6)
in the construction of the U∗7 operator, we can do the

computations for weights k ∈ C7 such that v7(k) ≥ 0 and such that k is in the
component W[0] of the weight space associated to the class [0] modulo 6.

Proposition 4.10. Let k ∈ C7, v7(k) ≥ 0 and furthermore, assume that
v7(k − 6) < 1. Let C[0](1, k) be the first coefficient of the characteristic power
series P[0](k, T ) of U∗7 restricted to cusp forms. Then

v7
(
C[0](1, k)

)
= 1 + v5(k − 6) < 2.
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Proof. Using Koike’s formula (4.1), we get the following polynomial:

C[0](1, k) ≡ 14− 14k mod 72

≡ 2 · 7(1 + k) mod 72.

Hence
v7
(
C[0](1, k)

)
= 1 + v7(k − 6),

provided that v7(k − 6) < 1.

If we specialize the bound of Theorem 4.7 to p = 7, we get that for every
m ≥ 1.

v7
(
C[0](m, k)

)
≥ 1

4
m2 − 3

4
m− 1.

To prove that the length of the first segment of the Newton polygon of
P[0](k, T ) is 1, is equivalent to prove that for every m > 1

v7
(
C[0](m, k)

)
m

> v7
(
C[0](1, k)

)
.

By using Proposition 4.10, we can assume that v7
(
C[0](1, k)

)
< 2 whenever

v7(k − 6) < 1; the problem then amounts to solve the following inequality:

v7
(
C[0](m, k)

)
≥ 1

4
m2 − 3

4
m− 1 ≥ 2m,

that is m > 11.
The missing cases are m = 2, 3, . . . , 11, and we can compute them with Koike’s
formula.

The case m = 2

Using Koike’s formula we can compute C[0](2, k):

C[0](2, k) ≡ 73(1 + 3k + k2 + 6k3) mod 74.

We can then find that{
v7
(
C[0](2, k)

)
≥ 4, if k ≡ 0, 1, 2, 3 mod 7

v7
(
C[0](2, k)

)
= 3, if k ≡ 4, 5, 6 mod 7.

It follows that the inequality v7
(
C[0](2, k)

)
≥ 4 > 2 · v7

(
C[0](1, k)

)
holds true

if k ≡ 4, 5, 6 mod 7.
On the other hand, if k ≡ 0, 1, 2, 3 mod 7, then we have that v7(k − 6) = 0,
hence v7

(
C[0](1, k)

)
= 1 by Proposition 4.10 and the inequality holds also in

this case.

The cases m = 3, 4, . . . , 11

Using Koike’s formula as above, we get that for every k such that v7(k) ≥ 0:

C[0](3, k) ≡ 0 mod 76,

C[0](4, k) ≡ 0 mod 78,
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C[0](5, k) ≡ 0 mod 710,

C[0](6, k) ≡ 0 mod 712,

C[0](7, k) ≡ 0 mod 714,

C[0](8, k) ≡ 0 mod 716,

C[0](9, k) ≡ 0 mod 718,

C[0](10, k) ≡ 0 mod 720,

C[0](11, k) ≡ 0 mod 722.

This implies that, if m ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11}, then v7
(
C[0](m, k)

)
≥ 2m

and the inequality is verified for all m.
We summarize this discussion with the following statement.

Proposition 4.11. Let k ∈ C7, v7(k) ≥ 0 and assume that k ∈ W[0].
Furthermore assume that v7(k − 6) < 1. Then the first segment of the Newton
polygon of the characteristic power series of the U∗7 operator restricted to cusp
forms has length one. Furthermore, the slope of this segment is

α
(7)
[0] (k) = 1 + v7(k − 6).

Remark. The result is optimal, in the sense that the computations above
imply that if v7(k − 6) ≥ 1 then the minimal slope is at least 2 and the
dimension of the cuspidal space is strictly bigger then one.

4.2.4 p-adic analytic families and congruences

In Sections 4.2.2 and 4.2.3 we proved under what conditions on the weight k,
for the primes p = 5, 7, the first segment of the Newton polygon of the
characteristic power series P[0](k, T ) has length one. Using Propositions 4.3
and 4.1, we can rephrase the results with the following statements.

Proposition 4.12. Let p = 5. Let k ∈ C5, v5(k) ≥ 0 and assume that k lies
in the the connected component W[0] of the weight space associated to the class
[0] modulo 4. Furthermore assume that v5(k − 8) < 2. Then there is a unique
root λ−1 of P[0](k, T ) and such that

v5(λ) = α
(5)
[0] (k) = 1 + v5(k − 8).

Furthermore λ is an eigenvalue of the operator U∗5 and the dimension of the
eigenspace of cusp forms corresponding to λ is 1.

Proposition 4.13. Let p = 7. Let k ∈ C7, v5(k) ≥ 0 and assume that k lies
in the the connected component W[0] of the weight space associated to the class
[0] modulo 6. Furthermore assume that v7(k − 6) < 1. Then there is a unique
root λ−1 of P[0](k, T ) and such that

v7(λ) = α
(7)
[0] (k) = 1 + v7(k − 6).

Furthermore λ is an eigenvalue of the operator U∗7 and the dimension of the
eigenspace of cusp forms corresponding to λ is 1.

41



4.2. Results for p = 5, 7, 13

Definition 4.14. Let B(c, p−δ) ⊂ Cp be the open ball in Cp of centre c and
such that x ∈ B(c, p−δ) if vp(x− c) > δ.
Similarly, let B[c, p−δ] be the closed ball of centre c and such that
x ∈ B[c, p−δ] if vp(x− c) ≥ δ.

To obtain explicit congruences about different forms in the same family, we will
need the following general result, due to Coleman, Stevens and Teitelbaum.

Lemma 4.15 ([CST98, p. 147]). Let S be a finite subset of points of
B(0, p−H) ⊂ Cp, for some H ∈ R and let h be a function from S into R. Let
f(k) be a p-adic analytic function with values in Cp and such that
vp(f(k)) ≥ 0 for all k in the region

V = B(0, p−H) \
⋃
a∈S

B[a, p−h(a)],

Then, for every x1, x2 ∈ V ,

vp(f(x1)− f(x2)) ≥ vp(x1 − x2) + inf
a∈S
{−H,h(a)− vp((x1 − a)(x2 − a))}.

We can now state our results in term of p-adic analytic families and prove the
theorems of Section 1.1.

Theorem 4.16. Let p = 5. Let X5
[0] be a subset of the connected component

W[0] of the weight space associated to the class [0] modulo 4; furthermore
assume that X5

[0] is a strict neighborhood of

X̄5
[0] = B[0, 1] \B

(
8, 5−2+ε

)
⊂ W[0],

for some ε ∈ R>0.
Then, for every n ≥ 2, there is an analytic function an(k) on X5

[0] such that
the formal power series

F
(k)
[0] (q) = q +

∞∑
n=2

an(k)qn

specializes, for k0 ∈ Z, to the q-expansion of an overconvergent normalized
5-adic cuspidal eigenform form of tame level 1, generalized weight (k0, [k0])
and slope

α
(5)
[0] (k0) = 1 + v5(k0 − 8).

Furthermore α
(5)
[0] (k0) is the minimal possible slope among overconvergent

5-adic cuspidal eigenforms of generalized weight (k0, [0]) and F
(k0)
[0] (q) is the

unique normalized overconvergent form with this slope.
Moreover, if k0 and k1 are in 4Z, k0 ≥ 4 and k1 ≥ 4, the forms

F
(k0)
[0] (q) and F

(k1)
[0] (q)

are two classical cuspidal eigenforms of weight k0 and k1 over Γ0(5) and we
have that uniformly for n ≥ 2

v5 (an(k0)− an(k1)) ≥ v5(k0 − k1) + 1 + min{0, 1− v5 ((k0 − 8)(k1 − 8))}.

42



4.2. Results for p = 5, 7, 13

Remark. The introduction of X5
[0] in Theorem 4.16 is simply the translation

in a more geometric language of the same conditions of Proposition 4.12: we in
fact have that

k ∈ B[0, 1]⇐⇒ v5(k) ≥ 0

k 6∈ B
(
8, 5−2+ε

)
⇐⇒ v5(k − 8) ≤ 2− ε.

Proof of Theorem 4.16. The existence in general a p-adic analytic family of
fixed finite slope α > 0 passing through a given eigenform of slope α has been
proved by Coleman in [Col97, B5.7.1] for any dimension of the eigenspace.
By Proposition 4.12, with our assumption on k0, the dimension of the
eigenspace is one and there is a unique overconvergent 5-adic cusp form of

slope α
(5)
[0] (k0). Note that in this case the existence of the family is easier to

prove as a special case of [Col97, B5.7]; this procedure has been shown with
more details in [CST98, Section II].
Denote by

F
(k)
[0] (q) = q +

∞∑
n=2

an(k)qn

the 5-adic analytic family that specializes to this unique eigenform when

k = k0. Note that we actually have one family for every possible slope α
(5)
[0] (k).

Furthermore, this is the smallest possible slope among overconvergent 5-adic
cuspidal eigenforms of weight k0 by being the first (hence the smallest) slope
of the Newton polygon of the series P[0](k, T ) by Proposition 4.9. As we have

that α
(5)
[0] (k) < 3 for every k, it follows that ki > α

(5)
[0] (ki) + 1 for i = 0, 1.

