
Computational Finance
- on the search for performance.

PhD Thesis

Lykke Rasmussen

This thesis has been submitted to the PhD School of The
Faculty of Science, University of Copenhagen.

This dissertation has been submitted in partial fulfilment of the requirements of the degree of
Doctor of Philosophy at the Ph.D. School of The Faculty of Science, University of Copenhagen.

Department The Department of Mathematical Sciences,
University of Copenhagen.

Research group Insurance and Economics,
connected to the HIPERFIT project.

Author Lykke Rasmussen,
rasmussen.lykke@gmail.com.

Supervisor Prof. Rolf Poulsen,
University of Copenhagen.

Submission date January 18th, 2016.

Assessment Committee David Skovmand, University of Copenhagen,
Prof. Natalie Packham, Berlin School of Economics and Law,
Antoine Savine, Danske Bank Copenhagen.

ISBN 978-87-7078-943-1.

The code and corresponding output data for the papers can be found at the Electronic Research
Data Archive for University of Copenhagen.

www.erda.dk/public/archives/YXJjaGl2ZS1iRVhMYUs=/published-archive.html.
www.erda.dk/public/archives/YXJjaGl2ZS1jcGhvM3E=/published-archive.html.

Paper I : Efficient Calibration of the Local VolatilityModel

Abstract

Calibration of Dupire’s deterministic local volatility function has been extensively
researched over the years, and numerous papers on this topic has been presen-
ted. Yet the question of whether one of these methods are superior to the rest
still remains unanswered. This paper examines the performance for five different
methods for calibrating the local volatility function. The methods are thoroughly
assessed in a uniform testing framework where they are compared in terms of
accuracy, smoothness, speed and robustness.

Resumé

Kalibreringen af Dupires determiniske lokale volatilitets funktion er blevet ud-
forsket i stort omfang i løbet af årerne, talrige artikler omkring emnet er blevet
skrevet. Alligevel er spørgsmålet om hvorvidt en af disse metoder er bedre end de
andre stadig ubesvaret. Denne artikel undersøger egenskaberne for fem af disse
forskellige metoder til at kalibrere den lokale volatilitetsfunktion. Metoderne bli-
ver grundigt undersøgt indenfor en ensartet testramme, hvor de sammenlignes på
nøjagtighed, glathed, hastighed og robusthed.

II

Paper II : Efficient Calculation of Sensitivities

Abstract

One of the major challenges in todays post-crisis finance environment is calcu-
lating the sensitivities of complex products for hedging and risk management.
Historically, these derivatives have been determined using bump-and-revalue, but
due to the increasing magnitude of these computations does this get increasingly
difficult on available hardware. In this paper three alternative methods for eval-
uating derivatives are compared: the complex-step derivative approximation, the
algorithmic forward mode and the algorithmic backward mode. These are applied
to the price of the Credit Value Adjustment for an interest rate swap, and sub-
sequently assessed in terms of accuracy, stability and run time. Hands-on details
are provided for the implementation along with a thorough validation framework.

Resumé

En af de største udfordringer indenfor finansiering efter finanskrisen, er at be-
regne følsomhederne for komplekse produkter med henblik på hedging og risiko
styring. Historisk set er disse afledte blevet beregnet vha. bump-and-revalue, men
grundet det stigende omfang af disse beregninger, bliver dette stadigt vanskelige-
re på tilgængeligt hardware. I dette papir sammenlignes tre alternative metoder til
at beregne afledte: complex-step derivative approksimation, algorithmic forward
mode og algorithmic backward mode. Disse benyttes på Credit Value Adjustment
prisen for en rente swap og undersøges derefter i forhold til nøjagtighed, stabilittet
og køretid. Praktiske detaljer omkring implementeringen er angivet sammen med
en grundig validerings fremgangsmåde.

IV

Preface

The financial crisis of ’08 disrupted the financial environment. Within the field of
mathematical finance this led to an increased focus on stability and robustness of
the calibrated models as well as extensive risk management requiring both speed
and accuracy of the sensitivities. This dissertation Computational Finance - on
the search for performance contributes to this endeavour by assessing methods
seeking to fulfill these goals.

Stability and robustness of the local volatility model gained renewed interest
with the award winning paper Andreasen & Huge (2011). This paper does, as
many others, describe its unique contribution to the discipline of calibrating the
local volatility function, but omits to bring its contribution into context with other
methods already published within the field. The first paper presented in this dis-
sertation fills this gap by presenting an extensive comparison of the five most
promising methods on the subject.

The second paper in this dissertation is concerned with the performance of
alternative computer algorithms used for calculating the sensitivities of complex
financial products. The game changer within this line of research was the award
winning article Giles & Glasserman (2006) on algorithmic differentiation. This
method is gaining grounds within the finance industry and there is therefore an
increased need for an exhaustive assessment of the alternative methods available
for calculating the sensitivities. The second paper provides this assessment.

In the spring of 2014 I was fortunate enough to visit the author Mike Giles. He
was working on a book script at the time regarding algorithmic differentiation.
During my review of the script I suggested - as a true rookie - that he separated
the math from the implementation in order to simplify things. He answered that
for this very topic the two are closely related and cannot be separated - once you
understand this, it becomes clear why and how to utilize this technique. I suggest
the reader bears this in mind when reading the second paper.

Acknowledgments

I wish to thank my PhD advisor, Professor Rolf Poulsen, for his support, guidance
and participation during the PhD program. A special thanks goes to Professor
Brian Vinter for taking an interest in me and my HPC upbringing. I also owe
Brian great thanks for helping me arrange my stay abroad. My gratitudes extends
to Mike Giles for his hospitality and patience during my stay at Oxford-Man In-
stitute at University of Oxford and for introducing me to the world of adjoints. I
would also like to thank Andreas Winther Jessen for input on the practical issues

VI

regarding CVA. Also thanks to Jacques du Toit for helping me shape the format
of the first paper by inputs and fruitful discussions.

Lykke Rasmussen,
Copenhagen, 2016.

Bibliography

Andreasen, Jesper and Huge, Brian (2011). Volatility interpolation. Risk
Magazine, March, 76–79.

Giles, Mike and Glasserman, Paul (2006). Smoking adjoints : fast Monte Carlo
Greeks. Risk Magazine, (3), 88–92.

VII

Contents

Introduction . 1

I Efficient Calibration of the Local VolatilityModel 5
1 Motivation . 7
2 Setting the Scene . 10

2.1 Normed call prices . 10
2.2 The local volatility model 12
2.3 Absence of arbitrage . 13

3 Presentation of the methods . 19
3.1 Benko . 21
3.2 Fengler . 28
3.3 AndreasenHuge . 35
3.4 GlaserHeider . 42
3.5 FenglerHin . 49

4 Empirical work . 58
4.1 Data . 58
4.2 Filtering . 58
4.3 Quantitative Comparison of the Methods 64

5 Did we reach our goals? . 89
A Appendix . 91

A.1 Glaser & Heider quadratic programming problem. 91
A.2 Fengler & Hin linear inequality constraints. 91

References . 94

II Efficient Calculation of Sentivitities 97
1 Motivation . 99
2 Financial Framework . 101

2.1 CVA approximation formula. 102
2.2 Interest Rate Swap . 103

IX

2.3 Short rate model - Hull White 106
2.4 Intensity model - CIR 107
2.5 Calibrating the model framework 109
2.6 Discretization . 114
2.7 The derivatives . 117

3 Derivatives Framework . 119
3.1 Finite Difference Approximation 123
3.2 Complex-Step Derivative Approximation 126
3.3 Algorithmic Derivatives 131

4 Implementation . 142
4.1 Program Design . 142
4.2 Active and passive variables 144
4.3 Recording . 145
4.4 Validation Checks . 147
4.5 Automatic Differentiation 149

5 Results . 151
5.1 Accuracy . 151
5.2 Stability . 153
5.3 Run Time . 155
5.4 Automatic tool . 159

6 Wrapping it up . 161
6.1 When to use What? . 161
6.2 Before Flying the Nest 162

A Appendix : Source Code . 164
A.1 Object Oriented Design 164
A.2 Code formatting . 171

B Appendix : Data . 172
References . 182

Paper I

Efficient Calibration of the Local
VolatilityModel

1

Paper I

1 Motivation

The calibration of Dupires deterministic local volatility function has been ex-
tensively researched over the years, and numerous papers on the topic has been
presented. The problem gained renewed interest in 2012 when Andreasen & Huge
was awarded ’Quants of the Year’ by Risk Magazine for their article ’Volatility
Interpolation’. To this day the question of whether one of these numerous meth-
ods are superior to the rest still remains unanswered. We will in this paper try to
get closer to an answer by assessing 5 of the currently most promising methods.

The local volatility model (see e.g. Dupire (1994)) is the simplest expansion to
the Black-Scholes model which captures the implied volatility smile - and term
structure, which has been evident in the market since the crash of 1987.The dy-
namics of this model resembles that in the Black-Scholes model except that the
volatility function is not a constant, but a deterministic function of time and the
value of the underlying, as can be seen in eqn. (3).

Today this model is widely used in many institutions and across many asset classes,
as described by Fengler & Hin (2013) in the quote given below. It is also used as
a first step in calibrating the more advanced stochastic local volatility (SLV) mod-
els, which have become the standard models in areas such as FX and exotic equity
derivatives.

Nowadays, local volatility models are widely used in the prac-
tice of quantitative finance for pricing and hedging mildly path-
dependent derivatives. This is because these models neatly em-
bed in a portfolio context as they provide an almost perfect fit to
observed option prices; at the same time option pricing is fast
and efficient. (Fengler & Hin (2013))

Dupire shows in his paper, Pricing with a Smile, from 1994 how the local volatility
function can be derived from the derivatives of a continuous surface of arbitrage-
free call prices: c (K, τ). This formula has afterwards become known as Dupire’s
formula:

σloc(K, τ) =

√√
2 ∂c(K,τ)

∂τ

K2 ∂2c(K,τ)
∂K2

.

Using this formula, the calibration of the local volatility model boils down to the
problem of generating a full continuum in expiry and strike of arbitrage-consistent

3

Motivation

European-style option prices from a discrete set of observed option quotes, as An-
dreasen & Huge (2011) put it. This is a non-trivial problem consisting of inter-
polating, or approximating, this scattered set of observations while preserving, or
establishing, absence of arbitrage.

Numerous procedures for overcoming this difficulty has been presented over the
years. In this paper the focus has been on some of the more recent methods listed
in figure 1.

Kahalé (2004)

Benko et al.
(2007)

Fengler (2009)

Andreasen &
Huge (2011)

Glaser &
Heider (2012)

Fengler &
Hin (2013)

Maruhn (2013)

Gatheral &
Jacquier (2014)

Figure 1: Articles presenting methods for calibrating the local volatility function.

Three of these methods have been filtered out beforehand:

B Kahalé (2004) has been disregarded, as it assumes arbitrage-free observa-
tions as input. The discussion in Hentschel (2003) indicates, that this is
definitely not a given, rather the reverse. This method is therefore not ro-
bust enough to be considered here.

B Maruhn (2013) describes a method for fitting the call surface in his present-
ation notes from the Global derivatives conference in 2013. Unfortunately,
too many details have been left out in order to apply it in practice. Hope-
fully, a more detailed paper will be published in the future.

B Gatheral & Jacquier (2014) presents a calibration method based on Gatheral’s
SVI model. The model and several parameterizations hereof is presented in
detail in the paper. The actual calibration of the call surface is carried out
in a slice-by-slice manor where arbitrage is eliminated using penalization,
which is very vaguely described. Hence, this method too has been disquali-
fied due to insufficient details.

4

Paper I

Common to all of the methods is that the authors claim that their specific method is
particularly fast, accurate and fits the market well. But experience reveals that the
exact choice of method can have severe implications for the shape of the resulting
local volatility function. Thus, the aim of this paper is to examine the methods lis-
ted above in detail in order to assess their qualities and weaknesses by considering
the following parameters:

B Accuracy Ability to fit observed market prices. There is some discussion in
the literature on whether an exact fit should be preferred to an approximated,
see Andreasen & Huge (2011) and Coleman et al. (1999).

B Smoothness The shape of the local- and implied volatility surface is ideally
smooth and continuous, without any odd spikes or areas of missing data.

B Speed Greed for speed is one of the predominant factors in financial applic-
ations.

B Robustness The stability of the surfaces towards changes in the input data
and across time.

From this thorough assessment it should be possible to conclude whether or not
one of the methods stands out from the rest as being superior. Note, that the meth-
ods are not enhanced in this setup, but only evaluated in the form proposed by
the authors. Furthermore, the assessment is limited to the interpolation of the ob-
served data, as extrapolation of the wings is a different research topic.

5

Setting the Scene

2 Setting the Scene

The comparison of the calibration methods presented in this paper, builds on the
empirical evidence presented in later sections. Hence, as the theoretical aspect is
not the main focus here and the details presented in this section are therefore kept
at a minimum. For an elaborate description the reader is referred to other sources
such as Björk (2009).

2.1 Normed call prices

The methods to be compared vary with respect to the parameters they take as
input. Some methods allow for deterministic interest rates and dividend yields,
some for constant rates, while others only allow for one or no parameters, see the
overview in table 1.

Method rτ δτ

Benko et al. (2007) Deterministic 0
Fengler (2009) Deterministic Deterministic
Glaser & Heider (2012) Constant Constant
Andreasen & Huge (2011) 0 0
Fengler & Hin (2013) Deterministic Deterministic

Table 1: Interest rates and dividend yield formats for the methods.

Thus, in order to compare these methods on common grounds we here specify a
unified theoretical framework consisting of normed call prices 1 and transform
our datasets for the empirical work accordingly. This transformation of the frame-
work allow us to treat the data as if we were in a scenario with zero interest rate,
rτ = 0, and dividends, δτ = 0.

Please note that this normalization of the framework eliminates the possibility
of evaluating the methods’ ability to handle interest rates and dividend yields.
Although this is not optimal, the alternative solution would have been to start ad-
justing some of the methods to allow for deterministic rates. Such adjustments
has been deemed outside the scope this paper.

Normed call prices is just another way of quoting prices, similar to using im-
plied volatilities, both quotes are derived from observed call prices using the

1The term normed call prices has been picked up from Gope & Fries (2011) who describes this
as a more natural coordinate system.

6

Paper I

Black-Scholes formula. This transformation from ordinary European call prices
to normed prices is here carried out along the lines of Gope & Fries (2011, sec. 2).

We start by reformulating the Black-Scholes formula into terms of the forward-
moneyness: κ = K

Fτ
0
, where Fτ

0 is the forward price given by: Fτ
0 = se(rτ−δτ)τ. The

Black-Scholes formula for positive interest rates and dividend yields can then be
reformulated as:

Cs(K, τ) =se−δττN (d1) − Ke−rττN (d2)

⇔
Cs(K, τ)

se−δττ
=N (d1) −

Ke−rττ

se−δττ
N (d2)

⇔
Cs(K, τ)erττ

Fτ
0

=N (d1) −
K
Fτ

0
N (d2)

⇔
Cs(K, τ)erττ

Fτ
0

=N (d1) − κN (d2) . (1)

where

d1 =
ln

(
s
K

)
+

(
rτ − δτ + 1

2σ
2
)
τ

σ
√
τ

=
ln

(
s
K

)
+ ln

(
e(rτ−δτ)τ

)
+ 1

2σ
2τ

σ
√
τ

=
ln

(
se(rτ−δτ)τ

K

)
+ 1

2σ
2τ

σ
√
τ

=

ln
(

1
K

se(rτ−δτ)τ

)
+ 1

2σ
2τ

σ
√
τ

=
ln

(
1
κ

)
+ 1

2σ
2τ

σ
√
τ

,

d2 =d1 − σ
√
τ.

The right-hand-side of eqn. (1) is equivalent to the Black-Scholes formula for a
European call option with strike price κ, maturity τ and a value of the underlying
equal to 1. Hence, this relation defines the transformation from the original call
prices to normed call prices:

C1(κ, τ) =
Cs(K, τ)erττ

Fτ
0

. (2)

This transformation incorporates the interest rate and dividend yield into the strike
price of the option, κ, making the normed call prices equivalent to zero interest
rate, zero dividend yield products. Hence, these normed prices are ideal for our
comparison analysis, as they are independent of the parameter assumptions in the

7

Setting the Scene

various methods.

2.2 The local volatility model

The local volatility model, also termed the generalized Black-Scholes model, was
developed to fit the implied volatility smile and the implied volatility term struc-
ture evident in the market after the stock crash of October 1987, see (Rasmussen,
2012, sec. 2.1) for details. The model is characterized by having a deterministic
volatility function dependent on the time and the value of the underlying at that
given time.

The local volatility is a non-parametric, deterministic function
depending on the asset price and the time. A priori unknown,
it must be computed numerically from option prices, or equival-
ently, from the implied volatility surface. (Fengler (2009))

In Dupire (1994)2 a functional form for this local volatility function is presented
such that the risk-neutral diffusion process given by:

dS u = (ru − δu)S udu + σ(S u, u)S udWQ(u) u ∈ (t,T] (3)
S t = S > 0 0 ≤ t.

is a Q-martingale consistent with a continuum of observed arbitrage-free call
prices:

c(K, u) = EQ
[
(S u − K)+

|S 0 = s
]
.

The local volatility function are according to Dupire (1994) uniquely given using
the derivatives of these observed call prices:

σloc(K, τ) =

√√√
2
(
∂c(K,τ)
∂τ

+ δτc (K, τ) + (rτ − δτ)K ∂c(K,τ)
∂K

)
K2 ∂2c(K,τ)

∂K2

. (4)

The local volatility formula presented by Dupire (1994) must, like the call prices
themselves, be transformed in order to fit our normed framework described previ-
ously. This transformation takes the relation given in eqn. (2) as a starting point,

2Here we present a version which allows for a deterministic interest rate and dividend yield
which differs slightly from the original representation.

8

Paper I

and can be found (Gope & Fries, 2011, sec. 2.8) in full detail. Here, we just repeat
the intermediate results from this derivation:

∂c (K, τ)
∂τ

=se−δττ
[
−δτc1(κ, τ) − κ (rτ − δτ)

∂c1(κ, τ)
∂κ

+
∂c1(κ, τ)
∂τ

]
,

∂c (K, τ)
∂K

=
se−δττ

Fτ
0

∂c1(κ, τ)
∂κ

,

∂2c (K, τ)
∂K2 =

se−δττ(
Fτ

0

)2

∂2c1(κ, τ)
∂κ2 ,

(5)

Inserting these equations into Dupires formula in eqn. (4), this gives us the
normed local volatility function:

σloc(K, τ) =

√√
2∂c1(κ,τ)

∂τ

κ2 ∂2c1(κ,τ)
∂κ2

= σloc
1 (κ, τ). (6)

Perhaps not surprisingly, this transformation eliminate the interest rate and di-
vidend yield by incorporating these amounts into the strike price, as were the case
for the call price. What is more interesting though, is the relation: σloc(K, τ) =

σloc
1 (κ, τ), stating how the normed local volatility surface corresponds to the ori-

ginal framework.

This normed local volatility function can then be be used to derive the local volat-
ility surface using a suitable grid of fitted call prices. Only, one of the meth-
ods does not approximate the call surface, but the implied volatility surface, see
table 2 below. In order to utilize the derivatives of the implied volatility surface,
this method provide as a bi-product to the optimization, an alternative version of
Dupire’s formula given in (Gatheral, 2006, eqn. 1.10) is provided here:

σloc
1 (κ, τ) =

√√√√ ∂w
∂τ

1 − log κ
w

∂w
∂ log κ + 1

4

(
−1

4 −
1
w +

(log κ)2

w2

) (
∂w

∂ log κ

)2
+ 1

2
∂2w

∂(log κ)2

(7)

where w is the total variance: w1(κ, τ) = σ
imp
1 (κ, τ)

2
τ.

2.3 Absence of arbitrage

The basic requirement on the generated surfaces is absence of arbitrage opportun-
ities. It is well known that if the surface fails to fulfill this property, it could lead
to mispricings and false greeks, see the quote by Fengler (2009) below. Thus,
absence of arbitrage is one of the pillars in mathematical finance.

9

Setting the Scene

The pricing accuracy and pricing performance of local volatility
models depends on the absence of arbitrage in the implied volat-
ility surface...surface that is not arbitrage-free can result in neg-
ative transition probabilities and consequently mispricings and
false greeks. (Fengler (2009))

Carr & Madan (2005) point out that determining whether a given set of option
prices is free of arbitrage, and thus whether a continuous time martingale exists3,
can prove difficult in practice as one must specify the structure of all possible
price paths. That is, one must beforehand determine which arbitrage-free con-
tinuous time model the observed call prices stem from. Trivially, this model is
unknown as it is only possible to observe past prices quoted in discrete time.

This problem can be turned upside down such that one instead would ask whether
an arbitrage-free continuous time model consistent with the observed call prices
exists? That is, whether a model consistent with a given non-negative martingale,
S , exists and generates the European call prices observed in the market:

c1(κ, τ) = EQ
[
(S τ − κ)+

|S 0 = 1
]
.

Carr & Madan name this alternative form of arbitrage static. The term refers to a
trading strategy where the position in the underlying is only allowed to depend on
the current time and the corresponding value of the underlying itself at this time.

This definition of an arbitrage opportunity has afterwards become the standard in
the literature and in 2010 Roper formalizes this for the call surface:

...a call option price surface (K, τ) → Cs(K, τ) is free from static
arbitrage if and only if there exists a nonnegative Markov mar-
tingale, say S τ, such that Cs(K, τ) = EQ [(S τ − K)+] for every
K, τ ≥ 0. (Roper (2010, def. 2.1))

Here, we more specifically want to determine whether an arbitrage-free local
volatility model, with diffusion process given in eqn. (3), can be determined. That
is, we want to find an answer to the same question as Dupire, see quote below.

...given the arbitrage-free prices C(K,T) of European calls of all
strikes K and maturities T, is it possible to find a risk-neutral

3First Fundamental Theorem of Finance, see for instance Björk (2009, Thm. 10.22)

10

Paper I

process for the spot in the form of a diffusion:

dS
S

= r(t)dt + σ(S , t)dW

where the instantaneous volatility s is a deterministic function of
the spot and of the time? (Dupire (1994))

The answer to this question, for the normed framework, was given in the previous
section by the local volatility function in eqn.’s 6 and 7. Hence, we need a set
of constraints on the surfaces generated by the various methods in order to secure
that they are indeed free of static arbitrage.

Initially, we would like to get an overview of the surfaces generated by the re-
spective methods and hence the versions of no-arbitrage conditions needed for
evaluating these. This overview is given in table 2.

Method Surface for which the no-arbitrage
constraints is applied

Benko et al. (2007) Implied volatility (state price density)
Fengler (2009) Call price
Andreasen & Huge (2011) Call price
Glaser & Heider (2012) Call price
Fengler & Hin (2013) Call price

Table 2: Overview of the no-arbitrage constraints needed to evaluate the collection of
methods.

It can be noted from table 2 that the majority of the methods generate a surface of
approximated, or interpolated, call prices for which the no-arbitrage constraints
are applied. The method by Benko et al. stands out by instead approximating
the implied volatility surface and by using a mix of constraints partly on the state
price density - or implied risk-neutral density - and partly the implied volatility
function itself. The reason for this mix will later become apparent.

In correspondence with table 2, the no-arbitrage conditions for the normed call
surface, the implied vol surface and the surface of implied risk-neutral densities,
will be presented in the following.

� Normed European call prices We here repeat the sufficient conditions for
absence of static arbitrage in the normed call surface presented in Fengler

11

Setting the Scene

& Hin (2013). These conditions are a slightly less general version of the
originals given in Roper (2010), further simplified by the transformation to
the normed framework.

Proposition 1. Define the function C1 : [0,∞) × [0,∞) → R such that
C1(κ, τ) . . .

(C1) is convex in κ for all τ ≥ 0,

(C2) is bounded according to

(1 − κ)+
≤ C1(κ, τ) ≤ 1, ∀κ ≥ 0, τ ≥ 0.

(C3) obeys C1(κ, 0) = (1 − κ)+ for all κ,

(C4) has limκ→∞C1(κ, τ) = 0 for all τ,

(C5) and is non-decreasing in τ for all κ ≥ 0.

Then there exists a non-negative Markov martingale Mτ such that

C1(κ, τ) = EQ [
(Mτ − κ)+|F0

]
, ∀κ, τ ≥ 0.

� Implied volatility
The sufficient conditions for absence of static arbitrage in the implied volat-
ility surface are originally given in Roper (2010). Here, they are repeated
in a slightly less general version along the lines of the conditions presented
above.

Define the surface of time scaled implied volatilities (in log-moneyness
form):

ν : R×[0,∞])→ [0,∞)

(κ̃, τ) 7→
√
τσ

imp
1 (exp(κ̃)), κ̃ = ln κ. (8)

Proposition 2 (Roper (2010)). Define the function ν : R× [0,∞)→ R such
that ν(κ̃, τ)

(IV1) is twice differentiable in κ̃ for all τ > 0,

(IV2) is bounded according to

0 < ν(κ̃, τ) ∀κ̃ ∈ R, τ > 0,

12

Paper I

(IV3) fulfills the so-called Durrleman’s condition

0 ≤
(
1 −

κ̃

ν(κ̃, τ)
∂ν(κ̃, τ)
∂κ̃

)2

−
1
4
ν(κ̃, τ)2

(
∂ν(κ̃, τ)
∂κ̃

)2

+ ν(κ̃, τ)
∂2ν(κ̃, τ)
∂κ̃2

for all κ̃ ∈ R and τ > 0,

(IV4) obeys ν(κ̃, 0) = 0 for all κ̃ ∈ R,

(IV5) has limκ̃→∞

(
ν(κ̃,τ))

2 − κ̃
ν(κ̃,τ)

)
= −∞ for all τ > 0,

(IV6) and is non-decreasing in τ for all κ̃ ∈ R.

Then there exists a non-negative Markov martingale Mτ such that

C1(κ, τ) = EQ [
(Mτ − κ)+|Ft

]
, ∀κ, τ ≥ 0.

It is evident that the constraints regarding the implied volatility surface are far
more complicated to work with in practice than the corresponding set for the
normed call surface. Thus, proposition 2 is mainly stated here as an illustration of
why Benko et al. instead choose to work with a set of constraints on the implied
risk-neutral density function4 for the forward-moneyness dimension. These text-
book conditions for the risk-neutral density function are given below.

� Implied risk-neutral density

� Nonnegativity property:

ϕ
imp
1 (κ; τ) ≥ 0, κ ≥ 0, τ ≥ 0. (9)

� Integrability property:∫ ∞

0
ϕ

imp
1 (κ; τ)dκ = 1 τ ≥ 0. (10)

Note the conditions listed above are sufficient to exclude arbitrage opportunities
for various types of surfaces. Unfortunately, our limited framework only allows
us to assess some of them. As stated earlier, we have limited our analysis to in-
terpolation of surfaces. Hence, we are in this framework not able to assess the
conditions given above relying on extrapolation: prop. 1 (C3,C4), prop. 2 (IV4,
IV5) and the conditions in eqn. (10)).

4The implied risk-neutral density function can be derived from the implied volatility surface
and it’s derivatives, see eqn (14).

13

Setting the Scene

Method Condition(s) Condition(s)
Forward-moneyness Time to maturity

Benko et al. (2007) eqn.(9) prop. 2: IV6
Fengler (2009) prop. 1: C1, C2 prop. 1: C5
Andreasen & Huge (2011) prop. 1: C1 prop. 1: C5
Glaser & Heider (2012) prop. 1: C1 prop. 1: C5
Fengler & Hin (2013) prop. 1: C1, C2 prop. 1: C5

Table 3: Overview of arbitrage conditions applied to the various methods.

In sections titled ’No-Arbitrage Conditions’ we give a comprehensive evaluation
of the arbitrage conditions applied for each method and relate this to the conditions
presented in this section. As a preview, table 3 summarizes which of the sufficient
arbitrage conditions have been applied to the respective methods.

14

Paper I

3 Presentation of the methods

In this section we give the reader an overview and a solid basic understanding
of the various methods assessed, and their characteristics. The descriptions do
however not give a complete review of all details and theoretical aspects of the
techniques encountered, for this the reader is referred to the original articles and
their respective references.

The main features which sets the methods apart are summarized in table 4. Here
it can be observed that the calibrated surfaces, consisting of either call prices or
implied volatilities, have all been either interpolation or approximated. If the sur-
face is approximated by a spline, the methods can furthermore differ with respect
to the type and/ or representation hereof. The last column indicates whether the
surface has been fitted slice-by-slice (by a function for each maturity), locally (by
functions covering specific grid-points), or globally (by a function covering the
entire grid).

Method Construction Scope

Benko et al. (2007) Approx ∼ quadratic polynomial Local
Fengler (2009) Approx ∼ natural cubic spline Slice-by-slice
Andreasen & Huge (2011) Interpolation ∼ PDE Slice-by-slice
Glaser & Heider (2012) Approx ∼ quadratic polynomial Local
Fengler & Hin (2013) Approx ∼ tensor-product B-spline Global

Table 4: Construction methods for the surfaces.

The descriptions given in this section have for clarity been fitted into a unified
framework consisting of 5 subsections:

B The general idea - a brief summary of the method.

B Details of the method - technical details of the approximation/ interpolation
procedure are described in this part.

B No-arbitrage conditions - the arbitrage conditions applied for the generated
surface are compared to the sufficient conditions given in sec. 2.3.

B Conversion to the Local Volatility surface - the computation of the local
volatility surface are given in terms of the variables generated by the method.

B Tweaking the method including an algorithm - description of how the para-
meters for the given method are adjusted. Please not that tweaking the

15

Presentation of the methods

methods is here a subjective process where smoothness versus loss of in-
formation needs to be balanced. This has been carried out by a combination
eyeballing the goodness of fit to the data and the shape of the output sur-
faces.

In addition to these, a pseudo-code algorithm is provided for each method, de-
scribing the calibration of the local volatility function on a user-defined grid: κ̂×τ̂ .
More details on how this grid is defined in practice are given in section 4.3.1.

16

Paper I

3.1 Benko

3.1.1 The general idea

Benko et al. (2007) propose to estimate the implied volatility surface directly from
market quotes assuming that the surface follows the regression model:

σ
imp
1 (κi, τi) = σ̂

imp
1 (κi, τi) + εi, i = 1, . . . ,N. (11)

where σ
imp
1 (κi, τi) is the observed implied volatilities, εi represents the market

noise and N is the total number of observations.

This model is estimated as a local polynomial regression problem across a range of
user-specified maturities, τ1, . . . , τL, for one strike-level, κ, at a time. This estim-
ation across maturity levels allows Benko et al. to impose the no-arbitrage condi-
tions for the implied risk-neutral density in both directions. In the strike-direction
a non-negativity constraint on the implied risk-neutral density is applied, and in
the maturity-direction a constraint on the total-variance: w1(κ, τ) = σ

imp
1 (κ, τ)

2
τ,

is applied to ensure a strict increase.

3.1.2 Details of the method

The implied volatility surface is, for a given point (κi, τi), near (κ, τ), approximated
using a two-dimensional local polynomial quadratic in κ and linear in τ:

σ̂
imp
1 (κi, τi)

taylor
≈ σ̂

imp
1 (κ, τ) +

∂σ̂
imp
1 (κ, τl)
∂κ

(κi − κ) +
∂σ̂

imp
1 (κ, τ)
∂τ

(τi − τ)

+
1
2!
∂2σ̂

imp
1 (κ, τ)
∂κ2

(κi − κ)2 +
∂σ̂

imp
1 (κ, τl)
∂κ∂τ

(κi − κ) (τi − τ)

= α0,l + α1,l (κi − κ) + α2,l (τi − τ) + α3,l (κi − κ)2

+ α4,l (κi − κ) (τi − τ) . (12)

Let in the following this polynomial be denoted pκ,τ(κi, τi).

This polynomial is then fitted to the observed input data for a given strike-level,
κ, and a whole range of user-specified maturities, τ1, . . . , τL, at a time in order to
apply the cross-maturity no-arbitrage conditions (see sec. 3.1.3). In practice this
is carried out by solving the weighted least squares problem:

min
α

L∑
l=1

N∑
i=1

KH (κ − κi, τl − τi)
(
σ

imp
1 (κi, τi) − pκ,τl(κi, τi;α)

)2
, (13)

17

Presentation of the methods

whereα is a L×5 matrix of estimated coefficients for all the maturities in the grid.

τ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

κ

0.9

0.95

1

1.05

User grid

Input data

Eval. point

hκ

hτ

Figure 2: Grid-points for all maturities in the user-grid are fitted simultaneously based
on a local subset of the observed data points.

The kernel function is given as the product of two Epanechnikov kernels:

KH (κ − κi, τl − τi) =
1
hκ
K

(
κ − κi

hκ

)
1
hτ
K

(
τl − τi

hτ

)
, K(u) =

3
4

(
1 − u2

)
1|u|≤1.

where the parameters: hκ, hτ, determine the locality of the estimation, also termed
the bandwidth. Points outside the area: [κ − hκ; κ + hκ] × [τl − hτ; τl + hτ], will
be disregarded from the estimation, while points inside will be assigned a given
weight according to the kernel. This rectangle of data defined for each point, (κ, τ),
is illustrated in figure 2. The parameters hκ and hτ needs to be chosen carefully,
otherwise the method will tend to either under- or oversmooth the data.

3.1.3 No-arbitrage conditions

The sufficient no-arbitrage conditions on the time scaled implied volatility surface
are given in proposition 2, where it can be noted that the cross-strike conditions
are rather complex to impose in practice. Benko et al. proposes a workaround to
avoid these constraints by switching to the implied risk-neutral density using the

18

Paper I

formula5:

ϕ
imp
1 (κ; τ) =

√
τN′(d1)

 1

κ2τσ
imp
1 (κ, τ)

+ 2
d1

κ
√
τσ

imp
1 (κ, τ)

∂σ
imp
1 (κ, τ)
∂κ

+

d1(d1 − σ
imp
1 (κ, τ)

√
τ)

σ
imp
1 (κ, τ)

 ∂σimp
1 (κ, τ)
∂κ

2

+
∂2σimp(κ, τ)

∂κ2

)
, d1 =

1
2σ

imp
1 (κ, τ)2τ − ln (κ)

σ
imp
1 (κ, τ)

√
τ

.

(14)

The constraints on this surface consist of eqn.’s (9) and (10) where the authors
neglect to consider the latter. The global condition given by eqn. (10) requires
knowledge of the density in the tails, and as this method does not handle extrapol-
ation Benko et al. have to disregard this condition as well. Hence, the no-arbitrage
condition for the strike-direction is given by the non-negativity condition:

ϕ
imp
1 (κ; τ) ≥ 0.

The cross-maturity condition, given in prop. 2 (IV6) for the time scaled implied
volatility, is on the other hand simple to impose, as it only consists of a non-
decreasing constraint. In the paper, this constraint is rephrased in terms of total
variance which must be strictly increasing:

∂σ
imp
1 (κ, τ)2τ

∂τ
> 0 ⇔ 2α0α1τ > 0,

The derivative has in the last equation been rewritten in terms of regression coef-
ficients, details on this are given below in sec. 3.1.4. As the estimation is car-
ried out for a range of maturities, this constraint is extended to also include:
σ

imp
1 (κ, τl)2τl ≤ σ

imp
1 (κ, τl′)2τl′ , for each maturity-pair: τl < τl′ .

The final method is summarized in algorithm 1.

3.1.4 Conversion to the Local Volatility Surface

Recall Dupire’s local volatility function, σ̂L
1(κ, τ), given in terms of the implied

volatility surface in eqn. (7):

σ̂L
1(κ, τ) =

√√√√ ∂ŵ
∂τ

1 − log κ
ŵ

∂ŵ
∂ log κ + 1

4

(
−1

4 −
1
ŵ +

(log κ)2

ŵ2

) (
∂ŵ

∂ log κ

)2
+ 1

2
∂2ŵ

∂(log κ)2

5Eqn. (4) in Benko et al. (2007) adjusted to the normed framework.

19

Presentation of the methods

with ŵ being the approximated total variance: ŵ1(κ, τ) = σ̂
imp
1 (κ, τ)

2
τ. This can be

rewritten using the chain-rule for the derivatives wrt. log κ:

∂w
∂ log κ

∂ log κ
∂κ

=
∂w
∂κ
⇔

∂w
∂ log κ

=
∂w
∂κ

1
∂ log κ
∂κ

=
∂w
∂κ
κ,

∂2w
∂(log κ)2 =

∂∂w
∂κ
κ

∂ log κ
=

∂∂w
∂κ

∂ log κ
κ +

∂w
∂κ

∂κ

∂ log κ

=
∂∂w
∂κ

∂κ
κ2 +

∂w
∂κ
κ =

∂2w
∂κ2 κ

2 +
∂w
∂κ
κ.

Using the relations above gives the local volatility function in terms of the partial
derivatives wrt. τ and κ:

σL
1(κ, τ) =

√√√ ∂ŵ
∂τ

1 − log κ
ŵ

∂ŵ
∂κ
κ + 1

4

(
−1

4 −
1
ŵ +

(log κ)2

ŵ2

) (
∂ŵ
∂κ
κ
)2

+ 1
2

(
∂2ŵ
∂κ2 κ2 + ∂ŵ

∂κ
κ
)

=

√√√ ∂ŵ
∂τ

1 + κ
(

1
2 −

log κ
ŵ

)
∂ŵ
∂κ

+ 1
4κ

2
(
−1

4 −
1
ŵ +

(log κ)2

ŵ2

) (
∂ŵ
∂κ

)2
+ 1

2
∂2ŵ
∂κ2 κ2

(15)

Using the regression coefficients defined in eqn. (12), the derivatives in eqn. (15)
can now be formulated in terms of the output from the optimization procedure:

∂ŵ
∂τ

=
∂(σ̂imp

1 (κ, τ)
2
τ)

∂τ
=
∂σ̂

imp
1 (κ, τ)

2

∂τ
τ + σ̂

imp
1 (κ, τ)

2

= 2σ̂imp
1 (κ, τ)

∂σ̂
imp
1 (κ, τ)
∂τ

τ + σ̂
imp
1 (κ, τ)

2

= 2α̂0α̂2τ + α̂2
0.

∂ŵ
∂κ

=
∂(σ̂imp

1 (κ, τ)
2
τ)

∂κ
=
∂σ̂

imp
1 (κ, τ)

2

∂κ
τ

= 2σ̂imp
1 (κ, τ)

∂σ̂
imp
1 (κ, τ)
∂κ

τ

= 2α̂0α̂1τ.

∂2ŵ
∂κ2 =

∂∂ŵ
∂κ

∂κ
=

∂
(
2σ̂imp

1 (κ, τ)∂σ̂
imp
1 (κ,τ)
∂κ

τ
)

∂κ

= 2

∂σ̂imp
1 (κ, τ)
∂κ

∂σ̂
imp
1 (κ, τ)
∂κ

+ σ̂
imp
1 (κ, τ)

∂2σ̂
imp
1 (κ, τ)
∂κ2

 τ
= 2

(
α̂2

1 + α̂02α̂3

)
τ.

20

Paper I

3.1.5 Tweaking the method

Evaluate surface in specified point (κ̄, τ̄) : The method approximates values for a
user-specified grid of points:

κ̂ × [τ̂1, τ̂L] = κ̂ × τ̂ ⊆ {κi × τi}i=1,...,N

These grid-points are allowed to be non-uniformly spaced in both directions, but
must be contained within the rectangle defined by the original grid. Thus, to obtain
a value for a point (κ̄, τ̄) is must be contained in this user-specified grid given as
input to the optimization method.

B For all methods we wish to obtain estimates of the surfaces for a grid con-
sisting of all observed points, (κi, τi), as well as the user-specified points,
(κ̂, τ̂).

