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Abstract

The main goal of this thesis is to propose a notion analogous to covering spaces in classical
geometry. This is motivated by the author’s long term goal of defining the (étale) fundamental
group of a non-commutative space and put forth a good notion of monodromy.

We will present a notion of a non-commutative covering space using Galois theory of Hopf
algebroids. We will look at basic properties of classical covering spaces that generalize to the
non-commutative framework. Afterwards, we will explore a series of examples. We will start
with coverings of a point and central coverings of commutative spaces and see how these are
closely tied up. Coupled Hopf algebras will be presented to give a general description of cover-
ings of a point. We will give a complete description of the geometry of the central coverings of
commutative spaces using the coverings of a point. A topologized version of Hopf categories will
be defined and its corresponding Galois theory. Using this and basic concepts from algebraic ge-
ometry and spectral theory, we will give a full description of the general structure of non-central
coverings. Examples of coverings of the rational and irrational non-commutative tori will also
be studied. Using the non-commutative analogue of the hyperelliptic involution, we will show
that unlike the classical case, the non-commutative sphere is a covering of the non-commutative
torus. There is a purely non-commutative phenomenon happening to non-commutative cover-
ings, namely, their symmetry is two-sided. We will explain this and relate it to bi-Galois theory.
Using the OZ-transform, we will show that non-commutative covering spaces come in pairs.
Several categories of covering spaces will be defined and studied. Appealing to Tannaka duality,
we will explain how this lead to a notion of an étale fundamental group. Finally, in the last
chapter we will discuss possible future projects.

Resumé

Det primære form̊al med denne afhandling er at introducere et begreb svarende til overdækninger
fra klassisk geometry. Dette er motiveret af forfatterens langsigtede m̊al med at definere (étale)
fundamentalgruppen for et ikke-kommutativt rum og fremsætte et begreb om monodromi.

Vi introducerer ikke-kommutative overdækninger ved hjælp af Galoisteori for Hopf alge-
broids. Vi betragter basale egenskaber for klassiske overdækninger der generaliserer til den ikke-
kommutative kontekst. Dernæst udforskes en række eksempler. Vi starter med overdækninger
af et punkt og centrale overdækninger a kommutative rum og ser hvordan disse er tæt for-
bundet. Koblede Hopf algebraer vil blive prsenteret for at give en generel beskrivelse af et
punkts overdækninger. En topologiseret version af Hopf kategorier bliver defineret, s̊avel som
dets tilhørende Galoisteori. Ved brug af dette og basale koncepter fra algebraisk geometri og
spektralteori, vil vi give en fuldstændig beskrivelse af den generelle struktur for ikke-centrale
overdækninger. Eksempler p̊a overdækninger af rationelle og irrationelle ikke-kommutative tori
bliver ogs̊a studeret. Ved brug af den ikke-kommutativ analog til hyperelliptisk involution, vil vi
vise at, i modsætning til det klassiske tilfælde, er den ikke-kommutative sfære er en overdækning
af den ikke-kommutative torus. Ikke-kommutative overdækninger har den rent ikke-kommutative
egenskab at deres symmetri er tosidet. Vi forklarer dette og relaterer det til bi-Galoisteori. Ved
brug af OZ-transformationer, viser vi at ikke-kommutative overdækninger kommer i par. Adskil-
lige kategorier af overdkninger vil blive definieret og studeret. Med appel til Tannaka dualitet,
forklarer vi hvordan dette fører til et begreb om en étale fundamentalgrupp. Endelig, i det sidste
kapitel, diskuterer vi mulige fremtidige projekter.
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differential geometric aspects of non-commutative geometry; and Sinan Yalin for his immense expertise

in homotopical algebraic geometry. I would like to thank those great friends I met during my conference-

hopping activities across Europe: David Jondreville for inviting me to talk about my research in France;
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Chapter 1

Introduction

Discovery is the privilege of the
child: the child who has no fear of

being once again wrong, of looking like
an idiot, of not being serious, of

not doing things like everyone else.

−Alexander Grothendieck

1.1 Motivation

The main motivation of this PhD project is to put forth a realization of monodromy represen-
tation for non-commutative spaces. In its classical sense, monodromy representation refers to a
representation of a group G one can write by viewing G as the fundamental group of some topo-
logical space X together with a flat vector bundle E

p−→ X. This is accomplished by viewing
g ∈ G as (based) loops in X and lifting them to paths in E. Formulating monodromy represen-
tation for non-commutative spaces requires answering several important preliminary questions:
what is the fundamental group of a non-commutative space?

Classically, the fundamental group of a topological space X is the homotopy classes of (based)
loops in X. The group operation is concatenation (composition followed by reparametrization)
of loops. Such a group depends on the choice of the base point. This presents a problem since
non-commutative spaces need not have classical points. Even if we ignore the dependence on
the based point, the same problem persists since loops and their homotopy involved points of
X. One way to go around this difficulty is to use a different but equivalent definition of the
fundamental group of a space X. The fundamental group of X (for sufficiently nice X) is also
the automorphism group of the universal covering space X̃ of X, see [8]. If we adopt this
definition, we will be faced with yet another daunting task: what is the universal covering space
of a non-commutative space?

The task now boils down into defining what a covering of a non-commutative space is. Then,
if things go well, a terminal object in the category of such coverings exists and can be regarded
as the universal covering of the given non-commutative space. Alternatively, one can define the
universal covering of a non-commutative space, by duality, as the colimit of all of the coverings
of that non-commutative space. At any rate, we are faced with the task of defining what a
covering space of a non-commutative space should be. This is the path that we are going to
take.
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The main goal of this thesis to propose a covering theory for non-commutative spaces which
we hope, in future works, will lead to a complete realization of the monodromy theorem for
non-commutative spaces. A more primitive question remains. Why would one be interested in
giving an analogue of the monodromy representation for non-commutative spaces? To answer
this, I would like to first quote Cuntz [15]: The two fundamental ”machines” of non-commutative
geometry are (bivariant) topological K-theory and cyclic homology... Cyclic theory can be viewed
as a far reaching generalization of the classical de Rham cohomology, while bivariant K-theory
includes the topological K-theory of Atiyah-Hirzebruch as a special case. At the present state
of non-commutative geometry, invariants of non-commutative spaces are produced with the
framework of either (bivariant) K-theory or cyclic homology. One of the goals of the author, as
proposed by Ryszard Nest, is to produce a new set of invariants for non-commutative spaces.
The problem has been conceptualized during the first quarter of the 2014 but no progress has
been made until December of that year. It was during a walk along a Christmas market in Bonn
when the author and his supervisor settled with the present formulation.

As far as the limited knowledge of the author goes, there has been no substantial work done
towards this endeavor. However, I would like to emphasize that the whole program resembles
the path Grothendieck took to define the étale fundamental group for schemes. In other words,
we will proceed by partially going against what Grothendieck said (see the quotation in the
beginning of this section) by following what Grothendieck did.

1.2 Overview

We have presented in section 1.1 the problems that motivated this thesis. Let us outline our
proposed solution to the said challenges. Recall that the reason we are interested in covering
spaces is to be able to define the notion of a (étale) fundamental group (or groupoid) for non-
commutative spaces. In this generality, this task requires a lot of work. For the mean time,
we will only be considering finite Galois covering spaces. Such covering spaces is enough to
makes sense of the étale fundamental group for non-commutative spaces. Apart from giving
a notion of a non-commutative finite Galois covering spaces, we will also tackle examples and
their properties.

In appendix A we discuss the necessary aspects of covering spaces we will be needing in
this thesis. Covering spaces are old and well-studied objects. However, instead of referring to
existing literature we will explicitly write down aspects of the theory that we will be considering
and we will be looking in great detail. In particular, a covering of a topological space X consists
of a topological space Y and a continuous surjection Y

p−→ X such that the fibers of p are all
discrete. With this information, there is a naturally associated discrete group G, the group of
deck transformations. We will only deal with the case when the action of G on p is Galois. In
the dual picture, X and Y give algebras A and B, respectively. The surjection p turns into an

inclusion A
i−→ B. The group G and its Galois action on Y with invariants X turn into a Hopf

algebra H coacting on B with coinvariants A, where the coaction is also Galois. Unlike the
classical case, given a general inclusion of algebras A ⊆ B there is no natural way to spit out a
Hopf algebra coacting Galois on B whose coinvariants is A. There are even examples of inclusions
A ⊆ B and non-isomorphic Hopf algebras H1 and H2 with a Galois coaction on B with A as
the space of coinvariants. Another important issue at hand, the map p is not just a surjective
map. It has discrete fibers. This condition is as important as surjectivity. However, there is
no existing notion of discreteness in non-commutative geometry. This means that an extension
algebra B of A is not enough to define a covering space. It is not clear what conditions can be
imposed to the inclusion A ⊆ B to reflect discreteness. This problem goes away by making the
quantum symmetries H of A ⊆ B part of the data and requiring that H is finite-dimensional
(in the case when the base ring is a field, otherwise, one can settle for finitely-generated and
projective over the base ring). This finiteness condition solves the discreteness problem using
the fact that finite subsets of Hausdorff spaces are discrete.

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017
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Figure 1.1: Hopf algebroids associated to covering spaces.

In chapter 2, we will discuss Hopf algebroids. Contrary to what we originally conditioned,
we will not restrict our formulation to Hopf algebras. Apart from the naturality of the use of
Hopf algebroids, it is also at the very core of the tool that we are going to use− Galois theory.
With some finiteness condition, non-commutative covering spaces are nothing but Hopf-Galois
extensions. We will motivate our choice of a definition in section 2.1 where we will start by
constructing a groupoid out of a covering space. Upon convincing ones self that Hopf algebroids
are the non-commutative analogue of groupoids, our choice of using groupoids will be justified.
The rest of the section of chapter 2 will be devoted for two very crucial task. The first one is to
define equivalence of such coverings. Secondly, we will see how composition of covering works
in the non-commutative framework.

In chapter 4 we will scrutinize coverings of commutative spaces. We will restrict our at-
tention to central coverings. We will start by looking at coverings of a point and then give
a reconstruction theorem for covering spaces whenever the algebras involved are commutative.
The nice thing about non-commutative covering spaces is that they already manifest themselves
even in the commutative set-up. This is due to the fact that a commutative algebra can be
a subalgebra of a non-commutative one. We will give a structure theorem which completely
describes the structure of central local non-commutative coverings. In the next chapter, we will
deal with the general situation of a non-commutative covering of a commutative space in which
the commutative space need not be central in the extension space. We will use topological
(coupled) Hopf categories to accomplish this task. Surprisingly, the general picture is captured
by a single important example which we will describe in appendix B. In the same appendix, we
will introduce topological Hopf categories. These are Hopf categories that carry some continuity
structure with it.

We will resume in chapter 6 to give examples and describe coverings of the non-commutative
sphere. We will tackle separately the case for the rational and the irrational non-commutative
tori. In our formulation of non-commutative covering space, we will be introduce different types
of coverings. In particular, we will speak of local and uniform coverings. In chapter 7 we will
discuss the geometry behind such types.

In chapter 8 we will explain a curious situation for non-commutative covering spaces− their

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017
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quantum symmetries come in pairs. We will relate this two-sidedness of the quantum symmetry
with bi-Galois theory. In chapter 9, we will explore other examples of non-commutative covering
space. In particular, we will discuss the coverings of the algebra K of compact operators and
the non-commutative sphere. The algebra K is regarded, in non-commutative geometry, to be
infinitesimal neighborhoods. We will show that to some extent, coverings of this algebra is the
same as the coverings of a point. The other example concerns the non-commutative sphere. In
the classical set-up the torus T2 is a branched covering of the sphere S2. In the present set-up
we will show that it’s the other way around, the non-commutative sphere is a covering of the
non-commutative torus.

In chapter 10, we will discuss further the categories of coverings of A. We will explore some
properties that are unique in the present situation. Finally, in chapter 11 we will enumerate
problems time didn’t permit to be settled. Also, we will look at natural questions one can
ask regarding such covering spaces. In classical geometry, covering spaces enjoy a lot of lifting
properties. It is then a natural question to ponder whether same thing happen in the non-
commutative set-up. We will formulate this question properly. Another thing the author would
have been interested to do is to show how deformation quantization, a very powerful tool to
produce interesting examples of non-commutative spaces, gives examples of covering spaces.
The last two section of chapter 11 will be speculative and informal in nature. We will give an
over-view of what the author expects to happen in the sequel of this project.

1.3 Notations and conventions

We will work with arbitrary base ring k which is assumed to be associative, commutative and
unital. In most examples, we will be working with k = C and we will mention this explicitly.
Otherwise, k is arbitrary. All algebras over k are associative and unital. All topological spaces we
will be considering are compact and Hausdorff. For simplicity, we will also assume all topological
spaces that appears in this manuscript are connected.

We will use Sweedler notation and Einstein summation convention all through out this paper.
We will describe such notation when faced by the necessity to do so.

If C is a category, we will denote by HomC (x, y) or Cx,y the hom-set of arrows from x to y
depending on which is easier to write. We will also write x ∈ C instead of x ∈ Ob(C ) to denote
that x is an object of C .

Classical covering spaces will always be finite and Galois unless specifically stated. Since we
non-commutative finite, Galois coverings are the main topic of this project, we will simply call
them coverings and reserve the term classical coverings for the commutative ones.

We will put � to signify the end of a proof while we use � for definitions and examples.
We will use Fto denote the usual flip of tensor factors, or flip of cartesian product of sets, and
the likes. For example, if A ⊂ B × C then F(A) ⊆ C × B, where (c, b) ∈ F(A) if and only if
(b, c) ∈ A. This notation will dramatically shorten and compactify equations and diagrams to
follow.

For a k-algebra R, we will denote by Re its universal enveloping algebra, i.e. Re = R⊗Rop.

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017



Chapter 2

Hopf algebroids

If people do not believe
that mathematics is simple,

it is only because
they do not realize

how complicated life is.

−John von Neumann

2.1 Definitions

It has been a general consensus in noncommutative geometry that the analogue of groups are
certain class of Hopf algebras called quantum groups. A Hopf algebra H over k is an associative

unital algebra (H,m, 1) together with algebra maps H
∆−→ H⊗H (coproduct), H

ε−→ k (counit)

and a linear map H
S−→ H (antipode) making the following diagrams commute.

H

∆
��

∆ // H ⊗H
∆⊗id
��

H ⊗H
id⊗∆

// H ⊗H ⊗H

H
∆

((

H ⊗ k

k ⊗H H ⊗H
ε⊗id

oo

id⊗ε

OO (2.1)

H ⊗H S⊗id
// H ⊗H

m

%%

H

∆

==

∆

!!

ε // k
1 //H

H ⊗H
id⊗S

// H ⊗H

m

99

(2.2)

The diagrams 2.1 express the coassociativity of ∆ and its counitality with respect to ε. With ∆
and ε, End(H) becomes a unital ring under convolution
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f ? g : H
∆−→ H ⊗H f⊗g−→ H ⊗H m−→ H (2.3)

with H
ε−→ k

1−→ H as the unit. The diagram 2.2 above expresses the fact that S is the
convolution inverse of id. From this, we immediately see that given a bialgebra H (i.e. an
algebra H with coproduct and a counit which are algebra maps), there is at most one antipode
which makes it into a Hopf algebra. We call a Hopf algebra a quantum group if it has a bijective
antipode. We will use Sweedler notation convention. Explicitly, for any h ∈ H, instead of

writing ∆(h) =
n∑
i=1

(h1)i ⊗ (h2)i, we will write it as ∆(h) = h(1) ⊗ h(2).

Recently, there has been great interest in Hopf-like structures in which the base ring is
not necessarily commutative. Originally, we sought to develop the theory of noncommutative
covering spaces using only Hopf algebras but there has been a great need to use a more general
structure, one in which the base ring is possibly noncommutative. We will describe one which
suits our purpose called a Hopf algebroid. Following the discussion in Böhm [6], we will define
what Hopf algebroids are by defining some intermediate structures first. We will also define
morphisms between them. Through out the remainder of this section, k will be an associative,
commutative unital ring and R and L will be associative unital k-algebras. A Hopf algebroid
resembles a Hopf algebra− it will have bialgebra-like structures defined over R and L and an
antipode that relates them. Since we are mainly interested in the situation where Hopf algebroids
are seen as further generalization of quantum groups, we will assume that Hopf algebroids have
bijective antipodes. As it turns out, R and L will be anti-isomorphic k-algebras. However,
for notational convenience it will be easier to denote them as such, where we will use R and
L to denote right and left structures, respectively. In addition, whenever we have a Hopf-like
structure we will use Sweedler notation convention to write down coproduct and coaction images.
We will set these notations properly when we get to these coproducts and coactions. For a ring
R, we will denote by RM and by MR the categories of left and right R-modules.

Before giving the definition of a Hopf algebroid, let us define first several intermediate struc-
tures. An R-ring is a monoid object in the category of R-bimodules. Explicitly, an R-ring is a
triple (A,µ, η) where A⊗R A

µ−→ A and R
η−→ A are R-bimodule maps satisfying the associa-

tivity and unit axioms similar for algebras over commutative rings. A morphism of R-rings is a
monoid morphism in category of R-bimodules. It is important to note that the unit R

η−→ A
of the R-ring (A,µ, η) completely determines the R-ring structure of A as the following lemma
suggests.

Lemma 1. There is a bijection between R-rings (A,µ, η) and k-algebras maps R
η−→ A.

This follows from the universal property of the canonical surjection

A⊗k A // // A⊗R A .

Similar to the case of algebras over commutative rings, we can define modules over R-rings.
For an R-ring (A,µ, η), a right (resp. left) (A,µ, η)-module is an algebra for the monad −⊗RA
(resp. A⊗R −) on the category MR (resp. RM) of right (resp. left) modules over R.

We can dualize all the objects we have defined in the previous paragraph. An R-coring is

a comonoid in the category of R-bimodules, i.e a triple (C,∆, ε) where C
∆−→ C ⊗R C and

C
ε−→ R are R-bimodule maps satisfying the coassociativity and counit axioms dual to those

axioms satisfied by the structure maps of an R-ring. A morphism of R-corings is a morphism of
comonoids. Given an R-coring (C,∆, ε), similar to coalgebras over commutative rings, we define
a right (resp. left) (C,∆, ε)-comodule as a coalgebra for the comonad − ⊗R C (resp. C ⊗R −)
on the category MR (resp. RM).

Definition 1. A right (resp. left) R-bialgebroid B is an R⊗kRop-ring (B,µ, η) and an R-coring
(B,∆, ε) satisfying:

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017
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(a) η : R ⊗ Rop −→ B determines k-algebra maps R
s−→ B and Rop

t−→ B with commuting
images. These maps are compatible to the R-bimodule structure of B as an R-coring thru
the following relation:

r · b · r′ := bs(r′)t(r), (resp. r · b · r′ := s(r)t(r′)b, ) ∀r, r′ ∈ R, b ∈ B.

(b) With the above R-bimodule structure on B one can form B ⊗R B. The coproduct ∆ is
required to corestrict to a k-algebra map into

B ×R B :=

{∑
i

bi ⊗R b′i

∣∣∣∣∣ ∑
i

s(r)bi ⊗R b′i =
∑
i

bi ⊗R t(r)b′i,∀r ∈ R

}
(2.4)

respectively,

B R× B :=

{∑
i

bi ⊗R b′i

∣∣∣∣∣ ∑
i

bit(r)⊗R b′i =
∑
i

bi ⊗R b′is(r), ∀r ∈ R

}
. (2.5)

(c) The counit B
ε−→ R extends the right (resp. left) regular R-module structure on R to a

right (resp. left) (B, s)-module.

A morphism of R-bialgebroids is a morphism of R⊗Rop-rings and R-corings. �

Remark 1.

(1) Any k-algebra maps s : R −→ B and t : Rop −→ B with commuting images define an
R ⊗k Rop-ring structure on B which we will denote by (B, s, t). The maps s and t of
condition (a) are called the source and target maps, respectively.

(2) The k-submodule B ×R B (resp. B R× B) of B ⊗R B is a k-algebra with factorwise
multiplication. This is called the Takeuchi product. The map R ⊗k Rop −→ B ×R B,
r ⊗k r′ 7→ t(r′) ⊗R s(r) is easily seen to be a k-algebra morphism and hence, B ×R B is
an R ⊗k Rop-ring. The corestriction of ∆ is an R ⊗k Rop-bimodule map. Hence, ∆ is an
R⊗Rop-ring map. The same is true for B R× B.

(3) The source map s is a k-algebra map and so it defines a unique R-ring structure on B. The
right-sided version of condition (c) explicitly means that r · b := ε(s(r)b), ∀r ∈ R, b ∈ B
defines a right (B, s)-action on R.

We now have the necessary ingredients to define what a Hopf algebroid is.

Definition 2. Let k be a commutative, associative, unital ring and let L and R be associative
k-algebras. A Hopf algebroid H is a triple H = (HL, HR, S) where HL and HR are bialgebroids
having the same underlying k-algebra H and S is a bijective k-module map S : H −→ H,
called the antipode. Specifically, HL is a left L-bialgebroid with (H, sL, tL) and (H,∆L, εL)
as its underlying L ⊗k Lop-ring and L-coring structures, respectively. Similarly, HR is a right
R-bialgebroid with (H, sR, tR) and (H,∆R, εR) as its underlying R ⊗k Rop-ring and R-coring
structures, respectively. Let us denote by µL (resp. µR) the multiplication on (H, sL) (resp.
(H, sR)). They are subject to the following compatibility conditions.

(a) The source maps sR, sL, target maps tR, tL and counit maps εR, εL fit in commutative
diagrams

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017
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Rop

tR

ww

tR

''
H H

εL
ww

L

sL

gg

sL

ww

sL

''
H H

εR
ww

Rop
tR

gg

R
sR

ww

sR

''
H H

εL
ww

Lop
tL

gg

tL

ww

tL

''
H H.

εR
ww

R

sR

gg

(2.6)

(b) The coproducts ∆L and ∆R commute, i.e.

H

∆L

��

∆R // H ⊗
R
H

∆L⊗
R
id

��

H ⊗
L
H

id⊗
L

∆R

//H ⊗
L
H ⊗

R
H

H

∆R

��

∆L // H ⊗
L
H

∆R⊗
L
id

��

H ⊗
R
H

id⊗
R

∆L

//H ⊗
R
H ⊗

L
H.

(2.7)

(c) For all l ∈ L, r ∈ R and for all h ∈ H we have S(tL(l)htR(r)) = sR(r)S(h)sL(l).

(d) S is the convolution inverse of the identity map i.e., the following diagram commute

H ⊗
L
H

S⊗
L
id

// H ⊗
L
H

µL

''
H

∆L

77

εR // R
sR // H

H

∆R
''

εL
// L sL

// H.

H ⊗
R
H

id⊗
R
S

// H ⊗
R
H

µR

77

(2.8)

�

Remark 2.

(1) Let us note that condition (c) in the definition of a bialgebroid implies that εL◦sL : L −→ L
is the identity. Similarly, εR ◦ sR : R −→ R is also the identity. Using condition (a) in
the definition of a Hopf algebroid, we see that the following compositions define pairs of
inverse k-algebra maps.

L
εR◦sL // Rop

εL◦tR // L R
εL◦sR // Lop

εR◦tL // R

This is particular implies that R and L are anti-isomorphic k-algebras.

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017



CHAPTER 2. HOPF ALGEBROIDS 15

(2) In the constituent bialgebroids HR and HL, the counits εR and εL extend the regular
module structures on the base rings R and L to the R-ring (H, sR) and to the L-ring
(H, sL), respectively. Equivalently, the counits extend the regular module structures on
the base rings R and L to the Rop-ring (H, tR) and to the Lop-ring (H, tL). This particularly
implies that the maps sL ◦ εL, tL ◦ εL, sR ◦ εR and tR ◦ εR are idempotents. This means
that the images of sR and tL coincides in H. Same is true for the images of sL and tR.

(3) Part (2) implies that ∆L, apart from being an L-bimodule map, is also an R-bimodule
map. Similarly, ∆R is an L-bimodule map and so the diagrams in condition (b) make
sense.

(4) We can equip H with two (R,L)-bimodule structures one using tR and tL and the other
using sR and sL. Condition (c) relates these two (R,L)-bimodules structures via the
antipode S which in turn makes the diagram in condition (d) well-defined.

(5) The convolution structure condition (d) refers to a convolution structure one can define
analogous to the one for linear maps from a coalgebra to an algebra. See section 2.4 for
this convolution structure. From this, we see that the antipode S of a Hopf algebroid is
unique.

(6) Since there are two coproducts involved in a Hopf algebroid, namely ∆L and ∆R, we
will use different Sweedler notations for their corresponding components. We will write
∆L(h) = h[1] ⊗L h[2] and ∆R(h) = h[1] ⊗R h[2] for h ∈ H.

(7) With a fixed bijective antipode S, the constituent left- and right-bialgebroids of a Hopf
algebroid determine each other, see for example proposition 4.3 of Böhm-Szlachányi [7].
In view of this and the fact that L and R are anti-isomorphic, in what follows where we
will be mainly interested with Hopf algebroids with bijective antipodes we will simply call
H a Hopf algebroid over R instead of explicitly mentioning L.

Hopf algebroids are noncommutative generalization of Hopf algebras and dualization of
groupoids. With this, it is natural to expect that there are several natural notions of a morphism
between Hopf algebroids. In the next definition, we present algebraic and geometric morphisms
of Hopf algebroids. The former sees Hopf algebroids as noncommutative generalization of Hopf
algebras while the latter sees Hopf algebroids as dualization of groupoids.

Definition 3. Let (HL, HR, S) and (H
′
L, H

′
R, S

′
) be Hopf algebroids over R. An algebraic

morphism

(HL, HR, S)
(ϕL,ϕR)

// (H
′
L, H

′
R, S

′
) (2.9)

of Hopf algebroids is a pair of a left-bialgebroid morphism ϕL and a right-bialgebroid morphism
ϕR for which the following diagrams commute

HL

ϕL

��

S // HR

ϕR

��

H
′
L

S
′

// H
′
R

HR

ϕR

��

S // HL

ϕL

��

H
′
R

S
′

// H
′
L

(2.10)

and composition of such pairs is pairwise.

Let R and R
′

be k-algebras and (HL, HR, S) and (KL′ ,KR′ , S
′
) be Hopf algebroids over R

and R
′
, respectively. In view of remark (7) above, denote L = Rop and L

′
= (R

′
)op. A geometric

Non-commutative Covering Spaces and Their Symmetries
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morphism (HL, HR, S) −→ (KL′ ,KR′ , S
′
) of Hopf algebroids is a pair (f, φ) of k-algerba maps

R
f−→ R

′
and H

φ−→ K, where H,K denote the underlying k-algebra structures of the Hopf
algebroids under consideration. These two maps satisfy the following compatibility conditions.

(a) f and φ intertwines the source, target and counit maps of the left-bialgebroid structures
of H and K, i.e.

H

φ

��

εHL // L

fop

��

K
εKL

// L
′

L

fop

��

tHL // H

φ

��

L
′

tKL

// K

L

fop

��

sHL // H

φ

��

L
′

sKL

// K.

(2.11)

Same goes for the source, target and counit maps of the right-bialgebroid structures.

(b) In view of condition (a), the k-bimodule map φ⊗k φ defines k-bimodule maps

H L⊗ H
φ f⊗ φ

// K
L
′⊗ K, H ⊗R H

φ ⊗fφ
// K ⊗R′ K.

We then require that the following diagrams commute.

H L⊗ H
φ f⊗ φ

//

µHL

��

K
L
′⊗ K

µKL

��

H
φ

// K

H ⊗R H
φ ⊗fφ

//

µHR

��

K ⊗R′ K

µKR

��

H
φ

// K

(2.12)

(c) Also by of condition (a), the k-bimodule maps φ f⊗ φ and φ ⊗f φ of condition (b) further
define k-bimodule maps

H L× H
φ f× φ

// K
L
′× K, H ×R H

φ ×fφ
// K ×R′ K. (2.13)

We then require that the following diagrams commute.

H
φ

//

∆H
L

��

K

∆K
L

��

H L× H
φ f× φ

// K
L
′× K

H
φ

//

∆H
R

��

K

∆K
R

��

H ×R H
φ ×fφ

// K ×R′ K

(2.14)

(d) φ intertwines the antipodes of H and K, i.e. φ ◦ SH = SK ◦ φ.

�

Remark 3.

Non-commutative Covering Spaces and Their Symmetries
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(1) For a k-algebra R, let us denote by HALGalg(R) the category whose objects are Hopf
algebroids over R and arrows are algebraic morphisms. For a fixed k, let us denote by
HALGgeom(k) the category whose objects are Hopf algebroids over k-algebras and arrows
are geometric morphisms. Note that the notion of isomorphism in both categories coincide.

(2) Equip Re with the Hopf algebroid structure we will define in example 5 of the next section.
Let H = (HL, HR, S) be a Hopf algebroid over R. Then the unit maps ηL, ηR together
with the identity map on R define geometric morphisms

(id, ηL) : Re −→ H, (id, ηR) : Re −→ H.

(3) Suppose R = R
′

(consequently, L
′

= L). Then, a geometric morphism

(id, φ) : (HL, HR, S) −→ (KL,KR, S
′
)

gives an algebraic morphism (φ, φ) : (HL, HR, S) −→ (KL,KR, S
′
). This follows immedi-

ately from the collapsed of diagrams 2.12, 2.13 and 2.14 into diagrams which describe φ
as a map of left- and right-bialgebroids.

2.2 Examples and properties

In this section, we will enumerate examples of Hopf algebroids that will play a crucial role in
the discussions to follow.

Example 1. Hopf algebras. A Hopf algebra H over the commutative unital ring k gives an
example of a Hopf algebroid. Here, we takeR = L = k as k-algebras, take sL = tL = sR = tR = η
to be the source and target maps, set εL = εR = ε to be the counits, and ∆L = ∆R = ∆ to be
the coproducts. It might be tempting to think that a Hopf algebroid over a k-algebra R is a
Hopf algebra as soon as R is commutative. This is not the case as what the following example
will show. �

Example 2. Coupled Hopf algebras. Consider two Hopf algebras H1 and H2 with the same
underlying k-algebra H. Denote by ∆1 and ε1 the coproduct and counit of H1, respectively.
Likewise, denote by ∆2 and ε2 the coalgebra structure maps of H2. Let us denote by m and η
the common product and unit maps. Two such Hopf algebras are said to be coupled if

(a) there exists a k-module map C : H1 −→ H2, called the coupling map such that

H ⊗H C⊗id
//H ⊗H

m

##

H

∆1

>>

∆2

  

ε2 //

ε1
// k η

// H

H ⊗H
id⊗C

//H ⊗H

m

;;

commutes, and

Non-commutative Covering Spaces and Their Symmetries
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(b) the coproducts ∆1 and ∆2 commute.

We will abuse language by regarding two such Hopf algebras H1 and H2 as a coupled Hopf
algebra and package them as (H2, H2, C). Coupled Hopf algebras give rise to Hopf algebroids
over k. The left k-bialgebroid is the underlying bialgebra of H1 while the right k-bialgebroid is
the underlying bialgebra of H2. The coupling map plays the role of the antipode.

Of course, Hopf algebras are examples of coupled Hopf algebras. Let us give a nontrivial class
of examples of coupled Hopf algebras. Connes and Moscovici constructed twisted antipodes in
[14]. Let us show that such a twisted antipode is a coupling map for some coupled Hopf algebras.
Let H = (H,m, 1,∆, ε, S) be a Hopf algebra. Take H1 = H as Hopf algebras. Let σ : H −→ k
be a character. Define ∆2 : H −→ H ⊗H by h 7→ h(1) ⊗ σ(S(h(2)))h(3). Take ε2 = σ. Define
S2 : H −→ H by h 7→ σ(h(1))S(h(2))σ(h(3)). Coassociativity of ∆2 follows from coassociativity
of ∆. Indeed, for any h ∈ H we have

(id⊗∆2) ∆2(h) = h(1) ⊗ σ(S(h(2)))∆2(h(3))

= h(1) ⊗ σ(S(h(2)))
(
h(3) ⊗ σ(S(h(4)))h(5)

)
(coassociativity of ∆)

= h(1) ⊗ σ(S(h(2)))h(3) ⊗ σ(S(h(4)))h(5)

= ∆2(h(1))⊗ σ(S(h(2)))h(3) (coassociativity of ∆)

= (∆2 ⊗ id) ∆2(h).

∆2 is counital with respect to σ. Indeed, for any h ∈ H one has

(σ ⊗ id) ∆2(h) = σ(h(1))σ(S(h(2)))h(3) = σ(h(1)S(h(2)))h(3) = ε(h(1))h(2)σ(1) = h

and

(id⊗ σ) ∆2(h) = h(1)σ(S(h(2)))σ(h(3)) = h(1)σ(S(h(2))h(3)) = h(1)ε(h(2))σ(1) = h.

We claim that H2 = (H,m, 1,∆2, ε2, S2) is a Hopf algebra. It is easy to see that σ being a
character implies that ∆2 is multiplicative. The map S2 is the antipode of the bialgebra H2.
Indeed, for any h ∈ H we have

m (S2 ⊗ id) ∆2(h) = S2(h(1))σ(S(h(2)))h(3) = σ(h(1))S(h(2))σ(h(3))σ(S(h(4)))h(5)

= σ(h(1))S(h(2))ε(h(3))h(4) = σ(h(1))ε(h(2)) · 1 = σ(h) · 1

and

m (id⊗ S2) ∆2(h) = h(1)σ(S(h(2)))σ(h(3))S(h(4))σ(h(5)) = h(1)σ(ε(h(2)) · 1)S(h(3))σ(h(4))

= h(1)S(h(2))σ(h(3)) = ε(h(1))σ(h(2)) · 1 = σ(ε(h(1))h(2)) · 1 = σ(h) · 1.

Our last claim is that the Hopf algebras H1 and H2 are coupled by the twisted antipode Sσ :
H −→ H defined by h 7→ σ(h(1))S(h(2)). Immediately, the coproducts ∆ and ∆2 commute. For
example, ∆ and ∆2 satisfy

(∆⊗ id) ∆2(h) = (∆⊗ id)
(
h(1) ⊗ σ(S(h(2)))h(3)

)
= h(1) ⊗ h(2) ⊗ σ(S(h3))h(4)

= (id⊗∆2) (h(1) ⊗ h(2)) = (id⊗∆2) ∆(h)

Non-commutative Covering Spaces and Their Symmetries
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for any h ∈ H. Finally, let us verify the lower half of the coupling condition. The proof for the
commutativity of the upper half is almost the same. For any h ∈ H we have

m (id⊗ Sσ) ∆2(h) = m (id⊗ Sσ) (h(1) ⊗ σ(S(h(2))))h(3) = h(1)σ(S(h(2)))σ(h(3))S(h(4))

= h(1)σ(S(h(2))h(3))S(h(4)) = h(1)S(ε(h(2))h(3)) = h(1)S(h(2)) = ε(h) · 1.

This verifies our claim. �

Proposition 1. (Eckmann-Hilton argument for coalgebras.) Let ∆1 and ∆2 be (possibly non-
coassociative) coproducts on a k-module C. Assume ∆1 has counit ε1 and ∆2 has counit ε2.
Assume also that ∆1 and ∆2 commutes, i.e. they make the diagrams 2.7 commute. If one of
these coproducts is counital with respect to the counit of the other one, then ∆1 = ∆2. Moreover,
they are both coassociative.

