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Abstract
The overarching themes of this thesis are the algebraic structure of Hochschild
complexes and free loop spaces. It is a presentation of three projects in
progress, followed by two papers.

In the first project, which is based on work of Kontsevich–Soibelman and
Wahl–Westerland, we define a three-coloured differential graded operad T
using graph complexes, and sketch how it acts on (C∗(A,A), C∗(A,A), A),
the triple of Hochschild (co)chains of an A∞-algebra A.

The Hochschild cochains C∗(A,A) are not functorial in the algebra A.
In the second project we make sense of ‘natural’ operations on C∗(−,−) by
defining a functor from multiplicative PROPs to chain complexes instead.
This functor recovers the usual definition of Hochschild cochains when applied
to endomorphism algebras, and its definition is based on work of McClure
and Smith.

The third project discusses operations on cyclic chains. In particular, for
a given operad that acts on the Hochschild chains on an algebra, we construct
an operad acing on the cyclic chains of that algebra.

In the first paper we fix a gap in the paper “Cyclic homology and equivari-
ant homology” by John D.S. Jones. To achieve this, we use the E∞-structure
of singular cochains to construct a homotopy coherent map between the cyclic
bar construction of the differential graded algebra of cochains on a space and
a model for the cochains on its free loop space.

The second paper proves an O(2)-equivariant version of the Jones iso-
morphism, relating Borel O(2)-equivariant cohomology of free loop spaces to
negative dihedral homology, a variation of cyclic homology. After discussing
a variation of the de Rham isomorphism, we apply the results to calculate
the rational Borel O(2)-equivariant cohomology of the free loop space of the
2-sphere.



Resumé
De overordnede temaer i denne afhandling er den algebraiske struktur af
Hochschild komplekser og frie løkke rum. Afhandlingen er en præsentation
af tre igangværende projekter, efterfulgt af to artikler.

I det første projekt, som er baseret på arbejde af Kontsevich–Soibelman
og Wahl–Westerland, definerer vi en tre-farvet d.g. operad T ved brug af
graf komplekser, og skitserer hvordan den virker på (C∗(A,A), C∗(A,A), A),
triplet af Hochschild (co)kæder af en A∞-algebra A.

Hochschild cokæderne C∗(A,A) er ikke funktoriale i algebraen A. I det
andet projekt giver vi mening til ‘naturlige’ operationer på C∗(−,−), ved at
definere en funktor fra multiplikative PROPer til kædekomplekser. Denne
funktor genopretter den sædvanlige definition af Hochschild cokæder, når
den anvendes til endomorfi algebraer, og definitionen er baseret på arbejde af
McClure og Smith.

Det tredje projekt diskuterer operationer på cykliske kæder. Særligt
konstruerer vi for en given operad der virker på Hochschild kæderne af en
algebra, en operad der virker på de cykliske kæder af denne algebra.

I den første artikel fikser vi et hul i artiklen “Cyclic homology and equivari-
ant homology” af John D.S. Jones. For at gøre det bruger vi E∞-strukturen
af singulære cokæderne, til at konstruere en homotopi sammenhængende
afbildning mellem den cykliske barkonstruktion af d.g. algebraen af singulære
cokæder, og en model for cokæderne på det frie løkke rum.

Den anden artikel beviser en O(2)-ækvivariant version af Jones isomorfi,
som knytter Borel O(2)-ækvivariant cohomologi af frie løkke rum til negativ
dihedral homologi, en variation af cyklisk homologi. Efter at have diskuteret
en variation af de Rham isomorfien anvender vi resultaterne til at beregne
den rationelle Borel O(2)-ækvivariante cohomologi af det frie løkke rum af
2-sfæren.
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CHAPTER 1

Introduction

The two main objects of study in this thesis are Hochschild homology
and free loop spaces. We are in particular concerned with operations on
Hochschild complexes and how these operations relate to free loop spaces and
other areas. In this introduction we give a general motivation and introduce
the main topics studied in this thesis.

1.1. Hochschild homology

Hochschild homology, and its variations like cyclic homology, topological
Hochschild homology and factorization homology, have become a common face
in topology and its neighbouring fields. As a homology theory for associative
algebras, it can play different roles, for example:

• Deformation complexes of associative algebras
• Differential forms in non-commutative geometry
• Algebraic models for free loop spaces in string topology
• Approximation to K-theory via Chern characters and trace maps

A common theme amongst these different roles is the consideration of the
operations on the complexes involved. Often, these operations are appropri-
ately packaged into operads or PROPs, which nowadays are standard players
in the landscape of algebraic topology and other fields. Examples of such
operations include:

Deligne conjecture: How do the cup product and Lie algebra struc-
ture of Hochschild cohomology lift to the chain level? Or more
precisely, is there a homotopy action of the chains of the little disks
on the Hochschild cochains of associative algebras? Many proofs are
now known of this fact, and the study of variations and extensions
of the Deligne conjecture remains an active area. See [GJ94; Tam03;
KS00; MS02; DTT11].

Non-commutative calculus: The calculus of differential forms and
multivector fields can be formulated entirely in terms of the algebra
of smooth functions C∞(X). In fact, this can be done in such a way
that C∞(X) may be replaced by any non-commutative algebra A,

1



2 1. INTRODUCTION

where the Hochschild chains C∗(A) and cochains C∗(A) of A play
the roles of differential forms and multivector fields respectively.

Algebraic string topology: Ever since the seminal paper by Chas
and Sullivan [CS99] appeared, many have been actively looking
for operations on the (co)homology H∗(LX) of free loop spaces of
manifolds. Using the Jones isomorphism as an algebraic model for
the cohomology of free loop spaces, one can produce operations in
string topology. See [WW16; TZ06; Wah14; KS09; KP06].

In [TT00], Tamarkin and Tsygan proved that the pair of Hochschild cochains
and chains1 (C∗(A), C∗(A)) of an associative differential graded algebra A
carries the structure of a ‘calculus up to homotopy’, mimicking the algebraic
structure of multivector fields and differential forms. In [KS09], Kontsevich
and Soibelman described, for A an A∞-algebra, the corresponding coloured
operad in terms of graph complexes, and relate this to a generalization of
the Deligne conjecture. Examples of operations in these complexes are:

• Connes’ B operator B : C∗(A)→ C∗+1(A), the analogue of the de
Rham differential.
• The cup product C∗(A)⊗ C∗(A)→ C∗(A), which is the analogue
of the product of multivector fields.
• The Lie bracket C∗(A) ⊗ C∗(A) → C∗−1(A), which models the
bracket of multivector fields.
• The cap product C∗(A)⊗C∗(A)→ C∗(A), which is like the insertion
of a multivector field into a differential form.
• A map C∗(A)→ C∗(A), which factors through the map C∗(A)→ A,
a projection of the multivector fields onto the functions.

If one also allows to mix in factors of the algebra A, then there are more
operations available. For example, in [WW16] there is the ‘annulus complex’,
which acts on the pair (C∗(A), A). In homology, Ann is generated by the
product structure on A, the B operator and the map A→ C∗(A) that models
the inclusion of smooth functions into the differential forms. Additionally,
there exist operations of the form C∗(A)⊗p⊗A⊗q → C∗(A), which are studied
in [DTT11].

These known operations are summarized in Figure 1.1 and are discussed
further in Chapter 3.

1In this thesis, we use coefficients C∗(A) = C∗(A,A) and C∗(A) = C∗(A,A).
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Figure 1.1. Summary of operations on Hochschild complexes
of A∞-algebras. See Chapter 3 for more details.

In this thesis, we present work in progress that aims to ‘fill in’ this
triangle by constructing a three-coloured operad that acts on the triple
(C∗(A), C∗(A), A), and that includes all operations of the diagram. We use
complexes of black and white graphs similar to those in [KS09] and [WW16].

When studying operations, a sensible question to ask is whether the op-
erations under consideration are natural. For a complex like the Hochschild
chains C∗(A), this question has a clear answer because the complex is func-
torial in the algebra A. But when it comes to Hochschild cochains there is
no functoriality in algebra morphisms that are not isomorphisms. All the
operations on the cochains that have been discussed so far can be defined for
every algebra, and are defined ‘in the same way’ for every isomorphism class
of algebras.

Several possible angles of attack have been given over time and we discuss
them in Chapter 4. In particular, we use the work of [MS04] to introduce a
new way of thinking about the problem by defining a sense in which C∗(−)

is a functor. This has the added benefit that it produces a way of answering
a more general question:

Question. What are the operations on Hochschild cochains that are
natural in a given class of algebras?

In the different roles Hochschild homology plays there is usually also a
place for cyclic homology, meaning that one might also be interested in the
operations on cyclic chains. An example of such an operation is the shuffle
product CC∗(A) ⊗ CC∗(A) → CC∗(A) if A is commutative. This product
is also defined for Hochschild chains, and the version on cyclic chains is in
fact built out of this one. A similar pattern happens in equivariant string
topology, where non-equivariant operations, like the string product, induce
operations on the S1 = SO(2)-equivariant homology. Such equivariant string
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operations are related to cyclic homology by the Jones isomorphism, which
we discuss in the next section.

This analogy leads to a general question, which we discuss in Chapter 5
in more detail.

Question. Given operations on Hochschild chains, can one produce
operations on cyclic chains?

1.2. Free loop spaces

Free loop spaces LX = Map(S1, X) have played a big role in geometry
and physics. For example, when X = G is a Lie group, LG forms an infinite
dimensional Lie group whose subgroups are the much studied loop groups.
In string theory, loops (closed strings) form the fundamental object of study,
together with the surfaces they sweep out in space. In attempting to formulate
a ‘Theory of Everything’, string theory has sparked many interesting pieces
of mathematics not the least of which is Kontsevich’s homological mirror
symmetry. Loop spaces are also used in the study of geodesics through the
use of the energy functional. This last fact is a major part of the motivation
of Paper B and we discuss this further in the introduction of that paper.

A widely used tool for studying the cohomology of LX is the set of ideas
flowing from Adams’ paper on the cobar construction [Ada56]. Amongst
others [Goo85; BF86], the most popular such tool in string topology is the
Jones isomorphism.

Theorem ([Jon87]). Let k be a field and X a simply connected space
with finite type homology over k. Then there is an isomorphism

H∗(LX;k) ∼= HH∗(S∗(X;k)).

Here S∗(X; k) is the differential graded algebra of (normalized) singular
cochains with the cup product.

This theorem is a way of taking the free loop space, a big and usually
complicated space, and study it algebraically using Hochschild homology.
The isomorphism is proven in the following way.

• Using a simplicial model S1
• for the circle, the free loop space can

be modelled by the mapping space Map(S1
• , X) = X×(•+1), which

forms a cosimplicial space and totalizes to LX.
• To compute the cohomology of the free loop space using this cosim-
plicial space, we use a map

Tot⊕ S∗(Map(S1
• , X))→ S∗(tot Map(S1

• , X)) ∼= S∗(LX).
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This map is a quasi isomorphism under the appropriate assumptions.
• The source of the map above is the totalization of a simplicial
chain complex that is very similar to the cyclic bar complex used
to define Hochschild chains of S∗(X): In simplicial degree n it is
the chain complex S∗(X×(n+1)), compared to S∗(X)⊗(n+1) for the
cyclic bar complex. Jones compares the two simplicial objects using
the Alexander–Whitney map

S∗(X)⊗ S∗(X)→ S∗(X ×X).

• Under some assumptions, the map above is a quasi isomorphism, and
a spectral sequence argument shows that the comparison of simplicial
chain complexes induces a quasi isomorphism on the totalizations,
concluding the proof.

Upon careful inspection however, the Alexander–Whitney map does not
commute with the structure maps. For example, if the structure map d1 in
simplicial degree one would commute with the Alexander–Whitney map, this
would imply that the cup product on S∗(X) is commutative, which is certainly
not the case in general. Fortunately, the cup product is commutative up to
homotopy, or more precisely: S∗(X) is an E∞-algebra. In Paper B we use
this E∞ to construct a so-called ‘homotopy coherent natural transformation’
between the two simplicial chain complexes. This turns out to be enough to
imply that the two objects are connected by a zig-zag of quasi isomorphisms,
fixing the gap in the original proof.

The orthogonal group O ⊂ Homeo(S1) acts on LX by rotating and
flipping the loops. In addition to the isomorphism discussed earlier, Jones
proved that there is an isomorphism

H∗(LXhT;k) ∼= HC−∗ (S∗(X; k)).

Here, the left hand side is the Borel equivariant homology with respect to
the circle group SO(2) = T ⊂ O and the right hand side is a variant of
cyclic homology called negative cyclic homology. This raises the question of
what needs to replace the right hand side if one wants to use more of the
symmetry and calculate H∗(LXhO; k) instead. This question is the topic of
Paper B and the answer is a tool called negative dihedral homology HD−∗ ,
which originally showed up in [Lod87] in the study of Lie algebra homology
of orthogonal matrices.



6 1. INTRODUCTION

1.3. Contents of the thesis

We now give a more detailed description of the main results of each
chapter in this thesis.

After discussing some preliminary material in Chapter 2, there are three
chapters that present work in progress on some of the topics laid out in this
introduction, followed by two papers. We discuss some perspectives and ideas
for further research on the topics of this thesis in Chapter 6.

In Chapter 3, we use black and white graphs to construct a three-coloured
differential graded operad T . We also sketch how the triple (C∗(A), C∗(A), A)

is an algebra over T and identify familiar examples.
Chapter 4 proposes an approach to the problem that the Hochschild

cochains do not form a functor C∗ : Alg → Ch. In order to still talk about
‘natural’ operations on C∗(A), we change perspective and instead define
functors using categories of ‘multiplicative PROPs’

C∗, C∗ : mPROP→ Ch.

These functors recover the usual definitions of Hochschild chains and cochains
when applied to endomorphism algebras. The advantage of defining these
functors is that it immediately leads to definitions of PROPs of natural
operations on the pair (C∗(A), C∗(A)).

In Chapter 5, we provide two recipes for constructing operations on
cyclic chains from operations on Hochschild chains. The first recipe uses
maps CC∗(A)→ C∗(A) and C∗(A)→ CC∗+1(A), and the second uses linear
extension. In particular, the second recipe leads to the following theorem,
which is a reformulation of Proposition 5.2.5 and Theorem 5.2.6.

Theorem. Given a differential graded operad D that acts on C∗(A)

and comes with a compatible map T→ D, then there exists an operad D[u]

that acts on CC∗(A), CC−∗ (A) and CCper∗ (A) and in arity n is given by
D[u](n) = D(n)[u] as a graded module.

In Paper A, titled ‘Free loop space and the cyclic bar construction’, we
fix a gap in the proof of Jones’ isomorphism H∗(LX;k) ∼= HH∗(S∗(X;k)).
In particular we prove the following theorem.

Theorem. Let X be a space with finite type homology over a principal
ideal domain k. There is a natural zigzag of equivalences of cyclic chain
complexes

Bcyc
• S∗(X;k)

'←− QBcyc
• S∗(X;k)

'−→ S∗(Map(S1
• , X);k),

where QBcyc
• S∗(X;k) is a resolution of the cyclic bar construction.
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In Paper B, which is titled ‘Free loop spaces and dihedral homology’, we
prove a variation of Jones’ theorem that takes into account the orthogonal
action rather than only the special orthogonal group.

Theorem. Let k be a field and X a simply connected space with finite
type homology over k. Then there is an isomorphism

H∗(LXhO;k) ∼= HD−∗ (S∗(X;k)).

The right hand side of this isomorphism is a variation on cyclic homology
called negative dihedral homology and requires additional information on the
algebra S∗(X;k). More specifically it requires the data of an involution of
S∗(X). That is, a chain map (−) : S∗(X)→ S∗(X) that satisfies γ1 ∪ γ2 =

(−1)|γ1||γ2|γ2 ∪ γ1 and 1 = 1. Apart from providing such a structure for
S∗(X;k), we also study the behaviour of the involution when considering
other models for the cohomology ring like polynomial forms over Q. In
particular we get the following corollary.

Corollary. Let X be a rationally formal space. Then there is an
isomorphism

HD−∗ (S∗(X;Q)) ∼= HD−∗ (H∗(X;Q)).

This corollary is then applied to the sphere and we compute the coho-
mology H∗((LS2)hT;Q). We also compute HD−∗ (H∗(S2;F2)), although it
remains to prove that this is isomorphic to H∗((LS2)hT;F2). Such an isomor-
phism could in turn help to settle the following open problem, as described
at length in Paper B.

Question. Does the 2-sphere, equipped with an arbitrary Riemannian
metric, admit infinitely many distinct geodesics?





CHAPTER 2

Preliminaries

2.1. Conventions

Let Ch = Chk be the closed symmetric monoidal category of chain
complexes over a commutative ring k. The degree of a homogeneous element
is denoted by |x|. For the tensor product we use the Koszul-sign: The tensor
product of two chain complexes has differential d(x⊗y) = dx⊗y+(−1)|x|x⊗dy
and symmetry morphism x⊗y 7→ (−1)|x||y|(y⊗x). From this, one can deduce
other identities, like (f ⊗ g)(x⊗ y) = (−1)|g||x|f(x)⊗ g(y). The inner hom
Ch(A,B) ∈ Ch has a sign convention that makes the evaluation into a chain
map. The n’th graded piece consists of degree n maps

Chk(X,Y )n =
∏

i∈Z
Homk(Xi, Yi+n),

with differential

(df)(x) = d(f(x))− (−1)|f |f(dx).

Note that df = 0 is exactly the condition for being a chain map.
The Hochschild chains C∗(A) = C∗(A;A) and Hochschild cochains

C∗(A) = C∗(A;A) are always taken with coefficients in the algebra A.

2.2. Ends and coends in chain complexes

We recall the description of an end as an equalizer. In a bicomplete
category D, the end of a bifunctor S : Cop × C→ D, is the equalizer

∫
C S

//
∏

C∈C
S(C,C)

∏
S(1C ,f)

//∏
S(f,1C)

//

∏

f : A→B
S(A,B) .

Dually, the coend of S is the coequalizer

∫ C
S

∐

C∈C
S(C,C)oo

∐

f : A→B
S(B,A)∐

S(1B ,f)

oo

∐
S(f,1A)

oo
.

The end construction may be used to form complexes of natural operations
between any two functors F,G : C→ Chk. Plugging in

Nat(F,G) =

∫

C
Chk(F (−), G(−)),

9



10 2. PRELIMINARIES

the equalizer ends up giving families of maps α ∈ ∏C∈C Chk(F (C), G(C)),
subject to the condition that for all morphisms f : A→ B in C, the diagram

F (A)
αA
//

Ff
��

G(A)

Gf
��

F (B)
αB
// G(B)

commutes. As this is precisely the naturality condition, we are left with a
chain complex of natural families of graded maps of any degree. Note that
only the cycles are always chain maps.

Similarly, given functors F : C→ Chk and G : Cop → Chk, we may take
their tensor product as functors using a coend construction

F ⊗C G =

∫ C
F (−)⊗G(−) =

⊕

A∈C
F (A)⊗G(A)/ ∼ .

Here, one divides out by the relation generated by F (f)(α)⊗β ∼ α⊗G(f)(β),
which is similar to the definition of the tensor product of a left and a right
module.

The Moore complex. We recall how the end and coend constructions
can be used to define the normalized total complexes of simplicial and
cosimplicial chain complexes.

Definition 2.2.1. Let δ•k be the standard cosimplicial chain complex.
That is,

δ•k : ∆
δyon−−−→ sSet N•−−→ Ch≥,

where δyon is the Yoneda embedding and N• is the normalized Moore complex
functor. More concretely, δ•k is generated by the non-degenerate elements,
which are all of the form dik . . . di1ιn. Here ιn ∈ ∆n

n = ∆([n], [n]) is the top
dimensional generator of the standard n-simplex, which is the identity map
on [n]. The codegeneracies are all zero due to the normalization, and the
cofaces are di(dik . . . di1ιn) = dik . . . di1diιn+1.

For a simplicial chain complex X•, the normalization functor from the
Dold–Kan correspondence can be written as a coend N•X = X•⊗∆ δ

•
k ∈ Chk.

This amounts to dividing out by degeneracies in the simplicial direction,
followed by a totalization of a bicomplex. Using the coequalizer description
of coends, we take a homogeneous element x⊗ dik . . . di1ιp in the image of
the p’th piece of

⊕
p(Xp ⊗ δpk). This element has (total) degree q + p − k,
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where q is the degree of x ∈ Xp. We can now calculate the differential to be

d(x⊗ dik . . . di1ιp) = dx⊗ dik . . . di1ιp + (−1)qx⊗
∑

(−1)idi(dik . . . di1ιp)

= dx⊗ dik . . . di1ιp + (−1)q
∑

(−1)idix⊗ dik . . . di1ιp
= dinternal + (−1)qdsimplicial

We may view the conormalization (as in the dual Dold–Kan corre-
spondence) of a cosimplicial chain complex X• as the end construction
N•X = Nat∆(δ•k, X

•) ∈ Ch. An element {φn} ∈ N•X ⊂ ∏n Ch(δnk , X
n) is

completely determined by what it does on the ιn, and these choices are all
independent. This is because φ(diιn) = φ(diιn−1) = diφ(ιn−1). Note that
the φ is zero on codegenerate elements for the same reason. If we simply
identify φn with the image φn(ιn) ∈ Xn

p, we see that the degree is p − n.
The differential comes from the inner hom complex.

