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Summary

In this thesis, we analyse a variational reformulation of the Bogoliubov approximation that is used to
describe weakly-interacting translationally-invariant Bose gases. For the resulting model, the ‘Bogoli-
ubov free energy functional’, we demonstrate existence of minimizers as well as the presence of a phase
transition to Bose–Einstein condensation, and establish the phase diagram. We also give a calculation of
the critical temperature assuming the gas is dilute, and find that it agrees with earlier numerical studies.

The thesis contains an introduction, a physical review paper outlining the main results and ideas,
and two mathematical papers with detailed proofs.

Resumé

I denne afhandling analyserer vi en variationel reformulering af Bogoliubov approksimationen, som
beskriver svagt vekselvirkende translationsinvariante Bose gasser. I den resulterende model ‘Bogoliubovs
frie energi funktional’, viser vi eksistens af minima og tilstedeværelse af en faseovergang til Bose–Einstein
kondensation, og finder fasediagrammet. Vi beregner den kritiske temperatur hvis gassen har lav tæthed,
og finder at den passer med eksisterende numeriske resultater.

Afhandlingen best̊ar af en introduktion, en fysisk oversigtsartikel som forklarer de vigtigste resultater
og ideer, og to matematiske artikler med beviser.
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Introduction

1 Context and basic question

Below 2.17K, helium-4 is truly magic: it can defy gravity and climb up walls, escape the confinement of
a container, and provide an endlessly flowing fountain. Kapitsa, Allen and Misener discovered these re-
markable properties in 1937, and this phenomenon is now known as superfluidity. Much earlier, in 1911,
Kamerlingh Onnes had noticed that very cold mercury has no resistance, which was the first example of
something called superconductivity.

A theoretical concept that would prove a vital ingredient in explanations of both superconductivity
and superfluidity had been discovered in 1924/25 by Bose and Einstein. Their theory describes a class of
particles called bosons. Many atoms, such as helium-4, are examples of bosons. Their defining features are
that they are manifestly indistinguishable and that they have an inclination to cluster. Mathematically,
this property is expressed by the invariance of the quantum mechanical state under permutation of
the particles. Exchanging the particles in a two-particle state Ψ, for example, should leave that state
invariant since the two particles are indistinguishable, and therefore the same, that is,

Ψ(1, 2) = Ψ(2, 1). (1)

How does this symmetry lead to a tendency to cluster? Imagine that we have two distinguishable
particles in a 2-level system with basis states |0〉 and |1〉. A basis for the state space of two such particles
consists of |00〉 and |11〉, together with |01〉 and |10〉. Note that there are two configurations where the
particles are in the same state, and two were they are in different states. When we impose the symme-
try (1), the first two states are still allowed, but the latter two are not since |01〉 6= |10〉. To describe
bosons, we have to replace these two by the single symmetric state (|01〉+ |10〉)/

√
2. Now, there are two

configurations where the particles are in the same state (|00〉 and |11〉), and only one where they are in
different states ((|01〉 + |10〉)/

√
2). Hence, at least at the level of the number of configurations, bosons

are more likely to be in the same state than distinguishable particles.

This observation provided the starting point for a more complete analysis, which led to the discovery
of Bose–Einstein condensation (BEC)—an extreme consequence of the bosonic tendency to cluster.

The first step in this analysis was made in 1924, when Bose worked out the implications of the
symmetry (1) for large numbers of non-interacting bosons. In other words, he developed statistics for
bosons. The set-up is as follows: consider N non-interacting bosons, which means that the Hamiltonian
describing the system is a sum of (identical) 1-particle Hamiltonians. To obtain a configuration of the
N -body system, we simply need to know the 1-body energy levels and distribute the particles among
them. The N -body ground state is obtained by putting all the particles in the lowest-energy state, but
with increasing temperature we expect that particles will also typically occupy states with higher energy
(see Figure 1).

Bose described what the typical configuration is, and how it depends on the temperature T . To
describe his conclusions, we should briefly mention two different descriptions of statistical-mechanical
systems. On the one hand, we can describe them in the canonical ensemble, which means that we have
a fixed particle number N and temperature T . On the other hand, we can also only fix T and allow the
number of particles to vary. The average particle number is then controlled by a parameter known as
the chemical potential µ. This description with fixed µ and T is known as the grand canonical ensemble.
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1. Context and basic question

Figure 1: The ground (or zero temperature) state of a system of non-interacting bosons (left), and a
possible configuration at higher temperatures (right). The 1-particle quantum states are schematically
depicted by lines, ordered by energy from low to high. At zero temperature, all bosons are in the
ground state of the 1-body Hamiltonian, whereas they spread out over higher and higher levels as the
temperature increases.

Without commenting on the derivation, for a system with 1-particle eigenstates with energies ε0 ≤
ε1 ≤ . . . , the expected occupancy of the jth level is (setting ~ = 2m = kB = 1)

〈Nj〉 =
1

e(εj−µ)/T − 1
,

where µ ≤ ε0 is the chemical potential that indirectly fixes the average particle number

〈N〉 =
∑

j

〈Nj〉 =
∑

j

1

e(εj−µ)/T − 1
.

When Einstein read about this in a letter from Bose, he came up with some interesting consequences.
For free particles in a three-dimensional box with volume l3, the eigenfunctions are standing waves. In
the thermodynamic limit l→∞, the energy levels are proportional to p2 for p ∈ R3, the sum over energy
levels can be approximated by an integral over p and the numbers 〈Nj〉 turn into a function 〈N(p)〉. The
statistics for bosons then say that for µ ≤ 0, the expected density of particles with momentum p in the
box is

γ(p) =
〈N(p)〉
l3

=
1

e(p2−µ)/T − 1
. (2)

Since this increases with µ ≤ 0, this implies that the expected particle density, denoted by ρ, satisfies

ρ =
1

l3

∫
〈N(p)〉dp ≤

∫
1

ep2/T − 1
dp = c0T

3/2 =: ρfc (3)

for some constant c0. We conclude that densities larger than ρfc cannot be reached by defining a µ and
following Bose statistics. But there is nothing stopping us from taking a box and adding particles until
this density is exceeded! What happens when we do this is interpreted as Bose–Einstein condensation
(BEC): all particles in excess of ρfc are assumed to be in the p = 0 (lowest energy) state so that they do
not participate in the statistics; the lowest energy state is macroscopically occupied.12

1Note that this conclusion changes in one and two dimensions, where all ρ ≥ 0 can be reached by choosing µ close
enough to 0, and we do not have BEC at positive temperature.

2 As in our simple example, this should be contrasted with the distribution for distinguishable particles. This is the
Maxwell–Boltzmann distribution

γ(p) =
〈N(p)〉
l3

=
1

e(p
2−µ)/T . (4)

This also has the property that particles concentrate in the lower lying levels, but nonetheless
∫
γ →∞ as µ→ 0, so that

we can reach all ρ ≥ 0 by following these statistics and specifying a µ ≤ 0.
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1. Context and basic question

This analysis and the quantities γ, µ, ρ, ρfc will play a big role in this thesis. The ‘fc’ in ρfc stands for
‘free critical’: it refers to the critical point of the non-interacting (free) Bose gas. For a fixed density ρ,
the relation (3) can be inverted to a free critical temperature

Tfc = (ρ/c0)2/3, (5)

below which we have BEC.

As mentioned before, BEC plays a role in both superfluidity and superconductivity, but the phe-
nomenon has also been observed more directly. Gases of atoms can be trapped by magnetic fields and
cooled to extremely low temperatures using lasers. In this setting, gases of rubidium and sodium atoms
were observed to form a BEC in 1995 [10, 30], see Figure 2 for more information.

We should mention that the situation in this figure is more complicated than the case described by
Bose and Einstein because of the presence of an external trap. An approximate description is given by
the Gross–Pitaevskii equation [24, 46], which is accurate in a particular limit [36]. We will not consider
external trapping potentials, but rather the translation-invariant or homogeneous case in which such a
trap is absent.

Figure 2: The momentum distribution of the particles in a gas of rubidium atoms as a function of px
and pz. The plot on the left shows the distribution at approximately 200 nK. Although the density is
highest for p = 0, there is no condensation. After lowering the temperature to approximately 100 nK
(middle plot), a phase transition has taken place and a Bose–Einstein condensate has formed. Going to
temperatures as low as 20 nK (right plot) causes the distribution to move closer to p = 0. Note that
this is a system with an external trapping potential, which makes it different from the homogeneous
(translation-invariant) set-up discussed in this thesis. This image came out of the experiments reported
in [10]. Image credit: NIST/JILA/CU-Boulder.

As mentioned several times now, superfluidity and superconductivity are manifestations of Bose–
Einstein condensation. It took particular effort to realize this for superconductivity as current in metals
is transported by electrons, which are not bosons. In fact, they are particles that have the tendency
to avoid each other, called fermions. As a consequence, condensation of electrons cannot occur, and it
seems that BEC and superconductivity are unrelated. However, it it turns out that fermions can pair
up in momentum space to form bosons, and these can form a condensate. This was first described by
Bardeen, Cooper and Schrieffer in 1957 [6], but we will not discuss these ideas in this thesis.

Of more relevance to us here is the link between superfluidity and BEC. Since helium-4 particles are
bosons, this connection is more evident and was already suggested by London [40] in 1937, but, ironically,
it is less well understood today. We will say a little more about this later, but what is important now
is that the main source of difficulty is the presence of strong interactions between the helium nuclei (see
Figure 3), and that the description of BEC we just considered only applies to non-interacting particles.

9



1. Context and basic question

Figure 3: The potential between two helium nuclei V as a function of the distance r. For short distances,
it can be approximated by a hard-core potential (6), and it differs dramatically from the non-interacting
case.

Feynman [16, 17] studied BEC in the presence of the interaction potential of Figure 3, and asked
how the Bose–Einstein argument and the free critical temperature (5) are altered by it. His analysis is
mostly qualitative and is based on a path integral description of the problem. Arguing that the potential
resulted in an increased effective mass, Feynman predicted that the critical temperature would decrease
compared to the free case, which had indeed been observed for liquid helium. He did not make any
quantitative predictions.

To make such quantitative predictions, various simplifications were considered. The first one is to
replace the interaction potential in the figure above with a hard-core potential with radius a > 0

V (x) =

{
∞ |x| ≤ a
0 |x| > a

. (6)

To simplify things further, it is common to study the so-called dilute limit. For a hard-core potential,
the natural length scale is given by the radius a. We could compare this length scale to the one defined by
the density: ρ−1/3, the average distance between the particles. Diluteness now means that the particles
meet only rarely, that is, the average distance between the particles is much bigger than the length scale
of the potential, or

ρ1/3a� 1. (7)

This assumption is not valid for liquid helium, but it is for experiments with trapped atoms like the
one in Figure 2. In any case, one can repeat Feynman’s question: how is the free critical temperature
(5) altered by the hard-core interaction?

Lee and Yang were the first to study this [33]. They used pseudopotential methods developed in
[28, 32] to conclude that the shift in critical temperature should be proportional to ρ1/3a. In the
appendix of [33], they solve a simplified system, which gives

Tc = Tfc(1 + 1.79(ρ1/3a) + o(ρ1/3a)). (8)

It is this kind of expression that we will be looking for in this thesis, but for a general class of potentials.
To properly define the dilute limit (7) without reference to a hard-core potential, we consider a charac-
teristic length scale of the potential that is known as the scattering length a. It coincides with the core
radius for the hard-core potential. The mathematical definition is explained in [37].

Summarizing, the basic question that we try to answer in this thesis is:

Question 1.1. Can we prove a more accurate expression like (8) for general interactions in the
dilute limit (7) from an approximate model for a weakly-interacting homogeneous Bose gas?

We will eventually discuss its affirmative answer. It is good to remember that this question came from
studying BEC in superfluid helium, but that that particular problem remains intractable to this day. In
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2. The weakly-interacting Bose gas and Tc

its stead, the dilute setting has become a well-known and challenging object of study of its own. Indeed,
the critical temperature (8) is higher than Tfc, whereas the critical temperature of liquid helium is lower,
which shows that the systems are quite different. Nonetheless, we have little hope of understanding the
strongly-interacting case if we cannot even treat this weakly-interacting set-up, justifying the attention
this problem has received (see [1] for an overview).

We have now reached the end of the non-technical part of the introduction. More details about the
set-up and background of the problem will be given in the next section. The last section contains a more
precise formulation of our goals, the approach and a summary of the results.

2 The weakly-interacting Bose gas and Tc

2.1 Free energy and BEC

We start from the Hamiltonian for a gas of N bosons that interact via a (periodized) repulsive pair

potential V l in a three-dimensional box [−l/2, l/2]
3

with periodic boundary conditions:

HN =
∑

1≤i≤N
−∆l

i +
∑

1≤i<j≤N
V lij .

Assuming the interaction only depends on the distance between the particles, this is translation-invariant,
and we therefore write its second-quantized form in momentum space

H =
∑

p

p2a†pap +
1

2l3

∑

p,q,k

V̂ l(k)a†p+ka
†
q−kaqap. (9)

Here, only particular p are included in the sum, as determined by the size of the box l.

So far we have not given a general definition of BEC. To do this, we need to say a little more about
statistical mechanics, and address this in a rather mathematical setting. Since we are describing bosons,
we are interested in the Hamiltonian (9) acting on the symmetric tensor product

⊗N
SYM(L2[−l/2, l/2]3).

A general state 〈.〉ω is given by a density matrix ω on this Hilbert space. Its von Neumann entropy is

〈S〉ω = Tr[−ω lnω].

The canonical equilibrium, or Gibbs, state at temperature T and particle density ρ = N/l3 can be found
be determining

inf
ω on

⊗N
SYM(L2[−l/2,l/2]3)

〈HN 〉ω − T 〈S〉ω. (10)

This is the free energy of the system at temperature T and particle density ρ. We now say that a system
displays BEC if the minimizer ωρ,T of (10) has an eigenvalue of order 1 [45]. Therefore, asking Question
1.1 for the full Hamiltonian (9) really means finding minimizers to (10), and studying the eigenvalues of
their 1-particle reduced density matrices. This is infeasible, so approximations will be needed.

As usual in statistical mechanics, it is easier to work in the grand canonical ensemble, in which the
particle number is allowed to vary. The grand canonical Gibbs state at temperature T and chemical
potential µ is the minimizer of

inf
ω on FB(L2[−l/2,l/2]3)

〈H〉ω − T 〈S〉ω − µ〈N〉ω, (11)

where N is the particle number operator FB(L2[−l/2, l/2]3) is a bosonic Fock space (see [55] for a
definition). The two quantities (10) and (11) are related by a Legendre transform as l → ∞ (more on
this equivalence of ensembles can be found in [47]).

In conclusion, the following question will be equally important to this thesis as Question (1.1):

Question 2.1. Can we find approximations to (10) and (11) in the dilute limit ρ1/3a� 1?

To answer this question, one needs to find approximations to the spectrum of H, and we explain how
this is usually done in the next subsection.

11



2. The weakly-interacting Bose gas and Tc

2.2 Bogoliubov’s approach

We now discuss a crude version of the Bogoliubov approximation describing weakly-interacting Bose
gases [9].

The first part of the Hamiltonian (9) is the kinetic energy and setting V l = 0 gives the free case
discussed before. The free Hamiltonian has the general form

∑

p

ε(p)b†pbp, (12)

with ε(p) a dispersion relation and b†p, bp creation and annihilation operators.
Bogoliubov’s strategy was to bring the Hamiltonian (9) into this form. As a first step, we could bring

the number of a’s in (9) down to two. We use a so-called c-number substitution

a†0, a0 −→
√
N0 =


N −

∑

p 6=0

a†pap




1/2

,

and, for simplicity, we also approximate the potential V l by a delta function (i.e. V̂ l(k) ≈ V̂ l(0) in (9)).
The intuition behind the c-number substitution is BEC: a macroscopic (O(N)) occupation of the lowest
energy state (p = 0). Of course, with this substitution there are still terms left with three or four a†p and
ap’s with p 6= 0, but these we throw out on the expectation that only p = 0 makes an O(N) contribution,

so that terms with one or zero a†0 and a0’s are of much lower order. We are left with the Hamiltonian

∑

p

p2a†pap + V̂ l(0)
N0

2l3

[
N0 +

∑

p 6=0

2a†pap + a†pa
†
−p + apa−p

]
,

which can be made quadratic in the a’s by using N0 = N −∑p 6=0 a
†
pap and throwing out any quartic

terms. Now that we are left with something quadratic in creation and annihilation operators, we can
bring it in the form (12) using a Bogoliubov transformation. Without going into the details, this involves
defining new creation and annihilation operators as bp = c1ap+ c2a

†
p, where the constants c1 and c2 have

to satisfy certain relations, see [55].
The resulting ε(p) in (12) is of the form

ε(p) ∼
√
p2(p2 + 2V̂ (0)ρ). (13)

This is known as the Bogoliubov dispersion relation. Landau [31] used this expression to provide a
microscopic explanation for superfluidity. The linearity of the above expression for small p is crucial,
and it should be contrasted with a quadratic dependence on p in absence of an interaction potential. We
will not discuss this further.

A number of the steps in Bogoliubov’s approach have been understood a lot better since 1947. The
c-number substitution was justified in [38]. Careful analyses of the ground state energy and excitation
spectrum include [12, 23, 35, 43, 49], and [50] contains a review. This thesis gives a different and, in
our opinion, rather clear variational reformulation of Bogoliubov’s approach, which emphasizes certain
states rather than a truncation of the Hamiltonian. Our approach is also more complete in that fewer
interaction effects are ignored. We will discuss it more in the next subsection, in the context of earlier
work on Questions 1.1 and 2.1.

2.3 Previous results

To the best of our knowledge, the only rigorous result on the critical temperature for the full problem
(11) is the upper bound established by Seiringer and Ueltschi using the Feynman–Kac formula [51]. It
is not surprising that such results are thin on the ground: it remains impossible to prove BEC in the
dilute limit at positive temperature, let alone determine at what temperature it occurs exactly. Results
on the free energy of the full Hamiltonian can be found in [48, 58], and the ground state energy is dis-
cussed in [13, 15, 57, 39]. For the full model the phase transition to BEC is expected to be of second order.

12



2. The weakly-interacting Bose gas and Tc

As for approximate models, we already mentioned Lee and Yang’s expression (8) [33] for the hard-core
Bose gas. This expression can only be found in the appendix of their paper, perhaps because Lee and
Yang considered their calculation to be physically inaccurate since it predicts a first—rather than the
expected second—order phase transition. The fact that (8) was hidden in the appendix has presumably
led to the widespread misconception that Lee and Yang only predicted a shift linear in ρ1/3a, without
saying anything about the sign or size of the constant [1, 7, 51, 52]. Even if Lee and Yang themselves
did not really trust their result, it fits reasonably well with numerics: Monte Carlo methods [2, 29, 44]
suggest that the form (8) is correct, but that the numerical value 1.79 should be closer to 1.3. It should
be mentioned that this consensus emerged fairly recently; many different dependences on ρ1/3a have
been suggested over the years [1], and even now conflicting results sometimes emerge [56].

So how do Lee and Yang approach this problem? They replace the boundary conditions resulting from
the hard-core potential by a pseudopotential that should give the right wave function in the physically
relevant region where all the particles are at least distance 2a from one another [28, 32]. They then
assume that only s-wave scattering is important (i.e. the momentum of the particles is low), and show
that replacing the potential by

8πaδ(r)∂rr,

should yield the correct wave function. For smooth functions, this is simply a multiplication by a delta
function, but the derivative does play a role for physical wave functions. All this leads to an excitation
spectrum of Bogoliubov form, which can now be used to calculate the shift in the critical temperature
(8).

Before we explain how this is done, let us point out that this claim in itself has led to some confusion.
In a number of articles in which the weakly-interacting Bose is treated with field-theoretic methods—e.g.
Bijlsma and Stoof [8] and Baym et al. [7], who find (8) with constants of 4.7 and 2.9, respectively—it is
claimed that mean-field theories such as Bogoliubov’s will simply give Tc = Tfc, or, in other words, no
shift. One argument [1] goes as follows: a particle with momentum p effectively has the energy

ε(p) ∼
√
p2(p2 + 2V̂ (0)ρ) = p2

√
1 + 2V̂ (0)ρ/p2 ≈ p2 + V̂ (0)ρ,

in which the reader can recognize an approximation to Bogoliubov’s dispersion relation. Inserting this
constant shift of the energy levels into (2), we realize that now µ ≤ V̂ (0)ρ. At this ‘critical’ µ, the
relation between T and ρ is still (3), and so the critical temperature does not change. However, one
should be more careful in the use of (3) and the exact form of the dispersion relation.

In the Bogoliubov argument of the previous section, the occupation of the lowest energy state N0

plays a crucial role. Dividing by the volume, we obtain a condensate density ρ0 = N0/l
3 that can now be

regarded as a parameter. The dispersion relation Lee and Yang derive for the hard-core potential with
radius a is

ε(p) ∼
√
p2(p2 + 16πaρ0), (14)

so, unlike (13), this gives a ρ0-dependence. Furthermore, we should not define µ using (3), which just
happened to be the minimizer of the free energy (11). Instead, for fixed ρ and ρ0, we should treat the
remaining particles with density ρ− ρ0 grand canonically, resulting in a grand canonical partition func-
tion that depends on T , ρ, ρ0 and a chemical potential µ. Recalling that there are only two independent
parameters, one should now eliminate ρ by calculating the value it takes at the minimum of the free
energy for fixed T , ρ0 and µ, and then minimize over all ρ0. The critical µc for fixed temperature is the
one where the minimizing ρ0 changes from ρ0 = 0 (no BEC) to ρ0 > 0 (BEC). Note that this definition

is far more complicated than the naive conclusion µc = V̂ (0)ρ above, but it is more correct. That was
apparently clear to Lee and Yang, but it seems to have gone out of fashion, resulting in the false belief
that the Bogoliubov spectrum cannot give a change in the critical temperature.

The treatment of the condensate ρ0 as a separate parameter that defines the critical point is key
to our analysis. Another important ingredient is a variational approach introduced by Critchley and
Solomon [11]. They derive an upper bound to the free energy (11) by only considering a special class of
density matrices in the minimization problem (11), namely quasi-free states (see e.g. [55]).3

3To put things into context; this approach has a fermionic counterpart, in which the trial states are quasi-free states
on a fermionic Fock space (see [4] for details). This leads to the BCS functional [19, 25, 26] that serves as a model of
superconductivity.
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3. The Bogoliubov free energy functional

The upper bound resulting from quasi-free states is well-motivated. The first supporting argument
is that Bogoliubov’s approach reduces the Hamiltonian to an operator that is quadratic in the creation
and annihilation operators, and that ground and Gibbs states of such operators are quasi-free states. A
second is that quasi-free states have successfully served as trial states to establish correct bounds on the
ground state energy of Bose gases [15, 22, 54], which is of course the T = 0 free energy.

Expressing 〈H〉ω−T 〈S〉ω−µ〈N〉ω for a general quasi-free state does lead to a complicated non-linear
functional. Simplifying it somewhat by throwing out certain terms, Critchley and Solomon conclude that
the model will reproduce Bogoliubov’s conclusions.

In this thesis, we consider their functional without the simplifications, and use it as the approximate
model in Questions 1.1 and 2.1. This is a variational reformulation of Bogoliubov’s approach that is
conceptually clear and more accurate. As indicated before, we use the condensate density ρ0 to calculate
a better approximation to the critical temperature in this variational setting.

3 The Bogoliubov free energy functional

3.1 Set-up and main questions

As explained, we are interested in considering the minimization problem (11) for quasi-free states. This
leads to the functional that we study in this thesis. Properties of quasi-free states are listed in [55], but
an important one is that they satisfy Wick’s rule:

〈a†p+ka
†
q−kaqap〉ω = 〈a†p+ka

†
q−k〉ω〈aqap〉ω + 〈a†p+kaq〉ω〈a

†
q−kap〉ω

+ 〈a†p+kap〉ω〈a
†
q−kaq〉ω.

(15)

Applying the rule to the Hamiltonian (9) splits the expectation value of the difficult potential term

into manageable bits: assuming translation invariance and 〈apa−p〉ω = 〈a†−pa†p〉ω, the two (real-valued)

functions γ(p) := 〈a†pap〉ω and α(p) := 〈apa−p〉ω fully determine the energy expectation values.
In accordance with the rigorous justification of the c-number substitution [38], we put in a condensate

by substituting ap → ap + δp,0
√
l3
√
ρ0 before we actually use Wick’s rule. Mathematically, this is

implemented by a Bogoliubov transformation (see [55]). To summarize, we now have three objects that
define a state in our model.

• γ describes the density of particles as a function of momentum p.

• ρ0 > 0 indicates the presence of a Bose–Einstein condensate, whereas ρ0 = 0 indicates that there
is none.

• α 6≡ 0 shows off-diagonal long range order (ODLRO) and the presence of pairing in the system.

The triple (γ, α, ρ0) has to lie in

D = {(γ, α, ρ0)|γ ∈ L1((1 + p2)dp), γ(p) ≥ 0, α(p)2 ≤ γ(p)(1 + γ(p)), ρ0 ≥ 0}. (16)

After the c-number substitution and the use of Wick’s rule, we take the thermodynamic limit l→∞
to find the (grand canonical) Bogoliubov free energy functional4

Fµ,T (γ, α, ρ0) =

∫
p2γ(p)dp+

1

2
V̂ (0)ρ2 − µρ− TS(γ, α)

+ ρ0

∫
V̂ (p)(γ(p) + α(p))dp

+
1

2

∫
γ(p)(V̂ ∗ γ)(p) + α(p)(V̂ ∗ α)(p)dp,

(17)

with chemical potential µ ∈ R, density ρ = ρ0 + ργ , ργ =
∫
γ, and an entropy defined in terms of

β(p) =
√

(γ(p) + 1
2 )2 − α(p)2:

S(γ, α) =

∫ (
β(p) +

1

2

)
ln

(
β(p) +

1

2

)
−
(
β(p)− 1

2

)
ln

(
β(p)− 1

2

)
dp.

4This is up to factors of 2π that we decide to ignore here for brevity.
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3. The Bogoliubov free energy functional

We will be thinking of the potential in this model as repulsive, V ≥ 0, with positive Fourier transform,
V̂ ≥ 0. Precise assumptions and a derivation of the functional can be found in Paper I.

The approximate free energy now is

F (T, µ) = inf
(γ,α,ρ0)∈D

F(γ, α, ρ0). (18)

The main questions addressed in this thesis are

Questions 3.1. 1. Given µ ∈ R and T ≥ 0, does the functional (17) have a minimizer in the
domain (16)?

2. What does the T/µ phase diagram of the minimizers look like?

3. Which µ’s and T ’s correspond to the dilute limit ρ1/3a� 1 and if a phase transition is present,
can we expand µc in ρ1/3a?

4. Can we expand the approximate free energy (18) in ρ1/3a in the dilute limit?

The first question is mostly of mathematical interest, but an affirmative answer is required to seriously
consider the other problems. Together with the second question, it is discussed in Paper I. The remaining
two questions are related to Questions 1.1 and 2.1. These are discussed in Paper II.

The reader may wonder about the following: a state with α = 〈apa−p〉ω 6= 0 does not have a fixed
particle number. The problem therefore only has a natural formulation in terms of µ and T . Nonetheless,
the definition of the dilute limit as ρ1/3a� 1 suggests that we look at fixed ρ. We therefore consider a
second variational problem involving Fcan = F + µρ, or

Fcan(γ, α, ρ0) =

∫
p2γ(p)dp+

1

2
V̂ (0)ρ2 − TS(γ, α)

+ ρ0

∫
V̂ (p)(γ(p) + α(p))dp

+
1

2

∫
γ(p)(V̂ ∗ γ)(p) + α(p)(V̂ ∗ α)(p)dp,

(19)

with ρ0 = ρ− ργ . The minimization problem only considers fixed ρ.

F can(T, ρ) = inf{Fcan(γ, α, ρ0 = ρ− ργ) | (γ, α, ρ0 = ρ− ργ) ∈ D}
= min{f(ρ, ρ0) | 0 ≤ ρ0 ≤ ρ},

where
f(ρ, ρ0) = inf{Fcan(γ, α, ρ0) | (γ, α, ρ0) ∈ D, ργ = ρ− ρ0}.

Note that ρ is not the particle number in the states considered, but merely the average particle number.
We will study both this minimization problem and (18), and switch between the two whenever convenient.

3.2 Tools and ideas

We now mention some key ideas that enter our analysis. A more complete summary of the ideas used in
Paper II can be found in the Review.

Paper I:

• Since we are considering the dilute limit, or weak interactions, the physics is expected to be close
to the non-interacting case. The functional describing the free gas is

∫
p2γ − TS(γ, 0)− µ

∫
γ. (20)

Note that the minimizer of this functional for µ ≤ 0 is indeed (4).
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3. The Bogoliubov free energy functional

• It can sometimes happen that no minimizer exists within a reasonable class of functions. We have
already seen an example since ∫

p2γ − TS(γ, 0)

does not have a minimizer when we consider γ ∈ L1(1 + p2) with fixed ρ > ρfc. The reason is that
any minimizing sequence will tend to a delta function at 0, which is no longer in the admissible set
of γ’s. If we include a ρ0 however, we end up with the same functional, but the remaining mass
ρ−ρfc can be put into the ρ0. This means that a minimizer does exist within the set D. Our model
shows similar behaviour, and this will crucially enter in the proof of the existence of minimizers.

Energetically, this comes down to

F(γ + ρ0δ, α+ ρ0δ, 0) = F(γ, α, ρ0) +
1

2
V̂ (0)ρ20,

so that adding mass to ρ0 is even preferred over the formation of a delta function.

• Besides the above fact, the proof of existence of a minimizing triple (γ, α, ρ0) of (18) for T > 0
and any µ uses standard techniques in the calculus of variations to extract a minimizer from a
minimizing sequence. This has to be done in several steps and with various cut-offs to ensure that
we can apply the standard theorems.

• The bounds used to prove the T > 0 existence deteriorate as T → 0, and a separate argument in
needed to show existence of a minimizing triple for T = 0. We are able to extract a minimizer from
the T > 0 minimizers using the Arzelà–Ascoli theorem.

• The phase diagram follows from fairly simple arguments involving upper (in the form of trial states)
and lower bounds on the free energy.

Paper II:

• As indicated before, the dilute limit ρ1/3a� 1 suggests that we look at (19) with fixed ρ. However
(even with a Lagrange multiplier), the presence of the convolution terms prevents us from using the
Euler–Lagrange equations to find an explicit minimizer. The main idea therefore is to approximate

inf
(γ, α, ρ0)
ρ0 + ργ = ρ

Fcan ≈ inf
(γ, α, ρ0)
ρ0 + ργ = ρ

F sim = inf
0≤ρ0≤ρ

[
inf

(γ, α)
ργ = ρ− ρ0

F sim
]

where F sim is a simplified functional that can be minimized explicitly. The Review outlines the
other steps in this analysis.
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3. The Bogoliubov free energy functional

3.3 Results and conclusions

Short answers to Questions 3.1, and also Questions 1.1 and 2.1 are listed below.

Answers 3.2. 1. Yes, minimizers exist. This, together with a similar theorem for the canonical
case, is proven in Paper I.

2. The phase diagram is shown in Figure 4. It is derived in Paper I.

Figure 4: The grand canonical phase diagram of the model. No diluteness is assumed. At µ ≤ 0 and
T = 0, all quantities are zero, in particular there is no BEC. Increasing T does not lead to a phase
transition, although γ becomes non-zero. For µ > 0 fixed and T = 0, there is BEC. This remains
the case when T increases (darkest region), eventually leading to a phase transition somewhere in
the lighter region before we enter the white region where ρ0 = 0. We can only locate the phase
transition precisely for µ→ 0.

3. The dilute limit ρ1/3a � 1 corresponds to µ → 0. In the limit V̂ (0) → 8πa, which is often
considered, we find

µc

8π
= 2ρfca− 0.226T 2a2 + o(T 2a2).

Canonically, we find a critical temperature

Tc = Tfc

(
1 + 1.49ρ1/3a+ o(ρ1/3a)

)

The constant 1.49 fits better with numerical results predicting 1.3 [2, 29, 44] than Lee and
Yang’s 1.79 from (8). Just like the latter, however, this model predicts a first-order phase
transition, which is not expected to be correct. A more general statement can be found in
Paper II.

4. Because of its variational formulation, this model gives upper bounds to the free energy of the
full theory. These can indeed be expanded in ρ1/3a� 1. This is explained in Paper II.

3.4 Outlook

We list open questions, starting from this model and gradually moving away from it.

1. This model gives an upper bound to the free energy, also at T = 0, which is the ground state
energy. In the dilute limit, the exact ground state energy was predicted to be

4πaρ2 +
512

15

√
π(ρa)5/2 + o((ρa)5/2)

by Lee, Huang and Yang [32]. Our model does reproduce the leading behaviour, but the second

order only comes out correctly in the limit V̂ (0) → 8πa, which is not rigorous. A similar result
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3. The Bogoliubov free energy functional

was earlier obtained by Erdős, Schlein and Yau [15], but the exact upper bound has in fact been
shown by Yau and Yin [57]. One could ask whether this model can be improved so that it does

reproduce the correct T = 0 upper bound without the limit V̂ (0)→ 8πa. Such a model would then
presumably also give more accurate free energy expansions for T > 0.

2. The results summarized above are similar in one and two dimensions. This is unexpected, since the
Mermin–Wagner–Hohenberg theorem [27, 42] says there cannot be BEC in one and two dimensions
at positive temperature. This shows that the minimizer in the class of quasi-free states does not
always have the right physical properties, even when its energy is very close to the real minimum.
It would be interesting to see if the class of trial functions can be extended to better reflect the
physical properties of the system, although it is difficult to see what can be done without Wick’s
rule, which has to be given up if one wants to go beyond quasi-free states.

In two dimensions, moreover, there is the possibility of a Kosterlitz-Thouless transition, so one
could calculate the critical temperature predicted by this model and investigate whether there is a
relation with the phase transition predicted here.

3. Another false prediction of the model is that the phase transition is of first order, a property that
is likely to be shared with any analysis based on Bogoliubov’s original approach. It is unclear how
to adapt the model so that it gives the second-order phase transition that is predicted for the full
Hamiltonian.

4. Dynamics do not play any role in this thesis, but they have recently been considered in a variational
setting in [3], where the authors restrict the time evolution of a Bose gas to quasi-free states.

5. This model describes a homogeneous (translation-invariant) system, but experiments with dilute
cold atomic gases often involve a (harmonic) trap. One could ask whether that set-up can also be
described with a variational model.

6. The previous point is related to the question whether the predicted shift in critical temperature
due to interactions can actually be measured. For harmonic traps, a linear shift in the critical
temperature has indeed been measured [14, 21, 53], but it cannot be compared with the predictions
discussed in this thesis because the effect of the trap, expected to lower rather than raise the critical
temperature, is simply too big. Recently, a BEC was also created in a uniform potential [20]. The
measurements are not precise enough, however, to measure the critical temperature shift directly,
but even if they were, in this set-up the finite size effects due to the boundedness of the trap are
expected to be six times larger than the shift caused by the interaction. In the words of [52], ‘we
are thus still lacking a direct measurement of the historically most debated [Tc] shift’.

7. On a different note, it seems that the trapped set-up is often related to the homogeneous case using a
local density approximation [52]. It assumes that the gas is locally described by the translationally-
invariant theory with a chemical potential µ(x) = µ−V trap(x). Given the confusion surrounding µ
discussed in (2.3), it seems that a better theoretical understanding of this approximation and the
role of µ is called for.

8. As indicated, the theoretical challenges surrounding BEC are considerable. Mathematically, its
existence at positive temperature has never been shown in a continuous system, and a calculation
of the critical temperature in the dilute limit is therefore completely out of reach.

9. As shown in Paper I, this model has the property that α 6≡ 0 if and only if ρ0 > 0. That is to
say, ODLRO and BEC go together. Both have a connection with superfluidity [5, 34] that is not
entirely understood. This thesis does not shed any light on that of course, as we have avoided a
discussion of the relation between α and superfluidity altogether.

10. The original motivation for the questions discussed in this thesis came from liquid helium, but since
that is a strongly-interacting system, no relevant conclusions can be drawn from this analysis. A
set-up with strong interactions that has recently been studied is the unitary Bose gas [18, 41], in
which the scattering length tends to infinity. In a way, it is the opposite of the dilute gas studied
here.
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sition in a dilute interacting gas, Eur. Phys. J. B, 24 (2001), pp. 107–124.

[8] M. Bijlsma and H. T. C. Stoof, Renormalization group theory of the three-dimensional dilute
Bose gas, Phys. Rev. A, 54 (1996), p. 5085.

[9] N. N. Bogoliubov, On the theory of superfluidity, J. Phys. (USSR), 11 (1947), p. 23.

[10] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell,
Observation of Bose–Einstein condensation in a dilute atomic vapor, Science, 269 (1995), pp. 198–
201.

[11] R. H. Critchley and A. Solomon, A Variational Approach to Superfluidity, J. Stat. Phys., 14
(1976), pp. 381–393.
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We give a natural variational reformulation of the famous Bogoliubov approximation for a weakly-
interacting translation-invariant Bose gas. The resulting variational model turns out to be a more
accurate approximation than the usual Bogoliubov approach. It allows us, moreover, to give a novel
derivation of the change of the critical temperature in the dilute limit. This problem has been
extensively studied going back to a fundamental paper of Lee and Yang. Our expression for the
critical temperature differs from that of Lee and Yang and subsequent theoretical results and is,
indeed, in better agreement with numerical simulations. We also review general properties of the
Bogoliubov variational model.

PACS numbers: 03.75.Hh

Introduction. Despite experimental realizations of
Bose–Einstein condensation (BEC) in interacting cold
atomic gases in 1995, and in a variety of systems since,
it remains an open problem to theoretically demonstrate
its occurrence in translation-invariant systems [19, 25],
let alone derive the critical temperature.

For a non-interacting, or free, Bose gas with density
ρ, the textbook argument by Einstein shows that the
critical temperature (in units ~ = 2m = kB = 1) is

Tfc = 4πζ(3/2)−2/3ρ2/3. (1)

So how does an interaction change this free critical tem-
perature? Feynman [9] used path integrals to qualita-
tively answer this question for liquid helium. He pre-
dicted that the potential results in an increased effective
mass, which lowers the critical temperature – something
that had already been measured.

To make quantitative predictions, various simplifica-
tions were considered. For a hard-core Bose gas with
core radius (or scattering length) a, one can assume that
the gas is dilute and apply perturbation theory. The rel-
evant parameter is ρ1/3a� 1, which says that the parti-
cles tend to be far apart on the scale of the interaction.

Studying this set-up, Lee and Yang [17] replace the
hard-core potential with a pseudopotential [14, 16] and
simplify the resulting Hamiltonian with the Bogoliubov
approximation [5]. They conclude that the shift in the
critical temperature should be proportional to ρ1/3a

Tc = Tfc(1 + 1.79(ρ1/3a) + o(ρ1/3a)), (2)

see the appendix of [17].
Here, we improve on this in two ways. Much progress

has been made on the theoretical analysis of Bose gases
over the last few years [19, 25], so that we can treat a gen-
eral class of potentials without reverting to pseudopoten-

tials. For this class of potentials, we derive a more accu-
rate version of (2) (where a is now the scattering length)
since, although Bogoliubov’s approximation cannot give
the right energy to second order in ρ1/3a, it was recently
realized [7] that it gives the correct first-order term if the
approximation is done carefully [31].

Indeed, our main result is a calculation of an expres-
sion like (2) for a general class of potentials that also
agrees better with numerics.

Background. Expressions for Tc of the dilute Bose
gas have been derived in many different models. We
should, after all, first try to understand dilute systems
before we can have any hope of understanding condensa-
tion in strongly interacting systems such as liquid helium.

Keeping this in mind, the reader may have noticed the
discrepancy between the observed decrease in Tc for he-
lium and (2). Indeed, some early theoretical results such
as [8] disagree with the predicted temperature increase
in (2). There was also a lot of debate on whether the
linear dependence on ρ1/3a is correct ([11–13] predict ex-
ponents of 1/2, 3/2 and 1/2, respectively). Nonetheless,
up to the precise value of the constant 1.79, (2) is still
expected to hold true. That it does not apply to helium
does not have to be too surprising: liquid helium is not
weakly interacting.

The critical temperature cannot be determined with-
out approximations, although [27] contains an exact up-
per bound. It is far from the desired form (2) in that the
power of the correction is (ρ1/3a)1/2.

The constant 1.79 in (2) has been recalculated with
field theoretic methods (see Andersen’s review [1]). In
particular, Bijlsma and Stoof [4] and Baym et al. [3] find
(2) with constants of 4.7 and 2.9, respectively.

Numerical studies with Monte Carlo methods now
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seem to agree that the value should lie around 1.3
[2, 15, 23]. We find a constant of 1.49.

Set-up. We start from the Hamiltonian for a gas of
N bosons with a repulsive pair interaction V in a three-
dimensional box [−l/2, l/2]

3
and periodic boundary con-

ditions. In units ~ = 2m = kB = 1,

HN =
∑

1≤i≤N
−∆i +

∑

1≤i<j≤N
Vij . (3)

The canonical equilibrium, or Gibbs, state at tempera-
ture T and particle density ρ = N/l3 can be found by
minimizing

inf
ω
〈HN − TS〉ω, (4)

where ω is an N -boson state.
As usual, it is easier to work in the grand canonical

ensemble. We consider a Hamiltonian H that acts as
HN on the N -particle sector of the bosonic Fock space.
The grand canonical Gibbs state at temperature T and
chemical potential µ is the minimizer of

inf
ω
〈H − TS − µN〉ω, (5)

where ω is now a state on the bosonic Fock space, N is
the particle number operator and the infimum itself is
the free energy.

Throughout this paper we will be working in the ther-
modynamic limit l→∞. The two quantities (4) and (5)
are then related by a Legendre transform.

