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Abstract

In this thesis we study various analytic aspects of the Thompson groups, sev-
eral of them related to amenability. In joint work with Uffe Haagerup, we prove
that the Thompson groups T and V are not inner amenable, and give a criteria for
non-amenability of the Thompson group F . More precisely, we prove that F is
non-amenable if the reduced group C∗-algebra of T is simple. Whilst doing so,
we investigate the C∗-algebras generated by the image of the Thompson groups
in the Cuntz algebra O2 via a representation discovered by Nekrashevych. Based
on this, we obtain new equivalent conditions to F being non-amenable.

Furthermore, we prove that the reduced group C∗-algebra of a non-inner
amenable group possessing the rapid decay property of Jolissaint is simple with
a unique tracial state. We then provide some applications of this criteria.

In the last part of the thesis, inspired by recent work of Garncarek, we con-
struct one-parameter families of representations of the Thompson group F on
the Hilbert space L2([0, 1],m), wherem denotes the Lebesgue measure, and we
investigate when these are irreducible and mutually inequivalent. In addition,
we exhibit a particular family of such representations, depending on parame-
ters s ∈ R and p ∈ (0, 1), and prove that these are irreducible for all values of s
and p, and non-unitarily equivalent for different values of p. We furthermore
show that these representations are strongly continuous in both parameters, and
that they converge to the trivial representation, as p tends to zero or one.

Resumé

I denne afhandling studerer vi diverse analytiske aspekter af Thompson-grup-
perne, flere af hvilke er relateret til amenabilitet. I samarbejde med Uffe Haagerup
viser vi, at Thompson-grupperne T og V ikke er indre amenable og giver et kri-
terium, for at Thompson-gruppen F ikke er amenabel. Helt konkret viser vi, at F
ikke er amenabel, hvis den reducerede gruppe-C∗-algebra hørende til T er simpel.
I processen undersøger vi de C∗-algebraer som bliver genereret af billederne af
Thompson-grupperne via en repræsentation i Cuntz-algebraerne O2, der blev op-
daget af Nekrashevych. Baseret på dette giver vi nye ækvivalente betingelser for,
at F ikke er amenabel.

Derudover viser vi, at hvis en gruppe ikke er indre amenabel, men har ra-
pid decay-egenskaben introduceret af Jolissaint, da er dens reducerede gruppe-
C∗-algebra simpel og har en unik sportilstand. Efterfølgende præsenterer vi nogle
anvendelser af dette resultat.

Den sidste del af afhandlingen er inspireret af resultater af Garncarek. I denne
konstruerer vi ét-parameter-familier af repræsentationer af Thompson-gruppen F
på Hilbertrummet L2([0, 1],m), hvor m betegner Lebesguemålet. Vi undersøger,
hvornår disse repræsentationer er irreducible, og hvornår de ikke er parvist ækvi-
valente. Derudover producerer vi en konkret familie af sådanne repræsentationer,
afhængig af to parametre s ∈ R og p ∈ (0, 1), samt viser at disse er irreducible
for alle værdier af s og p, og ikke unitært ækvivalente for forskellige værdier af p.
Ydermere viser vi, at repræsentationerne er stærkt kontinuerte i begge parametre
og konvergerer mod den trivielle repræsentation, når p går med nul eller en.
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Chapter 1

Introduction

In 1965 Richard Thompson introduced three groups now commonly referred to as
the Thompson groups. These groups, denoted by F , T and V , have been the cen-
ter of much study since their introduction, and a particularly famous open problem
regarding these groups asks whether or not F is amenable. This question has been
studied intensely and several unsuccessful attempts have been made to prove or dis-
prove amenability of F . The three groups satisfy F ⊆ T ⊆ V , and it is well-known
that the Thompson groups T and V are non-amenable, as they contain a copy of F2,
the free group on two generators. However, F does not contain a copy of F2, as
proved by Brin and Squire [8] in 1985. Thus F has been for a long time a candidate
for a finitely generated counterexample to the von Neumann conjecture, stating that
the only obstruction to amenability is containment of F2. The von Neumann con-
jecture was disproved in 1980 by Olshanskii [56], but his counterexample was not
finitely generated. A finitely generated counterexample was found later by Olshan-
skii and Sapir [58], and, recently, several highly accessible counterexamples have
been produced by Monod [53] and by Lodha and Moore [50]. In this thesis we ap-
proach the question of amenability of F by proving that the Thompson group F is
non-amenable if the reduced groupC∗-algebra of T is simple, thus giving an operator
algebraic criterion for non-amenability of F . This result has been obtained in joint
work with Uffe Haagerup, who was our main supervisor until his passing away in
July, 2015. After announcing this result at various conferences, several partial con-
verses have been obtained, first by Bleak and Juschenko [6] and later by Breuillard,
Kalantar, Kennedy and Ozawa [7]. Recently, Le Boudec and Matte Bon [49] proved
that the (full) converse statement holds, namely that F is non-amenable if and only
if the reduced group C∗-algebra of T is simple. The study of groups whose reduced
group C∗-algebra is simple, also known as C∗-simple groups, respectively, of groups
whose reduced group C∗-algebra has a unique tracial state, also known as groups
with the unique trace property, has been an important topic in operator algebra theory
since 1975, when Powers [60] proved that F2 is C∗-simple and has the unique trace
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10 CHAPTER 1. INTRODUCTION

property. Over the years, many groups have been proven to be C∗-simple with the
unique trace property, and a famous long time open question of de la Harpe asked
whether or not C∗-simplicity and the unique trace property of a group are equivalent.
Recently, a tremendous progress has been made regarding these two properties, and
the question of de la Harpe has been completely settled. It was first proved by Poz-
nansky [61] in 2009 that the two properties are equivalent for linear groups, however,
it turns out that they are not equivalent in general. More precisely, in 2014 Kalan-
tar and Kennedy [43] gave a characterization of C∗-simplicity in terms of certain
boundary actions of the given group, and later the same year Breuillard, Kalantar,
Kennedy and Ozawa [7] proved that C∗-simplicity implies the unique trace property.
The year after, Le Boudec [48] gave an example of a C∗-simple group without the
unique trace property, thus settling the question of de la Harpe. It is already known
that the Thompson group T has the unique trace property, as shown by Dudko and
Medynets [25] in 2012, but is remains an open question whether T is C∗-simple.

In order to prove thatC∗-simplicity of the group T implies non-amenability of F ,
we use a representation of the Thompson groups in the unitary group of the Cuntz
algebra O2, introduced by Nekrashevych [55] in 2004. In addition to this result, we
also prove, in collaboration with Haagerup, that the C∗-algebras generated by the
representations of F , T and V are distinct, and that the one generated by V is all
of O2. We then give equivalent conditions to F being non-amenable in terms of
whether certain ideals in the reduced group C∗-algebras of F and T are proper.

Another result we prove in collaboration with Haagerup is that the Thompson
groups T and V are not inner amenable, thus settling a question that Chifan raised at a
conference in Alba-Iulia in 2013. The notion of inner amenability was introduced by
Effros [26] in 1975 in order to give a group theoretic characterization of property Γ of
Murray and von Neumann for group von Neumann algebras of discrete ICC groups.
Effros proved that a discrete ICC group is inner amenable if its group von Neumann
algebra has Property Γ. He conjectured that the converse implication was also true,
but it was only in 2012 that Vaes gave an example of an inner amenable discrete ICC
group whose group von Neumann algebra does not possess Property Γ. Jolissaint [40]
proved in 1997 that the Thompson group F is, in fact, inner amenable, and a year
after, he strengthened his result by proving that the group von Neumann algebra of F
is a McDuff factor, see [41]. A few years later a different, more elementary proof of
inner amenability of F was given by Ceccherini-Silberstein and Scarabotti [12].

As a different approach to the question of C∗-simplicity of T , we prove that
non-inner amenable groups with the rapid decay property are C∗-simple with the
unique trace property. Rapid decay is a property introduced by Jolissaint [39] in 1990,
inspired by a result of Haagerup [35] from 1979, that the free group on n generators
has this property. With our criteria for C∗-simplicity we recover some of the known
examples, and find further ones. However, we cannot settle the C∗-simplicity of T ,
since T does not have the rapid decay property, as kindly pointed out to us by Valette.

In 2012 Garncarek [30] proved that a certain one-parameter family of represen-
tations of F were all irreducible and, moreover, unitarily equivalent exactly when
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the parameters differ by an integer multiple of 2π
log 2 . This one-parameter family is a

natural analogue of the one-parameter family of representations of SL(2,R), known
as the principal series. In this thesis, following a suggestion of Monod, we provide
a method for obtaining one-parameter families of representations of F by means of
other actions of F on the unit interval by homeomorphisms. For example, we expand
upon Garncarek’s family of representations by introducing another parameter. More
precisely, for each p ∈ (0, 1) and s ∈ R we produce an irreducible representation πφp

s

of F on the Hilbert space L2([0, 1],m), where m is the Lebesgue measure, so that
for p = 1

2 this is the one-parameter family of Garncarek. We prove that these repre-
sentations are strongly continuous in both parameters, and that πφp

s converges to the
trivial representation of F on L2([0, 1],m), as p tends to zero or one.

Let us end the introduction by supplying an overview of this thesis. Chapter 2
serves as an introduction to the Thompson groups. More precisely, the first two sec-
tions contain basic facts about these groups, including the notion of standard dyadic
partitions, and how the elements of the Thompson groups can be represented as re-
arrangements of these. The third section introduces the Minkowski question mark
function and a variant of it. These maps are then used in the fourth section to prove
a result of Thurston realizing the Thompson group T as a group of piecewise pro-
jective linear maps. We would like to thank Sergiescu for several fruitful discussions
and his help in sorting out the origin of the particular version of Thurston’s result we
are presenting.

The topic of Chapter 3 is inner amenability. The first section is devoted to amena-
ble actions for discrete groups, and list some standard results about these. The second
section contains a brief introduction to inner amenability and Property Γ, while the
third section contains a proof of the result with Haagerup that the Thompson groups T
and V are not inner amenable.

In Chapter 4 we look at the Thompson groups from an operator algebraic point
of view. In the first section, after introducing the representation of Nekrashevych
mentioned above, we prove the result concerning the C∗-algebras generated by the
images of F , T and V via this representation announced above. The second section is
devoted to C∗-simplicity and the unique trace property. We prove that the Thompson
group F is non-amenable if T is C∗-simple, as well as a characterization of non-
amenability of F in terms of whether certain ideals in the reduced group C∗-algebras
of F and T are proper. These results are both joint work with Haagerup. In the third
and fourth sections we provide a brief introduction to the rapid decay property for
groups, and prove that non-inner amenable groups with the rapid decay property are
C∗-simple with the unique trace property.

In the last chapter, motivated by work of Garncarek, we construct one-parameter
families representations of the Thompson group F . In the first section we explain
how to obtain a one-parameter family of representation of F from certain increasing
homeomorphisms of the unit interval, as well as determine when these are irreducible
and when they are unitarily equivalent for different homeomorphisms. In the second
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section we list some well-known results about measures and equivalence relations on
the Cantor set, and in the third section we use these results to show that the represen-
tations πφp

s mentioned above are irreducible and inequivalent for different values of p.
Section Four is devoted to explaining a method for constructing the increasing home-
omorphisms of the unit interval used in the first section to produce one-parameter
families of representations of F . In section five we prove that all such homeomor-
phisms can be obtained via this construction. We end this chapter with a list of open
questions and further projects related to the one-parameter families of representations
of F which we have constructed.

1.1 Notation and terminology

Let us spend a few words setting some of the notation, terminology and conventions
of this thesis. Most of the notation and terminology will be introduced along the way,
and there is a subject index on page 125.

First of all, we denote the sets of complex numbers, real numbers and rational
numbers by C, R and Q, respectively. The integers are denoted by Z and the set of
natural numbers by N. We do not include 0 in the set of natural numbers.

Groups will always be discrete, and will typically be denoted by the letters G
andH , unless they are specific ones, such as the free non-abelian group Fn on n gen-
erators. We will use e to denote the neutral element of a generic group, and mainly
g and h for general group elements. We use CG to denote the complex groups alge-
bra of a group G and C∗(G) the completion of CG into the full group C∗-algebra.
Moreover, G is said be ICC if all of its non-trivial conjugacy classes are infinite, that
is, if {ghg−1 : g ∈ G} is an infinite set, for all h 6= e.

Ordinary measures and finitely additive measures will usually be denoted by µ
and ν, except for the Lebesgue measure, which will always be denoted by m. Given
a measure µ on a set X1, and a measurable map f : X1 → X2, we will let f∗µ denote
the image measure on X2, that is, the measure given by f∗µ(A) = µ(f−1(A)).

We denote Hilbert spaces by H, and sometimes by K. The inner product and the
norm on such spaces will be denoted by 〈· | ·〉 and ‖ · ‖2, respectively. Given a set X,
we let `2(X) denote the particular Hilbert space of complex valued square-summable
functions on X, and, likewise, we will let `1(X) and `∞(X) denote the spaces of
summable and bounded complex valued function on X, respectively. We denote the
norm on `1(X) by ‖·‖1 and the norm on `∞(X) by ‖·‖∞, respectively. The indicator
function of a set A ⊆ X will be denoted by 1A. However, given a point x ∈ X, the
indicator function of {x} will be denoted by δx, and {δx : x ∈ X} will be referred to
as the standard orthonormal basis of `2(X). The space of bounded linear operators
on a Hilbert space H is denoted by B(H), and the identity operator on H will be
denoted by 1.

Given a group G, a representation of G on a Hilbert space H should always be
understood as a unitary representation, that is, a group homomorphism from G to the
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group of unitary operators on H. Representations will usually be denoted by π and σ,
however, we will use λ and ρ to denote the left regular representation and the right
regular representation of G, respectively, that is, the representations on `2(G) given
by (λ(g)f)(h) = f(g−1h) and (ρ(g)f)(h) = f(hg), for all f ∈ `2(G) and g, h ∈ G.
Given a representation π ofG on a Hilbert space H, we will letC∗π(G) denote theC∗-
algebra generated by π(G) in B(H). This is also the case for the reduced group C∗-
algebra, that is, the C∗-algebra generated by λ(G), which we will denote by C∗λ(G).
The group von Neumann algebra associated to G will be denoted by L(G), and it is
the strong operator closure of the reduced group C∗-algebra inside B(`2(G)).





Chapter 2

The Thompson groups

The Thompson groups F , T and V were introduced by Thompson in 1965, and they
are groups of piecewise linear maps of the unit interval. This chapter serves as an
introduction to the Thompson group, and will provide an explanation of how they
can be realized as fractional linear transformations.

No deep results about the Thompson groups are needed for the purpose of this
thesis, and, indeed, besides the realization of the Thompson groups as piecewise
fractional linear transformations, we only need a few elementary results about the
dynamics of the action these groups exert on the unit interval. These latter results
will all be included in Section 2.2. A more thorough introduction to the Thompson
groups, as well as proofs of most statements made in the first two sections of this
chapter, can be found in the comprehensive paper by Cannon, Floyd and Parry [10].

2.1 The definition

The Thompson groups F , T and V satisfy F ⊆ T ⊆ V , and, even though this might
not be the most cost effective way, we will start by defining F , then T and lastly V ,
as this seems to be the more natural way to proceed.

First, recall that the dyadic rational numbers, denoted by Z[ 12 ], is the set of ra-
tional numbers with a power of 2 in the denominator when in reduced form, that is,
the set {m2n : n,m ∈ Z}. To shorten notation, let us denote the set of dyadic rational
numbers in [0, 1] by D. The Thompson group F is the set of all piecewise linear
bijections of [0, 1] which

(1) are homeomorphisms of [0, 1];
(2) have finitely many points of non-differentiability;
(3) have all its points of non-differentiability in the set of dyadic rationals;
(4) have a derivative which is a power of 2 in each point of differentiability;
(5) map D bijectively onto itself.

