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Abstract

The main topics of this thesis are real topological Hochschild homology and
real topological cyclic homology. The thesis consists of an introduction followed
by two papers.

If a ring or a ring spectrum is equipped with an anti-involution, then it
induces additional structure on the associated topological Hochschild homology
spectrum. The group O(2) = T o G acts on the spectrum, where T is the
multiplicative group of complex number of modulus 1 and G denotes the group
Gal(C/R) of order 2. We refer to this O(2)-spectrum as the real topological
Hochschild homology. This generalization leads to a G-equivariant version of
topological cyclic homology, which we call real topological cyclic homology.

The first paper of this thesis computes the G-equivariant homotopy type of
the real topological cyclic homology at a prime p of spherical group rings with
anti-involution induced by taking inverses in the group.

The second paper of this thesis investigates the derived G-geometric fixed
points of the real topological Hochschild homology of an ordinary ring with an
anti-involution. The main theorem of the second paper computes the component
group of the derived G-geometric fixed points.

Resumé

Hovedemnerne i denne afhandling er reel topologisk Hochschild homology og
reel topologisk cyklisk homologi. Afhandlingen består af en introduktion efter-
fulgt af to artikler.

Hvis en ring eller et ring spektrum er udstyret med en anti-involution, så
inducerer det ekstra struktur på det associerede topologiske Hochschild homologi
spektrum. Gruppen O(2) = ToG virker på spektret, hvor T er den multiplikative
gruppe af komplekse tal med modulus 1 og G betegner gruppen Gal(C/R) af
orden 2. Vi kalder dette O(2)-spektrum for reel topologisk Hochschild homology.
Denne generalisering giver anledning til en G-ækvivariant version af topologisk
cyklisk homologi, som vi kalder reel topologisk cyklisk homologi.

Den første artikel i denne afhandling bestemmer den G-ækvivariante homoto-
pi type af reel topologisk cyklisk homologi ved et primtal p af sfæriske grupperinge
med anti-involution induceret af at tage inverser i gruppen.

Den anden artikel i denne afhandling undersøger de afledte G-geometriske
fixpunkter af reel topologisk Hochschild homologi af en ring med anti-involution.
Hovedresultatet i den anden artikel udregner gruppen af komponenter af de af-
ledte G-geometriske fixpunkter.
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Introduction

The main topics of this thesis are real topological Hochschild homology and real
topological cyclic homology. The thesis consists of an introduction followed by two
papers.

Paper A. Real topological cyclic homology of spherical group rings.

Paper B. On the geometric fixed points of real topological Hochschild homology.

To put them into context, we give an overview of the historical development of topo-
logical Hochschild homology, topological cyclic homology and their real analogues.
We describe the real variants in more detail and indicate how the results of the papers
fit into the general picture. We conclude the introduction by commenting on future
directions naturally extending the results of the two papers.

Historical development

Algebraic K-theory encodes important invariants for a wide range of areas in mathe-
matics, spanning from geometric topology to number theory and it has been a vibrant
research area in modern mathematics. Algebraic K-theory is a functor which asso-
ciates, to a ring R, a spectrum K(R), whose homotopy groups πn(K(R)) = Kn(R)
are the higher algebraic K-groups of R introduced in the seminal work of Quillen in
[18]. Waldhausen extended the theory to more general input such as ring spectra and
exact categories with weak equivalences.

The higher K-groups are related to many important questions in number theory,
algebraic geometry and geometric topology and are notoriously difficult to calculate.
As an example, the algebraic K-theory of the integers is still not completely under-
stood. The missing information is connected to the Vandiver conjecture in number
theory, which states that a prime number p does not divide the class number hK of
the maximal real subfield K = Q(ζp)

+ of the pth cyclotomic field. The conjecture is
known to be equivalent to K4i(Z) = 0 for all i.

Another important example is the algebraic K-theory of spherical group rings,
which has connections to the geometry of manifolds. Let M be a compact con-
nected topological manifold admitting a smooth structure, and let P (M) be the space
of pseudo-isotopies of M , that is, homeomorphisms h : M × [0, 1] → M × [0, 1]
which restrict to the identity on ∂M × [0, 1] ∪M × {0}. There is a stabilization map
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10 Introduction

P (M)→ P (M × [0, 1]), given by crossing with the identity, and the stable pseudo-
isotopy space P(M) is the homotopy colimit of the stabilization maps. Igusa showed
in [14], building on work by Hatcher in [6], that the inclusion P (M) → P(M) is
k-connected if k is less than both (dim(M) − 7)/2 and (dim(M) − 4)/3. The stable
pseudo-isotopy space can be expressed in terms of Waldhausen’s algebraic K-theory of
spaces. If we let Γ be the Kan loop group ofM (i.e. a simplicial group such thatM is
weakly equivalent to the classifying space BΓ), then by work of Waldhausen [20],[21]
and Waldhausen-Rognes-Jahren [22], there is a cofibration sequence of spectra

K(S) ∧BΓ+ → K(S[Γ])→ Σ2P(M)→ Σ
(
K(S) ∧BΓ+

)
.

Over the last two decades, the computational study of algebraic K-theory has
been revolutionized by the development of so called trace methods. In analogy with
the Chern character from topological K-theory to rational cohomology, algebraic
K-theory admits maps to various objects of more homological or homotopical nature.
The first example of such an object is Hochschild homology, which is a homology
theory for unital, associative rings introduced by Hochschild in the 1940’s. Dennis
constructed a trace map

tr : K(R)→ HH(R).

from the algebraic K-theory of rings to Hochschild homology in [4]. As a consequence
of Connes’ theory of cyclic sets, the right hand space is equipped with an action by the
circle group T, which allowed the construction of negative cyclic homology HC-(R)
from Hochschild homology. Jones-Goodwillie factored the trace map

tr : K(R)→ HC-(R)→ HH(R)

and Goodwillie showed that it can sometimes be used to compute K(R) rationally.
The seminal idea of Waldhausen was to change the ground ring from the integers to

the sphere spectrum and this idea, in the context of Hochschild homology, was carried
out by Bökstedt in the late eighties. He defined topological Hochschild homology
in [3] based on earlier work by Breen in [2]. At this time, the modern symmetric
monoidal categories of spectra had not been invented yet and Bökstedt developed
a coherence machinery that enabled a definition of topological Hochschild homology
realizing Waldhausen’s vision. The theory associates a T-spectrum THH(R) to a
ring R, where T ⊂ C denotes the circle group, and there is a linearization map
THH(R)→ HH(R), which should be thought of as being induced by the base change
from the sphere spectrum to the integers. Furthermore, the Dennis trace map factors
as follows

tr : K(R)→ THH(R)→ HH(R).

Bökstedt-Hsiang-Madsen carried on to construct topological cyclic homology TC(R),
which uses the T-action on topological Hochschild homology in an intricate way, and
introduced the cyclotomic trace factoring the topological trace

tr : K(R)→ TC(R)→ THH(R).
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The cyclotomic trace was constructed in the course of resolving the K-theoretic
Novikov conjecture for groups satisfying a mild finiteness assumption in [1]. Dun-
das [5] and McCarthy [16] proceeded to show the following central theorem.

Theorem. For a surjective homomorphism of rings f : R→ S with nilpotent kernel,
the square

K(R) TC(R)

K(S) TC(S)

tr

tr

becomes homotopy cartesian after completion at any prime number p.

Hesselholt and Madsen have used topological cyclic homology to make extensive
calculations in algebraicK-theory including a computational resolution of the Quillen-
Lichtenbaum conjecture for local number fields in [10].

Topological Hochschild homology has applications outside algebraic K-theory as
well, exemplified by Hesselholt in [8], where topological Hochschild homology is used to
give cohomological interpretations of the zeta function for smooth and proper schemes
over a finite field.

A duality structure on the input of the algebraic K-theory spectrum induces ad-
ditional structure on the K-theory. Hesselholt and Madsen defined real algebraic
K-theory in [11], which associates a G-spectrum KR(C, D, η) to an exact category C
with duality (D, η) and weak equivalences, where G is the group Gal(C/R) of order
2. The duality structure consists of an exact functor D : Cop → C and a natural weak
equivalence η : idC ⇒ D ◦Dop such that the composition

D
η◦D
==⇒ D ◦Dop ◦D D◦ηop

===⇒ D

is equal to the identity. A good example to keep in mind is the following. Let R be
a ring with an anti-involution α, i.e. a ring-isomorphism α : Rop → R which squares
to the identity, and let P(R) denote the category of finitely generated projective
right R-modules with weak equivalences being the isomorphisms. We get a duality
structure on P(R) by setting D(P ) = HomR(P,R), with module structure given by
f · r(p) = α(r)f(p) and natural weak equivalence η : P → D(D(P )) given by the
isomorphism p 7→ (f 7→ f(p)). We let KR(R,α) be the real K-theory of P(R) with
this duality structure. The underlying homotopy type of the real algebraic K-theory
spectrum agrees with the usual Waldhausen K-theory of C, and the G-fixed point
spectrum agrees with Grothendieck-Witt-theory, or Hermitian K-theory as studied
by Karoubi [15], Schlichting [19], Hornbostel [12], [13], and others.

Hesselholt and Madsen also constructed real topological Hochschild homology
in [11] as a generalization of topological Hochschild homology to the G-equivariant
setting of real algebraic K-theory. The theory takes a ring spectrum A with anti-
involution D, and associates to it an O(2)-equivariant spectrum THR(A,D) using a
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dihedral variant of Bökstedt’s model, and there is G-equivariant trace map

tr : KR(A,D)→ THR(A,D).

The generalization to real topological Hochschild homology leads to a G-equivariant
version of topological cyclic homology, denoted by TCR(A,D), and the trace factors
through TCR(A,D). In particular, this makes it possible to use trace methods as a
computational tool in Hermitian K-theory.

We return to the example of spherical group rings, in which case the equivariant
structure of real algebraic K-theory has geometric meaning. For a compact connected
topological manifold M allowing a smooth structure, there is a geometric involution
on the space of pseudo-isotopies giving by “turning a pseudo-isotopy upside down,”
see [7], which in turn induces an involution on the stable pseudo-isotopy space P(M).
By work of Weiss and Williams [23], there is map

H̃omeo(M)/Homeo(M)→P(M)hG

which is at least as connected as the stabilization map P (M)→P(M). Here the left
hand space is the quotient of the space of block homeomorphisms by the space of home-
omorphisms, and P(M)hG are the homotopy orbits with respect to the involution.
The generalization to real algebraic K-theory expresses the equivariant stable pseudo-
isotopy space in terms of the real algebraic K-theory of spherical group rings with
anti-involution, and an equivariant understanding of the real topological cyclic homol-
ogy gives, via trace methods, information about the real algebraic K-theory. Paper
A in this thesis takes a step in this direction by determining the G-homotopy type of
TCR(S[Γ]), where the spherical group ring is equipped with the basic anti-involution
induced by taking inverses in the group. In order to obtain geometric applications as
indicated, it will be necessary to consider more general anti-involutions.

Real Hochschild homology

This section displays the extra structure on the Hochschild homology spectrum of
a ring arising from an anti-involution. If R is a unital associative ring, then the
Hochschild homology space HH(R) is the geometric realization of the simplicial set
underlying the simplicial abelian group HH(R)•, with k-simplices

HH(R)k = R⊗k+1

and with face and degeneracy maps given by

di(r0 ⊗ · · · ⊗ rk) =

{
r0 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rk if 0 ≤ i < k,

rkr0 ⊗ r1 ⊗ · · · ⊗ rk−1 if i = k,

si(r0 ⊗ · · · ⊗ rk) = (r0 ⊗ · · · ⊗ ri ⊗ 1⊗ ri+1 ⊗ · · · ⊗ rk), for 0 ≤ i ≤ k.
The space HH(R) is the zeroth space of an Eilenberg-MacLane spectrum, which we
also denote HH(R). The Hochschild homology groups of R are the homotopy groups
of this spectrum

HHi(R) := πi(HH(R)).
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The simplicial abelian group HH(R)• is a cyclic abelian group in the sense of Connes,
meaning that the cyclic group of order k + 1 acts on the k-simplices. The action is
generated by a cyclic structure map tk : HH(R)k → HH(R)k given by

tk(r0 ⊗ · · · ⊗ rk) = rk ⊗ r0 ⊗ · · · ⊗ rk−1

which satisfies tk+1
k = id and is suitably compatible with the simplicial structure

maps. Connes discovered that this structure gives rise to a continuous T-action on
the spectrum

T+ ∧HH(R)→ HH(R).

If R is equipped with an anti-involution α, then we can give even more structure to
HH(R)•. The dihedral group of order 2(k + 1) acts on the k-simplices. The action
is generated by the maps tk : HH(R)k → HH(R)k and wk : HH(R)k → HH(R)k,
given by

wk(r0 ⊗ · · · ⊗ rn) = α(r0)⊗ α(rn) · · · ⊗ α(r1),

which are suitably compatible with the simplicial structure maps. The maps satisfy
the relations tk+1

k = id, w2
k = id and tkwk = t−1k wk. This time, the action of the

dihedral group of order 2(k + 1) on the k-simplices gives rise to a continuous O(2)-
action on the spectrum

O(2)+ ∧HH(R)→ HH(R).

We will denote the O(2)-spectrum by HR(R,α) and refer to it as the real Hochschild
homology of (R,α).

Real topological Hochschild homology

The topological Hochschild homology of a ring spectrum A is a (genuine) T-spectrum
and has a special extra structure. THH(A) is a cyclotomic spectrum, which means
that its geometric fixed points mimic the behavior of the fixed points of free loop
spaces, which we now explain. We let LX = Map(T, X) be the free loop space of a
space X. The group T acts on the free loop space by multiplication in T and the map
that takes a loop to the r-fold concatenation with itself,

pr : LX → ρ∗r(LX)Cr , pr(γ) = γ ? · · · ? γ,

is an T-equivariant homeomorphism, where ρr : T → T/Cr is the root isomorphism
given by ρr(z) = z

1
rCr.

We let (THH(A)c)gCr denote the derived Cr-geometric fixed points. In analogy
with the example of the free loop space, the cyclotomic structure of THH(A) is addi-
tional data in the form of compatible T-equivariant maps

Tr : ρ∗r
(
(THH(A)c)gCr

)
→ THH(A),

which induce weak equivalences on H-fixed points for all finite subgroups H ≤ T. One
should note that recently a more flexible version of the notion of cyclotomic spectra
was introduced by Nikolaus and Scholze; see [17].
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The cyclotomic structure is crucial to the construction of topological cyclic homol-
ogy and in order to obtain a G-equivariant version of topological cyclic homology, we
must ensure that the added G-action on THR(A,D) is compatible with the cyclotomic
structure. This is done in Paper A, Section 3.3. In order to state the compatibility,
we introduce the following notation. The group G = Gal(C/R) acts on T and we let
O(2) denote the semi-direct product ToG. We let ρr : O(2)→ O(2)/Cr be the root
isomorphism given by ρr(z) = z

1
rCr if z ∈ T and ρr(x) = x if x ∈ G. Then we show

that the underlying T-equivariant maps are indeed O(2)-equivariant maps

Tr : ρ∗r
(
(THR(A,D)c)gCr

)
→ THR(A,D),

and they induce weak equivalences onH-fixed points for all finite subgroupsH ≤ O(2).
While the Cr-geometric fixed points resemble the topological Hochschild homol-

ogy spectrum itself, the G-geometric fixed points behave differently. Considering the
analogous situation for the free loop space, this is to be expected. Indeed, if X is a
G-space, then the free loop space LX = Map(T, X) is an O(2)-space, with T-action
as described earlier and with G acting on T by complex conjugation and on the loop
space by conjugation. If we let ω ∈ G denote complex conjugation, then there is a
homeomorphism

Map((I, ∂I), (X,XG))→ (LX)G; γ 7→ (ω · γ) ? γ.

The main theorem of the second paper computes the component group of the
derived G-geometric fixed points of THR(R,α) when R is an ordinary ring with anti-
involution α. To state the theorem, which can be found in Paper B, Theorem 4.1, we
let (THR(R,α)c)gG denote the derived G-geometric fixed points of THH(R,α) and
we let N : R→ Rα be the norm map; N(r) = r + α(r).

Theorem. Let R be a ring with an anti-involution α. There is an isomorphism of
abelian groups

π0
(
(THR(R,α)c)gG

) ∼= (Rα/N(R)⊗Z R
α/N(R))/I

where I denotes the subgroup generated by the elements α(s)rs⊗ t− r⊗ stα(s) for all
s ∈ R and r, t ∈ Rα.

The theorem implies that the component group of the derived G-geometric fixed
points vanish if 2 is invertible in the ring. If x ∈ Rα, then N(12x) = x, and therefore
the norm map surjects onto the fixed points of the anti-involution.

Real topological cyclic homology

The cyclotomic structure on the topological Hochschild homology of a ring spectrum
A gives rise to restriction maps

Rn : THH(A)Cpn → THR(A)Cpn−1 ,
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and classically, the topological cyclic homology at the prime p is built from the fixed
point spectra THH(A)Cpn using the restriction maps and inclusions of fixed points. If
D is an anti-involution on A, then the cyclotomic structure gives rise to G-equivariant
maps

Rn : THR(A,D)Cpn → THR(A,D)Cpn−1 ,

and we can define the real topological cyclic homology G-spectrum at a prime p,
TCR(A,D; p) by mimicking the definition by Bökstedt-Hsiang-Madsen.

The calculation of the topological cyclic homology of spherical group rings at a
prime p conducted in Paper A, in particular, includes a calculation of the real topologi-
cal cyclic homology of the sphere spectrum with the identity serving as anti-involution.
In order to state the calculation, we let P∞(C) denote the infinite complex projective
space with G acting by complex conjugation and we let Σ1,1 denote suspension with
respect to the sign representation of G. The following result can be found in Paper A,
Corollary 5.4

Theorem. After p-completion, there is an isomorphism in the G-stable homotopy
category

TCR(S, id; p) ∼ Σ1,1P∞−1(C) ∨ S,

where Σ1,1P∞−1(C) denotes the homotopy fiber of the T-transfer Σ∞G Σ1,1P∞(C)→ S.

Future directions

The introduction of real algebraicK-theory, real topological Hochschild homology, real
topological cyclic homology and the equivariant trace have opened many exciting new
directions. We comment on future directions related to the results in the two papers.

Paper A determines the G-equivariant homotopy type of spherical group rings
and, as mentioned, the long term goal of this program is to determine the canonical
involution on the stable pseudo-isotopy space of a closed connected topological mani-
fold. As a first step in this direction, it is necessary to investigate more general duality
structures on spherical group rings.

The perspectives of the results in Paper B are of a computational nature. In order
to make the equivariant trace an efficient calculational tool, we must understand the
dihedral fixed points π∗THR(R,α)Dr . Indeed, many classical calculations using trace
methods rely on a good understanding of the cyclic fixed points. For example, the
component ring of the Cpn-fixed points, π0 THH(R)Cpn , is completely understood
when R is commutative and p is a prime. Hesselholt and Madsen prove in [9], that
there is a canonical ring isomorphism identifying π0 THH(R)Cpn with the p-typical
Witt vectors of length n+1, and one should be able to get a similar algebraic expression
for the component ring of the dihedral fixed points π0 THR(R,α)Dpn when R is a
commutative ring with anti-involution α. The computation of the components of the
derived G-geometric fixed points should lead to an understanding of the components
of the G-fixed points. From here, we can investigate the components of the dihedral
fixed points and in turn π∗THR(R,α)Dpn .
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REAL TOPOLOGICAL CYCLIC HOMOLOGY OF SPHERICAL
GROUP RINGS

AMALIE HØGENHAVEN

Abstract. We compute the G-equivariant homotopy type of the real topological
cyclic homology of spherical group rings with anti-involution induced by taking
inverses in the group, where G denotes the group Gal(C/R). The real topological
Hochschild homology of a spherical group ring S[Γ], with anti-involution as de-
scribed, is an O(2)-cyclotomic spectrum and we construct a map commuting with
the cyclotomic structures from the O(2)-equivariant suspension spectrum of the
dihedral bar construction on Γ to the real topological Hochschild homology of S[Γ],
which induce isomorphisms on Cpn - and Dpn -homotopy groups for all n ∈ N0 and
all primes p. Here Cpn is the cyclic group of order pn and Dpn is the dihedral
group of order 2pn. Finally, we compute the G-equivariant homotopy type of the
real topological cyclic homology of S[Γ] at a prime p.
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Introduction

This paper determines the G-equivariant homotopy type of the real topologi-
cal cyclic homology of spherical group rings with anti-involution induced by taking
inverses in the group, where G denotes the group Gal(C/R) of order 2. Bökstedt-
Hsiang-Madsen calculated the topological cyclic homology of spherical group rings in
[2, Section 5] and this is a generalization of the classical results. The long term goal
of this program is to determine the canonical involution on the stable pseudo-isotopy
space of a compact connected topological manifold. The equivariant stable pseudo-
isotopy space of a manifold and the real topological cyclic homology of spherical group
rings are connected via real algebraic K-theory, as explained below.

Recently, Hesselholt and Madsen defined real algebraic K-theory in [10], which
associates a G-spectrum to a ring with involution. Real topological Hochschild ho-
mology was also constructed in [10] as a generalization of topological Hochschild ho-
mology to the G-equivariant setting. Real topological Hochschild homology associates
an O(2)-equivariant orthogonal spectrum THR(A,D) to a ring spectrum A with anti-
involution D using a dihedral variant of Bökstedt’s model introduced in [3]. The
generalization leads to a G-equivariant version of topological cyclic homology, which
we denote TCR(A,D) and refer to as real topological cyclic homology. Hesselholt and
Madsen constructed a G-equivariant trace map from the real algebraic K-theory to
the real topological Hocschild homology, which factors through real topological cyclic
homology.

