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Preface

This thesis has been prepared in fulfillment of the requirements for the PhD
degree at the Department of Mathematical Sciences (MATH), Faculty of Sci-
ence, University of Copenhagen. The work has been carried out under the
supervision of associate professor Trine Krogh Boomsma from MATH in the
period from September 1, 2013 to August 31, 2016.

The main body of the thesis consists of an introduction to the overall work
and four chapters on different but related topics. Each chapter is written as
an individual academic paper and are thus self-contained and can be read
independently.
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Summary

This thesis consists of an introduction as well as four papers. The papers
concern different problems associated to future electricity markets and the
topics include risk management, investment strategies, valuation and model
calibration. Each paper is presented in a separate chapter and hence the
chapters are self-contained and may be read individually. A more thorough
overview is presented in Chapter 1.

In Chapter 2 we consider a hedging problem for a power distributor deliv-
ering electricity on fixed price contracts in the Nordic electricity market and
thereby being exposed to volume risk. We develop time series models for the
electric load, system price and deviation from system price. The model is
designed such that for independent electric load, system price and deviations
from system price, the minimal variance hedge coincide with the standard
practice of the industry. We extend the model to include price and load cor-
relation which results in an explicit strategy that reduces the variance. To
further improve the strategy we include autocorrelation and solve the hedging
problem numerically and show that there is a large potential in changing risk
measure and utilizing the skewness in the payoff distribution.

In Chapter 3 we consider an investment problem for a strategic investor
and a social planner with the opportunity to invest in inflexible and flexi-
ble generation. We study the impact of market power and conjectured market
changes with a simple price model based on linear demand response. We show
that the strategic investor invests later and in less capacity than the socially
optimal and that with increased market ownership investment is delayed fur-
ther and capacity increased slightly. Furthermore, we find that an increase in
market share for the strategic investor delays inflexible generation more than
flexible generation due to the exposure to potential low prices.

In Chapter 4 we study the valuation of three representative generation
types, an inflexible wind turbine, a flexible gas fired power plant and a hy-
droelectric plant that allows for storage. We account for the special charac-
teristics of each technology and include uncertainty in both price and volume
through diffusion or jump diffusion models. We find explicit expressions for
the expected instantaneous value of wind generation as a function of electric-
ity price and wind speed. We include startup and shutdown costs for the gas
fired power plant determine the startup and shutdown triggers as well as the
value of the plant by maximizing the value of shutting down. This is done an-
alytically in the diffusion models and numerically in the jump diffusion model.
For the hydroelectric power plant we relax storage level and discharge con-
straints using penalty functions and linearize the optimal strategy from the
Hamilton-Jacobi-Bellman equation. This allows for closed form expressions of
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Summary x

the value in terms of the expected price, the second moment of the price and
the autovariance of the price. We calibrate the models to 7 years of hourly
price and wind data, determine the value and study the impact of anticipated
market changes on the value of the three types of generation.

In Chapter 5 we develop an EM-algorithm with two jump components
such that the jump density of the compound Poisson process is a mixture
of two normal distributions. We show that each step of the EM-algorithm
increases the log-likelihood of the observed data by maximizing the expecta-
tion of the log-likelihood for the complete data conditional on the observed
data. We determine explicit expressions for the maximization step in terms
of simple conditional expectations and present an approach for determining
the conditional expectations. Finally, by applying the algorithm to calibrate
the jump diffusion model from Chapter 4, we demonstrate that the additional
jump component provides a significantly better model of the observed data
than a model without jumps and with only a single jump component.



Sammenfatning på dansk

Denne afhandling består af et introducerende kapitel og fire artikler. Ar-
tiklerne omhandler forskellige problemer i forbindelse med fremtidige elek-
tricitetsmarkeder og inkluderer emner som risikostyring, investeringsstrate-
gier, værdifastsættelse og modelkalibrering. Hver artikel er præsenteret i et
kapitel og kapitlerne kan derfor læses enkeltstående. En mere dybdegående
gennemgang af afhandlingen gives i kapitel 1.

I kapitel 2 betragter vi et risikoafdækningsproblem for en elleverandør, som
leverer elektricitet på fastpriskontrakter i det nordiske elektricitetsmarked og
derfor er udsat for mængderisiko. Vi udvikler en tidsrækkemodel for det sam-
lede forbrug, systemprisen og afvigelser fra systemprisen. Modellen er designet
så uafhængigt samlet forbrug, systempris og afvigelse fra systempris medfører
at afdækningsstrategien med minimal varians stemmer overens med almin-
delig praksis i industrien. Vi udvider modellen til at inkludere korrelation
mellem pris og forbrug, hvilket resulterer i en eksplicit strategi som reducerer
variansen. For yderligere at forbedre strategien inkluderer vi autokorrelation.
Vi løser risikostyringsproblemet numerisk og viser at der er et stort potentiale
i at skifte risikomål og udnytte skævheden i fordelingen af afkastet.

I kapitel 3 betragter vi et investeringsproblem fra et investorperspektiv
og et samfundsmæssigt perspektiv, hvor der kan investeres i ufleksibel eller
fleksibel elproduktion. Vi undersøger påvirkningen af markedsmagt og for-
modede markedsændringer med en lineær invers efterspørgselsfunktion. Vi
viser at investoren investerer senere og i mindre projekter end hvad der er
samfundsmæssigt optimalt og at en øget markedsandel yderligere forsinker
investeringerne og forstørrer projekterne en smule. Udover dette forsinker en
øget markedsandel investeringen i ufleksibel elproduktion mere end fleksibel
elproduktion, da ufleksibel produktion er mere udsat for prisrisiko.

I kapitel 4 studerer vi værdifastsætning af tre repræsentative elproduk-
tionsteknologier, en ufleksibel vindturbine, et fleksibelt gaskraftværk og et
vandkraftværk der tillader lagring. Vi tager højde for specielle karakteris-
tika for teknologierne og inkluderer usikkerhed i både pris og volumen gen-
nem diffusionsmodeller med eller uden spring. Vi finder eksplicitte udtryk
for den forventede værdi af produktion med vindenergi som funktion af elpris
og vindhastighed. Vi inkluderer opstarts- og nedlukningsomkostninger for
gaskraftværket og bestemmer de optimale opstarts- og nedlukningsniveauer,
samt værdien af gaskraftværket. Dette er gjort analytisk for diffusionsmod-
ellerne og numerisk med inklusion af spring. For vandkraftværket relakserer vi
begrænsningerne for lagerniveauet og vandføring ved hjælp af straffunktioner
og lineariserer den optimale strategi fra Hamilton-Jacobi-Bellman ligningen.
Dette medfører lukkede udtryk for værdien som funktion af den forventede
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pris, andet-momentet af prisen og autovariansen af prisen. Vi kalibrerer mod-
ellerne til pris og vind data for hver time over 7 år og for de tre slags el
produktion bestemmer vi værdien og påvirkningen af forventede markedsæn-
dringer.

I kapitel 5 udvikler vi en EM-algoritme med to springkomponenter så
tætheden for den sammensatte Poisson proces er en blanding af to normal-
fordelinger. Vi viser at et skridt med EM-algoritmen øger værdien af log-
likelihood-funktionen for det observerede data ved at maksimere den betingede
middelværdi af log-likelihood-funktionen for det komplette datasæt, hvor der
betinges med det observerede data. Vi anvender algoritmen til at kalibrere
diffusionsmodellen med spring fra kapitel 4 og viser at det observerede data
modelleres markant bedre end med en model uden spring eller med en enkelt
springkomponent.



1
Introduction

This chapter provides an overview of the following four chapters of the thesis
that covers operation, investment and hedging in electricity markets as the
title suggests. For each of the chapters we give a short introduction to the ac-
companying theory and comment on the main results. Initially, we introduce
the current electricity market as well as some of the current and future chal-
lenges. In Chapter 2, we focus on risk management and in Chapters 3 and 4
we study valuation of generation as well as investment decisions. Chapter 3
focuses on the impact of market power, while Chapter 4 focuses on valua-
tion of new generation and the impact of market changes. Finally, Chapter 5
develops an EM-algorithm for the jump-diffusion model for electricity prices
from Chapter 4.

1.1 Electricity Markets
The current electricity market within the EU is a result of a liberalization
in the late 90’s. The liberalization was initiated to increase competition and
create incentive for investment in both generation and electricity infrastruc-
ture. Furthermore, import/export barriers were removed which reduced the
required reserve capacity and lowered generation costs as the combined supply
provided additional flexibility as well as better utilization of technologies with
low marginal cost of production.

However, due to decarbonisation goals additional renewable generation has
to be deployed, which will impact both the power system and the electricity
market significantly.

1



1. Introduction 2

[International Energy Agency] analysis indicates that the large-
scale deployment of renewables needed to meet decarbonisation goals
is technically feasible. However, the inherent variability of these
power sources will lead to less predicable power flows. Greater
flexibility of power systems will therefore be needed if large-scale
deployment of variable renewable generation, such as solar photo-
voltaic, wind and tidal energy, is to go ahead without jeopardising
electricity security.1

Thus, to ensure greater flexibility of the power system new investments have
to be undertaken to incorporate the renewable generation. These investments
have to be accompanied by advanced risk management and accurate valuation
models, which are both highly dependent on the dynamics of electricity prices
in a future market.

Despite the liberalization, the electricity market still has to be regulated
to ensure electricity security and avoid blackouts. In the Nordic region this
is organized with a day-ahead market, an intraday market as well as a bal-
ancing market. This construction allows for sequential planning of generation
minimizing real-time adjustment, while taking into account the uncertainty in
demand as well as the fact that electricity cannot be stored efficiently.

The day-ahead market, Elspot, has hourly prices and closes at 12 noon for
delivery the following day. The day-ahead prices are based on an auction sys-
tem, determined by matching supply and demand, potentially differentiated
locally such that grid restrictions are satisfied.

The intraday market, Elbas, closes one hour before delivery and accounts
for changes in the 12 to 36 hours between market closure and delivery in the
day-ahead market. Finally the balancing market handles real-time imbalances
and ensures that voltages are kept in the desired range by adjusting generation.

However, even when focusing on only the day-ahead market, the market
structure necessary to ensure electricity security leads to complicated risk
management problems. In Chapter 2 we therefore study the risk management
problem for a power distributor supplying electricity on a fixed price contract.

1.2 Risk Management
In classical risk management, it is well known that price uncertainty from
future sale of production can be eliminated completely by buying forward
contract and using the production to cover the contractual obligations. The
advantage of hedging in this way is that the value of the production is fixed
and potential losses are avoided. However, if the production volume is un-
certain, this is no longer possible, which leads to volume risk that cannot

1https://www.iea.org/topics/electricity/, accessed August 1. 2016

https://www.iea.org/topics/electricity/


3 1.2. Risk Management

be eliminated with forward contracts. This is a big issue for an electricity
distributor that typically delivers electricity on fixed price contracts. The dis-
tributor essentially promises to cover an uncertain electric load at a fixed price
per MWh by purchasing the required load in the day-ahead market, and is
therefore exposed to volume risk.

Additionally, the forward contracts available cover entire months or peak
periods and are settled against the system price, a day-ahead price determined
without adjusting for congestion. This mismatch between the hedging instru-
ment and the asset to be hedged is called basis risk and further complicates
the problem. To reduce exposure to differences between the day-ahead price
and the system price, forward contracts on the price difference are included
in the model.

In the industry, the current hedging approach is to enter forward contracts
matching the expected production. However, papers on volume risk, such as
McKinnon (1967) and Oum et al. (2006), show that without basis risk the
variance minimal hedge must compensate for the correlation between price
and production. With a single price and a single time period the payoff from
a fixed price contract when buying forward contracts for a volume of V is

(F − ST )LT + (ST − qt(T ))V, (1.2.1)

where F is the fixed electricity price, ST is the price of purchasing the elec-
tricity at time T , LT is the uncertain load delivered at time T and qt(T ) is
the contract price determined at time t < T . The minimal variance hedge for
this simple problem is

V = E(LT )− (F − E(ST ))Cov(ST , LT )
V ar(ST )

+ Cov((ST − E(ST ))2, LT )
V ar(ST ) .

(1.2.2)

Thus, the hedge should be adjusted based on expected profit per MWh, F −
E(ST ), as well as the covariance between price and load. This has to be further
adjusted by the covariance between the standardized price variance and the
load, which is 0 if (ST , LT ) are simultaneously normal distributed, regardless
of their correlation. For positive correlation between price and load, which is
the case in the electricity market, this suggests hedging below expected load
in off-peak periods with low prices, and above expected load in peak periods
with high prices.

In Chapter 2, we develop time series models for the relevant prices and
load based on deviations from seasonal components. For the initial model,
variance minimization coincide with industry practice of hedging the expected
load, while the first addition to the model follows the principles of the example
above. The model is further extended to include more advanced correlation
structures, including autocorrelation for prices and load. The models are
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calibrated to hourly data for West Denmark and East Denmark from 2012.
We benchmark on data from 2013 and 2014 and show that compensating for
the correlation reduces the realized variance. Furthermore, we find that the
risk premium for the contracts on the price difference is significant in East
Denmark, as the gross loss is less affected than the gross profit. By changing
risk measure and minimizing the expected loss, we obtain a lower gross loss
and a higher gross profit. The reason is that the unhedged payoff density
is not symmetric and the skewness changes depending on the hedge. At the
same time, the change of risk measure creates a position that is less exposed
to large losses compared to the variance minimizing strategy.

The models in Chapter 2 rely on a seasonality component to adjust for
current trends and tendencies. The inclusion of seasonality, however, sig-
nificantly complicates the modeling of long term prices. Thus, to allow for
analytically tractable models in the following chapters, we ignore seasonality.
Furthermore, the price models in Chapter 2 are essentially discrete time mod-
els, which is required to determine the hedging strategies. These are, however,
intractable for long term valuation problems and investment decisions.

1.3 Valuation of Generation
In Chapters 3 to 5 we study valuation and investment. To avoid the curse
of dimensionality in discrete time models and allow for closed-form solutions,
these chapters use continuous time models. Common to the price models
in Chapters 3 to 5 is that the price process, (Pt)t≥0, is assumed to solve a
stochastic differential equation of the form

dPt = µ(Pt) dt+ σ(Pt) dZt + γ(Pt) dJt, (1.3.1)

where µ(P ), σ(P ) and γ(P ) are drift, diffusion and jump coefficients respec-
tively and (Zt)t≥0 is a Brownian Motion. Furthermore, (Jt)t≥0, is a compound
Poisson process with Jt =

∑Nt
n=1 Yn, where (Nt)t≥0 is a Poisson process with

intensity λ and Yn are i.i.d. random variables. In Dixit and Pindyck (1994)
valuation of an investment is based on expected discounted value, such that
with instantaneous profit π(P ) and discount factor r, an estimate for the value
of a generating unit over an infinite horizon is

V (P ) = E
(∫ ∞

0
e−rtπ(Pt) dt

∣∣∣∣P0 = P

)
. (1.3.2)

In Chapter 3 we use this valuation approach to study the impact of market
power in an electricity market context and in Chapter 4 we extend the val-
uation method to include operational characteristics. One advantage of this
formulation is that V (P ) solves the Hamilton-Jacobi-Bellman (HJB) integro-
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differential equation,

µ(P ) ∂

∂P
V (P ) + 1

2σ(P )2 ∂2

∂P 2V (P ) + π(P )− rV (P )

+λ [E(V (P + γ(P )Y1))− V (P )] = 0,
(1.3.3)

which in the case without jumps, simplifies to

µ(P ) ∂

∂P
V (P ) + 1

2σ(P )2 ∂2

∂P 2V (P ) + π(P )− rV (P ) = 0. (1.3.4)

As opposed to (1.3.3), (1.3.4) can often be solved analytically. The solution
consists of a particular solution as well as two linearly independent solutions
to the homogenous version of (1.3.4). This provides an alternative to applying
Fubini’s theorem to (1.3.2) and computing the expectation directly.

1.4 Real Options
The opportunity to undertake investment when prices are sufficiently high can
be modeled as an option with payoff V (P )−I, where I is the investment cost.
This is the reason for the term real options. Assuming that the investment
is initiated the first time prices exceed some P ∗, i.e. at the hitting time τ
defined by

τ = inf{t ≥ 0|Pt ≥ P ∗}, (1.4.1)

the value of the investment opportunity can be expressed as

E
( ∫ ∞

τ
e−rtπ(Pt) dt− e−rτI

∣∣∣∣P0 = P

)
= E

(
e−rτ (V (Pτ )− I)

∣∣∣∣P0 = P

)
.

(1.4.2)

In the case without jumps, the value of the investment opportunity simplifies
to

E(e−rτ |P0 = P )(V (P ∗)− I). (1.4.3)

The investors decision is to choose P ∗ such that the investment opportunity,
(1.4.2), is maximized. Naturally, choosing a large P ∗ delays investment and
increases the value when investing. However, the stochastic discount factor,
E(e−rτ |P0 = P ), decreases as P ∗ increases potentially lowering the value of the
option to invest. Similar to V (P ), the expected discount factor can be found
as a solution to (1.3.4), only with π(P ) = 0 and conditions on the boundary.
With this approach, the value and timing of the investment opportunity can
be studied.
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1.4.1 Investment Strategies

In Chapter 3, the aim is to study the timing and sizing of investment in
new electricity generation capacity, under the assumption that the price is
determined from a simple demand response relation where the demand shock
follows a Geometric Brownian Motion. We compare constant generation and
generation with an option to temporarily suspend, representing renewable
generation that is inflexible and conventional generation that is flexible. By
using a real options approach, we extend the work of Huisman and Kort (2015).
With a particular focus on market power, we introduce an already installed
capacity in the market and ownership of this capacity. We derive necessary
conditions for optimal investment timing and capacity in terms of capacity,
reducing the dimension of the problem. We determine sufficient conditions for
the plant and option values to be finite in terms of the cost function and the
underlying process. Furthermore, we derive the smooth pasting condition as
a limit of two value matching conditions, which leads to simple and explicit
expressions for the value of flexible generation.

We confirm that increased price volatility delays investment, but increases
capacity at the time of investment. In general, the investment trigger and
capacity is highly dependent on the tradeoff between the value of waiting,
determined by the stochastic discount factor, and the marginal cost of new
capacity. Thus, for low marginal cost of capacity, large investments are initi-
ated early, whereas higher marginal costs of capacity naturally delays invest-
ment and reduces capacity. As the value of waiting increases, which coincide
with an increase in price volatility, investments are delayed and new capacity
increased.

For market power in particular, our results show that the strategic planner
invests later than what is socially optimal and in smaller generation capacity.
Moreover, increased installed capacity or ownership of installed capacity for
the strategic investor delays investment, as the investment reduces the profit
of existing assets.

In Chapter 4 we assume an exogenous price and focus on more advanced
modeling of the price dynamics and include operational characteristics in the
valuation for different types of generation.

1.5 Stochastic Optimal Control
The valuation problem can be extended to include a control strategy as

V (P ) = sup
(vt)t≥0

E
(∫ ∞

0
e−rtπ(vt, Pt) dt

∣∣∣∣P0 = P

)
, (1.5.1)
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where the supremum is taken over all Markov control functions. For this
problem the HJB equation becomes,

sup
v

(
µ(P ) ∂

∂P
V (P ) + 1

2σ(P )2 ∂2

∂P 2V (P ) + π(v, P )− rV (P )

+λ [E(V (P + γ(P )Y1))− V (P )]
)

= 0,
(1.5.2)

and if the supremum exists, we can substitute optimal control, v∗(P ), in (1.5.1)
such that

V (P ) = E
(∫ ∞

0
e−rtπ(v∗(Pt), Pt) dt

∣∣∣∣P0 = P

)
(1.5.3)

which is of the same form as (1.3.2).

1.6 Including Operation in Valuation
In Chapter 4, we consider three stylized generation technologies, renewable
generation, conventional units and storage units. The renewable generation,
which is exemplified by a wind turbine, is inflexible. Hence, production is
negatively correlated with prices and the value is therefore overestimated if
correlation is ignored. The conventional unit, exemplified by a gas-fired power
plant, is flexible and can be suspended for sufficiently low prices. However,
it is typically quite expensive for gas-fired power plants to suspend and start
up generation and for this reason the gas-fired power plant is modeled similar
to Chapter 3, but including startup and shutdown costs. Finally, the hydro-
electric power plant can store electricity and benefit from price variations by
altering the discharge (or pump) rates, but has to maintain the storage levels
and discharge rates within certain operational and environmental limits.

We model the value of wind generation using the power curve, H(W ), that
determines the power output for a given wind speed W . The value of wind
generation becomes

Vwind(P,W ) = E
(∫ ∞

0
e−rtH(Wt)Pt dt

∣∣∣∣P0 = P,W0 = W

)
, (1.6.1)

where the wind speed at time t, Wt, is modeled by a transformation of an
Ornstein-Uhlenbeck process to capture an appropriate marginal distribution
and an exponentially decaying autocorrelation.

When studying flexibility, we utilize that for the stopping time

τ = inf{t ≥ 0|Pt ≥ P ∗}, (1.6.2)

the value of generating until the price hits P ∗,

E
(∫ τ

0
e−rtπ(Pt) dt

∣∣∣∣P0 = P

)
, (1.6.3)
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is equal to the value of always generating less the discounted value of always
generating from time τ ,

E
(∫ ∞

0
e−rtπ(Pt) dt

∣∣∣∣P0 = P

)
− E

(∫ ∞
τ

e−rtπ(Pt) dt
∣∣∣∣P0 = P

)
. (1.6.4)

Thus, the value can be decomposed in the value of always generating and
an option to suspend. This decomposition creates two simpler problems, as
the option value satisfies the HJB equation with a condition on the value for
P ≥ P ∗, or in the absence of jumps P = P ∗.

With startup and shutdown costs, the above generalizes to the startup and
shutdown triggers P ∗on and P ∗off with corresponding shutdown and startup
times Soff and Son, where P ∗on > P ∗off . The value of the gas-fired plant is
modeled as

V on
gas(P ) = E

(∫ ∞
0

e−rtπgas(Pt) dt
∣∣∣∣P0 = P

)
+ E

(
e−rSoff |P0 = P

)
c1(P ∗on, P ∗off ), for P ≥ P ∗off

(1.6.5)

and

V off
gas (P ) = E

(
e−rSon

∣∣∣P0 = P
)
c2(P ∗on, P ∗off ), for P ≤ P ∗on (1.6.6)

where πgas(Pt) is the instantaneous profit and c1(P ∗on, P ∗off ) and c2(P ∗on, P ∗off )
are the option values of suspending and starting up generation that include
startup and shutdown costs. In Chapter 4 we show that c1(P ∗on, P ∗off ) and
c2(P ∗on, P ∗off ) can be expressed explicitly in terms of the startup and shutdown
costs, the value of always generating and the stochastic discount factors. The
value of the gas-fired power plant and the triggers are determined by maxi-
mizing the option constants numerically with and without jumps, where the
stochastic discount factors are determined by solving a differential equation
or a differential integro-equation in the presence of jumps.

The analogous model for a hydroelectric power plant has no startup and
shutdown costs, but includes the storage level L ∈ [Lmin, Lmax]. The optimal
strategy is a bang-bang strategy and depends on some barrier P ∗(L), such
that water is discharged at the maximal rate for P ≥ P ∗(L) and discharged
at the minimal rate, possibly resulting in pumping, for P ≤ P ∗(L). The value
for P ≥ P ∗(L) is

V discharge
hydro (P,L) = E

(∫ ∞
0

e−rtπdhydro(Pt, Lt) dt
∣∣∣∣P0 = P,L0 = L

)
+ E

(
e−rSpd1

(
{P ∗(L̃)}L̃∈[Lmin,Lmax]

)∣∣∣P0 = P,L0 = L
)

(1.6.7)
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and for P ≤ P ∗(L) it is

V pump
hydro (P,L) = E

(∫ ∞
0

e−rtπphydro(Pt, Lt) dt
∣∣∣∣P0 = P,L0 = L

)
+ E

(
e−rSdd2

(
{P ∗(L̃)}L̃∈[Lmin,Lmax]

)∣∣∣P0 = P,L0 = L
)
.

(1.6.8)

Here πdhydro(P,L) is the instantaneous profit from discharging and πphydro(P,L)
is the instantaneous profit from pumping. Sp and Sd are the hitting times for
the barrier between pumping and discharging and d1 and d2 are the option
constants that depend on the barrier

{P ∗(L̃)}L̃∈[Lmin,Lmax]. (1.6.9)

The purpose of the barrier is twofold, it limits pumping and discharging for
high and low storage levels respectively and defines the price threshold between
pumping and discharging that depends on the storage level, see Figure 1.1.

Figure 1.1: Example of barrier for a hydroelectric power plant.

For the hydroelectric power plant the storage level introduces an additional
dimension in the HJB equation, which leads to value matching and smooth
pasting at an unknown curve and thereby creates an intractable problem. The
classical approach to overcoming this is to solve the problem on a finite time
horizon and applying some finite difference scheme, see Chen and Forsyth
(2008a). However, as the problem has two spacial dimensions, the compu-
tational time increases rapidly with additional spacial accuracy, limiting the
solution approach to only short horizons.
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As an alternative for longer time horizons, we relax the storage level and
discharge rate restrictions to penalty functions, which eliminates the need
for value matching and smooth pasting. Furthermore, to allow for analytical
solutions, we linearize the optimal control in price and storage level. Thus,
using the linearized version of the optimal control from

sup
(vt)t≥0

E
(∫ ∞

0
πcontrolhydro (vt, Lt, Pt) + θ1vt + θ2v

2
t + Θ1Lt + Θ2L

2
t

∣∣∣∣P0 = P,L0 = L

)
,

(1.6.10)

the model for the value of the hydroelectric power plant becomes

Vhydro(P,L) = E
(∫ ∞

0
πhydro(Pt, Lt)

∣∣∣∣P0 = P,L0 = L

)
. (1.6.11)

Our approach makes it possible to determine distributional properties of fu-
ture storage levels and discharge rates, while mimicking the strategy from
Figure 1.1.

We determine the discounted value of generation under three stylized
price models, a shifted geometric Brownian motion and a shifted exponen-
tial Ornstein-Uhlenbeck process with and without jumps. We calibrate each
of the models to real wind and price data and for each type of generation use
this to study the exposure to conjectured future market changes.

1.7 Model Calibration
In Chapter 5 we develop an EM-algorithm to calibrate the jump diffusion
model from Chapter 4 to data. Classical parameter estimation maximizes the
log-likelihood function. For example for T i.i.d. observations, (yn)n∈{1,...,T},
from a Normal distribution with mean µ, variance σ2 and density φ(y;µ, σ2),
the log-likelihood is

log(
T∏
n=1

φ(yn;µ, σ)) = −T2 ln(2π)− T

2 ln(σ2)− 1
2σ2

T∑
n=1

(yn − µ)2 (1.7.1)

which can easily be maximized. However, if the observations are of the form

Yn = Zn +
Nn∑
k=1

Jnk, (1.7.2)

where Zn ∼ N (µ, σ2), Nn ∼ pois(λ) and Ynk ∼ N (ν, τ2) for k = 1, . . . , Nn

and n = 1, . . . , T with Zn, Ykn and Nn independent, the density for Yn is

gn(y) =
∞∑
k=0

λk

k! e
−λφ(y;µ+ kν;σ2 + kτ2), (1.7.3)
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for which the log-likelihood no longer simplify to a sum. Nevertheless, the
joint density of (Zn, Nn, Y1n, . . . , YNnn), which we refer to as the complete
data, is

fn(z,N, y1, . . . , yN ) = φ(z;µ, σ2)
N∏
k=1

φ(yk; ν, τ2), (1.7.4)

for which the log-likelihood simplifies to a sum. Unfortunately, the complete
data is not observed, hence the EM-algorithm maximizes the conditional ex-
pectation of the log-likelihood function,

E
(

log(
T∏
n=1

fn(Zn, Nn, Jnk))
∣∣∣∣∣Yn

)
(1.7.5)

assuming that the complete data has some initial distribution. The EM-
algorithm iteratively updates the distribution of the complete data and utilize
that the complete distribution has a tractable log-likelihood function with
explicit maximizers. In Chapter 5 the above approach is generalized to two
independent Poisson processes, which is shown to better capture the skewness
of the transformed price increments. It is also shown that each iteration of the
EM-algorithm increases the log-likelihood function of the observed data and
not only the conditional expectation of the log-likelihood of the complete data.
Finally, the algorithm is applied to hourly electricity price data, demonstrating
a significantly better fit than a jump diffusion with a single jump component.





2
Hedging Volume Risk Using Forward

Markets: Nordic Case

Abstract

This paper develops hedging strategies for an electricity distributor
in the Nordic electricity market who manages price and volume risk from
fixed price agreements on stochastic electricity load. Whereas the dis-
tributor trades in the spot market at area prices, the financial contracts
used for hedging are settled against the system price. Both the area price
and the system price are correlated with electricity load and due to con-
gestion, price differences are also correlated with load. This correlation
structure is often disregarded in practice. We, therefore, develop a model
for the area price, the system price and the load in the Nordic market
with an optimal hedging strategy that coincide with common practice
in the industry. This serves as benchmark for an extended model using
data from 2013 and 2014 for two bidding areas. In one area the improved
hedging strategy reduces gross loss by 5.8% and increases gross profit by
3.8%. In the other area gross loss is reduced by 13.6% and gross profit
is increased by 9.5%.

2.1 Introduction
The Nordic electricity market was liberalized in the late 90’s to increase com-
petition and create incentive to invest in new electricity production and mod-
ernize existing production. This liberalization also reduced the barriers on
import and export between countries, allowing for more efficient use of dif-
ferent power producing technologies. Currently, the Nordic market covers the

13
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countries in the Nordic and Baltic region, i.e. Denmark, Norway, Sweden,
Finland, Estonia, Latvia and Lithuania. It is divided into 17 bidding areas
with individual area prices based on local supply and demand. Furthermore,
an overall market price for electricity is determined for contractual purposes.
This price is referred to as the system price and is based on aggregated supply
and demand, and disregards transmission constraints between bidding areas.
In contrast, the bidding areas are established to avoid congestion in the sys-
tem. Area price and local load are, therefore, highly correlated. This feature
can be exploited in deriving hedging strategies that reduce risk and increase
expected payoff.
In this paper we study the hedging problem a Nordic distribution company
faces when having agreed to deliver electricity to a customer at a fixed price
per MWh. The company has to buy electricity in the spot market, but knows
neither the exact electricity demand of the customer nor the market price of
the electricity when the demand occurs. Since trades in the spot market are
settled at the area price two types of risk arise, namely area price risk and
volume risk. To mitigate the risk the company locks in part of its profit by
buying financial contracts on electricity in advance and at a fixed price. In
the Nordic electricity market, however, financial contracts are settled against
the system price and not the area price. This introduces significant basis risk
as there can be large differences between the system price and the area price,
especially in periods with high load. Part of this risk can be covered using
forward contracts on the price difference. Nevertheless, as only monthly con-
tracts are available and the load varies throughout the month, the distribution
company cannot completely eliminate the risk from fixed price agreements. In
spite of this, more than 50 % of contracts for electricity in 2010 were deliv-
ered based on fixed price agreements in the Nordic market and in EU 60%
of contracts were fixed price agreements.1 Hence, managing the risk of such
agreements is of great importance for electricity companies.
This paper contributes to the literature by developing an electricity price
model and deriving a corresponding hedging strategy that takes into account
the difference between the area price and the system price, the correlation be-
tween price and load as well as correlation over time. In addition to using the
base load and peak load contracts for hedging, we study the impact of includ-
ing contracts for difference to manage basis risk. Furthermore, as the profit
distribution is asymmetrical, we complement the traditional variance-based
approach by including a one-sided measure of risk in the hedging problem.
We benchmark different model extensions against a base model for which the
strategy coincides with common practice in the industry, which is to ignore
correlation and hedge at the expected load.
The importance of including correlation between electricity price and load has
already been demonstrated in the existing literature. As an example, Bessem-

1ECME Consortium (2010)
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binder and Lemmon (2002) develop an equilibrium-based market model and
find that this correlation has a substantial impact on the optimal hedging
strategies in a forward market. Closer to our work is Oum et al. (2006), who
consider a load serving entity and study the influence of correlation on the
residual risk following hedging. The authors derive analytical solutions to the
hedging problem for specific utility functions and approximate these solutions
by call options to compensate for the lack of contracts to hedge volume risk.
Their results likewise show that the correlation has a significant impact on the
payoff structure as well as on the hedging strategy. Whereas these references
use a single period setting, we include multiple periods and thereby capture
the basis risk that arise when contracts cover an entire month. This makes it
possible to apply the hedging strategies to the Nordic Market.
An example of a more advanced electricity price model applied to market
data is provided by Coulon et al. (2013), who develops a three-factor model
with load-based regime switching to model the Texas electricity market. The
authors study variations of daily pay-offs using hedging strategies with spark
spreads or call options and apply it to a single day with one-dimensional
hedging. The inclusion of load-based regime switching makes calibration and
estimation much more difficult on a longer time horizon, and, therefore, is
not considered in this paper. Weron et al. (2004) and Erlwein et al. (2010)
develop advanced reduced form models that involve jumps and regime switch-
ing and present different algorithms to calibrate the models to price data.
Whereas the above are single factor models, multi-factor models with jumps
and regime switching have been used by Deng (1999), Schwartz and Smith
(2000) and Coulon et al. (2013) to capture both short-term and long-term dy-
namics of electricity prices. This approach is extended in Burger et al. (2004)
to include a demand component in pricing of derivatives. For a thorough re-
view of electricity price models see Carmona and Coulon (2014), where both
reduced form models and structural models are considered. In contrast to
these references, our price model is specifically tailored to the Nordic mar-
ket by including both load, area and system prices, whereas the modeling of
each component is restricted to a single factor and does not involve jumps.
The inclusion of area and system prices makes it possible to use contracts
for difference in the hedging. To the best of our knowledge, the literature has
not previously addressed hedging strategies to manage differences between the
area and system prices in the Nordic Market.
This paper is organized as follows. The spot and forward markets are intro-
duced in Section 2.2. This includes the dynamics of the system price, the
area price and the load as well as the financial contracts used to manage the
uncertainty of payoffs. Section 2.3, describes the various sources of risk faced
by the company originating from trading in the spot and forward markets
and offering fixed price agreements. We formally introduce the accompany-
ing hedging problem in Section 2.4. Section 2.5 analyzes the load and price
data, defines the seasonal components and describes the calibration. A simple
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model is introduced and subsequently extended in Section 2.6. In Section 2.7,
we benchmark the hedging strategies when calibrated to data from 2012 and
applied to data from 2013 and 2014. We study the effect of changing the
risk measure, the impact of including the contracts for difference and the im-
plications of improved forecast of average prices. Finally, in Section 2.8, we
summarize our findings and discuss extensions and future work.

2.2 Trading Electricity
In this section we describe the market dynamics of the Nordic electricity mar-
ket and the financial instruments that will be used for hedging. We focus
on the Nordic spot market, Nord Pool Spot, and the corresponding forward
market at Nasdaq Commodities.

2.2.1 Area Price and System Price

The area prices are set in such a way that the electricity is produced in the least
expensive way in the Nordic and Baltic region, aiming at a market equilibrium
that accounts for transmission. In the absence of transmission congestion, all
area prices coincide with the system price. In its presence, area prices are
determined on the basis of the system price by adjusting for transmission.
By increasing the area price local supply will increase and local demand will
decrease. Similarly, by decreasing the area price, local supply will decrease
whereas local demand will increase. Thus, by raising the area price in bidding
areas that would ideally be importing beyond its transmission limits, import
is reduced. Likewise, by reducing the area price in bidding areas that would be
exporting beyond its transmission limits, the export is reduced. It should be
clear that electricity is produced at minimal costs, as in equilibrium bidding
areas with low marginal cost will be exporting at full transmission capacity
and bidding areas with high marginal cost will be importing at full capacity.
Since the load on the grid varies significantly throughout the day and increased
demand in all bidding areas increase prices, variations in both area price and
system price typically occur in periods with high load. Furthermore, the
capacity limits on transmission between bidding areas are met more often in
hours with high load than hours with low load. For this reason, differences
between the area and the system price often occur in periods with high load.
In this paper we focus on two large portfolios of fixed price contracts in West
Denmark (DK1) and East Denmark (DK2), respectively. The load of the
portfolio from DK1 is shown in Figure 2.1. This figure confirms the occurence
of price differences in hours of high load. Moreover, the prices reveal that the
bidding area DK1 is importing throughout most of August, but is exporting
in a few hours of the beginning of February. Other factors, such as changes in
demand in other bidding areas and varying supply of wind power, may create
differences in periods with low load.
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Figure 2.1: Electricity prices and load for 2012 in West Denmark (DK1).

2.2.2 Financial Contracts on Electricity Prices

In the Nordic region, financial contracts on electricity prices are traded on
Nasdaq Commodities. In this paper, we consider three different types of con-
tracts. The most simple type is a base load contract on the system price that
covers every hour of a given month. It is not related to physical delivery of
electricity, but is a purely financial contract that pays the difference between
the system price and the forward price for every hour of the month. The load
typically varies between a peak level and an off-peak level, which can be seen
in Figure 2.1. To manage these variations the market also includes peak load
contracts that pay the difference between the system price and the forward
price in peak hours, 8-20, during weekdays. This makes it possible to create a
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portfolio of base load and peak load contracts that resemble the load profile.
Figure 2.2 illustrates the load in off-peak and peak periods along with the
average load in both periods.
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Figure 2.2: Peak and off-peak load for February and August 2012 in Western Den-
mark (DK1).