15



16 CHAPTER 2. THE THOMPSON GROUPS

It is not difficult to see that F is a group with respect to composition of functions, and
it also is worth noting that all the functions in F are increasing and fix the points 0
and 1. The following are examples of elements in F :

A(x) =





1
2x for 0 ≤ x ≤ 1

2

x− 1
4 for 1

2 ≤ x ≤ 3
4

2x− 1 for 3
4 ≤ x ≤ 1

B(x) =





x for 0 ≤ x ≤ 1
2

1
2x+ 1

4 for 1
2 ≤ x ≤ 3

4

x− 1
8 for 3

4 ≤ x ≤ 7
8

2x− 1 for 7
8 ≤ x ≤ 1

.

As one might notice, the element B is somehow “A squeezed into the upper right
corner.” The graphs of these elements look as follows:

A B

None of these elements has finite order, which is easily realized by considering the
slope of the graph near 1, as, for example, An will have slope 2n just left of 1, for
any n ∈ Z. In fact, this method easily shows that F has no non-trivial elements of
finite order.

Moving on, we define the Thompson group T as the set of piecewise linear bijec-
tions of [0, 1) which

(1) are homeomorphisms of [0, 1) when given the topology of a circle;
(2) have finitely many points of non-differentiability;
(3) have all its points of non-differentiability in the set of dyadic rationals;
(4) have a derivative which is a power of 2, in each point of differentiability;
(5) map D \ {1} bijectively onto itself.

Here “[0, 1) with the topology of a circle” should be understood as the topology
that [0, 1) gets when identified with R/Z in the natural way as representatives of
equivalence classes. It is not difficult to see that in terms of the standard topology
on [0, 1), the first condition simply means that the bijection in question has at most
one point of discontinuity. Examples of elements in T which are not elements of F
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include the following:

C(x) =





1
2x+ 3

4 for 0 ≤ x ≤ 1
2

2x− 1 for 1
2 ≤ x ≤ 3

4

x− 1
4 for 3

4 ≤ x < 1

D(x) =

{
x+ 3

4 for 0 ≤ x ≤ 1
4

x− 1
4 for 1

4 ≤ x < 1
.

A straightforward calculation shows that C and D have order 3 and 4, respectively,
so that, even though F does not contains non-trivial elements of finite order, T does.
The graphs of the elements C and D look as follows:

C D
The Thompson group F is naturally a subgroup of T , as all the elements of F

fix 1, so that there would have been no harm in defining F as maps of [0, 1) instead
of [0, 1]. In fact, depending on the context, we will think of the elements of F as
maps of [0, 1] or [0, 1). It is easy to see that when considered as a subgroup of T , the
elements of F are exactly those which fix 0.

Now, the Thompson group V is the set of right continuous piecewise linear bi-
jections of [0, 1) which satisfy the conditions (2)–(5) right above. An example of an
element in V which is not in T is:

π0

π0(x) =





1
2x+ 1

2 for 0 ≤ x < 1
2

2x− 1 for 1
2 ≤ x < 3

4

x for 3
4 ≤ x < 1

It is not difficult to realize that a bijection from [0, 1) to [0, 1) is a homeomorphism
of [0, 1) equipped with the topology of a circle if and only if it is right continuous
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and has at most one point of discontinuity when [0, 1) is considered with the regular
topology. In particular, we see that T is a subgroup of V .

Let us end this section by mentioning a few known facts about the Thompson
groups, most of which will not be used explicitly in this thesis. First of all, it turns
out that the Thompson group T and V are simple groups, and so is the commutator
subgroup of F . Besides this, all three Thompson groups are finitely generated; in-
deed, F is generated by {A,B}, T is generated by {A,B,C} and V is generated
by {A,B,C, π0}. Moreover, all three groups have finite presentations in these gen-
erators. A fact we will need later, is that T is generated by the elements C and D, as
A = D2C2 and B = C2DA.

2.2 Rearrangement of dyadic partitions

In this section, we will explain how to think of the elements of the Thompson groups
as rearrangements of certain partitions of the unit interval. This is closely related
to the interpretation of the Thompson groups as tree diagrams, for which we refer
the reader to the excellent treatment in Cannon, Floyd and Parry [10]. In this thesis,
however, we will focus on the former interpretation, since it is more readily applicable
in the analysis of the action on the unit interval.

To keep things simpler, we will first go through the explanation for the Thompson
group F , and then discuss how this works for the Thompson groups T and V . First,
we need the notions of standard dyadic intervals and standard dyadic partitions.

Definition 2.2.1. A standard dyadic interval is a closed interval in [0, 1] of the
form [ m2n ,

m+1
2n ], for some non negative integers n and m with m < 2n.

Definition 2.2.2. A sequence (x0, x1, . . . , xn) of elements in [0, 1] is called a stan-
dard dyadic partition if 0 = x0 < x1 < · · · < xn = 1 and each of the inter-
vals [xk−1, xk] is a standard dyadic interval, for k = 1, 2, . . . , n.

Given a standard dyadic partition (x0, x1, . . . , xn), we get a new one by adding
the midpoint of two adjacent points. More precisely, if k ∈ {1, 2, . . . , n}, then
(x0, . . . , xk−1,

xk−1+xk

2 , xk, . . . , xn) is a new standard dyadic partition. This is a
refinement of the original partition, and it it not difficult to see that the only way
to refine a standard dyadic partition is by repeating this procedure. Moreover, every
standard dyadic partition is obtained in this way as a refinement of the partition (0, 1),
that is, by starting out with the standard dyadic partition (0, 1) and then repeatedly
adding the midpoints of choice.

The following two results are the key to the interpretation of the elements of F
as rearrangements of dyadic partitions. The proofs are quite elementary, and can be
found in [10, Section 2].
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Lemma 2.2.3. For each element g in F , there exists a standard dyadic partition
(x0, x1, . . . , xn) such that (g(x0), g(x1), . . . , g(xn)) is a standard dyadic partition
as well, and g is linear on each of the intervals [xk−1, xk], for k = 1, 2, . . . , n.

Given an element g ∈ F , a standard dyadic partition satisfying the conditions in
the above lemma is called a standard dyadic partition associated to g .

Lemma 2.2.4. Given two standard dyadic partitions with the same number of el-
ements (x0, x1, . . . , xn) and (y0, y1, . . . , yn), there exists a unique element g ∈ F
for which g(xk) = yk, for each k = 0, 1, . . . , n, and which is linear on each of the
intervals [xk−1, xk], for k = 1, 2, . . . , n.

These results tell us that we can view the elements of the Thompson group F as
pairs of dyadic partitions. However, given g ∈ F , there is more than one standard
dyadic partition associated to g. Indeed, if we are given a standard dyadic parti-
tion associated to g, any refinement of it, in the sense described earlier, will also
be a standard dyadic partition associated to g. This is, in fact, how every standard
dyadic partition associated to g appears in the sense that there is a unique standard
dyadic partition S0 such that every other standard dyadic partition associated to g is
a refinement of S0. This partition is known as the minimal standard dyadic parti-
tion associated to g. To give some examples, the minimal standard dyadic partitions
associated to the elements A and B are (0, 12 ,

3
4 , 1) and (0, 12 ,

3
4 ,

7
8 , 1), respectively.

Returning to the interpretation of elements of F as pairs of standard dyadic par-
titions, we have yet to explain why this is advantageous. In short, the reason is that
it is easier to come up with standard dyadic partitions so that the corresponding ele-
ment satisfies certain requirements, rather than to come up with the element itself. To
illustrate this, let us sketch the proof of the following result.

Lemma 2.2.5. Let a, b ∈ [0, 1] with a < b. Given c, d, c′, d′ ∈ (a, b) with c < d
and c′ < d′, there exists some g ∈ F with g([c, d]) ⊆ [c′, d′] and g(x) = x, for all
x /∈ (a, b).

Sketch of proof. We will sketch the proof in the case where a, b, c, d, c′ and d′ are
all dyadic rational numbers, and where a > 0 and b < 1. The rest of the cases can
be obtained from this one by carefully squeezing dyadic rational numbers in-between
the numbers a, b, c, d, c′ and d′.

We start by choosing a standard dyadic partition S containing all the points a, b,
c and d. This is easily done, as they must all be contained in the standard dyadic par-
tition

(
0
2m ,

1
2m , . . . ,

2m−1
2m , 2

m

2m

)
, for sufficiently large m ∈ N. Now, the partition S

has the form

S =
(
v0, . . . , vi, a, . . . , c, . . . , d, . . . , b, w0, . . . , wj

)
,

with possible gaps in-between a and c, c and d, and d and b. We then choose a
standard dyadic partition R containing a, b, c′ and d′, but we can ensure that it has
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the form
R =

(
v0, . . . , vi, a, . . . , c

′, . . . , d′, . . . , b, w0, . . . , wj
)
,

again, with possible gaps in-between a and c′, c′ and d′, and d′ and b. Our goal is
to refine these two partitions so that they end up defining an element g satisfying
the requirements. To do this, we refine S by adding points in-between a and c, c
and d, and d and b, and refine R by adding points in-between a and c′, c′ and d′

d′ and b. How we refine the two partitions is, to a certain degree, not important.
The only important factor is that we add points so that the resulting refinement, S′,
of S has exactly as many points in-between a and c as the refinement, R′, of R
has in-between a and c′, so that the number of element in-between c and d in S′

is the same as the number of elements in-between c′ and d′ in R′, and so that the
number of points in-between d and b in S′ is the same as the number of points in-
between d′ and b in R′. In this way we obtain two standard dyadic partition with
the same number of points, and we may consider the element g in F corresponding
to (S′, R′). This g now satisfies the desired requirements. By construction it will
satisfy g(c) = c′ and g(d) = d′ as these have the same positions in the two partitions,
so, in particular, g([c, d]) = [c′, d′]. Moreover, as we have ensured that the two
standard dyadic partitions have the same initial and final segments, we get that g is
the identity outside (a, b).

The proof of this lemma illustrates how we can choose the standard dyadic parti-
tions cleverly to make the corresponding element suit our needs. A similar argument
can be used to prove the following.

Lemma 2.2.6. Let x0, x1, . . . , xn, y0, y1, . . . , yn be dyadic rational numbers in the
interval [0, 1] with 0 = x0 < x1 < . . . < xn = 1 and 0 = y0 < y1 < . . . < yn = 1.
Then there exists an element g ∈ F with g(xk) = yk, for all k = 0, 1, . . . , n.

So far we have only been dealing with the Thompson group F , but there is a
similar view on the groups T and V . These just involve an additional permutation of
the intervals of the standard dyadic partitions. For T and V the key lemmas in the
interpretation of their elements as rearrangements of standard dyadic partitions are
the following.

Lemma 2.2.7. Given some element g ∈ V there exist a permutation σ of {0, . . . , n}
and standard dyadic partitions (x0, x1, . . . , xn) and (y0, y1, . . . , yn) such that, with
Ik = [xk−1, xk) and Jk = [yk−1, yk), the element g maps Ik linearly onto Jσ(k), for
each k = 0, 1, . . . , n. Moreover, if g ∈ T , then σ is cyclic, and, if g ∈ F , then σ is
the identity.

Lemma 2.2.8. Given a permutation σ of {0, . . . , n} and standard dyadic partitions
(x0, x1, . . . , xn) and (y0, y1, . . . , yn), there exists an element g ∈ V such that, with
Ik = [xk−1, xk) and Jk = [yk−1, yk), the element g maps Ik linearly onto Jσ(k), for
each k = 0, 1, . . . , n. Moreover, if σ is cyclic, then g ∈ T , and if σ is the identity,
then g ∈ F .
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We will not go more into detail with this interpretation of T and V , but just
mention that there is a natural version of Lemma 2.2.6 for T and V , as well. This
version simply allows one to permute the intervals of the standard dyadic partitions,
as in the two lemmas above.

2.3 The Minkowski question mark function

In this section, we introduce the Minkowski question mark function, as well as a
variant of this map. The Minkowski question mark function is a curious function,
which was introduced by Minkowski in the beginning of the Twentieth Century in
order to study quadratic irrational numbers. In this thesis, it is used for different
purposes. Essentially, it allows us realize the Thompson group T as a different group
of homeomorphisms; this will be explained in details in the next section. For more
on the Minkowski question mark function, the reader is referred to [63] and [66].

The Minkowski question mark function, usually denoted by ?, is a strictly in-
creasing homeomorphism of the unit interval which maps the rational numbers onto
the dyadic rational numbers. We will be particularly interested in a variant of this
map, which we will denote by Q. This map is a strictly increasing homeomorphism
from the extended real line to the unit interval, that is, from [−∞,∞] to [0, 1], which
maps Q ∪ {±∞} onto the dyadic rational numbers in [0, 1].

As the sets Q ∪ {±∞} and Z[ 12 ] ∩ [0, 1] are dense in [−∞,∞] and [0, 1], re-
spectively, it suffices to define Q on these sets, as long as it is order-preserving and
bijective, because then there will be a unique extension to an order-preserving bijec-
tion from [−∞,∞] to [0, 1]. Why this is the case will be explained later. Before
beginning the construction, we will need to introduce a few notions, including the
notion of reduced fractions, extended slightly to include ±∞.

Definition 2.3.1. A rational number p
q is said to be a reduced fraction or to be in

reduced form if p and q integers which are relatively prime, with q positive. We will
use the convention that −10 and 1

0 are the reduced form of −∞ and∞, respectively,
and that 0

1 is the reduced form of 0.

It will be important later on that we always require the denominator to be positive.
In the definition above we have included reduced fraction forms of ±∞ as well,
and, in fact, we will use the fractions n

0 and −n0 to denote∞ and −∞, respectively,
whenever n ∈ N. However, the fractions are only said to be reduced if n = 1.
Henceforth, when we let pq be a fraction in Q ∪ {±∞}, it should be understood that
either q ∈ Z \ {0}, in which case p

q is just an ordinary fraction representation of a
rational number, or q = 0 and p ∈ Z \ {0}, so that pq represents∞ or −∞.

Definition 2.3.2. Two fractions pq and r
s in Q∪{±∞} are said to be consecutive Farey

fractions if they are both non-negative or non-positive and the condition |ps−rq| = 1
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is satisfied. Moreover, two elements of Q ∪ {±∞} are said to be consecutive Farey
numbers if their reduced fractions are consecutive Farey fractions.

Let us make a few comments on the definition above. Firstly, the definition does
not take the order of the fractions p

q and r
s into account, however, it is not difficult

to see that pq <
r
s if and only if qr − ps = 1. Secondly, it is not obvious that two

consecutive Farey fraction are, in fact, two consecutive Farey numbers, as it might,
a priori, happen that their reduced fractions where not consecutive Farey fractions.
This, however, is never the case. It is easy to see that, if the denominators of two
consecutive fractions are non-negative, then the fractions are in fact reduced, and, if
this is not the case, q < 0 say, then −p−q is reduced, and −p−q and rs are again consecutive
Farey fractions. Thirdly, the criteria that both fractions need to be non-negative or
non-positive might seem a bit artificial. Indeed, we have only included it in the
definition because we want to define the term for all of Q∪ {±∞}. The requirement
would be superfluous if we only considered elements of Q. More precisely, if we are
given two reduced fractions p

q and r
s in Q, one of which is positive and the other one

negative, then qr and −ps are non-zero with the same sign, so that |ps− rq| ≥ 2. To
see why this is not automatically true if we allow the fractions −10 and 1

0 , we just have
to note that −10 and n

1 would be consecutive Farey fractions without the requirement.

Definition 2.3.3. Let pq and r
s be two distinct reduced fractions in Q ∪ {±∞} with

{pq , rs} 6= {−10 . 10}. We define the Farey median of p
q and r

s to be the fraction p+r
q+s ,

which we denote by p
q ⊕ r

s . Let x and y be two distinct elements in Q ∪ {±∞} with
{x, y} 6= {−∞,∞}. Write x and y as reduced fractions p

q and r
s , respectively. We

define the Farey median of x and y, denoted x⊕ y, to be the element of Q ∪ {±∞}
whose reduced fraction is p

q ⊕ r
s .

