
S p a t i o - t e m p o r a l
m o d e l i n g

o f
n e u r o n f i e l d s

A d a m L u n d

P h D t h e s i s
D e p a r t m e n t o f M a t h e m a t i c a l S c i e n c e s

U n i v e r s i t y o f C o p e n h a g e n

Adam Lund
adam.lund@math.ku.dk
Institut for Matematiske Fag
Københavns Universitet
Universitetsparken 5
2100 København Ø

Submitted March 31st 2017

Supervisors:
Prof. Niels Richard Hansen, IMF, University of Copenhagen
Co-Supervisor: Per Roland, INF, University of Copenhagen

Assessment committee:
Ass. Prof Anders Tolver (Chairman), University of Copenhagen
Senior Lecture Johan Lindström, Lund University
Ass. Prof. Bo Martin Bibby, Aarhus University

ISBN 9788770789349
Copyright ©2013-2017 Adam Lund.
Typeset in Hoefler Text using the LATEX memoir-class .

Abstract

The starting point and focal point for this thesis was stochastic dynamical mod-
elling of neuronal imaging data with the declared objective of drawing inference,
within this model framework, in a large-scale (high-dimensional) data setting. Im-
plicitly this objective entails carrying out three separate but closely connected tasks;
i) probabilistic modelling, ii) statistical modeling and iii) implementation of an in-
ferential procedure. While i) - iii) are distinct tasks that range over several quite
different disciplines, they are joined by the premise that the initial objective can only
be achieved if the scale of the data is taken into consideration throughout i) - iii).

The strategy in this project was, relying on a space and time continuous stochas-
tic modelling approach, to obtain a stochastic functional differential equation on a
Hilbert space. By decomposing the drift operator of this SFDE such that each com-
ponent is essentially represented by a smooth function of time and space and ex-
panding these component functions in a tensor product basis we implicitly reduce the
number of model parameters. In addition, the component-wise tensor representation
induce a corresponding component-wise tensor structure in the resulting statistical
model. Especially, the statistical model is design matrix free and facilitates an effi-
cient array arithmetic. Using proximal gradient based algorithms, we combine this
computationally attractive statistical framework with non-differentiable regulariza-
tion to form a computationally efficient inferential procedure with minimal memory
foot print. As a result we are able to fit large scale image data in a mathematically
sophisticated dynamical model using a relatively modest amount of computational
resources in the process.

The contributions presented in this thesis are computational and methodolog-
ical. The computational contribution takes the form of solution algorithms aimed
at exploiting the array-tensor structure in various inferential settings. The method-
ological contribution takes the form of a dynamical modelling and inferential frame-
work for spatio-temporal array data. This framework was developed with neuron
field models in mind but may in turn be applied to other settings conforming to the
spatio-temporal array data setup.

Resumé

Udgangspunktet og omdrejningspunktet for denne afhandling var stokastisk dy-
namisk modellering af neuron-billeddata med et erklæret mål om at drage inferens, i
denne modelramme, for høj-dimensionalt data. Implicit indebærer dette mål tre sær-
skilte, men alligevel tæt forbundne opgaver; i) sandsynlighedsteoretisk modellering,
ii) statistiske modellering og iii) implementering af en inferensprocedure. På trods af
at i) - iii) udgør særskilte opgaver, der hver især indrager vidt forskellige discipliner,
deler de det præmis, at det oprindelige mål med projektet kun kan nås, hvis skalaen
eller dimensionen af data, tages i betragtning i både i), ii) og iii).

Strategien i dette projekt har været, med udgangspunkt i en rum- og tidskon-
tinuert stokastisk modelleringstilgang, at etablere en stokastisk funktional differen-
tialligning (SFDE) på et Hilbert rum. Ved at dekomponere driftoperatoren i denne
SFDE således at hver komponent er repræsenteret af en glat funktion af tid og rum og
ved at udvikle disse komponentfunktioner i en tensorproduktbasis reduceres antallet
af modelparametre implicit. Denne komponentvise tensorrepræsentation inducerer
en tilsvarende komponentvis tensorstruktur i den afledte statistiske model. Specielt
dekomponerer designmatricen hvorved man opnår en beregningsmæssig fordelagtig
statistiske modelramme. En efficient inferensprocedure med et minimalt hukommel-
seforbrug kan så konstrueres ved at benytte proximal-gradient-baserede algoritmer til
at kombinere denne statistisk modelramme med ikke-differentiabel regularisering.

i

Derved kan man for højdimensonalt billededata drage inferens i en matematisk set
relativet sofistikeret dynamisk model med moderate beregningsmæssige midler.

Bidragene præsenteret i denne afhandling er således både beregningsmæssige og
metodologiske. De beregningsmæssige bidrag har form af løsningsalgoritmer der ud-
nytter tensorstruktur i forskellige statistiske modeller. Det metodologiske bidrag har
form af en sandsynlighedteoretisk og statistisk modelleringsramme for spatio-temporal
arraydata. Denne ramme blev udviklet med neuron-field modeller i tankerne, men kan
i princippet anvendes i andre sammenhænge der involverer spatio-temporalt array da-
ta.

ii

Contents

I Themes 1

1 Introduction 2
1.1 Overview . 3
1.2 Contributions . 4

2 Data 6
2.1 Array data structure . 6

2.1.1 Spatio-temporal array data . 7
2.2 Spatio-temporal neuronal data . 8

2.2.1 Voltage sensitive dye technique 9
2.2.2 Heterogeneities across trails . 10
2.2.3 Preprocessing . 10
2.2.4 Array formatting . 12

3 Methods and modelling 14
3.1 A dynamical model . 14

3.1.1 Gaussian random fields . 15
3.1.2 Stochastic functional differential equations on a Hilbert space . . 16

3.1.2.1 Neuronal model specification 17
3.2 Regression method . 18

3.2.1 The linear model . 18
3.2.1.1 Generalized linear model 19
3.2.1.2 Soft maximin effects model 19
3.2.1.3 Linear model with correlated normal errors 20

3.2.2 Multi component array tensor strucuture 20
3.2.3 The tensor product basis functions 21
3.2.4 Penalized regression problems . 23

4 Algorithms and computing 25
4.1 Convex functions and setvalued operators 25
4.2 Proximity operator based algorithms . 30

4.2.1 Proximal gradient based algorithms 31
4.2.2 Non-Lipschitz loss gradients . 32

4.2.2.1 Quadratic approximation 32
4.2.2.2 A non-monotone proximal based algorithm 33

4.3 Array-tensor computations . 34
4.3.1 The tensor array computations . 35

iv

II Manuscripts 37

5 Penalized estimation in large-scale generalized linear array models 38

6 Sparse Network Estimation for Dynamical Spatio-temporal Array Mod-
els 71

7 Estimating Soft Maximin Effects in Heterogeneous Large-scale Ar-
ray Data 122

IIISoftware 142

8 The glamlasso R-package 143

9 The SMMA R-package 154

Bibliography 165

v

Part I

Themes

1

Chapter 1

Introduction

The overall focus in this thesis is on the application of mathematical (probabilistic) and
statistical modelling as a means to analyze high dimensional array data with specific em-
phasis on neuronal brain image data. The initial grand idea was to investigate if, by spec-
ifying a model for the dynamics of brain activity in a stochastic framework, and by apply-
ing novel techniques from computational statistics, we could infer neuronal connections
in the visual cortex over time and space. Especially, we were interested in extracting a
type of network from data with a sparse structure corresponding to notions in the neu-
roscience literature regarding connectivity of neuronal networks in the brain.

In reality carrying out this idea involves, besides establishing the mathematical model
and statistical method, construction and implementation of algorithms with the specific
aim of drawing statistical inference in a large-scale data setting. As such the scope of this
thesis extends well beyond statistics and probability theory and in reality ranges over sev-
eral different subject areas including, statistics, probability theory, convex optimization,
computer sciences and neuroscience and is perhaps most aptly viewed as a data scientific
endeavor. Especially, quite a bit of time and energy have been allotted to computational
and algorithmic aspects in this project.

The specific data motivating this endeavor was provided by PhD thesis co-advisor
Prof. Per Ebbe Roland who together with his team have used a so called voltage sensitive
dye technique to produce images of the visual cortex in a live animal brain being exposed
to a visual stimulus. This experiment produced hundred of thousands of pictures of the
visual cortex on a mesoscopic scale with very high temporal as well as spatial resolution.
The aim of the experiment was to study the propagation over time and space of brain
signals or brain activity resulting from the processing of this stimulus. In short, depriv-
ing the animal of every external input, except for the visual stimulus, should in principle
generate a signal in the brain (or a pattern of activity) that when observed over time and
space will reveal something about the structure (network) underlying brain signal propa-
gation. That is, the idea is to gain knowledge about generic properties of brain processing
of visual input on a mesoscopic scale by studying brain activity patterns observed in the
data. The high spatio-temporal resolution of the images in principle makes this scientific
undertaking possible and results of a purely neuroscientific analysis were reported in a
series of papers, see e.g. Roland et al. (2006), Eriksson et al. (2008), Ahmed et al. (2008),
Harvey et al. (2009) and Harvey and Roland (2013).

In this project we wanted to approach the neuroscientific question described above
regarding neuronal connections from a statistical or data scientific angle. Using a prob-
abilistic modelling framework to draw statistical inference for such large-scale spatio-

2

1 Introduction

temporal neuronal data would in turn provide us with a principled method of inferring
propagation mechanisms relevant for processing input to the brain. This however is not
the conventional approach in the neuroscience literature. Especially, within computa-
tional neuroscience the focus is typically on brain data on a much smaller scale, i.e. single
neurons or ensembles of single neurons. For this type of brain data, dynamical models
are applied, that in an exact or deterministic way can replicate properties observed in
small scale neuronal data. These dynamical models typically take the form of a system
of deterministic differential equations that model precise dynamics of various known
chemical or electrical reactions known to underlie the synaptic communication in the
brain. For instance the classical electrophysiological models like the Hodgkin-Huxley
model, FitzHugh-Nagumo model or the Morris-Lecar model of action potentials. There
are many other neuronal models that characterize various aspects of neuronal dynamics
and they are all based on exact electrophysiological relationships that in turn are believed
to govern the neuronal communication in the brain.

Here our approach is quite different. Instead of modelling the exact dynamics in
the brain based on precise electrophysiological dynamical models we want to use a more
crude (but also more robust approach) that in turn can take into account natural vari-
ation as well as observation noise in the data. Compared to that of classical computa-
tional neuroscience, this approach is more suitable for data on a much larger scale that
contains signals potentially emanating from billions of different cells, not all being neu-
rons. Especially the data can contain information about the neuronal brain activity as
well as various types of noise and physiological artifacts. By taking a probabilistic ap-
proach and deriving a statistical model we obtain a way to statistically infer dependence
structures from the data that inherently takes noise and variation into account. As such
our approach is focused on the data and its properties rather than on specific knowledge
pertaining to chemical or electrical reaction mechanisms in the brain. We note that an
important added benefit of this data driven approach is that the contributions made in
this project are not limited to neuroscientific applications but are applicable for a wider
array of problems characterized by the generic framework described in the following.

1.1 Overview

Given the introduction above we can divide the project into three parts or objectives:

i) Probabilistic modelling of spatio-temporal data in a stochastic dynamical framework.

ii) Statistical model based on i) yielding an inferential procedure.

iii) An implementation based on ii) aimed at large scale data.

In the following chapters we introduce some themes that in their own right outline
the scope of the thesis and relate to i)-iii). The exposition is intended to be a survey that
serves as an introduction or brief primer to the contributions in Part II and Part III and
also provides a form of project narrative.

In Chapter 2 we begin by describing the data first from a generic structural point of
view, i.e. the so called array structure, and then go on to describe the actual brain image
data in some detail.

In Chapter 3, we introduce our approach to the modeling and analysis of the data i.e.
content that relate to i) and ii). We first introduce concepts pertaining to the probabilistic
modelling given by a stochastic model describing the evolution of a random field. That is,
concepts and notions relating to i) above. We then discuss statistical modelling in terms

3

1 Introduction

of regression modelling that in turn can be based on the probabilistic model and used to
draw the inference. That is, concepts and notions relating to ii). We then introduce the
structural assumptions that the statistical models in this project all share and discuss how
this structure arise in our setup. Finally we finish by briefly introducing the statistical
method, penalized estimation, that we use throughout to obtain sparsity.

Chapter 4 is concerned with the algorithmic and computational aspect of carrying
out the statistical inferential procedure, that is iii) above and a detailed introduction to
the proximal algorithm is given. Last, a type of computations or computational scheme
that may be exploited in the structural framework outlined in Chapter 3 is discussed in
the last section of Chapter 4 in order to motivate the algorithms proposed.

Finally, even though quite a substantial amount of resources have been spent on the
actual implementation of the models and methods described below (i.e. writing soft-
ware) this aspect of the project is not covered in the following chapters. However, two
software implementations are distributed and freely available as R-packages and listed
under contributions in Table 1.1 below.

1.2 Contributions

Table 1.1 below shows the contribution made during this project and their status as of
Saturday 30th September, 2017.

Work Journal / repository Status
Lund (2016) CRAN Accepted
Lund et al. (2017) JCGS Accepted
Lund (2017) CRAN Accepted
Lund and Hansen (2017) In preparation
Lund et al. (2017) In preparation

Table 1.1

The R software package Lund (2016) is an implementation based on the algorithm
proposed in the article Lund et al. (2017). This package solves a non-differentiable pe-
nalized estimation problem in a generalized linear array model framework for large-scale
data. The package is available from the Comprehensive R Archive Network (CRAN).
See Chapter 8.

In the article Lund et al. (2017) we propose a new algorithm, the gradient-descent
proximal gradient (gd-pg) algorithm. We show both on simulated data and real data (brain
image data and NYC taxi data) how it performs compared to the existing highly effi-
cient procedure from Friedman et al. (2010) and discuss its convergence properties. The
manuscript is accepted for publication in the Journal of Graphical and Computational
Statistics. See Chapter 5.

The software package Lund (2017) is an implementation based on the algorithm pro-
posed in the article Lund et al. (2017). This package solves the soft maximin estimation
problem from Lund et al. (2017) for array-tensor structured data and is available from
CRAN. See Chapter 9.

In Lund and Hansen (2017) a dynamical random field model (a stochastic functional
differential equation on a Hilbert space) is constructed as a model for the spatio-temporal
brain image data. Based on this model we shown how to derive a statistical model with a

4

1 Introduction

certain array-tensor structure. This leads to a computationally efficient inferential pro-
cedure based on the gd-pg algorithm from Lund et al. (2017). We demonstrate how this
framework can be applied to the spatio-temporal neuronal data to infer structures under-
lying the brain signal propagation. The manuscript is currently a preprint and is expected
to be submitted within the next few months. See Chapter 6.

In Lund et al. (2017) we propose a softmaximin estimation problem for inferring com-
mon components in noisy heterogenous data. This problem can be seen as a soft version
of the maximin problem from Meinshausen and Bühlmann (2015). We also propose to
combine the npg-algorithm from Chen et al. (2016) with array arithmetic to solve this
problem and verify the convergence of the resulting algorithm. We thereby extend the
range of the gd-pg algorithm from Lund et al. (2017) to cover problems where the gradient
of the loss is only locally Lipschitz. We demonstrate the approach on real heterogenous
data given by the entire neuronal spatio-temporal dataset described in Section 2.2 below.
The manuscript is currently a preprint and is expected to be submitted within the next
few months. See Chapter 9.

5

Chapter 2

Data

In this chapter we will introduce and discuss the type of data considered in this project.
Especially we introduce the generic structure of the data as this is instrumental in the
underlying approach. We also discuss a specific example of this type of data, namely the
voltage sensitive dye (VSD) recordings of brain activity in the visual cortex.

2.1 Array data structure

As discussed in the introduction the starting point, as well as the focal point, for this
project was as a data set consisting of spatio-temporal recordings of the visual cortex. As
such it seems natural to begin with a discussion of different aspects pertaining to this type
of data. To begin with we will zoom out a little bit and introduce some basic definitions
and concepts used to characterize the generic nature or structure of this type of data.
Especially we will begin by defining how this type of data is organized.

To this end let d ∈ N and consider a d-dimensional lattice or regular grid denoted by
Gd and defined as the Cartesian product

Gd := X1 × · · · × Xd (2.1)

of d discrete sets X1, . . . ,Xd. For i ∈ {1, . . . , d}, we can think of Xi = {xi,1, . . . , xi,N1},
as a label set where Ni := |Xi| is then the number of (marginal) labels in the ith dimen-
sion. Thus we have a total of N :=

∏d
i Ni d-dimensional (simultaneous) label or grid

points, given by the d-tuples

(x1, . . . , xd)1, . . . , (x1, . . . , xd)N . (2.2)

A very important feature of the data considered in this thesis is that it is labeled or
sampled in a d-dimensional grid like (2.1). That is we implicitly assume that a sample of
data is available for each combination of marginal labels. In turn this means that the data
can be organized in a so called d-dimensional array defined next.

Definition 2.1. Let A := {a} be a set of elements and Id the cartesian product

Id := {1, . . . , N1} × . . .× {1, . . . , Nd}, d ∈ N, i ∈ {1, . . . , d}, Ni ∈ N.

If the elements in A can be indexed by the set Id we can represent A as A := (ai)i∈I and call A a
d-dimensional array and A a d-dimensional array (data) set.

6

2 Data

By Definition 2.1 an array is simply a set that can be indexed by a regular grid Id. We
note that in the machine learning literature, what we above define as an array is typically
referred to as a tensor, e.g. as in TensorFlow, Googles open source software library for
machine learning. This library contains a range of machine learning tools that take arrays,
as in Definition 2.1, as input.

Now suppose that to each of the N grid points in (2.2) we associate a grid value
yx1,...,xd

∈ R (a data point), giving us a collection ofN grid values or data points {yx1,...,xd
}.

Then by mapping the d-dimensional cartesian sampling grid Gd to the cartesian index
set Id we index the data points as in Definition 2.1 and obtain a d-dimensional array
Y := (yi)i∈Id containing the data. In general we will define array data to be any kind of
data that can be mapped to a d-array. We note however that this mapping may introduce
distortion of the data which is for instance the case for the particular neuronal VSD data
considered in the thesis as discussed in Section 2.2.4 below.

In classical statistics multiway contingency tables are examples of data that inher-
ently have array structure. Another example from classical statistics is experiments with
a factorial design. A third example that perhaps is less classical is image data with rect-
angular pixels. The type of data we are going to work with is image data however, while
the pixels are in fact not rectangular, we will still consider this to be array data even
though the array representation in principle introduce distortion in this case, see Sec-
tion 2.2.4. Furthermore data that is not observed or labeled by a grid may sometimes be
summarized in grid structure yielding array data. An example of this is given in Lund
et al. (2017) where we consider the space-time coordinates of taxicabs in New York City.
These coordinate are clearly not confined to lie in a grid however by binning the data we
obtain array structured count data. In general binning data will lead to array structured
data that may then be analyzed using the approaches developed in this thesis. We also
note that while the definition of an array implies that all combinations of labels are ob-
served in the data, we can in fact handle array data where there are missing observations
for some label combinations.

The array characterization is obviously a quite generic way to describe a given data
set, however throughout the thesis it is exactly this structure that we take in to account
right from the mathematically modelling of the data to the construction of the algo-
rithms carrying out the statistical inference in these models. Especially by exploiting
this structure, as shown in Lund et al. (2017), Lund and Hansen (2017) and Lund et al.
(2017), we are able to model large amount of data using sophisticated models and still
obtain a computationally feasible statistical inferential procedures.

2.1.1 Spatio-temporal array data
Next let us consider a particular setting where we can encounter array data namely the
so called spatio-temporal setting. In this setting we let Xi ⊂ R and xi,j−1 < xi,j for all
i, j. For the sake of simplicity we will assume that each Xi constitutes an equidistant grid
in R with ∆i = xi,j − xi,j−1 for all i, j. Thus Gd ⊂ Rd and we call d− 1 dimensions, say
the dimensions 1, . . . , d−1, the spatial dimensions and the remaining dth dimension the
temporal dimension, to underline that there is a fundamental difference between them.
To emphasize this difference we will denote the set of grid points in Xd, the temporal
dimension, by T := {t1, . . . , tNd

} and refer to these points as time points and denote the
spatial part of Gd as S := X1 × · · · × Xd−1. We then have the spatio-temporal sampling
grid

Gd = S × T .

7

2 Data

As above each coordinate (x1, . . . , xd, t) is associated with a grid value yx1,...,xd,t ∈ R
yielding N =

∏d
i Ni grid values or data points which of course may be represented using

a d-dimensional array by mapping the grid S × T to the index set Id. In this sense the
spatio-temporal array data is just like any other array data. However, the spatio-temporal
setting differs from the general array setting in the way we think of grid values and their
association to the underlying grid. First, compared to the general setting we now have
the extra structure of the set T , corresponding to the direction of time. Furthermore, S
is a subset of a d− 1-dimensional Euclidian space and as such has a structure that can be
given some geometric interpretation. Thus we can think of this spatio-temporal data as
being sampled in sequential fashion as

(yx1,1,...,xd,1,t1 , . . . , yx1,N1 ,...,xd−1,Nd−1
,t1)

(yx1,1,...,xd,1,t2 , . . . , yx1,N1
,...,xd−1,Nd−1

,t2)
...

(yx1,1,...,xd,1,tNd
, . . . , yx1,N1 ,...,xd−1,Nd−1

,tN)

(2.3)

yielding a collection of data points to each time point ti having some spatial structure.
For instance for d = 3 the structure would form 2-dimensional images and observed
over time these images constitute a film. For such data, we will in the following call the
collection of the grid values in each row in (2.3) for a d − 1-dimensional frame or just
a frame, to indicate that they are to be thought of simultaneously and as having some
meaningful spatial structure.

We note that in general we could have array data with a temporal dimension but
where the labels do not lie in Euclidian space hence have no geometric structure relating
them across dimension. This type of data is usually called panel data or longitudinal data
but can in principle be viewed as spatio-temporal array data where spatio then refers
to label space. However, in the following when talking about spatio-temporal data we
mean data observed over time with a geometrically meaningful spatial organization in
Euclidian space.

2.2 Spatio-temporal neuronal data

We will here in some detail describe the data central to this project, namely the spatio-
temporal voltage sensitive dye recordings of neuron activity in the visual cortex. The data
set itself was recorded by Professor P. E. Roland and his team and was first described and
analyzed in Roland et al. (2006). However several other papers have since been published
considering the same type of data see e.g. Harvey et al. (2009), Harvey and Roland (2013)
and detailed description of the data can be found there. The purpose of the experiment
was to investigate the propagation of brain activity in the visual cortex resulting from the
processing of visual stimulus presented to the animal while being anesthetized.

In the experiment producing the data 13 adult female ferrets were anesthetized and
paralyzed and the visual cortex of each ferret was then exposed and stained for 2 hours
using a voltage sensitive dye. In the experiment each ferret had one pupil dilated while
the other eye was blinded. For each animal, recordings were made over 4 sessions with
each session having typically 3 to 5 trials (for two animals in this data set each session had
ten trials). In each trial two recordings were made; a stimulus recording and a background
recording each lasting 1256 ms. In both recordings a grey background displayed on a
computer screen was presented to the animal. For the stimulus recording however, after
200 ms a stationary white square, appeared on the grey background for the next 250

8

2 Data

ms. In total the data set contains 275 trials each of which consists of two recordings.
Finally, in each session, in order to measure the so called resting light intensity, that is
the fluorescent light emitted in complete dark an additional recording was made during
which nothing was presented to the animal.

2.2.1 Voltage sensitive dye technique
As mentioned the recordings were made using a voltage sensitive dye (VSD) imaging
technique. The voltage sensitivity of the dye means that the wavelength of the light
emitted from the dye changes with the membrane potential, in the dyed area. Thus this
dye effectively transforms changes in the membrane potential to light intensity. Hence
changes in the underlying voltage e.g. resulting from brain activity can be recorded

Figure 2.1: The VSD image
recording setup.

as changes in an optical signal using a camera. Furthermore
the relation between the underlying brain activity and the
optical VSD signal is roughly linear implying that the VSD
transformation does not enhance or diminish any parts of
the voltage spectrum, see Chemla and Chavane (2010).

In this experiment the light intensity was recorded
using 464 photodiode detectors arranged in a hexagonal
shape with 464 channels, see Figure 2.2, with a total diame-
ter of 4.2 mm. In turn by using the VSD imaging technique
it is possible to study brain activity in the visual cortex on a
mesoscopic scale with a high spatial resolution. Using the
VSD imaging technique it is also possible to sample the
data with high temporal resolution as well. In this exper-
iment the images (the hexagonal samples) were recorded
with a temporal resolution equal to one sample every 0.6136
ms. A total of 2048 images were recorded for each trial over
the 1256 ms the experiment lasted.

The immediate advantage of the VSD technique com-
pared to e.g. fMRI technique is the very high spatio-
temporal resolution of the data produced. In comparison
the fMRI technique has a very good spatial resolution but
the temporal resolution is much lower with a frequency in

the orders of seconds, see Lindquist (2008). Before the advent of the VSD technique
high frequency recordings of the brain were made on single neurons or on a small set of
neurons only. Thus the VSD technique is applied on spatial scale that, from a neuro-
science perspective, is large but without compromising the temporal resolution of the
recordings.

A draw back of the VSD technique is that the data produced using this technique is
easily contaminated compared to data recorded with more classical neuroscience tech-
niques. First of all, transforming the electrical signal in to a signal made up of photons (a
light signal) introduce photon noise in the recordings, see e.g. Jin et al. (2002). Secondly,
the VSD technique is very sensitive, implying that the light signal is easily distorted lead-
ing to contaminated data. The concentration of dye also affects the light emitted from
the dyed area. Thus if the dye is not evenly distributed and absorbed this will cause the
recorded signal to be spatially distorted. Furthermore even if the dye is exactly evenly
distributed the dyed areas will bleach over time causing the light intensity to decrease
over time resulting in a temporal distortion of the signal.

9

2 Data

The sensitive nature of the VSD technique has the consequence that when applied in
an in vivo setting the recorded data may contain biological or physiological signals that
are essentially unrelated to brain activity. These signals are typically then referred to as
artifacts. One important artifact in the experimental setup described above is the so
called pulse artifact. With each heartbeat the blood vessels expand thereby increasing
their surface hence diluting the dye which in turn alters the emitted light. Thus the
pulse will create a presumably cyclical pattern in the data that is unrelated to the brain
signal propagation. In the recordings the contamination caused by the pulse artifact was
in part alleviate by synchronizing the two trial recordings with the heart rate and then
subtracting the two recordings, see Section 2.2.3.

On top of issues pertaining contamination the exact nature of the VSD signal is not
completely obvious. Especially the signal underlying the VSD optical signal is in fact a
compound signal composed of several electrical signals. First of all, compared to the more

data 13

tion of the electrical signals is beyond the scope of this thesis. For
ease of exposition, we talk of brain activity but we should keep in mind
that the origin of data is much more involved than this term seems to
appreciate.

Experimental setup

Figure 2.4: Hexagon of photodiode de-
tectors. Each small hexagon represents
a single detector, a channel.

Data was obtained from the visual cortices of 13 ferrets using 464 pho-
todiode detectors that were arranged in a hexagonal two-dimensional
array to measure fluorescence (see Figure 2.4). The array was struc-
tured as a honeycomb and a particular property of this arrangement is
that if the detectors are circular, this is the arrangement that will give
the most dense arrangement for a fixed radius of the detectors. In our
data analysis, the hexagonal design was a nuisance as we relied on a
regular grid for the methods that we wished to apply.

For each repetition of the procedure, the 464 detectors recorded
the light intensity simultaneously and repeatedly 2048 times such that
each observation consists of 2048 temporally ordered two-dimensional
snapshots of brain activity, i.e. a film. We will use the term record- Due to the specific make of dye, higher

brain activity corresponds to lower
measurements in our data.

ing for such a film. We will use the term frame for a snapshot (464

measurements that correspond to the same point in time). The delay
between adjacent frames was 0.61 milliseconds (ms). We will use the
term channel to refer to a single photodiode detector.

The measurements can potentially be obscured by even slight vi-
brations, and therefore the ferrets were anesthetized and placed on a
vibration-reducing table during the experiments. Even with these pre-
cautions, other sources of noise persist, such as the heartbeat of the
ferret and unequal amounts of dye across the exposed part of the cor-
tex. To counter this kind of noise, standard methods for normalization
of the data are available and will be described shortly.

Recordings

For each animal the recordings were made during four sessions. The
main purpose of the data collection was to measure the ferrets’ reaction
to a visual stimulus. Three different types of recordings were made.
For the stimulus recording, the eyes of the ferret were fixated on a gray
background. After 200 ms a white or dark gray square was shown on
the gray background. The square was displayed for 83 ms. Only the contrast in luminance between

the square and the background should
matter for the cortical representation
and thus it should be of no importance
if a white or dark gray square was used
for a specific recording.

For normalization purposes, two other types of recordings were
made. Control recordings were made during which the ferrets had their
eyes fixated on the gray background, but no square was shown. Fur-
thermore, resting light intensity (RLI) recordings were made to measure
the fluorescence in darkness (nothing shown to the ferret). For each
animal there’s a RLI recording available for each session. Below we

Figure 2.2: The hexagonal frame.

classical brain signal recording techniques the VSD
is composed of signals from multiple layers of neu-
rons. Furthermore electrical output from other types
of cells than neurons (e.g. glia cells) can also affect the
VSD signal. As such the VSD yields a composite sig-
nal that we can loosely call brain activity. Especially
as noted in Harvey et al. (2009) the voltage sensitive
dye (VSD) signal is to be treated as an indicator for
the population membrane potential from cells in the
supra-granular layers, and not the membrane potential
itself.

2.2.2 Heterogeneities across trails
In addition to the issues discussed above regarding
contamination of the VSD data for single trial recordings the data will also be heteroge-
neous over trials. As noted above one type of heterogeneity could be caused by bleaching
of the dye. However many other sources to heterogeneity can be imagined for this data.
For instance given the invasive nature of the experiment the responsiveness of the ani-
mal could decline over trials caused by exhaustion. Also given that the VSD technique is
quite sensitive even small changes in the experiment surroundings could also affect the
recordings creating another source of heterogeneity over trials.

Physiological differences between the animals will also create heterogeneities over the
trials. Especially the so called cytoarchitectural borders in the brain differs among the
animals which in turn creates spatial misalignment in the data set across animals hence
across trials. Finally a more endogenous animal specific type of heterogeneity would
arise if the response pattern or signal somehow has an animal dependent component
in the sense that the response to identical visual stimulus varies across animals even if
everything else is equal.

In conclusion, whether we consider trials from one animal only or trials for several
animals the data will be heterogeneous.

2.2.3 Preprocessing
Because of the different sources of contamination discussed above the raw VSD record-
ings are preprocessed in an attempt to clean up the data. Especially, for trial g let V stim

g

10

2 Data

denote the stimulus recording and V blank
g denote the non-stimulus recording and let V RLI

s(g)

denote the resting light intensity recorded in session s(g) containing trail g.
In Roland et al. (2006) they first align the data by subtracting the two trial recordings

i.e.

V align
g := V stim

g − V blank
g .

This transformation has two effects. It centers the data around zero by subtracting the
channel (pixel) specific level. Furthermore as noted above as both recordings are started
at the same point in the heart rate cycle this transformation should alleviate the cyclical
trend in the data caused by the pulse. However as the heart rate is not completely time
homogeneous (can vary over time) the cyclical trend in the two recordings will differ
implying that the pulse artifact may not be completely eliminated.

Figure 2.3: The raw data for all 464 channels for animal 0308, trial 1 (top) and the aligned (bottom).
The red line indicates the cut point for this animal.

11

2 Data

In Roland et al. (2006) they furthermore standardized the aligned data by transform-
ing the data using the resting light intensity recording i.e.

∆Vg :=
V

align
g

V RLI
s(g)

.

The idea behind this transformation is that it will alleviate the bleaching of the dyed areas
that occur over the course of the experiment. Thus by dividing by the session specific
RLI the data is standardized which in turn should make the data more homogenous
across trials.

We note that the data considered in this project is not standardized using the RLI
recording. Instead we standardized each aligned recording V align

g using the mean of the
pre-stimulus part of the recording. As this mean will also decrease over time due to the
bleaching this should also correct for bleaching in the data.

We note the spikes seen in the bottom display for the aligned data are caused by the
data recorded in channel 249. Furthermore, the red line indicate the last time point for
which data is included in any analysis. This cut off point varies from animal to animal,
and for animal 0308 it is 977.

2.2.4 Array formatting
A final thing we will mention is that the VSD recordings as described above obviously do
not have the array structure discussed in Section 2.1 owing to the hexagonal organization
of the photo diode channels, see Figure 2.2. In order to obtain the array organization the
464 channels are mapped to a 25× 25 matrix (2-array). This corresponds to first embed-
ding the hexagonal shape inside the smallest rectangular organization of the channels
covering the hexagonal shape, simply by adding “empty” channels. Then the resulting
625 channels is indexed by {1, . . . , 625} and this index set is then mapped, see Table 2.1,
to the Cartesian index set I2 = {1, . . . , 25} × {1, . . . , 25} as in Definition 2.1.

[,1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [,8] [,9] [, 10] [,11] [, 12] [,13] [, 14] [,15] [, 16] [, 17] [, 18] [, 19] [, 20] [, 21] [, 22] [, 23] [, 24] [, 25]
[1,] - - - - - - - 237 236 235 234 233 7 6 5 4 3 2 1 - - - - - -
[2,] - - - - - 244 243 242 241 240 239 238 14 13 12 11 10 9 8 - - - - - -
[3,] - - - - - 252 251 250 249 248 247 246 245 21 20 19 18 17 16 15 - - - - -
[4,] - - - - 260 259 258 257 256 255 254 253 29 28 27 26 25 24 23 22 - - - - -
[5,] - - - - 268 267 266 265 264 263 262 261 38 37 36 35 34 33 32 31 30 - - - -
[6,] - - - 277 276 275 274 273 272 271 270 269 47 46 45 44 43 42 41 40 39 - - - -
[7,] - - - 287 286 285 284 283 282 281 280 279 278 56 55 54 53 52 51 50 49 48 - - -
[8,] - - 297 296 295 294 293 292 291 290 289 288 66 65 64 63 62 61 60 59 58 57 - - -
[9,] - - 307 306 305 304 303 302 301 300 299 298 77 76 75 74 73 72 71 70 69 68 67 - -
[10,] - 318 317 316 315 314 313 312 311 310 309 308 88 87 86 85 84 83 82 81 80 79 78 - -
[11,] - 330 329 328 327 326 325 324 323 322 321 320 319 99 98 97 96 95 94 93 92 91 90 89 -
[12,] 342 341 340 339 338 337 336 335 334 333 332 331 111 110 109 108 107 106 105 104 103 102 101 100 -
[13,] - 353 352 351 350 349 348 347 346 345 344 343 123 122 121 120 119 118 117 116 115 114 113 112 -
[14,] 365 364 363 362 361 360 359 358 357 356 355 354 135 134 133 132 131 130 129 128 127 126 125 124 -
[15,] - 377 376 375 374 373 372 371 370 369 368 367 366 146 145 144 143 142 141 140 139 138 137 136 -
[16,] - 388 387 386 385 384 383 382 381 380 379 378 157 156 155 154 153 152 151 150 149 148 147 - -
[17,] - - 398 397 396 395 394 393 392 391 390 389 168 167 166 165 164 163 162 161 160 159 158 - -
[18,] - - 408 407 406 405 404 403 402 401 400 399 178 177 176 175 174 173 172 171 170 169 - - -
[19,] - - - 418 417 416 415 414 413 412 411 410 409 187 186 185 184 183 182 181 180 179 - - -
[20,] - - - 427 426 425 424 423 422 421 420 419 196 195 194 193 192 191 190 189 188 - - - -
[21,] - - - - 435 434 433 432 431 430 429 428 205 204 203 202 201 200 199 198 197 - - - -
[22,] - - - - 443 442 441 440 439 438 437 436 213 212 211 210 209 208 207 206 - - - - -
[23,] - - - - - 451 450 449 448 447 446 445 444 220 219 218 217 216 215 214 - - - - -
[24,] - - - - - 458 457 456 455 454 453 452 227 226 225 224 223 222 221 - - - - - -
[25,] - - - - - - - 464 463 462 461 460 459 232 231 230 229 228 - - - - - - -

Table 2.1: Map from hexagon to 2-dimensional Cartesian index set where each “-” uniquely cor-
responds to a number between 465 and 625.

