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Summary

Functional data analysis (FDA) is a fast growing area in statistical research with in-
creasingly diverse range of application from economics, medicine, agriculture, chemo-
metrics, etc. Functional regression is an area of FDA which has received the most
attention both in aspects of application and methodological development. Our main
concerns are two types of functional regression, namely, functional predictor regres-
sion (scalar-on-function) and function-on-function regression. In particular, in the
first paper included in this thesis, we introduce multinomial functional regression
model to analyze functional data with a categorical response (more than two classes)
and a functional predictor. To this end, a combination of discrete wavelet transform
and LASSO penalization is considered. This model is applied to two datasets, one
regarding lameness detection for horse and another regarding speech recognition.

In the second paper, we consider functional logistic regression via wavelet and
LASSO which is a specific case of multinomial functional regression with two classes
for the response and compare the efficiency (from classification point of view) of
this model with two other models, namely, functional penalized regression and func-
tion regression using functional principle components. The comparison is based on
simulation study and data application.

In the third paper, we study a constrained version of function-on-function regression,
in which both response and predictor are defined at same domain and the prediction
of the response at time t only depends on th concurrently observed predictor. We
introduce a version of this model for multilevel functional data of the type subject-
unit, with the unit-level data being functional observations.

Finally, in the fourth paper we show how registration can be applied to functional
data by considering a simple biomechanical constraint and then this approach is
applied to a functional dataset from a juggling experiment.
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Dansk resumé

Funktionel dataanalyse (FDA) er et hurtigt voksende omr̊ade af statistik med fle-
re og flere anvendelsesomr̊ader indenfor økonomi, medicin, biologi, kemometri mm.
Funktionel regression er et et omr̊ade indenfor FDA som har f̊aet en del opmær-
somhed, b̊ade hvad ang̊ar metodeudvikling og anvendelser. Vi vil interessere os for
to slags regression. Den forklarende variabel er i begge tilfælde funktioner, mens re-
sponsen enten er diskret eller funktionel. I afhandlingens første artikel introducuerer
vi en regressionsmodel for kategorisk respons (med tre eller flere mulige værdier)
og en funktionel prædiktor. Vi kombinerer wavelets og LASSO-regularisering til at
estimere i modellen. Metoden anvendes p̊a to datasæt; et der vedrører detektion af
halthed hos heste og et der vedrører talegenkendelse.

I den anden artikel betragter vi funktionel logistisk regression, dvs. den situation
hvor responsvariablen er binær. Vi bruger igen estimationsmetoden med wavelets og
LASSO og sammenligner denne metode med to eksisterende metoder med henblik
p̊a prædiktionsevne.

I den tredje artikel betragter vi regression hvor b̊ade prædiktor og respons er funk-
tioner. Vi antager at alle funktioner er defineret p̊a samme domæne og at fordelingen
af responsen til tid t kun afhænger af prædiktorfunktionen gennem værdien p̊a same
tidspunkt. Dette kaldes ”the concurrent model”. Vi introducerer en version af mo-
dellen for hierarkiske funktionelle data hvor der er flere funktionelle observationer
per individ.

Endelige betragter vi i den fjerde atikel et registreringsproblem med naturlige bio-
mekaniske restriktioner og forsl̊ar en metode der tager højde for dette. Metoden
anvendes p̊a et datasæt vedrørende jonglering.

v



vi



Contents

1 Introduction 1

1.1 Moving from classic data to functional data . . . . . . . . . . . . . . 1

1.2 Objective of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Tools for functional data 7

2.1 Notation and mathematical definition of functional data . . . . . . . 7

2.2 Basis representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Registration on horse lameness dataset . . . . . . . . . . . . . 10

2.3.2 Constrained registration . . . . . . . . . . . . . . . . . . . . . 13

2.4 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Bootstrap for functional data . . . . . . . . . . . . . . . . . . 15

3 Multilevel functional data 17

3.1 Correlated multilevel functional data . . . . . . . . . . . . . . . . . . 18

4 Perspective 21

Bibliography 23

Papers

I Multinomial Functional Regression with Wavelet and LASSO Pe-
nalization 27

vii



viii

II Functional logistic regression: A comparison of three methods 67

IIIGeneralized time-varying regression of multilevel functional data 95

IV Analysis of juggling data: Registration subject to biomechanical
constraints 119



1
Introduction

It is in human nature to be curious about the natural phenomena and try to un-
derstand them. To describe a phenomenon, a mathematical model is needed. To
this end, some observations on a phenomenon must be quantified. As most mea-
surements are contaminated with noise or measurement error, in order to take into
account some amount of uncertainties, we need to investigate on a statistical model.

1.1 Moving from classic data to functional data

Most statistical analyses involve one or more observation taken from a number of
individuals in order to make an inference about the general population. Some times
we wish to explain the observed quantity y as a response or dependent variable by
a number of other quantities, x1, x2, · · · , xp as covariates or independent variables.
Perhaps the simplest model which is used to explain this relationship is the linear
model:

y = β0 +

p∑

i=1

βixi + ε (1.1)

where β0, β1, · · · , βp are coefficients and ε is an error term that accounts for uncer-
tainties. We refer 1.1 as linear model. The goal of regression model is to predict y
from x, assessment of the effect of or relationship between explanatory variables on
the response, and a general description of the data structure. Several approaches
have been developed to estimate the parameters and also statistical inference about
the parameters and the error term. The simplest approach is based on minimizing
the sum of residual square and is commonly known as ordinary least squares (OLS)
method. Also the methods are extended to remedy the multicollinearity between the
data and overcome with high dimensionality issue which is common nowadays for
classic data for instance, partial least squares, penalization methods among others.

In an increasing number of fields because of advancements in technology and
computation, these observations are curves (functions) or images, i.e. an observed
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2 Chapter 1. Introduction

intensity is available at each point on a line segment, a part of a plane, or a volume.
Domain for these data is usually time, but it can be anything: distance, space, ... .

To get the feel of functional data, Figure 1.1 displays three different functional
datasets from different fields. A 3D-accelerometer is attached to the back of the
horse and acceleration is measured in three directions while the horse is trotting
(Halling Thomsen et al. , 2010). The top left panel shows a sample of functions from
lameness of horse where the x-axis and y-axis represent time and vertical accelera-
tion, respectively The top right panel displays a sample of 10 functional observations
related to colon carcinogenesis dataset for the rats with the fish diet who received
the butyrate pellets at the indicated time (24 hours) post-AOM injection (Sgambato
et al. , 2000). The concentration of p27, a cell cycle inhibitor, is measured for each
cell within crypt. In this dataset the measurement of p27 is considered as a function
of location of the cell within the crypt. The bottom panel represents a dataset in
speech recognition which are log-periodograms corresponding to recording contin-
uous speech of 50 male speakers and are available in the ElemStatLearn package
(Halvorsen, 2012). The dataset consists of five phonemes: ”sh” as in ”she”, ”dcl” as
in ”dark:, ”iy” as the vowel in ”she:, ”aa” as the vowel in ”dark”, and ”ao” as the first
vowel in ”water”. Here log-periodogram a is function of frequency. We will use these
three datasets to perform the proposed approaches in the thesis in data application
sections.

The measurements in these datasets are observed only at discrete time points,
nonetheless the measurements could, in theory, be measured at any time points,
distance and frequency during the period of the study. Therefore, it would be natural
to consider these data as function which is defined in continuous argument. Several
functional data set have been studied in Ramsay & Silverman (2002). Note, however,
it should not be misleading that functional data consider all very high dimensional
dataset, for instance, DNA microarray usually must be treated as discrete data.

As it can be seen in three sub-plots of Figure 1.1, functional data is often com-
plicated, complex with a large number of related quantities which can not easily be
described by mathematical formula. In addition, the variation between replications
might be hard to explain. The idea to make an easier to think about the data is to
view each replication as a single observation. The question arise here is that which
dataset would be treat as functional data. Generally speaking, one could say that
there are some necessities for functional data: first, the data must believably de-
rive from an underlying smooth process. Second, there are enough data to extract
the essential feature of the underlying process. Third, there are some repetitions in
order to study the interest variations. Finally, in functional data there is no need
equally-spaced or perfect measurement.

Functional Data Analysis (FDA) is a field of statistics and probability which
deal with these kinds of data, coined by Ramsay & Dalzell (1991). FDA is a general
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Figure 1.1: Examples of functional data from different disciplines. A random sample
of 10 random function is shown for lameness of horse dataset (the top left panel),
colon carcinogenesis dataset (the top right panel), and phoneme dataset (the bottom
panel). Highlighting one example of the curves for each dataset (the red solid) along
the observed data of the functions (the blue circle points).

way of thinking to seek for the basic unit of information in the entire observed
function rather than a string of numbers. In other words, in FDA, we consider a set
of functions in comparison with the classic multivariate statistics that works with
a matrix of observations. The aims of FDA are more or less the same as for other
branch of statistics which can be listed below (among others):

• to represent and transform the data in an appropriate way for further analysis.

• to display the data with aim of highlighting various characteristics.

• to investigate the main sources of variation and pattern among the data.

• to explain variations in the response variable by hiring the information of the
covariate variables.



4 Chapter 1. Introduction

Most statistical analyses are based one or more observations in a sample, with
the aim of making inferences about the general population from which the sample is
drawn. To this end, we combine information either across the sampled units or within
sampled units. One unique characteristics of FDA is the need to combine information
both across and within functions, which Ramsay and Silverman called replication
and regularization. In FDA we consider each function as the sampled unit, replication
involves combing information across functions in order to make inferences about
the general population from which the sample is drawn. Regularization includes
borrowing strength across observations within a function exploiting the expected
underlying structural relationships within a function in order to improve efficiency
and interpretability.

Functional regression is an area of FDA which is maturing both in application
and methodological development. Functional regression is an association between
the response and predictor in functional data and is split into three types: (1) func-
tional predictor regression (scalar-on-function), (2) functional response regression
(function-on-scalar) and (3) function-on-function regression. Two constraint ver-
sions of the latter model have been studied in the literature: (i) concurrent model in
which the outcome and the predictor are assumed to be defined on the same domain
and in addition the prediction of the response at t only depends on the observed
covariate at time t. (ii) historical functional linear model in which the response at
current time t relates to the covariate function observed on time window with length
∆ prior to t. In this thesis our main attention is on functional predictor regression
in situations when the response is categorical (more than two classes) and the con-
current model. The concurrent model is developed for multilevel functional data of
the type subject-unit with the unit-level data being functional.

1.2 Objective of the thesis

The main goal of this thesis is to develop association models for functional data. In
particular, we aim at

• Developing a classification method based on functional predictor regression.

• Accommodating the concurrent model to multilevel functional data of the type
subject-unit with the unit level data being functional.

• Comparing different strategies for classification, both in case of two and more
than two groups.

• Applying the methods to relevant functional data and thereby contribute to
research in other fields.
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• Registration subject to a biomechanical constraint with application to a func-
tional dataset from a juggling experiment.

1.3 Thesis structure

In Chapter 2 the necessary definitions for FDA are given, and some basic tools for
pre-processing of functional data are described . In particular, the registration pro-
cedure is represented and applied to the dataset of horse lameness. In addition, the
necessary knowledge for bootstrap for classic data is given, we show how bootstrap
is applied in functional data setting. Chapter 3 presents an summary on Multi-
level functional data as well as correlated multilevel functional data is explained.
In Chapter 4 some potential and interesting perspectives are discussed, after which
the bibliography with the references used in chapters 1-4 can be found. Finally, the
papers containing our contributions are collected, each one equipped with its own
bibliography.
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2
Tools for functional data

In this chapter some necessary definitions and basic tools for functional data includ-
ing basis expansion, registration, bootstrap are presented. Registration is applied to
lameness of horse dataset in order to separate phase and amplitude variation.

2.1 Notation and mathematical definition of func-

tional data

After getting a feeling for functional data, it is turn to define functional data from
mathematical point of view. Before defining functional data we need to have a precise
definition of random functional variables.

Definition 1. For a probability space(Ω,F ,P) , a random variable X : Ω → E is
a functional random variable iff every X ∈ E is a function X : M → F for some
non-degenerate continuum M . Continuum M is non-degenerate iff |M | > 1.

We refer X as real functional random variable iff every X ∈ E is a real function,
i.e. a function mapping T → R, where T = [a, b], a, b ∈ R, and a < b.

In practice, most often the problem of functional data deal with a set of all
continuous n-differentiable functions on a real domain. A functional dataset is a
generated dataset by a functional random variable. So, now we are ready to make a
precise definition of functional dataset.

Definition 2. A set {X1, X2, · · · , Xn} is a functional dataset iff Xi ∼ X, ∀ i,
for some functional random variable X, and Xi ⊥⊥ Xj for all i 6= j. Each element
of functional dataset is referred in the literature as functional datum.

Therefore, the main idea of functional data analysis is to make an inference
and prediction on functional random variable X from the given functional dataset
{X1, X2, · · · , Xn}. It is surprising that we do not aim to observe Xi which is an
uncountable, infinite dimensional functional random variable. In practice, we only

7



8 Chapter 2. Tools for functional data

observe a finite sample of observation. Suppose that the finite observation functional
data

{{
(Y1,1, t1,1), · · · , (Y1,m1 , t1,m1)

}
, · · · ,

{
(Yn,1, tn,1), · · · , (Yn,mn , tn,mn)

}}

is given where ti,j ∈ T, i = 1, 2, · · · , n , j = 1, 2, · · · ,mi. One could interpret
that {Yi1, Yi2, · · · , Yimi

, i = 1, 2, · · · , n} are observation of a single variable taken
repeatedly on the ith subject of a size n sample at mi time points. Suppose that
{Xi(t), t ∈ T} is the sample signal for the ith subject, then Yik = Xi(tik), k =
1, 2, · · · ,mi when the measurements are observed without noise; otherwise Yik =
Xi(tik) + εik where εik is a measurement error associated with recording Yik.

The first step is to construct functional data (an infinite object) from the finite
observed sample. There are two common approaches to construct functional dataset
in context of functional data: basis functions and kernel smoothing. In the following,
we will give a short summary of using basis functions. As in many other analyses
in statistics and modeling in mathematics, we need to have some assumptions that
can be satisfied by the functional random variable. In functional data usually but
not always, the standard assumption is that the functional random variable and its
first k derivatives are continuous. Here k, the order of the derivative depends on the
problem at hand. In other words, we assume that the underlying process is smooth
and with this assumption we induce that the adjacent observations should be linked
together.

2.2 Basis representation

Motivated from multiple linear regression model which provides an expansion of the
response as a linear combination of the associated covariates or the fact that many
functions can be approximated by a linear combination of a set of appropriately cho-
sen basis function, we can use basis functions to provide an accurate approximation
of the functional datum.

Definition 3. Suppose L2 = L2(T ) the space of all squared integrable function
defined on T . The inner product defined on L2 is < f, g >=

∫
T
f(x)g(x) dx. A system

of basis functions {φk(x)}k≥1 is called orthonormal if ‖φk‖2 =
∫
T
|φk(t)|2 dt = 1 and

< φk, φk′ >= δkk′, where δkk′ is the Kronecker delta, i.e. δkk′ is 1 for k = k′ and 0
otherwise.

Basis functions should be chosen to represent the characteristics of functional
datum. For instance, Fourier bases are a good choice for periodic functions. Other
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common basis functions used in the literature (not all orthogonal) are truncated
power series, B-spline, wavelet, monomial, functional principle component. Once
the basis functions are chosen, we express a functional observation Xi as

Xi(t) =
∞∑

k=1

cikφk(t) ≈
Kx∑

k=1

cikφk(t)

where the {φk}Kx
k=1, are the basis functions. This approach has a several advantages:

first, instead of storing all the data points, one stores the coefficients of the expansion,
namely, the cik. Second, an initial dimension reduction and third, some smoothing.
is done on the data.

Note that choosing the number of basis functions Kx is important and critical for
all subsequent computations. Small numbers of basis functions mean little flexibility
and larger numbers of basis functions results in flexibility, but may overfit. Generally
the value of Kx is chosen so that the plotted functional object resemble original data
with some smoothing that eliminates the most obvious noise (Ramsay & Silverman,
2005; Febrero-Bande & Oviedo de la Fuente, 2012).

The natural question that arises at this point is how large we should choose the
number of basis functions. On the one hand we need to choose Kx large enough in
order to catch the most feature in the data, but on the other hand we would like
to estimate the smooth functional datum. To this end, we need to make a trade-off
between the lack of data fit and the variability of the curve. A measure of the rough-
ness of the fitted function can be defined. For instance, one way to characterize the
roughness of a curve is by the size of its curvature, i.e. PEN2(x) =

∫
T

[D2(X(t))]2 dt.
By considering the roughness penalty on the fitted curve, the objective function is
thus

PENSSEλ(X) =
m∑

j=1

(Yj −X(tj))
2 + λ

∫

T

{D2X(t)}2 dt

where the smoothing parameter control the trade off between the lack of data fit,
as measured by the the first therm and the variability of the function, as measured
by the the second term in the objective function. The smoothing parameter can
be obtained using a data-driven methods such as cross validation (CV), generalized
cross validation (GCV), etc.

2.3 Registration

In a functional dataset, there are two source of variations: phase variation and am-
plitude variation. Variation in the magnitude or size of functional data is referred
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to as amplitude variation which measures the differences in the y-axis while vari-
ation in the time scale is often referred to as phase variation which measures the
differences in the x-axis. Most techniques in FDA are designed to handle amplitude
variation. Depending upon the particular problem at hand, phase variation might be
a nuisance or not of primary interest, i.e.in a number of spectral datasets, and so it
should be removed from the data before further analysis. While in some situations,
phase variation is the main focus and amplitude variation might be a nuisance or
is not of primary interest. Although there are some cases when both variations are
important. Separating amplitude variation from phase variation is still a challenging
problem in FDA.

The procedure of removing phase variation has been investigated under different
names in different disciplines, namely, curve registration, curve alignment, and time
warping in statistics, biology, and engineering respectively. Curve registration in
functional data is a procedure of transforming the time argument such that the
curves are more aligned. To this end, we need to estimate time-warping function such
as hi(t) such that X∗i (t) = Xi(hi(t)) are more aligned. On one hand warping function
reflects the variation on the x-axis and on the other hand produces horizontally
aligned curves in order to reduce the variability. In registration literature, the most
well known methods are shift, landmark, and continuous registration. Time warping-
function for the shift registration is a hi(t) = t+δi, where the shift parameter δi align
the curves, while in the other methods the time warping function may be possibly
non-linear. In some application, we might use shift registration and one of the other
registration methods together.

2.3.1 Registration on horse lameness dataset

In this section, registration process has been applied on dataset of horse lameness.
This dataset will be used and described in detail in Paper I. In clinical lameness
examination of horses, a lameness score is assigned based on visual inspection of
the locomotion pattern. Not only is detection of lameness and identification of the
lame limb a difficult task even for experienced veterinarians; there is also large vari-
ation between multiple evaluation undertaken by the same veterinarian. Therefore,
objective measurements would be helpful as supplement to have visual examination.

The data consists of 85 signals of vertical acceleration. Each signal is composed
of 8 cycles of a bi-phased signal. We denote the observations

{Yi , Xij(t)}, i = 1, 2, · · · , 85 , j = 1, 2, · · · , 8 , t ∈ [0, 8]
Yi ∈ {NO,LF,LH,RH,RF}, Xij : [0, 1]→ R

where the lameness groups NO, LF, LH, RH, RF are corresponding to normal or
healthy condition and lameness on left-fore, left-hind, right-hind, and right-hand leg,
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respectively. Top panel of Figure 2.1 displays a signal from a horse with lameness on
the right-fore limb after smoothing with a 500 B-spline basis. Based on video tape,
the first peak relates to stance phase on the RH/LH diagonal. The zero point crossing
after LF/RH diagonal were identified and represented by the vertical solid blue lines
in the figure. Considering zero crossing points, seven complete cycles were selected
shown in bottom left panel. Using continuous registration, these seven subsignals
were aligned and displayed in bottom middle panel. The average of aligned subsignals
was shift aligned to minus cosine curve. More detail about these processes can be
found in Appendix A in Paper I.
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Figure 2.1: Converting the raw data to functional including smoothing and preparing
for standard methods in functional data analysis including registration and averag-
ing. Top panel represents a roughly smooth signal for a horse with lameness on the
right-fore limb(black) and zero crossing point after phase stance LF/RH diagonal
(solid blue line). Bottom left panel shows seven complete cycles before registration
and displayed after registration(middle bottom panel). Right bottom panel repre-
sents the average of seven aligned subsignal after a shift aligned to a minus cosine
function.

The size of the signals differ between part 1 and part 2 which this variation
refers to amplitude variation while the location of features differ between part 1
and part 2 which this variation corresponds to phase variation. It is clear that in
the horse dataset there are both types of variations in the signals and also both
types are related to lameness. Here we are going to use a symmetry score based on
phase variation for some classification purpose. In Paper I multinomial functional
regression with wavelets and LASSO penalization has been used to analyze and
detect lameness where the amplitude variations play the main rule.
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It is well-known that the two parts of a cycle for a healthy horse (without lame-
ness) must be symmetric and lameness will disturb this symmetry. Sørensen et al.
(2012) have defined three different scores to quantify this asymmetry. Here we use a
symmetry score, W, based of phase variations which is related to the location of the
peaks in two parts in order to use in classification. Figure 2.2 represents the mean of
seven subsignals for a horse with lameness on RF limb after registration and minus
cosine shift alignment. The green curve displays the mean on [0, 1/2] while the red
one is the mean on [1/2, 1]. The continuous registration was used to align the part
two to part one. The aligned curve for part two is shown in blue one. In order to
quantify differences in phase between part one and part two, the symmetry score,
W, measures phase displacement of the two part of the signals and was defined as

W = ĥ(t∗)− t∗, where t∗ = argmaxt∈[0,1/2]|ĥ(t)− t.| (2.1)

Here h(t) is the warping function that transforms acceleration time t. It is clear
that ĥ(t) − t measures the delay of the part 2 which this value could be positive
or negative. So, W represents the largest delay for each signal. For instance, the
largest delay for the shown signal of a horse with lameness on RF limb is −0.06.
The negative sign is due to early peak on the second part in compare with the first
part. This W -score for the healthy horse must be close to or ideally zero because of
the symmetry of the two parts.

0.0 0.1 0.2 0.3 0.4 0.5

−1
.5

−1
.0

−0
.5

0.0
0.5

1.0
1.5

Time

Ve
rtic

al 
Ac

ee
ler

ati
on

Part  One
Part  Two
Aligned Part Two

W = −0.06

Figure 2.2: Aligned part 2 with part 1 for a horse with lameness on RF limb.

The comparison of the W-scores for different groups is better carried out by
inspecting the boxplot of the W-scores which is shown in left panel of figure 2.3. As
it was expected, the mean of W-scores for the healthy horse is very close to zero
while for the other groups these scores are far from zero. Also from the boxplot can
be seen that W-scores for the RF/LH diagonal are almost all negative while for the
another diagonal these scores are always positive. This is not surprising as the peak
of the signals for the horses with lameness on RF/LH would be on the second part
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as we would expect the horse to put less pressure on the ground with this diagonal
in compared with the other diagonal and therefore the time for the peak of the part
one is smaller than the time for the peak of the part two.

Finally, the differences between aligned parts are considered and the average over
signals from each group is shown in right panel of Figure 2.3. The conclusion based
on this figure is like the boxplot of W-scores. As we expected the differences for
the horses with healthy conditions, is close to zero across the time domain [0, 1/2]
while for the other groups these differences are far from zero. The maximum differ-
ences have happened on the time of the peak of the part one. The results of these
section have been presented as poster in workshop ’Statistics of Time Warping and
Phase Variation’ at Mathematical Biosciences Institute (MBI) in November 2012 in
Columbus, Ohio.
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Figure 2.3: Boxplot of W-scores for 85 signals(right panel) and the differences be-
tween aligned parts which averaged over signals from each group.

2.3.2 Constrained registration

Registration and phase variation are still challenging and open problems in functional
data specially from software implementation side. These issues were the focus of
workshop of ’Statistics of Time Warping and Phase Variation’ at Mathematical
Biosciences Institute (MBI) in November 2012 in Columbus, Ohio. In the workshop
four challenging real datasets including juggling dataset were considered in order
to apply the existing methods of time-warping registration and do comparisons. In
some applications, there are some constraints such as biomechanical constraints in
datasets which might be destroyed by applying time-warping registration. It would
be ideal if registration process can take into account all knowledge of the data
generating system in such a way that the all information will be preserved in the
synchronized curves. Considering a simple biomechanical constraint, namely, the
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fixed length between the finger tip and the joint of the juggler in juggling dataset
is the motivation for Paper IV. The juggling data consists of x, y, z position of the
juggler’s index finger when he was juggling three balls. More detail on the data can
be found in the paper.

2.4 Bootstrap

The term of bootstrapping was introduced by Efron (1979). Bootstrap is a non-
parametric approach to statistical inference that substitutes computation for more
traditional distributional assumptions and asymptotic results. At first, Efron was
motivated to use the bootstrapping for two most important problems in applied
statistics, the determination of an estimator for a particular parameter of interest
and the determination of confidence interval for the parameter. But because of the
bootstrap’s generality, it has been developed to much wider classes of problems in-
cluding regression models, forecasting and time series analysis, survival analysis,
clustering analysis, etc. Also it has developed for various disciplines including psy-
chology, geology, econometrics, biology, engineering, chemistry, etc (see Chernick,
2007).

From practical point of view, bootstrap approach need to generate bootstrap
sample or re-samples. The general procedure of bootstrapping can be performed as
follows. Suppose that we would like to make an inference about a function of θ, T (θ),
where θ is an unknown parameter of the distribution.

• Compute the estimate of T (θ) using the original data, namely, T (θ̂).

• Generate a bootstrap sample by generating a sample with replacement from
the empirical distribution.

• Compute T (θ∗) the value of T (θ̂) obtained by using the bootstrap sample
instead of original data where θ∗ is the estimate of θ based on the bootstrap
sample.

• Repeat step 2 and 3 KB times.

• Make an inference on {Tb(θ∗), b = 1, 2, · · · , KB}.

There is a great attempt to apply the bootstrap in a wide number of topics such
as regression setting. The least square approach is the first approach and most of-
ten works very well under certain assumption on the residuals. However, it is well
known that when the residuals are distributed Gaussian or approximately Gaussian,
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the least square is able to do the best job to construct the confidence interval and hy-
pothesis test for the parameters in the regression model. But it is problematic when
the assumptions are violated. For example, when the residuals have heavy-tailed
distribution or even when there are few outliers. In this situations the bootstrap
can help and we would like to apply the bootstrap approaches to make an inference
about the parameters in the model.

In connection with regression setting there are two basic approaches to bootstrap
depending on the problem at hand.

1. Observations resampling: first bootstrap the vector of the data including re-
sponse and covariates and fit the model to the resample data. Directly sampling
the observations would treat the covariates as random rather than fixed.

2. Residual resampling: in this approach first fit the model to the data and com-
pute the residuals. Next bootstrap the residuals and generate the response as
y∗b = Xb̂ + e∗b where X is the original covariates, y∗b is the bootstrap sample
and e∗b is resample residual. Using {y∗b , X} to fit a model and estimate the
parameters. In this approach the covariates X is used as fixed.

