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Summary

This thesis consists of five research papers written during the period March 2014 - April
2016. The papers can be read independently and their abstracts are:

1. European Option Pricing with Stochastic Volatility Models under Pa-
rameter Uncertainty. We consider stochastic volatility models under parameter
uncertainty and investigate how model derived prices of European options are af-
fected. We let the pricing parameters evolve dynamically in time within a specified
region, and formalise the problem as a control problem where the control acts on
the parameters to maximise/minimise the option value. Through a dual representa-
tion with backward stochastic differential equations, we obtain explicit equations for
Heston’s model and investigate several numerical solutions thereof. In an empirical
study, we apply our results to market data from the S&P 500 index where the model
is estimated to historical asset prices. We find that the conservative model-prices
cover 98% of the considered market-prices for a set of European call options.

2. The Fundamental Theorem of Derivative Trading. When estimated volatil-
ities are not in perfect agreement with reality, delta hedged option portfolios will
incur a non-zero profit-and-loss over time. However, there is a surprisingly simple
formula for the resulting hedge error, which has been known since the late ’90s. We
call this The Fundamental Theorem of Derivative Trading. This paper is a survey
with twists of that result. We prove a more general version of it and discuss various
extensions and applications, from incorporating a multi-dimensional jump frame-
work to deriving the Dupire-Gyöngy-Derman-Kani formula. We also consider its
practical consequences both in simulation experiments and on empirical data thus
demonstrating the benefits of hedging with implied volatility.

3. Risk Minimization in Electricity Markets. This paper analyses risk manage-
ment of fixed price, unspecified consumption contracts in energy markets. We model
the joint dynamics of spot-price and consumption of electricity, study expected loss
minimisation for different loss functions and derive optimal static hedge strategies
based on forward contracts. These strategies are tested empirically on 2012-2014
Nordic market data and compared to a simpler hedge strategy which is widely em-
ployed by the industry. Results show that our suggested hedge outperforms the
commonly used with a higher reward-to-risk ratio, which can be exploited to release
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a premium from the contract. The realised cumulative profit-and-loss from our sug-
gested hedge is greater for almost every single one-month period of the considered
data, whilst the hourly realised payout results in a 66% out-performance probability.

4. Stochastic Volatility for Utility Maximisers. Using martingale methods we de-
rive bequest optimising portfolio weights for a rational investor who trades in a bond-
stock-derivative economy characterised by a generic stochastic volatility model. For
illustrative purposes we then proceed to analyse the specific case of the Heston
economy, which admits explicit expressions for plain vanilla Europeans options. By
calibrating the model to market data, we find that the demand for derivatives is
primarily driven by the myopic hedge component. Furthermore, upon deploying our
optimal strategy on real market prices, we find only a very modest improvement
in portfolio wealth over the corresponding strategy which only trades in bonds and
stocks.

5. Volatility is Log-Normal, But not for the Reason you Think. Stochastic
volatility models have increased enormously in popularity since their introduction
in the late eighties. Not the least for hedging and option pricing purposes since
they do well in fitting the implied volatility surface. In fact, their pricing ability is
often the reason for advocating such a model, whilst their ability to capture the
underlying dynamics is loosely motivated. In this paper we test for what is a good
model of volatility based on the latter perspective: we briefly review three well-
known stochastic volatility models, and concentrate on the instantaneous variance
in Heston’s model, a log-normal model and in the 3-over-2 model. Since volatility
is a non-observable process, we employ the technique of realized volatility to obtain
variance measurements and from these we form a goodness-of-fit analysis based on
the concept of uniform residuals. To assess the model-classification ability of our
analysis, we perform a Monte Carlo study. We then apply the methodology in an
empirical study, where our results show that the log-normal model yields a much
better goodness-of-fit than both Heston’s and the 3-over-2 model.

The following papers were also completed during the course of my Ph.D studies but are
not part of this thesis:

6. Stochastic Volatility for Utility Maximisers - The Bond-Stock Economy,
with S. Ellersgaard, unpublished.

7. Hedging Local Volume Risk using Forward Markets: Nordic Case,
with R. Ramsdal Ernstsen, T. Krogh Boomsma and A. Skajaa, Energy Economics,
submitted.

8. Robust feature representation for classification of bird song syllables,
with M. Sandsten and M. Große Ruse, EURASIP Journal on Advances in Signal
Processing, 2016(1):1–16.
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1
Introduction

The work included in this thesis – well, pretty much everything I did during my Ph.D. – has
almost exclusively been initiated by interesting problems and my curiosity to learn more
about the fascinating theory of financial mathematics. As such, there was no initial “big
question” that underlies my work. Instead, appealing problems and pleasant collaborations
have constantly found their way to me and as a result, I’ve had the great pleasure to work
with a good variety of projects. Nevertheless, the papers of this thesis mainly concerns three
classical math-finance themes, namely: option pricing, hedging and optimal investment in
financial markets.

Interestingly enough, all three concepts lie at hear of the seminal work by Black, Scholes
and Merton whose papers mark the beginning of contemporary mathematical finance.
Black and Scholes (1973) and Merton (1973)1 present the famous Black-Scholes financial
market model2 and several fundamental ideas are developed in their papers. Firstly, that
of option pricing : with a method of continuous trading in the underlying stock and a risk-
free bond, they show how an option payoff can be perfectly replicated. The fair price of
the option, by no-arbitrage arguments, must then be equal to the value of the replicating
portfolio and their approach give rise to the Black-Scholes pricing equation: If πt = F (t, St)
is the price process of an option with terminal payoff Φ(ST ), where St is the price process
of the underlying stock, the (deterministic) pricing function F must satisfy the partial
differential equation

∂F

∂t
+ LF − rF = 0 (1.1)

with boundary condition F (T, s) = Φ(s). In particular, they derive an explicit expression
for the price of a European call option – the Black-Scholes formula. Secondly, (and in-
separable to the pricing problem) they provide a recipe of how exactly this replicating
portfolio should be set-up in practice: the delta-hedge. With (ψt, ϕt) denoting a trading
strategy in the bond and stock respectively, a (self-financing) portfolio with value dynamics
dVt = ψtdBt + ϕtdSt replicates the option if and only if

ϕt = ∆t ≡
∂F

∂s
(t, St) (1.2)

1Modern finance saw yet another important development in 1973 when the world’s first exchange
for options opened in Chicago.

2The modelling framework of Black-Scholes-Merton has its roots in Louis Bachelier’s thesis from
1900 and in the work by Samuelson (1965).
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2 Chapter 1. Introduction

where F satisfies (1.1) and ψt is chosen such that Vt = F (t, St) – the value of the replicat-
ing portfolio equals the option price at all times. Thirdly, Merton (1969, 1971) considers
the problem of optimal investment and consumption under Black-Scholes model with the
methods of continuous-time stochastic optimal control. If ct denotes the consumption and
wt the stock-weight of an agent with initial wealth W0, the task at hand is to choose a
consumption-investment plan (ct, wt) that maximises the agent’s total utility over a time
horizon [0, T ]

E
[∫ T

0
e−δsu(cs)ds+ e−δTu(WT )

]
. (1.3)

Here, the controlled wealth has dynamics dWt = (wt(µ − r) + r)Wtdt − ctdt + wtσWtdWt

while the agent’s utility from consumption and a terminal endowment is given by the
personal utility function u. The classical method for optimising (1.3) is that of dynamical
programming which ties the problem to a partial differential equation – the Hamilton-
Jacobi-Bellman equation – and Merton provides solutions thereof for a variety of utility
functions and set-ups.

The ideas of Black, Scholes and Merton where soon extended and the modern martingale
approach came to light in the papers by Harrison and Kreps (1979), and Harrison and
Pliska (1981). Here, equivalent martingale measure(s) play an integral role in the pricing
and hedging problem: The market model is arbitrage free if and only if a martingale
measure exists (the first fundamental theorem) and further, an arbitrage-free market model
is complete if and only if the measure is unique (the second fundamental theorem).3 The
connection to an operational risk-neutral valuation formula is almost immediate: Under
such a martingale measure Q, the discounted price process of a contingent claim H is a
martingale, πtB

−1
t = EQ[πsB

−1
s |Ft] for all t ≤ s ≤ T , and in particular

πt = Bt EQ
[
H

BT

∣∣∣∣Ft] . (1.4)

If the set of martingale measures is non-singular,H is not necessarily replicable by a trading
strategy and (1.4) generally yields different arbitrage-free prices for different choices of Q.4

However, if H is an attainable claim, all replicating strategies for H must have the same
portfolio value which equals the price of the risk-neutral valuation formula and hence, the
right-hand side of (1.4) is independent of the choice of Q. In particular, if Q is unique,
any contingent claim is attainable and (1.4) gives the unique fair price for every H. This
is the case for the Black-Scholes market and due to the Markovian structure of the model,

3The results stated here are deliberately somewhat imprecise since the fundamental theorems
have been subject to a great deal of research and the original versions have seen several extensions,
most prominently by Delbaen and Schachermayer (1994), and Delbaen and Schachermayer (1998),
where the latter even goes beyond semimartingale models.

4Even if H is not perfectly replicable: ∃ψ,ϕ : V ψ,ϕT = H, a.s., one always has the existence of a

(cheapest) super-replicating strategy with discounted value π̃sup
t = infψ,ϕ{Ṽ ψ,ϕt : V ψ,ϕT ≥ H, a.s.}.

In particular, it generally holds that π̃sup
t = supQ EQ[H̃|Ft] where the supremum is taken over the

set of all equivalent martingale measures.
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a connection between (1.1) and (1.4) is directly given by the Feynman-Kac representation
formula.

The martingale approach came to play also for optimal investment problems in the papers
by Karatzas et al. (1987), and Cox and Huang (1989). In the complete market case, it
provides an alternative methodology to the dynamical programming principle that does
not require a Markovian structure of the model. The basic idea is to maximise the agent’s
utility from investing in the set of contingent claims which have a price equal to the agent’s
initial wealth. Since the market is complete, this corresponds to maximising E[u(H)] over
all integrable H ∈ FT subject to W0 = EQ[e−rTH] and the key point is, since any claim
is attainable, this is equivalent to finding an optimal portfolio strategy in the stock-bond
market. Thus, the dynamic control problem is replaced by a static optimisation, conve-
niently expressed in terms of the Lagrangian

L = E
[
u(H)− λ(e−rT ξTH −W0)

]
(1.5)

where ξT is the Radon-Nikodym density of the martingale measure with respect to the ob-
jective measure. A point-wise optimisation of (1.5) immediately gives the optimal wealth
H∗ = (u′)−1(λe−rT ξT ) where the multiplier λ is obtained from the condition W0 =
E[e−rT ξTH

∗]. The associated optimal portfolio strategy may also be computed, in practice
by matching the dynamics of the wealth process W ∗

t = EQ[e−r(T−t)H∗|Ft] with the value
dynamics of a general portfolio strategy in the stock-bond market.

The pricing and hedging theory has seen a rapid development since the early 1970s. One
natural driver is the empirically based critique of the Black-Scholes-Merton framework on
at least three points: (i) the constant-volatility model’s inability to fit option prices ob-
served on the market, (ii) the distributional mismatch of the stock-price model and market
behaviour of asset returns, (iii) the assumption that price processes evolve continuously in
time in contrast to sudden discontinuous moves by jumps. On the modelling front, stochas-
tic volatility models addressing both (i) and (ii) appeared in the late 1980s with the model
by Heston (1993) being the most influential. At the same time, Dupire (1994) and Derman
and Kani (1994) showed how local volatility models could be used to perfectly fit a surface
of market implied volatilities, across all observed strikes and maturities. Further, already
Merton (1976) turned to (iii) with a compound Poisson process added to the continuous
geometric Brownian motion of Black-Scholes model; a specification that was later adopted
to Heston’s stochastic volatility by Bates (1996). This to mention only a handful of the
many developments since the beginning of the 1970s: As such, Heston, Dupire and Mer-
ton’s jump are merely special cases among the great family of exponential Lévy models,
general jump-diffusions, stochastic volatility models with jumps, Lévy driven stochastic
volatility, local Lévy models and time-changed models, which all add to the model plethora
of modern mathematical finance. For a comprehensive textbook-reading on the topic, see
for instance Björk (2009), Cont and Tankov (2004), Bingham and Kiesel (2004), Shreve
(2004) or Karatzas and Shreve (1998).

This thesis presents five unconnected papers each of which concerning one or several of
the above themes. In the first paper, we study stochastic volatility models subject to



4 Chapter 1. Introduction

parameter uncertainty and how the option pricing is affected. With Heston’s model as
working example, our approach is to formulate a control problem similar to (1.3) based
on the risk-neutral formula (1.4) where the parameters play the role of the controls. The
aim is to maximise/minimise the option price over some uncertainty region for the pa-
rameters, to obtain a conservative interval for the value of the option. However, we use
neither Hamilton-Jacobi-Bellman nor the martingale approach; instead we exploit a du-
ality between optimal control problems and backward stochastic differential equations.
Several numerical methods are investigated for their solution, and we analyse empirical
implications based on market data from the S&P 500 index. This further brings us to a
discussion of how parameter uncertainty can represent the incompleteness of stochastic
volatility models by spanning the set of equivalent martingale measures. Ultimately, our
approach gives us the cost for super-replication of the option, and we ask in the empirical
section if market prices are covered by these inferred pricing bounds.

The next two papers are concerned with the concept of hedging in two fundamentally
different contexts. The first of the two considers the classical problem of derivative hedging
with a dynamic delta-strategy à la (1.2). Here we ask the question of what happens if an
erroneous model is used to appoint the delta-hedge in a tripartite model set-up where
the option market is also in discordance with the ”veridical” evolution of the underlying.
Specifically, with a general Itô process describing the multi-asset space of underlyings
and local volatility models used for both hedging and by the option market, we prove
a formula for the profit-and-loss incurred from holding the hedge portfolio. As special
cases, we consider hedging with a volatility that matches (A) the real dynamics, (B) the
option-market implied volatility, and investigate the practical consequences both with a
simulation study and in an empirical experiment. Even if we do not find empirical support
for the most conspicuous implication of the theorem – that arbitrage can be exploited if
the underlying models are Black-Scholian – we see some evidence for the fact that hedging
at implied volatility yields smoother, less erratic, P&L paths.

The third paper deals with a more practical problem where we wish to set up a hedge
portfolio that replicates a so called fixed-price-agreement for electricity. For this purpose,
we consider a set of forward contracts as given by the market, and aim to construct a
static hedging strategy based on these instruments that efficiently replicates the issued
claim. The key challenge is that the underlying processes – the spot-price of electricity
and the consumption quantity – are non-tradable objects that also typically affects the
outcome for the issuer in an adverse way. Hence, the situation is manifestly incomplete:
There is no trading strategy in the underlyings that replicates the claim – there is not
even a market for the underlyings. Instead, we resort to the method of risk-minimisation
of the hedge-portfolio’s financial payouts. For this purpose, we propose a joint model
for the price-consumption processes that takes into account both spacial and temporal
dependency and the seasonal behaviour of electricity. We consider the risk measure of
expected positive loss and derive an expression for the hedge portfolio under our model.
With the quadratic risk-measure as reference point – since it is commonly used by the
industry – we then implement our strategies in an empirical experiment based on forward,
spot-prices and consumption data from the Nordic energy market.
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In the forth paper, we accede to the Mertonian tradition of control problems and present
an optimal investment study where the financial market is driven by a stochastic volatility
model. We consider an investment space consisting of a risky stock, a bond and a European
derivative written on the stock, and investigate how an agent can maximise his utility from
investing in such an economy. Since the fundamental market is completed – we adjoin an
additional asset to the stock-bond market – the martingale approach proves useful and by
solving (1.5) we arrive at expressions for the optimal wealth process and associated (bond,
stock, derivative)-strategy. Once again, Heston’s model receives our main attention and
we provide explicit formulas for the optimal portfolio weights when the market derivative
is a plain vanilla put or call option. Our theoretical study is finally demonstrated by an
empirical experiment where we investigate if the trading of S&P 500 calls add any welfare
gains to the rational investor.

In the last paper of the thesis we ask the simple question of what is a good model for
volatility. However, in contrast to the usual pricing-oriented measure of model-to-market fit
for option prices, we focus on the volatility process itself and how well stochastic volatility
models match its distributional properties. For this purpose, we promote a goodness-
of-fit analysis that builds on the conditional law of a model. Here we have to take into
account that instantaneous variance – the object that a stochastic volatility model allege to
describe – is a non-observable, latent process. Thus, we consider several choices of variance
measures and how their precision affects our ability to distinguish between different models.
We scrutinise on our approach in a simulation study before we apply the methodology to
a large set of market quotes from both the S&P 500 index and ten individual stocks.
Ultimately – as revealed already in the title of the paper – we aim to conclude which
stochastic volatility model does the best job.
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European Option Pricing with

Stochastic Volatility Models under
Parameter Uncertainty

Samuel N. Cohen1 and Martin Jönsson2

Abstract. We consider stochastic volatility models under parameter uncer-
tainty and investigate how model derived prices of European options are
affected. We let the pricing parameters evolve dynamically in time within
a specified region, and formalise the problem as a control problem where
the control acts on the parameters to maximise/minimise the option value.
Through a dual representation with backward stochastic differential equa-
tions, we obtain explicit equations for Heston’s model and investigate several
numerical solutions thereof. In an empirical study, we apply our results to
market data from the S&P 500 index where the model is estimated to his-
torical asset prices. We find that the conservative model-prices cover 98% of
the considered market-prices for a set of European call options.

Keywords: Option Pricing, Stochastic Volatility, Model Uncertainty.
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2.1 Introduction

In this paper, we consider the problem of European-option pricing when the underlying
assets are assumed to follow a stochastic volatility model in a setting that accommodate
for parameter uncertainty, and in particular, how this transfers to conservative bounds for
derived option prices.

Stochastic volatility models feature an instantaneous variance of the asset price, the volatil-
ity, that evolves stochastically in time. It is a natural generalisation of the seminal constant-
volatility model of Black and Scholes (1973), and examples include the models introduced
by Hull and White (1987), Stein and Stein (1991), Heston (1993), Bates (1996) and Hes-
ton (1997) to mention a few. Evidence supporting this generalisation in terms of empirical
asset-return behaviour goes back to Black (1976), while for instance Stein (1989) highlights
the prediction mismatch of a constant-volatility models and option prices observed from
the market. Stochastic volatility serves as an attractive alternative and numerous studies
are available from the literature in their favour.

Being a parametric model immediately implies that the stochastic volatility model can be
fitted with data. At least two approaches are conventional for this purpose: either esti-
mation from historical asset-prices, or calibration from market option-prices by matching
the model derived price (or a combination of the two, see e.g. Ait-Sahalia et al. (2007)).
We will concentrate on the former which conforms with the model as postulated to rep-
resent the underlying financial market of risky assets: options are fundamentally derived
securities thereof and their prices are not endogenously given by the model. The concept
of parameter uncertainty then naturally arise from statistical inference of the model. Esti-
mation from observed time-series of asset prices results in point-estimates and confidence
intervals of the parameters associated with the real-world probability measure (as opposed
to risk-neutral measure(s) used for no-arbitrage option pricing). The confidence interval
thus defines the uncertainty set which contains the true value of the model parameters, at
a given confidence level.

The question remains of how the parameter uncertainty affects option prices as outputted
by the stochastic volatility model. First one needs to establish the relation between the
parameters under the statistical measure and under a risk-neutral pricing measure. This is
done by the market price of risk, and typically in such a way that the model remains form-
invariant. The uncertainty may then be imposed on the risk-neutral parameters which are
used for option pricing. Second, to avoid introducing arbitrage into the model, any pricing
measure has to be equivalent to the original statistical measure with the consequence
that diffusion parameters remain unchanged. Therefore, we assume values of diffusion
parameters to be fixed (by their point-estimate) and consider uncertainty in drift- and
jump parameters alone.3 This further offers an interpretation of the parameter uncertainty
as representative for the incompleteness of the stochastic volatility model: there exists a

3A supporting case for this assumption is the fact pointed out for instance by Rogers (2001):
while volatilities may be estimated within reasonable confidence with a few years of data, drift
estimation requires data from much longer time periods.
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space of equivalent pricing measures as given by the span of risk-neutral parameter values
in the uncertainty set (we elaborate on this in the introducing discussion of Section 2.4).

We immediately look at the model pricing from a best/worst -case point of view, and aim
to obtain some pricing bounds inferred from the parameter uncertainty. Two approaches
are fair: either optimising the pricing function over the parameters constrained by the
uncertainty set, or treating the parameters as dynamical components of a control process
which acts to optimise the option value. The former is thus a special case of the latter where
the control process is restricted to take constant values only. We formalise the problem
as a control problem and since all pricing measures are equivalent, this can be seen as
change of measure problem. Following the results due to Quenez (1997), the optimal value
function of the option price may then by expressed as a backward stochastic differential
equation.

The postulation of parameter uncertainty, and more generally model uncertainty, as an
inherent model feature is certainly not novel. Conceptually, parameter and model uncer-
tainty draw on the principles due to Keynes (1921) and Knight (1921) of the unknown
unknown, as distinguished from the known unknown where randomness emanate from a
uniquely postulated probability distribution. In the case of parameter uncertainty, the
distribution is unknown but within a specified family of parametrised distributions while
model uncertainty more or less leaves the distribution completely unknown (which can
be embedded into the former). The importance of model uncertainty in finance was early
acknowledged by Derman (1996) and have since then received a great deal of attention.
For a readable overview of model uncertainty in the context of option pricing see for in-
stance Gupta et al. (2010), while the parameter uncertainty worst-case approach taken
here follows in the same lines as El Karoui and Quenez (1995), Avellaneda et al. (1995),
Lyons (1995) and Avellaneda and Paras (1996), among others.

Overview. The model proposed by Heston (1993) will be the working model of our study,
and we present the risk-neutral pricing of European options in Section 2.2 along with the
BSDE representation of the controlled value process. We show how to derive the optimal
driver that generates the BSDE of the optimally controlled value processes, which gives
us the pricing bounds for options under parameter uncertainty. To obtain actual values
for the pricing bounds, we must resort to numerical solutions for the BSDE that governs
the optimal value. In Section 2.3, we detail some simulation schemes for this purpose, and
demonstrate the methods in a controlled setting to be able to compare and evaluate their
performance. With a suggested numerical scheme in hand, we then proceed in Section 2.4
to illustrate our method empirically on real-world market data from the S&P 500 index.
Again, we take the view that inferred statistical parameter-uncertainty represents the space
of equivalent martingale measures postulated by the incompleteness of the model. For a set
of market quotes of European call options on the S&P 500 index, we then investigate how
well the (numerically calculated) model bounds actually cover the observed market prices.
We also compare the results with the corresponding constant-parameter optimal price.
For completion, we finally treat the general multi-asset case of a Markovian stochastic
volatility model with jumps in Section 2.5. Section 2.6 concludes.
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2.2 The Heston stochastic volatility model

To set the scene, we consider a financial market consisting of a risk-free money account
and a risky asset over a fixed time period [0, T ]. We assume the standard assumptions of a
frictionless market: short selling is permitted and assets may be held in arbitrary amounts,
there are no transaction costs and borrowing and lending are made at the same interest
rate. The prices of the assets will be modelled as adapted stochastic processes on a filtered
probability space, the notion of which will be formalised in the following section.

2.2.1 European option pricing

Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space where {Ft}t≥0 is the natural filtration
generated by two independent Wiener processes W 1 and W 2, augmented to satisfy the
usual conditions of P -completeness and right continuity. We assume that the asset price S
and variance V follow the model by Heston (1993), with real-world dynamics (under the
objective probability measure P ) as given by

dSt = µ(Vt)Stdt+
√
VtSt(ρdW

1
t +

√
1− ρ2dW 2

t ),

dVt = κ(θ − Vt)dt+ σ
√
VtdW

1
t ,

for nonnegative constants κ, θ, σ and instantaneous correlation ρ ∈ (−1, 1). The variance
process thus follows a square root process4 and it is bounded below by zero. If Feller’s
condition is satisfied; 2κθ ≥ σ2, then the boundary can not be achieved. Furthermore, the
relative rate of return µ is taken to be a deterministic function of the variance. In addition
to the risky asset, the market contains a risk-free money account which value processes
is denoted B. The money account pays a constant rate of return r, which means that B
obeys the deterministic dynamics dBt = rBtdt.

The market price of risk processes (γ1, γ2) associated with W 1 and W 2, are assumed to
be specified such that

µ(V )− r√
V

=
(
ργ1 +

√
1− ρ2γ2

)
(2.1)

and as suggested by Heston, we let γ1 ≡ λ
√
V for some constant λ. We then have that

the stochastic exponential of −(γ1, γ2) • (W 1,W 2) is given by5

E(−γ •W ) = exp

(
−
∫ .

0
λ
√
VsdW

1
s −

∫ .

0
γ2
sdW

2
s −

1

2

∫ .

0
(λ2Vs + (γ2

s )2)ds

)
and if we define the measure Q on FT for a fixed deterministic time T by

dQ

dP
= E(−γ •W )T

4Also know as a CIR process, since its use as a model for short-term interest rates by Cox et al.
(1985). The square root process goes back to Feller (1951).

5We use • to denote the stochastic integral of d-dimensional processes: H •M =
∑d
i=1

∫ .
0
Hi
tdM

i
t

for H,M taking values in Rd.



2.2. The Heston stochastic volatility model 11

we have that Q is equivalent to P (provided the stochastic exponential is a martingale,
i.e. E[E(−γ •W )t] = 1 for all t ∈ [0, T ], for which Novikov’s and Kazamaki’s conditions
are sufficient. Wong and Heyde (2006) express this explicit in terms of the parameters).
Further, by the Girsanov theorem, {W̃ 1

t }t∈[0,T ] and {W̃ 2
t }t∈[0,T ] defined by

dW̃ 1
t = λ

√
Vtdt+ dW 1

t ,

dW̃ 2
t = γ2

t dt+ dW 2
t ,

are independent Wiener processes under Q. By virtue of equation (2.1), this gives the
Q-dynamics of the model

dSt = rStdt+
√
VtSt(ρdW̃

1
t +

√
1− ρ2dW̃ 2

t ),

dVt = (κθ − [κ+ σλ]Vt) dt+ σ
√
VtdW̃

1
t ,

(2.2)

for t ∈ [0, T ] and we note that the variance dynamics is form invariant under the measure
change: V follows a square root process under Q as well with ”risk-neutral” parameters
κ̃, θ̃, σ where

κ̃ = κ+ σλ and θ̃ =
κθ

κ+ σλ
.

We also see that the discounted asset price B−1S will be a Q-martingale (i.e. Q is an
equivalent martingale measure) such that the financial market model (B,S) is arbitrage-
free. However, as (γ1, γ2) may be arbitrarily chosen as long as (2.1) is satisfied, the model
is incomplete. This means that λ could be determined by a single exogenously given asset
(with a volatility dependent price) to complete the market, and γ2 is uniquely determined
by equation (2.1). Any other contingent claim will then be uniquely priced.

For a European option with payoff g(ST ) at maturity T , we have that the C1,2 function
D(t, s, v) of the pricing ruleDt = D(t, St, Vt), t ∈ [0, T ], for the option satisfies the following
partial differential equation

∂D

∂t
+ rs

∂D

∂s
+ {κθ − v(κ+ σλ)} ∂D

∂v
+

1

2
s2v

∂2D

∂s2
+ ρσvs

∂2D

∂v∂s
+

1

2
σ2v

∂2D

∂v2
= rD, (2.3)

with terminal condition D(T, s, v) = g(s). Notice that the expression in curly brackets
can be equivalently written κ̃(θ̃− v) with the risk-neutral specification of the parameters.
Equivalently, by Feynman-Kac, this is to say that we have the risk-neutral pricing formula

D(t, s, v) = EQ
[
e−r(T−t)g(ST )

∣∣∣ (St, Vt) = (s, v)
]

where (S, V ) follows the Q-dynamics with initial value (St, Vt) = (s, v) at the initial time
t ∈ [0, T ].

This pricing equation (2.3) is the same as in Heston’s original paper if we let λv = σλ and
λ(t, St, Vt) = λvVt being the price of volatility risk used in his exposition. The equation is
solved by the Fourier transform of the price and the resulting“semi-closed”pricing formula
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is obtained by the inverse transform. In practice, however, the inverse transform has to be
calculated by numerical integration methods.

If the underlying asset pays a constant dividend yield δ (continuously compounded) we
have the S-dynamics under Q

dSt = (r − δ)Stdt+
√
VtSt(ρdW̃

1
t +

√
1− ρ2dW̃ 2

t )

since an investment in the asset should have an instantaneous return being the same as
the risk-free rate under the equivalent martingale measure. The pricing function D(t, s, v)
for an option (without dividend payments) will then satisfy the pricing equation (2.3) with
the second term rs∂D/∂s substituted with (r − δ)s∂D/∂s. One way of seeing this is to
apply Itô’s lemma to B−1D under Q and set the drift term to zero, as the discounted price
process of any tradable asset must be a Q-martingale for the non-arbitrage condition to
hold.

2.2.2 Pricing bounds under parameter uncertainty

Heston’s model (and any other stochastic volatility model) is fundamentally a model for
the underlying financial market even if it is predominantly used for option pricing purposes.
The pricing measure is often taken as being fixed for convenience, for instance through
model-to-market calibration of option prices, and the connection to the objective measure
is not important for the analysis, and hence not necessarily made to be explicit.

Although we are dealing with option pricing as well, we will take a slightly converse
approach where the pricing measure inherits its uncertainty from the objective measure.
For this purpose, we assume a pricing measure Q to be given momentarily, just to be able
to replace it with another pricing measure that is subject to uncertainty. Here we infer
uncertainty of pricing parameters from statistical estimation of objective parameters and
thus, the relation between the measures will play an integral role.

To this end, we introduce parameter uncertainty in our model by modifying our reference
measure with the effect of a control that governs the parameter processes. Namely, we
replace the risk-neutral measure Q with an equivalent measure Qu under which we have
the controlled dynamics as given by

dSt = ru(ut)Stdt+
√
VtSt(ρdW

u1
t +

√
1− ρ2dW u2

t ),

dVt = κu(ut) (θu(ut)− Vt) dt+ σ
√
VtdW

u1
t ,

(2.4)

for t ∈ [0, T ]. The control process {ut}t≥0 is an Ft-predictable process that takes values
in a compact set U ⊂ R3, which we will call the parameter uncertainty set. We write U
for the space of admissible control processes (that is, predictable processes taking values
in U) and under Qu, we have that W u1 and W u2 are independent Wiener processes,
as will be explained in a moment. The control process realises its paths stochastically,
and we simply do not know beforehand which {ut}t≥0 ∈ U will be governing (2.4): the
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uncertainty is tantamount to this choice. Furthermore, we denote the components of the
control {ut}t≥0 = {rt, κt, θt}t≥0 and let the controlled drift-functions of (2.4), all f : U →
R+, be defined as

ru(ut) = rt, κu(ut) = κt + σλ and θu(ut) =
κtθt

κt + σλ
. (2.5)

Notice that this specification of the controlled drift relies on the premise that the Q-
parameters r, κ̃, θ̃ are subject to parameter uncertainty by their replacement with ru, κu, θu.
The uncertainty is in turn taken to be inferred from statistical estimation of the objective
P -parameters, represented by (rt, κt, θr) ∈ U where U is the statistical confidence interval,
and transferred to the pricing parameters by the map

U 3 ut 7→ (ru(ut), κ
u(ut), θ

u(ut)) ∈ Uλ

as given by (2.5). Here Uλ is the uncertainty set for the controlled parameters, induced
by the same mapping. The parameter λ associated with Q thus plays an instrumental role
in facilitating the uncertainty transfer and it determines the set Uλ where our uncertain
price-parameters live. In practice, we forcefully set λ = 0 to obtain that the uncertainty
in price-parameters is exactly that of the uncertainty in estimated real-world parameters,
i.e. Uλ ≡ U . However, note that this does not imply P ≡ Q nor µ = r, cf. equation (2.1).

With the controlled dynamics of (S, V ) representing the model under influence of parame-
ter uncertainty, we proceed to define what we mean with the upper and lower boundary for
the price of a European option. Namely, for an option written on S with terminal payoff
at time T given by a square-integrable FT -measurable random variable G, we will take the
most conservative prices from valuation under the controlled pricing measures (i.e. under
parameter uncertainty) as given by the control problems

D−t = ess inf
{ut}∈U

Eu
[
e−

∫ T
t rsdsG

∣∣∣Ft] and D+
t = ess sup

{ut}∈U
Eu
[
e−

∫ T
t rsdsG

∣∣∣Ft] (2.6)

for t ∈ [0, T ], where Eu(·|F) denotes the conditional expectation under Qu. In a sense,
we thus consider the super-replication costs of selling a long/short position in the option
when the uncertain parameters evolve stochastically in the uncertainty set, in an optimal
way.6

In order to find a pricing PDE that corresponds to equation (2.3) of the previous section,
we henceforth consider payoffs given by G = g(ST ) for some non-negative function g and
for simplicity, we assume g to be bounded. Due to the Markovian structure of the problem,

6This draws on the interpretation that {Qu : u ∈ U} is the set of equivalent martingale measures
of an incomplete market model, such that the most conservative risk-neutral price of an option
equals the super-replication cost of a short position in the same: with Πt(G) = infφ{Ṽt(φ) : VT (φ) ≥
G, a.s.} being the discounted portfolio value of the (cheapest) admissible strategy φ that super-
replicates G, then Πt(G) = ess supu∈U Eu[G̃|Ft] and the supremum is attained. See for instance
Cont and Tankov (2004), Section 10.2.
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we then have that the optimal value processes will be functions of the current asset price
and variance state

D−t = D−(t, St, Vt),

D+
t = D+(t, St, Vt),

for some continuous functions D± : [0, T ] × R+ × R+ → R. As we will see later, these
functions will satisfy a semilinear version of the standard pricing equation for European
options. However, before we arrive at more precise expressions for the optimally controlled
value processes (and their generating functions) we take one step backwards: we will first
consider the value process for a fixed control and its link to a backward stochastic differ-
ential equation. Following the approach due to Quenez (1997) as outlined in Cohen and
Elliott (2015), we then consider the optimally controlled value process as the solution to
a closely related BSDE.

With the intention of finding the pricing-bound functions through a dual formulation with
BSDEs, we begin by defining the effect of the control as the R2-valued process

α(St, Vt, ut) =
1

σ
√
Vt

 κu(ut)θ
u(ut)− κ̃θ̃ − (κu(ut)− κ̃)Vt

−ρ(κu(ut)θu(ut)−κ̃θ̃−(κu(ut)−κ̃)Vt)+σ(rt−r)√
1−ρ2

 . (2.7)

The stochastic exponential of the process α(S, V, u)> • (W̃ 1, W̃ 2) is then what defines the
measure change Q→ Qu on FT ,

dQu

dQ
= E

(∫ .

0
α1(St, Vt, ut)dW̃

1
t +

∫ .

0
α2(St, Vt, ut)dW̃

2
t

)
T

where α1 and α2 are the two components of the effect process (provided E(α> • W̃ ) is a
martingale). By Girsanov’s theorem

dW 1u
t = dW̃ 1

t − α1(t, St, Vt)dt,

dW 2u
t = dW̃ 2

t − α2(t, St, Vt)dt,

thus defines the two independent Wiener processes under Qu. Further, we define the linear
driver function f : (0,∞)× (0,∞)× R× R1×2 × U → R as

f(s, v, y, z, u) = %(s, v, u)y + zα(s, v, u) (2.8)

where %(s, v, u) ≡ −r, that is, the (negative) first component of the control which repre-
sents the risk-free interest rate.

With the driver defined by (2.7)-(2.8), we now have the following representation of the
option value subject to parameter uncertainty from Qu: for a given, fixed control process
u = {ut}t≥0 ∈ U , the controlled value process as given by

Jt(u) = Eu
[
e−

∫ T
t rsdsg(ST )

∣∣∣Ft] , t ∈ [0, T ],
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is the unique solution to the linear Markovian backward stochastic differential equation

dJt(u) = −f(St, Vt, Jt(u), Zt, ut)dt+ ZtdW̃t,

JT (u) = g(ST ),
(2.9)

where Z = (Z1, Z2)> – the martingale representation part of Y – is a process taking values
in R1×2 (being a part of the solution to the BSDE). To see this, consider the process J(u)
that solves (2.9) and let E(Γ) be the stochastic exponential of

Γ =

∫ .

0
−rtdt+

∫ .

0
α(St, Vt, ut)

>dW̃t.

Apply Itô’s product rule to E(Γ)J(u) to obtain

d (E(Γ)tJt(u)) = E(Γ)t

(
Zt + Jt(u)α(St, Vt, ut)

>
)
dW̃t

and thus, since E(Γ)J(u) is a martingale under Q, we have

Jt(u) =
1

E(Γ)t
EQ [E(Γ)T g(ST )| Ft]

= e
∫ t
0 rsds

1

E(α> • W̃ )t
EQ
[
e−

∫ T
0 rsdsE(α> • W̃ )T g(ST )

∣∣∣Ft]
= Eu

[
e−

∫ T
t rsdsg(ST )

∣∣∣Ft]
as E(α> • W̃ ) is the density for the measure change Q→ Qu.

The BSDE (2.9) governs the value process under the impact of a fixed parameter control
process that evolves in the uncertainty set U . To obtain the lowest (highest) value scenario,
the value process is to be minimised (maximised) over all admissible controls in U and
as we retail in the following, this is done through pointwise optimisation with respect to
u ∈ U of the driver function for the value process. Hence, we define the following drivers
optimised over the parameter uncertainty set

H−(s, v, y, z) = ess inf
u∈U

f(s, v, y, z, u) and H+(s, v, y, z) = ess sup
u∈U

f(s, v, y, z, u),

where we note that as U is compact, the infimum and supremum are both attained. We then
have the following main result which is due to the comparison principle for BSDEs: the low-
er/upper optimally controlled value processes {D±t }t∈[0,T ] = {± ess supu∈U ±Jt(u)}t∈[0,T ]

have cadlag modifications that are the unique solutions of the BSDEs

dD±t = −H±(St, Vt, D
±
t , Zt)dt+ ZtdW̃t,

D±T = g(ST ).
(2.10)

In particular, the processes are equal to deterministic functions of (t, St, Vt), that is,
D±t = D±(t, St, Vt) for some continuous functions D± : [0, T ] × R+ × R+ → R. As the
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infimum (supremum) of H is attained, we further have that there exists optimal controls
{u±∗t }t∈[0,T ] ∈ U which are optimal feedback controls. This means that the processes

u±∗t = u±∗(t, St, Vt), t ∈ [0, T ],

are the optimal controls among all predictable controls for some deterministic functions
u±∗ : [0, T ]×R+×R+ → U . Finally, by the semilinear Feynman-Kac formula (provided a
solution exists), we have that D−(t, s, v) satisfies the following semilinear parabolic PDE

∂D

∂t
+

1

2
s2v

∂2D

∂s2
+ρσvs

∂2D

∂v∂s
+

1

2
σ2v

∂2D

∂v2
+ ess inf

(r,κ,θ)∈U

{
−rD + rs

∂D

∂s
+ κu(κ) (θu(θ)− v)

∂D

∂v

}
= 0

(2.11)

with terminal value D−(T, s, v) = g(s). In the corresponding equation for D+(t, s, v) we
have a supremum substituted for the infimum.

Proof: For the first part of the result, since H−(s, v, y, z) ≤ f(s, v, y, z, u) by definition, we
have that the (unique) solution7 Y to the BSDE with data (g(ST ), H−) satisfies Yt ≤ Jt(u)
for all controls u ∈ U (up to indistinguishability). This is a consequence of the comparison
theorem for BSDEs (see e.g. Cohen and Elliott (2015), Theorem A.9.20). Further, by
Filippov’s implicit function theorem (Cohen and Elliott (2015), Theorem 21.3.4), for each
ε > 0 there exists a predictable control uε ∈ U such that f(s, v, y, z, uε) ≤ H−(s, v, y, z)+ε.
Since Yt+ ε(T − t) solves the BSDE with driver H−(s, v, y, z) + ε, the comparison theorem
yields Jt(u

ε) ≤ Yt + ε(T − t) (up to indistinguishability) and we have the inclusion

Yt ≤ Jt(uε) ≤ Yt + ε(T − t).

Letting ε → 0 we have that Yt = ess infu∈U Jt(u) = D−t for every t which is to say that
Y is a version of the optimal value process. That D−t can be written as a continuous
function of (t, St, Vt) is due to the fact that (2.10) is a Markovian BSDE. Further, as we
have that the optimal control is attainable, Filippov’s theorem gives that it is a function
of (t, St, Vt, D

−
t , Zt) where Zt = z(t, St, Vt) – due to the Markovian BSDE8 – and we have

the result that u−∗t = u−∗(t, St, Vt) for a deterministic function. �

To obtain an expression for the optimised driver H±, we note that the driver of the value
function is conveniently expressed in terms of divergence of the control from the statistical

7As we assume the driver f to be sufficiently integrable for the J(u)-BSDE to admit a unique
solution (i.e. it is a stochastic Lipschitz driver) the integrability carries over to H such that the
Y -BSDE admits a unique solution as well.

8The function for the martingale representation Z is obtained explicitly by applying Itô’s lemma
to Dt = D(t, St, Vt) and using the semilinear pricing PDE (2.11), which gives

dD(t, St, Vt) = −H(St, Vt, Dt, Zt)dt+ ∂xD(t, St, Vt)σ(St, Vt)dW̃t

where ∂xf ≡ (∂sf, ∂vf) and σ(s, v) should be understood as the diffusion matrix of (2.2). Hence,
by uniqueness of the BSDE solution, z(t, s, v) ≡ ∂xD(t, s, v)σ(s, v) is the deterministic generating
function for Z.
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parameters. By rearrangement of (2.8)

f(St, Vt, Yt, Zt, ut) = (rt − r)

(
Z2
t√

1− ρ2
√
Vt
− Yt

)
+ (κt − κ)

(
−Z1

t

√
Vt

σ
+

ρZ2
t

√
Vt

σ
√

1− ρ2

)

+ (κtθt − κθ)

(
Z1
t

σ
√
Vt
− ρZ2

t

σ
√

1− ρ2
√
Vt

)
− rYt

(2.12)

since κu(ut)− κ̃ = κt−κ and κu(ut)θ
u(ut)− κ̃θ̃ = κtθt−κθ, which is due to the linear form

of the drift (and the simple form of the parameter change under P → Q, regardless of the
value of λ). If we let βt ≡ κtθt and use the parametrisation (rt, κt, βt) 7→ (rt, κt, θt), we
have that the driver is a linear function of the divergence ũt = (rt−r, κt−κ, βt−β). Hence,
the optimal drivers H± are obtained by minimising/maximising a linear objective subject
to the constraint given by the compact uncertainty set U for the original P -parameters. In
particular, from statistical inference of the estimation, we have that the 1− α confidence
ellipse

ũ>Σ−1
r,κ,βũ ≤ χ

2
3(1− α) (2.13)

represents u ∈ U (for a significance level α) where Σr,κ,β is the covariance matrix of the
parameters and χ2

3(1−α) is the quantile of the chi-squared distribution with three degrees
of freedom (see further Section 2.4.1). As ũ 7→ f(ũ) is linear, it has no internal stationary
points and the quadratic problems

H− = inf f(ũ) and H+ = sup f(ũ)

subject to ũ>Σ−1
r,κ,βũ = χ2

3(1− α)

give the optimised drivers. The solutions are (obtained e.g. by a Lagrange multiplier)

H±(St, Vt, Zt, Yt) = ±
√
χ2

3(1− α)n>t Σ>r,κ,βnt − rYt

ũ±(St, Vt, Zt, Yt) = ±
√

χ2
3(1− α)

n>t Σ>r,κ,βnt
Σr,κ,βnt

(2.14)

where nt is the 3 × 1 vector of coefficients to the parameter deviances of equation (2.12)
given by

nt =

[(
Z2
t√

1− ρ2
√
Vt
− Yt

)
,

(
−Z1

t

√
Vt

σ
+

ρZ2
t

√
Vt

σ
√

1− ρ2

)
,

(
Z1
t

σ
√
Vt
− ρZ2

t

σ
√

1− ρ2
√
Vt

)]>
.

The optimal drivers in (2.14) conclude our analysis since we now have an explicit form
for the stochastic differential equation (2.10) that describes the evolution of the pricing
boundaries. Before we proceed to obtaining approximative solutions of these equation by
numerical methods, a few remarks are in order. Firstly, the approach applies unchanged
to a portfolio of options with time-T terminal payoff

∑
i gi(ST ). Due to the non-linearity

of the pricing boundaries (2.6), we further have D+(
∑
wigi(ST )) ≤

∑
wiD

+(gi(ST )) for
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weights
∑
wi = 1, such that the super-replication cost for individual hedging might be

lowered by hedging the portfolio as a whole. Secondly, for a general payoff represented
by G ∈ FT , for instance a path-dependent European options on S, we have a value
process equation corresponding to (2.10) with terminal condition D±T = G. However, this
problem do no longer yield a Markovian structure, and we do not have D± (nor Z) being
generated by deterministic functions, neither does the numerical methods of Section 2.3
apply. Thirdly, we deliberately impose parameter uncertainty by replacing Q → Qu in
contrast to replacing P → Qu directly (which would yield the same form of the effect
α(t, St, Vt) that governs the measure change, but with r replaced by µ in (2.7)). The
reason is that the governing BSDEs (2.10) will have a terminal condition g(ST ) where
ST ∼ Q, for which we have accessible parameters (in particular, we may directly observe
the Q-drift r instead of estimating the P -drift µ). Fourthly, the worst-case approach with
pricing boundaries is not the only way of accounting for parameter uncertainty in option
pricing. An interesting alternative that takes into account beliefs about the likelihood of
the uncertainty is the Bayesian approach outlined in Gupta et al. (2010). We conclude this
section with two more remarks.

Remark 2.1. So far, we have not expressed any integrability conditions on the pro-
cess α(St, Vt, ut) in order to guarantee that (i) the density dQu/dQ and (ii) the driver
f(St, Vt, Yt, Zt, ut) are well defined, i.e. for the measure change Q→ Qu to be eligible and
to certify that f (and hence H±) yields a BSDE which admits a unique solution. For this
purpose, Novikov’s condition

EQ
[
e

1
2

∫ T
0 ||α(St,Vt,ut)||2dt

]
<∞ (2.15)

is sufficient for both (i) and (ii) since then we have that the driver is stochastic Lipschitz
in y and z (note that rt is bounded in U), i.e.

|f(St, Vt, y, z, ut)− f(St, Vt, y
′, z′, ut)| ≤ ||α(St, Vt, ut)||

(
|y − y′|+ ||z − z′||

)
where ||α(St, Vt, ut)|| is predictable and such that (2.15) holds. With a stochastic Lipschitz
driver, the concerned BSDE admits a unique solution which is bounded if the terminal
condition g(ST ) is bounded (see Cohen and Elliott (2015), Chapter A.9.2).

