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Abstract

In this thesis we prove rational homological stability for the classifying spaces of the ho-
motopy automorphisms and block di↵eomorphisms of iterated connected sums of prod-
ucts of spheres of a certain connectivity.
The results in particular apply to the manifolds

Np,q
g = (#g(S

p ⇥ Sq))r int(Dp+q), where 3  p < q < 2p� 1.

We show that the homology groups

H⇤(Baut@(N
p,q
g );Q) and H⇤(BgDi↵@(Np,q

g );Q)

are independent of g for ⇤ < g/2�1. To prove the homological stability for the homotopy
automorphisms we show that the groups ⇡1(Baut@(N

p,q
g )) satisfy homological stability

with coe�cients in the homology of the universal covering, which is studied using ra-
tional homology theory. The result for the block di↵eomorphisms is deduced from the
homological stability for the homotopy automorphisms upon using Surgery theory. The
main theorems of this thesis extend the homological stability results in [BM15] where
the automorphism spaces of Np,p

g are studied.

Resumé

I denne afhandling beviser vi rationel homologisk stabilitet for klassificerende rum af
homotopi-automorfier og blok-di↵eomorfier af itererede summer af produkter af sfærer
af bestemt konnektivitet.
Resultaterne gælder specielt for mangfoldighederne

Np,q
g = (#g(S

p ⇥ Sq))r int(Dp+q), where 3  p < q < 2p� 1.

Vi viser at homologigrupperne

H⇤(Baut@(N
p,q
g );Q) and H⇤(BgDi↵@(Np,q

g );Q)

er uafhængige af g for ⇤ < g/2 � 1. For at bevise homologisk stabilitet for homotopi-
automorfierne viser vi, at grupperne opfylder homologisk stabilitet med koe�cienter i
homologien af det universelle overlejringsrum, som studeres ved hjælp af rationel ho-
mologiteori. Resultatet for blok-di↵eomorfierne udledes fra den homologiske stabilitet
for homotopi-automorfierne ved hjælp af kirurgi-teori. Hovedresultaterne i denne afhan-
dling udvider resultaterne om homologisk stabilitet i [BM15], hvor automorfirummene
af Np,p

g studeres.
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1 Introduction

This thesis is concerned with the problem of understanding the rational homological
structure of automorphism spaces of manifolds, similar in spirit to the highly connected
even dimensional case considered by Berglund and Madsen in [BM13, BM15]. The main
theorems of this thesis are homological stability results for the homotopy automorphisms
and the block di↵eomorphisms of connected sums of products of spheres.
Consider a closed oriented n-manifold M and denote by BAut(M) the classifying space
of some automorphism group or monoid Aut(M). A central topic of current and past
research is to understand the cohomology ring H⇤(BAut(M)). One example of an auto-
morphism group Aut(M) that is studied in the literature is Di↵(M) the group of self-
di↵eomorphisms with the Whitney C1-topology. The cohomology ring H⇤(BDi↵(M))
is the ring of characteristic classes of smooth manifold bundles with fiber M . Another
example is aut(M), the topological monoid of homotopy self-equivalences. In this case
the cohomology ring H⇤(Baut(M)) is the ring of characteristic classes of fibrations with
fiber M.
In general it is extremely di�cult to understand the cohomology ring H⇤(BAut(M)) for
a single manifold. One approach is to study a family of manifolds and restrict to infor-
mation in the so called stable range. For this we consider a compact oriented n-manifold
N with boundary @N ⇠= Sn�1 an (n� 1)-sphere. Let

V p,q = Sp ⇥ Sq r int(Dn
1 tDn

2 ),

be a product of a p-sphere and a q-sphere, such that p + q = n, with the interior of
two disjoint embedded disks removed. We obtain a new compact oriented manifold with
boundary Sn�1

N [@1 V p,q,

by gluing N and V p,q along the boundary of N and @1V p,q = @Dn
1 ⇢ V p,q. Let Aut@(N)

be the subspace of some automorphism space of N , fixing the boundary pointwise. We
can define a map

Aut@(N)! Aut@(N [@1 V p,q)

f 7! f [@1 idV p,q ,

by extending an automorphism of N fixing the boundary by the identity on V p,q. Since
the map respects the composition of maps, it gives us a map of the classifying spaces

� : BAut@(N)! BAut@(N [@1 V p,q)

6



1 Introduction

We will refer to the induced map in homology

�⇤ : H⇤(BAut@(N))! H⇤(BAut@(N [@1 V p,q))

as the stabilization map. Of course one could also define the stabilization map when
V p,q is replaced by another cobordism of Sn�1 with Sn�1 or even cobordisms of other
submanifolds.
Note that N [@1 V p,q ⇠= N#Sp⇥Sq, where # denotes the connected sum. We can repeat
the process above and get a family of manifolds

Ng = N#(#g(S
p ⇥ Sq)) ,

where #g denotes the g-fold connected sum. We also get a family of stabilization maps

�⇤ : H⇤(BAut@(Ng))! H⇤(BAut@(Ng+1)).

We say that the automorphism spaces of the family Ng satisfy homological stability, if
�⇤ is an isomorphism for ⇤ < c(Ng), where c(Ng) is some increasing function depending
on g and possibly N (for example if N already has some Sp ⇥ Sq summands). The
function c(Ng) bounds the so called the stable range. Note that homological stability
also implies cohomological stability, i.e. �⇤ is an isomorphism in the same range by the
universal coe�cient theorem.
The second step in the process (that we don’t treat in this thesis) is to identify the so
called stable cohomology

H⇤(BAut@(N1)) = H⇤(hocolim
g!1

BAut@(Ng)).

The induced map

H⇤(BAut@(N1))! H⇤(BAut@(Ng))

is an isomorphism in the stable range.

Consider the manifolds

Np,q
g = (#gS

p ⇥ Sq)r intDp+q.

The homological stability for the mapping class group ⇡0(Di↵@(N
1,1
g )) is a classical result

by Harer [Har85]. Combined with the contractability of the components of BDi↵@(N
1,1
g ),

g � 2 [EE69] this shows homological stability for BDi↵@(N
1,1
g ). Madsen and Weiss

identified the stable cohomology with the cohomology of the infinite loop-space of the
now called Madsen-Tillman spectrum MTSO(2) [MW07].
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Rational Homological Stability for Automorphisms of Manifolds

The above was extended by Galatius and Randal-Williams to homological stability for
BDi↵@(M

2d
g ), d � 3 [GRW12]. Moreover they showed in [GRW14] that the map

BDi↵@(M
2d
1 )! ⌦1

• MTSO(2d)

is an integral homology equivalence. In fact Galatius and Randal-Williams’ results are
more general, in the sense that they show stability for many more families of even dimen-
sional manifolds with tangential structures and also identify their stable cohomology.
Perlmutter showed homological stability for the di↵eomorphism groups of N#Np,q

g , for
p < q < 2p� 2 and (q � p+ 2)-connected N in [Per14a]. In [Per14b] he shows stability
with respect to stabilization with all (d � 1)-connected (2d + 1)-manifolds for d even.
In [BP15] Botvinnik and Perlmutter identify the stable cohomology of the classifying
space BDi↵D2n(\g(Dn+1⇥ Sn)) of the group of di↵eomorphisms of the g-fold boundary
connected sum that restrict to the identity near a disk, embedded in the boundary.
The map from BDi↵@ of an n-manifold to the infinite loop-space of the spectrum
MTSO(n) is also defined in odd-dimensions, but Ebert showed in [Ebe13], using in-
dex theory, that the induced map in cohomology is not injective. Hence the obvious
generalization of the Madsen-Weiss theorem to odd dimensional manifolds fails.
Homological stability for mapping-class groups of certain 3-manifolds is shown by Hatcher
and Wahl in [HW10]. The traditional method to prove homological stability results is
originally due to Quillen and has been applied in many cases. For an axiomatization
and more stability results for automorphism groups check [RWW15].
Berglund and Madsen’s approach in [BM15] to show rational homological stability for
Baut@(N

d,d
g ), d � 3, uses a stability result by Charney [Cha87] for automorphism groups

of hyperbolic modules with twisted coe�cients. Denote by Gg the image of

Hd : ⇡0(aut@(N
d,d
g ))! Aut(Hd(N

d,d
g )).

Berglund and Madsen use that Gg is an automorphism group of a certain hyperbolic

module and that Hd has a finite kernel. They identify the ⇡1(Baut@(N
d,d
g ))-module

H⇤(Baut@(N
d,d
g )h1i;Q) in terms of the Chevalley-Eilenberg homology of a certain deriva-

tion Lie algebra HCE
⇤ (Der!(Lg)) using rational homotopy theory. The ⇡1(Baut@(N

d,d
g ))-

action on HCE
⇤ (Der!(Lg)) is trough Gg. They show that HCE

⇤ (Der!(Lg)) is a coe�cient
system for Gg that satisfies homological stability. The homological stability result for

Baut@(N
d,d
g ), then follows by an application of the covering spectral sequence:

E2
p,q(N

d,d
g ) = Hp(⇡1(Baut@(N

d,d
g ));Hq(Baut@(N

d,d
g )h1i;Q))) Hp+q(Baut@(N

d,d
g );Q))

upon using that E2
p,q(N

d,d
g ) ⇠= Hp(Gg;HCE

q (Der!(Lg)).
Surgery theory allows them to understand the fiber of the map

BgDi↵@(Nd,d
g )! Baut@(N

d,d
g ),
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1 Introduction

where gDi↵ denotes the block di↵eomorphisms. Using this they extend the homological
stability result to BgDi↵@(Nd,d

g ).
Moreover they show, using the results in [GRW14] that the covering cohomology spectral
sequences for Baut@(N

d,d
g ) and BgDi↵@(Nd,d

g ) collapse in the stable range. Borel’s work
on the cohomology of arithmetic groups now allows them to conclude that

H⇤(Baut@(N
d,d
1 );Q) ⇠= H⇤(G1;Q)⌦H⇤

CE(Der!(L1))G1 ,

where the first term was calculated by Borel. The second term was calculated by Kont-
sevich [CV03]. Finally they use Kontsevich’s graph homology to identify the stable
cohomology ring H⇤(BgDi↵@(Nd,d

1 );Q) with the cohomology of certain discrete groups,
generalizing Kontsevich’s theorem on H⇤

CE(Der!(L1))G1 .

Outline of this thesis

Consider a finite indexing set I and for i 2 I natural numbers 3  pi  qi < 2pi � 1,
such that pi + qi = n. We define an oriented n-manifold

NI = (#i2I(S
pi ⇥ Sqi))r int(Dn).

Note that gluing a V p,q along one boundary component to NI , where 3  p  q  2p�1
and p+ q = n, gives us another manifold

NI 0
⇠= NI [@1 V p,q,

where the indexing set is given by I 0 = I [ {i0}, pi0 = p and qi0 = q. Denote by

gp =

(
rank(Hp(NI))/2 if p = n/2

rank(Hp(NI)) otherwise.

We think of gp as a generalized genus - it measures how many summands of Sp⇥Sq the
manifold NI has. The main results of this thesis are:

Theorem A and B. The stabilization maps with respect to V p,q, 3  p  q < 2p� 1

Hi(Baut@(NI);Q)! Hi(Baut@(NI 0);Q)

and
Hi(BgDi↵@(NI);Q)! Hi(BgDi↵@(NI 0);Q)

are isomorphisms for gp > 2i+2 when 2p 6= n and gp > 2i+4 if 2p = n and epimorphisms
for gp � 2i+ 2 respectively gp � 2i+ 4.

9



Rational Homological Stability for Automorphisms of Manifolds

The proof of Theorem A, the homological stability for the homotopy automorphisms,
can be found in Chapter 6. The proof of Theorem B, the homological stability for the
block di↵eomorphisms, is in Chapter 7.

In Section 2.5 we review the definition of hyperbolic modules with form parameters in
the sense of Bak and extend the definition to graded hyperbolic modules. The graded
hyperbolic modules model the reduced homology H̃⇤(NI) together with the intersection
pairing and in the middle dimension a certain quadratic refinement of it. In Chapter 5
we establish that the homotopy mapping class group surjects onto the automorphisms
of the graded quadratic module H̃⇤(NI). The automorphisms are isomorphic to

Ggn/2
⇥

dn/2e�1Y
i=1

Glgi(Z),

where the Ggn/2
only appears for n even and is given by an automorphism group of a

hyperbolic module.
In Section 2.6 we review van der Kallen’s and Charney’s twisted homological stability
results for general linear groups and automorphisms of hyperbolic modules with form
parameters. We combine the latter two to a stability result for graded hyperbolic modules
with twisted coe�cient systems induced by polynomial functors (reviewed in Section 2.3).
In Section 2.1 we quickly review Quillen’s approach to rational homotopy theory and
describe some results on the rational homotopy theory of mapping spaces in Section
2.2. We use this to express the rational homotopy groups of the universal covering of
Baut@(NI) as ⇡1(Baut@(NI))-modules in terms of a certain derivation Lie algebras in
Chapter 5. The rational homotopy theory needed in this thesis is a straightforward
generalization of [BM15]. One of the key ingredients is a theorem by Tanré relating the
universal cover of the classifying space of the pointed homotopy automorphisms to a
certain derivation Lie algebra.
In Chapter 3 we show that the Chevalley-Eilenberg chains of these derivation Lie algebras
can be identified with the values of a Schur multifunctor (defined in Section 2.4).
In Chapter 6 we use the latter to show Theorem A, where we need Section 2.7 for
technical reasons.
The review of Surgery theory in Section 2.8 is needed for the proof of Theorem B in
Chapter 7.

The results in this thesis extend the stability results in [BM15] in the following ways:

- In the case that n = 2d we show rational homological stability of the homotopy
automorphisms and block di↵eomorphisms for families NI#Nd,d

g .

- We show rational homological stability of the homotopy automorphisms and block
di↵eomorphisms with respect to stabilization with other products of spheres Sp ⇥
Sq.

10



1 Introduction

- In particular we show rational homological stability of the homotopy automor-
phisms and block di↵eomorphisms for odd-dimensional manifolds NI including
the family

Np,p+1
g = (#g(S

p ⇥ Sp+1))r int(D2p+1), p � 3.
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2 Preliminaries

2.1 Di↵erential graded Lie algebras and rational homotopy
theory

In this section we review Quillen’s approach to rational homotopy theory. For more
details consult Quillen’s original paper [Qui69] or for example [Tan83].

We assume all graded objects to be Z-graded unless otherwise stated and will omit the
Z from the notation. Moreover we assume all vector spaces to be over Q. Additional
structure on a graded vector space V = V⇤ will be denoted as (V,�), but abbreviated
to V , when clear from the context.
Let V,W be graded vector spaces and let Homn(V,W ) denote the set of linear maps
from V⇤ to W⇤+n, this makes all linear maps from V to W into a graded vector space
Hom(V,W ) =

L
nHomn(V,W ).

A graded Lie algebra (L, [�,�]) is a graded vector space L⇤ together with a bilinear
degree 0 map [�,�], such that

1. [x, y] = (�1)|x||y|+1[y, x]

2. (�1)|x||z|[x, [y, z]] + (�1)|y||x|[y, [z, x]] + (�1)|z||y|[z, [x, y]] = 0

We call [�,�] the Lie bracket. A morphism of graded Lie algebras is a degree 0 homo-
morphism of the underlying vector spaces, respecting the Lie brackets. We will denote
the category of graded Lie algebras by gLie.

Let V be a graded vector space. We define the reduced tensor algebra on V to be:

T (V ) =
[
n>0

V ⌦n,

where ⌦n denotes the n-fold tensor product. For xi, i = 1, .., n with |xi| = di we set
|
N

i xi| =
P

i di. We can define a Lie bracket on T (V ) by [x, y] = x⌦y� (�1)|x||y|y⌦x,
which makes T (V ) into a graded Lie algebra.

The free graded Lie algebra L(V ) generated by V is the smallest sub Lie algebra of T (V )
containing V . Another way to express L(V ) is in terms of generators

[[...[[ei1 , ei2 ], ei3 ]...]ein ],

where the {ei} form a basis for V and relations generated by the conditions (1) and (2)
for the Lie bracket. When we want to emphasize the elements generating a free graded

12



2 Preliminaries

Lie algebra, we will denote it by L[e1, ..., en] = L(Qhe1, ..., eni), where Qhe1, ..., eni de-
notes the graded vectorspace generated by basis elements e1, ..., en.

For a connected topological group G with unit e, the Samelson product

⇡k(G, e)⌦ ⇡l(G, e)! ⇡k+l(G, e)

[f ]⌦ [g] 7! hf, gi

is defined as follows: Consider representatives f : Sk ! G and g : Sl ! G, the
pointwise commutator [f, g](x, y) = f(x)g(y)f(x)�1g(y)�1 defines a map Sk ⇥ Sl ! G
that is trivial on Sk _ Sl ⇢ Sk ⇥ Sl. Hence we get a map

hf, gi : Sk+l ' Sk ⇥ Sl/Sk _ Sl ! G.

The rational homotopy groups ⇡⇤(G, e) ⌦ Q together with the Samelson bracket form
a graded Lie algebra. Note that we can extend the definition of the Samelson product
to group-like topological monoids, since we can replace them by homotopy equivalent
topological groups. For a simply connected topological space (X, x0), the rational ho-
motopy groups of the loopspace, based at the constant loop, together with the Samelson
product (⇡⇤(⌦X, cx0)⌦Q, h�,�i) is called the homotopy Lie algebra of X.
Another product on homotopy groups is the Whitehead product

⇡k+1(X, x0)⌦ ⇡l+1(X, x0)! ⇡k+l+1(X, x0).

[f ]⌦ [g] 7! [f, g]

It is defined as follows: Consider representatives f : Sk+1 ! X and g : Sl+1 ! X. The
product Sk+1 ⇥ Sl+1 can be described as a complex with one (k + l + 2)-cell attached
to Sk+1 _ Sl+1. The Whitehead product is defined as the composition

[f, g] : Sk+l+1 ! Sk+1 _ Sl+1 f_g��! X,

where the first map is the attaching map of the (k+l+2)-cell. Denote by @ the boundary

map @ : ⇡⇤+1(X, x0)
⇠=�! ⇡⇤(⌦X, cx0) in the homotopy exact sequence of the path space

fibration
⌦X ! PX ! X.

The Whitehead product and the Samelson product relate in the following way:

@[f, g] = (�1)kh@[f ], @[g]i, where [f ] 2 ⇡k+1(X, x0) and [g] 2 ⇡l+1(X, x0).

For graded Lie algebras (L, [�,�]) and (L0, [�,�]) we define the n-derivations as the
subset Dern(L,L0) ⇢ Homn(L⇤, L0

⇤), such that for ✓ 2 Dern(L,L0) :

✓([x, y]) = [✓(x), y] + (�1)n|x|[x, ✓(y)].

