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Abstract

This PhD thesis covers aspects of policyholder preferences and life insurance
projections based on economic scenarios. Both topics are relevant to poli-
cyholders as well as to the life insurance and pension industry—and equally
important, the topics give rise to a variety of interesting mathematical prob-
lems and industry related considerations.

From a policyholder perspective, being aware of one’s own preferences is
central for making the best possible financial decisions, with life insurance and
pensions playing a major role. From an industry perspective, understanding
policyholder preferences is important for designing competitive life insurance
and savings products and for providing sound advice to policyholders. Prefer-
ences come in many shapes and forms. In this thesis, we focus on separation of
risk and time preferences and preferences for smooth investment. The latter
is modeled with something as unconventional as explicit preferences for not
trading, and if not careful, the former entails time-inconsistency.

From a policyholder and advisory perspective, scenario-based projections
allow for tailor-made bonus, benefit, and retirement savings prognoses that
illustrate financial riskiness to the policyholder. From an industry and ac-
counting perspective, scenario-based projections allow for valuation of life in-
surance contracts taking into account both guaranteed and non-guaranteed
payments. In this thesis, we focus on economic scenarios because they ensure
a low mathematical complexity even for complex financial markets, and we
model participating life and unit-linked insurance in the same two-account
framework.
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Preface

This thesis has been prepared in fulfillment of the requirements for the PhD
degree at the Department of Mathematical Sciences (MATH), Faculty of Sci-
ence, University of Copenhagen. The work has been carried out under the
supervision of Professor Mogens Steffensen from MATH in the period from
April 1, 2013 to March 31, 2016.

The main body of the thesis consists of an introduction to the overall work
and six chapters on different but related topics. The six chapters are written
as individual academic papers. They appear as such, and the notation varies
slightly from paper to paper. The papers are self-contained and can be read
independently with minor overlaps. At the time of submission, two of the
papers are published in international peer-review journals, and three of the
remaining papers have been submitted for publication [subsequently, the last
paper has also been submitted for publication].
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Summary

This thesis consists of an introductory chapter and six papers, each of which
constitutes a chapter. The first four papers are centered around policyholder
preferences, and the last two papers are centered around scenario-based pro-
jections of the balance. The papers are related by being of relevance to the
life insurance and pension industry. Understanding policyholder preferences is
important for the industry in order to design better life insurance and savings
products and provide sound advice to policyholders. Scenario-based projec-
tions are a valuable tool for the industry in order to price new products,
valuate existing products and, again, provide sound advice to policyholders.

In the first paper, “Personal Finance and Life Insurance under Separation
of Risk Aversion and Elasticity of Substitution”, we study optimal consump-
tion, investment, and life insurance decisions for an policyholder with power
utility, an uncertain lifetime, and access to a Black-Scholes market. We sepa-
rate risk aversion from elasticity of inter-temporal substitution and elasticity
of substitution between consumption and bequest by non-linearly aggregat-
ing certainty equivalents rather than utility. This leads to time-inconsistency
issues which are dealt with using equilibrium theory. We illustrate the equi-
librium consumption and bequest in a numerical example, and we establish a
connection to recursive utility with Epstein-Zin preferences. The paper builds
on my thesis for the Master degree in Actuarial Mathematics which carried
the title “On the Theory of Life Insurance Decisions under Recursive Utility”.

In the second paper, “Nonrecursive Separation of Risk and Time Pref-
erences”, we generalize the separation of preferences from the first paper in
terms of utility specification and market modeling. We focus on separation of
preferences for time and risk and consider only a certain-lived policyholder,
but allow for general utility functions and a general market. We continue
separating preferences by aggregating certainty equivalents in a non-linear
fashion, and time-inconsistency issues are still dealt with using equilibrium
theory. The connection to recursive utility established in the first paper is
extended beyond power utility and Epstein-Zin preferences. Furthermore, the
connection is extended to an incomplete market setting.

In the third paper, “Life Insurance Decisions under Recursive Utility”,
we generalize recursive utility to include lifetime uncertainty and utility from
bequest. Recursive utility allows for separation of preferences for risk and
time, and, with our generalization, also preferences for substitution between
bequest and future utility. The latter is our way of formulating preferences for
mortality risk. We study optimal consumption, investment, and life insurance
choice under recursive utility with generalized Epstein-Zin preferences, and we
illustrate the optimal consumption and bequest in a numerical example. The
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xii Summary

separation of preferences appears similar to the one in the first paper, but the
two ways of separating preferences do not cover the same set of preferences.
Only by reducing the number of free preference parameters, thereby giving up
on the threefold separability, we identify a coincidence.

In the fourth paper, “Smooth Investment”, we solve two portfolio opti-
mization problems with the common feature that non-smooth trading is ruled
out. By non-smooth trading we mean diffusive trading and bang-bang invest-
ment strategies. Non-smooth trading is avoided by restricting the number of
stocks to be differentiable and by punishing trading in the objective function.
The latter is equivalent with the policyholder having explicit preferences for
not trading. We solve the two portfolio problems semi-explicitly and discuss
the structures of the solutions. In numerical examples, we illustrate smooth
trading and the resulting stock positions.

In the fifth paper, “A Two-Account Life Insurance Model for Scenario-
Based Valuation Including Event Risk”, we introduce a two-account model
with event risk, such as death and disability, for the purpose of valuating life
insurance contracts taking into account both guaranteed and non-guaranteed
payments in participating life insurance as well as in unit-linked insurance. To
allow for complicated financial markets without dramatically increasing the
mathematical complexity, we focus on economic scenarios. We formalize how
the bonus schemes “consolidation” and “additional benefits” work and interact
in participating life insurance and how guarantees can be implemented in unit-
linked insurance. By use of a two-account model, we are able to illustrate
general concepts without making the model too abstract, and we provide
numerical examples to demonstrate the possible applications of the model.

In the sixth paper, “Scenario-based Life Insurance Prognoses in a Multi-
State Markov Model”, we introduce economic scenarios in participating life and
unit-linked insurance to produce tailor-made bonus, benefit, and retirement
savings prognoses that illustrate financial riskiness to the policyholder. In our
modeling, we condition on the policyholder starting and staying in a certain
state of life, typically “alive and active”. We have chosen this fixed path
approach to provide policyholders with the best possible economic forecast
given that they continue their course of life. We model participating life and
unit-linked insurance in the same framework, and for both product types,
we provide numerical examples to illustrate the possible applications of our
model.



Resumé
(Danish Summary)

Denne afhandling består af et introducerende kapitel og seks artikler, som
hver udgør et kapitel. De første fire artikler beskæftiger sig med policetager-
præferencer, mens de to sidste artikler beskæftiger sig med scenariebaserede
fremregninger af balancen. Artiklerne har det tilfælles, at de henvender sig
til pensions- og livsforsikringsbranchen. Det er vigtigt for industrien at forstå
policetagerpræferencer for at kunne designe bedre livsforsikrings- og opspa-
ringsprodukter og for at kunne rådgive policetagere bedst muligt. Scenarieba-
serede fremregninger er et værdifuldt værktøj for industrien til at prisfastsætte
nye produkter, værdifastsætte eksisterende produkter og, igen, kunne rådgive
policetagere bedst muligt.

I den første artikel, “Personal Finance and Life Insurance under Sepa-
ration of Risk Aversion and Elasticity of Substitution”, studerer vi optimalt
forbrugs-, investerings- og livsforsikringsvalg for en policetager med potens-
nytte, en usikker levetid og adgang til et Black-Scholes marked. Vi adskiller
risikoaversion fra elasticitet af intertemporal substitution og elasticitet af sub-
stitution mellem forbrug og arv ved ikke-lineært at summere sikkerhedsækvi-
valenter frem for nytte. Dette fører til udfordringer med tidsinkonsistens, som
vi løser med ligevægtsteori. Vi illustrerer ligevægtsforbrug og -arv i et nume-
risk eksempel, og vi etablerer en forbindelse til rekursiv nytte med Epstein-Zin
præferencer.

I den anden artikel, “Nonrecursive Separation of Risk and Time Preferen-
ces”, udvider vi adskillelsen af præferencer fra den første artikel med hensyn
til nyttespecifikation og markedsmodellering. Vi fokuserer på adskillelse af
præferencer for tid og risiko og betragter kun en policetager med en kendt
levetid, men tillader generelle nyttefunktioner og et generelt marked. Vi ad-
skiller fortsat præferencer ved ikke-lineært at summere sikkerhedsækvivalenter
og håndterer tidsinkonsistens ved hjælp af ligevægtsteori. Forbindelsen til re-
kursiv nytte, som blev etableret i den første artikel, udvides til at omfatte and
og mere end potensnytte og Epstein-Zin præferencer. Forbindelsen udvides
desuden til et inkomplet marked.

I den tredje artikel, “Life Insurance Decisions under Recursive Utility”,
udvider vi rekursiv nytte til at omfatte levetidsusikkerhed og nytte fra arv.
Rekursiv nytte tillader adskillelse af præferencer for risiko og tid og, med vo-
res udvidelse, også præferencer for substitution mellem arv og fremtidig nytte.
Sidstnævnte er vores måde at formalisere præferencer for dødsrisiko. Vi stu-
derer optimalt forbrugs-, investerings- og livsforsikringsvalg under rekursiv
nytte med Epstein-Zin præferencer, og vi illustrerer det optimale forbrug og
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xiv Resumé

den optimale arv i et numerisk eksempel. Adskillelsen af præferencer ligner
til forveksling adskillelsen i den første artikel, men de to måder at adskille
præferencer dækker ikke den samme mængde af præferencer. Kun ved at re-
ducere antallet af frie parametre, og dermed opgive den trefoldige adskillelse,
identificerer vi et sammenfald.

I den fjerde artikel, “Smooth Investment”, løser vi to porteføljeproblemer,
som har det tilfælles, at ikke-glat handel er udelukket. Ved ikke-glat handel
forstår vi diffusiv handel og bang-bang investeringsstrategier. Ikke-glat handel
undgås ved at kræve at antallet af aktier er differentiabelt og ved at straffe
handel i objektfunktionen. Sidstnævnte er ensbetydende med at policetageren
har eksplicitte præferencer for ikke at handle. Vi løser de to porteføljeproble-
mer semieksplicit og diskuterer løsningernes struktur. I numeriske eksempler
illustrerer vi glat handel og den tilsvarende aktiebeholdning.

I den femte artikel, “A Two-Account Life Insurance Model for Scenario-
Based Valuation Including Event Risk”, introducerer vi en to-konto model
med forsikringsrisici for at værdifastsætte livsforsikringskontrakter under hen-
syntagen til både garanterede og ugaranterede betalinger i gennemsnitsrente
såvel som markedsrente. For at tillade komplicerede finansielle markeder uden
drastisk at hæve den matematiske kompleksitet fokuserer vi på økonomiske
scenarier. Vi formaliserer, hvordan bonussystemerne “opskrivning af ydelser”
og “styrkelse” fungerer og interagerer i gennemsnitsrente, og hvordan garan-
tier kan implementeres i markedsrente. Ved brug af en to-konto model er vi i
stand til at illustrere generelle koncepter uden at gøre modellen for abstrakt,
og vi demonstrerer de mulige anvendelsesmuligheder for modellen i numeriske
eksempler.

I den sjette artikel, “Scenario-based Life Insurance Prognoses in a Multi-
State Markov Model”, introducerer vi økonomiske scenarier i gennemsnitsrente
og markedsrente for at udarbejde skræddersyede bonus-, ydelses- og opspa-
ringsprognoser, som illustrerer policetagerens finansielle risiko. I vores model-
lering betinger vi med, at policetageren starter og forbliver i en bestemt livs-
situation, typisk “i live og aktiv”. Vi har valgt denne betingede fremgangsmåde
for at kunne udarbejde de bedst mulige økonomiske prognoser til policetagere
givet at de fortsætter deres hidtidige livsforløb. Vi modellerer gennemsnitsren-
te og markedsrente i samme ramme, og for begge produkttyper demonstrerer
vi de mulige anvendelsesmuligheder af vores model i numeriske eksempler.



Chapter 1

Introduction

This introductory chapter provides an overview of the contributions of this
thesis. As suggested by the title, the thesis is split in two parts. The first part
is made up by four chapters addressing modern policyholder preferences. The
second part is made up by two chapters addressing scenario-based projections
of the balance. The two parts are primarily related by being of relevance to
insurance companies in their designing and valuation of products. Within each
of the two parts, the chapters are more closely related, and in this introduction,
we explain to which extend. The introduction contains no references to related
literature, for these we refer to the introductions of the individual chapters.

1.1 Modern Policyholder Preferences
Classical literature on household decision making deals with maximization
of expected time-additive utility. For a policyholder making continuous-time
decisions on optimal consumption and investment, the generic problem reads

sup
c,π

E
[∫ T

0
e−δsu (ct) dt+ e−δTU (Xc,π

T )
]
, (1.1)

where δ ≥ 0 is a subjective utility discount rate, u is an instantaneous utility
function, and U is a utility function for final wealth. The policyholder’s wealth,
Xc,π, evolves according to the dynamics

dXc,π
t = (r + πtλ)Xc,π

t dt− ct dt+ πtX
c,π
t σ dWt ,

Xc,π
0 = x0 ,

where c is the policyholder’s consumption rate and π is the proportion invested
in a Black-Scholes stock. The utility functions u and U characterize the pol-
icyholder’s preferences with respect to risk. The problem in Equation (1.1)
can be solved by embedding it in an optimal value function given by

V (t, x) = sup
c,π

Et,x

[∫ T

t
e−δ(s−t)u (cs) ds+ e−δ(T−t)U (Xc,π

T )
]
, (1.2)

where Et,x denotes conditional expectation given Xc,π
t = x. By application of

dynamic programming techniques, the value function can be characterized by

1



2 1. Introduction

the Hamilton-Jacobi-Bellman equation, i.e. a partial differential equation con-
taining a local optimization problem at each point (t, x). Using the linearity of
the expectation operator and the law of iterated expectation, it can be proven
that the solution (c, π) to the continuum of local optimization problems is also
a solution to the global optimization problem. Dynamic programming applies
because time-additive utility satisfies Bellman’s principle of optimality which
states that “an optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision”.

Being an actuary, it is natural to include lifetime uncertainty and life
insurance decisions. For a policyholder making continuous-time decisions on
optimal consumption, investment and life insurance, the generic problem reads

sup
c,π,d

E
[∫ T

0
e−δs

{
u (ct) Is dt+ b

(
Xc,π,d
t + dt

)
dNs

}
+ IT e

−δTU
(
Xc,π,d
T

)]
,

(1.3)
where I = 1 − N indicates survival of the policyholder, and b is a utility
function for bequest. The policyholder’s wealth, Xc,π,d, evolves according to
the dynamics

dXc,π,d
t = (r + πtλ)Xc,π,d

t dt− ct dt− µ∗tdt dt+ πtX
c,π,d
t σ dWt ,

Xc,π,d
0 = x0 ,

where d is a life insurance sum which is priced by a premium intensity µ∗.
This consumption-investment-life insurance problem can be solved exactly as
the consumption-investment problem using dynamic programming.

We mentioned above that the utility functions u and U characterize the
policyholder’s preferences with respect to risk, but u also plays a different
indirect role in the time-additivity of (1.2). If we, for example, consider the
case of power utility,

u (c) = 1
1− γ c

1−γ ,

then the parameter γ does not only represent aversion towards risk, but is
also related to the elasticity of inter-temporal substitution (EIS). Whereas risk
aversion deals with the willingness to gamble, EIS deals with the willingness
to substitute consumption over time.

In Chapters 2 and 3, we formalize a way of separating preferences for
risk and time. Here, and in the following, “preferences for time” refer to
preferences towards variation in consumption over time, not impatience (as
modeled by δ above). Similarly, “preferences for risk” refer to preferences
towards variation in consumption over states of the world. The separation of
preferences in Chapter 3 is more general in terms of utility specification and
market modeling, but only applies to consumption-investment decisions. The
separation of preferences in Chapter 2 is restricted to power utility, but applies



1.1. Modern Policyholder Preferences 3

to consumption-investment-life insurance decisions in a Black-Scholes financial
market. The resulting optimization problems do not fit into the framework of
problems (1.1) and (1.3), and Bellman’s principle of optimality is not satisfied.
Consequently, dynamic programming does not apply, and solving the problems
requires a special toolbox to avoid time-inconsistent policyholder behavior.
This special toolbox is equilibrium theory which arises from a game theoretic
approach to stochastic control. We summarize our separated preferences and
main insights of the two chapters in Section 1.1.1. We note that in Chapter 3
we often replace the word “separate” by “disentangle”.

Chapter 2 builds on my thesis for the Master degree in Actuarial Math-
ematics which carried the title “On the Theory of Life Insurance Decisions
under Recursive Utility”. The main theorems have been refined, and the
proofs have been sharpened. The central findings have been highlighted, and
the set-up has been clarified for non-actuarial readers. Finally, the link to
existing literature on time-inconsistency, recursive utility, and hump-shaped
consumption has been further developed.

In Chapter 4, we extend an already existing way of separating preferences
for risk and time, namely recursive utility, to include lifetime uncertainty
and utility from bequest. Our generalization enables us to study optimal
consumption-investment-life insurance decisions under separation of prefer-
ences for market risk, lifetime uncertainty and time. Again, the resulting
optimization problem does not fit into the framework of problem (1.3), but
recursive utility is by construction time-consistent, so equilibrium theory does
not come into play. We summarize our generalization in Section 1.1.2.

We speak of the policyholder preferences in Chapters 2–4 as modern be-
cause they challenge the classical literature on household decision making. We
part with expected time-additive utility because it leaves too little room for
modeling interesting aspects of preferences for risk and time, and in doing so,
we have to give up on dynamic programming.

A very different example of modern policyholder preferences that challenge
the classical literature on optimal investment decisions is found in Chapter 5.
In this case, dynamic programming applies, but the policyholder has pref-
erences for not trading, e.g. due to transaction costs. These preferences are
introduced to obtain smooth investment for a policyholder maximizing, re-
spectively, mean-square and power utility of terminal wealth. We summarize
our preferences for not trading in Section 1.1.3.

1.1.1 Separation of Preferences by Aggregation of
Certainty-Equivalents

In Chapters 2 and 3, we separate preferences for time and risk by forming
certainty equivalents

u−1 (Et,x [u (cs)]) , (1.4)
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where u represents the policyholder’s preferences for risk. The entity in Equa-
tion (1.4) expresses which certain time-s consumption rate the policyholder
requires at time t in order to give up the uncertain time-s consumption rate
cs. Since for all s ≥ t, the certainty equivalents u−1 (Et,x [u (cs)]) are known
at time t, we are inclined to treat them as deterministic future consumption
rates. Now, we let a different function, ϕ̄, formalize the policyholder’s time
preferences with respect to these certainty equivalents. The policyholder’s
utility from time t and onward is∫ T

t
e−δ(s−t)ϕ̄

(
u−1 (Et,x [u (cs)])

)
ds+ ωe−δ(T−t)ϕ̄

(
u−1 (Et,x [u (Xc,π

T )])
)

=
∫ T

t
e−δ(s−t)ϕ (Et,x [u (cs)]) ds+ ωe−δ(T−t)ϕ (Et,x [u (Xc,π

T )]) , (1.5)

where ϕ = ϕ̄ ◦ u−1, and ω is a scaling factor allowing for different weight
on utility from consumption and final wealth. For ϕ̄ = u, corresponding to
identical preferences for risk and time, we get back to expected time-additive
utility, so our separated preferences are a true generalization of the preferences
in Equation (1.1).

Due to the transform ϕ of the expectation, we cannot exploit the linearity
of the expectation operator and the law of iterated expectations. Hence,
the problem of maximizing (1.5) goes beyond what can be dealt with by
classical dynamic programming. While we are at “destroying” the linearity,
we multiply the policyholder’s utility with the constant δ and transform it
with an increasing function f , yielding the value function

V c,π (t, x) = f

( ∫ T
t δe−δ(s−t)ϕ (Et,x [u (cs)]) ds

+ωδe−δ(T−t)ϕ (Et,x [u (Xc,π
T )])

)
. (1.6)

The function f does not change optimal behavior, and it is convenient for mak-
ing the mathematical representation of the policyholder’s utility as tractable
as possible. The choice f = ϕ−1 (possibly times a constant) turns out to be
particularly convenient. Given this insight, the choice f = ϕ−1 = id (the iden-
tity function), corresponding to ϕ̄ = u, shows why there is no “normalization
issue” for time-additive utility.

The problem of maximizing the value function, V c,π, in Equation (1.6)
is absolutely non-standard due to its serial non-linearity, and since dynamic
programming does not work, there is no reason to believe that solutions to
local and global optimization problems coincide as for time-additive utility.
On the contrary, the control resulting from maximizing V c,π at time 0 is
likely to be inconsistent with the control resulting from maximizing V c,π at
time t > 0. By “inconsistent” we mean that the decision we make at time t
based on maximizing V c,π is not the same as the decision we plan to make
at time t based on maximizing V c,π at time 0, for the same realization of
the wealth process. We dislike this time-inconsistency, and we do not wish
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to introduce pre-commitment. Instead, we want to take the policyholder’s
changing preferences into account. We do this by searching for equilibrium
controls rather than classical optimal controls. The equilibrium theory arises
from a game theoretic approach to stochastic control. The approach produces
a control process that does not maximize the value function over all admissible
strategies, but, rather, over “all strategies that one actually intends to follow”.

In Chapters 2 and 3, we apply this separation of preferences, but with
different extensions. In Chapter 2, we exclude utility from terminal wealth
and limit our focus to power utility functions,

u (x) = 1
1−γx

1−γ , ϕ̄ (x) = 1
1−φx

1−φ, and f (x) = 1
1−γ ((1− φ)x)θ ,

with γ, φ ∈ R+\ {1} and θ = 1−γ
1−φ > 0. In return, we allow for lifetime

uncertainty and utility from bequest, and in addition to separating preferences
for risk and time, we also separate preferences for substitution between the
states “alive” and “dead”. This is done by introducing the function v (x) =
κx

1
κ and considering the extended value function

V c,π,d (t, x)

= f

(∫ T

t
δe−δ(s−t)ϕ ◦ v−1

(
v (Et,x [u (cs) Is]) +

v
(
Et,x

[
u
(
Xc,π,d
s + ds

)
dNs
ds

]) ) ds
)

(1.7)

= 1
1− γ

∫ T

t
δe−δ(s−t)


(
Et,x

[
c1−γ
s Is

]) 1
κ +(

Et,x
[(
Xc,π,d
s + ds

)1−γ dN(s)
ds

]) 1
κ


κ
θ

ds


θ

.

We present an equilibrium verification theorem for the value function in Equa-
tion (1.7), and we derive semi-explicit expressions for the equilibrium control
and the corresponding value function. We discover that, in the special case
without lifetime uncertainty, our optimization approach results in the same
control as recursive utility optimization with Epstein-Zin preferences. We find
this interesting since the existing literature on recursive utility optimization
with Epstein-Zin preferences does not allow for lifetime uncertainty and utility
from bequest. We derive a stochastic differential equation for the equilibrium
consumption rate, and in a numerical example, we show that our separation
of preferences gives rise to hump-shaped consumption patterns as observed in
realized consumption. We note that such hump-shaped consumption patterns
cannot be obtained by standard recursive utility or time-additive utility under
lifetime uncertainty.

In Chapter 3, we focus on a certain-lived policyholder, but allow for gen-
eral utility functions and more general wealth dynamics. The wealth of the
policyholder evolves according to the dynamics

dXc,π
t = µc,π (t,Xc,π

t , Yt) dt+ σc,π (t,Xc,π
t , Yt) dWt , X

c,π
0 = x0 ,
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where Y is a non-traded state process with the dynamics

dYt = α (t, Yt) dt+ β (t, Yt)
(
ρ dWt +

√
1− ρ2 dW̄t

)
, Y0 = y0 .

Here, µc,π, σc,π, α, β are sufficiently regular functions, and W and W̄ are two
independent Brownian motions.

Also, we allow the utility of consumption and terminal wealth to depend
on the process Y . More specifically, we replace u (cs) by u (Ys, cs). This turns
out to be mathematically tractable, and we can, for example, think of Y as an
index of purchasing power or a minimum subsistence level, depending on the
shape of u. Finally, we introduce separate utility functions for consumption,
u1, and final wealth, u2. Altogether, we consider the extended value function

V c,π (t, x, y) = f

( ∫ T
t δe−δ(s−t)ϕ (Et,x,y [u1 (Ys, cs)]) ds

+ωδe−δ(T−t)ϕ (Et,x,y [u2 (YT , Xc,π
T )])

)
. (1.8)

We present an equilibrium verification theorem for the value function in Equa-
tion (1.8) and, for power and exponential utility, we derive semi-explicit ex-
pressions for the equilibrium control and the corresponding value function.

By construction, our way of separating preferences is different from that of
recursive utility, but for both power and exponential utility functions u1 and
u2 without Y -dependence, the resulting behavior turns out to coincide with
that coming from recursive utility optimization. In particular, we establish
a connection to recursive utility optimization that goes beyond power utility
and Epstein-Zin preferences. Furthermore, the coincidence is not limited to a
Black-Scholes market, but extends to an incomplete market. Hence the con-
nection to recursive utility established in Chapter 2 is extended significantly
in Chapter 3.

1.1.2 Separation of Preferences by Recursive Utility

In Chapter 4, we generalize recursive utility to include lifetime uncertainty
and utility from bequest. Recursive utility theory deals with the separation
of preferences for risk and time through a recursive definition, a certainty
equivalent, and a time-aggregator. In discrete time, the present (indirect)
utility, V c

tk
, is a function of present consumption, ctk , the time between tk and

tk+1, and the certainty equivalent, mtk(V c
tk+1), of the future utility, V c

tk+1 . In
formulas,

V c
tk

= W
(
tk+1 − tk, ctk ,mtk

(
V c
tk+1

))
, (1.9)

The function W is often referred to as the inter-temporal aggregator because
in a set-up without risk, it describes the inter-temporal aggregation of present
consumption, ctk , and the utility of future consumption, V c

tk+1 . Similarly, the
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certainty equivalent, m, is referred to as the risk-aggregator since it describes
the risk weighted aggregation of possible future values of V c

tk+1 .
Recursive utility is widely used to study asset pricing and consumption-

portfolio choice in various markets, and it has been used to explore ambiguity
aversion and preferences for resolution of uncertainty. Despite a growing liter-
ature on recursive utility, there are no attempts to accommodate for lifetime
uncertainty and utility from bequest. In particular, the existing literature
does not allow for utility from a lump sum at a random point in time, and,
therefore, cannot accommodate for utility from bequest.

To introduce lifetime uncertainty and utility from bequest, we replace the
backward recursion in Equation (1.9) with the backward recursion

V c,b
tk

= W
(
tk+1 − tk, ctk ,mtk

(
ntk

(
Itk+1V

c,b
tk+1

+
(
1− Itk+1

)
btk+1

)))
.

Here, Itk indicates survival until time tk, btk+1 is bequest given death between
time tk and tk+1, and n is an additional certainty equivalent that describes
the mortality risk weighted aggregation of bequest and future utility. V c,b

tk
is

the utility given survival up to and including time tk. The intuition behind
the changes to the backward recursion is the following:

• The policyholder is alive at time tk. At the future time point tk+1, the
policyholder is either alive or dead. If the policyholder is alive, the utility
is V c,b

tk+1
. If the policyholder is dead, the only utility left is the bequest

btk+1 .

• The certainty equivalent n describes the policyholder’s aggregation of
bequest and future utility. The aggregation is performed given complete
information about the market to focus only on preferences for mortality
risk (or, more precisely, preferences for substitution between bequest
and future utility).

We extend the generalization to continuous time, and we state a verification
theorem with a generalized Hamilton-Jacobi-Bellman equation for the optimal
control under recursive utility with lifetime uncertainty.

Recursive utility allows for separation of preferences for risk and time, and,
with our generalization, also preferences for substitution between bequest and
future utility. The concept of substitution between bequest and future utility
is our way of formulating preferences for mortality risk. We study optimal
consumption, investment, and life insurance choice under separation of (mar-
ket) risk aversion, elasticity of inter-temporal substitution, and elasticity of
substitution between bequest and future utility. The separation gives rise to
hump-shaped consumption patterns as in Chapter 2. We repeat that hump-
shaped consumption patterns cannot be obtained by standard recursive utility
or time-additive utility under lifetime uncertainty. It is the combination of re-
cursive utility and lifetime uncertainty that enables this feature.
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Although different by construction, the established threefold separability
appears similar to the one in Chapter 2. We, therefore, explore whether
the two ways of separating preferences cover the same set of preferences. In
general, the answer is no. The two approaches are different in output as
well as in construction. Only if we reduce the number of free preference
parameters, thereby giving up on the threefold separability, we identify a
coincidence between the preferences covered by the two ways of separating
preferences.

1.1.3 Preferences for Not Trading

In Chapter 5, we solve two portfolio optimization problems with the common
feature that non-smooth trading is ruled out. By non-smooth trading we
mean diffusive trading and bang-bang investment strategies. We work in a
classical Black-Scholes financial market, and the ban on non-smooth trading
is implemented by restricting the number of stocks to be differentiable and by
punishing trading in the objective function. Punishing trading in the objective
function is equivalent to the policyholder having explicit preferences for not
trading. Diffusive trading arises, e.g., from continuous rebalancing of the
constant proportion portfolio in the classical Merton investment problem with
power utility. From a practical point of view, diffusive trading is not an
option. Apart from it being technically impossible, trading costs prevent such
a behavior from being optimal. Trading costs are here thought of as the
integrate effects from broker expenses and market impact. If the number of
stocks is restricted to be differentiable, diffusive trading is ruled out, but if
trading is not punished simultaneously, the result is a bang-bang investment
strategy.

There are basically two different ways of punishing trading in the control
problem formulation. One way is to implement a cost of trading directly in the
wealth process such that trading instantly reduces the policyholder’s wealth
by a pre-specified amount. An alternative way is to formalize preferences for
not trading in the objective function. The latter is, of course, an approxi-
mation since, probably, no policyholder has explicit preferences for or against
trading, except through its impact on wealth. However, we pursue this indi-
rect formalization of trading costs since it is more mathematically tractable
and reveals important insight.

We restrict the trading in two steps: First, we require the number of
stocks, N , to be differentiable. This corresponds to requiring dN = τNdt for
some drift coefficient process τ . Second, we punish the trading amount rate,
S dN/dt = τA, for being away from zero. Here, S denotes the stock prices,
and A = NS denotes the amount invested in stocks. Due to symmetrization
in zero and mathematical tractability, we choose to work with a quadratic
utility loss from trading. A quadratic cost function has a convex form that
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would hold for a trader for whom the effect from market impact dominates
that from broker expenses.

We solve two different portfolio optimization problems with a quadratic
utility loss from trading. In both problems, the policyholder controls the
initial number of stocks, n0, and the trading speed, τ . First, we consider a
policyholder with mean-square utility of terminal wealth. We consider the
maximization problem

max
n0,(τs)0≤s≤T

E
[
XT − γX2

T −
∫ T

0
1
2Λ (τsAs)2 ds

]
.

Here, the first two terms are terminal mean-square utility. The third term pun-
ishes trading amounts, τA, quadratically, and the parameter Λ ≥ 0 weights the
third term against the first two. In this problem formulation, the mean-square
utility of terminal wealth matches, mathematically, the quadratic utility loss
from trading and gives direct access to a semi-explicit solution, separable in
time and wealth. Second, we consider a policyholder with power utility of ter-
minal wealth. Mathematically, the combination of a power utility of terminal
wealth and quadratic utility loss from trading is inconvenient. Therefore, we
reformulate the power objective by punishing quadratic deviations from the
Merton portfolio, π∗. We consider the minimization problem

min
n0,(τs)0≤s≤T

E
[∫ T

0
1
2

(
θ(π∗Xt −At)2 + (τtAt)2

)
dt
]
.

Here, the first term punishes quadratically deviations of the stock holdings
from the Merton proportion. The second term punishes trading amounts
quadratically. The parameter θ ≥ 0 weights the two terms against each other.
In both cases, we present semi-explicit solutions and, in numerical examples,
we show the impact of trading constraints on the portfolio decision over the
investment horizon. In particular, we take the one-liner of “aiming in front of
the target” to the level of conventional utility of wealth rather than utility of
return on wealth.

1.2 Scenario-Based Projections
In Chapters 6 and 7, we introduce economic scenarios in participating life
and unit-linked insurance to allow for market valuation of non-guaranteed
payments, pricing and hedging of guarantees, bonus and benefit prognoses,
and solvency calculations. We model life insurance contracts using two inter-
acting accounts described by stochastic differential equations. One account
measures the assets, and the other account is a technical account. For each
economic scenario, the sample paths of the stochastic differential equations are
known and can be used to project the two accounts. The scenarios may be
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worst-case scenarios, scenarios generated via Monte Carlo simulation or best-
estimate scenarios. For scenarios generated via Monte Carlo simulation, one
obtains a valid approximation of the expected future payments, guaranteed
as well as non-guaranteed, by averaging over sufficiently many projections (as
is common practice with Monte Carlo simulation). For worst-case or best-
estimate scenarios, a single projection is enough to obtain the corresponding
worst-case or best-estimate approximation of the future payments.

By use of a two-account model, we are able to illustrate general concepts
without making the model too abstract. Also, our two-account model offers
a common framework for modeling guaranteed and non-guaranteed payments
in participating life and unit-linked insurance which allows us to address sim-
ilarities and differences between participating life insurance and unit-linked
insurance. In participating life insurance, we formalize how the bonus schemes
“consolidation” and “additional benefits” work and interact, and in unit-linked
insurance, we focus on the implementation of guarantees. For both product
types, we provide numerical examples based on Monte Carlo simulation to
demonstrate the possible applications of our two-account model.

The topic of scenario-based projection is split in two chapters since there is
a fundamental difference between projecting for the purpose of valuation and
prognoses. For the purpose of valuation, it is the expected evolution of the
policy, both financially and across policyholder states, that is relevant. Hence,
the evolution of the policy is considered on an average “portfolio level”. Pro-
jection on portfolio level is the topic of Chapter 6. The chapter distinguishes
itself from the existing literature by taking into account the Markov model
for the state of the policyholder, thereby including event risk. For retirement
savings, benefit, and bonus prognoses, it is the expected financial evolution of
the policy that is relevant. The policyholder needs to know what to expect in
a certain state, not the expectation across states of life. Hence, the evolution
of the policy is considered on an individual “policy level”. Projection on pol-
icy level is the topic of Chapter 7. The chapter is, to our knowledge, the first
paper to address risk-based prognoses from the policyholder’s perspective in
participating life and unit-linked insurance in a general financial market. In
Chapter 6 we project on portfolio level by taking market expectation across
future states of the policy. This corresponds to the policy evolving according
to its expectation under the market basis which is exactly what is relevant
for valuation. The projection procedure is summarized in Section 1.2.1. In
Chapter 7 we project on policy level by conditioning on the policy staying in a
certain state, 0. This corresponds to the policyholder continuing his course of
life which is exactly what most prognoses from the policyholder’s perspective
focus on. The projection procedure is summarized in Section 1.2.2.

In unit-linked insurance, projection on portfolio and policy level is almost
the same. The only difference is that, on portfolio level, the two accounts of
the policy are projected by adding and subtracting the market expected pre-
miums and benefits, whereas, on policy level, the two accounts are projected
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by adding and subtracting the actual premiums and benefits in state 0 and
subtracting the market risk premium associated with jumps out of the state.
In both cases, each economic scenario consists of two sample paths: one for
the short interest rate and one for the return of the fund that the policyholder
invests in. Participating life insurance differs from unit-linked insurance by
having collective funds. In particular, the amount of bonus allocated to a
policy depends on the evolution of the whole portfolio. As a result, projection
on portfolio and policy level differs somewhat in participating insurance. On
portfolio level, the two accounts of the policy are projected by adding and sub-
tracting the market expected premiums and benefits, exactly as for unit-linked
insurance. On policy level, one needs sample paths for the bonus allocation as
stochastic input (instead of sample paths for the short interest rate and the
fund return). Given the bonus allocation, the policy can be modeled using
just one account, namely the technical account of the policy. Sample paths for
the bonus allocation can be obtained by projection on portfolio level. Hence,
projection on policy level is a two-step task, but the second step is simple.

In participating life insurance, we consider a policy with guaranteed pay-
ments based on a technical basis. The conservative basis gives rise to bonus,
and we focus on a bonus scheme consisting of two steps: first, consolidation,
and then, when the policy is consolidated on a sufficiently low technical inter-
est rate (if ever), additional benefits. The assets of the policy, X, including its
share of the collective bonus potential, are invested in a fund with stochastic
return, RX . The technical reserve, Y , accumulates according to the technical
interest rate. The assets and the technical reserve are the backbone of the
two-account model. In good times, the return rate on the assets exceeds the
technical interest rate. Parts of the excess return are allocated to the policy
in terms of bonus, d, which adds to the technical reserve, but parts are saved
for times where the return rate on the assets is less favorable. In really bad
times, the assets may be insufficient to cover the guaranteed payments of the
policy. In that case, the equity holders of the insurance company step in with
a capital injection, g, taken from the company’s equity. The policyholder pays
for the company’s risk taking by having a guarantee fee, πg, deducted from
the assets and paid to the equity holders of the insurance company in good
times.

In unit-linked insurance, we consider a policy where parts of the benefits
are directly linked to the assets of the policy. The policy includes a guaranteed
minimum retirement savings amount at the retirement date, based on a guar-
antee account with a guaranteed interest rate. The assets of the policy, X,
are invested in a fund with a stochastic return rate. The guarantee account,
Y , accumulates according to the guaranteed interest rate, r∗. The assets and
the guarantee account are the backbone of the two-account model. In good
times, the return rate on the assets, RX , exceeds the technical interest rate,
and then, the assets outgrow the guarantee account. In that case, the guar-
antee account is increased with an upgrade, u, according to the terms of the
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contract. At retirement, the maximum value of the assets and the guarantee
account is paid out to the policyholder. In bad times where the guarantee
account exceeds the assets at retirement, the equity holders of the insurance
company step in with a capital injection, g, taken from the company’s equity.
The policyholder pays for the company’s risk taking by having a guarantee fee,
πg, deducted from the assets and paid to the equity holders of the insurance
company.

In participating life insurance, as well as in unit-linked insurance, we con-
sider a policy whose state-wise evolution is governed by a continuous-time
Markov process with a finite state space. We assume that the process gov-
erning the state of the policy is independent of the financial market. The
payments of the policy consist of a state-dependent payment stream

Bu +Bf − C ,

where C is the premium stream (“C” for contributions), Bf is a fixed benefit
stream (“B” for benefits, and superscript “f” for fixed), and Bu is a benefit
stream that depends on the financial evolution. In participating life insurance,
Bu denotes the benefits that are upscaled under the bonus scheme additional
benefits (superscript “u” for upscaled). In unit-linked insurance, Bu denotes
benefits that are linear in the assets of the policy (superscript “u” for unit-
linked). The premium stream consists of state-wise continuous payments, and
the benefit streams consist of state-wise continuous payment and lump sum
payments upon jumps.

1.2.1 Scenario-Based Projections for Valuation

In Chapter 6, all projection is on portfolio level. In participating life insurance,
we project the assets, X, and the technical reserve, Y , using the stochastic
differential equations

dX (t) = X (t−) dRX (t)− dβf (t)− k(ε(t))dβu (t) + dς (t)
+ [g (t)− πg (t)] dε (t) ,

dY (t) = Y (t) r∗(ε(t))dt− dβf (t)− k(ε(t))dβu (t) + dς (t)

+ d (t) dε (t) + α
(
t, r∗(ε(t)), k(ε(t))

)
dt .

(1.10)

Here, RX , g, πg, and d are introduced on page 11, and ε (t) counts the number
of updates of guarantee injection, guarantee fee and bonus. In addition,

• βf (t), βu (t), and ς (t) are the market expected benefits and premiums,

• r∗(ε(t)) is the technical interest rate (after consolidation), and k(ε(t)) is
the upscaling factor (after additional benefits),

• α
(
t, r∗(ε(t)), k(ε(t))

)
is an adjustment term accounting for the market

expected surplus arising from the technical transition intensities.
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We formalize a procedure for calculating the consolidated technical interest
rate r∗(ε(t)) and the upscaling factor k(ε(t)), and we address the difficulties of
calculating them on portfolio level.

In unit-linked insurance, we project the assets, X, and the guarantee ac-
count, Y , using the stochastic differential equations

dX (t) = X (t−) dRX (t)−X (t−) dβp (t)− dβf (t) + dς (t)
− πg (t) dε (t) + g dεR (t)
− 1{t=R} (Y (R−)−X (R−))+ dβp (t) ,

dY (t) = Y (t) r∗ (t) dt−X (t−) dβp (t)− dβf (t) + dς (t)
+ u (t) dε (t) .

(1.11)

Here, RX , g, πg, and u are introduced on page 11, and ε (t) counts the number
of guarantee fee payments and guarantee upgrades. In addition,

• βp (t), βf (t), and ς (t) are the market expected benefits and premiums,

• εR marks the exercise of the guarantee at the retirement date,

• The last term in the equation for X ensures that the guarantee injection
at time R is included in a possible lump sum payment at time R.

The projection in unit-linked insurance is similar to the projection in par-
ticipating life insurance. The bonus updates, d, in (1.10) are replaced by
guarantee upgrades, u, in (1.11), and the running guarantee, g, in (1.10) is re-
placed by the final guarantee, g, in (1.11). Also, both unit-linked accounts are
based on market transition intensities, so the adjustment term, α, from (1.10)
vanishes. Apart from that, the driving stochastic differential equations are the
same in participating life insurance and unit-linked insurance. In both cases,
the stochastic element, RX , enters via a sample path for the asset return.

As mentioned earlier in the introduction, for both product types, we
project the two accounts by adding and subtraction the market expected pre-
miums and benefits to reflect the expected evolution of the policy across states.
The projections are suitable for calculating market cash flows and market val-
ues of guaranteed and non-guaranteed payments, determining a fair guarantee
fee, bonus allocation, and/or guarantee upgrade, and assessing solvency capi-
tal requirements.

1.2.2 Scenario-Based Projections for Prognoses

In Chapter 7, all projection is on policy level. In participating life insurance,
we project the technical reserve, Y , conditional on continued sojourn in state
0, using the stochastic differential equation

dY (t) = Y (t) r∗(ε(t)) (t) dt+ dc0 (t)− k(ε(t))dbu0 (t)− dbf0 (t)
− ds∗0 (t) + d0 (t) dε (t) .
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Here, ε, r∗(ε(t)) (t) and k(ε(t)) are as in (1.10), and

• bf0 (t), bu0 (t), and c0 (t) are the benefits and premiums in state 0,

• s∗0 is the technical risk premium in state 0,

• d0 is the stochastic bonus allocation in state 0.

The stochastic element d0 enters via a sample path for the bonus allocation.
We formalize a procedure for calculating r∗(ε(t)) and k(ε(t)) on policy level
which is conceptually simpler than on portfolio level.

In unit-linked insurance, we project the assets, X, and the guarantee ac-
count, Y , conditional on continued sojourn in state 0, using the stochastic
differential equations

dX (t) = X (t−) dRX (t) + dc0 (t)− dbf0 (t)−X (t−) dbp0 (t)

− dsf0 (t)− dsu0 (t)
− πg (t) dε (t) + (Y (R−)−X (R−))+ dεR (t) ,

dY (t) = Y (t) r∗ (t) dt+ dc0 (t)− dbf0 (t)−X (t−) dbp0 (t)

− dsf0 (t)− dsu0 (t) + u (t) dε (t) .

Here, RX , πg, u, ε, and εR are as in (1.11), and

• bf0 (t), bp0 (t), and c0 (t) are the benefits and premiums in state 0,

• su0 and sf0 are the market risk premiums in state 0.

The stochastic element RX enters via a sample path for the asset return.
As mentioned earlier in the introduction, for both product types, we

project the accounts by adding and subtraction the actual premiums and
benefits in state 0 and subtracting the market risk premium associated with
jumps out of the state to reflect the evolution of the policy in this particular
state. The projections are suitable for producing bonus, benefit, and retire-
ment savings prognoses with confidence intervals, given that the policyholder
continues his course of life.
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Abstract: In a classical Black-Scholes market, we establish a con-
nection between two seemingly different approaches to continuous-time
utility optimization. We study the optimal consumption, investment,
and life insurance decision of an investor with power utility and an uncer-
tain lifetime. To separate risk aversion from elasticity of inter-temporal
substitution, we introduce certainty equivalents. We propose a time-
inconsistent global optimization problem, and we present a verification
theorem for an equilibrium control. In the special case without mor-
tality risk, we discover that our optimization approach is equivalent to
recursive utility optimization with Epstein-Zin preferences in the sense
that the two approaches lead to the same result. We find this interest-
ing since our optimization problem has an intuitive interpretation as a
global maximization of certainty equivalents and since recursive utility, in
contrast to our approach, gives rise to severe differentiability problems.
Also, our optimization approach can there be seen as a generalization
of recursive utility optimization with Epstein-Zin preferences to include
mortality risk and life insurance.

Keywords: Recursive utility, lifetime uncertainty, stochastic con-
trol, generalized Hamilton-Jacobi-Bellman equation, time-inconsistency,
certainty equivalents.

2.1 Introduction
In a classical Black-Scholes market, we establish a connection between two
seemingly different approaches to continuous-time utility optimization for a

15
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certain-lived investor. One approach is recursive utility optimization with
Epstein-Zin preferences, studied in Duffie and Epstein (1992b) and Kraft and
Seifried (2010) for general preferences. The other approach is non-linear ex-
pected power utility optimization with dynamic updating, studied in this pa-
per for an uncertain-lived investor. This approach is apt for a set-up with
mortality risk and utility from inheritance, and because of the established
connection for a certain-lived investor, our approach can be seen as a gener-
alization of the recursive utility approach to a set-up with mortality risk and
life insurance.

Over time, the optimal consumption and investment decisions of a certain-
lived investor have been treated in various papers. An important, early ex-
ample is Merton (1971) who considers time-additive utility optimization in
continuous time. Using dynamic programming techniques, the value function
of the time-additive optimization problem can be characterized by a partial
differential equation. The equation is called a Hamilton-Jacobi-Bellman equa-
tion, and it includes a term u (c) where u is the investor’s utility function for
consumption and c is the consumption rate.

Richard (1975) generalized the work by Merton (1971) to include mortality
risk and life insurance. The value function, V , of the generalized optimiza-
tion problem is characterized by a partial differential equation similar to the
original Hamilton-Jacobi-Bellman equation. The main alteration consists in
addition of the term

µ (t) ũ (b+ x)− µ (t)V (t, x) , (2.1)

where µ is the investor’s mortality intensity, ũ is the investor’s utility function
for inheritance, b is a term insurance sum paid out upon death, and x is wealth.
Also, there is an effect on the wealth dynamics due to financing of the term
insurance. We note that µ (t) ũ (b+ x) can be interpreted as the investor’s
probability weighted utility gain associated with death. Similarly, µ (t)V (t, x)
can be interpreted as the investor’s probability weighted utility loss associated
with death. The term in (2.1) is therefore the investor’s probability weighted
net-gain associated with death.

Unfortunately, time-additive utility has the disadvantage that it mixes
preferences for risk and preferences for inter-temporal substitution. The re-
cursive utility approach and our approach both deal with this problem, in two
seemingly different ways.

Recursive utility is founded in discrete time, and it allows for separation of
preferences for risk and inter-temporal substitution through a recursive def-
inition, a (utility) certainty equivalent and a time-aggregator. In Duffie and
Epstein (1992b), recursive utility is extended to continuous time where it is
called stochastic differential utility. The link to discrete-time recursive util-
ity is vague though, and in Kraft and Seifried (2010), the extension is refined
and called continuous-time recursive utility. In both papers, the optimal con-
sumption and investment decisions of a certain-lived investor are studied. The



2.1. Introduction 17

value function, V , of the recursive optimization problem is characterized by
a Hamilton-Jacobi-Bellman equation (in the following ‘pseudo-Bellman equa-
tion’) where the term u (c) is replaced by a term f (c, V (t, x)). Here, f is the
normalized aggregator representing the investor’s preferences. In particular,
Epstein-Zin preferences are represented by the aggregator

f (c, V ) = θδV


 c

((1− γ)V )
1

1−γ


1−γ
θ

− 1

 .

The recursive optimization problem is less intuitive than the time-additive op-
timization problem, and to our knowledge, the literature contains no attempt
to extend the recursive utility problem to a set-up with mortality risk and life
insurance. However, inspired by the mortality extension in Richard (1975),
it is natural to suggest a pseudo-Bellman equation where we combine f (c, V )
defined above with the additional term µ (t) ũ (b+ x)− µ (t)V (t, x).

For Epstein-Zin preferences, we present another suggestion—namely an
alteration of the normalized aggregator (and no additional term). The altered
aggregator arises from the following optimization approach: we consider an
uncertain-lived investor with power utility. To separate preferences for risk
and preferences for inter-temporal substitution, we introduce consumption cer-
tainty equivalents, and we propose a time-global optimization problem that
is about maximizing an infinite sum of infinitesimally small certainty equiv-
alents for future consumption and inheritance. The problem is non-linear in
expectation, and consequently it is time-inconsistent in the sense that its so-
lution does not obey Bellman’s optimality principle. In other words: if we
solve the problem at time 0 and apply the corresponding control up to a fu-
ture time point t > 0, then at this future time point, the control is no longer
optimal. For more on time-inconsistency, see e.g. Björk et al. (2014) or Björk
and Murgoci (2010). To deal with the time-inconsistency, we search for an
equilibrium control instead of a classical optimal control, and we present a
verification theorem for a particular equilibrium control. The corresponding
value function is characterized by a pseudo-Bellman equation where the term
f (c, V (t, x)) is replaced by the term f̃ (t, c, x+ b, V (t, x)). Here, the altered
aggregator f̃ is given by

f̃ (t, c, y, V ) = θδV

( c1−γ

V (1− γ)

) 1
κ

+
(
ε (t)µ (t) y1−γ

V (1− γ)

) 1
κ


κ
θ

− (µ (t) + θδ)V .

For a certain-lived investor (i.e. µ = 0), the two aggregators f and f̃ coincide,
and so our approach leads to the same result as recursive utility optimization
with Epstein-Zin preferences, for a certain-lived investor. Because of this
equivalence, the aggregator f̃ can be seen as a mortality extension of the
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normalized Epstein-Zin aggregator—that is, our approach can be seen as a
generalization of the recursive utility approach with Epstein-Zin preferences
to a set-up with mortality risk and life insurance. This proposal is supported
by the fact that our optimization problem has an intuitive interpretation as a
global maximization of certainty equivalents, both with and without mortality
risk. Furthermore, our approach is a generalization of the time-additive utility
optimization in Richard (1975) to time-non-additive power utility.

Recursive utility is considered as a standard way to separate risk aversion
from elasticity of inter-temporal substitution. We provide a new way to for-
malize such a separation where, first, risk aversion forms certainty equivalents
and, then, elasticity of substitution forms time-global preferences. Yet, a com-
pletely different approach to the separation is suggested in Kihlstrom (2009).
In discrete time, he suggests to formalize a separation where, first, elasticity
of substitution forms time-global preferences and, then, risk aversion forms
one certainty equivalent. Since his formalization is not immediately tractable
with our method, future research should address further the relation between
Kihlstrom’s approach, our approach, and recursive utility.

We emphasize that our optimization problem is not a special case of Björk
and Murgoci (2010) as our objective function has a considerably different
form. In particular, their result about coincidence of solutions for certain
time-consistent and time-inconsistent problems does not explain the equiva-
lence between our approach and recursive utility optimization with Epstein-
Zin preferences. Also, we wish to focus on our specific investor problem and
not on time-consistency in general, so we do not go into details on the game-
theoretic equilibrium approach.

We work in a simple Black-Scholes market because we wish to study the
qualitative structures of the solution to our optimization problem. We then
avoid drowning our key insights in notation and multidimensionality, and we
avoid resorting to numerical optimization. For qualitative insight, sticking to
a simple model remains efficient.

Structure of the paper

In Section 2.2, we propose an optimization problem and introduce the con-
cept of equilibrium controls. We present a verification theorem for a particular
equilibrium control, and we derive closed-form expressions for the control and
the corresponding value function. Finally, we compare our results to Richard
(1975). In Section 2.3, we give a short introduction to recursive utility, and we
demonstrate the similarity of our pseudo-Bellman equation and the pseudo-
Bellman equation in Duffie and Epstein (1992b). Also, we outline perspectives
of the established equivalence. In Section 2.4, we derive a stochastic differ-
ential equation for the optimal consumption rate from Section 2.2, and we
construct numerical examples to illustrate how it differs from the optimal
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consumption rate from time-additive utility. The numerical examples all arise
from the special case without market risk.

2.2 Optimization problem

2.2.1 Set-up

We consider an investor making decisions concerning consumption, invest-
ment, and life insurance in continuous time. We adopt the classical survival
model, and by N and I = 1−N , we indicate whether the investor is dead or
alive at a given point in time (e.g. N (t) = 1 if the investor is dead at time
t). We treat N and I as stochastic processes on an abstract probability space
(Ω,F , P ), and we model the death of the investor by a mortality intensity µ,
i.e.

P (I (t) = 1) = P (I (s) = 1 : s ∈ [0, t]) = e−
∫ t

0 µ(v) dv , t ≥ 0 .

The investor has access to a classical Black-Scholes market consisting of a bank
account, B, with risk free short rate r, and a stock, S, with excess return λ
and volatility σ. The asset prices are described by the stochastic differential
equations (SDEs)

dB (t) = B (t) rdt , t ≥ 0 , B (0) = 1 ,
dS (t) = S (t) [(r + λ) dt+ σdW (t)] , t ≥ 0 , S (0) = s0 ,

where r, λ, σ > 0 are constants, and W is a standard Brownian motion on the
probability space (Ω,F , P ).

Also, the investor can trade term insurance contracts with a life insurance
company. Note that there is no loss of generality in only considering term
insurance, since all available life insurance products are linear combinations of
term insurance contracts and a savings plan. A death sum b triggers premiums
payments at rate bµ̂. Here, µ̂ is the mortality intensity used by the insurance
company for pricing, and it may or may not be equal to µ. The term insurance
completes the market. For simplicity, we assume that the insurance company
does not pay out bonus. Also, because of the chosen premium structure, the
insurance company does not build up reserves, but e.g. fixed premiums in
combination with reserve building would not alter our fundamental results.
This degree of freedom assumes free access to changing the premium and the
death sum in accordance with the equivalence principle at any point in time,
though. For detailed discussions and calculations in this direction, see Kraft
and Steffensen (2008).