But the optimization problem (13) approximates the surface simultaneously
across all the given maturity levels. Hence, this method presented by Benko
et al. is extremely expensive in the number of user-supplied maturity levels.

Here, we are therefore forced only to fit the surfaces for the observed matur-
ity levels, {τi}i=1,...,N , and afterwards use linear interpolation to obtain values
for the user-specified grid.

B Similar to the method by Glaser & Heider described below in sec. 3.4, the
main tweaking for this method consists of setting parameters: hκ, hτ, de-
termining the locality of the approximation for a given evaluation point.

The examinations in this paper take the values suggested by Benko et al.
(2007) as a starting point:

hκ = 0.05, hτ =

0.2 0 < τ ≤ 1

3
0.3 1

3 < τ ≤
2
3

0.4 2
3 < τ ≤ 1.

hτ Our first aim is to adjust the parameter hτ such that the number of data points
with positive weight, given by the kernel for each grid point across the user-
defined surface, is as evenly distributed as possible. The investigations do
however indicate, that this is not possible using a globally set parameter,
the observed data points are simply too unevenly distributed across the sur-
face. In particular, it can be noted that it does not seem possible to increase
the number of data points involved in approximating the largest maturities.
These are therefore left with only 1

2 −
1
3 of the points involved for the re-

maining surface. An alternative to using globally set parameters, is given
below in section 3.4.5 for the Glaser & Heider (2012) method.

21

Presentation of the methods

We do, however, see that reducing the size of hτ for all maturities by 0.1
improves the fit and the quality of the local volatility surface. This improve-
ment seems to be caused by a change in the weight that the kernel ascribes
each data point, rather than by a change in the number of points involved
in each local approximation. Especially for small forward-moneyness- and
maturity levels, this change has a significant positive effect on the smooth-
ness of the local volatility surface.

The varying levels across the surface seems fitting for our dataset as well,
hence we end up using a parameter hτ with levels:

hτ =

0.1 0 < τ ≤ 1

3
0.2 1

3 < τ ≤
2
3

0.3 2
3 < τ ≤ 1.

hκ The distribution of the observed points across forward-moneyness levels is
clearly bell-shaped with the highest density near at-the-money level. One
could try to differ the parameter value for different forward-moneyness levels,
as for the maturity direction. But as there is no issues regarding smoothness
or fit, it is left as a constant.

Adjusting this parameter does not have the same significant, positive im-
pact on the smoothness of the volatility surface, as were the case for the
maturity-parameter. Trying different levels ranging from 0.04 to 0.07, it is
however evident that a value of hκ = 0.06 results in the smoothest local
volatility surface, while keeping the relative distance to the observations at
a reasonable level, so we choose this level for the empirical comparison.

The quality of the implied volatility surface does not change visibly when adjust-
ing the parameters: hκ, hτ. But one can see that the approximation is rather poor
for values outside the cone, defined by the data observations. Hence, this method
is not suited for even the slightest amount of extrapolation. Later we will observed
that this is also the case for the ’local’ method by Glaser & Heider in section 3.5.5,
while the other methods does not seem to experience this level of difficulty.

22

Paper I

Algorithm 1: Local polynomial smoothing of the implied volatility.
input: τi, i=1,...,N . observed maturity levels.

κi, , i=1,...,N . observed forward-moneyness levels.

σ
imp
1 (κi, τi) . observed implied volatilities.

hκ, hτ . Parameters determining the locality.

Def: κ̂ × [τ̂1, τ̂L]=κ̂ × τ̂ ⊆ {κi × τi}i=1,...,N
. Grid-points for which the local approximation of the implied
volatility surface is derived. Contained in the rectangle
defined by the input grid. Allowed to be non-uniform.

Def: KH (κ − κi, τ − τi) = 1
hκ
K

(
κ−κi
hκ

)
1
hτ
K

(
τ−τi
hτ

)
.

. Bivariate kernel function given by the Epanechnikov kernel:

K(u) = 3
4

(
1 − u2

)
1 {|u| ≤ 1} , and the parameters: hκ, hτ. The kernel

determines the ’locality’ of the approximation.

Def: pκ̂,τ̂l (κi, τi) = α0,l + α1,l(κi − κ̂) + α2,l(τi − τ̂l)
+α3,l(κi − κ̂)2 + α4,l(κi − κ̂)(τi − τ̂l)

. Local polynomial quadratic in κ, linear in τ where:

σ̂
imp
1 (κ̂, τ̂l) = α0,l;

∂σ̂
imp
1 (κ̂,τ̂l)
∂κ

= α1,l;
∂σ̂

imp
1 (κ̂,τ̂l)
∂τ

= α2,l;
∂2σ̂

imp
1 (κ̂,τ̂l)
∂κ2 = 2α3,l;

∂2σ̂
imp
1 (κ̂,τ̂l)
∂κ∂τ

= α4,l.

for κ̂ ∈ κ̂ do
Solve: min

α

∑L
l=1

∑N
i=1KH (κ̂ − κi, τ̂l − τi)

(
σ

imp
1 (κi, τi) − pκ̂,τ̂l (κi, τi)

)2

s.t.
√
τ̂lϕ (d1(l))

{
1

κ̂2α0,l τ̂l
+

2d1(l)
κ̂α0,l

√
τ̂l
α1,l +

d1(l)d2(l)
α0,l

α2
1,l + 2α3,l

}
≥ 0

2τlα0,lα2,l + α2
0,l > 0; α2

0,lτ̂l < α
2
0,l′ τ̂l′ , τ̂l < τ̂

′
l .

. where

d1(l) =

α2
0,lτl
2 −ln κ
α0,l
√
τl
, d2(l) = d1(l)− α0,l

√
τl. Remark, the parameter α ∈ R

L×5

contains the parameters for all maturities in the grid.

for τl ∈ τ do

σ̂
imp
1 (κ̂, τ̂l) = α∗0,l;

∂w
∂τ

= 2α∗0,lα
∗
2,lτ̂l +

(
α∗0,l

)2
;

∂w
∂κ

= 2α∗0,lα
∗
1,lτ̂l;

∂2w
∂κ2 = 2

((
α∗1,l

)2
+ α∗0,l2α

∗
3,l

)
τ̂l;

y = log κ̂; w = σ̂
imp
1 (κ, τl)

2
τ̂l;

σL
1 (κ̂, τl) =

√√√√ ∂w
∂τ

1 + κ̂ + ∂w
∂κ

(
1
2 −

y
w

)
+ 1

2 κ̂
2 ∂2w
∂κ2 −

1
4 κ̂

2
(
∂w
∂κ

)2 (
1
2 + 1

w −
y2

w2

)

23

Presentation of the methods

3.2 Fengler

3.2.1 The general idea

Fengler (2009) assumes implicitly that the call prices observed in the market fol-
lows the regression model:

c1(κi, τi) = ĉ1(κi, τi) + εi i = 1, . . . ,N (16)

where c1(κi, τi) is the normed, observed call prices and εi is the error term rep-
resenting the market noise. Thus, in order to fit the market, Fengler proposes an
approximation method rather than an interpolation method.

Fengler (2009) proposes to approximate this unknown surface of call prices, ĉ1(κi, τi),
by a series of natural cubic splines, one for each maturity-slice. These splines are
fitted to the observed data backwards in time, starting with the largest maturity,
continuing backwards one slice at a time.

The optimization problem is formulated as minimizing a penalized sum of
squares subject to a range of linear no-arbitrage constraints for both the strike- and
maturity direction. Fengler exploits the linearity of these conditions to reformulate
the optimization problem as a quadratic program.

3.2.2 Details of the method

The natural cubic splines used for the approximation are given by:

gτ(x) =
∑M

m=1 1[κm,κm+1)(x)sm,τ(x),
sm,τ(x) = am,τ + bm,τ(x − κm) + cm,τ(x − κm)2 + dm,τ(x − κm)3.

(17)

where κ1, . . . , κM are a given sequence of spline knots.

These splines are for a given maturity, τ, fitted to the observed data by solving a
penalized minimum least squares problem:

min
gτ

M∑
m=1

wm {c1(κm, τ) − gτ(κm)}2 + λ

∫ κM

κ1

{gτ′′(x)}2dx (18)

with weights wm > 0 and smoothing parameter λ > 0. The parameter λ determines
the impact of the penalty term, given by the local variation, and thus the smooth-
ness of the curve.

The optimization problem, (18), is solved with respect to a range of linear no-
arbitrage constraints given in section 3.2.3. These are both cross-strike and cross-
maturity constraints, where the latter relies on an underlying regular (in the sense

24

Paper I

of not being scattered) grid of observations.

The method is therefore initialized by pre-smoothening the scattered input data
on a predefined regular grid: [κ̂1; κ̂M] × [τ̂1; τ̂L], using a two-dimensional non-
parametric smoother. Fengler suggests that the smoothening is carried out in the
implied volatility space and afterwards converted to call prices. These are, along
with the knot sequence: [κ̂1; κ̂M], given as input to the optimization problem (18).

τ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

κ

0.9

0.95

1

1.05

User grid

Input data

Eval. point

Pre-smoothed Input data

Figure 3: Grid-points for all forward-moneyness levels in the user-grid are fitted by a
natural cubic spline to the pre-smoothed call surface.

25

Presentation of the methods

3.2.3 No-arbitrage conditions

The no-arbitrage conditions Fengler applies to the minimization problem, (18),
are given below in terms of the predefined grid [κ̂1; κ̂M] × [τ̂1; τ̂L]:

gτ̂l
′′ ([κ̂2; κ̂M−1]) ≥ 0, (19)

gτ̂l (κ̂2) − gτ̂l (κ̂1)
h1

−
h1

6
gτ̂l
′′(κ̂2) ≥ −1 (20)

−
gτ̂l (κ̂M) − gτ̂l (κ̂M−1)

hM−1
−

hM−1

6
gτ̂l
′′(κ̂M−1) ≥ 0 (21)

gτ̂l (κ̂) ≤ gτ̂l+1 (κ̂) if l < L (22)
gτ̂l (κ̂1) ≤ 1 if l = L (23)
gτ̂l (κ̂1) ≥ 1 − κ̂1 (24)

gτ̂l (κ̂M) ≥ 0. (25)

Comparing these to the sufficient no-arbitrage conditions in prop. 1, one can see
that the conditions evaluated in this framework: (C1), (C2), (C5), are all satisfied
by eqn. (19)-(25):

(C1) The 2nd order derivative of a natural cubic spline is linear and zero at the
end-knots. Thus, it is sufficient to apply the convexity constraint at the
internal knot points, as in condition (19).

(C2) Fengler starts by applying a non-increasing constraint in the strike-direction
given by eqn. (20) and (21). This is only applied to the end segments of the
spline, as the convexity constraint insures a non-decreasing slope.

This monotonicity property reduces the boundary conditions to a few con-
straints on the end-segments: the lower boundary constraint is given as a
combination of eqn. (24) and (25), while the upper boundary is given by
eqn. (23).

(C5) The non-decreasing property for the maturity direction is for all maturities
< τ̂L given directly by eqn. (22).

Note that the complexity of this constraint is significantly reduced compared
to the original paper due to the normed framework applied here.

In the introduction it was briefly mentioned that the linearity of constraints (19)
-(25) makes it possible to reformulate the optimization problem, as a quadratic
program using the value-second derivative representation of the spline. The final
method is listed in algorithms 2 and 3.

26

Paper I

3.2.4 Conversion to the Local Volatility Surface

Dupire’s local volatility function given in eqn. (6), σ̂L
1(κ, τ), is for this method

given as a hybrid estimate, consisting of a central finite difference estimate repla-
cing the derivative wrt. maturity:

∂c1 (κ, τl)
∂τ

≈
c1 (κ, τl+1) − c1 (κ, τl−1)

τl+1 − τl−1
. (26)

The second order derivative wrt. forward-moneyness are given directly by the
output of the quadratic program due to the value-second derivative representation
of the spline, see algorithm 3.

Hence, the final estimate of the local volatility function is given by:

σ̂L
1(κ, τl) =

√√√
2 ĉ1(κ,τl+1)−ĉ1(κ,τl−1)

τl+1−τl−1

κ2 ∂2ĉ1(κ,τl)
∂κ2

.

Algorithm 2: Part I: Fengler (2009) - approximation of the call surface.
input: τi, i=1,...,N . observed maturity levels.

κi, , i=1,...,N . observed forward-moneyness levels.

σ
imp
1 (κi, τi) . observed implied volatilities.

λ . smoothening parameter.

Def: [κ̂1; κ̂M] × [τ̂1; τ̂L] = κ̂ × τ̂ ⊆ {κi × τi}i=1,...,N
. Regular (non-scattered) grid for which the approximation of the
call surface is derived. Contained in the rectangle defined by
the input grid. Allowed to be non-uniform.

σ̃
imp
1 (κ̂, τ̂) = Interpolate

({
σ

imp
1 (κi, τi)

}
i=1,...,N

)
.

. Apply two-dimensional non-parametric smoother to obtain
pre-estimate of the implied volatility surface.

c̃1 (κ̂, τ̂) = BS_Call
(
1, κ̂, τ̂ , σ̃imp

1 (κ̂, τ̂)
)

. Convert pre-smoothed implied volatility surface to call surface.

3.2.5 Tweaking the method

Evaluate surface in specified point (κ̄, τ̄) : The method pre-smoothes the input
data on a user-specified grid:

κ̂ × [τ̂1, τ̂L] = κ̂ × τ̂ ⊆ {κi × τi}i=1,...,N .

27

Presentation of the methods

These grid-points are allowed to be non-uniformly spaced in both directions, but
must form a regular - non scattered - grid and be contained within the rectangle
defined by the observed data points.

These pre-smoothed values are then used to fit a natural cubic spline for each
maturity level, τl. Thus, it should be possible to evaluate the surface for arbitrary
forward-moneyness levels as long as the corresponding maturity is contained in
the user-defined grid above. But this evaluations is not described in Fengler (2009)
and the reader is therefore referred to Green & Silverman (1993) for details on
spline evaluation when using the value-second derivative representation

B For all methods we wish to obtain estimates of the surfaces for a grid con-
sisting of all observed points, (κi, τi), as well as the user-specified points,
(κ̂, τ̂).

As mentioned in the paragraph above, this can in theory be achieved by
pre-smoothening the data on a regular grid consisting of a reasonable num-
ber of forward-moneyness levels, and afterwards evaluate the splines for a
much denser grid of forward-moneyness levels. This approach would in
theory save us some computational time, although this gain could in prac-
tice be canceled out by an increase in the computational effort required for
the optimization procedure.

This does however not seem to be the approach used by Fengler (2009), so
here we will be content with obtaining values for the combined grid (con-
sisting of both the observed- and the user-defined grid-points) by including
all grid-points in the user-specified grid, used in the pre-smoothening pro-
cedure and throughout the method.

B The pre-smoother used in these calculation is the thin-plate-spline, which is
one of the methods suggested in the article.

B This method distinguishes itself by only having one tweak-able parameter
given by the smoothening parameter, λ, determining the weight of the rough-
ness penalty, given in terms of the second order derivative. The weight-
values, wi, could in theory also be altered, but this is rarely seen in the
literature and this is therefore ignored here.

Fengler finds that a value of λ = 1e − 7 is suitable for the DAX dataset he
uses for the empirical demonstration. Here, we have tested different values:
λ = {1e−5, 1e−7, 1e−9, 1e−11, 1e−13}, on a subpart of our dataset. From
these samples, it is evident that a smoothing parameter < 1e − 9 smoothes
the data too much. This can be seen on the implied volatility surface for
the lowest maturity levels, as the surface here behaves irregularly, deviating

28

Paper I

from the observed data points for large and small forward-moneyness levels.
For values ≥ 1e−9 the implied volatility surface fits the observed data points
nicely for all maturity levels.

Further looking at the local volatility surface, it can be seen that as λ in-
creases, the number of bumps and folds in the surface increases as well. For
λ > 1e − 9 this does not look like additional information being captured,
but rather as noise. Hence, for the calculations used in this paper we have
chosen the smoothing parameter λ = 1e − 9.

29

Presentation of the methods

Algorithm 3: Part II: Fengler (2009) - approximation of the call surface.
Def: gτ̂l =

(
gτ̂l (κ̂1), . . . , gτ̂l (κ̂M)

)ᵀ γτ̂l =
(
gτ̂l
′′(κ̂2), . . . , gτ̂l

′′(κ̂M−1)
)ᵀ

. The value-second derivative representation of the natural cubic
spline, gτ̂l (·), approximating the call surface for a given maturity
τ̂l ∈ τ̂ .

Set:

Q =

1
h1

0 0 0 0(
− 1

h1
− 1

h2

)
1
h2

0 0 0

1
h2

(
− 1

h2
− 1

h3

) . . . 0 0

0 1
h3

. . .
. . . 0

... 0
. . .

. . . 0

0 0 0
. . . 1

hM−2

0 0 0 0
(
− 1

hM−2
− 1

hM−1

)
0 0 0 0 1

hM−1

,

R =

1
3 (h1 + h2) 1

6 h2 0 0 0
1
6 h2

1
3 (h2 + h3) 1

6 h3 0 0

0
. . .

. . .
. . . 0

0 0 1
6 hM−3

1
3 (hM−3 + hM−2) 1

6 hM−2

0 0 0 1
6 hM−2

1
3 (hM−2 + hM−1)

,

A = (Q,−Rᵀ) , WM = diag (w1, . . . ,wM) , B =

(
WM 0

0 λR

)
,

. where hm = κ̂m+1 − κ̂m and wm are strictly positive
weights.

for l = L, . . . , 1 do

Set: x =

(
gᵀτ̂l

γᵀτ̂l

)
, y = (w1c̃1(κ̂1, τ̂l), . . . ,wM c̃1(κ̂M, τ̂l), 0, . . . , 0)ᵀ.

Solve
min

x
−yᵀx + 1

2xᵀBx
s.t. Aᵀx = 0, (19) − (25).

. the first condition ensures that the optimal
solution is a natural cubic spline. For the other
conditions see sec. 3.2.3.

Set: ĉ1(κ̂, τ̂l) = g∗τ̂l

for l = 2, . . . , L − 1 do

Set: σ̂L
1(κ̂, τ̂l) =

√
2 ĉ1(κ̂,τ̂l+1)−ĉ1(κ̂,τ̂l−1)

τ̂l+1−τ̂l−1

κ̂2 ∂
2 ĉ1(κ̂,τ̂l)
∂κ2

30

Paper I

3.3 AndreasenHuge

3.3.1 The general idea

Unlike the other methods examined in this paper, Andreasen & Huge (2011) does
not take a regression model, and the corresponding assumption of the observed
market prices being inflicted with noise, as a starting point. Instead the authors
have derived a method which focuses on matching the observed data points, and
which is arbitrage free, not only in the limit, as the step-size of the grid tends to
zero, but for a grid of arbitrary step-size.

Thus, the method presented by Andreasen & Huge mainly differs from the others
by interpolating the observed prices, rather than approximating them. This is
done using a 1-step implicit finite difference approximation of Dupire’s forward
PDE, using a pre-fitted, piecewise linear local volatility function for each observed
maturity level.

3.3.2 Details of the method

The method relies on the forward pricing PDE, derived by Dupire (1994), for
calculation of the interpolated call surface. This is a boundary value problem
which for the normed framework is given by:

−
∂c1(κ, τ)
∂τ

+
1
2

(
σL

1(κ, τ)
)2
κ2∂

2c1(κ, τ)
∂κ2 = 0

c1(κ, 0) = (1 − κ)+

(27)

where the still unknown local volatility function, σL
1(κ, τ), is replaced by proxy

functions: ϑ j(κ), for each maturity level in the observed data set:{
κi j, τ j

}
i j=1,...,I j, j=1,...,J.

Note that the notation used for the observed data points in this method, differs
from the notation used elsewhere in this paper.

The proxy volatility functions are formed as piecewise constant functions for a
grid of user-defined equidistant forward-moneyness levels κ̂:

ϑ j(κ̂) =

a1 κ̂ ≤ b1

ai j bi j−1 < κ̂ ≤ bi j i j = 2, . . . I j − 1
aI j bI j−1 < κ̂

31

Presentation of the methods

τ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

κ

0.9

0.95

1

1.05

User grid

Input data

Eval. point

Interpolated input data

Figure 4: A subset of the call surface between maturity τ j−1 and τ j is fitted by implicit
PDE interpolation and the calibrated volatility function ϑ j(κ).

where the bi j’s are given as the mid-points between the observed strike levels for
the given maturity:

bi j =
κi j+1 − κi j

2
i j = 1, . . . , I j − 1.

The volatility proxy’s, ϑ j(·), are calibrated to the observed call prices for one
observed maturity at a time - starting with the smallest, τ0, working its way up to
τJ - as the solution to the least squares minimization problem:

min
ϑ j(κ̂))

I j∑
i j=1

(
c1(κi j, τ j) − ĉ1(κi j, τ j;ϑ j(κ̂))

wi j

)2

,wi j =
∂c1(κi j, τ j)

∂σ
imp
1

(28)

where the interpolated call values, ĉ1(κi j, τ j;ϑ j(κ̂)), are given as the solution to the
implicit finite difference approximation of the forward PDE given in eqn. (27):

[
1 −

1
2

∆τ jϑ j(κ̂)2(κ̂)2δκκ

]
ĉ1(κ̂, τ j) = ĉ1(κ̂, τ j−1)

ĉ1(κ̂, 0) = (1 − κ̂)+

(29)

32

Paper I

0.00 0.05 0.10 0.15 0.20 0.25

4
0

0
0

3
5

0
0

3
0

0
0

2
5

0
0

2
0

0
0

1
5

0
0

Maturity

S
tr

ik
e

a31

a32

a33

a21

a22

a23

a24

a25

a11

a12

a13

Figure 5: A set of piecewise constant volatility proxy’s, one for each of the three
sub-periods defined by the observed maturity levels.

which is evaluated in κi j using linear interpolation. Here, ∆τ j = τ j+1 − τ j and
δκκ f (κ) denotes the central finite difference approximation of the second order
derivative:

δκκ f (κ) =
f (κ + ∆κ) − 2 f (κ) + f (κ + ∆κ)

∆2
κ

.

The final step of the method consists of calculating the call prices for maturities
in between the observed levels, τ j, by solving an implicit finite-difference scheme
similar to the one in eqn. (29):[

1 −
1
2

(
τ̂ − τ j

)
ϑ j(κ̂)2(κ̂)2δκκ

]
ĉ1(κ̂, τ̂) = ĉ1(κ̂, τ j), τ̂ ∈]τ j−1, τ j[(30)

The complete interpolation procedure is given in algorithm 4 and 5, where the
implicit finite difference schemes, (29) and (30), are expressed using a tri-diagonal
matrix with absorbing boundary conditions. This representation of the problem
reduces the computational cost significantly.

3.3.3 No-arbitrage conditions

This method is quite unique in terms of the no-arbitrage conditions. The optimiz-
ation problems for all other methods assessed in this paper are subject to a number

33

Presentation of the methods

of no-arbitrage constraints. But the optimization problem in Andreasen & Huge’s
method, (28), are not subject to any constraints, as the no-arbitrage conditions are
built into the calibration procedure itself.

Andreasen & Huge prove that the surface of interpolated call prices, produced
by the respective implicit finite difference steps, are arbitrage free by showing
that they are convex in forward-moneyness and non-decreasing in maturity. This
arbitrage-free’ness stems from the structure of the tri-diagonal matrix with ab-
sorbing boundaries representing the implicit finite difference approximation.

An exhaustive documentation of this proof can be found in Rasmussen (2012)
from which it is clear, that these conditions are fullfilled for a grid of arbitrary
step-size. In terms of arbitrage, this would in theory allow for a stable result for a
much coarser grid, which reduces the computational cost of the calibration.

Comparing the arbitrage conditions considered in this paper with the conditions
in proposition 1, it becomes evident that the authors are omitting to explicitly
account for the boundary conditions given in (C2).

3.3.4 Conversion to the Local Volatility Surface

Dupire’s local volatility function, σ̂L
1(κ, τ), given in eqn. (6) can for this function

only be determined by continuing the use of finite difference approximations.

The first order derivative wrt. maturity is replaced by the central approximation
given in eqn. (26) as in the local volatility function associated with Fengler’s
method, described in section 3.2.4. The second order derivative wrt. forward-
moneyness is likewise replaced with a central finite difference approximation:

∂2c1 (κ, τ)
∂κ2 ≈

c1 (κm+1, τ) − 2c1 (κm, τ) + c1 (κm−1, τ)
(κm − κm−1)(κm+1 − κm)

(31)

Hence, the final estimate of the local volatility function is given by:

σ̂L
1(κm, τl) =

√√√
2 ĉ1(κm,τl+1)−ĉ1(κm,τl−1)

τl+1−τl−1

κ2
m

ĉ1(κm+1,τl)−2ĉ1(κm,τl)+ĉ1(κm−1,τl)
(κm−κm−1)(κm+1−κm)

.

3.3.5 Tweaking the method

Evaluate surface in specified point (κ̄, τ̄) : The method approximates values for a
user-specified grid in forward-moneyness and the observed maturity levels:

κ̂ × τ ⊇ {κi × τi}i=1,...,N

34

Paper I

Algorithm 4: Part I - Andreasen & Huge (2011) - interpolation of the call
surface.

input: τ j, j=1,...,J . observed time to maturities,
κi j, i j=1,...,I j . observed forward-moneyness,
c1(κi j, τ j) . observed European forward call prices,

σ
imp
1 (κi j, τ j) . implied volatilities,

ν(κi j, τ j): . vegas.

Def: [κ̂1; κ̂M] × [τ̂1; τ̂L] = κ̂ × τ̂ ⊇ {κi × τi}i=1,...,N
. Regular grid for which the approximation of the call surface is
derived. Uniform in forward-moneyness with an additional margin
compared to the interval defined by the observed levels.
Maturity levels are allowed to be non-uniform, but must as a
minimum include all observed levels: {τ j}

J
j=0.

Def: ϑ j(κ̂) :=

a1 κ̂ ≤ b1
ai j bi j−1 < κ̂ ≤ bi j, i j=2,...I j−1

aI j bI j−1 < κ̂

. Piecewise constant volatility Proxy defined for each τ j where

bi j = κi j +
κi j+1−κi j

2 , i j=1,...,I j−1 are mid-points between the observed strike
levels for the given maturity.

Set: A j,l =

1 0 0 · · · · · · 0

−z j
2 1 + 2z j

2 −z j
2 0 · · ·

...

0 −z j
3 1 + 2z j

3 −z j
3

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . 0 −z j
M−1 1 + 2z j

M−1 −z j
M−1

0 · · · · · · 0 0 1

. with coefficients are given by: z j

m = 1
2

∆τ j,l

∆2
κ̂

ϑ j(κ̂m)2κ̂2
m, ∆κ̂ = κ̂2 − κ̂1,

∆τ j,l = τl − τ j.

After calibrating the local volatility proxys the values for a given maturity level,
(κ̂, τ̄), are determined by solving the 1-step implicit finite difference step given
in eqn.(30). The forward-moneyness grid is equidistant, hence one is forced to
interpolate in this dimension to obtain the value for a user-specified grid-point,
(κ̄, τ̄).

B This interpolation difficulty for the forward-moneyness grid is eliminated
here, as the user-defined grid is equidistant and can therefore be implemen-
ted as a subpart of the grid used for the calibration procedure.

35

Presentation of the methods

Algorithm 5: Part II - Andreasen & Huge (2011) - interpolation of the call
surface.

Set: ĉ1(κ̂, 0;ϑ j) = max (1 − κ̂, 0)
. Initialize rectangular grid of approximated call prices.

for j = 1 to J do

min
ϑ j(κ))

I j∑
i j=1

(
c1(κi j,τ j)−ĉ1(κi j,τ j;ϑ j(κ̂))

wi j

)2
, wi j =

∂c1(κi j,τ j)
∂σimp

. Calibrate volatility proxys ϑ j(·) using a nonlinear least
squares optimization procedure with initial guess: σ

imp
1 (·, j).

The call price estimate, ĉ1(κ, τ j), is given as the solution to
a 1-step implicit finite difference solver:
A j−1, j · ĉ1(κ̂, τ j) = ĉ1(κ̂, τ j−1), with initial condition
ĉ1(κ̂, 0) = (1 − κ̂)+.

for τ̂l ∈ (τ j−1, τ j] do
Set: ĉ1(κ̂, τ̂l;ϑ j) :=

implicit_FD
(
A j−1,l · ĉ1(κ̂, τl) = ĉ1(κ̂, τ j−1)

)
. Fill the rectangular sub-grid defined by κ̂ and all
τ̂l ∈ (τ j−1, τ j] with values interpolated using a 1-step
implicit finite difference method.

for m = 2, . . . ,M − 1, l = 2, . . . , L − 1 do

Set: σ̂L
1 (κm, τl) =

√
2 ĉ1(κm ,τl+1)−ĉ1(κm ,τl−1)

τl+1−τl−1

κ2
m

ĉ1(κm+1 ,τl)−2ĉ1(κm ,τl)+ĉ1(κm−1 ,τl)
(κm−κm−1)(κm+1−κm)

.

Here we let the calibration grid in forward-moneyness be given by the user-
defined grid with additional points uniformly placed in each grid-gap, and
with extra padding at the ends, see discussion of the padding under the next
bullet.

The number of additional data points needed for each gap depends on the
construction of the user-grid and the input data available. Here, the method
has been run with: {0, 1, 2, 3, 5} additional points in each gap. We found that
the best fit in our implementation was obtained using 2 additional points
between each pair of user-defined. Looking at the the local volatility sur-
face, it can be seen that it fluctuates a lot and sudden high values can be
observed. This behavior is probably due to the finite difference evaluation
which do not seem stable for the call surfaces produced by this method.
Unfortunately, these extreme fluctuations do not seem to improve with the
number of additional points added.

B The padding added to the calibration grid in the forward-moneyness dimen-

36

Paper I

sion, is necessary due to the boundary conditions involved when solving a
finite difference method. If the padding is too sparse, this will result in a
corrupted surface near the edges. If there on the contrary is too much pad-
ding, this will unnecessarily increase the computational time. Here, we have
tried to add 25%, 50% and 75% of the distance from the smallest forward-
moneyness level observed to the highest. Looking at the local volatility
surface, it is evident that 25% is not enough as erroneous variations can be
seen for small values of the forward-moneyness. A padding of additional
50% seems sufficient, this could perhaps even have been reduced a bit, but
in this framework a reasonable fit for all dates in the dataset is more import-
ant.

B Finally, it can be mentioned that the algorithm used for the optimization
problem, given in eqn. (28), is implemented using the Levenberg-Marquardt
algorithm as specified in (Rasmussen (2012)).

37

Presentation of the methods

3.4 GlaserHeider

3.4.1 The general idea

Glaser & Heider (2012) propose a local calibration method similar to that by
Benko et al. (2007), but for estimation of the call surface instead of the implied
volatility surface. The regression model for the call quotes observed in the market
are given by:

c1(κi, τi) = ĉ1(κi, τi) + εi i = 1, . . . ,N (32)

where the noise term, εi, represents the input data risk.

This is estimated using the moving least-squares method for one grid-point in the
surface, (κ, τ), at a time. The method is local in the sense that a weight function
evaluates which input data points to include in the approximation for a given point
in the surface. This method is in the statistical literature known as local (polyno-
mial) regression, i.e. the same method used by Benko et al. in sec. 3.1. Working
directly with the call surface implies linear no-arbitrage constraints which, along
with the structure of the problem, allows Glaser & Heider to rephrase the optim-
ization problem to linear least squares form.

3.4.2 Details of the method

The moving least squares method is, as mentioned above, equivalent to the local
polynomial regression method used by Benko et al. (2007). Thus, in order to keep
things consistent, the framework for this method is described using the notation
from sec. 3.1.

The call surface is for a given point (κi, τi) near (κ, τ) approximated using a two-
dimensional local polynomial quadratic in κ and linear in τ:

ĉ1(κi, τi)
taylor
≈ ĉ1(κ, τ) +

∂ĉ1(κ, τ)
∂κ

(κi − κ) +
∂ĉ1(κ, τ)
∂τ

(τi − τ)

+
1
2!
∂2ĉ1(κ, τ)
∂κ2

(κi − κ)2

= α0
κ,τ + α1

κ,τ (κi − κ) + α2
κ,τ (τi − τ) +

α3
κ,τ

2
(κi − κ)2 . (33)

Let in the following this polynomial be denoted pκ,τ(κi, τi).

38

Paper I

The polynomial representing the call surface is fitted for one grid-point, (κ, τ), by
minimizing the weighted least-squares error:

min
α

1
2

∑
i

(
pκ,τ(κi, τi) − c1(κi, τi)

)2
Φ1(κi − κ, τi − τ) (34)

where α ∈ R4 is the vector of polynomial coefficients.

τ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

κ

0.9

0.95

1

1.05

User grid

Input data

Eval. point

χ1

χ2

Figure 6: Each grid-point is fitted individually based on a local subset of the observed
data points.

The kernel function consists in this setup of two parts. The first part is the index
set, I(·), determining which observations are influencing the estimation near (κ, τ)
in eqn. (34). Here, data points lying within an ellipse with radius’: χ1, χ2, are
included in the approximation:

I(κ, τ) =

i ∈ {1, . . . ,N}

∣∣∣∣∣∣∣
(

(κi − κ)
χ1(κ, τ)2

)2

+

(
(τi − τ)
χ2(κ, τ)

)2

< 1

 . (35)

In figure 7 is given an illustration of this ellipse of points. The second part is
the weight function: Φ1, defined for all points in the index set, I(·), given by
exponential weighing:

Φ1(κl − κ, τl − τ) = exp
− ((κl − κ)

χ1(κ, τ)

)2

+

(
(τl − τ)
χ2(κ, τ)

)2 for l ∈ I(κ, τ).

39

Presentation of the methods

The distance in strike-direction, χ1, and distance in the maturity-direction, χ2,
should according to Glaser & Heider (2012) be determined for each grid point,
(κ, τ), such that the index set in eqn. (35) contains data points for 3 maturity levels,
each with 10 strike levels. This can be a challenge in practice if the data is un-
evenly distributed, cf. discussion in sec. 3.4.5.

3.4.3 No-arbitrage conditions

The no-arbitrage conditions imposed on the call surface are given below in an
adjusted version fitting the normed framework used in this paper.

I : ∂c1(κ,τ)
∂κ
≤ 0; II : ∂2c1(κ,τ)

∂κ2 ≥ 0;
III : ∂c1(κ,τ)

∂τ
≥ 0; IV : c1(κ, τ) ≥ 0;

Comparing these to the sufficient no-arbitrage conditions for the normed call sur-
face in prop. 1, it becomes evident that condition (III) is too weak while (I) is
redundant.
Condition I-IV are added to the optimization problem in eqn. (34) as a set of linear
constraints6:

Bακ,τ =

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

ακ,τ ≤ 0. (36)

(37)

where ακ,τ is the vector of coefficients given in eqn. (33).

The actual optimization problem given in eqn. (34), can also be rewritten to
matrix-form and can thus be rephrased as a linear least squares problem. The
final method is summarized in algorithms 6 and 7.

3.4.4 Conversion to the Local Volatility Surface

Dupire’s local volatility function given in eqn. (6), σ̂L
1(κ, τ), can for this method

be obtained directly from the estimated coefficients, ακ,τ, using Dupire’s formula:

σ̂L
1(κ, τ) =

√√
2∂ĉ1(κ,τ)

∂τ

κ2 ∂2ĉ1(κ,τ)
∂κ2

=

√
2α2

κ,τ

κ2α3
κ,τ

.

6Remark, the rows have been rearranged compared to (Glaser & Heider, 2012, eqn. 15).

40

Paper I

Algorithm 6: Part I - Glaser & Heider (2012) - approximation of the call
surface.

input: τi, i=1,...,N . observed maturity levels.
κi, , i=1,...,N . observed forward-moneyness levels.
c1(κi, τi) . observed European forward call prices

Def: κ̂ × τ̂ ⊆ {κi × τi}i=1,...,N
. Grid-points for which the local approximation of the call surface
is derived. Contained in the rectangle defined by the input
grid. Allowed to be non-uniform.

Def: pκ̂,τ̂(κi, τi) = α0
κ̂,τ̂ + α1

κ̂,τ̂(κi − κ̂) + α2
κ̂,τ̂(τi − τ̂) +

α3
κ̂,τ̂

2 (κi − κ̂)2

. Local polynomial quadratic in κ̂, linear in τ̂ where:

ĉ1(κ̂, τ̂) = α0
κ̂,τ̂;

∂ĉ1(κ̂,τ̂
∂κ

= α1
κ̂,τ̂;

∂ĉ1(κ̂,τ̂
∂τ

= α2
κ̂,τ̂;

∂2 ĉ1(κ̂,τ̂
∂κ2 = α3

κ̂,τ̂;

Set B =

0 1 0 0
0 0 0 −1
0 0 −1 0
−1 0 0 0

 .
. Matrix-form of the linear no-arbitrage constraints on the
coefficients vector ακ̂,τ̂.

3.4.5 Tweaking the method

Evaluate surface in specified point (κ̄, τ̄) : The method approximates values for
one user-specified grid-point:

(κ̂, τ̂) ⊆ {κi × τi}i=1,...,N

at a time. This grid-point must be contained within the rectangle defined by the
original grid.

Thus, to obtain a value for a given point: (κ̄, τ̄), the calibration procedure must be
applied for this point.

B Applying this method for a user-specified grid is straight forward. As can
be seen above the method simply has to be repeated for each grid point.

B The optimization procedure on the other hand, does cause a bit of trouble.
Matlab’s function for constrained least squares problems, lsqlin, does
not obtain sufficient accuracy for this problem. The problem given in al-

41

Presentation of the methods

Algorithm 7: Part II - Glaser & Heider (2012) - approximation of the call
surface.

for κ̂ ∈ κ̂, τ̂ ∈ τ̂ do

Set χ1(κ̂, τ̂), χ2(κ̂, τ̂)
. Parameters determining the ’locality’ of the approximation.

for i = 1, . . . ,N do
I(κ̂, τ̂) = I(κ̂, τ̂) ∪

{
i
∣∣∣∣ (κi−κ̂)2

χ2
1

+
(τi−τ̂)2

χ2
2

< 1
}

. Determine for each data point whether it lies within the
ellipse surrounding (κ̂, τ̂) and thus belongs to the index set.

Set A =

1 ∆1

κ̂ ∆1
τ̂

1
2

(
∆1
κ̂

)2

...
...

...
...

1 ∆
|I(κ̂,τ̂)|
κ̂ ∆

|I(κ̂,τ̂)|
τ̂

1
2

(
∆
|I(κ̂,τ̂)|
κ̂

)2

 , b =

c1(κ1, τ1)

...
c1

(
κ|I(κ̂,τ̂)|, τ|I(κ̂,τ̂)|

)
 ,

. where ∆l
κ̂ = κl − κ̂, ∆l

τ̂ = τl − τ̂ for l ∈ I(κ̂, τ̂).

Φ = diag
(
exp

(
−

[(
(κl−κ̂)
χ1(κ̂,τ̂)

)2
+

(
(τl−τ̂)
χ2(κ̂,τ̂)

)2
])∣∣∣∣∣ l ∈ I(κ̂, τ̂)

)
.

Solve:
α̂κ̂,τ̂ = arg min

ακ̂,τ̂

1
2

∥∥∥Φ1/2 (
Aακ̂,τ̂ − b

)∥∥∥2
2

s.t. Bακ̂,τ̂ ≤ 0.

Set ĉ1(κ̂, τ̂) = α̂0
κ̂,τ̂; σ̂L

1 (κ̂, τ̂) =

√
2α̂2

κ̂,τ̂

κ̂2α̂3
κ̂,τ̂

;

. Estimated value of the call- and local volatility surface in
point (κ̂, τ̂).

