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If you’re anxious for to shine in the high aesthetic line,
as a man of culture rare,
You must get up all the germs of the transcendental terms,
and plant them everywhere.
You must lie upon the daisies and discourse in novel phrases
of your complicated state of mind,
The meaning doesn’t matter if it’s only idle chatter
of a transcendental kind.
And everyone will say, as you walk your mystic way,
“If this young man expresses himself in terms too deep for me,
Why, what a very singularly deep young man
this deep young man must be!”

W. S. Gilbert - The Aesthete

Optimisation consists in finding the mathematically optimal policy that an economic agent could
pursue. For instance, what is the “optimal” quantity you should allocate to stocks? It involves com-
plicated mathematics and thus raises the barrier to entry by non-mathematically trained scholars.
I would not be the first to say that this optimisation set back the social science by reducing it from
the intellectual and reflective discipline it was becoming to an attempt at an “exact science”. By
“exact science”, I mean a second-rate engineering problem for those who want to pretend that they
are in a physics department - so-called physics envy. In other words, an intellectual fraud.

N.N. Taleb - The Black Swan



Foreword

1 From Model Risk to Optimal Asset Allocation

1.1 The Problem of Measure P

Inherent to the stochastic modelling of financial markets is the (often tacit) specification
of a measure space (Ω ,F ,P), where Ω captures the set of future outcomes, F is a σ -
algebra codifying the events we would like to consider, and P : F 7→ [0,1] is a probability
measure which assigns weights thereto in accordance with certain axioms in the manner of
Kolmogorov. Besides the glaringly obvious problem of defining the very notion of prob-
ability (leave that to the philosophers), there is the somewhat more tangible issue relating
to the epistemic inaccessibility of P. Specifically, while it is often assumed in the literature
that everybody agrees on which events occur with which probabilities, it is quite clear (to
the point of being a statistical banality) that this does not pertain to the real world. Au
contraire, there is considerable so-called Knightian uncertainty surrounding which model
(and therefore: which probability measure) should be employed in our financial modelling:
knowledge of P is manifestly a posteriori, being a property of the world which we infer
through the study of past realisations. Unfortunately, this data is but a shadow on the wall
in Plato’s cave, yielding only a rudimentary understanding of which governing dynam-
ics is truly at play. For any given time series, an infinite number of congruent models
prevail, each with their own historically induced probability measure {H1,H2, ...}. This
kind of radical underdetermination is problematic since financial modelling manifestly is
an abstract idealisation of hyper-complex facts of this world. For one reason or another,
all social science models are fundamentally wrong1, suggesting that the employ of such
golden rules as Occam’s razor scarcely will be meaningful in selecting a superior H (the
intuition being that the right model, if anything, should be more complicated than what’s
posited).

The point here is forcefully communicated through an example which has its roots
in Markowitz’ modern portfolio theory. Consider the simple interest-free 1-period model

1 Though some may be useful.
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in which the rate of return of n risky assets is multivariate normally distributed, R ∼
N (µ,Σ), where µ = E[R] is the expected return, and Σ = Cov[R] is the associated
covariance matrix which we assume non-singular. Moreover, let π be a vector of portfo-
lio weights placed on the n risky assets, such that the expected return is µπ = πᵀµ and
the variance is σ2

π = πᵀΣπ. Now, suppose we are interested in those portfolios which for
fixed returns yield the minimal possible variance: solving the Lagrange multiplier problem
[5] we find that this class of portfolios traces out a parabola (a mean-variance frontier) in
(σ2
π,µπ)-space:

σ
2
π(µµ) = d−1(a−2bµπ+ cµ

2
π),

where a ≡ µᵀΣ−1µ, b ≡ 1ᵀΣ−1µ, c ≡ 1ᵀΣ−11, and d ≡ ac− b2. Here, the singularly
most important portfolio attainable (the so-called market portfolio, M) is that which ad-
mits the highest possible return per unit volatility. Solving the optimisation problem, the
associated tangency portfolio is given by

π∗ =
Σ−1µ

1ᵀΣ−1µ
,

from which we can compute M = (σ∗2π ,µ∗π). Now the question we are dying to ask is
“to which extent are these results robust to model risk” - here interpreted as uncertainty
surrounding the parameters µ and Σ? Specifically, if we are to perform sample esti-
mates of the mean and the covariance of a model which truthfully has the distribution
R ∼N (µ,Σ) per unit time, how much do the estimators µ̂ and Σ̂ respectively perturb
the picture above? Following Ellersgaard, Lando, and Poulsen [4] the answers turn out
to be, in turn, “a lot” and “not much at all” - owing to the near telescoping nature of the
drift-estimator. In particular, frontiers which utilise µ̂ will tend to be wildly scattered with
respect to the true frontier, while those frontiers which make use of Σ̂ only vary at a modest
level. This highlights a profound issue at the heart of quantitative asset management: since
drifts manifestly are the kind of quantities we care about, we must brace ourselves for con-
siderable model risk in our modern portfolio theoretical recommendations. Remarkably,
this simple observation rarely is disseminated in business schools!

1.2 The Problem of Measure Q

Unsurprisingly, the uncertainty surrounding measure P extends to the risk-neutral valua-
tion of derivative securities. Recall that a fundamental result of arbitrage-free markets is
the existence of a measure Q, equivalent to P, such that discounted asset prices are Q-
martingales. Specifically, the claim is that if ΦT is the pay-off of a security at time T , then
there exists a (not necessarily unique) Q∼ P such that the time t ≤ T price of the security
is

Vt = EQ[BT
t ΦT |Ft ], (1)
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where BT
t is a (possibly stochastic) discount factor representing the time t price of a zero-

coupon bond with terminal value equal to unity. Conceptually, Q (while formally satisfy-
ing the axioms of probability) has nothing to do with objective chances of events per se,
but rather should be construed as the financial market’s conception of fair option pricing.
Specifically, we see that ∀F ∈F , Q(F) is equivalent to the fair value of an security with
terminal pay-off ΦT = 1/BT

t if F occurs (zero otherwise).
Insofar as the market is complete, roughly understood as the case where the number

of risky traded securities is at or above the number of random sources [1], Q is uniquely
defined in terms of P. Knightian uncertainty in P thus trickles through to Q. Nevertheless,
even if we were to imagine ourselves in the fortuitous (and I daresay: implausible) cir-
cumstances that P is known with certainty, uncertainty in Q can still prevail if the market
is incomplete. Sadly, market incompleteness is an almost inexorable fact of life qua the
abundant empirical support for random discontinuities in stock prices (jumps), and non-
tradeable state variables such as stochastic volatility (for a thorough review of these issues,
including a coherent measure for model risk, we refer the reader to Cont [5]).

Some insight into quantifying model risk may be provided through a meta-theorem we
call the fundamental theorem of derivative trading. In elementary terms, we here concern
ourselves with continuous time models marked by uncertainty in the volatility component

Qi : dSt = rStdt +σi,tStdWQi
t ,

where r is the risk-free rate, σi : [0,T ] 7→ (0,∞), and W is a Brownian motion. Suppose the
real volatility is the unknown quantity σt,r. Insofar as we ∆ -hedge a derivative V written
on S based on a Qi-assumption, how much do we stand to gain/lose over time on a mark-
to-market basis? Indeed, what kind of P&L-evolution can we expect for various choices of
the hedge volatility? Initial steps towards answering such questions are taken by El Karoui,
Jeanblanc-Picque, and Shreve [3], who establish that the hedge-error, on an incremental
basis, is of the form

dP&L = sgn(derivative position) 1
2 (σ

2
t,r−σ

2
t,i)S

2
t ∂

2
ssVtdt.

In the first paper of this dissertation, Ellersgaard, Jönsson, and Poulsen provide an abstract
generalisation of their work, and consider the same questions from an empirical perspec-
tive.

1.3 The Problem of the Rational Investor

Finally, a few words on rationality and optimal asset allocation. Quantitative economics
has long been under fire for operating with what many perceive to be a misguided obses-
sion with rationality (Taleb, with his characteristic rumbustious demeanour, is one such
fiery opponent - see the quotation above). This criticism, however, seems to be largely
anchored in the curious belief that economics should be a purely descriptive discipline,
with no room for such idealistic pursuits as prescriptivism: the art of telling people what
they ought to do. What underlies this callous dismissal is at best nebulous: surely, there is
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considerable interest in establishing how one can secure the optimal realisation of one’s
wealth (say) even under idealised circumstances - yet, on a more benign reading, there is
perhaps some merit to the critique. Specifically, one might argue that prescriptivists have
not with sufficient emphasis underlined the limitations of their work, indeed have not in-
tegrated their prescriptions more closely with what people actually demand. For example,
Markowitz’ 1-period investment model described above suffers from some rather glaring
limitations, including the disregard of: (i) consumption, (ii) dynamic portfolio updating
based on new information, (iii) the interplay between investing for the sake of future con-
sumption, (iv) non-normality of returns (see Munk [5]). Of course, since the heyday of
Merton, these issues have been mitigated considerably, through the principles of continu-
ous time stochastic control theory. Specifically, the type of problems we are nowadays in-
terested are analogous to determining the optimal rate of consumption process {c∗s}s∈[0,T ],
alongside the optimal portfolio weights {π∗s }s∈[0,T ] such that

{c∗s ,π∗s }s∈[0,T ] = argmax
{cs,πs}s∈[0,T ]∈A

E
[

α

∫ T

0
e−δ su(cs)ds+(1−α)e−δT u(WT )

]
, (2)

where {Wt}t∈[0,T ] is the controlled stochastic wealth process of the investor, α ∈ [0,1] is
a relative importance weight between continuous consumption and bequest, δ ∈ R+ is a
subjective discounting factor, and u : R+ 7→R is a von-Neumann Morgenstern utility func-
tion. Nonetheless, the operative word remains mitigated: despite the success story nested
in the solutions to problems a la (2), there is still considerable room for improvement. For
example, the notion that anyone cares about their continuous rate of consumption is bla-
tantly false (rather we care about periodic withdrawals). Indeed, utility in itself is an area
which demands further attention to square it with prevalent investor habits (Kahneman’s
prospect theory might be worthy of attention). It will be interesting to see what future
research has to say on these matters.

In this dissertation we present four control studies into rational portfolio theory (in the
classical prescriptivist’s sense). Some of the issues we investigate include (A) analysing
the method by which the non-linear Hamilton-Jacobi-Bellman equations should be solved
numerically in connection with Merton type optimisation problems. A thorough review
of the explicit and implicit methods is provided in one and more spatial dimensions. (B)
Exposing the optimal investment ratios for a utility maximising investor who trades in
bonds and stocks in a stochastic volatility environment. Various models are considered,
including their effect in empirical trading experiments. (C) Extending the above analysis
to include the derivatives markets. How much do the portfolio weights change? What is
the effect of hedging stochastic volatility per se versus merely including a second asset?
Is the bond-stock-derivative strategy truly superior when applied to real market data? (D)
Hedging derivatives in a limit order book when one has the option of placing both limit
and market orders. Assuming a certain tolerance towards deviating from a targeted hedge
strategy, when should a rational investor place which type of order?

Overall, this thesis has been enjoyable to write. We hope the reader will enjoy reading
it as well.
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Abstract Summary

This dissertation is comprised of five research papers written during the period January
2013 - December 2015. Their abstracts are:

• The Fundamental Theorem of Derivative Trading. When estimated volatilities are
not in perfect agreement with reality, delta hedged option portfolios will incur a non-
zero profit-and-loss over time. There is, however, a surprisingly simple formula for the
resulting hedge error, which has been known since the late 90s. We call this The Funda-
mental Theorem of Derivative Trading. This paper is a survey with twists of that result.
We prove a more general version of it and discuss various extensions (including jumps)
and applications (including deriving the Dupire-Gyöngy-Derman-Kani formula). We
also consider its practical consequences both in simulation experiments and on empiri-
cal data thus demonstrating the benefits of hedging with implied volatility.

• Numerical Stochastic Control Theory with Applications in Finance. Analytic so-
lutions to HJB equation in mathematical finance are relatively hard to come by, which
stresses the need for numerical procedures. In this paper we provide a self-contained
exposition of the finite-horizon Markov chain approximation method as championed by
Kushner and Dupuis. Furthermore, we provide full details as to how well the algorithm
fares when we deploy it in the context of Merton type optimisation problems. Assorted
issues relating to implementation and numerical accuracy are thoroughly reviewed, in-
cluding multidimensionality and the positive probability requirement, the question of
boundary conditions, and the choice of parametric values.

• Stochastic Volatility for Utility Maximisers Part I. From an empirical perspective,
the stochasticity of volatility is manifest, yet there have been relatively few attempts
to reconcile this fact with Merton’s theory of optimal portfolio selection for wealth
maximising agents. In this paper we present a systematic analysis of the optimal asset
allocation in a derivative-free market for the Heston model, the 3/2 model, and a Fong
Vasicek type model. Under the assumption that the market price of risk is proportional
to volatility, we can derive closed form expressions for the optimal portfolio using the
formalism of Hamilton-Jacobi-Bellman. We also perform an empirical investigation,

xv



xvi Abstract Summary

which strongly suggests that there in reality are no tangible welfare gains associated
with hedging stochastic volatility in a bond-stock economy.

• Stochastic Volatility for Utility Maximisers Part II. Using martingale methods we
derive bequest optimising portfolio weights for a rational investor who trades in a bond-
stock-derivative economy characterised by a generic stochastic volatility model. For il-
lustrative purposes we then proceed to analyse the specific case of the Heston economy,
which admits explicit expressions for plain vanilla Europeans options. By calibrating
the model to market data, we find that the demand for derivatives is primarily driven
by the myopic hedge component. Furthermore, upon deploying our optimal strategy on
real market prices, we find only a very modest improvement in portfolio wealth over
the corresponding strategy which only trades in bonds and stocks.

• Optimal Hedge Tracking Portfolios in a Limit Order Book. In this paper we de-
velop a control theoretic solution to the manner in which a portfolio manager optimally
should track a targeted ∆ , given that he wishes to hedge a short position in European
call options the underlying of which is traded in a limit order book. Specifically, we
are interested in the interplay between posting limit and market orders respectively:
when should the portfolio manager do what (and at what price)? To this end, we set
up an Hamilton-Jacobi-Bellman quasi variational inequality which we can solve nu-
merically. Our scheme is shown to be monotone, stable, and consistent and thence,
modulo a comparison principle, convergent in the viscosity sense. Finally, we provide
a concrete numerical study, comparing our algorithm with more naı̈ve approaches to
delta-hedging.

Further to these papers we provide an extensive appendix which summarises standard re-
sults from martingale pricing, PDE methods (analytic and numerical), and stochastic con-
trol theory. The work presented in this section is mostly (though not exclusively) deriva-
tive, and can be read as a friendly reminder with respect to the body of theory underpinning
the research articles.



Dansk Resumé

Denne afhandling består af fem forskningsartikler, som er skrevet i perioden januar 2013
- december 2015. Deres resuméer er som følger:

• Den Fundamentale Teorem om Derivathandel. Når estimerede volatiliteter ikke er
i perfekt overensstemmelse med virkeligheden, vil delta-hedgede optioner med tiden
afføde en profit eller et tab ulig nul. Ikke desto mindre findes der en overraskende
simpel formel for den resulterende hedge-fejl, hvilken har været kendt siden de sene
90ere. Vi kalder denne formel Den Fundamentale Teorem om Derivathandel. Denne
artikel er en oversigt med modifikationer af dette resultat. Vi beviser en mere generel
version deraf og diskuterer forskellige viderebygninger (inklusiv spring) samt applika-
tioner (inklusiv en udledning af Dupire-Gyöngy-Derman-Kani formlen). Vi anskuer
også dens praktiske konsekvenser både i simulering samt i forbindelse med empirisk
data, og demonstrerer således gavnligheden af at hedge med den implicitte volatilitet.

• Numerisk Stokastisk Kontrolteori med Applikationer i Finansiering. Analytiske
løs-ninger til HJB ligninger i matematisk finansiering er en relativ sjælden foreteelse,
hvilket understreger nødvendigheden af numeriske procedurer. I denne artikel frem-
lægger vi en eksposition af Markov-kæde approksimationsmetoden i endelig tid, først
etableret af Kushner og Dupuis. Endvidere anskues detaljerne af hvor godt algorit-
men egentlig klarer sig, når vi anvender den i optimeringsproblemer a la Merton.
Forskellige problemstillinger relaterende til implementering og numerisk præcision
gennemgås nøje, inklusiv multi-dimensionalitet og kravet om positive sandsynligheder,
spørgsmålet om randbetingelser, og valget af parametriske værdier.

• Stokastisk Volatilitet for Nyttemaksimerende Investorer Del I. Fra et empirisk per-
spektiv er stokastisk volatilitet veletableret. Dog er der beklageligvis gjort relativt få
forsøg på at forene dette faktum med Mertons teori for optimale porteføjevalg for
velfærdsmaksimerende investorer. I denne artikel præsenterer vi en systematisk analyse
af optimal aktivfordeling i et derivatfrit marked for Heston-modellen, 3/2-modellen,
samt en model a la Fong Vasicek. Under den antagelse at markedsprisen for risiko
er proportional med volatilitet kan vi udlede lukkede formler for den den optimale
portefølgevægt qua Hamilton-Jacobi-Bellman formalismen. Vi foretager også en em-

xvii
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pirisk analyse, som stærkt peger i retningen af, at der i praksis ikke er noget at hente på
at hedge stokastisk volatilitet i en obligations-aktie økonomi.

• Stokastisk Volatilitet for Nyttemaksimerende Investorer Del II. Ved at gøre brug
af martingale metoder udvikler vi arv-optimerende porteføljevægte for rationelle inve-
storer, som handler i en obligations-aktie-derivat økonomi karakteriseret ved en gener-
isk stokastisk volatilitetsmodel. For at illustrere vores resultater fortsætter vi da med at
analysere Heston modellen som et specifikt eksempel - thi denne tillader eksplicitte
løsninger til vanilla Europæiske optioner. Ved at kalibrere vores model til data fra
markedet opdager vi, at kravet om derivater primært er drevet af det myopiske hedge
komponent. Endvidere: når vi søsætter vores optimale strategi på faktiske marked-
spriser, finder vi en enddog meget begrænset forbedring i velfærd - i forhold til den
tilsvarende strategi som kun handler i obligationer og aktier.

• Optimale Hedge-sporende Porteføljer i en Ordrebog. I denne artikel udvikler vi en
kontrolteoretisk løsning til metoden hvorigennem en porteføljebestyrer optimalt skal
spore et givent ∆ , givet at han ønsker at hedge en kort position i Europæiske optioner
hvis underliggende aktiv handles in en ordrebog (limit order book). Mere specifikt er
vi interesserede i dualiteten mellem det at poste limit-ordrer samt det at poste market-
ordrer: hvornår skal porteføljebestyreren gøre hvad (og til hvilken pris?). For at besvare
dette spørgsmål fremsætter vi en Hamilton-Jacobi-Bellman kvasi-variationsulighed,
som kan løses numerisk. Vores numeriske procedure vises at være monoton, stabil og
konsistent og derfor, modulo et sammenligningsprincip, konvergent. Slutteligt præsen-
terer vi et konkret numerisk studie, hvori vi sammenligner vores algoritme med mere
naive tilgange til delta-hedging.

Foruden disse papier fremturer vi med et ekstensivt appendix, som opsummerer standard-
resultater fra martingale prisfastsættelse, PDE metoder (analytiske og numeriske), samt
stokastisk kontrolteori. Arbejdet som præsenteres i denne sektion er mestendels (men ikke
100%) derivativt og kan læses som en venlig erindring angående den teori, som ligger til
grund for forskningsartiklerne.
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A.4 Lévy’s Characterisation of Wiener Processes . . . . . . . . . . . . . . . . . . . . . . . 182
A.5 The Martingale Theorem and Girsanov’s Theorem. . . . . . . . . . . . . . . . . . . 183
A.6 The Market Price of Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.7 Changing the Numeraire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.8 Dividend Paying Stocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B PDE Methods in Mathematical Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.1 From Martingales to PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.1.1 The Feynman-Kac Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.1.2 The Kolmogorov Backward Equation . . . . . . . . . . . . . . . . . . . . . . 193
B.1.3 The Kolmogorov Forward Equation . . . . . . . . . . . . . . . . . . . . . . . 194

B.2 Solving PDEs Through Finite Difference Methods . . . . . . . . . . . . . . . . . . . 195
B.2.1 Numerical Solutions to PDEs in One Spatial Dimension . . . . . . 196
B.2.2 Thomas’ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
B.2.3 The Multi-dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

C Stochastic Control Methods in Mathematical Finance . . . . . . . . . . . . . . . . . . . 205
C.1 The Problem Posed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
C.2 The Hamilton-Jacobi-Bellman Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
C.3 The Martingale Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
C.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217



Part I
Model Risk





Chapter 1
The Fundamental Theorem of Derivative Trading
Exposition, Extensions, and Experiments

Simon Ellersgaard, Martin Jönsson, and Rolf Poulsen

Abstract When estimated volatilities are not in perfect agreement with reality, delta
hedged option portfolios will incur a non-zero profit-and-loss over time. There is, how-
ever, a surprisingly simple formula for the resulting hedge error, which has been known
since the late 90s. We call this The Fundamental Theorem of Derivative Trading. This
paper is a survey with twists of that result. We prove a more general version of it and dis-
cuss various extensions (including jumps) and applications (including deriving the Dupire-
Gyöngy-Derman-Kani formula). We also consider its practical consequences both in sim-
ulation experiments and on empirical data thus demonstrating the benefits of hedging with
implied volatility.
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1.1 A Meditation on the Art of Derivative Hedging

Introduction. Of all possible concepts within the field mathematical finance, that of con-
tinuous time derivative hedging indubitably emerges as the central pillar. First used in the
seminal work by Black and Scholes [6],1 it has become the cornerstone in the determina-
tion of no-arbitrage prices for new financial products. Yet a disconnect between this body
of abstract mathematical theory and real world practise prevails. Specifically, successful
hedging relies crucially on us having near perfect information about the model that drives
the underlying asset. Even if we boldly adopt the standard stochastic differential equa-
tion paradigm of asset pricing, it remains to make exact specifications for the degree to
which the price process reacts to market fluctuations (i.e. to specify the diffusion term, the
volatility). Alas, volatility blatantly transcends direct human observation, being, as it were,
a Kantian Ding an sich2 of which we only have approximate knowledge.

One such source comes from measuring the standard deviation of past log returns over
time (this is tantamount to assuming that the model can at least locally be approximated
as a geometric brownian motion). Yet this process raises uncomfortable questions pertain-
ing to statistical measurement: under ordinary circumstances, increasing the sample space
should narrow the confidence interval around our sample parameter. Only here, there is no
a priori way of telling when a model undergoes a drastic structural change.3 Inevitably,
this implies that extending the time series of log returns too far into the past might lead to
a less accurate estimator, as we might end up sampling from a governing dynamics that is
no longer valid. Of course, we may take some measures against this issue, by trying our
luck with ever more intricate time series analyses until we stumble upon a model the pa-
rameters of which satisfy our arbitrary tolerance for statistical significance. Nevertheless,
in practise this procedure invariably boils down to checking some finite basket of models
and selecting the best one from the lot. Furthermore, unknown structural breaks continue
to pose a problem no matter what.

Alternatively, we might try to extract an implied volatility from the market by fitting
our model to observed option prices. Nevertheless the inadequacy of the methodology
quickly becomes apparent: first, implied volatility might be ill-defined as it is the case for
certain exotic products such as barrier options. Secondly, it is quite clear that the market
hysteria which drives the prices of traded options need not capture the market hysteria
which drives the corresponding market for the underlying asset. Fair pricing ultimately
boils down to understanding the true nature of the underlying product: not to mimic the
collective madness of option traders.

1 That Black and Scholes along with Merton were the first is the general consensus, although the paper by
Haug and Taleb [14] shows that the view is not universal.
2 Literally, thing in itself or the noumenon. Kant held that there is a distinction between the way things
appear to observers (phenomena) and the way reality actually is construed (noumena).
3 This scenario is not at all implausible. Unlike the physical sciences where the fundamental laws are
assumed to have no sufficient reason to change (in the Leibnizian or Occamian sense), this philosophical
principle would hardly withstand scrutiny in a social science context. Asset price processes are fundamen-
tally governed by market agents and their reactions to various events (be they self-induced or exogenous).
There is really no reason to assume that these market players will not drastically change their opinions at
some point (for one reason or the other).
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Whilst volatility at its core remains elusive to us, the situation is perhaps not as dire
as one might think. Specifically, we can develop a formal understanding of the profit-&-
loss we incur upon hedging a portfolio with an erroneous volatility - at least insofar as we
make some moderate assumptions of the dynamical form of the underlying assets. To give
a concrete example of this, consider the simple interest rate free framework presented in
Andreasen [2] where the price process of a single non-dividend paying asset is assumed to
follow the real dynamics

dXt = µt,rXtdt +σt,rXtdWt .

Let V i
t be the value of an option that trades in the market at a certain implied volatility

σi (possibly quite different from the epistemically inaccessible σt,r). Now if we were to
set up a hedge of a long position on such an option, using σi as our hedge volatility,
an application of Itō’s formula, coupled with the Black-Scholes equation, shows that the
infinitesimal value change in the hedge portfolio

Πt =V i
t −∂xV i

t ·Xt ,

is
dΠt =

1
2 (σ

2
t,r−σ

2
i )X

2
t ∂

2
xxΠtdt, (1.1)

which generally is non-zero unless σi = σt,r. For reasons that will become clearer below,
the importance of this result is of such magnitude that Andreasen dubs it The Fundamental
Theorem of Derivative Trading. Indeed, a more abstract variation of it will be the central
object of study in this paper.

To the best of our knowledge, quantitative studies into erroneous delta-hedging lead-
ing to a result like (1.1) first appeared in a paper on the robustness of the Black-Scholes
formula by El Karoui et al. [13]. They viewed the result as a largely negative one: unless
volatility is bounded (which it is not in any stochastic volatility model) then there is no
simple super-replication strategy. Subsequently, various sources have re-derived the result
(with various tweaks) - most prominently the works of Gibson et al. [17], Henrard [20],
Mahayani et al. [21], Rasmussen [22], Carr [7], and Ahmad and Wilmott [1]. Today, the
gravity of erroneous ∆ -hedging is unquestionably more widely appreciated, yet the Funda-
mental Theorem of Derivative Trading continues to fly largely under the radar in academia
and industry.

Overview. The structure of this paper is as follows: in section 1.2 we state and prove
a new, generalised version of the Fundamental Theorem of Derivative Trading and dis-
cuss its various implications for hedging strategies and applications (some of which might
prove surprising). In section 1.3 we expose the implications of adding a jump process
to the framework, thus emphasising the relative ease with which the original proof can be
adapted. Finally, section 1.4 presents an empirical investigation into what actually happens
to our portfolio when we hedge using various volatilities.
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1.2 The Fundamental Theorem of Derivative Trading

1.2.1 Derivation

Model Set-up. Consider a financial market comprised of a risk-free money account as well
as n risky assets, each of which pays out a continuous dividend yield. We assume all assets
to be infinitely divisible as to the amount which may be held, that trading takes place con-
tinuously in time and that no trade is subject to financial friction. Formally, we imagine the
information flow of this world to be captured by the stochastic basis (Ω ,F ,F,P), where
Ω represents all possible states of the economy, P is the physical probability measure, and
F = {Ft}t≥0 is a filtration which satisfies the usual conditions.4 The price processes of
the risky assets,Xt = (X1t ,X2t , ...,Xnt)

ᵀ, are assumed to follow the real dynamics5

dXt = DXt [µr(t,
∼
Xt)dt +σr(t,

∼
Xt)dWt ], (1.2)

where DX is the n× n diagonal matrix diag(X1t ,X2t , ...,Xnt), and Wt = (W1t ,W2t , ...,
Wnt)

ᵀ is an n-dimensional standard Brownian motion adapted to F. Furthermore, µr :
[0,∞)×Rn+m 7→Rn andσ : [0,∞)×Rn+m 7→Rn×n are deterministic functions, sufficiently
well-behaved for the SDE to have a unique strong solution (in particular, we assume the
regularity conditions∫ s

t
|DXuµr(u,

∼
Xu)|du < ∞,

∫ s

t
|DXuσr(u,

∼
Xu)|2du < ∞, (1.3)

hold a.s. ∀t ≤ s, where the first norm is to be understood in the Euclidian sense, whilst
the latter should be construed in the matrical sense).6 Finally, we define

∼
Xt as the n+m

dimensional vector (Xt ;χt) where χt = (χ1t ,χ2t , ...,χmt)
ᵀ has the interpretation of an

m-dimensional state variable, the exact dynamical nature of which is not integral to what
follows.7

In what follows we consider the scenario of what happens when we hedge an option on
Xt , ignorant of the existence of the state variable χt , as well as the form of µr(·, ·) and
σr(·, ·). Specifically, we shall imagine that we are misguided to the extent that we would
model the dynamics of Xt as a local volatility model with diffusion matrix σh(t,Xt).
Similar assumptions pertain to the market, although here we label the “implied” diffusion

4 Specifically, it satisfies right-continuity, ∩s≥tFs = Ft ∀t ≥ 0 (if we move incrementally forward in time
there will be no jump in information), and completeness, i.e. F0 contains all P null sets.
5 The nomenclature “real dynamics” is ripe with unfortunate connotations of Platonic realism (ontolog-
ical significance of mathematical objects). Strictly speaking, this is not what we require, but rather the
expressive adequacy of a model: i.e. it’s ability to adequately capture the financial events unfolding.
6 Specifically, if x ∈ Rn andA ∈ Rn×d , the the Euclidian norm is defined as |x| ≡ (∑n

i=1 x2
i )

1/2, while the
matrical norm is |A| ≡ (∑n

i=1 ∑
d
j=1 A2

i j)
1/2.

7 Nonetheless, a common assumption in the stochastic volatility literature is obviously to let χ be driven
by a stochastic differential equation of the form dχt =m(χt)dt +v(χt)dWt + v̄(χt)dW̄t , where W̄t is
second standard Brownian motion (independent of the first), andm, v and v̄ are dimensionally consistent,
regularity conforming vectors and matrices.
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matrix σi(t,Xt) to distinguish it from our personal belief. Irrespective of which dynami-
cal specification is being made, we maintain that regularity conditions analogous to (1.3)
remain satisfied. Finally, a cautionary remark: throughout these pages we use r and i to
emphasise that the volatility is real and implied respectively, whilst h refers to an arbitrary
hedge volatility. For a comprehensible reading, it is incumbent that the reader keeps these
definitions in mind.

Theorem 1.1. The Fundamental Theorem of Derivative Trading. Let Vt =
V (t,Xt) ∈ C 1,2([0,∞)×Rn) be the price process of a European option with ter-
minal pay-off VT = g(XT ). Assume we at time t = 0 acquire such an option for
the market-price V i

0, with the associated (not necessarily uniquely determined) im-
plied volatility σi(0,X0). Furthermore, suppose we set out to ∆ -hedge our posi-
tion, but remain under the impression that the correct volatility ought, in fact, to be
σh(0,X0), leading to the fair price V h

0 . Then the present value of the profit-&-loss
we incur from holding such a portfolio over the interval T= [0,T ] is

P&Lh
T =V h

0 −V i
0 +

1
2

∫ T

0
e−

∫ t
0 rudu tr[DXtΣrh(t,

∼
Xt)DXt ∇

2
xxV h

t ]dt, (1.4)

where ru = r(u,Xu) is the locally risk free rate, ∇2
xx is the Hessian operator, and

Σrh(t,
∼
Xt)≡ σr(t,

∼
Xt)σ

ᵀ
r (t,

∼
Xt)−σh(t,Xt)σ

ᵀ
h (t,Xt). (1.5)

is a matrix which takes values in Rn×n.

Proof : Let {Π h
t }t∈[0,T ] be the value process of the hedge portfolio long one option valued

according to the implied market conception, {V i
t }t∈[0,T ], and short {∆ h

t = ∇xV h
t }t∈[0,T ]

units of the underlying with value process {Xt}t∈[0,T ], where ∇x is the gradient operator.
We suppose the money account B is chosen such that the net value of the position is zero:

Π
h
t =V i

t +Bt −∇xV h
t •Xt = 0,

where • is the dot product. Now consider the infinitesimal change to the value of this
portfolio over the interval [t, t +dt], where t ∈ [0,T ). From the self-financing condition we
have that

dΠ
h
t = dV i

t + rtBtdt−∇xV h
t • (dXt +qt ◦Xtdt),

where qt = (q1(t,X1t),q2(t,X2t), ...,qn(t,Xnt))
ᵀ codifies the continuous dividend yields

and ◦ is the Hadamard (entry-wise) product.8 Jointly, the two previous equations entail
that

dΠ
h
t = dV i

t −∇xV h
t • (dXt − (rtι−qt)◦Xtdt)− rtV i

t dt, (1.6)

where ι= (1,1, ...,1)ᵀ ∈ Rn.

8 Per definition, if A and B are matrices of equal dimensions, then (A◦B)i j = Ai jBi j .
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Now consider the option valued under σh(t,Xt); from the multi-dimensional Itō for-
mula (see for instance Björk [2], p. 65.) we have that

dV h
t = {∂tV h

t + 1
2 tr[σᵀr (t,

∼
Xt)DXt ∇

2
xxV h

t DXtσr(t,
∼
Xt)]}dt +∇xV h

t •dXt , (1.7)

where we have used the fact that Xt is governed by (1.2). Meanwhile, V h
t satisfies the

multi-dimensional Black Scholes equation for dividend paying underlyings (see for in-
stance Björk, Theorem 13.1 and Proposition 16.7),

rtV h
t = ∂tV h

t +∇xV h
t • ((rtι−qt)◦Xt)+

1
2 tr[σᵀh (t,Xt)DXt ∇

2
xxV h

t DXtσh(t,Xt)]. (1.8)

Combining this expression with the Itō expansion we obtain,

0 = −dV h
t + rtV h

t dt +∇xV h
t • (dXt − (rtι−qt)◦Xtdt)

+ 1
2 tr[DXt

(
σr(t,

∼
Xt)σ

ᵀ
r (t,

∼
Xt)−σh(t,Xt)σ

ᵀ
h (t,Xt)

)
DXt ∇

2
xxV h

t ]dt
(1.9)

where we have used the fact that the trace is invariant under cyclic permutations of its
constituent matrices. Finally, defining Σrh(t,

∼
Xt) as in (1.5), and adding (1.9) to (1.6) we

obtain

dΠ
h
t = dV i

t −dV h
t − rt(V i

t −V h
t )dt + 1

2 tr[DXtΣrh(t,
∼
Xt)DXt ∇

2
xxV h

t ]dt

= e
∫ t

0 rudud(e−
∫ t

0 rudu(V i
t −V h

t ))+
1
2 tr[DXtΣrh(t,

∼
Xt)DXt ∇

2
xxV h

t ]dt.
(1.10)

Whilst a perfect hedge would render this infinitesimal value-change in the portfolio zero,
this is clearly not the case here. In fact, upon discounting (1.10) back to the present (t = 0)
and integrating up the infinitesimal components, we find that net profit-&-loss incurred
over the life-time of the portfolio is

P&Lh
T =

∫ T

0
d(e−

∫ t
0 rudu(V i

t −V h
t ))+

∫ T

0
e−

∫ t
0 rudu 1

2 tr[DXtΣrh(t,
∼
Xt)DXt ∇

2
xxV h

t ]dt

=V h
0 −V i

0 +
1
2

∫ T

0
e−

∫ t
0 rudu tr[DXtΣrh(t,

∼
Xt)DXt ∇

2
xxV h

t ]dt.

where

P&Lh
T ≡

∫ T

0
e−

∫ t
0 rududΠ

h
t ,

and the last line makes use of the fact that V i
T =V h

T = g(XT ). This is the desired result. �

Remark 1.1. A few observations on this proof are in order: first, the relative simplicity
of (1.4) clearly boils down to the assumption that the market is perceived to be driven
by a local volatility model. If this assumption is dropped equation (1.8) no longer holds.
Secondly, it should be clear that the value of the P&L changes sign if we are short on the
derivative and long the underlying. Thirdly, the market price of the derivative enters only
though the initial price V0. That is because we look at the profit-&-loss accrued over the
entire life-time of the portfolio. The case of marking-to-market requires further analysis
and/or assumption. We will elaborate on this in the following subsection.
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Remark 1.2. From a generalist’s perspective, theorem 1 suffers from a number of glar-
ing limitations: for instance, the governing asset price dynamics only considers Brownian
stochasticity, the hedge is assumed to be a workaday ∆ -hedge, and the option type is
vanilla European in the sense that the terminal pay-off is determined by the instantaneous
price of the underlying assets. Fortunately, the Fundamental Theorem can readily be ex-
tended in various directions: e.g. it can be shown that if Vt =V (t,Xt ,At) is an Asian option
written on the continuous average At of the underlying process Xt , then the Fundamen-
tal Theorem remains form invariant. In section 1.3 we consider one particularly topical
dynamical modification viz. the incorporation of possible market crashes through jump
diffusion.

1.2.2 The Implications for ∆ -Hedging.

From a first inspection, the Fundamental Theorem quite clearly demonstrates that reason-
ably successful hedging is possible even under significant model uncertainty. Indeed, as
Davis [10] puts it “without some robustness property of this kind, it is hard to imagine that
the derivatives industry could exist at all”. In this section, we dive further into the impli-
cations of what happens to our portfolio, by considering the case where we hedge with (a)
the real volatility, and (b) the implied volatility.

Hedging With the Real Volatility. Suppose we happen to be bang-on our estimate of the
real volatility matrix in our ∆ -hedge, i.e. let σh(t,Xt) = σr(t,

∼
Xt) a.s. ∀t ∈ [0,T ], then

Σrr(t,
∼
Xt) = 0 and the present valued profit-&-loss amounts to

P&Lr
T =V r

0 −V i
0,

which is manifestly deterministic.9 However, we observe that this relies crucially on us
holding the portfolio until expiry of the option. Day-to-day fluctuations of the profit-&-loss
still vary stochastically (erratically) as it is vividly demonstrated by combining equation
(1.9) (where h = i) with equation (1.6) (where h = r):

dΠ
r
t = 1

2 tr[DXtΣri(t,
∼
Xt)DXt ∇

2
xxV i

t ]dt

+∇x

(
V i

t −V r
t
)
•
{
(µr

t − rtι+qt)◦Xtdt +DXtσr(t,
∼
Xt)dWt

}
,

cf. the explicit dependence of the Brownian increment. As for the profitability of the ∆ -
hedging strategy, this is a complex issue which ultimately must be studied on a case-by-
case basis. However, for options with positive vega,10 it suffices to require that the real
volatility everywhere exceeds the implied volatility.

9 Obviously, this can only be the case if there is no underlying state variable.
10 A clear example of vega being manifestly positive would be European calls and puts, which satisfy the
assumptions needed to derive the Black-Scholes formula. Explicitly, ν ≡ ∂V

∂σ
= St e−δ (T−t)φ(d1)

√
T − t >

0 where φ is the standard normal pdf and d1 has the usual definition.
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Fig. 1.1 Left: Delta hedging a portfolio assuming that σh =σr . The parameter specifications are: r = 0.05,
µ = 0.1, σi = 0.2, σr = 0.3, S0 = 100, K = 100, q = 0 and T = 0.25. The portfolio is rebalanced 5000
times during the lifetime of the option. Observe that while the P&L fluctuates randomly along the path
of St due to the presence of dWt , the accumulated P&L at the maturity of the option is the deterministic
quantity ΠT = erT (V r

0 −V i
0). From the Black-Scholes formula it follows that V r

0 = 6.583 and V i
0 = 4.615 so

ΠT=1 = 1.993. The fact that our ten paths only approximately hit this terminal value is attributable to the
discretisation of the hedging which should be done in continuous time. Right: Delta hedging a portfolio
assuming that σh = σi.The parameter specifications are as before. Evidently, the accumulated P&L stays
highly path dependent for the entire duration of the option. However, the curves per se are smooth, which
highlights that dΠ i

t does not depend explicitly on the Brownian increment.

Hedging With the Implied Volatility. Suppose instead we hedge the portfolio using the
implied volatility matrix σi(t,Xt) ∀t ∈ [0,T ], then the associated present-valued profit-&-
loss is of the form

P&Li
T = 1

2

∫ T

0
e−

∫ t
0 rudu tr[DXtΣri(t,

∼
Xt)DXt ∇

2
xxV i

t ]dt.

As we find ourselves integrating over the stochastic processXt , this profit-&-loss is mani-
festly stochastic. Notice though that dΠ i

t here does not depend explicitly on the Brownian
increment (the daily profit-and-loss is O(dt)) which gives rise to point that “bad models
cause bleeding - not blow-ups”. As for the profitability of the strategy, again this is a com-
plex issue: however, insofar asΣri(t,

∼
Xt)◦∇2

xxV i
t is positive definite a.s. for all t ∈ [0,T ],

then we’re making a profit with probability one. To see this, recall that the trace can be
written as11

tr[DXtΣri(t,
∼
Xt)DXt ∇

2
xxV i

t ] =X
ᵀ
t (Σri(t,

∼
Xt)◦∇

2
xxV i

t )Xt ,

In particular, ifΣri(t,
∼
Xt)◦∇2

xxV i
t is positive definite at all times, i.e.

∀t ∈ [0,T ] ∀Xt ∈ Rn : Xᵀt (Σri(t,
∼
Xt)◦∇

2
xxV i

t )Xt > 0,

11 This follows from the general identity for matrices A and B of corresponding dimensions: xᵀ(A◦B)y =
tr[DxADyBᵀ] where x and y are vectors.
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then P&Li
T > 0. A sufficient condition for this to be the case is thatΣri(t,

∼
Xt) and ∇2

xxV i
t

individually are positive definite ∀t, as demonstrated by the Schur Product Theorem.

Wilmott’s Hedge Experiment. The points imbued in the previous two paragraphs are
forcefully demonstrated in the event that there is only one risky asset in existence, the
derivative is a European call option and all volatilities are assumed constant. Based on
Wilmott and Ahmad, Figure 1.1 clearly illustrates the behaviour of the profit-&-loss paths
insofar as we hedge with (a) the real volatility, and (b) the implied volatility. Again, the
main insights are as follows: hedging V i

t with the real volatility causes the P&L of the
portfolio to fluctuate erratically over time, only to land at a deterministic value at maturity.
On the other hand, hedging V i

t with the implied volatility yields smoother (albeit still
stochastic) P&L curves. Nonetheless, here there is no way of telling what the P&L actually
amounts to at maturity.

Rather perturbingly, both strategies blatantly suggest the relative ease with which we
can make volatility arbitrage. Specifically, assuming that the historical volatility is a rea-
sonable proxy for the real volatility, σhist ≈ σr, and that σhist > σi (σhist < σi), it would suf-
fice to go long (short) on the hedge portfolio for P(P&LT ≥ 0) = 1 and P(P&LT > 0)> 0.

Reality, of course, is not always as simple as our abstract idealisations, wherefore we
dedicate section four to an empirical investigation of Wilmott’s hedge experiment.

1.2.3 Applications

Due to the presence of the real volatility, the exact nature of which transcends our epistemic
domain, one might reasonably ponder whether the Fundamental Theorem conveys any
practical points besides those of the preceding subsection. Using two poignant (even if
somewhat eccentric) examples, we will argue that the gravity of the Fundamental Theorem
propagates well into risk management and volatility surface calibration. Zero rates and
dividends will be assumed throughout.

Example 1.1. Let Vt(T,K) be the price process of a European strike K maturity T call or
put option, written on an underlying which obeys Geometric Brownian Motion, dXt =
µrXtdt +σrXtdWt , where µr,σr are constants. Suppose we ∆ -hedge a long position on Vt
at the implied volatility, σh = σi, then the Fundamental Theorem implies that

P&Li
T = 1

2

∫ T

0
(σ2

r −σ
2
i )X

2
t Γ

i
t dt,

where

Γ
i

t ≡
φ(di

1)

Xtσi
√

T − t
,

is the option’s gamma, φ : R 7→ R+ is the standard normal pdf and

di
1 ≡ 1

σi
√

T−t

{
ln(Xt/K)+ 1

2 σ
2
i (T − t)

}
.



12 Ellersgaard, Jönsson & Poulsen

Since ∀t Γ i
t > 0 the strategy is profitable if and only if σ2

r > σ2
i . Furthermore, by max-

imising the integrand with respect to Xt we find that the P&Li
T is maximal when

X∗t = Ke
1
2 σ2

i (T−t),

Specifically, upon evaluating the integral explicitly we find that

max
Xt

P&Li
T =

√
T
2π

K
σi
(σ2

r −σ
2
i ).

Using elementary statistics we can compute a confidence interval for the real volatility
based on historical observations. Hence, we can compute a confidence interval for the
maximal profit-&-loss we might face upon holding the hedge portfolio till expiry.

Example 1.2. Let Vt =Ct(T,K) be the price process of a European strike K maturity T call
option written on an underlying price process X . As in (1.2) we assume the fundamental
dynamics to be of the form

dXt = µr(t,
∼
X t)Xtdt +σr(t,

∼
X t)XtdWt ,

where
∼
X t is defined as the (1+m)-dimensional vector (Xt ;χt) and χ is a state variable.

Also, we suppose

E
[∫ T

0
σ

2
r (t,

∼
X t)X2

t dt
]
< ∞,

and that there exists an equivalent martingale measure, Q, which renders Xt a martingale
(recall the risk free rate is assumed zero):12

dXt = σr(t,
∼
X t)XtdWQ

t .

Now consider the admittedly somewhat contrived scenario of a ∆ -hedged portfolio,
long one unit of the call, for which σh and σi are both zero.13 The associates value process
is

Π
i
t =Ci

t(T,K)+Bt −∂xCh
t (T,K) ·Xt = (Xt −K)++Bt −1{Xt>K}Xt , (1.11)

12 Obviously, such an existence claim is not altogether innocuous. Indeed, the measure change is here
further complicated by the fact that we have not made formal specifications for the dynamical form of
the state variable χt . However, insofar as we adopt the standard dynamical assumption dχt =m(χt)dt +
v(χt)dWt + v̄(χt)dW̄t , our existence claim is tantamount to positing the existence of a market price of
risk vector θ ∈ Rm which renders the process L(T ) = LX (T )Lχ(T ) a true martingale, where

LX (T )≡ exp
{
−
∫ T

0

µr(t,
∼
X t)

σr(t,
∼
X t)

dWt − 1
2

∫ T

0

µ2
r (t,

∼
X t)

σ2
r (t,

∼
X t)

dt
}
,

and

Lχ(T )≡ exp
{
−
∫ T

0
θ
ᵀ
t dW̄t − 1

2

∫ T

0
|θt |2dt

}
.

13 To be precise, the contrived part is the assumption that the call trades at zero volatility; less so that we
hedge it at zero volatility. The latter corresponds to a so-called stop-loss strategy, see Carr [8].
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where 1{Xt>K} is the indicator function. The important point here is that (Xt −K)+ may
be reinterpreted as the terminal pay-off of a strike K maturity t call option (obviously,
the specification σh = σi = 0 is paramount here). Substituting (1.11) into the infinitesimal
form of the Fundamental Theorem,

dΠ
i
t =

1
2 (σ

2
r (t,

∼
X t)−σ

2
i )X

2
t ∂

2
xxC

i
t(T,K)dt,

we find that

d((Xt −K)++Bt −1{Xt>K}Xt) =
1
2 σ

2
r (t,

∼
X t)X2

t δ (Xt −K)dt, (1.12)

where we once again have made use of σi = 0, alongside the fact that ∂x1{Xt>K} is the
Dirac delta-function δ (Xt −K). Taking the risk neutral expectation of (1.12), conditional
on F0, the left-hand side reduces to

EQ[LHS] = EQ[d(Xt −K)+]+EQ[dBt −1{Xt>K}dXt ]

= dEQ[(Xt −K)+]−EQ[1{Xt>K}dXt ]

= dCr
0(t,K)−EQ[EQ[1{Xt>K}dXt |Ft ]]

= dCr
0(t,K)−EQ[1{Xt>K}EQ[dXt |Ft ]]

= dCr
0(t,K),

(1.13)

where the second line uses r = 0 (whence dBt = 0), whilst the third line uses the law
of iterated expectations and the fact that EQ[(Xt −K)+] is the time zero price of a strike
K maturity t call option. Finally, the fourth line follows from the Ft -measurability of
1{Xt>K}, whilst the fifth line exploits the martingale property EQ[dXt ] = 0.

As for the right-hand side, define the joint density

fQ
σ2

r ,Xt
(σ2,x)dσ

2dx =Q({σ2 ≤ σ
2
r ≤ σ

2 +dσ
2}∩{x≤ Xt ≤ x+dx}),

then

EQ[RHS] = 1
2

∫∫
R2
+

σ
2x2

δ (x−K) fQ
σ2

r ,Xt
(σ2,x)dσ

2dxdt

= 1
2

∫∫
R2
+

σ
2x2

δ (x−K) fQ
σ2

r
(σ2|Xt = x) fQXt

(x)dσ
2dxdt

= 1
2

∫
R+

x2
δ (x−K) fQXt

(x)
{∫

R+

σ
2 fQ

σ2
r
(σ2|Xt = x)dσ

2
}

dxdt (1.14)

≡ 1
2

∫
R+

x2
δ (x−K) fQXt

(x)EQ[σ2
r (t,

∼
X t)|Xt = x]dxdt

= 1
2 K2 fQXt

(K)EQ[σ2
r (t,

∼
X t)|Xt = K]dt.

Recalling that ∂KEQ[(Xt−K)1{Xt>K}] =−EQ[1{Xt>K}], and−∂KEQ[1{Xt>K}] =EQ[δ (Xt−
K)] we arrive at the Breeden-Litzenberger formula
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fQXt
(K) = ∂

2
KKCr

0(t,K). (1.15)

Combining equations (1.13), (1.14), and (1.15) we thus have that

dCr
0

dt
(t,K) = 1

2 ∂
2
KKCr

0(t,K)K2EQ[σ2
r (t,

∼
X t)|Xt = K],

which using the change of notation14 t = T amounts to the celebrated Dupire-Gyöngy-
Derman-Kani formula

EQ[σ2
r (T,

∼
XT )|XT = K] =

∂TCr
0(T,K)

1
2 K2∂ 2

KKCr
0(T,K)

, (1.16)

- see e.g. Dupire [12] or Derman and Kani [11]. Using some amount of extrapolation,15

the righthand side is empirically measurable, hence (1.16) provides a way of calibrating
the volatility surface to observed call option prices in the market.

Remark 1.3. In Wittgensteinian terms we must “throw away the ladder” to arrive at this
final conclusion, [28] prop. 6.54. Hitherto, we have assumed that the real parameters (r) are
fundamentally unobservable, whilst the implied parameters (i) are those we are exposed
to in the market. Yet, no such distinction exists in the works of Dupire et al., whence the r
superscript in (1.16) really ought to be dropped.

Remark 1.4. The above derivation is arguably unconventional and neither rigorous nor the
quickest way to demonstrate (1.16). In fact, the entire point of setting σi = 0 is essen-
tially to extract the Itō-(Tanaka) formula applied to (Xt−K)+, from which Derman et al.’s
derivation takes its starting point. We keep the derivation here, as it provides a curious
glimpse into how two philosophically quite distinct theorems can be interconnected.

1.3 The Gospel of the Jump

Following remark 1.2, it is worthwhile exploring how the Fundamental Theorem can be
adapted to new terrain. For instance, it is well known that Brownian motion in itself does
not adequately capture the sporadic discontinuities that emerge in stock price processes.
Hence, it is opportune to scrutinise the effect of a jump diffusion process, which in turn
will give rise to another valuable lesson on the profitability of imperfect hedging.

Already, it is a well-known fact that exact hedges generally do not exist in a jump econ-
omy where the true dynamics of the underlying is perfectly disseminated (see e.g. Shreve
[23] or Privault [19]). It is thus of some theoretical interest to see how this preexisting
hedge error is further complicated under the model error framework of the Fundamental
Theorem. We note that this problem has been treated (with various degrees of rigour) in

14 We do this to emphasise that t is the maturity of the option (not its value at time t).
15 Exactly how to do this extrapolation has turned out to be sufficiently non-trivial to spurn numerous
papers and successive quant-of-the-year awards a-decade-and-a-half later, see Andreasen and Huge [3]
(pure local volatility), Guyon, J. and Henry-Labordère [18] (decorated stochastic volatility models).
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Andreasen [2] and Davis [10] when the hedge volatility is implied. Our main contribu-
tion is to generalise to the multi-dimensional framework with arbitrary specifications for
the volatility and jump distribution. For an overview of multi-dimensional jump-diffusion
theory we refer the reader to the appendix.

Suppose the real dynamics of the underlying price process obeys

dXt = DXt [µr(t,
∼
Xt)dt +σr(t,

∼
Xt)dWt ]+DXt−dYt (1.17)

where {Yt}t≥0 is an n-dimensional vector of independent compound Poisson processes.
Specifically, the jth component is given by

[Yt ] j ≡ Y j
t =

N j
t

∑
k=1

Z j
k ,

where {N j
t }t≥0 is an intensity-λ j Poisson process, and {Z j

k}k≥1 is a sequence of rela-
tive jump-sizes, assumed to be i.i.d. square-integrable random variables with cumulative
distribution function (cdf) ν j : R 7→ [0,1]. For shorthand, we shall refer to the vectors
λ= (λ1,λ2, ...,λn)

ᵀ and ν = (ν1,ν2, ...,νn)
ᵀ as the intensity and cdf of Yt .

Oblivious to the true nature of (1.17), we imagine that pricing and hedging should be
performed (with obvious notation) under the tuple 〈φ,λQ

h ,ν
Q
h ,σh(t,Xt),Q〉, where Q is

the risk neutral measure

dQφ,λQ,νQ = exp

{∫ T

0
φs •dWs− 1

2

∫ T

0
|φs|2ds−

n

∑
j=1

(λQ
h, j−λh, j)T

}

·
n

∏
j=1

N j
t

∏
k=1

λ
Q
h, jdν

Q
h, j(Z

j
k)

λh, jdνh, j(Z
j
k)

dPh,

(1.18)

such that {φt}t≥0 is a bounded adapted n-dimensional process, and λQ
h ,ν

Q
h respectively

represent the jump intensity and jump-size distribution under Q. Specifically, the price of
an option with terminal pay-off g(XT ) is determined as

V h
t = EQ[e−

∫ T
t rudug(XT )|FX

t ],

with the underlying supposedly driven by

dXt = DXt [rtιdt +σh(t,Xt)dW
Q
t ]+DXt− [dYt −λQ

h ◦EνQ [Z1]]

with Z1 = (Z1
1 ,Z

2
1 , ...,Z

n
1)
ᵀ, and Q has been specified such that

µh(t,Xt)+λ
Q
h ◦EνQ [Z1]+σh(t,Xt)φt = rtι, (1.19)

is satisfied almost everywhere.16

16 It should be clear the Q is not uniquely determined. In fact, for (1.19) to admit only one solution, we
would require that either (i) λh = λQ

h = 0 (there are no jumps), in which case we recover the standard
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Remark 1.5. We emphasise that (1.18) is a risk neutral measure transformation of the
hedge dynamics with the associated measure Ph. This is to be contrasted with example
2 in subsection 1.2.3 in which Q is the risk neutral measure of the real dynamics.

Theorem 1.2. The Fundamental Theorem of Derivative Trading with Jumps. Let
Vt = V (t,Xt) ∈ C 1,2([0,∞)×Rn) be the price process of a European option with
terminal pay-off VT = g(XT ). Assume we at time t = 0 acquire such an option for
the market-price V i

0, with the associated (not necessarily uniquely determined) im-
plied volatility σi(0,X0). Furthermore, suppose we set out to ∆ -hedge our posi-
tion, but remain under the impression that the correct volatility ought, in fact, to be
σh(0,X0), leading to the fair price V h

0 . Then the present value of the profit-&-loss
we incur from holding such a portfolio over the interval T= [0,T ] is

P&Lh
T = V h

0 −V i
0 +

1
2

∫ T

0
e−

∫ t
0 rudu tr[DXtΣrh(t,

∼
Xt)DXt ∇

2
xxV h

t ]dt,

+
∫ T

0

n

∑
j=1

e−
∫ t

0 rudu
{(

∆ jV h
t (t,Xt−)−X j,t−ZN j

t
∂x jV

h
t

)
dN j

t

−λ
Q
h, j

(
EQ[∆ jV h

t (t,x)]|x=Xt− − X j,t−EQ[Zi
1]∂x jV

h
t

)
dt
}
,

(1.20)

where
∆ jV h

t (t,Xt−)≡V h(t,Xt− ◦ (ι+ ê jZ
j
Nt
))−V h(t,Xt−),

represents the change in value of the option when the underlying jumps in the jth

component, and [ê j]k = δ j,k is a unit vector in Rn.

Sketch Proof: The proof runs in parallel with that of theorem 1. Specifically, the analogue
of expression (1.6) is

dΠ
h
t = dV i

t −∇xV h
t • (dXcont.

t − (rtι−qt)◦Xtdt)−∇xV h
t •dYt − rtV i

t dt,

where dXcont.
t is the continuous part of (1.17) i.e.

dXcont.
t = DXt [µr(t,

∼
Xt)dt +σr(t,

∼
Xt)dWt ].

Furthermore, in analogy with (1.7) and (1.8) we have the Itō formula

dV h
t = {∂tV h

t + 1
2 tr[σᵀr (t,

∼
Xt)DXt ∇

2
xxV h

t DXtσr(t,
∼
Xt)]}dt +∇xV h

t •dXcont.
t ,

+
n

∑
j=1

[V h(t,Xt− ◦ (ι+ ê jZ
j
Nt
))−V h(t,Xt−)]dN j

t ,

Girsanov theorem with φt = σ
−1
h (µh − rι), or (ii) when σh = 0 (there are only jumps) in which case

λQ
h = (µh− rtι)�EνQ [Z1] where � is Hadamard division.
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and the partial integro-differential equation for pricing purposes

rtV h
t = ∂tV h

t +∇xV h
t • ((rtι−qt)◦Xt)+

1
2 tr[σᵀh (t,x)DXt ∇

2
xxVtDXtσh(t,X)]

+∑
n
j=1 λ

Q
h, jEνQ [V (t,x◦ (ι+ ê jZ

j
1))−V (t,x)− x jZ

j
1∂x jV (t,x)]x=Xt− ,

Combining these three expressions as above yields the desired result. �

Remark 1.6. The last two lines in (1.20) (which we denote by P&LJ) represent the present-
valued profit-&-loss brought about by our inability to hedge the jump risk completely.
Letting JQj,h(dt×dz j) be a Poisson random measure with intensity

EQ[JQj,h(dt×dz j)] = λ
Q
h, jdtdν

Q
h, j(z

j),

for j = 1,2, ...,n, we have that the jump contribution to the profit-and-loss may be written
as

P&LJ =
∫ T

0

∫
R

n

∑
j=1

e−
∫ t

0 rudu{
∆ jV h

t (t,Xt−)− z jX j,t−∂x jV
h

t
}

JQj,h(dt×dz j). (1.21)

This highlights that if V is convex in all of its components (a property it will inherit from
the payoff function under mild conditions) then ∀ j : ∆V > ∂x jV ∆X j whence the integrand
in P&LJ is positive. Thus, our hedge portfolio actually benefits from jumps (in either
direction) of any of the underlying price process. Conversely, if we had shorted the option,
the hedge profit would obviously take a hit in the event of a jump (in Talebian terms,
holding a hedge portfolio with a short option position corresponds to “picking pennies in
front of a steam roller”17). A vivid illustration of this point is provided in figure 1.2 for an
option written on a single underlying.

1.4 Insights From Empirics: On Arbitrage and Erraticism

Inspired by Wilmott’s theoretical hedge experiment, we now look into the empirical per-
formance of ∆ -hedging strategies based on (I) forecasted implied volatilities and (II) fore-
casted actual (i.e. historical) volatilities. Specifically, we are interested in the properties
of the accumulated P&L, insofar as we ∆ -hedge, till expiry, a three-month call-option on
the S&P500 index, initially purchased at-the-money. We investigate a totality of 36 such
portfolios over disjoint intervals between July 2004 and July 2013. This involves market
data on both the underlying index and on options. Daily data on the S&P500 index is read-
ily and freely available. For option data, we combine a 2004-2009 data set from a major
commercial bank18 with more recent prices from OptionMetrics obtained via the Wharton
Financial Database.
17 [27] p.19, “’Most traders were just “picking pennies in front of a steam roller,” exposing themselves to
the high impact rare event yet sleeping like babies, unaware of it.”
18 The bank shall remain nameless, but the data can be downloaded from
http://www.math.ku.dk/ rolf/Svend/http://www.math.ku.dk/∼rolf/Svend/
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Fig. 1.2 Suppose we ∆ -hedge a long position in an option with a convex pricing function. Insofar as a
jump in the underlying occurs, Xt 7→ Xt ±∆Xt , it follows that the value of the option will exceed the value
of the ∆ -position. Hence, our net P&L benefits from such an occurrence. Obviously, the converse will be
true if we hold a short position in the option.