For Novikov’s condition in (2.15) we note that the integrand of the exponent can be written

||α(St, Vt, ut)||2 = a(ut)Vt + b(ut)
1

Vt
+ c(ut)

with

a(ut) =
(κt − κ)2

σ2(1− ρ2)

b(ut) =
σ2(rt − r)2 + (κtθt − κθ)2 + 2ρσ(r − rt)(κtθt − κθ)

σ2(1− ρ2)

c(ut) = −2
(σρ(r − rt) + κtθt − κθ) (κt − κ)

σ2(1− ρ2)
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such that for the expectation in (2.15) we have

EQ
[
e

1
2

∫ T
0 a(ut)Vtdte

1
2

∫ T
0 b(ut)

1
Vt
dt
e

1
2

∫ T
0 c(ut)dt

]
≤ k

√
EQ
[
e
∫ T
0 a(ut)Vtdt

]
EQ
[
e
∫ T
0 b(ut)

1
Vt
dt
]

(2.16)

since e
1
2

∫ T
0 c(ut)dt is bounded by a constant k (for ut ∈ U) and where we have used the

Cauchy-Schwarz inequality. If we begin with the first expectation on the right hand side
of (2.16) we have a(ut) ≤ ā for a constant ā. As the Laplace transform of the integrated
CIR process9 is finite for ā ≤ κ̃2/(2σ2), we end up with the condition

|κt − κ| ≤ κ̃
√

1− ρ2

√
2

. (2.17)

For the second expectation of (2.16), we use that b(ut) ≤ b̄ for a constant b̄ and that the
Laplace transform of the integrated inverse-CIR process 10 is finite for

b̄ ≤

(
2κ̃θ̃ − σ2

2
√

2σ

)2

. (2.18)

Rearranging this condition, we have that

σ2(rt − r)2 + (κtθt − κθ)2 + 2ρσ(r − rt)(κtθt − κθ) ≤
1− ρ2

2

(
κθ − σ2/2

)2
together with (2.17) are sufficient conditions for (2.15) to hold.

9The Laplace transform of the integrated variance E[exp(−β
∫ T

0
Vtdt)] goes back to Cox et al.

(1985) and is well defined for −β ≤ κ2/(2σ2), see also Carr et al. (2003).
10Carr and Sun (2007) gives an expression for the joint transform of the log-price and integrated

variance of a 3-over-2 process. Applying Itô’s formula to 1/Vt we find that the inverse-CIR (κ, θ, σ)

process is a 3-over-2 process with parameters (κ̂ ≡ κθ − σ2, θ̂ ≡ κ/(κθ − σ2), σ̂ ≡ −σ). Using their
transform, provided κ̂ > −σ̂2/2,

E
[
e−λ

∫ T
0

1
Vt
dt
]

=
Γ(γ − α)

Γ(γ)

(
2

σ̂2y(0, 1/V0)

)α
M

(
α, γ,− 2

σ̂2y(0, 1/V0)

)
where

y(t, x) ≡ x(eκ̂θ̂(T−t) − 1)/(κ̂θ̂) = x(eκ(T−t) − 1)/κ

α ≡ −(1/2 + κ̂/σ2) +
√

(1/2 + κ̂/σ2)2 + 2λ/σ2

γ ≡ 2(α+ 1 + κ̂/σ2) = 1 + 2
√

(1/2 + κ̂/σ2)2 + 2λ/σ2

and M is the confluent hypergeometric function. From this, we see that

λ ≥ −
(

2κ̂+ σ2

2
√

2σ

)2

= −
(

2κθ − σ2

2
√

2σ

)2

is a sufficient condition for the transform to being well defined.
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Remark 2.2. As a final point, we note that the above framework may be adapted to a situ-
ation where the underlying asset pays a continuously compounded dividend yield δ. A pre-
dictable dividend process in then added to the control process {ut}t≥0 = {rt, δt, κt, θt}t≥0

taking values in a compact set U ⊂ R4. The change of measure Q → Qu is given by the
effect process

α(St, Vt, ut) =
1

σ
√
Vt

[
κtθt − κθ − (κt − κ)Vt

−ρ(κtθt−κθ−(κt−κ)Vt)+σ(rt−r−δt+δ)√
1−ρ2

]

such that the asset price has a controlled drift coefficient (rt−δt)Stdt under Qu. The pricing
bounds are defined by the optimally controlled value processes and as in the zero-dividend
case, they are given as solutions to the optimal value-process BSDE (2.10) with the driver
H being (2.8) pointwise optimised over U . A before, this yields a linear optimisation
problem in terms of the control’s divergence from statistical parameters with a solution
corresponding to the one given in (2.14):

H±(St, Vt, Zt, Yt) = ±
√
χ2

4(1− α)n>t Σ>r,δ,κ,βnt − rYt

where Σr,δ,κ,β is the covariance matrix of the parameters and nt the 4× 1 vector

nt =

[(
Z2
t

ρ̄
√
Vt
− Yt

)
,

(
Z2
t

ρ̄
√
Vt

)
,

(
−Z1

t

√
Vt

σ
+
ρZ2

t

√
Vt

σρ̄

)
,

(
Z1
t

σ
√
Vt
− ρZ2

t

σρ̄
√
Vt

)]>
where we denote ρ̄ ≡

√
1− ρ2. The optimal control/divergence ũ±(St, Vt, Zt, Yt) = (rt −

r, δt − δ, κt − κ, βt − β) is given by the corresponding expression of (2.14).

2.3 Numerical methods for BSDEs

The optimally controlled value process (or the value process for a fixed feedback control,
i.e. ut = u(t, St, Vt) for a deterministic function u) is given by the solution to the decoupled
forward-backward stochastic differential equation (2.2)-(2.10). In general, there is not much
hope of finding closed-form solutions to neither forward nor backward SDEs and one
typically has to consider numerical methods. For our purposes, we consider the simulation
technique by Bouchard and Touzi (2004).

2.3.1 The simulation scheme by Bouchard and Touzi

For a time gird π : 0 = t0 < · · · < tn = T , Bouchard and Touzi (2004) propose a
method to generate a discrete-time approximation (Xπ, Y π) of the solution to a decoupled
equation with forward component X and backward component Y . In the first part of the
scheme, the forward component Xπ is simulated over the time grid π with a standard
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Euler-Maruyama approximation to generate N paths of Xπ (see e.g. Kloeden and Platen
(1992)). The component Y π is then generated by the backward induction

Y π
tn = g(Xπ

tn)

Zπti−1
=

1

∆i
E
[
Y π
ti ∆Wti

∣∣Xπ
ti−1

]
Y π
ti−1

= E
[
Y π
ti + f(Xπ

ti−1
, Y π

ti−1
, Zπti−1

)∆i

∣∣∣Xπ
ti−1

] (2.19)

where ∆i ≡ ti − ti−1 and ∆Wti ≡ Wti −Wti−1 are the ith time- and Wiener increments
from the generation of Xπ. The last equation in (2.19) is obtained by applying E[·|Fti−1 ]
to the following simple discretization of the BSDE

Y π
ti − Y

π
ti−1

= −f(Xπ
ti−1

, Y π
ti−1

, Zπti−1
)∆i + Zπti−1

∆Wti (2.20)

and using the Markov property of X and the fact that Yt and Zt are both deterministic
functions of Xt for all t ∈ [0, T ]. The second equation for Z is obtained similarly by
multiplying (2.20) with ∆Wti and taking conditional expectations.

For the backward induction (2.19) one has to compute the conditional expectations and
to make the scheme operational, this is made with an approximation Ê[·|Xπ

ti−1
] of the

regression function E[·|Xπ
ti−1

] based on simulated training data. That is, the data

{Y π(j)
ti

,∆W
(j)
ti
, X

π(j)
ti−1
}1≤j≤N

is used for the first regression in (2.19) where Xπ(j) is the jth simulated path of Xπ and
Y π(j) is the corresponding value from the induction of the previous time step. For the

second regression, {Y π(j)
ti

, Z
(j)
ti−1

, X
π(j)
ti−1
}1≤j≤N is used accordingly.

As an example of a non-parametric regression estimator, it is suggested to use the Nadaraya-
Watson weighted average for a kernel estimator. We conveniently employ the k-nearest
neighbour kernel for this purpose: for Xπ

ti−1
and ξ ∈ Fti , each with N simulated outcomes,

we approximate E[ξ|Xπ
ti−1

= X
π(j)
ti−1

], j = 1, . . . , N , with

Ê
[
ξ
∣∣∣Xπ(j)

ti−1

]
=

∑N
l=1 ξ

(l)1
(
||Xπ(l)

ti−1
−Xπ(j)

ti−1
|| ≤ d(j)

k

)
k + 1

(2.21)

where d
(j)
k is the distance between X

π(j)
ti−1

and its kth nearest neighbour, and 1(·) is the
indicator function. The regression (2.21) together with (2.19) yields an implicit simulation
method and as a last step of the scheme, it is suggested to truncate Zπti−1

and Y π
ti−1

if one has
appropriate (possibly t and Xπ

ti−1
dependent) bounds for E[Y π

ti ∆Wti |Xπ
ti−1

], E[Y π
ti |X

π
ti−1

]
and Yti−1 .

The k-nearest neighbours estimator (2.21) is a method that approximates the regression
function in a local neighbourhood with a constant. As such, it has low bias but high
variance (it is “wiggly” and unstable) and it suffers from the curse of dimensionality at
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the boundaries. For an alternative regression estimator, we consider the MARS method11

(multivariate adaptive regression spines) which uses piecewise linear basis functions in an
adaptive manner to approximate the regression function. The model has the linear form

Ê
[
ξ
∣∣∣Xπ

ti−1

]
= β0 +

M∑
m=1

βmhm(Xπ
ti−1

) (2.22)

where each basis function hm(X) is in the candidate set of paired piecewise linear splines:
(Xk − η)+, (η − Xk)+ with k = 1, 2 referring to the components of X. The knots η are

placed at any value in the set of X-observations: η ∈ {Xk,π(j)
ti−1

}Nj=1 for k = 1, 2, and hm(X)
are allowed to be d-times products of the splines as well, where d is limited by the model
degree. The model (2.22) is built up in a sequential manner by adding a new spline from the
candidate set in each stage based on the largest reduction of residual error. All coefficients
β0, β1, . . . are estimated in each stage by least squares and the process continues until the
model has a prescribed number of term. The model is then ”pruned” with a backward
deleting procedure where the optimal number of terms is estimated by cross-validation
(for details, see Hastie et al. (2005)).

2.3.2 Modified simulation schemes

As a first modification of the Bouchard-Touzi method, we consider an explicit version of
the implicit scheme by replacing the second regression in (2.19):

Y π
tn = g(Xπ

tn)

Zπti−1
=

1

∆i
E
[
Y π
ti ∆Wti

∣∣Xπ
ti−1

]
Y π
ti−1

= E
[
Y π
ti + f(Xπ

ti−1
, Y π

ti , Z
π
ti−1

)∆i

∣∣∣Xπ
ti−1

]
.

(2.23)

This comes from a discretization of the BSDE at the right time-point Yti instead of Yti−1

and since Y is a continuous process, the effect of using the value at the right time-point is
vanishing as the time-grid becomes tighter. The same discretization is used by for instance
Gobet and Lemor (2008), and the benefit is that this allows for an explicit calculation of
Y π
ti−1

in the second regression step of each iteration.

As an additional step, to obtain an implicit method with a fixed point procedure, we may
employ (2.23) to get a first candidate Ỹ π

ti−1
and supplement each step in the backward

induction with a small number of implicit iterations of

Ỹ π
ti−1

= E
[
Y π
ti + f(Xπ

ti−1
, Ỹ π

ti−1
, Zπti−1

)∆i

∣∣∣Xπ
ti−1

]
, (2.24)

and keeping Y π
ti−1

= Ỹ π
ti−1

as our final value for the next backward step.

11We are using the R package ”earth” by Milborrow. Derived from mda:mars by T. Hastie and
R. Tibshirani. (2011).
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Secondly, to improve the stability of the scheme, we consider a modification of (2.23) based
on the following recursion for the backward component

Y π
ti−1

= Y π
ti + f(Xπ

ti−1
, Y π

ti , Z
π
ti−1

)∆i − Zπti−1
∆Wti

= Y π
ti+1

+ f(Xπ
ti−1

, Y π
ti , Z

π
ti−1

)∆i + f(Xπ
ti , Y

π
ti+1

, Zπti)∆i+1 − Zπti−1
∆Wti − Zπti∆Wti+1

= Y π
tn +

n∑
k=i

f(Xπ
tk−1

, Y π
tk
, Zπtk−1

)∆k − Zπtk−1
∆Wtk

such that we may write the explicit backward induction (2.23) as

Y π
tn = g(Xπ

tn)

Zπti−1
=

1

∆i
E

[(
Y π
tn +

n∑
k=i+1

f(Xπ
tk−1

, Y π
tk
, Zπtk−1

)∆k

)
∆Wti

∣∣∣∣∣Xπ
ti−1

]

Y π
ti−1

= E

[
Y π
tn +

n∑
k=i

f(Xπ
tk−1

, Y π
tk
, Zπtk−1

)∆k

∣∣∣∣∣Xπ
ti−1

]
.

(2.25)

The benefit of this is that errors due to approximating the conditional expectation do not
accumulate at the same rate. As in the previous modification, we may complement (2.25)
with a small number of iterations

Ỹ π
ti−1

= E

[
Y π
tn +

n∑
k=i

f(Xπ
tk−1

, Ỹ π
tk−1

, Zπtk−1
)∆k

∣∣∣∣∣Xπ
ti−1

]
(2.26)

for an implicit method.

For an alternative type of simulation schemes, recall that for Markovian forward-backward
equations, both Yt and Zt may be written as functions of the current forward state (t,Xt).
Hence, we use the regression estimator of (2.23) to write

Y π
ti−1

= Ê
[
Y π
ti + f(Xπ

ti−1
, Y π

ti , Z
π
ti−1

)∆i

∣∣∣Xπ
ti−1

]
≡ ŷi−1(Xπ

ti−1
)

(2.27)

that is, the function y(t, x) that generates Yt = y(t,Xt) is approximated with ŷ(·). Further,
if we use Zπti in the driver of (2.27) (Zπti from the previous time-step) to obtain ŷi−1(·), we
get the following scheme

Y π
tn = g(Xπ

tn), Zπtn = ∂xg(Xπ
tn)σ(Xπ

tn),

Y π
ti−1

= Ê
[
Y π
ti + f(Xπ

ti−1
, Y π

ti , Z
π
ti)∆i

∣∣∣Xπ
ti−1

]
=⇒ ŷi−1(·),

Zπti−1
= ∂xŷi−1(Xπ

ti−1
)σ(Xπ

ti−1
),

(2.28)

since the function that generates Zt is given by Zt = ∂xy(t,Xt)σ(Xt), see footnote 8.
In particular, if we employ the MARS regression, ŷ(·) will be a sum of piecewise linear
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splines and products thereof up to the specified degree. Hence, the partial derivatives
(∂sŷ(·), ∂vŷ(·)) are easily calculated analytically. Further, the last two calculations of (2.28)
may be iterated with Y π

ti−1
, Zπti−1

for an implicit version of the scheme.

For a second type of modifications, we may include additional predictors for the regression
functions. As an example, let CHe(t, x) denote the pricing function of an option with
terminal payoff g(XT ) calculated under Heston’s model. As the pricing bound Yt lies in a
neighbourhood of the price CHe(t,Xt), we may add this as a predictor to our regression
estimator

Y π
ti−1

= Ê
[
Y π
ti + f(Xπ

ti−1
, Y π

ti , Z
π
ti−1

)∆i

∣∣∣Xπ
ti−1

, CHe(ti−1, X
π
ti−1

)
]
. (2.29)

Finally, we mention a modification of the first regression in the standard scheme (2.19),
as proposed by Alanko and Avellaneda (2013)

Zπti−1
=

1

∆i
E
[(
Y π
ti − E[Y π

ti |X
π
ti−1

]
)

∆Wti

∣∣∣Xπ
ti−1

]
(2.30)

with the purpose being a variance reduction of the regression estimate. The motivation is
the following: since Y π

ti = y(ti, X
π
ti) for some continuous function y(t, x), we have Zπti−1

=
E[y(ti−1 + ∆i, X

π
ti−1

+ ∆Xπ
ti)∆Wti/∆i|Xπ

ti−1
] and the estimator thereof

1

N

N∑
j=1

y(ti−1 + ∆i, X
π
ti−1

+ ∆X
π(j)
ti

)

√
∆iz

(j)

∆i
(2.31)

where z(j) are independent standard normal random variables. As ∆X
π(j)
ti

= drift ×
∆i + diff ×

√
∆iz

(j), we have that the variance of the estimate (2.31) is approximately
y(ti−1, X

π
ti−1

)2/(N∆i) for small ∆i and hence, it blows up as ∆i → 0. In return if we use

1

N

N∑
j=1

(
y(ti, X

π
ti)− y(ti−1, X

π
ti−1

) + fi−1∆i

) √∆iz
(j)

∆i
(2.32)

where fi−1 ≡ f(Xπ
ti−1

, Y π
ti−1

, Zπti−1
) and y(ti−1, X

π
ti−1

)− fi−1∆i = E[Y π
ti |X

π
ti−1

] from (2.19),

we have that the estimator (2.32) of (2.30) will have approximate variance 2yx(ti−1, X
π
ti−1

)2/N+
∆ifi−1/N which do not depend on ∆i as this goes to zero.

We end this section with a demonstration of the simulation schemes based on (2.23) and
(2.25) in the following example.

Example 2.1. For the forward process, we simulate N = 100, 000 paths of Heston’s
model (2.2) with parameters (r, κ, θ, σ, ρ) = (0, 5.07, 0.0457, 0.48,−0.767), initial value
(Sπ0 , V

π
0 ) = (100, θ) over an equidistant time grid with n = 25 points and terminal time

T = 1. For the backward process, we consider the trivial driver f(Xt, Yt, Zt) = 0, i.e.
dYt = ZtdW̃t, together with the terminal condition YT = ST . Hence, Y is a martingale
and we have

Yt = EQ [ST |Ft] = St
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Figure 2.1: Left figure: five simulated paths of Y π (solid lines) with the zero-driver of
example 2.1. The explicit scheme (2.21)-(2.23) is employed with k = 5 nearest neighbours.
The forward component Xπ = (Sπ, V π) is simulated from Heston’s model and the dashed
lines show the corresponding paths of Sπ. Right figure: the N -sample average of Y π

0 (in
increasing order) from 50 repetitions of the simulation with the k = 5 explicit scheme
(2.23) (black crosses), the recursive-based scheme (2.25) with k = 5 (red crosses) and
k = 100 (blue crosses).

since for a zero interest rate, S is a Q-martingale as well. As there is no dependency of
Z in the driver, the backward induction simplifies to the regression Y π

ti−1
= Ê[Y π

ti |X
π
ti−1

]
repeated for i = n, . . . , 1 and a starting value Y π

tn = Sπtn . With k = 5 nearest neighbours
of the regression estimator (2.21), the left pane of Figure 2.1 shows five simulated paths
of the backward process Y π with the explicit scheme (2.23) along with the corresponding
paths of Sπ and it can be seen that the components follow each other quite closely. Looking
at the initial time value, the N -sample of Y π

0 has an average 98.532 to be compared with
the true value Y0 = EQ [ST ] = S0 = 100, while the sample of Y π

tn = Sπtn averages to 99.998.

If we repeat the simulation 50 times and calculate the average of Y π
0 for each repetition,

we obtain the result in the right pane of Figure 2.1. The first explicit scheme based on
(2.23) yields sample averages quite close to the true value and if we repeat the simulations
with the Y π-recursion scheme (2.25) instead, we obtain similar results. For comparison,
we have included the recursive scheme with k = 100 nearest neighbours as well.

Finally, notice that this example corresponds to g(x) = x and an effect α(St, Vt, ut) =
(0, 0)> such that Qu ≡ Q. Hence, with % = 0 for the driver (2.8), we have that the value
process Jt(u) = Eu [g(ST )|Ft] = EQ [ST |Ft] is the solution to (2.9).
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2.3.3 Simulation results for European options

For numerical calculation of the pricing bounds for European options, we consider the
parameter setting given in Table 2.4 and a set of call options with strike-maturity structure
as given in Table 2.2. The call prices are calculated from the so called semi-closed pricing
formula of Heston’s model, i.e. by numerical integration of the inverse Fourier transform
of the price (see e.g. Gatheral (2011)). The corresponding implied volatilities are then
obtained from Black-Scholes formula by numerical optimisation.

European call prices
Strike/Expiry 75 100 125

4m 26.0044 (0.2823) 4.8239 (0.2106) 0.0070 (0.1518)
1y 29.4915 (0.2482) 10.9174 (0.2124) 1.8403 (0.1832)
10y 57.4959 (0.2220) 46.4060 (0.2174) 37.1943 (0.2138)

Table 2.2: Prices and implied volatilities (in parenthesis) of European call options cal-
culated by the semi-closed pricing formula of Heston’s model with parameters from Table
2.4.

Prior to considering the pricing bounds as obtained from the optimally controlled value
process, we take a look at the prices one achieves by minimising/maximising Heston’s
pricing formula CHe(·) over the parameter uncertainty set U represented by the elliptic
constraint in (2.13) with a 95% confidence level. That is

C±He =

∣∣∣∣ min
(r,κ,θ)∈U

±CHe(S, V ; τ,K,Θ)

∣∣∣∣ (2.33)

where Θ is the vector of model parameters including (r, κ, θ) while K is the strike and τ
the time to maturity. From numerical optimisation of (2.33) with parameters and elliptic
uncertainty region based on Table 2.4, we get the results in Table 2.3. We will use these
as a reference point for our forthcoming simulation study.

Simulation of the forward component

The forward componentX = (S, V ) of the SDE (2.2) governing the asset price and variance
is simulated in the first stage of the simulation scheme for the forward-backward equation.
We employ the standard Euler-Maruyama scheme for the log-price and an implicit Milstein
scheme to generate the variance

logSπti = logSπti−1
+

(
µ− 1

2
V π
ti−1

)
∆i +

√
V π
ti−1

(ρ∆W 1
ti +

√
1− ρ2∆W 2

ti)

V π
ti =

V π
ti−1

+ κθ∆i + σ
√
V π
ti−1

∆W 2
ti + 1

4σ
2((∆W 2

ti)
2 −∆i)

1 + κ̃∆i
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Optimised Heston pricing function
Strike/Expiry 75 100 125

4m
[25.9316, 26.2591] [4.5758, 5.0572] [0.0040, 0.0124]
(0.0520, 0.3651) (0.1980, 0.2225) (0.1441, 0.1610)

1y
[28.6578, 30.4061] [9.9716, 11.8229] [1.3840, 2.4824]
(0.0303, 0.3060) (0.1872, 0.2364) (0.1659, 0.2053)

10y
[54.5102, 62.3675] [40.2004, 51.9955] [30.7291, 43.0811]
(0.0195, 0.3190) (0.1085, 0.2925) (0.1444, 0.2754)

Table 2.3: Prices and implied volatilities of European call options, calculated by numerical
minimisation/maximisation of the Heston pricing formula over the parameters (r, κ, θ)
constrained by the parameter uncertainty region.

Model parameters
S0 V0 r κ θ σ ρ
100 0.0457 0.05 5.070 0.0457 0.4800 -0.767

r κ β
r 2.5e-05 0 0
κ 0 0.25 0
β 0 0 1e-04

Table 2.4: Parameter setting and covariance matrix used for the numerical calculation of
pricing bounds for European options.

where ∆W 1
ti , ∆W 2

ti are independent variables generated from the zero-mean normal dis-
tribution with variance ∆i. If the parameters satisfy 4κθ > σ2 this discretization scheme
generates positive variance paths and we do not have to impose any truncation as in the
case with the standard Euler-Maruyama scheme, see Andersen et al. (2010). We simulate
N = 100, 000 paths over an equidistant time gird with n = 25 knots.

The optimised Heston formula by backward simulation

As a first simulation example of the backward component Y , we consider the formula-
optimal price of the at-the-money call with maturity one year (prices given in Table 2.3).
Hence, we simulate the backward component with the non-optimised driver f(Xt, Yt, Zt, ut)
of equation (2.8) with a constant ut based on the resulting parameters from the price-
optimisation (2.33) of the considered call option. This allows us to evaluate the accuracy
of our simulations schemes in a situation where we know the true values we are aiming at
calculating numerically. The reason for simulating the optimised price of (2.33) instead of
the null-controlled plain price of the call (given in Table 2.2) is that the optimised-price
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Figure 2.5: Numerical calculation of the formula-optimal price of the one-year at-the-
money call (Table 2.3). Left figure: the N -sample average of the minimised price Y π

0

from 100 repetitions of the simulation (in increasing order). We use a equidistant time-
grid with n = 25 time-points and generate N = 100, 000 paths of Y π in every simulation.
Right figure: the corresponding maximised price. The figures show the results from four
explicit schemes based on the k = 5 nearest neighbours estimator (red marks) and the
MARS estimator of degree 2 (black marks). The dashed lines indicate the true call price as
calculated by the (optimised) Heston’s formula while the blue stars show the Monte-Carlo
price as calculated from the N simulated paths of Xπ = (Sπ, V π) for each repetition.

simulation relies on a Z-dependent driver, while the Q-price has an effect being zero in
(2.8) such that the Z-regression step of the simulation scheme expires for the plain price
(cf. example 2.1).

For starters, we consider the following four variations of the simulation schemes from the
previous section:

1. the explicit scheme (2.23) with k = 5 nearest neighbours regression (2.21)

2. the explicit scheme with MARS regression (2.22) of degree 2

3. the explicit-recursive scheme (2.25) with k = 5 nearest neighbours regression

4. the explicit-recursive scheme with MARS regression of degree 2.

For each of the schemes 1–4, we repeatedly simulate the formula-optimal price 100 times
and calculate sample- bias and root mean square errors. The results are given in Table
2.6, while Figure 2.5 shows the prices from all repetitions of the simulation.
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Backward simulated optimised Heston price

Scheme Ave. E(π̂) Bias: E(π̂)− π RMSE:
√

E[(π̂ − π)2]

Explicit knn 11.6552 -0.1677 0.1783
Explicit MARS 11.7378 -0.0851 0.0987
Recursive knn 11.7968 -0.0261 0.0608

Recursive MARS 11.8164 -0.0065 0.0534
Forward MC 11.8041 -0.0188 0.0508

Explicit knn 9.9960 0.0244 0.0511
Explicit MARS 10.4993 0.5277 0.5292
Recursive knn 10.0351 0.0635 0.0766

Recursive MARS 10.0004 0.0288 0.0509
Forward MC 9.9719 0.0003 0.0380

Table 2.6: Accuracy of the simulated formula-optimised price of an at-the-money call
option with maturity one year (true values in Table 2.3) for N = 100, 000 and n = 25.
Sample- average, bias and root mean square error calculated from 100 repetitions of each
simulation.

From Table 2.6 we see that the explicit-recursive-MARS scheme performs best in terms
of low bias and low RMSE although the simple explicit-knn scheme performs well for the
lower price. Comparing the backward simulation with the Monte Carlo price calculated
directly from forward simulation we have close to equal performance for the higher price.
Since the backward simulation step is dependent of the forward step, we can not expect
any improvement in accuracy beyond that of the forward simulation.

Next, we continue with the following modifications of the simulation schemes:

5. explicit-recursive-MARS with variance reduction (2.30)

6. explicit-recursive-MARS with two implicit iterations (2.26)

7. a combination of 5 and 6

8. explicit-recursive-MARS with call-price predictor12 (2.29).

The results are recorded in Table 2.7 and if we compare these with the result for the plain
explicit-recursive-MARS scheme 4, we observe similar accuracies for all of them. However,

12The calculation of the pricing-formula for the call relies on numerical integration and we need
N = 100, 000 such evaluations for each of n = 25 time-step which makes the scheme very computer
intensive. For this reason, we calculate a subset of 500 call prices and use a polynomial regression
to predict the remaining call prices. As the pricing formula is a ”nice” function of S and V , this
approximation only has a limited impact.
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Backward simulated optimised Heston price II

Scheme E(π̂) E(π̂)− π
√

E[(π̂ − π)2]

Forward MC 11.8094 -0.0135 0.0411
Rec. MARS, var. reduction 11.8169 -0.0060 0.0433
Rec. MARS, two implicit 11.8196 -0.0033 0.0468

Rec. MARS, var. red. & two imp. 11.8164 -0.0065 0.0433
Rec. MARS, call-predictor 11.8166 -0.0063 0.0435
Rec. MARS, Z-function 11.6868 -0.1361 0.1489

Rec. MARS, Z-fun. & three imp. 11.6794 -0.1435 0.1558

Forward MC 9.9719 0.0003 0.0380
Rec. MARS, var. reduction 10.0075 0.0359 0.0501
Rec. MARS, two implicit 10.0027 0.0311 0.0495

Rec. MARS, var. red. & two imp. 10.0094 0.0378 0.0515
Rec. MARS, call-predictor 10.0082 0.0366 0.0507
Rec. MARS, Z-function 10.1096 0.1380 0.1502

Rec. MARS, Z-fun. & three imp. 10.1661 0.1945 0.2034

Table 2.7: Accuracy of the simulated formula-optimised price of an at-the-money call
option with maturity one year (true values in Table 2.3) for N = 100, 000 and n = 25.
Sample- average, bias and root mean square error calculated from 100 repetitions of each
simulation.

as both implicit schemes 6 and 7 add N regressions and N evaluations of the driver to
the computational cost for each implicit iteration, we opt for the schemes 4 or 5.

At last, we consider two schemes based on the MARS derivative: (9) explicit-recursive-
MARS with Z-function (2.28), (10) explicit-recursive-MARS with Z-function and three
implicit iterations. Both these modifications yield poor accuracy, see Table 2.7.

2.3.4 The optimally controlled value-process of a European
call option

Here we simulate the backward component of equation (2.10) that governs the optimally
controlled upper/lower pricing bound of the European call option with strike-maturity
structure as in Table 2.2 based on parameters in Table 2.4. Hence, we simulate Y with an
initial (terminal) condition Y π

tn = (Sπtn −K)+ and an optimised driver H(Xt, Yt, Zt) as of
equation (2.14) with a confidence level of 95% for the parameter uncertainty region based
on the covariance matrix in Table 2.4.

As before, we simulate the forward component Xπ = (Sπ, V π) with the Euler-Maruyama
implicit-Milstein scheme and for a start, we use N = 100, 000 paths over an equidistant
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Figure 2.8: Numerical calculation for the pricing bounds of the one-year at-the-money
call with N = 100, 000 paths over n = 25 time-points. Left figure: the N -sample average
Y π

0 of the lower bound for the call price (in increasing order) calculated from each of 100
repetitions of the simulation. Right figure: the corresponding upper bound. The dashed
lines indicate the call price as calculated by the optimised Heston’s formula.

time-gird with n = 25 points. Note that for each backwards time-step, we perform 3×N
regressions to obtain the one-step recursion of Z1π, Z2π, Y π and N evaluations of the
matrix multiplication in (2.14) for the optimal driver. For the implicit versions of the
schemes, we iterate two (or three) times which adds 2×N regressions and 2×N matrix
multiplications to each time-step.

For a demonstrative example, we again consider the one-year the at-the-money call option
and run 100 repetitions of the following simulation schemes:

1. explicit-recursive-MARS of degree 2

2. explicit-recursive-MARS of degree 2 with variance reduction

3. explicit-recursive-MARS of degree 2 with Z calculated from the MARS derivative

4. two implicit fixed-point iterations added to scheme number 1

5. two implicit fixed-point iterations added to scheme number 2

6. explicit-recursive-MARS of degree 2 with call-price predictor and variance reduction.

The resulting pricing bounds are shown in Figure 2.8 where, for clarity, we have plotted
only the results from scheme number 1, 2 and 3.
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From Figure 2.8 we see that if we add variance reduction to the explicit-recursive-MARS
we obtain slightly higher (lower) prices for the lower (upper) boundary and a somewhat
lower variance. Further, if we consider the two-step implicit versions of these schemes, we
have that 1 and 4 coincide almost perfectly, and also 2 and 5, for both the upper and lower
bounds (these schemes are excluded from Figure 2.8 only for clarity). The same holds if
we add the call-price predictor: 2 and 6 coincide for both the upper and lower bounds.
As in the case for the formula-optimised price, the Z-function scheme yields a high lower
bound (similar to the formula minimised price) and a upper bound similar to the other
schemes. Both bounds also have a very high variance, and for these reasons we henceforth
omit the Z-function schemes.

Recursive MARS degree 2 with variance reduction, n = 25
Strike/Expiry 75 100 125

4m
[25.7771, 26.2877] [4.5005,5.1597] [0.0016,0.0175]
(0.0585,0.3714) (0.1942,0.2277) (0.1335,0.1672)

1y
[28.5910,30.5482] [9.7418,12.1603] [ 1.2374,2.6306]
(0.0329,0.3138) (0.1811,0.2454) (0.1600,0.2101)

10y
[52.7314,64.9297] [40.5299,54.2037] [30.7684,45.1219]
(0.0319,0.3645) ( 0.1176,0.3214) ( 0.1448,0.2970)

Table 2.9: Pricing bounds for the European call option and corresponding Black-Scholes
implied volatilities. Calculated from numerical simulation schemes for the backward pro-
cess with N = 100, 000 simulated paths of the forward process following Heston’s model
over an equidistant time grid with n = 25 points.

Based on the previous results for the one-year ATM call, we choose to employ the explicit-
recursive-MARS with variance reduction as our working scheme for pricing-boundary cal-
culations. The simulation based results for the considered call options of Table 2.2 are
given in Table 2.9 and if we compare these with the formula-optimal prices of Table 2.3,
we generally see wider pricing intervals for the optimally controlled value process. This
is what we should expect: the formula-optimal prices correspond to a controlled value-
process with parameters held constant throughout the lifetime of the option, while in the
former case, the parameters are allowed to vary in an optimal way. An illustration of this
point is given in Figure 2.10 where it is shown how the parameters vary for the optimally
controlled one-year at-the-money call option.

The previous pricing bounds where obtained from a simulation of N = 100, 000 paths
over a regular time-grid of n = 25 points. While N is chosen to be a high number for
the gain of a low error of the simulation-based regression estimator, the discretization
time-step ∆ = T/n is relatively large (for the one-year option, n = 25 corresponds to
having a time-step in the size of two weeks while for practical Monte Carlo pricing, one
typically uses daily or even finer time-steps). For this reason we repeat the calculation of
Table 2.9 with a finer time-step of n = 100. The results given in Table 2.11 show wider
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Figure 2.10: The optimal controls u∗t = (r∗t , κ
∗
t , β
∗
t ) as outputted from the optimisation

of the driver H− for the one-year ATM call option. Plotted median and quantiles of N =
100, 000 simulation paths. The dotted lines show the corresponding constant parameter
choice from the optimised Heston formula.

pricing bounds for all strikes/maturities when comparing to tabel 2.9 and the difference
between the two step sizes increases with the maturity. A natural explanation for this is
that with a higher number of n we also have a higher number of time-steps at which we
optimise the driver H±, and this should lead to a value process Y π optimised to a higher
degree. This effect is obvious for the long-maturity options while it is less apparent for the
four-month option (the implied volatilities agrees down to 10−2) which also indicates that
the simulation error is not particularly affected by the finer time-discretization.
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Recursive MARS degree 2 with variance reduction, n = 100
Strike/Expiry 75 100 125

4m
[25.7349, 26.3130] [4.4748, 5.1885] [0.0005054, 0.02127]
(0.05824, 0.3767) (0.1929, 0.2292) (0.1225, 0.1710)

1y
[28.3640, 30.6353] [9.6158, 12.2530] [1.1033, 2.6726]
(0.0330, 0.3184) (0.1777, 0.2478) (0.1543, 0.2115)

10y
[48.5895, 67.3999] [36.9068, 57.1310] [27.4504, 48.1860]
(0.0217, 0.4076) (0.0199, 0.3598) (0.1053, 0.3298)

Table 2.11: Pricing bounds for the European call option and corresponding Black-Scholes
implied volatilities. Calculated from numerical simulation schemes for the backward pro-
cess with N = 100, 000 simulated paths of the forward process following Heston’s model
over an equidistant time grid with n = 100 points.

2.4 The empirical perspective

Based on the numerical recipe for the calculation of pricing bounds of European options,
we are now ready to take a look at how the method carries over for a set of real data
with historical market prices of the S&P 500 index. The empirical study is carried out
in a few steps and we motivate the analysis with the following rationale. We let the
statistical parameters as estimated from historical observations of the (asset-) price and
variance represent the financial market model under the objective measure P . Hence, (S, V )
is assumed to evolve with P -dynamics according to Heston’s model specified with the
estimated parameters. We consider (B,S) exclusively as the traded assets in the financial
market model driven by two random sources, W 1 and W 2, and refrain from the assumption
that there exists an additional, exogenously given, (volatility dependent) asset which would
complete the model. On the other hand, we dispense from arbitrage opportunities in
the model and affirm the existence of a space of risk-neutral measures: Q exists (not
necessarily unique) in a set Q of probability measures equivalent to P , such that the
discounted asset price is a martingale under any measure in Q. In our model context, this
implies that (S, V ) will have the same diffusion matrix under every Q ∈ Q as given by
the diffusion matrix of the P -dynamics. This follows from the notion that the quadratic
variation (continuous part) of a semimartingale is invariant under equivalent probability
measures on a complete filtered space. Further, by Girsanov’s theorem, we have that the
law of the driving random sources is invariant: they will be (independent) Wiener process
under all equivalent measures in Q.

With this in mind, we fix the diffusion matrix of (S, V ) to be as given by the estimated
diffusion parameters from historical data. We then take the space of equivalent risk-neutral
measures to be equal the space spanned by the controlled measure Qu over all admissible
controls: Q ≡ {Qu : u ∈ U} where U represents the space of predictable control processes
u = {ut}t≥0 that lives in the compact uncertainty set U ⊂ Rd. In particular, we deduce
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the uncertainty set from inference of the statistical estimation problem and define U to
be represented by the elliptical confidence region (for a given 95% level) as derived from
the observed Fisher information. The question to ask is then, if market option prices are
covered by the pricing rules in Q as given by the corresponding model pricing-boundaries.

Since the volatility process of an asset is latent by nature, it has to be measured with some
method. In the following section we briefly present the realized volatility measure which
gives a commonly used nonparametric estimator of the variance process. The measured
quantity is the historical volatility, as opposed to implied volatility reversed from option
market-prices, and it is estimated from historical prices of the asset. We then proceed to
briefly retail some estimation methods that we employ for point estimation of the model
parameters and for drawing inference thereof. The empirical study based on S&P 500
market data finally follows.

2.4.1 Measured variance and parameter estimation

The historical market data for the S&P 500 index contains of daily observations of the clos-
ing price and we use the variance as estimated from high-frequency observations (∼5min)
of the asset returns with the realised volatility measure (see e.g. Andersen and Benzoni
(2009)). Hence, if s = (st1 , st2 , . . . ) is a time-series with daily prices then the realized
variance measure is calculated as

RV ([ti−1, ti]) =
∑

k:sk,sk+1∈[ti−1,ti]

(ysk+1
− ysk)2,

where [ti−1, ti] is the duration of the day and sk ∈ [ti−1, ti] are intra-day time points over
which ysk = log(ssk)− log(ssk−1

) are the log-returns. The realized variance approximates

the integrated variance: RV ([ti−1, ti])
P→
∫ ti
ti−1

Vsds, (for a continuous return process, the

quadratic variation for a general semimartingale), and the measured variance at time ti is
taken to be

vti =
1

ti − ti−1
RV ([ti−1, ti]).

such that one obtains a time-series of daily variances v = (vt1 , vt2 , . . . ). For convenience,
we use precomputed variance estimates from the Oxford-Man Institute’s realised library.13

Figure 2.12 shows the daily variance and closing price of the S&P 500 index from the period
January 3rd, 2000 to February 29th, 2016.

We consider the estimation of the parameters Θ = (κ, θ, σ) from n + 1 observations v =
(v0, . . . , vn) of the variance. Here, vi is treated as the observed value of Vti for a set of
discrete time-points (t0, . . . , tn) at which the observations are made, and we denote with
∆i = ti+1 − ti the length of the ith time-interval between two consecutive observations.

13The Realised Library version 0.2 by Heber, Gerd, Lunde, Shephard and Sheppard (2009),
http://realized.oxford-man.ox.ac.uk.



36 Chapter 2. European Option Pricing

Figure 2.12: Historical closing prices and realized variances of the S&P 500 index, 4,035
daily observations from January 3rd, 2000 to February 29th, 2016. The data is sourced
from the Oxford-Man Institute realized library.

In general, inference on the parameters Θ of a process with transition density f(y;x, δ,Θ)
for Vt+δ|Vt = x can be made with the likelihood function

Ln(Θ) =

n−1∏
i=0

f(vi+1; vi,∆i,Θ)

and the maximising argument of the (log of) likelihood function is the maximum likelihood
estimator Θ̂ of Θ. If the transition density is unknown in closed form, or, as in the case
for the square root process, of a kind that is impenetrable for optimisation (both analyt-
ically and by numerical schemes), then one may consider alternatives based on suitable
approximations of the likelihood. A direct way of doing so, is to consider the time-discrete
approximation V π of the process V as given by a Euler-Maruyama scheme; for the square
root process

V π
t+δ = V π

t + κ(θ − V π
t )δ + σ

√
V π
t (Wt+δ −Wt)

which will give an approximative Gaussian log-likelihood function

ln(Θ) ≡ logLn(Θ) = −1

2

n−1∑
i=0

(vi+1 − vi − κ(θ − vi)∆i)
2

σ2vi∆i
+ log(2πσ2vi∆i) (2.34)

suitable for optimisation. A function on the same form as above was considered for least-
squares estimation of the drift parameters in Prakasa Rao (1983). For processes with
ergodic property, Kessler (1997) considered the joint estimation of drift and diffusion
parameters with a Gaussian approximation to the transition density of the form (2.34)
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and showed that under general conditions, the estimator is asymptotically normal and
efficient. Their approach addresses the case when the mean and variance of the transition
density are unknown and uses approximations in their place. For the square root process,
the explicit expressions

E[Vt+δ|Vt = v] = θ + (v − θ)e−κδ ≡ µ(v, δ),

Var(Vt+δ|Vt = v) = v
σ2

κ
(e−κδ − e−2κδ) + θ

σ2

2κ
(1− e−κδ)2 ≡ s2(v, δ),

in place of the approximations µ(v, δ) ≈ v + κ(θ − v)δ and s2(v, δ) ≈ σ2v2δ in (2.34) give
that

ln(Θ) = −1

2

n−1∑
i=0

(vi+1 − µ(vi,∆i))
2

s2(vi,∆i)
+ log(2πs2(vi,∆i))

forms an approximative Gaussian likelihood function with exact expressions for the con-
ditional mean and variance.

An approximation for the variance of the maximum likelihood estimator Θ̂ = arg max ln(Θ)
is given by the observed information matrix

Io = −∂
2ln(Θ)

∂Θ>∂Θ

∣∣∣∣
Θ=Θ̂

which may be calculated by numerical differentiation of the log-likelihood function at
estimated values. The approximative covariance matrix of Θ̂ is then given by the inverse

ΣΘ̂ = I−1
o and an estimated standard error of the jth parameter by

√
(I−1
o )jj . Hence, an

approximate 1− α confidence region for Θ is given by the ellipse

(Θ− Θ̂)Σ−1

Θ̂
(Θ− Θ̂)> ≤ χ2

d(1− α)

where d is the dimension of the row vector Θ and χ2
d(1 − α) is the 1 − α quantile of the

chi-square distribution with d degrees of freedom.

2.4.2 Empirical study

We base the empirical study on market data sourced from the Oxford-Man Institute of
Quantitative Finance and from Wharton Research Data Services.14 Data from Oxford-
Man is mainly used for the asset price of the S&P 500 index, both historical closing prices
observed with a daily frequency, and high-frequency (∼ 5min) returns which are used for
the calculation of historical volatility of the index price. Data from the Option Metrics
database, sourced through Wharton Research, is used for the option price of European
call options written on the S&P 500 index. We use historical quotes of bid and offer prices

14The former provides a publicly available data-source from http://realized.oxford-man.ox.

ac.uk while the latter requires a user account, https://wrds-web.wharton.upenn.edu/wrds/.
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Figure 2.13: Historical closing prices and realized variances of the S&P 500 index, 843
weekly observations from January 3rd, 2000 to February 29th, 2016.

from options with different strike-prices and maturities, which we select from the available
market quotes. In addition to price quotes, strike-level and maturity date, we also extract
the relevant dividend yield paid by the underlying index, and the risk-free interest rate
that corresponds to the maturity of each option in the data set.

Prior to the numerical calculation of pricing bounds for call options on the S&P 500
index, we estimate the parameters of Heston’s model from the historical market price and
variance according to the following steps:

1. First, we decimate the observation frequency of the variance to weekly observations
by calculating the realized variance measure over week-long intervals, Figure 2.13.
This operation smooths the measured variance process and in particular, it removes
the extreme variance spikes (cf. Figure 2.12) which cause non-robust parameter
estimates.

2. We estimate (κ, β, σ) from the weekly variance with the parametrisation (κ, β, σ) 7→
(κ, θ, σ) of the model. We employ the approximative likelihood based on Euler con-
ditional moments15 and calculate the approximative covariance matrix accordingly
by numerical differentiation. Results are given in Table 2.14 (with squared elements
of the covariance matrix for a notion of standard errors) together with estimation
results from the daily variance.

15Alternatively, we may employ the (approximative) likelihood with exact conditional moments.
For daily observations, the numerical optimisation does not converge while for weekly data, this
yields similar parameter estimates and standard errors as with approximative moments.
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3. In addition to estimated parameters of the variance process, we estimate the cor-
relation coefficient of the model with a realised covariation measure.16 This gives
an estimate ρ = −0.274 from the weekly variance and closing price of the S&P 500
index.

From the results in Table 2.14, note that the daily variance yields relatively high estimates
of the mean-reversion speed to accommodate extreme observations, and also large standard
errors of both drift parameters, which indicate that the square root process is a poorly
fitting model for the daily variance data.

Estimates, daily data
κ θ σ

29.6 0.0315 2.58

Standard errors
κ β σ

κ 4.314 0.544 2.37e-06
β 0.544 0.074 1.79e-06
σ 2.37e-06 1.79e-06 0.0288

Estimates, weekly data
κ θ σ

4.59 0.0307 0.775

Standard errors
κ β σ

κ 1.395 0.621 1.91e-06
β 0.621 0.0269 4.84e-06
σ 1.91e-06 4.84e-06 0.0189

Table 2.14: Parameters and standard errors estimated from historical data of the S&P
500 index. Left table: results based on 4,035 daily observations. Right table: results
based on 843 weekly observations as decimated from the original data. All estimates from
numerical optimisation and differentiation of the approximative likelihood function based
on Euler moments.

With estimated model parameters in hand, we continue to the calculation of upper/lower
bounds for the price of European options. We proceed according to the following:

1. We consider call options on the S&P 500 index with historical market prices from
the three-year period of August 31st, 2012 to August 31st, 2015. We select the dates
from this period that coincides with the weekly index data (i.e. dates for which both
the option and the S&P 500 closing price are quoted). This results in 157 dates and
a total of 244,239 option quotes for different strikes and maturities.