We note that as the original photo diode channels do not lie in a Cartesian grid this
mapping will spatially distort the data in each frame. Other ways of obtaining array data
from the VSD recordings are discussed in Mogensen (2016). Thus the resulting array

12

2 Data

data is given as a 4-dimensional array with sized 25× 25× 2048× 275 corresponding to
275 trial recordings of 625 channels over 2048 time steps.

We note that the resulting data array contains empty entries to all time points. If
included in the statistical analysis this artificial data or lack of data can affect the analy-
sis. This is especially relevant for the dynamical model introduced in Section 3.1 below.
Consequently for this model we crop data in the spatial dimension to the largest rect-
angular shape containing observations of data. However, for the models considered in
Lund et al. (2017) and Lund et al. (2017) we impute pre-stimulus noise in the entires with
missing observations, as this does not affect the analysis and allow us to analyze all chan-
nels.

13

Chapter 3

Methods and modelling

In this chapter we will first briefly introduce and discuss the various concepts used in
connection with modelling the neuronal data introduced above in section 2.2. We then
discuss the notions and concepts related to the methods we have used to fit the models
to the actual data.

3.1 A dynamical model

Given the description of the data in section 2.2 it seems natural to view the visual cortex
as a random field. To introduce the notion of a random field formally let (Ω,F , P) be a
complete probability space endowed with an increasing and right continuous family (Ft)
of complete sub-σ-algebras of F . Also let H be suitable Hilbert space of continuous
functions. From Adler and Taylor (2009) we then have the following definitions of a
random field defined over a general parameter set R only assumed to be a topological
space, however in following we shall only consider the case where R ⊆ Rd, d ∈ N.

Definition 3.1. Let R be a topological space and V : Ω → (RR)N ,N ∈ N, a measurable map.
V is called a real-valued random field whenN = 1 and a vector-valued random field whenN > 1.
If R ⊂ Rd, d ∈ N , we call V a (d,N) random field, and if N = 1, simply an d-dimensional
random field.

The term random field is typically used in situations where the geometry of the parameter
set is important while the term (multi-parameter) stochastic process is used otherwise.
We see that for the neuronal data discussed in section 2.2 the parameter set R is three di-
mensional with two spatial dimensions and one temporal dimension i.e. a (3, 1)-random
field,

(V (r))r∈R := (V (x, y, t))(x,y,t)∈R2×R+
.

To emphasize the conceptual asymmetry between the dimensions of the parameter set
in this case we shall call V a spatio-temporal random field.

By the Kolmogorov Consistency Theorem, given mild regularity conditions, the dis-
tribution of any (d,N) random field over Rd is uniquely determined by its finite-dimensional
distributions

P(V (r1) ∈ B1, . . . , V (rn) ∈ Bn),

14

3 Methods and modelling

for all n ∈ N, for all collections {r1, . . . , rn}, ri ∈ R and for all Borel sets {B1, . . . , Bn},
Bi ∈ RN . Using the finite dimensional distribution we can also characterize certain
invariance properties of the random field V .

Definition 3.2. Let V be an (d,N) random field defined over Rd.

i) V is strongly stationary if for any ρ ∈ Rd

P(V (r1 + ρ) ∈ B1, . . . , V (rn + ρ) ∈ Bn) = P(V (r1) ∈ B1, . . . , V (rn) ∈ Bn),

for all n ∈ N, collections {r1, . . . , rn}, ri ∈ Rd and Borel sets {B1, . . . , Bn},Bi ∈ Rd.

ii) V is strongly isotropic if for any rigid rotationR

P(V (Rr1) ∈ B1, . . . , V (Rrn) ∈ Bn) = P(V (r1) ∈ B1, . . . , V (rn) ∈ Bn),

for all n ∈ N, collections {r1, . . . , rn}, ri ∈ Rd and Borel sets {B1, . . . , Bn},Bi ∈ Rd.

We can sometimes characterize the behavior of a random field using the so called
mean function m : R → R given by

m(r) := E(V (r)) (3.1)

and the covariance functions C : R×R → R given by

C(r, r′) := E(V (r)−m(r))(V (r′)−m(r′)). (3.2)

Especially using (3.1) and (3.2) we can give a perhaps more concrete, and weaker, version
of Definition 3.2.

Definition 3.3. Let V be an (N, d) random field defined over RN .

i) V is weakly stationary (homogeneous) ifm is constant, andC is only a function of the difference
r − r′.

ii) V is weakly isotropic ifC is only a function of the Euclidean distance ∥r − r′∥.

3.1.1 Gaussian random fields
We next introduce a fundamental family of random fields namely the Gaussian random
fields, also know as the Brownian family of processes, which we shall use to model the
neuronal data. Appealing to the Kolmogorov Consistency Theorem we can define the
notion of a Gaussian random field.

Definition 3.4. A Gaussian random field is a random field with all finite dimensional distribu-
tions multivariate normal.

An especially important example of Gaussian random fields is the so called Gaussian
noise which in general is an uncountable collection of independent Gaussian random
variables. We will, following Adler and Taylor (2009), define these using a random mea-
sure with σ-finite control measure or intensity measure ν. With BN the Borel σ-algebra

15

3 Methods and modelling

on RN , a Gaussian ν-noise, is a (set indexed) random field W : BN → R such that for all
A,B ∈ BN with ν(A), ν(B) ∈ R,

W (A) ∼ N(0, ν(A)), (3.3)
A ∩B = ∅ ⇒W (A ∪B) =W (A) +W (B) a.s., (3.4)
A ∩B = ∅ ⇒W (A) ⊥W (B). (3.5)

We note that the property in (3.5) is referred to as the independent increments property.
Having introduced the Gaussian noise we can go on and introduce the Brownian

sheet also called the multi-parameter Brownian motion or Wiener process. This is done
by defining an R indexed process (Wr)r∈R+ using the set indexed Gaussian noise as

Wr :=W ([0, r1]× · · · × [0, rd]), r = (r1, . . . , rd) ∈ Rd+.

It follows from the definition of the Gaussian noise that the covariance function for this
type of random field is

C(r, r′) =
d∏
i=1

min(ri, r′i).

Finally for the dynamical model for the neuronal data we will need the following type
of spatio-temporal Gaussian random field where we have a spatial dependence structure,
see Dawson and Salehi (1980) and Peszat and Zabczyk (1997).

Definition 3.5. LetW (x, t)(x,t)∈Rd−1×R+
be a spatio-temporal random field such that

i) (W (x, t))t∈R+ is an (Ft)-Wiener process for every x ∈ Rd−1.

ii) The map (ω, x, t) 7→W (ω, x, t) is measurable and continuous in t.

iii) C((x, t), (x′, t′)) = min{t, t′}Γ(x − x′) for all t, t′ ∈ R+ and , x, x′ ∈ Rd−1 with Γ a
function or a distribution.

ThenW is called a spatially homogeneous Wiener process.

We note that the spatially homogeneous Wiener process, cf Definition 3.3, is weakly
stationary (or homogeneous) in the spatial dimension. We now proceed with giving a
more concrete description of the dynamics of the random field we will use as a model for
the neuronal data.

3.1.2 Stochastic functional differential equations on a Hilbert space
For fixed t ≥ 0, V (t) is a (random) bivariate function V (t) : R2 → R. We will for sim-
plicity assume that this random function has a continuous version that lies in a Hilbert
space H of bivariate continuous functions. To describe the evolution in V we will need
to model the dynamics of the field. Now as we want a model that can capture the de-
pendence over time and space we will model V using a non-Markovian type of stochastic
differential equation on the Hilbert space H, called a stochastic functional differential
equation (SFDE).

To introduce this model let C := C([0, τ],H) denote a Banach space of continuous
maps from the time domain [0, τ] to the Hilbert space of bivariate functions H. Then
the process (Vt)t≥0 defined as

Vt := (V (t+ s))s∈(−τ,0),

16

3 Methods and modelling

is a C-valued stochastic process defined over the parameter set R+. Clearly, we can think
of Vt, as the past or memory of the random field (V (r))r∈R+×R2 at time t.

Then let µ : C×[0, t] → H be an operator and consider a general stochastic functional
differential equation on H given by

dV (t) = µ(Vt, t)dt+ dW (t), (3.6)

where, (W (t))t is a spatially homogeneous Gaussian random field as in Definition 3.5.
We note that compared to a typical (Markovian) SDE the infinitesimal dynamic at time
t is allowed to depend on the entire past from time t− τ up to time t. Hence in general
a solution to (3.6), should it exist, will not be a Markov process on the Hilbert space H.

The theory concerning general results regarding existence and stability of solutions
to non-Markovian SDEs, e.g. SFDEs, on a Hilbert space is not as standard as for Marko-
vian SDEs. In principle it should be possible to lift the SFDE (3.6) on to the Banach
Space C where it would then be a Markovian SDE as in section 0.2 in Da Prato and
Zabczyk (2014). Results for a general version of (3.6) are given in Cox (2012) where SDEs
and especially SDDEs on Banach spaces are treated. Especially, Corollary 4.17 in Cox
(2012) gives a existence result for a strong solution to (3.6). Also in Xu et al. (2012) a mild
existence results are given for an SDDEs on a Hilbert space and for the specification
introduced next this result can be strengthened to a strong solution result. In general
the requirements for a solution to exist is, corresponding to the finite dimensional case,
that the coefficient operators are Lipschitz continuous, which e.g. the integral operator
presented next satisfies.

3.1.2.1 Neuronal model specification

The key feature of the above model is the non-Markovian property and the idea is that
this path dependence should model how input to the brain is propagated over time and
space. We want the drift term to model both inputs to the brain as well as model the
subsequent propagation of that input. To this end it is proposed in Lund et al. (2017) to
decompose the drift operator in (3.6) as

µ(Vt, t) := S(t) + FVt +HV (t). (3.7)

Here S : R+ → H, S(t) = s(x, y, t), s : R3 → R, models a deterministic exogenous input
to the system andH : H → HH(V (t))(x, y) := h(x, y)V (x, y, t)where h ∈ H, a smooth
function of space, captures the short range (instantaneous) memory in the system. The
longer range effect on the change in the field is then in turn model by the operator F .
Especially F : C → H is the integral operator defined by

F (Vt)(x, y) =

∫ ∫ 0

−τ
w(x, y, x′, y′, s)V (t+ s, x′, y′)dsdx′dy′,

with w : R5 → R a network function or convolution kernel quantifying the propaga-
tion network in the brain. With this specification we obtain a so called stochastic delay
differential equation (SDDE) on the Hilbert space H given by

dV (t, x, y) = s(x, y, t)dt+
∫ ∫ 0

−τ
w(x, y, x′, y′, s)V (t+ s, x′, y′)dsdx′dy′dt

+ h(x, y, t)V (x, y, t)dt+ dW (t, x, y), (3.8)

17

3 Methods and modelling

with delays that are distributed over time and space (spatio-temporal distributed delays)
for any non zero delay time τ ≥ 0. The spatio-temporal distribution of these delays is in
turn controlled by the network function w which encodes how previous states of V at all
(other) spatial locations (x′, y′) affect the (current) change in voltage at location (x, y).

Our objective is essentially, given data, to estimate or extract the drift µ. Taking the
conditional expectation we get

E(dV ((x, y), t) | Ft) = s(x, y, t)dt+
∫ ∫ 0

−τ
w(x, y, x′, y′, s)V (t+ s, x′, y′)dsdx′dy′dt

+ h(x, y, t)V (x, y, t)dt. (3.9)

The idea is then to estimate the functions appearing in the drift components i.e. w s
and h in a regression model setup where the diffusion part of the model dynamics in (3.8)
then plays the role of an additive error term.

3.2 Regression method

We next present the framework that we will use when estimating a conditional expecta-
tion like (3.9) given data.

To start with let us first consider two real (vector) valued random variables Y and X
on some probability space (Ω,F ,P) such that the conditional expectation E(Y | X) of
Y given X , is well-defined i.e. P-integrable E(|E(Y | X)|) < ∞. Next assume given a
third variable B. In general B can be a random variable on Ω but typically it is assumed
that B is a (deterministic) real (vector). The main idea is that B can be combined with
X using a map η to somehow characterize the mean of Y conditional on X (and on B if
B is random), that is

E(Y | X,B) = η(X,B). (3.10)

We will call the map η the regression function or predictor function, andB the regression
coefficient.

In addition to this (random) parameterization of the conditional expectation it is
also assumed that we have some conditional distribution of Y given X and B specified
in terms of a known density function

y 7→ fY |X,B(y).

Together the equation (3.10) and the density fY |X,B determine a regression model. We
usually call Y the response or the output,X the covariate, the input or the predictor and
B the regression parameter.

3.2.1 The linear model
In order to make the regression model operational we will have to place assumptions on
the two components, the map η and the density fY |X,B . Here the most crucial assump-
tion is on the map η. In our framework the map η i.e. the conditional expectation of Y
given X and B, is linear in the sense that

g(η(X,B)) = X⊤B (3.11)

where g : R → R is a monotonic function.

18

3 Methods and modelling

The purpose of the regression model is given data (x1, y1), . . . , (x1, yn) of (X,Y) to
use this evidence to learn η. This procedure is usually called regression of Y on X .

We will next continue by discussing three special cases of this framework, that we
consider in this project where the conditional expectation is assumed linear in a set of
(possibly random) parameters as in (3.11).

3.2.1.1 Generalized linear model

First assume that B = θ is real vector valued and that (Y1, X1), . . . , (Yn, Xn) are con-
ditionally independent. Then assuming that the probability distribution for Y | X is a
member of the exponential family i.e given by the two-parameter family of densities

fϑ,ψ(y) = exp
(a(ϑy − b(ϑ))

ψ

)
gives us a generalized linear model (GLM). Hereϑ is the canonical (real valued) parameter,
ψ > 0 is the dispersion parameter, a > 0 is a known and fixed weight and b is the log-
normalization constant as a function of ϑ w.r.t. some reference measure.

In this setup the negative likelihood or the loss is given as

l(θ) :=

n∑
i=1

ai(yiϑ(ηi(θ))− b(ϑ(ηi(θ)))) (3.12)

which is differentiable and convex. Especially we can either obtain the MLE analytically
in closed form or otherwise by using a numerical procedure as described in chapter 4
below. We consider this model setup in Lund et al. (2017) for a class of models where the
covariates have a special tensor structure.

3.2.1.2 Soft maximin effects model

Next considered the setup in Meinshausen and Bühlmann (2015). Here a linear model
for n response variables Y1, . . . , Yn and n i.i.d. covariates X1, . . . , Xn is given as

Yi = X⊤
i Bi + εi.

whereB1, . . . , Bn are random variables. We also assume thatXi andBi are independent
and that εi is a zero-mean real random variable uncorrelated withXi. NeitherB1, . . . , Bn
nor the error terms ε1, . . . , εn need to be i.i.d. We assume that the n observations are
organized in G known groups with the regression variable fixed within each group i.e.
Bg = bg for group g. For the gth group let Yg denote the response vector, Xg denote
the covariate matrix (design matrix). Then for some real vector θ the empirical explained
variance in group g obtained for this θ is

V̂g(θ) :=
1

ng
(2θ⊤X⊤

g yg − θ⊤X⊤
g Xgθ).

In Lund et al. (2017) we then propose maximizing a soft minimum of the explained vari-
ance which in turn is done by minimizing the loss function

lζ(θ) :=
log(

∑
g e

−ζV̂g(θ))

ζ
. (3.13)

We consider this loss for the neuronal data where we group the observations according
to trials (see the discussion of the neuronal data in section 2.2). The loss (3.13) is a soft
version of the maximin loss from Meinshausen and Bühlmann (2015).

19

3 Methods and modelling

3.2.1.3 Linear model with correlated normal errors

In a third model considered in Lund and Hansen (2017) the regression parameterB = θ is
real (deterministic) vector and ε1, . . . , εn are normal but not necessarily i.i.d.. This leads
to a linear model we can write as

Yi = X⊤
i θ + εi.

In Lund and Hansen (2017) we consider this model where the errors have block diag-
onal covariance matrix with blocks given by a matrix Σ. With Y the response vector and
X the design matrix we then consider the following loss function

l(θ,Σ) :=
M

2
log |Σ|+ ∥IM ⊗ Σ−1/2(Y −Xθ)∥22. (3.14)

which we propose minimizing using the approximate MCRE algorithm from Rothman
et al. (2010) in order to fit the dynamical model discussed in section 3.1.2 to data.

3.2.2 Multi component array tensor strucuture
The examples above are types of various statistical models considered in this project.
The important common feature is the linearity of the representation of the conditional
expectation in the regression parameters. This implies that the conditional expectation
can be computed essentially as a (covariate) matrix-vector product. In this project partly
owing to the array structure of the data and partly owing to the model specification we
obtain regression models with a specific covariate structure, so-called tensor structured
covariates. In the following we will refer to this structure as the multi component array
tensor (MCAT) framework or structure as outlined next. We note that this framework,
or set of structural assumptions, is considered in Lund et al. (2017) as a multi component
version of the structural assumptions considered in Currie et al. (2006). We also note that
MCAT is only a set of structural assumptions placed on a model hence no distributional
assumptions are made below.

First we define a trivial extension of the vec operator to d-arrays. Consider a r × c
matrix (2-array) as a tuple of length c of 1-arrays of size r, a11 . . . a1c

...
ar1 . . . arc

 =

 a11

...
ar1

 , . . . ,

 a1c
...
arc

 .

We can say we have 1 nested tuple of 1-arrays of size r. Similarly, consider a r × c × s
cube (3-array) as a tuple of length s of 2-arrays of size r× c, hence, as tuple of length s of
tuples of length c of 1-arrays of size r,

 a111 . . . a1c1
...

ar11 . . . arc1

 , . . . ,

 a11s . . . a1cs
...

ar1s . . . arcs

=

 a111
...

ar11

 , . . . ,

 a1c1
...

arc1

 , . . . ,

 a11s

...
ar1s

 , . . . ,

 a1cs
...

arcs

 .
We say we have 2 nested tuples of 1-arrays. Continuing this way we can in general view a
d-array as d− 1 nested tuples of 1-arrays of size r.

20

3 Methods and modelling

Definition 3.6. For any d-array the vec operator concatenates the d − 1 nested tuples of 1-
arrays by the column dimension yielding one vector.

In the MCAT framework the response vector y is then given as

y := vec(Y),

where Y is an n1 × · · · × nd d-dimensional array. The design matrix X is assumed to be
a concatenation of c matrices

X := [X1 | X2 | . . . | Xc],

where the rth component is a tensor product,

Xr = Xr,d ⊗Xr,d−1 ⊗ · · · ⊗Xr,1, (3.15)

of d matrices. The matrix Xr,j is an nj × pr,j matrix, such that

n =

d∏
j=1

nj , pr :=

d∏
j=1

pr,j , p =

c∑
r=1

pr.

This data structure induces a corresponding structure on the parameter vector, θ,
which is given as

θ :=

 vec(Θ1)
...

vec(Θc)

with Θr a pr,1 × · · · × pr,d d-dimensional array.

We note that for a large-scale data settings the design matrix X is often too large to
store in the memory of a typical computer and in general will be difficult to handle. How-
ever we also note that the design matrix X is completely characterized by the marginal
design matrices. This property is exploited throughout in this project and implies that
we may obtain computationally efficient routines for solving the estimation problems
that only rely on these marginal design matrices.

Next we will describe one setting where this structural framework arise.

3.2.3 The tensor product basis functions
Now in order to draw inference in the dynamical model framework from subsection 3.1.2.1
we will need to parameterize the conditional expectation (3.9) so it becomes linear in a
set of parameters as in the linear models in subsection 3.2.1. Considering the conditional
expectation in (3.9) we see that it is given as a decomposition with each component rep-
resented by a presumably smooth multivariate function i.e. s, w and h respectively. In
order to estimate the conditional expectation we will parameterize these functions. This
is achieved by exploiting the fact that for any function f : Rd → R lying in a Hilbert space
we can write

f(x1, . . . , xd) =
∑

k1,...,kd

βk1,...,kdϕk1,...,kd(x1, . . . , xd) (3.16)

21

3 Methods and modelling

where (βk1,...,kd)k1,...,kd is a
∏
i ki dimensional vector of coefficients and ϕk1,...,kd a set

of basis functions. Then by specifying the set of basis functions the idea is to infer the
basis parameters using the linear regression model from subsection 3.2.1.

A thing to consider when specifying a basis of d-variate functions is the possible asym-
metry between the d dimensions. For instance for d = 3 one dimension could represent
time while the other two represent 2-dimensional space. In this situation we would ex-
pect the signal to behave differently in the time dimension compared to the space di-
mension e.g. posses different degrees of smoothness. Ideally we would like the basis
functions (ϕi)i to capture this fundamental difference or asymmetry between the di-
mensions. Furthermore we may want the basis functions to posses other mathematical
properties e.g. they should be orthogonal or may be we would like them to be localized,
meaning that they have compact support. Such properties can be easy to obtain when
working in one dimension but there may not be any obvious recipe on how to obtain
these properties in several dimensions. For instance, as noted in Meyer (1995) the recipe
that works in one dimension to construct wavelet basis functions with compact support
does not work in several dimensions. Thus if we want to use wavelets with compact sup-
port in d dimensions the only solution seems to be to resort to d-variate functions that
are separable across the dimensions (see p. 108 in Meyer (1995)).

To explain the tensor terminology a little bit, let d = 2 and let V,W be two vector
spaces and consider the Cartesian product space V ×W which is the space of all linear
combinations of pairs (v, w) with v ∈ V and w ∈ W . Then it is a fact that there exists
a vector space, usually denoted V ⊗W , equipped with a bilinear map (usually denoted ⊗
correspondingly), ⊗ : V ×W → V⊗W which is unique up to an isomorphism. Together
the pair (⊗,V ⊗W) constitutes a tensor product construction of V and W and V ⊗W
is the tensor product space. By definition V ⊗ W is a quotient space of the free vector
space of F (V × W) and the subspace N of F (V × W) consisting of the elements in
F (V ×W) that are bilinearly related. The key property of this construction is that the
bilinear map ⊗ is generic or universal in the sense that for a vector space X , any bilinear
map, b : V ×W → X , can be written as the composition b = l ◦ ⊗ where l is a unique
linear map l : V ⊗W → X .

Then to make the connection to our setup consider a Hilbert spaces H(E) of univari-
ate functions on E ⊆ R. It follows that with (ϕi)i a basis for H(E) then (ϕi ⊗ ϕj)i,j is a
basis for the (Hilbert) tensor product space H(E)⊗H(E) of bivariate functions and the
set (ϕiϕj)i,j is a is a basis for the Hilbert space H(E × E), see Reed and Simon (1972).
Then the map l defined on (ϕi ⊗ ϕj)i,j such that ϕi ⊗ ϕj 7→l ϕiϕj maps a basis for
H(E)⊗H(E) to a basis for H(E ×E). Extending l linearly to a surjective map we have
for any f, g ∈ H(E) where f =

∑
k1
ak1ϕ1,k1 and g =

∑
k2
ak2ϕ2,k2 , using the bilinearity

of ⊗ and the linearity of l, that

l(f ⊗ g) = l
(∑

k1

∑
k2

ak1ak2(ϕ1,k1 ⊗ ϕ2,k2)
)
=

∑
k1

∑
k2

ak1ak2ϕ1,k1ϕ2,k2 = fg.

This shows that H(E ×E) and H(E)⊗H(E) are isomorphic via the map l and we may
simply think of H(E × E) as tensor product space of bivariate functions thus use linear
combinations of tensors products to represent any element in f ∈ H(E × E).

Especially, for any d ∈ N we consider d marginal or univariate sets of basis functions
for H(E)

(ϕ1,k1)
p1
k1=1, . . . , (ϕd,kd)

pd
kd=1, (3.17)

where ϕj,m : R → R for j = 1, . . . , d and m = 1, . . . , pj . Then, by the tensor product
construction we can specify the d-variate basis functions in (3.16) in terms of d (marginal)

22

3 Methods and modelling

sets of the univariate functions given by

ϕm1,...,md
:= ϕ1,m1 ⊗ ϕ2,m2 ⊗ · · · ⊗ ϕd,md

. (3.18)

Evaluating each of the pj univariate functions in the nj points in Xj from subsection 2.2.1
results in an nj × pj matrix Φj = (ϕj,m(xk))k,m. It then follows that with Φ the n × p

(p :=
∏d
j=1 pj) tensor product (or Kronecker) matrix

Φ = Φd ⊗ · · · ⊗ Φ1 (3.19)

we can evaluate f in (3.16) in each point in the grid X1 × . . .×Xd as

f(x1, . . . , xd) = (Φβ)j1,...,jd .

Especially by reorganizing the coefficient vector β as an array we obtain the MCAT struc-
ture introduced above.

It turns out, as shown in Lund and Hansen (2017), that using this tensor product con-
struction the conditional expectation in the dynamical model from subsection 3.1.2.1 can
be framed as an MCAT structured linear model with three components corresponding to
each of the components in the drift in (3.7). Furthermore in Lund et al. (2017) and Lund
et al. (2017) we consider models where the conditional expectation can be considered as
a special case of (3.9) where we only have one component namely the 3-variate function s
corresponding to an MCAT structured model with one component. In Lund et al. (2017)
this type of model is fitted to data using the GLM framework from subsection 3.2.1.1 and
in Lund et al. (2017) using the maximin effects approach from subsection 3.2.1.2.

3.2.4 Penalized regression problems
We end this chapter by introducing an estimation technique or perhaps an estimation
approach used in computational statistics and signal processing. For high-dimensional
problems where the number of parameters is large it can be convenient and sometimes
necessary to control the parameters or features used in the solution to make the problem
well-posed. This can for instance happen if we use a so called overcomplete basis, a basis
where the elements are not linearly independent, to represent the function f in (3.16).
In this case we will need to restrict the number of basis functions we use to represent f .
One way of doing this is by way of a subset or feature selection method where only basis
functions that are somehow deemed important in representing f are used.

Another way of controlling the parameter space to obtain a well-posed problem is
by regularization or penalization. Consider the models in subsections 3.2.1.1 - 3.2.1.3.
In order to estimate the regression parameters in theses models respectively we need
to minimize this loss function given by related loss function l in (3.12)-(3.14) respectively.
Here in this project we minimize regularized or penalized versions of these loss functions.
That is, we consider the following constrained optimization problem

min
θ
l(θ) subject to J(θ) ≤ t (3.20)

where t ∈ (0,∞], θ ∈ Rp, and J is a convex penalty function. If l is the log-likelihood
then with t = ∞ (3.20) is the usual (unconstrained) maximum likelihood problem while
for t <∞ (3.20) is a constrained or penalized maximum likelihood problem.

The problem (3.20) has an equivalent Lagrange formulation given by

min
θ

{l(θ) + λJ(θ)} (3.21)

23

3 Methods and modelling

where λ ≥ 0 is the penalty or regularization parameter controlling the amount of penal-
ization.

Solving (3.21) will, depending on the properties of the penalty function J , restrict the
resulting parameter estimates compared to the unpenalized solution when λ = 0. The
most well known form of regularization is Tikhonov regularization or ridge regression
where J(θ) = ∥θ∥22 - the ℓ2-penalty. With this penalty solution with small ℓ2-norm is
chosen leading to so called shrinkage. In general regularizing the estimation problem
prevents so called over fitting leading to a better prediction accuracy or out of sample
performance. When estimating a function f i.e. when regression coefficient θ is the vec-
tor of basis coefficients, this implies that the estimate of f for larger values of λ becomes
more smooth.

Another popular choice for regularization is the ℓ1-penalty given by J(θ) := ∥β∥1.
This choice of penalty induce sparsity in the estimate of θ essentially because there is
an edge in the feasible set when ever θi = 0. This especially implies that, in addition
to regularizing the problem, the ℓ1-penalty also performs subset selection as mentioned
above.

24

Chapter 4

Algorithms and computing

In this chapter we will discuss the generic versions of algorithms that we have used to
solve the problem (3.21) for large-scale models with the tensor-array structure introduced
in subsection 3.2.2. To understand the algorithm and its convergence properties we will
need some concepts from convex analysis and some results for set-valued operators re-
lated to convex functions.

We finish by discussing the so called array arithmetic which is a way to efficiently
carry out matrix-vector product for tensor structured matrices which provides the sole
justification for formulating the multi component tensor array model framework as dis-
cussed section 3.2.2.

4.1 Convex functions and setvalued operators

In the following let H be a Hilbert space equipped with the usual norm, ∥ · ∥2, Let us
start with the following basic definitions.

Definition 4.1. Let g : H → H. We say the function g is:

i) Convex if for α ∈ [0, 1]

g(αx− (1− α)y) ≤ αg(x)− (1− α)g(y) (4.1)

ii) Strictly convex if (4.1) is a strict inequality.

iii) Stongly convex if g(x)− ∥x∥22 is convex.

We say a convex function is proper if it takes values in the extended real numbers (−∞,+∞].
We also note that if g in definition 4.1 is twice differentiable the strong convexity is equiv-
alent to

∇2g(x)− νI positive definite,

where ν > 0 and ∇2g is the Hessian of g.
Then let f : H → R be a convex differentiable function withLf -Lipschitz continuous

gradient for some Lf > 0 and let g : H → (−∞,+∞] be a proper convex function and
consider a generic version of the unconstrained optimization problem (3.21) in section
3.2.4 given by

min
x

{f(x) + g(x)}. (4.2)

25

4 Algorithms and computing

Now as g is not necessarily differentiable we cannot characterize the solution to (4.2)
simply by differentiating the objective F := f + g. Instead we need the so called sub-
differential operator to characterize solutions to (4.2). The sub-differential of f denoted
∂g : H → H is defined to be the set of all sub-gradients of g in x i.e.

∂g(x) := {y ∈ H : g(z) ≥ g(x) + ⟨z − x, y⟩, ∀z ∈ dom g}. (4.3)

If g is differentiable in x then clearly ∂g(x) is equal to the gradient ∇g(x). However in
general ∂g is a multi-valued or set-valued operator. We next define some properties per-
taining a general set-valued operator T : H → H, that we will need in order to understand
the algorithm we will use to solve (4.2).

Definition 4.2. Let T : H → H be a set-valued operator.

i) T is L-Lipschitz continuous if

∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ H.

ii) T is called non expansive if it is 1-Lipschitz.

iii) T is called firmly non expansive if

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩, ∀x, y ∈ H.

iv) T is called α-averaged if

T = (1− α)I + αN,

whereN is a non expansive operator, I the identity and α ∈ [0, 1).

v) T is called monotone if

⟨x− x′, y − y, ⟩ ≥ 0, for any y ∈ Tx, y′ ∈ Tx′,

and maximal monotone if in addition the graph of T ,

{(x, y) ∈ H ×H : y ∈ Tx},

is not contained in the graph of any other monotone operator T ′ : H → H.

vi) T is γ-inverse strongly monotone if there exists γ > 0 such that

Re(⟨Tx− Ty, x− y⟩) ≥ γ|∥Tx− Ty∥22.

Given these definitions we first note the the sub-differential operator is in fact mono-
tone. Especially, let y ∈ ∂g(x), y′ ∈ ∂g(x′) then by (4.3)

g(z) ≥ g(x) + ⟨z − x, ∂g(x)⟩ and g(z) ≥ g(x′) + ⟨z − x′, ∂g(x′)⟩

for all z ∈ H especially

g(x′) + g(x) ≥ g(x) + ⟨x′ − x, y⟩+ g(x′) + ⟨x− x′, y′⟩
⇔
⟨x′ − x, y′ − y⟩ ≥ 0

The next two results show why the definition of an averaged operators is useful to
work with.

26

4 Algorithms and computing

Theorem 4.3. The composition of averaged operators is an averaged operator.

Proof. Let T = (1 − α)I + αN and S = (1 − β)I + βM be two averaged operators.
Obviously if α = 0 or β = 0 then the composition is averaged since either TS = S or
TS = T . So assume that α, β ̸= 0, define γ := β + α(1− β) and note that 0 < γ < 1 as
γ = 1− (1− α)(1− β). Then

TS = (1− α)(1− β)I + α(1− β)N + (1− α)βM + αβNM = (1− γ)I + γK

with K := (α(1 − β)N + (1 − α)βM + αβNM)/γ. Now using the triangle inequality
and that N and M hence NM are non expansive we get

∥Kx−Ky∥ ≤ 1

γ
(α(1− β)∥N(x− y)∥+ (1− α)β∥M(x− y)∥+ αβ∥NM(x− y)∥)

≤ 1

γ
(α(1− β)∥x− y∥+ (1− α)β∥x− y∥+ αβ∥x− y∥)

= ∥x− y∥

showing that K is non expansive hence TS is averaged. □

Now suppose that T = (1−α)+αN is an averaged operator an consider the sequence
produced by iteratively applying T to some x ∈ domT i.e.

xn := Tnx = TTn−1x = (1− α)xn−1 + αNxn−1.

This type of iterates are called Krasnoselskii-Mann iterates after Mann (1953) and Kras-
noselsky (1955) and they always converge to a fixed point of T given that one exists.

Theorem 4.4. Let T = (1−α)+αN denote any averaged operator. Then (xn)n := (Tnx)n
for some x ∈ domT converge to a fixed point of T if any such exists.