Proof: Write ∆1(h) = h(1)⊗h(2) and ∆2(h) = h(1)⊗H(2), for any h ∈ H. Using commutativity
condition 2.7 for the coproducts, we have

h
(1)
(1) ⊗ h

(2)
(1) ⊗ h(2) = (∆2 ⊗ id)∆1(h) = (id⊗∆1)∆2(h) = h(1) ⊗ h(2)

(1) ⊗ h
(2)
(2)

which, after applying id ⊗ ε1 ⊗ id on both sides (assuming ∆2 is counital with respect to ε1)
yields

h(1) ⊗ h(2) = h
(1)
(1)ε1(h

(2)
(1))⊗ h(2) = h(1) ⊗ ε1(h

(2)
(1))h

(2)
(2) = h(1) ⊗ h(2) = ∆2(h).

From which we immediately see that ∆2 = ∆1. Coassociativity of ∆1 (and hence, of ∆2) follows
from either diagrams of 2.7. �

Corollary 1. Let (H1, H2, C) be a coupled Hopf algebra with coprodcts ∆1,∆2 and respective
counits ε1, ε2. If ε1 = ε2 then the constituent Hopf algebras H1 and H2 coincide. In this case, C
is the antipode.

Example 3. Groupoid algebras. Given a small groupoid G with finitely many objects and
a commutative unital ring k, we can construct what is called the groupoid algebra of G over
k, denoted by kG. For such a groupoid G, let us denote by G(0) its set of objects, G(1) its
set of morphisms, s, t : G(1) −→ G(0) the source and target maps, ι : G(0) −→ G(1) the unit
map, ν : G(1) −→ G(1) the inversion map, G(2) = G(1)

t×s G(1) the set of composable pairs of
morphisms, and m : G(2) −→ G(1) the partial composition. The groupoid algebra kG is the
k-algebra generated by G(1) subject to the relation

ff
′

=


f ◦ f ′ , if f, f

′
are composable

0, otherwise

for f, f
′ ∈ G(1). The groupoid algebra kG is a Hopf algebroid as folows. The base algebras R

and L are both equal to kG(0) and the two bialgebroids HR and HL are isomorphic as bialgebroids
with underlying k-module kG(1). The partial groupoid composition m dualizes and extends to
a multiplication m : kG(1)⊗ kG(1) −→ kG(1) which then factors through the canonical surjection
kG(1)⊗ kG(1) −→ kG(1)⊗kG(0) kG(1) to give the product kG(1)⊗kG(0) kG(1) −→ kG(1). The source

and target maps s, t of the groupoid give the source and target maps s, t : kG(0) −→ kG(1),
respectively. The unit map gives the counit map ε : kG(1) −→ kG(0). Finally, the inversion map
gives the antipode map S : kG(1) −→ kG(1). Note that the underlying bimodule structures of
the right and the left bialgerboid is related by the antipode map.
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With this example, we immediately see that if the groupoid is a group, the construction
above gives a Hopf algebra over k. This justifies the name Hopf algebroid. �

Example 4. Weak Hopf algebras. Another structure that generalize Hopf algebras, called
weak Hopf algebras, also are Hopf algebroids. Explicitly, a weak Hopf algebra H over a commu-
tative unital ring k is a unitary associative algebra together with k-linear maps ∆ : H −→ H⊗H
(weak coproduct), ε : H −→ k (weak counit) and S : H −→ H (weak antipode) satisfying the
following axioms:

(i) ∆ is multiplicative, coassociative, and weak-unital, i.e.

(∆(1)⊗ 1)(1⊗∆(1)) = ∆(2)(1) = (1⊗∆(1))(∆(1)⊗ 1),

(iii) ε is counital, and weak-multiplicative, i.e. for any x, y, z ∈ H

ε(xy(1))ε(y(2)z) = ε(xyz) = ε(xy(2))ε(y(1)z),

(v) for any h ∈ H, S(h(1))h(2)S(h(3)) = S(h) and

h(1)S(h(2)) = ε(1(1)h)1(2), S(h(1))h(2) = 1(1)ε(h1(2))

Let us sketch a proof why a weak Hopf algebra H is a Hopf algebroid. Consider the maps
pR : H −→ H, h 7→ 1(1)ε(h1(2)) and pL : H −→ H, h 7→ ε(1(1)h)1(2). By k-linearity and
weak-multiplicativity of ε, pR and pL are idempotents.

Multiplicativity and coassiociativity of ∆ and counitality of ε implies that for any h ∈ H,

h(1) ⊗ pL(h(2)) = 1(1)h⊗ 1(2) pR(h(1))⊗ h(2) = 1(1) ⊗ h1(2).

Now, using these relations and coassiociativity of ∆ we get

1(1)1(1′) ⊗ 1(2) ⊗ 1(2′) = 1(1′)(1) ⊗ pL(1(1′)(2))⊗ 1(2′) = 1(1) ⊗ pL(1(2))⊗ 1(3)

1(1) ⊗ 1(1′) ⊗ 1(2)1(2′) = 1(1) ⊗ pL(1(2)(1))⊗ 1(2)(2) = 1(1)(1) ⊗ pL(1(1)(2))⊗ 1(2)

Thus, the first tensor factor of the left-hand side of the first equation above is in the image of pR.
Similarly, the last tensor factor of the left-hand side of the second equation above is in the image
of pL. Clearly, pR(1) = pL(1) = 1. Hence, the images of pR and pL are unitary subalgebras of
H. Denote these subalgebras by R and L, respectively. By the weak-unitality of ∆ we see that
these subalgebras are commuting subalgebras of H.

Taking the source map s as the inclusion R −→ H and the target map as t : Rop −→ H,
r 7→ ε(r1(1))1(2) equips H with an R ⊗k Rop-ring structure. Taking εR = pR and ∆R as the
composition

H
∆ // H ⊗k H // // H ⊗R H

equipsH with anR-coring structure (H,∆R, εR). The ring and coring structures just constructed
gives H a structure of right R-bialgebroid HR.

Using Rop in place of R in the above construction, we get a left Rop-bialgebroid HRop .
Together with the right R-bialgebroid constructed and the existing weak antipode S, we get a
Hopf algebroid (HRop , HR, S). �
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Remark 4. Weak Hopf algebras also has a well-understood representation theory. Given a
weak Hopf algebra H over a field k, the category HM of finitely-generated left modules over
H is a fusion category. A fusion category C over k is a k-linear rigid semisimple category
with finitely-many inequivalent simple objects such that the hom-spaces are finite-dimensional
and the endomorphism algebra of the unit object 1C is k. By Tannaka duality, any fusion
category is equivalent to a module category of a weak Hopf algebra. This phenomenon has a
nice symmetry. Similar to Hopf algebras, the dual H∗ of a finitely generated weak Hopf algebra
H = (H,m, 1,∆, ε, S) has a natural weak Hopf algebra structure. Using this idea, one can show
that the categoryMH of finitely-generated right comodules over H is a fusion category as well.

Example 5. Group algebras over noncommutative rings. One of the most studied yet
mysterious class of a Hopf algebras are group algebras over commutative rings. In this section,
we will show a similar construction of a group algebra over a noncommutative base ring and
see that such is a Hopf algebroid. This further justifies the banner of Hopf algebroids being a
generalization of Hopf algebras over noncommutative rings.

Let A be an associative unital algebra over a commutative ring k. Denote by Ae = A⊗Aop
its universal enveloping algebra. Consider a finite group G acting on A via G

α−→ Aut(A).
This action extends to a kG-module structure on Ae via the usual coproduct on kG. Consider
the smash product algebra Ae#kG. The underlying k-module of this algebra is Ae ⊗ kG. The
multiplication is defined as(∑(

a1 ⊗ a2
)

#g
)(∑(

b1 ⊗ b2
)

#h
)

=
∑(

a1 ⊗ a2
)
αg
(
b1 ⊗ b2

)
#gh

Note that this construction generalize to the case of a bialgebra H in place of kG where the two
appearance of g’s in the defining relation for the multiplication is played by the legs of coproduct
applied to the appropriate tensor factor. If the action of G is trivial, we get the algebra AeG
which we call the group algebra of G over Ae. Let us show that AeG is a Hopf algebroid over
A. The right A-bialgebroid structure consists of AeG as the underlying k-module. The right
source sR, target tR and counit maps εR are

A
sR // A⊗Aop#kG

a � // (a⊗ 1) #e

A
tR // A⊗Aop#kG

a � // (1⊗ a) #e

A⊗Aop#kG εR // A.(
a⊗ a′

)
#g � // aa

′

where e stands for the identity element of G. The right coproduct ∆R is the following map.

A⊗Aop#kG ∆R // (A⊗Aop#kG)⊗
A

(A⊗Aop#kG)

(
a⊗ a′

)
#g � //

(
1⊗ a′

)
#g ⊗

A
(a⊗ 1) #g

The left A-bialgebroid is the opposite co-opposite of the right A-bialgebroid we just con-
structed. The map

A⊗Aop#kG S // Aop ⊗A#kG(
a⊗ a′

)
#g � //

(
a
′ ⊗ a

)
#g−1

is the antipode. In particular, taking G to be the trivial group makes Ae a Hopf algebroid over
A. Any of the underlying coring structures of Ae is what is commonly known in the literature
as the canonical coring associated to A. We call Ae the canonical Hopf algebroid over A. �
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An interesting feature of a Hopf algebra that its classical counterpart, i.e. groups, do not
enjoy is the fact that the structure maps of a Hopf algebra are Hopf algebra maps. Requiring

that the maps ∆ and ε to be algebra maps is equivalent to requiring m and k
1−→ H to be

coalgebra maps relative to the natural coalgebra structure (H,∆, ε) induce on H ⊗ H. Note
that there is only one coalgebra structure on k. Moreover, equipping k and H ⊗H with these
natural Hopf algebra structures we see that the maps m, 1,∆ and ε are Hopf algerba maps.

Furthermore, the antipode S is a Hopf algebra map H
S−→ Hop cop. Let us list some properties

of a Hopf algebroid which is similar to these properties.

Lemma 2. Let H = (HL, HR, S) be a Hopf algebroid over R. Then:

(i) The coproducts ∆L and ∆R are multiplicative.

(ii) The antipode S is an R⊗Rop-ring morphism

(
H, sR, tR

)
//

(
Hop, sL ◦ (εL ◦ sR) , tL ◦ (εL ◦ sR)

)
and an L⊗ Lop-ring morphism

(
H, sL, tL

)
//

(
Hop, sR ◦ (εR ◦ sL) , tR ◦ (εR ◦ sL)

)
.

In particular, S : H −→ H is a k-algebra anti-homomorphism.

(iii) The antipode S is an R-coring morphism

(
H, ∆R, εR

)
//

(
H, ∆cop

L , (εR ◦ sL) ◦ εL
)

and an L-coring morphism

(
H, ∆L, εL

)
//

(
H, ∆cop

R , (εL ◦ sR) ◦ εR
)
.

Here, ∆cop
L (resp. ∆cop

R ) is considered as a map H −→ H ⊗Lop H ∼= H ⊗R H (resp.
H −→ H ⊗Rop H ∼= H ⊗L H) in view of the isomorphisms of remark 2(1).

Proof: (i) Note that the map R ⊗ Rop
ϕ−→ B ×R B, r ⊗ r

′ 7→ t(r
′
) ⊗R s(r) is a k-algebra

homomorphism. In view of lemma 1, the Takeuchi product B ×R B is an R ⊗ Rop-ring. We
claim that with the R ⊗ Rop-ring structure on B, ∆R : B −→ B ×R B becomes an R ⊗ Rop-
bimodule map.

∆R((r ⊗ r′) · b · (q ⊗ q′)) = ∆R

(
tR(q

′
)sR(r)btR(r

′
)sR(q)

)
= r

′ ·
(

∆R(tR(q
′
)sR(r)b)

)
· q

= r
′ ·
(

∆R(tR(q
′
))∆R(sR(r))∆R(b)

)
· q

= r
′ ·
(

(1⊗R tR(q
′
))(sR(r)⊗R 1)(b[1] ⊗R b[2])

)
· q

= r
′ ·
(
s(r)b[1] ⊗R t(q

′
)b[2]

)
· q

= (r ⊗ r′) ·∆R(b) · (q ⊗ q′)
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To complete the proof of (i), let us argue that the following diagram of R ⊗ Rop-bimodules
commutes.

B ⊗
Re
B

µ
//

∆R ⊗
Re

∆R

��

B

∆R

��

(B ×R B) ⊗
Re

(B ×R B) µT
// B ×R B

B×RB is a k-algebra via factorwise multiplication. Since B×RB is an R⊗Rop-ring, µ descends
to a map µT given by factorwise multiplication. This shows that the above diagram commutes.
With appropriate modifications, one can show ∆L to be multiplicative as well.

(ii) By condition (c) in definition 2, S is an R ⊗ Rop-bimodule map which intertwines sR ⊗ tR
and sL(εL ◦ sR)⊗ tL(εL ◦ sR), i.e. we have

H

S

��

R⊗Rop

sR⊗tR

88

sL(εL◦sR)⊗tL(εL◦sR)

&&

Hop

In view of lemma 1, S defines an R⊗Rop-ring map from H to Hop.

(iii) Using condition (c) in definition 1 again, we have a commutative diagram of R-bimodules

H
∆R //

S

��

H ⊗
R
H

S⊗
R
S

��

H
∆cop
L

// H ⊗
R
H

which proves part (iii) of the above lemma. �

Remark 5.

(1) Note that in part (i) of lemma 2 we did not say explicitly to which product ∆R and ∆L

are multiplicative. This is because it does not matter, at least not gravely. The proof
shows that ∆R is multiplicative with respect to that Re-ring structure of H. The same
proof shows ∆R is multiplicative with respect to the R-ring and Rop-ring structures of H.
Similarly, ∆L is multiplicative with respect to the Le-ring, L-ring and Lop-ring structures
of H.

(2) Parts (ii) and (iii) of the above lemma say that the pairs (εL ◦ sR, S) and (εR ◦ sL, S)
define geometric morphisms
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(H, sR, tR,∆R, εR)
(εL◦sR, S)

// (Hop, tR, sR,∆
cop
R , εR)

and

(H, sL, tL,∆L, εL)
(εR◦sL, S)

// (Hop, tL, sL,∆
cop
L , εL)

of bialgebroids, respectively. By a geometric morphism of bialgebroids we mean a pair
(f, φ) satisfying conditions (a) to (c) of definition 3 stated for one bialgebroid. This is the
content of proposition 3.2 in [5].

2.3 Representation theory of Hopf algebroids and their descent

In this section, we will look at representations of Hopf algebroids. Towards the end of the section,
we will look at the descent theoretic aspect of a special class of modules over Hopf algebroids,
the so called relative Hopf modules. Let H = (HL, HR, S) be a Hopf algebroid with underlying
k-module H. H carries both a left L-module sctructure and a left R-module structure via the
maps sL and tR, respectively. With this, the following definition make sense.

Definition 4. A right H-comodule M is a right L-module and a right R-module together with
a right HR-coaction ρR : M −→ M ⊗R H and a right HL-coaction ρL : M −→ M ⊗L H such
that ρR is an HL-comodule map and ρL is an HR-comodule map. �

For the coaction ρR, let us use the following Sweedler notation:

ρR(m) = m[0] ⊗
R
m[1]

and for the coaction ρL, let us use the following Sweedler notation:

ρL(m) = m[0] ⊗
L
m[1].

With these notations, the conditions above explicitly means that for all m ∈M , l ∈ L and r ∈ R
we have

(m · l)[0] ⊗
R

(m · l)[1] = ρR(m · l) = m[0] ⊗
R
tL(l)m[1]

(m · r)[0] ⊗
L

(m · r)[1] = ρL(m · r) = m[0] ⊗
L
m[1]sR(r).

We further require that the two coactions satify the following commutative diagrams

M

ρR

��

ρL // M ⊗
L
H

ρR⊗
L
id

��

M ⊗
R
H

id⊗
R

∆L

//M ⊗
R
H ⊗

L
H

M

ρL

��

ρR // M ⊗
R
H

ρL⊗
R
id

��

M ⊗
L
H

id⊗
L

∆R

//M ⊗
L
H ⊗

R
H

(2.15)

We will denote byMH the category of right H-comodules. Symmetrically, we can define left
H-comodules and we denote the category of a such by HM.
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Comodules over Hopf algebroids are comodules over the constituent bialgebroids. Thus, one
can speak of two different coinvariants, one for each bialgebroid. For a given right H-comodule
M , they are defined as follows:

M co HR =

{
m ∈M

∣∣∣∣ ρR(m) = m⊗
R

1

}
,

M co HL =

{
m ∈M

∣∣∣∣ ρL(m) = m⊗
L

1

}
.

In the general case, we have M co HR ⊆M co HL . But in our case, where we assume S is bijective
more can be said.

Proposition 2. If the antipode S of the Hopf algebroid H is bijective then M co HR = M co HL.

Proof: To see that these coinvariants coincide, consider the following map

ΦM : M ⊗
R
H −→M ⊗

L
Hm⊗

R
h 7→ ρL(m) · S(h) (2.16)

Here, H acts on the right of M ⊗L H through the second factor. If m ∈M co HR , then we have

ρL(m) = ρL(m) · S(h) = ΦM (m⊗
R

1) = ΦM (ρR(m))

= ΦM (m[0] ⊗
R
m[1]) = ρL(m[0]) · S(m[1])

= (m
[0]
[0] ⊗

L
m

[0]
[1]) · S(m[1]) = m

[0]
[0] ⊗

L
m

[0]
[1]S(m[1])

= m[0] ⊗
L
m

[0]
[1]S(m

[1]
[1]) = m[0] ⊗

L
sL(εL(m[1]))

= m[0]sL(εL(m[1]))⊗
L

1 = m⊗
L

1

This shows the inclusion M co HR ⊆M co HL . To show the other inclusion, using the map

Φ−1
M : M ⊗

L
H −→M ⊗

R
H

m⊗
L
h 7→ S−1(h) · ρR(m),

the inverse of ΦM , one can run the same computation. �

This will be important in the formulation of Galois theory for Hopf algebroids. In this case,
we can simply write M co H for M co HR = M co HL and refer to it as the H-coinvariants of M
instead of distinguishing the HR- from the HL-coinvariants, unless it is necessary to do so.

Let us now discuss monoid objects in MH. They are called H-comodule algebras.

Definition 5. A right H-comodule algebra is an R-ring (M,µ, η) such that M is a right H-
comodule and η : R −→M and µ : M ⊗RM −→M are H-comodule maps. �

Using Sweedler notation for coactions, this explicitly means that for any m,n ∈M we have

(mn)[0] ⊗
R

(mn)[1] = ρR(mn) = m[0]n[0] ⊗
R
m[1]n[1], (2.17)

(mn)[0] ⊗
L

(mn)[1] = ρL(mn) = m[0]n[0] ⊗
L
m[1]n[1], (2.18)
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1
[0]
M ⊗

R
1

[1]
M = ρR(1M ) = 1M ⊗

R
1H , (2.19)

(1M )[0] ⊗
L

(1M )[1] = ρL(1M ) = 1M ⊗
L

1H . (2.20)

Remark 6. Equations 2.17 and 2.19 imply that the image of ρR lands in the following k-
submodule of M ⊗R H.

M ×R H :=

{∑
i

mi ⊗
R
hi

∣∣∣∣∣ ∑
i

r ·mi ⊗
R
hi =

∑
i

mi ⊗
R
tR(r)hi, ∀r ∈ R

}

Likewise, equations 2.18 and 2.20 imply that the image of ρL lands in

M L×H :=

{∑
i

mi ⊗
L
hi

∣∣∣∣∣ ∑
i

l ·mi ⊗
L
hi =

∑
i

mi ⊗
L
sL(l)hi, ∀l ∈ L

}
.

Notice the resemblance of the above submodule to the Takeuchi product in definition 1.

Definition 6. Let M be a right H-comodule algebra. A right-right relative (M,H)-Hopf module
W is a right module of the R-ring M and a right H-comodule such that the module structure,
denoted as (·) : W ⊗RM −→W , is a right H-comodule map, i.e.

(w ·m)[0] ⊗
R

(w ·m)[1] = w[0] ·m[0] ⊗
R
w[1]m[1]

(w ·m)[0] ⊗
L

(w ·m)[1] = w[0] ·m[0] ⊗
L
w[1]m[1]

for any w ∈W and m ∈M . We denote byMHM the category of right-right relative (M,H)-Hopf
modules. One can symmetrically define left-right, left-left and right-left relative Hopf modules,
whose categories will be denoted by MMH, HMM and HMM , respectively. If in the above
situation the (left or right) H-comodule algebra M is H, we will drop relative and simply call
the Hopf modules. �

Proposition 3. With the previous set-up, where M is a right H-comodule algebra, let us denote
by N = M co HR . Then we have the following adjunction

MN

−⊗NM //MHM
(−)co HR

oo

The unit and the counit of the adjunction is

V // (V ⊗
N
M)co HR

v � // v ⊗
N

1

, W co HR ⊗
N
M //W

w ⊗
N
m � // w ·m

,

respectively.

The Hopf algebroid H is itself a right H-comodule algebra whose HR-coinvariants is the
image of tR, or equivalently the image of L

sL−→ H. The associated induction functor −⊗L H :
ML −→MH

H is an adjoint equivalence.
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2.4 Galois theory of Hopf algebroids

Let H = (HL, HR, S) be a Hopf algebroid with underlying k-module H. A k-algebra extension
A ⊆ B is said to be (right) HR-Galois if B is a right HR-comodule algebra with Bco HR = A
and the map

B ⊗
A
B

galR // B ⊗
R
H

a⊗
A
b 7−→ ab[0] ⊗

R
b[1]

is a bijection. The map galR is called the Galois map associated to the bialgebroid extension
A ⊆ B. Symmetrically, the extension A ⊆ B is (right) HL-Galois if B is a right HL-comodule
algebra with Bco HL = A and the map

B ⊗
A
B

galL // B ⊗
L
H

a⊗
A
b 7−→ a[0]b⊗

L
a[1]

is a bijection. We say that a k-algebra extension A ⊆ B is H-Galois if it is both HR-Galois and
HL-Galois. It is not known in general if the bijectivity of galR and galL are equivalent. However,
if the antipode S is bijective (which is part of our standing assumption) then galR is bijective
if and only if galL. To see this, note that galL = ΦB ◦ galR where ΦB is the map 2.16 defined
in the previous section for M = B. Since S is bijective, ΦB is an isomorphism which gives the
desired equivalence of bijectivity of galR and galL. Thus, the extension A ⊆ B is H-Galois if it
is a bialgebroid Galois extension for any of its constituent bialgebroids.

In the case of Galois extension by Hopf algebras, a class of extensions are of particular
interest called cleft extensions since they correspond to trivial extensions. Following [6], we will
look what cleft extensions are for Hopf algebroids. But before doing so, let us define the category
which is the categorification of the convolution algebra one associates to a Hopf algebra.

Definition 7. Let R and L be k-algebras. Let X and Y be k-modules such that X has an R-
coring (X,∆R, εR) and an L-coring (X,∆L, εL) structures and Y has an L⊗k R-ring structure
with multiplications µR : Y ⊗RY −→ Y and µL : Y ⊗LY −→ Y . Define the convolution category
Conv(X,Y ) as the category with two objects labelled R and L. For I, J ∈ {R,L}, an arrow
I −→ J is a J − I bimodule map X −→ Y . We define the composition f ∗ g as

f ∗ g = µJ ◦ (f ⊗
J
g) ◦∆J

for arrows J
f−→ I and K

g−→ J between objects I, J,K ∈ {R,L}. �

Now, consider a Hopf algebroid H = (HL, HR, S) and a right H-comodule algebra B. Note
that by definition, B only carries an R-ring structure. Since the k-module H already has an
R-coring structure coming from HR and an L-coring structure coming from HL, if the R-ring
structure of B extends to an L⊗kR-ring structure then we can consider the convolution category
Conv(H,B). Since there is no reason for B to carry a compatible L-ring structure, we have to
add this to the definition of a cleft extension.

Definition 8. An extension A ⊆ B, where A = Bco H, is cleft if

(a) the R-ring structure of B extends to an L⊗k R-ring structure, and

(b) there is an invertible morphism R
c−→ L in Conv(H,B) which is a right H-comodule map.
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�

Similar to the case of extensions by Hopf algebras, cleft extensions have Galois-normal basis
and crossed product characterizations. Let us state it in the following theorem.

Theorem 1. Let H = (HL, HR, S) be a Hopf algebroid with bijective antipode and let B be a
right H-comodule algebra with coinvariants A. The following conditions are equivalent:

(i) A ⊆ B is a cleft extension.

(ii) B ∼= A⊗LH as left A-modules and right H-comodules (normal basis property) and A ⊆ B
is H-Galois.

(iii) For some invertible A-valued 2-cocycle σ on HL, we have B ∼= A#σHL as left A-modules
and as right H-comodule algebras.

Let us expound on the last characterization of cleft extensions. Consider a left L-bialgebroid
B = (B, s, t,∆, ε). Let (N,µ, η) be a B-measured L-ring, i.e one which is equipped with a

k-module map B ⊗k N
(·)−→ N satisfying

(a) b · 1N = η(ε(b)),

(b) (t(l)b) · n = (b · n)η(l) and (s(l)b) · n = η(l)(b · n),

(c) and b · (nn′) = (b(1) · n)(b(2) · n
′
),

for any b ∈ B, n, n
′ ∈ N and l ∈ L. Out of these data, we can construct a two-object category

C(B, N) whose objects are conveniently labelled as I and II. Let us describe the morphism in
this category. Consider B ⊗k B as an L-bimodule by left multiplication of s and t in the first
tensor factor. A map f ∈ LHomL(B ⊗k B,N) is said to be of type (i, j) if it satisfies condition
(i) on the first list and condition (j) on the second list below.

1st List 2nd List

(I) f(a⊗
k
t(l)b) = f(at(l)⊗

k
b) (I) f(a⊗

k
s(l)b) = f(as(l)⊗

k
b)

(II) f(a⊗
k
t(l)b) = f(a(1) ⊗

k
b)(a(2) · η(l)) (II) f(a⊗

k
t(l)b) = (a(1) · η(l))f(a(2) ⊗

k
b)

where a, b ∈ B and l ∈ L. For any i, j ∈ {I, II}, a morphism i −→ j is a map

f ∈ LHomL(B ⊗k B,N)

of type (i, j). For any i, j, l ∈ {I, II}, the composition of i
f−→ j and j

g−→ l is the following
convolution

(f ∗ g) (a⊗
k
b) = f

(
a(1) ⊗

k
a(1)

)
g

(
a(2) ⊗

k
b(2)

)
.

The identity morphism I −→ I is the map a ⊗k b 7−→ (ab) · 1N = η(ε(ab)) and the identity
morphism II −→ II is the map a⊗k b 7−→ a · (b · 1N ).

Definition 9. An N -valued 2-cocycle on B is a morphism I
σ−→ II in the category C(B, N)

satisfying, for any a, b, c ∈ B, the following conditions.

(a) σ(1B, b) = η(ε(b)) = σ(b, 1B) (normality),
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(b) (a(1) · σ(b(1), c(1)))σ(a(2), b(2)c(2)) = σ(a(1), b(1))σ(a(2)b(2), c) (cocycle condition).

If in addition, we have for any n ∈ N and a, b ∈ B,

(c) 1B · n = n (unitality),

(d) (a(1) · (b(1) · n))σ(a(2), b(2)) = σ(a(1), b(1))(a(2)b(2) · n) (associativity),

we call the B-measured L-ring N a σ-twisted B-module. �

For such a left L-bialgebroid B and a σ-twisted B-module N , we can construct the crossed
product N#σB as the k-algebra whose underlying k-module is N ⊗LB where the left L-module
structure on B is the one via multiplication of s. The multiplication in N#σB is defined as

(n#b)(n
′
#b
′
) = n(b(1) · n

′
)σ(b(2), b

′

(1))#b(3)b
′

(2), for any n#b, n
′
#b
′ ∈ N#σB.

This multiplication is associative by conditions (b) and (d) and unital by conditions (a) and (c).
Going back to the characterization of cleft extensions by crossed products, the 2-cocycle σ

is invertible in the sense that it is invertible as a morphism in the category C(HL, A).
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Chapter 3

Non-commutative covering spaces

Alice: ”Where should I go?”

The Cheshire Cat: ”That depends
on where you want to end up.”

−Lewis Carroll,
Through the Looking-Glass

In the classical sense, a covering space is a surjective map Y // // X with discrete fibers.
In formulating the notion of a noncommutative covering space, discreteness plays a serious
obstacle. Fortunately, for our purpose we will only be interested with the analogues of finite
Galois coverings. We will go around this difficulty by adding the symmetry of the covering as
part of the data. In doing so, discreteness will be reflected as a finiteness condition imposed
in the associated symmetry. In the classical case, if we have a surjective map Y // // X of
(locally) compact Hausdorff spaces with finite fibers then it is automatically a covering map.
Before embarking into justifying our choice of a definition of a non-commutative covering space,
we should emphasize that it is by no means the unique way or the better way. Our choices are
guided through by our goal to put up a working definition of an étale fundamental groupoid and
étale fundamental group. Classically, these only concerns finite Galois coverings.

3.1 Definitions and properties

The non-commutative analogues of principal bundles are Hopf-Galois extensions by Hopf alge-

bras. A classical covering space Y
p
// // X gives a principal bundle Y over X with a discrete

gauge group G. In the language of covering spaces, this gauge group is called the group of deck
transformation. This group is determined, up to a choice of a base point a ∈ X, by the surjective
map p defining the covering. Naively using the geometry-algebra dictionary, the spaces Y and
X will be algebras, the surjective map p will be an injective algebra map going in the opposite
direction, and the group G, the symmetry of the system of interest, will be a Hopf-like structure.
In the non-commutative framework, we will include the symmetry as part of the data. Using
this strategy, after imposing some finiteness conditions, we will be able to capture discreteness.
Note that we didn’t immediately say that the symmetry in the non-commutative picture is a
Hopf algebra or to be more fancy, a quantum group. This is because, with our forthcoming
formulation, it is generally not and there is a good reason for that. In the classical set-up,
one only gets a group by localizing at a point. In non-commutative geometry one should make
constructions independent of points as much as possible.
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To make our formulation independent of points, we will reformulate the notion of a clas-
sical covering space using a more global object, that of a groupoid. In other words, we will
replace the symmetry group G by the symmetry groupoid G. Finally, as we have emphasized in
the introductory paragraph, we are only be interested in defining the étale fundamental group
or the étale fundamental groupoid, which means we will reasonable restrict our attention to
finite Galois coverings, i.e. coverings in which the action of the group G on Y

p−→ X is Ga-
lois. Fortunately, Galois actions has a well-established analogue in non-commutative geometry−
Hopf-Galois extensions.

Let us commence by formulating covering spaces in terms of groupoids. Consider a classical

Galois covering space Y
p
// // X with finite deck transformation group G. We assume that X

has a suitably nice connectivity properties, see for example [27]. Moreover, let us assume Y and
X are compact Hausdorff spaces. Denote by A and B the corresponding algebra of continuous
functions on X and Y , respectively. The surjection p gives an inclusion A ⊆ B.

From a covering Y
p
// // X and two points x, y ∈ X, one gets a bijection p−1(x)

γ∗−→ p−1(y)
for each path γ in X from x to y. The bijection γ∗ is the correspondence one gets by applying
the homotopy lifting property to γ. This gives lifts of γ in Y and by varying the initial point of
such lifts among p−1(x), we get a uniquely corresponding point in p−1(y). The bijection we get
in this way only depends on the homotopy class of γ. Using this, we can associate two groupoids
to any covering Y

p−→ X as follows.

Definition 10. Given a covering Y
p
// // X , the associated groupoid G is the topological

groupoid whose set of objects is X and whose arrows from a point x to a point y are bijec-
tions γ∗ induced from paths γ in X from x to y. The associated reduced groupoid of the covering
Y

p−→ X, denoted by Gred, is a topological groupoid with the same space of objects as G. The
set of arrows from x to y is empty if x 6= y. Otherwise, it is the same with the set of arrows in
G. �

Indeed, the above definition gives a groupoid. Explicitly, G(1) is the set of induced bijections
from homotopy classes of paths in X, the source and target maps s, t : G(1) −→ G(0) are the maps
giving the base point and the terminal point, respectively, of the path inducing the bijection in
G(1). G(2) is the fiber product of s and t i.e. the composable morphisms on G, ι : G(0) −→ G(1)

the map sending x to the identity map on p−1(x), and finally inv : G(1) −→ G(1) the map that
associates to γ∗ the bijection (γ−1)∗. These structure maps

G(2)

m

!!

G(1)

s

$$

t

<<

inv

LL
G(0)ιoo

(3.1)

are subject to the following compatibility conditions.

G(3) m×id
//

id×m

��

G(2)

m

��

G(2)
m

// G(1)

G(1) × G(1) s×id
// G(0) × G(1) ι×id

// G(2)

m

��

G(1)

diag

OO

diag

��

G(1)

G(1) × G(1)
id×s

// G(1) × G(0)
id×ι

// G(2)

m

OO

(3.2)
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G(0) G(0)

G(1)

s

77

s
''

G(1)

t

gg

t

77

t
''

G(1)

s

gg

G(0)

ι

77

G(0)

ι

77

(3.3)

G(1) × G(1) inv×id
// G(2)

m

!!

G(1) s //

diag

==

diag

!!

G(0) ι // G(1)

G(1) × G(1)
id×inv

// G(2)

m

==

(3.4)

where, for n > 2 and G(n) denotes the n-fold fiber product of s and t.

We will explore the properties of this groupoid in relation to the covering it is associated
to in section 3.3 The functor C(−) which associates to a topological space X its algebra of
continuous complex-valued functions C(X) is a duality (at least for locally compact Hausdorff
topological spaces). Applying this functor to the diagram 3.1 gives us the following diagram of
A-rings

H ⊗A H

H

∆
dd

ε //

S

MM A

s

||

t

aa

(3.5)

where H = C(G(1)), ∆ = C(m), ε = C(ι), S = C(inv), and we denote by the same symbol s
and t the induced maps of the groupoid’s source and target maps.

The diagrams in 3.2 dualize to the following diagrams

H
∆ //

∆

��

H ⊗
A
H

∆⊗Aid

��

H ⊗
A
H

id⊗A∆
// H ⊗

A
H ⊗

A
H

H ⊗H

µ
′

��

A⊗Hs⊗id
oo H ⊗

A
H

ε×id
oo

H H

∆

OO

∆

��

H ⊗H

µ
′

OO

H ⊗A
id⊗s

oo H ⊗
A
H

id⊗ε
oo

which express the coassociativity of ∆ and its counitality with respect to ε. Diagram 3.3 dualizes
to the following commutative diagram
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A
s

xx

t

&&

A
t

xx

s

&&
H H

ε

xx

H.
ε

xx
A

s

ff

A
t

ff

(3.6)

Note that C(G(1))⊗C(G(1)) = H⊗H is in general not the same as C(G(1)×G(1)), but only a
dense subalgebra. Nonetheless, the image of S⊗ id lands in H ⊗H. Thus, diagram 3.4 dualizes
to the outer hexagon of the following diagram

H ⊗A H
S⊗id

//

S⊗Aid

**

H ⊗H

µ
′

""

xxxx

H ⊗A H
µ

++H
ε //

∆

@@

∆

��

A
s // H

H ⊗A H

µ

33

H ⊗A H
id⊗S

//

id⊗AS
44

H ⊗H

µ
′

<<

ffff

(3.7)

The diagonal map diag induces a product H⊗H µ
′

−→ H. Since A
s−→ H is a C-algebra map,

by lemma 1 there is a unique A-ring structure on H with product H ⊗A H
µ−→ H. The inner

commutative hexagon of 3.7 implies that S is the convolution inverse of id in the convolution
category Conv(H,H) defined in section 2.4. All these diagrams tell us that H is a Hopf alge-
broid with coinciding left- and right-bialgebroid structures and antipode S. Furthermore, S is
bijective. Applying the functor C(−) to the associated reduced groupoid instead gives another
Hopf algebroid Hred over A with coinciding left and right constituent bialgebroids.