Hence, by [Col97, B3.5], the forms obtained specializing the family to k0 and
k1 must be classical forms of generalized weight (ki, [ki]) = (ki, [0]), i.e.
classical forms of weight ki over Γ0(5) as the classical weights embed
diagonally in the generalized weights. Moreover from [Col97, B3.5] also follows
that there exist M ∈ Z such that

v5

(
F

(k0)
[0] (q)− F (k1)

[0] (q)
)
≥ v5 (k0 − k1) + 1−M

uniformly for every coefficient an(ki).
Finally we can explicitly bound M by using Lemma 4.15 on the analytic
functions an(k) and taking H < 0, S = {8} and h(8) = 2. If −H is sufficiently
close to zero, the region V of the lemma is contained in X5

[0]. Hence for every
n ≥ 2 we have that

v5(an(k0)− an(k1)) ≥ v5(k0 − k1) + min{−H, 2− vp((k0 − 8)(k1 − 8)}
= v5(k0 − k1) + 1 + min{0, 1− vp((k0 − 8)(k1 − 8)},

where the last equality holds because k0 and k1 are integers.

Remark. Following the notation of [Col97, B3.5], we hence proved that
M ≤ 0 when the 5-adic slope is 1, i.e when v5(k0 − 8) = 0. The result is
optimal, in the sense that the we are able to find integers k0 and k1 in 4Z such
that the inequality of Theorem 4.16 is actually an equality, hence M = 0 in
this case.
The theorem also implies that M ≤ 1 when the 5-adic slope is 2, i.e. when
v5(k0 − 8) = 1. On the other hand, numerical experiments suggest that we
could also have M = 0 when the slope is 2. See Appendix C for the details.
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Theorem 4.17. Let p = 7. Let X7
[0] be a subset of the connected component

W[0] of the weight space associated to the class [0] modulo 6; furthermore
assume that X7

[0] is a strict neighborhood of

X̄7
[0] = B[0, 1] \B

(
6, 7−1+ε

)
⊂ W[0],

for some ε ∈ R>0.
Then, for every n ≥ 2, there is an analytic function an(k) on X7

[0] such that
the formal power series

F
(k)
[0] (q) = q +

∞∑
n=2

an(k)qn

specializes, for k0 ∈ Z, to the q-expansion of an overconvergent normalized
7-adic cusp form of tame level 1, generalized weight (k0, [k0]) and slope

α
(7)
[0] = 1.

Furthermore α
(7)
[0] is the minimal possible slope among overconvergent 7-adic

cusp forms of generalized weight (k0, [k0]) and F
(k0)
[0] (q) is the unique

normalized overconvergent form with this slope.
Moreover, if k0 and k1 are in 6Z, k0 ≥ 3 and k1 ≥ 3, the forms

F
(k0)
[0] (q) and F

(k1)
[0] (q)

are two classical cuspidal eigenforms of weight k0 and k1 over Γ0(7) and we
have that uniformly for n ≥ 2

v7 (an(k0)− an(k1)) ≥ v7(k0 − k1) + 1.

Proof. The proof is essentially the same as for Theorem 4.16, but using the
results of Proposition 4.13. When we specialize to k0 ∈ Z, the condition
k0 ∈ X7

[0] simply means v7(k − 6) = 0, hence there is only the case of slope 1
and the application of Lemma 4.15 is easier.

Remark. Following the notation of [Col97, B3.5], we hence proved that
M ≤ 0 when the 7-adic slope is 1, i.e when v7(k0 − 6) = 0. The result is
optimal, in the sense that the we are able to find integers k0 and k1 in 6Z such
that the inequality of Theorem 4.17 is actually an equality, hence M = 0. See
Appendix C for the details.

4.3 Conjectural results

The results of Section 4.2 relies on the explicit construction for the U∗p in the

cases p = 5, 7 given in Corollary 3.9. We deformed the operator U
(0)
p to weight

k by using powers of a specific modular function ep−1:

ep−1 =
Ep−1

V (Ep−1)
.
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As we used an Eisenstein series of weight p− 1, we can only to deform to
weights lying in the connected component W[0] associated to the class [0]
modulo p− 1. To study the geometry in the other connected components, a
different Eisenstein series have to be chosen.
For p > 2, following [Col97, B1] let E1 = E(1,0) be the weight 1 Eisenstein
series on X1(p) defined by

E1(q) = 1 +
2

Lp(0,1)

∞∑
n=1

∑
d|n
p-d

τ−1(d)

 qn,

where τ is the Teichmüller character:

τ : Z −→
(

Z
pZ

)×
−→ µp−1 ⊆ Zp.

Following [DS05, Section 4.8], there exist two primitive Dirichlet characters
modulo p, denoted by ψ and ϕ, such that we can write E1 as

Eψ,ϕ1 = δ(ϕ)L(0, ψ) + δ(ψ)L(0, φ) + 2

∞∑
n=1

σψ,ϕ0 (n)qn

where {
δ(ψ) = 1, if ψ = 1

δ(ψ) = 0, else

and
σψ,ϕ0 =

∑
d|n

ψ
(n
d

)
ϕ(d).

We can then take ψ = 1 and ϕ = τ−1 with the convention that ϕ(d) = 0 if d|p.
Furthermore we have that

L(0, ϕ) = −B1,ϕ = −1

p

p−1∑
a=0

ϕ(a) · a

by [DS05, Section 4.7]. Hence we can write E1 as

E1 = 1− 2

B1,ϕ

∞∑
n=1

 ∞∑
d|n

ϕ(d)

 qn.

We would like to deform the U
(0)
p operator to any weight k ∈ Z by using

powers of the p-adic modular function

e1 =
E1

V (E1)
.

The issue is that we do not know explicitly the overconverge rate of e1, in
other words we do not have a result analogous to Proposition 3.3 valid for e1.
Nevertheless, some numerical evidence suggest that we can formulate the
following conjecture.

45



4.3. Conjectural results

Conjecture 4.18. Let p ∈ {5, 7, 13}. For any r such that

0 ≤ vp(r) <
1

p+ 1

the function

e1 =
E1

V (E1)

is an r-overconvergent 5-adic modular function of level 1.

In, if p ∈ {5, 7, 13} we can test the overconvergence rate of e1 by looking at its
unique tp-expansion. Moreover we can also check numerically the results on
classical modular forms implied by the conjecture. See Appendix C for details
about this numerical evidence.
Assuming Conjecture 4.18, all the results of Chapter 3 extend with the same
proofs to e1 and its tp-expansion, hence we can define a more general version
of the operator U∗p .

Proposition 4.19. Assume Conjecture 4.18. Let p ∈ {5, 7, 13} and let k ∈ Z.
Then the deformed U∗p operator introduced in Definition 3.2 is given by the
formula

U∗p (f) = U (0)
p

(
ek1f
)

for r-overconvergent functions f .

We can then study the characteristic power series P[a](k, T ) introduced in
Section 4.1.1 for any class [a] modulo p− 1, as the bounds provided by
Theorem 4.7 can now be applied to any class [a].

Theorem 4.20. Assume Conjecture 4.18. Let p ∈ {5, 7}, k ∈ Cp with
vp(k) ≥ 0 and let [a] be an even congruence class modulo p− 1. Then the
valuation of each coefficient C[a](m, k) of the characteristic power series
P[a](k, T ) is bounded by

vp
(
C[a](m, k)

)
≥
(

6

p+ 1
− 1

2

)
m2 −

(
3

2
− 6

p+ 1

)
m− 1.

Let p ∈ {5, 7, 13}, k ∈ Zp and let [a] be an even congruence class modulo p− 1.
Then the valuation of each coefficient C[a](m, k) of the characteristic power
series P[a](k, T ) is bounded by

vp
(
C[a](m, k)

)
≥
(

6

p+ 1

)
m2 −

(
1− 6

p+ 1

)
m− 1.

The techniques and proofs are analogous as the one used in Sections 4.2.2 and
4.2.3 for [a] = [0].

4.3.1 The smallest slope when p = 5 and [a] = [2]

In this section, assume that k ∈ C5 is in the connected component W[2] of the
weight space associated to the class [2] modulo 4. The following statements
describe the smallest possible slope of the Newton polygon of P[2](k, T ).
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Proposition 4.21. Assume Conjecture 4.18. Let k ∈ C5 with v5(k) ≥ 0 and
furthermore assume that v5 ((k − 10)(k − 14)) < 2. Let C[2](1, k) be the first
coefficient of the characteristic power series P[2](k, T ) of U∗5 restricted to cusp
forms. Then

v5
(
C[2](1, k)

)
= 2 + v5 ((k − 10)(k − 14)) < 4.

Proof. Using Koike’s formula (4.1), we obtain the following congruence:

C[2](1, k) ≡ 2 · 52k(1 + k) mod 53.

This implies that v5
(
C[2](1, k)

)
= 2 if v5(k(k − 4)) < 1.

To gather more information in the cases k ≡ 0 and k ≡ 4 mod 5 we need to
compute C[2](1, k) at higher 5-adic precision:

v5
(
C[2](1, k)

)
≡ 52(17k + 7k2 + 3 · 5k3) mod 54.