We fix a time-horizon T that we think of as the investor’s maximum re-
maining lifetime. The investor has wealth X and invests a proportion π of
X in the stock and a proportion (1− π) of X in the bank account. As long
as the investor is alive, she consumes at rate c, earns money at rate w (de-
terministic), and buys life insurance at premium rate bµ̂. When the investor
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dies, her inheritors receive the death sum b and the remaining wealth. While
the investor is alive, her wealth evolves according to the SDE

dX (t) = X (t) [(r + π (t)λ) dt+ π (t)σdW (t)]
− (c (t) + b (t) µ̂ (t)− w (t)) dt , t ∈ [0, T ] ,

X (0) = x0 ,

(2.2)

where x0 is the initial wealth of the investor, w is a continuous, deterministic
function, and c, π, b are stochastic processes, i.e.

c, π, b : [0, T ]× Ω→ R . (2.3)

In addition to the investor’s monetary wealth, we also formalize the investor’s
human wealth which we denote by L. We do this here because the quantity
arises in the solution to problems similar to ours. The investor’s human wealth
is the financial value of her future labour income, and it is given by

L (t) =
∫ T

t
w (s) e−

∫ s
t

(r+µ̂(v)) dv ds , t ∈ [0, T ] . (2.4)

We note that µ̂ (and not µ) appears in (2.4) because µ̂ is the intensity used
for pricing the term insurance, and this asset completes the market.

Since the investor cannot look into the future, it is natural to require
that the set of control processes (c, π, b) is adapted to the wealth process X.
However, for computational convenience, we go one step further and require
that (c, π, b) is of feedback form, i.e.

(c (t) , π (t) , b (t)) =
(
c̃ (t,X (t)) , π̃ (t,X (t)) , b̃ (t,X (t))

)
, t ∈ [0, T ] ,

for deterministic, measurable functions

c̃, π̃, b̃ : [0, T ]× R→ R . (2.5)

For simplicity, we redefine (c, π, b) ≡
(
c̃, π̃, b̃

)
and speak of the function (c, π, b)

as a control. We thereby leave out the tildes in (2.5) and overtype the processes
in (2.3). Now the SDE in (2.2) reads

dX (t) = X (t) [(r + π (t,X (t))λ) dt+ π (t,X (t))σdW (t)]
− (c (t,X (t)) + b (t,X (t)) µ̂ (t)− w (t)) dt , t ∈ [0, T ] ,

X (0) = x0 ,

(2.6)

where c, π, b are deterministic, measurable functions of time and wealth.

Definition 2.1. To ensure that (2.6) makes sense, we only consider controls
(c, π, b) for which the SDE in (2.6) has a unique solution. Also, we require
that the investor’s total wealth X + L, consumption rate c, and inheritance
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X + b never fall below 0. To ensure this, we only consider controls (c, π, b) for
which (c (t, x) , π (t, x) , b (t, x)) belongs to the set

Γ (t, x) ≡


[0,∞)× R× [−x,∞) if x+ L (t) > 0 ,
{0} × {0} × {−x} if x+ L (t) = 0, L (t) > 0 ,
{0} × R× {0} if x = L (t) = 0 .

It is easy to verify that this constraint ensures the required non-negativity.
We say that a control (c, π, b) is admissible if it meets the requirements above,
and by U we denote the set of admissible controls. In Subsection 2.2.3, we
impose some additional constraints on the admissible controls.

2.2.2 Formulation

For a moment, we think of the investor as certain-lived, i.e. we let µ = µ̂ = 0
in the set-up from the previous subsection. Then a classical optimization
problem for the investor is that of maximizing expected time-additive power
utility of consumption, i.e.

sup
c,π

E

[∫ T

0
e−δt

1
1− γ c

1−γ (t,X (t)) dt
]
, (2.7)

where δ ≥ 0 is a subjective utility discount rate, γ > 0, γ 6= 1, is thought of as
risk aversion, and (c, π) is chosen among a suitable set of admissible controls.
This problem can be dealt with by considering the value function

W (t, x) = sup
c,π

Et,x

[∫ T

t
e−δs

1
1− γ c

1−γ (s,X (s)) ds
]
,

where Et,x denotes conditional expectation given X (t) = x. By application of
dynamic programming techniques, the value function can be characterized by
the Hamilton-Jacobi-Bellman equation, i.e. a partial differential equation con-
taining a local optimization problem at each point (t, x). Using the linearity of
the expectation operator and the law of iterated expectation, it can be proven
that the solution (c, π) to the continuum of local optimization problems is also
a solution to the global optimization problem (see e.g. Chapter 19 in Björk
(2009)). In the following, the linearity (in expectation) of the optimization
problem is disrupted, and then there is no longer coincidence between local
and global optimization.

We mentioned that γ is thought of as risk aversion, but γ also plays a
role in the time-additivity of (2.7). The parameter γ does not only represent
aversion towards risk, it is also related to the Elasticity of Inter-temporal
Substitution (EIS). Whereas risk aversion expresses the investor’s willingness
to gamble, EIS expresses the investor’s willingness to substitute consumption
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over time. To illustrate this, we take away the investor’s option to invest in
the stock. We are then faced with the deterministic optimization problem

sup
c

∫ T

0
e−δt

1
1− γ c

1−γ (t,X (t)) dt , (2.8)

where X is now a deterministic process. Since there is no risk left in the
set-up, the solution to (2.8) should not be related to the investor’s aversion
towards risk, but the solution does depend on γ. Hence, we have found a way
to formalize EIS in the case of no risk, and this motivates our formalization
of EIS below, in the presence of risk.

In this paper, we separate risk aversion from EIS by forming certainty
equivalents

u−1 (E [u (c (t,X (t)))]) , (2.9)

where u is a utility function representing the investor’s preferences for risk.
We then add certainty equivalents (while taking EIS into account) instead of
adding utility. The entity in (2.9) is deterministic and expresses which certain
time-t consumption rate the investor requires at time 0 in order to give up the
uncertain time-t consumption rate c (t,X (t)). In the case of power utility, i.e.
u (c) = 1

1−γ c
1−γ , the certainty equivalent in (2.9) equals

(
E
[
c1−γ (t,X (t))

]) 1
1−γ .

For the addition of certainty equivalents, we introduce an EIS-parameter φ >
0, φ 6= 1, and formalize EIS as in (2.8). This gives us the problem

sup
c,π

∫ T

0
e−δt

1
1− φ

(
E
[
c1−γ (t,X (t))

]) 1
θ dt (2.10)

with θ = 1−γ
1−φ . The special case γ = φ corresponds to the problem in (2.7).

Given basic knowledge of dynamic programming, it is clear that the problem in
(2.10) cannot be dealt with using classical dynamic programming techniques.
This is due to the power 1

θ . While we are at spoiling linearity, we make yet
another transformation and face the problem

sup
c,π

1
1− γ

(∫ T

0
δe−δt

(
E
[
c1−γ (t,X (t))

]) 1
θ dt

)θ
. (2.11)

This problem is equivalent to the problem in (2.10)—that is, if δ > 0 and
(1− φ) (1− γ) > 0. By ‘equivalent’ we mean that the control (c, π) realizing
the supremum in (2.10) is identical to the control (c, π) realizing the supremum
in (2.11). From now on, we assume that δ > 0 and (1− φ) (1− γ) > 0, and
it turns out that the problem in (2.11) is more convenient to work with than
the problem in (2.10). The constants δ and 1

1−γ match the powers −δ and
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1 − γ (which is convenient for differentiation), and in some ways, the power
θ offsets the complications from the power 1

θ . We note that the factor 1
1−γ is

placed outside the integral (and the parentheses) because the factor can be
negative and should therefore not be taken to the power θ or 1

θ .
Finally, we go back to the original set-up with mortality risk. We assume

that the processes N and I are independent of the processW , and we propose
to consider the generalized optimization problem

sup
(c,π,b)∈U

1
1− γ


∫ T

0
δe−δt



(
E
[
c1−γ

(
t,Xc,π,b (t)

)
I(t) dt

dt

]) 1
κ +E


ε (t) dN(t)

dt ×(
Xc,π,b (t) +

b
(
t,Xc,π,b (t)

) )1−γ




1
κ



κ
θ

dt



θ

,

(2.12)
where the expectation operates on all underlying random variables (i.e. W ,
N , and I), U is the set of admissible controls defined in Definition 2.1, and ε
is a non-negative, continuous, deterministic weight function. Up to a scaling,
the first mean value is the expected utility from consumption, and the second
mean value is the expected utility from inheritance. We are aware that the
expression dN(t)

dt leaps to the eye since the process N is not differentiable.
However, we use the expression E

[
dN(t)

dt

]
as a heuristic representation of

e−
∫ t

0 µ(v) dvµ (t), and dN(t)
dt never appears outside an expectation operator. We

have included the function ε to allow for a different weight on inheritance than
on consumption and to allow for a changing weight on inheritance throughout
life. We have introduced the additional parameter κ > 0 to allow for separa-
tion of risk aversion and elasticity of substitution between consumption and
inheritance, and we have equipped X with superscript c, π, b to emphasize
that it is the wealth process stemming from the control (c, π, b). Altogether,
the generalized problem in (2.12) is a question of maximizing an infinite sum
of infinitesimal certainty equivalents for future consumption and inheritance.
The problem is complicated, and inspired by dynamic programming, one could
try to look at the value function

W (t, x) = sup
(c,π,b)∈U

Zc,π,b (t, x) (2.13)
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where the objective function Zc,π,b : [0, T ]× R→ R is given by

Zc,π,b (t, x) =

1
1− γ


∫ T

t
δe−δ(s−t)



(
E0
t,x

[
c1−γ

(
s,Xc,π,b (s)

)
I(s) ds

ds

]) 1
κ +E0

t,x


ε (s) dN(s)

ds ×(
Xc,π,b (s) +

b
(
s,Xc,π,b (s)

) )1−γ




1
κ



κ
θ

ds



θ

=

1
1− γ

∫ T

t
δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv


(
mc,π,b (t, s, x)

) 1
κ +(

nc,π,b (t, s, x)
) 1
κ


κ
θ

ds


θ

(2.14)

with

mc,π,b (t, s, x) = Et,x
[
c1−γ

(
s,Xc,π,b (s)

)]
,

nc,π,b (t, s, x) = Et,x

[
ε (s)µ (s)

(
Xc,π,b (s) + b

(
s,Xc,π,b (s)

))1−γ
]
.

The operators Et,x and E0
t,x denote conditional expectation givenXc,π,b (t) = x

and (Xc,π,b (t) , N (t)) = (x, 0), respectively. The second equality in (2.14) fol-
lows from independence between (N, I) andW . By construction, (1− γ)Zc,π,b
is non-negative, and in general, we assume that Zc,π,b (t, x) is non-zero for
x+ L (t) > 0 and t < n.

Given the non-linearity (in conditional expectation) of Zc,π,b, the solution
to (2.12) is likely to be inconsistent with the solution to (2.13) for t > 0. By
‘inconsistent’ we mean that the decision we make at time t based on (2.13) is
not the same as the decision we plan to make at time t based on (2.12), for
the same realization of the wealth process. More formally, if we denote the
two solutions by

(
c0, π0, b0

)
and

(
ct, πt, bt

)
, it might be that(

c0
(
t,Xc0,π0,b0 (t)

)
, π0

(
t,Xc0,π0,b0 (t)

)
, c0

(
t,Xc0,π0,b0 (t)

))
6=
(
ct
(
t,Xc0,π0,b0 (t)

)
, πt

(
t,Xc0,π0,b0 (t)

)
, ct
(
t,Xc0,π0,b0 (t)

))
.

We dislike this time-inconsistency, and we do not wish to introduce pre-
commitment. Instead, we take inspiration from Björk et al. (2014), discard the
optimization problem in (2.12)–(2.13), and search for an equilibrium control
for the objective function Zc,π,b, (c, π, b) ∈ U . The equilibrium formulation
arises from a game theoretic approach to stochastic control problems, and
rewriting Definition 2.1 in Björk et al. (2014) in the language of this paper,
we get the following definition:

Definition 2.2 (Equilibrium). Consider a set of admissible controls Ū and a
control (c∗, π∗, b∗) in Ū (informally viewed as a candidate equilibrium control).
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Choose a fixed control
(
c̄, π̄, b̄

)
∈ Ū , a real number h > 0, and an initial point

(u, y) ∈ [0, T ]× R. Define the control
(
ch, πh, bh

)
by

(
ch, πh, bh

)
(t, x) =

{
(c̄, π̄, b̄) (t, x) , u ≤ t < u+ h, x ∈ R ,
(c∗, π∗, b∗) (t, x) , u+ h ≤ t ≤ n, x ∈ R .

If for all controls
(
c̄, π̄, b̄

)
∈ Ū and all points (u, y) ∈ [0, T ]× R

lim inf
h→0

Zc
∗,π∗,b∗ (u, y)− Zch,πh,bh (u, y)

h
≥ 0 , (2.15)

we say that (c∗, π∗, b∗) is an equilibrium control for the function Zc,π,b, (c, π, b) ∈
Ū . The corresponding equilibrium value function V is given by

V (t, x) = Zc
∗,π∗,b∗ (t, x) .

Remark 2.1. We stress that an equilibrium control is not optimal in the sense
that it realizes the supremum in (2.12) (or (2.13) for that matter). However,
the control is optimal in the ‘intuitive’ sense that it maximizes the investor’s
total utility given that the investor continues to use the control. Therefore, we
use the terms equilibrium control and optimal control interchangeably. With
this convention, there might be several or even no optimal controls because
Björk et al. (2014) prove neither existence nor uniqueness of the equilibrium
control.

In the next subsection, we present a verification theorem for a particular
optimal control and the corresponding equilibrium value function. Further-
more, we present closed form expressions for the control and the correspond-
ing value function. To facilitate the proof, we need to introduce of set of
non-standard assumptions, see Assumptions 2.1 in Appendix 2.A. These as-
sumptions serve to prove that the equilibrium condition in (2.15) is satisfied.
Also, we need to impose some additional constraints on the set of admissible
controls and on the candidate equilibrium control, but these are all standard
regularity conditions, see the theorem below. Equation numbers (A. ) refer to
equations in Appendix 2.A.

2.2.3 Solution

Theorem 2.1 (Verification theorem). Define the set of admissible controls,
Ue, as those controls (c, π, b) in U (see Definition 2.1) for which the par-
tial differential equations (PDEs) in (2.28) have solutions in C1,0,2 and the
stochastic integrals in (2.29)–(2.30) are martingales. Also, define the function
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f : [0, T ]× (0,∞)2 × (1{γ<1} (0,∞) ∪ 1{γ>1} (−∞, 0))→ R by

f (t, c, y, z) = θδz

( c1−γ

z (1− γ)

) 1
κ

+
(
ε (t)µ (t) y1−γ

z (1− γ)

) 1
κ


κ
θ

− (µ (t) + θδ) z .

(2.16)

Assume that there exist functions (U, l1, l2) in

C1,2 ([0, T ]× R)× C1,0,2
(
[0, T ]2 × R

)
× C1,0,2

(
[0, T ]2 × R

)
such that the function U solves the pseudo-Bellman equation

(2.17)

Ut (t, x) = inf
(c,π,b)∈Γ(x,t)


−f

(
t, c, x+ b,K l1, l2 (t, x)

)
− ((r + πλ)x− c− µ̂ (t) b+ w (t))Ux (t, x)

−1
2σ

2π2x2Uxx (t, x)
+1

2π
2σ2x2I l1, l2 (t, x)

 ,
U (T, x) = 0 ,

and such that the functions l1 and l2, for each fixed s, solve the PDEs

(li)t (t, s, x) = −
[
x (r + π∗ (t, x)λ)− c∗ (t, x)
−µ̂ (t) b∗ (t, x) + w (t)

]
× (li)x (t, s, x)

− 1
2 (π∗ (t, x))2 σ2x2 (li)xx (t, s, x) , i = 1, 2 ,

l1 (s, s, x) = (c∗)1−γ (s, x) ,

l2 (s, s, x) = ε (s)µ (s) (x+ b∗ (s, x))1−γ ,

(2.18)

where (c∗, π∗, b∗) is the function of (t, x) that realizes the infimum in (2.17).
In (2.17), the functions K l1, l2 and I l1, l2 are given by (2.33) and (2.34).

Also, assume that the stochastic integrals in (2.38)–(2.39) are martingales,
that the SDE in (2.6) has a unique solution for (c∗, π∗, b∗), and that the
stochastic integrals in (2.29)–(2.30) are martingales for (c∗, π∗, b∗). Finally,
assume that the assumptions in Assumptions 2.1 are satisfied.

Then (c∗, π∗, b∗) is a control in Ue, and it is an optimal control for the
function Zc,π,b, (c, π, b) ∈ Ue, defined in (2.14). The corresponding equilibrium
value function V is given by

V (t, x) = U (t, x) ,

and it holds that

mc∗,π∗,b∗ (t, s, x) = l1 (t, s, x) ,

nc
∗,π∗,b∗ (t, s, x) = l2 (t, s, x) ,

U (t, x) = K l1, l2 (t, x) .
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Proof. The proof is presented in Appendix 2.A.

We note that we have replaced the global optimization problem in (2.13)
with the continuum of local optimization problems in (2.17). Also, we rec-
ognize f as a generalization of the normalized continuous-time Epstein-Zin
aggregator. We comment more on this in Section 2.3. We call the PDE in
(2.17) a pseudo-Bellman equation because it bears resemblance to—but is
different from—the Hamilton-Jacobi-Bellman equation known from dynamic
programming.

Applying the verification theorem, we obtain closed form expression for the
optimal control, see the theorem below. In working with the pseudo-Bellman
equation, we find that the last term vanishes due to separability. For details,
see the proof of Theorem 2.2.

Theorem 2.2 (Optimal control). Define the function g : [0, T ]→ R by

g (t) = δ

(∫ T

t
µ̃ (s) e−

∫ s
t
r̃(v) dv ds

)φ
, t ≤ n ,

where

r̃ (v) = − 1
φ

[
(1− φ)

(
r + 1

2
1
γ

λ2

σ2 + µ̂ (v)− µ (v)
1− γ

)
− δ

]
,

µ̃ (s) =

1 +
(
ε (s)µ (s)
µ̂1−γ (s)

) 1
γ+κ−1


(κ−1+γ)(1−φ)

(1−γ)φ

.

Moreover, define the functions h1, h2 : [0, T ]2 → R by

hi (t, s) = bi (s) e−
∫ s
t
a(v) dv , i = 1, 2 , t ≤ s ,

where

a (v) = − (1− γ)
(
r + µ̂ (v) + 1

2
λ2

γσ2

)

− (1− γ)

−δ 1
φ g
− 1
φ (v)

1 +
(
ε (v)µ (v)
µ̂1−γ (v)

) 1
γ+κ−1


(κ−1+γ)(1−φ)

(1−γ)φ

 ,

b1 (s) =
(
δ

1
φ g
− 1
φ (s)

)1−γ
1 +

(
ε (s)µ (s)
µ̂1−γ (s)

) 1
γ+κ−1


κ−φκ−1+γ

φ

,

b2 (s) = b1 (s)
(
ε (s)µ (s)
µ̂1−γ (s)

) κ
γ+κ−1

.
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The optimal control from Theorem 2.1 is given by

c∗ (t, x) = δ
1
φ g
− 1
φ (t)

1 +
(
ε (t)µ (t)
µ̂1−γ (t)

) 1
γ+κ−1


κ−φκ−1+γ

(1−γ)φ

(x+ L (t)) ,

π∗ (t, x)x = λ

γσ2 (x+ L (t)) , (2.19)

b∗ (t, x) = c∗ (t, x)
(
ε (t)µ (t)
µ̂κ (t)

) 1
γ+κ−1

− x ,

and it holds that

V (t, x) = 1
1− γ (x+ L (t))1−γ gθ (t) ,

mc∗,π∗,b∗ (t, s, x) = (x+ L (t))1−γ h1 (t, s) ,

nc
∗,π∗,b∗ (t, s, x) = (x+ L (t))1−γ h2 (t, s) .

Proof. The proof is presented in Appendix 2.B.

We note that c∗, π∗, and b∗+x are all directly proportional to the investor’s
total wealth x+L. The optimal proportion π∗ of wealth to invest in the stock
is independent of the elasticity parameters κ and φ, and it is the same as in
the well-known case of time-additive utility. The expressions for the optimal
consumption rate and the optimal inheritance are more complicated, but the
optimal consumption is directly proportional to the optimal inheritance, and
the optimal consumption rate can be written as

c∗ (t, x) = x+
∫ T
t w (s) e−

∫ s
t

(r+µ̂(v)) dv ds∫ T
t µ̃ (s) e−

∫ s
t
r̃(v) dv ds

µ̃
κ−φκ−1+γ

(κ−1+γ)(1−φ) (t) .

The influence of the EIS-parameter φ is of special interest since our main in-
novation is the separation of EIS from relative risk aversion. However, despite
the closed form solution, it is unclear how the EIS-parameter drives the opti-
mal solution. In Section 2.4 we comment on the link in numerical examples.

With respect to the optimal inheritance, we note that in the case ε = 0
(i.e. the investor does not care about inheritance, for example because she
does not have dependants), it holds that b∗ (·, x) = −x. This means that
the investor continuously sells term insurance with a death sum equal to her
wealth. Thereby, she jeopardizes her wealth in the case of death, in return
for a higher consumption rate while alive. This is the design of a life annuity.
The optimality of annuitization is a classical result dating back to Yaari (1965)
and questioned ever since by experimentalist in terms of the so-called annuity
puzzle.
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2.2.4 Comparison to Richard (1975)

In this subsection, we consider the special case of time-additive utility, i.e. the
case φ = γ and κ = 1. Letting φ = γ = K and (innocently) dividing by eδt,
the global optimization problem in (2.13) reduces to

sup
(c,π,b)∈U

Et,x


∫ T

t
δe−δse−

∫ s
t
µ(v) dv


c1−K(s,Xc,π,b(s))

1−K +
ε (s)µ (s)×

(Xc,π,b(s)+b(s,Xc,π,b(s)))1−K

1−K

 ds

 .
(2.20)

This simpler problem of maximizing expected time-additive utility for an
uncertain-lived investor is treated in Richard (1975) (without an explicit state
dependent constraint on the controls in U). Richard (1975) allows for a much
broader variety of utility functions than power utility functions, but in Section
4, focus is limited to (weighted) power utility. If we, in Section 4 of Richard
(1975), let the constant relative risk aversion be given by γ = 1 −K, and if
we let the weights be given by

h (t) = δe−δt , m (t) = ε (t) δe−δt ,

then the optimization problem in Richard (1975) coincides with the optimiza-
tion problem in (2.20). Due to the time-additivity of the simplified problem,
time-inconsistency is no longer an issue, and we wonder how our ‘equilibrium’
optimal control relates to the ‘classical’ optimal control in Richard (1975).
With φ = γ = K and κ = 1, our optimal control (c∗, π∗, b∗) is given by

c∗ (t, x)
x+ L (t) = δ

1
K g−

1
K (t) ,

π∗ (t, x)x
x+ L (t) = λ

Kσ2 ,

b∗ (t, x) + x

x+ L (t) =
(
ε (t)µ (t)
µ̂ (t)

) 1
K

δ
1
K g−

1
K (t) ,

where
L (t) =

∫ T

t
w (s) e−

∫ s
t

(r+µ̂(v)) dv ds ,

and

g (t) = eδt


∫ T

t



(
1 + ε

1
K (s)µ (s)

(
µ(s)
µ̂(s)

) 1−K
K

)
×(

δe−δs
) 1
K e−

∫ s
t
µ(v) dv×

e
1−K
K

(
r+ 1

2
1
K
λ2
σ2

)
(s−t)+ 1−K

K

∫ s
t

(µ̂(v)−µ(v)) dv

 ds



K

.
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When writing down expressions for the optimal control in Richard (1975), we
make use of the following correspondence between our notation and Richard’s
notation:

Us λ b µ µ̂ X π L µ̂− µ e−
∫ t

0 µ(s) ds

Richard α− r Pµ−1 λ µ W w b η G (t)

With h (t) = δe−δt, m (t) = ε (t) δe−δt, and γ = 1−K in Section 4 of Richard
(1975), the ‘classical’ optimal control (c∗∗, π∗∗, b∗∗) is given by

c∗∗ (t, x)
x+ L (t) =

(
δe−δt

) 1
K a−

1
K (t) ,

π∗∗ (t, x)x
x+ L (t) = λ

Kσ2 ,

b∗∗ (t, x) + x

x+ L (t) =
(
µ (t)
µ̂ (t)

) 1
K (

ε (t) δe−δt
) 1
K a−

1
K (t) ,

where

a (t) =


∫ T

t


((

µ(s)
µ̂(s)

) 1−K
K µ (s)

(
ε (s) δe−δs

) 1
K +

(
δe−δs

) 1
K

)
×

e−
∫ s
t
µ(v) dve

1−K
K

(
r+ 1

2
1
K
λ2
σ2

)
(s−t)+ 1−K

K

∫ s
t

(µ̂(v)−µ(v)) dv

ds


K

.

Actually, Richard (1975) writes down

a (t) =


∫ T

t


((

µ(s)
µ̂(s)

) 1−K
K µ (s)

1
K
(
ε (s) δe−δs

) 1
K +

(
δe−δs

) 1
K

)
×

e−
∫ s
t
µ(v) dve

1−K
K

(
r+ 1

2
1
K
λ2
σ2

)
(s−t)+ 1−K

K

∫ s
t

(µ̂(v)−µ(v)) dv

ds


K

—but from his derivation, it appears that the bold power 1
K must be an error.

This is supported by formula (1a) in Kraft and Steffensen (2008).
We see that g (t) = eδta (t). Plugging this into our optimal control, we

discover that the two optimal controls match perfectly. We consider this to
be an interesting discovery since we have not proven our optimal control to be
optimal in the usual sense. It is not surprising, though, since in this special
case of time-additivity, we have no time-inconsistency issues to deal with. Our
work can be seen as an extension of the utility optimization in Richard (1975)
to time-non-additive utility, and this is one of our most important insights
since the literature, to our knowledge, contains no other attempts in that
direction. However, the extension is only for power utility.
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2.3 Link to recursive utility

2.3.1 Motivation

In the previous section, we introduced certainty equivalents in order to sep-
arate risk aversion from elasticity of inter-temporal substitution. This draws
our attention in the direction of recursive utility studied in e.g. Duffie and Ep-
stein (1992b) and Kraft and Seifried (2010). In advance, we have no reason to
believe that our optimization approach is equivalent to continuous-time recur-
sive utility optimization, but in the special case of no mortality risk, it turns
out that the pseudo-Bellman equation characterizing our equilibrium value
function coincides with the pseudo-Bellman equation characterizing the value
function of the recursive utility optimization problem in Duffie and Epstein
(1992b) for Epstein-Zin preferences. In the following subsections, we give an
introduction to recursive utility, demonstrate the similarity of pseudo-Bellman
equations, and outline the perspectives of our findings.

2.3.2 A short introduction to recursive utility

Let (Ω,F , P ) be a probability space endowed with a filtration {Ft}t∈[0,T ] satis-
fying the usual conditions. Fix a set C ⊂ Rk of consumption rates and denote
by C a class of predictable C-valued processes with time-horizon [0, T ]. The
backbone of recursive utility is the construction of a mapping u : C→ R that
ranks consumption streams in such a way that u (c) ≥ u (c′) if and only if the
consumption stream c is weakly preferred to the consumption stream c′. This
is done by means of a utility process V c associated to c by setting

u (c) = V c (0) , c ∈ C .

The utility process is assumed to take values in a subinterval V ⊂ R of the
real line, and u is referred to as a recursive utility function.

2.3.2.1 Discrete-time recursive utility

Recursive utility is first defined in discrete time, and in Section 3 of Kraft
and Seifried (2010), we find a brief review of discrete-time recursive utility.
Let {t0, t1, . . . , tm} be a partition of [0, T ], and let c = {c (tk)}k=1,...,m be a
discrete-time consumption stream in C. Then the utility process V c is defined
through the backward recursion

V c (tk) = W (tk+1 − tk, c (tk) ,m (L (V c (tk+1)|Ftk))) ,

k = 0, . . . ,m− 1 ,
V c (tm) = 0 .

(2.21)

Here, W : [0,∞) × C × V → V is a continuous function with W (0, c, v) = v
for c ∈ C, v ∈ V, L (V c (tk+1)|Ftk) is the conditional distribution of V c (tk+1)
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given the information Ftk , and m is a certainty equivalent on V. Letting
M1 (V) denote the set of probability measures on B (V) with moments of all
orders, a functional m : M1 (V) → R is called a certainty equivalent on V if
m (δv) = v for all v ∈ V where δv is the Dirac measure at v.

W is often referred to as the time-aggregator because in a set-up with-
out risk (implying m (L (V c (tk+1)|Ftk)) = V c (tk+1)), it describes the inter-
temporal aggregation of present consumption ctk and the value of future con-
sumption V c (tk+1). Similarly, m is referred to as the risk-aggregator since it
describes the risk weighted aggregation of possible future values of V c (tk+1).
The pair (W,m) completely describes an investor’s preferences for discrete-
time stochastic consumption streams, and we call (W,m) a discrete-time ag-
gregator.

A special class of certainty equivalents are those given by

m (µ) = h−1
(∫
V
h dµ

)
, µ ∈M1 (V) ,

for a strictly increasing, polynomially bounded C2-function h : V → R. Here,
m is called an expected utility (EU) certainty equivalent. If h is the identity,
then m is called risk-neutral.

2.3.2.2 Continuous-time recursive utility

Duffie and Epstein (1992b) denote their approach to recursive utility in contin-
uous time by stochastic differential utility (SDU). They start from the discrete-
time formulation in (2.21) and use a heuristic limiting argument to motivate
their formulation of SDU, but SDU is defined in continuous time and does not
rely on the heuristic derivation.

Kraft and Seifried (2010) set the heuristic limiting argument from Duffie
and Epstein (1992b) on a rigorous basis and denote their approach to recursive
utility in continuous time by continuous-time recursive utility (CRU). Thereby,
CRU is directly related to discrete-time recursive utility, and CRU is defined
in a broader set-up than SDU.

We choose not to write down exactly how SDU and CRU are defined since
the general definitions are complicated and since we gain sufficient insight
from Lemma 2.2. In both SDU and CRU, the utility process V c is gener-
ated by a continuous-time aggregator (f,m) on V, where f : C × V → R is a
Borel-measurable function, and m is a certainty equivalent on V. Also, both
approaches have the disadvantage that they rely on the almost sure differen-
tiability of the function s 7→ m

(
L
(
V c
t+s
∣∣Ft)) in s = 0.

We end this introduction with two lemmas. The first lemma describes the
relation between discrete-time recursive utility and CRU. The second lemma
shows that SDU and CRU are equivalent when the certainty equivalent is
particularly simple. The lemmas follow from Corollary 6.3 and formulas (7),
(19), and (21) in Kraft and Seifried (2010):
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Lemma 2.1. Let (W,m) be a discrete-time aggregator on V, assume that W
is a C1,0,1-function, and define f : C × V → R by

f (c, v) =
∂W
∂∆ (0, c, v)
∂W
∂v (0, c, v)

. (2.22)

Then (f,m) is the CRU continuous-time aggregator corresponding to (W,m).
Note that we cannot be sure that the aggregator (f,m) actually generates a
utility function, but if it does, then the discrete-time utility function and the
continuous-time utility function represent the same preferences.

Lemma 2.2. Let (f,m) be a continuous-time aggregator on V = R and assume
that {Ft}t∈[0,T ] is generated by a standard Brownian motion, a Poisson random
measure and the null sets, m is the risk-neutral certainty equivalent, and f
satisfies the Lipschitz and linear growth conditions

|f (c, v)− f (c, w)| ≤ α |v − w| ∀c ∈ C, v, w ∈ R ,

|f (c, 0)| ≤ β1 + β2 |c| ∀c ∈ C ,

for some α, β0, β1 > 0. Then SDU and CRU generate the same utility function
u : C→ R, and it is given by u (c) = V c (0) where

V c (t) = E

[∫ T

t
f (c (s) , V c (s)) ds

∣∣∣∣∣Ft
]

a.s .

We note that a continuous-time aggregator (f,m) is called normalized if
m is the risk-neutral certainty equivalent.

2.3.2.3 Example: Epstein-Zin preferences

An important class of recursive preferences are the Epstein-Zin preferences. In
discrete time, these can be represented by a discrete-time aggregator (W,m)
on V = (0,∞), where m is the risk-neutral certainty equivalent, and W is
given by

W (∆, c, v) = 1
1− γ

(
δ∆c1−φ + e−δ∆ ((1− γ) v)

1−φ
1−γ

) 1−γ
1−φ

with γ, φ > 0, γ, φ 6= 1. Here, γ is the relative risk aversion, δ is the rate of
time preference, and 1

φ is the constant elasticity of inter-temporal substitution.
Using formula (2.22), we find that the normalized continuous-time Epstein-Zin
aggregator is given by (f,m), where

f (c, v) =
∂W
∂∆ (0, c, v)
∂W
∂v (0, c, v)

= 1− γ
1− φδv


 c

((1− γ) v)
1

1−γ

1−φ

− 1

 .
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It is easy to verify that f does not satisfy the Lipschitz and growth conditions
of Lemma 2.2 for general φ and γ, so a priori we do not know if (f,m) generates
a utility function. However, Duffie and Epstein (1992b) mention in Example 3
that existence and uniqueness can be shown, and Kraft and Seifried (2010)
make a similar comment in Remark 6.4.

2.3.3 Similarity of pseudo-Bellman equations

For a while, we think of the investor from Section 2.2 as certain-lived, i.e.
we fix µ = µ̂ = 0 in the set-up from Section 2.2. The investor’s wealth now
evolves according to the SDE

dXc,π (t) = Xc,π (t) [(r + π (t,Xc,π (t))λ) dt+ π (t,Xc,π (t))σdW (t)]
− (c (t,Xc,π (t))− w (t)) dt ,

Xc,π (0) = x0 ,

where x0 is the investor’s initial wealth, w is a continuous, deterministic func-
tion of time, r, σ, λ > 0 are constants, and c, π are deterministic, measurable
functions of time and wealth. The objective functions reads

Zc,π (t, x) = 1
1− γ

(∫ T

t
δe−δ(s−t)

(
Et,x

[
c1−γ (s,Xc,π (s))

]) 1
θ ds

)θ
,

where the parameters n, δ, γ, and θ are as in Section 2.2. We note that the
death sum b has disappeared from both the wealth dynamics and the objective
function. This is natural since the term insurance costs nothing (due to µ̂ = 0)
and pays out nothing (due to µ = 0).

The problem of maximizing Zc,π is still time-inconsistent, so again we
search for an equilibrium control for the function Zc,π, (c, π) ∈ Ue0 . Here,
subscript 0 indicates that we have plugged in µ = µ̂ = 0 and left out b in the
constraints defining Ue. The same applies for U0 and Γ0 below. We continue to
use the terms optimal control and equilibrium control interchangeably. Plug-
ging µ = µ̂ = 0 into Theorem 2.1 and recalling that the last term in the
Bellman equation vanishes due to separability, we get the pseudo-Bellman
equation

Ut (t, x) = inf
(c,π)∈Γ0(t,x)

 −f (c, U (t, x))
− ((r + πλ)x− c+ w (t))Ux (t, x)

−1
2σ

2π2x2Uxx (t, x)

 , (2.23)

U (T, x) = 0 ,

where the function f : (0,∞)× (1{γ∈(0,1)} (0,∞) ∪ 1{γ∈(1,∞)} (−∞, 0))→ R is
given by

f (c, Z) = θδZ


 c

((1− γ)Z)
1

1−γ


1−γ
θ

− 1

 . (2.24)
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We recognize equation (2.23) from Proposition 9 in Duffie and Epstein (1992b)
as the pseudo-Bellman equation characterizing the value function of the continuous-
time recursive utility optimization problem

sup
(c,π)∈D

u (cc,π) ,

where cc,π = {c (t,Xc,π (t))}t∈[0,T ], D is the set of square-integrable, optional
controls in U0, and u is the utility function from Lemma 2.2 generated by
the aggregator (f,m), where f is defined in (2.24), and m is the risk-neutral
certainty equivalent. In other words, u (cc,π) = V c,π (0), where V c,π is defined
via the backward equation

V c,π (t) = E

[∫ T

t
f (c (s,Xc,π (s)) , V c,π (s)) ds

∣∣∣∣∣Ft
]
.

Here, Ft denotes the augmentation of the σ-algebra generated by the sets
{W (s) : 0 ≤ s ≤ t}.

We find the similarity of pseudo-Bellman equations interesting since our
optimization problem has an intuitive interpretation as a global maximization
of certainty equivalents and since our approach does not give rise to the dif-
ferentiability problems mentioned in the previous subsection. Moreover, we
recognize the aggregator (f,m) as the normalized continuous-time Epstein-Zin
aggregator. This is again interesting since Epstein-Zin preferences are widely
used in the literature.

The similarity of pseudo-Bellman equations does not mean that we solve
the same problem, but as a consequence of the similarity, we end up with the
same optimal control.

Recursive utility optimization for a certain-lived investor with Epstein-Zin
preferences and no labour income is studied in Kraft et al. (2013). They
allow for a general financial market with the Black-Scholes market as a simple
special case. In the Black-Scholes special case, the optimal control in Kraft
et al. (2013) coincides with our optimal control (c∗, π∗) for µ = µ̂ = w = 0 (see
equation (4.4) in Kraft et al. (2013) and Theorem 2.2). Since we are solving
the same problem, this constitutes a nice validation of our solution.

When applying Proposition 9 in Duffie and Epstein (1992b), we stumble
on the fact that f does not satisfy certain Lipschitz and growth conditions, but
Kraft et al. (2013) show that the proposition remains valid for e.g. φ ≤ γ < 1
and φ ≥ γ > 1, and in any case, the similarity of pseudo-Bellman equations
is noteworthy.

2.3.4 Perspectives

We have demonstrated that—in the special case without mortality risk—the
pseudo-Bellman equation characterizing our equilibrium value function coin-
cides with the pseudo-Bellman equation characterizing the value function of
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the recursive utility optimization problem in Duffie and Epstein (1992b) for
Epstein-Zin preferences. We formulate this by saying that our optimization
approach (for a certain-lived investor) is equivalent to recursive utility opti-
mization with Epstein-Zin preferences in a Black-Scholes market.

The equivalence between our optimization approach and recursive utility
optimization (that is a well-established approach in diffusive markets) sup-
ports the use of our approach, also in cases that are not covered by recursive
utility optimization. By ‘not covered’ we mean that neither SDU optimization
nor CRU optimization is apt for an extended set-up with mortality risk and
utility from inheritance since neither SDU nor CRU allows for utility from a
lump sum at a random point in time. With our approach, we can provide such
an extension for Epstein-Zin preferences. That is, our work can be seen as
a generalization of recursive utility optimization with Epstein-Zin preferences
to include mortality risk and life insurance. To our knowledge, the literature
contains no other attempts in that direction.

Partial consistency with recursive utility was also found with the approach
taken by Kihlstrom (2009). Kihlstrom (2009) separated risk aversion and EIS
in the ’opposite order’ in a discrete-time setup by first applying the EIS-
function on the consumption stream and then taking expected utility. He
found that the optimal consumption-investment strategy differs fundamentally
from the optimal consumption-investment strategy arising from discrete-time
recursive utility, as introduced by Epstein and Zin (1989) (introducer refer-
ence). But if the investment decision is left out by deleting one of two in-
vestment alternatives, Kihlstrom (2009) and Epstein and Zin (1989) agree on
the consumption pattern. So, it appears that our approach provides an even
stronger connection to recursive utility by agreeing on both investment and
consumption. However, since Kihlstrom (2009) works exclusively in discrete
time and we work exclusively in (a simple Black-Scholes model in) continuous
time, the connections are not really comparable. E.g. what is the agreement
between our approach and Epstein and Zin (1989) in a general return model
in discrete-time as the one studied by Kihlstrom (2009)? It is worth noticing
that Kihlstrom (2009) considers his distinction from recursive utility in the
case of access to investment decisions as an advantage rather than a disadvan-
tage because of its implications for asset pricing calculations as is his ultimate
object of study. It is far beyond the scope of this paper to draw any lines
in that direction, but given that our approach does provide, in general, an
alternative to recursive utility, the path is definitely worth pursuing.

2.4 The optimal consumption rate

2.4.1 Motivation

With the separation of preferences for risk and inter-temporal substitution,
our utility optimization approach gives rise to a broader variety of optimal con-
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sumption curves than time-additive power utility optimization. To illustrate
this, we derive an SDE for the optimal consumption rate from Section 2.2,
consider the special case of no market risk, and go through some numerical
examples.

2.4.2 SDE

In the following, we assume that µ is differentiable, ε is constant, and

µ̂ = αµ for some constant α > 0.

The optimal consumption rate is characterized by the SDE

dc∗ (t,X∗ (t))
c∗ (t,X∗ (t)) = 1

φ

(
r − δ +

(
α− 1

θ

)
µ (t) + (1 + φ) 1

2
λ2

γσ2 + β (t)
)

dt

+ λ

γσ
dW (t) ,

c∗ (0, X∗ (0)) = c∗ (0, x0) ,

(2.25)

where

β (t) = κ− φκ− 1 + γ

1− γ
γ

γ + κ− 1
µt (t) ε

1
γ+κ−1α

γ−1
γ+κ−1µ (t)

γ
γ+κ−1−1

1 + ε
1

γ+κ−1α
γ−1

γ+κ−1µ (t)
γ

γ+κ−1
.

The derivation is presented in Appendix 2.C.

2.4.3 The special case without market risk

With λ = 0, there is no investment in the stock, and consequently, there is no
market risk. The SDE in (2.25) reduces to the differential equation

dc∗ (t,X∗ (t))
c∗ (t,X∗ (t)) = 1

φ

(
r − δ +

(
α− 1

θ

)
µ (t) + β (t)

)
dt . (2.26)

The future optimal consumption rate is deterministic, and the initial value
c∗ (0, x0) is given by

c∗ (0, x0) = x0 +
∫ T

0 w (s) e−
∫ s

0 (r+αµ(v)) dv ds∫ T
0 µ̃ (s) e−

∫ s
0 r̃(v) dv ds

×
(

1 + ε
1

γ+κ−1α
γ−1

γ+κ−1µ (0)
γ

γ+κ−1

)κ−φκ−1+γ
(1−γ)φ

,

(2.27)

where

r̃ (v) = − 1
φ

[
(1− φ)

(
r +

(
α− 1

1− γ

)
µ (v)

)
− δ

]
,

µ̃ (s) =
(

1 + ε
1

γ+κ−1α
γ−1

γ+κ−1µ (s)
γ

γ+κ−1

) (κ−1+γ)(1−φ)
(1−γ)φ

.
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Since all market risk is eliminated, one might be surprised to see that the risk
aversion parameter γ is still present, but this is due to mortality risk.

2.4.4 Numerics

2.4.4.1 Set-up

We consider an investor with the following characteristics:

• The investor is t0 = 25 years old at time 0 and has an initial wealth of
x0 = 10, 000 USD.

• She starts off with a yearly labour income at rate 20, 000 USD (we do
not take taxes into account), and her labour income grows with the risk
free short rate until the age of 65 when she retires, i.e.

w (t) = 20, 000 · ert · 1{t0+t≤65} .

• Her death is governed by the mortality intensity1

µ (t) = 5 · 10−4 + 5.3456 · 10−5 · e0.087498(t0+t) .

We only wish to focus on separation of risk aversion and EIS, so we fix α =
ε = κ = 1. Also, following Kraft et al. (2013), we fix the risk free short rate
at r = 0.05 and the risk aversion at γ = 2. Finally, we fix the time-horizon
n = 85 since there is very little probability that the investor survives the age
of 110 with the chosen mortality. The fixed parameter values are summarized
in the following table.

Parameter α ε κ r γ T

Fixed value 1 1 1 0.05 2 85

For a given choice of parameters, we first calculate the initial optimal con-
sumption rate c∗ (0, x0) by approximating the integrals in (2.27) with sums.
We then calculate the future optimal consumption rates by approximating
(2.26) with a difference equation.

2.4.4.2 Graphs

Fixing the EIS-parameter φ = 2, we are in the time-additive case from Richard
(1975), and letting δ vary, we get Figure 2.1. The investor’s optimal yearly
consumption rate is constant over time when δ is equal to r, and the rate is
increasing (decreasing) when δ is smaller (larger) than r. This fits well with
the intuition that δ is the investor’s utility discount factor: if the investor

1For the last three decades, this has served as a standard mortality intensity for adult
women in Denmark.
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Figure 2.1: The optimal consumption rate as function of δ for fixed φ = 2 (= γ).

discounts future consumption with a short rate that is larger than the risk
free short rate, then she assigns a higher value to one unit of consumption
‘now’ than to one unit plus investment returns ‘later’. We notice that all the
optimal consumption rates seem rather high compared to the investor’s initial
labour income and wealth. This is because the investor’s labour income grows
with the risk free short rate, and the plotted optimal consumption curves are
expressed in nominal terms.

Fixing φ = 1.8, we enable the separation of risk aversion and EIS that
is special for this paper. Letting δ vary, we get Figure 2.2. The investor’s
optimal yearly consumption rate is increasing for δ smaller than r and non-
monotone for δ larger than r. The non-monotone optimal consumption curves
are first decreasing and then increasing. For ages below 75 (for small values of
δ) or 90 (for larger values of δ), the consumption curves are almost identical to
those for φ = 2, but for higher ages, the consumption curves increase rapidly
compared to those for φ = 2. This can be explained by the small value
of φ (corresponding to a higher willingness to substitute consumption over
time) combined with the cheap consumption for high ages (because of the low
survival probability). The investor’s willingness to substitute consumption
over time simply allows her to consume more when consumption is cheap.

Fixing φ = 3, we again enable separation of risk aversion and EIS. Letting
δ vary, we get Figure 2.3. The investor’s optimal yearly consumption rate
is decreasing for δ larger than r and non-monotone for δ smaller than r.
The non-monotone optimal consumption curves are first increasing and then
decreasing. In the literature, this phenomenon is known as hump-shaped
consumption. For ages below 50, the consumption curves are similar to those
for φ = 2, but for higher ages, the consumption curves decrease compared to
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Figure 2.2: The optimal consumption rate as function of δ for fixed φ = 1.8 (< γ).
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Figure 2.3: The optimal consumption rate as function of δ for fixed φ = 3 (> γ).
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those for φ = 2. This can be explained by the large value of φ (corresponding
to a lower willingness to substitute consumption over time) combined with the
chosen level of risk aversion and the low survival probability for high ages. The
investor is so unwilling to substitute consumption over time that she cannot
benefit from the cheap, but uncertain, consumption for high ages.

Hump-shaped consumption is observed in realized consumption, and dif-
ferent articles contain different explanations for this. See e.g. Gourinchas and
Parker (2002) who obtain the feature by income uncertainty. They fit to data a
hump around age 50. Our hump is not fitted to any data, but the hump around
70 for δ = 0.03 is not necessarily in conflict with their quantities since we il-
lustrate consumption in nominal terms whereas they convert to 1987 dollars.
We note that such hump-shaped consumption patterns cannot be obtained by
standard recursive utility or time-additive utility under lifetime uncertainty.
We do not claim to having found the most important source of hump-shapes,
and we do not pursue this particular feature of our approach more for now.
Yet, we find it interesting enough to stress that it is the very combination
of separation of risk aversion and elasticity of substitution with an uncertain
lifetime that takes us to this intriguing feature of realized consumption.

Appendix

2.A Proof of Theorem 2.1

2.A.1 Prerequisites

Fix a control (c, π, b) ∈ Ue. First, we take a look at mc,π,b and nc,π,b. We
assume there exist functions Λc,π,b1 and Λc,π,b2 in C1,0,2

(
[0, T ]2 × R

)
such that

Λc,π,bi,t (t, s, x) = − [x (r + π (t, x)λ)− c (t, x)] Λc,π,bi,x (t, s, x)

− [−µ̂ (t) b (t, x) + w (t)] Λc,π,bi,x (t, s, x)

− 1
2π

2 (t, x)σ2x2Λc,π,bi,xx (t, s, x) , i = 1, 2 ,

(2.28)

Λc,π,b1 (s, s, x) = c1−γ (s, x) ,

Λc,π,b2 (s, s, x) = ε (s)µ (s) (x+ b (s, x))1−γ ,

for all x ∈ R and 0 ≤ t ≤ s ≤ n.
Using Itô’s formula on Λc,π,bi

(
t, s,Xc,π,b (t)

)
(for fixed s), plugging in

(2.28), and skipping most arguments that are
(
t, s,Xc,π,b (t)

)
,
(
t,Xc,π,b (t)

)
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or t, we get that2

dΛc,π,bi

(
t, s,Xc,π,b (t)

)
= Λc,π,bi,t dt+ Λc,π,bi,x dXc,π,b (t)

+ 1
2Λc,π,bi,xx d

[
Xc,π,b, Xc,π,b

]c
(t)

= Λc,π,bi,x Xc,π,bπσdW (t) , i = 1, 2 , t ≤ s .

Hence, for t ≤ s, we can write

Λc,π,b1

(
t, s,Xc,π,b (t)

)
(2.29)

= c1−γ
(
s,Xc,π,b (s)

)
−
∫ s

t
Λc,π,b1,x

(
u, s,Xc,π,b (u)

)
Xc,π,b (u)π

(
u,Xc,π,b (u)

)
σ dW (u) ,

Λc,π,b2

(
t, s,Xc,π,b (t)

)
(2.30)

= ε (s)µ (s)
(
Xc,π,b (s) + b

(
s,Xc,π,b (s)

))1−γ

−
∫ s

t
Λc,π,b2,x

(
u, s,Xc,π,b (u)

)
Xc,π,b (u)π

(
u,Xc,π,b (u)

)
σ dW (u) .

We assume that the stochastic integrals in (2.29) and (2.30) are martingales.
Taking conditional expectation given Xc,π,b (t) = x on both sides yields

Λc,π,b1 (t, s, x) = Et,x
[
c1−γ

(
s,Xc,π,b (s)

)]
= mc,π,b (t, s, x) ,

(2.31)

Λc,π,b2 (t, s, x) = Et,x

[
ε (s)µ (s)

(
Xc,π,b (s) + b

(
s,Xc,π,b (s)

))1−γ
]

= nc,π,b (t, s, x) .

(2.32)

For strictly positive, sufficiently integrable functions a, b ∈ C0,0,1
(
[0, T ]2 × R

)
,

2We use Itô’s formula as presented in (Protter, 2005, Chapter II, Theorem 33). Several
terms are left out or simplified since Xc,π,b is continuous, the operator (x, y) 7→ [x, y] is
bilinear (see (ibid., p. 66)), d [W, W ]c (t) = t (see (ibid., p. 67)), and d [Id, Id]c (t) =
d [Id, W ]c (t) = 0 by (ibid., Theorem 26 and 28) where Id (t) = t. The theorems apply
since Id is adapted, cadlag, and have path of finite variation on compacts, whereas W is a
continuous martingale.
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we define the functions Ka,b, Ia,b : [0, T ]× R→ R by

Ka,b (t, x) = 1
1− γ

(∫ T

t
δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv

(
a

1
κ + b

1
κ

)κ
θ ds

)θ
, (2.33)

Ia,b (t, x) = 1
1− γ

(
(1− γ)Ka,b (t, x)

)1− 2
θ

×
(

1− 1
θ

)
∫ T

t


δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv×(

a
1
κ + b

1
κ

)κ
θ
−1
×(

a
1
κ
−1ax + b

1
κ
−1bx

)
 ds


2

+ 1
1− γ

(
(1− γ)Ka,b (t, x)

)1− 1
θ

×


(1
θ
− 1
κ

)∫ T

t


δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv×(

a
1
κ + b

1
κ

)κ
θ
−2

×
(
a

1
κ
−1ax + b

1
κ
−1bx

)2

ds

+
(1
κ
− 1

)∫ T

t


δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv×(

a
1
κ + b

1
κ

)κ
θ
−1

×
(
a

1
κ
−2 (ax)2 + b

1
κ
−2 (bx)2

)
 ds

 .

(2.34)

Here, we have skipped all arguments (t, s, x) inside the integrals. By (2.31)–
(2.32), we can write Zc,π,b (t, x) = KΛc,π,b1 ,Λc,π,b2 (t, x). Hence, assuming suffi-
cient integrability, applying (2.28), and skipping all arguments that are (t, x)
or t, we get the following partial derivative

Zc,π,bt = −f
(
t, c, x+ b,KΛc,π,b1 ,Λc,π,b2

)
− (x (r + πλ)− c− µ̂b+ w)Zc,π,bx

− 1
2π

2σ2x2Zc,π,bxx + 1
2π

2σ2x2IΛc,π,b1 ,Λc,π,b2 .

(2.35)

Here, f and IΛc,π,b1 ,Λc,π,b2 are defined in (2.16) and (2.34). Assuming that
Zc,π,b is in C1,2, using Itô’s formula on Zc,π,b

(
t,Xc,π,b (t)

)
, and skipping most

arguments that are t or
(
t,Xc,π,b (t)

)
, we get that

dZc,π,b
(
t,Xc,π,b (t)

)
= Zc,π,bt dt+ Zc,π,bx

[
Xc,π,b (r + πλ)− c− µ̂b+ w

]
dt

+ Zc,π,bx Xc,π,bπσ dW (t) + 1
2Z

c,π,b
xx π2σ2

(
Xc,π,b

)2
dt .

Hence, plugging in the partial derivatives of Zc,π,b and skipping most argu-
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ments that are
(
u,Xc,π,b (u)

)
or u, we get that

Zc,π,b
(
t,Xc,π,b (t)

)
= −

∫ T

t
Zc,π,bx Xc,π,bπσ dW (u) (2.36)

+
∫ T

t

 f
(
u, c,Xc,π,b + b,KΛc,π,b1 ,Λc,π,b2

)
−1

2π
2σ2

(
Xc,π,b

)2
IΛc,π,b1 ,Λc,π,b2

 du .

2.A.2 The actual proof

Assume that the functions (U, l1, l2) from Theorem 2.1 exist, let (c∗, π∗, b∗)
be the function of (t, x) that realizes the infimum in (2.17), and assume that
(c∗, π∗, b∗) satisfies the assumptions of Theorem 2.1. Then (c∗, π∗, b∗) is easily
seen to be a control in Ue. In the next two subsections, we prove that U =
Zc

∗,π∗,b∗ , and that (c∗, π∗, b∗) is an equilibrium control for Zc,π,b.

Proof: U = Zc
∗,π∗,b∗

By assumption, U is in C1,2, so using Itô’s formula on U
(
t,Xc,π,b (t)

)
for

some (c, π, b) ∈ Ue, plugging in (2.17), and skipping all arguments that are(
u,Xc,π,b (u)

)
or u, we get that

U
(
t,Xc,π,b (t)

)
≥ −

∫ T

t
UxX

c,π,bπσ dW (u)

+
∫ T

t

 f
(
u, c,Xc,π,b + b,K l1, l2

)
−1

2π
2σ2

(
Xc,π,b

)2
I l1, l2

 du .
(2.37)

We write Z∗ = Zc
∗,π∗,b∗ , X∗ = Xc∗,π∗,b∗ , and Λ∗i = Λc

∗,π∗,b∗

i to simplify
notation. To establish the relation U = Z∗, we note that Λ∗i = li, i = 1, 2.
Plugging this into (2.36) with the control (c∗, π∗, b∗), we get that

Z∗ (t,X∗ (t)) = −
∫ T

t
Z∗xX

∗π∗σ dW (u)

+
∫ T

t

(
f
(
u, c∗, X∗ + b∗,K l1, l2

)
−1

2 (π∗)2 σ2 (X∗)2 I l1, l2

)
du .