In the first scheme, the resampled design matrix does not equal the original
design matrix. If the number of observations(cases) n, is moderately large, it is no
problem but for small n and also when there are few observations with large effect on
the design matrix, using wrong fitted model leads to take into account appropriate
measure of uncertainty. This means that in this case, observation resampling is
robust. The second approach is efficient when the correct model is used. So, for the
residual resampling, careful model checking at first is necessary.

2.4.1 Bootstrap for functional data

In the previous section we discussed using bootstrap approach for the classic data.
Now lets turn into the bootstrap procedure as resampling methodology for functional
data(Cuevas et al. , 2006; Febrero-Bande & Oviedo de la Fuente, 2012). Suppose
that x(t) = {x1(t), x2(t), · · · , xn(t)}, t ∈ T are observed functional data generated by
underlying stochastic process X ∈ L2(T ) with finite second moments. Suppose that
we are going to make a confidence ball for a functional statistic T (t) = T (X(t)). The
performance of the bootstrap confidence bands for functional data are constructed
as follows for the given original data x(t):

1. Estimate the functional statistic using original data T (t) = T (x1(t), x2(t), · · · , xn(t)).
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2. Generate KB bootstrap sample from the original functional data called
x∗b(t) = {x∗1(t), x∗2(t), · · · , x∗n(t)} for the b resample. Note that in resampling
for functional data, the curves are chosen with replacement.

3. Compute T ∗b (t) = T (x∗1(t), x∗2(t), · · · , x∗n(t)) as an estimator of the sample func-
tional statistic from the b resample.

4. Compute db = d(T (t), T ∗b (t)), b = 1, 2, · · · , KB, where the metric d(·, ·) is asso-
ciated with a norm, and define dα the quantile (1−α) of the distance between
the bootstrap resample and the sample estimate.

5. Construct the bootstrap confidence ball of level (1−α) as CB(1−α) = T ∗b (t) ∈ E
such that db ≤ dα. In other words remove those curves T ∗b (t) which the relevant
distance db is larger than dα.

In the classical bootstrap resampling methodology for univariate data, there are
two alternatives bootstrap procedure called smoothed bootstrap and parametric
bootstrap. As in bootstrap resampling the data are drawn with replacement method,
it might be that some of the data replicated. The smoothed bootstrap is sometimes
used in order to avoid the appearance of repeated measures in the artificial sample.
The basic idea is replacing the standard bootstrap sample by the x0

b = x∗b +zb, where
x∗b is drawn from given data and zb is independent from x∗b and normally distributed
zb ∼ N(0, h).

In order to use smoothed bootstrap fo functional data setting is sufficient to replace
x∗b(t) by x0

b(t) in step 2 where x0
b(t) = x∗b(t) + zb and zb ∼ NN(0, sΣ). Here NN and

s refer to multivariate normal distribution and smoothing parameter respectively. In
addition, the index N in multivariate normal distribution represents the number of
observations per curve. Based on the experience, it turns out that in functional data
setup, the smoothed bootstrap version works better(Febrero-Bande et al. , 2010).

In Paper II. we used the bootstrap procedure for functional logistic regression in
order to inspect the uncertainty of the estimators.



3
Multilevel functional data

There are several studies in public health or some other disciplines when the obser-
vation are collected as functional data form (curves or images) on large number of
subjects at multiple visits, levels or units (Morris et al. , 2001; Morris & Carroll,
2006; Schrack et al. , 2013; Crainiceanu et al. , 2009). On the one hand it is expe-
dient to borrow the methods from standard multilevel modeling, and on the other
hand we need to use the methods in functional data analysis in order to preserve
the functional nature of the observation and for dimension reduction technique. The
combination of these two branches has led to a new topic in statistics which known
as multilevel functional data analysis.

Let us describe a well-known dataset in multilevel functional data literature,
namely, colon carcinogenesis dataset. The data were collected in an experiment con-
ducted by nutrition research at Texas A&M university, in order to investigate the
interplay between diet and colon cancer at a cellular level. To this end, several groups
of rats were fed a particular diets of interests for specific period, exposed to a car-
cinogen (radiation) that induces colon cancer and subsequently sacrificed for sample
collection. The colon was resected from the rats and examined for the interesting
biomarkers such as the concentration of p27, a cell cycle inhibitor protein, and apop-
tosis index. These multiple biomarkers are measured for each cell in multiple colonic
crypts(Sgambato et al. , 2000). By considering these measurements as a function of
cell position along the crypt wall, the problem becomes a multilevel functional data
where the functional measurements at the crypt level are nested within rats, who are
nested within diet group (Grambsch et al. , 1995). Several publications have been
motivated by application to these dataset from different aspects, see Morris et al.
(2003); Morris & Carroll (2006); Baladandayuthapani et al. (2008), and Staicu

et al. (2010), among others. A sample of 10 functional observations for the rats
with the fish diet has been shown in top panel of Figure 1.1. Most research in mul-
tilevel functional data concern to achieve an answer for the key scientific questions
which can be grouped as decomposition of variability, group comparisons, functional
regression and clustering.

Formally consider the setting where i = 1, 2, · · · , n index the subjects (rat),
j index the visits or units(crypt), then the observed data for the ith subject are

17
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{Yij(tijl), Xij(tijl), j = 1, 2, . . . ,mi} where Yij(t) denotes the outcome or response,
which can be discrete or continuous. One important aim of the experiment was
to evaluate the relationship between the multiple biomarker measured together on
the same cell and the coordinated response. By assuming that Xij(t) is a proxy
measurement of the following underlying subject-specific and unit-within-subject-
specific functional signal and has the following decomposition

Xij(t) = µ(t) + Zi(t) + Uij(t) + εij(t) (3.1)

where µ(t) is the mean function, Zi(t) and Uij(t) are independent random compo-
nents, Zi(t) represents the subject-specific deviation from the mean, Uij(t) is the
unit-specific random effect from the subject mean, and εij(t) displays the noise. In
addition, it is assumed that Zi(·) and Uij(·) are square integrable random processes
on the closed and bounded set T which for simplicity it is usually considered [0, 1].
Furthermore, for identifiability Zi, Uij, and εij are uncorrelated random processes
with mean zero and εij has covariance function that cov(εij(t), εij(t

′)) = σ2
ε , for t = t′

and 0 otherwise. In order to make a relationship between the response and covari-
ate in this multilevel functional setting we will introduce a generalized time-varying
regression in ?, when the considered model relates the current value of the response
at time t of the jth unit for the ith subject to the current value of the jth predictor
at the same time t within the subject ith by considering the decomposition of Xij(t)
in (3.1).

3.1 Correlated multilevel functional data

So far, we have focused on multilevel functional data when the label ’correlated’
refers to the dependency of the functional unit which in functional data the obser-
vation of each signal are inherently correlated. As in functional data, all observation
for each unit is considered as the observational unit, the correlation within obser-
vation of a unit is preserved automatically. So, using label ’correlated’ in multilevel
functional data refers to the dependency between units of the same subject. There
are many possible situation in multilevel functional data however there is a high de-
pendency between units which it is expedient to take this dependency into account
in order to achieve a more accurate model. Estimating the correlation between the
multiple signal for the same subject is one of the primary interests in some publi-
cations in correlated multilevel functional data. For instance, Morris et al. (2001,
2002) and Dubin & Müller (2005) estimated the correlation between the functions of
the same subject while Li et al. (2007); Baladandayuthapani et al. (2008); Staicu
et al. (2010); Zhou et al. (2010) estimated and considered the correlation (better to
say spatial correlation) between the functions of the same subject in the functional
modeling when analyzing the colon carcinogenesis data.
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In the colon carcinogenesis data, there is scientific belief of coordinated response
(Morris et al. , 2002) at the crypt level such that the biological response in one crypt
may affect response in neighboring crypts. In particular of how p27 affects apoptosis.
This is the motivation of the unfinished joint work with Ana-Maria Staicu and Damla
Şentürk to introduce the ’Generalized time-varying spatial regression of multilevel
functional data’. The idea of this work is. how we can make an association between
a generalized spatially correlated multilevel functional response and a spatially cor-
related multilevel functional covariate. Again let i = 1, 2, · · · , n , j = 1, 2, · · · ,mi

index the subjects and units respectively and sij represents the spatial location of
the jth unit within ith subject. Also, the observed data for subject i are displayed
by

[{Yij(tijl,sij), Xij(tijl,sij)}, tijl ∈ [0, 1], sij, j = 1, 2, · · · ,mi]

where Yij(tijl) = Yij(tijl,sij) is the discrete or continuous-valued trajectory and
Xij(tijl) = Xij(tijl,sij) is the functional predictor corresponding to the subject i,
unit j with spatial location sij and tijl is the time point(distance the cell i the
crypt from the crypt bottom) of the observation which in this dataset represents
the distance of the cell on the crypt wall from the bottom of the crypt. Assuming
that Xij(t) is a proxy ,measurement of the following subject-specific, unit within
subject-specific and subject-specific signal as follows (Staicu et al. , 2010)

Xij(t) = µ(t) + Zi(t) + Uij(t) +Wi(sij) + εij(t) (3.2)

where Zi(t) and Uij(t) are as defined before with the same assumptions and Wi(t)
represents the subject-specific spatial process and is considered a second order sta-
tionary process in D ⊆ R. In addition, it is assumed that Wi(t) is uncorrelated with
Zi(t), Uij(t) and εij(t).

The above simple practice decomposition of Xij(t) enables us to separate the dif-
ferent types of effects of the spatially correlated multilevel predictor on the response.
We suggest that the distribution of Yij(tijl) can be described as follows

E{Yij(t)|Zi(t), Uij(t),Wi(s+ sij), s ∈ [−∆,∆]} =

g

{
β0(t) + β1(t)Zi(t) + β2(t)Uij(t) +

∫ ∆

−∆

γ(s)Wi(s+ sij) ds

}
, ∆ < sij < L−∆

(3.3)

for a known inverse link function g(·) and L in the length of D. In (3.3), β0(t)
is the intercept, β1(t) is the time-varying effect of the subject-specific deviation Zi,
β2(t) is the effect of the unit-specific deviation Uij(t), and γ(s) represents the spatial
effect which quantify the effect of the neighborhood of the subject-specific spatial
deviation Wi in a window of size ∆ on the response at site sij. The function γ(s) is a
real-valued defined on [−∆,∆] which for identifiability is assumed to be symmetry

about zero with the property
∫ ∆

−∆
γ2(s) ds = 1.
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The idea of estimation of β0, β1 and β2 is mostly based on ? which this approach
is based on method-of-moment estimator of mean function and covariance functions.
Simulation study shows that the estimator for these parameter functions work well.
The attempt to find the estimator for γ(s) is not promising and we are still working
on the estimator.



4
Perspective

In this chapter we discuss some perspective suggested by the work done in Paper I, III
and possible future work.

In Paper I, the analysis of horse lameness data through multinomial functional
regression was conducted by using vertical acceleration signals. This is a general idea,
and we must take full advantage of the existent data. So, as in the lameness of horse
data, acceleration signals for other directions, namely, transverse and longitudinal,
are collected, it would be expedient to consider the signals for all three direction when
analyzing the data. This consideration could led to better result in classification.

In the lameness application the 85 signals (from 8 horses) were considered as inde-
pendent signals. Ideally, we need to consider the effect of the horses in the analysis
and this effect must be considered as random effect in the model.

In application of multinomial functional regression, we considered amplitude vari-
ation. Also in Chapter 2 we computed a W-score based on phase variation. But it
could be a good idea to use a combination of phase variation and amplitude variation
with the aim of distinguish.

Regarding the lameness of horse dataset, the data are collected for two degree of
lameness in groups LH, RH, RF, RH. But in the analysis of the data, we did not
consider the degree of lameness in the model. This is important as one of the aims
considering the degree of lameness in the analysis.

In multinomial functional regression, we used the raw discrete wavelet transform as
design matrix in the regression model. In functional data, we usually deal with data
which are contaminated with noise. One potential way to remove the noise from the
data could be using (soft or hard) threshold on the wavelet coefficients in order to
identify those who are associated to the noise and then modify them. For very dense
functional data and observation with noise, we could consider thresholding of the
wavelet coefficient as design matrix in the model.

In order to maintain more information in wavelet transform, one could apply appro-
priate high- and low-pass filters to the data at each level to produce two sequences
at each level. In this case no decimation occurs and so the two produced sequences

21



22 Chapter 4. Perspective

have the same length as the original sequence. Instead the filters are modified at
each level by padding them to with zeros. This transform is well-known as th non-
decimated wavelet transform (Nason & Silverman, 1995). This transform has been
applied in statistical research in particular for non-parametric regression and time
series analysis, but to the best of our knowledge has not applied in functional data
analysis.

In some situations, i.e. colon carcinogenesis data, there is spatial dependency be-
tween units within subject. On the face of it, it is expedient to consider this depen-
dency when decomposing the functional covariate as it has done in Staicu et al.
(2010). So, the suggested concurrent model in Paper III can be extended for multi-
level functional data with spatially dependency by considering the spatial effect in
the model.



Bibliography

Baladandayuthapani, Veerabhadran, Mallick, Bani K, Young Hong,
Mee, Lupton, Joanne R, Turner, Nancy D, & Carroll, Raymond J.
2008. Bayesian hierarchical spatially correlated functional data analysis with ap-
plication to colon carcinogenesis. Biometrics, 64(1), 64–73.

Chernick, Michael R. 2007. Bootstrap methods: A guide for practitioners and
researchers. Vol. 619. Wiley-Interscience.

Crainiceanu, Ciprian M, Caffo, Brian S, Di, Chong-Zhi, & Punjabi,
Naresh M. 2009. Nonparametric signal extraction and measurement error in the
analysis of electroencephalographic activity during sleep. Journal of the american
statistical association, 104(486), 541–555.

Cuevas, Antonio, Febrero, Manuel, & Fraiman, Ricardo. 2006. On the
use of the bootstrap for estimating functions with functional data. Computational
statistics & data analysis, 51(2), 1063–1074.

Dubin, Joel A, & Müller, Hans-Georg. 2005. Dynamical correlation for
multivariate longitudinal data. Journal of the american statistical association,
100(471), 872–881.

Efron, Bradley. 1979. Bootstrap methods: another look at the jackknife. The
annals of statistics, 1–26.

Febrero-Bande, Manuel, & Oviedo de la Fuente, Manuel. 2012. Statis-
tical computing in functional data analysis: the r package fda. usc. Journal of
statistical software, 51(4), 1–28.

Febrero-Bande, Manuel, Galeano, Pedro, & González-Manteiga,
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Abstract

We study the situation with a categorical response variable (more than two classes) and a
functional predictor and suggest to use a multinomial functional regression (MFR) model
for the analysis. We combine the discrete wavelet transform and LASSO penalization for
estimation, and the fitted model is used for classification of new curves with unknown
class membership. We apply our MFR approach to two datasets, one regarding lameness
detection for horses and another regarding speech recognition. In the applications, as well
as in a simulation study, we compare the performance of our MFR approach to that of
other methods for supervised classification of functional data.

Key words: Multinomial functional regression; Discrete wavelet transform; LASSO penaliza-
tion; Supervised classification; Lameness data for horses; Phoneme data.

1 Introduction

Detection of lameness for horses and identification of the lame limb is a difficult task even
for experienced veterinarians, and there is a need for objective methods that can be used as
supplement to the usual clinical examination and visual inspection of the horse. In this paper
we examine if acceleration signals collected during trot can be used for diagnostic purposes.
Data are available from eight horses, each in nine conditions corresponding to no lameness and
to low- and moderate-degree lameness on either of the four limbs. Another application comes
from speech recognition where the aim is to predict which phoneme is spoken, based on a
log-periodogram.

From a statistical point of view both problems can be framed as classification for functional
data. The observation is a function (acceleration signal or log-periodogram), and we want to
classify new observations into well-specified groups (lameness status or phoneme). We propose

∗Corresponding author
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Introduction

a method based on multinomial functional regression (MFR) which, apart from the classifica-
tion itself, also gives us information about which parts of the signals are used in the classifica-
tion procedure. It combines wavelet expansions with LASSO regularization.

Methods for analysis of functional data have been developed since the 1960’s and 1970’s,
and the development accelerated in the 1990’s with the first edition of Ramsay and Silverman
(2005) from 1997 as an important milestone. These days, functional data analysis (FDA) is a
statistical discipline in itself which develops fast and vividly in many directions. This is illus-
trated by a large number of hits, more than 6000, for the phrase “functional data” in articles
since 2014 on Google Scholar (http://scholar.google.dk). The development is driven by
the technical development which has resulted in a vast amount of data of functional nature.
Examples from the literature cover a broad range of scientific fields and include growth data,
spectral data from food and plant science, medical data concerning CD4 counts for HIV pa-
tients, brain images and vascular geometry, weather, climate data and pollution data, and data
on speech recognition.

There are several approaches in the literature to classification of functional data. Early work
include Hall et al. (2001) and James and Hastie (2001) who used linear discriminant analysis
(LDA) on scores from a principal component analysis (PCA) and on coefficients from spline
expansions, respectively, and Ferraty and Vieu (2003) using a kernel approach. Later, PCA was
combined with logistic regression for the case with two groups (Müller and Stadtmüller, 2005),
the method of partial least squares (PLS) was accommodated to functional data (Preda et al.,
2007), and methods based on functional depth were suggested (Cuevas et al., 2007; López-
Pintado and Romo, 2006). Recently Tian and James (2013) suggested a dimension reduction
approach that takes into account the association to the categorical variable, and Delaigle and
Hall (2012) studied optimality properties of a nearest centroid classifier.

Another corner of FDA is devoted to regression problems with functional outcome and/or pre-
dictors. The situation with scalar response and functional covariates is of particular interest
for this paper. In the simplest case we observe for each subject i a one-dimensional continu-
ous response Yi and a function xi : (0,1)→ R, and assume (among others) that the conditional
expectation of Yi given xi is given by

E [Yi|xi] = α +
∫ 1

0
β (t)xi(t)dt, (1)

where α is an unknown intercept and β : (0,1)→ R is an unknown coefficient function.

Several estimation approaches have been suggested for this model. One method, often referred
to as functional principal component regression (FPCR), consists of a functional principal com-
ponent analysis of the xi’s followed by a regression on the first few, say K, scores (Cardot et al.,
1999; Ramsay and Silverman, 2005). This yields β functions in the space spanned by the first
K principal components (PCs), and it is thus implicitly assumed these PCs not only account for
a large proportion of the variation between xi’s, but are also relevant for the association between
Y and x. Lee and Park (2012) discussed a selection approach to choose the most informative
PC basis using LASSO, i.e., imposing a L1 penalty on β , and the effect of a quadratic penalty
on β in FPCR was discussed by Randolph et al. (2012).
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Another approach is to use a rich, flexible basis for β in combination with regularization meth-
ods. For example, Marx and Eilers (1999) and Cardot et al. (2003) used spline series expansions
and added penalty terms to the log-likelihood function, and Goldsmith et al. (2011) and Wood
(2011) used spline series expansions in a mixed-model set-up. Reiss and Ogden (2007) com-
bined FPCR, functional partial least squares, and penalized splines. The paper by Zhao et al.
(2012) is of particular importance for this paper and combined wavelet expansions with LASSO
regression. This is an effective combination, since LASSO penalization by construction selects
sparse models, and wavelets are known to offer sparse, yet precise, representations of many
types of functions. The LASSO has also been used in combination with other basis systems in
order to obtain sparse representations (James et al., 2009; Lee and Park, 2012).

Many of the above-mentioned methods also apply to exponential families, in particular to the
case with binary response leading to functional logistic regression (Cardot and Sarda, 2005;
Crainiceanu et al., 2009; Goldsmith et al., 2011; James, 2002; Müller and Stadtmüller, 2005).
Most of the papers contain asymptotic results but there are only few examinations of finite-
sample properties in non-Gaussian cases. An exception is the paper by Reiss et al. (2015)
where Gaussian and logistic regression with image predictors are studied.

We will take the logistic regression set-up a step further and consider multinomial regression
with functional covariates. Let xi be as before, but consider categorical outcomes Yi with M
possible outcomes, m ∈M . Define pm(x) as the conditional probability of class m given the
functional outcome,

pm(x) = P(Y = m|X = x), m ∈M ,

and assume that pm(x) is proportional to exp
(
αm+

∫ 1
0 βm(t)x(t)dt

)
for class-specific intercepts

αm and class-specific coefficient functions βm. Once the model has been fitted, it can be used
for classification in the obvious way: Given a curve, we compute p̂m(x) for all m and allocate
the curve to the group with highest probability.

For estimation, we will follow the approach from Zhao et al. (2012) closely. More specifically,
we select a family of wavelet bases and a resolution level, expand the covariate functions in the
basis and use the wavelet coefficients as covariates in a multinomial regression with LASSO
penalization. The LASSO tuning parameter and resolution level are selected by cross valida-
tion. The regression coefficients from the optimal multinomial regression are extracted and
translated into estimated coefficient functions, β̂m.

In summary, the aim of the paper is to generalize the wavelet- and LASSO-based regression
approach from Zhao et al. (2012) to the multinomial case and use it for classification. Our
main application is about diagnosis of lameness among horses, but we also apply our method
to a dataset on phonemes. This dataset has been widely used in speech recognition and was
discussed by Hastie et al. (1995) and Ferraty and Vieu (2003), among others.

The rest of the paper is organized as follows. The motivating dataset on lameness is described
in detail in Section 2. In Section 3 we go through the details about the functional multinomial
regression, including formulation of the model and brief discussions about wavelets and the
LASSO. Section 4 contains a thorough analysis of the lameness data, and Section 5 presents a
simulation study. In Section 6 the phoneme data are classified using MFR. Finally, we discuss
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Detection of lameness: Motivation and data

the results and conclude in Section 7. Supplementary material including details on preprocess-
ing of the lameness data and an introduction to wavelets is available in appendices A and B.

2 Detection of lameness: Motivation and data

Our main application is concerned with lameness detection for horses. It is well documented
that there is large variation between different veterinarians’ evaluation of the same horse and
even between multiple evaluations undertaken by the same veterinarian (Keegan et al., 2010,
1998). Therefore, several research groups have worked with more objective/automated evalu-
ations as supplement to the usual examination (Pfau et al., 2005; Weishaupt et al., 2004). A
group from University of Copenhagen has worked with acceleration signals (Thomsen et al.,
2010), and our interest in this paper is whether the acceleration signals can be used for diag-
nostic purposes.

The acceleration signals are collected while the horses are trotting. Trot is a two-beat gait where
the diagonal pairs of legs (left-fore/right-hind and right-fore/left-hind) move forward at the
same time with a moment of suspension between each beat. A complete gait cycle thus consists
of two parts corresponding to stance on each of diagonal. A healthy horse is hypothesized
to trot symmetrically such that the two parts are alike up to random variation. Lameness is
known to disturb this symmetry as the horse tries to reduce the pressure onto the ground for the
injured limb (Weishaupt et al., 2004). Pressure generates upwards acceleration, and the idea in
the current study is that asymmetry, and thereby lameness, can be detected from acceleration
signals.

2.1 Experimental design

The dataset consists of a total of 85 acceleration signals from eight horses, who went through
a thorough clinical examination and showed no indication of lameness. The data was collected
in two sub-experiments. In the first sub-experiment four horses were tested four times each in
healthy condition (no lameness). In the second sub-experiment all eight horses were tested nine
times, namely in healthy condition and after induction of two degrees of lameness on each of
the four legs. The lameness was induced mechanically by equipping the horse with a modified
horseshoe with a screw eliciting pressure on the sole of the hoof. The shoe makes stance on the
limb painful, and the two degrees of lameness correspond to different levels of this pressure.
Three signals are unavailable resulting in a total of 85 signals. The data have been analyzed in
Sørensen et al. (2012) and Thomsen (2010).

We will not distinguish between the two degrees of lameness in this paper. This leaves us with
five lameness groups, in the following referred to as NO, LF, LH, RF, RH corresponding to
normal or healthy condition and lameness on left-fore, left-hind, right-fore and right-hind leg,
respectively.
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2.2 Data collection and preprocessing

2.2 Data collection and preprocessing

We refer to Thomsen et al. (2010) for details on the technical description of the data collec-
tion process. In short, a three-axis accelerometer was placed at the back of the horse (close
to body center of mass), and the horse was led by the hand in trot at approximately con-
stant velocity. The horse was videotaped during measurement. The accelerometer measured
the 3-dimensional accelerations of trunk movements at frequency 240 Hz. We will only use the
acceleration in vertical direction in this paper.

Several preprocessing steps were carried out before the MFR analysis in order to reduce vari-
ation between gait cycles in each signal and variation between signals due to slightly different
timing at the beginning of the signals. These steps are described in detail in appendix A, but
in short they consist of the following steps: (a) eight gait-cycles were picked out, based on the
video recording; (b) the signal was smoothed lightly to bring it on functional form; (c) seven
gait cycles starting at a well-defined zero-crossing were identified and aligned, and thereafter
averaged; (d) the average was shift aligned to a minus cosine curve. Time is measured in gait
cycles, so clock time has been scaled separately for each signal. After preprocessing the data
consist of 85 real-valued functions xi defined on (0,1). Each xi is periodic, as it is expressed in
a Fourier basis, and the first peak always corresponds to stance on the RF/LH diagonal.

The 85 preprocessed signals and the group-wise mean curves are shown in Figure 1. Notice
how the signals in the NO group seem to be symmetric in the sense that the sub-signals on
(0,0.5) and (0.5,1) corresponding to stance on the two diagonals are very similar, whereas this
is not the case for the other groups. For example, in the LH group, the amplitude appears to be
larger on (0.5,1) compared to (0,0.5). This is quite reasonable: When the horse has the special
horse shoe attached to the left-hind limb, then one would expect it to hurt to stand on the right-
fore/left-hind diagonal, and thus we would expect the horse to put less pressure on the ground
with this diagonal compared to the other. This exactly corresponds to a smaller amplitude of
the first compared to the second half of the signal.

3 Multinomial functional regression

In this section we describe the model and the estimation procedure in detail. We consider data
(xi,yi), i = 1, . . . ,n from n individuals, and assume that they are outcomes from independent
random variables (Xi,Yi). The response variables Yi are categorical with two or more possible
outcomes. The state space is denoted M , and we use m to denote outcomes. The explanatory
variables Xi are functional and defined on a regular time interval, which for simplicity is taken
as the unit interval, i.e., (0,1). Hence, each observed variable is a function, xi : (0,1)→ R. In
practice each xi is observed at discrete sample points.

In our approach, dealing with the discrete wavelet transform, the number of observations must
be a power of 2, but this is not really restrictive: In other dense cases, we could make linear
interpolation between observation points, and thereby get a function that could be evaluated at
a vector of time points with the desired length. This technique also makes it possible to deal
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Figure 1: The 85 preprocessed acceleration signals (thin lines) organized after lameness status
and mean curves (thick lines). The five mean curves are also shown in the bottom right panel.

with irregularly spaced observations and situations where the number of sample points differ
between Xi’s. For sparse data we could predict the trajectory, for example by the approach in
Goldsmith et al. (2013), and then evaluate it at the desired time points. In the following we
therefore assume that each Xi is sampled at N equally spaced time points ranging from 0 to 1.

3.1 Regression model and prediction

As in standard regression problems, we are interested in the association between X and Y .
In many applications it would be most natural to think about this association and the data
generating mechanism in terms of the conditional distribution of X given Y . For example, how
does the distribution of acceleration signals differ between lameness groups? However, since
the primary purpose of our work is classification, i.e., prediction of Y given X , we are rather
interested in the conditional distribution of Y given X and therefore aim at estimation of a
model for the conditional probabilities, i.e.,

pm(x) = P(Y = m|X = x), m ∈M .