The real algebraic K-theory of spherical group rings has close connections to
the geometry of manifolds. Let M be a compact connected topological manifold
admitting a smooth structure. A topological pseudo-isotopy ofM is a homeomorphism
h : M× [0, 1]→M× [0, 1] which is the identity on ∂M× [0, 1]∪M×{0}. We let P (M)
be the space of such homeomorphisms and we note that there is a stabilization map
P (M)→ P (M × [0, 1]) given by crossing with the identity. The stable pseudo-isotopy
space P(M) is defined as the homotopy colimit of the stabilization maps. Igusa
showed in [12], building on work by Hatcher in [7], that the inclusion P (M)→P(M)
is k-connected if k is less than both (dim(M)− 7)/2 and (dim(M)− 4)/3. There is a
geometric involution on P (M) giving by “turning a pseudo-istopy upside down,” see
[8], which in turn induces an involution on P(M). By work of Weiss andWilliams [24],
there is map

H̃omeo(M)/Homeo(M)→P(M)hG

which is at least as connected as the stabilization map by Igusa, where the left hand
space is the quotient of the space of block homeomorphisms of M by is the space of
homeomorphisms of M , and P(M)hG are the homotopy orbits with respect to the
involution. Thus information about the involution on the stable pseudo-isotopy yields
information about the self-homeomorphisms of the manifold. The stable psuedo-
isotopy space can be expressed in terms of Waldhausen’s algebraic K-theory of spaces.
If we let Γ be the Kan loop group of M , (i.e a simplicial group such that M is weakly
equivalent to the classifying space BΓ) then by work of Waldhuasen [21],[22] and
Waldhausen-Rognes-Jahren [23], there is a cofibration sequence of spectra

K(S) ∧ B Γ+ → K(S[Γ])→ Σ2P(M)→ Σ
(
K(S) ∧ B Γ+

)
.
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The long term goal of this project is to express the equivariant stable pseudo-isotopy
space in terms of real algebraic K-theory of spherical group rings with anti-involution.
An equivariant understanding of the real topological cyclic homology will via trace
methods give information about the real algebraic K-theory and therefor yield infor-
mation about the equivariant stable pseudo-isotopy space. In this paper we consider
the basic anti-involution on the spherical group rings induced by taking inverses in
the group. In order to obtain geometric applications as indicated, it will be necessary
to consider more general anti-involutions.

We proceed to explain the content of this paper. In Section 1 we review the def-
inition of the orthogonal O(2)-spectrum THR(A,D) and we establish an equivariant
version of Bökstedt’s approximation lemma.

In Section 2 we observe that the cyclotomic structure of the classical topological
Hochschild homology spectrum is compatible with the G-action. The compatibility
is crucial, if we want a G-equivariant version of topological cyclic homology. For this
purpose we introduce the notation of an O(2)-cyclotomic spectrum, see Definition 2.6
for details. We let T denote the multiplicative group of complex numbers of modulus 1.
The group G = Gal(C/R) acts on T and O(2) is the semi-direct product O(2) = ToG.
Let

ρr : O(2)→ O(2)/Cr

be the root isomorphism given by ρr(z) = z
1
rCr if z ∈ T and ρr(x) = x if x ∈ G

and let THR(A,D)gCr denote the Cr-geometric fixed points. The O(2)-cyclotomic
structure is a collection of compatible O(2)-equivariant maps

Tr : ρ∗r
(
THR(A,D)gCr

)
→ THR(A,D)

which induce weak equivalences on H-fixed points for all finite subgroups H ≤ O(2),
when pre-composed with the canonical map from the derived Cr-geometric fixed
points.

In Section 3 we observe that the O(2)-cyclotomic structure on THR(A,D) gives
rise to G-equivariant restriction maps

Rn : THR(A,D)Cpn → THR(A,D)Cpn−1 ,

and we define the real topological cyclic homology at a prime p as an orthogonal
G-spectrum TCR(A,D; p) by mimicking the classical definition by Bökstedt-Hsiang-
Madsen in [2]. We define a G-spectrum TRR(A,D; p) as the homotopy limit over the
Rn maps

TRR(A,D; p) := holim
n,Rn

THR(A,D)Cpn .

The Frobenius maps, which are inclusion of fixed points, induce a self-map of the
G-spectrum TRR(A,D; p), which we denote ϕ, and the real topological cyclic homol-
ogy of (A,D) at p, TCR(A,D; p), is the homotopy equalizer of the maps

TRR(A,D; p) TRR(A,D; p).
ϕ

id

Section 4 computes the real topological Hochschild homology and the real topo-
logical cyclic homology of a spherical group ring S[Γ] with anti-involution id[Γ] in-
duced by taking inverses in the group. In particular, we obtain a calculation of the

3
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real topological cyclic homology of the sphere spectrum with the identity serving as
anti-involution.

In the rest of the introduction, we state our computational results for spherical
group rings. The proofs of Theorems A, B and C below can be found in Section 4.

We let BdiΓ denote the geometric realization of the dihedral bar construction
on Γ. The space BdiΓ is weakly equivalent to the free loop-space Map(T, BΓ) by
[13, Theorem 7.3.11]. It follows from [14, Section 2.1] and [20, Theorem 4.0.5] that the
weak equivalence induces isomorphism on πH∗ (−) for all finite subgroups H ≤ O(2),
if we let O(2) act on the free loop space as follows: The group O(2) acts on T
by multiplication and complex conjugation. Taking inverses in the group induces a
G-action on BΓ and we view BΓ as an O(2)-space with trivial T-action. Finally, O(2)
acts on the free loop space by the conjugation action. There are O(2)-equivariant
homeomorphisms

pr : BdiΓ
∼=−→ ρ∗r

(
BdiΓCr

)
,

which under the identification with the free loop space correspond to the maps,
which take a loop to the r-fold concatenation with itself. These maps give the
O(2)-equivariant suspension spectrum of BdiΓ an O(2)-cyclotomic structure.

Theorem A. Let Γ be a topological group. There is a map of O(2)-orthogonal spectra

i : Σ∞O(2)B
diΓ+ → THR(S[Γ], id[Γ]),

commuting with the cyclotomic structures, which induces isomorphisms on π
Cpn
∗ (−)

and πDpn∗ (−) for all n ≥ 0 and all primes p.

The G-equivariant restriction maps

Rn : THR(S[Γ], id[Γ])Cpn → THR(S[Γ], id[Γ])Cpn−1

admit canonical sections, which provide a canonical isomorphism in the G-stable ho-
motopy category

TRR(S[Γ], id[Γ]; p) ∼
∞∏

j=0

H·(Cpj ;B
diΓ),

where H·(Cpj ;BdiΓ) is the G-equivariant Borel group homology spectrum of the sub-
group Cpj acting on the O(2)-spectrum Σ∞O(2)B

diΓ. We have a π∗-isomorphisms of

G-spectra c : H·(1;BdiΓ)
c−→ Σ∞GB

diΓ+ given by collapsing a certain classifying space
in the construction of the homology spectrum. We let ∆p denote the G-equivariant
composition

BdiΓ
pp−→ BdiΓCp ↪→ BdiΓ,

and we let Σ∞GB
diΓ

“∆p=id”
+ denote the homotopy equalizer of Σ∞∆p+ and the iden-

tity map. We have a canonical inclusion ι : Ω(Σ∞GB
diΓ+) → Σ∞GB

diΓ
“∆p=id”
+ . The

inclusion and the projection

Σ∞GB
diΓ+

incl−−→ Σ∞GB
diΓ+ ×

∞∏

j=1

H·(Cpj ;B
diΓ)

proj−−→
∞∏

j=1

H·(Cpj ;B
diΓ)

induce the maps I and P in the theorem below, where the homotopy limit is con-
structed with respect to inclusions.

4
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Theorem B. The triangle

Σ∞GB
diΓ

“∆p=id”
+

I−→ TCR(S[Γ], id[Γ]; p)
P−→ holim

j≥1
H·(Cpj ;B

diΓ)

−Σ(ι) ◦ ε−1 ◦ c ◦ incl ◦ pr1−−−−−−−−−−−−−−−→ Σ
(

Σ∞GB
diΓ

“∆p=id”
+

)

is distinguished in the G-stable homotopy category, where ε : ΣΩY → Y is the counit
of the loop-suspension adjunction.

After p-completion, a non-equivariant identification of the homotopy limit in
the triangle appears in [2], and the result generalizes immediately to the equivariant
setting. We let O(2) act on C by multiplication and complex conjugation, and on Cn
by the diagonal action. We let

S(C∞) =
∞⋃

n=0

S(Cn+1),

where S(Cn+1) denotes the unit sphere in Cn+1. Then there is an isomorphism in the
G-stable category after p-completion

Σ1,1S(C∞)+ ∧T Σ∞O(2)B
diΓ+ → holim

j≥1
H·(Cpj ;B

diΓ),

where Σ1,1 denotes suspension with respect to the sign representation of G. More
specifically, a map of orthogonal G-spectra is an isomorphism in the G-stable category
after p-completion, if it is an isomorphism in the stable category after p-completion
on underlying spectra and derived G-fixed point spectra.

The theorem above leads to a calculation of the topological cyclic homology of
the sphere spectrum with the identity as anti-involution. We let P∞(C) := S(C∞)/T
denote the infinite complex projective space with G acting by complex conjugation
and we let Σ1,1 denote suspension with respect to the sign representation of G.

Theorem C. After p-completion, there is an isomorphism in the G-stable homotopy
category

TCR(S, id; p) ∼ Σ1,1P∞−1(C) ∨ S,
where Σ1,1P∞−1(C) denotes the homotopy fiber of the T-transfer Σ∞G Σ1,1P∞(C)→ S.
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Throughout this paper, T denotes the multiplicative group of complex numbers
of modulus 1 and G is the group Gal(C/R) = {1, ω} of order 2. The group G acts on
T ⊂ C and O(2) is the semi-direct product O(2) = T o G. Let Cr denote the cyclic
subgroup of order r, generated by the rth root of unity tr := e

2πi
r . Let Dr denote

the dihedral subgroup of order 2r generated by tr and ω. The collection {Cr, Dr}r≥0

represents all conjugacy classes of finite subgroups of O(2).
By a space we will always mean a compactly generated weak Hausdorff space and

any construction is always carried out in this category.

1. Real topological Hochschild homology

A symmetric ring spectrum X is a sequence of based spaces X0, X1, . . . with a
left based action of the symmetric group Σn on Xn and Σn × Σm-equivariant maps
λn,m : Xn ∧ Sm → Xn+m. Let A be a symmetric ring spectrum with multiplication
maps µn,m : An ∧ Am → An+m and unit maps 1n : Sn → An. An anti-involution on
A is a self-map of the underlying symmetric spectrum D : A→ A, such that

D2 = id, Dn ◦ 1n = 1n,

and the following diagram commutes:

Am ∧An Am ∧An

An ∧Am

An+m

Am+n Am+n.

Dm ∧Dn

γ

µn,m

χn,m

µm,n

Dm+n

Here γ is the twist map and χn,m ∈ Σn+m is the shuffle permutation

χn,m(i) =

{
i+m if 1 ≤ i ≤ n
i− n if n+ 1 ≤ i ≤ n+m.

If A is commutative, then the identity defines an anti-involution on A.
If Γ is a topological group, then the spherical group ring S[Γ] is the symmetric

suspension spectrum of Γ+. If m : Γ × Γ → Γ denotes the multiplication in Γ and
1 ∈ Γ is the unit, then the spherical group ring becomes a symmetric ring spectrum
with multiplication maps defined to be the compositions

Γ+ ∧ Sn ∧ Γ+ ∧ Sm id∧γ∧id−−−−−→ (Γ× Γ)+ ∧ Sn ∧ Sm
m+∧µn,m−−−−−−→ Γ+ ∧ Sn+m,

and unit maps Sn → Γ+∧Sn given by z 7→ 1∧ z. Taking inverses in the group induce
an anti-involution id[Γ] on the spherical group ring, where id[Γ]n : Γ+∧Sn → Γ+∧Sn
is given by

id[Γ]n(g ∧ x) = g−1 ∧ x.
The real topological Hochschild homology space THR(A,D) of a symmetric ring

spectrum A with anti-involution D was defined in [10, Sect. 10] as the geometric
6
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realization of a dihedral space. Before reviewing the definition, we recall the notion
of dihedral sets, and their realization.

Definition 1.1. A dihedral object in a category C is a simplicial object

X[−] : 4op → C
together with dihedral structure maps tk, wk : X[k] → X[k] such that tk+1

k = id,
w2
k = id, and tkwk = t−1

k ωk. The dihedral structure maps are required to satisfy the
following relation involving the simplicial structure maps:

dlwk = wk−1dk−l, slwk = wk+1sk−l for 0 ≤ l ≤ k,
dltk = tk−1dl−1, sltk = tk+1sl−1 for 0 < l ≤ k,

d0tk = dk, s0tk = t2k+1sk.

We let Sets denote the category of sets and set maps and we let X[−] be a dihe-
dral object in Sets. We use Drinfeld’s realization of dihedral sets which is naturally
homeomorphic as an O(2)-space to the ordinary geometric realization of the under-
lying simplicial set with O(2)-action arising from the dihedral structure. We briefly
recall the method; see [18] and [5] for details.

Let F denote the category with objects all finite subsets of the circle and mor-
phisms set inclusions. A dihedral set X[−] extends uniquely, up to unique isomor-
phism, to a functor X[−] : F → Sets. Given an inclusion F ⊂ F ′ ⊂ T the degeneracy
maps give rise to a map sF ′F : X[F ]→ X[F ′]. As a set

|X[−]| := colim
F∈F

X[F ].

Given an inclusion F ⊂ F ′ ⊂ T the face maps give rise to a map dF ′F : X[F ′]→ X[F ].
These maps are used to define a topology on the colimit. Finally, the dihedral structure
maps give rise to a continuous action of the homeomorphism group Homeo(T) on
the colimit as follows. A homeomorphism h : T → T induces a functor F → F
given on objects by F 7→ h(F ). The dihedral structure maps give rise to a natural
transformations φh : X[−]⇒ X[−] ◦ h. The action of h on the colimit is given as the
composition:

colim
F∈F

X[F ]
φh−→ colim

F∈F
X[h(F )]

indh−−−→ colim
F∈F

X[F ].

In particular, the subgroup O(2) < Homeo(T) acts on the realization. Note that
the category F is filtered, and therefore the realization, as a functor valued in Sets,
commutes with finite limits. This is also true as functors valued in Top, the category
of compactly generated weak Hausdorff spaces; e.g. [18, Corollary 1.2]. The functor
X[−] : F → Sets arising from a dihedral set is a special case of an O(2)-diagram, as
defined below, and we recall how such diagrams behave.

Definition 1.2. Let H be a group and let J be a small category with a left H-action.
An H-diagram indexed by J is a functor X : J → Sets together with a collection of
natural transformations

α = {h ∈ H | αh : X ⇒ X ◦ h}.
such that αe = id and (αh′)h ◦ αh = αh′h. Here (αh′)h is the natural transformation
obtained by restricting αh′ along the functor h : J → J .

7
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The group H acts on the colimit of the diagram by letting h ∈ H act as the
composition

colim
J

X
αh−→ colim

J
X ◦ h indh−−−→ colim

J
X.

A natural transformation of H-diagrams indexed by J commuting with the group
action induces an H-equivariant map of colimits. Let φ : K → J be a functor
between small categories with H-actions, such that φ ◦h = h ◦φ. If (X : J → Sets, α)
is an H-diagram indexed by J , then (X ◦ φ : K → Sets, αφ) is an H-diagram indexed
by K and the canonical map

colim
K

X ◦ φ indφ−−−→ colim
J

X

is H-equivariant. Finally, if J is filtered and N ≤ H is a normal subgroup acting
trivially on J then (XN : J → Sets, αN ) is an H/N -diagram indexed by J and the
canonical inclusion X(j)N ↪→ X(j) induces an H/N -equivariant bijection

colim
J

(XN )
∼=−→
(

colim
J

X
)N
.

In the following, we would like to apply Drinfeld’s realization to the case of a
dihedral pointed space Y [−], but a priori Drinfeld’s description of the topology on the
realization only applies to simplical sets. We solve this problem as follows. We have
a bijection of underlying sets from the ordinary geometric realization to the colimit
as specified in [18] and [5]:

( ∞∨

n=0

Y [n]×∆n/ ∼
)
→ colim

F∈F
Y [F ].

The bijection is O(2)-equivariant and natural with respect to functors of dihedral
pointed spaces. We give the right hand colimit the topology which makes the above
bijection a homeomorphism. Of course, if Y [−] is discrete, then the topology in the
description of Drinfeld’s realization makes the bijection into a homeomorphism.

When we describe dihedral spaces in this work, we will give the space X[F ] at
every object F ∈ F , for each inclusion F ⊂ F ′ ⊂ T, the maps dF ′F : X[F ]→ X[F ′] and
sF
′

F : X[F ′]→ X[F ], and the transformations X[F ]→ X[h(F )] for h ∈ Homeo(T).
We are now ready to construct to real topological homology of a ring spectrum

A with anti-involution D. First let I be the category with objects all non-negative
integers. The morphisms from i to j are all injective set maps

{1, . . . , i} → {1, . . . , j}.

The category I has a strict monoidal product + : I×I → I given on objects by addition
and on morphisms by concatenation. We note that the initial object 0 ∈ Ob(I) is
the identity for the monoidal product. Given an object i let ωi : i → i denote the
involution given by

ωi(s) = i− s+ 1,

and we define the conjugate of a morphism α : i→ j by αω := ωj ◦ α ◦ ω−1
i .

8
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Let F ⊂ F ′ be finite subsets of the circle. We define sF ′F : IF → IF
′ on objects

by (iz)z∈F 7→ (iz′)z′∈F ′ where

iz′ =

{
iz′ if z′ ∈ F
0 if z′ /∈ F.

Hence the functor repeats the initial object 0 ∈ I as pictured in the example:

i1

i2

i3 i1

i2

i3

0

0

This also defines the functor on morphisms, since 0 is the initial object in I.
In order to define dF ′F : IF

′ → IF we introduce to following notation. Given
z = e2πis ∈ F , let s = maxt{s ≤ t < 1 + s | e2πit ∈ F}. Then we set

Arcz := {e2πit | s < t ≤ 1 + s} ⊂ T,

hence Arcz is the circle arc starting from the first element clockwise of z and ending
at z. We define dF ′F : IF

′ → IF on objects by (iz′)z′∈F ′ 7→ (iz)z∈F where

iz =
∑

z′∈Arcz

iz′ ,

and similarly on morphisms. Hence the functor adds together the objects counter
clockwise around the circle and concatenate morphisms, as pictured in the example:

i1

i3

i4

i2

i5

i5 + i1

i2 + i3

i4

Given a pointed left O(2)-space, we define a dihedral space THR(A,D;X)[−]. Let
F ⊂ T be finite and define a functor GFX : IF → Top∗ on objects by

GFX ((iz)z∈F ) = Map
( ∧

z∈F
Siz ,

∧

z∈F
Aiz ∧X

)
.

We define GFX on morphisms in the case |F | = 1, the general case is similar. Let
α : i→ j be a morphism in I. We write α as a composite α = σ ◦ ι, where

ι : {1, . . . , i} → {1, . . . , j}
9
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is the standard inclusion and σ ∈ Σj . The map GFX(α) is the composite

Map(Si, Ai ∧X)

Map(Sj−i ∧ Si, Sj−i ∧Ai ∧X)

Map(Sj , Aj ∧X)

Map(Sj , Aj ∧X),

Sj−i∧(−) (λj−i,i∧id)◦(−) Map(σ−1,σ∧id)

which is independent of choice of σ, since λj,i is Σj × Σi - equivariant. We set

THR(A,D;X)[F ] := hocolim
IF

GFX .

Let F ⊂ F ′. We define the map THR(A,D;X)[F ] → THR(A,D;X)[F ′] by first
defining a natural transformation of functors (s′)F

′
F : GFX ⇒ GF

′
X ◦ sF

′
F . At an object

(iz)z∈F ∈ IF the natural transformation

Map
( ∧

z∈F
Siz ,

∧

z∈F
Aiz ∧X

)
→ Map

( ∧

z′∈F ′
Siz′ ,

∧

z′∈F ′
Aiz′ ∧X

)

uses the identity map 10 : S0 → A0. We let sF ′F be the composition

hocolim
IF

GFX
(s′)F

′
F−−−→ hocolim

IF
GF

′
X ◦ sF

′
F

ind
sF
′

F−−−−→ hocolim
IF ′

GF
′

X .

We define the map THR(A,D;X)[F ′]→ THR(A,D;X)[F ] by first defining a natural
transformation of functors (d′)F

′
F : GF

′
X ⇒ GFX ◦ dF

′
F . At an object (iz′)z′∈F ′ ∈ IF

′ the
natural transformation

Map
( ∧

z′∈F ′
Siz′ ,

∧

z′∈F ′
Aiz′ ∧X

)
→ Map

( ∧

z∈F
Siz ,

∧

z∈F
Aiz ∧X

)

uses the multiplication maps in A. We let dF ′F be the composition

hocolim
IF ′

GF
′

X

(d′)F
′

F−−−→ hocolim
IF ′

GFX ◦ dF
′

F

ind
dF
′

F−−−−→ hocolim
IF

GFX .

Finally, we describe the action of Homeo(T). We restrict our attention to the subgroup
O(2) and describe the transformations induced by t ∈ T and complex conjugation
ω ∈ G. We define functors tF : IF −→ It(F ) and wF : IF −→ Iω(F ) on objects and
morphisms by:

tF : (iz)z∈F 7→ (it−1(y))y∈t(F ), (αz)z∈F 7→ (αt−1(y))y∈t(F ),

wF : (iz)z∈F 7→ (iω−1(y))y∈ω(F ), (αz)z∈F 7→ (αωω−1(y))y∈ω(F ).