By inspection, assuming that k ≡ 0, 4 mod 5 we see that{
v5
(
C[2](1, k)

)
≥ 4, if k ≡ 10, 14 mod 52

v5
(
C[2](1, k)

)
= 3, if k ≡ 0, 4, 5, 9, 15, 19, 20, 24 mod 52.

Note now that if v5(k − 10) > 0 then v5(k − 14) = 0 and vice versa. Hence if
we assume that

v5(k − 10) + v5(k − 14) = v5((k − 10)(k − 14)) < 2,

we can write

v5
(
C[2](1, k)v5

(
C[2](1, k)

)
= 2 + v5 ((k − 10)(k − 14))

)
.

If we assume Conjecture 4.18, we can specialize the bound of Theorem 4.20 to
p = 5, we get that for every m ≥ 1.

v5
(
C[2](m, k)

)
≥ 1

2
m2 − 1

2
m− 1.

To prove that the length of the first segment of the Newton polygon of
P[2](k, T ) is 1, is equivalent to prove that for every m > 1

v5
(
C[2](m, k)

)
m

> v5
(
C[2](1, k)

)
.

By using Proposition 4.21, we can assume that v5
(
C[2](1, k)

)
< 4 whenever

v5((k − 10)(k − 14)) < 2; the problem then amounts to solve the following
inequality:

v5
(
C[2](m, k)

)
≥ 1

2
m2 − 1

2
m− 1 ≥ 4m,

that is m > 9.
The missing cases are m = 2, 3, 4, 5, 6, 7, 8, 9, and we can compute them with
Koike’s formula.
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4.3. Conjectural results

The case m = 2

Using Koike’s formula we can compute C[2](2, k):

C[2](2, k) ≡ 56(4 · 5 + 3k+ 23k2 + 3 · 5k3 + 3 · 5k4 + 2k5 + 17k6 + 5k7) mod 58.

By inspection, we see that{
v5
(
C[2](2, k)

)
≥ 8, if k ≡ 0, 4 mod 5

v5
(
C[2](2, k)

)
= 7, otherwise.

It follows that the inequality v5
(
C[2](2, k)

)
≥ 8 > 2 · v5

(
C[2](1, k)

)
holds true

if k ≡ 0, 4 mod 5.
On the other hand, if k ≡ 1, 2, 3 mod 5 we have that v5((k − 10)(k − 14)) = 0
hence v5

(
C[2](1, k)

)
= 2 by Proposition 4.21 and the required inequality holds

also in this case.

The case m = 3

Using Koike’s formula we can compute:

v5
(
C[2](3, k)

)
≡ 511k(3k10+4k9+k8+4k6+2k5+3k4+3k2+4k+1) mod 512.

By inspection we note that

v5(3k10 + 4k9 +k8 + 4k6 + 2k5 + 3k4 + 3k2 + 4k+ 1) ≥ 1 if k ≡ 1, 2, 3, 4 mod 5.

On the other hand, if k ≡ 0 mod 5 we have that v5(k) ≥ 1, hence for all k
such that v5(k) ≥ 0 we have that

v5
(
C[2](3, k)

)
≥ 12 > 3 · C[2](1, k)

as required.

The cases m = 4, 5, . . . , 9

Using Koike’s formula as above, we get that for each k such that v5(k) ≥ 0:

C[2](4, k) ≡ 0 mod 516,

C[2](5, k) ≡ 0 mod 520,

C[2](6, k) ≡ 0 mod 524,

C[2](7, k) ≡ 0 mod 528,

C[2](8, k) ≡ 0 mod 532,

C[2](9, k) ≡ 0 mod 536.

This implies that, if m ∈ {4, 5, 6, 7, 8, 9}, then v5
(
C[2](m, k)

)
≥ 4m and the

inequality is verified for all m.

We summarize this discussion with the following statement.

48



4.3. Conjectural results

Proposition 4.22. Assume Conjecture 4.18. Let k ∈ C5, v5(k) ≥ 0 and
assume that k ∈ W[2]. Furthermore assume that v5((k − 10)(k − 14)) < 2.
Then the first segment of the Newton polygon of the characteristic power series
of the U∗5 operator restricted to cusp forms has length one. Furthermore, the
slope of this segment is

α
(5)
[2] (k) = 2 + v5((k − 10)(k − 14)).

Remark. The result is optimal, in the sense that the computations above
imply that if

v5(k − 10) ≥ 2 or v5(k − 14) ≥ 2

then the minimal slope is at least 4 and the dimension of the cuspidal space is
strictly bigger then one.

4.3.2 The smallest slope when p = 7 and [a] = [2]

In this section, assume that k ∈ C7 is in the connected component W[2] of the
weight space associated to the class [2] modulo 6. The following statements
describe the smallest possible slope of the Newton polygon of P[2](k, T ).

Proposition 4.23. Assume Conjecture 4.18. Let k ∈ C7 with v7(k) ≥ 0;
assume that v7 (k − 1) < 1 and that v7(k − 14) < 2. Let C[2](1, k) be the first
coefficient of the characteristic power series P[2](k, T ) of U∗7 restricted to cusp
forms. Then

v7
(
C[2](1, k)

)
= 2 + v7 ((k − 8)(k − 14)) < 4.

Proof. Using Koike’s formula (4.1) we obtain the following:

C[2] = 72k(k − 1) mod 73.

Hence

v7
(
C[2](1, k) = 2 + v7(k(k − 8))

)
Provided that v7(k) < 1 and v7(k− 8) < 1. To refine the result when v7(k) ≥ 1
we now compute

C[2] = 72(2 · 7 + 13k + 43k2 + 28k3) mod 74.

Assuming that v7(k) ≥ 1, by inspection we observe that{
v7
(
C[2](1, k)

)
≥ 4, if k ≡ 14 mod 72

v7
(
C[2](1, k)

)
= 3, if k ≡ 0, 7, 21, 28, 35, 42 mod 72.

This implies that

v7
(
C[2]

)
= 2 + v7 ((k − 8)(k − 14)) ,

provided that v7(k − 8) < 1 and v7(k − 14) < 2.
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If we assume Conjecture 4.18, we can specialize the bound of Theorem 4.20 to
p = 7, we get that for every m ≥ 1.

v7
(
C[2](m, k)

)
≥ 1

4
m2 − 3

4
m− 1.

To prove that the length of the first segment of the Newton polygon of
P[2](k, T ) is 1, is equivalent to prove that for every m > 1

v7
(
C[2](m, k)

)
m

> v7
(
C[2](1, k)

)
.

By using Proposition 4.23, we can assume that v7
(
C[2](1, k)

)
< 4 whenever

v7(k − 8) < 1 and v7(k − 14) < 2; the problem then amounts to solve the
following inequality:

v7
(
C[2](m, k)

)
≥ 1

4
m2 − 3

4
m− 1 ≥ 4m,

that is m > 19.
The missing cases are m = 2, 3, . . . , 19, and we can compute them with Koike’s
formula.

The case m = 2

Using Koike’s formula we can compute C[2](2, k):

C[2](2, k) ≡ 75(72+33 ·7k+58k2+309k3+222k4+6k5+33·7k6+72k7) mod 78.

By inspection we see that
v7
(
C[2](2, k)

)
≥ 8, if k ≡ 14 mod 72

v7
(
C[2](2, k)

)
= 7, if k ≡ 0, 7, 21, 28, 35, 42 mod 72

v7
(
C[2](2, k)

)
≥ 6, if k ≡ 1 mod 7

v7
(
C[2](2, k)

)
≥ 5, otherwise.

Note that all the possible k modulo 73 have been checked, and the results are
grouped in the formula above.
It follows from Proposition 4.23 that

v7
(
C[2](2, k) > 2 · v7

(
C[2](1, k)

))
for every k, provided that v7(k − 14) < 2 and v7(k − 8) < 1.

The case m = 3

Using Koike’s formula we can compute C[2](3, k):

C[2](3, k) ≡ 79k(2 · 72 + 13 · 7k + 251k2 + 186k3 + 237k4 + 19 · 7k5 + 102k6

+202k7 + 260k8 + 34 · 7k9 + 3 · 72k10) mod 712.

By inspection we see that{
v7
(
C[2](2, k)

)
≥ 12, if k ≡ 0 mod 7

v7
(
C[2](2, k)

)
≥ 9, otherwise.
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Note that all the possible k modulo 73 have been checked, and the results are
grouped in the formula above. It follows from Proposition 4.23 that

v7
(
C[2](3, k)

)
> 3 · v7

(
C[2](1, k)

)
for every k, provided that v7(k − 14) < 2 and v7(k − 8) < 1.

The case m = 4

Using Koike’s formula we can compute C[2](4, k):

C[2](4, k) ≡ 715k3(1+3k + k2 + 3k4 + k5 + 5k6 + 4k7

+6k8 + 4k10 + 6k11 + k12) mod 716.

We straightforward inspection, we note that

v7
(
C[2](4k)

)
≥ 16

for every k such that v7(k) ≥ 1, hence by Proposition 4.23 we have that

v7
(
C[2](4, k) > 4 · v7

(
C[2](1, k)

))
for every k, provided that v7(k − 14) < 2 and v7(k − 8) < 1.