(dφn)(x) = d(φnx)− (−1)p−nφn(dx)

= d(φnx)− (−1)p−n
∑

(−1)idi(φnx)

= dinternal − (−1)p−ndcosimplicial

2.3. Operads and PROPs

This section recalls the notions and some basic examples of operads and
PROPs, which are used throughout this thesis as a bookkeeping tool for
spaces of operations and to characterize classes of algebras.

Operads. Although PROPs appeared in the literature first, operads are
more widely known in algebraic topology and its neighbouring fields. The
notion originates from work of May, and Boardman and Vogt on iterated
(based) loop spaces in the 70’s, but has since also flourished in many other
areas like non-commutative geometry and computer science.

Definition 2.3.1. A (symmetric) operad P in a closed symmetric
monoidal category (M,⊗, 1M) consists of the following data.

• A sequence of objects P(n) ∈ Ob M for each n = 0, 1, 2, . . . that
represent spaces of operations.
• Right actions of the symmetric groups P(n) x Σn representing
permutations of the inputs.
• The unit map 1M → P(1) representing the identity operation.
• A map ◦i : P(m)⊗ P(n)→ P(m+ n− 1) for each m,n and i ≤ m.
These map are known as the partial composition maps and represent
piping the output of the operation in P(n) into the i’th slot of the
operation in P(m).
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The maps are assumed to satisfy associativity, unitality and equivariance
axioms. See Figure 2.1. This definition is also known as the ‘partial’ definition,
referring to the fact that one only specifies insertion/composition in one input
at a time. A morphism of operads in M is a collection of maps between the
spaces of operations that preserve all the structure maps. For more details
on the theory of operads, see for example [Fre16; Mar08].

=
◦2

◦3

◦4

◦3

Figure 2.1. Associativity of partial composition

Example 2.3.2. The prototypical example of an operad is the endomor-
phism operad End(V ) associated to an object V ∈ Ob M. This operad is
given by End(V )(n) = M(V ⊗n, V ), where M denotes the inner hom of M.
The symmetric groups act by permutations of the input factors V ⊗n, and
the unit is given by the identity on V . The partial compositions are given by
the compositions of maps.

Definition 2.3.3. An algebra V over an operad P is an object V ∈ Ob M
and map of operads P → End(V ). Equivalently, it is a sequence of maps

P(n)⊗ V ⊗n → V,

satisfying associativity, unitality and equivariance axioms.

Example 2.3.4. The commutative and associative operads are given as
Com(n) = 1M and Ass(n) =

∐
Σn

1M for n ≥ 1 respectively. Algebras over
these operads are the commutative and the associative monoids in M. The
operad describing unital associative monoids is denoted uAss.

Things get more interesting when the category M is also equipped with
homotopy theoretic information, for example when M = Top or Ch. In that
case, one can often study the homotopy theory of such operads, which in
particular encompasses the study of ‘algebras up to homotopy’, see e.g [BM03;
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Val14]. In this thesis we do not need the homotopy theory of operads except
briefly in Paper B. What we do use, however, is the notion of A∞-algebra,
which is the ‘algebra up to homotopy’ for Ass. We discuss the corresponding
operad in Definition 2.5.3.

Coloured Operads. There are many variations on the notion of operad.
Most of these variations can be modelled on graphs that are more general
than the planar trees that operads are modelled on. The main variation we
use is that of coloured operads, which are modelled on trees with coloured
leaves.

Definition 2.3.5. A coloured operad is the data of a set of colours C,
and objects P(c1, . . . , cn; c) ∈ Ob M for all combinations of colours c, ci ∈ C.
These spaces are then equipped with units, actions and composition maps
when the inputs and outputs match up appropriately.

Example 2.3.6. An algebra over a C-coloured operad P consists of
objects Vc, one for each c ∈ C and a map of C-coloured operads P → End(V ).
Here End(V )(c1, . . . , cn; c) = M(Vc1⊗. . .⊗Vcn , Vc) is a coloured generalization
of the endomorphism operad.

Example 2.3.7. An example of a two-coloured topological operad is the
Swiss cheese operad of Voronov [Vor99], which mixes the little intervals and
the little disks operads.

PROPs. For some classes of algebras, like Hopf algebras, the notion
of operad is too restrictive as it does not allow for operations of the form
V → V ⊗ V . One way to handle such algebras is to use PROPs instead,
which in fact appeared in the literature earlier than operads did. A coloured
version also exists and is studied for example in [HR15].

Definition 2.3.8. A PROP P in M is a symmetric monoidal category
P , enriched over M, with objects the natural numbers (N,+, 0). A PROP is
determined by the following data.

• Spaces of operations P(m,n) ∈ Ob M.
• Actions Σn y P(m,n) x Σm

• A unit 1M → P(1, 1)

• Horizontal and vertical composition maps.

◦h : P(m1, n1)⊗ P(m2, n2)→ P(m1 +m2, n1 +m2)

◦v : P(m,n)⊗ P(n, l)→ P(m, l)

The map ◦h corresponds to taking a tensor product of operations
and ◦v composes operations of matching arities.
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Example 2.3.9. Apart from the endomorphism PROP, which is defined
by End(V )(m,n) = M(V ⊗m, V ⊗n), another interesting example is Cob, which
has Cob(m,n) the set of equivalence classes of cobordisms from m to n circles.

Remark 2.3.10. Associated to a PROP P, there is an operad given by
restricting attention to the spaces P(n, 1). Similarly, every operad induces a
PROP with morphism spaces

P(m,n) =
⊕

m1+...+mn=m

(P(m1)⊗ . . .⊗ P(mn))⊗Σm1×...×Σmn Σm.

2.4. Hochschild and cyclic homology

This section recalls some of the basics of Hochschild and cyclic homology.
The presentation is based on the canonical reference [Lod98]. Every definition
implicitly assumes a base ring k. In particular, all tensor products are over k.

Hochschild chains. Many define the Hochschild homology of a k-
algebra A to be HH∗(A) = TorA⊗A

op

∗ (A,A). When A is flat, a useful
chain complex to compute these Tor-groups is the following.

Definition 2.4.1. Given a unital differential graded algebra (A, dA), the
cyclic bar construction Bcyc

• A is the simplicial (cyclic) chain complex that on
level n ∈ Ob ∆ is the chain complex Bcyc

n A = A ⊗ A⊗n with the following
structure maps.

di<n(a) = a0 ⊗ · · · ⊗ aiai+1 ⊗ . . . an
dn(a) = (−1)|an|(|a0|+···+|an−1|)ana0 ⊗ a1 ⊗ · · · ⊗ an−1

si(a) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an
tn(a) = (−1)|an|(|a0|+···+|an−1|)an ⊗ a0 ⊗ · · · ⊗ an−1

The Hochschild chains are defined as the totalization of the simplicial object.
In other words, C∗(A) =

⊕
nA
⊗n+1[n] with differential dA+(−1)int∑

i(−1)idi.
Here “int” means the internal degree in A. See also Definition 2.2.1 or [Lod98,
§5.3].

In this thesis, we do not concern ourselves with flatness issues and always
write C∗(A) to mean the totalization of the cyclic bar complex. We also
do not use coefficients, so HH∗(A) and C∗(A) always mean HH∗(A;A) and
C∗(A;A).

Remark 2.4.2. Note that the definition above uses only half of the struc-
ture maps. The degeneracies si are used to form the normalized Hochschild
complex by taking the Moore complex of Bcyc

• A instead. The normalized
chains are canonically quasi isomorphic to the regular chains. We use the
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normalized chains by default, as it makes the definitions of the B operator
and cyclic homology simpler. See also Definition 2.2.1 and [Lod98, §1.1.14]

Example 2.4.3. Let G be a discrete group. Then the Hochschild homol-
ogy of its group algebra is HH∗(kG) ∼= H∗(G;kG), where the right hand side
is the group homology of G and kG is a right G-module using conjugation.
See Exercise 1.1.4 in [Lod98].

Example 2.4.4 (Morita Invariance). Let A be any algebra. Then there
is an isomorphism HH∗(Mn(A)) ∼= HH∗(A), where Mn(A) is the matrix
algebra associated to A. See [Lod98, §1.2].

Example 2.4.5. Let A = T (V ) be a tensor algebra on a free k-module
V . Then the Hochschild homology is concentrated in degrees 0 and 1, and is
given by

HH0(A) ∼=
⊕

m≥0

(V ⊗m)τ coinvariants

HH1(A) ∼=
⊕

m≥0

(V ⊗m)τ invariants,

where τ : V ⊗m → V ⊗m is a generator of cyclic permutations. This is Theorem
3.1.4 in [Lod98].

Example 2.4.6. Two algebras of particular interest in this thesis are
the cochains dga S∗(X), and the chains on based loop space S∗(ΩMooreX).
Under appropriate assumptions these two algebras have Hochschild homology
HH∗(S∗(X)) ∼= H−∗(LX) andHH∗(S∗(ΩMooreX)) ∼= H−∗(LX) respectively.
These isomorphisms are the topic of Paper B.

Cyclic chains. In order to define cyclic homology, we first define the
Connes B operator on the Hochschild chains. See also Chapter 2 of [Lod98]
and Section 4 of Paper B.

Definition 2.4.7. On the elements of simplicial degree n, define

Tn = (−1)ntn The cyclic generator

Nn = id + T + T 2 + . . . Tn The norm operator

Bn = (−1)int(1− T )tn+1snN The Connes B operator.

We usually suppress the n in Bn. The B operator satisfies B2 = 0 and
anti-commutes with the differential, making B a chain map of degree one in
our conventions. Concretely, the operator takes the following form on the
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normalized chains

B(a0 ⊗ . . . an) =

n∑

i=0

(−1)εi1⊗ an−i+1 ⊗ . . .⊗ an ⊗ a0 ⊗ . . .⊗ an−i,

where the sign is given by

εi = ni+ (1 + |a0|+ . . .+ |an−i|)(1 + |an−i+1|+ . . .+ |an|).

With the B operator in place, we are ready to define the three variants
of cyclic homology.

Definition 2.4.8. Let u denote a formal variable of degree −2. We
define the negative, ordinary and periodic cyclic chains of A respectively as

CC−∗ (A) = C∗(A)[[u]]

CC∗(A) = C∗(A)[u−1]

CCper∗ (A) = C∗(A)[u−1][[u]].

All three variants have the differential d+ uB where d is the differential of
C∗(A).

It is important to keep in mind the differences between the ways the
three variants are totalized. For example, when totalized incorrectly, CCper

is always acyclic. See also [Lod98, §5.1.2].
There are several other, mostly equivalent, definitions of cyclic homology.

In particular, when Q ⊂ k, some define the cyclic chains using the coinvariants
of Cn+1 y A⊗n+1. Another popular definition uses resolutions of all the
different Cn+1 when Q * k. From this definition it is then more clear
that HC∗(A) ∼= Tor∆C

∗ (k†, Bcyc
• A), where ∆C is the cyclic category, an

enlargement of ∆, and k† is the constant functor. All these variations are
discussed and compared in [Lod98].

Hochschild cochains. A not quite dual version of the Hochschild
chains is the Hochschild cochains. Analogously to how one might define
HH∗(A) = TorA⊗A

op

∗ (A,A), Hochschild cohomology is commonly defined as
HH∗(A) = Ext∗A⊗Aop(A,A). The analogue of the cyclic bar construction is
the cosimplicial chain complex that on level n is given by Ch(A⊗n, A), and
has the following structure maps.

δ0(γ)(a1, . . . , an) = (−1)|a1||γ|a1γ(a2, . . . , an)

δi(γ)(a1, . . . , an) = γ(a1, . . . , aiai+1, . . . , an)

δn(γ)(a1, . . . , an) = γ(a1, . . . , an−1)an

σi(γ)(a1, . . . , an) = γ(a1, . . . , ai−1, 1, ai, . . . , an)
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Here γ ∈ Ch|γ|(A⊗n−1, A). The Hochschild cochains C∗(A) are defined as
the (product) totalization of this cosimplicial object. See Definition 2.2.1 and
[Lod98, §1.5].

Remark 2.4.9. Note that this construction is not functorial in A. This
problem is discussed at length in Chapter 4.

2.5. Graph complexes

A graph complex is a chain complex that is generated by certain graphs,
and where the differential can be described concretely in terms of the graphs.
Usually this is in the form of blowing up vertices or collapsing edges. Fat
graphs were used by Penner, Kontsevich, Igusa, Godin and others to model
spaces of surfaces with decorations. See Chapter 1 of [Ega14] for an overview.

In this section we recall the definitions of the complexes of black and
white graphs that are needed for later chapters. These graphs were used as a
model for moduli spaces of open/closed cobordisms by Costello in [Cos07a;
Cos07b] and later by Wahl and Westerland in [WW16]. Our presentation
closely follows that in [WW16] and [Kla13a].

Graphs are modelled as quadruples (V,H, s, i), where V and H are the
sets of vertices and half edges respectively. The source map s : H → V

encodes the vertex to which a half edge is attached and i : H → H encodes
what other half edge a given half edge is attached to, and is required to satisfy
i2 = i. If a half edge h ∈ H satisfies i(h) = h we call it a leaf, otherwise we
call the unordered pair (h, i(h)) and edge. Note that this allows for vertices
of all valences. We also explicitly allow for the empty graph and a single leaf.
See also [WW16, §2.1].

Roughly speaking, a fat graph is a graph plus extra information that
allows one to thicken the edge to strips and obtain a surface with boundary.
More precisely, it is a graph plus a cyclic ordering of all the half edges at
each vertex. See Figure 2.2.

Figure 2.2. A thickened fat graph
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(a) The [n1]-graph ln
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(b) A [50]-graph
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(c) A [22]-graph

Figure 2.3. Examples of [ pm]-graphs

An additional piece of data we need in order to define the black and white
graphs is an orientation on a graph, which is a unit vector in det(R(V tH)).
Such orientations are written as expressions like v1 ∧ h1

1 ∧ h2
2 ∧ . . . ∧ vn. Note

that odd-valent fat graphs have canonical orientations. See also [WW16,
§2.2].

Definition 2.5.1. A black and white graph is a an oriented fat graph plus
a labelling of the vertices as either black or white. Black vertices are required
to have valence three or higher, and white vertices can have any non-zero
valence. The white vertices are ordered and come with a distinguished half
edge called the start half edge, which we thicken in drawings.

Definition 2.5.2. A [ pm]-graph is a black and white graph with p white
vertices and m labelled leaves. There may be additional unlabelled leaves if
they are the start half edge of a white vertex. This later corresponds to how
the unit behaves with respect to the A∞-structure and normalized Hochschild
(co)chains. For examples of [ pm]-graphs, see Figure 2.3.

In order to make the [ pm]-graphs into a chain complex, we discuss the
degree, edge collapse and blowup operations on graphs and construct the
differential.

Let G be a [ pm]-graph. Its degree is given by summing over the vertices,
counting black vertices as |v| − 3 and white vertices as |v| − 1, where |v|
denotes the valence of a vertex. In other words, every half edge contributes
with a degree of one and each vertex as −3 or −1. Because all of the vertices
have valence at least one and three, the degree always ends up non-negative.

The differential of G is defined as a blowup, or more precisely as

d(G) =
∑

(G̃,e)

bG̃c,

where the sum ranges over graphs G̃ and edges e ∈ G̃ such that if you collapse
e in G̃, you get G. The b−c is an operation that ensures that unlabelled
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leaves are handled correctly. For examples, see Figures 2.4 and 2.5. For a
more precise definition, see [WW16, §2.4].

1
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1 2

3
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1 32

7→ ± ± ± ±

Figure 2.4. The differential of l3 ∈ [31] - Graphs
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5

1 2 3 4

5

1 2 3 4

5

7→ ± ±

Figure 2.5. Example of a differential in A∞(4) ⊂ [50] - Graphs

The operad A∞. Just as in [WW16], we define the differential graded
operad A∞ using graph complexes, as this suits our needs in Chapter 3. For
an introduction to A∞-algebras, see [Val14]. For a discussion on how the
definition in terms of graph complexes compares to other definitions, see
[WW16, §3.1].

Definition 2.5.3 ([WW16, §2.7]). Let

A∞(n) ⊂
[
n+1

0

]
- Graphs

be generated by the trees where all leaves are labelled. The first n leaves are
the inputs and the last leaf is marked as an output. We explicitly allow the
doubly labelled leaf as the generator id ∈ A∞(1) and the singly labelled leaf
1 ∈ A∞(0). The graph in Figure 2.3b is an example.

Composition is defined by first grafting the trees and then orienting the
resulting tree by juxtaposition. Finally, one needs to apply the procedure
b−c to take care of the unit.

Remark 2.5.4. A black vertex of valency n+ 1 denotes a higher multi-
plication map A⊗n → A of degree n− 2.

Remark 2.5.5. This is in fact the definition of A+
∞ in [WW16], the

operad describing unital A∞-algebras.
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Remark 2.5.6. The operad A∞ can be obtained from T by restricting
to the third colour, the algebra colour.

2.6. Formal operations

Let E be a differential graded PROP, and assume we are given a morphism
of PROPs A∞ i−→ E , inducing a functor i∗ : E-Alg → A∞-Alg. We outline
the construction of the PROP of natural operations on Hochschild chains.

• Consider the functor C∗ : A∞-Alg → Ch that takes Hochschild
chains.
• Take pointwise tensor products to obtain functors C∗⊗r.
• Apply the end construction to these functors to get complexes of
operations, natural in E-algebras NatE(C∗⊗r, C∗⊗s).
• These complexes assemble into a dg PROP, similar to the endomor-
phism PROP of a chain complex.

The paper [Wah14] discusses a strategy to approximate or compute this
PROP of natural operations. In particular, it defines a PROP of formal
operations that is closely related to the PROP of natural operations. In this
section we recall the relevant parts of that framework.

The category of E-algebras is equivalent to the category of enriched
symmetric monoidal functors Fun⊗(E ,Ch): The underlying chain complex of
such a functor Φ ∈ Fun⊗(E ,Ch) is Φ(1), and Φ(n) is canonically isomorphic
to Φ(1)⊗n. All of the E-operations act using the enriched nature of the
functor.

To define the Hochschild chains of an E-algebra, we normally take⊕
n Φ(1)⊗n+1 and use the A∞-structure to construct the differential. But the

Hochschild chains may be defined for any functor, not necessarily symmetric
monoidal, by taking

⊕
n≥0 Φ(n+ 1) and adding the Hochschild differential.

Definition 2.6.3 makes this precise.

Remark 2.6.1. It is important to note that a symmetric monoidal functor
involves additional data, such as the isomorphisms Φ(n) ∼= Φ(1)⊗n.

Definition 2.6.2 ([Wah14, Section 1]). In order to define the Hochschild
complex, we first define an enriched functor L : Aop

∞ → Ch. As a graded
module,

L(m) =
⊕

n≥1

A∞(m,n)⊗ Ln.

Here Ln stands for the free module on a single generator ln of degree n− 1.
The enriched functoriality Aop

∞(m1,m2)⊗ L(m1)→ L(m2) is defined using
precomposition. The differential is a sum of the differential dA∞ of the first
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factor plus dL. By considering ln to be the graph in Figure 2.3a, we get a
map Ln →

⊕
k≥1A∞(m, k)⊗ Lk from the differential in the graph complex.

See also Figure 2 in [Wah14] and Figure 2.4.

Definition 2.6.3. For functors Φ ∈ Fun(E ,Ch) and Ψ ∈ Fun(Eop,Ch)

we use the notation

C(Φ)(m) = (i∗Φ(−+m))⊗A∞ L
D(Ψ)(m) = NatAop

∞ (L, i∗Ψ(−+m)).

These constructions C(−) and D(−) define endofunctors on the functor
categories. See also Definition 1.2 in [Wah14].

By iterating the functor C, we obtain the endofunctors Cr. When applied
to Φ ∈ E-Alg, we recover the pointwise tensor product Cr(Φ)(0) = C∗(Φ)⊗r.
Using the iterations and the end construction we define the complex of formal
operations

Natformal
E (r, s) = NatFun(E,Ch)(C

r(0), Cs(0)),

which again forms a differential graded PROP.