42

Paper I

gorithm 6 is therefore translated to a quadratic programming problem:

min
ακ̂,τ̂

1
2
αᵀκ̂,τ̂ (AᵀΦA)ακ̂,τ̂ − (AᵀΦb)ᵀακ̂,τ̂,

similar to that used by Fengler & Hin (2013), which can be be solved using
Matlab function quadprog. Details are given in appendix A.1.

B The major challenge for this method is to find an automatic procedure for
choosing parameters: χ1, χ2, such that each ellipse roughly contains the
same amount of observed data points.

Here, an iterative-style algorithm has been used, which sets χ2 according to
the requested number of maturity levels and afterwards searches for a value
of χ1, such that the ellipse contains a number of data points within given
limits, to the extend possible.

The maturity levels is chosen as the observed maturity levels closest to the
user-specified grid-points. One could have specified that the levels should
lie on each side of the user-defined level. However, this does not improve the
fit, rather it can for some grid-points worsen it. We have observed that the
surface can be severely disrupted in certain areas if this strategy is conduc-
ted, as the algorithm is then forced to include information from data-points
far away from the point of evaluation.

χ2 As mentioned above, we start by setting χ2 such that the required number
of maturity levels closest to the evaluation point is contained in the ellipse.

Now, we examine the surfaces generated using ellipses with a target of
30 − 32 grid-points distributed across {2, 3, 4} maturity levels, respectively.
Glaser & Heider (2012, remark 1) states that there should at least be 2 ma-
turity levels in the ellipse in order for the optimization problem to have a
unique solution, and more than 4 levels can for some datasets approximate
the total number of observed maturity levels.

These surfaces suggest that the fewer maturity levels, the smoother is the
local volatility surface. This result is quite intuitive as more levels is tan-
tamount to additional information needed to be captured by the local poly-
nomial which is not that flexible in the maturity direction. Thus subsets of
the input data containing more than 3 maturity levels are disregarded.

This examination unveils further that by using only 2 maturity levels the
observed data can be distributed in such a way, that the band of points has
to be quite wide. For the example here the limits had to be set to: 25 − 45,

43

Presentation of the methods

while the target number of points could easily be fit into a band of: 25− 35,
when using 3 maturity levels.

Hence, total number of data points in the ellipse is here spread across 3
maturity levels, as suggested by Glaser & Heider (2012).

χ1 This parameter determines the width of the ellipse in the forward-moneyness
dimension, and is set by the iterative algorithm such that the total number
of points is contained within this band.

Our examinations show, contrary to the number of maturity levels, that an
increase in the number of forward-moneyness levels increases the smooth-
ness of the surface. The only problem is now to determine when the surface
is smooth enough without becoming too smooth.

We have examined surfaces for 3 maturity levels and a target of: {10, 15, 25, 25},
forward-moneyness levels for each, with the total number of points within
band: 3 · #levels± 5. As one might expect, there is a clear trade-off between
smoothness and the fit to the input values.

Here, we choose a target of 15 levels for each maturity, as this generates
surfaces with a reasonable smoothness while keeping a good fit to the input
values.

Taking a closer look at the implied volatility surfaces generated by this methods,
one can see that the surfaces are close to zero in the corner for large forward-
moneyness levels and small maturity levels. Generally there are no observations
for this area, thus the method will have to extrapolate here. It is not possible to
tweak the parameters in such a way that this area will get a better fit. Hence, this
seem to be one of the biggest weaknesses of the method.

44

Paper I

3.5 FenglerHin

3.5.1 The general idea

Fengler & Hin (2013) assume, like Fengler (2009) and Glaser & Heider (2012),
that the call prices observed in the market follows the regression model:

c1(κi, τi) = ĉ1(κi, τi) + εi i = 1, . . . ,N (38)

where c1(κi, τi) is the normed, observed call prices and εi is the error term repres-
enting the market noise.

The method presented here extends the work from Fengler’s previous article, Fen-
gler (2009), by not only fitting the unknown surface of call prices, ĉ1(κ, τ), with
a 1-dimensional spline for each maturity level, but instead fitting a 2-dimensional
spline to the entire surface. This 2-dimensional spline is constructed as the tensor
product of two univariate polynomial splines, both represented as a linear com-
bination of B-splines, defined by a set of coefficients and a sequence of knots.

This particular type of parameterization allows for a fast evaluation of the surface
at a given point using the same order of operations as for the univariate spline.
Thus, using tensor-product B-splines to represent the surface makes it practic-
ally possible to perform a global approximation with the no-arbitrage constraints
translated to constraints on the coefficients.

3.5.2 Details of the method

Let the two-dimensional polynomial spline approximating the call surface be of
degree: p1, p2, given for a regular grid of knots: ξ × ν. The knot sequence for the
forward-moneyness-direction is given by:

κ1 = ξ0 = · · · = ξp1 < ξp1+1 < · · · < ξq1 = ξq1+1 = · · · = ξq1+p1+1 = κN , (39)

where the boundary knots have multiplicity p1 +1. The sequence for the maturity-
direction are similarly given by:

τ1 = ν0 = · · · = νp2 < νp2+1 < · · · < νq2 = νq2+1 = · · · = νq2+p2+1 = τN . (40)

where the boundary knots have multiplicity p2 + 1.

As mentioned in the introduction, the spline surface is here constructed as the
tensor product of two polynomial splines given by their B-spline representation.
Hence, the approximation for the call surface is given as a linear combination of
B-splines:

45

Presentation of the methods

s(κ, τ) =

q1∑
j1=0

q2∑
j2=0

θ j1, j2 B j1,p1(κ)B j2,p2(τ) (41)

where θ j1, j2 ∈ R is the coefficients.

The B-splines are defined as in the univariate case, thus for a general non-decreasing
knot sequence: t, they are determined using the recursive formula:

B j,p(x) =
x − t j

t j+p − t j
B j,p−1(x) +

t j+1+p − x
t j+1+p − t j+1

B j+1,p−1(x),

B j,0(x) =

{
1 t j ≤ x < t j+1,
0 otherwise.

(42)

where the convention: 0
0 = 0 is applied in case of multiple knots: t j = t j+r.

The approximation for the call surface is fitted to the observed call prices using a
penalized least squares estimator:

min
θ

1
N

N∑
i=1

(c1(κi, τi) − s(κi, τi))2 + λN |θ|
2 (43)

where | · | is the Euclidian vector norm and θ is the (q1 + 1)(q2 + 1) × 1 vector of
B-spline coefficients:

θ> =
{
θ j1, j2

}q1,q2

j1, j2=0

=
(
θ0,0, θ0,1, . . . , θ0,q2 , θ1,0, θ1,1, . . . , θ1,q2 , θ2,0, . . . , θq1,q2

)
.

Before the optimization is executed, the knot sequences in eqn.’s (39) and (40)
must be set. Fengler & Hin notes that the distribution of the knots in the maturity-
direction seems to be of less significance, and is therefore statically defined.

The distribution of the knots across the forward-moneyness range, [κ1; κN],
has on the other hand significant influence on the quality of the final estimate, see
Fengler & Hin (2013) for further details on this topic. Hence, an initial search for
an optimal knot placement is necessary in the forward-moneyness direction. This
search consists of two steps:

(1) Adding additional knot to the initial sequence κ1 = ξ0 = ξ1 < ξ2 = ξ3 = κN

that minimizes the unconstrained Akaike Information Criterion for a linear
(p1 = p2 = 1) spline surface.

46

Paper I

τ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

κ

0.9

0.95

1

1.05

User grid

Input data

Eval. point

Figure 7: All grid-points are fitted by a tensor-product B-spline.

(2) Relocating or deleting knots from the sequence obtained in step (1) accord-
ing to the constrained version of the selection criterion, now using the de-
sired degrees p1, p2 for the surface.

The complete algorithms for performing this knot placement are given in al-
gorithms 8 and 9.

3.5.3 No-arbitrage conditions

The no-arbitrage conditions applied by Fengler & Hin (2013) are listed in prop. 1.
In this framework these conditions are applied as linear constraints on the control
points of the approximated surface:

(
ξ∗j1 , ν

∗
j2 , θ j1, j2

)q1,q2

j1, j2=0
, where

ξ∗j1 =
ξ j1+1 + · · · + ξ j1+p1

p1
ν∗j2 =

ν j2+1 + · · · + ν j2+p2

p2

are the knot averages.

(C1) Convexity of the spline surface in the forward-moneyness direction is given

47

Presentation of the methods

by constraints on the coefficients and the knot averages in this dimension:

−1 ≤
θ j1+1, j2+1 − θ j1, j2

ξ∗j1+1 − ξ
∗
j1

≤
θ j1+2, j2 − θ j1+1, j2

ξ∗j1+2 − ξ
∗
j1+1

≤ 0,

j1 = 0, . . . , q1 − 2, j2 = 0, . . . , q2.

(C2) The lower- and upper bounds on the normed call prices are solely given by
conditions on the coefficients:

θ j1, j2 ≥ 0 and θ j1, j2 ≤ 1, j1 = 0, . . . , q1, j2 = 0, . . . , q2.

(C5) The non-decreasing call surface in the maturity-direction is obtained by con-
straints solely on the coefficients as well:

θ j1, j2+1 − θ j1, j2 ≥ 0, j1 = 0, . . . , q1, j2 = 0, . . . , q2 − 1.

These conditions are, as stated in the proposition, sufficient. Furthermore, these
are used as the reference point for the no-arbitrage evaluations in the other meth-
ods assessed, and will therefore not be discussed further here.

Like for the method in sec. 3.2 by Fengler, it is here possible to exploit the lin-
earity of the no-arbitrage constraints to reformulate the optimization problem into
a constrained quadratic program. The complete method for fitting the surface is
given in algorithms 10 and 11.

3.5.4 Conversion to the Local Volatility Surface

Dupire’s local volatility function given in eqn. (6), σ̂L
1(κ, τ), can for this method

be derived analytically from the definition of the tensor-product B-spline.

This is a bit messy notation-wise though, so here we have chosen to approximate
the local volatility surface by replacing the derivatives in eqn. (6) with their nu-
merical estimates. For the B-spline representation these numerical derivatives can
easily be determined using the Matlab function intended for this purpose7.

3.5.5 Tweaking the method

Evaluate surface in specified point (κ̄, τ̄): This method fits the tensor product
B-spline to the observed data points as described in section 3.5.2. Once the coeffi-
cients have been fitted it is possible to evaluate the call surface in any given point,

7See the Matlab function fnder for further details.

48

Paper I

Algorithm 8: PartI: Fengler & Hin (2013) - Knot placement.
KnotSearch(κ,ν,∆Ξ,∆ξ)

. Use a linear TP B-spline: p1 = p2 = 1.

Set ξ = {ξ0, ξ1, ξ2, ξ3} = {minκ,minκ,maxκ,maxκ};
Set ν = {νmin,ν, νmax} . Add boundary knots.

ξu = ξ . Initialize the book-keeping knot sequence.

while knots can be added to ξ do
Set q1 =length (ξ) − (p1 + 2); . Using eqn.(39).

for i = 1, . . . , q1 do
ξ0 = arg min

ξ∈[ξi,ξi+1]
ΞmAIC (ξ ∪ ξ,ν)

. Additional knot which added to the working knot
sequence minimizes the selection criterion.

if ΞmAIC (ξ,ν) −ΞmAIC

(
ξ0 ∪ ξ,ν

)
> ∆Ξ then

if ξ0 − ξi > ∆ξ ∧ ξi+1 − ξ
0 > ∆ξ then

ξu = ξu ∪ ξ0.
. Add the knot to the working sequence.

ξ = ξu.

return ξ

(κ̄, τ̄):

ĉ1(κ̄, τ̄) =

q1∑
j1=0

q2∑
j2=0

θ j1, j2 B j1,p1(κ̄)B j2,p2(τ̄)

This flexibility significantly distinguishes this method from the other methods
presented in this paper.

B The order of the tensor product B-spline is given by the degree of the uni-
variate splines. As a point of reference, note that a cubic spline is of order
4, equivalent to a degree of 3, referring to the number of coefficients.

In table 5 different values for the mean and standard deviation of the relative
distance from the observed- to the fitted call prices is given. These numbers
indicate that a degree of p1 = 5 gives the best fit to the observed call prices.
Looking at the local volatility surfaces, it can be seen that p1 = 3 gives a
noisy surface, this improves for surfaces of higher degree. These surfaces of
degree above p1 = 3 resembles each other more or less, though a tendency
of too much smoothing starts to show for p1 = 7.

49

Presentation of the methods

Algorithm 9: PartII: Fengler & Hin (2013) - Knot placement.
KnotRelocateDelete(ξ,ν,∆ξ, p1,p2)

. Use a TP B-spline of desired degree.

Set q1 =length (ξ) − (p1 + 2); . Using eqn.(39).
Set ν = {{νmin}×p2 ,ν, {νmax}×p2 } . Add boundary knots.

ξdelete, ξadd . Initialize the book-keeping sequences.

for i = p1, . . . , (q1 − 1) do
ξi = ξ\ξi+1. . Sequence excluding the i + 1’th knot.

ξ0
i+1 = arg min

ξ∈[ξi,ξi+2]
ΞC

mAIC (ξ ∪ ξi,ν)

s.t. ξ0
i+1 − ξi > ∆ξ ∧ ξi+2 − ξ

0
i+1 > ∆ξ

. Additional knot which added to ξi minimizes the selection
criterion.

if ΞC
mAIC (ξi,ν) < ΞC

mAIC

(
ξ0

i+1 ∪ ξi,ν
)

then
if ΞC

mAIC (ξi,ν) < ΞC
mAIC (ξ,ν) then

ξdelete = ξdelete ∪ ξi+1. . Delete i + 1’th knot.

if ΞC
mAIC

(
ξ0

i+1 ∪ ξi,ν
)
< ΞC

mAIC (ξi,ν) then
if ΞC

mAIC

(
ξ0

i+1 ∪ ξi,ν
)
< ΞC

mAIC (ξ,ν) then
ξdelete = ξdelete ∪ ξi+1.

ξadd = ξadd ∪ ξ0
i+1. . Replace i + 1’th knot.

return ξ =
(
ξ\ξdelete

)
∪ ξadd.

For the maturity direction, the degree of the spline have been tested for
levels between 2 and 4 - the best fit is achieved for p2 < 4, but for p2 = 2
the surface is too noisy, just as we observed for p1 = 3.

Hence, like in Fengler & Hin it seems that degrees of p1 = 5, p2 = 3 gives
the best fit of the surface for the dataset at hand.

B Fengler & Hin (2013) find that the quality of the output surfaces to a great
extent depends on the distribution of knot sequence in the forward-moneyness
dimension, while the distribution for the maturity dimension seems to be of
less importance. Thus, the majority of the computational time is spend on
optimizing the forward-moneyness knot sequence by applying algorithms 8
and 9.

The parameters used for this knot sequence optimization are given by: ∆Ξ,∆ξ.
The authors suggest to use ∆Ξ = 10−5 and ∆ξ = 10−4.

50

Paper I

Algorithm 10: PartI: Fengler & Hin (2013) - approximation of the call sur-
face.

input: τi, i=1,...,N . observed maturity levels.
κi, , i=1,...,N . observed forward-moneyness levels.
c1(κi, τi) . observed normed call prices.
λ . smoothening parameter.

Set: ∆Ξ, ∆ξ, ν = {τ̃1, . . . , τ̃J}. . Initialize parameters

Set: B =

(
B0,p1 (κ1), . . . , Bq1,p1 (κ1)

)ᵀ
⊗

(
B0,p2 (τ1), . . . , Bq1,p1 (τ1)

)ᵀ
...(

B0,p1 (κN), . . . , Bq1,p1 (κN)
)ᵀ
⊗

(
B0,p2 (τN), . . . , Bq1,p1 (τN)

)ᵀ

. where the B-splines are given according to eqn. (42).

Def: Ξ(C)
mAIC (ξ,ν) = log

(
N∑

i=1

(c1(κi,τi)−ĉ1(κi,τi))2

N

)
+ 1 +

2(tr(S)+1)
N−tr(S)−2 .

. Akaike Information Criterion with linear smoother matrix:

S = B (BᵀB + λI)−1 Bᵀ and estimate of the call surface:
ĉ1(κ, τ) = Bθ∗, where θ∗ is obtained by the quadratic program given
below. The Q.P problem is unconstrained for ΞmAIC and
constrained for ΞC

mAIC.

Calculate:
ξtmp = KnotSearch(κ,ν,∆Ξ,∆ξ);
ξ = KnotRelocateDelete(ξtmp,ν,∆ξ, p1,p2);

Here, the method has been run for a month of the Sep0405 data8 using
values: ∆Ξ = {10−2, 10−3, 10−4, 10−5, 10−6, 10−7}. Looking at the mean and
standard deviation of the relative distance to the observed call prices, one
can see that ∆Ξ = {10−4, 10−5, 10−6, 10−7} produces the same knot sequence
and hence the same fit to the data. ∆Ξ = 10−3 gives the best fit by redu-
cing the length of the knot sequence with a single knot for 2 out of the 22
dates observed. ∆Ξ = 10−2 worsens the fit a bit by reducing the number
of knots for the majority of the observed dates, but in return reduces the
computational time significantly. Here, the primary focus is on the quality
of the surface and parameter value ∆Ξ = 10−3 is therefore chosen for the
calculations.

Adjusting the parameter ∆ξ either up or down worsens the fit to the observed
data, both in terms of the mean as well as standard deviation of the relative
distance. Hence, here the value is kept at ∆ξ = 10−4, as suggested by Fengler

8See section 4.1 for details on the data used.

51

Presentation of the methods

Algorithm 11: PartII: Fengler & Hin (2013) - approximation of the call
surface.

Set: D = B>B + λI; d = B>

c1(κ1, τ1)

...
c1(κN , τN)

. where I is the unit matrix.

Solve min
θ

1
2θ
>Dθ − θ>d

s.t.
[
C(1) C(2) C(3) C(4)

]ᵀ
≤ [0 1 0 0]ᵀ.

. Solve the quadratic program subject to the set of
linear constraints given in sec. 3.5.3, see
appendix A.2 for details.

Def: [κ̂1; κ̂M] × [τ̂1; τ̂L] = κ̂ × τ̂ ⊆ {κi × τi}i=1,...,N

. Regular (non-scattered) grid for which the
approximation of the call surface is derived.
Contained in the rectangle defined by the input grid.
Allowed to be non-uniform.

Set: ĉ1(κ̂, τ̂) =
q1∑

j1=0

q2∑
j2=0

θ j1, j2 B j1,p1(κ̂)B j2,p2(τ̂) σ̂L
1(κ̂, τ̂)

∗
≈

√
2 ∂2 ĉ1(κ̂,τ̂)

∂τ

κ̂2 ∂
2 ĉ1(κ̂,τ̂)

∂κ2

.

. Calculate values of the call- and the local volatility
surface in the user-defined grid-points.

. ∗ : approximate the derivatives involved using Matlab’s
built-in function for numerical evaluation of
B-splines.

& Hin (2013).

It is unclear from the article whether the end-knots should be set equal to the
minimum and maximum observed forward-moneyness levels, respectively,
or if they should be padded. Here, a small padding of −0.01 and +0.01 have
been chosen.

B As mentioned under the previous bullet point, Fengler & Hin (2013) states
that the output is not particularly dependent on the distribution of the knot

52

Paper I

p1 E(relative distance) Std(relative distance)

3 12.92 5.86
4 12.99 6.80
5 12.36 4.77
6 13.79 5.36
7 14.15 5.94

Table 5: Goodness of fit associated with varies spline degrees for the
forward-moneyness direction. Measured for a subset of the Sep0405 dataset.

sequence for the maturity dimension.

This theory have been tested by partly by altering the number of knots and
partly by adjusting the position of these. The experiments indicate that
the best fit can be obtained when the number of knots equals the order of
the spline. We determined above that the spline degree should be set to:
p2 = 3, which sets the order, and hence the number of knots, equal to 4.
The exact position of these knots do not seem to have a significant impact
on the result, as stated in the original paper. Here we have used quantiles
of the maturities available for a given date to set the knot sequence: ν1 =

{Q0(τ),Q1/3(τ),Q2/3(τ),Q1(τ)} and ν2 = {Q0(τ),Q2/4(τ),Q3/4(τ),Q1(τ)}.
The sequence ν2 seems to give a slightly better fit and a less noisy surface
at the margins, thus we have used this sequence for the maturity dimension.

B Like for Fengler (2009) described in section 3.2, this method too involves a
smoothing parameter λ. Adjusting this parameter, we observe that values:
λ = 1e−5, 1e−11 produced noisy surfaces that do not fit data well enough.
Values λ = 1e − 7, 1e − 9 produces very similar results and we therefore
choose λ = 1e − 9, as for the method by Fengler.

From this extensive description of the amount of tweaking necessary it is evident,
that just as flexible as the method is to evaluate, just as cumbersome is it to set up.

53

Empirical work

4 Empirical work

4.1 Data

The empirical work are carried out for daily observations of European style op-
tions written on the S&P500 index. The end-of-day quotes, provided by the Op-
tionMetrics database, are retrieved for two periods:

• Sep.’04-Sep.’05, pre-crisis period where the volatility was unusually low.

• Sep.’08-Sep.’09, the crisis period where the turbulence and the volatility in
the financial markets were at its peak.

These periods have been chosen such that the algorithms are tested for a baseline
period, Sep. ’04-’05, and a stress-testing period, Sep.’08-’09.

...while fitting algorithms cope well in providing interpolations
on market data (which mostly exhibit only slight arbitrage viol-
ations), artificially created stress scenarios exhibit strong arbit-
rage violations, and fitting algorithms may take much longer, or
even fail to find reasonable fits that ensure smoothness and lack
of arbitrage. (Gope & Fries (2011))

In accordance with the quote above, any given method is required to perform
well for the baseline period in order to be considered applicable in practice. It is
expected that the performance for the stress-testing period is what will distinguish
the quality of the algorithms.

4.2 Filtering

The market data quoted in the OptionMetrics database are contaminated with a
number of measurement errors as pointed out by Hentschel (2003) in the quote
below.

...prices are observed with errors stemming from finite quote pre-
cision, bid-ask spreads, non-synchronous observations...

Hence, errors in the quoted prices stem from rounding to quote precision, the
uncertainty regarding the true price and the non-synchronous logging of closing
prices for the options and the value of their underlying - often measured 15 min.
apart according to Hentschel.

54

Paper I

We therefore refine the raw datasets obtained from OptionMetrics database by ap-
plying a number of filters to obtain a reasonable dataset that can be used as input
for the algorithms described in section 3. These filters are mainly inspired by
Constantinides et al. (2013) who also work with S&P500 datasets.

...the estimation or calibration process must be robust against
noise present in price observations due to market micro-structure
effects, such as bid-ask spreads, discrete ticks in prices or quotes,
non-synchronous trading, effects due to the auction mechanism
itself, or simply to misprints (for a detailed analysis of errors in
IV data we refer to Hentschel 2003)... (Benko et al. (2007))

Constantinides et al. apply very restrictive filtering which for the most part will be
followed here. Although, a lot of stress-testing (see quote by Benko et al. above)
is left-out on this account it is important that we have a regular grid of data, and
that we do not end up testing the methods for the wings which is a topic outside
the scope of this paper.

Also, as we discussed in section 2.1, the dataset must be normalized before being
provided as input. The interest rates and dividend yields quoted in the OptionMet-
rics database are unsuited for this purpose - which Constantinides et al. (2013)
also brings to attention during their filtering process. Here, we obtain these in-
terest rates and dividend yields by backing them out from the filtered data using a
simple linear regression model for the put-call parity.

4.2.1 Raw data

B Identical filter Duplicate entries with identical terms (option type, strike,
expiration date) and identical price are removed. For entries with identical
terms but different prices, the quote with the widest bid-ask spread is re-
moved.

◦ Sep ’04-’05: 0 removed.

◦ Sep ’08-’09: 0 removed.

B Zero bid Quotes with zero bids are removed to avoid low valued options
and negative bids (which this could indicate). According to practitioners
this might occur if a trader uses the Black-Scholes formula to derive a price
and afterwards adds a bid-ask spread to that.

◦ Sep ’04-’05: 11623 quotes removed.

55

Empirical work

◦ Sep ’08-’09: 41332 quotes removed.

B Days to maturity The observed data are truncated to only include data with
more than 7 days to maturity. According to Constantinides et al. (2013)
quotes with shorter maturities will tend to move erratically, which tend to
cause troubles in the evaluation of the implied volatility.

In the opposite end, data is truncated to quotes with at most one year to
maturity. This filtering deviates from Constantinides et al. (2013) who pro-
poses a more restrictive filtering of at most 0.5 years to maturity, but for
the S &P500 options it is not uncommon with longer durations according to
practitioners.

◦ Sep ’04-’05: 30133 quotes removed.

◦ Sep ’08-’09: 68844 quotes removed.

B Moneyness Constantinides et al. (2013) proposes to remove all quotes with
moneyness, K

s , below 0.8 or above 1.2. This rather restrictive filter is applied
to avoid working in the wings. This filter could be loosened by for instance
letting these moneyness boundaries depend on the time to maturity, such
that for short maturities the range starts at [0.8, 1, 2] and ends at [0.4, 1.8]
for expiries tending towards 5 years. Instead of a rectangle, this will then
leave give a cone of data.

◦ Sep ’04-’05: 25673 quotes removed.

◦ Sep ’08-’09: 155.718 quotes removed.

B Implied volatility Remark: this filter and the next is applied after the in-
terest rates and dividend yields have been backed out from the data using a
simple linear regression, see section 4.2.2.

Quotes with calculated implied volatilities lower than 5% or higher than
100% indicate quotation problems and are therefore removed according to
Constantinides et al.. One could perhaps discuss whether the lower bound-
ary of 5% unambiguously imply quotations problems. However none of the
computed volatility levels hits these boundaries in either of two periods.

We do though see NaN’s for some of the quotes stemming from troubles in
the implied volatility solver provided by Matlab.

◦ Sep ’04-’05: 47 quotes removed.

◦ Sep ’08-’09: 6 quotes removed.

56

Paper I

B Mertons Tunnel The final filter is given by the fundamental no-arbitrage
boundaries, also termed Merton’s tunnel, which for a given maturity reads:(

se−q jτ j − e−r jτ j Ki j

)+
≤ cs(Ki j, τ j) ≤ se−q jτ j ∀τ j.

Thus, quotes violating this basic condition contain arbitrage opportunities
and are therefore removed from the dataset.

◦ Sep ’04-’05: 0 removed.

◦ Sep ’08-’09: 0 removed.

4.2.2 Extracting interest rate and dividend yield

In order to transform the data to fit the normed framework, see sec. 2.1, we need
to obtain the interest rates and dividend yields. Unfortunately these are not avail-
able in a usable format in the OptionMetrics database. The zero rate is known to
be imprecise, see the discussion in Constantinides et al. (2013), and there is only
one dividend quote available per date. These rates are therefore extracted from
the filtered data by fitting a simple regression model of the put-call parity for each
(date, expiry)-combination.

Initially, assume that the interest rates and dividend yields are deterministic func-
tions of date and expiry. Thus, for a given (date, expiry)-combination, repres-
ented by τ, these rates are constant across strike levels. Thus, for each (date,
expiry)-combination the put-call parity can be fitted to the data by a simple linear
regression model:

cs(Ki, τ) − Ps(Ki, τ) = se−qττ − e−rττKi + εi,

⇒ yi = β0 + β1xi + εi,
(44)

such that the the implied interest rates and dividend yields can be backed out from
the regression coefficients:

β̂0 = se−qττ ⇔ qτ =
− ln

(
β̂0
s

)
τ

β̂1 = −e−rττ ⇔ rτ =
− ln

(
−β̂1

)
τ

.

Note that this regression can only be applied if there is sufficient data avail-
able for the given (date,expiry)-combination. Hence, we have to leave out the
(date,expiry)-pairs with insufficient data.

57

Empirical work

◦ Sep ’04-’05: 0 removed.

◦ Sep ’08-’09: 66 (date,expiry)-pairs removed.

It can further be noted, that these (date,expiry)-pairs are evenly distributed over
the entire year.

The call- and put- quotes used as input to this regression needs to be calculated
from their respective bid-ask prices listed in the OptionMetrics database. In the
financial literature it is standard practice to compute these final quotes, or mid-
quotes, by calculating the average of their bid-ask spread. This average can be
presented as the affine combination of the bid- and ask prices for λc = λp = 0.5:

c1(·) = λccbid
1 (·) + (1 − λc)cask

1 (·), p1(·) = λp pbid
1 (·) + (1 − λp)pask

1 (·)

Though this is not necessarily the true price, as mentioned in the beginning of
this section. Thus, here we will try to adjust the parameters: λc, λp, when some
of the estimates from the regression in eqn. (44) turns out badly - interest rates
or dividend yields outside some pre-defined bands, where the lower bound on the
interest rate given by zero9. In practice, the sample mean of these parameters over
the two periods lies closely around 0.5 as can be seen below:

◦ Sep ’04-’05: µλc = 0.4910, µλp = 0.4604.

◦ Sep ’08-’09: µλc = 0.4936, µλp = 0.5112.

If for a given (date,expiry)-combination it is not possible to adjust the mid-quote
such that the interest rate and dividend yield estimates turn out reasonable, all
quotes are disregarded for that combination.

◦ Sep ’04-’05: 36 (date,expiry)-pairs removed.

◦ Sep ’08-’09: 61 (date,expiry)-pairs removed.

An alternative to taking the average of the spread as a starting point, as done here,
is to use the median of the spread, as suggested in Glaser & Heider (2012).

To summarize we give some sample statistics of the estimated interest rate and
dividend yield below:

9This definition of badly is based on Matlabs implied volatility solver which does not accept
negative interest rates.

58

Paper I

◦ Sep ’04-’05:

µrτ = 0.0298, srτ = 0.0095 min
rτ

= 3.9901e − 04, max
rτ

= 0.0616,

µδτ = 0.0178, sδτ = 0.0024 min
δτ

= 0.0115,max
δτ

= 0.0206.

bandrτ

∗

= [0.0180; 0.0618] ≈ [0.00; 0.0618].

bandδτ
∗

= [0.0115; 0.0206].

◦ Sep ’08-’09:

µrτ = 0.0132, srτ = 0.0099 min
rτ

= 4.8960e − 06, max
rτ

= 0.0598,

µδτ = 0.0260, sδτ = 0.0067 min
δτ

= 0.0052,max
δτ

= 0.0386.

bandrτ

∗

= [−0.0094; 0.0602] ≈ [0.00; 0.0602].

bandδτ
∗

= [0.0051; 0.0386].

The bands are given by: mean ± 3 · std, of the OptionMetrics provided quotes for
the interest rate and dividend yield, respectively.

4.2.3 Final dataset

The final set of normed option quotes are generated through eqn. (2) using the
interest rates, dividend yields and their corresponding mid-quotes.

As for the filtering process we here have a trade-off between standardizing the
data to ease implementation and the ability to test the methods. In this case, the
possibility of testing how the algorithms handle interest rates and dividends is left
out in favor of a unified framework across all methods.

We have tried to illustrate the distribution of the final quotes by determining:

◦ the number of distinct expiries available for each observed date.

◦ the number of quotes available for each (date,expiry)-pair.

In the Sep’04-’05 dataset, 1 date with only 1 maturities exists, and in the Sep’08-
’09 dataset, two dates with only 3 maturities exist. These have been removed from
the datasets. The final data then consist of:

◦ Sep ’04-’05: 36326 quotes distributed over 253 dates with an average of 5.7
maturities per date.

59

Empirical work

Figure 8: Histograms of quote distribution.

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
0

20

40

60

80

100

120

140

160

180

Sep’0405: # expiries per date.

12 16 20 24 28 32 36 40 44 48
0

50

100

150

200

250

300

350

400

450

’Sep’0405: # quotes per (date, expiry)-pair.

6 7 8 9 10 11 12
0

20

40

60

80

100

120

Sep’0809: # expiries per date.

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

900

Sep’0809: # quotes per (date, expiry)-pair.

◦ Sep ’08-’09: 68594 quotes distributed over 251 dates with an average of 10
maturities per date.

Hence, we end up having almost twice as much data available for the post-crisis
period after our filtering has been applied which is also illustrated in figure 8.

4.3 Quantitative Comparison of the Methods

4.3.1 Output grid

The output surfaces - call, implied volatility, local volatility - are for each date in a
given dataset derived for a user-defined grid and an input grid, determined by the
observed grid-points for that given date. The user-defined grid is set separately
for each dataset: Sep’0405, Sep’0809, in accordance with algorithm 12.

60

Paper I

Algorithm 12: Setting the user-defined input grid.
input:

(t j,T ji, κ ji), j=1,...,J, ji=1,...,I j

. dataset: date, forward-moneyness, expiry.
M . number of grid-points, forward-moneyness.
L . number of grid-points, maturity.

for j = 1→ J do
minκ, j = min

(
κ1, . . . , κI j

)
; maxκ, j = max

(
κ1, . . . , κI j

)
;

minτ, j = min
(
τ1, . . . , τI j

)
; , maxτ, j = max

(
τ1, . . . , τI j

)
;

minκ = max
(
minκ,1, . . . ,minκ,J

)
; maxκ = min

(
maxκ,1, . . . ,maxκ,J

)
;

minτ = max
(
minτ,1, . . . ,minτ,J

)
; maxτ = min

(
maxτ,1, . . . ,maxτ,J

)
;

∆κ = maxκ −minκ
M ; ∆τ = maxτ −minτ

L ;

return
[κ1; κM] = seq(minκ : ∆κ : maxκ); [τ1; τL] = seq(minτ : ∆τ : maxτ);

Interpolation in the output surfaces can introduce arbitrage if not conducted care-
fully. Thus, the calibration has for as many methods as possible been carried out
for a grid given as the combination of the user-defined- and the input grid. In
practice this has been possible for all methods but the one given by Benko et al.
in sec. 3.1. See sections tweaking for details on the specific methods.

4.3.2 Computational time

The run time - quoted in seconds - for the respective methods has been measured
for each observed date separately. This measure consists solely of the pure com-
putation time for a given algorithm. Hence, all data manipulation, graph plotting,
etc. are left out. Furthermore, it should be noted that all methods have been im-
plemented using Matlabs library functions to the extend possible. This means that
the speed and the quality of all optimizations are determined by Matlabs build-in
functionality.

The run times for the various methods are depicted in figure 9. It can be noted
from these that Benko et al. (2007) has a run time which by far exceeds the oth-
ers. This is caused by the fact, that this algorithm runs simultaneous optimizations
for all maturities in the calibration grid at once, see algorithm 1 for details.

61

Empirical work

Q4−2004 Q1−2005 Q2−2005 Q3−2005
0

50

100

150
S
e
c
o
n
d
s

BFHK
F
AH
GH
FH

Q4−2008 Q1−2009 Q2−2009 Q3−2009
0

200

400

600

800

1000

1200

1400

S
e
c
o
n
d
s

BFHK
F
AH
GH
FH

Figure 9: Execution run time in seconds.

In table 6, the run time for each dataset are summarized using the sample mean and
standard deviation. The multiplier indicates the factor by which the run time for
the stress-testing year, Sep’08-’09, is greater than for the baseline year, Sep’04-
’05.

Table 6: Sample mean and standard deviation of the run time (seconds).

Method
Sep’04-Sep’05 Sep’08-Sep’09

Multiplier
Mean Std. Mean Std.

Benko et al. (2007) 106.02 25.06 696.50 220.08 6.57
Fengler (2009) 16.34 2.48 35.79 9.68 2.19
Andreasen & Huge (2011) 39.11 8.84 79.93 18.79 2.04
Glaser & Heider (2012) 27.38 4.01 66.89 16.51 2.44
Fengler & Hin (2013) 41.09 16.30 70.85 38.32 1.72

Here it is again evident that Benko et al. (2007) is a very expensive method, es-
pecially during Sep’08-’09 where it on average consumes 6.57 times as much
computation time, than for the previous period Sep’04-’05. For the rest of these
methods this number lies around 2.

Comparing the run time for the different methods one can see that the fastest
method, Fengler (2009), is 6.5 times faster than the slowest, Benko et al. (2007),
in Sep’04-’05, and 19.5 times faster in Sep’08-’09. Generally, Fengler (2009) is
around twice as fast compared to the other methods: Andreasen & Huge (2011),Glaser
& Heider (2012) and Fengler & Hin (2013), which all lie around the same level.
In order to conclude further from these levels, they must be weighed up against

62

Paper I

the quality of their respective fits - which is assessed in the following sections.

Concluding: From these experiments there do appear to be a significant differ-
ence in the relative computational time for the respective methods. We saw that
Benko et al. (2007) stood out as the by far most expensive method, and Fengler
(2009) as the cheapest, while the others lay at similar levels. Furthermore, it was
noticed that the computational time on average increased by a factor 2 when go-
ing from the base-period to the stress-testing-period. This can either be a sign of
increased difficulties in fitting the more volatile data for this period, or a sign of
the additional effort needed to fit the additional quotes (twice as many) for this
period.

4.3.3 The call surface - fit to observed quotes

The majority of the algorithms approximates, or interpolates, a call surface from
the observed data, see table 2, and afterwards derive the implied- and local volat-
ility surface from this. The exception being Benko et al. (2007) which instead
approximates the implied volatility surface.

The enclosed animations of the call surfaces across different dates for each of the
two datasets, indicate that regardless of which surface has been fitted, the gener-
ated call surface turns out regular, smooth, and closely fitted to the market quotes
for all methods.

This goodness of fit for the various call surfaces is further investigated by meas-
uring the distance between the approximated values, ĉ1(κi, τi), and the observed
values, c1(κi, τi). This distance is given by the euclidean norm of the relative dis-
tance:

Relative Distance =

√√
N∑

i=1

(
c1(κi, τi) − ĉ1(κi, τi)

c1(κi, τi)

)2

.

In table 7 this distance is reported by its sample mean and standard deviation
across each period for all methods.

One would intuitively expect that the distance for the stress-testing period would
be greater compared to the baseline period, due to the additional efforts needed in
order to fit these more volatile observations. But in practice table 7 shows mixed
results when comparing these two periods. The mean distance turns out to be re-
duced for the stress-testing period for all methods except for Andreasen & Huge
(2011), while the standard deviation is increased, except for Fengler & Hin (2013).

63

Empirical work

Table 7: Call price: Sample mean and standard deviation of the relative distance.

Sep’04-Sep’05 Sep’08-Sep’09

Method Mean Std. Mean Std.

Benko et al. (2007) 0.89 0.52 0.87 0.69
Fengler (2009) 1.88 0.56 1.05 0.71
Andreasen & Huge (2011) 0.31 0.25 0.55 1.02
Glaser & Heider (2012) 4.14 0.54 2.94 1.21
Fengler & Hin (2013) 16.12 9.68 5.66 7.08

This decrease in the mean distance could be attributed to the increased amount
of observations available for the dataset: Sep’08-’09, see sec. 4.2.3 for details.
In which case it would be concluded that the mean distance does not seem to
be affected by the volatility level in the market for any of the methods. The
amount by which the standard deviation is increased differs for the various meth-
ods and seems to be significantly larger for Andreasen & Huge (2011) and Glaser
& Heider (2012).

Q4−2004 Q1−2005 Q2−2005 Q3−2005
0

10

20

30

40

50

60

70

R
e
l
a
t
i
v
e
D
i
s
t
a
n
c
e

BFHK
F
AH
GH
FH

Q4−2008 Q1−2009 Q2−2009 Q3−2009
0

10

20

30

40

50

60

R
e
l
a
t
i
v
e
D
i
s
t
a
n
c
e

BFHK
F
AH
GH
FH

Figure 10: Relative distance between the fitted call surface and the observed values.