Proposition 4. There is a surjective algebraic morphism H
(φ,φ)

// Hred of Hopf algebroids over
A.

The proposition above follows directly from the functoriality of C(−) and the fact that Gred
is a topological subgroupoid of G. Note that in the above proposition, we are suppressing the
fact that H and Hred, each has two constituent bialgebroids which happen to coincide. The
morphisms in the pair (φ, φ) also coincide.

Going back to the covering Y
p−→ X and its associated reduced groupoid Gred, there is a

groupoid action of Gred on Y defined as follows

G(1)
red s×p Y

α // Y.

(φ, y) 7−→ φ(y)

Moreover, Y/Gred ∼= X. Such a groupoid action is called Galois if the associated map

G(1)
red s×p Y

α // Y p×p Y.

(φ, y) 7−→ (φ(y), y)
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Proposition 5. The covering Y
p
// // X is Galois if and only if the groupoid action of Gred

on Y is Galois.

To see this, note that the groupoid Gred is isomorphic to the disjoint union of G over X.

Since the action of G on Y
p
// // X is fiberwise, that action is precisely the action of Gred on

Y
p
// // X .

Remark 7. The above proposition is a direct consequence of the Galois theory for covering
spaces, see for example appendix B.

Dually, the groupoid action of Gred on Y
p
// // X gives a coaction B

ρ
// B ⊗A Hred of

the Hopf algebroid Hred. The coinvariants relative to the unit of Hred is A. Furthermore, the
associated map

B ⊗A B
gal

// B ⊗A Hred

a⊗A b 7−→ (a⊗A 1)ρ(b)

is a linear bijection in case the covering Y
p−→ X is Galois. In other words, A ⊆ B is an

Hred-Galois extension.

Remark 8. Recall in section 2.3 that a coaction of a Hopf algebroid is a pair of coactions, one
for each constituent bialgebroid. In the situation above, the coaction ρ encodes the coinciding
coactions of the coinciding constituent bialgebroids of Hred.

Let us now look at a reasonable finiteness condition that we can impose to the Hopf-Galois
extensions of interest. Consider a faithful finite-dimensional representation π of Gred. Explicitly,
it is a continuous map Gred

π−→ GL(E) of groupoids where E
q−→ X is a finite-dimensional

vector bundle over X and GL(E) is the associated general linear groupoid. As a groupoid,
GL(E) has objects points of X and an arrow x −→ y from x to y is a linear isomorphism
Ex −→ Ey. It is clear that the GL(E) acts continuously on E. Construct the topological space
W = W (Y, π) as the quotient space

(
Y p×qE

)
/ ∼ where (y, e) ∼ (g · y, π(g)e) for all y ∈ Y ,

e ∈ E and g ∈ G(1)
red. Here, (·) refers to the action α of the groupoid Gred on Y . Since the fibers

of p are orbits of the G-action on Y , there is a well-defined projection W
r−→ X, (y, v) 7→ p(y)

making W a finite-dimensional vector bundle over X. The space W = W (Y, π) is called the

associated vector bundle to Y
p−→ X along with the representation Gred

π−→ GL(E).

As before, projection Y
p−→ X gives an algebra inclusion A ⊆ B which makes B into an

A-module. Also, the global sections Γ(X,W ) is also a module over A which is finitely generated
and projective by the Serre-Swan theorem. Note that by the construction of the associated
bundle, Γ(X,W ) and B are isomorphic as A-modules. Thus, we have proved the following.

Proposition 6. Given a classical finite Galois covering Y
p
// // X , B = C(Y ) is a finitely-

generated projective module over A = C(X).

Using the arguments above, we will further restrict our attention to the case when B is a
finitely-generated left and right regular A-module. Furthermore, note that Hred itself is the
space of global sections of a finite-rank vector bundle over X. The vector bundle in question
is the vector bundle whose fibers are linear span of elements of G. This means that Hred is a
finitely-generated projective A-module via any relevant module structure one can extract from
our current discussion. With these, we are now ready to give our definition of a non-commutative
covering space. We will state it in the most general sense we can afford but upcoming example,
we will make reasonable restrictions.
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Definition 11. Let A be an algebra over a commutative unital ring k. A (finite, Galois)
non-commutative covering of A is a pair (B,H) consisting of:

(a) H is a finitely generated projective Hopf algebroid over A
′ ⊆ A, with bijective antipode S;

(b) A ⊆ B is a right H-Galois extension;

(c) B is a finitely-generated projective left and right regular A-module.

If in addition, B has no non-trivial idempotents as an A
′
-ring, the covering (B,H) is said to be

connected. If A
′

= A, we will call (B,H) a local non-commutative covering of A. Otherwise, it
is called stratified with stratification datum A

′ ⊆ A. A non-commutative covering (B,H) of A
with stratification k ⊆ A is called uniform if H is a Hopf algebra. �

Remark 9.

(1) Since the main concern of present work are non-commutative analogues of (finite, Galois)
covering spaces, we will simply refer to a (finite, Galois) non-commutative covering space
as a covering space and reserve the name classical covering space for classical ones.

(2) It is important to note that, by definition, the Hopf algebroid H carries several module
structure over A

′
. However, bijectivity of S implies that finitely-generated projectivity

over A
′

are all equivalent for the module structures induced by the source and target
maps, see proposition 4.5 of [6]. This makes part (a) of definition 11 well-defined.

(3) In a covering (B,H) of A, we call H the associated quantum symmetry or just symmetry
for brevity, of the covering. This corresponds to the deck transformation groupoid in the
classical set up. Note that for a classical covering space Y // // X the deck transformation
group is completely determined as G = AutX(Y ). In the general case, there might be
different quantum symmetries H1 and H2 making an extension A ⊆ B Hopf-Galois and
hence (B,H1) and (B,H2) are potentially different coverings. See [22] for an example of
an extension A ⊂ B which is Galois for different quantum symmetries. We will abuse
language by saying that B covers A whenever (B,H) is a covering of A for some Hopf
algebroid H.

(4) The motivation we outlined in this section suggests that in a non-commutative covering
(B,H) of A, the Hopf algebroid H is over A. However, as we will see in section 6.2 there
are some interesting structures where it is necessary to consider Hopf algebroids over any
subalgebra of A. In section 7.1 we will look at the comparison between local and stratified
coverings.

Another way to justify these choices is as follows. Ignoring all the points of a non-
commutative space A is as bad as considering a point on it. The option of having an
intermediate base k ⊂ A′ ⊂ A goes around this difficulty.

Lastly about the base, we will assume A
′

is contained in H and B via the relevant maps.
Otherwise, one can always take the image of A

′
on these spaces and regard that as the

space of interest.

(5) With stratification data A
′ ⊆ A, part (b) of definition 11 explicitly means that B is an

A
′
-ring and A is an A

′
-subring of B and the maps

B ⊗
A
B

galL // B ⊗
(A′ )op

H , B ⊗
A
B

galR // B ⊗
A′
H

are linear bijections.
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(6) The analogues of general finite coverings (possibly not Galois) are those extensions whose
associated Hopf-Galois map is surjective but not necessarily injective. This is justified by
the following observation: the deck transformation group of a covering always act freely.
But the covering is normal precisely when, aside from being free, the action is transitive.
So to get the analogue of general coverings we simply drop the condition that the action
is transitive. But transitivity translates to surjectivity of the associated Galois map.
The functor C(−), the one that associates to a space X its algebra of functions C(X),
is contravariant. Thus, surjectivity of the associated Galois map is equivalent to the
injectivity of the associated Hopf-Galois map. This tells us that general noncommutative
coverings are those extensions whose associated Hopf-Galois map is injective.

3.2 Equivalences of coverings

After defining a mathematical object, the next thing to do is to make sense of when two such
objects are equivalent. This is precisely what we are going to do in this section. We will focus
our attention to local coverings i.e., those coverings (B,H) of A whose quantum symmetry
H is over A. We will briefly discuss how these equivalences work when we are dealing with
stratified coverings. The first notion, which we call naive equivalence is the direct dualization
of equivalence of coverings in the classical sense. The second one, called Morita equivalence, is
the adaptation of a prominent equivalence in non-commutative geometry (which also goes by
the same name) for non-commutative coverings.

Definition 12. Let (B,H) and (B
′
,H′) be local coverings of a non-commutative space A. We

say that (B
′
,H′) is an intermediate covering of (B,H) if there is an intermediate inclusion

A ⊆ B
′ ⊆ B and a monomorphism H′ // H of Hopf algebroids over A such that the

restriction of the coaction of H on B
′ ⊆ B corestricts to the coaction of H′ on B

′
, i.e. we have

a commutative diagram of A-rings

B
ρ

// B ⊗
A
H

B
′

ρ
′

//
?�

OO

B
′ ⊗
A
H
′

OO

(3.8)

Two coverings are naively equivalent if they are intermediate coverings of each other. �

Remark 10.

(1) In the classical case, Y // // X is an intermediate covering of Z // // X if there is a

(continuous) surjection Z // // Y and a group epimorphism AutX(Z) // // AutX(Y ) .
Definition 12 is the naive dualization of this statement, hence the name.

(2) Note that we did not specify which kind of morphism we are using in the above definition.
This is because it is not important to do so. Both Hopf algebroids involved in the above
definition are Hopf algebroids over A. In view of part (3) of remark 3, algebraic and
geometric morphisms coincide in this situation.

Let (B,H) and (B
′
,H′) be naively equivalent coverings of a noncommutative space A. Im-

mediately, we see that B ∼= B
′

as A-rings. By definition, there are injective maps of Hopf

algebroids H p
// H′ and H′ q

// H . Using the map p, H becomes a right H′-comodule
algebra via the coactions ρL and ρR defined by the compositions

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017



CHAPTER 3. NON-COMMUTATIVE COVERING SPACES 37

H ∆L // H⊗A H // H⊗A H
′
,

H ∆R // H⊗A H // H⊗A H
′
,

respectively. The coassiociativity of the H′-coaction defined by ρL and ρR follows from the
commutativity of the following diagrams.

H
∆L //

∆R

��

H ⊗A H
id⊗p

//

∆R

��

H ⊗A H
′

∆
′
R

��

H ⊗A H
∆L⊗id //

id⊗p

��

H ⊗A H ⊗A H
id⊗p⊗p

//

id⊗id⊗p

��

H ⊗A H
′ ⊗A H

′

id⊗id⊗id

��

H ⊗A H
′

∆L⊗id
// H ⊗A H ⊗A H

′

id⊗p⊗id
// H ⊗A H

′ ⊗A H
′

H
∆R //

∆L

��

H ⊗A H
id⊗p

//

∆L

��

H ⊗A H
′

∆
′
L

��

H ⊗A H
∆R⊗id //

id⊗p

��

H ⊗A H ⊗A H
id⊗p⊗p

//

id⊗id⊗p

��

H ⊗A H
′ ⊗A H

′

id⊗id⊗id

��

H ⊗A H
′

∆R⊗id
// H ⊗A H ⊗A H

′

id⊗p⊗id
// H ⊗A H

′ ⊗A H
′

Let us determine the coinvariants of H under this coaction of H
′
R. An element a ∈ H is

coinvariant if ρR(a) = a ⊗A 1. This means that there exist h ∈ H such that p(h) = 1 and
∆R(a) = a⊗A h. Injectivity of p implies that h = 1 and hence, ∆R(a) = ∆L(a) = a⊗A 1. Thus,
the coinvariants of ρL and ρR coincide with the coinvariants of the regular comodule structure
of H which is A itself.

Meanwhile, using the map q we can equip H a structure of a right H′-module via

H ⊗A H
′ id⊗q

// H ⊗A H m // H

which makes H a right-right H′-Hopf module. The counit of the adjoint equivalence in 3 with
M = H′ provides an isomorphism

H
′ ∼= A⊗A H

′ ∼= (H)co H
′
R ⊗A H

′ counit // H

of right-right H′-Hopf modules. Reversing the roles of H and H′ in the preceding argument
shows that H and H

′
are also isomorphic as right-right H-Hopf modules. This is enough to

conclude that H and H′ are isomorphic Hopf algebroids. This proves the only if part of the
following proposition. The if part is obvious.
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Proposition 7. Let (B,H) and (B
′
,H′) be local coverings of a non-commutative space A. Then

(B,H) and (B
′
,H′) are naively equivalent if and only if B ∼= B

′
as A-rings and H ∼= H′ as Hopf

algebroids.

Before stating the second type of equivalence, let us first define what a Hopf bimodule is.

Definition 13. Given Hopf algebroids H and H′ over R, an (H,H′)-Hopf bimodule M is an
(H,H′)-bimodule and an (H,H′)-bicomodule such that

(a) the left H-module and the left H-comodule structures on M make it a left-left (H,H)-Hopf
module,

(b) the right H′-module and the right H′-comodule structures on M make it a right-right
(H′ ,H′)-Hopf module,

(c) the left H-module and the right H′-comodule structures on M make it a left-right (H,H′)-
Hopf module, and

(d) the right H′-module and the left H-comodule structures on M make it a right-left (H′ ,H)-
Hopf module.

�

Note that, by an (H,H′)-bimodule, we mean a left HL-module and a right H
′
R-module. In

other words, we are only using one ring structure out of the two each of the Hopf algebroids
H and H′ have according to which side they act. On the other hand, both coring structures of
each of the Hopf algebroids are used. Notice that for an (H,H′)-Hopf bimodule M , the maps
defining the left H-comodule structure are left H-module maps. Similarly, the maps defining
the right H′-comodule structure are right H′-module maps.

Definition 14. Two local coverings (B,H) and (B
′
,H′) of a non-commutative space A are

Morita equivalent if the following conditions are satisfied:

(a) There exists a (B,B
′
)-bimodule X and a (B

′
, B)-bimodule Y whose constituent left and

right module structures are finitely-generated and projective, and such that

X ⊗
B′
Y ∼= B, Y ⊗

B
X ∼= B

′

as B-bimodules and B
′
-bimodules, respectively.

(b) There exists an (H,H′)-Hopf bimodule U and an (H′ ,H)-Hopf bimodule V whose con-
stituent left and right module structures are finitely-generated and projective, and such
that

U ⊗
H′
V ∼= H, V ⊗

H
U ∼= H

′

as H-Hopf bimodules and H′-Hopf bimodules, respectively.

�
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In part (b) of the above definition, by the constituent left and right module structures of U
we mean the left HL-module and the right H

′
R-module structures of U , since in any case, these

are the only relevant module structures in view of the definition of a Hopf module, see definition
6. Thus, the finitely-generated projectivity condition in part (b) refers to the finitely-generated
projectivity of the aforementioned modules. A similar clarification works for V.

Remark 11.

(1) Naively equivalent coverings (B,H) and (B
′
,H′) are Morita equivalent. B and B

′
provide

the bimodules asked in (a) while H and H′ provide the Hopf bimodules required in (b).

(2) Morita equivalences of coverings coincide with isomorphisms in a suitable category. Denote
by COVMorita(A) the category whose objects are local coverings of a non-commutative
space A. A morphism (B,H) −→ (B

′
,H′) is a pair (X ,U) of a (B,B

′
)-bimodule X and

an (H,H′)-Hopf bimodule U . The composition rule given by

(B
′
,H′)

(Y, V)

$$

(B,H)

(X ,U)

;;

(
X ⊗
B
′
Y, U ⊗

H′
V
) // (B

′′
,H′′).

The identity morphism of the object (B,H) is the pair (B,H) itself. It is immediate to see
that the isomorphisms in COVMorita(A) are precisely the Morita equivalences of coverings.
We will call such invertible arrow (B,H) a Morita equivalence bimodule.

(3) Recall that two noncommutative spaces A and A
′

are Morita equivalent if there exist an
(A,A

′
)-bimodule P and an (A

′
, A)-bimodule Q such that

P ⊗
A′
Q ∼= A, Q⊗

A
P ∼= A

′

as A-bimodules and A
′
-bimodules, respectively. Notice that Morita equivalence of cover-

ings as defined in 14 puts together Morita equivalence of the extension algebras (part (a))
and the Hopf-adaptation of Morita equivalence for the associated symmetries (part (b)).

(4) In light of remark (3) above, we will say that two Hopf algebroids H′ and H′ over A
are Morita equivalent if there exists an (H,H′)-Hopf bimodule U and an (H′ ,H)-Hopf
bimodule V satisfying condition (b) of definition 14.

The following proposition states that COVMorita(A) is a non-commutative geometric invari-
ants of A.

Proposition 8. Let A be Morita equivalent to A
′
. Then the categories COVMorita(A) and

COVMorita(A
′
) are adjoint equivalent.

Proof: Consider Morita equivalent noncommutative spaces A and A
′
. Let (B,H) be a local

covering of A. We will construct a covering of A
′

whose Morita equivalence class is uniquely
determined by the Morita equivalence class of (B,H).

By assumption, there is an (A,A
′
)-bimodule P and an (A

′
, A)-bimodule Q such that
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P ⊗
A′
Q ∼= A, Q⊗

A
P ∼= A

′
.

We claim that
(
B
′
,H′

)
= (Q⊗A B ⊗A P,Q⊗A H⊗A P) is a covering of A

′
. By Q⊗AH⊗A P

we mean the Hopf algebroid with constituent left- and right-bialgebroids H
′
L = Q⊗A HL ⊗A P

and H
′
R = Q⊗A HR ⊗A P, respectively.

First, let us show that B
′

is an A
′
-ring. The A-bimodule structure maps

B ⊗A B
µ
// B , A

η
// B

of B as an A-ring induce the following A
′
-bimodule maps

B
′ ⊗A′ B

′ ∼= Q⊗A B ⊗A B ⊗A P
Q⊗Aµ⊗AP // Q⊗A B ⊗A P ∼= B

′

A
′ ∼= Q⊗A A⊗A P

Q⊗Aη⊗AP // Q⊗A B ⊗A P ∼= B
′

which satisfy the associativity and the unitality diagrams. These maps make B
′

into an A
′
-ring.

Note that the above argument is just the application of the functors Q⊗A− and −⊗A P which
are both equivalences by the Morita property. Thus, they preserve diagrams. We will make use
of this argument in the rest of the proof.

Now, it is easy to see that H′ is a Hopf algebroid over A
′

since the maps and diagrams that
define the Hopf algebroid structure on H all live in the category of A-bimodules. Applying the
functors Q⊗A− and −⊗AP give the structure maps for H′ which satisfy the relevant diagrams.
For the same reason, B

′
carries an H′-comodule structure via

B
′ ∼= Q⊗A B ⊗A P

Q⊗AρR⊗AP
Q⊗AρL⊗AP

// (Q⊗A B ⊗A P) ⊗
A′

(Q⊗A H⊗A P) ∼= B
′ ⊗
A′
H′ .

The H
′
R-coinvariants

(
B
′
)co H′R

of this comodule structure is the equalizer of ρ
′
R and −⊗A′ H

′
R,

i.e.

(
B
′
)co H′R

// B
′

ρ
′
L //

ρ
′
R

// B
′ ⊗
A′
H′ .

This diagram is the image of the equalizer diagram defining Bco HR after applying Q⊗A − and

−⊗A P. Thus,
(
B
′
)co H′R ∼= Q⊗A Bco HR ⊗A P ∼= Q⊗A A⊗A P ∼= A

′
.

Finally, finitely-generated projectivity of B
′

and H′ is equivalent to finitely-generated pro-
jectivity of B and H. This proves our claim.

Now, any covering of A
′

Morita equivalent to (B
′
,H′) is of the form(

B
′ ⊗
B′
X ,H′ ⊗

U
H′
)

for some Morita equivalence bimodule (X ,U). Again, by H′ ⊗H′ U we mean the Hopf algebroid

whose consituent bialgebroids are the images of that of H′ under the functor −⊗H′ U . Invertibil-
ity of (X ,U) implies that there exist a Morita equivalence bimodule (Y, V) such that applying
the functor F = P ⊗A′ (Y ⊗−)⊗A′ Q to B

′ ⊗B′ X and the functor G = P ⊗A′ (V ⊗ −)⊗A′ Q
to V ⊗H′ H

′
yields a covering of A Morita equivalent to (B,H). This proves the proposition. �
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3.3 Composition of coverings

The following commutative diagram of classical covering spaces

Z
q

wwww

p

				

Y

r

�� ��

X

(3.9)

has three different interpretations which are all totally different in the present framework. The
first one, by viewing Y

r−→ X as an intermediate covering of Z
p−→ X, one gets the notion of

intermediate coverings we defined in section 3.2. The second one, by viewing Z
q−→ Y as an

arrow from Z
p−→ X to Y

r−→ X in the category of classical coverings of X, one is lead to
the notion of an arrow in the category COVMorita(A) we defined in section 3.2. The third one,

which is the main subject of the present section is the analogue of the fact that Z
p−→ X is the

composition of the coverings Z
q−→ Y and Y

r−→ X.

Let G = Aut(Z
p−→ X), H = Aut(Z

q−→ Y ) and K = Aut(Y
r−→ X) be the automorphism

groups of the indicated classical covering maps in the appropriate over-category. Then, we have
the following proposition.

Proposition 9. If diagram 3.9 commutes then we have an exact sequence

0 // H // G // K // 0.

Conversely, any extension G of K by H gives a commutative diagram as 3.9.

Proof: Let us outline a proof of this classical fact. Assume 3.9 commutes. Let γ ∈ H. Then
commutativity of the smaller triangles in the following diagram

Z

γ

��

q

�� ��

p

(( ((
Y r

// // X

Z

q

?? ??

p

66 66

implies that γ ∈ G. It is immediate to see that this defines an injection H −→ G. Let us define
a map χ : G −→ K as follows: for g ∈ G, let χ(g) : Y −→ Y , y 7→ qgq−1(y). The map χ(g) is
independent of any pre-image of y under q. Also, for any y ∈ Y , we have

rχ(g)(y) = rqgq−1(y) = pgq−1(y) = pq−1(y) = r(y)

which implies that χ(g) ∈ K. To see that χ is surjective, for any γ ∈ K let γ∗ be the pullback
of γ along q. Then γ∗ ∈ G and χ(γ∗) = γ. Finally, let us show that H = ker χ. Let g ∈ G such
that χ(g) = id. Then we have
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Z
g

//

q

��

Z

q

��

Y
χ(g)=id

// Y

which immediately implies that g ∈ H.

For the converse, assume G is an extension of K by H. Consider the classifying space BG of

G. By definition, there is a space EG and a surjective map EG
p̃−→ BG which is a G-principal

bundle. In other words, p̃ is a classical Galois covering map with G as its deck transformation
group. Dividing EG by the restricted action of H gives a diagram

Z

))

q

vvvv p

����

Y

((

r

�� ��

EG
q̃

uuuu

p̃

����

EG/H

r̃

�� ��

X

))
BG

of classical covering spaces with q̃ the canonical surjection and r̃ a covering map with K as its
deck transformation group. Pulling-back q̃ and r̃ along the classifying map X −→ BG gives
such a commutative diagram as 3.9. This proves the above proposition. �

To find the analogue of proposition 9, let us formulate the above proposition in terms of

groupoids. Using definition 10, to any classical covering Y
p
� X we can associate a topological

groupoid Gred. We set G
(0)
red = X, the space of objects. For x, y ∈ X, the hom-set Gred(x, y) is

empty unless x = y, in which case it is the set of bijections p−1(x) −→ p−1(y) induced by lifting

to Y continuous loops on X based at x ∈ X. The covering Y
p
� X is Galois if and only if the

associated groupoid action of G
′

on Y
p
� X is Galois.

A partial converse is true, i.e. one can associate a covering to a sufficiently nice groupoid.
But first, we need the following lemma.

Lemma 3. For a connected groupoid, i.e. one in which there is an arrow between any two
objects, the hom-sets are in bijection with each other.

Let G be a locally finite, connected Hausdorff groupoid over X. Then

Y =
∐
x∈X

G (1)(x, x) ⊆ G (1),

equipped with subspace topology, is a principal G-bundle with G = G (1)(x0, x0) for any fixed
x0 ∈ X. The bundle projection is given by the restriction p = s|Y of the source map of G to Y .
The hom-sets are finite subsets of a Hausdorff space, which means that they are discrete. This
implies that Y , not only is a principal bundle over X, but a covering with deck transformation
group G. The next proposition tells us more about the coverings this construction gives.
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Proposition 10. Given a locally finite, connected Hausdorff groupoid G over X, the map

Y =
∐
x∈X

G (1)(x, x)
s // X

is a finite, Galois covering of X.

Proof: All that is left to show is that the covering Y
s // // X is Galois. This follows from the

fact the a connected groupoid acts on itself transitively. To see this, note that a typical fiber of
the source map of G is a group, which acts transitively on itself. One can transport the action
of this typical fiber to any other fiber via the conjugation by an arrow between the base points
of the fibers involved. This proves that the covering we will get from the construction above is
Galois. �

Corollary 2. The construction of a groupoid from a covering defined in 10 is not inverse to the
construction we used for proposition 10.

The above corollary follows immediately from the fact that the latter construction spits out
a Galois covering while the former works for any covering. Let us now build on stating an
analogue of proposition 9. Our first task is to make sense of diagram 3.9 for non-commutative
coverings.

Consider locally finite, connected (Hausdorff) groupoids G and K over X. Let G
ψ−→ K

be a groupoid homomorphism which is identity on objects and surjective on hom-sets. The
construction preceding proposition 10 is clearly functorial. Denote by Z

p−→ X and Y
q−→ X

the associated covering spaces to G and K , respectively. The groupoid map ψ then induces a

map of classical covering spaces Z
ψ∗−→ Y . It is easy to see that ψ∗ is itself a covering. The

groupoid H associated to ψ∗ is given as H (0) = Y and H (1)(k1, k2) = ψ−1(k−1
2 k1). This gives

an exact sequence of groupoids

H � � // G
ψ

// //K

Y // // X
id // X

H (1) � � // G (1) // //K (1).

The proposition and the construction above motivate the following definition. Let us dia-

grammatically write P
S

=⇒ Q when (Q,S) is a local covering of P .

Definition 15. Consider inclusions of k-algebras A ⊆ B1 ⊆ B2, Hopf algebroids H and H1

over A, a Hopf algebroid H2 over B1 such that (B1,H1), (B2,H2) and (B2,H) are (local)
non-commutative coverings of A, B1 and A, respectively. In terms of diagrams, we have

B2

B1

H2

3;

A

H1

U]
H

EM . (3.10)

Let us denote by gal, gal1 and gal2 the respective Galois maps associated to the coactions

B2 ρ−→ B2 ⊗A H, B1 ρ1−→ B1 ⊗A H1 and B2 ρ2−→ B2 ⊗B1 H2. We say that diagram 3.10
commutes if the following conditions are satisfied:
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(a) There is a geometric morphism H1 (id,φ)
// H of Hopf algebroids such that φ is injective

and the following diagram commutes.

B1 ⊗A B1 gal1 //

id⊗
A
id

��

B1 ⊗A H1

id⊗
A
φ

��

B2 ⊗A B2
gal

// B2 ⊗A H

(b) There is a geometric morphism H
(f,ψ)

// H2 of Hopf algebroids such that f is the inclusion
A ⊆ B1, ψ is surjective and the following diagram commutes.

B2 ⊗A B2 gal
//

����

B2 ⊗A H

id⊗f ψ

����

B2 ⊗B1 B2
gal2

// B2 ⊗B1 H2

�

Remark 12.

(1) Note that we are suppressing a lot of notations in the above definition. First, when we
denote by ρ the coaction of H on B2 we mean a pair of maps ρL and ρR as described in
section 2.3. Same goes for ρ1 and ρ2. Correspondingly, by gal we mean a pair of maps
galL and galR associated to ρL and ρR, respectively.

(2) At present writing of this paper, there is no existing Galois correspondence for Hopf-
Galois extensions for Hopf algebras let alone for Hopf algebroids. The two conditions listed
above are the minimum requirements one needs to have a non-commutative analogue of
proposition 9.

(3) The above definition is specifically for local coverings. For general stratified coverings,
H is a Hopf algebroid over A

′ ⊂ A, H1 is a Hopf algebroid over A1 ⊆ A and H2 is a
Hopf algebroid over A2 ⊆ B1. For the definition of commutativity of diagram 3.10 in this
situation, in addition to the existence of φ and ψ we also assert the existence of k-algebra
morphisms f1 : A1 −→ A

′
and f2 : A2 −→ A

′
. In the appropriate diagrams, we replace

(id, φ) by (f1, φ), (f, ψ) by (f2, ψ), id⊗
A
φ by id⊗

f1
φ and id⊗f ψ by id⊗

f2
ψ.

If diagram 3.10 commutes, we will refer to the local covering A
H

=⇒ B2 as the composition

of A
H1

=⇒ B1 and B1 H2

=⇒ B2. Note that the commutativity of diagram 3.10 depends on φ and
ψ. We will call the pair (φ, ψ) the commutativity datum of diagram 3.10 of local coverings. The
commutativity datum of stratified coverings is the quadruple (f1, f2, φ, ψ) as described in (3) of
the above remarks. The following proposition states the non-commutative analogue of the first
part of proposition 9 for local coverings.

Proposition 11. (Exact fitting for local coverings.) Let (B2,H) and (B1,H1) be local coverings
of A and let (B2,H2) be a local covering of B1. Suppose the associated diagram as in 3.10
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commutes with commutativity datum (φ, ψ). Then, up to extending scalars, the composite map

ψ ◦ φ factors through the source maps B1 sL, sR // H2 , i.e. following diagram of k-modules
commute

B1 ⊗A H1
L
� �

id⊗
A
φ

//

id⊗
A
εL

��

B1 ⊗A HL

id⊗fψ

����

B1 ⊗
B1
B1

id⊗
B1
sL

// B1 ⊗
B1

H2
L

B1 ⊗A H1
R
� �

id⊗
A
φ

//

id⊗
A
εR

��

B1 ⊗A HR

id⊗fψ

����

B1 ⊗
B1
B1

id⊗
B1
sR

// B1 ⊗
B1

H2
R

(3.11)

where sL, sR are the source maps of H2 and εL, εR denote the counit maps of H1.

Proof: For (B2,H) and (B1,H1) local coverings of A and (B2,H2) a local covering of B1,
denote by gal, gal1 and gal2 the associated Galois maps, respectively. We will only prove the left
diagram of 3.11. The proof for the right diagram goes the same way. Assuming diagram 3.10
commutes with commutativity datum (φ, ψ) we have a commutative diagram

B1 ⊗
A
B1

ι⊗
A
ι

//

����

galL1

##

B2 ⊗
A
B2

����

galL

##

B1 ⊗
A
H1
L

id⊗
A
εL

����

id⊗
A
φ

// B2 ⊗
A
HL

id⊗fψ

����

B1 ⊗
B1
B1

ι⊗
B1
ι

// B2 ⊗
B1
B2

galL2

  

B1 ⊗
A
A

B1 ⊗
B1
B1

ι⊗
B1
sL

// B2 ⊗
B1
H2
L

The top and right squares are the commutative diagrams in definition 15. The commutativity
of the back square, where the arrows going downwards are the canonical surjections, is obvious.
To see the commutativity of the left square, take b, b

′ ∈ B1. Then

(id⊗
A
εL)galL1 (b⊗

A
b
′
) = (id⊗

A
εL)(bb

′

[0] ⊗
A
b
′

[1]) = bb
′

[0] ⊗
A
εL(b

′

[1])

= bb
′

[0]εL(b
′

[1])⊗
A

1 = bb
′ ⊗
A

1 = bb
′ ⊗
B1

1 = b ⊗
B1
b
′
.

Same computation holds for galR1 and εR. The commutativity of the bottom square is due to
the fact that the module structure on H2

L used to form the tensor product B2 ⊗
B1
H2
L is the one
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provided by the source maps. Commutativity of the back, right, left, top and bottom squares
imply that the front square commutes. By inspection, the front square reduce to the left square
asserted by the proposition. �

Proposition 12. (Exact fitting for uniform coverings.) Let (B1, H1) and (B2, H) be uniform
coverings of A and (B2, H2) a uniform covering of B1. Suppose at least one of B1 and B2

is faithfully k-flat and suppose the associated diagram as in 3.10 commutes with commutativity
datum (f1, f2, φ, ψ). Then f1 and f2 are both equal to the identity k-algebra morphism k −→ k
and the composite map ψ ◦ φ factors through k via the counit ε1 : H1 −→ k and the unit
η2 : k −→ H2, i.e. the following diagram commutes.

H1 φ
//

ε1

��

H

ψ

��

k η2
// H2

(3.12)

Proof: Following the proof of proposition 11 we have a cube

B1 ⊗
A
B1

ι⊗
A
ι

//

����

gal1

##

B2 ⊗
A
B2

����

gal

##

B1 ⊗H1

id⊗ε1

����

id⊗φ
// B2 ⊗H

id⊗ψ

����

B1 ⊗
B1
B1

galtriv

##

ι⊗
B1
ι

// B2 ⊗
B1
B2

gal2

##

B1 ⊗ k
ι⊗η2

// B2 ⊗H2

(3.13)

with commuting back, right, and top faces. The bottom square commutes by viewing B1

as a Hopf-Galois extension of B1 with the trivial coaction of the k-Hopf algebra k. Similar
computation as that of the previous proposition implies that the left square commutes as well.
Thus, the front square commutes. Finally, the commutative square
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B1 ⊗H1 ι⊗φ
//

id⊗ε1

��

� s

&&

B2 ⊗H

id⊗ψ

��

B2 ⊗H1

id⊗φ

44

id⊗ε1

����

B2 ⊗ k
ι⊗η2

**

B1 ⊗ k
ι⊗η2

//

+ �

88

B2 ⊗H2

and the faithfully k-flatness, say of B2, implies the desired result. �

Remark 13. Note that the commutativity of the diagram in proposition 12 is the naive analogue

of exactness for a sequence H1 φ−→ H
ψ−→ H2 of Hopf algebras from the view-point of groups

algebras. Note that there is a more categorical wat to see this. The zero object in the category
of k-Hopf algebras is k.
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Chapter 4

Coverings of commutative spaces:
The central case.

If you’re in pitch blackness,
all you can do is sit tight

until your eyes get
used to the dark.

−Haruki Murakami,
Norwegian Wood

We mentioned in the introduction, the formulation of a non-commutative covering space
should be guided by the following: (1) they should give, as a special case (when the symmetry
is a Hopf algebra), non-commutative principal bundles as currently understood (see for example
[22]); (2) when the algebras involved are commutative then we should be able to get classical
covering spaces i.e., a reconstruction procedure. We will state this reconstruction theorem in
this section.

Recall that a covering of a non-commutative space A is in particular, an H-Galois extension
A ⊂ B, for some A-ring B and A-Hopf algebroid H. In case A is commutative, there is no
reason for B to be. In fact, the striking feature of the notion we put forth is that even for a
commutative space, interesting non-commutative covers already exist. We will see examples of a
such in chapter 6. Just as there is no reason for B to be commutative, there is also no reason for
A to sit centrally in B and H. In the next chapter, we will deal with the more general situation
where A need not be central in either B and H. But for the moment, we will look closely to the
case when A is central in both B and H. We will do so for the following purposes:

(1) Look at coverings of a point and commutative coverings of commutative spaces. Note that
in both cases, A is automatically central.