Theorem 2.6.4 ([Wah14] Theorem A). For any PROP E and a morphism
of PROPs A∞ → E, there is an isomorphism of chain complexes

Natformal
E (n1, n2) ∼=

∏

j1,...,jn1≥1

⊕

k1,...,kn2≥1

E(j, k)[k − j + n1 − n2],

where j = j1 + . . . jn1, k = k1 + . . . + kn2, and where the differential on
the right hand side is the sum of the differential of E, a multi-Hochschild
and multi-coHochschild differential. The square brackets indicate a shift in
grading.

By forgetting the symmetric monoidal structure, we get a functor

E-Alg = Fun⊗(E ,Ch)→ Fun(E ,Ch),

inducing a map of PROPS

Natformal
E → NatE .

In [Wah14], there are various statements about the properties of this map.
For example, if E is a PROP associated to an operad, then the comparison
map is injective.





CHAPTER 3

Operations on Hochschild complexes

In this chapter we present the current state of work in progress that aims
to use graph complexes to define complexes of operations of the forms

C∗(A)⊗m ⊗ C∗(A)⊗n ⊗A⊗p → C∗(A)

C∗(A)⊗m ⊗ C∗(A)⊗n ⊗A⊗p → C∗(A)

C∗(A)⊗m ⊗ C∗(A)⊗n ⊗A⊗p → A,

(1)

where A is an A∞-algebra. The natural way to encode these is in a three
coloured differential graded operad T that acts on the triple (C∗(A), C∗(A), A).
Operads acting on two of the colours, rather than all three colours have ap-
peared in the literature:

• An operad Ann of operations on (C∗(A), A) is discussed in [WW16].
The operad has the homology of a topological operad of certain open
closed cobordisms of disks and annuli. The homology H∗(Ann) is
generated by the unit and multiplication of H∗(A), the Connes B
operator on HH∗(A), and a map H∗(A)→ HH∗(A).
• A generalization of the Deligne conjecture for the pair (C∗(A), A)

for an associative algebra A is discussed in [DTT11]. The authors
construct a coloured operad that acts on (C∗(A), A) and that is
quasi isomorphic to the Swiss cheese operad, a topological operad.
The homology of this Swiss cheese operad is the operad describing
Gerstenhaber algebras and modules.
• In [TT00], Tamarkin and Tsygan proved that the pair of Hochschild
cochains and chains (C∗(A), C∗(A)) of an associative differential
graded algebras A, carries the structure of a ‘calculus up to homo-
topy’. In [KS09], Kontsevich and Soibelman described, for A an
A∞-algebra, the corresponding coloured operad in terms of graph
complexes and relate this to a generalization of the Deligne conjec-
ture: The two coloured operad that acts on (C∗(A), C∗(A)) is quasi
isomorphic to the chains on a topological operad Cyl. This operad
Cyl restricts to the little disk operad E2 on the cochains, and is the
space of little disks on a cylinder for the operations landing in the

23
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second colour. See also Figure 3.1. This topological operad has also
been studied in [Hor13].

These results are summarized in Figure 3.2.

1 2

n

Figure 3.1. Elements of the topological operad Cyl are con-
figurations of disks on a cylinder, modulo rotations of the
boundary.

T C∗(A) C∗(A) E2

Ann

Cyl

SC2

A

A∞

Figure 3.2. Summary of operations on Hochschild complexes
of A∞-algebras

The complexes of the forms described in Equation 1 are denoted

T
([m

n
p

]
,
[

1
0
0

])
, T
([m

n
p

]
,
[

0
1
0

])
and T

([m
n
p

]
,
[

0
0
1

])

respectively. Defining the operad T is the subject of Section 3.1. For an
A∞-algebra A, we outline how the triple (C∗(A), C∗(A), A) is an algebra over
T in Section 3.2 and give examples in Section 3.3.

All of the ideas and proofs are heavily influenced by [WW16] and [KS09]
and it is advised to read about the PROP OC in [WW16] when confusion
arises.
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Dictionary. To ease into the definition of the operad T , we provide a
dictionary that helps to interpret the graph complexes. The definition of T
is in terms of the [ pm]-graphs discussed in Section 2.5. Compared to how the
graph complexes are used to define OC in [WW16], the only additions are
the last two entries.

Multiplication in A∞ is defined using black
trees as in Section 2.5. A black vertex
of valency n is the higher multiplication
µn−1 : A⊗n−1 → A.

The unit of the multiplication is denoted using
an unlabelled leaf. These may only occur as
the start half edge of a white vertex.

An incoming algebra factor is a labelled leaf.

i

An outgoing algebra factor is a labelled leaf.
i

An incoming chain is a labelled leaf.

i

An outgoing chain is a white vertex. The start
half edge denotes the 0’th factor in A⊗A⊗n.

i

An incoming cochain is a white vertex. The
start half edge denotes the output of the
cochain.

i

An outgoing cochain is a labelled leaf.
i

Figure 3.3. Dictionary for the graph complexes. The dashed
boxes denote other parts of the graph.
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3.1. The operad

In this section we define the graphs that span T and prove they form a
differential graded operad. In order to digest the definition, it is advised to
keep the dictionary and the category OC of [WW16] in mind.

Definition 3.1.1. Let

T
([m1

n1
p1

]
,
[m2
n2
p2

])
⊂
[

m1+n2
n1+m2+p1+p2

]
- Graphs

be generated as a graded Z-module by the isomorphism classes of T -type
graphs. That is, graphs that satisfy the following three properties.

(1) The graph is a forest, and the trees are rooted by them2+p2 labelled
leaves and the n2 white vertices that denote the outputs.

(2) The first n1 +m2 labelled leaves are the only labelled leaves in their
boundary cycle. Note that every tree has only a single boundary
component.

(3) The m1 white vertices that denote incoming cochains have their
start half edge in the direction of the root.

Lemma 3.1.2. The T -type graphs form a subcomplexes of the [ pm]-graphs.

Proof. As T is defined using a subset of graphs, it suffices to show
that T is closed under the differential. That is, we show that for a T -type
graph G, the differential dG = bd̂Gc is a linear combination of T -type graphs.
Here, the b−c is the underlying graph (as in [WW16, Section 2.5]), and
d̂ is the differential of black and white graphs. This differential is a sum
over all possible blowups of the vertices of the graph, taking into account
the orientation and labellings. We show that these blowups preserve the
properties that define T -type graphs.

First of all, by collapsing an edge one can never get rid of a cycle. This
means that the differential of a tree or forest is a sum of trees or forests.
No labelled leaves are created when blowing up, so the second condition is
satisfied. The condition on the start half edge is seen to be satisfied on all of
the terms where a black vertex is blown up as no start half edges are involved.
However, when a white vertex is blown up, it splits into a black and a white
vertex (by definition, an edge between to white vertices can not be collapsed).
So we have terms of two types (see Figure 3.4). In both cases there is only
one possible choice of marking the start half edge as this is the only one
collapsing to G. �
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7→ Σ Σ+

Figure 3.4. The two possible types of blowups

We define composition of graphs as a slight adaptation of the recipe given
in Section 2.8 of [WW16].

Definition 3.1.3. Let

G1 ∈ T
([m1

n1
p1

]
,
[m2
n2
p2

])
and G2 ∈ T

([m2
n2
p2

]
,
[m3
n3
p3

])

be graphs. We define their composition as the sum over all possible black
and white graphs G2 ◦G1 =

∑bGc that can be obtained from G1 and G2 by:

1a Removing the m2 white vertices in G2 that represent the incoming
cochains.

1b Removing the n2 white vertices in G1 that represent the outgoing
chains.

2a Identifying the start half edge of the jth white vertex uj with the
jth leaf µj of G1.

2b Identifying the start half edge of the ith white vertex vi with the
ith leaf λi of G2.

3a Attach the remaining leaves s−1(uj) to vertices of the boundary
cycle of G1 containing µj , respecting the cyclic ordering of the leaves.

3b Attach the remaining leaves s−1(vi) to vertices of the boundary cycle
of G2 containing λi, respecting the cyclic ordering of the leaves.

4 Attach the p2 leaves of G1 to those in G2 in the corresponding order.
This represents the composition of the algebra-colour.

The orientation of each such graph is obtained in exactly the same way as in
[WW16]. First remove all white vertices together with their start half edge in
pairs (v ∧ h) from the original orientations to get [G̃1] and [G̃2]. Then simply
wedge (juxtapose) the results [G̃1] ∧ [G̃2] . Finally one should remember to
take into account the b−c procedure, getting rid of redundant unlabelled
leaves.

Remark 3.1.4. Step 3 makes sense because the n1 + m2 leaves that
represent incoming chains and outgoing cochains are the only labelled leaves
in their boundary cycles and these boundary cycles are not affected by step 1.
This last half goes wrong if we do not assume the graphs to be rooted trees.
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Remark 3.1.5. When using the above recipe to extract the operadic
partial compositions, only one of the two situation a or b happens at a time.
As the PROP in consideration is operadic, the partial composition determines
all of the composition structure.

Remark 3.1.6. The partial compositions can also be obtained directly
from [WW16] by reinterpreting their recipe as a general way of glueing graphs
at a single spot. In order to do a partial composition along a chain or algebra
factor, one can simply use the recipe and the result agrees with our definition.
However, if one uses the recipe to glue along a cochain, the orientation differs
by (−1)|G1||G2|.

Proposition 3.1.7. The composition recipe determines associative chain
maps

T
([m1

n1
p1

]
,
[m2
n2
p2

])
⊗ T

([m2
n2
p2

]
,
[m3
n3
p3

])
→ T

([m1
n1
p1

]
,
[m3
n3
p3

])
,

and T forms a three-coloured differential graded operad.

Proof. The symmetric groups act by permuting labels. The only non-
trivial task is to prove that the partial composition maps are associative
chain maps. To prove this, we use the perspective of the previous remark and
Lemma 2.5 of [WW16]. First of all, it should be stressed that the composition
procedure lands in T as the three determining properties are preserved under
partial composition: During the procedure one grafts trees onto trees, which
can never produce cycles. For example, by removing a white vertex from a
tree a forest is created, which is then grafted onto another tree. The labelling
property is shown to be preserved in the proof of [WW16][Lemma 2.5]. As
the white vertices either stay the same or a single white vertex gets removed,
the last property is not an issue either.

The degree works out correctly for the same reason as in [WW16]: When
attaching a leaf to a leaf (an algebra factor) the total degree is the same as
the degree of the disjoint union which is the sum of the two degrees. When a
white vertex gets removed the start half edge is identified with an existing
leaf and the rest of the leaves stay around. So in effect we loose a white
vertex of valence one, which does not contribute to the degree.

To see that a partial composition ◦i along a factor i satisfies

d(G2 ◦i G1) = G2 ◦i dG1 + (−1)|G1|dG2 ◦i G1,

we may use Remark 3.1.6, and see directly that the glueing satisfies this
relation as long as i is not of the cochain type. In that case, the only thing
to check is that the sign works out correctly.
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Say we have three composable graphs G1, G2 and G3 with specified in and
outputs along which we glue/compose. To see that the partial composition is
associative, we proceed case by case depending on the in- and outputs of G2

along which we compose.

• If either the input or the output is a leaf that is labelled as an
algebra factor, the associativity is automatic, just as in [WW16].
• The case where both in- and output are chains is covered by [WW16]
directly.
• The case where both in- and output are cochains is covered by
applying the associativity proved in [WW16] in reversed order.
• The case where the input is a chain and the output a cochain can
not happen in a T graph due to the condition that both leaves have
to be the unique labelled leaves in their boundary cycle.
• The case where the input is a cochain and the output a chain can
also be deducted from the proof in [WW16], but is a bit more tricky.
Instead of thinking of the composition as first applying G1, then G2

and then G3, we can also think of the glueing as considering G2 and
attaching G1 t id and id t G3. The fact that OC forms a PROP
can then be seen to imply that it does not matter whether we first
attached G1 t id and then id tG3, or the other way around. This
then implies the associativity.

�

3.2. Algebra structure

In this section we sketch the definition of the algebra structure of the
triple (C∗(A), C∗(A), A) over the coloured operad T . To really prove that
this is an algebra would require many elementary but tedious checks, which
at the time of writing the author has not performed.

To find the operation corresponding to a graph G in T we distinguish
two cases A and B, which do not correspond to the a and b of Definition
3.1.3.

Case A: The output is an algebra factor or a chain.

Step 1A There can be at most one incoming chain (represented by a labelled
leaf). Say this is the case and we try to map out of Ci(A) = Ai+1.
Then we attach li+1 to the leaf that labels the input, exactly as is
done in [WW16, §6.2], which in turn is modelled on [KS09, pp.58–62].

Step 2A The previous step produces black and white graphs of the same
kind as G, but with i more labelled leaves. These i leaves, plus the
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original, are interpreted as the i+1 incoming tensor factors of A that
form the incoming Hochschild chain. The outgoing part consists
of either a leaf labelled as an algebra factor, or a white vertex lr+1

representing the outgoing chain in Cr(A). The rest of the graph is
a combination of black and white forests representing operations in
A∞, and white vertices with a downward pointing start half edge.
To evaluate the operation, we now take the graph, cochains, chain
and algebra factors and read the graphs top to bottom. When
encountering a cochain represented by a white vertex of valency
j + 1, project the corresponding cochain C∗(A) � Hom(A⊗j , A).
Unlabelled leaves denote the unit of the algebra.

Case B: The output is a cochain. Note that there can not be any
incoming chains due to the second condition in the definition of T -type
graphs.

Step 1B This is similar to Step 1A, but instead we apply the procedure to
the outgoing cochain. That is, compose G ◦ lr+1 to determine the
component that lands in Hom(A⊗r, A).

Step 2B This is the same as Step 2A, except for that the extra labelled leaves
are interpreted as the r incoming tensor factors of A needed by the
equivalence

C∗(A)⊗m ⊗A⊗p → Cr(A)⇔ C∗(A)⊗m ⊗A⊗p ⊗A⊗r → A.

One of the steps in checking that this recipe really does give an action of
T on the triple, consists of identifying every possible term that shows up in
the differential of the graph G with a corresponding term in the differential
of the operation it produces. For example, when blowing up at a white vertex
that represents an incoming cochain, one recovers the differential of that
incoming Hochschild cochain. See also Figure 2.4.

3.3. Examples

The operations from the calculus discussed in Chapter 1 are all represented
by graphs in T and are depicted in Figure 3.5.

Example evaluation: The cap product. In order to illustrate the
procedure of the previous section, we evaluate the cap product of (b), which
falls in Case A as it is an operation C∗(A)⊗C∗(A)→ C∗(A). Say we evaluate
the graph on a cochain γ ∈ C∗(A) and a chain a = a0 ⊗ . . . ⊗ an ∈ C∗(A).
Following Steps 1A and 2A, we have to attach the graph ln+1 at the labelled
leaf and distribute the remaining n leaves. This results in graphs of the type
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1 2

1

(a) The cup product

2

1 1

(b) The cap product

1

1

(c) The B operator

2

1

1

1

2

1

−

(d) The Lie bracket

21 1

3

(e) A more exotic operation

Figure 3.5. Examples of graphs representing operations.
The graph of (e) can be interpreted either as an operation in
T (
[

2
1
0

]
,
[

0
1
0

]
) or in T (

[
2
0
1

]
,
[

0
1
0

]
).

k l m 0 i j

Figure 3.6. Term in the evaluation of the cap product

depicted in Figure 3.6. Going top to bottom we can now read off the result of
applying the operation to γ ⊗ a as sums over i+ j + k + l +m = n of terms

mi+k+m+2(ai+j+1, . . . , ai+j+k, γl(ai+j+k+1, . . . , ai+j+k+l),

an−m, . . . an, a0, . . . , ai)⊗ ai+1 ⊗ . . .⊗ ai+j ,

where γl is the component of γ in Hom(A⊗l, A) and mi+k+m+2 is a higher
multiplication map on A that lives in A∞(i+ k +m+ 2).





CHAPTER 4

Naturality of Hochschild cochains

The material in this chapter is a presentation of work in progress. First,
we make definition of a functor C∗(−) : umPROP→ Ch that is only a slight
variation of a definition made by McClure and Smith in [MS04]. The novel
contribution is applying this definition to make sense of natural operations
on Hochschild cochains. We now proceed by outlining the problem that this
chapter aims to solve.

4.1. The problem

In contrast to Hochschild homology, Hochschild cohomology of an algebra
HH∗(A) = HH∗(A;A) is not functorial in the algebra A (see also [Lod98,
§1.5.5]). This is already evident from the fact that HH0(A) = Z(A) is the
centre, which is not functorial either. This failure to be functorial raises
the question in what right operations like the bracket, cup and cap product
may be called natural, as they certainly seem to behave as such. In general
we would like to know, given a multiplicative PROP F , what would be the
differential graded coloured PROP NatF of operations, natural in A ∈ F -Alg
of the form

(C∗(A))⊗p0 ⊗ (C∗(A))⊗q0 ⊗A⊗r0 → (C∗(A))⊗p1 ⊗ (C∗(A))⊗q1 ⊗A⊗r1 .

Any reasonable such definition should at least include known operations for
various classes of algebras F and the restriction of colours to p0 = p1 = 0

should be related to some previously studied complex of operations, see also
[Wah14; WW16] and Section 6.1.

For the case of strictly associative algebras F = uAss, an ad hoc solution
to this problem is given in [BBM13]. They define a non-coloured operad
of operations on Hochschild cochains as the complex of all finite sums of
compositions of some elementary operations. A similar approach is used in
[DTT11].

It is worth mentioning that a similar question was investigated by Boris
Tsygan [Tsy13], who also takes into consideration that the coefficients M
may vary for HH∗(A;M). See also [DKR15].

33
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The aim of this chapter is to propose a solution to this problem by
changing perspective: Rather than trying to be a functor from F-Alg, we
consider a different category out of which Hochschild cochains is a functor.
For simplicity, we only treat strictly associative (differential graded) algebras,
although the A∞ case should be similar.

4.2. Intermezzo - Facts about under categories

Let C be any category and C ∈ Ob C. We denote the category of objects
under C by C ↓ C.

Proposition 4.2.1. Given an object (C → F ) ∈ C ↓ C, there is a
canonical isomorphism of categories (C → F ) ↓ (C ↓ C) ∼= F ↓ C.

Proof. This is seen from the commuting diagram

C

�� ��

��

F

�� ��

A // B

which characterizes morphisms on both sides. �

Proposition 4.2.2. The projection functor C ↓ C→ C creates all limits.

Proof. This is [Mac98, Exercise V.1.1]. The proof consists of showing
there is a unique C-structure on the limiting cone in C and observing that it
is also a limiting cone in C ↓ C. �

Corollary 4.2.3. If C has limits of shape J, then so does C ↓ C. If C
is complete, then so is C ↓ C.

For colimits in under categories, it suffices to identify the small coproducts
and coequalizers. To see what the coproducts are, consider for example the
following pushout diagram.

C //

��

B

��

A // A tC B

The pushout comes with a map from C, and morphisms from A and B that
commute with the structure maps in the under category. As it also has the
correct universal property, we see that this C → A tC B is the coproduct
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of A and B in the under category. By the same argument, we see that all
coproducts in C ↓ C are fibered coproducts over C.

The coequalizers come for free: Simply take the coequalizer in C and one
gets the map from C by composition.

C

�� �� !!

A
//
// B // coeq

4.3. Categories of multiplicative PROPs

We wish to consider props with multiplicative structure. That is, ones in
which we can identify a multiplication that behaves like the one in Ass. To
do this, we may do the following construction.

Definition 4.3.1. The category of multiplicative PROPs is the under
category mPROP = Ass ↓ PROP. The unital multiplicative PROPs form a
category umPROP = uAss ↓ PROP.

Remark 4.3.2. The construction that assigns the multiplicative endo-
morphism PROP to an associative algebra is not functorial: It is not clear
what one should do to the morphisms.

Concretely, the datum of a (unital) multiplicative PROP consists of a
PROP P, and a structure map uAss µ−→ P. In particular, one can use this
map to obtain the multiplication in P as the composition

µP : I → uAss(2, 1)
µ−→ P(2, 1).

And its unit as
1P : I = uAss(0, 1)

µ−→ P(0, 1).

The rest of the structure map µ encodes the relations like associativity
and equivariance with respect to permutation of the inputs. Morphisms of
multiplicative PROPs are morphism of PROPs that preserve the multiplicative
structure.

It also makes sense to further consider PROPs with more structure than
just associative multiplication, e.g., Frobenius PROPs. To be able to do this,
we do the same construction again.

Definition 4.3.3. Let F be a PROP with unital multiplication. We
define the category of F-PROPs as F-PROP = F ↓ umPROP.

Applying the facts about under categories from Section 4.2 to PROPs
over a bicomplete symmetric monoidal category, we get the following.
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Corollary 4.3.4. For every (unital) multiplicative PROP F , we have
F-PROP ∼= F ↓ PROP and it is bicomplete.