Base load and peak load contracts are both settled against the system price
and not the area price that is the basis for physical trading. To handle the risk
related to differences between area and system prices, we include contracts for
difference (CfD). This contract pays the difference between the area price and
the system price minus the cost of the CfD and covers the entire month. In
spite of including the CfD, it is still not possible to completely eliminate the
risk related to delivering an uncertain quantity, i.e. the volume risk.

2.3 Hedging Volume Risk
Initially, we assume that the area price and the system price coincide and
study hedging strategies when facing volume risk in a single period setting.
When planning to buy a fixed load LT at an uncertain price ST at time T
and resell it at a fixed price F , risk can be completely eliminated by buying
LT futures contract with maturity T at time t with t < T . The contracts pay
the difference between the uncertain price ST and a fixed forward price qt(T ).
Thus, at time T we have the pay-off

(F − ST )LT + (ST − qt(T ))LT = (F − qt(T ))LT . (2.3.1)
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As a result, the purchase price is locked at qt(T ), eliminating the risk. How-
ever, when planning to buy an uncertain load LT at an uncertain price ST
and reselling it at a fixed price F , it is not possible to completely eliminate
the risk using only futures contracts. By buying V futures contracts at time
t, the payoff at time T will be

(F − ST )LT + (ST − qt(T ))V = (F − qt(T ))V + (F − ST )(LT − V ). (2.3.2)

If we could choose V = LT the risk would be eliminated as above. The problem
is that LT is stochastic whereas V has to be fixed at time t with t < T . We
are, therefore, interested in the quality of a hedge, which introduces the need
for risk measures. See Artzner et al. (1999) for a detailed analysis of risk
measures.

2.3.1 Variance as a Measure of Risk

A classic measure of risk is the variance of the payoff, i.e.

V ar

[
(F − ST )LT + (ST − qt(T ))V

]
, (2.3.3)

which is minimized by

V ∗ = Cov(ST , STLT )
V ar(ST ) − F Cov(LT , ST )

V ar(ST ) (2.3.4)

as shown in Lemma 2.A.1. We note that V ∗ is independent of the forward
price qt(T ), but not the fixed price F . We can rewrite (2.3.4) to

V ∗ = E(LT )− (F − E(ST ))Cov(ST , LT )
V ar(ST )

+ Cov((ST − E(ST ))2, LT )
V ar(ST ) .

(2.3.5)

as shown in Lemma 2.A.2. This implies that for any distribution it is optimal
to hedge the expected load and compensate for expected unhedged payoff per
MWh depending on the covariance between price and load and to compensate
for the covariance between the quadratic deviation from the expected price
and the load. If ST and LT are independent, V ∗ = E(LT ) and the optimal
strategy is to hedge the expected load. This is the straightforward extension
of the case with fixed load and we refer to this strategy as the mean hedge.

Example 2.3.1. Assume ST and LT are jointly Normal with correlation ρ
and standard deviations σS and σL, respectively. Then the minimal variance
hedge simplifies to

V ∗ = E(LT )− (F − E(ST ))ρσQ
σS

(2.3.6)
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which we show in Lemma 2.A.3. As electricity prices are determined by match-
ing supply and demand, the total load is positively correlated with the electricity
price. Thus, V ∗ < E(LT ) for F > E(ST ) and V ∗ > E(LT ) for F < E(ST ).
Finally, if F − E(ST ) = 0 or LT and ST are uncorrelated, and hence inde-
pendent, as they are jointly Normal, the optimal strategy is again to hedge the
expected load.

The variance measures expected quadratic deviations from the mean and
is a symmetrical risk measure. It is useful as it often allows for closed-form
minimizers. Moreover, for symmetrical payoff distributions minimizing the
two-sided risk is similar to minimizing the one-sided risk. The risk measure
is often extended to be a linear combination of the mean and the variance.
However, by using the variance, the upside may still be reduced. From a risk
management perspective, however, there is no interest in reducing the upside,
and so only downside risk is an issue. Because of this, and as the payoffs
distributions are not necessarily symmetrical, we consider another classical
measure of risk, namely the expected loss.

2.3.2 Expected Loss as a Measure of Risk

The expected loss is defined as

−E
[

min
(
(F − ST )LT + (ST − qt(T ))V, 0

)]
(2.3.7)

and is equivalent to minus the expected payoff, conditional on the payoff
being negative. The sign has been changed to obtain a non-negative quantity.
When facing price risk only, i.e. load is fixed, and provided F > qt(T ), both
the variance and the expected loss is minimized by V ∗ = LT with minimum
0. However, in the presence of volume risk, the two risk measures may result
in different hedging strategies as seen in the following example.
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Example 2.3.2. Assume again that ST and LT are jointly Normal with
E(ST ) = 35, E(LT ) = 0.5, σS = 10, σQ = 0.1, ρ = 0.5 and qt(T ) = 29.75.
We compare the expected loss minimization (Loss hedge) and variance mini-
mization (Var hedge) and further include the mean hedge for comparison. The
strategy minimizing the expected loss is determined numerically. In the first
plot of Figure 2.3 the fixed price is 40 and the expected payoff per unit electric-
ity is positive, whereas this is not the case in the second plot where the fixed
price is 30. In both cases the forward price for electricity is below the expected
price, which is known as backwardation, and in this case the expected payoff
increases linearly with the hedging volume. We note from Figure 2.3 that the
hedged payoff with minimal expected loss has a lighter tail for negative payoffs
than the variance hedge in the case with negative expected payoff. It likewise
has a heavier tail for positive payoffs. This is due to the fact that the skewness
of the payoff density can be affected in the presence of volume risk.
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Figure 2.3: Payoff densities (bold lines) and means (dashed lines) with pa-
rameters from Example 2.3.2. (Backwardation).

For Normal distributions, the minimal variance hedge is below the mean load
in the case of positive expected payoff and above the mean load in the case
of negative expected payoff, as also seen from equation (2.3.6). Although this
also applies for the expected loss in Example 2.3.2, it is not always the case.
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For instance, if the forward price is higher than the expected price, known
as contango, the Min Loss hedge deviates significantly from the mean hedge
in the opposite direction of the minimal variance hedge, see Appendix 2.B.
Appendix 2.B also contains additional statistics for Example 2.3.2.

2.4 Hedging in the Nordic Market
We proceed to introduce the specific problem of hedging in the Nordic market
and discuss its relation to the description of volume risk in the previous section.
As prices are fixed for every hour, we let St and Ssyst denote the area price and
the system price, respectively, in hour t measured in EUR/MWh. Moreover,
we let Lt denote the percentage of the maximum load delivered to the local
customer in hour t. As a result, payoffs are likewise scaled by the maximum
load. Letting Fj be the fixed price for electricity in month j, the sales revenue
for hour t in month j are

(Fj − St)Lt. (2.4.1)

To mitigate risk we consider three types of contracts, that is, base load con-
tracts, peak load contracts and contracts for difference. We let qbj denote the
forward price of the base load contract and V b

j the percentage of maximum
load that is covered by base load contracts in month j. For every hour of
month j the following cashflow is obtained by buying base load contracts

(Ssyst − qbj)V b
j . (2.4.2)

Similarly, for the peak load contracts we let qpj denote the forward price and
V p
j the percentage of the maximum load that is covered with the peak load

contracts in month j. For every hour covered by peak load contracts in month
j the following cashflow is obtained

(Ssyst − qpj )V
p
j . (2.4.3)

We let mj be the set of all hours in month j, peakj be the subset of mj that
are peak hours, and off j be the subset of mj that are off-peak hours. Finally,
we let qdj denote the forward price for the CfDs and V d

j denote the percentage
of maximum load that is covered by the CfDs. For every hour in month j the
following cashflow is obtained by buying CfD contracts

(St − Ssyst − qdj )V d
j . (2.4.4)

Thus, the total cash flow in hour t of month j is given by

(Fj − St)Lt + (Ssyst − qbj)V b
j + 1(t∈peakj)(S

sys
t − qpj )V

p
j

+ (St − Ssyst − qdj )V d
j .

(2.4.5)
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where 1(t∈peakj) is 1 if t ∈ peakj and 0 otherwise. By introducing the effective
hedging volume in peak hours, V e

j = V b
j + V p

j and the effective forward price
in peak hours, qej = qbjV

b
j /V

e
j + qpjV

p
j /V

e
j , we can decompose the payoff such

that the cost of hedging in the peak period is a weighted average of the two
forward prices. Rewriting the total cash flow from (2.4.5) we obtain:

− qdjV d
j + (Ssyst − St)(Lt − V d

j )

+ 1(t∈off j)
[
(Fj − qbj)V b

j + (Fj − Ssyst )(Lt − V b
j )
]

+ 1(t∈peakj)
[
(Fj − qej )V e

j + (Fj − Ssyst )(Lt − V e
j )
]
.

(2.4.6)

This formulation shows how variation in the cash-flow originates from only
two random terms for both peak or off-peak hours. The first term is the
difference between the area price and the system price times the deviations
from the hedging volume of the CfDs. Thus, if Lt−V d

j is small at a time when
the system price and the area price differ, it barely impacts the pay-off. The
second random term is the difference between the system price and the fixed
price times the deviations from the hedging volume of the base load and peak
load contracts. As before, we note that if Lt − V b

j or Lt − V e
j is small when

the system price deviates from Fj , it barely affect the pay-off. This suggests
that to minimize variations it is most important to match the load in periods
where the price is volatile. We immediately recognize the payoff structure in
the presence of volume risk, although with a sum of two components Ssyst −St
and Fj−Ssyst times the corresponding differences between the hedging volume
and the load. As the system prices in peak hours are typically above the fixed
price and the system prices in off-peak hours are typically below the fixed
price, the results of Example 2.3.1 suggest hedging above the mean load in
peak hours and below the mean load in off-peak hours. Unfortunately, the
two terms cannot be handled separately as the system price and the load are
included in both.
If we could perfectly predict Lt and adjust V d

j , V b
j and V p

j every hour, price
risk could be completely eliminated. This could be done by setting V d

j = Lt
for all hours, V b

j = Lt for off-peak hours and V e
j = Lt for peak hours. This

would result in the following cashflow

(F − qdj − 1(t∈off j)q
b
j − 1(t∈peakj)q

e
j )Lt. (2.4.7)

Thus, qdj becomes the cost of hedging the difference between the area price
and the system price and F − qbj or F − qej becomes the payoff that is locked
when hedging. However, Lt is stochastic and varies for each hour, whereas
V b
j , V

p
j and V d

j have to be fixed for month j, which again creates the need for
risk measures to determine the optimal hedge.
Having studied the structure of the problem, we turn our attention to pre-
dicting seasonal trends and patterns in the data.
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2.5 Calibration and Prediction
In this section we calibrate seasonality curves to load and price data from 2012
and use this to predict seasonality curves for 2013 and 2014. Furthermore, we
describe how to calibrate expected monthly prices using base load contracts
and peak load contracts. Finally, we determine a fixed price for 2013 and 2014
based on 2012 data.

2.5.1 Seasonal Component for Load Data

The load data is from two portfolios of customers on fixed price contracts from
the bidding areas West Denmark (DK1) and East Denmark (DK2). The price
data includes area prices for the two bidding areas as well as the system price
for 2012-2014. The bidding areas are seen to have different load characteristics
and are therefore modeled separately. In particular, the load portfolio of DK1
is strongly affected by weekends and holidays, whereas the portfolio in DK2
is primarily affected by yearly variations in demand, see Figure 2.4. We let θt
be the periodic function

θt = α+ (1 +A0 cos(2π
τ0
t+B0)2)

p∑
i=1

Ai sin(2π
τi
t+Bi) (2.5.1)

with p periods τ0, . . . τp, amplitudes A0, . . . , Ap and phases B0, . . . Bp. A0, τ0
and B0 serve to capture seasonal behavior in the amplitude that occurs for
the load of DK2 and we set A0 = 0 in DK1. For calibration the load data is
split in three subsets; weekdays, weekends and holidays. The function θt is
calibrated to data from each of the subsets by numerically minimizing the sum
of quadratic deviations and combined to the dotted curve shown in Figure 2.4.
The periods are based on peaks of autocorrelation functions for 2012 data, with
τ0 = 2 · 24 · 365, τ1 = 12, τ2 = 24, τ3 = 24 · 7, τ4 = 24 · 365, τ5 = 24 · 365.2
Using the load for 2012 we predict the seasonality curves for 2013 and 2014
based on holidays, weekends and day-light savings. To reflect the long-term
increase of load, α is adjusted to match the yearly average, which can usually
be predicted with high accuracy by electricity companies. Figure 2.5 shows
that the load can be calibrated extremely well, i.e. the behavior of the data
is very close to that of the function θt. This is also confirmed by a coefficient
of determination for out-of-sample data of 0.823 and 0.923 for DK1 and DK2,
respectively.

2We use two curves with yearly frequency to capture the yearly patterns.
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Figure 2.4: Seasonality curves (red) calibrated to historical electricity load
(black) in 2012.
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Figure 2.5: Predicted seasonality curves (red) for 2013 and 2014 and historical
electricity load (black).
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2.5.2 Price Data

We apply the same approach for calibration and prediction of seasonality in
prices. In the periodic function, we let A0 = 0. The calibration results are
shown in Figure 2.6 with τ1 = 12, τ2 = 24, τ3 = 24 ·7. To adjust for more long-
term variations in the system price, the forward prices of base load contracts
and peak load contracts are used to adjust the monthly mean of the seasonality
curves for the system price in peak and off-peak periods such that

1
|peakj |

∑
t∈peakj

θsyst = qpj , (2.5.2)

1
|mj |

∑
t∈mj

θsyst = qbj . (2.5.3)

We ignore the market price of risk as well as discounting to simplify results.
Furthermore, due to risk premium and seasonal bias in forward prices for
base load contracts and CfDs, see Bessembinder and Lemmon (2002) and
Kristiansen (2004), we do not use them to adjust the seasonality curves for
the area prices. For the three prices, the random part is more dominating
than the seasonality curve, which is reflected by a coefficient of determination
for out-of-sample data of 0.213, 0.211 and 0.363 for the DK1 area price, the
DK2 area price and system price, respectively.3

3The coefficient of determination for DK1 has been computed without including a 5 hour
price spike with prices over 1900 Euro/MWh in June 2013.
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Figure 2.6: Calibrated seasonality curves (red) and historical electricity prices
(black) for 2012.
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(black) for 2013 and 2014. Extreme price spikes are not displayed in the plots.
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2.5.3 Fixed Cost of Electricity

The fixed price Fj for each month in 2013 and 2014 is determined as

Fj =
∑
t∈mj

StLt∑
t∈mj

Lt
, (2.5.4)

using the data from 2012. This implies that∑
t∈mj

FjLt =
∑
t∈mj

StLt (2.5.5)

and that the company would break even in 2012. With this construction Fj
will typically be higher than the average off-peak price and lower than the
average peak price, indicating expected profit in off-peak hours and expected
loss in peak hours. In practice Fj is increased with a margin to increase
profitability of the contract and compensate for the risk, but initially we study
the problem without the margin.
In the next section, we introduce three models for the stochastic evolution of
the area price, the system price and the load. For the first and second model
we determine the minimal variance hedge, Min Var, analytically, where the
objective is the sum of variances of the hourly cash flow

∑
t∈mj

V ar

(
(Fj − St)Lt + (Ssyst − qbj)V b

j

+(St − Ssyst − qdj )V d
j + 1(t∈peakj)(S

sys
t − qpj )V

p
j

)
.

(2.5.6)

For the third model we find the Min Var hedge numerically and include the
hedging strategy Min Loss, which minimizes

∑
t∈mj

−E
[

min
(

(Fj − St)Lt + (Ssyst − qbj)V b
j

+(St − Ssyst − qdj )V d
j + 1(t∈peakj)(S

sys
t − qpj )V

p
j , 0

)]
.

(2.5.7)

This risk measure focuses on the expected loss for every hour, and the accom-
panying hedging strategy is expected to result in payoffs that decrease very
little. In contrast, the minimal variance hedge is expected to result in payoffs
that vary very little.
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2.6 Model Set-up
We consider three different models for the deviations from the seasonality
curve, all with the underlying assumption that

St = θSt + S̃t, (2.6.1)
Ssyst = θsyst + S̃syst , (2.6.2)
Lt = θLt + L̃t, (2.6.3)

where θSt , θ
sys
t and θLt are seasonal components of the area price, the system

price and the load and S̃t, S̃syst and L̃t are the deseasonalized components.
All of the models capture the mean-reverting tendencies and seasonality that
we observe in the data. Furthermore, the seasonal components introduce em-
pirical correlation over time as well as empirical cross correlation between
the area price, system price and load in all three models. In the first two
models, however, we disregard the correlation over time and assume a simple
cross-correlation for the deseasonalized components. The simple correlation
structure is obtained by formulating the models in terms of the difference
between the area price and system price. The third model incorporates cor-
relation over time as well a more advanced structure of cross-correlations by
a direct modeling of the area price.

2.6.1 Model 1 - Independent Price, Load and Difference to
System Price

In this model we let ε̃t = S̃t−S̃syst be the difference between the deseasonalized
area and system price such that the area price is the system price plus some
noise due to congestion. We assume that S̃syst

ε̃t
L̃t

 ∼ N

 0

0
0

 ,
 σ2

sys 0 0
0 ν2 0
0 0 σ2

L


 (2.6.4)

and that (S̃syst , ε̃t, L̃t) are independent of (S̃syst′ , ε̃t′ , L̃t′) for t 6= t′. This is
equivalent to St

Ssyst

Lt

 ∼ N

 θSt
θsyst

θLt

 ,
 σ2

sys + ν2 σ2
sys 0

σ2
sys σ2

sys 0
0 0 σ2

L


 . (2.6.5)
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With these assumptions, we obtain the analytical minimal variance hedge that
is given by

V b
j = 1

|off j |
∑
t∈off j

θLt , (2.6.6)

V p
j = 1

|peakj |
∑

t∈peakj

θLt −
1
|off j |

∑
t∈off j

θLt , (2.6.7)

V d
j = 1

|mj |
∑
t∈mj

θLt . (2.6.8)

This estimate for a hedging strategy only depends on the prediction of the
load, which is one of the reasons it is widely used by electricity companies.
We refer to this as the mean hedge.

2.6.2 Model 2 - Correlated Price and Load, but Independent
Difference to System Price

In the second model we include correlation between the deseasonalized load
and deseasonalized system price. The motivation for this is that as the system
prices reflect the equilibrium between supply and demand. Thus, if the load
is above its expectation, there is a tendency for the system price to likewise
be above its expectation, and similarly when the load is below its expectation.
This is formalized as S̃syst

ε̃t
L̃t

 ∼ N

 0

0
0

 ,
 σ2

sys 0 ρσsysσL
0 ν2 0

ρσsysσL 0 σ2
L


 , (2.6.9)

and is equivalent to St
Ssyst

Lt

 ∼ N

 θSt
θsyst

θLt

 ,
 σ2

sys + ν2 σ2
sys ρσsysσL

σ2
sys σ2

sys ρσsysσL
ρσsysσL ρσsysσL σ2

L


 . (2.6.10)

We find the analytical minimal variance in terms of an adjusted load

θ̃Lt = θLt + (θSt − F )ρ σL
σsys

(2.6.11)

to be

V b
j = 1

|off j |
∑
t∈off j

θ̃Lt , (2.6.12)

V p
j = 1

|peakj |
∑

t∈peakj

θ̃Lt −
1
|off j |

∑
t∈off j

θ̃Lt , (2.6.13)

V d
j = 1

|mj |
∑
t∈mj

θLt , (2.6.14)
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which is seen to be the natural extension of Model 1. The hedging strategies
from this model correspond to hedging slightly above expected load for high
prices and slightly below expected load for low prices due to the positive price
and load correlation. Note that the hedging volume for contracts for difference
remain unchanged and that the peak load hedge, but not the effective peak
hedge, is independent of F.

2.6.3 Model 3 - Correlation Over Time and Between Load,
Area Price and System Price

In the third model we include temporal correlation in the deseasonalized
components and assume (S̃t, S̃syst , L̃t) follow a three-dimensional Ornstein-
Uhlenbeck process given by

dS̃t = −κSS̃t dt+ σ̃S dZSt , (2.6.15)
dS̃syst = −κsysS̃syst dt+ σ̃sys dZsyst , (2.6.16)

dL̃t = −κLL̃t dt+ σ̃L dZLt . (2.6.17)

Here ZSt , Z
sys
t and ZLt are correlated Brownian motions with correlation coef-

ficients ρS,sys,ρS,L,ρsys,L. The explicit solution to equations (2.6.15), (2.6.16)
and (2.6.17) conditional on (S̃u, S̃sysu , L̃u) with u < t is

S̃t = S̃ue
−κS(t−u) + σ̃S

∫ t

u
e−κS(t−v) dZSv , (2.6.18)

S̃syst = S̃sysu e−κsys(t−u) + σ̃sys

∫ t

u
e−κsys(t−v) dZsysv , (2.6.19)

L̃t = L̃ue
−κL(t−u) + σ̃L

∫ t

u
e−κL(t−v) dZLv , (2.6.20)

and, hence, for t > u St
Ssyst

L̃t


∣∣∣∣∣∣∣
 Su
Ssysu

Lu

 ∼ N

 S̃ue

−κS(t−u) + θSt
S̃sysu e−κsys(t−u) + θsyst

L̃ue
−κL(t−u) + θLt

 ,
 ΣS(u, t) ΣS,sys(u, t) ΣS,L(u, t)

ΣS,sys(u, t) Σsys(u, t) Σsys,L(u, t)
ΣS,L(u, t) Σsys,L(u, t) ΣL(u, t)


 ,

(2.6.21)

with

ΣS(u, t) = σ̃2
S(1− e−2κS(t−u))

2κS
, (2.6.22)

Σsys(u, t) =
σ̃2
sys(1− e−2κsys(t−u))

2κsys
, (2.6.23)

ΣL(u, t) = σ̃2
L(1− e−2κL(t−u))

2κL
, (2.6.24)
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and

ΣS,sys(u, t) = ρS,sysσ̃S σ̃sys
1− e−(κS+κsys)(t−u)

κS + κsys
, (2.6.25)

ΣS,L(u, t) = ρS,Lσ̃S σ̃L
1− e−(κS+κL)(t−u)

κS + κL
, (2.6.26)

Σsys,L(u, t) = ρsys,Lσ̃sysσ̃L
1− e−(κsys+κL)(t−u)

κsys + κL
. (2.6.27)

Estimation procedures for the parameters in the three models can be found
in Appendix 2.D.

2.6.4 Monte Carlo Simulation

To determine the optimal hedging strategies in Model 3 for each month, we
let P kt for t ∈ mj denote a sample of the stochastic hourly payoff Pt in month
j, given by

P kt = (Fj − Skt )Lkt + (Ssys,kt − qbj)V b
j

+ (Skt − S
sys,k
t − qdj )V d

j + 1(t∈peakj)(S
sys,k
t − qpj )V

p
j ,

(2.6.28)

where (Skt )t∈mj , (S
sys,k
t )t∈mj and (Lkt )t∈mj for k = 1, . . . ,K are sample paths

obtained by simulation from Model 3. We let P̄t be the sample average of the
payoff in hour t given by,

P̄t = 1
K

K∑
k=1

P kt . (2.6.29)

For Model 3, we determine the hedging strategy, Minimum Var, that minimizes
the sum of sample variances of payoffs for hours in month j, Hj , defined as

∑
t∈mj

(
1

K − 1

K∑
k=1

[
P kt − P̄t

]2)
≈
∑
t∈mj

V ar(Pt). (2.6.30)

Furthermore, we determine the hedging strategy, Min Loss, that minimizes
the sum of sample averages of hourly losses in month j, i.e.

∑
t∈mj

(
− 1
K

K∑
k=1

min(P kt , 0)
)
≈
∑
t∈mj

−E[min(Pt, 0)]. (2.6.31)

2.7 Results
In this section we assess the performance of the optimal hedging strategies
and benchmark against the mean hedge strategy derived from Model 1. All
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hedging strategies can be determined 14 days prior to the start of the month
and does not use any other information than historical data from 2012, yearly
predicted load as well as forward prices for base load contracts, peak load
contracts and CfDs. Furthermore, all contracts are available at Nasdaq Com-
modities and the market structure closely reflect the real market. We study
the impact of modeling correlation in price and load, the inclusion of CfDs,
the impact of improved price forecast as well as the impact of margins on the
fixed price.

2.7.1 Comparing the Hedging Strategies

To compare the payoff streams in 2013 and 2014 from implementing the op-
timal hedging strategies, we let Pt denote the payoff in hour t for t ∈ mj and
j ∈ {1, . . . , 24} and define the following quantities. The profit and loss (P&L):

24∑
j=1

∑
t∈mj

Pt. (2.7.1)

The gross loss:
24∑
j=1

∑
t∈mj

−min(Pt, 0). (2.7.2)

The gross profit:
24∑
j=1

∑
t∈mj

max(Pt, 0). (2.7.3)

Finally, using the average monthly payoff, P̂j = 1
mj

∑
t∈mj

Pt, we define the
realized variance,

24∑
j=1

1
|mj | − 1

∑
t∈mj

(Pt − P̂j)2. (2.7.4)

The realized variance measures the stability of the payoffs throughout each
month, but differs from the sum of hourly variances defined in equation
(2.6.30). Realized monthly variance can be measured on actual data as op-
posed to the sum of hourly variances. Minimizing the deviations from the
hourly mean, however, creates a more stable cash-flow than minimizing the
deviations from the monthly mean.4 As the load data has been anonymized
by scaling with the maximum load, the P&L, gross loss and gross profit is
measured in Euro/maximum load. The sum of realized variances is likewise
scaled by 1/(maximum load)2.

4The realized monthly variance for DK1 has been computed without including payoffs
from June 2013 due to a 5 hour price spike, with prices over 1900 Euro/MWh as this would
blur the comparison significantly.
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2.7.2 Comparing Hedging Strategies

From Table 2.1, we initially observe that the hedged cash-flows have a lower
P&L than the unhedged as expected, but the gross loss and realized variance
have been reduced significantly. Comparing the mean hedge with the compen-
sated mean hedge, we find that the P&L has slightly increased, whereas the
realized variance and the gross loss has slightly decreased. This suggests that
there is a moderate effect of including the simple correlation between the price
and load. Directing our attention to the gross loss, we find that the Min Loss
hedge, as anticipated, has the lowest gross loss. As a side effect, the gross profit
has increased, which creates a P&L that is significantly higher than the vari-
ance minimizing strategies. The realized variance is approximately doubled
indicating that the cash-flow shows larger variations throughout each month.
More importantly, however, the accumulated P&L does not decrease as much
over time as for the Minimum Var strategy. Hence, the Min Loss hedge gener-
ates a relatively stable cash flow that outperforms the other strategies in terms
of P&L. This is confirmed in the accumulated P&L for both bidding areas, as
shown in Figure 2.8. The montly hedging volumes, gross loss, realized vari-
ance and P&L are shown in Appendix 2.F. From the hedging volumes it can
be seen that including correlation between price and load decreases the base
load hedging volume and increases the peak load hedging volume as expected.

West Denmark (DK1)
P&L Gross Loss Gross Profit Realized Variance

No hedge (100.6%) 24630.07 (129.2%) 39673.46 (117.3%) 64303.52 (2367.7%) 844.41
Mean hedge (0.0%) 12278.02 (0.0%) 17309.71 (0.0%) 29587.73 (0.0%) 34.22
Comp. mean hedge (0.9%) 12385.57 (-0.3%) 17260.62 (0.2%) 29646.20 (-0.4%) 34.09
Min Var (2.2%) 12553.24 (0.1%) 17328.72 (1.0%) 29881.95 (4.3%) 35.69

(12519.66,12574.80)∗ (17315.84,17354.60)∗ (29835.49,29929.40)∗ (35.62,35.75)∗
Min Loss (17.2%) 14389.79 (-5.8%) 16313.42 (3.8%) 30703.22 (81.3%) 62.03

(14298.30,14499.95)∗ (16187.75,16388.77)∗ (30486.05,30888.71)∗ (61.19,62.54)∗

East Denmark (DK2)
P&L Gross Loss Gross Profit Realized Variance

No hedge (12069.4%) 21874.97 (50.0%) 31766.36 (151.2%) 53641.33 (1299.7%) 657.72
Mean hedge (0.0%) 179.75 (0.0%) 21172.65 (0.0%) 21352.41 (0.0%) 46.99
Comp. mean hedge (93.0%) 346.85 (-0.2%) 21125.01 (0.6%) 21471.85 (-0.9%) 46.55
Min Var (175.1%) 494.59 (-0.5%) 21066.39 (1.0%) 21560.98 (0.6%) 47.29

(470.34,504.70)∗ (21061.51,21087.03)∗ (21531.85,21591.73)∗ (47.26,47.33)∗
Min Loss (2731.7%) 5090.01 (-13.6%) 18293.28 (9.5%) 23383.29 (133.1%) 109.55

(4934.37,5177.18)∗ (18194.50,18400.45)∗ (23128.87,23577.63)∗ (108.36,110.80)∗

Table 2.1: Performance of hedging strategies in DK1 and DK2. Mean hedge
and comp. mean hedge refer to variance minimizing strategies based on Model
1 and Model 2 respectively. Relative change from mean hedge in parenthesis.
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Figure 2.8: Accumulated P&L in DK1 and DK2 with the hedging strategies.
The variance minimizing strategies have very similar accumulated payoffs.

2.7.3 The Choice of Risk Measure and the Impact of
Correlation

Comparing common practice in the industry, i.e. the mean hedge strategy, with
the Min Loss hedge, we find that the gross loss is reduced by 6 % and 13.6%
in DK1 and DK2, respectively. Furthermore, the gross profit is increased by
3.8 % and 9.5% in DK1 and DK2, respectively.5 The realized variance is also

5The relative change of the P&L is not always well defined as the numerator can be both
positive and negative, which results in the change of 17.2% and 2731.7 % in DK1 and DK2,
respectively.
∗95% confidence interval based on 16 simulations with 1000 paths each. The actual value

is based on a single simulation with 1000 paths.
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increased, but as this includes positive deviations from the monthly mean, it
is of less importance than the gross loss. We note from the monthly P&L
in Appendix 2.F that the largest difference between the variance minimizing
strategies and the Min Loss hedge are in the months with a negative P&L.
In these months the Min Loss hedge incurs much smaller loss resulting in a
larger accumulated P&L over the two years.

2.7.4 Including CfDs

In this section we quantify the impact of including CfDs by repeating the
analysis from Section 2.7.2 assuming that the CfD contracts are not available.
Table 2.2 illustrates that for DK1, the inclusion of CfDs reduces the gross
loss by 39.3% to 47.7%, whereas the gross profit decreases by 37.6% to 41.1%.
Thus, gross loss is reduced significantly by introducing the CfDs for the three
strategies, but at the expense of a decrease in profit. Table 2.2 illustrates
that in DK2, the inclusion of CfDs reduces the gross loss by 2.3% to 19.4%,
whereas the gross profit is reduced by 42.8% to 47%. This suggest that the
benefits of including CfDs in DK2 are smaller than for DK1. A plausible
explanation is that the risk premium for CfDs is larger in DK2 than in DK1,
which could be due to more risk averse market participants in East Denmark
than in West Denmark. The impact on the accumulated payoff of including
CfDs is shown in Figure 2.9. We note that the accumulated payoffs are more
volatile without the CfDs and that the price spike in June in DK1 barely
affects the accumulated payoff, when the CfDs are included.

West Denmark (DK1) - No CfDs available
P&L Gross Loss Gross Profit Realized Variance

No hedge (0.0%) 24630.07 (0.0%) 39673.46 (0.0%) 64303.52 (0.0%) 844.41
Mean hedge (-35.0%) 18895.39 (-39.3%) 28496.69 (-37.6%) 47392.09 (-93.1%) 497.40
Comp. mean hedge (-34.8%) 19002.95 (-39.4%) 28483.75 (-37.6%) 47486.70 (-93.2%) 498.34
Min Var (-41.5%) 21469.43 (-45.9%) 32051.91 (-44.2%) 53521.34 (-94.1%) 603.46

(21419.13,21524.87)∗ (32003.20,32074.13)∗ (53422.33,53599.00)∗ (602.39,604.09)∗
Min Loss (-31.0%) 20866.83 (-47.7%) 31217.89 (-41.1%) 52084.71 (-89.1%) 571.10

(20663.33,20979.08)∗ (31060.72,31334.22)∗ (51724.05,52313.31)∗ (569.28,572.29)∗

East Denmark (DK2) - No CfDs available
P&L Gross Loss Gross Profit Realized Variance

No hedge (0.0%) 21874.97 (0.0%) 31766.36 (0.0%) 53641.33 (0.0%) 657.72
Mean hedge (-98.9%) 15645.24 (-2.3%) 21670.22 (-42.8%) 37315.46 (-86.7%) 353.81
Comp. mean hedge (-97.8%) 15812.33 (-2.4%) 21650.83 (-42.7%) 37463.16 (-86.9%) 355.05
Min Var (-97.2%) 17391.40 (-9.5%) 23280.18 (-47.0%) 40671.59 (-88.3%) 403.36

(17327.58,17432.99)∗ (23228.10,23302.88)∗ (40555.68,40735.88)∗ (402.33,403.67)∗
Min Loss (-69.7%) 16807.93 (-19.5%) 22730.92 (-40.9%) 39538.86 (-71.4%) 382.52

(16601.22,16876.88)∗ (22618.61,22834.60)∗ (39219.83,39711.47)∗ (380.98,383.53)∗

Table 2.2: Comparison of hedging strategies with no CfDs available. Relative
change by including CfDs in parenthesis.
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Figure 2.9: Accumulated P&L with (solid lines) and without (dashed lines)
CfDs in East Denmark (DK1) and West Denmark (DK2).

2.7.5 Perfect Forecast of Average Prices

The differences between the hedging strategies quantified in Section 2.7.2 and
Section 2.7.4 may be due to model assumptions such as the inclusion of auto-
and cross correlations, choice of risk measure, availability of hedging instru-
ments, but also the ability of the price model to predict the average prices
used in the hedging strategies. Whereas the mean hedge is only based on the
prediction of expected load, the more advanced hedging strategies depend on
the predictions of additional parameters. We therefore quantify the impact of
being able to more accurately predict average prices. In particular, we assume
a perfect forecast of monthly average prices in peak and off-peak periods. This
does not impact Model 1 as the hedging strategy is independent of the pre-
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dicted price, and even though Model 2 depends on the predicted price, the
performance does not changes as the hedging strategies are not very sensitive
to changes in predicted prices. The results in Table 2.3 show that the impact
on the hedging strategy Min Var is also very limited. This is not the case for
the Min Loss hedge, where the gross loss is reduced by 39.3% and 37.7% in
DK1 and DK2, respectively, while P&L are increased by 66.9% and 216.4%.
This suggests that the superiority of the advanced hedging strategies is lim-
ited by the ability to predict average prices, and therefore, that an improved
price forecast can significantly improve the Min Loss hedge. Some of these
improvements could be obtained by modeling the seasonal bias on base load
contracts, peak load contracts and CfDs, but due to unavailability of data,
this has not been further pursued in this paper.

West Denmark (DK1) - Perfect expected price forecast
P&L Gross Loss Gross Profit Realized Variance

No hedge (0.0%) 24630.07 (0.0%) 39673.46 (0.0%) 64303.52 (0.0%) 844.41
Mean hedge (0.0%) 12278.02 (0.0%) 17309.71 (0.0%) 29587.73 (0.0%) 34.22
Comp. mean hedge (0.0%) 12385.57 (0.0%) 17260.62 (0.0%) 29646.20 (0.0%) 34.09
Min Var (2.0%) 12806.32 (-0.8%) 17196.75 (0.4%) 30003.07 (-1.5%) 35.17

(12771.81,12827.93)∗ (17183.96,17223.73)∗ (29955.77,30051.67)∗ (35.09,35.23)∗
Min Loss (66.9%) 24018.18 (-39.3%) 9896.73 (10.5%) 33914.91 (-19.4%) 50.00

(23957.11,24073.28)∗ (9848.63,9921.47)∗ (33805.75,33994.75)∗ (49.80,50.99)∗

East Denmark (DK2) - Perfect expected price forecast
P&L Gross Loss Gross Profit Realized Variance

No hedge (0.0%) 21874.97 (0.0%) 31766.36 (0.0%) 53641.33 (0.0%) 657.72
Mean hedge (0.0%) 179.75 (0.0%) 21172.65 (0.0%) 21352.41 (0.0%) 46.99
Comp. mean hedge (0.0%) 346.85 (0.0%) 21125.01 (0.0%) 21471.85 (0.0%) 46.55
Min Var (35.4%) 669.57 (-0.6%) 20947.69 (0.3%) 21617.26 (-0.9%) 46.87

(645.97,679.30)∗ (20944.07,20967.71)∗ (21590.04,21647.01)∗ (46.84,46.91)∗
Min Loss (216.4%) 16104.58 (-37.7%) 11404.15 (17.6%) 27508.72 (-21.2%) 86.33

(16020.23,16147.65)∗ (11344.87,11428.31)∗ (27365.10,27575.96)∗ (85.69,87.87)∗

Table 2.3: Comparison of hedging strategies with a perfect forecast of expected
prices. Relative change from imperfect forecast.