The reader might notice that we have, in the two last definitions, begun to distin-
guish between fractions and the numbers they represent. This fact will be important
in the rest of this section and in the next section.

The following lemma justifies the use of the term “median” in the definition of
Farey medians.

Lemma 2.3.4. Let x, y ∈ Q ∪ {±∞} with x < y and {x, y} 6= {−∞,∞}. Then

x < x⊕ y < y.

Moreover, if pq and r
s are reduced fractions and consecutive Farey fractions, then the

same holds for p
q and p

q ⊕ r
s , as well as for r

s and p
q ⊕ r

s .

Proof. We start by proving the first claim. Let p
q and r

s be reduced fractions of x
and y, respectively. If x = −∞, then y ∈ Q and x⊕y = y− 1

s , so that x < x⊕y < y.
Similarly we see that the inequalities are satisfied if y = ∞, so we may assume that
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x, y ∈ Q. We will only prove that x < x ⊕ y, as the other inequality is proved
analogously. A straightforward calculation shows that

x⊕ y − x =
s

q + s
(y − x).

The right hand side is positive, as q and s are positive, so we conclude that x < x⊕y.
Now, suppose that pq and r

s are consecutive Farey fractions. We may assume that
p
q <

r
s , which means that qr − ps = 1. Using this fact we see that

q(p+ r)− p(q + s) = qr − ps = 1,

which shows that pq and p
q ⊕ r

s are consecutive Farey fractions if they are both non-
negative or non-positive. This, however, is naturally the case, as p

q and r
s are both

non-negative or non-positive. Moreover, as q and s are both non-negative, the same
holds for q + s so that p+rq+s is indeed a reduced fraction. That pq ⊕ r

s and p
q are also

consecutive Farey fractions is proved similarly.

Let us define an increasing sequence of sets recursively, using the notion of Farey
medians. We do this by defining C0 = {−10 , 10} and C1 = {−10 , 01 , 10}, and, assuming
that we have constructed Cn, for some n ∈ N, we obtain Cn+1 from Cn by adding
the Farey median of each pair of consecutive numbers in Cn. More precisely, if
x0, x1, . . . , xm denote the elements of Cn, with x0 < x1 < . . . < xn, then we let

Cn+1 = Cn ∪ {xk−1 ⊕ xk : k = 1, 2, . . . n}.

To illustrate, we obtain C2 from C1 by adding −10 ⊕ 0
1 = −1

1 and 0
1 ⊕ 1

0 = 1
1 , so that

C2 = {−10 , −11 , 01 , 11 , 10}. The two next sets look as follows:

C3 =
{
−1
0 ,
−2
1 ,
−1
1 ,
−1
2 ,

0
1 ,

1
2 ,

1
1 ,

2
1 ,

1
0

}
and

C4 =
{
−1
0 ,
−3
1 ,
−2
1 ,
−3
2 ,
−1
1 ,
−2
3 ,
−1
2 ,
−1
3 ,

0
1 ,

1
3 ,

1
2 ,

2
3 ,

1
1 ,

3
2 ,

2
1 ,

3
1 ,

1
0

}
.

We know from Lemma 2.3.4 that the Farey median of two elements of Cn is
strictly in-between these, so an easy induction argument shows that |Cn| = 2n + 1,
for all n ∈ N ∪ {0}. It also follows from Lemma 2.3.4 and an induction argument
that any two consecutive elements in Cn are, in fact, consecutive Farey fractions, for
all n ∈ N.

We want to investigate these sets further, but to do this, let us prove the following
useful lemma about consecutive Farey fractions.

Lemma 2.3.5. Let p
q and r

s be two consecutive Farey fractions in Q ∪ {±∞} in
reduced form and with p

q <
r
s . If ab is a third reduced fraction with p

q <
a
b <

r
s , then

|a| ≥ |p+ r| and b ≥ q + s.
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Proof. First of all, notice that since p
q and r

s are consecutive Farey fractions, the
numbers p, r, a are either all non-negative or all non-positive. It is not difficult to see
that since p

q <
a
b and q and b are both non-negative, we must have that aq − bp ≥ 1.

Similarly, br−as ≥ 1. Now, coupling this with the fact that qr−ps = 1, we see that

b = (qr − ps)b = (rb− as)q + (aq − pb)s ≥ q + s,

since both q and s are non-negative. In the case that p and r are both non-negative,
we see that

a = (qr − ps)a = (qa− bp)r + (br − as)p ≥ r + p,

while, in the case where they are both non-positive, we get that

a = (qa− bp)r + (br − as)p ≤ r + p.

In any case, we get that |a| ≥ |p+ r|.

Let C denote the union of the sets {Cn : n ∈ N}. As Cn is a subset of Q∪{±∞},
for all n ∈ N, their union C is also contained in Q∪{±∞}. The following proposition
tells us that the inclusion is actually an equality.

Proposition 2.3.6. The set C contains all rational numbers.

Proof. Let us proceed by contradiction. Assume that ab is a reduced fraction which
is not in C. We may assume that a

b is non-zero, as 0 ∈ C1 ⊆ C. Also, we may
assume that the a

b is positive, as the negative case is handled analogously. Since a
b

is not in Cn, for any n ∈ N, we may chose reduced fractions pn
qn

and rn
sn

in Cn such
that pnqn and rn

sn
are consecutive in Cn with pn

qn
< a

b <
rn
sn

, for each n ∈ N. Since the
sets {Cn : n ∈ N} are increasing, it is easy to see that pnqn is increasing in n and rn

sn
decreasing in n. From this, one easily sees that all the fractions are non-negative. It
follows from Lemma 2.3.5 that

pn + qn + rn + sn ≤ a+ b,

for all n ∈ N. Let us denote the left hand side by Kn. Our strategy is to prove that
Kn tends to infinity, as this will clearly procure the desired contradiction.

At the step in the construction of the sets {Cm : m ∈ N} where Cn+1 is obtained
from Cn, the point pnqn ⊕

rn
sn

is added in-between pn
qn

and rn
sn

. Since a
b 6=

pn
qn
⊕ rn

sn
, we

then either have
pn+1

qn+1
= pn

qn
and rn+1

sn+1
= pn

qn
⊕ rn

sn
,

in the case when a
b <

pn
qn
⊕ rn

sn
, or we have

pn+1

qn+1
= pn

qn
⊕ rn

sn
and rn+1

sn+1
= rn

sn
,
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in the case when a
b >

pn
qn
⊕ rn
sn

. In the former case, we see thatKn+1 = 2(pn+qn)+

rn + sn, and in the latter case, Kn+1 = pn + qn + 2(rn + sn). In any case, we see
that Kn+1 ≥ Kn + 1, which proves that Kn tends to infinity, contradicting the fact
that Kn ≤ a+ b, for all n ∈ N. This proves that C contains all of Q.

So far we know that C contains all rational numbers and that, at any stage, two
consecutive elements of Cn are, in fact, consecutive Farey fractions. The converse is
also true, as the following proposition states.

Proposition 2.3.7. Suppose we are given two fractions p
q and r

s in Q∪{±∞}. Then
these are consecutive Farey fractions if and only if they are consecutive in Cn, for
some n ∈ N.

Proof. As noted earlier, consecutive elements in Cn are consecutive Farey fractions,
for all n ∈ N. So assume that the fractions p

q and r
s are consecutive Farey fractions,

and let us prove that they are consecutive in some Cn. We assume that pq <
r
s .

First of all, if r
s = 1

0 , then p
q = p

1 with p ∈ N ∪ {0}. It is easy to see that 1
0

and p
1 are consecutive exactly in Cp. Similarly, if pq = −1

0 , then s = 1, r < 0 and the
fractions are consecutive exactly in C−r. Thus we may assume that both fractions are
rational numbers.

Suppose towards a contradiction that the fractions are not consecutive in Cn, for
any n ∈ N. Clearly this means that the fractions are not both in C1, as each pair of
consecutive Farey fractions from this set is also consecutive in the set. Thus, if we
choose the smallest n ∈ N so that both fractions p

q and r
s are contained in Cn, then

n ≥ 2. Such n exists by Proposition 2.3.6. This means that one of the two fractions
is not in Cn−1. We assume that pq is not in Cn−1. The case where r

s is not in Cn−1 is
similar. As p

q is in Cn but not in Cn−1, we know from the construction of the sets that
there exists consecutive Farey fractions ab and c

d in Cn−1, with a
b <

c
d and p

q = a
b ⊕ c

d .
As p

q and r
s are both in Cn but are not consecutive, and as p

q and c
d are consecutive

in Cn, we know that pq <
c
d <

r
s . By Lemma 2.3.5 this implies that d ≥ q + s, but as

q = b + d by the choice of a
b and c

d , we get that d ≥ q + s = c + d + s, which is a
contradiction, as c, d and s are all positive.

As it is, we have constructed an increasing sequence of sets containing all rational
numbers. Let us introduce another increasing sequence of sets, namely, one that
contains all the dyadic rational numbers in [0, 1], We will denote these sets by Dn,
for n ∈ N ∪ {0}, and define Dn by

Dn =
{
m
2n : m = 0, 1, . . . , 2n

}
⊆ [0, 1] ∩ Z[ 12 ].

Clearly this forms an increasing sequence of sets, so that Dn has 2n + 1 elements.
As it will be relevant for the construction of the map Q, let us describe how these
sets can be constructed in an inductive fashion. Clearly the elements in the difference
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of the sets Dn and Dn−1 are exactly those rational numbers whose reduced fraction
form has 2n in the denominator, that is, the set

{
2m−1
2n : m ∈ {1, 2, . . . , 2n−1}

}
.

As m−1
2n−1 and m

2n−1 are in Dn−1, for all m ∈ {1, 2, . . . , 2n−1}, and 2m−1
2n is the

average of these two numbers, it follows that Dn is obtained from Dn−1 by adding
the average of two consecutive numbers in Dn−1. We denote the union of all these
sets by D, that is D =

⋃∞
n=0 D

n.
At this point we are ready to construct the map Q. First we will define it on the

set C, and afterwards on the rest of [−∞,∞]. Now, given the way we have con-
structed the sets Cn and Dn inductively by repeatedly inserting numbers in-between
each successive pair of elements, it is not difficult to see that the order-preserving
bijections mapping Cn onto Dn, for every n ∈ N ∪ {0} are compatible in the sense
that the one on Cn+1 extends the one on Cn. This is the short way to explain how the
map Q is defined. Let us explain the construction in more detail, by defining the map
recursively on the sets Cn one at a time. First, we define

Q(−∞) = 0, Q(0) = 1
2 and Q(∞) = 1,

so that, indeed, Q is a bijective order-preserving map from C1 to D1. Next, assuming
that we have defined Q on Cn, for some n ∈ N, so that it is mapped bijectively
onto Dn in an order-preserving way, we proceed to define it on Cn+1, or, rather,
we define it on Cn+1 \ Cn. The elements in this difference of sets are precisely the
elements of the form x ⊕ y, for some consecutive numbers x and y in Cn. Suppose
that x and y are such elements, and define

Q(x⊕ y) =
Q(x) +Q(y)

2
. (2.1)

By assumption, Q is an order-preserving bijection between Cn and Dn, so that Q(x)
and Q(y) exactly are two consecutive elements of Dn. As explained earlier, Dn+1 is
obtained from Dn by adding the average of each pair of consecutive elements in Dn.
This tells us that not only is the image of Cn+1 contained in Dn+1, but also that the
map is bijective and order-preserving from Cn+1 to Dn+1. Now, as C is the union
of all the sets {Cn : n ∈ N}, we have defined the map on all of C. As the image of
each Cn is Dn, the image of C is exactly D. Moreover, it is easy to see that the map
is order-preserving. Thus we have defined the map Q on all of C. Now, suppose that
we are given some x ∈ [−∞,∞] which is not in C, then we define

Q(x) = sup
{
Q(y) : y ∈ C, y ≤ x

}
.

It is not difficult to see that this makesQ an order-preserving bijection from [−∞,∞]
to [0, 1]. Essentially, this is because the sets C and D are dense in [−∞,∞] and [0, 1],
respectively, and as Q is an order-preserving bijection between these dense sets, the
map Q ends up being an order-preserving bijection.
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Now that we have constructed the function Q, let us relate it to the Minkowski
question mark function. To do so, let us make a few comments on the construction
of Q and try to give a more picturesque description of the construction. If we choose
to label the infinite binary tree by labelling the 2n nodes in the n’th level of the tree
(the root being the zeroth level) from left to right by the element in Cn+1 \ Cn, we
obtain a labelled tree, the top of which looks as follows:

0
1

−1
1

−2
1

−3
1

−4
1
−5
2

−3
2

−5
3
−4
3

−1
2

−2
3

−3
4
−3
5

−1
3

−2
5
−1
4

1
1

1
2

1
3

1
4

2
5

2
3

3
5

3
4

2
1

3
2

4
3

5
3

3
1

5
2

4
1

Infinite binary tree labelled with Q

This tree is labelled with all the rational numbers, so that each number appears exactly
once. We could label the tree with the dyadic rational numbers, as well, by using the
sets Dn+1 \ Dn instead. In this way we obtain labelling of the tree with all dyadic
rational numbers in (0, 1), each one appearing exactly once. The top of this tree looks
as follows:

1
2

1
4

1
8

1
16

1
32

3
32

3
16

5
32

7
32

3
8

5
16

9
32

11
32

7
16

13
32

15
32

3
4

5
8

9
16

17
32

19
32

11
16

21
32

23
32

7
8

13
16

25
32

27
32

15
16

29
32

31
32

Infinite binary tree labelled with D

With this picture in mind, our map Q is simply obtained as the identification of the
labels between the two trees, that is, mapping a Q-label to the corresponding D-
label. Of course, afterwards we still extend it to all of [−∞,∞], but the crucial thing
is that these two different sets of labels produce the same order on the infinite binary
tree. Now, if we wanted to construct a different function, we might have proceeded
similarly, but with a different set of labels for the first tree. In fact, this is how the
Minkowski question mark function is defined. If, instead of using the entire tree
labelled with Q, we only used the labelled subtree whose root is 1

2 , that is,
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1
2

1
3

1
4

1
5

1
6

2
9

2
7

3
11

3
10

2
5

3
8

4
11

5
13

3
7

5
12

4
9

2
3

3
5

4
7

5
9

7
12

5
8

8
13

7
11

3
4

5
7

7
10

8
11

4
5

7
9

5
6

Infinite binary tree labelled with Q ∩ (0, 1)

then we would get a map from the rational numbers in (0, 1) to the dyadic rational
numbers in (0, 1). Extending this map to a map from [0, 1] to itself, we would get an
order-preserving homeomorphism, denoted by ?, which maps the rational numbers
onto the dyadic rational numbers and satisfies

?
(
x⊕ y

)
=

?(x)+?(y)

2
,

for consecutive Farey numbers x and y in [0, 1]. Intuitively speaking, this is how the
Minkowski question mark function is defined. More formally one would go through
the construction by defining an increasing sequence of sets similar to (Cn)n≥0. In-
deed, the construction is the same, but with the different starting conditions in the
sense that one defines the first set as C̃0 = { 01 , 11}, and then defines the set C̃n+1

as the union of the previous set C̃n and of the set of Farey medians of successive
elements of C̃n, as we did with the original sets. This yields a sequence of sets with
similar properties as the original ones, but whose union, C̃, is now only the rational
numbers in [0, 1], as opposed to all of Q ∪ {±∞}. Then one proceeds to construct
a function from C̃ to D in the same manner as when we constructed Q, and the map
we end up with is then the original Minkowski question mark function ?.