Proof. This follows from the fact that categories of PROPs are bicom-
plete. See the proof of Theorem 5.5 in [Fre10]. �

4.4. Hochschild simplicial and cosimplicial objects

The following material is a variation on a construction in [MS04, §10],
which associates a cosimplicial space to every non-symmetric topological
operad with multiplication. We construct functors

(−)• : umPROP→ cM and (−)• : umPROP→ sM,

where cM and sM are the categories of cosimplicial and simplicial objects
in M respectively. These two functors model the Hochschild (co)simplicial
objects when acting on the endomorphism PROPs of algebras.

Remark 4.4.1. The unitality of the algebra is only used for the construc-
tion of the degeneracy and codegeneracy maps. Hence the same construction
would result in functors to the semi-(co)simplicial objects when considered
as a construction on mPROP, instead of on umPROP.

In order to make the definitions, it is useful to first introduce a pictorial
language for PROPs. Let P ∈ umPROP, be a multiplicative PROP.

1
in

out

µ

• An element in P(k, l) is denoted by a box
with k strands coming in from the top and l
strands going out from the bottom.
• Horizontal composition is done by putting
two boxes next to each other.
• Vertical composition is done by putting boxes
on top of each other and connection the
strands.
• The unit of the multiplication is denoted by
a short strand coming into a box.
• The symmetric group action is represented
pictorially by ’braids’ on the strand.
• When two or more strands come together,
apply the associative multiplication.

Definition 4.4.2. Let P ∈ umPROP, the associated cosimplicial object
P• ∈ cM has k’th level Pk = P(k, 1) ∈M. The coface maps

di : Pk → Pk+1, 0 ≤ i ≤ k
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are defined using the multiplicative structure and the codegeneracy maps si

are defined by inserting a unit at the i’th place. See Figure 4.1.

di sid0 dn

Figure 4.1. Definition of the cosimplicial structure maps

Definition 4.4.3. The simplicial object P• ∈ sM associated to a PROP
P ∈ umPROP has k’th level Pk = P(0, k + 1) ∈ M. The faces are defined
using multiplication of the outputs, the degeneracies again come from inserting
units. See Figure 4.2.

di, i < n dn si

Figure 4.2. Definition of the simplicial structure maps

It is easy to see that the cosimplicial and simplicial identities are satisfied
by drawing the corresponding pictures. As maps in umPROP are defined
to commute with all structure maps, we see that these constructions are
functors from umPROP to (co)simplicial objects in M.

Definition 4.4.4. Let M = Chk. The (normalized) Hochschild chains
C∗(P) and cochains C∗(P) of a multiplicative PROP P are defined to be the
(normalized) totalizations of P• and P• respectively.

It is now elementary to check the following.

Proposition 4.4.5. The Hochschild chains and cochains of multiplicative
PROPs form functors

C∗ : umPROP
(−)•−−−→ cChk

N∗−−→ Chk

C∗ : umPROP
(−)•−−−→ cChk

N∗−−→ Chk.

Taking M = Chk as the symmetric monoidal category and considering
the multiplicative PROPs, we have the endomorphism PROP End(A) for
every dga A. By considering the constructions above, we potentially have
two different definitions for the Hochschild (co)chains of A.
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Proposition 4.4.6. Let A be a differential graded algebra, then we have
the following isomorphisms.

C∗(A) ∼= C∗(End(A))

C∗(A) ∼= C∗(End(A))

Proof. This can easily be seen by comparing the definitions as simplicial
and cosimplicial objects. For example, C∗(End(A)) is defined as the total
complex of End(A)•, which in simplicial degree n is given by

End(A)n = (End(A))(0, n+ 1) = Ch(k, A⊗n+1) ∼= A⊗n+1.

�

Remark 4.4.7. The construction that assigns the endomorphism PROP
to a chain complex or dga is not functorial. Hence, the above does not violate
our previous claim that the Hochschild cochains are not functorial in the
algebra. See also Remark 4.3.2.

4.5. Natural operations

Given that the constructions C∗(−) and C∗(−) are functorial in umPROP
by Proposition 4.4.5, we may tensor the functors together to get functors

(C∗)⊗p ⊗ (C∗)⊗q : umPROP→ Chk,

for any p, q ≥ 0. Thus, it now makes sense to use the end construction on
such functors and obtain chain complexes of natural operations

Nat((C∗)⊗p0 ⊗ (C∗)⊗q0 , (C∗)⊗p1 ⊗ (C∗)⊗q1).

These chain complexes automatically form a differential graded two-coloured
PROP. Also, given a multiplicative PROP F , we get another PROP NatF of
operations that are natural in F-PROP.

Remark 4.5.1. The construction of Hochschild cochains works equally
well when restricting attention to operads rather than PROPs. For example,
for a given multiplicative operad F , one may construct the coloured PROP
or operad of operations that are natural in F-Operad instead. The functor
F-Operad→ F-PROP induces a map of PROPs from NatF to the version
natural in operads.
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4.6. Examples

All operations that may be defined aritywise by summing, composing,
permuting, multiplying and inserting units are examples of operations in
NatAss. For example, the cup and cap are described pictorially in Figures 4.3
and 4.4. Other examples include the Lie bracket and the Connes B operator.

⊗ 7→

Figure 4.3. Pictorial description of the cup product

⊗ 7→

Figure 4.4. Pictorial description of the cap product

If one also allows compositions with fixed elements of a chosen multiplica-
tive PROP F , one obtains the operations in NatF . For example, take F to
be the PROP associated to the operad uAssoC2 that models algebras with
involutions (see Paper B). Then associated to the involution is a C2 action
on Hochschild chains, described in Figure 4.5.

7→

Figure 4.5. Pictorial description of the C2-action on
Hochschild chains of involutive algebras. The shaded boxes
denote the involution operator.

In Section 6.1 we discuss plans on how to compare the formal definition
of the last section to other, more concrete complexes.





CHAPTER 5

Operations on cyclic homology

This chapter discusses the current state of work in progress within the
context outlined below and in Section 6.3. The material in Sections 5.1–5.3
has been checked reasonably rigorously, but Section 5.4 is to be read with
some caution.

Similarly to how operations on Hochschild chains show up in different
places, so do operations on cyclic chains of algebras. For example, Loday
studied λ-operations on the cyclic homology of commutative algebras in
[Lod89], and shuffle type products are discussed in [Lod98] and [HJ87].

An important place where operations play a role is equivariant string
topology. In [CS99; CS04], Chas and Sullivan introduce the string bracket, a
graded Lie bracket on H∗(LXhT) of degree 2− d where d is the dimension
of the manifold X. In general, one wants to study operations on Borel
equivariant (co)homology and one way to attack this is by using the Jones
isomorphism HC−∗ (S∗(X)) ∼= H∗(LXhT) from [Jon87]. From this perspective,
one needs to capture the algebraic structure of the singular cochains S∗(X)

on a manifold X, and study operations on the negative cyclic chains of such
algebras. Such a program has been undertaken for the Hochschild chains in
[Cos07b] and [WW16; Wah14]. Two of the statements that comes out of this
study are that there is a dg PROP O that (roughly) describes the algebraic
structure of cochains on a compact oriented manifold and that the homology
of the space of (formal) O-natural operations from r Hochschild chains to
s Hochschild chains is

⊕
[Σ]H∗(BDiff∂ Σ), where Σ ranges over topological

cobordisms with r inputs and s outputs.
This raises the question what the analogous statement is for (negative)

cyclic chains:

Question. Are there moduli spaces of certain types of cobordisms that
model operations on the (negative) cyclic homology of O-algebras?

This question has been studied by Richard Hepworth who conjectured in
the lecture [Hep13] that the answer would be

⊕

[Σ]

π∗(HZ ∧ (BDiff∂ Σ)hTs)
hTr .

41
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In order to study this question and generally gain a better understanding
of operations of cyclic chains, we outline two recipes that can be used to
produce such operations from operations on Hochschild chains.

5.1. Recipe I - Transfers

Associated to the fibration

S1 → ET× LX p−→ ET×T LX = LXhT

is the Gysin sequence

. . .→ H i−2(LXhT)
−∪e−−→ H i(LXhT)

p∗−→ H i(LX)
τ−→ H i−1(LX)→ . . .

The connecting homomorphism τ is also known as the transfer, and can
be used to construct equivariant string operations. If one starts with an
operation on H∗(LX), precomposition by p∗ and postcomposition by τ results
in an operation (of a different degree) on H∗(LXhT).

Example 5.1.1. Dual to the Chas–Sullivan product

µ : Hp(LX)⊗Hq(LX)→ Hp+q−d(LX)

is the coproduct µ∨ on H∗(LX). From this we construct the cobracket of
degree −(2 + d) on H∗(LXhT) as (τ ⊗ τ) ◦ µ∨ ◦ p∗.

This way of building equivariant operations has an analogue in cyclic
homology, and one can use the Jones isomorphism to compare the two.
Consider the short exact sequence

CC−∗+2(A)
S
↪−→ CC−∗ (A)

h−→→ CC−∗ (A)/CC−∗+2(A) ' C∗(A).

The long exact sequence associated to this short exact sequence is the analogue
of the Gysin sequence for negative cyclic homology

. . .→ HC−j+2(A)
S−→ HC−j (A)

h−→ HHj(A)
B−→ HC−j+1(A)→ . . .

Here S(
∑
apup) =

∑
apup+1 is the periodicity operator, h(

∑
apup) = a0 and

B(a) = Ba ∈ CC−j+1(A).

Remark 5.1.2. The procedure of pre- and postcomposing by h and
B gives maps Nat((C∗)⊗r, (C∗)⊗s) → Nat((CC−∗ )⊗r, (CC−∗ )⊗s) of degree s.
However, this is not a map of PROPs or even of operads as it does not behave
well with respect to composition.
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5.2. Recipe II - Linear extension

In order to state the second recipe, we use the following language. Let
(C∗, b) be a chain complex and B be an operator of degree 1 on C∗, satisfying
B2 = Bb + bB = 0. This is also called a differential graded T-module in
Paper B. For such a T-module, we may define the following ‘cyclic theories’
in analogy to the definition of cyclic homology in Section 2.4.8.

CC−∗ = C∗[[u]]

CC⊕∗ = C∗[u]

CC∗ = C∗[u−1]

CCper∗ = C∗[u−1][[u]]

Here u is a formal variable of degree −2, and all four complexes come with
the differential ∂ = b+ uB.

Example 5.2.1. For an algebra A, the Hochschild chains (C∗, b) =

(C∗(A), dint + dHoch) together with Connes’ B operator are an example. The
resulting cyclic theories are the variations of cyclic homology discussed in
Section 2.4.

Given a chain map φ : C∗ → C∗, we can extend this map u-linearly to all
four of the complexes if it commutes with B. This is for example done when
defining the C2 action on cyclic chains of involutive algebras later in Paper B.
More generally, if one does not assume φ to be a chain map but still insists
that φ ◦ B = (−1)|φ|B ◦ φ we have that δφ̂ = δ̂φ, where the hat denotes
u-linear extension and δ denotes the differential as a map, which is discussed
in the conventions section. One may further generalize this construction to
include higher arity operations and the possibility that φ does not commute
with B.

Proposition 5.2.2. Let φ : (C∗)⊗n → C∗ be a map of degree |φ|. The
u-linear extension φ̂ defines n-ary operations on the cyclic theories and satisfy
the identity

δ∂φ̂ = δ̂bφ+ S ◦ δ̂Bφ.
Here δb denotes the differential as an operation with respect to the b differential
and similarly for δ∂ and δB.

Proof. We illustrate this elementary check in the binary case.

(δ∂φ̂)(xui, yuj) =(b+ uB)φ̂(xui, yuj)− (−1)|φ|(φ̂((b+ uB)xui, yuj)

+ (−1)|x|φ̂(xui, (b+ uB)xuj))
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Expanding and regrouping, we recognize the two needed terms

b(φ(x, y))ui+j − (−1)|φ|(φ(bx, y) + (−1)|a|φ(x, by))ui+j = δ̂bφ(xui, yuj)

and

−(−1)|φ|(φ(Bx, y) + (−1)|a|φ(x,By))ui+j+1

+B(φ(x, y))ui+j+1 = S(δ̂Bφ(xui, yuj))

�

Remark 5.2.3. Note that the u-linear extension would not make sense
for multilinear operations on C∗[[u−1]][[u]], as direct products do not commute
with tensor products. The reason we can get away with linear extension for
the other complexes is that there is a finite number of ways to write a specific
power of u as ui0+...+in .

We can further formalize this procedure by applying it to an entire operad
of operations on C∗. To do this, we first make a definition.

Definition 5.2.4. Let T be the operad associated to the monoid T = k[B]

where |B| = 1 (and B2 = 0 for degree reasons). Given a differential graded
operad D and a map of operads T → D, we define the differential graded
operad D[u] as follows:

• As a graded module, (D[u])(n) = D(n)∗[u].
• The differential is given by δ̂ + uδ̂B. Here the hat stands for u-
linear extension, δ denotes the differential of D and δB denotes the
differential on D(n) that uses the T-module structure.
• Composition of operations in D[u] is defined as the linear extension
of the composition of D.
• The symmetric groups act u-linearly.
• The unit is given by 1D ∈ D(1)0 ⊂ D[u](1)0.

Proposition 5.2.5. The D(n)∗[u] are chain complexes and form a dif-
ferential graded operad D[u].

Proof. The map T→ D picks out an element B ∈ D(1)1, which is then
used to build the differential δB, using pre- and postcomposition in analogy
to the differential on End(C∗, B):

δBφ = B ◦ φ− (−1)|φ|
n∑

i=1

φ ◦ (I⊗i−1 ⊗B ⊗ I⊗n−i).

The fact that δ̂ + uδ̂B squares to zero follows from elementary checks that
imply δ2 = δ2

B = δBδ + δδB = 0. For example, δ(B ◦ φ) = (δB) ◦ φ−B ◦ δφ
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means that the first term in δB is a chain map of degree one and hence
δBδ + δδB = 0.

To see that D[u] forms an operad, define the composition by u-linear
extension

(φui0) ◦ (φ1u
i1 ⊗ . . .⊗ φnuin) := φ ◦ (φ1 ⊗ . . .⊗ φn)ui0+...+in .

The fact that this satisfies all the axioms of being an operad follows easily
from the fact that D does. The fact that δ̂ + uδ̂B is a derivation for the
operadic composition on D[u] is an elementary check that boils down to
checking that δB is a derivation for the operad composition on D. �

Theorem 5.2.6. Let C∗ be a D-algebra. In particular, C∗ is a T-module
using T→ D → End(C∗). Then the operad D[u] acts on the cyclic theories
and the actions are compatible with the action of D on C∗.

Proof. The action of D[u] on the cyclic theories is defined by the formula

(φup)(a1ui1 , . . . , anuin) = φ(a1, . . . , an)up+i1+...in .

To see that this formula defines an action, see the proof of Proposition
5.2.2. �

Remark 5.2.7. At first sight it might seem that a similar statement
should hold for PROPs, but the author was not able to find or prove such a
statement.

Corollary 5.2.8. If F is a multiplicative differential graded PROP, and
D is an operad of natural operations on Hochschild chains of F-algebras, then
D[u] is an operad of natural operations on (negative) cyclic chains.

5.3. The shuffle product as a combination of the recipes

The two recipes may also be combined. To see this, we review the
definition of the shuffle product on cyclic chains as treated in [Lod98]. For
any two algebras A and A′, the Eilenberg–Zilber Theorem gives a map

−×− : Cp(A)⊗ Cq(A′)→ Cp+q(A⊗A′).

When A = A′ is commutative, the multiplication map µ : A ⊗ A → A is a
map of algebras, so we get a map called the shuffle product

− ∗ − : C∗(A)⊗ C∗(A)
−×−−−−→ C∗(A⊗A)

C∗(µ)−−−→ C∗(A).

This operation lifts to the cyclic chains as

(
∑

xiu−i) ∗ (
∑

yiu−i) =
∑

((Bx0) ∗ yi)u−i.
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The reason this works, is that b is a derivation for ∗, and that B is almost
a derivation for ∗. That is, ∗ and B satisfy B(Bx ∗ y) = (−1)|x|Bx ∗ By,
making B a derivation for x⊗ y 7→ (Bx) ∗ y. So essentially one uses Recipe
I on the first input and Recipe II on the second. The interaction property
then ensures that the resulting operation is a chain map.

5.4. Formal operations on cyclic chains

The goal of this section is to apply the framework of formal operations as
recalled in Section 2.6, to cyclic chains rather than Hochschild chains. The
material of this section is work in progress and not all statements have been
checked with complete rigour.

Definition 5.4.1. In analogy to the enriched functor L : Aop
∞ → Ch of

Definition 2.6.2, let Lλ : Aop
∞ → Ch be the functor

m 7→ (
⊕

n≥1

A∞(m,n)⊗ Ln ⊗ k[u−1], dA∞ + dL + udB).

The morphisms act by precomposition in the PROP A∞, and the dA∞ and
dL are the u-linear extensions of those that show up in L. The last term of
the differential, udB, is defined by sending

ln 7→ uBln : Ln ⊗ k[u−1]→ A∞(n+ 1, n)⊗ Ln+1 ⊗ k[u−1].

Here B is interpreted as an element of a graph complex as in Figure 3.5c,
which may then be applied to ln to obtain a black and white graph that can
be split up as an A∞(n+ 1, n)-part attached to ln+1. This is very similar to
the description of dL in Definition 2.6.2.

Proposition 5.4.2. Let Φ ∈ A∞-Alg, then Φ⊗A∞ Lλ = CC∗(Φ).

Proof. By inspecting the definition of the coend construction, and
because Φ⊗A∞ L = C∗(Φ), we see that Φ⊗A∞ Lλ = C∗(Φ)[u−1] as a graded
module. A calculation then shows that the differential is exactly the desired
b+ uB. �

Remark 5.4.3. One may similarly define L−λ using k[u] rather than
k[u−1] in order to get CC−⊕∗(Φ) = Φ⊗A∞ L−λ. It seems, however, that the
variations of cyclic homology that are defined as product totalizations may
not be obtained in a similar fashion.
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Definition 5.4.4. For functors Φ ∈ Fun(E ,Ch) and Ψ ∈ Fun(Eop,Ch)

we use the notation

CLλ(Φ)(m) = (i∗Φ(−+m))⊗A∞ L−λ

DLλ(Ψ)(m) = NatAop
∞ (Lλ, i∗Ψ(−+m)).

These constructions C(−)Lλ and D(−)Lλ define endofunctors on the functor
categories similarly to Definition 1.2 in [Wah14].

An argument similar to the proof of Theorem A in [Wah14] or an appli-
cation of Theorem 4.15 in [Kla13c, Paper C] gives the following theorem.

Theorem 5.4.5 (In progress). For a multiplicative PROP E, we can
rewrite the PROP of formal operations as

Natformal
E (n1, n2) ∼= Dn1

LλC
n2

LλE(−,−).

This expression allows us to further identify the complex of formal opera-
tions in more concrete terms as in Theorem 2.6.4.

∏

j1,...,jn1

⊕

k1,...,kn2

E(j, k)[k − j + n1 − n2][[u1, . . . , un1 ]][u−1
1 , . . . , u−1

n2
]

Here, all the indices run from one to infinity, j = j1 + . . .+ jn1 and similarly
for k. The first set of brackets denotes a degree shift. The differential is
similar to the one in the statement for Hochschild chains, except that there
are extra terms for the pre- and postcomposition by the B operator in a
fashion very similar to Recipe II.





CHAPTER 6

Perspectives for further research

As the research presented in Chapters 3–5 is work in progress, many loose
ends remain to be tied up. Apart from that, many other opportunities for
further research arise from the work. We outline some of those opportunities.

6.1. Operations on Hochschild complexes

The first step that needs to be taken in order to complete the work
of Chapter 3, is to rigorously prove that the operad T acts on the triple
(C∗(A), C∗(A), A) for every A∞-algebra A. A sensible next step would be to
compare the operations in T to the known existing operations described in
the introduction of Chapter 3.

The three two-coloured operads obtained by omitting one of the three
colours from T are thought to be equivalent to the singular chains on a
topological operad. For example, the operad from [DTT11] which encodes
the operations on (C∗(A), A) is equivalent to chains on Voronov’s Swiss cheese
operad SC2. This is a generalization of the Deligne conjecture, also referred
to as the Swiss cheese conjecture, see [DTT11; Gin15; Tho16]. This begs the
question whether there is also a three-coloured topological operad, of which
the chains are equivalent to T , giving another generalization of the Deligne
conjecture. A solution to this Deligne conjecture would in particular reveal
the homology of T , although this is likely easier to calculate directly.