2. For each of the 157 dates during the time period, we chose a single option with strike
prices and times to maturity as shown in right Figure 2.15. The ”initial” option of
each period is selected with a medium-seized maturity and a strike-price as close
as possible to being at-the-money. We then retain the same maturity and strike

16The quadratic covariation of logarithmic data gives 1
t [logS, 1

σ log V ]t = 1
t

∫ t
0

√
Vs

1√
Vs
d[ρW 1 +√

1− ρ2W 2,W 1]s = ρ and we use a realized covariation estimate thereof.
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Figure 2.15: Left figure: historical market prices of call options on the S&P 500 in-
dex. The figure shows 157 bid/offer quotes (converted to zero-dividend prices) from the
period August 31st, 2012 to August 31st, 2015. Right figure: the strike price and time-
to-maturity of the call options.

price (the same option) as far as there is market quotes available from the Option-
Metrics data. This gives us four options in total. We further record the relevant
risk-free rate as given by the (continuously compounded) zero-coupon interest rate
with corresponding maturity, and the current dividend yield, both retrieved from
the OptionMetrics data. The left pane of Figure 2.15 shows the resulting bid/of-
fer quotes after they have been converted to zero-dividend prices. This is done for
each quote by first calculating the Black-Scholes implied volatility (with the effective
dividend yield) and then recalculating the Black-Scholes price with zero dividend.

3. For the calculation of pricing bounds for the call option, we initially have the fol-
lowing numerical considerations. Firstly, for the parameter estimates in Table 2.14
(based on weekly data) we have

√
4β = 0.751 < 0.775 = σ which implies that the

implicit Milstein scheme may fail due to the generation of negative outcomes. To
prevent this, we include a truncation step17 to the simulation scheme according to
the suggested method of Andersen et al. (2010). Further, we increase the number
of time steps to n = 1, 000 for the forward simulation to prevent the generation of
negative variance values.18 We then down-sample the simulated price and variance
to the original time-grid of n = 25 steps for the backward simulation. Secondly, the

17The time-stepping of the scheme fails whenever V πti < 0 due to the computation of
√
V πti and

the truncation step is simply to replace with
√

(V πti )+. Although this prevents the scheme to fail,
note that negative values may still be generated and in particular when the time-step ∆i is large.

18Bookkeeping the sign of the generated variance values yields positive outcomes 99.3% of the
time when using n = 1, 000 time steps and 96.7% for n = 25.
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driver of the backward process will explode for variance values approaching zero.
As the forward simulation may output negative/zero values, we cancel the control:
u(Xt, Zt, Yt) ≡ 0 giving H(Xt, Zt, Yt) = −rYt, each time the variance is smaller than
a threshold; Vt < ε, and we set ε = 0.00041 which is the minimum value of the S&P
500 variance.

4. We simulate the optimally controlled value-process by the explicit scheme with Y -
recursion and the MARS method of degree 2 for the regressions. The control variate
is included and we simulate N = 100, 000 paths of the forward-backward process
over a time grid with n = 25 time steps (with n = 1, 000 down-sampled to n = 25 for
the forward process). For each call option price, we run a separate simulation with
the estimated model parameters and appropriate maturity/strike, risk-free rate and
initial values for the forward process (S&P 500 index level and variance) from the
market data. We simulate the backward process with the minimised driver (for the
lower pricing bound) and the maximised driver (for the upper bound) based on the
same forward simulation. Each evaluation of the optimal driver is calculated with
the covariance matrix Σr,κ,β where we use estimated standard errors and correlation
for κ, β and a standard deviation of 0.00005 for the interest rate (r uncorrelated
with κ, β). As before, we use a confidence level of 95% for the uncertainty region.

5. Finally, we calculate the corresponding minimum/maximum prices for each consid-
ered call option by numerical optimisation of Heston’s pricing function over the same
95% uncertainty region.

The resulting upper and lower pricing bounds from the simulations are presented in Figure
2.16 together with the corresponding market quotes of bid and offer prices for the call
options. The formula-optimal prices are depicted in Figure 2.18. The dates at which there
is a common change in strike price and maturity (see right Figure 2.15) have been marked
in the figures to separate the different options: we have calculated model bounds of four
calls on the S&P 500 index with different strike/maturity structures on a weekly basis,
the first during a time period of ∼ 4 months and the remaining during periods of ∼ 8− 12
months. We label these options (I)-(IV) and give some additional results in Table 2.17.

As a first note on the results for the pricing bounds, we see that the market bid/offer
quotes fall inside the model bounds for almost all considered call prices (154 out of 157)
and in particular, for all prices when looking at the latest two options (III)-(IV), see Table
2.17. The lower bound is always covering the bid quote and the price interval of the bounds
is fairly symmetrical around the mid-market price for options (III)-(IV). The offer prices
of option (I) is close to the upper bound (occasionally above) and the same holds for (II).
This option’s moneyness is increasing with time (see right pane of Figure 2.15) while the
bound-to-offer distance is shrinking. A possible explanation may be the model’s inability
to capture the slope and skew of market prices/implied volatilities (for the parameters we
use, as estimated from historical data).

For an investigation of this point, we take a look at the option prices and model boundaries
for a range of strikes at the first and last date of option (II) which we have depicted in
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Figure 2.16: European call options on the S&P 500 index: upper and lower pricing bounds
(dashed lines) as calculated by simulations of the optimally controlled value process. The
graph shows model prices and historical market quotes of bid and offer prices (solid lines)
on a weekly basis of options with four different strike/maturity structures (see right pane
of Figure 2.15).

European call options on the S&P 500 index
Option: (I) (II) (III) (IV)

Duration 12/09/04-12/12/24 12/12/31-13/12/23 13/12/30-14/12/22 14/12/29-15/08/31
Maturity 14/12/20 15/12/19 16/12/16 17/12/15

Spread:price 5.6% 3.4% 5.6% 7.1%
Bounds:price 74.9% 42.7% 72.4% 85.7%

Bounds:spread 14.9 12.4 13.9 12.8
In bounds 88.2% 98.1% 100% 100%

Optim:price 39.2% 21.1% 37.5% 44.2%
Optim:spread 7.8 6.1 7.2 6.6

In interval 11.8% 0% 76.9% 72.2%

Table 2.17: Key figures for the model prices of S&P 500 call options from the optimally
controlled value process (the pricing bounds) and the formula-optimal pricing interval.
The spread-to-price ratio gives the average size of the market spread as a percentage of
the average mid-market price of each option. Similarly, the bounds-to-price ratio gives
the (average) size of model-bounds to the price, and to the market spread (bounds-to-
spread ratio). The in-bounds figures give the proportion of market quotes that fall inside
the model bounds. Corresponding figures are calculated for the intervals of the formula
optimised model prices.

terms of implied volatilities in Figure 2.19. The left pane, which shows prices form the first
considered date 2012-12-31 of option (II), shows a strongly skewed volatility curve from the
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Figure 2.18: The minimum and maximum price (red dotted lines) as obtained from the
optimisation of Heston’s pricing formula for call options. The solid black lines show the
market bid/offer quotes of the S&P 500 options.

Figure 2.19: Left figure: mid-market implied volatility of the S&P 500 call option for
different strikes as recorded on 2012-12-31. Corresponding model-boundaries (dashed lines)
and formula-optimal prices (red dotted lines), both in terms of implied volatilities. The
volatility of the ATM option (II) is marked with a star. Right figure: implied volatilities
from the mid-market price, model-boundaries and formula-optimum, as recorded on 2013-
12-23 (the last date of the considered period for option (II)).
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market prices, while the prices from Heston’s (optimised) formula yield much flatter, less
sloped, curves. This indicates that we need a higher level of skewness to fit the curvature
of market volatilities (roughly speaking, a stronger negative correlation to increase the
slope and a higher level of ”vol-of-vol” to increase the skew), and a higher volatility level
overall for the ATM formula-price to fit with the market (a higher mean-reversion level and
lower reversion speed; quite remarkably, this would require a negative market price of risk
parameter λ, cf. equation (2.5)). For both dates, the pricing-bounds from the optimally
controlled value process are wide enough to covers all strikes even if option (II) yields a
boundary close to the market volatility at the later date where it is deeply in-the-money
(see right pane of Figure 2.19). If we consider the ATM strike instead, we see model-bounds
that are fairly symmetric around the market volatility. Furthermore, as in the case with
formula-optimal prices, we note that the bounds do not exhibit any curvature in line with
the market volatilities, supposedly because of the low level of negative correlation and
vol-of-vol.

Returning to the prices of all options (I)-(IV), we see that average ranges of the model
bounds are ∼ 13 times the sizes of the market bid/offer spreads (Table 2.17). Comparing to
the mid-market option price, we have that the average bound-range is ∼ 40− 80 percent
of the option price while the spread is only ∼ 5% of the price. The size of the model-
bound interval is ultimately dependent on the uncertainty region for the drift parameters
(effectively of the variance drift since the interest-rate uncertainty is negligible). So despite
the fact that the price range of the model bounds is quite large, it’s notable that it covers
market-quotes almost everywhere since the model is completely specified from historical
data of the underlying asset price, and not from the option-price data.

Furthermore, if we consider the option prices as obtained from optimising the Heston
formula (Figure 2.18), we have that ∼ 40% of the market quotes fall inside the model
interval. The market quotes of option (II) are outside the model prediction throughout
the period, and option (I) has only 11.8% of its quotes covered. The (average) ranges of
the optimised prices are ∼ 7 times the sizes of market spreads, and thus almost halved
compared the ranges of the model bounds. The optimisation of Heston’s formula based on
statistical inference is clearly not sufficient to cover for the market quotes of the considered
data. This method corresponds to an optimally controlled value process with parameter
processes being constants, and we simply have to allow for these parameters to vary in
order to cover the market pricing of options in a satisfactory way.

2.5 Stochastic volatility models with jumps

For the purpose of completion, we will generalise our modelling framework in this final
section to a multi-asset setting under a Markovian stochastic volatility model with jumps.
Our intension is to give a brief presentation of how the uncertainty pricing transfers to a
general model and we deliberately avoid going too deep into details and technical assump-
tions.
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2.5.1 A generic Markovian model

We consider a financial market model on a filtered probability space (Ω,F , {Ft}t≥0, P )
that consists of a money account B, paying a risk-free interest of deterministic rate r, and
a Rd-valued stochastic process S = (S1, . . . , Sd)> representing the price processes of d risky
assets. Furthermore, we have d′ non-negative stochastic processes, V taking values in Rd′ ,
that represents the instantaneous variances. Typically, the two are of equal dimension such
that each asset price is diffused by an individual volatility and we also assume that d′ = d
is the case here. The statistical P -dynamics of the m = 2d column-vector X = (S;V ) of
state variables are assumed to be of the form

dXt = µP (Xt)dt+ σ(Xt)dWt +

∫
Z
h(ξ,Xt−)µ̃(dξ, dt)

where µp(·) is the m-dimensional drift-function under the statistical measure, σ(·) the
m × m-valued diffusion matrix, and W is a Rm-valued Wiener process. The jump part
is driven by µ̃, a compensated Poisson random measure on a Blackwell space Z with
deterministic compensator µp(dξ, dt) = ν(dξ)dt, and h(·) is a state-dependent function
valued in Rm that governs the jump sizes ofX. Since we are working with a Rm-dimensional
state processes, we take Z = Rm. We assume that {Ft}t≥0 is generated by W and µ̃ jointly,
and augmented to satisfy the usual conditions. The functions µP , σ, h are assumed to be
defined such that the SDE admits a unique solution up to a fixed deterministic time T
(for instance of linear growth and locally Lipschitz continuous), and V being non-negative
almost surely. Further, we assume sufficient integrability conditions such that the market
model admits no arbitrage: there exists an equivalent martingale measure Q under which
S and V follows

dSt = rStdt+ σS(St, Vt)dW̃t +

∫
Rd
h(ξ, St−, Vt)µ̃(dξ, dt)

dVt = µV (Vt,Γ)dt+ σV (Vt)dW̃t

where σS(·) and σV (·), both with values in Rd×m, are the first and last d rows of σ. The
Rd-valued function µV (·,Γ) is the Q-drift of the variance with parameters Γ, and W̃ is
a m-dimensional Wiener process under Q. For our convenience, we have assumed that
jumps affect the asset prices19 only; Z = Rd and h(·) is an Rd-valued function while the
compensator measure µp(dξ, dt) = ν(γ, dξ)dt is dependent on Q-parameters γ (we use
the same notation for µp here even if the compensator may be different under P and
Q). Furthermore, we assume that the continuous variance has drift and diffusion functions
dependent on the state of the variance alone. The risky assets are not assumed to carry any
dividend payments, although the generalisation to non-zero dividends (as well as jumps

19As the jumps are generated by a Poisson random measure, S will have jumps given by

∆St =

∫
z∈Rd

h(z, St−, Vt)µ̃(dz, {t}) = h(zt, St−, Vt)1{∆St 6=0}

where zt ∈ Rd is a (unique) point in the set where µ({zt}) = 1.
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and S-dependent coefficients for the variance) should be straightforward. As under P , we
assume all coefficients under Q to sufficiently well behaved for an appropriate solution to
exists.

The market model (S,B) is free of arbitrage but incomplete as it has more random sources
(2× d) than traded risky assets (d), and since the asset prices exhibit jumps (i.e. the risk-
neutral measure Q is not unique). For a Markovian pricing rule

Dt = D(t, St, Vt), t ∈ [0, T ],

D : [0, T ]× Rd × Rd → R, D ∈ C1,2,

of a European option with terminal payoff g(ST ), we have a pricing equation corresponding
to (2.3) as given by

∂D

∂t
+ LD − rD = 0

D(T, s, v) = g(s)

where L is the (time independent) inegro-differential operator that generates (S;V ) under
Q. For a function f(s, v) ∈ C2 the operator is defined as

Lf(s, v) = µQ(s, v)>∇xf(s, v) +
1

2
tr
[
σ>(s, v)∇2

xxf(s, v)σ(s, v)
]

+

∫
ξ∈Rd

(
f(s+ h(ξ, s, v), v)− f(s, v)− h(ξ, s, v)>∇xf(s, v)

)
ν(dξ)

where ∇x, ∇2
xx with x = (s, v) are the gradient and Hessian operators respectively, and

tr[·] the matrix trace. By the Feynman-Kac representation formula, this is equivalent to
the risk-neutral valuation formula D(t, s, v) = EQ

[
e−r(T−t)g(ST )

∣∣ (St, Vt) = (s, v)
]
.

2.5.2 Pricing under parameter uncertainty

Here we introduce the controlled measure Qu that represents the parameter uncertainty
in our model. Hence, with {ut}t≥0 being a Ft-predictable control process that takes its
values in a compact uncertainty set U ⊂ Rk, we let the controlled dynamics be

dSt = rtStdt+ σS(St, Vt)dW
u
t +

∫
Rd
h(ξ, St−, Vt)µ̃

u(dξ, dt)

dVt = µV (Vt, ut)dt+ σV (Vt)dW
u
t .

where we assume that the controlled drift of the asset price and variance, rtSt and
µV (Vt, ut) = µV (Vt,Γt), to be of the same functional form under Q and Qu. Hence, the
control has components ut = (rt,Γt, γt) where Γ are the parameters of µV , while γ are
parameters to the controlled (form invariant) compensator measure

µup(dξ, dt) = ν(γt, dξ)dt
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with Radon-Nikodym density β(ξ, t, ut) ≡ dµup/dµp with respect to µp. We let µQ
u
(St, Vt, ut) ≡

(rtSt;µV (Vt, ut)) denote the common drift of (S;V ) under Qu (and similarly for the com-
mon Q-drift). The effect of the control is then defined by the R1×m-valued process

α(St, Vt, ut) = σ−1(St, Vt)

(
µQ

u

(St, Vt, ut)− µQ(St, Vt)−
∫
Rd

h(ξ, St−, Vt)(β(ξ, t, ut)− 1)ν(dξ)

)
to give the linear driver function f(s, v, y, z, θ, u) = −ry+ zα(s, v, u) +

∫
ξ θ(ξ)(β(ξ, t, u)−

1)ν(dξ) where the second last argument is a function θ : Rd 7→ R. Modulo sufficient
integrability and Lipschitz conditions, we have that the value function for a fixed admis-

sible control Jt(u) = Eu[e−
∫ T
t rudug(ST )|Ft], t ∈ [0, T ], is given as part of the solution

(J(u), Z,Θ) to the linear BSDE

dJt(u) = −f(St, Vt, Jt(u), Zt,Θt, ut)dt+ ZtdW̃t +

∫
ξ∈Rd

Θt(ξ)µ̃(dξ, dt)

JT (u) = g(ST )

where Z is R1×m-valued while Θ is a process taking its values in the space of functions θ :
Rd 7→ R. The result follows similarly as in the case of Heston’s model: apply Itô’s product
rule to E(Λ)J(u), where Λ = −

∫ .
0 rtdt+α(St, Vt, ut) • W̃ +

∫ .
0

∫
(β(ξ, t, ut)− 1)µ̃(dξ, dt), to

see that E(Λ)J(u) is a martingale, and use that E(Λ+
∫ .

0 rtdt)T = dQu/dQ for the measure
change of E(Λ)tJt(u) = E[E(Λ)TJT (u)|Ft] to obtain the original expression for the value
process after rearrangement. Further, defining the pointwise optimised driver functions
over the compact uncertainty set

H±(s, v, y, z, θ) =

∣∣∣∣ess sup
u∈U

±f(s, v, y, z, θ, u)

∣∣∣∣ ,
we have by the comparison theorem that the the optimally controlled value processes (the
upper/lower pricing boundaries) {D±t }t∈[0,T ] = {| ess sup{ut}±Jt(u)|}t∈[0,T ] are solutions
to the BSDEs

dD±t = −H±(St, Vt, D
±
t , Zt,Θt)dt+ ZtdW̃t +

∫
ξ∈Rd

Θt(ξ)µ̃(dξ, dt)

D±T = g(ST ).

Here as well, this is a consequence of the fact that we have a linear driver in y, z and
θ, and from the comparison theorem for BSDEs. The proof, which we omit for brevity,
follows in the same fashion as in the previous case with Heston’s model (see Cohen and
Elliott (2015), Chapter 21, for details). As well, since we work in a Markovian setting,
we have that the solution can be written with a deterministic function Dt = D(t, St, Vt),
and the same holds for the optimal control: there exists a function u∗(t, s, v) such that the
feedback control u∗t = u∗(t, St, Vt) is the optimal control among all admissible controls.

Finally, as in the case with Heston’s model, we have by the semilinear Feynman-Kac
formula that D(t, s, v) satisfies a semilinear partial differential equation
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∂D

∂t
+

1

2
tr[σ>∇2

xxDσ] + ess inf
(r,Γ,γ)∈U

{
−rD + (µQ

u

)>∇xD +

∫
ξ

(∆D − h>∇xD)ν(γ, dξ)

}
= 0

with terminal condition D(T, s, v) = g(s), and where ∆D is shorthand notation for D(t, s+
h(ξ, s, v), v)−D(t, s, v). Although many numerical methods exist for a PIDE of this type,
one may opt for simulating the BSDE solution instead (see e.g. Bouchard and Elie (2008)),
especially when the dimensional of the problem is high.

2.6 Conclusion

Model uncertainty, here represented by parameter uncertainty, is an acknowledged con-
cept formalised by Knight (1921) and its importance has been studied in the financial
context at least since Derman (1996). The focus of this paper has been to investigate how
parameter uncertainty could be incorporated into a stochastic volatility model, and how it
affects derived prices of European option. The considered uncertainty was fairly general:
interest rate and volatility drift parameters where allowed to change over time (constant-
parameters being a special case) within a pre-described uncertainty region inferred from
statistical estimation. The effect on pricing was then studied from a worst-case perspective
with boundaries for the option price that could be embedded into a control problem, with
the control playing a role of the uncertain parameters.

With Heston’s model as a working example, the control problem–BSDE duality was then
exploited and an explicit equation for the pricing boundary (the optimal value process)
was derived in the form of a Markovian linear BSDE. A numerical scheme with several sug-
gested modifications was considered for the solution of this BSDE, and an evaluation of the
schemes was made in a known-outcome setting analogous to the dynamic-parameter set-
ting. Based on bias/variance (and computational) considerations, a scheme was proposed
for an empirical study of the methodology applied to real-world market data. Studying a
set of bid/offer market quotes of European call options on the S&P 500 index and their
corresponding model-price bounds, it was found that even if the model (and uncertainty
set) was estimated from historical prices of the underlying, 98% of the market option
prices was within the model-prescribed bounds. In contrast, ∼ 40% of the market quotes
was within the maximum/minimum model-price interval when constant parameters where
used.

In both the dynamic and constant parameter setting, it was seen that the model implied
volatilities did not follow the curvature of the market implied volatilities. A natural expla-
nation for this observation is that the diffusion parameters, which effectively decide the
slope and skew of the implied volatility curve, were estimated from asset-price data, and
not from option-price data. An interesting empirical sequel would therefore be to study
how the shape and coverage of model-price bounds change when parameters are calibrated
from market option prices instead. We leave this for further investigation.

Finally, we note that prior beliefs and preferences about the uncertainty are not taken
into consideration by the conservative approach with pricing boundaries. However, with
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L(ut, u
′
t) being some function that assigns a loss when ut is used instead of the true

parameters u′t, we could incorporate beliefs with a value function of the form

Jt(u) = Eu
[
e
∫ T
t rsdsG+

∫ T

t
L(us, u

′
s)ds

∣∣∣∣Ft]
that would lead to a similar linear BSDE. The loss could be based on the (approximative)
normality of estimated parameters or some quantity related to an economic value, for
instance a hedging error. In both cases, the value of the loss must be related to the value
of the option payoff, an intricate task that we leave for further research along with this
approach.
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3.1 A meditation on the art of derivative hedging

Introduction. Of all possible concepts within the field mathematical finance, that of
continuous time derivative hedging indubitably emerges as the central pillar. First used
in the seminal work by Black and Scholes (1973),2 it has become the cornerstone in the
determination of no-arbitrage prices for new financial products. Yet a disconnect between
this body of abstract mathematical theory and real world practice prevails. Specifically,
successful hedging relies crucially on us having near perfect information about the model
that drives the underlying asset. Even if we boldly adopt the standard stochastic differ-
ential equation paradigm of asset pricing, it remains to make exact specifications for the
degree to which the price process reacts to market fluctuations (i.e. to specify the diffusion
term, the volatility). Alas, volatility blatantly transcends direct human observation, being,
as it were, a Kantian Ding an sich3 of which we only have approximate knowledge.

One such source supervenes upon historical realisations of the underlying price process:
for example, assuming that the governing model can at least locally be approximated
as a geometric Brownian motion, one can proceed to measure the standard deviation of
past log returns over time. Yet this procedure raises uncomfortable questions pertaining
to statistical measurement: under ordinary circumstances, increasing the sample space
should narrow the confidence interval around our sample parameter. Only here, there is
no a priori way of telling if and when a model undergoes a structural change.4 Inevitably,
this implies that extending the time series of log returns too far into the past might lead
to a less accurate estimator as we might end up sampling from a governing dynamics that
is no longer valid. Of course, we may take some measures against this issue by trying
our luck with ever more intricate time series analyses, until we stumble upon a model the
parameters of which satisfy our arbitrary tolerance for statistical significance. Nevertheless,
in practice this procedure invariably boils down to checking some finite basket of models
and selecting the best one from the lot. Furthermore, unknown structural breaks continue
to pose a problem no matter what.

Alternatively, we might try to extract an implied volatility from the market by fitting
our model to observed option prices. Nevertheless the inadequacy of the methodology
quickly becomes apparent: first, implied volatility might be ill-defined as it is the case for
certain exotic products such as barrier options. Secondly, it is quite clear that the market
hysteria which drives the prices of traded options need not capture the market hysteria

2That Black and Scholes along with Merton were the first is the general consensus, although
the paper by Haug and Taleb (2011) shows that the view is not universal.

3Literally, thing in itself or the noumenon. Kant held that there is a distinction between the
way things appear to observers (phenomena) and the way reality actually is construed (noumena).

4This scenario is not at all implausible. Unlike the physical sciences where the fundamental
laws are assumed to have no sufficient reason to change (in the Leibnizian or Occamian sense),
this philosophical principle would hardly withstand scrutiny in a social science context. Asset price
processes are fundamentally governed by market agents and their reactions to various events (be
they self-induced or exogenous). There is really no reason to assume that these market players will
not drastically change their opinions at some point (for one reason or the other).
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which drives the corresponding market for the underlying asset. Fair pricing ultimately
boils down to understanding the true nature of the underlying product, not to mimic the
collective madness of option traders.

Whilst volatility at its core remains elusive to us, the situation is perhaps not as dire as
one might think. Specifically, we can develop a formal understanding of the profit-&-loss
we incur upon hedging a portfolio with an erroneous volatility - at least insofar as we
make some moderate assumptions of the dynamical form of the underlying assets. To give
a concrete example of this, consider the simple interest rate free framework presented in
Andreasen (2003) where the price process of a single non-dividend paying asset is assumed
to follow the real dynamics

dXt = Xt(µt,rdt+ σt,rdWt).

Let V i
t be the value of an option that trades in the market at a certain implied volatility σi

- possibly quite different from the epistemically inaccessible σt,r. Now if we were to set up a
hedge of a long position on such an option, using σi as our hedge volatility, an application
of Itō’s formula, coupled with the Black-Scholes equation, shows that the infinitesimal
value change in the hedge portfolio Πt = V i

t − ∂xV i
t ·Xt, is of the form

dΠt = 1
2(σ2

t,r − σ2
i )X

2
t ∂

2
xxVtdt, (3.1)

which generally is non-zero unless σi = σt,r. For reasons that will become clearer below,
the importance of this result is of such magnitude that Andreasen dubs it The fundamental
theorem of derivative trading. Indeed, a more abstract variation of it will be the central
object of study in this paper.

To the best of our knowledge, quantitative studies into the effect of hedging with an erro-
neous volatility first appeared in a paper on the robustness of the Black-Scholes formula
by Karoui et al. (1998). They viewed the result as a largely negative one: unless volatility
is bounded (which it is not in any stochastic volatility model) then there is no simple
super-replication strategy. Easier derivations of the fundamental theorem are encountered
in the papers by Gibson et al. (1999), Mahayni et al. (1999) and Rasmussen (2001). In-
deed, there seems to be an added awareness of the result being a positive one: a decent
forecast of volatility gives rise to a small hedge error. Jointly, what characterises these
papers is their binary partition of volatility into a “wrong” and “right” category. Somewhat
subtler treatments can be found in the unpublished works by Carr (2002) and Henrard
(2001) in which the partition becomes tripartite: concretely, these papers explicitly differ-
entiate between a true governing volatility of the underlying asset, an implied volatility
characterising market consensus, and a hedge volatility which captures the personal belief
of the option hedger. The benefits of this three-part structure are clearly enunciated in
Ahmad and Wilmott (2005) in which the associated P&L paths under the various choices
of volatility are exhibited, alongside mathematical (non-analytic) expressions for the mean
implied P&L and its variance.

The fundamental theorem has in other words received extensive treatment in the academic
literature, yet it has never quite reached the “textbook” status we reckon it deserves (in
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particular, it rarely finds its way into the curriculum of aspiring financial engineers). To end
this regrettable situation, we here provide a thorough exposition. Taking our vantage point
in the tripartite philosophy of Henrard and Carr, we endeavour to provide a simple proof
of the fundamental theorem, whilst simultaneously spicing up the result by considering a
more general dynamics in a full-fledged multi-asset framework.

Overview. The structure of this paper is as follows: in Section 3.2 we state and prove a
generalised version of the fundamental theorem of derivative trading and discuss its various
implications for hedging strategies and applications. Key insights here include the bene-
fit of hedging with the implied volatility with regards to attaining “smooth” P&L paths,
and a somewhat surprising connection to Dupire’s local volatility formula. In Section 3.3
we expose the implications of adding a multi-dimensional jump process to the dynam-
ics, thus emphasising the relative ease with which the original proof can be adapted. In
particular, we argue that long option positions with convex pay-out profiles profit from a
discontinuous movement in one of the underlying stocks. Finally, Section 3.4 presents an
empirical investigation into what actually happens to our portfolio when we hedge using
various volatilities. Using actual quotes for stocks and call options, we demonstrate that
self-financing portfolios hedged at the implied volatility indeed give rise to a smoother
P&L over time, whilst allowing for some amount of volatility arbitrage to be picked up in
the process.

3.2 The fundamental theorem of derivative trad-

ing

3.2.1 Model set-up

Consider a financial market comprised of a risk-free money account as well as n risky assets,
each of which pays out a continuous dividend yield. We assume all assets to be infinitely
divisible as to the amount which may be held, that trading takes place continuously in time,
and that no trade is subject to financial friction. Formally, we imagine the information
flow of this world to be captured by the stochastic basis (Ω,F ,F,P), where Ω represents
all possible states of the economy, P is the physical probability measure, and F = {Ft}t≥0

is a filtration which satisfies the usual conditions.5 The price processes of the risky assets,
Xt = (X1t, X2t, ..., Xnt)

ᵀ, are assumed to follow the real dynamics6

dXt = DXt [µr(t,
∼
Xt)dt+ σr(t,

∼
Xt)dWt], (3.2)

5Specifically, it satisfies right-continuity, ∩s≥tFs = Ft, ∀t ≥ 0 (if we move incrementally forward
in time there will be no jump in information), and completeness, i.e. F0 contains all P null sets.

6The nomenclature “real dynamics” is ripe with unfortunate connotations of Platonic realism
(ontological significance of mathematical objects). Strictly speaking, this is not what we require,
but rather the expressive adequacy of a model: i.e. it’s ability to adequately capture the financial
events unfolding.
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where DX is the n × n diagonal matrix diag(X1t, X2t, ..., Xnt), and Wt = (W1t,W2t, ...,
Wnt)

ᵀ is an n-dimensional standard Brownian motion adapted to F. Furthermore, µr :
[0,∞)×Rn+m 7→ Rn and σ : [0,∞)×Rn+m 7→ Rn×n are deterministic functions, sufficiently
well-behaved for the SDE to have a unique strong solution (in particular, we assume the
regularity conditions∫ s

t
|DXuµr(u,

∼
Xu)|du <∞,

∫ s

t
|DXuσr(u,

∼
Xu)|2du <∞, (3.3)

hold a.s. ∀t ≤ s, where the first norm is to be understood in the Euclidian sense, whilst

the latter should be construed in the matrical sense).7 Finally, we define
∼
Xt as the n+m

dimensional vector (Xt;χt) where χt = (χ1t, χ2t, ..., χmt)
ᵀ has the interpretation of an

m-dimensional state variable, the exact dynamical nature of which is not integral to what
follows.8

In what follows we consider the scenario of what happens when we hedge an option on
Xt, ignorant of the existence of the state variable χt, as well as the form of µr(·, ·) and
σr(·, ·). Specifically, we shall imagine that we are misguided to the extent that we would
model the dynamics of Xt as a local volatility model with diffusion matrix σh(t,Xt).
Similar assumptions pertain to the market, although here we label the “implied” diffusion
matrix σi(t,Xt) to distinguish it from our personal belief. Irrespective of which dynamical
specification is being made, we maintain that regularity conditions analogous to (3.3)
remain satisfied. Finally, a cautionary remark: throughout these pages we use r and i to
emphasise that the volatility is real and implied respectively, whilst h refers to an arbitrary
hedge volatility. For a comprehensible reading, it is incumbent that the reader keeps these
definitions in mind.

3.2.2 Theorem and derivation

Theorem 3.1. The fundamental theorem of derivative trading. Let Vt = V (t,Xt) ∈
C1,2([0, T ] × Rn) be the price process of a European option with terminal pay-off VT =
g(XT ), the underlying of which follows the real dynamics (3.2). We assume the op-
tion trades in the market at the (not necessarily uniquely determined) implied volatility
σi = σi(t,Xt). Now suppose we at time t = 0 acquire such an option for the implied price
V i

0 and set out to ∆-hedge our position. Said hedge is performed under the notion that
the volatility function ought, in fact, to be of the form σh = σh(t,Xt), leading to the fair
price process V h

0 . Then the present value of the profit-&-loss we incur from holding such

7Specifically, if x ∈ Rn and A ∈ Rn×d, the the Euclidian norm is defined as |x| ≡ (
∑n
i=1 x

2
i )

1/2,

while the matrical norm is |A| ≡ (
∑n
i=1

∑d
j=1A

2
ij)

1/2.
8Nonetheless, a common assumption in the stochastic volatility literature is obviously to let χ be

driven by a stochastic differential equation of the form dχt = m(χt)dt + v(χt)dWt + v̄(χt)dW̄t,
where W̄t is second standard Brownian motion (independent of the first), and m, v and v̄ are
dimensionally consistent, regularity conforming vectors and matrices.
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a portfolio over the interval T = [0, T ] is

P&LhT = V h
0 − V i

0 + 1
2

∫ T

0
e−

∫ t
0 rudu tr[DXtΣrh(t,

∼
Xt)DXt∇2

xxV
h
t ]dt, (3.4)

where ru = r(u,Xu) is the locally risk free rate, ∇2
xx is the Hessian operator, and

Σrh(t,
∼
Xt) ≡ σr(t,

∼
Xt)σ

ᵀ
r (t,

∼
Xt)− σh(t,Xt)σ

ᵀ
h(t,Xt), (3.5)

is a matrix which takes values in Rn×n.

Proof : Let {Πh
t }t∈[0,T ] be the value process of the hedge portfolio long one option valued

according to the implied market conception, {V i
t }t∈[0,T ], and short {∆h

t = ∇xV h
t }t∈[0,T ]

units of the underlying with value process {Xt}t∈[0,T ], where ∇x is the gradient operator.
We suppose the money account B is chosen such that the net value of the position is zero:

Πh
t = V i

t +Bt −∇xV h
t •Xt = 0,

where • is the dot product. Now consider the infinitesimal change to the value of this
portfolio over the interval [t, t+ dt], where t ∈ [0, T ). From the self-financing condition we
have that

dΠh
t = dV i

t + rtBtdt−∇xV h
t • (dXt + qt ◦Xtdt),

where qt = (q1(t,X1t), q2(t,X2t), ..., qn(t,Xnt))
ᵀ codifies the continuous dividend yields

and ◦ is the Hadamard product.9 Jointly, the two previous equations entail that

dΠh
t = dV i

t −∇xV h
t • (dXt − (rtι− qt) ◦Xtdt)− rtV i

t dt, (3.6)

where ι = (1, 1, ..., 1)ᵀ ∈ Rn.

Now consider the option valued under σh(t,Xt); from the multi-dimensional Itō formula10

we have that

dV h
t = {∂tV h

t + 1
2tr[σᵀr (t,

∼
Xt)DXt∇2

xxV
h
t DXtσr(t,

∼
Xt)]}dt+∇xV h

t • dXt, (3.7)

where we have used the fact that Xt is governed by (3.2). Meanwhile, V h
t satisfies the

multi-dimensional Black Scholes equation for dividend paying underlyings,11

rtV
h
t = ∂tV

h
t +∇xV h

t • ((rtι− qt) ◦Xt) + 1
2tr[σᵀh(t,Xt)DXt∇2

xxV
h
t DXtσh(t,Xt)]. (3.8)

Combining this expression with the Itō expansion we obtain,

0 = − dV h
t + rtV

h
t dt+∇xV h

t • (dXt − (rtι− qt) ◦Xtdt)

+ 1
2tr[DXt

(
σr(t,

∼
Xt)σ

ᵀ
r (t,

∼
Xt)− σh(t,Xt)σ

ᵀ
h(t,Xt)

)
DXt∇2

xxV
h
t ]dt

(3.9)

9Otherwise known as the entry-wise product. Per definition, if A and B are matrices of equal
dimensions, then (A ◦B)ij = AijBij .

10See for instance Björk (2009), p. 65.
11See for instance Björk, Theorem 13.1 and Proposition 16.7.
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where we have used the fact that the trace is invariant under cyclic permutations of its

constituent matrices. Finally, defining Σrh(t,
∼
Xt) as in (3.5), and adding (3.9) to (3.6) we

obtain

dΠh
t = dV i

t − dV h
t − rt(V i

t − V h
t )dt+ 1

2tr[DXtΣrh(t,
∼
Xt)DXt∇2

xxV
h
t ]dt

= e
∫ t
0 rudud(e−

∫ t
0 rudu(V i

t − V h
t )) + 1

2tr[DXtΣrh(t,
∼
Xt)DXt∇2

xxV
h
t ]dt.

(3.10)

Whilst a perfect hedge would render this infinitesimal value-change in the portfolio zero,
this is clearly not the case here. In fact, upon discounting (3.10) back to the present (t = 0)
and integrating up the infinitesimal components, we find that net profit-&-loss incurred
over the life-time of the portfolio is

P&LhT =

∫ T

0
d(e−

∫ t
0 rudu(V i

t − V h
t )) +

∫ T

0
e−

∫ t
0 rudu 1

2tr[DXtΣrh(t,
∼
Xt)DXt∇2

xxV
h
t ]dt

= V h
0 − V i

0 + 1
2

∫ T

0
e−

∫ t
0 rudu tr[DXtΣrh(t,

∼
Xt)DXt∇2

xxV
h
t ]dt.

where P&LhT ≡
∫ T

0 e−
∫ t
0 rududΠh

t , and the last line makes use of the fact that V i
T = V h

T =
g(XT ). This is the desired result. �

Remark 3.1. A few observations on this proof are in order: first, the relative simplicity
of (3.4) clearly boils down to the assumption that the market is perceived to be driven
by a local volatility model. If this assumption is dropped equation (3.8) no longer holds.
Secondly, it should be clear that the value of the P&L changes sign if we are short on the
derivative and long on the underlying. Thirdly, the market price of the derivative enters
only though the initial price V0. That is because we look at the profit-&-loss accrued over
the entire life-time of the portfolio. The case of marking-to-market requires further analysis
and/or assumption. We will elaborate on this in the following subsection.

Remark 3.2. From a generalist’s perspective, theorem 1 suffers from a number of glar-
ing limitations: for instance, the governing asset price dynamics only considers Brownian
stochasticity, the hedge is assumed to be a workaday ∆-hedge, and the option type is
vanilla European in the sense that the terminal pay-off is determined by the instanta-
neous price of the underlying assets. Fortunately, the fundamental theorem can readily
be extended in various directions: e.g. it can be shown that if Vt = V (t,Xt, At) is an
Asian option written on the continuous average At of the underlying process Xt, then the
fundamental theorem remains form invariant. In Section 1.3 we consider one particularly
topical dynamical modification viz. the incorporation of possible market crashes through
jump diffusion.

3.2.3 The implications for ∆-hedging.

From a first inspection, the fundamental theorem quite clearly demonstrates that reason-
ably successful hedging is possible even under significant model uncertainty. Indeed, as
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Davis (2010) puts it “without some robustness property of this kind, it is hard to imagine
that the derivatives industry could exist at all”. In this section, we dive further into the
implications of what happens to our portfolio, by considering the case where we hedge
with (a) the real volatility, and (b) the implied volatility. It is a standing assumption in
this subsection that whatever is used as hedge volatility is of the form that allows the use
of Theorem 1 (see the discussion in Remark 1 above). The reader can think of the cases
of constant volatility.

Hedging with the real volatility. Suppose we happen to be bang-on our estimate of

the real volatility matrix in our ∆-hedge, i.e. let σh(t,Xt) = σr(t,
∼
Xt) a.s. ∀t ∈ [0, T ],

then Σrr(t,
∼
Xt) = 0 and the present valued profit-&-loss amounts to

P&LrT = V r
0 − V i

0 ,

which is manifestly deterministic.12 However, we observe that this relies crucially on us
holding the portfolio until expiry of the option. Day-to-day fluctuations of the profit-&-loss
still vary stochastically (erratically) as it is vividly demonstrated by combining equation
(3.9) (where h = i) with equation (3.6) (where h = r):

dΠr
t = 1

2 tr[DXtΣri(t,
∼
Xt)DXt∇2

xxV
i
t ]dt

+∇x
(
V i
t − V r

t

)
•
{

(µrt − rtι+ qt) ◦Xtdt+ DXtσr(t,
∼
Xt)dWt

}
,

cf. the explicit dependence of the Brownian increment. As for the profitability of the ∆-
hedging strategy, this is a complex issue which ultimately must be studied on a case-by-case
basis. However, for options with positive vega,13 it suffices to require that the real volatility
everywhere exceeds the implied volatility.

Hedging with the implied volatility. Suppose instead we hedge the portfolio using
the implied volatility matrix σi(t,Xt), ∀t ∈ [0, T ], then the associated present-valued
profit-&-loss is of the form

P&LiT = 1
2

∫ T

0
e−

∫ t
0 rudu tr[DXtΣri(t,

∼
Xt)DXt∇2

xxV
i
t ]dt.

As we find ourselves integrating over the stochastic process Xt, this profit-&-loss is mani-
festly stochastic. Notice though that dΠi

t here does not depend explicitly on the Brownian
increment (the daily profit-and-loss is O(dt)) which gives rise to point that “bad models
cause bleeding - not blow-ups”. As for the profitability of the strategy, again this is a com-

plex issue: however, insofar as Σri(t,
∼
Xt) ◦ ∇2

xxV
i
t is positive definite a.s. for all t ∈ [0, T ],

12Obviously, this can only be the case if there is no underlying state variable.
13A clear example of vega being positive would be European calls and puts, which sat-

isfy the assumptions needed to derive the Black-Scholes formula. Explicitly, ν ≡ ∂V
∂σ =

Ste
−δ(T−t)φ(d1)

√
T − t > 0 where φ is the standard normal pdf and d1 has the usual definition.
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Figure 3.1: Left: Delta hedging a portfolio assuming that σh = σr. The parameter specifications
are: r = 0.05, µ = 0.1, σi = 0.2, σr = 0.3, S0 = 100, K = 100, q = 0 and T = 0.25. The
portfolio is rebalanced 5000 times during the lifetime of the option. Observe that while the P&L
fluctuates randomly along the path of St due to the presence of dWt, the accumulated P&L at
the maturity of the option is the deterministic quantity ΠT = erT (V r0 − V i0 ). From the Black-
Scholes formula it follows that V r0 = 6.583 and V i0 = 4.615 so ΠT=1 = 1.993. The fact that our
ten paths only approximately hit this terminal value is attributable to the discretisation of the
hedging which should be done in continuous time. Right: Delta hedging a portfolio assuming that
σh = σi.The parameter specifications are as before. Evidently, the accumulated P&L stays highly
path dependent for the entire duration of the option. However, the curves per se are smooth, which
highlights that dΠi

t does not depend explicitly on the Brownian increment.

then we’re making a profit with probability one. To see this, recall that the trace can be
written as14

tr[DXtΣri(t,
∼
Xt)DXt∇2

xxV
i
t ] = Xᵀt (Σri(t,

∼
Xt) ◦ ∇2

xxV
i
t )Xt,

In particular, if Σri(t,
∼
Xt) ◦ ∇2

xxV
i
t is positive definite at all times, i.e.

∀t ∈ [0, T ], ∀Xt ∈ Rn : Xᵀt (Σri(t,
∼
Xt) ◦ ∇2

xxV
i
t )Xt > 0,

then P&LiT > 0. A sufficient condition for this to be the case is that Σri(t,
∼
Xt) and ∇2

xxV
i
t

individually are positive definite ∀t, as demonstrated by the Schur Product Theorem.

Wilmott’s hedge experiment. The points imbued in the previous two paragraphs are
forcefully demonstrated in the event that there is only one risky asset in existence, the
derivative is a European call option and all volatilities are assumed constant. Based on
Wilmott and Ahmad, Figure 3.1 clearly illustrates the behaviour of the profit-&-loss paths
insofar as we hedge with (a) the real volatility, and (b) the implied volatility. Again,
the main insights are as follows: hedging V i

t with the real volatility causes the P&L
of the portfolio to fluctuate erratically over time, only to land at a deterministic value

14This follows from the general identity for matrices A and B of corresponding dimensions:
xᵀ(A ◦B)y = tr[DxADyBᵀ] where x and y are vectors.
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at maturity. On the other hand, hedging V i
t with the implied volatility yields smoother

(albeit still stochastic) P&L curves. Nonetheless, here there is no way of telling what the
P&L actually amounts to at maturity.

Rather perturbingly, both strategies blatantly suggest the relative ease with which we can
make volatility arbitrage. Specifically, assuming that the historical volatility is a reasonable
proxy for the real volatility, σhist ≈ σr, and that σhist > σi (σhist < σi), it would suffice to go
long (short) on the hedge portfolio for P(P&LT ≥ 0) = 1 and P(P&LT > 0) > 0. Reality, of
course, is not always as simple as our abstract idealisations, wherefore we dedicate Section
3.4 to an empirical investigation of Wilmott’s experiment.

Remark 3.3. Wilmott’s experiment reflects the concerting approach of traders: hedge
with market implied parameters (see e.g. Hull and White (2016)). But for the experiment’s
strong smoothness property to hold for implied-volatility hedging, it is important that the
implied volatility is assumed constant, or at least that it does not diffuse randomly as it
would in e.g. Heston’s model. Whenever the latter is the case, anything might happen.
However, since implied volatility is intricately linked to (conditional expectation of) time-
integrated real volatility,15 it is likely to be quantitatively smoother than real volatility,
so there is hope that the conclusion of the idealized experiment carries over to empirical
analysis.

Remark 3.4. It is tempting to think of an option trade as a zero-sum game (up to a risk-
premium) between the buyer and the seller; if one wins the other loses. That, however,
it not true. Imagine a stock dynamics which is described by geometric Brownian motion
with 15% volatility. A buyer is strongly bullish and makes a directional bet by buying an
at-the-money call-option, which he is willing to pay 20% implied volatility on. The buyer
does not hedge his position, the market rallies, and he makes a nice profit. Meanwhile, the
seller is right in her 15%-volatility forecast, ∆-hedges and makes a nice (arbitrage) profit
too. Needless to say, option writing can also imply losses for both the buyer and the seller
as we saw it during the financial crisis.16

3.2.4 Applications

Due to the presence of the real volatility, the exact nature of which transcends our epis-
temic domain, one might reasonably ponder whether the fundamental theorem conveys
any practical points besides those of the preceding subsection. Using two poignant (even if
somewhat eccentric) examples, we will argue that the gravity of the fundamental theorem
propagates well into risk management and volatility surface calibration. Zero rates and
dividends will be assumed throughout.

Example 3.1. Let Vt(T,K) be the price process of a European strike K maturity T
call or put option, written on an underlying which obeys geometric Brownian motion,

15Think of the Black-Scholes model with time-dependent volatility or see Romano and Touzi
(1997), Proposition 4.1.

16This example is inspired by Antoine Savine.
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dXt = Xt[µrdt+ σrdWt], where µr, σr are constants. Suppose we ∆-hedge a long position
on Vt at the implied volatility, σh = σi, then the fundamental theorem implies that

P&LiT = 1
2

∫ T

0
(σ2
r − σ2

i )X
2
t Γitdt,

where

Γit ≡
φ(di1)

Xtσi
√
T − t

,

is the option’s gamma, φ : R 7→ R+ is the standard normal pdf and

di1 ≡ 1
σi
√
T−t

{
ln(Xt/K) + 1

2σ
2
i (T − t)

}
.