(2.38)

Also, with the control (c∗, π∗, b∗), there is equality in (2.37) (because the
infimum in (2.17) is realized), so we get that

U (t,X∗ (t)) =−
∫ T

t
UxX

∗π∗σ dW (u)

+
∫ T

t

(
f
(
u, c∗, X∗ + b∗,K l1, l2

)
−1

2 (π∗)2 σ2 (X∗)2 I l1, l2

)
du .

(2.39)
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We assume that the stochastic integrals in (2.38) and (2.39) are martingales.
Fixing some (s, y) ∈ [0, T ] × R, subtracting U (s,X∗ (s)) from Z∗ (s,X∗ (s)),
and taking conditional expectation given X∗ (s) = y, we finally arrive at

U (s, y)− Z∗ (s, y) = Es,y

[
−
∫ T

s
(Ux − Z∗x)X∗π∗σ dW (u)

]
= 0 .

Since (s, y) were arbitrary, we have proven that Z∗ = U , and consequently

U = KΛ∗
1,Λ∗

2 = K l1, l2 . (2.40)

Proof: (c∗, π∗, b∗) is an equilibrium control

We fix a control
(
c̄, π̄, b̄

)
in Ue, a (small) real number h > 0, and an initial

point (u, y) ∈ [0, T ]× R. We then define the control
(
ch, πh, bh

)
by

(
ch, πh, bh

)
(t, x) =

{
(c̄, π̄, b̄) (t, x) , u ≤ t < u+ h, x ∈ R ,
(c∗, π∗, b∗) (t, x) , u+ h ≤ t ≤ n, x ∈ R .

Below, we write Zh = Zc
h,πh,bh . To prove that (c∗, π∗, b∗) is an equilibrium

control for Zc,π,b, we introduce the following non-standard assumptions:

Assumptions 2.1. We assume that there exist functions Λh1 and Λh2 that
satisfy (2.28) for the control

(
ch, πh, bh

)
for all u ≤ t ≤ s ≤ n and x ∈ R. We

assume that the functions are sufficiently smooth such that for all t ∈ [u, T ]
and x ∈ R

Zh (t, x) = KΛh1 ,Λh2 (t, x) . (2.41)
Also, we assume that Zh is twice differentiable in the second argument and
once differentiable in the first argument with the t-derivative from (2.35). Fi-
nally, we assume that the following convergences hold true:

Zh (u, y) h→0−→ U (u, y) , Zhx (u, y) h→0−→ Ux (u, y) , (2.42)

Zhxx (u, y) h→0−→ Uxx (u, y) , IΛh1 ,Λh2 (u, y) h→0−→ I l1, l2 (u, y) .

To prove that (c∗, π∗, b∗) is an equilibrium control in the sense of Defini-
tion 2.2, we need to verify that the condition (2.15) is satisfied. We recall that
Z∗ = U . Hence, equation (2.15) reads

lim inf
h→0

U (u, y)− Zh (u, y)
h

≥ 0 .

By construction, we have that Zh (t, x) = U (t, x) for t ∈ [u+ h, T ] and x ∈ R.
Thus, applying Taylor’s formula for fixed x = y, we get that

U (u, y)− Zh (u, y)
h

= U (u, y)− U (u+ h, y)− Zh (u, y) + Zh (u+ h, y)
h

= −Ut (u, y) + Zht (u, y) + o (h) .
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Hence, what we need to show is that

lim inf
h→0

[
−Ut (u, y) + Zht (u, y)

]
≥ 0 . (2.43)

Applying (2.35), (2.17), (2.40), and (2.41) and skipping most arguments that
are (u, y) or u, we get that

−Ut + Zht ≥ f
(
u, c̄, y + b̄, U

)
− f

(
u, c̄, y + b̄, Zh

)
+
(
y (r + π̄λ)− c̄− µ̂b̄+ w

) (
Ux − Zhx

)
+ 1

2 π̄
2σ2y2

(
Uxx − Zhxx

)
+ 1

2 π̄
2σ2y2

(
IΛh1 ,Λh2 − I l1, l2

)
.

(2.44)

The function f is obviously continuous. Hence, plugging (2.42) into (2.44) as
h tends to 0, we see that (2.43) is satisfied. This concludes the proof.

2.B Proof of Theorem 2.2
We assume that l1 and l2 from Theorem 2.1 are separable in the sense that
there exist C1,0-functions h1, h2 : [0, T ]2 → R such that

li (t, s, x) = hi (t, s) (x+ L (t))1−γ , i = 1, 2 , (2.45)

where L is the investor’s human wealth defined in (2.4). Then, by (2.40),

U (t, x) = 1
1− γ (x+ L (t))1−γ gθ (t) ,

where the function g : [0, T ]→ R is given by

g (t) =
∫ T

t
δe−δ(s−t)e−

1
θ

∫ s
t
µ(v) dv

(
h

1
κ
1 (t, s) + h

1
κ
2 (t, s)

)κ
θ

ds .

In the above, we assume that x + L (t) > 0 and t < n. This can be done
without loss of generality because if x + L (t) = 0 or t = n then U (t, x) = 0.
Now, assuming sufficient integrability and skipping all arguments that are
(t, s, x), (t, x), (t, s), or t, we get the partial derivatives

Ux = (x+ L)−γ gθ ,
Uxx = −γ (x+ L)−γ−1 gθ ,

Ut = 1
1− γ (x+ L)1−γ θgθ−1gt + Lt (x+ L)−γ gθ ,

(2.46)

(li)x = (1− γ)hi (x+ L)−γ ,

(li)xx = − (1− γ) γhi (x+ L)−γ−1 ,

(li)t = (hi)t (x+ L)1−γ + (1− γ)hi (x+ L)−γ Lt ,
(2.47)
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and we easily verify that

I l1, l2 (t, x) = Ka,b (t, x)×


(
1− 1

θ

) (
1−γ

x+L(t)

)2
+(

1
θ −

1
κ

) (
1−γ

x+L(t)

)2
+(

1
κ − 1

) (
1−γ

x+L(t)

)2

 = 0 . (2.48)

Plugging (2.48) and (2.40) into (2.17) and skipping all arguments that are
(t, x) or t, the differential equation for U reduces to

Ut = inf
(c,π,b)∈Γ(x,t)

 −f (t, c, x+ b, U)
− ((r + πλ)x− c− µ̂b+ w)Ux

−1
2σ

2π2x2Uxx

 . (2.49)

Also, plugging (2.47) into (2.18), skipping all arguments that are (t, s, x),
(t, x), or t, dividing by (x+ L)1−γ , and subtracting (1− γ)hi (x+ L)−1 Lt,
we get the following differential equations for h1 and h2:

(hi)t = −
(
r + µ̂− c∗

x+ L
− µ̂b

∗ + x

x+ L
+ λ

π∗x

x+ L
− 1

2

(
π∗x

x+ L

)2
σ2γ

)
× (1− γ)hi , i = 1, 2 ,

h1 (s, s) =
(
c∗ (s, x)
x+ L (s)

)1−γ
,

h2 (s, s) = ε (s)µ (s)
(
b∗ (s, x) + x

x+ L (s)

)1−γ
.

(2.50)

We need to verify the separability assumption in (2.45). From (2.50) we see
that the differential equations for h1 and h2 become ordinary (and independent
of x), when π∗x

x+L ,
c∗

x+L , and
b∗+x
x+L do not depend on x. Therefore, to verify the

assumption (2.45), it suffices to verify that π∗x
x+L ,

c∗

x+L , and
b∗+x
x+L do not depend

on x. For the verification, we recall that (c∗, π∗, b∗) solves the continuum of
minimization problems in (2.49). Plugging (2.46) into (2.49) and innocently
dividing by (1− γ)U , we face the problem

θ

1− γ
gt
g

+ Lt
x+ L

(2.51)

= inf
(c,π,b)∈Γ(x,t)


− 1

1−γ

θδ(( c
x+L

) 1−γ
κ + ε

1
κµ

1
κ

(
b+x
x+L

) 1−γ
κ

)κ
θ

1
g


+ 1

1−γ (µ+ θδ)−
(

(r+πλ)x
x+L − c+µ̂b−w

x+L − 1
2γσ

2
(
πx
x+L

)2
)
 .

To solve this minimization problem, we differentiate the objective function
with respect to each of the (sub)controls and set the partial derivatives equal
to zero. Note that we look for an interior solution because of the constraint
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(c, π, b) ∈ Γ (x, t). We get the solution in (2.19), so we have the crucial inde-
pendence of x, and it is easily seen that

(c∗ (t, x) , π∗ (t, x) , b∗ (t, x)) ∈ Γ (t, x) .

Hence, we have verified the separability assumption, and we have derived
expressions for the optimal control.

Next, we would like to derive closed-form expressions for the functions h1,
h2, and g. Plugging the optimal control in (2.19) back into (2.51), subtracting
Lt
x+L = −w+(r+µ̂)L

x+L , and dividing by θ
(1−γ)g , we get the following differential

equation for g:

gt = −φδ
1
φ

(
1 +

(
εµ

µ̂1−γ

) 1
γ+κ−1

) (κ−1+γ)(1−φ)
(1−γ)φ

g
1− 1

φ

−
(

(1− φ)
(
r + 1

2
1
γ

λ2

σ2 + µ̂− µ

1− γ

)
− δ

)
g ,

g (T ) = 0 .

(2.52)

This differential equation has a well-known form, and the solution is given
in Theorem 2.2. Moreover, plugging the optimal control in (2.19) back into
(2.50), we get the following ordinary differential equations for h1 and h2:

(hi)t = −

r + µ̂− δ
1
φ g
− 1
φ

(
1 +

(
εµ

µ̂1−γ

) 1
γ+κ−1

) (κ−1+γ)(1−φ)
(1−γ)φ

+ 1
2
λ2

γσ2


× (1− γ)hi ,

h1 (s, s) =
(
δ

1
φ g
− 1
φ (s)

)1−γ
1 +

(
ε (s)µ (s)
µ̂1−γ (s)

) 1
γ+κ−1


κ−φκ−1+γ

φ

,

h2 (s, s) = h1 (s, s)
(
ε (s)µ (s)
µ̂1−γ (s)

) κ
γ+κ−1

.

Again, these differential equations have a well-known form, and the solutions
are given in Theorem 2.2. This concludes the proof.

2.C Derivation of SDE for the optimal
consumption

Define the function v : [0, T ]→ R by

v (t) =

1 +
(
ε (t)µ (t)
µ̂1−γ (t)

) 1
γ+κ−1


κ−φκ−1+γ

(1−γ)φ

.
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Then v is in C1 ([0, T ]) if the mortality intensities µ, µ̂, and the weight function
ε are so, and the optimal consumption rate from Theorem 2.2 can be written
as

c∗ (t, x) = δ
1
φ g
− 1
φ (t) v (t) (x+ L (t)) .

Assume that ε, µ, and µ̂ are C1-functions. Since also g and L are C1-
functions, it holds that c∗ is in C1×2, and we get the partial derivatives

c∗t (t, x) =
(
− 1
φ

gt (t)
g (t) + vt (t)

v (t) + −w (t) + (r + µ̂ (t))L (t)
x+ L (t)

)
c∗ (t, x) ,

c∗x (t, x) = δ
1
φ g
− 1
φ (t) v (t) = 1

x+ L (t)c
∗ (t, x) ,

c∗xx (t, x) = 0 .

Let X∗ be the wealth process stemming from the optimal control (c∗, π∗, b∗).
Using Itô’s formula on c∗ (t,X∗ (t)) (see footnote 2), we get the SDE

dc∗ (t,X∗ (t))
c∗ (t,X∗ (t)) = c∗t (t,X∗ (t)) dt+ c∗x (t,X∗ (t)) dX∗ (t)

c∗ (t,X∗ (t))

= 1
φ

(
r + µ̂ (t)− δ − 1

θ
µ (t) + (1 + φ) 1

2
λ2

γσ2

)
dt

+ vt (t)
v (t) dt+ λ

γσ
dW (t) ,

c∗ (0, X∗ (0)) = c∗ (0, x0) .

(2.53)

In the calculations, we have used the expressions for the optimal control
(c∗, π∗, b∗) from Theorem 2.2. Also, we have plugged in the derivative gt
from (2.52) in Appendix 2.B. In (2.53), the entity vt(t)

v(t) is rather complicated,
but it simplifies if we assume that µ̂ = αµ for some constant α > 0 and that
ε is constant. We then get that

vt (t)
v (t) = κ− φκ− 1 + γ

(1− γ)φ

(
1 + ε

1
γ+κ−1α

γ−1
γ+κ−1µ (t)

γ
γ+κ−1

)−1

× γ

γ + κ− 1µt (t) ε
1

γ+κ−1α
γ−1

γ+κ−1µ (t)
γ

γ+κ−1−1
.

Also, the SDE in (2.53) reduces to

dc∗ (t,X∗ (t))
c∗ (t,X∗ (t)) = 1

φ

(
r − δ +

(
α− 1

θ

)
µ (t) + (1 + φ) 1

2
λ2

γσ2

)
dt

+ vt (t)
v (t) dt+ λ

γσ
dW (t) .





Chapter 3

Nonrecursive Separation of
Risk and Time Preferences

Matthias Albrecht Fahrenwaldt, Ninna Reitzel Jensen,
& Mogens Steffensen (2016)

Abstract: Recursive utility disentangles preferences with respect to
time and risk by recursively building up a value function of local incre-
ments. This involves certainty equivalents of indirect utility. Instead
we disentangle preferences with respect to time and risk by building up
a value function as a non-linear aggregation of certainty equivalents of
direct utility of consumption. This entails time-consistency issues which
are dealt with by looking for an equilibrium control and an equilibrium
value function rather than an classically optimal control and a classical
optimal value function. We characterize the solution in a general dif-
fusive incomplete market model and find that, in certain special cases
of utmost interest, the characterization coincides with what would arise
from a recursive utility approach. But also importantly, in other cases,
it does not: The two approaches are fundamentally different but match,
exclusively but importantly, in the mathematically special case of homo-
geneity of the value function.

Keywords: Time-consistency, time-global preferences, recursive util-
ity, equilibrium strategies, generalized Hamilton–Jacobi–Bellman equa-
tion, continuous time, certainty equivalents.

3.1 Introduction
We formulate a continuous-time dynamic consumption-investment problem
where preferences with respect to risk and time variability are disentangled.
In contrast to recursive utility which also builds on the idea of disentangling
these preferences, our value function is based on a time-global objective with
non-time-additive utility. This allows for working with certainty equivalents of
direct utility of consumption rather than indirect utility. Time-inconsistency
arising from non-time-additivity is dealt with by looking for a subgame perfect
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equilibrium among a continuum of selves. We consider a general incomplete
market with coefficients driven by a non-hedgeable economic state process.
In special cases that include the Merton market, we find a resulting behavior
that coincides with that coming from recursive utility with Epstein-Zin pref-
erences. Among these special cases, we also find closed-form solutions to new
problem formulations beyond standard power utility, including non-hedgeable
consumer price indexation and exponential utility. Thus, our contribution
to the literature is two-fold: We base—we believe as the first—the disentan-
glement on a time-global objective for a general financial market. Second
we detect new and relevant solveable consumption-investment problems in in-
complete markets within our problem formulation where the solution coincides
with what would have been obtained by recursive utility.

Recursive utility was developed by Epstein and Zin (1989, 1991) based on
work by Kreps and Porteus (1978, 1979). It is celebrated for disentangling
preferences with respect to risk and time. Its continuous-time limit, spoken
of as stochastic differential utility or, simply, continuous-time recursive util-
ity, developed by Duffie and Epstein (1992a) has the same ability to allow
for separate preference functions against variability over risk and (continu-
ous) time. It is widely used to study optimal consumption-portfolio choice
in various markets, see e.g. Schroder and Skiadas (1999, 2005); Kraft et al.
(2013). Also, recursive utility is used to examine ambiguity aversion and
preferences for resolution of uncertainty, see e.g. Chen and Epstein (2002);
Skiadas (1998, 2013). Issues with differentiability when going to continuous-
time were addressed by Kraft and Seifried (2010, 2014). A particularity of
recursive utility is, of course, the definitional recursive building of the value
function or indirect utility function. This means that, when locally aggre-
gating present consumption with the utility of future consumption, the latter
is represented by its indirect utility. In the recursion appears the certainty
equivalent with respect to the representative indirect utility of wealth rather
than the underlying future uncertain consumption.

Indirect utility appears to be the right representative of utility of future
consumption, given that we start out with a recursive definition. Yet, here
we suggest to start out with a time-global objective built up by certainty
equivalents with respect to future uncertain consumption. Said differently, we
suggest to replace the indirect utility representation of future consumption
by the direct utility of future consumption itself. Apart from that, our objec-
tive remains the same: To separate preferences for risk and time. Once having
formed certainty equivalents of future consumption at different points in time,
we think of them as “certain” values attributed to these time points. This al-
lows for a non-linear aggregation of these certainty equivalents which relates
to preferences with respect to time only. Our objective becomes non-linear in
time which, at first sight, dumps the idea for reasons of time-inconsistency is-
sues that are completely avoided with recursive utility. There, the controls are,
definitional from the recursive structure, time-consistent, so why bother with
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time-inconsistency issues? Because, we find the construction of a time-global
objective based on direct utility of future consumption instead of indirect util-
ity appealing and, by now, the complications with time-inconsistency can be
overcome. That is, because we should and because we can.

Already in the definition of recursive utility, time-consistency issues are
delicately avoided. First the certainty equivalent of the indirect utility is
formed. Then this is non-linearly time-aggregated with present consumption.
The alternative order is unfriendly: To first non-linearly time-aggregate in-
direct utility and consumption and then take the expected utility here-of.
It is the non-linear time-aggregation under uncertainty that leads to time-
inconsistency issues. Although we suggest a completely different formulation,
we also have time-inconsistency issues, but for different reasons. We make
non-linear time-aggregation of objects we can think of as certain like it is
done for recursive utility. But we aggregate over a global time-horizon rather
than a local (one-period in discrete-time and infinitesimal in continuous-time)
time-horizon, as in the case of recursive utility.

Time-inconsistent behavior was initially formalized by Strotz (1955). Pol-
lak (1968), Goldman (1980), and Laibson (1997) contributed to the under-
standing of the problem as an intra-personal game and looked for subgame
perfect equilibria. Ekeland and Pirvu (2008) defined a continuous-time sub-
game perfect equilibrium in order to deal with the time-inconsistency arising
from replacing exponential discounting of utility by hyperbolic discounting.
We follow their definition and derive the equilibrium value and equilibrium
strategy when the time-inconsistency arises from the non-linear aggregation
of certainty equivalents as explained above.

The idea of summing up certainty equivalents over global time was also
pursued by Jensen and Steffensen (2015) [Chapter 2 of this thesis]. They
considered a consumption-investment-insurance problem in a Merton market
for an investor with an uncertain lifetime and access to life insurance. The
disentanglement of preferences for risk and time is, there, a starting point for
the idea of also disentangling utility of consumption as alive and inheritors
utility of consumption after the death of the investor. Already they show
that in the special case of a Merton market the solution to our optimization
problem coincides with that of recursive utility with Epstein-Zin preferences.
We obtain this coincidence with the Merton market and recursive utility from
a different angle.

We start out with a general diffusive, incomplete market with a risky, dif-
fusive asset with price coefficients driven by another diffusive economic state
process that cannot be perfectly hedged. Coincidence with the solution for
recursive utility with Epstein-Zin preferences in the special case of a Merton
market falls out. But we also characterize solutions for much more general
markets that have previously been studied under recursive utility. This un-
veils, in terms of resulting behavior, a fundamental difference between recur-
sive utility and our approach. In general cases, studied under recursive utility
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by Chacko and Viceira (2005) and Kraft et al. (2013), the generalized Bellman
equation that we find to characterize our equilibrium value, contains additional
terms compared to the standard recursive utility Bellman-type equation. Only
when we have complete separability in time, wealth, and the economic state
process, we agree with users of recursive utility on the characterization of the
solution. On the other hand, we study in details such special cases leading to
linearly homogeneous value functions that, to our knowledge, have not been
studied before. They include cases with power utility where we scale con-
sumption by the economic state process, interpreting this process as an only
partly hedgeable consumer price index, and cases with exponential utility. We
provide explicit solutions in these cases.

The outline of the paper is as follows. In Section 3.2, we present the
model for the price and wealth processes. We motivate our problem formula-
tion and relate it to standard recursive utility. In Section 3.3, we define the
set of admissible controls and the concept of equilibrium and state our main
theorem with sufficient conditions to determine equilibrium controls and the
corresponding equilibrium value function. In Section 3.4, we present two non-
trivial examples of the framework with incomplete markets. We consider two
different choices of the utility functions, namely power utility and exponen-
tial utility. We provide explicit solutions, and we establish a connection to
recursive utility.

3.2 General Set-Up and Optimization Problem
In this section, we present our optimization problem and its connection to
related problems. This section is central because it is our problem formulation,
rather than the solution, that is the innovative part of the paper.

We consider an investor making decisions concerning consumption, c, and
investment, π, in a Brownian market. The wealth of the investor evolves
according to the dynamics

dXc,π
t = µc,π (t,Xc,π

t , Yt) dt+ σc,π (t,Xc,π
t , Yt) dWt , X

c,π
0 = x0 , (3.1)

where Y is a non-traded state process with the dynamics

dYt = α (t, Yt) dt+ β (t, Yt)
(
ρ dWt +

√
1− ρ2 dW̄t

)
, Y0 = y0 . (3.2)

Here, µc,π, σc,π, α, β are sufficiently regular functions, and W and W̄ are two
independent Brownian motions. The volatility in Xc,π arise from investment
in a stock. For later use, we introduce the infinitesimal generator Ac,π of
(Xc,π, Y ) which is given by

Ac,π = µc,π∂x + 1
2 (σc,π)2 ∂2

x + α∂y + 1
2β

2∂2
y + ρβσc,π∂xy .
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Note that this operator is both time- and space-dependent. In the next sec-
tion, we make assumptions concerning the coefficients to guarantee the exis-
tence and uniqueness of solutions to the Kolmogorov equations ∂tl = −Ac,πl
with appropriate terminal condition. Also, our main theorem will assume the
existence of such a solution. This has to be checked in concrete situations.

A classical optimization problem formalized for the investor is that of
maximizing expected time-additive utility of consumption and final wealth,

sup
c,π

E
[∫ T

0
e−δsu (c (t,Xc,π

t , Yt)) dt+ e−δTΦ (Xc,π
T )

]
, (3.3)

where δ ≥ 0 is a subjective utility discount rate, u is an instantaneous utility
function, and Φ is a utility function for final wealth. The utility functions u
and Φ characterize the investor’s preferences with respect to risk. The problem
in (3.3) can be dealt with by embedding it in a value function given by

V (t, x, y) = sup
c,π

Et,x,y

[ ∫ T
t e−δ(s−t)u (c (s,Xc,π

s , Ys)) ds
+e−δ(T−t)Φ (Xc,π

T )

]
, (3.4)

where Et,x,y denotes conditional expectation given Xc,π
t = x and Yt = y.

The controls (c, π) are chosen among a set of admissible strategies which
essentially means that (3.1) has a solution and that certain integrals with
respect to the Brownian motions have expectation zero. By means of dynamic
programming techniques, the value function can be characterized by a certain
partial differential equation containing a local optimization problem at each
point (t, x, y). The solution for (c, π) to the local optimization problem can
be proven to also produce the solution for (c, π) to the global optimization
problem in (3.3). This is essentially a consequence of the linearity of the
expectation operating on an infinitesimal sum of utility of consumption rates.
We spell out here that this linearity is essential for the coincidence between
local and global optimization since this linearity is serially spoiled below—and,
thus, is also the coincidence.

We wrote above that the utility function u characterizes the investor’s
preferences with respect to risk, but u also plays a different indirect role in the
time-additivity of (3.4). Below, we formalize a way to disentangle preferences
for risk and time, but, first, we consider briefly how the disentanglement is
typically established within the theory of recursive utility. Instead of working
with time-global objectives like the one given in (3.4), the standard approach
in recursive utility is to study the local discrete-time objective

V (t,Xt) = W
(
ct, u

−1 (Et [V (t+ ∆, Xt+∆)])
)
, (3.5)

where ct is the consumption at time t, u−1 (Et [V (t+ ∆, Xt+∆)]) is the time
t certainty equivalent of having Xt+∆ for consumption from time t + ∆ and
onward, and the function W is the so-called time aggregator, aggregating
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the utility of present consumption ct and future consumption represented
by u−1 (Et [V (t+ ∆, Xt+∆)]). An important special case is when (c, v) 7→
W
(
c, u−1 (v)

)
is additive in c and v. Then we obtain time-additive utility, see

e.g. Duffie and Epstein (1992a).
The continuous-time equivalent of these patterns of thinking were studied

by Duffie and Epstein (1992a,b) under the name stochastic differential util-
ity. The main ingredients are still a certainty equivalent of the value function
(indirect utility) and an aggregator. However, taking ∆ → 0 in (3.5) is, in
general, a complicated operation that involves differentiability of the certainty
equivalent and the aggregator. Kraft and Seifried (2010) propose an alterna-
tive notion of differentiability compared to Duffie and Epstein (1992a,b) in
order to make the notion of stochastic differential utility more general and
robust to e.g. inclusion of non-Brownian markets.

In (3.5), we form a so-called certainty equivalent in terms of

u−1 (Et [V (t+ ∆, Xt+∆)]) ,

i.e. in terms of the indirect utility V of wealth rather than the utility function
u of consumption. Below we formalize a problem that is based on the cer-
tainty equivalence of direct utility of consumption rather than indirect utility.
The fundamental idea is to formalize a continuous-time global optimization
problem that encompasses both risk and time preferences. This is in sharp
contrast to the approach taken by Duffie and Epstein (1992a,b) and Kraft and
Seifried (2010) who are challenged by the notion of differentiability when ∆
tends to zero in (3.5). We suggest the following approach:

For each future time point s, we form the certainty equivalent of the con-
sumption rate, conditional on Xc,π (t) = x and Y (t) = y,

u−1 (Et,x,y [u (c (s,Xc,π
s , Ys))]) .

For all s > t, these are known at time t, and we are therefore inclined to
treat them as deterministic future consumption rates. Now, we let a different
function, say ϕ̄, formalize the investor’s time preferences with respect to these
certainty equivalents. The investor’s utility from time t and onward is∫ T

t
e−δ(s−t)ϕ̄

(
u−1 (Et,x,y [u (c (s,Xc,π

s , Ys))])
)

ds

+ ωe−δ(T−t)ϕ̄
(
u−1 (Et,x,y [u (Xc,π

T )])
)

=
∫ T

t
e−δ(s−t)ϕ (Et,x,y [u (c (s,Xc,π

s , Ys))]) ds

+ ωe−δ(T−t)ϕ (Et,x,y [u (Xc,π
T )]) ,

where u (Xc,π
T ) is utility from final wealth, ω is a scaling factor allowing for

different weight on utility from consumption and final wealth, and ϕ = ϕ̄◦u−1.
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At this point, it is clear that we have a problem beyond what can be dealt
with by classical dynamic programming. Namely, due to the transform ϕ of
the expectation, we cannot exploit the linearity of the expectation operator
and interchange expectation and time-addition. Before discussing what we
can do “instead of” classical dynamic programming, we twist the problem in
three ways. First, we allow the utility of consumption and terminal wealth
to depend on the process Y . More specifically, we replace u (c (s,Xc,π

s )) by
u (Ys, c (s,Xc,π

s )). This turns out to be mathematically tractable, and we
can, for example, think of Y as an index of purchasing power or a minimum
subsistence level, depending on the shape of u. Second, we introduce separate
utility functions for consumption, u1, and final wealth, u2. Third, while we
are at “destroying” the workability of dynamic programming techniques, we
multiply the problem with the constant δ and transform it with an increasing
function f . Now, the value function reads

V c,π (t, x, y) = f

( ∫ T
t δe−δ(s−t) [ϕ ◦mc,π

1 ] (t, s, x, y) ds
+ωδe−δ(T−t) [ϕ ◦mc,π

2 ] (t, T, x, y)

)
, (3.6)

where, for 0 ≤ t ≤ s ≤ T ,

mc,π
1 (t, s, x, y) = Et,x,y [u1 (Ys, c (s,Xc,π

s , Ys))] ,
mc,π

2 (t, T, x, y) = Et,x,y [u2 (YT , Xc,π
T )] .

The function f is convenient since it does not hurt optimal behavior such
that we can choose f however we want to make the mathematical representa-
tion of the value function as attractive as possible. At the moment, the reader
may think that f = id (the identity function) is a particularly attractive choice
of f , but this turns out not to be true in general. Rather, one should seek
a function f that, in some sense that is made clear in the following section,
offsets the complication from the function ϕ under the integral. In an abstract
sense, we seek a non-linearizing function f that offsets the non-linearity stem-
ming from the function ϕ such that the problem of optimizing (3.6) appears
linear.

The choice f = ϕ−1 turns out to be particularly convenient, at least in
some cases. This choice is motivated by calculations and remarks in the next
section. Note that given this insight, the choice f = ϕ−1 = id, corresponding
to ϕ̄ = u−1, shows why there is typically no “normalization issue” for time-
additive utility. In that case the normalized value function is, indeed, given
by (3.4).

The problem of maximizing (3.6) is certainly non-standard due to its se-
rial non-linearity. A seemingly different and new strand of literature on non-
linear optimization problems was initiated recently by Basak and Chabakauri
(2010). In a Brownian market, they solve the dynamic mean-variance prob-
lem without so-called precommitment. The combination of no precommit-
ment and the variance appearing in the objective forms the non-linearity
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since the variance contains the non-linear square function of the expectation
of the wealth. Recent works elaborate on the techniques: Björk et al. (2014)
study the mean-variance investment problem in a general Markovian setting;
Czichowsky (2013) works with mean-variance problems in a non-Markovian
setting by means of quadratic projection methods; Kronborg and Steffensen
(2015) study mainly the mean-variance problem in a Black-Scholes setting but
include optimization over consumption. It turns out that these techniques are
well-suited for approaching non-linear problems like (3.6) in a specific way.
The idea of adding up certainty equivalents is already explored in Jensen and
Steffensen (2015). There, focus is on disentanglement of risk aversion and
EIS for a power maximizing investor with uncertain lifetime and access to life
insurance in a Black-Scholes setting.

The problem of maximizing (3.6) is complicated and, since dynamic pro-
gramming does not work, there is no reason to believe that solutions to local
and global optimization problems coincide in the same way as for (3.3) and
(3.4). The non-linearity of (3.6) means that the solution at time 0 is likely
to be inconsistent with the solution at time t > 0 if we search for an optimal
control among all the usually admissible ones, namely those for which (3.1)
has a solution. By inconsistent we mean that the decision we make at time t
is not the same as the decision we plan to make at time t, for the same realiza-
tion of (Xc,π, Y ). Here, we proceed as in Jensen and Steffensen (2015), take
inspiration from Björk et al. (2014), and search for an equilibrium control for
the value function V c,π. The theoretical background for the equilibrium ap-
proach is equilibrium theory of continuous-time games. Actually, the resulting
strategy is a Nash equilibrium strategy in a game where infinitesimally many
so-called multiple selves are competing and where the time t-self knows that
the continuum of all “later selves”, i.e. s-selves for s > t, face the same game.
Therefore, Björk et al. (2014) speak of the resulting strategies as equilibrium
strategies rather than optimal strategies. This approach produces an optimal
control process that does not solve for the supremum over all usual strate-
gies in a usual sense. Rather, it is the best strategy given that one will later
on follow a strategy based on the same objective conditioning on updated
information. This conforms with with Basak and Chabakauri (2010) and sub-
sequent papers mentioned above. It should be mentioned that this approach
to dynamic decision making dates further back to Strotz (1955) and Pollak
(1968).

3.3 Equilibrium and Verification Theorem
In this section we define the set of admissible controls and the concept of equi-
librium and state our main theorem. The theorem gives sufficient conditions
to determine the equilibrium controls and the equilibrium value function.

In the following, let f and ϕ be in C2 and f−1 be in C0. For technical rea-
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sons in the proof of Theorem 3.1, we must make a hypothesis that guarantees
the existence and uniqueness of C1,2-solutions to the terminal value problem

∂tu(t, x, y) = −Ac,πu(t, x, y) ,
u(T, x, y) = g(x, y) .

}
(3.7)

Recall that we call a function Rn → Rm slowly increasing if it is smooth and
all derivatives are bounded in norm by a polynomial.

Hypothesis 3.1. The matrix-valued function [0, T ]× R× R→ R2 given by(
σc,π(t, x, y) ρβ(t, y)σc,π(t, x, y)

ρβ(t, y)σc,π(t, x, y) β(t, y)

)
,

and the vector-valued function [0, T ]×R×R→ R2 given by (µc,π(t, x, y), α(t, y))
is smooth, have bounded first derivatives, and is slowly increasing. Also,
g ∈ C3 (R2) is polynomially bounded.

This hypothesis is not the most general one can make but is general enough
for practical situations. We took these assumptions from Theorem 2.12 of
Stroock (1983). The existence and uniqueness of classical solutions of (3.7) is
then guaranteed by Theorem 2.21 of Stroock (1983). Given concrete choices
of the coefficient functions of Ac,π one must check that (3.7) does indeed have
a solution for any admissible controls.

Definition 3.1 (Admissible controls). We call a control (c, π) admissible if

(i) (c, π) ∈ C([0, T ]× R2)× C([0, T ]× R2),

(ii) Hypothesis 3.1 is satisfied.

Remark 3.1. Note that Hypothesis 3.1 ensures that the system of stochactic
differential equations (SDE’s) in Equations (3.1)–(3.2) has a unique solution
by Theorem 2.12 of Stroock (1983). This solution has the property that
E [||(Xt, Yt)||p] <∞ for all p ∈ [2,∞) for given initial conditions (x0, y0).

Rewriting Definition 2.1 in Björk et al. (2014) in the language of this paper,
we get the following definition of equilibrium:

Definition 3.2. Consider an admissible control (c∗, π∗) (informally viewed
as a candidate equilibrium control). Choose a fixed, admissible control (c̄, π̄),
a real number h > 0, and an initial point (u, x, y) ∈ [0, T ] × R2. Define the
control

(
ch, πh

)
by

(
ch, πh

)
(t, x̄, ȳ) =

{
(c̄, π̄) (t, x̄, ȳ) , u ≤ t < u+ h, x̄, ȳ ∈ R ,
(c∗, π∗) (t, x̄, ȳ) , u+ h ≤ t ≤ n, x̄, ȳ ∈ R .
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If for all admissible controls (c̄, π̄) and all points (u, x, y) ∈ [0, T ]× R2

lim inf
h→0

V c∗,π∗ (u, x, y)− V ch,πh (u, x, y)
h

≥ 0 , (3.8)

we say that (c∗, π∗) is an equilibrium control for the function V c,π. The
corresponding equilibrium value function V ∗ is given by

V ∗ (t, x, y) = V c∗,π∗ (t, x, y) .

We stress that an equilibrium control is not optimal in the sense that it
maximizes the value function. However, the control is optimal in the “intu-
itive” sense that it maximizes the investor’s utility given that the investor
continues to use the control. Björk et al. (2014) prove neither existence nor
uniqueness of the equilibrium control, so there might be several or even no
equilibrium controls.

We are now ready to state the key result of this section. The proof is in
Appendix 3.A.

Theorem 3.1 (Verification theorem). Assume there exist a pentadruple of
functions (U, l1, l2, c∗, π∗) such that the following holds:

(i) Regularity:

• U is in C1,2,2([0, T ]× R× R).
• (c∗, π∗) are admissible controls.
• l1(t, s, x, y) and l2(t, T, x, y) are defined for 0 ≤ t ≤ s ≤ T and
x, y ∈ R, l1, l2 are C1 in t and C2 in x, y, and l1 is jointly continuous
in t, s.

(ii) Equilibrium: The function U solves the pseudo-Bellman equation

∂tU (t, x, y) = inf
c,π


−F

(
c, y, Ū (t, x, y)

)
−Ac,πU (t, x, y)

+1
2σ

c,π (t, x, y)2Rx (t, x, y)
+1

2β (t, y)2Ry (t, x, y)
+ρβ (t, y)σc,π (t, x, y)Rxy (t, x, y)

 ,
U (T, x, y) = f (ωδ [ϕ ◦ u2] (y, x)) ,


(3.9)

where the infimum ranges over all admissible controls, the function F is
given by

F
(
c, y, Ū

)
= δ

[
f ′ ◦ f−1

] (
Ū
)
·
(
[ϕ ◦ u1] (y, c)− f−1

(
Ū
))

, (3.10)

and the functions Ū , Rx, Ry, and Rxy are given in (iv). The controls
(c∗, π∗) realize the infimum in (3.9).
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(iii) Diffusion equations: For each fixed 0 ≤ s ≤ T the function l1 solves the
partial differential equation (PDE)

∂tl1 (t, s, x, y) = −Ac∗,π∗ (t, s, x, y) l1 (t, s, x, y) ,

l1 (s, s, x, y) = u1 (y, c∗ (s, x, y)) ,

}
(3.11)

and the function l2 solves the PDE

∂tl2 (t, T, x, y) = −Ac∗,π∗ (t, T, x, y) l2 (t, T, x, y) ,

l2 (T, T, x, y) = u2 (y, x) .

}
(3.12)

(iv) Remainder functions: Omitting x, y-dependence, the function Ū is given
by

Ū (t, x) = f

( ∫ T
t δe−δ(s−t) [ϕ ◦ l1] (t, s) ds
+ωδe−δ(T−t) [ϕ ◦ l2] (t, T )

)
,

the remainder term Rx is given by

Rx (t) =
[
f ′′ ◦ f−1

] (
Ū (t)

)(∫ T
t δe−δ(s−t) [ϕ′ ◦ l1] (t, s)∂xl1(t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ l2] (t, T )∂xl2(t, T )

)2

+
[
f ′ ◦ f−1

] (
Ū (t)

)
·
(∫ T

t δe−δ(s−t) [ϕ′′ ◦ l1] (t, s) (∂xl1(t, s))2 ds
+ωδe−δ(T−t) [ϕ′′ ◦ l2] (t, T ) (∂xl2(t, T ))2

)
,

and analogously for Ry. The cross-term Rxy is defined as

Rxy (t) =
[
f ′′ ◦ f−1

] (
Ū (t)

)(∫ T
t δe−δ(s−t) [ϕ′ ◦ l1] (t, s)∂xl1(t, s) ds
+δe−δ(T−t) [ϕ′ ◦ l2] (t, T )∂xl2(t, T )

)

·
(∫ T

t δe−δ(s−t) [ϕ′ ◦ l1] (t, s)∂yl1(t, s) ds
+δe−δ(T−t) [ϕ′ ◦ l2] (t, T )∂yl2(t, T )

)
+
[
f ′ ◦ f−1

] (
Ū (t)

)
·
(∫ T

t δe−δ(s−t) [ϕ′′ ◦ l1] (t, s)∂yl1 (t, s) ∂xl1 (t, s) ds
+δe−δ(T−t) [ϕ′′ ◦ l2] (t, T )∂yl2 (t, T ) ∂xl2 (t, T )

)
.

Then the following holds:

(i) The controls (c∗, π∗) are an equilibrium control for the function V c,π

defined in (3.6).

(ii) The corresponding equilibrium value function V c∗,π∗ is given by

V c∗,π∗ (t, x, y) = Ū (t, x, y) = U (t, x, y) .
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(iii) For 0 ≤ t ≤ s ≤ T , we have

mc∗,π∗

1 (t, s, x, y) = l1 (t, s, x, y) ,

mc∗,π∗

2 (t, T, x, y) = l2 (t, T, x, y) .

Remark 3.2. Some brief remarks on the pseudo-Bellman equation that allows
a comparison with the standard examples.

(i) It may appear unusual to have the Ū as an auxiliary function in the
aggregator and indeed one could state the theorem with Ū replaced by
U . However, this would lead to a highly nonlinear PDE that would
require a more sophisticated mathematical treatment which is beyond
the scope of this paper.

(ii) In the pseudo-Bellman equation, the terms have the following meaning:

• The aggregator is given by F
(
c, y, Ū (t, x, y)

)
.

• The market dynamics are represented by the operatorAc,πU (t, x, y).
• The twisting with f and ϕ introduces the remainder termsRx (t, x, y),
Ry (t, x, y), and Rxy (t, x, y).

(iii) The aggregator can be decomposed in two terms:

• The first term δ
[
f ′ ◦ f−1] (Ū (t, x, y)

)
[ϕ ◦ u1] (y, c) is multiplicative

in the form: function of Ū times function of c. The twisting yields
to a additive perturbation of the standard Bellman equation with
explicit remainder terms Rx, Ry, Rxy.

• The second term −δ
[
f ′ ◦ f−1] (Ū (t, x, y)

)
f−1

(
Ū (t, x, y)

)
is due

to the discounting δe−δ(s−t).

(iv) From the above analysis we can expect the same structure of the Bellman
equation in higher dimensions, i.e. if we add further diffusion processes.

3.4 Examples for Incomplete Markets
In this section, we present two non-trivial examples of the framework in in-
complete markets. We consider an investor making decisions concerning con-
sumption and investment in the incomplete market model formalized by

dBt = rBt dt ,
dSt = St [(r + λ(t, Yt)) dt+ σS(t, Yt) dWt] ,

dYt = µY (t, Yt) dt+ σY (t, Yt)
(
ρdWt +

√
1− ρ2 dW̄t

)
,
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where λ, σS , µY , σY are regular functions of (t, Yt), and W and W̄ are two
independent Brownian motions. The processes B and S represent price pro-
cesses of a traded bond and stock whereas Y is an additional non-traded state
process driving the coefficients of S. The parameter ρ models the level of
correlation between S and Y .

We consider an investor investing the proportion π of his wealth in the
stock S and the proportion (1− π) in the bond B and consuming at rate c.
The wealth of the investor evolves according to the dynamics

dXc,π
t = Xc,π

t (r + π(t,Xc,π
t , Yt)λ(t, Yt)) dt− c(t,Xc,π

t , Yt) dt
+Xc,π

t π(t,Xc,π
t , Yt)σS(t, Yt) dWt .

(3.13)

In the notation from the previous section, we have

α(t, y) = µY (t, y) ,
β(t, y) = σY (t, y) ,

µc,π(t, x, y) = x (r + π(t, x, y)λ(t, y))− c(t, x, y) ,
σc,π(t, x, y) = xπ(t, x, y)σS(t, y) .

Consumption-investment problems with wealth dynamics given by (3.13) have
been studied with various specifications of λ, σS , µY , σY , and ρ by a number
of authors. They include Wachther (2002) who works in a complete market
setting with constant asset volatility and stochastic excess return linear in Y
which is modeled by an Ornstein-Uhlenbeck process, i.e. µY affine in Y and σY
constant; Chacko and Viceira (2005) who works with constant excess return
and stochastic volatility inverse in the square-root of Y which is modelled by
a certain square root process, such that µY is affine in Y and σY is linear
in its square-root; Liu (2007) who works with an excess return linear in Y
and stochastic volatility equal to the square-root of Y which is modeled by
a square root process similar to the one used by Chacko and Viceira (2005).
Kraft et al. (2013) consider the model in its generality. In order to avoid
complicating issues in connection with stochastic interest rates, see Korn and
Kraft (2002), it is important that Y governs the coefficients of S only and not
the interest rate. Musiela and Zariphopoulou (2010) refer to the model as a
Markovian single stochastic factor model.

Below, we consider the optimization problem in Section 3.2 for two differ-
ent choices of the utility functions, namely power utility and exponential util-
ity. This leads to certain constraints on the coefficient functions λ, σS , µY , σY .

3.4.1 Power Utility

To state our result we need the following assumptions on the coefficients driv-
ing the financial market dynamics.
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Hypothesis 3.2.

(i) Utility functions: let u1(y, ξ) = u2(y, ξ) = yκ(1−γ)ξ1−γ for fixed κ ∈ R
and γ ∈ R+, γ 6= 1.

(ii) Elasticity of Inter-temporal Substitution and twisting: let ϕ(ξ) = ξ
1
θ and

f(ξ) = ξθ where θ = 1−γ
1−φ for fixed φ ∈ R+, φ 6= 1.

(iii) Market price of risk: there is a function h : [0, T ]→ R such that λ(t, y) =
h(t)σS(t, y).

(iv) Dynamics of Y : there are functions α, β : [0, T ]→ R such that µY (t, y) =
α(t)y and σY (t, y) = β(t)y.

To avoid discussions about regularity we assume that all functions are
smooth in their arguments. These assumptions ensure that the Verification
Theorem is satisfied.

Theorem 3.2 (Equilibrium controls). Define the function g : [0, T ]→ R by

g(t) = δθ
(∫ T

t
e
−
∫ s
t

1
θφ
τ(v) dv ds+ e

−
∫ T
t

1
θφ
τ(v) dv

ω
1
φ

)φθ
,

where

τ(t) = δθ − (1− γ)
[
r + α (t)κ+ 1

2 (β (t))2 κ((1− γ)κ− 1)
]

+
(

1− 1
γ

) [
ρ(1− γ)h(t)β (t)κ+ 1

2h(t)2 + 1
2ρ

2β (t)2 (1− γ)2κ2
]
.

Also, define the functions η1, η2 : [0, T ]2 → R by

η1(t, s) = δ
1−γ
φ g (s)−

1−γ
θφ e−

∫ s
t
ψ(v) dv ,

η2(t, T ) = e−
∫ T
t
ψ(v) dv ,

where
ψ(t) = τ(t)− δθ + (1− γ)g (t)−

1
φθ δ

1
φ .

Finally, set

c∗(t, x) = δ
1
φ g (t)−

1
θφ x ,

π∗(t, y) = h(t) + ρβ (t) (1− γ)κ
σS(t, y)γ ,

l1(t, s, x, y) = η1(t, s)x1−γyκ(1−γ) ,

l2(t, T, x, y) = η2(t, T )x1−γyκ(1−γ) ,

U(t, x, y) = x1−γyκ(1−γ)g (t) ,

where we note that c∗ is independent of y and π∗ is independent of x. Then
Theorem 3.1 is satisfied for (U, l1, l2, c∗, π∗), i.e. the controls (c∗, π∗) are equi-
librium controls and U is the corresponding value function.
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We note that the equilibrium controls (c∗, π∗) are admissible, in particular
Hypothesis 3.1 is satisfied. The proof is in Appendix 3.B.

We noted in Theorem 3.2 that the equilibrium consumption rate becomes
independent of Y . This is due to the specific role and form of Y formalized
in Hypothesis 3.2. If we e.g. think of Y as a consumer price index and take
κ = −1, we measure utility of goods bought rather than money spent. In
that case, and with homogeneity in the sense of (iii) and (iv), it is reasonable
to achieve that the equilibrium consumption is not a function of prices but
of wealth (and time) only. Consumption is just a matter of spreading the
spending of wealth over time, while hedging away prices changes to the extent
possible, and then taking the non-hedgeable part as it comes.

Lemma 3.1. Under the above assumptions, the dynamics of the equilibrium
consumption can be expressed in terms of the SDE

dc∗
(
t,Xc∗,π∗

t

)
= c∗

(
t,Xc∗,π∗

t

) (
r + 1

γ (h(t) + ρ(1− γ)κβ(t))h(t)− τ(t)
θφ

)
dt

+ c∗
(
t,Xc∗,π∗

t

)
1
γ (h(t) + ρ(1− γ)κβ(t)) dWt

with τ as above.

The proof is in Appendix 3.B.

Remark 3.3. In the introduction we announced a coincidence with the op-
timal control arising from recursive utility with Epstein-Zin preferences in a
Merton market. This coincidence is obtained by setting κ = 0 and letting λ
and σS be independent of y such that the state process Y is taken out of the
problem. In this case, the equilibrium consumption and investment specified
above are exactly those obtained from recursive utility with Epstein-Zin pref-
erences in the same market. It may not be immediately recognizable from the
expressions above. Actually, it is easier to recognize from the pseudo-Bellman
equation characterizing the solution. The Bellman equation is specialized to
power utility in Appendix 3.B. With power utility and κ = 0, the aggregator
in (3.10) becomes

F (c, U) = δθU

( c

U
1

1−γ

)1−φ

− 1

 . (3.14)

This is immediately recognized as the Epstein-Zin normalized aggregator, see
e.g. Kraft et al. (2013). We highlight this from Appendix 3.B because of the
special role of the coincidence. Since further, in this case, the remainder func-
tions Rx, Ry, and Rxy become zero (see Appendix 3.B), the pseudo-Bellman
equation in (3.9) characterizing the equilibrium value function coincides with
the Bellman equation characterizing the value function for recursive utility
with Epstein-Zin preferences. Therefore the resulting controls also coincide.
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Actually, even including the state process Y in the case where the market
price of risk is independent of Y ((iii) and (iv) in Hypothesis 3.2) is a special
case that has been commented on by others. Kraft et al. (2013) realize that
this is a mathematically tractable case but pay little attention to it. Note
however that they only consider the case corresponding to κ = 0. We think
that the case certainly deserves attention, in particular since κ 6= 0 gives a
meaningful interpretation of Y as a non-hedgeable consumer price index.

Note from Lemma 3.1 that the equilibrium consumption rate forms a time-
inhomogenous geometric Brownian motion. This form, well-known to arise
from recursive utility with Epstein-Zin preferences, in general, and from ex-
pected time-additive power utility, in particular, is thus kept under the spec-
ifications studied in this section.

3.4.2 Exponential Utility

We define a one-parameter family of functions

ε(t) = r

1 + Cert
,

where C is a constant of our choice. Typically, we choose C = (r − 1)e−rT
such that ε(T ) = 1 and the two utility function below coincide.

To state the result we need the following assumptions on the coefficients
driving the financial market dynamics.

Hypothesis 3.3.

(i) Utility functions: let u1(y, ξ) = exp(γκy+ γξ) and u2(y, ξ) = exp(γκy+
γε(T )ξ) for fixed κ ∈ R and γ ∈ R−.

(ii) Elasticity of Inter-temporal Substitution and twisting: let ϕ(ξ) = ξ
1
θ and

f(ξ) = ξθ.

(iii) Market price of risk: there is h : [0, T ]→ R with λ(t, y) = h(t)σS(t, y).

(iv) Dynamics of Y : there are α, β : [0, T ] → R with µY (t, y) = α(t) and
σY (t, y) = β(t).

For simplicity we assume that all functions are smooth. These assumptions
ensure that the Verification Theorem is satisfied.

Theorem 3.3 (Equilibrium controls). Define the function g : [0, T ]→ R by

g(t) = exp
(
e−
∫ T
t
ε(v) dvθ log(δω)−

∫ T

t
e−
∫ s
t
ε(v) dvτ(s) ds

)
,
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where

τ(t) = θ (δ − ε(t)) + θε(t) log
(
ε(t)
δ

)
+ 1

2h(t)2 + 1
2ρ

2β (t)2 γ2κ2

− α (t) γκ− 1
2 (β (t))2 γ2κ2 + ρβ (t) γκh(t) .

Also, define the functions η1, η2 : [0, T ]2 → R by

η1(t, s) =
(
ε(s)
δ

)θ
g (s) e−

∫ s
t
ψ(v) dv ,

η2(t, T ) = e−
∫ T
t
ψ(v) dv ,

where
ψ(t) = τ(t) + ε(t) log (g (t)))− θ (δ − ε(t)) .

Finally, set

c∗(t, x) = ε(t)x+ θ

γ
log

(
ε(t)
δ

)
+ 1
γ

log (g (t)) ,

π∗(t, x, y) = −1
x

h(t) + ρβ (t) γκ
σS(t, y)ε(t)γ ,

l1(t, s, x, y) = η1(t, s) exp(γκy + γε(t)x) ,
l2(t, T, x, y) = η2(t, T ) exp(γκy + γε(T )x) ,
U(t, x, y) = g (t) exp(γκy + γε(t)x) ,

where we note that c∗ is independent of y, and xπ∗ is independent of x. Then
Theorem 3.1 is satisfied for (U, l1, l2, c∗, π∗), i.e. the controls (c∗, π∗) are equi-
librium controls and U is the corresponding value function.

We note that the equilibrium controls (c∗, π∗) are admissible, in particular
Hypothesis 3.1 is satisfied. The proof is in Appendix 3.C.

Lemma 3.2. Under the above assumptions, the dynamics of the equilibrium
consumption can be expressed in term of the SDE

dc∗
(
t,Xc∗,π∗

t

)
=
(

θ
γ (ε(t)− r) + 1

γ τ(t)− θ
γ ε(t) log

(
ε(t)
δ

)
− 1
γ (h(t) + ρκγβ(t))h(t)

)
dt

− 1
γ (h(t) + ρκγβ(t)) dWt

with τ and ε as above.

The proof is in Appendix 3.C.
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Remark 3.4. As for power utility, we obtain a coincidence with known pref-
erences from recursive utility by setting κ = 0 and making sure that (iii) and
(iv) in Hypothesis 3.3 are satisfied such that the remainder functions Rx, Ry,
and Rxy become zero (for details, see Appendix 3.C). With exponential utility
and κ = 0, the aggregator in (3.10) specializes to

F (c, U) = δθU

(
exp

(γ
θ c
)

U
1
θ

− 1
)
.

Up to a constant, this coincides with the aggregator arising from the specifica-
tion u(c) = 1

γ exp(γc) and g(c) = θ
γ exp(γθ c) in Section 6 of Kraft and Seifried

(2014) which yields the aggregator

f (c, U) = δθU

(
exp(γθ c)
(γU)

1
θ

− 1
)
.

We highlight this because it shows that the coincidence with recursive utility
goes beyond power utility and Epstein-Zin preferences.

Note from Lemma 3.2 that the equilibrium consumption rate forms a time-
inhomogenous Brownian motion with drift. This is what could be expected
from the wealth-non-memorability feature of the exponential utility function.
From a decision-making point of view, the exponential utility function thereby,
again, proves to be a questionable specification of preferences. However, its
usability in indifference pricing is still reason enough to show all the results
in detail here, parallel with power utility.

Appendix

3.A Proof of Verification Theorem
The proof of the verification theorem is described in detail in five lemmas.

Proof of Theorem 3.1. We prove the assertions in reverse order.
Assertion (iii) that mc∗,π∗

i = li for i = 1, 2 is in Lemma 3.3.
Assertion (ii) on the characterization of the Value function is split into

Corollary 3.1 which says that V ∗(t, x, y) = Ū(t, x, y) and Lemma 3.4 giving
V ∗(t, x, y) = U(t, x, y).