Whilst ATM call option prices straightforwardly are obtained from the data set, the
(forecasted) implied and actual volatilities require a bit of manipulation. In case of the for-
mer, we define the daily implied volatility, over the life-time of the portfolio, as the ATM
implied volatility of corresponding tenor obtained at the portfolio purchasing date (the re-
sulting volatility process is illustrated by the black curve in Figure 1.3). In case of the latter,
we require a suitable volatility model fitted to historical data in order to predict the “ac-
tual” volatility process. Specifically, we define the daily actual volatility, over the life-time
of the portfolio, as the conditional expectation of a volatility model which has been fitted
to market data from the previous portfolio period. In this context, we observe that models
with lognormal volatility dynamics generally have more empirical support than, say, Hes-
ton’s model (see Gatehral and Jaisson [16] and their references). The Exponential General
Autoregressive Conditional Heteroskedasticity model (EGARCH(1,1)) has proven partic-
ularly felicitous in the context of S&P 500 forecasting (see Awartani and Corradi [4]) - a
result we assume applies universally for each of the 36 portfolios investigated. Thus, we
hold it to be the case that daily log returns, rt , can be modelled as rt = µ + εt , where µ

is the mean return, and εt has the interpretation of a hetereoskedastic error. In particular,
εt is construed to be the product between a white noise process, zt ∼ N(0,1), and a daily
standard deviation, σt , which obeys the relation

logσ
2
t = α0 +α1 logσ

2
t−1 +α2

[
|εt−1|
σt−1

−
√

2
π

]
+α3

εt−1

σt−1
, (1.22)

where α0,α1,α2 and α3 are constants. The resulting volatility process is illustrated by the
light grey curve in Figure 1.3.
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Fig. 1.3 The top grey curve is the S&P500 Index plotted from July 2004 to July 2013 [units on right hand
axis]. The tic-dates on the time axis have deliberately been chosen to match the purchasing dates {ti}36

i=1 of
the 36 delta-hedged portfolios under investigation (each of which is of three months’ duration). The light
grey curve is the actual (stochastic) volatility estimated from a lognormal volatility model. Specifically,
every time segment between purchasing dates [ti, ti+1) reflects a Monte Carlo simulated forecast based
upon an EGARCH(1,1) fitted to market data from the previous time segment [ti−1, ti). Finally, the black
curve is the three-month ATM implied volatility. Specifically, every time segment between purchasing
dates [ti, ti+1) is a static forecast based upon ATM implied volatility data from the purchasing date ti. Both
volatility curves have their units on the left hand axis.

A few remarks on the estimated volatility processes are in order. First, we clearly see
that volatility can change dramatically during the life-time of a portfolio. We also see that
implied volatility typically is higher than actual volatility. This oft-reported result can be
explained theoretically by the stochastic volatility having a market price of risk attached,
see for instance Henderson et al. [15]. Finally, there is a clear negative correlation between
stock returns and volatility during the financial turmoil which followed the Lehman default
in September 2008. All in all, reality unsurprisingly turns out to be a bit more complicated
than the set-up in Wilmott’s experiment. Still and all, does its main messages carry over?
To test this, we perform a hedge experiment with the following design:

• For any given portfolio, we compute the daily implied volatilities {σ imp
t }63

t=1 and the
daily actual volatilities {σ act

t }63
t=1 as outlined above. We assume there are 63 trading

days over a three months period (labelled by t = 1,2, ...,63) and let St , rt and qt denote
the time t value of the index, interest rate and dividend yield.

• For each of the two hedging strategies x ∈ {σ imp,σ act} we do the following: If σ act
1 <

σ
imp
1 we short the call (γ =−1); otherwise, we go long the call (γ =+1). Then, we set

up the delta neutral portfolio Π1 = B1− γ∆ BS
1 (x1)S1 + γCBS

1 (σ
imp
1 ) s.t. Π1 = 0, where

∆ BS
1 (x1) is the well-known Black-Scholes delta.
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Fig. 1.4 Panels (a) (actual) and (b) (implied) show the path-for-path hedge error behaviour for the 36 non-
overlapping three-month hedges. Dotted paths correspond to cases where we initially take a long position
in the option.

• For t = 2,3, ...,63 we do the following: compute the time t value of the portfolio set
up the previous day: Π̃t = Bt−1ert−1∆ t − γ∆ BS

t (xt)Steqt−1∆ t + γCBS
t (σ

imp
t ). The quan-

tity dP&Lt = Π̃t −Πt−1 defines the profit-&-loss accrued over the interval [t − 1, t].
Next, we rebalance the portfolio such that it, once again, is delta-neutral, Πt = Bt −
γ∆ BS

t (xt)St + γCBS
t (σ

imp
t ), where Bt is chosen in accordance with the self-financing

condition: Π̃t = Πt .
• Finally, at the option expiry, we compute the terminal P&L, as well as its lifetime

quadratic variation, ∑
63
t=1 |dP&Lt |2/63.

The 36 hedge error (or P&L) paths and the distributions of the quadratic variation of the
two methods are shown in Figure 1.4. Table 1.1 reports descriptive statistics and a statisti-
cal tests of various hypotheses.

Quantity Mean (m) Std. Dev. (sd) Notes (Hypotheses Tests)
Hedge error, 7.7 17.3 The mean hedge error is statistically greater than zero
actual volatility (p-value = 1%) when we hedge with the actual vol. forecast.
Hedge error, 7.7 15.6 The mean hedge error is statistically greater than zero
implied volatility (p-value = 1%) when we hedge with the implied vol. forecast.

We cannot reject the hypothesis that the standard deviations
sdact = sdimp are distinct (p-value = 55%).

Quadratic var., 1.2 2.1
actual volatility
Quadratic var., 0.81 2.0 The mean quadratic variation of the hedge error when
implied volatility we hedge with the actual vol. forecast is statistically

less than the quadratic variation when we
hedge with the implied vol. forecast (p-value = 1.4%).

Table 1.1 Summary statistics and hypothesis tests for different hedge strategies.
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First, we note (top panels figure 1.4) that even though implied volatility typically is
above actual volatility, this far from creates volatility arbitrage. Hedge errors for the two
methods readily become negative. A primary explanation for this is the randomness of
volatility. Our ∆ -hedged strategy only makes us a profit if realised volatility ends up “on
the right side” of initial implied volatility. And that we don’t know for sure until after the
hedging period is over; we have to base our decisions on forecasts; initial forecasts even,
for the fundamental theorem to apply. Notice though that the averages for both hedge
errors are significantly positive. This shows that there is a risk premium that can be picked
up, most often by selling options and ∆ -hedging them. Because the hedge is not perfect,
this compensation is anticipated. The question is, is it financially significant? In theory
the hedged portfolio has an initial cost of zero, so it is not obvious how to define a rate
of return, but the initial option price would seem a reasonable (possibly conservative)
benchmark for the collateral that would need to be posted on a hedged short call option
position. From column three in Table 1.2 the average option price is $ 49.2. Comparing this
to the means (∼ 7.7; remember this is over a three-month horizon) and standard deviations
(∼ 15.5; ditto) of the hedge errors in Table 1.1 shows that the gains are also significant in
economic terms. Put differently, a crude calculation

4 · 7.7
49.2 −0.02
√

4 · 15.5
49.2

,

gives annualised Sharpe-ratios around 1.
If we look just at the terminal hedge errors, then the difference in riskiness (as

measured by standard deviation) between hedging with actual and hedging with implied
volatility is in no way statistically significant (the p-value for equality of variances is 55%).
Also, the correlation between the terminal hedge error from the two approaches is 0.97.
However, if we consider the quadratic variations as the measure of riskiness, then the pic-
ture changes. The average quadratic variation of the implied hedge error (0.81) is only
two-thirds of the average quadratic variation of the actual hedge error (1.2) (a paired t-test
for equality yields a p-value of 1.4%).

All in all this shows that volatility arbitrage is difficult, but the following insight from
Wilmott’s experiment stands: If you are in the business of hedging, then the use of implied
volatility should make you sleep better at night.

1.5 Conclusion

In the world of finance, no issue is more pressing than that of hedging our risks, yet re-
markably little attention has been paid to the risk brought about by the possibility that our
models might be wrong. To remedy this deplorable situation, we have in this paper de-
rived a meta-theorem that quantifies the P&L of a ∆ -hedged portfolio with an erroneous
volatility specification. Meta- to the extent that one of the constituent parameters (the real
volatility) is transcendental; yet, also a theorem with some very concrete “real world”
corollaries. For instance, it was shown that hedging with the implied volatility gives rise
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to smooth (i.e. O(dt)) P&L-paths, whilst any other hedge volatility yields erratic (i.e.
O(dWt)) P&L paths. In a somewhat quirkier context, the Dupire-Gyöngy-Derman-Kani
formula for volatility surface calibration was shown to be a corollary.

Whilst the theorem proved in section one is more general than the versions typically
found in the literature, it does not go far enough. Extensive empirical support has been
added to the case of discontinuities in the stock price process: thus, in the Gospel of the
Jump we extended the Fundamental Theorem to include compound Poisson processes,
which came with the revelation that jumps unambiguously hurt you when you try to hedge
short put and call option positions.

One of the most conspicuous implications of the Fundamental Theorem is undoubt-
edly the apparent ease with which arbitrage can be made: e.g. in the constant parameter
framework of Wilmott’s experiment, a free lunch is guaranteed insofar as we can establish
max{σr,σi} (in case of the former, we go long on the option - otherwise, we short it).
Studying this strategy empirically, we find that the mean P&L indeed is in the positive;
nonetheless, qua a significant dispersion the profit readily turns negative: the statistical
arbitrage accordingly relies on us being willing to take so some significant hits along the
way. Indeed, this is without even factoring in the non-negligible role of transaction costs.
On the other hand, there is strong evidence that hedging at the implied volatility does yield
smoother P&L paths.
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Appendix: Multi-dimensional Jumps

In this section we establish Girsanov’s Theorem and a pricing PDE for multi-dimensional
jump-diffusion models. The equivalent results for 1-dimensional models are ubiquitous -
see for instance Cont and Tankov [16], Privault [19] or Runggaldier [43].

The Radon-Nikodym Derivative

A Generalised Girsanov Theorem for Jump-Diffusion Processes. Let {Wt}t∈[0,T ]
be a dw-dimensional vector of independent Wiener processes on the filtered prob-
ability space (Ω ,F ,P,{Ft}t∈[0,T ]). One the same space, let {Yt}t∈[0,T ] be a dy-
dimensional vector of independent compound Poisson processes, the ith component
of which is

Y i
t =

Ni
t

∑
k=1

Zi
k,

where Ni
t ∼ Pois(λit), λi > 0 is an intensity parameter, and {Zi

k}k∈N is a sequence of
i.i.d. random variables with jump distribution dνi(z). Finally, let {φ t}t∈[0,T ] be a dw-
dimensional Girsanov kernel (some bounded, adapted process), then the processes{

WQ
t :=Wt −

∫ t

0
φ sds

}
t∈[0,T ]

, and
{
Ỹ Q

t := Yt −λQ ◦EνQ [Z1]t
}

t∈[0,T ]

are martingales under the probability measure Q defined as

dQ
φ ,λQ,νQ = E (φ ?W )(T ) · e−∑

n
i=1(λ

Q
i −λi)T

n

∏
i=1

Ni
t

∏
k=1

λ
Q
i dν

Q
i (Zi

k)

λidνi(Zi
k)

dP

where E (φ ?W )(T ) = e
∫ T

0 φ s•dWs− 1
2
∫ T

0 |φ s|2ds is the Doleans exponential with re-
spect toWt , and we have defined λ= (λ1,λ2, ...,λdy)

ᵀ, and ν = (ν1,ν2, ...,νdy)
ᵀ.

Proof. The diffusion part is well known from Girsanov’s theorem and will not be treated
here. Instead we will show that for any bounded measurable function f : Rdy 7→ R, the
following equivalence obtains

EλQ,νQ [ f (YT )] = Eλ,ν
[

f (YT )
dQ
dP

]
,

for the defined measure Q. To this end, define Y h
t as the vector Yt with the upper limit of

the summation, Ni
t , replaced by some fixed number hi ∈ N0 for all i. Then the RHS can be

written as
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e−∑
dy
i=1(λ

Q
i −λi)TEλ,ν

 f (Yt)
dy

∏
i=1

Ni
t

∏
k=1

λ
Q
i dν

Q
i (Zi

k)

λidνi(Zi
k)


= e−∑

dy
i=1(λ

Q
i −λi)T

∞

∑
h1=0

· · ·
∞

∑
hdy=0

P

 dy⋂
i=1

{Ni
T = hi}

 ·
Eλ,ν

 f (Yt)
dy

∏
i=1

Ni
t

∏
k=1

λ
Q
i dν

Q
i (Zi

k)

λidνi(Zi
k)

∣∣∣∣ dy⋂
i=1

{Ni
T = hi}


= e−∑

dy
i=1(λ

Q
i −λi)T

∞

∑
h1=0

· · ·
∞

∑
hdy=0

dy

∏
i=1

P
(
Ni

T = hi)Eλ,ν [ f (Y h
t )

dy

∏
i=1

hi

∏
k=1

λ
Q
i dν

Q
i (Zi

k)

λidνi(Zi
k)

]

= e−∑
dy
i=1(λ

Q
i −λi)T

∞

∑
h1=0

· · ·
∞

∑
hdy=0

dy

∏
i=1

e−λiT (λiT )hi

ki!
Eλ,ν

[
f (Y h

t )
dy

∏
i=1

hi

∏
k=1

λ
Q
i dν

Q
i (Zi

k)

λidνi(Zi
k)

]

=
∞

∑
h1=0

· · ·
∞

∑
hn=0

dy

∏
i=1

e−λ
Q
i T (λQ

i T )hi

ki!
Eλ,ν

[
f (Y h

t )
dy

∏
i=1

hi

∏
k=1

dν
Q
i (Zi

k)

dνi(Zi
k)

]

=
∞

∑
h1=0

· · ·
∞

∑
hdy=0

dy

∏
i=1

e−λ
Q
i T (λQ

i T )hi

ki!

∫
Rh1
· · ·
∫
Rhdy

f (yh
t )

dy

∏
i=1

hi

∏
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dν
Q
i (zi
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dνi(zi
k)
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=
∞
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∞
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f (yh
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hi

∏
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Q
i (zi
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=
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· · ·
∞
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Q
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[
f (Y h
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=
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∞

∑
hdy=0

Q

 dy⋂
i=1
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EλQ,νQ

 f (Yt)

∣∣∣∣ dy⋂
i=1

{Ni
T = hi}



which by the law of total probability corresponds to the LHS, EλQ,νQ [ f (YT )] as desired.
To show independence of increments under Q, let ξs = dQ/dP(s), and let f and g be two
bounded measurable functions. Suppose s < t ≤ T then

EλQ,νQ [ f (Ys)g(Yt −Ys)] = Eλ,ν [ f (Ys)g(Yt −Ys)ξt ]

= Eλ,ν [ f (Ys)ξs]Eλ,ν [g(Yt −Ys)ξt/ξs]

= Eλ,ν [ f (Ys)ξs]Eλ,ν [g(Yt −Ys)ξt ]

= EλQ,νQ [ f (Ys)] ·EλQ,νQ [g(Yt −Ys)].

�
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Measure Changes in Jump-Diffusion dynamics

To appreciate the gravity of this result, consider the jump-diffusion dynamics of the n-
dimensional stock price process

dXt = DXt− [µ(t,Xt)dt +σ(t,Xt)dWt ]+DXt θ(t,Xt−)dYt (1.23)

where DXt− = diag(X1,t−,X2,t−, ...,Xn,t−), µ : [0,∞)×Rn 7→Rn, σ : [0,∞)×Rn 7→Rn×dw

and θ : [0,∞)×Rn 7→Rn×dy . For the purposes of no-arbitrage pricing we want to determine
the measure Q such that the discounted process

X∗t := e−
∫ t

0 ruduXt ,

is a martingale. From Ito’s lemma, it can readily be deduced that

dX∗t = D∗Xt [(µ(t,Xt)− rtι+θ(t,Xt)λ◦Eν [Z1])dt +σ(t,Xt)dWt ]

+D∗Xt−θ(t,Xt−)(dYt −λ◦Eν [Z1]dt),

where we have added and subtracted θ(t,Xt)λ◦Eν [Z1]dt, whereZ1 := (Z1
1 ,Z

2
1 , ...,Z

dy
1 )ᵀ.

Using the measure transformation in the theorem above this transforms to

dX∗t = D∗Xt [(µ(t,Xt)− rtι+θ(t,Xt)λ
Q ◦EνQ [Z1]+σ(t,Xt)φ t)dt +σ(t,Xt)dW

Q
t ]

+D∗Xt−θ(t,Xt−)dỸ
Q

t .

Hence,X∗t is a Q-martingale iff the tuple 〈φt ,λ
Q,νQ,Q〉 is chosen such that

µ(t,Xt)+θ(t,Xt)λ
Q ◦EνQ [Z1]+σ(t,Xt)φ t = rtι, (1.24)

almost everywhere. Needless to say, the infinite number of tuples which satisfies the no-
arbitrage condition (1.24) ruins our chances of establishing unique prices for financial
derivatives depending on the underlying jump diffusion dynamics. This is obvious by re-
calling that the discounted price process of V also should be a martingale, whence:

V (t,Xt) = Et,λQ,νQ

[
e−

∫ T
t rudug(XT )

]
, (1.25)

where g(XT ) is the terminal pay-off.

Example: The Merton Model.

Let St be the price process of a stock which obeys the following dynamics under the P
measure, St = S0eµt+σWt+Yt , or in differential form

dSt = St [(µ + 1
2 σ

2)dt +σdWt ]+St−(eZt −1)dNt .



1 The Fundamental Theorem of Derivative Trading 27

Transforming to the measure19 Q0,λQ,νQ we have Wt =WQ
t and

dSt =St [(µ + 1
2 σ

2 +λ
QE

νQ [eZ1 −1])dt +σdWQ
t ]

+St−[(eZt −1)dNt −λ
QE

νQ [eZ1 −1]dt],

which implies the no-arbitrage condition

r = µ + 1
2 σ

2 +λ
QE

νQ [eZ1 −1],

and, of course, St = S0 exp{µt +σWQ
t +Yt}. Assume {Zk}k∈N is a sequence of indepen-

dent N(δ ,ζ 2) distributed random variables under Q0,λQ,νQ . Then by the law of total ex-
pectation, the value of a derivative paying out Θ(ST ) at maturity is

Vt = e−rτ−λQτ
∞

∑
k=0

(λQτ)k

k!
Et,λQ,νQ [Θ(Steµτ+kδ+X )],

where τ := T − t and

X := σ(WT −Wt)+
k

∑
i=1

(Zi−δ )∼ N(0,σ2
τ + kζ

2).

In particular, if the option is a vanilla call, Φ(ST ) = (ST −K)+, we find that

Vt = e−rτ−λQτ
∞

∑
k=0

(λQτ)k

k!
Et,λQ,νQ

[
(Ste

(r− 1
2 σ2−λQ(eδ+

1
2 ζ 2
−1)τ+kδ+X −K)+

]
= e−rτ−λQτ

∞

∑
k=0

(λQ(T − t))k

k!
CBS

(
Ste

1
2 kζ 2−λQ(eδ+

1
2 ζ 2
−1)τ+kδ ,K,σ2 + kζ 2

τ
,r,τ

)
,

where CBS := CBS(St ,K,σ2,r,τ) is the Black-Scholes price. The first line follows from
the no-arbitrage condition alongside

E
νQ [eZ1 ] = eδ+

1
2 ζ 2

.

The last line from the relation

e−rτE[(xeX− 1
2 v2+rτ −K)+] =CBS(x,K,v2/τ,r,τ),

where v := σ2τ + kζ 2. Hence the value of a call option under a jump-diffusion dynamics
can be written as an infinite superposition of Black Scholes call prices.

19 Strictly speaking, this is not Merton’s choice of measure. He assumes the jump intensity and distribution
to be invariant under P 7→Q, while the Wiener process changes.
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PIDE Methods

The Partial Integro-Differential Pricing Equation (PIDE) Consider a jump dif-
fusion dynamics of the form (1.23), and let Vt =V (t,Xt) be a derivative the value of
which is contingent upon it. Let 〈φt ,λ

Q,νQ,Q〉 be a tuple such that the no-arbitrage
condition (1.24) is satisfied. Then

dXt = DXt [rtιdt +σ(t,Xt)dW
Q
t ]+DXt−θ(t,Xt−)[dYt −λQ ◦EνQ [Z1]dt]],

and Vt =V (t,x) satisfies the PIDE

rtVt = ∂tVt + rtx•∇xVt +
1
2 tr[σᵀ(t,x)Dx∇

2
xxVtDxσ(t,x)]

+EνQ [∑
dy
i=1 λ

Q
i {V (t,x◦ (ι+θ :,i(t,x)Zi

1))−V (t,x)}
− (Dxθ(t,x)λQ ◦Z1)•∇xV (t,x)],

where ∇x is the gradient operator, ∇2
xx is the Hessian operator, ι := (1,1, ...,1)ᵀ ∈

Rn, and θ :,i(t,x) denotes the ith column of the matrix θ(t,x). Particularly, when
n = dy and θ = I is the identity matrix then

rtVt = ∂tVt + rtx•∇xVt +
1
2 tr[σᵀ(t,x)Dx∇

2
xxVtDxσ(t,x)]

+∑
n
i=1 λ

Q
i EνQ [V (t,x◦ (ι+ êiZi

1))−V (t,x)− xiZi
1∂xiV (t,x)],

where êi is a unit vector in the ith direction.

Proof. Suppose a jump occurs in the ith component of the compound Poisson process Yt :
Y i

t =Y i
t−+Zi

t . From the governing dynamics (1.23), this means that the stock price process
jumps by ∆Xt =Xt− ◦ (ι+θ :,i(t,Xt−)Zi

t ). Defining the continuous SDE

dXcont.
t := DXt [rtιdt +σ(t,Xt)dW

Q
t ]−DXt−θ(t,Xt−)λ

Q ◦EνQ [Z1]dt],

we find by Ito’s lemma,

dV (t,Xt) = ∂tV (t,Xt)dt +∇xV (t,Xt)•dXcont.
t

+ 1
2 tr[σᵀ(t,Xt)DXt ∇

2
xxV (t,Xt)DXtσ(t,Xt)]dt

+∑
dy
i=1(V (t,Xt−+∆Xt)−V (t,Xt−))dNi

t

= ∂tV (t,Xt)dt +∇xV (t,Xt)• (DXt rtι)dt

+∇xV (t,Xt)• (DXtσ(t,Xt)dW
Q
t )

−∇xV (t,Xt)• (DXt−θ(t,Xt−)λ
Q ◦EνQ [Z1])dt

+ 1
2 tr[σᵀ(t,Xt)DXt ∇

2
xxV (t,Xt)DXtσ(t,Xt)]dt
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+∑
dy
i=1(V (t,Xt− ◦ (ι+θ :,i(t,Xt−)Zi

Ni
t
))−V (t,Xt−))dNi

t

= ∂tV (t,Xt)dt +∇xV (t,Xt)• (DXt rtι)dt

−∇xV (t,Xt)• (DXt−θ(t,Xt−)λ
Q ◦EνQ [Z1])dt

+ 1
2 tr[σᵀ(t,Xt)DXt ∇

2
xxV (t,Xt)DXtσ(t,Xt)]dt

+∑
dy
i=1 λ

Q
i EνQ

[
(V (t,x◦ (ι+θ :,i(t,x)Zi

1))−V (t,x))
]
x=Xt−

dt

+∇xV (t,Xt)• (DXtσ(t,Xt)dW
Q
t )

+∑
dy
i=1

{
(V (t,Xt− ◦ (ι+θ :,i(t,Xt−)Zi

Ni
t
))−V (t,Xt−))dNi

t

−λ
Q
i EνQ

[
(V (t,x◦ (ι+θ :,i(t,x)Zi

1))−V (t,x))
]
x=Xt−

dt
}
.

Under Q, the expectations of the diffusion term and the compensated jump terms (the last
three lines) vanish. Furthermore, since

V ∗t := e−
∫ t

0 ruduV (t,Xt),

is a Q martingale; dV ∗t should be driftless. These facts jointly imply that

− rtV (t,Xt)+∂tV (t,Xt)+ rtDXt ι•∇xV (t,Xt)

−∇xV (t,Xt)• (DXt−θ(t,Xt−)λ
Q ◦EνQ [Z1])

+ 1
2 tr[σᵀ(t,Xt)DXt ∇

2
xxV (t,Xt)DXtσ(t,Xt)]

+∑
dy
i=1 λ

Q
i EνQ

[
(V (t,x◦ (ι+θ :,i(t,x)Zi

1))−V (t,x))
]
x=Xt−

= 0,

which essentially is what we wanted to show. �
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Appendix B: Data

Contract ATM strike Option price P&Lactual
T P&Limplied

T Q.V.actual Q.V.implied

07-Jul-2004 1118.3 36.5852 12.2045 15.1591 0.5269 0.2615
05-Oct-2004 1134.5 33.0392 5.8372 5.0520 0.1683 0.1386
05-Jan-2005 1183.7 34.7050 11.4080 13.6705 0.1975 0.1759
06-Apr-2005 1184.1 34.9985 7.3072 9.0917 0.3162 0.1693
06-Jul-2005 1194.9 34.4864 11.9818 10.5282 0.2974 0.0894

04-Oct-2005 1214.5 37.8141 7.2779 7.4261 0.5384 0.1670
06-Jan-2006 1285.4 37.1621 12.6952 12.4934 0.1539 0.1406
07-Apr-2006 1295.5 38.2703 0.0765 0.5022 0.2827 0.2444
07-Jul-2006 1265.5 45.5356 15.3714 13.7452 0.3655 0.1974

05-Oct-2006 1353.2 42.7682 12.6179 12.6400 0.0904 0.0945
08-Jan-2007 1412.8 45.4682 -5.0096 2.1741 2.4476 1.0569
09-Apr-2007 1444.6 47.0689 19.4885 7.4564 0.7699 0.0865
09-Jul-2007 1531.8 55.8378 -11.4976 -7.5524 1.8603 1.1396

05-Oct-2007 1557.6 63.1625 1.6451 -1.2115 1.2330 0.4542
09-Jan-2008 1409.1 74.2874 9.6117 9.6158 1.1975 0.6555
09-Apr-2008 1354.5 66.2276 17.3617 19.0049 0.8019 0.6270
09-Jul-2008 1244.7 62.8179 -56.9636 -47.0345 8.0872 10.4193

07-Oct-2008 996.2 83.8510 55.3847 51.8900 9.7721 6.4129
09-Jan-2009 890.3 69.9489 14.1892 3.2637 3.0947 0.4083
10-Apr-2009 856.6 62.9702 30.2400 27.2551 0.5701 0.4336
09-Jul-2009 882.7 49.8464 -12.4499 -9.8467 0.1245 0.1039

07-Oct-2009 1057.6 49.0640 17.0496 18.0507 0.2944 0.2135
07-Jan-2010 1141.7 42.2410 16.4989 16.4106 0.2595 0.1990
09-Apr-2010 1194.4 36.6784 -10.3121 -9.5031 0.5463 0.5578
09-Jul-2010 1078.0 52.2001 15.6833 17.6455 3.0501 0.3326

07-Oct-2010 1158.1 50.6050 20.7394 19.8607 0.1926 0.2166
06-Jan-2011 1273.8 43.6970 9.4015 11.7384 0.3762 0.2400
07-Apr-2011 1333.5 44.7866 13.3942 13.8116 0.3490 0.3055
08-Jul-2011 1343.8 43.0900 -3.8722 3.8883 0.1692 0.3196

06-Oct-2011 1165.0 73.4417 14.3245 16.8015 0.8601 0.7112
06-Jan-2012 1277.8 53.9770 -17.4158 -21.6739 0.3472 0.1853
09-Apr-2012 1382.2 48.9735 -9.7517 -9.9641 0.4760 0.4018
09-Jul-2012 1352.5 47.5814 15.8417 15.4475 0.3181 0.3184

05-Oct-2012 1460.9 42.9608 11.2648 9.0422 3.0925 0.8156
09-Jan-2013 1461.0 43.7355 17.6935 14.7094 0.2747 0.1360
11-Apr-2013 1593.4 39.2535 9.4000 6.6261 1.0037 0.7546

Table 1.2 The first column lists the purchasing dates of the 36 contracts. Column two shows the ATM
strikes at which the contracts are purchased and column three show the prices at which this happens. The
fourth column gives the terminal P&L for each contract, when the hedge is performed with an “actual”
(EGARCH(1,1)) volatility forecast. Column five likewise, but when the hedge is with the implied volatil-
ities. Finally, columns six and seven give the quadratic variation, defined as ∑

N
i=1 |dP&Li|2/N, where

N = 63 is the number of trading days, for the entire actual and implied paths respectively.
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2.1 Introduction

It is well known to anyone who has dabbled in continuous time continuous state stochas-
tic financial control problems that searching for closed form solutions is an onerous and
all-too-often fruitless endeavour. Given the far-reaching scope of the field, from classi-
cal portfolio optimisation a la Merton [12], [35], to modern day market micro-structure
as in Almgren [3], and Stoikov et al. [6], it is quite clear that numerical control proce-
dures are called for. Indeed, a plurality of such methods already prevails, from hands-
on discretisations of the Hamilton-Jacobi-Bellman equation (see e.g. Forsyth et al. [24],
[27]), to the employ of sophisticated forward-backward SDE techniques (see e.g. Ludwig
et al. [17]). Most prominently, perhaps, stands Kushner and Dupuis’ monograph on the
so-called Markov chain approximation method [31], which although predominantly con-
cerned with control-independent diffusions, straight-forwardly can be generalised in this
direction, [16]. This paper pertains to this latter method, the central premise of which is to
substitute the continuous time continuous state controlled state process by a discrete time
discrete state Markov chain. As shown in [31], by choosing the transition probabilities of
the Markov chain based on standard finite difference discretisations of the governing PDE,
convergence can be established.

The purpose of this paper is two-fold: first, it serves as an exegesis of the Markov
chain approximation method for anyone who seeks a swift and comparatively unconvo-
luted theoretical overview of the area. To this end, even numbered sections aim to equip
the reader with the fundamental theoretical tools needed in order to implement numerical
control problems in simple environments where uncertainty is driven by a Brownian mo-
tion. For the reader well-versed in the Markov chain approximation method, these sections
can safely be skimmed if not downright skipped. The second, and arguably more intriguing
part of this paper, is the odd numbered sections, which provide a detailed account of just
how well the Markov chain approximation method fares when we deploy it in a Merton
type portfolio optimisation context. As it will soon become clear, actual implementations
require a non-negligible amount of Fingerspitzengefühl, the key lessons of which are not
communicated by Kushner and Dupuis. For example, inexact boundary conditions turn out
to have a corrosive effect on the accuracy of the numerical controls for a rather large region
into the finite difference grid. However, we show that if an exact relationship between ad-
jacent grid nodes can be established, this problem altogether dissipates. Another question
concerns the sanctity of one of the central requirements of the algorithm: positive transi-
tion probabilities. Given the prevalence of multi-dimensional problems for which negative
probabilities are hard to avoid, it is only reasonable to test how well the Markov chain
approximation method fares in this domain. Our numerical studies suggest that negative
probability schemes indeed have something to offer, although one must tread carefully.

Admittedly, this is not the first paper to deal the numerical implementation of Mer-
ton type problems. Clear examples include Fitzpatrick et al. [10] and Munk [22], [23].
Nevertheless, these papers all deal with the infinite horizon single state process case, and
only focus on the implicit implementation procedure. We, on the other hand, focus on
finite horizon investment problems both from an explicit and implicit perspective, with
generalisations to higher spatial dimensions.
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2.2 The Finite Horizon Stochastic Control Problem

We set out by restricting our attention to mono-dimensional controlled diffusion processes
over finite temporal horizons. Let T= [0,T ] where T < ∞ be the time interval of interest,
and let Xt : Ω ×T 7→ R be the stochastic process (the state variable) we are trying to
control. As convention would have it, the latter is assumed to inhabit the stochastic basis
(Ω ,F ,F,P), where F = {F X

t }t∈T is the canonical filtration of X . Defining the mono-
dimensional Brownian motion {Wt}t∈T we stipulate the governing dynamics of X as

dXα
s = b(s,Xα

s ,αs)ds+σ(s,Xα
s ,αs)dWs, (2.1)

where Xα
t = x, and αs = α(s,Xs) is an F X

s -adapted Markovian control, which takes values
in the control space A⊂Rm, and b and σ are continuous functions b : T×R×A 7→R and
σ : T×R×A 7→R chosen such as to guarantee the existence of a unique strong solution.1

The fundamental control problem we are trying solve is that of maximising

W (t,x,α) = Et,x

[∫ T

t
e−

∫ s
t βudu f (s,Xα

s ,αs)ds+ e−
∫ T
t βudug(Xα

T )

]
, (2.2)

for all (t,x) ∈ T×R and α ∈ A (t,x). Here, f : T×R×A 7→ R is a running reward
function, whilst g : R 7→R is a terminal reward function, both of which typically are taken
to satisfy quadratic growth conditions. βu = β (u,Xα

u ,αu) is a function β : T×R×A 7→R
which present-values the reward functions as appropriate. Finally, we denote by A (t,x)
the subset of controls which are admissible, i.e. the F X

t -adapted A-valued controls which
minimally satisfy E[

∫ T
t |e−

∫ s
t βudu f (s,Xα

s ,αs)|ds]< ∞.
The crux of the matter is that the maximisation problem (2.2) is not exactly trivial.

Defining the (optimal) value function

V (t,x) = sup
α∈A (t,x)

W (t,x,α), (2.3)

one may invoke the dynamic programming principle (DPP)

V (t,x) = sup
α∈A (t,x)

Et,x

[∫
τ

t
e−

∫ s
t βudu f (s,Xα

s ,αs)ds+ e−
∫

τ
t βuduV (τ,Xα

τ )

]
, (2.4)

for any stopping time τ , in order to set up the Hamilton-Jacobi-Bellman (HJB) equation

0 = ∂tV + sup
a∈A

{
−βtV +b(t,x,a)∂xV + 1

2 σ
2(t,x,a)∂ 2

xxV + f (t,x,a)
}
, (2.5)

s.t. V (T,x) = g(x). The most striking feature of the HJB equation is arguably the change
in the supremum: while the original control problem asked us to optimise over the set
of A-valued control processes {αs,s ≥ 0}, we are now faced with “merely” having to

1 Here, standard assumptions are that the SDE satisfies (I) the uniform Lipschitz condition ∃K ∈ (0,∞)
s.t. ∀t ∈ T, ∀x,y ∈ R and ∀α ∈ A: |b(t,x,α)− b(t,y,α)|+ |σ(t,x,α)−σ(t,y,α)| ≤ K|x− y|, and (II)
E[
∫ T

0 |b(t,0,α)|2 + |σ(t,0,α)|2dt]≤ ∞. Notice though, that these are fairly strict assumptions which rule
out square root processes (CIR models).
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optimise over the set A. Insofar as a solution, φ , can be found to (2.5) we may invoke a
verification procedure to check if φ coincides with the value function (i.e. to check if we
have indeed solved the problem). Assuming the technicalities above, it suffices to check if
(a) φ ∈ C 1,2([0,T )×R)∩C 0(T×R) and if (b) φ satisfies a quadratic growth condition.
The reader is referred to Fleming & Soner [21], Pham [18], and Ross [41], for details.

2.3 The Merton Problem: An Analytic Reminder

The benchmark result against which we shall be comparing most of our numerical pro-
cedures stems right from the foundations of stochastic control theory in continuous time
finance. Specifically, we are interested in Merton’s quintessential problem of portfolio
optimisation, [12], [35], over finite investment horizons T= [0,T ]. For the reader’s conve-
nience, we here provide a cursory overview of the problem.2

Let X be the running wealth of an investor who trades continuously in a risk free asset and
a stock, the respective price processes of which obey the usual dynamical equations

dBt = rBtdt, and dSt = µStdt +σStdWt ,

where r,µ and σ are constant parameters. If θt : Ω ×T 7→ R denotes the total [dollar]
amount the investor has in stocks, and ct : Ω ×T 7→ R+ denotes his rate of consumption,
it follows from the self-financing condition that

dXθ ,c
s = [rXθ ,c

s +θs(µ− r)− cs]ds+θtσdWs, (2.6)

where Xθ ,c
t = x is the initial endowment (assumed non-negative). Deriving utility from

both his life-time consumption rate as well as his terminal bequest, the investor’s problem
is that of determining an optimal control pair (θ ∗t ,c

∗
t ,) ∈A (t,x) s.t.

W (t,x,θ ,c) = Et,x

[∫ T

t
e−β (s−t)u(cs)ds+ e−β (T−t)u(Xθ ,c

T )

]
, (2.7)

is maximal, where

A (t,x) :=
{
(θ ,c) :

∫ T

t
csds+

∫ T

t
θ

2
s ds < ∞ & Xθ ,c

t ≥ 0 a.s. ∀t ∈ T
}
.

The discount factor, β , is assumed constant, and the utility function u : R+ 7→ R+ is as-
sumed to be isoelastic, i.e. u(x) = x1−γ/(1−γ), where γ codifies the investor’s level of risk
aversion. In this paper we will restrict our attention to the root functions γ ∈ (0,1). Setting
up the HJB equation

βV = ∂tV + sup
(θ ,c)∈R×R+

{
[rx+θ(µ− r)− c]∂xV + 1

2 θ
2
σ

2
∂

2
xxV +

c1−γ

1− γ

}
, (2.8)

2 For a more thorough survey we refer to Munk [15].
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s.t. V (T,x) = x1−γ/(1− γ), we find the first order conditions:

θ
∗(t,x) =− (µ− r)

σ2
∂xV
∂ 2

xxV
, and c∗(t,x) = (∂xV )−1/γ . (2.9)

Using the ansatz V (t,x) = g(t)γ x1−γ(1− γ)−1, where g is some deterministic function of
time, we can reduce this problem to a Bernoulli equation, the solution to which is

g(t) = A−1(1+[A−1]e−A(T−t)),

where A= [β−r(1−γ)]/γ− 1
2 (1−γ)[µ−r]2/(γ2σ2). Crucially, this allows us to calculate

explicit expressions for the first order conditions of (2.8) viz.

θ
∗(t,x) =

(µ− r)x
γσ2 , and c∗(t,x) =

x
g(t)

, (2.10)

which, from verification, constitute the desired optimal controls.

2.4 Towards a Trinomial/Explicit Markov Chain Approximation

2.4.1 Establishing the Approximation

Consider the discretisation T δ ×Rh = {0,δ ,2δ , ...,Nδ = T} × {xmin,xmin + h,xmin +
2h, ..., xmin + Ih =: xmax} of the full state space T×R of section 2.2, where, xmin and
xmax are artificially imposed lower and upper boundaries, whilst h and δ are fixed spatial
and temporal separations in the grid. Let {ξ h,δ

n |n ∈N0} be a controlled discrete parameter
Markov chain on Rh that approximates (in a sense soon to be spelled out) the controlled
process Xα

t . The stochastic evolution of said chain is determined by the set of probabilities
{ph,δ (x,y|a, t) : x,y∈Rh} where ph,δ (x,y|a, t) denotes the conditional probability that the
Markov chain jumps from state x to state y given that the control a ∈A is applied at time t.
Needless to say, if these probabilities are to be construed as Markov chain transition prob-
abilities, then they must satisfy the basic requirements of positivity and summing to unity.
Let ah,δ

n = ah,δ (nδ ,ξ h,δ
n ) denote the random variable, which is the actual control action for

the chain, applied at the discrete time nδ . We say the control policy ah,δ = {ah,δ
n |n ∈ N0}

for the chain is admissible provided that (i) ah,δ
n ∈ A and (ii) the chain has the Markov

property under that policy:

P[ξ h
n+1 = y|ξ h,δ

i ,ah,δ
i , i≤ n] = ph(ξ h,δ

n ,y|ah,δ
n ,nδ ).

Let A h,δ (nδ ,x) denote the set of admissible controls given that ξ
h,δ
n = x at time nδ . We

may then state the approximation to (2.2) as
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W h,δ (nδ ,x,ah,δ ) = E
[N−1

∑
i=n

e−∑
i−1
j=n β ( jδ ,ξ h,δ

j ,ah,δ
j )δ f (iδ ,ξ h,δ

i ,ah,δ
i )δ

+ e−∑
N−1
j=n β ( jδ ,ξ h,δ

j ,ah,δ
j )δ g(ξ h,δ

N )

∣∣∣∣ξ h,δ
n = x

]
,

whilst the discretisation of the value function (4.1) is defined as

V h,δ (nδ ,x) = sup
ah,δ∈A h,δ (nδ ,x)

W h,δ (nδ ,x,ah,δ ). (2.11)

Crucially, in order to secure convergence of V h,δ (nδ ,x) to V (nδ ,x) as h→ 0, it is incum-
bent that the Markov chain approximation is chosen in accordance with local consistency
conditions. Specifically, defining ∆ξ

h,δ
n := ξ

h,δ
n+1−ξ

h,δ
n we require that supn,ω |∆ξ

h,δ
n | → 0

as h→ 0 as well as

µ
h,δ
n (x,a) := E[∆ξ

h,δ
n |ξ h,δ

n = x,ah,δ
n = a] = b(nδ ,x,a)δ +o(δ ), (2.12a)

Σ
h,δ
n (x,a) := E[(∆ξ

h,δ
n −µ

h,δ
n (x,a))2|ξ h,δ

n = x,ah,δ
n = a] = σ

2(nδ ,x,a)δ +o(δ ),
(2.12b)

∀x ∈ Rh and ∀a ∈ A. Here o(y) is defined as a function which is small relative to y i.e:
limy→0 o(y)/y = 0.

2.4.2 Extracting the Solution

Insofar as we have a locally consistent Markov chain approximation to Xα
t , we may solve

for the discretised value function (2.11) through repeated application of the explicit DPP:3

V h,δ (nδ ,x) = sup
a∈A

[
f (nδ ,x,a)δ + e−β (nδ ,x,a)δ

∑
y∈Rh

ph,δ (x,y|a,nδ )V h,δ ((n+1)δ ,y)
]

(2.13)
starting from the terminal condition V h,δ (Nδ ,x) = g(x) and working our way incremen-
tally backwards in time. As in a garden variety (linear) explicit procedure, the grid compo-
nent V h,δ (nδ ,x) is given entirely in terms of known quantities {V h,δ ((n+1)δ ,y) : y∈Rh},
albeit with the added caveat that we must maximise the expression over all a ∈ A at every
step in the process. Evidently, this aspect should (insofar as possible) be handled through
the employ of the associated first order conditions i.e. the a∗ which renders the partial

3 This equation is a one-step discrete approximation to (2.4) i.e.

V h,δ (nδ ,x) = sup
a∈A

[
f (nδ ,x,a)δ + e−β (nδ ,x,a)δE

[
V h,δ ((n+1)δ ,y)

∣∣∣∣ξ h,δ
n = x,ah,δ

n = a
]]
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derivative of the RHS of (2.13) with respect to a equal to zero. A considerably more time
consuming procedure involves a search over a bounded mesh of possible controls at every
point in the grid T δ ×Rh.

The final piece left of the puzzle is that of how we go about constructing a locally
consistent Markov chain in the first place. A luminous “beacon in night” is in this con-
text a fairly flexible programme involving finite difference approximations of the govern-
ing differential equation. Specifically, consider the PDE formally satisfied by (2.2). From
Feynmac-Kac’s theorem we have

βtW = ∂tW +b(t,x,a)∂xW + 1
2 σ

2(t,x,a)∂ 2
xxW + f (t,x,a), (2.14)

or in explicit discretised terms

βn δW h,δ ((n+1)δ ,x,a) =δ
−1[W h,δ ((n+1)δ ,x,a)−W h,δ (nδ ,x,a)]

+b(nδ ,x,a)DxW h,δ ((n+1)δ ,x,a)

+ 1
2 σ

2(nδ ,x,a)D2
xxW

h,δ ((n+1)δ ,x,a)+ f (nδ ,x,a).

(2.15)

The key step consists of defining the difference operators Dx and D2
xx such that equation

(2.15) yields transition probabilities which are uniformly non-negative. For this reason
we forgo the otherwise cherished usage of central differencing and propose the following
up-wind scheme:

• If b(t,x,a)≥ 0 let DxW (t,x,a) = D+
x W (t,x,a) := h−1[W (t,x+h,a)−W (t,x,a)].

• If b(t,x,a)< 0 let DxW (t,x,a) = D−x W (t,x,a) := h−1[W (t,x,a)−W (t,x−h,a)].
• Let D2

xxW (t,x,a) = h−2[W (t,x+h,a)−2W (t,x,a)+W (t,x−h,a)].

Defining [y]+ = max{y,0} and [y]− = max{−y,0}, items 1 & 2 may be written as

• b(t,x,a)DxW (t,x,a)= h−1[W (t,x+h,a)−W (t,x,a)][b(t,x,a)]+−h−1[W (t,x,a)−W (t,x−
h,a)][b(t,x,a)]−.

Substituting these approximations into (2.15) and rearranging we obtain

W h,δ (nδ ,x,a)

=
(
δh−1[b(nδ ,x,a)]++ 1

2 δh−2
σ

2(nδ ,x,a)
)

W h,δ ((n+1)δ ,x+h,a)

+
(
1−δβ (nδ ,x,a)−δh−1|b(nδ ,x,a)|−δh−2

σ
2(nδ ,x,a)

)
W h,δ ((n+1)δ ,x,a)

+
(
δh−1[b(nδ ,x,a)]−+ 1

2 δh−2
σ

2(nδ ,x,a)
)

W h,δ ((n+1)δ ,x−h,a)

+ f (nδ ,x,a)δ ,

where we have made use of the fact that |y| = [y]++[y]−. More succinctly, we can write
this (with obvious notation) as

W h,δ (nδ ,x,a) = ∑
y∈Rh(x)

ph,δ (x,y|a,nδ )W h,δ ((n+1)δ ,y,a)+ f (nδ ,x,a)δ ,
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where Rh(x) := {x+h,x,x−h}, whence we have clear candidates for the transition prob-
abilities. However, ph,δ (x,x+h|a,nδ ), ph,δ (x,x|a,nδ ) and ph,δ (x,x−h|a,nδ ) do not sum
to unity. This prompts us to invoke a renormalisation: specifically, defining N h,δ

a :=
1/(1−δβ (nδ ,x,a)) we propose the following

ph,δ (x,x+h|a,nδ ) = N h,δ
a
(
δh−1[b(nδ ,x,a)]++ 1

2 δh−2
σ

2(nδ ,x,a)
)
, (2.16a)

ph,δ (x,x|a,nδ ) = N h,δ
a

(
1−δβ (nδ ,x,a)

−δh−1|b(nδ ,x,a)|−δh−2
σ

2(nδ ,x,a)
)
,

(2.16b)

ph,δ (x,x−h|a,nδ ) = N h,δ
a
(
δh−1[b(nδ ,x,a)]−+ 1

2 δh−2
σ

2(nδ ,x,a)
)
, (2.16c)

ph,δ (x,y|a,nδ ) = 0, ∀y /∈Rh(x), (2.16d)

which clearly satisfy ∑y∈Rh(x) p(x,y|nδ ,a)= 1. Furthermore, insofar as 1> δβ (nδ ,x,a)+
δh−1|b(nδ ,x,a)| +δh−2σ2(nδ ,x,a) ∀x∀n∀a, or, equivalently,

δ <
[
β (nδ ,x,a)+h−1|b(nδ ,x,a)|+h−2

σ
2(nδ ,x,a)

]−1
, (2.17)

we can also guarantee the ph,δ (x,x|a,nδ ) stays uniformly non-negative (the requirement
of non-negativity is obviously satisfied by ph,δ (x,x + h|a,nδ ) and ph,δ (x,x− h|a,nδ )).
Finally, it is easy to show that the probabilities satisfy the local consistency conditions
(2.12). Thus, for (2.12a) we find that

µ
h,δ
n (x,a) = h · ph,δ (x,x+h|a,nδ )+0 · ph,δ (x,x|a,nδ )−h · ph,δ (x,x−h|a,nδ )

= hN h,δ
a
(
δh−1[b(nδ ,x,a)]+−δh−1[b(nδ ,x,a)]−

)
= (1−δβ (nδ ,x,a))−1b(nδ ,x,a)δ

= b(nδ ,x,a)δ +o(δ ),

as desired. Similarly, for (2.12b)

Σ
h,δ
n (x,a) = (h−b(nδ ,x,a)δ )2 · ph,δ (x,x+h|a,nδ )+(b(nδ ,x,a)δ )2 · ph,δ (x,x|a,nδ )

+(−h−b(nδ ,x,a)δ )2 · ph,δ (x,x−h|a,nδ )+o(δ )

= N h,δ
a

(
h2[δh−1[b(nδ ,x,a)]++ 1

2 δh−2
σ

2(nδ ,x,a)]

+h2[δh−1[b(nδ ,x,a)]−+ 1
2 δh−2

σ
2(nδ ,x,a)]

)
+o(δ )

= (1−δβ (nδ ,x,a))−1
(

δσ
2(nδ ,x,a)

)
+o(δ )

= σ
2(nδ ,x,a)δ +o(δ ).

Hence, the proposed transition probabilities are locally consistent.
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Remark 2.1. In practice, the drift term b(nδ ,x,a) is often found to be a linear sum of
several different components. This allows us to deploy a method known as splitting the
operator, which can reduce the computational complexity of (2.16) somewhat. Suppose
b(nδ ,x,a) = ∑

k
i=1 bi(nδ ,x,a) and that we apply the upwind criterion to each compo-

nent of b individually rather than b as a whole. Specifically, writing b(nδ ,x,a)DxW
as ∑

k
i=1 bi(nδ ,x,a)Dx,iW , suppose we choose a forward or backward differencing of

Dx,iW based on the sign of bi(nδ ,x,a) ∀i, thus replacing [b(nδ ,x,a)]+ in (2.16a) with
∑

k
i=1[bi(nδ ,x,a)]+, and [b(nδ ,x,a)]− in (2.16c) with ∑

k
i=1[bi(nδ ,x,a)]−. The advantage

of this is apparent if the signs of the individual components are a priori given!

Remark 2.2. The skeptical reader might wonder whether our commitment to positive prob-
abilities is mandatory. After all, there seems to be a growing community of iconoclasts
who argue for the cogency of negative probabilities in finance, cf. Haug [13], Meissner
et al. [18] and Zvan et el. [29]. Unfortunately, this heterodoxy is a dangerous game for
our present purposes: specifically, upon proving convergence of the Markov chain approx-
imation from viscosity principles, Kusher and Dupuis assume the monotonicity property
(assumption A2.1. p. 449 [31]), which manifestly requires all probabilities to be non-
negative.4 Thus, we shall continue to abide by the positivity criterion (here, equation
(2.17)), even though this inexorably will force us to adopt extremely small time steps
in a Mertonian context.

2.5 The Trinomial/Explicit Method and Merton’s Problem

The DPP (2.13) and its tripartite probability structure (2.16), naturally allows for two dif-
ferent algorithmic interpretations with clear analogies in numerical option pricing. On the
one hand, we can view it as recipe for a trinomial tree; on the other, as a full-fledged finite
difference grid. Whilst this prima facie might appear like a minor detail, the difference of
which boils down to algorithmic run time (the number of grid points evaluated), we shall
argue that the rabbit hole goes deeper. Specifically, if we opt for the finite difference inter-
pretation, then inevitably we will have to make specifications for the boundary points (a
somewhat nebulous endeavour). This issue is side-stepped with a trinomial model, albeit
at the cost of interlocking the number time steps with respect to the number of space steps,
thereby complicating the positivity criterion (2.17) further. We provide a full exposition
of these issues below: first, however, it is worthwhile phrasing the DPP and the associated
transition probabilities for the Merton problem.

In line with non-negativity assumption on financial wealth we restrict x to the state-space
Rh

1 = {0,h,2h, ..., Ih = xmax}. Let θ(nδ ,x) and c(nδ ,x) be the discrete controls of the
problem, both of which are supposed to be bounded by the interval [0,Kx], for some con-
stant K.5 Then ∀x ∈ {h,2h, ...,(I−1)h} the DPP may be stated as

4 For an illuminating account on convergence of numerical HJB schemes to viscosity solutions the reader
is referred to Forsyth et al. [24] particularly lemma 5.3 and theorem 5.1.
5 Bounding different controls by different constants is obviously quite feasible: the reader should make a
personal judgement call as to what makes sense in a given context.
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V h,δ (nδ ,x) =

sup
(θ ,c)∈R×R+

[
c(nδ ,x)1−γ

1− γ
δ + e−βδ

∑
y∈Rh(x)

ph,δ (x,y|θ ,c,nδ )V h,δ ((n+1)δ ,y)
]
,

(2.18)

where ph,δ (x,y|θ ,c,nδ ) is shorthand notation for ph,δ (x,y|θ(nδ ,x),c(nδ ,x),nδ ) and
Rh(x) = {x+h,x,x−h}. Specifically, we define the transition probabilities

ph,δ (x,x+h|θ ,c,nδ ) =
1

1−δβ

(
δh−1

(
rx+θ(nδ ,x)(µ− r)

)
+ 1

2 δh−2
θ

2(nδ ,x)σ2
)
,

ph,δ (x,x|θ ,c,nδ ) =
1

1−δβ

(
1−δβ −δh−1

(
rx+θ(nδ ,x)(µ− r)+ c(nδ ,x)

)
−δh−2

θ
2(nδ ,x)σ2

)
,

ph,δ (x,x−h|θ ,c,nδ ) =
1

1−δβ

(
δh−1c(nδ ,x)+ 1

2 δh−2
θ

2(nδ ,x)σ2) ,
ph,δ (x,y|θ ,c,nδ ) = 0, ∀y /∈Rh(x),

where we have made use of the splitting of the operator technique.6 Finally, two straight-
forward differentiations of (2.18) yield the first order conditions (FOCs)

θ
∗(nδ ,x) =− (µ− r)

σ2
D+

x V h,δ ((n+1)δ ,x)
D2

xxV h,δ ((n+1)δ ,x)
,

c∗(nδ ,x) =

(
e−βδ

1−βδ
D−x V h,δ ((n+1)δ ,x)

)−1/γ

where the differencing operators D+
x ,D−x and D2

xx are as defined above, and we enforce
the restriction θ ∗(nδ ,x),c∗(nδ ,x) ∈ [0,KIh] ∀n∀x. Given these analytic expressions for
the optimal controls, the problem we are trying to solve is as simple as computing

V h,δ (nδ ,x) =
[

c∗(nδ ,x)γ

1− γ
δ + e−βδ

∑
y∈Rh(x)

ph,δ (x,y|θ ∗,c∗,nδ )V h,δ ((n+1)δ ,y)
]
,

incrementally backwards in time: n = N−1,N−2, ...,1,0.

6 Specifically, since x ≥ 0 [rx]+ = rx (⇒ [rx]− = 0); since µ > r the position in the risky asset must be
positive whence [θ(µ− r)]+ = θ(µ− r) (⇒ [θ(µ− r)]− = 0). Lastly, since consumption is non-negative
[−c]− = c (⇒ [−c]+ = 0).
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-64.645 -74.676
-17.553 -26.199
-10.483 -16.438
-7.4424 -11.819

..
.

-5.7583 ..
.

-9.1145
-5.0536 -4.6915 -7.7463 -7.3362

-4.3111 -4.2530 -3.9562 -6.5044 -6.4357 -6.0774
-3.7686 -3.7199 -3.6708 . . . -3.4192 -5.5826 -5.5220 -5.4606 . . . -5.1392

-3.2710 -3.2285 -3.0100 -4.7625 -4.7065 -4.4129
-2.8811 -2.6880 -4.1060 -3.8340

... -2.4280 ... -3.3618
-2.2138 -2.9691
-2.0342 -2.6375
-1.8815 -2.3538
-1.7501 -2.1082

t = 0 t = δ t = 2δ . . . t = 7δ t = 0 t = δ t = 2δ . . . t = 7δ

Table 2.1 The percentage errors (defined as 100 · (aapprox.−atrue)/atrue) for the optimal stock investment
(left) and the optimal consumption (right) at various times in the trinomial tree. The row number corre-
sponds to the corresponding integer multiple of h in the state space. In particular, the t = 0 node occurs at
x = 8h.

γ β r µ σ xmax K
0.5 0.02 0.05 0.1 0.3 100 1.5

Table 2.2 The parametric specifications for the risk aversion γ , the subjective discounting β , the risk free
rate r, the stock drift and volatility µ and σ , the upper bound on the state space xmax, and the constant
curbing the controls from above K.

2.5.1 The Trinomial Method

Let I be an even number (∈ 2N). The trinomial method is exactly what the name suggests: a
recombining tree diagram where every node has exactly three child nodes (or, equivalently,
a grid which cuts off both end nodes of its state space whenever we move backwards in
time). Thus, at expiry, we set out by evaluating V h,δ for all x ∈ {0,h, ...,(I−1)h, Ih} using
the terminal condition. Then, one time step prior, we compute V h,δ for all x ∈ {h, ...,(I−
1)h} using the DPP and continue thusly until 1

2 I time steps into the past we compute V h,δ

for the singleton x ∈ { 1
2 Ih}. The advantages of this procedure over a full finite difference

grid are clear: first, it saves us the trouble of having to specify boundary conditions for
V h,δ (·,0) and V h,δ (·, Ih). Secondly, assuming we are indeed only interested in the centre
grid controls, there is a clear reduction in the number of nodes we need to evaluate (( 1

2 I +
1)2 for the tree versus ( 1

2 I + 1)(I + 1) for an analogously sized grid). However, the fact
that we interlock the number of spatial separations in the grid #(h) = I with the number of
temporal separations #(δ ) = N = 1

2 I does not bode well for the positivity criterion
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Fig. 2.1 The percentage errors of the numerically computed optimal stock investment (left) and the op-
timal consumption (right) computed for various values of I. We assume T = 1 and N = dβ +(r+(µ −
r)K +K)I +σ2K2I2e.

∀x∀θ∀c : δ <
[
β +h−1 (rx+θ(nδ ,x)(µ− r)+ c(nδ ,x))+h−2

θ
2(nδ ,x,a)σ2]−1

,
(2.19)

cf. equation (2.17). Specifically, upon setting δ = T/( 1
2 I), h = xmax/I, x = xmax and

θ = c = Kxmax we get the worst case scenario inequality, which (if satisfied) surely will
guarantee the positivity of all transition probabilities (and thence the convergence of the
algorithm):

T < 1
2 I
[
β +(r+(µ− r)K +K)I +σ

2K2I2]−1
. (2.20)

This is a serious constraint. Suppose momentarily I ∈ R+: upon viewing the RHS as a
function f : R+ 7→ R of I, we find that f assumes a maximum at

I∗ =

√
β

σ2K2 .

For realistic parametric values, f (I∗) might prove considerably less than the desired level
of T . Indeed, the true solution space (I should be a positive even number) will curb the
allowed T values even further. Thus, the trinomial model might not be able to solve the
Merton problem for the set of parameters we desire. Or at least not without some mod-
ification: e.g. by introducing varying time steps in line with the fact that the state space
decreases as we move backwards in time.

To get a feel for the gravity of this, consider a set-up with the parametric choices
given in table 3.2. We find I∗ = 0.943 and f (I∗) = 0.300: i.e. (2.20) makes us consider
T ≤ 0.300. Suppose we set T = 0.1: since f (16) = 0.103 an acceptable grid specification
is I = 16 (dt = 0.0125, h = 6.25). Table 3.1 is a (partial) report of the percentage errors
of the numerical controls incurred from the trinomial method. Unsurprisingly, the large
grid spacing (h= 6.25) gives rise to non-negligible errors when evaluating the differencing
operators D±x V , D2

xxV in lieu of the derivatives ∂xV and ∂ 2
xxV . Indeed, these errors are most

pronounced around x = 0 where the square root utility function (γ = 0.5) experiences the
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Fig. 2.2 The analytic and numerical value functions (with miniature zoom) (left) and the percentage errors
of the numerically computed value function including various derivatives (right). We assume I = 100,
T = 1 and N = dβ +(r+(µ− r)K +K)I +σ2K2I2e.

sharpest rise. For the mother of all nodes (the trunk of the tree, (t,x) = (0,50)) we find
the optimal numerical controls (θ ∗,c∗) = (53.46,42.76) vs. their analytic counterparts
(θ ∗,c∗) = (55.56,45.29) and thence percentage errors of (−3.77,−5.58)%.

2.5.2 The Explicit Method

The easiest way to circumvent the problems of the previous subsection is obviously to
solve (2.18) as a full (“rectangular”) finite difference grid, thereby decoupling #(δ ) from
#(h). Obviously, we will still need to satisfy inequality (2.19) - however, this is now as easy
as evaluating the RHS and specifying the δ accordingly. The main obstacle is undoubtedly
the requirement that we must now make specifications for the boundary conditions along-
side the grid. Compared to numerical problems in option pricing, this is considerably more
obscure. E.g. whilst it is plausible that an option deep in or out of the money has vanish-
ing gamma, an analogous argument does not carry over to a Mertonian value function
problem.

A standing point of this paper is that the nebulosity of the boundary conditions is
detrimental to the accuracy of our numerical controls for a seizable chunk of the state
space. To this end, consider the Dirichlet conditions ∀n ∈ {0,1, ...,N−1}:

V h,δ (nδ ,0) = 0, and V h,δ (nδ , Ih) =V h,δ (T, Ih).

The philosophy here is simple: a bankrupt investor (x = 0) can neither consume, nor build
up a bequest. Thus, assuming γ ∈ (0,1) his value function is nil. At the other extreme
(x = Ih), for relatively short investment horizons we do not expect drastic changes in the
value function: hence, we may approximate the upper boundary based on the terminal con-
dition. To test the performance of the explicit method we plot the percentage errors of the
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numerically computed optimal controls in figure 2.1 for various values of I (and an N just
big enough to satisfy the worst case scenario inequality). These plots vividly demonstrate
the grave shortcomings of our numerical method for large parts of the upper and lower
state space. For low wealth levels this is hardly surprising: here the gradient of the utility
function is at its steepest, and we wouldn’t expect our relatively coarse grained difference
operators to capture this adequately. The fact that the Dirichlet boundary happens to be an-
alytically exact at x = 0 does to some degree seem to compensate for this as we increase I
and N. On the other hand, the accuracy of θ ∗ near the upper boundary scarcely profits from
increasing the fine-graining of the grid: seemingly, the mis-specification (however modest)
of the upper Dirichlet boundary effectively kills our chances of reasonable convergence.
Figure 2.2 offers a deeper investigation: the numerical value function is highly accurate for
most wealth levels except at the upper boundary. The percentage error of the numerically
computed second derivative is catastrophic in this region, which in turn propagates to the
optimal stock investment (recall θ ∗ supervenes upon the ratio D+

x V/D2
xxV ).