2.7.6 Margin

By changing the fixed price to F̃ = F + 2, we obtain an increase in the
expected payoffs by approximately the total scaled load times the margin of
2. DK1 and DK2 have a total scaled load of 9758.8 and 8409.5 over the two
years, resulting in an increase of approximately 19517.6 and 16819 Euro times
the maximal load. For the compensated mean hedge the base load volume is
reduced by less than 1% and for the Min Var strategy the hedging volumes
are reduced by less than 1%, suggesting that small changes in margin to the
fixed price only have a moderate impact on the variance minimizing hedging
strategies. In contrast, the Min Loss hedge changes significantly, but the P&L
still increases by the margin times the scaled load and the gross loss remains
significantly lower than for the variance minimizing strategies.
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2.8 Conclusion and Extensions

2.8.1 Conclusion

In this paper, we develop hedging strategies for an electricity distributor in the
Nordic Electricity market who manages price and volume risk from fixed price
agreements on stochastic electricity load. We analyze the market dynamics in
the two bidding areas of West Denmark and East Denmark with a focus on the
correlation structure between area price, system price and load and quantify
the impact of including auto- and cross-correlations. When benchmarking
against hedging at expected load, which is common practice in the industry, we
find that compensating for correlation between price and load pay-off slightly
increases and the realized variance similarly decreases. This can typically be
achieved by hedging above the mean in peak periods and below the mean in
off-peak periods. By using expected loss as a risk measure instead of variance
we further improve performance compared to common practice in the industry,
both in terms of risk and profit. In one area, the gross loss is reduced by 5.8%
and the gross profit is increased by 3.8%. In the other area, the gross loss is
reduced by 13.6% and the gross profit is increased by 9.5%. We show how
the inclusion of CfDs in addition to peak load and base load contracts can
likewise reduce risk, but illustrate that this may be at the expense of a high
risk premium. Finally, we demonstrate how improved forecasts of average
prices have substantial potential to further improve performance.
We conclude that for companies that currently use the mean hedge strategy,
the accumulated payoffs can be significantly increased, while at the same time
reducing the loss from hours of negative payoffs. This is achieved by the
implementation of a more advanced price model and a hedging strategy that
exploits the asymmetry of payoffs in the presence of volume risk.

2.8.2 Improvements and Extensions

The process of differences between area and system prices, εt, is modelled as
a sequence of i.i.d. Normal variables with a fixed low volatility. In reality,
however, the behavior of the differences may closer resemble that of a jump
process, as the congestion problems causing the difference are usually quickly
resolved. Not only the differences in prices may be modeled as a jump pro-
cess, but the price process itself could also be extended to include jumps. In
both cases, price spikes caused by congestion may be even better captured by
including demand in local and neighboring bidding areas as exogenous factors.
The modeling of spikes and temporary behavior is, however, significantly more
difficult. The inclusion of such extreme behavior requires long stationary time
series, and may not even be possible due to slow changes on the demand side
as well as the supply side. For a more detailed analysis of regime switch-
ing models and jump diffusion models for electricity prices see Weron et al.
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(2004). Finally, improved work on compensating for the forward price bias to
obtain better predictions for the monthly mean of the system price and area
price could significantly improve the hedging strategies. The price predictions
could likewise be improved by calibration using demand predictions and by
monthly recalibration of the seasonal components to better adjust for the cur-
rent trends.
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Appendix 2.A Lemmas
Lemma 2.A.1. The hedge V that minimizes

V ar ((F − ST )LT + (ST − qt(T )V )) (2.A.1)

is

V ∗ = Cov(ST , STLT )
V ar(ST ) − F Cov(LT , ST )

V ar(ST ) . (2.A.2)

Proof.

V ar ((F − ST )LT + (ST − qt(T ))V )
= V ar(FLT + STV − STLT )

(2.A.3)

= F 2V ar(LT ) + V 2V ar(ST ) + V ar(STLT )
+ 2V FCov(LT , ST )− 2FCov(LT , STLT )
− 2V Cov(ST , STLT ).

(2.A.4)

The first order condition implies that

2V ∗V ar(ST ) + 2FCov(LT , ST )− 2Cov(ST , STLT ) = 0 (2.A.5)

and the second order condition is satisfied as 2V ar(ST ) ≥ 0. Thus the optimal
hedge is (2.A.2).

Lemma 2.A.2. V ∗ from Lemma 2.A.1 can be written as

V ∗ = E(LT )− (F − E(ST ))Cov(ST , LT )
V ar(ST )

+ Cov((ST − E(ST ))2, LT )
V ar(ST )

(2.A.6)

Proof. Using E(XY ) = E(X)E(Y ) + Cov(X,Y ) and Cov(X,Y ) = Cov(X +
a, Y ) for a constant, it follows that

Cov(ST , STLT ) = E(S2
TLT )− E(ST )E(STLT ) (2.A.7)

= E(S2
T )E(LT ) + Cov(S2

T , LT )
− E(ST )

(
E(ST )E(LT ) + Cov(ST , LT )

) (2.A.8)

=
(
E(S2

T )− E(ST )2)E(LT )
+ Cov(S2

T , LT )− E(ST )Cov(ST , LT )
(2.A.9)

= V ar(ST )E(LT )
+ Cov((ST − E(ST ))2, LT )
+ E(ST )Cov(ST , LT )

(2.A.10)

Inserting Cov(ST , STLT ) in (2.A.2) we obtain (2.A.6).
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Lemma 2.A.3. Assume(
LT
ST

)
∼ N

((
µL
µS

)
,

(
σ2
S ρσSσL
ρσSσL σ2

L

))
. (2.A.11)

The hedge that minimizes

V ar ((F − ST )LT + V (ST − qt(T ))) (2.A.12)

is given by

V ∗ = µL − (F − µS)ρσL
σS

(2.A.13)

Proof. We want to determine V ∗ from Lemma 2.A.2 and have Cov(LT , ST ) =
ρσSσL. Let X and Y be independent with X,Y ∼ N (0, 1). Then,(

ST
LT

)
d=
(
µS + σSX

µL + σL(ρX +
√

1− ρ2Y )

)
(2.A.14)

and using independence of X and Y as well as E(Y ) = E(X3) = 0, we find
that

Cov((ST − E(ST ))2, LT )

= E
[
((ST − E(ST ))2 − V ar(ST ))(LT − E(LT ))

] (2.A.15)

= E

[
(σSX)2σL(ρX +

√
1− ρ2Y )

]
(2.A.16)

= ρσLσ
2
SE(X3) +

√
1− ρ2σLσ

2
SE(X2Y ) (2.A.17)

= 0 (2.A.18)

and by inserting in (2.A.6) we obtain (2.A.13).

Appendix 2.B Examples
Example 2.B.1. In Example 2.3.2 the forward price, q, was lower than the
expected price, known as backwardation. For commodities the opposite situa-
tion may also occur. Consider the same parameters as in Example 2.3.2, but
with qt(T ) = 36.75. This situation, qt(T ) < E(ST ), is known as contango. In
the first plot of Figure 2.10 where F = 40, the optimal strategies are similar to
those of Example 2.3.2. In contrast, for F = 30, which is shown in the second
plot of Figure 2.10, the Min Loss hedge (V = 0.226) deviates significantly from
the mean hedge (V = 0.5) in the opposite direction of the minimal variance
hedge (V = 0.525).
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F = 40, q = 36.75 Hedged volume Expected payoff Standard deviation Expected loss
No hedge 0.000 2.000 4.899 -1.143
Var hedge 0.475 1.169 1.199 -0.153
Loss hedge 0.448 1.216 1.228 -0.146
Mean Hedge 0.500 1.125 1.225 -0.172

F = 30, q = 36.75 Hedged volume Expected payoff Standard deviation Expected loss
No hedge 0.000 -3.001 5.386 -3.836
Var hedge 0.525 -3.919 1.199 -3.919
Loss hedge 0.227 -3.397 3.217 -3.496
Mean Hedge 0.500 -3.875 1.225 -3.875

Table 2.4: Payoff statistics for different hedging strategies from Example 2.3.2.
(Contango).

F = 30, q = 36.75 Hedged volume Expected payoff Standard deviation Expected loss
No hedge 0.000 -3.000 5.386 -3.833
Var hedge 0.525 -3.919 1.199 -3.919
Loss hedge 0.226 -3.396 3.219 -3.494
Mean Hedge 0.500 -3.875 1.225 -3.875

F = 30, q = 29.75 Hedged volume Expected payoff Standard deviation Expected loss
No hedge 0.000 -3.000 5.385 -3.833
Var hedge 0.525 -0.244 1.199 -0.502
Loss hedge 0.600 0.150 1.415 -0.417
Mean Hedge 0.500 -0.375 1.225 -0.571

Table 2.5: Payoff statistics for different hedging strategies from Example 2.3.2.
(Backwardation).
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Figure 2.10: Payoff densities (bold lines) and their means (dashed lines) with
parameters from Example 2.3.2 and q = 36.75. (Contango).
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Appendix 2.C Variance Analysis
For independent hourly payoffs, which is assumed in Model 1 and Model 2, the
sum of variances of payoffs equals the variance of the sum of payoffs. Thus, to
simplify notation we minimize the variance of the sum. The variance of the
payoffs for month j is

V ar

( ∑
t∈mj

(Ssyst − qbj)V b
j +

∑
t∈mj

(St − Ssyst − qdj )V d
j

+
∑
t∈mj

(Fj − St)Lt +
∑

t∈peakj

(Ssyst − qpj )V
p
j

)

=V ar
( ∑
t∈mj

Ssyst V b
j +

∑
t∈mj

(St − Ssyst )V d
j

+
∑
t∈mj

(Fj − St)Lt +
∑

t∈peakj

Ssyst V p
j

)
(2.C.1)

=(V b
j )2V ar

∑
t∈mj

Ssyst

+ (V d
j )2V ar

∑
t∈mj

(St − Ssyst )


+V ar

∑
t∈mj

(Fj − St)Lt

+ (V p
j )2V ar

 ∑
t∈peakj

Ssyst


+2V b

j Cov

( ∑
t∈mj

Ssyst ,
∑
t∈mj

(St − Ssyst )V d
j

+
∑
t∈mj

(Fj − St)Lt +
∑

t∈peakj

Ssyst V p
j

)

+2V d
j Cov

( ∑
t∈mj

(St − Ssyst )V d
j ,
∑
t∈mj

(Fj − St)Lt

+
∑

t∈peakj

Ssyst V p
j

)

+2V p
j Cov

 ∑
t∈peakj

Ssyst ,
∑
t∈mj

(Fj − St)Lt

 .

(2.C.2)
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We can minimize the variance as a function of V p
j , V b

j and V d
j . We find

that the first order conditions imply that

V b
j =

Cov
(∑

t∈mj
Ssyst ,

∑
t∈mj

(St − Fj)Lt
)

V ar
(∑

t∈mj
Ssyst

)
−
Cov

(∑
t∈mj

Ssyst , V d
j

∑
t∈mj

(St − Ssyst ) + V p
j

∑
t∈peakj S

sys
t

)
V ar

(∑
t∈mj

Ssyst

)
(2.C.3)

V d
j =

Cov
(∑

t∈mj
(St − Ssyst ),

∑
t∈mj

(St − Fj)Lt
)

V ar
(∑

t∈mj
(St − Ssyst )

)
−
Cov

(∑
t∈mj

(St − Ssyst ), V b
j

∑
t∈mj

Ssyst + V p
j

∑
t∈peakj S

sys
t

)
V ar

(∑
t∈mj

(St − Ssyst )
)

(2.C.4)

V p
j =

Cov
(∑

t∈peakj S
sys
t ,

∑
t∈mj

(St − Fj)Lt
)

V ar
(∑

t∈peakj S
sys
t

)
−
Cov

(∑
t∈peakj S

sys
t , V b

j

∑
t∈mj

Ssyst + V d
j

∑
t∈mj

(St − Ssyst )
)

V ar
(∑

t∈peakj S
sys
t

)
(2.C.5)

With f = |peakj |
|mj | the equations from Model 1 simplify to

V b
j = 1

|mj |
∑
t∈mj

θLt − fV
p
j (2.C.6)

V d
j = 1

|mj |
∑
t∈mj

θLt (2.C.7)

V p
j = 1

|peakj |
∑

t∈peakj

θLt − V b
j (2.C.8)

and for Model 2 they become

V b
j = 1

|mj |
∑
t∈mj

(
θLt − (F − θSt )ρσL

σsys

)
− fV p

j (2.C.9)

V d
j = 1

|mj |
∑
t∈mj

θLt (2.C.10)

V p
j = 1

|peakj |
∑

t∈peakj

(
θLt − (F − θSt )ρσL

σsys

)
− V b

j . (2.C.11)
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Appendix 2.D Calibration of the Models

Let (si)(i∈{1,...,N}), (ssysi )(i∈{1,...,N}) and (li)(i∈{1,...,N}) denote the observed area
prices, system prices and loads in 2012, where N is the total number of hours.

Model 1

Model 1 only requires estimates of average load for each month as well as for
peak and off-peak hours of each month.

Model 2

We estimate σL, σsys and ρ using the estimators

σ̂2
L = 1

N

N∑
i=1

(li − θLi )2 (2.D.1)

σ̂2
sys = 1

N

N∑
i=1

(ssysi − θsysi )2 (2.D.2)

ρ̂ =
∑N
i=1(ssysi − θsysi )(li − θLi )√∑N

i=1(ssysi − θsysi )2∑N
i=1(li − θLi )2

(2.D.3)

Model 3

In this model we utilize that for an Ornstein-Uhlenbeck process Ut that satis-
fies the following equation,

dUt = −κUt dt+ σ dZt (2.D.4)

has

Ut+∆ = e−κ∆Ut + σ

∫ t+∆

t
e−κ(t−v) dZt (2.D.5)

and thus with ti = t1 + (i− 1)∆ for i ∈ {1, . . . , N},

Uti+1 = aUti + bXi, for i ∈ {1, . . . , N} (2.D.6)

with Xi independent and Xi ∼ N (0, 1), a = e−κ∆ and b2 = σ2 1−e−2κ∆

2κ . The
estimator for a that minimize

N−1∑
i=1

(Uti+1 − aUti)2 (2.D.7)

is given by

â =
∑N−1
i=1 UtiUti+1∑N−1

i=1 U2
ti

. (2.D.8)
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Thus, κ can be estimated as

κ̂ = − log(â)
∆ (2.D.9)

and b2 can be estimated as

b̂2 = 1
N − 1

N−1∑
i=1

(Uti+1 − âUti)2 (2.D.10)

and thus σ̂ =
√

2κ
1−e−2κ∆ b̂2.

Finally, given two Ornstein-Uhlenbeck processes Ut and Vt that satisfy the
equations,

dUt = −κUt dt+ σ dZt (2.D.11)
dVt = −λVt dt+ ν dWt (2.D.12)

with dWt dZt = ρdt we have that

Cor(Uti+∆ − e−κ∆Uti , Vti+∆ − e−λ∆Vti) =

ρ
2
√
κλ√

1− e−2κ∆
√

1− e−2λ∆
1− e−(κ+λ)∆

κ+ λ

(2.D.13)

Thus, with the empirical correlation between the pairs of differences Uti+∆ −
âUUti and Vti+∆ − âV Vti , r̂UV , given by

r̂UV =
∑N−1
i=1 (Uti+∆ − âUUti)(Vti+∆ − âV Vti)√∑N−1

i=1 (Uti+∆ − âUUti)2∑N−1
i=1 (Vti+∆ − âV Vti)2

(2.D.14)

ρ can be estimated by

ρ̂ = r̂UV

√
1− e−2κ̂∆

√
1− e−2λ̂∆

2
√
κ̂λ̂

κ̂+ λ̂

1− e−(κ̂+λ̂)∆
(2.D.15)

We estimate the parameters in Model 3 using these principles.
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Appendix 2.E Forward Prices and Parameters

Notation date Delivery period base load peak load DK1 CfD DK2 CfD
13. Dec 2012 Jan 2013 41.00 49.00 3.10 5.15
14. Jan 2013 Feb 2013 47.00 55.00 0.60 3.50
13. Feb 2013 Mar 2013 38.20 41.00 -0.15 1.00
13. Mar 2013 Apr 2013 39.15 40.09 -0.85 0.40
15. Apr 2013 May 2013 39.15 39.25 -1.35 -1.50
13. May 2013 Jun 2013 34.93 36.00 -1.50 0.75
13. Jun 2013 Jul 2013 29.50 30.25 4.80 5.25
15. Jul 2013 Aug 2013 35.45 38.00 2.98 4.00
13. Aug 2013 Sep 2013 35.40 38.30 3.40 4.90
13. Sep 2013 Oct 2013 38.55 43.25 1.75 4.10
14. Oct 2013 Nov 2013 42.60 47.50 -0.75 4.15
13. Nov 2013 Dec 2013 40.90 46.00 -4.10 2.50
13. Dec 2013 Jan 2014 35.40 41.00 0.00 4.50
13. Jan 2014 Feb 2014 34.50 39.60 0.05 3.80
13. Feb 2014 Mar 2014 30.05 34.10 1.00 2.65
13. Mar 2014 Apr 2014 25.15 29.25 5.75 5.90
14. Apr 2014 May 2014 24.30 27.95 6.50 6.80
13. May 2014 Jun 2014 26.35 30.35 5.60 6.75
13. Jun 2014 Jul 2014 22.20 26.15 7.40 8.25
14. Jul 2014 Aug 2014 30.75 33.68 3.50 3.00
13. Aug 2014 Sep 2014 32.85 35.80 2.60 6.45
15. Sep 2014 Oct 2014 35.75 38.90 0.47 2.90
13. Oct 2014 Nov 2014 33.95 35.95 -1.25 1.90
13. Nov 2014 Dec 2014 31.25 33.25 -1.85 1.15

Table 2.6: Notation times and forward prices

Parameters σ̂2
sys ν̂2 σ̂2

L ρ̂

DK1 - Model 1 171.87 176.24 0.00179 -
DK1 - Model 2 171.87 176.24 0.00179 0.16559
DK2 - Model 1 171.87 157.40 0.00126 -
DK2 - Model 2 171.87 157.40 0.00126 0.27545

Table 2.7: Parameters for Model 1 and Model 2

Parameters κS κsys κL ˆ̃σ2
S

ˆ̃σ2
sys

ˆ̃σ2
L

DK1 - Model 3 0.10076 0.08604 0.09951 6.37 5.44 0.01887
DK2 - Model 3 0.14235 0.08604 0.25760 8.43 8.43 0.02553

ρS,sys ρS,L ρsys,L
DK1 - Model 3 0.52951 0.22932 0.16559
DK2 - Model 3 0.63801 0.31171 0.27578

Table 2.8: Parameters for Model 3
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Appendix 2.F Hedging Strategies
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Figure 2.11: Monthly hedging volumes for East Denmark (DK1)
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Figure 2.12: P&L, gross loss and realized variance for East Denmark (DK1)
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Figure 2.13: Monthly hedging volumes for West Denmark (DK2)
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Figure 2.14: P&L, gross loss and realized variance for West Denmark (DK2)
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Market Power and Investment in

Electricity Generation

Abstract

In this paper, we compare investment timing and capacity choice
for a strategic firm and a social planner that each have a one-time op-
portunity to invest in two types of electricity generation. We account
for differences in operational costs across technologies, but also for the
differences in operating flexibility and its impact on the optimal invest-
ment decisions. The one-time investment decision involves the choice
of technology and subsequently the determination of a demand shock
trigger and new capacity level. We specifically investigate how technol-
ogy choice, investment trigger and optimal capacity change with changes
in market ownership and the level of already installed capacity in the
market.

We find that a strategic firm with market ownership tends to invest at
a higher demand trigger level and lower capacity compared to the social
planner. Hence, the strategic firm invests at a later date while incur-
ring lower investment costs. Furthermore, an increased level of already
installed capacity delay new investment and increases new capacity for
both investors, however, base load generation is delayed more than peak
load generation due to the exposure to potential low prices. Finally, we
find that increased market ownership of the strategic firm delays invest-
ment and increases new capacity.
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3.1 Introduction
Investment decisions in electricity markets have been a long lasting focus of
researchers. In this paper, we focus on the investment decisions for differ-
ent types of electricity generators. Using real options analysis and following
Hagspiel et al. (2016) and Huisman and Kort (2015), we compare the in-
vestment triggers and optimal levels of investment for a strategic firm and a
social planner in a simplified electricity market. In that regard, we combine
investment in electricity generation and real options with special emphasis on
market power issues.

The real options literature covers a vast number of references on optimal
investment and capacity decisions of a firm. In the seminal works of this
area, Pindyck (1988) examines the value of incremental investment and Dixit
(1995) studies irreversible investment in scale economies. Newer contributions
include Dangl (1999) who investigates a firm’s investment timing and capacity
choice when facing uncertainty of the demand shift parameter. Whereas this
reference does not account for market power issues, Huisman and Kort (2015)
provide a dynamic analysis of entry deterrence and accommodation strategies
in a duopoly setting.

For the coverage of electricity market aspects, Aguerrevere (2003) presents
a model for investment under uncertainty that includes time to build, capacity
choice and flexibility in the use of installed capacity, while considering the
effect of competition in the energy market. Bobtcheff (2008) likewise examines
the impact of price competition in a market driven by stochastic shocks in a
duopoly setting. Boomsma et al. (2012) investigate how investment decisions
in renewable energy vary under support schemes that differ in their exposure
to market uncertainties. Abadie and Chamorro (2014) likewise address the
valuation of an operating wind farm and the option to invest in such a farm
under different policy regimes.

Studies that specifically investigates the technology choice in the electricity
markets include Näsäkkälä and Fleten (2005), who compute optimal building
and upgrading thresholds for gas fired power plant investments and Wickart
and Madlener (2007) who compare an irreversible investment in a combined
heat-and-power production (cogeneration) system and a conventional heat-
only generation system (steam boiler). Finally, Takashima et al. (2012) inves-
tigate how an investor makes decisions about timing, sizing, and technology
choice.

We aim to extend the real options literature to allow for ownership of
already installed capacity and generalize the cost structure. Contrary to as-
sumptions of the majority of the literature, the choice of technology is not
only a question of operation and investment costs. This is the case as different
technologies entail different revenue streams, depending on their operational
characteristics. We take the operational flexibility as well as different marginal
costs into account and study the impact on optimal investment decisions. Fur-
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thermore, we account for and investigate the market power that may result
from owning already installed capacity.

The rest of the paper is organized as follows: In Section 3.2, we state the
aim and formal model set-up of the paper. In section Section 3.3 the value of
immediate investment in base load and peak load generation for the strategic
firm is determined, including the value of suspending operation for a peak load
plant. We find the value of suspending operation through a limit of two value
matching conditions, as it allows for simpler explicit formulas for the options
constants that can be generalized to other processes. In section Section 3.4 we
derive conditions for the optimal capacity of immediate investment and extend
the classical conditions for finite value of investment. The conditions for the
optimal demand shock trigger is derived in Section 3.5 along with extended
conditions on investment costs for finite value of delayed investment. In Sec-
tion 3.6 the optimal trigger and capacity conditions are combined reducing
the problem to one dimension for both base load and peak load, which makes
the problem significantly easier to solve numerically. Finally, we show how to
similarly value investment for the social planner by considering a hypothetical
market for a strategic firm. In Section 3.7, we report numerical results and
study the impact of production, investment and market parameters. Finally,
Section 3.8 provides a brief conclusion.

3.2 Model Set-up

Our model is an extension of the models studied by Hagspiel et al. (2016)
and Huisman and Kort (2015). We specifically extend their models to study
investment in electricity markets, where prices can be negative and compare
the impact of operational flexibility in generation. Furthermore, we extend
to slightly more general cost functions, which is possible for the generation
technologies we study, as the problem can reduced to a one-dimensional prob-
lem. Typically, production technologies may experience decreasing marginal
investment costs due to economies of scale, which suggests convex marginal
investment cost, however power plants may have increasing marginal invest-
ment costs, e.g. due to a loss of efficiency at high loads for conventional plants
and site limitations for renewable plants. We further allow for the investor
to own some level of installed capacity prior to the investment decision, as is
often the case for electricity generation. We compare the investment decisions
of a strategic firm and a hypothetical social planner and explore the effects
of market power for two different power generating technologies. We model
two stylized technologies and investigate how the choice of technology changes
with respect to crucial model parameters.

The starting point of our model is a simplified electricity market that has
a level K ≥ 0 of installed capacity already in place. To simplify the model, we
assume that the installed capacity is a base load technology. This capacity is
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always active, producing electricity at full capacity and subject to a constant
marginal cost of production c > 0. Furthermore, the strategic firm in the
industry owns a fraction of the installed capacity, A ∈ [0, 1], and has a one-
time opportunity to invest in new capacity.

The sole source of uncertainty in our model is the exogenous demand shock
following a Geometric Brownian Motion:

dXt = αXtdt+ σXtdWt (3.2.1)

where α is the drift parameter, σ > 0 is volatility parameter and Wt is a
Wiener process. Using this specific stochastic process is a standard assumption
in the real options literature, and allows us to derive closed-form solutions for
the option values.1 We assume that the market price of electricity fluctuates
stochastically according to a linear inverse demand function, D:

Pt = D(Xt, Qt) = Xt − γQt with γ > 0, (3.2.2)

where Qt is the total industry production at time t, Xt is the stochastically
varying demand shock at time t and γ is the price elasticity. We do not
impose any restrictions on the inverse demand function. Therefore, depending
on demand and supply, market prices could become negative. Finally, we let
r > 0 be the exogenously specified risk free rate of the market with r > α.
Note that in the case of inelastic demand, investment in new generation would
have no impact on the existing assets.

We assume that the strategic firm and the social planner have two tech-
nologies to choose from: base load and peak load. To simplify our derivations
and the determination of technology choice, we assume that the decision be-
tween these two mutually exclusive projects is to be made by the investor at
time zero. The marginal cost of production for the new generator depends
on the choice of technology and satisfies 0 < cB < c < cP , where cB and cP
are the marginal cost of production for the base load and the peak load tech-
nology, respectively. Thus, investment in base load generation entails lower
marginal cost of production than the installed capacity, whereas investment in
peak load generation entails higher costs. If the base load generator is chosen,
the marginal cost of production for the new generator will be low, but the
generator will always operate at full capacity and never shut down. If the
peak load generator is chosen, however, the marginal cost of production will
be high, but electricity generation can be suspended without a cost. Peak
load generation will be suspended when demand is low and for simplicity we
assume that it is active at full capacity when it is not suspended. The firm can
invest in a level Knew > 0 of new capacity at a fixed cost of I and a variable
cost of Kλ

new, where λ ≥ 0. Therefore, the total investment cost equals

I +Kλ
new. (3.2.3)

1In the appendix we give an approach to generalize this to other time-homogeneous
diffusion processes by solving a second order differential equation.
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In the following sections we explore the investment decisions of the strategic
firm when choosing between the two technologies, base load and peak load.
In the literature, the main distinction between base load and peak load is
that peak load generators have lower investment costs and higher marginal
costs compared to base load generators, see Joskow (2007). However, this
distinction is insufficient to capture the value of flexibility for a peak load
generator. In particular, by disregarding the value of being able to suspend
operation, peak load generators will be undervalued. In the following section,
we address this point in more detail. For the strategic planner we initially
determine the value of immediate investment, then we derive conditions for the
optimal investment capacity and finally we determine the optimal investment
timing. We show in Section 3.6.4 that the investment problem for the social
planner in this setup is equivalent to the investment problem for a strategic
planner with altered market parameters and for this reason we only model the
strategic firm.

3.3 Investment Value for the Strategic Firm
In this section, we explore the value of new generation for the strategic firm,
provided a potential investment has already been undertaken and capacity
installed. The profit flow Π(Xt,Knew, cnew) for the strategic firm given a level
Knew of active new capacity, when the current demand shock is Xt and the
marginal cost of production for the new technology is cnew, is

Π(Xt,Knew, cnew) = D(Xt,K +Knew)(AK +Knew)
− cAK − cnewKnew

(3.3.1)

=
(
Xt − γK − c

))
AK

+
(
Xt − γKnew −

(
cnew + γ(A+ 1)K

))
Knew.

(3.3.2)

Thus, with profit level Xsus(Knew, cnew) given by

Xsus(Knew, cnew) = γKnew + cnew + γ(A+ 1)K (3.3.3)

the profit flow from generation is positive for Xt > Xsus(Knew, cnew). The
profit level depends on the level of already installed and new capacity as the
market price Pt is lowered depending on supply. The fraction of ownership
of already installed capacity also impacts the profit level as increased supply
decreases profit from already owned capacity. We note that a market share of
A when already installed capacity is K corresponds to an increase in marginal
cost for the new investment by γ(A+ 1)K.
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3.3.1 No Investment

If the strategic firm decides not to invest the expected discounted payoff will
be

EX

[∫ ∞
0

e−rtΠ(Xt, 0, 0) dt
]

=
(

X

r − α
− γK + c

r

)
AK.

(3.3.4)

where EX [·] denotes expectation with X0 = X.2 In this case the company
will neither incur the investment cost, nor the potential profit from additional
generation.

3.3.2 Immediate Investment in Base Load Generation

If the strategic firm decides to invest in base load generation with capacity
Knew, the expected discounted payoff will be

EX

[∫ ∞
0

e−rtΠ(Xt,Knew, cB) dt
]
− I −Kλ

new

=
(

X

r − α
− γK + c

r

)
AK

+
(

X

r − α
− Xsus

B

r

)
Knew − I −Kλ

new

(3.3.5)

where Xsus
B = Xsus(Knew, cB).

3.3.3 Immediate Investment in Peak Load Generation

If, on the other hand, the strategic firm decides to invest in peak load gener-
ation the resulting profit flow will be the highest of activating or suspending
the new capacity. The additional profit flow from suspending peak generation,
Πsus(Xt,Knew, cP ), is

Πsus(Xt,Knew, cP ) = Π(Xt, 0, 0)−Π(Xt,Knew, cP )

=
(
Xsus
P −Xt

)
Knew

(3.3.6)

where Xsus
P = Xsus(Knew, cP ). Πsus(Xt,Knew, cP ) is positive for Xt < Xsus

P ,
thus, the optimal suspension trigger is Xsus

P . Using Πsus(Xt,Knew, cP ) we can
2The assumptions r > α and r > 0 ensures that the integral of the expectation is

finite and that the value can be computed by interchanging expectation and integral. The
value can also be found as a solution to the second order differential equation, αXG′(X) +
1
2σ

2X2G′′(X)+Π(X, 0, 0)−rG(X) = 0 with the conditions limt→∞ e
−rtEX [G(Xt)] = 0 and

E(
∫ t

0 e
−rsG′(Xs)σXs dWs) = 0. However, this approach assumes that the value is twice

differentiable in X. See Ross (2008).
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formulate the expected discounted payoff from investment in peak generation
as

EX

[∫ ∞
0

e−rt max [Π(Xt,Knew, cP ),Π(Xt, 0, 0)] dt
]

(3.3.7)

=EX
[∫ ∞

0
e−rtΠ(Xt,Knew, cP ) dt

]
+EX

[∫ ∞
0

e−rt max [0,Πsus(Xt,Knew, cP )] dt
]
− I −Kλ

new

=
(

X

r − α
− γK + c

r

)
AK

+
(

X

r − α
− Xsus

P

r

)
Knew + F (X,Knew)− I −Kλ

new,

(3.3.8)

where F (X,Knew) is the expected discounted value of suspending peak load
generation with capacity Knew when the additional profit from peak genera-
tion becomes negative given an initial demand shock of X.3

3.3.4 The Value of Suspending Operation

Using Xsus
P we can formulate the option value of being able to suspend oper-

ation as

F (X,Knew) = EX

[∫ ∞
0

e−rt1(Xt<Xsus
P )Πsus(Xt,Knew, cP ) dt

]
. (3.3.9)

Here, 1(Xt<Xsus
P ) is the indicator function which is 1 when the demand shock

is below the suspension trigger, Xsus
P . When Xt ≥ Xsus

P and there is no profit
from suspending peak generation the indicator is 0.

As the integrand in (3.3.9) is non-negative, F (X,Knew) is always non-
negative. Thus, the option to suspend always increases the expected value
of generation. Vice versa, by ignoring this option, peak generation may by
significantly undervalued.

We show in Lemma 3.A.2 that the value of suspension has the form

F (X,Knew) =



−
(

X

r − α
− Xsus

P

r

)
Knew

+
(

X

Xsus
P

)β1

B(Knew), X < Xsus
P(

X

Xsus
P

)β2

C(Knew), X ≥ Xsus
P ,

(3.3.10)

3The value is finite if r > 0 and r > α as max[Π(Xt,Knew, cP ),Π(Xt, 0, 0)] ≤
Π(Xt,Knew, cP ) + Π(Xt, 0, 0).
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where for given Knew, B(Knew) and C(Knew) are constants. Here, β1 > 1 and
β2 < 0 are the two solutions to the quadratic equation

1
2σ

2β(β − 1) + αβ − r = 0, (3.3.11)

given by

β1,2 =
(1

2 −
α

σ2

)
±

√(1
2 −

α

σ2

)2
+ 2r
σ2 . (3.3.12)

By studying the value of suspension, F (X,Knew), we observe that the
first term for X < Xsus

P is the expected discounted additional value of always
suspending peak generation. To understand the second term and the term for
X ≥ Xsus

P we introduce the stopping time, τP , which is the random time it
takes for the demand shock to hit Xsus

P . The stopping time is defined by

τP = inf{t ≥ 0|Xt = Xsus
P }. (3.3.13)

The expectation of the random discount factor associated with τP , the ex-
pected discount factor, is given by

EX
(
e−rτP

)
=


(

X
Xsus
P

)β1
, X ≤ Xsus

P(
X

Xsus
P

)β2
, X ≥ Xsus

P

(3.3.14)

which we show in Lemma 3.A.4. The second term of F (X,Knew) for X <
Xsus
P and the term for X ≥ Xsus

P are both a constant times the expected
discount factor. We note that the expected discount factor is a generalization
of discount factors with deterministic times to discount factors with stopping
times.4

We also show in Lemma 3.A.4 that B(Knew) is the value of starting op-
eration and being able to resume suspension and C(Knew) is the value of
suspending operation and being able to resume operation. The value of the
constants can be found through value matching and smooth pasting condi-
tions, as is typically done in the real options literature. However, to allow for
sub-optimal suspension triggers and to find simpler expressions for the option
constants, we show that the smooth pasting condition occurs as a limit of two
value matching conditions.

3.3.5 Option Constants

To simplify notation we let H1(X) and H2(X) denote the expected discounted
additional value of always suspending and never suspending given an initial

4We only obtain this structure of F (X,Knew) due to the Feller property of the demand
shock process and the specific form of the stopping time.
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demand shock of X. Thus, we can rewrite F (X,Knew) as

F (X,Knew) =


H1(X) +

(
X

Xsus
P

)β1

B(Knew), X < Xsus
P

H2(X) +
(

X

Xsus
P

)β2

C(Knew), X ≥ Xsus
P .

(3.3.15)

Furthermore, we let ∆H(X) denote the difference,H1(X)−H2(X). In our case
H1(X) = ∆H(X) = −

(
X
r−α −

Xsus
P
r

)
Knew and H2(X) = 0, but we include

H2(X) to better indicate the symmetry of the constants in terms of H1(X)
and H2(X). In Lemma 3.A.2 we show that that B(Knew) and C(Knew) can be
found through a limit using the following recursion that includes an artificial
trigger X∗ with X∗ < X∗P ,

B(Knew) = −∆H(Xsus
P ) +

(
Xsus
P

X∗

)β2

∆H(X∗) +
(
Xsus
P

X∗

)β2−β1

B(Knew).

(3.3.16)

Here−∆H(Xsus
P ) is the value of starting operation atXsus

P and
(
Xsus
P
X∗

)β2 ∆H(X∗)
is the discounted value of suspending again at the artificial triggerX∗. Finally,
the term

(
Xsus
P
X∗

)β2−β1
B(Knew) is the discounted value of starting operation

and being able to suspend after having hit X∗ and returned to Xsus
P . This

recursion implies that

B(Knew) = lim
X∗→Xsus

P
−

−∆H(Xsus
P ) +

(
Xsus
P
X∗

)β2 ∆H(X∗)

1−
(
Xsus
P
X∗

)β2−β1
(3.3.17)

= β2∆H(Xsus
P )−Xsus

P ∆H ′(Xsus
P )

β1 − β2
(3.3.18)

= −H1(Xsus
P ) + β1H1(Xsus

P )− β2H2(Xsus
P )−Xsus

P ∆H ′(Xsus
P )

β1 − β2
.