Finally, assertion (i) that (c∗, π∗) are equilibrium controls is proved in
Lemma 3.5

The first lemma characterizes the functions mc∗,π∗

i as PDE solutions.
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Lemma 3.3. Under the assumptions of Theorem 3.1 it holds that

mc∗,π∗

1 (t, s, x, y) = l1 (t, s, x, y) ,

mc∗,π∗

2 (t, T, x, y) = l2 (t, T, x, y)

for any 0 ≤ t ≤ s ≤ T .

Proof. Fix an admissible control (c, π). By Definition 3.1 there exist functions
Λc,π1 (t, s, x, y) and Λc,π2 (t, T, x, y), defined for 0 ≤ t ≤ s ≤ T and x, y ∈ R, such
that

• Λc,π1 ,Λc,π2 are C1 in t and C2 in x, y, and Λc,π1 is jointly continuous in
t, s.

• For each fixed 0 ≤ s ≤ T , Λc,π1 solves the PDE

∂tΛc,π1 (t, s, x, y) = −Ac,πΛc,π1 (t, s, x, y) ,

Λc,π1 (s, s, x, y) = u1 (y, c (s, x, y)) .

}
(3.15)

• Λc,π2 solves the PDE

∂tΛc,π2 (t, T, x, y) = −Ac,πΛc,π2 (t, T, x, y) ,

Λc,π2 (T, T, x, y) = u2 (y, x) .

}
(3.16)

By the classical Feynman–Kac theorem we have

Λc,π1 (t, s, x, y) = Et,x,y [u1 (Ys, c (s,Xc,π
s , Ys))] = mc,π

1 (t, s, x, y) , t ≤ s < T,

and

Λc,π2 (t, T, x, y) = Et,x,y [u2 (YT , Xc,π
T )] = mc,π

2 (t, T, x, y) , s < T.

Since solutions of the PDEs are unique, we have Λc
∗,π∗

i = li for i = 1, 2.

We observe an immediate consequence of the proof.

Corollary 3.1. The value function V c,π can be written as

V c,π (t, x, y) = f

( ∫ T
t δe−δ(s−t) [ϕ ◦ Λc,π1 ] (t, s, x, y) ds
+ωδe−δ(T−t) [ϕ ◦ Λc,π2 ] (t, T, x, y)

)
, (3.17)

and, in particular, the equilibrium value function satisfies V c∗,π∗ = Ū .

Lemma 3.4. The equilibrium value function satisfies V c∗,π∗ = U .
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Proof. Since Λc,π1 ,Λc,π2 are C1 in t and C2 in x, y, Λc,π1 is jointly continuous in
t, s, and ϕ is in C2, we get from the representation in (3.17) that V c,π is in
C1,2,2. Suppressing x, y-dependence in the Λ-functions, we obtain the partial
derivatives (for i = x, y)

∂tV
c,π (t, x, y)

= −δ
[
f ′ ◦ f−1

]
(V c,π (t, x, y))

(
[ϕ ◦ u1] (y, c (t, x, y))− f−1 (V c,π (t, x, y))

)
+
[
f ′ ◦ f−1

]
(V c,π (t, x, y))

(∫ T
t δe−δ(s−t) [ϕ′ ◦ Λc,π1 ] (t, s) ∂tΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ Λc,π2 ] (t, T ) ∂tΛc,π2 (t, T )

)
,

∂iV
c,π (t, x, y)

=
[
f ′ ◦ f−1

]
(V c,π (t, x, y))

(∫ T
t δe−δ(s−t) [ϕ′ ◦ Λc,π1 ] (t, s) ∂iΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ Λc,π2 ] (t, T ) ∂iΛc,π2 (t, T )

)
,

∂2
i V

c,π (t, x, y)

=
[
f ′′ ◦ f−1

]
(V c,π (t, x, y))

(∫ T
t δe−δ(s−t) [ϕ′ ◦ Λc,π1 ] (t, s) ∂iΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ Λc,π2 ] (t, T ) ∂iΛc,π2 (t, T )

)2

+
[
f ′ ◦ f−1

]
(V c,π (t, x, y))

(∫ T
t δe

−δ(s−t) [ϕ′′ ◦ Λc,π1 ] (t, s) (∂iΛc,π1 (t, s))2ds
+ωδe−δ(T−t) [ϕ′′ ◦ Λc,π2 ] (t, T ) (∂iΛc,π2 (t, T ))2

)

+
[
f ′ ◦ f−1

]
(V c,π (t, x, y))

(∫ T
t δe−δ(s−t) [ϕ′ ◦ Λc,π1 ] (t, s) ∂2

i Λc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ Λc,π2 ] (t, T ) ∂2

i Λc,π2 (t, T )

)
,

∂xyV
c,π (t, x, y)

=
[
f ′ ◦ f−1

]
(V c,π (t, x, y))

·
( ∫ T

t δe−δ(s−t) [ϕ′′ ◦ Λc,π1 ] (t, s) ∂xΛc,π1 (t, s) ∂yΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′′ ◦ Λc,π2 ] (t, T ) ∂xΛc,π2 (t, T ) ∂yΛc,π2 (t, T )

)
+
[
f ′′ ◦ f−1

]
(V c,π (t, x, y))

·
( ∫ T

t δe−δ(s−t) [ϕ′ ◦ Λc,π1 ] (t, s) ∂xΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ Λc,π2 ] (t, T ) ∂xΛc,π2 (t, T )

)

·
( ∫ T

t δe−δ(s−t) [ϕ′ ◦ Λc,π1 ] (t, s) ∂yΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ Λc,π2 ] (t, T ) ∂yΛc,π2 (t, T )

)
+
[
f ′ ◦ f−1

]
(V c,π (t, x, y))

·
( ∫ T

t δe−δ(s−t) [ϕ′ ◦ Λc,π1 ] (t, s) ∂xyΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ Λc,π2 ] (t, T ) ∂xyΛc,π2 (t, T )

)
.
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Applying (3.15)–(3.16), we obtain the PDE

∂tV
c,π (t, x, y) = −F (c (t, x, y) , y, V c,π (t, x, y))−Ac,πV c,π (t, x, y)

+ 1
2 (σc,π (t, x, y))2Rc,πx (t, x, y)

+ 1
2 (β (t, y))2Rc,πy (t, x, y)

+ ρβ (t, y)σc,π (t, x, y)Rc,πxy (t, x, y) ,

V c,π (T, x, y) = f (ωδ [ϕ ◦ u2] (y, x)) ,


(3.18)

where F is given by (3.10) and (for i = x, y)

Rc,πi (t, x, y)

=
[
f ′′ ◦ f−1

]
(V c,π (t, x, y))

·
( ∫ T

t δe−δ(s−t) [ϕ′ ◦ Λc,π1 ] (t, s) ∂iΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ Λc,π2 ] (t, T ) ∂iΛc,π2 (t, T )

)2

+
[
f ′ ◦ f−1

]
(V c,π (t, x, y))

·
( ∫ T

t δe−δ(s−t) [ϕ′′ ◦ Λc,π1 ] (t, s) (∂iΛc,π1 (t, s))2 ds
+ωδe−δ(T−t) [ϕ′′ ◦ Λc,π2 ] (t, T ) (∂iΛc,π2 (t, T ))2

)
,

Rc,πxy (t, x, y)

=
[
f ′ ◦ f−1

]
(V c,π (t, x, y))

·
( ∫ T

t δe−δ(s−t) [ϕ′′ ◦ Λc,π1 ] (t, s) ∂xΛc,π1 (t, s) ∂yΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′′ ◦ Λc,π2 ] (t, T ) ∂xΛc,π2 (t, T ) ∂yΛc,π2 (t, T )

)
+
[
f ′′ ◦ f−1

]
(V c,π (t, x, y))

·
( ∫ T

t δe−δ(s−t) [ϕ′ ◦ Λc,π1 ] (t, s) ∂xΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ Λc,π2 ] (t, T ) ∂xΛc,π2 (t, T )

)

·
( ∫ T

t δe−δ(s−t) [ϕ′ ◦ Λc,π1 ] (t, s) ∂yΛc,π1 (t, s) ds
+ωδe−δ(T−t) [ϕ′ ◦ Λc,π2 ] (t, T ) ∂yΛc,π2 (t, T )

)
.

To establish the relation U = V c∗,π∗ , we recall that Λc
∗,π∗

i = li, i = 1, 2, and
V c∗,π∗ = Ū . This implies that Rc∗,π∗

x = Rx, Rc
∗,π∗
y = Ry, and Rc

∗,π∗
xy = Rxy,

where Rx, RY , and Rxy are given in the theorem. Thus, V c∗,π∗ solves the
PDE

∂tV
c∗,π∗ (t, x, y) = −F

(
c∗ (t, x, y) , y, Ū (t, x, y)

)
−Ac∗,π∗

V c∗,π∗ (t, x, y)

+ 1
2σ

c∗,π∗ (t, x, y)2Rx (t, x, y) + 1
2β (t, y)2Ry (t, x, y)

+ ρβ (t, y)σc∗,π∗ (t, x, y)Rxy (t, x, y) ,

V c∗,π∗ (T, x, y) = f (ωδ [ϕ ◦ u2] (y, x)) .
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From the Bellman equation, we know that U solves the PDE

∂tU (t, x, y) = −F
(
c∗ (t, x, y) , y, Ū (t, x, y)

)
−Ac∗,π∗

U (t, x, y)

+ 1
2σ

c∗,π∗ (t, x, y)2Rx (t, x, y) + 1
2β (t, y)2Ry (t, x, y)

+ ρβ (t, y)σc∗,π∗ (t, x, y)Rxy (t, x, y) ,

U (T, x, y) = f (ωδ [ϕ ◦ u2] (y, x)) .


Altogether, the difference U − V c∗,π∗ solves the PDE

∂t
(
U − V c∗,π∗) (t, x, y) = −Ac∗,π∗ (

U − V c∗,π∗) (t, x, y) ,(
U − V c∗,π∗) (T, x, y) = 0 .


Hence, we must have U = V c∗,π∗ .

Finally, we show that the controls c∗ and π∗ are indeed equilibrium con-
trols.

Lemma 3.5. The pair (c∗, π∗) is an equilibrium control.

Proof. We fix an admissible control (c̄, π̄), a (small) real number h > 0, and
an initial point (u, x, y) ∈ [0, T ]× R2. We then define the control

(
ch, πh

)
by

(
ch, πh

)
(t, x̄, ȳ) =

{
(c̄, π̄) (t, x̄, ȳ) , u ≤ t < u+ h, x̄, ȳ ∈ R ,
(c∗, π∗) (t, x̄, ȳ) , u+ h ≤ t ≤ T, x̄, ȳ ∈ R .

Below, we write V h = V ch,πh , Λhi = Λc
h,πh

i , and Xh = Xch,πh .
To prove that (c∗, π∗) is an equilibrium control in the sense of Defini-

tion 3.2, we need to verify that condition (3.8) is satisfied. Recall that
V c∗,π∗ = U . Hence, Equation (3.8) reads

lim inf
h→0

U (u, x, y)− V h (u, x, y)
h

≥ 0 .

By construction, we have V h (t, x, y) = U (t, x, y) = Ū (t, x, y) for t ≥ u + h.
Thus, applying Taylor’s formula for fixed x, y, we get that

U (u, x, y)− V h (u, x, y)
h

= U (u, x, y)− U (u+ h, x, y)− V h (u, x, y) + V h (u+ h, x, y)
h

= −Ut (u, x, y) + V h
t (u, x, y) + o (h) .

Hence, what we need to show is that

lim inf
h→0

[
−Ut (u, x, y) + V h

t (u, x, y)
]
≥ 0 .
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By (3.18) and the Bellman equation, we have

− Ut (u, x, y) + V h
t (u, x, y)

≥ F
(
c̄ (u, x, y) , y, Ū (u, x, y)

)
− F

(
c̄ (u, x, y) , y, V h (u, x, y)

)
+Ac̄,π̄

(
U (u, x, y)− V h (u, x, y)

)
+ 1

2 (σ̄ (u, x, y))2
(
Rhx (u, x, y)−Rx (u, x, y)

)
+ 1

2 (β (u, y))2
(
Rhy (u, x, y)−Ry (u, x, y)

)
+ ρβ (u, y) σ̄ (u, x, y)

(
Rhxy (u, x, y)−Rxy (u, x, y)

)
.

Hence, it suffices to show that for h→ 0

F
(
c̄ (u, x, y) , y, V h (u, x, y)

)
→ F

(
c̄ (u, x, y) , y, Ū (u, x, y)

)
, (3.19)

Ac̄,π̄V h (u, x, y)→ Ac̄,π̄U (u, x, y) , (3.20)
Rhx (u, x, y)→ Rx (u, x, y) , (3.21)
Rhy (u, x, y)→ Ry (u, x, y) , (3.22)
Rhxy (u, x, y)→ Rxy (u, x, y) . (3.23)

Since V h and Ū = U are continuous in the first argument, we note that

V h (u, x, y) = V h (u, x, y)− V h (u+ h, x, y) + Ū (u+ h, x, y)
→ 0 + Ū (u, x, y) as h→ 0 .

By assumption f and ϕ are in C2 and f−1 is in C0. Hence, F is continuous,
and (3.19) follows immediately. Furthermore, since V h and U are in C1,2,2,
we get (3.20):

Ac̄,π̄V h (u, x, y) = Ac̄,π̄V h (u, x, y)−Ac̄,π̄V h (u+ h, x, y) +Ac̄,π̄U (u+ h, x, y)

→ 0 +Ac̄,π̄U (u, x, y) as h→ 0 .

Finally, f ′′ ◦ f−1 is continuous, so for (3.21) to hold, it suffices to show that∫ T

u
δe−δ(v−u)

[
ϕ′ ◦ Λh1

]
(u, v, x, y) ∂xΛh1 (u, v, x, y) dv

+ ωδe−δ(T−u)
[
ϕ′ ◦ Λh2

]
(u, T, x, y) ∂xΛh2 (u, T, x, y)

→
∫ T

u
δe−δ(v−u) [ϕ′ ◦ l1] (u, v, x, y) ∂xl1 (u, v, x, y) dv

+ ωδe−δ(T−u) [ϕ′ ◦ l2] (u, T, x, y) ∂xl2 (u, T, x, y) as h→ 0
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and ∫ T

u
δe−δ(v−u)

[
ϕ′′ ◦ Λh1

]
(u, v, x, y)

(
∂xΛh1 (u, v, x, y)

)2
dv

+ ωδe−δ(T−u)
[
ϕ′′ ◦ Λh2

]
(u, T, x, y)

(
∂xΛh2 (u, T, x, y)

)2

→
∫ T

u
δe−δ(v−u) [ϕ′′ ◦ l1] (u, v, x, y) (∂xl1 (u, v, x, y))2 dv

+ ωδe−δ(T−u) [ϕ′′ ◦ l2] (u, T, x, y) (∂xl2 (u, T, x, y))2 as h→ 0 .

This is ensured by the fact that ϕ is in C2 and Λhi and li are in C1,2,2. To see
this, realize that Λhi (t, s, x, y) = li (t, s, x, y) for s ≥ t ≥ u+ h by construction
and write∫ T

u
δe−δ(v−u)

[
ϕ′ ◦ Λh1

]
(u, v, x, y) ∂xΛh1 (u, v, x, y) dv

=
∫ u+h

u
δe−δ(v−u)

[
ϕ′ ◦ Λh1

]
(u, v, x, y) ∂xΛh1 (u, v, x, y) dv

+
∫ T

u+h
δe−δ(v−u) [ϕ′ ◦ l1] (u+ h, v, x, y) ∂xl1 (u+ h, v, x, y) dv

+
∫ T

u+h
δe−δ(v−u)

 [
ϕ′ ◦ Λh1

]
(u, v, x, y) ∂xΛh1 (u, v, x, y)

−
[
ϕ′ ◦ Λh1

]
(u+ h, v, x, y) ∂xΛh1 (u+ h, v, x, y)

 dv

→ 0 +
∫ T

u
δe−δ(v−u) [ϕ′ ◦ l1] (u, v, x, y) ∂xl1 (u, v, x, y) dv + 0 as h→ 0 .

To complete the proof, we note that (3.22)–(3.23) follow from the same argu-
ments as (3.21).

3.B Details for the Power Utility Example
Proof of Theorem 3.2. We proceed in 3 steps.

1. Compute infinitesimal generator and aggregator. With the assumptions
on the market dynamics, we get the infinitesimal generator

Ac,π = [x (r + π(t, x, y)λ(t, y)− c(t, x, y)] ∂x + 1
2 (xπ(t, x, y)σS(t, y))2 ∂2

x

+ α (t, y) ∂y + 1
2 (β (t, y))2 ∂2

y + ρα (t, y)xπ(t, x, y)σS(t, y)∂xy
= [x (r + π(t, x, y)h(t)σS(t, y))− c(t, x, y)] ∂x

+ 1
2 (xπ(t, x, y)σS(t, y))2 ∂2

x + α (t) y∂y
+ 1

2 (β (t) y)2 ∂2
y + ρβ (t) yxπ(t, x, y)σS(t, y)∂xy .

Also, with power utility we get the aggregator

F (c, y, U) = δθ
(
U

1
θ

)θ−1
(
y
κ(1−γ)

θ c
1−γ
θ − U

1
θ

)
= δθU

( yκc

U
1

1−γ

)1−φ

− 1

 .
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Note that for κ = 0 we get the classical normalized aggregator in (3.14) arising
in recursive utility with Epstein-Zin preferences, see also the comments in
Remark 3.3.

2. Verify that (c∗, π∗) are equilibrium controls and U solves the Bellman
equation. From Theorem 3.2, we have

li(t, s, x, y) = ηi(t, s)x1−γyκ(1−γ) , i = 1, 2 , (3.24)

so the remainder terms vanish, i.e. Rx = Ry = Rxy = 0. We also have

U(t, x, y) = x1−γyκ(1−γ)g (t) .

Plugging this and Rx = Ry = Rxy = 0 into the Bellman equation that U must
solve, i.e. Equation (3.9), and dividing by x1−γyκ(1−γ), we obtain

g′(t) = inf
c,π



−δθ (g (t))1− 1
θ

((
c
x

) 1−γ
θ − g (t)

1
θ

)
−
(
(r + πh(t)σS(t, y))− c

x

)
(1− γ) g(t)

−1
2 (πσS(t, y))2 (1− γ) (−γ)g(t)
−α (t) (1− γ)κg(t)

−1
2 (β (t))2 (1− γ)κ((1− γ)κ− 1)g(t)
−ρβ (t)πσS(t, y) (1− γ)2 κg(t)


,

g (T ) = (δω)θ .


(3.25)

The first order conditions for c, π read

0 = −δθg (t)1− 1
θ

1− γ
θ

c
1−γ
θ
−1
(1
x

) 1−γ
θ

+ 1
x

(1− γ)g(t) ,

0 = −h(t)σS(t, y)(1− γ)g(t)− π (σS(t, y))2 (1− γ)(−γ)g(t)
− ρβ (t)σS(t, y)(1− γ)2κg(t) .

These are satisfied by the controls c∗(t, x, y) and π∗(t, x, y) from Theorem 3.2.
Plugging the controls into (3.25), we obtain

g′(t) = −θφ (g (t))1− 1
θφ δ

1
φ + τ(t)g(t) ,

g (T ) = (δω)θ ,


where

τ(t) = δθ − (1− γ)
[
r + α (t)κ+ 1

2 (β (t))2 κ((1− γ)κ− 1)
]

+
(

1− 1
γ

)[
ρ(1− γ)h(t)β (t)κ+ 1

2h(t)2 + 1
2ρ

2β (t)2 (1− γ)2κ2
]
.

This ordinary differential equation (ODE) is obviously solved by the function
g from Theorem 3.2. Hence, the function U from Theorem 3.2 solves the
necessary Bellman equation.
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3. Verify that l1, l2 solve diffusion equations. Plugging (3.24) and the con-
trols (c∗, π∗) into the diffusion equations that l1 and l2 must solve, i.e. Equa-
tions (3.11)–(3.12), and dividing by x1−γyκ(1−γ), we obtain

∂tη1(t, s) = ψ(t)η1(t, s) ,

η1(s, s) = δ
1−γ
φ g (s)−

1−γ
θφ ,


and

∂tη2(t, T ) = ψ(t)η2(t, T ) ,
η2(T, T ) = 1 ,

}
where

ψ(t) = τ(t)− δθ + (1− γ)g (t)−
1
φθ δ

1
φ .

These ODE’s are obviously solved by the function η1, η2 from Theorem 3.2.
Hence, l1, l2 from Theorem 3.2 solve the necessary diffusion equations.

Proof of Lemma 3.1. The idea is to apply Itô’s Lemma. Recall that

c∗(t, x) = δ
1
φ g(t)−

1
φθ x ,

where g satisfies the ODE

g′(t) = g(t)
[
−θφδ

1
φ g(t)1− 1

φθ + τ(t)g(t)
]
.

We get the partial derivatives

∂tc
∗(t, x) = δ

1
φ

(
− 1
θφ

)
g(t)−

1
φθ
−1
g′(t)x

= −δ
1
φ

θφ
g(t)−

1
φθ
−1
(
−θφδ

1
φ g(t)1− 1

φθ + τ(t)g(t)
)
x

= c∗(t, x)2

x
− τ(t)

θφ
c∗(t, x) ,

∂xc
∗(t, x) = δ

1
φ g(t)−

1
φθ

= c∗(t, x)
x

,

∂2
xc
∗(t, x) = 0 .

The drift and diffusion coefficient under the equilibrium controls are given as

µ∗(t, x) = x[r + π∗(t, y)λ(t, y)]− c∗(t, x)

= x
[
r + 1

γ (h(t) + ρ(1− γ)κβ(t))h(t)
]
− c∗(t, x) ,

σ∗(t, x) = xπ∗(t, y)σS(t, y)
= x 1

γ (h(t) + ρ(1− γ)κβ(t)) .
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Applying Itô’s Lemma, we obtain

dc∗
(
t,Xc∗,π∗

t

)
=
(
∂tc
∗(t,Xc∗,π∗

t ) + µ∗
(
t,Xc∗,π∗

t

)
∂xc
∗
(
t,Xc∗,π∗

t

))
dt

+ σ∗
(
t,Xc∗,π∗

t

)
∂xc
∗
(
t,Xc∗,π∗

t

)
dWt

=


c∗(t,Xc∗,π∗

t )2

Xc∗,π∗
t

− τ(t)
θφ c

∗(t,Xc∗,π∗

t )

c∗
(
t,Xc∗,π∗

t

) [
r + 1

γ (h(t) + ρ(1− γ)κβ(t))h(t)
]

− c∗(t,Xc∗,π∗
t )2

Xc∗,π∗
t

 dt

+ c∗(t,Xc∗,π∗

t ) 1
γ (h(t) + ρ(1− γ)κβ(t)) dWt ,

which yields the assertion.

3.C Details for the Exponential Utility Example
Proof of Theorem 3.3. We proceed in 3 steps.

1. Compute infinitesimal generator and aggregator. With the assumptions
on the market dynamics, we get the infinitesimal generator

Ac,π = [x (r + π(t, x, y)λ(t, y)− c(t, x, y)] ∂x + 1
2 (xπ(t, x, y)σS(t, y))2 ∂2

x

+ α (t, y) ∂y + 1
2 (β (t, y))2 ∂2

y + ρα (t, y)xπ(t, x, y)σS(t, y)∂xy
= [x (r + π(t, x, y)h(t)σS(t, y))− c(t, x, y)] ∂x

+ 1
2 (xπ(t, x, y)σS(t, y))2 ∂2

x + α (t) ∂y
+ 1

2 (β (t))2 ∂2
y + ρβ (t)xπ(t, x, y)σS(t, y)∂xy .

Also, with exponential utility we get the aggregator

F (c, y, U) = δ
[
f ′ ◦ f−1

]
(U) ·

(
[ϕ ◦ u1] (y, c)− f−1 (U)

)
= δθ

(
U

1
θ

)θ−1
(

exp
(
γ

θ
κy + γ

θ
c

)
− U

1
θ

)
= δθU

(
exp

(γ
θκy + γ

θ c
)

U
1
θ

− 1
)
.

2. Verify that (c∗, π∗) are equilibrium controls and U solves the Bellman
equation. From Theorem 3.3, we have

li(t, s, x, y) = ηi(t, s) exp (γκy + rε(t)x) , i = 1, 2 , (3.26)

so the remainder terms vanish, i.e. Rx = Ry = Rxy = 0. We also have

U (t, x, y) = exp (γκy + ε(t)γx) g (t) .
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Plugging this and Rx = Ry = Rxy = 0 into the Bellman equation that U must
solve, i.e. Equation (3.9), and dividing by exp (γκy + ε(t)γx), we obtain

g′ (t) + ε′(t)γxg(t) = inf
c,π



−δθg(t)
(

exp( γθ c−ε(t) γθ x)
g(t)

1
θ

− 1
)

− (x (r + πh(t)σS(t, y))− c) ε(t)γg(t)
−1

2 (xπσS(t, y))2 ε(t)2γ2g(t)
−α (t) γκg(t)− 1

2 (β (t))2 γ2κ2g(t)
−ρβ (t)πxσS(t, y)γ2κε(t)g(t)


,

g (T ) = (ωδ)θ ,


(3.27)

The first order conditions for c, π read

0 = −δγg(t)
exp

(γ
θ c− ε(t)

γ
θx
)

g (t)
1
θ

+ ε(t)γg(t) ,

0 = −xh(t)σS(t, y)ε(t)γg(t)− π (xσS(t, y))2 ε(t)2γ2g(t)
− ρβ (t)xσS(t, y)γ2κε(t)g(t) .

These are satisfied by the controls c∗(t, x, y) and π∗(t, x, y) from Theorem 3.3.
Plugging the controls into (3.27), we obtain

g′(t) = τ(t)g(t) + log (g (t)) ε(t)g(t) ,
g (T ) = (δω)θ ,

}

where

τ(t) = θ (δ − ε(t)) + θε(t) log
(
ε(t)
δ

)
+ 1

2h(t)2 + 1
2ρ

2β (t)2 γ2κ2

− α (t) γκ− 1
2 (β (t))2 γ2κ2 + ρβ (t) γκh(t) .

This ODE is obviously solved by the function g from Theorem 3.3. Hence,
the function U from Theorem 3.3 solves the necessary Bellman equation.

3. Verify that l1, l2 solve diffusion equations. Plugging (3.26) and the con-
trols (c∗, π∗) into the diffusion equations that l1 and l2 must solve, i.e. (3.11)–
(3.12), inserting ε′(t) = ε(t) (ε(t)− r), and dividing by exp (γκy + ε(t)γx), we
obtain

∂tη1(t, s) = ψ(t)η1(t, s) ,

η1(s, s) =
(
ε(t)
δ

)θ
g (s) ,


and

∂tη2(t, T ) = ψ(t)η2(t, T ) ,
η2(T, T ) = 1 ,

}
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where
ψ(t) = τ(t) + ε(t) log (g (t)))− θ (δ − ε(t)) .

These ODE’s are obviously solved by the function η1, η2 from Theorem 3.3.
Hence, l1, l2 from Theorem 3.3 solve the necessary diffusion equations.

Proof of Lemma 3.2. Again we apply Itô’s Lemma. We have

c∗(t, x) = ε(t)x+ θ
γ log

(
ε(t)
δ

)
+ 1

γ log (g (t)) ,

where

g′(t) = τ(t)g(t) + log (g (t)) ε(t)g(t) ,
ε′(t) = ε(t)(ε(t)− r) .

We get the partial derivatives

∂tc
∗(t, x) = ε′(t)x+ ε′(t) θγ

1
ε(t) + g′(t) 1

γ

1
g(t)

= ε(t)(ε(t)− r)x+ θ
γ (ε(t)− r) + 1

γ
τ(t)

+ ε(t)
(
c∗(t, x)− ε(t)x− θ

γ log
(
ε(t)
δ

))
= −rε(t)x+ θ

γ (ε(t)− r) + 1
γ τ(t)− θ

γ ε(t) log
(
ε(t)
δ

)
+ ε(t)c∗(t, x) ,

∂xc
∗(t, x) = ε(t) ,

∂2
xc
∗(t, x) = 0 .

The drift and diffusion coefficient under the equilibrium controls are given as

µ∗(t, x) = rx− h(t) + ρβ (t) γκ
ε(t)γ h(t)− c∗(t, x) ,

σ∗(t) = −h(t) + ργκβ(t)
γε(t) .

Applying Itô’s Lemma, we obtain

dc∗
(
t,Xc∗,π∗

t

)
=
(
∂tc
∗
(
t,Xc∗,π∗

t

)
+ µ∗

(
t,Xc∗,π∗

t

)
∂xc
∗
(
t,Xc∗,π∗

t

))
dt

+ σ∗
(
t,Xc∗,π∗

t

)
∂xc
∗
(
t,Xc∗,π∗

t

)
dWt

=


−ε(t)rXc∗,π∗

t + θ
γ (ε(t)− r) + 1

γ τ(t)
− θ
γ ε(t) log

(
ε(t)
δ

)
+ ε(t)c∗(t,Xc∗,π∗

t )
+
(
rXc∗,π∗

t − c∗(t,Xc∗,π∗

t )− h(t)+ρκγβ(t)
γε(t) h(t)

)
ε(t)

 dt

− h(t) + ργκβ(t)
γε(t) ε(t) dWt ,

from which the claim follows.





Chapter 4

Life Insurance Decisions
under Recursive Utility

Ninna Reitzel Jensen (2015)

Abstract: In this paper, we generalize recursive utility to include
lifetime uncertainty and utility from bequest. The generalization ap-
plies to discrete-time as well as continuous-time recursive utility, and
it is an important step forward in the development of recursive utility.
We formalize the problem of optimal consumption, investment, and life
insurance choice under recursive utility, and we state a verification the-
orem with a generalized Hamilton-Jacobi-Bellman equation. Our gen-
eralization of recursive utility allows us to study optimal consumption,
investment, and life insurance choice under separation of (market) risk
aversion, elasticity of inter-temporal substitution, and elasticity of sub-
stitution between bequest and future utility. The separation gives rise to
hump-shaped consumption patterns as observed in realized consumption.

Keywords: Recursive utility, lifetime uncertainty, stochastic control,
generalized Hamilton-Jacobi-Bellman equation, hump-shaped consump-
tion.

4.1 Introduction
In this paper, we generalize recursive utility to include lifetime uncertainty
and utility from bequest. The generalization applies to discrete-time as well
as continuous-time recursive utility, and it is a much needed next step in
the development of recursive utility. In continuous time, recursive utility is
also known as stochastic differential utility. Recursive utility plays an im-
portant role in the literature on optimal consumption and investment choice
for agents with a certain lifetime, but to the knowledge of the author, it has
never before been generalized to agents with an uncertain lifetime, utility
from bequest, and, consequently, a need for life insurance. The generaliza-
tion allows us to study optimal consumption, investment, and life insurance
choice under separation of (market) risk aversion, elasticity of inter-temporal
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substitution, and elasticity of substitution between bequest and future util-
ity. Here, the concept of substitution between bequest and future utility is
our way of formulating preferences for mortality risk. A similar separation
is obtained in Jensen and Steffensen (2015) [Chapter 2 of this thesis], but,
there, the separation entails time-inconsistency, and the resulting control is
an equilibrium control and not a classical optimal control. Recursive utility, on
the other hand, is by construction time-consistent, therefore the separation of
this paper is time-consistent. Interestingly, the separation gives rise to hump-
shaped consumption patterns as observed in realized consumption, see e.g.
Bullard and Feigenbaum (2007); Feigenbaum (2008); Gourinchas and Parker
(2002). In Bullard and Feigenbaum (2007); Feigenbaum (2008); Gourinchas
and Parker (2002), hump-shaped consumption patterns are obtained by intro-
ducing income uncertainty or utility from leisure, or by excluding access to
life insurance. However, without such modifications, hump-shaped consump-
tion patterns cannot be obtained by standard recursive utility or time-additive
utility under lifetime uncertainty. It is the very combination of recursive util-
ity and lifetime uncertainty that brings us closer to realized consumption. We
note that the separation in Jensen and Steffensen (2015) also gives rise to
hump-shaped consumption patterns, and it is natural to ask if the two ways
of separating preferences cover the same set of preferences. In general, the
answer is no. The two approaches are different in output as well as in con-
struction. Only if we reduce the number of free preference parameters, thereby
giving up on the threefold separability, we identify a coincidence between the
preferences covered by the two ways of separating utility.

The existing literature on optimal consumption, investment, and life insur-
ance choice focuses on time-additive utility. An important, early continuous-
time example is Richard (1975) where the seminal work by Merton (1971)
on optimal consumption and investment choice is generalized to include life-
time uncertainty and life insurance. Time-additive utility is tractable in that
Bellman’s principle of optimality applies. In Bellman (1957), Bellman states
that “an optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal pol-
icy with regard to the state resulting from the first decision”. Using dynamic
programming techniques, the value function of a time-additive optimization
problem can be characterized by a partial differential equation (in continuous
time) or a difference equation (in discrete time). Unfortunately, time-additive
utility has the disadvantage that it mixes preferences for risk and preferences
for inter-temporal substitution. In Epstein and Zin (1991), Hall (1988), and
other papers, it is argued that this imposes an undesirable constraint on the
agent’s risk aversion and elasticity of inter-temporal substitution. Also, the
entanglement is proposed as a reason for the so-called equity premium puzzle
introduced by Mehra and Prescott (1985).

Recursive utility theory deals with the disentanglement of preferences for
risk and preferences for inter-temporal substitution through a recursive def-
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inition, a certainty equivalent, and a time-aggregator. Recursive utility was
first defined in discrete time, see e.g. Kreps and Porteus (1978); Epstein and
Zin (1989). It was extended to continuous time by Duffie and Epstein (1992b)
and refined by Kraft and Seifried (2010, 2014). Recursive utility allows for
separation of preferences for risk and inter-temporal substitution, and it is
widely used to study asset pricing and consumption-portfolio choice in vari-
ous markets, see e.g. Schroder and Skiadas (1999, 2005); Kraft et al. (2013).
Also, recursive utility has been used to explore ambiguity aversion and prefer-
ences for resolution of uncertainty, see e.g. Chen and Epstein (2002); Skiadas
(1998, 2013). Despite the growing literature on recursive utility, the literature
contains no attempt to accommodate for lifetime uncertainty and utility from
bequest. The closest attempt is Kraft and Seifried (2010) where the authors
allow for Poisson jumps in the wealth process which can to some extend be
used to model lifetime uncertainty. However, they do not allow for utility from
a lump sum at a random point in time, and, therefore, they cannot accommo-
date for utility from bequest. In all, our paper is a great advance in the field
of recursive utility with lifetime uncertainty.

In Section 4.2, we provide a short introduction to recursive utility in dis-
crete time. In Sections 4.3, we present our generalization of discrete-time
recursive utility to include lifetime uncertainty and utility from bequest. In
Sections 4.4, we extend the generalization to continuous time. In Section 4.5,
we formalize the problem of optimal consumption, investment, and life in-
surance choice under recursive utility, and we provide a verification theorem
with a generalized Hamilton-Jacobi-Bellman equation for its solution. In Sec-
tion 4.6, we study optimal consumption, investment, and life insurance under
generalized Epstein-Zin preferences, and we provide numerical results to ex-
emplify our results and, in particular, our consumption and bequest patterns.

4.2 Discrete-time Recursive Utility
We fix a probability space (Ω,G, P ) endowed with a filtration F = {Ft}t∈[0,T ]
satisfying the usual conditions of completeness and right-continuity. The fil-
tration F represents all information of relevance to an agent with a certain
lifetime, for example information about the surrounding financial market. We
fix a set C ⊂ Rk of feasible consumption rates, and we denote by C a class
of F-adapted C-valued processes with time-horizon [0, T ]. The objective of
recursive utility theory is the construction of a mapping u : C→ R that ranks
consumption streams in such a way that u (c) ≥ u (c′) if and only if the con-
sumption stream c is weakly preferred to the consumption stream c′. This is
done by means of a utility process V c associated to c by setting

u (c) = V c
0 , c ∈ C .



84 4. Life Insurance Decisions under Recursive Utility

The utility process is assumed to take values in a subinterval V ⊂ R of the
real line, and u is referred to as a recursive utility function.

Starting in discrete time, we fix a partition 0 = t0 ≤ t1 ≤ . . . ≤ tm = T of
[0, T ] and consider a discrete-time consumption stream c = {ctk}k=0,...,m−1 in
C. The utility process V c is defined through the backward recursion

V c
tk

= W
(
tk+1 − tk, ctk ,m

(
L
(
V c
tk+1

∣∣∣Ftk))) , k = 0, . . . ,m− 1 ,

V c
T = ξ .

(4.1)

Here, it holds that

• ctk ∈ C is the consumption rate between time tk and tk+1,

• ξ is terminal utility,

• W : [0,∞) × C × V → V is a continuous function with W (0, c, V ) = V
for c ∈ C, V ∈ V,

• L
(
V c
tk+1

∣∣∣Ftk) is the conditional distribution of V c
tk+1 given Ftk ,

• m is a certainty equivalent on V.

LettingM1 (V) denote the set of probability measures on B (V) with moments
of all orders, a functional m :M1 (V)→ R is called a certainty equivalent on
V if m (δv) = v for all v ∈ V where δv is the Dirac measure at v.

The function W is often referred to as the inter-temporal aggregator be-
cause in a set-up without risk, implying m

(
L
(
V c
tk+1)

∣∣∣Ftk)) = V c
tk+1 , it de-

scribes the inter-temporal aggregation of present consumption ctk and the
utility of future consumption V c

tk+1 . Similarly, the certainty equivalent m is
referred to as the risk-aggregator since it describes the risk weighted aggrega-
tion of possible future values of V c

tk+1 . The pair (W,m) completely describes
a certain-lived agent’s preferences for discrete-time stochastic consumption
streams, and we call (W,m) a discrete-time aggregator.

A special class of certainty equivalents are those given by

m (µ) = h−1
(∫
V
h dµ

)
, µ ∈M1 (V) , (4.2)

for a strictly increasing, polynomially bounded C2-function u : V → R. Here,
m is called an expected utility (EU) certainty equivalent or the Kreps-Porteus
certainty equivalent induced by the function h. If h is the identity, then m
denotes expectation and is called risk-neutral. In that case, we speak of the
pair (W,m) as a normalized discrete-time aggregator. When dealing with a
normalized aggregator, we generally leave out the certainty equivalent m = E
and speak of W as a normalized aggregator instead of writing (W,E).
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Utility has an ordinal interpretation rather than a cardinal. Therefore,
if Φ : V → V̄ is a strictly increasing function, and if we define the mapping
ū : C̄→ R by

ū (c) = Φ (u (c)) ,

then ū is a recursive utility function representing the same preferences as
u. Here, barred quantities are interpreted in the same way as their non-
barred counterparts. In this case, we say that u and ū are equivalent, and
the underlying discrete-time aggregators (W,m) and

(
W̄ , m̄

)
are said to be

ordinally equivalent. In Kraft and Seifried (2010), it is shown that if m is given
by Equation (4.2), then the normalized aggregator W̄ ordinally equivalent to
(W,m) is given by

W̄ (∆, c, V ) = h
(
W
(
∆, c, h−1 (V )

))
.

Example 4.1. A particular class of discrete-time inter-temporal aggregators
W : [0,∞)× C × C 7→ C is given by

W (∆, c, V ) = g−1 ((1− δ∆) g (V ) + δ∆g (c))

for a strictly increasing function g : C 7→ R and a subjective discount rate
δ > 0, see e.g. Kraft and Seifried (2014). Since the expression for the aggre-
gator contains both g (V ) and g (c), the utility value V and the consumption
rate c are measured on the same scale. Also, utility is measured in consump-
tion units thanks to the outer function g−1.

Let m be the Kreps-Porteus certainty equivalent induced by a function u :
C 7→ C̄. Then the normalized discrete-time aggregator W̄ : [0,∞)×C × C̄ 7→ C̄
corresponding to (W,m) is given by

W̄ (∆, c, V ) = u
(
g−1

(
(1− δ∆) g

(
u−1 (V )

)
+ δ∆g (c)

))
=
(
u ◦ g−1

)(
(1− δ∆)

(
u ◦ g−1

)−1
(V ) + δ∆g (c)

)
.

Utility is now measured in units of felicity.

4.3 The Discrete-Time Aggregator under Lifetime
Uncertainty

In the previous section, we only addressed recursive utility for an agent with
a certain lifetime. To allow for lifetime uncertainty and utility from bequest,
we start by introducing a stochastic process I = (It)t∈[0,T ] on (Ω,G,P) that
indicates survival, i.e. Itk = 1 indicates survival up to and including time tk.
We think of T as the agent’s maximum remaining lifetime, and we assume that
(It)t∈[0,T ] is independent of the filtration F that still represents all information
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of relevance to an agent with a certain lifetime. For convenience, we refer to
all non-mortality risk as market risk. With this convention, the filtration F
represents information about developments in the market.

In the following, we limit our focus to inter-temporal aggregators

W : [0,∞)× C × C 7→ C

that measures utility in consumption units. This facilitates easy aggregation
of bequest and future utility. In addition to the certainty equivalent m that
describes the risk weighted aggregation of possible future levels of utility for
a certain-lived agent, we introduce a certainty equivalent n that describes
the mortality risk weighted aggregation of bequest and future utility. By
mortality risk weighted aggregation, we mean aggregation taking into account
the agent’s preferences for substitution between bequest and future utility.
When applying n, we condition on FT which is seen as complete information
about the market. We condition on FT to separate lifetime uncertainty from
all other uncertainty as represented by FT . To simplify notation, we write
mtk (·) = m (L (·|Ftk)) and ntk (·) = n (L (·|Itk = 1,FT )).

To introduce lifetime uncertainty and utility from bequest, we replace the
backward recursion in Equation (4.1) with the backward recursion

V c,b
tk

= W
(
tk+1 − tk, ctk ,mtk

(
ntk

(
Itk+1V

c,b
tk+1

+
(
1− Itk+1

)
btk+1

)))
,

V c,b
T = ξ ,

(4.3)

where ctk ∈ C is the consumption rate between time tk and tk+1, btk+1 ∈ C is
bequest given death between time tk and tk+1, and ξ ∈ C is terminal wealth.
Now, V c,b

tk
is the utility given survival up to and including time tk. We assume

that the processes (ct)t∈[0,T ] and (bt)t∈[0,T ] are adapted to the filtration F , and
that ξ is FT -measurable. Also, by construction,

(
V c,b
t

)
t∈[0,T ]

is adapted to the
filtration F . The intuition behind the backward recursion in Equation (4.3)
is the following:

• The agent is alive at time tk. At the future time point tk+1, the agent
is either alive or dead, as indicated by Itk+1 . If the agent is alive, the
utility is V c,b

tk+1
. If the agent is dead, the only utility left is the bequest

btk+1 .

• The certainty equivalent n describes the agent’s mortality risk weighted
aggregation of bequest and future utility. The aggregation is performed
given the information FT to focus only on preferences for mortality risk
(or, more precisely, preferences for substitution between bequest and
future utility). The result,

ntk

(
Itk+1V

c,b
tk+1

+
(
1− Itk+1

)
btk+1

)
,
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is the agent’s mortality risk weighted future utility aggregated across
the states dead and alive.

• Due to market risk, the size of this future utility is not known at time
tk. The certainty equivalent m describes the market risk weighted ag-
gregation of its possible values.

• Finally, the functionW describes the inter-temporal aggregation of present
consumption ctk and the market and mortality risk weighted utility of
future consumption and bequest,

mtk

(
ntk

(
Itk+1V

c,b
tk+1

+
(
1− Itk+1

)
btk+1

))
.

We mention that we could easily have multiplied the bequest btk+1 by a non-
zero weight function. There are three main reasons for including a weight
function; 1) it accounts for the fact that agents without heirs might not care
much about bequest, 2) it allows for a different weight on bequest throughout
life, 3) it accommodates for the fact that bequest is not consumed all at once,
but typically over a number of years, thereby raising the utility from bequest.
For notational convenience, we have chosen not to include a weight function,
but the inclusion of a deterministic and non-zero weight function would not
alter our results.

We define m and n to be Kreps-Porteus certainty equivalents induced by
strictly increasing polynomially bounded C2-functions u, v : C 7→ R, i.e.

m (µ) = u−1
(∫
C
u (s)µ (ds)

)
, µ ∈M1 (C) ,

n (µ) = v−1
(∫
C
v (s)µ (ds)

)
, µ ∈M1 (C) .

That is, v determines the agent’s preferences for substitution between bequest
and future utility, whereas u determines the market risk weighted aggregation
of future levels of utility. Letting ptk,tk+1 = P

(
Itk+1 = 1

∣∣Itk = 1
)
denote the

conditional survival probability from time tk to time tk+1, we get

ntk

(
Itk+1V

c,b
tk+1

+
(
1− Itk+1

)
btk+1

)
= v−1

(
E
[
v
(
Itk+1V

c,b
tk+1

+
(
1− Itk+1

)
btk+1

)∣∣∣FT , Itk = 1
])

= v−1
(
E
[
Itk+1v

(
V c,b
tk+1

)
+
(
1− Itk+1

)
v
(
btk+1

)∣∣∣FT , Itk = 1
])

= v−1
(
v
(
V c,b
tk+1

)
E
[
Itk+1

∣∣Itk = 1
]

+ v
(
btk+1

)
E
[(

1− Itk+1

)∣∣, Itk = 1
])

= v−1
(
ptk,tk+1v

(
V c,b
tk+1

)
+
(
1− ptk,tk+1

)
v
(
btk+1

))
.
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At the third equality, we have used that V c,b
tk+1

and btk+1 are FT -measurable
and that Itk+1 is independent of FT . We obtain

mtk

(
ntk

(
Itk+1V

c,b
tk+1

+
(
1− Itk+1

)
btk+1

))
= u−1

(
Etk

[
u
(
v−1

(
ptk,tk+1v

(
V c,b
tk+1

)
+
(
1− ptk,tk+1

)
v
(
btk+1

)))])
,

where we have used the notation Etk [·] = E [·|Ftk ].
We notice that if u = v, meaning that the agent’s preferences for market

and mortality risk are the same, the agent’s risk weighted utility of future
consumption and bequest is given by

mtk

(
ntk

(
Itk+1V

c,b
tk+1

+
(
1− Itk+1

)
btk+1

))
= u−1

(
Etk

[
ptk,tk+1u

(
V c,b
tk+1

)
+
(
1− ptk,tk+1

)
u
(
btk+1

)])
.

Hence, the agent’s utility is additive across the states dead and alive. We refer
to this as the utility-bequest-additive case. One focal point of this paper is
the separation of preferences for market risk and preferences for substitution
between bequest and future utility (i.e. preferences for mortality risk).

The backward recursion in Equation (4.3) is intuitive, but not as tractable
as a backward recursion with a normalized aggregator. For convenience, as-
sume that the partition t0, . . . , tm is equidistant with step size ∆ = tk+1 − tk.
The transformations

Ṽ c,b
tk+1

= u
(
v−1

(
ptk,tk+∆v

(
V c,b
tk+1

)
+
(
1− ptk,tk+∆

)
v
(
btk+1

)))
and

ξ̃ = u
(
v−1 (pT−∆,T v (ξ) +

(
1− pT−∆,T

)
v (bT )

))
yield the backward recursion

Ṽ c,b
tk

= W̃
(
tk,∆, ctk , btk ,Etk

[
Ṽ c,b
tk+1

])
, Ṽ c,b

T = ξ̃ ,

where the normalized aggregator W̃ is given by

W̃
(
t,∆, c, b, Ṽ

)
= u

(
v−1

(
pt−∆,tv

(
W
(
∆, c, u−1

(
Ṽ
)))

+
(
1− pt−∆,t

)
v (b)

))
=
(
u ◦ v−1

)(
pt−∆,t

(
u ◦ v−1

)−1 (
W̄
(
∆, c, Ṽ

))
+
(
1− pt−∆,t

)
v (b)

)
.

Here, W̄ is the normalized discrete-time aggregator, ordinally equivalent to
(W,m) which is given by

W̄
(
∆, c, Ṽ

)
= u

(
W
(
∆, c, u−1

(
Ṽ
)))

.
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We note that the normalized aggregator W̃ measures utility in units of felicity.
We call W̃ a mortality adjusted normalized discrete-time aggregator. Contrary
to the aggregator W̄ , the mortality adjusted aggregator W̃ is time-dependent
because the conditional survival probability is time-dependent. This concludes
our generalization of discrete-time recursive utility.

Example 4.2. The mortality adjusted normalized discrete-time aggregator
corresponding to the discrete-time aggregator (W,m) from Example 4.1 is
given by

W̃
(
t,∆, c, b, Ṽ

)
= u

(
v−1

(
pt−∆,tv

(
g−1

(
(1− δ∆) g

(
u−1

(
Ṽ
))

+ δ∆g (c)
))

+
(
1− pt−∆,t

)
v (b)

))
.

First, the present consumption and future utility are aggregated, taking into
account the agent’s preferences for inter-temporal substitution as represented
by the function g. Second, the resulting utility is aggregated with the bequest,
taking into account the agent’s preferences for substitution between bequest
and utility as represented by the function v. The two aggregations have exactly
the same form; the only difference is that pt−∆,t replaces δ∆ and v replaces g.
We consider this to be an elegant feature of our generalization.

4.4 The Continuous-Time Aggregator under
Lifetime Uncertainty

To extend our generalization to continuous time, we model the survival indi-
cator process (It)t∈[0,T ] by a deterministic, time-dependent mortality intensity
µ : [0, T ] 7→ R satisfying

∂

∂∆ log
(
pt,t+∆

)
= −µ (t+ ∆) .

We assume that µ is bounded on [0, T ]. With this assumption, T cannot
possibly be the agent’s maximum remaining lifetime, but we assume that the
agent has a very low probability of being alive after time T such that the time
horizon [0, T ] can be thought of as the agent’s remaining lifespan. We have
the boundary condition pt,t = 1. Hence, the conditional survival probability
from time t−∆ to t is given by

pt−∆,t = e
−
∫ t
t−∆ µ(v) dv

.

We assume that the assumptions of Theorem 4.1 or Theorem 6.1 in Kraft and
Seifried (2014) are satisfied for the aggregators W̃ and W̄ (with the bequest
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b playing the same role as the consumption c). Then the continuous-time
aggregator corresponding to W̃ is given by

f
(
t, c, b, Ṽ

)
= W̃∆

(
t, 0, c, b, Ṽ

)
.

In the derivation of the continuous-time aggregator in Kraft and Seifried
(2014), there are neither time-dependence nor bequest, but in the limiting
argument only the step size ∆ and the recursively defined utility process are
relevant. Hence, the result stands for our time-dependent aggregator with
bequest. In Appendix 4.A, we easily derive that

f
(
t, c, b, Ṽ

)
(4.4)

= f̄
(
c, Ṽ

)
+ µ (t)

(
v (b)− v

(
u−1

(
Ṽ
))) (

u ◦ v−1
)′ ((

u ◦ v−1
)−1 (

Ṽ
))

.

Here, f̄ is the “classical” normalized continuous-time aggregator corresponding
to the normalized discrete-time aggregator W̄ . We call f a mortality adjusted
normalized continuous-time aggregator. The aggregator is time-dependent
exactly as its discrete-time counterpart. As in discrete time, it would be
more correct to write (f,E) when speaking of a normalized continuous-time
aggregator, but we generally leave out the expectation E.

The utility process Ṽ c,b
t associated to the consumption-bequest stream

(cs, bs)s∈[0,T ] and terminal wealth ξ is given by

Ṽ c,b
t = Et

[∫ T

t
f
(
s, cs, bs, Ṽ

c,b
s

)
ds+ u (ξ)

]
.

Necessary and sufficient conditions for existence and uniqueness of this utility
process cannot be characterized by simple explicit conditions. In recursive
utility without lifetime uncertainty, it is sufficient to assume that the aggre-
gator f is measurable, Lipschitz in utility, and satisfies a growth condition in
consumption, see e.g. Theorem 1 in Duffie and Epstein (1992b). However, the
Lipschitz condition rules out the important class of Epstein-Zin preferences
that we focus on in Section 4.6. Following standard practice, we settle for an
implicit condition and consider only consumption and bequest processes for
which the utility process is well-defined. We denote by U the class of progres-
sively measurable consumption and bequest processes (c, b) ∈ C2 such that
Ṽ c,b is a uniquely determined semi-martingale. In applications, one then has
to verify existence of the utility process corresponding to the optimal solution
on a case-by-case basis. For a detailed discussion in this direction, see Kraft
et al. (2013).
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Example 4.3. The continuous-time aggregator corresponding to the normal-
ized discrete-time aggregator W̄ from Example 4.1 is given by

f̄
(
c, Ṽ

)
= δ

u′
(
u−1

(
Ṽ
))

g′
(
u−1

(
Ṽ
)) (g (c)− g

(
u−1

(
Ṽ
)))

.

The corresponding mortality adjusted normalized aggregator f is given by

f
(
t, c, b, Ṽ

)
= µ (t)

u′
(
u−1

(
Ṽ
))

v′
(
u−1

(
Ṽ
)) (v (b)− v

(
u−1

(
Ṽ
)))

+ δ
u′
(
u−1

(
Ṽ
))

g′
(
u−1

(
Ṽ
)) (g (c)− g

(
u−1

(
Ṽ
)))

.

For the derivation of both aggregators, see Appendix 4.B. We notice that the
aggregation of consumption and future utility and the aggregation of future
utility and bequest are now performed simultaneously and not consecutively
as in the discrete-time case. Again, the two aggregations have exactly the
same form; the only difference is that µ (t) replaces δ and v replaces g. As in
discrete time, we consider it to be an elegant feature of our generalization that
preferences for inter-temporal substitution and preferences for substitution
between bequest and utility are treated symmetrically. For concrete choices
of the functions u, v, and g, one needs to check up on the assumptions of
Theorem 4.1 or Theorem 6.1 in Kraft and Seifried (2014) (with b playing the
same role as c).

4.5 Life Insurance Decisions under Recursive
Utility

The introduction of lifetime uncertainty and utility from bequest allows us to
consider an agent making decisions concerning consumption, investment, and
life insurance under continuous-time recursive utility. We model the death of
the agent by the survival indicator process I from the previous sections. In
particular, the agent’s probability of being alive at time t is given by

P (It = 1) = P (Is = 1 : s ∈ [0, t]) = e−
∫ t

0 µ(v) dv , t ≥ 0 .

We assume that the agent has a very low probability of being alive after time
T such that the optimization problem below can be thought of as the agent’s
lifetime consumption-investment-life insurance problem.

The agent has access to a classical Black-Scholes market consisting of a
bank account, B, with risk free short rate r, and a stock, S, with excess return
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λ and volatility σ. The asset prices evolve according to the dynamics

dBt = Btrdt , t ≥ 0 , B0 = 1 ,
dSt = St [(r + λ) dt+ σdWt] , t ≥ 0 , S0 = s0 ,

where r, λ, σ > 0 are constants, and W is a standard Brownian motion on the
probability space (Ω,G, P ). We assume that the filtration F from the previous
sections is generated by the Brownian motion W .