Remark 2.3. We previously stressed the importance of utilising the (numerical) first order
conditions upon coding the stochastic control problem. Nonetheless, there may be situa-
tions in which this is not feasible; i.e. where one has to resort to numerical optimisation of
the DPP in stead. To test the feasibility of this method for the problem at hand we discre-
tised the space of possible controls A = [0,150]× [0,150] into a mesh Am of equidistant
separation 0.01. At t = T −δ we performed a maximisation of the DPP over the full con-
trol mesh for every node in the optimal value grid. However, based on the principle that
controls do not tend to vary drastically across incrementally close periods of time, all other
maximisations where done over a subspace of Am tailor-made to the optimal control pair
of the subsequent time step. Specifically, if (θ ∗(nδ ,x),c∗(nδ ,x)) = (θ̄ , c̄) was found to
be optimal for V h,δ (nδ ,x), then the optimal solution for V h,δ ((n−1)δ ,x) was assumed to
lie no further than ±10 (in any direction) of (θ̄ , c̄). The numerical results of this method
are illustrated in figure 2.3. While the algorithmic run time with the FOCs was found to
be only 2.45 seconds on a 2.5 GHz Intel Core i5 processor, the corresponding run time
without the FOCs was a staggering 1590.36 seconds.

2.6 Towards an Implicit Method

2.6.1 A New Type of Markov Chain

In subsection 2.4.1 we introduced a controlled discrete parameter Markov chain {ξ h,δ
n |n ∈

N0} on the state space Rh = {xmin,xmin + h,xmin + 2h, ...,xmin + Ih =: xmax} in approx-
imation of the controlled process Xα

t . Clearly, space and time play fundamentally dif-
ferent roles in this picture: while ξ

h,δ
n moves dynamically through space in accordance

with locally consistent transition probabilities, time is a passive index ordered in terms of
multiples of δ . The fundamental difference between the explicit and implicit method is
precisely that the latter promotes time to a full state variable. Specifically, we now con-
sider a controlled discrete parameter Markov chain {ζ h,δ

n |n ∈ N0} on the full time-space



2 Numerical Stochastic Control Theory with Applications in Finance 47

Fig. 2.3 The percentage errors of the numerically computed optimal stock investment (left) and the opti-
mal consumption (right) with and without the use of the first order conditions. We assume I = 100, T = 1
and N = dβ +(r+(µ− r)K +K)I +σ2K2I2e.

grid T δ ×Rh = {0,δ ,2δ , ...,Nδ = T}×{xmin,xmin +h,xmin +2h, ...,xmin + Ih =: xmax},
such that transition probabilities no longer carry the chain solely through space, but also
through time.

Denote by ph,δ (s,x; t,y|a) the conditional probability that the Markov chain jumps
from state (s,x) ∈ T δ ×Rh to state (t,y) ∈ T δ ×Rh given that the control a ∈ A is
applied. Furthermore, let

∆ th,δ
n := ∆ th,δ (nδ ,ζ h,δ

n ,ah,δ
n )

denote a positive interpolation interval, such that th,δ
n = ∑

n−1
j=0 ∆ th,δ

j . Then the discrete
approximations to (2.2) and (4.1) may be stated as

W h,δ (nδ ,x,ah,δ ) = E
[N−1

∑
i=n

e−∑
i−1
j=n β ( jδ ,ζ h,δ

j ,ah,δ
j )∆ th,δ

j f (iδ ,ζ h,δ
i ,ah,δ

i )∆ th,δ
i

+ e−∑
N−1
j=n β ( jδ ,ζ h,δ

j ,ah,δ
j )∆ th,δ

j g(ζ h,δ
N )

∣∣∣∣ζ h,δ
n = (nδ ,x)

]
,

and

V h,δ (nδ ,x) = sup
ah,δ∈A h,δ (nδ ,x)

W h,δ (nδ ,x,ah,δ ).

Again, local consistency of some sort is the basic requirement for the convergence of the
Markov chain. Let ζ

h,δ
n,0 and ζ

h,δ
n,1 denote the temporal and spatial parts of ζ

h,δ
n respectively.

We then require that supn,ω |∆ζ
h,δ
n,1 | → 0 as h→ 0 as well as

µ
h,δ
n (x,a) := E[∆ζ

h,δ
n,1 |ζ

h,δ
n,1 = x,ah,δ

n = a] = b(nδ ,x,a)∆ th,δ
n +o(∆ th,δ

n ), (2.21a)
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E[(∆ζ
h,δ
n,1 −µ

h,δ
n (x,a))2|ζ h,δ

n,1 = x,ah,δ
n = a] = σ

2(nδ ,x,a)∆ th,δ
n +o(∆ th,δ

n ), (2.21b)

∀x ∈Rh and ∀a ∈ A, i.e. the spatial component of the chain must be consistent.

2.6.2 Extracting the Solution

As the designator clearly insinuates, the basic point of the implicit method is to set up
a DPP, in which any given grid node is coupled to multiple grid nodes at the preceding
time step (contrast this to the explicit method in which any given grid node is coupled to
multiple grid nodes at the subsequent time step). Specifically, the implicit DPP we wish to
solve is of the form

V h,δ (nδ ,x) =sup
a∈A

[
f (nδ ,x,a)∆ th,δ

n + e−β (nδ ,x,a)∆ th,δ
n ∑

y∈Rh

ph,δ (nδ ,x;nδ ,y|a)V h,δ (nδ ,y)

+ e−β (nδ ,x,a)∆ th,δ
n p(nδ ,x;(n+1)δ ,x|a)V h,δ ((n+1)δ ,x)

]
,

(2.22)
with the usual terminal condition V h,δ (Nδ ,x) = g(x). Notice that by virtue of implicitness
the only non-zero cross temporal transition probability is the one that takes the spatial
state into itself. Generalisations to this are quite feasible, although it would take us into the
domain of so-called θ -schemes.

Before we derive locally consistent expressions for the transition probabilities and the
interpolation interval, let us briefly consider how one should go about solving an expres-
sion like (2.22). Writing the implicit DPP on the general matrix form

sup
a∈A

[
Mh,δ

n (a)Vh,δ
n +qh,δ

n (a)
]
= Vh,δ

n+1 (2.23)

where Vh,δ
n := (V h,δ (nδ ,xmin),V h,δ (nδ ,xmin+h), ...,V h,δ (nδ ,xmin+ Ih))ᵀ and qh.δ

n (a) are
vectors in RI+1, and Mh,δ

n (a) is a matrix of transition probabilities in R(I+1)×(I+1), the
challenges we face become quite apparent. Specifically, qua the supremum operator, (2.23)
transcends the garden variety linear system of equations, which allows for immediate com-
putation of Vh,δ

n in terms of Vh,δ
n+1. Rather, the control dependence of Mh,δ

n (a) and qh,δ
n (a)

will generally render the LHS highly non-linear in Vh,δ
n and thus expression (2.23) that

much more difficult to solve.

2.6.2.1 Approximations in Policy Space

One of the easiest procedures to overcome the non-linearity issue of (2.23) is indubitably
the employ of policy space iterations, based on a sequential computation of increasingly
more accurate values for Vh,δ

n and a. Specifically, let a0 ∈ A be some initial admissible
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feedback policy (a reasonable starting point is to use the optimal control from the subse-
quent time step, (n+ 1)δ ). Then a first approximation Vh,δ

n,0 to Vh,δ
n may be computed by

solving the system

Mh,δ
n (a0)Vh,δ

n,0 +qh,δ
n (a0) = Vh,δ

n+1.

Indeed, knowledge of Vh,δ
n,0 allows us to compute an updated estimate, a1, of a based on:7

a1 = argmax
a∈A

[
Mh,δ

n (a)Vh,δ
n,0 +qh,δ

n (a)
]
,

Clearly, this procedure can now be repeated all over again. Indeed for a general k =
0,1,2, ... we may perform the iterative steps

Mh,δ
n (ak)V

h,δ
n,k +qh,δ

n (ak) = Vh,δ
n+1, (2.24a)

ak+1 = argmax
a∈A

[
Mh,δ

n (a)Vh,δ
n,k +qh,δ

n (a)
]
. (2.24b)

Under mild conditions it can be shown that Vh,δ
n,k → Vh,δ

n as k→ ∞.8 In practical terms, a
reasonable place to stop the algorithm is when the value function stops changing notably
in successive iterations: e.g. when

|Vh,δ
n,k+1−Vh,δ

n,k |∞ < ε,

where ε is some small positive number.

2.6.2.2 On ps and ∆ ts

Finally, let’s expose the procedure by which we obtain the relevant transition probabilities
and interpolation interval. Analogously to subsection 2.4.2 we consider an implicit upwind
discretisation of (2.14)

βn δW h,δ (nδ ,x,a) = δ
−1[W h,δ ((n+1)δ ,x,a)−W h,δ (nδ ,x,a)]

+ [b(nδ ,x,a)]+D+
x W h,δ (nδ ,x,a)− [b(nδ ,x,a)]−D−x W h,δ (nδ ,x,a)

+ 1
2 σ

2(nδ ,x,a)D2
xxW

h,δ (nδ ,x,a)+ f (nδ ,x,a),
(2.25)

where the differencing operators D+
x ,D−x and D2

xx are as defined above. This expression
can be rearranged as

7 Needless to say, this step is optimally handled through the FOCs.
8 See Kusher & Dupuis [31] theorem 6.2.1.
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W h,δ (nδ ,x,a) =

(
h−1[b(nδ ,x,a)]++ 1

2 h−2σ2(nδ ,x,a)
)

Qh,δ (nδ ,x,a)
W h,δ (nδ ,x+h,a)

+

(
h−1[b(nδ ,x,a)]−+ 1

2 h−2σ2(nδ ,x,a)
)

Qh,δ (nδ ,x,a)
W h,δ (nδ ,x−h,a)

+
δ−1

Qh,δ (nδ ,x,a)
W h,δ ((n+1)δ ,x,a)+ f (nδ ,x,a)

1
Qh,δ (nδ ,x,a)

,

(2.26)
where we have defined

Qh,δ (nδ ,x,a) := β (nδ ,x,a)+δ
−1 +h−1|b(nδ ,x,a)|+h−2

σ
2(nδ ,x,a). (2.27)

(2.26) is of the form

W h,δ (nδ ,x,a) = ∑
y∈Rh

0(x)

ph,δ (nδ ,x;nδ ,y|a)W h,δ ((n+1)δ ,y,a)

+ ph,δ (nδ ,x;(n+1)δ ,x|a)W h,δ (nδ ,x,a)+ f (nδ ,x,a)∆ th,δ
n ,

where Rh
0(x) := {x+h,x−h}, which provides us with clear candidates for the transition

probabilities and interpolation interval. However, again the associated ph,δ (nδ ,x;nδ ,x+
h|a), ph,δ (nδ ,x;nδ ,x−h|a) and ph,δ (nδ ,x;(n+1)δ ,x|a) fail to sum to unity unless β = 0.
To compensate for this fact, we introduce a non-zero probability that the Markov chain
stays the same

p(nδ ,x;nδ ,x|a) = 1− ∑
y∈Rh

0(x)

ph,δ (nδ ,x;nδ ,y|a)− ph,δ (nδ ,x;(n+1)δ ,x|a)

=
β (nδ ,x,a)

Qh,δ (nδ ,x,a)
.

All in all, we are therefore have

ph,δ (nδ ,x;nδ ,x+h|a) =
h−1[b(nδ ,x,a)]++ 1

2 h−2σ2(nδ ,x,a)
Qh,δ (nδ ,x,a)

, (2.28a)

ph,δ (nδ ,x;nδ ,x−h|a) =
h−1[b(nδ ,x,a)]−+ 1

2 h−2σ2(nδ ,x,a)
Qh,δ (nδ ,x,a)

, (2.28b)

ph,δ (nδ ,x;(n+1)δ ,x|a) = δ−1

Qh,δ (nδ ,x,a)
, (2.28c)

ph,δ (nδ ,x;nδ ,x|a) = 1− ∑
y∈Rh

0(x)

ph,δ (nδ ,x;nδ ,y|a)

− ph,δ (nδ ,x;(n+1)δ ,x|a),
(2.28d)

and

ph,δ (nδ ,x;nδ ,y|a,nδ ) = 0, ∀y /∈Rh(x), (2.28e)
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along with the interpolation interval

∆ th,δ
n =

1
Qh,δ (nδ ,x,a)

. (2.29)

It is readily seen that these probabilities are non-negative and comply with local consis-
tency (2.21). Nevertheless, it remains computationally somewhat troubling (albeit mathe-
matically correct) that the DPP (2.22) involves an optimisation over all a∈A of an expres-
sion which is heavily control dependent in its numerator and its denominator. To mitigate
this tediousness, one may opt for redefining the denominator as the control independent
quantity

Q̄h,δ (nδ ,x) := sup
a∈A

Qh,δ (nδ ,x,a), (2.30)

assuming, of course, that Q̄h,δ (nδ ,x) is finite. If this fails to be the case, one can consider
imposing artificial upper bounds on the controls (indeed, this will be the case for the Mer-
ton problem treated below - see also Fitzpatrick & Fleming [10]). The resulting transition
probabilities are form-invariant expressions with respect to (2.28), albeit with the obvious
proviso that (2.28d) will not equal β (nδ ,x,a)/Q̄h,δ (nδ ,x,a).

2.7 The Implicit Method and Merton’s Problem

2.7.1 Set-up

Recall the definition of Qh,δ , (2.27), which in a Mertonian context this boils down to

Qh,δ (nδ ,x,θ ,c) = β +δ
−1 +h−1 (rx+θ(nδ ,x)(µ− r)+ c(nδ ,x))+h−2

θ
2(nδ ,x,a)σ2.

Clearly, the corresponding Q̄h,δ , (2.30), is only finite insofar as we bound the controls from
above (again, we will assume that ∀n∀x : θ(nδ ,x),c(nδ ,x) ∈ [0,Kx]). With this constraint

Q̄h,δ (nδ ,x) = β +δ
−1 +h−1 (rx+Kx(µ− r)+Kx)+h−2K2x2

σ
2.

Moreover, to save ourselves the trouble of writing multiple inverted hs in the transition
probabilities, define

Q̃h,δ (nδ ,x) := h2Q̄h,δ (nδ ,x),

then ∀x ∈ {h,2h, ...,(I−h)h}
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ph,δ (nδ ,x;nδ ,x+h|θ ,c) =
h
(
rx+θ(nδ ,x)(µ− r)

)
+ 1

2 θ(nδ ,x)2σ2

Q̃h,δ (nδ ,x)
,

ph,δ (nδ ,x;nδ ,x−h|θ ,c) =
hc(nδ ,x)+ 1

2 θ(nδ ,x)2σ2

Q̃h,δ (nδ ,x)
,

ph,δ (nδ ,x;(n+1)δ ,x|θ ,c) = h2δ−1

Q̃h,δ (nδ ,x)
,

ph,δ (nδ ,x;nδ ,x|θ ,c) = 1− ∑
y∈Rh

0(x)

ph,δ (nδ ,x;nδ ,y|θ ,c)− ph,δ (nδ ,x;(n+1)δ ,x|a),

ph,δ (nδ ,x;nδ ,y|θ ,c) = 0, ∀y /∈Rh(x),
(2.31)

where ∆ th,δ
n = h2/Q̃h,δ (nδ ,x). The main obstacle is again specifying plausible boundary

conditions for the lower and upper boundaries. At x = 0 we maintain that bankruptcy
corresponds to a zero-consumption zero-investment strategy at all points in time, i.e.
V h,δ (0) = 0 with

p(nδ ,0;nδ ,0|θ ,c) = 1,
p(nδ ,0;nδ ,y|θ ,c) = 0, ∀y 6= 0.

For x = Ih the situation remains less transparent. Following [10] and [15] we make the
assumption that there’s a vanishing probability of leaving the grid, i.e.

ph,δ (nδ , Ih;nδ , Ih−h|θ ,c) =
hc(nδ , Ih)+ 1

2 θ(nδ , Ih)2σ2

Q̃h,δ (nδ , Ih)
,

ph,δ (nδ , Ih;(n+1)δ , Ih|θ ,c) = h2δ−1

Q̃h,δ (nδ ,x)
,

ph,δ (nδ , Ih;nδ , Ih|θ ,c) = 1− p(nδ , Ih;nδ , Ih−h|θ ,c)− p(nδ , Ih;(n+1)δ , Ih|θ ,c),

ph,δ (nδ , Ih;nδ ,y|θ ,c) = 0, ∀y /∈ {Ih−h, Ih}.
(2.32)

Thus, ∀x ∈ {h,2h, ...,(I−1)h} we have the implicit DPP

V h,δ (nδ ,x) = sup
(θ ,c)∈R×R+

[
c(nδ ,x)1−γ

1− γ

h2

Q̃h,δ (nδ ,x)
+ e
− βh2

Q̃h,δ (nδ ,x) ∑
y∈Rh(x)

ph,δ (nδ ,x;nδ ,y

|θ ,c)V h,δ (nδ ,y)+ e
− βh2

Q̃h,δ (nδ ,x) p(nδ ,x;(n+1)δ ,x|θ ,c)V h,δ ((n+1)δ ,x)
]
,

with terminal condition V h,δ (Nδ ,x) = x1−γ(1− γ)−1. An analogous9 expression holds for
V h,δ (nδ , Ih) whilst V h,δ (nδ ,0) = 0. We solve the DPP using iterations in policy space:
specifically, at a given iterative step k ∈ N0 we solve the tridiagonal linear system

9 I.e. with probabilities as in (2.32).
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Fig. 2.4 The percentage errors of the numerically computed optimal stock investment (left) and the opti-
mal consumption (right) computed for various values of I. We assume T = 1 and N = 10. On average 3
policy iterations per time step are performed.

Mh,δ
n (θk,ck)V

h,δ
n,k +qh,δ

n (ck) =−h2
δ
−1Vh,δ

n+1, (2.33)

where Vh,δ
n,k ∈ RI+1 is a vector the (i + 1)th component of which is V h,δ

k (nδ , ih), and

qh,δ
n (ck) ∈ RI+1 is a vector the first component of which is 0, and more generally, the

(i+1)th > 1 component of which is h2 exp{βh2/Q̃h,δ (nδ , ih)}ck(nδ , ih)1−γ/(1− γ). Fur-
thermore, Mh,δ

n (θk,ck) is the (I +1)× (I +1) tridiagonal matrix

Mh,δ
n (θk,ck) =



1 0 0 0 · · · 0

M1,0 M1,1 M1,2 0 · · · 0

0 M2,1 M2,2 M2,3 · · · 0

...
. . . . . . . . .

...

0 · · · 0 0 MI,I−1 MI,I


,

with components

Mi,i−1 = hck(nδ , ih)+ 1
2 θk(nδ , ih)2

σ
2, i ∈ NI

Mi,i+1 = h
(
rih+θk(nδ , ih)(µ− r)

)
+ 1

2 θk(nδ , ih)2
σ

2, i ∈ NI−1

Mi,i = Q̃h,δ (nδ , ih)(1− eβh2/Q̃h,δ (nδ ,ih))−Mi,i−1−Mi,i+1−h2
δ
−1, i ∈ NI−1

MI,I = Q̃h,δ (nδ , Ih)(1− eβh2/Q̃h,δ (nδ ,Ih))−MI,I−1−h2
δ
−1,

where NI = {1,2, ..., I} and NI−1 = {1,2, ..., I−1}. The associated policy update (cf. equa-
tion (2.24b)) is performed through the FOCs:
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Fig. 2.5 The percentage errors of the numerically computed optimal stock investment (left) and the opti-
mal consumption (right) computed for various values of N. We assume T = 1 and I = 104.

θk+1(nδ , ih) =− (µ− r)
σ2

D+
x V h,δ

k ((n+1)δ , ih)

D2
xxV

h,δ
k ((n+1)δ , ih)

, i ∈ NI−1

ck+1(nδ , ih) =

(
e
− βh2

Q̃h,δ (nδ ,ih) D−x V h,δ
k ((n+1)δ , ih)

)−1/γ

, i ∈ NI

with all other control values zero: θk+1(nδ ,0) = θk+1(nδ , Ih) = ck+1(nδ ,0) = 0. Again
we enforce θ(nδ , ih),c(nδ , ih) ∈ [0,KIh] ∀n,∀i.

Remark 2.4. At a given time step nδ < T , it is opportune to set the initial controls θ0(nδ , :)
and c0(nδ , :) equal to θ ∗((n+1)δ , :) and c∗((n+1)δ , :) respectively.

Remark 2.5. Equation (2.33) can aptly be solved with Thomas’ algorithm. If we insist on
inverting the matrix, a Gaussian elimination procedure would cost us O((I + 1)3) binary
operations per inversion. On the other hand, if we simply aim to solve the problem (and
we do), an O(I +1) tridiagonal matrix algorithm will do just fine.

2.7.2 Results

We continue to work under the parameter specifications in table 3.2 and set the policy con-
vergence parameter ε to 0.0001. Figure 2.4 plots the percentage errors of the numerically
computed optimal controls, for various levels of I, with T = 1 and N fixed at 10 (dt = 0.1).
Despite the comparatively large time steps, we find that the picture is almost identical to
the corresponding explicit case, cf. figure 2.1, with the following provisos: (a) There is a
small loss in accuracy in the optimal investment strategy between I = 200 and I = 400. (b)
The optimal consumption seems to overshoot the 0% level. Further grid refinements (up to
I = 5 ·104) indicate that the upper boundary does not deteriorate much further. Indeed, if
we simultaneously refine the grid along the temporal axis (recall, this is what was done in
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Fig. 2.6 The percentage errors of the numerically computed optimal stock investment (left) and the opti-
mal consumption (right) computed for various values of I and N, assuming a relational upper boundary,
(2.34).

the explicit case in order to satisfy the worst case scenario inequality), the accuracy of the
controls will improve. This is vividly illustrated in figure 2.5 for I = 104: notice in partic-
ular the improvements in the numerically computed optimal consumption, which quickly
reverts back to the desired zeroth level of percentage error.

Ultimately, figures 2.4 and 2.5 are also a testimony to the fact that whilst increasing
I quickly dampens numerical imprecision at low wealth levels, there is relatively little to
be gained at the other end of the wealth spectrum. Only by augmenting N as well do we
experience some rather modest improvements in the percentage error for the upper bound-
ary. Thus, we are once more left with the impression that our inexact upper boundary
effectively kills our chances of numerical accuracy in that region - at least for reasonable
levels of computational time. Obviously, providing an analytically exact boundary defeats
the very purpose of a numerical routine in the first place, so for most practical purposes it
seems we have to bite the bullet. A somewhat milder (but certainly not innocuous) strategy
would be the deployment of an accurate ansatz for the value function at the upper bound-
ary. Specifically, from the linearity of the wealth dynamics (2.6) it is at least reasonable to
conjecture that if (θ ∗,c∗) is an optimal control pair at (t,x) then (kθ ∗,kc∗) will be optimal
for (t,kx). Thus, from (2.7) we find that V (t,kx) = k1−γV (t,x), which for k = x−1 leads to
the conjecture V (t,x) = g(t)γ x1−γ/(1− γ), where g(t) := (1− γ)V (t,1) is some function
of time only. Enforcing this equation at the upper boundary, it is readily shown that

V h,δ (nδ ,(I +1)h) =
(

1+
1
I

)1−γ

V h,δ (nδ , Ih). (2.34)

We call this the relational boundary. Thus, at x = Ih, rather than using the inward prob-
abilities (2.32) of Fitzpatrick & Fleming, we retain the expressions (2.31): a transition to
V h,δ (nδ ,(I + 1)h) is simply handled through (2.34). Similarly, a FOC (θ(nδ , Ih)) which
depends on V h,δ (nδ ,(I +1)h) can be handled through (2.34). The results speak for them-
selves: in figure 2.6 we see that we effectively have eradicated numerical imprecision for
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Fig. 2.7 The percentage errors of the numerically computed optimal stock investment (left) and the opti-
mal consumption (right) computed for various values of β . We assume T = 1, N = 50 and I = 400.

high wealth levels for suitably fine grids. The price we had to pay was the correct assump-
tion that the optimal value function is separable in space and time.

Finally, returning to the original boundary of Fitzpatrick & Fleming, let us say a few
words about parametric choices and numerical reliability. In Munk [15] it is demonstrated
that the subjective discount factor, β , is heavily correlated with the accuracy of the nu-
merical procedure in the infinite horizon case, to the point that β ≈ 0.1 yields deplorably
inaccurate numerical controls, while β ≈ 0.8 yields admirably accurate numerical con-
trols. Hence, Munk argues that for economically plausible (i.e. low) values of β that grid
must be so designed such that one can ignore “a rather wide neighbourhood of the imposed
upper boundary”. Having worked with β = 0.02 throughout this paper, the magnitude of
the discounting factor is clearly less of an issue in the finite horizon case. However, as
figure 2.7 clearly illustrates, this does not belie the fact that higher values of β generally
lead to better numerical accuracy.

A similar conclusion extends to the level of risk aversion, γ , cf. figure 2.8. Low risk
aversion (γ ≈ 0.35) leads to numerical instability. On the other hand, a high risk aversion
can significantly reduce the inaccuracy at the upper boundary. This is hardly surprising: at
x = Ih, as γ increases, the curvature10 of utility function (and thence also the optimal value
function) decreases, which ultimately entails higher accuracy for the difference operators
- particularly D2

xx.

2.8 A Tale From Higher Dimensions

Hitherto our concern has solely been with stochastic control problems with a singular
spatial dimension. Prima facie, a generalisation to higher dimensions might seem like a
conceptually trivial extension of what has already been covered (modulo the exponen-

10 Per definitionem, if f : R 7→ R is a C 2 function, then the curvature is given by κ = | f ′′|/(1+ f ′2)3/2.
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Fig. 2.8 The percentage errors of the numerically computed optimal stock investment (left) and the opti-
mal consumption (right) computed for various values of γ . We assume T = 1, N = 50 and and I = 400.

tial increase in computational complexity - Bellman’s so-called curse of dimensionality).
Nonetheless, as we shall see, the verisimilitude of this claim rests heavily upon a rather
severe constraint on the diffusion matrix, which invariably will bring us into trouble for
Merton type problems. For our present purposes, we shall restrict our attention to an im-
plicit implementation. The DPP we wish to solve is therefore still of the generic form
(2.22), where y now runs over a multi-dimensional space grid.

We reinterpret equation (2.1) as an m-dimensional process, where b : T×Rm×A 7→
Rm, σ : T×Rm×A 7→ Rm×r and W is an r−dimensional standard Brownian motion. The
PDE satisfied by (2.2) is the multi-dimensional extension of (2.14) viz.

βtW = ∂tW +
m

∑
i=1

bi(t,x,a)∂xiW + 1
2

n

∑
i=1

n

∑
j =1

Si j(t,x,a)∂ 2
xix j

W + f (t,x,a), (2.35)

where we have defined x := (x1,x2, ...,xm)
ᵀ and S(t,x,a) := σ(t,x,a)σᵀ(t,x,a). Again,

to procure transition probabilities for the approximating Markov chain {ζ h,δ
n |n ∈ N0}

on the multi-dimensional grid T δ ×Rh1 × ...×Rhm = {0,δ , ...,Nδ}×{x1,min,x1,min +
h1, ...,x1,min + h1I1 =: x1,max}× ...×{xm,min,xm,min + hm, ...,xm,min + hmIm =: xm,max} we
discretise (2.35) in the upwind sense in analogy with (2.25). Let êi =(0,0, ...,1i, 0, ...,0)ᵀ ∈
Rm be a unit vector in the direction of the ith spatial dimension, then the relevant difference
operators may be stated as

• D+
xi

W (t,x,a) := h−1
i [W (t,x+ êihi,a)−W (t,x,a)] (used if bi(t,x,a)≥ 0).

• D−xi
W (t,x,a) := h−1

i [W (t,x,a)−W (t,x− êihi,a)] (used if bi(t,x,a)< 0).
• D2

xixi
W (t,x,a) = h−2

i [W (t,x+ êihi,a)−2W (t,x,a)+W (t,x− êihi,a)].

Furthermore, we introduce the upwind cross derivatives:
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• D+2
xix j

W (t,x,a) :=(2hih j)
−1[2W (t,x,a)+W (t,x+ êihi+ ê jh j,a)+W (t,x− êihi− ê jh j,a)−

W (t,x+ êihi,a)−W (t,x− êihi,a)−W (t,x+ ê jh j,a)−W (t,x− ê jh j,a)] (used if i 6= j
and Si j(t,x,a)≥ 0).

• D−2
xix j

W (t,x,a) := −(2hih j)
−1[2W (t,x,a) +W (t,x + êihi − ê jh j,a) +W (t,x− êihi +

ê jh j,a)−W (t,x+ êihi,a)−W (t,x− êihi,a)−W (t,x+ ê jh j,a)−W (t,x− ê jh j,a)] (used
if i 6= j and Si j(t,x,a)< 0).

Using these approximations in the discrete approximation of (2.35) we find (after the usual
“unity” rescaling [36]) that the transition probabilities are of the form

ph,δ (nδ ,x;nδ ,x± êihi|a) =
1

Qh,δ (nδ ,x,a)

(
[bi(nδ ,x,a)]±

hi

−∑
j 6=i

|Si j(nδ ,x,a)|
2hih j

+ 1
2

Sii(nδ ,x,a)
h2

i

)
,

(2.36a)

ph,δ (nδ ,x;nδ ,x± (êihi + ê jh j)|a) =
S+i j(nδ ,x,a)

2hih jQh,δ (nδ ,x,a)
(2.36b)

ph,δ (nδ ,x;nδ ,x± (êihi− ê jh j)|a) =
S−i j(nδ ,x,a)

2hih jQh,δ (nδ ,x,a)
(2.36c)

ph,δ (nδ ,x;(n+1)δ ,x|a) = δ−1

Qh,δ (nδ ,x,a)
, (2.36d)

ph,δ (nδ ,x;nδ ,x|a) = 1− ∑
y∈Rh

0(x)

ph,δ (nδ ,x;nδ ,y|a)

− ph,δ (nδ ,x;(n+1)δ ,x|a),
(2.36e)

where, ph,δ (nδ ,x;nδ ,y|a) = 0 ∀y /∈Rh(x), and we have defined

Qh,δ (nδ ,x,a) := β (nδ ,x,a)+δ
−1 +

m

∑
i=1

h−1
i |bi(nδ ,x,a)|

+
m

∑
i=1

h−2
i Sii(nδ ,x,a)−

m

∑
i=1

∑
j 6=i

(2hih j)
−1|Si j(nδ ,x,a)|.

(2.37)

Now, Rh(x) := {∀i∀ j s.t. i 6= j|x,x± êihi,x± êihi± ê jh j}, while Rh
0(x) := Rh(x)\{x}.

The interpolation interval remains

∆ th,δ
n =

1
Qh,δ (nδ ,x,a)

.

Remark 2.6. Again, it is computationally advantageous to redefine Qh,δ (nδ ,x,a) without
control dependence in analogy with (2.30).
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Provided that the formulae in (2.36) can be interpreted as probabilities, they satisfy the
basic convergence requirement of being locally consistent in a sense analogous to (2.21).11

Nonetheless, qua the negative coefficient on |Si j(nδ ,x,a)| there is potentially an issue
with respect to keeping the probabilities uniformly non-negative. In fact, a closer look at
(2.36a) and (2.37) reveals that a sufficient condition for non-negativity is the requirement
that ∀i ∈ N, ∀x ∈ Rm and ∀a ∈ A

1
hi

Sii(nδ ,x,a)≥∑
j 6=i

1
h j
|Si j(nδ ,x,a)|. (2.38)

The problem with this constraint is that it fails to obtain for a rather large class of problems
of interest in mathematical economics. While there in some cases are easy fixes to it, the
general case is less encouraging. Consider e.g. the case where S is a matrix independent of
(x,a), which fails to satisfy (2.38), then the problem is as simple as rotating the coordinate
system until the inequality is satisfied. But what about more traditional “asset allocation
type” problems such as

dXt = b1(t,Xt ,Yt ,a)dt +σ1(t,Xt ,Yt ,a)dW1t ,

dYt = b2(t,Yt)dt +σ2(t,Yt){ρdW1t +
√

1−ρ2dW2t},

where ρ is a correlation coefficient between X and Y , and σ1,σ2 ≥ 0? Assuming a uni-
formly equidistant grid spacing, condition (2.38) reduces to the diagonal dominance con-
ditions

σ1 ≥ |ρ|σ2, and σ2 ≥ |ρ|σ1,

which generally won’t be simultaneously satisfied (for ρ = ±1 they are always mutually
inconsistent unless σ1 = σ2 a.s., while they for the diagonal case ρ = 0 clearly always are
consistent). To combat this, one could try an adaptive discretisation approach a la Wang
et al. [27], where a suitable differencing scheme is custom picked for each individual grid
node, with the aim of securing non-negative probabilities. However, such a search over
uniformly positive coefficients will inevitably constitute a non-trivial exercise in coding
for dimensionality m≥ 1, thus bringing the practicality of the approach into doubt. In [16]
Kushner likewise describes a method which through the employ of non-local transitions
aims to reduce the relative numerical noise of the off-diagonal elements in S - a method he
stoically characterises as requiring some flexibility on the part of the programmer.

2.9 A Multi-dimensional Take on the Labour Income Problem

In this section our aim is to test the performance of the multi-dimensional Markov chain
approximation method on a bivariate Merton type optimisation problem with a known an-
alytic solution, viz. the case where the investor consumes and invests as before, whilst
receiving a stochastic labour income. As it will quickly become apparent, this problems

11 σ2 should be read as σσᵀ = S.
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fails to satisfy the crucial inequality (2.38), wherefore convergence to the right solution
cannot be guaranteed. Nonetheless, there is surely some academic interest in scrutinis-
ing the accuracy of the multi-dimensional algorithm beyond the assumptions to which it
is confined. Accurate results could be an indicator, that reasonably similar optimisation
problems can be solved numerically although they fail to satisfy the criterion of positive
probabilities.

2.9.1 The Labour Income Problem

We imagine that the Mertonian investor also receives an exogenous stochastic endowment
at the rate Yt , henceforth described as labour income. The modified Merton problem may
thence be stated as

V (t,x,y) = sup
(θ ,c)∈A (t,x,y)

Et,x,y

[∫ T

t
e−β (s−t)u(cs)ds+ e−β (T−t)u(Xθ ,c

T )

]
,

s.t. dXθ ,c
s = [rXθ ,c

s +θs(µ− r)+Ys− cs]ds+θsσdWs,

where (Xθ ,c
t ,Yt) = (x,y), and u (once again) is identified as an isoelastic utility function

u(x) = x1−γ/(1− γ). For simplicity, we take Y to be governed by

dYs = pYsdt +qYsdWs,

where p,q are constant parameters, and the random source on Yt has been chosen to move
in lockstep with the stock price process, thus rendering income risk perfectly hedgeable
by the traded financial securities. Clearly, this assumption does not find its grounding in
empirics, but rather our scheming intentions of deriving a simple closed-form benchmark
against which our numerical algorithms can be compared. The key insight is that labour
income effectively translates to receiving a “dividend” of magnitude Ysds over the time
increment [s,s+ds]. Hence the present value of the investor’s future income (his so-called
human wealth) can be computed as

H(t,y) := EQ
t,y

[∫ T

t
e−r(s−t)Ysds

]
,

where Q is the risk neutral measure defined through the process ξt := Et [dQ/dP] =
exp{− 1

2 λ 2t −λWt}, λ := (µ − r)/σ being the market price of risk of the stock. Using
the Abstract Bayes’ Theorem12, we may re-express human wealth under the P-measure:

H(t,y) = ξ
−1
t Et,y

[∫ T

t
e−r(s−t)

ξsYsds
]
.

In particular, since the Y process admits an explicit solution of the form Ys = yexp{(p−
1
2 q2)(s− t)+q(Ws−Wt)} under P, we find, after a few manipulations, that

12 See Björk [10], proposition B.41.
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H(t,y) =

{
y

r−p+qλ

(
1− e−(r−p+qλ )(T−t)

)
, if r− p+qλ 6= 0,

y(T − t), if r− p+qλ = 0.
(2.39)

Effectively, the total wealth of the investor at time t is therefore of the magnitude
x + H(t,y), and it makes sense to hypothesise that Merton’s optimal consumption and
investment strategies are scaled accordingly. Specifically, for the governing HJB equation

βV = ∂tV + sup
(θ ,c)∈R×R+

{
[rx+θ(µ− r)+ y− c]∂xV + 1

2 θ
2
σ

2
∂

2
xxV

+ yp∂yV + 1
2 y2q2

∂
2
y V + yθqσ∂

2
xyV +

c1−γ

1− γ

}
,

with terminal condition v(w,y,T ) = w1−γ/(1− γ) and associated FOCs

θ
∗(t,x,y) =− (µ− r)

σ2
∂xV
∂ 2

xxV
− yq

σ

∂ 2
xyV

∂ 2
xxV

, and c∗(t,x,y) = (∂xV )−1/γ , (2.40)

we make the ansatz

V (t,x,y) = g(t)γ(w+H(y, t))1−γ(1− γ)−1, (2.41)

in direct analogy with the Merton case, albeit scaled for the auxiliary wealth brought about
by labour income. Indeed, upon solving the problem we find that g is defined as in section
2.3, while

θ
∗(t,x,y) =

(µ− r)x
γσ2 +

H(t,y)
σ

(
µ− r
γσ
−q
)
, and c∗(t,x,y) =

x+H(t,y)
g(t)

. (2.42)

As a sanity check, note that we recover Merton’s original control functions upon setting
the human wealth equal to zero. For a more detailed exegesis of the problem we refer the
reader to Munk [15]. For a study of labour income in incomplete markets see Duffie et al.
[7], [8], and Munk [23].

2.9.2 The Implicit Implementation

From the linearity of the human wealth in the y variable (2.39) and equation (2.41), the
value function is clearly homogenous of degree 1− γ in (x,y). In the spirit of Davis et
al. [6] the governing HJB equation can therefore be reduced to a single spatial variable,
z = x/y, which in turn warrants a drastic simplification of the numerical procedure (not
to mention positive transition probabilities!). However, as suggested above, there is some
interest in putting the multi-dimensional Markov framework to the test despite the issue
of negative probabilities: at the very least the implementation procedure is sufficiently
non-trivial to deserve some amount of elucidation.
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Thus, let us discretise the labour income problem on the three dimensional lattice T δ ×
Rhx×Rhy = {0,δ , ...,Nδ =: T }×{xmin,xmin +hx, ...,xmin + Ihx =: xmax}×{ymin,ymin +
hy, ...,ymin+Jhy =: ymax}. Based on (2.37) and the following (artificial) upper boundary on
the controls ∀n∀x∀y : θ(nδ ,x,y),c(nδ ,x,y)≤ K(x+y) we define the control free quantity

Q̄h,δ (nδ ,x,y) = δβ +1+δh−1
x

(
rx+K(x+ y)(µ− r)+ y+K(x+ y)

)
+δh−1

y py

+δh−2
x K2(x+ y)2

σ
2 +δh−2

y y2q2−δh−1
x h−1

y yK(x+ y)qσ ,

where we have factored out a δ−1. The associated non-zero transition “probabilities”
(2.36) take the form13

ph,δ (nδ ,x,y;nδ ,x+hx,y|θ ,c) =
δ

Q̄h,δ

( rx+θ(µ− r)+ y
hx

− 1
2

yθσq
hxhy

+ 1
2

θ 2σ2

h2
x

)
,

ph,δ (nδ ,x,y;nδ ,x−hx,y|θ ,c) =
δ

Q̄h,δ

( c
hx
− 1

2
yθσq
hxhy

+ 1
2

θ 2σ2

h2
x

)
,

ph,δ (nδ ,x,y;nδ ,x,y+hy|θ ,c) =
δ

Q̄h,δ

(yp
hy
− 1

2
yθσq
hxhy

+ 1
2

y2q2

h2
y

)
,

ph,δ (nδ ,x,y;nδ ,x,y−hy|θ ,c) =
δ

Q̄h,δ

(
− 1

2
yθσq
hxhy

+ 1
2

y2q2

h2
y

)
,

ph,δ (nδ ,x,y;nδ ,x+hx,y+hy|θ ,c) =
δyθqσ ,

2Q̄h,δ hxhy

ph,δ (nδ ,x,y;nδ ,x−hx,y−hy|θ ,c) =
δyθqσ

2Q̄h,δ hxhy
,

ph,δ (nδ ,x,y;(n+1)δ ,x,y|θ ,c) = 1
Q̄h,δ ,

ph,δ (nδ ,x,y;nδ ,x,y|θ ,c) = 1− (sum of the probabilities above),

where we for notational simplicity have suppressed the arguments on Q̄, θ and c. The inter-
polation interval is ∆ th,δ

n = δ/Q̄h,δ (nδ ,x,y). Notice that condition (2.38) simultaneously
requires yqhx ≤ θσhy and θσhy ≤ yqhx, which obviously fails to be the case. Negative
probabilities are therefore to be expected.

Remark 2.7. As for the boundary conditions (the four surfaces of the grid characterised
by x = xmin,x = xmax,y = ymin and y = ymax), we adopt a relational boundary approach in
analogy with (2.34). From (2.41) we find that

V h,δ (nδ ,xmax +hx,ymin +hy j) = Gn
+, jV

h,δ (nδ ,xmax,ymin +hy j).

where we have introduced the notation

13 Again, we have made use of splitting of the operator.
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Gn
+, j :=

(
1+

hx

xmax +H(nδ ,ymin + jhy)

)1−γ

.

(Think of Gn
+, j as an operator which raises the index i = I on the operand by plus one,

whilst keeping the j index as is). On the other side of the grid, we can introduce Gn
−, j

such that Gn
−, jV (nδ ,xmin,ymin+ jhy) =V (nδ ,xmin−hx,ymin+ jhy) (the operator Gn

−, j now
lowers the index i = 0 of the operand by minus one). Analogous coefficients are found for
the y-variable: Gn

i,+ and Gn
i,−, as for the edges of the grid Gn

++, Gn
+−, Gn

−+, Gn
−− (all

through the employ of (2.41)).

Again, the trick to solving the DPP for the labour income problem

V h,δ (nδ ,x) = sup
(θ ,c)∈R×R+

[
c(nδ ,x,y)1−γ

1− γ

δ

Q̄h,δ (nδ ,x,y)

+ e
− βδ

Q̄h,δ (nδ ,x,y) ∑
(z,z′)∈Rh(x,y)

ph,δ (nδ ,x,y;nδ ,z,z′|θ ,c)V h,δ (nδ ,z,z′)

+ e
− βδ

Q̄h,δ (nδ ,x,y) p(nδ ,x,y;(n+1)δ ,x,y|θ ,c)V h,δ ((n+1)δ ,x,y)
]
,

is to rewrite the system on the form

Mh,δ
n (θk,ck)V

h,δ
n,k +qh,δ

n (ck) = Vh,δ
n+1,

which can be solved using iterations in policy space. In this connection it is computation-
ally advantageous to think carefully about the ordering the set of indices {(i, j)|0 ≤ i ≤
I,0 ≤ j ≤ J}. At the very least one should choose an ordering which renders Mh,δ

n block
tridiagonal and optimally also one which minimises the associated bandwidth (essentially:
the size of the individual blocks). A particularly natural choice is

(i, j) ∈ {(0,0),(0,1), ...,(0,J);(1,0),(1,1), ...,(1,J); ...;(I,0),(I,1), ...,(I,J)}, (2.43)

which yields the block tridiagonal matrix system



M̄n
0Γ

n
0 +M̂n

0 M̃n
0 0 0 · · · 0

M̄n
1 M̂n

1 M̃n
1 0 · · · 0

0 M̄n
2 M̂n

2 M̃n
2 · · · 0

...
. . . . . . . . .

...

0 · · · 0 0 M̄n
I M̂n

I +M̃n
IΓ

n
I





Vn
0

Vn
1

Vn
2

...

Vn
I


+



qn
0

qn
1

qn
2

...

qn
I


=



Vn+1
0

Vn+1
1

Vn+1
2

...

Vn+1
I


, (2.44)
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where Vn
i and qn

i are (J + 1)-dimensional vectors the ( j+ 1)th components of which re-
spectively amount to V h,δ

k (n, i, j) and

δ exp{βδ/Q̄h,δ (n, i, j)}ck(n, i, j)1−γ

1− γ
,

for i = 0,1,2, ..., I and j = 0,1,2, ...,J. For ease of notation, we have here defined

(n, i, j) := (nδ ,xmin + ihx,ymin + jhy).

As for the block components, we define the (J + 1)× (J + 1) blocks Γ n
0 := diag(Gn

−,0,
Gn
−,1, ...,G

n
−,J), Γ

n
I := diag(Gn

+,0,G
n
+,1, ...,G

n
+,J), alongside the Ms which generally are

tridiagonal matrices

xMn
i :=



xan
i,0

xγn
i,0 +

xbn
j,0

xcn
i,0 0 0 · · · 0

xan
i,1

xbn
i,1

xcn
i,1 0 · · · 0

0 xan
i,2

xbn
i,2

xcn
i,2 · · · 0

...
. . . . . .

...

0 · · · 0 0 xan
i,J

xbn
i,J +

xγn
i,J

xci,J


,

where the superscript x represents a “bar”,“hat” or “tilde” over the following object, and
xa, xb, and xc are coefficients to be spelled out momentarily. Again, for relational boundary
purposes, we have introduced the quantities γn

i,0 := Gn
i−1,−, γ̂n

i,0 := Gn
i,−, γ̃n

i,0 := Gn
i+1,−, and

γn
i,J := Gn

i−1,+, γ̂n
i,J := Gn

i,+, γ̃n
i,J := Gn

i+1,+ for all i - except the four corner cases where
γn

0,0 :=Gn
−,−/Gn

−,0, γ̃n
I,0 :=Gn

+,−/Gn
+,0, γn

0,J :=Gn
−,+/Gn

−,J , and γ̃n
I,J :=Gn

+,+/Gn
+,J . Finally,

a few short manipulations of the DPP reveal that

ān
i, j =−

δyθk(n, i, j)qσ

2hxhy
,

b̄n
i, j = δ

(
− ck(n, i, j)

hx
+ 1

2
yθk(n, i, j)σq

hxhy
− 1

2
θk(n, i, j)2σ2

h2
x

)
,

c̄n
i, j = 0,

ân
i, j = δ

(
1
2

yθk(n, i, j)σq
hxhy

− 1
2

y2q2

h2
y

)
,

b̂n
i, j = Q̄h,δ (eβδ/Q̄h,δ (n,i, j)−1)− ān

i, j− b̄n
i, j− ân

i, j− ĉn
i, j− b̃n

i, j− b̃n
i, j +1,

ĉn
i, j = δ

(
− yp

hy
+ 1

2
yθk(n, i, j)σq

hxhy
− 1

2
y2q2

h2
y

)
ãn

i, j = 0,

b̃n
i, j = δ

(
− rx+θk(n, i, j)(µ− r)+ y

hx
+ 1

2
yθk(n, i, j)σq

hxhy
− 1

2
θk(n, i, j)2σ2

h2
x

)
,
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c̃n
i, j =−

δyθk(n, i, j)qσ

2hxhy
,

∀i∀ j. From the DPP we also find the discretised FOCs

θk+1(n, i, j) =− (µ− r)
σ2

D+
x V h,δ

k (n, i, j)

D2
xxV

h,δ
k (n, i, j)

−
(ymin + ihy)q

σ

D+2
xy V h,δ

k (n, i, j)

D2
xxV

h,δ
k (n, i, j)

,

ck+1(n, i, j) =
(

e
− βδ

Q̄h,δ (n,i, j) D−x V h,δ
k (n, i, j)

)−1/γ

,

through which we update our controls (compare these expressions with (2.40)). Again, the
boundaries i = 0, i = I, j = 0 and j = J are handled through the relational operators and
the all controls are suitably constrained.

Remark 2.8. The central idea behind writing the DPP on block tridiagonal form, (2.44),
is that we can solve the system through a generalised block form of Thomas’ algo-
rithm. Were we to invert the Brobdingnagian (I + 1)(J + 1)× (I + 1)(J + 1) matrix
using a Gaussian procedure we would incur O((I + 1)3(J + 1)3) binary operations.
With the generalised Thomas algorithm this number we can solve the system with
O((I + 1)(J + 1)3) operations. Incidentally, this power asymmetry highlights the im-
portance of choosing an ordering which keeps the bandwidth minimal: essentially, the
ordering (2.43) is only to be preferred if J ≤ I. If J > I, it would be better to have
a system with blocks of dimensionality (I + 1)× (I + 1) as per the ordering (i, j) ∈
{(0,0),(1,0), ...,(I,0);(1,1),(2,1), ...,(I,1); ...;(1,J),(2,J), ...,(I,J)}. Hence order O((J+
1)(I +1)3) in complexity. Further details are provided in the appendix.

2.9.3 Results

We assume the same parameters as in table 3.2. Furthermore, let the drift and diffusion
of the income process be p = 0.04 and q = 0.1 respectively, and let the state space be
restricted to [xmin,xmax]× [ymin,ymax] = [20,100]× [10,50]. Figures 2.9 and 2.10 plot the
percentage errors of the numerically computed optimal controls for various values of I, J,
and N. Considering that the algorithm comes with no guarantee of convergence, the results
are (for the current parametric choices) pleasantly accurate. Part of this success story must
be ascribed to the use of relational boundaries. We experimented with various Dirichlet
alternatives and found that even mild perturbations could wreck considerable havoc. It is
interesting to note that increasing N not necessarily improves the accuracy of the algo-
rithm. Furthermore, while the illustrated surfaces seemingly become increasingly more
accurate as we increase the spatial fine-graining, numerical experiments also indicate that
there is an upper threshold for I,J beyond which the numerical controls can become ex-
ceedingly inaccurate. Jointly, these facts clearly point in the direction that the algorithm
does not converge, which hardly is surprising given that our negative probabilities violate
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Fig. 2.9 The percentage errors of the numerically computed optimal stock investment (left) and the opti-
mal consumption (right) for various values of I and J (i.e. various values of spatial grid refinements). We
assume T = 1 and N = 50.

the monotonicity property. Nonetheless, this does not mean that the procedure is alto-
gether useless: very reasonable results can be obtained for a wide range of parameters (the
percentage errors come in at less than 2% for the dominant part of the grid). Thus, if ev-
erything else fails, a multi-dimensional Markov chain approximation with negative proba-
bilities can still serve as a beacon in the night for the working economist. Ultimately, one
must experiment with different grid specifications to test the robustness of the numerical
results: indeed, ask oneself the dangerously nebulous question: are my results reasonable?

2.10 Conclusion

Our path through the numerical landscape of financial control theory has been long and
winded, and it is well worth summarising some of our key findings. The main advan-
tage of the explicit Markov chain approximation is the fact that it is straight-forward to
implement. Alas, simplicity comes at the cost of satisfying the probabilistic positivity re-
quirement (2.17), which for Merton type problem entails exceedingly small time steps.
For a grid interpretation of the explicit method this is a nuisance, but does not cause diffi-
culties in principle. As for the trinomial interpretation, a “worst case scenario” take on the
inequality may altogether rule out the existence of a converging solution. To sidestep this
issue, one may opt for the implicit Markov chain approximation instead. Whilst this prima
facie calls for a solution to a highly non-linear system of equations, one may invoke the
iterations in policy space algorithm (2.24) in order to render the system (iteratively) lin-
ear and thence susceptible to a tridiagonal matrix algorithm. Irrespective of the procedure
being implemented a further key insight pertains to the immense computational benefit of
using discretised FOCs upon updating the controls. Searches over discrete control spaces
are better avoided (or should at the very least be restricted to locally plausible regions
based upon subsequent values of optimality).
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Fig. 2.10 The percentage errors of the numerically computed optimal stock investment (left) and the
optimal consumption (right) for various values of N (i.e. various values of temporal grid refinements). We
assume T = 1, I = 100, and J = 100.

In a Mertonian context, both procedures were found to be wildly inaccurate near the
upper and lower boundaries. Considering the general opaqueness of what constitutes ade-
quate boundaries this is hardly surprising: however, it is at least somewhat unsettling that
the numerical accuracy near the upper boundary seemingly benefits so very little from in-
creasing the grid refinement (and invariably, the computational run-time). Further numeri-
cal studies indicated that one may take some measures against this by choosing appropriate
parameters (essentially, high values for β and γ), although this admittedly may fly in the
face of empirical data. A better (but admittedly also bolder) move is that of introducing a
relational upper boundary (2.34) based on the correct ansatz of time-space separability of
the value function. This solved the problem satisfactorily even for relatively coarse grained
grid specifications.

Finally, while a multi-dimensional extensions to the Markov chain approximation are
theoretically possible, keeping the transition probabilities non-negative for Merton type
problems proves to be considerably more complex. Given the relevance of this class of
problems, and the absence of easy fixes, we put the algorithm to the test by studying the
(non-spatially reduced) labour income problem, in which negative transitions are manifest.
The numerically computed optimal controls turned out to be surprisingly accurate, despite
the absence of algorithmic monotonicity. However, the performance for various parameters
and grid specifications is also sufficiently erratic, in order for the method to be deemed
potentially dangerous.
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Appendix A: The Generalised Thomas Algorithm

First, recall the fundamentals of Thomas’ algorithm: suppose we have a matrix system of
the form

Ax = y,

where x,y ∈ RI and A ∈ RI×I is a tridiagonal matrix. Insofar as we wish to solve for x we
could perform an explicit matrix inversion of A, thus incurring an order of O(I3) binary
operations in the process. However, it is much more sensible to exploit the tridiagonality of
A by first decomposing the matrix into LU form, where L,U ∈ RI×I are lower and upper
triangular matrices (the only non-zero elements of which are in the leading diagonal and
the ‘next-to” leading diagonal). Solving for x in LUx = y, is now a two-step process: first,
we solve for x′ ∈ RJ in the system

Lx′ = y,

simply by working our way row-by-row downwards through the system. Secondly, we
solve for the desired object x in the system

Ux = x′,

by working our way row-by-row upwards through the system. The total number of binary
system incurred in the process is of O(I) - a considerable simplification over the Gaussian
algorithm.

The Extension

Unsurprisingly perhaps, the exact same principles can be extended to matrix systems of
a block tridiagonal nature (the only caveat being the fact that matrix multiplication is
manifestly non-commutative whence one must take slightly more care in the derivation).
Specifically consider the case where Ax = y is a matrix system such that x,y ∈ RI·J and
A ∈ RI·J×I·J is a block tridiagonal matrix, with J× J-dimensional block components xAi
where x ∈ {[blank],∧,∼}:

A :=



Ân
1 Ãn

1 0 0 0 · · · 0

An
2 Ân

2 Ãn
2 0 0 · · · 0

0 An
3 Ân

3 Ãn
3 0 · · · 0

...
. . . . . . . . .

...

0 · · · 0 0 An
J−1 Ân

J−1 Ãn
J−1

0 · · · 0 0 0 An
J Ân

J


.
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We now perform a block LU decomposition, to which end we introduce the lower and
upper triangular block matrices:

L :=



I 0 0 0 . . . 0

L2 I 0 0 . . . 0

0 L3 I 0 . . . 0
...

. . . . . .
...

0 0 LI−1 I 0

0 . . . 0 0 LI I


, U :=



H1 U1 0 0 . . . 0

0 H2 U2 0 . . . 0

0 0 H3 U3 0
...

. . . . . .
...

0 0 0 HI−1 UI−1

0 . . . 0 0 0 Hn
I


,

where Li,Hi and Ui are in RJ×J and I is the identity matrix of the same space. Thomas’
generalised algorithm then boils down to the pseudo-code exhibited in the algorithm below
in direct analogy with the simple tridiagonal matrix case.

Remark 2.9. Suppose the matrix blocks in turn are tridiagonal matrices, as it will be the
case for PDE problems with two spatial variables and purely local transitions. Can one
imbed a Thomas algorithm within Thomas’ generalised algorithm to solve for the Lis and
yis (thus sidestepping an explicit inversion of the His)? Emphatically: no. This follows
from the simple fact that the His generally won’t be tridiagonal beyond the case i = 1.

Complexity

We may now compute the reduction in computational complexity as follows: from the I
full matrix inversions of the His we incur from Gaussian elimination: I · ( 1

3 J3 + J2 + 1
3 J)

multiplications & divisions and I ·( 1
3 J3+ 1

2 J2− 5
6 J) additions & subtractions. The remain-

ing multiplications & divisions in the algorithm amount to 5IJ−4J, whilst the remaining
additions & subtractions amount to 3IJ− 3J. Thus, under the assumption that J ≤ I, the
overall complexity of the algorithm scales as O(IJ3) - a substantial improvement over
Gauss’ O(I3J3).14 Insofar as I ≤ J we could obtain the “mirror” result O(JI3) by choos-
ing the ordering such that the block matrices have dimensionality I× I instead. For further
details about tridiagonal matrix methods in mathematical finance we refer the reader to
Ellersgaard [15] or Appendix B in this dissertation.

14 In actual implementations of Thomas’ generalised algorithm one might find that it is appropriate to
manipulate the indices, which will engender further binary operations. However, the totality of these prove
to be considerably smaller than the leading order of magnitude.
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Thomas’ Generalised Algorithm

Set H1 := Â1;

U1 := Ã1;

For i = 2, ..., I−1 set Li := Ai[Hi−1]
−1;

Hi := Âi−LiUi−1;

Ui := Ãi;

Set LI := AI [HI−1]
−1;

HI := ÂI−LIUI−1;
Set x′1 := y1;
For i = 2, ..., I set x′i := yi−Lix′i−1;

Set xI := [HI ]
−1x′I ;

For i = I−1, ...,1 set xi := [Hi]
−1(x′i−Uixi+1);
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Abstract From an empirical perspective, the stochasticity of volatility is manifest, yet
there have been relatively few attempts to reconcile this fact with Merton’s theory of opti-
mal portfolio selection for wealth maximising agents. In this paper we present a systematic
analysis of the optimal asset allocation in a derivative-free market for the Heston model,
the 3/2 model, and a Fong Vasicek type model. Under the assumption that the market price
of risk is proportional to volatility, we can derive closed form expressions for the optimal
portfolio using the formalism of Hamilton-Jacobi-Bellman. We also perform an empirical
investigation, which strongly suggests that there in reality are no tangible welfare gains
associated with hedging stochastic volatility in a bond-stock economy.
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3.1 Introduction

Since Merton’s seminal paper on lifetime portfolio selection under uncertainty [12] the
use of stochastic control theory in the study of dynamic optimal portfolio selection has
become a cornerstone in the field of mathematical economics. Countless extensions and
modifications have been proposed to Merton’s original argument, including, but not lim-
ited to, stochastic interest rates and labour wages, inflation risk and home ownership (for
a highly readable exegesis of these topics, the reader is referred to Munk [15] and the
references therein). By and large, these extensions centre around solving ever more invo-
luted variations of the non-linear Hamilton-Jacobi-Bellman equation. Indeed, this paper
is no exception in this regard.1 Curiously though, there have been relatively few attempts
at unifying Merton’s classical portfolio problem with stochastic volatility. Given the over-
whelming empirical support which underpins the latter (indeed, the tremendous theoretical
interest it has received from the quantitative finance community) this is surprising. In fact,
it is only during the past decade that a small number of papers have emerged offering
closed-form expressions for optimal portfolio choices in stochastic volatility economies.
Most prominently, perhaps, is the work by Liu [19]2 and Liu and Pan [20] (a) in which
an investor seeks to optimise her bequest in a Hestonian market [17] with access to a risk
free money account and a stock, (b) in which essentially the same scenario is extended to
include derivatives. For a formal derivation of (a) see Kraft [18] who offers a full-fledged
verification argument.3. Another paper worthy of mention is that of Branger and Hansis
[5], in which optimal “buy-and-hold” strategies are studied for an isoelastic (CRRA) in-
vestor who can also trade in a stock option. Here the market is again Hestonian, albeit
with the interesting caveat that they allow for correlated jumps in the driving processes of
the stock price and the variance. Fundamentally, Branger and Hansis seek to uncover the
utility gains obtained through the incorporation of derivatives and the losses incurred due
to the omission of risk factors and erroneous estimates of risk premia. Finally, we refer the
reader to a paper by Chacko and Viceira [10] in which an optimal consumption process
under stochastic volatility is desired for an investor with Epstein-Zin utility. Working with
what effectively translates to a 3/2-model in a stock-bond economy, Chacko and Viceira
manage to derive closed-form approximations to the optimal consumption level, followed
by a perspective from empirics. Conceptually, our paper bears its strongest ties to this
study. Nonetheless, the differences between our approach and that of Chacko and Viceira
also remain pronounced: e.g. our optimisation problem pertains to terminal wealth max-
imisation - not continuous rate of consumption. Moreover, our stochastic volatility models
are different, as is our empirical performance test.

1 Nevertheless, the HJB approach no longer monopolises the market cf. the comparatively recent devel-
opments in martingale / convex-duality theory which in some sense provide a much more æsthetic and
general approach to the field (see e.g. Pham [18]).
2 Liu takes this as an instantiation of a more general body of theory involving state variables of “quadratic
form”.
3 Non-Lipschitzian models (of which the CIR process is an example) do not fall within that general spec-
trum of SDEs for which verification is considered well established (see for instance Zariphopoulou [35]).
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The structure of this paper is as follows: In section 3.2 we lay down the foundations for
our study, by discussing the assumptions enforced upon the market and the investor. In
section 3.3 we formalise the optimal investment problem using principles of stochastic
control theory and perform a standard dimensional reduction of the governing differential
equation based on the linearity of the wealth dynamics. Sections 3.4 and 3.5 are dedicated
to the solution of two concrete problems viz. the case where the variance process follows
a Heston model, and the case where it follows a 3/2 model. Upon making concrete specifi-
cations for the market price of risk, the former portfolio weight is shown to be independent
of the level of the variance, whilst the same thing cannot be said for the latter. Section 3.6
is a generalisation of the material from section 3.3, by allowing for multiple risky assets
and multiple state variables. Section 3.7 exemplifies this extension by considering a half-
forgotten model proposed by Fong and Vasicek in the early 90s [31], [32]. Fundamentally,
the concern here is the inclusion of fixed income products the values of which are depen-
dent upon a stochastic yield-volatility model. Finally, section 3.8 constitutes an empirical
investigation into the extent to which rational investors should be concerned about hedging
stochastic volatility as opposed to just following a garden variety Merton strategy. Upon
calibrating our models to market data, we observe that hedging stochastic volatility within
the confines of our market assumptions, in practice does not lead to tangible welfare gains.
Section 3.9 concludes.