(3.3.19)

Here, the limit is for X∗ increasing towards Xsus
P . C(Knew) can be found

similarly as

C(Knew) = lim
X∗→Xsus

P
+

∆H(Xsus
P )−

(
Xsus
P
X∗

)β1 ∆H(X∗)

1−
(
Xsus
P
X∗

)β1−β2
(3.3.20)

= β1∆H(Xsus
P )−Xsus

P ∆H ′(Xsus
P )

β1 − β2
(3.3.21)

= −H2(Xsus
P ) + β1H1(Xsus

P )− β2H2(Xsus
P )−Xsus

P ∆H ′(Xsus
P )

β1 − β2
(3.3.22)
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with the limit being for X∗ decreasing towards Xsus
P . We note that (3.3.18)

and (3.3.21) show that the constants only depend on ∆H(Xsus
P ) and ∆H ′(Xsus

P ),
while (3.3.19) and (3.3.22) show that F (X,Knew) is continuous at X = Xsus

P

with

F (Xsus
P ,Knew) = β1H1(Xsus

P )− β2H2(Xsus
P )−Xsus

P ∆H ′(Xsus
P )

β1 − β2
. (3.3.23)

Furthermore, as we show in Lemma 3.A.3, F (X,Knew) is differentiable at
X = Xsus

P with

F ′X(Xsus
P ,Knew) =

β1H
′
1(Xsus

P )− β2H
′
2(Xsus

P )− β1β2
Xsus
P

∆H(Xsus
P )

(β1 − β2) . (3.3.24)

Summing up, the additional value depends on the behavior of Xt around Xsus
P

through the derivatives of the expected discount factors and the difference in
the values of always suspending and always activating. Recall that in our case,
H1(X) = ∆H(X) = −

(
X
r−α + Xsus

P
r

)
Knew and H2(X) = 0. The constants

are non-negative and can be simplified to

B(Knew) = 1− β2
β1(r − α)(β1 − β2)KnewX

sus
P (3.3.25)

C(Knew) = β1 − 1
−β2(r − α)(β1 − β2)KnewX

sus
P (3.3.26)

using (3.3.11) and β1β2 = −2r
σ2 . Hence, we can write the option value of

suspension as

F (X,Knew) =



−
(

X

r − α
− Xsus

P

r

)
Knew

+
(

X

Xsus
P

)β1 1− β2
β1(r − α)(β1 − β2)KnewX

sus
P , X < Xsus

P(
X

Xsus
P

)β2
β1 − 1

−β2(r − α)(β1 − β2)KnewX
sus
P , X ≥ Xsus

P .

(3.3.27)

Thus, combining (3.3.8) and (3.3.27) we find that the expected discounted
value of investment in peak generation for X < Xsus

P is

EX

[∫ ∞
0

e−rt max [Π(Xt,Knew, cP ),Π(Xt, 0, 0)] dt
]
− I −Kλ

new

=
(

X

r − α
− γK + c

r

)
AK

+
(

X

Xsus
P

)β1 1− β2
β1(r − α)(β1 − β2)KnewX

sus
P − I −Kλ

new

(3.3.28)
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and for X ≥ Xsus
P it is

EX

[∫ ∞
0

e−rt max [Π(Xt,Knew, cP ),Π(Xt, 0, 0)] dt
]
− I −Kλ

new

=
(

X

r − α
− γK + c

r

)
AK +

(
X

r − α
− Xsus

P

r

)
Knew

+
(

X

Xsus
P

)β2
β1 − 1

−β2(r − α)(β1 − β2)KnewX
sus
P − I −Kλ

new.

(3.3.29)

3.4 Optimal Investment Capacity
In the previous section we determined the value of new capacity at the time
of investment. We proceed to determine the optimal level of new capacity,
K̂new, given that the current demand shock level is X. Initially, we ensure
that the value of base load generation, (3.3.5), as well as the value of peak load
generation, (3.3.28) and (3.3.29), are bounded from above in Knew so that the
problem is well-posed. Furthermore we ensure that the value is decreasing for
Knew large such that the optimal capacity satisfies the first order condition.
Note that we are not guaranteed to have solutions to the first order condition
with Knew > 0. If there are no solutions to the first order conditions with
Knew > 0 or the optimal expected additional payoff is negative, the optimal
strategy is not to invest. To determine the optimal solution we compare the
solutions to the relevant first order condition with Knew > 0 and determine
the maximum by comparing the values of candidates.

3.4.1 Optimal Investment Capacity for Base Load
Generation

For base load generation the first order condition of (3.3.5) with respect to
Knew is

X

r − α
− X̂sus

B + γK̂new

r
− λK̂λ−1

new = 0, (3.4.1)

where X̂sus
B = Xsus(K̂new, cB) = γKnew + cB +γ(A+ 1)K. Note that the left-

hand side of (3.4.1) is negative for K̂new large with X fixed, implying that the
investment value is decreasing for K̂new large. Thus, as (3.3.5) is continuous
for K̂new ≥ 0, the investment value is bounded from above and the optimal
capacity satisfies the first order condition. The second order condition is

−2γ
r
− λ(λ− 1)K̂λ−2

new ≤ 0, (3.4.2)

which is satisfied for λ ≥ 1 and K̂new ≥ 0 as well as λ = 0. In this case
a solution to the first order condition is a global maximum as the expected
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payoff is concave in Knew. For λ ∈ (0, 1), which corresponds to decreasing
marginal costs, we compare solutions to the first order conditions numerically.

3.4.2 Optimal Investment Capacity for Peak Load
Generation

For the peak load plant we show in Lemma 3.A.6 that the investment value
of immediate investment is bounded from above if

λ > 2− β1. (3.4.3)

If (3.4.3) is not satisfied the expected value of suspending and being able
to activate later increases faster than the cost of building as a function of
new capacity. A stronger condition independent of λ is σ <

√
r − 2α. If this

condition holds then β1 > 2 and (3.4.3) is satisfied. Note that as β1 > 1, (3.4.3)
also holds if λ > 1. We show in Lemma 3.A.7 that F (X,Knew) is differentiable
in Knew for Knew ∈ (0,∞). Thus, if (3.4.3) is satisfied, candidates for the
optimal new capacity of the peak load plant satisfies the first order condition
of (3.3.28) or (3.3.29) with respect to Knew,(

X

X̂sus
P

)β1 1− β2
β1(r − α)(β1 − β2)

[
X̂sus
P + (1− β1)γK̂new

]
− λK̂λ−1

new = 0

(3.4.4)
or

X

r − α
− X̂sus

P + γK̂new

r
− λK̂λ−1

new

+
(

X

X̂sus
P

)β2
β1 − 1

−β2(r − α)(β1 − β2)
[
X̂sus
P + (1− β2)γK̂new

]
= 0,

(3.4.5)

where X̂sus
P = Xsus(K̂new, cP ). Note that only solutions, K̂new, to (3.4.4)

with X < X̂sus
P and K̂new > 0 are valid candidates. Similarly, solutions to

(3.4.5) are only valid if X ≥ X̂sus
P and K̂new > 0. Among valid candidates

the optimal solution is the one that returns the maximal value of (3.3.28) or
(3.3.29) if the maximum is positive.

3.5 Optimal Investment Timing
In the previous section we assumed that investment had to be initiated im-
mediately, but in this section we assume that the investment can be delayed.
We want to determine the optimal investment trigger, X̂inv, such that the
first time the demand shock equals the investment trigger, the investment is
initiated. Let τinv be the time until Xt = Xinv, defined as

τinv = inf{t ≥ 0|Xt = Xinv}. (3.5.1)
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We consider triggers with Xinv ≥ X, whereX is the current demand shock. In
Lemma 3.A.4 we show that the value of the option to invest in new generation
when the demand shock level hits an investment trigger, Xinv, is the expected
discount factor corresponding to τinv times the expected value of the project
with initial demand shock equal to the investment trigger. Thus, with p(Xt)
being the additional profit flow after investment given by

p(Xt) =

 Π(Xt,Knew, cB)−Π(Xt, 0, 0), for base load

max [Π(Xt,Knew, cp)−Π(Xt, 0, 0), 0] , for peak load
(3.5.2)

the value of the option to invest at τinv is

EX

[ ∫ ∞
τinv

e−rtp(Xt) dt− e−rτinv(I +Kλ
new)

]
= EX

[
e−rτinv

]
EXinv

[ ∫ ∞
0

e−rtp(Xt) dt− I −Kλ
new)

] (3.5.3)

=
(

X

Xinv

)β1

L(Xinv,Knew) (3.5.4)

where L(Xinv,Knew) is the expected additional payoff from investment with
initial demand shockXinv. Note that L(Xinv,Knew) includes the loss incurred
to already installed capacity and not only the value of the new investment.
The optimal demand shock trigger is found by maximizing(

X

Xinv

)β1

L(Xinv,Knew) (3.5.5)

with respect toXinv withXinv ≥ X. We show in Lemma 3.A.8 and Lemma 3.A.9
that the expected value of delayed investment in base load or peak load gen-
eration is bounded if

β1 > 2 or λ > β1
β1 − 1 . (3.5.6)

The first condition ensures that the discount factor decays faster than the
investment value increases when waiting, while the second condition ensures
that the cost of building increases faster than the value of waiting and building
larger. Note that the first order condition of (3.5.5) with respect to Xinv

implies

∂

∂X̂inv
L(X̂inv,Knew) = L(X̂inv,Knew) ∂

∂X

(
X

X̂inv

)β1
∣∣∣∣∣
X=X̂inv

, (3.5.7)

which is the smooth pasting condition at X = X̂inv. The first order condition
of (3.5.5) with respect to Xinv can be written as

L(X̂inv,Knew)− X̂inv

β1

∂

∂X̂inv
L(X̂inv,Knew) = 0. (3.5.8)
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3.5.1 Optimal Investment Timing for Base Load Generation

In the base load case the additional payoff from investment is

L(Xinv,Knew) =
(
Xinv

r − α
− Xsus

B

r

)
Knew − I −Kλ

new. (3.5.9)

Thus, the first order condition for the base load case is((
1− 1

β1

)
X̂inv

r − α
− Xsus

B

r

)
Knew − I −Kλ

new = 0. (3.5.10)

3.5.2 Optimal Investment Timing for Peak Load Generation

For the peak load case the additional payoff from investment is

L(Xinv,Knew) =
(
Xinv

r − α
− Xsus

P

r

)
Knew + F (Xinv,Knew)− I −Kλ

new.

(3.5.11)

Note that Xβ1 solves (3.5.8) and hence, for Xinv < Xsus
P , (3.5.8) simplifies to

−I −Kλ
new = 0 (3.5.12)

that has no solutions as I+Kλ
new > 0. This implies that it is always preferred

to build when it is optimal to activate production immediately. As F (X,Knew)
is differentiable in X all solutions to the first order conditions have Xinv >
Xsus
P .5 Hence, by combining (3.3.27), (3.5.8) and (3.5.11) we find the first

order condition for the optimal investment trigger for the peak load plant to
be ((

1− 1
β1

)
X̂inv

r − α
− Xsus

P

r

)
Knew

+
(
X̂inv

Xsus
P

)β2
β1 − 1

−β2(r − α)β1
KnewX

sus
P − I −Kλ

new = 0
(3.5.13)

where only candidates with Xinv > Xsus
P are valid candidates. We note that

the left-hand side of (3.5.8) is minus the derivative of the investment value.
Thus, as the left hand side of (3.5.10) and (3.5.13) are positive for Xinv large
it follows that if either conditions from (3.5.6) are satisfied the optimal trigger
satisfies the first order conditions or we have that X̂inv = X.

5As F (X,Knew) is differentiable in X, it is not necessary to verity Xinv = Xsus
P .
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3.6 Optimal Investment Value

3.6.1 Optimal Investment Value for Base Load Generation

Combining the two first order conditions for the base load plant, (3.4.1) and
(3.5.10), we find the optimal investment trigger, X̂inv, and the optimal invest-
ment capacity, K̂new, satisfies

Xinv = β1(r − α)
(
γ

r
Knew −

I

Knew
+ (λ− 1)Kλ−1

new

)
(3.6.1)

and

γ

r
(β1 − 2)K2

new −
γ(A+ 1)K + cB

r
Knew

+ (β1 − 1)
(
λ− β1

β1 − 1

)
Kλ
new − β1I = 0.

(3.6.2)

We note that for β1 > 2 we have λ < 2 or λ > β1
β1−1 implying that (3.6.2) has

a solution with Knew > 0. Similarly if λ > β1
β1−1 then either β1 > 2 or λ > 2,

which again implies that (3.6.2) has a solution with Knew > 0. This problem
can now be solved by determining Knew that solves (3.6.2) and inserting in
(3.6.1), reducing the dimension of the problem as (3.6.2) only contains Knew.

3.6.2 Optimal Investment Value for Peak Load Generation

To shorten notation for the one-dimensional condition for optimal investment
and capacity for peak load generation we introduce the demand levels X̃1 =
Xsus
P + (1− β1)γKnew and X̃2 = Xsus

P + (1− β2)γKnew. They appear in the
first order condition of the value of investment in peak generation with respect
to Knew, (3.4.4) and (3.4.5), and are given by

X̃1 = (2− β1)γKnew + cP + γ(A+ 1)K (3.6.3)
X̃2 = (2− β2)γKnew + cP + γ(A+ 1)K. (3.6.4)

We determine X̂inv as a function of K̂new by subtracting (3.5.13) scaled by
β1X̃2/(Xsus

P Knew(β1 − β2)) from (3.4.5) scaled by Knew. Furthermore, we
rewrite the first order conditions as (β1 − 1)(3.5.13) -β1(3.4.5). Thus, candi-
dates for the optimal investment trigger, X̂inv, and optimal investment capac-
ity, K̂new, with corresponding suspension trigger Xsus

P satisfy,

Xinv = (r − α)β1
1− β2

(
−β2
rβ1

Xsus
P − X̃2I

X̃1Knew
+
(
λ
β1 − β2
β1

Xsus
P

X̃1
− X̃2

X̃1

)
Kλ−1
new

)
(3.6.5)
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and
γ

r
(β1 − 2)K2

new −
γ(A+ 1)K + cP

r
Knew

+ (β1 − 1)
(
λ− β1

β1 − 1

)
Kλ
new − βI

+
(
Xinv

Xsus
P

)β2 (1− β2)(β1 − 1)X̃1Knew

−β2(r − α)(β1 − β2) = 0

(3.6.6)

with Xinv > Xsus
P . The peak load investment problem can be solved by deter-

mining the range of Knew such that Xinv > Xsus
P using (3.6.5) and proceeding

to find all solutions to (3.6.6) in this range using the explicit expression for
Xinv in (3.6.5).6 Finally, the expected investment value for the triggers should
be compared. Note that if X̃1 < 0 the optimal capacity for the peak load plant
is larger than for the base load plant with the same marginal cost of production
and otherwise it is smaller. For β1 6= 2, X̃1 = 0 corresponds to

Knew = γ(A+ 1)K + cP
γ(β1 − 2) (3.6.7)

3.6.3 Value Functions

Using the optimal trigger and capacity when investing in base load generation
results in an expected discounted payoff of

VSF (X) =
(

X

r − α
− γK + c

r

)
AK

+
(

X

X̂inv

)β1
[(

X̂inv

r − α
− Xsus

B

r

)
K̂new − I − K̂λ

new

] (3.6.8)

for t ≤ τinv such that X ≤ X̂inv. After investment in new base load capacity
the expected discounted payoff is

V post
SF (X) =

(
X

r − α
− γK + c

r

)
AK +

(
X

r − α
− Xsus

B

r

)
K̂new. (3.6.9)

Using the optimal trigger and capacity when investing in peak load generation,
the expected discounted payoff is

VSF (X) =
(

X

r − α
− γK + c

r

)
AK +

(
X

X̂inv

)β1
[(

X̂inv

r − α
− Xsus

P

r

)
K̂new

+
(
X̂inv

Xsus
P

)β2
β1 − 1

−β2(r − α)(β1 − β2)K̂newX̂
sus
P − I − K̂λ

new

]
,

(3.6.10)
6If Knew implies X̃1 = 0 we use (3.5.13) to determine Xinv.
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for t ≤ τinv such that X ≤ X̂inv. After investment in peak load generation
the expected discounted payoff is

V post
SF (X) =



(
X

r − α
− γK + c

r

)
AK

+
(

X

Xsus
P

)β1 1− β2
β1(r − α)(β1 − β2)K̂newX̂

sus
P , X < Xsus

P(
X

r − α
− γK + c

r

)
AK

+
(

X

r − α
− Xsus

P

r

)
K̂new

+
(

X

Xsus
P

)β2
β1 − 1

−β2(r − α)(β1 − β2)K̂newX̂
sus
P , X ≥ Xsus

P .

(3.6.11)

3.6.4 Social Planner

In this subsection we investigate the social planners problem and show that it
corresponds to the problem of the strategic firm. The objective of the social
planner is to maximize total discounted expected social surplus, which consists
of producer surplus and consumer surplus. In that regard, we use the same
approach as Dixit and Pindyck (1994) to evaluate deviations from the socially
optimal outcome. To determine the social surplus, we define the area under
the inverse demand function for a given production level, Qt, by:

U(Xt, Qt) =
∫ Qt

0
D(Xt, q)dq =

∫ Qt

0
(Xt − γq)dq =

(
Xt −

γQt
2

)
Qt. (3.6.12)

Then total social surplus for a given installed capacity, K, and new capacity
Knew is:

S(Xt,K +Knew) = U(Xt,K +Knew)− cK − cnewKnew (3.6.13)

= (Xt −
γ

2 (K +Knew)) (K +Knew)

− cK − cnewKnew

(3.6.14)

=
(
Xt −

γ

2K − c
)
K

+
(
Xt −

γ

2Knew −
(
cnew + γ

2 2K
))

Knew.

(3.6.15)

Observe that social surplus at time t, S(Xt, Qt), replaces the profit flow of a
firm. Note that this corresponds exactly to a strategic planner that owns the
entire market, i.e. Ã = 1, where the price elasticity is γ̃ = γ

2 . Therefore, all
equations are the same as for the strategic firm, only with half the elasticity
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of the demand and full ownership of production. The reduced elasticity oc-
curs due to the benefit from the consumers surplus that offsets some of the
reduction in producer surplus.

3.7 Results
The main aim of this section is to show how changes in production, demand
and market parameters affect technology choice, investment trigger and opti-
mal capacity, with a view towards market power. We determine the value of
investment and the investment strategy based on the parameters in Table 3.1
and Table 3.2 and perform sensitivity analysis in the following subsections.
To summarize our findings, the strategic firm tends to invest at a higher de-

r α σ γ K X0 β1 β2

0.1 0.01 0.2 0.1 100 120 2.5 -2

Table 3.1: Market parameters.

A I λ cB c cP

0.5 10000 2 45 50 55

Table 3.2: Cost and investor parameters.

mand trigger level and lower capacity compared to the social planner for both
the base load and peak load investment cases. Hence, the strategic firm is
expected to invest at a later date while incurring lower investment cost. With
increased market share the strategic firm further delays investment and in-
creases new capacity. For both types of investors, base load generation is
preferable if either the level of already installed capacity or the volatility is
low whereas a high level installed capacity or a high volatility makes peak load
generation favorable.

3.7.1 Technology Choice

In our model, we assume that the investor initially choses either base load or
peak load generation. The strategic firm measures the total expected value
including both the option to invest and the expected profit from already in-
stalled capacity. The social planner measures the total expected social surplus
including both the option to invest and the expected social surplus from al-
ready installed capacity. Figure 3.1 confirms that base load is preferable for
low price volatility whereas peak load is preferable for high price volatility.
For low price volatility base load generation benefits from low marginal cost
of production, however, as the price volatility increases so does the value of
suspension for peak load generation. By comparing the strategic firm and the
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social planner we observe that the strategic firm prefers peak load generation
for lower price volatility than the social planner. This is the case as the social
planner effectively operates with a lower price elasticity such that base load
generation is less exposed to low prices.

Figure 3.1: Expected value and expected social surplus changing σ.

Figure 3.2 shows that peak load generation is preferable when the marginal
investment cost decreases or increases moderately, for both the strategic firm
and the social planner, but when the marginal investment cost increases more
rapidly base load generation becomes slightly more preferable than peak load
generation. The last case is due to the lower marginal cost of production that
offset the value of flexibility.

Figure 3.2: Expected value and expected social surplus for varying λ.
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For a low level of already installed capacity in the market, base load is
preferable for both investors, cf. Figure 3.3, but as installed capacity increases
peak load generation becomes slightly more preferable due to the exposure to
potential low prices for base load generation. By comparing the strategic firm
and the social planner we find that the social planner prefers base load over
peak load for larger K than the strategic firm.

Figure 3.3: Expected value and expected social surplus for varying K.

Figure 3.4 shows that increasing the market share reduces the value of
the new investment for the strategic firm, but increases the total value due
to the additional profit from already installed capacity. The social planner
is naturally unaffected by a change in market share. We further find that
the value of base load generation is affected more by an increased market
share than peak load generation, which is in line with the result on increased
installed capacity. Note that increased installed capacity and increased market
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share is equivalent to increased marginal cost of production for this model
explaining that the effects are similar.

Figure 3.4: Expected value of new investment and expected discounted profit
for varying A.

3.7.2 Optimal Investment Timing and Capacity

We proceed to compare the optimal investment decisions of the strategic firm
and the social planner and note that an increase in investment trigger cor-
respond to a delay of the investment. For both investors, increased price
volatility delays investment and increases optimal capacity at the time of in-
vestment. These results are in line with the existing literature e.g., Dixit and
Pindyck (1994), who notes that high volatility increases the optimal capacity
to benefit from possible high prices.
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Figure 3.5: Trigger and new capacity as a function of σ.

Figure 3.6 shows how increasing λ initially increases the investment trigger
and capacity, then the investment trigger decreases along with a decrease in
capacity and finally the investment trigger increases again with new capacity
decreasing to 0. This is the case as the balance between the value of waiting
and the cost of building larger changes. For λ < β1

β1−1 = 5
3 investments are

initiated early as the cost of building larger increases slower than the value of
waiting. For λ > β1

β1−1 the effect starts to reverse and new capacity decreases
as the cost of building larger increases faster than the value of waiting. Initially
this can be offset by investing earlier, however, as it becomes very costly to
invest the investment is delayed.

Figure 3.6: Investment triggers and capacities changing λ.
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We see from Figure 3.7 that as the level of installed capacity, K, increases,
the investment triggers and optimal capacities increase as well. The reason
is that higher levels of installed capacity results in lower market prices prior
to the new investment. Hence, the strategic firm and the social planner both
delay investment and to benefit from waiting the new capacity is increased.
Note also that base load generation is delayed more than peak load generation
for both investors and that the effect is increased for lower values of λ.

λ = 1

λ = 2

Figure 3.7: Investment Triggers and Capacities changing installed capacity,
K, with default parameters where A = 0.5.
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From Figure 3.8 we observe that the investment triggers and capacity levels
for the strategic firm increase with increased ownership of installed capacity,
A. This result is due to the strategic firm’s reluctance to cannibalize its profits
from the installed capacity. We note that for a low market share, investment
are initiated almost at the same time for both the social planner and the
strategic firm, however with increasing market share, the investment trigger
increases along with capacity.

Figure 3.8: Investment Triggers and Capacities changing market share, A.

3.8 Conclusion
In this paper, we compare the investment timing and capacity choice for a
strategic firm and a social planner that both have a one-time opportunity to
invest in one of two types of electricity generation. The investment decision
involves the choice of technology, and the determination of a demand shock
trigger level and the optimal choice of capacity. We specifically investigate how
the technology choice, investment trigger and optimal capacity change with
changes to the demand volatility, investment cost function, level of installed
capacity and investors share of the market.

For both types of investors, base load generation is preferable with a low
installed capacity or low volatility whereas a high installed capacity or high
volatility tends to result in peak load generation. The exercise of market
power, however, makes the strategic firm increasingly affected by low prices
and prefer peak load generation over base load generation for lower volatility
than socially optimal.

We confirm that increasing volatility or increasing installed capacity delays
investment and increases capacity for both the strategic firm and the social
planner. Furthermore, base load generation is delayed more than peak load
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generation when installed capacity or market share is increased. For both base
load and peak load generation, nevertheless, the strategic firm tends to invest
later and in less capacity compared to the strategic firm. With increased
market share the strategic firm exploit its market power and further delays
investment and increase capacity.

We conclude that the exercise of market power slows down investment in
favor of larger and more flexible installations. The larger the market share,
the more pronounced this effect becomes. To ensure adequacy for society, it
is therefore of high importance to create incentive for investment. Our results
show that it is socially optimal with earlier and larger installations with a
greater focus on base load generation, which can be stimulated through a
change of the cost structure, e.g. by imposing taxes or providing subsidies.
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Appendix 3.A Lemmas

Lemma 3.A.1. Let (Xt)t≥0 be a Geometric Brownian Motion with drift pa-
rameter α and volatility parameter σ > 0 and let r > 0 be the risk free rate.
Let τ be a stopping time defined by

τ = inf{t ≥ 0|Xt = X∗}. (3.A.1)

If X ≥ X∗

EX(e−rτ ) =
(
X

X∗

)β1

(3.A.2)

and if X ≤ X∗

EX(e−rτ ) =
(
X

X∗

)β2

. (3.A.3)

Here β1 and β2 are the positive and negative solution to

β(β − 1)1
2σ

2 + αβ − r = 0 (3.A.4)

Proof. Define Gt = F (Xt)e−rt. Then Gt is a local martingale if the drift is 0,
i.e. if

αxF ′(x) + 1
2σ

2x2F ′′(x)− rF (X) = 0. (3.A.5)

Thus, Gt is a local martingale if F (x) = axβ1 +bxβ2 for some a, b ∈ R. We note
that Gt is bounded on [0, τ ] if b = 0 and X0 ≥ X∗ or a = 0 and X0 ≤ X∗.
Thus, Gt∧τ is a bounded local martingale and thus, a martingale. By the
optional sampling theorem as Gt∧τ is a bounded martingale,

EX(G0) = EX(Gτ ) (3.A.6)

i.e. for X ≤ X∗

aXβ1 = aEX
[
e−rτ (X∗)β1

]
(3.A.7)

hence

EX
[
e−rτ

]
=
(
X

X∗

)β1

. (3.A.8)

and for X ≥ X∗

bXβ2 = bEX
[
e−rτ (X∗)β2

]
(3.A.9)

hence

EX
[
e−rτ

]
=
(
X

X∗

)β2

. (3.A.10)
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Remark 1. This approach can be used for diffusion processes with time ho-
mogeneous drift and diffusion coefficients.

Lemma 3.A.2. Let (Xt)t≥0 be a Geometric Brownian Motion with drift pa-
rameter α and volatility parameter σ > 0. Let r > 0 be the risk free rate. Let
h1, h2 ∈ C0(R+) and assume

EX

[∫ ∞
0

e−rt|h1(Xt)| dt
]
<∞ (3.A.11)

EX

[∫ ∞
0

e−rt|h2(Xt)| dt
]
<∞. (3.A.12)

Define

H1(X) = EX

[∫ ∞
0

e−rth1(Xt) dt
]

(3.A.13)

H2(X) = EX

[∫ ∞
0

e−rth2(Xt) dt
]
. (3.A.14)

and

∆H(X) = H1(X)−H2(X). (3.A.15)

Let β1 and β2 be the positive and negative solutions to

1
2σ

2β(β − 1) + αβ − r = 0 (3.A.16)

and X∗ > 0 be a trigger level. Then

EX

[∫ ∞
0

e−rt
(
h1(Xt)1(Xt<X∗) + h2(Xt)1(Xt>X∗)

)
dt
]

=

 B
(
X
X∗

)β1 +H1(X), X ≤ X∗

C
(
X
X∗

)β2 +H2(X), X > X∗

(3.A.17)

where

B = 1
β1 − β2

[
β2∆H(X∗)−X∗∆H ′(X∗)

]
(3.A.18)

= −H1(X∗) + 1
β1 − β2

[
β1H1(X∗)− β2H2(X∗)−X∗∆H ′(X∗)

]
(3.A.19)

and

C = 1
β1 − β2

[
β1∆H(X∗)−X∗∆H ′(X∗)

]
(3.A.20)

= −H2(X∗) + 1
β1 − β2

[
β1H1(X∗)− β2H2(X∗)−X∗∆H ′(X∗)

]
. (3.A.21)
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Proof. Let X∗off < X∗on be two triggers and define the corresponding stopping
times

τoff = inf{t ≥ 0|Xt = X∗off} (3.A.22)
τon = inf{t ≥ 0|Xt = X∗on}. (3.A.23)

Define F1(X) forX ≤ X∗on as value function corresponding to the accumulated
profit where the instantaneous profit is e−rth1(Xt). The first time Xt = X∗on
the instantaneous profit changes to e−rth2(Xt), the on state, and switches
back when Xt = X∗off . Similarly we define F2(X) for X > X∗on as the value
function starting with instantaneous profit e−rth2(Xt). This can be defined
recursively as

F1(X) = EX

[∫ τon

0
e−rth1(Xt) dt+ e−rτonF2(Xτon)

]
, (3.A.24)

F2(X) = EX

[∫ τoff

0
e−rth2(Xt) dt+ e−rτoffF1(Xτoff )

]
. (3.A.25)

We can rewrite F1(X) using Lemma 3.A.4 such that for X ≤ X∗on,

F1(X) = EX

[∫ ∞
0

e−rth1(Xt) dt
]

− EX
[∫ ∞
τon

e−rth1(Xt) dt− e−rτonF2(X∗on)
] (3.A.26)

= H1(X)− EX
[
e−rτon

] [
H1(X∗on)− F2(X∗on)

]
(3.A.27)

We can rewrite F2(X) similarly for X∗off ≤ X,

F2(X) = H2(X)− EX
[
e−rτoff

] [
H2(X∗off )− F1(X∗off )

]
. (3.A.28)

(3.A.28) holds for X = X∗on as we assumed X∗off < X∗on so

F2(X∗on) = H2(X∗on)− EX∗on
[
e−rτoff

] [
H2(X∗off )− F1(X∗off )

]
. (3.A.29)

Thus, by inserting (3.A.29) in (3.A.27) we obtain for X ≤ X∗on that

F1(X) =H1(X)− EX
[
e−rτon

] (
H1(X∗on)−H2(X∗on)

)
−EX

[
e−rτon

]
EX∗on

[
e−rτoff

] (
H2(X∗off )− F1(X∗off )

)
.

(3.A.30)

Evaluating (3.A.30) at X = X∗off we can isolate F1(X∗off ) to obtain

F1(X∗off ) =H1(X∗off )−∆H(X∗off )

+
∆H(X∗off )− EX∗

of
[e−rτon ] ∆H(X∗on)

1− EX∗
off

[e−rτon ]EX∗on [e−rτoff ]
(3.A.31)
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We can determine the value of F1(X∗off ) for X∗on ↘ X∗off , which corresponds
to a single trigger, by L’Hopitals rule and differentiating the numerator and
denominator with respect to X∗on. For a Geometric Brownian motion we have
by Lemma 3.A.1 that for X ≤ X∗on

EX(e−rτon) =
(
X

X∗on

)β1

(3.A.32)

and for X ≥ X∗off

EX(e−rτoff ) =
(

X

X∗off

)β2

. (3.A.33)

Thus,

F1(X∗off ) =H1(X∗off )−∆H(X∗off )

+
∆H(X∗off )−

(
X∗off
X∗on

)β1

∆H(X∗on)

1−
(
X∗
off

X∗on

)β1−β2

(3.A.34)

Taking limits and using L’Hopitals rule and formulating the result in terms of
the single trigger X∗ we get

F1(X∗) =H1(X∗)−∆H(X∗) +
β1
X∗∆H(X∗)−∆H ′(X∗)

β1−β2
X∗

(3.A.35)

=H1(X∗) + 1
β1 − β2

(
β2∆H(X∗)−X∗∆H(X∗)

)
. (3.A.36)

As F1(X∗) and F2(X∗) are symmetric we obtain

F2(X∗on) = H2(X∗on) + ∆H(X∗on)

+
−∆H(X∗on) +

(
X∗on
X∗
off

)β2

∆H(X∗off )

1−
(
X∗on
X∗
off

)β2−β1
.

(3.A.37)

For X∗off ↗ X∗on we obtain

F2(X∗) = H2(X∗) + ∆H(X∗)

+
− β2
X∗∆H(X∗) + ∆H ′(X∗)

−β1−β2
X∗

(3.A.38)

= H2(X∗) + 1
β1 − β2

(
β1∆H(X∗)−X∗∆H ′(X∗)

)
. (3.A.39)
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Now with X∗off = X∗on = X∗ it follows that

F1(X) = EX
[
e−rτon

] (
F2(X∗)−H1(X∗)

)
+H1(X) (3.A.40)

= B

(
X

X∗

)β1

+H1(X) (3.A.41)

F2(X) = EX
[
e−rτoff

] (
F1(X∗)−H2(X∗)

)
+H2(X) (3.A.42)

= C

(
X

X∗

)β2

+H2(X). (3.A.43)

As we determined F1(X∗) and F2(X∗) in (3.A.36) and (3.A.39) (3.A.19) and
(3.A.21) follows by comparing constants.

Note that we can write

B = −H1(X∗) + 1
β1 − β2

(β2H2(X∗) + β1H1(X∗)−X∗∆H(X∗)) (3.A.44)

C = −H2(X∗) + 1
β1 − β2

(β2H2(X∗) + β1H1(X∗)−X∗∆H(X∗)) (3.A.45)

Which shows that

F1(X∗) = F2(X∗) = 1
β1 − β2

(β2H2(X∗) + β1H1(X∗)−X∗∆H(X∗))

(3.A.46)

Lemma 3.A.3. Define F : R→ R by

F (X) =

 H1(X) +
(
X
X∗

)β1
B X ≤ X∗

H2(X) +
(
X
X∗

)β2
C X > X∗

(3.A.47)

where B and C are given as in Lemma 3.A.2. Then F is differentiable at
X = X∗ with

F ′(X∗) =
β1H

′
1(X∗)− β2H

′
2(X∗)− β1β2

X∗ ∆H(X∗)
β1 − β2

. (3.A.48)

Proof. The claim follows as

∂

∂X

(
H1(X) +

(
X

X∗

)β1

B(Knew)
)
X=X∗

= H ′1(X∗) + β1
X∗

1
β1 − β2

[
β2∆H(X∗)−X∗∆H ′(X∗)

] (3.A.49)

=
(β1 − β2)H ′1(X∗) + β1β2

X∗ ∆H(X∗)− β1∆H ′(X∗)
(β1 − β2) (3.A.50)

=
β1H

′
2(X∗)− β2H

′
1(X∗) + β1β2

X∗ ∆H(X∗)
(β1 − β2) (3.A.51)
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and

∂

∂X

(
H2(X) +

(
X

X∗

)β2

C(Knew)
)
X=X∗

= H ′2(X∗) + β2
X∗

1
β1 − β2

[
β1∆H(X∗)−X∗∆H ′(X∗)

] (3.A.52)

=
(β1 − β2)H ′2(X∗) + β1β2

X∗ ∆H(X∗)− β2∆H ′(X∗)
(β1 − β2) (3.A.53)

=
β1H

′
2(X∗)− β2H

′
1(X∗) + β1β2

X∗ ∆H(X∗)
(β1 − β2) . (3.A.54)

Lemma 3.A.4. Let (Xt)t≥0 be an Itô diffusion process with X0 < X∗ for
some X∗ ∈ R and let τ be a stopping time defined by

τ = inf{t ≥ 0|Xt ≥ X∗}. (3.A.55)

Let r > 0 be the risk free rate, g ∈ C0(R) and S ∈ R and assume

EX∗

[∫ ∞
0

e−rt|g(Xt)| dt+ S

]
<∞. (3.A.56)

Then

EX

[∫ ∞
τ

e−rtg(Xt) dt+ e−rτS

]
=EX

[
e−rτ

]
EX∗

[∫ ∞
0

e−rtg(Xt) dt+ S

] (3.A.57)

Proof. Let (Ω,F, (Ft)t≥0, P ) be a stochastic basis. To prove the lemma we
define Fτ , the σ-algebra consisting of all A ∈ F such that A ∩ (τ ≤ t) ∈ Ft.
Then

EX

[∫ ∞
τ

e−rtg(Xt) dt+ e−rτS

]
(3.A.58)

=EX
[
e−rτ

(∫ ∞
τ

e−r(t−τ)g(Xt) dt+ S

)]
(3.A.59)

=EX
[
e−rτ

(∫ ∞
0

e−rtg(Xt+τ ) dt+ S

)]
(3.A.60)

=EX
[
EX

[
e−rτ

∫ ∞
0

e−rtg(Xt+τ ) dt+ S|Fτ
]]

(3.A.61)

=EX
[
e−rτEX

[∫ ∞
0

e−rtg(Xt+τ ) dt+ S|Fτ
]]

(3.A.62)

=EX
[
e−rτEXτ

[∫ ∞
0

e−rtg(Xt) dt+ S

]]
(3.A.63)

=EX
[
e−rτ

]
EX∗

[∫ ∞
0

e−rtg(Xt) dt+ S

]
(3.A.64)
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where we used that Xt is an Itô diffusion process and hence a Feller process
such that for bounded measurable f and S and T stopping times (see Paulsen
(1996) theorem 6.4)

E(f(XT )|FS) = EXS (f(XT−S)). (3.A.65)

If the process was Markov and not Feller, the above equality would only hold
for S and T fixed times. Note that for τ =∞ the discount factor is 0 as r > 0
so the expression is well-defined even though X∞ is not defined.

Lemma 3.A.5. Assume r > 0, r − α > 0 then

∂

∂X
F (X,Knew) < 0. (3.A.66)

Proof. ForX ≥ Xsus
P we have C(Knew) > 0 and β2 < 0 so ∂

∂XF (X,Knew) < 0.
For X < Xsus

P we have that

F (X,Knew) =
(
Xsus
P

r
− X

r − α

)
Knew,

+
(

X

Xsus
P

)β1 1− β2
β1(r − α)(β1 − β2)KnewX

sus
P

(3.A.67)

hence

∂

∂X
F (X,Knew) = −Knew

r − α
+
(

X

Xsus
P

)β1−1 1− β2
(r − α)(β1 − β2)Knew (3.A.68)

≤ −Knew

r − α
+ 1− β2

(r − α)(β1 − β2)Knew (3.A.69)

= Knew

(−(β1 − β2) + 1− β2
(r − α)(β1 − β2)

)
(3.A.70)

= Knew

( 1− β1
(r − α)(β1 − β2)

)
< 0 (3.A.71)

as β1 > 1.