The agent can trade term insurance with a life insurance company. A
death sum d triggers premiums payments at rate dµ̂. Here, µ̂ is the mortality
intensity used by the insurance company for pricing, and it may or may not
be equal to µ.

The agent’s preferences are described by a mortality adjusted normalized
continuous-time aggregator f (t, c, b, v) and a utility function u for terminal
wealth. The terminal wealth comes into play in the improbable case of survival
until time T .

The agent has wealth X and invests an amount π in the stock and the
remaining wealth X − π in the bank account. As long as the agent is alive,
she consumes at rate c, receives labor income at a deterministic rate w, and
buys life insurance at premium rate dµ̂. When the agent dies, her inheritors
receive the death sum d and the remaining wealth X. While the agent is alive,
her wealth evolves according to the dynamics

dXc,π,d
t =

[
rXc,π,d

t + πtλ− ct − µ̂ (t) dt + w (t)
]

dt+ πtσ dWt ,

Xc,π,d
0 = x0 ,

(4.5)

where x0 is the initial wealth of the agent, w is a continuous, deterministic
function, and c, π, d are stochastic processes, i.e.

c, π, d : [0, T ]× Ω→ R .

We require that the set of control processes (c, π, d) is adapted to the filtration
F and chosen from the class of admissible controls

A (x0) =
{

(c, π, d) :
(
c, d+Xc,π,d

)
∈ U and

(4.5) has a unique solution Xc,π,d in R with

(ct, πt, dt) ∈ Γ
(
t,Xc,π,d

t

)
for all t ∈ [0, T ]

}
.

Here, the set function Γ : [0, T ] × R models a possible state-dependent con-
straint on the set of controls.

In addition to the agent’s monetary wealth, we also formalize the agent’s
human wealth which we denote by L. The agent’s human wealth is the finan-
cial value of her future labour income, and it is given by

L (t) =
∫ T

t
w (s) e−

∫ s
t

(r+µ̂(v)) dv ds , t ∈ [0, T ] . (4.6)
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We speak of the sum Xc,π,d + L as the agent’s total wealth. We note that
the mortality intensity µ̂ (and not µ) appears in Equation (4.6) because µ̂ is
the intensity used for pricing the term insurance, and this asset completes the
market.

The agent wishes to solve the problem

max
(c,π,d)∈A(x0)

V c,π,d
0 , (4.7)

where V c,π,d is the utility process corresponding to the investment strategy
π = (πt)t∈[0,T ], the consumption strategy c = (ct)t∈[0,T ] and the term insurance
strategy d = (dt)t∈[0,T ], i.e.

V c,π,d
t = Et

[∫ T

t
f
(
s, cs, ds +Xc,π,d

s , V c,π,d
s

)
ds+ u

(
Xc,π,d
T

)]
.

Repeating the proof of Theorem 3.1 in Kraft et al. (2013) with our mortality
adjusted aggregator f (t, c, b, v), we realize that the additional dependence on
time and bequest is never an issue. Hence, the theorem and proof in Kraft
et al. (2013) allow us to state the following verification theorem.

Theorem 4.1. Suppose there exists a k > 0 such that

f (t, c, b, v)− f (t, c, b, w) ≤ k (v − w) (4.8)

for all t ∈ [0, T ], c, b ∈ C and v, w ∈ V with v ≥ w.
Assume there exists a function J ∈ C1,2 ([0, T ]× R) that solves the gener-

alized Hamilton-Jacobi-Bellman equation

0 = sup
(c,π,d)∈Γ(t,x)


Jt (t, x) + (rx+ πλ− c− µ̂ (t) d+ w (t)) Jx (t, x)

+1
2π

2σ2Jxx (t, x)
+f (t, c, d+ x, J (t, x))

 ,

J (T, x) = u (x) ,

(4.9)

and assume that the local martingale∫ ·
0
Jx
(
t,Xc,π,d

t

)
πtσ dWt

is a true martingale for every (c, π, d) ∈ A (x0).
If there exists a control (c∗, π∗, d∗) ∈ A (x0) that realizes the supremum

in Equation (4.9), then (c∗, π∗, d∗) is the optimal control, and J is the value
function of the problem in Equation (4.7). In particular, it holds that

max
(c,π,d)∈A(x0)

V c,π,d
0 = V c∗,π∗,d∗

0 = J (0, x0) .

[Post-submission comment: For a later added proof, see Appendix A.]



94 4. Life Insurance Decisions under Recursive Utility

4.6 Life Insurance Decisions with Epstein-Zin
Preferences

We focus on an agent with Epstein-Zin preferences. These preferences arise by
setting C = (0,∞), g (x) = 1

1−φx
1−φ, and u (x) = 1

1−ρx
1−ρ in Examples 4.1–

4.3. The “classical” normalized Epstein-Zin continuous-time aggregator reads

f̄
(
c, Ṽ

)
= δ

1− ρ
1− φṼ


 c(

(1− ρ) Ṽ
) 1

1−ρ


1−φ

− 1

 .

Here, ρ is relative (market) risk aversion, and 1
φ is elasticity of inter-temporal

substitution (EIS). Epstein-Zin preferences are also known as CEIS-CRRA
preferencence (“constant EIS and constant relative risk aversion”).

Letting 1
κ denote the elasticity of substitution between bequest and fu-

ture utility, we set v (x) = 1
1−κx

1−κ. This gives us the following normalized
continuous-time mortality adjusted Epstein-Zin aggregator

f
(
t, c, b, Ṽ

)
= µ (t) 1− ρ

1− κṼ


 b(

(1− ρ) Ṽ
) 1

1−ρ


1−κ

− 1



+ δ
1− ρ
1− φṼ


 c(

(1− ρ) Ṽ
) 1

1−ρ


1−φ

− 1

 .

(4.10)

We notice that the aggregator is a sum of two Epstein-Zin aggregators. There-
fore, we can use Proposition 3.2 in Kraft et al. (2013) to conclude that the
aggregator satisfies the regularity condition in Equation (4.8) in each of the
following four cases:

1. ρ > 1 and φ, κ < 1,

2. ρ > 1 and φ, κ > 1 with ρ ≤ φ, κ,

3. ρ < 1 and φ, κ > 1,

4. ρ < 1 and φ, κ < 1 with ρ ≥ φ, κ.

In the following, we only consider these cases.
We mention that Epstein-Zin preferences do not necessarily satisfy Theo-

rem 4.1 or Theorem 6.1 in Kraft and Seifried (2014). However, Epstein-Zin
preferences are widely used in the literature, so we continue working with the
aggreagtor in Equation (4.10).
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In Appendix 4.C, we show that the optimal controls for the problem in
Equation (4.7) with the aggregator in Equation (4.10) are given by

π∗ (t, x) = λ

ρσ2 (x+ L (t)) ,

c∗ (t, x) = δ
1
φ (g (t))−

q(1−φ)
φ(1−ρ) (x+ L (t)) ,

d∗ (t, x) =
(
µ (t)
µ̂ (t)

) 1
κ

(g (t))−
q(1−κ)
κ(1−ρ) (x+ L (t))− x ,

where L is the agent’s human wealth, q is a free parameter that can be chosen
based on convenience, and g is the solution to the ordinary differential equation
(ODE)

gt (t) = −1
q

(1− ρ)
[
r + λ2

2ρσ2 + µ̂ (t)− δ

1− φ −
µ (t)
1− κ

]
g (t)

− 1
q

φ (1− ρ)
1− φ δ

1
φ (g (t))−

q(1−φ)
φ(1−ρ) +1

− 1
q

κ (1− ρ)
1− κ (µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−

q(1−κ)
κ(1−ρ) +1

,

g (T ) = 1 .

(4.11)

We note that c∗, π∗, and d∗ + x are all directly proportional to the agent’s
total wealth x+L. The optimal proportion π∗ of wealth to invest in the stock
is independent of the elasticity parameters κ and φ, and it is the same as in
the well-known case of time-additive utility. The ODE for g is non-linear for
any choice of q, except in the time-additive and utility-bequest-additive case
ρ = φ = κ where it is linear for q = ρ. In general, an explicit solution is
therefore not available for the optimal consumption rate c∗ or bequest d∗+x.

4.6.1 The optimal consumption rate and bequest

In this subsection, we study the agent’s optimal consumption rate and bequest
by deriving the dynamics of the optimal consumption rate. We start by fixing
q = κ(1−ρ)

1−κ to eliminate one of the non-linearities in Equation (4.11). We then
get the ODE

gt (t) = −1− κ
κ

[
r + λ2

2ρσ2 + µ̂ (t)− δ

1− φ −
µ (t)
1− κ

]
g (t)

− φ (1− κ)
κ (1− φ)δ

1
φ (g (t))−

κ(1−φ)
φ(1−κ) +1 − (µ̂ (t))1− 1

κ (µ (t))
1
κ ,

g (T ) = 1 .

(4.12)
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Also, the optimal controls read

π∗ (t, x) = λ

ρσ2 (x+ L (t)) ,

c∗ (t, x) = δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ) (x+ L (t)) , (4.13)

d∗ (t, x) =
(
µ (t)
µ̂ (t)

) 1
κ

(g (t))−1 (x+ L (t))− x

= c∗ (t, x) δ−
1
φ

(
µ (t)
µ̂ (t)

) 1
κ

(g (t))
κ(1−φ)
φ(1−κ)−1 − x .

We denote the optimal bequest by b∗, i.e. b∗ (t, x) = x + d∗ (t, x). Since the
optimal bequest can be expressed in terms of the optimal consumption rate
c∗, we start by focusing on c∗. In Appendix 4.D, we show that the optimal
consumption rate has the dynamics

dc∗ (t,X∗t )
c∗ (t,X∗t ) = 1

φ

[
r + (1 + φ) λ2

2ρσ2 + µ̂ (t)− δ − µ (t) 1− φ
1− κ

]
dt

+
(
κ (1− φ)
φ (1− κ) − 1

)
(µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−1 dt+ λ

ρσ
dWt ,

c∗ (0, X0) = (x0 + L (0)) δ
1
φ (g (0))−

κ(1−φ)
φ(1−κ) .

The dynamics allow us to simulate the optimal consumption rate and thereby
also the optimal bequest using the relation

b∗ (t,X∗t ) = c∗ (t,X∗t ) δ−
1
φ

(
µ (t)
µ̂ (t)

) 1
κ

(g (t))
κ(1−φ)
φ(1−κ)−1

.

Simulating the optimal consumption rate (obviously) results in a wide range
of optimal consumption paths for each choice of parameters. This makes inter-
pretation difficult, and instead we focus on the expected optimal consumption
rate ĉ∗ which is given by the ODE

ĉ∗t (t)
ĉ∗ (t) = 1

φ

[
r + (1 + φ) λ2

2ρσ2 + µ̂ (t)− δ − µ (t) 1− φ
1− κ

]

+
(
κ (1− φ)
φ (1− κ) − 1

)
(µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−1 ,

ĉ∗ (0) = (x0 + L (0)) δ
1
φ (g (0))−

κ(1−φ)
φ(1−κ) .

(4.14)

The expected optimal bequest b̂∗ is given by

b̂∗ (t) = ĉ∗ (t) δ−
1
φ

(
µ (t)
µ̂ (t)

) 1
κ

(g (t))
κ(1−φ)
φ(1−κ)−1

. (4.15)

In the next subsection, we comment on the size and shape of ĉ∗ and b̂∗ in a
numerical example.
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4.6.2 Numerical example

We consider a female agent who is 30 years old at time 0 and has an initial
wealth of x0 = 10, 000 USD. She starts off with a yearly labour income at rate
20, 000 USD, and her labour income grows with 2% each year due to inflation.
We do not take taxes into account. She retires at age 65. Altogether, her
labour income rate is given by

w (t) = 20, 000 · e0.02t · 1{30+t≤65} .

Following Kraft et al. (2013), we choose the following market and preference
parameters values:

r σ λ δ ρ φ

0.05 0.20 0.07 0.08 2 8

This choice of ρ and φ places us in the second of the four cases on page 94.
Hence, we only consider κ ≥ 2. We set both µ and µ̂ equal to the G82
mortality intensity for a female aged 30 at time 0, i.e.

µ̂ (t) = µ (t) = 5 · 10−4 + 5.3456 · 10−5 · e0.087498(30+t) .

For the last three decades, the gender specific G82 mortality intensities have
served as standard mortality intensities for adults in Denmark. We fix the
time-horizon T = 80 since the probability of surviving the age of 110 is very
small with the G82 mortality.

We study the agent’s optimal consumption rate ĉ∗ and bequest b̂∗ numer-
ically with particular focus on the elasticity of substitution between bequest
and future utility, 1

κ . We solve the ODEs in Equations (4.12) and (4.14) nu-
merically by use of a simple Euler scheme. In Figures 4.1–4.2, we plot the
expected optimal consumption rate and bequest for different values of κ. The
optimal bequest is computed using the relation in Equation (4.15).

We notice that the expected optimal consumption rate in Figure 4.1 starts
out the same for all values of κ whereas the expected optimal bequest in Fig-
ure 4.2 starts out high for low values of κ and vice versa. For low values of
κ, the expected optimal consumption rate and bequest are humped-shaped,
meaning that they increase and then decrease. For high values of κ, the ex-
pected optimal consumption rate and bequest are strictly increasing over time.
To explain the differences, we remember the following rules of thumb: For low
ages, life insurance is cheap because of the low mortality. For high ages, con-
sumption is cheap because of the low survival probability. The agent’s utility
from consumption is decreasing in mortality since the agent only consumes
while alive. The agent’s utility from bequest is increasing in mortality since
the bequest only comes into play when the agent dies.

A high value of κ corresponds to a low elasticity of substitution between
bequest and future utility. Hence, an agent with a high value of κ hardly
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Figure 4.1: Expected optimal consumption rate as a function of age.
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Figure 4.2: Expected optimal bequest as a function of age.
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Figure 4.3: Expected optimal consumption rate as a function of age for low values
of κ.

benefits from bequest in the early years when the probability of dying (and
leaving bequest) is low. This means that the agent cannot benefit from the
cheap life insurance early in life. Instead, the agent has a high consumption
rate and bequest late in life when consumption is cheap and when she benefits
more from bequest because of the increased mortality.

A low value of κ corresponds to a high elasticity of substitution between
bequest and future utility. Hence, an agent with a low value of κ has more free-
dom to exploit the cheap life insurance early in life. The agent’s hump-shaped
bequest can be explained by the following two competing effects: On one
hand, increased mortality means that the agents benefits more from bequest.
On the other hand, increased mortality means more expensive life insurance.
The agent’s bequest increases as long as the first effect is stronger. The value
of κ decides when the second effect takes over and the bequest starts to de-
crease. The agent’s hump-shaped consumption rate can be explained in much
the same way: On one hand, increased mortality means cheaper consumption.
On the other hand, increased mortality means that the agents benefits less
from consumption. The agent’s consumption rate increases as long as the first
effect is stronger. Again, the value of κ decides when the second effect takes
over and the consumption rate starts to decrease.

Values of κ below 2 are not covered by the four cases on page 94. However,
if we consider values of κ between 0 and 2, we get Figures 4.3 and 4.4 (beware
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Figure 4.4: Expected optimal bequest as a function of age for low values of κ.

of the different scaling of the value axes). We notice that for κ tending to
zero, the agent buys more and more life insurance, and she does so earlier and
earlier in life–while consuming less and less. This is because she has a high
elasticity of substitution between bequest and future utility which allows her
to exploit the cheap life insurance early in life.

Hump-shaped consumption patterns are observed in realized consumption,
see e.g. Bullard and Feigenbaum (2007); Feigenbaum (2008); Gourinchas and
Parker (2002). Hump-shaped consumption patterns cannot be obtained by
standard recursive utility or time-additive utility under lifetime uncertainty.
It is the combination of recursive utility and lifetime uncertainty that enables
this interesting feature. In Feigenbaum (2008), hump-shaped consumption
patterns are obtained in a general time-additive equilibrium model with mor-
tality risk, but only by excluding access to life insurance which is no innocu-
ous assumption. In Gourinchas and Parker (2002); Bullard and Feigenbaum
(2007), hump-shaped consumption patterns are explained by income uncer-
tainty and utility from leisure, but not without a significant increase in com-
plexity of the model. Our model, on the other hand, offers an explanation for
hump-shaped consumption patterns in a simple model.

4.6.3 Comparison to Jensen and Steffensen (2015)

In the previous section, we studied optimal consumption, investment, and
life insurance choice under separation of (market) risk aversion, elasticity of
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inter-temporal substitution, and elasticity of substitution between bequest
and future utility. A similar separation is obtained in Jensen and Steffensen
(2015), and, there, the separation also gives rise to hump-shaped consumption
patterns. It is natural to consider if the two approaches cover the same set of
preferences. By construction the two ways of separating preferences are very
different. Recursive utility separates preferences by recursively building up a
value function of local certainty equivalents of future (indirect) utility. Jensen
and Steffensen (2015) separate preferences by building up a value function as
a non-linear global aggregation of certainty equivalents of future consumption
and bequest. The latter leads to time-consistency issues which are overcome
using equilibrium theory.

In Jensen and Steffensen (2015), the agent’s preferences are described by
the aggregator

f (t, c, b, v) = θδv

( c1−γ

v (1− γ)

) 1
κ

+
(
ε (t)µ (t) b1−γ

v (1− γ)

) 1
κ


κ
θ

− (µ (t) + θδ) v,

where γ models risk aversion, 1
φ models elasticity of inter-temporal substitu-

tion, κ is a parameter in the modeling of substitution between consumption
and bequest, and ε is a deterministic weight function allowing for a different
weight on inheritance than on consumption and for a changing weight on in-
heritance throughout life. In the previous section, the agent’s preferences are
described by the aggregator

f (t, c, b, v) = µ (t) 1− ρ
1− κv

 b1−κ

((1− ρ) v)
1−κ
1−ρ
− 1


+ δ

1− ρ
1− φv

 c1−φ

((1− ρ) v)
1−φ
1−ρ
− 1

 .

It is clear that the two aggregators cannot be reparameterized to coincide
without reducing the number of free parameters. Hence, the aggregators do,
in general, not cover the same set of preferences. Consumption and bequest
are somehow more entangled in the aggregator from Jensen and Steffensen
(2015), and, from the general aggregator in Equation (4.4), it is apparent that
we cannot replicate this entanglement with a different specification of u, v,
and f̄ . This means that the two ways of separating preferences are not only
different in their construction, but also in output.

However, if we reduce the number of free parameters, the two aggregators
can be reparameterized to almost coincide. Letting κ = θ = 1−γ

1−φ and ε (t) =
µ (t)−1+θ in the aggregator from Jensen and Steffensen (2015), we obtain

f (t, c, b, v) = θv

(
δ

c1−φ

(v (1− γ))
1
θ

+ δµ (t) b1−φ

(v (1− γ))
1
θ

)
−
(

1
θµ (t) + δ

)
θv .
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Similarly, letting κ = φ and θ̄ = 1−ρ
1−φ in the aggregator from this paper, we

obtain

f (t, c, b, v) = θ̄v

(
δ

c1−φ

((1− ρ) v)
1
θ̄

+ µ (t) b1−φ

((1− ρ) v)
1
θ̄

)
− (µ (t) + δ) θ̄v .

Now, the aggregators are seen to coincide up to scaling of the mortality in-
tensity. Hence, if we give up on the threefold separability, there is some co-
incidence between the two ways of separating preferences, but not for general
preferences.

4.7 Conclusion
Recursive utility plays an important role in the literature on optimal consump-
tion and investment choice for agents with a certain lifetime, but to the knowl-
edge of the author, it has never before been generalized to agents with an un-
certain lifetime. We generalize recursive utility to include lifetime uncertainty
and utility from bequest. Recursive utility allows for separation of preferences
for risk and inter-temporal substitution, and, with our generalization, also
preferences for substitution between bequest and future utility. The concept
of substitution between bequest and future utility is our way of formulating
preferences for mortality risk. We state a verification theorem with a gener-
alized Hamilton-Jacobi-Bellman equation for optimal control under recursive
utility with lifetime uncertainty. We study optimal consumption, investment,
and life insurance choice under separation of (market) risk aversion, elasticity
of inter-temporal substitution, and elasticity of substitution between bequest
and future utility. The separation gives rise to hump-shaped consumption
patterns as observed in realized consumption. The hump-shaped consump-
tion is a result of the following two non-linear effects of increased mortality;
cheaper consumption and lower utility from consumption. The consumption
rate increases as long as the first effect is stronger and then starts to decrease.
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Appendix

4.A Derivation of Continuous-Time Aggregator
Differentiating the normalized discrete-time aggregator W̃ , we get

W̃∆
(
t,∆, c, b, Ṽ

)
=
(
u ◦ v−1

)′ (
pt−∆,t

(
u ◦ v−1

)−1 (
W̄
(
∆, c, Ṽ

))
+
(
1− pt−∆,t

)
v (b)

)

× pt−∆,t

(((
u ◦ v−1

)−1
)′ (

W̄
(
∆, c, Ṽ

))
W̄∆

(
∆, c, Ṽ

)

+ µ (t−∆)
(
v (b)−

(
u ◦ v−1

)−1 (
W̄
(
∆, c, Ṽ

))))
.

Using
((
u ◦ v−1)−1)′ =

((
u ◦ v−1)′ ◦ (u ◦ v−1)−1)−1

, W̄
(
0, c, Ṽ

)
= Ṽ , and

pt,t+0 = 1, we obtain

W̃∆
(
t, 0, c, b, Ṽ

)
=
(
u ◦ v−1

)′ ((
u ◦ v−1

)−1 (
Ṽ
))

×
(((

u ◦ v−1
)−1

)′ (
Ṽ
)
W̄∆

(
0, c, Ṽ

)
+ µ (t)

(
v (b)−

(
u ◦ v−1

)−1 (
Ṽ
)))

=
(
u ◦ v−1

)′ ((
u ◦ v−1

)−1 (
Ṽ
))

µ (t)
(
v (b)− v

(
u−1

(
Ṽ
)))

+ W̄∆
(
0, c, Ṽ

)
.

Hence, we get

f
(
t, c, b, Ṽ

)
= µ (t)

(
v (b)− v

(
u−1

(
Ṽ
))) (

u ◦ v−1
)′ ((

u ◦ v−1
)−1 (

Ṽ
))

+ f̄
(
c, Ṽ

)
,

where f̄ is the “classical” normalized continuous-time aggregator correspond-
ing to W̄ .

4.B Derivation of Aggregators in Example 4.3
For the normalized discrete-time aggregator W̄ in Example 4.1, we get

W̄∆
(
∆, c, Ṽ

)
=
(
u ◦ g−1

)′ (
(1− δ∆)

(
u ◦ g−1

)−1 (
Ṽ
)

+ δ∆g (c)
)

×
(
−δ
(
u ◦ g−1

)−1 (
Ṽ
)

+ δg (c)
)
.



104 4. Life Insurance Decisions under Recursive Utility

Using
((
u ◦ g−1)−1)′ = ((

u ◦ g−1)′ ◦ (u ◦ g−1)−1)−1
, we obtain

W̄∆
(
0, c, Ṽ

)
= δ

(
u ◦ g−1

)′ ((
u ◦ g−1

)−1 (
Ṽ
))(

g (c)− g
(
u−1

(
Ṽ
)))

.

Therefore, the continuous-time aggregator corresponding to the normalized
discrete-time aggregator W̄ from Example 4.1 is given by

f̄
(
c, Ṽ

)
= W̄∆

(
0, c, Ṽ

)
= δ

(
u ◦ g−1

)′ ((
u ◦ g−1

)−1 (
Ṽ
))(

g (c)− g
(
u−1

(
Ṽ
)))

= δ
u′
(
u−1

(
Ṽ
))

g′
(
u−1

(
Ṽ
)) (g (c)− g

(
u−1

(
Ṽ
)))

.

The corresponding mortality adjusted normalized aggregator f is given by

f
(
t, c, b, Ṽ

)
= µ (t)

(
v (b)− v

(
u−1

(
Ṽ
))) (

u ◦ v−1
)′ ((

u ◦ v−1
)−1 (

Ṽ
))

+ δ
u′
(
u−1

(
Ṽ
))

g′
(
u−1

(
Ṽ
)) (g (c)− g

(
u−1

(
Ṽ
)))

= µ (t)
u′
(
u−1

(
Ṽ
))

v′
(
u−1

(
Ṽ
)) (v (b)− v

(
u−1

(
Ṽ
)))

+ δ
u′
(
u−1

(
Ṽ
))

g′
(
u−1

(
Ṽ
)) (g (c)− g

(
u−1

(
Ṽ
)))

.

4.C Solution of Hamilton-Jacobi-Bellman equation
For the Hamilton-Jacobi-Bellman equation in Equation (4.9) with Epstein-Zin
preferences, we conjecture that

J (t, x) = 1
1− ρ (x+ L (t))1−ρ (g (t))q ,

where q is a non-zero constant, g : [0, T ] 7→ R is a C1-function with g (T ) = 1,
and L is given by Equation (4.6). We recall that L (T ) = 0. We get the partial
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derivatives

Jx (t, x) = (x+ L (t))−ρ (g (t))q = 1− ρ
x+ L (t)J (t, x) ,

Jxx (t, x) = −ρ (x+ L (t))−ρ−1 (g (t))q = − ρ (1− ρ)
(x+ L (t))2J (t, x) ,

Jt (t, x) = q

1− ρgt (t) (x+ L (t))1−ρ (g (t))q−1 + (x+ L (t))−ρ (g (t))q Lt (t)

= gt (t) q
g (t) J (t, x) + (1− ρ)Lt (t)

x+ L (t) J (t, x) ,

where
Lt (t) = −w (t) + (r + µ̂ (t))L (t) .

We note that the boundary condition is satisfied since

J (T, x) = 1
1− ρ (x+ 0)1−ρ (1)q = 1

1− ρx
1−ρ = u (x) .

Furthermore, we have

f (t, c, d+ x, J (t, x))

= µ (t) 1− ρ
1− κJ (t, x)


 d+ x

((1− ρ) J (t, x))
1

1−ρ

1−κ

− 1


+ δ

1− ρ
1− φJ (t, x)


 c

((1− ρ) J (t, x))
1

1−ρ

1−φ

− 1



= µ (t) 1− ρ
1− κJ (t, x)


 d+ x(

(1− ρ) 1
1−ρ (x+ L (t))1−ρ (g (t))q

) 1
1−ρ


1−κ

− 1



+ δ
1− ρ
1− φJ (t, x)


 c(

(1− ρ) 1
1−ρ (x+ L (t))1−ρ (g (t))q

) 1
1−ρ


1−φ

− 1


= µ (t) 1− ρ

1− κJ (t, x)

( d+ x

(x+ L (t)) (g (t))
q

1−ρ

)1−κ

− 1


+ δ

1− ρ
1− φJ (t, x)

( c

(x+ L (t)) (g (t))
q

1−ρ

)1−φ

− 1

 .
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Plugging the above into Equation (4.9), we get the reduced Hamilton-Jacobi-
Bellman equation

0 = sup
c,π,d

J (t, x)



gt(t)q
g(t) + (1−ρ)Lt(t)

x+L(t)
+ 1−ρ
x+L(t) [rx+ πλ− c− µ̂ (t) d+ w (t)]

−1
2

ρ(1−ρ)
(x+L(t))2π

2σ2

+µ (t) 1−ρ
1−κ

( d+x
(x+L(t))(g(t))

q
1−ρ

)1−κ

− 1


+δ 1−ρ

1−φ

( c

(x+L(t))(g(t))
q

1−ρ

)1−φ

− 1





. (4.16)

The first-order conditions for the supremum read

0 = 1− ρ
x+ L (t)λ−

ρ (1− ρ)
(x+ L (t))2πσ

2 ,

0 = − 1− ρ
x+ L (t) + δ (1− ρ) (x+ L (t))φ−1 (g (t))−

q(1−φ)
1−ρ c−φ ,

0 = −µ̂ (t) 1− ρ
x+ L (t) + µ (t) (1− ρ) (x+ L (t))κ−1 (g (t))−

q(1−κ)
1−ρ (d+ x)−κ .

This gives us the candidate solutions

π∗ (t) = λ

ρσ2 (x+ L (t)) ,

c∗ (t) = δ
1
φ (g (t))−

q(1−φ)
φ(1−ρ) (x+ L (t)) ,

d∗ (t) =
(
µ (t)
µ̂ (t)

) 1
κ

(g (t))−
q(1−κ)
κ(1−ρ) (x+ L (t))− x .
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Plugging the candidate solutions back into Equation (4.16) and dividing by
J , we obtain

0 = gt (t) q
g (t) + (1− ρ) −w (t) + (r + µ̂ (t))L (t)

x+ L (t)

+ 1− ρ
x+ L (t)

[
rx+ λ

ρσ2 (x+ L (t))λ− δ
1
φ (g (t))−

q(1−φ)
φ(1−ρ) (x+ L (t))

]

+ 1− ρ
x+ L (t)

w (t)− µ̂ (t)

(µ (t)
µ̂ (t)

) 1
κ

(g (t))−
q(1−κ)
κ(1−ρ) (x+ L (t))− x


− 1

2
ρ (1− ρ)

(x+ L (t))2

(
λ

ρσ2 (x+ L (t))
)2
σ2

+ µ (t) 1− ρ
1− κ



(
µ(t)
µ̂(t)

) 1
κ (g (t))−

q(1−κ)
κ(1−ρ) (x+ L (t))

(x+ L (t)) (g (t))
q

1−ρ


1−κ

− 1


+ δ

1− ρ
1− φ


δ 1

φ (g (t))−
q(1−φ)
φ(1−ρ) (x+ L (t))

(x+ L (t)) (g (t))
q

1−ρ

1−φ

− 1


= gt (t) q

g (t) + (1− ρ)λ2

ρσ2 − (1− ρ)
[
δ

1
φ (g (t))−

q(1−φ)
φ(1−ρ) + (µ̂ (t))1− 1

κ (µ (t))
1
κ

]
+ 1− ρ
x+ L (t) [rx+ (r + µ̂ (t))L (t) + µ̂ (t)x]

− 1− ρ
2

λ2

ρσ2 + 1− ρ
1− κ (µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−

q(1−κ)
κ(1−ρ) − µ (t) 1− ρ

1− κ

+ 1− ρ
1− φδ

1
φ (g (t))−

q(1−φ)
φ(1−ρ) − δ 1− ρ

1− φ

= gt (t) q
g (t) + (1− ρ)

[
r + λ2

2ρσ2 + µ̂ (t)− δ

1− φ −
µ (t)
1− κ

]

+ φ (1− ρ)
1− φ δ

1
φ (g (t))−

q(1−φ)
φ(1−ρ)

+ κ (1− ρ)
1− κ (µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−

q(1−κ)
κ(1−ρ) .



108 4. Life Insurance Decisions under Recursive Utility

Finally, dividing by q
g and including the boundary condition, we arrive at

gt (t) = −1
q

(1− ρ)
[
r + λ2

2ρσ2 + µ̂ (t)− δ

1− φ −
µ (t)
1− κ

]
g (t)

− 1
q

φ (1− ρ)
1− φ δ

1
φ (g (t))−

q(1−φ)
φ(1−ρ) +1

− 1
q

κ (1− ρ)
1− κ (µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−

q(1−κ)
κ(1−ρ) +1

,

g (T ) = 1 .

4.D Derivation of Dynamics for the Optimal
Consumption Rate

Differentiating the optimal consumption rate in Equation (4.13), we obtain
the partial derivatives

c∗t (t, x) = −κ (1− φ)
φ (1− κ) (x+ L (t)) δ

1
φ (g (t))−

κ(1−φ)
φ(1−κ)−1

gt (t)

+ δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ) Lt (t) ,

c∗x (t, x) = δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ) ,

c∗xx (t, x) = 0 .

Let X∗ be the wealth process stemming from the optimal control (c∗, π∗, d∗)
in Equation (4.13). Using Itô’s formula on c∗ (t,X∗t ), we get the dynamics

dc∗ (t,X∗t )
c∗ (t,X∗t ) = c∗t (t,X∗t ) dt+ c∗x (t,X∗t ) dX∗t

c∗ (t,X∗t )

=
−κ(1−φ)
φ(1−κ) (X∗t + L (t)) δ

1
φ gt (t) (g (t))−

κ(1−φ)
φ(1−κ)−1 dt

(X∗t + L (t)) δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ)

+ δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ) Lt (t) dt

(X∗t + L (t)) δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ)

+ δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ) dX∗t

(X∗t + L (t)) δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ)

= −κ (1− φ)
φ (1− κ)

gt (t)
g (t) dt+ Lt (t) dt+ dX∗t

X∗t + L (t) .
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It holds that

−κ (1− φ)
φ (1− κ)

gt (t)
g (t) = 1− φ

φ

[
r + λ2

2ρσ2 + µ̂ (t)− δ

1− φ −
µ (t)
1− κ

]

+ δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ)

+ κ (1− φ)
φ (1− κ) (µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−1

and

Lt (t) dt+ dX∗t
X∗t + L (t) = −w (t) + (r + µ̂ (t))L (t)

X∗t + L (t) dt+ π∗t σ

X∗t + L (t)dWt

+ rX∗t + π∗t λ− c∗t − µ̂ (t) d∗t + w (t)
X∗t + L (t) dt

=
(
r + λ2

ρσ2 − δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ)

)
dt

+
(
µ̂ (t)− (µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−1

)
dt+ λ

ρσ
dWt .

Hence, we arrive at the dynamics

dc∗ (t,X∗t )
c∗ (t,X∗t ) = 1− φ

φ

[
r + λ2

2ρσ2 + µ̂ (t)− δ

1− φ −
µ (t)
1− κ

]
dt

+ δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ) dt

+ κ (1− φ)
φ (1− κ) (µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−1 dt(

r + λ2

ρσ2 − δ
1
φ (g (t))−

κ(1−φ)
φ(1−κ)

)
dt

+
(
µ̂ (t)− (µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−1

)
dt+ λ

ρσ
dWt

= 1
φ

[
r + (1 + φ) λ2

2ρσ2 + µ̂ (t)− δ − µ (t) 1− φ
1− κ

]
dt

+
(
κ (1− φ)
φ (1− κ) − 1

)
(µ̂ (t))1− 1

κ (µ (t))
1
κ (g (t))−1 dt

+ λ

ρσ
dWt ,

c∗ (0, X0) = (x0 + L (0)) δ
1
φ (g (0))−

κ(1−φ)
φ(1−κ) .





Chapter 5

Smooth Investment

Kenneth Bruhn, Ninna Reitzel Jensen, & Mogens Steffensen
(2016)

Abstract: In the classical portfolio optimization problem considered
by Merton, the resulting constant proportion investment plan requires
a diffusive trading strategy. This means that, within any arbitrarily
small time interval, the investor has to both buy and sell stocks. From a
practical point of view, this can serve as nothing else than an idealistic
benchmark. We study the problems of a mean-square and a power util-
ity investor for whom the trading strategy is constrained to be smooth,
i.e. non-diffusive. In particular, this means that, over sufficiently small
time intervals, the investor is either a seller or a buyer of stocks. The
mathematical framework is built around quadratic objectives such that
trading activity is punished quadratically. Mean-square utility is in it-
self quadratic, and power utility is covered by quadratic punishment of
distance to Merton’s power utility portfolio. We present semi-explicit so-
lutions and, in a series of numerical illustrations, we show the impact of
trading constraints on the portfolio decision over the investment horizon.

Keywords: Smooth investment, diffusive trading, trading costs,
power utility, mean-square utility.

5.1 Introduction
We solve two portfolio optimization problems with the common feature that
the number of stocks is restricted to be differentiable such that diffusive trad-
ing is avoided. Diffusive trading, e.g. resulting from continuous rebalancing of
the constant proportion portfolio in a Merton problem, is here disallowed by
punishing, in the utility function, quadratic deviations of the trading rate away
from zero. The trading objective is economically and mathematically moti-
vated here in the introduction. We solve the problems semi-explicitly for both
a mean-square investor and a tailor-made version of a power utility investor.
A mean-square investor is known to be equivalent to a mean-variance investor
with precommitment, see e.g. Zhou and Li (2000). We discuss the structures
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of the solutions and illustrate trading and stock positions in a series of nu-
merical examples. Our contribution is to cover how far we can get under the
restriction of smooth stock positions within a mathematically tractable and
economical meaningful framework. Further, we provide structures of portfo-
lios with trading costs mainly stemming from market impact. This takes the
oneliner by Gârleanu and Pedersen (2013) of “aiming in front of the target”
to the level of conventional utility of wealth rather than utility of return on
wealth.

The canonical approach to continuous-time dynamic portfolio choice was
proposed by Merton (1971) who optimized the proportion of diffusively risky
stocks in a portfolio of an investor maximizing utility of terminal wealth and/or
consumption. With π,X,N , and S denoting the stock proportion, the wealth,
the number of stocks, and the stock price, respectively, we have that the
amount invested in stocks A has the following different representations,

A = πX = NS .

Whether the problem is formulated as a control problem over A, π, or N
makes no difference for the resulting stock position. Yet, most often the prob-
lem is formulated with π as the control process, mainly due to mathematical
tractability in markets without frictions. The well-known result for power
utility is that π is constant over time and, in that case, for diffusive modelling
of the stock price, also N in general becomes diffusive. A diffusive N is not
limited to the case of a power utility investor, but it is immediate to conclude
in that case due to the simple form of π. Only in the singular cases π = 0
(buy and hold no stocks) and π = 1 (buy and hold stocks for all your money),
a diffusive N is avoided.

Diffusive stock numbers are not for real. Apart from it being technically
impossible to trade diffusively, also trading costs prevent such a behavior from
being optimal. Trading costs are here thought of as the integrate effects from
broker expenses and market impact. For both effects, the intuition is that
trading should be limited in order to limit the aggregate trading costs.

There are essentially two different ways to punish trading in the control
problem formulation. One way is to implement a cost of trading directly in
the wealth process such that a specific amount is withdrawn from the wealth
if a trade is made. This has been studied in many different works on trading
costs. When trading costs are broker expenses paid by a marginal investor
with no market impact, this formalization has been studied by e.g. Magill and
Constantinides (1976); Davis and Norman (1990); Oksendal and Sulem (2002);
Chellathurai and Draviam (2007). When trading costs arise from market
impact for a large investor with negligible broker expenses, this formalization
has been studied by e.g. Bank and Baum (2004); Bertsimas and Lo (1998);
Moazeni et al. (2010); Soner and Vukelja (2013). The formalization explained
in this paragraph specifies a direct impact of trading costs on wealth such
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that the wealth is, at any time, reduced with the nominal cost of trading.
At a terminal time point, utility of wealth, including an aggregate loss from
trading, can be measured.

An alternative way of punishing trading in the control problem is to for-
malize preferences for not trading in the objective function. This is, of course,
an indirect way of specifying trading costs since, probably, no investor has re-
ally explicit preferences for or against trading, only through its direct impact
on wealth. The wealth is not reduced by trading costs, but terminal utility of
wealth is measured along with a punishment for the aggregate trading made
during the course of investment. Still, it may be meaningful to work with this
indirect formalization of trading costs, e.g. due to mathematical tractability.
This is the way we explore throughout this paper.

A different way of combining preferences for wealth and trading costs was
proposed by Gârleanu and Pedersen (2013, 2014). Their idea is to specify pref-
erences for return on wealth rather than on wealth itself. In particular, their
objective corresponds to a mean-variance preference for return on wealth. This
approach has some advantages since, in combination with quadratic utility of
return on wealth, the preferences for trading can be, consistently, interpreted
as direct trading costs: The current trading costs instantly reduce the re-
turn on wealth such that direct measurement of quadratic trading costs in
the wealth dynamics and indirect measurement of trading costs in the ob-
jective function coincide. However, this consistency is obtained only because
the objective is formalized in terms of return on wealth and not in terms of
wealth itself. Utility from the return of wealth rather than utility of wealth
appears in itself to be an indirect approach. Gârleanu and Pedersen (2013,
2014) point out that “[...]The objective can be shown to approximate a stan-
dard utility function [...]”. To us, the distinction between utility of return on
wealth versus wealth appears non-bridgeable in a world with trading costs,
though. It is by no means clear that the short cut they make via measuring
utility from return on wealth is economically better than the short cut we
make by specifying no direct impact of trading on wealth but an indirect pun-
ishment via preferences for no trading in combination with classical utility of
wealth. Both short cuts serve the mathematical tractability of the problem.

Given the approach to punish trading amounts in the value function of
the control problem, we need to formalize this punishment. First we choose
as control process the change in N rather than N itself. This does not, up-
front, make any difference since specifying the two processes are equivalent.
However, we now restrict the trading dN in two steps. First, we rule out
diffusive trading by saying that N has to be differentiable, i.e. dN has to be
of order dt. This, at least in a world of infinite divisibility, appears much
more natural than a diffusive N . Second, we punish the trading amount rate,
S dN/dt, for being away from zero. The first step is identical to Longstaff
(2001), but, there, trading is not punished, and the result is a so-called bang-
bang investment strategy.
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Given the approach to punish the trading amount rate, we need to choose
a cost function. If the only objective of this cost function were to account
for indirect broker expenses paid by a marginal investor, one would proba-
bly prefer a function which is zero at zero, concave on the positive half line,
and symmetric in zero. Concavity reflects some kind of “quantity discount”
on trading. Adding e.g. fixed costs to proportional costs would correspond
to “quantity discount” reflected in a concave cost functional on the positive
half line. Due to symmetrization in zero, the function would obviously not be
concave across zero but only piecewise concave on the positive and negative
half-lines. However, in this paper, costs also account for market impact. Here
an effect opposite to “quantity discount” kicks in. A large investor experi-
ences a convex cost of trading since limit order books produce an impact on
prices that, even marginally, increases with the volume of a trade. The cost
functional in the value function is supposed to account, in a stylized way, for
the aggregate impact of broker expenses and market impact. Here, we work
with a quadratic cost function. A quadratic function as cost functional is a
particularly tractable cost function with the desired convex form that would
hold for a trader for whom the effect from market impact dominates that from
broker expenses.

We solve two different problems with a quadratic utility loss from trading.
First, we consider an investor with mean-square utility of terminal wealth. In
that problem formulation, the mean-square utility of terminal wealth matches,
mathematically, the quadratic utility loss from trading and gives direct access
to a semi-explicit solution, separable in time and wealth. Second, we con-
sider an investor with power utility of terminal wealth. Mathematically, it
is inconvenient with the combination of a power utility of terminal wealth
and quadratic utility loss from trading. Therefore, we reformulate the power
objective by punishing quadratic deviations from the power utility optimal
stock position. In the limit where there is no punishment from trading and
infinite punishment from deviating from the power portfolio, we get, of course,
the power utility optimal stock position, equivalent to the Merton portfolio.
Other weights on the two separate objectives balances off the two considera-
tions such that the Merton stock position is smoothed with consideration to
the utility loss from trading. The transformation of the power utility objec-
tive into a quadratic objective is somewhat tailor-made for the purpose, but
given the Merton portfolio as the limiting solution, we find it to have con-
siderable backing. It is also striking that Liu and Zheng (2016) worked with
the same construction, even without benefiting mathematically from it to the
same extent as we do. Other related works includes Pliska and Suzuki (2004)
who minimize deviations from a target portfolio in the light of proportional
transaction costs.

In the title and this introduction, we refer to smoothing of investments.
This refers to ruling out diffusive trading by requiring the number of stocks
to be differentiable. In mathematics, smoothing has different connotations.
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Some use the word smooth about a function being (at least) once continuously
differentiable. For others, the function needs to be infinitely continuously dif-
ferentiable. Mathematically, we here use the word in the first sense. The
differential quotient of the number of stocks in our optimal portfolio will, in-
deed, be diffusive. Also, economically the word smoothing is used for different
purposes. One speaks, e.g., about a smoothing mechanism in certain pension
savings products. This means that the diffusive market return on investments
of a portfolio of pension savers is smoothed over time before being distributed
to individual saving accounts, see e.g. Guillén et al. (2006). In more classical
finance, one has worked with consumption smoothing as the general idea of
redistributing limited years of labor income to a life-long consumption plan.
But the term is also used for investment and consumption in a mathematical
way, similar to our use. Longstaff (2001) considered the Merton problem re-
quiring the number of stocks to be differentiable and obtaining a bang-bang
investment strategy. Bruhn and Steffensen (2013) studied differentiable con-
sumption streams, but worked in a mathematical framework similar to ours,
where quadratic functions arrange for mathematical tractability. In many
ways, our paper takes the patterns of thinking in Bruhn and Steffensen (2013)
as far as possible in the investment dimension rather than the consumption
dimension.

The outline of the paper is as follows: In Section 5.2, we illustrate how dif-
fusive trading arises in a Black-Scholes financial market and introduce a trad-
ing constraint to avoid it. In Section 5.3, we show how the trading constraint
leads to a bang-bang investment strategy if the constraint is not accompanied
by a utility loss from trading. In Section 5.4, we derive a smooth investment
strategy for a mean-square utility investor and illustrate the strategy and the
resulting trading in a numerical example based on simulation. In Section 5.5,
we derive a smooth investment strategy for a power utility investor who min-
imizes quadratic deviations from the Merton investment proportion. Again,
we illustrate the strategy and the resulting trading in a numerical example.

5.2 Model and Motivation
We consider an investor making decisions about investment in continuous
time. The investor has access to a classical Black-Scholes market consisting
of a bank account, B, with risk free short rate r, and a stock, S, with excess
return λ and volatility σ. The asset prices are described by the stochastic
differential equations (SDEs)

dBt = rBtdt , t ≥ 0 , B0 = 1 ,
dSt = St [(r + λ) dt+ σdWt] , t ≥ 0 , S0 = s0 ,

where r, λ, σ > 0 are constants, and W is a standard Brownian motion on the
probability space (Ω,F , P ).
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We fix a time-horizon T . The investor has wealth X and invests a propor-
tion π of X in the stock and a proportion (1− π) of X in the bank account.
The investor’s wealth evolves according to the SDE

dXt = Xt [(r + πtλ) dt+ πtσdWt] , t ∈ [0, T ] ,
X0 = x0 ,

where x0 is the initial wealth of the investor.
The traditional Merton investment problem considers expected utility max-

imization for an investor with constant relative risk aversion γ and a fixed
time-horizon T , i.e.

max
(πs)0≤s≤T

E
[ 1

1− γX
1−γ
T

]
.

The optimal investment proportion for this problem is

π∗t = π∗ ,

where π∗ is the so-called Merton proportion, see Merton (1971), which is given
by

π∗ = λ

σ2γ
.

Keeping a constant investment proportion means selling when prices go up
and buying when prices go down (in short “sell high, buy low”). The optimal
amount invested in stocks, A∗ = π∗X∗, follows the dynamics

dA∗ = π∗X∗t [(r + π∗λ) dt+ π∗σdWt]

= A∗t
St

dSt + (π∗ − 1)A∗t [λdt+ σdWt] .

Here, the first term is the market return on A∗ whereas the second term is
the necessary stock trading in order to keep a constant investment proportion.
For reasonable parameters, we have π∗ < 1, and so the drift and volatility of
the trading amount are negative. Consequently, the investor on average trades
a negative amount in stocks (i.e. sells). This is an intuitive behavior since the
drift of the optimal wealth, X∗, is smaller than that of the optimal amount
invested in stocks, A∗.

On the other hand, the optimal number of stocks held by the investor,
N∗ = A∗

S , follows the dynamics

dN∗t = π∗
( 1
St

dX∗t −
X∗t
S2
t

dSt −
1
S2
t

dX∗t dSt + X∗t
S3
t

( dSt)2
)

= N∗t (1− π∗)
((
σ2 − λ

)
dt− σ dWt

)
.

Notice that the number of stocks has a positive drift for reasonable parameters
with σ2 > λ and π∗ < 1. Hence, the investor on average trades a positive



5.2. Model and Motivation 117

number of stocks (i.e. buys). Altogether, the investor trades a negative amount
(i.e. sells) but a positive number (i.e. buys) when stock volatility is sufficiently
high (σ2 > λ). This counter-intuitive fact is explained by investor’s “sell high,
buy low” strategy; on average, he buys a number of stocks, but he buys them
cheap and sells them expensive, resulting in negative trading amounts. We are
going to refer to this peculiarity several times later on when a similar behavior
is observed also for smooth investment.

The optimal number of stocks held by the investor follows a process of un-
bounded variation. This phenomenon is not isolated to power utility. Consider
for example expected mean-square utility maximization,

max
(πs)0≤s≤T

E
[
XT − γX2

T

]
. (5.1)

In Appendix 5.A, we show that the optimal investment proportion for this
problem is

π∗t = λ

σ2

(
1

2X∗t γer(T−t)
− 1

)
, (5.2)

and that the optimal investment proportion follows the dynamics

dπ∗t =
(
π∗t + λ

σ2

)((
(π∗t )

2 σ2 − π∗t λ
)

dt− π∗t σdWt

)
.

Since the optimal investment proportion is decreasing in wealth, the mean-
square investor sells when prices go up and buys when prices go down—and he
does so more rapidly than the power investor. The investment proportion is
seen to have a negative drift for π∗t ∈

(
0, λ

σ2

)
which is the case for reasonable

parameters.
In Appendix 5.A, we also show that the optimal number of stocks held by

the investor, N∗ = π∗X
∗

S , follows the dynamics

dN∗t = N∗t

((
1 + 1− r

π∗t
− λ2

σ2 − r + σ2
)

dt−
(
λ

σ
+ σ

)
dWt

)
,

and that the optimal amount invested in stocks, A∗ = π∗X∗, follows the
dynamics

dA∗ = A∗t
St

dSt + (π∗t − 1)A∗t [λdt+ σdWt] +X∗t dπ∗t .

Notice that the optimal number of stocks has a positive drift for

π∗t >
1− r

λ2/σ2 + r − σ2 − 1 ,

which holds for reasonable parameters. The second and third term in the
dynamics of the optimal amount invested in stocks are the necessary stock
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trading in order to obtain the desired investment proportion. For 0 < π∗t <

min
{
λ
σ2 , 1

}
, the drift of the trading amount is negative . Hence, for reasonable

parameters, the mean-square investor’s “sell high, buy low” strategy leads to
the peculiarity of trading a negative amount (i.e. selling) but a positive number
(i.e. buying)—exactly as for the power investor.

Like in the case of power utility, the optimal number of stocks follows a
process of unbounded variation. A typical investor trades a lot more smoothly.
We constrain the number of stocks held by the investor, N , to follow the
dynamics

dNt = τtNt dt , N0 = n0 , (5.3)

where the investor controls τt and n0. Thereby, the amount invested in stocks,
At = NtSt, follows the dynamics

dAt = At ((r + λ+ τt) dt+ σ dWt) , A0 = s0n0 ,

and the investor’s wealth follows the dynamics

dXt = rXt dt+At (λ dt+ σ dWt) , X0 = x0 .

Throughout the paper, we refer to τ as the trading rate, τA as the trading
amount rate, and τN as the trading number rate.

5.3 Standard Utility Optimization with Bounded
Variation

The two utility maximization problems in the previous section can be written
as

max
(πs)0≤s≤T

E [u (XT )]

for a suitable utility function u. If we consider this general problem with
the trading constraint in Equation (5.3), we get the Hamilton-Jacobi-Bellman
equation

Jt = −max
τ

{
(λa+ rx) Jx + a (λ+ r + τ) Ja

+ 1
2σ

2a2 (Jxx + Jaa + 2Jax)
}
,

J (T, x, a) = u (x) .

If we allow the trading rate τ to vary in the interval
[
τ−, τ+], we see that the

optimal τ is given by

τ∗ =
{
τ− if Ja < 0 ,
τ+ if Ja ≥ 0 .

Hence, the result is a bang-bang strategy which is not really as smooth as
we think it should be. For details on the bang-bang strategy, see Longstaff
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(2001). In the following sections, we propose two different approaches to
obtain optimal smooth investment strategies—one for mean-square utility and
one for power utility.

5.4 Smooth Investment with Mean-Square Utility
To obtain smooth investment for an expected mean-square utility maximizing
agent, we propose the optimization criteria

max
n0,(τs)0≤s≤T

E
[
XT − γX2

T −
∫ T

0

1
2Λ (τsAs)2 ds

]
. (5.4)

Here, the parameter Λ ≥ 0 weights the third term against the first two. The
first two terms are terminal mean-square utility. The third term punishes
trading amounts, τA, quadratically. Hence, we have simply subtracted the
expected utility loss from trading from the investor’s original optimization
criteria.

In Appendix 5.B, we show that the optimal trading amount rate is

τ∗t A
∗
t = 2

Λf3 (t)A∗t + 1
Λf4 (t) + 1

Λf5 (t)X∗t , (5.5)

where f3, f4, and f5 are solutions to the following system of ordinary differ-
ential equations (ODEs):

f ′1 (t) = −2rf1 (t)− 1
2Λf

2
5 (t) , f1 (T ) = −γ ,

f ′2 (t) = −rf2 (t)− 1
Λf4 (t) f5 (t) , f2 (T ) = 1 ,

f ′3 (t) = −
(
λ+ σ2

)
f5 (t)− 2

Λf
2
3 (t)− σ2f1 (t)−

(
2λ+ 2r + σ2

)
f3 (t) ,

f3 (T ) = 0 ,

f ′4 (t) = −λf2 (t)− 2
Λf3 (t) f4 (t)− (λ+ r) f4 (t) , f4 (T ) = 0 , (5.6)

f ′5 (t) = −2λf1 (t)− 2
Λf3 (t) f5 (t)− (λ+ 2r) f5 (t) , f5 (T ) = 0 ,

f ′6 (t) = − 1
2Λf

2
4 (t) , f6 (T ) = 0 .

Also, the investor’s optimal number of stocks at time zero is given by

n∗0 = −f4 (0) + f5 (0)x0
2f3 (0) s0

. (5.7)

Notice that this choice of n∗0 results in τ∗0 = 0, meaning that the investor starts
out at his target.
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Remark 5.1 (Establishment and liquidation punishment). Since we are pun-
ishing continuous trading, it is also natural to punish trading upon establish-
ment and liquidation of the portfolio. This results in the optimization criteria

max
n0,(τs)0≤s≤T

E
[
XT − γX2

T −
1
2Λ1a

2
0 −

∫ T

0

1
2Λ (τsAs)2 ds− 1

2Λ2A
2
T

]
,

where Λ1,Λ2 ≥ 0 weight the punishment terms against each other. The only
thing that changes in the solution is the boundary conditions for f3. With
establishment and liquidation punishment, we have

f3 (T ) = −1
2Λ2 ,

f ′3 (t) = −
(
λ+ σ2

)
f5 (t)− 2

Λf
2
3 (t)− σ2f1 (t)−

(
2λ+ 2r + σ2

)
f3 (t) ,

t ∈ (0, T ] ,

f3 (0) = −1
2Λ1 + f3 (0+) .