(2) Plenty of a priori different structures related to A-rings and A-Hopf algebroids collapsed
when A is central. For example, the Galois map

B ⊗
A
B

galL // B ⊗
A
H

is not just a linear bijection but also an A-ring isomorphism. Our goal is to see how these
structures collapsed.
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(3) We will give a structure theorem for covering spaces which is only valid when A is central.
Using such structure theorem, we will be able to look closely to more special classes of
coverings.

4.1 Coverings of a point

In this section, we will have a closer look at coverings of a point. In particular, we will see
that unlike the classical case, a point has infinitely many connected covers. Nonetheless, as
we shall see in section 8.2, there is a corresponding triviality result for such covers. Also, we
will characterize the type of Hopf algebroids H that can arise in a covering (B,H). In non-
commutative geometry, a point is represented by the base ring under consideration.

A priori, a covering of a point is a pair (B,H) where H is a Hopf algebroid over k and k ⊆ B
is a right H-Galois extension. In the literature, B is called a Hopf-Galois object over k. Let us
give some examples of such coverings.

Example 6. Given any finitely generated projective Hopf algebra H over k, we claim that
(H,H) is a covering of a point. Here, we use the regular coaction of H on itself. The left and
right-bialgebroid structures of H are both isomorphic to the underlying bialgebra of H. All that
is left to show is that the Galois map

H ⊗H gal
// H ⊗H

a⊗ b � // ab(1) ⊗ b(2)

is bijective. The following map

H ⊗H // H ⊗H

a⊗ b � // aS(b(1))⊗ b(2)

is its inverse. �

In fact more is true. A bialgebra H is a Hopf algebra if and only if it is an H-Galois extension
of the base ring. The above example tells us that any connected k-Hopf algebra is a connected
covering of a point. By a connected Hopf algebra we mean connected as an algebra i.e. one in
which the only idempotent elements are 0 and 1.

Now, let us look at a more general situation. Let (B,H) be a (finite) covering of k. Explicitly,
this means that B is a k-algebra which is finitely generated and projective as a regualr k-module.
Also, H = (HL, HR, S) where HL = (H, sL, tL,∆L, εL) and HR = (H, sR, tR,∆R, εR) are the
constituent bialgebroids.

We claim that HL is a bialgebra. The source and target maps sL and tL define a k-algebra
map ηL = sL ⊗ tL : k −→ H. The product µL on H determined by ηL is associative and unital
with respect to ηL. The coproduct ∆L : H −→ H ⊗ H is already a k-algebra map since the
Takeuchi product H k×H coincide with H⊗H. The coproduct ∆L is coassociative and counital
with respect to εL. All that is left to show is that εL : H −→ k is a k-algebra map. Part (c) of
the definition 1 of a bialgebroid implies that εL is unital, i.e. εL(1) = 1. Applying theorem 5.5 of
Schauenburg [46] using the identity map k −→ k and the normalized dual basis of k given by the
unit element, we see that H possesses a weak bialgebra structure with coproduct ∆L and counit
εL. This implies that εL(xy) = εL(x1[1])εL(1[2]y) for any x, y ∈ H. But 1⊗1 = ∆L(1) = 1[1]⊗1[2].
Thus, εL is a unital k-algebra map. This shows that indeed HL is a bialgebra over k.

Now, HL admits a Galois extension which is k ⊆ B in this case. By a result of Schauenburg
[44], the bialgebra HL is in fact a Hopf algebra, i.e. there is a k-module map SL : H −→ H such
that HL = (H,µL, ηL,∆L, εL, SL) is a Hopf algebra over k. Similar argument shows that there
is a k-module map SR : H −→ H making HR = (H,µR, ηR,∆R, εR, SR) a Hopf algebra over k.
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The two Hopf algebras HL and HR have the same underlying algebra structure. To see this,
note that the multiplication maps of these Hopf algebras factor through H⊗H via the common
underlying complex algebra H of the bialgebroids HL and HR. This implies that these maps
are the same as the map defining the algebra structure of H.

The antipode S of the Hopf algebroidH provides a coupling map makingHL andHR coupled
Hopf algebras. Thus, we have proved the only if part following proposition.

Proposition 13. (B,H) is a covering of a point if, and only if H is a coupled Hopf algebra.

The if part follows from the fact that, for a coupled Hopf algebra H with underlying k-algebra
H, the extension k ⊆ H is H-Galois. As we shall see in section 8.2, the constituent Hopf algebras
of the coupled Hopf algebra H has an even tighter relation.

4.2 Commutative coverings of commutative spaces

As we have seen in section 3.1, finite Galois (connected) classical covering Y
p
// // X gives

a covering (C(Y ), C(Gred)) in the sense of definition 11 where Gred is the associated reduced

groupoid Y
p
// // X and ρ : C(Y ) −→ C(Y ) ⊗C(X) C(Gred) is the induced coaction from

the pointwise deck action of Gred on Y . In this section, we will show the converse. That is,
commutative coverings give classical covering spaces. Through out this section, we will restrict
our attention to local coverings. We will proceed in two ways, one for commutative C∗-algebras
and the other one for general commutative unital ring.

Let (B,H) be a covering of A with A and B commutative unital C∗-algebras. Note that as a
base algebra for the Hopf algebroid H, only the algebraic structure of A is relevant and not it’s
analytic structure being a Banach algebra. This might sound like a conflict of data but in fact
it’s not. In the classical case, the topology of the groupoid Gred associated with a covering is
completely determined by the topologies on Y and X. The isotropy groups of Gred are discrete
and hence, have no nontrivial contribution to the topology of Gred. In the classical case, if a

topological group G happens to be the deck transformation group of a covering Y
p
// // X , one

is forced to consider the discrete topology on G as what the definition of a covering begs. Our
proposed interpretation of the present formulation is to encapsulate the topology of the covering
in B while the symmetry is in H.

Now, A and B being commutative implies that B ⊗A B carries an algebra structure by
tensorwise product. The Galois maps

B ⊗
A
B

galL // B ⊗
A
HL

a⊗
A
b � // ab[1] ⊗

A
b[2]

B ⊗
A
B

galR // B ⊗
A
HR

a⊗
A
b � // ab[1] ⊗

A
b[2]

then become algebra maps. To see this, given a⊗A b, a
′ ⊗A b

′ ∈ B ⊗A B we have

galL

((
a⊗
A
b

)(
a
′ ⊗
A
b
′
))

= galL

(
aa
′ ⊗
A
bb
′
)

= aa
′
b[0]b

′

[0] ⊗
A
b[1]b

′

[1]

=

(
ab[0] ⊗

A
b[1]

)(
a
′
b
′

[0] ⊗
A
b
′

[1]

)
= galL

(
a⊗
A
b

)
galL

(
a
′ ⊗
A
b
′
)
.

The map galL being a linear bijection implies that it is an algebra isomorphism. Since B and
H are finitely-generated projective modules over a commutative unital C∗-algebra A, the map
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T : H −→ B ⊗AH, h 7→ 1⊗A h is injective. Thus, the map galL ◦ T : H −→ B ⊗A B is injective
and hence, the underlying A-ring structure of HL is commutative. Similar argument using galR
shows that HR is a commutative A-bialgebroid.

By the Gelfand duality, there are compact Hausdorff spaces Â and B̂ such that A = C(Â)

and B = C(B̂). Explicitly, B̂ is the set of unital ∗-homomorphisms B
ϕ−→ C. B being a

commutative unital Banach algerba forces ‖ϕ‖ = 1. Thus, B̂ ⊂ B∗ and we can equip B̂ with
the subspace topology it inherits from the weak−∗ topology on B∗. Similarly, we topologize Â
this way. The inclusion A ⊂ B induces a projection B̂

p−→ Â, ϕ 7→ ϕ|A. We claim that this
projection is a classical covering map.

First, we need the following lemma generalizing the result in algebraic geometry saying that
the category of commutative Hopf algebras is dual to the category of affine group schemes.

Lemma 4. Let H = (HL, HR, S) be a commutative Hopf algebroid (i.e. one whose constituent
bialgebroids are commutative) over a commutative algebra A with bijective antipode S. Then
there is a topological groupoid G whose algebra of continuous functions is by H.

Proof: Applying the Spec functor in the following diagram of commutative A-algebras describ-
ing the Hopf algebroid H

HR ⊗
A
HR

HR

∆R

ff

εR //

��

A

sR

zz

tR

dd

A

sL

$$

tL

::
HL

∆L
&&

εLoo

MM

S

HL ⊗
A
HL.

gives topologically enriched small categories CR = Spec(HR) and CL = Spec(HL) over X =
Spec(A). To be precise, the underlying space of arrows of these categories come from the
commutative A-ring structures of HL and HR. The categorical compositions and the units come
from the A-coring structures. We abuse notation by writing CR (resp. CL) for the space of
arrows of the category CR (resp. CL). Note that CL and CR have the same underlying space C
as this space is precisely Spec(H) where H is the common underlying k-algebra of HL and HR.

The antipode S induces a continuous map C
FS−→ C. The following diagram of spaces

describes the properties of FS in relation with the rest of the categorical structures of CL and
CR.

C × C FS×id // C tL
×sLC

◦L

((
C

diag

77

sR // X
εR // C

C

diag
''

sL // X
εL // C

C × C
id×FS

// C tR
×sRC

◦R
66

(4.1)

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017



CHAPTER 4. COVERINGS OF COMMUTATIVE SPACES: THE CENTRAL CASE. 52

Here, we denoted by the same notation the maps induced by the source, target and counit
maps. As we mentioned above, the counit maps induced the unit maps of the two categories.
By part (2) of remark 2, we see that the orientations of elements of C viewed as arrows of CL
are opposite those orientations when viewed as arrows of CR. In particular, this means that the
two categories have the same units. Using this fact, we can show that more is true. The two
categories are groupoids. Let us show that any ϕ ∈ CR is invertible. Using the lower part of
diagram 4.1 implies that for any f ∈ H, we have

f (ϕ ◦R FS(ϕ)) = f [1](ϕ)f [2](FS(ϕ)) = f [1](ϕ)S(f [2])(ϕ)

= f [1]S(f [2])(ϕ) = (sL ◦ εL) (f)(ϕ) = εL(f)(sL(ϕ)) = f(idsL(ϕ)).

Thus, FS(ϕ) is the inverse of ϕ in the category CR. The proof for CL being a groupoid goes the
same way.

At this point, we have two groupoids CL and CR whose space of units coincide. Recall that
the categorical compositions ◦L and ◦R are functorially induced by the coproducts ∆L and ∆R,
respectively. These coproducts commute by 2.7. Thus, the categorical compositions ◦L and ◦R
commute as well. By the groupoid version of Eckmann-Hilton argument, the two compositions
are the same. This shows that the groupoids are opposite each other. One can pick either of
these groupoids to get the groupoid asserted by the lemma. �

Remark 14.

(1) The proof above provides adjoint equivalence between the category of commutative Hopf
algebroids and groupoid schemes. This is formally the same as the adjoint equivalence
between commutative Hopf algebras and affine group schemes. The only additional ingre-
dient is Grothendieck’s relative point of view for schemes. This may lead one to think that
H being a Hopf algebroid over a commutative algebra R, H is simply a Hopf algebra over
R. This need not be the case, see for example weak Hopf algebras in 2.2. Also, the proof
of the lemma 4 involves a construction inverse to the one we had when we constructed
Hopf algebroids from groupoids in 3.1.

(2) There is an equivalent way to argue that the groupoids in the proof above are opposite each
other. Since the groupoids have the same space of units, the constituent bialgebroids of H
must have the same counits. Using the fact that the coproducts ∆L and ∆R commute, one
can use the coring version of proposition 1 to show that these coproducts are the same.
And hence, the induced compositions are the same as well.

(3) Lemma 4 is the version, in view of Grothendieck’s relative principle for schemes, of the fact
that commutative Hopf algebras over algebraically closed fields are dual group algebras.

Going back to the local covering (B,H) of A, the coaction B
ρ−→ B ⊗A H defines a

groupoid action B̂ p×sG
α−→ B̂ as follows. Using lemma 4 we have an isomorphism B ⊗A B =

C(B̂) ⊗
C(Â)

C(G) ∼= C(B̂ p×sG), and hence we can write C(B̂)
ρ−→ C(B̂ p×sG). Define the

action B̂ p×sG
α−→ B̂ as: for any ϕ ∈ B̂ and g ∈ G such that p(ϕ) = s(g), ϕ · g ∈ B̂ is de-

fined as (ϕ · g)(b) = ρ(b)(ϕ, g−1), for any b ∈ B. Using the identification C(B̂) ∼= B we have
(ϕ · g)(b) = ϕ(b[0])b[1](g

−1). Let us show that indeed, this defines an action. Let e ∈ G be an

identity arrow of G. Then for any ϕ ∈ B̂ and b ∈ B with p(ϕ) = s(e) we have

(ϕ · e)(b) = ϕ(b[0])b[1](e) = ϕ(b[0]

(
b[1](e)

)
) = ϕ(b[0]ε(b[1])) = ϕ(b)
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using the definition of the counit ε of H and the counit axiom, respectively. Thus, units e ∈ G
act trivially as desired. For the associativity of the action, let ϕ ∈ B̂ and g1, g2 ∈ G with
p(ϕ) = s(g1) = s(g2). Then for any b ∈ B we have

((ϕ · g1) · g2)(b) = (ϕ · g2)(b[0])b[1](g
−1
1 ) = ϕ(b[0][0])b[0][1](g

−1
2 )b[1](g

−1
1 )

= ϕ(b[0])b[1][0](g
−1
2 )b[1][1](g

−1
1 ) = ϕ(b[0])b[1](g

−1
2 g−1

1 )

= ϕ(b[0])b[1]((g1g2)−1) = (ϕ · (g1g2))(b)

using the coassociativity of ρ and the definition of the comultiplication on H, respectively.
Let us show that B̂/G ∼= Â. Notice that for g ∈ G and ϕ ∈ B̂ with p(ϕ) = s(g), ϕ · g defines

the same function on the set of all b ∈ B for which b[0] = b and b[1] = 1. Thus, such b ∈ B

satisfies ρ(b) = b ⊗ 1 which implies that b ∈ A. Thus, classes in B̂/G defines an element of
Â. Conversely, any element in Â is invariant under the induced action of G. Thus, we have a
commutative diagram of G-equivariant continuous maps

B̂

&& &&

p
// // Â

B̂/G

∼=

This in particular shows that G acts by deck transformations on B̂
p−→ Â. This means that

B̂
p−→ Â is a covering space of degree the order of fiber groups of G.
However, (B,H) being a covering space of A in the sense of definition 11 is giving us more.

In particular, this tells us that B̂
p
// // Â is in fact a Galois covering. This follows immediately

from the fact that B ⊗A B
gal−→ B ⊗A H is bijective. At the level of topological spaces, gal

induces the corresponding bijective Galois map B̂ p×sG
gal
′

−→ B̂ ×
Â
B̂, showing that fiberwise,

G acts transitively. In addition, H being finitely-generated projective over A implies that the
groupoid G is locally finite. Thus, we have shown the following theorem.

Theorem 2. (Reconstruction Theorem.) Let A be a commutative unital C∗-algebra. Let (B,H)
be a local covering of A with B a commutative unital C∗-algebra. Then, H is a commutative
Hopf algebroid. Moreover, there is a classical finite Galois covering Y

p−→ X with finite deck
transformation group G such that A = C(X), B = C(Y ) and G is the isotropy group of the
groupoid G where G is the groupoid determined by H.

Remark 15. The above theorem is the inverse to the construction we did to motivate definition
11. This is the reconstruction theorem we promised in the beginning of this chapter.

Now let us look at the case of general commutative rings. Let k be a commutative unital ring
and A a commutative algebra over k. Let (B.H) be a local covering of A with B a commutative
algebra. Then H is a commutative Hopf algebroid. A general version of lemma 4 can be stated
using groupoid schemes as follows.

Lemma 5. Let H be a commutative Hopf algebroid over a commutative k-algebra A. Then there
is an affine groupoid scheme G over X = Spec(A) such that H = Homk(G, k). Moreover, this
association gives an adjoint equivalence between the category of commutative Hopf algebroids
over A and the category of group schemes over X = Spec(A).
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The above lemma can be proven in a similar way as the proof of lemma 4. Let us go back to

the covering (B,H) of A. The inclusion A ⊆ B gives a surjective map Spec(B)
p
// // Spec(A) .

Similar to the case of C∗-algebras, the coaction B
ρ−→ B ⊗A H gives a groupoid action

Spec(B)×Spec(A) G
α−→ Spec(B).

Since the coinvariants of the coaction ρ is A, we have Spec(B)/G ∼= Spec(A). Bijectivity of the

Galois map B ⊗A B
gal−→ B ⊗A H translates to bijectivity of the following map.

Spec(B)×Spec(A) G
gal
′

// Spec(B)×Spec(A) Spec(B)

This tells us that theorem 2 is valid in the case of a general commutative unital rings. With
this, we have the following theorem.

Theorem 3. Let A be a commutative unital algebra over k and let X = Spec(A). Then,
there is a bijection between commutative local coverings (B,H) of A and finite Galois coverings

Y
p
// // X .

Here, by a commutative covering (B,H) of A we mean a covering where B is commutative.

4.3 Non-commutative coverings of commutative spaces

As we mentioned in the beginning of this chapter, we will devote our attention to central
coverings. By a central covering (B,H) of A we mean a covering in which A is central in both
B and H. Note that the coverings we dealt with in the previous two sections are necessarily
central coverings. In this section, we will consider central local coverings (B,H) of A where B
and H need not be commutative.

Let A be a commutative unital C∗-algebra. Let (B,H) be a central local covering of A,
where B is a unital C∗-algebra. By Gelfand-Naimark duality, A = C(X) where X is a compact
Hausdorff space. Specifically, X is the spectrum of A, the space of unitary equivalence classes
of irreducible ∗-representations of A. Since A is commutative, X coincides with the primitive
spectrum of A, the space of primitive ideals of A with the hull-kernel topology. Since B is
a finitely-generated projective module over C(X), the Serre-Swan theorem implies that B ∼=
Γ(X,E) for some finite rank vector bundle E

p
// // X .

Let x ∈ X and let Bx = {σ ∈ Γ(X,E)|σ(x) = 0}. Then Bx is an ideal of B. To see this,
given any σ ∈ Bx, write σ = f · σ′ for some σ

′ ∈ B and f ∈ C(X) such that f(x) = 0. Now,

given any τ ∈ B, we have (στ) (x) = f(x)
(
σ
′
τ
)

(x) = 0. Centrality of A in B implies that

B/Bx is an C-algebra where we identify C with A/Ix, Ix = {f ∈ A|f(x) = 0}.
The evaluation map evx : B −→ E at x lifts to a map e : B/Bx −→ E. Since Ex is the

pullback of x −→ X ←− E, we have a linear map ϕ such that the following diagram commutes

E

  

B/Bx

evx
11

--

ϕ
// Ex

>>

  

X.

x

>>
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In fact, ϕ is an isomorphism from B/Bx to Ex. To see this, note that any element e ∈ Ex can
be extended to a section σ ∈ B and any other extension is a section having the same value e at
x. Thus, they define the same element in B/Bx. This gives us the following proposition.

Proposition 14. Let A ⊆ B be an algebra extension with A = C(X) central in B and B finitely
generated and projective as a regular A-module. Then B is a bundle of complex algebras over X
such that the algebra structure of B is pointwise.

Consider the left bialgebroid structure HL of H. By assumption, the left and right A-module
structure of HL is finitely-generated and projective. In particular, using the same argument we
used for proposition 14 we see that as a left A-module, HL

∼= Γ(X,HL) for some finite rank

vector bundle HL q
// // X . Moreover, each fiber has an algebra structure such that the A-ring

structure on HL is isomorphic to the A-ring structure one gets by pointwise multiplication in
Γ(X,HL).

By Serre-Swan theorem, the covariant functor Γ(X,−) has a left adjoint Σ
finitely-generated
projective module

over C(X)


Σ

−−−−−−−−−→
←−−−−−−−−−

Γ(X,−)


finite rank

vector bundle
over X

 .

Explicitly, for a C(X)-module M the vector bundle Σ(M) is constructed as follows. Let OX
denote the structure sheaf of X and define the presheaf P (M) of OX -modules by

P (M)(U) = M ⊗C(X) OX(U)

and denote by Σ(M) its sheafification.

Applying the functor Σ to the coproduct HL
∆L // HL ⊗

A
HL gives a map

HL Σ(∆L)
// HL ⊗HL

of vector bundles. By definition, the fiber of HL ⊗HL at x ∈ X is HL
x ⊗HL

x . Thus, there is a
linear map δL,x making the following diagram commute.

HL
x

//

��

δL,x

��

HL

Σ(∆L)

��

����

HL
x ⊗HL

x
//

��

HL ⊗HL

�� ��

x // X

(4.2)

Viewing A itself as a finitely-generated projective module over C(X) and applying the functor

Σ on the counit map HL
εL // A gives a map HL Σ(εL)

// Ctriv of vector bundles, where

Ctriv denotes the trivial line bundle X × C over X. Since HL
x is the pullback of the diagram

x −→ X ←− HL we see that we get a linear map HL
x

εL,x
// C .

We claim that δL,x is coassociative and counital with respect to εL,x. The back face of the
following cube commutes by coassociativity of ∆L and functoriality of Σ
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HL Σ(∆L)
//

Σ(∆L)

��

HL ⊗HL

id⊗Σ(∆L)

��

HL
x

88

δL,x
//

δL,x

��

HL
x ⊗HL

x

88

id⊗δL,x

��

HL ⊗HL

Σ(∆L)⊗id
// HL ⊗HL ⊗HL

HL
x ⊗HL

x

88

δL,x⊗id
// HL

x ⊗HL
x ⊗HL

x

ψ

88

(4.3)

while the lateral faces of diagram 4.3 commute since they are essentially the upper commuting
square of diagram 4.2. Commutativity of the five faces and the fact that the map ψ of diagram
4.3 is injective implies that the front face commutes, i.e. δL,x is coassociative. Using the same
line of reasoning, we can show counitality of δL,x with respect to εL,x using the leftmost diagram
in 4.4 below

HL ⊗HL

id⊗εL

ww

εL⊗id
��

HL
x ⊗HL

x

εL,x⊗id

��

oo

id⊗εL,x

yy

HL ⊗ Ctriv HL
x ⊗ Coo

Ctriv ⊗HL C⊗HL
x

oo

HL

Σ(∆L)

EE

HL
x

oo

δL,x

GG

(
HL
)⊗2 Σ(∆L)⊗Σ(∆L)

//

m

��

(
HL
)⊗4

(m⊗m) F

��

(
HL
x

)⊗2

::

δL,x⊗δL,x
//

m

��

(
HL
x

)⊗4

<<

(m⊗m) F

��

HL

Σ(∆L)
//
(
HL
)⊗2

HL
x

::

δL,x
//
(
HL
x

)⊗2

<<

(4.4)

whose front, back, top, bottom and left faces are easily seen to commute implying that the right
face is commutative as well. In the leftmost diagram, we denoted by C⊗HL the tensor product
of the trivial line bundle X × C and the bundle HL. We also claim that δL,x is multiplicative.
This follows from the commutativity of the bottom cube in diagram 4.4 above.

Thus, each fiber HL
x carries a multiplicative coring structure such that the (left) operations

on H are pointwise, i.e HL
∼= Γ(X,HL) is an isomorphism, not just of C(X)-modules but also

of A-rings and A-corings. In particular, there is a left C-biagebroid structure on HL
x for every

x ∈ X.
Carrying out the same arguments for the right bialgebroid structure HR of H, we get a finite

rank vector bundle HR r // // X such that HR
∼= Γ(X,HR) as right A-modules. Each fiber HR

x

of HR carries an algebra structure such that the A-ring structure of HR is isomorphic to the A-
ring structure of Γ(X,HR) given by pointwise multiplication. Also, HR

x carries a multiplicative
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coring structure such that the coring structure on HR is pointwise. Symmetrically, we get a
right C-bialgebroid structure on each fiber HR

x of HR.

The antipode S defines a C-module map Γ(X,HL)
S−→ Γ(X,HR). Part (c) of definition

2 implies that S induces a fiberwise linear map HL Ŝ−→ HR. We then have the following
commutative diagram.

HL
x ⊗HL

x
Ŝx⊗id // HL

x ⊗HL
x

µL,x

((
HL
x

δL,x

66

εR,x
// C

sR,x
// HL

x

HR
x

δR,x
((

εL,x
// C sL,x

// HR
x

HR
x ⊗HR

x
id⊗Ŝx

// HR
x ⊗HR

x

µR,x

66

Here, sR,x and sL,x denote the fiber maps at x ∈ X of the bundle maps (sL)∗ : Ctriv −→ HL and
(sR)∗ : Ctriv −→ HR induced by sL, sR : A −→ H, respectively. Thus, we have the following
result.

Theorem 4. A finitely-generated projective Hopf algebroid H = (HL, HR, S) over C(X), in
which the images of C(X) under the source and target maps are central, is a bundle of C-Hopf

algebroids Hx =
(
HL
x , H

R
x , Ŝx

)
over X.

Since (B,H) is a covering ofA, B comes with right coactionsB
ρR−→ B⊗

A
HR andB

ρL−→ B⊗
A
HL

by H whose common coinvariant is A. Note that both coactions ρR and ρL are A-module

maps. Thus, applying the functor Σ gives vector bundles maps E
Σ(ρR)

// E ⊗HR and

E
Σ(ρL)

// E ⊗HL . Each of these bundle maps induce coactions ρL,x and ρR,x of the fiber
Hopf algebroids Hx of H on the fiber algebras Ex of B by the commutativity of the diagrams
below for T = R,L.

E
Σ(ρT )

//

Σ(ρT )

��

E ⊗HT

id⊗Σ(∆T )

��

E ⊗ Ctriv Ex

88

ρT,x
//

ρT,x

��

Ex ⊗HT
x

88

id⊗δT,x

��

Ex ⊗ C

99

E ⊗HT

Σ(ρT )⊗id
//

id⊗εT

jj

E ⊗HT ⊗HT

Ex ⊗HT
x

88

ρT,x⊗id
//

id⊗εT,x

jj

Ex ⊗HT
x ⊗HT

x

88

Meanwhile, the commutativity of the following diagram
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E ⊗ E
Σ(ρT )⊗Σ(ρT )

//

m

��

E ⊗HT ⊗ E ⊗HT

(m⊗m)◦ F

��

Ex ⊗ Ex

99

ρT,x⊗ρT,x
//

m

��

(
Ex ⊗HT

x

)⊗2

99

(m⊗m)◦ F

��

E
Σ(ρT )

// E ⊗HT

Ex

99

ρT,x
// Ex ⊗HT

x

99

shows that ρT,x is multiplicative for T = L,R.

The coinvariants A of the coaction ρR is the equalizer of ρR and id⊗A 1. Similarly, A is the
equalizer of ρL and id⊗A 1. In other words, we have the following diagrams of A-modules.

A // B
ρR //

id⊗
A

1
// B ⊗

A
HR

A // B
ρL //

id⊗
A

1
// B ⊗

A
HL

Applying the functor Σ to the first diagram gives us the following

Ctriv // E
Σ(ρR)

//

id⊗1
// E ⊗HR

which is also an equalizer diagram since Σ is an equivalence. Thus, the coinvariant of the induced
fiber coaction ρR,x is C. Similarly, C is the coinvariant of the induced fiber coaction ρL,x.

Now, let us show that associated Hopf-Galois map galR,x to ρR,x is a bijective. The A-module

isomorphism B ⊗A B
galR−→ B ⊗A HR induces a bundle isomorphism

E ⊗ E
Σ(galR)

// E ⊗HR

which on fibers give the isomorphism

Ex ⊗ Ex
galx // Ex ⊗HR

x .

Similarly, the associated Hopf-Galois maps galL,x to the coactions induced on the fibers by ρL
are all bijective. These give the following result.

Theorem 5. Let (B,H) be a central local covering of A = C(X). With the notation as above,
(Ex,Hx) is a covering of the point x.

Remark 16. The above theorem is the non-commutative analogue of the fact that the fibers
of a classical covering space are themselves coverings of a point.

Using proposition 13 and the previous theorem, we get the following corollary.
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Corollary 3. Let (B,H) be a central local covering of C(X). Then H gives two bundles

H1, H2 // // X of coupled Hopf algebras over X.

The fiber coverings (Ex,Hx) in theorem 5 need not be isomorphic even within a connected
component of X. As a matter of fact, we already have an example for this in the commutative
case.

Example 7. Consider the algebras Et = C[x]/(xn − t). The underlying vector space of these

algebras are all n-dimensional and they constitute a vector bundle E
p
// // C over the complex

plane where p−1(t) = Et. Note that the each fiber carries a natural algebra structure making
E an algebra bundle over C with non-isomorphic fibers. In particular, the fiber algebra E0

has a nilpotent element while E1 has none. Furthermore, each fiber algebra is spanned by{
1, x, ..., xn−1

}
. The group G = Z/nZ acts on each fiber algebra Et via (m ·x) 7→ λmx extended

into an algebra isomorphism where λ is a primitive nth root of 1. This action extends to a Galois
action of the group algebra CG and hence, the function algebra C(G) coacts on B = Γ(C, E).
This turns (B,C(C)⊗ C(G)) into a local covering of C(C). �

4.4 Coverings with semisimple fibers

In this section, we will continue to look at the case when A = C(X) is central in the local
covering (B,H). In addition, we will assume the fiber coverings of theorem 5 are semisimple.
For simplicity, let us also assume that X is connected. This means that any vector bundle E for
which B = Γ(X,E) and any vector bundle H for which H = Γ(X,H), the underlying complex
algebras of the fiber algebras Ex and the fiber Hopf algebroids (HL

x , H
R
x , Ŝx) are semisimple

complex algebras. By Wedderburn’s theorem, Ex is the finite product of matrix algebras i.e.,

Ex = Mn1(C)×Mn2(C)× · · · ×Mnj (C)

for some positive integers n1, n2, ..., nj . This decomposition determines (and is completely de-
termined by) a set of central orthogonal idempotent {ei ∈ Ex|i = 1, 2, ..., j} summing up to 1.
Explicitly, Mni(C) ∼= eiEx for all i = 1, ..., j. Let us call the (unordered) j-tuple (n1, n2, ..., nj)
the Wedderburn shape of the semisimple algebra Ex. Part of the content of Wedderburn’s
theorem says that the Wedderburn shape of a semisimple algebra is unique (up to ordering).

Example 8. Let us consider the extreme case when, for all x ∈ X, Ex ∼= Cn for some n ∈ N as
algebras. In this case, the Hopf algebroid H is commutative by the bijectivity of the associated
Hopf-Galois maps. By assumption, the antipode S is bijective. The coproduct and the counit
are unital maps. Thus, lemma 4 implies that there is a groupoid G such that H ∼= C(G).

Bijectivity of galx above implies that the underlying C-vector space ofHx is finite dimensional
for any x ∈ X. Specifically, each Hx is of dimension n. Now, given x ∈ X consider the following
diagram in the category of topological spaces

G(x) //

��

y

Eq(s, t)

��

// G

t

��

s

��

x // X X

where the left square is a pull-back square and in the right square, Eq(s, t) is the equalizer of s
and t. Applying the functor C(−) gives the following diagram
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C(G(x))

p

C(Eq(s, t))oo Hoo

C

OO

A
evxoooo

OO

A

t

OO

s

OO

where the left square is a push-out diagram. The right square being a coequalizer implies that
the large rectangular diagram (using either s or t) is a push-out diagram. The counit of the
adjunction C(−) a Spec provides a C-algebra isomorphism C(Gx) ∼= Hx. This extends to a
bialgebroid isomorphism since the coring structure maps of Hx and C(G(x)) are morphisms of
commutative unital C-algebras. Since G(x) is a group, Hx is then a Hopf algebra. Note that a
priori, Gx depends on x ∈ X but connectivity of X implies that the groups Gx are all isomorphic,
denoted accordingly as G. When dualized, the coaction ρx : Cn −→ Cn ⊗ Hx gives an action
ρ∗x : Cn⊗CG −→ Cn. Note that Cn⊗CG ∼= C[Y ]⊗CG ∼= C[Y ×G] where Y is a set consisting
of n points and the multiplication in the algebra C[Y ×G] is pointwise in Y but convolution in
G. The map ρ∗x is completely determines by the map Y × G α−→ Y which is an action by the
virtue of ρx being a coaction. The bijectivity of the Hopf-Galois map translate to the bijectivity
of the associated map

Y ×G −→ Y × Y, (y, g) 7→ (yg, y)

which means that the action α is free and transitive. Thus, G 6 Sn is a transitive subgroup
with |G| = n. �

Let us consider the general case when the fibers of E are non-commutative algebras. In this
case, Ex = Mn1(C) ×Mn2(C) × · · · ×Mnj (C) where the Wedderburn shape (n1, n2, · · · , nj) of
Ex a priori depends on x ∈ X. Let us describe how these dependence works.

Consider the center Z(B) of B. Since B = Γ(X,E) equipped with pointwise multiplication,
we see that σ ∈ Z(B) precisely when σ(x) ∈ Z(Ex) for all x ∈ X. The center Z(B) is a
C∗-subalgebra of B. In particular, it is a commutative C∗-algebra and by the Gelfand duality,
there is a compact Hausdorff space Y such that Z(B) = C(Y ). Note that A = C(X) sits

inside Z(B) = C(Y ). Thus, there is a continuous surjective map Y
p
// // X . Consider the

following stratification of X. Denote by X(n) =
{
x ∈ X|#(p−1(x)) = n

}
where #(S) denotes

the cardinality of the set S. Note that X(n)’s are generally not connected. Define X(n,i), i ∈ In
to be the connected components of X(n). Note that the X(n,i)’s forms a partition of X and that
the X(n,i)’s are generally not closed in X. We call

{
X(n,i)|n ∈ N, i ∈ In

}
the stratification of X

and each Xn,i as a stratum. Let us denote by Y (n,i) = p−1(X(n,i)). Then Y (n,i) p
// // X(n,i) is

a covering space in the classical sense.
Surjectivity of p implies that X(0) = ∅. We claim that X(n,i) = ∅ as well for n > m for

some sufficiently large m. To see this, note that semisimplicity of Ex implies that Z(Ex) ⊆ Ex
is complemented. This implies that the dimension of Z(Ex) is bounded above by the dimension
of Ex. By theorem 2, we see that this dimension is bounded by dim H <∞. The center Z(Ex)
of Ex is linearly generated by the central orthogonal idempotents {ei} giving the Wedderburn
factors. These central orthogonal idempotents can be extended continuously to relative sections{
σi ∈ Γ(X(n,j), Z(E))|x ∈ X(n,j), σi(x) = ei

}
. Since the rank of an idempotent is locally con-

stant, we see that Wedderburn factors are all the same for all x ∈ X(n,j). Thus, we see that
Wedderburn shape of the fibers Ex of E only depend on the stratum of x ∈ X.

On the other hand, much can be said about the fiber Hopf algebroids. From section 4.1 such
a Hopf algebroid is a coupled Hopf algebra. There are only finitely many semisimple complex
Hopf algebras of a given fixed dimension. Thus, there are only finitely many coupled Hopf
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algebras of that same dimension. Since the fiber Hopf algebroids have the same dimension,
this implies that there are only finitely many posibilities for their structure. Connectivity of
X, discreteness of the collection of such coupled Hopf algebras, and continuity of the structure
maps of the bundle Hopf algebroid, imply that the fiber Hopf algebroids must be isomorphic,
say to a fixed one H0 = (HL

x0 , H
R
x0 , Ŝx0).