13



Rational Homological Stability for Automorphisms of Manifolds

A di↵erential graded Lie algebra (L, @) is a graded Lie algebra (L, [�,�]) together with
a (�1)-derivation @, such that @ � @ = 0. A morphism of di↵erential graded Lie algebras
is a morphism of graded vector spaces of degree 0 commuting with the Lie bracket and
the di↵erential. We will denote the category of di↵erential graded Lie algebras by dgLie.
A free di↵erential graded Lie algebra, is a di↵erential graded Lie algebra such that the
underlying graded Lie algebra is free.
Quillen defines in a functor

� : Top1 ! dgLie1,

where Top1 is the category of simply connected pointed topological spaces and dgLie1
the category of 1-reduced di↵erential graded Lie algebras, i.e. di↵erential graded Lie
algebras concentrated in degrees � 1. Quillen’s functor is defined as a composite of a
chain of functors. On objects it is given by

�(X) = NPQ̂[G(E2 SingX)],

where E2 Sing denotes the Eilenberg subcomplex of the singular simplicial set, consisting
of simplices whose 1-skeleton is at the basepoint. G denotes Kan’s loop group functor (it
satisfies |G(E2 SingX)| ' ⌦X). Q̂[�] is the complete simplicial Hopf algebra, obtained
by completing the simplicial group ring Q[�] at the augmentation ideal. P are the
primitive elements, which form a simplicial di↵erential graded Lie algebra. Finally the
normalized chain functor N gives us a di↵erential graded Lie algebra. One of the key
properties of Quillen’s functor is that there is a natural isomorphism of graded Lie
algebras

H⇤(�(X)) ⇠= (⇡⇤(⌦X, cx0), h�,�i).

Quillen proves that �(�) induces an equivalence of homotopy categories

HoQ(Top1)! Ho(dgLie1),

where the weak equivalences in Top1 are rational homotopy equivalences and in dgLie1
quasi-isomorphisms.

Remark 2.1. The category of di↵erential graded Lie algebras has in fact the structure
of a model category. The weak equivalences are quasi-isomorphisms, which we will
denote by 'q.i., and the fibrations are maps that are surjections in degrees � 2. The
cofibrations can be described as follows: A map i : (K, @K) ! (L, @L) of di↵erential
graded Lie algebras is a cofibration if there exist a free di↵erential graded Lie algebra
(L(V ), @), a map ⇢ : (L, @L) ! (L(V ), @) of di↵erential graded Lie algebras and a map
f : K ⇤L(V )! L of graded Lie algebras(!) such that the following diagram commutes:

K //

i
$$

K ⇤ L(V )

f
✏✏

// L(V )

L

⇢

88

.
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2 Preliminaries

The symbol ⇤ denotes the coproduct in dgLie. It is also called the free product. On free
di↵erential graded Lie algebras it can be described as

L(V ) ⇤ L(W ) = L(V �W )

together with the unique di↵erential extending the di↵erentials of L(V ) and L(W ).

A Quillen model of a simply connected topological space X is a free di↵erential graded
Lie algebra (LX , @) with a quasi-isomorphism LX ! �(X). A Quillen model is called
minimal, if @(LX) ⇢ [LX , LX ]. We call a space coformal, if �(X) 'q.i. H(�(X)). A
Quillen model of a map f : X ! Y , is a map Lf of di↵erential graded Lie algebras
between Quillen models of the spaces such that

LX
Lf //

✏✏

LY

✏✏
�(X)

�(f) // �(Y )

commutes up to chain homotopy equivalence. A minimal Quillen model of a map is a
Quillen model of a map such that the models of the spaces are minimal.
The Chevalley-Eilenberg complex of a di↵erential graded Lie algebra (L, @) is the chain
complex CCE

⇤ (L) = ⇤⇤sL with di↵erential � = �0 + �1, where s denotes the suspension
(i.e. sL⇤ = L⇤�1) and ⇤⇤ the free graded commutative algebra. In the simplest cases
the di↵erentials are given by

�0(sx) = �s@x

�1(sx1 ^ sx2) = (�1)|x1|s[x1, x2],

where x, x1, x2 2 L. For the general definition see e.g. [Tan83]. The Chevalley-Eilenberg
homology is the homology of this chain complex. Quillen shows that there is a natural
isomorphism

HCE
⇤ (�(X)) ⇠= H⇤(X;Q).

Denote by CCE
p (L)q the elements of the Chevalley-Eilenberg complex in degree p and

with word length q. Let HCE
⇤ (L)q be the homology of the complex (CCE

⇤ (L)q, �1). We
can identify the E2-page of the spectral sequence coming from the filtration by word
length with

HCE
p (H⇤(L))

q ) HCE
p+q(L)

In the special case that L = �(X) for some simply connected connected space X we get
the so called Quillen spectral sequence

E2
p,q = HCE

p ((⇡⇤(X)⌦Q))q ) Hp+q(X;Q).

It is clear by construction that it is natural with respect to pointed maps, but this
requirement can be loosened:

15



Rational Homological Stability for Automorphisms of Manifolds

Theorem 2.2 ([BM15, Proposition 2.1.]). Let X be a simply connected space. The
Quillen spectral sequence

E2
p,q = HCE

p ((⇡⇤(X)⌦Q))q ) Hp+q(X;Q)

is natural with respect to unbased maps of simply connected spaces.

Moreover we observe that the Quillen spectral sequence collapses at the E2-page, when
a space is coformal. Thus we get for a coformal space X a natural isomorphism:

Hk(X;Q) ⇠=
M
p+q=k

HCE
p ((⇡⇤(X)⌦Q))q.

2.2 Rational homotopy theory of mapping spaces

Let X, Y be pointed topological spaces. Denote by map⇤(X, Y ) the space of base-point
preserving maps with the compact open topology. Denote by

aut⇤(X) ⇢ map⇤(X,X)

the subspace of pointed homotopy self-equivalences. Note that the composition makes
aut⇤(X) into a grouplike topological monoid. For a subspace A ⇢ X such that A
contains the basepoint of X denote by autA(X) ⇢ aut⇤(X) the topological sub-monoid
of homotopy self-equivalences of X that restrict to the identity on A. In this section
we review some results concerning the rational homotopy theory of the mapping spaces
above.

Let

f : (L, dL)! (K, dK)

be a map of di↵erential graded Lie algebras. We say that a degree n linear map ✓ 2
Homn(L,K), is an f -derivations of degree n, if

✓[x, y] = [✓(x), f(y)] + (�1)n|x|[f(x), ✓(y)], for all x, y 2 L.

The f -derivations form a di↵erential graded vector space Derf (L,K), with di↵erential
given by

D(✓) = dK � ✓ � (�1)|✓|✓ � dL.

The derivations of a di↵erential graded Lie algebra (L, dL) is the special case

Der(L) = DeridL(L,L).

16
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We define a bracket on Der(L), by

[✓, ⌘] = ✓ � ⌘ � (�1)|✓||⌘|⌘ � ✓,

which makes (Der(L), D) into a di↵erential graded Lie algebra. Let L0 ⇢ L be a sub-
di↵erential graded Lie algebra. The derivations relative to L0

Der(L, rel. L0)

is the sub-di↵erential graded Lie algebra of Der(L) of derivations that annihilate the
elements of L0. The positive truncation of a di↵erential graded vector space (V, dV ) is
the di↵erential graded vector space V + given by

V +
i =

8><>:
Vi for i � 2

ker(dV : L1 ! L0) for i = 1

0 for i  0

with its obvious di↵erential. Note that we can also consider the positive truncation of a
di↵erential graded Lie algebra, which is naturally a di↵erential graded Lie algebra.

Theorem 2.3 ([LS07] and [BM15, Theorem 3.6.]). Let f : X ! Y be a map of simply
connected CW-complexes with X finite and �f : LX ! LY a Quillen model. There are
natural isomorphisms of sets

⇡k(map⇤(X, Y ), f)⌦Q ⇠= Hk(Der�f (LX ,LY )), for k � 1,

which are vectorspace isomorphisms for k > 1. In the case X = Y and f =idX , there
are isomorphisms of vectorspaces

⇡k(aut⇤(X), idX)⌦Q ⇠= Hk(Der(LX)), for k � 1,

and the Samelson product corresponds to the Lie bracket.

The topological monoid of homotopy automorphisms is in general not connected and its
classifying space not simply connected. Thus in general we can not get Quillen models
of them. One way around this is to restrict to the universal covering.

Theorem 2.4 ([Tan83]). Let LX be a minimal Quillen model of a simply connected
space of finite Q-type. Then

(Der+(LX), D)

is a Quillen model for the universal cover Baut⇤(X)h1i.

17
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Berglund and Madsen observe that Tanré’s Theorem extends to relative automorphism
spaces.

Theorem 2.5 ([BM15, Theorem 3.4]). Let i : A ⇢ X be a cofibration of simply connected
spaces of finite Q-type and let Li : LA ⇢ LX be a cofibration and a Quillen model for i,
then

(Der(LX , rel. LA), D)

is a Quillen model for BautA(X)h1i.

2.3 Polynomial functors

In this section we give the definition of polynomial functors in the sense of [EML54],
slightly modified as in [Dwy80, Section 3]. Let T : A! B be a (not necessarily additive)
functor between abelian categories. For k � 1, the k-th cross-e↵ect functor

T k : Ak ! B,

is uniquely defined up to isomorphism given T l for l < k by the properties:

1. T k(A1, ..., Ak) = 0 if Ai = 0 for some i.

2. There is a natural isomorphism T (A1 � ...�Ak) ⇠= T (0)�
L

{i1,...,ir}
T r(Ai1 , ..., Air),

where the sum runs over all non-empty subsets {i1, ..., ir} ⇢ {1, ..., k}.

Definition 2.6 (Polynomial functors). A functor T is polynomial of degree  k, if T l

is the constant zero functor for l > k.

On objects the first cross-e↵ect functor is given by the kernel of the natural map

T 1(A1) = Kernel(T (A)! T (0)).

An immediate consequence is that a functor is of degree  0 if and only if it is constant.
The higher cross-e↵ects can be defined using deviations. The k-fold deviation of a k-tuple
of maps

(f1, ..., fk) : A! B

in A is the map

T (f1>...>fk) : T (A)! T (B),

given by

T (f1>...>fk) = T (0) +
X

{i1,...,ir}

(�1)k�rT (fi1 + ...+ fir),

18
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where the sum runs over all non-empty subsets {i1, ..., ir} ⇢ {1, ..., k} and 0 denotes the
canonical map A! 0! B. Setting A = A1 � ...�Ak and denoting by ⇡i : A! Ai the
projections and by ◆i : Ai ! A the inclusions, the k-th cross-e↵ect functor is given on
objects by

T k(A1, ..., Ak) = Image(T ((◆1 � ⇡1)>...>(◆k � ⇡k))).

Proposition 2.7 (See e.g. [Dwy80]).

1. An additive functor is of degree  1.

2. The composition of functors of degree  k and  l is a functor of degree  kl.

3. If T is a functor of degree  k, then T 2(A,�) is of degree  k� 1 for any fixed A.

4. Let T : A ! B and R : C ! B be of degree  k and  l, respectively. The
level-wise sum

T �R : A⇥ C ! B

is polynomial of degree  max{k, l}

2.4 Schur functors

Schur functors give examples of polynomial functors. Note that the following definitions
also make sense for general commutative rings, but we are going to restrict our presenta-
tion to the category of graded rational vector spaces V ect⇤(Q). Schur functor are treated
for example in [LV12]. We couldn’t find any literature on Schur multifunctors and hence
state the facts we need here.

Let M = {M (n)}n�0 2 V ect⇤(Q) be a sequence of Q[⌃n]-modules. We will refer to
them as ⌃n-modules but implicitly use the Q[⌃n]-modules structure, in particular ⌦⌃n

refers to the tensor product over Q[⌃n]. The Schur functor given by M is defined to be
the endofunctor of V ect⇤(Q) induced by

M (V ) =
M
k

M (k)⌦⌃k V
⌦k for all V 2 V ect⇤(Q),

where V ⌦k is the left ⌃k-module with action of � 2 ⌃k given by

�(v1 ⌦ ...⌦ vk) = ±v��1(1) ⌦ ...⌦ v��1(k)

(with sign according to the Koszul sign convention). Note that M (0) is just a constant
summand. A Schur functor M with M (l) trivial for l > k is a polynomial functor of
degree  k.

Let ⌘ = (n1, ..., nl), n1, ..., nl � 0 be a multi-index. Throughout this thesis we will
assume all multi-indices to have non-negative entires. We want to use the following
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conventions:

|⌘| =
lX

i=1

ni

l(⌘) = l

µ+ ⌘ = (m1 + n1, ...,ml + nl), for µ = (m1, ...,ml)

(Vi)
⌦⌘ = V ⌦n1

1 ⌦ ...⌦ V ⌦nl

l , where (Vi) 2 (V ect⇤(Q))l

⌃⌘ = ⌃n1 ⇥ ...⇥ ⌃nl

Consider a sequence of Q[⌃⌘]-modules N = {N (⌘)}l(⌘)=l 2 V ect⇤(Q). As before, we
will from now on refer to them as ⌃⌘-modules. We define the Schur multifunctor given
by N on objects by

N (V1, ..., Vl) =
M
l(⌘)=l

N (⌘)⌦⌃⌘ (Vi)
⌦⌘ for all (Vi) 2 (V ect⇤(Q))l.

Similarly a Schur multifunctor N is polynomial of degree  k if N (⌘) is trivial for
|⌘| > k.

Example Consider Schur functors Ni : V ect⇤(Q) ! V ect⇤(Q), i = 1, ..., l The tensor
product O

Ni : V ect⇤(Q)l ! V ect⇤(Q)

is a Schur multifunctor with (
N

Ni)(⌘) =
N

Ni(ni).

We define the tensor product of M = {M (µ)} and N = {N (⌘)}, where l(µ) = l(⌘)
as

M ⌦N (⌫) =
M

µ0+⌘0=⌫

Ind⌃⌫

⌃µ0⇥⌃⌘0
M (µ0)⌦N (⌘0).

The Schur functor defined by this tensor product is indeed (up to natural isomorphism)
the tensor product of the two functors, as we see by the isomorphisms for µ0 + ⌘0 = ⌫
with l(µ0) = l(⌘0) = l(⌫)⇣

Ind⌃⌫

⌃µ0⇥⌃⌘0
M (µ0)⌦N (⌘0)

⌘
⌦⌃⌫ (Vi)

⌦⌫

=
�
M (µ0)⌦N (⌘0)⌦⌃µ0⇥⌃⌘0 Q[⌃⌫ ]

�
⌦⌃⌫ (Vi)

⌦⌫

⇠=
�
M (µ0)⌦N (⌘0)

�
⌦⌃µ0⇥⌃⌘0

⇣
(Vi)

⌦µ0
⌦ (Vi)

⌦⌘0
⌘

⇠=
⇣
M (µ0)⌦⌃µ0 (Vi)

⌦µ0
⌘
⌦
⇣
N (⌘0)⌦⌃⌘0 (Vi)

⌦⌘0
⌘
.
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The tensor powers of a N = {N (⌘)} are (up to natural isomorphism) explicitly de-
scribed by

N ⌦r(⌫) =
M

Ind⌃⌫

⌃⌘1⇥...⇥⌃⌘r
N (⌘1)⌦ ...⌦N (⌘r), (2.1)

where the sum runs over all r-tuples (⌘1, ..., ⌘1), where l(⌘i) = l, such that ⌃r
i=1⌘i = ⌫.

Now consider a Schur functor M = {M (m)} and a Schur multifunctor N = {N (⌘)}.
The composition is a Schur multifunctor isomorphic to the Schur multifunctor given
by

(M �N )(⌫) =
M
r

M (r)⌦⌃r

M
Ind⌃⌫

⌃⌘1⇥...⇥⌃⌘r
N (⌘1)⌦ ...⌦N (⌘r), (2.2)

where the second sum runs over all r-tuples (⌘1, ..., ⌘r), where l(⌘i) = l, such that
⌃r
i=1⌘i = ⌫. The action of ⌃r is by permuting the tuples (⌘1, ..., ⌘r) by the inverse.

Indeed as we check using (2.1):

(M �N )(Vi) =
M
r

M (r)⌦⌃r N (Vi)
⌦r ⇠=

M
r

M (r)⌦⌃r N ⌦r(Vi)

⇠=
M
r,⌫

M (r)⌦⌃r

�
N ⌦r(⌫)⌦⌃⌫ (Vi)

⌦⌫�
⇠=
M
r,⌫

M (r)⌦⌃r

0@ M
⌃r

i=1⌘i=⌫

Ind⌃⌫

⌃⌘1⇥...⇥⌃⌘r
N (⌘1)⌦ ...⌦N (⌘r)⌦⌃⌫ (Vi)

⌦⌫

1A
⇠=
M
⌫

M
r

M (r)⌦⌃r

0@ M
⌃r

i=1⌘i=⌫

Ind⌃⌫

⌃⌘1⇥...⇥⌃⌘r
N (⌘1)⌦ ...⌦N (⌘r)⌦⌃⌫ (Vi)

⌦⌫

1A .

Remark 2.8. We will later use Schur (multi)functors with domain the category of rational
vector spaces - just consider them as graded rational vector spaces concentrated in degree
0.

2.5 Automorphisms of hyperbolic modules over the integers

In this section we introduce hyperbolic modules in the sense of [Bak81]. Fix a � 2
{+1,�1}. Let ⇤ ⇢ Z, be an additive subgroup, called the form parameter, such that

{z � �z|z 2 Z} ⇢ ⇤ ⇢ {z 2 Z|z = ��z}. (2.3)

A ⇤-quadratic module is a pair (M,µ), where M is a Z-module and µ is a bilinear form,
i.e. a homomorphism

µ : M ⌦M ! Z.
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To a ⇤-quadratic module (M,µ) we can associate a ⇤-quadratic form

qµ : M ! Z/⇤, qµ(x) = [µ(x, x)]

and a �-symmetric bilinear form

h�,�iµ : M ⌦M ! Z,

defined by hx, yiµ = µ(x, y) + �µ(y, x). (�-symmetric bilinear forms like this are called
even.) We call a finitely generated free ⇤-quadratic module (M,µ) non-degenerate, if
the map

M !M⇤, x 7! hx,�iµ
is an isomorphism. Denote by Q�(Z,⇤) the category non-degenerate ⇤-quadratic mod-
ules and morphisms linear maps preserving the associated �-symmetric bilinear form
and the associated ⇤-quadratic form.
Given a finitely generated free Z-module M , we can define a non-degenerate ⇤-quadratic
module H(M) = (M �M⇤, µM ), where µM ((x, f), (y, g)) = f(y). We call H(M) the
hyperbolic module on M. A ⇤-quadratic module is called hyperbolic, if it is isomorphic
to H(N) for some finitely generated Z-module N .
Let {ei} be the standard basis for Zg and {fi} the dual basis of (Zg)⇤. The bilinear form
of

H(Zg) = Zhe1, ..., eni � Zhf1, ..., fni
is determined by

µZg(ei, fj) = fi(ej) = �i,j and µZg(ei, ej) = µZg(fi, ej) = µZg(fi, fj) = 0.