More specifically, and as a natural extension of the conventional multinomial regression model,
we consider unknown constants αm and unknown coefficient functions βm : (0,1)→ R, and
assume that

pm(x) =
eαm+

∫
βm(t)x(t)dt

∑l∈M eαl+
∫

βl(t)x(t)dt
. (2)
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3.2 Wavelets

Here, the integrals are from 0 to 1, and the quantities ηm(x) = αm +
∫

βm(t)x(t)dt will be
referred to as linear predictors. Often, and this will also be the case in our lameness application,
a reference group is selected, and the other groups are compared against the reference group.
For two groups, m and l, the conditional log-odds for group m compared to group l given x is

log
pm(x)
pl(x)

= ηm(x)−ηl(x) = (αm−αl)+
∫ 1

0

(
βm(t)−βl(t)

)
x(t)dt. (3)

The differences between coefficient functions are thus used to model how these odds are af-
fected by x. The intercept term is more difficult to interpret, but notice that we can reparame-
terize by centering the x’s:

ηm(x) = κm +
∫

βm(t)
(
x(t)− x̄(t)

)
dt (4)

where x̄ is the pointwise mean of x1, . . . ,xn, and κm = αm +
∫

βm(t)x̄(t)dt. Then

log
pm(x̄)
pl(x̄)

= κm−κl,

and the κ’s model the probabilities for the average signal.

Notice that model (2) is overparameterized since we may add the same constant c0 to all α’s
and/or add the same constant c to all β ’s, and yet get the same probabilities. This ambiguity is
dealt with in a natural way by the LASSO regularization, see Section 3.4.

Once we have fitted the model such that estimates α̂m and β̂m are available for m ∈M the
fitted model can be used for classification. For a new function x, compute the estimated linear
predictor

η̂m(x) = α̂m +
∫ 1

0
β̂m(t)x(t)dt

and the corresponding probability p̂m(x) for each group. As prediction of Y , choose the group
with largest probability:

Ŷ (x) = argmaxm∈M p̂m(x).

Estimates of β̂m(t) tell us how this prediction machine works: Which parts of the curves are
used for prediction, and which are not?

3.2 Wavelets

The basic idea behind wavelets is to represent a complex function with simple functions at
different scales and locations. The simple functions form a wavelet basis and are generated
from a given wavelet by the operation of dilation and translation. The wavelet representation
thus describes the features of the function at different locations and scales, and wavelets are
particularly useful for describing non-stationarity and discontinuities. In this section we briefly
recall the basics for wavelets and wavelet bases for L2(R). Appendix B gives more details,
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3.2 Wavelets

and comprehensive accounts of wavelets can be found in Daubechies et al. (1992), Vidakovic
(2009), and Nason (2010).

A wavelet transform has a mother wavelet, ψ(t), and a father wavelet, φ(t), that are linked by
the relationship, ψ(t) = ∑k∈Z gk

√
2φ(2t− k). The set of the coefficients G = {gk}k∈Z are the

high-pass filter coefficients associated with the particular wavelet function.

For a given mother wavelet ψ(t), the wavelet basis is given by {ψ j,k(t)} j,k∈Z where

ψ j,k(t) = 2 j/2ψ(2 jt− k).

The indices j and k represent dilation and translation, respectively. The index k shows the
coefficient’s position and is known as the location parameter. The index j represents the detail
level and is known as the scale parameter.

A discrete wavelet transform (DWT) is a linear transformation that operates on a discrete series
x1,x2, · · · ,xN where N is a power of 2, transforming it into a numerically different series of the
same length. Keep in mind that the observed series is generated from an underlying signal f (t)
such that x j = f (t j) The idea is to filter the series, using the high- and low-pass filters associated
with the wavelet, i.e., G = {gk}k∈Z and H = {hk}k∈Z, to obtain the wavelet coefficients. Figure
2 shows the DWT computation as a cascade of filtering followed by a factor 2 subsampling; H
and L represent high- and low-pass filters, respectively, and ↓ 2 denotes subsampling.

Figure 2: Graphical display of a multiscale transform.

For a sequence of length N = 2J , there are J different detail levels, j = 0,1, · · · ,J−1. At level j
the wavelets cover one of 2 j sub-intervals, and j = J−1 is thus the finest detail level and j = 0
the coarsest detail level. For a fixed detail level j0, a fine-scale representation of the function f
at detail level j = j0 is given by

f j0(t) =
2 j0−1

∑
k=0

c j0,kφ j0,k(t)+
J−1

∑
j= j0

2 j−1

∑
k=0

d j,kψ j,k(t). (5)

Notice that coefficients associated with the father and mother wavelet are denoted by c j,k and
d j,k, respectively. The functions f j and f j+1 belong to subspaces Vj and Vj+1, respectively, with
Vj ⊂ Vj+1, and the difference between f j+1 and f j thus consists of the details in Vj+1\Vj. The
detail level j0 will used as a tuning parameter in the estimation procedure, see Section 3.5.

We have several reasons for choosing wavelets as our workhorse. First, wavelet analysis ex-
tracts information about local properties due to the compact support of the basis functions.
This is in contrast to Fourier analysis which is better at describing global than local features.
Second, precise approximations are often obtained with sparse wavelet representations, i.e.,
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3.3 LASSO

with representations that only contain relatively few non-negligible terms. Hence, important
features can be highlighted by a few non-zero coefficients which makes wavelet analysis and
LASSO penalization good companions.

We use We use the least asymmetric Daubechies wavelets for our analyses, see Figure 16 in
Appendix B.

3.3 LASSO

The standard linear regression model for n scalar observations and p predictors can be written
as Yi = β0 +∑p

j=1 Xi j β j + εi (i = 1,2, . . . ,n), where εi is a random error. Ordinary least squares
(OLS), minimizing the residual sum of squares, is the simplest estimation method:

β̂ OLS = argminβ





n

∑
i=1

(
yi−β0−

p

∑
j=1

xi jβ j

)2


 . (6)

If the remainder terms εi are iid. Gaussian, then OLS is equivalent to maximum likelihood
estimation.

If the number of covariates is large in comparison to the sample size, OLS leads to over-fitting
and models that are hard to interpret, and if p> n the OLS solution is not unique. Therefore it is
common to apply regularization techniques. The methods include dimension reduction meth-
ods like principal component analysis (PCA), partial least squares (PLS), sufficient dimension
reduction (SDR), usage of information criteria like AIC and BIC, and shrinkage methods like
ridge regression (RR), least absolute shrinkage and selection operator (LASSO), and elastic
nets (Hastie et al., 2009).

We will use the LASSO introduced by Tibshirani (1996) for our estimation problem. In the
standard regression problem this amounts to adding a term with the L1 norm of the coefficient
vector to the OLS criterion:

β̂ LASSO = argminβ





n

∑
i=1

(
yi−β0−

p

∑
j=1

xi jβ j

)2

+λ
p

∑
j=1
|β j|



 . (7)

Here, λ is a tuning parameter that controls the amount of shrinkage. The L1 penalization has
the effect that each β j is shrinked toward the origin and some β j are even driven to zero. Hence,
LASSO results in a sparse estimate of β if λ is chosen large.

The response in our set-up is multinomial, and we will add the L1 penalty term to the deviance
(minus the log-likelihood) rather than to an OLS criterion, see the next section.

3.4 Penalized maximum likelihood

We are now ready to combine multinomial functional regression, wavelets, and LASSO and
thus describe the estimation procedure in detail.
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3.4 Penalized maximum likelihood

For a start, consider the tuning parameters, λ0 and j0, fixed. The observed covariate functions
as well as the unknown coefficients functions are expressed in the wavelet basis at detail level
j0:

xi, j0(t) =
2 j0−1

∑
k=0

ci, j0,kφ j0,k(t)+
J−1

∑
j= j0

2 j−1

∑
k=0

di, j,kψ j,k(t), i = 1, . . . ,n

βm, j0(t) =
2 j0−1

∑
k=0

c∗m, j0,kφ j0,k(t)+
J−1

∑
j= j0

2 j−1

∑
k=0

d∗m, j,kψ j,k(t), m ∈M (8)

where c, c∗ and d, d∗ are coefficients associated with the father and mother wavelet, respec-
tively, and for the signals xi(t) and coefficient function β (t), respectively. Recall that the
wavelet basis is an orthonormal basis. Therefore the linear predictors can be expressed in terms
of the wavelet coefficients by

ηm(xi) = αm +
∫

βm(t)xi(t)dt = αm +
2 j0−1

∑
k=0

ci, j0,kc∗m, j0,k +
J−1

∑
j= j0

2 j−1

∑
k=0

di, j,kd∗m, j,k = αm +Ziγm (9)

where Zi is the 1×N matrix (row vector) consisting of c and d coefficients for subject i, and
γm is the N×1 matrix (column vector) consisting of c∗ and d∗ coefficients for group m in the
same order. We recognize this structure for the linear predictors from the classical multinomial
regression.

If we furthermore introduce the indicator variables wim = 1(yi=m), then the contribution from
subject i to the likelihood can be written as

pyi(xi) = ∏
m∈M

pm(xi)
wim =

∏m∈M
(
eαm+Ziγm

)wim

∑m′∈M eαm′+Ziγm′
,

and the complete log-likelihood is

logL
(
(αm,γm)m∈M

)
= log

n

∏
i=1

pyi(xi) =
n

∑
i=1

(
∑

m∈M
wim(αm +Ziγm)− log ∑

m∈M
eαm+Ziγm

)
.

With L1 penalty on the γ coefficients and fixed penalty parameter (λ0) our penalized log-
likelihood is thus

Q
(
(αm,γm)m∈M

)
=− logL

(
(αm,γm)m∈M

)
+λ0 ∑

m∈M

N

∑
r=1
|γmr|

=−
n

∑
i=1

(
∑

m∈M
wim(αm +Ziγm)− log ∑

m∈M
eαm+Ziγm

)
+λ0 ∑

m∈M

N

∑
r=1
|γmr|

which is minimized w.r.t. (αm,γm), m ∈M .

As already mentioned, the model is overparameterized. From equation (9) we notice that pa-
rameter sets (αm−c0,γm−c)m∈M and (αm,γm)m∈M give rise to the same linear predictors and
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3.5 Selection of tuning parameters

thus to the same likelihood for all c0 ∈ R and all c ∈ RN (not depending on m). The penalty
term is not the same, however, and regularization therefore takes care of the ambiguity and
makes it possible to obtain uniquely determined parameter estimates. For fixed (αm,γm)m∈M ,
the smallest LASSO penalty term among parameter sets (αm,γm− c)m∈M is obtained for c
being the vector of pointwise medians (Friedman et al., 2010, Theorem 1):

cr = median
{
(γm,r)m∈M

}
, r = 1, . . . ,N.

We therefore center the γ’s such that the median is zero for all coordinates. The intercepts,
which are not penalized, are centered such that they have mean zero. This is the unique solution
to the penalized optimization problem.

Recall that γm consists of the c∗ and d∗ coefficients for βm in the wavelet expansion, see (8).
Hence, the estimated vector γ̂m gives us an estimated coefficient function β̂m through perform-
ing the inverse discrete wavelet transform.

In practice, we use the implementation of penalized multinomial regression from the R package
glmnet (Friedman et al., 2010). The algorithm is based on cyclical coordinate descent methods
and has LASSO penalization as a special case of elastic net penalization. The implementation
in glmnet is very efficient.

3.5 Selection of tuning parameters

The computations above were for fixed tuning parameters, j0 and λ , but they must be selected
as part of the analysis. We use K-fold cross validation for that purpose. More precisely, we
divide the index set I = {1, . . . ,n} into K non-overlapping parts, I = ∪K

k=1Ik, and consider the
corresponding sub-datasets, Dk = {(xi,yi)}i∈Ik . For fixed values of j0 and λ and for sub-dataset
k, we proceed as follows: First we use the data not included in Dk, i.e., {(xi,yi)}i∈I\Ik to fit

the regression model with tuning parameters j0 and λ . This yields estimates α̂(−k)
m and β̂ (−k)

m ,
m ∈M , and therefore also an estimated relation between a signal x and fitted probabilities,
p̂(−k)

m (x). Second, the deviance for the data in Dk, using the fitted regression without Dk, is
computed as

DEVk( j0,λ ) =−2 ∑
i∈Ik

log p(−k)
yi (xi),

where we have emphasized the dependence of the tuning parameters on the left hand side.
This is repeated for all K sub-dataset, and the “mean cross-validated deviance” (MCVD) is
computed as the average deviance per observation:

MCVD( j0,λ ) =
1
K

K

∑
k=1

DEVk( j0,λ ). (10)

The pair ( j0,λ ) that makes MCVD the smallest is selected for further analysis.

In practice we profile over j0: For fixed j0 we minimize over λ ; this is implemented directly in
the glmnet package. We repeat this for the J possible values of j0 and thereby find the optimal
pair of tuning parameters.
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3.6 Summary of estimation routine

3.6 Summary of estimation routine

In summary, estimation is carried out as follows. For each possible j0:

1. Covariate functions xi are expanded in the wavelet basis at detail level j0.

2. The wavelet coefficients are used in as covariates in a multinomial regression with LASSO
penalization. Cross validation yields an optimal value of λ and the corresponding cross
validation deviance.

This is repeated for the possible values of j0 as to minimize the cross validation deviance. The
regression coefficients, α̂m and γ̂m, from the optimal multinomial regression are extracted and
finally γ̂m are translated into estimated coefficient functions, β̂m, using inverse DWT.

4 Detection of lameness: Multinomial functional regression

We are now ready to apply MFR to our data concerning horse lameness. Recall the data from
Figure 1 consisting of 85 acceleration signals from five groups corresponding to lameness on
the left-fore (LF), left-hind (LH), right-fore (RF) or right-hind (RH) limb, or healthy/normal
(NO). The signal and group response correspond to xi and yi, respectively, so the set of possible
values of yi is M = {LF,LH,NO,RF,RH}. Each signal is sampled at N = 256 equidistant
time-points in (0,1).

We are particularly interested in the ability of MFR to make predictions of Y for a new signal
x, but we are also interested in the coefficient functions in order to understand the association
between acceleration and lameness. Notice that the independence assumption (among all ob-
servations) is not quite reasonable in this application since the 85 signals come from only 8
horses, and observations from the same horse are likely to be dependent. We comment on this
in Section 7.

Recall that each signal starts with stance on the RF/LH diagonal, so stance on the injured limb
happens on the interval (0,0.5) for RF and LH signals and on the interval (0.5,1) for LF and
RH signals. Due to symmetry of trot we would expect LF and RF signals to be similar except
for an interchange of the two halves, and similarly for LH and RH signals. For NO signals
we would expect the two halves to be similar. It is natural to require the regression model to
resemble these symmetry properties.

In order to make this more precise, we introduce for any function f : (0,1)→ R its “twin
function”, that changes the order of f ’s restriction to (0,0.5) and f ’s restriction to (0.5,1):

f̃ (t) =
{

f (t +0.5), t ∈ (0,0.5)
f (t−0.5), t ∈ (0.5,1)

Notice that f̃ is left undefined at 0.5.
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4.1 Wavelet expansion of acceleration signals

We furthermore introduce the “symmetry group” m̃ for any m ∈M as follows:

L̃F = RF, L̃H = RH, ÑO = NO, R̃F = LF, R̃H = LH.

With this notation, the natural symmetry restrictions can be expressed as pm(x) = pm̃(x̃) for
any signal x and any group m ∈M , and it is thus natural to assume

αLF = αRF, αLH = αRH (11)

βLF = β̃RF, βLH = β̃RH, βNO = β̃NO, (12)

where, strictly speaking, the symmetry restrictions on the β ’s are on the set (0,0.5)∪ (0.5,1).
We first run an analysis without these symmetry restrictions and examine to which extent the
model by itself detects the symmetry and thus produces estimates that are in accordance with
(11) and (12). In Section 4.5 we impose the restrictions in the estimation procedure.

4.1 Wavelet expansion of acceleration signals

The first step in the analysis is to compute the wavelet coefficients for each signal by DWT.
The coefficients are stored in an n×N matrix which is subsequently used as a design matrix
in the regression. To keep track of the order, coefficients are ordered with the c j0,k coefficients
(corresponding to the father wavelet) first and the d j,k coefficient (corresponding to the mother
wavelet) last.

Figure 3 illustrates the wavelet decomposition at detail level j0 = 2 for five signals from the
same horse, one signal from each lameness group. The signals are shown in the lower right
panel, the upper left panel shows the father wavelet coefficients {c2,k}3

k=0, and the remaining
panels show the mother wavelet coefficients {d j,k}k=2 j−1

k=0 for j = 2,3,4,5. The figure gives an
interesting overview of the design matrix: The coefficients c2,k and d j,k for small j have larger
amount on the half part with smaller amplitude compared to the part with larger amplitude,
whereas coefficients d j,k for j large are associated with high frequency patterns of the signal.

4.2 Selection of tuning parameters ( j0 and λ )

We now address the selection of tuning parameters, in particular the choice of j0. The left part of
Figure 4 shows the MCVD criterion (10), i.e., the mean cross-validated deviance, as a function
of λ for the eight possible values of j0. We see that the minimum deviance (over λ ) does not
differ much for j0 equal to 0, 1 and 2, but is larger for j0 ≥ 3. The right panel of the figure
shows the estimated difference in coefficient function between the LF group and the normal
group, i.e., β̂LF− β̂NO for j0 = 0, . . . ,4. For each j0 the optimal λ for that j0 was used. We see
that the estimated functions for the smaller values of j0 do not differ much in smoothness, but
the estimate corresponding to j0 = 4 includes many more local features, and for larger values
j0 the estimated functions are even wilder (not shown). The pictures for the LH, RF and RH
groups exhibit the same characteristics (not shown). When signals are classified into groups
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Figure 3: Coefficients in the wavelet decomposition at detail level j0 = 2 of a signal from each
group from the same horse (upper panels and lower left panel). The bottom right panel shows
the signals.

according to the fitted MFR models for j0 = 0, . . . ,4, we get 3, 3, 7, 8, and 10 misclassified
signals, respectively, clearly indicating that a too large detail level leads to overfitting of the
data.

Based on Figure 4, we use j0 = 0 and the corresponding optimal LASSO tuning parameter,
λ = 10−5.27, for the analysis.

4.3 Estimates in the fitted model

The results below come from the MFR with j0 = 0 and λ = 10−5.27. There are 4–5 non-zero
c∗ and d∗ coefficients per group in the fitted model. The left panel in Figure 5 shows the five
estimated coefficient functions, β̂m. As in standard regression settings, the β ’s determine the
effect of xi as predictor on the distribution of the response Yi, but in our case over intervals. In
intervals where βm(t)≈ 0, changes in xi(t) have no or little effect on the probability P(Yi = m),
whereas xi has a larger effect on the probability in intervals with |βm(t)| large. We notice that
the coefficient function for the NO group has less fluctuations compared to the other groups.

In the right panel in Figure 5 we take NO as a reference group and consider for each m ∈
{LF,LH,RF,RH} the deviation δm = βm−βNO, that describes the effect of a signal x on the
log-odds for group m compared to NO, cf. (3). We see that the largest deviation from zero
occurs in the interval with stance on an injured limb. It makes good sense that this part of the
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Figure 4: Sensitivity of wavelet tuning parameter, j0. The left plot shows the MCVD criterion
as a function of the LASSO tuning parameter λ for the possible values of j0. The right part
shows estimates of βLF−βNO for j0 ≤ 4 and the corresponding optimal values of λ .

movement is used the most to distinguish horses with lameness from healthy horses. The sign of
δ̂LF and δ̂RH are the same on most of (0,1), which is natural as LF and RH come from the same
diagonal. The same is true for δ̂RF and δ̂LH. We also notice that deviations are numerically larger
for LF and RF compared to LH and RH. This is not surprising for veterinarian experts since
fore limb lameness is well-known to disturb the gait pattern more than hind-limb lameness.
The intercept estimates, in the α parameterization as well as in the κ parameterization, see (4),
are given in the following table:

Group, m
LF LH NO RF RH

α̂m 2.06 −1.05 −5.64 8.89 −4.27
κ̂m −0.31 0.18 1.00 −0.45 −0.42

The estimates α̂m and β̂m(t) are not automatically supplemented by standard errors or con-
fidence intervals. They could be produced by resampling methods, though, and in Section 5
we conduct a simulation study where we, among others, point to the sampling variation in the
estimates (see Figure 11).

Now, remember the natural symmetry restrictions (11) and (12), and consider first the estimated
coefficient functions. The shape of β̂NO over (0,0.5) and (0.5,1) is almost the same, and the
estimates β̂LH and β̂RH are close to symmetric. The estimates β̂LF and β̂RF corresponding to
fore limbs lameness have deep valleys around 0.7 and 0.2, respectively, very well in line with
symmetry, however the valley is followed by a sharper peak for RF compared to LF. Altogether,
the estimated coefficient functions obey the symmetry properties in (12) fairly well.

The estimates of α do not seem to fulfil restrictions (11) very well. In order to evaluate the total
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4.4 Leave-one-curve-out classification
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Figure 5: Results from the MFR with no symmetry restrictions on coefficient functions, and
with j0 = 0. Left: Estimates β̂m for m ∈M . Right: Estimated deviations δ̂m = β̂m− β̂NO for
m ∈ {LF,LH,RF,RH}.

symmetry features of the fitted model, we did the following: First we computed the predicted
probability p̂yi(xi) for the true (observed) group. Then we constructed the twin signal x̃i and
computed the predicted probability p̂ỹi(x̃i), i.e., the predicted probability that the twin signal
comes from the symmetry group to the observed group. If the fitted model was completely
symmetric in the sense of (11) and (12), then these two probabilities would coincide for all
signals. We have therefore plotted the predicted probabilities against each other in Figure 6.
The plot shows that there is a high degree of, albeit not complete, symmetry, as the points
scatter around the line with intercept zero and slope one. Notice that the predicted probability
is larger for the original data than for the twin data for the majority of the signals. This is
hardly surprising as the model, except for penalization, was fitted as to maximize the predicted
probabilities for the original data.

4.4 Leave-one-curve-out classification

In Section 4.2 we reported that only 3 of the 85 signals were misclassified when we used j0 = 0
and the corresponding optimal λ . However, this success rate is overly optimistic as all curves
were included as training as well as test data. In order to get a more realistic validation we now
carry out a leave-one-curve-out procedure. This corresponds to K-fold cross validation with
K = n = 85, see Section 3.5.

The results are reported in Table 1. We see that 68 signals are classified in the correct group,
corresponding to a misclassification rate (MCR) of 20%. Seventeen signals are misclassified.
Eleven of these are either NO signals that are classified in one of the lameness groups or signals
that are wrongly classified in the NO group. Five signals are classified at the correct diagonal
(but wrong limb); for example two RF signals are classified as LH signals. Only one signal is
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0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probability for observed data

P
re

di
ct

ed
 p

ro
ba

bi
lit

y 
fo

r 
tw

in
 d

at
a

●

●

●

●

●

LF
LH
NO
RF
RH

Figure 6: Predicted probabilities from the model fitted without symmetry restrictions. The prob-
abilities pyi(xi) were computed on observed signals xi and the true group, and pỹi(x̃i) were
computed on twin signals and symmetry groups.

Table 1: Results from the leave-one-out classification (no symmetry restrictions imposed).

Predicted group
True group LF LH NO RF RH
LF 13 0 2 0 1
LH 1 12 2 1 0
NO 1 1 19 1 1
RF 0 2 1 13 0
RH 1 0 2 0 11

classified to a wrong diagonal.

Figure 7 shows the maximum predictive probability for each signal, i.e., the largest value
among p̂m(xi), m ∈M . The points are organized after the true status and coloured accord-
ing to the correctness of the classification. Green points correspond to signals for which the
predicted group is the correct one, blue points correspond to signals for which the predicted
group is wrong but the predicted diagonal is correct, and red points correspond to the remaining
signals (mainly curves for which either the true or predicted status, but not both, is NO). The
figure shows that misclassification mainly occurs when the maximum probability is relatively
small, e.g. below 50%. In these cases, at least one other probability is not negligible, and it
turns out that the correct group has the second largest probability for 11 of the 17 misclassified
signals.

Recall that the 85 observations come from only eight different horses. It seems likely that the
MCR from the leave-one-out analysis above underestimates the actual MCR as the training
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Figure 7: The largest probability among p̂m(xi) for m ∈M in the leave-one-out study with-
out symmetry restrictions for the 85 acceleration signals, coloured after the correctness of the
prediction. The true status is shown on the y axis.

data for each test signal contains signals from the horse that generated the test signal. As sup-
plement, we therefore ran a “leave-one-horse-out” analysis where, for each horse, we fitted
the MFR model based on signals from the other horses, and used that model for classification.
Then 63 of the 85 signals were classified correctly, corresponding to a MCR of 26%.

4.5 Incorporation of symmetry restrictions

In the above analysis the five coefficient functions and intercepts were allowed to vary freely
with no constraints across the groups. We now incorporate the symmetry restrictions (11) and
(12). The restrictions correspond to certain restrictions on the c∗ and d∗ coefficients in the
wavelet expansions, but instead of implementing those restrictions directly, we consider an
extended dataset, where each observation (xi,yi) is supplemented by an imaginary “twin obser-
vation” (x̃i, ỹi) consisting of the twin signal of xi and the symmetry group of yi. The estimates
from the MFR on the augmented data consisting of all (xi,yi) and (x̃i, ỹi) will automatically
satisfy the symmetry restrictions. Notice that, obviously, an observation and its twin are not
independent.

The MFR on the augmented data has 3–6 non-zero c∗ and d∗ coefficients per group in the fitted
model. Figure 8 shows the estimated coefficient functions (left) and the deviations from β̂NO
(right). By construction, the behavior of β̂RF on (0,0.5) is exactly same as the behavior of β̂LF
on (0.5,1), and vise versa. Similarly for β̂RH and β̂LH, whereas β̂NO is identical on (0,0.5) and
on (0.5,1). The intercept estimates are listed in the following table, in the α parameterization
and in the κ parameterization:
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Figure 8: Results from the MFR on the augmented data (with symmetry restrictions imposed),
and with j0 = 0. Left: Estimates β̂m for m ∈M . Right: Estimated deviations δ̂m = β̂m− β̂NO
for m ∈ {LF,LH,RF,RH}.

Group
LF, RF LH, RH NO

α̂m 5.40 −2.03 −6.75
κ̂m −0.36 −0.13 1.00

Table 2 show the results from a leave-one-out classification carried out on the augmented data.
For each observed signal xi (i = 1, . . . ,85), we fitted the multinomial functional regression

Table 2: Results from the leave-one-out classification on the augmented data.

Predicted group
True group LF LH RF RH NO
LF 13 0 2 0 1
LH 1 13 1 1 0
NO 1 1 18 2 1
RF 0 2 1 13 0
RH 1 0 2 0 11

model to the augmented data consisting of all data except (xi,yi) and (x̃i, ỹi), and used the model
fit to predict the outcome of yi. The results are summarized in Table 2. Sixty-eight signals are
classified correctly, corresponding to a MCR of 20%. The numbers in the table are close to
those in Table 1 from the analysis on the original (not augmented data). A closer study reveals
that the predicted group changes for six curves, all either curves from the NO group or curves
that were predicted as NO curves in one of the analyses. A “leave-one-horse-out” gave a MCR
of 32%, somewhat larger than the 26% from the similar analysis on the non-augmented data,
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4.6 Comparison to other classification methods

see Section 4.4. This is perhaps slightly surprising as we would have expected that asymmetry
between the group estimates was due to random variation.