Since Γit > 0, ∀t, the strategy is profitable if and only if σ2
r > σ2

i . Furthermore, by
maximising the integrand with respect to Xt we find that the P&LiT is maximal when

X∗t = Ke
1
2
σ2
i (T−t),

Specifically, upon evaluating the integral explicitly it can be shown that17

max
Xt

P&LiT =

√
T

2π

K

σi
(σ2
r − σ2

i ).

From a risk management point of view, the important point is that we can compute a
confidence interval for the real volatility based on historical observations. Hence, we can
compute a confidence interval for the maximal profit-&-loss we might face upon holding
the hedge portfolio till expiry.

Example 3.2. Let Vt = Ct(T,K) be the price process of a European strike K maturity T
call option written on an underlying price process X. As in (3.2) we assume the fundamen-

tal dynamics to be of the form dXt = Xt[µr(t,
∼
Xt)dt+ σr(t,

∼
Xt)dWt], where

∼
Xt is defined

as the (1 + m)-dimensional vector (Xt;χt) and χ is a state variable. Also, we suppose

the integrability condition E[
∫ T

0 σ2
r (t,

∼
Xt)X

2
t dt] < ∞, and that there exists an equivalent

martingale measure, Q, which renders Xt a martingale (recall the risk free rate is assumed
zero):18

dXt = σr(t,
∼
Xt)XtdW

Q
t .

17We notice that a similar result can be found in Derman (2008).
18Obviously, such an existence claim is not altogether innocuous. Indeed, the measure change is

here further complicated by the fact that we have not made formal specifications for the dynamical
form of the state variable χt. However, insofar as we adopt the standard dynamical assumption
dχt = m(χt)dt+v(χt)dWt+v̄(χt)dW̄t, our existence claim is tantamount to positing the existence
of a market price of risk vector θ ∈ Rm which renders L(T ) = LX(T )Lχ(T ) a true martingale,
where

LX(T ) ≡ exp
{
−
∫ T

0

µr(t,
∼
Xt)

σr(t,
∼
Xt)

dWt − 1
2

∫ T

0

µ2
r(t,

∼
Xt)

σ2
r(t,

∼
Xt)

dt
}
,

and

Lχ(T ) ≡ exp

{
−
∫ T

0

θᵀt dW̄t − 1
2

∫ T

0

|θt|2dt

}
.



62 Chapter 3. The Fundamental Theorem

Now consider the admittedly somewhat contrived scenario of a ∆-hedged portfolio, long
one unit of the call, for which σh and σi are both zero.19 The associated value process is

Πi
t = Cit(T,K) +Bt − ∂xCht (T,K) ·Xt

= (Xt −K)+ +Bt − 1{Xt>K}Xt,
(3.11)

where 1{Xt>K} is the indicator function. The important point here is that (Xt−K)+ may
be reinterpreted as the terminal pay-off of a strike K maturity t call option (obviously,
the specification σh = σi = 0 is paramount here). Substituting (3.11) into the infinitesimal
form of the fundamental theorem,

dΠi
t = 1

2(σ2
r (t,

∼
Xt)− σ2

i )X
2
t ∂

2
xxC

i
t(T,K)dt,

we find that

d((Xt −K)+ +Bt − 1{Xt>K}Xt) = 1
2σ

2
r (t,

∼
Xt)X

2
t δ(Xt −K)dt, (3.12)

where we once again have made use of σi = 0, alongside the fact that ∂x1{Xt>K} is the
Dirac delta-function δ(Xt −K). Taking the risk neutral expectation of (3.12), conditional
on F0, the left-hand side reduces to

EQ[LHS] = EQ[d(Xt −K)+] + EQ[dBt − 1{Xt>K}dXt]

= dEQ[(Xt −K)+]− EQ[1{Xt>K}dXt]

= dCr0(t,K)− EQ[EQ[1{Xt>K}dXt|Ft]]

= dCr0(t,K)− EQ[1{Xt>K}E
Q[dXt|Ft]]

= dCr0(t,K),

(3.13)

where the second line uses dBt = 0, whilst the third line uses the law of iterated expecta-
tions and the fact that EQ[(Xt −K)+] is the time zero price of a strike K maturity t call
option. Finally, the fourth line follows from the Ft-measurability of 1{Xt>K}, whilst the

fifth line exploits the martingale property EQ[dXt] = 0.

As for the right-hand side, define the joint density

fQ
σ2
r ,Xt

(σ2, x)dσ2dx ≡ Q({σ2 ≤ σ2
r ≤ σ2 + dσ2} ∩ {x ≤ Xt ≤ x+ dx}),

then

EQ[RHS] = 1
2

∫∫
R2
+

σ2x2δ(x−K)fQ
σ2
r ,Xt

(σ2, x)dσ2dxdt

= 1
2

∫∫
R2
+

σ2x2δ(x−K)fQ
σ2
r
(σ2|Xt = x)fQXt(x)dσ2dxdt

19To be precise, the contrived part is the assumption that the call trades at zero volatility; less
so that we hedge it at zero volatility. The latter corresponds to a so-called stop-loss strategy, see
Carr and Jarrow (1990).
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= 1
2

∫
R+

x2δ(x−K)fQXt(x)

{∫
R+

σ2fQ
σ2
r
(σ2|Xt = x)dσ2

}
dxdt (3.14)

≡ 1
2

∫
R+

x2δ(x−K)fQXt(x)EQ[σ2
r (t,

∼
Xt)|Xt = x]dxdt

= 1
2K

2fQXt(K)EQ[σ2
r (t,

∼
Xt)|Xt = K]dt.

Recalling that ∂KEQ[(Xt−K)1{Xt>K}] = −EQ[1{Xt>K}], and−∂KEQ[1{Xt>K}] = EQ[δ(Xt−
K)] we arrive at the Breeden-Litzenberger formula

fQXt(K) = ∂2
KKC

r
0(t,K). (3.15)

Combining equations (3.13), (3.14), and (3.15) we thus have that

dCr0
dt

(t,K) = 1
2∂

2
KKC

r
0(t,K)K2EQ[σ2

r (t,
∼
Xt)|Xt = K],

which using the change of notation20 t = T amounts to the celebrated Dupire-Gyöngy-
Derman-Kani formula

EQ[σ2
r (T,

∼
XT )|XT = K] =

∂TC
r
0(T,K)

1
2K

2∂2
KKC

r
0(T,K)

, (3.16)

- see Derman and Kani (1998), Dupire (1994), Gyöngy (1986). Conceptually, the important
point here is that the righthand side, modulo some amount of interpolation,21 is empirically
measurable, whence (3.16) provides a way of calibrating the volatility surface to observed
call option prices in the market. Specifically, the formula enables us to square a local
diffusion model with the infamous skew/smile effect of implied volatilities across different
values for the strike and time to maturity, whilst delicately sidestepping the deeper issue
as to why this phenomenon prevails.

Remark 3.5. In Wittgensteinian terms we must “throw away the ladder” to arrive at this
final conclusion, Wittgenstein (1922), Proposition 6.54. Hitherto, we have assumed that
the real parameters (r) are fundamentally unobservable, whilst the implied parameters (i)
are those we are exposed to in the market. Yet, no such distinction exists in the works of
Dupire et al., whence the r superscript in (3.16) really ought to be dropped.

Remark 3.6. The above derivation is arguably unconventional and neither rigorous nor
the quickest way to demonstrate (3.16). In fact, the entire point of setting σi = 0 is
essentially to extract the Itō-(Tanaka) formula applied to (Xt−K)+, from which Derman
et al.’s derivation takes its starting point. We keep the derivation here, as it provides a
curious glimpse into how two philosophically quite distinct theorems can be interconnected.

20We do this to emphasise that t is the maturity of the option (not its value at time t).
21Exactly how to do this extrapolation has turned out to be sufficiently non-trivial to spurn

numerous papers and successive quant-of-the-year awards a-decade-and-a-half later, see Andreasen
and Huge (2010) (pure local volatility), Guyon and Henry-Labordère (2012) (decorated stochastic
volatility models).
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3.3 The gospel of the jump

Following remark 3.2, it is worthwhile exploring how the fundamental theorem can be
adapted to new terrain. For instance, it is well known that Brownian motion in itself does
not adequately capture the sporadic discontinuities that emerge in stock price processes.
Hence, it is opportune to scrutinise the effect of a jump diffusion process, which in turn
will give rise to another valuable lesson on the profitability of imperfect hedging.

Already, it is a well-known fact that exact hedges generally do not exist in a jump econ-
omy where the true dynamics of the underlying is perfectly disseminated (see Merton
(1976) or the expositions by Privault (2013) and Shreve (2004)). It is thus of some the-
oretical interest to see how this preexisting hedge error is further complicated under the
model error framework of the fundamental theorem. Stepping-stones towards answering
this question are found in Andreasen (2003) and Davis (2010) both of whom consider a
mono-dimensional implied-hedge scenario with perfect information about the jump dif-
fusion component. Our contribution is to generalise their results to a multi-dimensional
framework with arbitrary (mis)-specifications for the volatility and jump distribution. For
an overview of multi-dimensional jump-diffusion theory we refer the reader to the ap-
pendix.

Suppose the real dynamics of the underlying price process obeys

dXt = DXt [µr(t,
∼
Xt)dt+ σr(t,

∼
Xt)dWt] + DXt−dYt, (3.17)

where {Yt}t≥0 is an n-dimensional vector of independent compound Poisson processes.
Specifically, the jth component is given by

Y j
t =

Nj
t∑

k=1

Zjk,

where {N j
t }t≥0 is an intensity-λj Poisson process, and {Zjk}k≥1 is a sequence of rela-

tive jump-sizes, assumed to be i.i.d. square-integrable random variables with cumulative
distribution function (cdf) νj : R 7→ [0, 1]. For shorthand, we shall refer to the vectors
λ = (λ1, λ2, ..., λn)ᵀ and ν = (ν1, ν2, ..., νn)ᵀ as the intensity and cdf of Yt.

Oblivious to the true nature of (3.17), we imagine that pricing and hedging should be
performed (with obvious notation) under the tuple 〈φ,λQ

h ,ν
Q
h ,σh(t,Xt),Q〉, where Q is

the risk neutral measure

dQφ,λQ,νQ = exp


∫ T

0
φs • dWs − 1

2

∫ T

0
|φs|2ds−

n∑
j=1

(λQh,j − λh,j)T


·
n∏
j=1

Nj
t∏

k=1

λQh,jdν
Q
h,j(Z

j
k)

λh,jdνh,j(Z
j
k)
dPh,

(3.18)
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such that {φt}t≥0 is a bounded adapted n-dimensional process (the so-called Girsanov

kernel), and λQ
h ,ν

Q
h respectively represent the jump intensity and jump-size distribution

under Q. Specifically, the price of an option with terminal pay-off g(XT ) is determined as

V h
t = EQ[e−

∫ T
t rudug(XT )|FX

t ],

with the underlying supposedly driven by

dXt = DXt [rtιdt+ σh(t,Xt)dW
Q
t ] + DXt− [dYt − λQ

h ◦ EνQ [Z1]],

with Z1 = (Z1
1 , Z

2
1 , ..., Z

n
1 )ᵀ, and Q has been specified such that

µh(t,Xt) + λQ
h ◦ EνQ [Z1] + σh(t,Xt)φt = rtι, (3.19)

is satisfied almost everywhere.22

Remark 3.7. We emphasise that (3.18) is a risk neutral measure transformation of the
hedge dynamics with the associated measure Ph. This is to be contrasted with example 2
in Subsection 3.2.4 in which Q is the risk neutral measure of the real dynamics.

Theorem 3.2. The fundamental theorem of derivative trading with jumps. Let
Vt = V (t,Xt) ∈ C1,2([0, T ]×Rn) be the price process of a European option with terminal
pay-off VT = g(XT ), the underlying of which follows the real dynamics (3.17). We assume
the option trades in the market at the (not necessarily uniquely determined) implied
volatility σi = σi(t,Xt). Now suppose we at time t = 0 acquire such an option for the
implied price V i

0 and set out to ∆-hedge our position. Said hedge is performed under the
notion 〈φ,λQ

h ,ν
Q
h ,σh(t,Xt),Q〉, leading to the fair price process V h

t . Then the present
value of the profit-&-loss we incur from holding such a portfolio over the interval T =
[0, T ] is

P&LhT = V h
0 − V i

0 + 1
2

∫ T

0
e−

∫ t
0 rudu tr[DXtΣrh(t,

∼
Xt)DXt∇2

xxV
h
t ]dt,

+

∫ T

0

n∑
j=1

e−
∫ t
0 rudu

{(
∆jV

h
t (t,Xt−)−Xj,t−ZNj

t
∂xjV

h
t

)
dN j

t

− λQh,j
(
EQ[∆jV

h
t (t,x)]|x=Xt− − Xj,t−EQ[Zi1]∂xjV

h
t

)
dt

}
,

(3.20)

where
∆jV

h
t (t,Xt−) ≡ V h(t,Xt− ◦ (ι+ êjZ

j

Nj
t

))− V h(t,Xt−),

represents the change in value of the option when the underlying jumps in the jth compo-
nent, and [êj ]k = δj,k is a unit vector in Rn.

22It should be clear the Q is not uniquely determined. In fact, for (3.19) to admit only one
solution, we would require that either (i) λh = λQ

h = 0 (there are no jumps), in which case we
recover the standard Girsanov theorem with φt = σ−1

h (rι − µh), or (ii) when σh = 0 (there are

only jumps) and νQ = ν = δ1 (the simple Poisson process case) in which case λQ
h = rtι− µh.
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Sketch of proof: The proof runs in parallel with that of theorem 1. Specifically, the analogue
of expression (3.6) is

dΠh
t = dV i

t −∇xV h
t • (dXcont.

t − (rtι− qt) ◦Xtdt)−∇xV h
t • dYt − rtV i

t dt,

where dXcont.
t is the continuous part of (3.17) i.e.

dXcont.
t = DXt [µr(t,

∼
Xt)dt+ σr(t,

∼
Xt)dWt].

Furthermore, in analogy with (3.7) and (3.8) we have the Itō formula

dV h
t = {∂tV h

t + 1
2tr[σᵀr (t,

∼
Xt)DXt∇2

xxV
h
t DXtσr(t,

∼
Xt)]}dt+∇xV h

t • dXcont.
t ,

+

n∑
j=1

[V h(t,Xt− ◦ (ι+ êjZ
j

Nj
t

))− V h(t,Xt−)]dN j
t ,

and the partial integro-differential equation for pricing purposes

rtV
h
t = ∂tV

h
t +∇xV h

t • ((rtι− qt) ◦Xt) + 1
2tr[σᵀh(t,x)DXt∇2

xxVtDXtσh(t,X)]

+
∑n

j=1 λ
Q
h,jEνQ [V (t,x ◦ (ι+ êjZ

j
1))− V (t,x)− xjZj1∂xjV (t,x)]x=Xt− .

Combining these three expressions as above yields the desired result. �

Remark 3.8. The last two lines in (3.20), which we denote by P&LJ , represent the
present-valued profit-&-loss brought about by our inability to hedge the jump risk com-
pletely. A more compact way of writing this result is attained by considering the associated
Poisson random measure Jj(dt×dzj) with intensity measure E[Jj(dt×dzj)] = λjdtdνj(z

j)
for j = 1, 2, ..., n. Specifically, upon defining the pseudo-compensated random measure

J̃h,j(dt× dzj) ≡ Jj(dt× dzj)− λQh,jdtdν
Q
h,j(z

j), (3.21)

for j = 1, 2, ..., n, we see that the jump contribution to the profit-and-loss may be written
as

P&LJ =

∫ T

0

∫
R

n∑
j=1

e−
∫ t
0 rudu

{
∆jV

h
t (t,Xt−)− zjXj,t−∂xjV

h
t

}
J̃h,j(dt× dzj), (3.22)

where “pseudo” is used to emphasise that (3.21) is a real-world Poisson random measure
compensated by a mis-specified intensity measure term: it is neither a martingale measure
under P nor under the listed Q. Only if we remove parameter uncertainty on the jump
parameters in the sense (λQ

h ,ν
Q
h ) = (λQ,νQ) do we recover the Q martingale measure

property. In particular, for the Merton specification (λQ,νQ) = (λ,ν) the compensated
random measures become martingale measures under P, which in turn implies E[P&LJ ] = 0
insofar as the integrand is square integrable.

Conceptually, the takeaway message from the formulation (3.22) is that if V is convex
in all of its components (a property it will inherit from the payoff function under mild
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Figure 3.2: Suppose we ∆-hedge a long position in an option with a convex pricing function.
Insofar as a jump in the underlying occurs, Xt 7→ Xt±∆Xt, it follows that the value of the option
will exceed the value of the ∆-position. Hence, our net P&L benefits from such an occurrence.
Obviously, the converse will be true if we hold a short position in the option.

conditions) then ∀j : ∆V > ∂xjV∆Xj whence the integrand in P&LJ is positive. Thus,
our hedge portfolio actually benefits from jumps in either direction of any of the underlying
price process. Conversely, if we had shorted the option, the hedge profit would obviously
take a hit in the event of a jump (in Talebian terms, holding a hedge portfolio with a
short option position corresponds to “picking pennies in front of a steam roller”).23 A
vivid illustration of this point is provided in Figure 3.2 for an option written on a single
underlying.

3.4 Insights from empirics: on arbitrage and er-

raticism

Inspired by Wilmott’s theoretical hedge experiment, we now look into the empirical per-
formance of ∆-hedging strategies based on (I) forecasted implied volatilities and (II) fore-
casted actual (i.e. historical) volatilities. Specifically, we are interested in the properties
of the accumulated P&L, insofar as we ∆-hedge, till expiry, a three-month call-option on
the S&P500 index, initially purchased at-the-money. We investigate a totality of 36 such
portfolios over disjoint intervals between July 2004 and July 2013. This involves market
data on both the underlying index and on options. Daily data on the S&P500 index is
readily and freely available. For option data, we combine a 2004-2009 data set from a

23Nassim (2007), p.19, “’Most traders were just “picking pennies in front of a steam roller,”
exposing themselves to the high impact rare event yet sleeping like babies, unaware of it.”
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Figure 3.3: The top grey curve is the S&P500 Index plotted from July 2004 to July 2013 [units
on right hand axis]. The tic-dates on the time axis have deliberately been chosen to match the
purchasing dates {ti}36

i=1 of the 36 delta-hedged portfolios under investigation (each of which is of
three months’ duration). The light grey curve is the actual (stochastic) volatility estimated from
a lognormal volatility model. Specifically, every time segment between purchasing dates [ti, ti+1)
reflects a Monte Carlo simulated forecast based upon an EGARCH(1,1) fitted to market data from
the previous time segment [ti−1, ti). Finally, the black curve is the three-month ATM implied
volatility. Specifically, every time segment between purchasing dates [ti, ti+1) is a static forecast
based upon ATM implied volatility data from the purchasing date ti. Both volatility curves have
their units on the left hand axis.

major commercial bank24 with more recent prices from OptionMetrics obtained via the
Wharton Financial Database.

Whilst ATM call option prices straightforwardly are obtained from the data set, the (fore-
casted) implied and actual volatilities require a bit of manipulation. In case of the former,
we define the daily implied volatility, over the life-time of the portfolio, as the ATM implied
volatility of corresponding tenor obtained at the portfolio purchasing date (the resulting
volatility process is illustrated by the black curve in Figure 3.3). In case of the latter, we
require a suitable volatility model fitted to historical data in order to predict the “actual”
volatility process. Specifically, we define the daily actual volatility, over the life-time of
the portfolio, as the conditional expectation of a volatility model which has been fitted
to market data from the previous portfolio period. In this context, we observe that mod-
els with lognormal volatility dynamics generally have more empirical support than, say,
Heston’s model.25 The exponential general autoregressive conditional heteroskedasticity

24The bank shall remain nameless, but the data can be downloaded from http://www.math.ku.

dk/~rolf/Svend/
25See Gatheral et al. (2014) and their references.
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model (EGARCH(1,1)) has proven particularly felicitous in the context of S&P 500 fore-
casting26 - a result we assume applies universally for each of the 36 portfolios investigated.
Thus, we hold it to be the case that daily log returns, rt, can be modelled as rt = µ+ εt,
where µ is the mean return, and εt has the interpretation of a hetereoskedastic error. In
particular, εt is construed to be the product between a white noise process, zt ∼ N (0, 1),
and a daily standard deviation, σt, which obeys the relation

log σ2
t = α0 + α1 log σ2

t−1 + α2

[
|εt−1|
σt−1

−
√

2

π

]
+ α3

εt−1

σt−1
, (3.23)

where α0, α1, α2 and α3 are constants. The resulting volatility process is illustrated by the
light grey curve in Figure 3.3.

A few remarks on the estimated volatility processes are in order. First, we clearly see that
volatility can change dramatically during the life-time of a portfolio. We also see that
implied volatility typically is higher than actual volatility. This oft-reported result can be
explained theoretically by the stochastic volatility having a market price of risk attached,
see for instance Henderson et al. (2005). Finally, there is a clear negative correlation be-
tween stock returns and volatility during the financial turmoil which followed the Lehman
default in September 2008. All in all, reality unsurprisingly turns out to be a bit more
complicated than the set-up in Wilmott’s experiment. Still and all, does its main messages
carry over? To test this, we perform a hedge experiment with the following design:

• For any given portfolio, we compute the daily implied volatilities {σimp
t }63

t=1 and the
daily actual volatilities {σact

t }63
t=1 as outlined above. We assume there are 63 trading

days over a three months period (labelled by t = 1, 2, ..., 63) and let St, rt and qt
denote the time t value of the index, interest rate and dividend yield.

• For each of the two hedging strategies x ∈ {σimp, σact} we do the following: If
σact

1 < σimp
1 we short the call (γ = −1); otherwise, we go long the call (γ = +1)

in accordance with the remark made in the section on Wilmott’s hedge experiment.
Then, we set up the delta neutral portfolio Π1 = B1 − γ∆BS

1 (x1)S1 + γCBS
1 (σimp

1 )
s.t. Π1 = 0, where ∆BS

1 (x1) is the well-known Black-Scholes delta.

• For t = 2, 3, ..., 63 we do the following: compute the time t value of the portfolio
set up the previous day: Π̃t = Bt−1e

rt−1∆t − γ∆BS
t (xt)Ste

qt−1∆t + γCBS
t (σimp

t ). The
quantity dP&Lt = Π̃t − Πt−1 defines the profit-&-loss accrued over the interval
[t− 1, t]. Next, we rebalance the portfolio such that it, once again, is delta-neutral,
Πt = Bt − γ∆BS

t (xt)St + γCBS
t (σimp

t ), where Bt is chosen in accordance with the
self-financing condition: Π̃t = Πt.

• Finally, at the option expiry, we compute the terminal P&L, as well as its lifetime
quadratic variation,

∑63
t=1 |dP&Lt|2/63.

26See Awartani and Corradi (2005).
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Figure 3.4: Panels (a) (actual) and (b) (implied) show the path-for-path hedge error behaviour
for the 36 non-overlapping three-month hedges. Dotted paths correspond to cases where we initially
take a long position in the option.

The 36 hedge error (or P&L) paths and the distributions of the quadratic variation of the
two methods are shown in Figure 3.4. Table 3.5 reports descriptive statistics and statistical
tests of various hypotheses.

Quantity Mean SD. Notes (Hypotheses Tests)

Hedge error, 7.7 17.3 The mean hedge error is statistically greater than zero
actual volatility (p-value = 1%) when we hedge with the actual vol. forecast.
Hedge error, 7.7 15.6 The mean hedge error is statistically greater than zero
implied volatility (p-value = 1%) when we hedge with the implied vol. forecast.

We cannot reject the hypothesis that the standard deviations
sdact = sdimp are equal (p-value = 55%).

Quadratic var., 1.2 2.1
actual volatility
Quadratic var., 0.81 2.0 The mean quadratic variation of the hedge error when
implied volatility we hedge with the actual vol. forecast is statistically

less than the quadratic variation when we
hedge with the implied vol. forecast (p-value = 1.4%).

Table 3.5: Summary statistics and hypothesis tests for different hedge strategies.

First, we note (Figure 3.4) that even though implied volatility typically is above actual
volatility, this far from creates arbitrage. Hedge errors for the two methods readily become
negative. A primary explanation for this is the randomness of volatility. Our ∆-hedged
strategy only makes us a profit if realised volatility ends up “on the right side” of initial
implied volatility. And that we don’t know for sure until after the hedging period is over; we
have to base our decisions on forecasts; initial forecasts even, for the fundamental theorem
to apply. Notice though that the averages for both hedge errors are significantly positive.
This shows that there is a risk premium that can be picked up, most often by selling options
and ∆-hedging them. Because the hedge is not perfect, this compensation is anticipated.
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The question is, is it financially significant? In theory the hedged portfolio has an initial
cost of zero, so it is not obvious how to define a rate of return, but the initial option price
would seem a reasonable (possibly conservative) benchmark for the collateral that would
need to be posted on a hedged short call option position. From column three in Table 3.6
the average option price is $49.2. Comparing this to the means (∼ 7.7; remember this is
over a three-month horizon) and standard deviations (∼ 15.5; ditto) of the hedge errors
in Table 3.5 shows that the gains are also significant in economic terms. Put differently,
the crude calculation (4 · 7.7

49.2 − 0.02)/(
√

4 · 15.5
49.2) gives annualised Sharpe-ratios around 1.

If we look just at the terminal hedge errors, then the difference in riskiness (as measured
by standard deviation) between hedging with actual and hedging with implied volatility is
in no way statistically significant (the p-value for equality of variances is 55%). Also, the
correlation between the terminal hedge error from the two approaches is 0.97. However, if
we consider the quadratic variations as the measure of riskiness, then the picture changes.
The average quadratic variation of the implied hedge error (0.81) is only two-thirds of the
average quadratic variation of the actual hedge error (1.2) (a paired t-test for equality
yields a p-value of 1.4%).

All in all this shows that volatility arbitrage is difficult, but the following insight from
Wilmott’s experiment stands: if you are in the business of hedging, then the use of implied
volatility should make you sleep better at night.

3.5 Conclusion

In the world of finance, no issue is more pressing than that of hedging our risks, yet
remarkably little attention has been paid to the risk brought about by the possibility that
our models might be wrong. To remedy this deplorable situation, we have in this paper
derived a meta-theorem that quantifies the P&L of a ∆-hedged portfolio with an erroneous
volatility specification. Meta- to the extent that one of the constituent parameters (the
real volatility) is transcendental; yet, also a theorem with some very concrete “real world”
corollaries. For instance, a specific case was investigated in which the implied volatility
gives rise to smooth (i.e. O(dt)) P&L-paths, whilst any other hedge volatility yields erratic
(i.e. O(dWt)) P&L paths. In a somewhat quirkier context, the Dupire-Gyöngy-Derman-
Kani formula for volatility surface calibration was shown to be a corollary.

Whilst the theorem proved in Section 3.2 is more general than the versions typically found
in the literature, it does not go far enough. Extensive empirical support has been added
to the case of discontinuities in the stock price process: thus, in the gospel of the jump we
extended the fundamental theorem to include compound Poisson processes, which came
with the revelation that jumps unambiguously hurt you when you try to hedge short put
and call option positions.

One of the most conspicuous implications of the fundamental theorem is undoubtedly the
apparent ease with which arbitrage can be made: e.g. in the constant parameter framework
of Wilmott’s experiment, a free lunch is guaranteed insofar as we can establish max{σr, σi}
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(in case of the former, we go long on the option - otherwise, we short it). Studying this
strategy empirically, we find that the mean P&L indeed is in the positive; nonetheless, qua a
significant dispersion the profit readily turns negative: the statistical arbitrage accordingly
relies on us being willing to take so some significant hits along the way. Indeed, this is
without even factoring in the non-negligible role of transaction costs. On the other hand,
there is strong evidence that hedging at the implied volatility does yield smoother P&L
paths.

One final remark: This paper can be seen as an exhaustive exposition of which volatility to
use when delta hedging. To keep the length manageable and the presentation self-contained
we have ignored an aspect that is of both theoretical and practical importance. It can be
posed thus: which delta should I use? In models where the underlying and the volatility are
correlated a strong case can be made for using the so-called risk-minimizing delta, which
is in broad terms is the usual delta plus the (underlying, volatility)-correlation times the
volatility of volatility times the Vega of the target option, see for instance Poulsen et al.
(2009), Andreasen (2013), or Hull and White (2016). We leave the connection of this
theory to the fundamental theorem of derivative trading, theoretically as well empirically,
to future research.
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Appendix A: Multi-dimensional jumps

In this section we establish Girsanov’s Theorem and a pricing PDE for multi-dimensional
jump-diffusion models. The equivalent results for 1-dimensional models are ubiquitous -
see for instance Cont and Tankov (2004), Privault (2013) or Runggaldier (2003).

The Radon-Nikodym derivative

Theorem 3.3. A generalised Girsanov theorem for jump-diffusion processes.
Let {Wt}t∈[0,T ] be a dw-dimensional vector of independent Wiener processes on the fil-
tered probability space (Ω,F ,P, {Ft}t∈[0,T ]). One the same space, let {Yt}t∈[0,T ] be a

dy-dimensional vector of independent compound Poisson processes, the ith component of
which is

Y i
t =

N i
t∑

k=1

Zik,

where N i
t ∼ Pois(λit), λi > 0 is an intensity parameter, and {Zik}k∈N is a sequence of i.i.d.

random variables with jump distribution dνi(z). Finally, let {φt}t∈[0,T ] be a dw-dimensional
Girsanov kernel (some bounded, adapted process), then the processes{

WQ
t := Wt −

∫ t

0
φsds

}
t∈[0,T ]

, and
{
Ỹ Q
t := Yt − λQ ◦ EνQ [Z1]t

}
t∈[0,T ]

are martingales under the probability measure Q defined as

dQφ,λQ,νQ = E (φ ?W )(T ) · e−
∑dy
i=1(λQi −λi)T

dy∏
i=1

N i
t∏

k=1

λQi dν
Q
i (Zik)

λidνi(Zik)
dP

where E (φ ?W )(T ) = e
∫ T
0 φs•dWs−1

2

∫ T
0 |φs|

2ds is the Doleans exponential with respect to
Wt, and we have defined λ = (λ1, λ2, ..., λdy)

ᵀ, and ν = (ν1, ν2, ..., νdy)
ᵀ.

Proof. The diffusion part is well known from Girsanov’s theorem and will not be treated
here. Instead we will show that for any bounded measurable function f : Rdy 7→ R, the
following equivalence obtains

EλQ,νQ [f(YT )] = Eλ,ν
[
f(YT )dQdP

]
,

for the defined measure Q. To this end, define Y h
t as the vector Yt with the upper limit of

the summation, N i
t , replaced by some fixed number hi ∈ N0 for all i. Then the RHS can

be written as

e−
∑dy
i=1(λQi −λi)TEλ,ν

f(Yt)

dy∏
i=1

N i
t∏

k=1

λQi dν
Q
i (Zik)

λidνi(Zik)
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= e−
∑dy
i=1(λQi −λi)T

∞∑
h1=0

· · ·
∞∑

hdy=0

P

 dy⋂
i=1

{N i
T = hi}

 ·
Eλ,ν

f(Yt)

dy∏
i=1

N i
t∏

k=1

λQi dν
Q
i (Zik)

λidνi(Zik)

∣∣∣∣ dy⋂
i=1

{N i
T = hi}


= e−

∑dy
i=1(λQi −λi)T

∞∑
h1=0

· · ·
∞∑

hdy=0

dy∏
i=1

P
(
N i
T = hi

)
Eλ,ν

f(Y h
t )

dy∏
i=1

hi∏
k=1

λQi dν
Q
i (Zik)

λidνi(Zik)


= e−

∑dy
i=1(λQi −λi)T

∞∑
h1=0

· · ·
∞∑

hdy=0

dy∏
i=1

e−λiT (λiT )hi

ki!
Eλ,ν

f(Y h
t )

dy∏
i=1

hi∏
k=1

λQi dν
Q
i (Zik)

λidνi(Zik)


=

∞∑
h1=0

· · ·
∞∑

hn=0

dy∏
i=1

e−λ
Q
i T (λQi T )hi

ki!
Eλ,ν

f(Y h
t )

dy∏
i=1

hi∏
k=1

dνQi (Zik)

dνi(Zik)


=

∞∑
h1=0

· · ·
∞∑

hdy=0

dy∏
i=1

e−λ
Q
i T (λQi T )hi

ki!

∫
Rh1
· · ·
∫
Rhdy

f(yht )

dy∏
i=1

hi∏
k=1

dνQi (zik)

dνi(zik)
dνi(z

i
k)

=

∞∑
h1=0

· · ·
∞∑

hdy=0

dy∏
i=1

e−λ
Q
i T (λQi T )hi

ki!

∫
Rh1
· · ·
∫
Rhdy

f(yht )

dy∏
i=1

hi∏
k=1

dνQi (zik)

=

∞∑
h1=0

· · ·
∞∑

hn=0

dy∏
i=1

Q
(
N i
T = hi

)
EλQ,νQ

[
f(Y h

t )
]

=
∞∑

h1=0

· · ·
∞∑

hdy=0

Q

 dy⋂
i=1

{N i
T = hi}

EλQ,νQ

f(Yt)

∣∣∣∣ dy⋂
i=1

{N i
T = hi}



which by the law of total probability corresponds to the LHS, EλQ,νQ [f(YT )] as desired.
To show independence of increments under Q, let ξs = dQ/dP(s), and let f and g be two
bounded measurable functions. Suppose s < t ≤ T then

EλQ,νQ [f(Ys)g(Yt − Ys)] = Eλ,ν [f(Ys)g(Yt − Ys)ξt]
= Eλ,ν [f(Ys)ξs]Eλ,ν [g(Yt − Ys)ξt/ξs]
= Eλ,ν [f(Ys)ξs]Eλ,ν [g(Yt − Ys)ξt]
= EλQ,νQ [f(Ys)] · EλQ,νQ [g(Yt − Ys)].
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Measure changes in jump-diffusion dynamics

To appreciate the gravity of this result, consider the jump-diffusion dynamics of the n-
dimensional stock price process

dXt = DXt− [µ(t,Xt)dt+ σ(t,Xt)dWt] + DXtθ(t,Xt−)dYt (3.24)

where DXt− = diag(X1,t−, X2,t−, ..., Xn,t−), µ : [0,∞) × Rn 7→ Rn, σ : [0,∞) × Rn 7→
Rn×dw and θ : [0,∞)× Rn 7→ Rn×dy . For the purposes of no-arbitrage pricing we want to
determine the measure Q such that the discounted process

X∗t := e−
∫ t
0 ruduXt,

is a martingale. From Ito’s lemma, it can readily be deduced that

dX∗t = D∗Xt
[(µ(t,Xt)− rtι+ θ(t,Xt)λ ◦ Eν [Z1])dt+ σ(t,Xt)dWt]

+ D∗Xt−θ(t,Xt−)(dYt − λ ◦ Eν [Z1]dt),

where we have added and subtracted θ(t,Xt)λ ◦Eν [Z1]dt, where Z1 := (Z1
1 , Z

2
1 , ..., Z

dy
1 )ᵀ.

Using the measure transformation in the theorem above this transforms to

dX∗t = D∗Xt
[(µ(t,Xt)− rtι+ θ(t,Xt)λ

Q ◦ EνQ [Z1] + σ(t,Xt)φt)dt+ σ(t,Xt)dW
Q
t ]

+ D∗Xt−θ(t,Xt−)dỸ Q
t .

Hence, X∗t is a Q-martingale iff the tuple 〈φt,λQ,νQ,Q〉 is chosen such that

µ(t,Xt) + θ(t,Xt)λ
Q ◦ EνQ [Z1] + σ(t,Xt)φt = rtι, (3.25)

almost everywhere. Needless to say, the infinite number of tuples which satisfies the no-
arbitrage condition (3.25) ruins our chances of establishing unique prices for financial
derivatives depending on the underlying jump diffusion dynamics. This is obvious by re-
calling that the discounted price process of V also should be a martingale, whence:

V (t,Xt) = Et,λQ,νQ

[
e−

∫ T
t rudug(XT )

]
, (3.26)

where g(XT ) is the terminal pay-off.

PIDE methods

Theorem 3.4. The partial integro-differential pricing equation (PIDE) Consider
a jump diffusion dynamics of the form (3.24), and let Vt = V (t,Xt) be a derivative the
value of which is contingent upon it. Let 〈φt,λQ,νQ,Q〉 be a tuple such that the no-
arbitrage condition (3.25) is satisfied. Then

dXt = DXt [rtιdt+ σ(t,Xt)dW
Q
t ] + DXt−θ(t,Xt−)[dYt − λQ ◦ EνQ [Z1]dt]],
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and Vt = V (t,x) satisfies the PIDE

rtVt = ∂tVt + rtx • ∇xVt + 1
2tr[σᵀ(t,x)Dx∇2

xxVtDxσ(t,x)]

+ EνQ [
∑dy

i=1 λ
Q
i {V (t,x ◦ (ι+ θ:,i(t,x)Zi1))− V (t,x)}

− (Dxθ(t,x)λQ ◦Z1) • ∇xV (t,x)],

where ∇x is the gradient operator, ∇2
xx is the Hessian operator, ι := (1, 1, ..., 1)ᵀ ∈ Rn,

and θ:,i(t,x) denotes the ith column of the matrix θ(t,x). Particularly, when n = dy and
θ = I is the identity matrix then

rtVt = ∂tVt + rtx • ∇xVt + 1
2tr[σᵀ(t,x)Dx∇2

xxVtDxσ(t,x)]

+
∑n

i=1 λ
Q
i EνQ [V (t,x ◦ (ι+ êiZ

i
1))− V (t,x)− xiZi1∂xiV (t,x)],

where êi is a unit vector in the ith direction.

Proof. Suppose a jump occurs in the ith component of the compound Poisson process
Yt: Y

i
t = Y i

t− + Zit . From the governing dynamics (3.24), this means that the stock price
process jumps by ∆Xt = Xt− ◦ (ι+ θ:,i(t,Xt−)Zit). Defining the continuous SDE

dXcont.
t := DXt [rtιdt+ σ(t,Xt)dW

Q
t ]−DXt−θ(t,Xt−)λQ ◦ EνQ [Z1]dt],

we find by Ito’s lemma,

dV (t,Xt) = ∂tV (t,Xt)dt+∇xV (t,Xt) • dXcont.
t

+ 1
2tr[σᵀ(t,Xt)DXt∇2

xxV (t,Xt)DXtσ(t,Xt)]dt

+
∑dy

i=1(V (t,Xt− + ∆Xt)− V (t,Xt−))dN i
t

= ∂tV (t,Xt)dt+∇xV (t,Xt) • (DXtrtι)dt

+∇xV (t,Xt) • (DXtσ(t,Xt)dW
Q
t )

−∇xV (t,Xt) • (DXt−θ(t,Xt−)λQ ◦ EνQ [Z1])dt

+ 1
2tr[σᵀ(t,Xt)DXt∇2

xxV (t,Xt)DXtσ(t,Xt)]dt

+
∑dy

i=1(V (t,Xt− ◦ (ι+ θ:,i(t,Xt−)Zi
N i
t
))− V (t,Xt−))dN i

t

= ∂tV (t,Xt)dt+∇xV (t,Xt) • (DXtrtι)dt

−∇xV (t,Xt) • (DXt−θ(t,Xt−)λQ ◦ EνQ [Z1])dt

+ 1
2tr[σᵀ(t,Xt)DXt∇2

xxV (t,Xt)DXtσ(t,Xt)]dt

+
∑dy

i=1 λ
Q
i EνQ

[
(V (t,x ◦ (ι+ θ:,i(t,x)Zi1))− V (t,x))

]
x=Xt−

dt

+∇xV (t,Xt) • (DXtσ(t,Xt)dW
Q
t )

+
∑dy

i=1

{
(V (t,Xt− ◦ (ι+ θ:,i(t,Xt−)Zi

N i
t
))− V (t,Xt−))dN i

t

− λQi EνQ
[
(V (t,x ◦ (ι+ θ:,i(t,x)Zi1))− V (t,x))

]
x=Xt−

dt
}
.



3.5. Conclusion 77

Under Q, the expectations of the diffusion term and the compensated jump terms (the last
three lines) vanish. Furthermore, since

V ∗t := e−
∫ t
0 ruduV (t,Xt),

is a Q martingale; dV ∗t should be driftless. These facts jointly imply that

− rtV (t,Xt) + ∂tV (t,Xt) + rtDXtι • ∇xV (t,Xt)

−∇xV (t,Xt) • (DXt−θ(t,Xt−)λQ ◦ EνQ [Z1])

+ 1
2tr[σᵀ(t,Xt)DXt∇2

xxV (t,Xt)DXtσ(t,Xt)]

+
∑dy

i=1 λ
Q
i EνQ

[
(V (t,x ◦ (ι+ θ:,i(t,x)Zi1))− V (t,x))

]
x=Xt−

= 0,

which essentially is what we wanted to show.
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Appendix B: Data

Contract ATM strike Option price P&Lactual
T P&Limplied

T Q.V.actual Q.V.implied

07-Jul-2004 1118.3 36.5852 12.2045 15.1591 0.5269 0.2615
05-Oct-2004 1134.5 33.0392 5.8372 5.0520 0.1683 0.1386
05-Jan-2005 1183.7 34.7050 11.4080 13.6705 0.1975 0.1759
06-Apr-2005 1184.1 34.9985 7.3072 9.0917 0.3162 0.1693
06-Jul-2005 1194.9 34.4864 11.9818 10.5282 0.2974 0.0894
04-Oct-2005 1214.5 37.8141 7.2779 7.4261 0.5384 0.1670
06-Jan-2006 1285.4 37.1621 12.6952 12.4934 0.1539 0.1406
07-Apr-2006 1295.5 38.2703 0.0765 0.5022 0.2827 0.2444
07-Jul-2006 1265.5 45.5356 15.3714 13.7452 0.3655 0.1974
05-Oct-2006 1353.2 42.7682 12.6179 12.6400 0.0904 0.0945
08-Jan-2007 1412.8 45.4682 -5.0096 2.1741 2.4476 1.0569
09-Apr-2007 1444.6 47.0689 19.4885 7.4564 0.7699 0.0865
09-Jul-2007 1531.8 55.8378 -11.4976 -7.5524 1.8603 1.1396
05-Oct-2007 1557.6 63.1625 1.6451 -1.2115 1.2330 0.4542
09-Jan-2008 1409.1 74.2874 9.6117 9.6158 1.1975 0.6555
09-Apr-2008 1354.5 66.2276 17.3617 19.0049 0.8019 0.6270
09-Jul-2008 1244.7 62.8179 -56.9636 -47.0345 8.0872 10.4193
07-Oct-2008 996.2 83.8510 55.3847 51.8900 9.7721 6.4129
09-Jan-2009 890.3 69.9489 14.1892 3.2637 3.0947 0.4083
10-Apr-2009 856.6 62.9702 30.2400 27.2551 0.5701 0.4336
09-Jul-2009 882.7 49.8464 -12.4499 -9.8467 0.1245 0.1039
07-Oct-2009 1057.6 49.0640 17.0496 18.0507 0.2944 0.2135
07-Jan-2010 1141.7 42.2410 16.4989 16.4106 0.2595 0.1990
09-Apr-2010 1194.4 36.6784 -10.3121 -9.5031 0.5463 0.5578
09-Jul-2010 1078.0 52.2001 15.6833 17.6455 3.0501 0.3326
07-Oct-2010 1158.1 50.6050 20.7394 19.8607 0.1926 0.2166
06-Jan-2011 1273.8 43.6970 9.4015 11.7384 0.3762 0.2400
07-Apr-2011 1333.5 44.7866 13.3942 13.8116 0.3490 0.3055
08-Jul-2011 1343.8 43.0900 -3.8722 3.8883 0.1692 0.3196
06-Oct-2011 1165.0 73.4417 14.3245 16.8015 0.8601 0.7112
06-Jan-2012 1277.8 53.9770 -17.4158 -21.6739 0.3472 0.1853
09-Apr-2012 1382.2 48.9735 -9.7517 -9.9641 0.4760 0.4018
09-Jul-2012 1352.5 47.5814 15.8417 15.4475 0.3181 0.3184
05-Oct-2012 1460.9 42.9608 11.2648 9.0422 3.0925 0.8156
09-Jan-2013 1461.0 43.7355 17.6935 14.7094 0.2747 0.1360
11-Apr-2013 1593.4 39.2535 9.4000 6.6261 1.0037 0.7546

Table 3.6: The first column lists the purchasing dates of the 36 contracts. Column two shows
the ATM strikes at which the contracts are purchased and column three show the prices at which
this happens. The fourth column gives the terminal P&L for each contract, when the hedge is
performed with an “actual” (EGARCH(1,1)) volatility forecast. Column five likewise, but when the
hedge is with the implied volatilities. Finally, columns six and seven give the quadratic variation,
defined as

∑N
i=1 |dP&Li|2/N , where N = 63 is the number of trading days, for the entire actual

and implied paths respectively.
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Abstract. This paper analyses risk management of fixed price, unspecified
consumption contracts in energy markets. We model the joint dynamics of
spot-price and consumption of electricity, study expected loss minimisation
for different loss functions and derive optimal static hedge strategies based
on forward contracts. These strategies are tested empirically on 2012-2014
Nordic market data and compared to a simpler hedge strategy which is
widely employed by the industry. Results show that our suggested hedge
outperforms the commonly used with a higher reward-to-risk ratio, which
can be exploited to release a premium from the contract. The realised cu-
mulative profit-and-loss from our suggested hedge is greater for almost every
single one-month period of the considered data, whilst the hourly realised
payout results in a 66% out-performance probability.
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4.1 Introduction

A popular product sold by retail power-suppliers (in broad terms: energy companies)
to medium-to-large costumers is a contract where an unspecified amount of power can be
bought at a fixed price during a certain time-interval.2 We call this a fixed price, unspecified
consumption contract or, where it causes no confusion, simply a fixed price agreement or
just the contract.

Having sold3 the fixed price agreement, the energy company must asses and manage the
risks associated with the contract. This problem is difficult for several reasons: If the
seller faced only the price risk, he would simply buy forward contracts to set up a perfect
hedge. But with a criterion function that takes into account both (expected) gains and
losses, the fact that forward prices are typically above expected future spot-prices4 will
make it tempting to under-hedge. Indeed; the main complicating factor from a theoretical
point of view is the quantity risk. If the consumer’s quantity choice was all-or-nothing,
the contract would have the payoff of a regular call option. Handling that would require
modelling the price randomness of the electricity market (which has several characteristics
that are different from standard financial markets, such as stocks and exchange rates).
However, the consumer has more flexibility and because his energy demand is created by
physical needs, his choice will not be all-or-nothing. Further, the demand will be positively
correlated with the price (high demand drives up the price), which for the contract seller
creates what in other areas of finance would be known as wrong-way risk: He will have to
deliver a lot of energy for a fixed price when buying it in the spot market is expensive. In
this paper, we will deal with this risk with a joint model of spot-price and consumption
load.