3.2 Model Set-up

3.2.1 The Economy

Consider a financial market satisfying the usual Black-Scholes-Merton assumptions i.e. a
market characterised by continuous trading and the absence of arbitrage, a market where
all assets are infinitely divisible as to the amount which may be held and where no trade is
subject to transaction costs or taxation (friction). For simplicity, we initially consider the
rudimentary financial landscape where there are just two tradeable assets in existence, viz.
a risk risk-free money account (a bond), represented by the price process {Bt}t≥0, and a
singular risky asset (a stock), represented by the price process {St}t≥0. In concrete dynam-
ical terms, we shall assume that the money account grows according to the deterministic
equation

dBt = rBtdt,

where r is a constant risk free rate (this assumption is relaxed later). On the other hand,
the risky asset is assumed to be governed by the generic stochastic volatility model

dSt = St{(r+
√

Vtλ1(Vt))dt +
√

VtdW1t},

dVt = α(t,Vt)dt +β (t,Vt)(ρdW1t +
√

1−ρ2dW2t),
(3.1)
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where {Vt}t≥0 is the instantaneous variance process, and the random components W1 and
W2 are independent Wiener processes. Here, we have introduced λ1 as the market price of
risk associated with W1 (which, equivalently, may be thought of as the Sharpe ratio of the
stock) and the parameter ρ ∈ [−1,1] to codify an instantaneous correlation between the
stock price and the variance

ρ = Corr[dSt ,dVt ].

The coefficients α : [0,∞)×R+ 7→ R (the drift of the variance) and β : [0,∞)×R+ 7→ R
(the volatility of variance) are continuous deterministic functions, which satisfy certain
technical conditions in order to guarantee the existence of a unique strong solution.
As usual, all stochastic processes are assumed to inhabit a filtered probability space
(Ω ,F ,F,P), where Ω represents all possible states of the economy, and F = {Ft}t≥0
is a filtration which satisfies the usual conditions.

Remark 3.1. Observe that λ1 is assumed dependent upon the instantaneous variance.
Specifically, it turns out to be useful to posit that

λ1(Vt) = λ
√

Vt ,

where λ ∈ R+. Nonetheless, until this becomes sufficiently obvious, we will work with
the general function λ1.

Remark 3.2. The fact that the market is assumed void of derivatives is a shortcoming worth
highlighting. Specifically, our findings in what follows can at best be said to be applicable
to unsophisticated investors who take positions in a bond-stock mixture.

3.2.2 The Investor’s Problem

We consider an investor who trades in the financial market over a known temporal horizon
T= [0,T ] where T ∈ (0,∞). If W π

t represents her total wealth at time t and πt represents
the fraction of wealth she places on the risky asset (with the remaining wealth being de-
posited in the risk free money account), a quick application of the self-financing condition
shows that her total wealth evolves according to the stochastic differential equation

dW π
t = W π

t {(r+πt
√

Vtλ1(Vt))dt +πt
√

VtdW1t}. (3.2)

Fundamentally, we assume that the the investor is interested in determining the functional
form of the risky portfolio weight which will maximise the expected utility of her terminal
wealth (“bequest” at time T ). Specifically, the goal is to compute an optimal admissible
feedback control law π∗t = π∗(t,Wt ,Vt) for some function π∗ : T×R+×R+ 7→ R such
that

{π∗s }s∈[t,T ]= argmax
{πt}∈A (t,w,v)

Et,w,v

[
e−δ (T−t)u(W π

T )
]
,
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where u : R+ 7→ R is a von Neumann-Morgenstern utility function and δ is the investor’s
subjective discount factor. Throughout this paper, we will assume that the space of admis-
sible controls is:

A (t,w,v) =
{

π :
∫ T

t
π

2
u du < ∞ a.s. for all T ≥ t, s.t. (Wt ,Vt) = (w,v)

}
.

In particular, we do not enforce any restrictions on short-selling or leveraging. As for the
utility function, u, we adopt the convention of isoelasticity, meaning that

u(x) =

{
(x1−γ −1)/(1− γ), for γ 6= 1,
ln(x), for γ = 1,

where γ is a positive4 parameter which codifies the investor’s level of risk aversion. Ob-
viously, optimal choices are unaffected by translations of the utility function along the
ordinate axis, which means that the −1 in the numerator of u (γ 6= 1) can and will be
dropped in an optimisation context. The main point of retaining the −1 in the definition
stems from the fact that (x1−γ −1)/(1− γ) formally converges to ln(x) as γ→ 1 as it may
be verified by applying l’Hôspital’s rule. Accordingly, we will also be able to consider the
optimal financial decisions of log investors throughout this paper simply by letting γ go to
unity.

3.3 Towards Rigour

3.3.1 The HJB Formalism

Defining the optimal value function J : T×R+×R+ 7→ R

J(t,w,v)≡ sup
{πt}∈A (t,w,v)

Et,w,v

[
e−δ (T−t) (W

π
T )1−γ

1− γ

]
, (3.3)

we may use standard control theoretic arguments to show that J necessarily satisfies the
Hamilton-Jacobi-Bellman (HJB) equation

δJ = ∂tJ+ sup
πt∈R

{
w(r+πt

√
vλ1(v))∂wJ+α(t,v)∂vJ

+ 1
2 w2

π
2
t v∂

2
wwJ+ 1

2 β
2(t,v)∂ 2

vvJ+ρwπt
√

vβ (t,v)∂ 2
wvJ
}
,

with the terminal condition J(T,w,v) = w1−γ/(1− γ). Differentiating the bracketed ex-
pression with respect to πt gives is the first order condition

4 The positivity of γ renders the utility function concave and thus the agent risk averse, as opposed to risk
neutral (γ = 0) or risk loving (γ < 0).
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π
∗
t =− λ1(v)∂wJ

w
√

v∂ 2
wwJ
− ρβ (t,v)∂ 2

wvJ
w
√

v∂ 2
wwJ

. (3.4)

Hence, the HJB equation may be reformulated as

δJ = ∂tJ+ rw∂wJ+α(t,v)∂vJ+ 1
2 β

2(t,v)∂vvJ

− 1
2 λ

2
1 (v)

(∂wJ)2

∂ 2
wwJ

− 1
2 ρ

2
β

2(t,v)
(∂ 2

wvJ)2

∂ 2
wwJ

−ρβ (t,v)λ1(v)
∂wJ∂ 2

wvJ
∂ 2

wwJ
.

(3.5)

3.3.2 A Dimensional Reduction

From the linearity of the wealth dynamics (3.2) it follows that the optimal strategy π∗t must
be independent of the level of wealth (specifically, multiplying Wt by an arbitrary constant
k renders the dynamics form-invariant: thus, there should be no need for tampering with
the control). Using this insight, the optimal value function may therefore be written as

J(t,kw,v) = Et,w,v[e−δ (T−t)u(kW ∗
T )]

= k1−γEt,w,v[e−δ (T−t)u(W ∗
T )]

= k1−γ J(t,w,v).

Setting k = 1/w we arrive at the result that the optimal value function is separable in wealth
and time-volatility:

J(t,w,v) = g(t,v)γ w1−γ

1− γ
, (3.6)

where g(t,v)γ ≡ (1− γ)J(t,1,v). Inserting this expression into the HJB equation (3.5) we
obtain, after considerable simplification5,

0 = ∂tg−
(

δ

γ
− γ̂r− 1

2 γ
−1

γ̂λ
2
1 (v)

)
g+(α(t,v)+ γ̂ρβ (t,v)λ1(v))∂vg

+ 1
2 β

2(t,v)∂ 2
vvg− 1

2 (1− γ)(1−ρ
2)β 2(t,v)

(∂vg)2

g
,

(3.7)

where g(T,v) = 1 (cf. the terminal condition above) and we have introduced the param-
eter γ̂ ≡ (1− γ)/γ . Moreover, if we combine the ansatz above with (3.4), the first order
condition simplifies to

π
∗
t =

λ1(v)
γ
√

v
+

ρβ (t,v)∂vg√
vg

. (3.8)

Specifically, we see that the rational investor ought to amend her Mertonian stock-wealth
(as codified by λ1(v)/(γ

√
v)) by the correction ρβ (t,v)∂vg/(

√
vg) to hedge against fluc-

5 Here we use that ∂t J = γ̂−1gγ−1∂t gw1−γ , ∂wJ = gγ w−γ , ∂ 2
wwJ = −γgγ w−γ−1, ∂vJ = γ̂−1gγ−1∂vgw1−γ ,

∂ 2
vvJ =−γgγ−2(∂xg)2w1−γ + γ̂−1gγ−1∂ 2

vvgw1−γ and ∂ 2
wvJ = γgγ−1∂vgw−γ .
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tuations in the underlying state variable, v. Insofar as the latter is zero, the investor is said
to be myopic. Already we see that this occurs under at least two different circumstances,
both of which relish in intuitive appeal: viz. the event when volatility is deterministic
(β (t,v) = 0) and the event when volatility is completely uncorrelated with the price of the
risky asset (ρ = 0) (whence the risky asset per se provides no hedge against fluctuations
in the underlying state variable).

To proceed any further we now have to make concrete assumptions about the nature of the
stochastic volatility model, i.e. the functional form of α and β . To “set the scene”, as it
were, we initially expose Liu’s [19] investigation of optimal portfolio choices when volatil-
ity obeys a Heston (CIR) model, only to generalise immediately to the case where the
Heston parameters are made time-dependent. Subsequently, we consider having volatility
follow a 3/2-model, which is equivalent to stipulating that volatility−1 is CIR. All proofs
are relegated to the appendix.

3.4 Experiences From the Heston Model

One of the most popular volatility models in the derivatives industry, cherished for the fact
that it admits quasi-analytic expressions for European call and put options, is the Heston
model, [17]. Dynamically, it corresponds to the Cox-Ingersoll-Ross (CIR) equation,

dVt = κ(θ −Vt)dt +ξ
√

Vt(ρdW1t +
√

1−ρ2dW2t), (3.9)

where κ , θ and ξ are positive parameters which respectively signify the speed of mean
reversion, the long run mean and the so-called volatility of variance. To secure the the
variance process Vt is non-explosive, these parameters are typically taken to satisfy the
Feller condition: 2κθ ≥ ξ 2.

Theorem 3.1. The Heston Optimal Portfolio. Under the assumptions that (I) the
volatility model is Hestonian and (II) the market price of risk of the stock is propor-
tional to volatility, λ1(v) = λ

√
v, it follows that the optimal portfolio weight to place

on the stock is

π
∗
t =

λ

γ
+ρξ γ̂B(T − t), (3.10)

where we have introduced the function

B(τ) =
λ 2

γ

(eη̂τ −1)
(κ̂ + η̂)(eη̂τ −1)+2η̂

, (3.11)

and the parameters κ̂ ≡ κ− γ̂ρξ λ and η̂ ≡
√

κ̂2− γ̂ξ 2 (ρ2 + γ[1−ρ2])λ 2/γ .
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Proof. The key insight is that by positing λ1(v) = λ
√

v we obtain a differential equation
which admits an exponential affine solution. See appendix A for details. �

A few remarks on the optimal portfolio weight are in order: first, π∗t does not depend on
the instantaneous volatility, v. Whilst this prima facie is a surprising result (to the extent
that one perhaps would expect an inverse correlation between stock holding and volatility),
note that we effectively have imposed an offsetting condition by engineering the risk pre-
mium to be proportional to volatility. Secondly, as γ→ 1, π∗→ λ/γ (the Merton portfolio)
which is in accordance with the theorem that log investors are myopic in their optimal in-
vestment strategy (see e.g. Munk [15]). Thirdly, a few words about the behaviour of the
B-function: assuming κ̂ ∈ R+ then B′(τ)> 0 and B′′(τ)< 0 whence B is a monotonically
increasing and concave function of the time to maturity.6 It is also bounded from above:
B(τ)→ λ 2/(γ(κ̂ + η̂)) as τ → ∞, whence

lim
τ→∞

π
∗
t =

λ

γ
+

ρξ γ̂λ 2

γ(κ̂ + η̂)
.

On the other hand, as τ→ 0, B(τ)→ 0 whence π∗→ λ/γ which fits the intuition that short
horizon investors increasingly disregard volatility fluctuations (they become increasingly
myopic in their investment strategies as the TTM decreases). Finally, observe that the in-
vestors position vis-à-vis the Merton portfolio is intimately linked to the signs of ρ and γ̂ .
If both parameters are positive or negative, then the Heston portfolio takes a more aggres-
sive position in the stock market. Conversely, if one and only one of them is negative, the
investor will be more prone towards the risk free asset. Empirically, one often finds that
ρ < 0 for equity, while γ > 1 (γ̂ < 0), which corresponds to the first scenario.

Now, over longer temporal horizons it is scarcely plausible to assume that the financial
landscape will remain sufficiently static to guarantee the constancy of the Heston parame-
ters {κ,θ ,ξ ,ρ}. Whilst it is easy to envision all sorts of stochastic dependencies, we are
at the same time faced with the burden of making our model analytically tractable. To this
end, consider the simplest of extensions, in which {κ,θ ,ξ ,ρ} are made to be deterministic
functions of time. Specifically, let us consider the volatility model

dVt = κ(t)(θ(t)−Vt)dt +ξ (t)
√

Vt(ρ(t)dW1t +
√

1−ρ(t)2dW2t), (3.12)

where κ : [0,∞) 7→ (0,∞), θ : [0,∞) 7→ (0,∞), ξ : [0,∞) 7→ (0,∞) and ρ : [0,∞) 7→ [−1,1]
are defined such that the SDE for the variance process has a unique strong solution and,
typically, also such that the time-dependent Feller condition is satisfied, i.e. 2κ(t)θ(t) >
ξ 2(t) for all t ∈ [0,∞). Finally, we will assume that κ(t), ξ (t) and ρ(t) are (or may be rea-
sonably approximated as) piecewise constant functions, continuous from the left, whilst
no such restriction is placed on θ(t). Specifically, let [t0, tn] = [t,T ] be some finite tem-
poral horizon over which the investor trades, then we assume the existence of a finite
number of discontinuity points t1 < t2 < ... < tn−1 ∈ (t,T ) such that κ̄1, ξ̄1, ρ̄1 are constant
over the half-closed interval (tn−1, tn], κ̄2, ξ̄2, ρ̄2 are constant over the half-closed interval

6 We calibrated the Heston model 44 times over he course of eleven years and consistently found κ̂ ∈R+.
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(tn−2, tn−1], ... and κ̄n, ξ̄n, ρ̄n are constant over the closed interval [t0, t1]. The union of these
n disjoint subintervals is clearly [t,T ].

Theorem 3.2. The Time-dependent Heston Optimal Portfolio. Under the assump-
tions that (I) the volatility model is time-dependent Hestonian with κ , ξ and ρ being
piecewise constant functions, continuous from the left, and (II) the market-price-of
risk of the stock is proportional to volatility, λ1(v) = λ

√
v where λ ∈ R+, it follows

that the optimal portfolio weight to place on the stock is

π
∗
t =

λ

γ
+ ρ̄nξ̄nγ̂Bn(T − t),

where ρ̄n, ξ̄n are the values of ρ and ξ at time t, and {Bk}n
k=1 are complicated func-

tions that are computed sequentially for k = 1, . . . ,n according to equation (3.46) in
the appendix. For each k, the function Bk depends on κ̄i, ρ̄i, ξ̄i for i = 1, . . . ,k, the
piecewise constant values of κ , ρ , ξ .

Proof. Again, from λ1(v) = λ
√

v we obtain a differential equation which admits an expo-
nential affine solution. This allows us to solve the system sequentially backwards in time.
See appendix A for details. �

3.5 Experiences From the 3/2 Model

Following empirical studies into S&P100 implied volatilities by Jones [13] and Bakshi,
Ju, and Yang [2], a stylised fact of the variance process diffusion exponent is its proximity
to 3/2 rather than the 1/2 inherent to the Heston model. This prompts us to look into the
non-affine volatility model simply known as the 3/2 model:

dVt = κVt(θ −Vt)dt +ξV 3/2
t (ρdW1t +

√
1−ρ2dW2t), (3.13)

where θ and ξ retain their interpretations from before, but the speed of mean reversion now
has been made dependent upon the instantaneous variance: κVt . Unlike the Heston model,
there is here no“non-explosivity” restriction on the choice of parameters,7 although we
maintain that κ , θ and ξ are all positive. To solve the optimal portfolio problem under
the 3/2-model we make two key assumptions: first, inspired from the previous subsection
we will take λ1(v) = λ

√
v. Secondly, we boldly assume market completeness by fixing a

perfect negative correlation between St and Vt :

7 To see this, use Itō’s lemma to show that {V−1
t } is a CIR (Heston) model with speed of mean reversion

κθ , long run mean (κ + ξ 2)/(2κ) and volatility of variance −ξ . Substituting these parameters into the
Feller condition we obtain, after a few lines of manipulation, κ ≥−ξ 2/2 which always is satisfied.
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ρ =−1.

Whilst this inexorably is an approximation, it is perhaps not an altogether unreasonable one
- at least some of the time. Drimus [13], for instance, finds that ρ =−0.99 in a calibration
of the 3/2-model to the S&P 500 index.8 Our own calibrations are less encouraging in this
respect (see the empirical section).

Theorem 3.3. The 3/2 Optimal Portfolio. Under the assumptions that (I) the volatil-
ity model is 3/2 and (II) the market price of risk of the stock is proportional to volatil-
ity, λ1(v) = λ

√
v, and (III) the stock and variance processes are perfectly negatively

correlated, it follows that the optimal portfolio weight to place on the stock is

π
∗
t =

λ

γ
+ξ a

(
1+

z

ζ̂

M(a+1; ζ̂ +1;z)

M(a; ζ̂ ;z)

)
, (3.14)

where M(a; ζ̂ ;z) =1F1(a; ζ̂ ;z) is the confluent hypergeometric function (Kummer’s
function of the first kind)

M(a; ζ̂ ;z)≡
∞

∑
n=0

a(n)zn

ζ̂ (n)n!
= 1+

a

ζ̂
z+

a(a+1)

ζ̂ (ζ̂ +1)

z2

2
+

a(a+1)(a+2)

ζ̂ (ζ̂ +1)(ζ̂ +2)

z3

6
+ · · ·

and we have defined the variable z = z(v,T − t):

z≡ 2κθ

ξ 2v(1− eκθ(T−t))
,

and the parameters a =−ω̂ +
√

ω̂2− γ̂λ 2

γξ 2 , ζ̂ ≡ 1+2(a+ ω̂) where ω̂ ≡ 1
2 +

γ̂ξ λ+κ

ξ 2 .

Proof. Beyond the specification λ1(v) = λ
√

v, the key element in the proof is here the
ansatz that the governing differential equation only depends on (t,v) through the inter-
vening variable y(t,v) ≡

∫ T
t e

∫ u
t κθdsdu · v. This allows us, through a series of coordinate

transformations, to obtain a confluent hypergeometric differential equation. See appendix
A for details. A cursory introduction to confluent hypergeometric functions and their prop-
erties is provided in appendix C. �

We make the following observations: firstly, unlike the Merton-Heston problem, the opti-
mal control here retains a dependence upon z (and thence on the instantaneous variance v).

8 To highlight the limited comparative difference between setting ρ = −1 and ρ = −0.99 we ran 106

Monte Carlo simulations of a 3/2-driven stock path over a period of three months using the param-
eters (S0,V0,µ,κ,θ ,ξ ) = (100,0.2450,0.15,22.84, 0.4669,8.560). The mean terminal price difference
between the ρ = −1 and ρ = −0.99 paths was found to be 3.7807 with a standard deviation of 3.1861,
whilst the mean price difference over the lifetime of the stock was evaluated to 2.2788 with a standard
deviation of 1.5477. The difference between the two scenarios is, in other words, relatively modest over
short temporal horizons - even if not altogether negligible.
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Secondly, it is a well-known fact that the ratio M(a+1; ζ̂ +1;z)/M(a; ζ̂ ;z) can be written
as a Gaussian continued fraction. Finally, as for the limiting behaviour of the control, we
observe that as τ ≡ (T − t)→ ∞ y→ ∞ whence z ↑ 0 and M→ 1. Thus, for long temporal
horizons the optimal portfolio strategy converges to

lim
τ→∞

π
∗
t =

λ

γ
+ξ a.

On the other hand, as τ → 0, y→ 0 and z ↓ −∞ so M(a+1; ζ̂ +1;z)/M(a; ζ̂ ;z)→−ζ̂/z,
where we have used that for large (negative) zs

M(a; ζ̂ ;z)∼ (−z)a Γ (ζ̂ )

Γ (ζ̂ −a)
,

where Γ is the gamma function, in conjunction with the elementary relation Γ (ζ̂ + 1) =
ζ̂Γ (ζ̂ ). Once again, the upshot is that short term investment horizons are myopic: π∗t →
λ/γ as τ → 0.

3.6 The Multi-Asset Multi-Factor Extension

3.6.1 Towards Realism

One notable limitation of the financial landscape discussed above is inevitably the assump-
tion that there is just one tradeable risky asset in existence. In a similar vein, working with
a single-factor model (the volatility) seems comically reductionistic: at the very least, our
model should be able to accommodate multiple volatilities as well as a stochastic short
rate (to encompass the bond market). Thus, for the sake of financial plurality, we introduce
an abstract generalisation of the dynamics (3.1). Specifically, letting St = (S1t ,S2t , ...,SNt)
represent an N-dimensional vector codifying the price processes of N risky assets, and
letting Vt = (V1t ,V2t , ...,VMt) represent an M-dimensional state variable, we suppose

dSt = DS{(r(Vt)ι+σ(t,Vt)λ1(Vt))dt +σ(t,Vt)dW1t},
dVt =α(t,Vt)dt +β1(t,Vt)dW1t +β2(t,Vt)dW2t .

(3.15)

Here, W1 ∈ RN and W2 ∈ RM are independent Wiener processes (internally, as well as
with respect to each other), where λ1(Vt) is the market price of risk associated with the
former. Furthermore, σ : [0,∞)×RM 7→RN×N ,α : [0,∞)×RM 7→RM , β1 : [0,∞)×RM 7→
RM×N and β2 : [0,∞)×RM 7→ RM×M are progressively measurable functions, which,
again, satisfy certain technical conditions. Finally, the short rate r has been made depen-
dent upon the state variable Vt and we have introduced the notation DS : RN 7→ RN×N

for the diagonalisation of S, i.e. DS ≡ diag(S1,S2, ...,SN), and ι as the the N-dimensional
vector of ones (1,1, ...,1)ᵀ.

Regarding the investor, our assumptions from before remain intact, i.e. we are still
contemplating a situation in which the goal is to maximise expected utility of discounted
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bequest E
[
e−δT u(WT )

]
. However, as she is now balancing a portfolio comprised on N

risky assets and one risk free asset, her self-financing portfolio now evolves as

dW π
t = W π

t {(r(Vt)+π
ᵀ
t σλ1(Vt))dt +πᵀt σdW1t}.

where πt = (π1t ,π2t , ...,πNt) is an N-dimensional vector of controls corresponding to the
weights she places on each of the risky assets.9

3.6.2 The HJB Equation

Defining the optimal value function J : T×R+×RN+ 7→ R as in (5.4) with v and π re-
placed by the appropriate vector quantities v and π, it can be shown that the governing
multi-dimensional HJB equation is of the form10

δJ = ∂tJ+ sup
πt∈RN

{
w(r(v)+πᵀt σ(t,v)λ1(v))∂wJ+α(t,v)ᵀ∇vJ

+ 1
2 w2πᵀt σ(t,v)σ

ᵀ(t,v)πt∂
2
wwJ+ 1

2 tr[∇2
vvJΣ]+wπᵀt σ(t,v)β

ᵀ(t,v)∇v∂wJ
}
,

(3.16)
where J(T,w,v) = w1−γ/(1− γ) is the terminal condition, and we have introduced the
following notation: (i)

Σ ≡ β1(t,v)β
ᵀ
1 (t,v)+β2(t,v)β

ᵀ
2 (t,v),

(ii) tr as the trace operator, (iii) ∇v ≡ (∂v1 ,∂v2 , ...,∂vN )
ᵀ as the gradient operator and (iv)

∇2
vv ≡ ∇v ⊗∇v as the Hessian operator. Differentiating partially with respect to πt and

equating to zero, we find that the associated FOC is

π∗t =−(σᵀ(t,v))−1λ(v)
∂wJ

w∂ 2
wwJ
− (σᵀ(t,v))−1βᵀ1 (t,v)

∇v∂wJ
w∂ 2

wwJ
. (3.17)

If we once again conjecture a solution of the form

J(t,w,v) =
g(t,v)γ w1−γ

1− γ
,

tedious calculations show that (3.16) and (3.17) jointly entail that g must satisfy

0 = ∂tg−
(

δ

γ
− γ̂r(v)− 1

2 γ
−1

γ̂||λ1(v)||2
)

g+
(
α(t,v)+ γ̂β1(t,v)λ1(v)

)ᵀ
∇vg

+ 1
2 tr[∇2

vvgΣ]− 1
2 (1− γ)

1
g

∇
ᵀ
vgβ2(t,v)β

ᵀ
2 (t,v)∇vg,

(3.18)

9 The residual weight 1−∑
N
i=1 πit is placed on the risk free asset.

10 For elementary introductions to multi-dimensional HJB equations see [7] and [15].
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subject to the boundary condition g(T,v) = 1, where we reiterate that γ̂ ≡ (1− γ)/γ . We
may also rewrite the FOC as

π∗t =
1
γ
(σᵀ(t,v))−1λ1(v)+

1
g
(σᵀ(t,v))−1βᵀ1 (t,v)∇vg, (3.19)

which, of course, is nothing but Merton’s (M + 2)-fund separation result, as it may be
verified by writing βᵀ1 (t,v)∇vg as ∑

M
j=1β

ᵀ
1: j(t,v)∂v j g, where βᵀ1: j is the entire jth column

of βᵀ1 .

3.7 Experiences From a Fong-Vasicek Type Model

Multi-factor models rarely wallow in analytic elegance, and alas our exemplification is no
exception. What follows is an attempt to set up a more realistic security market than what
we have hitherto been exposed to, whilst keeping the factor number low. Specifically, one
of the assumptions made in the single-factor model was the constancy of the interest rate.
Given that the variance of changes in the yield of treasury bonds is manifestly fluctuating
over time (see e.g. [32]), this is clearly undesirable. Thus, we argue that a realistic financial
market model, at the very least should be able to encompass a bond market where the short
rate of interests is modelled dynamically over time. Keeping with the spirit of this paper,
consider modelling rt through the stochastic volatility model

drt = κr(θr− rt)dt +
√

VtdW1t , (3.20a)

dVt = κv(θv−Vt)dt +ξ
√

Vt{ρdW1t +
√

1−ρ2dW2t}, (3.20b)

where W1t and W2t are independent Wiener processes. Following Fong & Vasicek [31],
[32], the implications on bond pricing of such a model are well known. Specifically,

Theorem 3.4. If the short rate of interest, rt , is driven by the system of SDEs (3.20),
and the market prices of risk satisfy

λ1(v) = λ1
√

v and λ2(v) =
[λ2−ρλ1]

√
v√

1−ρ2
, (3.21)

where λ1,λ2 are positive constants, then the time t price of a zero-coupon bond
maturing at time T ≥ t is given by

PT
t = exp

{
−Ā(T − t)− B̄1(T − t)r− B̄2(T − t)v

}
, (3.22)

where (rt ,Vt) = (r,v), and Ā, B̄1 and B̄2 are functions of the time to maturity, which
satisfy the system of differential equations:
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Ā′(τ) = κrθrB̄1(τ)+κvθvB̄2(τ), (3.23a)
B̄′1(τ) = 1−κrB̄1(τ), (3.23b)

B̄′2(τ) =−
{

λ1B̄1(τ)+
1
2 B̄2

1(τ)
}
−{κv +λ2ξ +ξ ρB̄1(τ)} B̄2(τ)− 1

2 ξ
2B̄2

2(τ),
(3.23c)

subject to the boundary conditions Ā(0) = B̄1(0) = B̄2(0) = 0. Furthermore, the
dynamics of the price of a zero-coupon bond is given by

dPT
t = PT

t {(r+ϕP(T − t))dt +σP1(T − t)dW1t +σP2(T − t)dW2t} ,

where

ϕP(τ) = λ1(v)σP1(τ)+λ2(v)σP2(τ), (3.24a)

σP1(τ) =−
√

vB̄1(τ)−
√

vρξ B̄2(τ), (3.24b)

σP2(τ) =−ξ
√

v
√

1−ρ2B̄2(τ). (3.24c)

We note that analytic expressions exist for the functions Ā(τ) B̄1(τ) and B̄2(τ): see
Selby & Strickland [29] or Fong & Vasicek [32]) for details.

Proof : The result follows from a standard no-arbitrage argument. Modulo some sign con-
ventions and non-significant differences in definitions11 the proof is fully exposed in [32]
and will not be reproduced here. �

The Model. Suppose we have a market with N > 2 tradeable assets out of which two
are zero-coupon bonds of different maturities {PT1

t ,PT2
t }, and the remaining N− 2 assets

are stocks {S1
t ,S

2
t , ..., SN−2

t }. The bonds are assumed to be governed by the Fong-Vasicek
model presented above, while he price processes of the stocks follow the quasi-Hestonian
dynamics

dS j
t = S j

t

{
(rt +

√
Vtψ j(Vt))dt +

√
Vt

j+2

∑
i=1

k jidWit

}
, (3.25)

11 A brief remark on the market prices of risk is in order. Specifically, the market prices of risk, q(v) and
p(v), referred to in both [29] and [32] are related to λ1(v) and λ2(v) through the linear transformation
q(v) = λ1(v) and p(v) = λ1(v)ρ + λ2(v)

√
1−ρ2. The difference boils down to a matter of definition:

whilst we define the market price of risk qua the dynamics written on standard form, the standardisation
criterion is dropped in [29] and [32]. Specifically, we define the market price of risk as σLλi ≡ (µ− r1),
where µ− r1 is the excess return, and L is the lower triangular matrix in the Cholesky decomposition of
the covariance matrix of the Wiener vector. Fong & Vasicek disregard the standardisation (meaning that
they define σλd ≡ (µ− r1)). In general, if λi is the risk vector associated with the former definition, and
λd is the risk vector associated with the latter, we may transform between the two using Lλi = λd where
L is the lower triangular matrix in the Cholesky decomposition of the covariance matrix of the Wiener
vector.
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where 1 ≤ j ≤ N−2 and Vt is driven by the SDE given in (3.20b) [we stress that there is
no empirical support for the assumption that bonds and stocks should be governed by the
same variance process - we invoke it for pure mathematical convenience]. All additional
Wiener increments defined thusly are assumed independent of each other. Also, the Sharpe
ratio ψ j(Vt) is given by ∑

j+2
i=1 k jiλi(Vt), where λi(Vt) is the market price of risk associated

with Wi. Interpretation-wise, we may construe (3.25) as the standardised version of the
situation where every stock price effectively has three random sources: two coming from
the bond market (W1,W2) and one inherent to the stock itself W ∗j This, in turn, has non-zero
correlation with all other shocks inherent to the other stocks, thus captivating the notion
of a pervasive systematic risk. Cholesky decomposing the vector (W ∗1 ,W

∗
2 , ...,W

∗
N−2) the

dynamics will take on the form of (3.25).
Written on the form (3.15) we are accordingly dealing with a model where St =

(PT1
t ,PT2

t , S1
t , ...,S

N−2
t )ᵀ,λ1(Vt)= (λ1(Vt),λ2(Vt), ...,λN(Vt))

ᵀ, and dW1t =(dW1t , dW2t , ...,
dWNt)

ᵀ are vectors in RN , whilst

σ(t,Vt) =



σP1(T1− t) σP2(T1− t) 0 0 · · · 0

σP1(T2− t) σP2(T2− t) 0 0 · · · 0

k11
√

Vt k12
√

Vt k13
√

Vt 0 · · · 0
...

...
. . . . . .

...

kN−3,1
√

Vt kN−3,2
√

Vt · · · kN−3,N−1
√

Vt 0

kN−2,1
√

Vt kN−2,2
√

Vt · · · kN−2,N−1
√

Vt kN−2,N
√

Vt


, (3.26)

is a matrix in RN×N . Furthermore, Vt = (rt ,Vt)
ᵀ, α(t,Vt) = (κr(θr− rt),κv(θv−Vt))

ᵀ ∈
R2,

β1(t,Vt) =

( √
Vt 0 0 · · · 0

ξ ρ
√

Vt ξ
√

1−ρ2
√

Vt 0 · · · 0

)
, (3.27)

is in R2×N , and β2(t,Vt) = dW2t = 0.
To obtain a complete specification, we will also need to make concrete assumptions

about the market price of risk vector λ1(Vt). Here, we will stick with the Fong-Vasicek
assumption (3.21) with respect to λ1(Vt),λ2(Vt) and set λ j(Vt) = λ j

√
Vt for all j > 2,

where λ j is a positive constant.

The Spatially Reduced HJB Equation. Suppose we define the constant

λ
2
ρ ≡

λ 2
1

1−ρ2 −
2ρλ1λ2

1−ρ2 +
λ 2

2
1−ρ2 +λ

2
3 + ...+λ

2
N ,

then (3.18) takes on the form

0 = ∂tg−
(

δ

γ
− γ̂r− 1

2 γ
−1

γ̂λ
2
ρ v
)

g+(κr(θr− r)+ γ̂λ1v)∂rg

+(κv(θv− v)+ γ̂ξ λ2v)∂vg+ 1
2 v∂

2
rrg+ξ ρv∂

2
rvg+ 1

2 ξ
2v∂

2
vvg,

(3.28)
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subject to the terminal condition g(T,r,v) = 1, where g(t,r,v) : T×R×R+ 7→ R. Given
that the coefficients in this PDE are linear functions of r and v, we guess the exponential-
affine solution

g(t,r,v) = exp
{
− δ

γ
(T − t)+ γ̂A(T − t)+ γ̂B1(T − t)r+ γ̂B2(T − t)v

}
. (3.29)

Combining (3.28) and (3.29) and using the fact that the resulting expression must hold for
all values of r and v we obtain the coupled differential equations

A′(τ) = κrθrB1(τ)+κvθvB2(τ), (3.30a)
B′1(τ) = 1−κrB1(τ), (3.30b)

B′2(τ) =
{

1
2 γ
−1

λ
2
ρ + γ̂λ1B1(τ)+

1
2 γ̂B2

1(τ)
}

−{κv− γ̂λ2ξ − γ̂ξ ρB1(τ)}B2(τ)+
1
2 γ̂ξ

2B2
2(τ),

(3.30c)

subject to the boundary conditions A(0) = B1(0) = B2(0) = 0. Notice that this system is
identical to (3.23) provided we let γ → ∞ (γ̂ →−1).

Theorem 3.5. The functions A(τ), B1(τ) and B2(τ) are given explicitly by

A(τ) =θr(τ−B1(τ))−
2κvθv

ξ 2γ̂
ln
(

L(τ)
L(0)

)
, (3.31a)

B1(τ) =
1− e−κrτ

κr
, (3.31b)

B2(τ) =−
κr p̂
ξ 2γ̂

e−κrτ +
2κr

ξ 2γ̂
G(τ), (3.31c)

where we have defined the following functions

L(τ) =
2

∑
j=1

K je
−κr β̂ jτ−

1
2 p̂e−κrτ

M(â j, ζ̂ j, q̂e−κrτ),

G(τ) =
2

∑
j=1

K je−κr β̂ jτ

L(τ)e
1
2 p̂e−κrτ

{
β̂ jM(â j, ζ̂ j, q̂e−κrτ)

+ q̂e−κrτ â j

ζ̂ j
M(â j +1, ζ̂ j +1, q̂e−κrτ)

}
,

where M(a,ζ ,z) is Kummer’s function and K1,K2 are constants given by the relation
K2 = ΞK1 where

Ξ =
[β1− p̂

2 ]M(â1, ζ̂1, q̂)+ q̂ â1
ζ̂1

M(â1 +1, ζ̂1 +1, q̂)

[ p̂
2 −β2]M(â2, ζ̂2, q̂)− q̂ â2

ζ̂2
M(â2 +1, ζ̂2 +1, q̂)

.
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Furthermore, we have introduced the following parameters:

(a) p̂≡ ξ

κ2
r
[i
√

γ̂2(1−ρ2)− γ̂ρ], (b) q̂≡ p̂+
ρξ γ̂

κ2
r
,

(c) â j ≡
ζ̂ j

2
+

iγ̂ρ(1− ϑ̂)

2
√

γ̂2(1−ρ2)

{
1− γ̂ξ (1+λ1κr)

ρ(1− ϑ̂)κ2
r

}
, (d) ζ̂ j ≡ 2β̂ j +1− ϑ̂ ,

(e) β̂1 ≡ β̂ , ( f ) β̂2 ≡ ϑ̂ − β̂ ,

(g) β̂ ≡ ϑ̂

2
− 1

2

√√√√ϑ̂ 2− 2γ̂ξ 2

κ2
r

[
λ 2

ρ

2γ
+

γ̂λ1

κr
+

γ̂

2κ2
r

]
, (h) ϑ̂ ≡ κv

κr
− γ̂ξ λ1

κr
− γ̂ξ ρ

κ2
r
,

where i =
√
−1 is the complex unit.

Proof. See appendix A. �

Optimal Controls. We are now in a position to compute the optimal portfolio weights for
our Fong-Vasicek model.

Theorem 3.6. For the general N-asset case, the optimal portfolio weights π∗t =
(π∗t,B1

, π∗t,B2
,π∗t,S1

, ...,π∗t,SN−2
)ᵀ are given by

π∗t =
1
γ
(σ̃ᵀ(t))−1λ̃1 +

γ̂

d(t)

B̄1(T2− t)B2(T − t)− B̄2(T2− t)B1(T − t)
B̄2(T1− t)B1(T − t)− B̄1(T1− t)B2(T − t)

0

 ,

(3.32)
where B1(τ) and B2(τ) are the functions defined in (3.31b) and (3.31c), and
B̄1(τ) and B̄2(τ) are the zero-coupon bond price functions which solve (3.23b)
and (3.23c).12 Furthermore we have defined the following quantities: (i) σ̃(t) ≡
σ(t,v)/

√
v ∈ RN×N , (ii) λ̃1 = λ1(v)/

√
v ∈ RN , (iii) 0 = (0,0, ...,0)ᵀ ∈ RN−2 and

(iv)

d(t)≡ B̄1(T1− t)B̄2(T2− t)− B̄2(T1− t)B̄1(T2− t).

In the particular case where N = 3 (two bonds and one stock are being traded), the
optimal bond weights are explicitly calculated as
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π
∗
t,B1

=
1

γξ
√

1−ρ2d(t)

{
B̄1(T2)

[
(λ2−ρλ1)√

1−ρ2
− k2λ3

k3

]

+ξ B̄2(T2)

[√
1−ρ2

(
k1λ3

k3
−λ1

)
+ρ

(
(λ2−ρλ1)√

1−ρ2
− k2λ3

k3

)]}

+
γ̂

d(t)
{B̄1(T2− t)B2(T − t)− B̄2(T2− t)B1(T − t)} ,

π
∗
t,B2

=
1

γξ
√

1−ρ2d(t)

{
B̄1(T1)

[
k2λ3

k3
− (λ2−ρλ1)√

1−ρ2

]

+ξ B̄2(T1)

[√
1−ρ2

(
λ1−

k1λ3

k3

)
+ρ

(
k2λ3

k3
− (λ2−ρλ1)√

1−ρ2

)]}

+
γ̂

d(t)
{B̄2(T1− t)B1(T − t)− B̄1(T1− t)B2(T − t)} .

Moreover, the optimal stock weight is given by

π
∗
t,S1

=
λ3

γk3
.

Proof : We derive (3.32) based upon (3.19), where σ is defined in (3.26), β1 is defined
in (3.27), and g(t,r,v) is defined in (3.29). The key insights are the following: since all
components of (σᵀ)−1 are proportional to 1/

√
v, and all components of λ1(v) are pro-

portional to
√

v, the “tangency portfolio”-component 1
γ
(σᵀ)−1λ1(v) is independent of v.

Furthermore, since βᵀ1 (∂rg,∂vg) is a vector in RN which is non-zero only in the first two
components, we only need to calculate the first two columns of the inverse matrix (σᵀ)−1

(of which only components (1,1),(1,2),(2,1), and (2,2) will be non-zero) in order to
specify the “hedge portfolio”-component g−1(σᵀ)−1 βᵀ1 (∂rg,∂vg). To this end, we use the
following matrix result: let A(n) be an n× n matrix, the bottom row of which is non-zero
only in the rightmost entry, An,n, then its inverse is given by13

(
A(n−1) A(1:n−1),n
0ᵀ
(n−1) An,n

)−1

=

(
A−1
(n−1) −A−1

(n−1)A(1:n−1),nA−1
n,n

0ᵀ
(n−1) A−1

n,n

)
,

13 This is a straightforward corollary of the Banachiewicz identity for blockwise inversion of matrices.
Suppose A,B,C and D are matrix blocks such that A and D are square matrices, then(

A B
C D

)−1

=

(
A−1 +A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)
,

insofar as A and (D−CA−1B) are invertible.
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where A(n−1) ∈ R(n−1)×(n−1), {0(n−1),A(1:n−1),n} ∈ Rn−1 and An,n ∈ R. Clearly, σᵀ
(N)

:=
σᵀ is such a matrix. Indeed, so is the sequence of matrices σᵀ

(N−1), σ
ᵀ
(N−2), ..., σ

ᵀ
(3) so we

can apply the rule repeatedly to show that

(σᵀ)−1
1:2,1:2 =

(
σP1(T1− t) σP1(T2− t)
σP2(T1− t) σP2(T2− t)

)−1

,

where σP1(τ), σP2(τ) are defined in (3.24b) and (3.24c). �

Unsurprisingly we find that only the two bonds are used to hedge against interest rate risk
(as codified by W1,W2 in the Fong-Vasicek model) whilst stocks are used to hedge each
other. More intriguing is the fact that the optimal controls are altogether independent of the
state-variables (r,v), i.e. they are purely deterministic. This property is similar to a two-
bond one-stock model considered by Brennan and Xia [7], where the interest rate follows
a Vasicek model with a stochastic long-run mean. Provided we let γ → ∞, we can also
recover the property of their model that the hedge portfolio component is (−γ̂,0,0, ...,0)
if T = T1 and (0,−γ̂,0, ...,0) if T = T2.14

3.8 The Empirical Perspective

Thus far we have managed to develop some fairly sophisticated correction formulae to
the original Merton problem given the presence of stochastic volatility. Nonetheless, two
important empirical questions remain unanswered: first, the magnitude of these correc-
tions with respect to market data is not intuitively obvious. Secondly, the empirical per-
formance of the corrected investment strategies versus the Merton strategy must be scruti-
nised: whilst stochastic volatility has become common dogma in the derivatives industry,
it is not clear that our prescriptive (“rational”) trading approach will benefit from its incor-
poration. To develop an understanding for these queries, we propose a study of an investor
who trades in a representative market index (the S&P 500 ETF - see figure 3.1), using
respectively

1. The Merton portfolio weight, πMe = λ/γ ,
2. The Heston portfolio weight, πHe

t , cf. equation (3.10),

14 We also note that the completeness of our model makes it suitable (albeit not straightforward)
for studying consumption, i.e. for investigating control problems where the investor tries to maximise
Et [
∫ T

t u(cs)ds], where u is a utility function (here, assumed isoelastic) and cs denotes the rate of con-
sumption at time s. Specifically, using the envelope theorem u′(ct) = ∂wJ(t,w,r,v), where J is the optimal
value function, as well as the standard separation ansatz J(t,w,r,v) = g(t,r,v)γ w1−γ/(1− γ), we find that
c∗t = w/g(t,r,v). For the Fong-Vasicek model presented here, the appropriate g-function is now

g(t,r,v) =
∫ T

t
exp{− δ

γ
(s− t)+ γ̂A(s− t)+ γ̂B1(s− t)r+ γ̂B2(s− t)v}ds,

where A(τ), B1(τ) and B2(τ) are as defined in (3.31a), (3.31b) and (3.31c). Given the complicated hy-
pergeometric nature of these functions, the evaluation of the integral is a task better left for numerical
study.
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Fig. 3.1 The price process of the S&P500 ETF (left) and the measured variance [per year] (right). Notice
the erratic nature of the latter, which corroborates our claim that volatility seems to behave like a stochastic
process. The data is from the period 2000-01-03 to 2013-12-31 and contains 1,492 entries. For further
details the reader is referred to Appendix D.

3. The 3/2 portfolio weight, π
3/2
t , cf. equation (3.14).

Specifically, we consider an experimental set-up in which an investor, initially endowed
with wealth w0 = 1000 $, trades in a self-financing manner over a three months horizon, re-
balancing her portfolio approximately every second day. At the end of the trading period,
we compute the resulting profit-&-loss (P&L) incurred by each of the three investment
strategies. Throughout we fix the assumptions r = 0.02, γ = 2.5 and λ = 0.5. To get some
semblance of a statistical basis for our analysis we repeat the entire experiment for a to-
tality of 44 non-overlapping three months trading periods such that trading period 1 runs
from 2003-01-01 to 2003-03-31, trading period 2 runs from 2003-04-01 to 2003-06-30 etc.
Insofar as strategies (2) and (3) are truly superior to strategy (1), this should be reflected
by their average return per unit standard deviation ratio.

Remark 3.3. Keeping the risk free rate constant is inexorably an approximation. However,
it is not an altogether unreasonable one: all of our conclusions were found to be robust
upon substituting a fixed r with the 3-month rate of the U.S. treasury bill.

3.8.1 Calibration Details

For portfolios (2) and (3) we estimate the parameters of the associated volatility model
by calibrating the model to market data running over a period of three years, immediately
prior to the first day of trading. For example, if a portfolio runs from 2003-01-01 to 2003-
03-31, then the associated estimation period runs from 2000-01-01 to 2002-12-32. For
both models, we obtain estimates of ψ = (κ,θ ,ξ ) by numerical optimisation of the log-
likelihood function for respective model. In particular, if v = (v0, . . . ,vn) is the variance
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from the estimation period, the log-likelihood function is given by

l(ψ;v) =
n−1

∑
i=0

logφ(vi+1|vi;ψ),

where φ(v|y;ψ) denotes the conditional distribution of the variance process.
In Heston’s model, the variance follows a CIR process which has a non-central χ2

conditional distribution. A consistent estimator for this process can be obtained by em-
ploying the conditional moments in a Gaussian likelihood and maximising, see Sorensen
[23]. Hence, we maximise

lg(ψ;v) =
n−1

∑
i=0

logφ(vi+1;mi+1|i,σ
2
i+1|i),

where φ denotes the Gaussian density, while the conditional moments are given by

mi+1|i = vie−κhi +θ(1− e−κhi),

σ
2
i+1|i = vi

ξ 2

κ
(e−κhi − e−2κih)+θ

ξ 2

2κ
(1− e−κhi)2.

where the time-spacing between two observations vi+1 and vi is given by hi.
For the 3/2 model, an application of Ito’s lemma shows that 1/Vt follows a CIR-process

as well with reversion speed κ̃ = κθ , long-term mean θ̃ = (κ + ξ 2)/(κθ) and volatility
ξ̃ = −ξ . Thus, we employ the same estimator (maximising the Gaussian likelihood with
conditional moments) on the inverse-transformed variance data {1/vi, i = 0, . . . ,n} to ob-
tain an estimator for the 3/2 model. See also appendix D.

3.8.2 The Mertonian Benchmark Strategy

We illustrate the P&L paths of the Merton strategy against which we shall be compar-
ing our stochastic volatility strategies in figure 3.2. As suggested, the Merton strategy is
characterised by a constant holding in the risky asset of πMe = λ/γ = 0.5/2.5 = 0.2, with
the remaining wealth going into the risk free asset. Data for the investment periods and
terminal P&L values is reported in table 3.1 in appendix E. Of the 44 portfolios, 28 have a
terminal profit which exceeds the initial portfolio value. Unsurprisingly, the biggest losses
are incurred in the wake of the Lehman default in 2008. The average relative return of the
strategy is 7.6100 $ with a standard deviation of 15.0471 $, corresponding to a return per
unit std. dev. of 0.5057. The 5% value at risk (VaR) amounts to a loss of 14.5569 $. The
relative returns of the Merton strategy are illustrated in figure 3.3, in which we also exhibit
the corresponding numbers for a risk-neutral investor (γ = 1) who allocates funds equally
between risky and risk free assets. As expected, the latter comes with a greater mean return
(11.70 $), but also a considerably higher dispersion (37.89 $), i.e. a sub-par return per unit
std. dev. of only 0.3088.



94 Ellersgaard and Jönsson

Fig. 3.2 The running wealth from an agent with risk aversion γ = 2.5 who invests a proportion π = 20%
in the S&P500 index and a proportion 1−π = 80% at the risk-free rate 2% during 44 consecutive periods
of 3 months each. The initial wealth of each period (w0 = 1000) is marked with a cross while the terminal
wealth is marked with a circle.

Fig. 3.3 The profit-and-loss of each period from Mertonian optimal investment (left) and the naı̈ve (50-50)
investment strategy (right). The mean, 5%- and 95% quantiles are plotted with dashed lines.

3.8.3 The Hestonian Portfolio Strategy

We now repeat the experiment for the Heston portfolio weight, πHe
t . The calibrated param-

eter values κ,θ and ξ are reported in table 3.2 in appendix E for each of the 44 investment
periods. The magnitudes of the associated portfolio weights are plotted in figure 3.4. Note
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Fig. 3.4 The Hestonian trading weight πHe
t used for each of the 44 periods is plotted with a green line

while the constant Mertonian weight is plotted in blue. The start of each period is marked with a cross.

that every portfolio weight decreases monotonically to the Mertonian benchmark as the
time to maturity goes to zero as suggested by our analysis above. Furthermore, observe
that the Heston correction constitutes an extremely modest perturbation from the Merton
weight: specifically, the Heston correction consistently suggests that the investor should
increase her holding in the risky asset with less than 1/5th of a percentage point vis-à-vis
the Merton ratio. This answers our question about the magnitude of the volatility correc-
tion. As for the performance, upon plotting the running wealth we obtain a graph which
is virtually indistinguishable from figure 3.2 (again, data for the investment periods and
terminal P&L values is reported in table 3.1 in appendix E). Only by plotting the relative
difference between the two graphs (see figure 3.5) do we get an idea about the significance
of hedging stochastic volatility: in the relatively homeostatic pre-financial crisis market
the effect is virtually non-existent. As the market crashes, the Heston strategy takes some
modest hits, which may be symptomatic of using estimated parameters from a quiet pe-
riod. Finally, in the subsequent period of relative turbulence the effect is a melange of
dubious near-insignificant gains and losses. Overall, the average relative return comes out
at 7.6161 $, with a standard deviation of 15.1000 $, hence a return per std. dev. of 0.5044.
The 5% VaR amounts to a loss of 14.6502 $. Evidently, these numbers provide no support
whatsoever to the hypothesis that the Heston strategy outperforms the Mertonian bench-
mark.
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Fig. 3.5 Difference between the running wealth from the Hestonian and Mertonian investment strategies.
The units on the ordinate axis are measured in [$] with an initial investment of 1000 $.

Fig. 3.6 The 3-over-2 weight π3/2
t (Vt) in red and the Mertonian weight πMe in blue. We emphasise that

the weights here vary both with respect to time to maturity and the running variance.

3.8.4 The 3/2 Portfolio Strategy

Finally, we turn our attention to the performance of the 3/2 portfolio weight, π
3/2
t , disre-

garding the unfortunate fact that the ρ = −1 assumption used in deriving (3.14) does not
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Fig. 3.7 Difference between the running wealth from the 3-over-2 and Mertonian investment strategies.
The units on the ordinate axis are measured in [$] with an initial investment of 1000 $.

reflect the actual state of the market (see table 3.2, which also features the calibrated pa-
rameters κ,θ and ξ for the 3/2 model). The magnitude of the associated portfolio weights
are plotted in figure 3.6. The key difference from the Hestonian case is that the portfolio
weight now is a function of the instantaneous variance, wherefore the decay to the Mer-
tonian benchmark as τ → 0 no longer is monotone. The day-to-day fluctuations brought
about by changes in the variance process are nonetheless not big enough to be immedi-
ately visible on the figure. Again, the magnitude of the volatility corrections to the Merto-
nan benchmark remain minuscule, coming in at less than 1/5th of a percentage point. We
report the terminal P&L of the strategy in table 3.1 and provide a visual overview of the
running P&L with respect to the Merton strategy in figure 3.7. Given the minuteness of the
portfolio corrections, the associated profits and losses are correspondingly diminutive. In
concrete terms we find the average relative return to be 7.6222 $ with a standard deviation
of 15.0938 $, corresponding to a return per standard deviation of 0.5050. The 5% VaR
amounts to a loss of 14.6331 $. Again, it is clear that the 3/2 volatility correction has no
merit whatsoever with respect to the Merton strategy.

3.9 Conclusion

In this paper we have derived closed form expressions for the optimal hedge ratio for a
wealth maximiser exposed to various types of stochastic volatility. To this end we had
to posit that the Sharpe ratio of the stock is proportional to volatility. Whilst the hedge
ratio for the Heston model was found to be independent of the volatility process, the same
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conclusion does not apply to the 3/2 model or the Fong Vasicek type model - both of
which depend on v through confluent hypergeometric functions. Plenty of mathematical
research questions are still left unanswered by our study: for example, it is non-obvious if
closed form expressions can be derived for more plausible volatility models (such as the
lognormal ones - see [16]), and if consumption can be incorporated into the picture.

In order to assess the gravity of our prescriptive standards for rational investments,
we put the Heston model and the 3/2 model to the test for an investor who trades in a
representative market index. Interestingly, from an empirical perspective there is nothing
whatsoever to recommend the notion that stochastic volatility should be hedged in a wealth
optimisation context in a bond-stock economy. For both the Heston model and the 3/2
model, the corrections to the Merton ratio are less than 1/5th of a percentage point and do
nothing to increase the return per unit standard deviation ratio. Indeed, in 17 out of the 44
trading periods, the Merton strategy is marginally better. Either way, the welfare gains and
losses induced by the volatility sensitive strategy amounts to less than 1/50% of the initial
investment over a three months period. Of course, our analysis here can hardly be said to be
void of pitfalls: e.g. it would generally be desirable to (i) work with more realistic market
assumptions (in particular, a market with derivatives), (ii) work under a more empirically
accurate volatility model. Some steps towards mitigating these rudiments are found in the
subsequent chapter.
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Appendix A: Proofs

Heston’s Model

Proof : Substituting (3.9) into (3.7) we observe that all coefficients are either constant or
depend on v or

√
v. Insofar as we aim for a solution of the exponential affine form, the

latter is clearly undesirable. However, this problem is readily mitigated if we make the bold
move of positing that either λ1(v) = λ

√
v (where λ ∈ R+ is a constant of proportionality)

or λ1(v) = 0. On empirical grounds we opt for the former, as there is little to suggest that
we live in a world of risk-neutrality. Thus, the PDE to be solved is

0 = ∂tg−
(

δ

γ
− γ̂r− 1

2 γ
−1

γ̂λ
2v
)

g+(κ(θ − v)+ γ̂ρξ λv)∂vg

+ 1
2 ξ

2v∂
2
vvg− 1

2 (1− γ)(1−ρ
2)ξ 2v

(∂vg)2

g
,

(3.33)

with the usual boundary condition, g(T,v) = 1. Clearly, this beckons us to attempt a solu-
tion of the form

g(t,v) = exp
{
−( δ

γ
− γ̂r)(T − t)+ γ̂A(T − t)+ γ̂B(T − t)v

}
, (3.34)

where A,B : R 7→ R are deterministic functions of the time to maturity τ = T − t, which
satisfy the conditions A(0) = B(0) = 0. Specifically, upon combining (3.33) and (3.34) we
arrive at the PDE15

0 =
λ 2v
2γ
−A′(τ)−B′(τ)v+(κ(θ − v)+ γ̂ρξ λv)B(τ)+ 1

2 γ̂ξ
2v
(
ρ

2 + γ[1−ρ
2]
)
B2(τ),

where ′ denotes the temporal derivative d/dτ . It is readily seen that this equation is of the
form 0 = P(B′,B)v+Q(A′,B), where

P(B′,B)≡ λ 2

2γ
−B′(τ)− (κ− γ̂ρξ λ )B(τ)+ 1

2 γ̂ξ
2 (

ρ
2 + γ[1−ρ

2]
)

B2(τ), (3.35a)

Q(A′,B)≡−A′(τ)+κθB(τ). (3.35b)

Since 0 = P(B′,B)v+Q(A′,B) should be satisfied for all values of the instantaneous vari-
ance v, we are forced to set P(B′,B) = 0 and Q(A′,B) = 0. This gives us two coupled (but
ultimately solvable) ODEs. In particular, P(B′,B) = 0 is a Riccati equation with constant
coefficients, the solution to which is derived in Lemma 3.1, formula (3.64). Under the as-
sumption that η̂ ∈ R+ (which certainly is satisfied for the empirically plausible parameter
choice of γ > 1) the answer is given by

15 Here we use that ∂vg = γ̂B(τ)g, ∂ 2
vvg = γ̂2B2(τ)g and ∂t g =−∂τ g = (γ−1δ − γ̂r− γ̂A′(τ)− γ̂B′(τ)v)g.
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B(τ) =
λ 2

γ

(eη̂τ −1)
(κ̂ + η̂)(eη̂τ −1)+2η̂

, (3.36)

From this, we can now use the equation Q(A′,B) = 0⇔ A(τ) = κθ
∫

τ

0 B(s)ds to compute
A(τ) in closed form, although this turns out to be redundant in terms of computing the
optimal control π∗t . We state the result here only for completeness and refer the reader to
Lemma 3.2, formula (3.66), for details:

A(τ) =
κθ

γ̂ξ 2 (ρ2 + γ[1−ρ2])

{
(κ̂ + η̂)τ +2ln

∣∣∣∣ 2η̂

(κ̂ + η̂)(eη̂τ −1)+2η̂

∣∣∣∣}. (3.37)

Finally, we are now in a position to calculate the optimal portfolio weight for an investor
living in a Hestonian economy: by substituting λ1 = λ

√
v and the exponential affine solu-

tion (3.34) into (3.8) we obtain

π
∗
t =

λ

γ
+ρξ γ̂B(T − t). (3.38)

which completes the proof. �

The Time-dependent Heston Model

Proof : Imposing the condition λ1(v) = λ
√

v yields a spatially reduced HJB equation with
coefficients that are linear in v

0 = ∂tg−
(

δ

γ
− γ̂r− 1

2 γ
−1

γ̂λ
2v
)

g+(κ(t)(θ(t)− v)+ γ̂ρ(t)ξ (t)λv)∂vg

+
1
2

ξ
2(t)v∂

2
vvg− 1

2
(1− γ)(1−ρ

2(t))ξ 2(t)v
(∂vg)2

g
,

(3.39)

with terminal condition g(T,v) = 1. Clearly, the trick is to solve n PDEs sequentially,
starting with the interval (tn−1, tn] (for which we have the boundary condition g(tn,v) =
1) and working our way backwards in time to the interval [t, t1]. To this end, it will be
convenient to work with inverse time τ = T −s and thence the inverse discontinuity-points
τk = T − tn−k for k = 0, . . . ,n−1.

Starting with the first subinterval from the end, s ∈ (tn−1,T ], our problem is that of
solving a PDE of inverse time over τ ∈ [0,τ1) with the initial condition g(0,v) = 1. Indeed,
by setting κ(t) = κ̄1,ξ (t) = ξ̄1 and ρ(t) = ρ̄1 we see that the problem for all practical
purposes is indistinguishable from the one we solved above. Thus, we guess the solution

g(τ,v) = exp
{
−
(

δ

γ
− γ̂r

)
τ + γ̂A1(τ)+ γ̂B1(τ)v

}
, τ ∈ [0,τ1), (3.40)

where A1,B1 : [0,τ1) 7→ R are functions that satisfy the conditions A1(0) = B1(0) = 0.
Substituting the exponential form of inverse time in equation (3.40) into equation (3.39)
yields the PDE
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λ 2

2γ
v−A′1(τ)−B′1(τ)v+(κ̄1(θ(τ)−v)+ γ̂λ ρ̄1ξ̄1v)B1(τ)+

1
2

γ̂ ξ̄
2
1 v(ρ̄2

1 +γ(1− ρ̄
2
1 ))B

2
1(τ)= 0.