The cases m = 5, 6, . . . , 19

Using Koike’s formula as above, we get that for each k such that v7(k) ≥ 0:

C[2](5, k) ≡ 0 mod 720,

C[2](6, k) ≡ 0 mod 724,

C[2](7, k) ≡ 0 mod 728,

C[2](8, k) ≡ 0 mod 732,

C[2](9, k) ≡ 0 mod 736,

C[2](10, k) ≡ 0 mod 740,

C[2](11, k) ≡ 0 mod 744,

C[2](12, k) ≡ 0 mod 748,

C[2](13, k) ≡ 0 mod 752,

C[2](14, k) ≡ 0 mod 756,

C[2](15, k) ≡ 0 mod 760,

C[2](16, k) ≡ 0 mod 764,

C[2](17, k) ≡ 0 mod 768,

C[2](18, k) ≡ 0 mod 772,

C[2](19, k) ≡ 0 mod 776.

Note that the calculation of C[2](m, k) for the last few m is fairly intensive
from a computational point of view and took some days on a robust desktop
machine.
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This implies that, if m ∈ {5, 6, . . . , 19}, then

v7
(
C[2](m, k)

)
≥ 4m > m · v7

(
C[2](1, k)

)
and the inequality is verified for all m.
We summarize this discussion with the following statement.

Proposition 4.24. Assume Conjecture 4.18. Let k ∈ C7, v7(k) ≥ 0 and
assume that k ∈ W[2]. Furthermore assume that v7(k − 8) < 1 and that
v7(k − 14) < 2. Then the first segment of the Newton polygon of the
characteristic power series of the U∗7 restricted to cusp forms operator has
length one. Furthermore, the slope of this segment is

α
(7)
[2] (k) = 2 + v7((k − 8)(k − 14)).

Remark. The result is optimal, in the sense that the computations above
imply that if v7(k − 8) ≥ 1 or v7(k − 14) ≥ 2 then the minimal slope is
respectively at least 3 or at least 4 and the dimension of the cuspidal space is
strictly bigger then one.

4.3.3 The smallest slope when p = 7 and [a] = [4]

In this section, assume that k ∈ C7 is in the connected component W[4] of the
weight space associated to the class [24 modulo 6. The following statements
describe the smallest possible slope of the Newton polygon of P[4](k, T ).

Proposition 4.25. Assume Conjecture 4.18. Let k ∈ C7 with v7(k) ≥ 0;
assume that v7 (k − 10) < 2. Let C[4](1, k) be the first coefficient of the
characteristic power series P[4](k, T ) of U∗7 restricted to cusp forms. Then

v7
(
C[4](1, k)

)
= 1 + v7 (k − 10) < 3.

Proof. Using Koike’s formula (4.1) we obtain the following:

C[4] = 7(k − 3) mod 72.

Hence

v7
(
C[4](1, k) = 1 + v7(k − 3)

)
Provided that v7(k − 3) < 1. To refine the result when v7(k − 3) ≥ 1 we now
compute

C[4] = 7(4 + 8k + 7k2) mod 73.

Assuming that v7(k − 3) ≥ 1, by inspection we observe that{
v7
(
C[4](1, k)

)
≥ 3, if k ≡ 10 mod 72

v7
(
C[4](1, k)

)
= 3, if k ≡ 0, 7, 21, 28, 35, 42 mod 72.

This implies that

v7
(
C[2]

)
= 1 + v7 (k − 10) ,

provided that v7(k − 10) < 2.
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If we assume Conjecture 4.18, we can specialize the bound of Theorem 4.20 to
p = 7, we get that for every m ≥ 1.

v7
(
C[4](m, k)

)
≥ 1

4
m2 − 3

4
m− 1.

To prove that the length of the first segment of the Newton polygon of
P[4](k, T ) is 1, is equivalent to prove that for every m > 1

v7
(
C[4](m, k)

)
m

> v7
(
C[4](1, k)

)
.

By using Proposition 4.25, we can assume that v7
(
C[2](1, k)

)
< 3 whenever

v7(k − 10) < 2; the problem then amounts to solve the following inequality:

v7
(
C[4](m, k)

)
≥ 1

4
m2 − 3

4
m− 1 ≥ 3m,

that is m > 15.
The missing cases are m = 2, 3, . . . , 15, and we can compute them with Koike’s
formula.

The case m = 2

Using Koike’s formula we can compute C[4](2, k):

C[4](2, k) ≡ 74(39 + 24k + 8k2 + 12k3 + k4) mod 76.

By inspection we see that{
v7
(
C[4](2, k)

)
≥ 6, if k ≡ 3 mod 7

v7
(
C[4](2, k)

)
≥ 4, otherwise.

Note that all the possible k modulo 72 have been checked, and the results are
grouped in the formula above. It follows from Proposition 4.25 that

v7
(
C[2](2, k)

)
> 2 · v7

(
C[2](1, k)

)
for every k, provided that v7(k − 10) < 2.

The case m = 3

Using Koike’s formula we can compute C[4](3, k):

C[4](3, k) ≡ 78k(2 + 4k + 3k2 + 3k4 + k5 + 6k6 + 2k7) mod 79.

By inspection we see that{
v7
(
C[4](3, k)

)
≥ 9, if k ≡ 3 mod 7

v7
(
C[4](3, k)

)
≥ 8, otherwise.

It follows from Proposition 4.25 that

v7
(
C[4](3, k)

)
> 3 · v7

(
C[4](1, k)

)
for every k, provided that v7(k − 10) < 2.
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4.3. Conjectural results

The cases m = 4, 5, , . . . , 15

Using Koike’s formula as above, we get that for each k such that v7(k) ≥ 0:

C[4](4, k) ≡ 0 mod 712,

C[4](5, k) ≡ 0 mod 715,

C[4](6, k) ≡ 0 mod 718,

C[4](7, k) ≡ 0 mod 721,

C[4](8, k) ≡ 0 mod 724,

C[4](9, k) ≡ 0 mod 727,

C[4](10, k) ≡ 0 mod 730,

C[4](11, k) ≡ 0 mod 733,

C[4](12, k) ≡ 0 mod 736,

C[4](13, k) ≡ 0 mod 739,

C[4](14, k) ≡ 0 mod 742,

C[4](15, k) ≡ 0 mod 745.

This implies that, if m ∈ {4, 5, . . . , 15}, then

v7
(
C[4](m, k)

)
≥ 3m > m · v7

(
C[4](1, k)

)
and the inequality is verified for all m.
We summarize this discussion with the following statement.

Proposition 4.26. Assume Conjecture 4.18. Let k ∈ C7, v7(k) ≥ 0 and
assume that k ∈ W[4]. Furthermore assume that v7(k − 10) < 2. Then the first
segment of the Newton polygon of the characteristic power series of the U∗7
restricted to cusp forms operator has length one. Furthermore, the slope of this
segment is

α
(7)
[4] (k) = 1 + v7(k − 10).

Remark. The result is optimal, in the sense that the computations above
imply that if v7(k − 10) ≥ 2 then the minimal slope is at least 3 and the
dimension of the cuspidal space is strictly bigger then one.

4.3.4 p-adic analytic families and congruences when
[a] 6= [0]

In Sections 4.3.1, 4.3.2 and 4.3.3 we proved under what conditions on the
weight k, for the primes p = 5, 7, the first segment of the Newton polygon of
the characteristic power series P[a](k, T ) has length one. Using Propositions
4.3 and 4.1, we can rephrase the results with the following statements.

Proposition 4.27. Assume Conjecture 4.18. Let p = 5. Let k ∈ C5,
v5(k) ≥ 0 and assume that k lies in the the connected component W[2] of the
weight space associated to the class [2] modulo 4. Furthermore assume that
v5((k − 10)(k − 14)) < 2. Then, there is a unique root λ−1 of P[2](k, T ) and
such that

v5(λ) = α
(5)
[2] (k) = 2 + v5((k − 10)(k − 14)).
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4.3. Conjectural results

Furthermore λ is an eigenvalue of the operator U∗5 and the dimension of the
eigenspace of cusp forms corresponding to λ is 1.

Proposition 4.28. Assume Conjecture 4.18. Let p = 7. Let k ∈ C7,
v7(k) ≥ 0 and assume that k lies in the the connected component W[2] of the
weight space associated to the class [2] modulo 6. Furthermore assume that
v7(k − 8) < 1 and that v7(k − 14) < 2. Then, there is a unique root λ−1 of
P[2](k, T ) and such that

v7(λ) = α
(7)
[2] (k) = 2 + v7((k − 8)(k − 14)).

Furthermore λ is an eigenvalue of the operator U∗7 and the dimension of the
eigenspace of cusp forms corresponding to λ is 1.

Proposition 4.29. Assume Conjecture 4.18. Let p = 7. Let k ∈ C7,
v7(k) ≥ 0 and assume that k lies in the the connected component W[4] of the
weight space associated to the class [4] modulo 6. Furthermore assume that
v7(k − 10) < 2. Then, there is a unique root λ−1 of P[4](k, T ) and such that

v7(λ) = α
(7)
[4] (k) = 1 + v7(k − 10).