The asymmetric structure faced by retail suppliers of inelastic demand, an obligation to
deliver electricity at fixed prices (over fixed periods) procured from a spot market and
a spot-price/demand correlation affecting adversely are all typical characteristics for the
electricity market, see Stoft (2002). The non-storability of electricity (in contrary to other
commodities) is at heart of the problem not only since it makes physical hedging inoper-
able, it also causes highly volatile spot-markets with structural price jumps (Benth et al.
(2008)). As a consequence, the problem of joint quantity and price risk on electricity mar-
kets is commonly studied in the literature, and it stresses the importance of incorporating
price–quantity correlation into the models. For an example, Bessembinder and Lemmon
(2002) consider an equilibrium market model for which the correlation has a significant
impact on optimal hedging strategies in forward markets. Their equilibrium perspective
has several extensions, for instance Willems and Morbee (2010) who extend their market
model to include additional derivatives and study the effects of offering an increasing num-
ber of options on the market. From a retailers perspective, with a exogenously given spot-

2The entire business-to-business electricity market in Denmark in 2014 was 23.1 TWh, or about
800 million euros in monetary terms. 60% was sold as fixed price agreements in some form.

3Entered into might be a better description than sold, as the contract typically requires no
up-front payment.

4This so-called contango is the norm in Nordic power markets; see e.g. Botterud et al. (2002).
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and forward market, Oum et al. (2006) employ utility maximisation to derive optimal
hedging strategies where they exploit the correlation to manage price-quantity risk in a
single period setting. As another example, Boroumand et al. (2015) address the problem
of price–quantity risk on an intra-day scale and demonstrate with a simulation approach
that intra-day hedging outperforms daily and longer-term portfolios.

From the retailer’s perspective, we aim to capture the price-demand correlation with a
bivariate model where both the spot-price and the load have temporal dependency. Based
on our model, we set out to hedge the price-quantity risk of a fixed price agreement with
forward contracts in a multi-period setting. In relation to our approach, Coulon et al.
(2013) develop a more intricate three-factor model and consider hedging strategies based
on options that are priced with closed-form expressions. Of course, numerous variations of
spot-price and derivative pricing models exist in the literature (see Carmona and Coulon
(2014) for a survey) but in contrast to the latter, we do not consider the problem of
pricing derivatives under our model. Instead we concentrate on a hedging approach based
on exogenously given market data.

Overview. The rest of the paper is organised as follows. In Section 4.2 we formulate
a dynamic model for electricity price and load – a two-dimensional Ornstein-Uhlenbeck
model with a seasonality component. In Section 4.3 we analyse expected loss minimiza-
tion. Looking specifically at static hedging strategies with forward contracts, we derive
explicit formulas for optimal hedge portfolios based on two different loss functions (the
square and the “hockey stick”). Section 4.4 is an empirical study of the hedge performance
based on publicly available consumption, spot and forward prices in the Nordic region. We
find substantial benefits for our approach. Most notably, when we look at realised hourly
payoffs from the hedge portfolio, we find that our suggested strategy has a greater ten-
dency to generate positive outcomes (an average of 821 EUR), while the widely employed
strategy we use for comparison often ends up with losses (-1,107 EUR). In other terms, we
have a relatively larger hourly payoff from the model hedge with a 66% out-performance
probability. This comes to the cost of a higher standard deviation (5,419 versus 3,325) and
thus, with a higher risk in classical terms. But if we look at the reward-to-risk ratios of the
two (0.15 versus -0.33), we find that our strategy outperforms to the extend that we may
turn over the excess reward-to-risk into a contract premium. Viewed in different terms,
we see that our strategy yields a greater accumulated profit-and-loss at month-end, for all
but two one-month periods of the considered market data. At last, we repeat the hedging
experiment for a proprietary data set from DONG Energy and we obtain even stronger
results in this case.

4.2 Electricity price and consumption model

Our approach will be to model jointly the electricity spot price and the consumption
load with a continuous stochastic process. Both the price and the load exhibit seasonal
patterns – time of the day, day of the week and climatological season naturally effect the
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spot price and consumption, see Benth et al. (2008) and Haugom (2011) – and we will fit
deterministic periodic functions to capture this seasonality. The residual price and load
will then be modelled with a stationary process and we conveniently choose the continuous
Ornstein-Uhlenbeck process for this purpose (see for instance Weron (2007) and Benth
et al. (2008) for general treatments of electricity-price modelling).

4.2.1 The bivariate Ornstein-Uhlenbeck process

The bivariate, mean-reverting Ornstein-Uhlenbeck process (Xt, Yt)t≥0 is given by the so-
lution to the stochastic differential equation

dXt = κx(θx −Xt)dt+ σxdW
(1)
t ,

dYt = κy(θy − Yt)dt+ σydW
(2)
t ,

where κx, κy, σx, σy are positive parameters, θx, θy ∈ R and the Brownian motions W (1),
W (2) are correlated with ρw ∈ [−1, 1]. The solution, obtained by integrating factors, is
given by

Xt = X0e
−κxt + σx

∫ t

0
e−κx(t−u)dW (1)

u + θx,

Yt = Y0e
−κyt + σy

∫ t

0
e−κy(t−u)dW (2)

u + θy,

(4.1)

for t ≥ 0 (see for instance Gardiner et al. (1985) for details). From (4.1) it is straightforward
to calculate the (univariate) covariance functions

Cov(Xt+∆, Xt) = Σx e
−κx|∆|, Cov(Yt+∆, Yt) = Σy e

−κy |∆|,

and the cross-covariance function

Cov(Xt+∆, Yt) = Σxy e
−κx|∆|, ∆ ≥ 0,

Cov(Xt+∆, Yt) = Σxy e
−κy |∆|, ∆ < 0,

where we have defined the parameters

Σx =
σ2
x

2κx
, Σy =

σ2
y

2κy
and Σxy = ρw

σxσy
κx + κy

.

Since from (4.1) we see that X and Y are Gaussian processes, the bivariate process (X,Y )
has a stationary distribution which is bivariate Normal(

Xt

Yt

)
∼ BV N

([
θx
θy

]
,

[
Σx Σxy

Σxy Σy

])
,

while the conditional distribution is given by(
Xt+∆

Yt+∆

)
|
(
Xt

Yt

)
=

(
x
y

)
∼ BV N

(
µt+∆|t,Σt+∆|t

)
, (4.2)
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with mean vector and covariance matrix

µt+∆|t =

[
θx + (x− θx)e−κx|∆|

θy + (y − θy)e−κy |∆|

]
,

Σt+∆|t =

[
Σx(1− e−2κx|∆|) Σxy(1− e−(κx+κy)|∆|)

Σxy(1− e−(κx+κy)|∆|) Σy(1− e−2κy |∆|)

]
.

With conditional distributions in hand for both the univariate and bivariate process, we
proceed in the next section to the maximum likelihood estimator of the parameters.

4.2.2 Parameter estimation

With observed data we refer to a set of observations made at n+ 1 time-points t0, . . . , tn
with ∆i = ti − ti−1 denoting the spacings of the time grid. An observed path x =
(x0, . . . , xn) of the process (Xt)t≥0 is thus a set of observations where xi is the observed
value of Xti for i = 0, . . . , n. We write the log-likelihood for the observed path x of the
univariate Ornstein-Uhlenbeck process as a function of the parameters ψ = (κ, θ, σ)

l(ψ;x) =
n−1∑
i=0

log φ(xi+1;µi+1|i, σ
2
i+1|i) + log φ(x0; θ, σ2/(2κ))

where φ is the normal density function, here with (conditional) mean µi+1|i = xie
−κ∆i+1 +

θ(1−e−κ∆i+1) and variance σ2
t+1|i = σ2(1−e−2κ∆i+1)/(2κ). The decomposition of the den-

sity comes from the fact that X is a Markov process: with f(xi+1|xi, . . . , x0) = f(xi+1|xi)
for the conditional density, this allows us to write

f(x0, . . . , xn) = f(xn|xn−1) . . . f(x1|x0)f(x0).

The maximum likelihood estimate ψ̂ is the argument that maximizes the log-likelihood

ψ̂ = arg max
ψ

l(ψ, x)

which may be obtained by a numerical optimizer. Calculating the observed information
matrix

Io = − ∂2l

∂ψT∂ψ

∣∣∣∣
ψ=ψ̂

by numerical differentiation at estimated values gives an estimated standard error of the

jth parameter as
√

(I−1
o )j,j where (A−1)i,j denotes element i, j of the inverse matrix of A.

Further, if ψ̂x and ψ̂y are univariate estimates from two observed paths x and y, then

ρ̂w =
κ̂x + κ̂y
σ̂xσ̂y

· ρ̂(x, y)
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gives an estimator of ρw where ρ̂(x, y) is the sample correlation coefficient between x and
y.

A bivariate observation (x, y) from the bivariate Ornstein-Uhlenbeck process with param-
eters ψxy = (κx, θx, σx, κy, θy, σy, ρw) yields the log-likelihood

(ψxy;x, y) =
n−1∑
i=0

log φ(xi+1, yi+1;µi+1|i,Σi+1|i) + log φ(x0, y0;µ0,Σ0)

where µi+1|i and Σi+1|i are the conditional mean vector and covariance matrix given in the
previous section. Here φ denotes the bivariate normal density and the maximum likelihood
estimate ψ̂xy may be obtained by numerical optimization along with estimated standard
errors from the numerically calculated information matrix.

4.2.3 The seasonal Ornstein-Uhlenbeck model

Since the consumption and price of electricity exhibit seasonal behaviours, we continue to
work with a model for the price S and load L as given by

St = S̃t + θS(t)

Lt = L̃t + θL(t)

where (S̃, L̃) follows a bivariate Ornstein-Uhlenbeck process with constant mean while
θS(t) and θL(t) are deterministic seasonality functions. For this purpose, we let θ(t) be a
periodic function of the form

θ(t) = α0 +

p∑
i=1

αi · sin(
2π

τi
t+ φi) (4.3)

with p periods τ1, . . . τp and phases φ = (φ1, . . . , φp). For estimation of the parameters,
notice that we may write (4.3) as a regression

y = A(φ)a

where y = (y1, . . . , yn)T , a = (α0, . . . , αp)
T and the regression matrix A(φ) of dimension

[n× p+ 1] is a function of the phase vector φ

A(φ) =


1 sin(2π

τ1
t1 + φ1) . . . sin(2π

τp
t1 + φp)

1 sin(2π
τ1
t2 + φ1) . . . sin(2π

τp
t2 + φp)

...
...

...
1 sin(2π

τ1
tn + φ1) . . . sin(2π

τp
tn + φp)

 .

If, for a moment, we consider the phases to be known, then the regression is a standard
least-squares optimization problem

a∗ = arg min
a
||y −A(φ)a||2
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which has the solution

a∗ = (A(φ)TA(φ))−1A(φ)Ty

i.e. a function of the phase vector a∗ = a∗(φ). This lead us to perform the parameter
estimation in two steps: First we minimize

φ̂ = arg min
φ
||y −A(φ)a∗(φ)||2

by numerical optimization, then we perform the regression

â = a∗(φ̂) = (A(φ̂)TA(φ̂))−1A(φ̂)Ty

to obtain parameter estimates (â, φ̂) of the periodic function. Hence, our approach will
be to fit seasonal functions in a first step to the price and load respectively, and to fit
an Ornstein-Uhlenbeck process to the de-seasonalized price and load in the second step.
Henceforth, we refer to this model as the seasonal Ornstein-Uhlenbeck model.

4.3 Risk-minimizing static hedging

The hedging problem we are facing is to replicate a future uncertain financial obligation.
That is, we will try to replicate the future payment with other financial products, typically
liquid contracts that are traded in the market, and in our case it will be forward contracts.
We will design a static hedging strategy: a buy-and-hold position in the forward contract
that aims at hedging our financial obligation. Our approach to determine the forward
position will be the method of expected loss minimization.

To this end, let πT denote the payoff at time T of the hedged position, that is, the financial
obligation we want to hedge together with a portfolio of hedging instruments. Then −πT
gives the loss of our position and

E[u(−πT )] (4.4)

gives the risk measure for some specified loss function u (see Artzner et al. (1999) for
details of risk measures). The problem at hand is to choose the hedging portfolio such
that this risk is minimized. Hence, the task is to choose both type of hedging instruments,
and positions to buy/sell of these instruments at initiation. Notice that if we were to set
up a dynamic hedging strategy instead, then we would have to choose the time-points at
which to rebalance the hedging portfolio as well5.

5For an overview of hedging in incomplete markets, and the case of dynamics hedging based
on quadratic risk minimization, see e.g. Bingham and Kiesel (2004), Chapter 7.2 and references
therein.
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4.3.1 Hedging a fixed price agreement

Assume that we want to hedge a fixed price agreement that expires at a specified future
time T > t0 where t0 is the initiation time. This is a financial contract with payoff (ST −
F fpa)LT at time T for the long position and its features are explained by the following
hypothetical situation: At time t0, we agree a price F fpa with our counterparty and obligate
ourselves to deliver an unspecified quantity LT of electricity at T , for the price F fpa. The
quantity will be the unknown consumption of the counterparty. At the expiry time T , we
will have to cover our contracted delivery of electricity by purchasing the same quantity
from the spot market at a price ST . Our cash-flow for the naked position at time T amounts
to

F fpaLT − STLT
which is the short position of the fixed price agreement.

To set up a static, buy-and-hold, hedge at time t0 for the naked position (notice that
ST and LT are unknown at t0), we enter a forward contract with expiry T and forward
price F , that is, a contract with payoff ST − F at time T , and we enter the forward with
a position V to be determined. If we assume that the fixed price agreement has a price
relative to the forward F fpa = F + m, where m is some non-negative margin, then the
payoff of our hedged position is

πT = (ST − F )(V − LT ) +mLT .

The hedging problem is to specify, at time t0, the forward position V in an optimal way.
For this purpose, we employ the approach of minimizing the expected positive loss, i.e.
with u(x) = max(x, 0) as the loss function of equation (4.4). Thus, we aim to minimize

f(V ) = E[max (−(ST − F )(V − LT ) +mLT , 0)] (4.5)

where the minimizing argument V ∗ forms the optimal hedge of our hedging strategy.

Financial contracts traded at the exchange for power derivatives are typically not speci-
fied with a single expiry-time as in the previous example. A power forward obligate the
counterparties to settle the difference between spot and fixed price at a set of time-points
during a specified period, for example a month, quarter or a year. There is typically a
base-load and a peak-load version of the contract as well, where the latter has settlements
on peak-hours only, that is weekdays 08:00 to 20:00 for the Nordic market, while the former
has settlements on every full hour during the expiry period.

We consider fixed price agreements and forwards that are specified with an expiry month
M and we let M(p) denote peak-hours during this month and M(op) the remaining off-
peak hours. The payoff at time Ti for the hedged position during off-peak is thus (STi −
F b)(V b −LTi) for all Ti ∈M(op), where V b is the position in the base-load forward with
price F b. Notice that we assume the pricing F b-fpa = F b + m with margin m ≥ 0 for
delivery during off-peak of the fixed price agreement; in particular, we let m = 0. For
a time-point during peak periods we have the choice to include in our hedge portfolio



4.3. Risk-minimizing static hedging 87

a position V p in the peak-load forward with price F p ≥ F b. This gives a payoff of the
hedged position (STi − F b)V b + (STi − F p)V p + (F p-fpa − STi)LTi for Ti ∈ M(p). If we

define F̃ = F p − V b

(V b+V p)
(F p − F b) such that F b ≤ F̃ ≤ F p, we obtain

πTi = (STi − F̃ )(V b + V p − LTi), Ti ∈M(p)

where we assume a pricing F p-fpa ≥ F̃ +m with margin m ≥ 0 and we set m = 0 here as
well. To determine the optimal hedge for the entire month M , we minimize the function

f(V b, V p) =
∑

Ti∈M(op)

E
[
max

(
−(STi − F b)(V b − LTi), 0

)]
+

∑
Ti∈M(p)

E
[
max

(
−(STi − F̃ )(V b + V p − LTi), 0

)]
such that the minimizing argument (V b∗, V p∗) is the base- and peak-load forward positions
of our hedge.

Remark 4.1. Firstly, note that our objective function f(V b, V p) is a sum over the in-
dividual risks of each hourly payoff πTi . An alternative to this is to view the collection
of payoffs as a portfolio and minimise the portfolio risk instead, i.e. E [max (−

∑
i πTi , 0)].

Due to the sub-additivity property of the risk measure (indeed: of the function max(x, 0))
we have that

∑
i E [max (−πTi , 0)] ≥ E [max (−

∑
i πTi , 0)] so we can potentially be more

efficient, but this would come at a cost of higher complexity when calculating the ob-
jective function. Secondly, as max(x, 0) is convex, and convex functions are invariant
under affine maps, we have that V 7→ max(−(S − F )(V − L), 0) is convex, as well as
V 7→

∑
i max(−(Si − F )(V − Li), 0). Thus we have that any local minimum is indeed

a global minimum and the same holds for minimising f(V b, V p) jointly with respect to
(V b, V p). Finally, the same will hold for the squared risk measure E

[
(πT )2

]
, as the loss

function x2 is convex as well.

4.3.2 Hedging with the seasonal Ornstein-Uhlenbeck model

To be able to minimize the total expected loss of a monthly contract and find the optimal
hedge, we will derive an expression for the expectation in equation (4.5) with the margin
set to zero. To simplify the notation, assume a current time t0 = 0 at which S0 = s and
L0 = l are given for the spot and load, that is S̃0 = s̃ = s− θS(0) and L̃0 = l̃ = l − θL(0)
are the initial values of the deseasonalized spot and load. Let (κS , κL, θS , θS , σS , σL, ρW )
be the parameters of the Ornstein-Uhlenbeck process (S̃, L̃). Then(

ST
LT

)
|
(
S0

L0

)
d
=

(
µS(T, T ) + σS(T )Z

µL(T, T ) + σL(T )
(
ρSL(T )Z +

√
1− ρ2

SL(T )Z⊥
))

where Z, Z⊥ are independent standard normal variables and where we have defined

µS(t, τ) = θS(t) + θS + (s̃− θS)e−κSτ
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µL(t, τ) = θL(t) + θL + (l̃ − θL)e−κLτ

σ2
S(τ) =

σ2
S

2κS
(1− e−2κSτ )

σ2
L(τ) =

σ2
L

2κL
(1− e−2κLτ )

ρSL(τ) = 2ρW

√
κSκL

(κS + κL)

(1− e−(κS+κL)τ )√
(1− e−2κSτ )(1− e−2κLτ )

with a slightly ambiguous notation. Thus, we may write the payoff at time T of the hedged
position as the product of two linear functions of Z and Z⊥

(ST − F )(V − LT )

d
= (µS(T, T )− F + σS(T )Z)︸ ︷︷ ︸

=f(Z)

(
V − µL(T, T )− σL(T )(ρSL(T )Z +

√
1− ρ2

SL(T )Z⊥)

)
︸ ︷︷ ︸

=g(Z,Z⊥)

that is, a product of two dependent normal variables where F, V will play the role of
F b, V b and F̃ , V b + V p. The expected positive loss may then be written as

E[−min(f(Z)g(Z,Z⊥), 0)]

= −E[f(Z)g(Z,Z⊥)(1f(Z)<01g(Z,Z⊥)>0 + 1f(Z)>01g(Z,Z⊥)<0)].

To calculate the terms E[fg1f<01g>0] and E[fg1f>01g<0], we use the conditional expec-
tations

h1(z) = E
(
g(Z,Z⊥)1g(Z,Z⊥)>0|Z = z

)
,

h2(z) = E
(
g(Z,Z⊥)1g(Z,Z⊥)<0|Z = z

)
,

and notice that we may write the expected loss as

−E[fg1f<01g>0]− E[fg1f>01g<0]

= −E [f(Z)h1(Z)1f<0]− E [f(Z)h2(Z)1f>0]

= −E [f(Z) (h1(Z)1f<0 + h2(Z)1f>0)] .

For a general Gaussian variable, X ∼ N(µ, σ2),

E[X1X>0] = µΦ
(µ
σ

)
+ σφ

(µ
σ

)
,

E[X1X<0] = µΦ
(
−µ
σ

)
− σφ

(µ
σ

)
,

where Φ and φ are the standard normal distribution and density respectively. These ex-
pressions may readily be used for h1 and h2 since

g(Z,Z⊥)|Z = z ∼ N(V − µL(T, T )− σL(T )ρSL(T )z︸ ︷︷ ︸
=µg(z)

, σ2
L(T )(1− ρ2

SL(T ))︸ ︷︷ ︸
=σ2

g

).
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This leads us to define

ψ(z) = −f(z)

({
µg(z)Φ

(
µg(z)

σg

)
+ σgφ

(
µg(z)

σg

)}
1f(z)<0 +

+

{
µg(z)Φ

(
−µg(z)

σg

)
− σgφ

(
µg(z)

σg

)}
1f(z)>0

)
which gives us a final expression for the expected positive loss

E[max(−(ST − F )(V − LT ), 0)] = E[ψ(Z)]

where Z is a standard normal variable.

For the special case when S̃ and L̃ are uncorrelated, and thus independent, i.e. ρW = 0
and ρSL(τ) = 0, we obtain

(ST − F )(V − LT )
d
= (µS(T, T )− F + σS(T )Z)︸ ︷︷ ︸

=f(Z)

(
V − µL(T, T )− σL(T )Z⊥)

)
︸ ︷︷ ︸

=g(Z⊥)

this simplifies the expected positive loss to a closed-form expression

E[−min(f(Z)g(Z⊥), 0)]

= −E[f(Z)g(Z⊥)(1f(Z)<01g(Z⊥)>0 + 1f(Z)>01g(Z⊥)<0)]

= −E[f(Z)1f(Z)<0] · E[g(Z⊥)1g(Z⊥)>0]− E[f(Z)1f(Z)>0] · E[g(Z⊥)1g(Z⊥)<0]

=
{

(F − µS(T, T ))Φ
(
F−µS(T,T )
σS(T )

)
+ σS(T )φ

(
µS(T,T )−F
σS(T )

)}
·
{

(V − µL(T, T ))Φ
(
V−µL(T,T )
σL(T )

)
+ σL(T )φ

(
V−µL(T,T )
σL(T )

)}
+
{

(µS(T, T )− F )Φ
(
µS(T,T )−F
σS(T )

)
+ σS(T )φ

(
µS(T,T )−F
σS(T )

)}
·
{

(µL(T, T )− V )Φ
(
µL(T,T )−V
σL(T )

)
+ σL(T )φ

(
V−µL(T,T )
σL(T )

)}
.

The expected loss calculated with dependency between the deseasonalized spot and load6

is shown in Figure 4.1 along with the expected loss calculated from the independent spec-
ification of the model. The difference between the two expected loss functions is small.
In particular, the minimum expected loss from the two models is obtained at the same
argument, that is, the zero-correlation case yields the same optimal hedge position as the
dependent case.

To end the section with a second choice of risk measure, notice that a quadratic loss
function u(x) = x2 gives the expected squared loss

E[(ST − F )2(V − LT )2]

6The is calculated by approximating E[ψ(Z)] with 1
n

∑
ψ(zi) where zi are 1,000 generated

outcomes from the standard normal distribution.
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Figure 4.1: Expected positive loss calculated from the dependent (solid line) and inde-
pendent (dashed line) model for the deseasonalized data with parameters in Table 4.5 and
the January-13 contract in Table 4.3. Notice that both models yield the same minimizing
argument (circles), i.e. the same optimal hedging position in the forward contract.

= E[f(Z)2g(Z,Z⊥)2]

= E[f(Z)2 · E(g(Z,Z⊥)2|Z = z)] (4.6)

where

E(g(Z,Z⊥)2|Z = z) = σ2
L(T )(1− ρ2

SL(T )) + (V − µL(T, T ))2

+σ2
L(T )ρ2

SLz
2 − 2(V − µL(T, T ))σL(T )ρSL(T )z.

Substitute the conditional expectation into equation (4.6) to obtain, after a few simplifi-
cations, the quadratic function

E[(ST − F )2(V − LT )2]

=
(
(µS(T, T )− F )2 + σ2

S(T )
) (

(V − µL(T, T ))2 + σ2
L(T )

)
+2σ2

S(T )σ2
L(T )ρ2

SL(T )− 4(µS(T, T )− F )(V − µL(T, T ))σS(T )σL(T )ρSL(T )

where we have employed the fact that E[Z] = E[Z3] = 0 while E[Z2] = 1 and E[Z4] = 3 for
a standard normal variable. Differentiation with respect to V and equating to zero yields

V ∗ = µL(T, T ) + 2
(µS(T, T )− F )σS(T )σL(T )ρSL(T )

(µS(T, T )− F )2 + σ2
S(T )

(4.7)

which is the forward position of the optimal hedge obtained from minimizing the expected
quadratic loss. Notice here that quadratic hedging suggests to hedge with a forward po-
sition equal to the expectation of the load in the case when the deseasonalized spot and
load are uncorrelated.
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4.4 Empirical study

In this section, we present an empirical study of the performance of our hedging approach.
We base the study partly on publicly available market data, partly on a set of proprietary
load data obtained from DONG Energy, who is a major player in the Danish power market.
The data is presented in the next section along with fitted seasonal functions and estimated
Ornstein-Uhlenbeck parameters from the residual processes. In the forthcoming section,
we present the results from our hedging approach based on expected loss minimization
and we compare these with an “average load” hedging strategy, which is a strategy widely
employed by the industry.

4.4.1 Data and fitted model

We will test the empirical performance of our model’s loss-minimizing hedge using spot
prices, forward prices and consumption data from the price area DK1 of the Danish power
market.7 The price and load data are recorded with an hourly observation frequency during
the period 1 January 2012 to 31 December 2014 and it is shown in Figure 4.2. The spot
price (top pane) is measured in EUR/MWh (euros per megawatt hours) while the load data
(bottom pane) is measured in MWh. In addition to the publicly available consumption
data in Figure 4.2, we have access to a set of proprietary load data that has been made
available to us from DONG Energy. This data has been anonymized by scaling with the
maximum load to show a percentage between zero and one and it is shown in Figure 4.17
in the appendix. We return to the data from DONG Energy in Section 4.4.3.

We use market quotes of peak- and base forwards with monthly expiries for the DK1 price
area in addition to the spot-price and load data. We will initiate our hedge approximately
two weeks prior to the expiry month of the froward contract and we have listed the
corresponding forward prices in Table 4.3.

Remark 4.2. The data from the Nordic power market contains quotes of base- and peak
forwards noted on the Nord-Pool system sport-price and certificate of difference forwards
(CDF) for the different Nordic price areas (see Table 4.15 in the appendix). As the CDF
forward for the DK1–system difference is quoted for a base version only, we are, in fact,
subject to a bias risk that we do not hedge against. However, since the bias affects peak-
hours only with the DK1–system spot-price difference (typically an order of magnitude
smaller than the actual price) and with the peak-position (typically half the size of the
base-position), we chose to ignore the bias and perform our hedging experiment as if the
peak-forward was noted on the DK1 spot price as well. We ignore the same bias for the
average-load hedge to be able to fairly compare the two strategies.

7Spot- and forward prices for the Nordic market are publicly available at http://www.

nordpoolspot.com and http://www.nasdaqomx.com while load data for Denmark is available
at http://energinet.dk.
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Figure 4.2: Spot price (top) and consumption (bottom) from the DK1 price area of
the electricity market in Denmark. The dashed line marks the average spot price 34.96
EUR/MWh. The data is recorded with an hourly frequency and covers the period from 1
January 2012 to 31 December 2014.

Upon inspection of Figure 4.2, we see that both the price and load series exhibit seasonal
patters which are particularly evident for the load: Power consumption inherently varies
with the time of the day and day of the week. Due to electrical heating during winter (and
air cooling during summer) there is a variety with the climatological season as well. The
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Initiation t0 Expiry month M Base forward F b Peak forward F p

2012-12-17 January-13 44.55 53.25
2013-01-17 February-13 45.90 52.95
2013-02-14 March-13 37.90 38.80
2013-03-18 April-13 37.15 39.65
2013-04-16 May-13 36.60 36.05
2013-05-16 June-13 33.55 34.85
2013-06-17 July-13 32.90 35.30
2013-07-17 August-13 38.90 41.95
2013-08-16 September-13 40.20 43.10
2013-09-16 October-13 40.20 45.30
2013-10-17 November-13 40.30 46.30
2013-11-18 December-13 37.40 39.45
2013-12-17 January-14 36.00 41.10
2014-01-17 February-14 36.02 41.02
2014-02-17 March-14 29.90 33.95
2014-03-17 April-14 31.15 35.18
2014-04-16 May-14 30.35 34.35
2014-05-16 June-14 30.10 34.15
2014-06-17 July-14 30.79 33.60
2014-07-17 August-14 34.25 37.15
2014-08-18 September-14 35.50 38.50
2014-09-17 October-14 34.60 37.15
2014-10-17 November-14 32.60 34.65
2014-11-17 December-14 30.25 32.05

Table 4.3: Forward prices (in EUR) at time t0 for contracts with expiry months during
2013-2014.

seasonality of consumption is transferred to the spot price as demand for electricity affects
its price. Further, as climatological season affects the production of hydroelectricity, there
will also be seasonal dependent factors that affects supply, and thus the price. Finally,
notice that the spot price may turn negative with some remarkably large negative values
recorded around the new years of8 2012, 2013 and 2014.

To achieve a better fit for the seasonality functions, we separate weekends (including
holidays) from weekdays (Monday to Friday) and fit two periodic functions separately to
the two data sets.9 The combined seasonality functions for load and spot price from the
period 2012-01-01 to 2012-12-31 (Figure 4.4) clearly captures a seasonal behaviour where
the fitted function for the load is particularly reminiscent of the original data. We used

8An extreme price entry of 2000 EUR/MWh recorded on 2013-07-08 is treated as an outlier
and removed from the data.

9The market data is subject to wintertime changes (one ”missing” hour) and summertime
changes (one ”additional” hour) that will incur an one-hour time shift of all time points during
the summertime. To align the data with the 24-hour periodicity of the seasonal functions, we
duplicate the last data-point of the wintertimes and remove the last of summertimes.
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five periods of 12, 24, 168 (one week), 4380 (half year) and 8760 (one year) hours for this
purpose. Notice that the axes’ scales of Figure 4.4 are kept unchanged from Figure 4.2
to highlight how the amplitude of fitted periodic functions compare to the amplitude of
unfitted data. The residual processes (the deseasonalized data, middle Figure 4.7) are then

Figure 4.4: The figures show seasonality functions fitted to the spot price (left) and
consumption (right) of the period 2012-01-01 to 2012-12-31.

fitted to a bivariate Ornstein-Uhlenbeck process with resulting estimated parameters and
standard errors recorded in Table 4.5.

κ θ σ ρw
Spot 0.12 (0.005) 0.00 (0.59) 6.36 (0.051) 0.32 (0.010)
Load 0.19 (0.007) 0.00 (5.45) 94.2 (0.78)

Table 4.5: Estimated parameters of the Ornstein-Uhlenbeck process from deseasonalized
data 2012-01-01 to 2012-12-31 with standard errors in parenthesis. The parameters are
estimated by numerical optimization of the bivariate maximum likelihood function, where
estimates from the univariate maximum likelihood are employed as starting values for the
numerical optimization.

We intend to do a rough investigation of the goodness-of-fit of our model before we continue
with the hedging problem. The histograms of deseasonalized data (Figure 4.6) show a fairly
good fit to the normal distribution, (the marginal distribution of the Ornstein-Uhlenbeck
process is normal) for the spot and in particular, for the load. Next, if we compare sim-



4.4. Empirical study 95

Figure 4.6: Histograms of the deseasonalized spot (left) and load (right) from the period
2012-01-01 to 2012-12-31. The solid lines are the fitted normal densities of the spot and
load respectively.

ulated paths from the bivariate Ornstein-Uhlenbeck process10 (left Figure 4.7) with the
deseasonalised data (middle Figure 4.7), we find that the simulated processes are fairly
reminiscent of the data we intend to model. Obviously, our model can not generate any

Figure 4.7: Left figures show simulated sample paths from the bivariate Ornstein-
Uhlenbeck processes which are used to model the deseasonalized spot and load (middle
figures). Right figures show simulated spot (top) and load (bottom) obtained by adding
fitted seasonality functions to the simulated paths in the left figures.

jump discontinuities (the Ornstein-Uhlenbeck process and the periodic function are con-

10We employ an exact simulation method for the bivariate Ornstein-Uhlenbeck process, see
Platen and Bruti-Liberati (2010).
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tinuous functions) or jump-alike extremes (the Ornstein-Uhlenbeck process has normal
distributed increments) and thus we fail to capture the jumps of our data. This is partic-
ularly evident when we look at the simulated spot (i.e. the simulated Ornstein-Uhlenbeck
process added to the fitted seasonality function, top right Figure 4.7) compared to the orig-
inal data (top Figure 4.2) whilst it is not as evident for the load. However, as our ultimate
objective is to find an efficient hedging strategy and not to find the best fitting model, we
are confident with our modelling approach whilst aware of some of its shortcomings.

Figure 4.8: Sample autocorrelation of deseasonalized data (left figures). The dashed
lines show the autocorrelation function of the Ornstein-Uhlenbeck process calculated with
estimated parameters. Sample autocorrelation functions of spot and load (middle figures)
and corresponding functions of the simulated spot and load (right figures).

If we look at the sample autocorrelation functions of the deseasonalized data and compare
to the correlation function e−κ∆ of the Ornstein-Uhlenbeck process, we find a mediocre
match (left Figure 4.8). However, notice that the sample autocorrelation of the spot and
load (middle Figure 4.8) are quite similar to the sample autocorrelation functions of the
simulated processes (right Figure 4.8). This is due to fact that the temporal dependency
is partly captured by the seasonality functions.

Remark 4.3. When we derived an expression for the expected positive loss under the
seasonal Ornstein-Uhlenbeck model (Section 4.3.2), we obtained a simpler, closed-form
expression in the case when there is no cross-correlation between the deseasonalized pro-
cesses. We then compared to the dependent case with an example, and saw that the two
loss functions where quit close (in particular, their minimum was obtained at the same
argument). An explanation for this is that the cross dependency is partly captured by the
seasonality functions, partly by the Ornstein-Uhlenbeck process (just as for the temporal
dependency). Indeed: for the 2012 data, the empirical cross-correlation is 0.37 of the desea-
sonalized price and load, and 0.93 of the seasonality functions. This means that we might
do good enough with the closed-form expression of the uncorrelated model specification,
since much of the cross dependency is captured in the seasonality functions.
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4.4.2 Empirical hedging experiment

We set up our empirical experiment for the DK1 market to hedge 24 fixed-price agreements
with monthly expires during 2013 and 2014. At initiation time t0, set to be approx 15
days prior to the first day of the expiry month, we enter a fixed price agreement with
reference load according to the consumption data presented in previous section and a
fixed price according to the corresponding t0 market forward price11 of Table 4.3. To
hedge the contract, we enter forwards (on the same expiry month) with hedge positions
decided from either the minimum expected loss function (the model hedge) or from the
average-load strategy.

For the experiment, we rescale the load data with the maximum load to improve numer-
ical stability and to obtain a time-series that corresponds to the rescaled load data from
DONG Energy. This has the only consequence that our hedging positions (V b, V p) will be
expressed in units of percentage of maximum load. To begin with the January-13 contract,
we employ six months of spot and (rescaled) load data up until t0, that is 2012-06-18 to
2012-12-17, to estimate the seasonal Ornstein-Uhlenbeck model in the first step (parame-
ters recorded in Table 4.16 in the appendix). We use three periods of 12, 24 and 168 hours.
Including periods of a half/one year will improve the fit within the estimation set, whilst
extrapolation from long periods will impair the out-of-sample fit (i.e. the prediction of the
periodic function throughout the expiry month).

Based on estimated parameters, we calculate the expected positive loss as a function of
peak- and base forward positions in the hedge portfolio (Figure 4.9) and find the argument
(V b∗, V p∗) = (0.361, 0.340) that achieves the minimum-loss to obtain our optimal hedge.
Note that, as the load data is rescaled with the maximum load, V b∗, V p∗, are percentages
of the maximum load as well. The realised payoff from the optimally hedged position is
then calculated for each hour ti of the expiry month M as

πti = (Sti − F b)(V b∗ − Lti), ti ∈M(op),

πti = (Sti − F̃ )(V b∗ + V p∗ − Lti), ti ∈M(p),

where Sti and Lti are the realised spot-price and (unscaled) consumption while the optimal
forward positions have been scaled back with the maximum load. The results for the
January-13 contract are shown in left Figure 4.10.

In order to verify our results for the model hedge, we calculate the average-load, (V̄ b, V̄ p) =
(0.632, 0.222), (percentage of maximum load) and show the realised hourly payoff in the
right-hand panel of Figure 4.10. The average-load strategy means holding forward positions
corresponding to the expected load as obtained by minimizing the quadratic loss function
under zero correlation.

11The Nordic power market supplies forwards noted on the Nord-Pool system spot-price and
Contracts for difference (CFD forwards) for the different Nordic price-areas whereas Table 4.3
shows a combination of the two for DK1 prices, see Remark 4.2. The original data is listed in Table
4.15 in the appendix.
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Figure 4.9: Expected positive loss of the hedged position for the January-13 con-
tract calculated from the seasonal Ornstein-Uhlenbeck model. The minimizing argument
(V b∗, V p∗) = (0.361, 0.340) gives the optimal hedge (measured as percentages of maximum
load).

Figure 4.10: Realised hourly payoff from the model hedge (left-hand panel) calculated for
the January-13 contract. The realised payoff from the average-load strategy (right-hand
panel) has a lower (negative) average, while the variance of the average-load strategy’s
payoff is lower than the variance of the payoff from the model hedge.
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The most notable feature from the hourly payoffs of the model hedge and average-load
hedge (Figure 4.10) is that the model hedge yields an average payoff per hour that is
positive at 3,208 EUR, while the average-load hedge yields a negative average hourly payoff
of -2,192 EUR. The negative average payoff inexorably leads to a negative accumulative
payoff at expiry for the January-13 contract (Figure 4.11), while the model hedge dispenses
a postitive net profit-and-loss at the expiry. On the other hand, the standard deviation
of hourly model-hedge payoff is 10,224 EUR, while the average-load hedge yields a lower
standard deviation of 4,808 EUR. This means reducing the risk in classical terms with a
lower variation of the outcome.

Another measure of efficiency for the hedging strategies is the probability of loss: 22.6%
for the model hedge, while it is considerable higher at 63.2% for the average-load hedge.
In concrete terms this means that we make a loss in 63.2% of the hourly payoff outcomes
with the average-load strategy (more than every second outcome) while the model-hedge
yields losses in 22.6% of the outcomes.

Figure 4.11: Accumulated profit-&-loss in million euros of the hedged position for the
January-13 contract. The model hedge (red) yields a month-end profit of 2.39 MEUR while
the average load-hedge (black) yields a loss of -1.63 MEUR.

4.4.3 Results

If we repeat the above procedure and determine the static hedges for all 24 contracts,
we obtain the optimal peak/load forward positions reported in Table 4.13 for the model
hedge and average-load hedge respectively. As for the January-13 contract, we see in Table
4.13 that the average hourly payoffs of the model hedge are positive for a majority of the
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contracts, and always higher (except for two contracts) than the average hourly payoff for
the corresponding average-load hedge. This is natural as the purpose of the model hedge
is to minimise the (expected) positive loss. We also observe that the standard deviation of
hourly payoffs is higher for the model hedge for all but one contract (where the mean is
still higher) when we compare to the average-load strategy. As we basically minimise the
variance of the payoff (or the loss) with the average-load strategy, this should be expected
as well.

The effect of a relatively high hourly payoff with a higher standard deviation for the model
hedge can be seen for the entire set of contracts in the top and middle panes of Figure 4.14.
The model hedge has a slightly positive average hourly payoff of 821 EUR (when looking
at the entire 24-month period) while the average-load has a negative average payoff per
hour of -1,107 EUR. In return, we observe from the quantiles that the model hedge yields
a greater variation (a standard deviation of 5,419 EUR while the average-load yields 3,325
EUR). From the figures, it is notable that the negative part of the hourly payoff outcomes
are fairly similar for the two strategies (with a few more large negative payoffs for the
model hedge) while the set of positive outcomes is considerably reduced for the average-
load hedge. If we compare the relative size of the hourly payoff from the strategies, we
find that the model hedge yields the largest payout 66% of the time. This agrees with the
probability of loss, which is lower for the model hedge for almost all contracts as recorded
in Table 4.13. We can also observe from the hourly payoff distribution in Figure 4.12 that
the model hedge yields a positive skew, while the average-load has a negativity skewed
distribution.

Figure 4.12: Left figure shows (estimated) density of the hourly payoff of the model
hedge from all 24 contract. The respective density for the mean-load is shown in the right
figure. The dashed vertical lines show means, 5% and 95% quantiles.
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In all, it thus seems that we have reduced the opportunity of large, positive payoff outcomes
with the average-load strategy, for the benefit of a smaller variance. But this comes at a
large cost in terms of profit. If we look at the month-end, accumulated profit-&-loss for
all 24 contracts plotted in the bottom pane of Figure 4.14, we find negative P&Ls for all
contracts hedged with the average-load strategy, while the model hedge yields a profit in
the end of the month for most of the contracts.

To make this qualitative observation somewhat more quantitative, we calculate a reward-
to-variability ratio of the realised monthly returns (the accumulated P&L at month-end).
For the model hedge, this gives 0.60 while the average-load hedge yields a negative ratio
of −2.07. Inevitably, this emanates from the fact that the average-load strategy yields
negative realised monthly returns.

One way of dealing with this problem for the average-load strategy is to charge a safety
margin m to the contract price, such that the total realised payoff adds to∑

ti∈M(op)

πti +
∑

ti∈M(p)

πti +
∑
ti∈M

mLti .

To make the comparison between the two strategies more concrete, we may then calculate a
margin “certainty equivalent” that makes the two strategies have the same realised reward-
risk ratio. Namely, we have to add a margin of m = 0.62 EUR/MWh to the average-
load strategy to obtain a reward-to-risk of 0.60. In economic terms, this gives roughly
0.62× 30 · 24 · 2240 = 1.00 MEUR per month, where 2,240 MWh is the average load and
30 ·24 is the number of hours per month. Considering that the month-end P&Ls are in the
range of -1 – 3 MEUR, (see bottom pane of Figure 4.14), this is quite a hefty premium.
In terms of the forward prices, a margin of 0.62 will add about 1.5% to the price.

If we look at realised hourly returns instead, we have a reward-risk-ratio of 0.15 for the
model hedge and -0.33 for the average-load. To achieve the same reward-to-risk for the
latter, we have to add a margin of 0.72 EUR/MWh to the contract price.

Remark 4.4. In Remark 4.3 we noted that a specification with zero cross-dependency
between the deseasonalized processes could potentially perform as good as the original
specification. If we repeat our hedging experiment with the independent specification (em-
ploying the closed-form expression for the expected positive loss), we obtain an average
hourly payoff 742 EUR and a standard deviation 5,259. This gives a reward-to-risk ratio of
0.14, to be compared with 0.15 for the dependent specification, while the out-performance
probability is 65.5%.

At last, if we repeat our empirical experiment with the proprietary set of consumption
data from DONG Energy (Figure 4.17 in the appendix) we obtain comparable results,
as can be seen from Table 4.19 in the appendix. For realised hourly payouts, the model
hedge outperforms with a 70% probability and if we look at reward-to-risk ratios, we have
0.14 for the model hedge and -0.30 for the average load which corresponds to a margin
equivalent of 0.65 EUR/MWh. Finally, for every single one-month period, we have that the
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model based strategy outperforms the average-load strategy in terms of a larger realised
cumulative profit-and-loss at month-end (see Figure 4.18 in the appendix).

To conclude: if a minimal variance makes you sleep better at night, chose the average-load
strategy. But if you don’t want to charge a solid safety premium, you might as well loosing
it all in the end.

Contract V b∗ V p∗ Payoff P(loss) V̄ b V̄ p Payoff P(loss)
Jan -13 0.361 0.34 0.89(2.84) 0.23 0.632 0.222 -0.608(1.33) 0.63
Feb -13 0.388 0.354 1.296(1.33) 0.08 0.618 0.21 -0.204(0.74) 0.56
Mar -13 0.512 0.363 0.146(1.63) 0.41 0.607 0.169 -0.265(1.11) 0.57
Apr -13 0.535 0.335 0.14(1.6) 0.48 0.541 0.167 -0.403(1.23) 0.61
May -13 0.585 0.301 0.05(1.3) 0.57 0.504 0.161 -0.269(0.51) 0.74
Jun -13 0.637 0.271 0.097(2.08) 0.48 0.505 0.181 -0.271(0.74) 0.67
Jul -13 0.641 0.26 0.729(2.06) 0.39 0.484 0.149 -0.088(0.47) 0.6
Aug -13 0.486 0.337 0.093(1.23) 0.51 0.505 0.182 -0.338(0.69) 0.7
Sep -13 0.438 0.31 -0.165(1.57) 0.37 0.52 0.188 -0.488(1.04) 0.72
Oct -13 0.443 0.294 0.209(1.21) 0.34 0.544 0.201 -0.29(0.95) 0.61
Nov -13 0.418 0.294 0.512(1.33) 0.18 0.579 0.227 -0.365(0.96) 0.63
Dec -13 0.441 0.3 0.584(1.78) 0.25 0.587 0.202 -0.642(1.51) 0.6
Jan -14 0.485 0.321 0.37(1.15) 0.25 0.62 0.231 -0.487(1.21) 0.56
Feb -14 0.486 0.345 0.553(1.02) 0.27 0.605 0.201 -0.233(0.87) 0.52
Mar -14 0.608 0.299 -0.394(1.09) 0.76 0.567 0.199 -0.203(0.76) 0.61
Apr -14 0.528 0.324 -0.352(1.24) 0.66 0.526 0.179 -0.305(0.79) 0.64
May -14 0.506 0.335 0.133(1.1) 0.53 0.507 0.187 -0.278(0.67) 0.68
Jun -14 0.493 0.338 0.023(0.83) 0.51 0.519 0.199 -0.273(0.62) 0.68
Jul -14 0.48 0.353 0.056(0.56) 0.55 0.485 0.174 -0.108(0.32) 0.61
Aug -14 0.407 0.351 0.24(0.95) 0.3 0.51 0.202 -0.127(0.61) 0.6
Sep -14 0.401 0.308 -0.135(0.8) 0.44 0.519 0.201 -0.217(0.49) 0.71
Oct -14 0.418 0.307 0.419(1.32) 0.27 0.545 0.213 -0.151(0.87) 0.59
Nov -14 0.453 0.319 0.168(1.19) 0.29 0.582 0.213 -0.301(0.93) 0.6
Dec -14 0.489 0.275 -0.108(1.75) 0.61 0.599 0.187 -0.445(1.27) 0.69

Table 4.13: Positions for the peak- and base forwards for optimal model hedging of the
fixed price agreements (measured in percentage of maximum load). The monthly average
(standard deviation) of the hourly payoff (measured in EUR/maximum load) and the
probability of loss. The average-load hedge positions, (V̄ b, V̄ p), with corresponding average
hourly payoff and loss probability are also included in the table.