The mean and standard deviation of the distance also differs among the methods
themselves. Especially Fengler & Hin (2013) stands out with a remarkably bad
fit compared to the other methods, this is also easily seen in figure 10, where the
relative distance has been depicted as a function of time for each method. The
best fit to the data is obtained by Andreasen & Huge (2011), this is to be expected
as this method is the only one utilizing interpolation rather than approximation.

Another interesting comparison between the distance and run time are given in

64

Paper I

Q4−2004 Q1−2005 Q2−2005 Q3−2005
0

2

4

6

R
e
l
a
t
i
v
e
D
i
s
t
a
n
c
e

10

15

20

25

S
e
c
o
n
d
s

F

Q4−2004 Q1−2005 Q2−2005 Q3−2005
0

10

20

30

40

50

60

70

R
e
l
a
t
i
v
e
D
i
s
t
a
n
c
e

0

20

40

60

80

100

120

140

S
e
c
o
n
d
s

FH

Q4−2008 Q1−2009 Q2−2009 Q3−2009
0

2

4

R
e
l
a
t
i
v
e
D
i
s
t
a
n
c
e

0

50

100

S
e
c
o
n
d
s

F

Q4−2008 Q1−2009 Q2−2009 Q3−2009
0

1

2

3

4

5

6

R
e
l
a
t
i
v
e
D
i
s
t
a
n
c
e

0

20

40

60

80

100

120

S
e
c
o
n
d
s

GH

Figure 11: Relative distance vs Execution time in seconds.

figure 11 for a couple of the methods. For Sep’04-’05 there seems to be a rela-
tion between the goodness of fit and the run time for Fengler & Hin (2013), while
the plot for Fengler (2009) is more ambiguous. For Sep’08-’09 the relation for
Fengler (2009) though becomes more pronounced, and also the plot for Glaser &
Heider (2012) indicates that there might be a correlation between the two meas-
ures. This hypothesis is quantified by table 8 where the sample correlations are
reported.

Table 8 gives an indication of a small positive correlation between the distance
and the run time, thus when the distance increases a corresponding increase in the
run time can be observed. This indicates that the algorithms produce a larger dis-
tance for dates where the optimization routines has spend more time on fitting the
data. This could suggest that the optimization routine for these dates experience
some kind of difficulty, exceeding the maximum number of iterations, or for some
other reason not being able to find an optimal fit. Hence, this correlation probably
states more about Matlabs built-in functions than it does about the performance of
the methods.

65

Empirical work

Table 8: Call price: Sample correlations between the relative distance and the run time.

Corr
Method Sep’04-’05 Sep’08-’09

Benko et al. (2007) 0.64 0.51
Fengler (2009) 0.74 0.66
Andreasen & Huge (2011) 0.44 0.19
Glaser & Heider (2012) 0.69 0.78
Fengler & Hin (2013) 0.63 0.57

Concluding: In the 3D graphs of the call surfaces depicted over time it was ob-
served that these all were regular, smooth and of a similar shape. When taking a
closer look at the relative distances to the observed data points, there were some
differences though. Fengler & Hin (2013) as well as Glaser & Heider (2012)
stood out with the worst fit, especially the former, while our only interpolation
method by Andreasen & Huge (2011) obtained the best fit, as expected. It was
also noticed that the fit in general improved when the number of available quotes
increased. Just as it was noted that a positive correlation between the relative
distance and the computational time might indicate shortcommings in the optim-
ization procedure.

4.3.4 The implied volatility surface

The implied volatility surface are for all methods, except Benko et al. (2007), de-
rived from the fitted call surface using Matlabs built-in implied volatility function.
This built-in function seems to be of limited functionality, as it for some of the op-
tions is not able to determine the implied volatility and instead returns a NaN. But
for Benko et al. (2007) this source of error does not influence the implied volatility
surface, which is directly fitted to the observed market quotes, see algorithm 1 for
details. This difference could be contributing to the fact that Benko et al. (2007),
as one of the only methods, is able to fit the implied volatility smile for small ma-
turities when this becomes pronounced. The other method is Andreasen & Huge
(2011) which interpolates the observations and therefore are able to give a better
fit to the observed quotes, as were seen in table 7.

Below is a brief summary of the characteristics of the enclosed animations for the
implied volatility surfaces across different dates for each of the two datasets:

• Sep’04-’05: the implied volatility surface for this period lies on a stable
level with a volatility smile for the shortest maturities varying in level of

66

Paper I

pronouncement over the period.

◦ Benko et al. (2007) are, as already mentioned, able to fit the smile for
the smallest maturity level when this becomes pronounced. This fitted
smile does, however, have dents and far OTM these become severe.
Hence, the region defined by a large forward-moneyness and a small
maturity level must be used with great care.

◦ Fengler (2009) generates a very smooth surface which fits the ob-
served levels nicely, except for the smallest maturity level. Here the
method experiences problems when the smile becomes too pronounced
- the fitted surface are simply not able to capture these high levels.

◦ Andreasen & Huge (2011) is the second method that is able to fit the
implied volatility smile when this becomes pronounced for small ma-
turities. Hence, this surface gives the best fit to the observations while
still being smooth, the only issue is a couple of small curles at the edge
for the smallest forward-moneyness level.

◦ Glaser & Heider (2012) generates a surface which for small matur-
ity levels experience severe problems: For ITM options the surface
has significant dents, and parts of the surface are missing (NaN) for
κ < 0.9. For OTM options there is an entire region where the surface
have a value of zero.

◦ Fengler & Hin (2013) also experience problems with missing values
far ITM and the smallest maturity level. Hence, this method is also
not able to fit the high values when the implied volatility becomes
pronounced. The remaining surface fits the observations smoothly.

• Sep’08-’09: the implied volatility surface for this period is quite flat for all
maturities, where the general level is varying over the period.

◦ Benko et al. (2007) the surface is smooth and fits the data nicely, ex-
cept for rare spikes (both up and down) occurring in the corners of the
surface.

◦ Fengler (2009) as for the previous period, this surface fits the observed
data points smoothly, except when the implied volatility values be-
come too high far ITM or far OTM for the shortest maturity.

67

Empirical work

◦ Andreasen & Huge (2011) generally gives a very good fit to the quoted
implied volatilities, even for high levels. Occasionally, a spike or a
dent becomes visible far ITM for the shortest maturity.

◦ Glaser & Heider (2012) continues to experience problems with a re-
gion consisting of zero valued implied volatilities, though for a few
dates this region is replaced by nicely fitted values. The troubles of
fitting the smile for the shortest maturity persists, however, this is now
reflected in spikes and dents rather than missing values (NaN’s).

◦ Fengler & Hin (2013) are experiencing downward spikes far ITM for
short maturities, for the majority of the dates in this period. Thus,
whenever levels rise by a small amount compared to the rest of the
surface.

From the analysis above two things can generally be concluded. First, the main
feature that distinguishes these methods, in relation to this surface, is whether or
not they are able to fit the implied volatility smile along with their stability at
the edges. Second, the local methods, Benko et al. (2007) as well as Glaser &
Heider (2012), seem very sensitive towards the distribution of the observed data-
points. In Sep’04-’05 both methods experience difficulties in a region where no
observations are available10 - ITM options for short maturities are illiquid - and in
Sep’08-’09, where more data-points are available, these problems are limited to
Glaser & Heider (2012) and they are not as severe, as for the previous period.

The summary of the fit for the various implied volatility surfaces above thus
shows, that for this type of surface it does have an impact on the result which
method is chosen for the approximation/interpolation. Below in table 9 pair-wise
comparisons of the mean levels of the implied volatility surfaces are given, to see
whether these differences in fit have an impact on the overall implied volatility
level for the various methods.

In table 9 the pattern from table 7 repeats itself, as the mean of the pair-wise
distances are smaller for the latter period, Sep’08-’09. Here also the standard de-
viation decreases which can be interpreted as an increased closeness in surface
values for a larger part of the surface. Again this can be attributed to the increased
number of observations for this period.

10Although extrapolation is not considered in this paper, there are corner-regions for the shortest
maturity levels without observations due to the definition of the user-defined output grid, see al-
gorithm 12 for details.

68

Paper I

Table 9: Implied Volatility: Sample mean and standard deviation of the absolute
difference in levels accross dates.

F AH GH FH

Sep Mean Std Mean Std Mean Std Mean Std

’0405 0.0034 0.0047 0.0025 0.0026 0.0140 0.0247 0.0070 0.0123
BFHK

’0809 0.0013 0.0020 0.0021 0.0025 0.0035 0.0038 0.0015 0.0021

0405 0.0020 0.0043 0.0131 0.0219 0.0081 0.0159
F

’0809 0.0016 0.0020 0.0032 0.0031 0.0011 0.0010

’0405 0.0139 0.0239 0.0072 0.0128
AH

’0809 0.0043 0.0041 0.0019 0.0023

’0405 0.0192 0.0356
GH

’0809 0.0032 0.0033

The difficulties described above for the surface by Glaser & Heider (2012) here
manifest itself by having the largest distance to the other surfaces for both periods.
Thus, the method by Glaser & Heider (2012) can be regarded as the outsider in
the context of implied volatility surfaces.

Though the eyeball-smoothness have already been discussed above for the meth-
ods, this can be formally quantified by taking a look at the second order derivative
for both dimensions of the surface. The smaller the derivative, the smoother the
surface is. The second order derivatives are calculated using the central finite dif-
ference approximation given eqn. (31) for the uniform user-defined grid of implied
volatility values:

∂2σ
imp
1 (κm, τl)
∂κ2 ≈

σ
imp
1 (κm+1, τl) − 2σimp

1 (κm, τl) + σ
imp
1 (κm−1, τl)

∆κ

,

∂2σ
imp
1 (κm, τl)
∂τ2 ≈

σ
imp
1 (κm, τl+1) − 2σimp

1 (κm, τl) + σ
imp
1 (κm, τl−1)

∆τ

.

(45)

As mentioned previously, the 2nd order derivative wrt. forward-moneyness is the
bi-product for some of the optimization algorithms. But none of these have the
2nd order derivative wrt. maturity as an output value. Thus, in order to standardize
this smoothness-measure across methods and across variables, the finite difference
approximation is used for all. The results are given in figure 12. Although the
overall smoothness-level is determined by the observed quotes, it is here possible
to see whether some of the methods deviate from this:

(12a) When observing the smoothness in the forward-moneyness direction, two

69

Empirical work

Figure 12: Sample mean of the absolute finite difference approximations of the 2nd
order derivatives of the implied volatility surface.

Q4−04 Q1−05 Q2−05 Q3−05
0

5

10

15

20

25

30

35

E

[

a
b
s
(

∂
σ
i
m
p

1
(κ

,τ
)

∂
κ
2

)
]

BFHK
F
AH
GH
FH

Sep’04-’05: Forward-moneyness.

Q4−08 Q1−09 Q2−09 Q3−09
0

2

4

6

8

10

12

14

16

18

E

[

a
b
s
(

∂
σ
i
m
p

1
(κ

,τ
)

∂
κ
2

)
]

BFHK
F
AH
GH
FH

Sep’08-’09: Forward-moneyness.

Q4−04 Q1−05 Q2−05 Q3−05
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E

[

a
b
s
(

∂
σ
i
m
p

1
(κ

,τ
)

∂
τ
2

)
]

BFHK
F
AH
GH
FH

Sep’04-’05: Maturity.

Q4−08 Q1−09 Q2−09 Q3−09
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
E

[

a
b
s
(

∂
σ
i
m
p

1
(κ

,τ
)

∂
τ
2

)
]

BFHK
F
AH
GH
FH

Sep’08-’09: Maturity.

methods clearly stands out: Glaser & Heider (2012) and Fengler (2009).
Glaser & Heider (2012) stands out as the mean of its 2nd order derivative
clearly lie way higher than for the rest of the methods, thus it is by far the
least smooth surface in this direction, in line with our previous observations.
Fengler (2009) stands out with a stable and low mean value of its 2nd order
derivative, and therefore must be considered the smoothest.

The rest of the methods lie around the same level, though the curve for
Benko et al. (2007) are experiencing some spikes indicating smoothness
problems for some of the dates in the period. This is, just as for Glaser &
Heider (2012), in accordance with earlier observations.

(12b) The 2nd order derivatives for the period Sep’08-’09 all lie at lower levels

70

Paper I

and thereby are smoother compared to the previous period. Hence, although
still being the smoothest, Fengler (2009) is no longer superior.

Benko et al. (2007) and Glaser & Heider (2012) are, as expected, more
well-behaved for this period especially Glaser & Heider (2012). For Benko
et al. (2007) some spikes in the beginning of the period, corresponding to a
few corner-spikes in the implied volatility surface, are visible.

(12c) This picture for the smoothness in the maturity direction resembles the
graph for the forward-moneyness direction where Glaser & Heider (2012)
has 2nd derivatives that significantly exceeds the level for the other meth-
ods. The level for the other methods lie collectively near a steady low level.
Note that the scale on the y-axis for this dimension, is considerably lower
than for the forward-moneyness direction.

(12d) Unlike the forward-moneyness direction, the 2nd order derivatives in the
maturity-direction seem to increase in the 4th quarter of Sep’08. After
which they decrease to a level a under that seen in the previous period. This
is due to the structure of the implied volatility surface which has a steeper
curve for short maturities during this quarter.

Here, the methods Glaser & Heider (2012) and Andreasen & Huge (2011)
stand out as the least smooth methods, although Glaser & Heider (2012) is
closer to the overall level than in the previous period.

Concluding: Observing the graphs of the fitted implied volatility functions over
time, it could be seen that there were significant differences in their ability to fit the
observed data and in the regularity of their surfaces. Benko et al. (2007), which
calibrates the implied volatility surface directly, and Andreasen & Huge (2011),
which interpolates the call data, gave the best fit to the volatility smile when this
became pronounced for small maturities. While Fengler (2009) and Fengler &
Hin (2013) were not able to capture these high implied volatility levels.

The regularity of the surfaces must generally be regarded as of erratic quality,
as the corners of the surfaces seem prone to spikes or missing values for a majority
of the methods. Especially for the local calibration method by Glaser & Heider
(2012) which were experiencing severe problems for small maturities. This tend-
ency was also evident when comparing the average level of the implied volatility
surfaces in table 9.

The smoothness in Sep’0405 lies for all methods, except Glaser & Heider
(2012), at a similar low level for both the forward-moneyness and the maturity.
This picture becomes blurry for Sep’0809 where spikes also appeared for the other

71

Empirical work

local calibration method Benko et al. (2007) for the forward-moneyness. The
smoothest of the methods appear to be Fengler (2009), this held together with the
lacking ability of capturing the volatility smile could indicate a method, which is
too smooth to capture the structure and fluctuations in the market.

4.3.5 The local volatility surface

Assessing the local volatility differs from both the call- and the implied volatility
surface, as there are no observed values to compare it up against. The local volat-
ility surface are for all methods given by evaluating the local volatility function,
(6) or (7), in the user-defined grid points. How the derivatives are determined
do, however, differ and the reader is referred to the descriptions of the respective
methods in sec. 3 for further details.

The enclosed animations of the local volatility surfaces across different dates for
each of the two datasets are recorded from a different viewpoint compared to
the animations for the implied volatility surfaces. Below a brief summary of the
characteristics of the respective surfaces are given.

...the second derivative ∂c2

∂κ2 becomes small for far-out-of-the-
money and far-in-the-money options. While for far-out-of-the-
money options the multiplication by κ2 regulates the small second
derivative, this effect is not so pronounced for far-in-the-money
options and we expect numerical difficulties for these options.

(Glaser & Heider (2012))

• Sep’04-’05:

◦ Benko et al. (2007) derive the local volatility surface from their fitted
implied volatility surface. Thus, one would expect that the difficulties
for the far OTM and the shortest maturity translates to this surface.
Indeed, this region in the local volatility surface do seem to experience
some difficulties which manifest itself as small spikes in the outermost
corner. Also, for the opposite corner, far ITM, does there seem to be
some irregularities materializing in occasional spikes.
Other than this, the surface appears smooth with occasional waves or
curvatures near the ATM level.

◦ Fengler (2009) derives the local volatility surface from the call sur-
face. The call surface does not exhibit any irregularities for any of

72

Paper I

the methods, including this one. Hence, there exists no problem areas
which could be transferred to the local volatility surface through the
local volatility function.
The derivatives featured in the local volatility function, (6), are given
as output from the optimization procedure. Hence, theoretically there
are no numerical instabilities present which could affect the surface.
As expected, the local volatility surface do indeed look very smooth,
curvatures are only visible for a few of the dates in the period.

◦ Andreasen & Huge (2011) derive, as Fengler (2009), the local volatil-
ity surface from the surface of fitted call prices. Only for this method,
there are no derivatives available, neither as output nor as an analyt-
ical expression. These must therefore be approximated using finite
differences which introduced numerical inaccuracies.
The local volatility surface is obviously far more angular than the oth-
ers due to the finite difference approximation, and huge spikes appear
frequently, obstructing parts of the surface.
Deriving this surface for a coarser grid reduces the appearance of the
spikes. This discovery indicates that the finite difference approxima-
tion is unstable for a step-size corresponding to the user-defined grid.

◦ Glaser & Heider (2012) derive the local volatility from the fitted call
surface using the derivatives which - as for Fengler (2009) - are given
by the output from the optimization procedure.
This local volatility surface has more structure compared to Benko
et al. (2007) and Fengler (2009) above, this can probably be attributed
to the local element of the method. For the majority of the period the
surface is relatively smooth and stable, though ,for a range of dates to-
wards the end the period, irregularities and spikes appear far ITM for
the short maturity. Glaser & Heider (2012) mention this in their paper,
see the quote above, and suggest as a solution to bound the second
order derivative below, by a small positive number ε = 0.00025.

◦ Fengler & Hin (2013) derive the local volatility from the call surface
which has been approximated by a TP B-spline. Though, analyt-
ical expressions are available for the derivatives in this case, MatLabs
built-in function for calculating the numerical derivatives of a B-spline
have been chosen here, see sec. 3.5.4.
When assessing the local volatility surface one immediately notice that

73

Empirical work

this numerical approximation of the derivatives does not have the same
negative impact as were the case for Andreasen & Huge (2011). This
surface has the same smoothness level as Benko et al. (2007) and Fen-
gler (2009), but is more wavy compared to the others. Towards the end
of the period these waves become more like curls, especially around
the ATM level. This is not a behavior seen for any of the other meth-
ods.

• Sep’08-’09:

◦ Benko et al. (2007) have an implied volatility surface for this period
which appears smooth and only rarely experiences spikes for the corner-
regions. Hence, one would expect that the local volatility surface
would be more stable for this data period.
This does, however, not seem to be the case though these instabilities
probably stem from other sources. For about half of the dates (evenly
distributed across the period) the surface looks stabil and reasonably
smooth. For the other half the surface experiences problems for OTM
options, materializing as either the shape of the Sydney Opera House
or as an unnaturally large downwards bend for far OTM options.

◦ Fengler (2009) generates a local volatility surface which for this period,
as for the previous, is stable and very smooth compared to some of the
others. Small curvatures occurs in varying regions of the surface dur-
ing this period. There are no spikes or other large irregularities to be
spotted for this period neither.

◦ Andreasen & Huge (2011) presented a local volatility surface for the
previous period where parts of the surface were obstructed due to
spikes. For this period this is not only a region, but rather the en-
tire surface that is obstructed by spikes for the majority of the year.

◦ Glaser & Heider (2012) presented an implied volatility surface which
had been improved by the increased number of observations for this
period of time. The same effect seems to be in evidence for the local
volatility surface. This surface is stable during the entire period, even
for shorter maturity levels does it only experience some furrows along
the forward-moneyness dimension. These do become pronounced for
some dates, but nothing severe.

74

Paper I

◦ Fengler & Hin (2013) present a wavy local volatility surface as for
the previous period. The waves or curls, parallel to the maturity di-
mension, become, for a significant number of dates, large in size and
thereby seem more like irregularities than structures reflecting the mar-
ket.

As briefly mentioned above, this is not in the same favorable situation, as for the
implied volatility, where there exists a set of observations the surface levels can
be compared to. Hence, it is not possible to assess whether or not these surfaces
actually hit the market. Instead a thorough study of the local volatility levels can
be conducted by making pair-wise comparisons of the mean levels, see table 10,
and by observing the local volatility level across dates for each method individu-
ally, see figure 13.

Table 10: Local Volatility: Sample mean and standard deviation of the absolute
difference in pair-wise surface levels.

F AH GH FH

Sep Mean Std Mean Std Mean Std Mean Std

’0405 0.0122 0.0169 0.0254 0.2887 0.0262 0.0319 0.0194 0.0223
BFHK

’0809 0.0209 0.0288 0.6223 3.6246 0.0300 0.0322 0.0310 0.0337

0405 0.0214 0.2886 0.0230 0.0279 0.0180 0.0184
F

’0809 0.6176 3.6320 0.0171 0.0167 0.0211 0.0218

’0405 0.0340 0.2909 0.0300 0.2882
AH

’0809 0.6237 3.6327 0.6255 3.6327

’0405 0.0262 0.0260
GH

’0809 0.0271 0.0249

The pair-wise comparison in table 10 are given by the sample mean of the abso-
lute differences in local volatility levels across dates. The general picture here, is
that the difference in mean levels lie somewhere between 0.02 and 0.03 in Sep’04-
’05, with a single exception given by Andreasen & Huge (2011) which will be
discussed further below. For all comparisons, except those involving Andreasen
& Huge (2011), the standard deviations also lies at a steady low level.

With only a few exceptions these mean and standard deviation levels for the dif-
ference rise for Sep’08-’09 - opposed to what was seen for the implied volatility
surface. One reason for this could be that the general local volatility level seems
to be changing a lot over this period, see figure 13d, compared to what could be
observed for the implied volatility. Hence, slight delays in a surface compared to

75

Empirical work

the general level will result in a higher numerical value in this case.

Now, lets get back to the black sheep - Andreasen & Huge (2011) -this method,
which did not do very well in generating regular local volatility surfaces have a
mean level matching the general picture for Sep’04-’05, but for Sep’08-’09 this
difference compared to the other surfaces takes a drastic jump upwards. Espe-
cially the standard deviation, which were high for Sep ’04-’05, goes through the
roof which is not a big surprise considering the animated local volatility surfaces.
This deviation from the other surfaces is clearly illustrated in figures 13a and 13c.

Q4−2004 Q1−2005 Q2−2005 Q3−2005
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
e
a
n
L
o
c
a
l
V
o
l
L
e
v
e
l

BFHK
F
AH
GH
FH

a Sep’04-’05 - all methods.

Q4−2004 Q1−2005 Q2−2005 Q3−2005
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

M
e
a
n
L
o
c
a
l
V
o
l
L
e
v
e
l

BFHK
F
GH
FH

b Sep’04-’05 - all methods except Andreasen & Huge
(2011).

Q4−2008 Q1−2009 Q2−2009 Q3−2009
0

5

10

15

20

25

M
e
a
n
L
o
c
a
l
V
o
l
L
e
v
e
l

BFHK
F
AH
GH
FH

c Sep’08-’09 - all methods.

Q4−2008 Q1−2009 Q2−2009 Q3−2009
0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
e
a
n
L
o
c
a
l
V
o
l
L
e
v
e
l

BFHK
F
GH
FH

d Sep’08-’09 - all methods except Andreasen & Huge
(2011).

Figure 13: Sample mean of local volatility level.

The overall trend in the local volatility level can - as briefly mentioned - be found
in figure 13. The spikes cause by Andreasen & Huge (2011) obstructs the no-
tion of this trend and have therefore been removed in subfigure 13b and 13d.
Here, it is evident that the market, and hence the mean local volatility level, is

76

Paper I

a lot more volatile in our stress-testing period, Sep’08-’09, than for our baseline
period, Sep’04-’05 as claimed in section 4.1.

The distribution of the standard deviation, corresponding to the mean levels seen
in 13, are elaborated in figures 14 and 15. These plots display the sample mean
of the local volatility for each date and method as a solid line with symmetrical
vertical bars in each direction of length equal to the sample standard deviation for
that given date.

In figure 14, depicting the majority of the methods, one can see that in Sep’04-’05
the methods generally lie around a stable local volatility level with a stable stand-
ard deviation across time. This distribution seems to be a bit different for Glaser
& Heider (2012), where the standard deviation band is more narrow, except for
the end of the period where some oscillations are visible. This agrees with the
observations made earlier when eyeballing the local volatility surface across time
in the enclosed animated graphs.

The band-width of the standard deviations are more distinguished for the stress-
testing period Sep’08-’09. For Benko et al. (2007) the first half is characterized by
oscillating band-size, afterwards the width seems to settle at a stable level compar-
able to the previous period. Also, the distribution for Fengler (2009) changes by
narrowing the band-width of standard deviations compared to the previous period.
Hence, it seems that regardless of the market turbulence, this method experience
an increased stability, explained by the increased number of observations avail-
able.

The distribution for Andreasen & Huge (2011) is not less interesting but appears
on a different scale and have therefore been depicted by itself in figure 15. For
Sep’04-’05 notice that the overall stable look of the other methods also applies
here, except for 14-16 troublesome dates. These occasional spikes for the stand-
ard deviation does, however, go trough the roof in Sep’08-’09 and are especially
persistent during the 4th quarter of 2008. This is also the period with the highest
local volatility levels according to figure 13d, thus the market turbulence does
seem to be a factor for this method contrary to the method by Fengler (2009).

Like for the implied volatility surfaces, the smoothness of the surfaces can be
further quantified by looking at the second order derivatives - given by finite dif-
ference approximations equivalent to eqn. (45) - for both dimensions. The results
are given in figures 16 and 17.

From figures 16a, 16c, 17a and 17c it is apparent that the smoothness is far worse

77

Empirical work

Q4−2004 Q1−2005 Q2−2005 Q3−2005
0

0.1

0.2

0.3

0.4

0.5

BFHK - Local Volat il ity

Q4−2008 Q1−2009 Q2−2009 Q3−2009
0

0.1

0.2

0.3

0.4

0.5

BFHK - Local Volat il ity

Q4−2004 Q1−2005 Q2−2005 Q3−2005
0

0.1

0.2

0.3

0.4

0.5

F - Local Volat il ity

Q4−2008 Q1−2009 Q2−2009 Q3−2009
0

0.1

0.2

0.3

0.4

0.5

F - Local Volat il ity

Q4−2004 Q1−2005 Q2−2005 Q3−2005
0

0.1

0.2

0.3

0.4

0.5

GH - Local Volat il ity

Q4−2008 Q1−2009 Q2−2009 Q3−2009
0

0.1

0.2

0.3

0.4

0.5

GH - Local Volat il ity

Q4−2004 Q1−2005 Q2−2005 Q3−2005
0

0.1

0.2

0.3

0.4

0.5

FH - Local Volat il ity

Q4−2008 Q1−2009 Q2−2009 Q3−2009
0

0.1

0.2

0.3

0.4

0.5

FH - Local Volat il ity

Figure 14: Sample mean of local volatility with symmetric error bars of total size 2 x
sample standard deviations.

78

Paper I

Q4−2004 Q1−2005 Q2−2005 Q3−2005
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

AH - Local Volat il ity

Q4−2008 Q1−2009 Q2−2009 Q3−2009
−10

0

10

20

30

40

50

AH - Local Volat il ity

Figure 15: Sample mean of local volatility with symmetric error bars of total size 2 x
sample standard deviations.

for Andreasen & Huge (2011) compared to the others, just as anticipated. It is can
further be observed that, similar to the other methods, the smoothness is higher
in the maturity direction than in the forward-moneyness direction. For period
Sep’08-’09 the concept smoothness is pretty much non-existent. Thus, like for
figure 13, the method by Andreasen & Huge (2011) is removed in order to assess
the other methods.

(16b) Like for the implied volatility surface, one here see that Fengler (2009)
has the lowest values for the 2nd order derivative and therefore the highest
smoothness-level. Benko et al. (2007) get second place, while the remaining
two is a bit harder to differentiate though Fengler & Hin (2013) clearly
obtains the highest and most frequent spikes. This is consistent with the
observations made earlier regarding the waves, or curls, in the surface that
became more distinct towards the end of the period.

Generally the smoothness-level seems stable for the first half of the period
Sep’04-’05 while spikes occur more or less often spikes in the second half
for methods: Fengler & Hin (2013), Glaser & Heider (2012) and Benko
et al. (2007).

(16d) The smoothness-levels are more homogeneous for the maturity dimension.
Here, only one method, Glaser & Heider (2012), stands out by having a
significantly higher 2nd order derivative, and thus lower level of smooth-
ness. This is probably related to the locality of the method, creating a more
structured surface as noted above.

79

Empirical work

Figure 16: Sep’04-’05: Sample means of the absolute value taken of the finite difference
approximations of the 2nd order derivative wrt. forward-moneyness and maturity for the

local volatility surface.

Q4−04 Q1−05 Q2−05 Q3−05
0

1000

2000

3000

4000

5000

6000

E

[

a
b
s
(

∂
σ
lo

c
1
(κ

,τ
)

∂
κ
2

)
]

BFHK
F
AH
GH
FH

a Forward-moneyness, all methods.

Q4−04 Q1−05 Q2−05 Q3−05
0

20

40

60

80

100

120

140

160

180

200

E

[

a
b
s
(

∂
σ
lo

c
1
(κ

,τ
)

∂
κ
2

)
]

BFHK
F
GH
FH

b Forward-moneyness, all methods except Andreasen &
Huge (2011) .

Q4−04 Q1−05 Q2−05 Q3−05
0

20

40

60

80

100

120

E

[

a
b
s
(

∂
σ
lo

c
1
(κ

,τ
)

∂
τ
2

)
]

BFHK
F
AH
GH
FH

c Time to maturity, all methods.

Q4−04 Q1−05 Q2−05 Q3−05
0

2

4

6

8

10

12

14

E

[

a
b
s
(

∂
σ
lo

c
1
(κ

,τ
)

∂
τ
2

)
]

BFHK
F
GH
FH

d Time to maturity, all methods except Andreasen & Huge
(2011).

(17b) The general trend for Sep’08-’09 is more diffuse than for the previous period.
Here, none of the methods seem to be doing significantly better than the
others. Fengler & Hin (2013) still seem to be having the lowest level of
smoothness and for the first three quarters of ’09 it experiences some large
spikes.Benko et al. (2007) on the other hand experiences spikes for the 4th
quarter of ’08, though these are not as large in size. Glaser & Heider (2012)
and Fengler (2009) both lie at fluctuating levels in the bottom of the graph
and hence are the smoothest of the methods assessed.

This general trend of fluctuating levels can for this surface probably, in part,
be attributed to the fluctuating overall level for the local volatility surface
ifself, see subfigure (13d).

80

Paper I

Figure 17: Sep0809: Sample means of the absolute value taken of the finite difference
approximations of the 2nd order derivative wrt. forward-moneyness and maturity for the

local volatility surface.

Q4−08 Q1−09 Q2−09 Q3−09
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

E

[

a
b
s
(

∂
σ
lo

c
1
(κ

,τ
)

∂
κ
2

)
]

BFHK
F
AH
GH
FH

a Forward-moneyness, all methods.

Q4−08 Q1−09 Q2−09 Q3−09
0

50

100

150

200

250

300

350

E

[

a
b
s
(

∂
σ
lo

c
1
(κ

,τ
)

∂
κ
2

)
]

BFHK
F
GH
FH

b Forward-moneyness, all methods except Andreasen &
Huge (2011) .

Q4−08 Q1−09 Q2−09 Q3−09
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

E

[

a
b
s
(

∂
σ
lo

c
1
(κ

,τ
)

∂
τ
2

)
]

BFHK
F
AH
GH
FH

c Time to maturity, all methods.

Q4−08 Q1−09 Q2−09 Q3−09
0

5

10

15

20

25

30

35

E

[

a
b
s
(

∂
σ
lo

c
1
(κ

,τ
)

∂
τ
2

)
]

BFHK
F
GH
FH

d Time to maturity, all methods except Andreasen & Huge
(2011).

(17d) The increase in fluctuations also translates to the 2nd order derivatives for
the maturity direction. Though Glaser & Heider (2012) still has the overall
lowest smoothness levels, one can see that the difficulties for Benko et al.
(2007) in the 4th quarter ’08 stands out here as well - recall that this is
accordance with our eyeball observations above. Fengler & Hin (2013)
as well as Fengler (2009) obtains the smallest derivatives - thus highest
smoothness - which still lie at a higher level than for the baseline year.

Concluding: Looking at the enclosed 3D graphs of the local volatility surfaces
it becomes evident that the majority of the methods are experiencing regularity
problems in the corner regions where spikes and missing data appears. These ir-
regularities become more pronounced when fitted to the data for the stress-testing-

81

Empirical work

period. The surface by Andreasen & Huge (2011) is by far the worst and for the
latter period as good as useless. As in the case for the implied volatility sur-
face, Fengler (2009) presents a nice smooth surface without any irregularities.
Also, Fengler & Hin (2013) produced a local volatility surface without spikes or
missing values, but an irregular pattern of waves and curls that become particular
pronounced for Sep’0809.

Comparing the mean levels of these local volatility surfaces - after removing An-
dreasen & Huge (2011) - it appears that they all lie at similar levels and thus
generally produce reliable surface values. Taking a closer look at the mean levels
compared to the corresponding standard deviations for each method, it appears
that Fengler (2009) along with Glaser & Heider (2012) is the most stable method
in this respect.

The smoothness for this surface is, opposed to the implied volatility surface, ex-
periencing spikes for both Fengler & Hin (2013) and Glaser & Heider (2012) in
Sep’0405 for the forward-moneyness which becomes more pronounced in Sep’0809.
While for the maturity only Glaser & Heider (2012) deviates significantly from the
general level. Hence, it is evident that a great part of the methods are challenged
with respect to smoothness in terms of the local volatility surface. Here it must be
taken into considerations that a lot of the tricky areas has been filtered out during
the data refinement.

4.3.6 Stability across time

The robustness across time can be quantified by testing how the local volatility
function fitted for a given date performs if used X days later for pricing the sur-
face of call options. If the computed surface deviates heavily from the call surface
fitted from the data at this specific date, this would indicate that the local volatility
function is changing rapidly over time. Such an instability in the local voltility
function across time is not desirable, as it often leads to mispricings according to
practitioners.

The exact procedure for this out-of-sample testing is described in algorithm 13.
Here, Monte Carlo evaluation have been used, but it could just as well have been
solved using a finite difference solver applied to the PDE for the European call
price.

The mean of the absolute difference between the call surface computed with the
{1, 5, 20}-day old local volatility function and the call surface fitted directly to the
observed quotes are for all methods given in figure 18.

82

Paper I

Algorithm 13: Monte carlo simulation of European call price in the local
volatility model.

input: s . initial price underlying,
ti, ti+1 . daily observation dates,
σloc

1 (κ̂m, τ̂l; ti), m=1,...,M,l=1,...,L . local volatility surface,
ĉ1(κ̂m, τ̂l; ti+1), m=1,...,M,l=1,...,L . surface of call prices,
NMC . number of simulations paths.

for sim = 1 to NMC do
Set: S prev = s; τ̂prev = 0.

for l = 1 to L do
Set: ∆τ = τ̂l − τ̂

prev.

if S prev < [κ̂1; κ̂M] then
PrintOut(’Not optimal’)

κ̂m=FindClosest(S prev, κ̂),
σ = σloc

1 (κ̂m, τ̂l; ti).

Z ∼ N(0, 1),
S = S prev exp

(
1
2σ

2∆τ + σ
√

∆τZ
)
.

Payoffsim(κ̂, τ̂l) = max(S − κ̂, 0).

Set: S prev = S ; τ̂prev = τ̂l.

ĉMC
1 (κ̂, τ̂ ; ti+1) = 1

NMC

∑NMC
sim=1 Payoffsim(κ̂, τ̂).

Diff_measure= E
[
abs

(
ĉ1(κ̂, τ̂ ; ti+1) − ĉMC

1 (κ̂, τ̂ ; ti+1)
)]
.

In figure 13b one could see that the general level for the local volatility surface
was quite stable across Sep’0405. The absolute error in figures 18a-18c are small
enough (compared to the call prices) to indicate that the local volatility surfaces

83

Empirical work

Figure 18: Sample mean of absolute difference in the surfaces calibrated and simulated,
respectively.

Q4-04 Q1-05 Q2-05 Q3-05

E
[

a
bs

(

ĉ 1
(κ
,τ
)
−

ĉM
C

1
(κ
,τ
)
)
]

×10
-3

0

1

2

3

4

5

6

7

BFHK
F
AH
GH
FH

a 1d. lag - Sep’0405.

Q4-04 Q1-05 Q2-05 Q3-05

E
[

a
bs

(

ĉ 1
(κ
,τ
)
−

ĉM
C

1
(κ
,τ
)
)
]

×10
-3

0

1

2

3

4

5

6

7

BFHK
F
AH
GH
FH

b 5d. lag - Sep’0405.

Q4-04 Q1-05 Q2-05 Q3-05

E
[

a
bs

(

ĉ 1
(κ
,τ
)
−

ĉM
C

1
(κ
,τ
)
)
]

×10
-3

0

1

2

3

4

5

6

7

BFHK
F
AH
GH
FH

c 20d. lag - Sep’0405.

Q4-08 Q1-09 Q2-09 Q3-09

E
[

a
bs

(

ĉ 1
(κ
,τ
)
−

ĉM
C

1
(κ
,τ
)
)
]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 BFHK
F
AH
GH
FH

d 1d. lag - Sep’0809.

Q4-08 Q1-09 Q2-09 Q3-09

E
[

a
bs

(

ĉ 1
(κ
,τ
)
−

ĉM
C

1
(κ
,τ
)
)
]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 BFHK
F
AH
GH
FH

e 5d. lag - Sep’0809.

Q4-08 Q1-09 Q2-09 Q3-09

E
[

a
bs

(

ĉ 1
(κ
,τ
)
−

ĉM
C

1
(κ
,τ
)
)
]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 BFHK
F
AH
GH
FH

f 20d. lag - Sep’0809.

fitted for this period can be declared stable across time.

Likewise, one could see in figure 13d that the overall level for the local volatil-
ity surface was fluctuating across the period Sep’0809 and especially for the last
quarter of ’08 it experienced a steep increase. Hence, the quite large errors for
this quarter it is seen in figures 18d-18f when increasing the lag from 1 to 20 are
anticipated. The errors do, however, stabilize for the remaining part of the period.

This out-of-sample testing does therefore not seem to distinguish any of the meth-
ods. Based on the periods with a stable local volatility level, it can therefore be
concluded that all methods seem suitably stable across time.

84

Paper I

5 Did we reach our goals?

Initially the investigations carried out in this paper were motivated with the desire
to examine whether their performance are as suggested by the respective authors.
A number of criteria were therefore outlined according to which the methods were
evaluated. Below is a summary of the results obtained through the empirical ex-
periments for each of these criteria and at the end it is concluded whether an
optimal method exists among the participants.

B Accuracy: The goodness of fit have been measured by the relative distance
from the observed call prices to the corresponding grid-points on the cal-
ibrated surface. These numbers revealed that the best fit is obtained by
Andreasen & Huge (2011) which was anticipated, as this is the only inter-
polation method. In the other end of the scale, with the worst fit, is the
method by Fengler & Hin (2013) which is the only global approximation
method.

The calibrated implied volatility surfaces’ goodness of fit to the observed
quotes have also been eyeballed. Here, it appeared that the methods could
be divided in two: those who were able to capture the volatility smile for the
short maturities and those who were not. Benko et al. (2007) and Andreasen
& Huge (2011) were as the only two methods able to fit the smile for dates
when this became pronounced. This could be attributed to the fact that
Benko et al. (2007) calibrates the implied volatility surface directly and
Andreasen & Huge (2011) is an interpolation method.

B Smoothness: The smoothness level has been quantified in each direction by
a finite difference approximation of the 2nd order derivative.