(3.41)
Since equation (3.41) must hold for all values of v, we end up with the coupled system of
ODEs

λ 2

2γ
−B′1(τ)− (κ̄1− γ̂λ ρ̄1ξ̄1)B1(τ)+

1
2

γ̂ ξ̄
2
1 (ρ̄

2
1 + γ(1− ρ̄

2
1 ))B

2
1(τ) = 0 (3.42a)

−A′1(τ)+ κ̄1θ(τ)B1(τ) = 0. (3.42b)

In particular, we recognise equation (3.42a) for B1 as a Riccati equation with constant
parameters and initial condition B1(0) = 0. Under the assumption that η̂1 ≥ 0, we once
again obtain

B1(τ) =
λ 2

γ

eη̂1τ −1
(κ̂1 + η̂1)(eη̂1τ −1)+2η̂1

, τ ∈ [0,τ1) (3.43)

where κ̂1 = κ̄1− γ̂λ ρ̄1ξ̄1 and η̂1 =
√

κ̂2
1 − γ̂ ξ̄ 2

1 (ρ̄
2
1 + γ(1− ρ̄2

1 ))γ
2/γ). From this, we ob-

tain the value at the terminal point B1(τ1) which will act as an initial condition for B2
when we proceed to the next time interval and we denote it B0

2 = B1(τ1). However, be-
fore we do this, observe that equation (3.42b) and the initial condition A1(0) = 0 give
A1(τ) =

∫
τ

0 κ̄1θ(u)B1(u)du for τ ∈ [0,τ1) which might be analytically computable depend-
ing on the form of θ . In particular, if θ is piecewise constant over the same subintervals as
κ , ξ , ρ , we have a closed form solution while we may resort to numerical integration if θ

is a non-constant function.
Next, we proceed to the second subinterval (tn−2, tn−1] which translates to solving the

PDE of g(τ,v) for τ ∈ [τ1,τ2). Assuming a solution of the same exponential form as in
equation (3.40) for g(τ,v) with B2, A2 and notice that B2(τ1) = B1(τ1) = B0

2 must hold at
the initial point, and thus A2(τ1) = A1(τ1) = A0

2 which constitutes the initial value g(τ1,v)
for the PDE. Hence, we have a system of ODEs, with k = 2 (written out for a general
k = 2, . . . ,n)

λ 2

2γ
−B′k(τ)− (κ̄k− γ̂λ ρ̄kξ̄k)Bk(τ)+

1
2

γ̂ ξ̄
2
k (ρ̄

2
k + γ(1− ρ̄

2
k ))B

2
k(τ) = 0 (3.44)

−A′k(τ)+ κ̄kθ(τ)Bk(τ) = 0 (3.45)

for τ ∈ [τk−1,τk) with non-zero initial conditions Bk(τk−1)=Bk−1(τk−1)=B0
k and Ak(τk−1)=

Ak−1(τk−1) = A0
k . We recognise equation (3.44) as a Riccati equation with constant param-

eters and an initial condition that is non-zero. Under the assumption that η̂k ≥ 0, we obtain
the solution from lemma 3.3, equation (3.70):

Bk(τ) = B0
k +

2(ak(B0
k)

2 +bkB0
k +

λ 2

2γ
)(eηk(τ−τk−1)−1)

(ηk−bk−2akB0
k)(e

ηk(τ−τk−1)−1)+2ηk
, τ ∈ [τk−1,τk) (3.46)
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where τk = T − tn−k with τ0 = 0, B0
k = Bk−1(τk−1) for k = 2, ..,n with B0

1 = 0 and we have
defined the parameters

ak =
1
2

γ̂ ξ̄
2
k (ρ̄

2
k + γ(1− ρ̄

2
k )), bk =−(κ̄k− γ̂λ ρ̄kξ̄k), ηk =

√
b2

k−4akc

for k = 1, . . . ,n. Notice that we may include k = 1 since by setting B0
1 = 0, equation (3.46)

reduces to equation (3.43) for k = 1.
Calculating the {Bk} sequentially in this manner for k = 1,2, ...,n, we find that

g(s,v) = g(T − s,v) = exp
{
−
(

δ

γ
− γ̂r

)
(T − s)+ γ̂An(T − s)+ γ̂Bn(T − s)v

}
,

for s ∈ [t, t1] ⇔ s ∈ [τn−1,T − t]. This relies on {Ak}n
k=1 where equation (3.45) gives

Ak(τ) = A0
k +

∫
τ

τk−1
κ̄kθ(u)Bk(u)du for τ ∈ [τk−1,τk) where A0

k = Ak−1(τk−1) except for
A0

1 = 0. Even if we can compute this in closed form (which is the case if θ is piecewise con-
stant), this turns out to be redundant in terms of computing the optimal control π∗(t,w,v).
Specifically, it is readily demonstrated that the FOC (3.8) reduces to the expression

π
∗
t =

λ

γ
+ ρ̄nξ̄ γ̂Bn(T − t),

which completes the proof. �

Remark 3.4. We observe that the optimal control once again is independent of the instan-
taneous variance in analogy with (4.1). Furthermore, under the assumption that θ is piece-
wise constant with value θ̄k for τ ∈ [τk−1,τk), the solution to equation (3.45) with initial
condition A0

k is given by

Ak(τ) = A0
k−

κ̄kθ̄k

2ak

(
(bk +ηk)(τ− τk−1)+2ln

(
1−βke−ηk(τ−τk−1)

1−βk

))
,

where

βk =
bk +ηk +2akB0

k

bk−ηk +2akB0
k
.

The 3/2 Model

Proof : Combining (3.7) and (3.13) and setting ρ =−1 we find that the governing PDE is

0 = ∂tg−
(

δ

γ
− γ̂r− 1

2 γ
−1

γ̂λ
2v
)

g+(κv(θ − v)− γ̂ξ λv2)∂vg+ 1
2 ξ

2v3
∂

2
vvg (3.47)

with the terminal condition g(t,v) = 1. First consider the substitution

g(t,v) = exp
{
−( δ

γ
− γ̂r)(T − t)

}
·C(t,v) (3.48)
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which yields

0 = ∂tC+ 1
2 γ
−1

γ̂λ
2vC+

(
κθv− (γ̂ξ λ +κ)v2)

∂vC+ 1
2 ξ

2v3
∂

2
vvC (3.49)

where C(T,v) = 1. From Carr & Sun [9] it is known that PDEs of this form can be trans-
formed into confluent hypergeometric differential equations. Specifically, insofar that we
make the key conjecture that C depends on (t,v) only through the intervening variable
y(t,v):

y(t,v)≡
∫ T

t
e
∫ s
t κθdsdu · v =

(
eκθ(T−t)−1

κθ

)
· v, (3.50)

(3.49) reduces to the second order ODE16

0 = 1
2 ξ

2y2C′′(y)− [(γ̂ξ λ +κ)y+1]C′(y)+ 1
2 γ
−1

γ̂λ
2C(y), (3.51)

where ′ ≡ d/dy. The boundary condition C(T,v) = 1 may now be stated as C(y = 0) = 1.
Performing one final change of variables

C(y) = zaD(z), s.t. z≡ b
y
,

where a and b are constants to be fixed at our convenience, tedious calculations show that

0 = 1
2 ξ

2za+2D′′(z)+
{
[ξ 2(a+1)+(γ̂ξ λ +κ)]za+1 +

1
b

za+2
}

D′(z)

+
{
[ 1

2 ξ
2a(a+1)+(γ̂ξ λ +κ)a+ 1

2 γ
−1

γ̂λ
2]za +

a
b

za+1
}

D(z),
(3.52)

where we have used the results

C′(y) =− a
b za+1D(z)− 1

b za+2D′(z), (3.53a)

C′′(y) = a(a+1)
y2 zaD(z)+2 (a+1)

y2 za+1D′(z)+ 1
y2 za+2D′′(z). (3.53b)

While this hardly looks like a simplification, we note that our freedom in a and b allow us
to set the last square bracket to zero, i.e.

0 = 1
2 ξ

2a(a+1)+(γ̂ξ λ +κ)a+ 1
2 γ
−1

γ̂λ
2.

Solving this quadratic equation for a we find that

a± =−ω̂±

√
ω̂2− γ̂λ 2

γξ 2 , where ω̂ ≡ 1
2
+

γ̂ξ λ +κ

ξ 2 , (3.54)

where we observe that the discriminant is positive insofar γ > 1. This is the same assump-
tion we made upon solving the Merton-Heston problem. Hence, for γ > 1, a+ is a real

16 Here we use that ∂vC(y) =C′(y) y
v , ∂vvC(y) =C′′(y)

( y
v

)2 and ∂tC(y) =−C′(y)[v+κθy].
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positive number, which is the parametric choice we shall be opting for (NB: for ease of
notation, the subscript + will henceforth be supressed). This allows us to rewrite (3.52) as

0 = 1
2 ξ

2za+2D′′(z)+
{
[ξ 2(a+1)+(γ̂ξ λ +κ)]za+1 +

za+2

b

}
D′(z)+

a
b

za+1D(z)

or equivalently

0 = zD′′(z)+
{

ζ̂ +
2

bξ 2 z
}

D′(z)+
2a

bξ 2 D(z),

where

ζ̂ ≡ 1+2(a+ ω̂). (3.55)

Finally, by fixing b =−2/ξ 2 we arrive at the confluent hypergeometric differential equa-
tion

0 = zD′′(z)+{ζ̂ − z}D′(z)−aD(z). (3.56)

This is a comforting result in the sense that we can refer to a substantial body of literature
to extract the solution (and the various properties thereof). For the reader’s convenience,
a cursory primer on the mathematics of confluent hypergeometric functions is provided in
appendix C. The basic result presented here is that (3.56) admits the general solution

D(z) = K1M(a; ζ̂ ;z)+K2U(a; ζ̂ ;z),

where K1,K2 are arbitrary constants, M(a; ζ̂ ;z) is Kummer’s function of the first kind, and
U(a; ζ̂ ;z) is the Tricomi function17

U(a; ζ̂ ;z) =
Γ (1− ζ̂ )

Γ (a− ζ̂ +1)
M(a; ζ̂ ;z)+

Γ (ζ̂ −1)
Γ (a)

z1−ζ̂ M(a− ζ̂ +1;2− ζ̂ ;z).

We guess (correctly) that the boundary conditions C(0) = 1 and C′(0) = 0 can be met
by setting K2 = 0. To determine K1, recall that as y ↓ 0, C(y) ↓ 1. At the same time,
since z = −2/(ξ 2y), it must be the case that as y ↓ 0, z ↓ −∞. Now it is a known fact
that for large negative zs the confluent hypergeometric function scales as M(a; ζ̂ ;z) ∼
Γ (ζ̂ )(−z)−a/Γ (ζ̂ − a) where Γ is the gamma function, cf. theorem 3.9. Thus, since
C(y) = zaD(z) = K1zaM(a; ζ̂ ;z) which goes to K1Γ (ζ̂ )/(Γ (ζ̂ − a)(−1)a), as z ↓ −∞, it
must be the case that K1 = Γ (ζ̂ −a)(−1)a/Γ (ζ̂ ) i.e. the solution to (3.56) is

D(z) =
Γ (ζ̂ −a)(−1)a

Γ (ζ̂ )
M(a; ζ̂ ;z). (3.57)

We are now in a position to compute the optimal portfolio weight. From (3.8)

17 Notice that M is undefined for ζ̂ ∈Z−∪{0}, whilst U is undefined for ζ̂ ∈Z. Neither of these conditions
pose a threat to the problem at hand.
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π
∗
t =

λ

γ
−ξ v

∂vg
g

, (3.58)

where we have used that ρ = −1, λ1(v) = λ
√

v and β (t,v) = ξ v3/2. The ratio ∂vg/g is
readily evaluated using the chain rule and Theorem 3.10 in appendix 3.9. The resulting
optimal control turns out to be

π
∗
t =

λ

γ
+ξ a

(
1+

z

ζ̂

M(a+1; ζ̂ +1;z)

M(a; ζ̂ ;z)

)
, (3.59)

where we reiterate that z =−2/(ξ 2y) where y = y(v, t) is the variable defined in (3.50), a
is is the positive solution defined in (3.54) and ζ̂ is the parameter defined in (3.55). �

The Fong-Vasicek Type Model

Proof : The proof of (3.31b) is trivial. To show (3.31c) we combine (3.30c) with (3.31b) to
obtain

B′2(τ) =

{[
λ 2

ρ

2γ
+

γ̂λ1

κr
+

γ̂

2κ2
r

]
−
[

λ1γ̂

κr
+

γ̂

κ2
r

]
e−κrτ +

γ̂

2κ2
r

e−2κrτ

}

−
{

κv− γ̂λ2ξ − γ̂ξ ρ

κr
+

γ̂ξ ρ

κr
e−κrτ

}
B2(τ)+

1
2 γ̂ξ

2B2
2(τ).

Next, we perform a change of dependent variable

L(τ) = exp
{
− 1

2 γ̂ξ
2
∫

τ

0
B2(s)ds

}
, (3.60)

such that

B2(τ) =−
2

γ̂ξ 2
L′(τ)
L(τ)

, and B′2(τ) =−
2

γ̂ξ 2

[
L′′(τ)
L(τ)

− (L′(τ))2

L2(τ)

]
, (3.61)

to obtain

L′′(τ)+
{

κv− γ̂λ2ξ − γ̂ξ ρ

κr
+

γ̂ξ ρ

κr
e−κrτ

}
L′(τ)

+ 1
2 γ̂ξ

2

{[
λ 2

ρ

2γ
+

γ̂λ1

κr
+

γ̂

2κ2
r

]
−
[

λ1γ̂

κr
+

γ̂

κ2
r

]
e−κrτ +

γ̂

2κ2
r

e−2κrτ

}
L(τ) = 0,

subject to the boundary condition L′(τ = 0) = 0 (as it will shortly become obvious, one
boundary condition suffices to determine the solution of this second order equation). Mak-
ing the independent variable change
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x = e−κrτ ,

the PDE becomes18

κ
2
r x2L′′(x)+

{
κ

2
r x−κrκvx+ γ̂λ2ξ κrx+ γ̂ξ ρx− γ̂ξ ρx2}L′(x)

+ 1
2 γ̂ξ

2

{[
λ 2

ρ

2γ
+

γ̂λ1

κr
+

γ̂

2κ2
r

]
−
[

λ1γ̂

κr
+

γ̂

κ2
r

]
x+

γ̂

2κ2
r

x2

}
L(x) = 0,

with L′(x = 1) = 0. Finally, we perform the substitution

L(x) = xβ Q(x),

where β is a constant to be fixed at our convenience. After a few manipulations this
yields19

xQ′′(x)+
{

2β +1− ϑ̂ − γ̂ξ ρ

κ2
r

x
}

Q′(x)+

{(
β

2−βϑ̂ +
γ̂ξ 2

2κ2
r

[
λ 2

ρ

2γ
+

γ̂λ1

κr
+

γ̂

2κ2
r

])
1
x

− γ̂βξ ρ

κ2
r
− γ̂2ξ 2

2κ4
r
[1+λ1κr]+

γ̂2ξ 2

4κ4
r

x

}
Q(x) = 0,

where we have introduced the parameter

ϑ̂ ≡ κv

κr
− γ̂ξ λ1

κr
− ξ ργ̂

κ2
r
.

Now, it is clearly desirable to choose β such that the coefficient of 1
x vanishes. This is a

matter of solving a quadratic equation

β =
ϑ̂

2
± 1

2

√√√√ϑ̂ 2− 2γ̂ξ 2

κ2
r

[
λ 2

ρ

2γ
+

γ̂λ1

κr
+

γ̂

2κ2
r

]
.

We pick the left solution and label it β̂ . Thus, we are left with a simple second order
equation, the coefficients of which depend linearly on the independent variable x:

xQ′′(x)+
{

2β̂ +1− ϑ̂ − γ̂ξ ρ

κ2
r

x
}

Q′(x)+

{
− γ̂ β̂ ξ ρ

κ2
r
− γ̂2ξ 2

2κ4
r
[1+λ1κr]+

γ̂2ξ 2

4κ4
r

x

}
Q(x)= 0.

It is well-known that the solution of such equations can be expressed in terms of con-
fluent hypergeometric functions (see Theorem 3.11 and Corollary 3.1 in the appendix).
Specifically, we find that

18 Here we use that x2 = e−2κrτ , d
dτ

=−κrx d
dx and d2

dτ2 = κ2
r x2 d2

dx2 +κ2
r x d

dx .
19 The derivatives are L′ = βxβ−1Q+ xβ Q′ and L′′ = β (β −1)xβ−2Q+2βxβ−1Q′+ xβ Q′′.
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Q(x) = e−
1
2 p̂x{K1M(â, ζ̂ , q̂x)+K2x1−ζ̂ M(â− ζ̂ +1,2− ζ̂ , q̂x)

}
,

where K1 and K2 are constants to be fitted to the boundary condition and we have defined
the parameters

p̂≡ ξ

κ2
r
[i
√

γ̂2(1−ρ2)− γ̂ρ], q̂≡ p̂+
ρξ γ̂

κ2
r
,

â≡
ζ̂ j

2
+

iγ̂ρ(1− ϑ̂)

2
√

γ̂2(1−ρ2)

{
1− γ̂ξ (1+λ1κr)

ρ(1− ϑ̂)κ2
r

}
, ζ̂ ≡ 2β̂ +1− ϑ̂ .

Recalling that L(x) = xβ Q(x) and x = e−κrτ this means that

L(τ)=K1e−κr β̂ τ− 1
2 p̂e−κrτ

M(â, ζ̂ , q̂e−κrτ)+K2e−κr(β̂+1−ζ̂ )τ− 1
2 p̂e−κrτ

M(â− ζ̂ +1,2− ζ̂ , q̂e−κrτ),

or, more succinctly,

L(τ) =
2

∑
j=1

K je
−κr β̂ jτ−

1
2 p̂e−κrτ

M(â j, ζ̂ j, q̂e−κrτ), (3.62)

where we have defined β̂1 = β̂ and β̂2 = ϑ̂ − β̂ , as well as

â j ≡
ζ̂ j

2
+

i

2
√

1−ρ2

{
ρ(1− ϑ̂)− γ̂(1+λ1κr)

κ2
r

}
, ζ̂ j ≡ 2β̂ j +1− ϑ̂ .

Finally, B2(τ) is expressed in terms of L(τ) in (3.61). From Theorem 3.10 in appendix 3.9
we have that

d
dτ

M(â j; ζ̂ j; q̂e−κrτ) =−q̂κre−κrτ
â j

ζ̂
M(â j +1; ζ̂ j +1; q̂e−κrτ).

whence B2(τ) is of the form

B2(τ) = −
κr p̂
ξ 2γ̂

e−κrτ +
2κr

ξ 2γ̂
·

2
∑
j=1

K je−κr β̂ jτ

{
β̂ jM(â j, ζ̂ j, q̂e−κrτ)+ q̂e−κrτ â j

ζ̂ j
M(â j +1, ζ̂ j +1, q̂e−κrτ)

}
2
∑
j=1

K je−β̂ jκrτ M(a j, ζ̂ j, q̂e−κrτ)

,

which is the desired result (3.31c). Clearly, the value of B2(τ) is uniquely determined
insofar as we know the ratio Ξ = K2/K1. But this just requires a single boundary condition
(B2(0) = 0) - specifically, it can be shown that
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Ξ ≡
[ p̂

2 −β1]M(â1, ζ̂1, q̂)− q̂ â1
ζ̂1

M(â1 +1, ζ̂1 +1, q̂)

[β2− p̂
2 ]M(â2, ζ̂2, q̂)+ q̂ â2

ζ̂2
M(â2 +1, ζ̂2 +1, q̂)

.

It remains to demonstrate the validity of (3.31a). From (3.30a) and the boundary condition
A(0) = 0 we have that

A(τ) = κrθr

∫
τ

0
B1(s)ds+κvθv

∫
τ

0
B2(s)ds.

Inserting equations (3.31b) and (3.60) into this expression we get

A(τ) = θr

∫
τ

0

(
1− e−κrs)ds− 2κvθv

γ̂ξ 2 ln(L(τ)).

Performing the integral, and using the fact that L(τ) = L(τ)/L(0) (from (3.60), L must
obviously satisfy L(0) = 1), we get the desired result. �
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Appendix B: Differential Equations

Lemma 3.1. Consider the Riccati equation

dy
dx

(x) = ay2(x)+by(x)+ c, (3.63)

where a,b and c are constant coefficients. Assuming that y(0) = 0 the solution is of
the form

y(x) =



2c(eδx−1)
(δ −b)(eδx−1)+2δ

, if b2 > 4ac,

2cx
2−bx

, if b2 = 4ac,

2c
ε cot

(
εx
2

)
−b

, if b2 < 4ac,

(3.64)

where δ ≡
√

b2−4ac and ε ≡−iδ , where i is the complex unit.

Proof : We will consider the three cases individually:

1. Suppose b2 > 4ac: from quadratic factorisation ay2 +by+c may be expressed as a(y−
r1)(y− r2), where r1 ≡ (−b+ δ )/(2a) and r2 ≡ (−b− δ )/(2a) are real valued roots
and δ is defined above. Hence, (3.63) may be written as

1
a

∫ y

0

dy
(y− r1)(y− r2)

= x. (3.65)

The integral may readily be solved using partial fractions; specifically:

1
a(r1−r2)

∫ y

0

(
1

y− r1
− 1

y− r2

)
dy = 1

a(r1−r2)

(
ln
∣∣∣∣1− y

r1

∣∣∣∣− ln
∣∣∣∣1− y

r2

∣∣∣∣)
Thus,

1
a(r1− r2)

ln
∣∣∣∣1− y

r1

1− y
r2

∣∣∣∣= x,

which can be rearranged to the equation

y(x) =
r1r2(ea(r1−r2)x−1)

r1ea(r1−r2)x− r2
.
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Now it may readily be checked that r1r2 = c
a and a(r1 − r2) = δ . Furthermore,

r1ea(r1−r2)x− r2 = 1
2a [(−b+ δ )eδx− (−b− δ )] = 1

2a [(−b+ δ )(eδx− 1)+ 2δ ]. Thus,
y = 2c(eδx−1)/((δ −b)(eδx−1)+2δ ) as desired.

2. When b2 = 4ac then δ = 0 and we have a repeated root, r =−b/(2a). The integral on
the LHS of (3.65) therefore becomes

1
a

∫ y

0

dy
(y− r)2 =

1
a

(
1

r− y
− 1

r

)
=

y
ar(r− y)

.

Equating this to x (the RHS of (3.65)) we obtain after some manipulation

y =
ar2x

1+arx
.

Inserting r =−b/(2a) and using the fact that b2 = 4ac we obtain the desired result20.
3. When b2 < 4ac then δ is imaginary and r1 and r2 are complex. The formula derived in

1. still applies - however, to highlight that y is real, it is convenient to reformulate the
expression in terms of real parameters. Till this end define the parameter ε ≡−iδ ∈ R
then

y(x) =
2c(eiεx−1)

(iε−b)(eiεx−1)+2iε
=

2c(eiεx−1)
iε(eiεx +1)−b(eiεx−1)

,

=
2cei εx

2 (ei εx
2 − e−i εx

2 )

iεei εx
2 (ei εx

2 + e−i εx
2 )−bei εx

2 (ei εx
2 − e−i εx

2 )
,

=
4icsin

(
εx
2

)
2iε cos

(
εx
2

)
−2bisin

(
εx
2

) = 2c

ε
cos( εx

2 )
sin( εx

2 )
−b

,

which is the desired equation. �

Lemma 3.2. Let a,b and c be constants such that c 6= b, a 6= 0 and b 6= 0 then∫ x

0

eax−1
b(eax−1)+ c

dx =
x

b− c
+

c
ab(b− c)

ln
∣∣∣∣ c
b(eax−1)+ c

∣∣∣∣. (3.66)

Proof : Split the integral into two components I1 + I2:∫ x

0

eax−1
b(eax−1)+ c

dx =
∫ x

0

eax

b(eax−1)+ c
dx−

∫ x

0

dx
b(eax−1)+ c

20 A less cumbersome derivation involves expanding eδx as 1+ δx+O(δ 2) in y = 2c(eδx − 1)/((δ −
b)(eδx−1)+2δ ) and letting δ → 0.



112 Ellersgaard and Jönsson

Upon handling the first integral, I1, on the RHS, use the substitution u = eax ( du
dx = aeax)

whence
1
a

∫ u

1

du
b(u−1)+ c

=− 1
ab

ln
∣∣∣∣ c
b(eax−1)+ c

∣∣∣∣. (3.67)

A similar substitution is used for the second integral, I2, only now we will also need to
invoke the method of partial fractions

I2 =−
1
a

∫ u

1

du
u[b(u−1)+ c]

=
1

a(b− c)

∫ u

1

(
1
u
− b

b(u−1)+ c
du
)

=
1

b− c
x+

1
a(b− c)

ln
∣∣∣∣ c
b(eax−1)+ c

∣∣∣∣ (3.68)

Since − 1
ab +

1
a(b−c) =

c
ab(b−c) we clearly get the desired result (3.66) upon combining I1

and I2. �

Lemma 3.3. Consider the Riccati equation with a non-zero initial condition

y′(x) = ay2(x)+by(x)+ c, y(0) = y0 (3.69)

where a,b and c are coefficients such that b2 > 4ac. Then the solution is given by

y(x) = y0−
(b+δ +2ay0)(1− e−δx)

2a(1−βe−δx)
(3.70)

where δ =
√

b2−4ac and β = b+δ+2ay0
b−δ+2ay0

.

Proof : Solve the quadratic equation az2
0 + bz0 + c = 0 to obtain z0 = −b±δ

2a . Select the
solution with minus, let z(x) = z0− y(x) and substitute into equation (3.69) to get

−z′(x) = a(z0− z(x))2 +b(z0− z(x))+ c

= (az2
0 +bz0 + c)+az2(x)− (2az0 +b)z(x)

⇔ z′(x) = −az2(x)−δ z(x), z(0) = z0− y0. (3.71)

Consider a solution z̃(x) = δ

a
βe−δx

(1−βe−δx)
, where β = b+δ+2ay0

b−δ+2ay0
and it may be readily checked

that z̃(x) satisfies the equation z̃′(x) = −az̃2(x)− δ z̃(x). Notice that z̃(0) = δβ

a(1−β ) =
−b−δ

2a − y0 = z0− y0 = z(0) and we have found a solution to equation (3.71) which gives
y(0) = z0− z(0) = y0. Hence, equation (3.69) has the solution y(x) = z0− z(x) that can be
rearranged as

y(x) = y0−
(b+δ +2ay0)(1− e−δx)

2a(1−βe−δx)
(3.72)
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and notice that y0 = 0 gives the reduced solution

y(x) =− (b+δ )(1− e−δx)

2a(1− b+δ

b−δ
e−δx)

(3.73)

of equation (3.69) with an initial condition equal to zero. Equation (3.72) may equally well
be written as

y(x) = y0 +
2(ay2

0 +by0 + c)(eδx−1)
(δ −b−2ay0)(eδx−1)+2δ

.

�



114 Ellersgaard and Jönsson

Appendix C: A Primer for the Mathematics of Confluent
Hypergeometric Functions

In this section we briefly review key properties of confluent hypergeometric functions.
For a more thorough introduction the reader is referred to MacDonald [21] or standard
online resources such as https://en.wikipedia.org/wiki/Confluent hypergeometric function
and http://dlmf.nist.gov/13.

Definition 3.1. The confluent hypergeometric differential equation is defined as

0 = z
d2y
dz2 (z)+(ζ − z)

dy
dz

(z)−ay(z) (3.74)

where ζ , a and z are unrestricted. It has a regular singularity at the origin and an irregular
singularity at infinity.

Theorem 3.7. There is an analytic solution to (3.74), known as the confluent hypergeomet-
ric function (or Kummer’s function of the first kind), which is given by the series expansion

M(a;ζ ;z) =
Γ (ζ )

Γ (a)

∞

∑
n=0

Γ (a+n)
Γ (ζ +n)

zn

n!
(3.75)

where Γ : R 7→ R is the Gamma function: Γ (t) =
∫

∞

0 xt−1e−xdx. Alternatively, M(a;ζ ;z)
may be expressed it in terms of rising factorials:

M(a;ζ ;z) =
∞

∑
n=0

a(n)zn

ζ (n)n!
, (3.76)

where x(0) ≡ 1 and
x(n) ≡ x(x+1)(x+2) · · ·(x+n−1).

Notice that M(a;ζ ;z) is not defined when ζ ∈ Z−∪{0}.

Theorem 3.8. As (3.74) is second order, there exists another, independent solution. If ζ is
not integer, it is given by the Tricomi function

U(a;ζ ;z) =
Γ (1−ζ )

Γ (a−ζ +1)
M(a,ζ ,z)+

Γ (ζ −1)
Γ (a)

z1−ζ M(a−ζ +1,2−ζ ,z). (3.77)

For the case ζ is integer, see [21].

Theorem 3.9. Asymptotically, for large values |z|:

M(a;ζ ;z)∼ Γ (ζ )

(
ezza−ζ

Γ (a)
+

(−z)−a

Γ (ζ −a)

)
(3.78)

for argz ∈ (− 3
2 π, 1

2 π]. Use the first term only insofar (ζ −a) ∈ Z− or when ℜ[z]> 0. Use
the second term only insofar a ∈ Z− or ℜ[z]< 0.
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Theorem 3.10. The derivative of M(a;ζ ,z) is given by

d
dz

M(a;ζ ,z) =
a
ζ

M(a+1;ζ +1;z). (3.79)

Theorem 3.11. A generic second order ODE with coefficients linear in the independent
variable,

(A0 +A1z)
d2y
dz2 (z)+(B0 +B1z)

dy
dz

(z)+(C0 +C1z)y(z) = 0, (3.80)

can be transformed into the confluent hypergeometric differential equation (3.74).

Proof : To see this, set ẑ= A0+A1z√
B2

1−4C1
, where we assume B2

1 6= 4C1. After a few manipulations

we obtain

ẑ
d2y
dẑ2 (ẑ)+

B0 +
B1√

B2
1−4C1

ẑ

 dy
dẑ

(ẑ)+

 C0√
B2

1−4C1

+
C1

B2
1−4C1

ẑ

y(ẑ) = 0.

Next we set y(ẑ) = exp
{
−
[

1+ B1√
B2

1−4C1

]
ẑ
2

}
w(ẑ). After some tedious calculations we

arrive at

ẑ
d2w
dẑ2 (ẑ)+(B0− ẑ)

dw
dẑ

(ẑ)−

1+
B1√

B2
1−4C1

 B0

2
− C0√

B2
1−4C1

w(ẑ) = 0,

which indeed is the confluent hypergeometric differential equation. �

Corollary 3.1. Assume A0 = 0 and A1 = 1, then the general solution to (3.80) may be
expressed as

y(z) =e−
1
2 pz{K1M(a,ζ ,qz)+K2z1−ζ M(a−ζ +1,2−ζ ,qz)

}
,

where K1,K2 are arbitrary constants, M is Kummer’s function, and we have defined the
parameters

p≡
√

B2
1−4C1 +B1, and q≡ p−B1,

and

ζ ≡ B0, and a≡

1+
B1√

B2
1−4C1

 B0

2
− C0√

B2
1−4C1

.

Proof : This follows immediately by combining Theorem 3.8 with Theorem 3.11.
�
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Appendix D: Empirical Logbook

For the sake of replicability, further details regarding data acquisition alongside the cali-
bration process are provided below.

• The raw data consists of intraday tick-by-tick trade data of the SPDR S&P 500 EFT
(SPY) obtained from Wharton Research Data Services:

https://wrds-web.wharton.upenn.edu/wrds.

The simple answer to the question “why not use S&P 500 index data (GSPC) directly”
is availability - there is no data provider that offers high frequency S&P 500 data for
free (indeed, it comes to quite a high price e.g. from Thomas Reuters, we did investigate
this). SPY, on the other hand, is available to us from Wharton, at no cost at all.

• Prior to the analysis, the raw data is pre-processed. The data processing consists of
a few steps of data cleaning and aggregation. In particular, the irregular tick-by-tick
time scale is aggregated to an equidistant 5 minute time grid. Hence, 5-minute high-
frequency data as a result for the S&P 500 ETF.

• The variance process is measured on a daily (every second day) basis from the 5-minute
data with the realised volatility measure. 192 price observations are used for each vari-
ance measurement which yields 1,492 variance observations. This motivates the re-
quirement of high-frequency data - we may as well measure the variance from daily
price data (with e.g. an EGARCH model or EWMA model) but this will arguably yield
variance measurements of poorer quality.

• With the (daily) variance observations in hand (note: we use the nomenclature observa-
tions although the data is not directly observed; the latent variance process is measured),
we proceed to estimate parameters. The parameters of the variance processes of Hes-
ton?s model and the 3/2 model are estimated with maximum likelihood estimation:
numerical optimisation is performed to optimise the likelihood function of each model.
Since there is no convenient form of the likelihood function of the square root process
(well, there is: the condition distribution is a non-central chi-squared distribution, but
an exact likelihood from this distribution turns out to provide a poor estimator) we use
an approximate (Gaussian) likelihood based on the moments of the square root process
which yields a consistent estimator (this result is due to Sorensen).

• The dynamics of the variance process in the 3/2 model, say with inherent parameters
(κ,θ ,ξ ), is equivalent to the reciprocal square root process (apply Ito’s formula to
1/Y where Y ∼ square root process) with parameters (κ̃, θ̃ , ξ̃ ) obtained by a simple
transformation (κ,θ ,ξ ) 7→ (κ̃, θ̃ , ξ̃ ). This result is used to obtain a likelihood for this
model - in effect, reciprocal variance observations are plugged into the approximated
likelihood. This gives two options for the parameter estimation: optimise the likelihood
w.r.t. reciprocal parameters (κ̃, θ̃ , ξ̃ ) directly (and take the inverse transformation to
obtain the inherent parameters) or re-parametrise the likelihood to take the inherent
parameters (κ,θ ,ξ ) and optimise w.r.t. these. The latter is the method we use.
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Appendix E: Tables

Investment Period S start S end V start V end Me end He end 3/2 end
02-12-31 to 03-03-31 90.47 87.07 0.051 0.042 996.8997 996.8887 996.8557
03-03-31 to 03-06-30 86.24 97.85 0.095 0.022 1,029.943 1,029.976 1,030.091
03-06-30 to 03-09-30 99.12 100.86 0.046 0.020 1,007.643 1,007.647 1,007.662
03-09-30 to 03-12-31 102.02 111.12 0.0551 0.0041 1,021.428 1,021.445 1,021.5
03-12-31 to 04-03-31 111.18 111.61 0.015 0.010 1,004.727 1,004.728 1,004.727
04-03-31 to 04-06-30 112.63 114.77 0.014 0.010 1,007.758 1,007.759 1,007.76
04-06-30 to 04-09-30 113.52 111 0.0053 0.0119 999.6928 999.69 999.6771
04-09-30 to 04-12-31 112.64 121.2 0.0086 0.0046 1,018.942 1,018.948 1,018.99
04-12-31 to 05-03-31 121.34 117.83 0.0089 0.0184 998.1711 998.168 998.1515
05-03-31 to 05-06-30 117.1 119.76 0.0092 0.0048 1,008.439 1,008.442 1,008.455
05-06-30 to 05-09-30 119.91 121.49 0.014 0.016 1,006.657 1,006.659 1,006.666
05-09-30 to 05-12-31 122.76 124.72 0.0066 0.0074 1,007.415 1,007.415 1,007.428
05-12-31 to 06-03-31 127.07 130 0.0206 0.0067 1,008.397 1,008.398 1,008.406
06-03-31 to 06-06-30 130.24 124.16 0.010 0.013 994.4169 994.4156 994.3975
06-06-30 to 06-09-30 127.22 133.49 0.0091 0.0079 1,013.833 1,013.835 1,013.845
06-09-30 to 06-12-31 133.47 142.09 0.0038 0.0042 1,016.587 1,016.59 1,016.602
06-12-31 to 07-03-31 140.71 141.64 0.0075 0.0270 1,005.232 1,005.232 1,005.233
07-03-31 to 07-06-30 143.01 151.05 0.0068 0.0184 1,015.035 1,015.037 1,015.05
07-06-30 to 07-09-30 152.35 152.62 0.0033 0.0111 1,004.762 1,004.761 1,004.761
07-09-30 to 07-12-31 154.23 147.8 0.0064 0.0117 995.8456 995.8376 995.8307
07-12-31 to 08-03-31 144.4 133.66 0.023 0.046 989.1243 989.1056 989.0949
08-03-31 to 08-06-30 131.89 128.04 0.031 0.030 998.4123 998.4124 998.4007
08-06-30 to 08-09-30 126.06 120.57 0.072 0.181 995.9456 995.932 995.9269
08-09-30 to 08-12-31 113.8 86.56 0.241 0.009 956.227 956.0642 956.1155
08-12-31 to 09-03-31 88.33 78.59 0.055 0.098 983.0127 982.809 982.9544
09-03-31 to 09-06-30 83.05 91.625 0.207 0.029 1,024.678 1,024.843 1,024.734
09-06-30 to 09-09-30 91.57 106.17 0.040 0.042 1,034.855 1,035.033 1,034.944
09-09-30 to 09-12-31 102.53 112.37 0.0268 0.0077 1,022.879 1,022.979 1,022.939
09-12-31 to 10-03-31 113.22 117.43 0.0097 0.0182 1,011.294 1,011.307 1,011.312
10-03-31 to 10-06-30 117.79 107.49 0.0044 0.0418 986.2664 986.2024 986.1993
10-06-30 to 10-09-30 101.88 114.57 0.086 0.022 1,028.377 1,028.467 1,028.485
10-09-30 to 10-12-31 114.5 126.03 0.0220 0.0031 1,023.579 1,023.639 1,023.66
10-12-31 to 11-03-31 125.76 132.73 0.008 0.014 1015.03 1,015.063 1,015.065
11-03-31 to 11-06-30 133.3 129.12 0.0045 0.0096 997.6833 997.6591 997.6538
11-06-30 to 11-09-30 131.77 118.81 0.016 0.150 985.2978 985.1994 985.22
11-09-30 to 11-12-31 114.87 125.91 0.095 0.027 1,024.274 1,024.337 1,024.344
11-12-31 to 12-03-31 127.36 141.71 0.021 0.010 1,025.473 1,025.509 1,025.539
12-03-31 to 12-06-30 140.28 133.2 0.011 0.027 993.9371 993.9198 993.9015
12-06-30 to 12-09-30 135.78 143.74 0.033 0.012 1,015.84 1,015.86 1,015.879
12-09-30 to 12-12-31 144.25 141.04 0.020 0.019 999.5934 999.5864 999.5821
12-12-31 to 13-03-31 144.96 156.365 0.0808 0.0031 1,019.178 1,019.205 1,019.219
13-03-31 to 13-06-30 156.66 160.06 0.011 0.032 1,008.565 1,008.578 1,008.575
13-06-30 to 13-09-30 162.22 168.95 0.016 0.014 1,012.198 1,012.208 1,012.22
13-09-30 to 13-12-31 168.88 183.84 0.0154 0.0013 1,021.297 1,021.317 1,021.335

Table 3.1 This table exhibits the trading period [year-month-date], initial index value, terminal index
value, initial variance, terminal variance, terminal portfolio value using the Merton weight, terminal port-
folio value using the Heston weight, and terminal portfolio value using the 3/2 weight. All portfolios have
an initial value of 1000 $.
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Investment Period He κ He θ He ξ ρ 3/2 κ 3/2 θ 3/2 ξ

02-12-31 to 03-03-31 55.00 0.07 3.23 -0.14 49.21 1.53 52.14
03-03-31 to 03-06-30 54.624 0.068 3.138 -0.137 50.22 1.52 53.22
03-06-30 to 03-09-30 54.158 0.064 3.043 -0.134 51.22 1.42 55.47
03-09-30 to 03-12-31 51.911 0.063 3.025 -0.127 50.45 1.35 55.81
03-12-31 to 04-03-31 38.256 0.052 2.391 -0.121 57.023 0.755 68.075
04-03-31 to 04-06-30 33.059 0.051 2.238 -0.086 61.532 0.679 74.717
04-06-30 to 04-09-30 30.412 0.048 2.062 -0.075 58.686 0.615 76.006
04-09-30 to 04-12-31 29.978 0.042 1.867 -0.055 59.612 0.587 82.302
04-12-31 to 05-03-31 27.156 0.039 1.796 -0.064 53.501 0.568 82.908
05-03-31 to 05-06-30 24.486 0.038 1.773 -0.060 52.830 0.536 85.286
05-06-30 to 05-09-30 24.733 0.034 1.619 -0.065 53.209 0.517 90.848
05-09-30 to 05-12-31 40.392 0.024 1.292 -0.013 63.850 0.768 105.176
05-12-31 to 06-03-31 56.301 0.019 1.114 -0.071 88.32 0.99 131.31
06-03-31 to 06-06-30 73.311 0.015 1.005 -0.066 112.14 1.23 155.70
06-06-30 to 06-09-30 84.324 0.014 0.981 -0.132 173.36 1.37 198.14
06-09-30 to 06-12-31 90.523 0.013 0.947 -0.184 208.32 1.37 224.50
06-12-31 to 07-03-31 92.842 0.012 0.908 -0.159 201.08 1.51 225.60
07-03-31 to 07-06-30 89.061 0.012 1.075 -0.171 152.83 1.36 200.96
07-06-30 to 07-09-30 94.688 0.012 1.071 -0.211 177.38 1.47 220.82
07-09-30 to 07-12-31 64.082 0.015 1.533 -0.262 103.84 1.08 166.48
07-12-31 to 08-03-31 58.765 0.017 1.744 -0.255 96.040 0.909 157.152
08-03-31 to 08-06-30 43.320 0.022 2.334 -0.221 85.26 0.59 143.20
08-06-30 to 08-09-30 42.340 0.023 2.357 -0.217 85.299 0.586 139.242
08-09-30 to 08-12-31 28.985 0.032 2.566 -0.257 80.671 0.449 130.321
08-12-31 to 09-03-31 12.682 0.067 3.197 -0.231 67.893 0.204 113.631
09-03-31 to 09-06-30 11.981 0.082 3.317 -0.220 70.29 0.19 105.56
09-06-30 to 09-09-30 12.090 0.084 3.354 -0.180 63.814 0.206 95.986
09-09-30 to 09-12-31 13.127 0.086 3.348 -0.172 62.474 0.253 86.802
09-12-31 to 10-03-31 16.517 0.088 3.399 -0.183 62.383 0.285 83.116
10-03-31 to 10-06-30 18.730 0.088 3.375 -0.170 58.799 0.355 74.777
10-06-30 to 10-09-30 22.710 0.094 3.947 -0.172 56.427 0.477 64.317
10-09-30 to 10-12-31 23.202 0.093 3.841 -0.150 53.987 0.471 62.541
10-12-31 to 11-03-31 19.413 0.091 3.797 -0.150 39.730 0.433 60.479
11-03-31 to 11-06-30 16.427 0.087 3.508 -0.148 46.653 0.366 66.990
11-06-30 to 11-09-30 15.924 0.085 3.516 -0.152 59.435 0.285 78.835
11-09-30 to 11-12-31 16.700 0.084 3.496 -0.129 62.905 0.269 80.101
11-12-31 to 12-03-31 28.859 0.054 2.963 -0.129 67.139 0.449 84.405
12-03-31 to 12-06-30 36.130 0.041 2.822 -0.135 70.180 0.564 92.809
12-06-30 to 12-09-30 37.650 0.039 2.795 -0.143 70.897 0.623 95.136
12-09-30 to 12-12-31 35.207 0.037 2.798 -0.170 68.193 0.602 97.968
12-12-31 to 13-03-31 34.653 0.036 2.737 -0.174 70.914 0.602 100.466
13-03-31 to 13-06-30 29.300 0.036 2.710 -0.172 70.788 0.555 106.072
13-06-30 to 13-09-30 34.29 0.03 1.74 -0.16 76.645 0.665 112.305
13-09-30 to 13-12-31 32.995 0.028 1.669 -0.174 83.718 0.622 122.909

Table 3.2 This table exhibits the trading period [year-month-date], the three Heston parameters κ,θ ,ξ , the
correlation ρ , and the three 3/2 parameters κ,θ ,ξ . All parameter estimates are made from data stretching
over a three years period, prior to the first day of the associated investment period.
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4.1 Introduction

Regardless of whether we are dealing with the running variance associated with a finan-
cial time series, or the implied volatility surface extracted from traded option prices, one
thing is abundantly clear: contrary to the assumption of the Black-Scholes-Merton model,
volatility is far from constant. In fact, universally accepted stylised facts of the economy
include the highly erratic nature of the variance process through time (see figure 4.2), or
the skew/smile effect characteristic of the implied volatility surface - as reported in Cont
and Tankov [5].1 Naturally, a plethora of possible resolutions to these effects have been
proposed on the modelling front, most prominently local volatility models in which σ is a
deterministic function of the random stock price, and diffusion-based stochastic volatility
models in which σ is modelled directly as a stochastic differential equation. Both ap-
proaches must be considered significant steps towards designing calibratable models to
observed market phenomena although neither can be said to be void of imperfections [5].
However, the latter is arguably the more sophisticated of the two, being as it were more
readily susceptible to theoretical augmentation. Derivatives pricing likewise becomes a
matter of some interest: whilst local volatility models will have us believe that options are
perfectly hedgeable using bonds and the underlying stocks (thereby making them formally
redundant), this is not so for valuation under stochastic volatility models. Here, incom-
pleteness [10] forces us to make further exogenous assumptions about the behaviour of
the market in order to pin down our risk neutral measure, Q. Specifically, to value one
option, enough similar traded options must already exist on the market, in order for us to
say anything concrete (in somewhat more abstract terms: a supply-and-demand induced
market price of risk must prevail).

Surprisingly, while derivative pricing and calibration in connexion with stochastic
volatility constitute major research areas in the quant-finance community, relatively few
papers deal with the impact of stochastic volatility on portfolio optimisation. In fact, to the
best of our knowledge, the first authors to deal explicitly with the issue are Jun Liu and
Jun Pan, a little more than a decade ago. The more pedestrian of their analyses is found
in [19], in which bequest optimisation in a Heston-driven2 bond-stock economy is used to
illustrate a grander theoretical point about solutions to HJB equations. Briefly, under the
assumption that the market price of risk is proportional to volatility, λ1 = λ̄1σ , Liu shows
that the optimal portfolio weight to be placed on the stock by a rational CRRA investor is

π
Liu
S,t =

λ̄1

γ
−ρσv

γ−1
γ

L(T − t), (4.1)

where λ̄1/γ is the Merton ratio [12], and the second term is a stoch-vol hedge correction
[15] in which L is the deterministic function

1 In the words of Cont and Tankov (ch. 1): “For equity and foreign exchange options, implied volatilities
σt(T,K) display a strong dependence with respect to the strike price: this dependence may be decreasing
(“skew”) or U-shaped (“smile”) and has greatly increased since the 1987 crash”.
2 See [17] and section 4.4 for an exposition of this model.
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L(τ) =
λ̄ 2

1
γ

(eητ −1)
(ε +η)(eητ −1)+2η

,

and we have defined the parameters ε ≡ κ + γ−1
γ

ρσvλ and

η ≡

√
ε2 +

γ−1
γ

σ2
v (ρ

2 + γ[1−ρ2]) λ̄ 2
1 .

Throughout this paper, we refer to this result as Liu’s strategy. Little is said by Liu on
the empirical implications, yet it is well-known that the correction hedge is negligible. For
example, our own investigation [15] reveals that the hedge correction is multiple orders
of magnitude smaller than the Merton weight for realistic parameter specifications, thus
leading to non-measurable improvements in the investor’s welfare.

A far richer theoretical account of the role of stochastic volatility in portfolio max-
imisation is provided in Liu and Pan [20], who extend the above framework to include
jumps in the underlying price process, and complete the market by including tradeable
derivative securities (specifically, a straddle, chosen for its sensitivity to volatility risk).
By solving the relevant HJB equation optimal portfolio weights are provided (in terms of
certain partial derivatives); moreover, through the employ of market calibrated parame-
ters Liu and Pan estimate that the primary demand for derivatives is nested in the myopic
component of the portfolio weight (rather than the volatility hedge correction). Based on
the same parameters they also establish significant improvements in certainty equivalent
wealth through the act of including derivatives in a utility maximised portfolio.

4.1.1 Overview

This paper might be read as a quasi-exposition of the work above (in the sense that we
obtain similar formulae albeit using different techniques) with elements of novelty. Specif-
ically, through martingale considerations we establish the optimal investment strategy for
a fairly generic stochastic volatility model. These formulas are instantiations of more gen-
eral state-variable expressions found in e.g. Munk [15], but we expose them as (i) there
is some pedagogical value in seeing how they can be derived in a martingale framework,
(ii) they readily can be adapted to more exotic volatility models. Upon specialising to the
Heston model, we then proceed to find explicit expressions in the event the derivative is
a plain vanilla call or put option. Vis-a-vis the straddle strategy mentioned above this is
a minor variation, yet the value of our analysis lies in its great attention to detail, both
from a conceptual and computational point of view. In either case, the change to the op-
timal investment plan is considerable with respect to Liu’s strategy for calibrated market
parameters. Furthermore, in corroboration of the findings by Liu and Pan we find through
Monte Carlo simulation that the hedge component specific to stochastic volatility is ir-
relevant. Finally, in a novel portfolio rebalancing experiment using real market prices, we
show that access to plain vanillas for utility optimisers create only a very modest (dubious)
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improvement in the Sharpe ratio, in discordance with the quasi-empirical musings of Liu
and Pan.

4.2 Problem Set-up

4.2.1 Market Assumptions

Following the path betrodden by Black, Scholes, and Merton we start out by consider-
ing a financial landscape which is frictionless, arbitrage free, and allows for continuous
trading. Three assets which jointly complete the market are assumed to prevail, viz. a risk-
free money account (a bond), one fundamental risky security (a stock), and one derivative
security with a European exercise feature at time t = T ′. As it is commonplace, we de-
fine the dynamical equations of these securities by first introducing the stochastic basis
(Ω ,F ,F = {Ft}t∈[0,T ′],P), where Ω represents all possible states of the economy, P is
the real-world probability measure, and Ft is the augmented natural filtration of two inde-
pendent Wiener processes W1 and W2: i.e.

Ft = σ(FW
t ∪N ),

where FW
t = σ({W1s,W2s}s∈[0,t]) and N represents the null sets of P. With this in mind,

we specify the price process dynamics of the money account {Bt}t∈[0,T ] as the determinis-
tic equation,

dBt = rBtdt, (4.2)

where B0 = b0 ∈ R+ and r is the constant rate of interest. As for the fundamental risky
security {St}t∈[0,T ] we posit an SDE model of a rather generic stochastic volatility form,
viz.

dSt = µS(t,Vt)Stdt +
√

VtStdW1t ,

dVt = α(t,Vt)dt +β (t,Vt)(ρdW1t +
√

1−ρ2dW2t),
(4.3)

where (S0,V0) = (s0,v0)∈R2+, and {Vt}t∈[0,T ′] is the variance process which is we assume
strictly positive. As for the dynamical constituents: µS,α , and β are taken to be real valued
deterministic functions [0,T ′]×R+ 7→ R, whilst

ρ = Corr[dSt ,dVt ] ∈ (−1,1),

is a Pearson correlation coefficient between the stock variance processes. Finally, as for the
European derivative, we envision a one-time pay-off Φ(ST ′) based on the magnitude of the
contemporaneous stock value at time t = T ′. Letting {Dt =D(t,St ,Vt)}t∈[0,T ′] represent the
general price process, it follows from Itô’s lemma that

dDt = µD(t,St ,Vt)Dtdt +σ1D(t,St ,Vt)DtdW1t +σ2D(t,St ,Vt)DtdW2t , (4.4)
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where DT ′ = ΦT ′ , and µD,σ1D,σ2D : [0,T ′]×R+×R+ 7→ R are the functions

µD(t,s,v)≡ D−1
[
∂tD+µS(t,v)s∂sD+α(t,v)∂vD+ 1

2 vs2
∂

2
ssD

+ 1
2 β

2(t,v)∂ 2
vvD+ρβ (t,v)

√
vs∂

2
svD
]
,

σ1D(t,s,v)≡ D−1
[
ρβ (t,v)∂vD+

√
vs∂sD

]
,

σ2D(t,s,v)≡ D−1
[√

1−ρ2β (t,v)∂vD
]
,

(4.5)

assuming, of course, that D ∈ C 1,2,2.
Crucial to our derivations in the subsequent sections, we now enforce the following

minimal structure upon the aggregate risk preferences of agents trading in our tripartite
economy:

Assumption 1 The market prices of risk λ1 and λ2 associated with the aleatoric compo-
nents W1 and W2 are functions of v only. In concrete terms this means that

λ1(v) =
µS(t,v)− r√

v
, (4.6)

and

λ2(v) =
µD(t,s,v)− r

σ2D(t,s,v)
− σ1D(t,s,v)

σ2D(t,s,v)
λ1(v). (4.7)

We call this the weak Heston assumption for reasons which will become clearer below.3

Now, from (4.6) we may define the risk-neutral measure Q through the Radon-Nikodym
derivative

dQ
dP

∣∣∣∣
T ′
≡ ξ (T ′)≡ exp

{
− 1

2

∫ T ′

0

2

∑
i=1

λ
2
i (Vt)dt−

∫ T ′

0

2

∑
i=1

λi(Vt)dWit

}
. (4.8)

Assuming the Novikov condition, E[exp{ 1
2
∫ T ′

0 (λ 2
1 (Vt)+λ 2

1 (Vt))dt}]< ∞, ξ is a true mar-
tingale, E[ξ (T ′)] = 1, whence Q is an equivalent local martingale measure (ELMM). All
discounted asset prices under Q are therefore local martingales, which can be verified by
combining Girsanov’s transformation

dWit =−λi(Vt)dt +dWQ
it ,

for i = 1,2 with the price dynamics (4.3) and (4.4). Finally, upon combining the market
price of risk (4.7) with the Itô expressions (4.5) we readily find that the partial differential
equation governing the price of the derivative is of the form

3 We emphasise that this is not a vacuous statement: specifically, the weak Heston assumption is not a
gauge freedom, as it invariably does say something about supply and demand in the market. On the other
hand, it is not an approximation either: clearly, we have the mathematical freedom to suppose whatever
we want here.
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0 = ∂tD+ rs∂sD+{α(t,v)−β (t,v)[ρλ1(v)+
√

1−ρ2λ2(v)]}∂vD

+ 1
2 vs2

∂
2
ssD+ 1

2 β
2(t,v)∂ 2

vvD+ρβ (t,v)
√

vs∂
2
svD− rD,

(4.9)

subject to the terminal condition D(T ′,s,v) = Φ(s).

Remark 4.1. We assume the Novikov condition in order to establish the existence of the
ELMM. Rather bizarrely, existence is something all too often glossed over in the stochastic
volatility literature. Indeed, there are somewhat spectacular examples of stochastic volatil-
ity models where the no-arbitrage condition generally breaks down cf. e.g. the Stein &
Stein model.4 Furthermore, it is reasonable to show formally that discounted asset prices
are true martingales as opposed to strictly local ones. Although failure of the true mar-
tingale property does not entail arbitrage, it can lead to peculiarities (“bubble problems”)
such as the breakdown of put-call parity. For examples and general theory pertaining to
these fascinating issues we refer the reader to Wong & Hyde [34].

4.2.2 Investor Assumptions

We consider the case of an investor who trades in the three asset classes in a self-financing
manner over the temporal horizon [0,T ] ⊆ [0,T ′], with the intention of maximising the
expected discounted utility of her terminal wealth, WT . Specifically, we are interested in
determining the optimal portfolio weights π∗S,t and π∗D,t which the investor should place on
the stock and the derivative5 such that

{π∗S,t ,π∗D,t}t∈[0,T ] = argmax
{πS,t ,πD,t}∈L 2[0,T ]

E[e−δT u(WT )], (4.10)

where δ ∈R+ is a subjective discounting factor, and u :R+ 7→R is a utility function which
we assume isoelastic, i.e.

u(x) =
x1−γ

1− γ
,

where γ ∈ R+\{1} codifies the investor’s level of risk aversion. No restrictions on short-
selling and leveraging are enforced upon the portfolio weights. However, to rule out arbi-
trage through doubling-strategies we assume that the weights belong to space of square-
integrable processes, which we have denoted by L 2.

Note that from the self-financing condition it follows that the optimal wealth process
{W ∗

t }t∈[0,T ] obeys the dynamics

4 The problem with their is that 0 lies in the interior of Vt which (from λ1) gives rise to the condition
µS = r.
5 We assume that the remaining fraction of the wealth 1−πS,t −πD,t is allocated to the risk free money
account.
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dW ∗
t = [r+π

∗
S,t
√

Vtλ1(Vt)+π
∗
D,t(σ1Dλ1(Vt)+σ2Dλ2(Vt))]W

∗
t dt

+[π∗S,t
√

Vt +π
∗
D,tσ1D]W

∗
t dW1t +π

∗
D,tσ2DW ∗

t dW2t ,
(4.11)

which can be used to set up a Hamilton-Jacobi-Bellman equation for the value function
associated with (4.10). This, traditional approach is nonetheless not the route by which
we shall be proceeding: rather, we opt for a martingale theoretic approach, which is well-
equipped to handle bequest-optimisation problems in complete financial markets.

4.3 The Martingale Solution

4.3.1 The Optimal Wealth Process

It is well-known that the dynamic programming problem highlighted above may be refor-
mulated as a static optimisation problem by solving for the optimal wealth process, whence
the optimal portfolio weights can be deduced [10] [3]. Specifically, we are scrutinising the
optimisation problem

W ∗
T = argmax

WT∈KT

E[e−δT u(WT )], (4.12)

over the class of adapted self-financing portfolios, KT , which is to say subject to the static
budget constraint,

w0 = EQ[e−rT WT ],

where W0 = w0.6 In Lagrangian terms, we are accordingly dealing with

L= E[e−δT u(WT )−ηξT e−rT WT ], (4.13)

where η is the Lagrange multiplier, and ξT is the Radon-Nikodym derivative defined in
(4.8), here introduced to write the entire expectation under the P-measure. By differentiat-
ing partially with respect to WT and equating to zero, we may extract the optimal terminal
wealth

W ∗
T = (u′)−1(ηe(δ−r)T

ξT ),

where (u′)−1(·) = (·)−1/γ is the inverse marginal utility, i.e.

W ∗
T = η

−1/γ e−qT
ξ
−1/γ

T ,

where q ≡ (δ − r)/γ . To determine the multiplier we combine this expression with the
P-budget constraint

w0 = E[e−rT
ξT W ∗

T ],

to get

6 For a formal proof of this result, see Munk [15].
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η
−1/γ =

w0

E[e−(r+q)T ξ
1−1/γ

T ]
.

Thus,

W ∗
T =

w0erT ξ
−1/γ

T

E[ξ 1−1/γ

T ]
. (4.14)

Now, consider the denominator E[ξ 1−1/γ

T ]. From (4.8) it is not hard to see that this almost
looks like a P-expectation of a Radon-Nikodym ξ 0 defined as:

dQ0

dP

∣∣∣∣
T
≡ ξ

0(T )≡ exp
{
− 1

2 (1−1/γ)2
∫ T

0

2

∑
i=1

λ
2
i (Vt)dt− (1−1/γ)

∫ T

0

2

∑
i=1

λi(Vt)dWit

}
.

(4.15)
In fact, one may readily check that ξ

1−1/γ

T and ξ 0
T are related through

ξ
1−1/γ

T = ξ
0
T exp

{
1− γ

2γ2

∫ T

0

2

∑
i=1

λ
2
i (Vt)dt

}
, (4.16)

whence

E[ξ 1−1/γ

T ] = EQ0

[
exp

{
1− γ

2γ2

∫ T

0

2

∑
i=1

λ
2
i (Vt)dt

}]
. (4.17)

The explicit dependence on the Wiener increments has thus been suppressed through a
second change of measure. This expectation is sufficiently important to what follows that
we are prompted to introduce the function H : [0,T ]×R+ 7→ R:

Ht = H(t,v) = EQ0
t,v

[
exp

{
1− γ

2γ2

∫ T

t

2

∑
i=1

λ
2
i (Vs)ds

}]
. (4.18)

To see how this comes in handy, let us determine the optimal wealth process W ∗
t for all

times t ∈ [0,T ]. From the budget constraint

W ∗
t = EQ

t,v[e
−r(T−t)W ∗

T ]

= e−r(T−t) 1
ξt
Et,v[ξT W ∗

T ]

= e−r(T−t) 1
ξt

w0erT

H0
Et,v[ξ

1−1/γ

T ]

= ert w0
ξt H0

Et,v[ξ
0
T exp{ 1−γ

2γ2

∫ T
0 (λ 2

1 (Vs)+λ 2
2 (Vs))ds}]

= ert w0
ξt H0

ξ 0
t E

Q0
t,v [exp{ 1−γ

2γ2

∫ T
0 (λ 2

1 (Vs)+λ 2
2 (Vs))ds}]

= ert w0
ξt H0

ξ 0
t exp{ 1−γ

2γ2

∫ t
0(λ

2
1 (Vs)+λ 2

2 (Vs))ds}EQ0
t,v [exp{ 1−γ

2γ2

∫ T
t (λ 2

1 (Vs)+λ 2
2 (Vs))ds}]
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= ert w0
ξt H0

ξ
1−1/γ

t EQ0
t,v [exp{ 1−γ

2γ2

∫ T
t (λ 2

1 (Vs)+λ 2
2 (Vs))ds}],

where the second line uses the abstract Bayes’ formula (Björk [10], proposition B.41), the
third line uses the optimal wealth expression (4.14), the fourth line uses the identity (4.16),
the fifth line uses (4.17), the sixth line splits the integral at the point of measurability Ft ,
and the final line uses (4.16) again. Hence, from the definition of the H function (4.18) we
find that the optimal wealth process can be written as

W ∗
t = ertw0

Ht

H0
ξ
−1/γ

t . (4.19)

4.3.2 Notes on the H-function

Since the H-function (4.18) is assumed to be a function of t and Vt it follows from Itô’s
lemma and the dynamics (4.3) that

dHt = µH(t,Vt)Htdt +σ1H(t,Vt)HtdW1t +σ2H(t,Vt)HtdW2t , (4.20)

where

µH(t,v)≡ H−1
[
∂tH +α(t,v)∂vH + 1

2 β
2(t,v)∂ 2

vvH
]
,

σ1H(t,v)≡ H−1
ρβ (t,v)∂vH,

σ2H(t,v)≡ H−1
√

1−ρ2β (t,v)∂vH.