We now say that a system displays BEC if the 1-
particle reduced density matrix of the minimizing ω of
(5) has an eigenvalue of order 1 [24]. Therefore, one re-
ally needs to find minimizers to (5) to determine Tc.

This cannot be done exactly. The exact free energy
(5) has only been analysed in [26, 29]; all other results
in the literature, such as [30], concern approximations.
We will study one such model, first introduced in [6].
It restricts the minimization problem (5) to quasi-free
states, resulting in a variational upper bound on the free
energy.

There are good arguments why this upper bound is ac-
curate. The first is that Bogoliubov’s approach renders
the Hamiltonian quadratic in creation and annihilation
operators. Ground and Gibbs states of such Hamiltoni-
ans are quasi-free states; exactly the states considered in
our minimization problem. Also, quasi-free states have
already proven to be good trial states for the ground state
energy of Bose gases [7, 10, 28], and may therefore also
be for the free energy.

Can we use this upper bound to approximate Tc? As
we will soon see, expressing 〈H − TS − µN〉ω for a gen-
eral quasi-free state leads to a non-linear functional (8).
Linearizing the functional by removing the terms quar-
tic in creation and annihilation operators, the authors of

[6] conclude that the Gibbs state coincides with that of
Bogoliubov’s (approximated) Hamiltonian.

In this paper, we consider the functional without the
linearization, motivated by the discovery in [7] that
the correct first-order energy is only found when the
terms quartic in creation and annihilation operators are
included. This gives a variational calculation of Tc that
is also more accurate.

Model. We consider the Hamiltonian (3), make the
assumption that we are in the translation-invariant case,
and write its second-quantized form in momentum space

H =
∑

p

p2a†pap +
1

2l3

∑

p,q,k

V̂ (k)a†p+ka
†
q−kaqap. (6)

We expect some particles to form a condensate at
zero momentum. We therefore mimic Bogoliubov’s c-
number substitution (justified in [20]) by using a Bogoli-
ubov transformation to implement a condensate density
ρ0 ≥ 0, effectively replacing a0 → a0 +

√
l3ρ0. A min-

imizer with ρ0 > 0 will indicate the presence of BEC,
whereas ρ0 = 0 signifies its absence.

We evaluate the expectation value of the resulting
Hamiltonian for quasi-free states only, so that we can
use Wick’s rule to split 〈a†p+ka

†
q−kaqap〉 as

〈a†p+ka
†
q−k〉〈aqap〉+〈a

†
p+kaq〉〈a

†
q−kap〉+〈a

†
p+kap〉〈a

†
q−kaq〉.

(7)

Assuming translation invariance and 〈apa−p〉 = 〈a†−pa†p〉,
the two (real-valued) functions γ(p) := 〈a†pap〉 ≥ 0 and
α(p) := 〈apa−p〉, together with the number ρ0, fully de-
termine the expectation value in (5).

Here, γ(p) is the density of particles with momentum p,
and α describes the presence of pairing in the system. We
have off-diagonal long range order (ODLRO) if α is not
the zero-function, which is related to superfluidity [18].
It is well-known that the two functions have to satisfy
α2 ≤ γ(γ + 1).

Taking the thermodynamic limit l→∞, we have now
evaluated the expectation in (5) over Bogoliubov trial
states: quasi-free states with an added condensate.

The Bogoliubov free energy functional is then

Fµ,T (γ, α, ρ0) = (2π)−3
∫
p2γ(p)dp− µρ− TS(γ, α)

+ ρ0(2π)−3
∫
V̂ (p)(γ(p) + α(p))dp+

1

2
V̂ (0)ρ2

+
1

2
(2π)−6

∫
γ(p)(V̂ ∗ γ)(p) + α(p)(V̂ ∗ α)(p)dp,

(8)
with chemical potential µ ∈ R, density ρ = ρ0 + ργ (i.e. a
sum of the condensate density ρ0 and the density of parti-
cles with positive momentum ργ = (2π)−3

∫
γ). The en-

tropy, defined in terms of β(p) =
√

(γ(p) + 1
2 )2 − α(p)2,
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is

S(γ, α) = (2π)−3
∫ (

β(p) +
1

2

)
ln

(
β(p) +

1

2

)

−
(
β(p)− 1

2

)
ln

(
β(p)− 1

2

)
dp.

(9)
A precise derivation, including a calculation of the en-
tropy for quasi-free states, can be found in the appendix
of [21].

For a canonical formulation with fixed average density
ρ and temperature T , we consider

Fcan
ρ,T = Fµ,T (γ, α, ρ0) + µρ, (10)

and only states with ρ0 + ργ = ρ. This amounts to eval-
uating the expectation in (4) for Bogoliubov states.

In what follows, we often drop the subscripts of Fcan
ρ,T

and Fµ,T . Note that, in contrast to (4) and (5), the
infima of these functionals are not automatically related
by a Legendre transform because of the restricted
minimization. We will see that the canonical infimum is
not convex, and that the relation only goes one way (34).

Results. We assume that the two-body interac-
tion potential is repulsive, integrable and bounded. Its
Fourier transform is assumed to be positive and has its
maximum at zero since V ≥ 0.

The gas is dilute, ρ1/3a � 1, and the temperature is
approximately Tfc. Note that this implies that

√
Ta� 1,

a limit that we make extensive use of. We also use the
first-order Born approximation of the scattering length a,
i.e. V̂ (0) =

∫
V ≈ 8πa, and the fact that we can expand

V̂ (p) = V̂ (0) + Ca3p2 + o(a3p2), (11)

where the first derivative is absent since V̂ has its maxi-
mum at zero, and the second derivative is assumed to be
of order a3 (in accordance with its units).

The following results are proved in our earlier paper
[21]. They provide some necessary background.

THEOREM 1. There exist minimizers for both the
grand canonical (5) and canonical minimization problem
(4) when the minimization is restricted to Bogoliubov trial
states only (resulting in a minimization of the functionals
(8) and (10), respectively).

For these minimizers, we investigate whether a phase
transition occurs.

THEOREM 2. The grand canonical phase diagram of
the model is shown in FIG. 1. In particular, there is a
phase transition at positive T for all fixed µ > 0. Also,
α 6= 0 iff ρ0 > 0, so that BEC and ODLRO always occur
together in this model.

Canonically, there is a phase transition at positive T
for all fixed ρ > 0.

FIG. 1: The grand canonical phase diagram of the model. No
diluteness is assumed. At µ ≤ 0 and T = 0, all quantities are
zero, in particular there is no BEC. Increasing T does not lead
to a phase transition, although γ becomes non-zero. For µ > 0
fixed and T = 0, there is BEC. This remains the case when
T increases (darkest region), eventually leading to a phase
transition somewhere in the lighter region before we enter the
white region where ρ0 = 0. We can only locate the phase
transition exactly for µ → 0; a further analysis shows that
this corresponds to the dilute limit studied in THEOREM 3.

We now turn to the main result: the calculation of
the critical temperature. The definition of diluteness
ρ1/3a � 1 suggests that we look at the canonical func-
tional (10) first, but we also consider the grand canonical
case.

THEOREM 3. Consider the canonical problem (4) re-
stricted to Bogoliubov trial states with ρ = ρ0 + ργ fixed,
resulting in the canonical functional (10). The critical
temperature, defined by the properties ρ0 > 0 if T > Tc,
ρ0 = 0 if 0 ≤ T < Tc, is

Tc = Tfc(1 + κ(ρ1/3a) + o(ρ1/3a)), (12)

where κ = 1.49 in the limit V̂ (0)→ 8πa.
The phase transition can also be identified in the grand

canonical model (5), i.e. for minimizers of (8) with fixed
T and µ. It is a first-order phase transition.

Note that the constant 1.49 is in reasonable agreement
with the numerical consensus of 1.3 [2, 15, 23]. The proof
relies on a careful expansion of the free energy.

Proof of THEOREM 3. We fix T and set out to find the
critical density ρc, which can easily be inverted to (12).

Outline. We could try to minimize the functional by
solving the Euler–Lagrange equations of (8). However,
the terms with convolutions give non-local contributions
of V̂ ∗ γ and V̂ ∗ α. Even with a Fourier transform, this
cannot be solved.

We therefore approximate these terms so that we ob-
tain a functional F sim that can be minimized explicitly in
γ and α. We expand the resulting energy integrals, and
finally minimize in ρ0 to determine whether it is zero or
not.
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To sketch this once more,

inf
(γ, α, ρ0)
ρ0 + ργ = ρ

Fcan ≈ inf
0≤ρ0≤ρ

inf
(γ, α)

ργ = ρ− ρ0

F sim, (13)

where the infimum over γ and α is calculated explicitly,
then expanded in

√
Ta� 1, and finally minimized in ρ0.

Step 1a. To approximate the convolution term in-
volving γ, we use a comparison with the free Bose gas.
Its energy is given exactly by the functional

F0(γ) = (2π)−3
∫
p2γ(p)dp− TS(γ, 0), (14)

whose minimizer for fixed ρ is

γµ(ρ)(p) =
1

e(p2−µ(ρ))/T − 1
, (15)

where µ(ρ) ≤ 0 is such that (2π)−3
∫
γµ(ρ) = ρ. This

definition only works for ρ ≤ ρfc, where the free critical
density ρfc is characterized by µ(ρfc) = 0 (leading to
the inverted expression of (1)). We define µ(ρ) = 0 for
ρ ≥ ρfc.

We would like to show that the minimizing γ for the
interacting problem lives on the same scale as γ0, that
is, most of the particles have momentum |p| ≤ O(

√
T ).

Indeed, a careful comparison shows that the minimizer
has to satisfy

F0(γµ(ργ)) ≤ F0(γ) ≤ F0(γµ(ρ)) + ρ2V̂ (0), (16)

which says that the energy does not deviate much from
the minimal energy in the free case. Because of the∫
p2γ term, this means that γ cannot be very large for

|p| �
√
T (see [22] for a precise statement).

For |p| ≤ O(
√
T ), (11) implies

|V̂ (p)− V̂ (0)| = O(a(
√
Ta)2)� a. (17)

Since γ is only large on |p| ≤ O(
√
T ), we can approximate

(2π)−3V̂ ∗ γ ≈ V̂ (0)ργ .
To be more precise: a careful analysis in [22] shows

∣∣∣∣(2π)−3
∫
V̂ (p)γ(p)dp− V̂ (0)ργ

∣∣∣∣ = O(T 3/2a(
√
Ta)3/2),

(18)
and similar estimates for the term involving the convolu-
tion. These estimates can be further refined by narrowing
the energy difference in (16).

Step 1b. The strategy for the convolution term with
α is different. Following ideas in [7], we expect α to be
related to the scattering solution w. It is defined by

−∆w +
1

2
V w = 0, (19)

with w(x)→ 1 as |x| → ∞.

To work towards a good approximation for α, we define

α0 := (2π)3t0δ0 −
ρ0 + t0

2

V̂ w(p)

p2
, (20)

where −ρ0 ≤ t0 ≤ 0 is an additional parameter that
will be tuned to achieve a self-consistency equation∫

(α− α0) = 0. Note that α itself will in general not be
integrable.

The motivation for defining α0 in this way is as follows:
at momentum scales bigger than Ta, we expect α to re-
semble the second contribution above. Its structure on
smaller scales is more complicated, but the exact shape
is irrelevant. We approximate this part by a δ-function.
We will eventually optimize our approximation by deter-
mining t0 so that

∫
(α− α0) = 0.

How does the guess (20) help us? We add and subtract
terms to replace the convolution term with α by

∫
(α− α0)(p)(V̂ ∗ (α− α0))(p)dp, (21)

which we later show to be small for the minimizing α. Of
course, by doing this we have introduced terms involving
V̂ ∗ α0, which may seem like a problem. However,

(2π)−3V̂ ∗ α0(p) = (ρ0 + t0)V̂ w(p)− ρ0V̂ (p), (22)

so that no convolution terms remain in our functional.
This has the added effect that V̂ gets replaced by V̂ w in
the term linear in α, but this Fourier transform is well-
defined and satisfies V̂ w(0) = 8πa. For simplicity of the
resulting functional, we make sure to obtain a similar
replacement for the ρ0

∫
V̂ γ-term.

Step 1c. To specify (13) and make use of the previous
two steps, we prove upper and lower bounds. The errors
in our approximation are

E1 :=
1

2
(2π)−6

∫
(α− α0)(p)(V̂ ∗ (α− α0))(p)dp

E2 :=

∣∣∣∣ρ0(2π)−3
∫
γ(p)V̂ (p)dp− V̂ (0)ρ0ργ

∣∣∣∣

E3 :=

∣∣∣∣ρ0(2π)−3
∫
γ(p)V̂ w(p)dp− V̂ w(0)ρ0ργ

∣∣∣∣

E4 :=
∣∣∣1
2

(2π)−6
∫
γ(p)(V̂ ∗ γ)(p)dp

− 1

2
V̂ (0)ρ2γ −

ζ(3/2)ζ(5/2)

256π3
∆V̂ (0)T 4

∣∣∣.

(23)

Following Steps 1a and 1b, the reader can now derive a
simplified functional F sim satisfying

−E2 − E3 − E4 ≤ Fcan(γ, α, ρ0)−F sim(γ, α, ρ0)

≤ E1 + E2 + E3 + E4.
(24)

The full expression for F sim is given in [22]. We will use
(24) to prove that F sim really is a good approximation
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to the energy in Step 2c.

Step 2a. Now that we have F sim, we will calcu-
late and expand its minimal energy as a function of ρ
and ρ0. It turns out that we need to expand to order
T 4a3 = T 5/2(

√
Ta)3 to derive (12).

The part of F sim that depends on γ and α is

(2π)−3 [

∫
p2γ(p)dp+

1

4
ρ20

∫
V̂ w(p)2

p2
dp

+ ρ0

∫
V̂ w(p)(γ(p) + α(p))dp ]− TS(γ, α).

(25)
Given ρ0, this has minimizers γρ0,ρ and αρ0,ρ.
The dominant contribution of (25) to the energy
F sim(γρ0,ρ, αρ0,ρ, ρ0) is

(2π)−3T
∫

ln(1− e−T−1
√

(p2+δ)2+2(p2+δ)(ρ0+t0)V̂ w(p))dp,

(26)
which resembles the energy of the free gas.

Step 2b. We now expand (26). To do this, we judi-
ciously define

ρ0 =
σ

8π
T 2a, ρ = ρfc+

k

8π
T 2a, δ = dT 2a2, t0 =

τ

σ
ρ0

(27)
where σ, k, δ, τ are parameters of order 1.

Changing variables p → Tap and using (11), we ex-

pand (26) for
√
Ta � 1. In the limit V̂ (0) → 8πa, this

gives

T 5/2f0 + T 2a2ρfc (d+ (1 + θ)σ)

− 1

12π
T 4a3

(
(d+ 2(1 + θ)σ)3/2 + d3/2

)
+ o(T 4a3),

(28)
where T 5/2f0 = F0(γµ(0)) is the free gas energy. To sim-

plify the expressions, we assume V̂ (0) → 8πa from now
on; what remains of the calculation can be done in the
same way for other values of V̂ (0).

Of course, there is a relation between d, k and σ, since d
was a Lagrange multiplier. We eliminate d by calculating,
expanding and solving

∫
γρ0,ρ = ρ− ρ0, finding

d =

(
(σ − k)2 − 2(σ + τ)

2(σ − k)

)2

. (29)

Step 2c. We now use (24) to show that we can accu-
rately approximate the energy. We claim the minimizers
have to satisfy

|Fcan(γ, α, ρ0)−F sim(γρ0,ρ, αρ0,ρ, ρ0)+ζT 4a3| = o(T 4a3),
(30)

where ζT 4a3 is used to denote the constant in E4 (23).
There are two bounds to show.

The first follows from the lower bound in (24), and
the a priori results from Step 1a. Note that no a priori
information on α and E1 is needed.

k=-1.35

k=-1.28

k=-1.20

0.5 1.0 1.5 2.0 2.5
σ

0.005

0.010

0.015

0.020

0.025

f(k,σ)

FIG. 2: Plots of the part of the free energy f(k, σ) that de-
pends on k and σ (i.e. between the square brackets in the
second line of (33)) for three values of k. For k = −1.35,
σ = ρ0 = 0 gives the lowest energy: no BEC. For k = −1.20,
the minimum occurs at some ρ0 > 0: BEC. The critical value
is kc = −1.28.

The second uses the upper bound in (24). We simply
verify that all errors in (23) are o(T 4a3) for γρ0,ρ and
αρ0,ρ. This is only non-trivial for E1, for which it suffices
to choose τ such that

∫
(αρ0,ρ − α0) = 0. We conclude

τ = − 2(σ + τ)√
d+ 2(σ + τ) +

√
d

+ o(1), (31)

which can be used to eliminate τ .

Step 3. We have now reduced (13) to

inf
(γ, α, ρ0)
ρ0 + ργ = ρ

Fcan = inf
σ≥0

f(k, σ) + o(T 4a3), (32)

where

f(k, σ) = T 5/2f0 + V̂ (0)ρ2 + ζT 4a3

+ T 4a3
[

1

8π

(
(σ − k)3

12
− σ2

(1

2
+

1

2 + σ − k
))]

.

(33)
We can determine ρc by fixing k and checking when
the minimizing σ changes from zero to non-zero, as
illustrated in FIG. 2. We find ρc = ρfc − 1.28T 2a/8π,
which can be rewritten as the desired Tc (12).

Step 4. We are left with the grand canonical formu-
lation and the order of the phase transition. By (10),

inf Fµ,T = inf
ρ

[
(
inf Fcan

ρ,T

)
− µρ]. (34)

The previous steps have produced energy expressions for
the canonical infimum with fixed ρ and T . We use these
to plot

(
inf Fcan

ρ,T

)
− µcρ in FIG. 3, where

µc

8π
= 2ρfca− 0.226T 2a2 + o(T 2a2). (35)

By (34), the derivative of the (red) convex hull of the
energy curve at ρ is µ− µc, where ρ is the density of the

Review

29



6

FIG. 3: A plot of
(
inf Fcan

ρ,T

)
−µcρ as a function of k, where ρ−

ρfc = k
8π
T 2a. The two minima are k− = −2.23 and k+ = 3.04,

and the critical value (shown in orange) is kc = −1.28. The
energy curve is not convex; the red line indicates the convex
hull of the curve.

minimizer of Fµ,T . This way, a grand canonical µ defines
a canonical ρ(µ). For µ < µc, ρ(µ) is below ρc and hence
ρ0 = 0. As we increase to µ > µc, ρ(µ) jumps across
ρc, and so ρ0 > 0. We have a jump in density at the
critical point and conclude that this is a first-order phase
transition.

To relate this to the canonical case: we have coexis-
tence of the two phases (ρ0 = 0 and ρ0 > 0) for ρ between
the two values defined by k±. Hence one could say that

the system displays BEC for ρ ≥ ρfc + k−
8π T

2a.

Remark. The analysis above is for T ≈ Tfc. How-
ever, the energy expansions can easily be adapted to
lower temperatures. A crucial difference is that the
parameter ρ0a/T (for example present in (26) through

ρ0V̂ w(p)/T ) has to be treated differently. Above, it is of
order Ta2 � 1, but as T → 0, it will tend to infinity.

To highlight one interesting result for T → 0: we can
expand the ground state energy as

4πaρ2 +
512

15

√
π(ρa)5/2 + o((ρa)5/2), (36)

which contains the well-known Lee–Huang–Yang second-
order term [16]. This further underlines the accuracy of
our model.

Conclusion and discussion. We have derived
an expression for the critical temperature of weakly-
interacting translational-invariant Bose gas in a varia-
tional model. The model is conceptually simple, applies
to a general class of potentials, and the calculated con-
stant agrees better with numerical predictions than ear-
lier approaches.

The model does produce certain unphysical results,
such as a first-order phase transition. It also predicts
the occurrence of BEC in 1 and 2 dimensions, which is
excluded by the Mermin–Wagner–Hohenberg theorem.
These drawbacks are shared with Lee and Yang’s work

on the hard-core Bose gas [17], and in principle any
analysis relying on Bogoliubov’s original approach.
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL I.

EXISTENCE OF MINIMIZERS AND PHASE DIAGRAM

MARCIN NAPIÓRKOWSKI, ROBIN REUVERS, AND JAN PHILIP SOLOVEJ

Abstract. The Bogoliubov free energy functional is analysed. The
functional serves as a model of a translation-invariant Bose gas at pos-
itive temperature. We prove the existence of minimizers in the case of
repulsive interactions given by a sufficiently regular two-body potential.
Furthermore, we prove existence of a phase transition in this model and
provide its phase diagram.
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1. Introduction

Almost all work in the field of interacting Bose gases has its genesis in
Bogoliubov’s seminal 1947 paper [4]. In this work, Bogoliubov proposed

Date: October 31, 2016.
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2 M. NAPIÓRKOWSKI, R. REUVERS, AND J. P. SOLOVEJ

an approximate theory of interacting bosons in an attempt to explain the
superfluid properties of liquid Helium. Since then, his model has widely
been used to study bosonic many-body systems, particularly in the 1950s
and 1960s. Despite being intuitively appealing and undoubtedly correct in
many aspects, Bogoliubov’s theory lacked a mathematically rigorous under-
standing.

The experimental success in achieving Bose–Einstein condensation in al-
kali atoms [7] has renewed the interest in the theoretical description of such
systems, and significant progress was made in the mathematical analysis of
Bose gases. We refer to [19] for an extensive review. Most of these results
concern the ground state energies of different bosonic systems.

While Bogoliubov’s theory is very useful in relation to these problems, its
primary goal was to determine the excitation spectrum of a Bose gas. Indeed,
the structure of the excitation spectrum derived by Bogoliubov allowed him
to justify Landau’s criterion for superfluidity [16], and thus provided a micro-
scopic theory of this phenomenon. A rigorous justification of Bogoliubov’s
theory in that context has been established only recently for a large class of
bosonic systems within the so-called mean-field limit [27, 12, 18, 8, 21] (see
[28] for a recent review).

Our goal (and that of the accompanying paper [23]) is to give a variational
formulation of Bogoliubov’s theory for bosonic systems at positive and zero
temperature. Bogoliubov’s original approximation consists in adapting the
Hamiltonian so that it is quadratic in creation and annihilation operators.
We know that ground states or Gibbs states of such Hamiltonians are quasi-
free or coherent states. Here, we turn Bogoliubov’s theory around and vary
over Gaussian states (which include the aforementioned classes of states),
whilst retaining the full Hamiltonian. This gives the variational model that
we will study in this paper (see Appendix A for relevant definitions and a
derivation).

The hope is that our family of states captures important physical aspects
of the system; they have for example been used as trial states in establish-
ing the correct asymptotic bounds on the ground state energy of Bose gases
[29, 9, 11].

The Bogoliubov variational theory can be seen as the bosonic counterpart
of Hartree–Fock theory for Fermi gases. More precisely, it is similar to gener-
alized Hartree–Fock theory, which includes the Bardeen–Cooper–Schrieffer
(BCS) trial states and is often called Hartree–Fock–Bogoliubov theory. In
HFB theory the trial states are quasi-free states on a fermionic Fock space
(see [2] for details).

HFB theory is a widely used tool for understanding fermionic many-body
quantum systems. One of the most prominent examples related to this
approach is the model of superconductivity that is based on the BCS func-
tional. This model and the related BCS gap equation have been studied both
from the physical and mathematical point of view (see e.g. [10, 13, 14]).

In this paper, we are interested in the bosonic counterpart of the BCS
functional, or, more precisely, to the BCS functional with the direct and
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL I. 3

exchange terms included (as discussed in [5]).

Concretely, we want to analyse the model defined by the Bogoliubov free
energy functional F given by

F(γ, α, ρ0) = (2π)−3

∫

R3

p2γ(p)dp− µρ− TS(γ, α) +
V̂ (0)

2
ρ2

+
1

2
(2π)−6

∫∫

R3×R3

V̂ (p− q) (α(p)α(q) + γ(p)γ(q)) dpdq

+ ρ0(2π)−3

∫

R3

V̂ (p) (γ(p) + α(p)) dp,

(1.1)

which is the free energy expectation value in a quasi-free state (see Appendix
A for a derivation). Here, ρ denotes the density of the system and

ρ = ρ0 + (2π)−3

∫

R3

γ(p)dp =: ρ0 + ργ .

The entropy S(γ, α) is

S(γ, α) = (2π)−3

∫

R3

s(γ(p), α(p))dp = (2π)−3

∫

R3

s(β(p))dp

= (2π)−3

∫

R3

[(
β(p) +

1

2

)
ln

(
β(p) +

1

2

)
−
(
β(p)− 1

2

)
ln

(
β(p)− 1

2

)]
dp,

where

β(p) :=

√(
1

2
+ γ(p)

)2

− α(p)2.

The functional is defined on the domain D given by

D = {(γ, α, ρ0)|γ ∈ L1((1 + p2)dp), γ(p) ≥ 0, α(p)2 ≤ γ(p)(1 + γ(p)), ρ0 ≥ 0}.
This set-up describes the grand canonical free energy of a homogeneous

Bose gas at temperature T ≥ 0 and chemical potential µ ∈ R in the thermo-
dynamic limit. The particles interact through a repulsive radial two-body

potential V (x). Its Fourier transform is denoted by V̂ (p) and is given by

V̂ (p) =

∫

R3

e−ipxV (x)dx.

The function γ ∈ L1((1 + p2)dp) describes the momentum distribution
of the particles in the system. Since the total density equals ρ = ρ0 +
(2π)−3

∫
R3 γ(p)dp, it follows that a non-negative ρ0 can be seen as the macro-

scopic occupation of the state of momentum zero and is therefore interpreted
as the density of the Bose–Einstein condensate fraction.

Finally, the function α(p) describes pairing in the system and its non-
vanishing value can therefore be interpreted as the presence of off-diagonal
long-range order (ODLRO) and the macroscopic coherence related to super-
fluidity.

To the best of our knowledge, this functional appeared for the first time in
the literature in the 1976 paper by Critchley and Solomon [6]. Surprisingly,
however, this functional has never been analysed - neither from a mathe-
matical nor a physical point of view. This is probably due to its complexity.
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4 M. NAPIÓRKOWSKI, R. REUVERS, AND J. P. SOLOVEJ

Only various simplified versions of this functional have been studied in the
literature (see [32] for an extensive review). Our goal is to fill this gap and
provide an analysis of the full functional.

Our work is divided into two parts. In this part, we consider the existence
and general properties of equilibrium states of this model. According to
statistical mechanics, the equilibrium state corresponding to temperature T
and chemical potential µ is given by the minimizer of (1.1). The free energy
is therefore

F (T, µ) = inf
(γ,α,ρ0)∈D

F(γ, α, ρ0). (1.2)

The physical information about the system at a given T and µ is thus en-
coded in the structure of the minimizers. For example, a minimizer with
γ ≡ 0 and ρ0 > 0 corresponds to pure Bose–Einstein Condensation; non-
vanishing α signifies ODLRO. Hence, any further analysis of the model relies
on the well-posedness of the minimization problem (1.2), which we address
first. Knowledge about the minimizers for different (T, µ) then leads to a
phase diagram. We will also discuss the relation between Bose–Einstein
condensation and superfluidity in translation-invariant systems (see [3] for a
historical overview on this topic). Our results are stated in the next section.

In the second part of this work [23], we analyse the functional in the dilute
(or low density) limit. Although Bogoliubov’s primary goal was to provide
a description for liquid helium, which is a strongly interacting system, it is
generally agreed that his theory is more suitable to describe dilute (hence
weakly-interacting) systems. Here, low density means that the mean inter-

particle distance ρ−1/3 is much larger than the scattering length a of the
potential, i.e.

ρ1/3a� 1.

To be able to analyse the dilute limit, we need to consider the canonical
counterpart of (1.1) at fixed density ρ given by

Fcan(γ, α, ρ0) = (2π)−3

∫

R3

p2γ(p)dp− TS(γ, α) +
V̂ (0)

2
ρ2

+ ρ0(2π)−3

∫

R3

V̂ (p) (γ(p) + α(p)) dp

+
1

2
(2π)−6

∫∫

R3×R3

V̂ (p− q) (α(p)α(q) + γ(p)γ(q)) dpdq,

(1.3)

with ρ0 = ρ− ργ . The canonical minimization problem is

F can(T, ρ) = inf{Fcan(γ, α, ρ0 = ρ− ργ) | (γ, α, ρ0 = ρ− ργ) ∈ D}
= min{f(ρ, ρ0) | 0 ≤ ρ0 ≤ ρ},

(1.4)

where

f(ρ, ρ0) = inf{Fcan(γ, α, ρ0) | (γ, α, ρ0) ∈ D, ργ = ρ− ρ0}.
Strictly speaking, this is not really a canonical formulation: it is only the
expectation value of the number of particles that we fix. We will nevertheless
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL I. 5

describe this energy as canonical. The function F (T, µ) as a function of µ
is the Legendre transform of the function F can(T, ρ) as a function of ρ.

Having given a proper meaning to the notion of diluteness, one can now
ask different questions regarding the low density limit. One particularly
interesting problem is how interactions influence the critical temperature
(i.e. the temperature of the phase transition between the condensed and non-
condensed phase) in a weakly-interacting Bose gas. It is nowadays agreed
that the transition temperature should change linearly in a, that is

∆Tc

Tfc
≈ cρ1/3a

with c > 0. Here ∆Tc = Tc − Tfc, where Tc is the critical temperature in
the interacting model and Tfc = c0ρ

2/3 is the critical temperature in the
non-interacting (ideal) Bose gas.

The results for this model confirm this prediction: in the accompanying
paper [23] we prove that

Tc = Tfc(1 + h1(ν)ρ1/3a+ o(ρ1/3a)),

where ν = V̂ (0)/a and h1(8π) = 1.49. This result is in close agreement with
numerics: Monte Carlo methods suggest [1, 15, 24] that c ≈ 1.32. In general
ν > 8π. It is generally believed, but not rigorously established, that the
Bogoliubov model is a good approximation if ν is replaced by 8π.

Another issue is the asymptotic formula for the free energy (see [26, 31]
for the only rigorous results starting from the full many-body problem). In
[23], we provide formulas for the free energy of a dilute Bose gas in different
regions which correspond to very low (ρa/T � 1), fairly low (ρa/T ∼ O(1))
and moderate (ρa/T � 1) temperatures. In particular, if we let ν → 8π,
for very low temperatures we reproduce the well-known Lee–Huang–Yang
formula

lim
T→0

F can(T, ρ) = 4πaρ2 +
512

15

√
π(ρa)5/2 + o(ρa)5/2.

For the reader’s convenience, the main results of [23] are also stated in the
next section.

Acknowledgements. We thank Robert Seiringer and Daniel Ueltschi
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2. Main results and sketch of proof

Let us now state the main results of this paper. Throughout this article,
we assume that the two-body interaction potential and its Fourier transform
are radial functions that satisfy

V ≥ 0, V̂ ≥ 0, V 6≡ 0. (2.1)

Moreover, we assume that

V̂ ∈ C1(R3), V̂ ∈ L1(R3), ‖V̂ ‖∞ <∞, ‖∇V̂ ‖2 <∞, ‖∇V̂ ‖∞ <∞. (2.2)

2.1. Existence of minimizers. We start by providing the existence results
that form the basis of any further analysis.

Theorem 1 (Existence of grand canonical minimizers for T > 0). Let T > 0.
Assume the interaction potential is a radial function that satisfies (2.1) and
(2.2). Then there exists a minimizer for the Bogoliubov free energy functional
(1.1) defined on D.

It turns out that we need to assume some additional regularity on the
interaction potential to prove a similar statement for T = 0 .

Theorem 2 (Existence of grand canonical minimizers for T = 0). Assume
the interaction potential fulfils the assumptions of Theorem 1. If we assume

in addition that V̂ ∈ C3(R3) and that all derivatives of V̂ up to third order
are bounded, then there exists a minimizer for the Bogoliubov free energy
functional (1.1) defined on D for T = 0.

We expect that our assumptions on the interaction potential are far from
optimal. A natural direction for further research would be to try to extend
the above results to the case of more singular potentials. In the fermionic
case, the existence of minimizers for the HFB functional with Newtonian
interaction turned out to be surprisingly difficult to prove [17].

Remark 3. We would like to stress that the minimizers need not be unique.
In fact, a detailed analysis of the dilute limit case in [23] shows that there ex-
ist combinations of µ and T for which the problem (1.2) has two minimizers
with two different densities.

We have analogous results in the canonical setting.

Theorem 4 (Existence of canonical minimizers for T > 0). Let T > 0.
Assume the interaction potential is a radial function that satisfies (2.1) and
(2.2). Then the variational problem (1.4) admits a minimizer.

Theorem 5 (Existence of canonical minimizers for T = 0). Assume the
interaction potential fulfils the assumptions of Theorem 4. If we assume in

addition that V̂ ∈ C3(R3) and that all derivatives of V̂ up to third order
are bounded, then there exists a minimizer for the canonical minimization
problem (1.4) at T = 0.

A nice property that follows from the proof of Theorems 2 and 5 is the
following fact.

Corollary 6 (Structure of T = 0 minimizers). Minimizers for the canonical
and grand canonical problem at T = 0 are pure quasi-free states.
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL I. 7

Note that this result is not obvious. It is well known that pure quasi-
free states are minimizers for quadratic Hamiltonians. Our model, however,
involves also higher order terms.

2.2. Existence and structure of phase transition. We now analyse
the structure of the minimizers. Our first result shows that Bose–Einstein
condensation and superfluidity are equivalent within our models.

Theorem 7 (Equivalence of BEC and superfluidity). Let (γ, α, ρ0) be a
minimizing triple for either (1.1) or (1.3). Then

ρ0 = 0⇐⇒ α ≡ 0.

Hence, there exists only one kind of phase transition within our model.
The next results show that this phase transition indeed exists.

Theorem 8 (Existence of grand canonical phase transition). Let µ > 0.
Then there exist temperatures 0 < T1 < T2 such that a minimizing triple
(γ, α, ρ0) of (1.2) satisfies

(1) ρ0 = 0 for T ≥ T2

(2) ρ0 > 0 for 0 ≤ T ≤ T1.

Theorem 9 (Existence of canonical phase transition). For fixed ρ > 0 there
exist temperatures 0 < T3 < T4 such that a minimizing triple (γ, α, ρ0) of
(1.4) satisfies

(1) ρ0 = 0 for T ≥ T4

(2) ρ0 > 0 for 0 ≤ T ≤ T3.

Remark 10. All the statements remain true in one and two dimensions.

2.3. Grand canonical phase diagram. The results stated above together
with their proofs allow us to sketch a phase diagram of the system, see Figure
1.

Note that at T = 0 and µ < 0 the minimizer corresponds to the vacuum.
Also, for negative chemical potentials there is no phase transition in the
system.

The area with the lighter shade of blue indicates that we cannot rule
out multiple phase transitions with different critical temperatures. This is,
however, unexpected. The vanishing of this area as µ approaches zero from
the right is a consequence of the results in [23], which we review next. See,
in particular, Theorem 12.

2.4. Main results of [23]. The main results of [23] hold under several
general assumptions. For the following three results, we assume that we are
in the dilute limit

ρ1/3a� 1, (2.3)

where a is the scattering length of the potential. Furthermore, we define the
constant C by∫

V̂ ≤ Ca−2 and ‖∂nV̂ ‖∞ ≤ Can+1 for 0 ≤ n ≤ 3, (2.4)

where ∂n is shorthand for all n-th order partial derivatives. With this defi-

nition, our estimates depend only on C and not on a. Recall ν := V̂ (0)/a.
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Figure 1. The grand canonical phase diagram of the model.
No diluteness is assumed. At µ ≤ 0 and T = 0, all quantities
are zero, in particular there is no BEC. Increasing T does
not lead to a phase transition, although γ becomes non-zero.
For µ > 0 fixed and T = 0, there is BEC. This remains the
case when T increases (darkest region), eventually leading to
a phase transition somewhere in the lighter region before we
enter the white region where ρ0 = 0.

The following theorems contain information about the critical temperature
of the phase transition in the dilute limit.

Theorem 11 (Canonical critical temperature). Let (γ, α, ρ0) be a minimiz-
ing triple of (1.4) at temperature T and density ρ. There is a monotone
increasing function h1 : (8π,∞) → R with h1(ν) ≥ limν→8π h1(ν) = 1.49
such that

(1) ρ0 6= 0 if T < Tfc

(
1 + h1(ν)ρ1/3a+ o(ρ1/3a)

)

(2) ρ0 = 0 if T > Tfc

(
1 + h1(ν)ρ1/3a+ o(ρ1/3a)

)
,

where Tfc = c0ρ
2/3 is the critical temperature of the free Bose gas.

Theorem 12 (Grand canonical critical temperature). Let (γ, α, ρ0) be a
minimizing triple of (1.2) at temperature T and chemical potential µ. There
is a function h2 : (8π,∞)→ R with limν→8π h2(ν) = 0.44 such that

(1) ρ0 6= 0 if T <
( √

π
2ζ(3/2)

8π
ν

)2/3 (µ
a

)2/3
+ h2(ν)µ+ o(µ)

(2) ρ0 = 0 if T >
( √

π
2ζ(3/2)

8π
ν

)2/3 (µ
a

)2/3
+ h2(ν)µ+ o(µ).

We refer to [23] for the proof of these statements.

The second main result of [23] provides an expansion of the canonical
free energy (1.4) in the dilute limit. Here, we only state what happens for

ν = V̂ (0)/a→ 8π. We need to define an integral first:

I(s) = (2π)−3

∫
ln
(

1− e−
√
p4+16πp2s2

)
dp.

Remark 13. Let Tfc = c0ρ
2/3 be the critical temperature of the free Bose gas,

and ρfc = (T/c0)3/2 its corresponding critical density. In the limit ν → 8π,
the canonical free energy (1.4) can be expanded in the following way.
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(1) If T > Tfc

(
1 + 1.49ρ1/3a+ o(ρ1/3a)

)
, then

F can(T, ρ) = F0(T, ρ) + V̂ (0)ρ2 +O(ρa)5/2,

and we have ργ = ρ, ρ0 = 0 for the minimizer. Here, F0(T, ρ) is the
free energy of the non-interacting gas at density ρ and temperature
T .

(2) If T < Tfc

(
1 + 1.49ρ1/3a+ o(ρ1/3a)

)
, then

F can(T, ρ) = 4πaρ2 + 4πaρ2
fc +

512

15

√
π(ρa)5/2

+ T 5/2I

(√
(ρ− ρfc)a

T
+

1

4
√
π

√
Ta

)
− 4
√
πTρfca

√
(ρ− ρfc)a

+ o
(
T (ρa)3/2 + (ρa)5/2

)
.

The last expression reduces to the Lee–Huang–Yang formula for T � ρa:

F can(T, ρ) = 4πaρ2 +
512

15

√
π(ρa)5/2 + o(ρa)5/2.

2.5. Sketch of proofs and set-up of the paper. The rest of the paper
is devoted to the proofs of the statements described in Subsections 2.1, 2.2
and 2.3.

In Section 3 we provide some general facts that will be useful throughout
the paper.

Section 4 contains the proofs of Theorems 1 and 4. Section 5 provides
proofs of Theorems 2 and 5.

The proof of the existence of minimizers in our model is harder than in
the case of the fermionic BCS functional [13]. The main reason for this
is the occurrence of Bose–Einstein Condensation (BEC). Loosely speaking,
at sufficiently low temperatures bosons tend to macroscopically occupy the
same quantum state. Since in our model the momentum distribution of the
particles is described by γ(p), this suggests that there is no a priori bound on
this function. Therefore, a minimizing sequence could convergence to a mea-
sure which could have a singular part that represents the condensate. This
scenario, however, has been included in the construction of the functional
by introducing the parameter ρ0 that represents the condensate density.

The situation for is simpler for fermions as there is an a priori bound on
γ: the Pauli principle implies that γ ≤ 1.

Let us now present the main ideas behind the proof. We start by refor-
mulating the problem in terms of an auxiliary functional. We show that to
prove the main theorem it is enough to prove the existence of a minimizer
for the problem

F aux(λ, ρ0) = inf

{
Faux(γ, α, ρ0)

∣∣∣∣
∫
γ(p)dp = λ, (γ, α) ∈ D′

}
,

where

Faux = F + µρ− V̂ (0)

2
ρ2

and

D′ = {(γ, α) | γ ∈ L1((1 + p2)dp), γ(p) ≥ 0, α(p)2 ≤ γ(p)(γ(p) + 1)}.
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We will see below that all terms in F are bounded on D′.
The advantage of considering a functional for fixed ρ0 is that one obtains

joint convexity in (γ, α).
To prove the existence of minimizers for the auxiliary problem (which is a

constrained minimization problem), we consider the dual problem. We also
restrict our functional to the smaller space

Mκ = {(γ, α) ∈ D′|γ(p) ≤ κ

p2
}.

Note that restricting the domain toMκ imposes an artificial a priori bound
which is used to prove the existence of minimizers for this restricted problem.
The idea is then to construct a minimizing sequence of the unrestricted
problem out of the minimizers γκ of the restricted problem in the limit
κ→∞.

To this end we prove several bounds for the γκ’s. These bounds show that
the minimizers are uniformly bounded for p such that |p| ≥ pκ where pκ → 0
as κ→∞. Thus, physically speaking, we show that if there is condensation,
then it can occur only in the p = 0 mode.

The last main step is then to show that mass accumulation at p = 0 is
impossible for a minimizer, since this would increase the energy compared
to a solution where the mass would be added to ρ0 from the start.

The proof that we sketched above only works for T > 0 since the bounds
we mentioned are not uniform in T and deteriorate as T → 0. It turns
out that the positive temperature minimizers (γT , αT , ρT0 ) form a uniformly
equicontinuous family that is also a minimizing sequence for the T = 0
problem. Using the Arzelà–Ascoli theorem one can then extract a limit
which turns out to be a minimizer.