As mentioned in Remark 1.1 of [DTT11], Kontsevich has conjectured
in [Kon99] that the pair (C∗(A), A), where A is an H∗(Ed)-algebra, is an
algebra over the chains of the d-dimensional Swiss cheese operad, and that
the Hochschild cochains are final in an appropriate category of Swiss cheese
algebras. It would be interesting to investigate whether such a statement
holds in the three coloured case also. Some evidence for this is provided in
[Cos07b], where a similar homotopy universality property is proven for the
Hochschild chains of an O algebra.

Variations of the graph complexes considered might also be useful for
studying operations on the triple (C∗(A), C∗(A), A) for other classes of alge-
bras, e.g., for Com, E2, or even O-algebras.

49
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6.2. Naturality of Hochschild cochains

The definitions made in Chapter 4 should be compared to other parts of
the literature. For example, in [BBM13] the operad of operations on C∗(A)

for associative A, is as sums of compositions of elementary operations. As
our natural operations are closed under composition, it is most important to
show that the elementary operations are in our complex and to check that
the differential agrees.

As a sanity check, it is also wise to compare the natural operations on
chains to those in the literature.

Question. When we restrict the colours of NatF to only consider
Hochschild chains, how does our construction compare to other complexes of
operations, e.g., the formal operations from [Wah14]?

We have found a comparison map between our PROP of natural operations
and the PROP of formal operations, but so far it is not known to have any
good properties.

Two other possible directions are: Can the definition be extended to
include cyclic and dihedral cohomology and are the operations from Chapter
3 examples of natural operations?

6.3. Operations on Cyclic homology

After thoroughly checking Theorem 5.4.5, one could try to compute the
complex of formal operations for the commutative operad, similarly to what
Klamt did in [Kla13b]. The expected answer is that the operations are
generated by shuffles and the periodicity operator, given that the operations
on the Hochschild chains are generated by shuffles and the B operator.

R. Cohen and S. Ganatra are currently establishing an equivalence be-
tween the symplectic field theory structure on the symplectic homology
SH∗(T ∗M) and the string topology field theory on H∗(LM), extending
Viterbo’s isomorphism SH∗(T ∗M) ∼= H∗(LM) [CG15]. Both sides have T-
equivariant analogues which have the structure of an ‘Involutive Lie Bialgebra’
(IBL) [Sei08; CS04]. In the very recent work [CFL15], Cieliebak, Fukaya and
Latschev describe a chain level version of IBL-algebras called IBL∞-algebras.
Establishing such IBL∞-structures on SH∗T(T ∗M) ∼= H∗(LMhT) and their
equivalence remains open. An interesting problem would be to describe the
algebraic structure of equivariant string topology on the chain level using
negative cyclic homology. To achieve this, one could follow a specific path:
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(1) First, construct a graph complex that forms a generalisation of
Costello’s open-closed conformal field theory [Cos07b]. More pre-
cisely, find a differential graded PROP that acts naturally the neg-
ative cyclic chains of O-algebras, or Calabi–Yau A∞ categories,
generalisations of dga’s with Poincaré duality.

(2) Show a homotopy universality property and extend the works
[Wah14; WW16] to justify that all operations have been found.

(3) Finally, analyse the structure obtained, comparing it in particular
to the IBL∞-algebras of equivariant symplectic and string topology
field theory in [CFL15; CS04].

In [Cos07b], the complexes of operations on such Hochschild chains are
isomorphic to chains on moduli spaces of open-closed cobordisms (hence
the name topological conformal field theory). This leads to the following
interesting question.

Question. Are there moduli spaces of certain types of cobordisms that
model operations on negative cyclic homology of O-algebras?

This question has been studied by Richard Hepworth, who conjectured
in the lecture [Hep13] that the answer would be

⊕

[Σ]

π∗(HZ ∧ (BDiff∂ Σ)hTs)
hTr .

6.4. Dihedral homology

It is not entirely clear to the author which parts of the literature are
affected by the gap that is fixed in Paper A. A particular issue that might
need attention is for example: Let X be a compact oriented simply connected
manifold of finite type over a field k, how are the product and coproduct on
HH∗(S∗(X;k)) related to the cup product and Chas–Sullivan coproduct on
H∗(LX;k)?

Other topics that need investigation are:

• Paper B is an instance of the Universal Exercise in [Lod98, p. 5.2.1]:
“Take any result in this book about cyclic homology and try to find
and prove an analog for quaternionic or dihedral homology.”. An-
other instance would be to construct a shuffle product on (negative)
dihedral chains and relate this to the string bracket on H∗(LXhO;k).
• Can the ideas from Chapter 5 also be applied to dihedral homology
and not just to cyclic homology?
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• Can the simply connectedness assumptions of the Main Theorem of
Paper B be weakened to a nilpotence condition? See also Remark
8.2 in Paper B and Proposition 5.3 in [AF15].
• Can the results of Paper B be applied to learn something about
Hermitian K-Theory? See [Cor93; KrS86; Ldd96].
• The proof of Proposition 6.4 seems somewhat suboptimal. It seems
like the existence of an appropriate operad should follow more
directly from the E∞-structure of S∗(X) and some facts from the
homotopy theory of operads.
• What is the role of dihedral homology in the Hochschild–Kostant–
Rosenberg Theorem?
• Given a simplicial set X•, the singular cochain algebra S∗(|X•|) is an
involutive dga and it is quasi isomorphic as a dga to the simplicial
cochains of X•. Is there a quasi isomorphic involutive dga that
is smaller than S∗(|X•|)? One approach would be to replace the
simplicial set X• by a reflexive set, for example by using one of
the two Kan extensions along ∆ ↪→ ∆R. The author pursued this
direction, but did not manage to find a positive answer. A solution
to this problem would provide smaller models that are probably
easier to compute with.

As suggested in the introduction of Paper B, perhaps the most important
thing to prove is that spheres are involutively formal over F2. That is, is
S∗(Sn;F2) quasi isomorphic to its cohomology as an involutive dga? If so, the
calculations in the last section show that the Betti numbers of H∗(LS2

hO;F2)

are unbounded. As explained in the Introduction of Paper B, this might have
consequences for the following open question.

Question. Does the 2-sphere, equipped with an arbitrary Riemannian
metric, admit infinitely many distinct geodesics?
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FREE LOOP SPACE AND THE CYCLIC BAR
CONSTRUCTION

MASSIMILIANO UNGHERETTI

Abstract. Using the E∞-structure on singular cochains, we construct a
homotopy coherent map from the cyclic bar construction of the differential
graded algebra of cochains on a space to a model for the cochains on
its free loop space. This fills a gap in the paper “Cyclic homology and
equivariant homology” by John D.S. Jones.

1. Introduction

Hochschild homology has been widely used to provide an algebraic model
for the cohomology of free loop spaces. In particular, there is an isomorphism
HH∗(S∗(X)) ∼= H∗(LX) for the singular cochain algebra S∗(X) of a simply
connected space X. This was proved by John D.S. Jones in [Jon87], together
with its SO(2)-equivariant version.

One step in the proof of this isomorphism requires one to establish the equiv-
alence of two diagrams of chain complexes, Bcyc

• S∗(X) and S∗(Map(S1
• , X)).

The first is the cyclic bar construction of cochains on a space X and the
second is given by the cochains on Map(S1

• , X), a cocyclic space modelling
the free loop space of X. Jones uses the Alexander–Whitney map to compare
these two cyclic objects, which gives a map on every simplicial level; however,
it does not form a map of cyclic objects, as it does not commute with the
structure maps of the cyclic category. This fact can already be seen in sim-
plicial level one, where the Alexander–Whitney map should be symmetric on
the cochain level in order to commute with the cyclic operator t and the first
boundary map d1. This cannot be the case, as it would imply that the cup
product is commutative on the cochain level. The cup product is, however,
commutative up to coherent homotopy and it is this natural E∞-structure
that will be used to construct a homotopy coherent isomorphism instead,
filling the gap in the proof.
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2 MASSIMILIANO UNGHERETTI

Main Theorem. Let X be a space with finite type homology over a principal
ideal domain k. There is a natural zigzag of equivalences of cyclic chain
complexes

Bcyc
• S∗(X;k)

'←− QBcyc
• S∗(X;k)

'−→ S∗(Map(S1
• , X);k),

where QBcyc
• S∗(X;k) is a resolution of the cyclic bar construction.

Remark 1. The finiteness assumption is not needed when working with chains
rather than cochains: the cyclic cobar construction of the coalgebra of chains
Ωcyc
• S∗(X) is equivalent to S∗(Map(S1

• , X)). This statement works over the
integers and uses the same proof combined with the observation that the
E∞-structure on cochains described in [MS03] is the linear dual of an operad
coaction on chains.

If X is simply connected and of finite type over a field k, Jones’ proof
implies the isomorphisms

H∗(LX; k) ∼= HH∗(S∗(X; k))

H∗(LX ×SO(2) ESO(2);k) ∼= HC−∗ (S∗(X;k)).

The assumption that X is of finite type over a field k is not explicitly
stated in [Jon87], but it is used in a cited paper: That k is a field is assumed
in [And72] to establish the “convergence” of the cosimplicial mapping space
Map(S1

• , X) over k. The finite type assumption ensures that the Alexander–
Whitney map S∗(X)⊗ S∗(X)→ S∗(X ×X) is a quasi isomorphism.

In Proposition 5.3 of [AF15], the authors use factorization homology
over S1 to show that the assumptions can be weakened to allow k to be
any commutative ring, X a nilpotent space equivalent to a finite type CW
complex and π1 finite.

From the algebraic theorem in [JM92], one can reprove both isomorphisms
using the same conditions. For this one needs to start with the isomorphism
H∗(LX) ∼= HH∗(S∗(ΩX)) from [Goo85] and combine this with Adams’ cobar
equivalence.

A failure to commute with the last boundary map also appears in the
papers [PS16] and [Wah04], where methods similar to ours are used.

1.1. Acknowledgements. The author would like to thank John Jones for
the useful correspondence, Kristian Moi for discussing Section 2 and Nathalie
Wahl for general guidance. The author was supported by the Danish National
Sciences Research Council (DNSRC) and the European Research Council
(ERC), as well as by the Danish National Research Foundation (DNRF)
through the Centre for Symmetry and Deformation.



FREE LOOP SPACE AND THE CYCLIC BAR CONSTRUCTION 3

1.2. Conventions. We use the closed symmetric monoidal structure of Ch,
the category of homologically graded chain complexes of abelian groups.
The tensor product of two chain complexes carries a differential d(x⊗ y) =

dx ⊗ y + (−1)|x|x ⊗ dy. The internal hom is a chain complex Ch(X,Y )

that in degree n consists of linear maps of degree n and has differential
(dψ)(x) = d ◦ ψ(x)− (−1)nψ(dx). This means that the chain maps are the
0-cycles in this chain complex. Any cosimplicial object in the category of
chain complexes A• gives a double complex using Σ(−1)iδi. Its (product)
totalization is written as A, omitting the bullet. We use similar notation for
simplicial chain complexes A•.

1.3. Cyclic objects. We briefly recall some definitions of cyclic objects and
refer to [Jon87, Lod98] for more details. The morphisms of the category
of finite ordered sets ∆ are generated by δi, σi, which satisfy the simplicial
relations. By appropriately adding cyclic permutations 〈τ〉 = Cn+1 as the
automorphisms of [n], one obtains Connes’ cyclic category Λ. Functors out
of this category are called (co)cyclic objects.

Example 1. There is a cyclic set [n] 7→ S1
n = Z/(n + 1)Z that realizes

to the circle. From this, one obtains for each space X a cocyclic space
[n] 7→ Map(S1

n, X) = Xn+1 which totalizes to the free loop space LX. The
coboundaries are given by the diagonal maps, the codegeneracies by forgetting
factors and the cyclic maps by cyclically permuting the factors. For example,

δn+1(x0, . . . , xn) = (x0, x1, . . . , xn, x0).

By functoriality of S∗(-), S∗(Map(S1
• , X)) is a cyclic chain complex.

Example 2. For any unital differential graded algebra A, we have the cyclic bar
complex (BcycA)[n] = A⊗n+1, that can be used to compute Hochschild and
cyclic homology. The structure maps are given by multiplication, insertions
of the unit and cyclic permutations of the tensor factors.

1.4. Homotopy commutative structure of cochains. The main ingre-
dient for the proof of our main theorem is the natural E∞-structure on the
normalized singular cochains S∗(X). Such operad actions are given, for
example, in [BF04, MS03] and are the integral analogue of Sullivan and
Quillen models [Man06]. In our proofs, we only use the fact that there exists
a symmetric differential graded operad S which has the homology of a point
in every arity and which comes with a map from the unital associative operad
and a map to the natural operations on S∗(X) which specify the cup product
and its unit.
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Remark 2. An inductive argument for the contractibility of an operad S is
given on p. 689 of [MS03]. However, there is a minor mistake that may be
spotted by applying the formula ∂s+ s∂ = id+ ιr to the example 〈3123〉. To
fix this, it is enough to change the map r to only be 0 unless the sequence
contains exactly a single 1.

2. Homotopy coherent natural transformations

In this section we adapt the treatment of homotopy coherent natural
transformation in [Dug08, §8] from spaces to chain complexes.

Definition 1. Let I be a small category and F,G : I → Ch two diagrams of
chain complexes. Define the cosimplicial chain complex of homotopy coherent
natural transformations hc(F,G)• : ∆→ Ch as

hc(F,G)n =
∏

φ∈NnI
Ch(F (i0), G(in)),

where the product runs over simplices of the nerve N•I of I. The structure
maps on such families A ∈ hc(F,G)n are given by

(σiA)φ = Asiφ

(δiA)φ =





F (i0)
F (i0→i1)−−−−−−→ F (i1)

Ad0φ−−−→ G(in+1) if i = 0,

F (i0)
Adiφ−−−→ G(in+1) if 0 < i < n+ 1,

F (i0)
Adn+1φ−−−−−→ G(in)

G(in→in+1)−−−−−−−−→ G(in+1) if i = n+ 1.

A single homotopy coherent natural transformation is defined to be a 0-cycle
in the totalization hc(F,G).

Example 3. Finding single homotopy coherent natural transformation means
finding a family of elements An ∈ hc(F,G)n of degree n such that dA0 = 0

and Σi(−1)iδiAn = (−1)ndAn+1. These An are themselves families indexed
by φ ∈ NnI, which we write as Aφ ∈ Ch(F (i0), G(in)). For n = 0 this means
that we have Ai : F (i) → G(i) a chain map of degree zero for each object
i ∈ I. In the case when n = 1, we have for each morphism φ : i0 → i1 in I a
map Aφ : F (i0)→ G(i1) of degree one. These maps are not required to be
chain maps but instead satisfy

dG(i1) ◦Aφ +Aφ ◦ dF (i0) = (δ0A)φ − (δ1A)φ = Ai1 ◦ F (φ)−G(φ) ◦Ai0 .
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That is, the maps Aφ provide chain homotopies implementing the failure of
the naturality squares to commute on the nose.

F (i0)
F (φ)

//

Ai0
��

F (i1)

Ai1
��

G(i0)
G(φ)

// G(i1)

For n ≥ 1, we have homotopies relating all the different ways of composing a
string of morphisms and the previous homotopies.

Definition 2. For a small diagram F : I → Ch, we define the resolution
QF• : I ×∆op → Ch as the two-sided bar construction QF• = B•(I, I, F ),
where the first I is shorthand for the bifunctor ZI(-, -). Concretely, this gives
a simplicial I-diagram, which at the object i ∈ Ob I in simplicial degree n is
a sum over n-simplices in N•(I/i).

QFn(i) =
⊕

i0→...→in→i
F (i0)

For a morphism α : i → j, we have a map QF•(i) → QF•(j) induced by
α∗ : N•(I/i)→ N•(I/j). The simplicial structure maps all act on the indexing
sets N•(I/i), where a composition with F (i0 → i1) is needed in the definition
of d0.

Proposition 1. For a small diagram F : I → Ch, the resolution QF• : I ×
∆op → Ch has the following properties:

(1) There is a canonical isomorphism of cosimplicial chain complexes

α• : NatI(QF•, G)
∼=−→ hc(F,G)•.

(2) There is a natural object-wise quasi isomorphism QF
'−→ F .

(3) Under the identification of total complexes

α : NatI(QF,G)
∼=−→ hc(F,G),

the quasi isomorphisms on the left hand side correspond on the right
hand side to the 0-cycles that in cosimplicial degree 0 give quasi
isomorphisms F (i)

'−→ G(i).

Proof.

(1) On cosimplicial level n, the left hand side is a subset

NatI(QFn, G) ⊂
∏

i∈Ob I

Ch(
⊕

i0→...→in→i
F (i0), G(i)) =

∏

i0→...→in→i
Ch(F (i0), G(i)).

It is exactly the subset determined by a naturality condition, com-
paring α∗ : N•(I/i) → N•(I/j) with G(α) for morphisms α : i → j.
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One sees that this amounts exactly to the data being determined by
the simplices of the form i0 → . . .→ in

id−→ in. To obtain the value
at i0 → . . .→ in → i, post-compose by G(in → i).

It remains to compare the cosimplicial structure maps. The δj

for j 6= 0, n are clear as they only affect the index. Since d0 used
F (i0 → i1), we see that δ0 precomposes by this map. For the last
coboundary, we need to use the naturality to see the postcomposition
by G(in−1 → in).

(2) There is a standard augmentation QF → F defined as
∑

F (i0 → i) :
⊕

i0→...→in→i
F (i0)→ F (i),

with contracting homotopy sn+1 given by appending the identity at
the end of the indexing simplex.

(3) First, observe that the chain maps are the 0-cycles. The behaviour of
a map QF (i)→ G(i) in homology is determined by what it does in
cosimplicial degree 0. This can be seen by inspecting the augmentation
and H∗(F ) ∼= H∗(QF )→ H∗(G).

�

3. Comparing the cyclic chain complexes

In this section we construct a homotopy coherent natural transformation
for I = Λop, F = Bcyc

• S∗(X), G = S∗(Map(S1
• , X)) : Λop → Ch.

Proposition 2. There exists a homotopy coherent natural transformation
A from Bcyc

• S∗(X) to S∗(Map(S1
• , X)) that at each object i is given by the

Alexander–Whitney maps

BcycS∗(X)(i) = S∗(X)⊗i+1 → S∗(Xi+1) = S∗(Map(S1
• , X))(i)

and is natural in X.

Before giving the proof of this proposition, we introduce some notation
and prove a lemma. For any φ = (i0

φ1−→ i1 . . .
φm−−→ im) ∈ NmΛop, we write

φ for the composition φm ◦ . . . ◦ φ1. Associated to φ ∈ Λop([i], [j]) are three
structure maps of (co)cyclic objects:

φ∗ : S∗(X)⊗i+1 → S∗(X)⊗j+1

φ : Xj+1 → Xi+1

φ∗ : S∗(Xi+1)→ S∗(Xj+1).
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Using the projections πk : Xi+1 → X, k = 0, . . . , i, we moreover associate to
each φ ∈ Λop([i], [j]) a map

πφ = (π0 ◦ φ)∗ ⊗ . . .⊗ (πi ◦ φ)∗ : S∗(X)⊗i+1 → S∗(Xj+1)⊗i+1.

Lemma 1. The following square commutes for any φ ∈ Λop([i], [j]).

S∗(X)⊗i+1
φ∗

//

πφ
��

S∗(X)⊗j+1

πid
��

S∗(Xj+1)⊗i+1
φ∗
// S∗(Xj+1)⊗j+1

Proof. This is an elementary check for the boundaries, degeneracies and cyclic
operators, which together generate all morphisms in Λop. If we have two
composable morphisms ψ ∈ Λop([i], [j]), φ ∈ Λop([j], [k]) that both satisfy the
condition, then their composition satisfies the condition.

S∗(X)⊗i+1

πψ
��

ψ∗
// S∗(X)⊗j+1

πid
��

φ∗
// S∗(X)⊗k+1

πid

��

S∗(Xj+1)⊗i+1

(φ∗)⊗i+1

��

ψ∗
// S∗(Xj+1)⊗j+1

(φ∗)⊗j+1

��

S∗(Xk+1)⊗i+1
ψ∗
// S∗(Xk+1)⊗j+1

φ∗
// S∗(Xk+1)⊗k+1

Note that πφ = (φ∗)⊗i+1 ◦ πid and πψ◦φ = (φ∗)⊗j+1 ◦ πψ. The top left and
right hand squares commute by assumption on ψ and φ respectively. The
bottom left square commutes by naturality of the cyclic bar construction
with respect to the map φ∗ of differential graded algebras. �

Proof of Proposition 2. Fix a contractible operad S acting naturally on S∗(X)

as described in Section 1.4. We will prove the existence of the homotopy
coherent map A by induction on the cosimplicial degree m. For m = 0 we
have the Alexander–Whitney maps, which are given as

A0
i : S∗(X)⊗i+1 πid−−→ S∗(Xi+1)⊗i+1 Si−→ S∗(Xi+1).