Proof. Note that if Tnx→ z and Tz = y then since T is non expansive

∥Tnx− y∥ ≤ ∥Tn−1x− z∥ → 0

i.e. Tnx→ y implying y = z hence z is a fixed point. Further let S := I −T then by the
polarization identity

∥xn − z∥2 − ∥xn+1 − z∥2 = ∥xn − z∥2 − ∥Txn − Tz∥2

= 2Re(⟨Sxn − Sz, xn − z⟩)− ∥Sxn − Sz∥2.

Furthermore I−N is 1/2-inverse strongly monotone and the complement S = α(I−N)
is 1/(2α)-inverse strongly monotone hence

2Re(⟨Sxn − Sz, xn − z⟩) ≥ 2 · 1

2α
∥Sxn − Sz∥2 > ∥Sxn − Sz∥2

as α ∈ (0, 1). So (∥xn − z∥2)n is strictly decreasing and bounded below by 0 hence must
converge. This implies that (xn)n has a limit point x∗ which must be a fixed point of
T . □

We need the following lemma.

27

4 Algorithms and computing

Lemma 4.5. Consider the operator T : H → H and I : H → H the identity.

i) T is firmly non expansive if and only if it is 1/2-averaged.

ii) T is firmly non expansive if and only if I − T is firmly non expansive.

Proof. (i): Consider the operator (I+N)/2 for some operatorN and I the identity. Then⟨1
2
(I +N)x− 1

2
(I +N)y, x− y

⟩
=

1

2
∥x− y∥2 + 1

2
⟨Nx−Ny, x− y⟩

and∥∥∥1
2
(I +N)x− 1

2
(I +N)y

∥∥∥2 =
1

4
∥x− y∥2 + 1

4
∥Nx−Ny∥2 + 1

2
⟨Nx−Ny, x− y⟩.

Subtracting these two equation gives us the identity⟨1
2
(I +N)x− 1

2
(I +N)y, x− y

⟩
−
∥∥∥1
2
(I +N)x− 1

2
(I +N)y

∥∥∥2
=

1

4
(∥x− y∥2 − ∥Nx−Ny∥2).

If the operator (I +N)/2 is 1/2-averaged N is non expansive and the right hand side
is positive making the operator (I +N)/2 firmly non expansive.

If, on the other hand, the operator (I + N)/2 is firmly non expansive the left hand
side is positive implying N is non expansive hence (I +N)/2 is 1/2-averaged.

(ii): If T is firmly non expansive then by i) T = (I + N)/2 for some non expansive
operator N . Then as I−T = (I−N)/2 and as −N is also non expansive it follows from
i) that I − T must be firmly non expansive. □

Now suppose that x∗ solves the problem (4.2). Then

0 ∈ ∇f(x∗) + ∂g(x∗) ⇔ 0 ∈ −δ∇f(x∗)− δ∂g(x∗)

⇔ x∗ + δ∂g(x∗) ∈ x∗ − δ∇f(x∗)
⇔ x∗ ∈ (I + δ∂g)−1(I − δ∇f)x∗

Thus the solution set to (4.2) is the set of fixed points for the operator

(I + δ∂g)−1(I − δ∇f) : H → H. (4.4)

This operator is known as the forward-backward operator and as we will show next for f
convex with Lipschitz continuous gradient, this operator is exactly an averaged operator.
Hence by the results above above we can find the solution x∗ to (4.2) simply by iteratively
applying the forward backward operator to a point in its domain.

We first we need the following result from also known as the descent lemma (see
Bertsekas (1999)).

Lemma 4.6 (Descent lemma). Let f : H → R be a differentiable convex function with
L-Lipschitz gradient ∇f : H → H. Then

f(x+ y) ≤ f(x) + ⟨y,∇f(x)⟩+ L

2
∥y∥2.

The next result is key to establishing the convergence of the proximal algorithm.

28

4 Algorithms and computing

Theorem 4.7. Let f : H → R be a differentiable convex function with non expansive gradient
∇f : H → H. Then ∇f is firmly non expansive.

Proof. Let h : H → R be differentiable and convex with non-expansive gradient. Then
for any t ∈ H from Lemma 4.6 above

h(t−∇h(t)) ≤ h(t) + ⟨−∇h(t),∇h(t)⟩+ 1

2
∥ − ∇h(t)∥2= h(t)− 1

2
∥∇h(t)∥2.

Using this for any s ∈ H we can get

inf
t
h(t) = inf

t
h(t−∇f(t))≤ inf

t
h(t)− 1

2
∥∇h(t)∥2 ≤ h(s)− 1

2
∥∇h(s)∥2. (4.5)

Next fix x, y ∈ H and define for any fixed s ∈ H the function

gs(t) := f(t)− f(s) + ⟨∇f(s), s− t, ⟩.

Then gx is convex since f is convex, t 7→ x−t is convex, and the inner product is bilinear.
Furthermore ∇gx(t) = ∇f(t)−∇f(x), which is non expansive, as ∇f is non expansive,
and equal to zero exactly when t = x hence inft gx(t) = 0. Now using (4.5) on gx we get

0 ≤ gx(y)−
1

2
∥∇gx(y)∥2

= f(y)− f(x) + ⟨∇f(x), x− y, ⟩ − 1

2
∥∇f(y)−∇f(x)∥2.

Similarly by symmetry we also obtain that for gy that

0 ≤ f(x)− f(y) + ⟨∇f(y), y − x, ⟩ − 1

2
∥∇f(x)−∇f(y)∥2.

Now adding the two inequalities and rearranging we obtain, for any x, y ∈ H,

∥∇f(y)−∇f(x)∥2 ≤ ⟨∇f(y)−∇f(x), y − x, ⟩,

showing that ∇f is firmly non-expansive. □

Finally we have this last result that ensures the validity of the proximal algorithm
presented in section 4.2.1 below.

Theorem 4.8. Let I be the identity and f a convex function with L-Lipschitz gradient. The
operator I − δ∇f is averaged for any δ ∈ (0, 2/L).

Proof. By Theorem 4.7−∇f/L is firmly non expansive hence by Lemma 4.5 1/2-averaged
i.e. −∇f/L = (I +N)/2 for some non expansive operator N . Then since

I − 2

L
∇f = I − (I +N)/2− (I +N)/2 = −N

we see that I − 2∇f/L is in fact non expansive. For α ∈ [0, 1) we may write

αI + (1− α)(I − 2

L
∇f) = αI + (1− α)I − (1− α)

2

L
∇f = I − (1− α)

2

L
∇f

showing that with δ := 2(1− α)/L ∈ [0, 2/L), I − δ∇ averaged □

Next we will introduce the proximity operator and see how to use it to express the
general forward-backward operator for g a proper and convex function.

29

4 Algorithms and computing

4.2 Proximity operator based algorithms

Next define pδg : H → H by

pδg(y) := arg min
x∈H

{ 1

2δ
∥x− y∥22 + g(x)

}
, (4.6)

for any proper convex function g and δ > 0. The operator pg is the so called proximity
operator introduced in Moreau (1962) and independently in Minty (1962). We note that

x ∈ pδg(y) ⇔ 0 ∈ x− y + δ∂g(x) ⇔ y ∈ (I + δ∂g)x

with I the identity in H. Now as the g is convex and the 2-norm is strongly convex
it follows that the problem in (4.6) has a unique minimum hence pδg is singled valued
implying

y = (I + δ∂g)x. (4.7)

Furthermore using a result in Minty (1962) for general maximal monotone operators,
Moreau (1965) shows that all z ∈ H can be uniquely decomposed as in (4.7) given suitable
x ∈ H. Thus the operator (I + δ∂g) : H → H is surjective and single valued. Especially
the inverse operator (I + δ∂g)−1 : H → H is surjective and single-valued implying that

pδg = (I + δ∂g)−1.

Thus the proximity operator is in fact the resolvent of the sub-differential operator im-
plying that it is in fact firmly non-expansive as in Definition 4.2. To see this let x, y
respectively x′, y′ satisfy (4.7). Then

⟨pδg(y)− pδg(y
′), y − y′⟩ = ⟨x− x′, (I + δ∂g)x− (I + δ∂g)x′⟩

= ∥x− x′∥22 + ⟨x− x′, δ∂g(x)− δ∂g(x′)⟩
≥ ∥pδg(y)− pδg(y

′)∥22

using that ∂g is a monotone operator. We also see that the forward-backward operator
(4.4) can be written as the composition

(I + δ∂g)−1(I − δ∇f) = pδg(I + δ∇f).

In particular, this shows both the metric projection and the soft thresholding opera-
tor are firmly non-expansive as they are special cases of the proximity operator.

Example 4.9. Let C ⊂ H denote a non-empty closed convex set and let f be given
by the Dirac delta function for C, g := δC , which is equal to ∞ for x ∈ C and zero
otherwise. It follows that

pg(x) = prC(x) := arg min
C

∥x− z∥2,

where prC denotes the metric projection of x onto C. Hence the proximity operator is
a generalization of the metric projection onto a convex set C. Especially the properties
discussed above are immediate for the metric projection operator prC . ◦

We may also view the proximity operator as a penalized projection operator.

30

4 Algorithms and computing

Example 4.10. Consider the convex function x 7→ g(x) := λ∥x∥1, λ > 0. Evaluating
the proximity operator amounts to sub differentiating and setting to zero i.e.

0 ∈ ∂

∂x

(1
2
∥x− z∥22 + λ∥x∥1

)∣∣∣
x=x∗

= x∗ + [−λ− z, λ− z]

hence

x∗ = S(z, λ) :=

 z + λ , z ∈ (−∞,−λ)
0 , z ∈ [−λ, λ]
z − λ , z ∈ (λ,∞)

where the operator S is the so called soft thresholding operator. for the ℓ1-penalty the prox-
imity operator is given in closed form by the soft thresholding operator. ◦

4.2.1 Proximal gradient based algorithms
Given the results in sections 4.1 and 4.2 the following result is immediate.

Theorem 4.11. Let f be convex with Lf -Lipschitz continuous gradient and g proper and con-
vex. Then for x ∈ H the sequence (xn)n where

xn = (pδg(I − δ∇f))nx

converges to a fix point for pδg(I − δ∇f) hence a solution to the probelm (4.2).

Proof. To see this we note that, by Theorem 4.8, the operator I − δ∇f is averaged as
long as δ ∈ (0, 2/Lf). Also as shown in section 4.2 the proximity operator is firmly
non-expansive hence 1/2-averaged by Lemma 4.5. Then as the composition of averaged
operators is again an averaged operator, by Theorem 4.3, it follows that pδg(I − δ∇f)
is averaged. Finally by Theorem 4.4 by iteratively applying an averaged operator to any
element in its domain we obtain a sequence that converges to a fixed point given that a
fix point exists. □

Thus if a solution x∗ to (4.2) exists, we are guaranteed to find it by iteratively applying
the proximity operator as long as ∇f is Lipschitz. This implies that if the proximity
operator is easy to evaluate we have an easy way of solving (4.2). For instance for ℓ1-
penalized problems, solving (4.2) amounts to iteratively soft thresholding, by example
4.10.

From Theorem 4.11 we obtain the following simple algorithm for solving (4.2).

Algorithm 1 Proximal gradient algorithm
Require: δ ∈ (0, 2/Lf), x0 := x ∈ H.

1: for k = 0 to K ∈ N do
2: xn := pδg(xn−1 − δ∇f(xn−1)).
3: if convergence criterion is satisfied then
4: break
5: end if
6: end for

In Beck and Teboulle (2009) it is verified that the convergence rate of the proximal
gradient algorithm is O(1/k) i.e. in k iterations we will be within O(1/k) form the op-
timal objective value. However, building on Nesterov (1983), Beck and Teboulle (2009)

31

4 Algorithms and computing

propose a small modification of the proximal gradient algorithm that improve the con-
vergence rate substantially. The authors call this proposed modification for fast iterative
soft thresholding (FISTA) even though their algorithm applies to the general problem (4.2)
with a general proximity operator. The modified algorithm is as follows.

Algorithm 2 Fast proximal gradient algorithm
Require: δ ∈ (0, 2/Lf), x0 := x ∈ H, t1 := 1, y2 := x1.

1: for k = 0 to K ∈ N do
2: xn := pδg(yn − δ∇f(yn)),

tn+1 := (1 +
√
1 + 4t2n)/2,

yn+1 := xn + (tn − 1)/tn+1(xn − xn−1).
3: if convergence criterion is satisfied then
4: break
5: end if
6: end for

In Beck and Teboulle (2009) they show that this algorithm has a convergence rate of
O(1/k2). Furthermore as noted by the authors this is the optimal convergence rate for a
first order method according to Nemirovsky and Yudin (1983).

We know that to ensure convergence of the proximal algorithms we have to restrict
the step size i.e. δ ∈ (0, 2/Lf). Especially we need to know the Lipschitz constant Lf
of the gradient ∇f . In many cases it is not possible to obtain the Lipschitz constant
and in turn determine an appropriate step size. Under such circumstances we can infer
a backtracking step.

Algorithm 3 Backtracking Line search
Require: yk, δk−1, s ∈ (0, 1), δ := δk−1, z := pδg(yk − δ∇f(yk))

1: if f(z) ≤ f(yk) + ⟨∇f(yk), z − yk⟩+ ∥z − yk∥2/(2δ) then
2: Return δk = δ, xk+1 := z
3: else
4: δ := sδ and go to step 1.
5: end if

4.2.2 Non-Lipschitz loss gradients
We finish our discussion of solution algorithms related to the problem (4.2) by providing
two approaches to solving this problem for a non-Lipschitz continuously differentiable
loss or likelihood, using a proximal gradient based algorithm. This for instance relevant
for the GLM framework from subsection 3.2.1.2 as well as for the maximin effects frame-
work in subsection 3.2.1.2.

4.2.2.1 Quadratic approximation

One approach is to replace f in (4.2) with the an quadratic approximation to it in some
point x(k) given by

fQk
(x) := f(x(k)) +∇xf(x

(k))⊤(x− x(k)) +
1

2
(x− x(k))⊤H(k)(x− x(k)),

32

4 Algorithms and computing

where H(k) is the Hessian of f (H := ∇2f) evaluated in x(k). This leads to the mini-
mization problem

x̃(k+1) = arg min
x∈Rp

−∇xf(x
(k))⊤(x− x(k)) +

1

2
(x− x(k))⊤H(k)(x− x(k)) + g(x),

(4.8)

which corresponds to finding the search direction defined by equation (6) in Tseng and
Yun (2009) for the gradient based descent algorithm. Solving (4.8) is equivalent to solving
a penalized weighted least squares problem. Thus using this approximation we obtain an
outer gradient descent loop and may use the proximal gradient algorithm as an inner loop
when solving (4.8). In Lund et al. (2017) we call this the GD-PG algorithm.

Algorithm 4 GD-PG

Require: x(0)
1: for k = 0 to K ∈ N do
2: given x(k) obtain fQk

.
3: specify the proximal stepsize δk
4: given x(k), δk: solve (4.8) using the a proximal gradient loop.
5: given x(k), x̃(k+1): use a line search to compute x(k+1)

6: if convergence criterion is satisfied then
7: break
8: end if
9: end for

Given regularity conditions this algorithm will produce a sequence of iterates that
will converges to a critical point for the objective function in (4.2) as shown in Lund et al.
(2017) where the approach is equivalent to iterated penalized least squares.

4.2.2.2 A non-monotone proximal based algorithm

Another approach is to solve the problem directly without approximating the loss. This
is the approach taken in Lund et al. (2017) where a softmaximin loss function approximat-
ing the loss in subsection 3.2.1.2 is minimized using a so called non-monotone proximal
gradient algorithm where the loss only need to have a gradient that is locally Lipschitz
continuously differentiable. For completeness we give the non-monotone proximal gra-
dient algorithm from Chen et al. (2016) here.

Algorithm 5 NPG

Require: x0, Lmax ≥ Lmin > 0, τ > 1, c > 0, M ≥ 0 arbitrarily
1: for k = 0 to K ∈ N do
2: choose Lk ∈ [Lmin, Lmax]
3: solve x := pg/Lk

(x(k) − 1
Lk

∇f(x(k))),
4: if F (x) ≤ max[k−M]+≥i≥k F (x

(i))− c/2∥x− x(k)∥ then
5: xk+1 := x
6: else
7: Lk := τLk and go to 3.
8: end if
9: end for

33

4 Algorithms and computing

Here step 3 is the proximal step with the proximal operator defined in (4.6). We also
note that for M = 0 the algorithm is in fact monotone.

We note that this algorithm in particularly applies when ever the loss is strongly con-
vex, see Definition 4.1, as in this case the assumptions from Chen et al. (2016) are all
satisfied, as shown in Lund et al. (2017). We note that it should also be possible to solve
the estimation problem for the GLM class, i.e. minimize the loss (3.12), using this algo-
rithm.

4.3 Array-tensor computations

We have not thus-far discussed why we have chosen to work with proximal gradient
based algorithms. After all there are several different approaches to solving a problem
like (4.2). For instance, in the context of non-differentiable penalization one of the most
efficient strategies is seemingly to turn the original problem into a sequence of penalized
weighted least square problems as discussed in subsection 4.2.2.1 and then solve each of
these subproblems using a coordinate descent algorithm. A very efficient and remarkably
robust implementation of this approach is the glmnet solver from Friedman et al. (2010).
This routine solves the problem (4.2) with g a convex combination of the ℓ1 and the ℓ2
norms (the so called elastic net penalty) for a variety of models in the GLM framework.
Apparently this routine derives its efficiency form a happy marriage between the induced
sparsity from the ℓ1-penalty and the marginal nature of the coordinate descent algorithm.
Especially it exploits the sparse nature of the problem by using a so called active set
strategy to only optimize over non-zero (active) parameter coordinates. Furthermore
the number of operations performed at each iteration is quite limited even for large scale
data problems as the algorithm only needs to update coordinate-wise, i.e. never needs
to perform the entire (design) matrix-vector products. Especially as shown in Hastie
et al. (2015) this algorithm can actually outperform proximal gradient based algorithms
for models in the GLM framework.

However, the efficiency of the coordinate algorithm depends on having easy access
to the columns of the design matrix hence in turn relies on the entire design matrix. For
the model framework we consider i.e. models that have a multi component array tensor
structure as discussed in section 3.2.2 the (tensor structured) design matrix in large-scale
applications will become prohibitively large. Thus in order to solve large-scale MCAT
problems we need a design matrix free algorithm which in turn makes the coordinate
descent algorithm, seem like a less attractive candidate. Furthermore as we will discuss
next, within the MCAT framework you can perform design matrix vector multiplication
without constructing the design matrix and furthermore this multiplication is highly effi-
cient compared to an ordinary matrix-vector multiplication. Thus in some sense there is
an inherent mismatch between the coordinate descent algorithm and the MCAT frame-
work as the coordinate descent algorithm never evaluates the matrix-vector product but
on the other relies heavily on having access to the entire design matrix.

Instead in order to exploit the structure of MCAT models we need an algorithm that
can efficiently solve problems like (4.2) and relies on design matrix-vector multiplication
when doing so. Now, considering the proximal gradient based algorithms in section 4.2
we note that each iteration involves

1. evaluation of the gradient ∇f .

2. evaluation of the proximity operator pδg .

3. evaluation of the objective function F .

34

4 Algorithms and computing

Given that we can effectively evaluate the proximal operator, e.g. as in example 4.10, the
performance of our algorithm will depend on the complexity of evaluating the gradient
and the objective. Now for the linear models from section 3.2.1 this essentially comes
down to carrying out a design matrix-vector product.

4.3.1 The tensor array computations
We will now briefly introduce the type of computations that form the basis of our algo-
rithm. These computations apparently dates back to Yates (1937). The form considered
here is essentially due to Pereyra and Scherer (1973) and De Boor (1979) and later Buis
and Dyksen (1996) and Currie et al. (2006).

We start by considering d = 2. Let M = M2 ⊗M1 be a tensor matrix where Mi is
ri × ci and A a 2-array (i.e. matrix) of size c1 × c2. Then it is a well know property (see
Searle (1982)) that

Mvec(A) ≡M1AM
⊤
2 . (4.9)

The equivalence symbol ≡ signifies that the left hand side and the right side contain
the same values but that these are organized differently. Especially the left hand side is
a r1r2 × 1 vector and the right hand side is a r1 × r2 matrix, that is whenever M2 is a
matrix with more than two rows or columns.

There are several points to notice about (4.9). First we see that at least for d =
2 we may actually compute the matrix vector product Mvec(A) without having access
to the matrix M . We also notice that the matrix on the right hand side is computed
sequentially via two matrix-matrix products where the first product (from the right) takes
c1c2r2 multiplications and the second takes r1c1r2 multiplications. On the other hand
the direct matrix-vector product takes r1r2c1c2 multiplications and since

r1c1r2c2 > c1c2r2 + r1c1r2 ⇔ 1 >
1

r1
+

1

c2

the sequential matrix-matrix computations, on the right, are actually more efficient than
the direct matrix-vector product on the left when r1 > 2 and c2 > 2.

We also note that the computational complexity of the computations on the right
apparently depends on how M is organized. If for instance the row dimension r2, say
doubles, then the number of multiplications on the right doubles. However, if the row
dimension r1, doubles then only one of the terms on the right, namely r1c1r2, doubles.
This suggests that for d = 2 optimally, the marginal matrices with the largest row di-
mension should be last in the tensor product.

Next, in order to generalize (4.9) to d > 2 dimensions we follow Currie et al. (2006).
To do this we need an operator that maps a c1×· · ·×cd d-arrayA to a c1×c2 · · · cd matrix
M containing the same values. We denote this operator by mat and note that it simply
works by flattening dimensions 2 to d of A. We also need an inverse map denoted mat−1

i.e. the map that take a c1 × c2 · · · cd matrix M to the c1 × · · · × cd d-array A containing
the same values.

First we define the d-array equivalent of the sequential matrix-matrix computation in
(4.9).

Definition 4.12. For a matrixM of size r×c1 and a d-dimensional arrayA of size c1×· · ·×cd
theHM -transform ofA is the d-dimensional array of size r × c2 × · · · × cd defined by

A 7→ HM (A) := mat−1(M mat(A)).

35

4 Algorithms and computing

In words, HM works by flattening the d-array A into a matrix, then computes a matrix-
matrix product and then reinstates the array structure given by the first dimension of M
and dimension 2 to d of A.

Next we need to generalize the transposition appearing in (4.9) to d-dimensional ar-
rays as follows.

Definition 4.13. For a d-dimensional arrayA of size c1 × · · · × cd the rotation ofA denoted
R(A) is the d-dimensional array of size c2 × c3 × . . .× cd × c1 obtained by permuting the indices
ofA correspondingly.

Now by composing the above two definitions we can define how one step in the sequen-
tial computations in (4.9) is performed for general d.

Definition 4.14. For a matrixM of size r×c1 and ad-dimensional arrayA of size c1×· · ·×cd
the rotatedHM -transform ofA is the d-dimensional array of size c2×c3× . . .×cd×r defined
by

A 7→ ρ(M,A) = R(HM (A)).

Finally, for any d with A a c1 × · · · × cd-array and M =Md ⊗ · · · ⊗M1, Mi is ri × ci,
we have the following generalization of (4.9)

Mvec(A) ≡ ρ(Md, ρ(Md−1, ρ(. . . , ρ(M1, A) . . .))). (4.10)

The mathematical justification of this equivalence can be fund in Currie et al. (2006).
Using (4.10) we can carry out the design matrix-vector multiplications in the MCAT

framework without having access to the overall design matrix. This drastically reduces
the memory foot print of any algorithm that exploits these type of structure. Especially,
the amount of memory needed to store the over all design matrix from subsection 3.2.2
is of the order

∏
iKiNi while the amount of memory required to store the marginal

components is only of order
∑
iKiNi. Furthermore as noted in Buis and Dyksen (1996)

forM =Md⊗· · ·⊗M1 and ri = ci = m for all i (square matrices) the direct matrix-vector
product is O(m2d) while the corresponding array computation is O(dmd+1). Hence we
can expect substantial gains in terms of computational efficiency by applying the tensor
array computations instead of a direct matrix-vector computations. This shows that in
principle we can speed up any algorithm employing the direct matrix-vector product for
a tensor matrix.

It is these computations that motivates the MCAT framework and which are ex-
ploited throughout in the following manuscripts for several different settings. By com-
bining these computations with a proximal gradient based solution algorithm we obtain
solution algorithms for MCAT structured models that scale very well with the size of the
data.

36

Part II

Manuscripts

37

Chapter 5

Penalized estimation in large-scale
generalized linear array models

Lund, A., M. Vincent, and N. R. Hansen (2017). Penalized estimation in large-scale
generalized linear array models. Journal of Computational and Graphical Statistics, To ap-
pear.

38

Penalized estimation in large-scale

generalized linear array models

Adam Lund⇤

Department of Mathematical Sciences, University of Copenhagen,
Martin Vincent†

Department of Mathematical Sciences, University of Copenhagen
and

Niels Richard Hansen⇤

Department of Mathematical Sciences, University of Copenhagen

January 3, 2017

Abstract

Large-scale generalized linear array models (GLAMs) can be challenging to fit.

Computation and storage of its tensor product design matrix can be impossible due

to time and memory constraints, and previously considered design matrix free algo-

rithms do not scale well with the dimension of the parameter vector. A new design

matrix free algorithm is proposed for computing the penalized maximum likelihood es-

timate for GLAMs, which, in particular, handles nondi↵erentiable penalty functions.

The proposed algorithm is implemented and available via the R package glamlasso.

It combines several ideas – previously considered separately – to obtain sparse es-

timates while at the same time e�ciently exploiting the GLAM structure. In this

paper the convergence of the algorithm is treated and the performance of its imple-

mentation is investigated and compared to that of glmnet on simulated as well as

real data. It is shown that the computation time for glamlasso scales favorably with

the size of the problem when compared to glmnet. Supplementary materials, in the

form of R code, data and visualizations of results, are available online.

Keywords: penalized estimation, generalized linear array models, proximal gradient algo-
rithm, multidimensional smoothing

⇤
Part of the Dynamical Systems Interdisciplinary Network, University of Copenhagen.

†
Supported by The Danish Cancer Society and The Danish Strategic Research Council/Innovation Fund

Denmark.

1

1 Introduction

The generalized linear array models (GLAMs) were introduced in Currie et al. (2006) as
generalized linear models (GLMs) where the observations can be organized in an array and
the design matrix has a tensor product structure. One main application treated in Currie
et al. (2006) – that will also be central to this paper – is multivariate smoothing where
data is observed on a multidimensional grid.

In this paper we present results on 3-dimensional smoothing for two quite di↵erent real
data sets where the aim was to extract a smooth mean signal. The first data set contains
voltage sensitive dye recordings of spiking neurons in a live ferret brain and was modeled in
a Gaussian GLAM framework. The second data set contains all registered Medallion taxi
pick ups in New York City during 2013 and was modeled in a Poisson GLAM framework.
In both examples we fitted an `1-penalized B-spline basis expansion to obtain a clear
signal. For the taxi data we also demonstrate how the `1-penalized fit lead to a lower error,
compared to the non-penalized fit, when trying to predict missing observations. Other
potential applications include factorial designs and contingency tables.

Currie et al. (2006) showed how the structure of GLAMs can be exploited for computing
the maximum likelihood estimate and other quantities of importance for statistical infer-
ence. The penalized maximum likelihood estimate for a quadratic penalty function can
also be computed easily by similar methods. The computations are simple to implement
e�ciently in any high level language like R or MATLAB that supports fast numerical linear
algebra routines. They exploit the GLAM structure to carry out linear algebra operations
involving only the tensor factors – called array arithmetic, see also De Boor (1979) and Buis
and Dyksen (1996) – and they avoid forming the design matrix. This design matrix free
approach o↵ers benefits in terms of memory as well as time usage compared to standard
GLM computations.

The approach in Currie et al. (2006) has some limitations when the dimension p of the
parameter vector becomes large. The p ⇥ p weighted cross-product of the design matrix
has to be computed, and though this computation can benefit from the GLAM structure,
a linear equation in the parameter vector remains to be solved. The computations can
become prohibitive for large p. Moreover, the approach does not readily generalize to
non-quadratic penalty functions like the `1-penalty or for that matter non-convex penalty
functions like the smoothly clipped absolute deviation (SCAD) penalty.

In this paper we investigate the computation of the penalized maximum likelihood
estimate in GLAMs for a general convex penalty function. However, we note that by
employing the multi-step adaptive lasso (MSA-lasso) algorithm from Sections 2.8.5 and
2.8.6 in Bühlmann and van de Geer (2011) our algorithm can easily be extended to handle
non-convex penalty functions. This modification is already implemented in the R-package
glamlasso for the SCAD-penalty, see Lund (2016). The convergence results presented in
this paper are, however, only valid for a convex penalty.

Algorithms considered in the literature hitherto for `1-penalized estimation in GLMs,
see e.g. Friedman et al. (2010), cannot easily benefit from the GLAM structure, and
typically they need the design matrix explicitly or at least direct access to its columns.
Our proposed algorithm based on proximal operators is design matrix free – in the sense

2

that the tensor product design matrix need not be computed – and can exploit the GLAM
structure, which results in an algorithm that is both memory and time e�cient.

The paper is organized as follows. In Section 2 GLAMs are introduced. In Section 3 our
proposed GD-PG algorithm for computing the penalized maximum likelihood estimate is
described. Section 4 presents two multivariate smoothing examples where the algorithm is
used to fit GLAMs. This section includes a benchmark comparison between our implemen-
tation of the GD-PG algorithm in the R package glamlasso and the algorithm implemented
in glmnet. Section 5 presents a convergence analysis of the proposed algorithm. In Section
6 a number of details on how the algorithm is implemented in glamlasso are collected.
This includes details on how the GLAM structure is exploited, and the section also presents
further benchmark results. Section 7 concludes the paper with a discussion. Some technical
and auxiliary definitions and results are presented in two appendices.

2 Generalized linear array models

A generalized linear model (GLM) is a regression model of n independent real valued
random variables Y1, . . . ,Yn, see Nelder and Wedderburn (1972). A generalized linear
array model (GLAM) is a GLM with some additional structure of the data. We first
introduce GLMs and then the special data structure for GLAMs.

With X an n⇥ p design matrix, the linear predictor ⌘ : Rp ! Rn is defined as

⌘(✓) := X✓ (1)

for ✓ 2 Rp. With g : R ! R denoting the link function, the mean value of Yi is given in
terms of ⌘i(✓) via the equation

g(E(Yi)) = ⌘i(✓). (2)

The link function g is throughout assumed invertible with a continuously di↵erentiable
inverse.

The distribution of Yi is, furthermore, assumed to belong to an exponential family, see
Appendix B, which implies that the log-likelihood, ✓ 7! l(⌘(✓)), is given in terms of the
linear predictor. With y = (y1, . . . , yn)> 2 Rn denoting a vector of realized observations of
the variables Yi, the log-likelihood (with weights ai � 0 for i = 1, . . . , n) and its gradient
are given as

l(⌘(✓)) =
n
X

i=1

ai(yi#(⌘i(✓))� b(#(⌘i(✓)))) and (3)

r✓l(⌘(✓)) = X>u(⌘(✓)), (4)

respectively, where # : R ! R denotes the canonical parameter function, and u(⌘) :=
r⌘l(⌘) is the score statistic, see Appendix B.

The main problem considered in this paper is the computation of the penalized maxi-
mum likelihood estimate (PMLE),

✓⇤ := argmin
✓2Rp

�l(⌘(✓)) + �J(✓), (5)

3

where J : Rp ! (�1,1] is a proper, convex and closed penalty function, and � � 0 is a
regularization parameter controlling the amount of penalization. Note that J is allowed to
take the value1, which can be used to enforce convex parameter constraints. The objective
function of this minimization problem is thus the penalized negative log-likelihood, denoted

F := �l + �J, (6)

where �l is continuously di↵erentiable.
For a GLAM the vector y is assumed given as y = vec(Y) (the vec operator is discussed

in Appendix A), where Y is an n1 ⇥ · · ·⇥ nd d-dimensional array. The design matrix X is
assumed to be a concatenation of c matrices

X = [X1|X2| . . . |Xc],

where the rth component is a tensor product,

Xr = Xr,d ⌦Xr,d�1 ⌦ · · ·⌦Xr,1, (7)

of d matrices. The matrix Xr,j is an nj ⇥ pr,j matrix, such that

n =
d
Y

j=1

nj, pr :=
d
Y

j=1

pr,j, p =
c
X

r=1

pr.

We let hXr,ji := hX1,1, . . . , Xc,di denote the tuple of marginal design matrices.
The assumed data structure induces a corresponding structure on the parameter vector,

✓, as a concatenation of c vectors,

✓> = (vec(⇥1)
>, . . . , vec(⇥c)

>),

with ⇥r a pr,1⇥ · · ·⇥pr,d d-dimensional array. We let h⇥ri := h⇥1, . . . ,⇥ci denote the tuple
of parameter arrays.

Given this structure it is possible to define a map, ⇢, such that with ✓r = vec(⇥r),

Xr✓r = vec
�

⇢(Xr,d, . . . , ⇢(Xr,2, (⇢(Xr,1,⇥r))) . . .)
�

(8)

for r = 1, . . . , c. The algebraic details of ⇢ are spelled out in Appendix A.
As a consequence of the array structure, the linear predictor can be computed using

⇢ without explicitly constructing X. The most obvious benefit is that no large tensor
product matrix needs to be computed and stored. In addition, the array structure can
be beneficial in terms of time complexity. As noted in Buis and Dyksen (1996), with Xr,j

being a square nr ⇥nr matrix, say, the computation of the direct matrix-vector product in
(8) has O(n2d

r) time complexity, while the corresponding array computation has O(dnd+1
r)

time complexity. This reduced time complexity for d � 2 translates, as mentioned in the
introduction, directly into a computational advantage for computing the PMLE with a
quadratic penalty function, see Currie et al. (2006). For non-quadratic penalty functions
the translation is less obvious, but we present one algorithm that is capable of benefitting
from the array structure.

4

3 Penalized estimation in a GLAM

In most situations the PMLE must be computed by an iterative algorithm. We present
an algorithm that solves the optimization problem (5) by iteratively optimizing a partial
quadratic approximation to the objective function while exploiting the array structure.
The proposed algorithm is a combination of a gradient based descent (GD) algorithm with
a proximal gradient (PG) algorithm. The resulting algorithm, which we call GD-PG, thus
consists of the following two parts:

• an outer GLAM enhanced GD loop

• an inner GLAM enhanced PG loop.

We present these two loops in the sections below postponing the details on how the array
structure can be exploited to Section 6, where it is explained in detail how the two loops
can be enhanced for GLAMs.

3.1 The outer GD loop

The outer loop consists of a sequence of descent steps based on a partial quadratic approx-
imation of the objective function. This results in a sequence of estimates, each of which
is defined in terms of a penalized weighted least squares estimate and whose computation
involves an iterative choice of weights. The weights can be chosen so that the inner loop
can better exploit the array structure.