Let ωi ∈ Σi be the permutaion given by ωi(s) = i − s + 1. We define the natural
transformations

t′F : GFX ⇒ G
t(F )
X ◦ tF , w′F : GFX ⇒ G

ω(F )
X ◦ wF ,

10
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to be the natural transformations which at (iz)z∈F ∈ Ob(IF ) are the unique maps
making the diagrams

∧

z∈F
Siz

∧

z∈F
Aiz ∧X

∧

y∈t(F )

S
it−1(y)

∧

y∈t(F )

Ait−1(y)
∧X

g

t′F (g)

and

∧

y∈ω(F )

S
iω−1(y)

∧

y∈ω(F )

Aiω−1(y)
∧X

∧

z∈F
Siz

∧

z∈F
Aiz ∧X

∧

z∈F
Siz

∧

z∈F
Aiz ∧X

∧
z∈F

ωiz

w′F (g)

g

∧
z∈F

Diz◦ωiz∧id

commute. The unlabelled vertical maps are appropriate permutations of the smash
factors. More precisely, given families of pointed spaces {Xk}k∈K and {Xj}j∈J , then
a set bijection φ : K → J together with a collection of pointed maps φk : Xk → Xφ(k)

induces a map of indexed smash products
∧

k∈K
Xk →

∧

j∈J
Xj , (xk)k∈K 7→ (φφ−1(j)(xφ−1(j)))j∈J .

In the case at hand, the space maps are all identity maps and the set bijections
t(F ) → F , F → t(F ), ω(F ) → F and F → ω(F ) are given by t−1, t, ω−1 and ω,
respectively. The natural transformations are given at F ∈ F as the compositions

tF : hocolim
IF

GFX
t′F−→ hocolim

IF
G
t(F )
X ◦ tF

indtF−−−→ hocolim
It(F )

G
t(F )
X ,

wF : hocolim
IF

GFX
w′F−−→ hocolim

IF
G
ω(F )
X ◦ wF

indwF−−−−→ hocolim
Iω(F )

G
ω(F )
X .

We have now defined a dihedral space and we let THR(A,D;X) be the realization

THR(A,D;X) := colim
F∈F

THR(A,D;X)[F ]

with the topology given by identifying the colimit with the ordinary geometric real-
ization. The space THR(A,D;X) is in fact an O(2) × O(2)-space, where the action
by the first factor comes from the dihedral structure and the action by the second
factor comes from the O(2)-action on X. We are interested in THR(A,D) with the
diagonal O(2)-action.
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1.1. Fixed points. Let 4 : O(2) → O(2) × O(2) be the diagonal map. We wish to
study the O(2)/Cr-space (4∗THR(A,D;X))Cr . The image 4(Cr) is not normal in
O(2) × O(2), but it is normal in 4(O(2)), hence we consider THR(A,D;X)4(Cr) as
an 4(O(2))/4(Cr)-space.

Let CrF denote the full subcategory of F with objects Cr · F for F ∈ Ob(F).
This subcategory is both cofinal and stable under the group action, and therefore the
inclusion i : CrF → F induces a bijection of 4(O(2))/4(Cr)-sets:

(
colim
F

THR(A,D;X)[F ]
)4(Cr) indi←−−

(
colim
CrF

THR(A,D;X)[Cr · F ]
)4(Cr)

.

This is in fact a homeomorphism, since the corresponding map on classical geometric
realizations is the homeomorphism from the realization of the r-subdivided simplicial
space to the realization of the simplicial space itself. Since the Cr-action on the
indexing category is trivial, the inclusion

THR(A,D;X)[Cr · F ]4(Cr) ↪→ THR(A,D;X)[Cr · F ]

induces an 4(O(2))/4(Cr)-bijection
(

colim
CrF

THR(A,D;X)[Cr · F ]
)4(Cr) ∼←− colim

CrF
THR(A,D;X)[Cr · F ]4(Cr).

This is likewise a homeomorphism, since it corresponds to commuting the classical
geometric realization and Cr-fixed points of a Cr-simplicial space, which commutes
by [16, Corollary 11.6].

Note that

THR(A,D;X)[Cr · F ] = hocolim
ICr ·F

GCr·FX =
∣∣∣[k] 7→

∨

i0→···→ik
GCr·FX (i0)

∣∣∣.

The 4(Cr)-action on the homotopy colimit is simplicial and generated by a simplicial
map which we now describe. Let tr := e

2πi
r ∈ T and recall that we constructed a

functor (tr)Cr·F : ICr·F −→ ICr·F and a natural transformation

t′Cr·F : GCr·FX ⇒ GCr·FX ◦ tCr·F .
The tr-action on X gives rise to a natural transformation

Xtr : GCr·FX ◦ (tr)Cr·F ⇒ GCr·FX ◦ (tr)Cr·F .

The 4(Cr)-action is generated by the simplicial map, which takes the summand in-
dexed by i0 → · · · → ik to the one indexed by (tr)Cr·F (i0) → · · · → (tr)Cr·F (ik)
via

GCr·FX (i0)
(t′r)Cr ·F−−−−−→ GCr·FX ◦ (tr)Cr·F (i0)

Xtr−−→ GCr·FX ◦ (tr)Cr·F (i0).(1)

If a k-simplex is fixed, then it must belong to a wedge summand whose index consists
of objects and morphisms in ICr·F which are fixed by (tr)Cr·F . This is exactly the
image of the diagonal functor

4r : ICr·F/Cr → ICr·F , (iz)z∈Cr·F/Cr 7→ (iz)z∈Cr·F ,

which is defined similarly on morphism and where z denotes the orbit of z ∈ Cr · F .
The natural transformation (1) restricts to a natural transformation from GCr·FX ◦4r

to itself, hence Cr acts onGCr·FX ◦4r through natural transformations. Since geometric
12
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realization commutes with finite limits by [16, Corollary 11.6], we obtain the following
lemma:

Lemma 1.3. The canonical map induces a homeomorphism of non-equivariant spaces:

hocolim
ICr ·F/Cr

(
GCr·FX ◦ 4r

)Cr ∼=−→
(

hocolim
ICr ·F

GCr·FX

)Cr
.

Furthermore, the maps assemble into an isomorphism of 4(O(2))/4(Cr)-diagrams
CrF → Top∗.

Next, we consider the non-equivariant fixed point space THR(A,D;X)4(Dr). Let
DrF denote the full subcategory with objects Dr ·F for F ∈ Ob(F). For convenience
we restrict further to the cofinal subcategory DrF∗ consisting of objects of DrF con-
taining 1 and t2r := e

2πi
2r . There is a canonical homeomorphism constructed as above

(
colim
F

THR(A,D;X)[F ]
)4(Dr) ∼←− colim

DrF∗
THR(A,D;X)[Dr · F ]4(Dr).

Note that

THR(A,D;X)[Dr · F ] = hocolim
IDr ·F

GDr·FX =
∣∣∣[k] 7→

∨

i0→···→ik
GDr·FX (i0)

∣∣∣.

The 4(Dr)-action on the homotopy colimit is simplicial and generated by two sim-
plicial maps, which we now describe. The first map takes the summand indexed by
i0 → · · · → ik to the one indexed by wDr·F (i0)→ · · · → wDr·F (ik) via

GDr·FX (i0)
w′Dr ·F−−−−→ GDr·FX ◦ wDr·F (i0)

Xω−−→ GDr·FX ◦ wDr·F (i0).(2)

The second map takes the summand indexed by i0 → · · · → ik to the one indexed by
(tr)Dr·F (i0)→ · · · → (tr)Dr·F (ik) via

GDr·FX (i0)
(t′r)Dr ·F−−−−−→ GDr·FX ◦ (tr)Dr·F (i0)

Xtr−−→ GDr·FX ◦ (tr)Dr·F (i0).(3)

If a k-simplex is fixed, then it must belong to a wedge summand whose index consists
of objects and morphisms in IDr·F which are fixed by the Dr-action. In order to
describe such objects and morphisms, we note that a fundamental domain for the
Dr-action on T is given by

FDr = {e2πit | 0 ≤ t ≤ 1/2r} ⊂ T.
Let z be in the interior of the circle arc FDr . Then z := Dr · z = Cr · z q Cr · ω(z)
while the orbits of the endpoints 1 and t2r are of the form 1 = Cr · 1 = Cr · ω(1) and
t2r = Cr · t2r = Cr · ω(t2r).

The objects of IDr·F are permuted by the generators, while the morphisms are
permuted by tr and both permuted and conjugated by ω. Let IG denote the subcat-
egory of I with the same objects and all morphisms α which satisfies αω = α. Define
a functor

4e
r : (IG){1,t2r} × IDrF/Dr\{1,t2r} → IDr·F

on objects by
4e
r((iz)z∈Dr·F/Dr) = (iz)z∈Dr·F

13
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and on morphisms by

4e
r((αz)z∈Dr·F/Dr) = (αz)z∈Dr·F ,

where
αz =

{
αy if z ∈ Cr · y

(αy)
ω if z ∈ Cr · ω(y),

and y ∈ FDr . Then a fixed k-simplex must have an index which consist of elements
and morphisms in the image of 4e

r.
To clarify the “diagonal” functor 4e

r, we draw an example of the functor

4e
3 : (IG){1,t6} × ID3F/D3\{1,t6} → ID3·F

on a tuple of morphisms. In the picture below D3 · F is the subset consisting of all
the points on the right hand circle, and the points of the left hand circle are orbit
representatives.

α
β

γ

α
β

γα
β

γ

α
β γ

βω

βω

βω

The natural transformations (2) and (3) restrict to transformations from the func-
tor GDr·FX ◦4e

r to itself, hence Dr acts on GDr·FX ◦4e
r trough natural transformation.

To ease notation we set IDrF/D
−
r := IDrF/Dr\{1,t2r}. Likewise, we omit the over-lines

on the orbits 1 and t2r. We obtain the following lemma:

Lemma 1.4. The canonical map induces a homeomorphism:

hocolim
(IG){1,t2r}×IDrF/D−r

(GDr·FX ◦ 4e
r)
Dr

∼=−→
(

hocolim
IDr ·F

GDr·FX

)Dr
.

Furthermore, the maps assemble into an isomorphism of functors DrF∗ → Top∗.

Remark 1.5. We describe the Dr-action on

GDr·FX ◦ 4e
r(i) = Map

( ∧

z∈Dr·F
Siz ,

∧

z∈Dr·F
Aiz ∧X

)

at an object i ∈ Ob
(
(IG){1,t2r} × IDr·F/D−r

)
arising from the natural transformations

(2) and (3). The spaces
∧

z∈Dr·F
Siz and

∧

z∈Dr·F
Aiz ∧X

are themselves Dr-spaces. On the left hand side, the generator tr permutes the smash
factors and the generator ω permutes the smash factors, then acts by wi ∈ Σi factor-
wise. On the right hand side the generator tr permutes the smash factors and acts
on X, and the generator ω permutes the smash factors, then acts by wi ∈ Σi and the
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anti-involution D factor-wise and acts on X. The Dr-action on the mapping space is
by conjugation.

1.2. Equivariant Approximation Lemma. In this section we consider the functor
GF := GFS0 for simplicity. The approximation lemma proven below also holds if S0

is replaced by SV for any finite dimensional real orthogonal O(2)-representation V .
Bökstedt’s Approximation Lemma states that the canonical inclusion

GF (i) ↪→ hocolim
IF

GF

can be made as connected as desired by choosing i coordinate-wise big enough under
some connectivity conditions on A. Dotto proves in [4] a G-equivariant version of
the approximation lemma under some restricted connectivity conditions on (A,D).
We use the same connectivity conditions and extend the result to a Dr-equivariant
version. For an integer n, we let dn2 e denote the ceiling of n2 . Throughout this rest of
this paper we make the following connectivity assumptions on (A,D), which hold for
(S[Γ], id[Γ]):

Assumptions 1.6. Let (A,D) be a symmetric ring spectrum with anti-involution.
We assume that An is (n− 1)-connected and that the fixed points space (An)Dn◦ωn is(
dn2 e − 1

)
-connected. Here ωn ∈ Σn is the permutation that reverses the order of the

elements and Dn : An → An is the anti-involution in level n. Furthermore, we assume
that there exists a constant ε ≥ 0, such that the structure map λn,m : An∧Sm → An+m

is (2n + m − ε)-connected as a map on non-equivariant spaces and the restriction of
the structure map λn,m : ADn◦ωnn ∧ (Sm)ωm → (An+m)Dn+m◦(ωn×ωm) is (n+ dm2 e− ε)-
connected.

Before we state the Equivariant Approximation Lemma, we introduce some no-
tation. Let f : Z → Y be a map of pointed left H-spaces, where H denotes a compact
Lie group. We call f n-connected respectively a weak-H-equivalence if fK : ZK → Y K

is n-connected respectively a weak equivalence for all closed subgroups K ≤ H. For
a natural number N ∈ N and i ∈ Ob(IF ) we say that i ≥ N if iz ≥ N for all z ∈ F .
We define a partial order on the set Ob(IF ) by declaring (i)z∈F ≤ (j)z∈F if iz ≤ jz
for all z ∈ F . Given a partially ordered set J we say that a map λ : J → N tends to
infinity on J if for all N ∈ N there is a jN ∈ J such that λ(j) ≥ N for all j ≥ jN .
Proposition 1.7 (Equivariant Approximation Lemma). Let (A,D) be a symmetric
ring spectrum with anti-involution satisfying Assumptions 1.6. Let F be a finite subset
of the circle. For part (ii) assume further that 1, t2r ∈ Dr · F . For part (iii) assume
further that 1, t4r ∈ D2r · F . Then the following holds:
i Given n ≥ 0, there exists N ≥ 0 such that the Cr-equivariant inclusion

GCr·F ◦ 4r(i) ↪→ hocolim
ICr ·F

GCr·F

is n-connected for all i ∈ Ob(ICr·F/Cr) such that i ≥ N .
ii Let r be odd. Given n ≥ 0, there exists N ≥ 0 such that the Dr-equivariant

inclusion
GDr·F ◦ 4e

r(i) ↪→ hocolim
IDr ·F

GDr·F

is n-connected for all i ∈ Ob
(
(IG){1,t2r} × IDr·F/D−r

)
such that i ≥ N .
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iii Let r be even. Given n ≥ 0, there exists N ≥ 0 such that the D2r-equivariant
inclusion

GD2r·F ◦ 4e
2r(i) ↪→ hocolim

ID2r ·F
GD2r·F

is n-connected for all i ∈ Ob
(
(IG){1,t4r} × ID2r·F/D−2r

)
such that i ≥ N , when

considered as a map of Dr-spaces.

The reason that we distinguish between r even and r odd is because the conjugacy
classes of subgroups of Dr behave differently in the two cases. Recall that if s divides
r, then Ds denotes the dihedral subgroup of order 2s generated by the rotation ts ∈ T
and complex conjugation ω ∈ G. If r is odd, then the collection {Cs, Ds}s|r represents
all conjugacy classes of subgroups in Dr. If r is even, then Dr contains 2 conjugacy
classes of dihedral subgroups of order 2s, represented by

Ds = 〈ts, ω〉 , D′s = 〈ts, trω〉 .
Hence the collection {Cs, Ds, D

′
s}s|r represents all conjugacy classes of subgroups in

Dr, when r is even. The subgroups Ds and D′s become conjugate when considered as
subgroups of the bigger group D2r.

The result depends on the categories IF and IG being good indexing categories
and on the connectivity of the functor GF . Part (i) is proven in [2]. Part (ii) is proven
in the case r = 1 in [4, Prop. 4.3.2]. We prove part (ii) and (iii) below.

Definition 1.8. A good indexing category is a triple (J, J, µ) where J is a small
category, J ⊂ J is a full subcategory and µ = {µj : J → J}j∈Ob(J) is a family of
functors. The data is required to satisfy that for every j ∈ Ob(J), there exists a
natural transformation U : id⇒ µj such that µj ◦ U = U ◦ µj .

Let Iev denote the full subcategory of I with objects the even non-negative inte-
gers. For j ∈ Ob(Iev) let µj : I → I denote the functor

µj(i) =
j

2
+ i+

j

2
, µj(α) = id j

2
+ α+ id j

2
.

There is a natural transformation U : id ⇒ µj defined by the middle inclusion. The
triple (I, Iev, µ) is a good indexing category and the structure restricts to IG. In [4,
Lemma 4.3.8] the following lemma is proved:

Lemma 1.9. Let (J, J, µ) be a good indexing category with initial object 0 ∈ Ob(J)
such that µj(0) = j for all j ∈ Ob(J). Let X : J → Top∗ be a functor. If for
j ∈ Ob(J)

X(j) = X(µj(0))→ X(µj(i)),

induced by 0→ i is n-connected for all i ∈ Ob(J), then the canonical map

X(j)→ hocolim
J

X

is n-connected.

Proof of part (ii). We let j ∈ Ob
(
(IG){1,t2r} × IDrF/D−r

)
and consider the inclusion

ιj : GDr·F ◦ 4e
r(j) ↪→ hocolim

IDr ·F
GDr·F .

We must show that the connectivity of the induced map on H-fixed points tends to
infinity with j forH ∈ {Cs, Ds}s|r. It suffices by part (i) to prove that the connectivity
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on Dr-fixed points tends to infinity with j. Indeed, if s · t = r, then Dr · F = Ds · F ′
and Dr · F = Cs · F ′′ for finite subsets F ′, F ′′ ⊂ T, and

GDr·F ◦ 4e
r(j) = GDs·F

′ ◦ 4s(j
′), GDr·F ◦ 4e

r(j) = GCs·F
′′ ◦ 4s(j

′′).

for some j′ ∈ Ob
(
(IG){1,t2s}× IDs·F ′/D−s

)
and j′′ ∈ Ob(ICs·F

′′/Cs) both of which tend
to infinity with j.

By Lemma 1.4 the restriction of ιj to Dr-fixed points is equal to the inclusion
(
GDr·F ◦ 4e

r(j)
)Dr

↪→ hocolim
(IG){1,t2r}×IDrF/D−r

(
GDr·F ◦ 4e

r

)Dr
.

Assume first that j is coordinate-wise even. We let i ∈ Ob
(
(IG){1,t2r} × IDr·F/D−r

)

and define the map Λ to be the composite

∧

z∈Dr·F
Ajz ∧

∧

z∈Dr·F
Siz

∼=−→
∧

z∈Dr·F
Ajz ∧ Siz

∧
z∈Dr ·F

λjz,iz

−−−−−−−−→
∧

z∈Dr·F
Aiz+jz .

If we give the domain the diagonal Dr-action and we let Dr act on the target as
described in Remark 1.5 but using the permutations ωjz × ωiz instead of ωjz+iz , then
Λ is Dr-equivariant. The Dr-map GDr·F ◦4e

r(µj(0))→ GDr·F ◦4e
r(µj(i)) induced by

the morphisms 0→ i is equal to the composite:

Map
( ∧

z∈Dr·F
Sjz ,

∧

z∈Dr·F
Ajz

)

Map
( ∧

z∈Dr·F
Sjz ∧

∧

z∈Dr·F
Siz ,

∧

z∈Dr·F
Ajz ∧

∧

z∈Dr·F
Siz
)

Map
( ∧

z∈Dr·F
Sjz+iz ,

∧

z∈Dr·F
Ajz+iz

)

Map
( ∧

z∈Dr·F
Sjz+iz ,

∧

z∈Dr·F
Ajz+iz

)
,

(−)∧(∧z∈Dr ·FSiz )

Λ∗

Map(∧α−1
z ,∧αz)

where αz = idjz/2×ξjz/2,iz ∈ Σjz+iz . The first map is induced by the adjunction unit,

η :
∧

z∈Dr·F
Ajz → Map

( ∧

z∈Dr·F
Siz ,

∧

z∈Dr·F
Siz ∧

∧

z∈Dr·F
Ajz

)
,

followed by the adjunction homeomorphism and a twist homeomorphism. We use
the Equivariant Suspension Theorem A.3 to estimate its connectivity. If s | r and
we set A :=

∧
z∈Dr·F Ajz , then we have homeomorphisms induced by the appropriate
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diagonal maps and connectivity estimates following from Assumptions 1.6:

ACs ∼=
(
Aj1 ∧Ajt2r ∧

( ∧

z∈DrF/D−r

Ajz

)∧2)∧r/s
,

conn(ACs) ≥ r

s

(
j1 + jt2r +

∑

z∈DrF/D−r

2jz

)
− 1,

ADs ∼= AD◦ωj1 ∧AD◦ωjt2r
∧
(
Aj1 ∧Ajt2r

)∧ r−s
2s ∧

( ∧

z∈DrF/D−r

Ajz

)∧ r
s
,

conn(ADs) ≥ r

2s

(
j1 + jt2r +

∑

z∈DrF/D−r

2jz

)
− 1.

By the Equivariant Suspension Theorem A.3 and Lemma A.1 wee see that

conn(ηCs) ≥ 2r

s

(
j1 + jt2r +

∑

z∈DrF/D−r

2jz

)
− 1,

conn(ηDs) ≥ r

s

(
j1 + jt2r +

∑

z∈DrF/D−r

2jz

)
− 1,

conn((η∗)Dr) ≥ j1
2

+
jt2r
2

+
∑

z∈DrF/D−r

jz.

The connectivity of Λ on fixed points follows from Assumptions 1.6:

conn(ΛCs) ≥ min(j) +
r

s

(
j1 + i1 + jt2r + it2r +

∑

z∈DrF/D−r

2(jz + iz)
)
− 1− ε,

conn(ΛDs) ≥ min′(j) +
j1
2

+
⌈ i1

2

⌉
+
jt2r
2

+
⌈ it2r

2

⌉
+
r − s

2s
(j1 + i1 + jt2r + it2r)

+
r

s

( ∑

z∈DrF/D−r

jz + iz

)
− 1− ε,

where min(j) = min{jz | z ∈ DrF/Dr} and min′(j) = min{ j12 ,
jt2r

2 , jz | z ∈ DrF/Dr}.
By Lemma A.1 conn((Λ∗)Dr) ≥ min′(j) − 1 − ε. Hence by Lemma 1.9 there exists
N ∈ N such that the map

(
GDr·F ◦ 4e

r(j)
)Dr

↪→ hocolim
(IG){1,t2r}×IDr ·F/D−r

(
GDr·F ◦ 4e

r

)Dr

is n-connected if j is coordinate-wise even and bigger than N .
Let N := N + 1. Finally let i ∈ Ob

(
(IG){1,t2r} × IDr·F/D−r

)
and assume that

i ≥ N . If i is coordinate-wise even, then we have already seen that the inclusion
into the homotopy colimit is n-connected. If i is not coordinate-wise even then write
i = i′ + j′, where i′ is the coordinate-wise even element given by subtracting 1 from
all the odd coordinates of i. The unique map 0 → j′ induces the horizontal map in
the homotopy commutative diagram below:
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(
GDrF ◦ 4e

r(i
′)
)Dr (

GDrF ◦ 4e
r(i)
)Dr

hocolim
(IG){1,t2r}×IDrF/D−r

(
GDrF ◦ 4e

r

)Dr
.