Here Si is the i+1 fold cup product, which lives in the operad as Si ∈ S(i+1)0.
The fact that this map can be factored as such will be the essential idea of the
proof. Assume that we have defined Am for m < n satisfying the boundary
condition

∑
(−1)j(δjAm−1)φ = (−1)mdAmφ . Assume furthermore that the

components are of the form Aφ = Sφ ◦ πφ for φ ∈ NmΛop with composition
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φ and the Sφ ∈ S(i0 + 1)m satisfying

(?) (−1)mdSφ = Sd0φ ◦ φ1∗ +
m∑

j=1

(−1)jSdjφ.

To show that we can extend this construction to level n, we need to
find Aφ of this form for all φ ∈ NnΛop in such a way that the boundary
condition holds and Sφ satisfies (?). To do this, we describe the cosimplicial
differential of hc(BcycS∗(X), S∗(Map(S1

• , X))) to see that (?) implies the
boundary condition.

The first coboundary can be written as (δ0A)φ = Ad0φ ◦φ1∗ = Sd0φ ◦πd0φ ◦
φ1∗ = Sd0φ ◦ φ1∗ ◦ πφ. The last equality can be seen using the commuting
diagram

S∗(X)⊗i0+1
πφ1

//

φ1∗
��

S∗(Xi1+1)⊗i0+1
(φ̂∗)⊗i0+1

//

φ1∗
��

S∗(Xim+1)⊗i0+1

φ1∗
��

S∗(X)⊗i1+1
πid

// S∗(Xi1+1)⊗i1+1
(φ̂∗)⊗i1+1

// S∗(Xim+1)⊗im+1,

where φ̂ = φm ◦ . . . ◦ φ2 is associated to d0φ. The first square commutes by
Lemma 1 and the second by naturality of the cyclic bar construction.

The last coboundary can be factored as

(δmA)φ = φm
∗ ◦Admφ = φm

∗ ◦ Sdmφ ◦ πφ̃ = Sdmφ ◦ πφ.

Associated to the dmφ is the composition φ̃ = φm−1 ◦ . . . ◦ φ1 and the last
equality is a consequence of the commutativity of the diagram.

S∗(X)⊗i0+1
πφ̃

//

πφ **

S∗(Xim−1+1)⊗i0+1
Sdmφ

//

(φm
∗)⊗i0+1

��

S∗(Xim−1+1)

φm
∗

��

S∗(Xim+1)⊗i0+1
Sdmφ

// S∗(Xim+1)

The square commutes by the naturality of the operation Sdmφ.
All the intermediate coboundaries (δjA)φ for j 6= 0,m are already of the

form (δjA)φ = Adjφ = Sdjφ ◦ πφ. Observe that πdjφ = πφ.
This shows that (?) implies the boundary condition. Also, the expression

(?) lives entirely inside S since φ∗ is a composition of cup products, insertions
of identities and permutations of arguments. One can see that the right hand
side is in fact a cycle in S by applying the differential termwise and using the
inductive hypotheses. This produces terms like Sd0d0φ ◦ φ2∗ ◦ φ1∗ and Sdldjφ
which all cancel out by the simplicial identities. As S has the homology of a
point in every arity, this implies that such Sφ exist. �
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Proof of Main Theorem. The augmentation of Proposition 1.2 provides the
first quasi isomorphism QBcyc

• S∗(X;k)
'−→ Bcyc

• S∗(X;k). The second map
QBcyc
• S∗(X;k) → S∗(Map(S1

• , X); k) is provided by Propositions 1.1 and
2. The finiteness assumptions imply that the Alexander–Whitney maps are
quasi isomorphisms, meaning we can apply Propositions 1.3 to see that the
map is a quasi isomorphism. �
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FREE LOOP SPACES AND DIHEDRAL HOMOLOGY

MASSIMILIANO UNGHERETTI

Abstract. We prove an O(2)-equivariant version of the Jones isomor-
phism relating the Borel O(2)-equivariant cohomology of the free loop
space to the dihedral homology of the cochain algebra. We discuss poly-
nomial forms and a variation of the de Rham isomorphism and use these
to do a computation for the 2-sphere.

1. Introduction

For any space X, one may form the (unbased) mapping space LX =

Map(S1, X). These free loop spaces have played a big role in geometry,
topology and physics; in particular in string theory, string topology, loop
groups and the study of geodesics through the use of the energy functional
on free loop space. This is exemplified by the celebrated Gromoll–Meyer
Theorem [GM69], which states that a simply connected closed Riemannian
manifold admits infinitely many distinct closed geodesics if the sequence of
Betti numbers {rkHk(LX;k)}k≥0 is unbounded for a field k. Although many
manifolds are covered by this theorem, it remains an open question whether
the assumption on the Betti numbers can be dropped.

The Gromoll–Meyer Theorem is proven by studying the infinite dimen-
sional Morse theory of the energy functional E(γ) =

∫
S1 ||γ̇(t)||2dt on LX as

the critical points of E correspond to closed geodesics. In [Bot82, p. 350] Bott
proposes that one has to take into account the invariance of the energy func-
tional under rotations and reflections of the circle. And indeed, Rademacher
and Hingston have shown that some other classes of Riemannian manifolds
also admit infinitely many distinct geodesics by using Borel equivariant ho-
mology with respect to the rotations in T = SO(2) ⊂ O(2). A survey of such
results is given in [Oan15]. Although Lusternik and Schnirelmann proved that
the 2-sphere with arbitrary Riemannian metric carries at least three distinct
closed geodesics, it is not known if there are always infinitely many of them.

Taking into account the full O(2)-symmetry could bring a full answer even
closer. This is pointed out in Remark 6.4 of [Oan15] in the following way. An
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2 MASSIMILIANO UNGHERETTI

example of Katok [Kat73] shows that there is a non-symmetric Finsler metric
on the n-sphere that admits only finitely many distinct closed geodesics.
The notion of a non-symmetric Finsler metric is one that generalizes that
of a Riemannian metric in a way that breaks the time reversal symmetry,
signifying that the full O(2)-symmetry is really needed for admitting infinitely
many geodesics.

A common tool for computing the (co)homology of LX is the homology
theory for algebras, Hochschild homology HH∗, and its variations like cyclic
homology HC∗ and negative cyclic homology HC−∗ . In particular, we have
the following two theorems available.

Theorem 1.1 ([Goo85], [BF86]). Let X be a connected space and k any ring.

H∗(LX; k) ∼= HH∗(S∗(ΩMooreX; k))

H∗(LXhT;k) ∼= HC∗(S∗(ΩMooreX; k))

Here (−)hT denotes the Borel construction with respect to the circle group
T = SO(2) and S∗(ΩMooreX;k) is the differential graded algebra of singular
chains on the associative monoid of Moore loops on X with Pontryagin
product.

Theorem 1.2 ([Jon87]). Let k be a field and X a simply connected space
with finite type homology over k.

H∗(LX;k) ∼= HH∗(S∗(X; k))

H∗(LXhT;k) ∼= HC−∗ (S∗(X;k))

Here S∗(X;k) is the differential graded algebra of (normalized) singular
cochains with cup product.

Although the second theorem is somewhat harder to prove, it is often
preferable for computational purposes. For instance, the algebra of cochains
S∗(X) is smaller than the Moore loops S∗(ΩMooreX) and rational homotopy
theory can be used to give even smaller models for S∗(X;Q).

As all free loop spaces come with the slightly bigger symmetry group
O = O(2) ⊂ Homeo(S1), it is natural to ask what the analogous algebraic
descriptions of (co)homology of LXhO are. For the case of homology, Dunn
gave the following analogue of Theorem 1.1.

Theorem 1.3 ([Dun89]). Let X be a connected space and k any ring.

H∗(LXhO;k) ∼= HD∗(S∗(ΩMooreX;k))
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HereHD∗ is a variation of cyclic homology called dihedral homology [Lod87]
that allows one to take into account the O-action rather than just the T-action.
Although Hochschild homology and cyclic homology take as input (differential
graded) associative algebras, dihedral homology additionally requires the
data of an involution on that algebra. In the case above, this data comes
from reversing the loops in ΩMooreX.

The aim of this article is to extend Jones’ theorem to take into account
the O(2)-symmetry of LX.

Main Theorem. Let k be a field and X a simply connected space with finite
type homology over k. Then there is an isomorphism

H∗(LXhO;k) ∼= HD−∗ (S∗(X;k)).

HereHD−∗ denotes a variation of dihedral homology called negative dihedral
homology and the cochain algebra S∗(X;k) carries a homotopically trivial
involution coming from changing the orientation of simplices.

Outline of the proof.

(1) To model the left hand side we start with the codihedral space
Map(S1

• , X). A codihedral space is a cosimplicial space with ex-
tra structure that allows for an O-action on its totalization. This
codihedral space is used as a model for free loop space because
tot Map(S1

• , X) ∼=O LX and hence

S∗(LXhO) ∼= S∗((tot Map(S1
• , X))hO).

(2) The chains on the homotopy orbit space are then compared to an
algebraic version of homotopy orbits

S∗((tot Map(S1
• , X))hO) ' S∗(tot Map(S1

• , X))hO
∨
.

(3) The tensor-hom adjunction relates the result of the last step to the
algebraic homotopy fixed points of the dual

S∗(tot Map(S1
• , X))hO

∨ ∼= S∗(tot Map(S1
• , X))hO.

(4) With the appropriate assumptions, comparing the two ways of total-
izing the cochains on Map(S1

• , X) yields an equivalence

(S∗(tot Map(S1
• , X)))hO ' (Tot⊕ S∗(Map(S1

• , X)))hO.

(5) After proving an equivalence of S∗(Map(S1
• , X)) with the cyclic bar

construction as a dihedral chain complex, it follows that

(Tot⊕ S∗(Map(S1
• , X)))hO ' (Tot⊕BcycS∗(X))hO.
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As the homology of the last term is our definition of HD−∗ (S∗(X)), the result
follows after taking homology.

Since the cochain algebra S∗(X;k) is generally too big to compute with,
we prove that one may instead use the polynomial forms A∗PL(X) when k is
of characteristic 0 as S∗(X;k) ' A∗PL(X) as involutive algebras. Similarly,
we prove that the de Rham isomorphism is compatible with the involutions.
The following corollary is particularly useful.

Corollary. Let X be a rationally formal space. Then there is an isomorphism

HD−∗ (S∗(X;Q)) ∼= HD−∗ (H∗(X;Q)).

This corollary is used in the last section to compute H∗((LS2)hT;Q), which
turns out to be one-dimensional in every dimension ∗ ≡ 0, 3 modulo 4, and
zero otherwise. In characteristic two, the answer is more interesting. In that
case the dimensions of HD−∗ (H∗(S2;F2)) have been computed in low degrees
to be the unbounded sequence b(∗+ 2)2/4c. Unfortunately, the author was
not able to show that the sphere is involutively formal over F2 meaning
that the calculation does not necessarily apply to H∗((LS2)hT;F2). With
the Gromoll–Meyer Theorem in mind, it does however give another hopeful
indicator that the C2-symmetry could help proving that S2 admits infinitely
many distinct closed geodesics for any Riemannian metric.

Organization of the paper. Sections 2–4 are dedicated to the definitions
of involutions, dihedral objects and (negative) dihedral homology in a way
suited to our application and Section 5 is an outline of the proof of Dunn’s
result. In Section 6 we prove Step 5 of the outline, followed by Step 2 in
Section 7 and Step 4 in Section 8. The full proof of the Main Theorem is
then given in Section 9. Section 10 is dedicated to polynomial forms and a
version of the de Rham isomorphism that may aid in computations, which is
then used in Section 11 to calculate H∗((LS2)hO;Q).

Conventions. All algebras are unital over a base ring k. We use the closed
monoidal structure of Ch, the category of unbounded homologically graded
chain complexes over k. For example, the tensor product of two chain
complexes has differential d(x⊗y) = dx⊗y+(−1)|x|x⊗dy and f ∈ Ch(X,Y )n

is a map of degree n with differential (δf)(x) = d(f(x))− (−1)nf(dx). The
differential on the (sum) totalization of a simplicial chain complex is defined
as dint + (−1)intΣi(−1)idi. Similarly, the product totalization TotΠX

• of a
cosimplicial chain complexX• has a differential that is dx−(−1)p−nΣ(−1)iδix

on x ∈ Xn
p.
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If Y • is a cosimplicial space, we define totY • = Nat∆(∆•, Y •) ∈ Top to
be the totalization.

Let T be the circle group, considered as a subset of the complex numbers.
We denote the orthogonal group O(2) = T o C2 by O. In this notation
the multiplication on O is (z̃, α̃) · (z, α) = (z̃zα̃, α̃α) where we consider
α, α̃ = ±1 ∈ C2.

Acknowledgements. The author would like to thank Amalie Høgenhaven
and Kristian Moi for an invitation to the dihedral world and Nathalie Wahl
for general guidance. The author was supported by the Danish National
Sciences Research Council (DNSRC) and the European Research Council
(ERC), as well as by the Danish National Research Foundation (DNRF)
through the Centre for Symmetry and Deformation.

2. Involutive algebras

Definition 2.1. Let A be a differential graded algebra; that is, a monoid
in Ch. A chain map (−) : A → A of degree zero is called an involution if
a = a, 1 = 1 and ab = (−1)|a||b|ba for all homogeneous a, b ∈ A. Such a map
is called an anti-involution by some due to the flipping of the order. The
data of a differential graded algebra together with an involution is called an
involutive algebra.

Example 2.2. If A is graded commutative, then the identity map is an
involution for A. In fact, every algebra endomorphism that squares to the
identity is an involution.

Example 2.3. Complex conjugation is an involution for C as an algebra over
the reals.

Example 2.4. We repeatedly use the differential graded algebra of (normalized)
singular cochains S∗(X). Because it is defined as the linear dual of singular
chains S∗(X) = k⊗ Sing∗(X), it carries the differential

(δγ)(σ) = (−1)|γ+1|Σn+1
i=0 γ(diσ).

The cup product is defined as

(γ1 ∪ γ2)(σ) = (−1)pqγ1(dp+1 . . . dp+qσ)γ2((d0)pσ),

where γ1 and γ2 are cochains of degree p and q respectively. This dga carries a
natural involution given by γ(σ) = (−1)|γ|(|γ|+1)/2γ(σ) where σ is the flipped
simplex σ(t0, . . . , tn) = σ(tn, . . . , t0). See also Proposition 10.13.
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Example 2.5. For a group G, the map g 7→ g−1 is an involution on the group
algebra kG.

Example 2.6. The singular chains of a topological monoid with involution
form an involutive dga. An example of this is S∗(ΩMooreX;k).

3. Cyclic and dihedral objects

We recall some definitions of cyclic and dihedral objects and refer to [Jon87;
Lod98; FL91; Ung16] for more details. The morphisms of the category of
finite ordered sets ∆ are generated by δi, σi, which satisfy the dual simplicial
relations. By appropriately adding cyclic permutations 〈τn〉 = Cn+1 as the
automorphisms of [n], one obtains Connes’ cyclic category ∆C. One obtains
the dihedral category ∆D if one also adds automorphisms ρn at each [n]

such that the automorphisms become Dop
n+1. The morphisms of this category

may also be described as maps of unoriented necklaces. The subcategory
of ∆D generated only by the maps δin, σin and ρn for each n, i is called the
reflexive category, denoted ∆R. In analogy to the definitions of simplicial and
cosimplicial objects, we call a contravariant functor from ∆Dop to a category
C a dihedral object in C and a covariant such functor is called a codihedral
object.

The morphisms in ∆D will be denoted by Greek letters δin, σin, τn, ρn
whereas we use the Roman alphabet for morphisms in the opposite category.

Example 3.1. A dihedral set is a simplicial set X• with extra structure maps
tn, rn : Xn → Xn for all n such that the following identities are satisfied:

dn = d0tn

ditn = tn−1di−1

sitn = tn+1si−1

s0tn = t2n+1sn

tn+1
n = r2

n = idn

rt = t−1r

dirn = rn−1dn−i

sirn = rn+1sn−i

Example 3.2. The singular set Sing•X of a topological space X is a reflexive
set using rn(σ)(t0, . . . , tn) = σ(t0, . . . , tn) = σ(tn, . . . , t0) on an n-simplex σ.
It is in fact also dihedral, but we do not use this fact.

Example 3.3. If A is an algebra with involution, then its bar construction
is a reflexive chain complex using rn(a1 ⊗ . . . ⊗ an) = ±(an ⊗ . . . ⊗ a1).
This construction works for arbitrary monoids with involutions in symmetric
monoidal categories.

Example 3.4. The simplicial model for the circle [n] 7→ S1
n = Z/(n+ 1)Z is

not only a cyclic set, it is also dihedral by using rn(i) = n − i + 1, which
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corresponds to reversing the orientation of the circle. From this dihedral set,
one obtains for each space X a codihedral space [n] 7→ Map(S1

n, X) = Xn+1

that totalizes to the free loop space LX. The coboundaries are given by
the diagonal maps, the codegeneracies by forgetting factors, cyclic maps by
cyclically permuting the factors and the reflection by flipping the coordinates.
For example,

δn+1(x0, . . . , xn) = (x0, x1, . . . , xn, x0).

By functoriality of S∗(-), S∗(Map(S1
• , X)) is a dihedral chain complex.

Example 3.5. For any differential graded algebra A, we have the cyclic bar
construction (BcycA)[n] = A⊗n+1, which is used to compute the Hochschild
homology of A. The structure maps are given by multiplication, insertions
of the unit and cyclic permutations of the tensor factors. If the algebra
came with an involution, then BcycA is also a dihedral chain complex with
rn(a0 ⊗ . . .⊗ an) = (−1)|an|(|a1|+...+|an−1|)a0 ⊗ an ⊗ . . .⊗ a1.

Example 3.6. [FL91; Jon87] Composing the Yoneda embedding ∆ → sSet
with the realization functor sSet→ Top we obtain the standard cosimplicial
space δ•, which is the geometric standard simplex ∆n in simplicial degree n.
Using this object, one can rewrite the geometric realization of a simplicial
space X• as the coend construction |X•| = X• ⊗∆ δ• and the totalization of
a cosimplicial space as totY • = Nat∆(δ•, Y •). The same can be done for the
dihedral category, obtaining the standard codihedral space δD. Concretely,
δnD
∼= O×∆n with the following structure maps.

δi = id× δi

σi = id× σi

ρn(z, α, t0, . . . , tn) = (z,−α, tn, . . . , t0)

τn(zα, t0, . . . , tn) = (z exp(−α2πit0), α, t1, . . . , tn, t0)

It is an elementary check that all of the structure maps are O-equivariant
if one uses left multiplication. This means that in fact δD is a functor
∆D → O-Top. The same construction can be done for the cyclic and the
reflexive category and the resulting functors are all compatible.

Proposition 3.7. The realization of a dihedral space has a natural O-action.
The same is true for the totalization of a codihedral space.

Proof. See also Theorem 5.3 of [FL91] and §3 of [Jon87]. We have that

|X•| = X• ⊗∆ δ• ∼= X• ⊗∆D δ
•
D

totY • = Nat∆(δ•, Y •) ∼= Nat∆D(δ•D, Y
•).
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In both cases, the O-action is now given by acting on δ•D ∼= O×∆•. Because
the action is natural in the structure maps of δ•D, these actions are well
defined and natural. �

Remark 3.8. Note that every dihedral space is reflexive by forgetting along
the inclusion ∆R ↪→ ∆D. The resulting C2-action is surprisingly simple,
given that describing the T-action on the realization of a cyclic space is not
really explicit in the same way. If x ∈ Xn and t = (t0, . . . , tn) ∈ ∆n, the
action of the generator of C2 on the point [x, t] = [x,+1, t] is [x,−1, t] =

[x, ρn(+1, tn, . . . , t0)] = [rn(x),+1, tn, . . . , t0].

Example 3.9. The dihedral set S1
• from Example 3.4 realizes to the circle.

The C2-action is the map z 7→ z−1. This can be checked explicitly using the
identification S1 ∼= |S1

• | : z = e2πiθ 7→ [1, (θ, 1−θ)] where 1 is the fundamental
simplex 1 ∈ Z/2Z = S1

1 . We also identify the totalization of the codihedral
mapping space as tot(Map(S1

• , X)) ∼=O LX.

4. Cyclic and dihedral homology

Although the use of cyclic homology is widespread, Loday’s dihedral
homology is less commonly known. The material presented in this section is
based on the various treatments in the literature, especially on [KLS88; FL91;
Ldd93; Ldd96; Lod98] and of course the original source [Lod87]. Although
our definitions of dihedral homology and cohomology turn out to coincide
with those in the literature, the presentation is somewhat different.