Identify Zhe1, ..., eni � Zhf1, ..., fni ⇠= Zha1, ..., a2gi by setting ai = ei and ai+g = fi for
i = 1, ..., g. The associated �-symmetric bilinear form is now given by the matrix

(hai, ajiµZg )i,j =

✓
0 �1
1 0

◆
,

where 1 denotes the g ⇥ g identity matrix.
We consider the automorphisms of the ⇤-quadratic module H(Zg) as a subgroup of
Gl2g(Z). The subgroups can be described as follows:

Proposition 2.9 ([Bak81, Corollary 3.2.]). The automorphism group of H(Zg) in Q�(Z,⇤)

is isomorphic to the subgroup of Gl2g(Z) consisting of matrices

✓
A B
C D

◆
such that

DTA+ �BTC = 1

DTB + �BTD = 0

ATC + �CTA = 0

CTA and DTB have diagonal entries in ⇤.
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Note that if � = 1 we necessarily have ⇤ = 0. When � = �1, the condition (2.3) implies
that 2Z ⇢ ⇤ ⇢ Z, thus we have the two cases ⇤ = Z and ⇤ = 2Z. Thus we can list the
automorphisms of hyperbolic modules:

1. When � = 1 and ⇤ = 0, then Aut(H(Zg)) = Og,g(Z) in Q1(Z, 0).
2. When � = �1 and ⇤ = Z, then Aut(H(Zg)) = Sp2g(Z) in Q�1(Z,Z).
3. When � = �1 and ⇤ = 2Z, then Aut(H(Zg)) in Q�1(Z, 2Z) is the subgroup of

Sp2g(Z) described as:⇢✓
A B
C D

◆
2 Sp2g(Z)|CTA and DTB have even entries at the diagonal

�
.

Let N be a (d � 1)-connected 2d-manifold. Wall [Wal62] has show that the automor-
phisms of the homology realized by di↵eormorphisms are the automorphisms of a ⇤-
quadratic module with underlying Z-module Hd(N). Later we will show a similar state-
ment for connected sums of products of spheres. For this we need a slight variation of
⇤-quadratic modules.
Let n 2 N and for n = 2d let ⇤ ⇢ Z, be an additive subgroup, such that

{z � (�1)dz|z 2 Z} ⇢ ⇤ ⇢ {z 2 Z|z = �(�1)dz}.

A graded ⇤-quadratic module is a pair (M⇤, µ), where M⇤ is a graded Z-modules and µ
bilinear n-pairing, i.e. a degree 0 homomorphism

µ : M⇤ ⌦M⇤ ! Z[n],

where Z[n] denotes the graded Z-module with a Z in degree n. We can associate to
(M⇤, µ) a graded symmetric bilinear n-pairing

h�,�iµ : M⇤ ⌦M⇤ ! Z[n],

defined by

hx, yiµ = µ(x, y) + (�1)|x||y|µ(y, x).

By graded symmetric we mean that

hx, yiµ = (�1)|x||y|hy, xiµ.

When n = 2d, we associate a ⇤-quadratic form

qµ : Md ! Z/⇤, qµ(x) = [µ(x, x)].
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We call a finitely generated free graded ⇤-quadratic module (M⇤, µ) non-degenerate, if
the map

M⇤ ! Hom(M⇤,Z[n]), x 7! hx,�iµ
is an isomorphism.
For n even, we define Qn

⇤ (Z,⇤) to be the category whose objects are non-degenerate
graded ⇤-quadratic modules (M⇤, µ), where M⇤ is a finitely generated free graded Z-
module and the morphisms respect qµ and h�,�iµ.
For n odd, we define Qn

⇤ (Z,⇤) to have objects non-degenerate graded ⇤-quadratic mod-
ules (M⇤, µ), where M⇤ is a finitely generated free graded Z-module and morphisms
respecting h�,�iµ. Note that in the case that n is odd the ⇤ in the notation is unnec-
essary, but we keep it in the notion for convenience.

Let Qn
+(Z,⇤) be the full subcategory with objects concentrated in positive degrees and

hence necessarily concentrated in degrees 1, ..., n� 1. Now let |I| be a finite indexing set
and for i 2 I let pi 2 {1, 2, ..., bn/2c}.. Denote by

ZI = (Zg1 [1]� ...� Zgbn/2c [bn/2c]) ,

where gk = #{i 2 I|pi = k}. We define a graded ⇤-quadratic module

HI = ZI � HomZ(ZI ,Z[n]).

Denote by {ai} the standard basis for

Zg1 [1]� ...� Zgbn/2c [bn/2c]

and by {bi} the dual basis of HomZ(ZI ,Z[n]). The pairing µHI = µI is given by

µI(ai, bj) = bj(ai) = �i,j and µI(ai, aj) = µI(bi, bj) = µI(bj , ai) = 0.

This definition is motivated by the following: Let

NI = (#i2I(S
pi ⇥ Sqi))r int(Dn),

where qi = n� pi. The canonical inclusions

↵i : S
pi ,! NI and �i : S

qi ,! NI

give us a basis {ai} [ {bi} for H̃⇤(NI) via the Hurewicz homomorphism. We will later
show that the intersection pairing is the associated graded symmetric form of the graded
hyperbolic module HI

⇠= H̃⇤(NI).

Denote by �I = Aut(HI) in Qn
+(Z,⇤). We get the following cases:
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1. When n is odd we get

�I
⇠=

bn/2cY
k=1

Glgk(Z).

2. When n = 2d and d is even we necessarily have ⇤ = 0 and

�I
⇠= Ogd,gd(Z)⇥

n/2�1Y
k=1

Glgk(Z).

3. Similarly for n = 2d with d odd the only cases are ⇤ = Z, 2Z and we just get a
products of general linear groups and Sp2gd(Z) respectively the subgroup described
in the list of automorphism groups above under point 3.

2.6 Van der Kallen’s and Charney’s homological stability
results

In this section we recall van der Kallen’s homological stability for general linear groups
and Charney’s homological stability for automorphisms of hyperbolic quadratic modules.
We will combine them to homological stability for the �I defined above with certain
coe�cient systems induced by polynomial functors.

Remark 2.10. Charney’s results hold for Dedekind domains with involutions and van der
Kallen’s for associative rings with finite stable range, but we restrict our presentation to
Z (with trivial involution).

We begin by reviewing the notion of coe�cient systems as discussed in [Dwy80]. A
coe�cient system for {Glg(Z)}g�1 is a sequence of Glg(Z)-modules {⇢g}g�1 together
with Glg(Z)-maps Fg : ⇢g ! I⇤(⇢g+1), where I⇤ denotes the restriction via the upper
inclusion

I : Glg(Z)! Glg+1(Z), A 7!
✓
A 0
0 1

◆
.

We will denote the system by ⇢ and call the maps Fg structure maps. A map of co-
e�cient systems ⇢ and ⇢0 is a collection of Glg(Z)-maps {⌧g}g�1 commuting with the
structure maps. The level-wise kernels and cokernerls are again coe�cient systems with
the obvious structure maps. Denote by

J : Glg(Z)! Glg+1(Z), A 7!
✓
1 0
0 A

◆
the lower inclusion map. For a coe�cient system ⇢ we define the shifted system ⌃⇢ by
⌃⇢g = J⇤(⇢g+1) with structure maps ⌃Fg = J⇤Fg+1 : J⇤(⇢g+1)! I⇤J⇤(⇢g+2) . Denote
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by sg 2 Glg(Z) the element permuting the last two standard basis elements. We call
a coe�cient system central, if sg+2 acts trivially on the image of Fg+1Fg : ⇢g ! ⇢g+2.
Denote by eg�1,g 2 Glg(Z) the element sending all but the g-th standard basis element
to itself and the g-th eg to eg�1+eg. We call a central coe�cient system strongly central,
if eg+1,g+2 acts trivially on the image of Fg+1Fg : ⇢g ! ⇢g+2.
Let cg 2 Glg(Z) (g > 1) be the element sending the i-th standard basis element to the
(i+ 1)-st and the g-th to the first.
Denote by µ(cg) the multiplication from the left by cg. Then the following holds:

Lemma 2.11 ([Dwy80, Lemma 2.1.]). Let ⇢ be a central coe�cient system. Then we
have a map of coe�cient systems ⌧ : ⇢! ⌃⇢, defined by

⌧g : ⇢g
Fg�! I⇤(⇢g+1)

µ(cg+2)����! J⇤(⇢g+1) = ⌃⇢g.

We say that a central coe�cient system ⇢ splits, if ⌃⇢ is isomorphic to ⇢� coker(⌧) via
⌧ . We then denote coker(⌧) by �⇢. We now define the notion of degree of a strongly
central coe�cient system ⇢ inductively. We say it has degree k = 0, if it is constant, i.e.
the Fg are isomorphism for all g. For k > 0 we say that it has degree  k, if ⌃⇢ splits
and �⇢ is a strongly central coe�cient system of degree k � 1.

Theorem 2.12 ([vdK80, p. 291]). Let ⇢ be a strongly central coe�cient system of degree
 k, then

Hi(Glg(Z), ⇢g))! Hi(Glg+1(Z), ⇢g+1)

is an isomorphism for g > 2i+ k + 2 and an epimorphism for g � 2i+ k + 2.

Denote by �g the standard representation of Glg(Z) on Zg and by �̄g the action by the
inverse transposed on Zg. Let A be an abelian category. Given a functor

T : Mod(Z)⇥Mod(Z)! A,

we can define a coe�cient system {T (�g, �̄g)}g�1 with structure maps induced by the
standard inclusions and actions induced by �g and �̄g.

Lemma 2.13 ([vdK80, 5.5.] and [Dwy80, Lemma 3.1.]). If

T : Mod(Z)⇥Mod(Z)! A

is a polynomial functor of degree  k, then {T (�g, �̄g)}g�1 is a strongly central coe�cient
system of degree  k.

Denote by Gg the automorphisms ofH(Zg) in Q�(Z,⇤). Denote by e1, ..., eg the standard
basis for Zg and by f1, ..., fg the dual basis of (Zg)⇤. We can see Gg as a subgroup of
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Gl2g(Z), by considering the elements of Gg as 2g⇥ 2g-matrices acting on H(Zg) ⇠= Z2g.
We define the upper inclusion

I : Gg ! Gg+1,

✓
A B
C D

◆
7!

0BB@
A 0 B 0
0 1 0 0
C 0 D 0
0 0 0 1

1CCA
and similarly the lower inclusion J : Gg ! Gg+1. The definition of a coe�cient system
is very similar to the one for Glg(Z) and we only briefly summarize it. A coe�cient
system for {Gg}g�1 is a sequence of Gg(Z)-modules {⇢g}g�1 together with Gg-maps
Fg : ⇢g ! I⇤(⇢g+1). We will denote a coe�cient system again by ⇢ and let maps of
coe�cient systems be defined analogous to above. The shifted coe�cient system ⌃⇢ is
the restriction via the lower inclusion as above. A coe�cient system is called central if
sg+2 � s2g+4 acts trivially on the image of Fg+1Fg : ⇢g ! ⇢g+2. For a central coe�cient
system we define the map of coe�cient systems ⌧ : ⇢! ⌃⇢, by

⌧g : ⇢g
Fg�! I⇤(⇢g+1)

µ(cg+2�c2g+4)��������! J⇤(⇢g+1) = ⌃⇢g.

We call a central coe�cient system ⇢ split, if ⌧ is injective and ⌃⇢ ⇠= ⌧(⇢) � coker(⌧).
For a central coe�cient system we define the degree inductively: We say it has degree
k = 0, if it is constant. For k � 0 we say that it has degree  k, if ⌃⇢ splits and coker(⌧)
is a central coe�cient system of degree  k � 1.

Theorem 2.14 ([Cha87, Theorem 4.3.]). Let ⇢ be a central coe�cient system of degree
 k, then

Hi(Gg, ⇢g)! Hi(Gg+1, ⇢g+1)

is an isomorphism for g > 2i+ k + 4 and an epimorphism for g � 2i+ k + 4.

Again we can get a central coe�cient system of degree  k by considering the standard
Gg-action �g,g on H(Zg) ⇠= Z2g, induced by the inclusion Gg ⇢ Gl2g(Z). Let A be an
abelian category. Given a polynomial functor

T : Mod(Z)! A,

of degree  k then {T (�g,g)}g�1 is a central coe�cient system of degree  k for {Gg}g�1.

Now we are going to combine van der Kallen’s and Charney’s homological stability
results, to get homological stability for �I = Aut(HI) in Qn

+(Z,⇤). Recall that I was a
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finite indexing set for natural numbers pi 2 {1, .., bn/2c} and gk denoted the number of
pi = k. Let

rk =

8><>:
gk if 0 < k < n/2

2gk if k = n/2

gn�k if n/2 < k < n.

Denote by �I the standard representation of �I on (Zr1 , ...,Zrn�1) 2Mod(Z)n�1 induced
by the obvious inclusion �I ⇢

Qn�1
k=1 Glrk(Z). A functor

T : Mod(Z)n�1 ! A

induces a �I -module
T (Zr1 , ...,Zrn�1).

We will denote this �I -module by T (�I). For a fixed p 2 N, such that 0 < p  bn/2c,
denote by �I 0 the automorphisms of HI 0 , where I 0 = I [ {i0} with pi0 = p. We define the
stabilization map

�p,n�p : Hi(�I , T (�I))! Hi(�I 0 , T (�I 0))

to be the map induced by the obvious upper inclusion Ip,n�p : �I ! �I 0 and T (Ip,n�p).

Proposition 2.15. Let A be an abelian category, T : Mod(Z)n�1 ! A be a polynomial
functor of degree  k. The stabilization map

�p,n�p : Hi(�I , T (�I))! Hi(�I 0 , T (�I 0))

induces an isomorphism for gp > 2i+ k + 2 when 2p 6= n and gp > 2i+ k + 4 if 2p = n
and an epimorphism for gp � 2i+ k + 2 respectively gp � 2i+ k + 4.

Proof. Note that

�I ⇢
bn/2cY
k=1

Glrk(Z) ⇢
n�1Y
k=1

Glrk(Z),

because of the compatibility with the pairing. Denote by �gp the subgroup that sits in
Glrp(Z). Let � = Aut(HĪ), where Ī = I r {i 2 I|pi = p}. Note that �I = � ⇥ �gp and
�I 0 = �⇥ �gp+1, where �gp+1 is defined analogous to �gp . Consider the functor

Ip,n�p :

(
Mod(Z)!Mod(Z)n�1 if p = n/2

Mod(Z)⇥Mod(Z)!Mod(Z)n�1 otherwise,

defined by sending a module M to (Zr1 , ...,M, ...,Zrn�1), where the M sits at the (n/2)-
th position and a pair (M,N) to (Zr1 , ...,M, ..., N, ...,Zrn�1), where the M sits at the
p-th position the N sits at the (n� p)-th position. This functor is clearly additive and
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hence of degree  1. This implies that the composition T �Ip,n�p is of degree  k. Note
that for p 6= n/2 the �gp-module obtained by restricting T (�I) is naturally isomorphic
to T � Ip,n�p(�gp , �̄gp). For p = n/2 the �gp-module obtained by restricting T (�I) is
naturally isomorphic to T � Ip,n�p(�gp,gp). Hence we get a (strongly) central coe�cient
system of degree  k for

�gp =

(
Ggp if p = n/2

Glgp(Z) otherwise.

This implies using Charney’s and van der Kallen’s stability results that the stabilization
maps

Hi(�gp , T � In/2,n/2(�gp,gp))! Hi(�gp+1, T � In/2,n/2(�gp+1,gp+1))

and
Hi(�gp , T � Ip,n�p(�gp , �̄gp))! Hi(�gp+1, T � Ip,n�p(�gp+1, �̄gp+1))

are isomorphisms and epimorphisms in the ranges in the statement of the proposition.
Observing that the T � In/2,n/2(�gp,gp) respectively T � Ip,n�p(�gp , �̄gp) are precisely
the restrictions of the �I -representation to the subgroup �gp . The results follows by
comparing spectral sequences.

2.7 Rationally perfect groups

A group G is called rationally perfect, if H1(G;V ) = 0 for any finite dimensional rational
G-representation V. We will need that the automorphism groups of graded hyperbolic
modules are rationally perfect.

Lemma 2.16. The groups �I are rationally perfect.

Proof. We begin by observing that being rationally perfect is stable under group exten-
sions, i.e. if in a group extension

0! K ! G! C ! 0,

K and C are rationally perfect, then so is G. This follows from the Lyndon spectral
sequence, since H1(C;H0(K;V )) and H0(C;H1(K;V )) are trivial for any finite dimen-
sional rational G-representation V. In particular products of rationally perfect groups
are rationally perfect. Moreover we observe that finite groups are rationally perfect.
It follows from Borel’s work on the cohomology of arithmetic groups that the automor-
phism groups Gg of the hyperbolic modules H(Zg) in Q�(Z,⇤) are rationally perfect for
g � 2 (see e.g. [BM15]).
In [BMS67] it is shown that Slg(Z) is rationally perfect for g � 3. Since Slg(Z) is an
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index two normal subgroup of Glg(Z), this now also implies that Glg(Z) is rationally
perfect for g � 3.
Recall that the �I are products of Gg-s and Glg(Z)-s. Since Gl1(Z) is finite and hence
rationally perfect, to finish the proof we have to show that G1 and Gl2(Z) are rationally
perfect.
The group Sl2(Z) is an extension

0! C2 ! Sl2(Z)! C2 ⇤ C3 ! 0

and C2 ⇤C3 can be seen to be rationally perfect using a Mayer-Vietoris argument. Hence
Sl2(Z) and also Gl2(Z) are rationally perfect.
The group G1 in Q�1(Z,Z) is Sp2(Z), which is isomorphic to Sl2(Z). For ⇤ = 2Z it
follows that G1 is rationally perfect because it is a finite index subgroup of Sp2(Z).
Recall that for � = 1, we necessarily have ⇤ = 0 and G1

⇠= O1,1(Z) ⇠= C2⇥C2 and hence
we are done.

We will later need the following consequences:

Proposition 2.17 (see e.g. [BM15, Proposition B.5 and Lemma B.1]). Let G be a
rationally perfect group and let C⇤ be a chain complex of Q[G]-modules that is degree-
wise finite dimensional over Q. Then there is a chain homotopy equivalence

pC : C⇤ ! H⇤(C)

of Q[G]-chain complexes such that pC(z) = [z] if z is a cycle. Moreover for a chain map
f : C⇤ ! D⇤ between Q[G]-chain complexes as above the following diagram

C⇤

pC
✏✏

f // D⇤

pD
✏✏

H⇤(C)
H⇤(f)// H⇤(D)

commutes up to chain homotopy of Q[G]-chain complexes.

2.8 Surgery theory and automorphism spaces of manifolds

Surgery theory is a method to enumerate the number of di↵erent compact manifolds of
a given dimension n � 5 within a given homotopy type. We are going to restrict our
presentation to homotopy types given by simply connected compact n-manifolds. For a
detailed description see e.g. [Bro72] or [Wal99].
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Let X be a simply connected compact oriented smooth n-manifold, n � 6, with bound-
ary @X. The structure set SG/O(X, @X) consists of equivalence classes of oriented n-
manifolds with boundary (Y, @Y ) together with orientation preserving homotopy equiv-
alences

f : (Y, @Y )! (X, @X),

such that f |@Y : @Y ! @X are di↵eomorphisms. Two elements

fi : (Yi, @Yi)! (X, @X), i = 1, 2

are equivalent, if there exists a di↵eomorphism

F : (Y1, @Y1)! (Y2, @Y2),

such that
(Y1, @Y1)

F //

f1 &&

(Y2, @Y2)

f2xx
(X, @X)

commutes up to homotopy relative to the boundaries. The set of normal invariants
NG/O(X, @X) consists of equivalence classes of degree one normal maps, i.e. orientation
preserving maps from manifolds (Y, @Y )

f : (Y, @Y )! (X, @X),

such that f |@Y : @Y ! @X are di↵eomorphisms, together with fiberwise isomorphisms
of vector bundles f̂ : ⌫Y ! ⇠, where ⌫Y denotes the normal bundle of Y ⇢ RN (N >> n)
and ⇠ is some vector bundle over X, such that ⇠|@X is stably equivalent to ⌫@X . Two
degree one normal maps

fi : (Yi, @Yi)! (X, @X), i = 1, 2

are equivalent, if there exists a degree one normal cobordism between them. A degree
one normal cobordism is a (n + 1)-manifold (W, @W ), where @W = Y1 [ U [ Y2 and
@U = @Y1 [ @Y2, together with a degree one normal map

F : (W, @W )! (X ⇥ I; @(X ⇥ I)),

such that F |(Yi, @Yi) = fi as normal maps for i = 1, 2 and F |U : U ! @X ⇥ I is a
di↵eomorphism. The normal invariant map

⌘ : SG/O(X, @X)! NG/O(X, @X)
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is defined by considering an element of the structure set as one of the normal invariant
set, using that a di↵eomorphisms F : (Y1, @Y1) ! (Y2, @Y2) gives rise to a degree one
normal cobordism. The question now is, if a degree one normal map came from an
element of the structure set. The failure is measured by the surgery obstruction

� : NG/O(X, @X)! Ln(Z),

where

Ln(Z) ⇠=

8><>:
Z if n ⌘ 0 (4)

Z/2Z if n ⌘ 2 (4)

0 otherwise.