The proofs of Theorems 8 and 9 as well as the proof of Theorem 7 and
the discussion of the grand canonical phase diagram are provided in Section
6.

As mentioned in the introduction, we provide an introduction to Bogoli-
ubov’s variational theory and a derivation of the functional in Appendix
A.

3. Preliminaries

Let us start with several remarks and bounds which will be used later.
Throughout the proofs C,C1, ... stand for unspecified universal constants.

Recall the notation

β(p) :=

√
(
1

2
+ γ(p))2 − α(p)2.

Since

s(β) = −(β − 1

2
) ln(β − 1

2
) + (β +

1

2
) ln(β +

1

2
)

and
∂s(β)

∂β
= ln

β + 1
2

β − 1
2

we have

s(γ, α) < s(γ, 0), if α 6= 0. (3.1)
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Several bounds will rely on the decomposition α = α< +α> where α< :=
α1{γ<1} and α> := α1{γ≥1}. The condition

α2 ≤ γ2 + γ (3.2)

then implies that |α>| ≤
√

2γ and |α<| ≤
√

2
√
γ. Thus using the assump-

tions on V and V̂ we have∣∣∣∣
∫
V̂ (p)α(p)dp

∣∣∣∣ ≤
∫

{γ≥1}

V̂ (p)|α>(p)|dp+

∫

{γ<1}

V̂ (p)|α<(p)|dp

≤
∫

{γ≥1}

V̂ (p)
√

2γ(p)dp+

∫

{γ<1}

V̂ (p)
√

2
√
γ(p)dp

≤
√

2V̂ (0)

∫

{γ≥1}

γ(p)dp+
√

2

∫

{γ<1}

V̂ (p)dp < C(‖γ‖1, V̂ ).

(3.3)

Similarly
∫∫

V̂ (p− q)α(p)α(q)dpdq =

∫∫
V̂ (p− q)α>(p)α>(q)dpdq

+

∫∫
V̂ (p− q)α<(p)α<(q)dpdq + 2

∫∫
V̂ (p− q)α>(p)α<(q)dpdq

< C(‖γ‖1, ‖V̂ ‖1, ‖V̂ ‖∞),

since
∫∫

V̂ (p− q)α>(p)α>(q)dpdq ≤ V̂ (0)

(∫
|α>|

)2

≤ 2V̂ (0)

(∫
γ

)2

,

∫∫
V̂ (p− q)α<(p)α<(q)dpdq ≤ 2

∫∫
V̂ (p− q)

√
γ(p)

√
γ(q)dpdq

≤
∫∫

V̂ (p− q)(γ(p) + γ(q))dpdq = 2

(∫
V̂

)(∫
γ

)

and ∫∫
V̂ (p− q)α>(p)α<(q)dpdq ≤ 2

∫∫
V̂ (p− q)γ(p)dpdq.

Obviously
∫∫

V̂ (p− q)α(p)α(q)dpdq =

∫
V (x)|α̌(x)|2dx ≥ 0. (3.4)

Another useful consequence of (3.2) is the lower pointwise bound

γ + α ≥ −1

2
. (3.5)

For the convolution terms one easily sees that

‖V̂ ∗ γ‖∞ ≤ ‖V̂ ‖∞‖γ‖1 ≤ C(‖γ‖1, ‖V̂ ‖1, ‖V̂ ‖∞), (3.6)

‖V̂ ∗ α‖∞ ≤ ‖V̂ ‖∞‖α>‖1 + ‖V̂ ‖2‖α<‖2 ≤ C
(
‖γ‖1, ‖V̂ ‖1, ‖V̂ ‖∞

)
. (3.7)
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We will also use the following lower bound on the free energy of a non-
interacting system

∫
p2γ − T

∫
s(β) ≥

∫
p2γ0 − T

∫
s(γ0, 0)

= T

∫
ln

(
1− e−p

2

T

)
dp > −C, (3.8)

where γ0 =
(
exp(p2/T )− 1

)−1
. This follows from (3.1) and a direct compu-

tation. It follows, in particular, that all terms in F are bounded on D′.

4. Existence of minimizers for T > 0

4.1. Reduction to the auxiliary problem. Let us introduce the auxiliary
free energy functional defined by

Faux(γ, α, ρ0) =

∫
p2γ(p)dp− T

∫
s(γ(p), α(p))dp

+ ρ0

∫
V̂ (p)(γ(p) + α(p))dp

+
1

2

∫∫
V̂ (p− q)(γ(p)γ(q) + α(p)α(q))dpdq.

For notational simplicity, we have absorbed (2π)−3 in every integral com-
pared to (1.1), so that the measure is really (2π)−3dp. We will use the
same convention for the real space measure dx, but not for one-dimensional
measures dt or ds. We introduce the following minimization problem

F aux(λ, ρ0) = inf

{
Faux(γ, α, ρ0)

∣∣∣∣
∫
γ(p)dp = λ, (γ, α) ∈ D′

}
, (4.1)

where

D′ = {(γ, α) | γ ∈ L1((1 + p2)dp), γ(p) ≥ 0, α(p)2 ≤ γ(p)(γ(p) + 1)}.
Proposition 14. The existence of a minimizer for the auxiliary problem
(4.1) implies the existence of minimizers for the grand canonical problem
(1.2) and canonical problem (1.4).

To prove this proposition we will need two lemmas.

Lemma 15. The functional Faux is jointly (strictly) convex in (γ, α) and
D′ is a convex set.

Proof. First notice that the Hessian of −s(γ, α) regarded as a function

of γ and α is positive definite. Since V ≥ 0 the expressions
∫∫

V̂ (p −
q)γ(p)γ(q)dpdq and

∫∫
V̂ (p− q)α(p)α(q)dpdq are convex in γ and α respec-

tively. It follows that Faux as a sum of jointly convex functions is jointly
convex in (γ, α). Convexity of D′ follows from a simple calculation. �

Lemma 16. The function F aux(λ, ρ0) is convex in λ, concave in ρ0 and
continuous as a function of two variables.

Proof. Convexity in λ. This is straightforward from the convexity in Lemma
15.
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL I. 13

Concavity in ρ0. This follows from the fact that minimization of a func-
tional that is linear in a variable yields a concave function in that variable.

Continuity of F aux(λ, ρ0). Define

F̃aux(γ, α, ρ0) =

∫
p2γ(p)dp− TS(γ, α)

+
1

2

∫∫
V̂ (p− q)(γ(p) + ρ0δ0)(γ(q) + ρ0δ0)dpdq

+
1

2

∫∫
V̂ (p− q)(α(p) + ρ0δ0)(α(q) + ρ0δ0)dpdq,

where δ0 is the Dirac Delta function. Then as before F̃aux is jointly convex
in (γ, α, ρ0). Then

F̃ aux(λ, ρ0) = inf
(γ,α)∈D′∫

γ=λ

F̃aux(γ, α, ρ0)

is jointly convex in λ and ρ0 and hence continuous on (0,∞)× (0,∞).
We now consider the points of the form (λ∗, 0) with λ∗ > 0 on the bound-

ary. By convexity, we have

lim
(λ,ρ0)→(λ∗,0)

F̃ aux(λ, ρ0) ≤ F̃ aux(λ∗, 0),

where the limit on the left is independent of the way we approach the bound-
ary point. To show the opposite inequality, note that we can use approximate
minimizers for (λ∗, ρ0) as trial states for (λ∗, 0) by plugging them in with
ρ0 = 0. In the limit ρ0 → 0, these trial states approximate the limit above,
proving continuity at this boundary.

The boundary (0, ρ∗0) with ρ∗0 ≥ 0 can be treated in the same way, where
we use the estimates from Section 3 to estimate the terms involving γ and
α as λ→ 0.

It follows that F aux(λ, ρ0) = F̃ aux(λ, ρ0)− ρ2
0V̂ (0) is continuous as well.

�

Proof of Proposition 14. As F aux is continuous we conclude that F aux(ρ −
ρ0, ρ0) has a minimizing ρ0 satisfying 0 ≤ ρ0 ≤ ρ. The problem (1.4) is then
minimized for this ρ0 and the (γ, α) that minimizes (4.1).

In the grand canonical case, by the definitions of F (T, µ) and F aux(λ, ρ0)
we have

F (T, µ) = inf
λ,ρ0

[
F aux(λ, ρ0)− µ(λ+ ρ0) +

V̂ (0)

2
(λ+ ρ0)2

]
. (4.2)

Using (3.5) and (3.8) we see that

F aux(λ, ρ0) ≥ −C1ρ0 − C2.

Thus there exists an infimum in (4.2) that (by continuity of the underlying
function) is also a minimum. For given µ and T we can find the correspond-
ing minimizing λ and ρ0 and thus by the assumption of the existence of a
minimizer for Faux we find a minimizer for F(γ, α, ρ0). �
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4.2. The dual auxiliary problem. We now proceed to the proof of the
existence of a minimizer for the auxiliary problem (4.1). This is a problem of
constrained minimization. By Lemma 16 the function F aux(λ, ρ0) is convex
in λ. Thus the constrained minimization problem (4.1) is equivalent to the
unconstrained dual auxiliary problem:

F̂ aux(δ, ρ0) := inf
(γ,α)∈D′

{
Faux(γ, α, ρ0)− δ

∫
γ

}
=: inf

(γ,α)∈D′
Faux
δ (γ, α, ρ0),

(4.3)

where δ is chosen as the slope of a supporting hyperplane at λ for the convex
function λ 7→ F aux(λ, ρ0).

Before we move on let us state a simple property of the dual auxiliary
functional.

Lemma 17 (Radiality of minimizers). A minimizer (γ, α) of (4.3) (and
therefore (4.1)), if it exists, is radial:

(γ(Rp), α(Rp)) = (γ(p), α(p)) for any R ∈ SO(3).

Proof. The strict convexity in Lemma 15 implies that a minimizer of (4.1)
(and hence (4.3)) is unique assuming it exists. The result follows since
p 7→ (γ(Rp), α(Rp)) is a minimizer if p 7→ (γ(p), α(p)) is. �

Lemma 18 (Coercivity). Let δ ∈ R. The functional Faux
δ (γ, α, ρ0) is coer-

cive in γ, i.e. there exist constants C1, c2, c3 > 0 depending on T , ρ, δ and
V such that for 0 ≤ ρ0 ≤ ρ

Faux(γ, α, ρ0)− δ
∫
γ ≥ −C1 + c2

∫
p2γ(p)dp+ c3

∫
γ.

In particular, any minimizing sequence γn is bounded in L1(R3, dp) and
L1(R3, p2dp). Moreover, c2 and c3 are independent of T and C1 is bounded
as T goes to zero.

Proof. By (3.5), (3.1) and (3.4) it follows that

Faux(γ, α, ρ0)− δ
∫
γ ≥ 1

2

∫
p2γ(p)dp− T

∫
s(γ, 0)dp− 1

2
ρ0

∫
V̂ (p)dp

+
1

8

∫
p2γ(p)dp+

1

2

∫
(
3

4
p2 − 2δ)γ(p)dp+

1

2

∫∫
V̂ (p− q)γ(p)γ(q)dpdq.

(4.4)

The first two terms on the right-hand side of (4.4) are bounded from below
by a constant CT that depends only on T in the same way as in (3.8). It
thus remains to bound from below the last two terms in (4.4). To this end
we split γ into two parts: γin with support in {p|34p2 − 2δ ≤ εδ} and γout

with support in {p|34p2 − 2δ > εδ}, where some εδ > 2|δ| is chosen. Then

1

2

∫
(
3

4
p2 − 2δ)γ(p)dp+

1

2

∫∫
V̂ (p− q)γ(p)γ(q)dpdq ≥ εδ

2

∫
γout − δ

∫
γin

+
1

2

∫∫
V̂ (p− q)γin(p)γin(q)dpdq,
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL I. 15

where we have left out the other positive terms coming from the convolution.
Since

|∇γ̌in(x)| ≤
∫
|p|γin(p)dp,

we have

|∇γ̌in(x)| ≤ Cδγ̌in(0),

and hence γ̌in(x) ≥ 1
2 γ̌in(0) for sufficiently small |x| depending only on δ.

Also, by continuity, we have V (x) > 1
2V (0) for sufficiently small |x|. Let Bδ

denote the ball where both these conditions are fulfilled. Note that such a
ball can be chosen independently of γ. It follows that

1

2

∫∫
V̂ (p− q)γin(p)γin(q)dpdq ≥ |Bδ|

8
V (0)

(∫
γin

)2

.

Together with the previous estimate this implies that

Faux
δ (γ, α, ρ0) ≥ −CT +

1

8

∫
p2γ(p)dp+

εδ
2

∫
γout − δ

∫
γin + Cδ,V

(∫
γin

)2

.

Since
∫
γ =

∫
γin +

∫
γout the lemma follows. �

Unfortunately, since L1 is not reflexive, the boundedness of the minimizing
sequence (which follows from the lemma above) is not enough to extract a
weakly converging subsequence. We therefore consider the restricted dual
auxiliary problem, by which we mean the problem of finding

F̂ aux
κ (δ, ρ0) = inf

(γ,α)∈Mκ

Faux
δ (γ, α, ρ0), (4.5)

where κ ≥ 1 and

Mκ = {(γ, α) ∈ D′|γ(p) ≤ κ

p2
}. (4.6)

Proposition 19 (Existence of minimizers for the restricted problem). There
exists a minimizer for the restricted problem (4.5).

Proof. Step 1. Let (γn, αn) be a minimizing sequence inMκ. It follows from
Lemma 18 that ‖γn‖1 < C and that

∫
p2γn(p)dp < C for some constant C

depending on T, V and δ, but independent of n.
Step 2. We claim that (γn, αn) is a bounded sequence in Ls(R3)×Ls(R3)

for s ∈ (6
5 ,

3
2). To this end consider the set

An = {p | γn(p) > 1}.
Since ∫

R3

γn ≥
∫

An
γn ≥ |An|,

the condition ‖γn‖1 < C implies that for any n we have |An| < C. Further-
more for s ∈ (1, 3

2) we have

‖γn‖ss =

∫

R3\An
γsn +

∫

An
γsn ≤

∫

R3\An
γn +

∫

An

κs

p2s
dp < C, (4.7)
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16 M. NAPIÓRKOWSKI, R. REUVERS, AND J. P. SOLOVEJ

where we used the restriction imposed by (4.6). Indeed, by the previous
step we have

∫
R3\An γn < C. To bound the last term we use the fact that

|An| < C. Then
∫

An

κs

p2s
dp =

∫

An∩B(0,1)

κs

p2s
dp+

∫

An\B(0,1)

κs

p2s
dp ≤

∫

B(0,1)

κs

p2s
dp+ |An|κs,

which is bounded uniformly in n for s < 3
2 . Here, B(0, 1) denotes the unit

ball centred at the origin. Let us now consider the bound on ‖αn‖s. Using
(3.2) we have

‖αn‖ss =

∫

R3\An
|αn|s +

∫

An
|αn|s ≤ 2

s
2

∫

R3\An

√
γn

s + 2
s
2

∫

An
γsn.

By (4.7), the last term is bounded uniformly in n. To bound the other term,
notice that by the uniform bound

∫
p2γn(p)dp < C it follows from Hölder’s

inequality that
∫

R3\An
γ
s
2
n =

∫

(R3\An)∩B(0,1)
γ
s
2
n +

∫

(R3\An)\B(0,1)
γ
s
2
n

≤ C +

∫

(R3\An)\B(0,1)

(p2γn)
s
2

ps
dp

≤ C +

(∫

(R3\An)\B(0,1)
p2γndp

) s
2
(∫

(R3\An)\B(0,1)
p

2s
s−2dp

) 2−s
2

.

For 6
5 < q < 3

2 a uniform bound follows.
Step 3. By the previous step, we can find a subsequence that converges

weakly, i.e. there exist (γ̃, α̃) ∈ Ls(R3)×Ls(R3) such that (γn, αn) ⇀ (γ̃, α̃)
for s ∈ (6

5 ,
3
2). Using Mazur’s Lemma we can replace the sequence with

convex combinations and get strong convergence and by going to a further
subsequence we can assume that the limit is pointwise almost everywhere.
As the functional is convex we still have a minimizing sequence. It follows
from Fatou’s Lemma that (γ̃, α̃) ∈ Mκ. To show that (γ̃, α̃) is a minimizer
we will prove that

lim inf
n→∞

Faux
δ (γn, αn) ≥ Faux

δ (γ̃, α̃).

Indeed,

1

2
p2γn(p)− Ts(γn(p), αn(p)) ≥ 1

2
p2γn(p)− Ts(γn(p), 0) ≥ T ln(1− e−p2/2T )

and the function on the right is integrable. Using the bound (4.6) we also see
that (1

2p
2 − δ)γn(p) is bounded below by an integrable function. The same

is true for V̂ (p)(γn(p) + αn(p)) using (3.5). The remaining quadratic terms
have positive integrands. Hence the result follows by Fatou’s Lemma. �

Remark 20. Lemma 18 implies that there exists a uniform bound on ‖γκ‖1.

This follows from the obvious observation that F̂ (δ, ρ0) ≤ 0.

Remark 21. In one and two dimensions, the restriction defined in (4.6) has
to be appropriately modified to obtain analogous results on the existence
of minimizers for the restricted functional. In fact, one needs to assume
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL I. 17

γ(p) ≤ κ/pm with m ∈ (1
2 , 1) and m ∈ (1, 2) in one and two dimensions

respectively.

One expects that by sending κ → ∞ one approaches the minimizer of
(4.3). In the next subsections we will implement this idea.

4.3. A priori bounds on γ and α. First, we show that any potential
minimizer γ is strictly positive almost everywhere.

Lemma 22 (Positivity of γ). Suppose (γ, α) is a minimizer for either the
unrestricted (4.3) or restricted (4.5) dual problem with T > 0, δ ∈ R, ρ0 ≥ 0,

and κ ≥ T . Then there exists a constant C := C
(
δ, ρ0, ‖γ‖1, V̂

)
such that

the set

S :=

{
p | γ < e−

p2+C
T

}
.

has zero measure.

Proof. Since κ ≥ T , we have κ/p2 ≥ e−p
2/T and the upper bound defining

S is within the restriction in (4.6). The functional derivative 1 of Faux
δ in γ

gives

∂Faux
δ

∂γ
= p2 − δ + ρ0V̂ (p) + V̂ ∗ γ(p)− T γ + 1

2

β
ln
β + 1

2

β − 1
2

.

Since 1
2 ≤ β =

√
(γ + 1

2)2 − α2 ≤ γ + 1
2 , we have

∂Faux
δ

∂γ
≤ p2 + C − T γ + 1

2

β
ln
β + 1

2

β − 1
2

≤ p2 + C − T ln
1

β − 1
2

,

where C := C
(
δ, ρ0, ‖γ‖1, V̂

)
follows from (3.6). Thus

∂Faux
δ

∂γ
< 0

if

β < e−
p2+C
T +

1

2
.

Since β ≤ γ + 1
2 , this certainly holds whenever

γ < e−
p2+C
T .

Thus the functional derivative is negative for p ∈ S. Hence, if the set had
positive measure, we would be able to lower the free energy by increasing γ
on it. This would contradict the assumption that (γ, α) is a minimizer. �

From now on we assume that κ > T . The next lemma provides a priori
bounds on α. We will show that α(p)2 < γ(p) (γ(p) + 1) holds almost every-
where for minimizers of (4.3) or (4.5). Note that the statement is vacuous
if γ(p) = 0. This possibility is, however, excluded (almost everywhere) by
Lemma 22.

1We use the notation where
∂Faux

δ
∂γ

is defined by
∫ ∂Faux

δ
∂γ

(p)φ(p)dp =
d
dt
Faux
δ (γ + tφ, α)

∣∣
t=0

.
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Lemma 23. Suppose (γ, α) is a minimizer for either (4.3) or (4.5) with
T > 0, δ ∈ R and ρ0 ≥ 0. Then the set

P :=

{
p |α(p)2 > γ(p) (γ(p) + 1)− e−C/(Tc(γ(p))), α(p)2 >

1

2
γ(p) (γ(p) + 1)

}

has zero measure. Here C := C
(
ρ0, ‖γ‖1, V̂

)
is a constant and

c(γ) :=

√
2γ(γ + 1)

2γ(γ + 1) + 1
.

Proof. The functional derivative of Faux
δ in α gives

∂Faux
δ

∂α
= ρ0V̂ (p) + V̂ ∗ α(p) + T

α

β
ln
β + 1

2

β − 1
2

.

Assume first that α(p)2 > 1
2γ(p) (γ(p) + 1). Then

∣∣∣∣
α

β

∣∣∣∣ ≥
√

1
2γ (γ + 1)

γ(γ + 1) + 1
4 − α2

≥
√

1
2γ (γ + 1)

1
2γ(γ + 1) + 1

4

= c(γ).

Another estimate that holds by the assumptions on V and inequality (3.7)
is ∣∣∣ρ0V̂ (p) + V̂ ∗ α(p)

∣∣∣ ≤ ρ0‖V̂ ‖∞ + ‖V̂ ∗ α‖∞ ≤ C
(
ρ0, ‖γ‖1, V̂

)
.

If α ≥
√

1
2γ(p)(γ(p) + 1), then

∂Faux
δ

∂α
≥ −C + Tc(γ) ln

β + 1
2

β − 1
2

≥ −C + Tc(γ) ln
1

β − 1
2

,

where we have used β ≥ 1
2 in addition to the previous estimates. Similarly,

if α ≤ −
√

1
2γ(p)(γ(p) + 1), we estimate

∂Faux
δ

∂α
≤ C − Tc(γ) ln

β + 1
2

β − 1
2

≤ C − Tc(γ) ln
1

β − 1
2

.

In the first/second case the derivative is positive/negative whenever

β ≤ 1

2
+ e−C/(Tc(γ)),

and using the definition of β2 we find that this happens when

α2 > γ(γ + 1)− e−2C/(Tc(γ)) − e−C/(Tc(γ)).

This means that the derivative is positive for p in P and α(p) ≥ 0, and
negative for p in P and α(p) ≤ 0. Hence, if the set had positive measure, we
would be able to lower the energy by varying on it, which contradicts the
assumption that (γ, α) is a minimizer. �

Since we already know that γ(p) > 0 almost everywhere, this implies that

−
√
γ(p) (γ(p) + 1) < α(p) <

√
γ(p) (γ(p) + 1) almost everywhere. Thus

the Euler–Lagrange equation for α holds with equality for minimizers of
both (4.3) and (4.5).
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4.4. A priori bound for γ in the restricted case. The existence of
minimizers for (4.5), as well as the a priori bounds established in the previous
subsection give us access to the Euler–Lagrange equations for the restricted
problem. Indeed, we have

∂Faux
δ

∂γ
= p2 − δ + ρ0V̂ (p) + V̂ ∗ γ(p)− T γ + 1

2

β
ln
β + 1

2

β − 1
2

=

{
≤ 0 if γ(p) = κ/p2

= 0 if 0 ≤ γ(p) < κ/p2 (4.8)

∂Faux
δ

∂α
= ρ0V̂ (p) + V̂ ∗ α(p) + T

α

β
ln
β + 1

2

β − 1
2

= 0. (4.9)

We will now analyse these equations in order to derive a priori bounds
for γκ, the minimizer of the restricted problem. These bounds will then be
used to show convergence of γκ to a minimizer of the unrestricted problem
as κ→∞.

Lemma 24 (Large p a priori bound for γ). Let T > 0, δ ∈ R, and 0 ≤ ρ0 ≤
ρ. If (γ, α) is a minimizer for (4.5) with κ > max{1, T} there exist positive
constants P0 and C such that for |p| > P0, we have

γ(p) ≤ C|p|−4. (4.10)

Moreover, as T goes to zero P0 is uniformly bounded below and C uniformly
bounded above.

Proof. Assume α 6= 0. Using (4.9), Lemma 18 and (3.7) we see that there
is a P0 such that for |p| > P0

0 ≥ ∂Faux
δ

∂γ
≥ 1

2
p2 − T γ + 1

2

β
ln
β + 1

2

β − 1
2

=
1

2
p2 +

γ + 1
2

α

(
ρ0V̂ (p) + V̂ ∗ α(p)

)
≥ 1

2
p2 − Cγ + 1

2

|α| .
(4.11)

Hence, we have

α2

(
γ + 1

2

)2 ≤ Cp−4.

Note that we can now drop the assumption α 6= 0 since the above also holds
if α = 0. This implies

β2 =

(
γ +

1

2

)2
(

1− α2

(
γ + 1

2

)2

)
≥
(
γ +

1

2

)2 (
1− Cp−4

)
,

which can be rewritten as

γ + 1
2

β
≤
(
1− Cp−4

)− 1
2 . (4.12)

Returning to the second estimate in (4.11), we obtain

0 ≥ ∂Faux
δ

∂γ
≥ 1

2
p2 − T

(
1− Cp−4

)− 1
2 ln

β + 1
2

β − 1
2

.
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Rewriting this inequality leads to

β ≤ 1

2

exp
[
p2

2T

(
1− Cp−4

)1/2]
+ 1

exp
[
p2

2T (1− Cp−4)1/2
]
− 1

=
1

2
+

[
exp

[
p2

2T

(
1− Cp−4

)1/2
]
− 1

]−1

.

Combining this with (4.12) we finally obtain

γ +
1

2
≤
(
1− Cp−4

)−1/2

(
1

2
+

[
exp

[
p2

2T

(
1− Cp−4

)1/2
]
− 1

]−1
)
,

which is 1
2 + Cp−4 +O(p−8) for p large enough. �

Let γκ be a minimizer for the restricted problem (4.5) for a given κ. We
define

pκ := sup

{
|p|
∣∣∣ γκ(p) =

κ

p2

}
. (4.13)

Note that the bound on γκ for large |p| proved in Lemma 24 implies that
pκ cannot be infinite for any κ. We will therefore assume henceforth pκ is
finite. It could be that pκ = −∞ (in case the set (4.13) is empty). In that
case our proof works as well.

We shall now work towards a priori bounds on γ for small p. We start by
proving a lemma that we will use twice later on.

Lemma 25. Let a > 0 and f : [a,∞)→ [0,∞) be a non-negative, continu-
ously differentiable function. If |f ′(t)| < Ca for a ≤ t ≤ 2a. Then

∫

|p|≥a
f(|p|)−1d3p ≥ (2π2)−1a2Ca

−1 ln

(
1 +

Ca
f(a)

a

)
.

Proof. By assumption we have f(|p|) ≤ f(a) + Ca(|p| − a) for a ≤ |p| ≤ 2a.
Thus (recalling our convention for the measures dp and dt explained above
(4.1))

∫

|p|≥a
f(|p|)−1d3p ≥ (2π2)−1

∫ 2a

a
[f(a) + Ca(t− a)]−1 t2dt

≥ (2π2)−1a2

∫ a

0
[f(a) + Cat]

−1 dt

= (2π2)−1a2Ca
−1 ln

(
1 +

Ca
f(a)

a

)
.

�
To obtain the desired bound for small p we will apply this lemma to the

radial function f̃ given by

f̃(|p|) := γκ(p)−1, (4.14)

where γκ is a minimizer for the restricted problem (note this is indeed a
radial function by Lemma 17).

To this end we need to get a bound on the derivative of γ−1
κ . In the

calculations below we assume (γ, α) is a minimizer for (4.5) for a fixed δ ∈ R
and ρ0 ≥ 0 (we drop the subscript κ for convenience).
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We start our analysis from the Euler–Lagrange equations, which hold
with equality for |p| > pκ :

∂Faux
δ

∂γ
= p2 − δ + ρ0V̂ (p) + V̂ ∗ γ(p)− T γ + 1

2

β
ln
β + 1

2

β − 1
2

= 0

∂Faux
δ

∂α
= ρ0V̂ (p) + V̂ ∗ α(p) + T

α

β
ln
β + 1

2

β − 1
2

= 0.

(4.15)

By squaring, subtracting and taking a square root we obtain

ln
β + 1

2

β − 1
2

=
1

T

√(
p2 − δ + ρ0V̂ (p) + V̂ ∗ γ(p)

)2
−
(
ρ0V̂ (p) + V̂ ∗ α(p)

)2
,

which we denote by G(p). In particular, we have

β =
1

2

eG + 1

eG − 1
.

We also define

A(p) :=
1

T

(
p2 − δ + ρ0V̂ (p) + V̂ ∗ γ(p)

)

B(p) :=
1

T

(
ρ0V̂ (p) + V̂ ∗ α(p)

)
.

(4.16)

Combined with (4.15) this leads to

γ = β

[
ln
β + 1

2

β − 1
2

]−1

A− 1

2
=

1

2

[
eG + 1

G(eG − 1)
A− 1

]
. (4.17)

We know that γ ≤ κ/p2 and also that the expression above is correct for |p| >
pκ. Therefore the denominator cannot go to zero in this region (implying G
cannot go to zero). Combining this with the relation between G and A we
obtain

A ≥ G > 0. (4.18)

Together with (4.17), this implies

γ−1 =
2G(eG − 1)

eG(A−G) +A+G
≤ (eG − 1) ≤ (eA − 1). (4.19)

Recall the definition (4.14). From (4.19) it follows that on (pk,∞) we have

f̃ ′(|p|)
2

=
G′
[
eG − 1 +GeG

]

D

− G(eG − 1)
[
G′eG(A−G) +A′(eG + 1) +G′(1− eG)

]

D2

=
1

D

[
GG′

(
eG − 1

G
+ eG

)]
−GG′G

D

eG − 1

G
eG
[
A

D
− G

D

]

−A′
(
G

D

)2 eG − 1

G

(
eG + 1

)
+GG′

(
eG − 1

G

)2(
G

D

)2

,

where D = eG(A − G) + A + G. Note that if P > pκ is bounded then all
terms except the first are bounded on pk < |p| ≤ P : A and A′ are bounded
by their form (4.16) and the assumptions on V ; G is bounded by A; D is
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bigger than or equal to both G and A. The boundedness of GG′ follows
from

G′ =
1

G

(
AA′ +BB′

)

and the boundedness from all terms between the brackets (B and B′ are
bounded for similar reasons as A and A′). It follows that

f̃ ′(p) ≤ C2

D(p)
+ C3 ≤

C2

A(p)
+ C3,

where the Ci := Ci(P, ‖V̂ ‖∞, ‖∇V̂ ‖∞, ‖γ‖1) are constants. To obtain a final

bound on f̃ ′(p) we need the following lemma.

Lemma 26. For pκ < |p| ≤ 1
2P , where P > 2pκ is a given constant, we

have

A(p) ≥ ln

[
1 + C1|p|e−

2π2C1‖γ‖1
p2

]
,

where C1 := C1(P, ‖V̂ ‖∞, ‖∇V̂ ‖∞, ‖γ‖1) is a constant.

Proof. In order to apply Lemma 25 we define the function

f(|p|) := eA(p) − 1.

By (4.16), (4.18) and our assumptions on V it follows that f is positive and
continuously differentiable. To apply Lemma 25, we need a bound on its
derivative for |p| ∈ (pκ, P ). Since A and A′ are bounded for pκ < |p| ≤ P
we have

|f ′(|p|)| = |A′(|p|)|eA(|p|) ≤ C1(P, ‖V̂ ‖∞, ‖∇V̂ ‖∞, ‖γ‖1).

Using Lemma 25 and (4.19), we now get for pκ < |p| ≤ 1
2P

‖γ‖1 ≥
∫

|ξ|≥|p|
f(|ξ|)−1d3ξ ≥ (2π2)−1p2C−1

1 ln
[
1 + C1|p|(eA(p) − 1)−1

]
.

Rewriting this proves the lemma. �

It follows that

f̃ ′(p) ≤ C2

ln

[
1 + C1|p|e−

2π2C1‖γ‖1
p2

] + C3 =: η(|p|). (4.20)

Since the function η is decreasing, we can bound it on the interval [|p|, 2|p|]
by its value at |p|.

Lemma 27 (Small p a priori bound for γ). For pk < |p| ≤ P0 (where P0

was defined in Lemma 24), we have

γ(p) ≤ |p|−1η(|p|)−1e
2π2‖γ‖1η(|p|)

p2 , (4.21)

where η is defined in (4.20) with P replaced by 2P0 (in the dependence of
the constants).
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Proof. Equation (4.20) gives us the bound required to apply Lemma 25. We
therefore get

‖γ‖1 ≥
∫

|ξ|≥|p|
f̃(|ξ|)−1d3ξ ≥ (2π2)−1p2η(|p|)−1 ln [1 + |p|η(|p|)γ(p)] ,

which gives the stated result upon rewriting. �
Remark 28. All a priori bounds derived in this subsection remain (up to
minor modifications) true in one and two dimensions.

Equipped with these bounds we shall move towards the proof of existence
of minimizer for the dual auxiliary problem.

4.5. Existence of minimizers for the dual auxiliary problem. In this
section we prove the existence of a minimizer for F aux(λmin, ρmin

0 ), where
(λmin, ρmin

0 ) corresponds to the minimum of the function F aux(λ, ρ0). As ex-

plained before, this is equivalent to finding a minimizer for F̂ aux(δmin, ρmin
0 )

(recall (4.1) and (4.3)), and therefore, by Proposition 14, to the existence of
minimizers for the initial problems (1.2) and (1.4). The goal of this subsec-
tion is thus to prove the following theorem.

Theorem 29 (Existence of unconstrained minimizers). There exists a min-
imizer (γ̃, α̃) for the dual auxiliary problem (4.3) with δ = δmin, ρ0 = ρmin

0

and T > 0.

As we have proved in Proposition 19, for given δ, ρ0 and κ we can find
(γκ, ακ) that minimize the restricted problem (4.5). We would like to com-
bine the bounds in Lemmas 24 and 27 to extract a minimizer for the dual
auxiliary problem (4.3) from the sequence (γκ, ακ). To do this, we first need
to prove that we can actually reach the whole of |p| > 0 using the regions
|p| > pκ.

Lemma 30. There exists a subsequence of (γκ, ακ) such that pκ → 0 as
κ→∞.

Proof. First note that the assumption that lim infκ→∞ pκ = c > 0 together
with Lemma 27 and the uniform bound on ‖γκ‖1 will lead to a contradiction
if we can show that

lim
|p|↘pκ

γk(p) =
κ

p2
κ

. (4.22)

Indeed, in this situation the left-hand side of (4.21) tends to infinity, whereas
the right-hand side is bounded yielding a contradiction. We conclude that
lim infκ→∞ pκ ≤ 0 and hence we can extract a subsequence that has pκ → 0.

To prove (4.22), we first claim there exist γ̃, α̃ and associated β̃ such that

p2 − δ + ρ0V̂ (p) + V̂ ∗ γκ(p)− T γ̃ + 1
2

β̃
ln
β̃ + 1

2

β̃ − 1
2

= 0

ρ0V̂ (p) + V̂ ∗ ακ(p) + T
α̃

β̃
ln
β̃ + 1

2

β̃ − 1
2

= 0

(4.23)

is satisfied for |p| > pκ − ε for some ε > 0. Of course we know that (γκ, ακ)
fulfils this equation for |p| > pκ, but we can do a little better. To see that
such γ̃ and α̃ exist, consider the explicit expression (4.17) for γ̃ in terms of
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G and A which follows from (4.23) as before (and only depends on γκ and
ακ). In particular, we know that as long as |p| ≥ pκ the denominator in
(4.17) does not go to zero since the γκ ≤ κ/p2 for |p| > pκ. Since G and A
are continuous everywhere, we can infer that there has to be a small region
|p| > pκ− ε where there exist continuous γ̃ and α̃ that satisfy (4.23) (which
have to coincide with γκ for |p| > pκ, but may not do so otherwise).

Now suppose that γ̃(p) < κ/p2
κ for |p| = pκ. By continuity and the

argument above, we then also have that γ̃(p) < κ/p2 on (a possibly smaller
region) pκ − ε < |p| ≤ pκ. By the definition of pκ we must then have that
γκ(p) > γ̃(p) on a set of positive measure. Since the entropy derivative is
strictly increasing in γ, we have for such p that

∂Faux
δ

∂γκ
= p2 − δ + ρ0V̂ (p) + V̂ ∗ γκ(p)− T γκ + 1

2

βk
ln
βk + 1

2

βk − 1
2

> 0.

This contradicts the fact that γκ is part of a minimizer (which should always
satisfy (4.8)). We conclude that (4.22) is true. �

This lemma implies that we can pick a subsequence pκ that is decreasing
and tends to zero. This is what we will assume from now on.

We now show that the corresponding (γκ, ακ) form a minimizing sequence
of the dual auxiliary problem (4.3).

Lemma 31. Let (γk, αk, ρ0) be minimizers for the restricted problem (4.5).
We then have

lim
κ→∞

Faux
δ (γκ, ακ, ρ0) = inf

(γ,α)∈D′
Faux
δ (γ, α, ρ0).

Proof. Let (γ, α) be a general element in D′. We will show that its energy
can always be approximated by the energy of a sequence of elements inMκ.
We simply define the functions:

γ̃κ = γ 1(γ ≤ κ/p2)

α̃κ = α 1(γ ≤ κ/p2),

which implies (γ̃κ, α̃κ) ∈ Mκ. It follows from Lebesgue’s Dominated Con-
vergence Theorem that

Faux
δ (γ̃κ, α̃κ, ρ0)→ Faux

δ (γ, α, ρ0).

Since we know that the (γκ, ακ) are minimizers for the restricted problems,
we have

Faux
δ (γκ, ακ, ρ0) ≤ Faux

δ (γ̃κ, α̃κ, ρ0).

By taking a limit in κ followed by an infimum over D′, we obtain

lim sup
κ→∞

Faux
δ (γκ, ακ, ρ0) ≤ inf

D′
Faux
δ (γ, α, ρ0),

which in combination with the easy observation (use Mκ ⊂ D′ to get the
inequality and then take the lim inf)

inf
D′
Faux
δ (γ, α, ρ0) ≤ lim inf

κ→∞
Faux
δ (γκ, ακ, ρ0)

leads to the desired conclusion. �
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We will now construct a candidate minimizer (γ̃, α̃) from the restricted
minimizers (γκ, ακ). Now it will be important that we are dealing with
(δmin, ρmin

0 ) and not just any (δ, ρ0).

Proposition 32. Let (γκ, ακ) be a sequence of minimizers for F̂ aux
κ (δmin, ρmin

0 )
(and hence a minimizing sequence for the dual auxiliary problem), such that
pκ decreases to zero. We can extract a new minimizing sequence, denoted
also (γκ, ακ), such that γκ → γ̃ pointwise and in L1, and ακ → α̃ pointwise
and (γ̃, α̃) ∈ D′.
Proof. Step 1. - pointwise convergence. Recall definition (4.13). For a
given p ∈ R3 define κ0(p) to be the smallest κ such that pκ < |p|. Let
h(p) := κ0(p)/p2. Let us call l(p) the function that defines the a priori large
p upper bound on γ(p), i.e. l(p) is the RHS of (4.10). Similarly, let s(p)
be the function that defines the a priori small p upper bound on γ(p), i.e.
s(p) is the RHS of (4.21). Note that using the fact that ‖γκ‖1 is bounded
uniformly in κ, the bound s(p) can be modified to be κ-independent. We
call this new bound s(p) as well. We then define the function

K(p) = max{h(p), l(p), s(p)}.
Note that for any κ we have

γκ(p) ≤ K(p).

Indeed, given a γκ and p we either have κ ≤ κ0(p) or κ > κ0(p). In the first
case we clearly have γκ(p) ≤ κ/p2 ≤ h(p). In the second case, by definition,
we have pκ ≤ |p| and thus γκ(p) ≤ max{l(p), s(p)}.

We use the function K(p) to introduce the weighted L2-space with the

measure dµ(p) = f(p)dp
(K(p))2

where f(p) is a strictly positive L1-function such

that the measure is finite (f has to decay sufficiently fast). We then have
the uniform bounds

‖γκ‖2L2(dµ(p)) =

∫
γ2
κf

K2
≤
∫
f < C,

‖ακ‖2L2(dµ(p)) =

∫
α2
κf

K2
≤
∫

(γ2
κ + γκ)f

K2
≤ C +

1

2

∫
γ2
κf

K2
+

1

2

∫
f

K2
< C.

These bounds allow us to extract a subsequence (γκ, ακ) that converges
weakly in the weighted L2-space. Next, applying Mazur’s Lemma, we can
obtain a strongly converging sequence of convex combinations, which – by
convexity of the functional (recall Lemma 15) – is also a minimizing se-
quence. Picking a further subsequence we can obtain a pointwise converging
subsequence. We denote the limiting functions by γ̃ and α̃. By the pointwise
convergence we have α̃2 ≤ γ̃(γ̃ + 1).

Step 2. Fatou’s lemma in combination with pointwise convergence implies
that ∫

(1 + p2)γ̃ =

∫
lim inf
κ→∞

(1 + p2)γκ ≤ lim inf
κ→∞

∫
(1 + p2)γκ. (4.24)

Recall that we have a uniform bound on ‖γκ‖L1((1+p2)dp). This means that

the integral on the left-hand side is bounded and therefore γ̃ ∈ L1((1+p2)dp).
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Step 3 - L1-convergence. By Lemma 31 we know that (γκ, ακ) form a mini-
mizing sequence. Thus, as we consider δmin, it follows that

∫
γκ → λmin.

Recall that the γκ are uniformly bounded by an L1 function on intervals
[ε,∞). This implies

∫

|p|>ε
γκ

κ→∞−−−→
∫

|p|>ε
γ̃

ε→0−−−→
∫
γ̃ (4.25)

where the first convergence follows by an application of the Dominated Con-
vergence Theorem (we have pointwise convergence and a uniform L1-bound
by (4.10) and (4.21)), and the second by the Monotone Convergence The-
orem. Furthermore, it follows from Fatou’s lemma that

∫
γ̃ ≤ λmin. First

that
∫
γ̃ = λmin. We use this to see that

∫
|γ̃ − γκ| ≤

∫

|p|>ε
|γ̃ − γκ|+

∫

|p|≤ε
γ̃ +

∫

|p|≤ε
γκ

≤
∫

|p|>ε
|γ̃ − γκ|+

∫

|p|≤ε
γ̃ +

∫
γκ −

∫

|p|>ε
γκ.