For k 2 N and ✓(k) 2 Rp let ⌘(k) = ⌘(✓(k)) and u(k) = r⌘l(⌘(k)), let W (k) denote a
positive definite diagonal n⇥n weight matrix and let z(k) denote the n-dimensional vector
(the working response) given by

z(k) := (W (k))�1u(k) + ⌘(k). (9)

The sequence (✓(k)) is defined recursively from an initial ✓(0) as follows. Given ✓(k) let

✓̃(k+1) := argmin
✓2Rp

1

2n
k
p
W (k)(X✓ � z(k))k22 + �J(✓) (10)

denote the penalized weighted least squares estimate and define

✓(k+1) := ✓(k) + ↵k(✓̃
(k+1) � ✓(k)), (11)

where the stepsize ↵k > 0 is determined to ensure su�cient descent of the objective func-
tion, e.g. by using the Armijo rule. A detailed convergence analysis is given in Section
5, where the relation to the class of gradient based descent algorithms in Tseng and Yun
(2009) is established.

5

3.2 The inner PG loop

The inner loop solves (10) by a proximal gradient algorithm. To formulate the algorithm
consider a generic version of (10) given by

x⇤ := argmin
x2Rp

h(x) + �J(x), (12)

where h : Rp ! R is convex and continuously di↵erentiable. It is assumed that there exists
a minimizer x⇤. Define for � > 0 the proximal operator, prox� : Rp ! Rp, by

prox�(z) = argmin
x2Rp

n1

2
kx� zk22 + �J(x)

o

.

The proximal operator is particularly easy to compute for a separable penalty function like
the 1-norm or the squared 2-norm. Given a stepsize �k > 0, initial values x(0) = x(1) 2 Rp

and an extrapolation sequence (!l) with !l 2 [0, 1) define the sequence (x(l)) recursively by

y := x(l) + !l

⇣

x(l) � x(l�1)
⌘

and (13)

x(l+1) := prox�k�(y � �krh(y)). (14)

The choice of !l = 0 for all l 2 N gives the classical proximal gradient algorithm, see Parikh
and Boyd (2014). Other choices of the extrapolation sequence, e.g. !l = (l � 1)/(l + 2),
can accelerate the convergence. Convergence results can be established if rh is Lipschitz
continuous and �k is chosen su�ciently small – see Section 5 for further details.

For the convex function

h(✓) :=
1

2n
k
p
W (k)(X✓ � z(k))k22 (15)

we have that

rh(✓) =
1

n
X>W (k)(X✓ � z(k)). (16)

This shows that rh(✓) is Lipschitz continuous, and its explicit form in (16) indicates how
the array structure can be exploited – see also Section 6.

3.3 The GD-PG algorithm

The combined GD-PG algorithm is outlined as Algorithm 1 below. It is formulated using
array versions of the model components. Especially, U (k) and Z(k) denote n1 ⇥ · · · ⇥ nd

array versions of the score statistic, u(k), and the working response, z(k), respectively. Also
V (k) is an n1 ⇥ · · · ⇥ nd array containing the diagonal of the n ⇥ n weight matrix W (k).
The details on how the steps in the algorithm can exploit the array structure are given in
Section 6.

6

Algorithm 1 GD-PG

Require: h⇥(0)
r i, hXr,ji

1: for k = 0 to K 2 N do

2: given h⇥(k)
r i: compute U (k), specify V (k) and compute Z(k)

3: specify the proximal stepsize �k
4: given h⇥(k)

r i, V (k), Z(k), �k: compute h⇥̃(k+1)
r i by the inner PG loop

5: given h⇥(k)
r i, h⇥̃(k+1)

r i: use a line search to compute h⇥(k+1)
r i

6: if convergence criterion is satisfied then

7: break
8: end if

9: end for

The outline of Algorithm 1 leaves out some details that are required for an implementa-
tion. In step 2 the weights must be specified. In Section 5 we present results on convergence
of the outer loop, which put some restrictions on the choice of weights. In step 3 the prox-
imal gradient stepsize must be specified. In Section 5 we give a computable upper bound
on the stepsize that ensures convergence of the inner PG loop. Convergence with the same
convergence rate can also be ensured for larger stepsizes if a backtracking step is added to
the inner PG loop. In step 4, h⇥(k)

r i is a natural choice of initial value in the inner PG
loop, but this choice is not necessary to ensure convergence. In step 4 it is, in addition,
necessary to specify the extrapolation sequence. Finally, in step 5 a line search is required.
In Section 5 convergence of the outer loop is treated when the Armijo rule is used.

4 Applications to multidimensional smoothing

As a main application of the GD-PG algorithm we consider multidimensional smoothing,
which can be formulated in the framework of GLAMs by using a basis expansion with
tensor product basis functions. We present the framework below and report the results
obtained for two real data sets.

4.1 A generalized linear array model for smoothing

Letting X1, . . . ,Xd ✓ R denote d finite sets define the d-dimensional grid

Gd := X1 ⇥ · · ·⇥ Xd.

The set Xj is the set of (marginal) grid points in the jth dimension and nj := |Xj| denotes
the number of such marginal points in the jth dimension. We have a total of n :=

Qd
j=1 nj

d-dimensional joint grid points, or d-tuples,

(x1, . . . , xd) 2 Gd.

For each of the n grid points we observe a corresponding grid value yx1,...,xd
2 R assumed

to be a realization of a real valued random variable Yx1,...,xd
with finite mean. That is, the

7

observations can be regarded as a d-dimensional array Y . With g : R ! R a link function
let

f(x1, . . . , xd) := g(E(Yx1,...,xd
)), (x1, . . . , xd) 2 Gd. (17)

The objective is to estimate f , which is assumed to possess some form of regularity as
a function of (x1, . . . , xd). Assuming that f belongs to the span of p basis functions,
�1, . . . ,�p, it holds that

f(x1, . . . , xd) =
p
X

m=1

�m�m(x1, . . . , xd), (x1, . . . , xd) 2 Gd,

for � 2 Rp. If the basis function evaluations are collected into an n ⇥ p matrix � :=
(�m((x1, . . . , xd)i))i,m, and if the entries in the array Y are realizations of independent
random variables from an exponential family as described in Appendix B, the resulting
model is a GLM with design matrix � and regression coe�cients �.

For d � 2 the d-variate basis functions can be specified via a tensor product construction
in terms of d (marginal) sets of univariate functions by

�m1,...,md
:= �1,m1 ⌦ �2,m2 ⌦ · · ·⌦ �d,md

, (18)

where �j,m : R ! R for j = 1, . . . , d and m = 1, . . . , pj. The evaluation of each of the pj
univariate functions in the nj points in Xj results in an nj ⇥ pj matrix �j = (�j,m(xk))k,m.
It then follows that the n⇥ p (p :=

Qd
j=1 pj) tensor product matrix

� = �d ⌦ · · ·⌦ �1 (19)

is identical to the design matrix for the basis evaluation in the tensor product basis, and
the GLM has the structure required of a GLAM.

4.2 Benchmarking on real data

The multidimensional smoothing model described in the previous section was fitted using
an `1-penalized B-spline basis expansion to two real data sets using the GD-PG algorithm
as implemented in the R package glamlasso. See Section 6.4 for details about the R
package. In this section we report benchmark results for glamlasso and the coordinate
descent based implementation in the R package glmnet, see Friedman et al. (2010).

For both data sets we fitted a sequence of models to data from an increasing subset
of grid points, which correspond to a sequence of design matrices of increasing size. For
each design matrix we fitted 100 models for a decreasing sequence of values of the penalty
parameter �. We report the run time for fitting the sequence of 100 models using glamlasso
and glmnet. We also report the run time for the combined computation of the tensor
product design matrix and the fit using glmnet. The latter is more relevant for a direct
comparison with glamlasso, since glamlasso requires only the marginal design matrices
while glmnet requires the full tensor product design matrix.

8

To justify the comparison we report the relative deviation of the objective function
values attained by glamlasso from the objective function values attained by glmnet, that
is,

F (✓̂glamlasso)� F (✓̂glmnet)

|F (✓̂glmnet)|
(20)

with ✓̂x denoting the estimate computed by method x. This ratio is computed for each
fitted model. We note that (20) has a tendency to blow up in absolute value when F
becomes small, which happens for small values of �.

The benchmark computations were carried out on a Macbook Pro with a 2.8 GHz Intel
core i7 processor and 16 GB of 1600 MHz DDR3 memory. Scripts and data are included
as supplementary materials online.

4.2.1 Gaussian neuron data

The first data set considered consists of spatio-temporal voltage sensitive dye recordings of
a ferret brain provided by Professor Per Ebbe Roland, see Roland et al. (2006). The data
set consists of images of size 25⇥25 pixels recorded with a time resolution of 0.6136 ms per
image. The images were recorded over 600 ms, hence the total size of this 3-dimensional
array data set is 25⇥ 25⇥ 977 corresponding to n = 610, 625 data points.

As basis functions we used cubic B-splines with pj := max{[nj/5], 5} basis functions in
each dimension (see Currie et al. (2006) or Wood (2006)). This corresponds to a parameter
array of size 5 ⇥ 5 ⇥ 196 (p = 4, 900) and a design matrix of size 610, 625 ⇥ 4, 900 for the
entire data set. The byte size for representing this design matrix as a dense matrix was
approximately 22 GB. For the benchmark we fitted Gaussian models with the identity link
function to the full data set as well as to subsets of the data set that correspond to smaller
design matrices.

Figure 1 shows an example of the raw data and the smoothed fit for a particular time
point. Movies of the raw data and the smoothed fit can be found as supplementary material.

Run times and relative deviations are shown in Figure 2. The model could not be
fitted using glmnet to the full data set due to the large size of the design matrix, and
results for glmnet are thus only reported for models that could be fitted. The run times
for glamlasso were generally smaller than for glmnet, and were, in particular, relatively
insensitive to the size of the design matrix. When a sparse matrix representation of the
design matrix was used, glmnet was able to scale to larger design matrices, but it was still
clearly outperformed by glamlasso in terms of run time. The relative deviations in the
attained objective function values were quite small.

4.2.2 Poisson taxi data

The second data set considered consists of spatio-temporal information on registered taxi
pickups in New York City during January 2013. The data can be downloaded from the
webpage www.andresmh.com/nyctaxitrips/. We used a subset of this data set consisting
of triples containing longitude, latitude and date-time of the pickup. First we cropped the

9

x

y

z

Raw data, t = 306.8 ms

x

y

z

Smooth data, t = 306.8 ms

Figure 1: The raw neuron data (left) and the smoothed fit (right) after 306.8 ms. The
supplementary material contains movies of the complete raw data and smoothed fit.

data to pickups with longitude in [�74.05�,�73.93�] and latitude in [40.7�, 40.82�]. Figure
3 shows the binned counts of all pickups during January 2013 with 500 bins in each spatial
dimension. Pickups registered in Hudson or East River were ascribed to noise in the GPS
recordings.

For this example attention was restricted to Manhattan pickups during the first week
of January 2013. To this end the data was rotated and summarized as binned counts in
100 ⇥ 100 ⇥ 168 spatial-temporal bins. Each temporal bin represents one hour. The data
was then further cropped to cover Manhattan only, which removed the large black parts – as
seen on Figure 3 – where pickups were rare. The total size of the data set was 33⇥81⇥168
corresponding to n = 449, 064 data points. The observation in each bin consisted of the
integer number of pickups registered in that bin.

We used pj := max{[nj/4], 5} cubic B-spline basis functions in each dimension. The
resulting parameter array was 9⇥ 21⇥ 42 corresponding to p = 7, 938 and a design matrix
of size 449, 064 ⇥ 7, 938 for the entire data set. The byte size for representing this design
matrix as a dense matrix was approximately 27 GB. For the benchmark we fitted Poisson
models with the log link function to the full data set as well as to subsets of the data set
that correspond to smaller design matrices.

Figure 4 shows an example of the raw data and the smoothed fit for around midnight
on Saturday, January 5, 2013. Movies of the raw data and the smoothed fit can be found
as supplementary material.

Run times and relative deviations are shown in Figure 5. As for the neuron data, the
model could not be fitted to the full data set using glmnet, and results for glmnet are only
reported for models that could be fitted. Except for the smallest design matrix the run

10

● ●
●

● ●
●

● ●

5 10 15 20

0
50

0
10

00
15

00
20

00

glamlasso vs glmnet

size of design matrix (GB)

ru
n

tim
e

(s
)

● glamlasso
glmnet_sparse + design_sparse
glmnet_sparse
glmnet + design
glmnet

0 20 40 60 80 100

0.
00

0.
05

0.
10

Percentage deviation from glmnet

model no
de

vi
at

io
n

(%
)

1GB
2GB
5GB
9GB
12GB
15GB
19GB

Figure 2: Benchmark results for the neuron data. Run time in seconds is shown as a
function of the size of the design matrix, when not stored in sparse format, in GB (left).
Relative deviation in the attained objective function values as given by (20) is shown as
a function of model number (right), where a larger model number corresponds to less
penalization (smaller �).

times for glamlasso were smaller than for glmnet, and they appear to scale better with the
size of the design matrix. This was particularly so when the dense matrix representation
was used with glmnet. The design matrix was very sparse in this example, and glmnet

benefitted considerable in terms of run time from using a sparse storage format. The relative
deviations in the attained objective function values were still acceptably small though the
values attained by glamlasso were up to 1.5% larger than those attained by glmnet for
the least penalized models (models fitted with small values of �).

4.3 Using incomplete array data

The implementation in glamlasso allows for incompletely observed arrays. This can, of
course, be used for prediction of the unobserved entries by computing the smoothed fit
to the incompletely observed array. In this section we show how it can also be used for
selection of the tuning parameter �. We also refer to the supplementary materials online
for scripts and data.

We used the NYC taxi data and removed the observations for 19 randomly chosen 3⇥3
blocks of spatial bins (due to overlap of some of the blocks this corresponded to 159 spatial
bins). When fitting the model using glamlasso the incompleteness is incorporated by
setting the weights corresponding to the missing values equal to zero for all time points.
We denote by D the set of grid points that correspond to the removed bins as illustrated

11

5 10 15 20 25 30

20
40

60
80

x

y

Rotated and binned data

Figure 3: Binned counts of registered NYC taxi pickups for January 2013 using 500⇥ 500
spatial bins (left) and the same data rotated, binned to 100⇥ 100 spatial bins and cropped
to cover Manhattan only (right).

by the red blocks in Figure 7.
From glamlasso we computed a sequence of model fits corresponding to 100 values of

�, and for each value of � we computed the fitted complete array Ŷ (�) and then the mean
squared error (MSE),

MSE(�) =
X

x2D

(Ŷ (�)
x � Yx)

2,

as a function of �, see Figure 6. Model 41 attained the overall minimal MSE.
Figure 7 shows predictions for one spatial bin. The under-smoothed Model 100 gives a

poor prediction while the overall optimal Model 41 gives a much better prediction.

5 Convergence analysis

Our proposed GD-PG algorithm is composed of well known components, whose convergence
properties have been extensively studied. We do, however, want to clarify under which
conditions the algorithm can be shown to converge and in what sense it converges. The
main result in this section is a computable upper bound of the step-size, �k, in the inner
PG loop that ensures convergence in this loop. This result hinges on the tensor product
structure of the design matrix.

12

x

y

z

Raw data, t = 120 h

x

y

z

Smooth data, t = 120 h

Figure 4: The raw NYC taxi data (left) and the smoothed fit (right) around midnight on
Saturday, January 5, 2013. The supplementary material contains movies of the complete
raw data and smoothed fit.

We first state a theorem, which follows directly from Beck and Teboulle (2010), and
which for a specific choice of extrapolation sequence gives the convergence rate for the inner
PG loop for minimizing the objective function

G := h+ �J, (21)

where h is given by (15). In the following, kAk2 denotes the spectral norm of A, which is
the largest singular value of A.

Theorem 1. Let x⇤ = ✓̃(k+1) denote the minimizer defined by (10) and let the extrapolation
sequence for the inner PG loop be given by !l = (l�1)/(l+2). Let (x(l)) denote the sequence
obtained from the inner PG loop. If �(k) 2 (0, 1/L(k)] where

L(k) := kX>W (k)Xk2/n (22)

then

G(x(l))�G(x⇤) 2L(k)
h kx(0) � x⇤k22
(l + 1)2

. (23)

Proof. The theorem is a consequence of Theorem 1.4 in Beck and Teboulle (2010) once we
establish that L(k) is a Lipschitz constant for rh. To this end note that the spectral norm

13

●
●

●

●

●

●

● ●

●

●

5 10 15 20 25

0
50

0
10

00
15

00
20

00

glamlasso vs glmnet

size of design matrix (GB)

ru
n

tim
e

(s
)

● glamlasso
glmnet_sparse
glmnet_sparse + design_sparse
glmnet
glmnet + design

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

Percentage deviation from glmnet

model no
de

vi
at

io
n

(%
)

1GB
2GB
7GB
9GB
12GB
15GB
21GB
22GB

Figure 5: Benchmark results for the taxi data. Run time in seconds is shown as a function
of the size of the design matrix, when not stored in sparse format, in GB (left). Relative
deviations in the attained objective function values as given by (20) is shown as a function
of model number (right), where a larger model number corresponds to less penalization
(smaller �).

k · k2 is the operator norm induced by the 2-norm on Rp, which implies that

krh(✓)�rh(✓0)k2
1

n
kX>W (k)Xk2k✓ � ✓0k2, (24)

and L(k) is indeed the minimal Lipschitz constant. It should be noted that Theorem 1.4
in Beck and Teboulle (2010) is phrased in terms of an acceleration sequence of the form
!l = (tl�1)/tl+1 where (tl) is a specific sequence that fulfills tl � (l+1)/2. The acceleration
sequence considered here corresponds to tl = (l + 1)/2, and their proof carries over to this
case without changes.

From (23) we see that the objective function values converge at rate O(l�2) for the given
choice of extrapolation sequence. Without extrapolation, that is, with !l = 0 for all l 2 N,
the convergence rate is O(l�1), see e.g. Theorem 1.1 in Beck and Teboulle (2010). In this
case (x(l)) always converges towards a minimizer, see Theorem 1.2 in Beck and Teboulle
(2010). We are not aware of results that establish convergence of (x(l)) for general h when
extrapolation is used. However, if X has rank p and the weights are all strictly positive, the
quadratic h given by (15) results in a strictly convex and level bounded objective function
G, in which case (23) forces (x(l)) to converge towards the unique minimizer.

The following result shows how the tensor product structure can be exploited to give a
computable upper bound on the Lipschitz constant (22).

14

0 20 40 60 80 100

20
0

25
0

30
0

35
0

model no.

m
se

Mean Squared Error

Figure 6: The mean squared error for prediction on grid points left out of the model fitting
as a function of model number. The vertical red line indicates the model with minimal
MSE (model 41).

Proposition 1. Let W (k) denote the diagonal weight matrix with diagonal elements w(k)
i ,

i = 1, . . . , n, then

L(k) L̂(k) :=
max(w(k)

i)

n

c
X

r=1

d
Y

j=1

%(X>
r,jXr,j) (25)

where % denotes the spectral radius.

Proof. Since the spectral norm is an operator norm it is submultiplicative, which gives that

L(k) 1

n
kX>k2kXk2kW (k)k2 =

1

n
kXk22kW (k)k2. (26)

Now W (k) is diagonal with nonnegative entries, so kW (k)k2 = max(w(k)
i), and kXk22 is the

largest eigenvalue of the symmetric matrix X>X (the spectral radius), hence

L(k) max(w(k)
i)

n
%(X>X). (27)

Furthermore, as X>X is a positive semidefinite matrix with diagonal blocks given by X>
r Xr

we get (see e.g. Lemma 3.20 in Bapat (2010)) that

%(X>X)
c
X

r=1

%(X>
r Xr). (28)

15

5 10 15 20 25 30

20
40

60
80

x

y

NYC taxi pick−ups Jan. 2013

0 50 100 150

0
20

40
60

80

hours

pi
ck
−u

ps

Predicted and observed pick−ups at (x, y) = (8 , 23)

predicted pick−ups by model 41
predicted pick−ups by model 100
observed pick−ups

Figure 7: Binned number of NYC taxi pickups as in Figure 3 (left) with red 3⇥ 3 squares
indicating bins that were removed from the data before model fitting. Predicted and
observed number of pickups at spatial bin (8, 23) (indicated with a “+” on the left figure)
are shown as a function of time in hours (right). Model 100 predictions (green) were from
the least penalized model while Model 41 predictions (red) were from the model with an
overall minimal MSE.

By the properties of the tensor product we find that

X>
r Xr = X>

r,1Xr,1 ⌦ . . .⌦X>
r,dXr,d, (29)

whose eigenvalues are of the form ↵1,k1↵2,k2 · · ·↵d,kd , with ↵j,kj being the kjth eigenvalue of
X>

r,jXr,j, see e.g. Theorem 4.2.12 in Horn and Johnson (1991). In particular,

%(X>
r Xr) =

d
Y

j=1

%(X>
r,jXr,j),

and this completes the proof.

Note that for c = 1 the upper bound is L̂(k) = max(w(k)
i)
Qd

j=1 %(X
>
1,jX1,j)/n, which is

valid for any weight matrix. If the weight matrix is itself a tensor product it is possible to
compute the Lipschitz constant exactly. Indeed, if W (k) = W (k)

d ⌦ . . .⌦W (k)
1 then

X>W (k)X = X>
1,dW

(k)
d X1,d ⌦ . . .⌦X>

1,1W
(k)
1 X1,1,

and by similar arguments as in the proof above,

L(k) =
1

n

d
Y

j=1

%(X>
1,jW

(k)
j X1,j). (30)

16

The outer loop is similar to the outer loop used in e.g. the R packages glmnet, Friedman
et al. (2010), and sglOptim, Vincent et al. (2014). For completeness we demonstrate that
the outer loop with the stepsize determined by the Armijo rule is a special case of the
algorithm treated in Tseng and Yun (2009), which implies a global convergence result of
the outer loop.

Following Tseng and Yun (2009) the Armijo rule gives the stepsize ↵k := bj↵0, where
↵0 > 0 and b 2 (0, 1) are given constants and j is determined as follows: With d(k) =
✓̃(k+1) � ✓(k) and

�k := �(u(k))>Xd(k) + �(J(✓̃(k+1))� J(✓(k))),

then j 2 N0 is the smallest nonnegative integer for which

F (✓(k) + bj↵0d
(k)) F (✓(k)) + bj↵0v�k, (31)

where v 2 (0, 1) is a fixed constant.

Theorem 2. Let the stepsize, ↵k, be given by the Armijo rule above. If the design matrix
X has rank p and if there exist constants c̄ � c > 0 such that for all k 2 N the diagonal
weights in W (k), denoted w(k)

i , satisfy

c w(k)
i c̄ (32)

for i = 1, . . . , n, then (F (✓(k))) is nonincreasing and any cluster point of (✓(k)) is a station-
ary point of the objective function F .

Proof. The theorem is a consequence of Theorem 1 (a) and (e) in Tseng and Yun (2009)
once we have established that the search direction, d(k) = ✓̃(k+1) � ✓(k), coincides with the
search direction defined by (6) in Tseng and Yun (2009). Letting d := ✓ � ✓(k) denote a
(potential) search direction we see that

1

2n
k
p
W (k)(X✓ � z(k))k22

=
1

2n
(�(W (k))�1u(k) +X(✓ � ✓(k)))>W (k)(�(W (k))�1u(k) +X(✓ � ✓(k)))

=
1

2n
((u(k))>(W (k))�1u(k) � (u(k))>Xd� d>X>u(k) + d>X>W (k)Xd)

/ � (u(k))>X
| {z }

r✓l(⌘(k))>

d+
1

2
d> X>W (k)X
| {z }

H(k)

d+ Ck,

where Ck is a constant not depending upon ✓. This shows that

d(k) = argmin
d2Rp

�r✓l(⌘
(k))>d+

1

2
d>H(k)d+ �J(✓(k) + d), (33)

and this is indeed the search direction defined by (6) in Tseng and Yun (2009) (with the
coordinate block consisting of all coordinates). Observe that H(k) = XTW (k)X fulfills
Assumption 1 in Tseng and Yun (2009) by the assumptions that X has rank p and that the
weights are uniformly bounded away from 0 and 1. Therefore, all conditions for Theorem
1 in Tseng and Yun (2009) are fulfilled, which completes the proof.

17

The convergence conclusion can be sharpened by making further assumptions on the
objective function and the weights.

Corollary 1. Suppose that the weights are given by

w(k)
i = #0(⌘(k)i)(g�1)0(⌘(k)i), i = 1, . . . , n. (34)

If X has rank p, if F is level bounded, if the PMLE, ✓⇤, is unique and if (g�1)0 is nonzero
everywhere it holds that ✓(k) ! ✓⇤ for k ! 1.

Proof. The sublevel set ⇥0 := {✓ | F (✓) F (✓(0))} is bounded by assumption, and it is
closed because J is closed and �l is continuous. Hence, ⇥0 is compact. Since the weights
as a function of ✓,

✓ 7! #0(⌘i(✓))(g
�1)0(⌘i(✓)) (35)

for i = 1, . . . , n, are continuous and strictly positive functions – because (g�1)0 is assumed
nonzero everywhere, see Appendix B – they attain a strictly positive minimum and a finite
maximum over the compact set ⇥0. This implies that (32) holds. Since ✓(k) 2 ⇥0 and ✓⇤ is
a unique stationary point in ⇥0, it follows from Theorem 2, using again that ⇥0 is compact,
that ✓(k) ! ✓⇤ for k ! 1.

The weights given by (34) are the common weights used for GLMs, but exactly the
same argument as above applies to other choices as long as they are strictly positive and
continuous functions of the parameter ✓. A notable special case is w(k)

i = 1. Another
possibility, which is useful in the framework of GLAMs, is discussed in Section 6.

Observe that if �l is strongly convex then F is level bounded, X has rank p and ✓⇤

is unique. If X does not have rank p, in particular, if p > n, we are not presenting any
results on the global convergence of the outer loop. Clearly, additional assumptions on the
penalty function J must then be made to guarantee convergence.

6 Implementation

In this section we show how the computations required in the GD-PG algorithm can be
implemented to exploit the array structure. The penalty function J is not assumed to have
any special structure in general, and its evaluation is not discussed, but we do briefly discuss
the computation of the proximal operator for some special choices of J . We also describe
the R package, glamlasso, which implements the algorithm for 2 and 3-dimensional array
models with the `1-penalty and the smoothly clipped absolute deviation (SCAD) penalty,
and we present results of further benchmark studies using simulated data.

6.1 Array operations

The linear algebra operations needed in the GD-PG algorithm can all be expressed in terms
of two maps, H and G, which are defined below. The maps work directly on the tensor

18

factors in terms of ⇢ defined in Appendix A. Introduce

H(hXr,ji, h⇥ri) :=
c
X

r=1

⇢(Xr,d, . . . , ⇢(Xr,1,⇥r) . . .), (36)

which gives an n1 ⇥ · · · ⇥ nd array such that vec(H(hXr,ji, h⇥ri)) is the linear predictor.
Introduce also

G(hXr,ji, U) := h⇢(X>
1,d, . . . , ⇢(X

>
1,1, U) . . .), . . . , ⇢(X>

c,d, . . . , ⇢(X
>
c,1, U) . . .)i (37)

for U an n1 ⇥ · · ·⇥ nd array, which gives a tuple of c arrays. The map G is used to carry
out the gradient computation in (4).

Below we describe how the linear algebra operations required in steps 2, 4 and 5 in
Algorithm 1 can be carried out using the two maps above. In doing so we use “⌘” to denote
equality of vectors and arrays (or tuples of arrays) up to a rearrangement of the entries.
In the implementation such a rearrangement is never required, but it gives a connection
between the array and vector representations of the components in the algorithm.

Step 2: The linear predictor is first computed,

X>✓(k) ⌘ H(hXr,ji, h⇥(k)
r i). (38)

The array V (k) is computed by an entrywise computation, e.g. by (34). The arrays
U (k) and Z(k) are computed by entrywise computations using (52) and (9), respec-
tively. If the weights given by (34) are used, Z(k) can be computed directly by (54)
and U (k) does not need to be computed.

Step 4: In the inner PG loop the gradient, rh, must be recomputed in each iteration. To
this end,

X>W (k)z(k) ⌘ G(hXr,ji, V (k) � Z(k)) (39)

is precomputed. Here � denotes the entrywise (Hadamard) product. Then rh(✓) is
computed in terms of

X>W (k)X✓ ⌘ G(hXr,ji, V (k) � H(hXr,ji, h⇥ri)). (40)

Step 5: For the stepsize computation using the Armijo rule the linear predictor,

X>✓̃(k+1) ⌘ H(hXr,ji, h⇥̃(k+1)
r i), (41)

is first computed. The computation of �k is achieved via computing inner products
of U (k) and the linear predictors (38) and (41). The line search then involves iterative
recomputations of the linear predictor via the map H.

If �k is not chosen su�ciently small to guarantee convergence of the inner PG loop a
line search must also be carried out in step 4. To this end, repeated evaluations of h are
needed, with h(✓) being computed as the weighted 2-norm of H(hXr,ji, h⇥ri) � Z(k) with
weights V (k).

19

6.2 Tensor product weights

The bottleneck in the GD-PG algorithm is (40), which is an expensive operation that
has to be carried out repeatedly. If the diagonal weight matrix is a tensor product, the
computations can be organized di↵erently. This can reduce the run time, especially when
pr,j < nj.

Suppose that W (k) = W (k)
d ⌦ · · ·⌦W (k)

1 , then

X>
r W

(k)Xm = X>
r,dW

(k)
d Xm,d ⌦ · · ·⌦X>

r,1W
(k)
1 Xm,1, r,m = 1, . . . , c.

Hence X>W (k)X has tensor product blocks and (40) can be replaced by

X>W (k)X✓ ⌘ hH(hX>
1,jW

(k)
j Xr,ji, h⇥ri), . . . ,H(hX>

c,jW
(k)
j Xr,ji, h⇥ri)i. (42)

The matrix products X>
r,kW

(k)
j Xm,j for r,m = 1, . . . , c and j = 1, . . . , d can be precomputed

in step 4.
If the weight matrix is not a tensor product it might be approximated by one so that

(42) can be exploited. With V (k) denoting the weights in array form, then V (k) can be
approximated by V̂ (k), where

V̂ (k)
i1,...,id

= v̂(k)1,i1 · · · v̂
(k)
d,id

, (43)

with

v̂(k)j,ij
=

Y

i1,...,ij�1,ij+1,...,id

V (k)
i1,...,id

V
(k)

!

1
mj

= exp

✓

1

mj

X

i1,...,ij�1,ij+1,...,id

log V (k)
i1,...,id

� log V
(k)
◆

.

Here mj = n/nj =
Q

j0 6=j nj0 and

V
(k)

=

✓

Y

i1,...,id

Vi1,...,id

◆

1
n

.

The array V̂ (k) is equivalent to a diagonal weight matrix, which is a tensor product of
diagonal matrices with diagonals (v̂(k)j,i). Observe that if the weights in V (k) satisfy (32)

then so do the approximating weights in V̂ (k).

6.3 Proximal operations

E�cient computation of the proximal operator is necessary for the inner PG loop to be
fast. Ideally prox�(z) should be given in a closed form that is fast to evaluate. This is the
case for several commonly used penalty functions such as the 1-norm, the squared 2-norm,
their linear combination and several other separable penalty functions.

For the 1-norm, prox�(z) is given by soft thresholding, see Beck and Teboulle (2010) or
Parikh and Boyd (2014), that is,

prox�(z)i = (|zi|� �)+sign(zi). (44)

20

For the squared 2-norm (ridge penalty) the proximal operator amounts to multiplicative
shrinkage,

prox�(z) =
1

1 + 2�
z, (45)

see e.g. Moreau (1962). For the elastic net penalty,

J(✓) = ||✓||1 + ↵||✓||22, (46)

the proximal operator amounts to a composition of the proximal operators for the 1-norm
and the squared 2-norm, that is,

prox�(z)i =
1

1 + 2↵�
(|zi|� �)+sign(zi), (47)

see Parikh and Boyd (2014). For more examples see Parikh and Boyd (2014) and see also
Zhang et al. (2013) for the proximal group shrinkage operator.

6.4 The glamlasso R package

The glamlasso R package provides an implementation of the GD-PG algorithm for `1-
penalized as well as SCAD-penalized estimation in 2 and 3-dimensional GLAMs. We note
that as the SCAD penalty is non-convex the resulting optimization problem becomes non-
convex and hence falls outside the original scope of our proposed method. However, by
a local linear approximation to the SCAD penalty one obtains a weighted `1-penalized
problem. This is a convex problem, which may be solved within the framework proposed
above. Especially, by iteratively solving a sequence of appropriately weighted `1-penalized
problems it is, in fact, possible to solve non-convex problems, see Zou and Li (2008). In
the glamlasso package this is implemented using the multistep adaptive lasso (MSA-lasso)
algorithm from Bühlmann and van de Geer (2011).

The package is written in C++ and utilizes the Rcpp package for the interface to R, see
Eddelbuettel and François (2011). At the time of writing this implementation supports the
Gaussian model with identity link, the Binomial model with logit link, the Poisson model
with log link and the Gamma model with log link, but see Lund (2016) for the current
status.

The function glamlasso in the package solves the problem (5) with J either given by
the `1-penalty or the SCAD penalty for a (user specified) number of penalty parameters
�max > . . . > �min. Here �max is the infimum over the set of penalty parameters yielding a
zero solution to (5) and �min is a (user specified) fraction of �max. For each model (�-value)
the algorithm is warm-started by initiating the algorithm at the solution for the previous
model.

The interface of the function glamlasso resembles that of the glmnet function with
some GD-PG specific options.

The argument penalty controls the type of penalty to use. Currently the `1-penalty
("lasso") and the SCAD penalty ("scad") are implemented.

21

The argument steps controls the number of steps to use in the MSA algorithm when
the SCAD penalty is used.

The argument ⌫ 2 [0, 1] (nu) controls the stepsize in the inner PG loop relative to the
upper bound, L̂(k), on the Lipschitz constant. Especially, for ⌫ 2 (0, 1) the stepsize is
initially �(k) := 1/(⌫L̂(k)) and the backtracking procedure from Beck and Teboulle (2009)
is employed only if divergence is detected. For ⌫ = 1 the stepsize is �(k) := 1/L̂h and no
backtracking is done. For ⌫ = 0 the stepsize is initially �(k) := 1 and backtracking is done
in each iteration.

The argument iwls = c("exact", "one", "kron1", "kron2") specifies whether a
tensor product approximation to the weights or the exact weights are used. The exact
weights are the weights given by (34). Note that while a tensor product approximation
may reduce the run time for the individual steps in the inner PG loop, it may also a↵ect
the convergence of the entire loop negatively.

Finally, the argument Weights allows for a specification of observation weights. This
can be used – as mentioned in Currie et al. (2006) – as a way to model scattered (non-
grid) data using a GLAM by binning the data and then weighing each bin according to
the number of observations in the bin. By setting some observation weights to 0 it is also
possible to model incompletely observed arrays as illustrated in Section 4.3.