The result is a long exact sequence of groups of k � 1 and of sets for k = 0 :

...! SG/O(X ⇥Dk, @(X ⇥Dk))
⌘�! NG/O(X ⇥Dk, @(X ⇥Dk))

��! Ln+k(Z)! ...

the so called Surgery exact sequence. There is a di↵erent description of the normal in-
variant set due to Sullivan. Let O =

S
nO(n), where O(n) denotes the orthogonal group

and G =
S

nG(n), where G(n) is the topological monoid of homotopy self-equivalences
of Sn�1. Denote by G/O the homotopy fiber of the map

BO ! BG,

where the map is induced by considering an element of the orthogonal group f : Rn ! Rn

as a self-equivalence of the unit sphere Sn�1 ⇢ Rn. Sullivan showed that there is a natural
isomorphism

NG/O(X, @X) ⇠= [X/@X,G/O].

Quinn shows in his thesis [Qui70] that there is a quasi-fibration

S(X, @X)! map⇤(X/@X,G/O)! L(X)

and that its homotopy exact sequence is the surgery exact sequence. The structure space
S(X, @X) is related to automorphism spaces of the manifold X as we will now indicate.
Denote bygAut@(X) the �-monoid of block homotopy equivalences, with k-simplices face
preserving homotopy equivalences

f : �k ⇥X ! �k ⇥X,

s.t. f |�k⇥@X is the identity. The block di↵eomorphismsgDi↵@(X) are the sub-�-group
with k-simplices, face preserving di↵eomorphisms

f : �k ⇥X ! �k ⇥X.
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We will not distinguish between �-objects and their realizations. Denote the inclusiongDi↵@(X) ,!gAut@(X) by J̃ . By a result of Dold [Dol63] homotopy equivalences of fibra-
tions over paracompact base spaces are homotopic to fiberwise homotopy equivalences.
Hence the inclusion

aut@(X) ,!gAut@(X)

is a homotopy equivalences. The block di↵eomorphisms gDi↵@(X) and the di↵eomor-
phisms Di↵@(X) with the Whitney C1-topology on the other hand are not homotopy
equivalent - the di↵erence is related to algebraic K-theory (see [WW01]). The ho-
mogeneous space gAut@(X)/gDi↵@(X) is by definition the homotopy fiber of the map
J̃ : BgDi↵@(X) ! BgAut@(X). Denote by gAut@(X)/gDi↵@(X)(1) the component getting

hit by the identity ingDi↵@(X) and by S(X, @X)(1) the component of S(X, @X) contain-
ing idX .

Proposition 2.18 (see e.g. [BM13]). There is a natural weak homotopy equivalence

gAut@(X)/gDi↵@(X)(1) 'w.e. S(X, @X)(1).

We will conclude this section with a lemma that we will need for computations later.
Consider three simply connected n-manifolds X1, X2 and X3 with boundary. Let f :
X1 ! X2 and g : X2 ! X3 be homotopy equivalences such that f |@X1 : @X1 ! @X2

and g|@X2 : @X2 ! @X3 are di↵eomorphisms.

Lemma 2.19 ([BM13, Lemma 3.3.]). In [X3/@X3, G/O] we have

⌘(g � f) = (g⇤)�1(⌘(f)) + ⌘(g).
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The goal of this chapter is to show that the Chevalley-Eilenberg chains of certain deriva-
tion Lie algebras can be described as the value of a Schur multifunctor. For this we
establish graded version of [BM15, Section 5.2.].

Let n 2 N. We define Sn
⇤ (Q) to be the category whose objects are graded, finite di-

mensional, rational vector spaces V with a non-degenerate, graded symmetric, bilinear
n-pairing. More precisely, a degree 0 homomorphism

h�,�iV : V ⌦ V ! Q[n],

such that hx, yiV = (�1)|x||y|hy, xiV for homogeneous elements x, y 2 V and such that
the adjoint map

DV : V 3 x 7! hx,�iV 2 HomQ(V,Q[n])

is an isomorphism. The morphisms in Sn
⇤ (Q) are linear maps f : V ! W of degree 0

such that

hx, yiV = hf(x), f(y)iW , for all x, y 2 V.

Example Consider the category of closed, orientable n-manifold with non-empty bound-
ary and degree 1 homotopy equivalences. The rational homology relative boundary
together with the intersection pairing defines a functor to the category Sn

⇤ (Q).

The adjoint f ! : W ! V of f : V ! W is the unique linear map such that

hf !(x), yiV = hx, f(y)iW , for all x 2 W and y 2 V.

Morphisms in Sn
⇤ (Q) are injective because f !f = idV . The adjoint induces in particular

a splitting

W ⇠= V � V ?, x 7! (f !(x), x� ff !(x)),

where V ? = {x 2 W |hx, f(y)iW = 0 for all y 2 V }.
Denote by L(V ) = L(s�1V ) the free graded Lie algebra generated by s�1V , the desus-
pension of V (i.e. (s�1V )⇤ = V⇤+1). For f : V ! W denote by s�1f : s�1V ! s�1W
the desuspension of f and by L(f) : L(V )! L(W ) the morphism of graded Lie algebras
induced by s�1f . Denote by L1(V ) the elements of bracket length 1, i.e. the generating
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vectorspace s�1V. Recall that the derivations DerL(V ) are a graded Lie algebra (Section
2.2.). We define

Der(L(f)) : Der(L(V ))! Der(L(W )),

to be the map that takes ✓ 2 Der(L(V )) into the unique derivation of L(W ) with

Der(L(f))(✓)(x) = L(f) � ✓(s�1f !(x)) for all x 2 L1(W ).

Lemma 3.1. Let f : V ! W be a morphism in Sn
⇤ (Q). Der(L(f)) is an injective

morphism of graded Lie algebras. Moreover Der(L(�)) defines a functor

Der(L(�)) : Sn
⇤ (Q)! gLie.

Proof. Denote �f = Der(L(f)). To show that �f is a map of di↵erential graded Lie
algebras, it su�ces to show that �f ([✓, ⌘])(x) = [�f (✓),�f (⌘)](x), for ✓, ⌘ 2 Der(L(V ))
and x 2 L1(W ), since both sides are derivations on a free graded Lie algebra. First we
observe that �f (✓)�L(f) = L(f)�✓. This follows because both sides are L(f)-derivations
and on generators x 2 L1(W ) we have

�f (✓) � L(f)(x) = L(f) � ✓(s�1f !(s�1f(x))) = L(f) � ✓(x).

Using this we can calculate

�f ([✓, ⌘])(x) = �f (✓ � ⌘ � (�1)|✓||⌘|⌘ � ✓)(x)
= L(f) � ✓ � ⌘ � s�1f !(x)� (�1)|✓||⌘|L(f) � ⌘ � ✓ � s�1f !(x)

= �f (✓) � L(f) � ⌘ � s�1f !(x)� (�1)|✓||⌘|�f (⌘) � L(f) � ✓ � s�1f !(x)

= �f (✓) � �f (⌘)(x)� (�1)|�f (✓)||�f (⌘)|�f (⌘) � �f (✓)(x)
= [�f (✓),�f (⌘)](x).

To show injectivity we define a section (in general only of graded vector spaces)

 f : Der(L(W ))! Der(L(V )),

by  f (✓)(x) = L(f !) � ✓(s�1f(x)) on generators x 2 s�1W for ✓ 2 Der(L(W )). To verify
that  f is a section, we calculate for ✓ 2 Der(L(W )) and x 2 s�1V

 f � �f (✓)(x) = L(f !) � �f (✓)(s�1f(x))

= L(f !) � L(f) � ✓(s�1f ! � s�1f(x))

= L(f !) � L(f) � ✓(x) = ✓(x).

We leave it to the reader to show that �gf = �g�f , for a g : W ! Z in Sn
⇤ (Q).
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Denote by ⇤(V ) the free graded commutative algebra over V . Let ⇤2(V )n be the ele-
ments of word length 2 and of degree n. Note that h�,�iV gives us a homomorphism in
HomQ(⇤

2(V )n,Q[n]). Let L2(V )n�2 be the elements of bracket length 2 and of degree
n� 2. The suspension

s : s�1V 3 x 7! sx 2 V

induces an isomorphism of vector spaces L2(V )n�2
⇠= ⇤2(V )n by

[x, y] 7! (�1)|x|sx ^ sy.

We define a non-degenerate pairing

h�,�i : L2(V )n�2 ⌦ ⇤2(V )n ! Q

by
h[x, y], a ^ bi = (�1)|x|hsx, aiV hsy, biV + (�1)|x|+|a||b|hsy, aiV hsx, biV .

It’s adjoint
L2(V )n�2 ! HomQ(⇤

2(V )n,Q[n])

is an isomorphism and hence there is a unique element !V 2 L2(V )n�2 mapping to
h�,�iV . We can characterize !V alternatively as the unique element, such that

h!V , a ^ bi = ha, biV for all a, b 2 V .

Given a basis e1, ..., em for the graded vector space V (i.e. with the ei homogeneous),
then we can form the dual basis e#1 , ..., e

#
m, which is uniquely determined by

hei, e#j iV = �i,j .

If we represent the bilinear form on V as the matrix B = (hei, ejiV ), then e#i = B�1ei
and B�1 = (he#i , e

#
j iV ). Given this, one can check that

2!V =
X
i,j

�(�1)|ei|he#i , e
#
j iV [s

�1ei, s
�1ej ].

For a general V we want to study the evaluation at !V :

ev!V : Der(L(V )) 3 ✓ 7! ✓(!V ) 2 L(V ),

which is given explicitly in terms of a basis e1, ..., em for V by

ev!V (✓) =
X
i,j

�(�1)|ei|he#i , e
#
j iV [✓(s

�1ei), s
�1ej ].

Note that the kernel of the evaluation map is exactly the graded sub Lie algebra of
derivations annihilating L[!V ], the Lie algebra generated by !V . We will denote it by

Der!V (L(V )) = Der(L(V ), rel. L[!V ]).
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Lemma 3.2. For f : V ! W in Sn
⇤ (Q) the following diagram commutes

Der(L(V ))
ev!V //

�f

✏✏

L(V )

L(f)
✏✏

Der(L(W ))
ev!W // L(W ).

Proof. We will use that W ⇠= V � V ? and since f respects the pairing, !W corresponds
to !V �!V ? , where !V ? 2 L(V ?). Assume without loss of generality that W = V �V ?.
For ✓ 2 Der(L(V )) the image �f (✓) is then given by the derivation on L(V � V ?) that
restricts to ✓ on L(V ) and is constant 0 on L(V ?). The map f becomes just the inclusion
of L(V ) into L(V � V ?). Hence we calculate

�f (✓)(!W ) = �f (✓)(!V ) + �f (✓)(!V ?) = �f (✓)(!V ) = ✓(!V ).

Lemma 3.2 implies that the exact sequence:

0! Der!V (L(V ))! Der(L(V ))
ev!V���! L(V )

is natural with respect to maps in Sn
⇤ (Q). This implies in particular that Der!(�)

(L(�))
extends to a functor Sn

⇤ (Q)! gLie. It sends a morphism f : V ! W to the morphism
defined by

Der!V (L(V ))! Der!V �!V ? (L(V � V ?)) ⇠= Der!W (L(W ))

✓ 7! ✓ � 0V ? .
(3.1)

Consider L1(V )⌦L(V ) with grading given by |x⌦ ⇠| = |⇠|+ |x|�n+2. For x 2 L1(V )
and ⇠ 2 L(V ) we can define a derivation of L(V ) by

✓x,⇠(y) = �(�1)|x|(|⇠|+1)+nhsx, syiV ⇠, y 2 L1(V ).

This extends to an isomorphism of graded vector spaces

✓�,� : L1(V )⌦ L(V )! Der(L(V )).

Let e1, ..., en be a basis of V, then the inverse of ✓�,� is given by

✓�1
�,�(✓) =

X
i

�(�1)|s
�1e#i |(|✓|+|s�1ei|+1)+ns�1e#i ⌦ ✓(s

�1ei).
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The map ✓�,� is natural with respect to morphisms in Sn
⇤ (Q), i.e. ✓�,� fits into the

following commutative diagram for any morphism f : V ! W in Sn
⇤ (Q)

L1(V )⌦ L(V )
✓�,� //

L1(f)⌦L(f)
✏✏

Der(L(V ))

Der(L(f))
✏✏

L1(W )⌦ L(W )
✓�,� // Der(L(W )).

Let
b : L1(V )⌦ L(V )! L(V )

be the map induced by

b(x, ⇠) = [x, ⇠] for x 2 L1(V ) and ⇠ 2 L(V ).

Lemma 3.3. The maps b and ✓�,� fit into the following commutative diagram

L1(V )⌦ L(V ) b //

✓�,�
✏✏

L(V )

Der(L(V ))
ev!V // L(V ).

Proof. Let e1, .., em be a basis for V and let B be the matrix defined by (hei, ejiV ). It
su�ces to check for elements of the form s�1ek ⌦ ⇠ 2 L1(V ) ⌦ L(V ). We calculate,
remembering that we can assume |ei| + |ej | = n, since he#i , e

#
j iV = 0, if |ei| + |ej | 6= n

and also |ei|+ |ek| = n.

✓s�1ek,⇠(!V ) =
X
i,j

(�1)|s
�1ei|he#i , e

#
j iV [✓s�1ek,⇠(s

�1ei), s
�1ej ]

=
X
i,j

�(�1)|s
�1ei|+|s�1ek|(|⇠|+1)+nhe#i , e

#
j iV hek, eiiV [⇠, s

�1ej ]

=
X
i,j

(�1)|s
�1ei|+|s�1ek|(|⇠|+1)+n+|s�1ej ||⇠|he#i , e

#
j iV hek, eiiV [s

�1ej , ⇠]

=
X
i,j

B�1
i,j Bk,i[s

�1ej , ⇠] =
X
j

�j,k[s
�1ej , ⇠]

= [s�1ek, ⇠] = b(s�1ek, ⇠).

Remark 3.4. Let n > 1. We will later need that the evaluation map

Der(L(V ))k
ev!V���! L(V )k+n�2
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is surjective for k � 1 when V is concentrated in positive degrees and hence concentrated
in degrees 1, ..., n� 1. By the Lemma above it su�ces to show that

b : (L1(V )⌦ L(V ))k ! L(V )k+n�2

is surjective for k � 1. Now considering the standard grading on L1(V ) ⌦ L(V ), i.e.
|x⌦⇠| = |x|+|⇠|, this is equivalent to asking that b : (L1(V )⌦L(V ))k+n�2 ! L(V )k+n�2

is surjective, but this follows since all elements of degree � n � 1 are of bracket length
� 2 when V is concentrated in positive degrees.

Denote by g(V ) the kernel of b. We can extend the commutative diagram of Lemma 3.3
to a commutative diagram with exact rows:

0 // g(V ) //

⇠=
✏✏

L1(V )⌦ L(V ) b //

✓�,�
✏✏

L(V )

0 // Der!V (L(V )) // Der(L(V ))
ev!V // L(V ).

(3.2)

As shown above all maps in (3.2) are natural with respect to maps in Sn
⇤ (Q), hence we

get a natural isomorphism g(V ) ⇠= Der!V (L(V )).

Note g factors through the forgetful functor Sn
⇤ (Q)! V ect⇤(Q), i.e. we can extend the

definition of g to V ect⇤(Q).

We want to describe g : V ect⇤(Q)! V ect⇤(Q) as a Schur functor.

Let L ie = {L ie(k)}k�0 be the Lie operad (see e.g. [LV12]). Picking a generator � of
L ie(2) defines a map

L ie(k � 1) 3 � 7! � �2 � 2 L ie(k).

This map is ⌃k�1-equivariant, where the ⌃k�1-action on L ie(k) is induced by the in-
clusion of ⌃k�1 ,! ⌃k acting on the last k� 1 elements. The adjoint map fits in a short
exact sequence of ⌃k-representations

0! U (k)! Ind⌃k

⌃k�1
L ie(k � 1)! L ie(k)! 0,

where U (k) denotes the kernel. Applying the functor �⌦⌃kW
⌦k for any graded rational

vector space W , we get a short exact sequence

0! U (k)⌦⌃k W
⌦k ! Ind⌃k

⌃k�1
L ie(k � 1)⌦⌃k W

⌦k ! L ie(k)⌦⌃k W
⌦k ! 0,

since Tor
Q[⌃k]
1 vanishes. We can naturally identify L ie(k)⌦⌃k W

⌦k ⇠= Lk(W ) and

Ind⌃k

⌃k�1
L ie(k � 1)⌦⌃k W

⌦k ⇠= W ⌦ Lk�1(W ).

39



Rational Homological Stability for Automorphisms of Manifolds

Under this identifications the map becomes the bracketing map. Note that the degree
of elements in U (k) is constant �n + 2 under this identification. Hence we naturally
identified

gk(V ) ⇠= U (k)⌦⌃k (s
�1V ))⌦k.

We can describe the desuspension s�1 as a Schur functor D with D(1) the trivial ⌃1-
representation Q concentrated in degree �1 and trivial otherwise. Let U 0 be the com-
posite U �D . This implies the following

Proposition 3.5. Let V 2 Sn
⇤ (Q). Then there is an isomorphism of graded rational

vector spaces

Der!V (L(V )) ⇠=
M
k�0

U 0(k)⌦⌃k V
⌦k

natural with respect to maps in Sn
⇤ (Q) where elements of U 0(k) are of constant degree

�n+ 2� k.

Proof. By the discussion above we know that we get a natural isomorphism

Der!V (L(V )) ⇠= U 0(V ) = U �D(V ).

To show that elements of U 0(k) are of constant degree �n+2�k, we use the description
of a compostion of Schur functors to show that

U 0(k) = U (k)⌦⌃k Ind
⌃k

⌃1⇥...⌃1
D(1)⌦ ...⌦D(1),

but this is clearly of degree �n+ 2� k.