Since i′ ≥ N , the horizontal map and the left hand diagonal map are n-connected as
proven above, hence so is the right hand diagonal map as desired. �

Proof of part (iii). We let j ∈ Ob
(
(IG){1,t4r} × ID2rF/D

−
2r
)
and consider the D2r-

equivariant inclusion

GD2r·F ◦ 4e
2r(j) ↪→ hocolim

ID2r ·F
GD2r·F .

We want to show that the connectivity on H-fixed points tends to infinity with j for
H ∈ {Cs, Ds, D

′
s}s|r. The subgroups Ds and D′s are conjugate inside D2r, hence we

can reduce to checking connectivity on the H-fixed points for H ∈ {Cs, Ds}s|r and
complete the proof as above. �

Before we conclude this section, we state the following useful lemma, which can
be found in [4, Lemma 4.3.7].

Lemma 1.10. Let (J, J, µ) be a good indexing category, let X,Y : J → Top∗ be
functors, and let Φ : X ⇒ Y be a natural transformation. Suppose that for all
j ∈ Ob(J) the map Φj : X(j) → Y (j) is λ(j)-connected for a map λ : Ob(J) → N
that tends to infinity on Ob(J). In this situation, the induced map on homotopy
colimits

Φ : hocolim
J

X −→ hocolim
J

Y

is a weak equivalence.

2. The cyclotomic structure of THR(A,D)

The space THR(A,D;S0) is the 0th space of a fibrant orthogonal O(2)-spectrum
in the model structure based on the family of finite subgroups of O(2), see Proposition
2.5, and furthermore the spectrum is cyclotomic. Before we establish these results,
we briefly recall the category of equivariant orthogonal spectra and the fixed points
functors.

We let H denote a compact Lie group. By an H-representation, we will mean a
finite dimensional real inner product space on which H acts by linear isometries. We
will work in the category of orthogonal H-spectra, defined as diagram H-spaces as
in [15, Chapter II.4]. Let (HTop∗,∧, S0) denote the symmetric monoidal category of
based H-spaces and continuous based H-equivariant maps. The collection of all H-
spaces together with all based maps gives rise to a category enriched in (HTop∗,∧, S0),
which we denote TH .

We fix a complete H-universe U . If V and W are H-representations in U , then
L(V,W ) denotes the H-space of linear isometries from V to W with H-action by
conjugation. The H-bundle E(V,W ) is the sub-bundle of the product H-bundle
L(V,W ) ×W → W consisting of those pairs (α,w) such that w is in the orthogonal
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complement W −α(V ). Let JH(V,W ) be the Thom H-space of E(V,W ). We define
composition

◦ : JH(V ′, V ′′)×JH(V, V ′)→JH(V, V ′′)

by (β, y) ◦ (α, x) = (β ◦ α, β(x) + y). The point (idV , 0) ∈ J U
G (V, V ) is the identity

morphism. Let J U
H be the category enriched over (HTop∗,∧, S0) with objects all finite

dimensional H-representation V ⊂ U and morphisms the Thom H-spaces JH(V,W ).

Definition 2.1. An orthogonal H-spectrum indexed on U is an enriched functor

X : J U
H → TH .

A morphism of orthogonal H-spectra indexed on U is an enriched natural transfor-
mation. Let HSpO

U denote the category of orthogonal H-spectra indexed on U .
Let X be an orthogonal H-spectrum. For a closed subgroup K ≤ H and a

non-negative integer q the homotopy groups of X are given as follows:

πKq (X) = colim
V⊂U

πKq (ΩVX(V )), πK−q(X) = colim
Rq⊂V⊂U

πK0 (ΩV−RqX(V )).

The morphisms of H-spectra inducing isomorphism on all homotopy groups are re-
ferred to as π∗-isomorphisms. These are the weak equivalences in the stable model
structure on orthogonal H-spectra indexed on U given in [15, Chapter III, 4.1,4.2].
Throughout this paper, we let jf : X → Xf denote a fibrant replacement functor in the
stable model structure, such that jf is an acyclic cofibration, and we let jc : Xc → X
denote a cofibrant replacement functor in the stable model structure such that jc is
an acyclic fibration.

Let S be a family of subgroups of H, that is S is a collection of subgroups closed
under taking subgroups and conjugates. We say that a morphism of orthogonal H-
spectra indexed on U is an S-equivalence if it induces isomorphisms on πKq (−) for all
subgroups K ∈ S and all q ∈ Z. The S-equivalences constitutes the weak equivalences
in the S-model structure, see [15, Chapter IV.6].

2.1. Pointset fixed point functors. Let K ≤ H be a closed subgroup. If U is a
complete H-universe, then UK is a complete N(K)/K-universe. There are two fixed
point functors which take an orthogonal H-spectrum indexed on U and produce an
orthogonal N(K)/K-spectrum indexed on UK . We recall the fixed point functors in
case of a normal subgroup N , see [15, Chapter V.4] for details.

We define a category J U
H,N with the same objects as J U

H . The morphism spaces
are the H/N -spaces of N -fixed points

J U
H,N (V,W ) := J U

H (V,W )N .

The composition and identity restrict appropriately making J U
H,N into a category

enriched over (H/NTop∗,∧, S0). Taking N -fixed points levelwise takes an orthogonal
H-spectrum X and produces a functor enriched over (H/NTop∗,∧, S0):

FixN (X) : J U
H,N → TH/N .

We have two enriched functors comparing the categories J U
H,N and J UN

H/N :

J UN
H/N

ν−→J U
H,N

φ−→J UN
H/N .
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The functor ν takes an H/N -representation V to the H-representation q∗V , where q :
H → H/N is the quotient homomorphism. The functor φ sends an H-representation
V to the H/N -representation V N , and it sends a morphism (α, x) to the fixpoints
morphism (αN , x). The functors φ and ν induces forgetful functors

Uφ : FunH/NTop∗(J
UN
H/N ,TH/N )→ FunH/NTop∗(J

U
H,N ,TH/N ),

Uν : FunH/NTop∗(J
U
H,N ,TH/N )→ FunH/NTop∗(J

UN
H/N ,TH/N ),

where FunH/NTop∗(−,−) is the category of functors enriched in (H/NTop∗,∧, S0) and
enriched natural tranformations. Note that φ ◦ ν = id, hence Uν ◦ Uφ = id. Enriched
left Kan extension along φ gives an enriched functor

Pφ : FunH/NTop∗(J
U
H,N ,TH/N )→ FunH/NTop∗(J

UN
H/N ,TH/N ),

which is left adjoint to Uφ.

Definition 2.2. The fixed point functor is the composite functor

(−)N := Uν ◦ FixN : HSpO
U → H/NSpO

UN .

We note that XN (V ) = X(q∗V )N for a H/N -representation V . The fixed point
functor preserves fibrations, acyclic fibrations and π∗-isomorphisms between fibrant
objects, see [15, Chapter V, Prop. 3.4].

Definition 2.3. The geometric fixed point functor is the composite

(−)gN := Pφ ◦ FixN : HSpO
U → H/NSpO

UN .

The geometric fixed point functor preserves cofibrations, acyclic cofibrations, and
π∗-isomorphisms between cofibrant objects, see [15, Chapter V, Prop. 4.5].

Let γ : id→ UφPφ denote the unit of the adjunction (Pφ, Uφ). We have a natural
transformation of fixed point functors γ : XN → XgN given as

Uν(γ) : Uν(FixN (X))→ UνUφPφ(FixN (X)) = Pφ(FixN (X)).

2.2. The orthogonal spectrum THR(A,D). We fix a complete O(2)-universe

U =
(⊕

α≥0

⊕

n≥0

C(n)
)⊕(⊕

α≥0

⊕

n≥0

C(n)⊕ C(−n)
)
.

Here C(n) := C with T-action given by z · x = znx for z ∈ T and x ∈ C. On the
left hand side C(n) is the O(2)-representation with ω acting by complex conjugation.
On the right hand side C(n) ⊕ C(−n) is the O(2)-representation with ω acting by
ω(x, y) = (y, x). We see that

ρ∗rC(n)Cr =

{
C(nr ) if r | n

0 otherwise,

and

ρ∗r (C(n)⊕ C(−n))Cr =

{
C(nr )⊕ C(−n

r ) if r | n
0 otherwise.

It follows that

ρ∗rUCr =
(⊕

α≥0

⊕

n≥0,r|n
C
(n
r

))⊕(⊕

α≥0

⊕

n≥0,r|n
C
(n
r

)
⊕ C

(
−n
r

))
.
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We let fr : U −→ ρ∗rUCr be the O(2)-equivariant homeomorphism given by mapping
the summand C(n) indexed by (α, n) in U to the summand C(n) indexed by (α, rn)
in ρ∗rUCr and by mapping the summand C(n)⊕C(−n) indexed by (α, n) in U to the
summand C(n)⊕ C(−n) indexed by (α, rn) in ρ∗rUCr .

Let X and Y be pointed O(2)-spaces. We define a natural transformation of
functors GFX ∧ Y ⇒ GFX∧Y from IF to Top∗ by (f, y) 7→ f , where f(t) = f(t)∧ y. We
compose the induced map on colimits with the canonical homeomorphism commuting
the functor that smashes with a fixed pointed O(2)-space and the homotopy colimit
functor to obtain maps(

hocolim
IF

GFX

)
∧ Y ∼=−→ hocolim

IF
(GFX ∧ Y )→ hocolim

IF
GFX∧Y .

Since these maps commute with the dihedral structure maps and the O(2)-action on
X and Y , we obtain an O(2)-equivariant map

σX,Y : 4∗(THR(A,D;X)) ∧ Y →4∗THR(A,D;X ∧ Y ),

where 4 : O(2) → O(2) × O(2) denotes the diagonal map and O(2) acts diagonally
on the domain.

Definition 2.4. Let V ⊂ U be an O(2)-representation. Let

THR(A,D)(V ) = 4∗THR(A,D;SV ).

The group O(V ) acts on THR(A,D)(V ) through the action on the sphere SV . The
family of O(V )oO(2)-spaces THR(A,D)(V ) together with the structure maps

σV,W := σSV ,SW : THR(A,D)(V ) ∧ SW → THR(A,D)(V ⊕W ),

defines an orthogonal O(2)-spectrum indexed on U , which is denoted THR(A,D).

It follows from [15, Chapter II, Theorem 4.3 ] that the data above defines an
O(2)-spectrum in sense if Definition 2.1 given earlier. The following result extends
the classical result for the T-spectrum THH(A); see [9, Prop. 1.4]. Let F denote the
family of finite subgroups of O(2).

Proposition 2.5. Let H < O(2) be a finite subgroup. For all finite dimensional
O(2)-representations V ⊂W the adjoint of the structure map

σ̃V,W−V : THR(A,D)(V )→ ΩW−V THR(A,D)(W )

induces a weak equivalence on H-fixed points. In other words, THR(A,D) is fibrant
in the F -model structure.

Proof. It suffices to prove the statement for H ∈ {Cr, Dr}r≥0. The case H = Cr is
done in [9, Prop. 1.4]. We assume for convenience that V = 0, the general case is
analogous.

Assume H = Dr with r odd. Let i ∈ Ob
(
(IG){1,t2r} × IDr·F/D−r

)
. We introduce

the notation

GDrF/Dr ◦ 4e
r(i) • SW := Map

(( ∧

z∈Dr·F
Siz
)
∧ SW ,

( ∧

z∈Dr·F
Aiz
)
∧ SW

)
.

The domain and target are given the diagonal O(2)-action and the action on the
mapping space is by conjugation. The map σ̃ becomes the top row in the commutative
diagram below, when we restrict to the cofinal subcategory DrF∗.
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(
colim
DrF∗

hocolim
IDrF

GDr·F
)Dr (

ΩW

(
colim
DrF∗

hocolim
IDrF

GDr·F
SW

))Dr

(
colim
DrF∗

ΩW hocolim
IDrF

GDr·F
SW

)Dr

(
colim
DrF∗

hocolim
IDrF

ΩW GDr·F
SW

)Dr

colim
DrF∗

hocolim
I

(
GDr·F ◦ 4e

r

)Dr colim
DrF∗

hocolim
I

(GDrF/Dr ◦ 4e
r(i) • SW )Dr

σ̃

∼= 4

∼= 4

can∼

γDr∼

(η∗)Dr

∼

where I := (IG){1,t2r} × IDr·F/D
−
r . The maps labelled 4 are homeomorphisms by

Lemma 1.4. The bottom map is induced from the adjunction unit

η :
∧

z∈D2r·F
Aiz → Map

(
SW , SW ∧

∧

z∈D2r·F
Aiz
)

followed by a homeomorphism. The connectivity of (η∗)Dr can be estimated using the
equivariant suspension Theorem A.3 and Lemma A.1:

conn((η∗)Dr) ≥
⌈ i1

2

⌉
+
⌈ it2r

2

⌉
+

∑

z∈DrF/D−r

iz.

Since the connectivity tends to infinity with i, the induced map on homotopy colimits
is a weak equivalence by Lemma 1.10. A similar argument shows that can is a weak
equivalence. Finally γDr is a weak equivalence by [9, Lemma 1.4].

The case H = Dr with r even, can be done analogously by restricting to the
cofinal subcategory D2rF∗, compare Lemma 1.7 part (iii). �

2.3. The cyclotomic structure. The T-spectrum underlying THR(A,D) is cyclo-
tomic; see [9, Def. 1.2, Prop. 1.5]. We prove that the cyclotomic structure is com-
patible with the G-action. For this purpose, we introduce the notation of an O(2)-
cyclotomic spectrum. Let

ρr : O(2)→ O(2)/Cr

be the root isomorphism given by ρr(z) = z
1
rCr if z ∈ T and ρr(x) = x if x ∈ G. The

isomorphism ρr induces isomorphisms of enriched categories

Jρ∗r : J UCr
O(2)/Cr

∼=−→J
ρ∗rU

Cr

O(2) , Tρ∗r : TO(2)/Cr

∼=−→ TO(2).

The isomorphism of universes fr : U ∼=−→ ρ∗rUCr defined earlier induces an isomorphism
of enriched categories

fr : J U
O(2)

∼=−→J
ρ∗rUCr
O(2) .
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If Y is a O(2)/Cr-spectrum indexed on UCr , then we let ρ∗rY be the O(2)-spectrum
indexed on U given by the composition

J U
O(2)

fr−→J
ρ∗rU

Cr

O(2)

J−1
ρ∗r−−−→J UCr

O(2)/Cr

Y−→ TO(2)/Cr

Tρ∗r−−→ TO(2).

Definition 2.6. An O(2)-cyclotomic spectrum is an orthogonal O(2)-spectrum X
together with maps of orthogonal O(2)-spectra for all r ≥ 0,

Tr : ρ∗r(X
gCr)→ X,

such that the composite from the derived geometric fixed point functor

ρ∗r(X
c)gCr → ρ∗r(X

gCr)
Tr−→ X

is an F -equivalence, where the first map is induced by the cofibrant replacement
jc : Xc → X. Furthermore we require that for all s, r ≥ 1 the following diagram
commutes:

ρ∗rs(X
gCrs) ρ∗s((ρ

∗
r(X

gCr))gCs) ρ∗s(X
gCs)

ρ∗r((ρ
∗
s(X

gCs))gCr) ρ∗r(X
gCr) X.

ρ∗s(T
gCs
r )

Tr

ρ∗r(T
gCr
s ) Ts

The geometric fixed point functor XgCr is defined as a left Kan extension via

φ : J U
O(2);Cr

→J UCr
O(2)/Cr

, φ(V ) = V Cr ,

of the functor FixCr X. To construct cyclotomic structure maps it therefore suffices
to construct O(2)-equivariant maps

T̃r : ρ∗r(X(V )Cr)→ X(ρ∗r(V
Cr)),

for each representation V satisfying certain compatibility conditions to ensure com-
mutativity of the diagram above; compare [9, Lemma 1.2].

Example 2.7. The O(2)-equivariant sphere spectrum S is an O(2)-cyclotomic spec-
trum with structure maps arising from the homeomorphisms: ρ∗r((SV )Cr)→ Sρ

∗
r(V Cr ).

Both in the next example and in the construction of the cyclotomic structure map
for THR(A,D), we will need to pull back the group action on a diagram along a group
homomorphism. Let g : K → H be a group homomorphism. Let (X : J → Sets, α)
be a H-diagram indexed by J . Let g∗J denote the category J with K-action defined
by k := g(k) : J → J . We have natural transformations

g∗αk := αg(k) : X ⇒ X ◦ g(k).

This gives a K-diagram indexed by g∗J and there is a unique isomorphism of K-sets:

colim
g∗J

g∗X ∼= g∗(colim
J

X).
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Example 2.8. Let Γ be a topological group. The geometric realization of the dihedral
bar construction on Γ is an O(2)-space which we denote BdiΓ. As explained in the
introduction, there is an F -equivalence from BdiΓ to the free loop space on the
classifying space, Map(T, BΓ), if we give the free loop space an O(2)-action as follows:
The group O(2) acts on T by multiplication and complex cojugation. Taking inverses
in the group induces a G-action on BΓ, and we view BΓ as an O(2)-space with trivial
T-action. We let O(2) act on the free loop space by the conjugation action.

There are T-equivariant homeomorphisms

pr : BdiΓ
∼=−→ ρ∗r

(
BdiΓCr

)
.

are constructed in [14, Sect. 2.1.7]. We run trough the construction of pr to ensure
that it is O(2)-equivariant. Since we already know that pr is continuous, we will
not keep track of continuity. First we recall the dihedral bar constrcution on Γ. For
F ∈ F , let Bdi[F ] = ΓF . Let F ⊂ F ′ be finite subsets of the circle. We define
sF
′

F : ΓF → ΓF
′ by repeating the identity element 1 ∈ Γ as pictured in the example:

g3 g1

g2

g3 g1

1

1
g3

We define dF ′F : ΓF
′ → ΓF by pushing the group elements clockwise around the circle

using the multiplication in Γ, as pictured in the example:

g2

g4 g1

g5

g3

g4 g5g1

g2g3

We describe the natural transformations tF : ΓF −→ Γt(F ) and ωF : ΓF −→ Γω(F ), where
t ∈ T and ω is complex conjugation. They both permute a tuple of group elements
accordingly and ω, in addition, takes each label to its inverse:

tF ((gz)z∈F ) = (gt−1(y))y∈t(F ), ωF ((gz)z∈F ) = ((gω−1(y))
−1)y∈ω(F ).

The geometric realization BdiΓ := colimF∈F ΓF is an O(2)-space.
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We proceed to construct the map pr. Let F denote the category of finite subsets
of T/Cr and set inclusions. We have O(2)/Cr-equivariant bijections:

(
colim
F∈F

ΓF
)Cr ∼=←−

(
colim

C·F∈CrF
ΓCr·F

)Cr

∼=←− colim
Cr·F∈CrF

(
ΓCr·F

)Cr

∼=←− colim
Cr·F∈CrF

ΓCr·F/Cr

∼=−→ colim
F∈F

ΓF .

The first map is induced by the inclusion of categories CrF ↪→ F , the second map
is induced by the inclusion (ΓCr·F )Cr ↪→ ΓCr·F , the third map is induced by the
diagonal isomorphism ΓCr·F/Cr →

(
ΓCr·F

)Cr , and, finally the last map is induced
by the O(2)/Cr-equivariant isomorphism of categories CrF → F given on objects
by Cr · F 7→ Cr · F/Cr. If we pull back the diagram F 7→ ΓF along ρr, then the
isomorphism of categories F → F given by F 7→ ρr(F ) induces an O(2)-bijection:

ρ∗r

(
colim
F∈F

ΓF
)
∼=←− colim

F∈F
Γρr(F ).

Finally the isomorphism of dihedral sets ΓF → Γρr(F ) induces an O(2)-bijection

colim
F∈F

Γρr(F ) ∼=←− colim
F∈F

ΓF .

We combine the maps above to obtain pr, which is indeed O(2)-equivariant. We give
the suspension spectrum Σ∞O(2)B

diΓ+ the structure of an O(2)-cyclotomic spectrum
by letting T̃r be the map:

Sρ
∗
r(V Cr ) ∧ ρ∗r(BdiΓ)Cr+

id∧p−1
r−−−−→ Sρ

∗
r(V Cr ) ∧BdiΓ+.

Let V be a finite dimensional O(2)-representation and let r ≥ 1. We run through
the construction of the map

T̃r : ρ∗r
(

THR(A,D)(V )Cr
)
→ THR(A,D)

(
ρ∗r(V

Cr)
)
.

defined in [9, Sect. 1.5], to check that it is O(2)-equivariant. Since it is already
known that the map is continuous, we will not keep track of continuity. Consider the
O(2)/Cr ×O(2)/Cr-diagram, where the second copy of O(2)/Cr acts trivially on the
category:

CrF → Top∗, Cr · F 7→ THR(A,D;SV
Cr

)[Cr · F/Cr].
We pull the diagram back along

D : 4(O(2))/4(Cr)→ O(2)/Cr ×O(2)/Cr, D((a, a)4(Cr)) = (aCr, aCr),
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and define a natural transformation of 4(O(2))/4(Cr)-diagrams by

THR(A,D;SV )[Cr · F ]4(Cr)
∼=←− hocolim

ICr ·F/Cr

(
GCrF
SV
◦ 4r

)4(Cr)

= hocolim
ICr ·F/Cr

(
Map

(
(

∧

z∈Cr·F/Cr
Siz)∧r, (

∧

z∈Cr·F/Cr
Aiz)

∧r ∧ SV
))4(Cr)

res−−→ hocolim
ICr ·F/Cr

Map
( ∧

z∈Cr·F/Cr
Siz ,

∧

z∈Cr·F/Cr
Aiz ∧ SV

Cr
)

= THR(A,D;SV
Cr

)[Cr · F/Cr].
The map res is induced by the natural transformation obtained by restricting a map to
the fixed point space: Map(X,Y )Cr → Map(XCr , Y Cr). The natural transformation
above induces a map of colimits which we also denote res.