6.5 Benchmarking on simulated data

To further investigate the performance of the GD-PG algorithm and its implementation in
glamlasso we carried out a benchmark study based on simulated data from a 3-dimensional
GLAM. We report the setup and the results of the benchmark study in this section. See
the supplementary materials online for scripts used in this section.

For each j 2 {1, 2, 3} we generated an nj ⇥ pj matrix Xj by letting its rows be nj

independent samples from a Npj(0,⌃) distribution. The diagonal entries of the covariance
matrix ⌃ were all equal to � > 0 and the o↵ diagonal elements were all equal to for
di↵erent choices of . Since the design matrix X = X3 ⌦ X2 ⌦ X1 is a tensor product
there is a non-zero correlation between the columns of X even when = 0. Furthermore,
each column of X contains n samples from a distribution with density given by a Meijer
G-function, see Springer and Thompson (1970).

We considered designs with n1 = 60r, n2 = 20r, n3 = 10r and p1 = max{3, n1q},
p2 = max{3, n2q}, p3 = max{3, n3q} for a sequence of r-values and q 2 {0.5, 3}. The
number q controls if p < n or p > n and the size of the design matrix increases with r.

The regression coe�cients were generated as

✓m = (�1)m exp
⇣�(m� 1)

10

⌘

Bm, m = 1, . . . , p,

where B1, . . . , Bp are i.i.d. Bernoulli variables with P (Bm = 1) = s for s 2 [0, 1]. Note
that s controls the sparsity of the coe�cient vector and s = 1 results in a dense parameter
vector.

We generated observations from two di↵erent models for di↵erent choices of parameters.

22

Gaussian models: We generated Gaussian observations with unit variance and the iden-
tity link with a dense parameter vector (s = 1). The design was generated with � = 1
and 2 {0, 0.25} for p < n and = 0 for p > n.

Poisson models: We generated Poisson observations with the log link function with a
sparse parameter vector (s = 0.01). The design was generated with � = 0.71 and
 2 {0, 0.25} for p < n and = 0 for p > n. It is worth noting that this quite artificial
Poisson simulation setup easily generates extremely large observations, which in turn
can cause convergence problems for the algorithms, or even NA values.

For each of the two models above and for the di↵erent combinations of design and
simulation parameters we computed the PMLE using glamlasso as well as glmnet for
the same sequence of �-values. The default length of this sequence is 100, however, both
glmnet and glamlasso will exit if convergence is not obtained for some � value and return
only the PMLEs for the preceding models along with the corresponding � sequence.

This benchmark study on simulated data was carried out on the same computer as used
for the benchmark study on real data as presented in Section 4.2. However, here we ran the
simulation and optimization procedures five times for each size and parameter combination
and report the run times along with their means as well as the mean relative deviations of
the objective functions. See Section 4.2 for other details on how glamlasso and glmnet

were compared and Figures 8, 9 and 10 below present the results.
Figure 8 shows the results for the Gaussian models for p < n. Here glamlasso generally

outperformed glmnet in terms of run time – especially for = 0. It scaled well with the
size of the design matrix and it could fit the model for large design matrices that glmnet
could not handle.

It should be noted that for the Gaussian models with the identity link there is no outer
loop, hence the comparison is in this case e↵ectively between the (GLAM enhanced) prox-
imal gradient algorithm and the coordinate descent algorithm as implemented in glmnet.

Figure 9 shows the results for the Poisson models for p < n. As for the Guassian case,
glamlasso was generally faster than glmnet. The run times for glamlasso also scaled
very well with the size of the design matrix for both values of .

Figure 10 shows the results for both models for p > n and = 0. Here the run
times were comparable for small design matrices, with glmnet being a little faster for the
Gaussian model, but glamlasso still scaled better with the size of the design matrix. For
 > 0 (results not shown) glamlasso retained its benefit in terms of memory usage, but
glmnet became comparable or even faster for the Gaussian model than glamlasso.

In the comparisons above we have not included the time it took to construct the actual
design matrix for the glmnet procedure. However, the construction and handling of matri-
ces, whose size is a substantial fraction of the computers memory, was quite time consuming
(between 15 minutes and up to one hour) underlining the advantage of our design matrix
free method.

23

● ● ● ● ●
●

●

5 10 15 20

0
20

0
40

0
60

0
80

0

glamlasso vs glmnet, p < n and κ = 0

size of design matrix (GB)

ru
n

tim
e

(s
)

● ● ● ● ●
●

●

● ● ● ●
●

● ●

● ● ●
● ● ●

●

● ● ●
●

● ● ●

● ●
● ● ● ● ●

● glamlasso
glmnet

glamlasso mean
glmnet mean

0 20 40 60 80−0
.0

15
−0

.0
10

−0
.0

05
0.

00
0

0.
00

5

Mean percentage deviation from glmnet

model no.

de
vi

at
io

n
(%

)

1GB
2GB
5GB
7GB
10GB
13GB

●

●

●
●

●

●

●

5 10 15 20

0
10

0
20

0
30

0
40

0
50

0

glamlasso vs glmnet, p < n and κ = 0.25

size of design matrix (GB)

ru
n

tim
e

(s
)

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● glamlasso
glmnet

glamlasso mean
glmnet mean

0 20 40 60 80

−0
.3

−0
.2

−0
.1

0.
0

0.
1

Mean percentage deviation from glmnet

model no.

de
vi

at
io

n
(%

)

1GB
2GB
5GB
7GB
10GB
13GB

Figure 8: Benchmark results for the Gaussian models and p < n. Run time in seconds is
shown as a function of the size of the design matrix in GB (left). Relative mean deviation
in the attained objective function values as given by (20) is shown as a function of model
number (right). The top row gives the results for = 0 and the bottom for = 0.25.

24

● ● ● ●
●

●

●

5 10 15 20

0
50

0
10

00
15

00

glamlasso vs glmnet, p < n and κ = 0

size of design matrix (GB)

ru
n

tim
e

(s
)

● ● ● ●
●

●

●

● ● ● ● ●
● ●

● ● ●
● ●

●
●

● ● ● ●

● ●

●

● ● ● ● ●

●

●

● glamlasso
glmnet

glamlasso mean
glmnet mean

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Mean percentage deviation from glmnet

model no.

de
vi

at
io

n
(%

)

1GB
2GB
5GB
7GB
10GB
13GB

●

● ●
●

●

●

●

5 10 15 20

0
20

0
40

0
60

0
80

0
10

00

glamlasso vs glmnet, p < n and κ = 0.25

size of design matrix (GB)

ru
n

tim
e

(s
)

●

● ●
●

●

●

●

● ●
● ●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

● ●
● ● ●

●

●

● glamlasso
glmnet

glamlasso mean
glmnet mean

0 20 40 60 80 100

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Mean percentage deviation from glmnet

model no.

de
vi

at
io

n
(%

)

1GB
2GB
5GB
7GB
10GB
13GB

Figure 9: Benchmark results for the Poisson models and p < n. Run time in seconds is
shown as a function of the size of the design matrix in GB (left). Relative mean deviation
in the attained objective function values as given by (20) is shown as a function of model
number (right). The top row gives the results for = 0 and the bottom for = 0.25.

25

●

●

●

●

●

●

●

5 10 15 20

0
20

0
40

0
60

0

glamlasso vs glmnet, p > n and κ = 0

size of design matrix (GB)

ru
n

tim
e

(s
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

● glamlasso
glmnet

glamlasso mean
glmnet mean

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

Mean percentage deviation from glmnet

model no.

de
vi

at
io

n
(%

)

1GB
2GB
5GB
7GB
9GB
13GB

●

●

●

●
●

●

●

5 10 15 20

0
10

0
20

0
30

0
40

0
50

0
60

0

glamlasso vs glmnet, p > n and κ = 0

size of design matrix (GB)

ru
n

tim
e

(s
)

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●
●

● ●

●

●

●
●

●

● ●

●

● glamlasso
glmnet

glamlasso mean
glmnet mean

0 20 40 60 80 100

−0
.0

5
0.

00
0.

05
0.

10
0.

15

Mean percentage deviation from glmnet

model no.

de
vi

at
io

n
(%

)

1GB
2GB
5GB
7GB
9GB
13GB

Figure 10: Benchmark results for p > n. Run time in seconds is shown as a function of the
size of the design matrix in GB (left). Relative mean deviation in the attained objective
function values as given by (20) is shown as a function of model number (right). The top
row gives the results for the Gaussian model and the bottom for Poisson model.

26

7 Discussion

The algorithm implemented in the R package glmnet and described in Friedman et al.
(2010) computes the penalized and weighted least squares estimate given by (10) by a
coordinate descent algorithm. For penalty functions like the 1-norm that induce sparsity
of the minimizer, this is recognized as a very e�cient algorithm. Our initial strategy was
to adapt the coordinate descent algorithm to GLAMs so that it could take advantage of
the tensor product structure of the design matrix. It turned out to be di�cult to do that.
It is straight forward to implement a memory e�cient version of the coordinate descent
algorithm that does not require the storage of the full tensor product design matrix, but it
is not obvious how to exploit the array structure to reduce the computational complexity.
Consequently, our implementation of such an algorithm was outperformed by glmnet in
terms of run time, and for this reason alternatives to the coordinate descent algorithm were
explored.

Proximal gradient algorithms for solving nonsmooth optimization problems have re-
cently received renewed attention. One reason is that they have shown to be useful for
large-scale data analysis problems, see e.g. Parikh and Boyd (2014). In the image analysis
literature the proximal gradient algorithm for a squared error loss with an `1-penalty is
known as ISTA (iterative selection-thresholding algorithm), see Beck and Teboulle (2009)
and Beck and Teboulle (2010). The accelerated version with a specific acceleration sequence
was dubbed FISTA (fast ISTA) by Beck and Teboulle (2009). For small-scale problems
and unstructured design matrices it is our experience that the coordinate descent algorithm
outperforms accelerated proximal algorithms like FISTA. This observation is also in line
with the more systematic comparisons presented in Section 5.5 in Hastie et al. (2015). For
large-scale problems and/or structured design matrices – such as the tensor product design
matrices considered in this paper – the proximal gradient algorithms may take advantage
of the structure. The Gaussian smoothing example demonstrated that this is indeed the
case.

When the squared error loss is replaced by the negative log-likelihood our proposal is
similar to the approach taken in glmnet, where penalized weighted least squares problems
are solved iteratively by an inner loop. The main di↵erence is that we suggest using a
proximal gradient algorithm instead of a coordinate descent algorithm for the inner loop.
Including weights is only a trivial modification of FISTA from Beck and Teboulle (2009),
but the weight matrix commonly used for fitting GLMs is not a tensor product. Despite of
this it is still possible to exploit the tensor product structure to speed up the inner loop,
but by making a tensor approximation to the weights we obtained in some cases further
improvements. For this reason we developed the GD-PG algorithm with an arbitrary
choice of weights. The Poisson smoothing example demonstrated that when compared to
coordinate descent the inner PG loop was capable of taking advantage of the tensor product
structure.

The convergence analysis combines general results from the optimization literature to
obtain convergence results for the inner proximal algorithm and the outer gradient based
descent algorithm. These results are strongest when the design matrix has rank p (thus
requiring p n). Convergence for p > n would require additional assumptions on J ,

27

which we have not explored in any detail. Our experience for J = k · k1 is that the
algorithm converges in practice also when p > n. Our most important contribution to the
convergence analysis is the computation of the upper bound L̂(k) of the Lipschitz constant
L(k). This upper bound relies on the tensor product structure. For large-scale problems
the computation of L(k) will in general be infeasible due to the size of X>W (k)X. However,
for the tensor product design matrices considered, the upper bound is computable, and a
permissible stepsize �(k) that ensures convergence of the inner PG loop can be chosen.

It should be noted that the GD-PG algorithm requires minimal assumptions on J , but
that the proximal operator associated with J should be fast to compute for the algorithm
to be e�cient. Though it has not been explored in this paper, the generality allows for the
incorporation of convex parameter contraints. For box constraints J will be separable and
the proximal operator will be fast to compute.

The simulation study confirmed what the smoothing applications had showed, namely
that the GD-PG algorithm with J = k · k1 and its implementation in the R package
glamlasso scales well with the problem size. It can, in particular, e�ciently handle prob-
lems where the design matrix becomes prohibitively large to be computed and stored ex-
plicitly. Moreover, in the simulation study the run times were in most cases smaller than or
comparable to that of glmnet even for small problem sizes. However, the simulation study
also revealed that when p > n the run time benefits of glamlasso over glmnet were small
or dimished completely – in particular for small problem sizes. One explanation could be
that glmnet implements a screening rule, which is particularly beneficial when p > n. It
appears to be di�cult to combine such screening rules with the tensor product structure
of the design matrix. When p < n, as in the smoothing applications, glamlasso was,
however, faster than glmnet and scaled much better with the size of the problem. This was
true even when a sparse representation of the design matrix was used, though glmnet was
faster and scaled better with the size of the design matrix in this case for both examples.
It should be noted that glamlasso achieves its performance without relying on sparsity of
the design matrix, and it thus works equally well for smoothing with non-local as well as
local basis functions.

In conclusion, we have developed and implemented an algorithm for computing the
penalized maximum likelihood estimate for a GLAM. When compared to Currie et al.
(2006) our focus has been on nonsmooth penalty functions that yield sparse estimates. It
was shown how the proposed GD-PG algorithm can take advantage of the GLAM data
structure, and it was demonstrated that our implementation is both time and memory
e�cient. The smoothing examples illustrated how GLAMs can easily be fitted to 3D data
on a standard laptop computer using the R package glamlasso.

8 Supplementary Materials

SuppMatJCGS SuppMatJCGS is a folder containing scripts and datasets used in the
examples in sections 4.2.1, 4.2.2, 4.3 and 6.5 along with a ReadMe file. (Supp-
MatJCGS.zip, zipped file).

28

References

Bapat, R. (2010). Graphs and Matrices. Universitext. Springer.

Beck, A. and M. Teboulle (2009). A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences 2 (1), 183–202.

Beck, A. and M. Teboulle (2010). Gradient-based algorithms with applications to signal
recovery problems. In D. P. Palomar and Y. C. Eldar (Eds.), Convex Optimization in
Signal Processing and Communications, pp. 3–51. Cambridge University Press.

Bühlmann, P. and S. van de Geer (2011). Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer Series in Statistics. Springer Berlin Heidelberg.

Buis, P. E. and W. R. Dyksen (1996). E�cient vector and parallel manipulation of tensor
products. ACM Transactions on Mathematical Software (TOMS) 22 (1), 18–23.

Currie, I. D., M. Durban, and P. H. Eilers (2006). Generalized linear array models with
applications to multidimensional smoothing. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 68 (2), 259–280.

De Boor, C. (1979). E�cient computer manipulation of tensor products. ACM Transactions
on Mathematical Software (TOMS) 5 (2), 173–182.

Eddelbuettel, D. and R. François (2011). Rcpp: Seamless R and C++ integration. Journal
of Statistical Software 40 (8), 1–18.

Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software 33 (1), 1.

Hastie, T., R. Tibshirani, and M. Wainwright (2015). Statistical Learning with Sparsity:
The Lasso and Generalizations. Chapman & Hall/CRC Monographs on Statistics &
Applied Probability. CRC Press.

Horn, R. A. and C. R. Johnson (1991). Topics in Matrix Analysis. Cambridge University
Press.

Lund, A. (2016). glamlasso: Penalization in Large Scale Generalized Linear Array Models.
R package version 2.0.1.

Moreau, J.-J. (1962). Fonctions convexes duales et points proximaux dans un espace hilber-
tian. C. R. Acad. Sci., Paris 255, 2897–2899.

Nelder, J. A. and R. W. M. Wedderburn (1972). Generalized linear models. Journal of the
Royal Statistical Society: Series A (General) 135 (3), 370–384.

Parikh, N. and S. Boyd (2014). Proximal algorithms. Foundations and Trends R� in Opti-
mization 1 (3), 127–239.

29

Roland, P. E., A. Hanazawa, C. Undeman, D. Eriksson, T. Tompa, H. Nakamura, S. Valen-
tiniene, and B. Ahmed (2006). Cortical feedback depolarization waves: A mechanism
of top-down influence on early visual areas. Proceedings of the National Academy of
Sciences 103 (33), 12586–12591.

Springer, M. D. and W. E. Thompson (1970). The distribution of products of beta, gamma
and gaussian random variables. SIAM Journal on Applied Mathematics 18 (4), pp. 721–
737.

Tseng, P. and S. Yun (2009). A coordinate gradient descent method for nonsmooth sepa-
rable minimization. Mathematical Programming 117 (1-2), 387–423.

Vincent, M., Hansen, and N. R. (2014). Sparse group lasso and high dimensional multino-
mial classification. Computational Statistics & Data Analysis 71, 771–786.

Wood, S. (2006). Generalized Additive Models: An Introduction with R. Chapman &
Hall/CRC Texts in Statistical Science. Taylor & Francis.

Zhang, H., J. Jiang, and Z.-Q. Luo (2013). On the linear convergence of a proximal
gradient method for a class of nonsmooth convex minimization problems. Journal of the
Operations Research Society of China 1 (2), 163–186.

Zou, H. and R. Li (2008). One-step sparse estimates in nonconcave penalized likelihood
models. Annals of statistics 36 (4), 1509.

30

A The maps vec and ⇢

The map vec maps an n1⇥. . .⇥nd array to a
Qd

i=1 nd-dimensional vector. This is sometimes
known as “flattening” the array. For j = 1, . . . , d and ij = 1, . . . , nj introduce the integer

[i1, . . . , id] := i1 + n1((i2 � 1) + n2((i3 � 1) + . . . nd�1(id � 1) . . .)). (48)

Then vec is defined as

vec(A)[i1,...,id] := Ai1,...,id (49)

for an array A. This definition of vec corresponds to flattening a matrix in column-major
order.

Following the definitions in Currie et al. (2006) (see also De Boor (1979) and Buis and
Dyksen (1996)), ⇢ maps an r⇥n1 matrix and an n1⇥ . . .⇥nd array to an n2⇥ . . .⇥nd⇥ r
array. With X the matrix and A the array then

⇢(X,A)i1,...,id :=
X

j

Xid,jAj,i1,...,id�1
. (50)

From this definition it follows directly that

(Xd ⌦ . . .⌦X1) vec(A)[i1,...,id] =
X

j1,...,jd

Xd,id,jd · · ·X1,i1,j1Aj1,...,jd

=
X

jd

Xd,id,jd · · ·
X

j2

X2,i2,j2

X

j1

X1,i1,j1Aj1,...,jd

= ⇢(Xd, . . . , ⇢(X2, ⇢(X1, A)) . . .)i1,...,id

where [i1, . . . , id] denotes the index defined by (48).

B Exponential families

The exponential families considered are distributions on R whose density is

f#, (y) = exp
⇣a(#y � b(#))

⌘

w.r.t. some reference measure. Here # is the canonical (real valued) parameter, > 0 is
the dispersion parameter, a > 0 is a known and fixed weight and b is the log-normalization
constant as a function of # that ensures that the density integrates to 1. In general, # may
have to be restricted to an interval depending on the reference measure used. Note that
the reference measure will depend upon but not on #.

With ⌘ denoting the linear predictor in a generalized linear model we regard #(⌘) as a
parameter function that maps the linear predictor to the canonical parameter, such that
the mean equals g�1(⌘) when g is the link function. From this it can easily be derived that

31

b0(#(⌘)) = g�1(⌘). For a canonical link function, #(⌘) = ⌘ and b0 = g�1. In terms of ⌘ the
log-density can be written as

log f#(⌘), (y) / a(#(⌘)y � b(#(⌘))).

From this it follows that

@⌘ log f#(⌘), (y) = a#0(⌘)(y � g�1(⌘)), (51)

and the score statistic, u = r⌘l(⌘), entering in (4) is thus given by

ui = ai#
0(⌘i)(yi � g�1(⌘i)), i = 1, . . . n. (52)

The weights commonly used when fitting a GLM are

wi = #0(⌘i)(g
�1)0(⌘i), (53)

which are known to be strictly positive provided that (g�1)0 is nonzero everywhere (thus
g�1 is strictly monotone). This is not entirely obvious, but wi is the variance of ui (with
ai = 1 and = 1), which is nonzero whenever (g�1)0 is nonzero everywhere.

We may note that when the weights are given by (53), the working response z, see (9),
given the linear predictor ⌘ can be computed as

zi = ai(yi � g�1(⌘i))g
0(g�1(⌘i)) + ⌘i, (54)

which renders it unnecessary to compute the intermediate score statistic.

32

Chapter 6

Sparse Network Estimation for
Dynamical Spatio-temporal Array
Models

Lund, A. and N. R. Hansen (2017). Sparse network estimation for dynamical spatio-
temporal array models. In preparation.

71

SPARSE NETWORK ESTIMATION FOR DYNAMICAL
SPATIO-TEMPORAL ARRAY MODELS

By Adam Lund?? and Niels Richard Hansen∗

University of Copenhagen†‡

Neural field models represent neuronal communication on a pop-
ulation level via synaptic weight functions. Using voltage sensitive
dye (VSD) imaging it is possible to obtain measurements of neural
fields with a relatively high spatial and temporal resolution.

The synaptic weight functions represent functional connectivity
in the brain and give rise to a spatio-temporal dependence structure.
Methodology for the estimation of such a spatio-temporal depen-
dence structure from VSD imaging data is developed. The depen-
dence structure is expressed via a stochastic functional differential
equation, which leads to a vector autoregressive model of the data
via basis expansions of the synaptic weight functions and time and
space discretization. By using a 1-norm penalty in combination with
localized basis functions it is possible to learn a sparse network rep-
resentation of the functional connectivity of the brain. It is, however,
not possible to minimize the objective function via methods that re-
quire the explicit construction of a design matrix as this becomes
prohibitively large.

We demonstrate that by using tensor product basis expansions,
the computation of the penalized estimator via a proximal gradient
algorithm becomes feasible. It is crucial for the computations that the
data is organized in an array as is the case for the three dimensional
VSD imaging data. This allows for the use of array arithmetic that
is both memory and time efficient, and which ultimately makes it
possible to estimate a sparse network structure for the brain from
the VSD imaging data.

1. Introduction. Neural field models are mesoscopic models of the ag-
gregated voltage or activity of a large and spatially distributed population
of neurons. The neuronal network is determined by spatio-temporal weight
functions in the neural field model, and we will refer to these weight func-
tions as the propagation network. This network determines how signals are
propagated in the field model. It is of great interest to learn the propagation
network from experimental data, which is the inverse problem for neural

∗First supporter of the project
MSC 2010 subject classifications: Primary , ; secondary
Keywords and phrases: stochastic functional differential equation, sparse estimation,

non-differentiable regularization, array model

1

2 A. LUND AND N. R. HANSEN

field models.
The literature on neural fields is vast and we will not attempt a review, but

see [3, 9] and the references therein. The typical neural field model considered
is a deterministic integrodifferential equation. The inverse problem for the
deterministic Amari equation was treated in [2] and [25], and stochastic
neural field models was, for instance, treated in Chapter 9 in [9] and in [16].
One main contribution of the latter paper, [16], was to treat a stochastic
version of the Amari equation in the well developed theoretical framework
of functional stochastic evolution equations.

Despite the substantial literature on neural fields, relatively few papers
have dealt directly with the estimation of neural field components from ex-
perimental data. Pinotsis et al. [24] demonstrated how a neural field model
can used as the generative model within the dynamic causal modeling frame-
work, where model parameters can be estimated from electrophysiological
data. The modeling of voltage sensitive dye (VSD) imaging data in terms
of neural fields was discussed in [8], and Markounikau et al. [22] estimated
parameters in a neural field model directly from VSD imaging data.

In this paper VSD imaging data is considered as well. This imaging tech-
nique has a relatively high resolution in time and space and represent in
vivo propagation of “brain signals” embedded in neuronal activity on a
mesoscopic scale, see [26]. A prevalent notion in the neuroscience litera-
ture is that the network in the brain connecting the neurons, which in turn
is responsible for the propagation of signals, is sparse, and furthermore that
the propagation exhibits a time delay. For instance assuming that a spiking
neuron is only triggered by neurons lying in a very localized region would
imply spatial sparsity. Furthermore, one can also imagine that firing neu-
rons in one region will trigger neurons in different regions only after some
amount of time, yielding temporal sparsity and long range dependence, see
e.g. [5], [29], [28], [4], [31]. Finally the possibility of feedback waves in the
brain, e.g. as suggested in [26], could also be explained by spatio-temporal
dynamics depending on more than just the instantaneous past. These con-
siderations lead us to suggest a class of stochastic neural field models that
allows for time delay, and a proposed estimation methodology that pro-
vides sparse nonparametric estimation of synaptic weight functions. Thus
we do not make assumptions about spatial homogeneity or isotropy of the
functional connectivity, nor do we assume that the signal propagation is
instantaneous.

In order to derive a statistical model that, from a computational view-
point, is feasible for realistically sized data sets, a time and space discretized
version of the infinite dimensional dynamical model is obtained by replacing

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 3

the various integrals with Riemann-Ito type summations and relying on an
Euler scheme approximation. This approximation scheme makes it possible
to derive a statistical model with an associated likelihood function amenable
to non-differentiable regularization. Especially, we show that by expanding
each component function in a tensor product basis we can formulate the
statistical model as a type of multi-component linear array model, see [20].

The paper is organized as follows. First we give a more technical intro-
duction to the stochastic dynamic models that form the basis for the paper.
Then we present the aggregated results from the application of our proposed
estimation methodology to a VSD imaging data set. The remaining part of
the paper presents the derivation of the linear array model and the key com-
putational techniques required for the actual estimation of the model using
array data. The appendix contains further technical proofs, implementa-
tional details and the results from fitting the model to individual trials.

2. A stochastic functional differential equation. The data that we
will ultimately consider is given as follows. With τ, T > 0, T := [−τ, T] and
Nx, Ny,M,L ∈ N we record, to each of Nt := M + L+ 1 time points

−τ = t−L < . . . < t0 < . . . < tM = T,(2.1)

a 2-dimensional rectangular Nx ×Ny image of neuronal activity in an area
of the brain represented by the Cartesian product S := X ×Y ⊆ R2. These
images consist of D := NxNy pixels each represented by a coordinate (xi, yj)
lying on a grid G2 ⊆ S. To each time point each pixel has a color represented
by a value v(xi, yj , tk) ∈ R. Thus the observations are naturally organized in
a 3-dimensional array v := (v(xi, yj , tk))i,j,k where the first two dimensions
correspond to the spatial dimensions and the third dimension corresponds
to the temporal dimension.

As such it is natural to view v as a discretely observed sample in time
and space of an underlying spatio-temporal random field V . Following Def-
inition 1.1.1 in [1] any measurable map V : Ω → RR , with R ⊆ Rd, d ∈ N
a parameter set, is called a (d, 1)-random field or simply a d-dimensional
random field. Especially, for the brain image data, V is real valued with
a 3-dimensional parameter set R := S × T where S refers to space while
T refers to time. We emphasize the conceptual asymmetry between these
dimensions by calling V a spatio-temporal random field and note that in
the following S can have any dimension d′ ∈ N, corresponding to recording
d′-dimensional images. For fixed t, as V (t) := V (·, ·, t) : R2 → R this model
will inevitably be a stochastic dynamical model on a function space, that is
an infinite dimensional stochastic dynamical model.

4 A. LUND AND N. R. HANSEN

Based on the discussion in the introduction above we propose to model
the random neural field V via a stochastic functional differential equation
(SFDE) with the propagation network incorporated into the drift as a spatio-
temporal linear filter (a convolution) with an impulse-response function
(convolution kernel) quantifying the network. The solution of the SFDE in
a Hilbert space H is then the underlying time and space continuous model
V for the data v.

To introduce the general model more formally let (Ω,F , P) be a prob-
ability space endowed with an increasing and right continuous family (Ft)
of complete sub-σ-algebras of F . Let H a reproducing kernel Hilbert space
(RKHS) of continous functions over the compact set S×S. Suppose (V (t))t is
a continuous Ft-adapted,H-valued stochastic process and let C := C([−τ, 0],H)
denote the Banach space of continuous maps from [−τ, 0] to H. Then (Vt)t
where

Vt := (V (t+ s))s∈(−τ,0), t ≥ 0,(2.2)

defines a C-valued stochastic process over R+. We call Vt the τ -memory of
the random field (V (r))r∈S×T at time t ≥ 0.

Let µ : C × [0, T] → H be a bounded linear operator and consider the
stochastic functional differential equation (SFDE) on H given by

dV (t) = µ(Vt, t)dt+ dW (t).(2.3)

Here W is a spatially homogenous Wiener process with spectral measure σ
(σ is a finite symmetric measure on R2) as in [23]. That is, W is a centered
Gaussian random field such that (W (x, y, t))t is a (Ft)-Wiener process for
every (x, y) ∈ R2, and for t, s ≥ 0 and (x, y), (x′, y′) ∈ R2

E(W (t, x, y)W (s, x,′ y′)) = (t ∧ s)c(x− x′, y − y′).(2.4)

Here c : R2 → R, the covariance function defined as the Fourier transform
of the spectral measure σ, quantifies the spatial correlation in W .

We note that compared to a typical SDE, the infinitesimal dynamic at
time t as described by (2.3) depends on the past via the τ -memory of V in
the drift operator µ. Hence processes satisfying (2.3) will typically be non-
Markovian. We also note that all the memory in the system is modelled by
the drift µ.

The non-Markovian property makes theoretical results regarding exis-
tence, uniqueness and stability of solutions to (2.3) much less accessible.
Corresponding to section 0.2 in [12], in order to obtain theoretical results,
it should be be possible to lift the equation (2.3) form a Markovian SDE

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 5

on the Banach space C. Consequently an unbounded linear operator (the
differential operator) then appears in the drift. It is outside the scope of this
paper to pursue a discussion of the theoretical properties of (2.3). General
theoretical results on SDEs on Banach spaces are not abundant, see e.g. [10].

2.1. Drift operator. The idea is that the drift operator µ will capture
both external input to the system (the brain in our context) as well as the
subsequent propagation of this input over time and space. By decomposing
the drift operator we obtain drift components responsible for modelling in-
stantaneous effects and propagation effects respectively. To this end we will
specify the drift operator by the decomposition

µ(Vt, t) := S(t) + F(Vt) + H(V (t)).(2.5)

Here S : T → H, S(t)(x, y) := s(x, y, t) with s ∈ L2(R3,R) a smooth function
of time and space, models a deterministic time dependent exogenous input
to the system. H : H → H, H(V (t))(x, y) := h(x, y)V (x, y, t) where h ∈ H, a
smooth function of space, captures the short range (instantaneous) memory
in the system.

The long range memory responsible for propagating the input to the sys-
tem over time and space is modelled by the operator F : C([0, τ],H) → H
given as the integral operator

F(Vt)(x, y) =

∫
S

∫ 0

−τ
w(x, y, x′, y′, r)V (x′, y′, t+ r)drdx′dy′.(2.6)

Here w ∈ L2(E5,R) is a smooth weight function quantifying the impact
of previous states on the current change in the random field V . Especially,
w(x, y, x′, y′, r) is the weight by which the change in the field at location
(x, y) is impacted by the level of the field at location (x′, y′) with delay r.
With this specification, a solution to (2.3), if it exists, can be written in
integral form as

V (t, x, y) =

∫ t

0

(
s(x, y, u)+

∫
S

∫ 0

−τ
w(x, y, x′, y′, r)V (x′, y′, u+ r)drdx′dy′

+ h(x, y)V (u)

)
du+

∫ t

0
dW (u, x, y)du.(2.7)

Thus (2.7) characterizes a solution to a stochastic delay differential equation
(SDDE) on H with delays distributed over time and space (spatio-temporal
distributed delays) according to the impulse-response function w. We can
think of w as quantifying a spatio-temporal network in the brain that governs

6 A. LUND AND N. R. HANSEN

how the propagation of the input is to be distributed over time and space,
and we will refer to w as the network function.

Next we present an example where a statistical model based on the spatio-
temporal SDDE model proposed above is fitted to real high dimensional
brain image data. The derivation of this statistical model relies on a space
time discretization and is discussed in section 4. We note that key elements
in our approach involves expanding the network function (along with the
other component functions) using basis functions with compact support in
time and space domain. We then apply regularization techniques to obtain
sparse estimate (space-time localized) of the network.

3. Brain imaging data. The data considered in this section is part of
a larger data set, containing in vivo recordings of the visual cortex of ferret
brains provided by Professor Per Ebbe Roland. In the experiment producing
this data, a voltage sensitive dye (VSD) technique was used to create a
sequence of images of the visual cortex, while presenting a visual stimulus, a
stationary white square displayed for 250 ms on a grey screen, to the ferret.
Thus each recording or trial is a film showing the brain activity in the live
ferret brain, see [26]. The experiment was repeated several times for 11
different ferrets producing a large-scale spatio-temporal data set containing
around 300 trials (films) each trial containing around 2048 images and each
image containing 464 pixels.

The purpose of this experiment was to study the response in brain activity
to the stimulus and its propagation of over time and space. This is possible
as the VSD technique can produce in vivo recordings on a mesocopic scale
with high resolution in space and time.

For the analysis in this section we consider all trials (12 in total) for one
animal (0308) for a rectangular subset of pixels, i.e. 12 films consisting of
977 16×16 frames (images). We let L := 50 thus allowing delay effects from
51 frames. Time is measured in frames where 1 frame = 0.6136 ms thus we
model a delay of roughly 31 ms. For each single trial (film) the model is fitted
using a lasso regularized linear array model derived in section 4 below. Each
of the 12 single trial fits are summarized in the supplemental material.

3.1. The aggregated stimulus and network estimates. By mean aggregat-
ing the single trial fits over the all trials we obtain one fit based on 12 trials.
Here we will focus on the aggregated estimates of the network function and
the stimulus function.

We first plot the estimated stimulus surface to time point 426, the esti-
mated time of maximum depolarization across all trials, see Appendix C.

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 7

Fig 1. The data observed at pixel (9,9) for animal 0308 (black) and the estimate of s(9, 9, t)
(red). Dotted vertical lines indicate stimulus start and stop. Notice the considerable vari-
ation among the trials.

We hypothesize that the “high stimulus” areas visible in Figure 2 corre-
spond to the expected mapping of the center of field of view (CFOV), see
Figure 1 in [18].

8 A. LUND AND N. R. HANSEN

x

y

z

y

Fig 2. Mean aggregated fitted stimulus ŝ for all pixels for frame no. 426.

Next we visualize the aggregated estimated network. As the network is
quantified by the function w : R5 → R it is difficult to visualize w in a
2-dimensional medium. A shiny app visualizing w can be found in the sup-
plemental material. Here we consider various time and space aggregated
measures of propagation effects some of which are inspired by analogous
concepts from graph theory.