Clearly there is a great similarity between the two functions Q and ?, as their
constructions show, and it is not difficult to find explicit formulas relating the two.
An example of such a formula is the following:

?(x) = 4Q(x)− 2,

for all x ∈ [0, 1]. There are several ways to argue the validity of this formula,
however, an easy way to do it is the following. If f(x) denotes 4Q(x) − 2, then
f(0) = 0 and f(1) = 1 since Q(0) = 1

2 and Q(1) = 3
4 . Moreover, the formula

f
(
x ⊕ y

)
= 1

2 (f(x) + f(y)) is satisfied for consecutive Farey numbers x and y
in [0, 1] as Q satisfies (2.1). Now, an easy induction argument shows that then f
agrees with ? on each of the sets C̃n, which, of course, means that f agrees with ?
everywhere. This formula expresses the Minkowski question mark function in terms
of the map Q. If, on the other hand, one would like to have the map Q expressed in
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terms of ?, then this is possible as well, for example, by the formula

Q(x) =

{
1
2?( x

x+1 ) + 1
2 for x ≥ 0

1
2?( 1

1−x ) for x ≤ 0
.

This can be proved using the interpretation of T as a group of fractional linear trans-
formations, which we discuss in the following section. We will not expand on this.

Let us end this section by mentioning that there are different descriptions of the
Minkowski question mark function. Another description involves continued frac-
tions, and was discovered by Salem [63] in 1943. Therein, the value at a certain point
is given explicitly in terms of the continued fraction expansion of this point. The
construction in this section is closely related to notions such as the Stern-Brocot tree
and the Farey series. For a reference see, for example, [31].

2.4 Piecewise projective linear maps

The aim of this section is to prove a result due to Thurston, see [10], namely, that
the map Q, constructed in the previous section, can be used to realize the Thompson
group T as a certain group of piecewise projective linear homeomorphisms. We
wish to thank Sergiescu for many fruitful discussions on this topic. We will start
by giving a soft introduction to projective linear maps, which are a certain kind of
homeomorphisms of R ∪ {∞}, the one point compactification of R. We will let R̂
denote the space R ∪ {∞}.

A fractional linear transformation, projective linear transformation or Möbius
transformation of the space R̂ is a transformation f of the form

f(x) =
ax+ b

cx+ d
, for x ∈ R̂, (2.2)

where a, b, c and d are fixed real numbers satisfying ad− bc 6= 0. As the expression
above, strictly speaking, does not make sense in the ordinary fashion if x = ∞
or x = −dc , let us explain how it should be understood. There are a few cases
to consider. In the case when c 6= 0, the above expression evaluated at ∞ should
be understood as the limit as |x| → ∞, that is, f(∞) = a

c . Moreover, we set
f(−dc ) = ∞, which fits well with the fact that |f(x)| → ∞, as x → − c

d . In the
case where c = 0, the map f is actually linear and we define f(∞) = ∞. Strictly
speaking, the map f is not linear, but affine, however, as it is customary to use the
term linear, rather than affine, in connection with piecewise linear maps, we will
adopt this terminology. It is easy to see from these choices that fractional linear maps
are, in fact, homeomorphisms of R̂. Now, from the way we defined the maps, we see
that the only fractional linear transformations which fix∞ are the linear ones. This
fact will be used frequently during this chapter.

Now, the requirement that ad− bc 6= 0, should get every mathematician thinking
about invertible two-by-two matrices This is not a coincidence, as composition of
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fractional linear transformations corresponds to multiplication of the corresponding
matrices of coefficients. Phrased differently, if f and g are fractional linear transfor-
mations with coefficients

[
a1 b1
c1 d1

]
and

[
a2 b2
c2 d2

]
,

respectively, meaning that

f(x) =
a1x+ b1
c1x+ d1

and g(x) =
a2x+ b2
c2x+ d2

,

for all x ∈ R̂, then the composition fg is a fractional linear transformation whose
coefficient matrix is exactly the product matrix

[
a1 b1
c1 d1

] [
a2 b2
c2 d2

]
.

As it is easily seen that we get the identity on R̂ if we choose the identity matrix as co-
efficients, what we really have is an action on R̂ of the general linear group GL(2,R),
of invertible two-by-two matrices with real entries. However, it is easy to see that
many invertible matrices give rise to the same fractional linear transformations. In-
deed, any non-zero scalar multiple of a matrix will produce the same transformation,
and this is the only way this can happen. Indeed, if

A =

[
a b
c d

]
(2.3)

is an invertible matrix and f denotes the corresponding fractional linear transforma-
tion, then f(x) = x, for all x ∈ R if and only if

cx2 + (d− a)x− b = 0,

for all x ∈ R. Clearly this happens if and only if c = b = 0 and a = d, that is,
when A is a scalar matrix. In other words, the kernel of the action is exactly the
non-zero scalar matrices, as these are the only ones which act as the identity on R̂.
Thus, what we really have is an action of PGL(2,R), the quotient of GL(2,R) by
the normal subgroup R1. The action of PGL(2,R) on R̂ is therefore faithful, that is,
no non-trivial element acts as the identity.

Before continuing the study of fractional linear transformations, let us mention a
different view on these. First, recall that the real projective line, denoted by RP1, is
the space of one dimensional subspaces of R2, or, more precisely, the quotient space
of R2\{0} by the relation of being proportional. As an invertible linear operator of R2

preserves the equivalence classes in RP1, and as a non-zero scalar multiple of such a
map induces the same permutation of the equivalence classes, the group PSL(2,R)
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also acts on this space. Both of the spaces R̂ and RP1 are circles, topologically
speaking, so naturally they are homeomorphic, but, in fact, the actions of PGL(2,R)

on R̂ and RP1 are conjugate. More precisely, the homeomorphism from RP1 to R̂
which maps the equivalence class of RP1 containing (x, y) to x

y if y 6= 0, and to∞
if y = 0, is actually a homeomorphism which commutes with the action. This point
of view makes some of the observations in the following very easy to realise, but we
will, nonetheless, stick to the picture involving fractional linear transformations to
get a feeling of these. However, in the following, we will not distinguish between the
coefficient matrices and the fractional linear transformations, as this should not cause
any confusion, and will make the formulations less cumbersome.

Theorem 2.4.1. A fractional linear transformation is uniquely determined by its val-
ues on three points of R̂.

Proof. It is clear that two fractional linear transformations f and g agree on three
points if and only if g−1f fixes the same three points. Hence, it suffices to prove that
a fractional linear transformation which fixes three points is actually trivial, meaning
that it is the identity on R̂. So suppose that f is a fractional linear transformation
fixing three points. At least two of these points must by in R, so let y be one of these,
and define a fractional linear transformation g by

g(x) =
−1

x− y

Clearly g(y) = ∞, so gfg−1 fixes∞ and two other points. Now, a fractional linear
transformation fixes∞ if and only if it is linear. Hence, gfg−1 is linear, and, since it
fixes two points in R, it must be the identity. This of course means that f must be the
identity, as well.

An action is said to be free if no non-trivial element fixes a point, or, in other
words, if every element is uniquely determined by its value in one point. Clearly the
action of PGL(2,R) is not free, as the linear maps all fix ∞, however, the above
theorem tells us that the action is, somehow, not too far from being free. The above
result is the best one can hope for, as two point are not enough to uniquely determine
the fractional linear transformation. Indeed, any linear maps going through zero fixes
two points, namely,∞ and 0.

Suppose that f is a fractional linear transformation, with coefficients as in (2.3).
It is straightforward to check that the derivative of f is given by

det(A)

(cx+ d)2

in each point x of differentiability. In particular, we see that the fractional linear
transformation is increasing, or orientation preserving, if and only if the determinant
is positive. Thus, PSL(2,R) as a subgroup of PGL(2,R) consists exactly of all the
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increasing fractional linear transformations. Here PSL(2,R) denotes the quotient of
SL(2,R) by the subgroup {±1} as usual.

Recall that an action is said to be transitive if, given any two points, there is an
element mapping one to the other. It is easy to see that the action of PSL(2,R) on R̂
is transitive, for, given x, y ∈ R, the fractional linear transformations

[
1 y − x
0 1

]
,

[
y −1
1 0

]
, and

[
0 −1
1 −x

]

will map x to y, ∞ to y, and x to∞, respectively. However, this is not all that can
be said. The following proposition shows that the action of PGL(2,R) is, what is
known as, 3-transitive.

Proposition 2.4.2. Suppose that x1, x2 and x3 are three distinct points in R̂, and that
y1, y2 and y3 are three distinct points in R̂, as well. Then there is some fractional
linear transformations A in PGL(2,R) so that A(xk) = yk, for k = 1, 2, 3.

Proof. Suppose that none of the six points is ∞, and suppose that we are given a
fractional linear transformation A, with coefficients (2.3) say. Rearranging the terms
in the three equations A(xk) = yk, for k = 1, 2, 3, we see that they are equivalent to
the following matrix equation:



x1 1 −x1y1 −y1
x2 1 −x2y2 −y2
x3 1 −x3y3 −y3







a
b
c
d


 =




0
0
0


 .

By dimension considerations, we see that this system of linear equations has a non-
zero solution (a, b, c, d). This solution must necessarily satisfy ad − bc 6= 0. So
choosing A with these coefficients, we get a fractional linear transformations which
maps the points according to our wishes.

Now, if we drop the assumption that none of the points is ∞, then we just use
a fractional linear transformations to move the points away from∞ first. More pre-
cisely, choose some point z ∈ R different from our six points, and let B be the
fractional linear transformation given by

[
0 −1
1 −z

]
.

Then B(z) = ∞, which means that B(xk) 6= ∞ and B(yk) 6= ∞, for k = 1, 2, 3,
so, by the first part, we may choose a fractional linear transformation A so that
A(B(xk)) = B(yk), for k = 1, 2, 3. Hence B−1AB is the desired fractional lin-
ear transformation mapping our original points as desired.
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Let us make a comment on the proposition above. First of all, the statement is
not true if we replace the group PGL(2,R) by PSL(2,R). Let us briefly explain
why this is the case. If we are given three distinct points x1, x2 and x3 in R̂, then
these points give rise to an orientation of R̂ in a natural way, as there is a unique
direction from x1 to x2 so that, travelling from x1 to x2 in this direction, one does
not encounter x3. As the elements of PSL(2,R) act in an orientation-preserving way,
the above proposition fails if the two sets of points give rise to different orientations.
In the case that both sets of points give rise to the same orientation, the element
from PGL(2,R) will have positive determinant, and can therefore be rescaled to be
in PSL(2,R).

Now, our real interest lies in the fractional linear transformations in PSL(2,Z).
Here PSL(2,Z) denotes the quotient of the group SL(2,Z) of two-by-two integer
matrices with determinant one by the subgroup {±1}. The action of PSL(2,Z) is,
of course, still faithful, but it is no longer transitive. This is obvious from the fact
that PSL(2,Z) is countable, whereas R̂ is uncountable. However, Q̂ is an invariant
subset on which PSL(2,Z) acts transitively. Indeed, the action on Q̂ actually satisfies
something bordering on 2-transitivity. Let us make this more precise. Let us for the
moment use k

0 to denote∞, for every k ∈ Z \ {0}. If we suppose that we are given
two pairs, p1q1 and r1

s1
, and p2

q2
and r2

s2
, of consecutive Farey fractions with p1

q1
< r1

s1

and p2
q2
< r2

s2
, the fractional linear transformation

[
s1p2 − q1r2 p1r2 − r1p2
s1q2 − q1s2 p1s2 − r1q2

]
(2.4)

is an element of PSL(2,Z) which maps p1
q1

to p2
q2

and r1
s1

to r2
s2

. Using this we easily

see that the action is transitive on Q̂, however, this can be done a bit easier. If pq is a
rational number on reduced form, then p and q are relatively prime, and so we may
choose integers r and s so that pr + qs = 1. Then

[
p −r
q s

]

is a fractional linear transformation in PSL(2,Z) which maps∞ to p
q . Thus, the orbit

of∞ is all of Q̂, which means that the action of PSL(2,Z) on Q̂ is transitive.
We proved earlier that elements of PGL(2,R) are uniquely determined by their

values on three points. This is of course also true for the elements in PSL(2,Z),
but for these fractional linear transformations two points in Q̂ are enough, as the
following proposition shows.

Proposition 2.4.3. An element in PSL(2,Z) is uniquely determined by its values on
two distinct points in Q̂.

Proof. Two fractional linear transformations A and B agree on two points if and
only if A−1B fixes these two points, so what we need to prove is that, if a fractional
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linear transformations fixes two distinct points, then it is the identity. Suppose that A
is a fractional linear transformation in PSL(2,Z), which fixes two points in Q̂. By
replacing A with BAB−1, for some B ∈ PSL(2,Z) with B(x) = ∞, where x ∈ Q̂
is a point fixed by A, we can make sure that one of the points fixed by A is∞. Such
a B exists since the action of PSL(2,Z) on Q̂ is transitive, as noted above. So we
will assume that∞ is one point fixed by A and y ∈ Q is another.

Now, as A fixes∞, it must be linear, which means that A has the form

A =

[
a b
0 d

]
.

Since ad = det(A) = 1, we see that a and d are either both equal to 1 or both equal
to −1. In any case, A is linear with slope 1, more precisely A(x) = x + b

d , so if A
fixes a point in Q, then A is the identity. This concludes the proof.

Scrutinizing the proof above, it will be apparent that only one of the two points
needs to be in Q̂, that is, an element in PSL(2,Z) is uniquely determined by one
point in Q̂ and one other point. Thus one might ask whether an element in PSL(2,Z)
is actually determined uniquely by two arbitrary points. This is not the case though,
as it is straightforward to check that

[
2 1
1 1

]

fixes 1
2 (1±

√
5), but is obviously not the identity. The elements of PSL(2,Z) which

fix two points are those known as hyperbolic elements.
Before explaining which piecewise fractional linear maps we are interested in,

let us introduce some notation. As we will need to consider closed segments of the
circle R̂, such as closed intervals, we will adopt the following notation: given some
real number x, [∞, x] and [x,∞] will refer to the sets [x,∞) ∪ {∞} and (−∞, x] ∪
{∞}, respectively. These are the closed segments of R̂ beginning or ending in∞.

With this notation introduced, let us define the group of piecewise projective lin-
ear homeomorphisms of R̂ mentioned in the beginning of this section. We will denote
this group by PPSL(2,Z), and we will define it to be the set of homeomorphisms
of R̂ which are piecewise in PSL(2,Z) with breakpoints in Q̂. More precisely, a
homeomorphism f of R̂ is in PPSL(2,Z) if and only if there exist rational numbers
x1, x2, . . . , xn ∈ Q with

x1 < x2 < · · · < xn

and A0, A1, . . . , An ∈ PSL(2,Z) such that, with x0 = xn+1 =∞, we have f(y) =
Ak(y), for all y ∈ [xk, xk+1] and all k = 0, 1, . . . , n.

It is easy to see that all of these piecewise fractional linear maps are orientation
preserving, as the fractional linear transformations in PSL(2,Z) are so. Likewise,
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as the set Q̂ is invariant under fractional linear transformations from PSL(2,Z), this
will also be the case for the elements in PPSL(2,Z).

In the definition above we used the word breakpoint, and, as this will be important
later in Section 3.3, we will now make the notion precise.

Definition 2.4.4. Let f ∈ PPSL(2,Z) and x ∈ R̂. The point x is said to be a
breakpoint for f if there does not exist a neighbourhood U around x and an ele-
ment A ∈ PSL(2,Z) such that f(y) = A(y), for all y ∈ U .

The reader should note that the points x0, . . . , xn mentioned in the definition of
the group PPSL(2,Z) are not necessarily all breakpoints. Indeed, some elements of
PPSL(2,Z) do not have any breakpoints at all, namely, the elements of PSL(2,Z).

As mentioned earlier, the aim of this section is to prove that the Thompson
group T is isomorphic to PPSL(2,Z), or, more precisely, that these groups are iso-
morphic via conjugation by a homeomorphism from R̂ to [0, 1), when the latter space
is given the topology of a circle, as explained in the definition of T . This homeomor-
phism is the map from R̂ to [0, 1) induced by the map Q from Section 2.3. To be
completely explicit, this is the map one gets by restrictingQ to a map from R to (0, 1)

and then extending it to a map from R̂ to [0, 1). We will use Q to denote this map as
well, as it should not cause any confusion.