We use our observation (4.25) for the fourth term and apply the Dominated
Convergence Theorem to the first term to obtain

lim sup
κ→∞

∫
|γ̃ − γκ| ≤

∫

|p|≤ε
γ̃ + λmin −

∫

|p|>ε
γ̃

ε→0−−−→ 0.

Here, the last terms cancel because of our assumption on
∫
γ̃ and the con-

vergence in ε holds simply because γ̃ ∈ L1. This means that in this case we
have proved the proposition. It remains to show that

∫
γ̃ < λmin is impos-

sible.

Step 4. Assume
∫
γ̃ < λmin. We have

∫

|p|≤ε
γκ =

∫
γκ −

∫

|p|>ε
γκ

κ→∞−−−→ λmin −
∫

|p|>ε
γ̃

ε→0−−−→ λmin −
∫
γ̃ > 0.

This quantity is important for our proof, so we give it a name:

d := lim
ε→0

lim
κ→∞

∫

|p|≤ε
γκ > 0.
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We start with the following estimate (throwing out some positive terms,
using (3.5) and estimating the entropy for small p):

Faux(γκ,ακ, ρ
min
0 ) ≥

∫

|p|>ε
p2γκ + ρmin

0

∫

|p|>ε
V̂ (γκ + ακ)− 1

2
ρmin

0

∫

|p|≤ε
V̂

− T
∫

|p|>ε
s(γκ, ακ)− CTε3 − CT‖γκ‖

1
2
1 ε

3/2

+
1

2

∫

|p|>ε

∫

|q|>ε
V̂ (p− q)(γκ(p)γκ(q) + ακ(p)ακ(q))dqdp

+

∫

|p|≤ε

∫

|q|>ε
V̂ (q − p)(γκ(p)γκ(q) + ακ(p)ακ(q))dqdp

+
1

2

∫

|p|≤ε

∫

|q|≤ε
V̂ (p− q)γκ(p)γκ(q)dqdp.

(4.26)

Note that we have obtained the term in the fourth line twice since V̂ is
radial, which implies V̂ (p− q) = V̂ (q − p). For the entropy, we have used

∫

|p|<ε
s(γ, α) ≤

∫

|p|<ε
s(γ, 0) =

∫

|p|<ε
(1 + γ) ln(1 + γ)− γ ln γ. (4.27)

In the region where γ ≤ 1, the integrand is bounded by 2 ln(2) + 1. In the
region where γ > 1, we have

(1+γ) ln(1+γ)−γ ln γ = ln γ+(1+γ) ln(1+γ−1) ≤ ln γ+1+γ−1 ≤ √γ+2.

Together with (4.27), using Cauchy–Schwarz, this implies that
∫

|p|<ε
s(γ, α) ≤ Cε3 + C‖γκ‖

1
2
1 ε

3/2.

Continuing from (4.26), for |p| ≤ ε we estimate
∣∣∣∣∣

∫

|q|>ε
V̂ (q)γκ(q)dq −

∫

|q|>ε
V̂ (q − p)γκ(q)dq

∣∣∣∣∣ ≤ ε‖∇V̂ ‖∞‖γκ‖1, (4.28)

where we have used our assumptions on the differentiability of V̂ . To see
that a similar estimate holds for ακ, we note that by an argument identical
to (3.7) we have

∥∥∥∥∥∇
∫

|q|>ε
V̂ (q − p)ακ(q)dq

∥∥∥∥∥
∞

=

∥∥∥∥∥

∫

|q|>ε
∇V̂ (q − p)ακ(q)dq

∥∥∥∥∥
∞
≤ C

where C is a constant that can be chosen independent of κ. For |p| ≤ ε this
leads to ∣∣∣∣∣

∫

|q|>ε
V̂ (q)ακ(q)−

∫

|q|>ε
V̂ (q − p)ακ(q)

∣∣∣∣∣ ≤ εC.

Finally, for |q| ≤ ε,
∣∣∣∣∣

∫

|p|≤ε
V̂ (0)γκ(p)−

∫

|p|≤ε
V̂ (p− q)γκ(p)

∣∣∣∣∣ ≤ 2ε‖∇V̂ ‖∞‖γκ‖1.
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Using the last two estimates together with (4.28) in (4.26) and estimating
the third term of (4.26), we obtain

Faux(γκ,ακ, ρ
min
0 ) ≥

∫

|p|>ε
p2γκ + ρmin

0

∫

|p|>ε
V̂ (γκ + ακ)− T

∫

|p|>ε
s(γκ, ακ)

+
1

2

∫

|p|>ε

∫

|q|>ε
V̂ (p− q)(γκ(p)γκ(q) + ακ(p)ακ(q))dqdp

+

(∫

|p|≤ε
γκ(p)dp

)[∫

|q|>ε
V̂ (q)γκ(q)dq − ε‖∇V̂ ‖∞‖γκ‖1

]

−
∣∣∣∣∣

∫

|p|≤ε
ακ(p)dp

∣∣∣∣∣

[∣∣∣∣∣

∫

|q|>ε
V̂ (q)ακ(q)dq

∣∣∣∣∣+ εC
(
‖γκ‖1,∇V̂

)]

+
1

2

(∫

|q|≤ε
γκ(p)dp

)[
V̂ (0)

∫

|p|≤ε
γκ(q)dq − 2ε‖∇V̂ ‖∞‖γκ‖1

]

− Cρmin
0 ‖V̂ ‖∞ − CTε3 − CT‖γκ‖

1
2
1 ε

3/2.

Since |ακ| ≤ γκ + 1/2, we see that
∣∣∣∣∣

∫

|p|≤ε
ακ(p)dp

∣∣∣∣∣ ≤
∫

|p|≤ε
γκ(p)dp+ Cε3. (4.29)

and hence all the error terms in this expression tend to zero as ε→ 0.
We now choose κ(ε) such that it tends to infinity as ε→ 0 and such that∣∣∣limκ→∞

∫
|p|<ε γκ −

∫
|p|<ε γκ(ε)

∣∣∣ < ε. Then, in particular,

lim
ε→0

∫

|p|<ε
γκ(ε) − d→ 0. (4.30)

Combining this with (4.29) we find that

Faux(γκ(ε), ακ(ε), ρ
min
0 )

≥
∫

|p|>ε
p2γκ(ε) − T

∫

|p|>ε
s(γκ(ε), ακ(ε))

+ρmin
0

(∫

|p|>ε
V̂ γκ(ε) −

∣∣∣∣∣

∫

|p|>ε
V̂ ακ(ε)

∣∣∣∣∣

)

+
1

2

∫

|p|>ε

∫

|q|>ε
V̂ (p− q)(γκ(ε)(p)γκ(ε)(q) + ακ(ε)(p)ακ(ε)(q))dqdp

+d

∫

|p|>ε
V̂ γκ(ε) − d

∣∣∣∣∣

∫

|p|>ε
V̂ ακ(ε)

∣∣∣∣∣+
1

2
d2V̂ (0)− c(ε),

where the error c(ε) tends to zero as ε→ 0. We now define

γ̃ε = γκ(ε) 1(|p| > ε)

α̃ε = ±ακ(ε) 1(|p| > ε),

where the sign ± in the second equation is chosen such that∫

|p|≥ε
V̂ α̃ε ≤ 0.
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Then

Faux(γκ(ε), ακ(ε), ρ
min
0 ) ≥ Faux(γ̃ε, α̃ε, ρ

min
0 + d) +

1

2
d2V̂ (0)− c(ε). (4.31)

We will now show how (4.31) leads to a contradiction if d > 0. We first use
that applying the Legendre transform twice on a convex function yields the
original function (recall that F aux(λ, ρ0) is convex in λ). Thus

F aux(λ, ρ0) = sup
δ

[
inf
λ′

[
F aux(λ′, ρ0)− δλ′

]
+ δλ

]
,

and hence

F aux(λ, ρ0) = sup
δ

[
inf

(γ,α)∈D′

[
Faux(γ, α, ρ0)− δ

∫
γ

]
+ δλ

]
. (4.32)

Using Lemma 31 (recall that Faux
δ (γ, α, ρ0) = Faux(γ, α, ρ0)−δ

∫
γ) we note

that for any δ ∈ R:

F aux(λmin, ρmin
0 ) ≥ lim

κ→∞

[
Faux(γκ, ακ, ρ

min
0 )− δ

∫
γκ

]
+ δλmin.

Recalling our conclusion (4.31) and that (4.30) gives limε→0

∫
(γκ(ε)−γ̃ε) = d,

we obtain

F aux(λmin, ρmin
0 ) ≥ lim inf

ε→0

[
Faux(γ̃ε, α̃ε, ρ

min
0 + d)− δ

(∫
γ̃ε + d

)]

+
1

2
d2V̂ (0) + δλmin

≥ inf
(γ,α)∈D′

[
Faux(γ, α, ρmin

0 + d)− δ
∫
γ

]
+ δ(λmin − d)

+
1

2
d2V̂ (0),

where we have also used that (γ̃ε, α̃ε) ∈ D′ for all ε. By taking a supremum
over δ on both sides and using (4.32), we obtain

F aux(λmin, ρmin
0 ) ≥ F aux(λmin − d, ρmin

0 + d) +
1

2
d2V̂ (0).

Thus, if d > 0 we arrive at a contradiction with the fact that (λmin, ρmin
0 ) is

the minimum of F aux(λ, ρ0) as V̂ (0) ≥ 0 . This means the case
∫
γ < λmin

cannot occur. Since we had already proved the claims for the other case,
this concludes the proof of the proposition. �

We need a final lemma to show the existence of a minimizer for the dual
auxiliary problem.

Lemma 33. Let (γκ, ακ) and (γ̃, α̃) be as above. In particular, we have
γκ → γ̃ pointwise and in L1, and ακ → α̃ pointwise. We then have

lim inf
κ→∞

Faux
δmin(γκ, ακ, ρ

min
0 ) ≥ Faux

δmin(γ̃, α̃, ρmin
0 ).
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Proof. We recall that

Faux
δmin(γ, α, ρmin

0 ) =

∫
p2γ(p)dp− T

∫
s(γ(p), α(p))dp− δmin

∫
γ(p)dp

+ ρmin
0

∫
V̂ (p)(γ(p) + α(p))dp

+
1

2

∫ ∫
V̂ (p− q)(γ(p)γ(q) + α(p)α(q))dpdq.

(4.33)

The third term on the right-hand side simply converges because of the L1-
convergence of the γκ. The combination of the first two terms is bounded
below by an integrable function (as in (3.8)) and thus we can use pointwise
convergence in combination with Fatou’s lemma to conclude

∫
p2γ̃ − T

∫
s(γ̃, α̃) ≤ lim inf

κ→∞

(∫
p2γκ − T

∫
s(γκ, ακ)

)
.

To show that the fourth term in (4.33) also converges, we use two estimates.
The easier one is∣∣∣∣ρmin

0

∫
V̂ (γκ − γ̃)

∣∣∣∣ ≤ ρmin
0 ‖V̂ ‖∞

∫
|γκ − γ̃| , (4.34)

which goes to zero by the L1-convergence of the γκ. For the term involving
α̃, we write for ε > 0
∫

|p|≤ε
|ακ| =

∫

|p|≤ε,|γκ|≤1
|ακ|+

∫

|p|≤ε,|γκ|>1
|ακ| ≤ Cε3 +

√
2

∫

|p|≤ε
γκ,

where we have used the usual estimate on ακ in terms of γκ. Note that this
also holds for α̃ (in terms of γ̃). For |p| > ε and κ large enough we see from
|ακ|2 ≤ γκ(γκ+ 1) and Lemmas 24 and 27 that the Dominated Convergence
Theorem gives

lim
κ→∞

∫

|p|>ε
|α̃− ακ|2 = 0.

Hence∫
|V̂ ||α̃− ακ| ≤ ‖V̂ ‖∞

∫

|p|≤ε
|α̃− ακ|+

∫

|p|>ε
|V̂ ||α̃− ακ|

≤ ‖V̂ ‖∞
∫

|p|≤ε
(|α̃|+ |ακ|) +

(∫

|p|>ε
|V̂ |2

) 1
2
(∫

|p|>ε
|α̃− ακ|2

) 1
2

≤ C‖V̂ ‖∞ε3 +
√

2‖V̂ ‖∞
∫

|p|≤ε
(γκ + γ̃) + C

(∫

|p|>ε
|α̃− ακ|2

) 1
2

κ→∞−−−→ C‖V̂ ‖∞ε3 + 2
√

2‖V̂ ‖∞
∫

|p|≤ε
γ̃.

(4.35)

Since this holds for any ε > 0 and tends to 0 as ε → 0, we combine our
conclusion with the first estimate to see that the entire third term converges,
i.e.

ρmin
0

∫
V̂ (p) (γκ(p) + ακ(p)) dp→ ρmin

0

∫
V̂ (p) (γ̃(p) + α̃(p)) dp.
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Finally, we need to take care of the fifth term in (4.33). It is enough to
bound
∣∣∣∣∣

√∫∫
γ̃(p)V̂ (p− q)γ̃(q)dpdq −

√∫∫
γκ(p)V̂ (p− q)γκ(q)dpdq

∣∣∣∣∣ (4.36)

≤
√∫∫

(γκ(p)− γ̃(p))V̂ (p− q)(γκ(q)− γ̃(q))dpdq ≤ ‖V̂ ‖1/2∞ ‖γκ − γ̃‖1,

where we have used that V ≥ 0. This implies convergence of the γ-part of
the fifth term. Since we do not have L1-convergence for ακ, we need to use
a different method. We again need to control

∫∫
(ακ − α̃)(p)V̂ (p− q)(ακ − α̃)(q)dpdq

≤ 2

∫∫

|p|,|q|>ε
(ακ − α̃)(p)V̂ (p− q)(ακ − α̃)(q)dpdq

+2

∫∫

|p|,|q|<ε
(ακ − α̃)(p)V̂ (p− q)(ακ − α̃)(q)dpdq.

For the first integral we use
∫

|p|,|q|>ε
(ακ − α̃)(p)V̂ (p− q)(ακ − α̃)(q)dpdq =

=

∫
V (x)|F−1 ((ακ − α̃)1(|p| > ε)) |2dx

≤ ‖V ‖∞‖F−1 ((ακ − α̃)1(|p| > ε)) ‖22 = ‖V ‖∞
∫

|p|>ε
|ακ − α̃|2,

(4.37)

where F−1 denotes the inverse Fourier transform. The second integral is
bounded by

∫

|p|,|q|≤ε

(ακ − α̃)(p)V̂ (p− q)(ακ − α̃)(q)dpdq ≤ ‖V ‖1




∫

|p|≤ε

|ακ − α̃|dp




2

≤ ‖V ‖1
(
Cε3 + C

∫

|p|≤ε
(γκ + γ̃)

)2

,

(4.38)

where we used the same bound as in the first term of (4.35). Taking the
limit κ → ∞ followed by ε → 0 in (4.37), (4.38) and the bound above, we
see that we have convergence of the α-part of the fifth term. This concludes
the proof of the lemma. �

We are ready to prove the main statement of this subsection.

Proof of Theorem 29. We combine the previous two lemmas to obtain

inf
(γ,α)∈D′

Faux
δmin(γ, α, ρmin

0 ) = lim inf
κ→∞

Faux
δmin(γκ, ακ, ρ

min
0 ) ≥ Faux

δmin(γ̃, α̃, ρmin
0 )

≥ inf
(γ,α)∈D′

Faux
δmin(γ, α, ρmin

0 ),

Paper I

65



32 M. NAPIÓRKOWSKI, R. REUVERS, AND J. P. SOLOVEJ

where the first equality holds by Lemma 31 and the first inequality holds by
Lemma 33. We conclude that the (γ̃, α̃) constructed in Proposition 32 has
to be a minimizer. Indeed,

Faux
δmin(γ̃, α̃, ρmin

0 ) = inf
(γ,α)∈D′

Faux
δmin(γ, α, ρmin

0 ) = F̂ aux
(
δmin, ρmin

0

)

which concludes the proof. �

Remark 34. The statement remains true in one and two dimensions.

5. Existence of minimizers for T = 0

In this section, we prove Theorems 2 and 5. The proof of the existence
of minimizers for T > 0 relied upon the bounds derived in Section 4.4.
These showed that the minimizers of the restricted problem are uniformly
bounded for fixed T , which allowed us to extract a limit. However, the
bound deteriorates as T → 0 and hence the proof cannot be used for T = 0.
In this section we prove the existence of a minimizer for T = 0 in a different
way.

5.1. The grand canonical case. We first consider the grand canonical
functional. Note that the statement is trivial for T = 0 and µ ≤ 0, since in
this case the functional is obtained by taking expectation values of a positive
operator. The minimizer is given by the vacuum, i.e. (γ, α, ρ0) = (0, 0, 0).

The rest of this subsection is dedicated to proving the theorem for µ > 0.
By the main result of the previous section, we know that for any µ and
T > 0 there exists a minimizer of the grand canonical functional (1.1). In
this section, we will denote this functional as FT to make the T -dependence
explicit. As the proposition below shows, its minimizers at temperature T
actually form a minimizing sequence as T → 0 for the T = 0 case.

Proposition 35 (T = 0 minimizing sequence). Let (γT , αT , ρT0 ) be a mini-
mizer for F (T, µ) with µ, T > 0. Then

TS(γT , αT )
T→0−−−→ 0 and F0(γT , αT , ρT0 )

T→0−−−→ F (0, µ).

Proof. Let T1 < T2. Making use of the minimizers at these temperatures,
we obtain

FT1(γT1 , αT1 , ρT10 ) = F0(γT1 , αT1 , ρT10 )− T1S(γT1 , αT1)

≤ F0(γT2 , αT2 , ρT20 )− T1S(γT2 , αT2)

= F0(γT2 , αT2 , ρT20 )− T2S(γT2 , αT2) + (T2 − T1)S(γT2 , αT2)

≤ F0(γT1 , αT1 , ρT10 )− T2S(γT1 , αT1) + (T2 − T1)S(γT2 , αT2).

Comparing the first and last line we see that S(γT1 , αT1) ≤ S(γT2 , αT2), and
thus the entropy of the minimizers decreases when T does. Since it has to
be non-negative, this implies that TS(γT , αT )→ 0 as T → 0.

Now, note that for all (γ, α, ρ0) ∈ D one has

F0(γT , αT , ρT0 )− TS(γT , αT ) ≤ F0(γ, α, ρ0)− TS(γ, α).
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Taking a lim supT→0 followed by an infimum over (γ, α, ρ0) and combining
this with

lim inf
T→0

F0(γT , αT , ρT0 ) ≥ F (0, µ),

proves the second claim. �

Now that we know that
{

(γT , αT , ρT0 )
}
{T>0} is a minimizing sequence, we

would like to extract a limit out of it. This can in fact be done.

Proposition 36. There exists a subsequence of
{

(γT , αT , ρT0 )
}
{T>0} such

that γT → γ̃ pointwise and in L1, αT → α̃ pointwise and in L2, and ρT0 → ρ̃0.
Moreover, the limit is an admissible state, i.e. (γ̃, α̃, ρ̃0) ∈ D.

We will first state the proof of Theorem 2. The rest of this section will
then be dedicated to proving Proposition 36.

Proof of Theorem 2. As mentioned at the beginning of this section, the func-
tional with µ ≤ 0 has a minimizer γ = α = ρ0 = 0, so there is nothing left
to prove. We consider the case µ > 0. By Proposition 36, we can assume
that a suitable subsequence of (γT , αT , ρT0 ) has the convergence properties
stated. Let us recall what the relevant functional looks like:

F0(γT , αT , ρT0 ) =

∫
p2γT (p)dp− µρT +

1

2
V̂ (0)

(
ρT
)2

+ ρT0

∫
V̂ (p)(γT (p) + αT (p))dp

+
1

2

∫
V̂ (p− q)

[
αT (p)αT (q) + γT (p)γT (q)

]
dpdq.

We will show that this converges to something that is bigger than or equal
to F0(γ̃, α̃, ρ̃0), much like in Lemma 33. The first term can be treated by
Fatou’s lemma and pointwise convergence (see (4.24) for a similar appli-
cation). The second and third terms simply converge since ρT0 → ρ̃0 and
ρTγ → ργ̃ by L1-convergence. The remaining terms involving γT converge

because of L1-convergence (see estimates (4.34) and (4.36)). The quadratic
αT -term is taken care of using L2-convergence and the estimate (4.37), where
now the integrals are over all p and q. L2-convergence also suffices to show
convergence of the term linear in αT :

∣∣∣∣
∫
V̂ α̃−

∫
V̂ αT

∣∣∣∣ ≤
∫
V̂ |α̃− αT | ≤

(∫
|V̂ |2

)1/2(∫ ∣∣α̃− αT
∣∣2
)1/2

.

We have thus shown that

lim inf
T→0

F0(γT , αT , ρT0 ) ≥ F0(γ̃, α̃, ρ̃0).

Together with Proposition 35, this leads to

F (0, µ) = lim inf
T→0

F0(γT , αT , ρT0 ) ≥ F0(γ̃, α̃, ρ̃0) ≥ F (0, µ),

which proves that (γ̃, α̃, ρ̃0) is indeed a minimizer. �
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It remains to prove Proposition 36. As mentioned before, some bounds
in Section 4.4 cannot be obtained uniformly in T , so they are useless for
this case. However, the equivalent of Lemma 24 (with µ rather than δ) does
hold uniformly.

Lemma 37. Let µ ∈ R. There exist C,P0, T0 > 0 such that for all |p| > P0

and 0 < T ≤ T0, we have

γT (p) ≤ C|p|−4.

We also need the following lemma.

Lemma 38. For every µ > 0, there exists a temperature T1 > 0, such
that any minimizer of the grand canonical functional (1.1) at temperatures
0 ≤ T ≤ T1 and chemical potential µ has ρ0 > 0.

Proof. Assume that a minimizer has ρ0 = 0. This implies that its γ satisfies

FT (γ, 0, 0) ≤ inf
ρ0
FT (0, 0, ρ0) =

−µ2

2V̂ (0)
, (5.1)

since adding an α could only raise the energy (due to the monotonicity of
the entropy (3.1)). We have

FT (γ, 0, 0) =
1

2

∫
p2γ(p)dp+

1

2

∫
V̂ (p− q)γ(p)γ(q)dpdq (5.2)

+
1

2
V̂ (0)ρ2

γ − µργ (5.3)

+
1

2

∫
p2γ(p)dp− TS(γ, 0). (5.4)

Clearly,

(5.3) ≥ −µ2

2V̂ (0)
, (5.5)

and (5.4) can be bounded as in (3.8), i.e.

(5.4) ≥ −CT 5/2, (5.6)

where C is a positive constant. Since V̂ (0) > 0 and V̂ ∈ C1, we can pick

p0 > 0 small enough such that min|p|≤2p0 V̂ (p) > 0, and

(5.2) ≥ 1

2
p2

0

∫

|p|>p0
γ(p)dp+

1

2

(
min
|p|≤2p0

V̂ (p)

)(∫

|p|≤p0
γ(p)dp

)2

.

The last expression can be minimized in
∫
|p|≤p0 γ, where we also take into

account that it is less than ργ . The lower bounds we deduce are

1
2 min|p|≤2p0 V̂ (p)ρ2

γ if ργ ≤
p2

0

2 min|p|≤2p0 V̂ (p)

1
4p

2
0ργ if ργ >

p2
0

2 min|p|≤2p0 V̂ (p)
.
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It follows that there exist c1, c2 > 0 depending only on V such that

(5.2) ≥ min{c1ργ , c2ρ
2
γ}. (5.7)

Putting together (5.1), (5.5), (5.6) and (5.7), we see that any minimizer with
ρ0 = 0 has to satisfy

min{c1ργ , c2ρ
2
γ} ≤ CT 5/2.

However, this means that there exist c3, c4 > 0 depending only on V such
that

∂E(γ, 0, ρ0)

∂ρ0

∣∣∣
ρ0=0

= −µ+ V̂ (0)

∫
γ +

∫
V̂ γ ≤ −µ+ 2V̂ (0)

∫
γ

≤ −µ+ max{c3T
5/2, c4T

5/4}.
(5.8)

This implies the existence of a temperature T1 depending on µ and V such
that this derivative is negative for all 0 ≤ T ≤ T1, which means that there
cannot be minimizers with ρ0 = 0. �

Proof of Proposition 36. We split the proof into several steps in which we
obtain the different limits. For simplicity we use the notation

∫
γT =: ρTγ

and ρT := ρTγ + ρT0 .

Step 1: Limit for ρT0 and ρTγ . We will show that both these sequences are
uniformly bounded. Since we are dealing with minimizers, we have

−µ2

2V̂ (0)
= FT

(
0, 0,

µ

V̂ (0)

)
≥ F0

(
γT , αT , ρT0

)
− TS(γT , αT ).

Since by Proposition 35 the entropy term converges to 0 as T → 0, for T
small enough we have

−µ2

4V̂ (0)
≥ −µρT +

1

2
V̂ (0)

(
ρT
)2

+ ρT0

∫
V̂ (γT + αT )

≥ ρT0 (−µ− 1

2

∫
V̂ ) +

1

2
V̂ (0)

(
ρT0
)2 − µρTγ +

1

2
V̂ (0)

(
ρTγ
)2
,

where we have thrown out some positive terms and used the fact that
γ + α ≥ −1

2 . This estimate implies that ρT0 and ρTγ are uniformly bounded.
We can extract a limit by taking subsequences, so that from now on we have
ρT0 → ρ̃0 and ρTγ → ρ̃γ .

Step 2: Limit for
∫
V̂ (γT + αT ) and ρ̃0 > 0. It follows from Lemma

38 that ρT0 > 0 for T small enough. This implies that the Euler–Lagrange
equation in ρ0 has to hold with equality for T small enough:

− µ+

∫
V̂ (γT + αT ) + V̂ (0)ρT = 0. (5.9)

Since we know that ρT has a limit as T → 0, the integral in the equation
above will also have a limit.
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We now consider the following trial state:

γ = γ01Bε

α = −
√

(γ0(γ0 + 1)1Bε ,

where Bε denotes the ball with radius ε (which will be fixed later) centred
at the origin. We have

F0
(
γ, α, µ(V̂ (0))−1 − γ0|Bε|

)
−F0

(
0, 0, µ(V̂ (0))−1

)
=

= γ0

∫

Bε

p2dp+

(
µ

V̂ (0)
− |Bε|γ0

)
(γ0 −

√
(γ0(γ0 + 1))

∫

Bε

V̂ (p)dp

+
2γ2

0 + γ0

2

∫∫

Bε×Bε
V̂ (p− q)dpdq.

(5.10)

Assume that γ0 is large enough, in particular γ0 > 1. Then

γ0 −
√

(γ0(γ0 + 1) = −1

2
+O(γ−1

0 ).

We also choose the radius ε in such a way that

|Bε| =
ν

γ2
0

for a positive constant ν. The fact that V̂ ∈ C1 and V̂ (0) > 0 imply that

V̂ (p) ≥ 1
2 V̂ (0) on Bε for γ0 large enough. It follows that

(5.10) ≤ Cγ0|Bε|5/3 − (
1

2
−O(γ−1

0 ))

(
µ

V̂ (0)
− |Bε|γ0

)
|Bε|

V̂ (0)

2

+ V̂ (0)|Bε|2
2γ2

0 + γ0

2
,

where C is a positive constant. Hence, for ν < µ

4V̂ (0)
and γ0 sufficiently large

(5.10) ≤ Cγ−7/3
0 − 1

2

(
V̂ (0)

2
−O(γ−1

0 )

)(
µ

V̂ (0)
− ν

γ0

)
ν

γ2
0

+ V̂ (0)ν2 2γ2
0 + γ0

2γ4
0

=
(
νV̂ (0)− µ

4

) ν

γ2
0

+ o(γ−2
0 ) < 0.

Also note that γ0 > 1 implies µ(V̂ (0))−1 − γ0|Bε| ≥ 0, which means that
our choice of ρ0 in (5.10) was allowed.

Together with Proposition 35, this calculation implies that

−µ2

2V̂ (0)
> F (0, µ) = lim

T→0
F0(γT , αT , ρT0 )

= lim
T→0

[∫
p2γT +

1

2

∫
V̂ (p− q)

[
αT (p)αT (q) + γT (p)γT (q)

]
dpdq

]

+

[
−µρ̃+

1

2
V̂ (0)ρ̃2

]
+ ρ̃0 lim

T→0

∫
V̂ (γT + αT ).

(5.11)
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The first limit has to be non-negative and the term involving ρ̃ has to be

bigger than or equal to −µ2/2V̂ (0). We therefore conclude that

ρ̃0 > 0,

lim
T→0

∫
V̂ (γT + αT ) = −C < 0.

(5.12)

Step 3: Limits for TAT and TBT . Recall from Section 4.4 that the Euler–
Lagrange equations of the functional lead to an expression for γT in terms
of the functions

TAT (p) = p2 − µ+ V̂ (0)ρT + ρT0 V̂ (p) + V̂ ∗ γT (p),

TBT (p) = ρT0 V̂ (p) + V̂ ∗ αT (p),

TGT (p) =

√
(TAT (p))2 − (TBT (p))2.

(5.13)

We will establish a limit for these functions, and then prove that it leads to
a limit for γT . Note that we only need to deal with the convolution terms
since all other terms already have a limit or are constant in T .

Our goal is a pointwise limit on the whole space, and a C2-limit on the
compact {|p| ≤ P0}, where P0 is given by Lemma 37. Recall our assumption

that V̂ is in C3(R3) and that all its derivatives up to third order are bounded.

This implies that V̂ ∗γT and V̂ ∗αT are also in C3(R3) and, using the bounds
(3.7) on these quantities and the uniform bound on ρTγ , that all derivatives

up to third order are uniformly bounded in T . In particular, V̂ ∗ γT and

V̂ ∗αT are uniformly bounded with uniformly bounded derivatives, and the
latter implies uniform equicontinuity. All this means that by a diagonal
argument one can construct a pointwise limit on R3 (that is continuous)
by selecting subsequences that converge on the rationals (see, e.g. Theorem
I.26 in [25]). By the Arzelà–Ascoli theorem, this implies that taking further
subsequences leads to a uniform limit on the compact {|p| ≤ P0}. We now
repeat this last argument for the derivatives and second-order derivatives
on {|p| ≤ P0}. We obtain uniform (continuous) limits for all derivatives up
to second order. By uniform convergence these are indeed derivatives of the
limit functions.

Summarizing, we have obtained limits a and b that are bounded and in
C2(|p| ≤ P0) such that TAT → a and TBT → b pointwise and also uniformly
on {|p| ≤ P0}. We also note that by (5.9), (5.12) and (5.13): a ≥ C > 0. By
the Euler–Lagrange equations for T > 0 we have |TBT | ≤ TAT , so the lim-

its also satisfy |b| ≤ a. Hence TGT also has a pointwise limit g =
√
a2 − b2

that is a bounded function.

Step 4: Limit for γT . As in Section 4.4 we derive an expression for γT

in terms of AT and GT given by (5.13). To make use of the limits we have
obtained, we write it as follows:

γT =
TAT − TGT + e−

1
T

(TGT )
(
TAT + TGT

)

2TGT
(

1− e− 1
T

(TGT )
) . (5.14)
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We conclude that pointwise

γT
T→0−−−→ a− g

2g
=: γ̃, (5.15)

which is easy to see when g > 0, but since a > 0 it is also true for g = 0 (with
the understanding that γT = +∞ at such points). We would nonetheless
like to prove that g = 0 actually cannot happen.

First note that g(p) is bounded away from 0 for |p| ≥ P0 by the bound
in Lemma 37 and the fact that a ≥ C > 0. Now suppose that g2(p0) =
(a2− b2)(p0) = 0 for some |p0| < P0. We know that a2 and b2 are C2 around
p0 and that b2 ≤ a2. Therefore, a2−b2 has to behave like (p−p0)2+o(p−p0)2

around p0. Since a ≥ C > 0, we see that γ̃ has to go to infinity like |p−p0|−1

or faster. If we assume that p0 6= 0, this implies that γ̃ is non-integrable,
which, by Fatou’s lemma, contradicts the pointwise convergence:

∫
γ̃ ≤ lim inf

T→0

∫
γT = ρ̃γ <∞.

We therefore conclude that g(p) cannot be zero for p 6= 0. However, using
(5.9) and (5.13) we can calculate that

g(0) =
√

(a(0)− b(0))(a(0) + b(0)) =

√
−4ρ̃0V̂ (0)

[
lim
T→0

∫
V̂ αT

]
> 0,

where the inequality holds by (5.12). We can now conclude that g 6= 0.
Since it is continuous, it has to be bounded away from zero on the compact
|p| ≤ P0, and combined with our previous observation, everywhere.

We now analyse the expression (5.14) and conclude that the convergence
(5.15) is actually uniform on {|p| ≤ P0}. For this we use the following
facts: a sum preserves uniform convergence; a product preserves uniform
convergence given that the limit functions are bounded; a composition g◦fn
preserves uniform convergence (of the fn) if g is uniformly continuous in the
region where fn takes values. Since it is necessary to apply this last fact to
the function x 7→ 1/x, it is crucial that g is bounded away from 0.

We can finally prove that γT → γ̃ in L1. The uniform convergence im-
plies L1-convergence on {|p| ≤ P0}. By Lemma 37, we have also uniform
boundedness by an L1-function on {|p| > P0}. Applying the Dominated
Convergence Theorem to that region, we conclude that γT → γ̃ in L1. The
pointwise convergence obtained before also implies γ̃ ≥ 0, and by Fatou’s
lemma,

∫
p2γ̃dp <∞.

Step 5: Limit for αT . As before, we use relations that are known to hold
for T > 0 to conclude convergence:

βT =

√(
γT +

1

2

)2

− (αT )2 =
1 + e−

1
T

(TGT )

2(1− e− 1
T

(TGT ))

T→0−−−→ 1

2

αT = −βT TB
T

TGT
T→0−−−→ − b

2g
=: α̃.

Again, the convergence holds pointwise everywhere and uniformly on {|p| ≤
P0}. The uniform convergence implies L2-convergence on {|p| ≤ P0}. Since
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(
αT
)2 ≤ γT (γT + 1), Lemma 37 leads to an uniform L2-bound on the αT

for {|p| ≥ P0}. Hence, L2-convergence also holds in this region by the
Dominated Convergence Theorem. Also note that βT → 1/2 implies that
α̃2 = γ̃(γ̃ + 1). We have now proved all the claims in the proposition. �

It remains to prove Corollary 6.

Proof Corollary 6 for the grand canonical functional. Our goal will be to show
that any minimizer at T = 0 has to satisfy α2 = γ(γ + 1) using elements
from the proof above. The corollary then follows from Theorem 10.4 in [30],
which states that the 1-pdm Γ corresponds to pure quasi-free states if and
only if

ΓSΓ = −Γ

(cf. (A.3) and (A.2) for definitions). This is indeed satisfied if α2 = γ(γ+1).
Note that µ ≤ 0 is easy, since the minimizer is (γ, α, ρ0) = (0, 0, 0) as

explained at the start of this section. For µ > 0, we can consider (5.11)
directly at T = 0 (i.e. without the limits) to conclude that any minimizer
has

ρ0 > 0,

∫
V̂ (γ + α) < 0.

This implies that (5.9) holds, and so minimizers have

∂F
∂γ

= p2 −
∫
V̂ (γ + α) + ρ0V̂ (p) + V̂ ∗ γ(p) > 0,

which means that it is energetically favourable to lower γ as much as possible.
However, this can only be done up to the point where α2 = γ(γ + 1). �

5.2. The canonical case. We would now like to prove the existence of
T = 0 minimizers for the canonical problem. Recall that for fixed ρ ≥ 0 and
T ≥ 0 the functional reads

Fcan(γ, α, ρ− ργ) =

∫
p2γ(p)dp− TS(γ, α) +

1

2
V̂ (0)ρ2

+

(
ρ−

∫
γ

)∫
V̂ (p) (γ(p) + α(p)) dp

+
1

2

∫∫
V̂ (p− q) (α(p)α(q) + γ(p)γ(q)) dpdq.

Proof of Theorem 5. We follow the same strategy as in the grand canonical
case. The same argument as in Proposition 35 implies that canonical, posi-
tive temperature minimizers at fixed ρ form a minimizing sequence for the
T = 0 problem with that ρ.

We have

∂Fcan

∂γ
= p2 + (ρ− ργ)V̂ (p)−

∫
V̂ (γ + α) + V̂ ∗ γ(p)− T γ + 1

2

β
ln
β + 1

2

β − 1
2

∂Fcan

∂α
= (ρ− ργ)V̂ (p) + V̂ ∗ α(p) + T

α

β
ln
β + 1

2

β − 1
2

.

(5.16)
To see that these expressions are equal to zero for minimizers, we repeat the
argument in Lemmas 22 and 23, but one extra ingredient is needed since
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ργ ≤ ρ provides an extra constraint compared to the grand canonical case.
We therefore apply Theorem 9 (proved in the next section), which states
that minimizers will have ρ0 > 0 for sufficiently low temperatures. As a
consequence, we arrive at the same bound as in Lemma 37.

We now repeat the proof of Proposition 36. Step 1 simplifies since ρTγ ≤ ρ
provides the required bound. For step 2, we first note that there is no equiv-
alent to (5.9) in this case, but we can take a further subsequence to ensure

that
∫
V̂ (γT + αT ) has a limit. We then repeat the trial state argument

(with µ/V̂ (0) replaced with ρ), and it leads to the same conclusion as in the
grand canonical case, that is

ρ̃0 := lim
T→0

(ρ− ρTγ ) > 0,

lim
T→0

∫
V̂ (γT + αT ) = −C < 0.

The canonical TAT reads

TAT = p2 + ρT0 V̂ (p)−
∫
V̂ (γT + αT ) + V̂ ∗ γT (p),

which is really the same as (5.9) combined with (5.13). We then repeat the
remaining steps in the proof of Proposition 36 to reach similar conclusions.
To finish, we proceed as in the proof of Theorem 2. The conclusion of
Corollary 6 for the canonical functional follows in an identical way. �

6. Phase transition and the grand canonical phase diagram

We start by proving Theorem 7, which states that there is only one kind
of phase transition in the system. This holds for both the canonical and the
grand canonical functional.

Proof of Theorem 7. Step 1. Let T > 0. Since∫
V̂ (p− q)α(p)α(q)dpdq =

∫
V (x)|α̌(x)|2dx ≥ 0,

and S(γ, α) < S(γ, 0) for α 6≡ 0, we directly see from the definition of the
functionals (1.1) and (1.3) that ρ0 = 0 implies α ≡ 0.

Let T > 0. Recall from the proof of the existence of minimizers that the
Euler–Lagrange equation for α is satisfied:

∫
V̂ (p− q)α(q)dq + ρ0V̂ (p) + T

α(p)

β(p)
ln
β(p) + 1

2

β(p)− 1
2

= 0

for both functionals. Thus α ≡ 0 implies ρ0 = 0 as long as V̂ (p) > 0 on

some set of positive measure, which is the case since V̂ (0) > 0 and V̂ ∈ C1.

Step 2. Let T = 0. For µ < 0 (grand canonically) or ρ = 0 (canonically),
we know that the minimizers have ρ0 = α = 0, so there is nothing to prove.

For µ > 0 or ρ > 0, we know that ρ0 > 0 by Theorems 8 and 9 respectively.
Grand canonically, we have shown in Corollary 6 that α 6≡ 0, which followed
from the trial state argument in step 2 of the proof of Proposition 36. As
pointed out in the proof of Theorem 5, a similar argument can be done for
the canonical case, and we again find α 6≡ 0. �
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We now prove that there indeed exists a phase transition in the model.

Proof of Theorem 8. Note that the second part of the statement is proved
in Lemma 38. It remains to show that there is no condensation for high
temperatures.

The proof is based on two inequalities: an upper and a lower bound.
The upper bound shows that for sufficiently large T there exists a positive
constant C depending on µ and V such that

inf
γ
F(γ, 0, 0) ≤ −CT 2 lnT +O(T 2). (6.1)

The lower bound shows that any minimizer (γ, α, ρ0) with ρ0 > 0 has to
satisfy

F(γ, α, ρ0) ≥ −C̃T lnT +O(T )

for sufficiently large T and C̃ depending on µ and V . Hence, the minimizer
has ρ0 = 0 and α ≡ 0 for T large enough.

Upper bound. We start by proving (6.1). Note that

F(γ, 0, 0) ≤
∫

(p2 − µ)γ(p)dp+ V̂ (0)ρ2
γ

+ T

∫
[γ(p) ln γ(p)− (γ(p) + 1) ln(γ(p) + 1)] dp.

To obtain an upper bound, we evaluate the right-hand side of the inequality
above using the trial state

γδ(p) =

(
e
p2+δ
T − 1

)−1

,

where δ is a positive constant, so that

F(γδ, 0, 0) ≤ T
∫

ln

(
1− e

−(p2+δ)
T

)
dp− (µ+ δ)

∫ (
e
p2+δ
T − 1

)−1

dp

+ V̂ (0)

(∫ (
e
p2+δ
T − 1

)−1

dp

)2

. (6.2)

Note that

T

∫
ln

(
1− e

−(p2+δ)
T

)
dp ≤ −Te−δ/T

∫
e−p

2/Tdp = −C0T
5/2e−δ/T , (6.3)

where C0 = (2π)−2
∫∞

0

√
se−sds <∞ (recall our convention for the measures

dp and ds explained above (4.1)). Also
∫
γδ(p)dp = T 3/2e−δ/T

∫ ∞

0

(2π)−2√s
es − e−δ/T ds.