In Figure 3 below we plot the the fitted version of the two bivariate
functions w+, w− : R2 → R given by

w+(x′, y′) :=
1

deg+(x′, y′)

∫
S

∫ 0

−τ
|w(x, y, x′, y′, t)|dtdxdy(3.1)

w−(x, y) :=
1

deg−(x, y)

∫
S

∫ 0

−τ
|w(x, y, x′, y′, t)|dtdx′dy′,(3.2)

where

deg+(x′, y′) :=

∫
S

∫ 0

−τ
1(w(x,y,x′,y′,t)6=0)dtdxdy

deg−(x, y) :=

∫
S

∫ 0

−τ
1(w(x,y,x′,y′,t)6=0)dtdx

′dy′,

are the aggregated non-zero effects going out from (x′, y′) respectively in
to (x, y). Thus w+ quantifies the effect of (x′, y′) on all other coordinates
relative to the aggregated non-zero effects, that is time and space aggregated

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 9

propagation effects from any (x′, y′). Similarly w− quantifies time and space
aggregated propagation effects to any (x, y).

Next in Figure 4 (left) we plot the bivariate function,

w+−(d, r) =

∫
S×S

1(‖(x,y)−(x′,y′)‖=d)|w(x, y, x′, y′, r)|dxdydx′dy′

giving the aggregation of in- and out effects as a function of spatial separa-
tion (distance between coordinates) and temporal separation (time delay).

Finally, Figure 5 shows a density plot of the estimated weight values in
ŵ. The density plot is truncated as most weights are estimated to zero.

x

y

z

x

y

x

y

z

y

Mean aggregated estimate of integrated network function

Fig 3. The aggregated weight functions w− (top) and w+ (botom).

10 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0.0e+00

5.0e−07

1.0e−06

1.5e−06

2.0e−06

Fig 4. The aggregated in and out effects as a function of temporal and spatial separation.

0.01

1e−04

1e−06

1e−08

1e−10

0 10 20 30 40 50

w
ei

gh
t

0.0005

0.0010

0.0015

0.0020

density

−0.01

−1e−04

−1e−06

−1e−08

−1e−10

0 10 20 30 40 50

delay

w
ei

gh
t

0.00000

0.00005

0.00010

0.00015

0.00020

density

Fig 5. Truncated density plots of the estimated weight values.

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 11

From bottom panel in Figure 2 we see that an area is identified which
across all pixels has a relatively great weight on every other pixel across all
trials. Thus this area is identified by the model as important in the propa-
gation of neuronal activity across all trials. We notice that this high output
are as quantified by ŵ overlaps with the strongest of the two high stimulus
areas (CFOV) in Figure 1. This in turn suggests that the area receiving the
strongest stimulus is also the area mostly responsible for propagating this
input over time and space.

From the top panel we see that the pixels receiving propagation effects
on the other hand is more scattered around the cortex. However the high
input areas overlap with both of the high stimulus areas (CFOVs) in Figure
1 suggesting the existence of a propagation network connecting the high
stimulus area and the low stimulus area and the immediate surroundings of
the high stimulus area. We also notice an area in the top right corner of the
frame that apparently also plays a role in the propagation of signals. The
interpretation of this area is not immediately clear.

Figure 4 summarizes the network function as a function of temporal and
spatial separation. The largest effects seem to occur with a delay of around
9 or 10 frames and affecting pixels in the immediate neighborhood the most
(spatial distance 2 to 4 using the Manhattan metric). Especially the propa-
gation effects do not seem to extend beyond 14 to 15 spatial units.

From Figure 5 we see inhibitory effects (high density area of negative
weight values) seem to be delayed compared to excitatory effects (high den-
sity area of positive weight values).

3.2. Simulation study of the fitted model. We end this section by assess-
ing the model fit in two different ways; how the model fits the observed data
and how new data generated from the fitted model looks.

Next we examine if the model can generate data exhibiting characteristics
similar to those observed in the real data set. We do that by simulating
from the aggregated fitted (time and space discretized) model, see (4.3) in
Proposition 4.1 below, using the aggregated fit discussed above.

Figure 6 gives a summary of the simulated data. Especially, the left plot
in Figure 6 is a plot of the simulated time series for all pixels ignoring the
spatial organization. This plot gives a rough impression of how the time
evolution in the simulated data sets compares to that of the real data. In
the right plot the simulated data for a specific time point is displayed to
give a rough impression of the spatial organization of the simulated data. A
movie visualizing the simulated data is provided as supplemental material.

12 A. LUND AND N. R. HANSEN

Fig 6. The left plot shows the trajectories plotted for all pixels. The red vertical lines
indicates the frame displayed in the right plot.

We see that the simulated data shows temporary transient activity, namely
the depolarization observed from around frame 400, similar to the real data,
see Figure 1 above. Furthermore this activity is organized in a way spatially
similar to that of the observed data set. These observations suggests that the
dynamical model is to some extend capable of generating spatio-temporal
data exhibiting characteristics shared by the real data.

4. A linear array model. The statistical model underlying the infer-
ential framework used to obtain the results above in section 3 is based on a
discretized version of the SFDE (2.3). The first step in our approach is to
discretize space by aggregating the field over small areas. Let (Sm,n)m,n :=

(Xm×Yn)
Nx,Ny

m=1,n=1 denote a partition of S withD := NxNy elements with size
Leb(Sm,n) = ∆s > 0 for all m,n. We have from the integral representation
of V in (2.7) that∫

Sm,n

V (x, y, t)dxdy =

∫ t

0

(∫
Sm,n

s(x, y, u)dxdy

+

∫ 0

−τ

∑
i,j

∫
Si,j

V (x′, y′, u+ r)

∫
Sm,n

w(x, y, x′, y′, r)dxdydx′dy′dr

+

∫
Sm,n

V (x, y, u)h(x, y)dxdy

)
du+

∫
Sm,n

∫ t

0
dW (u, x, y)dxdy.(4.1)

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 13

Here as noted in [23] the last term for each (x, y) is an Ito-integral with
respect to a real valued Wiener process. Furthermore, using the covariance
function for the random field from (2.4), the covariance of two such terms is

E

(∫
Sm,n

∫ t

0
dW (u, x, y)dxdy

∫
Si,j

∫ t

0
dW (u, x, y)dxdy′

)
=

∫
Sm,n

∫
Si,j

E(W (t, x, y)W (t, x′, y′))dx′dy′dxdy

=

∫
Sm,n

∫
Si,j

tc(x− x′, y − y′)dx′dy′dxdy.

We then apply a Riemann type approximation of the space integrals over
the partition sets Sm,n on the left and the right of (4.1). This leads us
to consider the D-dimensional real valued stochastic process Ṽ with the
(m,n)th coordinate process given by

Ṽ ((m,n), t) =

∫ t

0

(
S̃(u)(xm, yn)

+

∫ 0

−τ

∑
i,j

Ṽ ((i, j), u+ r)

∫
Sm,n

w(x, y, xi, yj , r)dxdydr

+ H̃(V (u))(xm, yn)

)
du+

∫ t

0
dW̃ ((m,n), u)du(4.2)

as a space discretized model for the random field V . Here W̃ := (W̃ (t))t
is a D-dimensional Brownian motion on (Ω,F ,P) adapted to (Ft)t with
covariance matrix C̃ having rows given by

C̃(m,n) := (c(xm − x1, yn − y1), . . . , c(xm − xNx , yn − yNy))∆2
s,

for each (m,n) ∈ {1, . . . , Nx} × {1, . . . , Ny}. Furthermore, S̃ : T → RD is
given by S̃(u)(xm, yn) := ∆ss(xm, yn, u) and H̃ : RD → RD is given by
H̃(Ṽ (u))(xm, yn) := ∆sh(xm, yn)Ṽ (xm, yn, u).

Thus aggregating the field over the spatial partition (Sm,n) leads to a
multi-dimensional SDDE as an approximate model for our data. Such models
are mathematically easier to handle compared to the random field model
(2.7), see e.g. [21]. Especially, we can obtain a discrete time approximation
to the solution (4.2) using an Euler scheme following [6].

Proposition 4.1. Let (tk)
M
k=−L with ∆t := tk+1 − tk > 0 denote a

partition of T . With (w̃k)
−1
k=−L a sequence of weight matrices depending on

14 A. LUND AND N. R. HANSEN

the network function w, the solution (Ṽ ∆t(k))k to the forward Euler scheme

Ṽ ∆t(k + 1)− Ṽ ∆t(k)

=

(
S̃(tk) +

−1∑
l=−L

w̃lṼ
∆t(k + l) + H̃(Ṽ ∆t(k))

)
∆t + C̃

√
∆tεk,(4.3)

where (εk)k are independent and N(0, ID) distributed, converges weakly to
the solution Ṽ from (4.2).

Proof. Follows from [6], see Appendix A.

Next as the component functions; the stimulus functions s, the network
function w and the short range memory h, are assumed to be square inte-
grable we can use basis expansions to represent them. This in turn allow
us to formulate the time and space discretized model as a linear regression
model.

Proposition 4.2. Let ps, pw, ph ∈ N, p := ps + pw + ph and

s(x, y, t) =

ps∑
q=1

αqφq(x, y, t).(4.4)

w(x, y, x′, y′, t) =

pw∑
q=1

βqφq(x, y, x
′, y′, t)(4.5)

h(x, y) =

ph∑
q=1

γqφq(x, y).(4.6)

for three sets of basis coefficients (αq)q, (βq)q and (γq)q. We can then write
the dynamical model (4.3) as a linear regression model

yk = Xkθ + ek, k = 0, . . . ,M − 1(4.7)

where (ek) is i.i.d. ND(0,Σ) with Σ := C̃>C̃∆t and

yk := Ṽ ∆t(k + 1), Xk := (Sk | Fk | Hk), θ :=

 α
β
γ

 ,(4.8)

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 15

for each k = 0, . . . ,M−1 are D×1, D×p and p×1 respectively . Furthermore
the component matrices are

Sk :=

 φ1(x1, y1, tk) · · · φps(x1, y1, tk)
...

...
...

φ1(xNx , yNy , tk) · · · φps(xNx , yNy , tk)

 , Fk:=

F

(1,1)
k
...

F
(Nx,Ny)
k

 ,

(4.9)

with F
(m,n)
k a 1× pw-vector with entries

F
(m,n)
k,q :=

−1∑
l=−L

∑
i,j

Ṽ ∆t((i, j), k + l)

∫ tl+1

tl

∫
Sm,n

φq(x, y, xi, yj , r)dxdydr

(4.10)

for q ∈ {1, . . . , pw}, and

Hk :=

 φ1(x1, y1)Ṽ ∆t((1, 1), k) · · · φph(x1, y1)Ṽ ∆t((1, 1), k)
...

...
...

φ1(xNx , yNy)Ṽ ∆t((Nx, Ny), k) · · · φph(xNx , yNy)Ṽ ∆t((Nx, Ny), k)

 .

(4.11)

Finally defining

y :=

 y1
...
yM

 , X :=

 X1
...

XM

 ,(4.12)

the associated negative log-likelihood can be written as

l(θ,Σ) =
M

2
log |Σ|+ ‖IM ⊗ Σ−1/2(y −Xθ)‖22,(4.13)

with IM the M ×M identity matrix.

Proof. See Appendix A.

We note that due to the structure of the linear model (4.7) the MLEs of
θ and Σ are not available in closed form. Especially the normal equations
characterizing the MLEs are coupled in this model leading to a generalized
least squares type estimation problem.

Next we will discuss an approach that will allow us to obtain sparse
estimates of θ as well as the covariance Σ.

16 A. LUND AND N. R. HANSEN

4.1. Penalized linear array model. In order to obtain time and space lo-
calized estimates of the component functions, we will maximize a regularized
version of (4.13). This is achieved by solving the unconstrained problem

min
θ∈Rp,Σ∈MD×D

lX(θ,Σ) + λ1J1(θ) + λ2J2(Σ),(4.14)

where J1 and J2 are convex penalty functions and λ1 ≥ 0 and λ2 ≥ 0 the
penalty parameters controlling the amount of penalization or regularization.
For λi > 0 and Ji, i = 1, 2 non-differentiable penalty functions, solving
(4.14) results in a sparse estimates. In the following we will use the lasso or
`1 penalty i.e. J1 = J2 = ‖ · ‖1, see [30].

Following [27] we solve (4.14) using their approximate MRCE algorithm.
In our setup the steps are as follows:

1. For Σ = ID and a penalty parameters λ1 ≥ . . . ≥ λK , K ∈ N. solve

min
θ∈Rp

lX(θ,Σ) + λ1J1(θ),(4.15)

2. For i ∈ {1, . . . ,K} let θ̂λi denote the estimate from step 1. Solve

Σ̂ := arg min
Σ
tr(Σ̂RΣ)− log |Σ|+ λ2J2(Σ)

with Σ̂R := (y −Xθ̂λi)>(y −Xθ̂λi), using graphical lasso, see [17].
3. Repeat step 1. with data, ỹ := Σ̂−1/2y and X̃ := Σ̂−1/2X.

Solving the problem (4.14) requires a numerical procedure. However from
a computationally viewpoint evaluating l given in (4.13) becomes infeasible
as the design matrix X in practice is unwieldily. For instance for each of
the trials considered in section 3 the design X takes up around 70GB of
memory depending on the number of basis functions used. In addition even
if we could allocate the memory needed to store X the time needed to
compute the entries in X would be considerable.

However, using tensor product basis functions (see Appendix B) we can,
by exploiting the rotated H transform ρ from [11], avoid forming the poten-
tially enormous design matrix X.

Definition 4.1. For A an p1 × · · · × pd array and Xi ni × pi for i ∈
{1, . . . , d} the rotated H transform ρ is defined as the map such that

Xd ⊗ · · · ⊗X1vec(A) = vec(ρ(Xd, ρ(. . . , ρ(X1, A)))),(4.16)

where vec is the vectorization operator.

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 17

The above definition is not very enlightening in terms of how ρ actually
computes the matrix vector product. These details can be found in [11].
Given Definition 4.1 however, we see that for a tensor structured matrix we
can compute matrix vector products via ρ using only its tensor components.
This makes ρ very memory efficient. Furthermore, as discussed in [14], [7],
[11], ρ is also computationally efficient as the left hand side of (4.16) takes
more multiplications to compute than the right hand side. In this light the
following proposition is relevant.

Proposition 4.3. With px, py, pl, pt ∈ N, ps = pxpypt, pw := pxpypxpypl,
ph := pxpy, using the tensor product construction, we can write

s(x, y, t) =

ps∑
j=(j1,j2,j3)

αjφ
x
j1(x)φyj2(y)φtj3(t)

w(x, y, x′, y′, t) =

pw∑
j=(j1,j2,j3,j45)

βjφ
x
j1(x)φyj2(y)φxj3(x′)φyj4(y′)φlj5(t)

h(x, y) =

ph∑
j=(j1,j2)

γjφ
x
j1(x)φyj2(y).

Let A be a px×py×pt array, B a px×py×pxpypl array and Γ a px×py matrix
containing the basis coefficients α, β and γ resepctively. For appropriately
defined matrices φx, φy, φt,Φxyt,Φx,Φy

Xθ = vec(ρ(φt, ρ(φy, ρ(φx, A))) + ρ(Φxyt, ρ(Φy, ρ(Φx, B)))(4.17)

+v−1,M−1 � C)(4.18)

with C a Nx × Ny ×M array and � denoting the Hadamard (entry-wise)
product.

Proof. See Appendix A.

Proposition 4.3 shows that we can in fact write the linear model (4.7) as
a three component (partially) 3 dimensional linear array model, see [20] for
multi component array models. Especially we can completely avoid forming
the component design matrices S, F and H when computing the matrix
vector product involving the potentially enormous design matrix. This in
turn implies that we can build a numerical procedure based on the gradient
descent proximal gradient (gd-pg) algorithm proposed in [20], that will solve
the non-differentiable penalized estimation problem. This algorithm uses a
minimal amount of memory while exploiting the efficient array arithmetic.
In Appendix C below additional details about the implementation is given.

18 A. LUND AND N. R. HANSEN

5. Discussion. It was crucial for the methodology proposed in this pa-
per that the numerical computations related to the linear array model can
be implemented using the algorithm proposed in [20]. This allowed us to ob-
tain a design matrix free procedure with a minimal memory footprint that
can utilize the highly efficient array arithmetic, see [14], [7] and [11]. Conse-
quently we were able to fit the model to VSD imaging data with hundreds of
pixels in the spatial dimension and recorded over thousands of time points
while modeling very long time delays, on a standard laptop computer in a
matter of minutes. Given the results in [20] we expect our procedure to scale
well with the size of the data.

We note that the large-scale setup considered in this paper is compu-
tationally prohibitive using conventional time series techniques. Especially,
econometric approaches like vector autoregressions (VAR) usually consider
time series with no more than 10 observations in the spatial dimension and
few lags as the number of parameters grows quadratically in the size of the
spatial dimension, see [15]. In [13] an approach to high dimensional VAR
analysis is given and in [32] a VAR model is applied to fMRI brain image
data. However, the size of the data sets considered in these papers is much
smaller than what we considered here. Furthermore, aside from the compu-
tational aspect, the enormous number of parameters fitted when employing
a VAR model in a large-scale setting would be quite difficult to interpret.
Within our framework, by modelling the array data as a random field model,
we instead estimate smooth functions that in turn are easier to interpret.

APPENDIX A: PROOFS

Proof of Proposition 1. With w the network function let w̃ denote a
D×D matrix-valued signed measure on [−τ, 0] with density F̃ : R→ RD×D,

F̃ (t) :=

∫
S1,1 w(x, y, xi, yj , t)dxdy . . .

∫
SNx,Ny

w(x, y, xi, yj , t)dxdy

...
. . .

...∫
S1,1 w(x, y, xNx , yNy , t)dxdy . . .

∫
SNx,Ny

w(x, y, xNx , yNy , t)dxdy

 ,

with respect to the Lebesgue measure on R. Following [6] we then consider
the stochastic delay differential equation

dṼ (t) = (S̃(t) +

∫ 0

−τ
w̃(dr)Ṽ (t+ r) + H̃(Ṽ (t)))dt+ C̃dW̃ (t)(A.1)

Ṽ (0) ∈ RD, Ṽ (u) = Ṽ0(u) u ∈ (−τ, 0),(A.2)

where Ṽ (0) and Ṽ0 ∈ C([−τ, 0],RD) are initial conditions. A solution to
(A.1) and (A.2) is then given by the integral equation (4.2) describing the

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 19

coordinate-wise evolution in the space discretized model for the random field
V .

The sequence of D ×D weight matrices (w̃k)k is then defined by

w̃k :=

∫ 0

−τ
1[tk,tk+1)(s)dw̃(s) =

∫ 0

−τ
1[tk,tk+1)(s)F̃ (s)ds,

where 1[tk,tk+1) is equal to ID on [tk, tk+1) and zero otherwise. Especially the
entry in the (m,n)th row and (i, j)th column of each w̃k is given as

w̃k((m,n), (i, j)) =

∫ tk+1

tk

∫
Sm,n

w(x, y, xi, yj , s)dxdyds.(A.3)

Letting (εk)k denote a sequence of iid N(0, ID) variables the Euler scheme
from [6] is then given by the D-dimensional discrete time process (Ṽ ∆t(k))k
solving the stochastic difference equation (4.3) for k = 0, . . . ,M − 1 with
initial conditions Ṽ ∆t(l) = Ṽ0(tl) for l = −L, . . . ,−1 and Ṽ ∆t(0) = Ṽ (0).
Thus by Theorem 1.2 in [6] and using that the deterministic function s is
continuous, the solution (Ṽ ∆t(k))k to (4.3) converges weakly to the solution
process (Ṽ (t))t, defined in (4.2), that solves the SDDE (A.1) and (A.2) .

Proof of Proposition 2. First using the expansion in (4.5) we can
write the entries in each weight matrix w̃k from (A.3) as

w̃k((m,n), (i, j)) =

∫ tk+1

tk

∫
Sm,n

w(x, y, xi, yj , s)dxdyds

=
∑
q

βq

∫ tk+1

tk

∫
Sm,n

φq(x, y, xi, yj , s)dxdyds.

Then we can write the (m,n)th coordinate of (4.3) as

Ṽ ∆t((m,n), k + 1) =

(
s̃(xm, yn, tk) +

−1∑
l=−L

w̃l((m,n))Ṽ ∆t(k + l)

+ h̃(xm, yn)Ṽ ∆t((m,n), k)

)
∆t + C̃(m,n)

√
∆tεk

= ∆t

∑
q

αqφq(xm, yn, tk) + βqF
m,n
k,q + γqφq(xm, yn)Ṽ ∆t((m,n), k)

+ C̃(m,n)

√
∆tεk(A.4)

with F
(m,n)
k a 1× pw-vector with entries given by (4.10). Defining yk, Xk, θ

and ek as in (4.8) the model equation (4.7) follows from (A.4).

20 A. LUND AND N. R. HANSEN

We then have the following transition density for the model

f(yk | Xk) = (
√

2π)−D|Σ|−1/2 exp(−(yk −Xkθ)
>Σ−1(yk −Xkθ)/2).

As yk | Xk is independent of y0, . . . yk−1, X0, . . . Xk−1 we get by successive
conditioning that we can write the joint conditional density as

f(y0, . . . ,yM−1 | X0, . . . , XM−1)

= (
√

2π)−MD|Σ|−M/2 exp

(
− 1

2

M−1∑
k=0

(yk −Xkθ)
>Σ−1(yk −Xkθ)

)
.

Taking minus the logarithm yields the negative log-likelihood

l(θ,Σ) :=
M

2
log |Σ|+ 1

2

M−1∑
k=0

(yk −Xkθ)
>Σ−1(yk −Xkθ).

With X and y as in (4.12) it follows that

IM ⊗ Σ−1/2(y −Xθ) =

 Σ−1/2(y1 −X1θ)
...

Σ−1/2(yM −XMθ)

 =

∑D
j Σ

−1/2
1,j (y1 −X1θ)j

...∑D
j Σ

−1/2
D,j (y1 −X1θ)j

...∑D
j Σ

−1/2
D,j (yD −XDθ)j

hence

‖IM ⊗ Σ−1/2(y −Xθ)‖22 =
M∑
k

D∑
i

(D∑
j

Σ
−1/2
i,j (yk −Xkθ)j

)2

=

M−1∑
k=0

‖Σ−1/2(yk −Xkθ)‖22

=
M−1∑
k=0

(yk −Xkθ)
>Σ−1(yk −Xkθ)

yielding the expression for the negative log-likelihood given in (4.13).

Proof of Proposition 3. Writing

(S | F | H) :=

 S1 F1 H1
...

...
...

SM FM HM

 = X

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 21

the claim follows if we show that S and F are appropriate 3-tensor matrices
and that Hγ = V−1 � C for an appropriately defined array C.

Letting φx := (φq(xi))i,q denote a Nx× px matrix with px basis functions
evaluated at Nx points in the x domain it follows directly from the definition
of the tensor product that we can write S = φx ⊗ φy ⊗ φt.

Next let Φx := (
∫
Xi
φq(x))i,q denote the integrated version of φx. Then

inserting the tensor basis functions in to (4.10) we can write the entries in
Fm,nk as

Fm,nk,q =
−1∑
l=−L

∑
i,j

Ṽ ∆t
k+l(xi, yj)

∫ tl+1

tl

∫
Sm,n

φq1(x)φq2(y)φq3(xi)φq4(yj)φq5(s)dxdyds

=

∫
Xm

φq1(x)dx

∫
Yn
φq2(y)dy

−1∑
l=−L

∑
i,j

Ṽ ∆t
k+l(xi, yj)φq3(xi)φq4(yj)

∫ tl+1

tl

φq5(s)ds

for q = (q1, q2, q3, q4, q5). Letting Φxyl denote a M × pxpypl matrix with
entries

Φxyl
k,q :=

−1∑
l=−L

∑
i,j

Ṽ ∆t
k+l(xi, yj)φq3(xi)φq4(yj)

∫ tl+1

tl

φq5(s)ds(A.5)

for q = (q3, q4, q5) we can write F as

F = Φxyt ⊗ Φy ⊗ Φx.

Finally with Hk given in (4.11) we can write

Hkγ =

 V ∆t
k (x1, y1)

∑
q φ

x
q1(x1)φyq2(y1)γq

...

V ∆t
k (xNx , yNy)

∑
q φ

x
q1(xNx)φyq2(yNy)γq

= V ∆t

k � φx ⊗ φyγ
= V ∆t

k � vec(φxΓ(φy)>)

Letting C be the Nx ×Ny ×M array containing M copies of the Nx ×Ny

matrix φyΓ(φx)> we can then write Hγ = V−1 � C.

APPENDIX B: TENSOR PRODUCT BASIS

Consider a d-variate function f ∈ L2(Rd) that we want to represent using
some basis expansion. Instead of directly specifying a basis for L2(Rd) we
will specify d marginal sets of univariate functions

(φ1,k1)∞k1=1, . . . , (φd,kd)∞kd=1(B.1)

22 A. LUND AND N. R. HANSEN

with each marginal set a basis for L2(R). Then for any (k1, . . . , kd) ∈ Nd we
may define a d-variate function πk1,...,kd : Rd → R via the product of the
marginal functions i.e.

(x1, . . . , xd) 7→ πk1,...,kd(x1, . . . , xd) :=

d∏
i=1

φi,ki(xi).(B.2)

Since each marginal set of functions in (B.1) constitute a basis of L2(R)
it follows using Fubini’s theorem, that the induced set of d-variate functions
(πk1,...,kd)k1,...,kd constitute a basis of L2(Rd). Especially again by Fubini’s
theorem we note that if the functions in (B.1) all are orthonormal marginal
bases then they generate an orthonormal basis of L2(Rd). Finally, if the
marginal functions have compact support then the induced d-variate set of
functions will also have compact support.

APPENDIX C: IMPLEMENTATION DETAILS

Here we elaborate a little on various details pertaining the implementation
of the inferential procedure for the specific data considered in section 3 and
on some more general details relating to the computations.

C.1. Representing the drift components.

0.
0

0.
2

0.
4

0.
6

Spatial basis functions

x

φ(
x)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Temporal basis functions over delay interval

r (delay)

φ(
r)

−50 −46 −42 −38 −34 −30 −26 −22 −18 −14 −10 −6 −2

Fig 7. The spatial basis splines (left) and the temporal basis splines (right).

C.1.1. Network function and short range function. As explained in Ap-
pendix B we can use tensor basis functions to represent the component

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 23

functions. For the analysis of the brain image data we will use B-splines as
basis functions in each dimension as these have compact support. Specifi-
cally in the spatial dimensions we will use quadratic B-splines while in the
temporal dimension we will use cubic B-splines, see Figure 7 below.

C.1.2. Stimulus function. Using separable functions to represent the stim-
ulus, as discussed in Appendix B, and exploiting that we know when the
stimulus is presented we can pre-estimate the generic temporal factor, φt, of
the stimulus function in Proposition 4.3. The underlying reasoning behind
this is that the external input should arrive at the same time across the
visual cortex, hence the stimulus function s should be temporally synchro-
nized across space. However the amplitude of the stimulus functions should
be estimated in the overall model fitting, especially setting s to zero in areas
where no input is detected.

More concretely with sl and sr respectively indicating the stimulus start
and the stimulus stop, for some smooth function g, we fit the model

V (x, y, t) = g(t) + ε, (x, y, t) ∈ S × [sl, sr].

Representing g in a tensor basis of cubic B-splines, we can do this in a
fraction of second for a single trial, using the glamasso R-package, see [19].

Having obtained the estimate ĝ we use m := arg mint ĝ(t) as an estimate
of the synchronized peak input time and model φt using a scaled gamma
density function with mode m and scale 20, see Figure 8.

0 200 400 600 800

−
35

−
30

−
25

−
20

−
15

−
10

−
5

0

Pre−estimated temporal stimulus factor

1:M

φ(
t)

Fig 8. The basis functions used to represent the stimulus response functions. The dotted
vertical lines indicates the stimulus start (frame 325) and stop (frame 732).

24 A. LUND AND N. R. HANSEN

C.2. Regression set up. For the single trial VSD data we have a total
of 250112 observations arranged in a 16× 16× 977 grid. We model a delay
of L := 50 frames corresponding to τ ≈ 31 ms which gives us M := 926
modeled time points. As can be gleaned in Figure 7 the number of basis
functions in the spatial dimensions is px = py := 8 in each and pl := 11 in
the temporal dimension and pt := 1. With this setup we have us a total of
of p := 45184 model parameters that need to be estimated. For comparison
we note that a corresponding VAR(L) model would have LD2 = 3276800
model parameters .

For the lasso regression we use parameter weights to allow for differential
penalization. Especially we penalize the stimulus and short range coefficient
less (weight 1) that the network coefficients (weight 10)

We fit the model for a sequence of penalty parameters λmax := λ1 > . . . >
λk =: λmin k := 30 . Here λmax can be computed given data as the smallest
value yielding a zero solution to (4.14).

C.3. Computational details. Finally, some comments pertaining the
computations involved when implementing the estimation procedure.

As noted above we use is the gd-pg algorithm from [20]. However, to
implement that algorithm in this setup you need to split up the computations
according to components. Especially matrix-vector products for the stimulus
and network components can be carried out using the rotated H-transform
from definition 4.1. However for the short range component it is only possible
to carry out the matrix vector products as “two tensor array arithmetic”
plus an entrywise product, as indicated in (4.18). This especially pertains
to the gradient computations, which due to the component structure, splits
up in to 32 = 9 block-components, 5 of which involves the the short range
component.

We note however that the vast majority of computations performed by
the inferential procedure involves the stimulus component and the network
component where the tensor structure can be efficiently exploited.

Finally for the network component one tensor, as shown in the proof
of Proposition 4.3, corresponds to a convolution of the random field. This
component has to be computed upfront which in principle can be very time
consuming. However considering (A.5) this computation can be carried out
using array arithmetic. Especially we can write the convolution tensor as

Φxyt =

 vec(Φxyl
1)

...

vec(Φxyl
M)

 .

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 25

where Φxyt
k for each k is a px × py × pl array which according to (A.5) can

be computed using the array arithmetic as

Φxyl
k := ρ((φl)>, ρ((φy)>, ρ((φx)>, v−L+k,k)).

APPENDIX D: FIT FOR ALL TRIALS

x

Network function for trial 1

x

y

z

x

y

z

26 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0.0e+00

5.0e−07

1.0e−06

1.5e−06

2.0e−06

0.01

1e−04

1e−06

1e−08

1e−10

0 10 20 30 40 50

w
ei

gh
t

0.0005

0.0010

0.0015

0.0020

density

−0.01

−1e−04

−1e−06

−1e−08

−1e−10

0 10 20 30 40 50

delay

w
ei

gh
t

0.00000

0.00005

0.00010

0.00015

0.00020

density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 27

x

Network function for trial 2

x

y

z

x

y

z

28 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0e+00

1e−06

2e−06

3e−06

4e−06

5e−06

1e−21

1e−15

1e−09

1e−03

0 10 20 30 40 50

delay

w
ei

gh
t

0.000

0.001

0.002

0.003

density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 29

x

Network function for trial 3

x

y

z

x

y

z

30 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0e+00

1e−06

2e−06

3e−06

4e−06

5e−06

6e−06

7e−06

1e−21

1e−15

1e−09

1e−03

0 10 20 30 40 50

delay

w
ei

gh
t

0.000

0.001

0.002

density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 31

x

Network function for trial 4

x

y

z

x

y

z

32 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0.0e+00

5.0e−07

1.0e−06

1.5e−06

2.0e−06

2.5e−06

3.0e−06

1e−21

1e−15

1e−09

1e−03

0 10 20 30 40 50

delay

w
ei

gh
t

0.000

0.001

0.002

density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 33

x

Network function for trial 5

x

y

z

x

y

z

34 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0e+00

2e−06

4e−06

6e−06

8e−06

1e−21

1e−15

1e−09

1e−03

0 10 20 30 40 50

delay

w
ei

gh
t

0.000

0.001

0.002

0.003

0.004
density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 35

x

Network function for trial 6

x

y

z

x

y

z

36 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0.0e+00

5.0e−06

1.0e−05

1.5e−05

2.0e−05

0.01

1e−04

1e−06

1e−08

1e−10

0 10 20 30 40 50

w
ei

gh
t

0.001

0.002

0.003

0.004

density

−0.01

−1e−04

−1e−06

−1e−08

−1e−10

0 10 20 30 40 50

delay

w
ei

gh
t

0e+00

5e−04

1e−03

density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 37

x

Network function for trial 7

x

y

z

x

y

z

38 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0.0e+00

5.0e−07

1.0e−06

1.5e−06

2.0e−06

1e−21

1e−15

1e−09

1e−03

0 10 20 30 40 50

delay

w
ei

gh
t

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025
density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 39

x

Network function for trial 8

x

y

z

x

y

z

40 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0.0e+00

5.0e−06

1.0e−05

1.5e−05

0.01

1e−04

1e−06

1e−08

1e−10

0 10 20 30 40 50

w
ei

gh
t

0.001

0.002

0.003

density

−0.01

−1e−04

−1e−06

−1e−08

−1e−10

0 10 20 30 40 50

delay

w
ei

gh
t

0.0005

0.0010

0.0015

0.0020

density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 41

x

Network function for trial 9

x

y

z

x

y

z

42 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0.0e+00

5.0e−06

1.0e−05

1.5e−05

2.0e−05

2.5e−05

0.01

1e−04

1e−06

1e−08

1e−10

0 10 20 30 40 50

w
ei

gh
t

0.002

0.004

0.006

0.008
density

−0.01

−1e−04

−1e−06

−1e−08

−1e−10

0 10 20 30 40 50

delay

w
ei

gh
t

0.000

0.001

0.002

0.003
density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 43

x

Network function for trial 10

x

y

z

x

y

z

44 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0.0e+00

2.0e−06

4.0e−06

6.0e−06

8.0e−06

1.0e−05

1.2e−05

1e−21

1e−15

1e−09

1e−03

0 10 20 30 40 50

delay

w
ei

gh
t

0.000

0.001

0.002

0.003

density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 45

x

Network function for trial 11

x

y

z

x

y

z

46 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0.0e+00

2.0e−06

4.0e−06

6.0e−06

8.0e−06

1.0e−05

1.2e−05

1e−21

1e−15

1e−09

1e−03

0 10 20 30 40 50

delay

w
ei

gh
t

0.000

0.002

0.004

0.006
density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 47

x

Network function for trial 12

x

y

z

x

y

z

48 A. LUND AND N. R. HANSEN

10 20 30 40 50

5
10

15
20

25
30

Aggregated in and out effects as a function of separation

temporal separation (delay)

sp
at

ia
l s

ep
ar

at
io

n

0e+00

2e−06

4e−06

6e−06

8e−06

0.01

1e−04

1e−06

1e−08

1e−10

0 10 20 30 40 50

w
ei

gh
t

0.000

0.002

0.004

0.006

0.008

density

−0.01

−1e−04

−1e−06

−1e−08

−1e−10

0 10 20 30 40 50

delay

w
ei

gh
t

0.000

0.001

0.002

0.003

density

SPARSE NETWORK IN A DYNAMICAL SPATIO-TEMPORAL MODEL 49

REFERENCES

[1] Adler, R. J. and Taylor, J. E. (2009). Random fields and geometry. Springer
Science & Business Media.