Lemma 3.A.6. For fixed X, the expected discounted value of immediate
investment in peak load generation is bounded from above for Knew ≥ 0 if
λ > 2− β1.

Proof. For Knew large we have that X < Xsus
P and hence the value of invest-

ment is(
X

r − α
− γK + c

r

)
AK − I −Kλ

new +
(

X

Xsus
P

)β1

B(Knew). (3.A.72)
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Xsus
P increases linearly in Knew and B(Knew) is quadratic in Knew. Thus,(
X

Xsus
P

)β1
B(Knew) increases as K2−β1

new . If λ > 2 − β1 the cost dominates for
Knew large, which shows that the value is bounded from above for Knew large.
We can reformulate F (X,Knew) as

F (X,Knew) =



(
Xsus
P

r
− X

r − α

)
Knew,

+
(

X

Xsus
P

)β1

B(Knew) Knew > −K −AK + X − cP
γ(

X

Xsus
P

)β2

C(Knew), Knew ≤ −K −AK + X − cP
γ

,

(3.A.73)

and note that F (X,Knew) is continuous at Knew = −K − AK + X−cP
γ and

thus for Knew ∈ [0,M ] for M large and hence bounded. Thus, the value of
investment is bounded from above.

Lemma 3.A.7. For fixed X,

F (X,Knew) =



−
(

X

r − α
− Xsus

P

r

)
Knew,

+
(

X

Xsus
P

)β1 1− β2
β1(r − α)(β1 − β2)KnewX

sus
P , X < Xsus

P(
X

Xsus
P

)β2
β1 − 1

−β2(r − α)(β1 − β2)KnewX
sus
P , X ≥ Xsus

P .

(3.A.74)

is differentiable in Knew for Knew > 0.

Proof. We have Xsus
P = γAK + γ(K + Knew) + cP > 0 for Knew > 0 so for

Knew 6= −K − AK + X−cP
γ , F (X,Knew) is differentiable in Knew. Thus, we

only have to consider Knew = −K − AK + X−cP
γ or equivalently Xsus

P = X.
By scaling the left-hand side of 3.4.4 and 3.4.5 with Knew, we note that their
difference at Xsus

P = X is

1− β2
β1(r − α)(β1 − β2) [X + (1− β1)γKnew]Knew

−
(

X

r − α
+ X + γKnew

r

)
Knew

− β1 − 1
−β2(r − α)(β1 − β2) [X + (1− β2)γKnew]Knew.

(3.A.75)
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Now as F is continuous in X at X = Xsus
P , (3.A.75) simplifies to[

− 1
r

+ 1− β2
β1(r − α)(β1 − β2)(1− β1)

− β1 − 1
−β2(r − α)(β1 − β2)(1− β2)

]
γK2

new

=
[
− 1
r

+ β1β2 − β1 − β2 + 1
β1β2(α− r)

]
γK2

new

(3.A.76)

=0 (3.A.77)

where we used that β1β2 = − 2r
σ2 and β1 + β2 = 1− 2α

σ2 .

Lemma 3.A.8. For β1 > 2 or λ > β1
β1−1 the expected discounted value of

delayed investment in base load generation is bounded from above.

Proof. We have to show that for any new capacity and investment trigger then

L(Xinv,Knew) =(
X

Xinv

)β1
[(

Xinv

r − α
− γAK + γ(K +Knew(Xinv)) + cB

r

)
Knew(Xinv)

−I −Knew(Xinv)λ
]

(3.A.78)

is bounded from above. Assume for contradiction that β > 2 and there exists
a pair (Xinv,Knew) such that the value is larger thanM for anyM > 0. Then
the only positive component is also greater than M , i.e.(

X

Xinv

)β1 XinvKnew

r − α
> M, (3.A.79)

and hence

Knew > M
r − α
X2 Xinv

(
Xinv

X

)β1−2

. (3.A.80)

This implies as Xinv ≥ X and β1 − 2 > 0 that
(
Xinv

X

)β1−2
≥ 1 so that

Knew > M
r − α
X2 Xinv. (3.A.81)

Hence −Knew(Xinv) < −M r−α
X2 X

inv, but then for M = rX2

γ(r−α)2

Xinv

r − α
− γAK + γ(K +Knew) + cB

r
≤ −γAK + γK + cB

r
< 0 (3.A.82)
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which contradicts the assumption that the value was larger than M .
Assume again for contradiction that λ > β1

β1−1 and that there exists pair
(Xinv,Knew) such that the expected discounted value of investment is larger
than M for any M > 0. As λ > β1

β1−1 it follows that (λ − 1)(β − 1) > 1 and
λ > β1

β1−1 = 1 + 1
β1−1 > 1. The only positive component is also greater than

M , i.e. (
X

Xinv

)β1 XinvKnew

r − α
> M, (3.A.83)

and hence

Knew > M
r − α
X

(
Xinv

X

)β1−1

. (3.A.84)

As λ > 1, (λ− 1)(β − 1) > 1 and Xinv > X we have that

Kλ−1
new >

(
M
r − α
X

)λ−1
(
Xinv

X

)(β1−1)(λ−1)

(3.A.85)

>

(
M
r − α
X

)λ−1
(
Xinv

X

)
. (3.A.86)

Thus, for M =
(

X
r−α

) (
X
r−α

) 1
λ−1 it follows that

(
Xinv

r − α
−Kλ−1

)
Knew < 0 (3.A.87)

such that L(X,Knew) < 0, which contradicts the assumption.

Lemma 3.A.9. For β1 > 2 or λ > β1
β1−1 the expected discounted value of

delayed investment in peak load generation is bounded from above.

Proof. We have to show that for any capacity and investment trigger with
X ≤ Xinv < Xsus

P then

(
X

Xinv

)β1
[(

Xinv

Xsus
P

)β1 1− β2
β1(r − α)(β1 − β2)KnewX

sus
P − I −Kλ

new

]

=
(

X

Xsus
P

)β1 1− β2
β1(r − α)(β1 − β2)KnewX

sus
P −

(
X

Xinv

)β1

(I +Kλ
new)

(3.A.88)
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is bounded from above. Furthermore for X ≤ Xinv and Xinv ≥ Xsus
P we have

to show that(
X

Xinv

)β1
[(

Xinv

r − α
− Xsus

P

r

)
Knew − I −Kλ

new

+
(
Xinv

Xsus
P

)β2
β1 − 1

−β2(r − α)(β1 − β2)KnewX
sus
P

] (3.A.89)

is bounded from above. We have that (3.A.88) is bounded by(
X

Xsus
P

)β1 [ 1− β2
β1(r − α)(β1 − β2)KnewX

sus
P − (I +Kλ

new)
]

(3.A.90)

as β1 > 1 and Xinv < Xsus
P . The upper bound (3.A.90) is continuous for

Knew ≥ 0 as λ > 0 and negative for Knew = 0. For β1 > 2 the positive term
in (3.A.90) converges to 0 for Knew →∞ as Xsus

P is linear in Knew. For λ > 2
(3.A.90) is negative for Knew large. Thus, (3.A.88) is bounded from above in
both cases.
The expected payoff with Xinv > Xsus

P , (3.A.89), is bounded by

(
X

Xinv

)β1
[(

Xinv

r − α
− Xsus

P

r

)
Knew − I −Kλ

new

+ β1 − 1
−β2(r − α)(β1 − β2)KnewX

sus
P

] (3.A.91)

as β2 < 0 and Xinv > Xsus
P . As Xsus

P < Xinv and −Xsus
P
r < 0, (3.A.91) is

bounded by(
X

Xinv

)β1
[
β1 − 1− β2(β1 − β2)
−β2(r − α)(β1 − β2)X

invKnew − I −Kλ
new

]
. (3.A.92)

For β1 > 2 it follows that since Xsus
P < Xinv then Knew < (A+1)K+ Xinv−cP

γ .
Thus, the positive component in (3.A.92) is decreasing in Xinv as β1 > 2. As
the bound, (3.A.92), furthermore is continuous for Xinv ≥ X it follows that
if β1 > 2 the expected discounted value is bounded from above.
Let λ > β

β−1 and assume for contradiction that for all M > 0 there exists
capacity and suspension trigger such that (3.A.92) is greater than M . This
implies that the positive component is larger than M , which in turn implies
that

Knew ≥M
−β2(r − α)(β1 − β2)
β1 − 1− β2(β1 − β2)X

(
Xinv

X

)β1−1

. (3.A.93)
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Thus, as (λ− 1)(β1 − 1) > 1 it follows that

Kλ−1
new ≥M0X

inv (3.A.94)

for some M0 > 0 that does not depend on Xinv and increases linearly in M .
Now by choosingM large it follows that (3.A.92) is negative, which contradicts
that (3.A.92) is larger than M .





4
Valuation of power plants

Abstract

In this paper we develop continuous-time stochastic control models for
valuation and operation of three different types of power plants in an
electricity market: a renewable power plant, a conventional power plant
and a storage power plant. Examples of these types of power plants are
wind turbines, gas-fired units and hydroelectric power plants. In spite
of detailed modeling, we derive analytical or quasi analytical solutions.
In particular, we model uncertainty in electricity prices and in produc-
tion input/output when it is relevant for the technology considered. In-
put/output is assumed to follow a diffusion process, whereas the price
processes may include jumps. Our models account for the special char-
acteristics of the technologies such as a non-normal distribution of wind
speeds and hydro power inflows, as well as startup and shutdown costs of
thermal units. We use these models to assess the impact of conjectured
future market conditions such as increasing price trends, increased price
volatility through changes in jump or diffusion behavior and increased
correlation between renewable production and electricity prices.

4.1 Introduction
With ambiguous targets, many future electricity markets will be characterized
by large shares of renewable generation, such as wind and solar power produc-
tion which is highly unpredictable. This increases the need for flexibility in
conventional generation due to an increase in supply uncertainty. Evidently,
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to ensure continued operation and new investment in generation capacity, pro-
duction must be profitable. With the current market setup, however, a change
in the generation mix will change the dynamics of the electricity price. For
instance, price volatility may increase and the correlation between renewable
production and prices may become increasingly negative. The future value of
power generation may therefore change depending on generator characteris-
tics.

In this paper we quantify the effects of changes in price dynamics for three
different stylized types of power generation, inflexible renewable generation,
flexible conventional generation and a storage power plant. The renewable
generation, exemplified by a wind turbine, is uncontrollable and cannot adjust
to benefit from variations in prices. A negative correlation between power
production and electricity prices will therefore lower the value of generation
and reduce investment incentives.

The flexible generation, represented by a gas-fired power plant, is con-
trollable and can temporarily suspended operation to avoid periods with low
electricity prices, while benefitting from periods with high electricity prices.
Finally, the storage power plant, exemplified by a hydroelectric power plant,
can continuously adjust generation to electricity prices and store water for
periods with high prices to the extent the reservoir capacity allows.

We assume that renewable generation involves no operational decisions
and that production can be modeled by a load factor correlated with the
price, see Abadie and Chamorro (2014), where the price process accounts
for seasonality and the valuation problem is solved numerically using a Monte
Carlo approach. In contrast, Boomsma et al. (2012) assume constant load that
is adjusted for correlation and solve the model analytically in a more general
investment setup without seasonality. We derive an analytical solution to
the instantaneous value of generation. To quantify the impact of correlation,
however, we directly model wind speeds using the approach of Zárate-Miñano
et al. (2013).

In the absence of startup costs and operational constraints the value of a
gas-fired power plant can be modeled as a sum of spark spread call options.
An example is Deng (1999), who models electricity and fuel prices using mean-
reverting jump-diffusion processes with either regime switching, deterministic
volatility or stochastic volatility and develop quasi-analytic expressions for the
option values. Näsäkkälä and Fleten (2005) model the spark spread directly
with a two-factor model and likewise determine quasi-analytic expressions for
the value of the gas fired power plant. When including temporal constraints
such as minimum up-time/down-time restrictions or startup/shutdown costs,
the dimension of the problem increases. Tseng and Barz (2002) and Carmona
and Ludkovski (2010) solve the operational problem for short time horizons
using different combinations of Monte Carlo simulation and dynamic program-
ming, whereas Deng and Oren (2005) and Gardner and Zhuang (2000) apply
stochastic dynamic programming to solve the problem on a lattice.
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An alternative approach is to solve the associated Hamilton-Jacobi-Bellman
(HJB) equation numerically using some finite difference scheme, see Thomp-
son et al. (2004). However, as these methods are subject to the curse of
dimensionality, the computation time increases exponentially with increasing
accuracy in time and space, which makes them impractical for longer time-
horizons. Here, we suggest a one-factor model for the electricity price with
mean reversion and jumps over an infinite horizon for which we can maximize
the option constant avoiding discretization of both time and space.

For the hydroelectric power plant the storage level introduces another di-
mension, which makes analytical solutions significantly more difficult as the
control impacts the derivative of the storage level. For short time horizons it is
possible to solve the HJB equation numerically, see Thompson et al. (2004) and
Chen and Forsyth (2008b), who allow for operational constraints such as ramp-
ing as well as seasonality in the price process. The combination of Monte Carlo
simulation and dynamic programming by Carmona and Ludkovski (2010) is
also used to solve the hydroelectric power plant, but requires significant com-
putation time. To reduce computation time Näsäkkälä and Keppo (2005)
approximates the optimal switching strategy using a parametrized boundary
and a Monte Carlo approach. Other solution methods rely on linearizations
of the operational strategies. For example, Braaten et al. (2016) use strate-
gies that are linear functions of the observed prices, whereas Doege et al.
(2006) consider linear combinations of predefined step-functions. These ap-
proaches have long time-steps or cover short time horizons. In contrast, we
handle operational boundaries of the hydroelectric power plant using penalty
functions and linearize the optimal control from the HJB equation to obtain
quasi-analytic solutions to the value of the infinite horizon problem. With this
approach we obtain an explicit discharge strategy that is linear in price and
storage level and satisfies the storage and flow rate constraints with a high
probability.

We solve the valuation problems with three price models based on stochas-
tic differential equations. The initial model is a simple shifted Geometric
Brownian Motion, which is compared to a shifted exponential Ornstein-Uhlenbeck
processes that is mean reverting. To better capture the distributional prop-
erties of transformed price increments, the final model is extended to include
jumps.

The rest of the paper is structured as follows. In Section 4.2 we develop
two diffusion models and a jump diffusion model for the spot price of elec-
tricity that are analytically tractable and allow for negative electricity prices.
In Section 4.3 we model uncertainty in weather factors such as to capture
distributional properties in continuous time and exponentially decaying au-
tocorrelations. In Section 4.4 we include correlation between weather factors
and the spot price. Section 4.4.1 considers the value of a wind turbine and
present a closed form solution under some regularity conditions. The value
of a gas-fired unit is presented in Section 4.4.2, where we incorporate startup



4. Valuation of power plants 96

and shutdown costs. Section 4.4.3 finally obtains the value of a hydroelectric
power plant by relaxing storage and flow rate constraints using a penalty func-
tion and linearizing the control strategy. In Section 4.5 we report the results
for a case study, and in Section 4.6 we study the impact of changes in the
price dynamics. Finally, Section 4.7 provides a brief conclusion.

4.2 Electricity Price Uncertainty
We aim to investigate the effects of different electricity price dynamics on the
value of power generation from an investment point of view. We assume that
generation is always dispatched in a market and therefore focus on market
prices. The market for immediate dispatch of generation is referred to as a
spot market and prices are likewise referred to as spot prices.

Classical papers on commodity prices such as Schwartz and Smith (2000),
Lucia and Schwartz (2002) and Gibson and Schwartz (1990) model the loga-
rithm of the price, Xt = log(Pt) such that the price has the form

Pt = eXt , (4.2.1)

which captures the skewness of the prices when Xt has a symmetric distri-
bution, is analytically tractable and implies that the prices are non-negative.
However, electricity prices may occasionally become negative as a result of
unpredictable excess of renewable production combined with insufficient flex-
ibility to quickly reduce conventional generation. This is expected to happen
more frequently with increasing shares of renewable production in the elec-
tricity market, see Götz et al. (2014). To allow for negative prices we assume
that

Pt = eXt −M, (4.2.2)

where −M is a lower bound on prices. With this assumption the model
remains analytically tractable. We assume that the logarithm of the shifted
price, Xt = log(Pt+M), follows a Lévy-driven stochastic differential equation
(SDE) such that the dynamics of the price process (Xt)t≥0 are given by

dXt = µ(Xt) dt+ σ(Xt) dZPt + γ(Xt) dJt. (4.2.3)

Here, µ(Xt), σ(Xt) and γ(Xt) are the drift, diffusion and jump coefficients, re-
spectively. Furthermore, (ZPt )t≥0 is a standard Brownian motion and (Jt)t≥0
is a compound Poisson process with Jt =

∑Nt
n=1 Yn, where (Nt)t≥0 is the cor-

responding Poisson process with intensity λ and (Yn)n≥1 are independent and
identically distributed with mean E(Y1) = η and variance V ar(Y1) = ν2. We
assume that (ZPt )t≥0 and (Jt)t≥0 are independent.
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Remark 2. The diffusion part of the SDE represents continuous changes in
electricity prices caused by the development in supply and demand, changes in
the economic environment or other new information that causes only marginal
changes in prices. In contrast, the jump part represents discrete changes due to
new information that has more than a marginal effect on price such as failure
of production units and sudden changes in demand and renewable production.

We consider two diffusion models as well as a jump diffusion model for
(Xt)t≥0 and value generation under all three models.

4.2.1 Brownian Motion

In the first model we assume that (Xt)t≥0 follows the SDE

dXt =
(
µ− 1

2σ
2
)

dt+ σ dZPt (4.2.4)

with X0 = log(P0 + M). Here µ and σ > 0 are constants. The SDE has the
solution

Xt = Xs +
(
µ− 1

2σ
2
)

(t− s) + σ
(
ZPt − ZPs

)
, (4.2.5)

for t > s, and thus

Pt =(Ps +M) exp
[(
µ− 1

2σ
2
)

(t− s) + σ
(
ZPt − ZPs

)]
−M. (4.2.6)

With drift µ− σ2/2, the diffusion is offset in the expected price such that the
expectation of Pt conditional on Ps has the simple form,

E(Pt|Ps) = (Ps +M)eµ(t−s) −M. (4.2.7)

This follows as E[eσ(ZPt −ZPs )|Ps] = e
σ2
2 (t−s), which we show in Lemma 4.B.1.

4.2.2 Ornstein-Uhlenbeck

In the second model we assume (Xt)t≥0 follows the SDE,

dXt = κP

(
α− σ2

4κP
−Xt

)
dt+ σ dZPt , (4.2.8)

with α, σ > 0 and κP > 0 constants and X0 = log(P0 +M). In Lemma 4.B.3,
we show that the solution is

Xt = e−κP (t−s)Xs +
(
α− σ2

4κP

)(
1− e−κP (t−s)

)
+ σ

∫ t

s
e−κP (t−v) dZPv ,

(4.2.9)
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for t > s. This implies that

Pt = (Ps +M)e−κP (t−s) exp
[(

α− σ2

4κP

)(
1− e−κP (t−s)

)

+ σ

∫ t

s
e−κP (t−v) dZPv

]
−M.

(4.2.10)

As,

σ

∫ t

s
e−κP (t−v) dZPv ∼ N

(
0, σ

2

2κP

(
1− e−2κP (t−s)

))
, (4.2.11)

it follows by Lemma 4.B.1 that

E(Pt|Ps)→ eα −M for t→∞, (4.2.12)

which is independent of the current price. In this model the price reverts to
the mean reversion level,

exp
(
α− σ2

4κP

)
−M, (4.2.13)

but due to the skewness of the diffusion term the expected future price con-
verges to eα −M .

4.2.3 Ornstein-Uhlenbeck with Jumps

The third model is an extension of the second, where we assume (Xt)t≥0
follows the Levy-driven SDE,

dXt = κP

(
α− σ2

4κP
− λk −Xt

)
dt+ σ dZPt + dJt, (4.2.14)

with α, k, λ, σ > 0 and κP > 0 constants and X0 = log(P0 + M). Here k
depends on κP and the distribution of Y1 and compensates for the jumps. In
Lemma 4.B.3 we show that the solution is

Xt = e−κP (t−s)Xs +
(
α− σ2

4κP
− λk

)(
1− e−κP (t−s)

)

+ σ

∫ t

s
e−κP (t−v) dZPv +

Nt∑
n=Ns+1

e−κP (t−Tn)Yn,

(4.2.15)

where Tn is the time of the n’th jump. This implies that

Pt = (Ps −M)e−κP (t−s) exp
[(

α− σ2

4κP
− λk

)(
1− e−κP (t−s)

)

+ σ

∫ t

s
e−κP (t−v) dZPv

]
Nt∏

n=Ns+1

(
eYn
)e−κP (t−Tn)

−M.

(4.2.16)



99 4.2. Electricity Price Uncertainty

Thus, the effect of the jumps decay exponentially over time, implying that
only recent jumps impact the price. We show in Lemma 4.B.2 that

E

 Nt∏
n=Ns+1

(
eYn
)e−κP (t−Tn)

∣∣∣∣∣∣Ps
 = exp (A(s, t)) , (4.2.17)

where

A(s, t) = λ

∫ 1

e−κP (t−s)

θ(z)− 1
κP z

dz, (4.2.18)

with θ(c) = E(ecY1). Hence,

E(Pt|Ps) = (Ps +M)e−κP (t−s) exp
[(

α− σ2

4κP
− λk

)(
1− e−κP (t−s)

)

+ σ2

4κP

(
1− e−2κP (t−s)

)
+A(s, t)

]
−M.

(4.2.19)

Now with

k =
∫ 1

0

θ(z)− 1
κP z

dz (4.2.20)

we obtain A(s, t)→ λk for t→∞ and thus

E(Pt|Ps)→ eα −M for t→∞. (4.2.21)

In this model the price reverts to the mean reversion level

exp
(
α− σ2

4κP
− λk

)
−M. (4.2.22)

We assume that the compound Poisson process for the Ornstein-Uhlenbeck
process is modeled with two jump terms, i.e.

Jt =
2∑
j=1

N
(j)
t∑

n=1
Y (j)
n (4.2.23)

with Y
(j)
n independent and Y

(j)
n ∼ N (η(j), ν(j)2) for j = 1, 2 and N

(j)
t inde-

pendent Poisson processes with intensity λ(j) for j = 1, 2. Note that this is
equivalent to a compound Poisson process with intensity λ = λ(1)+λ(2), where
Y1 has density

φ(y) =
2∑
j=1

λ(j)

λ
ϕ(y; η(j), ν(j)2), (4.2.24)
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and where ϕ(y;µ, σ2) is the density for the normal distribution with mean µ
and variance σ2. Thus,

k =
2∑
j=1

λ(j)

λ

∫ 1

0

ezη
(j)+ 1

2 z
2ν(j)2

− 1
κP z

dz, (4.2.25)

which has no closed-form solution, but can be written as the infinite series,

k =
2∑
j=1

λ(j)

λ

∞∑
n=1

E
[(
Y

(j)
1

)n]
n!nκP

. (4.2.26)

4.3 Uncertainty in Weather Factors
We proceed to model uncertainty in production input and output such as
reservoir inflow and wind power production, which is often inflexible and un-
predictable. The standard assumption of a normal distribution may, however,
not be representative for this type of uncertainty. We therefore develop a
framework for modelling non-normal distributions in a continuous-time setting
by using a transformation of the normal distribution to a more appropriate
one.

We assume that non-controllable production input and output is driven
by an underlying weather factor (Ut)t≥0 that follows an Ornstein-Uhlenbeck
process with dynamics

dUt = −κUUt dt+
√

2κU dZUt , (4.3.1)

where κU > 0 is a constant and ZUt is a standard Brownian motion. Note
that the diffusion coefficient of

√
2κU implies that the variance of the process

converges to 1. We assume that (ZUt )t≥0 and (Jt)t≥0 are independent, whereas
(ZUt )t≥0 and (ZPt )t≥0 are correlated with correlation coefficient ρ.

Remark 3. We allow for the price and weather processes to be correlated,
as cold and hot temperatures may increase consumption through heating and
air-conditioning and thereby prices, windy weather conditions increases wind
power production and reduces prices, and precipitation or snow melt increase
reservoir inflows and likewise reduces prices. Furthermore, a decrease in wind
generation has to be offset by more expensive generation, which in turn in-
creases the prices.

We can write the solution to the Ornstein-Uhlenbeck process as

Ut = Use
−κU (t−s) +

√
2κU

∫ t

s
e−κU (t−v) dZUv , (4.3.2)
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for t > s. Note that Ut is normally distributed with mean E[Ut|Us] =
Use

−κU (t−s) and variance Var[Ut|Us] = 1 − e−2κU (t−s). Hence, Ut
d→ N(0, 1)

for t → ∞, where d means convergence in distribution, that is, the cumula-
tive distribution function for Ut converges point-wise to the standard normal
distribution function.

Now, the idea is to do a transformation of the Ornstein-Uhlenbeck process,
using the normal distribution function and an appropriate quantile function,
and thereby obtain the desired process in the limit as well as exponentially
decaying autocorrelation.

Remark 4. The exponentially decaying autocorrelation captures that the weather
conditions at time t are usually highly correlated with those at time t + δ for
δ small. However, for δ large, weather conditions are much less correlated.
For instance, wind speeds are highly correlated with those of near history but
uncorrelated with those of distant history.

It follows by Theorem 4.2 from Bradley (1986) that for all transformations
of ρ-mixing processes, for which the autocorrelation is defined, the autocorre-
lation is bounded by a function that is exponentially decaying. It is therefore
sufficient to prove that the Ornstein-Uhlenbeck process is ρ-mixing, which we
do in Lemma 4.B.4.

To obtain the appropriate limiting process, let Φ(·) and Φt(·) denote the
distribution functions of a standard normal distribution and Ut, respectively.
Moreover, let F (·) denote the cumulative distribution function of a given con-
tinuous distribution. We assume that the density that has support given by
the interval I ⊆ R such that the distribution function is strictly increasing in
the interior of I. With this assumption, the quantile function F−1(·) is the
inverse of F (w) for w ∈ I.

We define production input/output Wt as

Wt = F−1(Φ(Ut)). (4.3.3)

Then,

P(Wt ≤ w) = P(Ut ≤ Φ−1(F (w))) (4.3.4)
= Φt(Φ−1(F (w)))→ F (w) for t→∞, (4.3.5)

using that Ut converges in distribution to the standard normal distribution.
Thus, the cumulative distribution function of production input/output Wt

is given by the desired F (·) in the limit, and can otherwise, be used as an
approximation.

Our framework is particularly useful for modelling wind speeds, which are
typically assumed to be Weibull distributed, see Spera (2009), Zárate-Miñano
et al. (2013) and Lun and Lam (2000). We provide an example in the following
section.
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4.3.1 Wind Speeds

We aim to model the wind speed at time t, Wt, by a Weibull distribution with
constant shape parameter β > 0 and scale parameter ζ > 0. The cumulative
distribution function for the Weibull distribution is given by

F (w) =
{

1− e−(w/ζ)β , w ≥ 0,
0 , w < 0, (4.3.6)

with inverse

F−1(x) = ζ(− ln(1− x))1/β, 0 ≤ x < 1. (4.3.7)

Hence, by defining wind speed as

Wt = F−1(Φ(Ut)), (4.3.8)

Wt is approximately Weibull distributed with shape parameter β and scale
parameter ζ. In this manner, we obtain a non-normal mean reverting behavior
of wind speeds as well as an exponentially decaying autocorrelation.

The approach can likewise be used to define more sophisticated price mod-
els. Such prices models can be used in all three valuation models proposed in
this paper, provided that moments and covariances of the process at different
points in time can be determined numerically.

4.4 Valuation of Power Generation
In this section we describe the valuation of the three different generation
technologies. For analytical tractability, the valuation is based on the expected
discounted value of cashflows over an infinite horizon. The discount rate r > 0
is assumed exogenous. The cashflows stem from dispatch of generation and
are therefore driven by spot prices. We assume a perfectly competitive market
and hence that the generators are price-takers. In the following we account for
the special characteristics of each technology, including relevant uncertainties
and the degree of operational flexibility.

4.4.1 Wind Turbine

We begin by considering an investment in a wind turbine. Wind power gen-
eration is characterized by being non-controllable, highly varying and largely
unpredictable as production is determined by the weather conditions, and
more specifically the speed of the wind. We therefore assume that the in-
stantaneous revenue generated by the plant is driven by the wind speed Wt

at the location of the plant and the spot price Pt. The wind speed is mod-
eled using the weather factor Ut such that Wt = f(Ut), where for example
f(u) = F−1(Φ(u)) and F (w) is the cumulative distribution function for the
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Weibull distribution. The rate of production Qt depends on the wind speed
through a turbine-specific power curve h(w), and so Qt = h(Wt) is the pro-
duction rate for a given wind speed. We further assume that variable costs of
production are negligible. Now, the value of the wind turbine is the expected
discounted revenues, given the current spot price Pt = P and wind speed
Wt = W , i.e.

E
[∫ ∞

0
e−rtPth(Wt) dt

∣∣∣∣Pt = P,Wt = W

]
. (4.4.1)

Expressed in terms of the logarithm to the transformed price, Xt and the
weather factor, Ut, the valuation problem is

Vwind(X,U) = E
[∫ ∞

0
e−rt(eXt −M)h(f(Ut)) dt

∣∣∣∣X0 = X,U0 = U

]
(4.4.2)

s.t. dXt = µ(Xt) dt+ σ(Xt) dZP
t + γ(Xt) dJt, (4.4.3)

dUt = −κUUt dt+
√

2κU dZU
t . (4.4.4)

The associated Hamilton-Jacobi-Bellman integro-differential equation is

L(Vwind(t,X,U)) + (eX −M)h(f(U))− rVwind(t,X,U) = 0, (4.4.5)

where L is the partial integro differential operator

L(Vwind(t,X,U)) =
(
µ(X) ∂

∂X
+ 1

2σ(X)2 ∂2

∂X2 − κUU
∂

∂U

+
√

2κU
∂2

∂U2 + ρσ(X)
√

2κU
∂2

∂U∂X

)
Vwind(X,U)

+λE [Vwind(X + γ(X)Y1, U)− Vwind(X,U)] .

(4.4.6)

The stochastic control problem can be solved numerically by solving a partial
integro differential equation (PIDE) or a partial differential equation (PDE),
depending on whether the price process includes jumps.

4.4.1.1 A Piece-wise Linear Power Curve

A power curve typically consists of four parts, where different parts can be
described by different functions. Production is equal to zero below cut-in
speed (w0), it is increasing in the windspeed between cut-in speed (w0) and
rated wind speed (w1), constant between rated wind speed (w1) and storm
protection shutdown (w2) and equal to zero above storm protection shutdown
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(w2).1 Hence,

h(w) =


0, w ≤ w0
h01(w), w0 < w ≤ w1
h12, w1 < w ≤ w2
0, w2 < w

(4.4.7)

where h01(w) and h12 are such that h(w) is continuous on [0, w2]. We assume
h(f(u)) is linear in u and, thus

h(f(u)) =


0, u ≤ u0
h12(u− u0)/(u1 − u0), u0 < u ≤ u1
h12, u1 < u ≤ u2
0, u > u2

(4.4.8)

where u0 = Φ−1(F (w0)), u1 = Φ−1(F (w1)) and u2 = Φ−1(F (w2)).2
With a power curve that is piecewise linear in u, the expected instanta-

neous value of production can be computed analytically and the integral in
(4.4.2) can be computed using numerical integration. To derive the analyt-
ical solution, note that E(h(f(Ut))|Xs, Us) can be found as a special case of
E(eXth(f(Ut))|Xs, Us). We show in Lemma 4.B.7 that if the logarithm to the
transformed price is described by a Brownian Motion, then E(eXth(f(Ut))|Xs, Us)
can be expressed in terms of adjusted values of u0, u1 and u2 as

E(eXth(f(Ut))|Xs, Us) = eXs+µ(t−s)
[
h12 [Φ (ũ2)− Φ (ũ1)]

+ h12
ũ1 − ũ0

[ϕ(ũ0)− ϕ(ũ1)]

− ũ0h12
ũ1 − ũ0

[Φ (ũ1)− Φ (ũ0)]
] (4.4.9)

for t > s. Here, ϕ(u) is the density for the standard normal distribution and

ũi = ui + (ui − Us)
e−κU (t−s)

1− e−2κU (t−s) − ρσ
√

2κU
κU

1− e−κU (t−s)

1− e−2κU (t−s) (4.4.10)

for t > s and i = 0, 1, 2. Thus, ũi → ui − ρσ
√

2κU/κU for t → ∞. If instead
the logarithm to the transformed price follows an Ornstein-Uhlenbeck process

1For simplicity we ignore re-cut-in, the wind speed at which the wind turbine starts up
after triggering the storm protection.

2For improved accuracy additional points can be included in the linearisation of the
power curve.
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with jumps we show in Lemma 4.B.8 that

E
[
eXth(f(Ut))|Xs, Us

]
= eXse

−κP (t−s)+αt
[
h12 [Φ (ũ2)− Φ (ũ2)]

+ h12
ũ1 − ũ0

[ϕ(ũ0)− ϕ(ũ1)]

− ũ0h12
ũ1 − ũ0

(Φ (ũ1)− Φ (ũ0))
] (4.4.11)

for t > s and with αt = (α + εσ)(1 − e−κP (t−s)) − εk, εσ = (σ2/4)e−κP (t−s)

and εk = λ
∫ e−κP (t−s)

0 (θ(z)− 1)/(κP z) dz. Here, αt → α and εk, εσ → 0 for
t→∞. Furthermore,

ũi = ui + (ui − Us)
e−κU (t−s)

1− e−2κU (t−s) −
ρσ
√

2κU
(κU + κP )

1− e−(κU+κP )(t−s)

1− e−2κU (t−s) (4.4.12)

for t > s and i = 0, 1, 2. Thus, ũi → ui − ρσ
√

2κU/(κU + κP ) for t → ∞.
Without jumps λ = 0 such that εk = 0. For both the Brownian Motion and
the Ornstein-Uhlenbeck process the negative correlation between ZUt and ZPt ,
ρ, increases ũ0, ũ1 and ũ2 compared to u0, u1 and u2, which effectively corre-
sponds to a higher cut-in speed, rated wind speed and storm protection. The
adjustment for the negative correlation between price and power generation
therefore decreases the expected value of the wind turbine. The first terms of
(4.4.9) and (4.4.11) essentially consist of expected price times expected out-
put between the adjusted rated wind speed and the adjusted storm protection
on the constant part of the power curve, whereas the second and third terms
capture expected price times expected output on the linearly increasing part
of the adjusted power curve.

4.4.2 Gas Fired Power Plant

The second type of power plant considered is a gas-fired power plant. In
contrast to the wind turbine, for such a plant, production can be controlled.
We ignore ramping constraints and assume that production can be adjusted
instantaneously. We denote the production rate by Qt and assume that the
minimum and maximum rates are given by Qmin and Qmax. Instantaneous
revenues depend on the electricity price Pt, whereas variable costs of produc-
tion depend mainly on the price of gas pf . For simplicity, we assume the gas
price is constant. The amount of gas required for a production rate of Qt is
given by H(Qt).3 Fixed costs include those of starting up and shutting down

3This model can incorporate stochastic gas prices by modelling an adjusted electricity
price instead of the electricity price under the assumption that the stochastic gas price, pft ,
is independent of Pt/pft . With pf = E(pft ) and the adjusted price given by P̃t = Ptpf/p

f
t

it follows that E
[
PtQt − pftH(Qt)

]
= E

[
pft /pf

(
P̃t − pfH(Qt)

)]
= E

[
P̃tQt − pfH(Qt)

]
.

Here the last equality follows by independence of pft and P̃t as Qt is a deterministic function
of P̃t and as E

[
pft /pf

]
= 1.
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the plant, denoted by Con and Coff , respectively. Thus, the instantaneous
profit when the plant is online is

πon(Pt) = PtQ
∗
t − pfH(Q∗t ), (4.4.13)

where the optimal rate of production is

Q∗t =


Qmin, Pt < pfH

′(Qmin)
(H ′)−1(Pt/pf ), Pt ∈ [pfH ′(Qmin), pfH ′(Qmax)]
Qmax, Pt > pfH

′(Qmax)
(4.4.14)

assuming H(q) is a concave function, which also ensures that the inverse
to the derivative of H(q) exists. Hence, at the optimal rate of production
the electricity price equals the marginal cost of generation, pfH ′(Q∗t ), while
respecting the minimum and maximum production rates. When the plant is
offline we let πoff (Pt) = 0.

We assume that there exists startup and shutdown trigger prices P ∗on >
P ∗off such that it is optimal to start up an offline plant when Pt ≥ P ∗on and
shut down an online plant when Pt ≤ P ∗off . We denote the random startup
times for an online plant by S(n)

on for n ≥ 0 and the random shutdown times
for an online plant by S(n)

off for n ≥ 1, where S(0)
on = 0 and recursively define

S(n)
on = inf

{
t ≥ S(n)

off

∣∣∣Pt ≥ P ∗on} (4.4.15)

S
(n)
off = inf

{
t ≥ S(n−1)

on

∣∣∣Pt ≤ P ∗off} (4.4.16)

for n ≥ 1. Thus, the value of production when the plant is online is the
expected future profit less the costs of startup and shutdown, i.e.