We would like identify the positive degree derivations as a Schur functor in terms of
U 0(k), but this is not possible since we don’t have enough control over the degrees of
elements of V ⌦k. Instead we consider the full subcategory Sn

+(Q) of Sn
⇤ (Q) with objects

concentrated in positive degrees (and hence concentrated in degrees 1, ..., n�1). Consider
the functor

F : Sn
+(Q)! V ect(Q)n�1,

defined on objects as F(V ) = (Vi)
n�1
i=1 and the functor

V : V ect(Q)n�1 ! V ect⇤(Q),

defined on objects as V (Vi) =
Ln�1

i=1 Vi[i]. The forgetful functor Sn
+(Q) ! V ect⇤(Q)

factors as V � F . We can decribe V as a Schur multifunctor given by V (✏i) the trivial
⌃1-representation Q concentrated in degree i and trivial otherwise, where ✏i denotes the
multi-index with a 1 at the i-th position and 0 otherwise.
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3 On certain derivation Lie algebras

Proposition 3.6. Let n > 1, V 2 Sn
⇤ (Q) and (Vi) 2 V ect(Q)n�1 the image of the

forgetful functor. Then there is an isomorphism of graded rational vector spaces

Der+!V
(L(V )) ⇠=

M
µ

W (µ)⌦⌃µ (Vi)
⌦µ

natural with respect to maps in Sn
+(Q), where W (µ) = (U 0 � V )(µ), when

n�1X
i=1

mi
i� 1

n� 1
� 1,

µ = (m1, ...,mn�1) and 0 otherwise. The elements of W (µ) are of constant degree⇣Pn�1
i=1 mi(i� 1)

⌘
� n+ 2.

Proof. By the discussion above we see that we get a natural isomorphism

Der!V (L(V )) ⇠=
M
µ

(U 0 � V )(µ)⌦⌃µ (Vi)
⌦µ for V 2 Sn

+(Q).

To understand the degree of (U 0 � V )(µ) we use (2.2):

(U 0 � V )(µ) ⇠=
M
r

U 0(r)⌦⌃r

M
Ind⌃µ

⌃µ1⇥...⇥⌃µr
V (µ1)⌦ ...⌦ V (µr), (3.3)

where the second sum runs over all r-tuples (µ1, ..., µr), such that ⌃r
i=1µi = µ. But a

summand corresponding to (µ1, ..., µr) is only non-trivial if µi = ✏ji , for some ji. Hence
the only non-trivial summands of (3.3) occur for r = |µ| and they are of degree 

n�1X
i=1

mii

!
� n+ 2� |µ| =

 
n�1X
i=1

mi(i� 1)

!
� n+ 2.

This is � 1, when
Pn�1

i=1 mi
i�1
n�1 � 1.

We can now proceed to give a Schur multifunctor description of the Chevalley-Eilenberg
chains of Der!V (L(V )).

Proposition 3.7. Let n > 3 and V 2 Sn
+(Q). Then there exists a Schur multifunctor

C , such that there is an isomorphisms of graded vector spaces

CCE
⇤ (Der+!V

L(V )) ⇠=
M
µ

C (µ)⌦⌃µ (Vi)
⌦µ

natural with respect to maps in Sn
+(Q), where the C (µ) are concentrated in degrees

� 2

n� 1

 
n�1X
i=1

mi(i� 1)

!
.

41



Rational Homological Stability for Automorphisms of Manifolds

Proof. The underlying graded vector space of the Chevalley-Eilenberg chains of a graded
Lie algebra can be described as the image of the Schur functor

CCE
⇤ (�) ⇠=

M
r

⇤(r)⌦⌃r (�)⌦r,

where ⇤(r) is the trivial ⌃r-representation concentrated in degree r. The Chevalley-
Eilenberg chains of Der+!V

L(V ) are naturally isomorphic as a graded vector space to
C ((Vi)) = ⇤ �W ((Vi)) by the previous Proposition. We consider C (µ) for fixed µ. It is
given by

C (µ) =
M
r

⇤(r)⌦⌃r

M
Ind⌃µ

⌃µ1⇥...⇥⌃µr
W (µ1)⌦ ...⌦W (µr),

where the sum is as before. For a fixed r we get by the previous Proposition that the
summand corresponding to (µ1, ..., µr), where µs = (m1,s, ...mr,s), is only non-zero, ifPn�1

i=1 (mi,s
i�1
n�1) � 1 for all s = 1, ..., r. That implies that

n�1X
i=1

mi
i� 1

n� 1
=

rX
s=1

(

n�1X
i=1

mi,s
i� 1

n� 1
) � r. (3.4)

If the summand is non-zero it is of degree

r +

rX
s=1

  
n�1X
i=1

ms
i (i� 1)

!
� n+ 2

!
= r �

 
n�1X
i=1

mi(i� 1)

!
� nr + 2r

=

 
n�1X
i=1

mi(i� 1)

!
+ r(3� n)

�

 
n�1X
i=1

mi(i� 1)

!
+

 
n�1X
i=1

mi
i� 1

n� 1

!
(3� n)

=
2

n� 1

 
n�1X
i=1

mi(i� 1)

!
,

where we used that 3� n is negative and (3.4).

Denote by Cr : V ect(Q)n�1 ! V ect(Q) the functor defined by taking the degree r-part
of C .

Corollary 3.8. Let n > 3 and V 2 Sn
+(Q). Then there is an isomorphisms of graded

vector spaces

CCE
r (Der+!V

L(V )) ⇠=
M
µ

Cr(µ)⌦⌃µ (Vi)
⌦µ

natural with respect to maps in Sn
+(Q), where the Cr(µ) vanishes for |µ| > r

2 .
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3 On certain derivation Lie algebras

Remark 3.9. Note that this in particular implies that Cr : V ect(Q)n�1 ! V ect(Q) is a
Polynomial functor of degree r

2 .

Proof. By Proposition 3.7 C (µ) ⌦⌃µ (Vi)⌦µ, where (Vi) 2 V ect(Q)n�1, is concentrated

in degrees � 2
n�1

⇣Pn�1
i=1 mi(i� 1)

⌘
. This implies that Cr(µ) has to vanish for

r <
2

n� 1

 
n�1X
i=1

mi(i� 1)

!
 2

n�1X
i=1

mi = 2|µ|.
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4 Mapping class groups

Let
N = NI = (#i2I(S

pi ⇥ Sqi))r int(Dn),

where |I| < 1, 2 < pi  qi < 2pi � 1 and pi + qi = n for i 2 I. Note that this implies
that necessarily n � 6. Denote by in : @N ,! N the inclusion of the boundary. We
observe that VI =

W
i2I(S

pi _ Sqi) ⇢ N is a deformation retract and denote by

↵j : S
pj ,!

_
i2I

(Spi _ Sqi) and �j : S
qj ,!

_
i2I

(Spi _ Sqi)

the canonical inclusions. We can consider in as an element of ⇡n�1(
W

i2I(S
pi _Sqi)) and

we observe that it is given by
P

i2I [↵i, �i]. Denote by

h�,�i : H⇤(N)⌦Hn�⇤(N)! Z

x⌦ y 7! (PD�1(x) [ PD�1(y))([N, @N ])

the intersection form, where PD�1 : H⇤(N) ! Hn�⇤(N, @N) denotes the Poincaré
duality isomorphisms and we evaluate on the fundamental class [N, @N ]. The {↵i} and
{�i} define a basis for H̃⇤(N) via the Hurewicz homomorphism, which we will denote by
{ai} respectively {bi}. Note that we can assume that bi dual to ai. For Sp⇥Sqr int(Dn)
this is clear and it follows for NI by restriction to the subspaces Spi ⇥ Sqi r int(Dn).
In the case n = 2d is even we need to recall a further piece of structure from Wall’s
classification of highly connected even dimensional manifolds [Wal62]. The elements
x 2 Hd(N) can be represented by embedded Sd. Denote by ⌫x 2 ⇡d�1(SO(d)) the
clutching function of the normal bundle of this embedding. It is independent of the
choice of embedding, since homotopic embeddings are isotopic in this case. This defines
a function

q : Hd(N)! ⇡d�1(SO(d)), x 7! [⌫x].

Denote by ◆d the class of the identity in ⇡d(S
d) and by

@ : ⇡d(S
d)! ⇡d�1(SO(d))

the boundary map in the fibration SO(d)! SO(d+1)! Sd. The function q satisfies:

hx, xi = HJq(x) and q(x+ y) = q(x) + q(y) + hx, yi@◆d,
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where ⇡d�1(SO(d))
J�! ⇡2d�1(S

d)
H�! Z denote the J-homomorphism and the Hopf in-

variant. There is also a purely homotopy theoretic description of Jq in [KM63, Section
8]. Note that for ai, bj 2 Hd(N), we have q(ai) = q(bj) = 0. Hence Image(q) is con-
tained in the subgroup h@◆di generated by @◆d. The J-homomorphism restricts to an
isomorphism

J |h@◆di : h@◆di ! J(h@◆di) ⇠=

8>><>>:
h[◆d, ◆d]i

⇠=�!
H

2Z if d even

0 if d = 1, 3, 7

h[◆d, ◆d]i ⇠= Z/2Z if d is odd and not 1, 3 or 7,

where the second isomorphism is induced by the Hopf invariant. Let

Aut(H̃⇤(N), h�,�i, Jq) and Aut(H̃⇤(N), h�,�i, q)

be the automorphisms of the reduced homology respecting the intersection form and the
function Jq (q respectively). Note that

hx, yi = µ(x, y) + (�1)|x||y|µ(y, x),

where µ(�,�) is determined by

µ(ai, bj) = �i,j and µ(bi, aj) = µ(ai, aj) = µ(bi, bj) = 0.

Now let

⇤ =

8><>:
0 if n = 2d and d is even

Z if n = 2d and d is 3 or 7

2Z if n = 2d and d is odd and not 3 or 7.

Moreover Jq = qµ, where qµ is the ⇤-quadratic form associated to µ, where we identify
h[◆d, ◆d]i with Z and Z/2Z respectively. It su�ces to check this for the elements ai + bi
and for these Jq(ai + bi) = [◆d, ◆d] and qµ(ai + bi) = 1.

By the discussion above we see that

Aut(H̃⇤(N), h�,�i, q) ⇠= Aut(H̃⇤(N), h�,�i, Jq) ⇠= �I = Aut(HI) in Sn
+(Z,⇤).

For a representative f of [f ] 2 ⇡0(aut@(N)) it is clear that H̃⇤(f) 2 �I . We are now
going to show that all elements of �I can be realized by a homotopy self-equivalence,
fixing the boundary pointwise.

Proposition 4.1. The group homomorphism

⇡0(aut@(N))
H̃⇤��! Aut(H̃⇤(N), h�,�i, Jq)

is surjective and has finite kernel.
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Proof. The cofibration in : @N ,! N induces a fibration

map@(N,N)! map⇤(N,N)! map⇤(@N,N),

where map@(N,N) is the fiber over in. Let map@(N,N) and map⇤(N,N) be based at
the identity. Restricting the total space to invertible elements, we also get the following
fibration:

aut@(N)! aut⇤(N)! map⇤(@N,N).

We are going to analyze the long exact homotopy sequences

... // ⇡1(map⇤(@N,N), in) // ⇡0(aut@(N)) //
� _

✏✏

⇡0(aut⇤(N)) //
� _

✏✏

[@N,N ]⇤

... // ⇡1(map⇤(@N,N), in) // [N,N ]@ // [N,N ]⇤ // [@N,N ]⇤.

We want to consider the monoid homomorphism

H̃⇤ : [N,N ]⇤ ! End(H̃⇤(N))

and show that it is onto and with finite kernel. Using the relative Hurewicz isomorphism,
it is easy to see that VI ,!

Q
i2I(S

pi ⇥ Sqi) is (2mini2I{pi} � 1)-connected and hence
more than maxi2I{qi}-connected. Thus we get an isomorphism of sets

[N,N ]⇤ ⇠= [VI , VI ]⇤ ⇠= [VI ,
Y
i2I

(Spi ⇥ Sqi)]⇤

⇠=
Y

(i,j)2I⇥I

[Spi , Spj ]⇤ ⇥
Y

(i,j)2I⇥I

[Sqi , Sqj ]⇤ ⇥
Y

(i,j)2I⇥I

[Sqi , Spj ]⇤ ⇥
Y

(i,j)2I⇥I

[Spi , Sqj ]⇤.

We write I =
S

l Il, where Il = {i|pi = l}. The only non-finite factors of the product
above are Y

l

Y
(i,j)2Il⇥Il

([Spi , Spj ]⇤ ⇥ [Sqi , Sqj ]⇤) . (4.1)

We identify End(H̃⇤(N)) ⇠=
Q

Matrl(Z), where rl = rank(Hl(N)), using the basis {ai}[
{bi}. Note that for l = n/2 a bi becomes a (rl/2 + i)-th basis element. Denote by
↵l
1, ...,↵

l
rl and �

l
1, ..., �

l
rl the inclusions Sl ,! VI and Sn�l ,! VI respectively. There is a

multiplicative section of H̃⇤ Y
Matri(Z)! [N,N ]⇤,
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which is given by

(M l) = (ml
i,j) 7! f(M l) =

bn/2c_
l=1

fM l (4.2)

where fM l :
W

i2Il S
pi _ Sqi ! VI , is given by

fM l =

8>>>><>>>>:

Wrl
i=1(
Prl

j=1m
l
i,j↵

l
j _
Prl

j=1m
n�l
i,j �

l
j) if l 6= n/2

Wrl/2
i=1 (

Prl/2
j=1 m

l
i,j↵

l
j +
Prl

j=rl/2+1m
l
i,j�

l
(j�rl/2)

)

_
Wrl

i=rl/2+1(
Prl/2

j=1 m
l
i,j↵

l
j +
Prl

j=rl/2+1m
l
i,j�

l
(j�rl/2)

) if l = n/2.

We observe that the image of this section is precisely the sub-monoid of [N,N ]⇤ corre-
sponding to the non-finite factors (4.1). Hence we get that

H̃⇤ : [N,N ]⇤ ! Aut(H̃⇤(N))

is surjective and has finite kernel. Restricting to the submonoids of invertible elements
this implies upon using the section (4.2) that

⇡0(aut⇤(N))! Aut(H̃⇤(N))

is surjective with finite kernel. The image of ⇡0(aut@(N))! ⇡0(aut⇤(N)) consists of the
elements [f ] 2 ⇡0(aut⇤(N)), such that f � in ' in (we assume all homotopy equivalences
in this proof to be pointed). Since (4.2) restricts to a section

Aut(H̃⇤(N))! ⇡0(aut⇤(N))

we get that the image of

H̃⇤ : ⇡0(aut@(N))! Aut(H̃⇤(N))

is given by the (M l) such that f(M l) � in ' in. Using the Hilton-Milnor Theorem we
identify

⇡n�1(N) ⇠= ⇡ �
M
l

⇡n�1(
_
i2Il

(Spi _ Sql)), (4.3)

where ⇡ is some subgroup of ⇡n�1(N). We observe that

f(M l) � in '
X
i2I

[f(M l) � ↵i, f(M l) � �i] '
bn/2cX
l=1

X
i2Il

[fM l � ↵l
i, fM l � �li],
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i.e. that the action of f(M l) respects the summands of the identification (4.3). Thus it
su�ces to check that fM l �

P
i2Il [↵

l
i, �

l
i] '

P
i2Il [↵

l
i, �

l
i] for all l. We will use that left

homotopy composition is distributive for suspensions in the range we are in [Whi50], i.e.
(x+ y) � ⌃z ' x � ⌃z + y � ⌃z. For l 6= n/2 we calculate

fM l �
rlX
i=1

[↵l
i, �

l
i] '

rlX
i=1

[fM l � ↵l
i, fM l � �li] '

X
i,j,k

[ml
i,j↵

l
j ,m

n�l
i,k �

l
k]

'
X
i,j,k

ml
i,jm

n�l
i,k [↵l

j , �
l
k] '

X
j,k

((M l)TMn�l)j,k[↵
l
j , �

l
k].

This expression is homotopic to
Prl

i=1[↵
l
i, �

l
i] if

(M l)TMn�l = idMatrl(Z). (4.4)

For l = n/2 we write

M l =

✓
Al Bl

C l Dl

◆
.

We calculate:

fM l �
rl/2X
i=1

[↵l
i, �

l
i] '

rl/2X
i=1

[fM l � ↵l
i, fM l � �li]

'
rl/2X
i=1

24rl/2X
j=1

(ali,j↵
l
j + bli,j�

l
j),

rl/2X
k=1

(cli,k↵
l
k + dli,k�

l
k)

35
'

rl/2X
i=1

rl/2X
j=1

rl/2X
k=1

ali,jd
l
i,k[↵

l
j , �

l
k] +

rl/2X
i=1

rl/2X
j=1

rl/2X
k=1

bli,jc
l
i,k[�

l
j ,↵

l
k]

+

rl/2X
i=1

rl/2X
j=1

rl/2X
k=1

ali,jc
l
i,k[↵

l
j ,↵

l
k] +

rl/2X
i=1

rl/2X
j=1

rl/2X
k=1

bli,jd
l
i,k[�

l
j , �

l
k]

'
rl/2X
j=1

rl/2X
k=1

((Al)TDl + (�1)n/2((C l)TBl))j,k[↵
l
j , �

l
k]

+

rl/2X
j=1

rl/2X
k=1

((Al)TC l)j,k[↵
l
j ,↵

l
k] +

rl/2X
j=1

rl/2X
k=1

((Bl)TDl)j,k[�
l
j , �

l
k]
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4 Mapping class groups

This expression is homotopic to
Prl/2

i=1 [↵
l
i, �

l
i], if

(Al)TDl + (�1)n/2(C l)TBl = 1

(Al)TC l + (�1)n/2(C l)TAl = 0

(Bl)TD + (�1)n/2(Dl)TBl = 0

(Al)TC l and (Bl)TDl have diagonal entries in ⇤,

where

⇤ =

8><>:
2Z if n = 2d and d is odd and not 3 or 7

Z if n = 2d and d is 3 or 7

0 if n = 2d and d is even.

Where the diagonal entries of (Al)TC l and (Bl)TDl have to be in ⇤ to kill the elements
[↵l

i,↵
l
i] and [�li, �

l
i]. These are exactly the conditions to be an automorphisms of H(Zgn/2)

in Q(�1)n/2

(Z,⇤). Combining this with the condition in (4.4) we see that the image of
H̃⇤ in Aut(H̃⇤(N)) is given by

�I ⇢
bn/2cY
k=1

Glrk(Z).

Thus we proved that

H̃⇤ : ⇡0(aut@(N))! Aut(H̃⇤(N), h�,�i, Jq)

is surjective. To show that the kernel is finite it su�ces to check that ⇡0(aut@(N)) !
⇡0(aut⇤(N)) has finite kernel. This follows from the fact that

⇡1(in
⇤) : ⇡1(aut⇤(N), idN )⌦Q! ⇡1(map⇤(@N,N), in)⌦Q

is surjective as we will see in Lemma 5.1.

Denote by

J0 : ⇡0(Di↵@(N))! ⇡0(aut@(N))

the map sending an isotopy class of di↵eomorphisms to a homotopy class of homotopy
automorphisms.

Proposition 4.2.