For the implied volatility surface it was noted how Fengler (2009) was the
smoothest method in forward-moneyness, while Glaser & Heider (2012)
was the least smooth method for Sep’0405 in both directions. The gen-
eral smoothness-levels in Sep’0809 seemed more aligned across the various
methods.

For the local volatility surface it was noted how Andreasen & Huge (2011)
had severe problems in fitting the surface and this was especially evident in
its smoothness-curve which lay at a sky-high level compared to the other
methods. For this surface the smoothness levels fluctuates across time,
this trend seems particularly spikey for Fengler & Hin (2013) in forward-
moneyness while Glaser & Heider (2012) experience the least smoothness

85

Did we reach our goals?

for maturity.

One should note that this smoothness measure does not capture the effect of
missing values in the surface. Eyeballing of the respective surfaces reveals
that especially for the local volatility surfaces this is a significant issue for
the corner regions for all methods except Fengler (2009) and Fengler & Hin
(2013). For the local calibration methods Benko et al. (2007) and Glaser &
Heider (2012) it is evident that these corner areas coincides with areas of
the surface where no input data are available.

B Speed: The speed is measured as the calibration time for a single date. It was
noticed how Benko et al. (2007) has a relative speed compared to the others
which is inexcusably high. Fengler (2009) on the other hand spend half as
much computational time on average compared with the other methods.

B Robustness: Robustness was defined as the ability to cope with changing
input data and stability across time. The robustness with respect to changing
input data was hard to isolate due to other factors, such as the number of
input quotes which also played a role. For the local volatility surface there
were a significant trend for all the methods consisting of increased difficulty
with fitting the local volatility surface in the stress-testing-period compared
to the basis-period. Though only Andreasen & Huge (2011) seemed to
become unusable as a consequence hereof.

The stability across time was quantified by the out-of-sample tests conduc-
ted using Monte Carlo simulation. Here it was observed that a lag corres-
ponding to 20 business days only resulted in a small absolute error for all
the methods. Thus the local volatility surfaces all seem stable across time.

Our final verdict over methods are therefore as follows:

◦ Benko et al. (2007) - too slow to be used in practice,

◦ Fengler (2009) - too smooth to capture the market structure,

◦ Andreasen & Huge (2011) - the local volatility surface is useless - at least
in this setup,

◦ Glaser & Heider (2012) - large parts of the surface is obstructed due to the
local nature of the method,

◦ Fengler & Hin (2013) - bad fit to data and an irregular structure of the local
volatility surface.

We can from this conclude that the ultimate method is yet to come...

86

Paper I

A Appendix

A.1 Glaser & Heider quadratic programming problem.

min
ακ̂,τ̂

1
2

∥∥∥Φ1/2 (
Aακ̂,τ̂ − b

)∥∥∥2

2

= min
ακ̂,τ̂

1
2

∥∥∥Φ1/2Aακ̂,τ̂ − Φ1/2b
∥∥∥2

2

= min
ακ̂,τ̂

1
2

(
Φ1/2Aακ̂,τ̂ − Φ1/2b

)ᵀ (
Φ1/2Aακ̂,τ̂ − Φ1/2b

)
= min
ακ̂,τ̂

1
2

((
Φ1/2Aακ̂,τ̂

)ᵀ
Φ1/2Aακ̂,τ̂ −

(
Φ1/2Aακ̂,τ̂

)ᵀ
Φ1/2b −

(
Φ1/2b

)ᵀ
Φ1/2Aακ̂,τ̂ +

(
Φ1/2b

)ᵀ
Φ1/2b

)
= min
ακ̂,τ̂

1
2

((
αᵀκ̂,τ̂A

ᵀΦ1/2ᵀ
)
Φ1/2Aακ̂,τ̂ −

(
αᵀκ̂,τ̂A

ᵀΦ1/2ᵀ
)
Φ1/2b −

(
bᵀΦ1/2ᵀ

)
Φ1/2Aακ̂,τ̂ +

(
bᵀΦ1/2ᵀ

)
Φ1/2b

)
= min
ακ̂,τ̂

1
2

(
αᵀκ̂,τ̂A

ᵀΦAακ̂,τ̂ −α
ᵀ
κ̂,τ̂A

ᵀΦb − bᵀΦAακ̂,τ̂ + bᵀΦb
)

∗
= min
ακ̂,τ̂

1
2

(
αᵀκ̂,τ̂A

ᵀΦAακ̂,τ̂ −α
ᵀ
κ̂,τ̂A

ᵀΦb − bᵀΦAακ̂,τ̂

)
∗ : constant term removed.
This can be solved through the quadratic program:

min
ακ̂,τ̂

1
2
αᵀκ̂,τ̂ (AᵀΦA)ακ̂,τ̂ − (AᵀΦb)ᵀακ̂,τ̂.

A.2 Fengler & Hin linear inequality constraints.

• Convexity: ∂2z
∂κ2 (κ, τ) ≥ 0:

θ j1+1, j2 − θ j1, j2

ξ∗j1+1 − ξ
∗
j1

≤
θ j1+2, j2 − θ j1+1, j2

ξ∗j1+2 − ξ
∗
j1+1

j1 = 0, . . . , q1 − 2, j2 = 0, . . . , q2,

⇔
θ j1+1, j2

ξ∗j1+1 − ξ
∗
j1

−
θ j1, j2

ξ∗j1+1 − ξ
∗
j1

−
θ j1+2, j2

ξ∗j1+2 − ξ
∗
j1+1

+
θ j1+1, j2

ξ∗j1+2 − ξ
∗
j1+1
≤ 0

⇔C(1) · θ ≤ 0, for C(1) =
[
C(1)

j1

]
j1=0,...q1−2

. (46)

87

Appendix

Using notation: ∆ξ∗i = ξ∗i − ξ
∗
i−1, the C(1)

j1
’s are defined as:

C(1)
j1

=

j1,0 ··· j1,q2 j1+1,0 ··· j1+1,q2 j1+2,0 ··· j1+2,q2

j1,0
−1

∆ξ∗j1+1
0 0 1

∆ξ∗j1+1
+ 1

∆ξ∗j1+2
0 0 −1

∆ξ∗j1+2
0 0

... 0 . . . 0 0 . . . 0 0 . . . 0
j1,q2 0 0 −1

∆ξ∗j1+1
0 0 1

∆ξ∗j1+1
+ 1

∆ξ∗j1+2
0 0 −1

∆ξ∗j1+2

• Lower bounds on the first derivative: −1 ≤ ∂z

∂κ
(κ, τ):

− 1 ≤
θ j1+1, j2 − θ j1, j2

ξ∗j1+1 − ξ
∗
j1

, j1 = 0 . . . , q1 − 2, j2 = 0, . . . , q2,

∗

⇔− 1 ≤
θ1, j2 − θ0, j2

ξ∗1 − ξ
∗
0
, j2 = 0, . . . , q2,

⇔C(2) · θ ≤ 1

where

C(2) =

0,0 ··· 0,q2 1,0 ··· 1,q2 2,0 ··· q1,q2

0 1
∆ξ∗1

0 0 −1
∆ξ∗1

0 0 0 0 0
... 0 . . . 0 0 . . . 0 0 . . . 0

q2 0 0 1
∆ξ∗1

0 0 −1
∆ξ∗1

0 0 0

∗ : Due to the convexity constraint in eqn. (46).

• Upper bounds on the first derivative: ∂z
∂κ

(κ, τ) ≤ 0:

θ j1+2, j2 − θ j1+1, j2

ξ∗j1+2 − ξ
∗
j1+1

≤ 0, j1 = 0, . . . , q1 − 2, j2 = 0, . . . , q2,

∗

⇔
θq1, j2 − θq1−1, j2

ξ∗q1
− ξ∗q1−1

≤ 0, j2 = 0, . . . , q2,

⇔C(3) · θ ≤ 0

where

C(3) =

0,0 ··· q1−2,q2 q1−1,0 ··· q1−1,q2 q1,0 ··· q1,q2

0 0 0 0 −1
∆ξ∗q1

0 0 1
∆ξ∗q1

0 0
...

...
. . .

...
...

. . .
...

...
. . .

...
q2 0 0 0 0 0 −1

∆ξ∗q1
0 0 1

∆ξ∗q1

88

Paper I

∗ : Due to the convexity constraint in eqn. (46).

•Monotonicity: z(κ, τ2) ≥ z(κ, τ1), for τ2 ≥ τ1:

θ j1, j2+1 − θ j1, j2 ≥ 0, j1 = 0, . . . , q1, j2 = 0, . . . , q2 − 1,

⇔C(4) · θ ≤ 0, for C(4) =
[
C(4)

j1

]
j1=0,...q1

where

C(4)
j1

=

j1,0 j1,1 ··· j1,q2−1 j1,q2

j1,0 1 −1 · · · 0 0

j1,1 0 1 . . . 0 0
...

...
. . .

. . .
. . .

...
j1,q2−1 0 0 · · · 1 −1

.

89

Appendix

Bibliography

Andreasen, Jesper and Huge, Brian (2011). Volatility interpolation. Risk
Magazine, March, 76–79.

Benko, M. and Fengler, M. and Härdle, W. and Kopa, M. (2007). On extracting
information implied in options. Computational Statistics, 22(4), 543–553.

Björk, Tomas (2009). Arbitrage Theory in Continuous time. Oxford University
Press, 3rd edition.

Carr, Peter and Madan, Dilip B. (2005). A note on sufficient conditions for no
arbitrage. Finance Research Letters, 2, 125–130.

Coleman, Thomas F. and Li, Yuying and Verma, Arun (1999). Reconstructing the
unknown volatility function. Journal of Computational Finance, 3(2), 77–102.

Constantinides, G. M. and Jackwerth, J. C. and Savov, A. (2013). The Puzzle of
Index Option Returns. Review of Asset Pricing Studies, 3(2), 229–257.

Dupire, Bruno (1994). Pricing with a Smile. Risk Magazine, 7(1), 1–10.

Fengler, Matthias R (2009). Arbitrage-Free Smoothing of the Implied Volatility
Surface. Quantitative Finance, 9(4), 417–428.

Fengler, Matthias R and Hin, Lin-yee (2013). Semi-nonparametric estimation of
the call price surface under strike and time-to-expiry no-arbitrage constraints.

Gatheral, Jim (2006). The Volatility Surface - a practitioner’s guide. John Wiley
& Sons, 1st edition.

Gatheral, Jim and Jacquier, Antoine (2014). Arbitrage-free SVI volatility sur-
faces. Quantitative Finance, 14(1), 59–71.

Glaser, Judith and Heider, Pascal (2012). Arbitrage-free approximation of call
price surfaces and input data risk. Quantitative Finance, 12(1), 61–73.

Gope, Pijush and Fries, C (2011). Arbitrage-free Asset Class Independent Volat-
ility Surface Interpolation on Probability Space using Normed Call Prices.

Green, Peter J. and Silverman, Bernard W. (1993). Nonparametric Regression
and Generalized Linear Models: A roughness penalty approach. Taylor &
Francis Ltd.

Hentschel, Ludger (2003). Errors in Implied Volatility Estimation. The Journal
of Financial and Quantitative Analysis, 38(4), 779.

90

Paper I

Kahalé, Nabil (2004). An arbitrage-free interpolation of volatilities. Risk
Magazine, 17(5), 102–106.

Maruhn, Jan (2013). Techniques for Instantaneous Arbitrage-Free Fitting of Bid
& Ask Quotes. Conference: Global Derivatives Trading & Risk Management -
Amsterdam.

Rasmussen, Lykke (2012). Calibrating the Local Volatility Model - an implicit
approach. Master’s thesis, University of Copenhagen.

Roper, Michael (2010). Arbitrage free implied volatility surfaces. PhD thesis,
The University of Sydney.

91

Appendix

92

Paper II

Efficient Calculation of
Sentivitities

93

Paper II

1 Motivation

One of the major challenges in todays post-crisis environment is calculating the
sensitivities of various complex products for hedging and risk management. For
instance describes Savickas (2011) how financial institutions need frequent as-
sessment of a substantial set of sensitivities to manage the complex nature of CVA,
while Davidson (2015) explains how calculating a products’ sensitivity to a huge
variety of risk factors, commonly known as Greeks, is placing an ever-increasing
strain on the modelling and computational demands of issuers’ pricing and risk
models.

These sensitivities have historically been determined using finite difference ap-
proximation - in this context better known as bumping - for which the original
calculation is repeated multiple times to determine each sensitivity. However, in
the current climate, the amount of risk factors and the computational cost for the
original valuations, are in practice making it impossible to determine all sensitiv-
ities within a reasonable amount of time.

The financial industry is therefore starving for alternative approaches and has in-
creasingly been replacing bumping with algorithmic differentiation. This method
provides machine precision accuracy and a significant reduction in computational
time. An example of this is the CVA case presented in this paper for which the
speedup turns out to be in the range of 70-90% compared to bumping. This tech-
nique have been widely used within engineering disciplines for the last two dec-
ades, but was first introduced to the finance community in 2006 with the award
winning article Smoking Adjoints by Giles & Glasserman.

Depending on the context, speed might not be the only objective worth consider-
ing when looking for alternatives to bumping. Development costs, for instance,
are rather high for algorithmic differentiation. Under some circumstances it might
therefore be reasonable to consider alternatives which offer significantly lower de-
velopment costs in return for smaller speed gains. These objectives are fulfilled by
the complex-step derivative approximation (CSDA) that also, like the algorithmic
method, gives derivatives of machine precision. The author became acquainted
with this method in connection with setting up a validation framework for the al-
gorithmic implementation. But, as it will be argued later, this method turned out
to be a genuine alternative for bumping as well.

The methods: bumping, CSDA and algorithmic differentiation, have not yet been
compared in a formalized framework in academia. This paper intends to fill this

95

Motivation

gap by providing a thorough and transparent comparison of the alternatives for
deriving a set of sensitivities. This includes a validation framework which can be
used in practice to guarantee the correctness of the algorithmic implementation.

Evaluating the sensitivities of the CVA price is a case for which tremendous spee-
dups can be obtained using algorithmic differentiation. Several larger international
banks have already implemented the method for this area according to Davidson
(2015). Thus, in order to assess the power of algorithmic differentiation, the com-
parison presented in this paper is based on sensitivity calculations for the CVA
price of an 10Y20Y receiver interest rate swap entered with Adidas AG as coun-
terparty. The CVA calculation can be implemented with various levels of soph-
istication, but for this academic exercise the complexity is kept at a minimum to
keep the framework transparent and the focus on the methods compared.

Quantification of the methods is given in terms of accuracy- and run times meas-
urements. Reports of numbers like these given in the current financial literature
does frankly seem like the wild west, especially when it comes to speedups. Un-
less the reader is provided a description of how the results have been obtained,
these are in the authors opinion not of much practical use.

The results presented here are therefore accompanied by hands-on details of the
implementation. The size of the calculation are documented by the enclosed
source code, as the machine precision accuracy depends on the number of float-
ing point operations performed. Information on how the actual run time has been
measured is provided, as this can have a large impact on the speedup results.
And the memory management has been described, as memory consumption too
can have a significant impact on the performance, especially for the algorithmic
method. Furthermore, does this documentation hopefully give a sense of the de-
velopment costs connected to each of the methods assessed.

96

Paper II

2 Financial Framework

Counterparty credit risk is the risk associated with OTC derivatives which can be
assigned to the possible default of a counterparty and the associated losses. Here,
the default event occurs at a random time τ and is defined as the event where the
given counterparty "...cannot face its obligation on the payments owed to some
entity", see Brigo et al. (2013, p.47).

The price of counterparty credit risk is called Credit Value Adjustment (CVA)
which intuitively can be described as below by Brigo et al.:

...the reduction in price an investor requires in order to trade a
product with a default-risky counterparty as opposed to a default-
free one, with which the investor would pay full price.

(Brigo et al. (2013))

In the case considered here, one of the two counterparties entering the financial
contract is assumed default-free while the other is assumed to have a positive
probability of default. This assumption of a default free counterparty was widely
accepted before the financial crisis ’07 were the majority of financial institutions
where perceived as too-big-to-fail. Although this assumption no longer is real-
istic, see Brigo et al. (2013, Remark 4.1.4), it is used here - along with the list of
simplifications given below - in order to keep the theoretical framework as trans-
parent as possible.

The complete list of simplifications are:

B One default-free and one default-risky counterparty. The corresponding
CVA of the financial contract is thus unilateral.

B The exposure is independent of counterparty credit quality. The wrong- or
right way risk is therefore not accounted for.

B The exposure is assessed at contract level, netting is therefore not applied
as it only applies to counterparty-level portfolios.

B Collateral is not taken into account and neither are the funding costs.

As indicated by this list can the calculation of CVA be done with increasing levels
of sophistication and associated complexity as described in Brigo et al. (2013). In
this paper the focus is on implementing the calculation of sensitivities using the

97

Financial Framework

four methods presented below and the extensions is therefore left for future work.

Counterparty credit risk management requires evaluation of the sensitivities:

∂CVA(t,θ)
∂θ

where θ is a vector of market parameters. Currently, the most time consuming
sensitivities to calculate are for θ given by the points on the zero coupon yield
curve. This curve not only affect the exposure calculation but also the initial calib-
ration of the short rate- and intensity models. Today these sensitivities are derived
using bumping, or bump-and-revalue, which require two additional calculations
for each point on the curve. The framework presented here describes alternative
solutions for calculating these derivatives using complex-step derivative approx-
imation and algorithmic differentiation.

The financial product and corresponding models used for the CVA valuation has
been broadly adapted from Hansen & Glibstrup (2014) with further details and
adjustments added whenever needed. In the article by Hansen & Glibstrup the
CVA price is calculated across time, but in this paper will the valuation be limited
to the present time in order to keep the complexity at a minimum.

Interest rate swaps constitute the majority of instruments to
which counterparty risk pricing is typically applied.

(Brigo et al. (2013))

2.1 CVA approximation formula.
Sources: Brigo et al. (2013).

The value of a financial contract between two counterparties is in the unilateral
case calculated from the point of view of the default-free party. Let therefore
Π(t,T) be the net cash-flows of the contract between time t and expiry of the
contract T , as seen from the default-free party. The corresponding exposure at
time t is the amount the default-free party stands to loose in the event of a default
with zero recovery:

Ex(t) =
(
E
Q
t [Π(t,T)]

)+
(1)

which is the positive part of the market value at time t calculated under a risk-
neutral Q-measure.

98

Paper II

The CVA price of the contract can then be written in terms of the exposure at the
time of default, τ, under the assumptions listed in the previous section:

CVA0 = (1 − REC)Q0 {τ < T }EQ0 [D(0, τ)Ex(τ)] . (2)

Here, D(0, τ) is the default-free stochastic discount factor at time 0 for the matur-
ity τ and (1 − REC) is the loss given default rate which is a constant fraction of
the exposure that will be lost in the event of default.

This price can for practical purposes be approximated by bucketing the time of
default, τ, into a set of intervals:

(0 = t0, t1], (t1, t2], . . . , (tn−2, tn−1], (tn−1, tn = T]. (3)

The time of default, τ, in eqn. (2) is then replaced by ti whenever τ ∈ (ti−1, ti]
which gives the bucketed approximation of the CVA price:

CVA0 = (1 − REC)
n∑

i=1

Q0 {τ ∈ (ti−1, ti]}E
Q
0 [D(0, ti)Ex(ti)] . (4)

In the case presented here, the time buckets are of equal length: ti − ti−1 = δτ, and
each corresponds to a quarter: δτ = 0.25.

2.1.1 The model framework

The evaluation of the CVA approximation given in eqn. (4) has, as previously
mentioned, been widely adopted from Hansen & Glibstrup (2014). There are two
main components in the formula that must be modeled:

• Q0 {τ ∈ (ti−1, ti]}: the probability of the counterparty’s default in time bucket
(ti−1, ti]. The default of the counterparty is here modeled by the CIR intens-
ity model.

• E
Q
0 [D(0, ti)Ex(ti)]: the time t = 0 value of the expected exposure. The

financial contract here is an interest rate swap which is evaluated using a
Hull-White short rate model.

2.2 Interest Rate Swap
Sources: Hansen & Glibstrup (2014), Linderstroem (2013), Munk (2011).

99

Financial Framework

The financial contract under investigation is the forward starting interest rate swap
specified in Hansen & Glibstrup (2014). The interest rate swap is an ATM 10Y20Y
receiver which the default-free party have entered with ’Adidas AG’ as the default-
risky counterparty.
The interest rate swap (IRS) contract is characterized by:

B Position: Receiver. The position is given relative to the fixed leg, the default-
free party will thus receive a fixed rate and pay a floating rate.

B N = 100.0. The notional for the interest rate swap is the amount of which
the interest rates are calculated.

B TS = 10Y . The start date of the IRS refers to the date where the first floating
rate payment is fixed.

B TE = 30Y . The maturity date of the IRS refers to the date where the last
payment is transfered between the counterparties.

B K = R(0,TS,TE). The fixed rate is set to the par swap rate which ensures
that the present value of the fixed leg and the floating are equal, see (6). The
swap is thus ATM.

B δfloat = 0.5. Year fraction between the floating rate payments is semiannual
as for standard EUR interest swaps.

B δfix = 1.0. Year fraction between the fixed rate payments is annual as for
standard EUR interest swaps.

For each of the fixed leg payment dates:{
TS + δ f ix,TS + 2 · δ f ix, . . . ,TS + M f ix · δ f ix

}
, M f ix =

TE − TS

δ f ix ,

the default-risky counterparty pays the fixed amount:

N · δ f ix · K = N · δ f ix · R(0,TS ,TE),

to the default-free counterparty. The time t ≤ TS + δ f ix value of the fixed leg is
then given by:

Π
f ix
t = N

M f ix∑
i=1

P
(
t,TS + i · δ f ix

)
δ f ixR(0,TS ,TE),

where the discount factor, P(t,T), is the time t value of a zero coupon bond with
maturity T .

100

Paper II

For each of the floating leg payment dates:{
TS + δ f loat,TS + 2 · δ f loat, . . . ,TS + M f loat · δ f loat

}
, M f loat =

TE − TS

δ f loat ,

the default-free counterparty pays the floating amount:

N · δ f loatL
(
TS + (i − 1) · δ f loat,TS + i · δ f loat

)
, i = 1, . . . ,M f loat,

to the default-risky counterparty. Here, L(Ti−1,Ti) is the spot EURIBOR rate
between time Ti−1 and Ti, fixed at time Ti−1. The time t < TS value of the floating
leg is then given by:

Π
f loat
t =N

M f loat∑
i=1

δ f loatF
(
t,TS + (i − 1) · δ f loat,TS + i · δ f loat

)
· P

(
t,TS + i · δ f loat

)
4
=N (P (t,TS) − P (t,TE)) ,

4: reduced by the definition of the forward EURIBOR rates, F(t,Ti−1,Ti), and the
equally spaced time points Ti − Ti−1 = δ f loat, see Linderstroem (2013, p. 18) for
details.

For TS ≤ t < TS + δ f loat the value of the EURIBOR rate, L
(
TS ,TS + δ f loat

)
, has

already been fixed and the first payment in the floating leg is therefore known:

Π
f loat
t =N

[
δ f loatL

(
TS ,TS + δ f loat

)
P

(
t,TS + δ f loat

)
+ P

(
t,TS + δ f loat

)
− P (t,TE)

]
,

where the EURIBOR rate according to Brigo & Mercurio (2006, p.7) can be de-
termined as:

L
(
TS ,TS + δ f loat

)
=

1 − P
(
TS ,TS + δ f loat

)
δ f loatP

(
TS ,TS + δ f loat) .

The time t ≤ TS value of the receiver IRS, as seen from the default-free party, is
then given by:

Πreceiver
t = Π

f ixed
t − Π

f loat
t . (5)

The value for TS < t is determined using the formulas above with adjusted start
date, TS + δ, determined for each leg individually.

The fixed rate, given by the par swap rate R(0,TS ,TE), is set at time t = 0 such
that Π

f ix
0 = Π

f loat
0 :

R(0,TS ,TE) =
P(0,TS) − P(0,TE)∑M f ix

i=1 δ f ixP
(
0,TS + i · δ f ix) . (6)

101

Financial Framework

2.3 Short rate model - Hull White
Sources: Hansen & Glibstrup (2014), Munk (2011).

The expected discounted exposure term in the CVA approximation, (4), for an
interest rate swap with value given by eqn. (5):

E
Q
0 [D(0, ti)Ex(ti)] = E

Q
0

[
D(0, ti)

(
Πreceiver

ti

)+
]
,

can be evaluated using a model for the underlying stochastic short rate, r(t). Here,
the Hull-White model has been chosen due to its time varying parameter, θhw(t),
which allows for a perfect fit to the observed term structure of zero coupon bond
prices, T 7→ P∗(0,T). This feature is not available in simpler models with constant
parameters and it is particularly important in connection with pricing of derivat-
ives as pointed out by Munk.

If the model is not able to price the underlying securities (that is
the zero-coupon bonds) correctly, why trust the model prices for
derivative securities? (Munk (2011))

The short rate dynamics under the risk-neutralQ-measure in the Hull White model
are given by:

dr(t) = [θhw(t) − ahw · r(t)] dt + σhwdWQ(t), r(0) = r0, (7)

where ahw, σhw are positive constants and the time-varying function, θhw(t), is
chosen such that the model matches the observed zero coupon yield curve as de-
scribed below.

Let the observed zero coupon bond prices be given in terms of the corresponding
instantaneous forward rates:

f ∗(0,T) = −
∂ log P∗(0,T)

∂T
, f ∗(0, 0) = r(0).

The model will then match these prices if θhw(t) is chosen according to Munk
(2011, theorem. 9.3):

θhw(t) =
∂ f ∗(0, t)
∂T

+ ahw f ∗(0, t) +
σ2

hw

2ahw

(
1 − e−2ahwt

)
, θhw(0) = ahw · r(0). (8)

Notice that the zero coupon bond prices, P∗(0,T), are not directly observable in
the market and must therefore be estimated from other more liquid quotes. Thus,

102

Paper II

before the parameters of the Hull-White model can determined, the zero coupon
yield curve must initially be fitted to the market as described in section 2.5.1.

The theoretical zero coupon bond price at time t for the stochastic short rate, r, is
given by:

P(t,T) = E
Q
t

[
e−

∫ T
t r(u)du

]
. (9)

This price can in the Hull-White model, with θ chosen according to (8), be expli-
citly determined as:

P(t,T) = e−A(t,T)−B(t,T)r(t),

B(t,T) =
1
a

(
1 − e−a(T−t)

)
,

A(t,T) = − ln
(

P∗(0,T)
P∗(0, t)

)
− B(t,T) f ∗(0, t) +

σ2

4a
B(t,T)2

(
1 − e−2at

)
.

(10)

Hence, at any given future time, ti, the entire term structure: T 7→ P(ti,T), can be
generated from the short rate value r(ti). The valuation of the interest rate swap at
time ti given by eqn. (5) is thus reduced to simulation of the underlying short rate
r(ti).

The calibration of the Hull-White model is described in section 2.5.2 and involves
the valuation of a European put option written on a zero coupon bond. In the Hull-
White model the current time t = 0 price of this option with strike K, maturity Ti−1

and underlying ZCB with maturity Ti > Ti−1 is given by:

ΠZCB,PUT
0 (Ti−1,Ti,K) = KP(0,Ti−1)Φ (σP − d) − P(0,Ti)Φ(−d),

d =
1
σP

log
(

P(0,Ti)
P(0,Ti−1)K

)
+

1
2
σP,

σP = σhw

√
1 − e−2ahwTi−1

2ahw
B(Ti−1,Ti),

(11)

where Φ is the standard normal distribution function.

2.4 Intensity model - CIR
Sources: Brigo & Mercurio (2006), Hansen & Glibstrup (2014).

The counterparty’s default probability within a time bucket (ti−1, ti] in the CVA
approximation, (4), can be rewritten in terms of survival probabilities:

Q0 {τ ∈ (ti−1, ti]} = Q0 (τ > ti−1) − Q0 (τ > ti) (12)

103

Financial Framework

In this framework the default time, τ, is modeled as the time for the first jump of
a Poisson process with stochastic intensity rate λ(t). The formula for the survival
probabilities is in this case given by:

Q0 (τ > t) = E
Q
0

[
e−

∫ t
0 λ(u)du

]
which is equivalent to the zero coupon bond price with stochastic short rate λ.
This therm can thus be evaluated using a short rate model for the intensity.

The CIR model is here chosen for the intensity rate, λ, which are then governed
by the Q-dynamics:

dλ(t) = acir [bcir − λ(t)] dt + σcir

√
λ(t)dWQ(t), λ(0) = λ0 (13)

with positive constants λ0, acir, bcir, σcir. The condition 2acirbcir > σ
2
cir ensures that

the intensity remains positive.

The survival probabilities are then explicitly given by the CIR formula for the
price of a zero coupon bond with intensity process λ:

Qt (τ > T) = A(t,T)e−B(t,T)λ(t),

A(t,T) =

 2γe(acir+γ)(T−t
2)

(acir + γ)
(
eγ(T−t) − 1

)
+ 2γ

2acirbcir

σ2

B(t,T) =
2
(
eγ(T−t) − 1

)
(acir + γ)

(
eγ(T−t) − 1

)
+ 2γ

γ =

√
a2

cir + 2σ2
cir.

(14)

Since the CVA approximation, (4), is only evaluated at time t = 0 in this frame-
work, the corresponding survival probabilities can thus be evaluated using only
the initial intensity rate λ0. Hence, the dynamics given in eqn. (13) are not used
here for simulating the stochastic intensity rate at future time points t.

If CDS quotes for maturities up to T = 30Y , matching the horizon of the
interest rate swap, had been available, the survival probabilities could have been
directly stripped from these without assuming a model, as described in Brigo et al.
(2013, p.68).

But, as seen in table 3, only quotes with maturities up to T = 10Y are available
here. The CIR model is therefore used in this context as a sort of extrapolation
method through the survival probability formula given in eqn.(14).

104

Paper II

2.5 Calibrating the model framework

Calibration of the Hull-White and the CIR model to market data are implemented
as least squares optimization. Hence, nonlinear least squares problems are formu-
lated for each set of parameters and are then solved using the numerical routine
Levenberg-Marquardt given in Press et al. (2007).

2.5.1 Calibration zero coupon yield curve

Sources: Linderstroem (2013), Hansen & Glibstrup (2014).

The Hull White model is calibrated such that the theoretical zero coupon bond
prices, P(0,T), matches the corresponding prices observed in the market, P∗(0,T),
by means of the function θcir. Unfortunately these prices are not directly observ-
able in the market and an initial calibration to observed swap rates is therefore
required.

Let the zero coupon bond prices, P(0,T), be expressed in terms of their corres-
ponding continuously compounded zero coupon rate, rcont(0,T), so that:

P(0,T) = exp (−rcont(0,T) · T) .

The zero coupon yield curve is then defined by the mapping: T 7→ rcont(0,T),
and is here represented by a natural cubic spline with knot points: r∗cont(0,T) for
T ∈ Z1 = {1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30} corresponding to each observed matur-
ity given in table 1.

The zero coupon rates, r∗cont(0,T), are calibrated by calculating the theoretical
swap rates according to eqn. (6) for spot starting EUR interest rate swaps with
annual fixed payments:

R(0, 0,T) =
1.0 − P(0,T)∑T

i=1 P (0, i)
=

1.0 − exp (−rcont(0,T) · T)∑T
i=1 exp (−rcont(0, i) · i)

.

The calibration of the zero coupon yield curve is then given by the least squares
optimization problem:

min
rcont

∑
T∈Z1

(R(0, 0,T) − R∗(0, 0,T))2 , rcont = {rcont(0,T)}T∈Z1
.

where the observed quotes, R∗(0, 0,T), are given in table 1.

105

Financial Framework

Maturity Swap Rate

1 0.3680 %
2 0.3860 %
3 0.4780 %
4 0.6235 %
5 0.7915 %
7 1.1430 %

10 1.5890 %
15 2.0397 %
20 2.2131 %
25 2.2704 %
30 2.2820 %

Table 1: Swap Rates - EUR IRS.
Source: Hansen & Glibstrup (2014, table 1).

The 1-day quote given by the EONIA-rate of 0.1690%11 can afterwards be added
to the collection of fitted knot points: r∗cont(0,T), T ∈ Z∗1 = {1/365,Z1}.

The calculation of the CVA price in eqn. (4) for the IRS specified in section 2.2
includes zero coupon bond prices with maturities T ∈ {0.25, 0.5, . . . , 30}. Hence,
the full zero coupon yield curve are here obtained directly from the market quotes
and extrapolation of the cubic spline of zero coupon rates is therefore not needed.

2.5.2 Calibration Hull-White

Sources: Hansen & Glibstrup (2014), Munk (2011).

The parameters to be calibrated in the Hull-White model, for the short rate dy-
namics given in eqn. (7), are the initial value r0, the mean-reversion speed ahw and
the volatility σhw.

The initial value of the short rate process, r0, is set to the 1-day EONIA rate
of 0.00169. The estimate ahw = 0.1 is fixed in advance to avoid unrealistically
low levels as described in Hansen & Glibstrup (2014, p. 40). The volatility σhw is
calibrated to a set of observed cap quotes using the theoretical cap prices given by
the Hull-White model.

Structurally an interest rate cap is identical to the floating leg in an IRS, as it also
has a series of payments based on the floating rate, L(Ti−1,Ti), fixed at time Ti−1

11See Hansen & Glibstrup (2014, p. 39).

106

Paper II

and payed at time Ti. These individual payments are called caplets and they are
given as call options on the floating rate with strike K and expiry Ti. Thus, for
each payment date:{

TS + δ f loat,TS + 2 · δ f loat, . . . ,TS + M f loat · δ f loat
}
, M f loat =

TE − TS

δ f loat ,

the caplet is given by the payoff:

N · δ f loat
(
L
(
TS + (i − 1) · δ f loat,TS + i · δ f loat

)
− K

)+
, i = 1, . . . ,M f loat.

These caplets are reformulated in various textbooks12 as the price of a European
put option with expiry TS + (i − 1) · δ f loat and strike 1

1+δ f loatK , written on a zero-
coupon bond with maturity TS + i · δ f loat. Thus, the current time t = 0 value of the
caplets are given by:

Π
caplet
0 (TS + (i − 1) · δ f loat,TS + i · δ f loat,K)

= N(1 + δ f loatK) · ΠZCB,PUT
0

(
TS + (i − 1) · δ f loat,TS + i · δ f loat,

1
1 + δ f loatK

)
,

which can be evaluated in the Hull-White model using the explicit formula in
eqn. (11).

The cap is then given by a sum of the caplets and has time t = 0 value given by:

Π
cap
0 (TS ,TE,K) =

M f loat∑
i=1

Π
caplet
0 (TS + (i − 1) · δ f loat,TS + i · δ f loat,K) (15)

= N(1 + δ f loatK)
M f loat∑

i=1

ΠZCB,PUT
0

(
TS + (i − 1) · δ f loat,TS + i · δ f loat,

1
1 + δ f loatK

)
.

The observed quotes used for the calibration, given in table 2, are spot starting
caps with semi-annual payments, δ f loat = 0.5, on the EURIBOR rate. By conven-
tion, the first caplet is disregarded for a spot starting cap and the start date is thus
set to TS = 0.5. The quotes are given in terms of their ATM strike level which is
defined as:

KAT M
0 (TS ,TE) =

P(0,TS) − P(0,TE)∑M f loat

i=1 δ f loatP(0,TS + i · δ f loat)
.

12See for instance Munk (2011, p.165).

107

Financial Framework

Maturity ATM Strike Price (bps)

3 0.49 % 44
4 0.65 % 95
5 0.83 % 165
6 1.01 % 249
7 1.19 % 343
8 1.36 % 443
9 1.50 % 545

10 1.64 % 649
12 1.85 % 854
15 2.07 % 1140
20 2.23 % 1556
25 2.28 % 1913
30 2.29 % 2233

Table 2: Observed ATM Strikes and Prices for spot starting EUR caps.
Source: Hansen & Glibstrup (2014, table 2).

The calibration of the volatility parameter in the Hull-White model, σhw, is then
given by the least squares optimization problem:

min
σ

∑
T∈Z2

(
Π

cap
0

(
0.5,T,KAT M

0 (0.5,T)
)
− Π

∗ cap
0

(
0.5,T,K∗ AT M

0

))2
,

where Z2 is the set of maturities for the observed quotes, Π
∗ cap
0

(
0.5,T,K∗ AT M

0

)
,

given in table 2. The volatility parameter obtained as the solution to this optimiz-
ation problem is given by:

σhw = 0.0112472.

2.5.3 Calibration CIR
Sources: Brigo et al. (2013), Hansen & Glibstrup (2014).

The parameters to be calibrated in the CIR model for the intensity rate dynamics,
given in eqn. (13), are the initial value λ0 and the parameters acir, bcir, σcir.

The volatility parameter, σcir, is in Hansen & Glibstrup (2014) shown to have a
minimal effect on the survival probability. The value has therefore been estimated
from S&P-data13 in order to achieve a stabile result: σ̃cir = 0, 0923. The remain-
ing parameters λ0, acir, bcir are calibrated to a set of observed CDS quotes, with

13Details on the estimation is given in Hansen & Glibstrup (2014, sec. 5.4.2).

108

Paper II

the defaultable counterparty Adidas AG as reference entity, using the theoretical
fair CDS premium evaluated in the CIR intensity model.

Credit Default Swaps (CDS) protects the buyer against default of the reference
entity between time TS and TE. The protection buyer will in the event of default
receive the Loss Given Default, (1−REC) ·N, from the protection seller. In return
the buyer pays periodically a fixed amount, N ·C, to the seller until either default,
τ, or expiry, TE.

Let in the following TS = 0, as in table 3, so that the payment dates for the fixed
payments are given by:

{
δ, 2 · δ, . . . ,MCDS · δ

}
with MCDS = TE/δ. Assume that if

the default occurs between to successive payment dates, τ ∈ ((i − 1) · δ, i · δ], the
protection buyer must still pay the premium for the entire period at time i · δ. The
value of the premium leg can then be derived as:

Π
prem
0 (TE) = N ·C · δ

MCDS∑
i=1

P(0, i · δ)Q0(τ > i · δ),

The protection leg has one payment at the event of default, τ, if this occurs before
maturity, TE. If the default occurs between to payment dates, τ ∈ ((i − 1) · δ, i · δ],
the LGD amount is assumed not to be paid until the end of the period i · δ. The
value of the protection leg can then be derived as:

Π
protect
0 (TE) = N · (1 − REC)

MCDS∑
i=1

P(0, i · δ) (Q0(τ > (i − 1) · δ) − Q0(τ > i · δ)) .

The CDS quotes are given in terms of their fair premium, C(0,TE), which similar
to the par swap rate ensures that present value of the two legs are equal:

C(0,TE) =
(1 − REC)

δ

∑MCDS

i=1 P(0, i · δ) (Q0(τ > (i − 1) · δ) − Q0(τ > i · δ))∑MCDS

i=1 P(0, i · δ)Q0(τ > i · δ)
(16)

The observed quotes used for the calibration are in table 3. The payment peri-
ods for these are quarterly, δ = 0.25, and the recovery rate is set to a constant
REC = 0.4.

The calibration of the parameters λ0, acir, bcir in the CIR model is then given by
the least squares optimization problem:

min
λ0,acir ,bcir

∑
T∈Z3

[C(0, 0,T) −C∗(0,T)] ,

109

Financial Framework

Maturity Annual CDS premium (bps)

1 104.1
2 129.1
3 154.3
4 191.5
5 229.5
7 253.1

10 271.1

Table 3: Observed CDS (fair) premiums with Adidas AG as reference entity.
Source: Hansen & Glibstrup (2014, table 3).

where Z3 is the set of maturities for the observed premiums, C∗(0,T), given in
table 3. The parameters obtained as the solution to this optimization problem is
given by:

λ0 = 0.00848787, acir = 0.250464, bcir = 0.0753663.