5.4.1 Numerics

To study the impact of the trading constraint in Equation (5.3) for an expected
mean-square utility maximizing investor, we consider the investor’s optimal
wealth, X∗, and optimal amount invested in stocks, A∗. They evolve according
to the SDE’s

dX∗t = rX∗t dt+A∗t (λ dt+ σ dWt) , X∗0 = x0 ,

dA∗t = A∗t ((r + λ+ τ∗t ) dt+ σ dWt) , A∗0 = a0 ,
(5.8)

where the optimal trading rate, τ∗, is given by Equation (5.5). In general,
there is no explicit solution to the system of ODE’s in Equation (5.6), and
the distribution of X∗ and A∗ is unknown. Therefore, to study the evolution
of τ∗, X∗, and A∗, we solve the system of ODE’s in (5.6) numerically for
selected parameter values and simulate X∗ and A∗ using standard Monte-
Carlo methods.

We consider a time horizon of T = 30 years and fix the investor’s initial
wealth at x0 = 100 and the initial value of the stock at s0 = 1. We fix
γ = 0.08

x0
since this level of risk aversion results in an expected final wealth

of the unconstrained mean-square investor that matches the expected final
wealth of the unconstrained power investor in Section 5.5.1. The division
by x0 is inspired by Björk et al. (2014). We choose the following market
parameters values:

r σ λ

0.04 0.20 0.03
We solve the system of ODE’s in Equation (5.6) numerically for five different
values of Λ, namely Λ = 10−5, 0.01, 0.1, 1, 10. The larger the value of Λ,
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Figure 5.1: Average amount A∗ invested in stocks as a function of time.

the larger the utility loss associated with trading. Applying the formulas in
Equations (5.2) and (5.7), we calculate the investor’s optimal number of stocks
at time zero, n∗0, for each value of Λ and for the unconstrained mean-square
investor:

Unconstrained Λ = 10−5 Λ = 0.01 Λ = 0.1 Λ = 1 Λ = 10
n∗0 66.2 64.3 33.0 14.1 8.7 8.0

For each value of Λ, we simulate 1 million sample paths for the investor’s opti-
mal wealth, X∗, and amount invested in stocks, A∗, using discretized versions
of the SDE’s in Equation (5.8). We also simulate 1 million sample paths for
the investor’s optimal wealth and stock investment without the constraint, i.e.
with the proportion π∗ from Equation (5.2) invested in stocks.

In Figure 5.1, we plot the investor’s average amount, A∗, invested in stocks.
Recall that we optimize over both n0 and τ for each value of Λ. For all values of
Λ, the amount in stocks starts out lower than in the unconstrained case. This
is to avoid having to sell too large amounts later on; the investor anticipates
his future desired investment proportion and seeks to slide towards it, without
sliding to far. Thereby, the investor “aims in front of the target” as seen in
Gârleanu and Pedersen (2013). The lower the value of Λ, the closer the amount
in stocks gets to the unconstrained investment since trading is punished less.
Notice that the case Λ = 10−5 is very close to the unconstrained case, also in
terms of certainty equivalents as is shown below.

In Figure 5.2, we plot the average trading amount rate, τ∗A∗, and in
Figure 5.3, we plot the average trading number rate, τ∗N∗. As for the uncon-
strained mean-square investor, the constrained investor, on average, trades a
negative amount (i.e. sells) but a positive number (i.e. buys), mimicking the
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Figure 5.2: Average trading amount rate τ∗A∗ as a function of time.
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Figure 5.3: Average trading number rate τ∗N∗ as a function of time.
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unconstrained investor’s “sell high, buy low” strategy. Investors with high val-
ues of Λ tend to be “buy-and-hold” investors since trading is punished harder.
Investors with low values of Λ tend to trade more; they trade a larger negative
amount and a larger positive number. Investors with a moderate value of Λ
first trade positive amounts and then trade negative amounts which is caused
by the trade-off between punishment for trading and mean-square maximiza-
tion. All investors, except the investor with Λ = 0.01, on average trade a
positive number of stocks, corresponding to a positive drift of N∗ as for the
unconstrained investor. The investor with Λ = 0.01 starts out by trading
a small negative number of stocks, but then switches to trading a positive
number like the other investors.

To study the investor’s expected utility loss from the trading constraint in
Equation (5.3), we use the simulated sample paths to approximate certainty
equivalents for the investor’s optimal final wealth. We calculate the expected
utility

EU = E
[
XT − γX2

T

]
,

and we determine the so-called certainty equivalent as the solution CE to the
equation

EU = CE− γCE2 .

The certainty equivalent expresses which certain amount the investor requires
at time T in order to give up his uncertain wealth XT . It is more meaning-
ful to compare certainty equivalents than utility since utility has an ordinal
interpretation. The equation has two solutions, and we pick the smallest one.
We approximate the mean E

[
XT − γX2

T

]
by the average of the simulations.

We apply the procedure for the unconstrained wealth and for the constrained
wealth for each value of Λ. We get the following table:

No constraint Λ = 10−5 Λ = 0.01 Λ = 0.1 Λ = 1 Λ = 10
EU 277 277 268 261 255 253
CE 414 414 389 371 357 352

The investor’s expected utility loss is significant for high values of Λ. This
is consistent with the unconstrained mean-square investor being an active
investor. A high value of Λ corresponds to a hard punishment for trading and
this forces the investor to trade less and deviate from his optimal investment
strategy, resulting in an expected utility loss.

5.5 Smooth Investment with Power Utility
Inspired by the previous section, it is natural to propose the following opti-
mization criteria to obtain smooth investment for an expected power utility
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maximizing agent;

max
n0,(τs)0≤s≤T

E
[

1
1− γX

1−γ
T −

∫ T

0

1
2Λ (τsAs)2 ds

]
.

However, if we proceed along the lines of the previous section, we cannot obtain
a trading solution given by ODEs. We are stuck with a solution given by a
partial differential equation (PDE) that does not provide us with useful insight
on smooth investment. Therefore, we take a different road to investment
smoothing for the expected power utility maximizing agent.

Based on the Merton result that optimal investment is constant propor-
tional to wealth and with the trading constraint in Equation (5.3), we propose
the optimization criteria

min
n0,(τs)0≤s≤T

E
[∫ T

0

1
2
(
θ(π∗Xt −At)2 + (τtAt)2

)
dt
]
. (5.9)

Here, the parameter θ ≥ 0 weights the two terms against each other. The
first term punishes quadratically if the actual stock holdings of the investor
deviate from the Merton proportion π∗ of the investor’s wealth. The second
term punishes trading amounts quadratically.

In Appendix 5.C, we show that the optimal trading amount rate is

τ∗t A
∗
t = h (t)X∗t − g (t)A∗t = g (t)

(
h (t)
g (t)X

∗
t −A∗t

)
, (5.10)

where f , g, and h are solutions to the following system of ODEs

f ′ (t) = −θ (π∗)2 + (h (t))2 − 2rf (t) , f (T ) = 0 , (5.11)

g′ (t) = −θ − σ2f (t) + 2
(
λ+ σ2

)
h (t)−

(
2r + 2λ+ σ2

)
g (t) + (g (t))2 ,

g (T ) = 0 ,
h′ (t) = −θπ∗ + λf (t)− (2r + λ)h (t) + g (t)h (t) , h (T ) = 0 .

Also, the investor’s optimal number of stocks at time zero is given by

n∗0 = h (0)x0
g (0) s0

. (5.12)

From the expression in Equation (5.10), we see that the investor trades towards
a target stock proportion of hg , with the speed g. By trading towards this target
instead of the Merton proportion, π∗, the investor anticipates his future desired
investment proportion and seeks to slide towards it, thereby “aiming in front
of his target” as seen in Gârleanu and Pedersen (2013). Notice that the choice
of n∗0 results in τ∗0 = 0, meaning that the investor starts out at his target.
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Remark 5.2 (Initial and terminal punishment). Since we are punishing con-
tinuous trading and deviations from the Merton proportion, it is also natural
to punish trading upon establishment and liquidation and to punish initial
and terminal deviations from the Merton proportion. This results in the op-
timization criteria

min
n0,(τs)0≤s≤T

E
[

1
2Λ1a

2
0 + 1

2Θ1(π∗X0 − a0)2

+
∫ T

0

1
2
(
θ(π∗Xt −At)2 + (τtAt)2

)
dt

+ 1
2Θ2(π∗XT −AT )2 + 1

2Λ2A
2
T

]
,

where Θ1,Θ2,Λ1,Λ2 ≥ 0 weight the punishment terms against each other.
The only thing that changes is the boundary conditions for f , g, and h. With
initial and terminal punishment, we have

f (T ) = Θ2 (π∗)2 ,

f ′ (t) = −θ (π∗)2 + (h (t))2 − 2rf (t) , t ∈ (0, T ] ,
f (0) = Θ1 (π∗)2 + f (0+) ,

g (T ) = Λ2 + Θ2 ,

g′ (t) = −θ − σ2f (t) + 2
(
λ+ σ2

)
h (t)−

(
2r + 2λ+ σ2

)
g (t) + (g (t))2 ,

t ∈ (0, T ] ,
g (0) = Λ1 + Θ1 + g (0+) ,

h (T ) = Θ2π
∗ ,

h′ (t) = −θπ∗ + λf (t)− (2r + λ)h (t) + g (t)h (t) , t ∈ (0, T ] ,
h (0) = Θ1π

∗ + h (0+) .

5.5.1 Numerics

To study the impact of the trading constraint in Equation (5.3) for an expected
power utility maximizing investor, we consider the investor’s optimal wealth,
X∗, and optimal amount invested in stocks, A∗. They evolve according to the
SDE’s

dX∗t = rX∗t dt+A∗t (λ dt+ σ dWt) , X∗0 = x0 ,

dA∗t = A∗t ((r + λ+ τ∗t ) dt+ σ dWt) , A∗0 = a0 ,
(5.13)

where the optimal trading rate τ∗t is given by Equation (5.10). In general,
there is no explicit solution to the system of ODE’s in Equation (5.11), and the
distribution of X∗ and A∗ is unknown. Therefore, to study the evolution of τ∗,
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Figure 5.4: Average proportion A∗

X∗ invested in stocks as a function of time.

X∗, and A∗, we solve the system of ODE’s numerically for selected parameter
values and simulate X∗ and A∗ using standard Monte-Carlo methods.

We consider a time horizon of T = 30 years and fix the investor initial
wealth at x0 = 100. We choose the following market and preference parame-
ters values:

r σ λ γ

0.04 0.20 0.03 2
The Merton proportion yields π∗ = 0.375. We fix the initial value of the stock
at s0 = 1.

We solve the system of ODE’s in Equation (5.11) numerically for four
different values of θ, namely θ = 0.1, 1, 10, 100. The larger the value of θ, the
larger the weight on stock holdings being close to the Merton proportion π∗
of the wealth.

Applying the formula in Equation (5.12), we calculate the investor’s opti-
mal number of stocks at time zero for each value of Θ:

No constraint θ = 100 θ = 10 θ = 1 θ = 0.1
n∗0 37.5 37.1 36.4 34.1 27.2

For each value of θ, we simulate 1 million sample paths for the investor’s opti-
mal wealth, X∗, and amount invested in stocks, A∗, using discretized versions
of the SDE’s in Equation (5.13). We also simulate 1 million sample paths for
the investor’s optimal wealth and stock investment without the constraint, i.e.
with the Merton proportion, π∗, invested in stocks.

In Figure 5.4, we plot the investor’s proportion of wealth, A∗

X∗ , invested in
stocks. For all four values of θ, the proportion starts out lower than the Merton
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Figure 5.5: Average trading amount rate τ∗A∗ as a function of time.
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Figure 5.6: Average trading number rate τ∗N∗ as a function of time.

proportion π∗. As for the mean-square investor, this is to avoid having to sell
too large amounts later on, by “aiming in front of the target”. An investor
with a high value of θ stays closer to the Merton proportion which agrees with
the intuition about θ. We notice that the case θ = 100 is very close to the
unconstrained case.

In Figure 5.5, we plot the average trading amount rate, τ∗A∗, and in
Figure 5.6, we plot the average trading number rate, τ∗N∗. Since the investor
mimics the unconstrained power investor’s “sell high, buy low” strategy, the
investor trades a negative amount (i.e. sells) but a positive number (i.e. buys),
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on average. An investor with a high value of θ trades larger amounts in
order to stay close to the Merton proportion. An investor with a low value
of θ trades smaller amounts because a low value of θ corresponds to harder
punishment for trading. All investors on average trade a positive number
of stocks, corresponding to a positive drift of N∗ as for the unconstrained
investor. An investor with a low value of θ trades a larger number of stocks,
but this is due to the investor’s utility function punishing trading amounts
and not trading numbers.

To study the investor’s expected utility loss from the trading constraint in
Equation (5.3), we use the simulated sample paths to approximate certainty
equivalents for the investor’s optimal final wealth. We calculate the certainty
equivalent

CE =
(
E
[
X1−γ
T

]) 1
1−γ .

Again, the certainty equivalent expresses which certain amount the investor
requires at time T in order to give up his uncertain wealth XT . We approx-
imate the mean E

[
X1−γ
T

]
by the average of the simulations. We apply the

procedure for the unconstrained wealth and for the constrained wealth for
each value of θ. We get the following table:

No constraint θ = 100 θ = 10 θ = 1 θ = 0.1
CE 392.0 392.0 391.9 391.2 389.1

The investor’s expected utility loss is insignificant. The utility loss is larger
for low value of θ. This agrees with the intuition about θ since a low value of
θ corresponds to a harder punishment for trading. Notice that the expected
utility loss in general is much smaller for the power investor than for the mean-
square investor which conforms with the unconstrained power investor being
a less active investor.

Appendix

5.A Calculations for Mean-Square Utility
Optimization

We embed the problem in Equation (5.1) in an optimal value function J given
by

J (t, x) = max
(πs)t≤s≤T

E
[
XT − γX2

T

∣∣∣Xt = x
]
,

The Hamilton-Jacobi-Bellman equation is

Jt = −max
π

{
(πλ+ r)xJx + 1

2σ
2π2x2Jxx

}
,

J (T, x) = x− γx2 .
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The first order condition reads

π = − λ

σ2
Jx
xJxx

.

Inserting this in the Hamilton-Jacobi-Bellman equation, we obtain the PDE

0 = Jt + 1
2
λ2J2

x

σ2Jxx
+ rxJx ,

J (T, x) = x− γx2 .

We make the ansatz

J (t, x) = f (t)x+ g (t)x2 + h (t) ,

where f , g, and h are continuously differentiable functions satisfying the ter-
minal conditions f (T ) = 1, g (T ) = −γ, and h (T ) = 0. Plugging in, we
obtain

0 = h′ (t) + f ′ (t)x+ g′ (t)x2 + 1
2
λ2 (f (t) + 2g (t)x)2

2σ2g (t)
+ rx (f (t) + 2g (t)x)

= h′ (t) + f ′ (t)x+ g′ (t)x2 + λ2

4σ2
(f (t))2

g (t)

+ λ2

σ2 g (t)x2 + λ2

σ2 f (t)x+ rf (t)x+ 2rg (t)x2

=
[
h′ (t) + λ2

4σ2
(f (t))2

g (t)

]
+
[
f ′ (t) + λ2

σ2 f (t) + rf (t)
]
x

+
[
g′ (t) + λ2

σ2 g (t) + 2rg (t)
]
x2 .

Hence, we get the following system of ODEs:

f ′ (t) = −
(
λ2

σ2 + r

)
f (t) , f (T ) = 1 ,

g′ (t) = −
(
λ2

σ2 + 2r
)
g (t) , g (T ) = −γ ,

h′ (t) = − λ2

4σ2
(f (t))2

g (t) , h (T ) = 0 .

The solutions are

f (t) = e

(
λ2
σ2 +r

)
(T−t)

,

g (t) = −γe
(
λ2
σ2 +2r

)
(T−t)

,

h (t) =
∫ T

t
− λ2

4σ2γ
e
λ2
σ2 (T−s) ds =

[ 1
4γ e

λ2
σ2 (T−s)

]T
t

= 1
4γ −

1
4γ e

λ2
σ2 (T−t) .
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The optimal investment reads

π∗t = − λ

σ2
f (t) + 2g (t)X∗t

2X∗t g (t) = λ

σ2

(
1

2X∗t γer(T−t)
− 1

)
.

The optimal number of stocks held by the investor, N∗ = π∗X∗

S , follows the
dynamics

dN∗t = d

 λ
σ2

(
1

2γer(T−t) −X∗t
)

St


= λ

σ2

( r
2γer(T−t)

St
dt− 1

St
dX∗t −

1
2γer(T−t) −X∗t

S2
t

dSt

+ 1
S2
t

dX∗t dSt +
1

2γer(T−t) −X∗t
S3
t

( dSt)2
)

= λ

σ2

( r
2γer(T−t)

St
dt− 1

St
X∗t ((r + π∗t λ) dt+ π∗t σ dWt)

−
1

2γer(T−t) −X∗t
St

((r + λ) dt+ σ dWt)

+ 1
St
X∗t π

∗
t σ

2 dt+
1

2γer(T−t) −X∗t
St

σ2 dt
)

= N∗t

((
1 + 1− r

π∗t
− λ2

σ2 − r + σ2
)

dt−
(
λ

σ
+ σ

)
dWt

)
.

The optimal investment proportion π∗ follows the dynamics

dπ∗t = r

(
π∗t + λ

σ2

)
dt−

(
π∗t + λ

σ2

)
((r + π∗t λ) dt+ π∗t σdWt)

+
(
π∗t + λ

σ2

)
(π∗t )

2 σ2 dt

=
(
π∗t + λ

σ2

)((
(π∗t )

2 σ2 − π∗t λ
)

dt− π∗t σdWt

)
.

The optimal amount invested in stocks, A∗ = π∗X∗, follows the dynamics

dA∗ = π∗tX
∗
t [(r + π∗λ) dt+ π∗σdWt] +X∗t dπ∗t

= A∗t
St

dSt + (π∗t − 1)A∗t [λdt+ σdWt] +X∗t dπ∗t .
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5.B Calculations for Smooth Investment with
Mean-Square Utility

We embed the problem in Equation (5.4) in an optimal value function J given
by

J (t, x, a) = max
(τs)t≤s≤T

E
[
XT − γX2

T −
∫ T

t

1
2Λ (τsAs)2 ds

∣∣∣∣∣Xt = x,At = a

]
,

where Et,x,a denotes conditional expectation given Xt = x and At = a. The
problem in Equation (5.4) then reads

max
n0

J (0, x0, s0n0) .

The Hamilton-Jacobi-Bellman equation for the function J is

Jt = −max
τ

{
− 1

2Λτ2a2 + (λa+ rx) Jx

+ a (λ+ r + τ) Ja + 1
2σ

2a2 (Jxx + Jaa + 2Jax)
}
,

J (T, x, a) = x− γx2 .

The first order condition for τ implies

τ∗ = Ja
aΛ .

Inserting this in the Hamilton-Jacobi-Bellman equation, we obtain the PDE

0 = Jt −
1
2Λ

(
Ja
aΛ

)2
a2 + (λa+ rx) Jx

+ a

(
λ+ r + Ja

aΛ

)
Ja + 1

2σ
2a2 (Jxx + Jaa + 2Jax)

= Jt + (λa+ rx) Jx + 1
2ΛJ

2
a + a (λ+ r) Ja

+ 1
2σ

2a2 (Jxx + Jaa + 2Jax) ,

J (T, x, a) = x− γx2 .

We make the ansatz

J (t, x, a) = f1 (t)x2 + f2 (t)x+ f3 (t) a2 + f4 (t) a+ f5 (t) ax+ f6 (t) ,

where f1, . . . , f4 are continuously differentiable functions satisfying the termi-
nal conditions f1 (T ) = −γ, f2 (T ) = 1, f3 (T ) = f4 (T ) = f5 (T ) = f6 (T ) = 0.



132 5. Smooth Investment

Inserting in the PDE, we get

0 = f ′1 (t)x2 + f ′2 (t)x+ f ′3 (t) a2 + f ′4 (t) a+ f ′5 (t) ax+ f ′6 (t)
+ (λa+ rx) (2f1 (t)x+ f2 (t) + f5 (t) a)
+ 1

2Λ (2f3 (t) a+ f4 (t) + f5 (t)x)2

+ a (λ+ r) (2f3 (t) a+ f4 (t) + f5 (t)x)
+ 1

2σ
2a2 (2f1 (t) + 2f3 (t) + 2f5 (t))

= x2
(
f ′1 (t) + 2rf1 (t) + 1

2Λf
2
5 (t)

)
+ x

(
f ′2 (t) + rf2 (t) + 1

Λf4 (t) f5 (t)
)

+ a2
(
f ′3 (t) +

(
λ+ σ2

)
f5 (t) + 2

Λf
2
3 (t) + σ2f1 (t)

+
(
2λ+ 2r + σ2

)
f3 (t)

)
+ a

(
f ′4 (t) + λf2 (t) + 2

Λf3 (t) f4 (t) + (λ+ r) f4 (t)
)

+ ax
(
f ′5 (t) + 2λf1 (t) + 2

Λf3 (t) f5 (t) + (λ+ 2r) f5 (t)
)

+ f ′6 (t) + 1
2Λf

2
4 (t) .

Hence, we get the following system of ODEs:

f ′1 (t) = −2rf1 (t)− 1
2Λf

2
5 (t) , f1 (T ) = −γ ,

f ′2 (t) = −rf2 (t)− 1
Λf4 (t) f5 (t) , f2 (T ) = 1 ,

f ′3 (t) = −
(
λ+ σ2

)
f5 (t)− 2

Λf
2
3 (t)− σ2f1 (t)−

(
2λ+ 2r + σ2

)
f3 (t) ,

f3 (T ) = 0 ,

f ′4 (t) = −λf2 (t)− 2
Λf3 (t) f4 (t)− (λ+ r) f4 (t) , f4 (T ) = 0 ,

f ′5 (t) = −2λf1 (t)− 2
Λf3 (t) f5 (t)− (λ+ 2r) f5 (t) , f5 (T ) = 0 ,

f ′6 (t) = − 1
2Λf

2
4 (t) , f6 (T ) = 0 .

We notice that the system of ODEs for f1, f3, and f5 can be solved separately.
The optimal trading amount rate is

τ∗t At = 2
Λf3 (t)A∗t + 1

Λf4 (t) + 1
Λf5 (t)X∗t .

We have that

J (0, x0, s0n0) = f1 (0)x2
0 + f2 (0)x0 + f3 (0)n2

0s
2
0 + f4 (0)n0s0

+ f5 (0)n0s0x0 + f6 (0) .
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The first order condition for optimality of n0 reads

2f3 (0)n0s
2
0 + f4 (0) s0 + f5 (0) s0x0 = 0 .

Hence, the investor’s optimal number of stocks at time zero is given by

n∗0 = −f4 (0) + f5 (0)x0
2f3 (0) s0

.

5.C Calculations for Smooth Investment with
Power Utility

We embed the problem in Equation (5.9) in an optimal value function V given
by

V (t, x, a) = min
(τs)t≤s≤T

Et,x,a
[ ∫ T

t

1
2

(
θ(πXs −As)2 + (τsAs)2

)
ds
]
,

where Et,x,a denotes conditional expectation given Xt = x and At = a. The
problem in Equation (5.9) then reads

max
n0

V (0, x0, s0n0) .

The Hamilton-Jacobi-Bellman equation for the function V is

Vt = −min
τ

{
1
2

[
θ (π∗x− a)2 + (τa)2

]
+ (r + λ+ τ) aVa

+ (rx+ λa)Vx + 1
2σ

2a2 (Vaa + Vxx + 2Vxa)
}
,

V (T, x, a) = 0 .

The first order condition for τ implies

τ∗ = −Va
a
.

Inserting this in the Hamilton-Jacobi-Bellman equation, we obtain the PDE

0 = Vt + 1
2θ (π∗x− a)2 − 1

2 (Va)2 + (r + λ) aVa
+ (rx+ λa)Vx + 1

2σ
2a2 (Vaa + Vxx + 2Vxa) ,

V (T, x, a) = 0 .

We make the ansatz

V (t, x, a) = 1
2f (t)x2 + 1

2g (t) a2 − h (t) ax ,
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where f , g, and h are continuously differentiable functions satisfying the ter-
minal conditions f (T ) = g (T ) = h (T ) = 0. Inserting in the PDE, we get

0 = 1
2f
′ (t)x2 + 1

2g
′ (t) a2 − h′ (t) ax+ θ

2 (π∗x− a)2 − 1
2 (g (t) a− h (t)x)2

+ (r + λ) a (g (t) a− h (t)x) + (rx+ λa) (f (t)x− h (t) a)
+ 1

2σ
2a2 (g (t) + f (t)− 2h (t))

= 1
2f
′ (t)x2 + 1

2g
′ (t) a2 − h′ (t) ax+ θ

2 (π∗)2 x2 + θ
2a

2 − θπ∗xa
− 1

2 (g (t))2 a2 − 1
2 (h (t))2 x2 + g (t) ah (t)x

+ (r + λ) g (t) a2 − (r + λ)h (t)xa+ rf (t)x2 − rh (t) ax
+ λf (t)xa− λh (t) a2 + 1

2σ
2a2 (g (t) + f (t)− 2h (t))

= 1
2x

2
[
f ′ (t) + θ (π∗)2 − (h (t))2 + 2rf (t)

]
+ 1

2a
2
[
g′ (t) + θ + σ2f (t)− 2

(
λ+ σ2

)
h (t)− (g (t))2

+
(
2r + 2λ+ σ2

)
g (t)

]
− ax

[
h′ (t) + θπ∗ − λf (t) + (2r + λ)h (t)− g (t)h (t)

]
.

Hence, we get the following system of ODEs:

f ′ (t) = −θ (π∗)2 + (h (t))2 − 2rf (t) , f (T ) = 0 ,

g′ (t) = −θ − σ2f (t) + 2
(
λ+ σ2

)
h (t)−

(
2r + 2λ+ σ2

)
g (t) + (g (t))2 ,

g (T ) = 0 ,
h′ (t) = −θπ∗ + λf (t)− (2r + λ)h (t) + g (t)h (t) , h (T ) = 0 .

The optimal trading amount rate is

τ∗t A
∗
t = −Va (t,X∗t , A∗t ) = h (t)X∗t − g (t)A∗t .

We have that

V (0, x0, s0n0) =1
2f (0)x2

0 + 1
2g (0)n2

0s
2
0 − h (0)n0s0x0 .

The first order condition for optimality of n0 reads

g (0)n0s
2
0 − h (0) s0x0 = 0 .

Hence, the investor’s optimal number of stocks at time zero is given by

n∗0 = h (0)x0
g (0) s0

.
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Abstract: Using a two-account model with event risk, we model
life insurance contracts taking into account both guaranteed and non-
guaranteed payments in participating life insurance as well as in unit-
linked insurance. Here, event risk is used as a generic term for life
insurance events, such as death, disability, etc. In our treatment of
participating life insurance, we have special focus on the bonus schemes
“consolidation” and “additional benefits”, and one goal is to formalize
how these work and interact. Another goal is to describe similarities
and differences between participating life insurance and unit-linked in-
surance. By use of a two-account model, we are able to illustrate general
concepts without making the model too abstract. To allow for compli-
cated financial markets without dramatically increasing the mathemati-
cal complexity, we focus on economic scenarios. We illustrate the use of
our model by conducting scenario analysis based on Monte Carlo simu-
lation, but the model applies to scenarios in general and to worst-case
and best-estimate scenarios in particular. In addition to easy compu-
tations, our model offers a common framework for the valuation of life
insurance payments across product types. This enables comparison of
participating life insurance products and unit-linked insurance products,
thus building a bridge between the two different ways of formalizing life
insurance products. Finally, our model distinguishes itself from the ex-
isting literature by taking into account the Markov model for the state
of the policyholder and, hereby, facilitating event risk.

Keywords: Two-account model, economic scenarios, participating
life insurance, unit-linked insurance, stochastic differential equations,
guarantees, bonus, fairness, market valuation.
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6.1 Introduction
Classical life insurance mathematics deals with the computation of reserves
and cash flows for guaranteed payments in participating life insurance. Non-
guaranteed payments in participating life insurance and guaranteed and non-
guaranteed payments in unit-linked insurance depend on the evolution of the
financial market, and this makes them difficult to model, in particular on top
of the state model of the policyholder. Note that by non-guaranteed pay-
ments, we mean all future payments that are not guaranteed, with bonus in
participating life insurance as the leading example. The paper Møller and
Steffensen (2007) offers examples of this advanced combined modeling in the
case of a Black–Scholes financial market. To lower the mathematical com-
plexity and allow for more complicated financial markets while maintaining a
general biometric state model, we focus on economic scenarios. An economic
scenario could, for example, consist of a sample path for the short interest
rate and/or a stock index. The scenarios may be worst-case scenarios, stress
scenarios from Solvency II, scenarios generated via Monte Carlo simulation
or best-estimate scenarios. For a given scenario, the balance of the policy is
projected into the future. For scenarios generated via Monte Carlo simulation,
one obtains a valid approximation of the expected future payments, guaran-
teed as well as non-guaranteed, by averaging over sufficiently many projections
(as is common practice with Monte Carlo simulation). For worst-case or best-
estimate scenarios, a single projection is enough to obtain the corresponding
worst-case or best-estimate approximation of the future payments. We will
not go into details about the generation of stochastic scenarios; we simply take
them as financial input to our model. For Monte Carlo simulation, we refer
to Glasserman (2004). For the generation of worst-case scenarios, we refer
to Christiansen et al. (2014). Scenario-based calculations have the advantage
that the overall projection approach does not change with the financial model,
because the stochastic scenarios are the only financial input. Economic sce-
narios are widely used in the insurance industry; see, for example, Insurance
Regulation Committee of the International Actuarial Association (2013) and
Chapter 10 “A Simulation-Based ALM Model in Practical Use by a Norwegian
Life Insurance Company” in Silvestrov and Martin-Löf (2014).

Considering non-guaranteed payments when valuing the liabilities has many
applications, such as risk management, product development and solvency.
In Solvency II Directive (2009), Paragraph 79, it is stated that the value
of financial guarantees and contractual options should take into account non-
guaranteed as well as guaranteed payments. Scenario-based calculations allow
for market valuation, solvency calculations, hedging and pricing of guaranteed
and non-guaranteed payments in participating life and unit-linked insurance.
Hence, scenario-based calculations, which is exactly what we propose, are
useful for complying with current Solvency II regulation.

We model life insurance contracts using two interacting accounts described
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by stochastic differential equations. One account measures the assets, and
the other account is a technical account. For each scenario, the stochastic
differential equations simplify to deterministic differential equations that can
be solved numerically. A numerical solution can, for example, be obtained
by applying a simple numerical discretization. Thereby, our model is simple
to implement. Furthermore, our model allows us to model participating life
and unit-linked insurance in the same framework. By doing so, we are able to
compare the two. In their nature, unit-linked and participating life insurance
seem different, but they are really not. The products may vary in riskiness,
but projection-wise, they are almost the same. The main difference lies in the
specification of how non-guaranteed payments arise, stated in the contract
from the beginning (unit-linked) or determined fairly by the company along
the way (participating life).

By use of a two-account model, we are able to illustrate general concepts
without making the model too abstract. Our two-account model is based on
the two-account model in Steffensen and Waldstrøm (2009), and both models
offer a common framework for the valuation of guaranteed and non-guaranteed
payments in participating life and unit-linked insurance. Our model distin-
guishes itself from the model in Steffensen and Waldstrøm (2009) by taking
into account the Markov model for the state of the policyholder, thereby
including event risk. Here, event risk is used as a generic term for life insur-
ance events, such as death, disability, etc. The existing literature considers
the valuation of guaranteed and non-guaranteed payments in participating
life insurance or unit-linked insurance without event risk, whereas a com-
mon framework and inclusion of event risk are rare. The papers Bauer et al.
(2006); Zaglauer and Bauer (2008); Bauer et al. (2010); Bohnert and Gatzert
(2012) are examples of recent literature that considers valuation in partici-
pating life insurance without (or with very limited) event risk. The papers
Gatzert and Kling (2007); Graf et al. (2011); Kling et al. (2007) are other
examples within the same area, but their focus is more risk-related. On the
other hand, Norberg (2001) models participating life insurance, taking into
account the Markov model for the state of the policyholder, but the model
is only tractable for a very simple financial environment, and it does not ap-
ply to unit-linked insurance. The work in Møller and Steffensen (2007) and,
more specifically, Steffensen (2006) cover participating life and unit-linked in-
surance with broad event risk, but only in a Black–Scholes market, and the
results involve non-trivial partial differential equations.

In our treatment of participating life insurance, we have special focus on
bonus allocation and on the bonus schemes “consolidation” and “additional
benefits”. These bonus schemes are the most common in the Danish life in-
surance and pensions industry, but to our knowledge, consolidation is barely
mentioned in the literature. An important goal of this paper is to formalize
exactly how these bonus schemes work and interact. Other papers with a sim-
ilar focus on bonus include Grosen and Jørgensen (2000); Jensen et al. (2001);
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Hansen and Miltersen (2002); Miltersen and Persson (2003), but again, none
of them include event risk. In our treatment of unit-linked insurance, we have
special focus on the implementation of guarantees and on the similarities and
differences in relation to participating life insurance. For both product types,
we include numerical examples to demonstrate the possible applications of our
two-account model.

In Section 6.2, we discuss scenario-based projection in general. Our main
focus is on projection level and which measure to project under (physical or
pricing measure). In Section 6.3, we discuss valuation bases in life insurance
and formalize a common model for the state-wise evolution of the policies un-
der consideration. In Section 6.4, we consider participating life insurance. We
briefly touch upon different bonus schemes, and we present our two-account
model for a general participating life insurance policy, although not allowing
for policyholder behavior options. We include simple survival model exam-
ples to illustrate formulas and provide intuition. We end the section with a
numerical example building on the survival model. The example illustrates
a fair bonus strategy and the risk of unfair redistribution between policies
in a portfolio. It also highlights some of the many possible applications of
scenario-based calculations. In Section 6.5, we consider unit-linked insurance.
We touch upon different aspects of unit-linked insurance, and we present our
two-account model for a general unit-linked insurance policy. Again, we in-
clude simple and illustrative survival model examples. We end the section with
a numerical example that is a unit-linked version of the numerical example in
the previous section. The example illustrates a fair guarantee fee strategy, and
we compare the unit-linked insurance policy to its participating life insurance
counterpart, making good use of our common modeling framework.

6.2 Projection in General
In participating life insurance, we introduce stochastic scenarios to allow for
market valuation of non-guaranteed payments, pricing and hedging of guar-
antees, bonus and benefit prognoses and solvency calculations. In unit-linked
insurance, we introduce stochastic scenarios to utilize retirement savings and
benefit prognoses, solvency calculations and hedging and pricing of unit-linked
guarantees. In both cases, each scenario consists of two sample paths: one
for the short interest rate, r, and one for the return on the fund that the
policyholder and/or the insurance company has chosen to invest in, RX . We
assume that the stochastic scenarios arise from a financial model equipped
with a physical measure P and a risk-neutral pricing measure Q. For each
scenario, we project the accounts that determine the financial progress of a
given policy. When making the projections in participating life insurance, as
well as in unit-linked insurance, it is important to bear in mind the requested
outcome.
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For pricing, hedging, market valuation and solvency assessments of guar-
anteed and non-guaranteed payments (in participating life) or of a provided
guarantee (in unit-linked) or for examining a bonus allocation strategy (in par-
ticipating life), it is the expected evolution of the policy, both financially and
across states, that is relevant. Hence, the evolution of the policy is considered
on an average “portfolio level”. For pricing, hedging and market valuation, the
projections are carried out under the pricing measure (Q), since the focus is on
pricing and valuation. For solvency assessments, the projections are carried
out under the physical measure (P ) up to some relevant time point, and from
then on, they are carried out under the pricing measure (Q). For examining
a bonus allocation strategy and quantifying the total expected future bonus,
the projections are carried out under the physical measure (P ), since the focus
is on the actual outcome.

For retirement savings, benefit and bonus prognoses, it is the expected
financial evolution of the policy that is relevant. The policyholder wants to
know what to expect in each state, not the average expectation. Hence, the
evolution of the policy is considered on an individual “policy level”. However,
in participating life insurance, the amount of bonus allocated to the policy
depends on the financial evolution and the average evolution of the policy.
Hence, for the purpose of prognoses in participating life insurance, the assets
and the reserves must, first, be projected on portfolio level to produce a sample
path for the bonus allocation. Second, the sample path for the bonus allocation
is used to project the reserves on an individual path-wise “policy level”. In
either case, the projections are carried out under the physical measure (P ),
since the focus is on the actual bonus, retirement savings and benefits.

In this paper, we limit our focus to projection on portfolio level and leave
projection on policy level for future research.

6.3 Valuation Bases and Insurance Model
A cornerstone in life insurance mathematics is the principle of equivalence,
which states that the expected present values of premiums and benefits should
be equal. The principle relies on the law of large numbers that will, then, on
average, make premiums and benefits balance in a large insurance portfo-
lio. To apply the equivalence principle, one needs assumptions about interest,
mortality and other relevant economic-demographic elements. The uncertain
development of these elements subjects the insurance company to a risk that
is independent of the size of the portfolio. In participating life insurance, the
insurance company can neither raise the premiums nor reduce the benefits
along the way, so the only way for the insurance company to mitigate this
risk is to build a safety loading into the premiums. This is done by perform-
ing the equivalence principle under conservative assumptions about interest,
mortality, etc. These assumptions make up the so-called technical basis, and



140 6. A Two-Account Life Insurance Model. . .

it represents a provisional worst-case scenario for its elements. Below, we
mark elements of the technical basis by superscript “∗”. For market-consistent
valuation of future payments, the technical basis does not apply due to its
worst-case nature. Instead, valuation is performed under the so-called market
basis, which is made up of best-estimate assumptions about the various ele-
ments. Below, we mark elements of the market basis by superscript “m”. In
unit-linked insurance, the benefits are typically allowed to fluctuate with the
market, hereby making the technical basis superfluous.

In participating life insurance, as well as in unit-linked insurance, we con-
sider a policy whose state-wise evolution is governed by a continuous-time
Markov process Z with a finite state space J , starting at zero. For a detailed
description of the Markov model, see Norberg (1991) or Norberg (1999). For
k, j ∈ J , j 6= k, we define the counting process Njk and the indicator process
Ik by

Njk (t) = # {s ≤ t : Z (s−) = j, Z (s) = k} ,
Ik (t) = 1{Z(t)=k} .

With this definition, Njk (t) counts the number of jumps from state j to state
k until time t, and Ik (t) indicates a sojourn in state k at time t. Under
the technical basis, we model the evolution of Z by the transition intensities
t 7→ µ∗jk (t), j, k ∈ J , j 6= k, and under the market basis, we model the
evolution of Z by the transition intensities t 7→ µmjk (t), j, k ∈ J , j 6= k. The
corresponding technical and market transition probabilities from state j to
state k over the time interval [t, s] are denoted by p∗jk (t, s) and pmjk (t, s), and
with ◦ = ∗,m indicating the basis, we have

µ◦jk (t) = lim
h↓0

p◦jk (t, t+ h)
h

.

The transition probabilities can be calculated numerically from the transition
intensities by use of the Kolmogorov equations; see, for example, Norberg
(1991). We assume that the process Z governing the state of the policy is
independent of the financial market, and under both P and Q, the evolution
of Z is described by the transition intensities from the market basis.

In addition to the market transition intensities, the market basis consists
of a market interest rate. The market basis has no more elements, as we do
not take expenses or any other economic-demographic elements into account.
Similarly, the technical basis consists of the technical transition intensities
and a technical interest rate. In unit-linked insurance, only the market basis
comes into play.

6.4 Participating Life Insurance
In this section, we consider participating life insurance. We touch upon dif-
ferent bonus schemes, and we present our two-account model for a general
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participating life insurance policy. We include simple survival model exam-
ples to illustrate formulas and provide intuition. We end the section with a
numerical example building on the survival model.

6.4.1 Non-Guaranteed Payments (Bonus)

In participating life insurance, the guaranteed payments are based on the tech-
nical basis. The conservative technical basis gives rise to a systematic surplus
that is to be paid back to the policyholders in terms of bonus. There are many
possible ways to do so. For a short survey, see Møller and Steffensen (2007).
We consider a bonus scheme consisting of two steps: first, consolidation, and
then, when the policy is consolidated on a sufficiently low technical interest
rate (if ever), additional benefits. The bonus scheme consolidation (in Danish
“styrkelse”) is much used in the Danish market, but it can easily be skipped
below, heading straight for the bonus scheme additional benefits.

The bonus scheme consolidation is primarily used for policies with a tech-
nical interest rate that is “too high” compared to the market interest rate.
Bonus is used to consolidate the policy on a lower technical interest rate.
By consolidate, we mean that the technical interest rate is lowered without
changing the guaranteed payments. This may seem to be less favorable for the
policyholder, but since the guaranteed payments are not changed, the policy-
holder is not worse off. When a sufficiently low technical interest rate has been
reached, the remaining bonus is used for additional benefits. Hence, consoli-
dation does not benefit the policyholder in terms of more favorable payments
immediately after bonus payments, but it helps to ensure that the liabilities
of the policy can be met. Furthermore, the lower technical interest rate gives
rise to a higher systematic surplus in the future, which will eventually be
redistributed and reflected in the payments.

The bonus scheme additional benefits is primarily used for policies with
a low technical interest rate compared to the market interest rate. Bonus is
used to increase parts of the guaranteed benefits proportionally, whereas the
remaining benefits, the premiums and the technical interest rate are main-
tained. It is usually the retirement part of the benefits (such as a pure en-
dowment or a life annuity) that is increased and the insurance part of the
benefits (such as a term insurance or disability coverage) that is not. There
is good reason to increase the retirement part of the benefits instead of de-
creasing the premiums or increasing all of the benefits, since the retirement
benefits are typically set according to which premiums the policyholder can
afford and which insurance coverage he/she needs, and not the other way
around. Furthermore, there is good reason to increase the retirement benefits
proportionally, as the benefit profile reflects the policyholder’s preferences.



142 6. A Two-Account Life Insurance Model. . .

6.4.2 Product Specification

We consider a participating life insurance policy with guaranteed payments
based on a technical basis whose elements are marked by superscript “∗”. The
state-wise evolution of the policy is described in Section 6.3. We let r∗(0)

denote the technical interest rate at time 0. By Bu, Bf and C, we denote
the guaranteed payment streams at time 0. Here, C is the premium stream
(“C” for contributions), Bu is the benefit stream for the benefits that are
increased (“B” for benefits and superscript “u” for upscaled) and Bf is the
benefit stream for the benefits that are kept fixed (superscript “f” for fixed).
The payments streams are given by

dC =
∑
j∈J

Ij dcj ,

dBi =
∑
j∈J

Ij dbij +
∑

j,k∈J :k 6=j
bijk dNjk , i = f, u ,

where cj , bfj and buj are deterministic, state-wise payment streams and bfjk
and bujk are deterministic lump sum payments upon jumps. We note that
we, hereby, exclude policyholder behavior options, such as surrender and free
policy, since they imply non-deterministic payments. However, for surrender
modeling, see the remark on Page 152. Examples of deterministic lump sum
payments upon jumps include insurance coverage, such as a death sum, a
disability sum or a sum upon critical illness. The policy terminates at time
T . Thereafter, there are no payments.

6.4.3 Two-Account Model

We denote by X the assets of the policy, including its share of the collective
bonus potential, and by Y , we denote the market expected technical reserve
for the policy. By market expected technical reserve, we mean the expectation
of future state-wise technical reserves where the expectation across states is
taken under the market basis. Thus, the market expected technical reserve is
not a state-wise reserve, but a probability weighted sum of state-wise reserves.
The accountsX and Y are the backbone of our two-account model. The policy
is issued before or at time 0, and the two accounts amount to X (0−) = x0
and Y (0−) = y0 just before time 0. For a policy issued at time 0, y0 and x0
are both zero. For a policy issued before time 0, y0 is equal to the technical
reserve for the policy just before time 0, and x0 is equal to the assets of the
policy just before time 0. Both are assumed to be known when initiating the
projection.

The assetsX are invested in a fund with stochastic return RX . The market
expected technical reserve Y accumulates according to the technical interest
rate. In good times, the return rate on the assets exceeds the technical interest
rate. Parts of the excess return are allocated to the policy in terms of bonus,
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which adds to the market expected technical reserve, but parts are saved for
times where the return rate on the assets is less favorable. In really bad times,
the assets may be insufficient to cover the guaranteed payments of the policy.
In that case, the equity holders of the insurance company step in with a capital
injection taken from the company’s equity. We speak of the possible capital
injection as a guarantee injection, and its role is to raise the assets in case
of unfavorable developments in the financial market. The policyholder pays
for the company’s risk taking by having a guarantee fee deducted from the
assets and paid to the equity holders of the insurance company in good times.
We assume that the insurance company’s equity is always sufficient to cover
the guarantee injections and that all guarantee injections and guarantee fees
are settled via the equity. In Denmark, the guarantee fee used to be known
as the “driftsherretillæg” (translates to “technical yield”). All of the above
does not happen continuously, but at pre-specified, deterministic time points
0 < t1 < . . . < tn = T (for example, once a year) where the two accounts X
and Y are updated. We let

ε (t) = # {i = 1, . . . , n : ti ≤ t}

count the number of updates prior to time t. The updates consist of bonus
allocation d (if funds are sufficient), guarantee injection g from the equity
holders of the insurance company (if needed) and deduction of the guarantee
fee πg in return for the possible guarantee injection. All three are non-negative.
For technical convenience, we assume that the stochastic return on the assets,
RX , does not jump at the time points 0 < t1 < . . . < tn = T with account
updates. Furthermore, for all t with dε (t) = 1, i.e., for all time points with
an account update, we assume that d (t) and πg (t) are known at time t−
and that g (t) is calculated at time t−. This is to ensure predictability and,
thereby, stochastic integrability.

6.4.4 Bonus Mechanisms

As mentioned, we consider a bonus scheme where bonus allocated to the policy
is, first, used to lower the technical interest rate until it hits a pre-described
level r∗. Typically, this level coincides with the technical interest rate for
new policies. Thereafter, bonus is used to increase the benefits Bu. The
additional benefits are priced using the technical transition intensities µ∗jk and
the technical interest rate r∗. This means that the minimum technical interest
rate for consolidation and the pricing interest rate for additional benefits are
assumed to coincide. One could have chosen another technical interest rate
for the pricing of additional benefits, but that would require a division of the
technical reserve on two different technical bases, so we insist on using r∗. We
let r∗(n) denote the technical interest rate after the n-th bonus accrual and
k(n) denote the upscaling of the benefits Bu after the n-th bonus accrual. We
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note that the upscaling factor starts at one, i.e., k(0) = 1. After the n-th
bonus accrual, the guaranteed benefit stream for the policy is given by

B(n) = k(n)Bu +Bf .

We point out that r∗(n) and k(n) depend on the development of the financial
market and are therefore stochastic. However, for each economic scenario, we
have a procedure for calculating them according to the equivalence principle.
The procedure is presented in Section 6.4.8. We note that we have k(n) = 1
for all n with r∗(n) > r∗, and if k(n) > 1, then necessarily r∗(n) = r∗. This is
because we do not increase the guaranteed benefits until the technical interest
rate has been lowered to r∗. Finally, we note that the technical interest rate
and the upscaling factor amount to r∗(ε(t)) and k(ε(t)) at time t, since there
has been ε (t) account updates at time t.

For all t with dε (t) = 1, that is for all time points with an account
update, we assume that the technical interest rate r∗(ε(t)) and the upscaling
factor k(ε(t)) are calculated at time t−. Again, this is to ensure predictability.
Furthermore, additional benefits are in effect from time t−, such that benefits
paid out at time t include the upscaling k(ε(t)). The latter ensures that a
policyholder with a final lump sum payment actually benefits from the last
bonus update.

6.4.5 Technical Reserves

We denote by V f,∗,+
j (·, ρ) and V u,∗,+

j (·, ρ) the state-wise technical benefit
reserves for the benefit streams Bf and Bu given that the policy is in state
j and that the technical interest rate is ρ. Similarly, we denote by V ∗,−j (·, ρ)
the state-wise technical premium reserves for the premium stream C. Note
that we use superscript “+” to indicate the benefit reserves and superscript
“−” to indicate the premium reserve. Furthermore, we use superscript “∗” to
indicate that the reserve is evaluated under the technical basis. Finally, we
use the generic constant ρ in place of the technical interest rate, because we
need to evaluate the technical reserves for different technical interest rates in
connection with the bonus scheme consolidation. We have

V ∗,−j (t, ρ) = E∗
[∫ T

t
e−ρ(s−t) dC (s)

∣∣∣∣∣Z (t) = j

]

=
∫ T

t
e−ρ(s−t) ∑

l∈J
p∗jl (t, s) dcl (s) ,

V i,∗,+
j (t, ρ) = E∗

[∫ T

t
e−ρ(s−t) dBi (s)

∣∣∣∣∣Z (t) = j

] (6.1)

=
∫ T

t
e−ρ(s−t) ∑

l∈J
p∗jl (t, s)

dbil (s) +
∑

k∈J :k 6=l
µ∗lk (s) bilk (s) ds

 ,
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for i = f, u. Here, E∗ denotes technical expectation and p∗jl is the technical
probability of transition from state 0 to j. Both are determined by the transi-
tion intensities from the technical basis. The state-wise technical reserves can
be calculated numerically by use of Thiele’s differential equations; see Hoem
(1969).

We denote by V ∗i (·, ρ, k) the state-wise technical reserve for the (partly
upscaled by k) payment stream Bf + kBu − C, given that the policy is in
state i and that the technical interest rate is ρ, i.e.,

V ∗i (t, ρ, k) = kV u,∗,+
i (t, ρ) + V f,∗,+

i (t, ρ)− V ∗,−i (t, ρ) , i ∈ J . (6.2)

Here, V f,∗,+
j , V u,∗,+

j , and V ∗,−j are the state-wise technical benefit and pre-
mium reserves defined in Equation (6.1). With the introduction of V ∗i , we can
write the market expected technical reserve as

Y (t) =
∑
j∈J

pm0j (0, t)V ∗j
(
t, r∗(ε(t)), k(ε(t))

)
.

We recall that pm0j is the market probability of transition from state 0 to j,
which is determined by the transition intensities from the market basis. We
note that the stochasticity in Y (t) comes from the stochastic development of
the technical interest rate r∗(ε(t)) and the upscaling factor k(ε(t)). However, for
each t, the technical interest rate r∗(ε(t)) is determined as a constant interest
rate over [t, T ], so we never plug a non-constant technical interest rate into
the reserves in Equation (6.1) when calculating V ∗j

(
t, r∗(ε(t)), k(ε(t))

)
.

Example 6.1 (Survival model). We consider a simple example that provides
the basis for numerical illustrations later on. The state of the policy is de-
scribed by the classical survival model with two states, 0 (alive) and 1 (dead).
The payments of the policy consist of a constant continuous premium payment
π while alive, a term insurance sum bad upon death before expiration T and
a pure endowment sum ba upon survival until expiration T . Under the bonus
scheme “additional benefits”, bonus is used to increase the endowment sum.
There are no payments in the death state. For simplicity, we write I = I1,
N = N01, µ◦ = µ◦01 and p◦ = p◦00 for ◦ = ∗,m, and we have

p◦ (s, t) = e−
∫ t
s
µ◦(v) dv , s ≤ t .

The payment streams of the policy read

dC (t) = πI dt , t ≤ T ,

dBf (t) = bad dN (t) , t ≤ T ,

dBu (t) = baI (t) dεT (t) , t ≤ T ,
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where εT is the Dirac measure in T , i.e., for a measurable set A ⊆ R

εT (A) = 1{T} (A) =
{

1 for T ∈ A,
0 for T /∈ A.

We note that ∫ T

0
dBu (t) = baI (T ) .

The technical premium and benefit reserves are zero in the state “dead”, and
in the state “alive”, they read

V ∗,− (t, ρ) =
∫ T

t
e−ρ(s−t)p∗ (t, s)π ds

= π

∫ T

t
e−ρ(s−t)e−

∫ s
t
µ∗(v) dv ds , t ≤ T ,

V f,∗,+ (t, ρ) =
∫ T

t
e−ρ(s−t)p∗ (t, s) badµ∗ (s) ds

= bad
∫ T

t
e−ρ(s−t)e−

∫ s
t
µ∗(v) dvµ∗ (s) ds , t ≤ T ,

V u,∗,+ (t, ρ) =
∫ T

t
e−ρ(s−t)p∗ (t, s) ba dεT (s)

= bae−ρ(T−t)e−
∫ T
t
µ∗(v) dv , t ≤ T .

6.4.6 Cash Flows

For projection on portfolio level, it it useful to consider market cash flows of
the policy. Here, we use the term market cash flows for the expectation of the
stochastic payment streams taken under the market basis. By ς, βf and βu,
we denote the time 0 market cash flows for the premium stream C and the
benefit streams Bf and Bu, i.e.,

ς (t) = Em
[∫ t

0
dC (s)

]
=
∑
j∈J

∫ t

0
pm0j (0, s) dcj (s) ,

βi (t) = Em
[∫ t

0
dBi (s)

]

=
∑
j∈J

∫ t

0
pm0j (0, s)

dbij (s) +
∑

k∈J :k 6=j
µmjk (s) bijk (s) ds

 , i = f, u ,

where the expectation Em is taken under the market basis. Furthermore, we
need the market expected market reserve. By V (t), we denote the market
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expected market reserve at time t for the most recently guaranteed payment
stream B(ε(t)) − C = Bf + k(ε(t))Bu − C, i.e.,

V (t) = Emk(ε(t))

[
Emk(ε(t))

[∫ T

t
e−
∫ s
t
r(v) dv d

(
B(ε(t)) − C

)
(s)
∣∣∣∣∣Z (t)

]]

=
∫ T

t
e−
∫ s
t
rt(v) dv

(
k(ε(t)) dβu (s) + dβf (s)− dς (s)

)
.

(6.3)

Here, Em
k(ε(t)) denotes market expectation given k(ε(t)), r is the stochastic short

interest rate and rt is the yield curve seen from time t. Similar to the mar-
ket expected technical reserve, the market expected market reserve is not a
state-wise reserve, but a market probability weighted sum of state-wise mar-
ket reserves. This is not evident from the formula above, since the reserve
simplifies due to the tower property. We emphasize that only additional ben-
efits, and not consolidation, raise the guarantee. However, consolidation has
an effect on the non-guaranteed benefits as the technical reserve increases.

Example 6.2 (Survival model continued). For the simple policy in Exam-
ple 6.1, the time 0 market premium and benefit cash flows read

ς (t) =
∫ t

0
pm (0, s)π ds = π

∫ t

0
e−
∫ s

0 µ
m(v) dv ds , t ≤ T ,

βf (t) =
∫ t

0
pm (0, s) badµm (s) ds = bad

∫ t

0
e−
∫ s

0 µ
m(v) dvµm (s) ds , t ≤ T ,

βu (t) =
∫ t

0
pm (0, s) ba dεT (s) = bae−

∫ T
0 µm(v) dvI{t≥T} , t ≤ T .