Furthermore λ is an eigenvalue of the operator U∗7 and the dimension of the
eigenspace of cusp forms corresponding to λ is 1.

We now show results analogous to those of Section 4.2.4 for the other classes
[a] modulo p− 1.

Theorem 4.30. Assume Conjecture 4.18. Let p = 5 and let X5
[2] be a subset

of the connected component W[2] of the weight space associated to the class [2]
modulo 4; furthermore assume that X5

[2] is a strict neighborhood of

X̄5
[2] = B[0, 1] \

(
B
(
10, 5−2+ε1

)
∪B

(
14, 5−2+ε2

))
⊂ W[2],

for some ε1, ε2 ∈ R>0.
Then, for every n ≥ 2, there is an analytic function an(k) on X5

[2] such that
the formal power series

F
(k)
[2] (q) = q +

∞∑
n=2

an(k)qn

specializes, for k0 ∈ Z, to the q-expansion of an overconvergent normalized
5-adic cuspidal eigenform form of tame level 1, generalized weight (k0, [k0])
and slope

α
(5)
[2] (k0) = 2 + v5((k0 − 10)(k0 − 14)).

Furthermore α
(5)
[2] (k0) is the minimal possible slope among overconvergent

5-adic cuspidal eigenforms of generalized weight (k0, [k0]) and F
(k0)
[2] (q) is the

unique normalized overconvergent form with this slope.
Moreover, if k0 and k1 are in Z, k0 ≡ 2 mod 4, k1 ≡ 2 mod 4, k0 ≥ 4 and
k1 ≥ 4, the forms

F
(k0)
[2] (q) and F

(k1)
[2] (q)
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4.3. Conjectural results

are two classical cuspidal eigenforms of weight k0 and k1 over Γ0(5) and we
have that uniformly for n ≥ 2

v5 (an(k0)− an(k1)) ≥ v5(k0 − k1) + 1

+ min{0, 1− v5 ((k0 − 10)(k1 − 10)) , 1− v5 ((k0 − 14)(k1 − 14))}.

Proof. The proof is essentially the same as for Theorem 4.16, but using the
results of Proposition 4.27. In order to apply Lemma 4.15, we take H < 0,
S = {10, 14} and h(10) = h(14) = 2.

Remark. Following the notation of [Col97, B3.5], we hence proved that
M ≤ 0 when the 5-adic slope is 2, i.e when v5((k0 − 10)(k0 − 14)) = 0. The
result is optimal, in the sense that the we are able to find integers k0 and k1 in
2 + 4Z such that the inequality of Theorem 4.30 is actually an equality, hence
M = 0. The theorem also implies that M ≤ 1 when the 5-adic slope is 3, i.e.
when v5((k0 − 10)(k0 − 14)) = 1. On the other hand, numerical experiments
suggest that we could also have M = 0 when the slope is 3. See Appendix C
for the details.

Theorem 4.31. Assume Conjecture 4.18. Let p = 7 and let X7
[2] be a subset

of the connected component W[2] of the weight space associated to the class [2]
modulo 6; furthermore assume that X7

[2] is a strict neighborhood of

X̄7
[2] = B[0, 1] \

(
B
(
8, 7−1+ε1

)
∪B

(
14, 7−2+ε2

))
⊂ W[2],

for some ε1, ε2 ∈ R>0.
Then, for every n ≥ 2, there is an analytic function an(k) on X7

[2] such that
the formal power series

F
(k)
[2] (q) = q +

∞∑
n=2

an(k)qn

specializes, for k0 ∈ Z, to the q-expansion of an overconvergent normalized
7-adic cuspidal eigenform form of tame level 1, generalized weight (k0, [k0])
and slope

α
(7)
[2] (k0) = 2 + v7((k0 − 8)(k0 − 14)).

Furthermore α
(7)
[2] (k0) is the minimal possible slope among overconvergent

7-adic cuspidal eigenforms of generalized weight (k0, [k0]) and F
(k0)
[2] (q) is the

unique normalized overconvergent form with this slope.
Moreover, if k0 and k1 are in Z, k0 ≡ 2 mod 6, k1 ≡ 2 mod 6, k0 ≥ 5 and
k1 ≥ 5, the forms

F
(k0)
[2] (q) and F

(k1)
[2] (q)

are two classical cuspidal eigenforms of weight k0 and k1 over Γ0(7) and we
have that uniformly for n ≥ 2

v7 (an(k0)− an(k1)) ≥ v7(k0 − k1) + 1 + min{0, 1− v7 ((k0 − 14)(k1 − 14))}.

Proof. The proof is essentially the same as for Theorem 4.16, but using the
results of Proposition 4.28. In order to apply Lemma 4.15, we take H < 0,
S = {14} and h(14) = 2, as the condition k0 ∈ X7

[2] implies v7(k0 − 8) = 0
when we specialize to k0 ∈ Z.
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Remark. Following the notation of [Col97, B3.5], we hence proved that
M ≤ 0 when the 7-adic slope is 2, i.e when v7((k0 − 8)(k0 − 14)) = 0. The
result is optimal, in the sense that the we are able to find integers k0 and k1 in
2 + 6Z such that the inequality of Theorem 4.31 is actually an equality, hence
M = 0. The theorem also implies that M ≤ 1 when the 7-adic slope is 3, i.e.
when v7(k0 − 14) = 1. On the other hand, numerical experiments suggest that
we could also have M = 0 when the slope is 3. See appendix C for the details.

Theorem 4.32. Assume Conjecture 4.18. Let p = 7 and let X7
[4] be a subset

of the connected component W[4] of the weight space associated to the class [4]
modulo 6; furthermore assume that X7

[4] is a strict neighborhood of

X̄7
[4] = B[0, 1] \B

(
10, 7−2+ε

)
⊂ W[4],

for some ε ∈ R>0.
Then, for every n ≥ 2, there is an analytic function an(k) on X7

[4] such that
the formal power series

F
(k)
[4] (q) = q +

∞∑
n=2

an(k)qn

specializes, for k0 ∈ Z, to the q-expansion of an overconvergent normalized
7-adic cuspidal eigenform form of tame level 1, generalized weight (k0, [k0])
and slope

α
(7)
[4] (k0) = 1 + v7(k0 − 10).

Furthermore α
(7)
[4] (k0) is the minimal possible slope among overconvergent

7-adic cuspidal eigenforms of generalized weight (k0, [k0]) and F
(k0)
[4] (q) is the

unique normalized overconvergent form with this slope.
Moreover, if k0 and k1 are in Z, k0 ≡ 4 mod 6, k1 ≡ 4 mod 6, k0 ≥ 4 and
k1 ≥ 4, the forms

F
(k0)
[4] (q) and F

(k1)
[4] (q)

are two classical cuspidal eigenforms of weight k0 and k1 over Γ0(7) and we
have that uniformly for n ≥ 2

v7 (an(k0)− an(k1)) ≥ v7(k0 − k1) + 1 + min{0, 1− v7 ((k0 − 10)(k1 − 10))}.

Proof. The proof is essentially the same as for Theorem 4.16, but using the
results of Proposition 4.29. In order to apply Lemma 4.15, we take H < 0,
S = {10} and h(10) = 2.

Remark. Following the notation of [Col97, B3.5], we hence proved that
M ≤ 0 when the 7-adic slope is 1, i.e when v7(k0 − 10) = 0. The result is
optimal, in the sense that the we are able to find integers k0 and k1 in 4 + 6Z
such that the inequality of Theorem 4.32 is actually an equality, hence M = 0.
The theorem also implies that M ≤ 1 when the 7-adic slope is 2, i.e. when
v7(k0 − 10) = 1. On the other hand, numerical experiments suggest that we
could also have M = 0 when the slope is 2. See Appendix C for the details.
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Appendix A

Coefficients of the modular
equations

Here we display for the primes p = 2, 3, 5, 7, 13 the polynomials a
(p)
i (y),

computed as described in subsection 2.1.

a
(2)
1 (y) = −212y2 − 24 · 3y.

a
(3)
1 (y) = −312y3 − 4 · 38y2 − 10 · 33y,

a
(3)
2 (y) = −36y2 − 4 · 32y.

a
(5)
1 (y) = −512y5 − 6 · 510y4 − 63 · 57y3 − 52 · 55y2 − 63 · 52y,

a
(5)
2 (y) = −59y4 − 6 · 57y3 − 63 · 54y2 − 52 · 52y,

a
(5)
3 (y) = −56y3 − 6 · 54y2 − 63 · 5y,

a
(5)
4 (y) = −53y2 − 6 · 5y.

a
(7)
1 (y) =− 712y7 − 4 · 711y6 − 46 · 79y5 − 272 · 77y4 − 845 · 75y3

− 176 · 74y2 − 82 · 72y,

a
(7)
2 (y) =− 710y6 − 4 · 79y5 − 46 · 77y4 − 272 · 75y3 − 845 · 73y2 − 176 · 72y,

a
(7)
3 (y) =− 78y5 − 4 · 77y4 − 46 · 75y3 − 272 · 73y2 − 845 · 7y,

a
(7)
4 (y) =− 76y4 − 4 · 75y3 − 46 · 73y2 − 272 · 7y,

a
(7)
5 (y) =− 74y3 − 4 · 73y2 − 46 · 7y,

a
(7)
6 (y) =− 72y2 − 4 · 7y.