Clearly,

C0 ≤
∫ ∞

0

(2π)−2√s
es − e−δ/T ds ≤

∫ ∞

0

(2π)−2√s
es − 1

ds =: C1, (6.4)

and so

C0T
3/2e−δ/T ≤

∫
γδ(p) ≤ C1T

3/2e−δ/T . (6.5)
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Using (6.3) and (6.4) in (6.2) we obtain

F(γδ, 0, 0) ≤ −C0T
5/2e−δ/T − C0(δ + µ)T 3/2e−δ/T + C2

1 V̂ (0)T 3e−2δ/T .

We now choose δ = 1
2T ln(T ). Then e−δ/T = T−1/2, which implies

inf
γ
F(γ, 0, 0) ≤ −C0

2
T 2 lnT + (C2

1 V̂ (0)− C0)T 2 − C0µT,

and we arrive at the desired upper bound (6.1).

Lower bound. Any minimizer (γ, α, ρ0) has to satisfy

F(γ, 0, 0) ≥ F(γ, α, ρ0),

which, using monotonicity of the entropy in α2, the fact that γ+α ≥ −1/2,
and our assumption ρ0 > 0, implies that

∫
γ(p)dp ≤ µ+ 1

2

∫
V̂ (p)dp

V̂ (0)
:= A > 0, (6.6)

where the constant A is positive and only depends on µ and V . Combining
this knowledge with the aforementioned facts in the same way, we obtain

F(γ, α, ρ0) ≥
∫
p2γ(p)dp− TS(γ, 0)− µA− ρ0AV̂ (0) +

1

2
ρ2

0V̂ (0).

A lower bound for the terms involving ρ0 can be calculated explicitly. Using
(6.6) again, we obtain for any δ ≥ 0:

F(γ, α, ρ0) ≥
∫

(p2 + δ)γ(p)dp− TS(γ, 0)− δA− µA− 1

2
A2V̂ (0).

To obtain a lower bound, we now minimize the expression involving γ, which
leads to the bound

F(γ, α, ρ0) ≥ T
∫

ln

(
1− e

−(p2+δ)
T

)
dp− δA− µA− 1

2
A2V̂ (0).

Since

ln

(
1− e

−(p2+δ)
T

)
≥ − 1

e
p2+δ
T − 1

,

one has

T

∫
ln

(
1− e

−(p2+δ)
T

)
dp ≥ −T

∫
dp

e
p2+δ
T − 1

≥ −C1T
5/2e−δ/T ,

where we use (6.5). Thus, choosing δ = 3
2T lnT we arrive at

F(γ, α, ρ0) ≥ −C1T −
3

2
AT lnT − µA− 1

2
A2V̂ (0),

which completes the proof of the lower bound. �

We now prove the existence of a phase transition for the canonical prob-
lem.
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Proof of Theorem 9. Step 1. Let ρ > 0 be fixed and let C0 be a constant
depending on V and ρ that will be fixed later on. Consider

U =

{
|p| >

√
2ρV̂ (0) + C0(ρ, V̂ )

}
⊂ R3.

There exists a temperature T4 depending only on ρ and V such that for
T > T4, we have

ρ <

∫

U

1

e2p2/T − 1
dp. (6.7)

We will prove that (6.7) implies that ρ0 = 0 for the minimizer.
To prove this claim, consider any (γ, α, ρ−

∫
γ) with

∫
γ ≤ ρ. Note that

by (6.7) there exists a subset V ⊂ U with positive measure such that

γ(p)
∣∣
V
<

1

e2p2/T − 1
. (6.8)

Recall the functional derivative of the canonical functional in (5.16). Using
the fact that the gamma-derivative of the entropy is monotone increasing in
α2 in the first step and (3.3) in the second (which defines C0), we obtain

∂Fcan

∂γ
≤ p2 − T ln

(
γ(p) + 1

γ(p)

)
+ (ρ− ργ) V̂ (p) + V̂ ∗ γ(p)−

∫
V̂ (γ + α)

≤ p2 − T ln

(
γ(p) + 1

γ(p)

)
+ 2ρV̂ (0) + C0.

The bound (6.8) implies that on V ⊂ U we have

∂Fcan

∂γ

∣∣
(γ,α)

< 0.

In particular, we can lower the energy corresponding to any γ with
∫
γ ≤ ρ

by increasing it on some set of non-zero measure. However, this can only be
done up to the point where

∫
γ = ρ. We therefore conclude that the mini-

mizer will have to satisfy this, and hence ρ0 = 0, which proves the claim.

Step 2. We will now show that all (γ, 0, 0) with
∫
γ = ρ > 0 have a higher

energy than (0, 0, ρ) for 0 ≤ T < T3, where T3 > 0 is a constant temperature
depending on ρ and V . Since adding an α can never decrease the energy
when ρ0 = 0, this suffices. We have

Fcan(γ, 0, 0) =
1

2

∫
p2γ(p)dp− TS(γ, 0) +

1

2
V̂ (0)ρ2

+
1

2

∫
p2γ(p)dp+

1

2

∫
V̂ (p− q)γ(p)γ(q)dpdq

≥ −CT 5/2 +
1

2
V̂ (0)ρ2 + min

{
c1ρ, c2ρ

2
}
,

where in the last step we used an argument similar to the one given in (5.7).
Note that the last term is strictly positive and that it only depends on ρ
and V .

This can be combined with

Fcan(0, 0, ρ) =
1

2
V̂ (0)ρ2
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to give the estimate

Fcan(γ, 0, 0)−Fcan(0, 0, ρ) ≥ min
{
c1ρ, c2ρ

2
}
− CT 5/2.

Since the first term is positive and only depends on ρ and V , we see that
this implies the existence of a T3 > 0 as described above. �

What remains to be done is to determine the grand canonical phase dia-
gram from Figure 1. Most of the work has already been done. We will now
collect some results and see how this diagram has been obtained.

For µ > 0, we have Theorem 8 and Lemma 38. Note that (5.8) determines
the lower bound of the region with the lighter shade of blue. The bounds
derived in the proof of Theorem 8 determine an upper bound on this region,
but it does not go to 0 when µ does. To get the behaviour shown in Figure
1, we need Theorem 12.

The case T = 0 and µ ≤ 0 has been explained at the beginning of Sub-
section 5.1. By an argument similar to Lemma 22, we know that γ > 0 for
T > 0. What remains to be shown is that there is no condensation for T > 0
and µ ≤ 0. This follows from the fact that ρ0 > 0 would imply

F(γ, α, ρ0) > F(γ, 0, 0) + ρ0

∫
V̂ (p)α(p)dp+

1

2

∫
V̂ (p− q)α(q)α(p)dpdq

+
1

2
V̂ (0)ρ2

0 + V̂ (0)ργρ0

> F(γ, 0, 0) +
1

2

∫
V̂ (p− q)(α+ ρ0δ)(p)(α+ ρ0δ)(q)dpdq

≥ F(γ, 0, 0),

where δ denotes the Dirac delta distribution. Hence ρ0 = 0 for µ ≤ 0. The
conclusions for α follow from Theorem 7.

Appendix A. Derivation of the functional

A.1. Bogoliubov trial states. Let H be a complex, separable Hilbert
space with inner product 〈·, ·〉, which is linear in the second variable and
anti-linear in the first, and let Γs(H) be the bosonic Fock space related to
H.

Let O be the algebra of physical observables of the system, represented
by densely-defined self-adjoint operators on Γs(H) . A state ω : O → C of
a quantum system is then identified with a positive semi-definite trace class
operator G on Γs(H) with Tr(G) = 1 in the following way:

ω(O) = Tr(OG) for all bounded O ∈ O. (A.1)

The operator G is sometimes called the density matrix. The dual space H∗
can be identified with H by the anti-unitary operator J : H → H∗ defined
by

J(f)(g) = 〈f, g〉H, for all f, g ∈ H.
If a∗(f) and a(g) are the usual bosonic creation and annihilation operators
on Γs(H) satisfying the canonical commutation relations (CCR)

[a(g), a∗(f)] = (g, f), [a∗(g), a∗(f)] = 0, [a(g), a(f)] = 0 ∀f, g ∈ H,
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then one can introduce the field or generalized creation and annihilation
operators on H⊕H∗ by

A(f ⊕ Jg) = a(f) + a∗(g),

A∗(f ⊕ Jg) = a∗(f) + a(g), ∀f, g ∈ H.

By defining

S =

(
1 0
0 −1

)
and J =

(
0 J∗

J 0

)
(A.2)

one can express the CCR and conjugate relations in the following way:

A∗(F1) = A(JF1), [A(F1), A∗(F2)] = 〈F1,SF2〉 for all F1, F2 ∈ H⊕H∗.

We can now define the (generalized) one-particle density matrix (1-pdm)
Γ : H⊕H∗ → H⊕H∗ of a state ω by

〈F1,ΓF2〉 = ω(A∗(F2)A(F1)) for all F1, F2 ∈ H ⊕H∗.

Thus a 1-pdm can be written as

Γ =

(
γ α

JαJ 1 + JγJ∗

)
, (A.3)

where γ : H → H and α : H∗ → H are linear operators defined by

〈f, γg〉 = ω(a∗(g)a(f)), 〈f, αJg〉 = ω(a(g)a(f)) ∀f, g ∈ H.

The definitions above imply in particular that states with finite particle
number expectation are those for which γ is trace class.
We shall now recall the notion of quasi-free states. For our purpose a quasi-
free state ω will be a state satisfying Wick’s Theorem. In particular

ω(a#
1 a

#
2 a

#
3 a

#
4 ) = ω(a#

1 a
#
2 )ω(a#

3 a
#
4 ) + ω(a#

1 a
#
4 )ω(a#

2 a
#
3 ) + ω(a#

1 a
#
3 )ω(a#

2 a
#
4 ),

where a# is either a or a∗. Furthermore, for any m we have

ω(a#
1 . . . a

#
2m+1) = 0.

If one considers a Bose system, one should extend the class of variational
states by including so-called coherent states. These states are used to de-
scribe the condensate fraction (for an explanation see e.g. [29]).

The mathematical implementation of that idea relies on the fact that for
every φ ∈ H there exists a unitary operator Uφ : Γs(H)→ Γs(H) such that

U∗φa(f)Uφ = a(f) + 〈f, φ〉 ∀f ∈ H.

We may now describe the Bogoliubov variational states. Let ωγ,α be the
quasi-free state with the 1-pdm Γγ,α and let φ ∈ H. The Bogoliubov varia-
tional state ωγ,α,φ is defined by

ωγ,α,φ(O) := ωγ,α(U∗φOUφ) for all O ∈ O. (A.4)
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A.2. The Hamiltonian part. Having introduced Bogoliubov variational
states we will now turn to the derivation of the functional. Our model is
based on the grand canonical Hamiltonian of the form

H = T + U =
∑

p

(p2 − µ)a∗pap +
1

2L3

∑

p,q,k

V̂ (k)a∗p+ka
∗
q−kaqap, (A.5)

where the summation is taken over momenta p, k, q ∈ 2π
L Z3. Here ap =

a(L−3/2eipx).
Note that (A.5) is the second quantization (in the plane wave basis) of

the translation invariant grand canonical N -body Hamiltonian

HN =

N∑

i=1

−∆L
i +

∑

i<j

V L(xi − xj)

defined on L2
sym(ΛN ), where Λ = [−L

2 ,
L
2 ]3 is the physical space on which

we impose periodic boundary conditions. The Laplacian is supposed to
have periodic boundary conditions on Λ. The function V L is the periodized
potential given by

V L(x) =
∑

n∈Z3

V (x+ nL).

We also have
U∗φapUφ = ap + 〈L−3/2eipx, φ(x)〉.

Bogoliubov’s c-number substitution ([20]) is then implemented by choosing
φ(x) to be a constant function equal to

√
ρ0, where, as mentioned in the

introduction, ρ0 ≥ 0 has the interpretation of being the condensate density.
Thus

U∗φapUφ = ap + δp,0
√
ρ0

√
|Λ|.

According to (A.3) we define

γ(k) := ωγ,α(a∗kak), and α(k) := ωγ,α(aka−k).

We assume furthermore that our trial states satisfy

ωγ,α(aka−k) = ωγ,α(a∗ka
∗
−k).

A straightforward calculation, using the properties of quasi-free states and
translation invariance of the system, then implies that

ωγ,α,√ρ0(H) =
∑

p

(p2 − µ)γ(p)− µ|Λ|ρ0 +
V̂ (0)

2|Λ|
∑

p,q

γ(p)γ(q)

+
1

2|Λ|
∑

p,q

[
V̂ (p− q) (α(p)α(q) + γ(p)γ(q))

]

+
ρ2

0|Λ|V̂ (0)

2
+ V̂ (0)ρ0

∑

k

γ(k) + ρ0

∑

k

V̂ (k) (γ(k) + α(k)) .

The thermodynamic free energy (per volume), F , of a state ω at temperature
T ≥ 0 and chemical potential µ ∈ R is defined as

F(ω) =
1

|Λ|
(
ω(H)− TS(ω)

)
.
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Taking the informal macroscopic limit |Λ| → ∞ and assuming that 1
|Λ|
∑

p →
(2π)−3

∫
dp we obtain the desired variational expression for the Hamiltonian

part of the free energy density.

A.3. The entropy part. We now derive the formula for the entropy density
in a Bogoliubov trial state in terms of γ, α, and φ. To do this we will use
some basic facts concerning Bogoliubov transformations see, e.g. [22].

Given a state ω with a corresponding density matrix G, its entropy is
defined as

S(ω) = −Tr(G lnG).

We only consider Bogoliubov variational states ωγ,α,φ, thus by definitions
(A.1) and (A.4) G = UφGU∗φ where G is the density matrix corresponding
to the quasi-free state ωγ,α. Since Uφ is unitary we see that

Tr(G lnG) = Tr(G lnG)

and so

S(ωγ,α,φ) = S(ωγ,α).

This means that the coherent transformation, i.e. the condensate, does not
change the entropy. Thus, if we want to calculate the entropy of Bogoliubov
trial states it is enough to consider quasi-free states. For such a state the
density matrix G is unitarily equivalent through a Bogoliubov transforma-
tion to an operator of the form

G̃ = Z−1Π exp

[
−
∑

i∈I
eia
∗
i ai

]
Π, Z =

∏

i∈I

1

1− e−ei

where ai := a(ui) for an orthonormal basis {ui} of the Hilbert space, I ⊆ N,
ei ≥ 0, and Π is the projection onto the subspace ker

[∑
i/∈I a

∗
i ai
]
. The

constant Z (which will be finite) ensures that Tr(G̃) = 1. The 1-pdm Γ̃ of G̃
is easily seen to have α̃ = 0 and γ̃ diagonal in the basis {ui} with eigenvalues
λi given by

(1− exp(−ei))−1 = 1 + λi, i ∈ I,
and zero otherwise.

For the state above one can easily calculate the entropy. The Fock space
Γs(H) has the orthonormal basis

|~n〉 := |n1, n2, . . .〉 = (n1!n2! . . .)−
1
2 (a∗1)n1(a∗2)n2 . . . |0〉,

where |0〉 is the Fock vacuum and n1, n2, . . . ∈ N ∪ {0} with only a finite
number of nj ’s that are positive. We find

S(G̃) =
∑

i∈I
ln(1 + λi) +

∑

j∈I

∑

{~n}
〈~n|

eja
∗
jaj exp[−eja∗jaj ]∏

i∈I(1 + λi)
|~n〉

∏

i∈I,i 6=j
(1 + λi),

which together with

∑

{~n}
〈~n|eja∗jaj exp[−eja∗jaj ]|~n〉 =

∞∑

nj=0

ejnje
−ejnj =

eje
−ej

(1− e−ej )2
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and the definition of ej implies that

S(G̃) =
∑

i∈I
ln(1 + λi)−

∑

j∈I
λj ln

(
λj

1 + λj

)

=
∑

j∈I
[(1 + λj) ln(1 + λj)− λj lnλj ] .

It is, however, not immediately possible to find the entropy of G in terms
of its 1-pdm Γ from this formula. In fact, although G and G̃ are unitarily
equivalent, this is not so for Γ and Γ̃. The relation however is (see [22])

that Γ′ = (Γ + 1
2S)1/2S(Γ + 1

2S)1/2 and Γ̃′ = (Γ̃ + 1
2S)1/2S(Γ̃ + 1

2S)1/2 are

unitarily equivalent. Since we can express the entropy of G̃ as

S(G̃) = −Tr

(
(Γ̃′ − 1

2
) ln |Γ̃′ − 1

2
|
)
.

We have proved the following result.

Theorem 39. Let ωγ,α be a quasi-free state with 1-pdm Γ. The entropy of
this state is given by

S(ωγ,α) = −Tr

(
(Γ′ − 1

2
) ln |Γ′ − 1

2
|
)

where Γ′ = (Γ + 1
2S)1/2S(Γ + 1

2S)1/2.

In our case

Γ +
1

2
S =

(
γ + 1

2 α
α γ + 1

2

)
.

To calculate the eigenvalues of Γ′ we again use the translation invariance of
our system and pass to the Fourier space. In the momentum representation
the eigenvalues are given by

η(p) = ±
√

(
1

2
+ γ(p))2 − α(p)2

(note that the eigenvalues of Γ′ are the same by a similarity transformation
as the eigenvalues of ΓS + 1

2) and we arrive at the desired formula. Note
that all terms are well-defined since the condition Γ ≥ 0 implies that

γ(p) ≥ 0 and γ(p)(1 + γ(p))− α(p)2 ≥ 0.
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL II.

THE DILUTE LIMIT

MARCIN NAPIÓRKOWSKI, ROBIN REUVERS, AND JAN PHILIP SOLOVEJ

Abstract. We analyse the canonical Bogoliubov free energy functional
in three dimensions at low temperatures in the dilute limit. We prove
existence of a first-order phase transition and, in the limit

∫
V → 8πa,

we determine the critical temperature to be Tc = Tfc(1 + 1.49ρ1/3a) to
leading order. Here, Tfc is the critical temperature of the free Bose gas,
ρ is the density of the gas and a is the scattering length of the pair-
interaction potential V . We also prove asymptotic expansions for the
free energy. In particular, we recover the Lee–Huang–Yang formula in
the limit

∫
V → 8πa.
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1. Introduction

For a non-interacting, or free, Bose gas with density ρ, the textbook
argument by Einstein shows that the phase transition to BEC happens at a
critical temperature (in units ~ = 2m = kB = 1)

Tfc = 4πζ(3/2)−2/3ρ2/3. (1.1)

Date: October 31, 2016.
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How do interactions between the bosons affect this free critical tempera-
ture? A system of particular interest is liquid helium, in which the nuclei
interact rather strongly through a potential that can be approximated by
a hard-core potential, and one can ask how Einstein’s argument and the
free critical temperature (1.1) are altered by this potential. Feynman stud-
ied this problem with path integrals [11, 12]. Arguing that the potential
resulted in an increased effective mass, he predicted that the critical tem-
perature would decrease compared to the free case, which had indeed been
observed for liquid helium. He did not make any quantitative predictions.

To make such quantitative predictions, various simplifications were con-
sidered. The first one is to replace the interaction potential for liquid helium
by a hard-core potential with radius a > 0

V (x) =

{
∞ |x| ≤ a
0 |x| > a

. (1.2)

To simplify things further, it is common to study a weakly-interacting or
dilute gas. For a hard-core potential, the natural length scale is given by
the radius a. We could compare this length scale to the one defined by
the density: ρ−1/3, the average distance between the particles. Diluteness
now means that the particles meet only rarely, that is, the average distance
between the particles is much bigger than the length scale of the potential,
or

ρ1/3a� 1. (1.3)

This assumption is not valid for liquid helium, but it is for experiments
with trapped dilute cold gases such as [3, 8]. In any case, one can repeat
Feynman’s question: how is the free critical temperature (1.1) altered by
the hard-core interaction?

Lee and Yang were the first to study this [21] in the translation-invariant
case. They used pseudopotential methods developed in [19, 22] to conclude

that the shift in critical temperature should be proportional to ρ1/3a. In the
appendix of [21], they solve a simplified system, which gives

Tc = Tfc(1 + 1.79(ρ1/3a) + o(ρ1/3a)). (1.4)

It is such an approximate expression that we will be looking for in this
paper, but for a general class of potentials. To properly define the dilute limit
(1.3) without reference to a hard-core potential, we consider a characteristic
length scale of the potential that is known as the scattering length a (see
[23] for a definition). It coincides with the core radius for the hard-core
potential.

For general potentials, there has been a lot of debate about whether the
linear dependence on ρ1/3a in (1.4) is correct ([16, 17, 18, 32] predict ex-
ponents of 1/2, 3/2, 1/2 and 1/2, respectively, where the latter is the only
one predicting a decrease in Tc compared to Tfc). Nonetheless, (1.4) is still
expected to hold true, at least up to the value of the constant 1.79, which
we discuss shortly.

It is good to remember that the search for (1.4) for general potentials
started from a desire to understand BEC in superfluid helium, but that
that particular problem remains intractable to this day. In its stead, the

Paper II

88



THE BOGOLIUBOV FREE ENERGY FUNCTIONAL II. 3

dilute setting has become a well-known and challenging object of study of
its own. Indeed, the predicted critical temperature for a dilute gas (1.4) is
higher than Tfc, whereas the critical temperature of liquid helium is lower,
which shows that the systems are quite different. Nonetheless, we have little
hope of understanding the strongly-interacting case if we cannot even treat
this weakly-interacting set-up, justifying the attention this problem has re-
ceived (see [2] for an overview).

We start from a Hamiltonian for a gas of N bosons that interact via a (pe-

riodized) repulsive pair potential V l in a three-dimensional box [−l/2, l/2]3

with periodic boundary conditions:

HN =
∑

1≤i≤N
−∆l

i +
∑

1≤i<j≤N
V l
ij .

The particle density is ρ = N/l3. Assuming the interaction only depends
on the distance between the particles, HN is translation invariant, and we
therefore write its second-quantized form in momentum space

H =
∑

p

p2a†pap +
1

2l3

∑

p,q,k

V̂ l(k)a†p+ka
†
q−kaqap. (1.5)

Here, only particular p are included in the sum, as determined by the size
of the box l, but we will consider the thermodynamic limit l→∞.

To the best of our knowledge, the only rigorous fact known about the
critical temperature for the Hamiltonian (1.5) is the upper bound established
by Seiringer and Ueltschi using the Feynman–Kac formula [28]. It is not
surprising that such results are thin on the ground: it remains impossible to
prove BEC in the dilute limit at positive temperature, let alone determine
the critical point exactly.

As for approximate models, we already mentioned Lee and Yang’s ex-
pression (1.4) for the hard-core gas [21]. This expression can only be found
in the appendix of their paper, perhaps because Lee and Yang considered
their calculation to be physically inaccurate since it predicts a first—rather
than the expected second—order phase transition. The fact that (1.4) was
hidden in the appendix has presumably led to the widespread misconcep-
tion that Lee and Yang only predicted a shift linear in ρ1/3a, without saying
anything about the sign or size of the constant [2, 4, 28, 29]. Even if Lee
and Yang themselves did not really trust their result, it fits reasonably well
with numerics: Monte Carlo methods [1, 20, 26] suggest that the form (1.4)
is correct, but that the numerical value 1.79 should be closer to 1.3.

So how do Lee and Yang approach this problem? They replace the bound-
ary conditions imposed by the hard-core potential by a pseudopotential that
should give the right wave function in the physically relevant region where
all the particles are at least distance 2a from one another [19, 22]. They
then assume that only s-wave scattering is important (i.e. the momentum
of the particles is low), and show that replacing the potential by

8πaδ(r)∂rr,
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should yield the correct wave function. For smooth functions, this is simply
a multiplication by a delta function, but the derivative does play a role
for physical wave functions. All this leads to an excitation spectrum of
Bogoliubov form, which can now be used to calculate the shift in the critical
temperature (1.4).

Before we explain how this is done, let us point out that this claim in
itself has led to some confusion. In a number of articles in which the dilute
Bose is treated with field-theoretic methods—e.g. Bijlsma and Stoof [5] and
Baym et al. [4], who find (1.4) with constants of 4.7 and 2.9, respectively—
it is claimed that mean-field theories such as Bogoliubov’s will simply give
Tc = Tfc, or, in other words, no shift. One argument [2] goes as follows: a
particle with momentum p effectively has the energy

ε(p) ∼
√
p2(p2 + 2V̂ (p)ρ) ≈ p2

√
1 + 2V̂ (0)ρ/p2 ≈ p2 + V̂ (0)ρ, (1.6)

in which the reader can recognize an approximation to the Bogoliubov dis-
persion relation [6]. Inserting this ‘mean-field’ shift of the energy levels into
the particle density of the free Bose gas gives

1

e(p2+V̂ (0)ρ−µ)/T − 1
(1.7)

so that the ‘critical’ µ is V̂ (0)ρ. At this µ, the relation between T and ρ is
the same as for the free gas, and so the critical temperature does not change.
However, one should be more careful in the comparison with the free gas,
and the exact form of the dispersion relation one uses.

In Bogoliubov’s analysis, the number of particles N0 in the p = 0 state
enters via a c-number substitution and plays a crucial role. Dividing by
the volume, we obtain a condensate density ρ0 = N0/l

3 that can now be
regarded as a parameter. The dispersion relation Lee and Yang derive for
the hard-core potential with radius a is

ε(p) ∼
√
p2(p2 + 16πaρ0), (1.8)

so, unlike (1.6), this gives a ρ0-dependence. Furthermore, we should not
define µ using the free particle density (1.7), which just happened to be the
minimizer of the free energy in that case. Instead, for fixed ρ and ρ0, we
should treat the remaining particles with density ρ − ρ0 grand canonically,
resulting in a grand canonical partition function that depends on T , ρ, ρ0

and a chemical potential µ. Recalling that there are only two independent
parameters, one should now eliminate ρ by calculating the value it takes at
the minimum of the free energy for fixed T , ρ0 and µ, and then minimize
over all ρ0. The critical µc for fixed temperature is the one where the min-
imizing ρ0 changes from ρ0 = 0 (no BEC) to ρ0 > 0 (BEC). Note that this

definition is far more complicated than the naive conclusion µc = V̂ (0)ρ
above, but it is more correct. That was apparently clear to Lee and Yang,
but it seems to have gone out of fashion, resulting in the false belief that the
Bogoliubov spectrum does not give a change in the critical temperature.

The treatment of the condensate ρ0 as a separate parameter that defines
the critical point is key to our analysis. Another important ingredient is a

Paper II

90



THE BOGOLIUBOV FREE ENERGY FUNCTIONAL II. 5

variational approach introduced by Critchley and Solomon [7]. They eval-
uate the expectation value of H − TS − µN of a quasi-free state, where S
is the von Neumann entropy and N is the particle number operator, and
minimize over all quasi-free states, resulting in an upper bound to the free
energy at temperature T and chemical potential µ.

This upper bound is well-motivated. The first supporting argument is
that the usual treatment of the Hamiltonian (1.5) with the Bogoliubov ap-
proximation [6] reduces it to an operator that is quadratic in the creation
and annihilation operators, and that ground and Gibbs states of such opera-
tors are quasi-free states. A second is that quasi-free states have successfully
served as trial states to establish correct bounds on the ground state energy
of Bose gases [10, 15, 31], which is of course the T = 0 free energy.

Expressing the expectation value of H − TS − µN for a general quasi-
free state does lead to a complicated non-linear functional. Simplifying it
somewhat by throwing out certain terms, Critchley and Solomon conclude
that the model will reproduce Bogoliubov’s conclusions.

In this paper, we consider their functional without the simplifications, and
determine whether the minimizers display BEC (ρ0 > 0) or not (ρ0 = 0).
This is a variational reformulation of Bogoliubov’s and Lee and Yang’s ap-
proach that is conceptually clear and more accurate, although it has in
common with Lee and Yang’s approach that the phase transition is of (pre-
sumably unphysical) first order.

Our approximation to the critical temperature is

Tc = Tfc(1 + 1.49ρ1/3a+ o(ρ1/3a)), (1.9)

in the limit
∫
V = V̂ (0) → 8πa, and the constant 1.49 is indeed closer to

the predicted 1.3 [1, 20, 26] than Lee and Yang’s 1.79.

By its construction, this model also gives an upper bound to the free
energy at positive temperature, which, for the full Hamiltonian (1.5), was
so far only considered by Seiringer [27] and Yin [34]. At T = 0, the free
energy is simply the ground state energy, which we can compare with the
prediction

4πaρ2 +
512

15

√
π(ρa)5/2 + o((ρa)5/2)

by Lee, Huang and Yang [22]. Our model does reproduce the leading be-

haviour, but the second order only comes out correctly in the limit V̂ (0)→
8πa. A similar result was obtained earlier by Erdös, Schlein and Yau [10],
but the exact upper bound has in fact been proved by Yau and Yin [33].

One could ask whether the predicted critical temperature shift (1.9) can
actually be measured. For harmonic traps, a linear shift has indeed been
measured [9, 14, 30], but it cannot be compared with (1.9) since there is no
translation invariance and the effect of the trap, expected to lower rather
than raise the critical temperature, is simply too big. Recently, a BEC was
also created in a uniform potential [13]. The measurements are not precise
enough, however, to measure the shift directly, but even if they were, in this
set-up the finite size effects due to the boundedness of the trap are expected
to be six times larger than the shift caused by the interaction. In the words
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of [29], ‘we are thus still lacking a direct measurement of the historically
most debated [Tc] shift’.
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2. The Bogoliubov free energy functional

This article is the continuation of the previous work [25], in which we
derive and analyse the Bogoliubov free energy functional that was first in-
troduced by Critchley and Solomon [7]. Let us briefly recall the set-up.

As motivated in the introduction, the functional is obtained from (1.5) by

substituting a c-number ρ0 through a0 → a0 +
√
l3ρ0 (justified in [24]) and

evaluating the expectation value of H − TS − µN of a quasi-free state. As-

suming translation invariance and 〈apa−p〉 = 〈a†−pa†p〉, the two (real-valued)

functions γ(p) := 〈a†pap〉 ≥ 0 and α(p) := 〈apa−p〉 fully determine this expec-
tation value. Here, γ(p) is the density of particles with momentum p, and α
describes the pairing in the system. A non-vanishing α can be interpreted
as the presence of off-diagonal long-range order (ODLRO) and the macro-
scopic coherence related to superfluidity. The c-number ρ0 ≥ 0 should be
thought of as the density of the condensate, so that there is a Bose–Einstein
condensate (BEC) if ρ0 > 0. The total particle density is

ρ = ρ0 + (2π)−3

∫

R3

γ(p)dp =: ρ0 + ργ .

In the thermodynamic limit, this gives the (grand canonical) Bogoliubov
free energy functional

F(γ, α, ρ0) = (2π)−3

∫

R3

p2γ(p)dp− µρ− TS(γ, α) +
V̂ (0)

2
ρ2

+ ρ0(2π)−3

∫

R3

V̂ (p) (γ(p) + α(p)) dp.

+
1

2
(2π)−6

∫∫

R3×R3

V̂ (p− q) (α(p)α(q) + γ(p)γ(q)) dpdq,

(2.1)

with entropy

S(γ, α) = (2π)−3

∫

R3

s(γ(p), α(p))dp = (2π)−3

∫

R3

s(β(p))dp

= (2π)−3

∫

R3

[(
β(p) +

1

2

)
ln

(
β(p) +

1

2

)
−
(
β(p)− 1

2

)
ln

(
β(p)− 1

2

)]
dp,
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where

β(p) :=

√(
1

2
+ γ(p)

)2

− α(p)2. (2.2)

The functional is defined on the domain D given by

D = {(γ, α, ρ0) | γ ∈ L1((1 + p2)dp), γ ≥ 0, α(p)2 ≤ γ(1 + γ), ρ0 ≥ 0}.
To reiterate, this functional describes the grand canonical free energy of a
homogeneous Bose gas at temperature T ≥ 0 and chemical potential µ ∈ R
in the thermodynamic limit.

The goal of the first paper [25] is twofold: to establish the existence of
minimizers for the minimization problem

F (T, µ) = inf
(γ,α,ρ0)∈D

F(γ, α, ρ0), (2.3)

and to analyse their structure (in whether ρ0 > 0 or not) for different tem-
peratures and chemical potentials. Keeping in mind that the dilute limit
ρ1/3a � 1 is defined in terms of the density, the canonical counterparts to
(2.1) and (2.3) are considered as well: the functional Fcan = F + µρ at
density ρ ≥ 0 and temperature T ≥ 0 is given by

Fcan(γ, α, ρ0) = (2π)−3

∫

R3

p2γ(p)dp− TS(γ, α) +
1

2
V̂ (0)ρ2

+ (2π)−3ρ0

∫

R3

V̂ (p) (γ(p) + α(p)) dp

+ (2π)−6 1

2

∫∫

R3×R3

V̂ (p− q) (α(p)α(q) + γ(p)γ(q)) dpdq,

(2.4)

with ρ0 = ρ− ργ . The canonical minimization problem is

F can(T, ρ) = inf{Fcan(γ, α, ρ0 = ρ− ργ) | (γ, α, ρ0 = ρ− ργ) ∈ D}
= min{f(ρ, ρ0) | 0 ≤ ρ0 ≤ ρ},

(2.5)

where

f(ρ, ρ0) = inf{Fcan(γ, α, ρ0) | (γ, α, ρ0) ∈ D, ργ = ρ− ρ0}.
Strictly speaking, this is not really a canonical formulation: it is only the
expectation value of the number of particles that we fix. We will nevertheless
describe this energy as ‘canonical’. The function F (T, µ) as a function of µ
is the Legendre transform of the function F can(T, ρ) as a function of ρ.

The main results of [25], which we recall in the next section, state that
there exist minimizers for both (2.3) and (2.5) and that both models exhibit
a BEC phase transition.

3. Existence of minimizers and phase transition

The following results, proven in the accompanying paper [25], provide the
basis for any further analysis of the Bogoliubov free energy functional.
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Throughout this article, we assume that the two-body interaction poten-
tial and its Fourier transform

V̂ (p) =

∫

R3

V (x)e−ipxdx, V (x) = (2π)−3

∫

R3

V̂ (p)eipxdp

are radial functions that satisfy

V ≥ 0, V̂ ≥ 0, V 6≡ 0. (3.1)

Moreover, we assume that

V̂ ∈ C1(R3), V̂ ∈ L1(R3), ‖V̂ ‖∞ <∞, ‖∇V̂ ‖2 <∞, ‖∇V̂ ‖∞ <∞. (3.2)

Theorem 1 (Existence of grand canonical minimizers for T > 0). Let T > 0.
Assume the interaction potential is a radial function that satisfies (3.1) and
(3.2). Then there exists a minimizer for the Bogoliubov free energy functional
(2.1) defined on D.

It turns out that we need to assume some additional regularity on the
interaction potential to prove a similar statement for T = 0.

Theorem 2 (Existence of grand canonical minimizers for T = 0). Assume
the interaction potential fulfils the assumptions of Theorem 1. If we assume

in addition that V̂ ∈ C3(R3) and that all derivatives of V̂ up to third order
are bounded, then there exists a minimizer for the Bogoliubov free energy
functional (2.1) defined on D for T = 0.

We would like to stress that the minimizers need not be unique. In fact,
we will see (cf. Remark 38) that there exist combinations of µ and T for
which the problem (2.3) has two minimizers with two different densities.

We have analogous results in the canonical setting.

Theorem 3 (Existence of canonical minimizers for T > 0). Let T > 0.
Assume the interaction potential is a radial function that satisfies (3.1) and
(3.2). Then the variational problem (2.5) admits a minimizer.

Theorem 4 (Existence of canonical minimizers for T = 0). Assume the
interaction potential fulfils the assumptions of Theorem 3. If we assume in

addition that V̂ ∈ C3(R3) and that all derivatives of V̂ up to third order
are bounded, then there exists a minimizer for the canonical minimization
problem (2.5) at T = 0.

Let us now recall the results concerning the existence of phase transitions
in our model. Our first result shows that Bose–Einstein Condensation and
superfluidity are equivalent in these models.

Theorem 5 (Equivalence of BEC and superfluidity). Let (γ, α, ρ0) be a
minimizing triple for either (2.1) or (2.4). Then

ρ0 = 0⇐⇒ α ≡ 0.

Thus, there can only be one kind of phase transition, and the next results
show that it indeed exists.

Theorem 6 (Existence of grand canonical phase transition). Given µ > 0.
Then there exist temperatures 0 < T1 < T2 such that a minimizing triple
(γ, α, ρ0) of (2.3) satisfies
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(1) ρ0 = 0 for T ≥ T2;
(2) ρ0 > 0 for 0 ≤ T ≤ T1.

Theorem 7 (Existence of canonical phase transition). For fixed ρ > 0 there
exist temperatures 0 < T3 < T4 such that a minimizing triple (γ, α, ρ0) of
(2.5) satisfies

(1) ρ0 = 0 for T ≥ T4;
(2) ρ0 > 0 for 0 ≤ T ≤ T3.

4. Main results and sketch of proof

We assume that

ρ1/3a� 1, (4.1)

where a, the scattering length of the potential, is defined by

4πa :=

∫
∆w =

1

2

∫
V w,

and w satisfies

−∆w +
1

2
V w = 0 (4.2)

in the sense of distributions with w(x)→ 1 as |x| → ∞. The quantity 8πa is

often replaced by
∫
V = V̂ (0), which is its first-order Born approximation.

In fact, V̂ (0) > 8πa (see [23, Appendix C] for more details). We quantify

this discrepancy with the parameter ν = V̂ (0)/a, so that ν > 8π. The limit

ν → 8π, i.e. V̂ (0)→ 8πa, is of special interest.

For the proofs, it will sometimes be useful to consider the region T ≤
Dρ2/3 with D > 1 fixed separately, in which case we can rewrite the second
condition in (4.1) as

√
Ta ≤

√
Dρ1/3a� 1. (4.3)

In particular, since the thermal wavelength Λ ∼
√
T
−1

, the condition (4.3)
implies that a/Λ� 1. Furthermore, we define a constant C by∫

V̂ ≤ Ca−2 and ‖∂nV̂ ‖∞ ≤ Can+1 for 0 ≤ n ≤ 3, (4.4)

where ∂n is shorthand for all n-th order partial derivatives. With this defini-
tion, our estimates depend only on C and not on a. Throughout the paper,
we will also use C to denote any unspecified positive constant.

4.1. The critical temperature. The following theorems contain informa-
tion about the critical temperature of the phase transition in the dilute limit.
Note that Tfc = c0ρ

2/3 is the critical temperature of the free Bose gas, and
ρfc = (T/c0)3/2 its corresponding critical density.

Theorem 8 (Canonical critical temperature). There is a monotone increas-
ing function h1 : (8π,∞)→ R with h1(ν) ≥ limν→8π h1(ν) = 1.49 such that
for any minimizing triple (γ, α, ρ0) of (2.5) at temperature T and density ρ:

(1) ρ0 6= 0 if T < Tfc

(
1 + h1(ν)ρ1/3a+ o(ρ1/3a)

)

(2) ρ0 = 0 if T > Tfc

(
1 + h1(ν)ρ1/3a+ o(ρ1/3a)

)
.
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Theorem 9 (Grand-canonical critical temperature). There is a function
h2 : (8π,∞) → R with limν→8π h2(ν) = 0.44 such that for any minimizing
triple (γ, α, ρ0) of (2.3) at temperature T and chemical potential µ:

(1) ρ0 6= 0 if T <
( √

π
2ζ(3/2)

8π
ν

)2/3 (µ
a

)2/3
+ h2(ν)µ+ o(µ)

(2) ρ0 = 0 if T >
( √

π
2ζ(3/2)

8π
ν

)2/3 (µ
a

)2/3
+ h2(ν)µ+ o(µ).

4.2. Free energy expansion. The second main result of this paper pro-
vides an expansion of the free energy (2.5) in the dilute limit. We first define
the integrals that play a central role in our analysis:

I1(d, σ, θ) = (2π)−3

∫ [√
(p2 + d)2 + 2(p2 + d)(1 + θ)σ

− (p2 + d+ (1 + θ)σ) +
((1 + θ)σ)2

2p2

]
dp

I2(d, σ, θ, s) = (2π)−3

∫
ln
(

1− e−
√

(p2+ds2)2+2(p2+ds2)(1+θ)σs2
)
dp

I3(d, σ, θ) = (2π)−3

∫ (
p2 + d+ (1 + θ)σ√

(p2 + d)2 + 2(p2 + d)(1 + θ)σ
− 1

)
dp

I4(d, σ, θ, s) = (2π)−3

∫ (
e
√

(p2+ds2)2+2(p2+ds2)(1+θ)σs2 − 1
)−1

× p2 + ds2 + (1 + θ)σs2

√
(p2 + ds2)2 + 2(p2 + ds2)(1 + θ)σs2

dp.

(4.5)
We will consider d, σ, s ≥ 0, and −1 ≤ θ ≤ 0. For the following theorems, it
suffices to set θ = 0 and σ = 8π. The general form will, however, be needed
to study the critical temperature.

Theorem 10 (Canonical free energy expansion). Assume that T and ρ sat-
isfy the conditions (4.1) and (4.3). We then have the following expressions
for the canonical free energy (2.5).

(1) For T > Tfc

(
1 + h1(ν)ρ1/3a+ o(ρ1/3a)

)
, the free energy is

F can(T, ρ) = F0(T, ρ) + V̂ (0)ρ2 +O((ρa)5/2),

and we have ργ = ρ, ρ0 = 0 for the minimizer. Here F0(T, ρ) is the
free energy of the non-interacting gas (cf. (5.20)).

(2) For T < Tfc

(
1 + h1(ν)ρ1/3a+ o(ρ1/3a)

)
, there exists a universal

constant d0 > 0 such that the free energy is

F can(T, ρ) = inf
0≤d≤d0

[
1

2
(ρa)5/2I1(d, 8π, 0) + T 5/2I2(d, 8π, 0,

√
ρ0(d)a/T )

− dρ0(d)a(ρ− ρ0(d))

+ V̂ (0)ρ2 − 8πaρ0(d)ρ+ ρ0(d)2(12πa− V̂ (0))]

+ o
(
T (ρa)3/2 + (ρa)5/2

)
,

where

ρ0(d) := ρ− 1

2
(ρa)3/2I3(d, 8π, 0)− T 3/2I4(d, 8π, 0,

√
(ρ− ρfc)a/T ).
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL II. 11

In fact, we will obtain a more precise energy expansion in the region
around the critical temperature.