Now, from Girsanov’s theorem it follows that the Q0-Brownian increments are related to
the P-Brownian increments through

dWit =−(1−1/γ)λi(v)dt +dWQ0
it ,

for i = 1,2. Substituting these into the dynamics for the variance Vt (4.3), we find that the
drift changes as α(t,v)→ αQ0(t,v) where

α
Q0(t,v)≡ α(t,v)− (1−1/γ)β (t,v)

[
ρλ1(v)+

√
1−ρ2λ2(v)

]
.

Thus, from Feynman-Kac we may deduce that H solves the linear PDE

0 = ∂tH +α
Q0(t,v)∂vH + 1

2 β
2(t,v)∂ 2

vvH +
1− γ

2γ2

2

∑
i=1

λ
2
i (Vt)H, (4.21)

subject to the terminal condition H(T,v) = 1. The point here is well-worth appreciating:
rather than enduring the non-linearity inherent to the HJB formalism, we have transformed
the optimisation problem into something as comparatively pedestrian as having to solve
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(4.21). Whether we aim for an analytic or a numerical solution, it is clear which approach
imbues the greatest allure.

4.3.3 The Optimal Portfolio Weights

Finally, we are in a position to determine the optimal portfolio weights π∗St and π∗Dt . Ap-
plying Itô to (4.19) we find

dW ∗
t = rertw0

Ht
H0

ξ
−1/γ

t dt + ertw0
1

H0
ξ
−1/γ

t dHt + ertw0
Ht
H0

d(ξ−1/γ

t )+ ertw0
1

H0
dHtd(ξ

−1/γ

t )

= drift+ ertw0
1

H0
ξ
−1/γ

t [σ1HHtdW1t +σ2HHtdW2t ]− ertw0
Ht
H0

1
γ
ξ
−1/γ−1
t dξt

= drift+W ∗
t [σ1HdW1t +σ2HdW2t ]+ ertw0

Ht
H0

1
γ
ξ
−1/γ−1
t ξt [λ1(v)dW1t +λ2(v)dW2t ]

= drift+W ∗
t [σ1HdW1t +σ2HdW2t ]+W ∗

t
1
γ
[λ1(v)dW1t +λ2(v)dW2t ]

= drift+
[
σ1H + 1

γ
λ1(v)

]
W ∗

t dW1t +
[
σ2H + 1

γ
λ2(v)

]
W ∗

t dW2t , (4.22)

where the first line uses the product rule, the second line makes use of (4.20) and the chain
rule, the third line makes use of (4.19) and the definition of the Radon-Nikodym derivative
(4.8), and the fourth line makes use of (4.19) again. Comparing (4.22) with our expression
for the self-financing condition (4.11) we see that we have established two simultaneous
equations from which π∗St and π∗Dt can be determined

π
∗
S,t
√

Vt +π
∗
D,tσ1D = σ1H + 1

γ
λ1(v), and π

∗
D,tσ2D = σ2H + 1

γ
λ2(v).

Solving these we ultimately arrive at

π
∗
St =

1√
Vt

{
λ1(v)

γ
− σ1D

σ2D

λ2(v)
γ

+σ1H −
σ1Dσ2H

σ2D

}
, (4.23a)

π
∗
Dt =

1
σ2D

{
λ2(v)

γ
+σ2H

}
. (4.23b)

Theorem 4.1. It is well-worth summarising our findings in this section. Consider
the control problem stated in (4.12). Defining the function

Ht = H(t,v) = EQ0
t,v

[
exp
{

1− γ

2γ2

∫ T

t
(λ 2

1 (Vs)+λ
2
2 (Vs))ds

}]
, (4.24)

where Q0 is the measure defined through ξ 0 ≡ dQ0/dP where

dξ
0
t =−(1−1/γ)ξ 0

t (λ1(v)dW1t +λ2(v)dW2t), (4.25)
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the optimal wealth process can be written on the form

W ∗
t = ertw0

Ht

H0
ξ
−1/γ

t . (4.26)

Furthermore, the optimal controls which give rise to this maximal wealth process
are of the form

π
∗
St =

1√
Vt

{
λ1(v)

γ
− σ1D

σ2D

λ2(v)
γ

+σ1H −
σ1Dσ2H

σ2D

}
, (4.27a)

π
∗
Dt =

1
σ2D

{
λ2(v)

γ
+σ2H

}
, (4.27b)

where

σ1D ≡ D−1[ρβ∂vD+
√

vs∂sD], σ2D ≡ D−1[
√

1−ρ2β∂vD], (4.28)

σ1H ≡ H−1
ρβ∂vH, σ2H ≡ H−1

√
1−ρ2β∂vH. (4.29)

4.4 Example: The Heston Model

Undoubtably, the most well-known of all stochastic volatility models is that proposed by
Heston, [17]. The Heston model stands out for a number of reasons: first, the variance pro-
cess is non-negative and mean-reverting, which harmonises with market data; secondly,
the model is sufficiently parsimonious to allow for swift calibrations [27] [33]; thirdly,
as exposed below, it famously admits comparatively simple7 expressions for plain vanilla
options; finally, said expressions yield implied volatilities which are found to fit the em-
pirically observed volatility smile closely for a broad range8 of medium-seized times to
maturity [33].

Formally, the Heston model is a Cox-Ingersoll-Ross model for the variance process:

dVt = κ(θ −Vt)dt +σv
√

Vt(ρdW1t +
√

1−ρ2dW2t), (4.30)

where κ , θ , and σv are three parameters in R+ which signify the speed of mean reversion,
the long term variance, and the volatility of variance respectively. Insofar as the Feller

7 Contrary to what is sometimes claimed in the literature, these expressions can neither be considered
closed-form, nor the more extensive analytic since they involve an integral.
8 Matching the smile for very short or very long times to maturity proves more difficult. In particular, with
regards to the former, the so-called volatility of variance, σv, tends to explode, which indicates that there’s
a jump effect neglected by the dynamics.
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condition is satisfied, it can be shown that the variance process stays strictly positive at
all times.9 Moreover, the distribution of Vt under (4.30) is non-central χ2, which in the
asymptotic limit t → ∞ tends towards a gamma distribution. This effectively disposes of
one of the key shortfalls of classical GBM valuation as the resulting density function of
log returns will be fatter (exponential) than the bell curve.

4.4.1 Vanilla Valuation

What really propelled the Heston model into the academic limelight is largely its ability
to price European calls (and ipso facto European puts). For the reader’s convenience we
here briefly review the valuation formula, and tie it to the theory of pricing in incomplete
markets alluded to in subsection 4.2.1. Specifically, the relevant pricing PDE (4.9) is of the
form

0 = ∂tD+ rs∂sD+{κ(θ − v)−σv
√

v[ρλ1 +
√

1−ρ2λ2]}∂vD

+ 1
2 vs2

∂
2
ssD+ 1

2 σ
2
v v∂

2
vvD+ρσvvs∂

2
svD− rD,

(4.31)

subject to D(T ′,s) = [φ(s−K)]+, where φ is a binary variable which takes on the value
+1 if the option is a call, and -1 if the option is a put. Upon solving this equation, Heston
crucially makes the assumption that the market price of volatility risk, λv, here defined as10

λv ≡ σv[ρλ1 +
√

1−ρ2λ2], (4.32)

is proportional to
√

v, i.e.

∃λ̄v ∈ R s.t. λv(v) = λ̄v
√

v. (4.33)

We call this the Heston assumption and note that it constitutes a concrete instantiation of
the weak Heston assumption explicated above. Nonetheless, based on our desire to solve
the PDE for the H-function, it will in fact be convenient to assume something slightly
stronger, viz.

Assumption 2 There exist constants λ̄1 and λ̄2 such that λ1(v) = λ̄1
√

v and λ2(v) = λ̄2
√

v.
We call this the strong Heston assumption.

9 It is dubious that calibrated parameters actually satisfy this condition [27].
10 The market price of volatilty risk (4.32) is concept which arises naturally insofar as the dynamical
equations (4.3) have not had their random components decorellated through a Cholesky decomposition.
Specifically, for the market price of risk vector

λ = σ
−1(excess return vector),

we would set σ = [
√

Vt ,0;D−1s
√

v∂sD+D−1ρσv
√

v∂vD,D−1
√

1−ρ2σv
√

v∂vD], whilst Heston sets σ =
σ ′ := [

√
Vt ,0;D−1√v∂sD,D−1σv

√
v∂vD] (the latter is related to the former through the multiplication of

the lower triangular matrix L = [1,0;ρ,
√

1−ρ2]: σ = σ ′L). For convenience, Heston also absorbs the
constant σv in his definition.
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Remark 4.2. A partial motivation for (4.33) is provided through Breeden’s consumption
based model, λv(Vt)dt = γCov[dVt ,dct/ct ], when the consumption process is chosen as
in the (general equilibrium) Cox, Ingersoll, and Ross (1985) model [17]. Less generously,
we might view it as a postulate detached from empirical evidence, which purposefully has
been engineered in order to allow (4.31) to be solved. Be that as it may, under the pro-
portionality assumption it can be shown that the ELMM, Q, exists and that discounted
asset prices are true martingales insofar as certain inequalities on the parameters are satis-
fied, [34]. This may be taken as a formal justification for Heston’s well-known valuation
formula:

Theorem 4.2. (Heston’s Valuation Formula for European Vanillas) The no-
arbitrage price of a European vanilla option is given by

D(t,s,v) = HestonVanilla(κ,θ ,σv,ρ, λ̄1, λ̄2,r,v,s,K,τ ′,φ)

= φ{sQ1(φ)− e−rτ ′KQ2(φ)},
(4.34)

where φ =+1 if D is a call, and φ =−1 if D is a put, τ ′ ≡ T ′− t,

Q j(φ)≡
1−φ

2
+φPj(lns,v,τ ′, lnK), (4.35)

for j = 1,2, and we have defined

Pj(lns,v,τ ′, lnK)≡ 1
2
+

1
π

∫
∞

0
R

{
e−iϕ lnK f j(lns,v,τ ′,ϕ)

iϕ

}
dϕ (4.36a)

f j(lns,v,τ ′,ϕ)≡ exp{C j(τ
′,ϕ)+D j(τ

′,ϕ)v+ iϕ lns}, (4.36b)

D j(τ
′,ϕ)≡

b j−ρσvϕi+d j

σ2
v

(
1− ed jτ

′

1−g jed jτ ′

)
, (4.36c)

C j(τ
′,ϕ)≡ rϕiτ ′+

a
σ2

v

{
(b j−ρσvϕi+d j)τ

′−2ln

(
1−g jed jτ

′

1−g j

)}
,

(4.36d)

where d j ≡ ((ρσvϕi− b j)
2 − σ2

v (2u jϕi− ϕ2))1/2, g j ≡ (b j − ρσvϕi+ d j)/(b j −
ρσvϕi−d j), a≡ κθ , u1 ≡ 1

2 , u2 ≡− 1
2 , b1 ≡ κ + λ̄v−ρσv, and b2 ≡ κ + λ̄v.

Remark 4.3. From the generalised option pricing formula (Björk [10], proposition 26.11)

Dt = φ{sS(φST ′ ≥ φK|Ft)− e−rτ ′KQ(φST ′ ≥ φK|Ft)}, (4.37)

where S is the stock measure defined through the Radon-Nikodym derivative
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ξ
s
u ≡

dS
dQ

= eru Su

S0
,

it follows that Q1 and Q2 in (4.34) are risk-adjusted probabilities that the option expires in
the money. Specifically,

Q1 = St(φST ′ ≥ φK|St = s;Vt = v), (4.38a)
Q2 =Qt(φST ′ ≥ φK|St = s;Vt = v). (4.38b)

.

Remark 4.4. The formula stated in (4.34) is rather unconventionally expressed in terms
of the market price of risk constants λ̄i, i = 1,2 along with the P-parameters of the vari-
ance process. More commonly, the valuation formula is specified directly in terms of the
risk-neutral Q-parameters: κQ ≡ κ +σv(ρλ̄1 +

√
1−ρ2λ̄2) and θQ ≡ θκ/κQ (diffusion

parameters unchanged).

4.4.2 The Optimal Heston Controls

We assume the investor trades in a risk free money account, a stock and a European vanilla
derivative in a market characterised by Hestonian stochastic volatility. From the generic
optimal control functions (4.27) it follows that we must determine σ1D,σ2D,σ1H , and σ2H
and thence the quantities ∂sD,∂vD,H, and ∂vH. We do this over the two subsequent lem-
mas.

Lemma 4.1. The option delta is given by

∆t ≡ ∂sD = φQ1(φ), (4.39)

while the option vega is given by

νt ≡ ∂vD = sν1(lns,v,τ ′, lnK)−Ke−rτ ′
ν2(lns,v,τ ′, lnK), (4.40)

where

ν j(lns,v,τ ′, lnK)≡ 1
π

∫
∞

0
R

{
D j(τ

′,ϕ)e−iϕ lnK f j(lns,v,τ ′,ϕ)
iϕ

}
dϕ. (4.41)

Proof. A hands-on differentiation of (4.34) with respect to the underlying, s, and subse-
quent algebraic simplification is a tedious exercise better avoided. A somewhat subtler but
arguably simpler argument may be presented by noting that the valuation formula is first
order homogenous in the variable pair (s,K), i.e.
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HestonVanilla(κ,θ ,σv,ρ, λ̄1, λ̄2,r,v,as,aK,τ ′,φ) =

a ·HestonVanilla(κ,θ ,σv,ρ, λ̄1, λ̄2,r,v,s,K,τ ′,φ),

for any a ∈ R, whence Euler’s Homogenous Function Theorem11 entails

D = s∂sD+K∂KD. (4.42)

Comparing (4.34) with (4.42) it is tempting to deduce that ∂sD = φQ1(φ), yet some care
must be taken here. Specifically, it is not immediately obvious that (4.34) is the so-called
natural form of D [26]: with two terms present in the equation we can add any arbitrary
component to one term, as long as we cancel it through a corresponding subtraction to the
other term.12 To establish that (4.34) is the natural one, we employ a well-known result
from Breeden and Litzenberger [6] viz.

∂KD = e−rτ ′
∂KEQ

t,s,v[[φ(ST ′ −K)]+]

= e−rτ ′
φ∂KEQ

t,s,v[(ST ′ −K)1{φST ′ ≥ φK}]

=−e−rτ ′
φEQ

t,s,v[1{φST ′ ≥ φK}]

=−e−rτ ′
φQt,s,v(φST ′ ≥ φK).

Comparing this with (4.37) the result follows.
Equation (4.40) follows immediately from differentiating (4.34) with respect to v. Note

that the result is independent of φ .

Lemma 4.2. Under the strong Heston assumption the H function has the exponen-
tial affine form

H(t,v) = exp{A(τ)+B(τ)v}, (4.43)

where τ ≡ T − t. Here B : [0,T ] 7→ R is the function

B(τ) =
1− γ

γ2 (λ̄ 2
1 + λ̄

2
2 ) ·

eωτ −1
(ω +α)(eωτ −1)+2ω

, (4.44)

where α ≡ κ +(1−1/γ)λ̄v and

11 Recall that the function g : R2 7→ R is said to be homogenous of degree n if

g(ax1,ax2) = ang(x1,x2).

Let x′1 = nx1 and x′2 = nx2 then we find upon differentiating g with respect to a that nan−1g = ∂x′1
g∂ax′1 +

∂x′2
g∂ax′2 = x1∂ax1 g + x2∂ax2 g. In particular, upon setting a = 1 we get Euler’s result for homogenous

functions:
ng = x1∂x1 g+ x2∂x2 g.

12 Let g = x1∂x1 g+x2∂x2 g and g = x1h1(x1,x2)+x2h2(x1,x2) then a necessary and sufficient condition for
∂x1 g = h1(x1,x2) and ∂x2 g = h2(x1,x2) is that x2

1∂x1 h1 = x2
2∂x2 h2 - see [26].



134 Ellersgaard and Jönsson

ω ≡

√
α2 +σ2

v
γ−1

γ2 (λ̄ 2
1 + λ̄ 2

2 ),

while A : [0,T ] 7→ R is the function

A(τ) =
κθ

α2−ω2

{
(α +ω)τ +2ln

∣∣∣∣ 2ω

(α +ω)(eωτ −1)+2ω

∣∣∣∣} . (4.45)

Proof. Substituting in the relevant parametric specifications (4.30), (4.33), into the gov-
erning PDE (4.21) we find

0 =−∂τ H +[κθ −{κ +(1−1/γ)λ̄v}v]∂vH + 1
2 σ

2
v v∂

2
vvH +

1− γ

2γ2 (λ̄ 2
1 + λ̄

2
2 )vH, (4.46)

subject to the initial condition H(0,v) = 1, where we have invoked the time transformation
t 7→ τ . Since the coefficients are linear functions of v we form the ansatz that the solution
is of an exponential affine form. Thus, upon substituting (4.43) into (4.46) and using the
fact that the expression should hold for any value of v we find the coupled ODEs:

B′(τ) = 1
2 σ

2
v B2(τ)−{κ +(1−1/γ)λ̄v}B(τ)+

1− γ

2γ2 (λ̄ 2
1 + λ̄

2
2 ), (4.47a)

A′(τ) = κθB(τ), (4.47b)

subject to the boundary conditions A(0) = B(0) = 0, where ′ denotes the derivative with
respect to τ . The first equation is Riccatian, which readily allows us to extract the solution
(4.44).13 Note that ω is a real number insofar as γ > 1 which we henceforth assume to
be the case. As for the function A we observe that (4.47b) can we written as A(τ) =
κθ
∫

τ

0 B(t)dt. Performing this tedious integration we get the desired result.

Putting these results together we can finally state our theorem on the optimal (B,S,D)-
portfolio weights in a Heston driven economy:

Theorem 4.3. The optimal stock weight is given by

π
∗
S,t =

λ̄1

γ
− 1√

1−ρ2

[
ρ +

s
σv

∆t

νt

]
λ̄2

γ
− s

∆t

νt
B(τ), (4.48)

while the optimal vanilla option weight is

13 Recall that the generic Ricatti equation y′(x) = ay2(x)+by(x)+c with y(0) = 0 has the solution y(x) =
[2c(eδx−1)]/[(δ −b)(eδx−1)+2δ ] where δ ≡

√
b2−4ac assuming b2 > 4ac.
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π
∗
D,t =

Dt λ̄2

γσv
√

1−ρ2νt
+

Dt

νt
B(τ), (4.49)

where B is defined in (4.44), Dt is the option price given by (4.34), ∆t is the option
delta given in (4.39), and νt is the option vega given in (4.40). Note that the time
parameter in B is τ (the investment horizon), while it for option quantities {D,∆ ,ν}
is τ ′ (the maturity of the option).

We note that the first term in (4.48) is Merton’s optimal stock weight in a simple (B,S)-
economy with constant volatility. More generally, referencing standard results in the lit-
erature14, we see that the first two terms in (4.48) and the first term in (4.49) constitute
the optimal portfolio weights in a (B,S,D)-economy for a utility maximising investor who
disregards stochastic fluctuations in the state variable v (otherwise known as the myopic or
1-period strategy). Thus, the hedge against stochastic volatility is nested in the time-price-
volatility dependent term −s ∆t

νt
B(τ) in (4.48) and Dt

νt
B(τ) in (4.49). In this connection

we note that ∆ is a function bounded by the interval [0,1] for a call option ([−1,0] for
a put option), whilst B(τ) is a monotonically decreasing function bounded by the inter-
val ((1− γ)(λ̄ 2

1 + λ̄ 2
2 )/(γ

2[ω +α]),0]. s,D, and ν are all positive quantities unbounded
from above. The signs of the volatility hedge corrections on the stock and the derivative
are thus respectively positive and negative if D is a call option, and negative and nega-
tive if D is a put option. To appreciate the implications of this figure 4.1 plots the optimal
(bank,stock,ATM call option)-weights for different times to maturity, when the tuple (s,v)
is held constant at (100,θ). We assume that the risk free rate is 0.02, that the option expires
at the end of the investment horizon (τ = τ ′), and that the investor’s level of risk aversion
γ is 2. Other parameters are estimated from the S&P 500 index and are exhibited in table
4.1. Note here in particular that the market price of risk λ̄2 associated with W2 is negative,
corroborating standard empirical findings a la Bakshi and Kapadia [2].

Upon examining figure 4.1 we make the following observations: relative to the opti-
mal Merton weight [dash-dotted grey line], Liu’s volatility correction [full grey line] is
barely noticeable, perturbing π∗S at the order of magnitude 10−3. By comparison, access
to derivative trading prompts the investor to drastically increase her holding in the stock
[full red line], by decreasing her long position in the money account [full black line], and
shorting the call option [full blue line] at a rather modest level. This makes good sense: by
shorting the call, the investor has a negative exposure to the risk endemic to the variance
process thereby collecting positive risk premium [15]. Out of interest, we have also plotted
the effect of including the volatility hedge terms in the optimal investment ratios [Dash-
dotted lines]. As argued above, this respectively underestimates and overestimates the
weights on stock and the derivative: here by as much as six percentage points for the stock
and a single percentage point for the call (see the RHS figure for greater clarity). Volatility
hedge corrections thus seemingly have the magnitude to perturb the terminal wealth of a
rational investor by a measurable amount. Yet, this is in fact not the case when we Monte
Carlo simulate the wealth process (4.11) of an investor trading in a Hestonian economy:

14 See for example Munk [15] theorems 6.2 and 7.5
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Fig. 4.1 Left: Optimal investment strategies in a (bank,stock,call option)-economy for different times
to maturity with s and v held constant. Note that the investor shorts the derivative in order to enter into
a significant long position in the underlying stock and deposit money in the bank. The grey line shows
Liu’s optimal portfolio weight on the stock when the investor disregards derivatives. The dash-dotted lines
represent the corresponding strategies when we do not hedge stochastic variations in the state variable
(volatility). For Liu’s model this corresponds to the Merton weight λ1/γ . Right: The size of the correction
to the various portfolio weights brought about by hedging volatility. The figure also exhibits the magnitude
of the deterministic functions L(τ) and B(τ). NB: as TTM approaches zero, so does ν which creates
problems with numerical instability in this region.

although the expected return is higher for someone who hedges volatility vis-à-vis one
who does not, so is the associated variance. A Welch’s t-test therefore cannot reject the
null hypothesis that the two trading strategies have equal returns (p-value ≈ 0.65). This
suggests that the real capital gains (if any) are to be garnered from access to the derivative
security, and not the hedge corrections to volatility per se, in accordance with the findings
by Liu and Pan [20].

4.4.3 Towards Higher Generality

A natural extension of the Heston model is to allow the model parameters to be time-
dependent functions. This will not only allow for a financial landscape that changes dy-
namically over time, but also provide a more realistic pricing model the implied volatility
surface of which calibrates much closer to market data. A tractable yet flexible functional
form for this purpose is to specify

{
κ(t),θ(t),σv(t),ρ(t), λ̄1(t), λ̄2(t)

}
to be piecewise

constant functions over some finite partition t0 < t1 < · · ·< tn of the market horizon [0,T ′].
That is, κ(t) = κ̄1 for t ∈ (tn−1, tn], κ(t) = κ̄2 for t ∈ (tn−2, tn−1] etc. with correspond-
ing structures for the remaining parameters.15 The key observation is then that we may
solve all PDEs sequentially backwards in time. Firstly, we have that the optimal weights

15 We shall still assume that the parameter-constants are specified within reasonable limits, i.e. that the
governing dynamics (4.30) allows for a positive solution. Moreover, the Feller condition might be desired
to be satisfied locally for each time interval of the partition.
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(4.48)-(4.49) depends on the function B which solves the Riccati equation (4.47a). For
the first subinterval (tn−1, tn] expressed in backwards-time, τ ∈ [τ0,τ1) = [0,T − tn−1) with
τk ≡ T − tn−k, we have the familiar boundary condition B1(0) = 0 and solution B1 as in
equation (4.44) with {κ̄1, θ̄1, σ̄v1, ρ̄, λ̄11, λ̄21}. This gives us a value for B1(τ1) which will
act as a (non-zero) boundary condition for B2 on the next interval [τ1,τ2). We may then
proceed sequentially backwards in time16 to obtain B2, . . .Bn over [τ2,τ3), . . . , [τn−1,τn)
to cover the whole of [0,T ] ⊆ [0,T ′]. Secondly, we need to calculate ∆ and ν over the
same sequence of subintervals (extended to cover [0,T ′]) to complete the expression for
our market weights. It turns out that this calculation is virtually identical to the one just
considered: D j and C j of (4.36c)-(4.36d) solve a system of ODEs which is the same as
(4.47a)-(4.47b) (see Mikhailov and Nögel [23] for details). Hence, we may compute the
optimal weights for a time-dependent parameter specification of the Heston model as well
(for reasons of brevity we exclude the technical details from this paper).

4.5 The Empirical Perspective

Based on our optimal portfolio weights in a Heston driven (B,S,D)-economy, we pro-
ceed to perform an empirical experiment which aims to measure the degree to which the
inclusion of plain vanillas impacts the financial wealth of a utility maximising investor.
In particular, we set out to perform a simple automated trading experiment where we let
historical market prices from the S&P 500 index play the role of the fundamental risky
security and where market prices of call options written on the same index constitute the
derivative available in the economy. We will use market interest rates for the money ac-
count.

4.5.1 Market Data

For the tradable stock, we use 3,909 daily prices of the S&P 500 index from the period
2000-01-03 to 2015-08-31. The market price (sourced from Wharton Research Data Ser-
vices17) is plotted in figure 4.2 together with the daily variance. The variance process is
measured from high-frequency data with the realised volatility measure and we use pre-
computed estimates from the Oxford-Man Institute’s realised library.18.

For the tradable derivative, we use daily mid-market prices of European call options
on the S&P 500 index from the same time period, as shown in figure 4.3. The time period

16 To this end we need the Ricatti equation with a non-zero initial condition i.e. y′(x) = ay2(x)+by(x)+c,
y(0) = y0, which has the solution y(x) = y0 +[2(ay2

0 +by0 + c)(eδx−1)]/[(δ −b−2ay0)(eδx−1)+2δ ]

where δ ≡
√

b2−4ac assuming b2 > 4ac.
17 https://wrds-web.wharton.upenn.edu/wrds/.
18 The Realised Library version 0.2 by Heber, Gerd, Lunde, Shephard and Sheppard (2009) - see
http://realized.oxford-man.ox.ac.uk For details on the realised volatility measure, see e.g. Andersen and
Teräsvirta [1].



138 Ellersgaard and Jönsson

Fig. 4.2 Daily market prices and measured variance from the S&P 500 index. The price data is sourced
from Wharton Research Data Services while the variance data is sourced from the Oxford-Man Institute’s
realised library.

covers prices of 23 call options with medium-sized times to maturity (in the range 18
to 36 months subject to data availability) and the strike-price of each option is selected
to be ATM at initiation (or as close as possible thereto - subject to availability) thereby
sowing the seed for high exposure to volatility risk. The strike-price and time-to-maturity
structure is shown in figure 4.4. Note the varying TTMs for the options, which again are
symptomatic of the data set available (we use the Option Metrics database sourced through
Wharton Research Data Services).

For our last asset in the (B,S,D) economy, we use the daily short-term LIBOR rate
for an interest to the risk-free money account. The LIBOR market-data is from the Option
Metrics database as well.

4.5.2 Parameter Estimation

For our empirical experiment, we will trade according to the optimal portfolio weights
(π∗Bt ,π

∗
St ,π

∗
Dt) which are functions of the model parameters and the current stock price,

call price and variance level at time t. To this end, we estimate the model parameters with
the following approach. First, we estimate (κ,θ ,σv,ρ) of the Cox-Ingersoll-Ross process
from the daily variance data with a maximum likelihood method.19 Secondly, based on
these parameters, to determine the market prices of risk, (λ̄1, λ̄2), we minimise the squares

19 We use numerical optimisation of a Gaussian likelihood, from the method of Sørensen [30] based on
estimating functions.



4 Stochastic Volatility for Utility Maximisers Part II 139

Fig. 4.3 Daily mid-market prices of European call options on the S&P 500 index sourced from Wharton
Research Data Services (Option Metrics data). The corresponding strike prices and maturities are shown
in figure 4.4.

error between daily observed S&P 500 call option prices, {Ĉt}, and daily theoretical Hes-
ton prices {CHe

t =CHe
t (λ̄1, λ̄2)}, where the strike-maturity structure is chosen as in figure

4.4. Specifically, we solve the minimisation problem

(λ̄1, λ̄2) = argmin
(λ̄1,λ̄2)∈R2+

∑
t∈T

(
Ĉt −CHe

t (λ̄1, λ̄2)
)2
,

where T= {trading days between 2000-01-03 and 2015-08-31}. The resulting parameters
estimated from the market data are given in table 4.1.

κ θ ε ρ λ̄1 λ̄2
Estimate 9.71 0.030 2.72 -0.17 0.88 -0.29

Table 4.1 Estimated model parameters with the two-step approach. The estimates are based on 3,909
daily observations of the stock price, the variance and the call price. Note that λ̄1 > 0 whilst λ̄2 < 0.

Remark 4.5. A few remarks on the above estimation procedure are in order here. First,
note that when we will use the parameter estimates for the forthcoming trading experi-
ment, we employ ex-ante estimates based on actual “future” market data. An alternative
is to estimate parameters from historical data prior to the trading period. However, due
to the amount of available data, this would impair the accuracy our estimates. Since we
are primarily interested in the the efficiency of the trading strategy, (and not in the pa-
rameter estimation problem per se) we require as robust estimates as possible. Thus, we
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Fig. 4.4 The daily strike-price (black line) and time-to-maturity (grey line) for the call price in figure 4.3.
The dotted line shows the S&P 500 index level.

opt for the former alternative. Secondly, we use a rather unconventional estimation proce-
dure whereby we sequentially estimate the CIR-parameters under the statistical measure P,
followed by a mean square optimisation to back out the market prices of risk. A more com-
monplace approach is to formulate the pricing model under Q directly (see Remark 4.4),
and to estimate the risk-neutral parameters from option data alone, again through mean
square principles . This estimation approach is referred to as model-to-market calibration,
and typically a whole surface of option prices is employed for day-to-day estimation of
the parameters. Since we require statistical CIR-parameters along with the market price
of risks separately for calculation of the optimal portfolio weights, we use the two-step
approach in place of the calibration method.

4.5.3 Empirical Trading Experiment

With market data for the (B,S,D) economy from the S&P 500 index and the LIBOR rate,
we set out to perform an empirical trading experiment. We intend to invest in a portfolio
according to the optimal weights (π∗Bt ,π

∗
St ,π

∗
Dt) and we trade dynamically with daily re-

balancing as the time evolves during the period 2000-01-03 to 2015-08-31. Hence, if ∆Xti
denotes the daily price-change from ti to ti+1 of an asset in the economy, this means that
we realise a daily change in the portfolio value

∆Wti = Wti

(
π
∗
Bti

∆Bti
Bti

+π
∗
Sti

∆Sti
Sti

+π
∗
Dti

∆Dti
Dti

)
,
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Wt0 = w0 ∈ R+,

for all dates t0, t1, . . . in the investment period and the realised daily wealth amounts to
Wti+1 =Wti +∆Wti . Note that the portfolio is self-financing: an initial amount w0 is invested
at the initial time and there is no infusion or withdraw of capital from the portfolio during
the investment period.

In addition to the parameters in table 4.1, with fix the risk aversion parameter to the
arbitrary value γ = 2. For comparison purposes, we include a “naive” trading strategy with
a constant equal weight invested in each asset, (πBt ,πSt ,πDt) = (1/3,1/3,1/3). We also
trade according to Liu’s optimal investment strategy in the limited economy, that is, we
invest in (B,S) with portfolio weights (πLiu

Bt ,πLiu
St ) (and πDt = 0 for the call option).

With this in mind, we conduct the following following two experiments for each of
the three trading strategies:

1. Trading throughout 2000-2015. We set the investment period to be 2000-01-03 to
2015-08-31 and initialise the portfolios with a wealth w0 = 1,000. We do not trade over
the dates when there is a “new” option, i.e. every time there is a new expiry date since
this would give false price moves of the call option due to changes in the strike price
(see figure 4.3 and 4.4). The same rule pertains to Liu’s strategy, even though there is
no trading in the option. The realised wealth processes from trading according to the
three strategies are shown in figure 4.5 while the optimal portfolio weights are shown
in figure 4.7.
To be able to compare the strategies from a financial perspective, we calculate realised
Sharpe-ratios of daily returns as

S =
Mean(Rti − rti)

SD(Rti)
,

where Rti = log(Wti)− log(Wti−1), t1, t2, . . . are the daily returns of the investment port-
folio and rti is the daily returns of the money account (the daily return from the LIBOR
rate). The results are shown in table 4.2.

Strategy Mean return (µ(R)) Std. Dev. (σ(R)) Sharpe-ratio (S ) Sharpe-R. annual
(π∗Bt ,π

∗
St ,π

∗
Dt) 0.011% 0.65% 0.39% 7.46%

(πLiu
Bt ,πLiu

St ,0) 0.010% 0.56% 0.37% 7.16%
(1/3,1/3,1/3) 0.005% 2.27% -0.14 % -2.64%

Table 4.2 The Sharpe-ratio, mean and standard deviation of daily portfolio returns from the three strate-
gies when trading throughout the whole period 2000-01-03 to 2015-08-31. The last column shows the
annualised Sharpe-ratio. The daily mean-return of the money account is 0.0082%, which corresponds to
an annualised return of 3.0%.

2. Investment periods according to the option-expiry structure. For our second empir-
ical experiment, we reset our investment portfolio every time there is a “new” option,
i.e. every time there is a new expiry date and strike-price (see figure 4.4). We set the
investment period accordingly, i.e. to start when we reset the portfolio and to end at the
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Fig. 4.5 Trading throughout 2000-01-03 to 2015-08-31: wealth processes from trading in
{LIBOR,S&P500,Call} according to the naive strategy (dotted line) and optimal investment strategy
(black line), and from trading in {LIBOR,S&P500} with Liu’s optimal strategy (grey line).

date on which we will reset the portfolio the next time. The resulting realised portfolio
value-processes from the optimal (B,S,D)- and (B,S) strategies are shown in figure 4.6
and the portfolio weights of the two strategies are plotted in figure 4.8. The Sharpe-
ratios based on realised daily returns of the investment portfolios are collected in table
4.3, where the results for the naive strategy are included as well.

Strategy Mean return (µ(R)) Std. Dev. (σ(R)) Sharpe-ratio Sharpe-R. annual

(π∗Bt ,π
∗
St ,π

∗
Dt) 0.010% 0.55% 0.37% 7.13%

(πLiu
Bt ,πLiu

St ,0) 0.011% 0.65% 0.36% 6.93%
(1/3,1/3,1/3) 0.005% 2.28% -0.14 % -2.65%

Table 4.3 The Sharpe-ratio, mean and standard deviation of daily portfolio returns from the three strate-
gies when trading according to the option-expiry structure. The last column shows the annualised Sharpe-
ratio.

A note on the interpretation of these results is in order. First, whilst trading strategy (1)
picks up a slightly higher mean return along the way for the (B,S,D) portfolio, the as-
sociated variance of returns is also higher (the risk averse investor might choke on this).
Granted: the (B,S,D) strategy does come out victorious in the end, but this is largely
happenstance: had we terminated our algorithm during the financial brouhaha, our conclu-
sion would have been different. Indeed, the realised Sharpe ratio obtained vis-à-vis Liu’s
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Fig. 4.6 Trading according to the option-expiry structure. Left: wealth process from trading in
{LIBOR,S&P500,Call} according to the optimal investment strategy during investment periods that
matches the expiry/strike structure of the call options. A cross indicates the beginning of an investment
period (with initial wealth w0 = 1,000) while a circle shows the terminal wealth at the end of the period.
Right: wealth process from trading in {LIBOR,S&P500} according to Liu’s optimal investment strategy
during the same investment periods.

derivative-free trading strategy is of a very modest nature (0.3 percentage points in annu-
alised Sharpe ratio).

As for strategy (2) the conclusion is largely invariant, only here the mean return and
standard deviation for the (B,S,D) strategy are actually lower than Liu’s strategy, jointly
leading to a Sharpe ratio of (modest) superiority. We stress that this is about as far as we
can go in our analysis here: while strategy (2) on first sight seems to warrant Welchian
hypothesis testing (after all, we are seemingly performing the same experiment 23 times),
this would be profoundly statistically flawed. Essentially, whenever we sample a wealth
path we do so from a different space, where virtually every underlying parameter (bar
the risk aversion) is different. Our conclusion is thus of a purely observational nature: we
see that the utility maximising trading strategy including derivatives outperforms the one
without; yet the financial benefit is hardly worth talking about. Furthermore, this statement
is obviously contingent upon the overall setting of our experiments: from when we chose
to terminate our algorithm, to which derivative product we decided to consider. Indeed,
our analysis has shamelessly disregarded transactions costs, which will have a significant
impact on our wealth paths. Nevertheless, as a first analysis, the results are certainly note-
worthy.
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Fig. 4.7 Trading throughout 2000-01-03 to 2015-08-31: portfolio weights from the optimal {B,S,C}-
strategy (solid lines) and Liu’s {B,S}-strategy (dashed lines). Black lines show the weights in B, red lines
the weights in S and blue line the weight in C. Notice that the weights of the {B,S,C}-strategy makes
sudden jumps at the time-points where the expiry/strike of the option changes, and that we do not trade
during these dates. Furthermore, observe that the derivative position is everywhere negative.

Fig. 4.8 Trading according to the option-expiry structure: portfolio weights from the optimal {B,S,C}-
strategy (solid lines) and Liu’s {B,S}-strategy (dashed lines). Black lines show the weights in B, red lines
the weights in S and blue line the weight in C. Notice that the weights of the {B,S,C}-strategy makes
sudden jumps at the time-points where the expiry/strike of the option changes, and that the investment
portfolio is reset at these dates. Again, the derivative position is everywhere negative.
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4.6 Conclusion

In the first part of this paper we derived optimal portfolio weights for a utility maximiser
who trades in a (B,S,D)-economy in a generic stochastic volatility framework, thus ex-
tending the work by Liu and Pan. In the second part, we derived explicit expressions for
the Heston model, which benefits by admitting closed form expressions for plain vanilla
European options. Here, empirically based Monte Carlo simulations suggest that there is
no tangible welfare benefit associated with hedging volatility per se: in other words, if
our portfolio benefits from the inclusion of derivatives, it does so through shear myopic
diversification. Liu and Pan are optimistic on this account: through quasi-empirical con-
siderations they find considerable improvements20 in the certainty equivalent wealth for
investors who trade in derivatives. Our own findings, which arguably have a much firmer
grounding in empirical data, are considerably more pessimistic: whilst we can extract a
higher Sharpe ratio than Liu’s (B,S)-strategy, this is of a very modest nature, and arguably
a “fluke” brought about by the overall circumstances of our experiment. Obviously, we
cannot rule out that more “cognisant” derivative strategies will have a greater impact upon
the investor’s wealth level: we will leave this for future research.

20 The reported number is 14.2% for an investor who trades in a straddle position (long call, long put,
same strike).
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Chapter 5
Optimal Hedge Tracking Portfolios in a Limit Order
Book
The Limit/Market Order Duality

Simon Ellersgaard

Abstract In this paper we develop a control theoretic solution to the manner in which a
portfolio manager optimally should track a targeted ∆ , given that he wishes to hedge a
short position in European call options the underlying of which is traded in a limit order
book. Specifically, we are interested in the interplay between posting limit and market
orders respectively: when should the portfolio manager do what (and at what price)? To
this end, we set up an Hamilton-Jacobi-Bellman quasi variational inequality which we can
solve numerically. Our scheme is shown to be monotone, stable, and consistent and thence,
modulo a comparison principle, convergent in the viscosity sense. Finally, we provide a
concrete numerical study, comparing our algorithm with more naı̈ve approaches to delta-
hedging.

Key words: Delta Hedging, Limit Order Book, Hamilton-Jacobi-Bellman Equation.
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5.1 Introduction

5.1.1 Mathematics of the Limit Order Book

In recent years the centralised trading platform known as the limit order book (LOB) has
attracted considerable interest from the mathematical finance community. To a large ex-
tent this is a natural response to the evolution of the financial markets per se: more than
half of the world’s stock exchanges are now order driven, with many operating exclusively
so (Hong Kong, Tokyo, Toronto etc.), whilst others have adopted a hybrid variant thereof
(NYSE, NASDAQ and LSE) [25] [42]. From a modelling perspective we can also con-
strue this paradigmatic shift as a considerable step towards axiomatic realism: gone are
the days where modellers casually endorse Black-Scholes-Merton type assumptions; en-
ter a world of de facto transaction costs, finite divisibility of assets, market impact, and
a cacophonous conglomerate of price quotes. Finally, one cannot ignore the considerable
appeal of capitalising on integrating the limit order book with algorithmic trading strate-
gies (high frequency trading). For example, significant capital gains can be accrued simply
by exploiting the upper bound on human comprehension speed: by having machine intelli-
gence do our trading for us, we enter a domain of hitherto unexplored ultra-transient mar-
ket inefficiencies (Lewis’ Flash Boys [33] is a luminous account in this regard). Indeed,
the seriousness of this business is forcefully cemented by noting that the market share of
high frequency trades long has surpassed that of institutional investors. For instance, it is
estimated that high frequency trades account for roughly fifty percent of all equity shares
traded in the United States as of 2014 (TABB Group, [11]), with some sixty-odd percent
for the futures market.1

Broadly speaking, the mathematical literature on the LOB falls within two non-
mutually exclusive categories: on the one hand, the descriptivists aim to map so-called
stylised facts (i.e. empirically consistent qualia) of the order book onto mathematical for-
malism. Key references here include Cont et al.’s queuing model, [5], Carmona and Web-
ster’s reinterpretation of the self-financing condition in high frequency markets, [12], and
Donier et al.’s model of non-linear market impact, [18]. On the other hand we find the pre-
scriptivists, who under fixed assumptions about market dynamics and utility preferences of
so-called rational agents derive wealth optimising trading strategies using control theoretic
arguments a la Merton, [35]. Here, the desire to formulate a solvable control problem in-
variably surpasses the need for model realism. Classical questions pertain to optimal trade
execution (how should large orders optimally be partitioned such as to minimise their mar-
ket impact?) and optimal limit order quotes (which prices should the market maker post
to optimise his bequest?). As for the former, the key reference paper is indubitably the
discrete time mean-variance optimisation by Almgren and Chriss [4] (and the continuous
time extension by Almgren [3]). Other contributions worthy of mentioning include Forsyth
[23], Gueant et al. [26], He and Mamaysky [29] and Obizhaeva and Wang [37]. As for the
question of optimal limit order quotes, much research arguably takes its vantage point in
the work by Avellaneda and Stoikov [6], which in turn is heavily inspired by a compara-

1 Needless to say, these numbers are merely indicative: different sources invariably arrive at different
estimates. Nonetheless, 50% is very much in the lower end of the scale, [17].
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tively obscure paper by Ho and Stoll [30]. Good references here include the formalising
paper by Fodra and Labadie [22], and the extension work by Cartea et al. [13].

In this paper we concern ourselves with an area which has thus far received rela-
tively little attention, viz. derivative hedging in the limit order book using prescriptivist
principles. To the best of our knowledge, it is only recently that a few models have been
proposed on this matter, including Agliardi and Gencay’s discrete time investigation2 in
which an explicit solution is found for an option hedger who aims to minimise illiquidity
costs and the hedging error, [5]. In a somewhat similar vein, Li and Almgren [34] consider
continuous time hedging in the presence of temporary and permanent market impact. A
key insights here is that the portfolio manager no longer finds it tenable to be perfectly
hedged or even within a fixed distance of being hedged. Rather, he may find himself arbi-
trarily mis-hedged, moving towards the Black-Scholes hedge ratio with a trading intensity
proportional to the degree of mis-hedge and inversely proportional to illiquidity. Our pa-
per, however, takes a somewhat different approach in the sense that we are less concerned
with determining an optimal hedge ratio endogenously, and more with exploring the finan-
cial benefits offered by placing both limit and market orders when pursuing a pre-defined
hedge strategy. In this sense, our work is much more akin to the optimal trade execution
study by Cartea and Jaimungal [14], rather than the existing literature on limit order book
hedging.

Remark 5.1. A plurality of sources provide highly readable accounts of the basic mech-
anisms and nomenclature of the limit order book, which prompts us to forgo a similar
overview. Instead, we refer the reader to the survey paper by Gould et al. [25], or the more
quantitatively oriented textbook by Foucault et al. [20].

5.1.2 Philosophy and Overview

Let it thus be made abundantly clear that our goal here is not to dictate which position
in the underlying LOB-traded asset optimally hedges a derivative portfolio (although this
surely is an important question). Instead, our interests lie with the duality inherent to order
book trading: given an exogenously specified tolerance for “risk” when should a portfolio
manager trade in limit orders and when should he trade in market orders? The ∆ employed
in our equations is for all practical purposes completely generic, meaning that our model
readily is adaptable to more sophisticated LOB hedging strategies that might be proposed
in the future. Tracking is thus the operative word of the title. From a slightly broader
perspective, this paper is inevitably social science research of the pseudo-decreeing kind:
based on a rudimentary model of the order book, and potentially mis-guided notions of
how utility preferences can be formulated mathematically, we derive optimal limit order
quotes and market order stopping times for a wealth maximising agent. At no point do we
make such grandiose claims (otherwise so ubiquitous within our field) as to purport that
these results have a direct impact or relevance to the actual financial markets. Nonetheless,

2 This paper is heavily inspired by the model proposed in [37].
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this does obviously not stop us from hoping that our work at least plants a seed for fruitful
future research.

The structure of the rest of this paper is as follows: in section two we explicate the
fundamental assumptions of the market and the portfolio manager and state the associated
control problem. Section three is a survey of the exogenously specified hedge ratio: a
careful analysis shows that the dynamics of the order book is weakly convergent towards
the dynamics associated with the targeted delta. Section four exposes the Hamilton-Jacobi-
Bellman quasi-variational inequality (HJB QVI) associated with the control problem, and
suggests a dimensional reduction. Finding ourselves unable to extract an analytic solution
thereto, section five sets us up for a numerical scheme which is shown to have the desired
properties of monotonicity, stability, and consistency as dictated by Barles and Souganidis
[8]. Finally, section six provides concrete numerical results, comparing the performance
of our algorithm with a more naı̈ve approach to ∆ -hedging. Section seven concludes.

5.2 A Control Approach to Hedging in the LOB

5.2.1 Market Assumptions

As convention would have it, we consider a financial market formally captured by a filtered
probability space (Ω ,FT ,F,P), where F ≡ {Ft}t∈[0,T ] is the natural filtration generated
by the stochastic processes St ,L±t and M±t , which will be defined shortly.3 For simplicity,
the market is assumed interest rate free, and of a singular non-dividend paying risky asset
(a stock) which is traded in a limit order book. Modulo an important caveat explicated in
remark 5.2 below, all prices in the order book are assumed to be integer multiples of the
tick size, σm ∈Q+. In particular, we assume that the dynamics of the mid-price obeys

dSt = σm

∫
A
z(J1(dt×dz)− J2(dt×dz)), (5.1)

where S0 = s0 ∈ σmN+, A ⊆ R+ ≡ (0,∞), and Ji : Ω × [0,T ]×N+ 7→ N are independent
Poisson random measures4 of common intensity measure

µi(dt×dz)≡ E[Ji(dt×dz)] = γtFt(dz)dt,

for i = 1,2. Here γt is a non-negative process, which encodes the jump rate intensity,
meaning that the probability that the stock price jumps upwards (resp. downwards) over
the incremental time step (t, t + dt] is λtdt. Furthermore, Ft is a cdf with integer support
(⊂ A) which captures the conditional distribution of the number of tick points a process
jumps, given that a jump occurs at time t. A couple of remarks are worth attaching to (5.1):
first, the dynamics is form-invariant upon rewriting it in terms of the compensated Pois-

3 For technical reasons F is augmented to satisfy the usual conditions i.e. F
S,L±,M±
t = σ({Su,L±u ,M

±
u :

0≤ u≤ t}∪N ) where N ≡ {O⊂Ω : ∃F ∈F s.t. O⊂ F,P(F) = 0}.
4 For an introduction to this rich field see e.g. (in increasing order of complexity) Hanson [28], Cont and
Tankov [16], and Last and Brandt [32].
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son random measures J̃i(dt×dz)≡ Ji(dt×dz)− γtFt(dz)dt. Hence, St is an F-martingale.
Secondly, there is a potential pathology nested in the dynamics in the sense that it admits
negative price processes: nonetheless, we shall assume that the probability of this occur-
ring is sufficiently low to be ignored (an otherwise very reasonable assumption over short
temporal horizons / for low intensity processes).

The difference between the best bid, Sb
t , and the best ask, Sa

t , (the so-called bid-ask
spread) is assumed time dependent and of magnitude

Sa
t −Sb

t = 2ϒt ,

where ϒ : [0,T ] 7→ σmN+. Thus, investors who trade through market orders will minimally
pay

Sa
t = St +ϒt

per share if they wish to buy the stock, and maximally earn

Sb
t = St −ϒt

per share if they wish to sell the stock, depending on the size of their orders vis-à-vis the
number of shares available at the various price levels. At the aggregate level, we assume
that market orders arrive in the limit order book, in a manner which can be modelled by
an inhomogeneous Poisson process, Mt , with intensity rate

λt = ξt exp{κtϒt},

where ξt and κt are real valued positive functions. Clearly, whilst market orders are guar-
anteed instantaneous execution, the liquidity taking fees they incur may be less than ap-
pealing. This is not to say that one optimally should opt for the limit order alternative:
despite superior prices, there is no guarantee of execution at all.

5.2.2 Portfolio Manager Assumptions

We consider the case of a portfolio manager who at time t = 0 sells off N European call
options of strike K and maturity T . Modulo an exogenously specified tolerance for risk, his
aim is to keep his portfolio “delta neutral” throughout, whilst simultaneously maximising
his terminal payoff at time T . Here, delta neutrality is to be understood as a pre-specified
optimal inventory level ∆t = ∆(t,St) - the number of shares the portfolio manager ideally
wishes to keep in his portfolio to hedge his short option position. If his inventory level at
time t, Qt , is found to be in excess of ∆t , the portfolio manager is incentivised to offload
some of his shares. Conversely, if Qt falls short of ∆t , he is incentivised to acquire shares.
To this end, we assume that the portfolio manager places unit-sized limit orders and (if
necessary) integer-sized market orders in the order book, but only one of the two at any
given time. From this, one is prompted to ask the following questions, which will form the
backbone of this paper:
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Question 5.1. When should the portfolio manager trade in limit orders and when should
he trade in market orders? In particular, regarding the former, which price quotes should
he employ?

Whilst market sell (buy) orders are assumed to take place at the best bid (ask), we
assume the portfolio manager is at liberty to decide how deep in the limit order book
he places his limit orders. Specifically, let S−t = St + δ

−
t be the price level at which the

portfolio manager places his ask quote at time t, and let S+t = St − δ
+
t be the price level

at which the portfolio manager places his bid quote at time t, where δ
±
t ≥ 0 is known as

the spread. For mnemotechnical purposes we designate objects that give rise to a lower
(higher) inventory by the superscript - (+).

Remark 5.2. It will be convenient to assume that δ
±
t can be chosen from all of R+, and

not just σmN+. Although this clearly is incongruent with the discrete nature of the LOB,
it will simplify the optimisation problem to be stated shortly.

To capture the execution risk inherent to limit orders, we assume that the probability of a
sell (buy) limit order being lifted, given that a market order arrives, is of the form

exp{−κtδ
−
t },

(exp{−κtδ
+
t }). Thus, from the market assumptions it follows that the portfolio manager’s

successful limit sell (buy) order executions are modellable as an inhomogeneous Poisson
process L−t (L+

t ) with intensity

lim
∆ t→0

1
∆ t

P{L−t+∆ t −L−t = 1}= λt exp {−κtδ
−
t }, (5.2)

(lim∆ t→0P{L+
t+∆ t −L+

t = 1}/∆ t = λt exp{−κtδ
+
t }).5 The intuition here is clear: the fur-

ther away from the mid-price the portfolio manager places his limit quotes, the less likely
it is they will be executed. This disincentivises the portfolio manager from posting ex-
treme limit order quotes, even though he obviously would benefit considerably from their
execution. Insofar as a limit order placed at time t fails to be executed, we assume that
the portfolio manager cancels it immediately, only to replace it with a (possibly) updated
quote at time t + dt. Concordantly, the total cash position (the bank holding, Bt ) of the
portfolio manager obeys the jump formula

dBt = 1{Qt≥∆t}[(St +δ
−
t )dL−t +(St −ϒt)dM−0t ]

−1{Qt<∆t}[(St −δ
+
t )dL+

t +(St +ϒt)dM+
0t ],

(5.3)

subject to the initial condition B0 = b0, where

M+
0t = ∑

k=1
1{τ+k ≤ t}

codifies the number of buy market orders placed by the investor over up till time t at the
stopping times {τ+i ∈ R+, i ∈ N+|0 < τ

+
1 < τ

+
2 < ... < t}, and

5 This assumption finds its intellectual roots in the seminal work by Avellaneda and Stoikov [6].
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M−0t = ∑
k=1

1{τ−k ≤ t}

captures the portfolio manager’s sell market orders, where {τ−i ∈ R+, i ∈ N+|0 < τ
−
1 <

τ
−
2 < ... < t} are the stopping times at which sell market orders are placed.

At maturity we imagine that one of the following scenarios obtains: if the options are
out of the money, the portfolio manager immediately liquidates his inventory using market
orders. On the other hand, if the options are at/in the money the option holders exercise
their right to buy the stock for the strike price: insofar as there is a mismatch between
the portfolio managers inventory and the N stocks due for delivery, he acquires/liquidates
the difference, again using market orders. There is of course no a priori reason why we
should opt for this terminal condition; indeed, it might seem more opportune go for for
an optimal trade execution strategy à la Almgren-Chriss [4] in the manner proposed by
Cartea and Jaimungal [14] at least if ST < K. This is an obvious topic for future research.

Finally, suppose the portfolio manager derives linear utility from his level of financial
wealth, but incurs a quadratic lifetime penalisation from any deviation from the target
hedge portfolio. The control problem to be solved can thus be stated as follows

V (t,b,s,q) = sup
{{δ±s }s∈[t,T ],τ±}∈A (t,b,s,q)

Et,b,s,q

[
BT +1{ST<K}QT (ST −ϒT )

+1{ST≥K}1{QT≥N}[NK +(QT −N)(ST −ϒT )]

+1{ST≥K}1{QT<N}[NK− (N−QT )(ST +ϒT )]

−η

∫ T

t
(Qu−∆u)

2du
]
,

(5.4)

where V : [0,T ]×R× σmZ× Z 7→ R, Et,b,s,q[·] ≡ E[·|Ft ] with (Bt ,St ,Qt) = (b,s,q),
and the supremum runs over all admissible control functions: i.e. all non-negative Ft -
predictable limit order spreads and all Ft -stopping times bounded above by T . Finally,
η ∈ R+ is a parameter which captures the portfolio managers “readiness” to depart from
the desired hedge strategy ∆ (clearly, the greater the η , the less prone the portfolio manager
will be to depart from the prescribed strategy). In practical terms, η may be seen as a func-
tion of compliance with external (regulatory) risk measures, as well as internal (company
specific) risk management. Notice though, that analogous to more traditional risk aversion
parameters, there is an inexorable nebulosity wrapped around this construct: whether real
world risk preferences can be accurately mapped to this singular parameter, and if it can
be done with a reasonable degree of empirical accuracy is at best questionable.6

6 Tentatively, one might try to Monte Carlo simulate portfolio returns under various η specifications and
study the associated portfolio return distributions.
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5.3 The Question of the ∆

The question of an optimal hedge strategy for jump processes in a market with friction is
one of considerable complexity which we shall pass over in silence. As suggested above,
our main concern here lies with the duality offered by the limit order book trading strate-
gies; hence, the ∆ we will consider is largely illustrative in nature. Specifically, we shall
suppose that the portfolio manager aims to track a hedge strategy as though he were trad-
ing in a driftless Bachelierian (arithmetic Brownian motion) economy, i.e. as though the
market were frictionless with price dynamics7

dSt = σtdWt , (5.5)

where Wt is a Wiener process and σ : [0,T ] 7→ R+ is a deterministic function. Using a
standard no-arbitrage argument one may readily show that strike K maturity T call options
should be priced according to

CK,T
t = (St −K)Φ (δt)+Σtφ (δt) , (5.6)

where

δt ≡ δ (t,St) = Σ
−1
t (St −K), and Σt ≡

√∫ T

t
σ2

u du,

and we have introduced the usual functions: Φ(·) as the standard normal cdf, and φ(·) as
the standard normal pdf.8 Hence, from the net portfolio position Bt +∆tSt−NCt , to hedge
a short position in N such call options, one should hold ∆t =N∂SCt or, equivalently,

∆t =NΦ (δt) , (5.7)

units of the underlying asset, where we have used the standard identity φ ′(x) = −xφ(x).
Viewed as a function of (t,St) we note that ∆t has the obvious properties that ∆ → N
when the options are deep in the money (St � K) and ∆ → 0 when the options are deep
out of the money (St � K). As t→ T the transition between these two extremes becomes
increasingly steep in it its rise, ultimately converging towards the step function N1{ST ≥
K} at expiry. Thus, the ∆ of at the money calls is exceedingly sensitive to fluctuations in
the price process near expiry, potentially resulting in the acquisition or decumulation of
a large amount of shares in a short span of time. An illustration of this ∆ is provided in
figure 5.1 for constant parameters.

Again, we emphasise that this choice largely is to get the ball rolling: the reader is
encouraged to experiment with alternative specifications. However, forbye the neglected

7 Louis Bachelier is widely credited as the father of mathematical finance. In his doctoral dissertation
The Theory of Speculation [7] Bachelier introduced Brownian motion in the modelling of stock prices.
Specifically, he assumed arithmetic brownian motion with constant parameters: dSt = µdt +σdWt .
8 Specifically, from the martingale condition Ct = Et [max{ST − K,0}] where ST = ST (Z) = St +∫ T

t σudWu = St +Σt Z with Z ∼ N(0,1) (to see the last equality it is helpful to recall the Itō isometry).
Thus, upon evaluating the integral Ct =

∫
R(ST (z)−K)1{ST (z)≥ K}φ(z)dz we get the desired result.
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issue of market friction, we also note that the hedge ratio (5.7) is not altogether groundless;
specifically, the jump dynamics (5.1) formally converges in distribution to a Bachelierian
dynamics in the event that we let the jump rate intensity tend to infinity. To see this, we
need the following proposition:

Proposition 5.1. Let Lt = L1
t −L2

t , where Li
t ≡ Li((0, t]×A) =

∫ t
0
∫
A zJi(dt×dz) for

i = 1,2. Furthermore, let us introduce the function ζ : [0,T ] 7→ R+ where

ζt ≡
(

2
∫ t

0
E[Z2

s ]γsds
)−1/2

, (5.8)

then we have the following convergence in distribution as γs→ ∞:

ζtLt
d−→ N(0,1), (5.9)

where N(0,1) is the standard normal distribution.

Proof. By Levy’s Continuity Theorem, it suffices to show that the characteristic func-
tion ζtLt converges pointwise to the characteristic function of N(0,1).9 To this end,
suppose we partition the time interval into n + 1 segments: Tn = {ti|t0 = 0, t1 = t0 +
∆ t0, t2 = t1 +∆ t1, ..., tn+1 = t = tn +∆ tn}, where maxi ∆ ti → 0 as n→ ∞. Similarly, let
Am = {∆A1,∆A2, ...,∆Am|∪m

j=1 ∆A j = A} be a partition of the mark space over disjoint
subsets.10 From the elementary properties of Poisson random measures it follows that
Jsq

i ≡ J((ts, ts +∆ ts]×∆Aq) and Jur
i ≡ J((tu, tu +∆ tu]×∆Ar) are independent provided

that q 6= r. Furthermore,

P {Jsq
i = k}= e−µ

sq
i
(µsq

i )k

k!
,

where we have defined the discrete intensity measure µ
sq
i ≡ µi((ts, ts + ∆ ts],∆Aq) =

γsFs(∆Aq)∆ ts. Thus, the characteristic function of ζtLt , i.e. ϕζ L(a) ≡ E[exp{iaζtLt}]
where i =

√
−1 and a ∈ R, can we decomposed as ϕζ L1(a)ϕζ L2(−a) (by the indepen-

dence of L1 and L2) whence

ϕζ L(a) = E
[

exp
{

iaζt

∫ t

0

∫
A

zJ1(ds×dz)
}]

E
[

exp
{
− iaζt

∫ t

0

∫
A

zJ2(ds×dz)
}]

= lim
m,n→∞

E

[
exp
{

iaζn+1

n

∑
s=0

m

∑
q=1

zqJsq
1

}]
E

[
exp
{
− iaζn+1

n

∑
u=0

m

∑
r=1

zrJur
2

}]
9 Recall: if {Xn}n∈N+ and X are random vectors in Rk, and {ϕn}n∈N+ and ϕX are the associated charac-
teristic functions, then (I) Xn converges in distribution to X iff ϕXn (s)→ ϕX (s) for all s ∈ Rk, and (II) if
ϕXn (s)→ ϕ(s) pointwise for all s ∈ Rk, and if ϕ is continuous on 0, then ϕ is the characteristic function
of X and Xn converges in distribution to X .
10 This discretisation idea is inspired by Hanson [28].
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= lim
m,n→∞

n

∏
s,u=0

m

∏
q,r=1

E
[
exp{iaζn+1zqJsq

1 }
]
E [exp{−iaζn+1zrJur

2 }]

= lim
m,n→∞

n

∏
s,u=0

m

∏
q,r=1

∞

∑
k1=0

P {Jsq
i = k1}E

[
exp{iaζn+1zqJsq

1 }|J
sq
1 = k1

]
·

∞

∑
k2=0

P {Jur
i = k2}E

[
exp{−iaζn+1zrJ

up
2 }|J

up
2 = k2

]
= lim

m,n→∞

n

∏
s,u=0

m

∏
q,r=1

∞

∑
k1=0

e−µ
sq
1
(µsq

1 )k1

k1!
eiaζn+1zqk1

∞

∑
k2=0

e−µur
2
(µur

2 )k2

k2!
e−iaζn+1zrk2

= lim
m,n→∞

n

∏
s,u=0

m

∏
q,r=1

exp{µsq
1 (eiaζn+1zq −1)}exp{µur

2 (e−iaζn+1zr −1)}

= lim
m,n→∞

exp
{ n

∑
s=0

m

∑
q=1

µ
sq
1 (eiaζn+1zq −1)

}
exp
{ n

∑
u=0

m

∑
r=1

µ
ur
2 (e−iaζn+1zr −1)

}
,

= exp
{∫ t

0

∫
A
(eiaζt z−1)γsFs(dz)ds

}
exp
{∫ t

0

∫
A
(e−iaζt z−1)γsFs(dz)ds

}
,

= exp
{∫ t

0
(E[eiaζt Zs ]+E[eiaζt Zs ]∗−2)γsds

}
,

where ∗ designates the complex conjugate. Here, the fourth equality uses the law of total
expectation, while the sixth equality uses the Taylor expansion of the exponential function.
Finally, from the expansion

E[eiaζt Zs ] = 1+ iaζtE[Z1
s ]− 1

2 a2
ζ

2
t E[Z2

s ]− 1
6 ia3

ζ
3
t E[Z3

s ]+O(a4
ζ

4
t E[Z4

s ]),

we find after internal cancellation that

ϕζ L(a) = exp
{
−a2

ζ
2
t

∫ t

0
E[Z2

s ]γsds+O
(

a4
ζ

4
t

∫ t

0
E[Z4

s ]γsds
)}

.