Proposition 15. For any x, y ∈ X, Hx
∼= Hy as coupled Hopf algebras.

Specializing the notion of an algebraic morphism of Hopf algebroids from section 2.1, tells

us that a morphism (HL
1 , H

R
1 , S1)

φ−→ (HL
2 , H

R
2 , S2) of coupled Hopf algebras is a linear map φ

which defines Hopf algebra maps HL
1

φ−→ HL
2 and HR

1
φ−→ HR

2 intertwining the coupling maps.
The notation makes sense since HL

1 and HR
1 have the same underlying algebra. Same goes for

(HL
2 , H

R
2 , S2).

Let G = Aut(H0) and let φ ∈ G. Finite dimensionality of HL
x0 and HR

x0 implies that
they are Frobenius algebras. Thus, they are equipped with nondegenerate pairings 〈, 〉L and
〈, 〉R making them finite-dimensional Hilbert spaces. The automorphism φ in particular defines
automorphisms of these two Frobenius algebras, i.e. φ preserves the inner products 〈, 〉L and
〈, 〉R. Thus, each φ ∈ G is a unitary map with respect to both inner products (actually, since
there is a unique Hilbert space up to isomorphism for a particular dimension, the two inner
product defines the same Hilbert space structure on HL

x0 and HR
x0). Hence, we have the following

proposition.

Proposition 16. G ⊆ U(n) where n = dim HL
x0.

The two propositions give a continuous map α : X −→ G, α(x) : Hx
'−→ Hx0 . By Radford

[41], the group of automorphisms of a semisimple Hopf algebra over a field of characteristic 0
is finite. Hence, the group of automorphisms of a semisimple coupled Hopf algebra over C is
finite as well. This implies that G is a finite subgroup of U(n) and thus, discrete. Hence, α is
a C̆ech 1-cocycle since it is locally constant. Therefore, H � X is an algebra bundle, i.e. the
local transition maps rather than just being linear maps, are algebra maps. For comparison,
this is different to a bundle of algebras. The latter is just a vector bundle such that the fibers
are algebras and such algebra structures vary continuously. The associated C̆ech 1-cocycle is
just α followed by the inclusion G ⊆ GLn(C).

Proposition 17. G ⊆ GLn(C) is finite and H � X is an algebra bundle.

As we have argued after example 7, the fibers algebras of a central covering of C(X) need
not be isomorphic. Let us discuss a necessary and sufficient condition for the fiber of a bundle
of algebras to be all isomorphic. For this purpose, we will specialize in the smooth case. Let X
be a connected smooth manifold.

Definition 16. Let E � X be a smooth vector bundle such that the fibers are algebras whose
multiplications depend on x ∈ X continuously. A differential connection ∇ on E is a smooth
connection such that for any vector field ν on X, we have

∇ν(σ1σ2) = σ1∇ν(σ2) +∇ν(σ1)σ2

for any sections σ1, σ2 ∈ Γ(X,E). �
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Surprisingly, existence of such connections is a sufficient condition for the fiber algebras to
be isomorphic. For a necessary condition, one need a stronger assumption than just having
isomorphic fiber algebras. We will formalize these statements in the next two propositions.

Proposition 18. If E has a differential connection ∇ then the fiber algebras of E � X are all
isomorphic.

Proof: Assume E has a differential connection ∇. Let x, y ∈ X and let γ : I −→ X be a
(piecewise) smooth path in X with γ(0) = x and γ(1) = y. Using the connection ∇, we have a
parallel transport map

Φ(γ)yx : Ex −→ Ey

which is a linear isomorphism. Thus, all we have to show is that Φ(γ)yx is multiplicative. Given
b1, b2 ∈ Ex, there are unique smooth sections σ1 and σ2 of E along γ such that ∇⇀

γ
σ1 =

∇⇀
γ
σ2 = 0 and σ1(x) = b1 and σ2(x) = b2. Here,

⇀
γ denotes the smooth tangent vector field of

γ. Note that the product σ1σ2 is the unique smooth section of E // // X along γ such that
(σ1σ2) (x) = σ1(x)σ2(x) = b1b2 and

∇⇀
γ

(σ1σ2) = σ1∇⇀
γ

(σ2) +∇⇀
γ

(σ1)σ2 = 0.

Thus, by definition of the parallel transport map Φ (γ)yx we have

Φ (γ)yx (b1b2) = (σ1σ2) (y) = σ1(y)σ2(y) = Φ (γ)yx (b1)Φ (γ)yx (b2)

which shows that Φ (γ)yx is multiplicative. �

A strong converse of the above proposition, where the isomorphisms among fibers satisfy
some coherence conditions, holds. By a coherent collection

P = {Φ(γ)yx : Ex −→ Ey|∀x, y ∈ X, γ : I −→ X smooth}

of isomorphisms among fibers of E � X, we mean a collection satisfying

(a) Φ(γ)xx = id,

(b) Φ(γ)yu ◦ Φ(γ)ux = Φ(γ)yx,

(c) and Φ depends smoothly on γ, y and x.

We then have the following proposition.

Proposition 19. A coherent collection P of algebra isomorphisms on fibers of E � X gives a
differential connection ∇ on E.

Proof: Using the collection P we can immediately write an infinitessimal connection ∇ as
follows: for any vector V on X we have

∇V (σ) = lim
t→0

Φ(γ)xγ(t)σ(γ(t))− σ(x)

t
=

d

dt

∣∣∣∣
t=0

Φ(γ)xγ(t)σ(γ(t))

for any σ ∈ B and x = γ(0). That ∇ is a differential connection follows from the multiplicativity

of Φ(γ)yx and the Leibniz property of
d

dt

∣∣∣∣
t=0

. �
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Example 9. In this example, we will show that the Wedderburn shape of fibers need not be
constant even over a connected base space. Let G be a finite group of central type, i.e. G fits in
an extension

1 // Z(Γ) // Γ // G // 1

such that Γ has an irreducible representation Γ
ρ−→ GL(V ) of dimension

√
[Γ : Z(Γ)].

Now, the group extension above determines a 2-cocycle β : G × G −→ Z(Γ). Then the
composition

G×G β
// Z(Γ)

ρ
//

""

GL(V )

C×

;;

determines a 2-cocycle α such that the associated twisted group algebra CαG ∼= Mn(C), where
n =

√
[Γ : Z(Γ)]. The twisted group algerba CαG is a Hopf algebra with the same coproduct,

counit and unit as that of CG with product given by g · g′ = α(g, g
′
)gg

′
for any g, g

′ ∈ G.
Such a cocycle can be rescaled to get a family of cocycles αt for every t ∈ C with α0 = 1 and
αt nondegenerate for t 6= 0. This means CαtG ∼= Mn(C) for t 6= 0 while CG may decompose
nontrivially as a direct sum of matrix algebras over C. This gives a bundle of Hopf algebras
E =

∐
t∈CCαtG p−→ C. The algebra B = Γ(C, E) is then a Hopf-Galois extension of C(C). �

4.5 Coverings with cleft fibers

In this section, we are still interested with the case A = C(X) and (B,H) is a local covering
in which A is central. As before, B ∼= Γ(X,E) and H ∼= Γ(X,F ) where E and F is an algebra
bundle and a Hopf algebroid bundle both over X, respectively. Moreover, for any x ∈ X,
(Ex, Fx) is a covering of C. In addition, suppose that (B,H) is a cleft covering i.e., A ⊆ B is
a cleft extension. Recall from theorem 1 that this implies that B ∼= A⊗A H as left A-modules
and as right H-comodules. These conditions descend to the bundle structures of E and F , i.e.
Ex ∼= C ⊗ Fx as left C-modules and as right Fx-comodules. Since (Ex, Fx) is a covering of C,
again by theorem 1 we see that (Ex, Fx) is a cleft covering of C. In other words, central cleft
coverings of commutative spaces have cleft fibers.

Proposition 20. With the assumption of this section, A
H

=⇒ B is a cleft covering implies that
the fiber coverings are also cleft.

It is then a natural question to ask whether the converse is true, i.e. if the fibers of a central
covering of a commutative space are cleft, is the given covering also cleft? This is not necessarily
so.

If the fibers are cleft, then for any x ∈ X there is an invertible complex-valued 2-cocycle σx :
Fx⊗Fx −→ C. If we can choose these cocycles such that they assemble into a continuous bundle
map σ

′
: F⊗F −→ (X×C) then such bundle map gives an A-bimodule map σ : HL⊗HL −→ A.

It is then immediate to see that B is the σ-twisted crossed product of A and HL by defining
the product pointwise. By theorem 6.4.12 of [16], this is the case if and only if the bundle E is
trivial.

Let us end this chapter by noting that the requirement that A is central in both B and H
is actually redundant. If we only require A to be central in B, then B ⊗A B is an algebra with
factor-wise product and the Galois map will force A to be central in H.
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Chapter 5

Coverings of commutative spaces:
The non-central case.

The art of doing
mathematics consists in
finding that special case

which contains all the
germs of generality.

−David Hilbert

In this chapter, we will consider coverings (B,H) of A = C(X) where A need not be central
in either B or H. Obviously, the central case which we discussed in chapter 4 is a special case of
what we will do here. As we promised, we will use a different machinery in the present chapter−
algebraic geometric and spectral theoretic in nature.

The geometric description of non-central coverings necessitates structures closely related to
Hopf categories, but which have not appeared in the literature as far as the author’s knowledge.
We will define such structures in appendix B. Specifically, they are called topological Hopf cate-
gories and coupled Hopf categories. We will also formulate their respective Galois theory in that
appendix.

This chapter has two main result. The first one is theorem 6. It gives a bijective correspon-
dence between finitely-generated projective Hopf algebroids over C(X) and topological coupled
Hopf categories of finite type. Using algebraic geometric and spectral theoretic methods, span-
ning the entirety of the first 3 sections of this chapter, we will prove this result. The second is
theorem 7, which states that, not only is there a bijection between Hopf algebroids and topolog-
ical Hopf categories, their Galois theories also matched in a bijective manner. Following David
Hilbert’s statement at the top of this page, this chapter has been motivated by an example which
we described in section B.2 of appendix B. That example illustrates the essence of theorem 6.

5.1 Local eigenspace decomposition

Let H = (HL, HR, S) be a Hopf algebroid over A, a commutative unital C∗-algebra. Assume
that HL is finitely-generated and projective as a left- and a right-A-module via the source and
target maps. With our standing assumption, HR has the same properties.
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Let us first consider the left bialgebroid HL. The Gelfand duality implies that A ∼= C(X)
for some compact Hausdorff space X. For simplicity, assume X is connected. The Serre-Swan
theorem applied to the left A-module HL gives us a finite-rank vector bundle E

p−→ X such
that HL

∼= Γ(X,E) as left modules, where the left C(X)-module structure on Γ(X,E) is by
pointwise multiplication, i.e. (f · σ)(x) = f(x)σ(x) for all x ∈ X, f ∈ C(X) and σ ∈ Γ(X,E).
By the bimodule nature of HL, the right A-module structure of Γ(X,E) commutes with the

left A-module which implies that we have a representation C(X)
ρ−→ End(E) of C(X) into the

endomorphism bundle of E
p−→ X. Since C(X) is abelian and ρ is a ∗-morphism, ρ(C(X)) lands

in a maximal abelian subalgebra D(n) of End(E). Since B is finitely-generated and projective
as a right-module over A = C(X), locally, these endomorphisms act freely.

Choose a finite collection of open sets {Ui|i = 1, 2, ...,m} that cover X over which E is
trivializable. Choose a system of coordinates such that E trivial over each Ui, i.e. E|Ui ∼=
Ui × V , where V is a finite-dimensional vector space. Choosing a basis v1, v2, ..., vn ∈ V one
has End(E|Ui) = Cb(Ui,Mn(C)) where n is the rank of E. Here, Cb(Ui,Mn(C)) denotes the
algebra of bounded Mn(C)-valued functions on Ui. Since X is compact, Γ(X,End(E)) consists
of bounded (finite-rank) operator-valued functions on X. Localizing over Ui gives bounded
Mn(C)-valued functions. Commutativity of C(X) implies that up to unitaries Vi ∈ U(n), we
have

C(X)
ρ

// Cb(Ui, Diag(n))

where Diag(n) denotes the subalgebra of diagonal matrices on Mn(C) and

Vi · Cb(Ui, Diag(n)) · V ∗i = D(n)|Ui .

For each i = 1, 2, ...,m, choosing a set of central orthogonal idempotents {ej |j = 1, ..., n} gives
n projections pij given by the following composition

C(X)
ρi // Cb(Ui, Diag(n)) ∼=

n⊕
k=1

Cb(Ui)
projj

// Cb(Ui)

These projections are in particular continuous C∗-morphisms. Hence, they give, for each

i = 1, 2, ...,m, (possibly non-distinct) n continuous injective maps Ui
ϕij−→ X, j = 1, ..., n.

Geometrically, the situation is depicted figure 5.1.

Let us describe the nature of the set Z =
⋃
i,j ϕ

i
j(Ui) over the intersections Uα ∩ Uβ. Over

Uα ∩ Uβ ⊆ Uα we get a unitary Vα which gives n central orthogonal idempotents and up to
ordering of such idempotents, one gets the sets ϕij(Ui). The union

⋃
j ϕ

i
j(Ui) does not depend

on the ordering of these idempotents. Thus, over Uα ∩ Uβ one gets unitaries Vα and Vβ which
simultaneously diagonalize ρ(C(X)). Thus, we have⋃

j

ϕαj (Uα ∩ Uβ) =
⋃
j

ϕβj (Uα ∩ Uβ)

from which we get that⋃
j

ϕαj (Uα)

 ∩
⋃

j

ϕβj (Uβ)

 =
⋃
j

ϕαj (Uα ∩ Uβ)

that is, the sets
⋃
j ϕ

i
j(Ui) agree on the intersections.

A subset T ⊆ X ×X is called transverse if

proj1|T : X ×X −→ X, proj2|T : X ×X −→ X
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Figure 5.1: Local eigenspace decomposition of E.

are homeomorphisms, where proj1 and proj2 denotes the projection onto the first and second
factor, respectively. In particular, T is homeomorphic to X. Using the above argument, we have
the following proposition.

Proposition 21. For every i = 1, 2, ...,m, j = 1, 2, ..., n the set ϕij(Ui) extends to a trans-
verse subset of X ×X completely contained in Z. In particular, Z is the union of n (possibly
overlapping) transverse subsets of X ×X.

This means that the curves in figure 5.1 overlap.

Remark 17. Another way to see why the closed subset Z ⊂ X ×X is the union of transverse
subsets of X ×X is by the fact the we can run the construction of the sets ϕij(Ui) described in
the beginning of this section in a symmetric fashion, one for each factor of X ×X.

The whole picture 5.1 is a decomposition of X × X into X × Ui, i ∈ I. The graphs of
ϕij are labelled accordingly. Note that each f(x) ∈ End(Ex), f ∈ C(X) are diagonalizable
since they commute with their adjoint f(x)∗ ∈ C(X). And since such operators commute with
each other, the collection {f(x) ∈ End(Ex)|f ∈ C(X)} is simultaneously diagonalizable. Over
a point x ∈ U1, the fiber Ex decomposes into joint eigenspaces of {f(x) ∈ End(Ex)|f ∈ C(X)}.
The dimension of these eigenspaces are determined by the number of intersections of the vertical
dotted line through x ∈ U1 with the graphs of ϕ1

j . Using this eigenspace decomposition, we have
the following proposition which describes geometrically the right C(X)-module structure of HL.

Proposition 22. Given σ ∈ Γ(X,E) and f ∈ C(X) the section σ · f ∈ Γ(X,E) is given as

(σ · f) (x) =
n∑
j=1

f(ϕij(x))ej · σ(x). (5.1)
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where x ∈ Ui and σ(x) =
n∑
j=1

ej · σ(x).

Remark 18.

(1) In case C(X) is central in HL, the above picture reduce to {Ui|i ∈ I} the trivial cover and
ϕ : X −→ X is the identity, i.e. the graph in the above picture is the diagonal of X ×X.
The action defined by equation 5.1 then reduces to pointwise multiplication which then
coincides with the left C(X)-module structure of HL

∼= Γ(X,E).

(2) One can understand the right action above as pointwise-eigenvalue-scaled action. Com-
pared to the central case, every f ∈ C(X) acts on a σ ∈ Γ(X,E) in a way that f(x) acts
diagonally on σ(x), i.e. Ex constitutes a single eigenspace for the operator f(x) corre-
sponding to the eigenvalue f(x) ∈ C. In the noncentral case, the action is still pointwise.
However, the operator f(x) no longer has a single eigenspace. The eigenspaces are la-

belled by the points ϕij(x) ∈ X where x ∈ Ui and the eigenvalues of f(x) are f
(
ϕij(x)

)
,

j = 1, ..., n.

Proposition 23. As a C(X)-bimodule, HL
∼= Γ(Z, E) where E is a sheaf of complex vector

spaces over X ×X supported on a closed subset Z ⊂ X ×X. The C(X)-bimodule structure on
Γ(Z, E) is defined as

(f · σ · g)(x, y) = f(x)σ(x, y)g(y)

for f, g ∈ C(X) and σ ∈ Γ(Z, E).

The C(X)⊗C(X)op is dense in C(X ×X) thus we can extend the C(X)⊗C(X)op-module
structure of HL to a C(X ×X)-module structure. Consider the annihilator of HL,

Ann(HL) = {f ∈ C(X ×X)|f · σ = 0, for all σ ∈ BL} .

Then, there is an open set U ⊂ X ×X such that Ann(HL) = C(U). Then Z = (X ×X) − U ,
the support of the bimodule HL.

Proposition 24. The subset Z ⊆ X × X is completely determined by the C(X)-bimodule
structure of HL. Moreover, Z is the support of HL

∼= Γ(X ×X, E).

By proposition 21, Z is the union of transverse subsets of X ×X which is individually are
unions of graphs of ϕij . Let

E(x,y) =
⊕

ϕij(x)=y

(Ex)ϕij(x)

be the fiber of E over (x, y) ∈ Z, where (Ex)ϕij(x) denotes the eigensubspace of Ex over the point

ϕij(x). This defines a sheaf of vector spaces on X×X supported on Z. A section of τ ∈ Γ(X,E)
defines a section τ̂ ∈ Γ(Z, E) whose value at a point (x, y) is

τ̂(x, y) =


projijτ(x), if y = ϕij(x) for some i, j

0, otherwise,

where projij denotes the projection Ex −→ (Ex)ϕij(x). Conversely, any section τ ∈ Γ(Z, E)

defines a section τ̌ ∈ Γ(X,E) by

τ̌(x) =
∑
y

τ(x, y).
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Now, given h ∈ C(X)⊗ C(X) we have

h(x, y) =
∑
k

fk(x)gk(y)

for some fk, gk ∈ C(X). For any σ ∈ B ∼= Γ(X,E) we have

(h · σ̂) (x, y) =
∑
k

fk(x)σ̂(x, y)gk(y)

=
∑
k

fk(x)gk(ϕ
i
j(x))ej (σ(x))

= projij

(∑
k

fk · σ · gk

)
(x, y)

which shows that ∧ : Γ(X,E) −→ Γ(Z,F), τ 7→ τ̂ is a bimodule map whose inverse is the map
∨ : Γ(Z,F) −→ Γ(X,E), τ 7→ τ̌ .

Using proposition 23, we can relate the vector bundles the Serre-Swan theorem gives when
applied to the left and right C(X)-module structure of HL as follows.

Proposition 25. Let E1
p1−→ X and E2

p2−→ X be the vector bundles given by the Serre-Swan
theorem applied to the finitely-generated projective left and right C(X)-module HL, respectively.
Then E1 and E2 are the direct-images of the sheaf E along π1 and π2, respectively.

First, the direct-image of E along π1 is easily seen to be a vector bundle and the space of sec-
tions Γ(X, (π1)∗E) is easily seen to be isomorphic as left C(X)-modules to the left C(X)-module
Γ(Z, E). By proposition 23, Γ(Z, E) ∼= Γ(X,E1) as left C(X)-modules. Thus, by corollary 2.8 of
[19] we see that E1 and (π1)∗E) are isomorphic as vector bundles. Similar argument works for
E2.

Let us say more about the nature of the eigenspaces E(x,y), for x, y ∈ X in relation to the
subset Z ⊂ X ×X.

Proposition 26.

(i) Ex =
⊕
y∈X

E(x,y)

(ii) dim
(
E(x,y)

)
is the number of transverse subsets of X ×X contained in Z passing through

(x, y), with multiplicities.

(iii) dim

(⊕
x∈X

E(x,y)

)
= n for any y ∈ X.

5.2 The geometry of C(X)-ring structures

The previous section describes the geometry of HL using its bimodule structure over C(X). But
HL has more structure than just being a bimodule. In particular, it is a C(X)-ring via the

left source map C(X)
sL−→ HL. In this section, we will look at what this additional structure

contributes to the geometry of HL. We will keep the notations of the previous section.

The C(X)-ring structure on HL
∼= Γ(X, E) via the source map sL consists of a pair of

C(X)-bimodule maps

Γ(Z, E) ⊗
C(X)

Γ(Z, E)
µ−→ Γ(Z, E)
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Figure 5.2: The geometry of the product and unit maps.

C(X)
η−→ Γ(Z, E)

satisfying the associativity and unitality conditions. For brevity we will write η = sL.

The unit map η gives an element 1 ∈ Γ(Z, E) satisfying f · 1 = 1 · f for all f ∈ C(X). Since
X is Hausdorff, if x 6= y then we can find an f ∈ C(X) such that f(x) = 1 and f(y) = 0. Thus,
for x 6= y we have

1(x, y) = f(x)1(x, y) = (f · 1)(x, y) = (1 · f)(x, y) = 1(x, y)f(y) = 0.

Thus, the source map A
sL−→ HL is implemented by C(X) −→ Γ(Z, E), f 7→ f · 1. This means

that sL ◦ f(x) = f(x)1(x, x) and choosing f such that f(x) 6= 0 and sL ◦ f(x) 6= 0 we see that
1(x, x) ∈ E(x,x) is a nonzero element. Thus, the diagonal /∆ of X ×X is in Z. See figure 5.3.

Note that Γ(Z, E) ⊗
C(X)

Γ(Z, E) ∼= Γ(Z, E(2)) where E(2) is the sheaf of vector spaces whose

fiber at a point (x, z) ∈ Z is the vector space⊕
y∈X

(
E(x,y) ⊗ E(y,z)

)
due to the balancing condition σ · f ⊗C(X) τ = σ ⊗C(X) f · τ for σ, τ ∈ Γ(Z, E) and f ∈ C(X).
Notice that all but finitely many summands above are zero. Specifically, only those y ∈ X for
which (x, y) and (y, z) are both in Z contribute nontrivially. Let us denote these y ∈ X as
y1, y2, ..., yn.

By proposition 23, Γ(Z, E) ∼= Γ(X,E) as C(X)-bimodules. Since Γ(X,−) is a fully faithful
functor by corollary 2.8 of [19], we can convert the global ring structures µ and η into something
fiber-wise. In particular, the product map µ induces a map

E(x,y1) ⊗ E(y1,z) ⊕ ...⊕ E(x,yn) ⊗ E(yn,z)
µ∗

// E(x,z) (5.2)

illustrated in figure 5.2. By the universal property of direct sums, there are maps
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Figure 5.3: Support Z of the bimodule B.

E(x,yi) ⊗ E(yi,z)
µ
yi
∗ // E(x,z)

one for each yi. The collection of these maps satisfy a set of conditions which, though derivable
from associativity, is complicated to write down. See (3) of the remark below for these conditions.

However, for the maps E(x,x) ⊗ E(x,x)
µx∗−→ E(x,x) these conditions are precisely the associativity

condition. Likewise, the map η induces maps ηx,y∗ : C −→ E(x,y) which is nonzero when x = y
and zero otherwise. The map µx∗ together with ηx∗ = ηx,x∗ makes the vector space E(x,x) a unital
algebra, whose dimension depend on the multiplicity of the associated eigenvalue. The following
proposition is then immediate from these arguments.

Proposition 27. Let A
′

be the C(X)-sub-bimodule of Γ(Z, E) supported on the diagonal /∆.
Then A

′
is an A-subring of HL where the multiplication is pointwise. Moreover, A

′
is the

centralizer of A in HL.

Remark 19.

(1) Using abuse of notation, let us identify A with its image in HL. In case A is central in
HL, the fibers of the vector bundle E −→ X are algebras. These algebras correspond

to E(x,x) together with the maps E(x,x) ⊗ E(x,x)
µx∗−→ E(x,x) and C ηx∗−→ E(x,x) since in the

central case, E(x,x) = Ex. Thus, A
′

= HL in the central case which is not surprising at all

knowing that A
′

is the centralizer of A.

(2) The maps E(x,yi) ⊗ E(y1,z)
µi∗−→ E(x,z) are only restricted by the associativity of µ. Since

Γ(Z, E) ∼= Γ(X,E) and Γ(X,−) is known to be a fully faithful functor by corollary 2.8 of
[19], we have
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⊕
yi,yj

(
E(x,yi) ⊗ E(yi,yj) ⊗ E(yj ,z)

) (⊕
i
µi∗

)
⊗id
//

id⊗
(⊕
j
µj∗

)

��

⊕
yj

(
E(x,yj) ⊗ E(yj ,z)

)
⊕
j
µj∗

��⊕
yi

(
E(x,yi) ⊗ E(yi,z)

) ⊕
i
µi∗

// E(x,z).

Universal property of direct sums gives us

E(x,yi) ⊗ E(yi,yj) ⊗ E(yj ,z)
µi∗⊗id //

id⊗µj∗

��

E(x,yj) ⊗ E(yj ,z)

µj∗

��

E(x,yi) ⊗ E(yi,z) µi∗

// E(x,z).

This justifies the argument before proposition 27. We can also use this to say more about
the fibers of E which we state in the next proposition.

Proposition 28. E(x,y) is a left E(x,x) − E(y,y)−bimodule for every x, y ∈ X.

Remark 20. Using remark 19 (2) above, we can construct a small category HL enriched over
the category of complex vector spaces. The set of objects of HL is X. For every x, y ∈ X, we
define

Hom(x, y) :=


E(x,y), if y = ϕij(x) for some i, j

{0} , otherwise.

We will call HL the associated category of the left A-bialgebroid HL. In the next section, we will
see the additional properties of HL coming from the A-coring structure of HL. On a different
note, let us give a complete geometric description of the A-ring structure of HL.

Proposition 29. Denote by a ∗i b := µyi∗ (a, b), a ∈ E(x,yi) and b ∈ E(yi,z). The product of
σ, τ ∈ Γ(Z, E) takes the form

(στ)(x, z) =
∑
i

σ(x, yi) ∗i τ(yi, z)

for all (x, z) ∈ Z.

This follows immediately from equation 5.2. Notice the resemblance of this formula to the one
for matrix multiplication. This should remind the reader of an example we discussed in section
B.2. One can view a C(X)-ring to be a ”matrix” of vector spaces whose entries are indexed
by X × X and what sits in entry (x, y) is the vector space E(x,y). As we have defined after
proposition 24, the vector space E(x,y) is the zero vector space if (x, y) /∈ Z. For matrix algebras
Mn(C), X would be an n-element set and the vector spaces E(x,y) would all be C. There are a
plethora of algebraic structures package into a bialgebroid let alone in a Hopf algebroid. Before
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we end this section, let us take a detour to describe the relationships among the structures of H:
being a C-algebra, the A-ring and the Ae-ring structures being a left-bialgebroid over A = C(X).

For the purpose of this discussion, let us denote by (µC, ηC) the C-algebra structure of H
and recall that (µL, sL) and (µAe , ηL) denote the relevant A-ring and Ae-ring structures of H,
respectively. Again by lemma 1, for a k-algebra R, R-ring structures are in bijection with k-
algebra maps η : k −→ R. Thus, the complex algebra structure of H is uniquely determined by
the unit map ηC : C −→ H. Similarly, the A-ring and the Ae-ring structures are determined by
the C-linear maps sL and ηL. These maps satisfy the following commutativity relations.

C ηC //

��

H

A //

sL

>>

Ae

ηL

OO H ⊗H // //

µC

##

H ⊗
A
H // //

µL

��

H ⊗
Ae
H.

µAe

{{

H

In terms of the local eigenspace decomposition, the map µC induces maps

E(x,w) ⊗ E(z,y)
// E(x,y)

while, by 5.2, we have maps

E(x,z) ⊗ E(z,y)
// E(x,y) .

On the other hand, because the C(X ×X)-bimodule structure of H is given as follows,

(f · σ)(x, y) = f(x, y)σ(x, y), (σ · f)(x, y) = f(y, x)σ(x, y),

for any f ∈ C(X ×X), σ ∈ H, and x, y ∈ X, the product µAe induces maps

E(x,z) ⊗ E(z,x)
// E(x,x) .

Another way of seeing this is by noting that the product µL uses the tensor product ⊗A
which kills products E(x,w) ⊗ E(z,y)

// E(x,y) for which w 6= z. Likewise, the tensor

product ⊗Ae kills products E(x,z) ⊗ E(z,y)
// E(x,y) for which x 6= y.

5.3 The geometry of C(X)-coring structures

In this section, using the techniques and results we have developed in sections 5.1 and 5.2 we
will describe what the coring structure of HL contributes to the geometry of E . We will keep
the notations of the previous two sections.

The C(X)-bimodule structure of the underlying A-coring structure of HL is related to the
C(X)-bimodule structure of the underlying A-ring via

(f · σ · g)(x, y) = f(x)g(x)σ(x, y) (5.3)

for σ ∈ Γ(Z, E), f, g ∈ C(X), and x, y ∈ X. The left-hand side of equation 5.3 concerns the
bimodule structure one has for the underlying A-coring of HL while the right-hand side concerns
its A-ring structure. This, in particular, implies that if we run the construction we have in section
5.1 for the bimodule structure of the A-coring of HL, we will get the same sheaf E supported
over the same closed subset Z.

The coproduct HL
∆L−→ HL⊗AHL uses a different A-bimodule structure from the A-bimodule

structure involved in the A-ring structure. Thus, ⊗C(X) means different from the ⊗C(X) we have
in the product µ. With this, let us denote by �A this new tensor product. thus, we have

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017



CHAPTER 5. COVERINGS OF COMMUTATIVE SPACES: THE NON-CENTRAL CASE. 73

Γ(Z, E)
∆L // Γ(Z, E)�C(X) Γ(Z, E) . (5.4)

However, using the relation 5.3 the codomain of ∆L can be expressed as

Γ(Z, E)�C(X) Γ(Z, E) ∼= Γ(Z, E〈2〉),

where E〈2〉 is the sheaf of vector spaces whose fiber at (x, z) ∈ X ×X is⊕
y′ ,y′′∈X

(
E(x,y′ ) ⊗ E(x,y′′ )

)
.

Using the same argument we used in the previous section, the map ∆L induces a map (∆L)∗ :
E −→ E〈2〉 of sheaves over Z. Over point a (x, y) ∈ Z, we have a map

E(x,y)

(∆L)(x,y)∗ //
⊕

z′,z′′∈X

(
E(x,z′) ⊗ E(x,z′′)

)
(5.5)

Meanwhile, the counit εL : Γ(Z, E) −→ C(X) induces a map E −→ E ′ of sheaves over Z and /∆,
respectively. Here, Z −→ /∆ is the map (x, y) 7→ (x, x) for any (x, y) ∈ Z and E ′ is the subsheaf
of E where the fiber of E ′ at (x, y) is {0} unless x = y, to which the fiber is C viewed as the
one-dimensional subalgebra of E(x,x) spanned by its unit 1(x, x). Hence, over a point (x, y) ∈ Z
we have (εL)(x,y)

∗ : E(x,y) −→ C.

Counitality of ∆L with respect to εL implies that for fixed but arbitrary x, y ∈ X we have

⊕
z,z′

(
E(x,z) ⊗ E(x,z′ )

)
⊕
z
′
id⊗(εL)(x,z

′
)

∗

��

E(x,y)

(∆L)(x,y)∗

::

⊕
z

(
E(x,z) ⊗ C

)
v � // v ⊗ 1

⊕
z,z′

(
E(x,z) ⊗ E(x,z′ )

)
⊕
z

(εL)(x,z)∗ ⊗id

��

E(x,y)

(∆L)(x,y)∗

::

⊕
z′

(
C⊗ E(x,z′ )

)
v � // 1⊗ v

(5.6)

The bottom isomorphisms imply that (εL)(x,z)
∗ and (εL)(x,z

′
)

∗ are nonzero maps for z = y and
z
′

= y. Since x and y are arbitrary to start with, we have the following proposition.

Proposition 30. For any (x, y) ∈ Z, we have (εL)(x,y)
∗ 6= 0.

Another thing we can infer from the diagrams 5.6, using the isomorphisms in the bottom and
the fact that y is among the z and z

′
that appears as indices, is that the image of (∆L)(x,y)

∗ is
contained in

(
E(x,y) ⊗ E(x,y)

)
⊕
⊕
z,z′

(
ker

(
id⊗ (εL)(x,z

′
)

∗

)
+ ker

(
(εL)(x,z)

∗ ⊗ id
))

We will show in the next section that more can be said. In fact, the image of (∆L)(x,y)
∗ is

completely contained in E(x,y) ⊗ E(x,y).
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5.4 Hopf algebroids over C(X)

In this section, we will complete our description of the geometry of the Hopf algebroid H over
C(X). In doing so, we will be able to illustrate the main point of this article. That to such a
Hopf algebroid, one can associate a highly structured category.

So far, we have considered only the constituent left bialgebroid HL of H. Running the
arguments we have presented in sections 5.1 and 5.2 for HR, we see that there is a sheaf of
vector spaces E ′ over X × X such that HR

∼= Γ(X × X, E ′). Let us denote by Z
′

the support
of HR under the isomorphism HR

∼= Γ(X ×X, E ′). The following proposition relates these two
sheaves.

Proposition 31. For HL
∼= Γ(X × X, E) and HR

∼= Γ(X × X, E ′) as C(X)-bimodules as
constructed in sections 5.1 and 5.2, where E and E ′ are sheaves of vector spaces supported on
Z,Z

′ ⊆ X ×X, we have

(i) Z = Z
′
.

(ii) E ∼= E ′ as sheaves over Z.

Proof: Condition (c) of the definition of a Hopf algebroid implies that the antipode S of H
flips the C(X)-bimodule structure used for the C(X)-ring structure of HL to that of the C(X)-
bimodule structure used for the C(X)-ring structure of HR. Likewise, S flips the bimodule
structures of the underlying C(X)-coring structures of HL and HR. In particular, this tells us
that S induces a map S∗ : E −→ E ′ which on fibers does S∗(E(x,y)) = E(y,x) for any (x, y) ∈ Z.

Symmetrically, we also have a map denoted the same, S∗ : E ′ −→ E , which on fibers does
S∗(E(y,x)) = E(x,y) for any (y, x) ∈ Z ′ . This proves proposition 31. �

Remark 21. Proposition 31 tells us that the closed subset Z ⊆ X ×X must be symmetric, i.e.
F(Z) = Z.

In view of proposition 31, we have ∆R : Γ(Z, E) −→ Γ(Z, E). Similar to equation 5.5, ∆R

induces maps

E(x,y)

(∆R)(x,y)∗ //
⊕

z′,z′′∈X

(
E(z′,y) ⊗ E(z′′,y)

)
(5.7)

for (x, y) ∈ Z. As we promised at the end of section 5.3, (∆L)(x,y)
∗ maps E(x,y) into E(x,y)⊗E(x,y),

for any (x, y) ∈ Z. same holds for (∆R)(x,y)
∗ . Let us summarize these statements into the

following proposition.