The expression for the free energy above involves integrals and a mini-
mization problem in the parameter d. If we also assume that ρa/T � 1, we
can simplify the result, as the following theorem shows.

Theorem 11 (The canonical free energy for ρa/T � 1). Let ∆ρ = ρ− ρfc.

For ρa/T � 1 and T < Tfc

(
1 + h1(ν)ρ1/3a+ o(ρ1/3a)

)
, the canonical free

energy is given by

F can(T, ρ) = T 5/2fmin + 4πaρ2 + (ν − 4π)aρfc(2ρ− ρfc)

+

(
∆ρa

T

)3/2(
− 1

3
√

2π

)(
ν3/2 + (ν − 8π)3/2

)
T 5/2

+ o(T (ρa)3/2).

In the case ρa/T � 1, we can also simplify the expression in the second
point of Theorem 10: the contribution from the integrals I2 and I4 can be
neglected in the minimization problem.

Corollary 12 (The canonical energy for ρa/T � 1 ). For ρa/T � 1 and

T < Tfc

(
1 + h1(ν)ρ1/3a+ o(ρ1/3a)

)
, the canonical free energy can be de-

scribed in terms of a function g : (8π,∞)→ R as

F can(T, ρ) = 4πaρ2 + g(ν)(ρa)5/2 + o ((ρa)5/2),

with g(ν) → 512
15

√
π as ν → 8π. The latter result is known as the Lee–

Huang–Yang formula.

Before we proceed to the proof of these theorems, let us sketch the main
ideas used in the paper.

4.3. Set-up of the paper. Since the Euler–Lagrange equations of the free

energy functional involve the convolutions V̂ ∗ γ and V̂ ∗ α, it is very hard
to analyse them quantitatively. Even with a Fourier transform, they cannot
be solved. The main idea is to replace the non-local terms in the functional
by local ones, such that we end up with a simplified functional that can be
minimized explicitly, that is,

inf
(γ, α, ρ0)
ρ0 + ργ = ρ

Fcan ≈ inf
(γ, α, ρ0)
ρ0 + ργ = ρ

F sim = inf
0≤ρ0≤ρ

[
inf

(γ, α)
ργ = ρ− ρ0

F sim
]

where the final minimizations can be done explicitly.
The approximation involves several steps. First, we replace the convolu-

tion term involving γ with V̂ (0)ρ2
γ . We expect that the particles interact

weakly in the dilute limit and it seems reasonable to assume that the system
will behave like a free Bose gas to leading order. We therefore expect that
the minimizing γ is concentrated on a ball of radius

√
T . By our assump-

tions (4.4), V̂ (p) is approximately V̂ (0) on a ball of radius a−1 �
√
T (in

the region around the critical temperature), justifying the replacement.
Second, by introducing a trial function α0, we rewrite the convolution

terms involving α. This trial function will be expressed in terms of V̂ w,
where w is the solution to the scattering equation. Finally, we will also
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substitute V̂ by V̂ w in the terms that are linear in γ at the cost of a small
error. All this will be done in Subsection 5.1, with Lemma 13 specifying the
error terms exactly.

We then minimize the simplified functional. We split the minimization
in two steps: first one over γ and α with the constraint that ρ0 + ργ =
ρ, followed by a minimization over 0 ≤ ρ0 ≤ ρ. The first step will be
carried out in Subsection 5.2, and it will lead to a useful class of minimizers
(γρ0,δ, αρ0,δ). To prepare for the final minimization over ρ0, we will establish
further properties of these functions in Subsection 5.6.

In order to prove that this provides a good approximation, we will need to
know that the error terms are small for both the minimizer of the full func-
tional and the minimizer of the simplified functional. For the full functional,
this is shown in Subsections 5.3 and 5.4 along with several other useful a
priori estimates.

In Subsection 5.7, we will analyse the energy in the region |ρ − ρfc| ≤
Cρ(ρ1/3a), since the a priori result of Subsection 5.5 shows that this is
where the phase transition occurs. This leads to the calculation of the
critical temperature and the proof of Theorems 8 and 9.

Subsection 5.8 contains the proof of Theorems 10 and 11.

5. Proof of the main results

5.1. Derivation of the simplified functional. The following simplified
functional will serve as an approximation to the canonical free energy func-
tional (2.4):

F sim(γ, α, ρ0) = (2π)−3

∫ (
p2 + (ρ0 + t0)V̂ w(p)

)
γ(p)dp

+ (2π)−3

∫
(ρ0 + t0)V̂ w(p)α(p)dp− TS(γ, α)

+
1

4
(2π)−3(ρ0 + t0)2

∫
V̂ w(p)2

p2
dp

+ V̂ (0)ρ2 + (12πa− V̂ (0))ρ2
0 − 8πaρρ0

− 4πat20 − 8πat0(ρ− ρ0).

(5.1)

Here, w satisfies the scattering equation (4.2), and t0 is a parameter that
could in principle be chosen to depend on ρ and ρ0. This will turn out to be
necessary for the proof of Theorems 8 and 9 in Subsection 5.7, and we will
state a specific choice for t0 at the start of this subsection. For the proof of
Theorems 10 and 11 in Subsection 5.8 it will, however, suffice to set t0 = 0.
Before we make a choice for t0, we will work with the general assumption

− ρ0 ≤ t0 ≤ 0. (5.2)

Note that F sim consist of terms that are both linear and local in γ and
α (aside from the entropy), and it will therefore be much easier to handle
than the full Fcan.
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As shown in Lemma 13, the difference between F sim and Fcan can be
expressed in terms of

E1(γ, α, ρ0) := (2π)−6 1

2

∫∫
(α− α0)(p)V̂ (p− q)(α− α0)(q)dpdq

E2(γ, α, ρ0) :=

∣∣∣∣(2π)−3ρ0

∫
γ(p)V̂ (p)dp− V̂ (0)ρ0ργ

∣∣∣∣

E3(γ, α, ρ0) :=

∣∣∣∣(2π)−3ρ0

∫
γ(p)V̂ w(p)dp− V̂ w(0)ρ0ργ

∣∣∣∣

E4(γ, α, ρ0) :=

∣∣∣∣(2π)−6 1

2

∫∫
γ(p)V̂ (p− q)γ(q)dpdq − 1

2
V̂ (0)ρ2

γ

∣∣∣∣ .

(5.3)

Here, the function α0 is chosen to be

α0 := (ρ0 + t0)ŵ − (2π)3ρ0δ0 = (2π)3t0δ0 −
ρ0 + t0

2

V̂ w(p)

p2
, (5.4)

where we have used the Fourier transform of the scattering equation (4.2),
taking into account the boundary condition:

ŵ = (2π)3δ0 −
1

2

V̂ w(p)

p2
. (5.5)

When a more precise error is required, we will consider

E5(γ, α, ρ0) :=
∣∣∣(2π)−6 1

2

∫∫
γ(p)V̂ (p− q)γ(q)dpdq

− 1

2
V̂ (0)ρ2

γ −
ζ(3/2)ζ(5/2)

256π3
∆V̂ (0)T 4

∣∣∣.
(5.6)

Note that the additional term in E5 compared to E4 is independent of
(γ, α, ρ0) and including it in the simplified functional will therefore not affect
the minimizer (see Corollary 14).

The function V̂ w appears in our definition of α0. It will turn out to be
convenient to gather some of its properties before we prove the main result
of this section. First of all, w ≥ 0, which implies that V w ≥ 0, and so

|V̂ w(p)| ≤ V̂ w(0) = 8πa.

From (5.5), we obtain
∫
V w2 = 8πa− 1

2
(2π)−3

∫
V̂ w(p)2|p|−2dp, (5.7)

and hence the integral on the left-hand side is bounded by Ca. This implies∫
|V̂ w|2 =

∫
|V w|2 ≤ ‖V ‖∞

∫
V w2 ≤ C

a
,

where we have used our assumptions (4.4). Using the above conclusions, we
now estimate∥∥∥∥∥

V̂ w

p2

∥∥∥∥∥
1

≤
∫

|p|≤a−1

|V̂ w|
p2

dp+

∫

|p|>a−1

|V̂ w|
p2

dp

≤ C +

(∫

|p|>a−1

|V̂ w|2dp
)1/2(∫

|p|>a−1

1

p4
dp

)1/2

≤ C,
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where it is important that the estimate is independent of a. Applying (5.5)
again, we have

V̂ w = V̂ − V̂ w

2p2
∗ V̂ .

By our assumptions (4.4) we have for 0 ≤ n ≤ 3:

‖∂nV̂ w‖∞ ≤ ‖∂nV̂ ‖∞
(

1 +

∥∥∥∥∥
V̂ w

2p2

∥∥∥∥∥
1

)
≤ Can+1. (5.8)

We can therefore estimate derivatives of V̂ w in the same way as those of V̂ ,
and we will use this in the subsections below.

The main result of this subsection is the following lemma, which compares
the simplified and canonical free energy functionals. Its message is that,
given that the error terms are small for the minimizers of both the simplified
and the full functional, it suffices to analyse the simplified functional.

Lemma 13. For any triple (γ, α, ρ0) we have

−
(
E2 + E3 + E4

)
(γ, α, ρ0) ≤ Fcan(γ, α, ρ0)−F sim(γ, α, ρ0)

≤
(
E1 + E2 + E3 + E4

)
(γ, α, ρ0).

Proof. We have

Fcan(γ, α, ρ0)−F sim(γ, α, ρ0) = (2π)−3ρ0

∫ (
V̂ (p)− V̂ w(p)

)
(γ(p) + α(p))dp

− (2π)−3t0

∫
V̂ w(p)(γ(p) + α(p))dp+

1

2
V̂ (0)ρ2

γ −
1

2
V̂ (0)ρ2

+
1

2
(2π)−6

∫∫
γ(p)V̂ (p− q)γ(q)dpdq − 1

2
V̂ (0)ρ2

γ

− 1

4
(2π)−3(ρ0 + t0)2

∫
V̂ w(p)2

p2
dp− (12πa− V̂ (0))ρ2

0

+ 8πaρρ0 + 4πat20 + 8πat0(ρ− ρ0) + E1(γ, α, ρ0)

+ (2π)−6

∫
α(p)(V̂ ∗ α0)(p)dp− 1

2
(2π)−6

∫
α0(p)(V̂ ∗ α0)(p)dp.

(5.9)

We start by dealing with the last two terms in (5.9). First we have

(2π)−3V̂ ∗ α0(p) = (ρ0 + t0)V̂ w(p)− ρ0V̂ (p),

which follows immediately from the definition (5.4). This means that the
first term in the last line of (5.9) cancels the α-terms in the first two lines
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL II. 15

of (5.9). We thus have

Fcan(γ, α, ρ0)−F sim(γ, α, ρ0) = (2π)−3ρ0

∫ (
V̂ (p)− V̂ w(p)

)
γ(p)dp

− (2π)−3t0

∫
V̂ w(p)γ(p)dp+

1

2
V̂ (0)ρ2

γ −
1

2
V̂ (0)ρ2

+
1

2
(2π)−6

∫∫
γ(p)V̂ (p− q)γ(q)dpdq − 1

2
V̂ (0)ρ2

γ

− 1

4
(2π)−3(ρ0 + t0)2

∫
V̂ w(p)2

p2
dp− (12πa− V̂ (0))ρ2

0

+ 8πaρρ0 + 4πat20 + 8πat0(ρ− ρ0) + E1(γ, α, ρ0)

− 1

2
(2π)−6

∫
α0(p)(V̂ ∗ α0)(p)dp.

(5.10)

We now deal with the last term in the above equation. Using (5.4), we have

∫
α0(V̂ ∗ α0) =

∫∫
(ρ0 + t0)V̂ w(p)

2p2
V̂ (p− q)(ρ0 + t0)V̂ w(q)

2q2
dpdq

+ (2π)6t20V̂ (0)− 2t0(2π)3

∫
(ρ0 + t0)V̂ w(p)V̂ (p)

2p2
dp.

(5.11)

Note that

1

2

∫
V w2 =

∫
V w− 1

2

∫
V +

1

2

∫
V (1−w)2 = 8πa− 1

2

∫
V +

1

2

∫
V (1−w)2,

so that

(2π)−6 1

2

∫∫
̂(1− w)(p)V̂ (p− q) ̂(1− w)(q)dpdq

=
1

2

∫
V − 4πa− 1

4
(2π)−3

∫
V̂ w(p)2|p|−2dp.

(5.12)

These identities together with (5.7) allow us to compute the terms in (5.11).
By (5.5), we have

V̂ w(p)

2p2
= ̂(1− w)(p),

so that it follows from (5.12) that

1

2
(2π)−6

∫∫
(ρ0 + t0)V̂ w(p)

2p2
V̂ (p− q)(ρ0 + t0)V̂ w(q)

2q2
dpdq =

=
1

2
(ρ0 + t0)2V̂ (0)− 4πa(ρ0 + t0)2 − 1

4
(2π)−3(ρ0 + t0)2

∫
V̂ w(p)2|p|−2dp.

Furthermore,

∫
V̂ w(p)V̂ (p)

2p2
=

∫
(1̂− w)V̂ = (2π)3

∫
V (1− w) = (2π)3(V̂ (0)− 8πa).
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Collecting all terms we obtain

1

2
(2π)−6

∫
α0(V̂ ∗ α0) =

1

2
(ρ0 + t0)2V̂ (0)− (ρ0 + t0)2

4(2π)3

∫
V̂ w(p)2

p2
dp

− 4πa(ρ0 + t0)2 − t0(t0 + ρ0)(V̂ (0)− 8πa) +
1

2
t20V̂ (0)

=
1

2
(V̂ (0)− 8πa)ρ2

0 + 4πat20 −
(ρ0 + t0)2

4(2π)3

∫
V̂ w(p)2

p2
dp,

(5.13)

and inserting (5.13) into (5.10) gives

Fcan(γ, α, ρ0)−F sim(γ, α, ρ0) = (2π)−3ρ0

∫
V̂ (p)γ(p)dp− V̂ (0)ρ0ργ

− (2π)−3(ρ0 + t0)

∫
V̂ w(p)γ(p)dp+ (ρ0 + t0)8πaργ

+
1

2
(2π)−6

∫∫
γ(p)V̂ (p− q)γ(q)dpdq − 1

2
V̂ (0)ρ2

γ

+ E1(γ, α, ρ0).

(5.14)

Here, we added and subtracted V̂ (0)ρ0ργ and 8πaργ(ρ0 + t0) and used that

V̂ w(0) = 8πa. Using the definitions (5.3), our assumption (5.2), and the
fact that E1 ≥ 0 we arrive at the desired result. �

Corollary 14. For any triple (γ, α, ρ0) we have

−
(
E2 + E3 + E5

)
(γ, α, ρ0)

≤
(
Fcan −F sim

)
(γ, α, ρ0)− ζ(3/2)ζ(5/2)

256π3
∆V̂ (0)T 4

≤
(
E1 + E2 + E3 + E5

)
(γ, α, ρ0).

5.2. Minimization of the simplified functional in γ and α. We will
now find the minimizers of the simplified functional (5.1). We note that the
minimization problem can be rewritten as

inf
(γ,α,ρ0), ργ+ρ0=ρ

F sim(γ, α, ρ0) = inf
0≤ρ0≤ρ

[
inf

(γ,α), ργ=ρ−ρ0
F s(γ, α, ρ0)

+ V̂ (0)ρ2 + (12πa− V̂ (0))ρ2
0 − 8πaρρ0 − 4πat20 − 8πat0(ρ− ρ0)

]
,

with

F s(γ, α, ρ0) = (2π)−3

∫
(p2 + (ρ0 + t0)V̂ w(p))γ(p)dp

+ (2π)−3(ρ0 + t0)

∫
V̂ w(p)α(p)dp− TS(γ, α)

+
1

4
(2π)−3(ρ0 + t0)2

∫
V̂ w(p)2

p2
dp.

(5.15)

This suggests that we first focus on the minimization problem

inf
(γ,α), ργ=ρ−ρ0

F s(γ, α, ρ0).
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL II. 17

Since F s is convex in γ and α, we can enforce the constraint ργ = ρ− ρ0

using a Lagrange multiplier δ. Recall that

β(p) =

√(
1

2
+ γ(p)

)2

− α(p)2,

and define

G(p) = T−1

√
(p2 + δ + (ρ0 + t0)V̂ w(p))2 − ((ρ0 + t0)V̂ w(p))2

= T−1

√
(p2 + δ)2 + 2(p2 + δ)(ρ0 + t0)V̂ w(p).

The following result states the minimizers of the minimization problem for
δ ≥ 0.

Lemma 15 (Simplified functional solution). Let δ ≥ 0, ρ0 ≥ 0 and −ρ0 ≤
t0 ≤ 0. The minimizer of

inf
(γ,α)

[
F s(γ, α, ρ0) + δ

∫
γ

]

is given by

γρ0,δ =
β

TG
(p2 + δ + (ρ0 + t0)V̂ w(p))− 1

2

αρ0,δ = − β

TG
(ρ0 + t0)V̂ w(p),

with β and G as above, and the minimum is

F s(γρ0,δ, αρ0,δ, ρ0) + δ

∫
γρ0,δ

= (2π)−3T

∫
ln(1− e−G(p))dp

+ (2π)−3 1

2

∫ [√
(p2 + δ)2 + 2(p2 + δ)(ρ0 + t0)V̂ w(p)

− (p2 + δ + (ρ0 + t0)V̂ w(p)) +
1

2
(ρ0 + t0)2 V̂ w(p)2

p2

]
dp.

Proof. Since

s′(β) = ln

(
β + 1

2

β − 1
2

)
,

we find the the Euler–Lagrange equations to be

p2 + δ + (ρ0 + t0)V̂ w(p) = T ln

(
β + 1

2

β − 1
2

)
γ(p) + 1

2

β(p)

(ρ0 + t0)V̂ w(p) = −T ln

(
β + 1

2

β − 1
2

)
α(p)

β(p)
.

(5.16)

Squaring and subtracting both equations and using (2.2) we obtain

ln

(
β + 1

2

β − 1
2

)
= G(p), β(p) =

(
eG(p) − 1

)−1
+

1

2
. (5.17)
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One may be concerned about the square root in the definition ofG. However,

using V̂ w(0) = 8πa, V̂ w
′
(0) = 0 and ‖V̂ w′′‖∞ ≤ Ca3, we note that

V̂ w(p) ≥ 8πa− Ca3p2.

We find that p2 + 2(ρ0 + t0)V̂ w(p) ≥ Cp2 for all p. Together with δ ≥ 0,
this implies

(p2 + δ)2 + 2(p2 + δ)(ρ0 + t0)V̂ w(p)

= (p2 + δ)
(
p2 + δ + 2(ρ0 + t0)V̂ w(p)

)
≥ Cp4.

In particular, this means there are no problems with the square root.
Using (5.17) in (5.16) we find for the minimizers

γ(p) =
β

TG
(p2 + δ + (ρ0 + t0)V̂ w(p))− 1

2

= (eG(p) − 1)−1 p2 + δ + (ρ0 + t0)V̂ w(p)√
(p2 + δ)2 + 2(p2 + δ)(ρ0 + t0)V̂ w(p)

+
1

2


 p2 + δ + (ρ0 + t0)V̂ w(p)√

(p2 + δ)2 + 2(p2 + δ)(ρ0 + t0)V̂ w(p)

− 1




α(p) = − β

TG
(ρ0 + t0)V̂ w(p)

= −
(

(eG(p) − 1)−1 +
1

2

)
(ρ0 + t0)V̂ w(p)√

(p2 + δ)2 + 2(p2 + δ)(ρ0 + t0)V̂ w(p)

.

These indeed satisfy α2 ≤ γ(γ + 1). Inserting them into the functional we
obtain

(p2 + δ + (ρ0 + t0)V̂ w(p))γ(p) + (ρ0 + t0)V̂ w(p)α(p)− Ts(β(p))

=
β(p)

TG(p)
(TG(p))2 − 1

2
(p2 + δ + (ρ0 + t0)V̂ w(p))

+ Tβ(p) ln

(
β(p)− 1

2

β(p) + 1
2

)
− 1

2
T ln

(
β(p)2 − 1

4

)

= −1

2
(p2 + δ + (ρ0 + t0)V̂ w(p)) +

1

2
TG(p) + T ln(1− e−G(p))

= T ln(1− e−G(p))

+
1

2

(√
(p2 + δ)2 + 2(p2 + δ)(ρ0 + t0)V̂ w(p)− (p2 + δ + (ρ0 + t0)V̂ w(p))

)
,

which gives the right expression. �

We summarize and rewrite the relevant quantities in the following corol-
lary. The expressions may seem a bit involved, but it will turn out to be
useful to write them in this way.
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THE BOGOLIUBOV FREE ENERGY FUNCTIONAL II. 19

Corollary 16. Let −1 ≤ θ ≤ 0, d ≥ 0, σ ≥ 0, φ > 0 and 0 ≤ ρ0 ≤ ρ be
fixed. Assume ρ0a/φ

2 = σ/8π and let δ = dφ2, and t0 = θρ0. We then have

F s(γρ0,δ, αρ0,δ, ρ0)

= (2π)−3φ5 1

2

∫ [
√

(p2 + d)2 + 2(p2 + d)(1 + θ)σ
V̂ w(φp)

8πa

− (p2 + d+ (1 + θ)σ
V̂ w(φp)

8πa
) +

((1 + θ)σ V̂ w(φp)
8πa )2

2p2

]
dp

+ (2π)−3Tφ3

∫
ln

(
1− e−φ

2

T

√
(p2+d)2+2(p2+d)(1+θ)σ

V̂ w(φp)
8πa

)
dp− dφ2ργρ0,δ

=: F (1) + F (2) − dφ2ργρ0,δ ,

where

ργρ0,δ = (2π)−3φ3 1

2

∫ 
 p2 + d+ (1 + θ)σ V̂ w(φp)

8πa√
(p2 + d)2 + 2(p2 + d)(1 + θ)σ V̂ w(φp)

8πa

− 1


 dp

+ (2π)−3φ3

∫ (
e
φ2

T

√
(p2+d)2+2(p2+d)(1+θ)σ

V̂ w(φp)
8πa − 1

)−1

× p2 + d+ (1 + θ)σ V̂ w(φp)
8πa√

(p2 + d)2 + 2(p2 + d)(1 + θ)σ V̂ w(φp)
8πa

dp

=: ρ(1)
γ + ρ(2)

γ .
(5.18)

In the above, φ may seem superfluous, but we will use it later to allow for
different scalings: we either choose φ = Ta or φ =

√
ρ0a. This allows us to

choose the parameters σ, d and θ to be of order 1 in the different regimes.

5.3. A priori estimates on the free Bose gas. To establish that the
error terms in Lemma 13 are small for the minimizer of the full functional,
we need a priori estimates, which we will prove in the next subsection. To
prepare for this, we prove some facts about the free Bose gas first.

Let γµ(ρ) denote the minimizer with density ρ for the free gas functional

F0(γ) = (2π)−3

∫
p2γ(p)− Ts(γ(p), 0)dp.

More precisely, µ(ρ) ≤ 0 represents the chemical potential such that γµ(ρ)

actually minimizes F0(γ)− µ(ρ)(2π)−3
∫
γ. If ρ > ρfc there is no minimizer

with (2π)−3
∫
γ = ρ and µ(ρ) = 0, i.e. we have the global free minimizer

γ0 with (2π)−3
∫
γ0 = ρfc. We denote the minimizing energy F0(T, ρ) =

F0(γµ(ρ)). The minimizer γµ is given by

γµ(p) =
1

e(p2−µ)/T − 1
, (5.19)

hence

ρ = (2π)−3T 3/2

∫ [
e(p2−T−1µ(ρ)) − 1

]−1
dp,
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and the energy is

F0(T, ρ) = (2π)−3T

∫
ln
(

1− e−(p2−µ(ρ))/T
)
dp+ µ(ρ)ρ

= (2π)−3T 5/2

∫
ln
(

1− e−(p2−T−1µ(ρ))
)
dp+ µ(ρ)ρ.

(5.20)

We see that we have the following scalings for F0 and µ:

F0(T, ρ) = T 5/2f0

(
ρ/T 3/2

)
, µ(ρ) = Tm

(
ρ/T 3/2

)
,

where f0 and m are the functions independent of T given by

f0(n) = (2π)−3

∫
ln
(

1− e−(p2−m(n))
)
dp+m(n)n,

n = (2π)−3

∫ [
ep

2−m(n) − 1
]−1

dp.

The critical density is ρfc = T 3/2nfc, where

nfc = (2π)−3

∫ [
ep

2 − 1
]−1

dp =
(

8π3/2
)−1

ζ(3/2). (5.21)

The minimal free energy is minρ F0(T, ρ) = T 5/2fmin, where

fmin = (2π)−3

∫
ln
(

1− e−p2
)
dp

= −2

3
(2π)−3

∫
p2
[
ep

2 − 1
]−1

dp = −
(

8π3/2
)−1

ζ(5/2).

The second identity can for example be seen by putting back in the T de-

pendence, differentiating
∫

ln(1−e−p2/T )dp with respect to T directly under

the integral sign, and also noticing that it is 3
2T
−1 times the integral.

We now prove two estimates that we will use in the next section.

Lemma 17. There exist constants c1, C1 > 0 such that for all n we have

f0(n) ≤ fmin + C1[nfc − n]3+, (5.22)

and for all n1 ≤ n2 ≤ nfc

f0(n1) ≥ f0(n2) + c1(n2 − n1)3. (5.23)

Also, given n0 < nfc, there exists c0 > 0 such that for all n0 ≤ n ≤ nfc

f0(n) ≤ f0(n0)− c0(n− n0)(nfc − n0)2. (5.24)

Proof. Let us analyse how the energy f0(n) goes up if n = nfc − δn for
δn > 0. For simplicity we set λ = −m(n) ≥ 0. We then have

δn = (2π)−3

(∫
[ep

2 − 1]−1 − [ep
2+λ − 1]−1dp

)

= (2π)−3λ3/2

(∫
[eλp

2 − 1]−1 − [eλ(p2+1) − 1]−1dp

)

= (2π)−3λ1/2

(∫
(|p|−2 − (|p|2 + 1)−1)dp+ o(1)

)
= (4π)−1λ1/2 + o(λ1/2)

(5.25)
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as λ→ 0. We then find for the energy

(2π)−3

∫
ln(1− e−(p2+λ))dp− λ(2π)−3

∫
[ep

2+λ − 1]−1dp

= (2π)−3

∫
ln(1− e−p2)dp

+(2π)−3λ3/2

∫
ln(1− e−λ(p2+1))− ln(1− e−λp2)− λ[eλ(p2+1) − 1]−1dp

= fmin + (2π)−3λ3/2

(∫
ln(1 + |p|−2)− (p2 + 1)−1dp+ o(1)

)

= fmin + (12π)−1λ3/2 + o(λ3/2)

as λ→ 0. We thus conclude that

f0(n) = fmin +
16π2

3
[nfc − n]3+ + o([nfc − n]3+) (5.26)

as [nfc − n]+ → 0. This proves the statement. We also see that the free
Bose gas has a third-order phase transition between the condensed and non-
condensed phase.

The final statement is found by combining (5.26) with the fact that f0(n)
is convex and strictly decreasing in 0 ≤ n ≤ nfc. �

5.4. A priori estimates. In this section, we always assume that T ≤ Dρ2/3

for some fixed constant D. The estimates below will depend on D.
Our goal will be to acquire some tools to approximate the free energy

functional (2.1) in the dilute limit ρ1/3a � 1. Propositions 19, 21 and 23

provide a priori bounds for the terms involving γ and V̂ . The first estimate
holds in general for T ≤ Dρ2/3. The two other estimates are sharper and
provide bounds at densities very close to the free critical density where,
according to Subsection 5.5, the phase transition has to occur. This means
that we can zoom in on this region and analyse the nature of the minimizers
there. This will be done in Subsection 5.7.

Let (γ, α, ρ0 = ρ− ργ) be a minimizing triple for (2.5) at a temperature
T .

Using the bound V̂ (p) ≤ V̂ (0) we find the following upper bound in terms
of the free gas energy F0

Fcan(γ, α, ρ0) ≤ Fcan(γµ(ρ), 0, [ρ− ρfc]+)

≤ F0(γµ(ρ)) + ρ2V̂ (0)− 1

2
[ρ− ρfc]

2
+V̂ (0). (5.27)

We also have

Fcan(γ, α, ρ0) ≥ F0(γ) +
1

2
V̂ (0)ρ2 + ρ0(2π)−3

∫
V̂ (p)γ(p)dp

+
1

2
(2π)−6

∫∫
γ(p)V̂ (p− q)γ(q)dpdq − 1

2
ρ2

0V̂ (0),

(5.28)

where we have first used that the entropy decreases if we replace α by 0
and then minimized over α, finding the minimizer α = −(2π)3ρ0δ0. As

Paper II

107
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ργ , ρ0 ≤ ρ and the free gas energy is non-increasing we conclude the following
preliminary estimate

F0(γµ(ργ)) ≤ F0(γ) ≤ F0(γµ(ρ)) + ρ2V̂ (0). (5.29)

We will use this to give an estimate on the integral of γ in a region |p| > b,
where b is to be chosen below. We shall use the following result.

Lemma 18 (A priori kinetic energy bound). If for some Y > 0 the function
γ satisfies F0(γ) ≤ F0(γµ(ργ)) + Y , then for all b with b2 > 8T we have

1

2
(2π)−3

∫

|p|>b
p2γ(p)dp ≤ Y + CT 5/2e−b

2/4T .

Proof. Using the fact that µ(ργ) ≤ 0 and µ(ργ)(2π)−3
∫
γµ(ργ) = µ(ργ)ργ ,

the result follows from

F0(γ)− µ(ργ)ργ ≥ (2π)−3

∫

|p|<b

(
p2γ(p)− Ts(γ(p), 0)− µ(ργ)γ(p)

)
dp

+
1

2
(2π)−3

∫

|p|>b

p2γ(p)dp+
1

2
(2π)−3

∫

|p|>b

(
p2γ(p)− 2Ts(γ(p), 0)

)
dp

≥ (2π)−3

∫ (
p2γµ(ργ)(p)− Ts(γµ(ργ)(p), 0)− µ(ργ)γµ(ργ)(p)

)
dp

+
1

2
(2π)−3

∫

|p|>b
p2γ(p)dp+ (2π)−3T

∫

|p|>b
ln(1− e−p2/2T )dp

≥ F0(γµ(ργ))− µ(ργ)ργ +
1

2
(2π)−3

∫

|p|>b
p2γ(p)− CT 5/2e−b

2/4T ,

which holds for b2 > 8T , since then∫

|p|>b
ln(1− e−p2/2T )dp ≥ −C

∫

|p|>b
e−p

2/2Tdp ≥ −Ce−b2/4T
∫
e−p

2/4Tdp

= −CT 3/2e−b
2/4T .

�
Since F0(γµ(ργ)) ≥ F0(γµ(ρ)), we can use this lemma with Y = ρ2V̂ (0) to

conclude from (5.29) that∫∫

|p−q|>2b
γ(p)V̂ (p− q)γ(q)dpdq ≤ CV̂ (0)ρ

∫

|p|>b
γ(p)dp

≤ CV̂ (0)ρ(ρ2V̂ (0) + T 5/2e−b
2/4T )b−2.

(5.30)

We choose b = a−1(ρ1/3a)3/4. Then b2/T ≥ D−1(ρ1/3a)−1/2 � 1 and we
find∫∫

|p−q|>2b
γ(p)V̂ (p− q)γ(q)dpdq ≤ Cρ3V̂ (0)2b−2 ≤ Cρ2a(ρ1/3a)3/2. (5.31)

Of course, the same bound holds if V̂ (p − q) is replaced by V̂ (0). On the
other hand we also have∫∫

|p−q|<2b
γ(p)|V̂ (p−q)−V̂ (0)|γ(q)dpdq ≤ Cb2‖∂2V̂ ‖∞ρ2 ≤ Cρ2a(ρ1/3a)3/2.

(5.32)
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For the same choice of b:

∣∣∣∣
∫
γ(p)V̂ (p)dp −V̂ (0)

∫
γ(p)dp

∣∣∣∣ ≤

∣∣∣∣∣∣∣



∫

|p|≤b

+

∫

|p|>b


 γ(p)

(
V̂ (p)− V̂ (0)

)
dp

∣∣∣∣∣∣∣

≤ Cb2‖∂2V̂ ‖∞
∫

|p|≤b
γ(p)dp+ CV̂ (0)b−2

∫

|p|>b
p2γ(p)dp

≤ Cρa3b2 + Cab−2(ρ2a+ T 5/2e−b
2/4T ) ≤ Cρa(ρ1/3a)3/2,

(5.33)

The same bounds hold for V̂ w by (5.8). We have thus shown the following
result.

Proposition 19 (A priori estimates on E2 and E4). Any minimizing triple

(γ, α, ρ0) with density ρ = ργ + ρ0 and temperature T satisfying T < Dρ2/3

obeys the estimates∣∣∣∣(2π)−6

∫∫
γ(p)V̂ (p− q)γ(q)dpdq − V̂ (0)ρ2

γ

∣∣∣∣ ≤ Cρ2a(ρ1/3a)3/2,

∣∣∣∣(2π)−3

∫
γ(p)V̂ (p)dp− V̂ (0)ργ

∣∣∣∣ ≤ Cρa(ρ1/3a)3/2,

where the constant C depends on D and the potential V . This also holds

with V̂ replaced by V̂ w.

From (5.27), (5.28), and Proposition 19 we find that

F0(γµ(ρ)) ≥ F0(γ) +
1

2
[ρ− ρfc]

2
+V̂ (0)− ρ2

0V̂ (0)− Cρ2a(ρ1/3a)3/2, (5.34)

which implies

ρ2
0V̂ (0) ≥ 1

2
[ρ− ρfc]

2
+V̂ (0)− Cρ2a(ρ1/3a)3/2. (5.35)

We thus get the following result.

Lemma 20. If (γ, α, ρ0) is a minimizing triple with ρ = ργ + ρ0 satisfying

ρ > ρfc + Cρ(ρ1/3a)3/4,

then ρ0 6= 0.

It follows that phase transition can only take place for

ρ ≤ ρfc + Cρ(ρ1/3a)3/4 ≤ ρfc + C ′ρfc(ρ
1/3
fc a)3/4.

Hence from now on we consider only

ρ ≤ ρfc + C ′ρfc(ρ
1/3
fc a)3/4. (5.36)

Under this condition we shall give an upper bound on ρ0.

If ρ0 > 2C ′ρfc(ρ
1/3
fc a)3/4, then ργ = ρ− ρ0 ≤ ρfc − 1

2ρ0 and thus

F0(γµ(ρ)) ≥ F0(γ)− V̂ (0)ρ2
0 − Cρ2

fca(ρ
1/3
fc a)3/2

≥ F0(γµ(ρ)) + cT−2ρ3
0 − V̂ (0)ρ2

0 − Cρ2
fca(ρ

1/3
fc a)3/2,

(5.37)

where we have used the lower bound in (5.23) with n1 = T−3/2ργ and

n2 = T−3/2 min{ρ, ρfc}. We conclude that ρ0 < Cρfc(ρ
1/3
fc a)5/6, which, in the
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dilute limit, contradicts the assumption ρ0 > 2C ′ρfc(ρ
1/3
fc a)3/4. We conclude

that (5.36) implies

ρ0 ≤ 2C ′ρfc(ρ
1/3
fc a)3/4.

If we insert this bound into (5.34), we obtain

F0(γµ(ρ)) ≥ F0(γ)− Cρ2
fca(ρ

1/3
fc a)3/2. (5.38)

Since F0(γµ(ρ)) ≤ F0(γµ(ργ)), we use Lemma 18 with Y = Caρ2
fc(ρ

1/3
fc a)3/2,

and, as in (5.30), arrive at
∫∫

|p−q|>2b
γ(p)V̂ (p− q)γ(q)dpdq

≤ CV̂ (0)ρ(aρ2
fc(ρ

1/3
fc a)3/2 + T 5/2e−b

2/4T )b−2.
(5.39)

We choose b = a−1(ρ
1/3
fc a)3/4, such that b2/T ≥ c(ρ1/3

fc a)−1/2 � 1. The error

above is then Cρ2
fca(ρ

1/3
fc a)3. This time we can expand V̂ to second order

∫∫

|p−q|<2b

γ(p)|V̂ (p− q)− V̂ (0)−1

6
∆V̂ (0)(p− q)2|γ(q)dpdq ≤ Cb3 sup |∂3V̂ |ρ2

= Cb3a4ρ2 ≤ Cρ2
fca(ρ

1/3
fc a)2+1/4.

Note that the integrals of the terms involving V̂ (0) and ∆V̂ (0) over {|p−q| >
2b} can be estimated with Lemma 18 like (5.39), that all these bounds can

also be derived for
∫
V̂ (p)γ(p)dp, and that we can derive similar bounds for

V̂ w using (5.8), so that we arrive at the following improvement of Proposi-
tion 19.

Proposition 21. Any minimizing triple (γ, α, ρ0) with density ρ = ργ + ρ0

and temperature T satisfying D−3/2T 3/2 < ρ < ρfc + C ′ρfc(ρ
1/3
fc a)3/4 obeys

the estimates∣∣∣∣(2π)−6

∫∫
γ(p)V̂ (p− q)γ(q)dpdq − V̂ (0)ρ2

γ−
1

3(2π)3
∆V̂ (0)ργ

∫
p2γ(p)dp

∣∣∣∣

≤ Cρ2
fca(ρ

1/3
fc a)2+1/4

(5.40)
and∣∣∣∣(2π)−3

∫
V̂ (p)γ(p)dp− V̂ (0)ργ −

1

6(2π)3
∆V̂ (0)

∫
p2γ(p)dp

∣∣∣∣

≤ Cρfca(ρ
1/3
fc a)2+1/4,

where the constants C depend on D and the potential V This also holds with

V̂ replaced by V̂ w.

We are now ready to prove two more results. First, we provide an upper
bound on ρ0 and one on densities where a phase transition can occur (‘critical
densities’), which will be matched with a lower bound in the next section
to show that there is no phase transition outside the region |ρ − ρfc| <
Cρ(ρ1/3a). The second is an a priori estimate on the error E5.
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Lemma 22 (Upper bound on critical densities and ρ0). Assume that the

density ρ = ρ0 + ργ and temperature T satisfy D−3/2T 3/2 < ρ < ρfc +

C ′ρfc(ρ
1/3
fc a)3/4. Then,

• ρ0 < Cρ(ρ1/3a).
• there exists a constant C such that any minimizing triple with ρ >
ρfc + Cρ(ρ1/3a) has ρ0 6= 0.

Proof. For |δ| < 1 (both positive and negative) we find using the scaling of
the free gas energy that

F0(γ) ≥ (2π)−3δ

∫
p2γ(p)dp+ (1− δ)−3/2F0(γ0). (5.41)

Since F0(γ) ≤ Cρ2
fca(ρ

1/3
fc a)3/2 by (5.38) and F(γ0) ≤ 0, it follows that

∫
p2γ(p)dp ≤ Cρ5/3. (5.42)

Together with Proposition 21, this implies that

(2π)−6

∫∫
γ(p)V̂ (p− q)γ(q)dpdq = V̂ (0)ρ2

γ +O(ρ2a(ρ1/3a)2)

and

(2π)−3

∫
V̂ (p)γ(p)dp = V̂ (0)ργ +O(ρa(ρ1/3a)2).

These two bounds together with (5.27) and (5.28) yield

F0(γµ(ρ))+ρ
2 V̂ (0)

2
− 1

2
[ρ− ρfc]

2
+V̂ (0) ≥

F0(γ) + ρ0ργ V̂ (0) +
V̂ (0)

2
ρ2
γ −

V̂ (0)

2
ρ2

0 +O(ρ2(ρ1/3a)2),

(5.43)

and so

ρ2
0 ≥

1

2
[ρ− ρfc]

2
+ − Cρ2(ρ1/3a)2,

which implies the second statement. We also notice that (5.43) and (5.23)
(used as in (5.37)) imply

CT−2ρ3
0 − V̂ (0)ρ2

0 − Caρ2(ρ1/3a)2 ≤ 0,

which proves the first statement. �

Proposition 23 (A priori estimate on E5). Let (γ, α, ρ0) be a minimizing

triple with density ρ = ργ + ρ0 such that |ρ− ρfc| < Cρ(ρ1/3a). Also assume

T < Dρ2/3. Then

(2π)−6

∫∫
γ(p)V̂ (p−q)γ(q)dpdq = V̂ (0)ρ2

γ+
ζ (3/2) ζ (5/2)

128π3
∆V̂ (0)T 4+o(T 4a3).

Proof. First notice that

ζ (3/2) ζ (5/2)

128π3
∆V̂ (0)T 4 =

∆V̂ (0)

3(2π)6

∫
p2(ep

2/T − 1)−1dp

∫
(ep

2/T − 1)−1dp,

(5.44)
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so that according to (5.40) it is enough to show that

1

3
∆V̂ (0)ργ

∫
p2γ(p)dp =

1

3(2π)3
∆V̂ (0)

∫
γ0(p)dp

∫
p2γ0(p)dp+ o(T 4a3).

(5.45)
We have
∣∣∣∣ργ
∫
p2γ(p)dp− ρfc

∫
p2γ0(p)dp

∣∣∣∣ ≤

|ργ − ρfc|
∫
p2γ(p)dp+ ρfc

∣∣∣∣
∫
p2(γ(p)− γ0(p))dp

∣∣∣∣ .