4.5 Conclusion

The focus of this paper was to formulate a hedging strategy for a fixed price, unspecified
consumption contract. For this purpose, we considered the expected positive loss as our
risk measure under a joint model for the spot-price and consumption load. We derived a
semi-closed formula for this model which we minimised numerically to find the optimal
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hedge position. In an empirical experiment we compared our model-hedge strategy to an
average-load strategy that is commonly used by the industry. For our set of market data,
we showed that the suggested model hedge outperformed the average-load strategy to
the extent that we have to add a significant premium to the latter in order for the two
to be financially equal. If we looked at the realised hourly payouts, we found that the
model hedge yields a relatively larger outcome with a 66% probability. Further, for all but
two single one-month periods of the considered market data, we showed that the model
based strategy outperformed the average-load in terms of a greater realised cumulative
profit-and-loss at month-end. At the very end, we repeated the hedging experiment on a
proprietary set of load data from DONG Energy where we obtained even stronger results
than for the publicly available data.
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Appendix

Notation time Expiry Base forward Peak forward Base CFD
2012-12-17 January-13 43.30 52.00 1.25
2013-01-17 February-13 45.30 52.35 0.60
2013-02-14 March-13 38.10 39.00 -0.20
2013-03-18 April-13 40.55 43.05 -3.40
2013-04-16 May-13 38.10 37.55 -1.50
2013-05-16 June-13 34.70 36.00 -1.15
2013-06-17 July-13 28.30 30.70 4.60
2013-07-17 August-13 36.95 40.00 1.95
2013-08-16 September-13 36.50 39.40 3.70
2013-09-16 October-13 38.90 44.00 1.30
2013-10-17 November-13 41.00 47.00 -0.70
2013-11-18 December-13 41.45 43.50 -4.05
2013-12-17 January-14 35.90 41.00 0.10
2014-01-17 February-14 36.30 41.30 -0.28
2014-02-17 March-14 29.00 33.05 0.90
2014-03-17 April-14 25.60 29.63 5.55
2014-04-16 May-14 24.50 28.50 5.85
2014-05-16 June-14 25.30 29.35 4.80
2014-06-17 July-14 22.99 25.80 7.80
2014-07-17 August-14 31.25 34.15 3.00
2014-08-18 September-14 32.70 35.70 2.80
2014-09-17 October-14 34.75 37.30 -0.15
2014-10-17 November-14 31.95 34.00 0.65
2014-11-17 December-14 33.00 34.80 -2.75

Table 4.15: Nord-Pool system- and CFD forward prices (in EUR) for base- and peak
contracts.
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Contract κS θS σS κL θL σL ρW
Jan-13 0.103 (0.007) 0.000 (0.792) 5.42 (0.061) 0.065 (0.005) 0.000 (0.006) 0.025 (0.00027) 0.368 (0.013)
Feb-13 0.114 (0.007) 0.001 (0.896) 6.77 (0.076) 0.065 (0.005) 0.000 (0.006) 0.026 (0.00028) 0.291 (0.014)
Mar-13 0.121 (0.008) 0.000 (0.814) 6.53 (0.074) 0.093 (0.007) 0.000 (0.004) 0.027 (0.00004) 0.303 (0.014)
Apr-13 0.125 (0.008) 0.000 (0.79) 6.51 (0.073) 0.132 (0.008) 0.000 (0.003) 0.028 (0.00032) 0.31 (0.014)
May-13 0.107 (0.007) 0.000 (0.907) 6.42 (0.071) 0.133 (0.008) 0.000 (0.003) 0.028 (0.00032) 0.303 (0.014)
Jun-13 0.103 (0.007) 0.000 (0.917) 6.23 (0.069) 0.08 (0.006) 0.000 (0.005) 0.027 (0.00029) 0.311 (0.014)
Jul-13 0.099 (0.007) 0.000 (0.892) 5.82 (0.065) 0.06 (0.005) -0.001 (0.006) 0.025 (0.00027) 0.259 (0.014)
Aug-13 0.086 (0.006) 0.000 (0.67) 3.82 (0.042 ) 0.053 (0.005) -0.001 (0.007) 0.024 (0.00026) 0.348 (0.013)
Sep-13 0.085 (0.006) 0.000 (0.633) 3.56 (0.039 ) 0.055 (0.005) 0.000 (0.006) 0.021 (0.00022) 0.327 (0.014)
Oct-13 0.089 (0.006) 0.084 (0.608) 3.58 (0.04 ) 0.085 (0.006) 0.000 (0.003) 0.019 (0.00021) 0.285 (0.014)
Nov-13 0.091 (0.007) 0.000 (0.611) 3.69 (0.041 ) 0.148 (0.009) 0.000 (0.002) 0.02 (0.00023) 0.33 (0.014)
Dec-13 0.096 (0.007) 0.000 (0.638) 4.03 (0.045 ) 0.109 (0.007) 0.000 (0.003) 0.023 (0.00025) 0.324 (0.014)
Jan-14 0.110 (0.007) -0.019 (0.616) 4.5 (0.051 ) 0.068 (0.006) 0.000 (0.005) 0.024 (0.00027) 0.32 (0.014)
Feb-14 0.103 (0.007) -0.001 (0.716) 4.86 (0.055 ) 0.065 (0.006) 0.000 (0.006) 0.025 (0.00028) 0.28 (0.014)
Mar-14 0.096 (0.007) -0.001 (0.774) 4.93 (0.056 ) 0.079 (0.007) 0.000 (0.005) 0.027 (0.00029) 0.262 (0.014)
Apr-14 0.106 (0.007) 0.000 (0.712) 4.98 (0.056 ) 0.113 (0.008) 0.000 (0.004) 0.028 (0.00031) 0.255 (0.014)
May-14 0.123 (0.008) -0.001 (0.578) 4.69 (0.053 ) 0.143 (0.009) 0.000 (0.003) 0.028 (0.00031) 0.255 (0.014)
Jun-14 0.124 (0.008) -0.001 (0.548) 4.49 (0.051 ) 0.098 (0.007) 0.000 (0.004) 0.026 (0.00029) 0.256 (0.014)
Jul-14 0.109 (0.007) 0.000 (0.558) 4.04 (0.046 ) 0.078 (0.006) -0.001 (0.005) 0.024 (0.00027) 0.222 (0.015)
Aug-14 0.108 (0.007) 0.000 (0.492) 3.51 (0.04 ) 0.062 (0.006) 0.000 (0.006) 0.023 (0.00025) 0.255 (0.014)
Sep-14 0.109 (0.008) 0.000 (0.521) 3.75 (0.042 ) 0.091 (0.007) 0.000 (0.003) 0.02 (0.00022) 0.219 (0.015)
Oct-14 0.105 (0.007) 0.018 (0.475) 3.31 (0.037 ) 0.127 (0.008) 0.000 (0.002) 0.019 ( 0.00021) 0.207 (0.015)
Nov-14 0.123 (0.008) 0.000 (0.412) 3.36 (0.038 ) 0.16 (0.009) 0.000 (0.002) 0.019 (0.00022) 0.259 (0.014)
Dec-14 0.100 (0.007) -0.001 (0.535) 3.54 (0.04 ) 0.12 (0.008) 0.000 (0.003) 0.023 (0.00025) 0.214 (0.015)

Table 4.16: Estimated parameters and standard errors of the Ornstein-Uhlenbeck process
from rescaled deseasonalized spot- and (scaled) load data.

Contract V b∗ V p∗ Payoff P(loss) V̄ b V̄ p Payoff P(loss)
Jan -13 0.32 0.274 0.623(1.98) 0.25 0.499 0.167 -0.371(1.07) 0.6
Feb -13 0.349 0.279 0.949(1.07) 0.1 0.512 0.169 -0.1(0.56) 0.53
Mar -13 0.431 0.305 0.134(1.32) 0.4 0.509 0.145 -0.206(0.96) 0.55
Apr -13 0.452 0.281 0.015(1.35) 0.46 0.492 0.142 -0.252(1.04) 0.56
May -13 0.481 0.266 0.074(0.84) 0.52 0.454 0.137 -0.208(0.47) 0.66
Jun -13 0.509 0.249 0.094(1.3) 0.51 0.458 0.156 -0.202(0.68) 0.65
Jul -13 0.534 0.216 0.52(1.45) 0.4 0.436 0.128 -0.044(0.47) 0.51
Aug -13 0.436 0.266 -0.016(0.92) 0.43 0.471 0.158 -0.301(0.69) 0.65
Sep -13 0.402 0.259 -0.144(1.39) 0.4 0.48 0.163 -0.355(0.94) 0.65
Oct -13 0.411 0.256 0.234(1) 0.32 0.493 0.163 -0.171(0.76) 0.59
Nov -13 0.391 0.26 0.449(0.94) 0.21 0.517 0.181 -0.232(0.73) 0.59
Dec -13 0.412 0.259 -0.042(1.38) 0.38 0.492 0.143 -0.666(1.49) 0.57
Jan -14 0.45 0.272 0.25(0.99) 0.26 0.555 0.18 -0.406(1.06) 0.54
Feb -14 0.447 0.284 0.442(0.71) 0.26 0.551 0.171 -0.258(0.81) 0.57
Mar -14 0.526 0.267 -0.17(0.8) 0.65 0.531 0.169 -0.177(0.72) 0.60
Apr -14 0.475 0.273 -0.249(1.21) 0.51 0.527 0.131 -0.398(0.96) 0.65
May -14 0.472 0.279 0.172(1.02) 0.51 0.48 0.131 -0.229(0.57) 0.66
Jun -14 0.463 0.278 0.066(0.73) 0.4 0.508 0.137 -0.218(0.54) 0.65
Jul -14 0.466 0.286 0.081(0.49) 0.52 0.471 0.118 -0.08(0.26) 0.62
Aug -14 0.407 0.277 0.235(0.68) 0.26 0.5 0.153 -0.092(0.37) 0.61
Sep -14 0.406 0.239 -0.093(0.73) 0.42 0.514 0.156 -0.145(0.44) 0.65
Oct -14 0.435 0.236 0.338(1.02) 0.29 0.523 0.158 -0.054(0.7) 0.58
Nov -14 0.453 0.251 0.048(0.91) 0.32 0.543 0.184 -0.265(0.71) 0.65
Dec -14 0.485 0.214 -0.211(1.31) 0.65 0.546 0.146 -0.435(1.16) 0.70

Table 4.19: Results from the hedging experiment based on the consumption data from
DONG Energy. Forward positions in percentage of maximum load while the monthly
average (standard deviation) of the hourly payoff is measured in EUR/maximum load.
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Figure 4.14: Top panel: Realised hourly payoffs of the model hedge for the entire set
of contracts. Middle panel: Realised hourly payoffs for the average-load strategy. Bot-
tom panel: accumulated monthly profit-&-loss in million euros of the strategies for all 24
contract. The model hedge (red) yields a higher month-end P&L for all but two contracts.
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Figure 4.17: The consumption data from DONG Energy. Note that the consumption has
been anonymized and rescaled with the maximum load to lie between zero and one. The
data is recorded with an hourly frequency and covers the period from 1 January 2012 to
31 December 2014.
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Figure 4.18: Results for the consumption data from DONG Energy. Top panel: Realised
hourly payoffs of the model hedge. Middle panel: Realised hourly payoffs for the average-
load strategy. Bottom panel: accumulated monthly profit-&-loss of the strategies for all 24
contract. The model hedge (red) yields a higher month-end P&L for every contract. All
figures measured in EUR/maximum load.
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Stochastic Volatility for Utility

Maximisers – The Case of
Derivatives

Simon Ellersgaard and Martin Jönsson1

Abstract. Using martingale methods we derive bequest optimising port-
folio weights for a rational investor who trades in a bond-stock-derivative
economy characterised by a generic stochastic volatility model. For illustra-
tive purposes we then proceed to analyse the specific case of the Heston
economy, which admits explicit expressions for plain vanilla Europeans op-
tions. By calibrating the model to market data, we find that the demand
for derivatives is primarily driven by the myopic hedge component. Further-
more, upon deploying our optimal strategy on real market prices, we find
only a very modest improvement in portfolio wealth over the corresponding
strategy which only trades in bonds and stocks.

Keywords: Merton’s Portfolio Problem, Stochastic Volatility, HJB Equa-
tion, Martingale Approach.

1Both authors are with the Department of Mathematical Sciences, University of Copenhagen.
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5.1 Introduction

Regardless of whether we are dealing with the running variance associated with a finan-
cial time series, or the implied volatility surface extracted from traded option prices, one
thing is abundantly clear: contrary to the assumption of the Black-Scholes-Merton model,
volatility is far from constant. In fact, universally accepted stylised facts of the economy
include the highly erratic nature of the variance process through time (see figure 5.3), or
the skew/smile effect characteristic of the implied volatility surface - as reported in Cont
and Tankov (2004).2 Naturally, a plethora of possible resolutions to these effects have
been proposed on the modelling front, most prominently local volatility models in which
σ is a deterministic function of the random stock price, and diffusion-based stochastic
volatility models in which σ is modelled directly as a stochastic differential equation. Both
approaches must be considered significant steps towards designing calibratable models to
observed market phenomena although neither can be said to be void of imperfections. How-
ever, the latter is arguably the more sophisticated of the two, being as it were more readily
susceptible to theoretical augmentation. Derivatives pricing likewise becomes a matter of
some interest: whilst local volatility models will have us believe that options are perfectly
hedgeable using bonds and the underlying stocks (thereby making them formally redun-
dant), this is not so for valuation under stochastic volatility models. Here, incompleteness
(Björk (2009)) forces us to make further exogenous assumptions about the behaviour of
the market in order to pin down our risk neutral measure, Q. Specifically, to value one
option, enough similar traded options must already exist on the market, in order for us to
say anything concrete (in somewhat more abstract terms: a supply-and-demand induced
market price of risk must prevail).

Surprisingly, while derivative pricing and calibration in connexion with stochastic volatility
constitute major research areas in the quant-finance community, relatively few papers deal
with the impact of stochastic volatility on portfolio optimisation. In fact, to the best of
our knowledge, the first authors to deal explicitly with the issue are Jun Liu and Jun Pan,
a little more than a decade ago. The more pedestrian of their analyses is found in Liu
(2007), in which bequest optimisation in a Heston-driven3 bond-stock economy is used to
illustrate a grander theoretical point about solutions to HJB equations. Briefly, under the
assumption that the market price of risk is proportional to volatility, λ1 = λ̄1σ, Liu shows
that the optimal portfolio weight to be placed on the stock by a rational CRRA investor
is

πLiuS,t =
λ̄1

γ
− ρσv

γ − 1

γ
L(T − t), (5.1)

where λ̄1/γ is the Merton (1969) ratio, and the second term is a stoch-vol hedge correction

2In the words of Cont and Tankov, Chapter 1: “For equity and foreign exchange options, implied
volatilities σt(T,K) display a strong dependence with respect to the strike price: this dependence
may be decreasing (“skew”) or U-shaped (“smile”) and has greatly increased since the 1987 crash”.

3See Heston (1993) and Section 5.4 for an exposition of this model.
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(Munk (2013)) in which L is the deterministic function

L(τ) =
λ̄2

1

γ

(eητ − 1)

(ε+ η)(eητ − 1) + 2η
,

where we have defined the parameters ε ≡ κ+ γ−1
γ ρσvλ̄1 and

η ≡
√
ε2 +

γ − 1

γ2
σ2
v (ρ2 + γ[1− ρ2]) λ̄2

1.

Throughout this paper, we refer to this result as Liu’s strategy. Little is said by Liu on
the empirical implications, yet it is well-known that the correction hedge is negligible.
For example, our own investigation Ellersgaard and Jönsson (2013) reveals that the hedge
correction is multiple orders of magnitude smaller than the Merton weight for realistic
parameter specifications, thus leading to non-measurable improvements in the investor’s
welfare.

A far richer theoretical account of the role of stochastic volatility in portfolio maximi-
sation is provided in Liu and Pan (2003), who extend the above framework to include
jumps in the underlying price process, and complete the market by including tradeable
derivative securities (specifically, a straddle, chosen for its sensitivity to volatility risk).
By solving the relevant HJB equation optimal portfolio weights are provided (in terms of
certain partial derivatives); moreover, through the employ of market calibrated parameters
Liu and Pan estimate that the primary demand for derivatives is nested in the myopic
component of the portfolio weight (rather than the volatility hedge correction). Based on
the same parameters they also establish significant improvements in certainty equivalent
wealth through the act of including derivatives in a utility maximised portfolio.

Overview. This paper might be read as a quasi-exposition of the work above (in the sense
that we obtain similar formulae albeit using different techniques) with elements of nov-
elty. Specifically, through martingale considerations we establish the optimal investment
strategy for a fairly generic stochastic volatility model. These formulas are instantiations
of more general state-variable expressions found in e.g. Munk (2013), but we expose them
as (i) there is some pedagogical value in seeing how they can be derived in a martingale
framework, (ii) they readily can be adapted to more exotic volatility models. Upon spe-
cialising to the Heston model, we then proceed to find explicit expressions in the event the
derivative is a plain vanilla call or put option. Vis-a-vis the straddle strategy mentioned
above this is a minor variation, yet the value of our analysis lies in its attention to detail,
both from a conceptual and computational point of view. In either case, the change to the
optimal investment plan is considerable with respect to Liu’s strategy (5.1) for calibrated
market parameters. Furthermore, in corroboration of the findings by Liu and Pan we find
through Monte Carlo simulation that the hedge component specific to stochastic volatility
is irrelevant. Finally, in a novel portfolio rebalancing experiment using real market prices,
we show that access to plain vanillas for utility optimisers create only a very modest (du-
bious) improvement expressed in terms of a certainty equivalent in wealth, in discordance
with the quasi-empirical musings of Liu and Pan.
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5.2 Problem set-up

5.2.1 Market assumptions

Following the path betrodden by Black, Scholes, and Merton we start out by considering a
financial landscape which is frictionless, arbitrage free, and allows for continuous trading.
Three assets which jointly complete the market are assumed to prevail, viz. a risk-free
money account (a bond), one fundamental risky security (a stock), and one derivative
security with a European exercise feature at time t = T ′. As it is commonplace, we define
the dynamical equations of these securities by first introducing the filtered probability
space (Ω,F ,F = {Ft}t∈[0,T ′],P), where Ω represents all possible states of the economy, P
is the real-world probability measure, and Ft is the augmented natural filtration of two
independent Wiener processes W1 and W2:

Ft = σ(FW
t ∪N ),

where FW
t = σ({W1s,W2s}s∈[0,t]) and N represents the sets of P-null events. With this

in mind, we specify the price process dynamics of the money account {Bt}t∈[0,T ′] as the
deterministic equation,

dBt = rBtdt, (5.2)

where B0 = b0 ∈ R+ and r is the constant rate of interest. As for the fundamental risky
security {St}t∈[0,T ′] we posit an SDE model of a rather generic stochastic volatility form,
viz.

dSt = µS(t, Vt)Stdt+
√
VtStdW1t,

dVt = α(t, Vt)dt+ β(t, Vt)(ρdW1t +
√

1− ρ2dW2t),
(5.3)

where (S0, V0) = (s0, v0) ∈ R2+, and {Vt}t∈[0,T ′] is the variance process which we assume
strictly positive. As for the dynamical constituents: µS , α, and β are taken to be real
valued deterministic functions [0, T ′] × R+ 7→ R, whilst ρ = Corr[dSt, dVt] ∈ (−1, 1), is a
Pearson correlation coefficient between the stock and variance processes. Finally, as for the
European derivative, we envision a one-time pay-off Φ(ST ′) based on the magnitude of the
contemporaneous stock value at expiry time T ′. Letting {Dt}t∈[0,T ′] = {D(t, St, Vt)}t∈[0,T ′]

represent the price process of the derivative, it follows from Itô’s lemma that

dDt = µD(t, St, Vt)Dtdt+ σ1D(t, St, Vt)DtdW1t + σ2D(t, St, Vt)DtdW2t, (5.4)

where DT ′ = ΦT ′ , and µD, σ1D, σ2D : [0, T ′]× R+ × R+ 7→ R are the functions

µD(t, s, v) ≡ D−1
[
∂tD + µS(t, v)s∂sD + α(t, v)∂vD + 1

2vs
2∂2
ssD

+ 1
2β

2(t, v)∂2
vvD + ρβ(t, v)

√
vs∂2

svD
]
,

σ1D(t, s, v) ≡ D−1
[
ρβ(t, v)∂vD +

√
vs∂sD

]
,

σ2D(t, s, v) ≡ D−1
[√

1− ρ2β(t, v)∂vD
]
,

(5.5)
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assuming, of course, that D ∈ C1,2,2.

Crucial to our derivations in the subsequent sections, we now enforce the following minimal
structure upon the aggregate risk preferences of agents trading in our tripartite economy:

Assumption 5.1. The market prices of risk λ1 and λ2 associated with W1 and W2 are
functions of v only. In concrete terms this means that

λ1(v) =
µS(t, v)− r√

v
, (5.6)

and

λ2(v) =
µD(t, s, v)− r
σ2D(t, s, v)

− σ1D(t, s, v)

σ2D(t, s, v)
λ1(v). (5.7)

We call this the weak Heston assumption for reasons which will become clearer below.4

Now, from (5.6) we may define the risk-neutral measure Q on FT ′ through the Radon-
Nikodym derivative

dQ
dP

∣∣∣∣
FT ′
≡ ξT ′ ≡ exp

{
− 1

2

∫ T ′

0

2∑
i=1

λ2
i (Vt)dt−

∫ T ′

0

2∑
i=1

λi(Vt)dWit

}
. (5.8)

Assuming the Novikov condition, E[exp{1
2

∫ T ′
0 (λ2

1(Vt) + λ2
1(Vt))dt}] <∞, then E[ξT ′ ] = 1,

whence Q is an equivalent local martingale measure (ELMM). All discounted asset prices
under Q are therefore local martingales, which can be verified by combining Girsanov’s
transformation

dWit = −λi(Vt)dt+ dWQ
it ,

for i = 1, 2 with the price dynamics (5.3) and (5.4). Finally, upon combining the market
price of risk (5.7) with the Itô expressions (5.5) we readily find that the partial differential
equation governing the price of the derivative is of the form

0 = ∂tD + rs∂sD + {α(t, v)− β(t, v)[ρλ1(v) +
√

1− ρ2λ2(v)]}∂vD
+ 1

2vs
2∂2
ssD + 1

2β
2(t, v)∂2

vvD + ρβ(t, v)
√
vs∂2

svD − rD,
(5.9)

subject to the terminal condition D(T ′, s, v) = Φ(s).

Remark 5.1. We assume the Novikov condition in order to establish the existence of the
ELMM. Rather remarkably, existence is something all too often glossed over in the stochas-
tic volatility literature. Indeed, there are somewhat spectacular examples of stochastic
volatility models where the no-arbitrage condition generally breaks down cf. e.g. the Stein

4We emphasise that this is not a vacuous statement: specifically, the weak Heston assumption is
not a gauge freedom, as it invariably does say something about supply and demand in the market.
On the other hand, it is not an approximation either: clearly, we have the mathematical freedom
to suppose whatever we want here.
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& Stein model. Furthermore, it is reasonable to show formally that discounted asset prices
are true martingales as opposed to strictly local ones. Although failure of the true mar-
tingale property does not entail arbitrage, it can lead to peculiarities (“bubble problems”)
such as the breakdown of put-call parity. For examples and general theory pertaining to
these fascinating issues we refer the reader to Wong and Heyde (2006).

5.2.2 Investor assumptions

We consider the case of an investor who trades in the three asset classes in a self-financing
manner over the temporal horizon [0, T ] ⊆ [0, T ′], with the intention of maximising the
expected discounted utility from her terminal wealth, WT . Specifically, we are interested
in determining the optimal portfolio weights π∗S,t and π∗D,t which the investor should place

on the stock and the derivative5 such that

{π∗S,t, π∗D,t}t∈[0,T ] = argmax
{πS ,πD}∈L 2[0,T ]

E[e−δTu(WT )], (5.10)

where δ ∈ R+ is a subjective discounting factor, and u : R+ 7→ R is a utility function
which we assume isoelastic, i.e.

u(x) =
x1−γ

1− γ
,

where γ > 1 codifies the investor’s level of risk aversion. No restrictions on short-selling and
leveraging are enforced upon the portfolio weights. However, to rule out arbitrage through
doubling-strategies we assume that the weights belong to the space of square-integrable
processes, which we have denoted by L 2.

Note that from the self-financing condition it follows that the optimal wealth process
{W ∗

t }t∈[0,T ] obeys the dynamics

dW ∗
t = [r + π∗S,t

√
Vtλ1(Vt) + π∗D,t(σ1Dλ1(Vt) + σ2Dλ2(Vt))]W

∗
t dt

+ [π∗S,t
√
Vt + π∗D,tσ1D]W ∗

t dW1t + π∗D,tσ2DW ∗
t dW2t,

(5.11)

which can be used to set up a Hamilton-Jacobi-Bellman equation for the value function
associated with (5.10). This, traditional approach is nonetheless not the route by which
we shall be proceeding: rather, we opt for a martingale theoretic approach, which is well-
equipped to handle bequest-optimisation problems in complete financial markets.

5We assume that the remaining fraction of the wealth 1 − πS,t − πD,t is allocated to the risk
free money account.
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5.3 The martingale solution

5.3.1 The optimal wealth process

It is well-known that the dynamic programming problem highlighted above may be re-
formulated as a static optimisation problem by solving for the optimal wealth process,
whence the optimal portfolio weights can be deduced, Björk (2009). Specifically, we are
scrutinising the optimisation problem

W ∗
T = argmax

WT∈KT

E[e−δTu(WT )], (5.12)

over the class of adapted self-financing portfolios, KT , which is to say subject to the static
budget constraint,

w0 = EQ[e−rTWT ],

where W0 = w0.6 In Lagrangian terms, we are accordingly dealing with

L = E[e−δTu(WT )− ηξT e−rTWT ], (5.13)

where η is the Lagrange multiplier, and ξT = E[ξT ′ |FT ] is the Radon-Nikodym derivative
defined in (5.8), here introduced to write the entire expectation under the P-measure.
By differentiating partially with respect to WT and equating to zero, we may extract the
optimal terminal wealth

W ∗
T = (u′)−1(ηe(δ−r)T ξT ),

where (u′)−1(·) = (·)−1/γ is the inverse marginal utility, i.e.

W ∗
T = η−1/γe−qT ξ

−1/γ
T ,

where q ≡ (δ − r)/γ. To determine the multiplier η we combine this expression with the
P-budget constraint

w0 = E[e−rT ξTW ∗
T ],

to get

η−1/γ =
w0

E[e−(r+q)T ξ
1−1/γ
T ]

.

Thus,

W ∗
T =

w0e
rT ξ
−1/γ
T

E[ξ
1−1/γ
T ]

. (5.14)

Now, consider the denominator E[ξ
1−1/γ
T ]. From (5.8) it is not hard to see that this almost

looks like a P-expectation of a Radon-Nikodym ξ0 defined as:

dQ0

dP

∣∣∣∣
T

≡ ξ0
T ≡ exp

{
− 1

2(1− 1/γ)2

∫ T

0

2∑
i=1

λ2
i (Vt)dt− (1− 1/γ)

∫ T

0

2∑
i=1

λi(Vt)dWit

}
.

(5.15)

6For a formal proof of this result, see Munk (2013).
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In fact, one may readily check that ξ
1−1/γ
T and ξ0

T are related through

ξ
1−1/γ
T = ξ0

T exp

{
1− γ
2γ2

∫ T

0

2∑
i=1

λ2
i (Vt)dt

}
, (5.16)

whence

E[ξ
1−1/γ
T ] = EQ0

[
exp

{
1− γ
2γ2

∫ T

0

2∑
i=1

λ2
i (Vt)dt

}]
. (5.17)

The explicit dependence on the Wiener increments has thus been suppressed through a
second change of measure. This expectation is sufficiently important to what follows that
we are prompted to introduce the function H : [0, T ]× R+ 7→ R:

Ht = H(t, v) = EQ0
t,v

[
exp

{
1− γ
2γ2

∫ T

t

2∑
i=1

λ2
i (Vs)ds

}]
. (5.18)

To see how this comes in handy, let us determine the optimal wealth process W ∗
t for all

times t ∈ [0, T ]. From the budget constraint

W ∗
t = EQ

t,v[e
−r(T−t)W ∗

T ]

= e−r(T−t) 1
ξt
Et,v[ξTW ∗

T ]

= e−r(T−t) 1
ξt
w0erT

H0
Et,v[ξ

1−1/γ
T ]

= ertw0
ξtH0

Et,v[ξ0
T exp{1−γ

2γ2

∫ T
0 (λ2

1(Vs) + λ2
2(Vs))ds}]

= ertw0
ξtH0

ξ0
tE

Q0
t,v [exp{1−γ

2γ2

∫ T
0 (λ2

1(Vs) + λ2
2(Vs))ds}]

= ertw0
ξtH0

ξ0
t exp{1−γ

2γ2

∫ t
0 (λ2

1(Vs) + λ2
2(Vs))ds}EQ0

t,v [exp{1−γ
2γ2

∫ T
t (λ2

1(Vs) + λ2
2(Vs))ds}]

= ertw0
ξtH0

ξ
1−1/γ
t EQ0

t,v [exp{1−γ
2γ2

∫ T
t (λ2

1(Vs) + λ2
2(Vs))ds}],

where the second line uses the abstract Bayes’ formula (Björk (2009), proposition B.41), the
third line uses the optimal wealth expression (5.14), the fourth line uses the identity (5.16),
the fifth line uses (5.17), the sixth line splits the integral at the point of measurability Ft,
and the final line uses (5.16) again. Hence, from the definition of the H function (5.18) we
find that the optimal wealth process can be written as

W ∗
t = ertw0

Ht

H0
ξ
−1/γ
t . (5.19)

5.3.2 Notes on the H-function

Since the H-function (5.18) is assumed to be a function of t and Vt it follows from Itô’s
lemma and the dynamics (5.3) that

dHt = µH(t, Vt)Htdt+ σ1H(t, Vt)HtdW1t + σ2H(t, Vt)HtdW2t, (5.20)
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where
µH(t, v) ≡ H−1

[
∂tH + α(t, v)∂vH + 1

2β
2(t, v)∂2

vvH
]
,

σ1H(t, v) ≡ H−1ρβ(t, v)∂vH,

σ2H(t, v) ≡ H−1
√

1− ρ2β(t, v)∂vH.

Now, from Girsanov’s theorem it follows that the Q0-Brownian increments are related to
the P-Brownian increments through

dWit = −(1− 1/γ)λi(Vt)dt+ dWQ0
it ,

for i = 1, 2. Substituting these into the dynamics (5.3) for the variance Vt, we find that its
drift changes as α(t, v)→ αQ0(t, v) where

αQ0(t, v) ≡ α(t, v)− (1− 1/γ)β(t, v)
[
ρλ1(v) +

√
1− ρ2λ2(v)

]
.

Thus, from Feynman-Kac we may deduce that H solves the linear PDE

0 = ∂tH + αQ0(t, v)∂vH + 1
2β

2(t, v)∂2
vvH +

1− γ
2γ2

2∑
i=1

λ2
i (Vt)H, (5.21)

subject to the terminal condition H(T, v) = 1. The point here is well-worth appreciating:
rather than enduring the non-linearity inherent to the HJB formalism, we have transformed
the optimisation problem into something as comparatively pedestrian as having to solve
(5.21). Whether we aim for an analytic or a numerical solution, it is clear which approach
imbues the greatest allure.

5.3.3 The optimal portfolio weights

Finally, we are in a position to determine the optimal portfolio weights π∗St and π∗Dt.
Applying Itô’s lemma to (5.19) we find

dW ∗
t = rertw0

Ht
H0
ξ
−1/γ
t dt+ ertw0

1
H0
ξ
−1/γ
t dHt + ertw0

Ht
H0
d(ξ
−1/γ
t ) + ertw0

1
H0
dHtd(ξ

−1/γ
t )

= drift + ertw0
1
H0
ξ
−1/γ
t [σ1HHtdW1t + σ2HHtdW2t]− ertw0

Ht
H0

1
γ ξ
−1/γ−1
t dξt

= drift + W ∗
t [σ1HdW1t + σ2HdW2t] + ertw0

Ht
H0

1
γ ξ
−1/γ−1
t ξt[λ1dW1t + λ2dW2t]

= drift + W ∗
t [σ1HdW1t + σ2HdW2t] + W ∗

t
1
γ [λ1dW1t + λ2dW2t]

= drift +
[
σ1H + 1

γλ1

]
W ∗
t dW1t +

[
σ2H + 1

γλ2

]
W ∗
t dW2t, (5.22)

where the first line uses the product rule, the second line makes use of (5.20) and the chain
rule, the third line makes use of (5.19) and the definition of the Radon-Nikodym derivative
(5.8), and the fourth line makes use of (5.19) again. Comparing (5.22) with our expression
for the self-financing condition (5.11) we see that we have established two simultaneous
equations from which π∗St and π∗Dt can be determined

π∗S,t
√
v + π∗D,tσ1D = σ1H + 1

γλ1(v), and π∗D,tσ2D = σ2H + 1
γλ2(v).
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Solving these we ultimately arrive at

π∗St =
1√
v

{
λ1(v)

γ
− σ1D

σ2D

λ2(v)

γ
+ σ1H −

σ1Dσ2H

σ2D

}
, (5.23a)

π∗Dt =
1

σ2D

{
λ2(v)

γ
+ σ2H

}
. (5.23b)

Theorem 5.1. It is well-worth summarising our findings in this section. Consider the
control problem stated in (5.12). Defining the function

Ht = H(t, v) = EQ0
t,v

[
exp

{
1− γ
2γ2

∫ T

t
(λ2

1(Vs) + λ2
2(Vs))ds

}]
, (5.24)

where Q0 is the measure on FT defined through ξ0 ≡ dQ0/dP where

dξ0
t = −(1− 1/γ)ξ0

t (λ1(Vt)dW1t + λ2(Vt)dW2t), (5.25)

the optimal wealth process can be written on the form

W ∗
t = ertw0

Ht

H0
ξ
−1/γ
t . (5.26)

Furthermore, the optimal controls which give rise to this maximal wealth process are of
the form

π∗St =
1√
Vt

{
λ1(Vt)

γ
− σ1D

σ2D

λ2(Vt)

γ
+ σ1H −

σ1Dσ2H

σ2D

}
, (5.27a)

π∗Dt =
1

σ2D

{
λ2(Vt)

γ
+ σ2H

}
, (5.27b)

where

σ1D ≡ D−1[ρβ∂vD +
√
vs∂sD], σ2D ≡ D−1[

√
1− ρ2β∂vD], (5.28)

σ1H ≡ H−1ρβ∂vH, σ2H ≡ H−1
√

1− ρ2β∂vH. (5.29)

5.4 Example: the Heston model

Undoubtedly, the most well-known of all stochastic volatility models is that proposed by
Heston (1993). The Heston model stands out for a number of reasons: first, the variance
process is non-negative and mean-reverting, which harmonises with market data; secondly,
the model is sufficiently parsimonious to allow for swift calibrations (Ribeiro and Poulsen
(2013), Weron and Wystup (2011)); thirdly, as exposed below, it famously admits compar-
atively simple expressions for plain vanilla options; finally, said expressions yield implied
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volatilities which are found to fit the empirically observed volatility smile closely for a
broad range7 of medium-seized times to maturity Weron and Wystup (2011).

Formally, the Heston model is a Cox-Ingersoll-Ross model for the variance process:

dVt = κ(θ − Vt)dt+ σv
√
Vt(ρdW1t +

√
1− ρ2dW2t), (5.30)

where κ, θ, and σv are nonnegative parameters which signify the speed of mean reversion,
the long term variance, and the volatility of variance respectively. Insofar as the Feller
condition is satisfied, it can be shown that the variance process stays strictly positive at
all times.8 Moreover, the distribution of Vt under (5.30) is non-central χ2, which in the
asymptotic limit t→∞ tends towards a gamma distribution. This effectively disposes of
one of the key shortfalls of classical GBM valuation as the resulting density function of
log returns will be fatter (exponential) than the bell curve.

5.4.1 Vanilla valuation

What really propelled the Heston model into the academic limelight is largely its ability
to price European calls (and ipso facto European puts). For the reader’s convenience we
here briefly review the valuation formula, and tie it to the theory of pricing in incomplete
markets alluded to in Subsection 5.2.1. Specifically, the relevant pricing PDE (5.9) is of
the form

0 = ∂tD + rs∂sD + {κ(θ − v)− σv
√
v[ρλ1(v) +

√
1− ρ2λ2(v)]}∂vD

+ 1
2vs

2∂2
ssD + 1

2σ
2
vv∂

2
vvD + ρσvvs∂

2
svD − rD,

(5.31)

subject to D(T ′, s) = [φ(s −K)]+, where φ is a binary variable which takes on the value
+1 if the option is a call, and -1 if the option is a put. Upon solving this equation, Heston
crucially makes the assumption that the market price of volatility risk, λv, here defined
as9

λv ≡ σv[ρλ1 +
√

1− ρ2λ2], (5.32)

7Matching the smile for very short or very long times to maturity proves more difficult. In
particular, with regards to the former, the so-called volatility of variance, σv, tends to explode,
which indicates that there’s a jump effect neglected by the dynamics.

8It is dubious that calibrated parameters actually satisfy this condition; Ribeiro and Poulsen
(2013).

9The market price of volatilty risk (5.32) is concept which arises naturally insofar as the dy-
namical equations (5.3) have not had their random components decorellated through a Cholesky
decomposition. Specifically, for the market price of risk vector

λ = σ−1(excess return vector),

we would set σ = [
√
Vt, 0;D−1s

√
v∂sD + D−1ρσv

√
v∂vD,D

−1
√

1− ρ2σv
√
v∂vD], whilst Heston

sets σ = σ′ := [
√
Vt, 0;D−1

√
v∂sD,D

−1σv
√
v∂vD] (the latter is related to the former through the

multiplication of the lower triangular matrix L = [1, 0; ρ,
√

1− ρ2]: σ = σ′L). For convenience,
Heston also absorbs the constant σv in his definition.
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is proportional to
√
v, i.e.

∃λ̄v ∈ R s.t. λv(v) = λ̄v
√
v. (5.33)

We call this the Heston assumption and note that it constitutes a concrete instantiation
of the weak Heston assumption explicated above. Nonetheless, based on our desire to solve
the PDE for the H-function, it will in fact be convenient to assume something slightly
stronger, viz.

Assumption 5.2. There exist constants λ̄1 and λ̄2 such that λ1(v) = λ̄1
√
v and λ2(v) =

λ̄2
√
v. We call this the strong Heston assumption.

Remark 5.2. A partial motivation for (5.33) is provided through Breeden’s consumption
based model, λv(Vt)dt = γCov[dVt, dct/ct], when the consumption process is chosen as
in the (general equilibrium) Cox, Ingersoll, and Ross (1985) model (see Heston (1993)).
Less generously, we might view it as a postulate detached from empirical evidence, which
purposefully has been engineered in order to allow (5.31) to be solved. Be that as it
may, under the proportionality assumption it can be shown that the ELMM, Q, exists
and that discounted asset prices are true martingales insofar as certain inequalities on
the parameters are satisfied, Wong and Heyde (2006). This may be taken as a formal
justification for Heston’s well-known valuation formula:

Theorem 5.2. (Heston’s valuation formula for European vanillas) The no-arbitrage
price of a European vanilla option with maturity time T ′ is given by

D(t, s, v) = HestonVanilla(κ, θ, σv, ρ, λ̄1, λ̄2, r, v, s,K, τ
′, φ)

= φ{sQ1(φ)− e−rτ ′KQ2(φ)},
(5.34)

where φ = +1 if D is a call, and φ = −1 if D is a put, τ ′ ≡ T ′ − t,

Qj(φ) ≡ 1− φ
2

+ φPj(ln s, v, τ
′, lnK), (5.35)

for j = 1, 2, and we have defined

Pj(ln s, v, τ
′, lnK) ≡ 1

2
+

1

π

∫ ∞
0

R

{
e−iϕ lnKfj(ln s, v, τ

′, ϕ)

iϕ

}
dϕ (5.36a)

fj(ln s, v, τ
′, ϕ) ≡ exp{Cj(τ ′, ϕ) +Dj(τ

′, ϕ)v + iϕ ln s}, (5.36b)

Dj(τ
′, ϕ) ≡ bj − ρσvϕi+ dj

σ2
v

(
1− edjτ ′

1− gjedjτ
′

)
, (5.36c)

Cj(τ
′, ϕ) ≡ rϕiτ ′ + a

σ2
v

{
(bj − ρσvϕi+ dj)τ

′ − 2 ln

(
1− gjedjτ

′

1− gj

)}
, (5.36d)

where dj ≡ ((ρσvϕi− bj)2 − σ2
v(2ujϕi−ϕ2))1/2, gj ≡ (bj − ρσvϕi+ dj)/(bj − ρσvϕi− dj),

a ≡ κθ, u1 ≡ 1
2 , u2 ≡ −1

2 , b1 ≡ κ+ λ̄v − ρσv, and b2 ≡ κ+ λ̄v.
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Remark 5.3. From the generalised option pricing formula (Björk (2009), proposition
26.11)

Dt = φ{sS(φST ′ ≥ φK|Ft)− e−rτ
′
KQ(φST ′ ≥ φK|Ft)}, (5.37)

where S is the stock measure defined through the Radon-Nikodym derivative

ξsu ≡
dS
dQ

= eru
Su
S0
,

it follows that Q1 and Q2 in (5.34) are risk-adjusted probabilities that the option expires
in the money. Specifically,

Q1 = St(φST ′ ≥ φK|St = s;Vt = v), (5.38a)

Q2 = Qt(φST ′ ≥ φK|St = s;Vt = v). (5.38b)

.

Remark 5.4. The formula stated in (5.34) is rather unconventionally expressed in terms
of the market price of risk constants λ̄i, i = 1, 2 along with the P-parameters of the
variance process. More commonly, the valuation formula is specified directly in terms of
the risk-neutral Q-parameters: κQ ≡ κ+ σv(ρλ̄1 +

√
1− ρ2λ̄2) and θQ ≡ θκ/κQ (diffusion

parameters invariant).

5.4.2 The optimal Heston controls

We assume the investor trades in a risk free money account, a stock and a European vanilla
derivative in a market characterised by Hestonian stochastic volatility. From the generic
optimal control functions (5.27) it follows that we must determine σ1D, σ2D, σ1H , and σ2H

and thence the quantities ∂sD, ∂vD,H, and ∂vH. We do this over the two subsequent
lemmas.

Lemma 5.1. The option delta is given by

∆t ≡ ∂sD = φQ1(φ), (5.39)

while the option vega is given by

νt ≡ ∂vD = sν1(ln s, v, τ ′, lnK)−Ke−rτ ′ν2(ln s, v, τ ′, lnK), (5.40)

where

νj(ln s, v, τ
′, lnK) ≡ 1

π

∫ ∞
0

R

{
Dj(τ

′, ϕ)e−iϕ lnKfj(ln s, v, τ
′, ϕ)

iϕ

}
dϕ. (5.41)

Proof. A hands-on differentiation of (5.34) with respect to the underlying, s, and subse-
quent algebraic simplification is a tedious exercise better avoided. A somewhat subtler but



122 Chapter 5. Utility Maximisers

arguably simpler argument may be presented by noting that the valuation formula is first
order homogenous in the variable pair (s,K), i.e.

HestonVanilla(κ, θ, σv, ρ, λ̄1, λ̄2, r, v, as, aK, τ
′, φ) =

a ·HestonVanilla(κ, θ, σv, ρ, λ̄1, λ̄2, r, v, s,K, τ
′, φ),

for any a ∈ R, whence Euler’s Homogenous Function Theorem10 entails

D = s∂sD +K∂KD. (5.42)

Comparing (5.34) with (5.42) it is tempting to deduce that ∂sD = φQ1(φ), yet some care
must be taken here. Specifically, it is not immediately obvious that (5.34) is the so-called
natural form of D, Reiß and Wystup (2001): with two terms present in the equation we can
add any arbitrary component to one term, as long as we cancel it through a corresponding
subtraction to the other term.11 To establish that (5.34) is the natural one, we employ a
well-known result from Breeden and Litzenberger (1978), viz.

∂KD = e−rτ
′
∂KEQ

t,s,v[[φ(ST ′ −K)]+]

= e−rτ
′
φ∂KEQ

t,s,v[(ST ′ −K)1{φST ′ ≥ φK}]

= −e−rτ ′φEQ
t,s,v[1{φST ′ ≥ φK}]

= −e−rτ ′φQt,s,v(φST ′ ≥ φK).

Comparing this with (5.37) the result follows.

Equation (5.40) follows immediately from differentiating (5.34) with respect to v. Note
that the result is independent of φ.

Lemma 5.2. Under the strong Heston assumption the H function has the exponential
affine form

H(t, v) = exp{A(τ) +B(τ)v}, (5.43)

where τ ≡ T − t. Here B : [0, T ] 7→ R is the function

B(τ) =
1− γ
γ2

(λ̄2
1 + λ̄2

2) · eωτ − 1

(ω + α)(eωτ − 1) + 2ω
, (5.44)

10Recall that the function g : R2 7→ R is said to be homogenous of degree n if

g(ax1, ax2) = ang(x1, x2).

Let x′1 = nx1 and x′2 = nx2 then we find upon differentiating g with respect to a that nan−1g =
∂x′

1
g∂ax

′
1 + ∂x′

2
g∂ax

′
2 = x1∂ax1

g + x2∂ax2
g. In particular, upon setting a = 1 we get Euler’s result

for homogenous functions:
ng = x1∂x1g + x2∂x2g.

11Let g = x1∂x1
g + x2∂x2

g and g = x1h1(x1, x2) + x2h2(x1, x2) then a necessary and sufficient
condition for ∂x1

g = h1(x1, x2) and ∂x2
g = h2(x1, x2) is that x2

1∂x1
h1 = x2

2∂x2
h2 - see Reiß and

Wystup (2001).
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where α ≡ κ+ (1− 1/γ)λ̄v and

ω ≡
√
α2 + σ2

v

γ − 1

γ2
(λ̄2

1 + λ̄2
2),

while A : [0, T ] 7→ R is the function

A(τ) =
κθ

α2 − ω2

{
(α+ ω)τ + 2 ln

∣∣∣∣ 2ω

(α+ ω)(eωτ − 1) + 2ω

∣∣∣∣} . (5.45)

Proof. Substituting in the relevant parametric specifications (5.30), (5.33), into the gov-
erning PDE (5.21) we find

0 = −∂τH + [κθ − {κ+ (1− 1/γ)λ̄v}v]∂vH + 1
2σ

2
vv∂

2
vvH +

1− γ
2γ2

(λ̄2
1 + λ̄2

2)vH, (5.46)

subject to the initial condition H(0, v) = 1, where we have invoked the time transformation
t 7→ τ . Since the coefficients are linear functions of v we form the ansatz that the solution
is of an exponential affine form. Thus, upon substituting (5.43) into (5.46) and using the
fact that the expression should hold for any value of v we find the coupled ODEs:

B′(τ) = 1
2σ

2
vB

2(τ)− {κ+ (1− 1/γ)λ̄v}B(τ) +
1− γ
2γ2

(λ̄2
1 + λ̄2

2), (5.47a)

A′(τ) = κθB(τ), (5.47b)

subject to the boundary conditions A(0) = B(0) = 0, where ′ denotes the derivative with
respect to τ . The first equation is Riccatian, which readily allows us to extract the solution
(5.44).12 Note that ω is a real number insofar as γ > 1 which we assume to be the case.
As for the function A we observe that (5.47b) can we written as A(τ) = κθ

∫ τ
0 B(t)dt.