4.6 Comparison to other classification methods

This paper is, to the best our knowledge, the first study on MFR, so it is not possible to compare
the estimates of the coefficients functions to estimates from other MFR approaches. There are,
however, several classification methods for functional data in the literature, and we applied
two of them to the lameness data: Linear discriminant analysis on principal component scores
(PC-LDA) and curve discrimination (CurDis), cf. Ferraty and Vieu (2003).

The PC-LDA approach consists of a functional principal component analysis, see Section 5.1,
followed by a standard LDA on the first few principal scores (PC scores), both carried out on
the training data. Then the PC scores are computed for test signals and used as input to the
LDA. We selected the number of principle components as to explain at least 95% of variation.
This criterion gave us 13 principal components.

CurDis is a non-parametric method, where the posterior probability for a test curve x is com-
puted as

p̂m(x) =
∑n

i=1 1{Yi=m}K(h−1d(Xi,x))

∑n
i=1 K(h−1d(Xi,x))

(13)

where K is a kernel function, h is the bandwidth, d is a distance measure between two functions,
and we sum over the training sample. We used the kernel function K(u) = (1−u2)1[0,1](u) and
the L∞ distance in this study. The bandwidth was chosen as h = 0.57; then the denominator in
(13) was non-zero for all signals.

We carried out leave-one-out validation for MFR (as already reported), PC-LDA, and CurDis.
For each method we computed the overall misclassification rate (MCR) as well as the sensitiv-
ity (Sens) and specificity (Spec) for each group defined as follows:

Sens(m) = Prob{Ŷ = m|Y = m}, Spec(m) = Prob{Ŷ 6= m|Y 6= m}.

The results are listed in Table 3. It shows that sensitivity and specificity are high for the MFR
approach in all groups, whereas the other methods have relatively low values in several groups.
Also, the rate of correctly classified signals (1−MCR) is largest for MFR.

5 Simulation Study

In this section we conduct a simulation study to evaluate the variability of the estimated co-
efficient functions and the prediction results. We take the lameness data as starting point and
generate datasets by means of eigenfunctions and eigenvalues estimated from these data. This
simulation approach is similar to that of Swihart et al. (2014).
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5.1 Eigen-decomposition of lameness data

Table 3: Results from the leave-one-out analysis performed with three different methods. The
MFR was fitted without symmetry restrictions.

LF LH NO RF RH
Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec 1−MCR

PC-LDA 0.50 0.94 0.75 0.93 0.74 0.79 0.56 0.94 0.57 0.93 0.63
CurDis 0.56 0.97 0.19 0.94 1.00 0.76 0.75 0.91 0.64 0.96 0.66
MFR 0.81 0.96 0.75 0.96 0.83 0.89 0.81 0.97 0.77 0.97 0.80

5.1 Eigen-decomposition of lameness data

Suppose X(t), t ∈ [0,1] is a square-integrable random function with mean function µ(t) and
covariance function K(s, t), that is, µ(t) = E(X(t)) and K(s, t) = Cov(X(s),X(t)). Mercer’s
theorem (Indritz, 1963) gives the spectral decomposition of the covariance function:

K(s, t) =
∞

∑
l=1

λlνl(s)νl(t) (14)

where λ1 ≥ λ2 ≥ ·· · are the ordered non-negative eigenvalues, and the νl’s are the correspond-
ing orthonormal eigenfunctions (with respect to the L2 norm). The νl’s form a basis for the
functional space L2(0,1), so the Karhunen-Loève (KL) expansion of the random function X(t)
is

X(t) = µ(t)+
∞

∑
l=1

ξlνl(t) (15)

where the ξl’s are uncorrelated random variables, and ξl has mean zero and variance λl . These
random variables are called principle component scores (PC scores). For our application we
need estimates of such an eigen-decomposition.

There are several approaches in the FDA literature to estimate the functional principle com-
ponents (FPCs) from functional data observed with noise: 1) Smoothing of the raw signals
followed by estimation of the FPCs; 2) Bi-variate smoothing of the raw covariance function
followed by estimation of the FPCs; 3) Extraction of the FPCs from the raw covariance func-
tion followed by smoothing of the eigenfunctions. In what follows, we use the second approach
to estimate the FPCs.

The first step is to compute smooth estimates of µ and K. A penalized cubic spline smoother
is applied to the raw data mean to obtain a smooth µ̂(t), and a fast bivariate penalized spline
smoother (sandwich smoother) is applied to the raw covariance matrix (Xiao et al., 2013). In
both cases, the smoothing parameter is selected via generalized cross validation (GCV). The
curves are observed with noise, and the measurement error variance can be estimated as the
average difference between the middle 60%, say, of diagonal elements of the raw and smoothed
covariance (Goldsmith et al., 2013).
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In the second step, the eigenfunction and eigenvalues are estimated from the smoothed co-
variance function. In practice the number of principle components must be chosen via some
criterion. It is common to use the cumulative percent variance (CPV) criterion, that is, choose
L components where L = min{l ≥ 1 : ∑l

j=1 λ j/∑N
j=1 λ j ≥ P} for some predefined P ∈ (0,1)

representing the percentage of explained variance. Other possibilities include Akaike’s infor-
mation criterion (Yao et al., 2005) or cross validation (Rice and Silverman, 1991).

We applied the above procedure to the lameness data, separately for each lameness group. We
used L = 9 as this was the smallest number such that the CPV criterion was at least 0.95 in all
groups. Thereby we obtained five sets of eigenvalues and eigenfunctions, and five measurement
error standard deviations:

{
λ̂ (m)

l , ν̂(m)
l

}L

l=1
and σ̂ (m), m ∈M .

The eigen-decompositions will form the basis for the simulations, as explained below.
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Figure 9: The first eigenfunctions estimated for each group separately.

For illustration, Figure 9 shows the first eigenfunctions extracted from the data. Generally, the
first principle component reflects general variation in the amplitude of vertical acceleration
and has the highest peaks and deepest valleys around 0.2 and 0.7. The percent of variation
explained by the first eigenfunction varied between 40% (NO) and 48% (LF). The estimated
standard deviations varied between 0.017 and 0.020 and were thus similar for the five groups.

5.2 Data generation and simulation scenarios

Our simulation study involves five groups corresponding to the lameness groups. The predictor
curves were constructed using the following model:

X (m)
i (t) = µ̂(m)(t)+

L

∑
l=1

ξ (m)
i,l ν̂(m)

l (t)+ εi(t), m ∈M , i = 1, . . . ,nm, t ∈ (0,1). (16)

Here m represents the group, nm is the number of simulated curves in group m, L is the trunca-
tion lag, µ̂(m)(t) is the smoothed group mean, and ν̂(m)

l is the estimated lth principal component
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for group m, computed as described in Section 5.1. The PC scores ξ (m)
i,l were generated inde-

pendently with ξ (m)
i,l ∼N(0,λ (m)

l ). The measurement noise process was generated on an equally
spaced grid of length N on (0,1) with terms being independent and drawn from N(0,σ2) for
various values of σ2 (see below). We chose N to a power of 2, N = 2J , since we need that for
the estimation routine. Notice that the two first terms in (16), i.e. the mean and PC terms, are
group-specific, whereas the distribution of the measurement noise is the same for all groups.

In the simulation study we varied the sample sizes (nm), the number of observed points per
curve (N), and the measurement error standard deviation (σ ) as follows:

• Sample sizes: (a) small sample size, nm = 20 and (b) large sample size, nm = 40. Two
datasets of this size are generated for each simulation; one is used as training data, the
other as test data.

• Number of observation per curve: (a) sparse observations, N = 25 = 32 and (b) dense
observations, N = 28 = 256.

• Measurement error: (a) without noise, σ = 0, (b) small noise, σ = .05, and (c) large
noise, σ = .25.

This gives a total of 12 possible designs. Moreover, in order to compare directly with the
analysis in Section 4, an additional scenario (scenario 1) was considered with sample sizes
and sampling density as in the actual dataset, i.e., n = (16,16,23,16,14) and N = 256, and no
measurement error. An overview of the simulation scenarios is given in Table 4.

Table 4: Overview of the 13 simulation scenarios.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13
nm As data 20 20 20 20 20 20 40 40 40 40 40 40
N 256 256 256 256 32 32 32 256 256 256 32 32 32
σ 0 0 .05 .25 0 .05 .25 0 .05 .25 0 .05 .25

A simulated dataset consists of a training dataset with nm curves in group m, and a test dataset
of the same size. The training and test data are independent and were drawn in exactly the same
way. A simulated dataset from scenario 1 is shown to the right in Figure 10, with the original
data to the left for comparison. The simulated data indeed seem to catch the same features and
to exhibit the same degree of variability between curves as the observed data.

For each scenario we simulated 100 datasets. For each dataset we fitted the MFR model to the
training data and used the fitted model to predict the groups for the training data as well for
the test data. We ran all analyses with detail levels from 0 to 4, and with and without imposing
the symmetry constraints as explained in Section 4.5. In any case, we evaluated the prediction
ability by the misclassification rate (MCR). For scenario 1 we furthermore computed sensitivity
and specificity for each group.

23



5.3 Results

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

Time

Ve
rti

ca
l A

cc
ele

ra
tio

n

LF
LH
NO
RF
RH

Original signals

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

Time

LF
LH
NO
RF
RH

Training signals

Figure 10: Left: The original curves along with group mean functions. Right: Training data
from a simulated dataset in scenario 1.

5.3 Results

First, let us get a feeling for the variability in estimates of the coefficient functions. Figure 11
shows β̂m from the 100 fitted MFR’s from scenario 8 (nm = 40, N = 256, σ = 0). The estimates
are based on the training data and without symmetry restrictions on the coefficient functions.
The realizations show the same patterns with peaks and valleys roughly at the same locations,
and with β̂NO being more flat than the coefficient functions for the other groups. The variability
of β̂m(t) is larger in intervals with larger numerical values of β̂m(t). The peaks and valleys are
generally larger on the part of the signal corresponding to stance on the injured limb, i.e., the
part where the data signal has the smaller amplitude. For example, β̂LF is numerically larger on
(0.5,1) compared to (0,0.5). Although not imposed in the estimation process, the estimates for
the hind limbs (LH and RH) are close to symmetric in the sense of (12). The symmetry is not
as distinguished for the fore limbs (LF and RF).

Then, let us turn to the classification results. Average misclassification rates (MCR’s) in percent
are reported in Table 5 for training data and in Table 6 for test data. The classification results
are better for the training data compared to the test data, just as we would expect. Perhaps more
surprisingly, the classification results are quite robust to the choice of detail level.

The comparison of the different scenarios is better carried out by inspecting Figure 12 which
shows boxplot of the MCR for test data in scenarios 2–13. The results are for detail level
j0 = 0. Hence, the graphs correspond to the first and fifth columns with results in Table 6.
Except for the combination of sparse data and large measurement noise (scenarios 7 and 13),
all average misclassification rates are below 20%. For sparse data and large measurement noise
classification results are bad with 32–62% incorrectly classified curves.

We get the expected results when we compare the scenarios: (a) A larger training sample im-
proves classification; (b) smaller measurement errors, or no measurement noise at all, improves
classification; (c) dense observation of the functional predictors improves classification, at least
in the presence of measurement noise. Except for the scenarios with sparse data and large mea-
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Figure 11: Estimated coefficient functions, β̂ (t), for the five groups for 100 simulations. In all
plots, the mean of the estimated functions is highlighted in blue.

Table 5: Average misclassification rate (over 100 simulated datasets) in percent for training
data.

Simulated Data Twins of Simulated Data

Detail Level ( j0) Detail Level ( j0)
Scenario 0 1 2 3 0 1 2 3

1 2.95 3.11 4.16 4.74 3.66 3.75 4.25 3.98
2 2.53 2.51 3.26 3.26 3.32 3.27 3.66 3.77
3 2.51 2.21 2.79 3.30 3.35 3.52 3.90 3.88
4 7.22 7.27 7.80 7.98 8.01 8.62 9.00 9.33
5 2.24 2.35 2.69 3.26 2.13 2.25 2.21 2.80
6 4.00 3.68 4.26 4.84 4.04 3.67 3.92 4.58
7 22.39 21.87 22.09 21.16 50.93 50.52 51.03 49.94
8 2.01 1.98 2.17 2.51 1.44 1.23 1.22 1.00
9 2.21 2.29 2.29 2.75 1.84 1.87 1.71 1.62
11 0.94 0.64 0.56 0.92 1.27 1.16 1.09 1.26
10 6.89 6.83 7.55 7.34 8.60 8.88 9.35 9.11
12 2.48 2.54 2.35 3.04 4.04 3.85 3.83 4.24
13 23.79 23.70 23.79 23.88 50.22 50.30 50.37 50.40

surement error, introduction of twin data improves classification slightly.

For comparison we also applied the PC-LDA and CurDis methods (see Section 4.6) to sim-
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Table 6: Average misclassification rate (over 100 simulated datasets) in percent for test data.

Simulated Data Twins of Simulated Data

Detail Level ( j0) Detail Level ( j0)
Scenario 0 1 2 3 0 1 2 3

1 11.48 12.21 12.20 13.82 9.75 10.00 10.54 10.75
2 9.94 10.55 10.21 11.59 9.17 9.35 9.94 10.06
3 10.73 11.10 11.00 11.84 9.44 9.60 10.32 10.37
4 18.55 18.75 18.35 19.32 16.50 16.97 17.51 17.89
5 9.84 10.30 10.76 10.54 8.38 8.38 8.52 9.12
6 12.71 13.25 13.51 13.06 11.73 11.85 11.89 12.39
7 37.45 37.91 37.83 36.00 61.19 61.24 60.84 61.07
8 6.24 6.43 6.58 7.21 5.66 5.50 5.51 5.27
9 6.62 6.74 6.83 7.32 6.20 5.95 5.87 5.72
10 14.06 14.04 14.16 14.53 13.60 13.73 14.03 14.04
11 5.40 5.37 5.03 5.99 5.19 5.07 5.16 5.49
12 8.44 8.61 8.56 8.98 8.62 8.53 8.55 8.90
13 32.76 32.73 32.62 32.20 58.34 58.49 58.62 58.58

ulated data. Table 7 shows the average sensitivity and specificity in each group and the rate

Table 7: Average sensitivity and specificity and rate of correctly classified curves (all in per-
cent) for three classification methods. The numbers are based on 100 simulated datasets from
scenario 1.

Group
LF LH NO RF RH

Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec 1−MCR
PC-LDA 83 99 78 96 91 89 89 97 86 99 86
CurDis 67 99 53 98 98 81 81 96 78 97 77
MFR 84 98 83 97 93 94 90 98 91 99 89

of correctly classified curves (1−MCR) over 100 simulated datsets from scenario 1 (nm as in
lameness data, N = 256, σ = 0). MFR has the largest rate of correctly classified curves, and
overall also the best performance with respect to sensitivity and specificity. We should mention
here that the denominator of (13) was zero for some signals, and that these signals were dis-
carded in the CurDis analysis. For scenarios with sparse data this occured to many/most data,
regardless of the bandwith (results not shown).
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Figure 12: Boxplots of misclassification rates for test data in scenarios 2–13 with j0 = 0 (with
and without twin data).

6 Application to phoneme data

In this section we apply the MFR approach to a dataset which has been widely used in the
signal classification literature as well as for research in speech recognition. The data origi-
nally come from the TIMIT database described in Hastie et al. (1995) and are available in the
ElemStatLearn package in R (Halvorsen, 2012).

The data are log-periodograms corresponding to recording continuous speech of 50 male speak-
ers. There are a total of 4509 speech frames from five different phonemes transcribed as fol-
lows: "sh" as in she, "dcl" as in dark, "iy" as the vowel in she, "aa" as the vowel in dark, and
"ao" as the first vowel in water. The distribution of the speech frames on phonemes are as fol-
lows:

sh: 872, iy: 1163, dcl: 757, ao: 1022, aa: 695.

Each speech frame has a duration of 32 milliseconds and is sampled at 16 kHz, and thus orig-
inally consists of 512 observations. We use the data from Halvorsen (2012) with 4509 log-
periodogram of length 256. Figure 13 displays a random sample of 5 log-periodograms for
phoneme.

The interesting question is whether it is possible to predict the phoneme from a given log-
periodogram. Several classification approaches have been discussed (Ferraty and Vieu, 2003;
Hastie et al., 1995). Hastie et al. (2009, Ch. 4) discussed logistic regression for two classes,
namely, "aa" and "ao". We will apply MFR on data with all five phonemes, and investigate
the classification properties as well as the behaviour of the coefficients functions. Results from
Ferraty and Vieu (2003) will be used for comparison.
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Figure 13: A sample of 5 log-periodograms per category.

We divided the data randomly into training data (40%) and test data (60%), fitted the MFR
model with j0 = 0 (the best detail level) to the training data, and used the model to predict the
phoneme for the test data. This was repeated 50 times. The mean and standard deviation for
the MCR over the 50 samples were 0.072 and 0.0034, respectively.

The estimated coefficients functions are shown in Figure 14 along with the mean functions
highlighted in blue. The plot reveals that most information to predict the phoneme is in the
first half of the signals. We therefore repeated the analysis using only the first 128 observations
from each signal. This gave a mean and standard deviation of MCR of 0.073 and 0.0031,
respectively, over 50 samples. Hence, the prediction is just as good when we use the fist half of
the frame as when we use the complete frame.

Ferraty and Vieu (2003) used a subset of the phoneme data, available from the webpage of
Ferraty and Vieu (2006) and consisting of 2000 log-periodograms of length 150 (still with with
known phoneme class). They reported classification results from the following methods:

• PDA/Ridge : Penalized discriminant analysis (Hastie et al., 1995)

• MPLSR : Multivariate partial least-square regression (Martens, 1989)

• NPCD/PCA: Non-parametric curve discriminant based on FPCA (Hall et al., 2001)

• NPCD/MPLSR : NPCD including the MPLSR method in its semi-metric (Ferraty and
Vieu, 2003).

In order to compare the MFR approach directly to those methods we ran the MFR classification
on the smaller dataset. Keep in mind that the length of the data for each signal in this case is 150.
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Figure 14: Estimates of coefficients functions and the corresponding mean functions high-
lighted in blue. Results come from 50 samples of test data.

In order to obtain signals of length equal to a power of 2, we used a spline basis of piecewise
linear function with a knot at each interior time point of the data and evaluated the spline at a
vector with length 27 = 128.

The median of MCR, again over 50 test samples, are shown in Table 8 for all methods. The
values from the above-mentioned approaches are taken directly from Figure 4 in Ferraty and
Vieu (2003). The results show that for this example, the MFR approach performs the best and
improves the test error rate to 7.3%.

Table 8: Median of misclassification rate over 50 sample test data.

MPLSR NPCD/MPLSR NPCD/PCA PDA/Ridge MFR

MCR 0.095 0.084 0.104 0.082 0.073

7 Conclusion and discussion

In this paper, we combined the discrete wavelet decomposition and LASSO penalization to fit
a regression model with functional predictor and multinomial response. More specifically, the
wavelet decomposition was computed for each signal at an appropriate resolution level, and
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the wavelet coefficients were used as the predictors in a multinomial regression with LASSO
penalization on the regression coefficients to deal with the curse of dimensionality. The same
approach has been used for regression with scalar response and functional predictors (Zhao
et al., 2012) and regression with scalar or binary outcome and image predictors (Reiss et al.,
2015), but to the best of our knowledge, this is the first work about multinomial functional
regression (MFR). We applied the MFR approach to a famous dataset from speech recognition
and to a dataset regarding detection of lameness among horses. In both cases, classification
based on the MFR method gave good results compared to other classification methods for
functional data.

We chose the combination of wavelets and LASSO because the LASSO forces most coeffi-
cients to zero while wavelets are known to offer precise approximations with sparse represen-
tations. However, other basis systems such as B-splines, ramp functions or harmonic functions
could be used in combination with an appropriate penalty function.

In our application we used the raw wavelet coefficients from the DWT. However, functional
data are often observed with noise, and one could remove noise by attempting to identify the
wavelet coefficients associated to the noise and then modify these coefficients by hard or soft
thresholding (Donoho, 1995).

If one would like to retain more information and not miss potentially interesting differences,
then one could apply appropriate high- and low-pass filters to the data at each level to pro-
duce two sequences at the next level. In this transform, no decimation occurs and so the two
sequences have the same length as the original sequence. This transform is known as non-
decimated wavelet transform.

In the lameness application the 85 signals were treated as independent although they came
from only eight different horses. This is not quite appropriate and we would like to include a
horse effect in the model. It would be easy to include horse as a fixed effect in the multinomial
regression, but it would be more appropriate to include it as random. A similar model would
be appropriate for the phoneme data as the 4509 data signals come from only 50 different
speakers. Most likely, inclusion of random effects would not change the prediction notably, but
it could make a change for the variability of estimated coefficicients and thereby for inference
about the coefficient functions.

In summary, our MFR approach turned out to give good classification results in the two appli-
cations, but there are still modifications that could be interesting to pursue.
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A Preprocessing

We now describe the proprocessing steps transforming the raw data (not shown) to the signals
shown in Figure 1. Each acceleration signal was collected over a distance of at least 24 metres,
and the number of gait cycles as well as the length of the discrete data vary between horses in
the raw data. The purpose of the preprocessing is to make data signals comparable and remove
noise. The preprocessing takes a raw data signal on discrete form and produces a function on
the unit interval, which is interpreted as the average acceleration over one gait cycle and which
has time zero in the suspension phase right before stance at the RF/LH signal. In the process we
remove variation between gait cycles due to slightly varying velocity and random pertubations
of the movement pattern as well as variation due to uncertain selection of start and end point
of the part used for analysis. Notice that preprocessing was carried out separately for each
acceleration signal without using any information at all from the other signals.

The details are described in detail below and illustrated in Figure 15 for a signal from a horse
with lameness induced on the right-fore leg. The process consists of the following steps:

1. The raw data signal was filtered to remove micro structure noise using a Butterworth
filter with cut-off frequency 50 Hz.

2. Based on video recordings, data from eight gait cycles was selected such that the first top
corresponds to stance phase on the RF/LH diagonal. The number of observations varies
across signals from 1120 to 1440 with an average of 1269. An example signal is shown
in the top of Figure 15. Notice that we use gait cycles as time unit, such that the time
domain is (0,8).

3. The signal was smoothed with a very large b-spline basis (500 basis elements). The
data was thus converted to functional form, but almost not smoothed, and the functional
version is indistinguishable from the discrete data in Figure 15. A non-periodic basis was
chosen since the start and end of the eight gait signal were chosen with uncertainty and
therefore not corresponds to exactly the same place in the movement.

34



Preprocessing REFERENCES

0 2 4 6 8

−
1.

0
0.

0
1.

0
Raw data and zero crossings

Time

A
cc

el
er

at
io

n

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
1.

0

Before alignment

Time

A
cc

el
er

at
io

n

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
1.

0

After alignment

Time

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
1.

0

Shift to cosine

Time

Figure 15: Preprocessing for a signal from a horse with lameness on the right-fore limb. Top
panel: Data from eight gait cycles before and after smoothing to a b-spline basis (indistin-
guishable, black curve) and the time points for zero crossing used to partition the signals
into gait cycles (blue lines). Bottom, left and middle: Data from seven gait cycles before
and after alignment. Bottom right: Average of aligned sub-signals (black, solid), the function
g(t) =−sin(2πt) (black, dashed), and the average shift aligned to g (red).

4. The functional version of the signal was cut into nine pieces by identifying the zero
crossing after stance on the LF/RH diagonal. Zero crossing was chosen as feature since
it was always well-identified (unique), as opposed to minimum or maximum, say. The
zero crossings are illustrated by the vertical blue lines in Figure 15.

5. The first and last piece do not consist of complete cycles and were discarded. The remain-
ing seven pieces were considered as replications and for technical reasons expressed in
a large Fourier basis (101 basis elements for each part). Time was rescaled to (0,1) for
each of the sub-signals. The seven replications are shown on top of each other in the
lower left part of Figure 15.

6. As it often happens with functional data, the seven gait cycles are slightly misaligned:
Sub-signals have the same features but they occur at slightly different time points. Such
phase variation may blur analysis of the amplitudes, and we therefore used continu-
ous registration (Ramsay and Silverman, 2005, Chapter 7) to align the sub-signals. The
aligned sub-signals are shown in the lower, middle panel in Figure 15.

7. The pointwise average over the seven alignes sub-signals was computed. It is shown as
the solid, black curve in the lower right panel of Figure 15.

8. By construction, time zero for the average signal corresponds to zero-crossing after
stance on the LF/RH diagonal. This does not correspond to a well-defined physiolog-
ical feature of the gait pattern and is therefore not comparable from signal to signal.
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Minimum acceleration, on the other hand, occurs during the suspension phase (if any).
We therefore shift aligned the average signal to a shifted sine curve, g(t) = −sin(2πt).
This curve is shown as dashed black in the lower right panel Figure 15, and the shift
aligned average as the red curve. The red curve is the end product of our preprocessing
steps.

Altogether the preprocessing steps transforms the original signal to real-valued functions xi

defined on (0,1). The 85 functions were shown in Figure 1. In practice, for the multinomial
regression, we evaluated the function in N = 256 time points from 0 to 1. Importantly, the first
top always corresponds to stance on the RF/LH diagonal.

B Introduction to wavelets

Wavelet theory is about representing arbitrary functions in terms of simpler, fixed building
blocks at different scales and positions. This has been found to be useful in many areas. In
the wavelet literature, there are two common ways to introduce wavelets: one is through the
continuous wavelet transform, the other is through multiresolution analysis. Of course, there
are connections between the two.

Multiresolution analysis (MRA) provides a natural framework for the understanding of wavelet
bases and was initiated by Mallat (1989) and Meyer (1995). MRA also provides a framework
for examining functions at different scales. A multiresolution analysis of L2(R) is defined by a
sequence of closed subspaces Vj of L2(R), j ∈ Z, with the following properties:

1. Vj ⊂Vj+1

2. ν(t) ∈Vj⇔ ν(2t) ∈Vj+1 and ν(t) ∈V0⇔ ν(t− k) ∈V0 , k ∈ Z

3.
⋃+∞

j=−∞Vj is dense in L2(R) and
⋂+∞

j=−∞Vj = {0}

4. A scaling function, φ ∈ V0 with a non-vanishing integral exists such that the sequence
{φ(t− k), k ∈ Z} is an orthonormal basis of V0

The MRA definition implies that {φ j,k = 2 j/2φ(2 jt− k), k ∈ Z} is an orthonormal basis of Vj.
Hence, the function φ(t) ∈V0 ⊂V1 can be represented as a linear combination of functions of
the φ1,k functions, i.e., φ(t) = ∑k∈Z hk

√
2φ(2t− k) for some coefficients hk, k ∈ Z, which are

often referred to as the low-pass filter. The scaling function φ is also called the father wavelet.