The fact that the Thompson group T can be realized as a group of piecewise pro-
jective linear transformations was originally discovered by Thurston, as explained
in [10, §7]. Thurston realized T as piecewise projective linear transformations of the
unit interval, and he did this by conjugating the elements of T with the Minkowski
question mark function ?. The particular version of Thurston’s result we are in-
terested in was given by Imbert [38] (see Theorem 1.1 therein), and the difference
consists in the fact that Imbert uses the map Q, rather than the map ?.

Theorem 2.4.5. The map from PPSL(2,Z) to T given by f 7→ Qf−1Q is an iso-
morphism.

Sketch of proof. We will not give the complete proof as this involves to many details.
Instead, we will try to explain why the theorem is true, and give sufficiently many of
these details for the reader to be able to fill in the rest.

Let us denote this map from PPSL(2,Z) to T by Φ. It is clear that Φ is an
injective group homomorphism, and the only things we need to check is that it is
surjective and well-defined, that is, that Φ(f) ∈ T when f ∈ PPSL(2,Z). Fix some
f ∈ PPSL(2,Z). Consulting the definition of T , we see that, for Φ(f) to be in T , it
must satisfy the following conditions:

◦ it must be a homeomorphism of the circle;
◦ it must leave the set D \ {1} invariant;
◦ it must be piecewise linear with finitely many pieces;
◦ the slope on these pieces must be a power of 2;
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◦ the points of non-differentiability are dyadic rational numbers.

It should be clear that Φ(f) satisfies the first condition as both Q and f are home-
omorphisms. Also, we noted above that elements of PPSL(2,Z) leave the set Q̂
invariant, so, as Q restricts to a bijection between this set and D \ {1}, it follows that
Φ(f) leaves this latter set invariant. Therefore, we are left to prove that Φ(f) satisfies
the last three conditions. It suffices to find rational numbers x1, x2, . . . , xn with

x1 < x2 < · · · < xn

such that, with y0 = 0, yn+1 = 1 and yk = Q(xk), the map Φ(f) is linear on the
interval [yk, yk+1) with a slope which is a power of 2, for k = 0, 1, . . . , n.

A naive approach would be to try to prove that Φ(f) is linear with the correct
slope on the pieces where f is fractional linear. However, this is not true, as, for exam-
ple, it is only the identity of T which is linear on all of [0, 1), whereas all the elements
of PSL(2,Z) are fractional linear on all of R̂. Thus, we need be careful in choosing
the points x1, . . . , xn. The trick is to choose the points so that xk and xk+1 are con-
secutive Farey numbers, but in way so that Φ(f)(xk) and Φ(f)(xk+1) turn out to be
consecutive Farey numbers, as well. For this, we choose some j ∈ N so that Cj ∩Q
contains all the breakpoints of f , as well as the points f−1(0) and f−1(∞), possibly
with the exclusion of∞. This is possible by Lemma 2.3.6. Now, let x1, x2, . . . , xn
be the elements of Cj ∩Q ordered increasingly. The claim is then that this choice of
x1, . . . , xn works, that is, Φ(f) is linear on the interval [yk, yk+1) with slope a power
of 2, for k = 0, 1, . . . , n.

Fix some k ∈ {0, 1, . . . , n}, choose a fractional linear transformation

A =

[
a b
c d

]

in PSL(2,Z) so that f(x) = A(x), for x ∈ [xk, xk+1], and let us show that Φ(f) is
linear on the interval [yk, yk+1) with slope a power of 2. The reason is, in essence,
that both A and Q behave well with respect to consecutive Farey fractions. Indeed,
we would like to say that A maps consecutive Farey numbers to consecutive Farey
numbers and satisfies

A(x⊕ y) = A(x)⊕A(y),

but, unfortunately, this is a simplification of the story. The main problem is that
being consecutive Farey fractions is a notion for the elements in Q∪{±∞}, whereas
A is a transformation of R̂ and not [−∞,∞]. Thus, for consecutive Farey fractions
to make sense in Q̂, the point ∞ must play the role of both ∞ and −∞, and this
causes some technical difficulties. To avoid too many of these, we will assume that
A([xk, xk+1]) ⊆ R, so that, in particular, A(xk) and A(xk+1) are rational numbers
with A(xk) < A(xk+1). Notice that, since we have ensured that A(xl) = ∞, for
some l ∈ {0, 1, . . . , n}, the condition A([xk, xk+1]) ⊆ R is satisfied for all but two
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values of k. We will explain briefly afterwards how to deal with these two special
cases.

Let us, for the purpose of this argument, agree that, in R̂, the fraction k
0 repre-

sents∞, for all k ∈ Z\{0}, so that we have two ways of representing∞ as a reduced
fraction, namely, 1

0 and −10 . With this convention, it is easy so see that

A
(
p
q

)
=
ap+ bq

cp+ dq
, (2.5)

for every fraction p
q ∈ Q̂, even in the cases where p

q = ∞ or A(pq ) = ∞. As
we are interested in consecutive Farey fractions, so that it matters which fraction we
choose to represent the elements of Q̂, we will, again for the purpose of this argument,
let A(pq ) denote the fraction on the right hand side of (2.5) rather than the point in R̂
it represents.

Now, write xk and xk+1 as reduced fractions p
q and r

s , respectively, in a way so
that, if xk = ∞, then p = −1, and, if xk+1 = ∞, then r = 1. It is easy to see
that the way we have chosen x1, . . . , xn ensures that pq and r

s are consecutive Farey
fractions, by Proposition 2.3.7, as they will be consecutive in Cj . Moreover, it is also
easy to see that qr − ps = 1, as p

q <
r
s , now as elements in [−∞,∞]. Recalling that

A is a matrix with determinant one, we see that

(cp+ dq)(ar + bs)− (ap+ bq)(cr + ds) = (ad− bc)(qr − ps) = 1. (2.6)

From this we deduce that, after possibly changing the sign of numerators and denom-
inators, both the fractions

A
(
p
q

)
=
ap+ bq

cp+ dq
and A

(
r
s

)
=
ar + bs

cr + ds

are, in fact, reduced fractions. Moreover, if both the denominators are already positive
and if they both represent either non-negative or non-positive numbers, then they are
consecutive Farey fractions. A straightforward computation shows that

(cp+ dq)(cr + ds)
(
A( rs )−A(pq )

)
= 1,

so we see that the denominators are either both positive or both negative, since
(A( rs ) − A(pq )) is positive. Thus, by possibly replacing the matrix A by −A, we
can make sure that they are both positive. Moreover, as the identity (2.6) is clearly
not affected by this change of sign, and, since the denominators of A(pq ) and A( rs )
are both positive, the numerators must either both be non-negative or non-positive.
As mentioned earlier, this means thatA(pq ) andA( rs ) are consecutive Farey fractions,
and we then see that

A(pq )⊕A( rs ) =
(ap+ bq) + (ar + bs)

(cp+ dq) + (cr + ds)
=
a(p+ r) + b(q + s)

c(p+ r) + d(q + s)
.
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The fraction on the right hand side is exactly A(pq ⊕ r
s ), so, recalling that xk = p

q and
xk+1 = r

s , we conclude that

A(xk)⊕A(xk+1) = A(xk ⊕ xk+1).

Let zk and zk+1 denote Φ(f)(yk) and Φ(f)(yk+1), respectively. Applying the equa-
tion above together with equation (2.1), we see that that

QAQ−1
(yk+yk+1

2

)
= QA(xk ⊕ xk+1) = Q(A(xk)⊕A(xk+1)) = zk+zk+1

2 .

Recalling that Φ(f)(x) = QAQ−1(x), for all x ∈ [yk, yk+1), what we have shown
is that Φ(f)(yk+yk+1

2 ) = zk+zk+1

2 . Now, this equation was indeed expected, as we
are trying to show that Φ(f) is linear on the interval [yk, yk+1), and it is important
to notice that, by letting x′ = xk ⊕ xk+1, both xk and x′, as well as x′ and xk+1,
satisfy the same conditions as xk and xk+1 in the sense that both pairs are consecutive
Farey numbers and both A([xk, x

′]) and A([x′, xk+1]) are contained in R. Thus,
by repeating the argument with these two intervals, we see that, with y′ = Q(x′)
and z′ = Φ(f)(x′),

Φ(f)( 1
4yk + 3

4yk+1) = Φ(f)( 1
2 (yk + y′)) = 1

2 (zk + z′) = 1
4zk + 3

4zk+1,

and similarly that Φ(f)( 3
4yk + 1

4yk+1) = 3
4zk + 1

4zk+1. Continuing this procedure,
we get that

Φ(f)
(
m
2i yk + (1− m

2i )yk+1

)
= m

2i zk + (1− m
2i )zk+1,

for every i ∈ N and every m = 1, 2, . . . , 2m. Evidently this means that Φ(f)
maps [yk, yk+1) linearly onto [zk, zk+1), and we only need to know that the slope
is a power of 2. Along the way we noticed that xk and xk+1 are consecutive in Cj ,
so from the construction of the map Q, it follows that yk and yk+1 are consecu-
tive in Dj . In particular, the length of the interval [yk, yk+1) is 2j . Likewise, we
also noticed that A(xk) and A(xk+1) are consecutive in some Cl so that the inter-
val [zk, zk+1) has length 2l. Hence, the slope of Φ(f) on [yk, yk+1) is 2l−j , and we
have proved that Φ(f) has the desired form on [yk, yk+1).

Now, let us make a few comments on how to deal with the two remaining cases,
that is, to prove that Φ(f) is linear on [A(xl−1),∞) and on [∞, A(xl+1)), when l
is chosen so that A(xl) = ∞. As we included f−1(0) in x1, . . . , xn, we know that
A(xl−1) ≥ 0 and A(xl+1) ≤ 0. Using this, one can do something similar to the case
we tackled above to get that, in some sense,A(xl−1) and 1

0 must be consecutive Farey
fractions with A(xl−1 ⊕ 1

0 ) = A(xl−1) ⊕ 1
0 , and similarly that, in some sense, −10

and A(xl+1) are consecutive Farey fractions with A(−10 ⊕ xl−1) = −1
0 ⊕A(xl−1).

This concludes the proof that Φ is well-defined. Before justifying that the map is
surjective, let us make an important remark on the first part. Namely, that there was
nowhere in the arguments have we used the fact that x1, . . . , xn were all of Cj . We
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only used that they included f−1(∞) and f−1(0), as well as all the breakpoints, and
that each consecutive pair in the list

−1
0 , x1, x2, . . . , xn,

1
0

was consecutive in some Cj . However, we did not use the fact that it was the same j
in all cases. Indeed, we could possibly have chosen a smaller set of points, as long
as consecutive elements in the list above were still consecutive Farey numbers. With
this in mind, it is easy to exhibit elements C̃ and D̃ of PPSL(2,Z) so that Φ(C̃) = C
and Φ(D̃) = D. In particular, as C and D generate T , it follows that the map Φ is
surjective. Define these elements by C̃(x) = x−1

x and

D̃(x) =





x
x+1 , for x ∈ [∞,−1]
−1
x+1 , for x ∈ [−1, 0]

x− 1, for x ∈ [0, 1]
x−1
x , for x ∈ [1,∞]

.

It follows from the remark above that, since C̃ is fractional linear on each of the inter-
vals [∞, 0], [0, 1] and [1,∞], the map Φ(C̃) is linear on each of the intervals [0, 12 ),
[ 12 ,

1
4 ) and [ 14 , 1). Moreover, as the intervals [∞, 0], [0, 1] and [1,∞] are mapped

onto the intervals [1,∞], [∞, 0] and [0, 1], respectively, Φ(C̃) must map the interval
[0, 12 ), [ 12 ,

1
4 ) and [ 14 , 1) onto the interval [ 14 , 1), [0, 12 ) and [ 12 ,

1
4 ), respectively. Hence

Φ(C̃) = C. Similar considerations using the standard dyadic partition −1, 0, 1 in-
stead of 0, 1 show that Φ(D̃) must equal D.

Remark 2.4.6. Let Λ denote the subgroup of T generated by C and D2. As re-
marked by Fossas [29], the image of PSL(2,Z) under the isomorphism described
in the section is Λ. More precisely, PSL(2,Z) is isomorphic to the free product
(Z/3Z) ? (Z/2Z) with x−1

x and −1x being free generators of order 3 and order 2, re-
spectively, and the former is mapped to C and the latter to D2. From this, it follows
that elements of Λ are uniquely determined by their values on two distinct dyadic
rational points in [0, 1). This follows from Proposition 2.4.3 and the fact that Q is a
bijection between the rational and the dyadic rational numbers.

Note that we also obtain a new interpretation of V . Indeed, Q−1V Q is also a
group of piecewise fractional linear maps, but right continuous bijections, rather than
homeomorphisms. More precisely, if, in the definition of PPSL(2,Z), we had only
required that the maps were right continuous bijections, then we would have gotten a
group which is isomorphic to V via conjugation by Q.





Chapter 3

Inner amenability

The main theme of this chapter is, of course, inner amenability, but we will begin
with a brief introduction to amenability for groups and actions, as these concepts are
highly related to inner amenability. Afterwards, we will give an introduction to inner
amenability and proceed to proving that the Thompson groups T and V are not inner
amenable. For a thorough introduction to amenable groups, the reader may wish
consult [11, Chapter 4].

All the results listed in Section 3.1 and 3.2 are standard results about amenabil-
ity, inner amenability and amenable actions. The reader is refered to [9], [11], [3]
and [32] for additional proofs.

3.1 Amenable actions

The notion of amenability for groups and actions is a very classical one, and goes
back to von Neumann from around 1929, in connection with the Banach-Tarski Para-
dox. We will begin with a brief introduction to this, before discussing the more
general notion of amenable actions.

Recall that, given a σ-algebra Σ on a set X, a function µ : Σ → [0,∞] satisfying
µ(∅) = 0 is called a measure on X if µ(∪∞n=1An) =

∑∞
n=1 µ(An), for all families

{An : n ∈ N} ⊆ Σ of pairwise disjoint sets. This condition is known as σ-additivity,
however, in some cases, this is a very restrictive condition, and an important notion
in the context of amenability is that of finitely additive measures. This notion makes
perfectly good sense for general σ-algebras, but as we will only consider finitely
additive measures on spaces equipped with the power set σ-algebra P(X), we will
restrict the definition to this case.

Definition 3.1.1. Given a set X, a function µ : P(X)→ [0,∞] satisfying µ(∅) = 0 is
said to be a finitely additive measure on X if it satisfies µ(∪mn=1An) =

∑m
n=1 µ(An),

for all finite families A1, A2, . . . , Am of pairwise disjoint subsets of X.

41
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Definition 3.1.2. A measure µ on a group G is called left invariant, respectively,
right invariant if it satisfies µ(gA) = µ(A) and µ(Ag) = µ(A), respectively, for all
g ∈ G and A ⊆ G. A group G is said to be amenable if there exists a left invariant
finitely additive probability measure on G.

The restriction to finitely additive measures is a very natural one, as it is easy to
show that the only groups with a σ-additive, left invariant probability measure are the
finite ones. This is seen easily if the group is countable as it will then be a countable
union of singletons, which must all have the same measure by left invariance. This
is of course not possible if the group is infinite. A similar argument works for un-
countable groups, however, instead of singletons one should choose some countable
infinite subgroup and a representative for each right coset. Then the group will be the
disjoint union of countably many left translates of this set of representatives, which
must then have the same measure.