Performing this tedious integration we get the desired result.

Putting these results together we can finally state our theorem on the optimal (B,S,D)-
portfolio weights in a Heston driven economy:

Theorem 5.3. The optimal stock weight is given by

π∗S,t =
λ̄1

γ
− 1√

1− ρ2

[
ρ+

s

σv

∆t

νt

]
λ̄2

γ
− s∆t

νt
B(τ), (5.48)

while the optimal vanilla option weight is

π∗D,t =
Dtλ̄2

γσv
√

1− ρ2νt
+
Dt

νt
B(τ), (5.49)

where B is defined in (5.44), Dt is the option price given by (5.34), ∆t is the option delta
given in (5.39), and νt is the option vega given in (5.40). Note that the time parameter in
B is τ (the investment horizon), while it for option quantities {D,∆, ν} is τ ′ (the maturity
of the option).

12Recall that the generic Riccati equation y′(x) = ay2(x) + by(x) + c with y(0) = 0 has the
solution y(x) = [2c(eδx − 1)]/[(δ − b)(eδx − 1) + 2δ] where δ ≡

√
b2 − 4ac assuming b2 > 4ac.
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We note that the first term in (5.48) is Merton’s optimal stock weight in a simple (B,S)-
economy with constant volatility. More generally, referencing standard results in the lit-
erature13, we see that the first two terms in (5.48) and the first term in (5.49) constitute
the optimal portfolio weights in a (B,S,D)-economy for a utility maximising investor
who disregards stochastic fluctuations in the state variable v (otherwise known as the my-
opic or 1-period strategy). Thus, the hedge against stochastic volatility is nested in the
time-price-volatility dependent term −s∆t

νt
B(τ) in (5.48) and Dt

νt
B(τ) in (5.49). In this

connection we note that ∆ is a function bounded by the interval [0, 1] for a call option
([−1, 0] for a put option), whilst B(τ) is a monotonically decreasing function bounded
by the interval ((1 − γ)(λ̄2

1 + λ̄2
2)/(γ2[ω + α]), 0]. s,D, and ν are all positive quantities

unbounded from above. The signs of the volatility hedge corrections on the stock and the
derivative are thus respectively positive and negative if D is a call option, and negative
and negative if D is a put option. To appreciate the implications of this, figure 5.1 plots
the optimal (bank,stock,ATM call option)-weights for different times to maturity, when
the tuple (s, v) is held constant at (100, θ). We assume that the risk free rate is 0.02, that
the option expires at the end of the investment horizon (τ = τ ′), and that the investor’s
level of risk aversion γ is 2. Other parameters are estimated from the S&P 500 index and
are exhibited in table 5.5.

Upon examining figure 5.1 we make the following observations: relative to the optimal
Merton weight [dash-dotted grey line], Liu’s volatility correction [full grey line] is
barely noticeable, perturbing π∗S at the order of magnitude 10−3. By comparison, access
to derivative trading prompts the investor to drastically increase her holding in the stock
[full red line], by decreasing her long position in the money account [full black line],
and shorting the call option [full blue line] at a rather modest level. This makes good
sense: by shorting the call, the investor has a negative exposure to the risk endemic to the
variance process thereby collecting positive risk premium, Munk (2013). Out of interest,
we have also plotted the effect of including the volatility hedge terms in the optimal in-
vestment ratios [dash-dotted lines]. As argued above, this respectively underestimates
and overestimates the weights on stock and the derivative: here by as much as six per-
centage points for the stock and a single percentage point for the call (see the RHS figure
for greater clarity). Volatility hedge corrections thus seemingly have the magnitude to
perturb the terminal wealth of a rational investor by a measurable amount. Yet, this is in
fact not the case when we Monte Carlo simulate the wealth process (5.11) of an investor
trading in a Hestonian economy: although the expected return is higher for someone who
hedges volatility vis-à-vis one who does not, so is the associated variance. A Welch’s t-test
therefore cannot reject the null hypothesis that the two trading strategies have equal re-
turns (p-value ≈ 0.65). This suggests that the real capital gains (if any) are to be garnered
from access to the derivative security, and not the hedge corrections to volatility per se,
in accordance with the findings by Liu and Pan (2003).

13See for example Munk (2013) theorems 6.2 and 7.5
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Figure 5.1: Left: Optimal investment strategies in a (bank,stock,call option)-economy for
different times to maturity with s and v held constant. Note that the investor shorts the derivative
in order to enter into a significant long position in the underlying stock and deposit money in the
bank. The grey line shows Liu’s optimal portfolio weight on the stock when the investor disregards
derivatives. The dash-dotted lines represent the corresponding strategies when we do not hedge
stochastic variations in the state variable (volatility). For Liu’s model this corresponds to the
Merton weight λ1/γ. Right: The size of the correction to the various portfolio weights brought
about by hedging volatility. The figure also exhibits the magnitude of the deterministic functions
L(τ) and B(τ). NB: as TTM approaches zero, so does ν which creates problems with numerical
instability in this region.

5.4.3 The value of derivative trading

Whilst the inclusion of a derivative to the investment portfolio has a significant impact on
the optimal trading strategy (as demonstrated in the previous section), one should perhaps
be more vigilant of a potential value-gain from such a position. In particular, since both
(π∗B, π

∗
S , π

∗
D) and Liu’s strategy (πLiuB , πLiuS ) are optimal in the sense that they maximise the

expected utility of terminal wealth, their respective utilities are the quantities to compare.
In fact, Liu’s optimum is a constrained strategy of the former, in that no derivative trading
is allowed (πD ≡ 0) and thus suboptimal: with J(w0, π) = E[e−δTu(WT )] denoting the
expected utility from investing an initial wealth w0 according to a strategy π, we readily
have from (5.10)

J(w0, π
Liu) ≤ J(w0, π

∗) = sup
π∈L 2

J(w0, π).

A common measure for the comparison of two such strategies in monetary terms is the
certainty equivalent in wealth

c∗ = sup
{
c ≥ 0 : J(w0, π

Liu) ≤ J(w0 − c, π∗)
}

which gives the reduction in initial wealth the investor is willing to sacrifice in order to
trade in the derivative market (see Munk (2013), Chapter 5.4). For the optimal strategy,
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Figure 5.2: Certainty equivalents in initial wealth: the fraction of wealth an investor is willing
to sacrifice to be able to trade in the derivative market, as a function of investor risk-aversion. The
upper curves show wealth equivalents for a trading horizon of 15 years while the lower curves show
a one-year trading horizon. Three different current volatility levels are included in the figure.

we have an optimal terminal wealth W ∗T from (5.14) that yields

J(w0, π
∗) = e(r(1−γ)−δ)T w

1−γ
0

1− γ
H(0, v)γ

where we have used (5.18) for the expectation (5.17). Similarly, following Ellersgaard and
Jönsson (2013), the optimal expected utility from investing in a stock-bond economy is

given by J(w0, π
Liu) = e(r(1−γ)−δ)T w

1−γ
0

1−γ Ĥ(0, v)γ where the function Ĥ is of the same
exponential form as H given in (5.43). Denoting its corresponding exponential coefficients
with Â(·) and B̂(·) respectively, a straightforward calculation gives the certainty equivalent

c∗ =

(
1−

[
eÂ(T )−A(T )−(B̂(T )−B(T ))v

] γ
1−γ
)
w0.

The functions Â, B̂ are identical to (5.45)-(5.44) with slightly modified coefficients. For
their exact expressions, we refer to Ellersgaard and Jönsson (2013).

Figure 5.2 depicts certainty equivalents in wealth as a fraction of w0 for different levels
of risk aversion γ. The certainty equivalent is based on estimated parameters from the
S&P 500 data (table 5.5) and two different investment horizons (one year and 15 years)
corresponding to the horizons that will be used for the empirical trading experiment. We
have included three different levels of current volatility: v = 0.03 is equal the estimated
long-term variance θ, v = 0.001 is the same order of magnitude as the minimum historical
S&P 500 variance while v = 0.20 could be considered to be a relatively high (and rare)
level, cf. figure 5.3.
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Clearly, figure 5.2 demonstrates that the investment horizon has a high impact on the
certainty equivalent whilst the current variance level plays a rather minor role: the investor
is prepared to refrain from a few percentage points from her initial wealth in return of
being able to trade in the derivative market, and the longer the period, the more to gain
from trading. The current variance is ephemeral, and thus yields a minor effect. We further
note that the wealth equivalent decreases with level of risk aversion γ: more risk-averse
investors will involve less in the risky trading of derivatives and thus have less to gain from
this business.

For our empirical study we will assume γ = 2 which yields certainty equivalents c∗ ≈
0.014 ·w0 (for initial variance levels between 0.001 and 0.20) for the first experiment with
T = 15 years and c∗ ≈ 0.0009 · w0 for the second experiment with T = 1 year. For both
horizons, only a very modest fraction of initial wealth has to be sacrificed for the access
to derivative trading. Whether we will actually see any difference at all in realised utility
(expressed in monetary terms with the realised certainty equivalent) is yet for the empirical
trading experiment to reveal.

5.4.4 Towards higher generality

A natural generalisation of the Heston model is to allow the model parameters to be
time-dependent functions. This will not only allow for a financial landscape that changes
dynamically over time, but also provide a more realistic pricing model the implied volatility
surface of which calibrates much closer to market data. A tractable yet flexible functional
form for this purpose is to specify

{
κ(t), θ(t), σv(t), ρ(t), λ̄1(t), λ̄2(t)

}
to be piecewise con-

stant functions over some finite partition t0 < t1 < · · · < tn of the market horizon [0, T ′].
That is, κ(t) = κ̄1 for t ∈ (tn−1, tn], κ(t) = κ̄2 for t ∈ (tn−2, tn−1] etc. with correspond-
ing structures for the remaining parameters.14 The key observation is then that we may
solve all PDEs sequentially backwards in time. Firstly, we have that the optimal weights
(5.48)-(5.49) depends on the function B which solves the Riccati equation (5.47a). For the
first subinterval (tn−1, tn] expressed in backwards-time, τ ∈ [τ0, τ1) = [0, T − tn−1) with
τk ≡ T − tn−k, we have the familiar boundary condition B1(0) = 0 and solution B1 as in
equation (5.44) with {κ̄1, θ̄1, σ̄v1, ρ̄, λ̄11, λ̄21}. This gives us a value for B1(τ1) which will
act as a (non-zero) boundary condition for B2 on the next interval [τ1, τ2). We may then
proceed sequentially backwards in time15 to obtain B2, . . . Bn over [τ2, τ3), . . . , [τn−1, τn)
to cover the whole of [0, T ] ⊆ [0, T ′]. Secondly, we need to calculate ∆ and ν over the
same sequence of subintervals (extended to cover [0, T ′]) to complete the expression for
our market weights. It turns out that this calculation is virtually identical to the one just
considered: Dj and Cj of (5.36c)-(5.36d) solve a system of ODEs which is the same as

14We shall still assume that the parameter-constants are specified within reasonable limits, i.e.
that the governing dynamics (5.30) allows for a positive solution. Moreover, the Feller condition
might be desired to be satisfied locally for each time interval of the partition.

15To this end we need the Ricatti equation with a non-zero initial condition i.e. y′(x) = ay2(x)+
by(x) + c, y(0) = y0, which has the solution y(x) = y0 + [2(ay2

0 + by0 + c)(eδx − 1)]/[(δ − b −
2ay0)(eδx − 1) + 2δ] where δ ≡

√
b2 − 4ac assuming b2 > 4ac.
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(5.47a)-(5.47b) (see Mikhailov and Nögel (2004) for details). Hence, we may compute the
optimal weights for a time-dependent parameter specification of the Heston model as well
(for reasons of brevity we exclude the technical details from this paper).

5.5 The empirical perspective

Based on our optimal portfolio weights in a Heston driven (B,S,D)-economy, we proceed
to perform an empirical experiment which aims to measure the degree to which the in-
clusion of plain vanillas impacts the financial wealth of a utility maximising investor. In
particular, we set out to perform a simple automated trading experiment where we let
historical market prices from the S&P 500 index play the role of the fundamental risky
security and where market prices of call options written on the same index constitute the
derivative available in the economy. We use market interest rates for the money account.

5.5.1 Market data

For the tradable stock, we use 3,909 daily prices of the S&P 500 index from the period 2000-
01-03 to 2015-08-31. The market price (sourced from Wharton Research Data Services16)
is plotted in figure 5.3 together with the daily variance. The variance process is measured
from high-frequency data with the realised volatility measure and we use precomputed
estimates from the Oxford-Man Institute’s realised library.17.

For the tradable derivative, we use daily mid-market prices of European call options on
the S&P 500 index from the same time period, as shown in figure 5.4. The time period
covers prices of 23 call options with medium-sized times to maturity (in the range 18 to
36 months subject to data availability) and the strike-price of each option is selected to
be ATM at initiation (or as close as possible thereto - subject to availability) thereby
sowing the seed for high exposure to volatility risk. The strike-price and time-to-maturity
structure is shown in figure 5.6. Note the varying TTMs for the options, which again
are symptomatic of the data set available (we use the Option Metrics database sourced
through Wharton Research Data Services).

For our last asset in the (B,S,D) economy, we use the daily short-term LIBOR rate for
an interest to the risk-free money account. The LIBOR market-data is from the Option
Metrics database as well.

16https://wrds-web.wharton.upenn.edu/wrds/.
17The Realised Library version 0.2 by Heber, Gerd, Lunde, Shephard and Sheppard (2009) - see

http://realized.oxford-man.ox.ac.uk For details on the realised volatility measure, see e.g
Andersen and Benzoni (2009).
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Figure 5.3: Daily market prices and measured variance of the S&P 500 index from the period
2000-01-03 to 2015-08-31. The price data is sourced from Wharton Research Data Services while
the variance data is sourced from the Oxford-Man Institute’s realised library.

Figure 5.4: Daily mid-market prices of European call options on the S&P 500 index from the
period 2000-01-03 to 2015-08-31, sourced from Wharton Research Data Services (Option Metrics
data). The corresponding strike prices and maturities are shown in figure 5.6.

5.5.2 Parameter estimation

For our empirical experiment, we will trade according to the optimal portfolio weights
(π∗Bt, π

∗
St, π

∗
Dt) which are functions of the model parameters, the current stock price, call

price and variance level at time t. To this end, we estimate the model parameters with the
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following approach. First, we estimate (κ, θ, σv, ρ) of the Cox-Ingersoll-Ross process from
the daily variance data with a maximum likelihood method.18 Secondly, based on these
parameters, to determine the market prices of risk, (λ̄1, λ̄2), we minimise the squares error
between daily observed S&P 500 call option prices, {Ĉt}, and corresponding theoretical
Heston prices {CHet = CHet (λ̄1, λ̄2)}, where the strike-maturity structure is chosen as in
figure 5.6. Specifically, we solve the minimisation problem

(λ̄1, λ̄2) = argmin
(λ̄1,λ̄2)

∑
t∈T

(
Ĉt − CHet (λ̄1, λ̄2)

)2
,

where T = {trading days between 2000-01-03 and 2015-08-31}. The resulting parameters
estimated from the market data are given in table 5.5. Note here in particular that the
market price of risk λ̄2 associated with W2 is negative, corroborating standard empirical
findings a la Bakshi and Kapadia (2003).

κ θ σv ρ λ̄1 λ̄2

Estimate 9.71 0.030 2.72 -0.17 0.88 -0.29

Table 5.5: Estimated model parameters with the two-step approach. The estimates are based on
3,909 daily observations of the stock price, the variance and the call price. Note that λ̄1 > 0 whilst
λ̄2 < 0.

Remark 5.5. A few remarks on the above estimation procedure are in order here. First,
note that when we will use the parameter estimates for the forthcoming trading experi-
ment, we employ ex-ante estimates based on actual “future” market data. An alternative
is to estimate parameters from historical data prior to the trading period. However, due to
the amount of available data, this would impair the accuracy our estimates. Since we are
primarily interested in the the efficiency of the trading strategy, (and not in the param-
eter estimation problem per se) we require as robust estimates as possible. Thus, we opt
for the former alternative. Secondly, we use a rather unconventional estimation procedure
whereby we separately estimate the variance parameters under the statistical measure P,
followed by a mean square optimisation to back out the market prices of risk. A more com-
monplace approach is to formulate the pricing model under Q directly (see remark 5.4),
and to estimate the risk-neutral parameters from option data alone, again through mean
square principles . This estimation approach is commonly referred to as model-to-market
calibration, and typically a whole surface of option prices is employed for day-to-day es-
timation of the parameters. Since we require statistical CIR-parameters along with the
market price of risks separately for calculation of the optimal portfolio weights, we use the
two-step approach in place of the calibration method.

18We use numerical optimisation of a Gaussian likelihood, from the method of Sørensen (1999)
based on estimating functions.
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Figure 5.6: The daily strike-price (black line) and time-to-maturity (grey line) for the call price
in figure 5.4. The dotted line shows the S&P 500 index level.

5.5.3 Empirical trading experiment

With market data for the (B,S,D) economy from the S&P 500 index and the LIBOR
rate, we set out to perform an empirical trading experiment. We intend to invest in a
portfolio according to the optimal weights (π∗Bt, π

∗
St, π

∗
Dt) and we trade dynamically with

daily rebalancing as the time evolves during the period 2000-01-03 to 2015-08-31. Hence, if
∆Xti denotes the daily price-change from ti to ti+1 of an asset in the economy, this means
that we realise a daily change in the portfolio value

∆Wti = Wti

(
π∗Bti

∆Bti
Bti

+ π∗Sti
∆Sti
Sti

+ π∗Dti
∆Dti

Dti

)
,

Wt0 = w0,

for all dates t0, t1, . . . in the investment period and the realised daily wealth amounts
to Wti+1 = Wti + ∆Wti . Note that the portfolio is self-financing: an initial amount w0

is invested at the initial time and there is no infusion or withdraw of capital from the
portfolio during the investment period.

In addition to the parameters in table 5.5, we fix the risk aversion parameter to the
arbitrary value γ = 2. For comparison purposes, we include a “naive” trading strategy
with a constant equal weight invested in each asset, (πBt, πSt, πDt) = (1/3, 1/3, 1/3). We
also trade according to Liu’s optimal investment strategy in the limited economy, that is,
we invest in (B,S) with portfolio weights (πLiuBt , π

Liu
St ) (and πDt = 0 for the call option).

With this in mind, we conduct the following two experiments for each of the three trading
strategies:
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1. Trading throughout 2000-2015. We set the investment period to be 2000-01-03
to 2015-08-31 and initialise the portfolios with a wealth w0 = 1, 000. We do not
trade over the dates when there is a “new” option, i.e. every time there is a new
expiry date, since this would give false price moves of the call option due to changes
in the strike price (cf. figure 5.4 and 5.6). The same rule pertains to Liu’s strategy,
even though there is no trading in the option. The realised wealth processes from
trading according to the three strategies are shown in figure 5.8 while the optimal
portfolio weights are shown in figure 5.11.

The realised terminal wealth WT is 1,220 with the naive strategy, 1,497 with Liu’s
strategy and 1,524 with the optimal strategy respectively. For the two latter strate-
gies to be equivalent, we have to initiate the optimal (B,S,D)-portfolio with at least
w0 = 982.5 which yields a realised wealth of 1,497. Since our experiment results in
a single wealth-path here, this yields equivalent realised utilities as well. Hence, in
terms of a relative certainty equivalent, a reduction of 1.75% from the initial wealth
of the optimal strategy makes it comparable to the strategy being restricted to bond
and stock trading. As predicted by the certainty equivalent from expected utility,
c∗ = 1.4%, this is quite a modest reduction which suggests that the two strategies
are close in monetary performance.

To further compare the strategies (all three having w0 = 1, 000) with a measure
standard for financial investments, we calculate the realised Sharpe-ratios of daily
returns as

S =
Mean(Rti − rti)

SD(Rti)
,

where Rti = log(Wti)− log(Wti−1), t1, t2, . . . are the daily returns of the investment
portfolio and rti is the daily returns of the money account (the daily return from
the LIBOR rate). The results are shown in table 5.7.

Strategy Mean return Std. Dev. Sharpe-ratio Sharpe-R. annual
(π∗Bt, π

∗
St, π

∗
Dt) 0.011% 0.65% 0.39% 7.46%

(πLiuBt , π
Liu
St , 0) 0.010% 0.56% 0.37% 7.16%

(1/3, 1/3, 1/3) 0.005% 2.27% -0.14 % -2.64%

Table 5.7: The Sharpe-ratio, mean and standard deviation of daily portfolio returns from the
three strategies when trading throughout the whole period 2000-01-03 to 2015-08-31. The last
column shows the annualised Sharpe-ratio. The daily mean-return of the money account is 0.0082%,
which corresponds to an annualised return of 3.0%.

2. Investment periods according to the option-expiry structure. For our sec-
ond empirical experiment, we reset our investment portfolio with an initial w0 =
1, 000 every time there is a “new” option, i.e. every time there is a new expiry date
and strike-price (see figure 5.6). We set the investment period accordingly, i.e. to
start when we reset the portfolio and to end at the date on which we will reset
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Figure 5.8: Trading throughout 2000-01-03 to 2015-08-31: wealth processes from trading in {LI-
BOR,S&P500,Call} according to the naive strategy (dotted line) and optimal investment strategy
(black line), and from trading in {LIBOR,S&P500} with Liu’s optimal strategy (grey line).

the portfolio the next time. The resulting realised portfolio value-processes from the
optimal (B,S,D)- and (B,S) strategies are shown in figure 5.10 and the portfolio
weights of the two strategies are plotted in figure 5.12.

For this experiment we have a total of 25 investment periods with horizons in the
range of six months to one year. Calculating the average realised utility as

J̄(π) =
25∑
j=1

(WTj )
1−γ

1− γ
,

where WTj is the realised terminal wealth of period j, we obtain−10.26·10−4 from the
naive strategy, −9.858 ·10−4 from Liu’s strategy and −9.860 ·10−4 from the optimal
strategy. Thus, Liu’s strategy actually achieves a slightly greater utility. In terms of
a certainty equivalent, we have to initiate the optimal (B,S,D) portfolio (for each
of the 25 periods) with w0 = 1, 000.50 in order to obtain the same average realised
utility. This corresponds to a negligible reduction (increase) of −0.05% of initial
wealth, to be compared with the prediction in certainty equivalent for expected
utility being 0.9%.

The Sharpe-ratios based on realised daily returns of the investment portfolios are
collected in table 5.9, where the results for the naive strategy are included as well.

A note on the interpretation of these results is in order here. First, whilst trading strategy
(1) picks up a slightly higher mean return along the way for the (B,S,D) portfolio, the
associated variance of returns is also higher (the risk averse investor might choke on this).
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Strategy Mean return Std. Dev. Sharpe-ratio Sharpe-R. annual
(π∗Bt, π

∗
St, π

∗
Dt) 0.010% 0.55% 0.37% 7.13%

(πLiuBt , π
Liu
St , 0) 0.011% 0.65% 0.36% 6.93%

(1/3, 1/3, 1/3) 0.005% 2.28% -0.14 % -2.65%

Table 5.9: The Sharpe-ratio, mean and standard deviation of daily portfolio returns from the
three strategies when trading according to the option-expiry structure. The last column shows the
annualised Sharpe-ratio.

Figure 5.10: Trading according to the option-expiry structure. Left: wealth process from trading
in {LIBOR,S&P500,Call} according to the optimal investment strategy during investment periods
that matches the expiry/strike structure of the call options. A cross indicates the beginning of an
investment period (with initial wealth w0 = 1, 000) while a circle shows the terminal wealth at
the end of the period. Right: wealth process from trading in {LIBOR,S&P500} according to Liu’s
optimal investment strategy during the same investment periods.

Granted: the (B,S,D) strategy does come out victorious in the end, but this is largely
happenstance: had we terminated our algorithm during the financial brouhaha, our con-
clusion would have been different. Indeed, the realised Sharpe ratio obtained vis-à-vis
Liu’s derivative-free trading strategy is of a very modest nature (0.3 percentage points in
annualised Sharpe ratio) and so is the certainty equivalent relative initial wealth.

As for strategy (2) the conclusion is largely invariant, only here the mean return and stan-
dard deviation for the (B,S,D) strategy are actually lower than Liu’s strategy, jointly
leading to a Sharpe ratio of (modest) superiority and negative realised certainty equiva-
lent. We stress that this is about as far as we can go in our analysis here: while strategy
(2) on first sight seems to warrant Welchian hypothesis testing (after all, we are seemingly
performing the same experiment 25 times), this would be profoundly statistically flawed.
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Figure 5.11: Trading throughout 2000-01-03 to 2015-08-31: portfolio weights from the optimal
{B,S,D}-strategy (solid lines) and Liu’s {B,S}-strategy (dashed lines). Black lines show the weights
in B, red lines the weights in S and blue line the weight in D. Notice that the weights of the
{B,S,D}-strategy makes sudden jumps at the time-points where the expiry/strike of the option
changes, and that we do not trade during these dates. Furthermore, observe that the derivative
position is everywhere negative.

Essentially, whenever we sample a wealth path we do so from a different space, where
virtually every underlying parameter (bar the risk aversion) is different. Our conclusion is
thus of a purely observational nature: we see that the utility maximising trading strategy
including derivatives outperforms the one without; yet the financial benefit is hardly worth
talking about. Furthermore, this statement is obviously contingent upon the overall setting
of our experiments: from when we chose to terminate our algorithm, to which derivative
product we decided to consider. Indeed, our analysis has shamelessly disregarded transac-
tions costs, which will have a significant impact on our wealth paths. Nevertheless, as a
first analysis, the results are certainly noteworthy.

5.6 Conclusion

In the first part of this paper we derived optimal portfolio weights for a utility maximiser
who trades in a (B,S,D)-economy in a generic stochastic volatility framework, thus ex-
tending the work by Liu and Pan. In the second part, we derived explicit expressions for
the Heston model, which benefits by admitting closed form expressions for plain vanilla
European options. Here, empirically based Monte Carlo simulations suggest that there is
no tangible welfare benefit associated with hedging volatility per se: in other words, if
our portfolio benefits from the inclusion of derivatives, it does so through shear myopic
diversification. Liu and Pan are optimistic on this account: through quasi-empirical con-
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Figure 5.12: Trading according to the option-expiry structure: portfolio weights from the optimal
{B,S,D}-strategy (solid lines) and Liu’s {B,S}-strategy (dashed lines). Black lines show the weights
in B, red lines the weights in S and blue line the weight in D. Notice that the weights of the
{B,S,D}-strategy makes sudden jumps at the time-points where the expiry/strike of the option
changes, and that the investment portfolio is reset at these dates. Again, the derivative position is
everywhere negative.

siderations they find considerable improvements in the certainty equivalent in wealth for
investors who trade in derivatives (the reported number is 14.2% for an investor who trades
in a straddle position (long call, long put, same strike)). Our own findings, which arguably
have a much firmer grounding in empirical data, are considerably more pessimistic: whilst
we can extract a certainty equivalent of 1.75% for our long-term trading experiment (and
a higher Sharpe ratio than for Liu’s (B,S)-strategy) this is of a very modest nature, and
arguably a “fluke” brought about by the overall circumstances of our experiment. Obvi-
ously, we cannot rule out that more “cognisant” derivative strategies will have a greater
impact upon the investor’s wealth level: we will leave this for future research.



6
Volatility is Log-Normal, But not

for the Reason you Think

Martin Jönsson and Rolf Poulsen1

Abstract. Stochastic volatility models have increased enormously in popu-
larity since their introduction in the late eighties. Not the least for hedging
and option pricing purposes since they do well in fitting the implied volatility
surface. In fact, their pricing ability is often the reason for advocating such a
model, whilst their ability to capture the underlying dynamics is loosely mo-
tivated. In this paper we test for what is a good model of volatility based on
the latter perspective: we briefly review three well-known stochastic volatility
models, and concentrate on the instantaneous variance in Heston’s model,
a log-normal model and in the 3-over-2 model. Since volatility is a non-
observable process, we employ the technique of realized volatility to obtain
variance measurements and from these we form a goodness-of-fit analysis
based on the concept of uniform residuals. To assess the model-classification
ability of our analysis, we perform a Monte Carlo study. We then apply the
methodology in an empirical study, where our results show that the log-
normal model yields a much better goodness-of-fit than both Heston’s and
the 3-over-2 model.

Keywords: Stochastic Volatility, High-Frequency Data, Goodness-of-fit Anal-
ysis.

1Both authors are with the Department of Mathematical Sciences, University of Copenhagen.
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6.1 Prelude: Any signs of log-normality?

A widespread method for measuring the volatility2 of some price process S is through an
exponentially weighted average of past squared rates of returns

σ2
t =

1− λ
1− λN+1

N∑
j=0

[
ln

(
St−j

St−(j+1)

)]2

λj (6.1)

see for instance RiskMetrics (1996), Table 5.1, Wilmott (1998), Section 45, or Hull (2009),
Chapter 17. Applying this to the last 20 years of daily returns on the S&P 500 index3 (with
the suggested values λ = 0.94 and N = 20) gives the volatility shown in Figure 6.1 and if
we estimate the empirical density (i.e. a non-parametrically smoothed histogram) of the
volatility, we obtain what is shown in Figure 6.2. In that graph we have also plotted the

Figure 6.1: Daily variance of the S&P 500 index measured with the EWMA model of
equation (6.1) with λ = 0.94 and N = 20.

best-fitting log-normal and gamma densities: the log-normal distribution gives a decent
fit, the gamma distribution does not. The most commonly used continuous-time stochastic

2We should refer to the quantity on the right hand side of equation (6.1) as “instantaneous
variance”, multiply it by 252 to annualize, and then define volatility as its square root. For the
reason of readability we will drop this distinction in the introduction. Note that log-normal models
are stable to roots and squares, so it is not misleading to say “volatility is log-normal” even though
we model variance. Heston and the 3-over-2 models do not posses this stability property.

3We will use data from the SPDR S&P 500 ETF (SPY) as substitute for the S&P 500 index.
The reason for not looking at the index directly is simply a lack of accessible data. The S&P 500
ETF data is retrieved from Wharton Research Data Services, see Section 6.4.
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volatility model is that of Heston (1993), in which the variance has a stationary distribution
of gamma-type. It thus seems that there is clear empirical evidence against the Heston
model and in favour of a log-normal model.

There are, however, a few problems with this reasoning. First, the observations used to esti-
mate the densities in Figure 6.2 are far from independent: their first order auto-correlation
is about 0.99. This means that standard distributional tests (such as the Kolmogorov-
Smirnov test) are grossly invalid since they assume independent observations and things
may look a lot more significant than they actually are. Second, equation (6.1) is not the
true continuous-time object that Heston’s and other volatility models describe, it is a
measured quantity and as such contaminated by noise.

Figure 6.2: Estimated empirical density of the measured S&P 500 variance together with
fitted log-normal and gamma densities.

In this paper we attack these problems in order to discover, what we can and cannot say
about volatility with statistical certainty. The answers are in the title. More specifically,
we look at three continuous-time models – Heston, log-normal, and 3-over-2 – and show
that with daily measurements, equation (6.1) (and Figure 6.2 that relies on it) cannot
be used to distinguish the models. For all models, unconditional distributions look log-
normal and one-day-ahead conditional distributions are too noisy. However, shifting to
a 5-minute observation frequency for the volatility measurement, which is quite feasible
for data from liquid markets, it is possible to discriminate between the models both in
controlled simulation studies and on market data. We find overwhelming support for the
log- normal model, both for the S&P 500 index and at an individual stock level, as well
as when we take jump corrections into consideration.

Overview. We review three stochastic volatility models in Section 6.2.1 with focus on their
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process laws as given by conditional distributions. This to form statements about the fit of a
model that take distributional properties and temporal dependence into consideration. We
revisit some methods for parameter estimation in Section 6.2.2 and variance measurement
in Section 6.2.3 that will lie at the base of our goodness-of-fit analysis, outlined in Section
6.2.4. To address the question of credibility of our study, we perform a controlled numerical
assessment in Section 6.3 before we apply the methodology to real market data in the
empirical study of Section 6.4. Section 6.5 concludes.

6.2 Models, estimation and test

6.2.1 Continuous time stochastic volatility models

To fix some notation, we assume that the price of an asset can be represented by a stochas-
tic process S = (S(t))t≥0 that satisfies the stochastic differential equation

dS(t) = µS(t)dt+
√
V (t)S(t)dZ(t) (6.2)

where µ is the drift coefficient, Z = (Z(t))t≥0 is a Wiener process and V = (V (t))t≥0 is
the instantaneous variance process which will be our main modelling target. Specifically,
we consider the following model specifications:

Log-normal model. For this model, let V (t) = expX(t) where X = (X(t))t≥0 is a mean-
reverting Gaussian process (also known as an Ornstein-Uhlenbeck or Vasicek process)
satisfying

dX(t) = κ(θ −X(t))dt+ εdW (t)

with mean-reversion speed κ, long-term mean θ and diffusion parameter ε, while W =
(W (t))t≥0 is another Wiener process correlated to Z with correlation coefficient ρ (see for
instance Scott (1987) for an early account of this model). By applying Ito’s formula to
X(t)eκt, one obtains after rearrangement

X(t) = X(s)e−κ(t−s) + θ(1− e−κ(t−s)) + ε

∫ t

s
e−κ(t−u)dW (u)

such that X is a Gaussian process (making V log-normal) with conditional distribution

X(t+ h)|X(t) ∼ N
(
X(t)e−κh + θ(1− e−κh),

ε2(1− e−2κh)

2κ

)
(6.3)

and with a stationary distribution that is normal with mean θ and variance ε2/(2κ).

Heston’s model. As proposed by Heston (1993), the instantaneous variance V follows a
square-root process (also known as Feller or Cox-Ingersoll-Ross process)

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dW (t) (6.4)
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with mean reversion κ, long-term mean θ and diffusion parameter ε. Taking conditional
expectation of the integrated version of (6.4) leads to a first order differential equation for
the conditional mean. The solution is

E(V (t+ h)|V (t)) = V (t)e−κh + θ(1− e−κh) (6.5)

while the conditional variance

Var(V (t+ h)|V (t)) = V (t)
ε2

κ
(e−κh − e−2κh) + θ

ε2

2κ
(1− e−κh)2 (6.6)

is derived by taking conditional expectation of dX2(t) (obtained by Ito’s formula) and solv-
ing the corresponding equation (see for instance Cairns (2004) for details). The conditional
distribution of V in Heston’s model is a non-central chi-squared distribution with df =
4κθ/ε2 degrees of freedom, non-centrality parameter ν(t) = V (t) · 4κe−κh/(ε2(1 − e−κh))
and scaling parameter c = 4κ/(ε2(1− e−κh)), that is

c · V (t+ h)|V (t) ∼ χ2 (df, ν(t))

see Cox et al. (1985). If the parameters satisfy the Feller condition 2κθ > ε2, then V will
have a stationary gamma distribution with shape parameter df/2 and scale parameter
ε2/(2κ).

The 3-over-2 model. The dynamics of the instantaneous variance in the 3-over-2 model
is given by

dV (t) = V (t)κ(θ − V (t))dt+ εV (t)3/2dW (t)

where κ, θ and ε are parameters. By applying Ito’s formula to Y (t) = 1/V (t) we see that

dY (t) = κθ

(
κ+ ε2

κθ
− Y (t)

)
− ε
√
Y (t)dW (t) (6.7)

and thus 1/V follows a square root process with reversion speed κ̃ = κθ and long-term
mean θ̃ = (κ + ε2)/(κθ). We will refer to the model specified by (6.7) as the reciprocal
3-over-2 model with reciprocal parameters (κ̃, θ̃, ε̃).4 This implies that V will have a sta-
tionary reciprocal-gamma distribution with shape parameter 2κ̃θ̃/ε2 and rate parameter
2κ̃/ε2. For a treatment of the 3-over-2 model including the derivation of option-pricing
formulas, see Heston (1997) and Lewis (2000).

6.2.2 Estimation of discretely observed diffusions

Suppose for now that we have observed the instantaneous variance process, or some non-
parameter-dependent transformation of it, at discrete points in time t0, . . . , tN where the

4Note that if the Feller condition holds for Y then P(Y (t) > 0) = 1 for all t ≥ 0 which implies
that the variance process V = 1/Y will take finite values almost surely. Thus, we should require
that this is the case. Indeed: 2κ̃θ̃ > ε2 is equivalent to 2κ > −ε2 for the parameters of V and this
condition is assumed to hold by definition.
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spacings hi = ti+1− ti are one day or a few minutes for high-frequency data. An observed
path x = (x0, . . . , xN ) of the variance/transformed process, generically denoted X, is thus
a set of N + 1 observations where xi is the observed value of X(ti) for i = 0, . . . , N .

For the log-normal model with parameters ψ = (κ, θ, ε), the role of X is played by ln(V ),
and we can write the log-likelihood as

l(ψ;x) =
N−1∑
i=0

log φ(xi+1;mi+1|i, σ
2
i+1|i) (6.8)

where φ denotes the normal density, here with (conditional) mean mi+1|i and variance

σ2
i+1|i as given in (6.3). The maximum likelihood estimate ψ̂ = (κ̂, θ̂, ε̂) is the argument that

maximizes the log-likelihood (6.8). It may be found in closed form if the observations are
equidistant, and easily by a numerical optimizer if they are not. Calculating the observed
information matrix

Io = − ∂2l

∂ψT∂ψ

∣∣∣∣
ψ=ψ̂

by numerical differentiation at estimated values gives an estimated standard error of the

jth parameter as
√

(I−1
o )j,j where (A−1)i,j denotes element i, j of the inverse of a matrix

A.

For the Heston model, the role of X is played by V itself. Optimization on the non-
central chi-squared distribution that enters the model’s log-likelihood is not possible in
closed form, and numerically it is delicate and slow. A simple way to obtain a consistent
estimator of ψ = (κ, θ, ε) is by plugging the conditional moments into a Gaussian likelihood
and maximizing. In other words, this means using the approximate log-likelihood

la(ψ; v) =
N−1∑
i=0

log φ(vi+1;mi+1|i, σ
2
i+1|i), (6.9)

where the conditional mean and variance are given by equations (6.5)-(6.6). The reason
to why this gives consistent estimators is that the first order conditions for optimization
of (6.9) are a set of so-called martingale estimating equations, see Sørensen (1999). As for
the previous model, we approximate standard errors of the estimated parameters from the
observed information matrix of the log-likelihood by numerical differentiation.

In a similar fashion for the (reciprocal) 3-over-2 model, the approximate log-likelihood (6.9)
with 1/V in the role of X can be optimized to obtain maximum likelihood estimates of
the reciprocal parameters (κ̃, θ̃, ε̃). These estimates may then be transformed to estimates
of the original parameters through κ = κ̃θ̃− ε̃2 and θ = κ̃/(κ̃θ̃− ε̃2) while ε = ε̃. Standard
errors of the reciprocal parameters may be calculated from the observed information matrix
such that standard errors of the original parameters are obtained by the delta method.

Alternatively, we may re-parametrize (6.9) to express a likelihood function with respect
to the original parameters of V

l̂a(κ, θ, ε; v) = la(ψ̃(κ, θ, ε); v) (6.10)
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where ψ̃(κ, θ, ε) is short-hand notation for the inverse transformations κ̃ = κθ and θ̃ =
(κ+ε2)/(κθ). Numerical optimization of the approximate log-likelihood (6.10) with respect
to (κ, θ, ε) may then be performed to obtain maximum likelihood estimates of the original
parameters directly.

6.2.3 Measuring volatility

Contrary to the simplifying assumption in the previous subsection, the instantaneous vari-
ance process V is not directly observable and in practice it must be measured from ob-
servations of the asset price process. One method for this, as already mentioned in the
introduction, is given by the EWMA measure (6.1). Another method that also provides
quantitative statements about the accuracy of the measurement comes by following An-
dersen and Benzoni (2009) in a study of so-called realized volatility.

To this end, denote the logarithmic asset price by Y (t) = logS(t) and the continuously
compounded return over a measurement interval [t − k, t] by r(t, k) = Y (t) − Y (t − k).
Applying Ito’s formula with S following equation (6.2) then gives

dY (t) = α(t)dt+
√
V (t)dZ(t)

where α(t) = µ− V (t)
2 such that the continuously compounded return over [t−k, t] amounts

to

r(t, k) =

∫ t

t−k
α(u)du+

∫ t

t−k

√
V (u)dZ(u).

From this, we see that the quadratic variation of the log price over the same time interval
is given by

QV (t, k) =

∫ t

t−k
V (u)du. (6.11)

For a partition of [t − k, t], for instance {t − k + j
n , j = 0, . . . , nk}, the realized volatility

is defined by

RV (t, k;n) =

nk∑
j=1

r

(
t− k +

j

n
,

1

n

)2

and semimartingale theory ensures uniform convergence in probability

RV (t, k;n) −→ QV (t, k) as n→∞. (6.12)

The point is, for high-frequency returns (a large n) we have that RV gives a good approx-
imation of QV and we may use that

∫ t
t−k V (u)du ≈ V (t̄) ·k for some t̄ ∈ [t−k, t] to obtain

a measured variance path. Thus, to adopt our notation, for an asset log-price Y observed
at time points t0, . . . tN and a measurement interval [ti−n, ti] (say one day) such that the
observation frequency is set by n (say every 5 minutes), we calculate

vi =
1

ti − ti−n

n∑
j=1

(
yi−n+j − yi−n+(j−1)

)2
(6.13)
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for i = n, 2n, . . . , N as the measured variance path v = (vn, v2n, . . . , vN ) of the non-
observable variance V (tn), V (t2n), . . . . Note that we obtain daily variance measurements
while we require asset price observations of a much higher frequency. Of course, we may re-
duce n to get more frequent variance measurements but for a cost of poorer approximation
with respect to the convergence in (6.12).

Remark 6.1. Based on the same reasoning as for realized volatility, we may employ the
measurement technique for estimating the vol-of-vol parameter ε. For Heston’s model, let
Y (t) =

√
V (t) and apply Ito’s formula to obtain

dY (t) =

(
κ

2Y (t)
(θ − Y 2(t))− ε2

8Y (t)

)
dt+

ε

2
dW (t)

with quadratic variation QV ([0, T ]) = ε2T/4 over the interval [0, T ]. This leads us to the
vol-of-vol estimator

ε̂2 =
4

T

∑
ti∈[0,T ]

(Y (ti+1)− Y (ti))
2 (6.14)

based on the ”realized volatility” of the transformed variance process over [0, T ]. In a
similar fashion for the 3-over-2 model, Y (t) = 1/

√
V (t) gives by Ito’s formula

dY (t) = (. . . )dt− ε/2 · dW (t)

such that equation (6.14) can be reused for an estimator. For the log-normal model, Y (t) =
log V (t) yields a diffusion term εdW (t) and quadratic variation QV ([0, T ]) = ε2T so that
equation (6.14) divided by 4 gives the desired vol-of-vol estimator.

The realized volatility measure relies on the fact that S is described by a stochastic process
following (6.2) that does not have any jumps5 such that the convergence (6.12) provides
an approximation of the integrated variance due to (6.11). However, one may argue that
this is a somewhat simplified description of reality when looking at market data, and call
for a model that allows for jumps in the asset price path as well.6 One way of doing so, as
described by Andersen and Benzoni (2009), is to add a jump process to the price dynamics

dS(t) = µS(t)dt+
√
V (t)S(t)dZ(t) + (eξ(t) − 1)S(t−)dN(t)

where N = (N(t))t≥0 is a Poisson process uncorrelated to Z with finite intensity, while
ξ = (ξ(t))t≥0 are random variables that determine the magnitudes of the jumps: ∆S(t) =
S(t)−S(t−) = S(t−)eξ(t). Ito’s formula for jump-diffusions applied to Y (t) = logS(t) then
gives

dY (t) = α(t)dt+
√
V (t)dZ(t) + ξ(t)dN(t) (6.15)

5Note that S being the solution of (6.2) has continuous sample paths also in the case when V
displays jumps.

6Even if the question of discontinuities for asset prices has been under scrutiny for a long time,
the assumption of continuous price paths is perhaps not as restrictive as previously believed, see
Christensen et al. (2014).
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where the jump term ξ(t)dN(t) is zero except when a jump occurs at time t. It should be
understood in integral form ∫ t

0
ξ(u)dN(u) =

∑
Ti∈[0,t]

ξ(Ti)

where T1, . . . , TN(t) are the jump times of N during the time interval [0, t]. Under these
dynamics, the quadratic variation of the log-price Y following (6.15) includes both the
integrated variance and a cumulative squared jump part

QV (t, k) =

∫ t

t−k
V (u)du+

∑
Ti∈[t−k,t]

ξ2(Ti)

while the convergence of the realized volatility measure

RV (t, k;n) −→ QV (t, k) as n→∞.

still holds (ucp). Thus, an estimator is needed for the integrated variance part separately
and here we employ the realized bipower variation as introduced by Barndorff-Nielsen and
Shephard (2004)

BV (t, k;n) =
π

2

nk∑
j=2

|r
(
t− k +

j

n
,

1

n

)
||r
(
t− k +

j − 1

n
,

1

n

)
|.

This measure provides a consistent estimate of the variance part that is robust to jumps.
This also gives an estimator of the cumulative squared jump part since we have

RV (t, k;n)−BV (t, k;n) −→
∑

Ti∈[t−k,t]

ξ2(Ti) as n→∞

from which the quantity on the left hand side can be employed as an estimator.

6.2.4 Goodness of fit and uniform residuals

A goodness-of-fit analysis that takes into consideration the full conditional structure of
a diffusion process X uses the so-called uniform residuals, see Pedersen (1994). With
Fi+1|i(x;ψ) denoting the conditional distribution function of X(ti+1)|X(ti), the uniform
residuals are defined by the probability transformation

Ui+1 = Fi+1|i(X(ti+1);ψ), i = 0, . . . , N − 1.

The random variables U1, . . . , UN will be independent and identically U(0, 1) distributed if
the true distribution of X is that of the family {Fi+1|i, i = 0, . . . , N−1}, a result that goes
back at least to Rosenblatt (1952). The proof is straightforward: if the random variable
X has a strictly increasing, continuous distribution function F , then the random variable
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F (X) will be uniformly distributed over the unit interval. This fact, combined with the
Markov property of diffusion processes and an application of iterated expectations, then
give that {Ui} is a family of independent random variables.

For the log-normal model, we calculate uniform residuals from a variance path v as

ui+1 = FN

(
xi+1;xie

−κhi + θ(1− e−κhi), ε
2

2κ
(1− e−2κhi)

)
(6.16)

where xi = log vi and with FN denoting the normal distribution function. For Heston’s
model, we use the true conditional non-central chi-squared distribution function Fχ2 and
calculate residuals as

ui+1 = Fχ2

(
civi+1; df =

4κθ

ε2
, ncpi = civie

−κhi
)

(6.17)

where ci = 4κ/(ε2(1−e−κhi)). Similarly, for the 3-over-2 model (6.17) gives the correspond-
ing uniform residuals when v is substituted with 1/v and the parameters are substituted
with κ̃ = κθ and θ̃ = (κ+ ε2)/(κθ) from (κ, θ, ε) being the 3-over-2 estimates (or directly
from the reciprocal parameters).