For each MRA, a mother wavelet, ψ(t), can be defined to explain the detail at each level, i.e.,
the set of L2(R) functions that are elements of Vj+1 but not Vj. Consider the detail space Wj to
be the orthogonal complement of the space Vj in Vj+1, and denote it V⊥j . Then Vj+1 =Vj⊕Wj.
In this situation, {ψ j,k = 2 j/2ψ(2 jt− k), k ∈ Z} forms an orthonormal basis for Wj. Also, as
ψ(t) ∈ V1, it can be represented as a linear combination of the functions from V1, i.e., ψ(t) =
∑k∈Z gk

√
2φ(2t − k), where the set of the coefficients G = {gk}k∈Z are the high-pass filter

coefficients associated with the particular wavelet function being used.
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In summary, a wavelet transform has a mother wavelet, ψ(t), and a father wavelet, φ(t), that are
linked by the relationship, ψ(t) = ∑k∈Z gk

√
2φ(2t−k). Consider for instance the Haar wavelet

functions,

φ(t) =

{
1 x ∈ [0,1]
0 otherwise

, gk = {g0 = 1/
√

2 , g1 =−1/
√

2 , gk = 0 , k ≥ 2}

ψ(t) = ∑
k∈Z

gk
√

2φ(2t− k) = φ(2t)−φ(2t−1) =





1 x ∈ [0,1/2)
−1 x ∈ [1/2,1)

0 otherwise

The number of detail levels is determined by the number of entries in the series. The length of
the series for a discrete wavelet transform (DWT) must be a power of 2. The DWT proposed by
Mallat (1989) is an efficient algorithm to calculate the wavelet coefficients of a discrete series.
The idea of DWT is to filter the series using the high- and low-pass filter associated with the
wavelet.

Daubechies et al. (1992) introduced two families of compactly supported wavelets with dif-
ferent degree of smoothness: the extremal phase wavelets and the least asymmetric wavelets.
As these wavelets have compact support, the associated high- and low-pass filters G and H
have a finite number of coefficients. For a pre-set detail level, j0, a fine-scale representation of
a function at detail level j = j0 is given by

f j0(t) =
2 j0−1

∑
k=0

c j0,kφ j0,k(t)+
J−1

∑
j= j0

2 j−1

∑
k=0

d j,kψ j,k(t).

The coefficients in the fine-scale representation are computed using the pyramid algorithm
(Mallat, 1989) which computes the transform in O(N) calculations. Understanding the concept
and idea behind the computation of the wavelet helps us to understand the operation of the
wavelet transform in depth. The coefficients {c j,k} are known as the smooth coefficients, and
they are used to represent global features of the series or function f (t).

The formula to generate the coefficients of the father wavelet is c j−1,k = ∑l hl−2kc j,l , where
the low-pass coefficients H = {hk}k∈Z satisfy the condition ∑k h2

k = 1. Conversely, the mother
wavelet coefficients, {d j,k}, are known as the detail coefficients and the local features in the
sequence or the function. These coefficients represent the difference between the global repre-
sentation and the true function or sequence. The coefficients {d j,k} are computed by d j−1,k =

∑l gl−2kc j,l .

The formulas for computing the coefficients {c j,k} and {d j,k} are quite similar but involve the
low-pass and high-pass coefficients, respectively. The low-pass and high-pass wavelet coef-
ficients are linked by the relationship, gL−1−k = (−1)khk, where L is the length of the filter.
We note that by introducing the negative signs into the filter, the detail coefficients will be re-
turned. Also, the coefficients {c j,k} are used again to compute the father and mother wavelet
coefficients for the next decomposition level.

Apparently, the correlation between the detail coefficients is low for the Haar wavelet, and this
may results in a poor performance in discriminant analysis. Therefore a longer filter where
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Figure 16: The Daubechies least asymmetric wavelet with filter number 4. Mother wavelet is
shown to the left and father wavelet to the right.

the correlations are more stable, may improve the performance. For this reason, we used the
family of Daubechies’ least asymmetric wavelets in this paper, i.e., the Daubechies-n wavelets,
where the so-called filter number n signifies the number of remarkable non-zero coefficients
hk. More specifically we used the Daubechies-4 least asymmetric wavelets. Figure 16 shows
the Daubechies-4 least asymmetric scaling function or father wavelet φ(t) to the left and the
mother wavelet ψ(t) to the right.

There are at least three packages in R for wavelet analysis: wavelets, wavethresh, and
waveslim. The second one is a comprehensive package that performs 1D, 2D and 3D real
and complex-valued wavelet transforms, non-decimated transforms, wavelet packet transforms,
non-decimated wavelet packet transforms, multiple wavelet transforms, wavelet shrinkage for
various kinds of data, locally stationary wavelet time series, non-stationary multiscale transfer
function modeling, and density estimation. We used this package for our work.

38



II
Functional logistic regression: A

comparison of three methods

Seyed Nourollah Mousavi
Department of Mathematical Sciences

University of Copenhagen

Helle Sørensen
Department of Mathematical Sciences

University of Copenhagen

Publication details

Ready to submit (2015).

67





Functional logistic regression: A comparison of three
methods

Seyed Nourollah Mousavi
Department of Mathematical Sciences
University of Copenhagen, Denmark

nourollah@math.ku.dk

Helle Sørensen
Department of Mathematical Sciences
University of Copenhagen, Denmark

helle@math.ku.dk

Abstract

Functional logistic regression is becoming more popular as there are many situations
where we are interested in the relation between functional covariates (as input) and a
binary response (as output). Several approaches have been advocated, and this paper goes
into detail about three of them: dimension reduction via functional principle component
analysis, penalized functional regression, and wavelet expansions in combination with
LASSO penalization. We discuss the performance of the three methods on simulated data
and also apply the methods to data regarding lameness detection for horses. Emphasis is
on classification performance, but we also discuss estimation of the unknown parameter
function.

Key words: Functional logistic regression; Discrete wavelet transform; LASSO penalization;
Functional principle component analysis; Supervised classification; Penalized functional re-
gression; Lameness data for horses.

1 Introduction

Functional data consist of curves or images, and occur more and more often and in many differ-
ent scientific fields, e.g. medicine, economics, biology, chemistry. Functional data are observed
discretely but are generated from underlying random functions. Hence, the data points per curve
(or image) are highly dependent, and it is expedient to use approaches that take this dependency
into account when analyzing the data. This has led to the sub-field of statistics called functional
data analysis (FDA). Many existing strategies in FDA handle the high-dimensionality with ba-
sis expansions, either using fixed or data-driven bases. Textbooks on FDA include Ramsay and
Silverman (2005), Ferraty and Vieu (2006), and Horváth and Kokoszka (2012).

If there are only few observations per curve, then the data are naturally considered and analyzed
as longitudinal data (Diggle et al., 2002), either with a parametric model for the development
over time or with time as a categorical variable (if the observation times are identical across
subjects), and random subject effects. With more sampling points per curve, functional ap-
proaches become more in compliance with the data structure. There are both similarities and
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differences between FDA and longitudinal data analysis; see for example Rice (2004) for a
comparison of FDA and longitudinal data analysis from a smoothing perspective.

An increasing number of studies in FDA is concerned with the relationship between one or
more functional covariates and an outcome variable which can be scalar, binary, or categorical.
For scalar outcome there is a plethora of literature, see Ramsay and Dalzell (1991), Cardot et al.
(1999), Yao et al. (2005), James et al. (2009), Goldsmith et al. (2011b), and Zhao et al. (2012),
among others. The primary aims of these studies were to explain the variation in the data and
predict future values of the outcome using the information from the functional covariates.

There are fewer studies related to binary outcomes, and the methods have not been compared
thoroughly in the literature. Ratcliffe et al. (2002) suggested a logistic regression analysis for
foetal heart rate data. They used Fourier expansions for the functional covariates and the param-
eter function and a modified fisher-scoring algorithm for computation of the maximum likeli-
hood estimate. Several papers used functional principal component analysis (PCA) followed by
standard logistic regression with the principal component scores as entries in the design matrix
(Aguilera et al., 2006, 2008; Wei et al., 2014). The high-dimensional multicollinearity in the
functional covariates is thus overcome by the dimension reduction obtained by PCA. The main
difference between the papers lies in the approach for the PCA. In Section 3.4, we will pay
special attention to logistic regression in combination with the so-called PACE technique (Yao
et al., 2005) where estimation of the scores is based on conditional expectations. This method
was also used by Wei et al. (2014) to gene detection in a case-control study of pancreatic cancer.
Goldsmith et al. (2011b) used penalized functional regression for analysis of white-matter tract
profiles in multiple sclerosis (the division of participants into patients and controls constitutes
the binary response). They combined a functional PCA for the functional covariate and a B-
spline expansion for the parameter function, including a difference penalty for regularization.
We will go into details about this method in Section 3.5. Aguilera et al. (2011) introduced a
penalized spline approach to functional principal logistic regression in order to obtain a smooth
and reasonable interpretable estimate of the parameter function. Mousavi and Sørensen (2015)
proposed to use a combination of wavelets and LASSO penalization for multinomial func-
tional setting with application on detecting of horse lameness. In Section 3.3 we use a binomial
version of this method.

In this paper we describe, compare and discuss three of the above-mentioned methods, namely,
functional logistic regression using functional principle component, penalized functional re-
gression, and functional logistic regression based on wavelets and LASSO penalization. The
competing methods are used to analyze a dataset regarding detection of lameness of horse, and
they are also tested in a simulation study. Our aim is to compare the three approaches with
primary focus on the methods’ ability to correctly classify new observations. In addition, we
will discuss the quality of the estimates of the parameter function.

The remainder of the paper is organized as follows. In Section 2, we review the standard logistic
regression model. Functional logistic regression and the methods of interest are explained in
Section 3 with focus on estimation of the parameter function. Bootstrap for functional data is
discussed in Section 4. Simulation studies are discussed in Section 5, and Section 6 contains
an analysis of data on lameness of horses. Final remarks are provided in Section 7.
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2 Logistic regression

There are many situations where we are interested in the relation between input variables and
a binary output. For classification, for example, we need a rule that takes the input variables
and delivers a guess of the output. Random variation implies that there is no “perfect rule”,
and it is thus expedient to seek a stochastic model which is able to account for noise. Indeed,
we are interested in finding the conditional distribution of the binary response given the input
variables. In other words, if Y is the outcome and X is the collection of covariates, we wish to
model the conditional probability P(Y = 1|X) as a function of X , describing the effect of X on
the outcome distribution. If we use the maximum likelihood method for estimation, then we
have the usual asymptotic results available for statistical inference.

To be specific, let Yi and Xi = (Xi1,Xi2, · · · ,Xip) ∈ Rp be the random Bernoulli variable and the
vector of p explanatory variables for the ith individual, respectively, and assume that Yi is one
with probability πi = π(Xi) and zero with probability 1−πi = 1−π(Xi). The logistic regression
model is

πi = P(Yi = 1|Xi) =
exp{β0 +∑p

j=1 β jXi j}
1+ exp{β0 +∑p

j=1 β jXi j}
, i = 1,2, . . . ,n, (1)

where β0,β1, · · · ,βp are the parameters to be estimated. Equivalently, the use of the logit trans-
formation enables us to write the model in terms of a linear relation as follows:

logit(πi) = log
( πi

1−πi

)
= β0 +

p

∑
j=1

β jXi j, i = 1,2, . . . ,n. (2)

Let li = logit(πi) be the linear predictor for individual i such that li = log( πi
1−πi

) = α +

∑p
j=1 Xi jβ j for i = 1,2, . . . ,n. The parameter β j is associated to the jth explanatory and is

interpreted as the additive change in the linear predictor when the jth explanatory variable
increases one unit and the rest remain constant. The matrix form of Eq. (2) can be written as
L = α1+Xβ where L = (l1, l2, . . . , ln)T is the vector of linear predictors, 1= (1,1, . . . ,1)T is
the n-vector of ones, X is the n× p matrix where each row represents the covariates for one
individual, and β = (β1,β2, . . . ,βp)

T is the vector of parameters.

To find the maximum likelihood estimates of the parameters, we would differentiate the log
likelihood with respect to the parameters, set the partial derivatives to zero, and solve the
equations. The achieved equations are transcendental equations, and there is no closed form
solution, so it is necessary to use a numerical method to obtain an estimate. There are sev-
eral methods for numerical optimization such as Newton-Raphson and Fisher scoring, among
others.

3 Functional logistic regression

To better understand the setting for functional logistic regression, we first describe functional
linear regression and the common approaches that are used to estimate the parameters.

3
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3.1 Functional linear models

Functional regression attempts to model and estimate an association between X and Y when
one or both variables have functional form, and is therefore a natural extension of classical
regression. Suppose that the predictor X is a square-integrable random function on a compact
interval T ⊂R, Z is a vector of scalar covariates, and Y ∈R is a scalar response. Then the most
common functional linear regression model is

Y = α0 +Zα +
∫

T
X(t)β (t) dt + ε. (3)

Here α0 is a scalar intercept parameter, α = (α1,α2, · · · ,αq)
T is the vector of coefficients for

the scalar covariates, the coefficient function β is a square-integrable function on T , and the
error term ε is N(0,σ2) random variable. Often, for simplicity, T will be scaled to interval
[0,1]. As in standard linear regression, β describes the relationship between X and Y , now on
the the compact interval, T . The region where |β (t)| is larger indicates that changes in X(t) on
this interval has greater predictive power on Y .

One central goal in functional linear regression is to find an appropriate estimate of the regres-
sion coefficient function β (t) and make inference for β (t). For example, we are interested in
confidence regions for β (t) and in testing whether the functional predictor X(t) has influence
on the response. For a start, it is natural to look for estimates of β (t), α0, and α that minimize
the sum of squared residuals, i.e. minimize

n

∑
i=1

(
Yi−α0−ZT

i α−
∫

T
β (t)Xi(t)dt

)2

but without restrictions on β (t) there may be infinitely many solutions.

In practice, the functional predictors X are observed at N discrete points, and quite often N is
much larger than n, the number of curves. The main issue is that the function β (t) is an infinite-
dimensional object which must be estimated from an finite sample, and the problem thus calls
for regularization or dimension reduction. We notice that the classical multivariate regression
approaches do not necessarily produce a meaningful estimator of the coefficient function in
functional case: If we apply dimension reduction methods from multivariate data analysis such
as Principal Component Regression (PCR), Partial Least Square (PLS), or Sufficient Dimen-
sion Reduction (SDR) directly to the discrete data, the functional nature of the data will be
ignored.

A standard approach, that maintains the functional nature of β (t), is to represent β (t) with basis
functions that (hopefully) can approximate β (t) well. The basis can either be a fixed basis (not
constructed from the data), for example a Fourier basis, a B-spline basis, a wavelet basis, or a
ramp basis, or it can be a basis constructed by the eigenfunctions of the covariance operator. The
eigenfunctions can be estimated from the data as described in Rice and Silverman (1991), Capra
and Müller (1997), and Goldsmith et al. (2013). Functional regression that use eigenfunctions
to expand the coefficient function β (t) is known as functional principle component regression
(FPCR) and has been described in Cardot et al. (1999); Müller and Yao (2008) and Delaigle
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et al. (2009). In these papers, the basis functions used to expand the functional covariates Xi(t)
and the coefficient function β (t) are the same, and it is implicitly assumed that β (t) and Xi

have similar smoothness properties. A slightly different approach consists of using fixed basis
functions to expand β (t) and Xi(t), where the type and/or the number of basis functions can be
different for Xi(t) and β (t). For instance, Marx and Eilers (1999) and Cardot et al. (2003) used
spline bases for expansion and added a penalty term to the log-likelihood function, Goldsmith
et al. (2011a) and Wood (2011) proposed a spline-series expansion in a mixed-model setting,
and Zhao et al. (2012) suggested to use wavelet bases for the functional covariates Xi(t) as well
as the parameter function β (t) along with LASSO penalization.

In general, the basis functions should be chosen to reflect the characteristics of the signals,
for example, the Fourier basis is appropriate to model periodic functions. In other situations
B-spline and Wavelet basis are more appropriate, and also have the advantage that the basis
functions have finite support. It is often desirable that the expansion is “economical”, inter-
preted as sparsity of the coefficients. This means that just a few non-zero coefficient give a
good approximation of the function. For example, wavelet bases are known to be able to rep-
resent functions, even functions with discontinuities, accurately and parsimoniously with few
terms.

Now, assume that we have selected ψ(t) and θ(t) as bases for expansion of the coefficient
function and the sampling trajectory, respectively. We write

ψ(t) = (ψ1(t), · · · ,ψKx(t))
T and θ(t) = (θ1(t), · · · ,θKβ (t))

T

for the bases. The trajectories and the parameter function are thus be expressed as

Xi(t) =
Kx

∑
k=1

cikψk(t) = cT
i ψ(t) (4)

and

β (t) =
Kβ

∑̀
=1

b`φ`(t) = φ T (t)b. (5)

Then model (3) for ith curve can be expressed as

Yi = α0 +ZT
i α +

∫

T
Xi(t)β (t)dt + εi = α0 +ZT

i α +
Kx

∑
k=1

Kβ

∑̀
=1

cik{
∫

T
φ`(t)ψk(t)dt}b`+ εi

= α0 +ZT
i α + cT

i

∫

T
ψ(t)θ T (t)dt b+ εi = α0 +ZT

i α + cT
i Jψφ b+ εi, (6)

where

Jψφ =
∫

T
ψ(t)φ T (t)dt. (7)

By defining ζ = (α0,α1, · · ·αq,b1,b2, · · · ,bKβ )
T and W = [1 Z CJψφ ], model (6) simply be-

comes
Y = Wζ +ε (8)
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3.1 Functional linear models

and so a least squares estimate of ζ solves the equation

WT Wζ̂ = WT Y. (9)

If Kβ +q+1>Kx, the least squares solution “overfit” and therefore, regularization is in general
needed. A convenient method of regularization is to truncate the basis by choosing a value Kβ
such that then fit ζ by least square, but the problem may still suffer from multi-collinearity. For
a given Kx, increasing Kβ increases roughness of the estimate of β (t) quite dramatically. We
often want to control this roughness, suggesting a small number of basis functions for β (t).
On the other hand, we also want to capture the complexity of β (t), suggesting a large Kβ .
The standard solution to this problem is to adopt a regularization approach with a penalty on
roughness of coefficients functions in the model fitting process, thus imposing smoothness of
the estimate.

More specifically, we define a penalized residual sum of squares

PENSSEλ (α0,α,β ) =
n

∑
i=1

(
Yi−α0−ZT

i α−
∫

T
Xi(t)β (t)dt

)2

+λ
∫

T
(Lβ (t))2 dt (10)

where L is a linear differential operator. The specific choice of L depends on the nature of the
data. Two common operators that have been used in functional data literature are the following:
(1) Curvature or departure from linearity, L(β )(t) = D2β (t), and (2) the harmonic acceleration
operator, L(β )(t) = (2π/a)2 Dβ (t)+D3β (t) which is used for periodic functions with period
a. The smoothing parameter λ can be chosen either subjectively or by an automatic method
such as cross-validation. A small value of penalty parameter leads to a rough estimate of β (t),
and a large value of λ results in a smooth (ultimately, flat) estimate of β (t).

Basis expansions and penalization go well together: Suppose that the covariate functions Xi(t)
are expanded by Kx terms relative to basis functions ψk and that the regression function β (t)
is expanded by Kβ terms relative to basis functions θ` as in (4) and (5), respectively. For the

penalty term, we observe that Lβ (t) = ∑
Kβ
`=1 b`{Lθ`(t)} and hence we can write

∫

T
{Lβ (t)}2 dt =

Kβ

∑̀
=1

Kβ

∑
`′=1

b`

(∫

T
{Lθ`(t)}{Lθ`′(t)}dt

)
b`′ = bT Rb

where R is an Kβ ×Kβ matrix with its (`,`′)-th element equal to the parenthesis in the expres-
sion just above.

Therefore the penalized residual sum of squares can be written

PENSSEλ (α0,α,β ) = ||Y−α0−ZT α−CJψφ b||2 +λbT Rb (11)

where Jψθ was defined in (7). Given a fixed value of λ , there exists a closed form solution for
the parameters α0, α and b. Define ζ = (α0,α,bT )T and W as the n× (1+q+Kb) coefficient
matrix [1 Z CJψθ ]. Also define R0 from R as

R0 =

(
0(q+1)×(q+1) 0(q+1)×Kβ

0Kβ×(q+1) RKβ×Kβ

)
(12)

6



3.2 Functional logit regression

Then the vector ζ̂ that minimizes PENSSEλ , satisfies

(WT W+λR0)ζ̂ = WT Y.

In summary, the major point debated here is the need for regularization for estimation of the
coefficient function β (·) to ensure existence and control smoothness. This can be done using
either restricted basis function or roughness penalty.

3.2 Functional logit regression

We now modify the functional linear regression to the case of a binary response variable. For
each of n individuals, the observed response Yi is assumed to come from a Bernoulli distribution
with success probability πi, i.e., πi = π(Xi(t)) = Pr{Yi = 1|Xi(t)}. If we use the logit link
function, then the natural extension of model (3) is

logit(πi) = log
(

πi

1−πi

)
= α0 +Zi

T α +
∫

Xi(t)β (t)dt. (13)

Just as before, α0 is the intercept parameter, α = [α1,α2, · · · ,αq]
T is the vector of coefficients

for scalar covariates Zi = [Zi1 Zi2 · · ·Ziq]
T and β (t) is the coefficient function for the functional

covariate Xi(t). As in the functional linear model case, it is impossible to obtain the estimate of
parameter function β (t) without further assumptions or restrictions on Xi(t) and β (t) (Ramsay
and Silverman, 2005).

Therefore, we consider expansions of Xi(t) and β (t):

β (t) = φ T (t)b , X(t) = Cψ(t).

Substituting for β (t) and X(t), the regression model (13) becomes

log
(

π
1−π

)
= α01+Zα +

∫
Cψ(t)φ T (t)bdt = α01+Zα +CJψφ b = [1 Z CJψφ ]ζ (14)

where π is the vector of success probabilities.

This model is now similar to a standard logistic regression model, and the maximum likelihood
estimator of the parameter can be found by using numerical optimization methods. For instance,
Ratcliffe et al. (2002) applied the Fisher scoring algorithm.

It is well-known that estimates of the parameters in multiple logistic regression models are
not reliable when there is a high degree of dependency between the covariate variables (multi-
collinearity), i.e. when the columns of the design matrix are highy correlated (Aguilera et al.,
2008; Ryan, 2008). In functional logistic regression, because of the nature of the functional
data, there will often be a high correlation between the columns of the matrix CJψφ in Eq.
(14). The rest of this section will discuss different ways to overcome this problem.
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3.3 Functional logistic regression using wavelet basis and LASSO penalization

In the following we will, for simplicity, consider a set-up with no scalar covariates. We also
introduce the notation li for the linear predictor for observation i. Hence, the model under
consideration is

li = log
(

πi

1−πi

)
= α +

∫
Xi(t)β (t)dt. (15)

Notice that we from now on use the notation α for the intercept parameter. Assuming indepen-
dence of the outcomes, the likelihood for the model is

L(α,β (t)) =
n

∏
i=1

πYi
i (1−πi)

1−Yi =
n

∏
i=1

eYi(α+
∫

Xi(t)β (t)dt)

1+ eα+
∫

Xi(t)β (t)dt
.

3.3 Functional logistic regression using wavelet basis and LASSO penalization

Zhao et al. (2012) proposed to combine wavelet bases with LASSO penalization for a func-
tional regression with continuous response, and Mousavi and Sørensen (2015) modified the
approach to deal with classification of functional data. They used a multinomial functional re-
gression model and converted the infinite-dimensional problem to a finite-dimensional problem
with a sparse matrix of wavelet coefficients. The method was applied to the lameness data (see
Section 6) and phoneme data. In this paper we will use the method for binary responses, and
accordingly refer to the method as functional logistic regression with wavelets and LASSO
(FLRWLASSO).

Let φ(t) and ψ(t) be a father and mother wavelet, respectively, that are linked by the relation-
ship, ψ(t) = ∑k∈Z gk

√
2φ(2t− k). The set of the coefficients G = {gk}k∈Z are high-pass filter

coefficients. For a given mother wavelet, the wavelet bases {ψ j,k(t)} j,k∈Z can be constructed
by dilation and translation as follows:

ψ j,k(t) = 2 j/2ψ(2 j− k).

The indices j and k represent dilation and translation, respectively. For a given function f (t)
and a fixed detail level j0, the basis expansion of f in terms of the wavelet bases is given by

f j0(t) =
2 j0−1

∑
k=0

c j0,kφ j0,k(t)+
J−1

∑
j= j0

2 j−1

∑
k=0

d j,kψ j,k(t) (16)

where N = 2J and N represents the number of observations of the function f . Notice that N
must be a power of 2.

If we assume that the curves Xi(t) and β (t) belong to the finite dimensional space generating
by the wavelet basis, then Xi(t) and β (t) can be expressed in terms of the mother and father
wavelets at detail level j0 as follows:

Xi, j0(t) =
2 j0−1

∑
k=0

ci, j0,kφ j0,k(t)+
J−1

∑
j= j0

2 j−1

∑
k=0

di, j,kψ j,k(t), i = 1, . . . ,n

β j0(t) =
2 j0−1

∑
k=0

c∗j0,kφ j0,k(t)+
J−1

∑
j= j0

2 j−1

∑
k=0

d∗j,kψ j,k(t). (17)
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3.3 Functional logistic regression using wavelet basis and LASSO penalization

With these basis expansions for Xi(t) and β (t), and due to orthogonality of the wavelet basis
functions, the linear predictor from equation (15) becomes

li = α +
∫

Xi(t)β (t)dt = α +
2 j0−1

∑
k=0

ci, j0,kc∗j0,k +
J−1

∑
j= j0

2 j−1

∑
k=0

di, j,kd∗j,k = α +Biγ

where Bi is a row vector of length N involving of father and mother wavelet coefficients of
signal Xi(t), and γ is the vector of c∗ and d∗ coefficients for the parameter function β (t). In
matrix form we write L = α1+Bγ , and the likelihood function becomes

L(α,γ) =
n

∏
i=1

πYi
i (1−πi)

1−Yi =
n

∏
i=1

eYi(α+
∫

Xi(t)β (t)dt)

1+ eα+
∫

Xi(t)β (t)dt
=

n

∏
i=1

eYi(α+Biγ)

1+ eα+Biγ
. (18)

Notice that no regularization or smoothing has been imposed so far, and that the number of
unknown parameters, including the intercept, is N + 1. With functional data the number of
observation for each subject, N, is often much larger than the number of subjects, n (N �
n). In these situations unpenalized ML estimation is not possible as the likelihood equation
have several solutions. Moverover, overfitting makes the interpretation of estimates difficult.
Therefore we need to apply regularization. It is common to use either a ridge penalty or a
LASSO penalty, adding an L2 or L1 penalty term on the coefficients onto the log-likelihood.

It is well-known that ridge regression reduces the variability and improves the accuracy of the
estimates as the coefficients are shrunk towards zero. This is of particular value in presence of
multicollinearity. Howvever, ridge regression is not concerned with variable selection and does
not provide a parsimonious model with few parameters. On the other hand, the Least Absolute
Shrinking and selection Operator (LASSO) coined by Tibshirani (1996) shrinks some of the
coefficients all the way to zero, thereby delivering a sparse solution with just a few non-zero
coefficients. In other words, a variable selection is effectively performed.

We use the LASSO, adding a L1 penalty on the γ coefficients onto the minus log-likelihood, so
the objective function is

Q(α,γ) =− logL(α,γ)+λ
N

∑
r=1
|γr|=−

n

∑
i=1

(
Yi(α +Biγ)− log(1+ eα+Biγ)

)
+λ

N

∑
r=1
|γr|

which should be minimized with respect to α and γ . The parameter λ in the objective func-
tion Q is a tuning parameter that controls the amount of the shrinkage and should be selected
through cross validation. Keep in mind that the objective function Q also depends on the detail
level parameter, j0, which should be chosen via cross-validation as well.