Because our aim is to produce an algebraic model for homotopy orbits of
an O-space, our definitions of cyclic and dihedral homology will be in analogy
to constructions in Top. In particular, we will abuse notation by writing
T = H∗(T;k) and O = H∗(O;k) for the graded algebras obtained by applying
singular homology to the two topological groups T and O. We see that T is
generated by B, the fundamental class of the circle, which is of degree one
and satisfies B2 = 0. The algebra O = T o C2 has an additional generator
R of degree zero, which satisfies R2 = 0 and RB = −BR. We are especially
interested in differential graded modules over these algebras.

Example 4.1. Let ET∗ be the normalized total complex of the two sided
bar construction B•(k,T,T). This is a free contractible right differential
graded T-module of the form k[u−1]⊗ T where |u| = −2 and the differential
is u−p ⊗ 1 7→ u−p+1 ⊗ 1, u−p ⊗B 7→ 0. The group C2 acts on T by B 7→ −B,
so the corresponding simplicial action on ET∗ is u−p ⊗ 1 7→ (−1)pu−p ⊗ 1

and u−p ⊗ B 7→ (−1)p+1u−p ⊗ B. That gives us a free contractible right
differential graded O-module EO∗ := ET∗ ⊗ (EC2)∗. Here EC2 denotes the
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periodic resolution of the trivial C2-module that in every non-negative degree
is given by kC2. The differential on an element of degree p is multiplication by
g+(−1)p1, where g is the generator of C2. We can write EC2 as kC2⊗k[v−1]

with |v| = −1 with a non-trivial differential.

Example 4.2. (See also §4 of [Jon87]) Let W be a T-space with action map
µ : T ×W → W . The formula B(σ) = µ∗(z × σ) defines a left differential
graded T-module structure on the singular chains S∗(W ). Here [T] is the
fundamental cycle of T. If W was an O-space, the chains also form an
O-module.

Example 4.3. The totalization of a cyclic chain complex is a T-module and
the totalization of a dihedral chain complex is an O-module. Using the
structure maps we may define the following operations in simplicial degree
n: The simplicial boundary map bn = Σn

i=0(−1)idi, the cyclic generator
Tn = (−1)ntn, the generator of the C2-action Rn = (−1)n(n+1)/2rn and
the norm operator Nn = id + T + T 2 + . . . Tn. These in turn allow us to
define Connes’ B operator Bn = (−1)int(1− T )tn+1snN . The operations T
and R form chain maps with respect to both the internal differential and b
whereas B anticommutes with both. The operations also satisfy the relations
(Tn)n+1 = R2 = id, RTR = T−1, B2 = b2 = 0, BR = −RB. The proofs of
most of these properties and identities are found in Chapter 2 of [Lod98].

Definition 4.4. Let M∗ be a (differential graded) left T-module. We define
MhT := ET∗ ⊗T M∗ and MhT := ChT(ET∗,M∗) ⊂ Ch(ET∗,M∗). If M∗
is moreover an O-module, we similarly define MhO := EO∗ ⊗O M∗ and
MhO := ChO(EO∗,M∗).

Proposition 4.5. Let M∗ be a differential graded left O-module, then

MhO = (MhT)hC2 and MhO = (MhT)hC2 .

Proof. We can convert left into right modules and visa versa using the Hopf
algebra structures of O and T. Also, we can use the semi direct product
structure O = T o C2 to break down the tensor product over O into two
steps k⊗O (−) = k⊗C2 (k⊗T (−)). We see that

MhO = EO⊗OM = k⊗O (ET⊗EC2⊗M) = k⊗C2 (k⊗T (ET⊗EC2⊗M)).

Because T acts trivially on the EC2 factor we conclude that

MhO = EC2 ⊗C2 (ET⊗T M) = (MhT)hC2 .

A similar argument shows that MhO = (MhT)hC2 . �
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Combining the proposition with the concrete expressions we see that
MhT = M [u−1] with the differential

u−qm 7→ u−qdMm+ u−q+1Bm,

and MhO = M [v−1, u−1] with the differential

v−pu−qm 7→(−1)p(v−pu−qdMm+ v−pu−q+1Bm)

+ v−p+1u−q((−1)qR+ (−1)p)m.

Note that the degree of v−1 is 1 and the degree of u−1 is 2. The signs in the
last term are the differential g + (−1)p1 coming from the periodic resolution
of the constant C2-module, applied to MhT.

Definition 4.6. Let A be an involutive dga. We define the Hochschild
complex C∗(A) to be the normalized total complex of the dihedral chain
complex BcycA of Example 3.5. We then define the cyclic chains and the
negative cyclic chains to be CC∗(A) = C∗(A)hT and CC−∗ (A) = C∗(A)hT.
Similarly we define the dihedral chains and negative dihedral chains to be
DC∗(A) = C∗(A)hO andDC−∗ (A) = C∗(A)hO. The corresponding homologies
are denoted HH∗(A), CH∗(A), CH−∗ (A), DH∗(A) and DH−∗ (A).

Proposition 4.7. Let φ : M∗ → N∗ be a map of differential graded O-modules.
If φ is a quasi isomorphism, then the associated maps ψhO : MhO → NhO and
ψhO : MhO → NhO are also quasi isomorphisms.

Proof. The double complex arguments in the proofs of parts ii and iii of
Lemma 2.1 in [Jon87] imply that the maps ψhT and ψhT are quasi isomor-
phisms. The same proof can be used to show that the functors (−)hC2 and
(−)hC2 preserve quasi isomorphisms. As ψhO = (ψhT)hC2 and ψhO = (ψhT)hC2

are compositions of these functors, both maps are quasi isomorphisms. �

Comparison with other definitions. In the literature, starting with
[Lod87], it is common to define the dihedral homology of a dihedral k-
module M• as HD∗(M•) = Tor∆D

∗ (k†,M•), where k† denotes the trivial
(co)dihedral k-module. Several different chain complexes are available for
computing the homology. In particular, every resolution of k† yields such
a chain complex. For example, one could resolve all the dihedral groups
and patch them together to get a resolution of the trivial module. For the
case when 2 is invertible in our base ring k this is in fact what Loday did
in [Lod87] and a version without this assumption first appeared in [Ldd90].
When working with cyclic homology it is common to take the cyclic analogue
of this complex and contract a subcomplex, obtaining the (B, b)-complex.
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This procedure can also be applied for dihedral homology to obtain a (B, b)

version of dihedral chains, see also [Lod87, Proposition 1.7] and [Ldd93,
Lemma 2.2]. In fact, this can be used to see that our definition of dihedral
homology is isomorphic to the Tor definition.

In [Ldd93] Lodder discusses several possible definitions for the negative
variant of dihedral homology. One of these is called DIII, and our definition
of negative dihedral homology coincides with the hyperhomology version of
this definition. Although it does not seem to be mentioned explicitly, it seems
that HD−∗ (M) = Ext−∗∆D(k†,M).

5. Dihedral Goodwillie isomorphism

This section is a summary of how a dihedral version of the Goodwillie
isomorphism is proven in [Dun89]. In [Dun89], all topological space are
assumed to be compactly generated and LEC means that the diagonal map
is a cofibration. CW complexes are examples of LEC spaces.

Theorem 5.1 ([Dun89] Th 3.6). Let G be a group-like topological LEC
unital monoid with involution, i.e., with a self map (−) : G→ G satisfying
a · b = b · a and e = e. Then for k a ring we have an isomorphism

HD∗(S∗(G; k)) ∼= H∗((LBG)hO; k)

Here the differential graded algebra S∗(G;k) carries the involution induced
by the involution of the monoid G and LBG has the involution that both

reverses the direction of loops and uses BG
B(·)−−→ BG.

Proof. The proof can be broken down into a few steps. First we use the
Eilenberg–Zilber maps to construct a quasi isomorphism of dihedral chain
complexes BcycS∗G

'−→ S∗(BcycG), which is Proposition 3.5 [Dun89]. Here
Bcyc denotes the cyclic bar construction, promoted to a dihedral object as in
Example 3.5. In the first instance this is done in (Ch,⊗) and in the second
in (Top,×). Then we use [Dun89, p. 3.3]: If Y• is a (good) dihedral space
(e.g., BcycG), then HD∗(S∗Y•) ∼= H∗(hocolim∆D Y•). This can be seen using
a statement about hypertor of functors

HD∗(S∗Y•) ∼= Tor∆D
n (k, S∗Y ) ∼= Hn(hocolim∆D Y•;k),

which is a generalization of Theorem 6.12 of [FL91]. The final ingredient is
[Dun89, p. 2.10] hocolim∆D B

cycG ' LBGhO, which follows from the fact
that |BcycG| 'O LBG. �

Proposition 5.2. There is a natural C2-equivariant map

ξ : BΩMooreX → X
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that is a weak equivalence if X is connected. Here we use the trivial C2-action
on X and the action on BΩMooreX coming from the involution on ΩMooreX

by reversing loops, see also Example 3.3.

Proof. We begin by describing the map as defined in [May75, Lemma 15.4].
It is also shown there that this map is a weak equivalence if X is connected.
By viewing the classifying space as the realization of a bar construction, we
may define ξ[γ1, . . . , γn;u] = (γ1 . . . γn)(Σ1≤i≤puiai). Here γi ∈ ΩMooreX of
length ai , u = (t0, . . . , tp) ∈ ∆p and ui = t0 + . . .+ ti−1. The source carries
a C2-action because it is the realization of a reflexive object, see also Remark
3.8. The generator of C2 acts as [γn, . . . , γ1;u] and a quick calculation shows
that ξ([γn, . . . , γ1;u]) = ξ([γ1, . . . , γp;u]). From this calculation it is also
clear what to do when X is a C2-space: One may simply add this action to
the involution of the monoid ΩMooreX. �

Corollary 5.3 (Dihedral Goodwillie Isomorphism). For X a connected LEC
space and k any ring.

HD∗(S∗(ΩMooreX);k) ∼= H∗((LX)hO;k)

Proof. This follows from the theorem above by inserting G = ΩMooreX and
using the equivalence BG '−→ X. �

6. The cyclic bar construction and free loop spaces

In this section we establish an equivalence of dihedral objects between
the cyclic bar construction of the cochains (Example 3.5) and the cochains
of the cosimplicial model for free loop space (Example 3.4). This is done
by extending the results of [Ung16] from an equivalence of (co)cyclic chain
complex to an equivalence of (co)dihedral chain complexes.

Proposition 6.1. Let X be a space with finite type homology over a principal
ideal domain k. There is a natural zigzag of equivalences of dihedral chain
complexes

Bcyc
• S∗(X;k)

'←− QBcyc
• S∗(X;k)

'−→ S∗(Map(S1
• , X);k),

where QBcyc
• S∗(X;k) is a resolution of the cyclic bar construction.

Remark 6.2. There is a more general statement when working with chains
rather than cochains. See Remark 1 in [Ung16].

Proof of Proposition 6.1. To extend the proof of the Main Theorem in [Ung16]
two things need to be added. Lemma 1 on [Ung16] should be checked for the
morphisms rn ∈ ∆Dop([n], [n]), which is elementary. More importantly, one
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needs a contractible operad S̃ with a natural action on cochains in such a
way that it encodes the cup product in arity two, the involution (−) in arity
one and insertion of the unit in arity zero. This ensures that the equation (?)
lives entirely inside the operad S̃. In particular, the action of rn on the cyclic
bar construction is a composition of a permutation of arguments (the operad
is symmetric) and termwise application of the involution. The existence of
an operad with such an action is established in Proposition 6.4 below. �

Lemma 6.3. There exists a quasi free unital differential graded algebra (R, δ)

over k and a natural differential graded R-module structure on S∗(X). The
algebra R contains a distinguished element r of degree zero that acts on chains
as rσ = σ where σ(t0, . . . , tn) = (−1)n(n+1)/2σ(tn, . . . , t0).

Proof. We define R =
⋃
lR

l where we construct the Rl inductively, starting
with R0 freely generated by an element r of degree zero. From Rl we obtain
Rl+1 by adding a generator h(a) for every word a ∈ Rl, where h(a) is one
degree higher than a is. For example, r2h(r12h(r)h(rh(r5))) is an element of
degree four in R3. The differential is defined on generators as δh(rp) = rp− 1

and δh(a) = a − h(δa) if the degree of a is not zero. The map a 7→ h(a)

defines a contracting homotopy.
It now remains to show that we can define the natural module structure on

S∗(X). This is done by the method of acyclic models and induction on l, the
degree of the operation and the degree of the chain on which the operations
act. Note that if a is any natural operation, it is determined by its action
on universal simplices κn ∈ Sn(∆n) for all n as a(σ) = a(σ∗κn) = σ∗(κn)

for σ ∈ Sn(X). Also, a(dσ) = σ∗a(dκn) = σ∗Σn
i=0δ

i
∗a(κn−1) where the maps

δi : ∆n−1 → ∆n are the face inclusions.
Because R0 is freely generated by r, its action on chains is determined by

the formula r(σ) = σ. Finding the action of the h(rp) ∈ R1 reduces to fixing
the action of a single h(r) because r2(σ) = σ. This operation can either be
found using acyclic methods or can be found as the prism operator in the
proof of homotopy commutativity of the cup product (see [Hat02, p.211]).
We proceed with the inductive step.

Assume we have specified the action of all generators in Rl−1 and all
new generators (elements of the form h(a) for a ∈ Rl−1) in Rl of degree
m. Let a be a word of degree m in Rl−1 that is not in Rl−2. We need to
show the existence of a natural operation associated to h(a) that satisfies
(δh(a))(σ) = a(σ)−h(δa)(σ). Here the first δ should be read as the differential
as an operation: (δh(a))(σ) = dh(a)(σ)− (−1)m+1h(a)(dσ). Using this, we
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see that it suffices to specify h(a)(κn) ∈ Sn+m+1(∆n) for all n, such that

(1) dh(a)(κn) = a(κn)− h(δa)(κn) + (−1)m+1Σn
i=0(−1)iδi∗h(a)(κn−1).

We can define such h(a)(κn) by induction on n: If we assume to have found
such h(a)(κN ) for N < n, all the terms of the right hand side are elements
of Sn+m(∆n) that have been found. A small calculation shows that the right
hand side is a cycle and as ∆n is contractible, we see that h(a)(κn) exists. For
the base of this part of the induction one needs to find a h(a)(κ0) ∈ Sm+1(∆n)

whose boundary is a(κ0)− h(δa)(κ0), which is again possible because ∆n is
contractible. �

Proposition 6.4. There exists a symmetric, reduced, differential graded
operad S̃ with a natural action on cochains. The operad contains distinguished
elements in arity two, one and zero representing the cup product, the involution
and insertion of the unit respectively.

Proof. The operad S̃ is defined as the pushout of S ← k1→ R. Here k1 is
the initial reduced operad and R is the operad associated to the differential
graded algebra of Lemma 6.3. As R is quasi free and contractible, k1 ↪→ R

is an acyclic cofibration in the Berger–Moerdijk model structure. Therefore
S '−→ S̃ is a weak equivalence. An algebra structure on a chain complex for
such a coproduct operad is a pair of algebra structures that agree in arity
zero. As we know that there are natural action of both S and R on singular
cochains and that they both insert the unit as the arity zero operation, we
see that singular cochains carry a natural algebra structure over S̃.

The distinguished elements in arity two and arity zero are provided by the
image of S → S̃. The involution is provided by the action of the generator
r ∈ R. �

7. Comparing homotopy orbits

An often used fact is that XhG ' (XhN )hG/N for X a G-space and N / G.
This is a consequence of the fact that any model for EG is also a model for
EN . We use a variation of this fact to see that XhO ∼= (XhT)hC2 in a way
that is compatible with the algebraic statement of Proposition 4.5.

Definition 7.1. The two sided bar construction model for ET comes with
a simplicial right O-action that extends the T-action: On Bn(∗,T,T) the
action of O = T o C2 is defined as (z1, . . . , zn)z0 · (z, α) = (zα1 , . . . , z

α
n )zα0 z

α.

Proposition 7.2. Let X be a left O-space. Then there is an equivalence
XhO ' (XhT)hC2.
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Proof. Let EC2 be any contractible space with a free C2-action. Then C2 acts
diagonally on EC2×ET, whereas T acts only on ET. Together this gives a free
O-action and thus a model for EO. Using the fact that (−)O = ((−)T)C2 , we
now see thatXhO = (EC2×ET)×OX = EC2×C2(ET×TX) = (XhT)hC2 . �

Proposition 7.3. Let X be a left O-space. Then there are equivalences
S∗(XhT) ' (S∗(X))hT and S∗(XhO) ' (S∗(X))hO.

Proof. On both sides, the homotopy T-orbits can be described by a two sided
bar construction. Combining the Eilenberg–Zilber equivalence with the map
T = H∗(T)

'
↪−→ S∗(T), we obtain an equivalence of simplicial chain complexes

B•(k,T, S∗X)
'−→ B•(k, S∗T, S∗T)

'−→ S∗(B•(∗,T, X)).

Passing to the total complexes we obtain a quasi isomorphism

(S∗(X))hT
'−→ S∗(XhT).

Although this map is not C2-equivariant on the nose, it is equivariant up to
coherent homotopy, which is enough in order to compare homotopy orbits.
More concretely, there exists a C2-equivariant map

B∗(C2, C2, B∗(k,T, S∗(X)))→ B∗(k, S∗(T), S∗(X)),

and it is clear that this map induces an equivalence on homotopy orbits as
claimed. The existence of the homotopy coherent map can be shown using
acyclic methods.

The map T ↪→ S∗(T) does not commute with the C2-action as −[T] and
[−T] do not coincide in S∗(X). Here [−T] is the fundamental cycle with
the opposite orientation, given by [−T](t0, t1) = e−2πit0 = e2πit1 as opposed
to [T](t0, t1) = e2πit0 . The two are however homologous cycles, with the
difference given as the boundary of the two-chain P (t0, t1, t2) = e2πit1 in
the normalized complex. This gives the zero’th level of a C2-equivariant
map B∗(C2, C2,T)

'−→ S∗(T), which exists by an acyclic methods argument.
Taking tensor powers we obtain a sequence of maps

B∗(C2, C2,T)⊗n ⊗ S∗(X)→ (S∗(T))⊗n ⊗ S∗(X).

Using the Eilenberg–Zilber equivalence and the multiplication map Cn2 → C2

we get

B∗(C2, C2,T)⊗n '−→ B∗(Cn2 , C
n
2 ,T⊗n)

'−→ B∗(C2, C2,T⊗n).

Combining these maps for all n we get a map

B∗(C2, C2, B∗(k,T, S∗(X)))→ B∗(k, S∗(T), S∗(X)).
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By taking C2 homotopy orbits, we get the desired equivalence

(S∗(X))hO ' ((S∗(X))hT)hC2 ' S∗(XhO).

�

8. Comparing totalisations

Let Y • be a codihedral space, for example Map(S1
• , X) for a space X.

Associated to Y • are two chain complexes and a natural map between them
ψ : S∗ totY • → TotΠ S∗Y •. This map is defined as ψ(σ) = Πn(αn)∗(σ × κn),
where κn ∈ Sn(∆n) is the fundamental simplex and αn : (totY •)×∆n → Y n

is the evaluation map coming from the definition of totalization as the end
construction totY • = Nat∆(δ•, Y •). Although both sides are O-modules, ψ
is only almost an O-map. To fix this, we now introduce a slightly different
model for the right hand side. Let S̃n(X) denote the oriented singular
n-chains, defined by quotienting Sn(X) by the relation g · σ ∼ sgn(g)σ where
sgn(g) is the sign of a permutation g ∈ Σn+1 that acts by permuting the
coordinates simplices. This defines a functor S̃ : Top→ Ch that is naturally
quasi isomorphic to the usual singular chains. For more details on S̃, see
[Bar95].

Proposition 8.1. If ψ is a quasi isomorphism, then S∗ totY • and TotΠ S∗Y •

are quasi isomorphic as O-modules and

(S∗ totY •)hO ' (TotΠ S∗Y •)hO.

Proof. It suffices to show that the composition

ψ̃ : S∗ totY •
ψ−→ TotΠ S∗Y n → TotΠ S̃∗Y n

is an O-map. Concretely this means checking that it commutes with the
R and B operators on both sides. On totY •, the C2-action is given by
(Rf)(t) = (ρnf)(top), meaning that (αn)∗(Rσ × κn) = (ρnαn)(σ × κop).
Here κop(t) = top = (tn, . . . , t0). On the other hand, as the C2-action on
TotΠ S∗Y • is (−1)n(n+1)/2ρn on level n, the R operator on the right hand
side gives R(αn)∗(σ×κn) = (−1)n(n+1)/2(ρnαn)∗(σ×κn). By inspecting the
definition of the shuffle product, it can be seen that these two expressions
are equal when passing to S̃∗.