2.6 Discretization

In order to evaluate the CVA approximation given in eqn. (4), the underlying short
rate must be simulated and the expectation of the discounted exposure estimated.
The scheme and Monte Carlo estimate used for this evaluation are described in
this section.

2.6.1 Hull-White: Simulating the Short Rate Process

Sources: Brigo & Mercurio (2006), Glasserman (2004).

Let the short rate process, r, be modeled by the Hull-White Q-dynamics given in
eqn. (7) with function θhw defined in eqn. (8). Conditional on the value at time
ti−1, the value at time ti > ti−1 is normally distributed with mean and variance
given by14:

E
Q
ti−1

[r(ti)] = r(ti−1)e−ahwδ + α(ti) − α(ti−1)e−ahwδ,

VarQti−1
[r(ti)] =

σ2
hw

2ahw

(
1 − e−2ahwδ

)
,

α(ti) = f ∗(0, ti) +
σ2

hw

2a2
hw

(
1 − e−ahwti)2

, δ = ti − ti−1.

14See Brigo & Mercurio (2006, eqn. 3.37) for details on the conditional distribution for r(t).

110

Paper II

An exact simulation scheme can be obtained by inserting these explicit expres-
sions in Glasserman (2004, eqn. (3.45)):

r(ti) = r(ti−1)e−ahw·δ + α(ti) − α(ti−1)e−ahw·δ + σhw

√
1 − e−2ahw·δ

2ahw
· Zi, (17)

where Zi ∼ N(0, 1) and δ = ti − ti−1 is the constant step size. This scheme is exact
as it does not entail a discretization error, opposed to the simpler Euler scheme
used in Hansen & Glibstrup (2014):

r(ti) = r(ti−1) + [θhw(ti−1) − ahw · r(ti−1)] δ + σhw

√
δZi.

2.6.2 CVA: Simulating

The valuation of the CVA approximation, (4), is to a great extend dependent on
the preliminary assumption of independence between the discounted exposure and
the credit quality of the counterparty. This is the exact assumption that allows for
a separate valuation of the two terms marked below:

CVA0 = (1 − REC)
n∑

i=1

Q0 {τ ∈ (ti−1, ti]}︸ ︷︷ ︸
1 Credit model

E
Q
0 [D(0, ti)Ex(ti)]︸ ︷︷ ︸

2 Short rate model

.

Here, the RHS in the time bucket, (ti−1, ti], is given by: ti = i · δτ for i = 1, . . . , n
where t0 = 0, tn = T and δτ is the constant step size set to 0.25. The maturity, T ,
is for the 10Y20Y interest rate swap given by T = 30Y .

1 This default probability is evaluated as the difference between the corres-
ponding survival probabilities as described in eqn. (12).

Each of these survival probabilities, Q0 (τ > t), are evaluated according to a
credit model for the counterparty, here given by the CIR model calibrated
to CDS quotes with Adidas AG as reference entity.

Thus, for each time bucket this term can be evaluated using the explicit
formula for the survival probability given in eqn. (14.)

2 The expection of the discounted exposure is evaluated using a model for the
stochastic short rate, here given by the Hull-White model calibrated to a set
of cap quotes.

The exposure defined in eqn. (1) is for the interest rate swap given by:

Ex(ti) =
(
E
Q
t [Π(ti,T)]

)+
=

(
Πreceiver

ti

)+

111

Financial Framework

The time ti price of the receiver swap can be evaluated by the explicit for-
mula given in eqn. (5), with r(ti) provided as input. The fixed rate for the
interest rate swap is given by the par swap rate, calculated according to
eqn. (6) for time t = 0.

The discount factor, D(0, ti), is given in terms of the short rate:

D(0, ti) = e−
∫ ti

0 r(s)ds M≈ e−
∑i

j=1
r(t j)+r(t j−i)

2 δτ (18)

M: the integral
∫ ti

0
r(s)ds is approximated by a Riemann sum using the mid-

point of the short rates.

The total expected discounted exposure term can then be estimated using
Monte Carlo simulation:

E
Q
0 [D(0, ti)Ex(ti)] ≈

1
M

M∑
m=1

e−
∑i

j=1
r(m)(t j)+r(m)(t j−i)

2 δτ
(
Π

(m),receiver
ti

)+
. (19)

where M is the number of sample paths. See Glasserman (2004) for details
on Monte Carlo estimation.

The CVA evaluation flow is illustrated in figure 1 where each of the short rate
sample paths are depicted as a function of ti for i = 1, . . . , n. The vertical dashed
lines indicate that for each time bucket, the terms 1 and 2 must be evaluated.
Pseudocode for the CVA calculation are given in algorithm 1.

Algorithm 1: Pseudocode for the CVA calculation for an IRS.
input: n: no. of time buckets,

N: no. of sample paths,

CVA0 B 0.0;
for ti B t1 to tn (= T) do

sum B 0.0;
for m B 1 to N do

r(m)(ti) ∼ simulate according to eqn. (17).
D(m)(0, ti) ∼ update the Riemann sum according to eqn. (18).
Π

(m),receiver
ti ∼ calculate according to eqn. (5).

sum B sum + D(m)(0, ti)
(
Π

(m),receiver
ti

)+

1 : EQ0 [D(0, ti)Ex(ti)] B sum
M .

2 : Q0 {τ ∈ (ti−1, ti]} ∼ calculate according to eqn. (12) and eqn. (14).
CVA0 B CVA0 + Q0 {τ ∈ (ti−1, ti]} · E

Q
0 [D(0, ti)Ex(ti)] .

CVA0 B (1 − REC) ·CVA0.

112

Paper II

t
0
=0 t

1
... t

i
... t

n
=T

S
h
o
rt

 R
a
te

 -
 r

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Figure 1: Illustration of CVA evaluation flow.

2.7 The derivatives

Counterparty credit risk management requires knowledge of the sensitivities wrt.
market factors, θ, as mentioned in the beginning of sec. 2. Here, the sensitivities
of interest are given by the derivatives of the CVA price wrt. points on the zero
coupon yield curve.

Recall from sec. 2.5.1 that the zero coupon yield curve is given in terms of the
continuously compounded zero coupon rates, T 7→ r∗cont(0,T), fitted to observed
swap rates for maturities T ∈ Z∗1 = {1/360, 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30}. This
curve is given as input to both the Hull-White and the CIR model, which in turn
are used for calculating the CVA price. This data flow is illustrated in figure 2.

Hence, the sensitivities of the CVA price for θ =
{
r∗cont(0,T)

}
T∈Z∗1

are in this setting
given by:

∂CVA0(θ)
∂θ

= (1 − REC)
n∑

i=1

(
∂ (Q0 {τ ∈ (ti−1, ti]})

∂θ︸ ︷︷ ︸
1 CIR model

·E
Q
0 [D(0, ti)Ex(ti)]

+
∂
(
E
Q
0 [D(0, ti)Ex(ti)]

)
∂θ︸ ︷︷ ︸

2 Hull-White model

·Q0 {τ ∈ (ti−1, ti]}
)
.

(20)

The results presented in section 5 are given for two cases: one where 1 and 2 in-

113

Financial Framework

{
r∗cont(0,T)

}
T∈Z1

Hull White
model

CIR model

E
Q
0 [D(0, ti)Ex(ti)]

Q0 {τ ∈ (ti−1, ti]}

CVA0

Figure 2: Structure of the dependence between input factors, θ =
{
r∗cont(0,T)

}
T∈Z∗1

, and
the two terms used for the calculation of the CVA0 price.

clude the calibration process for the respective models, and one where they do not.

The derivative of the expected discounted exposure, 2 , is here given by the de-
rivative of the Monte Carlo estimator given in eqn. (19). In order to later evaluate
this term using algorithmic differentiation, it is initially reformulated using the
pathwise sensitivity estimator:

∂EQ0 [D(0, ti)Ex(ti)]
∂θ

≈
1
M

M∑
m=1

∂

[
e−

∑i
j=1

r(m)(t j)+r(m)(t j−i)
2 δτ

(
Π

(m),receiver
ti

)+
]

∂θ
. (21)

This estimator stems from interchanging the differentiation and the (implicit) in-
tegral on the LHS under Glasserman’s rule of thumb: the pathwise method applies
when the payoff is continuous in the parameter of interest. This condition is ful-
filled in this basic setup, as the zero coupon rates are represented by a cubic spline
continuous in the first order derivatives.

114

Paper II

3 Derivatives Framework
Sources: Griewank & Walther (2008), Homescu (2011).

There are several ways for obtaining the first order derivatives of a function in
practice. Assume in the following that the original function F has already been
translated into an algorithm that can be implemented as a computer program. The
aim is then to determine the derivatives of function F just as efficiently and accur-
ately as this original algorithm.

In this section an overview of three main approaches for obtaining derivatives:
symbolic, numerical and algorithmic, are provided along with a list of pros and
cons. Subsequently, three specific methods: finite-difference approximation, complex-
step derivative approximation and algorithmic differentiation, are described in-
cluding both theoretical and practical details.

Let in the following F be a vector-valued function, F : D ⊂ Rn 7−→ Rm, for which
the Jacobian is a well-defined matrix-valued function onD:

F′(x) =

∂F1
∂x1

∂F1
∂x2

· · ·
∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

· · ·
∂F2
∂xn

...
...

...
∂Fm
∂x1

∂Fm
∂x2

· · ·
∂Fm
∂xn

 ∈ R
m×n. (22)

Here, F is defined of as a subpart of the overall CVA algorithm, as illustrated by
figure 3, for input parameters θ, intermediate variables x, y and final outputs Π.

θ · · · x F y · · · Π

Figure 3: Structure of algorithm.

B Symbolic evaluation is the classical method known from differential cal-
culus where explicit formulas for the derivatives are formulated using the
elementary rules of differentiation. Thus, by definition this derivative is
accurate opposed to the numerical approximations discussed below.

Regarding financial products, the model dynamics and/or the payoff func-
tions are in general too complex for nice, closed-form expressions to be
derived by hand within a reasonable amount of time. Further, this method
does not take advantage of the algorithm already translated for the original
calculation, and is not in itself designed for an efficient execution.

115

Derivatives Framework

This method, in its original form, is therefore disregarded for this setup.

B Numerical evaluation is here defined as approximation of derivatives using
Taylor expansion. In the following sections two different methods for nu-
merical evaluation is presented: the well-known finite difference approxim-
ation and the complex-step derivative approximation described in Homescu
(2011) and Martins et al. (2003).

Both these approximations are subject to truncation error due to their con-
struction. But only the finite difference method is also subject to cancella-
tion error15 which limits the overall accuracy that can be obtained using this
method.

The implementation for both methods consists of no, or minor, adjustments
to the original algorithm. In return, the corresponding computational costs
for these numerical methods are relatively high.

B Algorithmic evaluation consists of applying the chain rule to a series of de-
rivatives by propagating the original algorithm either forward or in reverse.

These derivatives are determined for each statement, or intermediate vari-
able, in the original algorithm using the elemental rules of differentiation.
This is similar to the procedure described for the symbolic method, only
here the expressions being differentiated are much simpler fractions of the
overall calculation.

...we may view symbolic differentiation as a fairly close re-
lative with whom we ought to interact more than we usually
do... (Griewank & Walther (2008, p.33))

The symbolic expression for each of the derivatives are immediately eval-
uated as any other intermediate variable in a computer program. Thus, the
chain rule is in practice applied to a series of numerical values rather than
symbolic expressions. This yields derivatives with working accuracy as
only the floating point operations induce roundoff errors.

For the forward mode, an additional line of code, representing the interme-
diate derivative, are added before every active variable16. For the reverse,

15Cancellation error is defined as the round-off error occurring when two finite-precision values
of comparable size are subtracted.

16The concept of active variables are described in detail in section 4.2.

116

Paper II

or adjoint, mode a return sweep is added at the end of the original evalu-
ation, in which the derivatives are evaluated by backward propagation of the
original code.

The computational cost for the forward mode increases with the number of
parameters, θ, as for the numerical methods above. The adjoint mode on
the other hand, increases with the number of final output values, Π.

A summary of the features for the methods mentioned above are given in table 4.
Remark that both the numerical- and the algorithmic methods calculate the greeks
as a by-product of the original valuation, as Davidson (2015) beautifully puts it.
Thus, for these methods an additional evaluation to obtain the original values is
not necessary.

Method Pros Cons

Finite Difference Approximation: Intuitive. Accuracy depends on the bump-size,
- Truncation errors.
- Cancellation errors.

No additional programming. Computationally expensive,
- dependent on #inputs.

Complex-Step Approximation: Machine precision. Non-intuitive.
Handles discontinuous functions.
Minimum of additional programming. Computationally expensive,

- dependent on #inputs.

Algorithmic Differentiation Machine Precision. Considerable amount of additional
programming.

-Forward: Intuitive.
Comp. cost independent of #outputs Comp. cost dependent on #inputs.

-Adjoint:
Comp. cost independent of #inputs. Comp. cost dependent on #outputs.

Non-intuitive.

Table 4: Summary of features for alternative derivatives methods (1st order derivatives).

Throughout this section, examples of how these methods are applied in practice
will be provided for a function, F, defined as the 1-step simulation of the short
rate given in eqn. (17). The examples determine the derivative of the simulated
short rate, r(ti), wrt. the Hull-White parameter σhw.

Compared to figure 3, the input parameter for the overall CVA calculation, θ, is
for this example given by the vector of zero coupon rates,

{
r∗cont

}
. The input vector

to F of intermediate variables, x, is given by: the Hull White parameters, σhw, ahw,
the previous short rate, r(ti−1), and the zero coupon rates,

{
r∗cont

}
. The output vector

for F of intermediate variables, y, is given by the simulated short rate, r(ti). Last,
the final output, Π, is a scalar given by the CVA price.

117

Derivatives Framework

The pseudo code for the function is provided in algorithm 2 below. Remark, the
simulation calls a sub-function, α(·), which is considered as input to the function.
Hence, this sub-function and its derivatives are assumed to be handled elsewhere
in the code.

Algorithm 2: 1-step simulation of the short rate in the Hull White model.
input:

σhw, ahw, . Hull White model parameters,{
r∗cont

}
, . zero coupon rates,

r(ti−1), . Short rate at the previous time ti−1.
∆σ, . Bump size.
α(·), . Sub-function.

v1 B α
(
ti−1, σhw, ahw,

{
r∗cont

})
;

v2 B α
(
ti, σhw, ahw,

{
r∗cont

})
;

v3 B N(0, 1);
v4 B e−a·(ti−ti−1);

v5 B
1 − e−2a·(ti−ti−1)

2a
;

r(ti) B r(ti−1) · v4 + v2 − v1 · v4 + σhw
√

v5 · v3;

118

Paper II

3.1 Finite Difference Approximation

Sources: Glasserman (2004), Griewank & Walther (2008).

Finite difference methods are heavily used in the finance industry, both for solving
pricing PDE’s and, as here, for determining a set of sensitivities, the Greeks. In
connection with the latter, this method is often referred to as bumping or bump-
and-revalue. The methods widespread use for determining derivatives of financial
products can mainly be ascribed its simplicity, and the fact that no additional de-
velopment is needed for the implementation. The downside to this, is a poor
accuracy of the approximated values which are subject to both truncation- and
cancellation errors.

We can construct finite difference approximations of the derivat-
ives of a function by expressing the derivative as a linear com-
bination of the function evaluated at a number of adjacent points.
By expanding the function evaluations in Taylor series, we can
determine the coefficients of the linear combination such that the
derivative we seek is expressed with any desired order of accur-
acy. (Tavella & Randall (2000, sec.3))

The finite difference approximation of a derivative is determined by a scheme,
this is a specification of the linear combination of function values referred to in
the quote by Tavella & Randall. In this context, the main difference between the
schemes is the accuracy of the generated derivative approximation.

The scheme most commonly used for first order derivatives is the central differ-
ence scheme. Let in the following x(θ) be notation for the dependence between
input x and the vector of parameters θ. Then the derivative of function F wrt. a
parameter of interest, θi, is for this scheme given as the divided difference:

∂F (x(θ))
∂θi

≈
F (x(θ + ∆θei)) − F (x(θ − ∆θei))

2∆θ

. (23)

where ∆θ is the bump and ei is the i’th unit vector such that only the i’th parameter
in θ is bumped. Hence, in practice the derivative is approximated by running the
original calculation two additional times, one for each of the bumped set of para-
meters. An example of this is given in algorithm 3.

The finite difference approximation can thus be obtained using only the original

119

Derivatives Framework

evaluation procedure already implemented and therefore has no additional devel-
opment cost. But, as one might imagine, this procedure becomes computationally
costly when there are p parameters of interest instead of just one:

T IME
{

F (x(θ)) ; p ×
∂F (x(θ))

∂θ

}
= (1 + 2p) · T IME {F (x(θ))} , (24)

where T IME is a relative measure for the run time.

The computational cost could be reduced to (1 + p) · T IME {F (x(θ))} if a one-
sided difference scheme was chosen instead. But Taylor expansion show17 that
the accuracy of a one-sided scheme is only O(∆θ), opposed to O

(
∆2
θ

)
for the cent-

ral scheme. This significant difference in accuracy is the reason why the central
difference scheme, in spite of its computational cost, is still preferred.

3.1.1 Working the method

Evaluating the derivatives of the CVA calculation presented in this framework
requires consideration of two practical issues:

B The bump-size ∆θ - the size of the bump has a significant impact on the
accuracy of the generated finite difference estimate. The size has opposing
effects on the truncation error and the cancellation error, respectively.

The accuracy of order O
(
∆2
θ

)
suggests to choose ∆θ as small as possible

in order to reduce the truncation error to a minimum. But when ∆θ be-
comes too small, the values subtracted become too close, F (x(θ + ∆θei))) ≈
F (x(θ − ∆θei))), in which case the computers finite-precision representation
results in roundoff errors, or in this context cancellation errors. Hence, the
step size cannot be too small, as the cancellation error then becomes dom-
inant.

In practice, the optimal step size is often approximated by running a series
of initial tests or, as here, fixed in advance at the commonly used level ∆θ =

10−4.

B Monte Carlo estimate - the original CVA calculation includes the Monte
Carlo simulated values defined in eqn. (19). In this case, the variance of the
finite difference approximation can be reduced significantly by using the
same random variables, Z(m)

i , for both calculations: CVA0(θ + ∆θei)) and
CVA0(θ − ∆θei)). Further details on this subject are given in Glasserman
(2004, sec 7.1.1).

17See Glasserman (2004, eqn. (7.6)) for details.

120

Paper II

Algorithm 3: Bumping of 1-step simulation of the short rate.
input: σhw, ahw, . Hull White model parameters,{

r∗cont
}
, . zero coupon rates,

r(ti−1), . Short rate at the previous time ti−1.
∆σ, . Bump size.
α(·), . Sub-function.

for σbump B {σhw ± ∆σ} do

v1 B α
(
ti−1, σ

bump, ahw,
{
r∗cont

})
;

v2 B α
(
ti, σ

bump, ahw,
{
r∗cont

})
;

v3 B N(0, 1);
v4 B e−a·(ti−ti−1);

v5 B
1 − e−2a·(ti−ti−1)

2a
;

r(ti)±∆σ B r(ti−1) · v4 + v2 − v1 · v4 + σbump√v5 · v3;

∂r(ti)
∂σhw

B
r(ti)+∆σ − r(ti)−∆σ

2∆σ

; . F.D. approx of the derivative.

121

Derivatives Framework

3.2 Complex-Step Derivative Approximation
Sources: Martins et al. (2003).

The complex-step estimate can be thought of as a relative to the finite differ-
ence estimate, for which second order accuracy and increased robustness can be
achieved while eliminating the cancellation error. The implementation requires
a minimal amount of development effort and in return reduces the computational
cost compared to bumping.

Despite the obvious advantage of eliminating the cancellation error, this method is
not really used within the field of financial mathematics, and some might not even
be familiar with the technique. The estimate can be derived either using Taylor
expansion, as in Homescu (2011), or using logical reasoning, as in Martins et al.
(2003, sec. 2.1). Here, the latter is repeated for completeness.

Let F(θ) be shorthand notation for F (x(θ)) where θ for ease of notation is given as
a scalar. Let furthermore Fcplx be a complex-valued function of complex variables,
then Fcplx can by definition be written as:

Fcplx
(
θcplx

)
= Freal

(
θcplx

)
+ iF imag

(
θcplx

)
, θcplx = θreal + iθimag,

where Freal and F imag both are real-valued functions. Assume that F imag
(
θcplx

)
= 0

for complex variables with θimag = 0 such that F(θ) can be represented using this
function.

Now, if Fcplx is complex differentiable the Cauchy-Riemann equations reads:

∂Freal

∂θreal =
∂F imag

∂θimag

∂Freal

∂θimag = −
∂F imag

∂θreal .

The first of these equations can be rewritten using the definition of a derivative for
the RHS:

∂Freal

∂θreal = lim
ε→0

F imag
(
θreal + i

(
θimag + ε

))
− F imag

(
θreal + iθimag

)
ε

,

where ε is a real number. Here, θimag = 0 by definition as θcplx is a representation of
the real-valued θ. Then according to the assumption above F imag

(
θreal + iθimag

)
=

0. Thus, the expression can be reduced to:

122

Paper II

∂F
∂θ
≈

F imag
(
θreal + iε

)
ε

=
Im

[
Fcplx

(
θreal + iε

)]
ε

, (25)

which is the complex-step derivative approximation. As the finite difference ap-
proximation in eqn. (23), this method can too be used to determine the derivative
for a vector parameter, θ, wrt. one of the elements, θi.

The complex-step estimator is implemented by initially identifying all active vari-
ables throughout the algorithm. Active variables are defined as intermediate vari-
ables directly derived from the input parameter of interest, θi, or derived from
other intermediate variables dependent on this parameter18. These active variables
are then replaced by their complex counterparts and, if necessary, the correspond-
ing operators are replaced as well. The computation can then be initialized by
bumping the imaginary part of the parameter of interest: θimag

i = ε. Once the
evaluation has terminated, the derivatives, along with the original values, can be
retrieved from the output using eqn.(25):

F (x (θ)) = Re
[
Fcplx

(
x
(
θreal + iεei

))]
,

∂F (x (θ))
∂θi

=
Im

[
Fcplx

(
θreal + iεei

)]
ε

.

An example of this application is given in algorithm 4 at the end of this section.

...the complex-step method carries the derivative information in
the imaginary part of the variables.

(Martins et al. (2003, sec.2.4))

The assumption, that Fcplx is complex differentiable, is ensured in practice by re-
definition of essential operators:

B Relational operators, ≥ > ≤ <, used for conditional statements are in this
context defined by comparing only the real part of the complex variables.
This ensures that the complex computation follows the same evaluation
trace as the original calculation.

B Minimum and maximum functions relies on the relational operators and must
therefore also be redefined such that only the real part of the arguments are
compared.

18See section 4.2 for further details on active and passive variables.

123

Derivatives Framework

B The absolute value are redefined such that the sign of the imaginary part
only depends on the sign of the real part19:

abs(x + iy) =

−x − iy, if x < 0
x + iy, if x ≥ 0.

Like for the finite difference approximation, the accuracy of this estimator is de-
termined using Taylor expansion. The derivation in Martins et al. (2003, sec. 2.1)
show that the estimate is second order accurate, O

(
ε2

)
, as the central finite differ-

ence scheme.

The computational cost of the derivatives, compared to the original calculation,
is difficult to put on a general formula like the one in eqn.(24), as it depends on
the number of complex operations needed. The numbers in Martins et al. (2003,
table II) suggests that this cost could potentially be significantly higher than for
the finite difference approximation. However, the cost increases linearly with the
number of parameters as for the finite difference approximation.

Robustness was also mentioned in the introduction as a characteristic of the complex-
step approximation. This statement refers to the processing of functions contain-
ing a discontinuity point. The finite-difference method gives incorrect estimates if
the point of evaluation are within a ∆θ-distance of the discontinuity location. The
Complex-step method, on the other hand, is correct up to the discontinuity loca-
tion and even at the discontinuity returns a valid one-sided derivative, see Martins
et al. (2003, sec. 2.3).

3.2.1 Working the method

B The bump-size ε - the size of the imaginary bump is what really sets this
method apart from the finite difference approximation.

...the main advantage of this method in comparison with fi-
nite differencing: there is no need to compute a given sens-
itivity repeatedly to find out the optimal step that yields the
minimum error in the approximation.

(Martins et al. (2003, sec.5))

19The argument for this re-definition can be found in Martins et al. (2003, sec. 2.3).

124

Paper II

Remark that the complex-step derivative in eqn. (25) does not contain a
difference and is therefore not subject to cancellation errors. Thus, the trun-
cation error can be limited to a minimum by choosing the bump-size, ε,
sufficiently small. There is a lower limit though, as ε must be big enough to
be represented by a finite-precision double.

In the following computations the imaginary step size is set to the com-
monly used constant ε = 10−20.

B Implementation - the development effort regarding the implementation is
limited to changing the data type for all active variables and if necessary the
corresponding operators listed above.

As mentioned above, Active variables are defined as intermediate variables
directly derived from the input parameter of interest, θ, or derived from
other intermediate variables dependent on this parameter. Passive variables
are intermediate variables which are independent of the parameter of in-
terest.

One could be tempted implement the method by brute force, i.e. to change
all doubles in the algorithm to complex counterparts. But, as complex op-
erations are more expensive than regular, this would induce an increase in
computational cost.

125

Derivatives Framework

Algorithm 4: CSDA of 1-step simulation of the short rate.
input: σhw, ahw, . Hull White model parameters,{

r∗cont
}
, . zero coupon rates,

r(ti−1), . Short rate at the previous time ti−1.
ε, . Bump size.
α(·), . Sub-function.

Set σcplx
hw = σhw + iε.

. Set active variable to a complex number with bumped
imaginary part.

vcplx
1 B α

(
ti−1, σ

cplx
hw , ahw,

{
r∗cont

})
;

vcplx
2 B α

(
ti, σ

cplx
hw , ahw,

{
r∗cont

})
;

. Passive, not complex.
v3 B N(0, 1);
v4 B e−a·(ti−ti−1);

v5 B
1 − e−2a·(ti−ti−1)

2a
;

r(ti)cplx B r(ti−1) · v4 + v2 − v1 · v4 + σ
cplx
hw
√

v5 · v3;

∂r(ti)
∂σhw

B
Im

[
r(ti)cplx

]
ε

. . CSDA

126

Paper II

3.3 Algorithmic Derivatives
Sources: Griewank & Walther (2008, ch. 2).

Algorithmic differentiation takes a function, F, formulated as an algorithm as
starting point for the evaluation of the derivatives. This is corner stone of al-
gorithmic differentiation, it cannot be described from an isolated mathematical
viewpoint, one must take the implementation details into account simultaneously.

An algorithm is defined as a recipe, specifying the explicit steps involved in eval-
uating the formula for F as a computer program, see algorithm 2 for an example.
Translating a formula into an algorithm involves turning it into a sequence of
assignments that must be executed in a certain order, as Griewank & Walther
phrases it. Let the sequence of intermediate variables for the evaluation of F be
given by:

[v1−n, . . . , v0︸ ︷︷ ︸
x

, v1, v2, . . . , vl−m−1, vl−m, vl−m+1, . . . , vl︸ ︷︷ ︸
y

]

where x ∈ Rn is the vector of input variables and y ∈ Rm is the vector of output
variables.

All computer programs are essentially build from a composition of elemental
functions such as the basic arithmetic operations: +, −, ∗, \, and the intrinsic
functions: exp(·), log(·), sqrt(·), etc. Assuming that F is formulated as an al-
gorithm is therefore equivalent to assuming that F can be decomposed into a se-
quence of elemental functions. Let therefore each of the l intermediate variables
{vi}i=1,...,l be calculated using elemental functions ϕi:

vi = ϕi(v j) j≺i = ϕi (ui) , ui ≡
(
v j

)
j≺i
∈ Rni , for i = 1, . . . , l,

where j ≺ i is the precedence relation, stating that v j is an input to the elemental
function ϕi, in other words, that the variable vi depends directly on v j. Remark,
the calculation is assumed to be sequential and j < i must therefore hold.

The complete algorithm, or evaluation procedure, for function F is outlined in
table 5. The first row corresponds to the input arguments being loaded into a
set of intermediate variables. The middle row consists of the functionality in F,
divided into a sequence of elemental functions. The last row corresponds to the
results being unloaded to a set of output variables.

In articles such as Giles (2007), the algorithmic differentiation techniques is in-
troduced from a vectorized perspective. This notation turns out quite useful when

127

Derivatives Framework

vi−n = xi i = 1, . . . , n.

vi = ϕi(v j) j≺i = ϕi(ui) i = 1, . . . , l.

ym−i = vl−i i = m − 1, . . . , 0.

Table 5: General Evaluation Procedure,
Griewank & Walther (2008, table 2.2).

introducing the application of the chain rule in forward- and reverse- mode. Let
therefore the state transformation, Φi, associated with ϕi be given by:

vi = Φi(vi−1), Φi : Rn+l 7→ Rn+l

vi ≡
(
v1−n, . . . , vi, 0, . . . , 0

)ᵀ
∈ Rn+l for i = 1, . . . , l.

Here, Φi sets vi to ϕi(ui) while keeping all input values, v1 − n, . . . , v0, and all
previously calculated variables, v1, . . . , vi−1, unchanged.

The function F can now be expressed as the composition of all state transforma-
tions:

F(x) = QmΦl ◦Φl−1 ◦ · · · ◦Φ2 ◦Φ1 (Pᵀn x) , (26)

where Pn =
(
In×n, 0, . . . , 0

)
∈ Rn×(n+l) maps the n input values to a (n + l)-vector

and Qm =
(
0, . . . , 0, Im×l

)
∈ Rn×(n+l) extracts the m output values.

The elemental functions, ϕi, associated with each of the state transformations,
have well known derivatives qua their definition. These are determined using the
elementary rules of differentiation. The derivative of the i’th state transformation
- the i’th state Jacobian - can thus be evaluated as:

Ai ≡ Φ′i(vi−1) =

1 0 · · · 0 · · · · · 0
0 1 · · · 0 · · · · · 0
0 0 · · · 1 · · · · · 0

ci,1−n ci,2−n · · · ci,i−1 0 · · · · 0
0 0 · · · 0 · 1 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · · · · · · · 1

∈ R(n+l)×(n+l), (27)

where ci j are the elemental partials:

ci j =

∂ϕi(ui)
∂v j

, j ≺ i,

0 otherwise.

128

Paper II

The Jacobian given in eqn. (22) can now be reformulated in terms of the state
Jacobians by applying the chain rule to the decomposed representation in (26):

F′(x) = QmAlAl−1 . . .A2A1Pᵀn . (28)

During the evaluation, the chain rule is not applied to symbolic expressions but
to actual numerical values, as the elemental partials are evaluated instantly as any
other intermediate variable in the program. This is the main difference between
algorithmic- and symbolic differentiation, as Griewank & Walther (2008) phrase
it in the quote given below.

The fact that the elemental partials ci, j can be evaluated as real
numbers at the current point before they enter into the multiplic-
ation prescribed by the chain rule is a key distinction from fully
symbolic differentiation.

(Griewank & Walther (2008, p.33))

In terms of accuracy, the algorithmic differentiation method differs substantially
from the numerical finite difference method presented in section 3.1. The al-
gorithmic derivatives are analytical down to machine precision, which means that
the estimates are not subject to truncation- or cancellation errors. But the applic-
ation of the chain rule to floating point numbers causes a small roundoff error.

3.3.1 Forward Mode

The forward mode of algorithmic differentiation corresponds the intuitive, or clas-
sical, way of applying the chain-rule forward through the calculation. The for-
ward derivatives are given as tangents where the derivative of each element in
the output vector is determined wrt. a parameter of interest, θi. In this section
the forward mode is derived using the vectorized presentation which is afterwards
unwounded as an evaluation procedure. This complicated presentation of a rather
simple concept will make more sense when deriving the reverse mode in the fol-
lowing section.

Let y = F(x) and F′(x) be the Jacobian defined in eqn. (22), then the forward
derivatives of the output vector, y, wrt. a specific parameter, θi, is given by:

ẏ = F′(x)ẋ =

(
∂F1

∂θi
,
∂F2

∂θi
, . . . ,

∂Fm

∂θi

)ᵀ
, ẋ ∈ Rn, ẏ ∈ Rm, (29)

where ẏ, ẋ is notation for ∂y
∂θi
, ∂x
∂θi

, the latter of which is called the seed direction.

129

Derivatives Framework

Replacing the Jacobian in the expression above with its decomposed representa-
tion in eqn. (28) yields:

ẏ = QmAlAl−1 . . .A2A1Pᵀn ẋ.

The vector of forward derivatives can thus be evaluated using the chain-rule start-
ing from the input, Pᵀn ẋ, and continuing outwards by adding one transition, Ai,
at a time. This calculation flow is illustrated below terms of the state Jacobians:

ẏ = Qm

(
Φ′l(vl−1)

(
Φ′l−1(vl−2)

(
. . .

(
Φ′2(v1)

(
Φ′1(v0) (Pᵀn ẋ)

)))))
.

Translating this result to an evaluation procedure is done by unwinding the i’th
bracket in this expression, this yields the forward derivative of vi:

v̇i = Φ′i(vi−1)v̇i−1 =

i−1∑
j=1−n

ci, jv̇i−1 ⇔ v̇i =
∑
j≺i

∂ϕi(ui)
∂v j

v̇ j, i = 1, . . . , l.

Thus, in order to evaluate v̇i all inputs to the i’th assignment, ui, and the previ-
ous derivatives, v̇ j, must already have been calculated. The values vi and v̇i must
therefore be calculated at the same point in the evaluation procedure as described
in table 6. Remark that if overwriting of variables is allowed, the calculation of
the derivatives must be implemented before the original assignment. An example
of this forward procedure is given in algorithm 5.

[vi−n, v̇i−n] = [xi, ẋi] i = 1, . . . , n.

v̇i
∑

j≺i
∂ϕi(ui)
∂v j

v̇ j i = 1, . . . , l.
vi ϕi(ui)[
ym−i, ẏm−i

]
= [vl−i, v̇l−i] i = m − 1, . . . , 0.

Table 6: Forward evaluation procedure with overwrites,
Griewank & Walther (2008, table 3.4).

The length of the forward evaluation procedure is approximately twice as long
as the original procedure, since a derivative has been added for each original as-
signment. The computational cost for evaluating the forward derivatives of output

130

Paper II

vector, y, wrt. a scalar parameter, θi, is therefore given by20:

T IME {F(x); F′(x)ẋ} ≤ ω f orward · T IME {F(x)} , ω f orward ∈ [2; 5/2]. (30)

The forward derivative wrt. a vector of p parameters, θ, are calculated for each
element separately. This is equivalent to replacing the seed vector, ẋ, in eqn. (29)
with a n × p-matrix, Ẋ, where the i’th column contains the seed direction corres-
ponding to θi:

Ẏ = F′(x)Ẋ, Ẏ ∈ Rm×p, Ẋ ∈ Rn×p, (31)

then forward derivative wrt. θi is given by the i’th column of Ẏ. Hence, the
computational cost increases linearly with the number of parameters p:

T IME
{
F(x); F′(x)Ẋ

}
≤ ω

p
f wd · T IME {F(x)} , ω

p
f wd ∈ [1 + p; 1 + 1.5p]. (32)

To summarize, this is a more involved way of introducing the forward mode which
is basically a systematic use of the chain-rule, continually applied to each assign-
ment in the evaluation procedure. Here, the individual derivatives are determined
as numerical values, rather than symbolic expressions, using the intermediate vari-
ables already calculated in the original statements.

Algorithm 5: Forward derivative of 1-step simulation of the short rate.
input: σhw, ahw, . Hull White model parameters,

σ̇hw, . Seed direction for active parameter,{
r∗cont

}
, . zero coupon rates,

r(ti−1), . Short rate at the previous time ti−1.

∆
(imag)
σ , . Bump size.
α(·), . Sub-function.

. Active functions.
[v1, v̇1] B α

(
ti−1, σhw, σ̇hw, ahw,

{
r∗cont

})
;

[v2, v̇2] B α
(
ti, σhw, σ̇hw, ahw,

{
r∗cont

})
;

. Passive, no derivatives determined.
v3 B N(0, 1);
v4 B e−a·(ti−ti−1);

v5 B
1 − e−2a·(ti−ti−1)

2a
;

ṙ(ti) B v̇2 − v̇1 · v4 + σhw
√

v5 · v3; . Forward derivative
r(ti) B r(ti−1) · v4 + v2 − v1 · v4 + σhw

√
v5 · v3;

20See Griewank & Walther (2008, sec. 4.5) for details on the derivation.

131

Derivatives Framework

3.3.2 Adjoint Mode

The adjoint, or reverse, mode of algorithmic differentiation consists of applying
the chain-rule backwards through the calculation. The adjoint derivatives are
given as gradients where the derivative of an output value of interest, Πi, wrt.
each element in the input vector is determined. The following derivation of this
adjoint mode is, contrary to the forward mode, quite unintuitive.

The learning curve is steep and it can take considerable time to
get comfortable with the approach even for experienced math-
ematicians,...the math involved in AAD is not difficult, but it’s
not very intuitive... (Mike Giles, Davidson (2015))

Again, let y = F(x) and F′(x) be the Jacobian defined in eqn. (22), then the adjoint
derivatives of the output of interest, Πi, wrt. the input vector x is given by:

x̄ᵀ = ȳᵀF′(x) ⇔ x̄ = F′(x)ᵀȳ =

(
∂Πi

∂x1
,
∂Πi

∂x2
, . . . ,

∂Πi

∂xn

)ᵀ
, x̄ ∈ Rn, ȳ ∈ Rm,

(33)

where x̄, ȳ is notation for ∂Πi
∂x ,

∂Πi
∂y , the latter of which is called the weight func-

tional.

Replacing the Jacobian in the expression above with its decomposed representa-
tion in eqn. (28) yields:

x̄ = PnAᵀ1 Aᵀ2 . . .A
ᵀ
l−1Aᵀl Qᵀmȳ.

The vector of adjoint derivatives can thus be evaluated using the chain-rule start-
ing from the output, Qᵀmȳ, and continuing outwards by propagating the state trans-
itions, Ai, in reverse order. This calculation flow is illustrated below in terms of
the state Jacobians:

x̄ = Pn

(
Φ′1(v0)ᵀ

(
Φ′2(v1)ᵀ

(
. . .

(
Φ′l−1(vl−2)ᵀ

(
Φ′l(vl−1)ᵀ (Qᵀmȳ)

)))))
.

132

Paper II

Translating this result back to an evaluation procedure is done by unwinding the
i’th bracket, this yields the adjoint derivatives v̄ j for j ≺ i:

v̄i−1 = Φ′i(vi−1)ᵀ v̄i ⇔

v̄1−n

v̄2−n
...

v̄i−1

0
...
0

=

v̄1−n + ci,1−nv̄i

v̄2−n + ci,2−nv̄i
...

v̄i−1 + ci,i−1v̄i

0
...
0

⇔ v̄ j+ =

∂ϕi(ui)
∂v j

v̄i, ∀ j ≺ i,

i = 1, . . . , l.

Thus, for the i’th original assignment all adjoint derivatives, corresponding to each
of its inputs (v j) j≺i, must be incremented by the amount ∂ϕi(ui)

∂v j
v̄i.