There is no a closed from solution to the minimization problem, so we need to employ an op-
timization algorithm. Various optimization algorithms have been suggested, such as quadratic
programming (Tibshirani, 1996), the LARS algorithm (Efron et al., 2004), and coordinate de-
scent algorithm (Wu and Lange, 2008). The coordinate descent algorithm has advantaged since
it can be performed in O(nN) calculation and with a practical limit of of variables as large as
1000000. In practice we have used the cv.glmnet function in the R-package glmnet (Fried-
man et al., 2010) for our numerical studies. It includes cross validation for selection of the
tuning parameter λ .
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3.4 Functional principle component approach

3.4 Functional principle component approach

Let us have a closer look at the principal component approach where the basis functions are
eigenfunctions estimated from the data. At first we consider the n individual trajectories as in-
dependent realization from a random process {X(t), t ∈ T}with mean function µ(t) and covari-
ance function ΣX(s, t) = Cov(X(s),X(t)). Mercer’s theorem gives us the eigen-decomposition
of the covariance function K(s, t) = ∑∞

k=1 λkφk(s)φk(t), where φk and λ1 ≥ λ2 ≥ . . . are the or-
thogonal eigenfunctions and ordered eigenvalues, respectively. The Karhunen-Loève expansion
of the random function Xi(t) can be written as

Xi(t) = µ(t)+
∞

∑
k=1

ξikφk(t) (19)

where ξik is the kth FPC score for the ith individual and given by ξik =
∫
(Xi(t)−µ(t))φk(t)dt.

Notice that the FPC scores are uncorrelated random variables with mean 0 and var(ξik) = λk.
From the definition of ξik we can say that it shows the similarity between the deviation of
random function Xi(t) from the mean function and the kth eigenfunction, φk(t).

We now express the time-varying coefficient β (t) and the covariate function Xi(t) as truncated
expansions in the Karhunen-Loève basis:

β (t) =
K

∑
k=1

bkφk(t), Xi(t) = µ(t)+
K

∑
k=1

ξikφk(t).

The number of eigenfunctions, K, can be chosen either using the cumulative percent variance
method or cross validation. Thanks to the orthogonality of eigenfunctions φk(t), model (15)
now becomes

li = log
(

πi

1−πi

)
= α̃ +

K

∑
k=1

bkξik. (20)

Here α̃ = α +
∫

β (t)X̄(t)dt, i.e, the mean function X̄(t) = 1
n ∑n

i=1 Xi(t) is absorbed into the
intercept. This model can be written in matrix form as L = α̃1+ξ b where L = (l1, l2, . . . , ln)T ,
1 = (1,1, . . . ,1)T , b = (b1,b2, . . . ,bK)

T , and ξ = (ξik)n×K with entries ξik, i.e., the kth FPC
score for the ith signal.

Once the FPC scores have been estimated, the unknown coefficients bk can be estimated with a
multiple logistic regression, and the estimated coefficient function β (t) is then constructed by
the basis expansion, β̂ (t) = ∑K

k=1 b̂kφ̂k(t). From now on we refer to this approach as functional
logistic regression based on functional principal component analysis (FLRFPCA).

It remains to be explained how the FPC scores are computed. In principle, with estimates of
the eigenfunctions {φ̂k(t)}K

k=1 and the mean function x̄(t), the FPC scores can be obtained by
numerical integration as follows:

ξ̂ik =
∫
(Xi(t)− x̄(t))φ̂k(t)dt ≈ 1

N

N

∑
j=1

(xi(t j)− x̄(t j)) φ̂k(t j). (21)

10



3.5 Penalized Functional Regression

These estimates are precise when the observations are dense, but for the sparse data numerical
integration are no longer appropriate. As an alternative, Yao et al. (2005) suggested principal
analysis via conditional expectation (PACE) for longitudinal data. PACE gives better results for
sparse and/or irregular functional data, and we will implement this approach in our simulations
and application in Sections 5 and 6. The steps of PACE algorithm are described in detail in
appendix A.

3.5 Penalized Functional Regression

Penalized Functional Regression (PFR) is discussed by Goldsmith et al. (2011a) for generalized
functional linear models. PFR consists of three steps. First, the random functions Xi are approx-
imated by the finite series expansion Xi(t) =∑Kx

k=1 cikψk(t), where ψ(t) = {ψ1(t), . . . ,ψKx(t)} is
the set of the first Kx eigenfunctions of the smoothed covariance matrix ΣX(s, t)=Cov[Xi(s),Xi(t)].
Second, a truncated power series basis or a B-spline basis is used to represent the coefficient
function, hence β (t)=∑

Kβ
k=1 bkφk(t)= φ T (t)b for the selected basis φ(t)= {φ1(t),φ2(t), · · · ,φKβ (t)}.

Third, a penalized log-likelihood is minimized. Notice that the first step in PFR is identical to
the first step in FPCR, so the difference lies in the exansion of β (t) and penalization.

When Xi(t) and β (t) are expansions of the first few eigenfunctions {ψk}Kx
k=1 and {φk(t)}

Kβ
k=1

respectively, we can rewrite the model as

log
(

πi

1−πi

)
= α +

∫
Xi(t)β (t)dt = α + cT

i Jψφ b (22)

where ci = (ci1, · · · ,ciKx)
T , b = (b1, · · · ,bKb)

T , and W is an Kx×Kb matrix with the (k, `)-
th element Jψφ k` =

∫
ψk(t)φ`(t)dt. The original PFR paper (Goldsmith et al., 2011a) used a

truncated power series basis, whereas PFR with B-splines and difference penalties was imple-
mented in a modified version of the R refund package (Crainiceanu et al., 2014).

Notice that two different approaches have been discussed in the literature on penalized splines:
(1) a B-spline basis with equally spaced knots and difference penalties (Eilers and Marx, 1996)
and (2) a truncated power series basis with unequally spaced knots usually based on the quintile
of the time observation and a ridge penalty (Ruppert et al., 2003). Eilers and Marx (2010)
showed that B-splines and difference penalties are easily adopted to smoothing of periodic
data. This can be done by wrapping around the basis functions at the ’end’ to the ’begining’
and also changing the difference penalty in a similar way. They also mention that there is no
evidence of any advantage of penalized truncated power series functions over the penalized
B-splines. We will use B-splines with difference penalty as implemented in the function pfr in
the R refund package (Crainiceanu et al., 2014) for our numerical studies.

4 Bootstrap for functional logistic regression

The simulation study in Section 5 shows that the estimator of β is subject to great uncertainty
and that it is not very reliable as estimator of the true data generating mechanism. Nevertheless,
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Bootstrap for functional logistic regression

for a given dataset, we are indeed interested in describing the uncertainty of the estimator. It is
not possible to make explicit inference for β (t) so we will rely on bootstrap methods. Febrero-
Bande et al. (2010) used the smoothed bootstrap approach for functional linear models with
scalar response. We suggest to use the procedure for functional logistic regression as well, and
we will apply to the lameness data in Section 6.

As in the previous sections we consider n observations, i.e. n binary observations collected in
the vector Y = (Y1, . . . ,Yn) and n covariate functions collected in X(t) = (X1(t), . . . ,Xn(t)).
The bootstrap procedure consists of the following steps:

1. Fit the functional logistic regression from equation (15) using one of the methods from
Section 3. Let α̂ and β̂ (t) denote the estimates of the intercept α and the coefficient
function β (t), respectively.

2. Make KB standard bootstrap samples of size n from the original covariate curves, and
denote the new samplesXb(t) = {Xb

1 (t),X
b
2 (t), . . . ,X

b
n (t)},b = 1,2, . . . ,KB.

3. Perform smoothed bootstrap by adding a multivariate Gaussian process to the bootstrap
samples. More specifically, draw Zb from a multivariate Gaussian process with mean
zero and covariance matrix sΣX , where s is a smoothing parameter, and ΣX is an estimate
of the covariance matrix for the functional covariate, and let X̃b(t) =Xb(t)+Zb, for
b = 1,2, . . . ,KB.In order to choose the smoothing parameter Febrero-Bande et al. (2010)
showed through a simulation study that an appropriate choice could be s ∈ (0.15,0.25)
for functional datasets with sample size n ≤ 100, while s ∈ (0.1,0.2) is appropriate for
sample sizes 100 < n < 200, and for larger sample sizes unsmoothed data may be used.

4. Compute πb = (πb
1 ,π

b
2 , . . . ,π

b
n ) where πb

i is the probability that the binary response Yi

variable takes value one given functional observation xb
i (t),

πb
i = P{Yi = 1|X(t) = Xb

i (t)}=
exp{α̂ +

∫
Xb

i (t)β̂ (t)dt}
1+ exp{α̂ +

∫
Xb

i (t)β̂ (t)dt}
.

Notice that we use the non-smoothed bootstrap data for this computation.

5. Use πb
i , i = 1,2, . . . ,n to generate random binary data Y b

i with success probability πb
i ,

and denote the response vector Y b = (Y b
1 ,Y

b
2 , . . . ,Y

b
n ).

6. Fit the functional logistic model to the bootstrap data with Y b as response and X̃b(t)
as covariate functions. Denote the estimate of the the coefficient function β̂ b(t)for b =
1,2, . . . ,KB.

7. Compute db = d(β̂ (t), β̂ b(t)), b = 1,2, . . . ,KB where d(·, ·) is a metric associated with a
norm. Define dα as the (1−α) quantile in the empirical distribution of d1, . . . ,dKB .

8. Define and plot the bootstrap confidence “ball” of level (1−α) as those bootstrap esti-
mates whose distance to β̂ (t) is smaller than dα , i.e., CB(1−α) = {β̂ b(t)

∣∣db ≤ dα}.
9. Plot the estimated parameter functions in CB1−α together with the estimated coefficient

function from original data β̂ (t), but in different colors.
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Simulation study

5 Simulation study

In this section, a simulation study is performed in order to further evaluate and compare the
aforementioned approaches. We try two different approaches for simulation; both inspired from
the literature on functional regression. Another option would be to resemble an existing dataset
by borrowing parameter values estimated from the data as in Mousavi and Sørensen (2015).

5.1 Simulation from a functional logistic regression model

Our first simulation approach consists of two steps: First simulate functional covariates Xi (all
from the same distribution); then simulate the response Yi from a logistic regression model
with a fixed β (t). In other words, the simulation model is in accordance with the model used
for classification. More specifically, for the first step, we consider equally-spaced time points
{t j ∈ [0,10], j = 1,2, · · · ,256} with length 28 = 256, and generate 150 functional predictors
using basis expansions on the form

Xi(t j) =
13

∑
k=1

cikφk(t j) , i = 1,2, . . . ,150 , j = 1,2, . . . ,256 , ti j ∈ [0,10] (23)

Here the basis functions {φk(t)}13
k=1 are cubic B-splines corresponding to nine equally space in-

terior knots over the interval [0,10], and cik are random basis coefficients generated as follows:
The 150× 13 matrix C is a product ZU where Z is a 150× 13 matrix of iid. standard normal
variables, and U is a 13× 13 matrix of iid. random values with uniform distribution on [0,1].
This method of generating the functional covariates is adapted from the work of Escabias et al.
(2004). Left panel of Figure 1 shows a sample of 10 random functional covariates X(t). On top
of this, we allow for measurement errors on the functional data and thus consider the curves
contaminated with noise, i.e. Wi(t j) = Xi(t j)+ δi(t j) where δi(t j) ∼ n(0,σ2

X). We use σX = 0
(no noise) and σ2

X = 0.5 as standard deviation in our study.

In the second step the binary response Yi is generated by the following model:

logit Pr{Yi = 1|Xi(t)} =
∫ 10

0
Xi(t)β (t)dt , i = 1,2, . . . ,150 (24)

where β (t) is the parameter function. Notice that the intercept α is zero. We consider three
different choices of true parameter functions, namely, β1(t) = sin(tπ/3) , β2(t) = (t/2.5)2/5,
and β3(t) = −p(t|2,0.3)+ 3p(t|5,0.4)+ p(t|7.5,0.5), where p(·|µ,σ) represents the normal
density with mean µ and standard devision σ . These functions are adapted from the work of
Goldsmith et al. (2011b) with minor changes in order to generate datasets compatible with the
binary model. The true parameter functions β j(t) are displayed in the right panel of Figure 1.
The curves in the left part of the figure are coloured according to the value of Yi as obtained
from (24) with β1(t). For two curves the W process is also shown (dashed curves).

We simulated 100 datasets {Yi,Xi(t j),Wi(t j), j = 1,2, . . . ,256, i = 1,2, . . . ,150} of the above
type for each β j(t), j = 1,2,3. For each dataset, 100 observations were used as training data
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5.1 Simulation from a functional logistic regression model
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Figure 1: Left: Sample of 10 random functional covariates Xi generated from (23). Curves are
coloured according to the outcome of Y (black and red for 0 and 1, respectively), generated
from (24) with parameter function β1. For the two highlighted curves the W process is also
shown (dashed curves). Right: Parameter functions used for simulation of the response.

in order to fit the logistic model, and the fitted parameter function as well as the corresponding
predicted responses were extracted. The remaining 50 observations were used as test data, i.e.
the response was considered unknown and the fitted model was used to predict it. This set-up
is classical in the evaluation of procedures for supervised classification.

All three approaches from Section 3 (FLRFPCA, PFR, FLRWLASSO) were tested with all
three β js and both with and without measurement noise. In the FLRPCA approach the number
of eigenfunction was selected to explain 98% of the variation, which in practice gave around
5 eigenfunctions. In the FLRWLASSO approach the detail level j0 was selected by cross val-
idation, and varied between the different scenarios (different true β js, with/without noise). In
general, data with more oscillation requires a larger value of j0. For PFR, we used Kβ = 30,
i.e. 30 basis functions to represent the parameter function.

The misclassification rates are listed in Table 1, and also illustrated in Figures 2 and 3 for
test and training data, respectively. As expected misclassification rates are larger for test com-
pared to training data. All approaches are successful in handling datasets with noise as the
misclassification rate does not increase much when functions are contaminated with noise. The
misclassification rates for the datasets generated by β2(t) are the lowest, however, the rates
for data generated by β1(t) are rather large compared to β2(t) and β3(t). The misclassification
rates for test data are similar for the three methods with PFR performing slightly better than
FLRFPCA and FLRWLASSO across the six scenarios.

Notice that for the simulation set-up just described the simulation model and the regression
model are of the same type (the regression model is true), and another aspect is therefore
the ability of the different methods to reproduce the parameter functions β (t). Unfortunately, it
turns out that neither of the methods does a good job in that respect. FLRFPCA gives reasonable
estimates for β1(t), but has large scale problems for β2(t) and is not able to reproduce the
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5.1 Simulation from a functional logistic regression model

shape for β3(t). PFR generally has severe problems with the scale of parameter functions,
but is to some extent able to reproduce the shape of β (t). FLRWLASSO has problems with
both shape and scale. We conclude that the estimates of β are not reliable as estimates of the
true data generating mechanism. However, the estimates can still be useful in applications as
they describe the corresponding “prediction machine”, and thereby includes information about
which parts of the functional data that hold information associated to the response.
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Figure 2: Boxplots of the misclassification rates for training data in the different scenarios and
for each of the three methods. Each boxplot is based on 100 simulated datasets, each containing
50 test curves.

Table 1: Average misclassification rate (over 100 simulated datasets) in percent for each method
and each simulation scenario. Data are simulated as described in Section 5.1.

FLRFPCA FPR FLRWLASSO

σ2
X = 0 σ2

X = 0.5 σ2
X = 0 σ2

X = 0.5 σ2
X = 0 σ2

X = 0.5

β1(t)
Test 18.78 19.22 18.46 18.70 20.56 20.96
Train 15.75 16.24 14.08 14.21 18.78 18.41

β2(t)
Test 5.92 5.76 4.18 4.26 4.80 5.36
Train 3.31 3.72 1.33 1.80 3.67 4.73

β3(t)
Test 11.90 11.72 11.80 11.64 11.60 11.98
Train 9.91 10.07 8.57 8.96 9.98 9.74
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5.2 Stratified simulation from two groups
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Figure 3: Boxplots of the misclassification rates for test data in the different scenarios and for
each of the three methods. Each boxplot is based on 100 simulated datasets, each containing
50 test curves.

5.2 Stratified simulation from two groups

Our second simulation approach simulates curves from two different distributions correspond-
ing to Y = 0 and Y = 1, respectively. This simulation set-up is adopted from the work of
Aguilera et al. (2011).

Each simulated dataset contains a total of 250 curves of two different classes of sample curves.
in the first class 125 random curves are generated as x(t) = uh1(t)+(1−u)h2(t)+ ε(t) while
in the second class 125 random curves are generated x(t) = uh1(t)+(1−u)h3(t)+ ε(t). Here
u and ε(t) are iid. uniform and standard normal random variables, respectively, and h1(t) =
max{6−|t−11|,0}, h2(t) = h1(t−3), and h3(t) = h1(t +3). The sample curves are generated
at 101 equally spaced timepoints on the interval [1,21], and the binary response Y is considered
as 0 for curves belonging to the first class and 1 for the curves from the second class. Notice
that there is no true parameter function in this set-up as the curves are simulated conditionally
on the response (not the opposite). Figure 4 shows a sample of 20 random functional covariates
Xi(t).

We divided each dataset into training data (150 curves) and test data (100 curves), and pro-
ceeded as in Section 5.1. A total of 200 such datasets were simulated, and the average mis-
classification rates are shown in Table 2. From a classification point of view there is not much
difference between the different approaches. Recall that there is no true β (t) for these simula-
tion. Nevertheless, each procedure delivers an estimate of β (t) that is used for classification,
and it turns out that FLRWLASSO leads to a stable estimate whereas the estimates from FLRF-
PCA and PFR are extremely variable.

Our conclusions based on our simulation studies (Sections 5.1 and 5.2) are the following: (1)
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Lameness detection for horses
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Figure 4: Sample of 30 random signal generated from two different classes. Curves are coloured
according to the classes.

Functional logistic regression can be useful for classification — even if the true data gener-
ating model is not a functional logistic regression model; (2) the classification results do not
differ much between the three considered approaches; (3) the estimated regression model is not
necessarily reliable as an estimate of the true conditional distribution of the response given the
curve, but can be useful for identification of intervals with strong association between curve
and response. Finally, computation time is an important aspect, in particular if one wants to
use bootstrap or other resampling methods for statistical inference. As will be illustrated in
Section 6, FLRWLASSO is roughly a factor 25 faster than the other methods which gives that
method a large advantage over the others.

Table 2: Average misclassification rate (over 200 simulated datasets) in percent for each
method. Data are simulated as described in Section 5.2.

FLRFPCA FPR FLRWLASSO

Test data 2.07 2.29 2.50
Train data 1.03 0.83 1.12

6 Lameness detection for horses

Lameness is a common problem for sports horses. Detection of lameness at an early stage could
prevent chronic lameness (Stashak, 2002; Thomsen et al., 2010), but low-degree lameness is
difficult to detect with clinical inspection, so supplementary methods for lameness detection
and identification of the lame limb would be welcome.

Walk, trot and canter are the most common gaits, and the first two are symmetric. It is well
known that lameness disturbs the symmetry, so continuous monitoring of activities from these
gaits would be expected to be informative about the lameness status of the horse. Horses can be
monitored with accelerometers which measure the activity through electrical signals that can be
converted to proxy measurements for acceleration. Thomsen et al. (2010) recorded acceleration
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6.1 Data collection and lameness groups

data from trotting horse with this technology; with and without stimulation of lameness. In the
following we will give a brief description of these data, and then apply FLRFPCA, PFR, and
FLRWLASSO for supervised classification in three different scenarios.

6.1 Data collection and lameness groups

A 10G, three-axis accelerometer was used to record the signal of acceleration in three directions
(vertical, transversal, longitodinal). The accelerometer was put on the lowest point of the back
of horse which is the closest surface location to the body center of mass. More details on the
data collection process can be found in Thomsen et al. (2010) and Sørensen et al. (2012).

Eight horses with no indication of lameness were used in two sub-experiments to generate a
total of 85 acceleration signals in five lameness groups. Lameness was induced mechanically
by equipping the horse with a modified horseshoe with a screw eliciting pressure on the sole of
the hoof. The shoe was attached to one of the four hoofs and horses were also tested without
the shoe; amounting to five groups.

Experience is that acceleration is similar for lameness on limbs from the same diagnal pair of
limbs. Therefore, and in order to have larger groups, we only consider three groups in the fol-
lowing: Normal (NO) consisting of 23 signals from horses with no shoe attached; left diagonal
(LD) consisting of 30 signals from horses with the shoe attached to left fore or right hind limb;
and right diagonal (RD) consisting of 32 signals from horses with the shoe attached to right
fore or left hind limb. We will study three scenarios:

1. Left diagonal vs. right diagonal (LD/RD)

2. Normal vs. left diagonal (NO/LD)

3. Normal vs. right diagonal (NO/RD).

We will only use the acceleration in the vertical direction in the current study. The raw ac-
celeration signals consist of data from eight complete gait cycles (between 1121 and 1440
observations). Before the analysis we carried out several pre-processing steps in order to re-
duce variation between gate cycles in each signal and variation between signals due to different
timing at the beginning. These steps of preprocessing have been explained in Appendix A in
Mousavi and Sørensen (2015).

After pre-processing the data consists of 85 signals on (0,1), and each signal represents one gait
cycle. Importantly, and for all signals, the first half correponds to stance on the right diagonal
whereas the second half corresponds to stance on the left diagonal. The signals are shown in
Figure 5, divided into groups. A close look reveals that for the healthy horses (NO), the first
and second halfes are similar, whereas this symmetry is disturbed in groups LD and RD. More
specifically, signals from the RD group generally have smaller amplitude on (0,0.5) compared
to (0.5,1), and vice versa for the LD group. This is because horses tend to put less pressure, and
thus generate less upward acceleration, when they stand on the lame compared to the healthy
diagonal.
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Figure 5: Vertical acceleration signals (grey lines) from the normal (NO), left diagonal (LD)
and right diagonal (RD) groups. The blue lines are the average curves.

6.2 Analysis

We now apply FLRFPCA, PFR and FLRWLASSO in the three scenarios. The tuning parame-
ters λ and j0 for FLRWLASSO are selected by cross validation. This gives j0 = 0 in scenario
LD/RD, j0 = 1 in other two scenarios, and values 0.0067, 0.0059 and 0.0114 for λ in scenario
1, 2 and 3, respectively. The number of eigenfunctions for FLRFPCA was selected such that
99% of the variation was explained; this gave 7 eigenfunctions in all three scenarios. For the
PFR approach, 30 B-spline basis was used to expand parameter function β (t). The primary aim
of the analysis is classification, but we will also study estimates of the parameter function β (t),
and comment on execution times.

First, as is common for evaluation in supervised classification, we use the leave-one-curve-
out approach. That is, all data (signals and groups) except for the ith observation are used as
training data to fit the model, then signal i is used as test data, and the prediction is compared
to the true group. This is repeated for all signals, i.e. i = 1,2, . . . ,n, where n is the number of
curves in the scenario under consideration. The results are displayed in Table 3 and Table 4
where the first shows the true and predicted groups for each scenario and each approach, and
the latter shows the misclassification rates in percent. The tables show that from a classification
point of view, the approaches FPR and FLRWLASSO are very similar, whereas FLRPCA is
less good.

Second, let us examine the estimated parameter function β̂ (t) for each scenario and each ap-
proach, where in each case all available observations have been used for estimation. The esti-
mates are shown in Figure 6. The shape of β̂ (t) is roughly the same for FPR and FLRWLASSO,
except perhaps for some large jumps in the NO vs. LD scenario fitted with FLRWLASSO. The
scales for β̂ vary a lot between estimation methods and scenarios, with FLRWLASSO being
the most stable across scenarios. The majority of the estimates are positive on roughly one
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6.2 Analysis

Table 3: Results from leave-one-curve-out classification.

FLRFPCA FPR FLRWLASSO

Scenario Predicted Predicted Predicted

LD True Group LD RD True Group LD RD True Group LD RD
vs LD 28 2 LD 29 1 LD 29 1
RD RD 2 30 RD 2 30 RD 1 31

NO True Group NO LD True Group NO LD True Group NO LD
vs NO 21 2 NO 21 2 NO 21 2
LD LD 4 26 LD 1 29 LD 3 27

NO True Group NO RD True Group NO RD True Group NO RD
vs NO 19 4 NO 20 3 NO 20 3
RD RD 3 29 RD 2 30 RD 2 30

Table 4: Misclassification rates based on leave-one-curve-out classification.

Scenario FLRFPCA FPR FLRWLASSO

LD vs RD 6.45 4.84 3.23
NO vs LD 11.32 5.66 9.43
NO vs RD 12.73 9.09 9.09

half of the interval and negative on the other, suggesting that the difference between the two
halves of a signal is associated to the lameness status. This is not surprising. Notice that, due
to symmetry of trot, and because all signals start with stance on the right diagonal, we would
expect the behaviour of β̂ (t) for NO vs. LD on the interval (0,0.5) to be similar to the be-
haviour of β̂ (t) for NO vs. RD on the interval (0.5,1), and vice versa. This is indeed the case
for FRP when it comes to shape, but not scale, and to some extent for FLRWLASSO, but not
FLRFPCA.

In order to examine the stability of the estimates we used the bootstrap approach discussed in
Section ??. Figure 7 shows the result for FLRWLASSO with KB = 300 bootstrap samples. The
blue line represents the estimated parameter function for the original data, the gray curves are
the estimated parameter function for each bootstrap sample after by using L2-norm, and the
red dashed line represents the 95% pointwise confidence band for the parameter function. It is
not surprising that the pointwise confidence bands are more narrow than the range of the gray
curves, since the latter takes into account the whole shape of the curves. However, we would
have expected the blue line to be closer to the center of the bootstrap distribution as it is the
case for functional linear regression with continuous outcome (Febrero-Bande and Oviedo de la
Fuente, 2012). The extremely large of β̂ (t) for FLRFPCA and FPR led to numerical problems
in the bootstrap computations, which were therefore not carried out for these two methods.

Altogether the study of the estimated parameter functions confirm our impression from the
simulation studies, that the parameter estimates are unstable and not all that reliable. They can
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6.2 Analysis

at best give an impression about the associations between the binary outcome and the covariate
curves.
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Figure 6: Estimated parameter function β̂ (t) for the three different approaches and three sce-
narios. All the available data have been used in each scanario.

Finally, some comments on execution time. The computation time in seconds for fitting the
model with all available data for each approach and scenario has been measured and is reported
in Table 5. The R-implementation has been executed on a i3-core Pentium processor with 4
GM of RAM. As the table shows, FLRWLASSO is far more computationally efficient than
the other two approaches, at least a factor 25. Such a difference is important when performing
many modelfits such as in a leave-one-curve-out study or with bootstrap computations.

Table 5: Execution time in seconds for the different approaches and scenarios.

Scenario FLRFPCA FPR FLRWLASSO

LD vs RD 6.62 8.75 0.26
NO vs LD 6.92 7.66 0.26
NO vs RD 6.48 7.16 0.24
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Figure 7: Estimates of the parameter function β (t) for the FLRWLASSO method. The blue
curve represents the estimate of parameter function for the original data, the gray curves are the
estimates from 300 bootstrap samples after taking away 5% of the outlier estimated parameters,
and the red dashed curves display pointwise 95% confidence band for the parameter function
based on the bootstrap samples.