V on
gas(P ) =E

[ ∞∑
n=0

∫ S
(n+1)
off

S
(n)
on

e−rs (PsQ∗s − pfH(Q∗s)) ds

−Con
∞∑
n=1

e−rS
(n)
on − Coff

∞∑
n=1

e−rS
(n)
off

∣∣∣∣∣P0 = P

] (4.4.17)

As we do not require S(1)
on ≥ S

(1)
off when the plant is offline, we introduce the

startup and shutdown times for an offline plant, S̃(n)
on for n ≥ 1, and S̃(n)

off for
n ≥ 0, where S̃(0)

off = 0 and define

S̃
(n)
off = inf

{
t ≥ S̃(n)

on

∣∣∣Pt ≤ P ∗off} (4.4.18)

S̃(n)
on = inf

{
t ≥ S̃(n−1)

off

∣∣∣Pt ≥ P ∗on} (4.4.19)
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for n ≥ 1. With this construction, the value of production when the plant
is offline is likewise the expected future profit less the costs of startup and
shutdown

V off
gas (P ) = E

[ ∞∑
n=1

∫ S̃
(n+1)
off

S̃
(n)
on

e−rs (PsQ∗s − pfH(Q∗s)) ds

− Con
∞∑
n=1

e−rS̃
n
on − Coff

∞∑
n=2

e−rS̃
n
off

∣∣∣∣∣P0 = P

]
.

(4.4.20)

As a result, we obtain the recursions

V on
gas(P ) = E

[ ∫ S
(1)
off

0
e−rs (PsQ∗s − pfH(Q∗s)) ds

+ e−rS
(1)
off

(
V off
gas (P

S
(1)
off

)− Coff
)
|P0 = P

] (4.4.21)

and

V off
gas (P ) = E

[
e−rS̃

(1)
on

(
V on
gas(PS̃(1)

on
)− Con

)
|P0 = P

]
. (4.4.22)

Following the results from Ernstsen and Misir (2016) we find that

V on
gas(P ) = Πon(P ) + c1(P ∗on, P ∗off )M1(P ) (4.4.23)

V off
gas (P ) = c2(P ∗on, P ∗off )M2(P ) (4.4.24)

where c1(P ∗on, P ∗off ) and c2(P ∗on, P ∗off ) are constants,

Πon(P ) = E
[∫ ∞

0
e−rt (PsQ∗s − pfH(Q∗s)) |P0 = P

]
, (4.4.25)

is the value of always being online and generating, and we refer to the last
terms in (4.4.23) and (4.4.24) as option values. The functions, M1(P ) and
M2(P ) can be expressed as

M1(P ) = m1(ln(P +M)) (4.4.26)
M2(P ) = m2(ln(P +M)), (4.4.27)

where m1(x) and m2(x) are bounded and twice differentiable on (−∞, x0) and
(x0,∞) for x0 ∈ R and solves

µ(X) ∂

∂X
m(X) + 1

2σ(X)2 ∂

∂X2m(X)− rm(X)

+λE [m(X + Y1)−m(X)] = 0,
(4.4.28)
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with m1(x) → 0 for x → −∞ and m2(x) → 0 for x → ∞. Now (4.4.21) and
(4.4.22) implies that

V on
gas(Poff ) = V off

gas (Poff )− Coff (4.4.29)
V off
gas (Pon) = V on

gas(Pon)− Con (4.4.30)

as S(1)
on |(P0 = Pon) = 0 and S(1)

off |(P0 = Poff ) = 0 and thus P
S

(1)
on
|(P0 = Pon) =

Pon and P
S

(1)
off

|(P0 = Poff ) = Poff . Combining (4.4.23), (4.4.24), (4.4.29) and
(4.4.30) implies that

c1(P ∗on, P ∗off ) =
−
[
Π(Poff ) + Coff

]
+D2(Poff , Pon)

[
Π(Pon)− Con

]
M1(Poff ) (1−D2(Poff , Pon)D1(Pon, Poff )) (4.4.31)

and

c2(P ∗on, P ∗off ) =
[
Π(Pon)− Con

]
−D1(Pon, Poff )

[
Π(Poff ) + Coff

]
M2(Pon) (1−D1(Pon, Poff )D2(Poff , Pon)) . (4.4.32)

Here D1(Poff , Pon) and D2(Poff , Pon) are the expected discount factors given
by

D1(Pon, Poff ) = E(e−rS
(1)
off |P0 = Pon) = M1(Pon)

M1(Poff ) (4.4.33)

D2(Poff , Pon) = E(e−rS̃
(1)
on |P0 = Poff ) = M2(Poff )

M2(Pon) . (4.4.34)

Note that when the unit is online, the option value at P ∗off is a function of
the foregone profit from shutting down when the price is P ∗off less the shut-
down cost, − [Π(Poff ) + Coff ], and the realised profit less the start up cost
and discounted back from the random time at which the price returns to P ∗on,
D2(Poff , Pon) [Π(Poff )− Coff ]. This is scaled by the inverse of the recurrence
factor, 1 −D2(Poff , Pon)D1(Pon, Poff ), which is one minus the expected dis-
count factor for a cycle from Poff to Pon and back to Poff . Similarly, when
the unit is offline, the option value at P ∗on is a function of the realised profit
from starting up, the foregone profit discounted back from the random time
at which the price returns to P ∗off and the recurrence factor. By maximizing
c1(P ∗on, P ∗off ) or c2(P ∗on, P ∗off ) for P ∗on > P ∗off , we obtain the optimal invest-
ment value.

4.4.2.1 Quadratic Input/Output Characteristics

Assuming that the amount of gas required for the production rate, Qt, is
quadratic, i.e.

H(Q) = a2Q
2 + a1Q+ a0, (4.4.35)
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we can obtain an explicit expression for the value of always being online. From
(4.4.14) we find that with

Pmin = pf (a1 + 2Qmina2), Pmax = pf (a1 + 2Qmaxa2), (4.4.36)

the optimal rate of production is

Q∗t =


Qmin, Pt < Pmin
Pt − a1pf

2pfa2
, Pt ∈ [Pmin, Pmax]

Qmax, Pt > Pmax.

(4.4.37)

Furthermore, for P < Pmin, the value of always generating, Πon(P ), is

Qmin

∫ ∞
0

e−rtE(Pt|P0 = P ) dt− pf
r
H(Qmin) + c̃1M1(P ), (4.4.38)

for P ∈ [Pmin, Pmax], it is

1
4pfa2

∫ ∞
0

e−rtE(P 2
t |P0 = P ) dt

− a1
2a2

∫ ∞
0

e−rtE(Pt|P0 = P ) dt

+pf
r

(
a2

1
4a2
− a0

)
+ c̃2M1(P ) + c̃3M2(P ),

(4.4.39)

and for P > Pmax,

Qmax

∫ ∞
0

e−rtE(Pt|P0 = P ) dt− pf
r
H(Qmax) + c̃4M2(P ). (4.4.40)

Here, c̃1, c̃2, c̃3 and c̃4 are determined such that Πon(P ) is continuous and
differentiable at P = Pmin and P = Pmax.

4.4.2.2 Diffusion Process for Prices

Assuming the electricity price process does not include jumps, (4.4.28) has
analytic solutions. For the Brownian Motion,

m1(x) = exβ1 m2(x) = exβ2 , (4.4.41)

where β1 > 1 and β2 < 0 are the two solutions to the quadratic equation4,

1
2σ

2β(β − 1) + αβ − r = 0, (4.4.42)

4β2 < 0 if r > 0 and β1 > 1 if r > α. In our case we require β1 > 2 to ensure that
e−rtE(P 2

t |P0)→ 0 for t→∞, as e−rtE(P β1
t |P0) = P0, see Ernstsen and Misir (2016).
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given by

β1,2 =
(1

2 −
α

σ2

)
±

√(1
2 −

α

σ2

)2
+ 2r
σ2 . (4.4.43)

Note that Cm1(x) and Dm2(x) also satisfies (4.4.28) for C,D ∈ R, but C and
D cancel out in (4.4.31) and (4.4.32). Thus, we omit the constants in front of
m1(x) and m2(x).

For the Ornstein-Uhlenbeck process,

m1(x) =
{
U(a, b, f(x)) x < x∗

−U(a, b, f(x)) + 2 Γ(1−b)
Γ(a−b+1)M(a, b, f(x)) x ≥ x∗ (4.4.44)

and

m2(x) =
{
−U(a, b, f(x)) + 2 Γ(1−b)

Γ(a−b+1)M(a, b, f(x)) x < x∗

U(a, b, f(x)) x ≥ x∗
(4.4.45)

where a = r/2κP , b = 1/2, f(x) = κP (x− x∗)2/σ2 and x∗ = α − σ2/4κP
which we show in Lemma 4.B.9. Here we use Kummer’s function

M(a, b, z) = Γ(b)
Γ(a)Γ(b− a)

∫ 1

0
ezuua−1(1− u)b−a−1 du (4.4.46)

and Tricomi’s function

U(a, b, z) = 1
Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1 dt, (4.4.47)

to define the solution to (4.4.28).

4.4.2.3 Jump-diffusion Process for Prices

To the best of our knowledge, there is no analytical solution to (4.4.28) if the
electricity price process includes jumps. Thus, we solve the valuation problem
numerically. We change variables in (4.4.28) by letting

s1 = ex−x1 s2 = e−(x−x2) (4.4.48)

for m1(x) and m2(x), respectively. With this change of variables, we obtain
a finite domain, which simplifies the handling of the boundary condition in a
finite difference method. Here, x1 provides an upper bound on log(P ∗on +M)
and x2 provides a lower bound on log(P ∗on +M). We let

v1(s) = m1(ln(s) + x1) v2(s) = m2(− ln(s) + x2) (4.4.49)



111 4.4. Valuation of Power Generation

for s ∈ (0, 1] and note that this implies that v1(s) solves

µ(ln(s) + x1)s ∂
∂s
v1(s) + 1

2σ(− ln(s) + x1)2s2 ∂
2

∂s2 v1(s)

−rv1(s) + λE
[
v1(seY1)− v1(s)

]
= 0

(4.4.50)

with v1(0) = 0 and v1(1) = c for some c ∈ R. Furthermore, v2(s) solves

−µ(− ln(s) + x2)s ∂
∂s
v2(s) + 1

2σ(− ln(s) + x2)2s2 ∂
2

∂s2 v2(s)

−rv2(s) + λE
[
v1(se−Y1)− v1(s)

]
= 0

(4.4.51)

with v2(0) = 0 and v2(1) = c for some c ∈ R.

4.4.2.4 Numerical Solution for Jump-diffusion Processes

To solve (4.4.50) and (4.4.51) we discretize the interval [0, 1] with si = (i−1)∆s
for i = 1, . . . , N with ∆s = 1/N . We let V i

1 and V i
2 denote the approxima-

tion of v1(si) and v2(si) respectively for i = 1, . . . , N and approximate the
derivatives by

∂

∂s
v1(si) ≈

V i+1
1 − V i−1

1
2∆s (4.4.52)

∂

∂s
v2(si) ≈

V i+1
2 − V i−1

2
2∆s (4.4.53)

∂2

∂s2 v1(si) ≈
V i+1

1 − 2V i
1 + V i−1

1
∆s2 (4.4.54)

∂2

∂s2 v2(si) ≈
V i+1

2 − 2V i
2 + V i−1

2
∆s2 (4.4.55)

for i = 2, . . . , N − 1. To approximate the expectation we introduce the piece-
wise linear approximations of v1(s) and v2(s),

Ṽ1(s) =
N∑
i=1

(a1(i)s+ b1(i))1[si,si+1)(s) (4.4.56)

Ṽ2(s) =
N∑
i=1

(a2(i)s+ b2(i))1[si,si+1)(s) (4.4.57)

with sN+1 = ∞, and where 1[si,si+1)(s) denotes the indicator function for
[si, si+1). Here,

a1(i) = V i+1
1 − V i

1
∆s a2(i) = V i+1

2 − V i
2

∆s (4.4.58)

b1(i) = V i
1 − a1(i)si b2(i) = V i

2 − a2(i)si (4.4.59)
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for i = 1, . . . , N − 1 and

a1(N) = a1(N − 1) a2(N) = a2(N − 1) (4.4.60)
b1(N) = b1(N − 1) b2(N) = b2(N − 1). (4.4.61)

Thus, we use linear interpolation between the grid points and extrapolate for
s > 1 based on the last two grid points. We approximate the expectations of
v1(s) and v2(s) by

E
(
Ṽ1(sjeY1 )

)
=

N∑
i=1

(a1(i)sjA1(i, j) + b1(i)B1(i, j)) (4.4.62)

E
(
Ṽ2(sje−Y1)

)
=

N∑
i=1

(a1(i)sjA2(i, j) + b2(i)B2(i, j)) (4.4.63)

for j = 2, . . . , N − 1, where

A1(i, j) =
∫ si+1

sj

si
sj

zφ1(z) dz B1(i, j) =
∫ si+1

sj

si
sj

φ1(z) dz (4.4.64)

A2(i, j) =
∫ si+1

sj

si
sj

zφ2(z) dz B2(i, j) =
∫ si+1

sj

si
sj

φ2(z) dz (4.4.65)

for j = 2, . . . , N − 1 and i = 1, . . . , N and where φ1(z) and φ2(z) are the
density functions for eY1 and e−Y1 , respectively. Note that we compute O(N2)
integrals prior to solving the two linear systems of equations that arise from
discretizing (4.4.50) and (4.4.51) at sj for j = 2, . . . , N − 1 using (4.4.52)-
(4.4.63).

4.4.3 Hydroelectric Power Plant

Finally, we consider a hydroelectric power plant. As for conventional pro-
duction, hydro power production can be controlled. In fact, this technology
is highly flexible, and production can be adjusted instantaneously without
startup and shutdown costs. We assume that the hydroelectric power plant
consists of a reservoir with a current storage level Lt and minimum and max-
imum levels given by Lmin and Lmax. Water is discharged from the reservoir
at a rate of vt and lead through a pipe with minimum and maximum rates
being defined by the pipe and denoted by vmin and vmax. It is lead to a power
station, in which the turbines convert the potential energy of the water into
electrical energy. Given the efficiency of the turbines, the storage level and
the discharge rate, we denote the production curve by H(Lt, vt). Finally, the
reservoir receives an inflow of water It that stems from rainfall and melt water
which can be modeled as It = F−1(Φ(Ut)). The dynamics of the storage are
therefore given by dLt = (It − vt) dt. We model the storage level instead
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of the head level, the height that the water source fall before the power is
generated, to obtain simpler equations and avoid conversions even though the
power output is a function of the head level, see Chen and Forsyth (2008b).
We let µP (P ), σP (P ) and γP (P ) denote the drift, diffusion and jump coeffi-
cient respectively for the price process and µI(I), σI(I) denote the drift and
diffusion coefficients for the inflow.5

Now, the problem of valuing the hydroelectric power plant is found by
solving the following stochastic control problem, with P being the current
price, I being the current inflow and L the storage level,

Vhydro(P, I, L) = max
v

E
[ ∫ ∞

0
e−rtPtH(Lt, vt) dt

∣∣∣P0 = P, I0 = I, L0 = L
]

(4.4.66)

s.t. dPt = µP (Pt) dt+ σP (Pt) dZP
t + γP (Pt) dJt, (4.4.67)

dIt = µI(It) dt+ σI(It) dZU
t (4.4.68)

dLt = (It − vt) dt, (4.4.69)

Lmin ≤ Lt ≤ Lmax, (4.4.70)

vmin ≤ vt ≤ vmax. (4.4.71)

To solve this problem analytically, we relax the upper and lower bounds on
Lt and vt and introduce the penalty functions

N1(L) = Θ1L+ Θ2L
2, N2(v) = θ1v + θ2v

2 (4.4.72)

with θ1,Θ1 ∈ R and θ2,Θ2 < 0. The expected discounted profit in the relaxed
problem is then

E
[ ∫ ∞

0
e−rt

(
PtH(Lt, vt)+N1(Lt) +N2(vt)

)
dt
∣∣∣P0 = P, I0 = I, L0 = L

]
, (4.4.73)

and the associated HJB equation is

µP (P ) ∂

∂P
Ṽhydro(P, I, L) + 1

2σP (P )2 ∂2

∂P 2 Ṽhydro(P, I, L)

+µI(I) ∂
∂I
Ṽhydro(P, I, L) + 1

2σI(I)2 ∂
2

∂I2 Ṽhydro(P, I, L)

+ρσI(I)σP
∂2

∂I∂P
Ṽhydro(P, I, L) + Θ1L+ Θ2L

2

+ max
v

(
(f − v) ∂

∂L
Ṽhydro(P, I, L) + θ2v

2 + θ1v + PH(L, v)
)

+λ
[
E(Ṽhydro(P + γ(P )Y1, I, L))− Ṽhydro(P, I, L)

]
−rṼhydro(P, I, L) = 0,

(4.4.74)

where Ṽhydro(P, I, L) denotes the value function for the relaxed problem.
5In the following we linearize the control as a function of the price. For this reason,

we formulate the problem in terms of the price instead of the logarithm to the transformed
price. Thus, we assume that ∂Vhydro/∂L is linear in Pt rather than Xt.
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4.4.3.1 A linear control strategy

To simplify computations, we assume that the inflow is deterministic and
write It = ft as well as Vhydro(P,L). We consider the linear production curve
H(L, v) = η1vt + η0.6 With this assumption, the first order condition for the
maximization problem in (4.4.74) is

v∗ =
−θ1 − η1 + ∂

∂LVhydro(P,L)
2θ2

(4.4.75)

which is the optimal discharge rate since θ2 < 0. We further assume that the
discharge rate is a linear function of the price and the storage level, i.e.

vt = d1 + d2Pt + d3Lt, (4.4.76)

which corresponds to assuming that the marginal value of water, ∂
∂LVhydro(P,L)

is linear in the price and storage level. We insert the linearized value of water,

∂

∂L
Vhydro(P,L)|P=P ,L=L + (P − P ) ∂2

∂L∂P
Vhydro(P,L)|P=P ,L=L

+(L− L) ∂
2

∂L2Vhydro(P,L)|P=P ,L=L

(4.4.77)

in (4.4.75) and by collecting the terms in (4.4.76), we obtain

d1 =
−θ1 +

(
∂
∂L − P

∂2

∂L∂P − L
∂2

∂L2

)
Vhydro(P,L)|P=P ,L=L

2θ2
(4.4.78)

d2 =
−η1 + ∂2

∂L∂P Vhydro(P,L)|P=P ,L=L
2θ2

(4.4.79)

d3 =
∂2

∂L2Vhydro(P,L)|P=P ,L=L
2θ2

. (4.4.80)

With vt = d1 +d2Pt+d3Lt, where d1, d2 and d3 satisfies (4.4.78), (4.4.79) and
(4.4.80), it follows that

Vhydro(P,L) = E
[ ∫ ∞

0
e−rt

([
d2

3θ2 + Θ2

]
L2
t

+
[
d2

2θ2 + d2η1

]
P 2
t +

[
2d2θ2 + η1

]
d3PtLt

+
[
2d1d2θ2 + d1η1 + d2θ1 + η0

]
Pt

+
[
2d1d3θ2 + d3θ1 + Θ1

]
Lt + d2

1θ2 + d1θ1

)
dt
]
.

(4.4.81)

6The model can be extended to production curves with an Lt term and a vtLt term, but
for hydroelectric plants with low head flexibility, the additional accuracy is negligible.
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Furthermore,

dLt = d3(ft − d1 − d2Pt
d3

− Lt) dt (4.4.82)

and hence, by Lemma 4.B.3,

Lt = L0e
−d3t +

∫ t

0
e−d3(t−s) (fs − d1 − d2Ps) ds. (4.4.83)

We therefore find that
∂

∂L
Vhydro(P,L)|P =P ,L=L = (2d1d3θ2 + d3θ1 + Θ1)

∫ ∞
0

e−(r+d3)t dt

+ (2d2θ2 + η1)d3

∫ ∞
0

e−(r+d3)tE(Pt|P ) dt

+ 2(d2
3θ2 + Θ2)

∫ ∞
0

Le−(r+2d3)t dt

+ 2(d2
3θ2 + Θ2)

∫ ∞
0

e−(r+d3)t

∫ t

0
e−d3(t−s) (fs − d1) ds dt

− d22(d2
3θ2 + Θ2)

∫ ∞
0

e−(r+d3)t

∫ t

0
e−d3(t−s)E(Ps|P ) ds dt,

(4.4.84)

and

∂2

∂L∂P
Vhydro(P,L)|P =P0,L=L0 =

+ (2d2θ2 + η1)
∫ ∞

0
e−(d3+r)t ∂

∂P
E(Pt|P )|P =P dt

− 2d2(d2
3θ2 + Θ2)

∫ ∞
0

e−(r+d3)t

∫ t

0
e−d3(t−s) ∂

∂P
E(Ps|P )P =P ds dt,

(4.4.85)

and

∂2

∂L2Vhydro(P,L)|P =P ,L=L = 2(d2
3θ2 + Θ2)

∫ ∞
0

e−(2d3+r)t dt. (4.4.86)

Finally, (4.4.80) and (4.4.86) imply that

d3 =
(Θ2
θ2

+ d2
3

)∫ ∞
0

e−(2d3+r)t dt (4.4.87)

and hence d3 is the positive solution to

d2
3 + rd3 −

Θ2
θ2

= 0. (4.4.88)

Moreover, (4.4.84) and (4.4.85) are linear in d1 and d2 and, therefore, (4.4.78)
and (4.4.79) can be solved by applying numerical integration and using the
closed-form expressions for E(Pt|P0) determined in Section 4.2.
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To evaluate the control strategy from the relaxed problem, we use that

Lt = L0e
−d3t +

∫ t

0
e−d3(t−s) (fs − d1 − d2Ps) ds (4.4.89)

such that

vt = d1 + d2Pt + d3

(
L0e

−d3t +
∫ t

0
e−d3(t−s) (fs − d1 − d2Ps) ds

)
(4.4.90)

and find that the value of the hydroelectric plant is

E

[∫ ∞
0

e−rtPt(η1vt + η0) dt
∣∣∣∣P0 = P,L0 = L

]
=
∫ ∞

0
e−rtη1d2E[P 2

t |P0 = P ] dt

+
∫ ∞

0
e−rt(η1d1 + η0)E [Pt|P0 = P ] dt

+
∫ ∞

0
e−(r+d3)tη1(d3L− d1)E [Pt|P0 = P ] dt

+
∫ ∞

0
e−rt

∫ t

0
e−d3(t−s)η1d3E [Ptfs − d2PtPs|P0 = P ] ds dt.

(4.4.91)

We note that the constant d1 enters two terms, where the first is the value
of the constant term of the discharge rate and the second is the reduction in
value due to the accompanying negative impact of a decrease in storage level
on the discharge rate. Similarly, d2 enters the first and last term. The first
term is the value of increasing the discharge rate at a given time in response
to an increase in the price, while the last term is the corresponding negative
impact of a decrease in storage level on the future discharge rate. Finally, d3 is
the speed of mean reversion of the storage level, i.e. this constant determines
how the discharge rate changes when the storage level deviates from the mean
reversion level

ft − d1 − d2Pt
d3

. (4.4.92)

Thus, d3 has an impact on the value of increasing the discharge rate in response
to an increase in the price.

It should be remarked that in the relaxed problem the upper and lower
bounds on the discharge rate and the storage level may be violated, and so
the value of the hydroelectric plant may be higher than that of the original
problem. The risk of violating the constraints can be managed by tuning the
parameters θ1, θ2, Θ1 and Θ2. Moreover, this overestimation is counterbal-
anced by the restriction to a linear discharge rate which implies a lower value
of the hydroelectric plant. To further improve the estimate of the plant value,
it could be taken into account that the marginal value of water depends on
the future inflow, either by periodically updating the constant term of the
discharge rate or by extending the discharge rate to be a linear function of the
current flow ft.
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4.5 Case Study
For the case study, we consider a realistic instance of each type of generation.
We calibrate the price and wind models to hourly data for 7 years from the
22nd of January 2004 to 31st of December 2010. The spot price is from the
western part of Denmark (DK1) in DKK/MWh and the wind speeds are from
Sindal in the northern part of Denmark in m/s. We let the bound M be 1000
and choose the discount rate r such that the discounted value over 30 years
and infinity are similar, i.e. such that

∫∞
0 e−rt dt−

∫ 30
0 e−rt dt = 0.01, which

implies that r = 0.2061.

4.5.1 Price Models

For comparison of the Brownian motion and the Ornstein-Uhlenbeck process,
we let µ = 0 and choose P0 as the average price in the calibration period. We
calibrate the Ornstein-Uhlenbeck process with and without jumps based on

ln(Pti+1 +M)− e−κP (ti+1−ti) ln(Pti +M), (4.5.1)

see Appendix 4.A for details. Simulations indicate that this gives a reasonable
fit, see Figures 4.1 to 4.3. For the Brownian Motion we do not calibrate the
volatility based on the differences ln(Pti+1 + M) − ln(Pti + M), as the price
data is rather volatile and tends to be mean reverting. Attempting to calibrate
to this results in an extremely volatile price process. Instead we match the
continuous arithmetic average of the variance of the Brownian motion to the
a empirical variance, see Appendix 4.A.7 The model parameters are given in
Table 4.1.

µ σ P0

0 0.05535 300.62

α κP σ P0 λ

λ = 0 7.1705 670.1594 3.5137 205.86 -
λ > 0 7.1697 670.1594 0.6315 205.86 6502.355

λ(1) η(1) ν(1) λ(2) η(2) ν(2)

5618.197 0.001861 0.0237 884.158 -0.009685 0.0900

Table 4.1: Parameters for the price models.

7The variance for the model based on the Brownian motion converges to infinity as t
increases, thus, it is necessary to choose a finite time period where the model variance is
matched to the empirical variance.
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Figure 4.1: Sample path of the spot price from the Ornstein-Uhlenbeck model.
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Figure 4.2: Sample path of the spot price from the Ornstein-Uhlenbeck model
with jumps.
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Figure 4.3: Historical spot price and sample path of the spot price from the
Brownian motion model.
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4.5.2 Wind Turbine

We consider a wind turbine with the data from Vestas (2016) and obtain the
model parameters in Table 4.2 from calibration to the wind data. We likewise
determine the correlation coefficient ρ for the price and wind drivers from the
data in Table 4.3.8 See Section 4.A for calibration details.

β κU η w0 w1 w2 h12/Nhours

- - m/s m/s m/s m/s MW

2.2566 178.5204 8.2405 3.5 15 25 3

Table 4.2: Wind turbine and wind speed data. Nhours = 8760, the number of
hours in a year

Model for Xt ρ

BM −2.0381∗

OU -0.1503
OU with jumps -0.7600

Table 4.3: Correlation coefficients.

4.5.3 Gas Fired Power Plant

The gas price is taken as the average of the daily data from 28th of January
2016 to 12th of April 2016 of GPN Spot index (2016). For the gas fired power
plant we use parameters from Tseng and Barz (2002) where it is assumed that
the input/output characteristics of the generating unit is

H(Q) = a0 + a1Q+ a2Q
2 (4.5.2)

with parameters in Table 4.4 and Table 4.5.

Qmin Qmax Coff Con pf

MW MW DKK DKK DKK/MMBTu

250 750 6 175 21 125 29.63

Table 4.4: Data for gas fired power plant

8Note that ρ < −1 for the BM model indicating that the decrease in value cannot be
explained by correlation in this model.
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a0 a1 a2

MMBTu MMBTU/MW MMBTu/MW 2

600 9.121 0.00131

Table 4.5: Data for generating unit for gas fired power plant.

We maximize c1(P1 + δ2, P1) from (4.4.31) as a function of δ and P1 using
the Nelder-Mead algorithm, see Nelder and Mead (1965), such that P ∗on =
P1 + δ2 ≥ P1 = P ∗off .

4.5.4 Hydroelectric Power Plant

For the hydroelectric power plant, we base the parameter values on those of
Chen and Forsyth (2008a). To simplify the expressions we let Lt denote the
total volume of the reservoir with surface area a and head Lt/a, assuming the
reservoir has a cylinder shape. The linearized production curve is

H(v, L) = η0 + η1v, (4.5.3)

which has an average absolute error of 2.21% and a maximum absolute error
of 4.8% compared to the non-linear production curve in Chen and Forsyth
(2008a).

We choose the coefficients of the penalty functions such that the marginal
profit required to exceed the bounds for the storage level is η1P̃L and the
marginal penalty required to exceed the discharge level is η1P̃v, i.e. such that

P̃Lη1 = Θ1 + 2Θ2Lmin, −P̃Lη1 = Θ1 + 2Θ2Lmax (4.5.4)

and

P̃vη1 = θ1 + 2θ2vmin, −P̃vη1 = θ1 + 2θ2vmax. (4.5.5)

Thus, the penalty functions attain their maxima at L = (Lmax + Lmin)/2
and v = (vmin + vmax)/2. For our instance we choose P̃L = 4S and P̃v =
E(P1) + 4S, where S is an estimate for the standard deviation. For details,
see Appendix 4.A.5. The parameters are given in Table 4.6-Table 4.9.

η0/Nhours η1Nsecs/Nhours

MW MW/m3

−23.0437 0.9392

Table 4.6: Parameters for generating unit. Nhours = 8760, Nsecs =
3600Nhours.
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a Lmin/a Lmax/a L0/a

m2 m m m

1.8 · 106 90 94 92

Table 4.7: Data for hydroelectric power plant.

vmin/Nsecs vmax/Nsecs f/Nsecs

m3/s m3/s m3/s

40 150 60

Table 4.8: Discharge limits and inflow for hydroelectric power plant. Nsecs =
31536000.

Model for Xt P̃L P̃v

BM 540.61 841.23
OU 471.36 696.36
OU with jumps 439.94 664.94

Table 4.9: Marginal penalty for exceeding water level bound and discharge
level bound for various models.

4.6 Results

4.6.1 Future Markets

With increasing penetration of renewables in the power system, future market
conditions may differ significantly from the current. We investigate the effects
of an increase in the electricity price level, an increase in the price volatility,
the inclusion of reversion to mean, price jumps and correlation between the
electricity price and renewable production.

In our benchmark case we assume that the electricity price and the weather
conditions are governed by two OU processes or a Brownian motion and an
OU process.

We report the main results below. Table 4.10 lists the value of the wind
turbine, the gas-fired power plant and the hydroelectric plant under various
models for the dynamics of the price process. Recall that renewable production
is assumed non-controllable, whereas the production from the conventional
and storage technologies can be controlled. Figures 4.4 and 4.5 show the con-
trol strategies for the gas-fired plant and Figures 4.6 and 4.7 show the control
strategies for the hydroelectric power plant when these are implemented for a
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simulated price path for 4 weeks.9 Figure 4.8 shows the strategy implemented
over a 7 year period for three models. The startup and shutdown trigger levels
and the linear discharge function are provided in Appendix 4.C.4 and 4.C.5.
As the control strategy is stochastic, we provide an estimated 95% confidence
interval and expected value for the first year head level and discharge rate in
Appendix 4.C.5.

Model for Xt Wind Gas Hydro
BM 13.688 1 476.470 425.616
OU 13.688 1 196.999 466.055
OU with jumps 13.688 1 226.261 461.317

Table 4.10: The value of the wind turbine, the gas-fired power plant and the
hydroelectric plant under various price models. Values are given in mio. DKK.
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Figure 4.4: 4 weeks of the control strategy for the gas-fired power plant in
response to a sample path of the price from the GBM model.

9The strategy for the model based on the Brownian motion consists of an almost constant
discharge rate equal to the inflow and therefore also constant water level.
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Figure 4.5: 4 weeks of the control strategy for the gas-fired power plant in
response to a sample path of the price from the OU models without and with
jumps.
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Figure 4.6: 4 weeks of the discharge strategy and head level for the hydro-
electric power plant in response to a sample path of the price from the OU
model.
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Figure 4.7: 4 weeks of the discharge strategy and head level for the hydro-
electric power plant in response to a sample path of price from the OU model
with jumps.
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Figure 4.8: Strategies in response to hourly data for 7 years

4.6.2 Preliminary Model Analysis

A number of observations can be made on the basis of the analytical or partly
analytical solutions to the valuation problems.
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First, the inclusion of mean reversion and jumps in the price process is
irrelevant for the inflexible renewable plant. The reason is that the plant
value only depends on the price model through

E(Pth(Wt)) = E(Pt)E(h(Wt)) + Cov(Pth(Wt)). (4.6.1)

Thus, only the expected price, the expected production and the covariance
between the two determine the value of generation.

Next, for the gas-fired power plant, the value depends on the optimal
generation strategy and is determined by

E(PtQ∗t − pfH(Q∗t )) (4.6.2)

and the expected discount factors

D1(Pon, Poff ) = E(e−rS
(1)
off |P0 = Pon) (4.6.3)

D2(Poff , Pon) = E(e−rS̃
(1)
on |P0 = Poff ) (4.6.4)

that are used to compare the expected gain from immediate start up to the
cost of future shut down. The Brownian motion has extremely long expected
return times for the optimal triggers, i.e. E(S(1)

off |P0 = Pon) = 2.68 years and
E(S̃(1)

on |P0 = Pon) = 2.67 years10, which results in very few cycles and thus
a higher value than for the other models. Due to these long expected return
times, the trigger levels are very close to the marginal cost. For the Ornstein-
Uhlenbeck process without jumps, the expected return times for the optimal
triggers are E(S(1)

off |P0 = Pon) = 10.14 hours and E(S̃(1)
on |P0 = Pon) = 13.91

hours. Thus, there are significantly more cycles and thereby higher total
startup and shutdown costs than for the Brownian motion. Since the expected
value generated in the online period has to offset the cycle costs, the triggers
are likewise further from the marginal cost.

For the hydroelectric plant with deterministic inflow and linear control
strategy, the value depends on the expected spot price, E(Pt), the second
moment of the spot price, E(P 2

t ) and the covariance of the price process at
different points in time, i.e. the autocovariance, E(PtPs). In particular, the
expected spot price determines the value of the constant part of generation, the
second moment determines the positive value of responding to an increase in
the price and the autocovariance determines the cost of restoring the reservoir
level. The autocovariance of the Brownian motion decreases much slower
than that of the Ornstein-Uhlenbeck process, and hence, storage deviations
are more beneficial with the Ornstein-Uhlenbeck models, which is why the
value of the hydroelectric power plant is higher. To investigate the value of
flexibility, we decompose the value of the hydroelectric plant into the value of

10The expectation is found through differentiation of the moment generating function at
r = 0.
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discharging the inflow and the value of adjusting discharge rate to the price
and storage levels. The adjusting discharge rate, vt, is given by

vt = d1 − ft + d2Pt + d3Lt. (4.6.5)

The value of the inflow depends only on the expected spot price, whereas the
value of flexibility also depends on second moment and the autocovariance.
In our case study, the main part of the value stems from the value of inflow
which is the same for all price models, whereas the value of flexibility differ
significantly as can be seen in Table 4.11.

Model for Xt Value of flexibility (mio. DKK)
BM 0.098
OU 40.819
OU with jumps 37.138

Table 4.11: The value of flexibility, i.e. the value of adjusting the discharge
rate, for the hydroelectric power plant under various price models.

In the following sections we further analyse our models on the basis of the
results from the case study.

4.6.2.1 Including mean reversion

The real options literature more often than not assumes that the dynamics of
the market follow a geometric Brownian motion. This may be a reasonable as-
sumption in the very long term, especially for inflexible generation as the value
only depends on the expected instantaneous value of production. Commod-
ity prices, however, are often argued to be mean reverting, see Schwartz and
Smith (2000) and Lucia and Schwartz (2002) for electricity prices in particu-
lar, as in the long run such prices should reflect marginal costs of production.
As expected, by replacing the Brownian Motion by the Ornstein-Uhlenbeck
process the value of the renewable plant is unaffected. For flexible production,
the value of investment changes significantly. The value of the gas fired power
plant decreases by 18.9% as including mean reversion introduces more star-
tups and shutdowns. In contrast, the value of the hydroelectric power plant
increases by 9.5% as the inclusion of mean reversion allows the hydroelectric
power plant to benefit from making small adjustments to production without
costs. Furthermore, the value of flexibility increases from being 0.02% of the
total value to 8.7%.

4.6.2.2 Including jumps

With intermittency of renewable production, sudden changes in the price are
likely to occur. Furthermore, with increased penetration, such changes become
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larger and/or more frequent. We, therefore, investigate the effect of introduc-
ing jumps in the price process and the sensitivity with respect to parameters
of the jump component.

As the jumps does not alter the expected prices, the value of inflexible
production does not change. In contrast, the value of the gas-fired power plant
increases by 2.5%. The reason is that the price process has lower variance and
higher positive skewness when including the jumps. This in turn increases
the optimal shutdown and startup triggers and slightly increase the value
as the positive effect of increased prices in peak periods and fewer startups
outweigh the negative effect of the longer offline period. For the hydroelectric
power plant, the value decreases by 1.0% as the value of flexibility decreases
with a lower variance and shorter time periods of high prices. It should be
remarked that this conclusion is highly parameter dependent. On one hand, a
hydroelectric power plant capable of discharging at peak periods and storing
inflows the rest of the time would benefit significantly from price jumps. On
the other hand, as jump times are random a plant with less flexibility in storage
capacity benefits more from a constant variance than occasional jumps.