(1) The map H̃⇤ : ⇡0(Di↵@(N))! Aut(H̃⇤(N), h�,�i, q) is surjective.
(2) The image of J0 : ⇡0(Di↵@(N))! ⇡0(aut@(N)) has finite index.
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Proof. The first part follows from [Kre79] and [Wal63, Lemma 17]. Kreck shows that all
elements of Aut(H̃n/2(N), h�,�i, q) can be realized as self-di↵eomorphisms of

(#gn/2
(Sn/2 ⇥ Sn/2))r int(Dn)

fixing the boundary pointwise. Wall shows that for manifolds \g(Dq+1 ⇥ Sp), where
3  p  q and \g denotes the g-fold boundary connected sum, all automorphisms of the
homology are realized by di↵eomorphisms. Hence it follows for manifolds #gi(S

pi⇥Sqi).
Since we can assume that a di↵eomorphism fixes a disk up to isotopy, we get it in
particular for (#gi(S

pi⇥Sqi))rint(Dn). Using the di↵eomorphisms above and extending
them by the identity on the complement of the manifolds above the claim follows. The
second part follows from the following commutative diagram

0 // ⇡0(SDi↵@(N)) //

✏✏

⇡0(Di↵@(N))
H̃⇤ //

J0

✏✏

Aut(H̃⇤(N), h�,�i, q) //

⇠=
✏✏

0

0 // ⇡0(S aut@(N)) // ⇡0(aut@(N))
H̃⇤ // Aut(H̃⇤(N), h�,�i, Jq) // 0,

where ⇡0(SDi↵@(N)) and ⇡0(S aut@(N)) denote the kernels of the maps H̃⇤ and the fact
that ⇡0(S aut@(N)) is finite by Proposition 4.1.

Remark 4.3. There is a lot of literature on the groups of components of mapping spaces
of closed manifolds in di↵erent categories. Highly connected even dimensional manifolds
are for example studied in [Kre79] and [Kah69]. Products of spheres are studied in
[Lev69, Sat69, Tur69]. Homotopy self-equivalences of manifolds and in particular of
connected sums of products of spheres are treated in [Bau96].
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5 ⇡1(�)-equivariant rational homotopy type of
Baut@(�)h1i

Let NI be as before. We introduce the following notation:

XI = aut@(NI)

LI = (L(s�1H̃⇤(NI ,Q)), 0) = (L(s�1HI ⌦Q), 0)

! = !I =
X
i

(�1)|◆i|[◆i,i], where ◆i = s�1ai and i = s�1bi

Der+! (LI) = (Der+(LI , rel. L[!I ]), 0),

the positive truncation of the derivation Lie algebra of LI annihilating L[!I ] ⇢ LI , the
Lie subalgebra generated by !I . We observe that LI with trivial di↵erential is a minimal
Quillen model for NI .

Lemma 5.1. The map

⇡k(in
⇤) : ⇡k(aut⇤(N), idNI )⌦Q! ⇡k(map⇤(@N,N), in)⌦Q

is surjective for k > 0.

Proof. Let ' : L[!I ] ! LI be the obvious inclusion and we observe that it models the
map in⇤. Theorem 2.3 shows that

Der(LI)k ⇠= ⇡k(aut⇤(N), idNI )⌦Q and

Der'(L[!I ],LI)k ⇠= ⇡k(map⇤(@N,N), in)⌦Q, for k > 0.

The map ⇡k(in
⇤) is given by restricting a derivation ✓ 2 Der(LI) to L[!I ]. We can

identify

Der'(L[!I ],LI)k ⇠= (LI)k+n�2, ✓ 7! ✓(!I).

Under this identification the map ⇡k(in
⇤) becomes the evaluation map, which we ob-

served to be surjective in Remark 3.4.

Proposition 5.2. The universal cover Baut@(NI)h1i is coformal.
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Proof. Compare [BM15, Proposition 4.8.]. In order to use Theorem 2.5 we need to
replace ' : L[!I ]! LI by a cofibration. For this we have to slightly enlarge the Quillen
model of NI . Denote by LN = (LI ⇤ L[◆, �], @(�) = !I � ◆), where ◆ is of degree n � 1
and � is of degree n. The map

p : LN ! LI ,

given as the identity on LI , p(◆) = !I and p(�) = 0 is a quasi-isomorphism and hence
LN is a Quillen model for NI . Let

q : L[◆]! (LI ⇤ L[◆, �], @(�) = !I � ◆)

denote the obvious inclusion. It is a cofibration (compare Remark 2.1) and hence we can
apply Theorem 2.5. Thus (Der+(LN , rel L[◆]), D) is a Quillen model for Baut@(NI)h1i,
where the di↵erential is given by D(�) = [@,�]. Note that pq : L[◆] ! LI , maps the
generator ◆ to !I and hence we can identify Der+! (LI) ⇠= (Der+(LI , rel L[◆]), 0). We are
now going to show that there is a zig-zag of quasi-isomorphisms between the derivation
Lie algebras (Der+(LN , rel. L[◆]), D) and (Der+! (LI), 0), which implies the statement of
the proposition.
The first step is to show that the map

p⇤ : Der
+(LN , rel L[◆])! Der+p (LN ,LI , rel. L[◆])

is a surjective quasi-isomorphism. For this we consider the following commutative dia-
gram:

0 // Der+(LN , rel L[◆]) //

p⇤
✏✏

Der+(LN )
q⇤ //

p⇤
✏✏

Der+q (L[◆],LN )

p⇤
✏✏

// 0

0 // Der+p (LN ,LI , rel L[◆]) // Der+p (LN ,LI)
q⇤ // Der+pq(L[◆],LI) // 0.

Identify

Der+(LN ) ⇠= Hom+(s�1HI �Q[◆, �],LN ) and Der+q (L[◆],LN ) ⇠= Hom+(s�1Q[◆],LN ).

Since q is induced by the inclusion Q[◆] ⇢ s�1HI � Q[◆, �], we can describe the map
q⇤ in terms of the right-hand sides as the restriction and we see that the upper q⇤ are
surjective. The analogous argument shows that also the lower q⇤ is surjective. Since the
left hand terms are by definition the kernels of the maps q⇤, we can conclude that the
rows are exact. The middle and right vertical maps p⇤ are quasi-isomorphisms, since p is
a quasi-isomorphism (see [BM15, Lemma 3.5.]). Hence we can conclude that the left p⇤
is a quasi-isomorphism using the five Lemma. To see that the left p⇤ it is surjective, we
identify Der+(LN , rel L[◆]) ⇠= Hom+(s�1HI �Q[�],LN ) and Der+p (LN ,LI , rel L[◆]) ⇠=
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5 ⇡1(�)-equivariant rational homotopy type of Baut@(�)h1i

Hom+(s�1HI �Q[�],LI). The map in terms of the right-hand sides is clearly surjective
since LI is a sub di↵erential graded Lie algebra of LN by definition.
The next step it to show that p⇤ : Der+(LI , rel L[◆]) ! Der+p (LN ,LI , rel L[◆]) is a
quasi-isomorphism. For this we consider the following commutative diagram:

0 // Der+(LI , rel L[◆]) //

p⇤

✏✏

Der+(LI)

p⇤

✏✏

(pq)⇤ // Der+pq(L[◆],LI) // 0

0 // Der+p (LN ,LI , rel L[◆]) // Der+p (LN ,LI)
q⇤ // Der+pq(L[◆],LI) // 0.

We have already shown exactness of the lower row above. In Lemma 5.1 we have shown
that the map (pq)⇤ is surjective and the upper row is exact by the definition of relative
derivations. The middle vertical p⇤ is a quasi-isomorphism since p is (see [BM15, Lemma
3.5.]). Hence we can conclude using the five Lemma that the left vertical p⇤ is a quasi-
isomorphism.
To finish the proof we consider the following pullback diagram of chain complexes:

P
pr1 //

pr2
✏✏

Der+(LN , rel L[◆])
p⇤
✏✏

Der+(LI , rel L[◆]) p⇤
// Der+p (LN ,LI , rel L[◆]),

where

P = Der+(LN , rel L[◆])⇥Der+p (LN ,LI , rel L[◆]) Der
+(LI , rel L[◆])

and pr1, pr2 denote the obvious projections. Defining the Lie-bracket and di↵erential
component wise turns P into a di↵erential graded Lie algebra and the projections into
morphisms of di↵erential graded Lie algebras. We have shown that p⇤ is a surjective
quasi-isomorphism and since surjective quasi-isomorphism are stable under pullbacks we
get that pr2 is a surjective quasi-isomorphism. Since p⇤ is also a quasi-isomorphism as
shown above, we also see that pr1 is a quasi-isomorphism. Thus we obtain a zig-zag of
quasi-isomorphisms of di↵erential graded Lie algebras:

(Der+(LN , rel L[◆]), D)
pr1 ���
'q.i.

P
pr2���!
'q.i.

(Der+(LI , rel L[◆]), 0) ⇠= Der+! (LI),

which concludes the proof.

Recall that the Samelson product makes ⇡+⇤ (XI)⌦Q into a graded Lie algebra. We can
define a ⇡0(XI)-action on ⇡+k (XI)⌦Q induced by pointwise conjugation. The homotopy
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groups of the universal covering Baut@(NI)h1i are ⇡1(Baut@(NI))-modules by the deck
transformation action. Under the canonical isomorphism

⇡k+1(Baut@(XI)) ⇠= ⇡k(aut@(XI))

this action corresponds to the conjugation action. We are now going to identify these
actions in terms of Der+! (LI).

Proposition 5.3. There is a ⇡0(XI)-equivariant isomorphism of graded Lie algebras

⇡+⇤ (XI)⌦Q ⇠= Der+! (LI),

where the action on the right hand side is induced by the natural action of �I on
H̃⇤(NI ;Q).

Proof. Compare [BM15, Proposition 4.7.]. Consider the fibration

aut@(NI)! aut⇤(NI)
in⇤

��! map⇤(@NI , NI),

where aut@(NI) is the fiber over the inclusion of the boundary in. Using Lemma 5.1, we
see that the long exact sequence of rational homotopy groups splits for k � 1 as

0! ⇡k(aut@(NI), idNI )⌦Q! ⇡k(aut⇤(NI), idNI )⌦Q
⇡k(in

⇤)����! ⇡k(map⇤(@NI , NI), in)⌦Q! 0.

It can be identified using Theorem 2.3 with

0! Der!(LI)k ! Der(LI)k
'⇤

k�! Der'(L[!I ],LI)k ! 0,

where we use that Der!(LI)k is the kernel of '⇤
k. The resulting isomorphism

⇡+⇤ (aut@(NI), idNI )⌦Q ⇠= Der+! (LI)

is in fact an isomorphism of graded Lie algebras. Indeed, since the inclusion aut@(NI)!
aut⇤(NI) is a map of topological monoids, the induced maps on rational homotopy group
respect the Samelson product and Der+(LI) ⇠= ⇡+⇤ (aut(NI)) is an isomorphism of Lie
algebras. Hence we can calculate the Samelson product of ⇡+⇤ (aut@(NI)) in Der+(LI).

Now let f, g 2 aut⇤(NI). The action of [f ] 2 ⇡0(aut⇤(NI)) on ⇡k(aut⇤(NI), idNI ) is
induced by pointwise conjugation g 7! fgf�1, where f�1 is some choice of homotopy
inverse. Let �f be a Quillen model for f and ✓ 2 Der(NI)k. The action of [f ] on Der(LI)k
is given by

✓ 7! �f � ✓ � ��1
f ,
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5 ⇡1(�)-equivariant rational homotopy type of Baut@(�)h1i

by the naturality of the identification ⇡k(aut⇤(NI), idNI ) ⌦ Q ⇠= Der(LI)k. For a ho-
motopy self-equivalence f consider the induced map f⇤ 2 Aut(H̃⇤(NI)). The map
L(s�1(f⇤ ⌦ Q)) is in fact a Lie model for f , which shows that we can identify the
conjugation action with the induced action of Aut(H̃⇤(NI)) on Der(LI)k.
Using that Der+! (LI)k ! Der+(LI)k is injective, we can calculate the conjugation action
of ⇡0(aut@(NI)) on ⇡k(aut@(NI), idNI ) in terms of Der!(LI)k. Let f be an element of
aut@(NI), it is in particular also an element of aut⇤(NI) and we know that its homotopy
class [f ] in ⇡0(aut⇤(NI)) gives us an element in Aut(H̃⇤(NI), h�,�i, Jq). Considering
✓ 2 Der!(LI)k as an element in Der(LI)k we see that [f ] acts by the action induced by
f⇤ 2 Aut(H̃⇤(NI), h�,�i, Jq) on H̃⇤(NI).
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6 Homological stability for the homotopy
automorphisms

In this chapter we prove the first main result of this thesis, it follows the ideas in [BM15,
Section 5.3 and 5.4]. Let NI be as before. Denote by

V p,q = Sp ⇥ Sq r int(Dn
1 tDn

2 ), where 2 < p  q < 2p� 1 and p+ q = n.

We can define a new manifold
N 0 = NI [@1 V p,q,

by identifying one boundary component of V p,q with @NI . Note that N 0 is canonically
di↵eomorphic to the manifold NI 0 with I 0 = I [ {i0} where pi0 = p and qi0 = q. Using
this di↵eomorphisms we can define a map

� : aut@(NI)! aut@(NI [@1 V p,q)
⇠=�! aut@(NI 0),

by extending a self-map of NI by the identity on V p,q. We will refer to this map as
stabilization map. In this section we are going to study the behavior of the induced map
in the homology of classifying spaces

� : H⇤(Baut@(NI);Q)! H⇤(Baut@(NI 0);Q).

For this we will first have to describe the induced map

�⇤ : ⇡⇤(Baut@(NI)h1i)⌦Q! ⇡⇤(Baut@(NI 0)h1i)⌦Q

in terms of the model in Proposition 5.3. Given an element of ✓ 2 Der+! (LI) we can
define an element ✓0 2 Der+! (LI 0), by letting ✓0 = ✓ on generators ◆i,i, where i 2 I
and ✓(◆i0) = ✓(i0) = 0. Using that LI 0 is free we get a derivation ✓0, which is indeed an
element of Der+! (LI 0), since !I 0 = !I + (�1)|◆i0 |[◆i0 ,i0 ]. We will refer to this map again
as stabilization map.

Lemma 6.1. The isomorphisms ⇡+⇤ (XI) ⌦Q ⇠= Der+! (LI) are compatible with the sta-
bilization maps.

Proof. Compare [BM15, Proposition 5.1.]. Denote by

i : NI ,! NI [@1 V p,q and j : V p,q ,! NI [@1 V p,q
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6 Homological stability for the homotopy automorphisms

the inclusions. Let f 2 aut@(NI), we can characterize its image in aut@(NI [@1 V p,q) by
the facts that it is f restricted to NI and the identity restricted to V p,q. This yields the
following commutative diagram

map⇤(NI , NI [@1 V p,q)

aut@(NI)

✏✏

� //

i⇤
55

aut@(NI [@1 V p,q)

i⇤
OO

j⇤

✏✏
⇤ ⇤7!j

// map⇤(V
p,q, NI 0).

(6.1)

The manifold V p,q is homotopy equivalent to Sp _ Sq _ Sp+q�1. Therefore the graded
Lie algebra L[◆,, ⇢], where |◆| = p� 1, || = q� 1 and |⇢| = p+ q� 2 together with the
trivial di↵erential, is a Quillen model for V p,q. The maps i and j are modeled by

' : LI ! LI 0 and  : L[◆,, ⇢]! LI 0 ,

where ' is the obvious inclusion and  (◆) = ◆i0 ,  () = i0 and  (⇢) = !I 0 . Lup-
ton and Smith’s natural isomorphism (Theorem 2.3) translates (6.1) into the following
commutative diagram

Der+' (LI ,LI 0)

Der+! (LI)

✏✏

�⇤ //

'⇤
66

Der+! (LI 0)

'⇤
OO

 ⇤

✏✏
0 // Der+ (L[◆,, ⇢],LI 0).

The commutativity of the upper triangle implies that for a derivation ✓, �⇤(✓) equals ✓
on ◆i,i for all i 2 I and the commutativity of the lower square implies that �⇤(✓) has
to be zero on ◆i0 and i0 , which proves the claim.

Denote by gI = Der+! (L(s�1H̃⇤(NI ;Q))) = Der+! (L(s�1H̃I ⌦Q))). The �I -action on gI
induces one on CCE

r (gI). We define the �I 0-modules gI 0 and CCE
r (gI 0) analogously. Let

gp =

(
1
2 rank(Hp(NI)) if p = n/2

rank(Hp(NI)) otherwise.

Proposition 6.2. The map

Hi(�I ;C
CE
r (gI))! Hi(�I 0 ;C

CE
r (gI 0))
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induced by the stabilization map is an isomorphism for gp > 2i + r
2 + 2 when 2p 6= n

and gp > 2i + r
2 + 4 if 2p = n and an epimorphism for gp � 2i + r

2 + 2 respectively
gp � 2i+ r

2 + 4.

Remark 6.3. Note that we can assume that gp � 2 (4 if p = n/2) because otherwise the
statement is vacuous. We will assume this from now on.

Proof. The proposition will follow from Proposition 2.15 upon showing that there exist
a commutative diagram

CCE
r (gI)

⇠=�I //

CCE
r (�)

✏✏

T (�I)

T (Ip,q)
✏✏

CCE
r (gI 0)⇠=�I0

// T (�I 0)

(6.2)

for some polynomial functor T : Mod(Z)n�1 ! V ect(Q) of degree  r
2 .

For this consider the functor � ⌦ Q : Mod(Z)n�1 ! V ect(Q)n�1. We set T (�) =
Cr(�⌦Q), where Cr is the Schur multifunctor in Corollary 3.8. Since �⌦Q is additive,
T is of degree  r

2 . We observe that �⌦Q defines a functor from Qn
+(Z,⇤)! Sn

+(Q).
This implies that the actions induced via � ⌦Q by standard actions of �I on HI and
of �I 0 on HI 0 are through morphisms in Sn

+(Q). Moreover the image of the inclusion
Ip,q : HI ! HI 0 gives us a map in Sn

+(Q). The equation (3.1) implies that � : gI ! gI 0
and hence CCE

r (�) is in fact induced by the inclusion HI ⌦ Q ,! HI 0 ⌦ Q. By the
naturality of the isomorphism in Proposition 3.8 we can conclude that (6.2) commutes.

Denote by FI the finite kernel of the surjective map ⇡1(BXI) ⇠= ⇡0(XI)
H⇤��! �I (Propo-

sition 4.1). The Chevalley-Eilenberg chains become a ⇡1(BXI)-module via the action of
�I . Similarly for I 0.

Corollary 6.4. The map

Hi(⇡1(BXI);C
CE
r (gI))! Hi(⇡1(BXI 0);C

CE
r (gI 0))

induced by the stabilization map induces isomorphisms and epimorphisms in the same
range as above.

Proof. We observe that the E2-page of the Lyndon spectral sequence

E2
k,l = Hk(�I ;Hl(FI ;C

CE
r (gI)))) Hk+l(⇡1(BXI);C

CE
r (gI))

is given by E2
k,0 = Hk(�I ;CCE

r (gI)) and 0 for l 6= 0 since FI is finite and acts trivially

on the rational vector space CCE
r (gI). Similarly for I 0. Using Proposition 6.2 the claim

follows.
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6 Homological stability for the homotopy automorphisms

Hyperhomology will allow us to relate the homology with coe�cients in the Chevalley-
Eilenberg chain complex to homology with coe�cients in Chevalley-Eilenberg homol-
ogy.