Remark 3.1.3. It is not difficult to see that there exists a left invariant finitely additive
probability measure on a group G if and only if there exists a right invariant one.
Indeed, a finitely additive probability measure µ onG is left invariant if and only if the
measure ν defined by ν(A) = µ(A−1) is right invariant and vice versa. In fact, ifG is
amenable, then G has a finitely additive probability measure which is simultaneously
left and right invariant. This is not as obvious, but still quite elementary. If µl and
µr are left and right invariant finitely additive probability measures on G, then the
measure µ, defined by

µ(A) =

∫

G

µl(Ag
−1) dµr(g),

will be a finitely additive probability measure which is both left and right invariant.

From the definition of amenability one sees straight away that the finite groups are
all amenable, as the normalized counting measure will then be a probability measure
which is both left and right invariant. Other examples of amenable groups include
the abelian groups and the solvable groups, however, this is less obvious. As it is,
amenable groups have rather nice stability properties, for example, the following
groups are amenable:

(1) subgroups of amenable groups;

(2) quotients of amenable groups;

(3) extensions of amenable groups by amenable groups;

(4) inductive limits of amenable groups.

The above list is a selection of some of the more standard permanence properties,
and, using these, one can easily come up with plenty more examples of amenable
groups.
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When it comes to non-amenable groups, the most natural example is F2, the
free (non-abelian) group on two generators, and, indeed, often non-amenability is
established by proving that the group in question contains F2.

Let us recall the following definition due to Day [21] from 1957.

Definition 3.1.4. Consider the smallest class of groups containing the finite groups
and the abelian groups, and is closed under taking subgroups, quotients, extensions,
as well as directed unions. Groups in this class are said to be elementary amenable.

To use the notation of Day, we will denote the class of elementary amenable
groups by EG, the class of amenable groups byAG and the class of groups which do
not contain a copy of the free group on two generators byNF . A question Day raised
was whether EG = AG or AG = NF . This question has been the subject of much
attention, in particular whether or not AG = NF , which is commonly known as the
von Neumann problem or the von Neumann-Day problem. The problem was solved
for linear groups by Tits [64] in 1972, where he proved a result which is now known
as the Tits Alternative. A consequence of this result is that linear groups are amenable
if and only if they do not contain a copy of the free groups on two generators. In 1980
Chou showed [16] that EG 6= NF , so that either EG 6= AG or AG 6= NF . It turns
out that both EG 6= AG and AG 6= NF . The latter was proved by Olshanskii [56]
in 1980 and the former by Grigorchuk [33] in 1984. The counterexamples given by
Olshanskii and Grigorchuk were not finitely presented, and for some time it was not
known whether or not such finitely generated examples existed. However, in 1998
Grigorchuk [34] gave an example of a finitely presented amenable group which is
not elementary amenable, and in 2003 Olshanskii and Sapir [58] gave an example of
a finitely presented non-amenable group which does not contain a copy of F2. Re-
cently, more accessible counterexamples for the von Neumann problem have been
provided by Monod [53] in the form of groups of piecewise projective homeomor-
phisms resembling the group PPSL(2,Z) described in Section 2.4, or, rather, the
subgroup of elements which fix ∞. Lodha and Moore [50] afterwards exhibited a
finitely presented non-amenable subgroup of one of these groups.

Let us at this point make a comment on the Thompson groups. It is not difficult
to show that the Thompson groups T and V are non-amenable as they contain a copy
of F2, for example, because T contains a copy of PSL(2,Z), which is known to
contain F2. However, it is a famous open problem whether the Thompson group F is
amenable or not. Brin and Squire [8] proved in 1985 that F does not contain a copy
of F2, and Cannon, Floyd and Parry [10] proved in 1996 that F is not elementary
amenable. Thus F is either another counterexample to the von Neumann problem or
another example of an amenable group which is not elementary amenable.

Let us move on to amenability for group actions. Recall that an action of a
group G on a space X is a group homomorphism α from G to the group of per-
mutations of X.
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Definition 3.1.5. An action α of a group G on a set X is said to be amenable if
there exists a finitely additive probability measure µ on X which is invariant under
the action, that is, µ(α(g)(A)) = µ(A), for all g ∈ G and A ⊆ G.

Comparing the definitions, one sees right away that amenability of a group is
nothing more than amenability of the action of the group on itself given by left trans-
lation. Moreover, it is also easy to see that actions of amenable groups are always
amenable. Indeed, if µ is a left invariant finitely additive measure on a group G, and
α is an actions of G on a set X, then, for any x ∈ X, the measure ν given by

ν(A) = µ
(
{g ∈ G : α(g)x ∈ A}

)
,

for all A ⊆ X, is a finitely additive measure on X which is invariant under the action.
Given an action α of a group G on a set X, we get an induced action by linear

maps on the space of complex valued functions on X. This action, which we will still
denote by α, is given by (α(g)f)(x) = f(α(g−1)x), for all functions f : X → C,
all g ∈ G and all x ∈ X. An important fact, which we will use implicitly throughout
the thesis, is that the functions spaces `1(X), `2(X) and `∞(X) are invariant so that
α(g) can be though of as a linear operator on each of these spaces. It is easy to see
that it is isometric on each of these spaces. In particular, α(g) acts on `2(X) as a
unitary operator. Thus it is a representation of the group on `2(X). In case of left
translation action, this representation is, of course, the left regular representations λ.

There is an extraordinary number of characterizations of amenability, and many
of these carry straight over to amenable actions. The following theorem lists some
characterizations of amenable actions which, in the special case of left translations,
are some of the more standard characterizations of amenability for groups. The proof
is a straightforward adaptation of the proof in the case where the action is left trans-
lation action, however, a proof for general actions can be found in [42, Lemma 2.1].

Theorem 3.1.6. Let α be an action of a group G on a set X. Then following are
equivalent:

(i) The action is amenable.

(ii) There exists a net (ηi)i∈I of unit vectors in `1(X) such that, for all g ∈ G,
limi∈I ‖α(g)ηi − ηi‖1 = 0.

(iii) The trivial representation is weakly contained in the representation on `2(X)
induced by α, that is, there exists a net (ξi)i∈I of unit vectors in `2(X) such
that limi∈I ‖α(g)ξi − ξi‖2 = 0, for all g ∈ G.

(iv) For every ε > 0 and every finite subset K ⊆ G, there exists a finite subset F ⊆
X so that |α(g)F∆F | < ε|F |, for every g ∈ K.

(v) There exists an invariant mean on `∞(X), that is, a state φ on `∞(X) such that
φ(α(g)f) = φ(f), for all f ∈ `∞(X) and g ∈ G.
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Condition (iv) above is called Følner’s condition. Note that if G is an amenable
group, then it follows easily from Følner’s condition that there exists a net (Fi)i∈I of
finite subsets of G such that |gFi∆Fi||Fi|−1 goes to zero, for all g ∈ G. Such a net
is usually called a Følner net, and in the case the group is countable, the net can be
replaced by a sequence, that is, a Følner sequence.

A few of the characterizations of amenability in the above theorem are operator
algebraic in nature, and, indeed, there are many characterizations which have to do
with operator algebra. The following theorem characterizes amenability in terms of
certain operator norms. As a proof of this theorem is not as readily available in the
literature, we have included a proof.

Theorem 3.1.7. Suppose that G is a group acting on a set X, and let π denote the
corresponding representation on `2(X). Then the action of G on X is non-amenable
if and only if there exist elements g1, g2, . . . , gn of G, such that

∥∥∥ 1

n

n∑

k=1

π(gk)
∥∥∥ < 1.

Moreover, if G is finitely generated, then the action is non-amenable if and only if
‖ 1n
∑n
k=1 π(gk)‖ < 1, for any set of elements g1, g2, . . . , gn generating G.

Proof. We start by proving the first statement. Suppose that the action is amenable
and let g1, . . . , gn ∈ G. By (iii) of Theorem 3.1.6, there exists a net (ξi)i∈I of unit
vectors in `2(X) so that limi∈I ‖π(g)ξi − ξi‖ = 0. As

∥∥∥ 1

n

n∑

k=1

π(gk)
∥∥∥ ≥

∥∥∥ 1

n

n∑

k=1

π(gk)ξi

∥∥∥
2
≥ 1−

∥∥∥ 1

n

n∑

k=1

(π(gk)ξi − ξi)
∥∥∥
2

and limi∈I ‖ 1n
∑n
k=1(π(gk)ξi − ξi)‖2 = 0, we conclude that ‖ 1n

∑n
k=1 π(gk)‖ = 1.

Suppose instead that ‖ 1n
∑n
k=1 π(gk)‖ = 1, for all g1, . . . , gn ∈ G, and let us

prove that the action is amenable by proving that (iii) of Theorem 3.1.6 holds. Let
h1, . . . , hn ∈ G and let ε > 0. Our goal is to find a unit vector ξ ∈ `2(X) so that
‖π(hk)ξ − ξ‖2 < ε, for all k = 1, 2, . . . , n. We may assume that h1 = e. By
assumption

∑n
k=1 π(hk) is a bounded operator of norm n, so we may choose a unit

vector ξ with ‖∑n
k=1 π(hk)ξ‖2 > n2 − 1

2ε
2. Noting that h−11 hk = hk, we then see

that
n∑

k=1

∥∥π(hk)ξ − ξ
∥∥2
2
≤

n∑

i,j=1

∥∥π(h−1i hj)ξ − ξ
∥∥2
2

= 2n2 − 2
∥∥∥

n∑

k=1

π(hk)ξ
∥∥∥
2

2
< ε2.

In particular ‖π(hk)ξ − ξ‖2 < ε, for all k = 1, 2, . . . , n, which means that we have
found the desired ξ, and have thus proved amenability of the action.

For the last statement it suffices to prove that, if there exists a generating set
g1, g2, . . . , gn in G with ‖ 1n

∑n
k=1 π(gk)‖ = 1, then the action is amenable. We are
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going to do this in the same manner as above, that is, give some finite subset F ⊆ G
and ε > 0, we need to find a unit vector ξ such that ‖π(h)ξ − ξ‖ < ε for all h ∈ F .

Choose some N ∈ N such that each h ∈ F can be written as a product of at
most N of the generators g1, g2, . . . , gn and their inverses. By repeating the argu-
ment from the first part of the proof, we get that there exists a unit vector ξ such
that ‖π(gk)ξ − ξ‖2 < 1

N ε, for all k = 1, 2, . . . , n. Clearly we then also get that
‖π(g−1k )ξ − ξ‖2 < 1

N ε, for each k = 1, 2, . . . , n. Now, given h ∈ F , we can
write h = h1h2 · · ·hm where m ≤ N , and each hk is one of the generators or its
inverse. Using the triangle inequality and the fact that π(hk) is unitary, for each
k = 1, 2, . . . ,m, we get that

‖π(h)ξ − ξ‖ ≤
m∑

k=1

‖π(hk)ξ − ξ‖ < m
1

N
ε ≤ ε.

This was exactly what we needed to prove, and we conclude that the action is ame-
nable.

Before continuing, recall the definition of weak containment of representations.

Definition 3.1.8. Let G be a group and let π : G → B(H) and σ : G → B(K) be
representations of G on Hilbert spaces H and K, respectively. Then π is said to be
weakly contained in σ if, for every ξ ∈ H, ε > 0 and F ⊆ G finite, there exist
η1, . . . , ηn ∈ K such that

∣∣∣〈π(g)ξ | ξ〉 −
n∑

k=1

〈σ(g)ηk | ηk〉
∣∣∣ < ε, (3.1)

for all g ∈ F and k = 1, . . . , n.

Recall that, if π is a representation of a group G on a Hilbert space H, then a
vector ξ ∈ H is called cyclic if {π(g)ξ : g ∈ G} spans a dense subspace of H.
A straightforward approximation argument, which can be found in [24, Proposi-
tion 18.1.4] shows that, with the setup of the above definition, π is weakly contained
in σ as long as the requirements are satisfied for a single ξ, as long as this ξ is a cyclic
vector for π. More precisely, if ξ is cyclic for π, then π is weakly contained in σ
if, for for all ε > 0 and F ⊆ G finite, there exist η1, . . . , ηn ∈ K such that (3.1) is
satisfied for this specific ξ.

The following theorem gives a characterization of weak containment in terms
of maps between C∗-algebras. A proof of this result can be found in [24, Proposi-
tion 18.1.4].

Theorem 3.1.9. Suppose that π and σ are representations of a group G. Then π is
weakly contained in σ if and only if ‖π(x)‖ ≤ ‖σ(x)‖, for all x ∈ C∗(G), that is, if
and only if there exists a ∗-homomorphism κ : C∗σ(G)→ C∗π(G) such that κσ = π.
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Before we state the following result, which is a well-known result about weak
containment, recall the following terminology about group actions. If α is an action
of a group G on a set X, then, given x ∈ X, the subgroup {g ∈ G : α(g)x = x} is
called the stabilizer of x. Also, the action α is said to be transitive if, for every x, y ∈
X, there exists g ∈ G with α(g)x = y.

Proposition 3.1.10. Let G be a group acting on a set X and let π denote the corre-
sponding representation on `2(X). If the stabilizers of the action are amenable, then
π is weakly contained in the left regular representation of G.

Proof. Suppose firrst that the actions is transitive, and let x ∈ X. As the action is
transitive, the vector δx is cyclic for π. As noted above, this means that it suffices to
prove that the function g 7→ 〈π(g)δx | δx〉 is the limit of sums of functions of the
form g 7→ 〈λ(g)ξ | ξ〉 with ξ ∈ `2(G).

Denote the stabilizer of x by H , and note that the function g 7→ 〈π(g)δx | δx〉 is
actually the indicator function ofH . AsH is amenable, we know from Theorem 3.1.6
that we may choose a Følner net (Fi)i∈I for H . Now, letting ξi = |Fi|−1/21Fi

where 1Fi
denotes the indicator function of the set Fi, it is straightforward to check

that limi∈I〈λ(g)ξi | ξi〉 = 1, for all g ∈ H , as (Fi)i∈I is a Følner net, and that
limi∈I〈λ(g)ξi | ξi〉 = 0, for all g ∈ G \H . Thus π is weakly contained in λ.

Now, let us drop the assumption that the action is transitive. Let X =
⊔
j∈J Xj

be a decomposition of X into orbits. Then `2(X) =
⊕

j∈J `
2(Xj) is a decomposition

of `2(X) into π-invariant subspaces. Moreover, as G acts transtitively on each of
the sets Xj , it is straightforwards to check, using the first part of the proof, that π is
weakly contained in the left regular representation.

Now, let us mention the following theorem about amenable actions, due to Rosen-
blatt [62] from 1981. It gives a criterion for non-amenability of an action. We include
a proof, different from Rosenblatt’s original one.

Theorem 3.1.11. Let G be a non-amenable discrete group acting on a set X. If the
stabilizer of each point is amenable, then the action is itself non-amenable.

Proof. Let π denote the representation of G on `2(X) corresponding to the action.
We aim to prove that the action does not satisfy Condition (iii) of Theorem 3.1.6. As
G is non-amenable, Theorem 3.1.7 tells us that there exist elements g1, g2, . . . , gn
in G so that ‖ 1n

∑n
k=1 λ(gk)‖ < 1. Let us denote ‖ 1n

∑n
k=1 λ(gk)‖ by c. Let (ξi)i∈I

be a net of unit vectors in `2(X). Our goal is to prove that

1

n

n∑

k=1

‖π(gk)ξi − ξi‖2 ≥ 1− c > 0,

for all i ∈ I . Clearly this implies that we cannot have limi∈I ‖π(gk)ξi − ξi‖2 = 0,
for all k ∈ {1, 2, . . . , n}, which means that Condition (iii) of Theorem 3.1.6 is not
satisfied, and that the action is therefore not amenable.
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From Proposition 3.1.10 we know that π is weakly contained in the left regular
representation of G, so, by Theorem 3.1.9, we know that ‖ 1n

∑n
k=1 π(gk)‖ ≤ c. As

1

n

n∑

k=1

‖π(gk)ξi − ξi‖2 ≥
1

n

n∑

k=1

(
‖ξi‖2 − ‖π(gk)ξi‖2

)
≥ 1−

∥∥∥ 1

n

n∑

k=1

π(gk)ξi

∥∥∥
2
,

for all i ∈ I , we conclude that 1
n

∑n
k=1 ‖π(gk)ξi − ξi‖2 ≥ 1 − c. We conclude that

the action is not amenable.