4.6.2.3 Average price level

Historically, the electricity price has risen due to increasing demand of electric-
ity. Since renewables have very low marginal costs, for wind power production
the marginal costs are close to zero, it is expected that there will be more pe-
riods with very low prices with an increased amount of renewable generation.
However, in periods without renewable generation, for instance due to low
wind speeds, the prices will be significantly higher, as flexible generation with
higher marginal costs must be used. Most likely, the increasing renewable
penetration will therefore be accompanied by an increase in the capacity of
flexible generation, but a reduction in the total capacity of non-flexible con-
ventional generation. Thus, we expect that median future prices decrease, but
that expected future prices increase due to increasing costs of flexible genera-
tion, see Dong Energy (2015) and Energinet.dk (2015). We, therefore, explore
the effect of an increase by 10% in the average price level, cf. P0 for the GBM
and α for the OU process. As expected, an increased average price results in
a higher investment value, see Figure 4.9, Figure 4.10 and Figure 4.11. The
effect is almost the same for both price processes. For an increase in the aver-
age level of 10%, the value of the renewable investment will increase by 10.3%,
assuming that the correlations between renewable generation and electricity
prices will not change, which is highly unlikely. The values of the conventional
power plant and the storage plant likewise increase and the trigger levels for
startup and shutdown decrease. However, whereas the value increases linearly
for the renewable plant, the marginal effect is increasing for the technologies
that can reduce or shutdown production. The increase in investment value
is 32.3-40% and 9-10% for the gas fired power plant and hydroelectric power
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plant, respectively. For the gas fired power plant the additional increase is due
to the increased uptime and the reduced number of shutdown predicted by
the model. Furthermore, we see from Figure 4.21 in Appendix 4.C.4 that an
increase in the average price levels lowers both startup and shutdown triggers
for the gas fired power plant, as it is expected to be more profitable when the
plant is online.

Altogether, our results indicate the profitability of renewable investments
is highly sensitive to changes in the average price level, whereas conventional
generation benefits from being able to start up or shut down production and
thereby increase the upside of increasing price levels, but reduce the downside
of decreasing price levels. It should be noted that the profitability of gas fired
power plants is highly dependent on future gas prices compared to electricity
prices.

Figure 4.9: Impact of average electricity price on wind turbine value



133 4.6. Results

Figure 4.10: Impact of average electricity price on value of gas fired power
plant

Figure 4.11: Impact of average electricity price on value of hydroelectric power
plant
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4.6.2.4 Price volatility

For most renewable technologies, production is intermittent, that is, highly
varying and largely inflexible. An example is wind power production that is
directly determined by wind speeds, unless completely shut down. As a result,
we expect the electricity price volatility to increase with increasing levels of
renewable penetration.

Figure 4.12 shows that a higher volatility returns a slightly lower value of
the renewable investment. For an increase in the standard deviation of the
price by 10% percent, the value of the renewable investment decreases by only
0.4-0.7%, except for the OU process with jumps. The decrease in value is
due to a negative correlation between price and renewable production, which
makes high production levels occur with low prices. For the OU process with
jumps, only the diffusion part is correlated with the wind power production
and the correlation is higher than without jumps. Thus, an increase in the
volatility of the diffusion part will have a low impact on standard deviation
of the price compared to the impact on the total value.

As opposed to renewable production, the conventional power plant is able
to benefit from price variations by starting up and shutting down in response
to high and low prices, respectively, cf. Figure 4.13. This is also reflected by
the investment triggers for startup and shutdown, which increase and decrease
with the volatility. As a result, the value of investment increases by 11.8-
12.9%. For the storage plant, the value of discharging the inflow remains
constant and the value of flexibility increases, but as the value of flexibility
is only 8-9% of the total value, the total increase is only 1.1-1.7%. However,
the value of flexibility increases by 13.7%-13.9% for the OU process if the
diffusion term increases the standard deviation and by 21.1% if the jump
intensity increases the volatility.

In conclusion, a higher future volatility will slightly decrease the value
of renewable investments. Whether the same holds for other technologies or
whether they may in fact benefit depends on their flexibility of production,
as for example reflected by the costs of starting up for the conventional plant
and the ramp rate and head flexibility of the storage plant.
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Figure 4.12: Impact of standard deviation on wind turbine value

Figure 4.13: Impact of standard deviation on value of gas fired power plant
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Figure 4.14: Impact of standard deviation on value for hydroelectric power
plant
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4.6.2.5 Correlation between production and price

As already mentioned, renewable production is negatively correlated to the
electricity price. A higher penetration will further reduce the correlation.
This may in turn reduce the value of renewable investment as high production
is partially offset by lower prices. The conventional power plant and the
hydroelectric power plant will, however, be unaffected by the correlation.

We quantify the effects of a change in correlation for an Ornstein-Uhlenbeck
process, as the model based on the Brownian Motion cannot explain the corre-
lations as estimates are not in [-1,1]. For each percentage point the correlation
between price and renewable production decrease the value of renewable in-
vestment decreases by 0.3%, see Figure 4.15. Therefore, correlation only has
a moderate impact on the profitability of such projects, ceteris paribus. How-
ever, we expect the correlation to become more negative and the standard
deviation to increase, which will impact the value of wind power generation,
as

E(PtQt) = E(Pt)E(Qt) + Cor(Pt, Qt)sd(Pt)sd(Qt). (4.6.6)

Thus, an increase in standard deviation by 10% and an increase in the negative
correlation between price and production from −11% to −33% will reduce the
value of wind power generation by 8.2%.
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Figure 4.15: Impact on value of wind turbine of correlation between wind
power generation and electricity price.

4.7 Conclusion
In this paper we develop continuous-time stochastic control models for valu-
ation and operation of three different types of power plants in an electricity
market: a renewable power plant, a conventional power plant and a storage
plant.

We show how to derive analytical or partly analytical solutions to our
models for valuation under uncertainty in electricity prices, both when prices
are assumed to be driven by a Brownian Motion and an Ornstein-Uhlenbeck
process with and without jumps. Our models further account for the spe-
cial characteristics of the technologies, such as a non-normal distribution of
renewable production, startup and shutdown costs of conventional units and
reservoir dynamics that depend on the discharge strategy for a hydroelectric
plant.

We quantify the impact of future market conditions, and in particular,
a change in one or more market parameters such as the average price level,
the price volatility or the correlation between renewable production and price.
Our results demonstrate that the value of renewable investment may be sig-
nificantly affected by an increase or a decrease in the average price level, with
a one-to-one percentage change. In case the future price level becomes much
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lower than the current, the profitability of such projects thereby depends on
either technology maturing to ensure a sufficient reduction in investment costs
or society providing subsidies. As expected, the value of renewable investment
is relatively unaffected by changes in price volatility, ceteris paribus. We show,
however, that a change in both volatility and correlation may erode the value,
which means that the drawbacks of renewable generation are to some extend
faced by the renewable producers themselves. In contrast, conventional power
plants are less vulnerable to decreases in the price level, but can benefit greatly
from increases in the price level and volatility by adjusting production accord-
ingly. This finding becomes increasingly important with the expected rise in
future renewable generation, as the intermittency requires an accompanying
increase in flexible generation capacity.

To simultaneously capture both short term and long term dynamics of
the electricity price and more accurately value operation and investment, an
obvious extension to the wind turbine model and hydro power plant model is
a two factor model. Moreover, our results are based on a change of exogenous
price parameters, which corresponds to assuming perfect competition in the
market. Future research could account for strategic behavior.

We find that the value of the wind turbine decreases by 0.4-5.6% if the
standard deviation of the electricity price increases by 10 % depending on the
model and that for each percentage point the negative correlation between
wind power generation and electricity price drops, the value decreases by 0.35-
0.38%. Furthermore, a 10% increase in average electricity price increases the
value of the wind turbine by 10%. However, we expect the negative impact of
increased negative correlation and standard deviation to outweigh the increase
in average prices, as an increase in negative correlation increases the impact
of increased standard deviation. For the gas fired unit a 10% increase in
standard deviation increases the value by 10-13%, while a 10% increase in
average electricity price increases the value by 32-40%. This is the case as
the gas-fired unit benefits from increased peak prices without suffering the
negative impact of lower off-peak prices. Furthermore, the increase in average
electricity price increases the time the generator is active and reduces the
number of shutdowns-startup cycles. The value of the hydroelectric power
plant also increase by 10% with a 10% increase in average price, but as the
hydroelectric power plant was assumed to have relatively low head flexibility,
an increase in volatility by 10% only increases the value by 1.1-1.7%. However,
by decomposing the discharge strategy of the hydroelectric power plant in a
balancing part that discharges the inflow and a flexible part that reacts to price
changes, we find that the value of the flexible part increases by by 13.7%-13.9%
by a 10% increase in standard deviation through the diffusion term, while an
increase in the standard deviation of 10% through the jump intensity causes
a 21.1% increase in the value.
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Appendix 4.A Calibration

4.A.1 Calibration of the Models Based on the
Ornstein-Uhlenbeck Process without Jumps

Let (pi)i=1,...,N denote the hourly day-a-head prices for the period. We let
(xi)i=1,...,N denote the logarithm of the transformed price, such that xi =
log(pi+M) for i = 1, . . . , N . The corresponding random variables, Xi, satisfy,

Xi+1
d= aXi +m+ bεi for i = 1, . . . , N − 1, (4.A.1)

and a = e−κ∆, ∆ = 1/Nhour, Nhour = 24·365. Furthermorem = (α− σ2

4κP )(1−
e−κP∆) and b2 = σ2 1−e−2κP∆

2κP and εi independent and identically distributed
with ε1 ∼ N (0, 1). We use ordinary least squares to get the estimators,

â =
∑N−1
i=1 (xi+1 − x)(xi − x̃)∑N−1

i=1 (xi − x̃)2
, m̂ = x− âx̃, (4.A.2)

where

x = 1
N − 1

N∑
i=2

xi, x̃ = 1
N − 1

N−1∑
i=1

xi. (4.A.3)

Now

κ̂P = − ln(â)
∆ , b̂2 = 1

N − 1

N−1∑
i=1

(xi+1 − m̂− âxi)2. (4.A.4)

Finally σ and α can be estimated as

σ̂ =
√

2κ̂P
1− e−2κ̂P∆ b̂

2, α̂ = m

(1− e−κ̂P∆) + σ̂2

4κ̂P
. (4.A.5)

4.A.2 Calibration of the Models Based on the
Ornstein-Uhlenbeck Process with Jumps

In the model with jumps we have

Xi+1
d= aXi +m+ εi (4.A.6)

with a = e−κP∆, ∆ = 1/Nhour, Nhour = 24 · 365. However, m = (α − σ2

4κP −
λk2)(1− e−κP∆) and

εi = σ

∫ ti+1

ti

e−κ(t−v) dZPv +
Nti+1∑
i=Nti+1

e−κPTiYi (4.A.7)
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with ti = i∆ for i = 0, . . . , N and Ti is the time of the i’th jump. We
assume that there are two types of jumps, Y (1)

i ∼ N (η(1), ν(1)2) and Y
(2)
i ∼

N (η(2), ν(2)2) such that

εi = σ

∫ ti+1

ti

e−κ(t−v) dZPv +
N

(1)
ti+1∑

i=N(1)
ti

+1

e−κPTiY
(1)
i +

N
(2)
ti+1∑

i=N(2)
ti

+1

e−κPTiY
(2)
i ,

(4.A.8)

where N (1)
t and N

(2)
t are independent compound Poisson processes with in-

tensity λ(1) and λ(2). This can be expressed in the setup with Yi where,
λ = λ(1) + λ(2) and for c ≥ 0,

E(ecYi) = λ1
λ
E(ecY1) + λ2

λ
E(ecY2). (4.A.9)

Using the conditional moment generating function for the dampened jump
process from Lemma 4.B.2 we find that

E(εi) = lim
u↘0

(
∂

∂u
exp

(
λ

∫ 1

e−κP∆

θ(uz)− 1
κP z

dz
))

(4.A.10)

= 1− e−κP∆

κP

2∑
j=1

λ(j)η(j) (4.A.11)

and

V ar(ε2i ) = σ2 1− e−2κP∆

2κp

+ lim
u↘0

(
∂2

∂u2 exp
(
λ

∫ 1

e−κP∆

θ(uz)− 1
κP z

dz
))
− E(εi)2

(4.A.12)

= 1− e−2κP∆

2κP

σ2 +
2∑
j=1

λ(j)(η(j)2 + ν(j)2)

 . (4.A.13)

We apply the expectation maximization algorithm from Ernstsen (2016) as-
suming that

εi
d= Vi +

Ñ
(1)
i+1∑

i=Ñ(1)
i +1

G
(1)
i +

Ñ
(2)
i+1∑

i=Ñ(2)
i +1

G
(2)
i (4.A.14)

with (G(j)
i )i=1,...,N are independent identically distributed withG(j)

1 ∼ N (η̃(j), (ν̃(j))2)
for j = 1, 2 . Furthermore Ñ (j) are compound Poisson processes with inten-
sity λ̃j for j = 1, 2 and (Vi)i=1,...,N are independent and identically distributed
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with V1 ∼ N (m, s2). The time change from years to hours implies that the
hourly mean reversion factor κ̂P∆, the hourly volatility is σ

√
∆ and the hourly

intensity for N (j)
t is λ(j)∆. Thus,

σ2 = s2 2κ̂P
1− e−2κ̂P∆ (4.A.15)

λj = λ̃j/∆, j = 1, 2 (4.A.16)

η(j) = η̃(j) κ̂P∆
1− e−κ̂P∆ , j = 1, 2 (4.A.17)

ν(j)2 =
(
(η̃(j))2 + (ν̃(j))2

) 2κ̂P∆
1− e−2κ̂P∆ − η

(j)2
, j = 1, 2 (4.A.18)

α = m/(1− e−κ̂P∆) + σ2

4κ̂P
+ (λ1 + λ2)k2. (4.A.19)

where k2 =
∫ 1

0
θ(z)−1
κ̂P z

dz with

θ(z) = λ1
λ
eη

(1)z+ 1
2 z

2(ν(1))2 + λ1
λ
eη

(1)z+ 1
2 z

2(ν(1))2
. (4.A.20)

4.A.3 Calibration of the Models Based on the Brownian
Motion

We calibrate σ, by matching the continuous arithmetic average of the variance
variance,

1
T̂

∫ T̂

0
E(P 2

s )− E(Ps)2 ds (4.A.21)

to the empirical variance

1
N − 1

N∑
n=1

(pi − p)2. (4.A.22)

4.A.4 Calibration of Model for Wind Speeds

Let (wi)i=1,...,N denote the hourly wind speeds and (pi)i=1,...,N denote the
hourly prices. We use moment matching and determine β and η such that

1
N

N∑
i=1

wi = ηΓ(1 + β

β
) 1
N

N∑
i=1

w2
i = η2Γ(1 + β

β
) (4.A.23)

where Γ(x) is the Γ-function. We define the distribution independent values ui
using the inverse to the distribution function for the normal distribution, Φ−1

and the distribution function for the Weibull distribution with the estimates
for β and η found through moment matching.

ui = Φ−1(F (wi)), for i = 1, . . . , N. (4.A.24)
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We estimate κU as for the Ornstein-Uhlenbeck model for the price using linear
regression of (ui)i=2,...,N on (ui)i=1,...,N−1 setting κU = − ln(â)

∆ , where â is the
estimate for the linear coefficient. We choose ρ in each of the models such
that the instantaneous value of production from each of the models matches
average value of production, i.e. such that

lim
t→∞

E(Pth(Wt)) = 1
N

N∑
i=1

h(wi)pi. (4.A.25)

4.A.5 Determination of Penalty Functions

We require that the penalty functions attain has marginal costs of exceeding
the bounds for the water level of ηP̃L and marginal costs of exceeding the
discharge level of ηP̃v. This implies that

Θ2 = − P̃L
Lmax − Lmin

, Θ1 = P̃L(Lmax + Lmin)
Lmax − Lmin

(4.A.26)

and

θ2 = − P̃v
vmax − vmin

, θ1 = P̃v(vmax + vmin)
vmax − vmin

. (4.A.27)

For the models based on the Ornstein-Uhlenbeck process,

S = lim
t→∞

√
E(P 2

t )− E(Pt)2. (4.A.28)

For the models based on the Brownian Motion, the standard deviation con-
verges to infinity, thus we use the quantity

S =

√
1
T̃

∫ T̃

0
E(P 2

t )− E(Pt)2 dt, (4.A.29)

with T̃ = 7, the length of the calibration period.

Appendix 4.B Lemmas

4.B.1 Moment Generating Functions

Lemma 4.B.1. Let X ∼ N (µ, σ2) then E(euX) = euµ+ 1
2u

2σ2.

Proof. It is enough to show that E(euZ) = e
u2
2 for Z ∼ N (0, 1) as E(euX) =

E(eu(µ+σZ)). Now as ux− x2

2 = −(x−u)2

2 + u2

2 we have∫ ∞
−∞

eux
1√
2π
e−

x2
2 dx = e

u2
2

∫ ∞
−∞

1√
2π
e−

(x−u)2
2 dx = e

u2
2 (4.B.1)

as we recognize the density of the normal distribution with mean u and vari-
ance 1.
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Lemma 4.B.2. Let Yn be i.i.d. random variables with E(ecY1) = θ(c) for
c ∈ R and (Nt)t≥0 be a Poisson process with intensity λ > 0 with jump times
(Tn)n≥1. Then the dampended jump process, (Lt)t≥0 given by

Lt = e−κP (t−s)Ls +
Nt∑

Ns+1
e−κP (t−Tn)Yn for t ≥ s, (4.B.2)

has conditional moment generating function

E(euLt |Ls) = eA(s,t)+B(s,t)Ls , for u ∈ R (4.B.3)

where

A(s, t) = λ

∫ 1

e−κP (t−s)

θ(uz)− 1
κP z

dz. (4.B.4)

and

B(s, t) = ue−κP (t−s). (4.B.5)

Proof. We have with Jt =
∑Nt
n=1 Yn then Lt solves

dLt = −κPLt dt+ dJt, (4.B.6)

which we show in Lemma 4.B.3, and hence, as the drift and jump coefficients
are affine, it follows by Duffie et al. (2000) that the conditional moment gen-
erating function has the form E(euLt |Ls) = eA(s,t)+B(s,t)Ms , where A(s, t) and
B(s, t) solves

d
dsB(s, t) = κPB(s, t) (4.B.7)

d
dsA(s, t) = −λ(θ(B(s, t))− 1) (4.B.8)

with B(t, t) = u and A(t, t) = 0. Thus,

B(s, t) = ue−κP (t−s) (4.B.9)

and

A(s, t) = λ

∫ t

s
(θ(ue−κP (t−v))− 1) dv (4.B.10)

= λ

∫ 1

e−κP (t−s)

θ(uz)− 1
κP z

dz (4.B.11)

where we used a change of variable with z = e−κP (t−v).
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4.B.2 Ornstein-Uhlenbeck Process

Lemma 4.B.3. Let (Zt)t≥0 be a Brownian motion, (Yn)n≥1 be i.i.d. ran-
dom variables and (Nt)t≥0 a Poisson process with intensity λ and jump times
(Tn)n≥1. Define the compound Poisson process Jt =

∑Nt
n=1 Yn. Assume Ut has

the dynamics

dUt = κ(α̂t − Ut) dt+ σ dZt + dJt (4.B.12)

then

Ut = Use
−κ(t−s) + κ

∫ t

s
e−κ(t−v)α̂v dv

+ σ

∫ t

s
e−κ(t−v) dZUv +

Nt∑
n=Ns+1

e−κ(t−Tn)Yn

(4.B.13)

and if α̂t is constant,

Ut = Use
−κ(t−s) + α̂(1− e−κ(t−s))

+ σ

∫ t

s
e−κ(t−v) dZUv +

Nt∑
n=Ns+1

e−κ(t−Tn)Yn.
(4.B.14)

Proof. Define Lt = eκtUt, then

dLt = eκt dUt + Ut d(eκt) (4.B.15)
= κ(α̂t − Ut)eκt dt+ σeκt dZUt + eκt dJt + κUte

κt dt (4.B.16)
= κα̂te

κU t dt+ σeκt dZUt + eκt dJt (4.B.17)

Thus, for t ≥ s

Lt = Ls + κ

∫ t

s
α̂ve

κv dv + σ

∫ t

s
eκv dZv +

Nt∑
n=Ns+1

eκTnYn. (4.B.18)

Now as Ut = e−κtLt it follows that

Ut = Use
−κ(t−s) + κ

∫ t

s
α̂ve

−κ(t−v) dv

+ σ

∫ t

s
e−κ(t−v) dZv +

Nt∑
n=Ns+1

e−κ(t−Tn)Yn.

(4.B.19)

Lemma 4.B.4. An Ornstein-Uhlenbeck process (Xt)t≥0 is ρ-mixing, that is
ρt → 0 for t→∞ with

ρt = sup
s ≥ 0

X ∈ L2(A1
s)

Y ∈ L2(A∞s+t)

[cor(X,Y )] (4.B.20)
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where L2(A) is the family of all square integrable A-measurable random vari-
ables and A1

t = F((Xs)s≤t) and A∞t = F((Xs)s>t) are the σ-algebras generated
by (Xs)s≤t and (Xs)s>t.

Proof. Let b(x) = κ(α − x) be the drift and a(x) = σ be the diffusion of the
Ornstein-Uhlenbeck process with α ∈ R, κ > 0 and σ > 0 with initial value
x0 ∈ R. Define the scale and speed densities

s(x) = exp
(
−2
∫ x

x0

b(u)
a2(u) du

)
= exp

(
(x− α)2

2σ2

2κ
+ −(x0− α)2

2σ2

2κ

)
(4.B.21)

m(x) = 1
a2(x)s(x) = exp

(
−(x− α)2

2σ2

2κ
+ (x0− α)2

2σ2

2κ

)/
σ2 (4.B.22)

and

γ(x) = a′(x)− 2b(x)/a(x) = −2κα− x
σ

. (4.B.23)

Following section 2.6 of Genon-Catalot et al. (2000) it is sufficient to verify
the following:

(i) b(x) ∈ C1(R), a(x)2 ∈ C2(R) and a(x) > 0 for x ∈ R.

(ii)
∫
−∞ s(x) dx =∞,

∫∞ s(x) dx =∞,
∫
Rm(x) dx = M <∞.

(iii) a(x)m(x)→ 0 for x→∞ and x→ −∞.

(iv) 1/γ(x) converges for x→∞ and x→ −∞.

(i), (iii) and (iv) follows trivially and (ii) follows as s(x) does not converge to
0 for x→∞ or x→∞ and as m(x) is a scaled normal density with mean α
and variance σ2

2κ .

4.B.3 Determination of Expected Instantaneous Value of
Wind Production

Lemma 4.B.5. Let h(u) = (au+ b)1(u∈(u0,u1)) and assume(
Z1
Z2

)
∼ N

((
µ1
µ2

)
,

(
σ2

1 ρ̂σ1σ2
ρ̂σ1σ2 σ2

2

))
. (4.B.24)

Then

E
[
eZ1h(Z2)

]
= eµ1+

σ2
1
2

[
(aξ + b)

(
Φ
(
u1 − ξ
σ2

)
− Φ

(
u0 − ξ
σ2

))

+ aσ2√
2π

e− (u0−ξ)
2

2σ2
2 − e

− (u1−ξ)
2

2σ2
2

] (4.B.25)

with ξ = µ2 − ρ̂σ1σ2.
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Proof. We use that for X1 ∼ N (0, 1) and X2 ∼ N (0, 1) with X1 independent
of X2 then

(Z1, Z2) d= (µ1 + σ1(ρ̂X1 +
√

1− ρ̂2X2, X1). (4.B.26)

Hence

E
[
eZ1h(Z2)

]
= E

[
eµ1+σ1(ρ̂X1+

√
1−ρ̂2X2)h(σ2X1 + µ2)

]
(4.B.27)

= eµ1E
[
eσ1
√

1−ρ̂2X2

]
E
[
eσ1ρ̂X1h(σ2X1 + µ2)

]
(4.B.28)

= eµ1E
[
eσ1
√

1−ρ̂2X2

]
e
σ2

1 ρ̂
2

2 E [h(σ2(X1 + ρ̂σ1) + µ2)] (4.B.29)

= eµ1+
σ2

1
2 E [h(σ2X1 + ξ)] , (4.B.30)

with ξ = µ2 + ρ̂σ1σ2. Here we use that for u constant and E(|f(X1 +u)|) <∞,
then E

[
euX1f(X1)

]
= e

u2
2 E [f(X1 + u)], which follows by (4.B.1). Now with

Φ(x) the distribution function for the standard normal distribution,

E [h(σ2X1 + ξ)] = E
[
(aσ2X1 + aξ + b)1(σ2X1+ξ∈(u0,u1))

]
(4.B.31)

= (aξ + b)
(

Φ
(
u1 − ξ
σ2

)
− Φ

(
u0 − ξ
σ2

))

+ aσ2
1√
2π

∫ u1−ξ
σ2

u0−ξ
σ2

xe−
x2
2 dx.

(4.B.32)

Using the change of variable z = x2

2 , we find that

∫ u1−ξ
σ2

u0−ξ
σ2

xe−
x2
2 dx =

∫ (u1−ξ)
2

2σ2
2

(u0−ξ)2

2σ2
2

e−z dz (4.B.33)

= e
(u0−ξ)

2

2σ2
2 − e

(u1−ξ)
2

2σ2
2 , (4.B.34)

which proves the claim.

Lemma 4.B.6. Let (Zt)t≥0 be a Brownian motion and define for t ≥ s

I1(s, t) =
∫ t

s
h1(v) dZv (4.B.35)

I2(s, t) =
∫ t

s
h2(v) dZv, (4.B.36)

where we assume
∫ t
s h1(v)2 dv <∞ and

∫ t
s h2(v)2 dv <∞. Then

Cov(I1(s, t), I2(s, t)) =
∫ t

s
h1(v)h2(v) dv. (4.B.37)
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Proof. We have that

Cov(I1(s, t), I2(s, t)) = E
(∫ t

s
h1(v) dZv

∫ t

s
h2(v) dZv

)
(4.B.38)

as E(
∫ t
s h1(v) dZv) = E(

∫ t
s h2(v) dZv) = 0. Now using Itô’s isometry,

E
[(∫ t

s
h(v) dZv

)2]
=
∫ t

s
h(v)2 dv, (4.B.39)

it follows that

E
[(∫ t

s
h1(v) dZv +

∫ t

s
h2(v) dZv

)2]

=E
[(∫ t

s
h1(v) + h2(v) dZv

)2] (4.B.40)

=E
[∫ t

s
(h1(v) + h2(v))2 dv

]
(4.B.41)

=
∫ t

s
h1(v)2 + h2(v)2 dv + 2

∫ t

s
h1(v)h2(v) dv (4.B.42)

and

E
[(∫ t

s
h1(v) dZv +

∫ t

s
h2(v) dZv

)2]

=E
[(∫ t

s
h1(v) dv

)2
+
(∫ t

s
h2(v) dZv

)2

+2
∫ t

s
h1(v) dZv

∫ t

s
h2(v) dZv

] (4.B.43)

=
∫ t

s
h1(v)2 + h2(v)2 dv + 2E

[ ∫ t

s
h1(v) dZv

∫ t

s
h2(v) dZv

]
. (4.B.44)

Hence, combining (4.B.37), (4.B.42) and (4.B.44) the result follows.

Corollary 1. Let (Zt)t≥0 be a Brownian motion and define for t ≥ s

Ut = Use
−κU (t−s) +

∫ t

s
e−κU (v−s) dZv (4.B.45)

Xt = Xs + Zt − Zs = Xs +
∫ t

s
1 dZv. (4.B.46)

Then

Cov(Xt, Ut|(Xs, Us)) = 1− e−κU (t−s)

κU
(4.B.47)
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Corollary 2. Let (Zt)t≥0 be a Brownian motion and define for t ≥ s

Ut = Use
−κU (t−s) +

∫ t

s
e−κU (v−s) dZv (4.B.48)

Xt = Xse
−κP (t−s) +

∫ t

s
e−κP (v−s) dZv, (4.B.49)

then

Cov(Xt, Ut|(Xs, Us)) = 1− e−(κU+κP )(t−s)

κU + κP
. (4.B.50)

Lemma 4.B.7. Let Xt be as in Appendix 4.2.1 where Xt follows a Brownian
motion with drift and Ut be as in Appendix 4.3. Furthermore let f be the
transformation from weather factor to wind speed, f(u) = F−1(Φ(u)) and the
power curve, h, be defined as in (4.4.8). Then for t > s

E(eXth(f(Ut))|Fs)

=eXseµ(t−s)
[
hfull

(
Φ
(
u2 − ξ
τ

)
− Φ

(
u1 − ξ
τ

))
+ τhfull√

2π(u1 − u0)

(
e−

(u0−ξ)
2

2τ2 − e−
(u1−ξ)

2

2τ2

)

+(ξ − u0)hfull
u1 − u0

(
Φ
(
u1 − ξ
τ

)
− Φ

(
u0 − ξ
τ

))]
.

(4.B.51)

with ξ = Use
−κU (t−s) + ρσ

√
2κU 1−e−κU (t−s)

κU
and τ = 1− e−2κU (t−s).

Proof. As (Jt)t≥0 is independent of (Ut)t≥0 and

E
(
e
−λk1(t−s)+

∑Nt
n=Ns+1 Yn

)
= 1 (4.B.52)

it follows that

E(eXsh(f(Us))|Ft) = E
[
eZ1h (f(Z2)) |Ft

]
. (4.B.53)

with

Z1 = Xs + (µ− 1
2σ

2)(t− s) + σ(ZPt − ZPs ) (4.B.54)

Z2 = Use
−κU (t−s) +

√
2κU

∫ t

s
e−κU (v−s) dZUv . (4.B.55)

Now as (
Z1
Z2

)
∼ N

((
µ1
µ2

)
,

(
σ2

1 ρ̂σ1σ2
ρ̂σ1σ2 σ2

2

))
. (4.B.56)
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with

µ1 = Xt + (µ− 1
2σ

2)(t− s) (4.B.57)

µ2 = Ute
−κU (t−s) (4.B.58)

σ2
1 = σ2(t− s) (4.B.59)
σ2

2 = 1− e−2κU (t−s). (4.B.60)

it follows by Corollary 1 that

ρ̂σ1σ2 = Cov(Z1, Z2) (4.B.61)

= E

[
σ(ZPt − ZPs )

√
2κU

∫ t

s
e−κU (v−s) dZUv

]
(4.B.62)

= E

[
σ(Zt − Zs)ρ

√
2κU

∫ t

s
e−κU (v−s) dZv

]
(4.B.63)

= ρσ
√

2κU
1− e−κU (t−s)

κU
, (4.B.64)

where we used the linearity of the stochastic integral and that (ZP , ZU ) d=
(Z, ρZ +

√
1− ρ2Y ) with Z and Y independent Brownian Motions. Now the

result follows from Lemma 4.B.5.

Lemma 4.B.8. Let Xt be as in Appendix 4.2.2 where Xt follows an Ornstein-
Uhlenbeck process and Ut be as in Appendix 4.3. Furthermore let f be the
transformation from weather factor to wind speed, f(u) = F−1(Φ(u)) and the
power curve, h, be defined as in (4.4.8). Then for t > s

E(eXth(f(Ut))|Fs)

=eXse−κP (t−s)+αt
[
hfull

(
Φ
(
u2 − ξ
τ

)
− Φ

(
u1 − ξ
τ

))
+ τhfull√

2π(u1 − u0)

(
e−

(u0−ξ)
2

2τ2 − e−
(u1−ξ)

2

2τ2

)

+(ξ − u0)hfull
u1 − u0

(
Φ
(
u1 − ξ
τ

)
− Φ

(
u0 − ξ
τ

))]
.

(4.B.65)

with αt = (α+εσ)(1−e−κP (t−s))−εk, εσ = σ2

4κP e
−κP (t−s), εk = λ

∫ e−κP (t−s)

0
θ(z)−1
κP c

dz,
ξ = Use

−κU (t−s) + ρσ
√

2κU 1−e−κU (t−s)

κU
.
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Proof. As (Jt)t≥0 is independent of (Ut)t≥0 and

E

exp

−λk2(t− s) +
Nt∑

n=Ns+1
e−κP (t−Tn)Yn


= exp (−λk2 +A(s, t))

(4.B.66)

= exp
(
−λ

∫ e−κP (t−s)

0

θ(z)− 1
κP c

dz
)

(4.B.67)

it follows that with εk = λ
∫ e−κP (t−s)

0
θ(z)−1
κP c

dz then

E(eXsh(f(Us))|Ft) = e−εkE
[
eZ1h (f(Z2)) |Ft

]
. (4.B.68)

with

Z1 = Xse
−κP (t−s) + (α− 1

4κP
σ2)(t− s) + σ

∫ t

s
e−κP (v−s) dZPv (4.B.69)

Z2 = Use
−κU (t−s) +

√
2κU

∫ t

s
e−κU (v−s) dZUv . (4.B.70)

We have that(
Z1
Z2

)
∼ N

((
µ1
µ2

)
,

(
σ2

1 ρ̂σ1σ2
ρ̂σ1σ2 σ2

2

))
. (4.B.71)

with

µ1 = Xse
−κP (t−s) + (α− σ2

4κP
)(1− e−κP (t−s)) (4.B.72)

µ2 = Ute
−κU (t−s) (4.B.73)

σ2
1 = σ2 1− e−2κP (t−s)

2κP
(4.B.74)

σ2
2 = 1− e−2κU (t−s). (4.B.75)

By Corollary 2 it follows that

ρ̂σ1σ2 = Cov(Z1, Z2) (4.B.76)

= E

[
σ

∫ t

s
e−κP (v−s) dZPv

√
2κU

∫ t

s
e−κU (v−s) dZUv

]
(4.B.77)

= E

[
σ

∫ t

s
e−κP (v−s) dZvρ

√
2κU

∫ t

s
e−κU (v−s) dZv

]
(4.B.78)

= ρσ
√

2κU
1− e−(κU+κP )(t−s)

κU + κP
(4.B.79)
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where we used the linearity of the stochastic integral and that (ZP , ZU ) d=
(Z, ρZ +

√
1− ρ2Y ) with Z and Y independent Brownian Motions. Now as

exp
(
µ1 + σ2

1
2

)

= exp
(
Xse

−κP (t−s) + (α− σ2

4κP
)(1− e−κP (t−s)) + σ2 1− e−2κP (t−s)

4κP

)
(4.B.80)

= exp
(
Xse

−κP (t−s) + α(1− e−κP (t−s)) + σ2 e
−κP (t−s) − e−2κP (t−s)

4κP

)
(4.B.81)

= exp
(
Xse

−κP (t−s) + (α+ εσ)(1− e−κP (t−s))
)

(4.B.82)

with εσ = σ2

4κP e
−κP (t−s), the result follows from Lemma 4.B.5.

4.B.4 Solutions to Homogeneous HJB Equation with
Ornstein-Uhlenbeck Process

Lemma 4.B.9. For κP > 0, r > 0, a = r
2κP , b = 1

2 , x
∗ = α− σ2

4κP and

f(x) = κP
(x− x∗)2

σ2 (4.B.83)

we have that

m1(x) =
{
U(a, b, f(x)) x < x∗

−U(a, b, f(x)) + 2 Γ(1−b)
Γ(a−b+1)M(a+ b, f(x)) x ≥ x∗ (4.B.84)

m2(x) =
{
−U(a, b, f(x)) + 2 Γ(1−b)

Γ(a−b+1)M(a+ b, f(x)) x < x∗

U(a, b, f(x)) x ≥ x∗
(4.B.85)

solves the second order differential equation

κP (x∗ − x) ∂
∂x
m(x) + 1/2σ2 ∂

2

∂x2m(x)− rm(x) = 0 (4.B.86)

with m1(x) → 0 for x → −∞ and m2(x) → 0 for x → ∞ and m1(x) and
m2(x) are bounded on (−∞, x0) and (x0,∞) respectively for any x0 ∈ R.

Proof. Abramowitz and Stegun (1972) shows that M(a, b, z) and U(a, b, z)
solves

z
∂

∂z2M(a, b, z) + (b− z) ∂
∂z
M(a, b, z)− aM(a, b, z) = 0 (4.B.87)
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and are independent for a 6= 0,−1,−2, . . .. From the integral representations
of M(a, b, z) and U(a, b, z) we note that M(a, b, f(x))→∞ for x→ ±∞ and
U(a, b, f(x))→ 0 for x±∞. We have that with

m(x) = M(a, b, f(x)) (4.B.88)

and

f(x) = κP
(x− x∗)2

σ2 (4.B.89)

then
∂

∂x
m(x) = M ′(a, b, f(x))f ′(x) (4.B.90)

∂2

∂x2m(x) = M ′′(a, b, f(x))f ′(x)2 +M ′(a, b, f(x))f ′′(x) (4.B.91)

and inserting in (4.B.86) we obtain

(κP (x∗ − x)f ′(x) + 1
2σ

2f ′′(x))M ′(a, b, f(x))

+1
2σ

2f ′(x)2M ′′(a, b, f(x))− rM(a, b, f(x)) = 0
(4.B.92)

which simplifies to

f(x)M ′′(a, b, f(x)) + (1
2 − f(x))M ′(a, b, f(x))

− r

2κP
M(a, b, f(x)) = 0.