If d : O(2)/Cr → 4(O(2))/4(Cr) denotes the isomorphism aCr 7→ (a, a)4(Cr),
then there is a commutative diagram of homomorphisms:

O(2) O(2)/Cr 4(O(2))/4(Cr)

O(2)×O(2) O(2)/Cr ×O(2)/Cr.

4

d

D
ρr × ρr

ρr

We have a string of O(2)/Cr-equivariant set maps:

ρ∗r
(
4∗ colim

F∈F
THR(A,D;SV )[F ]

)Cr
= (d ◦ ρr)∗

(
colim
F∈F

THR(A,D;SV )[F ]

)4(Cr)

∼=←− (d ◦ ρr)∗
(

colim
Cr·F∈CrF

THR(A,D;SV )[Cr · F ]4(Cr)
)

res−−→ (d ◦ ρr)∗
(
D∗
(

colim
Cr·F∈CrF

THR(A,D;SV
Cr

)[Cr · F/Cr]
))

= (4∗)
(
ρ∗r × ρ∗r

(
colim

Cr·F∈CrF
THR(A,D;SV

Cr
)[Cr · F/Cr]

))

∼=←− (4∗)
(
ρ∗r × ρ∗r

(
colim
F∈F

THR(A,D;SV
Cr

)[F ]
))

∼=←− 4∗ colim
F∈F

THR(A,D;Sρ
∗
r(V Cr ))[ρr(F )]

∼=←− 4∗ colim
F∈F

THR(A,D;Sρ
∗
r(V Cr ))[F ].

The maps labelled ∼= are bijections. The map in the second line is induced by the
inclusion of categories CrF ↪→ F . The map in the fifth line is induced by the isomor-
phism of O(2)/Cr-categories CrF → F given by Cr ·F 7→ Cr ·F/Cr. The map in the
sixth line is induced by the functor F → F given by F 7→ ρr(F ) and finally the last
map is induced by the obvious isomorphism of dihedral spaces. The composition is
the cyclotomic structure map T̃r, which is indeed O(2)-equivariant.
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Theorem 2.9. The composite

ρ∗r(THR(A,D)c)gCr → ρ∗r THR(A,D)gCr
Tr−→ THR(A,D)

is an F -equivalence.
Proof. By [15, Lemma 4.10] it suffices to show that the map of J U

O(2);Cr
-spaces

T̃r : FixCr THR(A,D)→ (ρ−1
r )∗(THR(A,D) ◦ φ),

induces an isomorphism on πHq (−) for all finite subgroups H ≤ O(2)/Cr, where these
are the homotopy groups of J U

O(2);Cr
-spaces, see [15, Def. 4.8]. We consider the

case q = 0, the general case is similar. More specifically, we must show that the
connectivity of the induced O(2)/Cr-map on H-fixed points

(
ΩV Cr THR(A,D)(V )Cr

)H
→
(

ΩV Cr (ρ−1
r )∗THR(A,D)(ρ∗rV

Cr)
)H

tends to infinity with V for all finite subgroups H ≤ O(2)/Cr.
The only non-homeomorphism in the definition of T̃r, is the restriction map in-

duced by the natural transformation induced by restricting a map to the fixed point
space: Map(X,Y )Cr → Map(XCr , Y Cr). We let H = Drs/Cr, the case H = Crs/Cr
is analogous. We assume that 2 - rs. The case 2 | rs, can be done analogously
by restricting to the cofinal subcategory D2srF∗, compare Lemma 1.7 part (iii). We
restrict to the cofinal subcategory DrsF∗ ⊂ CrF . The map in question is then

(
ΩV Cr colimDsrF∗

(
THR(A,D;SV )[DsrF ]

)Cr )H

(
ΩV Cr colimDsrF∗ D

∗THR(A,D;SV
Cr

)[DsrF/Cr]
)H

,

res

where H = 4(Drs)/4(Cr), ΩV Cr is viewed as a 4(O(2))/4(Cr)-space, DrsF∗ as a
category with a 4(O(2))/4(Cr)-action and D is the homomorphism

4(O(2))/4(Cr)→ O(2)/Cr ×O(2)/Cr, D(a, a)4(Cr) = (aCr, aCr).

It follows from [9, Lemma 1.4] that we can move ΩV Cr past the colimit up to weak
equivalence. We can then take fixed points before taking the colimit. Thus we are
reduced to showing that the connectivity of the map
(

ΩV Cr
(
THR(A,D;SV )[DsrF ]

)Cr )H res−−→
(

ΩV CrD∗THR(A,D;SV
Cr

)[DsrF/Cr]
)H

tends to infinity with V . We can move ΩV Cr past the homotopy colimit, up to weak
equivalence, and by Lemma 1.4 we can take fixed points before taking homotopy
colimits. Let i ∈ Ob

(
(IG){1,t2rs} × IDsrF/D−sr

)
. By Lemma 1.10, we are reduced to

showing that the connectivity of the map
(

ΩV Cr Map(
∧
z∈DsrF S

iz ,
∧
z∈DsrF Aiz ∧ SV )Cr

)H

(
ΩV Cr Map((

∧
DsrF

Siz)Cr , (
∧
DsrF

Aiz ∧ SV )Cr)
)H

.

res
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tends to infinity with V and i. We can rewrite the map in question as

MapDrs

(
SV

Cr ∧∧z∈DsrF S
iz ,
∧
z∈DsrF Aiz ∧ SV

)

MapDrs

(
SV

Cr ∧ (
∧
DsrF

Siz)Cr ,
∧
z∈DsrF Aiz ∧ SV

)
.

res

This is a fibration with fiber

MapDrs

(
SV

Cr ∧ (
∧

z∈DsrF
Siz/(

∧

z∈DsrF
Siz)Cr),

∧

z∈DsrF
Aiz ∧ SV

)
.

Let SW =
∧
z∈DsrF S

iz . By Lemma A.2 the connectivity of the fiber is greater than
or equal to

min
K≤Drs

(
conn

(
(
∧

z∈DsrF
Aiz ∧ SV )K

)
− dim

(
(SV

Cr ∧ SW /SWCr
)K
))
.

Let t divide rs. It follows from the connectivity assumptions 1.6 on (A,D) that

conn(
∧

z∈DsrF
Aiz ∧ SV )Ct ≥ rs

t

(
i1 + it2rs +

∑

z∈DsrF/D−sr

2iz

)
+ dim(V Ct)− 1,

conn(
∧

z∈DsrF
Aiz ∧ SV )Dt ≥ rs

t

(⌈ i1
2

⌉
+
⌈ it2rs

2

⌉
+

∑

z∈DsrF/D−sr

iz

)
+ dim(V Dt)− 1.

If Cr ≤ Ct then the dimension of both (SW /SW
Cr

)Ct and (SW /SW
Cr

)Dt is 0, hence
the connectivity of the fiber tends to infinity with i. Otherwise, since Cr is normal in
Drs, we have a splitting W = WCr ⊕W ′, and by Lemma A.4:

dim
(
SV

Cr ∧ (SW /SW
Cr

)
)Ct

=
rs

t

(
i1 + it2rs +

∑

z∈DsrF/D−sr

2iz

)
+ dim(V CrCt),

dim
(
SV

Cr ∧ (SW /SW
Cr

)
)Dt

=
rs

t

(⌈ i1
2

⌉
+
⌈ it2rs

2

⌉
+

∑

z∈DsrF/D−sr

iz

)
+ dim(V CrDt).

Thus the connectivity of the fiber is greater than

minCr�K≤Drs(dim(V K)− dim(V CrK))− 1.

We can find a Drs-representation V ′ which is fixed by K but not by the bigger group
CrK. Adding copies of V ′ to V , we can make the connectivity as big as we want. �

3. Real topological cyclic homology

The O(2)-cyclotomic structure on THR(A,D) allows us to define G-equivariant
restriction maps R : THR(A,D)Cpn → THR(A,D)Cpn−1 , and we can define the real
topological cyclic homology at a prime p as a G-spectrum TCR(A,D; p) by mim-
icking the classical definition. Before we do so, we review some constructions from
equivariant stable homotopy theory.
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3.1. The equivariant stable homotopy category. Let H be a compact Lie group.
We work in the H-stable homotopy category which is defined to be the homotopy
category of the model category of orthogonal H-spectra on a complete universe with
the stable model structure, e.g. [15, Chapter III, 4.1,4.2].

Let X be an orthogonal H-spectrum and let V be an H-representation. The
suspension ΣX is defined by (ΣX)(V ) = S1∧X(V ). The group O(V )oH acts through
the action on X(V ), and the structure maps are the suspensions of the structure maps
in X. The loop spectrum ΩX is defined by (ΩX)(V ) = Map(S1, X(V )). The group
O(V ) o H acts through the action on X(V ). The structure maps are given as the
composite

Map(S1, X(V )) ∧ SW → Map(S1, X(V ) ∧ SW )
Map(id,λV,W )−−−−−−−−−→ Map(S1, X(V )).

The functors are adjoint and both preserve π∗-isomorphisms. We let ε : ΣΩ ⇒ id
denote the counit of the adjunction and η : id⇒ ΩΣ denote the unit of the adjunction.
Both ε and η are natural isomorphisms on the homotopy category.

Let ψ : A −→ B be a map of pointed H-spaces. We define the mapping cone by

Cψ = B ∪ψ ([0, 1] ∧A),

where 1 ∈ [0, 1] is the basepoint for the interval and H acts trivially on the interval.
Let i : B → Cψ be the inclusion. Collapsing the image of the inclusion to the basepoint
defines a map δ : Cψ → S1 ∧ A = ΣA. We define the mapping cone Cf of a map
of orthogonal H-spectra f : X −→ Y by applying this construction lewelwise. The
inclusions and the collapse maps assemble into morphisms of orthogonal H-spectra
and we obtain a sequence of orthogonal H-spectra

X
f−→ Y

i−→ Cf
δ−→ ΣX.(4)

We call a diagram of the form X → Y → Z → ΣX in the H-stable homotopy
category a triangle. The collection of all triangles isomorphic to triangles of the form
(4) gives the H-stable homotopy category the structure of a triangulated category, see
[19, Theorem A.12]. More precisely, Schwede takes the distinguished triangles to be
all triangles isomorphic to triangles of the form

V
j−→W →W/V

∂−→ ΣW,

where j is a cofibration and V andW are cofibrant objects and ∂ fits in the homotopy
commutative diagram

V W W/V ΣV

V W Cj ΣV,

j ∂

δ

c∼ idid id
j i

where c collapses the cone of V to the base point. In order to see that this choice
makes the triangles of the form (4) distinguished, we first note that the map c is a
weak equivalence by the gluing lemma, and therefore the lower row is a distinguished
triangle. Let f : X → Y be an arbitrary map. We cofibrantly replace X and Y
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and get a map Xc fc−→ Y c, which we factor as a cofibration f̃ c followed by a weak
equivalence in the following diagram

X Y Cf ΣX

Xc Y c Cfc ΣXc

Xc Y ′ Cf̃c ΣXc.

f i δ

f c i δ

f̃ c i δ

∼ ∼jc jc ∼ ∼ Σ(jc)

id ∼ ∼ id

It follows from the long exact sequence induced by the cofiber sequence that the
induced map on cones are π∗-isomorphisms. We note that Y ′ is cofibrant, hence the
bottom triangle is distinguished, and therefore the top triangle is distinguished.

In the rest of this section we establish some identification of distinguished triangles
that we will need later.

Let ψ : A −→ B be a map of pointed H-spaces. We define the homotopy fiber of
ψ as the pointed H-space

Hψ = {(γ, a) ∈ B[0,1] ×A | γ(0) = ψ(x), γ(1) = ∗},
where (γ∗, ∗) serves as the basepoint and H acts trivially on the interval. Here γ∗
refers to the constant path at the basepoint. Let p : Hψ → A be the projection
p(γ, a) = a and let j : ΩB → Hψ be the inclusion j(α) = (α, ∗). We define the
homotopy fiber of a map of orthogonal H-spectra f : X −→ Y by applying this
construction lewelwise. The projections and inclusions assemble into morphisms of
orthogonal H-spectra p : Hf → X and j : ΩY → Hf . See [11, Theorem 7.1.11] for
the following lemma.

Lemma 3.1. The triangle

Hf
p−→ X

f−→ Y
Σ(j)◦ε−1

−−−−−−→ ΣHf ,

is distinguished, where ε : ΣΩY → Y is the counit of the loop-suspension adjunction.

Given maps of pointed H-spaces f, g : A→ B we define the homotopy equalizer
as the pointed H-space

HE(f, g) = {(γ, a) ∈ B[0,1] ×A | γ(0) = f(a), γ(1) = g(a)},
where (γ∗, ∗) is the basepoint andH acts trivially on the interval. Let p : HE(f, g)→ A
denote the projection p(γ, a) = a and ι : ΩB → HE(f, g) the inclusion ι(α) = (α, ∗).
We define the homotopy equalizer of maps of orthogonal H-spectra f, g : X −→ Y by
applying this construction lewelwise, and the projections and inclusions assemble into
morphisms of orthogonal H-spectra.

Lemma 3.2. The triangle

HE(f, g)
p−→ X

f−g−−→ Y
Σ(ι)◦ε−1

−−−−−→ Σ HE(f, g),

is distinguished, where ε : ΣΩY → Y is the counit of the loop-suspension adjunction.
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Before we prove the lemma, we introduce some notation. For α ∈ ΩY , let α ∈ ΩY
denote the inverse loop, i.e. α(t) = α(1 − t). Given two loops α, β ∈ ΩY the
concatenated loop β ? α ∈ ΩY is given by

β ? α(t) =

{
α(2t) if t ≤ 1/2,

β(2(t− 1
2)) if t > 1/2.

Given a path γ in Y and s ∈ [0, 1], let γ≤s and γ≥s denote the paths in Y given by

γ≤s(t) = γ(t · s), γ≥s(t) = γ(t · (1− s) + s), t ∈ [0, 1].

We have a canonical path in ΩY from the loop γ ? γ to the constant loop ∗ given by

t 7→ γ≥t ? γ≤(1−t).

Proof. We define the map F −G : ΩΣX → ΩΣY to be the composition

ΩΣX
4−→ ΩΣX × ΩΣX

(Σg◦−)?(Σf◦−)−−−−−−−−−−→ ΩΣY,

where 4 is the diagonal map and consider the commutative diagram:

ΩY HE(f, g) X Y

Ω(ΩΣY ) HF−G ΩΣX ΩΣY.

ι p f − g

j P F −G
∼ Ω(η) η η∼ ∼

The composition

[0, 1]
γ−→ Y

η−→ ΩΣY
η(g(x))?(−)−−−−−−−→ ΩΣY

is a path from η(g(x))?η(f(x)) to η(g(x))?η(g(x)). We let Ψγ,x be the concatenation
of this path with the canonical path from η(g(x)) ? η(g(x)) to the basepoint. We
define a map HE(f, g) → HF−G by (γ, x) 7→ (Ψγ,x, η(x)). The constructed map is a
π∗-isomorphism and completes the commutative diagram above. �

Consider the following diagram of orthogonal H-spectra

X Z Y
f g

We define the homotopy pull-back spectrum HP(f, g) lewelwise:

HP(f, g)(V ) = {(x, γ, y) ∈ X(V )× Z(V )[0,1] × Y (V ) | γ(0) = f(x), γ(1) = g(y)},
with H acting trivially on the interval. The projections pX : HP(f, g)(V ) → X(V ),
pY : HP(f, g)(V )→ Y (V ) assemble into maps of orthogonal H-spectra. The following
diagram is homotopy commutative:

ΩY HpY HP(f, g) Y

ΩZ Hf X Z.

p pY

j f

Ωg s ∼ pX g
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The map s is defined as follows. A point in HpY (V ) is a triple (x, γ, y) ∈ HP(f, g)(V )
along with a path β : I → Y such that β(0) = y and β(1) = ∗. Then

s(β, (x, γ, y)) = ((g ◦ β) ? γ, x).

The following lemma now follows from Lemma 3.1 and the diagram above:

Lemma 3.3. The triangle

Hf
p◦s−1

−−−→ HP(f, g)
pY−−→ Y

Σ(j)◦ε−1◦g−−−−−−−→ ΣHf ,

is distinguished.

We end this section by considering the following setup, that will occur in the
calculation of the topological cyclic homology of spherical groups rings in Section 4.
Assume we have a sequence of H-spectra Xi for i ≥ 0, maps fi : Xi → Xi−1 and a
map g : X0 → X0. We recall that the unit of the loop-suspension adjunction

η : X0
∼−→ ΩΣ(X0)

is a π∗-isomorphism and consider the following diagram:

X0 ΩΣ(X0)×∏∞i=1Xi
∏∞
i=1Xi

X0 ΩΣ(X0)×∏∞i=1Xi
∏∞
i=1Xi,

incl ◦ η proj

idg id((η ◦ f1 ◦ pr1) ? Σ(g), f2, f3, . . . ) idq ◦∏i≥1 fi

incl ◦ η proj

where

(η ◦ f1 ◦ pr1) ? Σ(g) : ΩΣ(X0)×
∞∏

i=1

Xi → ΩΣ(X0)

is the map
(α, x) 7→ η ◦ f1 ◦ pr1(x) ? Σ(g) ◦ α

The diagram gives rise to a distinguished triangle connecting the vertical homotopy
equalizers as we now explain. Consider the following diagram where the maps are
defined below:

ΩΣX0 ΩΣX0 HE
(
q ◦∏i≥1 fi, id

)
.

ΩΣ(g)−id −η◦f1◦pr1

The left hand map takes a loop α ∈ ΩΣX0 to the loop Σg ◦α ? α ∈ ΩΣX0. The right
hand map takes a pair

(γ, x) ∈ HE
(
q ◦
∏

i≥1

fi, id
)
⊆
∞∏

i=1

X
[0,1]
i ×

∞∏

i=1

Xi

to the loop η ◦ f1 ◦ pr1(x). A point in the homotopy pull-back of the diagram is a
loop α ∈ ΩΣX0, a point x ∈∏∞i=1Xi and paths

γ : q ◦
∏

i≥1

fi(x) ∼ x, Σ(g) ◦ α ? α ∼ η ◦ f1 ◦ pr1(x).

The notation x ∼ y means that the path takes the value x at 0 and the value y at 1.
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Next consider the diagram:

ΩΣX0 ×
∏∞
i=1Xi ΩΣX0 ×

∏∞
i=1Xi.

(η◦f1◦pr1)?Σ(g)×(f2,f3,... )

id

The top map takes a pair (α, x) ∈ ΩΣX0 ×
∏∞
i=1Xi to the pair

(
η ◦ f1 ◦ pr1(x) ? Σ(g) ◦ α, q ◦

∏

i≥1

fi(x)
)
.

A point in the homotopy equalizer is therefor a loop α ∈ ΩΣX0, a point x ∈∏∞i=1Xi

and paths
η ◦ f1 ◦ pr1(x) ? Σ(g) ◦ α ∼ α, q ◦

∏

i≥1

fi(x) ∼ x.

Thus there is a homotopy equivalence from the homotopy pullback to the homotopy
equalizer. It follows from Lemma 3.3 that there is a distinguished triangle of the form

HE(ΩΣg, id) −→ HE((η ◦ f1 ? Σg, f2, f3, . . . ), id) −→

HE(q ◦
∏

fi, id)
−Σ(ι) ◦ ε−1 ◦ η ◦ f1 ◦ pr1−−−−−−−−−−−−−−−→ Σ HE(ΩΣg, id),

where the first map is induced by the inclusion and the second map is induced by the
projection and

ι : Ω
(
ΩΣ(X0)

)
→ HE(ΩΣ(g), id)

was defined above when we described the construction of homotopy equalizers. Note
that we have a commutative square

ΩΣ(X0) X0

ΩΣ(X0) X0.

η

∼

η

∼

idΩΣ(g) idg

Thus η induces an π∗-isomorphism of homotopy equalizers. The triangle above sim-
plifies to the following triangle under this identification:

HE(g, id)
I−→ HE((η ◦ f1 ? Σg, f2, f3, . . . ), id)

P−→

HE(q ◦
∏

i≥1

fi, id)
−Σ(ι) ◦ ε−1 ◦ f1 ◦ pr1−−−−−−−−−−−−−→ Σ HE(g, id),

where I is induced by

incl ◦ η : X0 → ΩΣ(X0)×
∞∏

i=1

Xi,

P is induced by the projection

proj : ΩΣ(X0)×
∞∏

i=1

Xi →
∞∏

i=1

Xi,
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and ι : ΩX0 → HE(g, id). Finally we note that HE(q ◦∏i≥1 fi, id) is a model for the
homotopy limit holimi≥1Xi and we obtain the following theorem:

Theorem 3.4. The triangle

HE(g, id)
I−→ HE((η◦f1?Σg, f2, f3, . . . ), id)

P−→ holim
i≥1,fi

Xi
−Σ(ι) ◦ ε−1 ◦ f1 ◦ pr1−−−−−−−−−−−−−→ Σ HE(g, id)

is distinguished.

3.2. Real topological cyclic homology. We fix a prime p and we let Fp denote the
family of O(2)-subgroups generated by the subgroups Dpn and Cpn for all n ≥ 0. Let
X be a Fp-fibrant O(2)-cyclotomic spectrum. We let R denote the O(2)-equivariant
composition

R : ρ∗pX
Cp

ρ∗p(γ)−−−→ ρ∗pX
gCp Tp−→ X.

Let i : G ↪→ O(2) denote the inclusion. We will let XCpn denote the underlying
G-spectrum indexed on i∗U . We have an isomorphism of orthogonal G-spectra

(ρ∗pX
Cp)Cpn−1 ∼= XCpn ,

and we define a map of orthogonal G-spectra

Rn : XCpn ∼= (ρ∗pX
Cp)Cpn−1 R

C
pn−1

−−−−−→ XCpn−1 .