The first statement in Lemma 22, combined with the assumptions, implies

|ργ − ρfc| ≤ ρ0 + |ρ− ρfc| ≤ Cρfc(ρ
1/3
fc a).

This and (5.42) allow us to bound the first contribution to the difference in
(5.45):

∆V̂ (0)|ργ − ρfc|
∫
p2γ(p)dp ≤ Cρ3

fca
4 = o(T 4a3).

To bound the other contribution, we use (5.41). We do the same for γ0, but
with −δ. Putting these two bounds together yields

(2π)−3δ

∫
p2(γ(p)−γ0(p))dp ≤ F0(γ)+F0(γ0)−((1−δ)−3/2+(1+δ)−3/2)F0(γ0).

Writing (5.22) and (5.38) in succession gives

F0(γ0) + CT−2[ρfc − ρ]3+ ≥ F0(γµ(ρ)) ≥ F0(γ)− Cρ2
fca(ρ

1/3
fc a)3/2,

which implies

CT 5/2ρfca
3 + Cρ2

fca(ρ
1/3
fc a)3/2 ≥ 0.

Thus

δ

(2π)3

∫
p2(γ(p)− γ0(p))dp ≤ −((1− δ)− 3

2 + (1 + δ)−
3
2 − 2)F0(γ0)

+ CT 5/2ρfca
3 + Cρ2

fca(ρ
1/3
fc a)3/2

≤ Cδ2T 5/2 + CT 5/2ρfca
3 + CT 5/2(ρ

1/3
fc a)5/2.

By choosing |δ| = (ρ
1/3
fc a)5/4, we finally obtain

∫
p2(γ(p)− γ0(p))dp ≤ CT 5/2(ρ

1/3
fc a)5/4,

which implies

∆V̂ (0)ρfc

∣∣∣∣
∫
p2(γ(p)− γ0(p))dp

∣∣∣∣ ≤ Ca3T 4(ρ
1/3
fc a)5/4 = o(T 4a3).

This completes the proof. �
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5.5. Estimate on critical densities. In this section, we provide a lower
bound on densities where a phase transition can occur. Together with the
upper bound from Lemmas 20 and 22, we obtain the following a priori
estimate.

Proposition 24 (Estimate on critical densities). There exists a constant
C0 such that for any minimizing triple:

(1) ρ0 6= 0 if ρ > ρfc + C0ρfc(ρ
1/3
fc a);

(2) ρ0 = 0 if ρ < ρfc − C0ρfc(ρ
1/3
fc a).

Proof of the second statement. (The first follows from Lemmas 20 and 22.)

Step 1. We will first consider temperatures T ≤ Dρ2/3, so that we can use
the a priori estimates proved in the previous section, and comment on higher
temperatures in the final step.

We are interested in the canonical minimization problem (2.5), but our
strategy will be to use the grand canonical formulation of the problem. This
is not straightforward since the canonical energy is not necessarily convex
in ρ (it will indeed turn out not to be as we prove in Subsection 5.7).

As a first step, we simply assume the correspondence between canonical
and grand canonical is obvious. That is, given ρ, there is a µ such that the
canonical minimizing triple (γ, α, ρ0) with ρ0 + ργ = ρ is a minimizer of the
grand canonical functional (2.1) with that µ (which will not be the case in
general.) In [25], it was shown that γ satisfies the Euler–Lagrange equation

p2 − µ+ ρV̂ (0) + ρ0V̂ (p) + (2π)−3V̂ ∗ γ(p)− T γ + 1
2

β
ln
β + 1

2

β − 1
2

= 0.

Since β =
√

(γ + 1
2)2 − α2, it follows that

p2 − µ+ ρV̂ (0) + ρ0V̂ (p) + (2π)−3V̂ ∗ γ(p)− T ln
γ + 1

γ
≥ 0,

which implies

γ(p) ≥
[

exp

(
p2 − µ+ ρV̂ (0) + ρ0V̂ (p) + (2π)−3V̂ ∗ γ(p)

T

)
− 1

]−1

.

(5.46)
The same argument as in (5.28) implies that

F(γ, α, ρ0) ≥ F(γ, 0, 0) + ρ0

(
(2π)−3

∫
V̂ (p)γ(p)dp+ ργ V̂ (0)− µ

)
.

Thus, if the minimizer has ρ0 > 0, then we need to have

(2π)−3

∫
V̂ (p)γ(p)dp+ ργ V̂ (0)− µ ≤ 0.

Using this in (5.46), we obtain

γ(p) ≥
[

exp

(
p2 + Caρ(ρ1/3a)

T

)
− 1

]−1

, (5.47)
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where we also used the first statement in Lemma 22 and Proposition 19.
Given the claim we are trying to prove, we can assume ρ ≤ ρfc, so that,
using a change of variables and the fact that ρ0 > 0, we have

ργ ≥ T 3/2

∫ [
exp

(
p2 + C(ρ1/3a)2

)
− 1
]−1

dp ≥ ρfc(1− C(ρ1/3a)),

where we used (5.25). We conclude that there exists a constant C1 such

that ρ0 = 0 for any minimizing triple with ρ < ρfc − C1ρfc(ρ
1/3
fc a) satisfying

the extra assumption that there is a µ that will give the same minimizer of
the grand canonical problem. This will, however, not be the case in general
because the canonical energy may not be convex in ρ.

Step 2. Given a ρ, there are ρ± such that ρ− ≤ ρ ≤ ρ+ and such that the
convex hull of F can is linear on the interval [ρ−, ρ+]. To see this, we first use
that ρ0 = 0 for small ρ, as established in [25]. Together with the fact that
the canonical functional with ρ0 = 0 is strictly convex, this implies that the
canonical energy is convex for small ρ. The simple lower bound

F can(T, ρ) ≥ −CT 5/2 − 1

2
ρ0

∫
V̂ +

1

2
V̂ (0)ρ2

then confirms the existence of ρ− and ρ+.
The assumption made in the previous step will hold for ρ±, i.e. ρ+ and

ρ− correspond to a minimum for the grand canonical functional for some
(shared) µ that is the slope of F can on [ρ−, ρ+], and the conclusion from
step 1 above holds for these densities. Since ρ− ≤ ρ, this implies that if we
choose C0 ≥ C1 then ρ0− = 0 for the total density ρ−.

If the density ρ+ also satisfies a corresponding upper bound, then ρ0+ = 0
as well. In that case, as the canonical functional with ρ0 = 0 is strictly
convex, we conclude that in the interval [ρ−, ρ+] we must have ρ0 = 0 and
hence ρ− = ρ+ = ρ.

Let µ be the slope of the convex hull of F can on [ρ−, ρ+] (where it is linear).
By the ρ0-Euler–Lagrange equation for the grand canonical functional (2.1),
it follows that

µ ≤ ρ−V̂ (0) + (2π)−3

∫
V̂ γ− ≤ 2ρ−V̂ (0) ≤ 2ρfc(1− C0ρ

1/3
fc a)V̂ (0).

The aim is to prove that ρ+ < ρfc−C1ρfc(ρ
1/3
fc a) by proving an upper bound

on any density minimizing the grand canonical functional with µ satisfying
the bound above. As the minimizing density increases with µ, we can assume
that

µ = 2ρfc(1− C0ρ
1/3
fc a)V̂ (0). (5.48)

Recall that C0 is a constant that we will choose large enough to get the
proof to work. Our choice for C0 will be universal, so that we can make the

a priori assumption that C0ρ
1/3
fc a ≤ 1.

Step 3. Let µ be as in (5.48). We will now first show the a-priori bound
ρ ≤ Cρfc. From (5.14), the definition of F sim (5.1) and the definition of FS
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(5.15), we find that

F(γ, α, ρ0) = FS(γ, α, ρ0)− µρ

+
1

2
V̂ (0)ρ2

γ + V̂ (0)ρ0ργ − (ρ0 + t0)(2π)−3

∫
V̂ w(p)γ(p)dp

+(2π)−3ρ0

∫
V̂ (p)γ(p)dp− 4πa(ρ0 + t0)2 + 8πa(ρ0 + t0)ρ0

+
1

2
(2π)−6

∫∫
γ(p)V̂ (p− q)γ(q)dpdq (5.49)

+
1

2
(2π)−6

∫∫
(α(p)− α0(p))V̂ (p− q)(α(p)− α0(p))dpdq.

We now choose 0 ≥ t0 ≥ −ρ0. If 8πaρ0 ≤ 4ρfcV̂ (0) we choose t0 = 0.
Note that in this case we already have an upper bound ρ0 ≤ Cρfc, and the
argument below will give the desired result for ργ . Otherwise we choose

8πa(t0 + ρ0) = 4ρfcV̂ (0) > 2µ

by the assumption (5.48) on µ. We now give a lower bound by ignoring the
last two integrals, the second term in the second line, and the first term in
the third line in (5.49). Finally we minimize F s using Lemma 22 with δ = 0.

We first consider the last integral in the expression for the minimum of
F s. We know from the assumptions made at the start of Sections 3 and 4
that

|V̂ w(p)| ≤ V̂ w(0) = 8πa, V̂ w(p) ≥ 8πa− Ca3p2, (5.50)

where the first inequality follows since V w is positive. The only negative
contribution to the last integral therefore comes from the region |p| > C/a.
For such p we have that

(ρ0 + t0)|V̂ w(p)|/p2 ≤ Cρfca
3 � 1.

Hence the last integral can be estimated below by

−C(ρ0 + t0)3

∫

|p|>1/a

|V̂ w(p)|3
p4

≥ −Cρ3
fca

4 = −Cρ2
fca(ρfca

3).

This argument will again be used in the next step to bound this integral.
The first integral with G can be bounded below by replacing G with a

lower bound. We use again (5.50):

G = T−1

√
p4 + 2(ρ0 + t0)p2V̂ w(p) ≥ T−1p2

√
1− Cρfca3.

Altogether, we arrive at a lower bound

F(γ, α, ρ0) ≥ F0(γ0)(1 + Cρfca
3)− µργ − µρ0

+
1

2
V̂ (0)ρ2

γ − Caρfcργ − Caρ2
fc + 4ρfcV̂ (0)ρ0 − Cρ3

fca
4

≥ F0(γ0)− Cρ8/3
fc a3 − 2ρfcV̂ (0)ργ +

1

2
V̂ (0)ρ2

γ

−Caρfcργ + 2ρfcV̂ (0)ρ0 − Caρ2
fc − Cρ3

fca
4,
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where γ0 is the minimizer of the free gas functional. By inserting γ0 and
α = ρ0 = 0 into F we get the upper bound

F0(γ0)− µρfc + V̂ (0)ρ2
fc ≤ F0(γ0)− V̂ (0)ρ2

fc + 2Dρ2
fcV̂ (0)(ρ

1/3
fc a).

on the minimum of F . This implies that minimizers ρ0, ργ ≤ Cρfc, which
gives the desired a priori upper bound on ρ.

Step 4. To finish the argument, we need to make more refined choices for
both the upper and the lower bound. As an upper bound, we will use the
minimum of the expression

F0(γ)− µργ + V̂ (0)ρ2
γ .

The minimizer will be the free gas minimizer γδ0 corresponding to a positive
chemical potential δ0 > 0, determined such that ργδ0 = (2π)−3

∫
γδ0 also

minimizes

−µργ − δ0ργ + V̂ (0)ρ2
γ ,

i.e.

µ+ δ0 = 2V̂ (0)ργδ0 .

Let us write

δ0 = κ2ρ
4/3
fc a2

for some κ that we will now determine. We know from (5.25) that the free
gas minimizer γδ0 will have

ργδ0 = ρfc(1− C2κ(ρ
1/3
fc a+ o(ρ

1/3
fc a)))

for an appropriate constant C2 > 0. Hence, the equation for κ is

−2C0V̂ (0)ρfc(ρ
1/3
fc a) + κ2ρ

4/3
fc a2 = −2C2V̂ (0)ρfcκ(ρ

1/3
fc a+ o(ρ

1/3
fc a)),

that is,

κ2 + 2C2κ− 2C0 = o(1), (5.51)

where C0, C2 > 0.
We can use the a priori bounds in Proposition 19, and since we know that

ρ ≤ Cρfc, we can express the error terms with ρ replaced by ρfc. We then
go back to the expression (5.49) to get an improved lower bound. We set
t0 = 0 and only ignore the last double integral. We arrive at

F(γ, α, ρ0) ≥ FS(γ, α, ρ0) + (2V̂ (0)− 8πa)ρ0ργ − µρ
+4πaρ2

0 + ρ2
γ V̂ (0)− Cρ2

fca(ρ
1/3
fc a)3/2,

and apply Lemma 15 with

δ = δ0 + (2V̂ (0)− 8πa)ρ0.

The expression for G will then satisfy

G = T−1
√

(p2 + δ0 + (2V̂ (0)− 8πa+ V̂ w(p))ρ0)2 − ρ2
0V̂ w(p)2

≥ T−1
√

((1− Cρfca3)p2 + δ0) + 2ρ0V̂ (0))2 − (8πaρ0)2

≥ T−1
√

((1− Cρfca3)p2 + δ0)2 + 4((1− Cρfca3)p2 + δ0)ρ0V̂ (0).
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If we insert into the lower bound of Lemma 15 and bound the G-integral
using Lemma 25 below, we obtain

F(γ, α, ρ0) ≥ F0(γδ0) + δ0ργδ0 + 2ργδ0 V̂ (0)ρ0 − Cρ2/3
fc (ρ0a)3/2

−δ0ργ − µρ+ 4πaρ2
0 + ρ2

γ V̂ (0)− Cρ2
fca(ρ

1/3
fc a)3/2

≥ F0(γδ0)− µργδ0 + V̂ (0)ρ2
γδ0

+ (2ργδ0 V̂ (0)− µ)ρ0 + 4πaρ2
0

+V̂ (0)(ργ − ργδ0 )2 − Cρ2/3
fc (ρ0a)3/2 − Cρ2

fca(ρ
1/3
fc a)3/2

= F0(γδ0)− µργδ0 + V̂ (0)ρ2
γδ0

+2(C0 − C2κ)ρfc(ρ
1/3
fc a)ρ0V̂ (0) + 4πaρ2

0 − Cρ2/3
fc (ρ0a)3/2

+V̂ (0)(ργ − ργδ0 )2 − Cρ2
fca(ρ

1/3
fc a)3/2

≥ F0(γδ0)− µργδ0 + V̂ (0)ρ2
γδ0

+2(C0 − C2κ)ρfc(ρ
1/3
fc a)ρ0V̂ (0) + 2πaρ2

0 − Cρ2
fc(ρ

1/3
fc a)2

+V̂ (0)(ργ − ργδ0 )2 − Cρ2
fca(ρ

1/3
fc a)3/2.

Thus we conclude, by choosing C0 large enough (such that C0−C2κ will be
positive), that

ργ ≤ ργδ0 + Cρfc(ρ
1/3
fc a)3/4, ρ0 ≤ Cρfc(ρ

1/3
fc a)3/4.

We can now apply Proposition 21 and also the bound (5.42) to improve
the last error term in the lines above. We consider the terms with the
Laplacian in (5.40) and the second displayed estimate in Proposition 21 as

error terms, which lead to an error of order ρ2
fca(ρ

1/3
fc a)2. We conclude that

for C0 large enough:

ργ ≤ ργδ0 + Cρfc(ρ
1/3
fc a), ρ0 ≤ Cρfc(ρ

1/3
fc a).

We therefore find that

ρ ≤ ρfc(1− C0κ(ρ
1/3
fc a+ o(ρ

1/3
fc a))) + Cρfc(ρ

1/3
fc a).

By the expression for κ it is therefore clear that by choosing C0 large enough
we obtain that

ρ ≤ ρfc(1− C1(ρ
1/3
fc a))

as desired. The result obtained in step 1 and the reasoning in step 2 then
finish the proof for temperatures T ≤ Dρ2/3.

Step 5. For T > Dρ2/3, or equivalently, ρ < D−3/2T 3/2, first note that the
reasoning in step 1 without reference to Lemma 22 and Proposition 19 leads
to an equivalent of (5.47) and the conclusion that there exists a constant

C1 such that ρ0 = 0 for any minimizing triple with ρ ≤ ρfc−C1ρfc(ρ
1/3
fc a)1/2

satisfying the extra assumption that there is a µ that will give the same
minimizer of the grand canonical problem. This is certainly sufficient for
ρ < D−3/2T 3/2, and we again try to employ the reasoning of step 2 to
avoid the extra assumption. Luckily, it is immediately clear that ρ0+ = 0:

either ρ+ ≤ ρfc − C1ρfc(ρ
1/3
fc a)1/2, so that ρ0+ = 0, or the interval [ρ−, ρ+]

contains a density ρ̃ > D−3/2T 3/2, in which case the steps above imply that
ρ̃0+ = ρ0+ = 0.

Paper II

117
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�
We have used the following lemma, which is proved in Appendix A.

Lemma 25. For 0 ≤ δ0, b ≤ 1 there exists a constant C > 0 such that∣∣∣∣
∫

ln
(

1− e−
√

(p2+δ0)2+2(p2+δ0)b
)
dp

−
∫

ln(1− e−(p2+δ0)dp− b
∫

(ep
2+δ0 − 1)−1dp

∣∣∣∣ ≤ Cb3/2.

5.6. Preliminary approximations. The previous sections have provided
all the a priori knowledge we will need. In this section, we would like to
approximate the integrals in Corollary 16 in different ways. The proof of all
lemmas can be found in Appendix A.

We will be working with the general assumption (5.2) on t0. We will also
write δ = dφ2, where φ will be chosen to be

√
ρ0a or Ta in later sections.

Note that the dilute limit corresponds to φ → 0, so this is what we will
assume throughout the section. To keep track of the different limits, we
describe φ2/T � 1 as ‘moderate temperatures’, and φ2/T ≥ O(1) as ‘low
temperatures’. Also, a statement like ‘φa � 1’ means φa ≤ C for some
constant small enough.

We start by analysing the first contribution to the density in (5.18).

Lemma 26 (ρ
(1)
γ approximation). Let σ0 ≥ 0 and d0 ≥ 0 be fixed constants,

and let −1 ≤ θ ≤ 0, 0 ≤ d ≤ d0, 0 ≤ σ ≤ σ0, φ > 0 and 0 ≤ ρ0 ≤ ρ. Assume
ρ0a/φ

2 = σ/8π and let δ = dφ2 and t0 = θρ0. For φa� 1, we have

ρ(1)
γ = φ3 1

2
I3(d, σ, θ) + o

(
φ3
)
.

The error is depends only on σ0 and d0.

For the other contribution to ργ , we need the following two results.

Lemma 27 (ρ
(2)
γ expansion for moderate temperatures). Let σ0 ≥ 0 and

d0 ≥ 0 be fixed constants, and let −1 ≤ θ ≤ 0, 0 ≤ d ≤ d0, 0 ≤ σ ≤ σ0, φ > 0
and 0 ≤ ρ0 ≤ ρ. Assume ρ0a/φ

2 = σ/8π and let δ = dφ2 and t0 = θρ0. For
φ2/T � 1, we have

ρ(2)
γ = T 3/2I4(d, σ, θ, φ/

√
T ) +O

(
T 5/2a2(ρ1/3a)−3/8

)

= ρfc −
1

8π

(
φ2

T

)1/2

T 3/2
(√

d+ 2(1 + θ)σ +
√
d
)

+ o (Tφ) +O
(
T 5/2a2(ρ1/3a)−3/8

)
,

The error in the first line only depends on σ0, the one in the second line on
σ0 and d0.

Lemma 28 (ρ
(2)
γ expansion for low temperatures). Let 0 ≤ ρ0 ≤ ρ, d ≥ 0,

σ = 8π and t0 = θ = 0. Let δ = dρ0a = dφ2. Then, for φa =
√
ρ0a3 � 1

while φ2/T = ρ0a/T ≥ O(1), we have

ρ(2)
γ = T 3/2I4(d, 8π, 0,

√
ρ0a/T ) + o((ρ0a)3/2).

The error is uniform in d ≥ 0 and ρ0.
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A similar preliminary analysis can be done for the energy terms in Corol-
lary 16.

Lemma 29 (F (1) approximation). Let σ0 ≥ 0 and d0 ≥ 0 be fixed constants,
and let −1 ≤ θ ≤ 0, 0 ≤ d ≤ d0, 0 ≤ σ ≤ σ0, φ > 0 and 0 ≤ ρ0 ≤ ρ. Assume
ρ0a/φ

2 = σ/8π and let δ = dφ2 and t0 = θρ0. For φa� 1, we have

F (1) = φ5 1

2
I1(d, σ, θ) + o

(
φ5
)
.

The error is depends only on σ0 and d0.

For the second term we will need the following two lemmas.

Lemma 30 (F (2) expansion for moderate temperatures). Let σ0 ≥ 0 and
d0 ≥ 0 be fixed constants, and let −1 ≤ θ ≤ 0, 0 ≤ d ≤ d0, 0 ≤ σ ≤ σ0, φ > 0
and 0 ≤ ρ0 ≤ ρ. Assume ρ0a/φ

2 = σ/8π and let δ = dφ2 and t0 = θρ0. For
φ2/T � 1, we have

F (2) = T 5/2I2(d, σ, θ, φ/
√
T ) +O

(
T 5/2φ2a2(ρ1/3a)−1/4

)

= T 5/2fmin +

(
φ2

T

)
Tρfc (d+ (1 + θ)σ)

− 1

12π

(
φ2

T

)3/2

T 5/2
(

(d+ 2(1 + θ)σ)3/2 + d3/2
)

+ o
(
Tφ3

)
+O

(
T 5/2φ2a2(ρ1/3a)−1/4

)
.

The error in the first line only depends on σ0, the one in the second line on
σ0 and d0.

Lemma 31 (F (2) expansion for low temperatures). Let 0 ≤ ρ0 ≤ ρ, d ≥ 0,

σ = 8π and t0 = θ = 0. Let δ = dρ0a = dφ2. Then, for φa =
√
ρ0a3 � 1

while φ2/T = ρ0a/T ≥ O(1), we have

F (2) = T 5/2I2(d, 8π, 0,
√
ρ0a/T ) + o((ρ0a)5/2).

The error is uniform in d ≥ 0 and ρ0.

We also prove two lemmas for the error terms (5.3) and (5.6) for mini-
mizers of the form stated in Lemma 15.

Lemma 32 (Error estimates for moderate temperatures). Let σ0 ≥ 0 and
d0 ≥ 0 be fixed constants, and let −1 ≤ θ ≤ 0, 0 ≤ d ≤ d0, 0 ≤ σ ≤ σ0, φ > 0
and 0 ≤ ρ0 ≤ ρ. Assume ρ0a/φ

2 = σ/8π and let δ = dφ2 and t0 = θρ0. For
φa� 1, we have

(E2 + E3) (γρ0,δ, αρ0,δ, ρ0) = O
(
Ta3ρρ0 + aρ0φ

3
)
,

and
E4(γρ0,δ, αρ0,δ, ρ0) = O(Ta3ρ2 + aρφ3).

The error depends only on σ0 and d0.

Lemma 33 (Error estimates for low temperatures). Let d0 be a fixed con-
stants, and let 0 ≤ ρ0 ≤ ρ, 0 ≤ d ≤ d0, σ = 8π and t0 = θ = 0. Let

δ = dρ0a = dφ2. Then, for φa =
√
ρ0a3 � 1 while ρa/T ≥ O(1), we have

(E2 + E3 + E4) (γρ0,δ, αρ0,δ, ρ0) = o((ρa)5/2).
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The error is uniform in d ≥ 0.

We also prove a final lemma which will later be used to treat the error
term E1. Note that the reason we consider the function f below is that
αρ0,δ − α0 = −(2π)3t0δ0 − f .

Lemma 34 (Preparation for estimates on E1). Let σ0 ≥ 0 and d0 ≥ 0 be
fixed constants, and let −1 ≤ θ ≤ 0, 0 ≤ d ≤ d0, 0 ≤ σ ≤ σ0, φ > 0 and
0 ≤ ρ0 ≤ ρ. Assume ρ0a/φ

2 = σ/8π, φa � 1, and let δ = dφ2, t0 = θρ0.
We define

f(p) := (ρ0 + t0)

(
β(p)

TG(p)
− 1

2p2

)
V̂ w(p).

=
1

2
(ρ0 + t0)V̂ w(p)

[
1

TG
− 1

p2

]
+

(ρ0 + t0)V̂ w(p)

TG(eG − 1)
.

(5.52)

For φ2/T � 1, we have
∫
f(p)dp = Tφ(1 + θ)σ

2π2

√
d+ 2(1 + θ)σ +

√
d

+ o(Tφ),

as well as∫
|f(p)|dp ≤ CTφ and

∫

|p|>
√
T

|f(p)|dp ≤ Cφ3.

For φ2/T ≥ O(1), we have ∫
|f(p)|dp ≤ Cφ3.

The errors above depend only on d0.

Note that some lemmas above assume that d is bounded. In Subsections
5.7 and 5.8, we will argue that this can be assumed. For Subsection 5.8, we
will need the following lemma to do this.

Lemma 35. Let 0 ≤ ρ0 ≤ ρ, d ≥ 0, σ = 8π and t0 = θ = 0. Let
δ = dρ0a = dφ2. For d� 1, we have

F (1) − d(ρ0a)ρ(1)
γ ≥ C min{d1/2(ρ0a)5/2, a−1(ρ0a)2}.

Also, ρ
(1)
γ ≤ C(ρ0a)3/2 and ρ

(1)
γ → 0 as d→∞.

The proof of all lemmas stated above can be found in Appendix A.

5.7. Proof of Theorems 8 and 9. According to the a priori estimate in
Proposition 24, it suffices to zoom in on

|ρ− ρfc| < Cρ(ρ1/3a) (5.53)

within the region (4.1) to study the critical temperature: for larger ρ there
is a condensate, and for smaller ρ there is none. Note that ρa/T � 1 in
this region, which was described as ‘moderate temperatures’ in the previous
section. We actually have more a priori information: Lemma 22 states that
ρ0 is of order ρ(ρ1/3a), i.e. of order T 2a.

For the non-interacting gas, the critical density is of order T 3/2. Since
we are considering a weakly-interacting gas (through the dilute limit), one
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expects to again obtain an approximate critical density of order T 3/2. We
therefore write

ρ = ρfc +
k

8π
T 2a (5.54)

for a dimensionless parameter k (which is bounded in the region (5.53)).

Note that T 2a = T 3/2(
√
Ta) � T 3/2, and so T 2a is indeed a lower order

correction to ρfc. We also consider

ρ0 =
σ

8π
T 2a φ = Ta δ = dT 2a2 (5.55)

for some dimensionless parameters d ≥ 0 and 0 ≤ σ ≤ C. It suffices to
consider bounded σ by Lemma 22. We will also show that the a priori
estimates allow us to assume that d is bounded. This gives access to the
lemmas in the previous section since φa = φ2/T = Ta2 � 1 in the dilute
limit. Finally, we write

t0 =
τ

8π
T 2a =

( τ
σ

)
ρ0 = θρ0, (5.56)

where τ = θσ ∈ R is dimensionless.
We are free to choose −ρ0 ≤ t0 ≤ 0 depending on ρ0 and δ, as this was

simply a parameter entering in Lemma 13 and the definition of α0 (see (5.4)).
To be able to prove that the error term E1 is indeed small for the αρ0,δ from
Lemma 15, we will choose t0 such that the self-consistent equation

∫
(αρ0,δ − α0) = 0 (5.57)

is satisfied. The following lemma confirms that this choice implies that the
error E1 is small. It also shows that the equation above leads to a concrete
equation for τ in terms of σ ≥ 0 and d ≥ 0, which implies that −σ ≤ τ ≤ 0,
i.e. −1 ≤ θ ≤ 0.

Lemma 36 (Self-consistent equation for t0 and estimate on E1). Under
the assumptions introduced at the start of this subsection, in particular the
self-consistent equation (5.57) and

√
Ta� 1, we have

τ = − 2(σ + τ)√
d+ 2(σ + τ) +

√
d

+ o(1). (5.58)

This equation has a unique solution for every d ≥ 0 and σ ≥ 0, and it
satisfies −σ ≤ τ ≤ 0. We also have

∫∫
(αρ0,δ − α0)(p)V̂ (p− q)(αρ0,δ − α0)(q)dpdq = o(T 4a3).

The errors above holds uniformly in σ and d as long as they are bounded.

Proof. Step 1. The self-consistent equation (5.57) says (2π)3t0 = −
∫
f , with

f as in Lemma 34, so by using that lemma and the assumptions introduced
at the start of this subsection, we conclude that (5.58) holds. To see that it
always has a solution in [−σ, 0], we rewrite the equation as

τ
(√

d+ 2(σ + τ) +
√
d
)

+ 2(σ + τ) = 0,
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and note that the left-hand side is a continuous function which goes from
−2σ
√
d ≤ 0 to 2σ ≥ 0 as τ goes from −σ to 0.

Step 2. We use Lemma 34 again to conclude that
∫
|f(p)|dp ≤ CTφ = CT 2a,

∫

|p|>
√
T

|f(p)|dp ≤ Cφ3 = CT 3a3.

Since αρ0,δ − α0 = −(2π)3t0δ0 − f and
∫
αρ0,δ − α0 = 0 by assumption, we

have
∣∣∣∣
∫

(αρ0,δ − α0)(p)V̂ (p− q)(αρ0,δ − α0)(q)dpdq

∣∣∣∣

=

∣∣∣∣∣

∫
(αρ0,δ − α0)(p)V̂ (p− q)(αρ0,δ − α0)(q)dpdq − V̂ (0)

(∫
αρ0,δ − α0

)2
∣∣∣∣∣

≤ 2(2π)3|t0|
∫
|V̂ (p)− V̂ (0)||f(p)|dp+

∫
|f(p)||V̂ (p− q)− V (0)||f(q)|dpdq

≤ C|t0|T 3a4 + CT 5a5 = o(T 4a3),

where we have used the fact that |V̂ (p) − V̂ (0)| ≤ Ca3T for |p| ≤
√
T and

|V̂ (p)| ≤ Ca for all p. �

Before we prove the main theorem, we state a final error estimate. Its
proof can be found in Appendix A.

Lemma 37 (Estimate on E5). Under the assumptions introduced at the

start of this subsection, in particular
√
Ta� 1, we have

E5(γρ0,δ, αρ0,δ, ρ0) = o(T 4a3).

This holds uniformly in d and σ as long as they are bounded.

We are now ready to prove the first main theorem of the paper, which
gives an expression for the critical temperature.

Proof of Theorem 8. We will work with the notation introduced at the start
of this section. We again refer to Proposition 24, which contains the desired
conclusion outside this region, so that we can restrict to the region (5.53).
We also recall Lemma 22, which implies ρ0 ≤ CT 2a, so that we can consider
σ to be bounded.

The proof will proceed as follows. In step 1, we will calculate the sim-
plified minimal energy as a function of ρ and ρ0. In step 2, we discuss
the precise relation between the minimization problem of the simplified and
canonical functionals. In step 3, we prove the theorem by minimizing the
simplified energy in 0 ≤ ρ0 ≤ ρ.

Step 1a. We would like to calculate the simplified energy for (γρ0,δ, αρ0,δ, ρ0).
We assume that t0(δ, ρ0) is defined as in Lemma 36. Note that this means
that −1 ≤ θ ≤ 0 in (5.56), so that we can apply the lemmas from the
previous subsection (although we have yet to establish boundedness of d to
obtain uniform errors in all cases, which we will do in step 1c.). Corollary
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16 and Lemmas 29 and 30 together with (5.55) and (5.56) imply that for
δ, ρ0 ≥ 0:

F sim(γρ0,δ, αρ0,δ, ρ0) =
(
F s(γρ0,δ, αρ0,δ, ρ0) + δργρ0,δ

)
− δργρ0,δ

+ V̂ (0)ρ2 + (12πa− V̂ (0))ρ2
0 − 8πaρρ0 − 4πat20 − 8πat0(ρ− ρ0)

= T 5/2fmin − T 2a2(ρ− ρfc)(σ + τ) + V̂ (0)ρ2

+ T 4a3
[ d

8π

(√
d+ 2(σ + τ) +

√
d
)
− (d+ 2(σ + τ))3/2 + d3/2

12π

+
τσ

8π
− τ2

16π
+ (12π − ν)

σ2

64π2

]
+ o

(
T 4a3

)
,

(5.59)

where we also used that according to Lemmas 26 and 27:

ργρ0,δ = ρfc −
T 2a

8π

(√
d+ 2(σ + τ) +

√
d
)

+ o(T 2a). (5.60)

The expressions above really only depend d and σ, since τ satisfies (5.58).
However, we are interested in rewriting the expression fully in terms of σ
and k. After all, we would like to investigate the nature of σ (which defines
ρ0) for given k (which defines ρ). First note that from the equation

ρ = ρ0 + ργρ0,δ =
σ

8π
T 2a+ ρfc −

T 2a

8π

(√
d+ 2(σ + τ) +

√
d
)

+ o(T 2a),

we obtain √
d+ 2(σ + τ) +

√
d = σ + 8π

ρfc − ρ
T 2a

= σ − k, (5.61)

where k is defined in (5.54). This yields

d =

(
(σ − k)2 − 2(σ + τ)

2(σ − k)

)2

.

We can also rewrite τ in terms of σ and k by using (5.58) and (5.61):

τ =
2σ

k − σ − 2
+ o(1) and σ + τ =

σ(k − σ)

k − σ − 2
+ o(1). (5.62)

We plug these expressions into (5.59) to obtain

F sim(γρ,ρ0 , αρ,ρ0 , ρ0) = T 5/2fmin + V̂ (0)ρ2 + T 4a3

[
1

8π

(
(σ − k)3

12

−σ2
(1

2
+

1

2 + σ − k
))
− (ν − 8π)

σ2

(8π)2

]
+ o(T 4a3),

(5.63)

where we now write γρ0,ρ for the γρ0,δ that satisfies ργρ0,δ + ρ0 = ρ. This
can only be done for certain σ and k: it was only for δ ≥ 0 that we were
able to obtain minimizers of this form.

Step 1b. We now determine for which σ and k (5.63) holds. Using (5.61)

and the equation for τ (5.58), we know that, given a ρ0 = σ T
2a

8π , minimizing
the functional for some d ≥ 0 leads to a minimizer with

ρ = ρfc +
T 2a

8π

(
1 + σ −

√
d−

√
1 + 2σ + d+ 2

√
d

)
+ o(T 2a),
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The above expression is maximal for d = 0. Its value at this point is signif-
icant: fixing some ρ0, we know that this is the maximal ρ for which we will
be able to find a minimizer to the simplified functional. This maximal ρ is

ρmax(σ) = ρfc +
T 2a

8π
kmax(σ) + o(T 2a),

where we defined

kmax(σ) = 1 + σ −
√

1 + 2σ.

Fixing some k, and considering all σ ≥ 0, we can find out that (5.63) holds
whenever

σ ∈ I(k) :=

{
[0,∞) if k ≤ 0[
k +
√

2k,∞
)

if k > 0
. (5.64)

Summarizing, it is for these σ and k that there exists a (γρ0,ρ, αρ0,ρ).
Step 1c. We will be interested in using (5.63) as a lower bound for the

energy, where the error is uniform in σ and k. We would now like to show
that d is bounded, so that we obtain uniform errors in (5.59), (5.60) and
consequently (5.63).

As noted at the start of the proof, it suffices to consider ρ0 ≤ CT 2a.
Combined with (5.53), this tells us that ργ ≥ ρ− C0T

2a for some constant
C0. We claim that it suffices to restrict to d ≤ d0, which is chosen such that

2
√
d0

8π
≥ 2C0.

To see this, consider d > d0. Because ργρ0,δ is decreasing in δ by the structure
of the minimization problem in Lemma 15, we know that

ργρ0,d ≤ ργρ0,d0 = ρfc −
T 2a

8π

(√
d0 + 2(σ + τ) +

√
d0

)
+ o(T 2a)

≤ ρfc − 2C0T
2a+ o(T 2a),

where the error only depends on d0 since we have a priori restricted to
bounded σ. This violates the a priori restriction, confirming that we can
restrict to d ≤ d0. We have obtained the important conclusion that we can
think of the error in (5.63) as uniform.

Step 2. Our strategy will be to connect (5.63) to Fcan using Corollary 14.
For convenience, we will first assume k ≤ 0, so that all 0 ≤ σ ∈ I(k).

On the one hand, any potential minimizer (γ, α, ρ0) with ργ + ρ0 = ρ will
have to satisfy the a priori estimates in Propositions 21 and 23. This means
that

Fcan(γ, α, ρ0)

≥ F sim(γ, α, ρ0) +
ζ(3/2)ζ(5/2)

256π3
∆V̂ (0)T 4 − (E2 + E3 + E5)(γ, α, ρ0)

≥ F sim(γρ0,ρ, αρ0,ρ, ρ0) +
ζ(3/2)ζ(5/2)

256π3
∆V̂ (0)T 4 − o(T 4a3).

(5.65)
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On the other hand, we have for any ρ0:

inf
(γ,α), ρ0=ρ−ργ

Fcan(γ, α, ρ0) ≤ Fcan(γρ,ρ0 , αρ,ρ0 , ρ0)

≤ F sim(γρ0,ρ, αρ0,ρ, ρ0) +
ζ(3/2)ζ(5/2)

256π3
∆V̂ (0)T 4

+ (E1 + E2 + E3 + E5)(γρ0,ρ, αρ0,ρ, ρ0)

≤ F sim(γρ0,ρ, αρ0,ρ, ρ0) +
ζ(3/2)ζ(5/2)

256π3
∆V̂ (0)T 4 + o(T 4a3),

(5.66)

where we have used Lemmas 32 and 36. The errors are uniform since we
assume d and σ to be bounded.

We conclude that the energy of any potential minimizer matches (5.63)
(up to the constant term and a small error). However, for any ρ0 the ex-
pression (5.63) also provides an upper bound. Therefore, if we find that the
minimizing σ of (5.63) is non-zero, then the same should hold for the real
minimizer. If the approximate minimizer is zero, we can only conclude that
the real minimizer is approximately zero because of the small error. We will
therefore need an extra step in this case

Step 3a. We now analyse (5.63) for given k ≤ 0 and ν and find out
whether its minimum σmin is zero or not.

An analysis of (5.63) shows that there always is a single k ≤ 0 where
the character of the minimizer of changes (for given ν)1, which implies that
a function h1(ν) exists. We can also see that the critical k decreases with
ν. For the limit ν → 8π, we numerically verify that the minimizing σmin

approximately satisfies

σmin =

{
0 if k < −1.28
> 0 if k > −1.28

. (5.67)

This is illustrated by Figure 1 below, which shows (5.63) for three values of
k.

Using the definition of k (5.54), we conclude that the point where the
nature of the minimizer changes is

ρc =ρfc

(
1− 1.28

8π

(
ζ(3/2)

8π3/2

)−4/3

ρ
1/3
fc a+ o(ρ

1/3
fc a)

)

= ρfc

(
1− 2.24ρ

1/3
fc a+ o(ρ

1/3
fc a)

)
.

We can also turn this into a criterion for the critical temperature. Given ρ
we know that the critical temperature Tc satisfies the equation above where

ρfc = nfcT
3/2
c , where we calculated the constant nfc in (5.21) (although it

plays no role here). The free critical temperature would satisfy ρc = nfcT
3/2
fc .

1Because (5.63) depends on ν in an easy way, and is independent from ν for σ = 0, we
can see that for every k ≤ 0 there is a ν0(k) ∈ [8π,∞) such that σmin > 0 for ν > ν0(k).
Moreover, ν0(k) is continuous, monotone decreasing, and equal to 8π for k = 0. To reach
the desired conclusion, we have to combine this with the following: for every ν ≥ 8π,
there exists a k negative enough such that σmin = 0. This can be seen by noting that the
derivative in σ it is positive for all σ when k is negative enough.
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k=-1.35

k=-1.28

k=-1.20

0.5 1.0 1.5 2.0 2.5
σ

0.005

0.010

0.015

0.020

0.025

f(k,σ)

Figure 1. Plots of the part of the free energy that depends
on k and σ (i.e. between the square brackets in (5.63), de-
noted by f(k, σ) in the plot) for three values of k. For
k = −1.35, σ = ρ0 = 0 gives the lowest energy: no BEC.
For k = −1.20, the minimum occurs at some ρ0 > 0: BEC.
The critical value is kc = −1.28, where both σ = 0 and
σ = 1.83 are minimizers.

Hence, we have

nfcT
3/2
fc = nfcT

3/2
c

(
1− 2.24(ρ1/3a) + o(ρ1/3a)

)
,

since we can write ρ instead of ρc to leading order. In conclusion,

Tc = Tfc

(
1− 2.24(ρ1/3a) + o(ρ1/3a)

)−2/3

= Tfc

(
1 + 1.49(ρ1/3a) + o(ρ1/3a)

)
.

Step 3b. For those values of ρ where the minimizer of the approximate
functional has ρ0 = 0, we can only conclude that the exact minimizing ρ0

is approximately zero. Because our energy approximation is accurate up
to orders T 4a3, we can only conclude ρ0 = o(T 2a). We will need an extra
argument to show that the energy increases for smaller ρ0, which would then
imply that the exact minimizer really is ρ0 = 0.

Fixing ρ, first define

Fρ(ρ0) = inf∫
γ=ρ−ρ0

Fcan(γ, α, ρ0).

Note that it suffices to show there exists a c0 > 0 such that

Fρ(ρ0) ≥ Fρ(0) +
1

2
c0ρ0T

2a2(1− o(1))− 2ρ2
0V̂ (0). (5.68)

To prove this lower bound, we first minimize the terms in α, and use
Proposition 19:

Fcan(γ, α, ρ0) ≥ Fcan(γ, 0, 0) + 2V̂ (0)ρ0ρ

− 2V̂ (0)ρ2
0 − cρ0T

2a2(
√
Ta)1/2.