In order to evaluate v̄i−1, all inputs to the i’th assignment, ui, as well as the de-
rivatives corresponding to the (i + 1)’th assignment, v̄i, must already have been
calculated. The derivatives for the (i + 1)’th assignment can in turn only be eval-
uated using the corresponding inputs, ui+1, and so on. The adjoint derivatives can
therefore not be evaluated before all intermediate variables, vl, have been determ-
ined through a forward sweep of the original calculation.

v̄i = 0 i = 1 − n, . . . , l.

vi−n = xi i = 1, . . . , n.

vi = ϕi(v j) j≺i = ϕi(ui) i = 1, . . . , l.

ym−i = vl−i i = m − 1, . . . , 0.

v̄l−i = ȳm−i i = 0, . . . ,m − 1.

v̄ j + = v̄i
∂
∂v j
ϕi(ui) for j ≺ i i = l, . . . , 1.

x̄i = v̄i−n i = n, . . . , 1.

Table 7: Adjoint evaluation procedure,
Griewank & Walther (2008, table 3.5)

This adjoint evaluation procedure is given in table 7. The first half of the proced-
ure is the forward sweep, corresponding to the original evaluation procedure. The
second half is the return sweep, here the adjoint derivatives are calculated using
the intermediate values saved in memory during the forward sweep. An example

133

Derivatives Framework

of the adjoint evaluation procedure is given in algorithm 6 at the end of this sec-
tion.

The forward evaluation procedure given in table 6 allowed for overwrites of the
variables. This is not allowed in the adjoint evaluation procedure given in table 7,
as overwrites of the intermediate variables in the forward sweep, would cause
these values to be missing for the return sweep.

In practice, overwriting in the original evaluation is a useful technique for bring-
ing down the total amount of memory consumed to a minimum. Overwriting
must therefore be handled explicitly by saving the intermediate values needed in
the return sweep. This will also handle the case, where some of the intermediate
values are calculated as local variables in a sub-function, and therefore goes out
of scope21 before the return sweep is initiated.

Griewank & Walther suggest using a LIFO - last in first out - structure as the data
are needed on the way back in exactly the same order they where generated on the
way forward, as illustrated by table 7. In this implementation a stack of doubles
is used for the recording of intermediate values generated in the forward sweep.
In order for the procedure to record the correct values, one condition for the over-
writing in the forward sweep must hold. Assume v j is an argument of vi, then v j

may not be overwritten by any vk for k ≤ i. This is logical for k < i, but for k = i
one must be aware that incremental statements like: ± =, ∗ =, which implicitly
overwrite vi, are not allowed.

The adjoint evaluation procedure that accounts for overwrites are given in table 8.
Here, the symbol � indicates that the variable on the left-hand side is being
pushed onto the stack, while � indicates that a value is being popped off the
stack and assigned to the variable on the left-hand side.

The adjoint evaluation procedure given in table 8 differs from the one suggested
by Griewank & Walther. Here, the values of the arguments, ui, are stored be-
fore an assignment, whereas Griewank & Walther instead store the prevalue, vi,
in order to save memory. In this implementation assignments are allowed to be
evaluated using sub-functions where the local variables will go out of scope, as
mentioned above. Hence, this distinction ensures that all intermediate values can
be retrieved in the return sweep.

21Local variables in a function f are only alive while f is being evaluated. Once f terminates
the variables are deleted.

134

Paper II

v̄i = 0 i = 1, . . . , l.

[vi−n, v̄i−n] = [xi, x̄i] i = 1, . . . , n.

ui � i = 1, . . . , l.
vi = ϕi(ui)

ym−i = vl−i i = m − 1, . . . , 0.

v̄l−i ȳm−i i = 0, . . . ,m − 1.

ui �

v̄ j + = v̄i
∂
∂v j
ϕi(ui) ∀ j ≺ i i = l, . . . , 1.

v̄i = 0

x̄i = v̄i−n i = n, . . . , 1.

Table 8: Adjoint evaluation procedure with overwrites,
Griewank & Walther (2008, table 4.4 - vi in line 3, 6 changed to ui.).

In practice, the structure of the evaluation procedure can be taken into account to
save space on the recorded stack, as discussed below in section 4.3.

The length of the backward evaluation procedure is approximately twice as long
as the original procedure, as this is propagated once forward and once in reverse.
Taking the memory handling into account increases this further. The total com-
putational cost for evaluating the adjoint derivatives of a scalar output of interest,
Πi, can thus be shown to satisfy the cheap gradient principle given in Griewank
& Walther (2008, eqn. (3.14)):

T IME {F(x); ȳᵀF′(x)} ≤ ωad joint · T IME {F(x)} , ωad joint ∈ [3; 4]. (34)

Remark that this computational cost is independent of the number of elements in
the input vector, x. This allows for a remarkable reduction in computational costs
for evaluation procedures, with a large amounts of input arguments which is often
the case in finance for interest rate products.

The adjoint derivatives wrt. a vector of output values of interest, Π ∈ Rq, are
calculated for each element separately. In practice, this is equivalent to replacing
the weight functional vector, ȳ, in eqn. (33) with a m × q-matrix, Ȳ, where the
i’th column contains the weight functional corresponding to the i’th final output
of interest, Πi:

X̄ᵀ = ȲᵀF′(x), X̄ ∈ Rn×q, Ȳ ∈ Rm×q, (35)

135

Derivatives Framework

then the adjoint derivative of Πi is given by the i’th column of X̄. Hence, the
computational cost increases linearly with the number of output values q:

T IME
{
F(x); ȲᵀF′(x)

}
≤ ω

q
ad j · T IME {F(x)} , ωq

ad j ∈ [1 + 2q; 1.5 + 2.5q]. (36)

To summarize, using the chain-rule in reverse is a quite unintuitive way of calcu-
lating the derivatives of a function, F. The practical implementation is though not
much more complicated than for the forward mode, as long as the recipe given in
table 8 is followed rigorously. The challenges arise when the method is applied to
a collection of functions, spread across multiple object classes. These implement-
ation issues, and how they can be handled, are further described in section 4.

Algorithm 6: Adjoint derivative of 1-step simulation of the short rate.
input: σhw, ahw, . Hull White model parameters,{

r∗cont
}
, . zero coupon rates,

r(ti−1), . Short rate at the previous time ti−1.
r̄(ti), . Weight functional for active output,
α(·), . Sub-function, forward sweep.
ᾱ(·), . Sub-function, return sweep.

. Forward Sweep
v1 B α

(
ti−1, σhw, ahw,

{
r∗cont

})
;

v2 B α
(
ti, σhw, ahw,

{
r∗cont

})
;

v3 B N(0, 1);
v4 B e−a·(ti−ti−1);

v5 B
1 − e−2a·(ti−ti−1)

2a
;

r(ti) B r(ti−1) · v4 + v2 − v1 · v4 + σhw
√

v5 · v3;

. Return Sweep
v̄1 B v̄1 + r̄(ti) · (−v4);
v̄2 B v̄2 + r̄(ti);
σ̄hw B σ̄hw + r̄(ti)

√
v5 · v3;

σ̄hw B σ̄hw + ᾱ (v̄2) ;
σ̄hw B σ̄hw + ᾱ (v̄1) ; . Adjoint derivative.

3.3.3 Working the method

In practice, the individual assignments are not expanded to a series single ele-
mental functions, but they are assumed to be sufficiently simple such that the

136

Paper II

derivatives are straight forward to determined by the elementary rules of differen-
tiation.

B Implementation : Forward - the evaluation procedure in table 6 are im-
plemented by adding a forward derivative, v̇i, in connection with each of the
active variables, vi, defined in section 3.2.1.

B Implementation : Adjoint - the implementation of the forward sweep in
table 8 is given by the original evaluation procedure, with intermediate val-
ues being pushed onto the record if they are included in the calculation of
an active variable. Later, in section 4.3, rules-of-thumb are given on how to
save space on this record.

The return sweep is implemented by traversing the original calculation in
reverse order, while popping active variables, vi, off the record as described
in table 8.

Special attention must be paid in order to restore the original control flow
in the reverse sweep. For instance must all variables entering conditional
statements be pushed onto the record after the statement has terminated.

137

Implementation

4 Implementation

The methods are in this setup implemented using C++11. The primary reason for
this choice of language is the selection of automatic differentiation tools available.
Further details on this topic are given below in section 4.5. The secondary advant-
age is the object orientation available for C++ opposed to other languages popular
for financial research such as MATLAB.

This section begins with a description and a motivation of the object oriented
design chosen for the CVA solution. The challenges regarding the practical imple-
mentation of the three methods: CSDA, forward- and adjoint mode, are covered
afterwards. The finite difference approximation is, as mentioned in section 3.1,
implemented by running the original calculation twice for bumped inputs. The
only challenge connected to the implementation of this method is thus choosing
the bump size and it has therefore been left out of the discussion below.

4.1 Program Design

The implementation of the CVA calculation is, as mentioned above, based on ob-
ject oriented design. The calculation has therefore been split into a set of intuitive
and well defined computational blocks. These are implemented by classes, each
managing the functionality and data corresponding to their area of responsibility.
The overall structure of the object oriented design for the CVA calculation is given
in figure 4 and consists of classes:

B IRS : class representing the interest rate swap product. Objects for the short
rate- and the intensity rate model are given as data members. The member
functions include the time t value of the receiver swap and the time t =

0 value of the corresponding CVA approximation. The latter could with
advantage be moved outside this class if the framework were expanded to
handle a portfolio of products. Details on the functionality for this class are
given in figure 13.

B ShortRateModels, IntensityModel : abstract classes containing inter-
faces for the models used in the CVA calculation. Adding interfaces allows
for easy replacement of the models with other, perhaps more sophisticated,
ones as long as they implement the virtual functions defined in the corres-
ponding interface.

B Hull_White : concrete class representing the Hull White model and imple-
menting the abstract class for short rate model. Object for the zero coupon

138

Paper II

IRS

ShortRateModel IntensityModel

Hull_White CIR

ZC_YieldCurve

LevenMarq

NormDist

CubicSpline

Figure 4: Object oriented design for the CVA setup.

yield curve is given as a data member. The member functions include: cal-
ibration, the time t price of a zero coupon bond and the 1-step simulation
scheme for the short rate process. Details on the functionality for this class
are given in figure 14.

B CIR : concrete class representing the CIR model and implementing the ab-
stract class for the intensity model. Object for the zero coupon yield curve
is given as a data member. The member functions include calibration and
the time t = 0 probability of default within a given time-bucket. Details on
the functionality for this class are given in figure 15.

B ZC_YieldCurve : class representing the zero coupon yield curve. Object
for the natural cubic spline, containing the continuously compounded zero
coupon rates, are given as a data member. The member functions include:
calibration, the time t = 0 price of a zero coupon bond and the instantaneous
forward rate. Details on the functionality for this class are given in figure 16.

B NormDist, LevenMarq, CubicSpline : collection of classes containing
generic algorithms used in various parts of the CVA solution. Details on the
functionality for these are given in figures 17, 18 and 19, respectively.

Notice that these classes and their corresponding member functionality have
been re-implemented, instead of importing an optimized library, in order to

139

Implementation

hand-code the CSDA and the algorithmic derivatives. Compared to library
routines, this will slow down the computations, but it has been tolerated
here due to the academic purpose of this CVA solution.

As an alternative one could instead have used one of the simpler open source
libraries, such as AlgLib22, and applied an automatic differentiation tool on
these specific functions.

4.2 Active and passive variables

Sections 3.2.1 and 3.3.3 went over specific implementation details for each of the
respective methods. Common to all methods were the initial process of identify-
ing the active and passive variables.

In order to identify these two types of variables, it is convenient to have a com-
plete outline of the functions and their corresponding in- and output variables. As-
sume therefore that a given algorithm consists of K functions. These can then be
ordered according to the overall computational flow of the algorithm as illustrated
in figure 5. In this extension of the single-function-view in figure 3, functions are
allowed to be called multiple times and the F′i s are therefore not unique.

θ x1 F1 y1 C x2 F2 y2 C x3

F3 · · · · · · FK yk Π

Figure 5: Structure of an algorithm with vector of parameters, θ, as input and vector of
values, Π, as output. The functions Fi are not assumed to be unique, as a given function

can be called multiple times.

This computational flow is not only useful for determining the active- and passive
variables, it is also very useful as a road-map for propagating through the original
algorithm, implementing and testing the derivatives function-by-function.

Returning to the active variables, recall that these were defined as intermediate
variables directly derived from the input parameter(s) of interest23, θ, or derived
from other intermediate variables dependent on this parameter. The remaining

22AlgLib can be found at http://www.alglib.net/.
23The parameter of interest is a scalar for the CSDA- and forward method while it can be a

vector for the adjoint mode.

140

Paper II

intermediate variables are then independent of θ and were termed passive. An ex-
ample of this can be seen in figure 6 for the Hull-White ZCB price function given
in eqn. (10).

a

σ

{
r∗cont

}

AT
t

BT
t

rt

PT
t

Figure 6: Computational graph for the ZCB price function, (10), where the inputs: t,T ,
have been suppressed. The inputs of interest are given by the volatility parameter, σhw,
and the collection of zero coupon rates,

{
r∗cont

}
. Colored nodes indicate active variables

while the white nodes are passive.

Assuming that the original algorithm has already been implemented, the active
variables can then be identified:

B Start : identify the parameter(s) of interest in the parameter vector, θ.

B For k = 1, . . . ,K : identify all active intermediate variables occuring in Fk

starting from, and including, xk up till, and including, yk.

B End : identify the active output variables in the final output vector Π.

The active variables for the CVA calculation are marked in the comments of the
enclosed source code for modules: CSDA, forward- and adjoint mode.

4.3 Recording

The computational cost function T IME, used in section 3 to describe the relative
run time for the methods, does not take the memory consumption into account.
But memory is, just as flops24, a limited resource which can slow down execution
time significantly.

24Floating point operations per second.

141

Implementation

...the speed of processors (measured in floating-point operations
per second, or FLOPS) is more than adequate. They can work
so fast that FLOPS are virtually free. The problem is that they
are not capable of operating to their capacity because they are
starved for local access to memory...

(The Kavli Foundation)

This is especially a challenge when it comes to the adjoint mode for the CVA cal-
culation, as the memory consumption for the records here depends on the num-
ber of simulation paths. Hence, the computation may become memory bound as
Griewank & Walther (2008) points out. Roughly speaking, this means that the
CPU might be available for processing the next operation, but it has to wait for
the variables to be fetched from memory.

The following rule-of-thumbs have therefore been applied for the implementation
of the adjoint mode to cut down the overall memory consumption.

◦ Multiple usage : if the intermediate value is included in multiple calcula-
tions, it is not pushed onto the record until right before the last appearance.

◦ Linear operation : if a variable only appears in linear operations, its value
will not enter the derivative operations during the return sweep. The value
is therefore not pushed onto the record.

◦ Sub-functions : in this framework all functions are themselves responsible
for the bookkeeping of their intermediate variables. Hence, if a value enters
the calculation of an active variable in the form of an argument to a sub-
function, it is not pushed onto the record.

◦ Re-calculation : in practice it can be more efficient to re-calculate an inter-
mediate variable during the return sweep, than to retrieve it from the record,
cf. discussion above.

A simple case is when a variable can be recalculated using values already -
or about to be - pushed onto the record25.

On a larger scale, memory management of the records can be conducted
using Checkpointing26 This is a systematic technique where chunks of the
original algorithm are recalculated during the return sweep. Each chunk is

25An example of this can be found in function: Hull_White_backward::ZcbPutZero, con-
tained in the source code.

26Checkpointing are described in detail in Griewank & Walther (2008, ch.12).

142

Paper II

reproduced from a limited set of carefully chosen variables pushed onto the
record during the forward sweep.

4.4 Validation Checks

Testing tends to be an overlooked virtue within the field of mathematical finance.
But especially in this context, a good testing framework is crucial in order to ob-
tain derivatives of machine precision accuracy. This is especially the case when
working with the hand-coded versions, opposed to the automatic software gener-
ated versions discussed below in section 4.5.

Assume the derivatives of a function F have been derived using all four methods
presented in section 2.7. Here, the function F either represents a single function,
Fk, or the overall algorithm given as the composition of all K functions depicted
in figure 5. In the later case the input vector is given by the parameter, x = θ, and
the output vector is given by the final output, y = Π.

x F y

B The overall level of the values produced by CSDA, forward- and adjoint
mode are checked by comparison to the finite difference approximation.

This approximation is ideal as an initial check because it can be implemen-
ted without any changes to the original algorithm. The risk of introducing
an error to the code is therefore minimal.

The accuracy of this approximation is on the other hand far from the ma-
chine precision obtained by the others, and it can therefore not be used for
an elaborate comparison.

B The CSDA is similar to the forward mode in that both methods propag-
ate forward through the function evaluation, determining the derivatives of
vector output, y, according to the seed direction ẋ. The corresponding deriv-
atives can therefore easily be checked against each other using the identity
given in Giles et al. (2008):

ẏ ≈
I{F(x + iεẋ)}

ε
, ε = 10−20. (37)

This can either be checked for random seed directions ẋ or, as in this setup,
for a sequence of unit vectors ẋ = {ei}i=1,...,n, resulting in a comparison of

143

Implementation

all columns in the Jacobian (22). The latter allows each row of the Jacobian
to be compared afterwards to the output of the adjoint method, x̄, likewise
called for a sequence of unit vectors ȳ = {ei}i=1,...,m.

B An alternative to comparing the complete Jacobian’s is defined by the fol-
lowing identity suggested by Mike Giles27:

tr
(
ȲᵀẎ

)
= tr

(
X̄ᵀẊ

)
, (38)

where the matrices are defined in eqn. (31) and (35), respectively. This
identity should be satisfied for all randomly generated matrices Ẋ, Ȳ.

Here, the code for the CVA calculation has not been vectorized. The de-
rivatives are therefore evaluated for one parameter of interest at a time for
the forward mode, and for one final output of interest at a time for the ad-
joint mode. The identity above can thus be checked by generating random
vectors ẋ, ȳ, after which the LHS can be evaluated using the forward mode:

ȳᵀ︸︷︷︸
random

ẏ︸︷︷︸
calculated

= x̄ᵀ ẋ︸︷︷︸
input

.

and the RHS can be evaluated using the backward mode:

ȳᵀ︸︷︷︸
input

ẏ = x̄ᵀ︸︷︷︸
calculated

ẋ︸︷︷︸
random

.

The identities (37) and (38) both checks the derivatives down to machine preci-
sion. Thus, it would be convenient to set up a unit testing framework which auto-
matically flagged, whenever the absolute difference between the sides in either of
the identities exceeded a certain threshold. Unfortunately, this threshold depends
on the number of floating point operations as each elemental operation introduces
an error. There is no automatic tool available for counting the number of floating
point operations and it is practically impossible to do by hand. For instance, how
many operations does the computer use for evaluating sqrt or exp?

In practice, one must therefore settle for eyeballing the validation checks written
to a .csv file. The dependence on the number of floating point operations becomes
evident for the calibration functions where the Levenberg-Marquardt solver runs
multiple iterations. The relative error of the derivatives compared to the CSDA
can be seen in figure7.

27To the authors knowledge this identity has not been publish, but was suggested by Mike Giles
during a discussion.

144

Paper II

The combination of the four methods presented in section 3, thus forms the op-
timal testing framework presented above. But in real life applications one would
be forced to target the testing due to time constraints. Giles et al. (2008) suggest to
distinguish between cores parts of the functionality and the algorithm as a whole.

4.5 Automatic Differentiation

The practical implementation of the algorithmic methods is to a large extent given
by mechanically applying the elementary rules of differentiation to the original
code. This process can be automated using a more or less sophisticated software
tool.

The sophistication level lies within the AD tool’s ability to analyze and exploit
the structure of the original code to generate efficient code for the forward- and
adjoint mode. Several general-purpose tools are available, as will be discussed
below, but special-purpose tools must generally be constructed from scratch as
described in Griewank & Walther (2008) sections 6.1 and 6.2.

...the best results will be obtained when AD takes advantage
of the user’s insight into the structure underlying the program,
rather than by the blind application of AD to existing code.

(Griewank & Walther (2008, p.4))

The main advantages of using automatic tools includes the obvious lack of hand-
coding all derivatives line-by-line. But also maintaining the code are eased, as it
becomes simpler to make adjustments and replace models or products. The down-
side are an increased computational cost, as the tools are not able to optimize the
code to the same extent as if it was derived by hand.

The automatic AD tools can be divided into two main categories:

B Source code transformation tools : take the original algorithm as input,
and returns the algorithm with additional lines of code that have been auto-
matically generated for the forward- or adjoint mode derivatives. Capriotti
(2011) describes how the tool typically breaks each instruction down into a
composition of elemental functions for which the derivatives are known.
According to Martins et al. (2003), the source code returned by such a
source transformation tool is greatly enlarged which complicates debugging
and future alterations.

145

Implementation

Examples of source transformation tools for C++ code is the Tapanade and
TAC++ packages.

B Operator overloading tools : does not change the original code, instead
they provide new data types for the active variables, containing both the
original value and the derivative. Along with the data types are a set of re-
defined (overloaded) operators which evaluate both the original value and
the corresponding derivative. In order to apply this tool, the data type must
therefore be altered for all active variables. This maintains the readability of
the code, but in return all functionality are hidden under the hood. Accord-
ing to Capriotti (2011), this lack of transparency ultimately leads to slower
execution compared to the transformed code due to the missing compiler
optimization.

Examples of operator overloading tools for C++ code is the ADOL-C and
FADBAD++ packages.

In this setup, the automatic tool FADBAD++ has been applied in order to com-
pare the performance with the hand-coded versions. This tool is open source and
can be downloaded from the website http://www.fadbad.com/fadbad.html.

The implementation of either mode using FADBAD++ is super simple and quite
similar to that described in section 3.2.1 for the CSDA method. Hence, the data
type for all active variables is changed to F<double> for the forward mode and
B<double> for the backward mode. In addition to this, three header files must
be included in the code. After these simple alternations, the derivatives of a given
function with respect to its explicitly given arguments can be determined28.

28The syntax for extracting the derivatives can be seen in functions CVA_noCalibration and
CVA_Calibration included in the source code file CVA_Calculation.cpp.

146

http://www.fadbad.com/fadbad.html

Paper II

5 Results

The C++ code for the CVA price and the corresponding sensitivities have been com-
piled using clang with optimization flag -O3 and run on a late 2012 iMac with
3.4 GHz Intel Core i7 processor and 8GB 1600 MHz DDR3 RAM. A short in-
troduction to the overall structure of the enclosed source code can be found in
appendix A. Documentation on the identification of active variables, the derivat-
ives calculated, and the handling of the record for the adjoint mode are given in
the comments of the source code.

The results presented in this section have been derived for two test cases. The main
case consists of calculating the derivatives of the CVA price wrt. parameters, θ1,
given by the 12 zero coupon rates used as input for both the model calibrations and
the CVA calculation as illustrated in figure2. The second case is mainly included
to compare run times for varying numbers of sensitivities. In this case the depend-
ence between the zero coupon rates and the model parameters have been left out
by setting the parameters to pre-calibrated values, giving a total of 16 sensitivities.

θ1 =
[{

r∗cont(0,T)
}
T∈Z∗1

]
, θ2 =

[
σhw, λ0, acir, bcir,

{
r∗cont(0,T)

}
T∈Z∗1

]
,

where Z∗1 = {1/365, 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30} were defined in section 2.5.1.

The complete dataset can be found in appendix B, and the details regarding the
data collection are listed below.

B The data has been derived for M = {5.000, 10.000, 50.000, 100.000} simu-
lation paths. The adjoint mode fails for 150.000 paths due to memory con-
straints and results have therefore not been obtained for 250.000 paths as in
Hansen & Glibstrup (2014). These memory issues for the adjoint mode are
discussed in detail later in this section.

B The data has been calculated using the same set of random variables Z(m)
i

for i = 1, . . . , n and m = 1, . . . ,M for all methods in order to compare the
accuracy of the methods.

5.1 Accuracy

The numerical values produced by the CSDA, forward- and adjoint mode, should
in theory be equal in size down to machine precision times a factor dependent on
the number of floating points cf. discussion in section 4.4. While the finite differ-
ence approximation should give significantly larger errors due to the combination

147

Results

of truncation- and cancellation errors.

The absolute value of the relative error, compared to the CSDA method, are depic-
ted in figure 7. Based on the order of the errors it is safe to assume that all methods
have been implemented correctly. The errors for the sensitivities calculated using
bumping are as expected significantly larger compared to the forward- and adjoint
mode, especially for zero coupon rates associated with large maturities.

Zooming in on the errors for the algorithmic methods gives the graphs in figure 8.
Here it can be seen how the errors are larger for the first case where the calibration,
and thereby additional floating point operations, are included. For the second
case a difference in accuracy becomes visible. This is probably because of the
additional floating point operations involved in the recording of the intermediate
variables, which have a negative influence on the accuracy for the adjoint mode.

0.0E+00!
1.0E-04!
2.0E-04!
3.0E-04!
4.0E-04!
5.0E-04!
6.0E-04!
7.0E-04!
8.0E-04!

C
VA
!

r_
0!

zc
_

1!
zc

_
2!

zc
_

3!
zc

_
4!

zc
_

5!
zc

_
7!

zc
_

10
!

zc
_

15
!

zc
_

20
!

zc
_

25
!

zc
_

30
!

A
so

lu
te

 R
el

at
iv

e
Er

ro
r!

Sensitivities!

Relative error compared to CSDA!
- calibration included.!

 Bumping !
Forward!
Adjoint! 0.0E+00!

1.0E-05!
2.0E-05!
3.0E-05!
4.0E-05!
5.0E-05!
6.0E-05!
7.0E-05!

C
VA
!

sig
m

a!
la

m
bd

a_
0! a! b!

r_
0!

zc
_

1!
zc

_
2!

zc
_

3!
zc

_
4!

zc
_

5!
zc

_
7!

zc
_

10
!

zc
_

15
!

zc
_

20
!

zc
_

25
!

zc
_

30
!A
so

lu
te

 R
el

at
iv

e
Er

ro
r!

Sensitivities!

Relative error compared to CSDA!
- calibration not included.!

 Bumping !

Forward!

Adjoint!

Figure 7: Absolute value of the relative error, compared to the CSDA method, for
bumping and both algorithmic modes, calculated using 100.000 simulation paths.

0.0E+00!
2.0E-09!
4.0E-09!
6.0E-09!
8.0E-09!
1.0E-08!
1.2E-08!
1.4E-08!
1.6E-08!
1.8E-08!

C
VA
!

r_
0!

zc
_

1!
zc

_
2!

zc
_

3!
zc

_
4!

zc
_

5!
zc

_
7!

zc
_

10
!

zc
_

15
!

zc
_

20
!

zc
_

25
!

zc
_

30
!

A
so

lu
te

 R
el

at
iv

e
Er

ro
r!

Sensitivities!

Relative error compared to CSDA!
- calibration included.!

Forward!

Adjoint!
0.0E+00!
2.0E-11!
4.0E-11!
6.0E-11!
8.0E-11!
1.0E-10!
1.2E-10!
1.4E-10!
1.6E-10!

C
VA
!

sig
m

a!
la

m
bd

a_
0! a! b!

r_
0!

zc
_

1!
zc

_
2!

zc
_

3!
zc

_
4!

zc
_

5!
zc

_
7!

zc
_

10
!

zc
_

15
!

zc
_

20
!

zc
_

25
!

zc
_

30
!A
so

lu
te

 R
el

at
iv

e
Er

ro
r!

Sensitivities!

Relative error compared to CSDA!
- calibration not included.!

Forward!

Adjoint!

Figure 8: Absolute value of the relative error, compared to the CSDA method, for the
forward- and adjoint mode, calculated using 100.000 simulation paths.

148

Paper II

5.2 Stability

The mean and standard deviation of the CVA price and corresponding sensitivities
based on 500 calculations are given in tables 9 and 10. These values have been
calculated using the adjoint mode as this method has the smallest computational
cost, as will be seen in the following section. The run time for the single CVA
calculation, given in table 9, is an exception though, as this measure cannot be
extracted from the adjoint computation and therefore has been obtained by an ad-
ditional run of the original algorithm.

Case 1

Sim. paths 5.000 10.000 50.000 100.000

Mean RSD(%) Mean RSD(%) Mean RSD(%) Mean RSD(%)

Run time(s) : CVA0 2.4537 0.39 4.9095 0.3597 24.6555 0.1670 49.5300 0.3693

Run time(s) : ∂CVA0
∂θ1

4.4335 0.17 11.4519 1.54 190.0406 1.2752 456.3290 15.4092

CVA0 2.1457 1.83 2.1438 1.36 2.1448 0.5875 2.1460 0.4210

∂CVA0

∂r0
0.2361 2.83 0.2358 2.14 0.2359 0.9251 0.2362 0.6495

∂CVA0

∂r∗cont(0, 1)
1.5703 2.61 1.5680 1.97 1.5690 0.8501 1.5706 0.5979

∂CVA0

∂r∗cont(0, 2)
2.6889 2.91 2.6848 2.19 2.6869 0.9499 2.6900 0.6664

∂CVA0

∂r∗cont(0, 3)
5.4853 2.49 5.4776 1.88 5.4811 0.8111 5.4862 0.5714

∂CVA0

∂r∗cont(0, 4)
1.1392 7.87 1.1359 5.90 1.1386 2.5600 1.1425 1.7932

∂CVA0

∂r∗cont(0, 5)
13.6154 2.00 13.5986 1.50 13.6047 0.6434 13.6134 0.4581

∂CVA0

∂r∗cont(0, 7)
-5.1009 2.34 -5.0991 1.71 -5.0961 0.7163 -5.0922 0.5332

∂CVA0

∂r∗cont(0, 10)
-63.1896 1.60 -63.1686 1.18 -63.1817 0.5148 -63.2105 0.3700

∂CVA0

∂r∗cont(0, 15)
35.4903 1.65 35.5296 1.22 35.5037 0.5228 35.4900 0.3745

∂CVA0

∂r∗cont(0, 20)
17.2466 3.34 17.3087 2.46 17.2867 1.0708 17.2654 0.7583

∂CVA0

∂r∗cont(0, 25)
3.1864 19.90 3.1989 15.00 3.1875 6.5709 3.1587 4.7746

∂CVA0

∂r∗cont(0, 30)
-142.2900 1.53 -142.2222 1.12 -142.2498 0.4906 -142.3034 0.3491

Table 9: Mean and relative standard deviation for samples of size 500 calculated using
the adjoint mode for Case 1.

149

Results

Case 2

Sim. paths 5.000 10.000 50.000 100.000

Mean RSD(%) Mean RSD(%) Mean RSD(%) Mean RSD(%)

Run time(s) : ∂CVA0
∂θ2

4.4042 0.29 11.2811 1.78 189.0374 1.2223 444.3145 1.5873

CVA0 2.1429 1.79 2.1461 1.31 2.1457 0.5876 2.1461 0.4182

∂CVA0

∂σhw
168.2628 2.65 168.6710 1.95 168.5504 0.8615 168.6283 0.6167

∂CVA0

∂λ0
-3.1110 3.15 -3.1183 2.25 -3.1182 1.0218 -3.1208 0.7085

∂CVA0

∂acir
0.2013 7.73 0.2018 5.58 0.2012 2.4417 0.2007 1.7589

∂CVA0

∂bcir
9.2729 2.10 9.2921 1.53 9.2861 0.6811 9.2851 0.4911

∂CVA0

∂r0
-0.0362 1.63 -0.0363 1.18 -0.0363 0.5351 -0.0363 0.3795

∂CVA0

∂r∗cont(0, 1)
0.0874 1.46 0.0874 1.04 0.0875 0.4815 0.0875 0.3386

∂CVA0

∂r∗cont(0, 2)
-0.2196 1.40 -0.2198 0.97 -0.2199 0.4656 -0.2199 0.3236

∂CVA0

∂r∗cont(0, 3)
0.7913 1.40 0.7916 0.97 0.7922 0.4663 0.7920 0.3236

∂CVA0

∂r∗cont(0, 4)
-2.9453 1.40 -2.9467 0.97 -2.9488 0.4664 -2.9481 0.3236

∂CVA0

∂r∗cont(0, 5)
5.8633 1.40 5.8661 0.97 5.8701 0.4664 5.8688 0.3236

∂CVA0

∂r∗cont(0, 7)
-10.7163 1.40 -10.7213 0.97 -10.7288 0.4664 -10.7263 0.3236

∂CVA0

∂r∗cont(0, 10)
-47.9467 1.32 -47.9926 0.96 -48.0006 0.4283 -48.0061 0.3070

∂CVA0

∂r∗cont(0, 15)
60.8093 1.27 60.8526 0.91 60.8878 0.4159 60.8882 0.2983

∂CVA0

∂r∗cont(0, 20)
42.3539 1.44 42.3808 1.05 42.3828 0.4532 42.3889 0.3217

∂CVA0

∂r∗cont(0, 25)
30.0097 1.45 30.0211 1.06 30.0181 0.4794 30.0199 0.3351

∂CVA0

∂r∗cont(0, 30)
-114.6223 1.31 -114.7100 0.96 -114.7244 0.4257 -114.7390 0.3026

Table 10: Mean and relative standard deviation for samples of size 500 using the adjoint
mode for Case 2.

The first point to notice here is the stability of the run times, the standard deviation
for these are small though increasing with the number of simulations. Thus, the
run times examined in the remaining section obtained using one sample can be
assumed representative.

150

Paper II

The validity of these results can be assessed by comparing the CVA0 price with
results obtained in Hansen & Glibstrup (2014, table 4) which are repeated here in
table 13 found in appendix B. The values and the standard deviations are roughly
equal if the difference in sample size and simulation scheme are taken into ac-
count. The run time for a single CVA evaluation are on the other hand not, the
C++ implementation are observed to be slower by a factor 10 for 5.000 paths and a
factor 15 for 10.000 paths and a factor 19 for 100.000 paths. This increasing dif-
ference in run times stems from the vectorization of the MatLab implementation
used by Hansen & Glibstrup. Unfortunately, vectorization is not simple to imple-
ment in C++ and substantial developer effort would had to be invested in order to
get the same speed up.

The mean value of the derivatives naturally differ for the two cases, but for both it
can be observed how the sensitivities for the zero coupon rates increase with the
years to maturity. Comparing the standard deviations of the sensitivities in the two
cases, it becomes evident that these seem remarkably high for the first case where
the calibration is included. These high values could stem from the gradient of the
cap values and CDS premiums, respectively, used by the Levenberg-Marquardt
algorithm in connection with the calibration of the two models. These gradients
are calculated using bumping in the original algorithm. Thus, when either of al-
gorithmic modes are applied, this results in the derivative of a bumped derivative
which could cause inaccuracies.

In the description of the methods in section 3 emphasis were put on the accuracy
of the methods. Comparing the relative errors given in figure 7 and the standard
deviations in tables 9 and 10, it can be observed that the errors regarding accuracy
are insignificant compared to the errors for the Monte Carlo estimate. Thus, in
this case the accuracy is not a deciding factor.

5.3 Run Time

The run times reported here include: initializing the calculation, evaluating the
original CVA price and the set of derivatives. For the first case initializing the
calculation consists of setting the zero coupon rates to the pre-calibrated values
and afterwards calibrating both models. For the second case it consist of setting
the zero coupon rates and the parameters for the two models to the pre-calibrated
values.

Based on the theoretical run times listed in eqn.’s (24), (30) and (34), bumping
is expected to be the computationally most expensive method followed by the
CSDA. The algorithmic methods are expected to be cheaper than the first two,

151

Results

0!

5!

10!

15!

20!

25!

5,000! 10,000! 50,000! 100,000!

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)!

Number of simulated paths!

Calculation of CVA & Sensitivities (12)!
- Calibration included.!

 Bumping !
CSDA!
Forward!
Adjoint!

0!
5!

10!
15!
20!
25!
30!
35!

5,000! 10,000! 50,000! 100,000!

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)!

Number of simulated paths!

Calculation of CVA & Sensitivities (16)!
- Calibration not included.!

 Bumping !
CSDA!
Forward!
Adjoint!

Figure 9: Run times measured in minutes for each of the four methods.

and in this case where the number of inputs greatly exceeds the number of out-
puts, the adjoint mode is expected to be significantly cheaper than the forward
mode.

Figure 9 shows the run time in minutes for each of the number of simulated paths.
Here, it can be seen that for 5.000 simulation paths the difference in computational
cost between the methods are insignificant. But for numbers of simulation paths
above 5.000, the run time for the different methods are ranked as expected and the
difference seem to increase with the number of simulation paths. This dependence
on the number of simulation paths will explained in connection to the normalized
numbers derived below.

For both cases it can be observed that the difference in cost between the CSDA
and the forward mode is relatively small. According to table 11, the run time for
the CSDA method is only 15-20% higher per sensitivity compared to the forward
mode. This observation is consistent with the comment given in section 4.4 re-
garding the connection between these two methods.

Bumping Forward Adjoint
Sim. paths Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

5.000 27.77% 30.18% -19.20% -16.51% -85.38% -88.87%
10.000 28.16% 30.04% -19.03% -16.53% -85.38% -88.87%
50.000 29.07% 38.32% -17.83% -15.32% -60.52% -69.32%
100.000 29.11% 38.41% -17.78% -15.27% -51.26% -63.37%

Table 11: Relative change in run time per sensitivity compared to the CSDA method.

Looking further into the relative differences between the methods in figure 9, these
seem to increase for 100.000 simulation paths for the when going from the first

152

Paper II

to the second case. Observing the relative difference per sensitivity in table 11,
one can see that these are approximately equal in two cases for the first two meth-
ods. The adjoint mode becomes relatively cheaper compared to the other methods
when the number of sensitivities increase, which can also visible in this table.
Thus, the increased dispersion in the computational cost is only caused by the in-
crease in the number of sensitivities.

The computational cost for the adjoint mode is observed to be constant across the
two cases in line with the methods independence of the number of inputs. But
the relative difference reported in table 11 are, contrary to the other methods, not
stable across the different numbers of simulation paths. There seem to be a sig-
nificant jump for 50.000 simulation paths, this will become more evident in the
following examinations.

Bounds on the run time for the forward- and adjoint mode were defined in eqn. (32)
and eqn. (36) for multiple in- and outputs, respectively. In order to visually assess
whether these bounds are respected in practice, the run times given in figure 9
have initially been normalized as described below.

The CVA calculation consists of two nested loops: an outer loop propagating all
n time buckets, given in eqn. (3), and an inner loop iterating for all m simulation
paths, cf. algorithm 1. Asymptotic analysis of the run time for the CVA calcula-
tion then (with slight abuse of notation) gives:

O(CVA0) = O(n) + O(n · m) ⇔ O

(CVA0

m

)
= O

(n
m

)
+ O(n) . (39)

In this setup the number of time buckets, n, is a constant of 120. Hence, the second
term, O(n), is likewise a constant, while the first term, O

(
n
m

)
, fast becomes very

small.

Hence, the run times normalized wrt. to the number of simulation paths should
theoretically be constant across the various numbers of simulation paths. The nor-
malized run times for the forward- and adjoint mode are depicted in figure 10
along with the theoretical bounds. Note that only the first case are reported here
as the figure for the second case is equivalent.

In figure 10 it can be observed that the normed run times for the forward mode
lies well within the bounds and is, as predicted, constant. The run times for the
adjoint mode are on the other hand not constant across the various number simula-
tion paths, and the trend seen in table 11 are thereby repeated here. Furthermore,
notice that the adjoint mode over-performs for the first two observations which lie

153

Results

0.0!

2.0!

4.0!

6.0!

8.0!

10.0!

12.0!

5,000! 10,000! 50,000! 100,000!

E
xe

cu
ti

on
 t

im
e

(m
s)

 p
er

 p
at

h.
!

Number of simulations paths.!

Calculation of CVA & Sensitivities (12)!
- Calibration included.!

Forward!
Adjoint!

Figure 10: Run time normed wrt. the number of simulation paths for case 1.

below the theoretical lower bound.

Neither the time bounds given in eqn. (36), nor the asymptotic result in eqn. (39),
accounts for the memory cost of the algorithm. Thus, even though the record have
been managed according to the rules-of-thumb given in section 4.3, the algorithm
seems to be memory bound for 50.000 simulation paths and above. This observa-
tion is consistent with the preliminary remark, stating that the adjoint mode runs
out of memory around 150.000 simulation paths.