Remark 3.5. We let X be an O(2)-cyclotomic spectrum and let jf : X
∼−→ Xf be a

fibrant replacement and consider the following diagram:

ρ∗p(X
c)gCp

ρ∗p((Xf )c)gCp

ρ∗pX
gCp

ρ∗p(Xf )gCp

X

Xf .

ρ∗p((jf )c)gCp ∼ ρ∗p(jf )gCp ∼

Tp

jf ∼

T̂p

Even though Xf is not cyclotomic in the sense of Definition 2.6, we do have maps
T̂p : ρ∗p(Xf )gCp → Xf in the O(2)-stable homotopy category. We let R denote the
composition

R : ρ∗p(Xf )Cp
ρ∗p(γ)−−−→ ρ∗p(Xf )gCp

T̂p−→ X

We get maps in the O(2)-stable homotopy category

Rn : X
Cpn

f → X
Cpn−1

f

by mimicking the above construction.

In order to define the real topological cyclic homology at a prime p, we let

TRRn(A,D; p) = THR(A,D)Cpn ,

and define the G-spectrum TRR(A,D; p) to be the homotopy limit over the Rn maps,

TRR(A,D; p) := holim
n,Rn

TRRn(A,D; p).
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The inclusions of fixed points

Fn : XCpn → XCpn−1 ,

which we refer to as the Frobenius maps, are G-equivariant and induce a self map of
TRR(A,D; p). In order to describe this map, we let N0 denote the category

· · · → n→ (n− 1)→ · · · → 2→ 1→ 0,

and we let TRR(−)(A,D; p) : N0 → Top∗ denote the functor which sends n → n − 1

to THR(A,D)Cpn
Rn−−→ THR(A,D)Cpn−1 . Let τ : N0 → N0 denote the translation

functor τ(n) = n+ 1. The Frobenius maps Fn assemble into a natural transformation

F : TRR(−)(A,D; p) ◦ τ ⇒ TRR(−)(A,D; p),

and we let ϕ denote the composite

holim
N0

TRRn(A,D; p)
indτ−−→ holim

N0

TRRn+1(A,D; p) ◦ τ F−→ holim
N0

TRRn(A,D; p).

Definition 3.6. The real topological cyclic homology at p, TCR(A,D; p), is the
homotopy equalizer, HE(ϕ, id), of the diagram

TRR(A,D; p) TRR(A,D; p).
ϕ

id

We conclude this section by describing the homotopy fiber of the restriction maps.
Let R denote the family of subgroups of O(2) consisting of the trivial subgroup and
all order 2 subgroups generated by a reflection of the plane in a line trough the origin;

R = {1, 〈tω〉 | t ∈ T, ω ∈ G}.
Write ER for the classifying space of this family, thus ER is an O(2)-CW-complex
such that

ERH ∼=
{
∗ if H ∈ R
∅ if H /∈ R.

If we let O(2) act on C by multiplication and complex conjugation, and on Cn by the
diagonal action, then the O(2)-space

S(C∞) =

∞⋃

n=0

S(Cn+1),

where S(Cn+1) denotes the unit sphere in Cn+1, is a model for ER. The O(2)-
equivariant homeomorphism S(C)?S(C)? · · · ∼= S(C∞) shows that the G-fixed points
are contractible. We let ẼR denote the mapping cone of the map ER+ −→ S0 which
collapses ER to the non-basepoint. We have a cofibration sequence of based O(2)-
spaces,

ER+ −→ S0 → ẼR → ΣER+.

and we obtain a distinguished triangle of orthogonal G-spectra by smashing the se-
quence with an O(2)-spectrum X and taking derived Cpn-fixpoints.

(ER+ ∧X)
Cpn

f −→ X
Cpn

f
λ
Cpn−−−→ (ẼR∧X)

Cpn

f → Σ(ER+ ∧X)
Cpn

f .(5)

We denote the left hand spectrum by H·(Cpn ;X) and refer to it as the G-equivariant
homology spectrum of the subgroup Cpn acting on the O(2)-spectrum X. The third
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term in the triangle identifies with the G-equivariant derived Cpn-geometric fixed
points; see [15, Prop. 4.17], giving the well-known isotropy separation sequence.

Lemma 3.7. Let X be a O(2)-cyclotomic spectrum. The triangle

H·(Cpn ;X) −→ X
Cpn

f
Rn−−→ X

Cpn−1

f → Σ H·(Cpn ;X),

is distinguished in the G-stable homotopy category.

Proof. The result follows immediately using the distinguished triangle (5), the iden-
tification of (ẼR∧X)

Cpn

f with the G-equivariant derived Cpn-geometric fixed points

and the π∗-isomorphism of G-spectra (Xc)gCp → XgCp
Tp−→ X. �

Remark 3.8. Let f : X → Y be a map of O(2)-spectra. If both X and Y are
cyclotomic and f commutes with the cyclotomic structure maps, then f commutes
with R. If f restricts to a π∗-isomorphism of G-spectra, then by induction using the
distinguished triangle above, f is a Fp-equivalence.

4. Spherical group rings

In this section we determine the real topological Hochschild homology of the
spherical group ring S[Γ] of a topological group Γ with anti-involution id[Γ] induced by
taking inverses in the group. We determine theG-homotopy type of TCR(S[Γ], id[Γ]; p)
where p is a prime. This is a generalization of results by Bökstedt-Hsiang-Madsen in
[2, Section 5]; see also [14, Section 4.4].

Theorem 4.1. Let Γ be a topological group. There is a map of O(2)-orthogonal spectra

i : Σ∞O(2)B
diΓ+ → THR(S[Γ], id[Γ]),

commuting with the cyclotomic structures, which induces isomorphisms on π
Cpn
∗ (−)

and πDpn∗ (−) for all n ≥ 0 and all primes p.

Proof. Let V be an O(2)-representation and let F ⊂ T be a finite subset. We define
the map iV [F ] to be the composition

∧
z∈F

Γ+ ∧ SV ∼= Map
(
∧
z∈F

S0,
(
∧
z∈F

S0
)
∧
(
∧
z∈F

Γ+

)
∧ SV

)

→ hocolim
IF

Map
(
∧
z∈F

Siz ,
(
∧
z∈F

Siz
)
∧
(
∧
z∈F

Γ+

)
∧ SV

)

∼= hocolim
IF

Map
(
∧
z∈F

Siz ,
(
∧
z∈F

(Siz ∧ Γ+)
)
∧ SV

)
,

where the last map is induced by the natural transformation given by permuting the
smash factors of the target. These maps commute with the dihedral structure and
the O(2)-action on V , thus we obtain an O(2)-equivariant map on realizations:

iV : BdiΓ+ ∧ SV → THR(S[Γ], id[Γ])(V ).

The map i commutes with the cyclotomic structure, hence by Remark 3.8, it suffices
to check that i restricts to a π∗-isomorphism of G-spectra. It follows from [17, Chapter
XVI, Thm. 6.4], that it suffices to show that i induces an isomorphism on π∗((−c)gCp)
and πe∗(−), hence we must show that the connectivity of the induced map

(iV )H : (BdiΓ+ ∧ SV )H → (THR(S[Γ], id[Γ])(V ))H ,
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is (dim(V H) + ε(V ))-connected, where H ∈ {e,G} and ε(V ) tends to infinity with V .
Let i ∈ Ob

(
(IG){1,−1} × IGF/F−

)
. After we restrict to the cofinal subcategory GF∗ ,

then the map iV in simplicial level G · F is equal to the composite:

∧
z∈G·F

Γ+ ∧ SV

hocolim
IG·F

Map
(
∧

z∈G·F
Siz , ∧

z∈G·F
Siz ∧ SV ∧ ∧

z∈G·F
Γ+

)
.

Map
(
∧

z∈G·F
Siz , ∧

z∈G·F
Siz ∧ SV ∧ ∧

z∈G·F
Γ+

)
η

The top map is the adjunction unit, which by the Equivariant Suspension Theorem
A.3 is at least 2 · dim(V ) − 1 connected as a map of non-equivariant spaces and
2·dim(V G)−1 connected onG-fixed points. By Lemma 1.4 we can make the lower map
as connected as desired as a map of G-spaces by choosing i ∈ Ob

(
(IG){1,−1}×IGF/F−

)

big enough. Thus the composite has the desired connectivity. �

The calculation of TCR(S[Γ], id[Γ]; p) relies on the fact that the restriction map

Rn : THR(S[Γ], id[Γ])Cpn → THR(S[Γ], id[Γ])Cpn−1

splits. In [6, Lemma 6.2.5.1], a splitting of Rn is constructed and it is straight forward
to check that the splitting is indeed G-equivariant. We denote this section Sn. We
note that the theorem above makes the splitting apparent. Indeed, recall that we have
defined O(2)-equivariant homeomorphisms pr : BdiΓ → ρ∗rB

diΓCr . The cyclotomic
structure map at a representation V and natural number r on Σ∞O(2)B

diΓ+ arises from
the adjoint homeomorphism

Sρ
∗
r(V Cr ) ∧ ρ∗r(BdiΓ)Cr+

id∧p−1
r−−−−→ Sρ

∗
r(V Cr ) ∧BdiΓ+,

which is split by id ∧ pr. This implies, that the map

Rn :
(
Σ∞O(2)B

diΓ+

)Cpn
f
→
(
Σ∞O(2)B

diΓ+

)Cpn−1

f

splits.
We let ∆r denote the G-equivariant composition

BdiΓ
pr−→ BdiΓCr ↪→ BdiΓ.

There is a commutative diagram in the G-stable homotopy category where i is the
Fp-equivalence of Theorem 4.1; see [14, Corollary 4.4.11]

THR(S[Γ], id[Γ]) Σ∞O(2)B
diΓ+

THR(S[Γ], id[Γ]) Σ∞O(2)B
diΓ+.

∼
i

∼
i

F1 ◦ S1 Σ∞∆p+

∼
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We set T := THR(S[Γ], id[Γ]) to ease notation and we recall the notation for the
G-equivariant homology spectrum

H·(Cpn ;BdiΓ) = (ER+ ∧ Σ∞O(2)B
diΓ+)

Cpn

f , n ≥ 1.

If n = 0, then we let

H·(1;BdiΓ) := Σ∞GB
diΓ+.

Let c : ER+ ∧ Σ∞O(2)B
diΓ+ −→ Σ∞O(2)B

diΓ+ denote the map that collapses ER to a
point. We let cn denote the composition

H·(Cpn ;BdiΓ)
(cf )

Cpn

−−−−−→
(
Σ∞O(2)B

diΓ+

)Cpn
f
−→ TCpn ,

where the last map is induced by the Fp-equivalence i of Theorem 4.1 and fibrant
replacement. By Lemma 3.7 we have distinguished triangles of G-spectra

H·(Cpn ;BdiΓ)
cn−→ TCpn

Rn−−→ TCpn−1 → Σ H·(Cpn ;BdiΓ),

which split and provide an isomorphism in the G-stable homotopy category

Sn ◦ · · · ◦ S1 ◦ i ∨ · · · ∨ Sn ◦ cn−1 ∨ cn :
n∨

j=0

H·(Cpj ;B
diΓ)

∼−→ TCpn .

There is a commutative diagram, where the projection maps collapse the nth summand
to the basepoint:

TCpn
∨n
j=0 H·(Cpj ;BdiΓ)

∏n
j=0 H·(Cpj ;BdiΓ)

TCpn−1
∨n−1
j=0 H·(Cpj ;BdiΓ)

∏n−1
j=0 H·(Cpj ;BdiΓ).

∼

Rn proj

∼

∼

∼

proj

Combined with the canonical map from the limit to the homotopy limit we obtain a
canonical isomorphism in the G-stable homotopy category

TRR(S[Γ], id[Γ]; p) ∼
∞∏

j=0

H·(Cpj ;B
diΓ).

We proceed to identify the Frobenius maps Fn. We have inclusions

incl : (ER+ ∧ Σ∞O(2)B
diΓ+)

Cpn

f → (ER+ ∧ Σ∞O(2)B
diΓ+)

Cpn−1

f .

We abuse notation slightly and let c denote the composite

(ER+ ∧ Σ∞GB
diΓ+)f

j−1
f−−→ ER+ ∧ Σ∞GB

diΓ+
c−→ Σ∞GB

diΓ+,
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where jf is fibrant replacement. There is a commutative diagram:

TCpn Σ∞GB
diΓ+ ∨

∨n
j=1 H·(Cpj ;BdiΓ)

TCpn−1 Σ∞GB
diΓ+ ∨

∨n−1
j=1 H·(Cpj ;BdiΓ).

∼

Fn Σ∞∆p+ ∨ c ◦ incl ∨ incl ∨ · · · ∨ incl

∼

We can now identify the self-map ϕ of TRR(S[Γ], id[Γ]; p) induced by the Frobenius
maps Fn. We have the following commutative diagram, where TCR(S[Γ], id[Γ]; p) is
the homotopy equalizer of the two middle maps:

Σ∞GB
diΓ+ ΩΣ

(
Σ∞GB

diΓ+

)
×
∞∏

j=1

H·(Cpj ;B
diΓ)

∞∏

j=1

H·(Cpj ;B
diΓ)

Σ∞GB
diΓ+ ΩΣ

(
Σ∞GB

diΓ+

)
×
∞∏

j=1

H·(Cpj ;B
diΓ)

∞∏

j=1

H·(Cpj ;B
diΓ),

idΣ∞∆p+ idX idq ◦∏i≥1 incl

incl ◦ η proj

incl ◦ η proj

where X = ((η ◦ c ◦ incl ◦ pr1) ? Σ(Σ∞∆p+), incl, . . . , incl) and the first map in the
tuple takes a pair

(α, x) ∈ ΩΣ
(
Σ∞GB

diΓ+

)
×
∞∏

j=1

H·(Cpj ;B
diΓ)

to the loop
(
η ◦ c ◦ incl ◦ pr1(x)

)
?
(
Σ(Σ∞∆p+) ◦ α

)
∈ ΩΣ

(
Σ∞GB

diΓ+

)
.

We let Σ∞GB
diΓ

“∆p=id”
+ denote the homotopy equalizer of Σ∞∆p+ and the identity

map,

Σ∞GB
diΓ

“∆p=id”
+ := HE(Σ∞∆p+, id).

Recall that we constructed a map ι : Ω(Σ∞GB
diΓ+) → Σ∞GB

diΓ
“∆p=id”
+ . The map

incl ◦ η and the projection induce the maps I and P in the following theorem, which
follows directly from Theorem 3.4.

Theorem 4.2. The triangle

Σ∞GB
diΓ

“∆p=id”
+

I−→ TCR(S[Γ], id[Γ]; p)
P−→ holim

j≥1
H·(Cpj ;B

diΓ)

−Σ(ι) ◦ ε−1 ◦ c ◦ incl ◦ pr1−−−−−−−−−−−−−−−→ Σ
(

Σ∞GB
diΓ

“∆p=id”
+

)

is distinguished in the G-stable homotopy category, where ε : ΣΩY → Y is the counit
of the loop-suspension adjunction.
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Remark 4.3. The inclusion of index categories induces a canonical π∗-isomorphism

holim
j≥0

H·(Cpj ;B
diΓ)

can−−→ holim
j≥1

H·(Cpj ;B
diΓ)

and the composite incl ◦ pr1 in the triangle can be replaced by pr0 ◦ can−1.

When Γ is trivial, the distinguished triangle of the above theorem simplifies to

ΩS ∨ S TCR(S, id; p) holim
i≥0

H·(Cpi ;S) ΣΩS ∨ ΣS.
−(ε−1 ◦ pr0)

If we rotate the distinguished triangle arising from the homotopy fiber of the projection
pr0 : holimi≥0 H·(Cpi ; S) −→ S given in Lemma 3.1 and add the distinguished triangle

S id−→ S −→ ∗ −→ ΣS, then we obtain the distinguished triangle:

ΩS ∨ S Hpr0 ∨ S holim
i≥0

H·(Cpi ;S) ΣΩS ∨ ΣS.
−(ε−1 ◦ pr0)

It follows from the axioms of a triangulated category that there is a non-canonical
isomorphism in the G-stable homotopy category TCR(S, id; p) ∼ Hpr0 ∨ S.

A non-equivariant identification after p-completion of the homotopy limit ap-
pearing in the triangle in Theorem 4.2 appears in [2] and in more generality in [14,
Lemma 4.4.9]. The result generalizes immediately to the equivariant setting. Let X
be an O(2)-spectrum and let M(Qp/Zp,−1) be the non-equivariant Moore spectrum.
We can view M(Qp/Zp,−1) as an orthogonal G-spectrum by giving it the trivial
G-action, see [15, Chapter V, Sect. 1]. We then define the p-completion of X to be
the function spectrum Xp̂ = [M(Qp/Zp,−1), X]. A map of orthogonal G-spectra is
an isomorphism in the G-stable category after p-completion, if it is an isomorphism in
the stable category after p-completion on underlying spectra and fixed point spectra.

The O(2)-spectrum ER+ ∧X is Cpn-free. It follows from the generalized Adams
isomorphism [17, Chapter XVI, Thm. 5.4] that there are isomorphisms in the G-stable
homotopy category

ER+ ∧Cpn X
∼−→ (ER+ ∧X)

Cpn

f

and under this isomorphism the inclusions of fixed points on the right hand side
correspond to the G-equivariant transfers on the left hand side

ER+ ∧Cpn X (ER+ ∧X)
Cpn

f

ER+ ∧Cpn−1 X (ER+ ∧X)
Cpn−1

f .

∼

trf incl

∼

We obtain an isomorphism in the G-stable homotopy category

holim
trf

ER+ ∧Cpi X
∼−→ holim

i≥1
H·(Cpi ;X),

and we can identify the left hand homotopy limit after p-completion:
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Theorem 4.4. Let X be an orthogonal O(2)-spectrum. The T-transfer

trfT : Σ1,1ER+ ∧T X → holim
trf

ER+ ∧Cpi X,

induces an isomorphism in the G-stable homotopy category after p-completion, where
Σ1,1 denotes suspension with the sign representation of G.

Proof. Recall that

S(C∞) =

∞⋃

n=0

S(Cn+1)

is a model for ER. We filter S(C∞) by the O(2)-subspaces S(Ck) and obtain the
diagram

Σ1,1S(Ck)+ ∧T X Σ1,1S(Ck+1)+ ∧T X Σ1,1S(Ck+1)/S(Ck) ∧T X

S(Ck)+ ∧Cpn X S(Ck+1)+ ∧Cpn X S(Ck+1)/S(Ck) ∧Cpn X.

trfT trfT

By induction it suffices to show that the right hand vertical map induces isomorphism
after p-completion on the homotopy limit of the transfers

trf : S(Ck+1)/S(Ck) ∧Cpn X → S(Ck+1)/S(Ck) ∧Cpn−1 X.

In order to identify the right vertical map, we first note the following general fact.
Let Y be a pointed O(2)-space and let i : G → O(2) be the inclusion. If we let i(Y )
denote the T-trivial O(2)-space whose underlying G-space is i∗Y , then there is an
O(2)-equivariant homeomorphism

S(C)+ ∧ Y
∼=−→ S(C)+ ∧ i(Y ), (z, y) 7→ (z, z−1y).

The proof of Lemma A.4 provides a homeomorphism of O(2)-spaces

S(Ck+1)/S(Ck) ∼= S(C)+ ∧ ΣS(Ck)

and it follows that the right vertical map in the diagram identifies with

Σ1,1S(C)/T+ ∧ i(ΣS(Ck) ∧X) S(C)/Cpn+ ∧ i(ΣS(Ck) ∧X),
τ∞ ∧ id

where τ∞ : Σ1,1S(C)/T+ → S(C)/Cpn+ is the G-equivariant transfer. Likewise the
transfer map

trf : S(Ck+1)/S(Ck) ∧Cpn X → S(Ck+1)/S(Ck) ∧Cpn−1 X,

identifies with

S(C)/Cpn+ ∧ i(ΣS(Ck) ∧X) S(C)/Cpn−1
+
∧ i(ΣS(Ck) ∧X),

τn ∧ id

where τn : S(C)/Cpn+ → S(C)/Cpn−1+ is the G-equivariant transfer.
As an O(2)-space S(C)+ = S0 ∨ S(C), with O(2) acting trivially on S0. If we

identify S(C)/Cpn with S(C) via the root isomorphism ρpn , then τn = id ∨ p.
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The result now follows exactly as in [14, Lemma 4.4.9] by first arguing that there
is a distinguished triangle of the form

Σ1,1i(ΣS2k−1∧X) −→ holim
τn

S(C)/Cpn+∧ i(ΣS2k−1∧X)→ holim
p

i(ΣS2k−1∧X)→ Σ.

The mod p homotopy groups of the homotopy limit vanish. Hence the left hand map
induces an isomorphism after p-completion as desired. �

If we let P∞(C) := S(C∞)/T be the infinite complex projective space with G
acting by complex conjugation, then it follows from Theorem 4.4, that we can iden-
tify the projection pr0 : holimi≥0 H·(Cpi ; S) −→ S with the G-equivariant T-transfer
Σ∞G Σ1,1P∞(C)→ S after p-completion. If we let Σ1,1P∞−1(C) denote the G-equivariant
homotopy fiber of the T-transfer above, then we obtain the following corollary gener-
alizing the classical calculation:

Corollary 4.5. After p-completion, there is an isomorphism in the G-stable homotopy
category

TCR(S, id; p) ∼ Σ1,1P∞−1(C) ∨ S.
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Appendix A. Equivariant homotopy theory

This appendix recalls some results from equivariant homotopy theory, which
we need in the paper. Let H be a finite group and let f : A → B be a map of
pointed H-spaces. We call the map f n-connected respectively a weak-H-equivalence
if fK : AK → BK is n-connected respectively a weak equivalence for all subgroups
K ≤ H. Let MapH(A,B) denote the space of pointed H-equivariant maps.

The following lemma can be found in [1, Prop. 2.7].