Let us end this section by discussing amenability of the natural action of the
Thompson groups on the interval [0, 1). The first thing one might notice is that the
actions of F on the interval is amenable, but for trivial reasons. All the elements of F
fix the point 0, so the Dirac measure at the point will be a finitely additive probability
measure on [0, 1) which is invariant under the action. The actions of the Thompson
groups T and V on the interval, however, are non-amenable. This is not obvious, but
it follows easily from Rosenblatt’s result above, as well as Thurston’s characterization
of T as piecewise projective linear homeomorphisms. In order to do this, we start by
proving the following proposition.

Proposition 3.1.12. The subgroup of fractional linear transformations in PSL(2,R)

which fix a given element x ∈ R̂ is amenable.

Proof. As we noted in Section 2.4, the action of PSL(2,R) on R̂ is transitive, so
that all the stabilizer subgroups are conjugate, and, in particular, isomorphic. Thus,
it suffice to prove that the stabilizer of the point ∞ is amenable. Let H denote the
stabilizer subgroup of∞. We claim that H is isomorphic to the semidirect product
R oα R+, where the action α of R+ on R is given by α(s)(t) = s2t, for all s ∈ R+

and t ∈ R. As this semidirect product is the extension of an amenable group by
another amenable group, it is amenable. Now, the elements of H are exactly the
fractional linear transformations of the form

[
s t
0 s−1

]

for some s, t ∈ R with s 6= 0, and it is straightforward to check that the map from
Roα R+ which sends (s, t) to the above fractional linear transformation above is an
isomorphism from Roα R+ to H .

Proposition 3.1.13. The actions of T and V on [0, 1) are non-amenable.

Proof. As T ⊆ V , it suffices to prove that the action of T on [0, 1) is non-amenable,
as a finitely additive V -invariant measure on [0, 1) would then also be T -invariant.
By Theorem 2.4.5, it suffices to prove that the action of PPSL(2,Z) on R̂ is non-
amenable, and as PSL(2,Z) is a subgroup of PPSL(2,Z), it suffices to prove that the
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action of PSL(2,Z) on R̂ is non-amenable. By Theorem 3.1.11, it suffices to prove
that the stabilizers of the action are amenable as PSL(2,Z) itself is non-amenable.
This follows directly from Proposition 3.1.12.

We mentioned earlier that the groups T and V are not amenable. As all actions
of amenable groups are amenable, this is also a corollary of the above proposition.

Remark 3.1.14. Let V0 denote the subgroup of V consisting of elements g satisfying
g(x) = x, for all x ∈ [0, 12 ). It is easy to see from the above proposition that the
action of this group on the interval [ 12 , 1) is also non-amenable. Indeed, if we define
a function f : [ 12 , 1)→ [0, 1) by f(x) = 2x− 1, then it follows directly from the fact
that the map g 7→ fgf−1 from V0 to V is a group isomorphism.

Similarly, we could consider the subgroup of V consisting of elements that fix
every point in [ 12 , 1), instead of [0, 12 ), and we then get the conclusion that the action
of this subgroup on the interval [0, 12 ) is non-amenable, this time using the func-
tion x 7→ 2x.

3.2 Introduction to inner amenability and property Γ

Now that we have gone through the basics on amenable actions, the definition of inner
amenability is straightforward. However, as the original motivations for introducing
inner amenability was to study property Γ for II1-factors, we will start by defining
this property, or at least, define it for group von Neumann algebras.

Recall that a von Neumann algebra is a C∗-subalgebra of the bounded operators
on some Hilbert space H which is closed in the topology of pointwise convergence
and contains the identity operator 1 on that Hilbert space. As von Neumann algebras
are unital C∗-algebras, they always have a non-empty center, that is, they contain
non-zero operators which commute with all other operators, namely C1. Von Neu-
mann algebras where C1 is all of the center are called factors. It is an easy exercise to
prove that the group von Neumann algebra L(G) of a groupG is a factor if and only if
G is ICC. The group von Neumann algebra is always a finite von Neumann algebra as
it has a faithful tracial state, which we denote by τ , and is given by τ(x) = 〈xδe | δe〉.
If the group is ICC, then the group von Neumann algebra is what is called a II1-factor.
We will denote the trace norm on L(G) by ‖ · ‖τ , that is, ‖x‖τ = τ(x∗x)1/2.

Definition 3.2.1. The group von Neumann algebra L(G) of an ICC group G is said
to have property Γ if there exists a net (ui)i∈I of unitaries in L(G) with τ(ui) = 0
and limi∈I ‖uix− xui‖τ = 0, for all x ∈ L(G).

Property Γ was introduced by Murray and von Neumann [54] in 1943 to provide
the first examples of non-isomorphic II1-factors. They proved that all approximately
finite II1-factors are isomorphic and have property Γ, whereafter they proved that the
group von Neumann algebra L(F2) of the free group on two generators does not have
property Γ.
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Definition 3.2.2. A groupG is said to be inner amenable if the action ofG onG\{e}
by conjugation is an amenable action, in the sense of Definition 3.1.5.

Inner amenability was introduced by Effros [26] in 1975 in an attempt to charac-
terize property Γ for group von Neumann algebras in terms of a purely group theoretic
property. Effros proved that ICC groups are inner amenable if their group von Neu-
mann algebra has property Γ, and he conjectured that the converse was also true. For
many years if was an open problem, and it was only recently, in 2012, that Vaes [65]
settled this in the negative. Vaes gave an explicit construction of an inner amenable
ICC group whose group von Neumann algebra does not have property Γ. We have
included a proof of Effros result, as it clearly illustrates the resemblance of inner
amenability and property Γ. Note that the representation of G on `2(G) induced by
the conjugation action is the product of the left and the right regular representations,
that is, the representation g 7→ λ(g)ρ(g).

Theorem 3.2.3. If G is an ICC group whose group von Neumann algebra has prop-
erty Γ, then G is inner amenable.

Proof. Suppose that L(G) has property Γ and let (ui)i∈I be a net of unitaries in L(G)
with τ(ui) = 0 and limi∈I ‖uix − xui‖τ = 0, for all x ∈ L(G). Put ξi = uiδe. As
ξi(e) = τ(ui) = 0, we see that (ξi)i∈I is actually a net in `2(G\{e}), and so we want
to prove that the action of G on G \ {e} is amenable by proving that (ξi)i∈I satisfies
the condition (iii) of Theorem 3.1.6. First of all, recalling that ‖x‖τ = ‖xδe‖2, for
all x ∈ L(G), we notice that ‖ξi‖2 = ‖ui‖τ = 1, so that it is actually a net of unit
vectors. Thus we only need to prove that limi∈I ‖λ(g)ρ(g)ξi − ξi‖2 = 0. If we,
furthermore, recall the fact that λ(g)xλ(g)∗δe = λ(g)ρ(g)xδe, for all x ∈ L(G) and
all g ∈ G, we see that

‖λ(g)ρ(g)ξi − ξi‖2 = ‖λ(g)ρ(g)uiδe − uiδe‖2 = ‖λ(g)uiλ(g)∗δe − uiδe‖2.

Using the fact that ‖vx‖τ = ‖xv‖τ = ‖x‖τ , whenever x, v ∈ L(G) with v unitary,
as well as the formula for the trace norm in terms of the norm on `2(G), we see that

‖λ(g)ρ(g)ξi − ξi‖2 = ‖λ(g)uiλ(g)∗ − ui‖τ = ‖λ(g)ui − uiλ(g)‖τ .

By the choice of (ui)i∈I the right hand side tends to zero, and so we conclude that
limi∈I ‖λ(g)ρ(g)ξi − ξi‖2 = 0, which by Theorem 3.1.6 means that the action of G
on G \ {e} is amenable. Hence G is inner amenable.

In the proof above it seems as though having the net of unitaries is almost the
same as as having the net of unit vectors. Indeed, if G is an inner amenable group,
then, because L(G)δe is dense in `2(G), we could choose a net (yi)i∈I of operators
in L(G) with trace zero, such that limi∈I ‖λ(g)ρ(g)yiδe − yiδe‖2 = 0. As in the
proof above, this means that limi∈I ‖λ(g)yi − yiλ(g)‖τ = 0. Thus, it seems as
though we are almost at a point where we can conclude property Γ. There are two
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problems, namely that the yi’s are not unitaries and that we need to replace λ(g) by a
general x ∈ L(G). These problems, however, cannot be overcome as we know from
Vaes [65] that the converse of Effros theorem fail.

There are some obvious examples of inner amenable groups, namely, non-trivial
non-ICC groups. Indeed, the normalized counting measure on a finite conjugacy class
inG, different from {e}, will define a finitely additive probability measure onG\{e}
which is conjugation invariant, so non-ICC groups are inner amenable. This also ex-
plains why it is the conjugacy action on G \ {e}, rather than on G, which is supposed
to be amenable, as the Dirac measure at e is always conjugation invariant. Other
obvious examples of inner amenable groups include the non-trivial amenable groups.
We already know that finite groups are inner amenable as they are non-ICC, and, if
G is an infinite amenable group, then by Remark 3.1.3 we know that G has a finitely
additive probability measure which is both left and right invariant, so, in particular,
it is conjugation invariant. As the group is infinite, all atoms have measure zero, so
by restricting it to G \ {e}, we get a finitely additive probability measure which is
conjugation invariant. Inner amenability has some atypical permanence properties.
It is not passed onto subgroups and quotients and, however, directed unions of in-
ner amenable groups are again inner amenable and every group containing an inner
amenable, normal subgroup is again inner amenable.

There are no obvious examples of non-inner amenable groups, though there are
some easy ones. Effros [26] gave an elementary proof that the free group on two
generators F2 is not inner amenable. Combining this with the comments above, this
means that the group F2 × Z is inner amenable. Thus, inner amenability does not
imply amenability. Another way to produce examples of non-inner amenable groups
is the theorem of Rosenblatt, that is, Theorem 3.1.11. We have included a slightly
modified version here for reference.

Proposition 3.2.4. If G has a non-amenable subgroup H such that the centralizer
subgroup {h ∈ H : hgh−1 = g} is amenable, for each g ∈ G \ {e}, then G is not
inner amenable.

Proof. It follows directly from the assumptions and Theorem 3.1.11 that the conju-
gation action of H on G \ {e} is non-amenable. In particular, the conjugation action
of G on G \ {e} is non-amenable as well, that is, G is not inner amenable.

Let us also include a rephrasing of Theorem 3.1.7 for conjugacy actions, as we
will need it later.

Proposition 3.2.5. Let G be a non-trivial group. Then G is non-inner amenable if
and only if there exist elements g1, g2, . . . , gn of G and a positive real number c < 1,
such that ∥∥∥ 1

n

n∑

k=1

λ(gk)xλ(gk)∗
∥∥∥
τ
≤ c‖x‖τ ,

for all x ∈ C∗λ(G) with trace zero.
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Proof. By Theorem 3.1.7 we know that G is non-inner amenable if and only if we
can find elements g1, g2, . . . , gn of G and a positive real number c < 1 such that the
restriction of 1

n

∑n
k=1 λ(gk)ρ(gk) to `2(G \ {e}) has norm c. Phrased differently,

‖ 1n
∑n
k=1 λ(gk)ρ(gk)ξ‖2 ≤ c‖ξ‖, for all ξ ∈ `2(G) with ξ(e) = 0. Now, that this is

equivalent to the statement of the proposition follows from the facts that {xδe : x ∈
L(G), τ(x) = 0} is dense in `2(G \ {e}), that ρ(g)yδe = yλ(g)∗δe, for all y ∈ L(G)
and g ∈ G, and that ‖y‖τ = ‖yδe‖2, for all y ∈ L(G).

Let us end this section by recalling the definition of a group von Neumann algebra
being a McDuff factor. For more on McDuff factors, see [52].

Definition 3.2.6. Let G be a countable ICC group. The group von Neumann alge-
bra L(G) is said to be a McDuff factor if there exist sequences (un)n∈N and (vn)n∈N
of trace zero unitaries in L(G) satisfying, moreover, limn→∞ ‖unx − xun‖τ =
limn→∞ ‖vnx − xvn‖τ = 0, for all x ∈ L(G), whereas ‖unvn − vnun‖τ does
not tend to zero as n→∞.

It is clear that a McDuff factor has Property Γ. Hence, by Effros’ result, a count-
able ICC group is inner amenable if its group von Neuman algebra is a McDuff factor.

3.3 The Thompson groups and inner amenability

The purpose of this section is to prove that the Thompson groups T and V are not
inner amenable. The proof relies heavily on the interpretation of T as piecewise frac-
tional linear transformations of R̂ from in Section 2.4. Recall that Λ denotes the sub-
group of T generated by the elementsC andD2, and that it is the image of PSL(2,Z)
via the isomorphism from PPSL(2,Z) to T , as explained in Remark 2.4.6.

That the Thompson group F is inner amenable was proved by Jolissaint [40] in
1997. A year after, he strengthened his result by proving that the group von Neumann
algebra of F is a McDuff factor, see [41]. A few years later, Ceccherini-Silberstein
and Scarabotti [12] gave a different, more elementary proof that F is inner amenable.

At a conference in 2013, Chifan raised the question whether the Thompson groups
T and V are non-inner amenable. Together with Haagerup we were able to settle this.

Theorem 3.3.1. The Thompson groups T and V are not inner amenable.

Proof. Let us start by proving that T is not inner amenable. By Theorem 2.4.5 this is
the same as proving that PPSL(2,Z) is not inner amenable. We will prove that the
subgroup {g ∈ PSL(2,Z) : gf = fg} is amenable, for all f ∈ PPSL(2,Z)\{e}. By
Proposition 3.2.4, this shows that PPSL(2,Z) is non-inner amenable. Fix f 6= e, and
let us prove that the associated above subgroup, which we denote by H , is amenable.

First suppose that f ∈ PSL(2,Z). Then H is the centralizer of f in PSL(2,Z),
which is known to be cyclic; see for example Theorems 2.3.3 and 2.3.5 in [44]. In
particular, H is amenable.
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Suppose instead that f /∈ PSL(2,Z). This means that f has a breakpoint, in the
sense of Definition 2.4.4. However, it is not difficult to see that f must have at least
two of them. Let x1, . . . , xn denote the breakpoints of f . Fix some g ∈ PSL(2,Z)

with gf = fg. As g is a fractional linear transformation of R̂, it is easy to see
that the breakpoints of the composition g−1f are still the points x1, . . . , xn. For the
same reason, the breakpoints of the composition fg−1 are g(x1), . . . , g(xn). As g
commutes with f , we have fg−1 = g−1f . In particular, the points x1, . . . , xn and
the points g(x1), . . . , g(xn) are the same up to a permutation, that is, there is a per-
mutation σ such that g(xk) = xσ(k), for k = 1, . . . , n. As we already noted that
n ≥ 2, we get from Proposition 2.4.3 that g is uniquely determined by the permuta-
tion of x1, . . . , xn. Note that we here used that all the points x1, . . . , xn are in Q̂, by
definition of PPSL(2,Z). As there are exactly n! permutations of these points, we
conclude that H is finite with at most n! elements. In particular, H is amenable. This
proves that H is amenable in all cases, and so T is not inner amenable.