(4.B.93)

Thus (4.B.87) is satisfied with a = r
2κP and b = 1

2 . As we only used that
M(a, b, f(x)) solved (4.B.87) it also follows that U(a, b, f(x)) solves (4.B.86).
Now we only need to show that m1(x) and m2(x) are twice differentiable at
x = x∗. Here we use another result from Abramowitz and Stegun (1972),
namely that

U(a, b, z) = Γ(1− b)
Γ(a− b+ 1)M(a, b, z)

+ Γ(b− 1)
Γ(a) z1−bM(a− b+ 1, 2− b, z).

(4.B.94)

Thus, by inserting (4.B.94) in (4.B.84) and (4.B.85), it follows that m1(x) and
m2(x) are continuous at x = x∗ as f(x∗) = 0. As b = 1/2 we have that for
x > x∗,

f(x)
1
2M(a− b+ 1, 2− b, f(x)) =

√
κ
x− x∗

σ
M(a− b+ 1, 2− b, f(x))

(4.B.95)
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and for x < x∗

f(x)
1
2M(a− b+ 1, 2− b, f(x)) = −

√
κ
x− x∗

σ
M(a− b+ 1, 2− b, f(x)).

(4.B.96)

Thus, as U(a, b, f(x)) has opposite sign in the x ≥ x∗ and x < x∗ part of
(4.B.84) and (4.B.85) it follows that m1(x) and m2(x) are twice differentiable
at x = x∗ if M(a − b + 1, 2 − b, z) is twice differentiable with respect to z.
Now,

M(a, b, z) = E(ezX) (4.B.97)

with X ∼ Beta(a, b− a) and thus as the beta distribution has moments of all
orders it follows that M(a, b, z) is infinitely differentiable at z = 0.

Note thatM(a, b, 0) = 1 and thus using (4.B.94) it follows that U(a, b, 0) =
Γ(1−b)

Γ(a−b+1) . Furthermore,

M ′(a, b, z)|z=0 = E(X) = a

b
, (4.B.98)

and higher order derivatives can be determined through the moments of the
beta distribution. U(a, b, z) is however not differentiable at z = 0.

Appendix 4.C Sensitivity Analysis

4.C.1 Impact of 10% Increase in Average Price

We use limt→∞ E(Pt) as the average price for both models.

Model for Xt +10% avg. price (mio. DKK)
Brownian Motion (+10.30%) 15.098
OU-process (+10.29%) 15.097
OU-process with jumps (+10.27%) 15.095

Figure 4.16: Impact of average price on wind turbine value

Model for Xt +10% avg. price (mio. DKK)
Brownian Motion (+32.37%) 1 954.392
OU-process (+39.99%) 1 675.675
OU-process with jumps (+37.34%) 1 684.287

Figure 4.17: Impact of average price on value of gas fired power plant
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Model for Xt +10% avg. price (mio. DKK)
Brownian Motion (+10.00%) 468.181
OU-process (+9.10%) 508.459
OU-process with jumps (+9.15%) 516.192

Figure 4.18: Impact of average price on value of hydroelectric power plant

4.C.2 Impact of 10% Increase in Standard Deviation

The standard deviation is measured as

S =

√
1
T̃

∫ T̃

0
E(P 2

t )− E(Pt)2 dt, (4.C.1)

for the models based on the Brownian motion, where T̃ = 7 is the number of
years in the data used for calibration. Furthermore,

S = lim
t→∞

√
E(P 2

t )− E(Pt)2. (4.C.2)

is used for the models based on the Ornstein-Uhlenbeck process.

Model for Xt +10% std. dev. (mio. DKK)
Brownian Motion (-0.38%) 13.636
OU-process (-0.38%) 13.636
OU-process with jumps (-5.61%) 12.920

Figure 4.19: Impact of standard deviation on wind turbine value

Model for Xt +10% std. dev. (mio. DKK)
Brownian Motion (+11.81%) 1 650.794
OU-process (+12.92%) 1 351.612
OU-process with jumps (σ) (+9.83%) 1 346.744
OU-process with jumps (λ) (+13.08%) 1 386.664

Figure 4.20: Impact of standard deviation on value of gas fired power plant
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Model for Xt +10% std. dev. (mio. DKK)
Brownian Motion (0.00%) 425.612
OU-process (+1.21%) 471.709
OU-process with jumps (σ) (+1.12%) 466.483
OU-process with jumps (λ) (+1.70%) 468.150

Table 4.12: Impact of standard deviation on value of hydroelectric power plant

4.C.3 Wind Turbine

Model for Xt -1 percent point correlation
OU-process (-0.32%) 13.644
OU-process with jumps (-0.31%) 13.646

Table 4.13: Impact of correlation on value of wind turbine

4.C.4 Gas Fired Power Plant

Model for Xt P ∗on P ∗off
Brownian Motion 325.40 319.97
OU-process 364.15 274.90
OU-process with jumps 377.41 302.72

Table 4.14: Startup and shutdown triggers.
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Figure 4.21: Impact of average price on trigger for gas fired power plant.

Figure 4.22: Impact of standard deviation on trigger for gas fired power plant.
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4.C.5 Hydroelectric Power Plant

We obtain the following strategy parameters, d1, d2 and d3 for each of the
models and note that an increase in price by 1 DKK increases the discharge
rate by d2/Nsecs and an increase in head level by 1 meter increases the dis-
charge rate by d3 (·a/Nsecs).

Model for Xt d1 /Nsecs d2 /Nsecs d3 ·a/Nsecs

m3/s m3/s
DKK/MWh

m3/s
m

BM -31.4527 0.000761 0.99848
OU -50.0186 0.066887 0.98447
OU with jumps -49.6884 0.069913 0.97183

Table 4.15: Parameters of the control strategy for the hydroelectric power
plant.
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4.C.5.1 Distribution of water level and discharge rate

Figure 4.27: Distribution of flow rates of
hydroelectric power plant with optimal
strategy

Figure 4.28: Distribution of water level of
hydro plant with optimal strategy

Figure 4.29: Distribution of water level of
hydro plant with optimal strategy

Figure 4.30:Distribution of flow rates of
hydroelectric power plant with optimal
strategy





5
An EM Algorithm with Two Jump

Components

Abstract

An EM-algorithm with two jump components is developed based on the
EM algorithm from Duncan et al. (2009) that includes a single jump
component. The inclusion of an additional jump component creates a
more accurate model and provides a better estimate for the structure
of the jumps, while remaining analytically tractable, as the two jump
components can be aggregated to a single jump process with a mixture
distribution as the jump density. The EM-algorithm is applied to a jump
diffusion model for electricity prices with hourly observations for a 7 year
period.

5.1 Introduction
Classical diffusion models are typically calibrated to historical data by utilizing
the fact that a transformation of the increments are i.i.d. such that statistical
properties can be estimated using some form of the law of large numbers. This
approach typically assumes that the transformed increments follows a normal
distribution, which is often the case if the model is based on a diffusion process.
However, the normality assumption may often fail, due to heavy tails of the
distribution, which indicates that a larger part of the variance is a result of
infrequent extreme deviations. This type of data can be described better
using jump diffusion processes, which often result in transformed increments
that consist of a diffusion term as well as a jump term. Examples of jump

161
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diffusion models include the classical paper by Merton (1976) and affine jump
diffusions covered in Duffie et al. (2000). Furthermore, various electricity price
models, which this algorithm was primarily developed for, are based on jump
diffusions, see Deng (1999), Johnson and Barz (1999) and Bhar et al. (2013).

However, estimation of parameters in a jump model is often difficult, as
direct maximum likelihood estimation has to be done numerically on an in-
tractable log-likelihood function, which can lead to misspecification of the
model. The EM-algorithm, first covered in the general case by Dempster
et al. (1977), introduces the notion of the complete data, which is the observed
data and additional unobserved data, such that the complete data has a more
tractable log-likelihood function. Then, assuming some initial distribution of
the complete data, the expectation of the log-likelihood function for the com-
plete data conditional on the observed data is maximized and the distribution
of the complete data is updated. This leads to an iterative approach, where
each step can be shown to increase the value of the original log-likelihood
function. Thus, the intractable log-likelihood function of the observed data is
maximized indirectly using the EM-algorithm. However, as is the case with
numerical optimization of the likelihood function, the iterative approach from
the EM-algorithm can converge to stationary points that are not a global
maximum, see Wu (1983) and Vaida (2005) for a general convergence anal-
ysis. However, by including several different initial starting parameters and
choosing the best result among them, the EM-algorithm can typically provide
good parameter estimates, see Dempster et al. (1977), Pickard et al. (1986)
and Duncan et al. (2009).

The step of determining the expectation is called the E-step and the step
of maximizing the expectation over all parameters is called the M-step, which
is why the algorithm is called the EM-algorithm. The rest of the paper is
organized as follows. Section 5.2 gives a short proof of the fact that an EM
step increases the value of the log-likelihood function for the observed data.
Section 5.3 introduces an explicit EM algorithm with two jump components
and determines the optimal parameters in terms of conditional expectations
as well as an approach for computing the conditional expectations. Section 5.4
covers an application of the algorithm on a jump diffusion model for hourly
price data for 7 years from the electricity market. In Section 5.5, we provide
a brief conclusion.

5.2 The EM-algorithm

Following Dempster et al. (1977), we provide a short proof that an iteration
with the EM-algorithm increases the log-likelihood function. Initially we let
(X ,E,mX ) and (Y,F,mY) be measure spaces, where we refer to X as the
complete sample space and Y as the observed sample space. Let H : X → Y
be the surjective map such that the preimage of y ∈ Y of H, H−1({y}),
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consist of all samples from X that result in the observation y. We denote the
probability density of the complete data with parameter θ with respect to mX
by

f(x|θ), (5.2.1)

such that the corresponding probability density for the observed data with
parameter θ with respect to mY satisfies

g(y|θ) =
∫
H−1({y})

f(x|θ) dmX(x). (5.2.2)

Thus, the probability density for the complete data with parameter θ condi-
tional on the observed data with respect to mX is

k(x|y, θ) = f(x|θ)
g(y|θ) , (5.2.3)

for x ∈ H−1({y}). Hence,

log(g(y|θ)) = log(f(x|θ))− log(k(x|y, θ)). (5.2.4)

The EM-algorithm determines θ̂ that maximizes

Eθ0 ( log(f(X|θ)|Y = y) (5.2.5)

as a function of θ, which in terms of densities is,∫
H−1({y})

log(f(x|θ))k(x|y, θ0) dmX(x). (5.2.6)

Hence, using Jensens inequality, that θ̂ maximizes (5.2.6) and that (5.2.4)
holds, the log-likelihood of the observed data satisfies

log
(
g(y|θ̂)

)
= log

(∫
H−1({y})

f(x|θ̂) dmX(x)
)

(5.2.7)

= log
(∫

H−1({y})

f(x|θ̂)
k(x|y, θ0)k(x|y, θ0) dmX(x)

)
(5.2.8)

≥
∫
H−1({y})

log
(

f(x|θ̂)
k(x|y, θ0)

)
k(x|y, θ0) dmX(x) (5.2.9)

≥
∫
H−1({y})

log
(
f(x|θ0)
k(x|y, θ0)

)
k(x|y, θ0) dmX(x) (5.2.10)

= log
(
g(y|θ0)

)
. (5.2.11)

Thus, a step with the EM-algorithm increases the value of the log-likelihood
function of the observed data.1

1Jensens inequality becomes an equality if f(x|θ̂)/k(x|y, θ0) does not depend on x and
the increase in (5.2.6) determines the increase in the log-likelihood function for the observed
data.
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5.3 Model

We assume that we have T observations, y = (yn)n∈{1,...,T}, which are realiza-
tions of Y = (Yn)n∈{1,...,T} given by

Yn = Zn +
N

(1)
n∑

k1=1
J

(1)
nk1

+
N

(2)
n∑

k2=1
J

(2)
nk2
, for n = 1, . . . , T, (5.3.1)

where Zn, J (1)
nk1

, J (2)
nk2

, N (1)
n andN (2)

n are i.i.d. for n = 1, . . . , T , k1 = 1, . . . , N (1)
n

and k2 = 1, . . . , N (2)
n . Furthermore,

Z1 ∼ N (µ, σ), J
(j)
11 ∼ N (νj , τ2

j ), for j = 1, 2, (5.3.2)

and N (j)
1 is a Poisson processes with intensity λj for j = 1, 2. We define the

vector of parameters for the complete data,

θ = (µ, σ, λ1, ν1, τ1, λ2, ν2, τ2), (5.3.3)

the conditional mean and variance,

µY (k1, k2) = µ+ k1ν1 + k2ν2 (5.3.4)
σ2
Y (k1, k2)2 = σ2 + k1τ

2
1 + k2τ

2
2 (5.3.5)

and find that the density for Yn is

gn(y|θ) =
∞∑
k1=0

∞∑
k2=0

φ
(
y;µY (k1, k2), σ2

Y (k1, k2)
)
ψ(k1;λ1)ψ(k2, λ2). (5.3.6)

Here φ(y;µ, σ2) is the density for the normal distribution with mean µ and
variance σ2 given by

φ(y;µ, σ2) = 1√
2πσ2

e−
(y−µ)2

2σ2 (5.3.7)

and ψ(kj ;λ) the density for the Poisson distribution with parameter λ given
by

ψ(kj ;λ) = e−λ
λkj

kj !
. (5.3.8)

Thus, Y has density

g(y|θ) =
T∏
n=1

gn(y|θ), (5.3.9)
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and hence, the log-likelihood function is not tractable, as gn(y|θ) is an infinite
sum. Following Duncan et al. (2009) we extend the observed data, Y =
(Yn)n∈{1,...,T}, to the complete dataX = (Xn)n∈{1,...,T} where for n = 1, . . . , T ,

Xn =
(
Zn, N

(1)
n , N (2)

n , J
(1)
n1 , . . . , J

(1)
nN

(1)
n

, J
(2)
n1 , . . . , J

(2)
nN

(2)
n

)
. (5.3.10)

Here J (1)
n1 , . . . , JnN(1)

n
is not included if N (1)

n = 0 and similarly if N (2)
n = 0.

The likelihood function for the complete data with parameter θ evaluated at
X = (Xn)n∈{1,...,T} is

f(X|θ) =
T∏
n=1

φ(Zn;µ, σ2)
2∏
j=1

ψ(N (j)
n ;λj)

N
(j)
n∏

k=1
φ(J (j)

nk ; νj , τ2
j ), (5.3.11)

and hence the log-likelihood function for the complete data simplifies to,

log f(X|θ) = −T2 log(2π)− 1
2T log(σ2)− 1

2σ2

T∑
n=1

(Zn − µ)2

+
2∑
j=1

[
− Tλj + log λj

T∑
n=1

N (j)
n −

T∑
n=1

log(N (j)
n !)

− 1
2 log(2π)

T∑
n=1

N (j)
n −

1
2 log(τ2

j )
T∑
n=1

N (j)
n

− 1
2τ2
j

T∑
n=1

N
(j)
n∑

k=1
(J (j)
nk − νj)

2
]
.

(5.3.12)

Therefore, the θ̂ that maximizes

Eθ0 ( log f(X|θ)|Yn) (5.3.13)

is given by

µ̂ = 1
T

T∑
n=1

Eθ0

[
Zn

∣∣∣∣Yn], (5.3.14)

σ̂2 = 1
T

T∑
n=1

Eθ0

[
(Zn − µ̂)2

∣∣∣∣Yn], (5.3.15)

λ̂j = 1
T

T∑
n=1

Eθ0

[
N (j)
n

∣∣∣∣Yn], for j = 1, 2 (5.3.16)

ν̂j = 1
T

T∑
n=1

1
λ̂1
Eθ0

[N(j)
n∑

k=1
J

(j)
nk

∣∣∣∣Yn], for j = 1, 2 (5.3.17)

τ̂2
j = 1

T

T∑
n=1

1
λ̂j
Eθ0

[N(j)
n∑

k=1

(
J

(j)
nk − ν̂j

)2
∣∣∣∣Yn], for j = 1, 2. (5.3.18)
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To compute the conditional expectations, we assume that θ0 = (µ, σ, λ1, ν1, τ1, λ2, ν2, τ2).
Now it follows by the tower property, Lemma 5.A.1 and Lemma 5.A.2 that

Eθ0 (Zn|Yn) = Eθ0

(
Eθ0

(
Zn
∣∣∣(Yn, N (1)

n , N (2)
n

))∣∣∣Yn) (5.3.19)

= Eθ0

(
µ+ Yn − µ−N (1)

n ν1 +N
(2)
n ν2

1 +N
(1)
n β2

1 +N
(2)
n β2

2

∣∣∣∣∣Yn
)

(5.3.20)

= µ+ an(β1, β2)(Yn − µ)
− ν1c

(1)
n (β1, β2)− ν2c

(2)
n (β1, β2)

(5.3.21)

where

an(β1, β2) = E

(
1

1 +N
(1)
n β2

1 +N
(2)
n β2

∣∣∣∣∣Yn
)

(5.3.22)

c(1)
n (β1, β2) = E

(
N

(1)
n

1 +N
(1)
n β2

1 +N
(2)
n β2

∣∣∣∣∣Yn
)

(5.3.23)

c(2)
n (β1, β2) = E

(
N

(2)
n

1 +N
(1)
n β2

1 +N
(2)
n β2

∣∣∣∣∣Yn
)
, (5.3.24)

and β2
1 = τ2

1 /σ
2 and β2

2 = τ2
2 /σ

2. Similarly, it follows by the tower property,
Lemma 5.A.1 and Lemma 5.A.2 that

Eθ0

((
Zn − µ̂)2

∣∣∣Yn)
=Eθ0

(
Eθ0

(
(Zn − µ̂)2

∣∣∣(N (1)
n , N (2)

n , Yn
))∣∣∣Yn) (5.3.25)

=Eθ0
(
V arθ0

(
Zn
∣∣∣(N (1)

n , N (2)
n , Yn

))∣∣∣Yn)
+Eθ0

(
Eθ0

(
Zn − µ̂

∣∣∣(N (1)
n , N (2)

n , Yn
))2

∣∣∣∣Yn) (5.3.26)

=Eθ0

(
σ2
(

1− 1
1 +N

(1)
n β2

1 +N
(2)
n β2

2

)∣∣∣∣∣Yn
)

+Eθ0

µ− µ̂+ σ2Yn − µ−N
(1)
n ν1 −N (2)

n ν2

σ2 +N
(1)
n τ2

1 +N
(2)
n τ2

2

)2∣∣∣∣∣∣Yn
 (5.3.27)

=σ2 (1− an(β1, β2))− (µ− µ̂)2

+2(µ− µ̂)
(
(Yn − µ)an(β1, β2)− ν1c

(1)
n − ν2c

(2)
n

)
+en(β1, β2)

(5.3.28)

where

en(β1, β2) = E

 Yn − µ−N (1)
n ν1 −N (2)

n ν2

1 +N
(1)
n β2

1 +N
(2)
n β2

)2∣∣∣∣∣∣Yn
 . (5.3.29)
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Furthermore, using the tower property, Lemma 5.A.1 and Lemma 5.A.3 it
follows that

Eθ0

 N
(1)
n∑

k1=1
J

(1)
nk1

∣∣∣∣∣∣∣Yn


=Eθ0

Eθ0
 N

(1)
n∑

k1=1
J

(1)
nk1

∣∣∣∣∣∣∣
(
Yn, N

(1)
n , N (2)

n

)
∣∣∣∣∣∣∣Yn


(5.3.30)

=Eθ0

((
N (1)
n ν1 +N (1)

n τ2
1
Yn − µ−N (1)

n ν1 −N (2)
n ν2

σ2 +N
(1)
n τ2

1 +N
(2)
n τ2

2

)∣∣∣∣∣Yn
)

(5.3.31)

=Eθ0

(
N

(1)
n
(
σ2ν1 + τ2

1 (Yn − µ)
)

+N
(1)
n N

(2)
n
(
ν1τ

2
2 − ν2τ

2
1
)

σ2 +N
(1)
n τ2

1 +N
(2)
n τ2

2

∣∣∣∣∣Yn
)

(5.3.32)

=(ν1 + β2
1(Yn − µ))c(1)

n (β1, β2) + (ν1β
2
1 − ν2β

2
2)dn(β1, β2) (5.3.33)

where

dn(β1, β2) = E

(
N

(1)
n N

(2)
n

1 +N
(1)
n β2

1 +N
(2)
n β2

2

∣∣∣∣∣Yn
)

(5.3.34)

and similarly

Eθ0

 N
(2)
n∑

k1=1
J

(2)
nk1

∣∣∣∣∣∣∣Yn
 =

(
ν2 + β2

2(Yn − µ)
)
c(2)
n (β1, β2)

+
(
ν2β

2
2 − ν1β

2
1

)
dn(β1, β2).

(5.3.35)
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Finally, using the tower property, Lemma 5.A.1 and Lemma 5.A.2 we obtain
that

Eθ0

 N
(1)
n∑

k1=1

(
J

(1)
nk1
− ν̂1

)2

∣∣∣∣∣∣∣Yn


=Eθ0

Eθ0
 N

(1)
n∑

k1=1

(
J

(1)
nk1
− ν̂1

)2

∣∣∣∣∣∣∣
(
Yn, N

(1)
n , N (2)

n

)
∣∣∣∣∣∣∣Yn


(5.3.36)

=Eθ0
(
N (1)
n Eθ0

((
J

(1)
n1 − ν̂1

)2
∣∣∣∣ (Yn, N (1)

n , N (2)
n

))∣∣∣∣Yn) (5.3.37)

=Eθ0
(
N (1)
n V arθ0

(
J

(1)
n1

∣∣∣(Yn, N (1)
n , N (2)

n

))∣∣∣Yn)
+Eθ0

(
N (1)
n Eθ0

(
J

(1)
n1 − ν̂1

∣∣∣(Yn, N (1)
n , N (2)

n

))2
∣∣∣∣Yn) (5.3.38)

=Eθ0

(
N (1)
n τ2

1

(
1− β2

1

1 +N
(1)
n β2

1 +N
(2)
n β2

2

)∣∣∣∣∣Yn
)

+Eθ0

N (1)
n

(
ν1 − ν̂1 + τ2

1
Yn − µ−N (1)

n ν1 −N (2)
n ν2

σ2 +N
(1)
n τ2

1 +N
(2)
n τ2

2

)2∣∣∣∣∣∣Yn
 (5.3.39)

=Eθ0

(
N (1)
n τ2

1

(
1− β2

1

1 +N
(1)
n β2

1 +N
(2)
n β2

2

)∣∣∣∣∣Yn
)

+Eθ0

N (1)
n

(
−ν̂1 + ν1 +

(
ν1β

2
2 − β2

1ν2
)
N

(2)
n + β2

1 (Yn − µ)
1 +N

(1)
n β2

1 +N
(2)
n β2

2

)2∣∣∣∣∣∣Yn
 (5.3.40)

=
(
τ2

1 + ν2
2

)
Eθ0

(
N (1)
n

∣∣∣Yn)− β2
1c

(1)
n (β1, β2)

+f (1)
n (β1, β2)− 2ν̂1

(
ν1c

(1)
n (β1, β2) + (ν1β

2
2 − ν2β

2
1)dn(β1, β2)

+β2
1(Yn − µ)c(1)

n (β1, β2)
) (5.3.41)

where

f (1)
n (β1, β2)

=Eθ0

(
N

(1)
n (ν1 + (ν1β

2
2 − ν2β

2
1)N (2)

n + β2
1(Yn − µ))2

(1 +N
(1)
n β2

1 +N
(2)
n β2

2)2

∣∣∣∣∣Yn
)

(5.3.42)
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and similarly

Eθ0

 N
(2)
n∑

k2=1

(
J

(2)
nk2
− ν̂2

)2

∣∣∣∣∣∣∣Yn


=
(
τ2

2 + ν̂2
2

)
(Eθ0

(
N (2)
n

∣∣∣Yn)− β2
2c

(2)
n (β1, β2))

+f (2)
n (β1, β2)− 2ν̂2

(
ν2c

(2)
n (β1, β2) +

(
ν2β

2
1 − ν1β2

)
dn(β1, β2)

+β2
2(Yn − µ)c(2)

n (β1, β2)
)

(5.3.43)

with
f (2)
n (β1, β2)

=Eθ0

N
(2)
n

(
ν2 + (ν2β

2
1 − ν1β

2
2)N (1)

n + β2
2(Yn − µ)

)2

(1 +N
(1)
n β2

1 +N
(2)
n β2

2)2

∣∣∣∣∣∣∣Yn
 . (5.3.44)

5.3.1 Determination of Expectation

Having determined explicit expressions for the parameters that maximizes the
conditional expectation of the complete log-likelihood function, we need to de-
termine an(β1, β2), c(1)

n (β1, β2), dn(β1, β2), en(β1, β2), f (1)
n (β1, β2), f (2)

n (β1, β2),
Eθ0(N (1)

n |Yn) and Eθ0(N (2)
n |Yn). Note that we have c(2)

n (β1, β2) = (1−an(β1, β2)−
β2

1c
(1)
n )/β2

2 . These are all conditional expectations of the form,

Eθ0

(
h
(
N (1)
n , N (2)

n , Yn
)∣∣∣Yn) . (5.3.45)

To determine the expectation we use that under θ0, the density of N (1)
n and

N
(2)
n conditional on Yn, is for k1, k2 ∈ N0 and y ∈ R

kN
(1)
n ,N

(2)
n (k1, k2|y, θ0)

=φ
(
y;µY (k1, k2), σ2

Y (k1, k2)
)
ψ(λ1, k1)ψ(λ2, k2)

gn(y|θ)
(5.3.46)

=
φ
(
y;µY (k1, k2), σ2

Y (k1, k2)
) λk1

1 λ
k2
2

k1!k2!
M

, (5.3.47)

where

M =
∞∑
k1=0

∞∑
k2=0

φ(r;µY (k1, k2), σ2
Y (k1, k2))λ

k1
1 λ

k2
2

k1!k2! . (5.3.48)

Thus,

Eθ0(h(N1, N2)|Yn = y) =
∞∑
k1=1

∞∑
k2=1

h(k1, k2)kN
(1)
n ,N

(2)
n (k1, k2|y, θ0), (5.3.49)
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where only a few terms are necessary to include for numerical accuracy as
λ
kj
j /kj ! decreases exponentially as kj increases for λj small.2
In the following section we apply the algorithm to a jump diffusion model

for electricity prices.

5.4 Application to Electricity Price Model
We assume that the price Pt is of the form

Pt = eUt −M (5.4.1)

where M > 0, such that −M is a lower bound for the price, and Ut is an
Ornstein-Uhlenbeck process. Ut has dynamics

dUt = κ(α∗ − Ut) dt+ σ̃ dWt + dJt (5.4.2)

with κ, σ̃ > 0, α∗ ∈ R. Here Wt is a Brownian motion and Jt a compound
Poisson process of the form

Jt =
Nt∑
n=1

Vn, (5.4.3)

where Vn are i.i.d. and independent of Nt. We assume that Vn is a mixture
of two distributions, i.e.

Vn = BnV
(1)
n + (1−Bn)V (2)

n , (5.4.4)

where Bn, V (1)
n and V (2)

n are i.i.d. for n = 1, . . . , T and P(B1 = 1) = 1−P(B1 =
0) = p and

V
(j)

1 ∼ N (ν̃j , τ̃2
j ) for j = 1, 2. (5.4.5)

The solution to (5.4.2) is for t > s,

Ut = e−κ(t−s)Us + α∗(1− e−κ(t−s)) + σ̃

∫ t

s
e−κ(t−v) dWv

+
Nt∑

n=Ns+1
e−κ(t−Tn)Vn

(5.4.6)

where Tn is the time of the n’th jump. Now given T + 1 equidistant ob-
servations from the model, (Ptn)n∈{1,...,T+1}, with ∆t := t2 − t1, we define

2As the algorithm is used for processes with rare jumps, λj is expected to be small.
Furthermore, frequent jumps are very similar to the normal distributed part implying that
increased λj will not improve the log-likelihood significantly.
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Un = ln(Ptn + M) and determine κ by using ordinary least squares to mini-
mize

T∑
n=1

(
Un+1 − (aUn + b)

)2
(5.4.7)

as a function of a and b such that κ = − ln(â)/∆t, where â is the maximizer
of (5.4.7). We define for n = 1, . . . , T

Yn = Un+1 − e−κ∆tUn (5.4.8)

= α∗(1− e−κ∆t) + σ̃

∫ tn+1

tn
e−κ(t−v) dWv +

Ntn+1∑
n=Ntn+1

e−κ(t−Tn)Vn (5.4.9)

and apply the algorithm on (Yn)n∈{1,...,T} by assuming some initial value of
θ, computing the conditional expectation an(β1, β2), c(1)

n (β1, β2), etc. for each
observation, update θ, and iterate, continuing until the relative change the val-
ues of θ is sufficiently small.3 Having determined θ = (µ, σ, ν1, ν2, τ1, τ2, λ1, λ2)
we want to determine the model parameters. As we do not change the time
scale in the EM-algorithm, the estimated intensities of the two jump processes
has to satisfy,

λ1 = λp∆t (5.4.10)
λ2 = λ(1− p)∆t, (5.4.11)

such that p = λ1/(λ1 + λ2) and λ = (λ1 + λ2)/∆t. We determine the param-
eters for the price model by matching the expectations and variances, i.e.

µ = α∗(1− e−κ∆t) (5.4.12)

σ2 = σ̃2 1− e−2κ∆t

2κ (5.4.13)

λ1ν1 = λpν̃1
1− e−κ∆t

κ
(5.4.14)

λ2ν2 = λ(1− p)ν̃2
1− e−κ∆t

κ
(5.4.15)

λ1(ν2
1 + τ2

1 ) = λp(ν̃2
1 + τ̃2

1 )1− e−2κ∆t

2κ (5.4.16)

λ2(ν2
2 + τ2

2 ) = λ(1− p)(ν̃2
1 + τ̃2

1 )1− e−2κ∆t

2κ . (5.4.17)

3We are not guaranteed convergence to the MLE nor convergence of the parameters,
only convergence of the value of the log-likelihood function to a stationary point. Hence we
initialize the EM-algorithm from different starting values and include an occasional compu-
tations of the expectation of the complete log-likelihood in case the convergence of θ does
not occur.
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Here we have used that

E

 Nt∑
n=Ns+1

e−κ(t−Tn)Vn

 = λ

∫ 1

e−κ(t−v)

E (V1)
κ

dz (5.4.18)

V ar

 Nt∑
n=Ns+1

e−κ(t−Tn)Vn

 = λ

∫ 1

e−κ(t−s)

E
(
V 2

1
)
z

κ
dz, (5.4.19)

which follows by differentiating the corresponding moment generating function
with respect to u and evaluating at u = 0,

E

exp

u Nt∑
n=Ns+1

e−κ(t−Tn)Vn

 = exp
(
λ

∫ 1

e−κ(t−s)

θ(zu)− 1
κz

dz
)
.

(5.4.20)

Here θ(z) is the moment generating function for V1, see Ernstsen and Boomsma
(2016) for details.

5.4.1 Results

The algorithm is applied on hourly electricity price data from Nordpool Spot
for 7 years from the 22nd of January 2004 to 31st of December 2010 with
M = 1000 and ∆t = 1/8760 as the data is hourly.4 The resulting parame-
ters are found in Table 5.1 and Table 5.2 in 5.B along with parameters for
the corresponding diffusion model without jumps. Figure 5.1 shows that the
density from the jump diffusion model describes the data very well, whereas
the model that does not have jumps does not capture the skewness and the
heavy tails.

4The algorithm was implemented in C++, with 8 terms of each jump component included
in the computations. This resulted in a running time of under 30 minutes for 200 iterations
on the rather large dataset with 60862 observations.
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Figure 5.1: Histogram of y with densities from jump diffusion models with
two jump components, jump diffusion models with a single jump component
and diffusion model without jumps.

From Figure 5.2 and the parameters in Table 5.2 in Section 5.B we see that
the diffusion part of the jump diffusion model explains the values of yn close to
the mean, the first type of jump has positive expectation and small variation,
whereas the second jump has negative expectation and larger variation. This
construction matches the density quite well as can be seen in Figure 5.1.
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Figure 5.2: Histogram of y with conditional densities from the jump diffusion
model.

The simulated prices compared to the historical prices in Figure 5.3-
Figure 5.5 show that the jump diffusion model better captures distributional
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properties of the prices with constant small variation and rare extreme vari-
ation. Comparing the historical prices to the model without jumps we note
that the small variation is overestimated as a result of not matching the heavy
tails.
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Figure 5.3: Historial prices for 7 years.
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Figure 5.4: Prices from jump diffusion model and diffusion model for 7 years.

However, the variation of the long term mean is not captured, which could
be handled by extending the one-factor model to a two-factor model, see Lucia
and Schwartz (2002) and Schwartz and Smith (2000).
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Figure 5.5: Prices for 4 weeks.

5.5 Conclusion
In this paper an EM-algorithm with two jump components is developed to
calibrate jump diffusion processes to historical data. It is shown that in con-
trast to direct maximum likelihood estimation, which can often be difficult
on intractable log-likelihood functions, the EM-algorithm increases the log-
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likelihood function iteratively in an indirect approach. Furthermore, an ap-
plication on price data from the electricity market shows that the inclusion of
jumps better captures the distributional properties of the transformed incre-
ments. The algorithm is relatively simple to implement and can be applied to
a variety of different jump diffusion models.

Appendix 5.A Lemmas
Lemma 5.A.1. Let(

X1
X2

)
∼ N

((
µ1
µ2

)
,

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

))
(5.A.1)

with µ1, µ2 ∈ R, σ1, σ2 > 0 and ρ ∈ [−1, 1]. Then

(X1|X2 = x) d= µ1 + ρσ1σ2
x− µ2
σ2

2
+ σ1

√
1− ρ2V2. (5.A.2)

where V2 ∼ N (0, 1).

Proof. We have that(
X1
X2

)
d=
(
µ1 + ρσ1V1 +

√
1− ρ2σ1V2

µ2 + σ2V1

)
(5.A.3)

with V1, V2 independent and V1, V2 ∼ N (0, 1). Thus

(X1|X2 = x) d=
(
µ1 + ρσ1V1 +

√
1− ρ2σ1V2

∣∣∣∣V1 = x− µ2
σ2

)
(5.A.4)

d= µ1 + ρσ1
x− µ2
σ2

+
√

1− ρ2σ1V2. (5.A.5)

Lemma 5.A.2. Let Zn and Yn be as in Appendix 5.3, and define Nn =
(N (1)

n , N
(2)
n ) to simplify notation. Then(

Zn
Yn

∣∣∣∣∣Nn

)
∼ N

((
µ
µY (Nn)

)
,

(
σ2 σ2

σ2 σ2
Y (Nn)

))
(5.A.6)

with µY (Nn) = µ + N
(1)
n ν1 + N

(2)
n ν2 and σ2

R(Nn) = σ2 + N
(1)
n τ2

1 + N
(2)
n τ2

2 .
Furthermore,

Cor(Zn, Yn|Nn) = 1√
1 +N

(1)
n β2

1 +N
(2)
n β2

2

, (5.A.7)

where β2
1 = τ2

1 /σ
2 and β2

2 = τ2
2 /σ

2.
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Proof. We have that Yn = Zn +
∑N

(1)
n

k=1 J
(1)
nk +

∑N
(2)
n

k2=1 J
(2)
nk2

and Zn, J (1)
nk1

and
J

(2)
nk2

are independent such that

E [Yn|Nn] = µY (Nn), V ar [Yn|Nn] = σ2
R(Nn). (5.A.8)

Furthermore,

Cov(Zn, Yn|Nn) = E [ (Zn − E(Zn|Nn)) (Yn − E(Yn|Nn))|Nn] (5.A.9)
= σ2, (5.A.10)

and hence

Cor(Zn, Yn|Nn) = 1√
1 +N

(1)
n β2

1 +N
(2)
n β2

2

(5.A.11)

with β2
1 = τ2

1 /σ
2 and β2

2 = τ2
2 /σ

2.

Lemma 5.A.3. Let Yn, N (j)
n and J jnkj for n = 1, . . . , T and kj = 1, . . . , N (j)

n

be as in Appendix 5.3, and define Nn = (N (1)
n , N

(2)
n ) to simplify notation.

Then ∑N
(j)
n

kj=1 J
(j)
nkj

Yn

∣∣∣∣∣∣Nn

 ∼ N (( N
(j)
n νj

µY (Nn)

)
,

(
N

(j)
n τ2

j N
(j)
n τ2

j

N
(j)
n τ2

j σ2
Y (Nn)

))
.

(5.A.12)

Furthermore,

Cor

N
(j)
n∑
kj

J
(j)
nkj
, Yn

∣∣∣∣∣∣∣Nn

 =

√
N

(j)
n βj√

1 +N
(1)
n β2

1 +N
(2)
n β2

2

(5.A.13)

Proof. Follows by Lemma 5.A.1 and by conditioning on Nn.
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Appendix 5.B Parameters

µ σ2 λ1 λ2

0.5276 0.4221 · 10−4 0.6413 0.1009

ν1 τ2
2 ν2 τ2

2

0.1791 · 10−2 0.5226 · 10−3 −0.9323 · 10−2 0.7514 · 10−2

Table 5.1: Parameters from the EM-algorithm.

α∗ κP σ̃2 λ p

λ = 0 7.1659 670.1594 3.5137 - -
λ > 0 7.1630 670.1594 0.6315 6502.355 0.86

ν̃1 τ̃2
2 ν̃2 τ̃2

2

0.001861 0.0237 -0.009685 0.0900

Table 5.2: Parameters for the jump diffusion model and the diffusion model
on a yearly scale.
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