Proposition 32. For every (x, y) ∈ Z,

(i) E(x,y) is a coalgebra with coproduct (∆L)(x,y)
∗ and counit (εL)(x,y)

∗ , and

(ii) E(x,y) is a coalgebra with coproduct (∆R)(x,y)
∗ and counit (εR)(x,y)

∗ .

Proof: We will only prove part (ii). The proof for part (i) is similar. The second commutation
relation of ∆L and ∆R in part (b) of the definition 2 gives the following diagram
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E(x,y)

(∆L)(x,y)∗ //

(∆R)(x,y)∗

��

⊕
z′ ,z′′

(
E(x,z′ ) ⊗ E(x,z′′ )

)

⊕
z
′
(∆R)(x,z

′
)

∗ ⊗id

��⊕
z′ ,z′′

⊕
α′ ,α′′

(
E(α′ ,z′ ) ⊗ E(α′′ ,z′ ) ⊗ E(x,z′′ )

)

⊕
β′ ,β′′

(
E(β′ ,y) ⊗ E(β′′ ,y)

)
⊕
β
′′
id⊗(∆L)(β

′′
,y)

∗

//
⊕
β′ ,β′′

⊕
γ′ ,γ′′

(
E(β′ ,y) ⊗ E(β′′ ,γ′ ) ⊗ E(β′′ ,γ′′ )

)
(5.8)

for fixed but arbitrary (x, y) ∈ Z. In the composite⊕
z′

(∆R)(x,z
′
)

∗ ⊗ id

 ◦ (∆L)(x,y)
∗ ,

the third leg lands in
⊕
z′′
E(x,z

′′
). On the other hand, the third leg of the composite⊕

β′′

id⊗ (∆L)(β
′′
,y)

∗

 ◦ (∆R)(x,y)
∗

lands in
⊕
β′′ ,γ′′

E(β′′ ,γ′′ ). This implies that for β
′′ 6= x, we have E(β′′ ,y) ⊆ ker (∆L)(β

′′
,y)

∗ . From

our last statement in section 5.3, (∆L)(β
′′
,y)

∗

(
E(β′′ ,y)

)
is contained in(

E(β′′ ,y) ⊗ E(β′′ ,y)

)
⊕
⊕
f ′ ,f ′′

(
ker

(
id⊗ (εL)(β

′′
,f
′
)

∗

)
+ ker

(
(εL)(β

′′
,f
′′

)
∗ ⊗ id

))
.

Counitality of ∆L with respect to εL, implemented locally by diagram 5.6, gives

E(β′′ ,y)

∼= //
⊕
f ′

(
id⊗ (εL)(β

′′
,f
′
)

∗

)
(∆L)(β

′′
,y)

∗ (E(β′′ ,y)) {0} .

v � // v ⊗ 1

By assumption, E(β′′ ,y) are nontrivial. This is a contradiction unless the summands correspond-

ing to β
′′ 6= x of the direct sum in the lower left corner of diagram 5.8 do not intersect the image

of (∆R)(x,y)
∗ .

Using the first commutation relation in part (b) of the definition 2, we have a diagram similar

to diagram 5.8. Inspecting that resulting diagram tells us that the image of (∆R)(x,y)
∗ does not

intersect those summands of the direct sum in the lower left corner of diagram 5.8 corresponding
to β

′ 6= x. This shows that, indeed,

(∆R)(x,y)
∗ : E(x,y) −→ E(x,y) ⊗ E(x,y).

The coassociativity of (∆R)(x,y)
∗ follows from coassociativity of ∆R and its counitality with

respect to (εR)(x,y)
∗ follows from counitality of ∆R with respect to εR. This proves part (ii) of
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the above proposition. Exchanging the roles of ∆L and ∆R with minor modifications proves
part (i). �

Following the arguments in sections 5.1, 5.2 and 5.3 for HR, we see that we can similarly
associate a category HR enriched over V. Denoting by C(V) by the category of coalgebras on
V, we have the following proposition.

Proposition 33. The categories HL and HR are enriched over C(V).

These categories are strongly related. By proposition 31, we have the following corollary.

Corollary 4. The C(V)-enriched categories HL and HR have isomorphic underlying V-enriched
categories.

Note that the underlying V-enriched category of HL and HR only depends on the C(X)-ring
structures of HL and HR, respectively. Another way to prove corollary 4 is to use the fact that
HL and HR have the isomorphic C(X)-ring structures. To see why HL and HR have isomorphic
C(X)-ring structures, note that the source map of HL is the target map of HL while the target
map of HL is the source map of HR. In the general definition of a Hopf algebroid, one can
either use the source or the target map to select a particular ring structure to consider, see for
example [6]. Using the general fact that for a general k-algebra R, R-rings (A,µ, η) corresponds
uniquely to k-algebra maps η, we see that HL and HR are isomorphic as C(X)-rings.

Remark 22. Another way to see why HL and HR are isomorphic as C(X)-rings is the fact
that general Hopf algebroids H with bijective antipode over a commutative ring K is a coupled
K-Hopf algebra.

Unlike the ring structures, the C(X)-coring structures of HL and HR can vary wildly as
illustrated by coupled Hopf algebras. This implies that the C(V)-enrichments HL and HR need
not be isomorphic. However, they form a topological coupled Hopf category. The coupling
functor is the one induced by the antipode S of the Hopf algebroid H. We formalize this in the
following theorem.

Theorem 6. Given a finitely-generated projective Hopf algebroid H over C(X) with bijective
antipode, one can associate a topological coupled Hopf category H via the construction we pre-
sented in sections 5.1 and 5.2. Conversely, to any topological coupled Hopf category H , the
space of sections Γ(X ×X,H) of the associated sheaf H of H is a Hopf algebroid over C(X).

The proof of the first statement is basically the breadth of chapter 5. For the second state-
ment, one can consider the bimodule structures presented in proposition 23. The rest of the
structures are given by the rest of the structure maps of H . The above theorem is a generaliza-
tion of the example in [1] where they constructed out of a k-linear category with finitely many
objects a weak Hopf algebra. The theorem not only recovers an inverse to the construction they
presented but it also work for weak Hopf algebra as long as the subalgebra spanned by the left
and the right units are commutative. The above theorem is the generalization of the example
we discussed in section B.2.

5.5 The central case

Although C(X) is commutative, it may not be central in H. In chapter 5 we discussed the case
when C(X) is central in H. Let us revisit this case from the perspective offered by the present
chapter. For simplicity, we will blur the disctinction between C(X) at its images under the
source maps of H.

Let us consider first the constituent left bialgebroid HL of H. By proposition 27, HL is
supported along the diagonal /∆ ⊆ X × X. This means that the sheaf E coincides with the
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vector bundle E −→ X. We can simply identify the diagonal /∆ with X. With this, the
multiplication µL in HL via the identification HL

∼= Γ(X,E) is pointwise, i.e. the fibers of the
vector bundle E −→ X are (possibly nonisomorphic) unital complex alegrbas (Ex, (µL)x∗ , (sL)x∗),
where (µL)x∗ and (sL)x∗ are the maps induced by µL and sL on the fiber Ex.

By proposition 32, the coproduct ∆L and counit εL of HL also descends into a coproduct
(∆L)x∗ and a counit (εL)x∗ for the fibers Ex, x ∈ X, making them coalgebras. Using condition (b)
in the definition of a bialgebroid, we see that (∆L)x∗ is multiplicative for any x ∈ X. Meanwhile,
using condition (c) of the definition of a bialgebroid we see that (εL)x∗ is multiplicative for any
x ∈ X. This gives us the following proposition.

Proposition 34. If C(X) is central in HL, then for any x ∈ X,

(Ex, (µL)x∗ , (sL)x∗ , (∆L)x∗ , (εL)x∗)

is a bialgebra. Moreover, the bialgebroid HL is a bundle of bialgebras via HL
∼= Γ(X,E).

Similar statement holds for the constituent right bialgebroid HR. Since for very x ∈ X the
maps (sL)x∗ and (sR)x∗ induced by the source maps sL and sR are the same, the multiplications
(µL)x∗ and (µR)x∗ coincide. Assuming mild nondegeneracy conditions for (∆L)x∗ and (∆R)x∗ , we
get the following proposition.

Proposition 35. Let H = (HL, HR, S) be a Hopf algebroid over A = C(X) where A is central
in both HL and HR. Denote by H the underlying complex algebra of H. Suppose that the maps

H ⊗
A
H

galL // H ⊗
A
H

a⊗
A
b � // ab[1] ⊗

A
b[2]

, H ⊗
A
H

galR // H ⊗
A
H

a⊗
A
b � // ab[1] ⊗

A
b[2]

are bijections. Then

(i) H is a coupled Hopf algebra with constituent Hopf algebras HL and HR and coupling map
S.

(ii) Each fiber Ex is a Hopf algebra and HL
∼= Γ(X,E) as Hopf algebras, where the structure

maps of Γ(X,E) are all pointwise. Same is true for HR.

(iii) H is a bundle of coupled Hopf algebras over X such that the constituent Hopf algebras at
a point x ∈ X are the fiber Hopf algebras of HL and HR.

Proof: Centrality of A in both HL and HR implies that HL and HR are in fact bialgebras over
A (not just bialgebroids). The nondegeneracy conditions assumed in the proposition implies
that H is a Galois extension for both bialgebras HL and HR. By [44], the bialgebras HL are

HR are in fact Hopf algebras, i.e. the identity maps HL
id−→ HL and HR

id−→ HR are invertible
in the respective convolution algebras associated to the bialgebras HL and HR. The rest of the
conditions for H to be a Hopf algebroid imply that HL and HR are coupled Hopf algebras with
coupling map S, the antipode of H. This proves part (i).

To prove part (ii), we argue that the maps galL and galR are A-bimodule maps. Thus, there
descend into fiberwise bijections. Using the same argument we did for part (i), see that the
fibers are coupled Hopf algebras. Part (iii) readily follows from the proofs of parts (i) and (ii).
�

5.6 Correspondence of Galois extensions

In this section, we will see that the correspondence between Hopf algebroids and coupled Hopf
categories we established in theorem 6 persists to their corresponding Galois theories. To be
precise, we will prove the following theorem.
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Theorem 7. Let H = (HL, HR, S) be a Hopf algebroid over A = C(X) for some compact
Hausdorff space X. Let H be the corresponding topological coupled Hopf category of H. Then
H-Galois extensions of A corresponds bijectively to H -Galois extensions of IX .

Before proving the above theorem, let us comment on what we mean by Galois extension
by a (topological) coupled Hopf category H = (HL,HR, S). By this, we mean an inclusion of
categories IX ⊆M which is simultaneously HL-Galois and HR-Galois in the sense of section B.3.
Note that by definition 22, we are not requiring HL and HR to be Hopf categories (individually,
they are only C(V)-enriched categories). In particular, they do not necessarily have antipodes.
Fortunately, Galois extension in the sense described in section B.3 does not really make use of
the antipode.

Proof: Let B be a (left) H-Galois extension of A. In particular, B is an A-ring. Note that the
arguments we used in sections 5.1 and 5.2 only use the A-ring structure of the Hopf algebroid
H. Using the same arguments, B ∼= Γ(X×X,B) where B is a sheaf of vector spaces over X×X.
By the Galois condition, we see that B has the same support Z ⊆ X ×X as the sheaf E we get
from either HL or HR. Similar to remark 20, we get a small category B over X enriched over
V whose associated sheaf is B.

The (right) HL-coaction ρL : B −→ B ⊗A H induces a map B −→ B X×XE of sheaves of
OX -bimodules over X×X. By definition, B is a right A-module and a right Aop-module. Using
this, the A-bimodule structure on B is as follows:

a · b · a′ = b(aa
′
)

for any a, a
′ ∈ A and b ∈ B. Similar to 5.5, the right HL-coaction induces, for every (x, y) ∈ Z,

linear maps

B(x,y)
(ρL)

(x,y)
∗

//
⊕

z′ ,z′′∈X
B(z′ ,y) ⊗ E(z′′ ,y) (5.9)

where B(x,y) the fiber of B at the point (x, y). As before, E(x,y) denotes the fiber of E over (x, y).
Likewise, the right HR-coaction ρR induces linear maps

B(x,y)
(ρR)

(x,y)
∗

//
⊕

z′ ,z′′∈X
B(x,z′ ) ⊗ E(x,z′′ ) (5.10)

By 2.15, we have

(5.11)

B(x,y)

(ρL)(x,y)∗ //

(ρR)(x,y)∗

��

⊕
z′ ,z′′

(
B(x,z′ ) ⊗ E(x,z′′ )

)

⊕
z
′
(ρR)(x,z

′
)

∗ ⊗id

��⊕
z′ ,z′′

⊕
α′ ,α′′

(
B(α′ ,z′ ) ⊗ E(α′′ ,z′ ) ⊗ E(x,z′′ )

)

⊕
β′ ,β′′

(
B(β′ ,y) ⊗ E(β′′ ,y)

)
⊕
β
′′
id⊗(∆L)(β

′′
,y)

∗

//
⊕
β′ ,β′′

⊕
γ′ ,γ′′

(
B(β′ ,y) ⊗ E(β′′ ,γ′ ) ⊗ E(β′′ ,γ′′ )

)
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Meanwhile, counitality of the left coaction ρL implies that

⊕
z′ ,z′′

(
B(x,z′ ) ⊗ E(x,z′′ )

)
⊕
z
′′
id⊗(εL)(z,y)∗

��

B(x,y)

(ρL)(x,y)∗

::

⊕
z′

(
B(x,z′ ) ⊗ C

)
v � // v ⊗ 1

from which, using a similar argument we to the proof of proposition 32(1), gives

B(x,y)
(ρL)

(x,y)
∗

// B(x,y) ⊗ E(x,y) .

Similarly, we have

B(x,y)
(ρR)

(x,y)
∗

// B(x,y) ⊗ E(x,y) .

These tell us that B is a right HL- and a right HR-comodule. The composition ◦ in B is induced
by the A-product on B. By equations 2.17 to 2.20, this composition ◦ is a map of right HL-
and a right HR-modules. Thus, B is a right HL- and a right HR-comodule-category. It is not
hard to see that the right coactions of HL and HR on B are both Galois whose subcategories
of coinvariants are both the same as IX . These imply that B is a Galois extension of IX by the
topological coupled Hopf category H = (HL,HR, S).

The inverse of this correspondence is easily seen as the the one that associates to an
(HL,HR, S)-Galois extension IX ⊆ B the (HL, HR, S)-Galois extension A ⊆ B. Here, we
denote by HL, HR, B and A the spaces of global sections of the associated sheaves to HL, HR,
B and IX , respectively. The compatibility conditions in the categorical side precisely correspond
to the analogous compatibility conditions in the algebraic side. �

Theorem 7 together with theorem 6 give the following complete geometric description of
possibly non-central local coverings of A = C(X).

Theorem 8. Let (B,H) be a local covering of A = C(X). Then there is a topological coupled
Hopf category H over X and a right H -comodule-category B such that the global sections of
the associated sheaves are H and B, respectively. Moreover, B is an H -Galois extension of IX .

Comparing to the central case, the algebraic structures of B and H are no longer pointwise
but convoluted. We will see a more explicit example of such structure in section 6.1 when we
discuss rational non-commutative tori.
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Chapter 6

Coverings of the noncommutative
torus

Do. Or do not.
There is no try.

−Yoda,
The Empire

Strikes Back

In chapter 5, we dealt with the general situation of non-central local coverings (B,H) of
a commutative space A = C(X). In the first section of this chapter, we will see a particular
example of such coverings. In particular, we will discuss the case of the commutative torus. We
will also discuss along with it, the case of the rational non-commutative torus. As we shall see
in the next section, these two cases are not that far apart.

The first truly non-commutative example we will deal with is that of an irrational non-
commutative torus. Using methods of K-theory, we will show that coverings of such tori, which
are themselves irrationally non-commutative, are of the same type.

6.1 Commutative and rational non-commutative tori

Let q ∈ C be a primitive nth root of unity. Let B be the universal C∗-algebra generated by
unitaries U and V satisfying UV = qV U . Let A be the C∗-subalgebra generated by U and
V n. Then U and V commutes. Thus, A is isomorphic as a C∗-algebra to the algebra C(T2) of
continuous functions on the 2-torus. As an A-module, B is finitely-generated and projective. In
fact, it is free with generators

{
1, V, ..., V n−1

}
. Thus, by the Serre-Swan theorem B ∼= Γ(T2,E)

for some finite-rank vector bundle E over T2. However, the multiplication in B is not the
pointwise multiplication on Γ(T2,E) since A is not central in B. Let us describe the product in
B as an A-ring. Since B is free over A, we have an isomorphism

B ∼=
n−1⊕
i=0

A · V i.

Let us index the generating set of B as an A-module by Z/n, the group of integers modulo n.
Elements f and g of B are of the form
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f =
∑
i∈Z/n

aiV
i, g =

∑
i∈Z/n

biV
i

for some ai, bi ∈ A, i = 0, ..., n− 1.

Figure 6.1: Convolution-pointwise product

Then the product of f and g is

fg =
∑
k∈Z/n

χk (α, β)V k

for χk (α, β) ∈ A, k = 0, ..., n − 1 where α = (a0, a1, ..., an−1) and β = (b0, b1, ..., bn−1). Let us
describe χk. Denote by L : A −→ A the diagonal operator defined on linear generators of A by
L(UxV ny) = q−xUxV ny. Consider the group table of Z/n considered as a matrix, denoted as Ω.
Fix k ∈ Z/n. From Ω, construct a matrix Ωk by changing those entries different from k ∈ Z/n
to 0 and changing the entries with k to Li−1, if that entry is in the ith row. Then

χk (α, β) = αΩkβ
T =

(
a0, a1, ..., an−1

)
Ωk


b0
b1
...

bn−1

 =
n−1∑
i=0

aiL
i(bk−i).

for k = 0, ..., n− 1. As an example, for n = 3 we have

Ω0 =

 L0

L1

L2

 , Ω1 =

 L0

L1

L2

 , Ω2 =

 L0

L1

L2


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and so

χ0 = a0L
0(b0) + a1L

1(b2) + a2L
2(b1)

χ1 = a0L
0(b1) + a1L

1(b0) + a2L
2(b2)

χ2 = a0L
0(b2) + a1L

1(b1) + a2L
2(b0).

The A-ring structure of B is pointwise-convolution as illustrated in figure 2. Denote by
H = C(G,A), where G = Z/n. We claim that H is a commutative Hopf algebroid. The left-
and right-bialgebroid structures of H are isomorphic, with pointwise product, whose source,
target, counit and antipode map is

A
s,t

// H,

1 � // 1

H ε // A,

f � // f(1)

H S // H,

f � // Sf, Sf(x) = f(x−1)

respectively, and whose coproduct is

H ∆ // H⊗
A
H ∼= C(G×G,A)

f � // ∆f, ∆f(x, y) = f(xy).

The group G acts on B as follows: g · U = U , g · V = qV where g ∈ G is a generator. This
action extends to a module structure over the group algebra H∗ = AG, the A-dual of the Hopf
algebroid H. The H∗-invariants of B is A. Thus, B carries a coaction of H whose coinvariants
is A. This implies that (B,H) is a local covering of A. �

Remark 23.

(1) The covering (B,H) of A above is an example of a covering where A is a commutative
space which is not central in B. However, the images of A under the source and target
map is central in H as it is a commutative Hopf algebroid. This implies that H is a bundle
of Hopf algebroids (actually, of Hopf algebras) but the coaction is not pointwise.

(2) We can generalize the example above as follows. Given integers n and m, let q be a
primitive nmth root of unity. Let B be the universal C∗-algebra generated by unitaries U
and V satisfying UV = qV U) and let A be the C∗-subalgebra generated by commuting
unitaries Un and V m. Thus, A ∼= C(T2). Take H to be the commutative Hopf algebroid
C(G,A) over A where G = Z/n × Z/m. As a matter of fact, we can construct coverings
of C(T2) for any finite quotient G of Z2. We outline this construction in the next section.

Let θ = n
m ∈ Q where n and m are coprime integers. The center of the noncommutative

torus T2
θ is the C∗-subalgebra generated by Um and V m. The computation above implies that

rational noncommutative tori give local coverings of the commutative torus with commutative
quantum symmetries. Thus, we get the following proposition.

Proposition 36. Let θ = n
m for coprime integers n and m with m > 0. Let T2

θ be the non-
commutative torus with parameter θ. Then there is a commutative Hopf algebroid H such that
(T2

θ,H) is a covering of Z(T2
θ) = C(T2).
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Remark 24. We have an explicit presentation of T2
θ as a bundle over T2. Consider the following

elements of T2
θ
∼= Γ(T2,Mm(C)).

U(x, y) =



exp
(

2πix
m

)
exp

(
2πi(n+x)

m

)
exp

(
2πi(2n+x)

m

)
. . .

exp
(

2πi((m−1)n+x)
m

)


,

V (x, y) =



exp
(

2πi(n+y)
m

)
exp

(
2πiy
m

)
. . .

exp
(

2πiy
m

)
exp

(
2πiy
m

)


, x, y ∈ [0, 1].

They satisfy the canonical commutation relation relation

U(x, y)V (x, y) = e2πiθV (x, y)U(x, y)

for any x, y ∈ [0, 1]. Taking mth powers give the toroidal coordinates

U(x, y)m = e2πixI and V (x, y)m = e2πiyI.

6.2 Irrational noncommutative tori

The situation of a rational non-commutative torus is closely related to that of the commutative
torus as we saw in the previous section. However, the case for an irrational non-commutative
torus is far challenging to describe. If we try to mimic the construction of a local covering in
section 6.1, a natural choice for the quantum symmetry is T2

θ o G but this is in general not a
Hopf algebroid over T2

θ. The problem is that there are no nice maps s, t : T2
θ −→ T2

θ o G with
commuting images since T2

θ is centrally simple for θ irrational. In this section, we will construct
uniform coverings of T2

θ instead. Before we continue discussing the situation of the irrational
non-commutative torus, let us first recall a characterization of finite classical coverings of the
commutative torus.

Proposition 37. Any finite classical covering of the 2-torus T2 is again a 2-torus. Moreover,
the covering map takes the form

T2 p
// // T2

(ζ1, ζ2) � // (ζn1 , ζ
m
2 ).

for some integers n,m.

In the non-commutative framework, there is no obvious reason for a covering of a non-
commutative torus to be a non-commutative torus as well. This is easily seen with comparison
with the non-commutative point having more than one connected covering space. Let us restrict
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our attention to coverings of an irrational non-commutative torus T2
θ which are themselves non-

commutative tori. We will prove that in that case, the non-commutative tori involved are of the
same type.

Definition 17. We say that two irrational numbers θ and η are of the same type if θ = n+mη
for some integers n,m. �

Let 0 < θ ∈ R be an irrational number. Let T2
θ be the universal C∗-algebra generated by

unitaries U and V satisfying UV = e2πiθV U . It is well known that T2
θ is centrally simple. The

K-theory groups of T2
θ are K0(T2

θ)
∼= K1(T2

θ)
∼= Z2. More precisely, K0(T2

θ)
∼= Z + θZ as an

ordered group.

Consider an injective unital C∗-morphism T2
θ

j−→ T2
η. There is an induced map Z + θZ j∗−→

Z + ηZ in K0, a map of ordered groups. Without loss of generality, we may assume 0 < θ < 1.
Let j∗(θ) = n+mη for some integers n,m. By unitality of j, we have j∗(1) = 1. We claim that
θ and η are of the same type. Suppose otherwise. In particular, this implies that n + mη 6= θ.
Without loss of generality, assume n + mη > θ. Then, there is an integer N such that Nθ <
M < N(n + mη) for some integer M . Thus, Nθ < M and M < N(n + mη). This implies
that Nθ < M and j∗(M) < j∗(Nθ), which contradicts the fact that j∗ is order-preserving. This
proves the following proposition.

Proposition 38. If (T2
θ,H) is a covering of T2

η then θ and η are of the same type.

In the classical case it is enough to specify the surjective map defining the covering space.
In our framework, one has to specify the symmetry. The next proposition tells us that for
non-commutative tori, specifying the inclusion is enough to construct a covering.

Proposition 39. Given an injective ∗-homomorphism T2
θ

φ−→ T2
η, up to approximately-unitary

equivalence, there is a uniform covering (T2
η, H) of T2

θ such that the inclusion T2
θ ⊆ T2

η is given
by φ.

Proof: Using theorem 3.2.6 and proposition 3.2.7 in [42], any injective ∗-homomorphism T2
θ

φ−→
T2
η is approximately unitarily equivalent to an injective ∗-map T2

θ
α−→ T2

η with K1α : Z2 −→ Z2,
(x, y) 7→ (n1x+m1y, n2x+m2y). In particular, the map

T2
θ

α−→ T2
η, U 7→ Pn1Qm1 , V 7→ Pn2Qm2

does the job. Here, P,Q and U, V are the unitary generators of T2
η and T2

θ, respectively. Let
G = Z2/ 〈(n1,m1) , (n2,m2)〉, a group of order N = n1m2 − n2m1. Let H = C (G), the Hopf
algebra dual to CG.

Let us show that G acts on T2
η with invariants T2

θ and hence, H coacts on T2
η with coinvariants

T2
θ. Consider a fundamental domain for G. One can for example take the integral region in Z2

inside the parallelogram with vertices (0, 0), (n1,m1), (n2,m2) and (n1 +n2,m1 +m2) including
(0, 0). This fundamental region can be identified with the Pontryagin dual Ĝ of G. As an
T2
θ-module, T2

η is freely generated by elements of the form PnQm where (n,m) ∈ Ĝ. Consider

the canonical pairing 〈, 〉 : G × Ĝ −→ S1. Then G acts on T2
η by algebra isomorphisms defined

for all (n,m) ∈ Z2 by

(i, j) · PnQm = 〈(i, j), (n,m)〉PnQm, for (i, j) ∈ G.

Note that an element of T2
η is invariant with this action precisely when (n,m) is in the integral

span of (n1,m1) and (n2,m2). This shows that the space of invariants is T2
θ. This proves our
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Figure 6.2: Action of G on T2
η

claim. To show that the extension T2
θ ⊆ T2

η is H-Galois, we have to check that the following
linear map

T2
η ⊗
T2
θ

T2
η

// T2
η ⊗ CG

is an isomorphism. But this is immediate from the fact that G acts freely and transitively on
the T2

θ-module generators of T2
η. This gives us a uniform covering (T2

η,H) of T2
θ. �

Remark 25. Since UV = e2πiθV U , we have α(U)α(V ) = e2πiθα(V )α(U). This implies that
e2πi(θ−(n1m2−n2m1)η) = 1, and hence θ − (n1m2 − n2m1)η ∈ Z. This directly verifies that θ and
η are of the same type. At the same time, this gives explicitly the multiplier N = n1m2−n2m1

witnessing the equivalence of θ and η.

Example 10. Let us construct another covering of T2
θ. One which is stratified with stratification

C(S1) ⊆ T2
θ. Let n ∈ N and let

B = T2
θ/n = C∗

〈
U, V |U∗U = UU∗ = 1 = V ∗V = V V ∗, UV = e

2πiθ
n V U

〉
and let A be the C∗-subalgebra of B generated by U and V n. Note that A ∼= T2

θ. Let A
′

=
C∗ 〈U〉 ⊆ A. Note that A

′ ∼= C(S1). Consider the Hopf algebroid H = C(G,A
′
) where G ={

1, ζ, ζ2, ..., ζn−1
}

, the group of nth roots of unity. G acts on T2
θ/n as follows: ζ · U = U and

ζ ·V = ζV . This action extends to an action of the Hopf algebra A
′
G with invariants A. Thus, H

coacts on T2
θ/n with coinvariants T2

θ. Using similar argument as the previous example, A ⊆ B is

an H-Galois extension. This gives us a stratified covering of T 2
θ with stratification A

′ ∼= C(S1).
�
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Chapter 7

Locality and uniformity of
non-commutative covering spaces

It is easier to square a circle
than to get round a mathematician.

−Augustus De Morgan

7.1 Geometric interpretation of stratification of coverings

Let us describe the contrast between local and stratified coverings. We aim to give a geometric
intuition behind such stratifications and we will be less precise in doing so. First, note that local
coverings can be regarded as a stratified coverings whose stratification is trivial (i.e., stratification
by points). However, it will be useful to use local as we shall see soon.

In chapter 6 we have constructed coverings of non-commutative tori with stratifications
A
′

= A, A
′

= C(S1) and A
′

= C. Pretending A has points, these stratifications correspond to
geometric stratifications illustrated in figure 7.1.

Figure 7.1: Geometric stratifications associated with A
′

= A, A
′

= C(S1) and A
′

= C.

A covering (B,H) of A with stratification A
′ ⊆ A, by definition, has its quantum symmetry

defined over A
′
. By the duality between noncommutative spaces and algebras, the inclusion

A
′ ⊆ A induces a surjection Â // // Â′ . This suggests that the quantum symmetry varies within

the leaves of the stratification defined by the fibers of Â // // Â′ but the variation is the same
among the leaves. As a concrete illustration, let us consider coverings of the (commutative) torus
T2 with stratifications A

′
= C(T2), A

′
= C(S1) and A

′
= C. The covering with stratification
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A
′

= C(T2) has its quantum symmetry a Hopf algebroid H defined over the commutative
algebra C(T2). If C(T2) is central in H then H is a bundle of complex Hopf algebroids over T2.
These fiber Hopf algebroids need not be isomorphic. This suggest that the quantum symmetry
can vary over A

′
= C(T2). For the second case, A

′
= C(S1) using the same argument and

assumptions imply that H is a bundle of complex Hopf algebroids over S1 whose fibers may

be nonisomorphic. These fibers Hopf algebroid varries among the fibers of T2 p
// // S1 which

defines the stratification. If C(S1) is the largest subalgebra of A = C(T2) for which H is defined
over then by the Galois condition, H must be constant along each fibers of p. The third case
suggest that we have the same quantum symmetry H over each point of T2.

Meanwhile, uniform coverings are a special case of stratified coverings. Aside from A
′

= k we
also require that H is a Hopf algebra. This in particular requires that the bialgebroid structures
to coincide.

Remark 26. The relation between stratifications is not at all clear. It might be tempting to
think that a covering (B,H) of A with stratification A

′
is also a covering with stratification A

′′

where A
′′ ⊆ A′ by simply refining the stratifications as figure 7.2 suggests.

Figure 7.2: Stratifications of the quantum symmetries H1 and H2.

This can be done in the commutative case. However, it is not clear in the general case. For one,
a Hopf algebroid H over A

′
cannot be simply viewed as a Hopf algebroid over A

′′ ⊆ A
′
. The

main problem is lifting the coproducts of H over A
′

to coproducts over A
′′
.

H ⊗
A′′
H

'' ''

H

88

∆L

// H ⊗
A′
H

In the commutative case, one can use decent theoretic methods.

7.2 Uniform coverings

Uniform coverings are, without a doubt, the easiest to handle. For one, the symmetry of the
covering is given by Hopf algebras. Though not completely understood, Hopf algebras are far
more understood than general Hopf algebroids. In this section, we will look at properties of
uniform coverings.

Recall from theorem 5 that a central local covering of A = C(X) is a bundle of coverings of
a point. A similar statement for uniform coverings holds.
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Proposition 40. Let (B,H) be a uniform covering of A = C(X) such that A is central in B.
Then there is bundle of algebras E // // X such that B ∼= Γ(X,E) as algebras. Moreover, for
each x ∈ X, (Ex, H) is a covering of a point.

The above proposition is hardly a surprise since a uniform covering (B,H) of a commutative
space A gives a local covering (B,A ⊗ H). Applying theorem 5 to this local covering proves
proposition 40. A nice consequence of uniformity is the following proposition.

Proposition 41. Let (B,H) be a uniform covering of A = C(X) such that A is central in B.
The underlying vector bundle of E of proposition 40 is rationally trivial.

Proof: Let Htriv be the trivial vector bundle over X with typical fiber H. The Galois map gal
induces the following isomorphism of vector bundles over X.

E ⊗X E
∼=−→ E ⊗X Htriv

Applying the Chern character map ch on both sides and noting that it is multiplicative, we get
ch(E)2 = n · ch(E). Since ch(E) ∈ H∗(X,Q) is invertible, we have ch(E) = n. Thus, E is
rationally trivial. �

Remark 27. For comparison, let (B,H) be a central local covering of A = C(X), section 4.3

gives bubdles E
p
// // X and F

q
// // X associated to B and H, respectively. Using a similar

argument as the proof above, we see that ch(E) = ch(F ). Thus, E and F are stably equivalent
vector bundles.

Theorems 2 and 3 have analogues for uniform covers. We only state the one for 2. The
analogue of theorem 3 will be apparent.

Proposition 42. Let A be a commutative unital C∗-algebra and let (B,H) be a uniform covering
of A. Suppose B is commutative. Then H is a commutative Hopf algebra and there is a classical

finite Galois covering Y
p
// // X of compact Hausdorff spaces with A = C(X), B = C(Y ) with

deck transformation group G such that H = C(G).

The proof of proposition 42 is similar and much easier than the proof of theorem 2. For one,
a commutative Hopf algebra over C immediately gives a group G for which H = C(G). Recall
that we needed lemma 4 for this task.
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Chapter 8

Duality

E. Galois (1811-1832) would certainly
be surprised to see how often his

name is mentioned in the mathematical
books and articles of the twentieth
century, in topics which are so far

from his original work.

−Borceux & Janelidze, [8].

8.1 The OZ-Transform

Apart from the non-commutative point having plenty of non-commutative covers, another in-
teresting phenomenon happens for non-commutative coverings− they come in pairs. The goal
of this section is to make this precise and explore its geometric implications.

This requires introducing a handful of intermediary works. Oystaeyen-Zhang [38] illustrated
a way to get another Hopf algebra from a Hopf-Galois extension of commutative rings. In [43],
upon generalizing the results of Oystaeyen-Zhang to Hopf-Galois extension of non-commutative
rings, Schauenburg introduced bi-Galois extensions. The main use of bi-Galois extensions in our
present situation is as follows. Given a Hopf algebra H over k; and B, a right H-Galois extension
of k, there is a uniquely determined Hopf algebra K for which B is a left K-Galois extension of
k. Moreover, the coactions of H and K on B commute making B an K-H-bicomodule algebra.
We will call K the left OZ-transform of H relative to the extension k ⊆ B, and denote it as

K = OZ left[B/k](H). (8.1)

This construction is involutive, i.e. H is also uniquely determined by the left K-Galois extension
k ⊆ B. With this, we will denote

H = OZright[B/k](K), (8.2)

and call H the right OZ-transform of K relative to the extension k ⊆ B.

We will look at the case when A ⊆ B a right H-Galois extension where A need not be k.
However, we will assume that A is central in B. Denote by ρ the right coaction of H on B
defining the Galois extension under consideration.
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Proposition 43. If A ⊆ B is a right H-Galois extension, A central in B and B faithfully flat
over A. Then there is a Hopf algebra K over A such that A ⊆ B is a left K-Galois extension.
Moreover, the coactions of H and K commute.

This follows directly from theorem 3.5 of Schauenburg [43]. Changing the base ring k of H
into A gives a Hopf algebra H

′
= A⊗H over A such that A ⊆ B is a right H

′
-Galois extension.

This is due to the following commutative diagram.