[2] beim Graben, P. and Potthast, R. (2009). Inverse problems in dynamic cognitive
modeling. Chaos: An Interdisciplinary Journal of Nonlinear Science 19 015103.

[3] Bressloff, P. C. (2012). Spatiotemporal dynamics of continuum neural fields. Jour-
nal of Physics A: Mathematical and Theoretical 45 033001.

[4] Bressloff, P. C. and Webber, M. A. (2012). Front propagation in stochastic
neural fields. SIAM Journal on Applied Dynamical Systems 11 708–740.

[5] Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and in-
hibitory spiking neurons. Journal of computational neuroscience 8 183–208.

[6] Buckwar, E. and Shardlow, T. (2005). Weak approximation of stochastic differ-
ential delay equations. IMA journal of numerical analysis 25 57–86.

[7] Buis, P. E. and Dyksen, W. R. (1996). Efficient vector and parallel manipulation of
tensor products. ACM Transactions on Mathematical Software (TOMS) 22 18–23.

[8] Chemla, S. and Chavane, F. (2010). Voltage-sensitive dye imaging: technique re-
view and models. Journal of Physiology-Paris 104 40–50.

[9] Coombes, S., beim Graben, P., Potthast, R. and Wright, J., eds. (2014). Neural
fields. Springer, Heidelberg.

[10] Cox, S. G. (2012). Stochastic Differential Equations in Banach Spaces: Decoupling,
Delay Equations, and Approximations in Space and Time. PhD thesis.

[11] Currie, I. D., Durban, M. and Eilers, P. H. (2006). Generalized linear array mod-
els with applications to multidimensional smoothing. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 68 259–280.

[12] Da Prato, G. and Zabczyk, J. (2014). Stochastic equations in infinite dimensions.
Cambridge university press.

[13] Davis, R. A., Zang, P. and Zheng, T. (2016). Sparse Vector Autoregressive Mod-
eling. Journal of Computational and Graphical Statistics 25 1077-1096.

[14] De Boor, C. (1979). Efficient computer manipulation of tensor products. ACM
Transactions on Mathematical Software (TOMS) 5 173–182.

[15] Fan, J., Lv, J. and Qi, L. (2011). Sparse high dimensional models in economics.
Annual review of economics 3 291.

[16] Faugeras, O. and Inglis, J. (2015). Stochastic neural field equations: a rigorous
footing. Journal of Mathematical Biology 71 259–300.

[17] Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance
estimation with the graphical lasso. Biostatistics 9 432–441.

[18] Harvey, M. A., Valentiniene, S. and Roland, P. E. (2009). Cortical membrane
potential dynamics and laminar firing during object motion. Frontiers in systems
neuroscience 3 7.

[19] Lund, A. (2016). glamlasso: Penalization in Large Scale Generalized Linear Array
Models R package version 2.0.1.

[20] Lund, A., Vincent, M. and Hansen, N. R. (0). Penalized estimation in large-scale
generalized linear array models. Journal of Computational and Graphical Statistics 0
0-0.

[21] Mao, X. (2007). Stochastic differential equations and applications. Elsevier.
[22] Markounikau, V., Igel, C., Grinvald, A. and Jancke, D. (2010). A Dynamic

Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive
Dye Imaging. PLoS Comput Biol 6.

[23] Peszat, S. and Zabczyk, J. (1997). Stochastic evolution equations with a spatially

50 A. LUND AND N. R. HANSEN

homogeneous Wiener process. Stochastic Processes and their Applications 72 187–
204.

[24] Pinotsis, D. A., Moran, R. J. and Friston, K. J. (2012). Dynamic causal mod-
eling with neural fields. NeuroImage 59 1261 - 1274.

[25] Potthast, R. and beim Graben, P. (2009). Inverse Problems in Neural Field The-
ory. SIAM Journal on Applied Dynamical Systems 8 1405-1433.

[26] Roland, P. E., Hanazawa, A., Undeman, C., Eriksson, D., Tompa, T., Naka-
mura, H., Valentiniene, S. and Ahmed, B. (2006). Cortical feedback depolariza-
tion waves: A mechanism of top-down influence on early visual areas. Proceedings of
the National Academy of Sciences 103 12586-12591.

[27] Rothman, A. J., Levina, E. and Zhu, J. (2010). Sparse multivariate regression
with covariance estimation. Journal of Computational and Graphical Statistics 19
947–962.

[28] Roxin, A. and Montbri, E. (2011). How effective delays shape oscillatory dynamics
in neuronal networks. Physica D: Nonlinear Phenomena 240 323 - 345.

[29] Sporns, O., Chialvo, D. R., Kaiser, M. and Hilgetag, C. C. (2004). Organi-
zation, development and function of complex brain networks. Trends in cognitive
sciences 8 418–425.

[30] Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of
the Royal Statistical Society. Series B (Methodological) 58 267-288.

[31] Touboul, J. (2014). Propagation of chaos in neural fields. The Annals of Applied
Probability 24 1298–1328.

[32] Valdés-Sosa, P. A., Sánchez-Bornot, J. M., Lage-Castellanos, A.,
Vega-Hernández, M., Bosch-Bayard, J., Melie-Garćıa, L. and Canales-
Rodŕıguez, E. (2005). Estimating brain functional connectivity with sparse mul-
tivariate autoregression. Philosophical Transactions of the Royal Society of London
B: Biological Sciences 360 969–981.

University of Copenhagen,
Department of Mathematical Sciences,
Universitetsparken 5,
2100 Copenhagen Ø, Denmark
E-mail: adam.lund@math.ku.dk

niels.r.hansen@math.ku.dk

Chapter 7

Estimating Soft Maximin Effects in
Heterogeneous Large-scale Array
Data

Lund, A., S. W. Mogensen, and N. R. Hansen (2017). Estimating soft maximin effects in
large-scale data. In preparation.

122

Estimating Soft Maximin Effects in Heterogeneous

Large-scale Array Data

Adam Lund1, Søren Wengel Mogensen and Niels Richard Hansen

University of Copenhagen, Department of Mathematical Sciences, Universitetsparken 5,
2100 Copenhagen Ø, Denmark

Abstract

In this paper we propose a new estimation problem - the soft maximin prob-
lem - along with a solution algorithm, aimed at extracting a common effect in
large-scale heterogeneous data while being computationally attractive. The
loss function in this problem - the soft maximin loss - relies on a smooth
version of the max function leading to a smooth version of the (hard) max-
imin estimation problem from [1]. By showing that the soft maximin loss is
strongly convex, we obtain a convergence result for a proximal gradient based
solution algorithm for non-Lipschitz optimization problems. This algorithm
can exploit the tensor array structure of our model leading to a computa-
tionally efficient design matrix free solution algorithm, implemented in the
R package SMMA. We use this software to estimate a generic signal in a large-
scale neuronal brain image data set and also demonstrate the approach on
simulated data.

Keywords: sparse estimation, non-differentiable optimization, tensor-array
structure, proximal gradient

1. Introduction

We consider the problem of extracting a common or generic signal from
large scale heterogeneous array data organized in known groups. Especially,
for a large-scale spatio-temporal array data set consisting of images of neu-
ronal activity in 13 ferret brains recorded over time, the objective is to esti-
mate a type of generic “brain signal” resulting from a visual stimulus. This

1Corresponding author. E-mail address: adam.lund@math.ku.dk (A. Lund).

Preprint March 31, 2017

data set contains several hundred thousand images recorded over multiple
trials for each animal making the data both large-scale and heterogeneous.

We model this generic signal as the mean surface in a linear regression
model using a tensor basis expansion to represent the smooth signal. Given
the nature of the brain and the experimental setup the signal is presumably
space and time localized meaning that it is zero much of the time over a
large area of the visual cortex. Within our model setup this localization in
turn translates to sparsity in the regression coefficient vector that we wish
to estimate.

With ni ∈ N, i = 1, 2, 3, each trial in the data set consists of n3 n1×n2 im-
ages and a total of G ∈ N trials are observed yielding n1n2n3G observations.
The inhomogeneities in the data stem from several sources. Temporal inho-
mogeneities can arise both across trials and animals owing to slightly varying
experimental conditions as well as physical exertion. This potentially creates
signal artifacts that are unrelated to the generic response signal of interest
and can also change the shape of the latter signal. Furthermore spatial inho-
mogeneities are expected across animals corresponding to differences in the
cytoarchitecture.

Being both large-scale and heterogeneous this data set fits well within the
framework from [1]. Here a maximin method is proposed aimed at estimating
a common effect in a large scale heterogeneous data set. Especially the
maximin estimator extracts effects in the data that have the same sign across
observations while setting effects that take opposite sign across observations
to zero. Applied to our setup this would correspond to removing trial specific
signals and instead extracting significant non-zero signals present across all
trials, constituting the generic response signal in the visual cortex..

However, from a computational perspective the maximin method is chal-
lenging as it leads to a non-differentiable and non-separable convex optimiza-
tion problem. Furthermore, this challenge is only exacerbated by applying
the method in a large-scale context where memory requirements can make
the problem computationally infeasible. Especially computer memory con-
straints can make it infeasible to store the design matrix in the working
memory (the RAM). Furthermore operations involving the entire design ma-
trix will be computationally expensive or perhaps even prohibitive.

Here we instead propose a related estimation problem that may be viewed
as smooth approximation to the (hard) maximin problem from [1]. By using a
type of soft max function we obtain an estimation problem - the soft maximin
problem - that has a differentiable loss, the soft maximin loss. This in turn

2

leads to a related optimization problem that can be solved using efficient
algorithms. Due to the large scale of our data we need an algorithm that
can exploit the special tensor structure underlying our setup. As shown in
[2] the proximal gradient algorithm is very well suited to exploit this kind of
structure. However, while the soft maximin loss is very smooth its gradient
is not Lipschitz continuous. This implies that we can not use a standard
proximal gradient algorithm. Instead by establishing that the soft maximin
loss is strongly convex we show that a non-monotone proximal algorithm
proposed in [3] can solve the proposed soft maximin problem. By exploiting
the tensor structure resulting form our data-model combination we obtain
a computationally efficient design matrix free algorithm for solving the soft
maximin problem in this setting. This algorithm is implemented as the R-
package SMMA available from CRAN, see [4].

Using this software, we are able to extract one generic smooth signal from
the brain image data set. This signal exhibits space and time localization
with a clear depolarization occurring in an area corresponding to the center
of field of view across all animals. Furthermore we test the approach on sim-
ulated data and present an example where the maximin estimator succeeds
in extracting a common signal from noisy heterogeneous data while straight
forward approaches like the cross group average or median fails.

2. Soft maximin effects for known groups

Following [1] we consider a mixed model for n response variables Y1, . . . , Yn,
given as

Yi = X>i Bi + εi. (1)

Here Xi and Bi ∼ FB are independent p-dimensional random vectors, FB de-
notes the distribution of Bi, and εi is a zero-mean real random variable. The
predictor variables X1, . . . , Xn are independent with Gram population matrix
Σ assumed to have full rank and we assume that εi and Xi are uncorrelated.

In this paper, we are interested in a setting with a known group struc-
ture. That is a known partition of the set of observations such that the
random coefficient vector is the same for all observations within each parti-
tion element (group). More formally, there exists a known labelling function
G : {1, . . . , n} → {1, . . . , G}, where G ∈ N is the cardinality of the partition,
i.e. the number of groups. Then for g ∈ {1, . . . , G} let ng be the number of
observations in group g such that

∑
g ng = n and let G−1(g) = {i1, . . . , ing}

3

denote the observation indices belonging to group g. Then for group g,
Yg := (Yi1 , . . . , Ying)> denotes the group-specific ng × 1 response vector and

by stacking the corresponding ng group-specific predictors, X>i1 , . . . , X
>
ing

we

obtain a group-specific ng × p design matrix, Xg := (Xi1 | . . . | Xing)>. We
then write the model for the gth group as

Y = Xgbg + ε, (2)

indicating that Bi1 = · · · = Bing = bg, is the random coefficient for all ng
observations in group g. From [1], in the know groups setup, the empirical
explained variance for group g using a β ∈ supp(FB) is then

V̂g(β) :=
1

ng
(2β>X>g yg − β>X>g Xgβ). (3)

Now for x ∈ RG and ζ > 0 define the soft maximum function

sζ(x) :=
log(

∑
g e

ζxg)

ζ
,

and let s−ζ denote the corresponding soft minimum function. Letting V̂ (β) :=

(V̂1(β), . . . , V̂G(β)) denote the vector of explained variances in the G groups
we then propose maximizing the soft minimum of the explained variances as
a function of β. Using that s−ζ(x) = −sζ(−x), this leads to the soft maximin
estimator βsmm given by the problem

βsmm := arg max
β∈Rp

s−ζ(V̂ (β)) = arg min
β∈Rp

sζ(−V̂ (β)). (4)

In the following we shall refer to

lζ(β) := sζ(−V̂ (β))

as the soft maximin loss function.
We note that using l’Hôpistal’s rule it follows that sζ(x)→ max{x} and

s−ζ(x)→ min{x} for ζ →∞. Thus for ζ > 0 the soft maximin problem (4)
can be viewed as an approximation to the maximin problem proposed in [1].
We note, that where the only focus in the maximin problem is on the group

4

with the smallest explained variance, this group will be less dominating in
the soft maximin problem (4). Especially, using that

log(1
G

∑
g e

ζxg)

ζ
→ 1

G

∑
g

xg

for ζ → 0, we see that sζ(x) ∼ 1
G

∑
g xg + log(G)

ζ
for small ζ. Thus the soft

maximin can be seen as an interpolation between mean aggregation and max
aggregation.

2.1. Smoothing model

For the neuronal brain data we are interested in modeling an underlying
signal as a smooth function of time and space. For this data it is reasonable
to use the individual trials to define a partition of the set of observations.
We model the igth channel (or pixel) in the gth trial as

yig = fg(zig) + εig , zig ∈ R2 × R+. (5)

Here fg is then a random trial specific smooth function modelling the brain
response signal in the gth trial. We represent fg using a basis expansion as

fg(z) =

p∑
m=1

Θg,mφm(z), (6)

for Θg = (Θg,1, . . . ,Θg,p) a random vector, and (φi)i a set of basis func-
tions. Collecting the basis function evaluations into an ng × p matrix Φg :=
(φm(zig))ig ,m, we can write the trial g model (5) as the linear regression (2)
with Xg := Φg and Bg := Θg. We note that for the brain image data model
we have a deterministic design matrix Xg for all g. Furthermore as explained
in section 4 below as we have the same channels and time points in each trial
we may write Xg = Φ for all g.

Next we present a an example where this smoothing model have been
fitted to real neuronal brain image data by solving a penalized version of
the soft maximin problem (4). In subsection 4 below we present this general
penalized estimation problem and establish a related solution algorithm.

5

3. Brian imaging data

The neuronal data was obtained using voltage-sensitive dye imaging (VSDI)
and the experiment producing this data has previously been described in [5].
In short, parts of the visual cortex of a live ferret were exposed and stained
with voltage-sensitive dye. By means of the dye, changes in neuronal mem-
brane potential is translated into changes in the intensity of the fluorescent
light. Recording the emitted fluorescent light using several hundred recording
devices organized in a two-dimensional grid, produce an image of in vivo neu-
ronal activity. Over the course of the experiment images are then recorded
every 0.6136 ms producing a recording a film of neuronal activity. The ex-
periment is divided into G trials. In each trial g two recordings are made;
one where a visual stimulus is presented to the live ferret (a white square on
a grey screen) and one where no stimulus is presented. These two recordings
are then subtracted and normalized to give the final trial g recording. Thus
for each trial g data is sampled in the 3-dimensional spatio-temporal grid
yielding a 3-dimensional data array Y g = (yi,j,k,g)

n1,n2,n3

i=1,j=1,k=1. Thus the entire

data set can be organized in a 4-dimensional array Y = (Y g)
G
g=1.

Given the experimental setup several sources of inhomogeneities are po-
tentially present in the data. We list some here.

1. As the trials are recorded sequentially for each animal temporal in-
homogeneities for each animal can arise resulting from a difference in
response possibly due to fatigue.

2. Spatial inhomogeneities can arise due to differences in the cytoarchi-
tectural borders between the animals causing misalignment problems.

3. The VSDI technique is very sensitive, see [6]. Consequently even small
changes in the experiment surroundings could affect the recordings and
create inhomogeneities in the data.

4. Physiological difference between animals and even in one animal over
trials can also create inhomogeneities. Especially the heart beat affects
the light emission by expanding the blood vessels in the brain. This
creates a cyclic heart rate dependent artifact. A changing heart rate
over trials for one animal as well as differences in heart rate between
animals will cause inhomogeneous pulse artifacts in the data, see[5].

5. Ceteris paribus each animal could exhibit a slightly different response to
the visual stimulus corresponding to an animal specific response signal.

6

0 100 200 300 400 500 0 100 200 300 400 500
−7.5

−5.0

−2.5

0.0

2.5

Figure 1: Evolution over time of light intensity measurements from a subset of channels
from two different recordings (color). Left: raw data, right: smoothed data. One recording
shows a clear depolarization following the stimulus whereas the other does not.

Frame 300 Frame 400 Frame 500 Frame 600

Figure 2: Four frames (time points) of a raw recording.

Frame 300 Frame 400 Frame 500 Frame 600

Figure 3: Four frames (time points) of a penalized soft maximin fit.

Given these considerations it seems reasonable to model the data in a
framework that explicitly model potential inhomogeneities across trials as in

7

(5). For instance, following the stimulus, we would expect to see a reaction
(a depolarization) in the visual cortex. However this is not is the case with
all trials in the data set as can be gleaned from Figure 1. Figure 1 shows the
individual analysis of two trial recordings obtained by fitting each trial to the
model (5) along with the raw recordings. While one recording (red) shows
clear evidence of depolarization the other recording does not. This seems
to indicate that systematic noise components, i.e. artifacts as in 4 above,
are present in the data as white noise would hardly mask the depolarization
entirely.

These heterogeneity issues lead the authors who originally recorded this
data to only consider a subset of the recordings with a significantly increased
depolarization in the visual cortex following the stimulus, see [5]. Here how-
ever, we will fit the entire data set using the maximin estimator.

4. Solving the penalized soft maximin problem

Next we first present an algorithm for solving a penalized version of the
soft maximin problem. Then we formulate the smoothing model from sub-
section 2.1 as a linear model with array-tensor structure and discuss how
this structure might be exploited in connection with the proposed solution
algorithm. This in turn leads to an estimation procedure for array-tensor
structured models it scales well with the size of data as it completely avoids
the memory issues plaguing existing methods when applied to problems with
this structure.

4.1. Penalized soft maximin problem

To obtain space a time localization of the signal fg from (5) we may
use basis functions with compact support and then use a sparsity inducing
penalty to remove basis functions in area with little signal. This idea leads
us to consider a regularized version of the estimation problem (4) given by

min
β∈Rp

lζ(β) + λJ(β), (7)

where J is a proper convex function. Choosing lasso penalty i.e. ‖ · ‖1 (see
[7]), solving (7) will result in a sparse estimates of β which in the smoothing
model from section 2.1 translates into a space and time localized generic
signal across all trials. In the following we let Fζ := lζ + λJ denote the soft
maximin objective.

8

Compared to the penalized hard maximin problem in [1], the problem
(7) is easier to solve. Especially we note that the loss function in the hard
maximin problem is not only non-differentiable but also non-separable. This
means that a computationally efficient algorithm like the coordinate descent
algorithm cannot be used to solve the hard maximin problem, see [8]. We
also note that in the setting from subsection 2.1, with fixed design and known
groups, the solution path of the the hard maximin problem is piecewise linear
in λ and thus may be solved using a method like LARS, see [9]. However, the
LARS algorithm scales poorly with the size of data and in particular cannot
exploit the structure of the data model combination we have in mind.

In contrast since the soft maximin loss is differentiable and convex we can
use the coordinate descent algorithm to solve the problem (7) whenever J
is separable. However solving (7) for a large scale data set still entails some
challenges. Especially even though the coordinate descent algorithm has
proven to be highly computationally efficient in solving problems like (7) (see
e.g. [10]) it is not very well suited to exploit problems with a tensor structured
design matrix. In this setting the coordinate descent algorithm is both very
memory inefficient and also computationally inefficient as demonstrated in
[2]. Next we propose proximal gradient algorithm the can always be used to
solve (7) and in particular, for tensor structured design matrices, both highly
computationally efficient as well as memory efficient.

4.2. Proximal gradient based algorithm

The problem (7) is easier to solve since the soft maximin loss lζ smooth
especially it is C∞. Furthermore it has the the following properties.

Proposition 1. Let hg : Rp → R be strongly convex for each g ∈ {1, . . . , G}
and twice differentiable . Then hζ : Rp → R given by

hζ(β) :=
log(

∑G
g=1 e

ζhg(β))

ζ

is strongly convex, eζhζ is strongly convex and especially the soft maximin
loss lζ is strongly convex. Furthermore the gradient of hζ is given by

∇hζ(β) =

∑G
g=1 e

ζhg(β)∇hg(β)

ehζ
. (8)

Proof. See Appendix A.

9

An underlying assumption when applying the proximal algorithm is that
the loss is Lipschitz continuously differentiable i.e. have a Lipschitz contin-
uous gradient. From the gradient expression (8) it follows that ∇lζ is not
Lipschitz continuous. This means that we cannot use a standard proximal
algorithm to solve (7).

However using Proposition 1 and the fact that lζ is C∞, hence locally
Lipschitz continuously differentiable, we may use the non-monotone proximal
algorithm from [3] presented next.

Algorithm 1 NPG

Require: β0, Lmax ≥ Lmin > 0, τ > 1,c > 0, M ≥ 0 arbitrarily
1: for k = 0 to K ∈ N do
2: choose Lk ∈ [Lmin, Lmax]
3: solve β := pJ/Lk(β

(k) − 1
Lk
∇f(β(k)))

4: if Fζ(β) ≤ max[k−M]+≥i≥k Fζ(β
(i))− c/2‖β − β(k)‖ then

5: β(k+1) := β
6: else
7: Lk := τLk and go to 3.
8: end if
9: end for

Here step 3 is the proximal step with pδJ denoting the proximal operator,
see section Appendix C. We also note that for M = 0 the algorithm is in fact
monotone.

Now by using Proposition 1 we can show the following convergence result
for the algorithm when applied to the problem (7).

Proposition 2. Let (β(k))k be a sequence of iterates generated when applying
Algorithm 1 to the soft maximin problem (7). Then β(k) → β∗ where β∗ is a
critical point of Fζ.

Proof. See Appendix A

Thus using Algorithm 1 we can solve the soft maximin problem (7) for any
type of design matrix Xg in the setting with know group structure setting.
However the main motivation behind using this algorithm is it that each
iteration involves

1. evaluation of the gradient ∇lζ .

10

2. evaluation of the proximity operator pJ/Lk .

3. evaluation of the objective function Fζ .

If we choose J as the `1-penalty then evaluating the proximity operator just
entails soft thresholding on the parameter vector. Furthermore, for the pe-
nalized soft maximin problem (7), evaluating the gradient and the soft max-
imin objective essentially comes down to computing the design matrix vector
product Xgβ. This implies that if we can efficiently compute this product we
can enhance the performance of the NPG algorithm. Especially the NPG al-
gorithm is well suited to exploit the tensor structure of the smoothing model
as discussed next.

4.3. Tensor array smoothing

Considering the discussion of the neuronal of data in section 3 we see that
this data is sampled in a 3-dimensional grid that we can write as

X1 ×X2 ×X3 (9)

where Xi = {x1, . . . , xni} with xi < xi+1 yielding a corresponding 3-dimensional
array Y g for each trial g. Preserving this structure when formulating the
mixed model setup for know groups for smoothing as in section 2 naturally
leads to a tensor structured problem

For a smoothing model like (5) the tensor structure arise as a consequence
of the specification of the basis functions. Especially the 3-variate basis
functions appearing in (5) can be specified in terms of three (marginal) sets
of univariate functions. Assuming p := p1p2p3 it is possible, using the tensor
product construction, to specify the mth basis function in (6) as

φm := φ1,m1φ2,m2φ3,m3 , (10)

where φj,m : R → R for j = 1, . . . , 3 and m = 1, . . . , pj is a marginal ba-
sis function. With this specification it is then possible to organize the random
basis coefficient in a corresponding p1×p2×p3 array Θg = (Θj1,j2,j3)

p1,p2,p3
j1=1,j2=1,j3=1

Then for each j evaluating each of the pj univariate functions in the nj
points in Xj results in an nj × pj marginal design matrix Φj = (φj,m(xk))k,m.

By forming the tensor product (Kronecker product) of these marginal
design matrices, we obtain the n× p tensor product matrix

Φ := Φ3 ⊗ Φ2 ⊗ Φ1, (11)

11

as the design matrix for the gth trial data. Thus this smoothing model has
a (one component) array-tensor structure and as discussed in Appendix B,
using the rotate H transform ρ from [11] it follows that we can write the trial
g model (5) as a one component linear array model

Y g = ρ(Φ3, ρ(Φ2, ρ(Φ1,Θg))) + Eg

where Eg is a n1 × n2 × n3 array containing the noise terms.
For any linear model with this structure we can compute the design ma-

trix vector product without having access to the design matrix. Thus by ex-
ploiting this structure we avoid memory issues when fitting large-scale data
implying that we can fit much more data compared to a setting with no such
structure. Furthermore, as an additional bonus, the computation of the de-
sign matrix-vector product is performed much more efficiently by the rotated
H transform ρ. Following [2] we can therefore enhance the NPG algorithm
when applied to the soft maximin problem (7) for array data with tensor
structured design matrix resulting in a computationally efficient numerical
procedure with a small memory foot print.

5. Simulation study

A

−1

0

1

0 100 200 300 400 500

B

−1

0

1

0 100 200 300 400 500

C

−1

0

1

0 100 200 300 400 500

D

−1

0

1

0 100 200 300 400 500

Figure 4: All four subplots are of a single channels evolution over time. A: maximin
prediction for two values of the penalization parameter. B: mean prediction. C: median
prediction. D: common component.

12

The purpose of the simulation study was to examine the maximin effects’
ability to extract a true signal from noisy data with systematic noise com-
ponents. We compared it to simple aggregation methods such as taking the
entry-wise mean and median obtaining a mean or median recording from
simulated data. Two main properties are appealing, both the ability to ex-
tract a common component when one is present and the ability to not exhibit
any signal when none is present. The latter ability is somewhat implied by
Theorem 1 in [1] as adding more observations will give new maximin effects
that are (weakly) closer to the origin.

For the simulation study we generated data which is somewhat similar
to the ferret data. Each recording consisted of a number of spatio-temporal
fluctuations and a common component was added to each recording. Data
was simulated under a true model, in the sense that each recording corre-
sponded to noisy observations of data from some coefficient vector where the
design matrix was known. The common component resembled a depolariza-
tion (see row B in Figure 6) and was temporally sparse with maximal signal
at time point (frame) 300. A total of 50 recordings were simulated.

3 4

1 2

0 100 200 300 400 500 0 100 200 300 400 500

−5

0

5

10

−5

0

5

10

Figure 5: Raw data from a single channel as it evolves over time. Each subplot is a
recording.

13

A 100 A 270 A 300 A 330

B 100 B 270 B 300 B 330

C 100 C 270 C 300 C 330

Figure 6: 3D visualization at four fixed time points (frames 100, 270, 300, and 330. A:
common component. B: maximin prediction (penalized). C: mean prediction.

From Figures 4 and 5 it is clear that the scale of the raw data is consid-
erably larger than the scale of the common component (the same channel is
used for both figures). We can also see that the random fluctuations are so
large that for some recordings the common component (the ”dent” in Figure
4, D) is not visible in the raw data.

In Figure 4 predictions for a single channel is displayed over time. Due
to the large and systematic noise components both the entry-wise mean and

14

median show fluctuations that are considerably larger than that of the com-
mon component. As expected, the maximin effects are more conservative
(smaller deviations from zero) and by increasing the penalty parameter we
can obtain a temporally sparse signal. Figure 6 is a 3D visualization of the
same simulation example. It seems clear from both figures that e.g. the mean
is showing the common signal but it is superimposed on other signals which
means that without prior knowledge we would not be able to distinguish the
common component from what is essentially systematic noise components
that are not present in all recordings.

Appendix A. Proofs

Proof of Proposition 1. We note that for a twice continuously differentiable
function f and ν > 0 it holds that

f strongly convex⇔ ∇2f(x)− νI positive definite⇔ f(x)− ‖x‖2
2 convex.

Now let h̃g(β) := ζhg(β)− ‖β‖2
2 and consider the function

h(β) := ζhζ(β)− ‖β‖2
2 = log

(G∑
g=1

eζhg(β)−‖β‖22

)
= log

(G∑
g=1

eh̃g(β)

)
.

We note that h̃g is convex as hg is strongly convex. Using this and Hölders
inequality with the `1/α and `1/(1−α) norms for α ∈ (0, 1), we get

eh(αβ+(1−α)β′) =
G∑
g=1

eh̃g(αβ+(1−α)β′)

≤
G∑
g=1

eαh̃g(β)+(1−α)h̃g(β′)

≤
(G∑

g=1

eh̃g(β)

)α(G∑
g=1

eh̃g(β′)

)1−α

.

Thus by taking the logarithm on both sides it follows that h is convex hence
ζhζ is strongly convex implying hζ is strongly convex.

Now as hζ is strongly convex we have that ∇2hζ(β)− νI is positive semi
definite for some ν > 0. With ∇2hζ(β) the Hessian of hζ , the Hessian of
ehζ(β) is

∇2ehζ(β) = ∇2hζ(β)ehζ(β) +∇βhζ(β)∇βhζ(β)>ehζ(β)

15

where ∇βhζ(β)∇βhζ(β)>ehζ(β) is positive semidefinite for all β. As m :=
minβ hζ(β) ∈ R, we have ehζ(β) ≥ em > 0 for all β and must have∇2ehζ(β)−ν̃I
is positive definite for some ν̃ > 0, showing that ehζ is strongly convex.

Especially, we note that

−V̂g(β) = − 1

ng
(2β>X>g Yg − β>X>g Xgβ + Y >g Yg − Y >g Yg)

=
1

ng
(‖Xgβ − Yg‖2

2 − Y >g Yg),

is strongly convex in β as long as Xg has full rank, thus lζ is strongly convex.
Finally

∇hζ(β) = ∇
log(

∑G
g=1 e

ζhg(β))

ζ
=

∑G
g=1 e

ζhg(β)∇hg(β)

ehζ
.

Proof of Proposition 2. If we can show that Assumptions A.1 from [3] holds
for the soft maximin problem (7) we can use Theorem A.1 in [3] (or Lemma
4 in [12]) to establish that the iterates have an accumulation point. Theorem
1 in [12] then establishes this accumulation point as a critical point for F .

Let ∆ > 0, β0 ∈ Rp, and define the set

A0 := {β : F (β) ≤ F (β0)}
B0,∆ := {β : ‖β − β′‖ < ∆, β′ ∈ A0}.

A.1(i): l̃ is ν-strongly convex by Proposition 1 implying A0 is compact
hence B0 is compact as a closed neighborhood of A0. As l̃ is C∞ everywhere,
∇l̃ is Lipschitz on B0.

A.1(ii): Is satisfied by assumption
A.1(iii): Clearly F ≥ 0. Furthermore F is continuous hence uniformly

continuous on the compact set A0.
A.1(iv) supβ∈A0

‖∇l‖ <∞ asA0 is compact and∇l is continuous. supβ∈A0
‖J‖ <

∞ as A0 is compact and J is continuous. Finally also inf J = 0.

Appendix B. Multi component tensor array structure

Here we introduce a set of structural model assumptions, for the model
framework in subsection 2.1, that can be exploited to obtain a matrix free

16

and computationally efficient version of algorithm 1. We will call it the multi
component array-tensor (MCAT) structure.

In the MCAT framework the gth response vector yg is given as yg =
vec(Y g) (the vec operator produce one long column vector), where Y g is the
n1 × · · · × nd d-dimensional response array. Furthermore the random design
matrix Xg is assumed to be a concatenation of c matrices

Xg = [Xg,1|Xg,2| . . . |Xg,c],

where the rth component is a tensor product,

Xg,r = Xg,r,d ⊗Xg,r,d−1 ⊗ · · · ⊗Xg,r,1, (B.1)

of d matrices. The matrix Xg,r,j is an ng,j × pr,j matrix, such that

ng =
d∏
j=1

ng,j, pr :=
d∏
j=1

pr,j, p =
c∑

r=1

pr.

We let 〈Xg,r,j〉 := 〈Xg,1,1, . . . , Xg,c,d〉 denote the tuple of marginal design
matrices in the gth group.

The assumed data structure induces a corresponding structure on the
random parameter vector, Bg, as a concatenation of c vectors,

B>g = (vec(Bg,1)>, . . . , vec(Bg,c)
>),

with Bg,r a pr,1×· · ·×pr,d d-dimensional array. We let 〈Bg,r〉 := 〈Bg,1, . . . ,Bg,c〉
denote the tuple of parameter arrays.

Given this structure it is possible to define a map, ρ, such that with
Bg,r = vec(Bg,r),

Xg,rBg,r = vec
(
ρ(Xg,r,d, . . . , ρ(Xg,r,2, (ρ(Xg,r,1,Bg,r))) . . .)

)
(B.2)

for r = 1, . . . , c. The algebraic details of ρ are spelled out in [11]. The
identity (B.2) provides the sole justification for the MCAT framework.

Appendix C. Proximity operator

The operator pδg : Rp → Rp defined by

pδg(y) := arg min
x∈Rp

{ 1

2δ
‖x− y‖2

2 + g(x)
}
, (C.1)

for any proper convex function g and δ > 0 is the so called proximity operator
introduced in [13] and in [14].

17

[1] N. Meinshausen, P. Bühlmann, Maximin effects in inhomogeneous large-
scale data, The Annals of Statistics 43 (4) (2015) 1801–1830.

[2] A. Lund, M. Vincent, N. R. Hansen, Penalized estimation in large-scale
generalized linear array models, Journal of Computational and Graphi-
cal Statistics 0 (ja) (0) 0–0. doi:10.1080/10618600.2017.1279548.

[3] X. Chen, Z. Lu, T. K. Pong, Penalty methods for a class of non-lipschitz
optimization problems, SIAM Journal on Optimization 26 (3) (2016)
1465–1492.