Lemma A.1. Let f : B → C be a map of pointed H-spaces and let A be a pointed
H-CW-complex. The induced map

f∗ : MapH(A,B)→ MapH(A,C)

is n-connected with n ≥ min
K≤H

{conn(fK)− dim(AK)}, where K runs through all sub-

groups of H.

Let i : A′ → A be an H-cofibration. For any pointed H-space B, the induced
map

i∗ : MapH(A,B) −→ MapH(A′, B)

is a fibration with fiber MapH(A/A′, B). The above Lemma estimates the connectivity
of mapping spaces such as the fiber by considering the map f : B → ∗. The estimate
amounts to the following lemma:

Lemma A.2. Let A be a pointed H-CW-complex and let B be a pointed H-space.
Then

conn(MapH(A,B)) ≥ min
K≤H

(conn(BK)− dim(AK)),

where K runs through all subgroups of H.

Throughout this paper we will make use of the Equivariant Suspension Theorem,
a proof can be found in [1, Theorem 3.3].

Theorem A.3 (Equivariant Freudenthal Suspension Theorem). Let V be a finite di-
mensional orthogonal H-representation and let A be a based H-space. The adjunction
unit

η : A→ ΩV ΣVA

is n-connected, where

n ≥ min{2 · conn(AH) + 1, conn(AK) | K ≤ H with dim V K > dim V H}.
Finally, we will need the following lemma.

Lemma A.4. Let V and W be finite dimensional orthogonal H-representations.
There is a canonical H-equivariant homeomorphism

SV⊕W /SW ∼= ΣSW ∧ S(V )+.

Proof. First note that we have canonical H-equivariant homeomorphisms

S(V ⊕W ) ∼= S(V ) ? S(W ) ∼= S(V )×D(W ) ∪S(V )×S(W ) D(V )× S(W ),

which gives a canonical H-equivariant homeomorphism

S(V ⊕W )/S(W ) ∼= SW ∧ S(V )+.
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We have a commutative diagram

S(W )+ S0 SW

S(V ⊕W )+ S0 SV⊕W

S(V ⊕W )/S(W ) ∗ SV⊕W /SW ,

c

c

id

where c collapses the unit-sphere to the non-basepoint, and we can identify

SV⊕W /SW ∼= ΣSW ∧ S(V )+.

. �
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ON THE GEOMETRIC FIXED POINTS OF REAL TOPOLOGICAL
HOCHSCHILD HOMOLOGY

AMALIE HØGENHAVEN

Abstract. We compute the component group of the derived G-geometric fixed
points of the real topological Hochschild homology of a ring with anti-involution,
where G denotes the group Gal(C/R) of order 2.

Introduction

Recently, Hesselholt and Madsen defined real topological Hochschild homology
in [11] using a dihedral variant of Bökstedt’s model in [4]. The real topological
Hochschild homology functor takes a ring R with an anti-involution α, that is a
ring isomorphism α : Rop → R such that α2 = id, and associates an O(2)-equivariant
orthogonal spectrum THR(R,α).

Real topological Hochschild homology was introduced to fit in the framework of
real algebraic K-theory, which was also defined by Hesselholt and Madsen in [11].
Real algebraic K-theory associates a G-spectrum KR(R,α) to a ring R with an anti-
involution α, where G is the Galois group Gal(C/R). The underlying non-equivariant
spectrum is weakly equivalent to the usual K-theory spectrum of R, and the G-fixed
point spectrum is weakly equivalent to the Hermitian K-theory spectrum of (R,α),
as defined by Karoubi in [14], when 2 is invertible in the ring. Furthermore, there is
a G-equivariant trace map

tr : KR(R,α)→ THR(R,α).

The classical trace maps are often highly non-trivial and several calculations in
algebraic K-theory have been carried out using the trace, or more precisely the refine-
ment of the trace to topological cyclic homology, see [2]. Classical calculations using
trace methods often rely on a good understanding of π∗THH(R)Cr . In order to make
the equivariant trace an efficient computational tool, we must understand the dihedral
fixed points π∗THR(R,α)Dr and, in particular, the components π0 THR(R,α)Dr . As
a first step in this direction, we calculate the group of components of the derived
G-geometric fixed points.

The orthogonal spectrum THR(R,α) is cyclotomic, which means that its derived
Cr-geometric fixed points mimic the behavior of the Cr-fixed points of a free loop
space LX of a G-space X, see [10, Prop. 1.5] and [13, Sect. 3.3] for details. In
particular, it implies that the spectrum of Cr-geometric fixed points of THR(R,α)
resembles THR(R,α) itself. The derived G-geometric fixed point, however, behave
differently. In the analogy with the free loop space, the derived G-geometric fixed
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points of THR(R,α) corresponds to the G-fixed points of LX, and we briefly investi-
gate how the latter behaves.

We let LX = Map(T, X) be the free loop space of a G-space X. The group O(2)
acts on T by multiplication and complex conjugation and we view X as an O(2)-space
with trivial T-action. The free loop space becomes an O(2)-space by the conjugation
action. Let T ⊂ C denote the circle group. The group G = Gal(C/R) acts on T and
we let O(2) denote the semi-direct product O(2) = T oG. If r is a natural number,
then we let

ρr : O(2)→ O(2)/Cr

denote the root isomorphism given by ρr(z) = z
1
rCr if z ∈ T and ρr(x) = x if x ∈ G.

The map that takes a loop to the r-fold concatenation with itself,

pr : LX → ρ∗r(LX)Cr , pr(γ) = γ ? · · · ? γ,
is an O(2)-equivariant homeomorphism, but the G-fixed space of the free loop space
looks very different from the loop space itself. Indeed, if ω ∈ G is complex conjugation
then we have a homeomorphism

Map((I, ∂I), (X,XG))→ (LX)G, γ 7→ (ω · γ) ? γ.

The content of this paper is organized as follows. In Section 1 and 2 we review
the construction of the orthogonal O(2)-spectrum THR(R,α), and observe that, if
R is a commutative ring, then THR(R,α) has the homotopy type of a commutative
O(2)-ring spectrum.

In section 3 we prove the main theorem of this paper. In order to state the
theorem, we let R be a ring with an anti-involution α, which is a ring isomorphism
α : Rop → R such that α2 = id, and we let N : R→ Rα denote the norm map

N(r) = r + α(r).

Theorem A. Let R be a ring with an anti-involution α. There is an isomorphism of
abelian groups

π0

(
(THR(R,α)c)gG

) ∼= (Rα/N(R)⊗Z R
α/N(R))/I,

where I denotes the subgroup generated by the elements α(s)rs⊗ t− r⊗ stα(s) for all
s ∈ R and r, t ∈ Rα.

The identification of the component group can be rewritten as

π0

(
(THR(R,α)c)gG

) ∼= Rα/N(R)⊗R Rα/N(R).

where we view the group Rα/N(R) as a right resp. left R-module via the actions

x · r = α(r)xr and r · x = rxα(r).

We note that the G-geometric fixed points vanishes if 2 is invertible in R, since the
norm map surjects onto the fixed points of the anti-involution in this case: If x ∈ Rα,
then N(1

2x) = x.
We end this introduction by stating some immediate consequences of Theorem A.
If R is a commutative ring, then the components of the Cr-fixed points and the

components of the Dr-fixed points have ring structures. The component ring of the
Cpn-fixed points, π0 THH(R)Cpn , is completely understood when p is a prime. Hessel-
holt and Madsen prove in [10] that there is a canonical ring isomorphism identifying

2

70



ON THE GEOMETRIC FIXED POINTS

π0 THH(R)Cpn with the p-typical Witt vectors of length n+1. The classical construc-
tion of the Witt vectors can be understood as a special case of a construction which
can be defined relative to any given profinite group, as done by Dress and Siebeneicher
in [6]. Furthermore, the p-typical Witt vectors of length n + 1 are exactly the Witt
vectors constructed relative to the group Cpn . In other words,

π0 THH(R)Cpn ∼= WCpn
(R).

If R is commutative, then the identity defines an anti-involution on R and it is tempt-
ing to guess that the ring π0 THR(R, id)Dpn can be identified with the Witt vectors
WDpn

(R). However, Theorem A tells us that this is not the case; see Remark 3.4.
When R is a commutative ring, the components of the derived G-geometric fixed

points of THR(R,α) have a ring structure. If R is a commutative ring with the
identity serving as anti-involution, then Theorem A implies the functor

R 7→ π0

(
(THR(R, id)c)gG

)
.

considered as a functor from the category of commutative rings to the category of sets,
is not representable, since the functor does not preserve finite products, see Remark
3.2. This rules out the possibility that

(
(THR(R, id)c)gG

)
is a ring of Witt vectors as

defined by Borger in [3].
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Dustin Clausen, Irakli Patchkoria and Kristian Moi for many useful conversations
concerning the content of this paper.
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Throughout this paper, T ⊂ C denotes the circle group and G is the group
Gal(C/R) = {1, ω}. The group G acts on T ⊂ C and O(2) is the semi-direct product
O(2) = ToG. We let Cr denote the cyclic subgroup of order r and let Dr denote the
dihedral subgroup Cr oG of order 2r.

By a space we will always mean a compactly generated weak Hausdorff space and
all constructions are always carried out in this category.

1. Real topological Hochschild homology

A symmetric ring spectrum X is a sequence of based spaces X0, X1, . . . with a
left based action of the symmetric group Σn on Xn and Σn × Σm-equivariant maps
λn,m : Xn ∧ Sm → Xn+m. Let A be a symmetric ring spectrum with multiplication
maps µn,m : An ∧ Am → An+m and unit maps 1n : Sn → An. An anti-involution on
A is a self-map of the underlying symmetric spectrum D : A→ A, such that

D2 = id, Dn ◦ 1n = 1n,

and the following diagram commutes:

Am ∧An Am ∧An

An ∧Am

An+m

Am+n Am+n.

Dm ∧Dn

γ

µn,m

χn,m

µm,n

Dm+n

Here γ is the twist map and χn,m ∈ Σn+m is the shuffle permutation

χn,m(i) =

{
i+m if 1 ≤ i ≤ n
i− n if n+ 1 ≤ i ≤ n+m.

Let R be a unital, associative ring. Then R determines a symmetric ring spectrum
HR, called the Eilenberg MacLane spectrum ofR, which can be constructed as follows.
Let S1[−] := ∆1[−]/∂∆1[−] denote the pointed simplicial circle and let Sn[−] denote
the pointed simplicial n-sphere defined as the n-fold smash product S1[−]∧· · ·∧S1[−].
The nth space of the spectrum HR is the realization of the reduced R-linearization
of the simplicial n-sphere:

HRn := R(Sn) = |[k] 7→ R[Sn[k]]/R[∗]|.
Here R[Sn[k]] is the free R-module generated by the k-simplices Sn[k] and R[∗] is the
sub-R-module generated by the basepoint ∗ ∈ Sn[k]. The symmetric group Σn acts
by permutation of the smash factors of Sn[−] and there are natural multiplication
and unit maps

µm,n : HRm ∧HRn → HRm+n, 1n : Sn → HRn,

which are Σm × Σn-equivariant and Σn-equivariant.
4
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An anti-involution α on R is a ring isomorphism α : Rop → R such that α2 = id.
If α is an anti-involution on R, then we also let α denote the induced anti-involution on
the symmetric ring spectrum HR, which in spectral level n is the geometric realization
of the map of simplicial R-modules given by r · x 7→ α(r) · x for r ∈ R and x ∈ Sn[k].

Given a symmetric ring spectrum with anti-involution (A,D), the real topological
Hochschild homology space THR(A,D) was defined in [11] as the geometric realiza-
tion of a dihedral space, and we briefly recall the notion of a dihedral object. The
real topological Hochschild homology of a ring with anti-involution (R,α) is the real
topological Hochschild homology of (HR,α), which we simply denote THR(R,α).

Definition 1.1. A dihedral object in a category C is a simplicial object

X[−] : 4op → C
together with dihedral structure maps tk, wk : X[k] → X[k] such that tk+1

k = id,
w2
k = id, and tkwk = t−1

k ωk. The dihedral structure maps are required to satisfy the
following relations involving the simplicial structure maps:

dlwk = wk−1dk−l, slwk = wk+1sk−l if 0 ≤ l ≤ k,
dltk = tk−1dl−1, sltk = tk+1sl−1 if 0 < l ≤ k,

d0tk = dk, s0tk = t2k+1sk.

A simplicial object together with structure maps tk : X[k]→ X[k] satisfying the
above relations is called a cyclic object and a simplicial object together with structure
maps wk : X[k] → X[k] satisfying the above relations is called a real object. The
geometric realization of the simplicial space underlying a dihedral (resp. cyclic, resp.
real) space carries an action by O(2) (resp. T, resp. G): See [8] for more details.

Let I be the category with objects all non-negative integers. The morphisms from
i to j are all injective set maps

{1, . . . , i} → {1, . . . , j}.
The category I has a strict monoidal product + : I×I → I given on objects by addition
and on morphisms by concatenation. We note that the initial object 0 ∈ Ob(I) serves
as the identity for the monoidal product. For i ∈ Ob(I) we let ωi : i → i denote the
morphism that reverses the order of the elements:

ωi(s) = i− s+ 1.

Given a morphism θ : i→ j we define the conjugate morphism θω by θω := ωj ◦θ◦ω−1
i .

We define a dihedral category I[−] by letting I[k] = Ik+1 and defining cyclic structure
maps di : I[k]→ I[k − 1], si : I[k]→ I[k + 1], and tk : I[k]→ I[k] on objects by

di(i0, · · · , ik) = (i0, · · · , ii + ii+1, · · · , ik), 0 ≤ i < k,

di(i0, · · · , ik) = (ik + i0, · · · , ik−1), i = k,

si(i0, · · · , ik) = (i0, · · · , ii, 0, ii+1, · · · , ik), 0 ≤ i ≤ k,
tk(i0, · · · , ik) = (ik, i0, · · · , ik−1),

and similarly on morphisms. The structure maps wk : I[k] → I[k] is defined on a
tuple of objects by

wk(i0, . . . , ik) = (i0, ik, ik−1, . . . , i1)

5
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and on a tuple of morphisms by

wk(θ0, . . . , θk) = (θω0 , θ
ω
k . . . , θ

ω
1 ).

Let X be a pointed space with a pointed left O(2)-action and let (A,D) be a
symmetric ring spectrum with an anti-involution. Let G(A)kX : Ik+1 → Top∗ denote
the functor given on objects by

G(A)kX(i0, . . . , ik) = Map
(
Si0 ∧ · · · ∧ Sik , Ai0 ∧ · · · ∧Aik ∧X

)
.

We will almost always omit the A and simply write Gk+1
X if there is no confusion about

which spectrum A is used in the construction of the functor. The functor is defined
on morphisms using the structure maps of the spectrum; see [10] or [7, Sect. 4.2.2].
We define a dihedral space by setting

THR(A,D;X)[k] := hocolim
Ik+1

GkX

with simplicial structure maps as described in [10] or [7, Sect. 4.2.2]. Let ωi ∈ Σi be
the permutation given by ωi(s) = i− s+ 1. We let

t′k : GkX ⇒ GkX ◦ tk, w′k : GkX ⇒ GkX ◦ wk

be the natural transformations which at (i0, . . . , ik) ∈ Ob(Ik) are defined by the
following commutative diagrams

Si0 ∧ · · · ∧ Sik Ai0 ∧ · · · ∧Aik ∧X

Sik ∧ Si0 ∧ · · · ∧ Sik−1 Aik ∧Ai0 ∧ · · · ∧Aik−1
∧X

f

τ−1 τ ∧X
t′k(f)

and

Si0 ∧ Si1 ∧ · · · ∧ Sik Ai0 ∧Ai1 ∧ · · · ∧Aik ∧X

Si0 ∧ Sik ∧ · · · ∧ Si1 Ai0 ∧Ai1 ∧ · · · ∧Aik ∧X

Si0 ∧ Sik ∧ · · · ∧ Si1 Ai0 ∧Ai1 ∧ · · · ∧Aik ∧X

Si0 ∧ Sik ∧ · · · ∧ Si1 Ai0 ∧Aik ∧ · · · ∧Ai1 ∧X

f

w′k(f)
ω0 ∧ · · · ∧ ωk

id

υ ωi0 ∧ · · · ∧ ωik ∧ id

Di0 ∧ · · · ∧Dik ∧ id

υ

6
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where τ cyclically permutes the smash factors to the right, and υ fixes the first smash
factor and reverses the order of the rest. The structure maps are given as the compo-
sitions of the maps induced by the natural transformations and the canonical maps:

tk : hocolim
Ik+1

GkX
t′k−→ hocolim

Ik+1
GkX ◦ tk

indtk−−−→ hocolim
Ik+1

GkX ,

wk : hocolim
Ik+1

GkX
w′k−−→ hocolim

Ik+1
GkX ◦ wk

indwk−−−→ hocolim
Ik+1

GkX .

We have defined a dihedral space and we let THR(A,D;X) denote the realization

THR(A,D;X) :=
∣∣∣[k] 7→ THR(A,D;X)[k]

∣∣∣.

The space THR(A,D;X) is in fact an O(2)×O(2)-space, where the action by the first
factor comes from the dihedral structure and the action by the second factor comes
from the O(2)-action on X. We are interested in the space THR(A,D;X) with the
diagonal O(2)-action.

Remark 1.2. Let 4 : O(2) → O(2) × O(2) denote the diagonal map. The tool
available for investigating the fixed point space (4∗THR(A,D;X))G is Segal’s real
subdivision constructed in [17, Appendix A1]. We briefly recall the real subdivision
functor sde and refer to Segal’s paper for details.

Let X[−] be a dihedral space. There is a (non-simplicial) homeomorphism

De : |sdeX[−]| → |X[−]|,
where sdeX[−] is the simplicial space with k-simplices sdeX[k] = X[2k + 1] and
simplicial structure maps, for 0 ≤ i ≤ k, given by

(di)
e : sdeX[k]→ sdeX[k − 1], (di)

e = di ◦ d2k+1−i,
(si)

e : sdeX[k]→ sdeX[k + 1], (si)
e = si ◦ s2k+1−i.

The simplicial set sdeX[−] has a simplicial G-action which in simplicial level k is
generated by w2k+1. Thus the realization inherits a G-action. The advantage of real
subdivision is that the homeomorphism De is G-equivariant. In particular, it induces
a homeomorphism

|sdeX[−]G| → |X[−]|G.
Note that

sde THR(A,D;X)[k] = hocolim
I2k+2

G2k+1
X =

∣∣[n] 7→
∨

i0→···→in
G2k+1
X (i0)

∣∣,

where i ∈ Ob(I2k+1). The G-action on X gives rise to a natural transformation

Xω : G2k+1
X ◦ w2k+1 ⇒ G2k+1

X ◦ w2k+1.

The diagonal G-action is generated by the simplicial operator which takes the sum-
mand indexed by i0 → · · · → in to the one indexed by w2k+1(i0) → · · · → w2k+1(in)
via

G2k+1
X (i0)

w2k+1′−−−−→ G2k+1
X ◦ w2k+1(i0)

Xω−−→ G2k+1
X ◦ w2k+1(i0).(1)

7
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In particular if a k-simplex is fixed, then it must belong to a summand whose index
is fixed under the functor w2k+1. Such an index consists of objects of the form

(i0, i1, . . . , ik, ik+1, ik, . . . , i1)(2)

and morphisms of the form

(θ0, θ1, . . . , θk, θk+1, θ
ω
k , . . . , θ

ω
1 )(3)

where θ0 = θω0 and θk+1 = θωk+1. Let IG denote the subcategory of I with the same
objects and all morphisms θ which satisfies θω = θ. Let

4e : IG × Ik × IG → I2k+2

denote the “diagonal” functor which maps a tuple (i0, i1, . . . , ik, ik+1) to the tuple
(2) and a tuple of morphisms (θ0, θ1, . . . , θk, θk+1) to the tuple (3). The natural
transformation (1) restricts to a natural transformation fromG2k+1

X ◦4e to itself, hence
G acts on G2k+1

X ◦ 4e through natural transformations. Since geometric realization
commutes with taking fixed points of the finite group G by [16, Cor. 11.6], we obtain
the following lemma.

Lemma 1.3. The canonical map induces a homeomorphism

hocolim
IG×Ik×IG

(G2k+1
X ◦ 4e)G

∼=−→
(

hocolim
I2k+2

G2k+1
X

)G
.

The G-action on G2k+1
X ◦ 4e at (i, n1, . . . , nk, j) ∈ Ob

(
IG × Ik × IG

)
can be

described as follows. The image of the functor is the mapping space:

G2k+1
X ◦ 4e(i, n1, . . . , nk, j) = Map

(
S,A ∧X

)
,

where

S = Si ∧ Sn1 ∧ · · · ∧ Snk ∧ Sj ∧ Snk ∧ · · · ∧ Sn1 ,

A = Ai ∧An1 ∧ · · · ∧Ank
∧Aj ∧Ank

∧ · · · ∧An1 .

The spaces above are G-spaces: The non-trivial element ω ∈ G fixes the first smash
factor and reverses the order of the remaining factors, then acts by the permutation
wi ∈ Σi factor-wise. On the space A, ω further acts by the anti-involution Di factor-
wise. The space A∧X is given the diagonal action and finally G acts on the mapping
space by the conjugation action.

We will need a G-equivariant version of Bökstedt’s Approximation Lemma as
proven by Dotto; see [5, 4.3.2]. We call a map of G-spaces f : Z → Y n-connected if
fK : ZK → Y K is n-connected for K ∈ {e,G}.
Proposition 1.4 (Equivariant Approximation Lemma). Let (R,α) be a ring with
an anti-involution α and let V be a finite dimensional real G-representation. Given
n ≥ 0, there exists N ≥ 0 such that the G-equivariant inclusion

G(R)2k+1
SV ◦ 4e(i) ↪→ hocolim

I2k+2
G(R)2k+1

SV

is n-connected for all i ∈ Ob(IG × Ik × IG) coordinate-wise bigger than N .
8
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2. The real topological Hochschild homology spectrum

The space THR(A,D;S0) is the 0th space of a fibrant orthogonal O(2)-spectrum
in the model structure based on the family of finite subgroups of O(2), see Proposition
2.2. Furthermore, if A is a commutative symmetric ring spectrum, then THR(A,D)
has the homotopy type of an O(2)-ring spectrum.