The market expected market reserve V reads

V (t) = e−
∫ T
t
rt(v) dve−

∫ T
0 µm(v) dvk(ε(t))ba

+
∫ T

t
e−
∫ s
t
rt(v) dve−

∫ s
0 µ

m(v) dv
(
badµm (s)− π

)
ds .

6.4.7 Two-Account Projection

On portfolio level, the assets X and the market expected technical reserve Y
of the policy evolve according to the stochastic differential equations (SDEs)

dX (t) = X (t−) dRX (t)− dβf (t)− k(ε(t))dβu (t) + dς (t)
+ [g (t)− πg (t)] dε (t) , t ≤ T ,

X (0−) = x0 ,

dY (t) = Y (t) r∗(ε(t))dt− dβf (t)− k(ε(t))dβu (t) + dς (t)
(6.4)

+ d (t) dε (t) + α
(
t, r∗(ε(t)), k(ε(t))

)
dt , t ≤ T ,

Y (0−) = y0 .
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Here, α is an adjustment term given by

α (t, ρ, k) =
∑
j∈J

∑
l∈J :l 6=j

pm0j (0, t)
(
µ∗jl (t)− µmjl (t)

)
×
(
V ∗j (t, ρ, k)− kbujl (t)− b

f
jl (t)− V

∗
l (t, ρ, k)

)
,

where V ∗i (t, ρ, k) are the state-wise technical reserves defined in Equation (6.2).
The adjustment term accounts for the market expected surplus arising from
the conservative technical transition intensities. See, for example, Norberg
(2001).

We recall that RX is the stochastic return on the assets, g is the guarantee
injection provided by the equity holders of the insurance company, πg is the
guarantee fee deducted from the assets and paid to the equity holders, d is the
allocated bonus and ε counts the number of updates of guarantee injection,
guarantee fee and bonus (typically annual). The bonus d and the guarantee fee
πg are specified by the company, whereas the guarantee injection g is designed
to ensure that the assets are at least equal to the guaranteed liabilities. We
define the guaranteed liabilities L as the maximum of the market expected
market reserve and the market expected technical reserve for the guaranteed
payments, i.e.,

L (t) = max {V (t) , Y (t)} . (6.5)
This definition has been common practice in Denmark since the introduction
of market values. However, the guaranteed liabilities can easily be defined
differently, for example L = V . The guarantee injection g (t) is calculated
according to the formula

g (t) = (L (t−)− (X (t−)− πg (t)))+ . (6.6)

This guarantee design ensures that the assets X are sufficient to cover the
guaranteed liabilities L after the guarantee fee πg has been paid to the equity
holders of the insurance company. The guaranteed liabilities L represent the
lowest amount that the insurance company can set aside for the guaranteed
payments. Hence, the assets should always exceed the guaranteed liabilities,
and by design of the guarantee injection, this will always be the case after
adding the guarantee injection. The inclusion of the guarantee fee is a techni-
cality that ensures that the assets are not drained by guarantee fee payments
to the equity holders of the insurance company in bad times where the liabili-
ties exceed the assets. By the design of the guarantee injection, no guarantee
fee is deducted from the assets in those times. In Section 6.4.9, we get into
details about how the bonus allocation and guarantee fee are determined.

The stochastic element RX enters via a sample path for the asset returns.
Furthermore, the size of the guarantee injection g depends on the sample path
for the short interest rate. In practice, one will often work with a discretized
version of the stochastic differential equations in Equation (6.4). For an ex-
ample, see Section 6.4.11.
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Example 6.3 (Survival model continued). For the simple policy in Exam-
ple 6.1–6.2, the adjustment term α reads

α (t, ρ, k) = pm (0, t) (µ∗ (t)− µm (t))
(
V ∗ (t, ρ, k)− bad

)
,

where the total technical reserve V ∗ in the state “alive” is given by

V ∗ (t, ρ, k) = kV u,∗,+ (t, ρ) + V f,∗,+ (t, ρ)− V ∗,− (t, ρ)

= kbae−ρ(T−t)e−
∫ T
t
µ∗(v) dv

+
∫ T

t
e−ρ(s−t)e−

∫ s
t
µ∗(v) dv

(
badµ∗ (s)− π

)
ds , t ≤ T .

6.4.8 Procedure for Determining the Technical Interest Rate
and the Upscaling Factor

Assume that dε (t) = 1, meaning that there is an update at time t. In de-
termining the technical interest rate r∗(ε(t)) and the upscaling factor k(ε(t)),
the distribution of the policy across states at time t enters. The distribution
depends on the choice of basis; in our case, the technical basis or the mar-
ket basis. The market basis reflects the true distribution of the policy across
states. Therefore, we strongly suggest to work under the market basis. Work-
ing under the technical basis has the advantage that the tower property applies
(see below), which limits the number of computations. However, taking the
short cut and using the artificial technical basis leads to a twisted picture of
the evolution of the policy, so we discourage it. For completeness, we include
both options and model them by ◦ below.

Assume that r∗(ε(t−)) > r∗, so that the policy is still in the consolidation
phase of the bonus scheme. Then, necessarily, k(ε(t−)) = 1 (since we consoli-
date first), and the technical interest rate r∗(ε(t)) is determined as the solution
to the equation

Y (t−) + d (t) = V ∗,◦
(
t−, r∗(ε(t))

)
, (6.7)

where V ∗,◦ (·, ρ) is the market or technical (indicated by the ◦) expected tech-
nical reserve for the payment stream B(0)−C = Bf +Bu−C, given that the
technical interest rate is ρ. That is

V ∗,◦ (t, ρ) = E◦
[
E∗
[∫ T

t
e−ρ(s−t) d

(
Bf +Bu − C

)
(s)
∣∣∣∣∣Z (t)

]]
= E◦

[
V ∗Z(t) (t, ρ, 1)

]
,

where the state-wise technical reserves V ∗j , j ∈ J , are given in Equation (6.2),
and E◦ denotes market or technical expectation. Hence, r∗(ε(t)) is the technical
interest rate that complies with the equivalence principle on portfolio level.



150 6. A Two-Account Life Insurance Model. . .

Under the technical basis, the tower property applies, and the reserve simplifies
to

V ∗,∗ (t, ρ) =
∑
j∈J

p∗0j (0, t)V ∗j (t, ρ, 1)

=
∫ T

t
e−ρ(s−t) d

(
βf,∗ + βu,∗ − ς∗

)
(s) ,

where ς∗, βf,∗ and βu,∗ are the time 0 technical cash flows for the premium
stream C and the benefit streams Bf and Bu. This means that the reserve
can be calculated using only the technical cash flows. Under the market basis,
the reserve reads

V ∗,m (t, ρ) =
∑
j∈J

pm0j (0, t)V ∗j (t, ρ, 1) .

Hence, using the market basis, both transition probabilities and state-wise
technical reserves are needed in order to solve Equation (6.7). This is a draw-
back, but in our opinion, it is not enough to switch to the artificial technical
basis. If the solution r∗(ε(t)) is strictly smaller than r∗, then r∗(ε(t)) is set to
r∗, and the remaining bonus

Y (t−) + d (t)− V ∗,◦ (t−, r∗)

is used to raise the upscaling factor k(ε(t)) as below. Otherwise, we set k(ε(t)) =
1.

Now, assume that r∗(ε(t−)) = r∗. Then, the policy is in the additional
benefits phase of the bonus scheme, and we set r∗(ε(t)) = r∗. The upscaling
factor k(ε(t)) is determined as the solution to the equation

d (t) =
(
k(ε(t)) − k(ε(t−))

)
V u,∗,◦,+ (t−) ,

i.e.,
k(ε(t)) = k(ε(t−)) + d (t)

V u,∗,◦,+ (t−) .

Here, V u,∗,◦,+ is the market or technical (indicated by the ◦) expected technical
reserve for the benefit stream Bu, given that the interest rate is r∗, i.e.,

V u,∗,◦,+ (t) = E◦
[
E∗
[∫ T

t
e−r

∗(s−t) dBu (s)
∣∣∣∣∣Z (t)

]]
= E◦

[
V u,∗,+
Z(t) (t, r∗)

]
,

where the state-wise technical benefit reserves V u,∗,+
j , j ∈ J , are given in

Equation (6.1), and E◦ denotes market or technical expectation. Hence, k(ε(t))

is the upscaling factor that satisfies the equivalence principle on portfolio level.
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Under the technical basis, the tower property applies, and the reserve simplifies
to

V u,∗,∗,+ (t) =
∑
j∈J

p∗0j (0, t)V u,∗,+
j (t, r∗)

=
∫ T

t
e−r

∗(s−t) dβu,∗ (s) .

Under the market basis, it reads

V u,∗,m,+ (t) =
∑
j∈J

pm0j (0, t)V u,∗,+
j (t, r∗) .

Again, we see that, using the market basis, both transition probabilities and
state-wise technical reserves are needed.

We emphasize that there is no reason to consider the case r∗(ε(t−)) < r∗.
For the explanation, recall that consolidation serves to lower the technical
interest rate, so if the technical interest rate is already low, there is no need
for consolidation. If the initial technical interest rate r∗(ε(0)) is high compared
to the pre-described level r∗, the allocated bonus is used for consolidation until
r∗(ε(t)) = r∗ for some t. Thereafter, the bonus is used for additional benefits,
and the technical interest rate is kept fixed. If the initial technical interest
rate r∗(ε(0)) is equal to r∗, the consolidation phase is skipped, the allocated
bonus is used for additional benefits and the technical interest rate is kept
fixed from the beginning. In neither case, we arrive at r∗(ε(t−)) < r∗. In
the third and last case where the initial technical interest rate r∗(ε(0)) is low
compared to r∗, there is clearly no need for consolidation. Now, one has two
options. Either, one can lower r∗ to r∗(ε(0)) and proceed as in the case where
r∗(ε(0)) is equal to r∗; or, one can raise r∗(ε(0)) to r∗, use the decline in the
technical reserve for additional benefits and then proceed as in the case where
r∗(ε(0)) is equal to r∗. Both solutions will avert the case r∗(ε(t−)) < r∗. We
note that the case r∗(ε(0)) < r∗ represents a situation with increasing technical
interest rate. This has not been observed in Denmark in recent years, which
is why we exclude the case from our paper. However, as argued above, our
model can easily handle the case.

Example 6.4 (Survival model continued). For the simple policy in Exam-
ple 6.1–6.3, the expected technical reserve V ∗,◦ (·, ρ) reads

V ∗,◦ (t, ρ) = e−
∫ t

0 µ
◦(v) dv

(∫ T

t
e−ρ(s−t)e−

∫ s
t
µ∗(v) dv

(
badµ∗ (s)− π

)
ds

+ bae−ρ(T−t)e−
∫ T
t
µ∗(v) dv

)
.

The expected technical benefit reserve V u,∗,◦,+ (·) reads

V u,∗,◦,+ (t) = bae−
∫ t

0 µ
◦(v) dve−r

∗(T−t)e−
∫ T
t
µ∗(v) dv .
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Remark 6.1. In Section 6.4.2, we mentioned that our setup does not allow
for policyholder behavior options, such as surrender or free policy. However,
it is not particularly complicated to include surrender, since it is an absorbing
state. For the sake of clarity, we will not go into details on how. We just
mention that, under the bonus scheme “additional benefits”, the surrender
cash flow needs to be split into an upscaled and non-upscaled part. Further-
more, under the bonus scheme “consolidation”, the bonus suddenly raises the
guarantee through a higher surrender value (typically equal to the technical
reserve), and the market cash flows need to be recalculated every time the
policy is consolidated to account for the higher surrender value.

6.4.9 Bonus Allocation and Guarantee Fee

In Section 6.4.7, we took the bonus d and the guarantee fee πg as exogenously
given. This is imprecise for at least three reasons. Firstly, the total bonus
allocated to the policies in a (homogeneous) portfolio typically depends on the
collective bonus potential of the portfolio. The collective bonus potential K
is defined as the maximum of zero and assets less guaranteed liabilities, i.e.,

K (t) = (X (t)− L (t))+ ,

where the assets X and the guaranteed liabilities L are calculated on port-
folio level. With this definition, the balance sheet can be represented as in
Figure 6.1. The collective bonus potential is a result of the systematic surplus
to which the conservative technical basis gives rise. The systematic surplus
of the policy is to be paid back to the policyholder in terms of bonus, but
the collective bonus potential serves as a buffer in years with poor financial
returns and/or poor risk results, so most often, the systematic surplus is not
paid out right away. Therefore, to avoid redistribution across policies via the
collective bonus potential, the portfolio must be homogeneous with respect to
interest rate and risk (and costs, but in this paper, we leave that out). Fur-
thermore, in order to avoid redistribution across generations, the systematic
surplus should be paid out as soon as possible.

Secondly, the policy’s share of the portfolio bonus depends on how much
the policy has contributed to the portfolio’s systematic surplus. As men-
tioned, the adjustment term α in the projection SDEs in Equation (6.4) is
the market expected surplus arising from the conservative technical transition
intensities. We choose to pay out the adjustment term immediately as risk
bonus, such that the collective bonus potential collects surplus from capital
gains only. The surplus collected in the collective bonus potential is then
paid out, but not immediately, as interest rate bonus, i.e., proportional to the
market expected technical reserve Y . If the technical transition intensities are
not chosen carefully enough (which can be difficult for varying products), the
adjustment term can be negative for some ages. In that case, no risk bonus is
paid out.
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Assets
X

Guaranteed
liablities

L = max (Y, V )

Collective
bonus potential

K

Figure 6.1: Portfolio balance sheet.

Thirdly, for the contract to be fair, the bonus d and the guarantee fee πg
must be chosen in such a way that the equivalence principle is satisfied for the
total payments under the market basis, i.e.,

EQ
[∫ T

0
e−
∫ s

0 r(v) dv d
(
B(ε(s)) − C

)
(s)
]

= x0 . (6.8)

In a multi-policy portfolio, the fairness constraint can be difficult to honor. It
is possible to have fairness on portfolio level, but not on policy level, implying
an unfair redistribution of systematic surplus across policies.

Often, the guarantee fee is a fraction of either the assets or the asset
returns. The bonus allocation takes on more forms, but is ultimately a function
of the collective bonus potential, the market reserve and the technical reserve.
In Section 6.4.11, we present a numerical example with a one-policy and a
two-policy portfolio. We show how to find a fair bonus and guarantee fee
strategy, and we exemplify the challenges of fairness in a two-policy portfolio.

6.4.10 Application of Projections

We recall that the state process Z is independent of the financial market, and
that, under both P and Q, the evolution of Z is described by the market basis.
Most importantly, the projections of X and Y can be used to calculate the
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total time 0 market cash flow CF and market valueW for the guaranteed and
non-guaranteed payments, i.e., to calculate

dCF (t) = EQ
[
k(ε(t)) dBu (t) + dBf (t)− dC (t)

]
= EQ

[
k(ε(t))

]
dβu (t) + dβf (t)− dς (t)

(6.9)

and

W (0) = EQ
[∫ T

0
e−
∫ s

0 r(v) dv d
(
B(ε(s)) − C

)
(s)
]

= EQ
[∫ T

0
e−
∫ s

0 r(v) dv
(
k(ε(s))dβu (s) + dβf (s)− dς (s)

)]
.

(6.10)

Here, r is the stochastic short interest rate. We emphasize that the cash flow
and market value distinguish themselves from the usual cash flows and market
values by including non-guaranteed payments as well as guaranteed payments.
In particular, we have

W (0) = V (0) + EQ
[∫ T

0
e−
∫ s

0 r(v) dv
(
k(ε(s)) − 1

)
dβu (s)

]
,

where V is the usual market value from Equation (6.3). The additional term
is the market value of the non-guaranteed benefits. If the projections are
based on scenarios generated via Monte Carlo simulation, then for each t, the
expectation EQ

[
k(ε(t))

]
in Equation (6.9) is approximated by averaging over a

sufficient number of Q-projections up to time t. If, instead, the projections are
of the worst-case or best-estimate type (and, hence, singular), then EQ

[
k(ε(t))

]
is approximated by the single projected value. If the short interest rate is
deterministic, then Equation (6.10) simplifies to

W (0) =
∫ T

0
e−
∫ s

0 r(v) dv dCF (s) . (6.11)

Otherwise, Equation (6.10) is approximated by averaging over a sufficient
number of integrated sample paths t 7→ k(ε(t)) dβu (t) + dβf (t) − dς (t), dis-
counted by the short interest rate. The market value is useful for determining
the bonus allocation d and guarantee fee πg according to the fairness criterion
in Equation (6.8), which can be written as

W (0) = x0 .

So far, we have suppressed the influence of the investment strategy, but it
enters through the stochastic return on the assets. Hence, the task of de-
termining d and πg is the classical trade-off between the aggressiveness of
dividend allocation (expressed by d) and the option price (expressed by πg)
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given the aggressiveness of the investment strategy (typically expressed by the
volatility).

The projections of X and Y are also useful for calculating the time 0
P -expected cash flow for the guaranteed and non-guaranteed payments, i.e.,
for calculating

dCFP (t) = EP
[
k(ε(t)) dBu (t) + dBf (t)− dC (t)

]
= EP

[
k(ε(t))

]
dβu (t) + dβf (t)− dς (t) .

If the projections are based on scenarios generated via Monte Carlo simulation,
then for each t, the expectation EP

[
k(ε(t))

]
is approximated by averaging over

a sufficient number of P -projections up to time t. If instead, the projections are
of the worst-case or best-estimate type (and, hence, singular), then EP

[
k(ε(t))

]
is approximated by the single projected value. The P -expected cash flow is
an estimate of the money out flow from the insurance company at future time
points, and it is, therefore, useful for liquidity considerations. Again, the
cash flow distinguishes itself by including non-guaranteed payments as well as
guaranteed payments, thereby, providing a more complete picture.

Finally, for solvency purposes, one can use scenarios generated via Monte
Carlo simulation to calculate P -quantiles for the capital requirement at time
T1

EQ
[∫ T∨T1

0
e
−
∫ s
T1
r(v) dv d

(
B(ε(s)) − C

)
(s)
∣∣∣∣∣(k(ε(s)), r (s)

)
s≤T1

]
=∫ T1

0
e
−
∫ s
T1
r(v) dv (

k(ε(s))dβu (s) + dβf (s)− dς (s)
)

+

EQ
[∫ T∨T1

T1
e
−
∫ s
T1
r(v) dv (

k(ε(s))dβu (s) + dβf (s)− dς (s)
)∣∣∣∣∣k(ε(T1)), r (T1)

]
.

The capital requirement is expressed in terms of the capital needed up to
time T1 plus the market value of future liabilities at time T1. The condi-
tional Q-expectation appears in the capital requirement, because the capital
requirement concerns future payments and balance sheets. The quantiles are
obtained by projecting up to time T1 under the physical measure P . However,
for each projection, the Q-expectation is approximated by projecting from
time T1 to time T under the pricing measure Q. Hence, if N sample paths are
needed for approximating cash flows and market values, then N2 paths are
needed for the quantiles. The quantiles can be used for solvency assessments
of the provided guarantee.

6.4.11 Numerical Examples

In this section, we go through two numerical examples with a one-policy port-
folio and a two-policy portfolio. A larger portfolio would, of course, be more
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realistic, but a large number of policies could easily drown the key insights
from the examples. Going from one to two policies is by far the biggest step,
and conceptually, there is no impediment to extending the theory to larger
portfolios. Working in a discrete projection setup, we show how to find a fair
bonus and guarantee fee strategy for the one-policy portfolio, and we exem-
plify the fairness challenges in a two-policy portfolio. The examples are based
on 5000 scenarios generated via Monte Carlo simulation. We have made sure
that the number of simulated scenarios is sufficiently high for our numerical
results and graphs not to change between simulations, but we do not go into
details about the robustness of the simulations, since the examples only serve
to demonstrate the possible applications of our model.

6.4.11.1 One-Policy Portfolio

We consider a portfolio consisting of a single policy. The policy is the one
from Examples 6.1–6.4. The policyholder is a female aged 25 at time 0, where
the policy is issued. We fix r∗ = 0.02, and we assume that r∗(0) = r∗, which
is natural for a newly-issued policy. Thereby, we only consider the bonus
scheme “additional benefits”. We recall that bonus is used to increase the en-
dowment sum and not the term insurance sum. The death of the policyholder
is governed by the technical mortality intensity

µ∗ (t) = 5 · 10−4 + 5.3456 · 10−5 · e0.087498(25+t) .

For the last three decades, this has served as a standard mortality intensity for
adult women in Denmark. It is part of the so-called G82 technical basis that
was set forth as a Danish industry standard in 1982. The market mortality
intensity is given by

µm (t) = 0.8µ∗ (t) .

With this choice of mortality intensities and with the product choices below,
the technical basis is on the safe side, except for low ages, where the death
sum exceeds the savings, resulting in a negative contribution from mortality
risk. However, due to the low mortality for low ages, the negative contribution
is insignificantly small.

The policy expires at time T = 40 when the policyholder is 65. We fix the
term insurance sum at bad = 1 and the pure endowment sum at ba = 3. The
equivalence premium is determined via the equivalence relation

V ∗,− (0, r∗) = V f,∗,+ (0, r∗) + V u,∗,+ (0, r∗) ,

i.e.,

π = bae−
∫ T

0 (r∗+µ∗(v)) dv + bad
∫ T

0 e−
∫ s

0 (r∗+µ∗(v)) dvµ∗ (s) ds∫ T
0 e−

∫ s
0 (r∗+µ∗(v)) dv ds

.
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Using numerical methods, we obtain π = 0.04614. The bonus d is allocated
and the guarantee fee πg is paid once a year. Hence, we have

ε (t) = # {i = 1, . . . , 40 : i ≤ t} .

We note that ε (t) = t for t = 1, . . . , 40. We project the two accounts X and
Y using steps of a size of one year by applying a discretized version of the
stochastic differential equations for X and Y . For the discretization, we recall
from Example 6.2 that βu is a pure jump function and that ς and βf are
continuous functions. Hence, we get the stochastic difference equations

X (t−) = X (t− 1) (1 +RX (t))−
∫

(t−1,t)

(
dβf (s)− dς (s)

)
,

X (t) = X (t−)− k(t)∆βu (t) + g (t)− πg (t) , t = 1, . . . , 40 ,
X (0) = 0 , (6.12)

Y (t−) = Y (t− 1) er∗ −
∫

(t−1,t)

(
dβf (s)− dς (s)

)
+ α

(
t, r∗, k(t−1)

)
,

Y (t) = Y (t−)− k(t)∆βu (t) + d (t) , t = 1, . . . , 40 ,
Y (0) = 0 .

We assume a deterministic market interest rate r = 0.04, and the assets of
the portfolio (in this case, the assets of the policy) are invested in a fund with
log-normal returns that are paid out once a year, i.e.,

RX (t) = S (t)− S (t− 1)
S (t− 1) , t = 1, . . . , 40 ,

where S is a geometric Brownian motion. We basically consider a simple
Black–Scholes financial market. We assume that the fund size S has drift
0.07 and volatility 0.2 under the physical measure P (and, consequently, drift
r = 0.04 and volatility 0.2 under the pricing measure Q).

The bonus d is determined as a fraction θ1 of the excess collective bonus
potential K just before the bonus allocation over a threshold K̄ if this fraction
exceeds the positive part of the natural risk bonus α (see Section 6.4.9 for more
on risk bonus), i.e.,

d (t) = max
{(
α
(
t, r∗, k(ε(t−))

))+
, θ1

(
K (t−)− K̄ (t−)

)+
}
,

t = 1, . . . , 40 ,

where K and K̄ are given by

K (t) = (X (t)− L (t))+ ,

K̄ (t) = θ2L (t) ,
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with the guaranteed liabilities L defined in Equation (6.5). The threshold K̄
can be seen as a preferred minimum collective bonus potential. We fix θ1 = 0.2
and θ2 = 0.1. As mentioned, the chosen technical transition intensity is not
on the safe side for low ages. Therefore, we need to take the positive part of
α in the expression above to exclude negative risk bonus. Finally, we choose
the guarantee fee πg to be a fraction θ3 of the positive part of the returns on
the assets, i.e.,

πg (t) = θ3 (RX (t)X (t− 1))+ .

In addition to the yearly guarantee fee, the equity holders of the insurance
company receives the remaining collective bonus potential at expiration as
part of the final guarantee fee. We determine the fraction θ3 according to the
fairness criterion in Equation (6.8). Furthermore, using this guarantee fee, we
consider:

• the expected evolution of the upscaling factor t 7→ EQ
[
k(ε(t))

]
,

• the expected evolution of the assets t 7→ EQ [X (t)], market reserve t 7→
EQ [V (t)], technical reserve t 7→ EQ [Y (t)] and collective bonus potential
t 7→ EQ [K (t)],

• the expected level for the guarantee injections EQ [g (t)] and guarantee
fees EQ [πg (t)], t = 1, . . . , T .

Using standard Monte Carlo methods, we simulate 5000 sample paths for
the asset returns RX under the measure Q, and for each sample path, we
project X and Y for different values of θ3, using the difference equations in
Equation (6.12). More specifically, we look for a θ3, such that we get zero
when approximating the time 0 market value W (0) from Equation (6.11).
We recall that W is the market value of the guaranteed and non-guaranteed
payments. We arrive at the fair guarantee fee fraction θ3 = 0.31.

In Figures 6.2–6.4, we plot the average evolution of the upscaling factor,
the average level for the guarantee injection and guarantee fee, and the av-
erage evolution of the assets, reserves and collective bonus potential. From
Figure 6.2, we see that more than 60% of the final endowment sum comes from
bonus. This is primarily due to the technical interest rate being only half the
size of the market interest rate. From Figure 6.3, we observe that the guarantee
fees and the guarantee injections follow each other closely, implying that the
structure of the guarantee fee is reasonable. The final guarantee fee includes
the remaining collective bonus potential at expiration and is, consequently,
much higher than the other guarantee fees. We note that a considerable part
of the guarantee injections are paid for by giving up the remaining collective
bonus potential at expiration. In a multi-generation portfolio, this is of course
transferred to the other policies, leading to a higher guarantee fee throughout
the period. From Figure 6.4, we see how the different parts of the balance in
Figure 6.1 evolve in expectation.
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Figure 6.2: Approximated expected upscaling factor k as a function of time.
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Figure 6.3: Approximated expected guarantee injection g and guarantee fee πg as
a function of time.
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Figure 6.4: Approximated expected assets X, technical reserve Y , market reserve
V and collective bonus potential K as a function of time.

6.4.11.2 Two-Policy Portfolio

We consider a portfolio consisting of two policies, Policy 1 and 2, which are
identical to the one in Section 6.4.11.1. However, only Policy 1 is issued at
time 0; Policy 2 is not issued until time 20. Hence, from time 0 to time 20,
there is one policy in the portfolio; from time 20 to time 40, there are two
policies in the portfolio; and from time 40 to time 60, there is, again, one
policy in the portfolio. If not careful, this overlap in time easily causes an
unfair redistribution between the two policies.

We let αi, k(·)
i and Yi denote, respectively, the adjustment term, the up-

scaling factor and the market expected technical reserve for policy i = 1, 2.
We work with the convention that all quantities (except the upscaling factor)
are zero for Policy 2 until time 20 and zero for Policy 1 after time 40. By
X, V and Y , we denote the total assets, the total market expected market
reserve and the total market expected technical reserve of the portfolio.

We make the same market assumptions as in Section 6.4.11.1, and because
of the longer time period, we now have

ε (t) = # {i = 1, . . . , 60 : i ≤ t} .

The guarantee injection g is calculated on portfolio level and reads

g (t) = (L (t−) + πg (t)−X (t−))+ ,

where the guaranteed liabilities L are given by

L (t) = max {V (t) , Y (t)} .
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The total bonus to the policies in the portfolio is determined as a fraction θ1
of the excess collective bonus potential K just before the bonus allocation over
a threshold K̄ if this fraction exceeds the positive part of the total natural
risk bonus α for the policies of the portfolio, i.e.,

d (t) = max
{
α (t) , θ1

(
K (t−)− K̄ (t−)

)+
}
, t ∈ {1, 2, . . . , 60} ,

where α, K and K̄ are given by

α (t) =
(
α1
(
t, r∗, k

(ε(t−))
1

))+
+
(
α2
(
t, r∗, k

(ε(t−))
2

))+
,

K (t) = (X (t)− L (t))+ ,

K̄ (t) = θ2L (t) .

The threshold K̄ can again be seen as a preferred minimum collective bonus
potential for the portfolio. We keep θ1 = 0.2 and θ2 = 0.1. The bonus is
divided between the policies of the portfolio in the following way: First, each
policy receives its natural risk bonus given by the adjustment terms α1 and
α2. We, thereby, use the collective bonus potential as a financial buffer only.
Second, the remaining bonus (if any) is distributed as a technical interest rate
margin, i.e., proportional to the market expected technical reserves Y1 and
Y2. In formulas, the bonus to policy i = 1, 2 is given by

di (t) =
(
αi
(
t, r∗, k

(ε(t))
i

))+
+ (d (t)− α (t)) Yi (t)

Y (t) , t ∈ {1, 2, . . . , 60} .

6.4.11.3 Constant Guarantee Fee Fraction

First, we stick to a guarantee fee πg that is a constant fraction θ3 of the
positive part of the returns on the assets, i.e.,

πg (t) = θ3 (RX (t)X (t− 1))+ .

In addition to the yearly guarantee fee, the equity holders of the insurance
company receive the remaining collective bonus potential at the expiration
of Policy 2 as part of the final guarantee fee. We determine the fraction θ3
according to the fairness criterion in Equation (6.8) applied on portfolio level.
We take the 5000 sample paths simulated in Section 6.4.11.1, and for each
sample path, we project X, Y1 and Y2 for different values of θ3, using three
difference equations almost identical to the ones in Equation (6.12). More
specifically, we look for a θ3, such that we get zero when approximating the
time 0 market value from Equation (6.11) on portfolio level. We arrive at
the guarantee fee fraction θ3 = 0.35. We notice that the fraction is higher
than in the one-policy case, possibly to cover increased risk associated with
an extra policy and a longer time horizon. Furthermore, we calculate the
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Figure 6.5: Approximated expected upscaling factors k1 and k2 as function of time.

average evolution of the upscaling factor, the average guarantee injection and
guarantee fee levels, and the average evolution of the assets, reserves and
collective bonus potential. We discover that the guarantee fee is only fair on
portfolio level. Approximating the time 0 market value from Equation (6.11)
for each of the policies individually, we get

W 1 (0) = −0.061 , W 2 (0) = 0.068 .

Hence, a significant amount of the systematic surplus is being redistributed
from Policy 1 to Policy 2. We recall that W 1 and W 2 are the market values
of the guaranteed and non-guaranteed payments; and not the usual market
values that only include guaranteed payments. To illustrate the redistribution,
we plot the average evolution of the upscaling factors in Figure 6.5. From the
figure, it appears that Policy 2’s final upscaling factor is much larger than
Policy 1’s. Furthermore, comparing with Figure 6.2, we see that Policy 1’s
final upscaling factor is significantly smaller than in the one-policy case, so it is
not just a matter of both policies benefiting from being part of the two-policy
portfolio and Policy 2 benefiting more from it than Policy 1.

6.4.11.4 Period-Dependent Guarantee Fee Fraction

To overcome the unfairness introduced by the constant guarantee fee fraction,
we allow there to be a different fraction θ3 determining the guarantee fee for
each of the time periods [0, 20], (20, 40] and (40, 60], i.e.,

πg (t) = θ
i(t)
3 (RX (t)X (t− 1))+ ,
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where

i (t) =


1 t ≤ 20 ,
2 20 < t ≤ 40 ,
3 t > 40 .

In addition to the yearly guarantee fee, the equity holders of the insurance
company still receive the remaining collective bonus potential at the expiration
of Policy 2 as part of the final guarantee fee. First, we fix θ1

3 = 0.31, since
this is the fair guarantee fee fraction from the one-policy portfolio. Second,
we take the 5000 sample paths simulated in Section 6.4.11.1 and search (in
the same way as before) for a value of θ2

3 for which W 1 (0) = 0, meaning that
the guarantee fee determined by the pair

(
θ1

3, θ
2
3
)
is fair for Policy 1. We find

the fair guarantee fee fraction θ2
3 = 0.29. Third, we search for a value of θ3

3 for
which W 2 (0) = 0, meaning that the guarantee fee determined by the triplet(
θ1

3, θ
2
3, θ

3
3
)
is fair for Policy 2. We find the fair guarantee fee fraction θ3

3 = 0.61.
We notice that the guarantee fee fraction is much higher in the last time period
than in the first two time periods and that the guarantee fee fraction in the
second time period is slightly smaller than in the first time period. This is
best explained by the fact that Policy 2 inherits collective bonus potential from
Policy 1. Policy 1 is compensated for this transfer via the lower guarantee fee
fraction in the second time period, and Policy 2 pays for the transfer in terms
of the high guarantee fee fraction in the last time period. This is reflected
in Figure 6.6. Again, the final guarantee fee is much higher than the other
guarantee fees, since it includes the remaining collective bonus potential at
the expiration of Policy 2. In a multi-generation portfolio, this is transferred
to the other policies, leading to a higher guarantee fee throughout the period.

In Figures 6.6–6.8, we plot the average evolution of the upscaling factors,
the average guarantee injection and guarantee fee, and the average evolution
of the assets, reserves and collective bonus potential. With the fair guarantee
fee, we see from Figure 6.7 that the two policies’ final upscaling factors are
essentially equal; also to the final upscaling factor from Section 6.4.11.1. From
Figure 6.8, we see how the different parts of the balance in Figure 6.1 evolve
in expectation for the two-policy portfolio.

6.5 Unit-Linked Insurance
In this section, we consider unit-linked insurance. We touch upon different
aspects of unit-linked insurance, and we present our two-account model for a
general unit-linked insurance policy. Again, we include simple and illustrative
survival model examples. We end the section with a numerical example that
is a unit-linked version of the numerical example in the previous section.
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Figure 6.6: Approximated expected guarantee injection g and guarantee fee πg as
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Figure 6.7: Approximated expected upscaling factors k1 and k2 as a function of
time.
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Figure 6.8: Approximated expected assets X, technical reserve Y , market reserve
V and collective bonus potential K as a function of time.

6.5.1 Product Specification and Two-Account Model

We consider a unit-linked insurance policy. The state-wise evolution of the
policy is described in Section 6.3. The payments of the policy consist of a state-
dependent payment stream Bf + Bu − C where C is a fixed state-dependent
premium stream (“C” for contribution), Bf is a fixed state-dependent benefit
stream (“B” for benefits and superscript “f” for fixed) and Bu is a state-
dependent benefit stream that is linked to the financial market (superscript
“u” for unit-linked). More precisely, the assets of the policy are invested in a
fund, and the benefit stream Bu depends on the value of the assets. The policy
includes a guaranteed minimum retirement savings amount at the retirement
date R, based on a guarantee account with a guaranteed interest rate r∗ (for
example, r∗ = 0). We do not take costs into account.

We denote by X the assets of the policy and by Y the guarantee account.
Again, the accounts X and Y are the backbone of our two-account model.
The policy is issued before or at time 0, and the two accounts amount to
Y (0−) = x0 and Y (0−) = y0 just before time 0. The policy terminates at
time T ≥ R. Thereafter, there are no payments.

The assets X are invested in a fund with stochastic return RX . The guar-
antee account Y accumulates according to the guaranteed interest rate. In
good times, the return rate on the assets exceeds the technical interest rate,
and then, the assets outgrow the guarantee account. In that case, the guaran-
tee account is upgraded (increased) according to the terms of the contract. For
example, it may be stipulated in the contract that the guarantee account is
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always to make up at least 80% of the assets. Regardless of the developments
in the financial market, the guarantee account is never to be downgraded (low-
ered), and at retirement, the maximum value of the assets and the guarantee
account is paid out to the policyholder. In bad times where the guarantee
account exceeds the assets at retirement, the equity holders of the insurance
company step in with a capital injection taken from the company’s equity. We
speak of the possible capital injection

g = (Y (R−)−X (R−))+ (6.13)

as guarantee injection, and its role is to raise the assets at retirement in case
of unfavorable developments in the financial market. The policyholder pays
for the company’s risk taking by having a guarantee fee deducted from the
assets and paid to the equity holders of the insurance company. We assume
that the insurance company’s equity is always sufficient to cover the guarantee
injection and that the guarantee injection and guarantee fees are settled via
the equity. All of the above does not happen continuously, but at pre-specified
deterministic time points 0 < t1 < . . . < tn = R (for example, once a year),
where the two accounts X and Y are updated. We let

ε (t) = # {i = 1, . . . , n : ti ≤ t}

count the number of updates prior to time t. The updates consist of upgrades,
u, of the guarantee account (if the assets exceed the guarantee account in a
pre-described way) and the deduction of the guarantee fee, πg, in return for the
possible guarantee injection g at retirement. At retirement R, the assets are
updated with the guarantee injection, g, if the guarantee account exceeds the
assets. We let εR (t) = 1{t≥R} mark this final update. We stress the similarity
with participating life insurance, although, there, the guarantee injection is
settled at each update and not only at retirement. Compare for example
Equation (6.13) to Equation (6.6). Again, we assume that the stochastic
return on the assets, RX , does not jump at time points with an account
update. Furthermore, to ensure predictability, we assume that u (t) and πg (t)
are known at time t− for all t with dε (t) = 1, i.e., for all time points with an
account update.

We assume that the market-linked benefit stream Bu is linear in X, i.e.,

dBu (t) = X (t−) dBp (t) ,

where Bp denotes a fixed state-dependent benefit stream (superscript “p” for
profile). We write X (t−) instead of just X (t) to ensure that the asset process
X is well-defined (see definition below). To ensure that, in expectation, the
assets are paid out to the policyholder, we assume that ∆Bf (T ) = ∆C (T ) = 0
and E [∆Bp (T )] = 1. Here, ∆ denotes the jump part of the processes.

The fixed benefit stream Bf includes, for example, disability or death
payments, whereas the market-linked benefit stream Bu includes, for exam-
ple, deposit protection, surrender payments, a variable pure endowment or a
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variable life annuity. We note that the setup does not cover benefits that are
non-linear in X. Thus, it does not cover a deposit protection of the form

max {X,D} ,

where D is a fixed death sum. Furthermore, we exclude the policyholder
behavior option “free policy”, as it introduces a duration-dependent free policy
conversion factor. Formally, the payment streams of the policy are given as

dC =
∑
j∈J

Ij dcj ,

dBi =
∑
j∈J

Ij dbij +
∑

j,k∈J :j 6=k
bijk dNjk , i = f, p ,

where cj , bfj and bpj are deterministic, state-wise payment streams and bfjk
and bpjk are deterministic lump sum payments upon jumps. Examples of de-
terministic lump sum payments upon jumps include surrender payments and
insurance coverage, such as a death sum, a disability sum or a sum upon
critical illness.

Example 6.5 (Survival model). We consider a unit-linked version of the
simple participating life insurance policy in Examples 6.1–6.4. This example
provides the basis for numerical illustrations later on. The state of the policy
is described by the classical survival model with two states, 0 (alive) and 1
(dead). The policy expires at the retirement date, i.e., T = R. The payments
of the policy consist of a constant continuous premium payment π while alive, a
term insurance sum bad upon death before expiration T and a pure endowment
sum upon survival until expiration T . The size of the endowment sum is equal
to the value of the assets at expiration divided by the (market) probability
of surviving to expiration. There are no payments in the death state. For
simplicity, we write I = I1, N = N01, µm = µm01 and pm = pm00, and we have

pm (s, t) = e−
∫ t
s
µm(v) dv , s ≤ t .

The payment streams of the policy read

dC (t) = πI dt , t ≤ T ,

dBf (t) = bad dN (t) , t ≤ T ,

dBp (t) = I (t)
pm (0, T ) dεT (t) , t ≤ T ,

where εT is the Dirac measure in T (for details, see Page 146). We divide by
the probability pm (0, T ) in dBp (t) to ensure that the assets in expectation
are paid out to the policyholder, i.e., to account for inheritance from those
who die before time T . We note that∫ T

0
dBp (t) = I (T )

pm (0, T ) .
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6.5.2 Cash Flows

For projection on portfolio level, it is useful to consider market cash flows of
the policy. Again, we use the term market cash flows for the expectation of
the stochastic payment streams taken under the market basis. By ς, βf and
βp, we denote the time 0 market cash flows for the premium stream C and
the benefit streams Bf and Bp, i.e.,

ς (t) = Em
[∫ t

0
dC (s)

]
=
∑
j∈J

∫ t

0
pm0j (0, s) dcj (s) ,

βi (t) = Em
[∫ t

0
dBi (s)

]

=
∑
j∈J

∫ t

0
pm0j (0, s)

dbij (s) +
∑

k∈J :k 6=j
µmjk (s) bijk (s) ds

 , i = f, p ,

where the expectation Em is taken under the market basis and where pm0j is
the market probability of transition from state 0 to j, which is determined by
the transition intensities from the market basis.

Example 6.6 (Survival model continued). For the simple policy in Exam-
ple 6.5, the time 0 market premium and benefit cash flows read

ς (t) =
∫ t

0
pm (0, s)π ds = π

∫ t

0
e−
∫ s

0 µ
m(v) dv ds , t ≤ T ,

βf (t) =
∫ t

0
pm (0, s) badµm (s) ds = bad

∫ t

0
e−
∫ s

0 µ
m(v) dvµm (s) ds , t ≤ T ,

βp (t) =
∫ t

0

pm (0, s)
pm (0, T ) dεT (s) = I{t≥T} , t ≤ T .

6.5.3 Two-Account Projection

On portfolio level, the assets X and the guarantee account Y evolve according
to the stochastic differential equations

dX (t) = X (t−) dRX (t)−X (t−) dβp (t)− dβf (t) + dς (t)
− πg (t) dε (t) + g dεR (t)
− 1{t=R} (Y (R−)−X (R−))+ dβp (t) ,

X (0−) = x0 ,

dY (t) = Y (t) r∗ (t) dt−X (t−) dβp (t)− dβf (t) + dς (t)
+ u (t) dε (t) , t ≤ R ,

Y (0−) = y0 ,

Y (t) = 0 , t > R .

(6.14)
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We recall that RX is the stochastic return on the assets, g is the guarantee
injection at retirement, πg is the guarantee fee deducted from the assets and
paid to the equity holders of the insurance company, u is the upgrade of the
guarantee account, ε counts the number of guarantee fee payments and guar-
antee upgrades (typically annual) and εR marks the exercise of the guarantee
at the retirement date. The last term in the equation for X ensures that the
guarantee injection at time R is included in a possible lump sum payment at
time R. The three quantities r∗, u and πg are specified in the contract. They
are non-negative, and they are determined in such a way that the contract
is financially fair, i.e., such that the equivalence principle is satisfied for the
total payments under the market basis

x0 = EQ
[∫ T

0
e−
∫ s

0 r(v) dv d
(
Bu +Bf − C

)
(s)
]
. (6.15)

Here, Q is the pricing measure and r is the stochastic short interest rate.
Again, the stochastic element RX enters via a sample path for the asset re-
turns. In practice, one will often work with a discretized version of the stochas-
tic differential equations in Equation (6.14). For an example, see Section 6.5.5.

We assume that the total payment stream of the policy Bf + Bu − C is
constructed in such a way that the assets X never become negative. This is,
for example, satisfied if the expected premiums are continually enough to cover
the expected fixed benefits. Generally, the natural premium for unit-linked
insurance payments makes up only a small part of the total insurance and
savings premium. Therefore, we do not see this last assumption as a critical
limitation.

It is easily seen that the projection in unit-linked insurance is equivalent
to the projection in participating life insurance. The contractual difference
lies in the specification of how non-guaranteed payments arise (written in the
contract versus decided fairly by the company along the way). Formally, the
bonus updates d in Equation (6.4) are replaced by guarantee upgrades u in
Equation (6.14), and the guarantee upgrades are determined by the assets and
the guarantee account only, not by some collective reserves. Furthermore, the
running guarantee g in Equation (6.4) is replaced by the final guarantee g =
(Y (R−)−X (R−))+ in Equation (6.14). Finally, both unit-linked accounts
are based on market transition intensities, so the adjustment term α from
Equation (6.4) vanishes. Apart from that, the driving stochastic differential
equation are the same in participating life insurance and unit-linked insurance.
In Section 6.5.5.1, we compare the two product types in a simple numerical
example.

A real-life product example is the Danica Link from 2001 where r∗ = 0,
πg (t) = 1{t<R}κX (t−) and u (t) = 1{t<R} (α (X (t−)− πg (t))− Y (t−))+ for
some constants κ, α ∈ (0, 1) (see Steffensen and Waldstrøm (2009)). In other
words, the guarantee account bears zero interest, but each year, it is upgraded,
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so that it makes up at least a fraction α of the assets after the guarantee fee
payment. At retirement, the difference between the guarantee account and
the assets is added to the assets, if the guarantee account exceeds the assets.
In return for this retirement guarantee, the policyholder pays a fraction κ of
his assets to the equity holders of the insurance company each year.

6.5.4 Applications of Projections

Most importantly, the projections of X and Y can be used to calculate the
total time 0 market cash flow CF and market value W for the contract, i.e.,
to calculate

dCF (t) = EQ
[

dBu (t) + dBf (t)− dC (t)
]

= EQ [X (t−)] dβp (t) + dβf (s)− dς (s)

and

W (0) = EQ
[∫ T

0
e−
∫ s

0 r(v) dv d
(
Bu +Bf − C

)
(s)
]

= EQ
[∫ T

0
e−
∫ s

0 r(v) dv
(
X (s−) dβp (s) + dβf (s)− dς (s)

)]
.

(6.16)

Again, r is the stochastic short interest rate. As in participating life insur-
ance, the cash flow and market value distinguish themselves by including non-
guaranteed payments as well as guaranteed payments. The Q-expectations
are approximated as described in Section 6.4.10. If the short interest rate is
deterministic, then Equation (6.16) simplifies to

W (0) =
∫ T

0
e−
∫ s

0 r(v) dv dCF (s) . (6.17)

The market value is useful for determining πg, u and r∗ according to the
fairness criterion in Equation (6.15), which can be written as

W (0) = x0 .

Again, the task of determining πg, u and r∗ is the classical trade-off between
the aggressiveness of dividend allocation (expressed by u and r∗) and the op-
tion price (expressed by πg) given the aggressiveness of the investment strategy
(suppressed here).

The projections are also useful for determining the time 0 market value of
the guarantee injection at time R, i.e., to calculate

EQ
[
e−
∫ R

0 r(v) dv (Y (R−)−X (R−))+
]
.
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6.5.5 Numerical Example

In this section, we go through a numerical example with a unit-linked version
of the participating life insurance policy in Section 6.4.11. Working in a dis-
crete projection setup, we show how to find a fair guarantee and guarantee fee
strategy, and at the end of this section, we compare the unit-linked insurance
policy with its participating life insurance counterpart. In unit-linked insur-
ance, there is no interaction between policies as long as the insurance company
has sufficient equity to meet its liabilities. In this paper, we do not model the
insurance company’s equity, but just assume that it is sufficient. Therefore,
it is reasonable to consider just a single policy, but the example could easily
be extended with more policies. The example is based on the 5000 scenarios
generated via Monte Carlo simulation from Section 6.4.11. The number of
simulated scenarios is, again, enough to ensure that our numerical results and
graphs do not change between simulations.

The basics of the unit-linked policy are described in Examples 6.5–6.6.
The policyholder is the 25-year-old female from Section 6.4.11. Her death is
still governed by the market mortality intensity

µm (t) = 0.8 ·
(
5 · 10−4 + 5.3456 · 10−5 · e0.087498(25+t)

)
.

The policy expires at time T = R = 40 when the policyholder is 65. For
comparability, we fix the term insurance sum at bad = 1 and the premium
at π = 0.04614 as in Section 6.4.11. Furthermore, we make the same market
assumptions as in Section 6.4.11.1. The guarantee account is upgraded and
the guarantee fee paid once a year. Hence, we have

ε (t) = # {i = 1, . . . , 40 : i ≤ t} .

We project the two accounts X and Y using steps of a size of one year by
applying a discretized version of the stochastic differential equations for X
and Y . For the discretization, we recall from Example 6.6 that βp is a pure
jump function and that ς and βf are continuous functions. Hence, we get the
stochastic difference equations

X (t−) = X (t− 1) (1 +RX (t))−
∫

(t−1,t)

(
dβf (s)− dς (s)

)
,

X (t) = X (t−)−X (t−) ∆βp (t)− πg (t)
+ 1{t=R}g (1−∆βp (t)) , t = 1, . . . , 40 ,

X (0) = 0 , (6.18)

Y (t−) = Y (t− 1) er∗ −
∫

(t−1,t)

(
dβf (s)− dς (s)

)
,

Y (t) = Y (t−)−X (t−) ∆βu (t) + u (t) , t = 1, . . . , 40 ,
Y (0) = 0 .
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We emphasize that the discretized projection in unit-linked insurance is prac-
tically the same as the discretized projection in participating life insurance,
which eases the implementation. The guarantee account Y bears interest at
the rate r∗ = 0. The guarantee upgrade u is determined as a fraction θ1 of
the positive part of assets X less guarantee fee πg and less guarantee account
Y , all taken just before the guarantee upgrade, i.e.,

u (t) = θ1 ((X (t−)− πg (t))− Y (t−))+ , t = 1, . . . , 40 .

We fix θ1 = 0.8. At expiration, the guarantee g = (Y (40−)−X (40−))+ is
added to the assets to ensure that they match the guarantee account. The
guarantee fee πg is a fraction θ2 of the positive part of the returns on the
assets, i.e.,

πg (t) = θ2 (RX (t)X (t− 1))+ .

We determine the fraction θ2 according to the fairness criterion in Equa-
tion (6.15). Furthermore, using this guarantee fee, we consider

• the expected evolution of the assets t 7→ EQ [X (t)] and the guarantee
account t 7→ EQ [Y (t)],

• the expected level for the guarantee upgrade EQ [u (t)], t = 1, . . . , 40.

We take the 5000 sample paths simulated in Section 6.4.11.1, and for each
sample path, we project X and Y for different values of θ2, using the differ-
ence equations in Equation (6.18). More specifically, we look for a θ2, such
that we get zero when approximating the time 0 market value W (0) from
Equation (6.17). We arrive at the fair guarantee fee fraction θ2 = 0.1. Fur-
thermore, we calculate the average evolution of the assets and the guarantee
account, the average guarantee fee and guarantee levels and the average guar-
antee upgrade.

In Figures 6.9–6.10, we plot the average evolution of the assets and the
guarantee account and the average level of the guarantee upgrades. From
Figure 6.9, we see that the final guarantee injection on average raises the assets
by around 30%, even though the guarantee account does not bear interest.
This is because the final guarantee kicks in for all sample paths where the
assets finish below their (previous) maximum value. From Figure 6.10, we see
how the yearly guarantee upgrades increase over time. This is explained by
the fact that the guarantee upgrades are ultimately a fraction of the excess
return on the assets. On average, the assets increase over time, and so does
the average excess return and, hence, the guarantee upgrades.

6.5.5.1 Unit-Linked versus Participating Life

Finally, we compare the unit-linked insurance policy with its participating life
insurance counterpart from Section 6.4.11. The comparison is straightforward,
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Figure 6.9: Approximated expected assets X and guarantee account Y as a function
of time.
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Figure 6.10: Approximated expected guarantee upgrade u as a function of time.
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Figure 6.11: Approximated expected cash flows for the participating life insurance
policy and the unit-linked insurance policy as a function of time.

since the two policies are modeled in the same framework. We plot the average
cash flows for the two policies side-by-side in Figure 6.11. The two cash
flows are practically the same. This was to be expected in order for the two
contracts to be fair, since the premiums and death benefits are the same. To
refine the picture, we plot the empirical distributions of the final payments
for the two policies in Figure 6.12. We notice that the empirical distributions
differ significantly. In particular, the unit-linked insurance policy has a bigger
downside than the participating life insurance policy, and the average cash
flow for the unit-linked insurance policy is held up by a few, very large, final
payments and a heavier right-tale in general. This emphasizes the fact that,
even though unit-linked insurance and participating life insurance are two
sides of the same coin, the products may differ in riskiness. Our two-account
model with event risk is a valuable tool in quantifying these differences.

6.6 Conclusions
We have introduced a two-account model with event risk, such as death and
disability, for the purpose of modeling life insurance contracts taking into
account both guaranteed and non-guaranteed payments in participating life
insurance as well as in unit-linked insurance. We have formalized how the
bonus schemes “consolidation” and “additional benefits” work and interact
in participating life insurance, and we have formalized how guarantees can
be implemented in unit-linked insurance. We have addressed similarities and
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Figure 6.12: Empirical distribution of final payments for the participating life in-
surance policy and the unit-linked insurance policy.

differences between participating life insurance and unit-linked insurance, and
for both product types, we have provided numerical examples to demonstrate
the possible applications of our two-account model. Our numerical exam-
ples highlight the risk of unfair redistribution across policies in a seemingly
homogeneous participation life insurance portfolio. Furthermore, the exam-
ples illustrate the potential difference in riskiness between a participating life
insurance product and a unit-linked insurance product that are identical in
expectation, but by (product) nature are different in guarantee structure. Our
model is based on economic scenarios, which makes it flexible with respect to
the change of financial input. We have illustrated the use of our model by
conducting scenario analysis based on Monte Carlo simulation, but the model
applies to scenarios in general and to worst-case and best-estimate scenarios
in particular. Our work distinguishes itself from the previous literature by
the inclusion of event risk and by the common framework for the valuation of
guaranteed and non-guaranteed payments, in participating life and unit-linked
insurance. Furthermore, the two-account structure makes it easy to illustrate
general concepts, such as the interaction between realized return and bonus
allocation (in participating life insurance) or the interaction between realized
returns and the final guarantee (in unit-linked insurance). Finally, our paper
provides a unique formalization of the most common bonus schemes in the
Danish life insurance and pensions industry.





Chapter 7

Scenario-based Life Insurance
Prognoses in a Multi-State
Markov Model

Ninna Reitzel Jensen (2015)

Abstract: Traditional life insurance and pension prognoses from the
policyholder’s perspective do not illustrate financial riskiness or the effect
of financial guarantees. We address this issue by introducing stochas-
tic scenarios. Our model applies to participating life insurance as well
as unit-linked insurance, and it is formulated in a general multi-state
Markov model. In addition to illustrating financial riskiness, our model
allows for tailor-made best-estimate prognoses in any financial market.
We illustrate the use of our model by conducting scenario analysis based
on Monte Carlo simulation, but the model applies to scenarios in general
and to worst-case and best-estimate scenarios in particular. Our paper
offers moderate mathematical complexity and a common framework for
the valuation of life insurance payments across product types, and it
fills the existing gap in the literature with respect to prognoses from the
policyholder’s perspective.

Keywords: Prognoses, bonus, economic scenarios, participating life
insurance, unit-linked insurance, stochastic differential equations.