[4] A. Lund, SMMA: Soft Maximin Estimation for Large Scale Array-Tensor
Models, r package version 1.0.1 (2017).
URL https://CRAN.R-project.org/package=SMMA

[5] P. E. Roland, A. Hanazawa, C. Undeman, D. Eriksson, T. Tompa,
H. Nakamura, S. Valentiniene, B. Ahmed, Cortical feedback depolar-
ization waves: A mechanism of top-down influence on early visual ar-
eas, Proceedings of the National Academy of Sciences 103 (33) (2006)
12586–12591.

[6] A. Grinvald, T. Bonhoeffer, Optical imaging of electrical activity based
on intrinsic signals and on voltage sensitive dyes: The methodology
(2002).
URL http://cnc.cj.uc.pt/BEB/private/pdfs/GenePercep/

KerstinSchmidt/opticalmethodology.pdf

[7] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal
of the Royal Statistical Society. Series B (Methodological) 58 (1) (1996)
267–288.
URL http://www.jstor.org/stable/2346178

[8] P. Tseng, S. Yun, A coordinate gradient descent method for nonsmooth
separable minimization, Mathematical Programming 117 (1-2) (2009)
387–423.

[9] J. Roll, Piecewise linear solution paths with application to direct weight
optimization, Automatica 44 (11) (2008) 2732–2737.

18

[10] J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for general-
ized linear models via coordinate descent, Journal of statistical software
33 (1) (2010) 1.

[11] I. D. Currie, M. Durban, P. H. Eilers, Generalized linear array models
with applications to multidimensional smoothing, Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 68 (2) (2006)
259–280.

[12] S. J. Wright, R. D. Nowak, M. A. Figueiredo, Sparse reconstruction
by separable approximation, IEEE Transactions on Signal Processing
57 (7) (2009) 2479–2493.

[13] J.-J. Moreau, Fonctions convexes duales et points proximaux dans un
espace hilbertian., C. R. Acad. Sci., Paris 255 (1962) 2897–2899.

[14] G. J. Minty, Monotone (nonlinear) operators in hilbert space, Duke
Math. J. 29 (3) (1962) 341–346.

19

Part III

Software

142

Chapter 8

The glamlasso R-package

Lund, A. (2016). glamlasso: Penalization in Large Scale Generalized Linear Array Models.
R package version 2.0.1. URL https://CRAN.R-project.org/package=glamlasso.

143

https://CRAN.R-project.org/package=glamlasso

Package ‘glamlasso’
August 19, 2016

Type Package

Title Penalization in Large Scale Generalized Linear Array Models

Version 2.0.1

Date 2016-08-01

Author Adam Lund

Maintainer Adam Lund <adam.lund@math.ku.dk>

Description Efficient design matrix free procedure for penalized estimation
in large scale 2 and 3-dimensional generalized linear array models. Currently
either Lasso or SCAD penalized estimation is possible for the followings models:
The Gaussian model with identity link, the Binomial model with logit link, the
Poisson model with log link and the Gamma model with log link.

License GPL-3

Imports Rcpp (>= 0.11.2)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 5.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-08-19 17:05:02

R topics documented:

glamlasso . 2
objective . 6
predict.glamlasso . 7
print.glamlasso . 8
RH . 9

Index 10

1

2 glamlasso

glamlasso Penalization in Large Scale Generalized Linear Array Models

Description

Efficient design matrix free procedure for fitting large scale penalized 2 or 3-dimensional gener-
alized linear array models. Currently the LASSO penalty and the SCAD penalty are both imple-
mented. Furthermore, the Gaussian model with identity link, the Binomial model with logit link,
the Poisson model with log link and the Gamma model with log link is currently implemented. The
glamlasso function utilize a gradient descent and proximal gradient based algorithm, see Lund et
al., 2015.

Usage

glamlasso(X,
Y,
family = c("gaussian", "binomial", "poisson", "gamma"),
penalty = c("lasso", "scad"),
Weights = NULL,
nlambda = 100,
lambda.min.ratio = 1e-04,
lambda = NULL,
penalty.factor = NULL,
reltolinner = 1e-07,
reltolouter = 1e-04,
maxiter = 15000,
steps = 1,
maxiterinner = 3000,
maxiterouter = 25,
btinnermax = 100,
iwls = c("exact", "identity", "kron1", "kron2"),
nu = 1)

Arguments

X A list containing the Kronecker components (2 or 3) of the Kronecker design
matrix. These are matrices of sizes ni × pi.

Y The response values, an array of size n1×· · ·×nd. For option family = "binomial"
this array must contain the proportion of successes and the number of trials is
then specified as Weights (see below).

family A string specifying the model family (essentially the response distribution). Pos-
sible values are "gaussian", "binomial", "poisson", "gamma".

penalty A string specifying the penalty. Possible values are "lasso", "scad".

Weights Observation weights, an array of size n1×· · ·×nd. For option family = "binomial"
this array must contain the number of trials and must be provided.

glamlasso 3

nlambda The number of lambda values.
lambda.min.ratio

The smallest value for lambda, given as a fraction of λmax; the (data derived)
smallest value for which all coefficients are zero.

lambda The sequence of penalty parameters for the regularization path.

penalty.factor An array of size p1 × · · · × pd. Is multiplied with each element in lambda to
allow differential shrinkage on the coefficients.

reltolinner The convergence tolerance for the inner loop

reltolouter The convergence tolerance for the outer loop.

maxiter The maximum number of inner iterations allowed for each lambda value, when
summing over all outer iterations for said lambda.

steps The number of steps used in the multi-step adaptive lasso algorithm for non-
convex penalties. Automatically set to 1 when penalty = "lasso".

maxiterinner The maximum number of inner iterations allowed for each outer iteration.

maxiterouter The maximum number of outer iterations allowed for each lambda.

btinnermax Maximum number of backtracking steps allowed in each inner iteration. Default
is btinnermax = 100.

iwls A string indicating whether to use the exact iwls weight matrix or use a kro-
necker structured approximation to it.

nu A number between 0 and 1 that controls the step size δ in the proximal algorithm
(inner loop) by scaling the upper bound L̂h on the Lipschitz constant Lh (see
Lund et al., 2015). For nu = 1 backtracking never occurs and the proximal
step size is always δ = 1/L̂h. For nu = 0 backtracking always occurs and
the proximal step size is initially δ = 1. For 0 < nu < 1 the proximal step
size is initially δ = 1/(νL̂h) and backtracking is only employed if the objective
function does not decrease. A nu close to 0 gives large step sizes and presumably
more backtracking in the inner loop. The default is nu = 1 and the option is
only used if iwls = "exact".

Details

We consider a generalized linear model (GLM) with Kronecker structured design matrix given as

X =

d⊗
i=1

Xi,

where X1, X2, . . . are the marginal ni × pi design matrices (Kronecker components).

We use the generalized linear array model (GLAM) framework to write the model equation as

g(M) = ρ(Xd, ρ(Xd−1, . . . , ρ(X1,Θ))),

where ρ is the so called rotated H-transfrom, M is an array containing the mean of the response
variable array Y , Θ is the model coefficient (parameter) array and g is a link function. See Currie
et al., 2006 for more details.

4 glamlasso

Let θ := vec(Θ) denote the vectorized version of the parameter array. The related log-likelihood
is a function of θ through the linear predictor η i.e. θ 7→ l(η(θ)). In the usual exponential family
framework this can be expressed as

l(η(θ)) =
n∑
i=1

ai
yiϑ(ηi(θ))− b(ϑ(ηi(θ)))

ψ
+ c(yi, ψ)

where ϑ, the canonical parameter map, is linked to the linear predictor via the identity η(θ) =
g(b′(ϑ)) with b the cumulant function. Here ai ≥ 0, i = 1, . . . , n are observation weights and ψ is
the dispersion parameter.

Using only the marginal matricesX1, X2, . . . and with J a penalty function, the function glamlasso
solves the penalized estimation problem

min
θ
−l(η(θ)) + λJ(θ),

in the GLAM setup for a sequence of penalty parameters λ > 0. The underlying algorithm is based
on an outer gradient descent loop and an inner proximal gradient based loop. We note that if J is
not convex, as with the SCAD penalty, we use the multiple step adaptive lasso procedure to loop
over the inner proximal algorithm, see Lund et al., 2015 for more details.

Value

An object with S3 Class "glamlasso".

family A string indicating the model family.

coef A p1 · · · pd× nlambda matrix containing the estimates of the model coefficients
(beta) for each lambda-value.

lambda A vector containing the sequence of penalty values used in the estimation pro-
cedure.

df The number of nonzero coefficients for each value of lambda.

dimcoef A vector giving the dimension of the model coefficient array β.

dimobs A vector giving the dimension of the observation (response) array Y.

Iter A list with 4 items: bt_iter_inner is total number of backtracking steps per-
formed in the inner loop, bt_enter_inner is the number of times the backtrack-
ing is initiated in the inner loop, bt_iter_outer is total number of backtracking
steps performed in the outer loop, and iter_mat is a nlambda× maxiterouter
matrix containing the number of inner iterations for each lambda value and each
outer iteration and iter is total number of iterations i.e. sum(Iter).

Author(s)

Adam Lund

Maintainer: Adam Lund, <adam.lund@math.ku.dk>

glamlasso 5

References

Lund, A., M. Vincent, and N. R. Hansen (2015). Penalized estimation in large-scale generalized
linear array models. ArXiv.

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with ap-
plications to multidimensional smoothing. Journal of the Royal Statistical Society. Series B. 68,
259-280.

Examples

Not run:
##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
X <- list(X1, X2, X3)

##gaussian example
Beta <- array(rnorm(p1 * p2 * p3) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))
mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, mu), dim = c(n1, n2, n3))

fit <- glamlasso(X, Y, family = "gaussian", penalty = "lasso", iwls = "exact")
Betafit <- fit$coef

modelno <- length(fit$lambda)
m <- min(Betafit[, modelno], c(Beta))
M <- max(Betafit[, modelno], c(Beta))
plot(c(Beta), type="l", ylim = c(m, M))
lines(Betafit[, modelno], col = "red")

##poisson example
Beta <- array(rnorm(p1 * p2 * p3, 0, 0.1) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))

mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rpois(n1 * n2 * n3, exp(mu)), dim = c(n1, n2, n3))
fit <- glamlasso(X, Y, family = "poisson", penalty = "lasso", iwls = "exact", nu = 0.1)
Betafit <- fit$coef

modelno <- length(fit$lambda)
m <- min(Betafit[, modelno], c(Beta))
M <- max(Betafit[, modelno], c(Beta))
plot(c(Beta), type="l", ylim = c(m, M))
lines(Betafit[, modelno], col = "red")

End(Not run)

6 objective

objective Compute objective values

Description

Computes the objective values of the penalized log-likelihood problem for the models implemented
in the package glamlasso.

Usage

objective(Y,
Weights,
X,
Beta,
lambda,
penalty.factor,
family,
penalty)

Arguments

Y The response values, an array of size n1 × · · · × nd.

Weights Observation weights, an array of size n1 × · · · × nd.

X A list containing the tensor components of the tensor design matrix, each of size
ni × pi.

Beta A coefficient matrix of size p1 · · · pd×nlambda.

lambda The sequence of penalty parameters for the regularization path.

penalty.factor An array of size p1 × · · · × pd. Is multiplied with each element in lambda to
allow differential shrinkage on the coefficients.

family A string specifying the model family (essentially the response distribution).

penalty A string specifying the penalty.

Value

A vector of length length(lambda) containing the objective values for each lambda value.

Examples

Not run:
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
Beta <- array(rnorm(p1 * p2 * p3) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))
mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, mu), dim = c(n1, n2, n3))

predict.glamlasso 7

fit <- glamlasso(list(X1, X2, X3), Y, family = "gaussian", penalty = "lasso", iwls = "exact")
objfit <- objective(Y, NULL, list(X1, X2, X3), fit$coef, fit$lambda, NULL, fit$family)
plot(objfit, type = "l")

End(Not run)

predict.glamlasso Make Prediction From a glamlasso Object

Description

Given new covariate data this function computes the linear predictors based on the estimated model
coefficients in an object produced by the function glamlasso. Note that the data can be supplied
in two different formats: i) as a n′ × p matrix (p is the number of model coefficients and n′ is the
number of new data points) or ii) as a list of two or three matrices each of size n′i × pi, i = 1, 2, 3
(n′i is the number of new marginal data points in the ith dimension).

Usage

S3 method for class 'glamlasso'
predict(object, x = NULL, X = NULL, ...)

Arguments

object An object of Class glamlasso, produced with glamlasso.

x a matrix of size n′ × p with n′ is the number of new data points.

X A list containing the data matrices each of size n′i × pi, where n′i is the number
of new data points in the ith dimension.

... ignored

Value

A list of length nlambda containing the linear predictors for each model. If new covariate data is
supplied in one n′ × p matrix x each item is a vector of length n′. If the data is supplied as a list of
matrices each of size n′i × pi, each item is an array of size n′1 × · · · × n′d, with d ∈ {2, 3}.

Author(s)

Adam Lund

Examples

Not run:
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)

8 print.glamlasso

Beta <- array(rnorm(p1 * p2 * p3) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))
mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, mu), dim = c(n1, n2, n3))
fit <- glamlasso(list(X1, X2, X3), Y, family = "gaussian", penalty = "lasso", iwls = "exact")

##new data in matrix form
x <- matrix(rnorm(p1 * p2 * p3), nrow = 1)
predict(fit, x = x)[[100]]

##new data in tensor component form
X1 <- matrix(rnorm(p1), nrow = 1)
X2 <- matrix(rnorm(p2), nrow = 1)
X3 <- matrix(rnorm(p3), nrow = 1)
predict(fit, list(X1, X2, X3))[[100]]

End(Not run)

print.glamlasso Print Function for objects of Class glamlasso

Description

This function will print some information about the glamlasso object.

Usage

S3 method for class 'glamlasso'
print(x, ...)

Arguments

x A glamlasso object

... ignored

Author(s)

Adam Lund

Examples

Not run:
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
Beta <- array(rnorm(p1 * p2 * p3) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))
mu <- RH(X3, RH(X2, RH(X1, Beta)))

RH 9

Y <- array(rnorm(n1 * n2 * n3, mu), dim = c(n1, n2, n3))
fit <- glamlasso(list(X1, X2, X3), Y, family = "gaussian", penalty = "lasso", iwls = "exact")
fit

End(Not run)

RH The Rotated H-transform of a 3d Array by a Matrix

Description

This function is an implementation of the ρ-operator found in Currie et al 2006. It forms the basis
of the GLAM arithmetic.

Usage

RH(M, A)

Arguments

M a n× p1 matrix.

A a 3d array of size p1 × p2 × p3.

Details

For details see Currie et al 2006. Note that this particular implementation is not used in the opti-
mization routines underlying the glamlasso procedure.

Value

A 3d array of size p2 × p3 × n.

Author(s)

Adam Lund

References

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with ap-
plications to multidimensional smoothing. Journal of the Royal Statistical Society. Series B. 68,
259-280.

Index

∗Topic package
glamlasso, 2

glamlasso, 2
glamlasso_objective (objective), 6
glamlasso_RH (RH), 9

H (RH), 9

objective, 6

predict.glamlasso, 7
print.glamlasso, 8

RH, 9
Rotate (RH), 9

10

Chapter 9

The SMMA R-package

Lund, A. (2017). S MMA: Soft Maximin Estimation for Large Scale Array-Tensor Models.
R package version 1.0.1. URL https://CRAN.R-project.org/package=SMMA.

154

https://CRAN.R-project.org/package=SMMA

Package ‘SMMA’
March 30, 2017

Type Package

Title Soft Maximin Estimation for Large Scale Array-Tensor Models

Version 1.0.1

Date 2017-03-29

Author Adam Lund

Maintainer Adam Lund <adam.lund@math.ku.dk>

Description
Efficient design matrix free procedure for solving a soft maximin problem for large scale array-
tensor structured models. Currently Lasso and SCAD penalized estimation is implemented.

License GPL-3

Imports Rcpp (>= 0.11.2)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 5.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-03-30 11:28:41 UTC

R topics documented:

predict.SMMA . 2
print.SMMA . 3
RH . 4
SMMA . 5

Index 10

1

2 predict.SMMA

predict.SMMA Make Prediction From a SMMA Object

Description

Given new covariate data this function computes the linear predictors based on the estimated model
coefficients in an object produced by the function softmaximin. Note that the data can be supplied
in two different formats: i) as a n′ × p matrix (p is the number of model coefficients and n′ is the
number of new data points) or ii) as a list of two or three matrices each of size n′i × pi, i = 1, 2, 3
(n′i is the number of new marginal data points in the ith dimension).

Usage

S3 method for class 'SMMA'
predict(object, x = NULL, X = NULL, ...)

Arguments

object An object of class SMMA, produced with softmaximin

x a matrix of size n′ × p with n′ is the number of new data points.

X a list containing the data matrices each of size n′i × pi, where n′i is the number
of new data points in the ith dimension.

... ignored

Value

A list of length nlambda containing the linear predictors for each model. If new covariate data is
supplied in one n′ × p matrix x each item is a vector of length n′. If the data is supplied as a list of
matrices each of size n′i × pi, each item is an array of size n′1 × · · · × n′d, with d ∈ {2, 3}.

Author(s)

Adam Lund

Examples

##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1, 0, 0.5), n1, p1)
X2 <- matrix(rnorm(n2 * p2, 0, 0.5), n2, p2)
X3 <- matrix(rnorm(n3 * p3, 0, 0.5), n3, p3)
X <- list(X1, X2, X3)

component <- rbinom(p1 * p2 * p3, 1, 0.1)

print.SMMA 3

Beta1 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))
Beta2 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))
mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))
mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))
Y1 <- array(rnorm(n1 * n2 * n3, mu1), dim = c(n1, n2, n3))
Y2 <- array(rnorm(n1 * n2 * n3, mu2), dim = c(n1, n2, n3))

Y <- array(NA, c(dim(Y1), 2))
Y[,,, 1] <- Y1; Y[,,, 2] <- Y2;

fit <- softmaximin(X, Y, penalty = "lasso", alg = "npg")

##new data in matrix form
x <- matrix(rnorm(p1 * p2 * p3), nrow = 1)
predict(fit, x = x)[[15]]

##new data in tensor component form
X1 <- matrix(rnorm(p1), nrow = 1)
X2 <- matrix(rnorm(p2), nrow = 1)
X3 <- matrix(rnorm(p3), nrow = 1)
predict(fit, X = list(X1, X2, X3))[[15]]

print.SMMA Print Function for objects of Class SMMA

Description

This function will print some information about the SMMA object.

Usage

S3 method for class 'SMMA'
print(x, ...)

Arguments

x a SMMA object

... ignored

Author(s)

Adam Lund

4 RH

Examples

##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1, 0, 0.5), n1, p1)
X2 <- matrix(rnorm(n2 * p2, 0, 0.5), n2, p2)
X3 <- matrix(rnorm(n3 * p3, 0, 0.5), n3, p3)
X <- list(X1, X2, X3)

component <- rbinom(p1 * p2 * p3, 1, 0.1)
Beta1 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))
Beta2 <- array(rnorm(p1 * p2 * p3, 0, .1) + component, c(p1 , p2, p3))
mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))
mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))
Y1 <- array(rnorm(n1 * n2 * n3, mu1), dim = c(n1, n2, n3))
Y2 <- array(rnorm(n1 * n2 * n3, mu2), dim = c(n1, n2, n3))

Y <- array(NA, c(dim(Y1), 2))
Y[,,, 1] <- Y1; Y[,,, 2] <- Y2;

fit <- softmaximin(X, Y, penalty = "lasso", alg = "npg")
fit

RH The Rotated H-transform of a 3d Array by a Matrix

Description

This function is an implementation of the ρ-operator found in Currie et al 2006. It forms the basis
of the GLAM arithmetic.

Usage

RH(M, A)

Arguments

M a n× p1 matrix.

A a 3d array of size p1 × p2 × p3.

Details

For details see Currie et al 2006. Note that this particular implementation is not used in the opti-
mization routines underlying the glamlasso procedure.

SMMA 5

Value

A 3d array of size p2 × p3 × n.

Author(s)

Adam Lund

References

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with ap-
plications to multidimensional smoothing. Journal of the Royal Statistical Society. Series B. 68,
259-280.

Examples

n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)

Beta <- array(rnorm(p1 * p2 * p3, 0, 1), c(p1 , p2, p3))
max(abs(c(RH(X3, RH(X2, RH(X1, Beta)))) - kronecker(X3, kronecker(X2, X1)) %*% c(Beta)))

SMMA Maximin Estimation for Large Scale Array Data with Known Groups

Description

Efficient design matrix free procedure for solving a soft maximin problem for large scale array-
tensor structured models, see Lund et al., 2017. Currently Lasso and SCAD penalized estimation is
implemented.

Usage

softmaximin(X,
Y,
penalty = c("lasso", "scad"),
nlambda = 30,
lambda.min.ratio = 1e-04,
lambda = NULL,
penalty.factor = NULL,
reltol = 1e-05,
maxiter = 15000,
steps = 1,

6 SMMA

btmax = 100,
zeta = 2,
c = 0.001,
Delta0 = 1,
nu = 1,
alg = c("npg", "mfista"),
log = TRUE)

Arguments

X A list containing the Kronecker components (2 or 3) of the Kronecker design
matrix. These are matrices of sizes ni × pi.

Y The response values, an array of size n1 × · · · × nd ×G.

penalty A string specifying the penalty. Possible values are "lasso", "scad".

nlambda The number of lambda values.
lambda.min.ratio

The smallest value for lambda, given as a fraction of λmax; the (data dependent)
smallest value for which all coefficients are zero.

lambda The sequence of penalty parameters for the regularization path.

penalty.factor An array of size p1 × · · · × pd. Is multiplied with each element in lambda to
allow differential shrinkage on the coefficients.

reltol The convergence tolerance for the inner loop.

maxiter The maximum number of iterations allowed for each lambda value, when sum-
ming over all outer iterations for said lambda.

steps The number of steps used in the multi-step adaptive lasso algorithm for non-
convex penalties. Automatically set to 1 when penalty = "lasso".

btmax Maximum number of backtracking steps allowed in each iteration. Default is
btmax = 100.

zeta Constant controlling the softmax apprximation accuracy. Must be strictly posi-
tive. Default is zeta = 2.

c constant used in the NPG algorithm. Must be strictly positive. Default is
c = 0.001.

Delta0 constant used to bound the stepsize. Must be strictly positive. Default is Delta0 = 1.

nu constant used to control the stepsize. Must be positive. A small value gives a
big stepsize. Default is nu = 1.

alg string indicating which algortihm to use. Possible values are "npg", "mfista".

log logical variable indicating wheter to use log-loss to or not. TRUE is default and
yields the problem described below.

Details

We consider the mixed model setup from Meinshausen and Buhlmann, 2015 for array data with a
known fixed group structure and tensor structured design matrix.

SMMA 7

For g ∈ {1, . . . , G} let n be the number of observations in each group. With Yg := (yi, . . . , yin)
>

the group-specific n1 × · · · × nd response array and X := (xi | . . . | xin)> a n× p design matrix,
with tensor structure

X =
d⊗
i=1

Xi,

where for d = 2, 3, X1, . . . , Xd are the marginal ni × pi design matrices (Kronecker components).

We use the array model framework, see Currie et al., 2006, to write the model equation as

Yg = ρ(Xd, ρ(Xd−1, . . . , ρ(X1, Bg))) + E,

where ρ is the so called rotated H-transfrom, Bg for each g is a random p1 × · · · × pd parameter
array and E is n1 × · · · × nd error array uncorrelated with X .

In Meinshausen and Buhlmann, 2015 it is suggested to maximize the minimal empirical explained
variance

V̂g(β) :=
1

n
(2β>X>yg − β>X>Xβ),

where yg := vec(Yg). In Lund et al., 2017 a soft version of this problem, the soft maximin problem,
given as

min
β

log

(G∑
g=1

exp(−ζV̂g(β))
)
+ λJ(β),

is suggested, for J a proper and convex function and ζ > 0.

For d = 2, 3 and using only the marginal matrices X1, X2, . . ., the function softmaximin solves
the soft maximin problem for a sequence of penalty parameters λmax > . . . > λmin > 0. The
underlying algorithm is based on a non-monotone proximal gradient method. We note that if J is
not convex, as with the SCAD penalty, we use the multiple step adaptive lasso procedure to loop
over the proximal algorithm, see Lund et al., 2017 for more details.

Value

An object with S3 Class "SMMA".

spec A string indicating the array dimension (2 or 3) and the penalty.

coef A p1 · · · pd× nlambda matrix containing the estimates of the model coefficients
(beta) for each lambda-value.

lambda A vector containing the sequence of penalty values used in the estimation pro-
cedure.

Obj A matrix containing the objective values for each iteration and each model.

df The number of nonzero coefficients for each value of lambda.

dimcoef A vector giving the dimension of the model coefficient array β.

dimobs A vector giving the dimension of the observation (response) array Y.

Iter A list with 4 items: bt_iter is total number of backtracking steps performed,
bt_enter is the number of times the backtracking is initiated, and iter_mat is
a vector containing the number of iterations for each lambda value and iter is
total number of iterations i.e. sum(Iter).

8 SMMA

Author(s)

Adam Lund

Maintainer: Adam Lund, <adam.lund@math.ku.dk>

References

Lund, A., S. W. Mogensen and N. R. Hansen (2017). Estimating Soft Maximin Effects in Hetero-
geneous Large-scale Array Data. Preprint.

Meinshausen, N and P. Buhlmann (2015). Maximin effects in inhomogeneous large-scale data. The
Annals of Statistics. 43, 4, 1801-1830.

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with ap-
plications to multidimensional smoothing. Journal of the Royal Statistical Society. Series B. 68,
259-280.

Examples

##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4

##marginal design matrices (Kronecker components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
X <- list(X1, X2, X3)

component <- rbinom(p1 * p2 * p3, 1, 0.1)
Beta1 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu1 <- RH(X3, RH(X2, RH(X1, Beta1)))
Y1 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu1
Beta2 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu2 <- RH(X3, RH(X2, RH(X1, Beta2)))
Y2 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu2
Beta3 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu3 <- RH(X3, RH(X2, RH(X1, Beta3)))
Y3 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu3
Beta4 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu4 <- RH(X3, RH(X2, RH(X1, Beta4)))
Y4 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu4
Beta5 <- array(rnorm(p1 * p2 * p3, 0, 0.1) + component, c(p1 , p2, p3))
mu5 <- RH(X3, RH(X2, RH(X1, Beta5)))
Y5 <- array(rnorm(n1 * n2 * n3), dim = c(n1, n2, n3)) + mu5

Y <- array(NA, c(dim(Y1), 5))
Y[,,, 1] <- Y1; Y[,,, 2] <- Y2; Y[,,, 3] <- Y3; Y[,,, 4] <- Y4; Y[,,, 5] <- Y5;

fit <- softmaximin(X, Y, penalty = "lasso", alg = "npg")
Betafit <- fit$coef

modelno <- 15

SMMA 9

m <- min(Betafit[, modelno], c(component))
M <- max(Betafit[, modelno], c(component))
plot(c(component), type="l", ylim = c(m, M))
lines(Betafit[, modelno], col = "red")

Index

∗Topic package
SMMA, 5

glamlasso_RH (RH), 4

H (RH), 4

pga (SMMA), 5
predict.SMMA, 2
print.SMMA, 3

RH, 4
Rotate (RH), 4

SMMA, 5
softmaximin (SMMA), 5

10

Bibliography

Adler, R. J. and J. E. Taylor (2009). Random fields and geometry. Springer Science & Business
Media.

Ahmed, B., A. Hanazawa, C. Undeman, D. Eriksson, S. Valentiniene, and P. E. Roland
(2008). Cortical dynamics subserving visual apparent motion. Cerebral Cortex 18, 2796–
2810.

Beck, A. and M. Teboulle (2009). A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202.

Bertsekas, D. P. (1999). Nonlinear programming. Athena scientific Belmont.

Buis, P. E. and W. R. Dyksen (1996). Efficient vector and parallel manipulation of tensor
products. ACM Transactions on Mathematical Software (TOMS) 22(1), 18–23.

Chemla, S. and F. Chavane (2010). Voltage-sensitive dye imaging: technique review and
models. Journal of Physiology-Paris 104(1), 40–50.

Chen, X., Z. Lu, and T. K. Pong (2016). Penalty methods for a class of non-lipschitz
optimization problems. SIAM Journal on Optimization 26(3), 1465–1492.

Cox, S. G. (2012). Stochastic differential equations in banach spaces: Decoupling, delay
equations, and approximations in space and time. PhD thesis.

Currie, I. D., M. Durban, and P. H. Eilers (2006). Generalized linear array models with
applications to multidimensional smoothing. Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 68(2), 259–280.

Da Prato, G. and J. Zabczyk (2014). Stochastic equations in infinite dimensions. Cambridge
university press.

Dawson, D. A. and H. Salehi (1980). Spatially homogeneous random evolutions. Journal
of Multivariate Analysis 10(2), 141–180.

De Boor, C. (1979). Efficient computer manipulation of tensor products. ACM Transac-
tions on Mathematical Software (TOMS) 5(2), 173–182.

Eriksson, D., T. Tompa, and P. E. Roland (2008). Non-linear population firing rates and
voltage sensitive dye signals in visual areas 17 and 18 to short duration stimuli. PLoS
One 3(7), e2673.

Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of statistical software 33(1), 1.

165

Bibliography

Harvey, M. and P. Roland (2013). Laminar firing and membrane dynamics in four visual
areas exposed to two objects moving to occlusion. Frontiers in Systems Neuroscience 7, 23.

Harvey, M. A., S. Valentiniene, and P. E. Roland (2009). Cortical membrane potential
dynamics and laminar firing during object motion. Frontiers in systems neuroscience 3, 7.

Hastie, T., R. Tibshirani, and M. Wainwright (2015). Statistical Learning with Sparsity: The
Lasso and Generalizations. Chapman & Hall/CRC Monographs on Statistics & Applied
Probability. CRC Press.

Jin, W., R.-J. Zhang, and J.-y. Wu (2002). Voltage-sensitive dye imaging of population
neuronal activity in cortical tissue. Journal of neuroscience methods 115(1), 13–27.

Krasnoselsky, M. (1955). Two observations about the method of successive approxima-
tions. Usp. Mat. Nauk (10), 123–127.

Lindquist, M. A. (2008). The statistical analysis of fmri data. Statistical Science, 439–464.

Lund, A. (2016). glamlasso: Penalization in Large Scale Generalized Linear Array Models. R
package version 2.0.1.

Lund, A. (2017). SMMA: Soft Maximin Estimation for Large Scale Array-Tensor Models. R
package version 1.0.1.

Lund, A. and N. R. Hansen (2017). Sparse network estimation for dynamical spatio-
temporal array models. In preparation.

Lund, A., S. W. Mogensen, and N. R. Hansen (2017). Estimating soft maximin effects in
large-scale data. In preparation.

Lund, A., M. Vincent, and N. R. Hansen (2017). Penalized estimation in large-scale gen-
eralized linear array models. Journal of Computational and Graphical Statistics, To appear.

Mann, W. R. (1953). Mean value methods in iteration. Proceedings of the American Mathe-
matical Society 4(3), 506–510.

Meinshausen, N. and P. Bühlmann (2015). Maximin effects in inhomogeneous large-scale
data. The Annals of Statistics 43(4), 1801–1830.

Meyer, Y. (1995). Wavelets and Operators. Cambridge Studies in Advanced Mathematics.
Cambridge University Press.

Minty, G. J. (1962, 09). Monotone (nonlinear) operators in hilbert space. Duke Math.
J. 29(3), 341–346.

Mogensen, S. W. (2016). Maximin effects and neuronal activity: Computationally effi-
cient analysis of large-scale heterogeneous data. Master’s thesis.

Moreau, J. (1965). Proximité et dualité dans un espace hilbertien. Bulletin de la Société
Mathématique de France 93, 273–299.

Moreau, J.-J. (1962). Fonctions convexes duales et points proximaux dans un espace hilber-
tian. C. R. Acad. Sci., Paris 255, 2897–2899.

Nemirovsky, A. and D. Yudin (1983). Problem Complexity and Method Efficiency in Optimiza-
tion. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons Ltd.

166

Bibliography

Nesterov, Y. (1983). A method of solving a convex programming problem with conver-
gence rate o(1/k2). Soviet Mathematics Doklady 27(2), 372–376.

Pereyra, V. and G. Scherer (1973). Efficient computer manipulation of tensor prod-
ucts with applications to multidimensional approximation. Mathematics of Computa-
tion 27(123), 595–605.

Peszat, S. and J. Zabczyk (1997). Stochastic evolution equations with a spatially homoge-
neous wiener process. Stochastic Processes and their Applications 72(2), 187–204.

Reed, M. and B. Simon (1972). Methods of modern mathematical physics i: Functional
analysis. New York-London.

Roland, P. E., A. Hanazawa, C. Undeman, D. Eriksson, T. Tompa, H. Nakamura,
S. Valentiniene, and B. Ahmed (2006). Cortical feedback depolarization waves: A
mechanism of top-down influence on early visual areas. Proceedings of the National
Academy of Sciences 103(33), 12586–12591.

Rothman, A. J., E. Levina, and J. Zhu (2010). Sparse multivariate regression with covari-
ance estimation. Journal of Computational and Graphical Statistics 19(4), 947–962.

Searle, S. R. (1982). Matrix algebra useful for statistics. New York 1982.

Tseng, P. and S. Yun (2009). A coordinate gradient descent method for nonsmooth sep-
arable minimization. Mathematical Programming 117(1-2), 387–423.

Xu, D., X. Wang, and Z. Yang (2012). Existence-uniqueness problems for infinite di-
mensional stochastic differential equations with delays. Journal of Applied Analysis and
Computation 2(4), 449–463.

Yates, F. (1937). The design and analysis of factorial experiments. Technical Communica-
tion (35).

167

	Themes
	Introduction
	Overview
	Contributions

	Data
	Array data structure
	Spatio-temporal array data

	Spatio-temporal neuronal data
	Voltage sensitive dye technique
	Heterogeneities across trails
	Preprocessing
	Array formatting

	Methods and modelling
	A dynamical model
	Gaussian random fields
	Stochastic functional differential equations on a Hilbert space
	Neuronal model specification

	Regression method
	The linear model
	Generalized linear model
	Soft maximin effects model
	Linear model with correlated normal errors

	Multi component array tensor strucuture
	The tensor product basis functions
	Penalized regression problems

	Algorithms and computing
	Convex functions and setvalued operators
	Proximity operator based algorithms
	Proximal gradient based algorithms
	Non-Lipschitz loss gradients
	Quadratic approximation
	A non-monotone proximal based algorithm

	Array-tensor computations
	The tensor array computations

	Manuscripts
	Penalized estimation in large-scale generalized linear array models
	Sparse Network Estimation for Dynamical Spatio-temporal Array Models
	Estimating Soft Maximin Effects in Heterogeneous Large-scale Array Data

	Software
	The glamlasso R-package
	The SMMA R-package
	Bibliography