0%!

20%!

40%!

60%!

80%!

100%!

5,000! 10,000! 50,000! 100,000!

Sp
ee

du
p

fa
ct

or
!

Number of simulated paths!

Speedup compared to Bumping!
- Calibration included.!

CSDA!
Forward!
Adjoint!

0%!

20%!

40%!

60%!

80%!

100%!

5,000! 10,000! 50,000! 100,000!

Sp
ee

du
p

fa
ct

or
!

Number of simulated paths!

Speedup compared to Bumping!
- Calibration not included.!

CSDA!
Forward!
Adjoint!

Figure 11: Speedup for the three different methods compared to Bumping.

The last comparison of the run times consists of determining the speedup that
could be gained by replacing bumping with one of the other methods. Figure 11
reports these speedups for both cases. As expected is the highest speedup obtained

154

Paper II

for the adjoint mode, as this method is superior to the forward mode when the
number of inputs greatly exceeds the number of outputs, cf. table 4. The speedup
factor for the CSDA and forward mode are a good deal lower, but still significant.

5.4 Automatic tool

The automatic AD tool FADBAD++ has been applied to the CVA algorithm for
both the forward and adjoint mode. As mentioned in section 4.5, the implement-
ation is fairly easy, especially for this case where the CSDA version was already
available. Hence, here the implementation consisted of a find-and-replace of the
data type complex<double> with F<double> or B<double>, and adding a few
alterations to the structure of the function call. The estimated developer time from
beginning to extracting of the correct results at the end, was limited to a maximum
of four hours per mode. This is a tremendous reduction in the development cost
compared to the hand-coded versions.

There are two main trade-offs though to this reduction in developer cost. The first
is the inefficient memory consumption for the adjoint mode. This stems from the
automatic tools inability to make intelligent decisions when it comes to the record-
ing of variables during the forward sweep. This manifest itself in case 2 where the
transformed code are unable to execute for numbers of simulations paths above
10.000, which is significantly worse than the limit of 100.000 for the hand-coded
version. Unfortunately, the code is not able to execute at all for case 1 where the
calibration process is included in the derivative calculation. This issue could be
related to the complex control flow for the Levenberg-Marquardt algorithm.

The second trade-off comes in the form of increased computational cost, as seen
in figure 12. In both cases the run time for the automatic forward mode, FaDiff,
lies well above the bumping method which had the worst performance out of the
four methods assessed. Surprisingly, the run time for the automatic adjoint mode,
BaDiff, actually lies above this level, and thereby has the worst performance of all.

According to the quote given below, the run times of the automatically generated
forward- and adjoint implementations should be a constant factor times the run
time for the hand-coded version.

... an unsophisticated approach suffices to produce AD code that
is within a constant factor of the optimal performance bounds
... subsequent effort is devoted just to reducing the value of this
constant (Griewank & Walther (2008, p.107))

155

Results

0!
5!

10!
15!
20!
25!
30!
35!
40!
45!

5,000! 10,000! 50,000! 100,000!

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)!

Number of simulated paths!

Calculation of CVA & Sensitivities (12)!
- Calibration included.!

 Bumping !
CSDA!
Forward!
Adjoint!
FaDiff!

0!
5!

10!
15!
20!
25!
30!
35!
40!
45!

5,000! 10,000! 50,000! 100,000!

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)!

Number of simulated paths!

Calculation of CVA & Sensitivities (16)!
- Calibration not included.!

 Bumping !
CSDA!
Forward!
Adjoint!
FaDiff!
BaDiff!

Figure 12: Absolute value of the relative error compared to the CSDA method,
calculated using 100.000 simulation paths.

There does indeed seem be such constant factors when looking at table 12. The
constant factor for the automatically generated adjoint mode is a remarkable factor
of 26.3 times higher than the hand-coded version in case 2.

Case 1 Case 2

FaDiff : Forward FaDiff : Forward BaDiff : Adjoint

5000 2.9440 2.2242 26.2752
10000 2.9353 2.2187 26.3253
50000 2.9064 2.2066
100000 2.9000 2.1974

Table 12: The ratio between the automatic forward- and adjoint mode and the
hand-coded forward- and adjoint mode, respectively.

The automatic AD modes could also have been implemented in a brute force
manor where all doubles are replaced by either F<double> or B<double>. This
way one would have avoided the process of identifying all active variables. But,
concluding from the execution times reported above, this would have resulted in
a pretty much useless implementation for this case.

156

Paper II

6 Wrapping it up

The objective of this paper was to assess the CSDA and algorithmic differentiation
methods as alternatives to bumping which currently rules the financial industry.
The performance of the method were in this paper examined in terms of accuracy
and run time. Both are important objects when it comes to calculating the CVA
price which involves Monte Carlo simulations for a series of time buckets.

6.1 When to use What?

The accuracy gains by replacing the bumping method with either of the three ma-
chine precision methods: CSDA, forward- and adjoint mode, was illustrated by
figure 7. Here it was evident that especially for factors with a large impact on the
CVA price this gain in accuracy could be significant.

The possible speedups related to replacing the bumping method was reported in
table 11. These should be seen in relation with the developer cost associated with
the implementation for each of the alternative methods. This is a trade-off which
should be weighed against the purpose of the algorithm: which is more important:
low initial costs i.e. developer costs, or low long term use costs i.e. computational
costs?

The CSDA method is by far the cheapest to implement as the only alterations to
the original algorithm needed is changing the data type and conditional opera-
tions for all active variables. In return, the speedup gained is on average only 24%
compare to bumping, which is significantly lower than for both of the algorithmic
methods. This method could also have been implemented by brute force, repla-
cing all doubles with their complex counterparts. This would have further reduced
development costs but would also have resulted in an even lower speedup.

The development cost takes a jump upwards when going from the CSDA method
to the algorithmic forward mode. In addition to identifying all active variables,
the symbolic derivative for each line of code must now be derived and added ac-
cordingly. The corresponding speedup obtained, when going from the CSDA to
the forward mode, does in return almost double to an average of 37%.

The by far most expensive method in terms of development is given by the al-
gorithmic adjoint mode. Here, not only must the derivatives be determined but the
calculation must also be reversed which is a major source of error. Additionally,
there is the whole memory issue which becomes urgent for numbers of simulation

157

Wrapping it up

paths above 50.000 and critical above 100.000 . This can be resolved either by
porting the solution to hardware containing more RAM, or through a more active
memory management strategy. The reward for this increase in development effort
comes in the form of a speed gain of 90% for numbers of simulation paths up to
and including 50.000. Above this level of paths, the algorithm becomes memory
bound and the gain is reduced to an average of 70%.

As an attempt to overcome these rather large development costs associated with
the two algorithmic modes, the automatic AD tool FADBAD++ was applied to the
algorithm. Unfortunately, this general-purpose tool was not sophisticated enough
to obtain any speedups for this framework . In fact, the speed was decreased by an
average of 85% for case 1 and 39% for case 2, when replacing bumping with the
automatic forward mode. The backward mode was hardly able to run, and for the
two calculations in case 1 for which it did run, the decrease in run time compared
to bumping were 125%.

Even though the automatic tool did not do any wonders for the computational costs
in this framework the concept is still very useful in practice, especially when con-
sidering long term maintenance costs. The derivatives for algorithms, which are
object to continuous improvements or alterations, can be easily maintained using
either an automatic AD tool or the CSDA method, as neither require anything else
than management of the data types. This crucial factor should also be taken into
account when comparing the pros and cons for the various methods.

Instead of applying just one of the methods for the entire algorithm, it is also
possible to combine their qualities into a hybrid mode, where the methods are
applied locally to subparts of the algorithm.

This could be a purely algorithmic hybrid where the optimal mode are determ-
ined and applied for parts of the code instead of the algorithm as a whole. Though
for this framework it can be observed in the figures given in appendix A.1, that
all functions have more inputs than outputs. Hence, the adjoint mode is the op-
timal choice for all functions and introducing a hybrid mode would not lead to
any further speedups.

In practice a hybrid could be any combination of the methods presented in this
paper, which applied to an algorithm, would lead to reduced development cost,
increased accuracy or additional speedups.

6.2 Before Flying the Nest

As mentioned in the beginning of this section, the purpose of this framework was
a purely academic comparison of alternative methods for deriving sensitivities.

158

Paper II

Hence, the complexity level of the financial CVA framework should be increased
before being applied in practice. This can be obtained by replacing one or both
of the models described in sections 2.3 and 2.4, and by removing some of the
simplifying assumptions listed in the beginning of section 2. Likewise, the setup
should be expanded in order to handle portfolios on counterparty level.

On the computational side the run time for each of the algorithms should be
brought down before being used in practice. There are various possibilities for
achieving this, the most obvious for this type of application is vectorization which
would increase the speed by several magnitudes. As briefly mentioned, this is
a demanding task for a C++ implementation, but as a side benefit it will become
easier afterwards to transfer parts of the computation to a GPGPU for additional
speedups. Parallelizing parts of the code could furthermore be used in connec-
tion with multicore processors or computer clusters, as described in Griewank &
Walther (2008, ch. 6.3). The latter of these could also solve some of the memory
issues regarding the adjoint mode implementation previously discussed.

159

Appendix : Source Code

A Appendix : Source Code

The source code is divided in 6 main modules. Basic contains the original
CVA algorithm, reused for calculating the finite difference derivatives. Complex,
Forward, Backward contains code for calculation of the CSDA, forward- and
adjoint mode derivatives, respectively. AutoDiff contains both the forward and
the adjoint mode implemented using FADBAD++. The last module Testing
contains classes testing the derivatives, for each of the functions displayed below,
for all methods.

The main function for calculating the CVA for the interest rate swap is placed
in the IRS class as function CVA_Zero. The results displayed in section 5 have
been obtained by running the two functions CVA_noCalibration and CVA_Calibration,
members of the class CVA_Calculation.

A.1 Object Oriented Design

This sections contains figures for each class depicted in figure 4, providing a de-
tailed description of the functionality. The notation used in the figures are given
by:

• active variables .

• inputted (outputted) implicitly from (to) a data member.

The following details have been left out:

• Read-access to private data members not depicted.

• Simple ’transport’ functions not depicted.

• Passive functions not depicted.

• Specific data types left out.

160

Paper II

Figure 13: IRS object.

Class responsible for calculating the value and CVA price of an ATM, forward starting,
receiver interest rate swap. Functions include valuation and simulation of the CVA price.

CVA_Zero

Ts, Te, tenor_fix,

tenor_float, nominal
dt, no_paths

recov_rate (scalars)

z (matrix)

{
ShortRateModel (object)

IntensityModel (object)

} {
cva (scalar)

}

Value

t, r_t , r_prev , Ts, Te,
tenor_fix, tenor_float,

nominal (scalars)

{
ShortRateModel (object)

} {
irs (scalar)

}

ParSwapRate

{
Ts, Te, tenor_fix (scalars)

}
{
ShortRateModel (object)

} {
rate (scalar)

}

FloatLeg

{
t, r_t , Ts, Te, (scalars)

}
{
ShortRateModel (object)

} {
float (scalar)

}

FixedLeg

{
t, r_t , Ts, Te, tenor_fix,

fix_rate (scalars)

}
{
ShortRateModel (object)

} {
fix (scalar)

}

161

Appendix : Source Code

Figure 14: Hull_White object.

Class implementing abstract class ’ShortRateModel’ - responsible for modeling the
stochastic short rate process according to the Hull White model. Functions include

simulating the short rate, calculation of the zero coupon bond price, calculation of the
price of a European Put Option (for calibration purposes).

CalibrateModel

data points (vector)

data values (vector)

ZC_YieldCurve (object)

 {
sigma (scalar)

}

NonlinLeastSquare
LevenMarq

Func_Fit_Cap

sigma (scalar)

ZC_YieldCurve (object)

data point (scalar)

{
cap (scalar)

cap grad. (vector)

}

Cap_PriceZero

Te (scalar)

strike (scalar)

tenor (scalar)

{
sigma (scalar)

ZC_YieldCurve (object)

} {
cap (scalar)

}

ZcbPutZero

T0 (scalar)

T1 (scalar)

strike (scalar)

{
sigma (scalar)

ZC_YieldCurve (object)

} {
zcb_put (scalar)

}

162

Paper II

Figure 14: Continued...

ZcbPrice

t (scalar)

T (scalar)

r_t (scalar)

{
sigma (scalar)

ZC_YieldCurve (object)

} {
zcb_price (scalar)

}

A

{
t (scalar)

T (scalar)

}
{
sigma (scalar)

ZC_YieldCurve (object)

} {
a (scalar)

}

ShortRateSimStep

r_prev (scalar)

t_prev (scalar)

dt (scalar)

std_norm (scalar)

{
sigma (scalar)

ZC_YieldCurve (object)

} {
r (scalar)

}

Alpha

{
t (scalar)

T (scalar)

}
{
sigma (scalar)

ZC_YieldCurve (object)

} {
alpha (scalar)

}

163

Appendix : Source Code

Figure 15: CIR object.

Class implementing abstract class ’IntensityModel’ - responsible for modeling the
stochastic short rate process according to the CIR model. Functions include calculating

the survival- and default probabilities once the parameters have been calibrated to a
given counterparty.

CalibrateModel

data points (vector)

data values (vector)

ZC_YieldCurve (object)

lambda0 (scalar)

a (scalar)

b (scalar)

NonlinLeastSquare

LevenMarq

Func_Fit_CDS

[lambda0, a, b] (vector)

ZC_YieldCurve (object)

data point (scalar)

{
cds (scalar)

cds grad. (vector)

}

CDS_PremZero

{
T (scalar)

tenor (scalar)

}
{
lambda0, a, b (scalars)

ZC_YieldCurve (object)

} {
cds (scalar)

}

SurvivalProb_Zero

{
T (scalar)

}
{
lambda0, a, b (scalars)

} {
surv_prob (scalar)

}

164

Paper II

Figure 16: ZC_YieldCurve object.

Class responsible for the Zero Coupon Yield Curve given by a CubicSpline object fitted
to a set of observed swaprates. Functions for interpolating the Zero Coupon- rate and

price are available.

ZCB_PriceZero

{
T (scalar)

}
{
CubicSpline (object)

} {
zcb_zero (scalar)

}

InstantForwardRate

{
T (scalar)

}
{
CubicSpline (object)

} {
fwd_rate (scalar)

}

Figure 17: NormDist object.

Class responsible for calculating the normal cumulative distribution function.

CDF
{
x (scalar)

} {
cdf (scalar)

}

Erfc
{
x (scalar)

} {
erfc (scalar)

}

Erfccheb
{
z (scalar)

} {
erfccheb (scalar)

}

165

Appendix : Source Code

Fi
g
u
r
e

18
:L

e
v
e
n
M

a
r
q

o
b
je

c
t.

C
la

ss
re

sp
on

si
bl

e
fo

rt
he

no
n-

lin
ea

rl
ea

st
sq

ua
re

op
tim

iz
at

io
n

’L
ev

en
be

rg
M

ar
qu

ar
dt

’.
C

al
cu

la
tio

ns
in

cl
ud

e
so

lu
tio

n
of

a
lin

ea
r

eq
ua

tio
n,

R
H

S
=

X
·
LH

S
,u

si
ng

G
au

ss
-J

or
da

n
el

im
in

at
io

n.
T

he
ca

lc
ul

at
io

ns
ar

e
gi

ve
n

in
N

um
er

ic
al

R
ec

ip
es

3r
d

ed
iti

on
§1

5.
5.

2
an

d
§2

.1
.2

.

N
o
n
l
i
n
L
e
a
s
t
S
q
u
a
r
e

 P
a
r
a
m
e
t
e
r
G
u
e
s
s

(v
ec

to
r)

Z
C
_
Y
i
e
l
d
C
u
r
v
e

(o
bj

ec
t)

d
a
t
a
i
n
f
o

(v
ec

to
r)

 d
a
t
a
p
o
i
n
t
s

(v
ec

to
r)

d
a
t
a
v
a
l
u
e
s

(v
ec

to
r)

C
a
l
c
v
a
l
u
e
s

(f
un

ct
io

n)

{ Ca

l
i
b
r
a
t
e
d

P
a
r
a
m
e
t
e
r

(v
ec

to
r)

}

G
a
u
s
s
j

{ RH
S

(m
at

ri
x)

L
H
S

(v
ec

to
r)

}

{ X
(v

ec
to

r)
}

M
r
q
C
o
f

 P
a
r
a
m
e
t
e
r

(v
ec

to
r)

Z
C
_
Y
i
e
l
d
C
u
r
v
e

(o
bj

ec
t)

d
a
t
a
i
n
f
o

(v
ec

to
r)

 d
a
t
a
p
o
i
n
t
s

(v
ec

to
r)

d
a
t
a
v
a
l
u
e
s

(v
ec

to
r)

C
a
l
c
v
a
l
u
e
s

(f
un

ct
io

n)

 m
r
q
c
o
f

(v
ec

to
r)

a
l
p
h
a

(m
at

ri
x)

b
e
t
a

(v
ec

to
r)

C
a
l
c
V
a
l
u
e
s

 P
a
r
a
m
e
t
e
r

(v
ec

to
r)

Z
C
_
Y
i
e
l
d
C
u
r
v
e

(o
bj

ec
t)

d
a
t
a
p
o
i
n
t

(s
ca

la
r)

d
a
t
a
i
n
f
o

(v
ec

to
r)

{ va

l
u
e

(s
ca

la
r)

v
a
l
u
e
g
r
a
d
i
e
n
t

(v
ec

to
r)

}

166

Paper II

Figure 19: CubicSpline object.

Class responsible for calculating and storing a natural cubic spline interpolation object
given by its: points, values and values”. Functions for interpolation and interpolation of

1st derivative are available.

SetSpline

{
Points (vector)

Values (vector)

}

Set_d2values

{
Points (vector)

Values (vector)

} {
Values′′ (vector)

}

Interp

{
x (scalar)

}

Points (vector)

Values (vector)

Values′′ (vector)

{
x (scalar)

}

InterpDiff

Points (vector)

Values (vector)

Values′′ (vector)

 {
x (scalar)

}

A.2 Code formatting

Below are descriptions of the function formats for the various derivatives modules.
Here, the input, x, and output, y, can each take the form of a scalar, multiple
scalars, vectors or other objects. In the code keyword: const, have been used
to indicate which functions do not alter the input and/or data members of the
corresponding object.

B Basic : this code is re-used for evaluating the finite difference derivatives.

eval(x,y).

167

Appendix : Data

B Complex : the code is given by the original algorithm where all active vari-
ables and functions: >= and max(), have been replaced with their complex
counterparts.

eval(x,y).

B Forward : the code is given by the original algorithm with each statement
augmented by a derivative counterpart. The seed direction is given as input,
x_dot, and the output, y_dot, is the forward derivative of y.

eval(x,x_dot, y, y_dot).

B Backward : the code consists of approximately twice the amount of func-
tions compared to the original algorithm. One half of these are given by
the original evaluation where variables are pushed onto the tape according
to the rules-of-thumb in section 4.3. The other half consists of the reverse
propagation of the original evaluation trace where intermediate variables are
popped off the tape. The input, y_bar, is the weight functional set to zero
after the evaluation in accordance with the scheme given in table 8. The
calculated derivative is added to, and saved in, the input variable x_bar.

eval(x,y) eval_bar(x_bar,y_bar)

In practice some of the inputs x, x_dot, x_bar, y_bar, and some of the outputs
y, y_dot, x_bar, are given or saved implicitly as data members in the various
classes. This eases the handling of variables and objects included in multiple
functions, but unfortunately also decreases the transparency.

B Appendix : Data

168

Paper II

Sim. paths Mean CVA0 RSD(%) CVA0 95% Confidence Interval Run time(s)

5.000 2.1444 1.86 [2.073; 2.2211] 0.24

10.000 2.1438 1.34 [2.0837; 2.2005] 0.33

100.000 2.1452 1.43 [2.1276; 2.1637] 2.67

Table 13: Table 4 from Hansen & Glibstrup (2014) repeated for validation of the
computed CVA0 values. The values have been obtained for a sample of 2.000

calculations.

169

Appendix : Data

Table 14: 5.000 simulation paths - Case 1.

Run time(ms) CVA | 2490 Bumping CSDA Forward Adjoint FaDiff

Run time(ms) : ∂CVA0
∂θ2

62079 48586 39258 7102 115574

CVA0 2.1313 2.1313 2.1313 2.1313 2.1313

∂CVA0

∂r0
0.2346 0.2346 0.2346 0.2346 0.2346

∂CVA0

∂r∗cont(0, 1)
1.5589 1.5589 1.5589 1.5589 1.5589

∂CVA0

∂r∗cont(0, 2)
2.6733 2.6734 2.6734 2.6734 2.6734

∂CVA0

∂r∗cont(0, 3)
5.4421 5.4422 5.4422 5.4422 5.4422

∂CVA0

∂r∗cont(0, 4)
1.1597 1.1600 1.1600 1.1600 1.1600

∂CVA0

∂r∗cont(0, 5)
13.4697 13.4695 13.4695 13.4695 13.4695

∂CVA0

∂r∗cont(0, 7)
-4.9693 -4.9680 -4.9680 -4.9680 -4.9680

∂CVA0

∂r∗cont(0, 10)
-62.6081 -62.6064 -62.6064 -62.6064 -62.6064

∂CVA0

∂r∗cont(0, 15)
34.6099 34.6055 34.6055 34.6055 34.6055

∂CVA0

∂r∗cont(0, 20)
17.3917 17.3896 17.3896 17.3896 17.3896

∂CVA0

∂r∗cont(0, 25)
3.2096 3.2239 3.2239 3.2239 3.2239

∂CVA0

∂r∗cont(0, 30)
-141.2222 -141.2317 -141.2317 -141.2317 -141.2317

170

Paper II

Table 15: 10.000 simulation paths - Case 1.

Run time(ms) CVA | 4981 Bumping CSDA Forward Adjoint FaDiff

Run time(ms) : ∂CVA0
∂θ2

124398 97061 78586 14188 230672

CVA0 2.0854 2.0854 2.0854 2.0854 2.0854

∂CVA0

∂r0
0.2258 0.2258 0.2258 0.2258 0.2258

∂CVA0

∂r∗cont(0, 1)
1.5083 1.5083 1.5083 1.5083 1.5083

∂CVA0

∂r∗cont(0, 2)
2.5648 2.5648 2.5648 2.5648 2.5648

∂CVA0

∂r∗cont(0, 3)
5.2800 5.2801 5.2801 5.2801 5.2801

∂CVA0

∂r∗cont(0, 4)
0.9781 0.9779 0.9779 0.9779 0.9779

∂CVA0

∂r∗cont(0, 5)
13.2674 13.2682 13.2682 13.2682 13.2682

∂CVA0

∂r∗cont(0, 7)
-5.2688 -5.2694 -5.2694 -5.2694 -5.2694

∂CVA0

∂r∗cont(0, 10)
-61.7091 -61.7111 -61.7111 -61.7111 -61.7111

∂CVA0

∂r∗cont(0, 15)
35.7269 35.7325 35.7325 35.7325 35.7325

∂CVA0

∂r∗cont(0, 20)
17.8675 17.8737 17.8737 17.8737 17.8737

∂CVA0

∂r∗cont(0, 25)
4.2691 4.2690 4.2690 4.2690 4.2690

∂CVA0

∂r∗cont(0, 30)
-139.6577 -139.6622 -139.6622 -139.6622 -139.6622

171

Appendix : Data

Table 16: 50.000 simulation paths - Case 1.

Run time(ms) CVA | 24949 Bumping CSDA Forward Adjoint FaDiff

Run time(ms) : ∂CVA0
∂θ2

623141 482787 396715 190620 1153013

CVA0 2.1535 2.1535 2.1535 2.1535 2.1535

∂CVA0

∂r0
0.2372 0.2372 0.2372 0.2372 0.2372

∂CVA0

∂r∗cont(0, 1)
1.5769 1.5769 1.5769 1.5769 1.5769

∂CVA0

∂r∗cont(0, 2)
2.7027 2.7027 2.7027 2.7027 2.7027

∂CVA0

∂r∗cont(0, 3)
5.5015 5.5016 5.5016 5.5016 5.5016

∂CVA0

∂r∗cont(0, 4)
1.1687 1.1687 1.1687 1.1687 1.1687

∂CVA0

∂r∗cont(0, 5)
13.6201 13.6205 13.6205 13.6205 13.6205

∂CVA0

∂r∗cont(0, 7)
-5.0365 -5.0358 -5.0358 -5.0358 -5.0358

∂CVA0

∂r∗cont(0, 10)
-63.5462 -63.5452 -63.5452 -63.5452 -63.5452

∂CVA0

∂r∗cont(0, 15)
35.5133 35.5113 35.5113 35.5113 35.5113

∂CVA0

∂r∗cont(0, 20)
17.6747 17.6760 17.6760 17.6760 17.6760

∂CVA0

∂r∗cont(0, 25)
3.3578 3.3598 3.3598 3.3598 3.3598

∂CVA0

∂r∗cont(0, 30)
-143.2753 -143.2779 -143.2779 -143.2779 -143.2779

172

Paper II

Table 17: 100.000 simulation paths - Case 1.

Run time(ms) CVA | 49919 Bumping CSDA Forward Adjoint FaDiff

Run time(ms) : ∂CVA0
∂θ2

1248044 966659 794771 471161 2304841

CVA0 2.1395 2.1395 2.1395 2.1395 2.1395

∂CVA0

∂r0
0.2345 0.2345 0.2345 0.2345 0.2345

∂CVA0

∂r∗cont(0, 1)
1.5609 1.5609 1.5609 1.5609 1.5609

∂CVA0

∂r∗cont(0, 2)
2.6694 2.6694 2.6694 2.6694 2.6694

∂CVA0

∂r∗cont(0, 3)
5.4531 5.4531 5.4531 5.4531 5.4531

∂CVA0

∂r∗cont(0, 4)
1.1129 1.1130 1.1130 1.1130 1.1130

∂CVA0

∂r∗cont(0, 5)
13.5626 13.5629 13.5629 13.5629 13.5629

∂CVA0

∂r∗cont(0, 7)
-5.1297 -5.1291 -5.1291 -5.1291 -5.1291

∂CVA0

∂r∗cont(0, 10)
-63.1128 -63.1123 -63.1123 -63.1123 -63.1123

∂CVA0

∂r∗cont(0, 15)
35.7172 35.7147 35.7147 35.7147 35.7147

∂CVA0

∂r∗cont(0, 20)
17.5281 17.5277 17.5277 17.5277 17.5277

∂CVA0

∂r∗cont(0, 25)
3.3693 3.3716 3.3716 3.3716 3.3716

∂CVA0

∂r∗cont(0, 30)
-142.1769 -142.1803 -142.1803 -142.1803 -142.1803

173

Appendix : Data

Table 18: 5.000 simulation paths - Case 2.

Run time(ms) CVA | 2450 Bumping CSDA Forward Adjoint FaDiff BaDiff

Run time(ms) : ∂CVA0
∂θ2

80758 62035 51790 6904 115192 181404

CVA0 2.0905 2.0905 2.0905 2.0905 2.0905 2.0905

∂CVA0

∂σhw
161.9774 161.9811 161.9811 161.9811 161.9811 161.9811

∂CVA0

∂λ0
-3.0499 -3.0499 -3.0499 -3.0499 -3.0499 -3.0499

∂CVA0

∂acir
0.1890 0.1890 0.1890 0.1890 0.1890 0.1890

∂CVA0

∂bcir
8.9637 8.9637 8.9637 8.9637 8.9637 8.9637

∂CVA0

∂r0
-0.0355 -0.0355 -0.0355 -0.0355 -0.0355 -0.0355

∂CVA0

∂r∗cont(0, 1)
0.0860 0.0860 0.0860 0.0860 0.0860 0.0860

∂CVA0

∂r∗cont(0, 2)
-0.2174 -0.2174 -0.2174 -0.2174 -0.2174 -0.2174

∂CVA0

∂r∗cont(0, 3)
0.7838 0.7838 0.7838 0.7838 0.7838 0.7838

∂CVA0

∂r∗cont(0, 4)
-2.9178 -2.9178 -2.9178 -2.9178 -2.9178 -2.9178

∂CVA0

∂r∗cont(0, 5)
5.8084 5.8086 5.8086 5.8086 5.8086 5.8086

∂CVA0

∂r∗cont(0, 7)
-10.6155 -10.6162 -10.6162 -10.6162 -10.6162 -10.6162

∂CVA0

∂r∗cont(0, 10)
-47.3404 -47.3348 -47.3348 -47.3348 -47.3348 -47.3348

∂CVA0

∂r∗cont(0, 15)
60.3694 60.3568 60.3568 60.3568 60.3568 60.3568

∂CVA0

∂r∗cont(0, 20)
41.8763 41.8704 41.8704 41.8704 41.8704 41.8704

∂CVA0

∂r∗cont(0, 25)
29.7769 29.7844 29.7844 29.7844 29.7844 29.7844

∂CVA0

∂r∗cont(0, 30)
-113.2407 -113.2385 -113.2385 -113.2385 -113.2385 -113.2385

174

Paper II

Table 19: 10.000 simulation paths - Case 2.

Run time(ms) CVA |4893 Bumping CSDA Forward Adjoint FaDiff BaDiff

Run time(ms) : ∂CVA0
∂θ2

161405 124118 103597 13810 229852 363552

CVA0 2.1329 2.1329 2.1329 2.1329 2.1329 2.1329

∂CVA0

∂σhw
167.0035 167.0036 167.0036 167.0036 167.0036 167.0036

∂CVA0

∂λ0
-3.0613 -3.0613 -3.0613 -3.0613 -3.0613 -3.0613

∂CVA0

∂acir
0.2029 0.2029 0.2029 0.2029 0.2029 0.2029

∂CVA0

∂bcir
9.1953 9.1953 9.1953 9.1953 9.1953 9.1953

∂CVA0

∂r0
-0.0362 -0.0362 -0.0362 -0.0362 -0.0362 -0.0362

∂CVA0

∂r∗cont(0, 1)
0.0880 0.0880 0.0880 0.0880 0.0880 0.0880

∂CVA0

∂r∗cont(0, 2)
-0.2226 -0.2226 -0.2226 -0.2226 -0.2226 -0.2226

∂CVA0

∂r∗cont(0, 3)
0.8026 0.8026 0.8026 0.8026 0.8026 0.8026

∂CVA0

∂r∗cont(0, 4)
-2.9878 -2.9878 -2.9878 -2.9878 -2.9878 -2.9878

∂CVA0

∂r∗cont(0, 5)
5.9476 5.9479 5.9479 5.9479 5.9479 5.9479

∂CVA0

∂r∗cont(0, 7)
-10.8701 -10.8709 -10.8709 -10.8709 -10.8709 -10.8709

∂CVA0

∂r∗cont(0, 10)
-47.8398 -47.8388 -47.8388 -47.8388 -47.8388 -47.8388

∂CVA0

∂r∗cont(0, 15)
61.1165 61.1177 61.1177 61.1177 61.1177 61.1177

∂CVA0

∂r∗cont(0, 20)
42.2135 42.2131 42.2131 42.2131 42.2131 42.2131

∂CVA0

∂r∗cont(0, 25)
29.8508 29.8496 29.8496 29.8496 29.8496 29.8496

∂CVA0

∂r∗cont(0, 30)
-114.4785 -114.4726 -114.4726 -114.4726 -114.4726 -114.4726

175

Appendix : Data

Table 20: 50.000 simulation paths - Case 2.

Run time(ms) CVA | 26123 Bumping CSDA Forward Adjoint FaDiff BaDiff

Run time(ms) : ∂CVA0
∂θ2

856225 619024 524203 189932 1156699 0.0

CVA0 2.1446 2.1446 2.1446 2.1446 2.1446 0.0

∂CVA0

∂σhw
168.5107 168.5110 168.5110 168.5110 168.5110 0.0

∂CVA0

∂λ0
-3.0899 -3.0899 -3.0899 -3.0899 -3.0899 0.0

∂CVA0

∂acir
0.2084 0.2084 0.2084 0.2084 0.2084 0.0

∂CVA0

∂bcir
9.3248 9.3247 9.3247 9.3247 9.3247 0.0

∂CVA0

∂r0
-0.0362 -0.0362 -0.0362 -0.0362 -0.0362 0.0

∂CVA0

∂r∗cont(0, 1)
0.0873 0.0873 0.0873 0.0873 0.0873 0.0

∂CVA0

∂r∗cont(0, 2)
-0.2193 -0.2193 -0.2193 -0.2193 -0.2193 0.0

∂CVA0

∂r∗cont(0, 3)
0.7899 0.7899 0.7899 0.7899 0.7899 0.0

∂CVA0

∂r∗cont(0, 4)
-2.9403 -2.9403 -2.9403 -2.9403 -2.9403 0.0

∂CVA0

∂r∗cont(0, 5)
5.8533 5.8532 5.8532 5.8532 5.8532 0.0

∂CVA0

∂r∗cont(0, 7)
-10.6983 -10.6978 -10.6978 -10.6978 -10.6978 0.0

∂CVA0

∂r∗cont(0, 10)
-47.9091 -47.9083 -47.9083 -47.9083 -47.9083 0.0

∂CVA0

∂r∗cont(0, 15)
60.7049 60.7020 60.7020 60.7020 60.7020 0.0

∂CVA0

∂r∗cont(0, 20)
42.3127 42.3137 42.3137 42.3137 42.3137 0.0

∂CVA0

∂r∗cont(0, 25)
29.8809 29.8839 29.8839 29.8839 29.8839 0.0

∂CVA0

∂r∗cont(0, 30)
-114.4099 -114.4121 -114.4121 -114.4121 -114.4121 0.0

176

Paper II

Table 21: 100.000 simulation paths - Case 2.

Run time(ms) CVA | 51964 Bumping CSDA Forward Adjoint FaDiff BaDiff

Run time(ms) : ∂CVA0
∂θ2

1715183 1239182 1049976 453942 2307244 0.0

CVA0 2.1456 2.1456 2.1456 2.1456 2.1456 0.0

∂CVA0

∂σhw
168.5919 168.5929 168.5929 168.5929 168.5929 0.0

∂CVA0

∂λ0
-3.1253 -3.1253 -3.1253 -3.1253 -3.1253 0.0

∂CVA0

∂acir
0.2010 0.2010 0.2010 0.2010 0.2010 0.0

∂CVA0

∂bcir
9.2929 9.2929 9.2929 9.2929 9.2929 0.0

∂CVA0

∂r0
-0.0363 -0.0363 -0.0363 -0.0363 -0.0363 0.0

∂CVA0

∂r∗cont(0, 1)
0.0876 0.0876 0.0876 0.0876 0.0876 0.0

∂CVA0

∂r∗cont(0, 2)
-0.2205 -0.2205 -0.2205 -0.2205 -0.2205 0.0

∂CVA0

∂r∗cont(0, 3)
0.7944 0.7944 0.7944 0.7944 0.7944 0.0

∂CVA0

∂r∗cont(0, 4)
-2.9569 -2.9569 -2.9569 -2.9569 -2.9569 0.0

∂CVA0

∂r∗cont(0, 5)
5.8863 5.8862 5.8862 5.8862 5.8862 0.0

∂CVA0

∂r∗cont(0, 7)
-10.7583 -10.7582 -10.7582 -10.7582 -10.7582 0.0

∂CVA0

∂r∗cont(0, 10)
-47.9872 -47.9862 -47.9862 -47.9862 -47.9862 0.0

∂CVA0

∂r∗cont(0, 15)
60.9790 60.9770 60.9770 60.9770 60.9770 0.0

∂CVA0

∂r∗cont(0, 20)
42.2713 42.2701 42.2701 42.2701 42.2701 0.0

∂CVA0

∂r∗cont(0, 25)
29.9424 29.9404 29.9404 29.9404 29.9404 0.0

∂CVA0

∂r∗cont(0, 30)
-114.6113 -114.6074 -114.6074 -114.6074 -114.6074 0.0

177

Appendix : Data

Bibliography

Brigo, Damiano and Mercurio, Fabio (2006). Interest Rate Models - Theory and
Practice with Smile, Inflation and Credit. Springer, Berlin, 2nd edition.

Brigo, Damiano and Morini, Massimo and Pallavicini, Andrea (2013). Counter-
party Credit Risk, Collateral and Funding. John Wiley & Sons, 1st edition.

Capriotti, Luca (2011). Fast Greeks by algorithmic differentiation. The Journal
of Computational Finance, 14(3), 3–35.

Davidson, Clive (2015). Structured products desks join the AAD revolution.

Giles, Michael (2007). Monte Carlo evaluation of sensitivities in computational
finance.

Giles, Mike and Glasserman, Paul (2006). Smoking adjoints : fast Monte Carlo
Greeks. Risk Magazine, (3), 88–92.

Giles, Michael B. and Ghate, Devendra P and Duta, Mihai C. (2008). Using
Automatic Differentiation for Adjoint CFD Code Development. Computational
Fluid Dynamics Journal, 16(4), 434–443.

Glasserman, Paul (2004). Monte Carlo Methods in Financial Engineering.
Springer.

Griewank, Andreas and Walther, Andrea (2008). Evaluating Derivatives - Prin-
ciples and Techniques of Algorithmic Differentiation. SiAM, 2nd edition.

Hansen, Lea Nøhr Hjelmager and Glibstrup, Anders Kjær (2014). CVA med
Wrong Way risiko. Master’s thesis, University of Copenhagen.

Homescu, Cristian (2011). Generic computing alternatives for better Greeks.

Linderstroem, Martin Dalskov (2013). Fixed Income Derivatives. Course notes
for the M.Sc. course ’Fixed Income Derivatives: Risk Management and Finan-
cial Institutions’ at the Department of Economics, University of Copenhagen.

Martins, Joaquim R. R. A. and Sturdza, Peter and Alonso, Juan J. (2003). The
complex-step derivative approximation. ACM Transactions on Mathematical
Software, 29(3), 245–262.

Munk, Claus (2011). Fixed income modelling. Oxford University Press.

Press, William H. and Teukolsky, Saul A. and Flannery, Brian P. (2007). Nu-
merical Recipes. Cambridge University Press, 3rd edition.

178

Paper II

Savickas, Vytautas (2011). Fast Greeks : Case of Credit Valuation Adjustments.
PhD thesis, Utrecht University.

Tavella, Domigo and Randall, Curt (2000). Pricing Financial Instruments. John
Wiley & Sons.

The Kavli Foundation (2016). Extreme machines: What science needs from com-
puters. [Online; accessed 8-January-2016].

179

	Introduction
	I Efficient Calibration of the Local Volatility Model
	Motivation
	Setting the Scene
	Normed call prices
	The local volatility model
	Absence of arbitrage

	Presentation of the methods
	Benko
	Fengler
	AndreasenHuge
	GlaserHeider
	FenglerHin

	Empirical work
	Data
	Filtering
	Quantitative Comparison of the Methods

	Did we reach our goals?
	Appendix
	Glaser & Heider quadratic programming problem.
	Fengler & Hin linear inequality constraints.

	References

	II Efficient Calculation of Sentivitities
	Motivation
	Financial Framework
	CVA approximation formula.
	Interest Rate Swap
	Short rate model - Hull White
	Intensity model - CIR
	Calibrating the model framework
	Discretization
	 The derivatives

	Derivatives Framework
	Finite Difference Approximation
	Complex-Step Derivative Approximation
	Algorithmic Derivatives

	Implementation
	 Program Design
	Active and passive variables
	Recording
	Validation Checks
	Automatic Differentiation

	Results
	Accuracy
	Stability
	Run Time
	Automatic tool

	Wrapping it up
	When to use What?
	Before Flying the Nest

	Appendix : Source Code
	Object Oriented Design
	Code formatting

	Appendix : Data
	References