The analogous check for the B operator involves comparing µ∗([T]× ιn+1)

with Bιn, where ιn ∈ S∗(δnC) is the fundamental simplex. Again one needs to
pass to S̃∗ for the two to be equal. A claim related to ψ commuting with the
B operator is on page 417 of [Jon87]. �
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Remark 8.2. The condition that ψ is a quasi isomorphism is not always
satisfied and is related to the convergence of a generalized Eilenberg–Moore
spectral sequence [And72; Bou87]. When k is a field and Y • = Map(S1

• , X) for
X a simply connected space, the condition is claimed to hold in [And72] and
a more detailed discussion is found in [PT03]. Given that Jones’ isomorphism
has been proven to hold in greater generality in [AF15], it is quite possible that
ψ is a quasi isomorphism under weaker hypotheses. This would strengthen
our Main Theorem.

9. Proof of the Main Theorem

Main Theorem. Let k be a field and X a simply connected space of finite
type over k. Then there is an isomorphism

H∗(LXhO) ∼= HD−∗ (S∗(X)).

Proof. By Proposition 6.1 there is an equivalence of dihedral chain com-
plexes Bcyc

• S∗(X) ' S∗(Map(S1
• , X)), which by Example 4.3 and a double

complex argument gives an equivalence of differential graded O-modules
C∗(S∗(X)) = Tot⊕B

cyc
• S∗(X) ' Tot⊕ S∗(Map(S1

• , X)). Applying the linear
dual of Proposition 8.1 to the codihedral space Y • = Map(S1

• , X) yields an
equivalence of differential graded O-modules

Tot⊕ S∗(Map(S1
• , X)) 'O S

∗(tot Map(S1
• , X)).

Note that tot Map(S1
• , X) ∼=O LX by Example 3.9 and that the hypothesis

of Proposition 8.1 is satisfied because of Remark 8.2. In all, we now have
that C∗(S∗(X)) 'O S

∗(LX) and Proposition 4.7 implies

DC−∗ (S∗(X)) = (C∗(S∗(X)))hO ' (S∗(LX))hO.

After applying the linear dual of Proposition 7.3 we finally see that the last
term is equivalent to (S∗(LX))hO ' S∗(LXhO) and the theorem follows. �

Remark 9.1. The exact same methods can be used to show a C2-version of
the Jones isomorphism.

HR−∗ (S∗(X)) ∼= H∗(LXhC2)

The corresponding cohomology theory is called negative reflexive homology
HR−∗ and is defined as the homology of (C∗(A))hC2 .
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10. An involutive de Rham isomorphism

The goal of this section is to prove that the de Rham cochain algebra
Ω∗dR(M) and the singular cochain algebra S∗(M) on a compact smooth
manifold M are quasi isomorphic as involutive dga’s. To do this, we will take
a zig-zag witnessing the quasi isomorphism without involutions, give all the
terms involutions and check that all the maps in the zig-zag preserve these
involutions. In particular this involves upgrading the polynomial de Rham
forms A∗PL(M) to an involutive dga. The following pair of theorems is the
starting point of the proof.

Theorem 10.1 ([FHT01, Theorem 10.9]). Let k be a field of characteristic 0.
For K a simplicial set, the natural morphisms of differential graded algebras
over k,

APL(K)→ (CPL ⊗APL(K))← CPL(K)

are quasi isomorphisms.

Theorem 10.2 ([FHT01, Theorem 11.4]). For a smooth manifold M , the
natural morphisms of differential graded algebras over k = R,

Ω∗dR(M)
αM−−→ AdR(Sing∞• (M))

βM←−− APL(Sing∞• (M))
γM←−− APL(Sing•(M))

are quasi isomorphisms.

All of the terms except for the smooth forms Ω∗dR(M) can be defined using
the following construction.

Definition 10.3. For every simplicial dga A•, we get an associated cochain
functor A(−) = Nat∆op(−, A) : sSetop → dga. This construction is covariant
in A•, so we have a functor sSetop × sdga→ dga

Example 10.4. Singular cochains of a space or more generally simplicial
cochains of a simplicial set K• can be viewed as CPL(K•), where CPL• is the
simplicial dga that is C∗(∆[n]) in simplicial degree n.

Example 10.5. Another important example is the piecewise linear forms APL•.
In simplicial degree n this is the cdga

APL[n] = Λ(t0, . . . , tn, dt0, . . . , dtn)/(Σti − 1).

Here the generators ti are of degree 0 and Λ denotes the free graded com-
mutative algebra. Because APL• is graded commutative in each simplicial
degree, the associated cochain functor lands in cdga’s.

Example 10.6. Smooth forms on the geometric simplices also form a simplicial
cdga AdR•. The map βM is induced by the inclusion APL• ↪→ AdR•.
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Remark 10.7. The map αM is induced by the maps σ∗ : Ω∗dR(M)→ Ω∗dR(∆n))

that pull back forms along smooth simplices σ ∈ Sing∞n (M). The map γM is
induced by the inclusion of smooth singular simplices into continuous singular
simplices Sing∞• (M) ↪→ S•(M). The last two maps come from the simplicial
maps APL• → CPL• ⊗APL• ← CPL•.

The involutions. From now on, Ω∗dR(M) will carry as its involution the
identity, see Example 2.2. For all the other terms, we extend Definition
10.3 so that it lands in involutive dga’s. For this, we need to change the
input—instead of simplicial sets, we use reflexive sets rSet = Set∆Rop

and
instead of simplicial dga’s we use the category i-rdga defined below.

Definition 10.8. An involutive reflexive dga is a reflexive object in dga
such that the reflexive structure map rn is an involution of dga’s in every
simplicial level n. The category of such objects with morphisms of reflexive
dga’s is called i-rdga ⊂ dga∆Rop

. Note that this is not the same as simplicial
objects in involutive dga’s.

Example 10.9. There is an involutive reflexive structure on APL• using
rn : ti 7→ tn−i.

Example 10.10. Given A,B ∈ i-rdga, their levelwise tensor product is again
an involutive reflexive dga.

Proposition 10.11. Simplicial cochains CPL• carry the structure of an
i-rdga.

Proof. The standard simplicial sets ∆[n] carry an involution by reversing
order: σ(i) = n − σ(p − i) for σ ∈ ∆[n]p. If we view these simplices as
coming from the Yoneda embedding, we see that σ ◦ σ′ = σ ◦ σ′ and we
see that the construction is both reflexive (in p) and coreflexive (in n). We
now define the reflexive structure map on the simplicial dga CPL• to be
γ(σ) = (−1)p(p+1)/2γ(σ), where γ is a p cochain in simplicial degree n.
Unitality, γ = γ and graded linearity are clear so we show the remaining
properties.

Anti-simplicial: The simplicial structure of CPL is the cosimplicial
direction of ∆[n]p. For example, δi : ∆[n− 1]→ ∆[n] pulls back to
di : C

∗(∆[n])→ C∗(∆[n− 1]). It is then an elementary check to see
that diγ(σ) = dn−iγ(σ) and similarly for the degeneracies.

Differential: First we observe that on the level of simplicial chains we
have dσ = (−1)pdσ. Then it follows easily that dγ = dγ.
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Multiplication: Because the involution is anti-simplicial, we have the
following identities by induction: For a (p+ q) simplex σ

dp+1 . . . dp+qσ = dqoσ

dq+1 . . . dq+pσ = dpoσ

The cup product of cochains γ1, γ2 of degrees p and q is defined as
γ1 ∪ γ2(σ) = (−1)pqγ1(dp+1 . . . dp+qσ)γ2(dpoσ). Now we have

γ1 ∪ γ2(σ) = (−1)pq(−1)(p+q)(p+q−1)/2γ1(dp+1 . . . dp+qσ)γ2(dpoσ)

= (−1)pqγ1(dqoσ)γ2(dq+1 . . . dq+pσ)

= (−1)(p+q)(p+q−1)/2+q(q−1)/2+p(p−1)/2γ2 ∪ γ1(σ)

= (−1)pqγ2 ∪ γ1(σ)

�

Proposition 10.12. The construction of Definition 10.3 gives a functor
(rSet)op × i-rdga→ i-dga using the same dga A(K) associated to the under-
lying simplicial dga of A and underlying simplicial set K. This is defined to
carry involution Φ = (σ 7→ IΦ(Rσ)) for Φ ∈ A(K) with I and R the reflexive
structure maps rn of A and K respectively.

Proof. The fact that the construction is functorial follows immediately from
the definition of the morphisms in rSet and i-rdga. What needs to be checked
is that the map described really is an involution on A(K).

Target: The Φ is an element of A(K) = Natop
∆ (K,A), i.e., it is simpli-

cial:

Φ(diσ) = IΦ(Rdiσ) = IΦ(dn−iRσ) = Idn−iΦ(Rσ) = diIΦ(Rσ) = diΦ,

and similarly for the degeneracy maps.
Differential: The differential of a natural transformation Φ ∈ A(K)

was defined using the target A. We see that

dΦ(σ) = dAIΦ(Rσ) = I(dAΦ)(Rσ) = dφ(σ).

Unitality: Is 1 = 1 ∈ A(K)? The unit of A(K) is defined to send any
σ ∈ Kn to the unit in simplicial degree n. So we see that

1(σ) = I1(Rσ) = 1(Rσ) = 1(σ).

Involution: The fact that Φ = Φ follows from the properties R ◦R =

idK and I ◦ I = idA.
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Multiplication: Let Φ,Ψ ∈ A(K) be of degree p and q respectively.
We check that

ΦΨ(σ) = I(ΦΨ)(Rσ) = I(Φ(Rσ)Ψ(Rσ))

= (−1)pq(IΨ(Rσ))(IΦ(Rσ)) = (−1)pqΨ(σ)Φ(σ)

= (−1)pqΨ Φ(σ).

�

Proposition 10.13. The dga of singular cochains S∗(X) = CPL(Sing•X)

carries an involution given by γ(σ) = (−1)p(p+1)/2γ(σ).

Proof. Combining the rSet-structure of Sing•(X) with the i-rdga structure
of CPL supplies the singular cochain dga S∗(X) with an involution. It is
useful to see what it does concretely. First we will describe the isomorphism
S∗(X) ∼= CPL(Sing•(X)) precisely. Let λ ∈ CPL(Sing•(X)), say of degree p:
A map that assigns to every non-degenerate n simplex in Singn(X) a p cochain
in (CPL)n = Cp(∆[n]). It corresponds to the singular cochain in Sp(X)

that sends σ 7→ λσ(cp) where cp is the fundamental simplex of ∆[p], that is
idp ∈ ∆([p], [p]). The other way around, given a γ ∈ Sp(X), the corresponding
element of CPL(Sing•(X)) sends σ 7→ Cp(σ∗)(γ) = (τ 7→ γ(σ∗τ)), where
σ∗ : ∆[n]→ Sing•(X) using the Yoneda lemma. We now chase the involution.

γ 7→ (σ 7→ Cp(σ∗)(γ))

7→ (σ 7→ σ 7→ Cp(σ∗)(γ) 7→ (∆[n]p 3 τ 7→ (−1)p(p+1)/2γ(σ∗τ)))

7→ (σ 7→ (−1)p(p+1)/2γ(σ∗ep) = (−1)p(p−1)/2γ(σ))

In the last line we use the fact that the fundamental simplices are fixed by the
involution ep = ep and that σ∗ep = σ. So we see that all the involution does
is add a sign and evaluate on the flipped simplex: γ(σ) = (−1)p(p+1)/2γ(σ).
The exact same holds for smooth simplices. �

Theorem 10.14. The maps in the zig-zags of Theorems 10.1 and 10.2 are
maps of involutive dga’s.

Proof. The only map not given by bifunctoriality of the ‘cochain functor’
construction is αM . It is given by sending a form ω 7→ {σ∗ω}σ∈Sing∞• (M). As
Ω∗dR(M) is graded commutative, the identity map will act as the involution.
So to check that αM respects the involution it is equivalent to check that
the image is pointwise fixed by the involution. The involution in the target
AdR(Sing∞• (M)) is given by the combination of IAdR and RSing∞• (M). The
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first pulls forms on ∆n back along φn (the map that flips coordinates), the
second flips coordinates of smooth singular simplices Rσ = σ ◦ φ = σ.

{σ∗ω} = {I(Rσ)∗ω} = {φ∗(σ ◦ φ)∗ω} = {φ∗φ∗σ∗ω} = {σ∗ω}

The map βM is induced by the inclusion of piecewise linear forms into de
Rham forms on ∆n, APL ↪→ AdR, which is clearly a morphism in i-rdga. So
βM respects the involution by functoriality. The same holds for γM , which is
induced by the morphism Sing∞• (M) ↪→ Sing•(M) in rSet.

Finally, it is an elementary check that the tensor product of simplicial
dga’s can be promoted to a tensor product in i-dga (see Example 10.10) and
that APL → CPL ⊗ APL ← CPL are morphisms in i-dga. Hence the last
three maps in the zig-zag respect the involution. �

Corollary 10.15. De Rham cochains Ω∗dR(M) with trivial involution and
normalized singular cochains S∗(M) with the involution from Proposition
10.13 are quasi isomorphic as involutive dga’s.

Corollary 10.16. Let M be a simply connected manifold of finite type over
R. Then using the trivial involution on Ω∗(M ;R) the following isomorphisms
hold.

H∗(LM ;R) ∼= HH∗(Ω∗(M ;R))

H∗(LMhT;R) ∼= HC−∗ (Ω∗(M ;R))

H∗(LMhO;R) ∼= HD−∗ (Ω∗(M ;R))

Note that the first two isomorphisms already follow from Theorem A in
[Jon87], combined with the de Rham Theorem. The proofs do imply however,
that these two isomorphisms are C2-equivariant.

Proposition 10.17. Let K• be a reflexive set (e.g., Sing•X) and A an invo-
lutive reflexive dga (e.g., APL). If A is graded commutative in every simplicial
degree and the involution (−) of Proposition 10.12 is chain homotopic to the
identity, then (A(K), (−)) ' (A(K), id) as involutive dga’s.

Proof. As both K• and A are reflexive objects, we may form the end con-
struction Ã(K) := Nat∆R(K•, A) ⊂ Nat∆(K•, A) = A(K). On Ã(K), the
two involutions agree and the inclusion map ι : Ã(K) ↪→ A(K) is a section
of the chain map ρ : Ψ 7→ 1

2(Ψ + Ψ). If h is a chain homotopy between the
involution and the identity, then 1

2h is a chain homotopy between ι ◦ ρ and
the identity. Hence ι is a quasi isomorphism and the result follows from the
following zig-zag.

(A(K), (−))←↩ (Ã(K), id) ↪→ (A(K), id)
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�

Proposition 10.18. Let X be a topological space. Then

(APL(Sing•X), (−)) ' (APL(Sing•X), id)

as involutive dga’s.

Proof. We need to show that the condition of Proposition 10.17 holds for
K• = Sing•X and A = APL. This can be seen by considering the following
diagram, which commutes by Theorem 10.1.

APL(Sing•X)

(−)
��

// (CPL ⊗APL(Sing•X))

(−)
��

S∗(X)oo

(−)
��

APL(Sing•X) // (CPL ⊗APL(Sing•X)) S∗(X)oo

After taking homology, the vertical morphism on the right hand side is the
identity and arrows are isomorphisms. This implies that on homology, the
involution (−) on APL(K) is the identity. Over a field, two chain maps are
the same on homology if and only if they are chain homotopic and thus it
follows that (−) is homotopic to the identity. �

The fact above allows one to take any cdga model A for a space X from
rational homotopy theory and use the equivalence (A, id) ' (S∗(X;Q), (−))

to compute H∗(LXhO) with. In particular we have the following statement.

Corollary 10.19. If X is a rationally formal simply connected space of finite
type, then S∗(X) is formal as an involutive dga and thus

H∗(LXhO;Q) ∼= HD−∗ (H∗(X;Q)).

11. An example calculation

In this section we show that the results from the last section allow one to
do concrete calculations. To demonstrate this we calculate Borel equivariant
cohomology of LS2 over the rationals. As S2 is rationally formal, it is
involutively formal over the rationals by Corollary 10.19 and to calculate
negative dihedral homology we may use the algebra H∗(S2;Q) = Q[α]/α2

where |α| = 2.
The normalized Hochschild complex is generated by classes αn = 1⊗ α⊗n

and βn = α⊗ α⊗n for all n ≥ 0, which have total degrees −n and −(n+ 1)

respectively. As the internal differential is 0, the total differential is given by
(−1)intΣ(−1)idi. By using that α2 = 0, it is easy to calculate the differential.
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The only classes on which the differential is not zero are dαn = 2βn−1 for
even n.

From this one can see that the Hochschild homology and therefore also
H∗(LS2;Q) is generated as a graded vector space by the classes

α0, α1, α3, α5, . . . and β0, β2, β4, β6, . . .

That is, there is exactly one class in every negative degree.
By using that the involution is the identity, it can be seen that the R

operation is R = (−1)n(n+1)/2id in simplicial degree n. A quick calculation
shows that the only classes on which B acts non-trivially are the classes
Bβn = (n+ 1)αn+1 for n even.

In order to now calculate the homotopy orbits for the C2-action we can
use the following well known fact.

Proposition 11.1. Let k be any ring with 1
2 ∈ k. And let W be a C2-space.

Then H∗(WhC2 ;k) ∼= H∗(W ;k)C2.

Proof. When 2 is invertible, any element m of a kC2-module M can be
projected to the invariant element 1

2(m+ gm), where g is the generator of
C2. Using this, one can check that the functor of C2-invariants is exact. This
implies that the group cohomology over k is H∗(C2;M) = 0 for ∗ > 0 and
H0(C2;M) = MC2 . The map W � pt induces a fibration

EC2 ×C2 W � EC2 ×C2 pt ' BC2.

The associated Leray–Serre spectral sequence is

Ep,q2 = Hp(BC2;Hq(W )) =⇒ Hp+q(WhC2)

Reinterpreting the twisted coefficients on the E2 page as group cohomology,
we see that the spectral sequence collapses here and read off the conclusion

Hq(WhC2) ∼= H0(C2;Hq(W )) = Hq(W )C2 .

�

Corollary 11.2. There are isomorphisms

H∗((LS2)hC2 ;Q) ∼= H∗(LS2;Q)C2 ∼= HH−∗(Q[α]/α2)C2 .

As a graded module, this is generated by the classes α0, α3, α7, α11, . . . and
β0, β4, β8, . . .. In particular, this is four periodic.

In order to now calculate the negative cyclic and negative dihedral homology,
we consider the negative cyclic chains as the totalization of a double complex.
In general we ought to use the product totalization, but in our case this
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coincides with the sum totalization because of the coconnectivity of the
normalized Hochschild complex. The double complex gives us to converging
spectral sequences. In particular, we consider the spectral sequence

(E1, d1) = (HH∗(Q[α]/α2)[u], uB) =⇒ HC−∗ (Q[α]/α2).

On the E1 page, there is exactly one generator in each bidegree above or on
the diagonal in the third quadrant. By considering the fact that B maps
every surviving βn class to a multiple of αn+1, we see that none of the classes
on the interior survive to E2. On E2 we are left with the classes upα0 and
αq for odd q. Because of their degrees it is possible that dp maps α2p−1 to
a multiple of upα0. But, because nothing can kill the α2p−1 in the double
complex, we see that in fact all the differentials must be zero and hence
E2 = E∞ and we can read off the cyclic homology. And to compute the
negative dihedral homology, we can again apply Proposition 11.1. Note that
the generator of C2 acts as upα0 7→ (−1)pR(α0) = (−1)pα0.

Theorem 11.3. As a graded vector space, H∗((LS2)hT;Q) is generated by the
classes α0, α1, α3, α5, . . . and uα0, u

2α0, u
3α0, . . .. In other words, it is one

dimensional in every degree. The cohomology H∗((LS2)hO;Q) is generated
by the classes α0, α3, α7, α11, α15, . . . and u2α0, u

4α0, u
6α0, . . . as a graded

vector space.

Remark 11.4. Although S∗(S2;F2) is formal as a dga over F2, it is not clear
to the author whether S2 is involutively formal over k = F2. Assuming it
is, we can again use negative dihedral homology of F2[α]/α2 to compute
H∗(LS2

hO;F2). The complex that computes the negative dihedral homology
is generated by vpuqαn and vpuqβn for all n, p, q ≥ 0 and the only non-trivial
differential is vpuqβn 7→ vpuq+1αn+1. This means that the cohomology is
generated by the classes vpuqβn for odd n, vpuqαn for even n and uqαn for
all n. According to a computer calculation for low degrees and [OEIS], this
results in Betti numbers that are b(∗+ 2)2/4c, which is a monotonic sequence.
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