7.1 Introduction
In today’s world of highly complex life insurance and pension products, the
topic of life insurance and pension prognoses from the policyholder’s per-
spective has never been more relevant. In particular, the rise of unit-linked
insurance products increases the demand for prognoses that better illustrate
financial riskiness. Traditional life insurance and pension prognoses are based
on best-estimate expectations about future returns. Thereby, the aspect of
financial riskiness is neglected, and more risky products tend to appear more
attractive. Furthermore, the impact of financial guarantees is not apparent.

177
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We address these issues by introducing stochastic scenarios. Our model ap-
plies to participating life insurance as well as unit-linked insurance, and it is
formulated in a general multi-state Markov model. In addition to illustrating
financial riskiness, our model allows for tailor-made best-estimate prognoses
in any financial market without increased mathematical complexity. In our
modeling, we condition on the policyholder starting and staying in a certain
state of life, typically “alive and active”. We have chosen this fixed path ap-
proach to provide policyholders with the best possible economic forecast given
that they continue their course of life. A similar approach is suggested, but
not pursued, in Section 5.7 of Norberg (2001).

In a recent paper, Jensen and Schomacker (2015) [Chapter 6 of this the-
sis], we introduced stochastic scenarios in participating life and unit-linked
insurance to utilize pricing, hedging, market valuation, and solvency assess-
ments of guaranteed and non-guaranteed payments, and for examining bonus
allocation strategies. There, each scenario consists of two sample paths: one
for the short interest rate, and one for the return of the fund that the policy-
holder and/or the insurance company invest in. In this paper, we introduce
stochastic scenarios in participating life and unit-linked insurance to utilize
tailor-made bonus, benefit, and retirement savings prognoses that illustrate
financial riskiness. Here, each scenario consists of, either, a sample path for
the bonus allocation (in participating life insurance), or, a sample path for
the short interest rate and a sample path for the return of the fund that the
policyholder invests in (in unit-linked insurance).

The scenarios may be worst-case scenarios, scenarios generated via Monte
Carlo simulation or best-estimate scenarios. For a given scenario, the poli-
cyholder’s account is projected into the future. For scenarios generated via
Monte Carlo simulation, one obtains a valid savings, benefit, or bonus progno-
sis by averaging over sufficiently many projections (as is common practice with
Monte Carlo simulation). For worst-case or best-estimate scenarios, a single
projection is enough to obtain the corresponding worst-case or best-estimate
prognosis. For Monte Carlo simulation, we refer to Glasserman (2004). For
the generation of worst-case scenarios, we refer to Christiansen et al. (2014).

Prognoses from the policyholder’s perspective are widely used in the life
insurance and pension industry, but the topic is hardly covered in the liter-
ature. In Norberg (2001), the author treats prognoses in participating life
insurance, but the model is only tractable for a very simple financial environ-
ment and does not apply to unit-linked insurance. To the knowledge of the
author, this present paper is the first to address risk-based prognoses from
the policyholder’s prospective in participating life and unit-linked insurance
in a general financial market. By risk-based prognoses, we mean prognoses
that illustrate financial riskiness by going beyond best-estimate expectations
about future returns. [Post-submission comment: For an expansion of this
paragraph, see Appendix A.]

We model unit-linked insurance policies using two interacting accounts de-
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scribed by stochastic differential equations. One account measures the assets,
and the other account is a technical account. For each scenario, the stochastic
differential equations simplify to deterministic differential equations that can
be solved numerically. A numerical solution can, for example, be obtained by
applying a simple numerical discretization. Thereby, our model is simple to
implement.

Participating life insurance differs from unit-linked insurance by having
collective funds. In particular, the amount of bonus allocated to a policy de-
pends on the evolution of the whole portfolio. In this paper, we take sample
paths for the bonus allocation as stochastic input. The sample paths can be
generated using the approach from Jensen and Schomacker (2015). Given the
bonus allocation, participating life insurance policies can be modeled using
just one account, namely the technical reserve of the policy. Apart from the
stochastic input and the number of accounts, we model participating life and
unit-linked insurance in the same framework. By doing so, we are able to
compare the two. In their nature, unit-linked and participating life insurance
seem different, but, in fact, they are not. The main difference lies in the spec-
ification of how non-guaranteed payments arise, stated in the contract from
the beginning (unit-linked insurance) or determined fairly by the company
along the way (participating life insurance).

In Section 7.2, we discuss scenario-based projection in general. Our main
focus is on projection level and which measure to project under (physical or
pricing measure). In Section 7.3, we formalize a common model for the state-
wise evolution of the policies under consideration. In Section 7.4, we consider
participating life insurance. We present a one-account model for a general
participating life insurance policy. We condition on the policy staying in the
same state. We end the section with a numerical example building on a simple
policy in the classical survival model. The example illustrates how scenario-
based calculations can be used for prognoses that illustrate financial riskiness.
In Section 7.5, we consider unit-linked insurance. We touch upon different
aspects of unit-linked insurance, and we present a two-account model for a
general unit-linked insurance policy. We end the section with a numerical
example that is a unit-linked version of the numerical example in the previous
section. Again, the example illustrates how scenario-based calculations can
be used for prognoses that illustrate financial riskiness. We compare the unit-
linked insurance policy to its participating life insurance counterpart, making
good use of our common modeling framework.

7.2 Projection in General
We assume that the stochastic scenarios arise from a financial model equipped
with a physical measure P and a risk-neutral pricing measure Q.

For pricing, hedging, market valuation, and solvency assessments of guar-
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anteed and non-guaranteed payments and for examining bonus allocation
strategies, it is the expected evolution of the policy—both financially and
across states—that is relevant. Hence, the evolution of the policy is consid-
ered on an average “portfolio level”. The projections are carried out under
the pricing measure since the focus is on pricing and valuation. This was the
topic of Jensen and Schomacker (2015).

For retirement savings, benefit, and bonus prognoses, it is the expected
financial evolution of the policy that is relevant. The policyholder needs to
know what to expect in a certain state, not the expectation across states of
life. Hence, the evolution of the policy is considered on an individual “policy
level”. However, in participating life insurance, the amount of bonus allocated
to a policy depends on the financial evolution and the expected state-wise
evolution of the policy. Hence, for the purpose of prognoses in participating
life insurance, the assets and the reserves must, first, be projected on portfolio
level to produce a sample path for the bonus allocation. Second, the sample
path for the bonus allocation, typically expressed via a bonus basis, is used
to project the reserve on an individual path-wise policy level. Unit-linked
insurance does not require the same two-stage approach. In either case, the
projections are carried out under the physical measure since the focus is on
the actual bonus, retirement savings, and benefits. Projection on policy level
is the topic of this paper.

7.3 Valuation Bases and Insurance Model
For a discussion of the different calculation bases in participating life insur-
ance, see Jensen and Schomacker (2015). Below, we mark elements of the
technical basis by superscript “∗” and elements of the market basis by super-
script “m”.

In participating life insurance as well as in unit-linked insurance, we con-
sider a policy whose state-wise evolution is governed by a continuous-time
Markov process Z with a finite state space J , starting in 0. For k, j ∈ J , j 6= k,
we define the counting process Njk and the indicator process Ik by

Njk (t) = # {s ≤ t : Z (s−) = j, Z (s) = k} ,
Ik (t) = 1{Z(t)=k} .

With this definition, Njk (t) counts the number of jumps from state j to
state k until time t, and Ik (t) indicates sojourn in state k at time t. Under
the technical basis, we model the evolution of Z by the transition intensities
t 7→ µ∗jk (t), j, k ∈ J , j 6= k, and under the market basis, we model the
evolution of Z by the transition intensities t 7→ µmjk (t), j, k ∈ J , j 6= k. The
corresponding technical and market transition probabilities from state j to
state k over the time-interval [t, s] are denoted by p∗jk (t, s) and pmjk (t, s), and
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with ◦ = ∗,m indicating the basis, we have

µ◦jk (t) = lim
h↓0

p◦jk (t, t+ h)
h

.

We assume that the process Z governing the state of the policy is indepen-
dent of the financial market, and under both P and Q, the evolution of Z is
described by the transition intensities from the market basis.

7.4 Participating Life Insurance
In participating life insurance, the conservative technical basis gives rise to
a systematic surplus that is to be paid back to the policyholders in terms of
bonus. For a short survey on bonus schemes, see Møller and Steffensen (2007).

7.4.1 Bonus scheme

We consider a bonus scheme consisting of two steps: first, consolidation, and
then—when the policy is consolidated on a sufficiently low technical inter-
est rate (if ever)—additional benefits. By consolidation, we mean that the
technical interest rate is lowered without changing the guaranteed payments.
Consolidation is primarily used for policies with a technical interest rate that
is “too high” compared to the market interest rate. Consolidation does not
benefit the policyholder in terms of more favorable payments immediately af-
ter bonus payments, but it helps to ensure that the liabilities of the policy can
be met. By additional benefits, we mean that bonus is used to increase parts
of the guaranteed benefits proportionally, whereas the remaining benefits, the
premiums, and the technical interest rate are maintained. Additional benefits
is primarily used for policies with a low technical interest rate compared to
the market interest rate. For a detailed description of the two bonus schemes,
see Jensen and Schomacker (2015). Consolidation (in Danish “styrkelse”) is
much used in the Danish market, but it can easily be skipped below, heading
straight for the bonus scheme additional benefits.

7.4.2 The Policy

We consider a participating life insurance policy with guaranteed payments
based on a technical basis. The state-wise evolution of the policy is described
in Section 7.3. The payments of the policy consist of a state-dependent guar-
anteed payment stream

Bu +Bf − C ,

where C is the premium stream (“C” for contributions), Bu is the benefit
stream for the benefits that are increased (“B” for benefits, and superscript
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“u” for upscaled), and Bf is the benefit stream for the benefits that are kept
fixed (superscript “f” for fixed). They are given by

dC =
∑
j∈J

Ij dcj ,

dBi =
∑
j∈J

Ij dbij +
∑

j,k∈J :k 6=j
bijk dNjk , i = f, u ,

where cj , bfj , and buj are deterministic, state-wise payment streams, and bfjk
and bujk are deterministic lump sum payments upon jumps. We, hereby, ex-
clude policyholder behavior options such as surrender and free policy since
they imply non-deterministic payments, but for the purpose of prognoses, one
typically assumes that the policyholder continues his course of life. Hence, for
practical purposes, our assumption is unproblematic. The policy terminates
at time T . Thereafter, there are no payments. For a simple example in the
classical survival model, see Jensen and Schomacker (2015).

We denote by Y the technical reserve for the policy given that the policy
starts and stays in state 0 (presumably “alive and active”). The policy is
issued before or at time 0, and the account amounts to Y (0−) = y0 just
before time 0. The technical reserve Y accumulates according to the technical
basis. In good times, the return rate on the insurance company’s investments
exceeds the technical interest rate. Parts of the excess return are allocated to
the policy in terms of bonus which adds to the technical reserve, but parts are
saved for times when the return rate is less favourable. Bonus is allocated at
pre-specified, deterministic time points 0 < t1 < . . . < tn = T . We let

ε (t) = # {i = 1, . . . , n : ti ≤ t}

count the number of bonus allocations prior to time t. For all t with dε (t) = 1,
i.e. for all time points with a bonus allocation, we assume that the bonus
allocation d0 (t) is known at time t−. This is to ensure predictability and,
thereby, stochastic integrability. We write d0 instead of just d to emphasize
that we are dealing with the bonus allocation in state 0.

In Jensen and Schomacker (2015), it is described how to determine a fair
bonus allocation strategy. In this paper, we take sample paths for the bonus
allocation as stochastic input. We assume that the sample paths reflect the
physical measure P .

7.4.3 Bonus Mechanisms

Bonus allocated to the policy is, first, used to lower the technical interest rate
until it hits a pre-described level r∗. Typically, this level coincides with the
technical interest rate for new policies. Thereafter, bonus is used to increase
the benefits Bu. We let r∗(n) denote the technical interest rate after the n-th
bonus accrual and k(n) denote the upscaling of the benefits Bu after the n-th
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bonus accrual. After the n-th bonus accrual, the guaranteed benefit stream
for the policy is given by

B(n) = k(n)Bu +Bf .

We note that r∗(n) and k(n) depend on the stochastic bonus allocation and
are therefore stochastic. However, for each bonus allocation scenario, we have
a procedure for calculating them which is presented in Section 7.4.6. The
upscaling factor starts at one, i.e. k(0) = 1, and we have k(n) = 1 for all n with
r∗(n) > r∗, and if k(n) > 1, then necessarily r∗(n) = r∗. This is because we do
not increase the guaranteed benefits until the technical interest rate has been
lowered to r∗.

For all t with dε (t) = 1, we assume that the technical interest rate r∗(ε(t))
and upscaling factor k(ε(t)) are calculated at time t−. Again, this is to ensure
predictability. Furthermore, additional benefits are in effect from time t−,
such that benefits paid out at time t include the upscaling k(ε(t)). The latter
ensures that a policyholder with a final lump sum payment actually benefits
from the last bonus update.

7.4.4 Technical Reserves and Risk Premiums

We denote by V f,∗
j (·, ρ) and V u,∗

j (·, ρ) the state-wise technical reserves for the
payment streams Bf − C and Bu given that the policy is in state j and that
the technical interest rate is ρ. We have

V f,∗
j (t, ρ) = E∗

[∫ T

t
e−ρ(s−t) d

(
Bf − C

)
(s)
∣∣∣∣∣Z (t) = j

]

=
∫ T

t
e−ρ(s−t) ∑

l∈J
p∗jl (t, s)

{
dbfl (s) +

∑
k∈J :k 6=l

µ∗lk (s) bflk (s) ds− dcl (s)
}
,

V u,∗
j (t, ρ) = E∗

[∫ T

t
e−ρ(s−t) dBu (s)

∣∣∣∣∣Z (t) = j

]

=
∫ T

t
e−ρ(s−t) ∑

l∈J
p∗jl (t, s)

{
dbul (s) +

∑
k∈J :k 6=l

µ∗lk (s) bulk (s) ds
}
,

(7.1)

where E∗ denotes technical expectation and p∗jl is the technical probability of
transition from state j to l. Both are determined by the transition intensities
from the technical basis. The state-wise technical reserves can be calculated
numerically by use of Thiele’s differential equations; see Hoem (1969).

We denote by V ∗j (·, ρ, k) the state-wise technical reserve for the (partly
upscaled by k) payment stream Bf +kBu−C given that the policy is in state
j and that the technical interest rate is ρ, i.e.

V ∗j (t, ρ, k) = kV u,∗
j (t, ρ) + V f,∗

j (t, ρ) , j ∈ J . (7.2)
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Finally, with a slight abuse of notation, we denote by V ∗j (·, ρ) the state-wise
technical reserve for the initial payment stream Bf + Bu − C given that the
policy is in state j and that the technical interest rate is ρ, i.e.

V ∗j (t, ρ) = V u,∗
j (t, ρ) + V f,∗

j (t, ρ) = V ∗j (t, ρ, 1) , j ∈ J . (7.3)

In exchange for the policyholder’s insurance coverage, a technical risk pre-
mium is continuously deducted from the technical reserve. The risk premium
covers all risk associated with future payments upon leaving state 0. We
denote the technical risk premium stream in state 0 by s∗0, and it is given by

ds∗0 (t) = E∗
[ ∑
j∈J :j 6=0

(
k(ε(t))bu0j (t) + bf0j (t) + V ∗j

(
t, r∗(ε(t)), k(ε(t))

)
− V ∗0

(
t, r∗(ε(t)), k(ε(t))

))
dN0j (t)

∣∣∣Z (t) = 0, r∗(ε(t)), k(ε(t))
]

=
∑

j∈J :j 6=0
µ∗0j (t)

(
k(ε(t))bu0j (t) + bf0j (t) + V ∗j

(
t, r∗(ε(t)), k(ε(t))

))
dt

− Y (t)
∑

j∈J :j 6=0
µ∗0j (t) dt,

where V ∗j , j ∈ J , are the state-wise technical reserves defined in Equa-
tion (7.2).

7.4.5 Account Projection

This subsection constitutes the largest conceptual departure from Jensen and
Schomacker (2015) with respect to participating life insurance. There are two
main differences: Firstly, instead of considering the expected evolution of the
policy across states, we condition on the policy starting and staying in state 0.
In Jensen and Schomacker (2015), we projected the policyholder’s accounts by
adding the expected premiums and subtracting the expected benefits. In that
way, we obtained the expected evolution of the policyholder’s accounts across
states which is relevant for the purpose of e.g. market valuation. Below, we
add and subtract the actual premiums and benefits in state 0. In addition, we
subtract the technical risk premium associated with jumps out of the state. As
a result, we obtain the evolution in state 0 which is relevant for the purpose of
prognoses from the policyholder’s perspective. Secondly, the stochastic input
is different. In Jensen and Schomacker (2015), the stochastic element consisted
of the short interest rate and the return on the assets of the policy. Below, the
stochastic element consists of a sample path for the bonus allocation in state 0,
derived via account projection on portfolio level, see Jensen and Schomacker
(2015). In exchange for having the bonus allocation as input, we only need to
project the technical reserve and not the assets of the policy as in Jensen and
Schomacker (2015).
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Conditional on the policy starting and staying in state 0, the technical
reserve Y of the policy evolves according to the stochastic differential equation

dY (t) = Y (t) r∗(ε(t)) (t) dt+ dc0 (t)− k(ε(t))dbu0 (t)− dbf0 (t)
− ds∗0 (t) + d0 (t) dε (t) , (7.4)

Y (0−) = y0 .

Here, d0 is the stochastic bonus allocation in state 0, and ε counts the number
of bonus allocations. Furthermore, c0 is the premium stream in state 0, bu0 and
bf0 are the initial benefit streams in state 0, and s∗0 is technical risk premium
stream in state 0. The stochastic element d0 enters via a sample path for
the bonus allocation. This way of formalizing the technical reserve, including
bonus, is a generalization of Møller and Steffensen (2007).

7.4.6 Procedure for Determining the Technical Interest Rate
and the Upscaling Factor

The procedure for determining the technical interest rate and upscaling factor
that we present below might, at first glance, seem identical to the procedure
in Jensen and Schomacker (2015). However, there is an important conceptual
difference. In Jensen and Schomacker (2015), the procedure is based on the
distribution of the policy across states. Hence, the resulting technical interest
rate and upscaling factor are averaged quantities that do not reflect the evolu-
tion of an actual policy. Moreover, one has to decide which basis to use for the
distribution of the policy; the realistic market basis or the computationally
simpler technical basis. For a brief discussion, see Jensen and Schomacker
(2015). Below, the procedure is based on the policy being in state 0, and the
resulting technical interest rate and upscaling factor reflect the possible evolu-
tion of a policy in state 0. Also, there is no decision to be made on valuation
basis.

We fix a time point t with dε (t) = 1 such that there is a bonus allocation
at time t. First, we assume that r∗(ε(t−)) > r∗, so that the policy is still in the
consolidation phase of the bonus scheme. Then, necessarily, k(ε(t−)) = 1 (since
we consolidate first), and the technical interest rate r∗(ε(t)) is determined as
the solution to the equation

Y (t−) + d0 (t) = V ∗0

(
t−, r∗(ε(t))

)
,

where V ∗0 is the state-wise technical reserve defined in Equation (7.3). Hence,
r∗(ε(t)) is the technical interest rate that complies with the equivalence prin-
ciple on policy level. If the solution r∗(ε(t)) is strictly smaller than r∗, then
r∗(ε(t)) is set to r∗, and the remaining bonus

Y (t−) + d0 (t)− V ∗0 (t−, r∗)
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is used to raise the upscaling factor k(ε(t)) as below. Otherwise, we set
k(ε(t)) = 1. We emphasize that consolidation increases the technical reserve
without changing the guaranteed payments. Thereby, the liabilities of the
insurance company are unaffected by the bonus allocation. An increased
technical reserve combined with unchanged liabilities corresponds to a more
well-founded policy. Therefore, we use the term consolidation.

Now, assume that r∗(ε(t−)) = r∗. Then, the policy is in the additional
benefits phase of the bonus scheme, and we set r∗(ε(t)) = r∗. The upscaling
factor k(ε(t)) is determined as the solution to the equation

d0 (t) =
(
k(ε(t)) − k(ε(t−))

)
V u,∗

0 (t−, r∗) ,

i.e.
k(ε(t)) = k(ε(t−)) + d0 (t)

V u,∗
0 (t−, r∗)

.

Here, V u,∗
0 is the technical reserve in state 0 for the benefit stream Bu given

that the interest rate is r∗. The reserve is given in Equation (7.1). Hence,
k(ε(t)) is the upscaling factor that satisfies the equivalence principle on policy
level.

There is no reason to consider the case r∗(ε(t−)) < r∗. For details, see
Jensen and Schomacker (2015).

7.4.7 Benefit and Bonus Prognoses from the Policyholder’s
Perspective

The projections of Y on policy level are useful for bonus and benefit prognoses
with confidence intervals, conditional on the policy starting and staying in
state 0. The projections reflect the financial evolution of the policy given
that the policyholder continue his course of life which is exactly what most
prognoses from the policyholder’s perspective focus on. For benefit prognoses,
it is relevant to calculate the expected upscaling factor at the retirement date
R,

EPR,0
[
k(ε(R))

]
,

and the expected benefit stream

t 7→EPt,0
[
k(ε(t))

] (
dbu0 (t) +

∑
j∈J :j 6=0

bu0j dN0j (t)
)

+ dbf0 (t)+
∑

j∈J :j 6=0
bf0j dN0j (t) ,

given that the policy starts and stays in state 0. Here, EPt,0 denotes P -
expectation given sojourn in state 0 up to time t, i.e.

EPt,0 [ · ] = EP [ · |∀s ≤ t : Z (s) = 0] ,

where Z is the stochastic process governing the state of the policy.
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If the projections are based on bonus allocation scenarios generated via
Monte Carlo simulation, then for each t, the expectation EPt,0

[
k(ε(t))

]
is ap-

proximated by averaging over a sufficient number of P -projections up to time
t. If, instead, the projections are of the worst-case or best-estimate type (and,
hence, singular), then EPt,0

[
k(ε(t))

]
is just the single projected value. To illus-

trate the financial riskiness of the policy, one can calculate quantiles for k(ε(t)),
based on Monte Carlo-based projections.

For bonus prognoses, it is relevant to calculate the expected bonus stream

t 7→
(
EPt,0

[
k(ε(t))

]
− 1

) dbu0 +
∑

j∈J :j 6=0
bu0j dN0j (t)

 .

The expected bonus stream is approximated in the same way as the expected
benefit stream.

7.4.8 Numerical Example

The example below is based on 5000 bonus allocation scenarios generated via
Monte Carlo simulation. We have made sure that the number of simulated
scenarios is sufficiently high for our numerical results and graphs not to change
between simulations, but we do not go into details about the robustness of
the simulations.

We consider a participating life insurance policy which is identical to the
example policy in Jensen and Schomacker (2015). The state of the policy
is described by the classical survival model with two states, 0 (alive) and 1
(dead). For simplicity, we write µ∗ = µ∗01. The payments of the policy consist
of a constant continuous premium payment π while alive, a term insurance
sum bad upon death before expiration T , and a pure endowment sum ba upon
survival until expiration T . Under the bonus scheme “additional benefits”,
bonus is used to increase the endowment sum. There are no payments in the
death state.

The policyholder is a female aged 25 at time 0 when the policy is issued.
We fix r∗ = 0.02, and we assume that r∗(0) = r∗ which is natural for a
newly-issued policy. Thereby, we only consider the bonus scheme “additional
benefits”. The death of the policyholder is governed by the technical mortality
intensity

µ∗ (t) = 5 · 10−4 + 5.3456 · 10−5 · e0.087498(25+t) .

For the last three decades, this has served as a standard mortality intensity for
adult women in Denmark. It is part of the so-called G82 technical basis that
was set forth as a Danish industry standard in 1982. The market mortality
intensity is given by

µm (t) = 0.8µ∗ (t) . (7.5)
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The policy expires at time T = 40 when the policyholder is 65. In the
notation from the previous sections, we have

dbf0 (t) = dbf1 (t) = dc1 (t) = dbu1 (t) = dbu01 (t) = 0 ,
dc0 (t) = π dt ,
dbu0 (t) = ba1{t=40} ,

dbf0 (t) = 0 .

Since there are no payments in the dead state, we get V ∗1 (t, ·, ·) = 0. Hence,
the technical risk premium stream is

ds∗0 (t) = µ∗ (t)
(
bad − Y (t)

)
dt .

We fix the term insurance sum at bad = 1 and the pure endowment sum at
ba = 3 as in Jensen and Schomacker (2015). The equivalence premium is
determined via the equivalence relation

V ∗0 (0, r∗) = 0 .

For this simple policy, we have

V ∗0 (0, r∗) = bae−
∫ T

0 (r∗+µ∗(v)) dv +
∫ T

0
e−
∫ s

0 (r∗+µ∗(v)) dv
(
badµ∗ (s)− π

)
ds ,

so we get the premium

π = bae−
∫ T

0 (r∗+µ∗(v)) dv + bad
∫ T

0 e−
∫ s

0 (r∗+µ∗(v)) dvµ∗ (s) ds∫ T
0 e−

∫ s
0 (r∗+µ∗(v)) dv ds

.

Using numerical methods, we obtain π = 0.04614.
The bonus d0 is allocated once a year and is given by

d0 (t) =
(
(µm (t)− µ∗ (t))

(
bad − Y (t− 1)

))+
+ δ (t)Y (t− 1) .

Here, the first term is risk bonus. The second term is interest rate bonus,
and the excess interest rate δ enters via sample paths. Using standard Monte
Carlo methods, we simulate 5000 sample paths for the excess interest rate
δ using the approach from Section 4.11.1 in Jensen and Schomacker (2015).
For details, we refer to Jensen and Schomacker (2015), but to keep this paper
self-contained, we provide this recapitulation:

1. We assume a deterministic short interest rate r = 0.04. Assets corre-
sponding to the policy are invested in a simple Black–Scholes stock with
drift 0.07 and volatility 0.2 under the physical measure P . The excess
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return gives rise to a collective bonus potential K which is defined as
the maximum of zero and assets less guaranteed liabilities, i.e.

K (t) = (X (t)− L (t))+ .

Here, the guaranteed liabilities L is the maximum of the market reserve
V and the technical reserve V ∗ for the guaranteed payments, i.e.

L (t) = max {V (t) , V ∗ (t)} .

For details, see Jensen and Schomacker (2015).

2. The assets and reserves X, V ∗, and V are simulated using standard
Monte Carlo methods (on portfolio level). For each sample path, the
interest rate bonus d is determined as a fraction θ1 of the excess collective
bonus potential K over a threshold K̄, i.e.

d (t) = θ1
(
K (t−)− K̄ (t−)

)+
.

The threshold K̄ can be seen as a preferred minimum collective bonus
potential and is given by

K̄ (t) = θ2L (t) .

3. The interest rate bonus d is converted to an excess interest rate δ via
the formula

δ (t) = d (t)
V ∗ (t− 1) .

We fix θ1 = 0.2 and θ2 = 0.1. In exchange for the right to bonus, the policy-
holder pays a guarantee fee which is subtracted from the assets. The guarantee
fee is a fraction θ3 of the positive part of the returns on the assets, and it is
determined such that the policy is financially fair. By financially fair, we
mean that the equivalence principle is satisfied for the total payments under
the pricing measure, i.e.

EQ
[∫ T

0
e−rs d

(
B(ε(s)) − C

)
(s)
]

= x0 .

The fair guarantee fee fraction amounts to θ3 = 0.31. [Post-submission com-
ment: For a revised recapitulation, see Appendix A.]

For each sample path of δ, we project Y , using a discretized version of the
stochastic differential equation in Equation (7.4). In Figure 7.1, we plot the
average and guaranteed evolution of the policyholder’s account. We also plot
quantiles for the evolution of the account. The expected endowment sum at
retirement, k(40)ba, amounts to 6.2 which means that 52% of the endowment
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Figure 7.1: Average, quantiles and guaranteed evolution of the policyholder’s ac-
count Y as a function of time.
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Figure 7.2: Empirical distribution of the final upscaling factor k(40).

sum comes from bonus. This is primarily due to the low technical interest
rate. With regards to prognoses, the average provides the policyholder with a
best-estimate of the endowment sum at retirement, given that the policyholder
is still alive at retirement. In addition, the policyholder gets a best-estimate
of the evolution of the technical reserve which is useful for surrender where
the policyholder typically receives the technical reserve. The quantiles add to
the picture by illustrating the financial riskiness of the policy. The message is
clear; even a participating life insurance policy inflicts financial risk.

In Figure 7.2, we plot the empirical distribution of the upscaling factor
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at retirement. The upscaling factor can never fall below 1, but for 63% of
the sample paths, the endowment sum at retirement is less than the average
of 6.2. This is valuable information for the policyholder, and in traditional
prognoses, the riskiness would not be apparent. Our model is a unique tool
in providing this information.

7.5 Unit-Linked Insurance
In unit-linked insurance, (parts of) the benefits are directly linked to the
financial market. To ensure a certain living standard after retirement, unit-
linked insurance policies often come with an embedded financial guarantee.
The guarantee can take on many forms. We focus on a guarantee consisting
of a guaranteed minimum retirement savings amount at the retirement date.

7.5.1 Two-Account Model

We consider a unit-linked insurance policy. The state-wise evolution of the
policy is described in Section 7.3. The policy includes a guaranteed minimum
retirement savings amount at the retirement date R, based on a guarantee
account with a guaranteed interest rate r∗ (for example, r∗ = 0). We do
not take costs into account. We denote by X the assets of the policy and
by Y the guarantee account, given that the policy starts and stays in state 0
(presumably “alive and active”). The policy is issued before or at time 0, and
the two accounts amount to X (0−) = x0 and Y (0−) = y0 just before time 0.
The policy terminates at time T ≥ R. Thereafter, there are no payments.

The assets X are invested in a fund with stochastic return RX . The guar-
antee account Y accumulates according to the guaranteed interest rate. In
good times, the return rate on the assets exceeds the technical interest rate,
and then, the assets outgrow the guarantee account. In that case, the guar-
antee account is upgraded (increased) according to the terms of the contract.
Regardless of the developments in the financial market, the guarantee account
is never to be downgraded (lowered), and at retirement, the maximum value
of the assets and the guarantee account is paid out to the policyholder. In
bad times when the guarantee account exceeds the assets at retirement, the
equity holders of the insurance company step in with a capital injection taken
from the company’s equity. We speak of the possible capital injection

g = (Y (R−)−X (R−))+

as guarantee injection, and its role is to raise the assets at retirement in case
of unfavorable developments in the financial market. The policyholder pays
for the company’s risk taking by having a guarantee fee deducted from the
assets and paid to the equity holders of the insurance company.
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The two accounts X and Y are updated at pre-specified deterministic time
points 0 < t1 < . . . < tn = T (for example, once a year). We let

ε (t) = # {i = 1, . . . , n : ti ≤ t}

count the number of updates prior to time t. The updates consist of upgrades,
u, of the guarantee account (if the assets exceed the guarantee account in a
pre-described way) and deductions of the guarantee fee, πg, in return for the
possible guarantee injection g at retirement. At retirement R, the assets are
updated with the guarantee injection, g, if the guarantee account exceeds the
assets. We let εR (t) = 1{t≥R} mark this final update. After retirement, the
guarantee account falls away, and the assets evolve without any underlying
guarantee until termination T .

We assume that the stochastic return on the assets, RX , does not jump
at time points with an account update. Furthermore, to ensure predictability,
we assume that u (t) and πg (t) are known at time t− for all time points t
with an account update. We take sample paths for the return on the assets
as stochastic input. We assume that the sample paths reflect the physical
measure P .

7.5.2 Product Specification

The payments of the policy consist of a state-dependent payment stream

Bf +Bu − C ,

where C is a fixed state-dependent premium stream (“C” for contribution),
Bf is a fixed state-dependent benefit stream (“B” for benefits and superscript
“f” for fixed), and Bu is a state-dependent benefit stream that is linked to
the financial market (superscript “u” for unit-linked). More precisely, Bu is
linear in the assets X, i.e.

dBu (t) = X (t−) dBp (t) ,

where Bp denotes a fixed state-dependent benefit stream (superscript “p” for
profile). We write X (t−) instead of just X (t) to ensure that the asset process
X is well-defined (see definition below). We assume that the total payment
stream of the policy, Bf+Bu−C, is constructed in such a way that the assetsX
never become negative. This is, for example, satisfied if the premium stream
in state 0 is continually enough to cover the risk premium stream (defined
below) for the fixed benefit stream.

The fixed benefit stream Bf includes insurance payments such as disability
or death payments whereas the market-linked benefit stream Bu includes, for
example, deposit protection, surrender payments, a variable pure endowment



7.5. Unit-Linked Insurance 193

or a variable life annuity. Formally, the payment streams of the policy are
given as

dC =
∑
j∈J

Ij dcj ,

dBi =
∑
j∈J

Ij dbij +
∑

j,k∈J :j 6=k
bijk dNjk , i = f, p ,

where cj , bfj and bpj are deterministic, state-wise payment streams and bfjk
and bpjk are deterministic lump sum payments upon jumps. For a simple
example in the classical survival model, see Jensen and Schomacker (2015).
To ensure that the assets are paid out to the policyholder, we assume that
∆bf0 (T ) = ∆c0 (T ) = 0 and ∆bp0 (T ) = 1. Here, ∆ denotes the jump part of
the processes.

7.5.3 Risk Premiums

We let V f,m
j (t) denote the state-wise market reserve at time t for the benefit

stream Bf given that the policy is in state j at time t. We have

V f,m
j (t) = Em

[∫ T

t
e−
∫ s
t
r(v) dv dBf (s)

∣∣∣∣∣Z (t) = j, r (t)
]

=
∫ T

t
e−
∫ s
t
rt(v) dv∑

l∈J
pmjl (t, s)

dbfl (s) +
∑

k∈J :k 6=l
µmlk (s) bflk (s) ds)

 ,
where Em denotes market expectation, r is the stochastic short interest rate,
and rt is the yield curve seen from time t.

By sf0 , we denote the market risk premium stream in state 0 associated
with the benefit stream Bf . The risk premium covers all risk associated with
future payments of Bf upon leaving state 0. We have

dsf0 (t) = Em
 ∑
j∈J :j 6=0

(
bf0j (t) + V f,m

j (t)− V f,m
0 (t)

)
dN0j (t)

∣∣∣∣∣∣Z (t) = 0


=

∑
j∈J :j 6=0

µm0j (t)
(
bf0j (t) + V f,m

j (t)− V f,m
0 (t)

)
ds .

By su0 , we denote the market risk premium stream in state 0 associated
with the benefit stream Bu. The risk premium su0 covers unit-linked lump
sum payments upon jumps out of state 0. Letting Pj (t) indicate whether the
policyholder keeps his assets upon transition to state j at time t, we get

dsu0 (t) = X (t−)Em
 ∑
j∈J :j 6=0

(
bp0j (t) + Pj (t)− 1

)
dN0j (t)

∣∣∣∣∣∣Z (t) = 0


= X (t)

∑
j∈J :j 6=0

µm0j (t)
(
bp0j (t) + Pj (t)− 1

)
ds .
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We emphasize that for states k where the policy holder does not keep his assets,
corresponding to Pk (t) = 0, the policyholder actually receives X (t)µm0k (t) in
exchange for giving up his assets upon transition to state k at time t.

7.5.4 Two-Account Projection

This subsection constitutes the largest conceptual departure from Jensen and
Schomacker (2015) with respect to unit-linked insurance. There is one main
difference: Instead of considering the expected evolution of the policy across
states, we condition on the policy starting and staying in state 0. As for
participating life insurance, we do this by adding and subtracting the ac-
tual premiums and benefits in state 0 instead of adding and subtracting the
expected premiums and benefits. In addition, we subtract the market risk
premium associated with jumps out of the state. As opposed to participation
life insurance, the stochastic input in unit-linked insurance is the same in this
paper and Jensen and Schomacker (2015). In both cases, the stochastic ele-
ment consists of a sample path for the short interest rate, r, and the return,
RX , of the fund that the policyholder invests in.

Conditional on the policy starting and staying in state 0, the assets X
and the guarantee account Y of the policy evolve according to the stochastic
differential equations

dX (t) = X (t−) dRX (t) + dc0 (t)− dbf0 (t)−X (t−) dbp0 (t)

− dsf0 (t)− dsu0 (t)
− πg (t) dε (t) + (Y (R−)−X (R−))+ dεR (t) ,

X (0−) = x0 , (7.6)

dY (t) = Y (t) r∗ (t) dt+ dc0 (t)− dbf0 (t)−X (t−) dbp0 (t)

− dsf0 (t)− dsu0 (t) + u (t) dε (t) , t ≤ R ,

Y (0−) = y0 ,

Y (t) = 0 , t > R .

We recall that πg is premium for the included retirement guarantee, u is the
upgrade of the guarantee account, ε counts the number of guarantee premium
payments and guarantee upgrades (typically annual), and εR marks the ex-
ercise of the guarantee at the retirement date. This way of formalizing the
assets and the guarantee account is a generalization of Steffensen and Wald-
strøm (2009) to a set-up with insurance risk. The stochastic element RX
enters via a sample path for the asset returns. The short interest rate, r,
enters via the market risk premium.

The guarantee account is set to zero after time R because it falls away
after retirement, and the assets evolve without any underlying guarantee until
termination T . The three quantities r∗, u, and πg are specified in the con-
tract. They are non-negative, and they are determined in such a way that the
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contract is financially fair, i.e. such that the equivalence principle is satisfied
for the total payments under the pricing measure:

x0 = EQ
[∫ T

0
e−
∫ s

0 r(v) dv d
(
Bu +Bf − C

)
(s)
]
. (7.7)

7.5.5 Savings and Benefit Prognoses from the Policyholder’s
Perspective

The projections ofX and Y on policy level are useful for retirement savings and
benefit prognoses with confidence intervals, conditional on the policy starting
and staying in the state 0. Again the projections reflect the financial evolution
of the policy given that the policyholder continue his course of life which is
exactly what most prognoses from the policyholder’s perspective focus on. For
retirement savings prognoses, it is relevant to calculate the expected assets at
the retirement date R,

EPR,0 [X (R)] ,

given that the policy starts and stays in state 0. Here, EPt,0 still denotes P -
expectation given sojourn in state 0 up to time t. For benefit prognoses, it is
relevant to calculate the expected benefit stream

t 7→EPt,0 [X (t)]
(

dbp0 (t) +
∑

j∈J :j 6=0
bp0j dN0j (t)

)
+ dbf0 (t) +

∑
j∈J :j 6=0

bf0j dN0j (t) ,

If the projections are based on scenarios generated via Monte Carlo simulation,
then for each t, the expectation EPt,0 [X (t)] is approximated by averaging over a
sufficient number of P -projections up to time t. If, instead, the projections are
of the worst-case or best-estimate type (and, hence, singular), then EPt,0 [X (t)]
equals the single projected value. To illustrate the riskiness of the policy, one
can calculate quantiles for X (t), based on Monte Carlo-based projections.

7.5.6 Numerical Example

The example below is based on 5000 scenarios generated via Monte Carlo
simulation. The number of simulated scenarios is, again, enough to ensure
that our numerical results and graphs do not change between simulations.

We consider a unit-linked insurance policy which is identical to the example
policy in Jensen and Schomacker (2015). The policy is a unit-linked version of
the participating life insurance policy in Section 7.4.8. The state of the policy
is described by the classical survival model with two states, 0 (alive) and 1
(dead). For simplicity, we write µm = µm01 and pm = pm00. The policy expires
at the retirement date, i.e. T = R. The payments of the policy consist of a
constant continuous premium payment π while alive, a term insurance sum
bad upon death before expiration T , and a pure endowment sum upon survival
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until expiration T . The size of the endowment sum is equal to the value of
the assets at expiration. There are no payments in the death state.

The policyholder is the 25-year-old female from Section 7.4.8. Her death
is still governed by the market mortality in Equation (7.5). The policy expires
at time T = R = 40 when the policyholder is 65. In the notation from the
previous sections, we have

dbf0 (t) = dbf1 (t) = dc1 (t) = dbp1 (t) = dbp01 (t) = 0 ,
dc0 (t) = π ds ,
dbp0 (t) = 1{t=40} ,

dbf01 (t) = bad .

Since there are no fixed benefit payments in either state, we get V f,m
0 (t) =

V f,m
1 (t) = 0. Furthermore, the policyholder does not keep her assets upon

death, so P1 (t) = 0. As a consequence, we have the following risk premium
streams

dsf0 (t) = µm (t) badds ,
dsu0 (t) = −µm (t)X (t−) ds .

For comparability, we fix the term insurance sum at bad = 1 and the premium
at π = 0.04614 as in Section 7.4.8. We assume a deterministic market interest
rate r = 0.04, and the assets of the policy are invested in a fund with log-
normal returns that are paid out once a year, i.e.

dRX (t) = S (t)− S (t− 1)
S (t− 1) , t = 1, . . . , 40 ,

where S is a geometric Brownian motion. We basically consider a simple
Black–Scholes financial market. We assume that the fund size S has drift
0.07 and volatility 0.2. The financial market is identical to the market in the
participating life insurance example in Section 7.4.8.

The guarantee account Y bears interest at the rate r∗ = 0. The guarantee
account is upgraded and the guarantee fee paid once a year. The guarantee
upgrade u is determined as a fraction θ1 of the positive part of the assets X
less the guarantee account Y , all taken just before the guarantee upgrade, i.e.

u (t) = θ1 (X (t−)− Y (t−))+ , t = 1, . . . , 40 .

We fix θ1 = 0.8. In words, the guarantee upgrade makes up 80% of the excess
return on the assets. At expiration, the guarantee g = (Y (40−)−X (40−))+

is added to the assets to ensure that they match the guarantee account. The
guarantee fee πg is a fraction θ2 of the positive part of the returns on the
assets, i.e.

πg (t) = θ2 (RX (t)X (t− 1))+ .
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Figure 7.3: Average evolution of the assets X and guarantee account Y as a function
of time.

In Jensen and Schomacker (2015), the authors consider an identical policy and
market, and the fraction θ2 is determined according to the fairness criterion
in Equation (7.7). The fair guarantee fee fraction amounts to θ2 = 0.1 which
we apply in the following. Using standard Monte Carlo methods, we simu-
late 5000 sample paths for the asset returns RX , and for each sample path,
we project X and Y using discretized version of the stochastic differential
equations in Equation (7.6).

In Figure 7.3, we plot the average evolution of the assets and the guarantee
account. The average endowment sum at retirement, X (40−) + g, amounts
to 8.9. The final guarantee injection on average raises the assets by 14%, even
though the guarantee account does not bear interest. This is because the final
guarantee kicks in for all sample paths where the assets finish below their (pre-
vious) maximum value. With regards to prognoses, the average provides the
policyholder with a best-estimate of the endowment sum at retirement, given
that the policyholder is still alive at retirement. In addition, the policyholder
gets a best-estimate of the evolution of the assets which is useful for surrender
where the policyholder typically receives the assets, regardless of the value of
the guarantee account.

In Figure 7.4, we plot the empirical distribution of the endowment sum
at retirement. With regards to prognoses, the figure illustrates the significant
financial riskiness of the policy. The policy has a big potential upside, but
also a big downside risk. The distribution is skew, and for 73% of the sample
paths, the endowment sum at retirement is less than the average of 8.9. This
is important to know for the policyholder. In Figure 7.5, we plot quantiles
and the worst outcome for the evolution of the assets. The message is the
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Figure 7.4: Empirical distribution of endowment sum at retirement, X (40−) + g.
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Figure 7.5: Quantiles and worst outcome for the assets X as a function of time.
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Figure 7.6: Empirical distribution of the endowment sum at retirement for the
participating life insurance policy and the unit-linked insurance policy.

same as for Figure 7.4, and Figure 7.5 adds to the picture by illustrating the
distributional evolution of the assets, in addition to the value at retirement.

From Figure 7.3 and 7.5, the impact of the final guarantee injection is very
clear. This is valuable for the policyholder when assessing the usefulness of
an embedded guarantee.

7.5.7 Unit-Linked versus Participating Life

To round off, we compare the unit-linked insurance policy with its participat-
ing life insurance counterpart from Section 7.4.8. The comparison is straight-
forward since the two policies are modeled in the same framework. The two
policies have the same the premiums and death benefits, and both policies are
designed to be financially fair. Hence, under the pricing measure, the expected
endowment sum at retirement are the same for the two policies. In Figure 7.6,
we plot the empirical distributions of the endowment sum at retirement for the
two policies. We notice that the empirical distribution of the endowment sum
at retirement differs significantly under the physical measure. In particular,
the unit-linked insurance policy has a bigger downside than the participating
life insurance policy. This is highly relevant information for the policyholder
when choosing between a participating life and unit-linked insurance product.
Our model is a valuable tool in providing this information.
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7.6 Conclusion
In this paper, we have introduced stochastic scenarios in participating life and
unit-linked insurance to utilize tailor-made bonus, benefit, and retirement
savings prognoses that illustrate financial riskiness. Each scenario consists of,
either, a sample path for the bonus allocation (in participating life insurance),
or, a sample path for the short interest rate and a sample path for the return
of the fund that the policyholder invests in (in unit-linked insurance). The
paper is a self-contained continuation of Jensen and Schomacker (2015), and
to the knowledge of the author, it is the first paper to address risk-based prog-
noses from the policyholder’s perspective in participating life and unit-linked
insurance in a general financial market. By risk-based prognoses, we mean
prognoses that illustrate financial riskiness by going beyond best-estimate
expectations about future returns. In a general multi-state Markov model,
we model participating life and unit-linked insurance in the same framework
which makes comparison easy. For both product types, we have provided nu-
merical examples to demonstrate the possible applications of our model. We
have illustrated the use of our model by conducting scenario analysis based
on Monte Carlo simulation, but the model applies to scenarios in general
and to worst-case and best-estimate scenarios in particular. Our model is a
valuable tool in providing tailor-made best-estimate prognoses, illustrating fi-
nancial riskiness, and visualizing the impact of financial guarantees. All, with
moderate mathematical complexity, thanks to our scenario-based approach.
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Appendix A

Post-Submission Changes to
the Thesis

This appendix has not been assessed by the Assessment Committee.

A.1 Post-Submission Changes to Chapter 4

A.1.1 Proof of Theorem 4.1

The follwing proof of Theorem 4.1 in Chapter 4 is almost identical to the proof
of Theorem 3.1 in Kraft et al. (2013).

Let (c, π, d) ∈ A (x0) be an arbitrary admissible control. Applying Itô’s for-
mula, we obtain

J
(
t,Xc,π,d

t

)
− U

(
Xc,π,d
T

)
= −

∫ T

t
Lc,π,ds [J ]

(
s,Xc,π,d

s

)
ds−MT +Mt ,

whereM is a martingale thanks to the assumption that
∫ ·

0 Jx
(
t,Xc,π,d

t

)
πtσ dWt

is a martingale, and where

Lc,π,ds [J ] (t, x) = Jt (t, x) + (rx+ πsλ− cs − µ̂ (s) ds + w (s)) Jx (t, x)

+ 1
2π

2
sσ

2Jxx (t, x) .

Taking conditional expectation given Xc,π,d
t and subtracting

V c,π,d
t = Et

[∫ T

t
f
(
s, cs, ds +Xc,π,d

s , V c,π,d
s

)
ds+ u

(
Xc,π,d
T

)]
,

we get

J
(
t,Xc,π,d

t

)
− V c,π,d

t

= −Et

[∫ T

t

{
Lc,π,ds [J ]

(
s,Xc,π,d

s

)
+ f

(
s, cs, ds +Xc,π,d

s , V c,π,d
s

)}
ds
]
.
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The Hamilton-Jacobi-Bellman equation in Equation (4.9) implies that

Lc,π,ds [J ]
(
s,Xc,π,d

s

)
+ f

(
s, cs, ds +Xc,π,d

s , V c,π,d
s

)
= Lc,π,ds [J ]

(
s,Xc,π,d

s

)
+ f

(
s, cs, ds +Xc,π,d

s , J
(
t,Xc,π,d

s

))
+ f

(
s, cs, ds +Xc,π,d

s , V c,π,d
s

)
− f

(
s, cs, ds +Xc,π,d

s , J
(
t,Xc,π,d

s

))
≥ f

(
s, cs, ds +Xc,π,d

s , V c,π,d
s

)
− f

(
s, cs, ds +Xc,π,d

s , J
(
t,Xc,π,d

s

))
,

and, hence, the regularity condition in Equation (4.8) ensures that

Lc,π,ds [J ]
(
s,Xc,π,d

s

)
+ f

(
s, cs, ds +Xc,π,d

s , V c,π,d
s

)
≤ k

(
V c,π,d
s − J

(
s,Xc,π,d

s

))
on

{
V c,π,d
s ≥ J

(
s,Xc,π,d

s

)}
.

Altogether, the process {Yt}t∈[0,T ] =
{
J
(
t,Xc,π,d

t

)
− V c,π,d

t

}
t∈[0,T ]

can be
written as

Yt = Et

[∫ T

t
Hs ds

]
with Ht ≥ kYt on {Yt ≤ 0} .

Now, applying Theorem A.2 in Kraft et al. (2013), we get that J
(
t,Xc,π,d

t

)
−

V c,π,d
t ≥ 0 for all t ∈ [0, T ]. In particular, we have J (0, x0) = J

(
0, Xc,π,d

0

)
≥

V c,π,d
0 . Since (c, π, d) ∈ A (x0) is arbitrary, we obtain

J (0, x0) ≥ max
(c,π,d)∈A(x0)

V c,π,d
0 .

Conversely, under the assumptions of Theorem 4.1, there exists a control
(c∗, π∗, d∗) such that

Lc
∗,π∗,d∗
s [J ]
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s,Xc∗,π∗,d∗

s

)
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∗
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s , J
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.

Hence, the previous argument applies to both processes{
J
(
t,Xc∗,π∗,d∗

t

)
− V c∗,π∗,d∗

t

}
t∈[0,T ]

and
{
V c∗,π∗,d∗

t − J
(
t,Xc∗,π∗,d∗

t

)}
t∈[0,T ]

.

As a consequence, we obtain J (0, x0) = V c∗,π∗,d∗

0 . All in all, J is the value
function of the problem in Equation (4.7), and (c∗, π∗, d∗) is the optimal con-
trol.
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A.2 Post-Submission Changes to Chapter 7

A.2.1 Expansion of Paragraph in the Introduction

The 10-line paragraph starting with

“Prognoses from the policyholder’s perspective are widely used...”

from the introduction to Chapter 7 is expanded as follows:

Prognoses from the policyholder’s perspective are widely used in the life
insurance and pension industry, but the topic is hardly covered in the existing
literature. In Norberg (2001), the author treats prognoses in participating life
insurance, but the model is only tractable for a very simple financial envi-
ronment and does not apply to unit-linked insurance. To the knowledge of
the author, this present paper is one of the first papers to address risk-based
prognoses from the policyholder’s prospective in participating life and unit-
linked insurance in a general financial market and with general insurance risk.
By risk-based prognoses, we mean prognoses that illustrate financial riskiness
by going beyond best-estimate expectations about future returns. Some life
insurance and pension companies illustrate financial riskiness by supplying
the policyholder with a prognosis based on a couple of deterministic scenar-
ios, e.g. a low, medium, and high interest rate scenario (in participating life
insurance) or a low, medium, and high stock return scenario (in unit-linked
insurance). A related strand of literature focuses on the analysis of poli-
cyholder payoff distributions under the physical measure. Bohnert (2015)
provides a thorough overview of the literature on the performance of pension
savings schemes from the policyholder’s perspective. For the case of Denmark,
Bohnert (2015) mentions the papers by Guillén et al. (2013a), Guillén et al.
(2013b), and Jørgensen and Linnemann (2012). Guillén et al. (2013a) inves-
tigate the performance of participating life insurance schemes for policies con-
taining a guaranteed minimum rate of return whereas Guillén et al. (2013b)
investigate the performance of life-cycle products. Jørgensen and Linnemann
(2012) compare three different pension savings products: a traditional partic-
ipating life insurance scheme, a market-based unit-linked insurance scheme,
and a formula based smoothed investment-linked annuity scheme. Compared
to the performance literature, this present paper focuses more on the calcula-
tion engine behind prognoses and less on the outcome of prognoses in terms
of performance measurement. The paper adds to the existing literature and
to the industry practice by formally describing how the policyholder’s account
evolve and by formalizing how the bonus schemes “consolidation” and “addi-
tional benefits” work and interact for a single participating life insurance policy
and how guarantees are reflected in the payments of a single unit-linked insur-
ance policy. Furthermore, this paper includes insurance risk which is typically
not considered in the performance literature.
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A.2.2 Revision of How to Derive Bonus Sample Paths

The revised recapitulation of how to derive bonus sample paths in Subsec-
tion 7.4.8 of Chapter 7 replaces the paragraph starting with

“1. We assume a deterministic short interest rate r = 0.04.”

and ending with

“The fair guarantee fee fraction amounts to θ3 = 0.31.”

The revision is as follows:

1. In Jensen and Schomacker (2015), we project on portfolio level by adding
and subtracting expected premiums and benefits. Hence, all the quanti-
ties in this recapitulation constitute market expectations across states of
the policy (“portfolio averages”) rather than state-wise quantities. We
denote by X̃ the assets of the policy, including its share of the collective
bonus potential, and by Ṽ and Ṽ ∗ the market and technical reserve of
the policy (projected on portfolio level).

2. We assume a deterministic short interest rate r = 0.04. The assets of
the policy are invested in a simple Black-Scholes stock with drift 0.07
and volatility 0.2 under the physical measure P . The excess return gives
rise to a collective bonus potential K which is defined as the maximum
of zero and assets less guaranteed liabilities, i.e.

K (t) =
(
X̃ (t)− L (t)

)+
.

Here, the guaranteed liabilities L is the maximum of the market reserve
Ṽ and the technical reserve Ṽ ∗ for the guaranteed payments, i.e.

L (t) = max
{
Ṽ (t) , Ṽ ∗ (t)

}
.

For details, see Jensen and Schomacker (2015).

3. The assets and reserves X̃, Ṽ ∗, and Ṽ are simulated using standard
Monte Carlo methods. For each sample path, the interest rate bonus d
is determined as a fraction θ1 of the excess collective bonus potential K
over a threshold K̄, i.e.

d (t) = θ1
(
K (t−)− K̄ (t−)

)+
.

The threshold K̄ can be seen as a preferred minimum collective bonus
potential and is given by

K̄ (t) = θ2L (t) .
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4. We fix θ1 = 0.2 and θ2 = 0.1. In exchange for the right to bonus, the
policyholder pays a guarantee fee which is subtracted from the assets.
The guarantee fee is a fraction θ3 of the positive part of the returns on
the assets, and it is determined such that the policy is financially fair.
By financially fair, we mean that the equivalence principle is satisfied
for the total payments under the pricing measure, i.e.

EQ
[∫ T

0
e−rs d

(
B(ε(s)) − C

)
(s)
]

= x0 .

The fair guarantee fee fraction amounts to θ3 = 0.31.

5. The interest rate bonus d is converted to an excess interest rate δ via
the formula

δ (t) = d (t)
Ṽ ∗ (t− 1)

.
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