B ⊗A B
gal

// B ⊗H

∼=

��

B ⊗A B
gal
′

// B ⊗A (A⊗H)

Thus, we get a Hopf algebra K = OZ left[B/A](H
′
) coacting on the left of B whose subalgebra of

coinvariants is A commuting with the right coaction of H
′
. In terms of our language, we have

the following proposition.

Proposition 44. Let (B,H) be a (right) uniform covering of A = C(X) such that A is central
in B and B is faithfully flat over A. Then there is a Hopf algebra K over A such that (B,K)
is a (left) central local covering of A.

Notice that theorem 5 applies in this situation giving us a vector bundle H −→ X such that
the fibers are Hopf algebras. Note that there is no reason for these fiber Hopf algebras to be
isomorphic.

8.2 Coupled Hopf algebras and bi-Galois extensions

As we discussed in example 1, in a coupled Hopf algebra, the two constituent Hopf algebras
are only related by the coupling map. In this section, we will see that the two Hopf algebras
are related by an even stronger relation: one is the cocycle deformation of the other one. In
definition 9, a general notion of a cocycle is defined to accommodate cocycle deformations of
bialgebroids. Let us discuss explicit what this cocycle deformation means for Hopf algebras.

For the purpose of the the following discussion, assume k is a field. Given an invertible
2-cocycle σ on H, i.e. a convolution invertible element of Hom(H ⊗H, k), we can form another
Hopf algebra, denoted by Hσ, called the σ-double deformation or σ-double twist of H. It is the
Hopf algebra with the same coalgebra structure as H but the multiplication is given by

g · h := σ(g(1), h(1))g(2)h(2)σ
−1(g(3), h(3))

for any g, h ∈ H. We can assume σ is normalized, i.e. σ(g, 1) = σ(1, g) = 1. With this, the unit
of Hσ is the same as the unit of H.

Let us return to the situation that (B,H) is a covering of k and H, as a coupled Hopf algebra,
has HL and HR as constituent Hopf algebras. Denote by ρL and ρR the respective coactions
of HL and HR on B. Since k is a field and HR is finite-dimensional, theorem 1.9 of [3] implies
that any HR-Galois object is cleft. In particular, B being a (right) HR-Galois over k, we have
B ∼= k#σHR for some invertible 2-cocycle σ.

Meanwhile, by lemma 4.5.11 of [30] a right HL-comodule algebra is a left Hcop
L -comodule

algebra. This implies that B is both a left Hcop
L -comodule algebra and a right HR-comodule

algebra. The these two coactions need not commute. As a reminder, the relation they satisfy is
given by diagram 2.15. However, if ρR equalizes the maps ρcopL ⊗ id and ( F⊗ id) ◦ (id ⊗ ∆L),
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where ρcopL is the co-opposite of the coaction ρL, we get a stronger relation between the Hopf
algebras HL and HR. Before stating this relation, let us first give a name to the condition we
just mentioned since we will refer to it again.

Definition 18. Consider a coupled Hopf algebra (HL, HR, C) coacting on B via ρL and ρR.
We say that the coaction is right-twisted (resp. left-twisted) if the following

B
ρR // B ⊗H

ρcopL ⊗id //

( F⊗id)◦(id⊗∆L)

// H ⊗B ⊗H

commutes, (resp. if the following

B
ρL // B ⊗H

ρcopR ⊗id //

( F⊗id)◦(id⊗∆R)

// H ⊗B ⊗H

commutes). �

If the Galois coaction of a coupled Hopf algebra H on B is right-twisted then the coactions
ρcopL and ρR commute. In other words, B is an Hcop

L -HR-bicomodule algebra. Note that B is
faithfully k-flat since k is a field. Thus, in the terminology of [47], B is an Hcop

L -HR-bi-Galois
object. Using proposition 3.1.6 of [47], Hcop

L = Hσ
R, where σ is the same cocycle appearing in

the isomorphism B ∼= k#σHR we mentioned above. The following proposition summarizes what
we just argued.

Proposition 45. Let (B,H) be a covering of a point and let HL and HR be the constituent
Hopf algebras of H in view of proposition 13. If the Galois coaction of H on B is right-twisted,
then Hcop

L = Hσ
R as Hopf algebras, for some cocycle σ.

Remark 28.

(1) In a covering (B,H) of a point, the constituent Hopf algebras of H play a symmetric role.
Thus, one gets a version of proposition 45 by interchanging the indices L and R. However,
it is unknown to the best of knowledge of the author how the cocycle one gets from this
version relates to that of proposition 45.

(2) The cocycle deformation we described above is dual to Drinfeld twists.

Recall that coupled Hopf algebras HL and HR have the same algebra structure. Also, Hcop
L

and HL have the same algebra structure. Thus, the cocycle σ one gets in proposition 45 twists
the algebra structure of HR within its isomorphism class. We have the following proposition.

Corollary 5. Suppose HL is cocommutative. Then:

(i) HR is also cocommutative.

(ii) σ vanishes in the Sweedler cohomology group H2(HR, k).

Part (i) is an obvious consequence of proposition 45. Part (ii), making sense in view of part
(i), follows from Sweedler’s classification of cleft extensions by cocommutative Hopf algebras,
see [48].

Let us end this section with a triviality statement for coverings of a point. As we mentioned
in section 4.1, unlike the classical case in which a point only has one connected covering− itself,
in the present set-up a point has more than one such connected cover. As a specific instance
of example 6, Nikshych in [36] constructed a simple Hopf algebra by cocycle-twisting the group

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017



CHAPTER 8. DUALITY 92

algebra of the alternating group A5. Simple Hopf algebras do not have non-trivial idempotents.
However, cleft extensions are the analogues of trivial principal bundles. Using theorem 1.9 of
[3] (proved by Kreimer and Cook) we see that if (B,H) is a covering of a point then B is a cleft
extension by both HL and HR.

8.3 Two-sidedness

Non-commutative coverings spaces possess a two-sided nature in two different but related ways.
The first one is the fact that quantum symmetries have two interacting left and right structures
(the consituent bialgebroids). One might think that this is because of the use of Hopf algebroids
which, as built in their structure, have two such constituent bialgebroids. However, even if we
settled with uniform coverings proposition 44 gives another quantum symmetry which illustrates
the second way non-commutative coverings shows this two-sided nature. Let us look closer to
these two-sidedness nature.

According to lemma 2, the antipode S of a Hopf algebroid H = (HL, HR, S) is an anti-

homomorphism H
S−→ Hop of the underlying k-algebra H of H. As we noted in remark 2 part

(7), if S is bijective then HL determines HR uniquely, and vice versa. Explicitly, from [5] we
have the following proposition.

Proposition 46. Let HL be a left L-bialgebroid whose underlying k-algebra is H. If S is an
anti-isomorphism of H, then there is at most one right bialgebroid HR such that (HL, HR, S) is
a Hopf algebroid over Lop.

The case when there is no such right bialgebroid is when S fails to satisfy conditions (3.5)
through (3.8). The above proposition tells us that, in the case of coupled Hopf algebras with
bijective coupling map, (H1, H2, C) is completely determined by any two among the triple.

In the case of bi-Galois extensions, each Hopf algebra determines the other Hopf algebra
uniquely since the OZ-transforms 8.1 and 8.2 are inverses of each other, see for example remark
3.7 of [43]. We should point out that neither bi-Galois extension nor Galois extension of coupled
Hopf algebras is much general than the other one. The only thing that relates the two is the
condition defined in definition 18. Note that the left regular and the right regular Galois coaction
of a coupled Hopf algebra (HL, HR, C) already commutes by definition. Thus, the underlying
k-algebra H is an HL-HR-bi-Galois extension of k. This means that HL = Hσ

R for some cocycle
σ according to proposition 3.1.6 of [47]. Thus, we have the following proposition.

Proposition 47. Let H = (HL, HR, C) be a coupled Hopf algebra that admits a right-twisted
right Galois coaction. Then HL is cocommutative.

To see this, if H admits a right-twisted right Galois coaction then proposition 45 says that
Hcop
L = Hσ

R as Hopf algebras for some cocycle σ. But H itself is an HL-HR-bi-Galois extension
of k which implies that HL = Hτ

R for some cocycle τ . Note that cocycle deformation only
deforms the algebra structure and not the coalgebra part. Thus, Hσ

R = Hτ
R as coalgebras which

then implies that Hcop
L = HL as coalgebras.
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Chapter 9

Other examples of non-commutative
covering spaces

It is a curious historical fact
that the modern quantum
mechanics began with two

quite different mathematical
formulations: the differential

equation of Schrödinger
and the matrix algebra of

Heisenberg. The two
apparently dissimilar

approaches were proved to
be mathematically

equivalent.

−Richard Feynman

In chapters 4 to 6 we discussed covering spaces of commutative spaces and non-commutative
tori. Let us stretch our collection of examples by considering non-commutative spaces one
encounters frequently. Our first example in this chapter concerns matrix algebras. As what
section B.2 says, Mn(C) is a covering of A = Cn. But here, we will be interested with coverings
of Mn(C) itself. Using similar arguments, we will describe coverings of the algebra K(H) of
compact operators.

9.1 The algebra of compact operators

For this section, let us fix k = C and let A = Mn(C). Then A is Morita equivalent to C. One can
take the Mn(C)-C-bimodule P = Cn and the C-Mn(C)-bimodule Q = Cn as the inverse pairs
of bimodules witnessing the equivalence. By proposition 8, the categories COVMorita(A) and
COVMorita(C) are adjoint equivalent. The proof of that proposition tells us explicitly how to
construct coverings of A from coverings of C, and vice versa. Using this idea, let us characterize
local coverings of Mn(C).

Let (B,H) be a covering of C. By proposition 13, H is a coupled Hopf algebra, i.e. there
are two Hopf algebras H1 = (H,m, 1,∆1, ε1, S1) and H2 = (H,m, 1,∆2, ε2, S2) and a coupling
map C : H −→ H satisfying the conditions we enumerated in example 2. Using the proof of 8,



CHAPTER 9. OTHER EXAMPLES OF NON-COMMUTATIVE COVERING SPACES 94

(B
′
,H′) is a covering of A, where B

′
= P ⊗CB⊗CQ and H′ is the Hopf algebroid over A whose

constituent left- and right-bialgebroid structures are

HL = P ⊗C H ⊗C Q,

∆L = id⊗C ∆1 ⊗C id

εL = id⊗C ε1 ⊗C id

HR = P ⊗C H ⊗C Q,

∆R = id⊗C ∆2 ⊗C id

εR = id⊗C ε2 ⊗C id

respectively. The antipode of H′ is S = id⊗ C ⊗ id. The source and target maps of H′ are the
maps determined by η

′
= id⊗C η ⊗C id where η is the map C ∼= C⊗Cop −→ H giving the unit

1 ∈ H. Similarly, the multiplications on HL and HR are the ones induced by the product m of
H. In fact, more is true.

Proposition 48. Let K be the algebra of compact operators on a separable Hilbert space H.
Then COVMorita(K) and COVMorita(C) are equivalent.

The algebra K is strongly Morita equivalent to C. The Hilbert space H viewed as a C-K-
Hilbert bimodule and a K-C-Hilbert bimodule gives a pair of inverse equivalence bimodules. By
[2], strongly Morita equivalent C∗-algebras are Morita equivalent. The above proposition follows
from this and proposition 8.

9.2 Non-commutative sphere

Let us view the 2-torus T as S1 × S1 where S1 is viewed as a subset of the complex plane.
Consider the involution J : S1 × S1 −→ S1 × S1 given by J(z1, z2) = (z1, z2). It is not hard to
see that the quotient of T by Z2 implemented by J is homeomorphic to the 2-sphere. Figure 9.1
illustrates this involution.

Figure 9.1: The hyperelliptic involution on the torus

Dualizing this construction gives us the non-commutative 2-sphere. For θ ∈ R, consider the
non-commutative torus T2

θ with unitary toroidal generators U and V , cf. chapter 6. Consider
the involution J of T2

θ given by J(U) = U∗ and J(V ) = V ∗. In non-commutative geometry,
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quotients by group actions correspond to crossed products with group actions. Thus, the non-
commutative 2-sphere S2

θ is given by T2
θ oJ Z2. Equivalently, the non-commutative sphere S2

θ is
the universal C∗-algebra generated by unitaries U , V , and W subject to the relations

UV = e2πiθV U, WUW = U∗, WVW = V ∗, and W 2 = 1

Here, W is the unitary of S2
θ implementing the involution J .

Proposition 49. Let H = C(Ẑ2) be the dual group algebra of Ẑ2 with complex coefficients.
Then (S2

θ , H) is a uniform covering of T2
θ.

Proof: From the identification S2
θ = T2

θ oJ Z2, we see that S2
θ carries an action of the dual

group Ẑ2 via a non-degenerate pairing 〈, 〉 : Z2× Ẑ2 −→ C. The invariant subalgebra is T2
θ. This

action extends to an action of CẐ2 and hence, a coaction of H with coinvariants T2
θ. Since the

action of Z2 is implemented by a unitary involution, the action of Z2 on S2
θ is Galois over T2

θ.
Thus, the coaction of H is Galois as well. This proves the proposition. �

Remark 29. The classical 2-torus is a branched covering of the classical 2-sphere. Using the
hyperelliptic involution described above, this covering has 4 branch points, the 4 intersection
points of the red line with the torus in figure 9.1. Meanwhile, there is a reversal of roles in
proposition 49, the non-commutative sphere is the covering of the non-commutative torus.

Let θ be rational. Then, from section 6.1, the center of T2
θ is isomorphic to the commutative

torus T2
0. Note that the center Z(T2

θ) is stable under the involution J . Thus, the action of Z2

restricts to Z(T2
θ). Doing the same construction, we have S2

0 = T2
0oJ Z2 and the following holds.

Proposition 50. Let H = C(Ẑ2). Then (S2
0 , H) is a uniform covering of T2

0 and the diagram

T2
0

//

��

S2
0

ρ0
//

id⊗1
//

��

S2
0 ⊗H

��

T2
θ

// S2
θ

ρθ
//

id⊗1
// S

2
θ ⊗H

commutes. The right square commutes with appropriate pairing of the top and bottom arrows.

Let us mention some known facts about S2
θ . One can consult [51] for these properties. The

algebra inclusion T2
θ −→ S2

θ makes S2
θ a free T2

θ-module of rank 2, generated by 1 and W .

Moreover, there is a unital C∗-embedding S2
θ

φ−→M2(T2
θ) given as

φ (a+ bW ) =


a b

WbW WaW

 , a, b ∈ T2
θ.

Note that φ is well-defined since, by the defining relations of S2
θ , the subalgebra T2

θ ⊆ S2
θ is

stable under conjugation by W . Since T2
θ and M2(T2

θ) are Morita equivalent, they have the
same Morita category of (local) covering spaces. The unital C∗-embedding φ induces a faithful
functor from the category of M2(T2

θ)-bimodules to the category of S2
θ -bimodules. In particular,

any M2(T2
θ)-ring is also an S2

θ -ring. This gives us the following proposition.

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017



CHAPTER 9. OTHER EXAMPLES OF NON-COMMUTATIVE COVERING SPACES 96

Proposition 51. There is a faithful functor COVMorita(T2
θ) −→ COVMorita(S

2
θ ).

Remark 30. Propositions 49 and 51 give a mysterious relationship between the coverings of
the non-commutative torus and of the non-commutative sphere. Proposition 51 roughly says
that (up to Morita equivalence) local coverings of T2

θ are local coverings of S2
θ . Meanwhile,

proposition 49 says S2
θ covers T2

θ. However, this is not enough to conclude that (local) coverings
of S2

θ are (local) coverings of T2
θ. There are two main difficulties: the first one is the fact that

it is not clear how local coverings and uniform coverings are related; secondly, transitivity of
non-commutative coverings is not as simple as transitivity of classical coverings. To be precise,

if Z
q
// // Y and Y

p
// // X are classical coverings then obviously Z

pq
// // X is a classical

covering as well. As we have seen in section 3.3, composition of non-commutative coverings is
much complicated than its classical counterpart.
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Chapter 10

The category of non-commutative
covering spaces

Mathematicians seem to have
no difficulty in creating

new concepts faster than
the old ones become well-understood.

−Edward Norton Lorenz

It is perhaps misleading that the title of this chapter is ’the category of non-commutative
covering spaces’ as we shall see that, unlike the classical case where there is only one naturally
occurring category of covering spaces, a lot of things happen in the non-commutative framework.
A philosophical way to see this is to note that there might be several notions in non-commutative
geometry that collapses into the same notion in the classical geometry. For example as we have
pointed out in section 3.3, the commutative diagram 3.9 of classical covering spaces has three
different interpretations in the present set-up. In fact, this is the root why there are several
equally natural category of covering spaces. We will introduce them here.

10.1 The naive category of covering spaces

The first category of covering spaces that we will deal with is called the naive category, denoted
as COVnaive(A) for a non-commutative space A. Its objects are local coverings of A. An arrow

from (B1,H1) to (B2,H2) is a pair (f, α) where B1 f−→ B2 is a unital inclusion of algebras and
α is an monomorphism H1 α−→ H2 of Hopf algebroids making (B1,H1) an intermediate covering
of (B2,H2). Note that unitality of f implies that it is a morphism of A-rings. Proposition 7
tells us what are the equivalent objects in COVnaive(A).

Proposition 52. The category COVnaive(A) always has an initial object for any A.

Proof: The pair (Ae, Ae) is a local covering of A. The pair of maps (ι, sR ⊗ tR) where ι is
the map that send A to the factor A of Ae and sR, tR are the right source and right target
maps provide the unique arrow (A,A) −→ (B,H) for any local covering (B,H) of A. If A is
non-commutative then (Ae, Ae) is the initial object of COVnaive(A). If A is commutative then
(A,A) is a local covering of A which admits a unique arrow (A,A) −→ (Ae, Ae). This shows
that (A,A) is the initial object of COVnaive(A). �
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Remark 31. Note that the category COVnaive(A) is never pointed. The reason being that the
first map in a pair (f, α) defining an arrow in COVnaive(A) is required to be an algebra inclusion.

The category COVnaive(k), apart from being the most trivial example one can write, plays
an important role in the structure on non-commutative coverings of general algebras A. Before
we continue on this result let us first state a lemma.

Lemma 6. Let A be a k-algebra and let H1 and H be Hopf algebroids over A and k, respectively.
Then the tensor product H1⊗H is a Hopf algebroid over A, where H1 and H are the underlying
k-algebras of H1 and H.

Proof: H1 carries several bimodule structures in relation to being an A ⊗ Aop-ring and an
A-coring. These bimodule structures transfer to H1⊗H. For example, an A-bimodule structure
of H1 transfers to H1 ⊗H via

a ·
(
h1 ⊗ h

)
· a′ =

(
a · h1 · a′

)
⊗ h, h1 ∈ H1, h ∈ H, a, a′ ∈ A.

Let us consider the left-bialgebroid structures of H1 and H. With the transference method
described above applied to the underlying Ae-bimodule structure of H1 being an Ae-ring, we
have an isomorphism of Ae-bimodules(

H1 ⊗H
)
⊗Ae

(
H1 ⊗H

) ∼= (H1 ⊗Ae H1
)
⊗ (H ⊗H) .

Composing with
(
H1 ⊗Ae H1

)
⊗ (H ⊗H) // H1 ⊗H , the tensor product of the multiplica-

tion maps of H1 and H gives a map(
H1 ⊗H

)
⊗Ae

(
H1 ⊗H

)
// H1 ⊗H.

Together with the Ae-bimodule map Ae
η
// H1 // H1 ⊗H
h � // h⊗ 1

, the product H1⊗H becomes

an Ae-ring. Using similar arguments, the A-coring structure of H1 and the k-coring structure of
H makes H1⊗H an A-coring. For the right-bialgebroid structures of H1 and H we do the same
arguments. If SH1 and SH are the antipodes of H1 and H then S = SH1 ⊗ SH is the antipode
for H1 ⊗H. This proves the lemma. �

Proposition 53. Let k be a field. A covering (B,H) ∈ COVnaive(k) induces an endofunctor of
COVnaive(A), for any k-algebra A.

Proof: Let (B1,H1) ∈ COVnaive(A). We claim that (B1 ⊗ B,H1 ⊗H) ∈ COVnaive(A). Here,
H1⊗H is the Hopf algebroid structure asserted by lemma 6. First, we need to show that H1⊗H
coacts on B1 ⊗ B whose coinvariants is A. Note that specifying such a (right) coaction means
specifying a (right) coaction of the constituent left- and the right-bialgebroids of H1 ⊗ H, as
discussed in definition 4. We will only construct the one for the left bialgebroid. The one for the
right-bialgebroid is constructed similarly. Denoted by ρ1

L and ρL the right coactions of H1
L and

HL, respectively. Then the following composite defines a right coaction of H1
L⊗HL on B1⊗B.

B1 ⊗B
ρ1L⊗ρL // B1 ⊗A H1 ⊗B ⊗H id⊗ F⊗id

//
(
B1 ⊗B

)
⊗A

(
H1 ⊗H

)
.

Denote this coaction by αL. Denote by αR the coaction one gets by using the right coactions
of the right-bialgebroids of H1 and H. Note that id ⊗ F⊗ id makes sense by the transference
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method we described in the proof of lemma 6. Let us show that
(
B1 ⊗B

)co (H1
L⊗HL) = A. Let∑

b1 ⊗ b2 ∈ B1 ⊗B such that αL
(∑

b1 ⊗ b2
)

=
(∑

b1 ⊗ b2
)
⊗A (1⊗ 1). Then

(∑
b1 ⊗ b2

)
⊗A (1⊗ 1) = αL

(∑
b1 ⊗ b2

)
=
∑

b1(0) ⊗ b
2
(0) ⊗A b

1
(1) ⊗ b

2
(1). (10.1)

Since k is a field, we can assume that the b2(1)’s are linearly independent, which then gives

b2(1) = 1. Thus b2(0) = b2 ∈ k. Thus, up to scalars, we have∑
b1 ⊗ b2 =

(∑
b1
)
⊗ 1 = b⊗ 1

where b =
∑
b1. Equation 10.1 implies that

b⊗ 1⊗A 1⊗ 1 = αL(b⊗ 1) =
∑

b1(0) ⊗ 1⊗A b1(1) ⊗ 1

Assuming the b1(1)’s are linearly independent, we get b1(1) = 1 and hence b1(0) = b1. This shows that

ρ1
L(b1) = b1 ⊗A 1. Thus, b1 ∈ A. Doing the same for αR proves that

(
B1 ⊗B

)co (H1
L⊗HL) = A.

Denote by − ⊗ (B,H) the endofunctor induced by (B,H), i.e the endofunctor that sends
(B1,H1) to (B1 ⊗ B,H1 ⊗ H). Then, it is easy to see that − ⊗ (B,H) respects arrows in
COVnaive(A). This finishes the proof of the above proposition. �

10.2 Morita category of covering spaces

Morita equivalence is a prevalent equivalence in non-commutative geometry. In section 3.2, we
defined Morita equivalence of (local) coverings, see definition 14. In doing so, we came up with
a category whose isomorphisms are the said Morita equivalences, see remark 11(2). Given a
non-commutative space A, recall that the Morita category of covering spaces of A, denote by
COVMorita(A), is the category whose objects are local coverings of A. An arrow from (B,H) to
(B
′
,H′) is a pair (X ,U) of a (B,B

′
)-bimodule X and an (H,H′)-Hopf bimodule U . Composition

is explained in the same remark.

In its original form, Morita equivalence of rings are equivalence of their module categories.
The existence of equivalence bimodules is a consequence of Watt’s theorem. However, in defining
Morita equivalence of coverings we went directly into asserting bimodules and Hopf bimodules
exist, witnessing the Morita equivalence of the extension algebras and the Hopf-adapted Morita
equivalence of the associated quantum symmetries. Our goal in this chapter is to better un-
derstand this equivalence in hopes of understanding the category COVMorita(A) better. In
particular, we will look at what this equivalence do for classical covering spaces.

Let Y
p
// // X and Z

q
// // X be classical covering spaces. Denote by Y and Z the associ-

ated reduced groupoids to the coverings p and q, respectively (see definition 10). By section 3.1,
(C(Y ), C(Y)) and (C(Z), C(Z)) are local coverings of A = C(X). For simplicity, let us denote
by BY = C(Y ), BZ = C(Z), and HY and HZ the Hopf algebroids C(Y) and C(Z), respectively.
Suppose that the coverings (BY ,HY ) and (BZ ,HZ) are Morita equivalent. In particular, the
A-rings BY and BZ are Morita equivalent. Thus, there is a BY -BZ-bimodule P and a BZ-BY -
bimodule Q witnessing the categorical equivalence between the module categories of BY and
BZ .

The constituent left and right module structures of P and Q are finitely-generated and
projective. By Serre-Swan theorem, there is a finite-rank vector bundle E // // Y such that
P ∼= Γ(Y,E) as left BY -modules. But P is also has a right BZ-action commuting with the left
BY -action. Thus, BZ acts on the right of Γ(Y,E) and this action is pointwise. In particular,
BZ acts on the fiber Ey, for each y ∈ Y . Since BZ is a commutative ∗-algebra, elements of BZ
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act diagonally on Ey. Moreover, for each y ∈ Y , Ey decomposes into joint eigenspaces for these

diagonal operators. Let y ∈ Y be fixed. Then there is an algebra map BZ
Φ // End(Ey) .

With a choice of a local trivializing neighborhood of y ∈ Y and an orthonormal basis of the
typical fiber over such trivializing neighborhood, Φ factors through Diagn(C), i.e.

BZ
Φ //

Φ
((

(( Mn(C)

Diagn(C)

66

The algebra Diagn(C) determines n central orthogonal idempotents. The composition of Φ

with the projection onto the ranges of these idempotents give n homomorphisms BZ
φi // C .

Each such homomorphism gives an element zi ∈ Z such that φi(f) = f(zi), for f ∈ BZ and
i = 1, 2, ..., n. Note that the zi’s depend on y and this dependence is continuous. Similar to
our argument from section 5.1, we have a subset W ⊆ Y × Z. Let us denote by E(y,zi) the
eigenspace one gets from the decomposition we described above of the fiber Ey associated to
the point zi ∈ Z, for i = 1, 2, ..., n. This gives us a sheaf E of complex vector spaces over Y ×Z
supported on W . As a BY -BZ-bimodule, P ∼= Γ(Y ×Z, E) where the BY -BZ-bimodule structure
on Γ(Y × Z, E) is given as

(f · σ · g) (y, z) = f(y)σ(y, z)g(z), for y ∈ Y, z ∈ Z.

Doing the same argument for Q we see that as a BZ-BY -bimodule, Q ∼= Γ(Z×Y,F) for some
sheaf F of complex vector spaces supported on a subset W

′ ⊆ Z × Y . Since P ⊗BZ Q ∼= BY
as BY -bimodules, the fiber product W ×Z W

′
must be the diagonal in Y × Y . Similarly, the

isomorphism Q⊗BY P ∼= BZ of BZ-bimodules implies that the fiber product W
′ ×Y W must be

the diagonal in Z ×Z. This can only happen if F(W ) = W
′
. In fact, more is true. The sheaf F

is the pull-back of the sheaf E along the flip map F: Z × Y −→ Y × Z. Keeping the notation
of this section, we have proven the following proposition.

Proposition 54. If the commutative A-rings BY = C(Y ) and BZ = C(Z) are Morita equiva-
lent, then there is a sheaf E of complex vector spaces over Y ×Z such that the BY -BZ-bimodule
Γ(Y ×Z, E) witnesses this equivalence. The inverse bimodule is given by Γ(Z×Y, ET ) where ET
denotes the pull-back of E along the flip map Z × Y −→ Y × Z.

Actually, we can say something stronger. We have isomorphisms of BY -bimodules

P ⊗BZ Q ∼= Γ(Y × Z, E)⊗C(Z) Γ(Z × Y, ET ) ∼= Γ(Y × Y, E ⊗Z ET )

where E ⊗Z ET is the sheaf of complex vector spaces over Y × Y whose fiber at a point (a, b) ∈
Y × Y is given by (

E ⊗Z ET
)

(a,b)
=
⊕
z∈Z

E(a,z) ⊗ E(z,b). (10.2)

But P ⊗BZ Q ∼= BY as BY -bimodules. We can consider BY as the global section of the sheaf of
complex vector spaces over Y ×Y supported along the diagonal and whose fiber at (y, y) ∈ Y ×Y
is the one-dimensional vector space C. With these, we see that

(
E ⊗Z ET

)
(a,b)

= C for a = b.

Otherwise, it is the zero vector space. This implies that the direct sum in equation 10.2 contains
only one non-zero summand, a tensor product of two one-dimensional complex vector spaces.
Thus, we have the following proposition.
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Proposition 55. The sheaf E of proposition 54 is supported on a tranverse subset W ⊆ Y ×Z,
i.e. a subset such that π1|W : Y × Z −→ Y and π2|W : Y × Z −→ Z are homeomorphisms. In
particular, Y and Z are homeomorphic.

In the above proposition, π1 and π2 denote the projection onto the first and second factor,
respectively. From the above proposition, we get the familiar fact that Morita equivalent com-
mutative rings are isomorphic as rings. With the assumptions of this section, we deduce the
following.

Corollary 6. The classical coverings Y
p
// // X and Z

q
// // X are equivalent if and only if

the coverings (BY ,HY ) and (BZ ,HZ) they determine are Morita equivalent.

Note that in the above discussion, we did not make use of the Hopf algebroids HY and HZ .
This is because the groupoids Y and Z are completely determined by the coverings p and q,
which in turn, determine the Hopf algebroids in question.

In the above discussion, we assumed that (BY ,HY ) and (BZ ,HZ) are Morita equivalent.
Using what we have done so far, let us see the case when there is an arrow from (BY ,HY ) to
(BZ ,HZ) in the category COVMorita(A) that is not necessarily an isomorphism. Take this arrow
to be (P,U). By definition,

BY ⊗
BY

P ∼= BZ , HY ⊗
HY

U ∼= HZ

as an (A,BZ)-bimodule and an (Ae,HZ)-Hopf bimodule, respectively. Just like what we have
before, P ∼= Γ(Y × Z, E) as BY -BZ-bimodules, for some sheaf E of complex vector spaces.
Likewise, we have BY ∼= Γ(X × Y,L) as A-BY -bimodule, where L is a sheaf of complex vector
spaces. As for BZ , it is isomorphic to Γ(X × Z,N ) as a A-BZ-bimodule where, similarly, N
is a sheaf of complex vector spaces over X × Z. Then BY ⊗BY P ∼= Γ(X × Z,L ⊗Y E) as
A-BZ-bimodules, where L ⊗Y E is the sheaf of complex vector spaces over X × Z, whose fiber
at a point (a, b) ∈ X × Z is

(L ⊗Y E)(a,b) =
⊕
y∈Y

L(a,y) ⊗ E(y,b).

Here, L(a,y) denotes the fiber of L at (a, y) ∈ X × Y . Thus, we have the following proposition.

Proposition 56. If (P,U) is an arrow from (BY ,HY ) to (BZ ,HZ) then there are sheaves L, E
and N over X × Y , Y × Z and X × Z, whose global sections are BY , P , and BZ , respectively.
Moreover, we have L ⊗Y E ∼= N .

The discussions we did so far only concern the extension algebras and their Morita equivances
and Morita arrows. Propositions 54 and 55 can be applied to the underlying A-ring structures of
the Hopf algebroids we have in these section, proving that the groupoids Y and Z are isomorphic.

However, this already follows from the fact that the coverings Y
p
// // X and Z

q
// // X are

equivalent.

10.3 Towards étale fundamental groupoid of non-commutative spaces

In algebraic geometry, the étale fundamental group πet1 (X) of a scheme X is defined as inductive
limit
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πet1 (X) := lim
←−

Gal(k(X
′
)/k(X))

where X
′
runs among étale coverings of X such that the field of fractions k(X

′
) of the coordinate

ring of X
′

is a Galois extension of the field of fractions of the coordinate ring of X. Let us call
such coverings X

′
Galois. The reason such an inductive limit make sense is because the collection

of Galois coverings of X forms a cofiltered category. In particular, pullbacks of étale coverings
is again étale.

In our case, pullbacks of non-commutative coverings of A are in general, not finite over A.
See for example [39]. The categories COVnaive(A) and COVMorita(A) seem to have very few
useful properties. In particular, it is not clear whether such categories are close to being a fusion
category even for commutative A. With this, we propose the following definitions.

Pseudo-definition. Let A be a k-algebra. Define

(a) the naive étale fundamental groupoid of A to be COVnaive(A),

(b) the Morita étale fundamental groupoid of A to be COVMorita(A), and

(c) the étale fundamental group of A to be the category COVuni(A) whose objects are uniform

coverings of A. An arrow from (B1, H1) to (B2, H2) is a pair (f, α) where B1 f−→ B2 is a
monomorphism of A-rings and H1 α−→ H2 is a monomorphism of Hopf algebras. �

If one wants to associate a Hopf-like structure to A as its étale fundamental group(oid), one
should ask how close do the categories COVnaive(A) and COVMorita(A), if they are not, from
being fusion categories? In this case, one of the author’s future project is to study these categories
and see how much quantum information they encode for some interesting non-commutative space
A. In the next chapter, we will explore several possibilities of future work.
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Chapter 11

Future directions

These [cosmos and quantum] are the
parts of the intellectual map where

we’re still groping for the truth− where,
in the fashion of ancient cartographers,
we must still inscribe ’here be dragons’.

−Martin Rees

In this chapter, we will look at problems the author is planning to work on in relation
with this thesis. The first chapter will lay down concrete problems that are supplementary in
understanding non-commutative covering spaces. Most of the latter sections will be speculative
in nature.

11.1 ”Basic” problems that are left unsolved

The main goal of this thesis is to put forth a notion generalizing covering spaces to non-
commutative geometry. Along with that goal, we investigated which ”basic” properties of clas-
sical covering spaces generalize well to the non-commutative set-up and which do not. Results
like theorem 5 and proposition 11 are in line with this. However, it is no secret that there are a
lot of ”basic” questions that are left unanswered. Let us mention them in this section.

In example 2 of section 2.2, we defined and discussed coupled Hopf algebras and illustrated
how a construction of Connes and Moscovici [14] lead to an example. Ehud Meir, through a
personal discussion during the conference Topological Quantum Groups and Hopf Algebras in
Warsaw, believes that the only example of such coupled Hopf algebras are the ones given by the
Connes-Moscovici construction as discussed in example 2.

Question 1. Given a coupled Hopf algebra (H1, H2, C), is H2 the ε2-twist of H1 as described in
example 2?

In the classical situation, finite connected coverings of a torus are themselves torus. Since
a (non-commutative) point has plenty of connected covers besides itself, there is no reason to
expect that connected (finite) coverings of a non-commutative torus are also non-commutative
tori. This begs the following question.

Question 2. How far is a connected (finite) covering of a non-commutative torus from being a
non-commutative torus?

In algebraic geometry, the étale fundamental group of a curve X is defined to be the limit
of the projective system of Galois groups one associates to étale covers X

′
of X, i.e.
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πet(X) := lim
←−

Gal(k(X
′
)/k(X))

where k(C) denotes the function field of C. In the non-commutative framework, one would be
interested to have an inductive system of coverings of a non-commutative space A. In particular,
one is interested to have a transitive oredering on the collection of coverings of A such that any
finite subcollection is bounded above. The transitive ordering for local and uniform coverings is
provided by section 3.3. For the upper bound, one asks:

Question 3. Given local (resp. uniform) coverings (B1,H1) and (B2,H2) of A, can we find a
local (resp. uniform) covering (B3,H3) of A which covers B1 and B2?