Proposition 6.5. The map

Hi(⇡1(BXI), C
CE
⇤ (gI))! Hi(⇡1(BXI 0), C

CE
⇤ (gI 0))

induced by the stabilization map is an isomorphism for gp > 2i + 2 when 2p 6= n and
gp > 2i+ 4 if 2p = n and an epimorphism for gp � 2i+ 2 respectively gp � 2i+ 4.

Proof. Consider the first hyperhomology spectral sequence with E1-page:

E1
k,l(I) = Hl((⇡1(BXg);C

CE
k (gI)))) Hk+l(⇡1(BXI);C

CE
⇤ (gI)).

By Corollary 6.4 E1
k,l(I)! E1

k,l(I
0) is an isomorphism for

gp >

(
2k + 2l + 4 � k + 2l + 4 if p = n/2

2k + 2l + 2 � k + 2l + 2 otherwise

and an epimorphism for ” � ”. Hence the claim follows by the spectral sequence com-
parison theorem.

Lemma 6.6. The group ⇡1(BXI) is rationally perfect.

Proof. By Lemma 2.16 the groups �I are rationally perfect. Hence the finite extension
⇡1(BXI) is also rationally perfect.

Proposition 6.7. The map

Hk(⇡1(BXg), H
CE
l (gg))! Hk(⇡1(BXg+1), H

CE
l (gg+1))

induced by the stabilization map is an isomorphism for gp > 2k + 2l + 2 when 2p 6= n
and gp > 2k + 2l + 4 if 2p = n and an epimorphism for gp � 2k + 2l + 2 respectively
gp � 2k + 2l + 4.

Proof. By Lemma 6.6 and because CCE
⇤ (gI) is finite dimensional over Q in each de-

gree (by Corollary 3.8), we can use Proposition 2.17. Hence we get a chain homotopy
equivalences CCE

⇤ (gI)
'�! HCE

⇤ (gI) such that

CCE
⇤ (gI)

�⇤ //

'
✏✏

CCE
⇤ (gI 0)

'
✏✏

HCE
⇤ (gI)

�⇤ // HCE
⇤ (gI 0)
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commutes up to chain homotopy of Q[�I ]-chain complexes. Thus we get a commutative
diagram

Hi(⇡1(BXI);CCE
⇤ (gI))

�i //

⇠=
✏✏

Hi(⇡1(BXI 0);CCE
⇤ (gI 0))

⇠=
✏✏

Hi(⇡1(BXI);HCE
⇤ (gI))

�i //Hi(⇡1(BXI 0);HCE
⇤ (gI 0)),

where the vertical arrows are isomorphisms by the chain homotopy invariance of hyperho-

mology. By Proposition 6.5 the upper map is an isomorphism for gp >

(
2i+ 4 if p = n/2

2i+ 2 otherwise
and an epimorphism for ” � ” and hence also the lower maps. Ultimately we use the
natural splitting for hyperhomology groups with coe�cients in a chain complex with
trivial di↵erential

Hi(⇡1(BXI);HCE
⇤ (gI))

�i //

⇠=
✏✏

Hi(⇡1(BXI 0);HCE
⇤ (gI 0))

⇠=
✏✏L

k+l=iHk(⇡1(BXI);HCE
l (gI))

�k,l //
L

k+l=iHk(⇡1(BXI 0);HCE
l (gI 0)).

Hence we see that the maps �k,l are isomorphisms and epimorphisms in the range in the
statement.

Now we have everything together to prove the fist main result of this thesis.

Theorem A. The stabilization map

Hi(Baut@(NI);Q)! Hi(Baut@(NI 0);Q)

is an isomorphism for gp > 2i + 2 when 2d 6= n and gp > 2i + 4 if 2d = n and an
epimorphism for gp � 2i+ 2 respectively gp � 2i+ 4.

Proof. We want to use the spectral sequence of the universal covering of BXI with
E2-terms:

Hk(⇡1(BXI);Hl(BXIh1i,Q))) Hk+l(BXI ,Q).

We claim there are isomorphisms of ⇡1(BXI)-modules

Hl(BXIh1i,Q) ⇠= HCE
l (gI).

This can be seen by using the Quillen spectral sequence (Theorem 2.2). Since BXIh1i
is coformal (Proposition 5.2) it collapses and we get an isomorphisms of rational vector
spaces

Hl(BXIh1i,Q) ⇠=
M
p+q=l

HCE
p (gI)

q ⇠= HCE
l (gI).
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6 Homological stability for the homotopy automorphisms

Since the Quillen spectral sequence is natural with respect to unbased maps it is in
fact a spectral sequence of ⇡1(BXI)-modules. The HCE

⇤ (gI) are finite dimensional in
each degree over Q (since the CCE

⇤ (gI) are). Using that ⇡1(BXI) is rationally perfect
(and hence all extensions of Q[⇡1(BXI)]-modules have to be trivial) it follows that the
isomorphisms above are isomorphisms of ⇡1(BXI)-modules.

By Lemma 6.1 we get the commutativity of the following diagram

Hk(⇡1(BXI);Hl(BXIh1i,Q)) � //

⇠=
✏✏

Hk(⇡1(BXI 0);Hl(BXI 0h1i,Q))

⇠=
✏✏

Hk(⇡1(BXI);HCE
l (gI))

� // Hk(⇡1(BXI 0);HCE
l (gI 0)).

Proposition 6.7 and the spectral sequence comparison theorem now imply the statement
of the theorem. The diagram above ensures that the isomorphism is induced by the
stabilization map.

Consider another manifold

NJ = #j2J(S
pj ⇥ Sqj)r int(Dn)

like above. Denote by Ĩ = {i 2 I|pi = pj for some j 2 J} and by

GI,J = mini2Ĩ{rankHpi(NI)|pi 6= n/2} [ {rankHpi(NI)� 2|pi = n/2}.

An immediate consequence of Theorem A is the following:

Corollary 6.8. The map

Hi(Baut@(NI);Q)! Hi(Baut@(NI[J);Q)

induced by iterated stabilization maps is an isomorphisms for GI,J > 2i + 2 and an
epimorphism for GI,J = 2i+ 2.
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di↵eomorphisms

In this chapter we prove the second main result of this thesis, it follows the ideas in
[BM15, Section 5.5]. We will use the notations from the last section. Let YI =gDi↵@(NI).
The stabilization map

Hi(BgDi↵@(NI);Q)! Hi(BgDi↵@(NI 0);Q)

is defined in a similar fashion as before. Recall thatgDi↵@(NI) is the geometric realization
of a �-group whose k-simplices are di↵eomorphisms

' : �k ⇥NI ! �k ⇥NI ,

such that for faces ⌧ ⇢ �k we have '(⌧⇥NI) ⇢ ⌧⇥NI and '|�k⇥@NI = id�k⇥@NI
. The

stabilization map is induced by sending a k-simplex ' to the k-simplex in gDi↵@(NI 0)

�k ⇥ (NI [@1 V p,q)! �k ⇥ (NI [@1 V p,q),

given by ' on�k⇥NI and the identity on�k⇥V p,q, where we use thatNI 0
⇠= NI[@1V p,q.

Recall that
J̃ :gDi↵@(NI)!gAut@(NI)

just denoted the obvious inclusion. Proposition 4.2 implies (using Cerf’s pseudo-isotopy
theorem) that

Image(⇡1(BgDi↵@(NI))! ⇡1(BgAut@(NI))) (7.1)

has finite index in ⇡1(BgAut@(NI)). Let B̄gAut@(NI) ! BgAut@(NI) denote the finite
covering corresponding to the subgroup (7.1) above. By construction we get a lift

BgDi↵@(NI)! B̄gAut@(NI)

of J̃ and call the homotopy fiber of this map FI . Note that

FI 'gAut@(NI)/gDi↵@(NI)(1)

is the component of hofib(J̃) that can be studied using Surgery theory (see Proposition
2.18). We want to understand the rational homology of FI as ⇡1(B̄gAut@(NI))-modules.
By Proposition 2.18 we can use Surgery theory to understand its homotopy groups, i.e.

⇡k(FI) ⇠= ⇡k(S(NI , @NI)) ⇠= SG/O(NI ⇥Dk, @(NI ⇥Dk)) for k > 0.
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7 Homological stability for the block di↵eomorphisms

We consider the rational homotopy exact sequence of the surgery fibration

...! S(NI , @NI)⌦Q ⌘�! ⇡k(map⇤(NI/@NI , G/O))⌦Q ��! ⇡k(L(NI))⌦Q! ...

Since the rational homotopy groups of G are trivial, we get that

G/O 'Q BO 'Q
Y
i�1

K(Q, 4i).

Thus we can identify

⇡k(map⇤(NI/@NI , G/O))⌦Q ⇠= (H⇤(NI , @NI ;Q)⌦ ⇡⇤(G/O))k. (7.2)

The rational homotopy groups of ⇡k(L(NI))⌦Q given by the L-groups

Ln+k(Z)⌦Q =

(
Q for n+ k ⌘ 0 mod 4

0 otherwise.

Lemma 7.1 ([BM13, Lemma 3.5.]). The surgery obstruction map induces an isomor-
phism

Hn(NI , @NI ;Q)⌦ ⇡n+k(G/O)! Ln+k(Z)⌦Q

for n+ k ⌘ 0 mod 4.

Proof. Consider the smooth and topological surgery exact sequences:

... // ⇡k(map⇤(NI/@NI , G/O)⌦Q

✏✏

// Ln+k(Z)⌦Q // ...

... // ⇡k(map⇤(NI/@NI , G/Top)⌦Q // Ln+k(Z)⌦Q // ...

The left hand vertical map is an isomorphism since ⇡i(Top/O) is finite (see e.g. [KS77]).
Milnor’s Plumbing construction ensures that for k + n even there is an element in
NG/Top(NI ⇥Dk, @(NI ⇥Dk)) with non-trivial surgery obstruction. Since

NG/Top(NI ⇥Dk, @(NI ⇥Dk)) ⇠= ⇡k(map⇤(NI/@NI , G/Top) and

⇡k(map⇤(NI/@NI , G/O)⌦Q ⇠= Hn(NI , @NI ;Q)⌦ ⇡n+k(G/O)), for n+ k ⌘ 0 mod 4,

this implies the claim because both sides are just one dimensional rational vectorspaces.
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Rational Homological Stability for Automorphisms of Manifolds

Using the surgery exact sequence, we see that for n odd ⇡1(FI) is abelian, since it is a
subgroup of the abelian group [⌃(NI/@NI), G/O]⇤. For n even it is a finite extension
of the abelian group [⌃(NI/@NI), G/O]⇤ by a finite cyclic group (in case Ln+2(Z) ⇠= Z,
the proof of Lemma 7.1 makes sure that the map to Ln+2(Z) is non zero and hence the
kernel of � is a finite cyclic group). Denote by

⇡abk (FI) =

(
⇡1(FI)/ Image(Ln+2(Z)! ⇡1(FI)) if k = 1

⇡k(FI) if k > 1.

Proposition 7.2. There are isomorphism of ⇡1(B̄gAut@(NI))-modules compatible with
the stabilization maps

(1) ⇡abk (FI)⌦Q ⇠= (H̃⇤(NI ,Q)⌦ ⇡⇤(G/O))k, where |a⌦ ↵| = |↵|� |a|, k � 1

(2) H⇤(FI ,Q) ⇠= ⇤(⇡ab⇤ (FI)⌦Q),

where the actions on the right hand side are induced by the standard actions of �I on
H̃⇤(NI).

Proof. Compare [BM13, p.26 and Theorem 3.6] and [BM15, p.32]. Observe that the
rationalization (FI)Q has rational homotopy groups ⇡abk (FI)⌦Q. Consider the splitting
of the homotopy exact sequence of the surgery fibration as

0! Ln+k+1(Z)/ Image(�)! ⇡k(S(NI , @N))! Image(⌘)! 0.

By Lemma 7.1 we get

Ln+k+1(Z)/ Image(�)⌦Q ⇠= 0 and Image(⌘)⌦Q ⇠= (H̃⇤(NI ,Q)⌦ ⇡⇤(G/O))k.

Using the isomorphism

H̃⇤(NI ;Q) ⇠= HomQ(H̃⇤(NI ;Q);Q) ⇠= H̃⇤(NI ;Q)

we get the isomorphism (1). We see that the action on the right hand side is induced by
the standard action of �I as follows: Use the identification

⇡k(S(NI , @N)) ⇠= SG/O(NI ⇥Dk, @(NI ⇥Dk)).

An element of SG/O(NI⇥Dk, @(NI⇥Dk)) is represented by a manifold (X, @X) together
with a homotopy equivalence f : X ! NI ⇥ Dk, such that f |@X : @X ! @(NI ⇥ Dk)
is a di↵eomorphism. Recall that J0 denotes the map sending an isotopy class of self-
di↵eomorphisms to a homotopy class of homotopy automorphisms. The action of a

[�] 2 ⇡1(B̄gAut@(NI)) ⇠= Image(⇡1(J̃)) ⇠= Image(J0) ⇢ ⇡0(aut@(NI))
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7 Homological stability for the block di↵eomorphisms

on f is given by the composition

X
f�! NI ⇥Dk �⇥idDk�����! NI ⇥Dk,

where � is a di↵eomorphism representing [�] considered as an element of Image(J0).
Lemma 2.19 now implies that

⌘((�⇥ idDk) � f) = ((�⇥ idDk)⇤)�1(⌘(f)),

using that the normal invariant of a di↵eomorphism is trivial. This implies that [�] acts
on H̃⇤(N ;Q) ⌦ ⇡⇤(G/O)k via (��1)⇤ ⌦ id⇡⇤(G/O). But this exactly corresponds to the
standard action under the isomorphism

H̃⇤(NI ;Q) ⇠= HomQ(H̃⇤(NI ;Q);Q) ⇠= H̃⇤(NI ;Q).

If � lies in the kernel of the map

⇡1(B̄gAut@(NI))! �I ,

then it induces the identity on H̃⇤(NI) and hence acts trivially on ⇡abk (FI). The com-
patibility with the stabilization maps follows from the fact that the isomorphisms (7.2)
is natural.

The statement (2) follows from (1) by using the fact that G/O and hence also the
mapping-space map⇤(NI/@NI , G/O) are infinite loop spaces. Thus all rational k-invariants
vanish for map⇤(NI/@NI , G/O). This is equivalent to:
For all ↵ 2 ⇡k(map⇤(NI/@NI , G/O))⌦Q there exists a c 2 Hk(map⇤(NI/@NI , G/O);Q),
such that c(h(↵)) 6= 0, where h denotes the rational Hurewicz homomorphism. Since

⇡k((FI)Q)⌦Q! ⇡k(map⇤(NI/@NI , G/O))⌦Q

is injective, it follows that all rational k-invariants also vanish for (FI)Q. This shows that
(FI)Q is a product of Eilenberg-Maclane spaces and hence its homology is given by the

free graded commutative algebra on its homotopy groups. Moreover the ⇡1(B̄gAut@(NI))-
action is induced by the standard action.

We can use the previous Proposition to give a Schur multifunctor description ofHr(FI ;Q).
For a multi-index µ with l(µ) = n� 1, consider the ⌃µ-modules ⇧(µ) given by

⇧(0, ..., 1, ..., 0) = s�i⇡⇤(G/O)⌦Q,

where the 1 sits in the i-th position and 0 otherwise. The corresponding Schur multi-
functor

⇧ : Mod(Z)n�1 ! V ect⇤(Q),
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Rational Homological Stability for Automorphisms of Manifolds

has the property that there is an isomorphism of the induced �I -modules

⇧(HI) ⇠= (H̃⇤(NI ,Q)⌦ ⇡⇤(G/O))+.

It follows now that we get an isomorphisms of �I -modules

⇤ � ⇧(HI) ⇠= ⇤((H̃⇤(NI ,Q)⌦ ⇡⇤(G/O)+)) ⇠= H⇤(FI ,Q),

where the left-hand ⇤ denotes the free graded commutative algebra endofunctor of
V ect⇤(Q). Recall that ⇤ is given as the Schur functor with ⇤(n) = Q[n] and trivial
⌃n-action. Now setting Hr = ⇤r � ⇧ and observing that ⇤r is of degree  r and ⇧
additive, we get the following:

Proposition 7.3. There is an isomorphism of �I-modules

Hr(FI ;Q) ⇠=
M
µ

Hr(µ)⌦µ H⌦⌘

I ,

compatible with the stabilization maps, where the Hr(µ) are trivial for |µ| > r.

Now we can proof the second main theorem of this thesis.

Theorem B. The stabilization map

Hi(BgDi↵@(NI);Q)! Hi(BgDi↵@(NI 0);Q)

is an isomorphism for gp > 2i + 2 when 2p 6= n and gp > 2i + 4 id 2p = n and an
epimorphism for gp � 2i+ 2 respectively gp � 2i+ 4.

Proof. Recall that we denote by BYI = BgDi↵@(NI) and B̄XI = BgAut@(NI), the fi-
nite cover of BXI = BgAut@(NI), corresponding to the subgroup Image(⇡1(BJ̃)) ⇢
⇡1(BgAut@(NI)). Consider the Serre spectral sequences of the homotopy fibration

FI ! BYI ! B̄XI

and the analog for I 0. The stabilization map induces maps on the E2-pages

�⇤ : Hk(B̄XI ;Hl(FI ;Q))! Hk(B̄XI 0 ;Hl(FI 0 ;Q)).

The Theorem will follow upon showing that these are isomorphisms for gp > 2k+2l+2
(+4 if p = n/2) and epimorphisms for gp � 2k + 2l + 2 (+4 if p = n/2). For this we
consider the universal coving spectral sequence

Hr(⇡1(B̄XI);Hs(B̄XIh1i;Hl(FI ;Q)))) Hr+s(B̄XI ;Hl(FI ,Q)).
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7 Homological stability for the block di↵eomorphisms

The condition above would follow upon showing that maps induced by the stabilization
map on the E2-page are isomorphisms for gp > 2r + 2s + 2l + 2 (+4 if p = n/2) and
epimorphisms for gp � 2r + 2s + 2l + 2 (+4 if p = n/2). To show this we observe that
there are isomorphism of �I -modules compatible with the stabilization maps:

Hs(B̄XIh1i;Hl(FI ;Q)) ⇠= Hs(B̄XIh1i)⌦Hl(FI ;Q)) ⇠= HCE
s (gI)⌦Hl(FI ;Q)),

where �I acts on the 2-nd and 3-rd term diagonally. Note that B̄XI and BXI have the
same universal cover, which is moreover naturally homotopy equivalent to Baut@(NI)h1i.
The stability for

Hr(⇡1(B̄XI);H
CE
s (gI)⌦Hl(FI ;Q)))

follows from stability for

Hr(⇡1(B̄XI);C
CE
s (gI)⌦Hl(FI ;Q))),

exactly like in the Propositions 6.5 and 6.7 upon using the two hyperhomology spectral
sequences (using that ⇡1(B̄XI) can be shown to be rationally perfect as in Lemma 6.6.)
Hence we are left with showing that the stabilization maps

Hr(⇡1(B̄XI);C
CE
s (gI)⌦Hl(FI ;Q)))! Hr(⇡1(B̄XI 0);C

CE
s (gI 0)⌦Hl(FI 0 ;Q)))

are isomorphisms for gp > 2r + 2s + 2l + 2 (+4 if p = n/2) and epimorphisms for
gp � 2r+2s+2l+2 (+4 if p = n/2). The Lyndon spectral sequence reduces this to the
corresponding statement for

Hr(�I ;C
CE
s (gI)⌦Hl(FI ;Q)))! Hr(�I 0 ;C

CE
s (gI 0)⌦Hl(FI 0 ;Q))).