59



a
(13)
1 =− 1312y13 − 2 · 1312y12 − 25 · 1311y11 − 196 · 1310y10 − 1064 · 139y9

− 4180 · 138y8 − 12086 · 137y7 − 25660 · 136y6 − 3014 · 136y5

− 41140 · 134y4 − 27272 · 133y3 − 9604 · 132y2 − 1165 · 13y,

a
(13)
2 =− 1311y12 − 2 · 1311y11 − 25 · 1310y10 − 196 · 139y9 − 1064 · 138y8

− 4180 · 137y7 − 12086 · 136y6 − 25660 · 135y5 − 3014 · 135y4

− 41140 · 133y3 − 27272 · 132y2 − 9604 · 13y,

a
(13)
3 =− 1310y11 − 2 · 1310y10 − 52139y9 − 2272138y8 − 237 · 13719y7

− 225 · 11 · 13619y6 − 2 · 1356043y5 − 225 · 1341283y4 − 2 · 11 · 134137y3

− 225 · 11213217y2 − 237 · 13 · 487y

a
(13)
4 =− 139y10 − 2 · 139y9 − 52138y8 − 2272137y7 − 237 · 13619y6

− 225 · 11 · 13519y5 − 2 · 1346043y4 − 225 · 1331283y3 − 2 · 11 · 133137y2

− 225 · 11213 · 17y,

a
(13)
5 =− 138y9 − 2 · 138y8 − 52137y7 − 2272136y6 − 237 · 13519y5

− 225 · 11 · 13419y4 − 2 · 1336043y3 − 225 · 1321283y2 − 2 · 11 · 132137y,

a
(13)
6 =− 137y8 − 2 · 137y7 − 52136y6 − 2272135y5 − 237 · 13419y4

− 225 · 11 · 13319y3 − 2 · 1326043y2 − 225 · 13 · 1283y,

a
(13)
7 =− 136y7 − 2 · 136y6 − 52135y5 − 2272134y4 − 237 · 13319y3

− 225 · 11 · 13219y2 − 2 · 13 · 6043y,

a
(13)
8 =− 135y6 − 2 · 135y5 − 52134y4 − 2272133y3 − 237 · 13219y2

− 225 · 11 · 13 · 19y,

a
(13)
9 =− 134y5 − 2 · 134y4 − 52133y3 − 2272132y2 − 237 · 13 · 19y,

a
(13)
10 =− 133y4 − 2 · 133y3 − 25 · 132y2 − 196 · 13y,

a
(13)
11 =− 132y3 − 2 · 132y2 − 25 · 13y,

a
(13)
12 =− 13y2 − 2 · 13y.
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Appendix B

Koike’s formula

In this appendix, let p be an odd prime. Similar constructions can be done
also for p = 2, see [Koi75, Section 3].
The Eichler-Selberg trace formula on SL2(Z) on the classical space of cusp
forms Sk for the Hecke operator Tm is given by Zagier in [Lan95, Appendix to
chapter III]:

Tr
(
T (k)
m

)
= −1

2

∑
u∈Z

Pk(u,m)H(u2 − 4m)− 1

2

∑
dd′=m

min{d, d′}k−1.

With the following notations:
if D < 0, H(D) is the Hurwitz class number, that is, the number of equivalence
classes of positive definite binary quadratic forms with discriminant D with
certain weights as described in [Lan95, p.47] and normalized such that

H(0) = − 1

12
;

the expression Pk(u,m) is given by

Pk(u,m) =
ρk−1 − ρ̄k−1

ρ− ρ̄

where ρ and ρ̄ are the roots of the polynomial

x2 − ux+m.

Let k ∈ 2Z. Koike proved in [Koi75] that the trace of the p-adic U
(k)
p operator

and its powers acting on the p-adic Banach space subspace of cuspidal form of
level 1 can be obtained by taking the p-adic limit of the trace of the classical
operators.
In the formula above, set m = pn and let [a] be the congruence class of k
modulo p− 1. Consider now a sequence of weights {ki}i∈N such that

ki ≡ k mod pni(p− 1)

with ni →∞ as i tend to infinity. Then the sequence {ki} converges p-adically
to (k, [a]) in the connected component W[a] of the weight space. It is clear
that, in Z, the integers ki tend to ∞.
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We can now consider the limit

lim
i→∞

(
T

(ki)
pn

)
.

When we take the p-adic limit, we have that

lim
i→∞

−1

2

∑
dd′=m

min{d, d′}ki−1 = lim
i→∞

−1

2

(
1ki−1 + pki−1 + · · ·+ 1ki−1

)
= −1,

because all the terms different from 1 have strictly positive valuation and
hence their powers tend to 0 p-adically. Similarly, if p|u, as ρ and ρ̄ are roots
of the equation x2 − ux+ pn = 0, it means that both ρ and ρ̄ must have
positive valuation and their powers tend to 0 in the limit. If p - u, let γ(u) be

the only root of x2 − ux+ pn = 0 that is a p-adic unit; then γ(u) then must
have positive valuation. Moreover we have that

lim
i→∞

γ(u)ki−1 = γ(u)k

exists because we can write

γ(u)ki−1 = τ(γ(u))a 〈γ(u)〉ki−1

and we have that the quotient

lim
i→∞

〈γ(u)〉k−1

〈γ(u)〉ki−1
= lim
i→∞

〈γ(y)〉k−ki

converges to 1 as it is raised to powers divisible by higher and higher powers of
p. Next note that, as we are dealing with forms in level 1, the exponents ki − 1
must be odd, and we have that

γ(−u)ki−1 − γ(−u)
ki−1

γ(−u)− γ(−u)
=
γ(u)ki−1 − γ(u)

ki−1

γ(u)− γ(u)
.

Finally note that

γ(u)k−1

γ(u)− γ(u)
=

γ(u)k−1

γ(u)− pn

γ(u)

=
γ(u)k

γ(u)2 − pn
.

Hence we just showed that

Tr
(
U (k)
p

)n
= lim
i→∞

(
T

(ki)
pn

)
= −

∑
0≤u<

√
pn

(u,p)=1

H(u2 − 4pn) · (γ(u))k

γ(u)2 − pn
− 1,

because H(D) = 0 if D > 0.
A PARI/GP [PG17b] script allow to easily compute the trace of (Up)

n
and

hence the characteristic power series P[a](k, T ) of the U
(k)
p operator acting on

the subspace of overconvergent p-adic cusp forms of level 1:

P[a](k, T ) = exp

− ∞∑
n=1

Tr
(
U

(k)
p

)n
Tn

n

 . (B.1)

A slightly slower implementation of the formula is also present in [Smi00],
where it was mostly taken from [CST98].
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Remark. We can compute the coefficients of P[a](k, T ) up to an arbitrarily
large p-adic precision, hence after the computations we must work with them
modulo specific powers of p.

Remark. If k is left as a variable, the script computes the generic coefficients
of the characteristic power series, where γ(u)k is computed as a formal power
series in k, up to an arbitrarily large precision. In this case, it is of crucial
importance to specify beforehand what is the class [a] associated to the desired
connected component W[a] of the weight space, as from a practical point of
view we have

γ(u)k = τ(γ(u))a
(

γ(u)

τ(γ(u))

)k
= τ(γ(u))a 〈γ(u)〉k ,

where τ(γ) ∈ µp−1 is the Teichmüller of γ and 〈γ〉 its one-unit part.

It’s clear that the computation of the trace of (Up)
n

is exponential in n, hence
we are only able to compute the coefficients C[a](m, k) of the characteristic
power series for small m and primes p that are not too large.
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Appendix C

Numerical experiments

The verification of this appendix have been performed using The L-functions
and Modular Forms Database [LMF17] and the new modular form package for
PARI/GP present in [PG17a].

C.1 Results verification

Verification when p = 5 and [a] = [0]

In this section, let k0 and k1 be in 4Z with the additional condition that
v5(k0 − 8) ≤ 1 and v5(k1 − 8) ≤ 1. As it only makes sense to investigate the
congruences between forms in the same family, we will assume that

v5(k0 − 8) = v5(k1 − 8).

In this case the minimal slope predicted by Theorem 4.16 is

α
(5)
[0] (ki) = 1 + v5(8− ki) ≤ 2.

Remark. By Theorem 4.16, if ki ≥ 4, the 5−adic family should specialize to a
classical modular form over Γ0(5). We perform such a search for oldforms (i.e.
in level 1) and newforms (i.e. in level 5).

For ki = 4, 12, 16, 20, 24, 32, 36, 40, 64 we find a unique eigenform of the

predicted slope α(ki)
(5)
[0] = 1, either in level 1 or in level 5.

Remark. In particular, we find that for ki = 4 the eigenform of minimal slope
is a newform. For ki = 12, 16, 20, 24, 32, 36, 40, 64 the unique form of minimal
slope is an oldform.

For ki = 28, 48 we find a unique cusp form of the predicted slope α(ki)
(5)
[0] = 2,

in both instances the eigenform is in level 1.

For 64 ≤ ki ≤ 240 and for ki = 512 we verify that there is a unique oldform of

minimal slope α
(5)
[0] (ki), but the size of the weights do not allow to check easily

among newforms in this cases.