In section 9.2 we discussed the non-commutative sphere. Classically, spheres of dimension
greater than 2 have no non-trivial classical covering spaces. In the present set-up, it is reasonable
to expect that the non-commutative sphere has non-trivial coverings. This is because, eben
highly connected spaces like a point has non-trivial coverings. Thus, it is reasonable to ask the
following question.

Question 4. Let θ be an irrational number. Does S2
θ have non-trivial connected coverings?

Notice that for θ rational, we already have immediate answers. For example, if θ = 0, one
can consider a connected non-trivial covering (B,H) of a point. Then (S2

0 ⊗ B,S2
0 ⊗ H) is a

connected non-trivial covering of S2
0 .

In appendix B, we defined topological Hopf categories as Hopf categories with associated
sheaves of vectors spaces, see definition 21. We used such topological (coupled) Hopf categories
to describe the general structure of non-central local coverings of a commutative space. A natural
question to ponder is the following.

Question 5. Is the sheaf Hsh uniquely determined by H and the topology on X?

Another interesting task to do is to see how the OZ-transform behaves for Hopf algebroids.
If the OZ-transform extends to Hopf algebroids then this will complete the picture we painted
in chapter 8. Formally, we ask:

Question 6. Does OZ left[B/A](−) make sense for Hopf algebroids? If so, is it also involutive?

11.2 Compact quantum groups

Classically, any covering G
′

of a topological group G is itself, a group. The group structure on
G
′

is unique up to a choice of the identity element among those points in the fiber of the identity
e of G. It is then a natural question to ask, whether this is still true in the non-commutative
set-up. To be precise, we have the following.

Question 7. Let A be a compact quantum group and let (B,H) be a uniform covering of A. Is
B necessarily a compact quantum group?

The most basic case in this direction is when A is a group C∗-algebra of some locally compact
group G. It seems that B need not be a group C∗-algebra itself. However, in case it is, we have
the following conjecture.

Conjecture 1. Let A = C∗(G). Let (B,H) be a uniform covering of A where B = C∗(G
′
) for

some locally compact group G
′
. Then H is the complex group algebra of some finite group Γ.

Note that one difficulty in the above conjecture is the fact that an inclusion C∗(G) −→
C∗(G

′
), if it will say something about the group G and G

′
, it is far from a statement saying G

′

is a covering of G. Hence, machinery of classical covering spaces is not readily available.
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11.3 Spectral triples

Another nice property of classical covering spaces is as follows. If (X, g) is a Riemannian manifold

and Y is a smooth manifold covering X via the map Y
p−→ X, then there is a unique Riemannian

metric g
′

on Y making p a local isometry.

In non-commutative geometry, the analogue of Riemannian manifolds are spectral triples. A
spectral triple (A,H, D) consists of a C∗-algebra A with a representation π : A −→ B(H), where
H is a separable Hilbert space, and an operator D on H satisfying the following conditions:

(a) D, called the Dirac operator, is self-adjoint,

(b) the resolvent (D − λ)−1 is a compact operator for any λ /∈ R, and

(c) [D,π(a)] ∈ B(H) for all a in a dense involutive subalgebra of A.

With all this, we have the following question.

Question 8. Given a spectral triple (A,H, D) and a uniform covering (B,H) of A, can we equip
B with a structure of a spectral triple? If so, how then is H related to the rest of the structures
involved?

Let us call the spectral triple structure on B answering question 8 a lift of (A,H, D). As
communicated to me by Olivier Gabriel, the answer to the first question seems to be affirmative
but is far from unique. If so, is it possible to classify all such lifts?

11.4 Deformation quantization of covering spaces

...but when these two
sciences [algebra and geometry] have been
united, they have lent each mutual forces,

and have marched together towards perfection.

−Joseph-Louis Lagrange

An on-going project is to produce examples of non-commutative covering spaces via defor-
mation quantization. Let us describe this briefly. Given a symplectic manifold (M,ω) and a

finite classical Galois covering N
p−→M , there is a unique symplectic structure on N making p

a symplectomorphism. This symplectic form is precisely ω
′

= p∗ω.

By a formal deformation quantization of M , we mean an associative, unital C[[~]]-linear
product ? on C∞(M)[[~]] of the form

f ? g = fg +
∞∑
j=1

(i~)jDj(f, g)

for all f, g ∈ C∞(M), where the Dj , j ∈ N are bidifferential operators on C∞(M). The product
? is called a star product. In Nest-Tsygan [35], formal deformation quantizations and hence,
star products have been classified. In particular, formal deformation quantization of (M,ω)

is classified by the affine space
ω

i~
+ H2(M)[[~]]. Now, to give a deformation quantization of

M one only needs to specify a class θ ∈ ω

i~
+ H2(M)[[~]]. Pulling-back via p, we have a class

p∗θ ∈ p∗ω

i~
+ H2(N)[[~]] which defines a formal deformation quantization of N . With these, we

have the following questions.
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Question 9. Let ? be the product on A = C∞(M)[[~]] defined by θ ∈ ω

i~
+H2(M)[[~]] and let ∗

be the star product p∗θ defines on B = C∞(N)[[~]]. Is (A, ?) a subalgebra of (B, ∗)?

The question above seems like an easy question, though due to lack of time the author did
not manage to fully delve into it. In case the answer to the question 9 is yes, we have follow up
questions.

Question 10. Is B a covering of A with quantum symmetry H = C(G) where G is the deck
transformation group of p?

Question 11. Can we describe all uniform (or local) coverings (B,H) of A = C∞(M)[[~]]?
Can we classify those uniform coverings (B,H) for which B itself is a formal deformation
quantization of some manifold N covering M?

11.5 Covering theory for other models of non-commutative geometry

...non-commutative geometry lacks common
foundations: for many interesting constructions of
”non-commutative spaces” we cannot even say for

sure which of them lead to isomorphic spaces,
because they are not objects

of an all-embracing category..

−Yuri Manin, 2005.

In this thesis, we followed Connes’ idea of non-commutative geometry. Although our for-
mulation of non-commutative coverings covers a much general algebraic situation and not just
C∗-algebras, most of our examples are. There are plenty of formulation of non-commutative ge-
ometry and each one focuses on an aspect of interest. Connes’ formulation of non-commutative
spaces is especially powerful when dealing with metric aspects of geometry. However, homotopy
theoretic aspects of such non-commutative spaces are not that well-addressed. In part, this
thesis tries to partially answer this.

For homotopy theoretic aspects, one can use differential graded categories as models of non-
commutative spaces. Chapter 5 gives an insight on how our present formulation can be related
to categories. In this case, we expect that Hopf categories will play the role Hopf algebroids
played in the formulation of non-commutative coverings in this thesis.

Another model that is beginning to take prominence is that of a topos. The category of
sheaves Sh(X) on a topological space X is a particular example of a topos and to some extent,
regarded as the classical case of this model. But as we have seen again in chapter 5 and in
appendix B, there is a strong relation between algebras, categories and sheaves. In this case,
we expect that the collection of Hopf sheaves will play the role of quantum symmetries though
we have not yet verified whether such a collection is a topos or not. See definition 21 of a Hopf
sheaf.

11.6 Monodromy

A problem worthy of attack
proves its worth by fighting back.

−Piet Hein
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The original motivation of this thesis is to put forth a useful notion of monodromy for
non-commutative spaces. This was stalled by the fact that there is not existing notion of a
fundamental group for non-commutative spaces. In trying to define such fundamental groups
(or groupoid), the author was further dragged into defining a more basic structure− that of a
covering space. Let us end this chapter by saying why one would be interested to have a notion
of monodromy.{

covering
spaces

}
======⇒

{
fundamental

group

}
======⇒

{
monodromy

representation

}
Connes’ formulation of non-commutative spaces have been successful in avoiding bad quo-

tients, as he called them. The use of operator algebras completely banish the singularities. In
having such a notion of monodromy, one can then study directly these singularities, i.e. using
only the lattice structure of ideals of a non-commutative space. However, it seems like such
an undertaking is far from realization since, as we have seen in section 11.1, there are lots of
important questions to be addressed first in the level of covering spaces.

The advantage of using Hopf algebroids instead of just Hopf algebras in the fact that we may
be able to encode local quantum symmetries that may vary point to point. As Pierre Cartier
pointed out in his article [12], the fundamental group π1(X, a) is regarded as the symmetry of the
point a ∈ X. Monodromy pushes this idea further by looking at representations of π1(X, a). As it
stands, this thesis will be the author’s first step towards formulating monodromy representations
for non-commutative spaces.

Non-commutative Covering Spaces and Their Symmetries
Clarisson Rizzie Canlubo, University of Copenhagen, 2017



Appendices

The following appendices covers materials that are important in the
synergy of the thesis but which does not coherently fit with the narrative.
The first one is an elementary recap of classical covering spaces. A
more detailed exposition can be found on [27]. In the second appendix,
building of the works develop in [1], we will introduce topological Hopf
categories and Hopf sheaves.

CONTENT:

A. Covering spaces

B. Topological Hopf categories



Appendix A

Covering Spaces

(What is it like to understand advanced mathematics?)
”..imagine describing what a snowflake

looks like to a blind man.”

−Joseph Wang, 2013.

In this appendix, we will recall basic definitions and properties surrounding classical covering
spaces. In part, this will serve for the purpose of self-containment. On another part, this will
serve as a backbone of what has transpired in the thesis. The first section discusses basic defi-
nitions and fact about covering spaces. The second section discusses Galois theory for covering
spaces. The last section discusses applications of covering spaces to classical geometry.

A.1 What are covering spaces?

In this section, we will assume topological spaces have nice connectivity properties. For example,
properties such as connectedness, local connectedness, path-connectedness, and local simply-
connectedness.

Definition 19. Let X be a topological space. An (unramified) covering of X is a space Y

together with a continuous surjection Y
p
// // X such that any point x ∈ X has an open

neighborhood U whose preimage under p is a disjoint union of homeomorphic copies of U , i.e.
p−1(U) =

∐
α∈I

Vα where each Vα are homeomorphic via p to U . A ramified covering of X is a

space Y together with a continuous surjection Y
p
// // X such that outside a nowhere dense

set O ⊆ X, p is a unramified. The smallest such nowhere dense set O is called the ramification
locus of p. �

We will briefly refer to unramified coverings as coverings. We should point out that, as an
immediate consequence of definition 19, the fiber p−1(x) of p at any point x ∈ X is a discrete
subset of Y . This might not sound like a big deal but this is one of the main obstacle in defining
general non-commutative covering spaces. Covering spaces are among a class of nice maps called
fibration. These satisfy homotopy lifting properties. For covering spaces, this takes the following
form.

Lemma 7. (Homotopy lifting property.) Let Y
p
// // X be a covering and let γ : [0, 1] −→ X be

a path in X with initial point x0. Given any y ∈ p−1(x0), there is a unique path γ̃ : [0, 1] −→ Y
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such that γ̃(0) = y and p ◦ γ̃ = γ.

Using the above lemma, one can prove that for any x, y ∈ X, the fibers p−1(x) and p−1(y)
are in bijection. A particular instance of this idea is when γ is a loop based at, say x ∈ X. In
this case, γ induces a auto-bijection of p−1(x).

The collection of all coverings of a given space X forms a category COV (X). A morphism

from a covering Y
p−→ X to a covering Z

q−→ X is a continuous map Y
r−→ Z such that p = q◦r.

It is obvious that r itself is a covering map. Given a covering Y
p−→ X, we can associate a group

AutX(Y ) consisting of homeomorphisms Y
f−→ Y that commutes with p, i.e.

Y
f

//

p

��

Y.

p

��

X

This group is called the group of deck transformations of the covering Y
p−→ X. It is easy

to see that this group acts on fibers of p. We say that Y
p−→ X is Galois if this group acts

transitively on the fibers. Note that AutX(Y ) always act freely on fibers of p. In some text, free
and transitive action actions are also called Galois actions, hence the name.

There is another characterization of covering spaces. The category COV (X) is equivalent
to the functor category on the fundamental groupoid of X with values in the category of sets.
The latter category is easily seen to be complete and cocomplete. The fundamental groupoid
Π(X) of X is the topological groupoid with X as its space of objects and arrows from x to y
are homotopy classes of paths from x to y.

We say that a (pointed) covering (Y, b)
p→ (X, a) is intermediate to the covering (Z, c)

q→
(X, a) if there is a (pointed) map (Z, c)

ϕ→ (Y, b) such that p ◦ ϕ = q. This induces a partial
order on the set of coverings of X and incidentally gives a notion of equivalence. The group of
auto-equivalences of (Y, b)

p→ (X, a) is precisely the group of deck transformations. We will be
mostly interested in the case of connected covers Y .

A.2 Galois theory for covering spaces

Denote by π1(X, a) the fundamental group of X based at a ∈ X (we will just write π1(X) if the
group is independent of the base point, the case when for example X is path-connected). The
covering map p induces a map p∗ between fundamental groups

π1(Y, b)
p∗

// π1(X, a)

by mapping a loop in Y down to a loop in X. By the homotopy lifting property, this map is
a monomorphism. The following theorem is called the classification theorem for coverings (cf
[27]).

Theorem 9. (Classification of pointed coverings.) For every subgroup G 6 π1(X) there is a

connected covering (Y, b)
p→ (X, a) such that p∗(π1(Y, b)) = G. Two (pointed) coverings (Y, b)

p→
(X, a) and (Z, c)

q→ (X, a) are equivalent (as pointed coverings) if p∗(π1(Y, b)) = q∗(π1(Z, c)) as
subgroups of π1(X, a).

More generally, a covering (Y, b)
p→ (X, a) associated to the subgroup GY is intermediate to

the covering (Z, c)
q→ (X, a) associated to the subgroup GZ if and only if GZ ⊆ GY . If we drop

the assumption regarding base points, coverings are equivalent if their associated subgroups are
conjugate in π1(x, a). If G is normal in π1(X) then AutXY = π1(X)/G. In this case, AutXY
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acts transitively on the fibers of (Y, b)
p→ (X, a). In general, AutXY = Nor(G)/G where Nor(G)

stands for the normalizer of G in π1(X).

The above discussion will be briefly referred to as the Galois theory for coverings. In analogy
with the Galois theory for fields, Galois coverings correspond to Galois extensions, intermediate
coverings correspond to intermediate extensions, and deck transformation groups correspond to
Galois groups. Note that in classical Galois theory, a Galois extension is an algebraic extension
which is both normal and separable. Separable extensions correspond to unramified coverings.
Some authors call those coverings in which the deck transformation group act transitively on
fibers normal instead of Galois. With that terminology, Galois coverings are unramified and
normal. Since we are dealing with exclusively with unramified coverings, normal coverings are
as good as Galois coverings. For a detailed exposition on this correspondence, one may consult
Khovanskii [27].

One way to think of covering spaces is that they are approximations of the space being
covered, say of X. Let us explain what we meant by an approximation here. Let us denote
by X̃ the universal cover, if it exists, of X. The subgroup of π1(X, a) associated to X̃ is the
trivial subgroup since there are no non-trivial loops in X̃. But the trivial group is normal in
π1(X, a). Thus, AutX(X̃) = π1(X, a). In other words, π1(X, a) acts freely and transitively on
fibers of X̃ −→ X. Choose a subgroup G ⊆ π1(X, a). One can then form X̃/G. The universal

covering map X̃ // // X factors through the canonical projection X̃ // // X/G . Thus, X̃/G

is a covering of X. The subgroup of π1(X, a) associated to X̃/G is G. With this, we see that all
loops in X are killed when lifted to X̃. For Y = X̃/G, loops γ in X are killed when lifted to Y
precisely when the homotopy class [γ] is in G. Non-trivial loops in X detect topological holes.
Thus, climbing up a tower of covering spaces banishes these holes.

A.3 What are they good for?

Covering spaces allow powerful tool of Galois theory accessible for topological spaces. Sometimes,
one is interested with local properties of a topological space rather than its global behavior. In
this case, one can just look at covering spaces since they are simpler than the original space but
locally similar. For example, the Lie algebra g of a Lie group G depends only in the neighborhood
of the identity. A well known fact about Lie groups tells us that Lie groups with the same identity
component have isomorphic Lie algebras. Actually, a stronger statement holds. Two Lie groups
with the same universal covering space have the same Lie algebras. It is quite easy to find in
the literature that the universal covering space G̃ of a Lie group G is itself a Lie group. The Lie
algebra g of G̃ is the same as the Lie algebra of G.

Covering spaces have applications to differential geometry. A volume form only exists for
an orientable manifold M which allows integration over regions in M . For a non-orientable

manifold M , one can proceed as follows. Take an orientable double cover M
′ p

// //M and
consider a volume form ω on M

′
. To integrate f ∈ C∞(M) over a region U ⊆ M , integrate

p∗fω over the disjoint union U1 ∪ U2 = p−1(U), then divide by 2. If the preimage of U under p
is not disjoint, one can proceed by subdiving U first into subsets with disjoint preimages under
p.

The last application we will discuss is the most important for our purpose. Let Σ denote
the category whose objects are π1(X)-sets and whose morphisms are π1(X)-equivariant maps.

We will show that COV (X) and Σ are equivalent categories. Given a covering Y
p→ X, there

is an induced action of π1(X) on p−1(a). This defines a functor from COV (X) to Σ. Now,
let S be a π1(X)-set. Let S =

∐
α∈I Sα be its decomposition into π1(X)-orbits. Given a

representative sα of Sα, we get a bijection between Sα and π1(X)/stab(sα) by the orbit-stabilizer
theorem. Then stab(sα) acts on X̃ and turns X̃/stab(sα) into a covering of X. Thus, we get
Y =

∐
α∈I X̃/stab(sα) as a covering of X. This defines a functor inverse to the previous one.

Note under this equivalence, the connected coverings are precisely the ones corresponding to
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homogenous π1(X)-sets. A natural question to ask is whether π1(X) is completely determined
by COV (X). The answer turns out to be affirmative using the following result:

Theorem 10. The group of natural automorphisms of the forgetful functor from π1(X)-Sets to
Sets is isomorphic to π1(X).

By an automorphism α of the forgetful functor F we mean a family of automorphism F(S)
αS→

F(S) such that for any morphism of π1(X)-sets S
σ→ T , the following commutes

F(S)

αS

��

F(σ)
//F(T )

αT

��

F(S)
F(σ)

// F(T ).

The theorem above is a very important theorem. Since the categories COV (X) and Σ are
equivalent, a problem concerning COV (X) is equally difficult in Σ. However, one can approxi-
mate the answer by considering nice full subcategories of Σ and the automorphism group of the
forgetful functors for those subcategories. For example, if one considers the full subcategory of
finite dimensional π1(X)-representations, one gets the algebraic hull of π1(X). If one considers
the full subcategory of finite π1(X)-sets, the automorphism of the forgetful functor to sets is the
profinite completion of π1(X). In a way, the above theorem serves as our guide in formulating
the notion of a fundamental group and fundamental groupoid for a noncomutative space.
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Appendix B

Topological Hopf categories

A mathematician is a person who can
find analogies between theorems;

a better mathematician is one who
can see analogies between proofs
and the best mathematician can

notice analogies between theories.
One can imagine that the ultimate

mathematician is one who can
see analogies between analogies.

−Stefan Banach

B.1 Definitions and properties

Batista et al. [1] introduced the notion of a Hopf category over an arbitrary strict braided
monoidal category V. In this section, we will introduce its topological version. For this purpose,
we specialize V as the category of complex vector spaces whose braiding is the usual flip of tensor
factors. Also, we will assume that the underlying categories of such Hopf categories are small.
We will be primarily interested with finite-type V-enriched categories, by which we mean the
hom-sets are finite-dimensional vector spaces. Before giving the definition of a Hopf category,
let us introduce some notation first. For two V-enriched categories A and B with the same set
of objects X, we define A ⊗X B to the the V-enriched category with X as the set of objects
and for x, y ∈ X, the hom-set of arrows from x to y is the vector space

(A ⊗X B)x,y := Ax,y ⊗Bx,y. (B.1)

We call A ⊗X B the tensor product of A and B. With this ⊗X , the category of V-enriched
categories over X becomes a strict monoidal category whose monoidal unit, denoted by IX , is
the category over X such that for any x, y ∈ X we have IXx,y = C.

Definition 20. A Hopf category H over X is a V-enriched category satisfying the following
conditions.

(a) There are functors
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H
∆ //H ⊗

X
H , H

ε // IX

called the coproduct and counit, respectively, such that ∆ is coassociative and counital
with respect to ε, i.e. the diagram of functors

H
∆ //

∆

��

H ⊗
X

H

id⊗X∆

��

H ⊗
X

H
∆⊗X id

//H ⊗
X

H ⊗
X

H

H

∆

""

H ⊗
X
IX

IX ⊗
X

H H ⊗
X

H
ε⊗X id

oo

is⊗Xε

OO

commute.

(b) There is a functor S : H −→H op, called the antipode, satisfying

H ⊗
X

H
S⊗X id //H op ⊗

X
H

◦

''
H

∆

77

∆
''

ε // IX
η

//H

H ⊗
X

H
id⊗XS

//H ⊗
X

H op

◦

77

Here, ◦ denotes the bifunctor induced by the categorical composition in H and η is the
functor that send 1 ∈ IXx,y to the identity element of Hx,y. �

Remark 32. Functoriality of ∆ and ε means that for any x, y ∈ X, we have linear maps

Hx,y
∆x,y

//Hx,y ⊗Hx,y Hx,y
εx,y

// C

where ∆x,y is coassociative and counital with respect to εx,y in the usual sense. This implies
that Hx,y is a coalgebra. If we denote by C(V) the category of coalgebras on V, another way to
package part (a) of definition 20 is to say that H is enriched over C(V).

For the main results of this paper, we will be mostly interested with the caseX is a topological
space. In such a case, it makes sense to reflect continuity on the functors ∆, ε and S along with
the categorical structure maps. This calls for the following definition.

Definition 21. Let X be a topological space and OX the sheaf of continuous complex-valued
functions on X. A topological Hopf category H over X is a Hopf category together with a
sheaf Hsh over X × X (with the product topology) of OX -bimodules satisfying the following
conditions.

(a) Denote by π1, π2 : X×X −→ X the projection onto the first and second factor, respectively.
Over an open set U ⊆ X ×X, for any σ ∈ Hsh(U), f ∈ OX(π1U) and g ∈ OX(π2U) we
have

(f · σ · g) (x, y) = f(x)σ(x, y)g(y)

for any (x, y) ∈ U .
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(b) Hx,y is the fiber of Hsh at (x, y) ∈ X ×X.

(c) ◦, η, ∆, ε and S are the induced maps on global sections of the following map of sheaves

Hsh ⊗
OX

Hsh ◦sh // Hsh , OX
ηsh

// Hsh ,

Hsh ∆sh
// Hsh ⊗

OX×X
Hsh , Hsh εsh // OX ,

Hsh Ssh //
(
Hsh

)op
respectively. Here,

(
Hsh

)op
is the pullback of the sheafHsh along the mapX×X −→ X×X

flipping the factors.

A sheaf Hsh of OX -bimodules over X ×X equipped with maps ◦, η, ∆, ε, and S described in
(c) is called a Hopf sheaf. �

Remark 33.

(1) The tensor product ⊗
OX

used for ◦sh, it is the one the identifies

σ · f ⊗
OX

τ = σ ⊗
OX

f · τ

for any σ, τ ∈ Hsh(X×X) and f ∈ OX . The OX -bimodule structure on the global section
of Hsh ⊗

OX
Hsh is given as

f ·
(
σ ⊗
OX

τ

)
· g = (f · σ) ⊗

OX
(τ · g)

for any f, g ∈ OX and σ, τ ∈ Hsh(X ×X).

(2) The tensor product ⊗
OX×X

used in part (c) for ∆sh of definition 21 assures that we have

f · σ ⊗
OX×X

τ · g = σ · g ⊗
OX×X

f · τ

for any f, g ∈ OX and σ, τ ∈ Hsh(X ×X).

(3) The map ∆sh lifts, denoted the same way, to a map ∆sh : Hsh −→ Hsh ⊗
OX

Hsh where the

tensor product ⊗OX in this case identifies

f · σ ⊗
OX

τ = σ ⊗
OX

f · τ

for any σ, τ ∈ Hsh(X ×X) and f ∈ OX . The antipode property assures us that the direct
image of Hsh along the lift ∆sh is a subsheaf of Hsh ⊗

OX
Hsh satisfying

σ · f ⊗
OX

τ = σ ⊗
OX

τ · f

for any σ, τ ∈ Hsh(X ×X) and f ∈ OX .
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(4) By virtue of the previous remark, Hsh, Hsh ⊗
OX

Hsh, and Hsh ⊗
OX×X

Hsh are all sheaves over

X×X. The sheaf OX can also be viewed as a sheaf over X×X supported on the diagonal.
Thus, the maps enumerated in part (c) of the above definition are maps of sheaves over
the same space.

(5) Let us expound more on what we meant by a Hopf sheaf. Consider a sheaf W of OX -
bimodules over X × X together with maps ◦w, ηw, ∆w, εw and Sw similar to part (c)
above. The sheaf W is a Hopf sheaf if the following conditions are satisfied. The sheaf W
is supported on a closed subset Z ⊂ X×X such that the preimages of the projection onto
the first and second factors are finite for all x ∈ X. On global sections ◦w and ηw make
W(X ×X) a unital associative OX -ring. We require that ∆w lifts to a map of sheaves

W ∆w
//W ⊗

OX
W

where W ⊗OX W is the sheaf over X × X defined as λ∗ ((πX)∗ θ∗ (W ⊗W)) where the
maps λ, θ, and πX

Z × Z θ // Z ×X Z
πX // X Z

λoo

are the canonical projection, the projection onto the X-factor and the projection onto the
first factor, respectively. Together with εw, we require that the lift of ∆w makesW(X×X)
a counital coassociative OX -coring. Lastly, we require Sw to satisfy a convolution diagram.
Note that these conditions are satisfied by Hsh and all its accompanying maps listed in
part (c) because of condition (b) in definition 21 and the fact that H is a Hopf category.

The following, which will play an important role in our formulation of the main result, is the
categorification of a coupled Hopf algebra.

Definition 22. A coupled Hopf category H is a V-enriched category with two enrichments over
C(V), denoted by HL and HR, with coproducts ∆L,∆R and counits εL, εR, respectively; there
is a functor S : H −→ H op, called the coupling functor; and all these satisfy the following
conditions:

(a) The following diagrams, indicating the coupling condition, commute.

H ⊗
X

H
S⊗X id //H op ⊗

X
H

◦

''
H

∆L

77

εR // IX η
//H

H

∆R

''

εL
// IX η

//H

H ⊗
X

H
id⊗XS

//H ⊗
X

H op

◦

77

(b) The coproducts ∆L and ∆R commute, i.e.
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H

∆L

��

∆R
//H ⊗

X
H

∆L⊗
X
id

��

H ⊗
X

H
id⊗
X

∆R
//H ⊗

X
H ⊗

X
H

H

∆R

��

∆L
//H ⊗

X
H

∆R⊗
X
id

��

H ⊗
X

H
id⊗
X

∆L
//H ⊗

X
H ⊗

X
H

�

Remark 34.

(1) Coupled Hopf categories are almost the categorification of coupled Hopf algebras. While
the constituent bialgebras of a coupled Hopf algebra is a Hopf algebras in itself, the con-
stituent categories HL and HR of a coupled Hopf category H need not be Hopf categories.

(2) Just like Hopf categories, we can also topologize coupled Hopf categories. We can take
definition 21: assert the existence of a sheaf Hsh over X × X of OX -bimodules, take
conditions (a) and (b) as they are, and replace condition (c) by

(c’) ∆L, ∆R, εL, εR and S are the induced maps on global sections of the following map
of sheaves

Hsh (∆L)sh
// Hsh ⊗

OX
Hsh , Hsh (εL)sh

// OX ,

Hsh (∆R)sh
// Hsh ⊗

OX
Hsh , Hsh (εR)sh

// OX ,

Hsh Ssh //
(
Hsh

)op
respectively, making the following diagram

Hsh(U) ⊗
OX(U)

Hsh(U)

SU ⊗
OX (U)

id

// Hsh(U)op ⊗
OX(U)

Hsh(U)

µU

))

Hsh(U)

(∆L)
sh

(U) 77

(εR)sh(U)
// OX(U)

ηU // Hsh(πdiag2 U)

Hsh(U)

(∆R)sh(U)
''

(εL)sh(U)
// OX(U) ηU

// Hsh(πdiag1 U)

Hsh(U) ⊗
OX(U)

Hsh(U)
id ⊗
OX (U)

SU
// Hsh(U) ⊗

OX(U)
(Hsh)(U)op

µU

55

commute for any U ⊆ X × X. Here, µU and ηU denote the maps induced by the
composition and unit maps of C . The maps πdiag1 and πdiag2 denote X×X −→ X×X,
(x, y) 7→ (x, x) and X ×X −→ X ×X, (x, y) 7→ (y, y), respectively.
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B.2 A good example of a Hopf category

In this section, we will look at a very important example of a Hopf category. This example
will be a representative example of one of the main result of section 5. This is a special case
of proposition 7.1 of [1]. Consider a finite set X whose elements are conveniently labelled as
1, 2, ..., n. Equip X with the discrete topology. Consider the category C whose set of objects is
X and define Cx,y = C. The category C is obviously a Hopf category. By proposition 7.1 of [1],
H =

⊕
x,y∈X Cx,y is a weak Hopf algebra. Using the arguments in example 4 of section 2.2, H

is a Hopf algebroid over A = Cn = OX(X).

The Hopf algebroid H has a more familiar form. It is isomorphic, as a Hopf algebroid, the
algebra Mn(C) over its diagonal Dn = Diagn(C). With the Dn-bimodule structure on Mn(C)
defined as

P ·M ·Q := MPQ, P,Q ∈ Dn,M ∈Mn(C),

the coproduct ∆R and the counit εR are given as

∆R(Eij) = Eij ⊗Dn Eij , εR(M) =

n∑
i=1

Eiiφ(MEii)

where φ is the linear functional defined by φ(Eij) = 1 for all i, j ∈ X. With the usual matrix
multiplication and unit, ∆R and εR constitutes a right Dn-bialgebroid structure on Mn(C). For
completeness, let us define the structure maps of the left Dn-bialgebroid structure of Mn(C).
Consider the Dn-bimodule structure on Mn(C) defined as

P ·M ·Q := PQM, P,Q ∈ Dn,M ∈Mn(C).

The coproduct ∆L and the counit εL are defined as

∆L(Eij) = Eij ⊗Dn Eij , εL(M) =

n∑
i=1

φ(EiiM)Eii

where φ is the same linear functional used to defined εR. The antipode S of this Hopf algebroid
is defined as S(Eij) = Eji.

As a weak Hopf algebra, φ is the counit of H. The coproducts ∆L and ∆R are the extension
of the weak coproduct ∆ to Mn(C)⊗Dn Mn(C) relative to the Dn-bimodule structure used. As
we will see in chapter 5, this is not a coincidence. This is in fact a special case of a more general
result which we shall prove at the end of that section.

B.3 Galois extensions of Hopf categories

Formulation of Galois theory for Hopf category is straightforward. Recall that in the case of
Hopf algebras, only the underlying bialgebra structure is relevant. In the coaction picture, the
coalgebra is used to make sense of a coaction while the algebra structure is used to make sense
of the Galois map. All these ingredients are already present in the case of a Hopf category. We
will discuss the situation for topological Hopf categories. The case for Hopf categories follow
almost immediately by dropping any manifestation of topology.

Before giving the definition of the categorical analogue of a comodule algebra, let us first
discuss what a topological category is, at least for our purpose. A V-enriched category M over
a space X is a topological category if there is a sheaf M sh of OX -bimodules such that conditions
(a), (b) and the relevant part of condition (c) of definition 21 hold.

Definition 23. Let H be a topological Hopf category with space of objects X, coproduct ∆,
counit ε and antipode S with associated sheaf Hsh.
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(1) A topological category M over X enriched over V, with associated sheaf M sh, is a right
H -comodule if there is a functor ρ : M −→M ⊗X H such that the following conditions
hold.

(a) ρ is coassociative with respect to ∆ and counital with respect to ε, i.e. the diagrams
of functors

M
ρ

//

ρ

��

M ⊗X H

id⊗X∆

��

M ⊗X H
ρ⊗X id

//M ⊗X H ⊗X H

M

ρ

��

M ⊗X IX

M ⊗X H

id⊗Xε

==

commute, and

(b) the functor ρ is the map induced by the map of sheaves M sh −→ M sh ⊗OX Hsh

where the tensor product is the same as the first one we described in remark 33. A
left H -comodule can be symmetrically defined.

(2) A morphism M
φ−→ N of right H -comodules is a functor that commutes with the right

coactions, i.e. one which makes the following diagram commute

M
ρM

//

φ

��

M ⊗X H

φ⊗X id

��

N
ρN

// N ⊗X H .

Here, ρM and ρN are the coactions of H on M and N , respectively.

(3) A right H -comodule M is a right H -comodule-category if in addition, the composition

map M ⊗X M
◦−→M is a map of right H -comodules, where M ⊗X M is equipped with

the diagonal coaction.

(4) The coinvariants of a right H -comodule-category M is the subcategory M co H whose
space of objects is X and whose hom-sets are defined as(

M co C
)
x,y

:= {α ∈Mx,y|ρ(α) = α⊗ idy}

for any x, y ∈ X.

�

Remark 35. A Hopf category is the categorification of a Hopf algebra with categorical compo-
sition corresponding to the algebra product. A right H -comodule M is in particular a category,
it already has a composition. This means that we only need to impose requirement (3) in def-
inition 23 to get a categorification of the notion of a comodule-algebra. In the classical set-up,
one has to require the existence of a product and assert its compatibility with the comodule
structures.
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In the set-up of Hopf-Galois theory with respect to Hopf algebras, there is a well-understood
notion for extensions of k-algebras A ⊆ B to be H-Galois for a Hopf algebra H even if A 6= k.
This is because B ⊗A B makes sense as a k-module. All that is left to do is require A = Bco H

and that the map B ⊗A B −→ B ⊗ H, a ⊗ b 7→ (a ⊗ 1)ρ(b) is bijective. On the other hand,
in the situation of a Hopf category H and extensions of comodule-categories A ⊆ M with
A = (M )co H , we can only make sense of the product M⊗A M in the case A is the subcategory
of M whose hom-sets Ax,y are all zero except when x = y, in which case Ax,x = C. In this case,
we identify M ⊗A M with M ⊗X M . Let us call such a category the trivial linear category over
X, and denote by IX . There might be a way to consider Galois extensions by Hopf categories
in which the subcategory of coinvariants is strictly larger than IX , but at present it is not clear
to the author how to make sense of it. Fortunately, for our purpose of proving theorem 7 it is
enough to have IX as the subcategory of coinvariants.

Definition 24. A right H -comodule-category M is a H -Galois extension of IX provided

(a) M co H = IX , and

(b) the functor

M ⊗X M
gal

//M ⊗X H

α⊗ β � //
(
α ◦ β[0]

)
⊗ β[1]

called the Galois morphism, is fully faithful. �

Remark 36.

(1) We are using Sweedler notation for the legs of the coaction

ρ : M −→M ⊗X H .

In other words, for any x, y ∈ X and α ∈ Mx,y, we have ρ(α) = α[0] ⊗ α[1], where
α[0] ∈Mx,z and α[1] ∈Hz,y for some z ∈ X. This, in particular, tells us that the map gal
above make sense.

(2) Galois extension by a coupled Hopf category H = (HL,HR, S) means simultaneous Galois
extensions of the constituent C(V)-enriched categories HL and HR.
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