Proposition 7.3 and Corollary 3.8 give us isomorphisms of �I -modules compatible with
the stabilization map CCE

s (gI) ⌦ Hl(FI ;Q)) ⇠= Cs(HI) ⌦ Hl(HI). The functor Cs is
polynomial of degree  s/2 and the functor Hl is polynomial of degree  l. The ten-
sor product (in the sense of Schur multifunctors) Cs ⌦Hl is of degree  s/2 + l. By
Proposition 2.15 the stabilization maps

Hr(�I ;Cs ⌦Hl(HI))! Hr(�I 0 ;Cs ⌦Hl(HI 0))

are isomorphisms for gp > 2r + s/2 + l + 2 (+4 if p = n/2) and epimorphisms for
gp � 2r + s/2 + l + 2 (+4 if p = n/2), which finishes the proof.

Remark 7.4. The analog of Corollary 6.8 of course also holds in the block di↵eomorphism
case.
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8.1 Extension of the homological stability results

There are two possible directions to extend the homological stability results:

(1) Lower the connectivity assumptions.

(2) Enlarge the class of manifolds.

Lower the connectivity assumptions

We will begin with discussing the first direction. It seems reasonable that the condition
pi  qi < 2pi � 1 is actually unnecessary.

Conjecture 8.1. Let |I| < 1 and 1 < pi  qi, pi + qi = n for i 2 I and 1 < p  q,
p+ q = n. Then the stabilization map

� : H⇤(Baut@(NI),Q)! H⇤(Baut@(NI [@1 V p,q);Q)

is an isomorphism in a range, where

NI = (#i2I(S
pi ⇥ Sqi))r int(Dn).

Remark 8.2. Of course also the analogous statement for the block di↵eomorphisms
seems likely, but the author doesn’t know if an analog of Proposition 4.2 holds, i.e.
if ⇡0(Di↵@(NI)) has finite index in ⇡0(aut@(NI)). If this is not the case, then the group
⇡0(S Di↵@(NI)) of isotopy classes of di↵eomorphisms that induce the identity on homol-
ogy and the map

⇡0(S Di↵@(NI))! ⇡0(Saut@(NI))

need to be understood. To the authors knowledge not even ⇡0(S Di↵@(S
p ⇥ Sq)) has

been considered for general 1 < p < q.

We will describe a potential strategy to proof the Conjecture 8.1 for the special case

Ng = (#g(S
p ⇥ Sq))r int(Dp+q).

The first step is to observe that there is an extension of groups:

0! K ! ⇡0(aut@(Ng))! Aut(Hp(Ng))! 0,
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where
K ⌦Q ⇠= (⇡q(Ng)⌦Q)g ⇠= (L(s�1H̃⇤(Ng;Q))q�1)

g.

This can be shown using the arguments in the proof of Proposition 4.1. The action on
the kernel should be induced by the action of Aut(Hp(Ng)) ⇠= Aut(H̃⇤(Ng), h�,�i) on
H⇤(Ng;Q).
In Chapter 6 we now need to consider the ⇡0(aut@(Ng))-module

(L(s�1H̃⇤(Ng;Q))q�1)
g ⌦ CCE

⇤ (L(s�1H⇤(Ng;Q))).

The only issue occurring is that the group ⇡0(aut@(Ng)) is in general not rationally per-
fect. However, since the action of ⇡0(aut@(Ng)) is most likely through Aut(H̃⇤(Ng), h�,�i),
the latter should not be a problem.

Enlarge the class of manifolds

One of the reasons why we choose to restrict to the manifolds NI with pi  qi < 2pi� 1
is that they are rationally homotopy equivalent to a large class of manifolds. Let X be
a manifold and denote by ri = rankHi(X).

Proposition 8.3. Let X be a k-connected n-manifold with k � n�1
3 and n > 5. Then

there is a rational homology equivalence if n = 2d+ 1 is odd

X 'Q (#d
i=k+1#ri(S

i ⇥ Sn�i))

and if n = 2d is even

X 'Q (#d�1
i=k+1#ri(S

i ⇥ Sn�i))#M[X].

The manifold M[X] is homotopy equivalent to a complex given by
W

rd
Sd [' en, where

' =
1

2

rdX
i,j=1

hei, eji[◆di , ◆dj ] +
rdX
i=1

Jq(ei)[◆
d
i , ◆

d
i ],

where ei denotes some basis for the torsion free part of Hd(X) and ◆di : Sd ,!
W

rd
Sd

denote the canonical inclusions.

Proof. The manifold X r int(Dn) is homotopy equivalent to a CW-complex with cells
only in dimensions k+1, ..., 2k+2. This implies that the (n� 1)-skeleton has to be (up
to rational homotopy equivalence) a wedge of spheres

V =

2k+2_
i=k+1

 _
ri

Si

!
.
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This can be shown inductively, since the only possible non rationally trivial attaching
maps give rise to contractible sub complexes.
We observe next that X splits rationally as a connected sum of compact manifolds with
reduced rational homology only in degrees p and n� p. This follows since

⇡n�1(X r int(Dn))⌦Q ⇠= L(s�1H̃⇤(V ))n�2
⇠=
X
p

L(s�1(Hp(V )�Hn�p(V )))n�2

and the connected sum corresponds to the sum of the attaching maps of the top cell. A
compact k-connected n-manifold Mp,n�p with reduced rational homology only in degrees
p and n � p that are not the middle dimension is rationally equivalent to a connected
sum of products of spheres. To see this we use that the (n � 1)-skeleton of Mp,n�p is
rationally a wedge

Vp,n�p =

rp_
i=1

(Sp _ Sn�p)

and the attaching map of the top cell is given by
P

i,jhe
p
i , e

n�p
j i[◆pi , ◆

n�p
j ], where ◆pi and

◆n�p
j denote the inclusions of the Sp (Sn�p respectively) and the epi and en�p

j denote
elements in homology corresponding to them via the Hurewicz homomorphism. There
is an automorphisms f of Vp,n�p, such that

f

 X
i,j

hepi , e
n�p
j i[◆pi , ◆

n�p
j ],

!
=
X
i

[◆pi , ◆
n�p
i ]

and it extends to a homotopy equivalence of the complexes obtained by attaching a cell
- this proves the claim for manifolds that don’t have homology in the middle dimension.
To obtain the automorphisms f, we realize the automorphism of the homology given by
the matrix

((hepi , e
n�p
j i)i,j)�1

in degree p and the identity in degree n� p.
In the middle dimension the intersection form is more complicated and we can not in
general simplify it. But in any case the attaching map is given by the formula for ' in
the statement above.

This leads us to the following question:

Question 8.4. Assume X 'Q Y are rationally homotopy equivalent spaces of finite Q-
type. Under which conditions are H⇤(Baut⇤(X);Q) and H⇤(Baut⇤(Y );Q) isomorphic?

One positive answer to Question 8.4 are rational homology spheres, i.e. compact mani-
folds with the rational homology of a sphere. We are going to give a quite complicated
proof - but it illustrates the general problem.

70



8 Perspectives for further research

Proposition 8.5. Let X be a rational homology n-sphere, then H⇤(Baut⇤(X);Q) ⇠=
H⇤(Baut⇤(Sn);Q).

Proof. We know that the homology groups H1(X), ..., Hn�1(X) are finite and that the
automorphisms of Hn(X) have to be {±1}. Thus we get that the image of

H̃⇤ : ⇡0(aut⇤(X))! Aut(H̃⇤(X))

is finite. It is well known that for a n-CW-complexes Kn�1 [ en, the kernel of H̃⇤ is
a quotient of ⇡n(Kn�1) (see e.g. [BB58]). But since X r int(Dn) is rationally homo-
topy equivalent to a rationally contractible (n � 1)-CW-complex, it follows that it is
finite. Using Theorem 2.3, we now get that Der+(L(Q[n�1]) is a model for the rational
homotopy groups of the universal covering of Baut⇤(X) and the action by deck transfor-
mations is via Aut(Hn(X,Q)) ⇠= Z/2Z induced by the sign action on Q. The statement
now follows by considering the covering spectral sequence of the universal covering

Baut⇤(X)h1i ! Baut⇤(X)! B⇡1(Baut⇤(X))

with E2-terms given by

Hp(⇡1(Baut⇤(X));Hq(Baut⇤(X)h1i;Q)) ⇠= Hp(Z/2Z;HCE
q (Der+(L(Q[n� 1])))

⇠= Hp(⇡1(Baut⇤(S
n));Hq(Baut⇤(S

n)h1i;Q)).

This simple observation already allows us to extend Theorem A to manifolds NI#X,
where X is a rational homology n-sphere.

In some sense this question is about the (co)homology of arithmetic groups: It is known
for a finite CW-complex X that the group ⇡0(aut⇤(X)) is commensurable with an arith-
metic subgroup of ⇡0(aut⇤(XQ)) (see e.g. [Wil76]). We know that the universal coverings
of the classifying spaces of the homotopy automorphisms are rationally homotopy equiv-
alent. The problem is that we in general not even have a maps between ⇡0(aut⇤(X)) and
⇡0(aut⇤(Y )). One way around this problem is to consider the homotopy automorphisms
of the rationalizations of the spaces - this approach has been used in [Gul15] for formal
and coformal spaces, but it doesn’t help us to understand the homology of Baut⇤(X).

The next reasonable and interesting case to consider for Question 8.4 are wedges of
spheres with one cell attached:

W'j =

 
r_

i=1

Sni

!
['j e

n, where 1 < ni < n and j = 1, 2.
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The complexes W'1 and W'1 are rationally homotopy equivalent, if

f⇤['1] = ['2] 2 ⇡n�1(

r_
i=1

Sni)⌦Q for some f 2 aut⇤(

r_
i=1

Sni).

This case is interesting because of this related Question:

Question 8.6. Assume W'1 'Q W'2 , is

H⇤(Baut@(W'1 r int(Dn));Q) ⇠= H⇤(Baut@(W'2 r int(Dn));Q)?

A positive answer to Question 8.6 would allow us to extend Theorem A to all k-connected
(2n + 1)-manifolds with k � 2n

3 and n � 3 using Proposition 8.3. However, we do not
know if that is true. We want to discuss the problems occurring in the case that the
W'i r int(Dn) are rationally homotopy equivalent to NI , relative boundary. Let W be
a compact oriented manifold with boundary that is rationally homotopy equivalent to
some (not necessarily highly connected) NI , relative boundary. The image of

H̃⇤ : ⇡0(aut@(W ))! Aut(H̃⇤(W ))

fits into a group extension:

0! KW ! Image(H̃⇤)! GW ! 0,

where GW is some subgroup of �I ⇢ Aut(HI) and KW is finite. The group KW corre-
sponds to automorphisms of the torsion part of the homology and we don’t need to worry
about it. The group GW on the other hand is in general harder to understand. We know
that the derivation Lie algebra gI is a model for the rational homotopy groups of the
universal cover of Baut@(W ). It is reasonable to assume that the action of ⇡0(aut@(W ))
is trough GW and extends to the �I -action that we have considered in this thesis. A
first thing to try to use is the following consequence of Shapiro’s Lemma:

Hr(GW , resGW

�I
HCE

r (gI)) ⇠= H⇤(�I ; ind
�I

GW
resGW

�I
HCE

r (gI))
⇠= H⇤(�I ;Q[�I/GW ]⌦HCE

r (gI)),

where the �I acts diagonally on Q[�I/GW ]⌦HCE
r (gI). It is not obvious to the author

what this means for the answer of Question 8.6 especially when �I/GW is not finite.

However, if Q[�I/GW ] is a coe�cient system satisfying homological stability for �I , this
would at least allow us to extend Theorem A to W .

The second approach to show homological stability for more manifolds is to find the
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”right” notion of graded ⇤-quadratic modules to describe the groups GW (the definition
we made in Section 2.5 is clearly not general enough) and that allows to show homologi-
cal stability with twisted coe�cients. The invariants of the homology that GW respects
can be found in Wall’s work on the classification of manifolds. This approach is likely to
succeed, since the related problem, if H⇤ (⇡0(Di↵@(W#g(Sp ⇥ Sq)))) stabilizes follows
from the methods in [Per14a].

8.2 The stable cohomology

It is desirable to understand the stable cohomologies of Baut@(N), BgDi↵@(N) and
BDi↵@(N) for N odd-dimensional. We believe that this thesis lays the foundation
to understand the first two and to at least give some information about the last.

Let

Np,q
g = (#g(S

p ⇥ Sq))r int(Dp+q), where 3  p  q.

In [BM15], Berglund and Madsen calculate the rational cohomology groups of

Baut@(N
d,d
1 ) = hocolim

g!1
Baut@(N

d,d
g ).

A key step for this was to show that the Serre spectral sequence of the fibration

Baut@(N
d,d
1 )h1i ! Baut@(N

d,d
1 )! B⇡1(Baut@(N

d,d
1 )) (8.1)

collapses at the E2-page. Unfortunately the proof depends to some extend on the cal-
culation of the rational cohomology of BDi↵(Nd,d

1 ) by Galatius and Randal-Williams.
They show that the map

H⇤(B⇡1(Baut@(N
d,d
g ));Q)! H⇤(BDi↵@(N

d,d+1
g );Q)

is injective on indecomposables and hence also the map

H⇤(B⇡1(Baut@(N
d,d
g ));Q)! H⇤(B aut@(N

d,d+1
g );Q).

This ensures that the Serre spectral sequence collapses, since H⇤(B⇡1(Baut@(N
d,d
g ));Q)

and H⇤(Baut@(N
d,d
g );Q) are free graded commutative algebras.

We hope to find a way around this to calculate H⇤(Baut@(N
d,d+1
1 );Q) and possibly

H⇤(BgDi↵@(Nd,d+1
1 );Q), which then would give by Morlet’s Lemma of Disjunction some

information about H⇤(BDi↵@(N
d,d+1
1 );Q) in a range of degrees depending on the di-

mension.
The collapse of the Serre spectral sequence for the fibration (8.1) with Nd,d

g replaced by

Nd,d+1
g would lead to a proof of:
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Conjecture 8.7. There is an isomorphism of graded rings

H⇤(Baut@(N
d,d+1
1 );Q) ⇠= H⇤(Gl(Z),Q)⌦H⇤

CE(Der! L1)Gl(Z).

The left-hand term is understood, due to Borel’s calculation of H⇤(Sl(Z),R). The right-
hand term is more mysterious, but there is a theorem by Kontsevich about a similar
object [CV03].

Homotopy automorphisms of wedges of spheres

A related but potentially easier to understand problem is the stable cohomology of

Xd
g = Baut⇤(

_
g

Sd)

as g goes to infinity. Besides the stabilization map, which is induced by extending a
homotopy self-equivalence as the identity on a new wedge summand, there is also a
map induced by the suspension. The spaces Xd

g are related to Waldhausen’s algebraic
K-theory of spaces (see [Wal85]):

colim
n,g!1

(Xd
g ) ' A(⇤).

The rational homotopy groups of the universal covering can be understood using Theo-
rem 2.3. It is given by

⇡+⇤�1(X
d
g )⌦Q ⇠= Der+(Lg,d),

where Lg,d denotes the free graded Lie algebra on Qg[d � 1]. The deck transformation
action of ⇡1(Xd

g ) ⇠= Glg(Z) is just the action induced by the standard action of Glg(Z)
on Zg.
The derivations Der+(Lg,d) can be describes as the value of a functor from the category
of finitely generated Z-modules with injective maps and thus the CCE

⇤ Der+(Lg,d) form
a coe�cient system in the sense of [RWW15]. Hence we should be able to show rational
homological stability for {Xd

g }g�1.
One might hope that the relation to A-theory might help to determine the stable value.
But the maps

Xd
g ! Xd+1

g

are only (d� 2)-connected and that because the Xd
g h1i are (d� 2)-connected.

Botvinnik and Perlmutter identify the stable integral cohomology of

BDi↵D2d(\g(D
d+1 ⇥ Sd)), d � 4,
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the group of di↵eomorphisms of the g-fold boundary connected sum that restrict to the
identity near a disk, embedded in the boundary. It is given by

H⇤(BDi↵D2d(\1(Dd+1 ⇥ Sd))) ⇠= H⇤((Q(BO(2d+ 1)hdi+))(1)),

where (1) indicates the component of the constant loop. The right-hand side is rationally
easy to express: It is the free commutative algebra generated by the monomials in the
Pontryagin classes p d+1

4
, ..., pd. Unfortunately the map

H⇤(B⇡1(X
d
1);Q)! H⇤(Xd

1;Q)! H⇤(BDi↵D2d(\1(Dd+1 ⇥ Sd));Q),

induced by the obvious map

BDi↵D2d(\g(D
d+1 ⇥ Sd))! BautD2d(\g(D

d+1 ⇥ Sd))
⇠=�! Xd

g

is trivial for degree reasons (H⇤(Gl1(Z);Q) is an exterior algebra on generators in
degrees 4i+1, i > 0). Instead one should consider Yg,d = BgDi↵D2d(\g(Dd+1⇥Sd)). The
mapping class group was calculated by Wall ([Wal63, Lemma 17]). It is given by a split
group extension

0! ⇡d(SO(d+ 1))g � ⇡d+1(S
d+1)(

g
2) ! ⇡0(Di↵D2d(\g(D

d+1 ⇥ Sd)))! Glg(Z)! 0.

Using the methods in this thesis we should be able show rational homological stability
for the Yg,d.

The space gDi↵D2d(\g(Dd+1 ⇥ Sd)), sits in a commutative diagram

BDi↵D2d(\g(Dd+1 ⇥ Sd)) //

?
✏✏

BDi↵@(N
d,d
g )

✏✏

BgDi↵D2d(\g(Dd+1 ⇥ Sd))
??
// BgDi↵@(Nd,d

g )

where the horizontal maps are induced by restriction to the boundary. The stable
rational cohomology rings of the three other terms are understood, thus we hope to
understand H⇤(Y1,d;Q) upon studying the maps ? and ??. Moreover we hope that this

will help us understanding H⇤(X1,d;Q) and maybe even H⇤(Baut@(N
d,d+1
1 );Q).

Calculations for even dimensional manifolds

One of the motivations for the author to prove homological stability for the manifolds
NI is the fact that for NI even dimensional the stable moduli space
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BDi↵@(NI)

for gn/n 7! 1 is in principle understood in [GRW14]. For example for

Ngd,gd�1 = ((#gdS
d ⇥ Sd)#(#gd�1S

d�1 ⇥ Sd+1))r int(D2d)

it is given by
(⌦1

• MTSO(2d)hdi ^K(Zgd�1 , d� 1)+)hGlgd�1(Z),

where the action of Glgd�1(Z) is induced by the standard action on K(Zgd�1 , d� 1).
Upon understanding the homotopy orbits, it might be possible to extend Berglund and
Madsen’s calculations of

Baut@(N
d,d
1 ) and BgDi↵@(Nd,d

1 )

to even dimensional NI -s. Understanding the role of the general linear groups in even
dimensions might help to also understand it in odd dimensions.
Moreover Berglund and Madsen show that the map

H⇤(BgDi↵@(Nd,d
1 );Q)! H⇤(BDi↵@(N

d,d
1 );Q)

is an isomorphism for ⇤ < 2d, which is better than expected by concordance theory. It
would be interesting to see if this is also true for even dimensional NI -s.
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