Remark. In the following, we use the oldforms of weights 64 ≤ ki ≤ 240 and
for ki = 512 of minimal slope despite this lack of verification among newforms.
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C.1. Results verification

Then we investigate the two inequalities for i = 0, 1 given by Theorem 4.16:{
v5 (an(k0)− an(k1)) ≥ v5(k0 − k1) + 1 if v5(ki − 8) = 0,

v5 (an(k0)− an(k1)) ≥ v5(k0 − k1) if v5(ki − 8) = 1.

The first inequality holds true for the first 200 coefficients of the q-expansions
obtained with every possible choice of k0, k1 such that
v5(k0 − 8) = v5(k1 − 8) = 0 and such that

4 ≤ ki ≤ 240.

Moreover, the inequality holds true for the first 50 coefficients of the
q-expansion of the forms obtained by picking k0 = 512 and k1 in the same
range as above.
Finally, the second inequality holds true for the first 200 coefficients of the
q-expansions obtained with every possible choice of k0, k1 such that
v5(k0 − 8) = v5(k1 − 8) = 1 and such that

28 ≤ ki ≤ 228.

Remark. The above inequality is optimal whenever α
(5)
[0] (ki) = 1. This has

been checked for all pairs (k0, k1).

Remark. Whenever α
(5)
[0] (ki) = 2 (or, equivalently, if v5(ki − 8) = 1), the

forms of weight k0 and k1 are observed to be congruent modulo 5v5(k0−k1)+1

instead of 5v5(k0−k1). This have been checked for all such pairs in that range.

Let fk0 be the cuspidal eigenform of minimal slope in weight k0, where k0 is
taken as above. In particular the following congruences have been observed for
the first 200 coefficients (resp. for the first 50 coefficients of the congruence
involving f512):

• f12 ≡ f4 mod 5 as expected, since v5(12− 4) = 0;

• f12 ≡ f32 mod 52 as expected, since v5(12− 32) = 1;

• f12 ≡ f112 mod 53 as expected, since v5(12− 112) = 2;

• f12 ≡ f512 mod 54 as expected, since v5(12− 512) = 3;

• f28 ≡ f48 mod 52, but the inequality only predicts congruence mod 5;

• f28 ≡ f128 mod 53, but the inequality only predicts congruence
mod 52.

Note moreover that f12 is the usual ∆.

Verification when p = 7 and [a] = [0]

In this section, let k0 and k1 be in 6Z with the additional condition that
v7(k0 − 6) = 0 and v7(k1 − 6) = 0.
In this case the minimal slope predicted by Theorem 4.17 is

α
(7)
[0] (ki) = 1.
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C.1. Results verification

Remark. By Theorem 4.17, if ki ≥ 3, the 7−adic family should specialize to a
classical modular form over Γ0(7). We perform such a search for oldforms (i.e.
in level 1) and newforms (i.e. in level 7).

For ki = 12, 18, 24, 30, 36, 42, 54, 60 we find a unique eigenform of the predicted
slope 1, always in level 1.
For 66 ≤ ki ≤ 240 and for ki = 306 we verify that there is a unique oldform of
minimal slope 1, but the size of the weights do not allow to check easily among
newforms in this cases.

Remark. In the following, we use the oldforms of weights 66 ≤ ki ≤ 240 and
for ki = 306 of minimal slope despite this lack of verification among newforms.

Then we investigate the inequality for i = 0, 1 given by Theorem 4.17:

v7 (an(k0)− an(k1)) ≥ v7(k0 − k1) + 1 if v7(ki − 6) = 0.

The inequality holds true for the first 200 coefficients of the q-expansions
obtained with every possible choice of k0, k1 such that
v7(k0 − 6) = v5(k1 − 6) = 0 and such that

12 ≤ ki ≤ 240.

Moreover, the inequality holds true for the first 80 coefficients of the
q-expansion of the form obtained by picking k0 = 306 and k1 as above.

Remark. The above inequality is optimal. This has been checked for all pairs
(k0, k1) in that range.

Let fk0 be the cuspidal eigenform of minimal slope 1 in weight k0, where k0 is
taken as above. In particular the following congruences have been observed for
the first 200 coefficients:

• f12 ≡ f18 mod 7 as expected, since v7(12− 18) = 0;

• f12 ≡ f54 mod 72 as expected, since v7(12− 54) = 1;

• f12 ≡ f306 mod 53 as expected, since v5(12− 306) = 2.

Note moreover that f12 is the usual ∆.

Remark. To compute rapidly the slope of modular forms defined over finite
extension K of Q and their q-expansion, especially for very big weights, we use
the following method.

• We obtain the monic polynomial G(x) with coefficients in Z such that K
is the splitting field of G;

• We compute the eigenvalue ap(x) of the q-expansion of the forms, it is
expressed as a polynomial in the roots of G;

• Using p-adic approximation we compute up to a high p-adic precision the
p-adic roots of G(x);

• We evaluate ap(x) to each of the p-adic roots and compute in every case
the p-adic valuation.
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• Once we have verified that there is only one instance with the minimal
predicted valuation, we compute the rest of the q-expansion of the form
by evaluating all the coefficients to this specific approximated p-adic root
of G(x).

The use of p-adic approximation is much faster than the computations of the
ideals p lying over p in K and the evaluation of ap(x) at these prime ideals:
our technique essentially amounts to making a suitable explicit choice of
embedding K ↪→ Qp. Another advantage is the fact that confronting
q-expansions of forms defined over different number fields is now immediate as
we see them all directly with p-adic coefficients. We were not able to find
forms of minimal slope whose p-adic field of definition is bigger then Qp.

C.2 Conjecture verification

The Theorems 4.30, 4.31 and 4.32 are a consequence of Conjecture 4.18 and
they can be easily verified for many weights, as shown in this section.

Verification when p = 5 and [a] = [2]

In this section, let k0 and k1 be in 2 + 4Z with the additional condition that
v5((k0 − 10)(k0 − 14)) ≤ 1 and v5((k1 − 10)(k1 − 14)) ≤ 1. As it only makes
sense to investigate the congruences between forms in the same family, we will
assume that

v5((k0 − 10)(k0 − 14)) = v5((k1 − 10)(k1 − 14)).

In this case the minimal slope predicted by Theorem 4.30 is

α
(5)
[2] (k) = 1 + v5((ki − 10)(ki − 14)) ≤ 3.

Remark. By Theorem 4.30, if ki ≥ 5, the 5−adic family should specialize to a
classical modular form over Γ0(5). We perform such a search for oldforms (i.e.
in level 1) and newforms (i.e. in level 5).

For ki = 6, 18, 22, 26, 38, 42, 46, 58, 62 we find a unique eigenform of the

predicted slope α(ki)
(5)
[2] = 2, either in level 1 or in level 5.

Remark. In particular, we find that for ki = 6 the eigenform of minimal slope
is a newform. For ki = 18, 22, 26, 38, 42, 46, 58, 62 the unique form of minimal
slope is an oldform.

For ki = 30, 34, 50, 54 we find a unique cusp form of the predicted slope

α(ki)
(5)
[2] = 3; in all four instances the eigenform is in level 1.

For 66 ≤ ki ≤ 238 we verify that there is a unique oldform of minimal slope

α
(5)
[2] (ki), but the size of the weights do not allow to check easily among

newforms in this cases.

Remark. In the following, we use the oldforms of weights 66 ≤ ki ≤ 238 of
minimal slope despite this lack of verification among newforms.
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Then we investigate the two inequalities for i = 0, 1 given by Theorem 4.30:

v5 (an(k0)− an(k1)) ≥ v5(k0 − k1) + 1 if v5((ki − 10)(ki − 14)) = 0,

and

v5 (an(k0)− an(k1)) ≥ v5(k0 − k1) + 1

+ min{0, 1− v5((k0 − 10)(k1 − 10)), 1− v5((k0 − 14)(k1 − 14))}

if v5((ki − 10)(ki − 14)) = 1.
The first inequality holds true for the first 200 coefficients of the q-expansions
obtained with every possible choice of k0, k1 such that
v5((k0 − 10)(k0 − 14)) = v5((k1 − 10)(k1 − 14)) = 0 and such that

6 ≤ ki ≤ 238.

Finally, the second inequality holds true for the first 200 coefficients of the
q-expansions obtained with every possible choice of k0, k1 such that
v5((k0 − 10)(k0 − 14)) = v5((k1 − 10)(k1 − 14)) = 1 and such that

30 ≤ ki ≤ 234.

Remark. The above inequality is optimal whenever α
(5)
[2] (ki) = 2. This has

been checked for all pairs (k0, k1) in that range.

Remark. Whenever α
(5)
[2] (ki) = 3 (or, equivalently, if

v5((ki − 10)(ki − 14)) = 1), the forms of weight k0 and k1 are observed to be
congruent modulo 5v5(k0−k1)+1. On the other hand, when

v5((k0 − 10)(k1 − 10)) = 2

or when
v5((k0 − 14)(k1 − 14)) = 2,

Theorem 4.30 only predicts congruence modulo 5v5(k0−k1). This have been
checked for all such pairs.