7 Discussion

In this paper, functional logistic regression was reviewed and three approaches were com-
pared: functional logistic regression with wavelets and LASSO penalization (FLRWLASOO),
functional logistic regression via functional principle component analysis (FLRFPCA), and
penalized functional regression (PFR). The performance of an approach in functional logis-
tic regression can be assessed in two directions: classification and estimation of the parameter
function. Based on our simulation study and the application to the lamess data, we conclude
the following:

• Misclassification rates are similar for the three approaches with PFR performing slightly
better in the simulation study, and PFR and FLRWLASSO performing better than FLRF-
PCA in the application.

• None of the three methods does a good job in estimating the parameter function. The
estimates are not reliable, mainly due to scale problems. The scale problems can lead to
numerical problem in connection to bootstrap or other ressampling methods.

• FLRWLASSO gives the most stable estimates of the parameter function, and despite
the above-mentioned problems, the estimated parameter function is still interesting in
applications as it contains information about which parts of the functional covariates that
hold information related to the binary response.

• The R-implementation of the three methods showed that FLRWLASSO is far more com-
putational efficient than the other two methods, at least by a factor 25.
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In summary, PFR and FLRWLASSO seems to be preferable to FLRFPCA from a classification
point, and FLRWLASSO is much faster and more stable regarding estimation of the parameter
function. For these reasons, and in particular if bootstrap or other resampling methods are used
as part of the analysis, we recommend to use FLRWLASSO for functional logistic regression.
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A Principal analysis via conditional expectation

The PACE algorithm includes estimation of the eigenvalues, eigenfunctions, and scores and
consists of the following steps:

Step 1 Estimate the mean function µ(t) using univariate smoothing to the pooled observations
under working independence.

Step 2 Use a method-of-moment approach to construct a raw estimate of the covariance matrix,
and then use bivariate smoothing to smooth the off-diagonal elements in the covariance
matrix. Then use the smoother to also recover the covariance function along the diagonal.

Step 3 Spectral decomposition of the smooth covariance function gives eigenvalues and eigen-
function, {λ̂k, φ̂k(t),k = 1,2, · · · ,N}.

Step 4 Estimate the truncation lag K, i.e., by the cumulative percent variance method or cross
validation.

Step 5 Estimate the measurement error variance by considering the difference between the di-
agonal elements of the smooth covariance matrix and the raw estimate of the covariance
matrix.

Step 6 Use the “best linear unbiased predictor” (BLUP) approach to estimate the FPC scores ξik
in the following mixed effect model:

Xi(ti j) = µ(ti j)+
K

∑
k=1

φk(ti j)ξik + εi j

where εi j
iid∼ N(0,σ2), ξik

iid∼ N(0,λk) and in addition εi = (εi1,εi2, · · · ,εiN) and ξi =
{ξik,k = 1,2, · · · ,K} are independent. The mean function µ(t), the spectral decompo-
sition {λk,φk(t),k = 1,2, · · · ,K}, the residual varians σ2, and K are considered known
and equal to their estimated versions. Hence, the goal is to predict ξik given Xi(ti j),µ(t),
{λk,φk(t),k = 1,2, · · · ,K}, K, and σ2.

Step 7 Estimate the smooth curve Xi as the Karhunen-Loève expansion with K terms, X̂i(t) =
µ̂(t)+∑K

k=1 ξ̂ikφ̂k(t).
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Abstract

We provide a concurrent functional model for the multilevel functional data of the type subject-unit

when both covariate and response with the unit-level being functional. We suggest a generalized re-

gression model for this multilevel functional setting to relate the functional response to the structural

component of the functional covariate which enables an easy interpretation and new insights into the

building blocks of the regression model. The proposed estimation approach is based on method of mo-

ment techniques which leads to a fast computation. The proposed approach performs well in simulations.

Key words: Multilevel functional data, Principle component analysis, Concurrent functional model, Gener-

alized time-varying regression, Taylor expansion, Bivariate smoothing.

1 Introduction

Functional data analysis is a fast growing area of statistical research with increasingly diverse range of

applications from economics, medicine, agriculture, chemometrics and so on. In this paper, we consider

functional data which have a multilevel structure, of the type subject-unit, with the unit-level data being

functional observations. Our focus is to develop association models when both the outcome and the predic-

tors have this multilevel structure.

Regression models for functional responses and functional covariates, when there is a single response and

a single predictor per subject, have been under intense development. Let X(·) be the predictor function of

s,s ∈ [0,S] and Y (·) be the response function of t, t ∈ [0,T ]. To associate the response Y to the predictor X ,

depending upon the problem at hand, three possible models have been considered and developed.

1) When there is evidence that the response at current time t relates to the entire profile of the predictor, this

model is well-knows as Functional linear model. For instance, Ramsay and Dalzell (1991); Ramsay and Sil-

verman (2005); Scheipl et al. (2014); Wang (2014); Yao et al. (2005b) considered this relationship through

∫ S
0 X(s)β (s, t)ds where β (s, t) is the bivariate coefficient function and assumed to be smooth and square

integrable. Among these studies, several approach proposed to estimate β (s, t) from the data. For example,

Ramsay and Dalzell (1991) used piecewise Fourier bases for β (s, t), Ramsay and Silverman (2005) used
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two series of basis functions such as splines to expand β (s, t) and then using a functional version of normal

equation to estimate β̂ , while Ferraty et al. (2012) proposed a functional version of Nadaraya-Watson esti-

mate of the regression operator. Yao et al. (2005b) used functional principle component approach to expand

functional response and functional covariate. They considered iid measurement errors and functional prin-

ciple scores for X(t) and Y (t) were computed using Principal Analysis by Conditional Estimation (PACE)

method (Yao et al., 2005a). More recently, Ivanescu et al. (2014) proposed a penalized regression when

there are more than one covariate function and also additional scalar covariates in the model by applying a

quadratic roughness penalties to avoid overfitting which is an extension of penalized functional regression

(Goldsmith et al., 2012a), and Wang (2014) developed a linear mixed model using Expectation/Conditional

Maximization Either (ECME) algorithm to maximize the log likelihood function.

2) Historical functional linear models relate the response at current time t to the covariate function ob-

served on time-window with length ∆ prior to t, say,
∫ t

max{0,t−∆}X(s)β (s, t)ds (Malfait and Ramsay, 2003).

Some regularization techniques such as basis truncation, roughness penalty, and LASSO were investigated

in Harezlak et al. (2007) by using B-spline basis functions. Kim et al. (2011) suggested using functional

principle component for both functional response and covariate and a preset basis function for the parameter

function.

3) When the response at current time t relates to the predictor at time t and furthermore both response and

predictor have been observed at same domain, one possible model that can build this relationship is called

concurrent functional model or varying coefficient models (Ramsay and Silverman, 2005, Ch. 14) which we

consider to our work in this paper. In this case β (s, t) = β (t) and is a special case of the varying coefficient

model introduced by Hastie and Tibshirani (1993). Fan and Zhang (2000a) suggested a two-step procedure

for the parameter function which in the first step estimation the parameter of a pointwise regression and

in the next step smoothing the pointwise estimations in order to estimate the parameter function. Huang

et al. (2004) suggested to use B-spline bases with the regularization by the truncation in knot selection to

represent the functional coefficient. In order to use functional varying coefficient model for longitudinal
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data, Şentürk and Müller (2010) introduce a history index and assume that the value of functional response

at time t, Y (t) is predicted by the recent past of the predicted process (but not future and distance past).

Şentürk and Nguyen (2011) develop a new estimation procedure for varying coefficient model based on

covariance representation which appropriate for highly spare longitudinal data.

In contrast, regression models when both the response and predictors have the multilevel functional struc-

ture of the type described here, have received less attention. Crainiceanu et al. (2009) considered association

models the case when there is scalar response per subject and the predictor is multilevel functional. Gertheiss

et al. (2013); Goldsmith et al. (2012b) considered multiple scalar responses per subject and multilevel func-

tional covariates, of the type described here.

In recent longitudinal studies data consists of a collection of functions/images for each subject and both the

response and the covariate of interest are functional (Pomann et al., 2015). Furthermore the response values

may be binary 0/1, or not necessarily normally distributed. In this paper we discuss association models

when both the response and the predictors have a multilevel functional structure and are defined in the

same domain. There are several sources of novelty of this framework: (1) proposal of generalized regression

models for this multilevel functional setting; (2) relating the response to the structural components of the

covariate. Gertheiss et al. (2013) discussed a regression model for functional predictor and scalar response

that both are observed at multiple visit in a longitudinal case and relates the response to the structural

component of the response.

Formally, consider the setting where for each subject i = 1, . . . ,n we observe data of the form [{(Yi j(ti jl) :

l}, {(Xi j(si jp) : p}, j = 1, . . .mi] with ti jl,si jp inT ; without loss of generality it is assumed that T = [0,1].

For presentation simplicity we assume the time at which the response and the covariate are observed coincide

and are the same across the subjects.

We assume that Xi j(t) is a noisy measurement of the following underlying subject-specific and unit within

subject-specific functional signals that Xi j(t) = µ(t)+Zi(t)+Ui j(t)+εi j(t). Here, µ(·) is the mean function,

Zi(·) is the subject specific deviation from the mean, Ui j(·) is the unit-specific deviation from the subject-
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specific mean, and εi j(·) is noise. It is assumed that Zi and Ui j are square integrable random curves in

T = [0,1]. To ensure identifiability we assume that the random processes Zi, Ui j and εi j are uncorrelated,

have mean zero and that εi j is a white process with covariance function cov{εi j(t),εi j(t ′)} = σ2
ε , if t = t ′

and 0 otherwise.

We are interested in association models that relate the current observation of the response at time t of the

jth unit for the ith subject to the current value of the jth predictor at the same time t within the ith subject.

Assume that given Zi(t) and Ui j(t), the distribution of the response Yi j(t) follows the exponential family

with smooth linear predictor η(t) and dispersion parameter φ , i.e. Yi j(t)∼ EF(η(t),φ), where

E[Yi j(t)|Zi(t),Ui j(t)] = g(η(t)) and η(t) = β0(t)+β1(t)Zi(t +β2(t)Ui j(t) (1)

for known increasing link function h = g−1.

The proposed regression model above, allows a concurrent relationship between the time point t of the

two functional measurements. Concurrent relations between functional processes as a function of a third

variable, which may be time, have been modeled via the varying coefficient model, first introduced by

Cleveland et al. (1992); Hastie and Tibshirani (1993). Varying coefficient models have been widely used in

the analysis of time dependent processes in the past decade (e.g., see Chiang et al., 2001; Fan and Zhang,

2000b, 2008; Hoover et al., 1998; Huang et al., 2004; Şentürk and Nguyen, 2011).

Nevertheless, our paper is different from others in the literature in the following aspects. 1) Even though

there have been multiple proposals for the analysis of multilevel functional data (Baladandayuthapani et al.,

2008; Crainiceanu et al., 2009; Di et al., 2009; Gertheiss et al., 2013; Guo, 2002; Li et al., 2007; Morris and

Carroll, 2006; Morris et al., 2003, 2001; Staicu et al., 2010), a regression model relating multilevel functional

response and predictors has not been proposed in the literature to the best of our knowledge. The proposed

model relates multilevel functional variables via a regression model for a generalized response. 2) The pro-

posed regression model provides a simple platform to separate the effects of different levels of the multilevel

predictor on the response for the first time in literature, enabling easy interpretation and new insights into the

building blocks of the regression model. 3) The proposed estimation algorithm based on method of moments
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approaches allows for fast computation. Due partly to the simple forms proposed in separating the effects in

regression and partly to the specific estimation procedure proposed, the algorithm remains fast and easy to

implement. 4) Subject-specific predictions based on the proposed generalized time-varying regression are

proposed utilizing functional principle components and best linear unbiased prediction (BLUP).

The rest of the paper is organized as follows. We begin by considering the model and the interpretation of

the coefficients in Section 2. Estimation and Prediction procedure and possible options will be discussed

in Section 3. We proceed with simulation studies in sections 4. Section 5 summarizes our conclusions and

discussion.

2 Generalized time-varying regression for multilevel functional data

We propose the generalized time-varying linear models, a statistical framework to relate a generalized mul-

tilevel functional response to a multilevel functional predictor as model (1). The simple and practical de-

composition of Xi j(t) enables us to separate the different types of effects of the multilevel predictor on the

response. This model is determined by parameter functions β0(t), β1(t) and β2(t), which are assumed to be

square integrable on T , in addition to the link function g = h−1 which we assume that the link function h(·)

is a monotone and twice continuously differentiable function with bounded derivatives and is thus invertible.

Note that β0(t) is an intercept function which captures the variation in the response that does not depend

on any of the covariate functions, β1(·) is the time-varying effect of the subject-specific deviation Zi, and

β2(·) is the effect of the unit-specific deviation Ui j. In the following we will try to make a road map for the

estimation procedure.

2.1 Further model specification

Assuming that Xi j has small variation around its mean, as assumed similarly in Hall et al. (2008), implies

that

Zi(t)+Ui j(t) = δ{Z∗i (t)+U∗i j(t)},
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for a small constant δ and in addition, Z∗ and U∗ are Gaussian processes with zero mean and bounded

covariance. By Taylor expansion of the function g(·) about β0(t) we have

g
(

β0(t)+β1(t)Zi(t)+β2(t)Ui j(t)
)
= g
(

β0(t)
)
+δ
{

β1(t)Z∗i (t)+β2(t)U∗i j(t)
}

g′
(

β0(t)
)
+Op(δ 2). (2)

It follows from (2) and also iterated expectation that E
{

Yi j(t)
}
= g
(
β0(t)

)
+O(δ 2)≡ µY (t). In addition, it

follows that for j 6= j′,

R(t, t ′) ≡ cov
{

Yi j(t),Xi j′(t ′)
}
= g′

(
β0(t)

)
β1(t)KZ(t, t ′)+O(δ 3), and (3)

Q(t, t ′) ≡ E
[
Yi j(t)

{
Xi j(t ′)−Xi j′(t ′)

}]
= g′

(
β0(t)

)
β2(t)KU(t, t ′)+O(δ 3), (4)

where KZ(t, t ′) = cov
{

Zi(t),Zi(t ′)
}

and KU(t, t ′) = cov
{

Ui j(t),Ui j(t ′)
}

denote the covariance functions of

the processes Zi and Ui j, respectively. We assume that consistent estimators for these covariance functions

are available. For example, Di et al. (2009) could be used to obtain the consistent estimators of KZ(t, t ′)

and KU(t, t ′); let K̂Z(t, t ′) and K̂U(t, t ′) denote such estimators for the two covariance functions. The equa-

tions (2)-(4) provide the intuition behind the estimation procedure. Specifically, we first find consistent esti-

mators for µY (t), R(t, t ′) and Q(t, t ′), say, µ̂Y (t), R̂(t, t ′) and Q̂(t, t ′) respectively, and then obtain estimators

for the coefficients functions as

β̂0(t) = g−1{µ̂Y (t)}, β̂1(t) =
R̂(t, t)

g′{β̂0(t)}K̂Z(t, t)
, and β̂2(t) =

Q̂(t, t)

g′{β̂0(t)}K̂U(t, t)
. (5)

Our approach is based on method-of-moment estimators of µ̂Y (t), R̂(t, t ′) and Q̂(t, t ′). More precisely,

µ̂Y (t) can be obtained using local linear smoothing of the aggregated data {(t,Yi j(t)), i = 1, . . . ,n; j =

1, . . . ,mi}. We use a penalized spline to the pooled data under independence to estimate the overall mean

function of response curves and the smoothing parameter is selected via restricted maximum likelihood

(REML). For the covariance of the R and Q functions we use a two-step method, to account for the smooth-

ness of these functions. Firstly, let

R̃(t, t ′) =

{
∑
j 6= j′

(
Yi j(t)− Ȳ..(t)

)(
Xi j′(t ′)− X̄..(t ′)

)}/∣∣∣
{
( j 6= j′)

}∣∣∣ ,

Q̃(t, t ′) =

{
∑
j 6= j′

Yi j(t)
(

Xi j(t ′)−Xi j′(t ′)
)}/∣∣∣

{
( j 6= j′)

}∣∣∣
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the method-of-moment estimators of R and Q, where |S| denotes the cardinality of set S. In addition, X̄··(t)

and Ȳ··(t) are the raw mean functions for predictors and responses curves respectively and can be computed

as follows:

X̄··(t) =
n

∑
i=1

mi

∑
j=1

Xi j(t)/
n

∑
i=1

mi , Ȳ··(t) =
n

∑
i=1

mi

∑
j=1

Yi j(t)/
n

∑
i=1

mi .

In step two, the smooth estimates of R̃(t, t ′) and Q̃(t, t ′) are obtained by applying a two-dimensional smooth-

ing to the off-diagonal elements of the first step estimates (Yao et al., 2003); let R̂(t, t ′) and Q̂(t, t ′) denote

the refined smooth estimates.

Next we focus on estimating the covariance functions of the processes Zi and Ui j, say, KZ(t, t ′) and

KU(t, t ′). For achieving a consistent estimator of these covariance functions, the approach used by Di et al.

(2009); Staicu et al. (2010) is utilized. Let KT (s, t) = cov
{

Xi j(s),Xi j(t)
}

be the total covariance func-

tion, KB(s, t) = cov
{

Xi j(s),Xi j′(t)
}

be the between covariance function and KW (s, t) = 1
2

{
cov
{
[Xi j(s)−

Xi j′(s)], [Xi j(t)−Xi j′(t)]
}}

be the within covariance function, then we have

KT (s, t) = KZ(s, t)+KU(s, t)+σ2δst , KB(s, t) = KZ(s, t) , KW (s, t) = KU(s, t)+σ2δst (6)

where δst is the Kronecker delta that is equal to 1 if t = s, and 0 otherwise.

3 Estimation approach

The equations (6) provide the algorithm to achieve the estimates of KZ(s, t) and KU(s, t). After using the

method-of-moment approach to find the raw estimates of KT (s, t) and KW (s, t), say, K̃T (s, t) and K̃W (s, t),

a bivariate smoothing is applied to the off-diagonal elements of the raw estimates, denoted by K̂T (s, t) and

K̂W (s, t) . The smoothing parameters are selected via REML. Therefore, the estimation of KB(s, t) is given

by

K̂B(s, t) = K̂T (s, t)− K̂W (s, t)

Keep in mind that a covariance function should be positive definite. So we need to check this property

for all estimations of covariance functions especially for K̂B(s, t) that is estimated as a difference of two
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covariance functions. This problem can be solved utilizing the methods proposed by Hall et al. (2008); Yao

et al. (2005a).This approach is based on trimming eigenvalues-eigenfunctions pairs where eigenvalues are

negative.

Now we need to select the number of eigenfunctions which is an important practical problem in FPCA.

Several alternative approaches have been investigated in the literature. Rice and Silverman (1991) used cross

validation approach, Yao et al. (2005a) proposed using Akaik’s information criterion(AIC), Di et al. (2009);

Staicu et al. (2010) used a combination of the cumulate percent variance(CPV) and size of variance of

principle components (SVPC), Greven et al. (2011) proposed likelihood ratio criteria, and Goldsmith et al.

(2013) considered the CVP approach. We use the approach of the combination of CPV and SVPC which is

used as follows:

K = min

{
k :

∑k
j=1 λ j

∑N
j=1 λ j

≥ P1 ,λk < P2

}

Where P1 represents the percent explained variance and P2 indicates the minimum variance that could be

discarded. These two thresholds can be chosen via simulation.

Once consist estimates of µY (t), R(s, t), Q(s, t), KZ(s, t), and KU(s, t) are available, the coefficients β0(t),

β1(t), and β2(t) will be estimated through formulas (5). Based on our experience from the simulation study,

when there is no variation on Zi and Ui j processes which usually this could be happened at the endpoints

of the interval or rarely for a few time points at the interval, then the magnitude of KZ(t, t) and KU(t, t) in

these time points would be very small or even zero. In that case, the estimates of β1(t) and β2(t) might be

biased. To overcome this issue, a possible solution would be using an interpolation to find an appropriate

approximate of β1(t) and β2(t) at these time points. This can be done using thresholds, say, cZ and cU that

should be defined with respect to the magnitude of KZ and KU on the diagonal of the covariance matrices.

For a threshold cZ , let T ′ shows the set of these time points where KZ(t, t)< cZ while T shows the all time

points of t. A linear interpolation such as splines with interior knots T \T ′ of β1(t), t ∈T \T ′ is done and

then this interpolation will be used to approximate the value of β1(t) for t ∈T ′. This should be done in the

same way for β2(t) with the threshold cU and the covariance matrix KU(s, t).
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We are of course investigating how the Taylor expansion of function g(·) about β0(t) in (2) depends

on a small constant δ . In simulation study, we consider three different values of δ , namely, 0.5, 1 and 2.

The results from the simulation are shown that the estimations are not depend on the value of δ . Also, the

consistency of the estimators has been done through the simulation study.

3.1 Prediction

In this section we focus on prediction of the response profile based on the observed value of covariate

variables. More precisely, for the our proposed approach, we are particularly interested in predicting about

the functional response Yi j(t) for a new given signal Xi j(t) with the multilevel structure. In this chapter we

will discuss about the prediction and we will investigate the cases that response has a Gaussian and binary

distribution.

Our approach is based on the decomposition of the observed curves as Xi j(t) = µ(t)+Zi(t)+Ui j(t)+

εi j(t), for some arbitrary time point t ∈ T . Let K̂Z and K̂U be consistent estimators of the covariance func-

tions of Z and U processes, and denote by σ̂2
ε the estimated of measurement noise variance. As mentioned

earlier, such consistent estimators can be obtained by employing the methods proposed by Di et al. (2009).

By having these estimates, we can use Mercer’s theorem (Indritz, 1963) which provide the spectral decom-

positions of K̂Z(t, t ′) and K̂U(t, t ′) as follows:

K̂Z(t, t ′) = ∑̀
≥1

λ̂Z,`Φ̂Z,`(t)Φ̂Z,`(t ′) , K̂U(t, t ′) = ∑̀
≥1

λ̂U,`Φ̂U,`(t)Φ̂U,`(t ′). (7)

Where λZ,1 ≥ λZ,2 ≥ . . . > 0, λW,1 ≥ λW,2 ≥ . . . > 0 are eigenvalues and {Φ̂Z,`(t)}`≥1 and {Φ̂W,`(t)}`≥1 are

orthogonal bases of eigenfunctions but are not mutually orthogonal. Due to dealing with infinite expansion,

spectral decomposition of K̂Z(t, t ′) and K̂U(t, t ′) in (7) are impractical. So, we need to consider a finite di-

mensional approximation for these decompositions. Denote by NZ and NU the truncations of eigenfunctions

for Z and U processes respectively.

In the next step we need to estimate the FPC scores or loadings. Several approaches have been discussed

to estimate FPC scores. For instance, numerical integration or shrinkage estimator of PC scores (Yao et al.,
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2003) can be used for standard functional data without and with measurement error, respectively. For sparse

functional data, Goldsmith et al. (2013); Greven et al. (2010); Yao et al. (2005a) used conditional expectation

to find the best linear unbiased predictions (BLUPs) of FPC scores. The latter approach also has been

used by Di et al. (2009); Greven et al. (2010) in multilevel functional setting, although Di et al. (2009)

also proposed Markov Chain Monte Carlo (MCMC). BLUPs have been used to estimate the FPC scores

ξi` and ζi j`. It follows that the prediction for the ith subject-specific and jth unit-specific trajectories are

ẐNZ
i (t) = ∑NZ

`=1 ξ̂i`Φ̂Z,`(t) and Ŵ NU
i j (t) = ∑NU

`=1 ζ̂i j`Φ̂W,`(t), respectively.

Once the coefficients functions β0(t), β1(t), β2(t), the ith subject-specific Zi(t), and the jth unit-specific

Ui j(t) are estimated, using plug-in estimates for (1), one can predict individual mean response trajectories

in the generalized multilevel functional model by

Ŷ N
i j (t) = g{β̂0(t)+ β̂1(t)Ẑ

NZ
i (t)+ β̂2(t)Û

NU
i j (t)}, (8)

where N = (NZ,NU)
T denotes the vector of truncations for processes Z and U .

4 Simulations

In this section, the simulation study was conducted to evaluate the proposed methodology with extensive

simulations. Simulated data sets are constructed from the following model:

Xi j(ti jl) = µ(ti jl)+Zi(ti jl)+Ui j(ti jl)+ εi j(ti jl)

and

E [Yi j(t)|Zi(t),Ui j(t)] = g
(

β0(t)+β1(t)Zi(t)+β2(t)Ui j(t)
)

Where {i = 1,2, · · · ,n}, { j = 1,2, · · · ,m} and {l = 1,2, · · · ,N} index the subject, the unit, and the number

of measurements per the unit within the subject.

Let KZ(s, t) = ∑KZ
k=1 λZ,kφZ,k(s)φZ,k(t) and KU(s, t) = ∑KU

k=1 λU,kφU,k(s)φU,k(t) where φZ,1(t) =
√

3(2t − 1),

φZ,2(t) =
√

5(6t2−6t+1), φU,1(t) =
√

2cos(π(2− .5)t) , and φU,2(t) =
√

2cos(π(3− .5)t. We are of course
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investigating the variation of FPC scores for both covariance functions by choosing three different values of

λZ and λU as follows:

• λZ,k = λU,k = (k−0.5)−2π−2 for k = 1,2 and λZ,k = λU,k = 0 for k ≥ 3.

• λZ,k = λU,k = (k)−2 for k = 1,2 and λZ,k = λU,k = 0 for k ≥ 3.

• λZ,k = λU,k = exp(−k) for k = 1,2 and λZ,k = λU,k = 0 for k ≥ 3.

In this case, note that the level 1 eigenfunctions, {φZ,k}k≥1, and the level 2 eigenfunctions, {φU,k}k≥1, are

not mutually orthogonal. We generated the FPC scores at levels 1, ξi,k from N(0,λZ,k) for k = 1,2, so Zi(t) =

∑KZ
k=1 ξi,kφZ,k(t) and the FPC scores at level 2, ζi j,k from N(0,λU,k) for k = 1,2, so Wji(t) = ∑KU

k=1 ζi j,kφU,k(t).

Now all requirements is ready to generate X from Xi j(t) = µX(t) + Zi(t) +Ui j(t) + εi j,X(t), where

εi j,X(t) are independent and identically distributed from N(0,σ). We consider that the true mean func-

tion as µX(t) = 2sin(2πt) and so for each i = 1, . . . ,30 and j = 1, . . . ,20 the curves Xi j(t) are observed

at N = 31 equally spaced time points in [0,1]. As we called the title of the work as generalized time-

varying regression for multilevel functional data, the procedure should be applied for all responses be-

long to the exponential family. In this simulation study we consider two responses, namely, Gaussian and

Bernoulli variables. In Gaussian case, Yi j(t) = g{β0(t)+ β1(t)Zi(t)+ β2(t)Ui j(t)}+ εi j,Y (t) where the in-

verse canonical link function is g(x) = x and εi j,Y (t)
i.i.d∼ N(0,σ) while in Bernoulli case with probability

g{β0(t)+β1(t)Zi(t)+β2(t)Ui j(t)}, the inverse canonical link function would be g(x)= exp(x)/(1+exp(x)).