(5.69)

To prove (5.68) from (5.69), we need to study

fρ(ρ0) = inf∫
γ=ρ−ρ0

Fcan(γ, 0, 0) + 2ρ0ρV̂ (0),
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which is convex in ρ0.
We now use (5.65) and (5.66) to approximate the functional by F sim and

go back again, denoting the constant term as CsimT 4a3 and keeping in mind
that the minimizer approximately has ρ0 = 0 so that (5.65) does hold. We
also apply (5.24), noting that ρfc − ρ ≥ 1.28T 2a. For ε > 0, we find

fρ(−εT 2a) ≤ inf∫
γ=ρ+εT 2a

F sim(γ, 0, 0)− 2εT 2aρV̂ (0) + CsimT 4a3 + o(T 4a3)

≤ inf∫
γ=ρ+εT 2a

F0(γ) + V̂ (0)ρ2 + cε2T 4a3 + CsimT 4a3 + o(T 4a3)

≤ inf∫
γ=ρ
F0(γ)− (c0ε− cε2)T 4a3 + V̂ (0)ρ2 + CsimT 4a3 + o(T 4a3)

≤ fρ(0)− (c0ε− cε2)T 4a3 + o(T 4a3).

We therefore conclude that there exists an ε0 small enough such that

fρ(−ε0T
2a) ≤ fρ(0) +

1

2
c0(−ε0T

2a)T 2a2.

Convexity of fρ now implies that for ρ0 ≥ 0

fρ(ρ0) ≥ fρ(0) +
1

2
c0ρ0T

2a2.

This, as well as taking the infimum over γ with
∫
γ = ρ− ρ0 in (5.69), now

gives the desired lower bound (5.68).
Step 3c. The theorem is still not quite proved, as we still have to show

that the minimizing σ is strictly positive for k > 0, which corresponds to
ρ > ρfc. For σ = 0, we cannot use the simplified energy (5.63) because of
the problem discussed in step 1b, but we can still use the first step in the
lower bound (5.65): if the minimum occurs at ρ0 = 0, we know that

inf
(γ,α), ργ=ρ

Fcan(γ, α, 0)− ζ(3/2)ζ(5/2)

256π3
∆V̂ (0)T 4

≥ inf
(γ,α), ργ=ρ

F sim(γ, α, 0) + o(T 4a3) = T 5/2fmin + V̂ (0)ρ2 − o(T 4a3),

where t0 = 0 for ρ0 = 0 (which is consistent with (5.62)). Since (5.63) holds

at σ = k +
√

2k ∈ I(k), we can see that it has a simplified energy of

T 5/2fmin + V̂ (0)ρ2 + T 4a3


−

k
(

3
√

2k3/2 + 20k + 23
√

2
√
k + 18

)

24π
(√

2
√
k + 2

)


 ,

which is lower than the value at σ = 0. Using the upper bound (5.66), we
conclude that the minimizer cannot have ρ0 = 0 when ρ > ρfc. �
Proof of Theorem 9. Step 1. We now turn to the grand-canonical problem.
That means that we should analyse the structure of minimizers of

inf
ρ≥0

[
inf

(γ,α,ρ0), ργ+ρ0=ρ
Fcan(γ, α, ρ0)− µρ

]
(5.70)

for given µ ∈ R. This requires that we calculate the canonical free energy
for any given ρ, but we note that it again suffices to only calculate it for
(5.53), i.e. |ρ − ρfc| < Cρ(ρ1/3a). By the a priori result from Proposition
24, we know that if minimizer has a smaller ρ, it has ρ0 = 0, and if it has
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a bigger ρ, it has ρ0 > 0. Since the minimizing ρ increases with µ, this fits
with the statement of the theorem.

In the region around the critical temperature, it seems natural to use
the bounds (5.65) and (5.66) and simply minimize (5.63), but we only have
these bounds for σ ∈ I(k) (see (5.62) and (5.64)). In fact, the simplified
functional has so far only been defined in this region as we have only made
a choice for t0 for δ, ρ0 ≥ 0. To solve this problem, we now define

τ(k, σ) = 1−
√

1 + 2σ

for σ ∈ [0,∞)\I(k), which is chosen because it is the value obtained for
δ = 0. In the spirit of (5.65), we know that any potential minimizer should
satisfy

Fcan(γ, α, ρ0)− ζ(3/2)ζ(5/2)

256π3
∆V̂ (0)T 4

≥ F sim(γ, α, ρ0)− (E2 + E3 + E5)(γ, α, ρ0)

≥ inf
(γ,α)
F s(γ, α, ρ0) + V̂ (0)ρ2 − o(T 4a3)

+ (12πa− V̂ (0))ρ2
0 − 8πaρρ0 − 4πat20 − 8πat0(ρ− ρ0)

= T 5/2fmin + V̂ (0)ρ2 + T 4a3
[
− (σ + τ)

k

8π
− 1

12π
(2σ + 2τ)3/2

+ (12π − ν)
( σ

8π

)2
− 4π

( τ
8π

)2
+
τσ

8π

]
− o(T 4a3),

where we have used that the infimum of F s is attained at (γρ0,δ=0, αρ0,δ=0),
with an energy given by (5.59). Minimizing this lower bound over [0,∞)\I(k),

we find that the infimum is attained at the boundary, i.e. at σ = k +
√

2k.
Since the lower bound matches (5.63) at this point, we conclude that the
minimizer of the canonical free energy has σ ∈ I(k), so that it suffices to
minimize (5.70) over I(k) by the upper and lower bounds (5.65) and (5.66).

Step 2. Making the result of the previous step explicit, we now know that
for |ρ− ρfc| < Cρ(ρ1/3a):

inf
(γ,α,ρ0), ργ+ρ0=ρ

Fcan(γ, α, ρ0)− µρ

= T 5/2fmin + V̂ (0)ρ2
fc − µρfc + T 2a2

(
2
( ν

8π

)
ρfc −

µ

8πa

)
k

+ T 4a3 inf
σ∈I(k)

[ 1

8π

(
(σ − k)3

12
− σ2

(1

2
+

1

2 + σ − k
))

− (ν − 8π)
σ2

(8π)2
+ ν

k2

(8π)2

]

+
ζ(3/2)ζ(5/2)

256π3
∆V̂ (0)T 4 + o

(
T 4a3

)
.

To consider the case ν → 8π, we show a plot of the function

g(k) = inf
σ∈I(k)

[ 1

8π

(
(σ − k)3

12
− σ2

(1

2
+

1

2 + σ − k
))

+
k2

8π

]
+ 0.226k.

(5.71)
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Figure 2. The curve shows the energy function g(k) in
(5.71). The two minima are k− = −2.23 and k+ = 3.04, and
the critical value (shown in orange) is kc = −1.28, which
corresponds to the value of k where σ jumps to a positive
value (see (5.67)). The derivative has a discontinuity at this
point. The energy curve is not convex; the red line indicates
the convex hull of the curve.

in Figure 2. Here, the value 0.226 was chosen such that the convex hull is
obtained by replacing the curve between two minima by a constant function.

The two minima are

k− = −2.23, k+ = 3.04

and the value here is g(k±) = −0.27. Hence we have a first-order phase
transition where the density jumps between the critical values corresponding
to k±. This conclusion is unaltered by the fact that we can only determine
the energy curve up to a small error.

Note that the minimizer changes from ρ0 = 0 to ρ0 > 0 at the jump since
k− ≤ −1.28 ≤ k+. We conclude that the critical chemical potential in the
limit ν → 8π is given by

µc

8π
= 2ρfca− 0.226T 2a2 + o(T 2a2)

=
1

8π

2ζ(3/2)√
π

T 3/2a

(
1− 0.226 · 8π

√
π

2ζ(3/2)

√
Ta+ o(

√
Ta)

)
.

This can also be inverted to yield the critical temperature for µ > 0:

Tc =

( √
π

2ζ(3/2)

)2/3 (µ
a

)2/3
+

2

3
· 0.226 · 8π

( √
π

2ζ(3/2)

)2

µ+ o (µ)

=

( √
π

2ζ(3/2)

)2/3 (µ
a

)2/3
+ 0.44µ+ o(µ),

where the expansion is correct for µ ≥ 0 corresponding to ρ1/3a � 1. An
analysis for general ν (in which case the leading term of µc has an extra
factor ν/8π), combined with the existence of the function h1(ν) from the
previous theorem, allows the reader to deduce the existence of h2(ν). �
Remark 38. Note that the existence of two minima shows that the grand
canonical functional in general will not have a unique minimizer. As for the
canonical case: we have coexistence of the two minimizers (one with ρ0 = 0
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and one with ρ0 > 0) for ρ between the two values defined by k±. This
means that at least part of the gas has a condensate for any k ∈ [k−, k+].
Hence one could say that (part of) the system is in a condensed phase from
k− onwards.

5.8. Proof of Theorems 10 and 11. In this section, we simply set t0 = 0.
We will write δ = dρ0a = dφ2, with d ≥ 0. Note that this implies that σ = 8π
in the lemmas of Subsection 5.6.

Remark 39 (Properties of the integrals). We will use the following properties
of the integrals (4.5) with d, s ≥ 0:

• I1(d, 8π, 0)− dI3(d, 8π, 0) monotonically increases to infinity in d.
• I2(d, 8π, 0, s)−ds2I4(d, 8π, 0, s) monotonically increases to 0 in both
d and s and it is bounded.
• I2(d, 8π, 0, s) monotonically increases to 0 in both d and s and it is

bounded.
• I4(d, 8π, 0, s) monotonically decreases to zero in both d and s and it

is bounded.

Proof of Theorems 10 and 11. Throughout the proof, we will distinguish be-
tween the regions ρa/T � 1 (‘moderate temperatures’) and ρa/T ≥ O(1)
(‘low temperatures’). For simplicity, we aim to write statements with a

uniform error o(T (ρa)3/2 + (ρa)5/2), i.e. o(T (ρa)3/2) in the first region, and

o((ρa)5/2) in the second. Note that an error of O((ρa)5/2) satisfies this for
ρa/T � 1.

Step 1a. As in Subsection 5.7, we consider upper and lower bounds. First
assume that δ ≥ 0 and ρ0 ≥ 0 are such that

ρ = ρ0 + ργρ0,δ . (5.72)

Similar to before, this may not always have a solution for given ρ and ρ0.
By Lemma 13 and the a priori estimates in Proposition 19, we then know
that any potential minimizer has to satisfy

Fcan(γ, α, ρ0) ≥ F sim(γ, α, ρ0)− (E2 + E3 + E4)(γ, α, ρ0)

≥ F sim(γρ0,δ, αρ0,δ, ρ0)−O((ρa)5/2).
(5.73)

Using Lemma 32 for ρa/T � 1, Lemma 33 for ρa/T ≥ O(1), and Lemma
34 for both, we find that2

inf
(γ,α), ρ0=ρ−ργ

Fcan(γ, α, ρ0) ≤ Fcan(γρ0,δ, αρ0,δ, ρ0)

≤ F sim(γρ0,δ, αρ0,δ, ρ0) + (E1 + E2 + E3 + E4)(γρ0,δ, αρ0,δ, ρ0)

≤ F sim(γρ0,δ, αρ0,δ, ρ0) + o(T (ρa)3/2 + (ρa)5/2).

(5.74)

It is important to realize that we have yet to establish uniformity of the
error in the upper bound, whereas the error in the lower bound is uniform.

2To obtain the estimate on E1, we use |
∫

(α− α0)V̂ (α− α0)| ≤ V̂ (0)(
∫
|α− α0|)2 and

the fact that |αρ0,δ − α0| is equal to the |f | in the statement of Lemma 34 since t0 = 0.
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Step 1b. The first line of the lower bound (5.73) allows us to prove the

desired conclusion for T > Tfc

(
1 + h1(ν)ρ1/3a+ o(ρ1/3a)

)
. After all, Theo-

rem 8 tells us that the minimizer has ρ0 = 0 in this region, so that we find
that

F can(T, ρ) ≥ inf
(γ,α), ρ=ργ

F sim(γ, α, 0) = F0(T, ρ) + V̂ (0)ρ2 −O((ρa)5/2),

where F0(T, ρ) is the free energy (5.20) of the non-interacting gas. We now
note that

inf
(γ,α)
Fcan(γ, α, 0) = inf

γ
Fcan(γ, 0, 0) ≤ inf

γ
F sim(γ, 0, 0),

which proves the result in this region.

Step 2. Using Lemma 31 and the first line of Lemma 30, we have

F sim(γρ0,δ, αρ0,δ, ρ0) = F (1) + T 5/2I2(d, 8π, 0,
√
ρ0a/T )

− dρ0a(ρ− ρ0)

+ V̂ (0)ρ2 − 8πaρ0ρ+ ρ2
0(12πa− V̂ (0))

+ o
(
T (ρa)3/2 + (ρa)5/2

)
,

(5.75)

together with

ργρ0,δ = ρ(1)
γ + T 3/2I4(d, 8π, 0,

√
ρ0a/T ) + o

(
T (ρa)1/2 + (ρa)3/2

)
.

(5.76)
In the last line, we have used Lemma 28 and the first line of Lemma 27.
To use these lemmas, we have distinguished two cases: ρa/T � 1, which
implies ρ0a/T = φ2/T � 1; and ρa/T ≥ O(1), which implies ρ0a/T ≥ O(1)
by the a priori estimate (5.35). Note that the errors in the two equations
above are uniform in d.

We know that ργρ0,δ is decreasing in δ = dρ0a by the structure of the
minimization problem in Lemma 15. In fact, Lemma 35 and the fourth
property in Remark 39 show that ργρ0,δ decreases to 0 as d → ∞. We

therefore have that the equation (5.72) has a solution for every ρ0 and ρ
such that

ρ− ργρ0,δ=0 ≤ ρ0 ≤ ρ, (5.77)

or, denoting the solution to (5.76) for given ρ and d ≥ 0 by ρ0(d), for every
ρ0(d = 0) ≤ ρ0 ≤ ρ. Our assumption (5.72) amounts to plugging ρ0(d) into
the simplified energy (5.75). In the next step, we do this for the different
regions.

Step 3: ρa/T � 1. In this step, we prove Theorem 11.
Step 3a. In order to be able to use more of the lemmas from Subsection

5.6, we need to show that we can assume that d is bounded. We use (5.73),

(5.75) and Lemma 35 to see that for d� 1 and s =
√
ρ0a/T :

F sim(γρ0,δ, αρ0,δ, ρ0) ≥ 4πaρ2 + T 5/2(I2(d, 8π, 0, s)− ds2I4(d, 8π, 0, s))

+ 2(ν − 8π)ρaT 3/2I4(d, 8π, 0, s)

+ (12π − ν)a(T 3/2I4(d, 8π, 0, s))2 − o(T (ρa)3/2)
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with errors uniform in d. As d increases, s increases, and this expression gets
exponentially close to 4πaρ2 as d→∞, and thus it is higher than the value
provided by the upper bound 5.74 for d = 0 (see (5.79) for a calculation).
We can therefore restrict to bounded d.

Step 3b. We conclude that the upper bound (5.74) has an error uniform
in d. We can also apply Lemmas 26, 27, 29 and 30 to (5.75) to obtain

F sim(γρ0,δ, αρ0,δ, ρ0) = T 5/2fmin +

(
ρ0(d)a

T

)
Tρfc(d+ 8π)

− 1

12π

(
ρ0(d)a

T

)3/2

T 5/2
(

(d+ 16π)3/2 + d3/2
)

− dρ0(d)a(ρ− ρ0(d)) + V̂ (0)ρ2 − 8πaρ0(d)ρ+ ρ0(d)2(12πa− V̂ (0))

+ o(T (ρa)3/2),

where

ρ0(d) = ρ− ρfc +
1

8π

(
ρ0(d)a

T

)1/2

T 3/2
(√

d+ 16π +
√
d
)

+ o(T (ρa)1/2),

(5.78)
and the errors are uniform in d. We conclude that ρ0 = ρ − ρfc =: ∆ρ to
leading order. Rewriting the expansion in the small parameter ∆ρa/T , we
obtain

F sim(γρ0(d),δ, αρ0(d),δ, ρ0(d))

= T 5/2fmin + 4πaρ2 + (V̂ (0)− 4πa)ρfc(2ρ− ρfc)

+ T (∆ρa)3/2

(
1

24π

)[
(
√
d+ 16π +

√
d)(d+ 6(8π − ν))− 32π

√
d+ 16π

]

+ o
(
T (ρa)3/2

)
.

(5.79)
This can explicitly be minimized in d ≥ 0. The minimum is obtained for
d = 2(ν − 8π), which leads to the expression stated in Theorem 11.

Step 3c. The proof is unfinished since the upper and lower bounds (5.73)
and (5.74) only hold for ρ0 satisfying (5.77), i.e. ρ0(d = 0) ≤ ρ0 ≤ ρ. We
need to deal with all other ρ0 as we did in step 1 of the proof of Theorem 9:
by revising the lower bound (5.73). We know that any potential minimizer
should satisfy

Fcan(γ, α, ρ0)

≥ F sim(γ, α, ρ0)− (E2 + E3 + E4)(γ, α, ρ0)

≥ inf
(γ,α)
F s(γ, α, ρ0) + V̂ (0)ρ2 − 8πaρρ0 + (12πa− V̂ (0))ρ2

0 −O((ρa)5/2)

= T 5/2fmin + 8πaρ0ρfc −
(ρ0a

T

)3/2
T 5/2 4

3

√
16π

+ V̂ (0)ρ2 − 8πaρ0ρ+ ρ2
0(12πa− V̂ (0))− o(T (ρa)3/2),

(5.80)
where we have used the energy expansion (5.75) and Lemma 30 for the
unrestricted minimizer (γρ0,δ=0, αρ0,δ=0). Using ν ≥ 8π, we see that lower
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bound has a negative derivative for

0 ≤ ρ0 ≤ ∆ρ+

(
∆ρa

T

)1/2

T 3/2 1√
π

+ o(T (ρa)1/2),

which is indeed bigger than

ρ0(d = 0) = ∆ρ+

(
∆ρa

T

)1/2

T 3/2 1

2
√
π

+ o(T (ρa)1/2).

Since this lower bound matches our earlier lower bound (5.79) at this point
and the upper bound (5.74) also holds at this point, we can conclude that
it suffices to consider the infimum over ρ0(d = 0) ≤ ρ0 ≤ ρ, which yielded
the desired result in step 3b, and proves Theorem 11.

Step 4: ρa/T ≥ O(1). In this step, we make further preparations for the
proof of Theorem 10.

Step 4a. To prove that we can assume that d is bounded, we use (5.73),
(5.75), boundedness of I2 and I4, and Lemma 35 to see that for d� 1:

F sim(γρ0,δ, αρ0,δ, ρ0) ≥ 4πaρ2 + F (1) − d(ρ0a)ρ(1)
γ −O((ρa)5/2)

≥ 4πaρ2 + C min{(ρ0a)5/2d1/2, a−1(ρ0a)2} −O((ρa)5/2).

with errors uniform in d. For d � 1, this is of higher order than 4πaρ2 +
O((ρa)5/2), which is the value provided by the upper bound (5.74) at d = 0.
We can therefore restrict to bounded d.

Step 4b. We again need to establish that it suffices to minimize (5.75)
over d ≥ 0, i.e. to exclude 0 ≤ ρ0 ≤ ρ0(d = 0) as potential minimizers. To
do this, we repeat the lower bound (5.80). For ρa/T ≥ O(1), the infimum of

F s is O((ρa)5/2) by Lemmas 26 and 29 and boundedness of I2 and I4. We
obtain

Fcan(γ, α, ρ0) ≥ V̂ (0)ρ2 + (12πa− V̂ (0))ρ2
0 − 8πaρρ0 −O((ρa)5/2).

Using ν ≥ 8π, we see that this has a negative derivative throughout the
region, and as such the minimum can be found at the boundary (up to a
lower order error), where it matches the lower bound (5.73) and the upper
bound (5.74), and so we conclude that it suffices to consider the infimum
over ρ0(d = 0) ≤ ρ0 ≤ ρ.

Step 4c. We would now like to show that the errors in the lower bound
(5.73) are o((ρa)5/2), rather than O((ρa)5/2). The above conclusion, Lemma
26 and the lower and upper bounds (5.73) and (5.74) imply that any poten-
tial minimizer has to satisfy

ργ ≤ ρ− ρ0(d = 0) = O((ρa)3/2).

We can now use this to improve the a priori bounds in Proposition 19, and
hence lower the error in the lower bound (5.73) to o((ρa)5/2): we simply
repeat the estimates (5.31), (5.32) and (5.33), and notice that we are able
to pick a better b because we know that ργ is small.
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Step 5. Combining the steps above, we conclude

F can(T, ρ) = inf
0≤d≤d0

[
1

2
(ρ0(d)a)5/2I1(d, 8π, 0) + T 5/2I2(d, 8π, 0,

√
ρ0(d)a/T )

− dρ0(d)a(ρ− ρ0(d))

+ V̂ (0)ρ2 − 8πaρ0(d)ρ+ ρ0(d)2(12πa− V̂ (0))]

+ o
(

(ρa)5/2 + T (ρa)3/2
)
,

where

ρ0(d) := ρ− 1

2
(ρ0(d)a)3/2I3(d, 8π, 0)− T 3/2I4(d, 8π, 0,

√
ρ0(d)a/T ).

Here, the errors in ρ0(d) have been dropped compared to (5.76) since they
can be absorbed in the errors in the energy expression.

To finish the proof of Theorem 10, we just have to make a few replace-
ments in the minimization problem above. These are

• replacing (ρ0a)5/2I1(d, 8π, 0) by (ρa)5/2I1(d, 8π, 0). The error made

is O((ρa)5/2) for ρa/T � 1, which is acceptable. For ρa/T ≥ O(1),

we have ρ0(d) = ρ to leading order, so we make an error of o((ρa)5/2).
• replacing the similar term in ρ0(d). This is done in a similar way.

We absorb the error in the energy expansion.
• replacing T 3/2I4(d, 8π, 0,

√
ρ0(d)a/T ) by T 3/2I4(d, 8π, 0,

√
∆ρa/T ).

For ρa/T � 1, we use (5.78) to see that this leads to an error that
can be absorbed in the energy expansion. For ρa/T ≥ O(1), this

term is O((ρa)3/2) and ρ0(d) = ρ to leading order, so that the error
is of lower order and the replacement is justified.

�

Comment about Corollary 12. To obtain the expansions for ν → 8π, we use
the first two properties in Remark 39 and the fact that we can think of
the errors as uniform in d to conclude that all relevant contributions to the
energy are increasing in d. Hence, the minimum is attained at d = 0 in the
limit ν → 8π. We also note that only I1 and I3 contribute, and a calculation
of the integrals then yields the Lee–Huang–Yang constant. �

Appendix A. Approximations to integrals

Proof of Lemma 25. We make a change of variables to obtain

b3/2
∫

ln
(

1− e−b
√

(p2+δ0/b)2+2(p2+δ0/b)
)
dp

−
∫

ln(1− e−b(p2+δ0/b))dp− b
∫

(eb(p
2+δ0/b) − 1)−1dp.

(A.1)

Regard δ0/b as a fixed parameter and note that the integral has a limit as
b→ 0 by the Monotone Convergence Theorem, which is

b3/2
∫ [

1

2
ln

(
1 +

2

p2 + δ0/b

)
− 1

p2 + δ0/b

]
dp ≤ Cb3/2.

Of course δ0/b is not fixed, but the error term in this convergence is uniform
in δ0/b as long as that quantity is bounded (smaller than 1, say). For
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δ0/b ≥ 1, we expand the logarithm in the first line of (A.1) as a Taylor series
around b = 0. Using the Mean Value Theorem and noting that the absolute
value of the second derivative attains its maximum at 0, we conclude that
the quantity of interest is bounded by

b2
∫

(p2 + δ0 + 1)ep
2+δ0 − 1

(p2 + δ0)(ep2+δ0 − 1)2
dp ≤ Cδ−1/2

0 b2 ≤ Cb3/2.

�

Proof of Lemma 26. Recall |V̂ w(p)| ≤ V̂ w(0) = 8πa, so that the integral
converges pointwise to the desired expression as φ → 0. We would like to
apply the Dominated Convergence Theorem, which leads us to analyse

f(t) :=
x+ tA√

(x+ tA)2 − t2A2
− 1,

where x = p2+d, A = (1+θ)σ and t ∈ [−1, 1]. This function has the property
that |f(t)| ≤ f(1) for t ∈ [0, 1], and |f(t)| ≤ f(−1) for t ∈ [−1, 1] as long as

x > 2A. We therefore dominate the function by replacing V̂ w(φp)/8πa by 1

for |p| ≤
√

3(1 + θ)σ, and by −1 elsewhere. This function is integrable, and
so the Dominated Convergence Theorem gives the desired result. To obtain
uniformity, we use continuity in the different parameters. �

Proof of Lemma 27. Step 1: first line in statement.
We will write s = φ/

√
T � 1. After a change of variables, we need to show

that

T 3/2

∫ (
e

√
(p2+ds2)2+2(p2+ds2)(1+θ)σs2

V̂ w(
√
Tp)

8πa − 1

)−1

× p2 + ds2 + (1 + θ)σs2 V̂ w(
√
Tp)

8πa√
(p2 + ds2)2 + 2(p2 + ds2)(1 + θ)σs2 V̂ w(

√
Tp)

8πa

dp

= T 3/2

∫ (
e
√

(p2+ds2)2+2(p2+ds2)(1+θ)σs2 − 1
)−1

× p2 + ds2 + (1 + θ)σs2

√
(p2 + ds2)2 + 2(p2 + ds2)(1 + θ)σs2

dp+ o(T 5/2a2(ρ1/3a)−3/8).

We define

f(p, t) =
(
e
√

(p2+ds2)2+2(p2+ds2)(1+θ)σs2t − 1
)−1

× p2 + ds2 + (1 + θ)σs2t√
(p2 + ds2)2 + 2(p2 + ds2)(1 + θ)σs2t

,
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and calculate its derivative in t:

∂tf(p, t) =

= −1

4
sinh−2

(
1

2

√
(p2 + ds2)2 + 2(p2 + ds2)(1 + θ)σs2t

)

× (1 + θ)σs2
(
p2 + ds2 + (1 + θ)σs2t

)

p2 + ds2 + 2(1 + θ)σs2t

+
(
e
√

(p2+ds2)2+2(p2+ds2)(1+θ)σs2t − 1
)−1

× (p2 + ds2)(1 + θ)2σ2s4t

((p2 + ds2)2 + 2(p2 + ds2)(1 + θ)σs2t)3/2

=: F1(p, t) + F2(p, t).

We use the Mean Value Theorem to estimate

|f(p, V̂ w(
√
Tp)/8πa)− f(p, 1)|

≤
(

sup
t∈[V̂ w(

√
Tp)/8πa),1]

|∂tf(p, t)|
)∣∣∣V̂ w(

√
Tp)/8πa− 1

∣∣∣ .

(A.2)
Before we estimate this, we make the following two observations:

(1) For |p| ≤ (ρ1/3a)−1/8 we have

|V̂ w(
√
Tp)/8πa− 1| ≤ C‖V̂ w′′‖∞Tp2 ≤ CTa2(ρ1/3a)−1/4.

This also means that t(p) = V̂ w(
√
Tp)/8πa ≥ 1/2 in this region.

(2) For |p| ≥ (ρ1/3a)−1/8, we first note that in general

|V̂ w(
√
Tp)/8πa)− 1| ≤ 2.

We also have |p| ≥ (ρ1/3a)−1/8 � 1� 2
√
σs, so that

(p2 + ds2)2 + 2(p2 + ds2)(1 + θ)σs2t ≥ 1

2
(p2 + ds2)2 + p2

(
1

2
p2 − 2(1 + θ)σs2

)

+ ds2
(
p2 − 2(1 + θ)σs2

)

≥ 1

2
(p2 + ds2)2 ≥ 1

2
p4.

Using these estimates, and the fact that sinh(x)−1 ≤ 2(ex−1)−1 for x > 0,
we estimate the contribution of F1 to (A.2) by
{
CTa2(ρ1/3a)−1/4( 1

e|p|
√

(1+θ)σs2/2−1
)2(1 + θ)σs2 if |p| ≤ (ρ1/3a)−1/8

C 1

ep
2/(2
√
2)−1

if |p| ≥ (ρ1/3a)−1/8 ,

and the contribution from F2 by




CTa2(ρ1/3a)−1/4 1

e|p|
√

(1+θ)σs2−1

1
|p|
√

(1 + θ)σs2

if |p| ≤ (ρ1/3a)−1/8

C 1

ep
2/
√
2−1

if |p| ≥ (ρ1/3a)−1/8

.

Integrating (A.2) amounts to integrating the above contributions, which
gives the desired result (this can be seen after a change of variables by
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noting that the outer integrals decay exponentially fast), and the error is
independent of d.

Step 2: second line in statement. We again write s = φ/
√
T to obtain

T 3/2I4(d, σ, θ, s)− ρfc = (2π)−3T 3/2s3
[ ∫ (

es
2
√

(p2+d)2+2(p2+d)(1+θ)σ − 1
)−1

× p2 + d+ (1 + θ)σ√
(p2 + d)2 + 2(p2 + d)(1 + θ)σ

−
(
es

2p2 − 1
)−1 ]

dp.

(A.3)
If we can show that this equals

(2π)−3T 3/2s

∫ [ p2 + d+ (1 + θ)σ

(p2 + d)2 + 2(p2 + d)(1 + θ)σ
− 1

p2

]
dp+ o

(
T 3/2s

)
, (A.4)

we would obtain the desired result by calculating the integral.
We therefore consider the difference of these two terms, and consider the

regions |p| ≤ B and |p| > B separately, where B � 1 is chosen in such a

way that the integrals over |p| > B of (A.3) and (A.4) are o(T 3/2s). Since
the latter is a convergent integral, it is clear that this can be done. We will
show the same for (A.3) in a moment.

For |p| ≤ B, we first apply the Monotone Convergence Theorem to the
two terms in (A.3) separately. This shows convergence to the corresponding
part of the integral (A.4).

Employing another change of variables, and writing b = 2(d + (1 + θ)σ)
and c = d(d+ 2(1 + θ)), it remains to show that we can pick B such that

∫

|p|>Bs

∣∣∣
[
(ep

2
√

1+bs2/p2+cs4/p4 − 1)−1

× 1 + bs2/2√
1 + bs2/p2 + cs4/p4

− (ep
2 − 1)−1

]∣∣∣dp = o(s).

To show this, we apply Taylor’s theorem to bs2/p2 + cs4/p4 � 1, so that the
above expression is bounded by

bs2

2

∫

|p|>Bs

1

ep2 − 1
dp

+ C

∫

|p|>Bs

e
√

2p2(
√

2p2 + 1)− 1

(ep2 − 1)2

(
b
s2

p2
+ c

s4

p4

)(
1 + b

s2

2

)
dp,

where the first term comes from the zeroth-order term, and the other from
the derivative. Seeing that the main contribution from these integrals comes
from p = 0, we conclude that this is bounded by C(b/B + c/B3)s, which
indicates that we can indeed pick B large enough to obtain o(s). �

Proof of Lemma 28. We would like to apply the Dominated Convergence
Theorem to the limit φ2 = ρ0a → 0. We have shown how to bound the
fraction in Lemma 26 above. The exponential can be bounded in a similar
way (i.e. by considering |p| ≤

√
3(1 + θ)σ and |p| >

√
3(1 + θ)σ separately)

since φ2/T = ρ0a/T ≥ O(1) by our assumptions. Uniformity follows by
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continuity in the different parameters. Another change of variables gives
the result stated in the lemma. We obtain uniformity of the error in d ≥ 0
since both sides of the statement are exponentially decaying in d� 1.

�
Proof of Lemma 29. As in the proof of Lemma 26, we regard t = V̂ w(φp)/8πa

as a parameter taking values in [−1, 1], and replace it by 1 for |p| ≤
√

3(1 + θ)σ.
For other p, the function is continuous in t ∈ [−1, 1], and we can maximize
it for every p. This way, we again obtain a dominating function which is still
integrable, so that we can apply the Dominated Convergence Theorem. �
Proof of Lemma 30. Step 1: first line in statement.
We will write s = φ/

√
T � 1. After a change of variables, our goal is to

show that

T 5/2

∫
ln

(
1− e−

√
(p2+ds2)2+2(p2+ds2)(1+θ)σs2

V̂ w(
√
Tp)

8πa

)
dp

= T 5/2

∫
ln
(

1− e−
√

(p2+ds2)2+2(p2+ds2)(1+θ)σs2
)
dp

+O
(
T 5/2φ2a2(ρ1/3a)−1/4

)
.

To this end, we define

f(p, t) = ln
(

1− e−
√

(p2+ds2)2+2(p2+ds2)(1+θ)σs2t
)
.

This function is continuously differentiable in t:

∂tf(p, t) =
(
e
√

(p2+ds2)2+2(p2+ds2)(1+θ)σs2t − 1
)−1

× (p2 + ds2)(1 + θ)σs2

√
(p2 + ds2)2 + 2(p2 + ds2)(1 + θ)σs2t

.

We use the Mean Value Theorem to estimate this, followed by the two
estimates discussed below (A.2):

|f(p, V̂ w(
√
Tp)/8πa)− f(p, 1)|

≤
(

sup
t∈[V̂ w(

√
Tp)/8πa,1]

|∂tf(p, s, t)|
)∣∣∣V̂ w(

√
Tp)/8πa− 1

∣∣∣

≤
{
CTa2(ρ1/3a)−1/4 1

ep2−1
(1 + θ)σs2 if |p| ≤ (ρ1/3a)−1/8

C 1

ep
2/
√
2−1

if |p| ≥ (ρ1/3a)−1/8 .

Integrating over p gives the desired result (note that the outer integral de-
cays exponentially fast), and the error is independent of d.

Step 2: second line in statement.
We again write s = φ/

√
T to obtain

T 5/2I2(d, σ, θ, s)− T 5/2fmin − s2Tρfc(d+ (1 + θ)σ)

= (2π)−3T 5/2s3

∫ [
ln
(

1− e−s2
√

(p2+d)2+2(p2+d)(1+θ)σ
)

− ln
(

1− e−s2p2
)
− (es

2p2 − 1)−1(d+ (1 + θ)σ)s2
]
dp.

(A.5)
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Since this expression divided by T 5/2s3 is monotone in s, we obtain by the
Monotone Convergence Theorem that

(2π)−3T 5/2s3

∫ [
ln

(√
(p2 + d)2 + 2(p2 + d)(1 + θ)σ

p2

)
− d+ (1 + θ)σ

p2

]
dp

+ o(T 5/2s3),
(A.6)

which gives the desired result.
�

Proof of Lemma 31. We want apply the Dominated Convergence Theorem

to the limit φ2a = ρ0a
2 → 0. As in Lemma 26, we regard t = V̂ w(φp)/8πa ∈

[−1, 1] as a parameter, which we replace by 0 for |p| ≤
√

3(1 + θ)σ. For

|p| >
√

3(1 + θ)σ, we replace it by −1 to obtain a dominating function
(also using s ≥ O(1)). Uniformity in the different parameters follows from
continuity in these parameters. Another change of variables gives the desired
result. We obtain uniformity of the error in d ≥ 0 since both sides of the
statement are exponentially decaying in d� 1. �

Proof of Lemma 32. The basic estimates we will use are:
∣∣∣∣∣∣∣
ρ0

∫

|p|≤b

γ(p)V̂ (p)dp− V̂ (0)ρ0

∫

|p|≤b

γ(p)dp

∣∣∣∣∣∣∣
≤ Ca3b2ρ0ργ

∣∣∣∣∣∣∣
ρ0

∫

|p|>b

γ(p)V̂ (p)dp− V̂ (0)ρ0

∫

|p|>b

γ(p)dp

∣∣∣∣∣∣∣
≤ Caρ0

∫

p>b
γ(p)dp

∣∣∣∣∣∣∣

∫∫

|p|,|q|≤b

γ(p)V̂ (p− q)γ(q)dpdq − V̂ (0)




∫

|p|≤b

γ(p)dp




2∣∣∣∣∣∣∣
≤ Ca3b2ρ2

γ

∣∣∣∣∣∣∣

∫∫

|p|or|q|>b

γ(p)V̂ (p− q)γ(q)dpdq −
∫∫

|p|or|q|>b

γ(p)V̂ (0)γ(q)dpdq

∣∣∣∣∣∣∣

≤ Caργ
∫

|p|>b
γ(p)dp,

(A.7)

which follow from the fact that ‖V̂ ‖∞ ≤ 8πa, V̂ ′(0) = 0 and ‖V̂ ′′‖∞ ≤ Ca3.

We also need identical versions of the first two estimates for V̂ w, which hold
for the same reasons.

We set b =
√
T . By Lemma 26, we have

∫

|p|>
√
T
γρ0,δ(p)dp = O(φ3), (A.8)

since the density becomes (5.18) after a change of variables and both terms
are of this order (the exponent of the exponential in the second contribution
is at least of order 1). This suffices to prove the statement. �
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Proof of Lemma 33. Using the estimates in the previous proof, the reader
can check that b = ρ1/3 suffices, since

∫

|p|>ρ1/3
γρ0,δ = o((ρ0a)3/2).

This follows from an application of the Dominated Convergence Theorem
to

(ρ0a)3/2

∫

|p|> ρ1/3√
ρ0a


 p2 + d+

V̂ w(
√
ρ0ap)
a√

(p2 + d)2 + 2(p2 + d)
V̂ w(
√
ρ0ap)
a

− 1


 dp

as in Lemma 26, and the fact that the other contribution in (5.18) is expo-

nentially small in this region (since ρ1/3 �
√
T ). �

Proof of Lemma 34. Step 1. We start by looking at the first term in (5.52),
which does not involve φ2/T . After adding absolute values within the inte-
gral sign, we employ similar reasoning to Lemma 26 to conclude that it is
O(φ3) as φ→ 0. Similar to (A.8), we then have

∫

|p|>
√
T

|f(p)|dp ≤ Cφ3,

which was one of our goals.

Step 2. We now restrict to the case φ2/T � 1 and consider the full
integral of f . Again using that the first term in (5.52) only contributes
O(φ3), we have that

∫
f(p)dp = φ3

∫
(1 + θ)σ V̂ w(φp)

8πa√
(p2 + d)2 + 2(p2 + d)(1 + θ)σ V̂ w(φp)

8πa

× 1

e
φ2

T

√
(p2+d)2+2(p2+d)(1+θ)σ

V̂ w(φp)
8πa − 1

dp

+O(φ3)

= Tφ

∫
(1 + θ)σ

(p2 + d)2 + 2(p2 + d)(1 + θ)σ
dp+ o(Tφ)

= Tφ(1 + θ)σ
2π2

√
d+ 2(1 + θ)σ +

√
d

+ o(Tφ).

(A.9)
The step before the last requires reasoning similar to Lemma 29, where the
application of the Dominated Convergence Theorem is facilitated by the fact
that (ex − 1)−1 ≤ x−1.

An identical argument leads to the estimate that
∫
|f | ≤ CTφ.

Step 3. For the case φ2/T ≥ O(1), the second line in (A.9) combined with
the Dominated Convergence Theorem applied as in Lemma 28 leads to the
desired conclusion. �
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Proof of Lemma 35. We first analyse the asymptotic behaviour of F (1) as

d→∞. Writing A(p) = V̂ w(φp)/a, we expand for d� A = O(1):

(p2 + d)

√
1 +

2A

p2 + d
= p2 + d+A− 1

2

A2

p2 + d
+ o(A/d).

This tells us that the asymptotic behaviour of F (1) is

(2π)−3dφ5 1

4

∫
A2(p)

1

p2(p2 + d)
dp.

Similarly, we can see that the asymptotic behaviour of −dφ2ρ
(1)
γ is

− (2π)−3dφ5 1

4

∫
A2(p)

1

(p2 + d)2
dp. (A.10)

By our assumptions on the derivative of the potential, there exists a c such

that |V̂ w(p)| ≥ 4πa for |p| ≤ c/a. Hence, for d1/2φa ≤ C, the two sum of
the two contributions above is bounded below by

Cd1/2φ5

∫

|p|≤c(d1/2φa)−1

V̂ w
2
(d1/2φp)a−2

p2(p2 + 1)2
dp ≥ Cd1/2φ5,

whereas for d1/2φa ≥ C, it is bounded below by

d2φ5(φa)3

∫

|p|≤c

V̂ w
2
(p/a)a−2

p2(p2 + dφ2a2)2
dp ≥ Ca−1φ4.

To prove the claims about ρ
(1)
γ we first consider d � 1 and use (A.10)

(divided by dφ2). On the remaining compact 0 ≤ d ≤ C, we can apply
Lemma 26. �

Proof of Lemma 37. Let
√
T � b �

√
T (
√
Ta)−1/8. Using (A.8), we first

notice that

∫∫

|p|or|q|>b
γρ0,δ(p)V̂ (p− q)γρ0,δ(q)dpdq ≤ Caρφ3 = o(T 4a3).

The same holds for the similar contribution to E5 involving V̂ (0). Using
(5.44) and (5.19), we see that the final contribution to the outer region is
also o(T 4a3) since

∫

|p|>b
γ0 = o(T 3/2),

∫

|p|>b
p2γ0 = o(T 5/2).
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We again use (5.44) and estimate the contribution from the inner region by

C
∣∣∣
∫∫

|p|,|q|≤b

γρ0,δ(p)

(
V̂ (p− q)− V̂ (0)− ∆V̂ (0)|p− q|2

6

)
γρ0,δ(q)dpdq

∣∣∣

+ C∆V̂ (0)ργρ0,δ

∫

|p|≤b

p2|γρ0,δ − γ0|(p)dp

+ C∆V̂ (0)




∫

|p|≤b

|γρ0,δ − γ0|(p)dp







∫

|p|≤b

p2γ0(p)dp


 .

Lemmas 26 and 27 (where also the proof of Lemma 27 is important to deal
with the absolute value for the middle term) together with the properties of
γ0 and the properties of the potential pointed out below (A.7) imply that
this is indeed o(T 4a3). �
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