In the classical setup one needs certain connectivity assumptions on the spectrum
A to ensure that THH(A) has the correct homotopy type. We likewise need some
connectivity assumption on (A,D). For an integer n we let dn2 e denote the ceiling of
n
2 . Throughout this section we make the following assumptions on (A,D):

Assumptions 2.1. Let (A,D) be a symmetric ring spectrum with anti-involution.
We assume that An is (n−1)-connected as a non-equivariant space and that (An)Dn◦ωn

is
(
dn2 e − 1

)
-connected. Furthermore we assume that there exists a constant ε ≥ 0

such that the structure map λn,m : An ∧ Sm → An+m is (2n + m − ε)-connected as
a map of non-equivariant spaces and such that the restriction of the structure map
λn,m : ADn◦ωn

n ∧ (Sm)ωm → (An+m)Dn+m◦(ωn×ωm) is (n+ dm2 e − ε)-connected.
By an O(2)-representation, we will mean a finite dimensional real inner product

space on which O(2) acts by linear isometries. We fix a complete O(2)-universe U
and work in the category of orthogonal O(2)-spectra indexed on U as defined in
[15, Chapter II.4]. Let V ⊂ U be a finite O(2)-representation. Let

THR(A,D)(V ) = 4∗THR(A,D;SV ),

where 4 : O(2)→ O(2)×O(2) is the diagonal map. The orthogonal group O(V ) acts
on THR(A,D)(V ) through the sphere SV . It is straightforward to construct spectral
structure maps

σV,W : THR(A,D)(V ) ∧ SW → THR(A,D)(V ⊕W ),

see [9] or [13]. The family of O(V ) o O(2)-spaces THR(A,D)(V ) together with the
maps σV,W defines an orthogonal O(2)-spectrum indexed on U , which is denoted
THR(A,D). The following result is proven in [13, Prop. 3.6].

Proposition 2.2. If V and W are finite O(2)-representations, then the adjoint of the
structure map

σ̃V,W : THR(A,D)(V )→ Map(SW ,THR(A,D)(V ⊕W ))

induces a weak equivalence on H-fixed points for any finite subgroup H ≤ O(2).

When A is a commutative symmetric ring spectrum, THH(A) is a T-ring spec-
trum, though we must change foundations and work in the category of symmetric
orthogonal T-spectra to display this structure; see [12]. The multiplicative and unital
structure maps as described in [9, Appendix] are compatible with the added G-action.
Thus when A is commutative, THR(A,D) is a symmetric orthogonal O(2)-ring spec-
trum. We briefly recall the construction and refer to [9, Appendix] for details. Let
(n) denote the finite ordered set {1, . . . , n} and let I(n) denote the product category.
There is a functor

tn : I(n) → I
9
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given by addition of objects and concatenation of morphisms according to the order
of (n). Let Gk,(n)

X denote the composite GkX ◦ (tn)k+1. There is a dihedral space
THR(n)(A,D;X)[−] with k-simplices the homotopy colimit

THR(n)(A,D;X)[k] := hocolim(
I(n)
)k+1

G
k,(n)
X ,

and with cyclic structure maps constructed as for THR(A,D;X)[−] with minor ad-
justments. We define

w
(n)
k :

(
I(n)

)k+1 →
(
I(n)

)k+1

on objects by

w
(n)
k

(
(i01, . . . , i0n), . . . , (ik1, . . . , ikn)

)
=
(
(i01, . . . , i0n), (ik1, . . . , ikn), . . . , (i11, . . . , i1n)

)

and on morphisms by

w
(n)
k

(
(α01, . . . , α0n), . . . , (αk1, . . . , αkn)

)
=
(
(αω01, . . . , α

ω
0n), . . . , (αω11, . . . , α

ω
1n)
)

Furthermore we define the natural transformation
(
w

(n)
k

)′
: G

k,(n)
X ⇒ G

k,(n)
X ◦ w(n)

k

at an object
(
(i01, . . . , i0n), . . . , (ik1, . . . , ikn)

)
∈
(
I(n)

)k+1 by replacing the permuta-
tions ωij1+···+ijn by the permutations ωij1 × · · · × ωijn in the defining diagram for the
natural transformation w′k. The dihedral structure map is the composition

w
(n)
k : hocolim(

I(n)
)k+1

G
k,(n)
X

(
w

(n)
k

)′
−−−−−→ hocolim(

I(n)
)k+1

G
k,(n)
X ◦ w(n)

k

ind
w
(n)
k−−−−−→ hocolim(

I(n)
)k+1

G
k,(n)
X .

Let THR(n)(A;D;X) denote the geometric realization of THR(A,D;X)[−].
An order preserving inclusion ι : (m) ↪→ (n) induces a functor

ι :
(
I(m)

)k+1 →
(
I(n)

)k+1

by inserting the initial element 0 ∈ Ob(I) into the added coordinates, which in turn
induces a map

ι : THR(m)(A;D;X)→ THR(n)(A;D;X).

When m ≥ 1 it follows from the most general version of the Equivariant Approxi-
mation Lemma as stated in [13, Prop. 2.7] that the map ι induces isomorphisms on
πH∗ (−) for all finite subgroups H ≤ O(2).

We define the symmetric orthogonal spectrum THR(A,D) as follows. Let n be
a non-negative integer, and let V be a finite O(2)-representation. The (n, V )th space
is defined to be

THR(A,D)(n, V ) = 4∗THR(n)(A,D;Sn ∧ SV )

where 4 : Σn × O(2)→ Σn × O(2)× Σn × O(2) is the diagonal map. The action by
the first O(2)-factor arises from the dihedral structure and the action by the second
O(2)-factor is induced from the O(2)-action on V . The action by the first Σn-factor
is induced from permutation action on I(n) and the action by the second Σn-factor is
induced from the Σn-action on Sn given by permuting the sphere coordinates. The
spectrum structure maps and the unit maps are described in [9, Appendix] and one
can verify that they are G-equivariant.

10
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To define multiplicative structure maps we first recall that the canonical map

hocolim
(I(n))k+1

G
k,(n)
X ∧ hocolim

(I(m))k+1
G
k,(m)
Y

∼=−→ hocolim
(I(n+m))k+1

G
k,(n)
X ∧Gk,(m)

Y

is a homeomorphism, when the spaces are given the compactly generated weak Haus-
dorff topology. Next we note that there are natural transformations

µ′n,X,m,Y : G
k,(n)
X ∧Gk,(m)

Y ⇒ G
k,(n+m)
X∧Y

given by smashing together the maps f ∈ G
k,(n)
X and g ∈ G

k,(m)
Y and composing

with the multiplication maps in A. The composition of the canonical map and the
map induced by the natural transformation µ′ commutes with the dihedral structure
maps, the Σn × Σm-action, and the O(2)-action from X and Y . Given n,m ≥ 0 and
finite O(2)-representations V andW the multiplicative structure map is the geometric
realization

µn,V,m,W : THR(A,D)(n, V ) ∧ THR(A,D)(m,W )→ THR(A,D)(n+m,V ⊕W ).

3. The components of the G-geometric fixed points

This section is devoted to the proof of Theorem A in the introduction. We start
by introducing some notation. We define the G-spheres S1,0 = SR and S1,1 = SiR to
be the pointed G-spaces given by the one point compactifications of the 1-dimensional
trivial representation and sign representation, respectively. More generally, we set

Sp,q =
(
S1,0

)∧(p−q) ∧
(
S1,1

)∧(q)

for integers p ≥ q ≥ 0.
Let EG be the free contractible G-CW-complex

EG :=

∞⋃

n=0

S
( n⊕

j=1

iR
)
,

where S(⊕nj=1iR) denotes the unit sphere in ⊕nj=1iR. We denote by ẼG the re-
duced mapping cone of the based G-map EG+ → S0 which collapses EG to the
non-basepoint, hence

ẼG = colim
k→∞

Sk,k.

If X is an orthogonal G-spectrum, then the derived G-fixed points of ẼG ∧ X is a
model for the derived G-geometric fixed point of X; see [15, Prop. 4.17]. Consider
the inclusion Sn,n → Sn+1,n+1. There are canonical homeomorphisms of G-spaces

Sn+1,n+1/Sn,n
∼=−→ ΣSn,n ∧G+

∼=−→ Sn+1 ∧G+,

where the first map is described in [13, Lemma A.4] and the second map untwists
the G-action, that is the map is given by (x, g) 7→ (g−1x, g). Thus there are cofiber
sequences of based G-CW-complexes for n ≥ 0:

Sn,n → Sn+1,n+1 → G+ ∧ Sn+1.

We smash the cofiber sequence with the orthogonal G-spectrum X and obtain a long
exact sequence of G-stable homotopy groups, which contains the segment

· · · → π−n(X) −→ πG0 (Sn,n ∧X)→ πG0 (Sn+1,n+1 ∧X)→ π−n−1(X)→ · · ·
11
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If X is connective, then the inclusion Sn,n → Sn+1,n+1 induces an isomorphism

πG0 (Sn,n ∧X)
∼=−→ πG0 (Sn+1,n+1 ∧X)

for n ≥ 1 and, in particular, the inclusion S1,1 → ẼG induces an isomorphism

πG0 (S1,1 ∧X)
∼=−→ πG0 (ẼG ∧X).

We are now ready to prove Theorem A from the introduction.

Proof of Theorem A. Let (R,α) denote a ring R with an anti-involution α. By the
discussion above, the components of the derived G-geometric fixed points can be
calculated as the homotopy group πG0 (S1,1∧THR(R,α)). The actions of smashing an
orthogonal G-spectrum with S1,1 and shifting the spectrum by iR yield canonically
π∗-isomorphic G-spectra. It follows from Lemma 2.2 that we have an isomorphism of
abelian groups:

πG0 (S1,1 ∧ THR(R,α)) ∼= π0

(
THR(R,α)(iR)G

)
.

Segal’s real subdivision described in Remark 1.2 provides a homeomorphism

De : |
(
sde THR(R,α;S1,1)[−]

)G| ∼=−→ THR(R,α)(iR)G.

By [16, Lemma 11.11], we can calculate the group of components of the left hand side
as the quotient of π0

(
sde THR(R,α;S1,1)[0]G

)
by the equivalence relation generated

by de0(x) ∼ de1(x) for all x ∈ π0

(
sde THR(A;S1,1)[1]G

)
. It follows from Lemma 1.3

that the diagram

sde THR(R,α;S1,1)[1]G sde THR(R,α;S1,1)[0]G
de0

de1

is homeomorphic to the left hand part of the homotopy commutative diagram

hocolim
IG×I×IG

(G3
X ◦ 4e)G

hocolim
IG×IG

(G1
X ◦ 4e)G

Map(Si ∧ Sn ∧ Sj ∧ Sn, HRi ∧HRn ∧HRj ∧HRn ∧ S1,1)G

Map(Sn+i+n ∧ Sn+j+n, HRn+i+n ∧HRn+j+n ∧ S1,1)G.

d0 ◦ d3d1 ◦ d2 inclj ◦ d′0 ◦ d′3incli ◦ d′1 ◦ d′2

Here inclj is the image of the functor G1
S1,1 ◦ 4e at the morphism (idn+i+n, inclmid)

in IG × IG where inclmid is middle inclusion j → n+ j + n. The map inclj is defined
analogously. The horizontal maps can be made as connected as desired by choosing i,
j and n big enough by the Equivariant Approximation Lemma 1.4. We fix a choice of
i, j and n such that the horizontal maps are 0-connected and for simplicity we choose
i and j to be even.

If X and Y are G-CW-complexes, then the inclusion of fixed points g : XG ↪→ X
induces a fibration

g∗ : MapG(X,Y )→ MapG(XG, Y ) = Map(XG, Y G)
12
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with fiber MapG(X/XG, Y ). It follows from [1, Prop. 2.7] that the connectivity of
the fiber can be estimated as follows:

conn(MapG(X/XG, Y )) ≥ min
K∈{e,G}

(conn(Y K)− dim((X/XG)K)).

In the case at hand, the inclusions of G-fixed points
(
Si ∧ Sn ∧ Sj ∧ Sn

)G
↪→ Si ∧ Sn ∧ Sj ∧ Sn

and (
Sn+i+n ∧ Sn+j+n

)G
↪→ Sn+i+n ∧ Sn+j+n

induce fibrations with 0-connected fibers, so the right hand part of the diagram eval-
uated at π0 is isomorphic to the diagram

π0

(
Map(S

i
2 ∧ Sn ∧ S j

2 , HRHα◦ωi ∧HRn ∧HRHα◦ωj )
)

π0

(
Map(Sn+ i

2
+n ∧ Sn+ j

2
+n, HRHα◦ωn+i+n ∧HRHα◦ωn+j+n)

)
,

d̃0d̃1

where d̃0 := π∗0(inclj ◦ d′0 ◦ d′3) and d̃1 := π∗0(incli ◦ d′1 ◦ d′2). We have omitted the
index on Hα and ω. The space HRn is (n− 1)-connected and Dotto proves that the
space HRα◦ω2n is (n−1)-connected; see [5, Lemma 6.3.2]. It follows from the Hurewicz
isomorphism and the Künneth formula that the diagram above is isomorphic to the
diagram

π i
2
(HRHα◦ωi )⊗ πn(HRn)⊗ π j

2
(HRHα◦ωj )

πn+ i
2
(HRHα◦ωn+i+n)⊗ πn+ j

2
(HRHα◦ωn+j+n).

d̃0d̃1

The homotopy groups πn(HRαω2n ) are independent of n when n ≥ 1 and we therefore
calculate π1(HRαω2 ). The space HR2 is the geometric realization of the simplicial set

R[S1[−] ∧ S1[−]]/R[∗].
The action by Hα◦ω is induced by a simplicial action where α acts on the R-label and
ω acts by twisting the smash factors S1[−]∧S1[−]. Since taking fixed points of a finite
group commutes with geometric realization, HRHα◦ω2 is the geometric realization of
the simplicial set (

R[S1[−] ∧ S1[−]]
)α◦ω

/R[∗].
This is a simplicial abelian group and we may therefore calculate π1(HRHα◦ω2 ) as the
first homology group of the associated chain complex. Recall that

∆1[k] = Hom∆([k], [1]) = {x0, x1, . . . , xk+1}
where #x−1

i (0) = i and with the face maps given by

ds(xi) =

{
xi if i ≤ s

xi−1 if i > s.
13
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The sphere S1[−] is defined to be the quotient ∆1[−]/∂∆1[−]. We have representatives
of the simplices in S2[−] = S1[−] ∧ S1[−] as follows:

S2[0] = {x0 ∧ x0}, S2[1] = {x0 ∧ x0, x1 ∧ x1},
S2[2] = {x0 ∧ x0, x1 ∧ x1, x2 ∧ x2, x1 ∧ x2, x2 ∧ x1}.

The associated chain complex of
(
R[S1[−]∧S1[−]]

)α◦ω
/R[∗] begins with the sequence

· · · → (R · (x1 ∧ x1)⊕R · (x1 ∧ x2)⊕R · (x2 ∧ x1))α◦ω d−→ Rα · (x1 ∧ x1) −→ 0.

Since d(x1 ∧ x1) = 0, the first homology group is the cokernel of the map

(R · (x1 ∧ x2)⊕R · (x2 ∧ x1))α◦ω d−→ Rα · (x1 ∧ x1),

where d(x1 ∧ x2) = d(x2 ∧ x1) = −(x1 ∧ x1). The map

R −→ (R · (x1 ∧ x2)⊕R · (x2 ∧ x1))α◦ω

which sends r to the tuple (−r,−α(r)) is an isomorphism, and d corresponds to the
norm map N : R→ Rα given by

N(r) = r + α(r)

under this isomorphism. We conclude that π1(HRHα◦ω2 ) ∼= Rα/N(R). The diagram
from before can now be identified with

Rα/N(R)⊗R⊗Rα/N(R)

Rα/N(R)⊗Rα/N(R)

d̃0d̃1

where d̃0(r ⊗ s⊗ t) = α(s)rs⊗ t and d̃1(r ⊗ s⊗ t) = r ⊗ stα(s). It follows that

π0

(
(THR(R,α)c)gG

) ∼= (Rα/N(R)⊗Z R
α/N(R))/I,

where I denotes the subgroup generated by the elements α(s)rs ⊗ t − r ⊗ stα(s) for
all s ∈ R and r, t ∈ Rα. This completes the proof of Theorem A. �
Remark 3.1. When R is a commutative ring, then THR(R,α) has the homotopy type
of an O(2)-ring spectrum, hence the components of the G-geometric fixed points have
a ring structure. We note that in this case Rα is a subring of R and N(R) is an ideal
in Rα. Furthermore the subgroup I generated by the elements α(s)rs⊗ t− r⊗ stα(s)
for all s ∈ R and r, t ∈ Rα is an ideal. It is generated as an ideal by the elements
α(r) · r ⊗ 1− 1⊗ r · α(r) for all r ∈ R. These observations give

(Rα/N(R)⊗Z R
α/N(R))/I

a natural ring structure.

Remark 3.2. Let us consider the case where R is a commutative ring with the identity
serving as anti-involution. The functor

R 7→ π0

(
(THR(R, id)c)gG

)
,

considered as a functor from the category of commutative rings to the category of sets,
is not representable. This rules out the possibility that the ring π0

(
(THR(R, id)c)gG

)

is a ring of Witt vectors as defined by Borger in [3]. For example, the functor does
14
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not preserve finite products. Indeed, in this case we have an isomorphisms of abelian
groups

π0

(
(THR(R, id)c)gG

) ∼= (R/2R⊗R/2R)/I

where I is the ideal in the ring R/2R⊗R/2R generated as an ideal as follows

I =
(
x2 ⊗ 1− 1⊗ x2 | x ∈ R/2R

)
.

We consider the product F2[x] × F2[y]. We have a commutative diagram where the
top right corner is the functor applied to the product ring and the lower right corner is
the product of the functor applied to each factor. The horizontal maps are surjective
quotient maps and the vertical maps are induced by the projections.

(
F2[x]× F2[y]

)
⊗
(
F2[x]× F2[y]

) ((
F2[x]× F2[y]

)
⊗
(
F2[x]× F2[y]

))
/I

(
F2[x]⊗ F2[x]

)
×
(
F2[y]⊗ F2[y]

) (
F2[x]⊗ F2[x]

)
/I ×

(
F2[y]⊗ F2[y]

)
/I

The claim is that the right vertical map is not a bijection. The left vertical map takes
the element (x, 0)⊗ (0, y) to zero. The ideal

I ⊂
(
F2[x]× F2[y]

)
⊗
(
F2[x]× F2[y]

)

is generated by the elements
(
p(x)2, q(y)2

)
⊗1−1⊗

(
p(x)2, q(y)2

)
, where p(x) and q(y)

are polynomials. Hence (x, 0)⊗ (0, y) /∈ I and the right vertical map is not injective.

In some cases, the calculation of the components of the G-geometric fixed points
immediately leads to a calculation of the components of the G-fixed points as a ring.
We have a cofibration sequence of G-spaces

G+ → S0 → S1,1.

We smash the cofibration sequence with the spectrum THR(R,α) and obtain a long
exact sequence of G-stable homotopy groups which begins with the sequence

· · · → π0(THR(R,α))
V G
e−−→ πG0 (THR(R,α))→ πG0

(
S1,1 ∧ THR(R,α)

)
→ 0,(4)

where V G
e denotes the transfer map; see [10, Lemma 2.2] for an identification of the

induced map in the long exact sequence and the transfer map. We let

FGe : πG0 (THR(R,α))→ π0(THR(R,α))

denote the restriction map, which is a ring map. By the double coset formula

FGe ◦ V G
e = N.

Example 3.3. If R is a commutative ring with 1
2 ∈ R and the identity serving as

anti-involution, then it follows from the formula FGe ◦V G
e = 2 · id, that V G

e is injective.
Since the components of the G-geometric fixed points vanish, it follows from the exact
sequence (4) that

FGe : πG0 (THR(R, id))→ π0(THR(R, id)) = R · 1
is a ring isomorphism.

15
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Remark 3.4. Hesselholt and Madsen prove in [10] that there is a canonical ring
isomorphism identifying π0 THH(R)Cpn with the p-typical Witt vectors of length n+1,
when R is a commutative ring and p is a prime. Dress and Siebeneicher introduced
a Witt vector construction in [6], which is carried out relative to any given profinite
group, and the p-typical Witt vectors of length n+1 are the Witt vectors constructed
relative to Cpn , i.e. π0 THH(R)Cpn ∼= WCpn

(R). If we let Dpn denote the dihedral
group of order 2pn, then it is tempting to expect that the ring π0 THR(R, id)Dpn can
be identified with the Witt vectorsWDpn

(R) when R is commutative but the example
above shows that this is not the case. If p > 2, then WG(Fp) is isomorphic to Fp×Fp,
but π0(THR(Fp, id))G is isomorphic to Fp by the example above.

Example 3.5. We consider the example (Z, id). Since FGe ◦ V G
e = 2 · id and there is

no 2-torsion in Z, the transfer map is injective and the long exact sequence (4) gives
rise to a short exact sequence

0→ π0(THR(Z, id))
V G
e−−→ πG0 (THR(Z, id))→ Z/2→ 0,

where π0(THR(Z)) = Z · 1. Since Ext1
Z(Z/2Z,Z) = Z/2Z, there are two possibilities

for what this short exact sequence can look like, when considered as short exact
sequence of abelian groups. The first possibility is

0→ Z V−→ Z× Z/2Z→ Z/2Z→ 0,

with V (x) = (x, 0), hence F (x, 0) = 2x. Since Z is torsion free, F (0, y) = 0, hence
F (x, y) = 2x. But then the pre-image of the unit is empty, which is a contradiction,
since F is a ring map. The short exact sequence must therefore be of the form

0→ Z V−→ Z→ Z/2Z→ 0,

with V = 2 · id and F = id. It follows that

FGe : πG0 (THR(Z, id)) −→ π0(THR(Z, id)) = Z · 1
is a ring isomorphism.

16
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