Finally, the true functional coefficients are taken as follows: β0(t) = sin(2πt), β1(t) = −sin(1.5πt) and

β2(t) = sin(3πt).

We present numerical results for these noise levels: σ = 0.05,0.25 and 0.5. So, by having three different

values for eigenvalues λZ,λU , and two kind of response, Gaussian and Bernoulli, this gives a total of 18

designs. For each design, 100 datasets are generated. Figure 1 shows a random sample with size 80 of a

dataset. Left panel shows covariate signals and right panel shows the corresponding response curves of the

dataset. Two thresholds P1 and P2 discussed in Section 2, were taken 0.99 and 1
N = 1

31 respectively. We used

the proposed method to estimate the functional coefficients β0(t),β1(t), and β2(t) and other desire criteria
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that will be discussed in the next section.
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Figure 1: A random sample with size 80 of the simulated data in Gaussian case. Left: covariate signals,

Right: the response profile.

4.1 Results

Here we discuss the results of the simulation study for both cases, Gaussian and Bernoulli. First, we are

interested in getting an overview of the variability in estimates of the coefficient functions. Figure 2 illus-

trates the estimation of the coefficients functions in model (1) based on 100 fitted the proposed approach in

Gaussian case, g(x) = x, with n = 30, m = 20 and N = 31 for three different amount of eigenvalues but for

fixed values of measurement error, namely, σ = .25. Shown in the left panel of this figure is the estimation

of the coefficient function β0(t) for each simulation in gray color, the true function β0(t) = sin(2πt) in blue

color, and the mean function of all estimations in red color. Displayed in the middle and right panel are the

same as the left panel but for the coefficient functions β1(t) and β2(t), respectively. The realization show

the same patterns to the corresponding true coefficient functions. The variability of β2(t) is smaller than two

other coefficient function, i.e., β0(t) and β1(t). As it was expected estimates of β1(t) and β2(t) are biased

around time points that K̂Z(t, t) and K̂U(t, t) are close to zero or even zero. This indeed was can be seen for

the estimates of β2(t) closed to the end of interval [0,1]. In that case, the possible proposed approach for this

problem discussed in the end of Section 2 was conducted to overcome this issue and the result of it cab be

seen on estimate of β2(t) for one or two time points at the end of the interval [0,1]. Increasing eigenvalues

12



λZ,k and λU,k amounts to large variability in the estimates but not much fo β2(t). The estimates of the coef-

ficients functions for the binary response based on 100 fitted the proposed approach for the simulated data

is shown in Figure 3.
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Figure 2: Estimated regression functions of simulated dataset for Gaussian distribution of the response :

β0(t) (left), β2(t) (center) and β2(t) (right). Red curves correspond to that means of estimated coefficients

and blue ones are the true coefficient functions.

Then, let us to turn to other results of the simulation study. For evaluating the proposed approach we

need to use some criteria. Corresponding the approach and the quantities used in the model, we indeed focus

at these intuitive deviation criteria, namely, Integrated Mean Squared Error (IMSE), Mean Error (ME), and

Integrated prediction Error (IPE):

IMSE(βi(t)) =
1

N.simu

∫
{βi(t)− β̂i(t)}2dt, MEi =

∫ {βi(t)− β̂i(t)}2dt∫
β 2

i (t)dt
, i = 1,2,3.
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Figure 3: Estimated regression functions of simulated dataset for Bernoulli distribution of the response :

β0(t) (left), β2(t) (center) and β2(t) (right). Red curves correspond to that means of estimated coefficients

and blue ones are the true coefficient functions.

IPE(Y ) =
1

N.simu

∫
{yi j(t)− ŷi j(t)}2dt, MEµY =

∫
[g−1{µY (t)}−g−1{µ̂Y (t)}]dt∫

[g−1{µY (t)}]2dt

MEKZ =

∫ {KZ(t, t)− K̂Z(t, t)}2dt∫
K2

Z(t, t)dt
, MEKU =

∫ {KW (t, t)− K̂W (t, t)}2dt∫
K2

W (t, t)dt
,

MER =

∫ {R(t, t)− R̂(t, t)}2dt∫
R2(t, t)dt

, MEQ =

∫ {Q(t, t)− Q̂(t, t)}2dt∫
Q2(t, t)dt

.

Percentiles of the deviation measures are explained in Table 1 and 2 for Gaussian and Bernoulli distri-

bution of the response, respectively. Table 3 displays the deviation criteria computed from the simulation

study for both Gaussian and Bernoulli responses but for the same scenario, namely, λZ,k = λU,k = exp(−k)

and σ = 0.5. As it was expected, the criteria for the continuous case is smaller than binary.
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Figure 4: Box plot of IMSE criterion computed for the estimates of coefficients functions for all possible

scenarios. Left panel corresponds to the Gaussian response while right panel relates to the Binary response.

5 Discussion

In this paper, we introduced a statistical framework in order to make an association model in multilevel

functional data of the type subject-unit when both response and covariate have functional form. The con-

ditional distribution is supposed to follow the exponential family and in this paper, simulation study has

been conducted for Gaussian and binary cases. To make the association, a simple practical decomposition

of the functional covariate based on subject-specific and unit within subject-specific is used and then differ-

ent type of effects of the multilevel functional covariate on multilevel functional response were estimated.

From computational point of view, the methods for estimating the within and between covariance have been

modified by using optimized functions in R packages.

In multilevel functional data when there is dependency between the unit within the subject, for instance

the spatial dependency, then it would be expedient to consider this dependency in decomposition of the

covariate as well as the model should be extended for these kind of data in an appropriate way .
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Figure 5: Box plot of ME criterion computed for the estimates of some quantities used in the proposed

approach for all possible scenarios. Left panel corresponds to the Gaussian response while right panel relates

to the Binary response.
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Table 1: Percentiles of the deviation measures presented are estimated from 100 simulations where n = 30,

m = 20 and g(x) = x. Here σ1, σ2 and σ3 stand for 0.05 , 0.25 and 0.5 respectively. While λ1, λ2 and λ3

stand for λZ,k = λU,k = (k− .5)−2π−2 , λZ,k = λU,k = k−2 and λZ,k = λU,k = e−k respectively.

(σ ,λ ) ME0 ME1 ME2 MEµY MEKZ MEKU MER MEQ

Med 25% 75% Med 25% 75% Med 25% 75% Med Med Med Med Med

(σ1,λ1) .008 .003 .021 .002 .001 .004 .026 .026 .027 .008 .055 .002 .042 .003

(σ1,λ2) .020 .010 .054 .001 .001 .003 .028 .027 .028 .020 .058 .002 .045 .003

(σ1,λ3) .008 .004 .022 .001 .001 .003 .028 .028 .029 .008 .060 .003 .041 .003

(σ2,λ1) .008 .003 .021 .003 .001 .005 .026 .022 .029 .008 .053 .003 .043 .003

(σ2,λ2) .020 .009 .054 .002 .001 .003 .027 .026 .029 .020 .058 .003 .047 .003

(σ2,λ3) .008 .004 .022 .002 .001 .004 .028 .026 .030 .008 .059 .003 .042 .003

(σ3,λ1) .007 .003 .020 .004 .003 .008 .026 .018 .031 .007 .053 .004 .042 .003

(σ3,λ2) .021 .009 .055 .002 .001 .004 .027 .024 .030 .021 .058 .003 .048 .003

(σ3,λ3) .009 .004 .022 .003 .002 .005 .028 .022 .032 .009 .058 .004 .042 .004
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Table 2: Percentiles of the deviation measures presented are estimated from 100 simulations where n = 30,

m = 20 and g(x) = exp(x)/(1+exp(x)). Here σ1, σ2 and σ3 stand for 0.05 , 0.25 and 0.5 respectively. While

λ1, λ2 and λ3 stand for λZ,k = λU,k = (k− .5)−2π−2 , λZ,k = λU,k = k−2 and λZ,k = λU,k = e−k respectively.

(σ ,λ ) ME0 ME1 ME2 MEµY MEKZ MEKU MER MEQ

Med 25% 75% Med 25% 75% Med 25% 75% Med Med Med Med Med

(σ1,λ1) .019 .014 .029 .041 .030 .063 .053 .040 .068 .019 .055 .002 .660 .640

(σ1,λ2) .054 .045 .076 .060 .051 .071 .068 .059 .076 .054 .058 .002 .708 .671

(σ1,λ3) .022 .016 .033 .037 .028 .052 .047 .038 .060 .022 .060 .003 .666 .645

(σ2,λ1) .019 .014 .029 .041 .031 .062 .053 .040 .073 .019 .053 .003 .660 .642

(σ2,λ2) .054 .045 .076 .059 .051 .071 .068 .060 .075 .054 .058 .003 .709 .671

(σ2,λ3) .022 .016 .033 .038 .028 .052 .047 .038 .062 .022 .059 .003 .665 .646

(σ3,λ1) .019 .014 .029 .042 .030 .060 .055 .041 .075 .019 .053 .004 .659 .643

(σ3,λ2) .054 .045 .076 .059 .050 .071 .069 .061 .075 .054 .058 .003 .709 .671

(σ3,λ3) .022 .016 .033 .038 .028 .052 .050 .039 .064 .022 .058 .004 .665 .647

Table 3: Deviation criteria computed from the for simulated data sets with the same value for λZ,k = exp(−k)

and σ = 0.5 for both cases.

IMSEβ0 IMSEβ1 IMSEβ2 MEβ0 MEβ1 MEβ2 MEµY MEKZ MEKU MER MEQ

Gaussian 0.008 0.002 0.013 0.017 0.004 0.028 0.017 0.080 0.005 0.073 0.005

Bernoulli 0.012 0.021 0.026 0.026 0.043 0.054 0.026 0.080 0.005 0.663 0.647
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Abstract: We illustrate how physical constraints of a biomechanical sys-
tem can be taken into account when registering functional data from jug-
gling trials. We define an idealized model of juggling, based on a periodic
joint movement in a low-dimensional space and a periodic position vector
(from an undefined joint to the finger tip) of approximately constant length
along the observed trajectory. Our registration procedure first warps the
cycles in the trial to each other and computes a periodic average, and then
estimates the joint movement and the position vector of the abovemen-
tioned model.
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tional data analysis, juggling trajectories, periodic average, registration,
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1. Introduction

Functional data are often unsynchronized in their raw form, either due to the
sampling process or due to random phase variation (or both). This makes analy-
sis on the raw data problematic since, for example, cross-sectional sample statis-
tics can be misleading. Registration is the process of mapping unsynchronized
curves into a synchronized class of functions, with the purpose of effectively
filtering out noise before subsequent statistical analyses [1].

At best, registration should use any knowledge of the data generating system,
in particular the shape of the underlying signal as well as the nature of possible
pertubations. In this paper we discuss registration for functional data from
juggling, taking into account simple biomechanical considerations.

Ideally, biomechanics of juggling may be described mathematically by nonlin-
ear dynamical systems, but feedback and feedforward motor control mechanisms
are necessary to overrule any disturbed dynamics and thereby impose desired
movements or dynamics. We consider data from juggling cycles within in trial
as pertubated versions of an idealized periodic movement. The periodic curve
represents the average dynamics of the juggling process, whereas the deviations

∗Main article 10.1214/14-EJS937.
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between the observed data and the idealized signal reflect the complex feedback
mechanism between the brain and the motor control system [4].

In conceptualizing an appropriate idealized mathematical model of human
juggling, we consider the creation of an electromechanical juggling robot. How
would we build and program such a robot? As a minimum, we would construct a
rotating finger or hand limb and attach it with a joint to a fixed bar (representing
an arm). We could conveniently label the two ends of the hand limb as ‘finger
tip’ and ‘joint’.

As a first attempt, we keep the position of the joint fixed and let the position
vector from joint to finger tip be periodic. Regarded from a fixed external coor-
dinate frame the position of the finger tip of the robot would trace a trajectory
described by

f(t) = f0(t) + c0

where c0 ∈ R3 corresponds to the fixed position of the joint and f0 : I → R3 is
the periodic position vector function. Assuming that the robot is a rigid body
introduces the geometric constraint that f0 has constant length, d, such that
|f0(t)| = d for all t ∈ I.

The juggling robot can be improved by allowing the position of the joint to
follow a periodic curve. This gives a decomposition of the form

f(t) = f0(t) + c0(t), (1)

where c0 : I → R3 is the trajectory of the joint, while f0 still describes the
vector from joint to finger tip and satisfies |f0(t)| = d for all t ∈ I for some d.
For identification purposes we assume that c0 has a simple structure meaning
that it belongs to a lower dimensional function space.

In this paper, decompositions of the type (1) will be regarded as idealized
juggling signals, and we will demonstrate how to register the observed data
towards such idealized signals, i.e. demonstrate that is it is possible to warp and
filter the juggling trials such that the resulting curves allow a decomposition of
the form (1).

Sections 2 and 3 give a complete description of the registration procedure and
details about implementation. In Section 4 we display the results of applying
the procedure to the ten trials from the juggling data. Finally, in Section 5
we evaluate the perspectives of combining phase registration and biomechanical
constraints.

2. Data and registration procedure

The pre-processed data [2] (lightly smoothed, centered, rotated and trimmed)
is the starting point of our analysis, and is referred to as “observed data” or
“raw data” in the remainder of the paper. The data indicate the position of the
right index finger during juggling and is thus composed of three coordinates. We
write f(t) = (f1(t), f2(t), f3(t)), and let n denote the number of cycles. There
are 10 signals/trials, all collected from the same person. The number of cycles
per trial varies from 11 to 13.
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The suggested registration procedure is applied to each trial separately, but
on all three dimensions and all cycles simultaneously. The implementation de-
tails are described in Section 3, but, in short, the complete procedure is split
into three steps:

1. Warping The observed signal consisting of several cycles is converted
into a warped version f ◦ h, where cycles are warped towards each other
using a periodic average function as target for the registration procedure.

2. Averaging Based on the warped signal, f ◦ h, a periodic average, de-
noted by Pf , is computed as a projection onto the (high-dimensional)
space of periodic functions.

3. Decomposition The periodic average Pf is decomposed into two peri-
odic terms: a joint movement J belonging to a low-dimensional space, V ,
and a remainder Pf − J f with approximately constant length along the
trajectory.

The complete procedure involves estimation of a warping function h, a peri-
odic average, and a joint movement J f . Notice that Pf and J f are periodic
per construction, and thus have no between-cycle variation. In particular, we
only need to plot the curves on the interval corresponding to one cycle. On the
other hand, the warped, but not averaged, curve f ◦ h may potentially show
amplitude variation between cycles, but presumably only little phase variation,
since that has been diminished by warping.

The second step involves projection onto a space of periodic three-dimensional
functions. If this projection is denoted by Qper, then Pf = Qper(f ◦ h). If ‖ · ‖
is the standard L2-norm and g is a three-dimensional curve, then

‖Qperg‖
‖g‖ =

√
‖g‖2 − ‖g −Qperg‖2

‖g‖2 =

√
1− ‖g −Qperg‖2

‖g‖2 (2)

takes values in [0, 1] and is a natural measure of the degree of periodicity in g.
When data from different cycles are warped against each other as in step 1, we
would expect a larger degree of periodicity compared to the raw data. Hence,

comparison of
‖Qperf‖

‖f‖ and
‖Qper(f◦h)‖

‖(f◦h)‖ can be used to quantify the effect of

warping on periodicity (see Section 4).

3. Implementation

This section describes technical details of the implementation of our registra-
tion procedure. The emphasis is on the decomposition step, since warping and
averaging rely on existing techniques and software.

Let f denote a signal consisting of n complete juggling cycles. The duration
of each cycle within a trial is rescaled to [0, 1], then the same implementation
can be used for all trials, even though the number of cycles are different.

Warping First, we expressed f in terms of 201 Fourier basis functions, and
computed the orthogonal projection fper on the space of periodic functions
Lper,n containing n replications of the same signal. Due to the Fourier basis
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representation this amounts to keeping coefficients corresponding to harmonics
of order n, 2n, 3n, . . . ,Kn (where K is the largest K such that Kn ≤ 100).
Second, a time warping function h maximizing the coherence between f ◦h and
fper was estimated. We used the minimal eigenvalue of a cross-product matrix
with a roughness penalty on curvature of h as estimation criterion, see [3, Section
7.6]. In order to ensure a sufficient degree of smoothness of the warped signal
f◦h we restricted h to the space spanned by 101 B-splines of order 5 with equally
spaced break points. The roughness of the warping functions were controlled by
penalizing the squared integral of second order derivatives. The robostness to
the value of the penalty parameter λ was examined and for the results presented
below we used λ = 10−11 based on visual inspection.

Averaging The warped function f ◦ h was projected onto Lper,n (see the
paragraph on the warping step above). Hence, we obtain a periodic average of
f ◦ h, denoted Pf and spanned by periodic harmonics.

Decomposition To implement the estimation of J f in step 3 it was conve-
nient to expand all functions in terms of orthogonal complex exponentials. De-
noting by ak and bk, k = 1, 2, 3, the three coordinate functions of the periodic av-
eragePf (known) and joint movement J f (to be estimated), we have expansions

ak(t) =

m∑

j=−m

ak,j exp(iωjt), bk(t) =

l∑

j=−l

bk,j exp(iωjt)

and hence

a′k(t) =
m∑

j=−m

iωjak,j exp(iωjt), b′k(t) =
l∑

j=−l

iωjbk,j exp(iωjt).

Here ω = 2πn where n is the number of cycles.

We emphasize that Pf has already been expressed in a finite Fourier basis,
thus m and ak,j are all fixed and known at this point of the analysis, whereas
the coefficients bk should be estimated. For l < m fixed, we collect the unknown
parameters in θ:

θ = {bk,j|k = 1, 2, 3, j = −l, . . . , l}

Some comments on the choice of l: The regularization assumption l < m is
necessary for identification, i.e., for the decomposition (1) to be unique since
otherwise we could just let J f = Pf − c0 with c0 ∈ R3 any fixed vector. For
l < m the joint movement J f belongs to a subspace of lower dimension than
Pf , and the idea is to choose a small l, such that the joint movement is simple.

Recall that we aim at finding J f such that Pf − J f has approximately
constant length; hence we want the derivative of the squared length to be ap-
proximately zero for all t:

D|Pf(t)− J f(t)|2 ≈ 0.

This leads to the following criterion function to be minimized:
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C(θ) =

∫ 1

0

[
D|Pf(t)− J f(t)|2

]2
dt (3)

=

∫ 1

0

[
D

3∑

k=1

(ak(t)− bk(t))
2

]2

dt

= 4

∫ 1

0

[
3∑

k=1

D(ak(t)− bk(t)) · (ak(t)− bk(t))

]2

dt.

If we introduce the notation ek,j = ak,j − bk,j (with bk,j = 0, |k| > l) for
the Fourier coefficients of the difference Pf − J f , and furthermore cj1,j2 =

{∑3
k=1 j2ek,j1ek,j2} and let j ∈ Is if j, s− j ∈ {−m, . . . ,m}, then

C(θ) =

∫ 1

0




2m∑

s=−2m

iω
∑

j∈Is

cs−j,j exp(iωst)



2

dt.

Finally, if we let ds =
∑

j∈Is
cs−j,j and use that d−s = −ds (complex conjugate),

then we end up with the following simple formula for the criterion function

C(θ) = −4ω2
2m∑

s=−2m

dsd−s = 4ω2

{
|d0|2 + 2

2m∑

s=1

|ds|2
}
. (4)

The representation (4) makes it feasible to compute numerically the value and
the gradient of the objective function as a function of θ to be used for the
minimization algorithm. Since we are looking for a real valued estimate of the
joint movement J f , we found it convenient to reparameterize the problem in
terms of a basis of sines and cosines. For the results below we used l = 1
corresponding to the joint movement being expressed in terms of first order
harmonics only.

4. Results

We applied the registration procedure described above to each of the ten juggling
trials. We will use trial 8 for detailed illustration, because the effect of the
warping step was largest for this trial.

Warping and averaging Figure 1 shows the effect of steps 1 and 2 (warping
and averaging) on trial 8. The vertical coordinate (z)of the raw data (dashed) is
shown together with vertical coordinate of the periodic signal Pf (solid). The
raw signal does not exhibit much misalignment but the signal is indeed warped
slightly. Notice how the warping is more pronounced towards the ends of the
trial. The average curve Pf for trial 8 is shown for each coordinate separately
in the left part of Figure 2, and as a 3d-curve in the right part of the figure
(solid curve).

For the raw data the degree of periodicity, cf. definition (2), was 88.0%,
whereas for the warped data this number increased to 98.6%. All other trials
had degrees of periodicity of 94.3% to 97.2% before warping and between 97.5%
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Fig 1. Warping and averaging for trial 8. The dashed curve shows the z coordinate of the
observed data, while the solid curve shows the z coordinate of Pf .
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Fig 2. Left: The three directions of the warped and averaged curve Pf for trial 8. Right:
3d-illustration of the decomposition for trial 8. The solid curve shows the average Pf , the
dashed curve shows the estimated joint movement curve J f , and the dotted lines illustrate
the trajectory of the difference Pf−J f (each dotted line correspond to a specific time point.)

and 99.2% after warping. Hence, in general, only a limited amount of warping
towards the periodic template was necessary. Visually, the raw and averaged
trials were almost indistinguishable, except for trial 8 (see Figure 1).

The upper left, upper right and lower left plots of Figure 3 show the three
coordinates of the warped curves f ◦ h for all ten trials, split into cycles and
rescaled to the unit interval. The curves are coloured according to trial (but note
that curves from different trials have not been aligned). In general, cycles within
a trial are well aligned. Therefore the projection onto Lper,n is a good repre-
sentation of a trial. Note that the projections are similar across trials (-see the
lower right part of Figure 3). The warping criterion gives less weight to coordi-
nates with lower amplitude variation. This may explain why most misalignment
is present in the y direction.
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Fig 3. Upper left, upper right and lower left: The three coordinates of the warped curves f ◦h
cut into individual cycles for each trial. For a trial with n cyc les, the complete curve was
simply divided into n pieces of the same length, which was then rescaled to the unit interval.
Cycles of the same colour and line type stem from the same trial. Lower right: 3d-scatterplot
of the periodic average Pf for all trials.

Decomposition The estimated joint movement J f for trial 8 is shown as a
dashed curve in the right part of Figure 2. Recall that the estimation procedure
seeks the curve J f such that the vector Pf − J f has approximately constant
length over the trajectory. This vector is illustrated by the dotted lines between
the two curves, and its length varies from 0.179 m to 0.182 m for trial 8.

The decompositions for all curves are illustrated in Figure 4. The left part
shows the length |Pf − J f | over the trajectories (scaled to the unit interval),
and the right part shows the joint movements J f . We make the following im-
mediate observations from Figure 4: First, for all ten trials it was possible to
obtain a function J f ∈ V such that the distance |Pf − J f | is approximately
constant over time. This indicates that our simplistic biomechanical consider-
ations leading to equation (1) characterizes some of the main features of the
data generating mechanism. Second, the estimated length varies from 0.077 m
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Fig 4. Left: Estimated trajectory of distances, |Pf − J f |, for all 10 trials. Right: Estimated
joint movement, J f , for all ten trials. In both plots the estimate correponding to trial 8 is
shown as a solid curve.

.

to 0.181 m across the ten trials. This is somewhat disappointing as we had
hoped for an interpretation of this length as the length of a part of the hand or
arm of the juggler. Third, the variation between the estimated joint movement
curves is substantial. The decomposition restricts J f to be spanned by first
order harmonics in all three directions. Allthough the curves are approximately
elliptic they are different regarding angle and position.

5. Discussion

The purpose of the paper was to illustrate how the physical nature of a biome-
chanical system could be taken into account when removing phase variation of
functional data from juggling. We have demonstrated that it is possible to warp
all ten juggling trials such that the resulting structural mean over all cycles
allows a decomposition as in (1).

The most striking observation is that the estimated distance from finger tip
to joint, which should be an internal constant of the body anatomy, varies
substantially across the ten trials. This complicates the physical interpretation
of the estimated decomposition. Looking more carefully at the curves in the left
part of Figure 4, there seems to be some common patterns in the deviations
from constancy. Curves with low values of d seem to have peaks and valleys at
the same time points (for example around 0.38 and 0.82), i.e. at the same time
points of the juggling cycle. This indicates that our simple model might not
have captured all features in the data.

A possible extension of the model would be to allow for more flexibility in
the space V for the joint movement, i.e. by introducing harmonics of higher
order in the basis for J f . However, it seems more likely that adjustments from
the idealized set-up given by (1) is taking place around the finger tip (far from
the corpus) rather than at joints closer to the corpus. This suggest to relax the
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focus on constant length of Pf − J f . For example, the criterion function C(θ)
in the decomposition step, see (3) and (4), could be adjusted to have a time-
varying penalty on deviations from constancy. This would, however, complicate
the optimization problem substantially.

In this connection, it should be mentioned that the numerical optimization
problem for estimating the decomposition was more challenging than expected.
The algorithm we used produced reliable estimates but was slow. This part of
the implementation could be improved.

It is important to realize that amplitude and phase variation are bound to be
intertwined, as an adjustment via a change in speed (phase) will most likely also
change the amplitude. In relation to this, the complicated interplay between
the estimation the warping function (step 1) and the estimation of the joint
movement (step 3) should also be noticed. In particular, the space V for the
joint movement is not invariant to warping (i.e. g ∈ V does not imply that
g ◦ h ∈ V for a warping function h). Too much warping of f may destroy the
interpretation of the decomposition. This could be avoided by simultaneously
estimating the warping function and the decomposition, i.e. to incorporate the
warping (and averaging) step into the decomposition step.

Apart from the suggestions mentioned above, it would be interesting to exam-
ine the robustness of the registration. Simulations could clarify the importance of
the explicit form of the underlying signal on the performance of the registration
procedure. Moreover, it would be interesting to fit a common joint movement
curve to all s, and see the effect on the corresponding position vectors Pf −J f
and their lengths.

Acknowledgements

We acknowledge the Mathematical Biosciences Institute, Ohio, for supporting
our participation in the workshop on “Statistics of Time Warpings and Phase
Variations”.

References

[1] Kneip, A. and Ramsay, J. O. (2008). Combining registration and fit-
ting for functional models. Journal of the American Statistical Associa-
tion 103, 483, 1155–1165. http://amstat.tandfonline.com/doi/abs/10.
1198/016214508000000517. MR2528838

[2] Ramsay, J. O., Gribble, P., and Kurtek, S. (2014). Description and
processing of functional data arising from juggling trajectories. Electron. J.
Statist. 8, 1811–1816, Special Section on Statistics of Time Warpings and
Phase Variations.

[3] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis,
Second ed. Springer, New York. MR2168993

[4] Schaal, S., Atkeson, C. G., and Sternad, D. (1996). One-handed
juggling: A dynamical approach to a rhythmic movement task. Journal of
Motor Behavior 28, 2, 165–183.




	Introduction
	Moving from classic data to functional data
	Objective of the thesis 
	Thesis structure

	Tools for functional data
	Notation and mathematical definition of functional data
	Basis representation
	Registration
	Registration on horse lameness dataset
	Constrained registration

	Bootstrap 
	Bootstrap for functional data


	Multilevel functional data
	Correlated multilevel functional data

	Perspective
	Bibliography
	Multinomial Functional Regression with Wavelet and LASSO Penalization
	Functional logistic regression: A comparison of three methods
	Generalized time-varying regression of multilevel functional data 
	Analysis of juggling data: Registration subject to biomechanical constraints 