Upon specifying ζt as in (5.8) and letting γs → ∞ it follows that Φζ L(a)→ exp{− 1
2 s2},

which is the characteristic function of the standard normal distribution. �

Hence, we readily deduce that

Corollary 5.1. In the infinite intensity limit, the jump dynamics (5.1) converges in
distribution to the Bachelier dynamics (5.5). In particular, for large γs we have that

σt ≈ σm

√
2E[Z2]γ, (5.10)

where the over-line designates the mean of the deterministic function over [0, t].
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Fig. 5.1 Assume N = 100 and K = 50.5, with constant values for σ and ϒ . (Left:) The targeted Bache-
lierian hedge strategy ∆(t,St) =NΦ(δt). Notice that the surface converges towards a step function at the
expiry of the call options. (Right:) The terminal condition of the control problem disregarding the bank
account. Observe that at the zeroth level of inventory we have the classic “hockey stick” pay-off structure
associated with a short option position. At the other end, with a full level of inventory Q =N, the short
option position is perfectly hedged which is reflected in the constant in-the-money pay-off.

Proof. From (5.9) we have for large γs the approximation ζtLt ∼ N(0,1). Hence,

σmζtLt ∼ (σm/
√

t)N(0, t).

Rearranging this, the result follows. �

Remark 5.3. The results presented here may be viewed as an abstract generalisation of
the textbook result that Ñt/

√
γ converges in distribution to N(0, t) as γ → ∞, where Ñt ≡

Nt − γt and Nt ∼ Pois(γt) cf. Cont and Tankov [5].11

5.4 The Hamilton-Jacobi-Bellman Formulation

Following standard results in Pham [18] and Fleming & Soner [21], it follows that the op-
timal value function given in (5.4) satisfies the Hamilton-Jacobi-Bellman quasi variational
inequality (HJB QVI)

0 = max
{

∂tV (t,b,s,q)+ γt

∫
A
[V (t,b,s+σmz,q)−2V (t,b,s,q)+V (t,b,s−σmz,q)]Ft(dz)

+ sup
δ
−
t ∈R+

λte−κt δ
−
t [V (t,b+(s+δ

−
t ),s,q−1)−V (t,b,s,q)]1{q≥∆t}

11 We note that Cont and Tankov erroneously have omitted the square root in the first edition of their book.
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+ sup
δ
+
t ∈R+

λte−κt δ
+
t [V (t,b− (s−δ

+
t ),s,q+1)−V (t,b,s,q)]1{q<∆t}−η(q−∆t)

2

; [V (t,b+(s−ϒt),s,q−1)−V (t,b,s,q)]1{q≥∆t}

+[V (t,b− (s+ϒt),s,q+1)−V (t,b,s,q)]1{q<∆t}

}
, (5.11)

subject to the terminal condition

V (T,b,s,q) = BT +1{s<K}q(s−ϒT )+1{s≥K}1{q≥N}[NK +(q−N)(s−ϒT )]

+1{s≥K}1{q<N}[NK− (N−q)(s+ϒT )]. (5.12)

A graphical representation of the latter is provided in figure 5.1 assuming BT = 0. Notice
that the step function nature of the terminal hedge hedge, ∆T , clearly is reflected in the
pay-off here: specifically, the value surface is constant along Q = 0 for ST < K and along
Q =N for S≥ K.

Sketch Proof. It is instructive to offer a heuristic argument for variational inequality (5.11).
To this end let us focus on limit orders in the event the portfolio manager has a sell in-
centive, i.e. his inventory surpasses the targeted hedge ratio Qt ≥ ∆t . Using the dynamic
programming principle as our vantage point it follows that

0 =−η(q−∆t)
2dt + sup

δ
−
t ∈R+

Et,b,s,q [dV (t,b,s,q)] . (5.13)

cf. the appendix. Furthermore, using Itō’s lemma for marked point processes [5], [28],
[43], we have

dV (t,b,s,q) = ∂tV (t,b,s,q)dt +
∫
A[V (t,b,s+σmz,q)−V (t,b,s,q)]J1(dt×dz)

+
∫
A[V (t,b,s−σmz,q)−V (t,b,s,q)]J2(dt×dz)

+ [V (t,b+(s+δ
−
t ),s,q−1)−V (t,b,s,q)]dL−t ,

(5.14)

where the first two jump terms are induced by jumps in the underlying process, (5.1),
whilst the third jump in the bank/inventory is induced by a limit sell order being met.
Recalling that E[J1(dt×dz)] = E[J2(dt×dz)] = γtFt(dz)dt and E[dL−t ] = λte−κt δ

−
t dt we

find upon combing (5.13) and (5.14) that V satisfies the following HJB equation

0 = ∂tV (t,b,s,q)+ γt

∫
A
[V (t,b,s+σmz,q)−2V (t,b,s,q)+V (t,b,s−σmz,q)]Ft(dz)

+ sup
δ
−
t ∈R+

λte−κt δ
−
t [V (t,b+(s+δ

−
t ),s,q−1)−V (t,b,s,q)]−η(q−∆t)

2. (5.15)

We now add the possibility of market orders: if the inventory level Qt is sufficiently greater
than ∆t the portfolio manager is incentivised to effectuate a guaranteed immediate sell
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through a market order. Thus (5.15) no longer applies (the righthand being strictly less than
zero). Instead the value function jumps in accordance with the transaction costs associated
with a sell market order:

0 =V (t,b+(s−ϒt),s,q−1)−V (t,b,s,q). (5.16)

On the other hand, if the portfolio manager is contended with limit orders, the righthand
side of (5.16) should be strictly less than zero, being, as it were, the suboptimal strategy.
Jointly, these considerations lead to the variational inequality (5.11) in the event Qt ≥ ∆t .
Indeed, we may complete the picture by forming an analogous argument for the case where
the portfolio manager is incentivised to acquire the underlying asset (Qt < ∆t ). �

Whilst searching for a closed form solution to (5.11) appears like an exercise in futility,
it is immediately obvious that the problem at least offers a reduction in dimensionality.
Specifically, since the money account B enters the terminal condition (5.12) linearly, and
since the portfolio manager derives linear utility from his financial wealth, we have the
ansatz

V (t,b,s,q) = b+θ(t,s,q), (5.17)

where θ : [0,T ]×σmZ×Z 7→ R. Hence, the HJB QVI reduces to

0 = max
{

∂tθ(t,s,q)+ γt

∫
A
[θ(t,s+σmz,q)−2θ(t,s,q)+θ(t,s−σmz,q)]Ft(dz)

+ sup
δ
−
t ∈R+

λte−κt δ
−
t [s+δ

−
t +θ(t,s,q−1)−θ(t,s,q)]1{q≥∆t}

+ sup
δ
+
t ∈R+

λte−κt δ
+
t [−(s−δ

+
t )+θ(t,s,q+1)−θ(t,s,q)]1{q<∆t}−η(q−∆t)

2

; [s−ϒt +θ(t,s,q−1)−θ(t,s,q)]1{q≥∆t}

+[−(s+ϒt)+θ(t,s,q+1)−θ(t,s,q)]1{q<∆t}

}
, (5.18)

subject to the terminal condition

θ(T,s,q) = 1{s<K}q(s−ϒT )+1{s≥K}1{q≥N}[NK +(q−N)(s−ϒT )]

+1{s≥K}1{q<N}[NK− (N−q)(s+ϒT )].
(5.19)

Upon solving the first order conditions

δ
∗±
t = argmax

δ
±
t ∈R+

λte−κt δ
±
t [±s+δ

±
t +θ(t,s,q±1)−θ(t,b,s,q)], (5.20)

(where the sign ± is chosen uniformly) and substituting these back in to (5.18) we obtain
the following key result
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Theorem 5.1. The solution to the optimal value problem (5.4) is given by equation
(5.17) where θ is a function which satisfies the variational inequality

0 = max
{

∂tθ(t,s,q)+ γt

∫
A
[θ(t,s+σmz,q)−2θ(t,s,q)+θ(t,s−σmz,q)]Ft(dz)

+
λt

κt

[
e−κt δ

∗−
t 1{q≥∆t}+ e−κt δ

∗+
t 1{q<∆t}

]
−η(q−∆t)

2

; [s−ϒt +θ(t,s,q−1)−θ(t,s,q)]1{q≥∆t}

+[−(s+ϒt)+θ(t,s,q+1)−θ(t,s,q)]1{q<∆t}

}
, (5.21)

where the optimal limit order controls are given by

δ
∗±
t = κ

−1
t ± s+θ(t,s,q)−θ(t,s,q±1), (5.22)

and the terminal condition is of the form (5.19).

Remark 5.4. It is a well known empirical fact of limit order books that a subset of price
fluctuations are of a transient nature, i.e. that the limit order mid-price has a certain pro-
clivity towards reverting back to its former level after a jump. Recently, it has been argued
that squashed trawl processes are opportune constructs to be used in the modelling of this
so-called temporary market impact - see Shephard & Yang [44] or the trailblazing paper
by Barndorff-Nielsen et al. [9]. In this note, we briefly wish to indicate that the framework
developed here readily can be adapted to squashed trawls, assuming that the associated
parameters are known to the portfolio manager. To this end, consider a set-up analogous
to [44]; specifically, let the dynamics of the mid-price be

dSt = σm

∫
A

∫ 1

0
z(J1(dt×dz×dx)− J2(dt×dz×dx)), (5.23)

where X is an independent random variable which codifies the lifetime of a jump (du-
ration of particle in the marked point process). We assume that X ∼ U [0,1] such that
E[Ji(dt×dz×dx)] = γtFt(dz)dx for i = 1,2. Furthermore, if x is a random variate below
some threshold b ∈ (0,1), then the associated point is remembered “in perpetuity” anal-
ogous to ordinary marked point processes on the real line. On the other hand, if x is a
random variate in excess of b, then it is endowed with the finite lifetime |d−1(x)|, where d
is a monotonically increasing function which satisfies certain regularity conditions. Thus,
whenever a particle p reaches its expiry a drop of equal but opposite magnitude to the one
originally induced by p will be witnessed in the price process S. In steady state, it is in-
tuitively obvious that the expected influx of particles (births) in the (b,1] region precisely
is balanced by the expected outflux of particles (deaths) from the same region. Transient
memory particles thus have zero net expected contribution to changes in the value func-
tion (5.4). Thus, the HJB QVI associated with the midprice dynamics (5.23) is virtually
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equivalent to (5.11) only the intensity rate γt is suitably scaled to γtb to restrict the scope
to the permanent market impact.

5.5 Towards a Numerical Solution

Qua the dimensionality reduction offered by (5.17) we have a three-variable variational
inequality, which with limited computational expenditure can be solved using an explicit
finite difference scheme. Here we will elucidate how to set up the problem and demonstrate
its convergence modulo the verisimilitude of a so-called comparison principle. To this
end, we invoke a well-known viscosity convergence result demonstrated by Barles and
Souganidis [8].12 For highly readable accounts of finite difference methods in stochastic
control theory we refer the reader to Tourin [24] and Forsyth and Labahn [24]. For a
cursory overview of viscosity solutions we refer the reader to the appendix.

Now, following standard procedure, to approximate (5.18) in the finite difference
sense, we introduce the bounded mesh

T ∆ t ×Rσm ×R1 = {0,∆ t, ...,n∆ t, ...N∆ t = T}×{smin = 0,σm, ..., iσm, ..., Iσm = smax}
×{qmin,qmin +1, ...,qmin + j, ...,qmin + J = qmax},

in lieu of the full state space [0,T ]×σmZ×Z. Here, smin,smax ∈ σmZ, and qmin,qmax ∈ Z
are artificially imposed lower and upper boundaries which encapsulate the solution region
of interest. Notice that the only discretisation which takes place is along the time axis (the
stock and inventory dimensions are manifestly already discrete in the original problem).
Furthermore, to handle the integral in (5.18) suppose that the number of ticks that the mid-
price can jump at any given time is bounded from above by the constant K where K ∈N+.
Specifically, let

∫
A Fs(dz) = ∑

K
k=1Ps{Z = k} = 1 and K � I such that the price process

surely stays in the mesh unless St < Kσm or St > (I−K)σm. To block the possibility that
the price process jumps out of the mesh near the boundaries, a suitable rescaling of the
probability weights are performed in those regions. Finally, the explicit approximation to
the HJB QVI may then be stated as

ϑ
n
i, j = G [ϑ n+1]≡max{G∆ t [ϑ

n+1] ; G0[ϑ
n+1]}, (5.24)

for K ≤ i ≤ I −K and qmin + 1 ≤ j ≤ qmax− 1 where ϑ n
i, j ≡ θ∆ t(n∆ t, iσm,qmin + j) is

a finite difference approximation to the dimensionally reduced optimal value function
θ(n∆ t, iσm,qmin + j), ϑ

n+1 ≡ (ϑ n+1
i, j ,ϑ n+1

i, j+1,ϑ
n+1
i, j−1,{ϑ

n+1
i±s, j}K

s=1)
ᵀ ∈ R2K+3, and we have

defined the finite difference operators

12 We remark that this is not the only way in which convergence of HJB numerical schemes may be
demonstrated. For a probabilistic proof we refer the reader to Kushner and Dupuis [31], whose seminal
work on Markov chain approximations of the dynamic programming principle indubitably will resonate
with some readers. For a viscosity approach to Markov chain convergence see Fleming and Soner [21].
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G∆ t [ϑ
n+1]≡ ϑ

n+1
i, j +∆ t

{
γn+1

K

∑
k=1

Pn+1{Z = k}[ϑ n+1
i+k, j−2ϑ

n+1
i, j +ϑ

n+1
i−k, j]

+ sup
δ
−
n+1∈R+

λn+1e−κn+1δ
−
n+1 [iσm +δ

−
n+1 +ϑ

n+1
i, j−1−ϑ

n+1
i, j ]1{qmin+ j≥∆n+1}

+ sup
δ
+
n+1∈R+

λn+1e−κn+1δ
+
n+1 [−(iσm−δ

+
n+1)+ϑ

n+1
i, j+1−ϑ

n+1
i, j ]1{qmin+ j<∆n+1}

−η(qmin + j−∆n+1)
2
}
,

G0[ϑ
n+1]≡ [iσm−ϒn+1 +ϑ

n+1
i, j−1]1{qmin+ j≥∆n+1}− [iσm +ϒn+1−ϑ

n+1
i, j+1]1{qmin+ j<∆n+1},

with analogous expressions near the boundaries. For completeness, note that the terminal
condition of (5.24) takes on the form

ϑ
N
i, j = 1{iσm<K}(qmin + j)(i σm−ϒN)+1{i σm≥K}1{qmin+ j≥N}[NK +(qmin + j−N)·

(iσm−ϒN)]+1{iσm≥K}1{qmin+ j<N}[NK− (N− (qmin + j))(iσm +ϒN)],
(5.25)

whilst the first order conditions become

δ
∗±
n+1 = κ

−1
n+1± iσm +ϑ

n+1
i, j −ϑ

n+1
i, j±1.

Solving the control problem is thus algorithmically comparable to computing the no-
arbitrage price of an American put option using finite difference methods: starting from
the terminal condition and moving incrementally backwards in time, we must at each grid
node decide whether a limit or a market order optimises our expected utility.

Proposition 5.2. Assuming 2γn∆ t ≤ 1 for n = 1,2, ...,N, the numerical scheme
(5.24), (5.25) is (i) monotone, (ii) stable and (iii) consistent. Thus, following Barles
and Souganidis’ Theorem 2.1 [8], if the scheme is also satisfying a comparison prin-
ciple, then it converges locally uniformly to the unique viscosity solution of (5.18),
(5.19).

Proof. Following [8] and [21] we first recall the following definitions, suitably adapted to
the problem at hand

1. (Monotonicity): For all ε ∈ R+, and for all unit vectors {êi}2K+3
i=1 we require that

G [ϑ n+1]≤ G [ϑ n+1 + ε êi], (5.26)

where [êi] j = δi j where δi j is the Kronecker delta.
2. (Stability):

||ϑ n||∞ ≤C, (5.27)
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for some constant C independent of ∆ t, as ∆ t→ 0.13

3. (Consistency): Finally, we require that the system satisfies the basic consistency con-
dition

lim
∆ t→0

∣∣∣ 1
∆ t

(
G [ϑ n+1]−ϑ

n
i, j
)
−H [θ((n+1)∆ t, iσm,qmin + j)]

∣∣∣= 0, (5.28)

where H [·] is the HJB QVI, (5.18), centered at the coordinate

(t,s,q) = ((n+1)∆ t, iσm,qmin + j).

We will work through these items systematically, focussing on the case where the limit
order equation applies (the market order equation trivially satisfies 1, 2, and 3):

1. (Monotonicity): This is trivially true for all elements of ϑ
n+1 which only have a pos-

itive coefficient instantiation in G∆ t [ϑ
n+1]. In fact, the only non-trivial case is θ

n+1
i, j .

Specifically, upon eliminating all superfluous terms, the monotonicity condition re-
quires:

0≤ ε +∆ t
{
−2γn+1ε + sup

δ
−
n+1∈R+

[−ελn+1e−κn+1δ
−
n+1 ]1{qmin+ j≥∆n+1}

+ sup
δ
+
n+1∈R+

[−ελn+1e−κn+1δ
+
n+1 ]1{qmin+ j<∆n+1}

}
= ε−∆ t

{
2γn+1ε + ελn+1 inf

δ
−
n+1∈R+

[e−κn+1δ
−
n+1 ]1{qmin+ j≥∆n+1}

+ ελn+1 inf
δ
+
n+1∈R+

[e−κn+1δ
+
n+1 ]1{qmin+ j<∆n+1}

}
.

Since
inf

δ
±
n+1

e−κn+1δ
±
n+1 = 0,

we’re left with the constraint

2γn+1∆ t ≤ 1, for n = N−1,N−2, ...,0. (5.29)

Indeed, numerical experiments corroborate that violating (5.29) leads to a failure in
convergence of the algorithm. Notice that the inverse proportionality between γ and
∆ t in practice can lead to very fine grid spacings for realistic values of the jump rate
intensity: hence, (5.29) significantly impedes the rapidity with which the algorithm can
be executed.

2. (Stability): Taking the L∞-norm of the HJB equation and using the triangle inequality
we obtain

13 Per definition, ||x||∞ ≡maxi |xi|.
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||ϑ n
i, j||∞ ≤ ||ϑ n+1

i, j ||∞ +∆ t||{...}||∞,

where {...} signifies the content of the curly brackets in the definition of G∆ t . Setting
∆ t → 0 and using the fact that the terminal condition ϑ N

i, j by assumption is bounded
from above, we obtain the desired result.

3. (Consistency): This follows immediately upon substituting in the definitions of G∆ t and
H in equation (5.28) and using the Taylor expansion

ϑ
n
i, j = ϑ

n+1
i, j −∆ t∂tϑ

n+1
i, j +O((∆ t)2).

To complete the proof we deploy similar arguments for the grid points near the boundaries
(recall the rescaling of probabilities such as to avoid the price process leaving the grid).
Since this effectively is a recapitulation of what has already been established we omit the
details here. Finally, regarding the comparison principle, loosely put, what is required is
that if θ1 and θ2 are two solutions of the HJB QVI with θ1(T,s,q) ≥ θ2(T,s,q) then we
require θ1(t,s,q) ≥ θ2(t,s,q) for all t. For a more rigorous definition, see the viscosity
references.

�

5.6 Example

5.6.1 The Compound Poisson Model

With a converging numerical scheme at hand, we are in a position to compute the optimal
limit order book hedge strategy called for in question 5.1. For simplicity, we will assume
that all parameters are constant in time. In particular, the dynamics of the mid-price is
assumed to be the difference between two compound Poisson processes:

dSt = σm(dY 1
t −dY 2

t ),

with S0 = K and

Y i
t =

Ni
t

∑
j=1

Zi
j,

for i = 1,2, where {N1
t ,N

2
t }t∈[0,T ] are independent Poisson processes of common inten-

sity γt, whilst the jump sizes {Zi
j} j∈N+ are i.i.d. random variables assumed to follow the

geometric distribution14

P{Zi
j = k}= (1− p)k−1 p.

14 Readers familiar with Lévy processes will notice that this essentially is a discrete symmetric version of
the Kou model:

ν(dz) = [pλ+e−λ+x1{x>0}+(1− p)λ−e−λ−x1{x<0}]dx,

where λ+,λ− > 0 and p ∈ [0,1].
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Fig. 5.2 The optimal limit/market order regions for the portfolio manager at different times to maturity.
The yellow line which cuts each figure across diagonally is the targeted inventory level ∆t for different
values of the underlying stock. The light blue region surrounding it, is stock-inventory levels for which
the portfolio manager is contented with placing limit orders in an attempt to attain delta neutrality. Finally,
the dark blue region (top left) and the olive coloured region (bottom right) correspond to market orders,
i.e. the case where the portfolio manager deems it necessary to trade immediately to bounce back into the
limit order region. For the corresponding surface plots see figure 5.3.

Here k ∈ N+, p ∈ (0,1], and the first and second moments are of the form

E[Zi
j] =

1
p
, and E[(Zi

j)
2] =

2− p
p2 .

Jumps of unit tick size thus dominate the price process fluctuations, while larger jumps
occur at a power decaying rate.15 Finally, as a direct consequence of (5.7) alongside the
approximation (5.10), the targeted Bachelierian hedge strategy must be of the form

∆t =NΦ

(
St −K

σm
√

2γ p−2(2− p)(T − t)

)
. (5.30)

15 In practical applications, we cut off the mass function at a level k such that the probability of a jump of
size k occurring is much less than one over the total number of incremental time steps (N).
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Fig. 5.3 A three dimensional representation of figure 5.2. (a) The optimal market sell surface. States
which lie above this surface call for the immediate liquidation of inventory through market orders. (b)
The optimal market buy surface. States which lie below this surface call for the immediate acquisition of
inventory through market orders. (c) The two market surfaces together with the targeted hedge strategy.

5.6.2 Simulation

Definition 5.1. We designate the joint process {St ,Qt}t∈[0,T ] (i.e. the price path traced out
by the underlying asset over [0,T ], together with the associated inventory level held by the
portfolio manager) the stock-inventory path.

Remark 5.5. Clearly, while the stock path is exogenously determined by market forces, the
portfolio manager is at liberty to choose his associated inventory level.

Quantity Interpretation Magnitude Quantity Interpretation Magnitude
K strike 50.5 η risk aversion 1
σm tick-size 0.5 κ limit decay 0.3
T TTM 1 λ limit intensity 100
N no. of calls 100 γ market intensity 200
ϒ half-spread 1 p jump size prob. 0.9

Table 5.1 Parameter specifications used in simulation experiment. Some arbitrariness surrounds these
numbers in the sense that no empirical calibration has been performed - nonetheless, they serve quite
nicely for illustrative purposes.

Consider the parametric specifications listed in table 5.1. Upon solving the HJB QVI nu-
merically, we find the optimal trade regions exhibited cross-sectionally in figure 5.2 for
various times to maturity. Jointly, these temporal hypersurfaces form the surface plots ex-
hibited in figure 5.3. The interpretation is as follows: the portfolio manager aims to keep
his portfolio approximately delta-neutral understood in the sense of keeping his stock-
inventory path on a par with the yellow hedge surface ∆t (whatever the realised value of
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Fig. 5.4 Instantiation of a stock-inventory path. (a) The evolution of the mid-price, seeded at S0 = K. (b)
The evolution of the portfolio manager’s inventory when he hedges using market orders only (red) or a
combination of market and limit orders (black). (c) The evolution of the portfolio manager’s bank account,
again using market orders only (red) or a combination of market and limit orders (black). Notice the latter
outperforms the former. The bank wealth is (arbitrarily) seeded at B0 = 104. (d) The magnitude of the
orders placed by the portfolio manager when he hedges with market orders only. (e) The magnitude of
the orders placed by the portfolio manager when he hedges with a combination of market (red) and limit
(black) orders. (f) The size of the spread posted by the portfolio manager in those cases where his limit
orders are successful. Black stems are sells, while blue stems are buys.

the underlying, St , may be). However, he is contended with merely posting limit sell or
buy orders (depending on whether he is above or below ∆t ) in the immediately adjacent
region highlighted with a light blue colour in figure 5.2, thus allowing for minor devia-
tions from the targeted hedge ratio. Should his stock-inventory path pierce either the dark
blue surface or the olive coloured surface, his “risk aversion” kicks in, and he performs an
immediate inventory alteration through unfavourable market orders (to the point where he
re-enters the limit order region). Notice that as the market sell and the market buy surfaces
both converge towards the strike K at maturity, it becomes increasingly difficult to avoid
placing market orders with time if St ≈ K.

The implications of this are forcefully demonstrated in figures 5.4 and 5.5 for the
realisation of a single stock path.16 Here we investigate the performance of the portfolio
manager’s combined limit-market order hedge strategy vis-à-vis the naı̈ve hedge strat-

16 In simulating a Poisson path, it is helpful to recall that the time spent between consecutive jumps, τ , is
a random variable which follows the exponential distribution P{τ ≤ t}= 1− exp{−γt}, see [40] [45].
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Fig. 5.5 (a) A three dimensional view of the stock-inventory path described in figure 5.4 when the portfo-
lio manager uses a combination of limit and market orders. Importantly, the path does not remain embed-
ded in the yellow hedge surface, but is free to bounce back and forth between the encompassing market
surfaces discretely highlighted in blue and olive green. (b) The graph viewed from Q = N. Notice the
symmetric nature of the market surfaces viewed from this angle. (c) The graph viewed from t = 0. Here it
is quite apparent that the path moves within the pocket space defined by the surrounding market surfaces.

Fig. 5.6 (a) Histogram of the terminal stock price with Bachelierian normal fit. Clearly, the latter is in-
adequate except around the tails. (b) Histogram of the rate of return of the bank account. The “camel
hump” shape is symptomatic of the binary “all or nothing” inventory position required for delta neutrality
at maturity. (c) Histogram of the rate of return of the portfolio (bank + stock + options), where Π B

0 is the
Bachelier value of the portfolio, defined below. Evidently (and unsurprisingly) the combined limit/market
order strategy greatly outperforms the strategy which trades in market orders only.

egy which at all times utilises market orders to maintain delta neutrality. Unsurprisingly,
since the former strategy permits all stock-inventory paths sandwiched between the opti-
mal market surfaces, whilst the latter only allows those stock-inventory paths which are
embedded17 in the optimal hedge surface, {Qt}t∈[0,T ] and {Bt}t∈[0,T ] are considerably less
erratic in case of the former. Indeed, the lower frequency of trading, combined with the
favourable prices associated with limit orders, yield a much more favourable cash position
at the expiry of the options. Specifically, for the simulation at hand, the number of (not
necessarily unit sized) market orders placed with the naı̈ve strategy amounts to 220, while
the number of market-limit orders placed with the control strategy come in at 27 & 24,

17 Since we assume that the portfolio manager only buys and sells integer quantities of the underlying, it
is clear that the embedding should be read as “correct to the nearest integer”.
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with an average spread for the limit orders of 2.75. As for the mean quadratic variation of
the inventory path, (∆Q)2 ≡ 1

N ∑
N
i=1(∆Qi)

2, the naı̈ve strategy amounts to 1.664, while the
control strategy comes in at 0.103. The analogous quantity, computed for the bank path
yields 4964 vs. 334.

To develop an understanding of the distributive properties of the hedge strategies
above, we repeat the experiment 104 times. The resulting histograms are exhibited in figure
5.6, while the estimators are given in see table 5.2. As expected, the distribution of the ter-
minal stock value (figure 5.6(a)) falls symmetrically around the strike: however, it is worth
noting that the empirical standard deviation (10.12) falls somewhat shy of the Bachelierian
standard deviation (11.65). Indeed, the bell curve appears to be a poor fit to the simulation
data except around the tails.18 This highlights that the employ of the Bachelier dynamics in
lieu of the jump processes is not altogether innocuous. As for the rate of return of the bank
account, BT/B0, we refer to figure 5.6(b). Whilst it is clear that the combined limit-market
order strategy is superior to the naı̈ve market order strategy, the “camel hump” nature of
the histogram might prima facie strike one as puzzling. This mystery is quickly deflated,
however, upon realising that the terminal value of the targeted hedge strategy - the step
function N1{ST ≥ K} - invariably will drive the portfolio manager to either liquidate or
acquire ∼ 50 shares relative to his initial inventory. The asymmetry between the negative
and positive return humps is likely to be symptomatic of the asymmetric boundary condi-
tion (i.e. the operations executed given that the calls are in or out of the money). Finally,
figure 5.6(c) exhibits the return of the hedge portfolio, ΠT/Π0 where

Πt = Bt +∆tSt −N ·Ct .

Blatantly, Πt<T is a model dependent quantity which prompts us to suggest the at-the-
money Bachelier price of the call option,

CK,T
t,atm = σm

√
γ(2− p)(T − t)

π p2 ,

in accordance with equation (5.6). Again, while this is dynamically consistent with the
choice of the ∆t , (5.30), it is also in flagrant disregard for the jump nature of the underlying
and the friction prevailing on the market. Hence, the Bachelier specification Π B

0 should
not be seen as an absolute standard. Nevertheless, it is intriguing to note that it on average
yields a positive return for the portfolio manager who uses a combination of limit and
market orders to hedge his position, whilst the naı̈ve hedge engenders a mean negative
return. Indeed, a Welchian t-test shows that we can comfortably dismiss the null hypothesis
of equal means at the 99% level. For more general values of Π0 we simply observe that
the mean of the control strategy return is higher than that of the naı̈ve strategy, while the
opposite is the case for the standard deviation.

18 This is hardly surprising: e.g. it is a well-known fact that the Skellam distribution (the law of the
difference between two Poisson random variables, N1−N2) tends to the normal distribution if (i) N1 and
N2 have common intensity and, importantly, (ii) N1−N2 = k is large. See Abramowitz and Stegun [1].
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BT /B0 LIMs BT /B0 MOs ΠT /Π B
0 LIMs ΠT /Π B

0 MOs
Mean 0.9554 0.8868 1.0048 0.9445

Standard dev. 0.2345 0.2521 0.0077 0.0199
1% Quantile 0.6856 0.5828 0.9848 0.9044

25% Quantile 0.7183 0.6256 1.0000 0.9292
50% Quantile 0.9549 1.0574 1.0052 0.9438
75% Quantile 1.1926 1.1327 1.0102 0.9598
99% Quantile 1.2119 1.1763 1.0210 0.9843

Table 5.2 Estimators for figure see table 5.6. LIMs refers to the combined limit-market order strategy,
while MOs refers to the naı̈ve market order strategy.

5.7 Conclusion

The emergence of certain stylised properties of the otherwise hyper-complex limit order
book beckons us to attempt mathematical modelling theoreof. In this paper we proposed
a simple jump model of the mid-price, alongside a probability of having a limit order met
which is an exponentially decaying function of the distance to the mid-price. It was shown
that the jump model converges weakly to Bachelier’s arithmetic Brownian motion for large
values of the intensity. Furthermore, under the assumption that a portfolio manager wish-
ing to ∆ -hedge his short call position derives linear utility from his terminal wealth, but
incurs quadratic lifetime penalisation from deviating from a targeted hedge strategy, we
derived numerical values for his optimal limit order quotes and stopping times at which he
should switch to pure market orders. Following the standard literature on convergence in
the viscosity sense we proved that our scheme is monotone, stable, and consistent. We also
exemplified the utility of our algorithm by comparing it to a naı̈ve strategy which deploys
nothing but market orders: a clear augmentation of the mean return and a clear reduction
in the associated variance was established here. Finally, given the generic nature of our
model, we reiterate that it is adaptable to more sophisticated expressions for the targeted
hedge ratio in the limit order book.

5.7.1 Acknowledgements

The research underpinning this paper was conducted under the masterly guidance of Mark
H.A. Davis. His many insightful suggestions have greatly enhanced the quality of my
research. Obviously, any remaining errors and omissions are my responsibility alone.



5 Optimal Hedge Tracking Portfolios in a Limit Order Book 173

References

1. Abramowitz and Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathe-
matical Tables. Dover Publications. June 1965. pp. 374?378. ISBN 0486612724.

2. Aivaliotis and Palczewski, Tutorial for Viscosity Solutions in Optimal Control of Diffusions, October
2011. Available at SSRN: http://ssrn.com/abstract=1582548.

3. Almgren, Optimal Trading with Stochastic Liquidity and Volatility, SIAM J. FINANCIAL MATH.,
2012, Vol. 3, pp. 163-181.

4. Almgren and Chriss Optimal Execution of Portfolio Transactions, J. Risk 3, Winter 2000/2001, 5-39.
5. Agliardi and Gencay, Hedging Through a Limit Order Book with Varying Liquidity, Journal of Deriva-

tives, Winter 2014, pp. 32-49.
6. Avellaneda and Stoikov, High-frequency Trading in a Limit Order Book, Quantitative Finance, Vol.

8, No. 3, April 2008, 217-224.
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Appendix: The Dynamic Programming Principle (DPP)

An informal derivation of the DPP (5.13) runs along the following lines. Let XT designate
the total financial wealth of the portfolio manager, and let Tn = {ti|t0 = 0, t1 = t0+∆ t0, t2 =
t1+∆ t1, ..., tn+1 = T = tn+∆ tn} be a discrete temporal partitioning, then the optimal value
function (5.4) for limit orders may be written as

V (ti,b,s,q) = lim
n→∞

sup
{δ+

t j
,δ−t j
}nj=i≥0

Eti,b,s,q

[
Xtn+1 −η

n

∑
j=i

(q−Φ(δt j))
2
∆ t j

]
.

where (t,Bt ,St ,Qt) = (ti,b,s,q). Using the law of iterated expectations the discrete expres-
sion may be rewritten as

Vti = sup
{δ+

t j
,δ−t j
}nj=i≥0

Eti

[
Xtn+1 −η(q−Φ(δti))

2
∆ ti−η

n

∑
j=i+1

(q−Φ(δt j))
2
∆ t j

]

= sup
{δ+

t j
,δ−t j
}nj=i≥0

Eti

[
−η(q−Φ(δti))

2
∆ ti +Eti+1

[
Xtn+1 −η

n

∑
j=i+1

(q−Φ(δt j))
2
∆ t j

]]

= sup
δ
+
ti
,δ−ti ≥0

Eti

[
−η(q−Φ(δti))

2
∆ ti + sup

{δ+
t j
,δ−t j
}nj=i+1≥0

Eti+1

[
Xtn+1 −η

n

∑
j=i+1

(q−Φ(δt j))
2
∆ t j

]]

= sup
δ
+
ti
,δ−ti ≥0

Eti

[
−η(q−Φ(δti))

2
∆ ti +Vti+1

]
.

Subtracting Vti on both sides and using the Fti -measurability of η(q−Φ(δti))
2∆ ti we

arrive at the discretised DPP:

0 =−η(q−Φ(δti))
2
∆ ti + sup

δ
+
ti
,δ−ti ≥0

Eti
[
Vti+1 −Vti

]
.

Setting n→ ∞ yields the desired result.

Appendix: A Brief Introduction to Viscosity Solutions

In this appendix we briefly sketch the bare essentials associated with the field of viscosity
solutions. For a more thorough review the reader is referred to Aivaliotis and Palczewski
[2], Fleming and Soner [21], and Pham [18], followed by the references in Barles and
Souganidis [8]. For generality, consider the generic non-linear second order PDE

H (x,w(x),∇w(x),∇2w(x)) = 0, x ∈ Ō, (5.31)
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where ∇ and ∇2 respectively represent the gradient and the Hessian operators. Here H :
Ō×R×Rn×Sn 7→R and w : Ō 7→R are locally bounded possibly discontinuous functions,
Sn is the space of symmetric n× n matrices, O is an open subset of Rn, whilst Ō is its
closure.

Definition 5.2. The upper semi-continuous (usc) envelope and the lower semi-continuous
(lsc) envelope of a function f : Ō 7→ Rn are respectively defined as

f∗(x)≡ limsup
y→x,y∈Ō

f(y), and f∗(x)≡ liminf
y→x,y∈Ō

f(y).

Definition 5.3. A locally bounded function w : Ō 7→ R is a viscosity subsolution of (5.31)
if ∀φ ∈ C 2(Ō) and ∀x ∈ Ō such that u∗−φ has a local maximum at x, we have

H (x,u∗(x),∇φ(x),∇2
φ(x))≤ 0.

On, the other hand, we say that w is a viscosity supersolution of (5.31) if ∀φ ∈ C 2(Ō) and
∀x ∈ Ō such that u∗−φ has a local minimum at x, we have

H (x,u∗(x),∇φ(x),∇2
φ(x))≥ 0.

If w is both a viscosity sub- and supersolution, it is said to be a viscosity solution of (5.31).
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Appendix A
Martingale Methods in Mathematical Finance

Abstract In this appendix we provide a cursory overview of standard results pertaining to
martingale methods in mathematical finance. The focal point here is the power of prob-
ability measure transformations: in particular, we expose the Abstract Bayes’ Theorem,
Girsanov’s theorem and the change of numeraire, the first and second fundamental theo-
rems of asset pricing, and the concept of market price of risk. No in-text references are
provided, but a full list of relevant “textbook sources” is provided at the end of this disser-
tation.

A.1 Martingales

Let (Ω ,F ,P,F= {F}t≥0) be a filtered probability space, and let Xt : Ω × [0,∞) 7→ R be
a stochastic process defined upon it. We suppose X is integrable, meaning that E[|Xt |]< ∞.

Definition A.1. We say that Xt is a martingale if E[Xt |Fs] =Xs for all s< t ∈R+. Further-
more, Xt is said to be a submartingale (resp. supermartingale) if E[Xt |Fs] ≥ Xs (resp.
E[Xt |Fs]≤ Xs) for all s < t ∈ R+.

Furthermore, as an abstract generalisation we have the notion of a local martingale:

Definition A.2. We say that Xt is a local martingale if there exists a sequence of F-
stopping times τk : Ω 7→ [0,∞) such that (i) the τk are almost surely increasing: P{τk <
τk+1} = 1; (ii) the τk diverge almost surely: P{τk → ∞ as k→ ∞} = 1; (iii) the stopped
process Xτk

t ≡ Xmin{t,τk} is an F-martingale for every k.

Generally, all martingales are local martingales, but the converse is not the case (the classic
example of a process which is a local martingale but need not be martingale is the driftless
diffusion process). However, if a local martingale Mt also satisfies (*) E[sups∈[0,t] |Ms|]<∞

for every t, then Mt is indeed also a martingale. For example, if Mt = f (t,Wt) where Wt
is a Wiener process and f ∈ C 1,2([0,∞)×R) then we have that Mt is a local martingale
provided the standard driftless condition

179
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{∂t +
1
2 ∂

2
xx} f (t,x) = 0,

holds (cf. the Itō formula). In order to apply (*) it suffices that ∀ε > 0 ∀t ∃C =C(ε, t) such
that | f (s,x)| ≤C exp{εx2} for all (s,x) ∈ [0, t]×R.

A.2 Changing the Measure

Consider the probability space (Ω ,F ) then we may think of how different allocations
of probabilities to events in this space are interconnected. We say that two probability
measures P and Q are equivalent (labelled P∼Q) on F just in case

P(A) = 0⇔Q(A) = 0, ∀A ∈F .

In particular, the Radon-Nikodym theorem instructs us that P(A) = 0⇒Q(A) = 0 ∀A ∈
F (i.e. Q is absolutely continuous w.r.t. P on F : Q� P) if and only if there exists an
F -measurable mapping ξ : Ω 7→ R+ such that∫

A
dQ(ω) =

∫
A

ξ (ω)dP(ω), ∀A ∈F . (A.1)

In the event that A = Ω the left-hand-side in this expression is unity (per definition of
a probability measure). Likewise, the right-hand-side is defined as

∫
Ω

ξ dP ≡ EP[ξ ]. All
in all, the quantity ξ is therefore a non-negative random variable with EP[ξ ] = 1. Since
(A.1) infinitesimally can be written ξ = dQ/dP, ξ is commonly referred to as the likeli-
hood ratio between Q and P or the Radon-Nikodym derivative. Three standard results
surrounding ξ deserve mentioning:

1. For any random variable X on L1(Ω ,F ,Q): EQ[X ] = EP[ξ X ] and EQ[ξ−1X ] = EP[X ].
Proof: obvious using definitions.

2. Assume Q is absolutely continuous w.r.t. P on F and that G ⊆F , then the likelihood
ratios ξ F and ξ G are related by ξ G = EP[ξ F |G ].

3. Finally, assume X is a random variable on (Ω ,F ,P) and let Q be another measure on
(Ω ,F ) with Radon-Nikodym derivative ξ = dQ/dP on F . Assume X ∈ L1(Ω ,F ,P)
and let G ⊆F then

EQ[X |G ] =
EP[ξ X |G ]

EP[ξ |G ]
, Q− a.s. (A.2)

This result is sometimes referred to as the Abstract Bayes’ Theorem.

Example: To get a feel for how these results are used in mathematical finance we consider
the classical set-up: a filtered probability space (Ω ,F ,P,{F}t∈[0,T ]) on a compact inter-
val [0,T ]. Typically, we are interested in some stochastic process {Xt}t∈[0,T ] (e.g. a stock
price) such that Ω is the set of all possible paths of the process over [0,T ]. Since all rele-
vant uncertainty has been resolved at time T all (relevant) random variables will be known
at time T . If we now consider the non-negative random variable ξT in FT , then provided
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EP[ξT ] = 1 we may define a new probability measure Q on FT by setting dQ= ξT dP. Per
definition, ξT is a Radon-Nikodym derivative of Q w.r.t. P on FT so Q� P on FT . Thus,
we will also have Q� P on Ft ∀t ≤ T so by the Radon-Nikodym Theorem there exists
a random process {ξt}t∈[0,T ] defined by ξt = dQ/dP on Ft , which we call the likelihood
process. Item (2) above now immediately implies that the ξ -process is a P-martingale:

EP[ξt ′ |Ft ] = ξt , t ′ > t.

Using this fact alongside item (3) also gives us the result that:

EQ[Xt ′ |Ft ] = EP
[

ξt ′

ξt
Xt ′

∣∣∣∣Ft

]
, (A.3)

which turns out to be extremely useful in option pricing upon jumping between different
numeraires.

A.3 The First and Second Fundamental Theorems

We consider a market model consisting of the non-dividend paying asset price processes
S0,S1, ..., SN on the time interval [0,T ].

Theorem A.1. The First Fundamental Theorem. The market model is free of arbi-
trage if and only there exists a martingale measure, i.e. a measure Q ∼ P such that
the processes

S0t

S0t
,

S1t

S0t
, ... ,

SNt

S0t
,

are (local) martingales under Q.

Notice that we don’t commit ourselves to the interpretation that the numeraire, S0, is the
risk free asset. However, if indeed S0t = Bt ≡ exp(

∫ t
0 rsds) where r is a possibly stochastic

short rate, and we assume all processes are Wiener driven, meaning that dSit = Sit µitdt +
Sitσ

ᵀ
itdW

P
t , then a measure Q∼ P (the so risk-neutral measure associated with the risk

free numeraire) is a martingale measure if and only if

dSit = Sitrtdt +Sitσ
ᵀ
itdW

Q
t , (A.4)

∀i ∈ {0,1, ...,N}, whereWQ is a d-dimensional Q-Wiener process. I.e. all assets have the
short rate r as their local rates of return. Proof: apply Itō’s lemma to Sit/S0t . Just in case
µit = rt do we obtain a local martingale (i.e. vanishing drift).

Next, we consider what it takes for us to be able to replicate (synthesise) assets on the
market using existing products:
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Theorem A.2. The Second Fundamental Theorem. Assuming absence of arbi-
trage, the market model is complete if and only if the martingale measure Q is
unique.

Remark A.1. This does clearly not say that there is only one martingale measure in exis-
tence. It only says that for this particular choice of numeraire (S0) the measure is uniquely
determined.

Theorem A.3. Pricing Contingent Claims. Consider a contingent claim, X, that
expires at time T . In order to avoid arbitrage we must price the claim according to

Xt = S0tEQ
[

XT

S0T

∣∣∣∣Ft

]
, (A.5)

where Q is a martingale measure for {S0,S1, ...,SN} with S0 as the numeraire. In
particular, insofar as S0t is the risk free asset S0t = exp(

∫ t
0 rsds), then we obtain the

classical pricing formula

Xt = EQ
[
e−

∫ T
t rsdsXT

∣∣∣Ft

]
. (A.6)

A.4 Lévy’s Characterisation of Wiener Processes

A Wiener process (Brownian motion) Wt is a martingale with continuous paths and
quadratic variation [W,W ](t) = t. These properties actually suffice to characterise a Wiener
process as demonstrated by Lévy:

Theorem A.4. Lévy’s Theorem Let Mt = (M1t ,M2t , ...,Mdt) be a martingale with
respect to the filtration {Ft}, t ≥ 0. Assume that (i) ∀i : Mi0 = 0, (ii) ∀i : Mit has con-
tinuous paths, (iii) [Mi,M j](t) = δi jt ∀t ≥ 0, then M1t , M2t , ..., Mdt are independent
Wiener processes.

Proof. We will prove this using characteristic functions. Consider the function f (t,Mt) =
exp{hᵀM − 1

2h
ᵀht}. From Itō’s lemma
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d f (t,Mt) =
(
∂t f (t,Mt)+

1
2 ∇
ᵀ
x ∇x f (t,Mt)

)
dt +∇x f (t,Mt)

ᵀdMt

=
(
− 1

2h
ᵀh f (t,Mt)+

1
2h
ᵀh f (t,Mt)

)
dt +∇x f (t,Mt)

ᵀdMt

= ∇x f (t,Mt)
ᵀdMt .

So f is clearly a martingale. It follows that

E[ f (t,Mt)] = 1⇔ E[eh
ᵀMt ] = e

1
2h
ᵀht .

The right-hand side is the moment generating function for independent normal random
variables (mean 0 and variance t). The result follows. �

A.5 The Martingale Theorem and Girsanov’s Theorem

LetW be a d-dimensional Wiener process and let X be a stochastic variable which is both
FW

T measurable and L1. Then there exists a uniquely determined FW
T -adapted process

h= (h1,h2, ...,hd) such that X has the representation

X = E[X ]+
∫ t

0
hᵀs dWs. (A.7)

Under the additional assumption that E[X2]< ∞ then h1,h2, ...,hd are in £2.

We can use this lemma to prove the following

Theorem A.5. The Martingale Representation Theorem Let W be a d-
dimensional Wiener process, and assume that the filtration {Ft}t∈[0,T ] is defined
as Ft = FW

t for t ∈ [0,T ]. Now let M be any Ft martingale. Then there exists
a uniquely determined Ft adapted process h = (h1,h2, ...,hd) such that M has the
representation

Mt = M0 +
∫ T

0
hᵀs dWs, t ∈ [0,T ].

If the martingale M is square integrable, then h1,h2, ...,hd are in £2.

Recall from section A.2 that the measure transformation dQ= ξT dP on FT (where ξT is
a nonnegative random variable with EP[ξT ] = 1) generates a likelihood process {ξt}t∈[0,T ]
defined by ξt ≡ dQ/dP on Ft which is a P-martingale. It thus seems natural to define ξt
as the solution to the SDE

dξt = φtξtdWP
t ,

with initial condition ξ0 = 1 for some choice of the process φ (the initial condition guaran-
tees unitary expectation under P). In fact, using this SDE we should be able to generate a
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host of natural measure transformations from P to the new measure Q, which indeed also
is the upshot of Girsanov’s theorem:

Theorem A.6. Girsanov’s Theorem LetW P be a d-dimensional standard P-Wiener
process on (Ω ,F ,P,{Ft}t∈[0,T ]), and let φ be any d-dimensional adapted column
vector process (referred to as the Girsanov kernel). Now define the process ξ on
[0,T ] by

dξt = ξtφ
ᵀ
t dW P

t , ξ0 = 1

or identically

ξt = exp
{∫ t

0
φ
ᵀ
s dW P

s − 1
2

∫ t

0
||φ s||2ds

}
.

Now assume that EP[ξT ] = 1 (see the Novikov condition) and define the new prob-
ability measure Q on FT by dQ= ξT dP on FT then

dW P
t = φ tdt +dWQ

t , (A.8)

whereWQ
t is a Q Wiener process.

Proof. We will use Lévy’s theorem to verify that WQ
t is indeed a Q Wiener process.

Evidently (i) WQ
0 = 0, and (ii) WQ

t is continuous. Furthermore, it is cleat that (iii)
[WQ

i ,WQ
j ](t) = δi jt. The only thing left to show is that WQ

t is a Q martingale. To this
end, it is already given that ξt is a P martingale with EP[ξT ] = 1. Applying Itō to the
process ξtW

Q
t we find that

d(ξtW
Q
t ) =WQ

t dξt +ξtdW
Q
t +dξtdW

Q
t

=WQ
t ξtφ

ᵀ
t dW P

t +ξt(dW P
t −φ tdt)+(dW P

t −φ tdt)ξtφ
ᵀ
t dW P

t

= ξt(W
Q
t φ
ᵀ
t +1)dW P

t

which proves that ξtW
Q
t is a P martingale. Now, applying the abstract Bayes’ theorem we

quickly deduce that

EQ[WQ
t ′ |Ft ] = ξ

−1
t EP[ξt ′W

Q
t ′ |Ft ] = ξ

−1
t ξtW

Q
t =WQ

t ,

which was to be proven. �

• Assume that the Girsanov kernel φ is such that

EP
[
e

1
2
∫ T

0 ||φ t ||2dt
]
< ∞

then ξ is a martingale and in particular EP[ξT ] = 1. This useful result is known as the
Novikov condition.
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• Girsonov’s theorem holds in reverse. In particular, assumeW P is a d-dimensional stan-
dard P-Wiener process on (Ω ,F ,P,{Ft}t∈[0,T ]) and assume that Ft = FW

t ∀t. Fur-
thermore, assume there exists a measure Q such that Q� P on FT then there exists an
adapted process φ such that the likelihood process ξ has the dynamics

dξt = ξtφ
ᵀ
t dW P

t , ξ0 = 1.

• SDEs of the form dXt = µtdt +σtdW P
t transform as dXt = (µt +σtφ)dt +σtdW

Q
t

under Q, which means that the drift changes µt 7→ µt +σtφ , but the diffusion remains
unchanged.

Corollary A.1. The Correlated Girsanov Theorem Let W P be a d-dimensional P-
Wiener process on (Ω ,F , P,{Ft}t∈[0,T ]) with correlation matrix Σ (i.e. dW P ∼
N(0,Σdt)), and let φ be any d-dimensional adapted column vector process. Now
define the process ξ on [0,T ] by dξt = ξt(Σ

−1φ t)
ᵀdW P

t , where ξ0 = 1, or identi-
cally

ξt = exp
{∫ t

0
(Σ−1φs)

ᵀdW P
s − 1

2

∫ t

0
φ
ᵀ
sΣ
−1

φ sds
}
.

Again, assume that EP[ξT ] = 1 and define the new probability measure Q on FT by
dQ= ξT dP on FT then

dW P
t = φ tdt +dWQ

t , (A.9)

whereWQ
t is a Q Wiener process with correlation matrixΣ.

Proof. The proof follows immediately by Cholesky decomposing the correlated Wiener
vectorW P

t =LW̄ P
t, where W̄ P

t, is a standard Wiener vector, and LLᵀ =Σ. �

A.6 The Market Price of Risk

Consider the case where we have N risky assets governed by the vector SDE system

dSt = diag(St)[µtdt +σtdW P
t ]

where W is a d-dimensional Wiener process with independent components and µ and σ
respectively are N and N× d dimensional tensors adapted to the Wiener filtration. From
equation (A.4) we know that under the risk free numeraire, S0, Q is a martingale measure
just if all tradable assets {S0,S1, ...,SN} have the short rate as their local rate of return:

dSt = diag(St)[rtιdt +σtdW
Q
t ].
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Girsanov’s theorem informs us that the Wiener correlations are related by (A.9) so the
question is, what is the kernel λt =−φ t such that the drift changes as µt 7→ rtι? From the
last bullet point in the previous section, it is clear that λt must satisfy

σtλt = µt − rtι. (A.10)

Clearly, the very existence of a risk neutral measure Q therefore necessitates that we can
find a solution λt to this system. E.g, if N < d then there are many solutions, one of
which can be written as λ∗t = σᵀt (σtσ

ᵀ
t )
−1(µt − rtι). On the other hand, if N = d and σ

is invertible then λ∗t = σ−1
t (µt − rtι) which is tantamount to the Sharpe ratio insofar as

σ is the diagonal matrix diag(σ1, ...,σN). In any case, we refer to λ as the market price
of risk vector, which makes sense insofar that each λ jt codifies the factor loading for the
individual risk factor Wjt .

Theorem A.7. The Market Price of Risk

• Under absence of arbitrage, there will exist a market price of risk vector process
λt satisfying rtι= µt −σtλt .

• The market price of risk λt is related to the Girsanov kernel through λt = −φ t
and thus to the risk neutral measure Q through

dQ
dP

= exp
{
−
∫ t

0
λᵀs dW P

s − 1
2

∫ t

0
||λs||2ds

}
. (A.11)

• In a complete market, the market price of risk (or, alternatively, the martingale
measure Q) is uniquely determined and there is a unique price for every deriva-
tive.

• In an incomplete market there are several possible market prices of risk processes
and several possible martingale measures which are consistent with no arbitrage.

• Thus, in an incomplete market {φ ,λ,Q} are not determined by absence of arbi-
trage alone. Instead they will be determined by supply and demand on the market
i.e. by the agents.

Remark A.2. Take care to notice the condition that the components in dW P are indepen-
dent. If this is not the case, i.e. if dW P ∼N (0,Σdt) for some d× d matrix Σ, rewrite
it as dW P = LdW̄ P where dW̄ P is a vector of i.i.d. Wiener increments and L is the
lower triangular matrix arising from the Cholesky decomposetionΣ =LLᵀ. This has the
effect that the market price of risk is defined through the equation σtLtλt = µt − rtι. In a
complete market N = d where σ = diag(σ1, ...,σN) this means that λt =L

−1R where R
is the vector of Sharpe ratios: ([µ1− r]/σ1, ..., [µN− r]/σN).
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A.7 Changing the Numeraire

As it was strongly suggested in section A.3, there is no a priori reason why we should
restrict ourselves to interpreting S0 as the risk free asset in the First Fundamental Theorem
as well as in the pricing equation (A.5). In fact, any non-dividend paying tradeable asset
will do, although the martingale measures associated with each different numeraire will
generally be distinct. To highlight this fact, we will write Q0 for a martingale measure
under the numeraire S0, Q1 for a martingale measure under the numeraire S1 and so forth.
We then have the following relationship between the different martingale measures

Theorem A.8. Assume that Qi is a martingale measure for the numeraire Si on FT
and assume S j is a positive asset price process such that S jt/Sit is a true Qi martin-
gale (not just a local one). If we define Q j on FT by the likelihood process

ξ
j

it =
dQ j

dQi =
Si0

S j0
·

S jt

Sit
, 0≤ t ≤ T (A.12)

then Q j is a martingale measure for S j.

Proof. The result follows by equation (A.3). Let Xt be an arbitrage free price process, then

EQ j
[

Xt ′

S jt ′

∣∣∣∣Ft

]
= EQi

[
ξ

j
it ′

ξ
j

it

Xt ′

S jt ′

∣∣∣∣Ft

]
= EQi

[
1

ξ
j

it

Si0

S j0

Xt ′

Sit ′

∣∣∣∣Ft

]

= EQi
[

S j0

Si0

Sit

S jt

Si0

S j0

Xt ′

Sit ′

∣∣∣∣Ft

]
=

Sit

S jt
EQi

[
Xt ′

Sit ′

∣∣∣∣Ft

]
=

Sit

S jt

Xt

Sit
=

Xt

S jt
.

So if Qi is a martingale measure and Q j is defined through ξ
j

i , then Q j is a martingale
measure. �

Theorem A.9. Assume that the price processes obey the Qi dynamics

dSt = diag(St)[µ
i
tdt +σtdW

Qi

t ].

Then the Qi dynamics of the likelihood process ξ
j

i is given by

dξ
j

it = ξ
j

it (σ
ᵀ
jt −σ

ᵀ
it)dWit .
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In particular, the Girsanov kernel φ
j
i for the transition π i to π j is given by the volatil-

ity difference φ
j
it = σ jt −σit .

Proof. Apply Itō’s lemma to (A.12) remembering that ξ
j

i is a Qi martingale. �

Essentially, a numeraire change thus boils down to the following: we start out with the
conventional pricing formula Xt = EQ

t [
Bt
BT

XT ]. Then we introduce the RN derivative ξT =
BT
B0

S0
ST

, such that the pricing formula becomes (from the Abstract Bayes’ Theorem):

Xt = EQS

t [ ξT
ξt

Bt
BT

XT ] = EQS

t [ St
ST

XT ].

To get the dynamics of ST under the QS measure we use Girsanov’s Theorem. Specifically,
since ξT = dQ/dQS we know that ηT := ξ

−1
T = dQS/dQ is such that dηt = φηtdWQ

t (find

this φ ). Furthermore, dWQ
t = φdt + dWQS

t , which is what we need. For example, if we
move from the bank (Bt = ert ) to the stock numeraire (St = S0 exp{(r− 1

2 σ2)t +σWQ
t }),

then we readily see dηt = σηtdWQ
t , whence dWQ

t = σdt +dWQS

t .

A.8 Dividend Paying Stocks

Consider the case where Snt is the price process of a dividend paying asset, then we cannot
use the First Fundamental Theorem to infer that Snt/Bt is a martingale under the risk free
measure Q (or more generally, that Snt/S jt is a martingale under the Q j measure). It turns
out that to generalise the martingale property, we must include the ”sum” of all incremental
changes in the deflated cumulative dividend, meaning:

Theorem A.10. Risk Neutral Valuation of Dividend Paying Assets Let Dt be the
cumulative dividend paid out by the asset Sn during the interval [0, t]. Then, under
the risk neutral martingale measure Q, the normalised gain process

Gt =
Snt

Bt
+
∫ t

0

1
Bs

dDs

is a Q-martingale.

Proof. We consider the dynamics of a self-financing portfolio which is long one unit of Snt
and where all dividends immediately are invested into the risk free bank account. Such a
portfolio has the value process Πt = Snt +XtBt where Xt denotes the instantaneous number
of units of Bt . The point is, of course, that the portfolio can be viewed as a non-dividend
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paying asset, meaning that Πt/Bt will be a Q-martingale. Now, from Itō’s lemma dΠt =
dSnt +XtdBt +BtdXt . Combining this with the self-financing condition dΠt = dSnt +dDt +
XtdBt we find that dXt = B−1

t dDt . I.e.

Πt = Snt +
∫ t

0
B−1

s BtdDs,

which will be a Q martingale upon being deflated by Bt . �

Theorem A.11. General Valuation of Dividend Paying Assets Assume now Snt is an
asset associated with the cumulative dividend Dt , and let S jt be the price process of a
non-dividend paying asset. Assuming absence of arbitrage we denote the martingale
measure for the numeraire S j by Q j then the following holds

• The normalised gain process G defined by

Gt =
Snt

S jt
+
∫ t

0

1
S js

dDs−
∫ t

0

1
S2

js
dDsdS js

is a Q j martingale.
• If the dividend process D has no driving Wiener component (or more generally, if

dDdS j = 0) then the last term vanishes.





Appendix B
PDE Methods in Mathematical Finance

Abstract In this appendix we briefly review some of the standard PDEs encountered in
mathematical finance alongside their (probabilistic) solutions. Furthermore, we expose
how a class of these PDEs may be solved numerically using finite difference methods.
Particular emphasis is here laid on Llewellyn Thomas’ tridiagonal matrix algorithm, which
we generalise to higher dimensional (block matrix) cases.