To test if a family of observed residuals (u1, . . . , uN ) – calculated with the probability
transformation corresponding to one of the models – are independently U(0, 1)-distributed,
we employ a quantile-quantile plot, which is a standard diagnostic tool. We also look at
a standard chi-square test according to the following: (i) divide the interval [0, 1] into nb
subintervals of equal sizes, “bins”, (ii) calculate Ej = nb/n, the theoretical frequency of
observations in bin j, (iii) calculate Oj , the observed number of observations respectively.
Under the null hypothesis

H0 : (u1, . . . , uN ) are independent observations from the uniform distribution

we then have that the test statistic

nb∑
j=1

(Oj − Ej)2

Ej
(6.18)

is chi-square distributed with nb−1 degrees of freedom. As an alternative, the Kolmogorov-
Smirnov test yields that the test statistic

√
n sup

x
|F̂n(x)− FU (x)|

converges to the Kolmogorov-Smirnov distribution under the same null hypothesis, where
F̂n denotes the estimated empirical distribution function while FU is the uniform distri-
bution over [0, 1].

To summarise, we perform the following steps for a goodness-of-fit analysis:

1. Measure variance v = (v1, . . . vN ) by the realized volatility measure (6.13).
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2. For each model: obtain (κ̂, θ̂, ε̂) from the maximum likelihood estimator (6.8) or
(6.9).

3. For each model: calculate residuals u = (u1, . . . , uN ) from (6.16) or (6.17) with
(κ̂, θ̂, ε̂).

4. Perform quantile diagnostics and/or a test under H0 : residuals are iid U(0, 1).

In the next section, we will apply these steps in a controlled simulation study to see if we
can tell with certainty, based on quantile diagnostics and test results, which model is the
correct one.

6.3 Simulation study

In what follows, we apply our goodness-of-fit test described above to simulated data. We
generate asset price and variance paths from each of the three models with the simulation
methods described in the appendix, Section 6.5.1. With properties of the market data in
mind we use the following specification: we simulate each path with 362,881 observations
to mimic a time grid of length T = 15 years with equidistant spacing ∆ = 5min. This
corresponds to 252 trading days per year, 8h per day and 12 observations per hour. We
set S0 = 100 and µ = 0.05 for the asset price, a correlation ρ = −0.20 for the driving
Wiener process and V0 = 0.04 for the initial variance along with the parameters given in
Table 6.3.

κ θ ε

Heston 7.00 0.035 0.92
log-normal 71.9 -3.89 12.9
3-over-2 3.65 17.1 111.5

Table 6.3: Model parameters for the variance processes used for the simulation study.

Figure 6.4 shows simulated asset price and variance from Heston’s model7 along with real-
ized volatility (RV) with n = 192 price observations for each variance measurement. This
yields 1,890 measured observations in total. Parameter estimates obtained from optimiz-
ing the likelihood based on simulated variance data8 yields (κ̂, θ̂, ε̂) = (10.0, 0.030, 0.94)

7We employ the implicit Milstein scheme for Heston’s model (note that 4κθ > ε2 holds), the
exact variance scheme for the log-normal model and the implicit Milstein of the reciprocal variance
for the 3-over-2 model (4κ̃θ̃ > ε2 hold as well for reciprocal parameters) – see Section 6.5.1 in the
appendix for details.

8Here, we use a subset of data taken at every 192nd index of the original variance path. This to
estimate parameters from a data set that corresponds to the measured variance at the measurement
time-points.



148 Chapter 6. Volatility is Log-Normal

Figure 6.4: Left figure: A simulated price path from Heston’s model with the implicit
Milstein scheme. T = 15 years with 252 days per year and n = 96 points per day (every 5
minutes) giving 362,881 observations. Right figure: simulated (black) and RV-measured
variance (red) with n = 192 prices per variance measurements, giving 1,890 observation.

while the RV-measured variance results in the estimates (κ̂, θ̂, ε̂) = (5.78, 0.030, 0.82). Es-
timated parameters are then used in the next step to calculate uniform residuals with
resulting uniform quantile plots shown in Figure 6.5. The quantile plots exhibit good fits
for both sets of residuals which is also confirmed by a chi-square test based on nb = 250
bins: the p-value is 0.79 for the simulated variance path and 0.57 for the measured data.
This means that we can not reject the null-hypothesis, residuals are uniformly distributed,
which implies that Heston’s model shows a strong goodness-of-fit, for both the simulated
and measured data.

If we redo the procedure but with calculated residuals (and estimated parameters) corre-
sponding to the log-normal and 3-over-2 model, we obtain the results in Table 6.6. The

Simulated Realized EWMA
P-value: variance volatility measure

Heston 0.79 0.57 0
log-normal 0 0 0
3-over-2 0 0 0

Table 6.6: Results from the chi-square test of uniform residuals calculated from the three
different model assumptions on underlying data simulated from Heston’s model.

table is supplemented with the EWMA measure (λ = 0.94) based on daily asset prices
which yields zero p-values for all models. In all, it is clear that the log-normal and 3-over-2
model have no support in terms of our goodness-of-fit analysis. Further, if we use the
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Figure 6.5: Quantile plots of Heston uniform residuals calculated from a simulated vari-
ance path (left) and from the corresponding measured variance (right).

largest p-value as a model discrimination criterion based on RV-measured data we would
be able to distinguish between the three models.

In a similar fashion as above we run the test procedure on generated data from the
log-normal model. Estimation of log-normal parameters from simulated variance yields
(κ̂, θ̂, ε̂) = (71.7,−3.88, 13.0) while measured variance gives (κ̂, θ̂, ε̂) = (46.0,−3.79, 9.57).
The p-values of calculated uniform residuals are reported in Table 6.7 along with the He-
ston and 3-over-2 models. The result supports the hypothesis that variance data, both

Simulated Realized EWMA
P-value: variance volatility measure

Heston 0 0 0
log-normal 0.72 0.78 0
3-over-2 0 0 0

Table 6.7: Results from the chi-square test of uniform residuals calculated from the three
different model assumptions on underlying data simulated from the log-normal model.

simulated and measured, fits well with being log-normal, but not with Heston or the 3-
over-2 model. Based on p-values we can discriminate between the models for the log-normal
case as well.

Data generated from the 3-over-2 model yields parameter estimates (κ̂, θ̂, ε̂) = (15.6, 3.9, 110.3)
and (κ̂, θ̂, ε̂) = (16.8, 2.52, 89.2) respectively, which results in the p-values given in Table
6.8. The results show support for the goodness-of-fit of the 3-over-2 model (both for simu-
lated and measured variance) but not for Heston or the log-normal model and once again
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Simulated Realized EWMA
P-value: variance volatility measure

Heston 0 0 0
log-normal 0 0 0
3-over-2 0.90 0.26 0

Table 6.8: Results from the chi-square test of uniform residuals calculated from the three
different model assumptions on underlying data simulated from the 3-over-2 model.

is it possible to predict the correct model based on the largest p-value from residuals
calculated with the realized volatility.

We conclude that in all three cases we get support for the correct underlying simulation
model while the alternatives do not get any support in terms of model fit. This might not
be as surprising for simulated data as for the realized volatility measure – here we have
potential sources of errors in several steps that may affect the distributional properties in
a discommoding way – and we can in fact discriminate between the three models. We also
note that variance measured with the EWMA model yields zero p-values in all considered
cases, most likely since this is a measure being too crude for the preservation of tractable
distributional properties.

To examine the robustness of this goodness-of-fit analysis, and in particular its model
discrimination power, we run 100 repetitions of the above procedure with each of the
models as underlying. In each repetition, we calculate p-values based on uniform residuals
corresponding to the three alternatives and record which model achieves the highest p-
value. As a result, we obtain a robust 100% prediction hit-rate (that is, the correct model
is identified based on the highest p-value obtained among the three models) in all three
cases: when uniform residuals are calculated from RV-measured variance of the log-normal,
Heston’s and the 3-over-2 model, our goodness-of-fit analysis always points us to the correct
model. Graphs of recorded p-values from all 100 repetitions can be found in the appendix,
Figure 6.24. Similarly as in the one-case study above, we also observe zero (or negligible)
p-values for the alternative models, for every repetition9.

Remark 6.2. If we look at corresponding p-values from the Kolmogorov-Smirnov test
instead, the results remain unchanged with correct model predictions for all 100 repetitions.
A minor difference between the results is that Heston simulations obtain relatively lower

9We observe quite some variation in realized p-values of the correct model across different rep-
etitions, regardless of underlying model (the alternatives obtain stable values ∼zero). To put this
p-value variation into perspective, we perform 100 additional simulations with draws directly from
the uniform distribution. The resulting p-values, shown in the appendix, exhibit a comparable
degree of variation as well, even though we have drawn the residuals directly from the true dis-
tribution. We therefore remind that we should not rely to hard on the actual magnitude of the
p-values, and that diagnostics from quantile plots make an important supplement.
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p-values for the true model when compared to the chi-squared test, while log-normal
simulations lead to relatively higher p-values for the correct underlying.

Remark 6.3. The above Monte Carlo study was performed with simulations schemes that
introduce bias to the discrete-time approximations. First, the simulation of all three models
employ the Euler-Maruyama scheme of equation (6.19) for the log-asset price which may
disrupt the distributional properties of the simulated price paths. Secondly, the implicit
Milstein scheme introduces bias to the simulated variance process of the Heston and the
3-over-2 model. As a result we present simulated data to our goodness-of-fit analysis that
might affect several steps of the test procedure in an adverse way. Regardless, our test
procedure preforms with a 100% success-rate on the simulated data. The almost exact
simulation schemes of Section 6.5.1 do not introduce bias to the asset price although
they include approximations for the integrated variance processes. With this in mind we
repeat the full Monte Carlo study with 100 repetitions based on each model with the
almost exact simulation schemes. The results are practically identical to the previous
results with Euler/Milstein based schemes: the correct model achieves the highest p-value
in all repetitions, for all three models, whilst the alternative models achieve zero support
throughout.

Finally, we investigate how robust the goodness-of-fit analysis is with respect to (i) the
accuracy of the realized volatility measurement and (ii) the total number of asset price
observations. For the first point, we see that a resolution of n > 50 gives 100% correct
model predictions (based on 100 repetitions) for all three model while for the second point,
we require at least three years of high-frequency data to predict the correct model. See
Section 6.5.2 in the appendix for details.

6.3.1 Daily EWMA measured variance revisited

To return to the question of creditability of the introductory analysis in Section 6.1, we
perform a mimicking experiment and apply the exponentially weighted average measure
to 4,532 daily prices simulated from Heston model. Figure 6.9 shows fitted empirical dis-
tributions based on EWMA measured variance and most likely these curves will lead us
to the same conclusion as for the S&P 500 data: the distribution looks log-normal! This
is the case even though the underlying is Heston and it should indeed encourage us to
question the preluding conclusion about the log-normality of S&P 500 variance.

Immediately, as we have a large number of observations (4,532 compared to 1,890 used in
the previous study) the failing link is the accuracy of the EWMA measure, not an insuf-
ficient number of observations: the root mean square error of EWMA measured variance
is 0.037 compared to 0.009 for the realized volatility of Figure 6.4. Further, if we employ
our goodness-of-fit analysis with the EWMA measure along with the corresponding true
variance, we get the results in Table 6.10. The EWMA measure credits Heston’s model
with zero p-value while the simulated variance points to the correct model. Note that the
log-normal model, which has our support from a visual diagnose of Figure 6.9, (at least
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Figure 6.9: Fitted empirical, log-normal and gamma densities to EWMA measured vari-
ance with λ = 0.94 of 4,532 simulated prices with Heston’s model.

Simulated EWMA
P-value: variance measure

Heston 0.39 0
log-normal 0 0
3-over-2 0 0

Table 6.10: Heston’s model with 4,532 observations: results from the chi-square test of
uniform residuals calculated from the three different model assumptions for the underlying
data.

for a fitted log-normal distribution) obtains no support based on the EWMA measure.
Similar results apply if we use simulated data from the log-normal and 3-over-2 model, no
support to any of the models from the EWMA measure with 4,532 observations while the
true variance points us to the correct model in both cases.

This simple experiment shows that there is not much hope of predicting the correct un-
derlying when using the exponentially weighted average measure, nor can we tell which
model is true from a diagnose of empirical distributions – this will even lead to false conclu-
sions.10 On the other hand, when we measure variance from ∼ 360, 000 price observations
and apply our goodness-of-fit analysis, we have good reasons to believe that we can indeed

10Indeed, if we repeat a 1000 times the steps leading to Figure 6.9 and record the closest distri-
bution in L2-distance, we have that the log-normal function is closest to the empirical in 73% of
the cases.
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predict a model that nicely fits the data with a significant p-value. Even more importantly,
we have good reasons to believe that a poorly fitting model will not get any support at
all from the test. In the next section, we apply these findings and reconsider the S&P 500
data with our sharper analysis based on high-frequency price quotes.

6.4 Empirical study: horserace between models

Our empirical analysis is based on market data from the S&P 500 index and ten different
securities listed on the New York Stock Exchange (NYSE). The data is retrieved from
Wharton Research Data Services11 and it consists of intraday tick-by-tick trade quotes.
This raw data is, however, not directly suited for analysis and we apply a series of prepro-
cessing methods before our analysis. The first method is a cleaning procedure as proposed
by Barndorff-Nielsen et al. (2009). First, entries with a zero-price are deleted along with
entries with an abnormal sale condition as indicated by the code of the trade. The dataset
is then restricted to contain trades from the exchange where the security is listed. Next,
entries with the same time stamp are replaced by their median price.

The cleaned data will be on an irregular tick-by-tick time scale. In the second preprocessing
step, we aggregates prices to an equidistant 5 minute time-grid by taking the last realized
price before each grid point. Aggregation to a 5 minute frequency is motived by the
fact that price processes are increasingly perturbed by micro-structure noise for higher
frequencies. As a final step, the data is restricted to exchange trading-hours, being 9:30
am to 4:00 pm from Monday to Friday.

With this data in hand, we apply our goodness-of-fit analysis to the SPDR S&P 500
ETF, which we also analysed in the introduction. The preprocessed data contains 368,724
price quotes observed with a 5 minute frequency from the period 1996-01-02 to 2013-
12-31 and a graph of the historical prices is depicted in the left pane of Figure 6.11. In
the first step of our analysis, we apply the realized volatility measure with resolution
n = 192 and a plot of the resulting 1,920 variance observations is shown in the right
pane of Figure 6.11 (cf. Figure 6.1 for the daily exponentially weighted average variance).
Numerical optimization is then performed of the likelihood function from each model with
resulting parameter estimates and standard errors recorded in Table 6.12. In the next
step, estimated parameters are used to calculate uniform residuals from the probability
transform of respective model with resulting quantile-quantile plots depicted in Figure
6.13.

From the plots, we see a perfect fit of the log-normal residuals to the standard uniform
distribution while the Heston and 3-over-2 model exhibit very poor fits. From a visual
diagnose we thus have good reasons to prefer the log-normal model for the S&P 500

11https://wrds-web.wharton.upenn.edu/wrds
12These estimates and errors are obtained from the reciprocal specification of the 3-over-2 model

(6.7) with the log-likelihood function (6.9) optimised and differentiated with respect to reciprocal
parameters.
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Figure 6.11: The left figure shows the S&P 500 ETF price from 1996-01-02 to 2013-12-31
with a 5 minute frequency and a total of 368,724 observations. Right figure: variance of
the S&P 500 index measured by realized volatility with frequency n = 192 and a total of
1,920 observations.

κ̂ θ̂ ε̂

Heston 21.7 ( 3.63 ) 0.022 ( 0.0049 ) 2.98 ( 0.0791 )
log-normal 56.1 ( 3.36 ) -3.65 ( 0.049 ) 11.5 ( 0.24 )
3-over-212 24.6 ( 4.01 ) 9.18 ( 6.98 ) 128.2 ( 3.95 )

Table 6.12: S&P 500 ETF data: maximum likelihood estimated parameters and standard
errors from the realized volatility measure.

index, in favour of dismissing the other two. The diagnose is supported by the last step of
our goodness-of-fit analysis with results from a chi-square test with nb = 250 bins recorded
in Table 6.14: we can not reject the null hypothesis that residuals are standard uniform
when they are calculated from the log-normal model. This agrees with p-values from the
Kolmogorov-Smirnoff test as well. On the other hand, we reject with strong confidence the
hypothesis when residuals are calculated from both Heston’s and the 3-over-2 model.

Remark 6.4. A remark on estimated Heston parameters is in order here. Comparing
our estimates to those reported elsewhere in the literature, Ait-Sahalia et al. (2007), Hurn
et al. (2015) and Guillaume and Schoutens (2012), as well as to market practice,13 we get a
combination of relatively high volatility-of-volatility ε and high speed of mean reversion κ.
This is needed to match the spiky time series behaviour of instantaneous variance, which
is basically what our likelihood approach aims at capturing, and what we believe must lie
at the heart of any good volatility model.

13See http://www.wilmott.com/messageview.cfm?catid=8\&threadid=36596
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Figure 6.13: Quantile plots of the uniform distribution from uniform residuals calculated
with measured S&P 500 variance.

P-value: Chi-square Kolmogorov-Smirnov

Heston 0.00 0.00
log-normal 0.79 0.68
3-over-2 0.00 0.00

Table 6.14: S&P 500 data: p-values of chi-square and Komogorov-Smirnov distributional
tests of uniform residuals calculated from each model.

Remark 6.5. For the 3-over-2 model, parameter estimates of Table 6.12 and the resulting
fit of the model residuals are based on the reciprocal specification. If we instead optimize
the likelihood (6.10) we obtain what is reported in Table 6.15 and here we observe stan-
dard errors that are quite large for kappa and theta. The estimation is performed by
optimizing (6.10) with respect to original parameters (κ, θ, ε) such that the square-root
process parameters (κ̃, θ̃, ε̃) is a transformation of these. This transformation might cause
the standard error calculation to be unstable as it is based on numerical differentiation of
the log-likelihood function and a matrix inversion of the information matrix, both involv-
ing the transformation. Howbeit, if we continue our goodness-of-fit analysis from here on,
we obtain zero p-values from both the chi-square and Kolmogorov-Smirnov test as well –
the support for the 3-over-2 model remains grossly absent.

κ̂ θ̂ ε̂

3-over-2 2.7 ( 5.64 ) 30.0 ( 62.7 ) 98.2 ( 1.95 )

Table 6.15: S&P 500 ETF data: maximum likelihood estimated parameters and standard
errors for the 3-over-2 model.
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# obs: IBM MCD CAT MMM MCO

price 246,308 328,111 328,107 328,108 271,580
variance 1,282 1,708 1,708 1,708 1,414

# obs: XOM AZN GS HPQ FDX

price 288,846 302,350 300,759 239,356 328,104
variance 1,504 1,574 1,566 1,246 1,708

Table 6.16: Number of asset price and measured variance observations for the NYSE
stock data.

Based on the results from all models, a visual diagnose of quantile plots and p-values from
two distributional tests, we see strong support for the log-normal model as a good volatility
model for the S&P 500 data. But what if this is only a simple aggregation effect? After
all, the S&P 500 index represents a portfolio of ∼ 500 individual stocks: a critic may argue
that realized volatility measured from this portfolio will be approximately (log)normal
distributed, due to the central limit theorem, regardless of the stocks’ individual variance
distributions.14

With the above criticism in mind – and since the analysis is interesting in its own right –
we next look at market data of ten individual stocks randomly chosen from the New York
Stock Exchange. The stocks’ tick codes along with their respective number of observations
are reported in Table 6.16. The time lengths of the price series are in the range of 12 to
16 years, subject to availability from Wharton Research Data Services.

Estimated parameters and standard errors from the measured realized volatility are listed
in the appendix, Table 6.25. Based on these, we perform our goodness-of-fit analysis for
each individual stock with resulting p-values from the chi-square and Kolmogorov-Smirnov
tests reported in Table 6.17, where we have included both the original and reciprocal
specification of the 3-over-2 model. The results are thoroughgoing: for each of the ten
stocks, we obtain a striking support for the log-normal model while the null hypotheses,
suggesting either of the alternative models, are rejected with strong confidence. The only
figure that stands out is the p-value of 1% from the chi-square test of log-normal residuals
calculated from Hawlett-Packard (HPQ). Based on a confidence < 99% we thus reject all
three models for the HPQ data. On the other hand, we observe a p-value of 5% from
the Kolmogorov-Smirnov test which indicates that we should prefer, if any, the log-normal
among the three models. This is also supported by a visual diagnose of the quantile-quantile
plots: the log-normal residuals provide a convincing fit to the uniform distribution, while

14Even if the realized volatility measure is non-linear, a rough calculation gives (with illustrative

notation) RV (S&P500) =
∑
t pf return(t)2 ≈

∑
t (
∑
k stockk return(t))

2
=
∑
t

∑
k stockk r(t)

2 +∑
k 6=j 2stockk r(t)stockj r(t) =

∑
k RV (stockk) +

∑
k 6=j 2

∑
t stockk r(t)stockj r(t). The first term

is the sum of individual variances, while the second term sums up realized covariations across all
stocks – a quantity that converges to the sum of individual quadratic variations. In particular, if
returns are mutually independent across all stocks, we have RV (S&P500) ≈

∑500
k RV (stockk).
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chi-square: IBM MCD CAT MMM MCO XOM AZN GS HPQ FDX

Heston 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
log-normal 0.48 0.67 0.36 0.84 0.15 0.61 0.91 0.12 0.01 0.90

3-over-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3-over-2 inv 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Kolm.-Smir.: IBM MCD CAT MMM MCO XOM AZN GS HPQ FDX

Heston 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
log-normal 0.21 0.53 0.83 0.79 0.12 0.07 0.56 0.12 0.05 0.47

3-over-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3-over-2 inv 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.17: P-values from uniform distributional tests of uniform residuals calculated
from the realized volatility measure with n = 192.

the other two do not, see Figure 6.27 in the appendix.

6.4.1 What about jumps in the asset prices?

The previous analyses of price data was based on realized volatility since this measure gives
a good approximation of quadratic variation. For a general semimartingale, the quadratic
variation consists of an integrated variance part and a jump term which is non-zero if and
only if the price process exhibits jumps. Therefore, realized volatility is a suitable measure
when the price process is continuous, or at least has negligible jumps of low frequency
and small magnitudes. Otherwise, it will provide a biased measurement of the integrated
variance and the bias will always be positive as the squared jumps accumulate to the
quadratic variation. This could give an explanation to the variance “spikiness” observed
for instance in Figure 6.13 which may in turn affect the fit of a particular volatility model.

For this reason, we repeat the goodness-of-fit analysis based on the realized bipower mea-
sure with n = 192 prices for each variance observation. For the S&P 500 data, Figure 6.18
shows variance obtained from both measures and we can indeed observe some variance
peaks that seem to be due jumps of the asset price, when looking at the difference be-
tween the two graphs. If we calculate (RV −BV )/RV as the estimated quota of quadratic
variation that can be attributed jumps, we obtain 20%. Nevertheless, for estimated param-
eters from the bipower variation, as reported in Table 6.19, we observe similar estimates
compared to realized volatility estimates, cf. Table 6.12. Furthermore, quantile plots from
the bipower based uniform residuals are almost identical to the plots in Figure 6.13 which
lead us to the same diagnose: the log-normal model fits well with the S&P 500 data while
Heston’s and the 3-over-2 model present poor fits (p-values supporting this conclusion are
presented in Table 6.20).

If we continue the analysis with bipower measured variance from the individual stocks
we obtain the test results as reported in Table 6.21 (estimated parameters and standard
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Figure 6.18: The figures show S&P 500 variance measured from the realized variance
(gray) and realized bipower variation (red).

κ̂ θ̂ ε̂

Heston 21.4 ( 3.77 ) 0.011 ( 0.0037 ) 2.78 ( 0.0786 )
log-normal 55.3 ( 3.31 ) -3.92 ( 0.05 ) 11.5 ( 0.24 )
3-over-2 25.4 ( 3.98 ) 17.2 ( 8.82 ) 142.4 ( 4.26 )

Table 6.19: S&P 500 data: maximum likelihood estimated parameters and standard errors
from the realized bipower measure.

errors are given in Table 6.26 in the appendix). The p-values are consistently pointing us to
reject all but the log-normal model for each of the individual stock with statistical certainty.
Only the data from Caterpillar Inc. obtains a non-significant p-value when applying the
chi-square test. On the other hand, again when we diagnose the quantile plots, and look
at the Kolmogorov-Smirnov results, we can with certainty say that the log-normal model
fits well. Our goodness-of-fit analysis stands robust to jump-corrections in the asset price
and for all considered data sets – index as well as individual stocks – we have a winner:
the stochastic volatility model of log-normal type.
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P-values Chi-square Kolmogorov-Smirnov

Heston 0.00 0.00
log-normal 0.04 0.17
3-over-2 0.00 0.00
3-over-2 inv. 0.00 0.00

Table 6.20: S&P 500 data: p-values of chi-square and Komogorov-Smirnov distributional
tests of uniform residuals calculated from each model with the realized bipower measure.

chi-square: IBM MCD CAT MMM MCO XOM AZN GS HPQ FDX

Heston 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
log-normal 0.44 0.15 0.006 0.42 0.73 0.66 0.22 0.21 0.94 0.53

3-over-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3-over-2 inv. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Kolm.-Smir.: IBM MCD CAT MMM MCO XOM AZN GS HPQ FDX

Heston 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
log-normal 0.41 0.43 0.055 0.15 0.30 0.08 0.98 0.05 0.83 0.04

3-over-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3-over-2 inv 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.21: Stock data: p-values from uniform distributional tests of uniform residuals
calculated from the realized bipower variation measure with n = 192.
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6.5 Epilogue: A taxonomy of log-normal volatility

models

In this paper we have demonstrated that log-normal models provide a significantly better
description of the empirical behaviour of instantaneous variance than the Heston and the
3-over-2 models do. However, at coarser time-resolutions it can be hard to distinguish the
models, in particular with too crude variance measures and a false model might even be
preferred in certain situations.

We are by no means the first to suggest log-normality. Similarly to us, Andersen et al.
(2001) (see for instance Figures 1-3) and Wilmott (2006) base their argumentation solely on
the empirical behaviour of measured volatility of the underlying, that is, on fundamentals.
Papers such as Hagan et al. (2002) and Sepp (2014) suggest log-normal(’ish) models with
option pricing in mind – although while abandoning empirics. In one recent work Gatheral
et al. (2014) even makes the point that we should question the diffusive nature of volatility
(which we don’t in this paper) before we question its log-normality.
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Appendix

6.5.1 Scenario simulation schemes

Ito-Taylor approximations. A classical and simple simulation method for solutions to
stochastic differential equations is the Euler-Maruyama scheme which involves the ap-
plication of Ito-Taylor expansions (see Kloeden and Platen (1992)). With Ŷ denoting a
discrete-time approximation of the log asset-price Y = logS, the Euler-Maruyama scheme
reads

Ŷ (t+ ∆) = Ŷ (t) + (µ− 1

2
V (t))∆ +

√
V (t)∆ · ZY (6.19)

where ZY is a N (0, 1) Gaussian variable. This one-step scheme gives a sample of Ŷ (t+ ∆)
given Ŷ (t) and V (t) for an arbitrary time-increment ∆. Repeated use will give a full path
of Ŝ = exp Ŷ at any chosen set of discrete time-points.

The Euler-Maruyama scheme for the variance process of Heston’s model is given by

V̂ (t+ ∆) = V̂ (t) + κ(θ − V̂ (t))∆ + ε

√
V̂ (t)∆ · ZV

where ZV is a N (0, 1) Gaussian variable correlated to ZY by ρ. The correlation is typically
handled by a Cholesky decomposition

ZY = ρZV +
√

1− ρ2Z⊥

where ZV and Z⊥ are independent standard Gaussian variables. The Euler-Maruyama
scheme suffers from several drawbacks, it is a biased scheme and it may produce negative
values of the variance in this case. Andersen et al. (2010) discuss these issues and review
several alternative solutions, one of which is the truncated Euler scheme

V̂ (t+ ∆) = V̂ (t) + κ(θ − V̂ (t)+)∆ + ε

√
V̂ (t)+∆ · ZV

where V̂ (t) is replaced by V̂ (t)+ in equation (6.19). The truncated explicit Milstein reads

V̂ (t+ ∆) = V̂ (t) + κ(θ − V̂ (t)+)∆ + ε

√
V̂ (t)+∆ · ZV +

1

4
ε2∆(Z2

V − 1)

where the Milstein term should reduce the bias, while the implicit Milstein scheme

V̂ (t+ ∆) =
V̂ (t) + κθ∆ + ε

√
V̂ (t)∆ · ZV + 1

4ε
2∆(Z2

V − 1)

1 + κ∆

produces positive variance paths if the condition 4κθ > ε2 holds for the parameters.

The conditional distribution of the logarithmic variance is Gaussian in the log-normal
model and this allows for a simple and exact simulation scheme for the variance process

V (t+ ∆) = exp

[
log (V (t)) · e−κ∆ + θ(1− e−κ∆) + ε

√
1− e−2κ∆

2κ
ZV

]
(6.20)
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where ZV is a N (0, 1) Gaussian variable.

The simulation of the variance process in the 3-over-2 model is unfortunately not as straight
forward. The Euler-Maruyama scheme

V̂ (t+ ∆) = V̂ (t) + κV̂ (t)(θ − V̂ (t))∆ + εV̂ (t)3/2
√

∆ · ZV

obviously allows for negative outcomes. A truncation is however not a good solution due
to the extra V̂ (t) term in the diffusion part: as soon as V̂ (t+∆) reaches below zero it stays
on the same negative level as both the drift and diffusion is set zero due to the truncation.

In stead of simulating the variance in the 3-over-2 process we simulate the reciprocal of
the variance since there exists schemes for the square-root process. With κ̃ = κθ and
θ̃ = (κ+ ε2)/(κθ), the Euler-Maruyama scheme reads

Ŷ (t+ ∆) = Ŷ (t) + κ̃(θ̃ − Ŷ (t))∆− ε
√
Ŷ (t)∆ · ZV

V̂ (t+ ∆) = 1/Ŷ (t+ ∆)

for the (reciprocal) variance. To further rule out the possibility of negative values of Y ;
given that 4κ̃θ̃ > ε2, we may employ the implicit Milstein scheme

Ŷ (t+ ∆) =
Ŷ (t) + κ̃θ̃∆− ε

√
Ŷ (t)∆ · ZV + 1

4ε
2∆(Z2

V − 1)

1 + κ̃∆

for the reciprocal variance.

Almost exact scenario simulation schemes. The Euler-Maruyama and Milstein schemes
of the previous section are biased schemes which means that the distributional properties
of (Ŷ , V̂ ) will be approximate and converge, in some sense, to (Y, V ) as the time incre-
ment goes to zero. Broadie and Kaya (2006) suggest an exact simulation scheme for the
dynamics of Heston’s model that we modify in the following way to form an almost exact
scheme.

First, an application of Ito’s formula to the logarithmic asset price gives

Y (t+ ∆) = Y (t) +

∫ t+∆

t

(
µ− 1

2
V (u)

)
du+ ρ

∫ t+∆

t

√
V (u)dW (u)

+
√

1− ρ2

∫ t+∆

t

√
V (u)dW⊥(u) (6.21)

where the Wiener process correlation between Z in the asset price of equation (6.2) and
W of the variance in equation (6.4) is handled by the Cholesky decomposition

dZ(t) = ρdW (t) +
√

1− ρ2dW⊥(t)

with W⊥ denoting a Wiener process independent of W . The variance dynamics

V (t+ ∆) = V (t) +

∫ t+∆

t
κ(θ − V (u))du+ ε

∫ t+∆

t

√
V (u)dW (u)
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is rewritten to get an expression for the stochastic integral∫ t+∆

t

√
V (u)dW (u) =

1

ε

(
V (t+ ∆)− V (t)−

∫ t+∆

t
κ(θ − V (u))du

)
.

This equation is then substituted into equation (6.21) to arrive at

Y (t+ ∆) = Y (t) + µ∆ +
ρ

ε
(V (t+ ∆)− V (t)− κθ∆)

+

(
ρκ

ε
− 1

2

)∫ t+∆

t
V (u)du+

√
1− ρ2

∫ t+∆

t

√
V (u)dW⊥(u). (6.22)

The exact generation of Y (t+∆) given Y (t), V (t) from the one-step scheme (6.22) requires
sampling of three random variables. First, V (t + ∆) given V (t) is non-central chi-square
distributed and this can be sampled by draws from the Poisson and chi-square distribution
according to the following. With n(∆) = 4κe−κ∆/(ε2(1− e−κ∆)) and d = 4κθ/ε2:

1. Draw N from a Poisson distribution with mean 1
2V (t)n(∆).

2. Given N , draw X from a chi-square distribution with d+ 2N degrees of freedom.

3. Set V (t+ ∆) = Xe−κ∆/n(∆).

Secondly, if we have a generated value of the integrated variance
∫
V (u)du, the last term

of equation (6.22) is sampled from the normal distribution∫ t+∆

t

√
V (u)dW⊥(u) ∼ N

(
0,

∫ t+∆

t
V (u)du

)
which is due to the fact that W⊥ and V are independent. Broadie and Kaya (2006)
recount a method for the generation of

∫
V (u)du given V (t + ∆), V (t) that is based on

the Laplace transform of the integrated variance. In return, the above steps result in their
exact simulation scheme although the last generation of the integrated variance involves
a series of complicated steps.

A simple alternative, as suggested in Platen and Bruti-Liberati (2010), is to replace the
integrated variance with an approximation as given by the trapezoidal rule∫ t+∆

t
V (u)du ≈ V (t+ ∆) + V (t)

2
∆ (6.23)

and this is employed for the almost exact simulation scheme of Heston’s model.

Baldeaux (2012) retails a method for the exact simulation of the 3-over-2 model that is
similar to the Broadie-Kaya scheme. Their method may be adapted for an almost exact
scheme for the 3-over-2 model. First, 1/V (t + ∆) given 1/V (t) is non-central chi-square
distributed and it may be sampled by the above procedure where κ is substituted with
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κ̃ = κθ and θ with θ̃ = (κ + ε2)/(κθ). Next, Ito’s formula applied to the logarithmic
variance X(t) = log V (t) gives

X(t+ ∆) = X(t) + κθ∆− κ̄
∫ t+∆

t
V (u)du+ ε

∫ t+∆

t

√
V (u)du

where κ̄ = κ+ ε2/2 and hence for the stochastic integral∫ t+∆

t

√
V (u)dW (u) =

1

ε

(
log V (t+ ∆)− log V (t)− κθ∆ + κ̄

∫ t+∆

t
V (u)du

)
.

This is substituted into equation (6.21) to arrive at

Y (t+ ∆) = Y (t) + µ∆ +
ρ

ε

(
log

V (t+ ∆)

V (t)
− κθ∆

)
+

(
ρκ̄

ε
− 1

2

)∫ t+∆

t
V (u)du+

√
1− ρ2

∫ t+∆

t

√
V (u)dW⊥(u)

which again relies on the generation of
∫
V (u)du given V (t+ ∆), V (t) where V follows the

3-over-2 model. As for Heston’s model, we resort to approximating the integrated variance
by the trapezoidal rule (6.23) to complete the almost exact simulation scheme for the
3-over-2 model.

For the log-normal model the generation of V (t + ∆)|V (t) is made by a draw from the
normal distribution according to equation (6.20). For the next step, Ito’s formula applied
to
√
V (t) gives

d
√
V (t) =

1

2
κ
√
V (t) (θ̄ − log V (t))dt+

1

2
ε
√
V (t)dW (t)

where θ̄ = θ + ε2/(4κ). The integrated version may then be substituted into equation
(6.21) to obtain the logarithmic asset price

Y (t+ ∆) = Y (t) + µ∆− 1

2

∫ t+∆

t
V (u)du+

√
1− ρ2

∫ t+∆

t

√
V (u)dW⊥(u)

+
2ρ

ε

(√
V (t+ ∆)−

√
V (t)− κθ̄

2

∫ t+∆

t

√
V (u)du+

κ

2

∫ t+∆

t

√
V (u) log V (u)du

)
.

This is an expression that has several integrals of the variance process and we use the
trapezoidal rule for their generation∫ t+∆

t
V (u)du ≈ V (t+ ∆) + V (t)

2
∆∫ t+∆

t

√
V (u)du ≈

√
V (t+ ∆) +

√
V (t)

2
∆∫ t+∆

t

√
V (u) log V (u)du ≈

√
V (t+ ∆) log V (t+ ∆) +

√
V (t) log V (t)

2
∆

to end up with an almost exact simulation scheme for the log-normal model.
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Figure 6.22: The figure shows prediction hit-rates as a function of resolution n: the
percentage out of 100 simulations for which our test selects the correct model from the
largest p-value.

6.5.2 Robustness of the model selection test

To address the first question of how accurate variance measure we need to be able to
predict the correct model, we focus on the resolution n of the realized volatility measure
(see equation 6.13). For a simulated path and a selected value of n (starting low with
n = 5), we use 1, 890 × n prices for the variance measurement in order to keep the total
number of measured observations constant at 1, 890. We then apply our goodness-of-fit
analysis and record the model with strongest support according to the p-value. We repeat
this for 100 simulated paths and record the hit-rate for each model as the percentage of
all simulations for which the correct model is chosen. The result is shown in Figure 6.22
with Heston as the underlying simulation model: the hit-rates show that the test points
us to the correct model for n > 50 while a low resolution n ∼ 10 points to the log-normal
model in 100% of the simulations. The accuracy of the realized volatility measure is too
poor in these cases.

The hit-rate from 100 simulations with the log-normal model as underlying is plotted in
left Figure 6.23. The figure shows that the analysis points us to the correct model for all
simulations, also for poor accuracies. Similarly, with the 3-over-2 as underlying model, we
obtain the hit-rates plotted in right Figure 6.23 which shows that the test points to the
correct model for n > 60. As for the case with Heston simulations, a low resolution n ∼ 10
falsely points to the log-normal model. Thus, we conclude that we need a resolution that
gives a sufficient accuracy in order for our test to be robust. As we saw in the Monte
Carlo study as well, we have a robust test for n ∼ 200 and we might go down to n ∼ 60
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Figure 6.23: The figures show hit-rates as a function of resolution n when the underlying
simulation model is the log-normal (left) and the 3-over-2 model (right).

before our procedure gives unreliable results, in particular when the underlying model is
the 3-over-2 model.

For the second question of how long price series we require to get a robust test, we proceed
in a similar manner. We alter the length of the asset price path and apply our analysis
for each simulated path with n = 192 prices per variance measurement. The hit-rate is
calculate from 100 simulated paths and we repeat the procedure starting from 1 year
of data (24,193 prices, 126 variances) up to 15 years of data. The result for simulated
Heston’s model shows that the test works well even for short price-paths, and the same
holds for simulated log-normal data. The 1 year data points us to the correct model in 75
(60) simulations out of 100 when we generate from Heston’s (log-normal) model. For paths
longer than 5 years (120,961 prices, 630 variances) we have a robust test with a hit-rate
of 100% for both models. The result for the 3-over-2 model is similar although we need a
little more data: we have a robust test for data longer than 6 years (145,153 prices, 756
variances) while short price paths with 100–400 variance observations might point us to
the wrong model with hit-rates in the range 55–85%.
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6.5.3 Figures and tables

Figure 6.24: The figures show p-values from the goodness-of-fit analysis based on 100
simulations of Heston’s model (top left figure) the log-normal model (top right figure)
and the 3-over-2 model respectively (bottom left figure). In all three cases, the highest
recorded p-value points us to the correct underlying model, while the alternative models
obtain close to zero p-values. To put the variation of the p-values into perspective, the
bottom right figure shows results when the procedure is applied directly to data from the
uniform distribution: here we see the same degree of randomness. The important message
is that the actual magnitude of the p-value is less relevant: the correct underlying model
always obtains the largest, albeit varying, p-value, whilst the alternative models yield poor
goodness-of-fits.
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Heston: IBM MCD CAT MMM MCO

κ̂ 75.1 (7.19) 18.2 (3.99) 71.6 (5.34) 37.0 (4.52) 100.0 (6.85)

θ̂ 0.024 (0.0043) 0.052 (0.0123) 0.112 (0.0087) 0.061 (0.0061) 0.096 (0.0093)
ε̂ 6.89 (0.351) 4.14 (0.115) 7.21 (0.215) 3.89 (0.105) 10.1 (0.39)

log-normal:
κ̂ 86.6 (6.09) 61.1 (3.82) 83.9 (5.12) 76.9 (4.69) 71.6 (4.82)

θ̂ -3.31 (0.047) -2.96 (0.048) -2.45 (0.039) -3.08 (0.040) -2.60 (0.051)
ε̂ 13.5 (0.38) 11.4 (0.25) 12.7 (0.31) 12.1 (0.29) 43.8 (0.33)

3-over-2:
κ̂ 10.4 (22.8) 2.21 (3.61) 3.21 (1.37) 2.79 (5.45) 5.98 (2.38)

θ̂ 14.1 (30.9) 30.6 (49.8) 36.6 (15.5) 44.7 (87.1) 15.8 (6.26)
ε̂ 86.5 (2.87) 57.8 (1.18) 52.6 (1.28) 74.0 (1.92) 54.0 (1.39)

reciprocal 3-2:
κ̂ 105.0 (9.96) 27.3 (4.15) 77.7 (6.47) 77.6 (7.49) 48.8 (5.65)

θ̂ 40.0 (1.70) 27.2 (3.04) 16.3 (0.79) 32.0 (1.49) 19.2 (1.48)
ε̂ 95.2 (3.39) 67.8 (1.72) 60.7 (1.71) 82.8 (2.47) 61.9 (1.81)

Heston: XOM AZN GS HPQ FDX

κ̂ 45.4 (4.55) 113.0 (7.92) 41.6 (5.14) 116.9 (12.1) 65.2 (6.79)

θ̂ 0.052 (0.0048) 0.069 (0.0053) 0.027 (0.0094) 0.14 (0.012) 0.082 (0.008)
ε̂ 3.61 (0.102) 7.76 (0.281) 7.97 (0.322) 12.6 (0.57) 6.62 (0.211)

log-normal:
κ̂ 72.3 (4.73) 126.2 (8.58) 58.3 (3.82) 102.2 (7.39) 88.0 (5.39)

θ̂ -3.10 (0.043) -2.97 (0.037) -2.49 (0.053) -2.54 (0.045) -2.63 (0.038)
ε̂ 11.3 (0.28) 16.6 (0.50) 11.6 (0.27) 14.9 (0.46) 12.8 (0.32)

3-over-2:
κ̂ 3.04 (5.34) 7.53 (8.29) 3.20 (2.90) 6.21 (2.94) 4.72 (5.78)

θ̂ 29.9 (52.6) 29.4 (32.3) 32.1 (29.0) 23.0 (10.9) 27.9 (34.1)
ε̂ 60.9 (1.47) 101.1 (4.03) 51.4 (1.32) 61.1 (1.87) 59.5 (1.52)

reciprocal 3-2:
κ̂ 60.9 (5.77) 152.0 (12.5) 45.6 (6.02) 105.8 (9.65) 91.6 (7.52)

θ̂ 31.1 (1.61) 30.6 (1.24) 15.7 (1.29) 18.7 (0.88) 19.4 (0.83)
ε̂ 67.2 (1.87) 122.5 (4.50) 56.6 (1.62) 71.9 (2.58) 67.9 (2.01)

Table 6.25: Ten individual stocks from NYSE: maximum likelihood parameters and stan-
dard errors estimated from the realized volatility measure.

Figure 6.27: Quantile plots from uniform residuals calculated with realized volatility
measured Hewlett-Packard variance.
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Heston: IBM MCD CAT MMM MCO

κ̂ 25.3 (4.13) 14.6 (3.59) 31.9 (3.84) 24.8 (3.70) 46.8 (4.82)

θ̂ 0.031 (0.0053) 0.051 (0.0115) 0.083 (0.0084) 0.049 (0.0060) 0.096 (0.0087)
ε̂ 2.91 (0.090) 3.30 (0.085) 3.91 (0.099) 2.94 (0.074) 5.23 (0.16)

log-normal:
κ̂ 73.5 (5.18) 56.5 (3.57) 78.9 (4.82) 71.4 (4.38) 69.1 (4.67)

θ̂ -3.57 (0.047) -3.18 (0.049) -2.72 (0.038) -3.32 (0.041) -2.86 (0.050)
ε̂ 11.7 (0.32) 11.0 (0.24) 11.7 (0.28) 11.4 (0.26) 12.3 (0.31)

3-over-2:
κ̂ 6.69 (9.53) 2.17 (2.82) 3.34 (1.45) 6.16 (15.5) 4.76 (15.3)

θ̂ 20.9 (29.7) 28.3 (36.8) 31.5 (13.6) 16.1 (40.6) 22.3 (71.4)
ε̂ 93.5 (3.22) 61.6 (1.24) 56.0 (1.34) 72.9 (1.78) 63.5 (1.78)

reciprocal 3-2:
κ̂ 89.1 (10.06) 20.9 (3.8) 60.4 (6.00) 56.5 (6.11) 49.7 (6.28)

θ̂ 49.5 (2.28) 31.0 (4.48) 20.2 (1.16) 40.5 (2.17) 24.5 (1.87)
ε̂ 98.7 (3.60) 72.1 (1.80) 62.7 (1.74) 79.2 (2.18) 70.2 (2.12)

Heston: XOM AZN GS HPQ FDX

κ̂ 44.6 (4.31) 37.1 (3.99) 36.4 (5.01) 43.0 (5.71) 41.4 (4.42)

θ̂ 0.043 (0.0037) 0.030 (0.0028) 0.002 (0.0062) 0.087 (0.0091) 0.073 (0.0058)
ε̂ 3.06 (0.084) 2.37 (0.063) 6.77 (0.27) 4.83 (0.16) 3.73 (0.097)

log-normal:
κ̂ 74.7 (4.88) 86.7 (5.51) 60.3 (3.93) 82.6 (5.87) 84.8 (5.18)

θ̂ -3.34 (0.042) -3.76 (0.038) -2.73 (0.051) -2.81 (0.045) -2.89 (0.037)
ε̂ 11.5 (0.29) 12.1 (0.31) 11.5 (0.27) 12.4 (0.35) 12.0 (0.29)

3-over-2:
κ̂ 5.15 (8.22) 5.45 (16.3) 3.77 (3.28) 5.06 (3.20) 3.97 (4.45)

θ̂ 19.8 (31.5) 21.0 (62.7) 30.4 (26.4) 24.7 (15.5) 29.9 (33.5)
ε̂ 71.8 (1.80) 102.0 (2.61) 60.0 (1.64) 64.4 (1.97) 62.8 (1.60)

reciprocal 3-2:
κ̂ 68.2 (6.32) 70.7 (6.79) 53.0 (6.86) 77.4 (8.30) 78.3 (6.99)

θ̂ 38.0 (1.90) 60.6 (3.33) 20.8 (1.46) 23.1 (1.33) 24.7 (1.11)
ε̂ 79.2 (2.28) 117.0 (3.5) 64.6 (1.92) 72.9 (2.51) 69.4 (2.00)

Table 6.26: Maximum likelihood estimated parameters and standard errors from the
realized bipower variation measure.
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