Let fk0 be the cuspidal eigenform of minimal slope in weight k0, where k0 is
taken as above. In particular the following congruences have been observed for
the first 200 coefficients:

• f18 ≡ f6 mod 5 as expected, since v5(18− 6) = 0;

• f18 ≡ f38 mod 52 as expected, since v5(18− 38) = 1;

• f18 ≡ f118 mod 53 as expected, since v5(18− 218) = 2;

• f30 ≡ f34 mod 5, as expected,, since v5(30− 34) = 0;

• f30 ≡ f50 mod 52, but the inequality only predicts congruence mod 5;

• f34 ≡ f54 mod 52, but the inequality only predicts congruence mod 5;

• f30 ≡ f230 mod 53, but the inequality only predicts congruence
mod 52.

In other words, the relevance of the term

min{0, 1− v5((k0 − 10)(k1 − 10)), 1− v5((k0 − 14)(k1 − 14))}

in the formula above is never observed.
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Verification when p = 7 and [a] = [2]

In this section, let k0 and k1 be in 2 + 6Z with the additional conditions that
v7(k0 − 8) = v7(k1 − 8) = 0, v7(k0 − 14) ≤ 1 and v7(k1 − 14) ≤ 1. As it only
makes sense to investigate the congruences between forms in the same family,
we will assume that

v7(k0 − 14) = v7(k1 − 14).

In this case the minimal slope predicted by Theorem 4.31 is

α
(7)
[2] (ki) = 2 + v7(ki − 14) ≤ 3.

Remark. By Theorem 4.31, if ki ≥ 5, the 7−adic family should specialize to a
classical modular form over Γ0(7). We perform such a search for oldforms (i.e.
in level 1) and newforms (i.e. in level 7).

For ki = 20, 26, 32, 38, 44, 62 we find a unique eigenform of the predicted slope

α(ki)
(7)
[2] = 2, always in level 1. For ki = 56 we find a unique oldform of the

predicted slope α(ki)
(7)
[2] = 3.

For 68 ≤ ki ≤ 236 and for ki = 350 we verify that there is a unique oldform of

minimal slope α
(7)
[2] (ki), but the size of the weights do not allow to check easily

among newforms in this cases.

Remark. In the following, we use the oldforms of weights 68 ≤ ki ≤ 236 and
for ki = 350 of minimal slope despite this lack of verification among newforms.

Then we investigate the two inequalities for i = 0, 1 given by Theorem 4.31:{
v7 (an(k0)− an(k1)) ≥ v7(k0 − k1) + 1 if v7(ki − 14) = 0,

v7 (an(k0)− an(k1)) ≥ v7(k0 − k1) if v7(ki − 14) = 1.

The first inequality holds true for the first 200 coefficients of the q-expansions
obtained with every possible choice of k0, k1 such that
v7(k0 − 14) = v7(k1 − 14) = 0 and such that

20 ≤ ki ≤ 236.

Finally, the second inequality holds true for the first 200 coefficients of the
q-expansions obtained with every possible choice of k0, k1 such that
v7(k0 − 14) = v7(k1 − 14) = 1 and such that

56 ≤ ki ≤ 224 and ki = 350.

Remark. The above inequality is optimal whenever α
(7)
[2] (ki) = 2. This has

been checked for all pairs (k0, k1) in that range.

Remark. Whenever α
(7)
[2] (ki) = 3 (or, equivalently, if v7(ki − 14) = 1), the

forms of weight k0 and k1 are observed to be congruent modulo 7v7(k0−k1)+1.
On the other hand, when

v7((k0 − 14)(k1 − 14)) = 2,

Theorem 4.31 only predicts congruence modulo 7v7(k0−k1). This have been
checked for all such pairs.
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Let fk0 be the cuspidal eigenform of minimal slope in weight k0, where k0 is
taken as above. In particular the following congruences have been observed for
the first 200 coefficients:

• f20 ≡ f26 mod 7 as expected, since v7(20− 26) = 0;

• f20 ≡ f62 mod 72 as expected, since v7(20− 62) = 1;

• f56 ≡ f98 mod 72, but the inequality only predicts congruence mod 7;

• f56 ≡ f350 mod 73, but the inequality only predicts congruence
mod 72.

Verification when p = 7 and [a] = [4]

In this section, let k0 and k1 be in 4 + 6Z with the additional conditions that
v7(k0 − 10) ≤ 1 and v7(k1 − 10) ≤ 1. As it only makes sense to investigate the
congruences between forms in the same family, we will assume that

v7(k0 − 10) = v7(k1 − 10).

In this case the minimal slope predicted by Theorem 4.32 is

α
(7)
[4] (ki) = 1 + v7(ki − 10) ≤ 2.

Remark. By Theorem 4.32, if ki ≥ 4, the 7−adic family should specialize to a
classical modular form over Γ0(7). We perform such a search for oldforms (i.e.
in level 1) and newforms (i.e. in level 7).

For ki = 4, 16, 22, 28, 34, 40, 46, 58, 64 we find a unique eigenform of the

predicted slope α(ki)
(7)
[4] = 1, either in level 1 or in level 7.

Remark. In particular, we find that for ki = 4 the eigenform of minimal slope
is a newform. For ki = 16, 22, 28, 34, 40, 46, 58, 64 the unique form of minimal
slope is an oldform.

For ki = 52 we find a unique oldform of the predicted slope α(k0)
(7)
[4] = 2.

For 70 ≤ ki ≤ 238 and for ki = 310 we verify that there is a unique oldform of

minimal slope α
(7)
[4] (k), but the size of the weights do not allow to check easily

among newforms in this cases.

Remark. In the following, we use the oldforms of weights 70 ≤ k0 ≤ 238 and
for k0 = 310 of minimal slope despite this lack of verification among newforms.

Then we investigate the two inequalities for i = 0, 1 given by Theorem 4.32:{
v7 (an(k0)− an(k1)) ≥ v7(k0 − k1) + 1 if v7(ki − 10) = 0,

v7 (an(k0)− an(k1)) ≥ v7(k0 − k1) if v7(ki − 10) = 1.

The first inequality holds true for the first 200 coefficients of the q-expansions
obtained with every possible choice of k0, k1 such that
v7(k0 − 10) = v7(k1 − 10) = 0 and such that

4 ≤ ki ≤ 238 and ki = 310.

71



C.3. Direct verification of the conjecture

Finally, the second inequality holds true for the first 200 coefficients of the
q-expansions obtained with every possible choice of k0, k1 such that
v7(k0 − 10) = v7(k1 − 10) = 1 and such that

52 ≤ ki ≤ 220

Remark. The above inequality is optimal whenever α
(7)
[4] (ki) = 1. This has

been checked for all pairs (k0, k1).

Remark. Whenever α
(7)
[4] (ki) = 2 (or, equivalently, if v7(ki − 10) = 1), the

forms of weight k0 and k1 are observed to be congruent modulo 7v7(k0−k1)+1.
On the other hand, when

v7((k0 − 10)(k1 − 10)) = 2,

Theorem 4.32 only predicts congruence modulo 7v7(k0−k1). This have been
checked for all such pairs.

Let fk0 be the cuspidal eigenform of minimal slope in weight k0, where k0 is
taken as above. In particular the following congruences have been observed for
the first 200 coefficients:

• f16 ≡ f4 mod 7 as expected, since v7(16− 4) = 0;

• f16 ≡ f58 mod 72 as expected, since v7(16− 58) = 1;

• f16 ≡ f310 mod 73, as expected, since v7(16− 310) = 2;

• f52 ≡ f94 mod 72, but the inequality only predicts congruence mod 7.

C.3 Direct verification of the conjecture

We can also show more direct numerical evidence for Conjecture 4.18. Let
p ∈ {5, 7, 13} and let tp(z) be the generator of the function field of X0(p), as
introduced in Chapter 2. Note that for every such p the q-expansion of tp has
the form

tp = q +

∞∑
i=2

aiq
i

for some ai ∈ Q. Let e1 be the p-adic modular function introduced in Section
4.3 defined by the quotient

e1 =
E1

V (E1)
.

As e1 is a p-adic modular function, it must have a tp-expansion of the form

e1 = 1 + tp +

∞∑
i=2

bi (tp)
i
.

With PARI/GP [PG17b] we can recursively compute the coefficients bi for
arbitrarily large i from the q-expansions of tp and e1.

72



C.3. Direct verification of the conjecture

By Proposition 2.6 and the following Remark, we can check the
overconvergence rate of e1 by looking at the p-adic valuation of the coefficients
bi.
In particular, if e1 is r-overconvergent for every r such that

0 ≤ vp(r) <
1

p+ 1
,

then the following inequality must hold for every i ∈ N:

vp(bi) ≥
12

p2 − 1
i = γpi. (C.1)

It is then clear that we can produce direct evidence for Conjecture 4.18 by
checking the inequality (C.1).
Let p ∈ {5, 7, 13}; for each one of these primes we verified the inequality (C.1)
for i ≤ 103.
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Modular functions of one variable, III (Proc. Internat. Summer
School, Univ. Antwerp, 1972), pages 191–268. Lecture Notes in
Math., Vol. 350. Springer, Berlin, 1973.

[Ser75] J.-P. Serre. Correction to: “Formes modulaires et fonctions zêta
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