B.1 From Martingales to PDEs

B.1.1 The Feynman-Kac Formula

Rather than solving the expected value problems inherent to much of mathematical fi-
nance, we may choose to reformulate them in deterministic terms qua partial differential
equations. What bridges the gap between these fields is a fundamental result developed by
Richard Feynman and Mark Kac:

Theorem B.1. The Feynman-Kac Formula Suppose f : R× [0,T ] 7→R satisfies the
PDE

∂ f
∂ t

(x, t)+µ
Q(x, t)

∂ f
∂x

(x, t)+ 1
2 σ

2(x, t)
∂ 2 f
∂x2 (x, t)− r(x, t) f (x, t)+h(x, t) = 0,

s.t.: f (x,T ) = ψ(x).

where µQ,σ ,r and h are known functions. Then the solution may be written as

f (x, t) = EQ
Xt=x

[∫ T

t
Du

t h(Xu,u)du+DT
t ψ(x)

]
, (B.1)
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where we have defined the discounting factor Dt ′
t := e−

∫ t′
t r(Xs,s)ds and Xt is a stochas-

tic process defined on the filtered probability space (Ω ,F ,Q,F) which follows the
SDE

dXt = µ
Q(X , t)dt +σ(Xt , t)dWQ

t , X0 = x. (B.2)

Proof. We imagine that f solves the PDE listed above. Furthermore, define the process

Yv :=
∫ v

t
Du

t h(Xu,u)du+Dv
t f (Xv,v).

From Itō’s lemma

dYv = d
∫ v

t
Du

t h(Xu,u)du+dDv
t f (Xv,v)+Dv

t d f (Xv,v)+dDv
t d f (Xv,v).

Now we make the following observations:

• dDv
t =−r(Xv,v)Dv

t dv. In particular, the fourth term is zero.
• The first term can be written as d

∫ v
t Du

t h(Xu,u)du = Dv
t h(Xv,v)dv.

• From Itō’s lemma d f = fvdv+µQ fxdX + 1
2 σ2 fxxdX2.

Bringing these insights together we obtain

dYv =Dv
t

[
h(Xv,v)− r(Xv,v) f (Xv,v)+

∂ f
∂v

(Xv,v)+µ
Q(Xv,v)

∂ f
∂x

(Xv,v)

+ 1
2 σ

2(Xv,v)
∂ 2 f
∂x2 (Xv,v)

]
dv+Dv

t σ(Xv,v)
∂ f
∂x

(Xv,v)dWQ
v

By definition of f , the square bracket is zero. Hence, after integrating we are left with

YT = Yt +
∫ T

t
Dv

t σ(Xv,v)
∂ f
∂x

(Xv,v)dWQ
v .

Taking Q expectations conditional on Xt = x and using the fact that the Itō integral is a
martingale we get

EQ
Xt=x[YT ] = Yt = f (x, t),

which is exactly what needed to be shown. �
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B.1.2 The Kolmogorov Backward Equation

In a certain sense, the PDE in Theorem B.1 is the backward equation: i.e. given the dy-
namics (B.2) we may infer that the quantity (B.1) satisfies the listed PDE. Nonetheless,
when discussing the Kolmogorov backward equation, one usually thinks of a governing
equation of transition probabilities.

Theorem B.2. The Kolmogorov Backward Equation Consider the filtered proba-
bility space (Ω ,F ,Q,F) and let X be a stochastic process on this space, which
solves the SDE

dXt = µ
Q(Xt , t)dt +σ(Xt , t)dWQ

t .

Now consider the probability that Xs is within some set Y given that at time t < s
Xt = x, i.e.

Q(Xs ∈ Y |Xt = x) =
∫

y∈Y
ρ(y,s|x, t)dy,

where ρ is the density function. Then ρ satisfies the PDE{
∂

∂ t
+µ

Q(x, t)
∂

∂x
+ 1

2 σ
2(x, t)

∂ 2

∂x2

}
ρ(y,s|x, t) = 0,

for (x, t) ∈ R× (0,s) and where ρ(y,s|x, t)→ δ (y) as t↗ s.

Proof. We could consider the boundary value problem

∂ f
∂ t

(x, t)+µ
Q(x, t)

∂ f
∂x

(x, t)+ 1
2 σ

2(x, t)
∂ 2 f
∂x2 (x, t) = 0, (x, t) ∈ R× (0,s)

f (x,s) = 1{x ∈ Y}, x ∈ R

where 1 is the indicator function. From Feynman-Kac we deduce the solution

f (x, t) = EQ
Xt=x[1{Xs ∈ Y}].

But this is, of course, just equal to

f (x, t) =Q(Xs ∈ Y |Xt = x) =
∫

y∈Y
ρ(y,s|x, t)dy

Since this argument works in both directions, we have effectively already verified the
Backward theorem. In particular, substituting the transition density form of the solution
into the PDE we get
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y∈Y

{
∂

∂ t
+µ

Q(x, t)
∂

∂x
+ 1

2 σ
2(x, t)

∂ 2

∂x2

}
p(y,s|x, t)dy = 0, (x, t) ∈ R× (0,s)∫

y∈Y
p(y,s|x,s)dy = 1{x ∈ Y}, x ∈ R.

But this holds for any set Y so we can drop the integrals (whence the indicator function
becomes a Dirac delta function). �

B.1.3 The Kolmogorov Forward Equation

In the backward equation we observe that the differential operator operates on the variables
upon which we condition (the “backward variables” if you will), i.e. (x, t). A correspond-
ing result exists for the “forward variables” viz. (y,s):

Theorem B.3. The Kolmogorov Forward Equation (a.k.a.The Fokker-Planck
Equation) Consider the filtered probability space (Ω ,F ,Q,F) and let X be a
stochastic process on this space, which solves the SDE

dXt = µ
Q(Xt , t)+σ(Xt , t)dWQ

t .

Now consider the probability that Xs is within some set Y given that at time t < s
Xt = x, i.e.

Q(Xs ∈ Y |Xt = x) =
∫

y∈Y
ρ(y,s|x, t)dy

where ρ is the density function. Then ρ satisfies the PDE

∂ρ

∂ s
(y,s|x, t)+ ∂

∂y
(µQ(y,s)ρ(y,s|x, t))− 1

2
∂ 2

∂y2 (σ
2(y,s)ρ(y,s|x, t)) = 0

for (y,s) ∈ R× (0,T ) and where ρ(y,s|x, t)→ δ (x) as s↘ t.

Proof. Consider a test function h(y,s) ∈ C 2,1 with compact support1 in the set R× (t,T )
where t < T are two fixed coordinates in time. From Itō’s lemma,

h(XT ,T ) =h(Xt , t)+
∫ T

t

{
∂

∂ s
+µ

Q(y,s)
∂

∂y
+ 1

2 σ
2(y,s)

∂ 2

∂y2

}
h(Xs,s)ds

+
∫ T

t

∂h
∂y

(Xs,s)dWQ
s

1 I.e. the function is non-zero only in a closed, bounded region.
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Applying the expectation operator EQ
Xt=x[· · · ] and using the compact support condition

(h(x,T ) = h(x, t) = 0) we obtain∫
R

∫ T

t
ρ(y,s|x, t)

{
∂

∂ s
+µ

Q(y,s)
∂

∂y
+ 1

2 σ
2(y,s)

∂ 2

∂y2

}
h(y,s)dsdy = 0

Integrating by parts “in time” we find that∫
R

∫ T

t
ρ(y,s|x, t)∂h

∂ s
(y,s)dsdy =

∫
R

{
[ρh]Tt −

∫ T

t

∂ρ

∂ s
hds
}

dy

=−
∫
R

∫ T

t
h(y,s)

∂ρ

∂ s
(y,s|x, t)dsdy

Likewise, using Fubini’s rule and integrating by parts in “state space”

∫
R

∫ T

t
ρ(y,s|x, t)

{
µ
Q(y,s)

∂

∂y
+ 1

2 σ
2(y,s)

∂ 2

∂y2

}
h(y,s)dsdy

=
∫ T

t

∫
R

ρ(y,s|x, t)µQ(y,s)
∂h
∂y

(y,s)dyds+ 1
2

∫ T

t

∫
R

ρ(y,s|x, t)σ2(y,s)
∂ 2h
∂y2 (y,s)dyds

=
∫ T

t

{
[ρµ

Qh]∞−∞−
∫
R

∂ (ρµQ)

∂y
hdy
}

ds+ 1
2

∫ T

t

{[
ρσ

2 ∂h
∂y

]∞

−∞

−
∫
R

∂ρσ2

∂y
∂h
∂y

dy
}

ds

=−
∫ T

t

∫
R

∂ (ρµQ)

∂y
hdyds− 1

2

∫ T

t

{[
∂ρσ2

∂y
h
]∞

−∞

−
∫
R

∂ 2ρσ2

∂y2 hdy
}

ds

=−
∫
R

∫ T

t
h(y,s)

{
∂ (ρ(y,s|x, t)µQ(y,s))

∂y
h− 1

2
∂ 2(ρ(y,s|x, t)σ2(y,s))

∂y2

}
dyds

Combining the last three results, we have

∫
R

∫ T

t
h(y,s)

{
∂ρ

∂ s
(y,s|x, t)+ ∂ (ρ(y,s|x, t)µQ(y,s))

∂y
h− 1

2
∂ 2(ρ(y,s|x, t)σ2(y,s))

∂y2

}
dyds= 0.

Indeed, since h was chosen as an arbitrary test function, the result now follows. �

B.2 Solving PDEs Through Finite Difference Methods

The story of how to set up and solve PDEs in option pricing using finite difference meth-
ods is one that has echoed into the furthest corners of quantitative finance. It is thus not
altogether unreasonable to treat this subject laconically and in recapitulatory terms, un-
der the assumption that the reader already has established a modicum of familiarity with
the field. Those who seek a deeper understanding of the intricacies of finite difference
methodologies are referred to the specialist literature for details.
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B.2.1 Numerical Solutions to PDEs in One Spatial Dimension

Suppose we wish to price a contingent claim on some underlying quantity which can be
modelled as a stochastic differential equation. Specifically, assume that the risk neutral
dynamics of the underlying follows some generic local volatility model

dXt = µ(Xt , t)dt +σ(Xt , t)dWQ
t

for t ∈ [0,T ], where µ is the risk-neutral drift rate and σ denotes the volatility. Furthermore,
let the terminal pay-off of the contingent claim be of the form Φ(XT ). If we let f (x, t) :
R+× [0,T ] 7→ R denote the time t value of the contingent claim, where Xt = x, then a
simple replicating argument shows that f obeys the PDE

∂ f
∂ t

(x, t)+µ(x, t)
∂ f
∂x

(x, t)+ 1
2 σ(x, t)2 ∂ 2 f

∂x2 (x, t)− r(x, t) f (x, t) = 0, (B.3)

(x, t) ∈ R+× [0,T ),

with terminal condition f (x,T ) = Φ(x), ∀x ∈ R+, where r(x, t) has the interpretation of
a local risk free rate. Generally, (B.3) does not admit analytical solutions, which prompts
us to seek speedy and stable numerical solution algorithms instead. The basic idea is here
to rewrite the governing PDE as a system of difference equations which can be solved
iteratively backwards in time. To this end, we discretise the state-space R+× [0,T ] into
a rectangular grid of J spatial coordinates X ≡ {xmin ≡ x1,x2, ...,xJ−1,xmax ≡ xJ} (s.t.
∀ j : x j+1− x j = ∆x) and N +1 temporal coordinates T≡ {t0 ≡ 0, t1, ..., tN−1, tN ≡ T} (s.t.
∀n : xn+1− xn = ∆ t), where the upper and lower spatial boundaries on the grid are chosen
to be plausible upper and lower bounds for the underlying process. To square the govern-
ing PDE (B.3) with this discretised space X×T we perform the obvious identifications
f n

j ≡ f (x j, tn) (and similarly for µn
j , σn

j and rn
j ). It is somewhat less transparent what con-

stitutes adequate discrete analogues for the first and second derivatives in space and time
- indeed, the conventions for this vary between different numerical schemes. One particu-
larly obvious choice is the implicit method in which

∂ f
∂ t

(x j, tn)≈
f n+1

j − f n
j

∆ t
,

∂ f
∂x

(x j, tn)≈
f n

j+1− f n
j−1

2∆x
, (B.4)

∂ 2 f
∂x2 (x j, tn)≈

f n
j+1−2 f n

j + f n
j−1

(∆x)2 .

Nonetheless, our concern is not with these petty details, but rather the grander picture: what
matters is that the classical schemes after some reshuffling of terms result in a discretised
PDE of the form

an
j f n

j−1 +bn
j f n

j + cn
j f n

j+1 = dn+1
j , (B.5)

for 1< j < J and 0≤ n<N. Here, the coefficients an
j ,b

n
j and cn

j will generally be functions
of (rn

j ,µ
n
j ,σ

n
j ,∆ t,∆x). Analogously, the quantity dn+1

j depends on the corresponding tn+1

counterparts as well as on ( f n+1
j−1 , f n+1

j , f n+1
j+1 ).
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Since the terminal condition of the PDE is known (∀ j : f N
j = Ψ(x j)) dN

j can be
computed. To determine the time t1 = 0 value of f = ( f1, f2, ..., fJ) we must there-
fore proceed along the following backwards iterative scheme: First, determine fN−1 =
( f N−1

1 , f N−1
2 , ..., f N−1

J ). From (B.5) we immediately have J−2 simultaneous linear equa-
tions involving the J unknowns ”fN−1”, viz.

aN−1
2 f N−1

1 +bN−1
2 f N−1

2 + cN−1
2 f N−1

3 = dN
2 ,

aN−1
3 f N−1

2 +bN−1
3 f N−1

3 + cN−1
3 f N−1

4 = dN
3 ,

...

aN−1
J−1 f N−1

J−2 +bN−1
J−1 f N−1

J−1 + cN−1
J−1 f N−1

J = dN
J−2.

To solve this system one must either fix two of the unknowns or add two additional equa-
tions, linearly independent of all the others. Typically, this involves thinking carefully
about the nature of the external boundaries in the grid ( j = 0 and j = J+1). E.g. financial
derivatives which are deep in or out of the money might have obvious prices ∀t < T or we
can utilise the fact that their gammas will be close to zero. Either way, we will assume that
we can meaningfully add the two extra conditions

an
1 f n

0 +bn
1 f n

1 + cn
1 f n

2 = dn+1
1 ,

an
J f n

J−1 +bn
J f n

J + cJ f n
J+1 = dn+1

J ,
(B.6)

∀n < N, where f n
0 and f n

J+1 (in some form or the other) are known quantities. Thus we
have obtained a full system of J simultaneous equations in J unknowns, wherefore we can
solve for fN−1. Once this is done, the algorithm is repeated from the top: i.e. we determine
fN−2 using equation (B.5) coupled with two boundary conditions and our knowledge of
fN−1, ... and so forth till we reach the desired f0.

B.2.2 Thomas’ Algorithm

System (B.5) coupled with the boundary equations (B.6) constitute a triangular linear ma-
trix system:

bn
1 cn

1 0 0 0 · · · 0

an
2 bn

2 cn
2 0 0 · · · 0

0 an
3 bn

3 cn
3 0 · · · 0

...
. . . . . . . . .

...

0 · · · 0 0 an
J−1 bn

J−1 cn
J−1

0 · · · 0 0 0 an
J bn

J





f n
1

f n
2

f n
3

...

f n
J−1

f n
J


=



dn+1
1

dn+1
2

dn+1
3

...

dn+1
J−1

dn+1
J


−



an
1 f n

0

0

0
...

0

cJ f n
J+1


,

which succinctly henceforth will be written
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Anfn = dn+1
∗ , (B.7)

where An ∈ RJ×J is the tridiagonal matrix, fn ∈ RJ is as defined above, and dn+1
∗ ∈ RJ

encodes both of the vectors on the righthand side.
The nitty-gritty of this section may now be stated as follows: if we naı̈vely solve for

fn in (B.7) by computing [An]−1 using Gaussian elimination with backward substitution
we will incur 1

3 J3 + J2 − 1
3 J multiplications & divisions and 1

3 J3 + 1
2 J2 − 5

6 J additions
& subtractions [4]. The totality of binary operations would concordantly scale as O(J3).
Nonetheless, this is in fact computationally redundant as any (strictly diagonally dom-
inant)2 tridiagonal matrix system may be solved without computing the inverse matrix
[An]−1 explicitly. Specifically, by adopting Thomas’ algorithm for triangular matrix sys-
tems the number of binary operations may be brought down to scale as O(J).

The details of Thomas’ scheme are straightforward: first an LU-decomposition of An

is performed, i.e.
An = LnUn,

where Ln is a lower triangular matrix and Un is an upper triangular matrix:

Ln =



1 0 0 0 . . . 0

ln
2 1 0 0 . . . 0

0 ln
3 1 0 . . . 0

...
. . . . . .

...

0 0 ln
J−1 1 0

0 . . . 0 0 ln
J 1


, and Un =



hn
1 un

1 0 0 . . . 0

0 hn
2 un

2 0 . . . 0

0 0 hn
3 un

3 0
...

. . . . . .
...

0 0 0 hn
J−1 un

J−1

0 . . . 0 0 0 hn
J


. (B.8)

Notice that An and LnUn have the same number of degrees of freedom, 3J− 2. By per-
forming the multiplication explicitly

LnUn =



hn
1 un

1 0 0 . . . 0

ln
2hn

1 ln
2un

1 +hn
2 un

2 0 . . . 0

0 ln
3hn

2 ln
3un

2 +hn
3 un

3 0
...

. . . . . . . . .
...

0 0 ln
J−1hn

J−2 ln
J−1un

J−2 +hn
J−1 un

J−1

0 . . . 0 0 ln
J hn

J−1 ln
J un

J−1 +hn
J


,

and comparing element-wise with An we immediately see that an
j = ln

j hn
j−1 ∀ j ∈ [2,J],

bn
1 = hn

1 and bn
j = ln

j un
j−1 +hn

j ∀ j ∈ [2,J] and finally cn
j = un

j ∀ j ∈ [1,J−1]. Thus, we may
determine hn

j , un
j and ln

j by moving from left to right and downward through the triangular
matrix, giving us the first part of Thomas’ algorithm:

2 A square matrix M ∈ RJ×J is strictly diagonally dominant if ∀i : |Mii| > ∑ j 6=i |Mi j|. This is a sufficient
condition [Burden & Faires, Theorem 6.21] for M to be non-singular.
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Thomas’ Algorithm, Part I: The LU decomposition:

Set hn
1 := bn

1;
un

1 := cn
1;

For j = 2, ...,J−1 set ln
j := an

j/hn
j−1;

hn
j := bn

j − ln
j un

j−1;

un
j := cn

j ;

Set ln
J := an

J/hn
J−1;

hn
J := bn

J− ln
J un

J−1;

The second and final step in the algorithm is to solve the system

LnUnfn = dn+1
∗ ,

which clearly does not require a full matrix inversion. Specifically, define yn as the solution
to the system Lnyn = dn+1

∗ . Written in component form, it is evident that yn
1 = dn+1

∗1 and
ln

j yn
j−1 + yn

j = dn+1
∗ j for j ∈ [2,J], hence all components in yn are determined simply by

looking at the first equation in the system and then moving incrementally downwards.
Now, by comparison, yn = Unfn so we have, in fact, also facilitated an easy evaluation of
fn. To see this, notice that hn

j f n
j +un

j f n
j+1 = yn

j for j ∈ [1,J−1] and hn
J f n

J = yn
J so we must

simply start with the last equation and work our way incrementally upwards. In algorithmic
terms:

Thomas’ Algorithm, Part II: Solving Ly = d∗; Ux = y:

Set yn
1 := dn+1

∗1 ;

For j = 2, ...,J set y j := dn+1
∗ j − ln

j yn
j−1;

Set fJ := yn
J/hn

J ;
For j = J−1, ...,1 set f n

j := (yn
j −un

j f n
j+1)/hn

j ;

As a complete specification of fn has been obtained, this concludes the algorithm. Notice
that 2J−2 multiplications & divisions and J−1 additions & subtractions are done in Part
I of the algorithm and that 3J−2 multiplications & divisions and 2J−2 additions & sub-
tractions are done in Part II of the algorithm. The total number of binary operations needed
therefore scales as O(J), which is a substantial improvement over a Gaussian procedure.

B.2.2.1 A Restatement

In practice, one often sees the algorithm expressed in the following (equivalent) form
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Thomas’ Algorithm:

Set γ
n
1 := cn

1/bn
1;

δ
n
1 := dn+1

∗1 /bn
1;

For j = 2, ...,J−1 set qn
j := bn

j −an
jγ

n
j−1

γ
n
j := cn

j/qn
j ;

δ
n
j := (dn+1

∗ j −an
jδ

n
j−1)/qn

j ;

Set δ
n
J := (dn+1

∗J −an
Jδ

n
j−1)/(b

n
J−an

Jγ
n
J−1);

f n
J := δ

n
J ;

For j = J−1, ...,1 set f n
j := δ

n
j − γ

n
j f n

j+1;

Proof. To see the equivalence, notice that f n
1 = (yn

1 − un
1 f n

2 )/hn
1 = (dn+1

∗1 − cn
1 f n

2 )/bn
1 =

δ n
1 − γn

1 f n
2 . Analogously, for j = 2, ...,J−1,

f n
j =

yn
j

hn
j
−

un
j

hn
j

f n
j+1 =

dn+1
∗ j − ln

j yn
j−1

bn
j − ln

j un
j−1
−

cn
j

bn
j − ln

j un
j−1

f n
j+1

�
=

dn+1
∗ j −an

j [y
n
j−1/hn

j−1]

bn
j −an

j [u
n
j−1/hn

j−1]
−

cn
j

bn
j −an

j [u
n
j−1/hn

j−1]
f n

j+1

We now make the obvious observation that when j = 2 then [yn
j−1/hn

j−1] = δ n
1 and

[un
j−1/hn

j−1] = γn
1 . Comparing the coefficients in � with the definitions of δ n

j and γn
j

above, we therefore immediately find that f n
j = δ n

j − γn
j f n

j+1. Finally, in the event j = J:
f n
J = yn

J/hn
J = (dn+1

∗J − ln
J yn

J−1)/(a
n
J− ln

J un
J−1). Sub in ln

J = an
J/hn

J−1 to obtain f n
J = (dn+1

∗J −
an

J [y
n
J−1/hJ−1])/(an

J−an
J [u

n
J−1/hn

J−1]) = (dn+1
∗J −an

Jδ n
J−1)/(a

n
J−an

Jγn
J−1) = δ n

J . �

Remark: The computational complexity (binary count) is invariant under this rephrasing:
we still find 5J−4 multiplications & divisions and 3J−3 additions & subtractions.

B.2.3 The Multi-dimensional Case

It turns out that a generalisation of the above is quite possible to multiple dimension.
For simplicity we will illustrate this point by considering the case of two spatial dimen-
sions. Specifically, suppose we have a contingent claim which depends on two, possibly
correlated, underlying factors X and Y which can be modelled as stochastic differential
equations. Specifically, let us assume a governing risk neutral dynamics of the form(

dXt

dYt

)
=

(
µ1(Xt ,Yt , t)

µ2(Xt ,Yt , t)

)
dt +

(
σ1(Xt ,Yt , t) 0

0 σ2(Xt ,Yt , t)

)(
dWQ

1t

dWQ
2t

)
,
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where dWQ
1t and dWQ

2t have a Pearson correlation coefficient of ρ . Letting the terminal pay-
off of the contingent claim be Ψ(XT ,YT ) then if f (x,y, t) : R+×R+× [0,T ] 7→ R denotes
the time t value of the claim, it follows by a replicating argument that f satisfies

∂ f
∂ t

(x,y, t)+µ1(x,y, t)
∂ f
∂x

(x,y, t)+µ2(x,y, t)
∂ f
∂y

(x,y, t)+ 1
2

{
σ1(x,y, t)2 ∂ 2 f

∂x2 (x,y, t)

+2ρσ1(x,y, t)σ2(x,y, t)
∂ 2 f

∂x∂y
(x,y, t)+σ2(x,y, t)2 ∂ 2 f

∂y2 (x,y, t)
}
− r(x,y, t) f (x,y, t) = 0,

(B.9)
(x,y, t) ∈ R+×R+× [0,T ),

where f (x,y,T ) =Ψ(x,y), ∀(x,y) ∈ R+×R+.
We discretise the problem by considering a rectangular cuboid consisting of J x-

coordinates, K y-coordinates and N +1 temporal coordinates in lieu of the full state space
R+×R+× [0,T ]. Again, we assume equidistance ∀ j : ∆x = x j+1−x j, ∀k : ∆y = yk+1−yk
and ∀n : ∆ t = tn+1− tn and that X and Y take on values greater than some upper bound-
aries and lower than some lower boundaries with negligible probability. Ergo, the discre-
tised space is of the from X×Y×T= {xmin = x1,x2 = x1 +∆x, ...,xmax ≡ xJ}×{ymin =
y1,y2 = y1 +∆y, ...,ymax ≡ yK ×{t0 = 0, t1 = t0 +∆ t, ..., tN = t0 +N∆ t ≡ T}. Defining
f n

j,k ≡ f (x j,yk, tn) etc. the discretisation of the PDE runs almost exactly as in the single
(spatial) variable case. The only thing novel about our problem is the existence of a cross
second order spatial derivative, yet that can also be handled:

∂ 2 f
∂x∂y

(x j,yk, tn)≈
f n

j+1,k+1− f n
j+1,k−1− f n

j−1,k+1 + f n
j−1,k−1

4∆x∆y
. (B.10)

Of course, our concern is still with the broader picture and as it happens the classical,
reasonably stable, numerical schemes (the implicit method, Crank-Nicholson,...) now give
rise to a discretised PDE of the form

an
j,k f n

j−1,k−1 +bn
j,k f n

j−1,k + cn
j,k f n

j−1,k+1 + ân
j,k f n

j,k−1 + b̂n
j,k f n

j,k+

ĉn
j,k f n

j,k+1 + ãn
j,k f n

j+1,k−1 + b̃n
j,k f n

j+1,k + c̃n
j,k f n

j+1,k+1 = dn+1
j,k

(B.11)

for 1 < j < J, 1 < k < K and 0 ≤ n < N. Again, the nine coefficients on the lefthand
side will be functions of (rn

j,k,µ
n
j,k,σ

n
j,k,ρ,∆ t,∆x,∆y) as will the righthand side (albeit at

at tn+1). Moreover, dn+1
j,k will in general depend on { f n+1

a,b } where a ∈ { j− 1, j, j + 1}
and b ∈ {k− 1,k,k + 1}, so once again we have recovered a system which beckons a
”backwards iterative solution approach” (recall that the time tN face of the cuboid is known
in accordance with the terminal condition ∀ j∀k: f N

j,k =Ψ(x j,yk)).
Our only remaining problem is that (B.11) only gives us (J−2)×(K−2) linear equa-

tions in J×K unknowns. Thus, to recover the additional 2(K+J−2) linearly independent
equations, we will assume that we can let 1≤ j≤ J, 1≤ k≤K in (B.11): all new instances
of f involving zeroth, (J+1)th or (K +1)th subscripts are assumed obvious (e.g. by being
relatable to neighbouring f s involving subscripts in one, J or K). In visual terms one may
think of it as follows: upon inflating the cuboid uniformly by one grid point in all spatial
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dimensions, all additional 2(K + J−2)(N +1) grid points engulfed by the expansion are
considered known.

B.2.3.1 A Block Tridiagonal Matrix

A traditional Gaussian elimination approach to system (B.11) incl. boundary equations
would blatantly be stupendously computationally expensive (specifically, it requires O(J3K3)
binary operations per time step). Fortunately, by carefully selecting the ordering of the set
of two-tuples {( j,k)}1≤ j≤J,1≤k≤K

3 we may bring the linear equations into block tridi-
agonal form, which in turn is susceptible to a generalised multi-dimensional version of
Thomas’ algorithm. Two natural orderings come to mind, viz.

(a) : ( j,k) ∈ {(1,1),(1,2), ...,(1,K);(2,1),(2,2), ...,(2,K); ...;(J,1),(J,2), ...,(J,K)},
(b) : ( j,k) ∈ {(1,1),(2,1), ...,(J,1);(1,2),(2,2), ...,(J,2); ...;(1,K),(2,K), ...,(J,K)}.

As it will shortly become obvious, choosing the former gives rise to a block tridiagonal
matrix of bandwidth4 2K + 2, whilst the latter gives rise to a block tridiagonal matrix of
bandwidth 2J +2. Generally, it is favourable to minimise the bandwidth as it turns out to
engender fewer binary operations in the solution algorithm.5 Without loss of generality we
will proceed as though K ≤ J and thus opt for ordering (a).

The purported block tridiagonal nature now shows by writing out a few rows explic-
itly according to the chosen ordering. The details of this are fairly tedious and won’t be
reproduced here. Ultimately the picture that emerges is the following:

Ân
1 Ãn

1 0 0 0 · · · 0

An
2 Ân

2 Ãn
2 0 0 · · · 0

0 An
3 Ân

3 Ãn
3 0 · · · 0

...
. . . . . . . . .

...

0 · · · 0 0 An
J−1 Ân

J−1 Ãn
J−1

0 · · · 0 0 0 An
J Ân

J





fn
1

fn
2

fn
3

...

fn
J−1

fn
J


=



qn+1
1

qn+1
2

qn+1
3

...

qn+1
J−1

qn+1
J


−



εn
1

εn
2

εn
3

...

εn
J−1

εn
J


, (B.12)

where the matrix components are defined thusly:

3 Where every two-tuple really should be read as shorthand notation for the coordinate ( j∆x,k∆y) in
X×Y.
4 The bandwidth of a block tridiagonal matrix is defined as the maximal span of non-zero entries found in
any given row. I.e. the number of elements starting with the first non-zero entry in a row and ending with
the last non-zero entry in a row (but possibly including zero entries in between).
5 The reader may realise this by inspecting the generalised version of Thomas’ algorithm, which requires
the inversion of J RK×K matrices (scheme (a)) or K RJ×J matrices (scheme (b)).
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xAn
j ≡



xbn
j,1

xcn
j,1 0 0 0 · · · 0

xan
j,2

xbn
j,2

xcn
j,2 0 0 · · · 0

0 xan
j,3

xbn
j,3

xcn
j,3 0 · · · 0

...
. . . . . . . . .

...

0 · · · 0 0 xan
j,K−1

xbn
j,K−1

xcn
j,K−1

0 · · · 0 0 0 xan
j,K

xbn
j,K


∈ RK×K ,

where the superscript x represents a “[blank]”, “hat” or “tilde” over the following object.
Furthermore, fn

j ≡ ( f n
j,1, f n

j,2, f n
j,3, ..., f n

j,K−1, f n
j,K)∈RK , qn

j ≡ (dn
j,1,d

n
j,2,d

n
j,3, ...,d

n
j,K−1dn

j,K)∈
RK and

εn
j ≡ a j,1ê1 + c j,K êK +δ j,1An

1fn
0 +δ j,JÃn

Jfn
J+1 ∈ RK ,

where we have defined the coefficients a j,1 ≡ an
j,1 f n

j−1,0 + ân
j,1 f n

j,0 + ãn
j,1 f n

j+1,0 and c j,K ≡
cn

j,K f n
j−1,K+1+ ĉn

j,K f n
j,K+1+ c̃n

j,K f n
j+1,K+1. Lastly, ê1 is the unit vector (1,0,0, ...,0,0)∈RK ,

êK is the unit vector (0,0,0, ...,0,1) ∈ RK and δx,y is the Kronecker delta.

B.2.3.2 Thomas’ Generalised Algorithm

The mega-matrix in equation (B.12) is embedded in the space RJ·K×J·K and will (for
most practical purposes) be highly impractical to invert. However, we may proceed al-
most exactly as in subsection B.2.2 to extend Thomas’ algorithm to matrices with matrix
components. To this end, we introduce the lower and upper triangular matrices Ln and
Un as in (B.8) where each component now is a square matrix of dimensionality k× k:
(ln

i ,h
n
j ,u

n
j ,1,0) 7→ (Ln

j ,Hn
j ,Un

j ,I,0). Defining d∗ j ≡ d j− ε j, ∀ j, Thomas’ generalised al-
gorithm then boils down to the procedure exhibited below.

A few remarks should be wrapped around this algorithm. First of all, the non-
commutativity of matrices must obviously be observed. The ordering below is correct and
may be verified by following the original argument in detail. Secondly, whilst the notion
might have some prima facie allure, notice that one cannot imbed a Thomas algorithm
within Thomas’ generalised algorithm to solve for the Ln

js and yn
js (in the attempt to avoid

an explicit inversion of the Hn
js). This follows from the simple fact that the Hn

js generally
won’t be tridiagonal beyond the case j = 1.

We may now compute the reduction in computational complexity as follows: from the J
full matrix inversions of the Hn

js we incur from Gaussian elimination: J ·( 1
3 K3+K2+ 1

3 K)

multiplications & divisions and J · ( 1
3 K3 + 1

2 K2− 5
6 K) additions & subtractions. The re-

maining multiplications & divisions in the algorithm amount to 5JK− 4K, whilst the re-
maining additions & subtractions amount to 3JK− 3K. Thus, under the assumption that
K ≤ J, the overall complexity of the algorithm scales as O(JK3) - a substantial improve-
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ment over Gauss’ O(J3K3).6 Insofar as J≤K we would obtain the “mirror” result O(KJ3),
so one cannot exploit the difference in the powers of J and K beyond selecting the smallest
possible bandwidth to begin with.

Thomas’ Generalised Algorithm

Set Hn
1 := Ân

1;

Un
1 := Ãn

1;

For j = 2, ...,J−1 set Ln
j := An

j [H
n
j−1]

−1;

Hn
j := Ân

j −Ln
jU

n
j−1;

Un
j := Ãn

j ;

Set Ln
J := An

J [H
n
J−1]

−1;

Hn
J := Ân

J−Ln
JUn

J−1;

Set yn
1 := dn+1

∗1 ;

For j = 2, ...,J set yn
j := dn+1

∗ j −Ln
jy

n
j−1;

Set fn
J := [Hn

J ]
−1yn

J ;

For j = J−1, ...,1 set fn
j := [Hn

j ]
−1(yn

j −Un
j f

n
j+1);

Remark B.1. Although the generalised Thomas algorithm offers a significant reduction in
computational speed, we do certainly not purport that it is the most efficient way to solve
block-tridiagonal linear systems. It manifestly is not. Readers interested in diving into this
rich field are referred to Saad [20].

6 In actual implementations of Thomas’ generalised algorithm one might find that it is appropriate to
manipulate the indices, which will engender further binary operations. However, the totality of these prove
to be considerably smaller than the leading order of magnitude.



Appendix C
Stochastic Control Methods in Mathematical
Finance

Abstract In this appendix we briefly review the two basic paradigms of stochastic control
theory, viz. the Hamilton-Jacobi-Bellman formalism and the martingale method. To em-
phasise the problem solving aspect of the two approaches, we shall use Merton’s classical
portfolio optimisation problem as our vantage point. The final section discusses important
differences between the two approaches.

C.1 The Problem Posed

We consider the case of an investor who is assumed to live over a known temporal horizon
[0,T ]. His total wealth, Wt , is modelled dynamically in time by a stochastic differential
equation and is assumed to have the known initial value W0 = w0. At any given instant the
investor is faced with the choice of how much of his wealth to consume per unit time, ct ,
and which proportion of his wealth, πt = (π1t ,π2t , ...,πnt)

ᵀ, he should allocate to n risky
asset, the price processes of which we codify by St = (S1t ,S2t , ...,Snt)

ᵀ. For simplicity, we
assume a governing dynamics of the form

dSt = diag(St)[µdt +σdW P
t ], (C.1)

where µ ∈ Rn and σ ∈ Rn×n are known constant tensors. The remaining wealth of the
investor is to be placed (with proportion 1−πᵀt ι) in a riskless asset, Bt , which grows at the
constant rate of interest r, whence dBt = rBtdt. Furthermore, we assume that consumption
is everywhere non-negative, ct ≥ 0, whilst no such condition is placed on πt (that is to say,
we allow for short selling and leveraging). If u is the investors utility function, and δ is
some subjective discount factor, then Merton’s portfolio problem [12] is to find functions
c∗t and π∗t , t ∈ [0,T ], such that

EP
[∫ T

0
e−δ tu(ct)dt + e−δT u(WT )

]
, (C.2)

205
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is maximised. I.e. our aim is to find a consumption-investment strategy such that the ex-
pected discounted utility of consumption over a life-time and the expected discounted
utility of the bequest WT is at its peak. To this end, let us assume we operate with utility
of the constant relative risk aversion (CRRA) variety

u(x) =
x1−γ

1− γ
,

where γ ∈ R+\{1} codifies the investor’s risk aversion.
Finally, assume the overall portfolio dynamics is self-financing and that there are no

monetary injections such as labour income. From the self-financing condition (Björk’s
Lemma 6.4 [10])7 it follows that the wealth dynamics is of the form

dWt = Wt [r+πᵀσλ]dt− ctdt +Wtπ
ᵀσdW P

t , (C.3)

where λ≡ σ−1(µ− rι) ∈ Rn is the market price of risk vector.
Over the following pages, we expose standard solution methods to the Merton problem

in a manner which allows for straightforward generalisation to more complicated scenar-
ios. First up is the method most commonly encountered in the literature, viz. the Hamilton-
Jacobi-Bellman (HJB) method, so named after the pioneering work on stochastic control
theory by Richard Bellman in the 1950s alongside the celebrated (deterministic) calculus
of variations result by William Hamilton and Carl Jacobi. Subsequently, we shall consider
the so-called martingale method [6], which despite its probabilistic nature (however obfus-
cating it might appear at first), has much to offer over the traditional Bellmanian approach.
Our level of pedagogy is somewhat on a par with Björk [10] and Munk [13]. Readers
interested in more advanced surveys are referred to Karatzas and Shreve [10] and Pham
[18].

Remark C.1. From a purely axiomatic perspective, Merton’s problem of utility optimisa-
tion is a cacophony of dubious and overtly simplified assumptions not easily squared with
real life investment-consumption processes of rational agents. Pitfalls include the the neg-
ligence of labour income and transactions costs, the constancy of δ ,µ,σ, and r, the fixed
lifetime of the investor and his simplified utility function. Nevertheless, we may rejoice
in the fact that the relatively complex mathematical machinery of the problem above ad-
mits analytical solutions. Indeed, there is some solace to be sought in the more recent
developments of the problem, which has addressed some of these issues and more.

7 Here’s the idea: let Pt = (P1t ,P2t , ...,Pmt)
ᵀ ∈ Rm be a pricing vector, and let ht ∈ Rm be the portfolio

holding, such that the investor’s total wealth at time t is Wt = h
ᵀ
t Pt . Suppose the investor last updated

his portfolio at time t − ∆ t (holding ht−∆ t ), then the value of his portfolio at t is Wt = h
ᵀ
t−∆ tPt . The

cost of the new portfolio he buys at t is hᵀt Pt . We allow for proceeds consumption of the magnitude
ct ∆ t in the interval ∆ t i.e. all in all the self-financing condition is hᵀt−∆ tPt = h

ᵀ
t Pt + ct ∆ t or identically

∆h
ᵀ
t Pt + ct ∆ t = 0. Adding and subtracting ∆h

ᵀ
t Pt−∆ t and letting ∆ t → 0 we get the budget equation

P
ᵀ
t dht +dP ᵀt dht + ct dt = 0. But applying Itô to Wt = h

ᵀ
t Pt we get dWt = h

ᵀ
t dPt +P

ᵀ
t dht +dP ᵀt dht ,

which combined with our budget constraint gives us the self-financing condition dWt = h
ᵀ
t dPt − ct dt

or identically dWt = Wt ∑i πit dPit/Pit − ct dt where we have defined the weight πit ≡ Pit hit/Wt . Clearly,
∑i πit = 1 so the nomenclature weight is appropriate.
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C.2 The Hamilton-Jacobi-Bellman Method

Theory: The basic point of this approach is to translate the optimal control problem into an
equivalent non-linear partial differential equation known as the Hamilton-Jacobi-Bellman
(HJB) equation. Insofar as a solution to the latter can be found (which is far from given),
one can immediately deduce closed form expressions for the optimal controls.

To this end, we start out by defining the function for which we desire a governing
PDE, viz. the so-called optimal value function (or indirect utility function) J(s,w) :
[0,T ]×R 7→ R, defined as

V (s,w)≡ sup
{πt ,ct}t∈[s,T ]

I(πt ,ct |s,w), where (C.4)

I(πt ,ct |s,w)≡ EP
s,w

[∫ T

s
e−δ (t−s)u(ct)dt + e−δ (T−s)u(WT )

]
,

which, of course, is nothing but our original problem with a generic starting point s∈ [0,T ]
and wealth w (think of (C.4) as the scenario where we have to solve the Merton problem for
an investor who has already lived for s years). Furthermore, we must make the following
important assumptions:

1. There are optimal Markov control functions π∗t = π∗(t,Wt) : [s,T ]× R 7→ R and
c∗t = c∗(t,Wt) : [s,T ]×R 7→ R+ such that the supremum is attained, i.e. s.t. V (s,w) =
I(π∗t ,c

∗
t |s,w). In particular, these controls must be admissible meaning that they satisfy

the constraints enunciated above at all times. We say that there is an optimal admissi-
ble feedback control law, L ∗ : {π∗t ,c∗t }. This is an existence claim, but it is not a
uniqueness claim.

2. V ∈ C 1,2. I.e. the first order temporal derivative, and the first and second order wealth
derivatives of V all exist. This is non-obvious!

3. A number of limiting procedures in the following arguments can be justified.

Given these assumptions, a PDE to which V (s,w) is a solution can be derived by following
these standard steps in dynamic programming:

1. Fix the coordinate (s,w) ∈ [0,T ]×R and consider the following two strategies over the
interval [s,T ]: Strategy I use the optimal control law L ∗ : {π∗t ,c∗t }. Strategy II Use
the (sub)-optimal control law L ′ : {π′t ,c′t} where

L ′ : {π′t ,c′t} ≡

{
L : {πt ,ct}, for (t,Wt) ∈ [s,s+∆s]×R
L ∗ : {π∗t ,c∗t }, for (t,Wt) ∈ (s+∆s,T ]×R,

where ∆s is some incremental time step. Notice that it the optimal control is used over
the latter time interval (s+∆s,T ].

2. Compute the Merton expectation I(πt ,ct |s,w) for both strategies.
3. Evidently, strategy I has to be at least as good as strategy II vis-a-vis the Merton expec-

tation. Using this, and letting ∆s→ 0 we obtain the HJB PDE.
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From assumption (1) the first strategy is trivially I(π∗t ,c
∗
t |s,w) = V (s,w). For the second

strategy we observe that we switch from a random control (L ) to an optimal control (L ∗)
after ∆s amounts of time. The wealth will therefore evolve to the stochastic state W L

s+∆s at
s+∆s and thence to its terminal value W L ∗

T at T . Thus, I(π ′t ,c
′
t |s,w) can be written as

EP
s,w

[∫ s+∆s

s
e−δ (t−s)u(ct)dt +

∫ T

s+∆s
e−δ (t−s)u(c∗t )dt + e−δ (T−s)u(W L ∗

T )

]
= EP

s,w

[∫ s+∆s

s
e−δ (t−s)u(ct)dt + e−δ∆s·

EP
s+∆s,W L

s+∆s

[∫ T

s+∆s
e−δ (t−(s+∆s))u(c∗t )dt + e−δ (T−(s+∆s))u(W L ∗

T )

]]
= EP

s,w

[∫ s+∆s

s
e−δ (t−s)u(ct)dt + e−δ∆sV (s+∆s,W L

s+∆s)

]
,

where the second line uses the law of iterated expectations, and the final line the definition
of the optimal value function. Hence, using the first insight from step (3) we have that
strategies I and II compare as

V (s,ws)≥ EP
s,w

[∫ s+∆s

s
e−δ (t−s)u(ct)dt + e−δ∆sV (s+∆s,W L

s+∆s)

]
. (C.5)

Now using assumption (2) we can use Itō’s formula to write

V (s+∆s,W L
s+∆s) =V (s,ws)+

∫ s+∆s

s

{
∂sV (t,W L

t )dt

+∂wV (t,W L
t )dW L

t + 1
2 ∂

2
wwV (t,W L

t )(dW L
t )2

}
,

which combined with our wealth dynamics (C.3) becomes

V (s+∆s,W L
s+∆s) =V (s,ws)+

∫ s+∆s

s

{
∂sV (t,W L

t )+AL V (t,W L
t )

}
dt

+
∫ s+∆s

s
W L

t ∂wV (t,W L
t )πᵀt σdW P

t ,

(C.6)

where we have defined the differential operator

AL ≡W L
t [r+πᵀt σλ]∂w− ct∂w + 1

2 (W
L

t )2πᵀt σσ
ᵀπ∂

2
ww.

Substituting (C.6) into inequality (C.5) and assuming square integrability in order for the
stochastic integral to vanish, we obtain after a bit or rearranging

(eδ∆s−1)V (s,w)≥ EP
s,w

[∫ s+∆s

s
{eδ∆s−δ (t−s)u(ct)+∂sV (t,W L

t )+AL V (t,W L
t )}dt

]
.

(C.7)
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Suppose now we divide through on both sides by ∆s and take the limit as ∆s→ 0. If
our expression exhibits sufficient regularity we can justify interchanging the limit and the
expectation operator. Thus,

δV (s,w)≥ u(cs)+∂sV (s,w)+AL V (s,w), (C.8)

where we have used the fact that (eδ∆S−1)/∆s→ δ as ∆s→ 0.Notice that our functions
V,πt ,ct (and consequently also AL ) here are evaluated at the initial coordinate (s,w).
However, whilst (s,w) hitherto has been treated as fixed, it was arbitrarily chosen and
thence equation (C.8) must hold true for all (s,ws) ∈ [0,T ]×R, with equality holding for
the optimal control L ∗ only. Hence, we arrive at the theorem:

Theorem C.1. The Hamilton-Jacobi-Bellman Equation for Merton’s Problem.
Consider a wealth process (C.3). Let V (s,w) be defined as in (C.4), and assume it
satisfies assumptions (1)-(3) declared above, then V (s,w) satisfies the HJB equation

δV (s,w) = ∂sV (s,w)+ sup
cs∈R+,πs∈Rn

{u(cs)+AV (s,w)} , (C.9)

∀(s,w) ∈ (0,T )×R, where

A≡ w[r+πᵀt σλ]∂w− ct∂w + 1
2 w2πᵀt σσ

ᵀπ∂
2
ww,

and we have the obvious boundary condition V (T,w) = u(w),∀w ∈ R (if we start
the Merton problem when the investor dies there’s nothing but the bequest). For
each (s,w) ∈ [0,T ]×R the supremum is attained by c∗s ,π

∗
s .

Remark C.2. Importantly, the HJB equation (C.9), whilst highly non-linear, only involves
the supremum over all admissible consumptions and holdings of risky assets at time s, and
not the supremum over the entire process as we saw it in (C.4).

Do notice that the theorem above only has the form of a necessary condition: i.e. if V is
an optimal value function and L ∗ an optimal control, then V satisfies the HJB equation
with L ∗ giving rise to the supremum. Proving that the HJB equation is also sufficient for
optimality can for more general problems prove considerably more arduous. Nevertheless,
for our present purposes, this so-called verification steps runs as follows:

Theorem C.2. The Verification Theorem for Merton’s Problem. Suppose we have
the functions ϕ(s,w), π∗(s,w) and c∗(s,w) such that

• ϕ is sufficiently integrable (see above) and solves the HJB equation

δϕ(s,w) = ∂sϕ(s,w)+ sup
cs∈R+,πs∈Rn

{u(cs)+Aϕ(s,w)} ,
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∀(s,w) ∈ (0,T )×R, with the terminal condition ϕ(T,w) = u(w),∀w ∈ R.
• π∗(s,w) : [0,T ]×R 7→Rn and c∗(s,w) : [0,T ]×R 7→R+ - that is, π∗ and c∗ are

admissible control laws (they satisfy the pre-specified function constraints).
• For each fixed (s,w) the supremum in the expression

sup
cs∈R+,πs∈Rn

{u(cs)+Aϕ(s,w)} ,

is attained by the choice πs = π
∗(s,w), cs = c∗(s,w).

Then it holds that

1. The optimal value function (C.4) to Merton’s control problem is given by
V (s,w) = ϕ(s,w).

2. There exist an optimal control law, viz. {π∗(s,w),c∗(s,w)}.

Proof. Let functions ϕ,π∗ and c∗ be given as above. Select the arbitrary admissible control
law L : {πt ,ct} and fix a coordinate (s,w). If we define the dynamics of the wealth process
W L

t as in (C.3) with boundary W L
s = w, then an straight-forward application of Itō’s

formula to e−δ (t−s)ϕ(t,W L
t ) gives

e−δ (T−s)
ϕ(T,W L

T ) = ϕ(s,w)+
∫ T

s
e−δ (t−s)

{
[∂t −δ ]ϕ(t,W L

t )+Aϕ(t,W L
t )

}
dt

+
∫ T

s
e−δ (t−s)Wt∂wϕ(t,W L

t )πᵀt σdW P
t .

Using our assumptions that ϕ satisfies the HJB equation and has the terminal value
ϕ(T,W L

T ) = u(W L
T ) we get

ϕ(s,w)≥
∫ T

s
e−δ (t−s)u(ct)dt+e−δ (T−s)u(W L

T )−
∫ T

s
e−δ (t−s)Wt∂wϕ(t,W L

t )πᵀt σdW P
t .

Applying the (t,w) conditional expectation to this equation, and using the integrability
assumption:

ϕ(s,ws)≥ EP
t,w

[∫ T

s
e−δ (t−s)u(ct)dt + e−δ (T−s)u(W L

T )

]
≡ I(πt ,ct |s,ws). (C.10)

This inequality is true for arbitrary control laws - also in the event that we selected the
supremal control law. Hence, from the definition of V , (C.4):

ϕ(s,w)≥V (s,w). (C.11)
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Had we opted for using the functions π∗,c∗ it is clear that we would have obtained a strict
equality in equation (C.10) viz. ϕ(s,w) = I(π∗t ,c

∗
t |s,w). If we substitute this into the trivial

inequality V (s,w)≥ I(π∗t ,c
∗
t |s,w) we get:

V (s,ws)≥ ϕ(s,w). (C.12)

Evidently, (C.11) and (C.12) jointly imply ϕ =V and that {π∗t ,c∗t } is an optimal control.
�

Extracting the Solution: Having formally established the equivalence between solving
the control problem (C.4) and the HJB equation (C.9), we are now left with the task of
finding an explicit solution to the latter. Differentiating the HJB equation partially with
respect to cs and πs and equating to zero, we find that the optimal feedback controls are of
the form

c∗s = (u′)−1(∂wV (s,w)), and π∗s =− ∂wV (s,w)
w∂ 2

wwV (s,w)
(σᵀ)−1λ, (C.13)

where (u′)−1(·) = (·)−1/γ is the inverse marginal utility function (for CRRA). Substituting
these functions back into (C.9) reveals that the governing dynamics is, in fact, a highly
non-linear PDE, viz.

δV (s,w) = ∂sV (s,w)+
γ

1− γ
(∂wV (s,w))1− 1

γ + rw∂wV (s,w)− 1
2 ||λ||

2 (∂wV (s,w))2

∂ 2
wwV (s,w)

,

(C.14)
subject to the terminal condition V (T,w) = w1−γ/(1− γ). Generally, non-linearity can
have a rather devastating effect on our ability to extract a solution (analytically or numer-
ically), yet this expressions admits a surprisingly simple solution based on the ansatz that
V is separable in time and wealth. Specifically, from the dynamics of the wealth (C.3) it
can be argued that if {π∗t ,c∗t } is the optimal control plan for an investor with initial wealth
w0, then {π∗t ,kc∗t } should be the optimal control plan for an investor with initial wealth
kw0. I.e. consumption is suitably scaled to allow for the extra cash, whilst the proportion
invested in each asset remains unchanged. Using this fact it can easily be shown that the
optimal value function is homogenous of degree 1− γ: i.e. V (s,kw) = k1−γV (s,w) [13].
Indeed, by setting k = w−1 we obtain the separability ansatz

V (s,w) = h(s)γ w1−γ

1− γ
, (C.15)

where h : [0,T ] 7→ R. Combining this with equation (C.14) we find after a bit of manipu-
lation that[(

δ

1− γ
− r− 1

2γ
||λ||2

)
h(s)− γ

1− γ
(1+∂th(s))

]
h(s)γ−1w1−γ = 0,

subject to g(T ) = 1. Indeed, since this equation holds for all t we conclude that the expres-
sion in the square bracket is nil, which readily enables us to deduce that
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h(s) = ζ
−1(1+[ζ −1]e−ζ (T−s)), where ζ ≡ δ − r(1− γ)

γ
− 1

2
1− γ

γ2 ||λ||
2.

(C.16)
Inserting the separability ansatz (C.15) into the optimal control expressions (C.13) we thus
conclude

c∗s =
w

h(s)
, and π∗s =

(σᵀ)−1λ

γ
, (C.17)

which is to say that the rate of consumption is directly proportional to the instantaneous
level of wealth (but exponentially decaying in time), while the investment strategy is con-
stant and equal to a mean-variance optimisation a la Markowitz.8

C.3 The Martingale Method

As we shall shortly argue, there are considerable problems of a rather technical nature
associated with the HJB approach. Nonetheless, the relative ease with which we can write
down the HJB equation and in some scenarios solve it, makes it the methodology of choice
in much of the financial literature. The fact that closed form expressions for the controls
can be found is somehow used to justify glossing over important technical details along
the way. Here we provide an alternative route based on martingale considerations, which
(i) saves us from the pitfalls of the HJB approach, (ii) provides a framework for handling
problems of a more general nature.

The point is here that rather than solving (C.4) dynamically as above, we solve it
statically subject to the constraint that the portfolio must be be self-financing (in other
words, we treat the control problem as a Lagrange multiplier problem). Specifically, from
elementary martingale theory it follows that Q discounted “cashflows” should be equal to
the present wealth level:

w0 = EQ
[∫ T

0
e−rtctdt + e−rT WT

]
, (C.18)

(we refer to this as the budget equation).9 Thus, we are faced with the following Lagrange
multiplier problem

L= EP
[∫ T

0
e−δ tu(ct)dt + e−δT u(WT )−η

{∫ T

0
e−rt

ξtctdt + e−rT
ξT WT

}]
,

where η is the multiplier, and ξt = dQ/dP(t) is the Radon-Nikodym derivative defined
as dξt = −ξtλ

ᵀdW P
t with λ = σ−1(µ− rι). Differentiating partially with respect to cs

and WT and equating to zero, we find the following expressions for the optimal rate of
consumption and the optimal terminal wealth

8 Specifically, π∗ = argmax
π
{πᵀµ+(1−πᵀι)r− γ

2π
ᵀσσᵀπ} where πᵀµ+(1−πᵀι)r is the expected

value of the portfolio, and πᵀσσᵀπ is its covariance matrix.
9 For a formal proof of this result see [13].
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c∗s = (u′)−1(ηe(δ−r)s
ξs), and W ∗

T = (u′)−1(ηe(δ−r)T
ξT ), (C.19)

where we reiterate that (u′)−1(·) = (·)−1/γ is the inverse marginal utility function. To rid
our expressions of the multiplier η we first substitute (C.19) into the budget constraint
(C.18) to find

η
−1/γ =

w0∫ T
0 e−(r+q)tEP[ξ

1−1/γ

t ]dt + e−(r+q)TEP[ξ
1−1/γ

T ]
,

where we have used Fubini’s theorem alongside the shorthand notation q ≡ (δ − r)/γ .
Substituting this expression back into (C.19) we thus have

c∗s =
e−qsξ

−1/γ
s w0

h(0)
, and W ∗

T =
e−qT ξ

−1/γ

T w0

h(0)
, (C.20)

where we for for convenience have introduced the function h : [0,T ] 7→ R

h(s) =
∫ T

s
e−(r+q)(t−s)EP

s

[(
ξt

ξs

)1−1/γ
]

dt + e−(r+q)(T−s)EP
s

[(
ξT

ξs

)1−1/γ
]
. (C.21)

It is no coincidence that we have recycled the notation h(·) for the function above - in fact,
we shall now show that (C.16) and (C.21) are two sides of the same coin. To this end,
let us first evaluate the expectations. While this is a straightforward exercise under the P-
measure (see [13]), a measure transformation argument is more interesting. Let Q0 be the
measure defined through ξ 0

t = dQ0/dP(t) where dξ 0
t =−(1−1/γ)ξ 0

t λ
ᵀdW P

t then

EP
s

[(
ξt
ξs

)1−1/γ
]
= EP

s

[
e−(1−1/γ)

∫ t
s λ
ᵀdW P

u −
1
2 (1−1/γ)

∫ t
s ||λ||2du

]
= EP

s

[
e−(1−1/γ)

∫ t
s λ
ᵀdW P

u −
1
2 (1−1/γ)2 ∫ t

s ||λ||2due
1−γ

2γ2
∫ t

s ||λ||2du
]

= EP
s

[
ξ 0

t
ξ 0

s
e

1−γ

2γ2 ||λ||
2(t−s)

]
= EQ0

s

[
e

1−γ

2γ2 ||λ||
2(t−s)

]
= e

1−γ

2γ2 ||λ||
2(t−s)

, (C.22)

where the last line makes use of the abstract Bayes’ formula (A.2). Inserting this into
(C.21) and noting that r+q− 1−γ

2γ2 ||λ||2 = ζ we find after a few manipulations that h(s) is
indeed equal to equation (C.16).

To establish equivalence between the optimal consumption rate given in (C.20)
and the expression given in (C.17) we need now only derive an expression for the op-
timal wealth level W ∗

s for arbitrary s ∈ [0,T ]. Upon substituting this expression into
c∗s = e−qsξ

−1/γ

t w0/h(0) the result follows immediately. Our starting point is the budget
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equation evaluated at time s, which we shall subject to the measure transformation Q 7→ P
using the abstract Bayes’ formula:

W ∗
s = EQ

s

[∫ T

s
e−r(t−s)c∗t dt + e−r(T−s)W ∗

T

]
=

1
ξs
EP

s

[∫ T

s
e−r(t−s)

ξtc∗t dt + e−r(T−s)
ξT W ∗

T

]
=

1
ξs
EP

s

[∫ T

s
e−r(t−s)

ξt
e−qtξ

−1/γ

t w0

h(0)
dt + e−r(T−s)

ξT
e−qT ξ

−1/γ

T w0

h(0)

]

=
w0e−qsξ

−1/γ
s

h(0)
EP

s

[∫ T

s
e−(r+q)(t−s)

(
ξt

ξs

)1−1/γ

dt + e−(r+q)(T−s)
(

ξT

ξs

)1−1/γ
]

=
w0e−qsξ

−1/γ
s h(s)

h(0)
. (C.23)

Substituting this into c∗s we obtain the desired expression

c∗s =
W ∗

s

h(s)
. (C.24)

Finally, we are left with the question of the optimal investment ratio π∗s . Applying Itō to
(C.23) and using the fact that dξs =−ξsλ

ᵀdW P
s we get

dW ∗
s = drift+W ∗

s
1
γ
λᵀdW P

s .

At the same time we remind the reader of the (optimal) self-financing condition

dW ∗
s = W ∗

s [r+(π∗)ᵀσλ]ds− c∗s ds+W ∗
s (π∗)ᵀσdW P

s .

Comparing the diffusion terms we immediately see that

π∗s =
(σᵀ)−1λ

γ
, (C.25)

as desired.

C.4 Discussion

The Hamilton-Jacobi-Bellman equation and the martingale method thus offer complemen-
tary approaches to extracting optimal controls to stochastic control problems. For the Mer-
ton problem treated here, there is no significant difference in the computational intensity
between the two approaches; nor any difference between the level of rigour, yet consider-
able differences can arise for more general problems. Here, we briefly summarise impor-
tant points to keep in mind when tackling more general problems:
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• Writing down the HJB (and in some cases: solving it) is the easy part. Formally verify-
ing that the HJB equation is also sufficient for optimality usually requires a higher level
of mathematical sophistication. E.g. it is worth noting that the standard body of theory
for which verification is considered trivial excludes important financial models such as
the CIR process qua the requirement that the Lipschitz condition holds.

• Assuming that the optimal value function V is smooth (C 1,2) is generally not innocu-
ous. In fact, it is simply not true even for relatively simple examples (see e.g. Pham
section 3.7 [18]). To mitigate this deplorable situation Crandall and Lions introduced
the concept of viscosity solutions in the 1980s thus providing us with a way to formu-
late HJB equations rigorously whilst only assuming local boundedness of the optimal
value functions.

• While the martingale approach circumnavigates these issues, it is correspondingly more
difficult to get explicit expressions for when the market is incomplete. For an introduc-
tion to so-called convex duality methods in incomplete markets the reader is referred
to Schachermayer [21].

• An important assumption when using the HJB formalism is the Markovian structure on
the dynamical equations (e.g. µ and σ have to be of the form µ(t,St) and σ(t,St) (*)).
No such assumption prevails for the martingale approach, which makes it more general
(µ and σ are allowed to be arbitrary adapted path dependent processes).

• Nonetheless, a Markovian structure is advantageous to work with even for the martin-
gale approach. E.g. it can enable us to write down nice linear PDEs for the optimal
controls (or the components thereof at least) while the HJB formalism is intrinsically
non-linear. From a computational perspective (be it analytically or numerically) the for-
mer is obviously to be preferred. To appreciate this point to a greater extent suppose we
consider the local volatility model (*) above sans consumption then (C.22) reads

EQ0
s

[
e

1−γ

2γ2
∫ T

s ||λ(u,Su)||2du
]
=: g(s,Ss). (C.26)

Recalling that ξ 0
s = dQ0/dP(s) where dξ 0

s = −(1− 1/γ)ξ 0
s λ
ᵀdW P

s it follows form
Girsanov’s theorem (A.9) that

dW P
s =−(1−1/γ)λds+dWQ0

s ,

whence

dSs = diag(Ss)[{γ−1µ(t,Ss)+(1− γ
−1)rι}ds+σ(t,Ss)dWQ0

s ].

Thus, from Feynman-Kac (B.1) we deduce that (C.26) is a solution of

0 =∂sg(s,x)+ [diag(x){γ−1µ(t,x)+(1− γ
−1)rι}]ᵀ∇xg(s,x)+

1
2

tr[diag(x)σ(t,x)σ(t,x)ᵀdiag(x)∇2
xxg(s,x)]+

1− γ

2γ2 ||λ(u,x)||
2g(s,x),

(C.27)

with terminal condition g(T,x) = 1.
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