Let us explain why V is not inner amenable, either. An easy way to see that would
be to continue the argument above on the PPSL(2,Z) analogue of V , mentioned in
Remark 2.4.6. We did not formally explain what the elements of this group look like,
but we can actually, without problems, continue our strategy without this knowledge.
Let us explain this more precisely. We know from Theorem 2.4.5 that if we conjugate
the elements of T with Q, then we get the group PPSL(2,Z). As T ⊆ V , this
means that if we conjugate the elements of V , that is, consider the group Q−1V Q,
then we obtain some group of bijections of R̂ which contains PPSL(2,Z). So if
we would still use Proposition 3.2.4, then we need to argue that, if f ∈ Q−1V Q
but f /∈ PPSL(2,Z), then the group H is still amenable. As QfQ−1 is an element
in V which is not in T , it must have a finite number of discontinuities, but at least two.
However, asQ is a homeomorphism, this means that f must also have a finite number
of points of discontinuity, and again at least two. As the elements of PSL(2,Z) are
homeomorphisms, an element g ∈ PSL(2,Z) with fg = gf would permute these
points of discontinuity, as in the first part. By definition of V , the discontinuities of
Q−1fQ are all dyadic rational numbers, and, therefore, discontinuities of f are in Q̂.
Thus, as in the first part, the element g is uniquely determined by how it permutes
these finitely many points of discontinuity. Again we conclude that H is finite, and
again, by Proposition 3.2.4, we conclude that V is not inner amenable.

In combination with Theorem 3.2.3 we immediately get the following corollary.

Corollary 3.3.2. Neither L(T ), nor L(V ), has property Γ. In particular, they are not
McDuff factors, either.





Chapter 4

Operator algebras and the Thompson
groups

In this chapter, we begin by introducing a representation of the Thompson groups in
the unitary group of the Cuntz algebra O2. Afterwards, we prove a statement con-
necting amenability of the Thompson group F with C∗-simplicity of the Thompson
group T , as well as a statement about ideals in the reduced group C∗-algebras of F
and T . Last, we introduce the rapid decay property of Jolissaint, and prove a criterion
for C∗-simplicity of groups.

4.1 A representation in the Cuntz algebra

Let us start this section by introducing the Cuntz algebras, or, rather, one of them.
The Cuntz algebra O2 is the universal C∗-algebra generated by two isometries s0
and s1 with orthogonal range projections summing up to the identity. In other words,
it is the universal C∗-algebra generated by two elements, s0 and s1, subject to the
relations

s∗0s0 = 1, s∗1s1 = 1 and s0s
∗
0 + s1s

∗
1 = 1.

As it is a universalC∗-algebra given by generators and relations, it is, a priori, a rather
abstract object. However, the Cuntz algebra O2 is known to be a simple C∗-algebra,
as shown by Cuntz [19], which means that whenever two elements in a C∗-algebra
satisfy the above relations, they will automatically generate a copy of O2. Thus we
may easily find a concrete realization of the Cuntz algebra, and we do so below. For
an introduction to universal C∗-algebras, the reader may consult [51, Chapter 3].

Let us list a few facts about the isometries s0 and s1. For this purpose, we will,
given µ = (i1, i2, . . . , in) ∈ {0, 1}n, denote the element si1si2 · · · sin by sµ, and
also let s∅ denote the identity operator 1, corresponding to the case n = 0.

55
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(1) The elements s0s∗0 and s1s∗1 are both projections; indeed, they are the range
projections of s0 and s1, respectively.

(2) the projections s0s∗0 and s1s∗1 are orthogonal, so that s∗0s1 = 0 and s∗1s0 = 0.

(3) Any product of s0, s1, s∗0 and s∗1 can be written in the form sµs
∗
ν , for some

µ ∈ {0, 1}n and ν ∈ {0, 1}m. In particular, such elements span a dense
subalgebra of O2.

As mentioned, our goal is to realize the Thompson groups as subgroups of the
unitary group of O2 in a natural way. This fact was originally discovered by Nekra-
shevych [55] (see Section 9 therein), as kindly pointed out to us by Szymanski.
Nekrashevych has a very explicit formula for expressing an element of the Thompson
groups in terms of the isometries s0 and s1. We will not use these explicit formulas to
show that the Thompson groups are subgroups of the unitary group of O2, but rather
look at a natural representation of these on a concrete Hilbert space, and then show
that they are, indeed, contained in a copy of the Cuntz algebra on this Hilbert space,
in a natural way.

Let us for the rest of this section denote the set of dyadic rational numbers
in [0, 1), [0, 12 ) and [ 12 , 1) by X, X0 and X1, respectively, that is,

X = Z[ 12 ] ∩ [0, 1), X0 = Z[ 12 ] ∩ [0, 12 ) and X1 = Z[ 12 ] ∩ [ 12 , 1).

Then X = X0 t X1 so that `2(X) = `2(X0) ⊕ `2(X1). We will use {δx : x ∈ X}
to denote the usual orthonormal basis of `2(X), consisting of Dirac functions on the
space X. Define the operators s0 and s1 on `2(X) by

s0δx = δx/2 and s1δx = δ(x+1)/2,

for all x ∈ X. It is straightforward to check that s0 and s1 are isometries satisfying
s0s
∗
0 + s1s

∗
1 = 1, so, as mentioned earlier, they generate a copy of the Cuntz alge-

bra O2. We emphasize that, from this point on, O2 will denote this particular copy
of the Cuntz algebra. By construction, the range projections of s0 and s1 are the
orthogonal projections onto `2(X0) and `2(X1), respectively, and it is easy to see that

s∗0δx = δ2x and s∗1δy = δ2y−1,

for all x ∈ X0 and all y ∈ X1.
The groups F , T and V act by definition on the set X, so we get a corresponding

representation on `2(X), which we will denote by π. Just to recall, this means that
π is the representation defined by π(g)δx = δg(x), for all x ∈ X and g ∈ V . We
will use π to denote the representation of all the three groups. Using the functional
expressions for the elements C, D and π0 from Section 2.1, it is easy to check the
following explicit identities:

π(C) = s1s1s
∗
0 + s0s

∗
0s
∗
1 + s1s0s

∗
1s
∗
1;

π(D) = s1s1s
∗
0s
∗
0 + s0s0s

∗
1s
∗
0 + s0s1s

∗
0s
∗
1 + s1s0s

∗
1s
∗
1;

π(π0) = s1s0s
∗
0 + s0s

∗
0s
∗
1 + s1s1s

∗
1s
∗
1.



4.1. A REPRESENTATION IN THE CUNTZ ALGEBRA 57

As C, D and π0 generate V , it follows that π(V ) ⊆ O2. Thus, the C∗-algebra
generated by π(V ) will also be a subset of O2. The above identities are exactly the
same as one would get using the method of Nekrashevych [55], so that this is really
the same representation.

Before studying the representation π, let us prove a small result about O2.

Lemma 4.1.1. There exist unique states φ0 and φ1 on O2 such that φi(sni (s∗i )
m) = 1,

for all non-negative integers n and m, but φi(sµs∗ν) = 0 in all other cases, where
i = 0, 1.

Proof. We define φ0 to be the vector state corresponding to the vector δ0, that is,
φ0(x) = 〈xδ0 | δ0〉. First of all, s0 and s∗0 both fix δ0, so it should be clear
that φ0(sn0 (s∗0)m) = 1, for all non-negative integers n and m. Let us prove that
φ0(sµs

∗
ν) = 0 in all the other cases, that is, when either the word µ or ν contains a 1.

The state φ0 is Hermitian, so that φ0(sµs
∗
ν) = φ0(sνs∗µ). Hence, φ0(sµs

∗
ν) = 0 if and

only if φ0(sνs
∗
µ) = 0. Therefore we may assume that ν contains 1 so we may write

sν = sn0 s1sν′ , for some non-negative integers n and k ≤ n−1 and ν′ ∈ {0, 1}n−k−1,
except when k = n − 1, in which case ν′ = ∅. As the support projection of s∗1 is
s1s
∗
1, which is the projection onto `2(X1), we know that s∗1δ0 = 0. Hence

φ0(sµs
∗
ν) = 〈sµs∗ν′s∗1(sn0 )∗δ0 | δ0〉 = 〈sµs∗ν′s∗1δ0 | δ0〉 = 0

This shows that φ0 has the desired properties.
By the universal property of O2, we know that there exists a ∗-isomorphism Θ

of O2 satisfying Θ(s0) = s1 and Θ(s1) = s0. Clearly we may then define φ1
by φ1 = φ0 ◦Θ to obtain a state with the desired properties.

That φ0 and φ1 are uniquely determined follows form the fact that elements of
the form sµs

∗
ν , for µ, ν ∈ {0, 1}n, span a dense subspace of O2.

Let us explain what these states look like on the elements of π(V ). For this, letH0

denote the subgroup of V consisting of elements g which map [0, x) to [0, y), for
some x, y ∈ X. Likewise, let H1 denote the subgroup of V consisting of elements g
which map [x, 1) to [y, 1), for some x, y ∈ X. This is just a complicated way of
defining H0 to be the subgroup of elements which fix the point 0. Likewise, the
group H1 is just the elements which, intuitively speaking, fix the point 1. However,
this does not really make sense, as 1 is not in X. Phrased more rigorously, H1 is the
subgroup of elements g with limx→1 g(x) = 1.

Lemma 4.1.2. Let φ0 and φ1 denote the states on O2 from Lemma 4.1.1, and let H0

andH1 denote the groups introduced above. Then φj(π(g)) = 1, for all g ∈ Hj , and
φj(π(g)) = 0, for all other g ∈ V , where j = 0, 1.

Proof. Let us start by proving the statement for j = 1. Suppose that we are given
some µ ∈ {0, 1}n. Then the operator sµ is an isometry as both s0 and s1 are isome-
tries. In particular, their support is all of `2(X). Moreover, if µ = (i1, i2, . . . , in),
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then it is easy to prove by induction, that the range of sµ is `2([m−12n , m2n )∩X), where
m is given by m = 1 +

∑n
k=1 ik2n−k. From this we need to note two things. First

of all, the range of sµ, and therefore also the support of s∗µ, is always `2([a, b) ∩ X),
for some a, b ∈ X. Second, b = 1 if and only if i1 = . . . = in = 1. This latter fact
follows from the expression of m in terms of i1, . . . , in.

Next we show that if π(g) is a sum of operators of the form sµs
∗
ν , then π(g)

include sn1 (s∗1)m, for some n,m ∈ N, if and only if g ∈ H1, and there is only one
such term. Let us write

π(g) = sµ1s
∗
ν1 + . . .+ sµns

∗
νn .

The first thing to notice is that the support of the different sµk
s∗νk are orthogonal

and sum up to `2(X). Given the form of the support that the different sµk
s∗νk have,

this happens if each δx is in the support of exactly one sµk
s∗νk . To see this, we

need to note that evaluating the right hand side at the basis vector δx, we get a finite
sum of these basis vectors, one for each k for which δx is in the support of sµk

s∗νk .
However, on the left hand side we get exactly one of these basis vectors, namely,
δg(x), which means that the vector δx is in the support of exactly one of the operators
sµk

s∗νk . Repeating the argument with π(g−1) = π(g)∗ we get that the ranges of
the different sµk

s∗νk are orthogonal and sum up to `2(X). Because of this, we can
choose unique k, l ∈ {1, . . . , n} so that the support of sµk

s∗νk is `2([a, 1) ∩ X), for
some a ∈ X, and the range of sµl

s∗νl is `2([b, 1) ∩ X), for some b ∈ X . In other
words, we can choose unique k, l ∈ {1, . . . , n} so that s∗νk is a power of s∗1 and sµl

is a power of s1. Clearly, this shows that g ∈ H1 if and only if k = l, and that
φ1(π(g)) = 1 if g ∈ H1, and φ1(π(g)) = 0 if g /∈ H1. This proves the statement in
the case j = 1. The statement in the case j = 0 can be proved analogously.

Recall that we denote the C∗-algebras generated by π(F ), π(T ) and π(V ) in-
side O2 by C∗π(F ), C∗π(T ) and C∗π(V ), respectively. The following proposition re-
lates these three C∗-algebras.

Proposition 4.1.3. With the notation above, we have

C∗π(F ) ( C∗π(T ) ( C∗π(V ) = O2

Proof. We have already argued why C∗π(V ) ⊆ O2, while the inclusions C∗π(F ) ⊆
C∗π(T ) and C∗π(T ) ⊆ C∗π(V ) obviously follow directly from the inclusions F ⊆ T
and T ⊆ V . Thus, what we need to prove is that the first two inclusions are proper
and that the last one is an equality. It is easy to see that C∗π(F ) 6= C∗π(T ), since Cδ0
is a C∗π(F )-invariant subspace which is not C∗π(T )-invariant. To prove the rest, our
strategy is to show that C∗π(V ) = O2 and afterwards that C∗π(T ) 6= O2.

We start by proving that C∗π(V ) contains the projections s0s∗0 and s1s∗1. Let us
denote these by p0 and p1, respectively. First, recall that V0 denotes the subgroup
of V consisting of elements g satisfying g(x) = x, for all x ∈ [0, 12 ). As both
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the sets [0, 12 ) and [ 12 , 1) are invariant for the elements of V0, we see that `2(X0)
and `2(X1) are invariant subspaces of π(g), for all g ∈ V0. Now, the representation
g 7→ π(g)|`2(X1) of V0 is the one associated to the action of V0 on [ 12 , 1), so, as
this action is non-amenable by Remark 3.1.14, we know from Theorem 3.1.7 that
there exist elements g1, g2, . . . , gn in V0, such that ‖ 1n

∑n
k=1 π(gk)|`2(X1)‖ < 1. Set

x = 1
n

∑n
k=1 π(gk). Our claim is that xm → p0, as m → ∞, which proves that

p0 is in C∗π(V0), and therefore, in particular, in C∗π(V ). Let us explain why this is
the case. First of all, as x commutes with the projections p0 and p1, we see that
xm = (xp0)m + (xp1)m. Since each element of V0 is the identity on [0, 12 ), the
operator π(g) is the identity operator on `2(X0), for all g ∈ V0. Thus, π(g)p0 = p0,
for all g ∈ V0, so that xp1 = p0. This means that xm = p0 + (xp1)m, but as
‖xp1‖ = ‖x|`2(X1)‖ < 1, we see that (xp1)m converges to zero, as m → ∞, which
proves that xm converges to p0, asm→∞, so that p0 ∈ C∗π(V ). A similar argument
shows that p1 ∈ C∗π(V ).

Once we know that p0 and p1 are in C∗π(V ), it is not difficult to show that C∗π(V )
also contains s0 and s1. The generator A of F , defined in Section 2.1, satisfies
A(x) = 1

2x and A−1(y) = 1
2y + 1

2 , for x ∈ [0, 12 ) and y ∈ [ 12 , 1). Thus

π(A)p0 = s0p0 and π(A−1)p1 = s1p1.

Also, the element D2 satisfies D2(x) = x+ 1
2 , for x ∈ [0, 12 ), and D2(x) = x− 1

2 ,
for x ∈ [ 12 , 1). Hence, s0 = π(D2)s1. Putting these things together, we see that

s0 = s0p0 + s0p1 = π(A)p0 + π(D2)s1p1 = π(A)p0 + π(D2A−1)p1,

which shows that s0 is contained in C∗π(V ). Similarly, s1 is in C∗π(V ) as s1 =
π(D2)s0, so we conclude that C∗π(V ) = O2.

We now prove that C∗π(T ) 6= O2. Let φ0 and φ1 be the states from Lemma 4.1.1.
Clearly the two states are distinct, but our aim is to prove that they agree on C∗π(T ).
This will surely imply that C∗π(T ) 6= O2. As the linear span of π(T ) is dense in
C∗π(T ), it suffices to check that φ0(g) = φ1(g), for all g ∈ T . This follows directly
from Lemma 4.1.2, as it is easily seen that T ∩H0 = F and T ∩H1 = F .

4.2 Simplicity and unique trace

In this section we will discus the notions of C∗-simplicity and unique trace prop-
erty in connection with the Thompson groups. We start by proving a result relating
amenability of the Thompson group F to C∗-simplicity of the Thompson group T .
To do so, we begin by proving a result characterizing amenability of F in terms of
weak containment of the representation π from the previous section.

Proposition 4.2.1. With π : T → O2 denoting the representation from Section 4.1,
the following are equivalent:
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(1) F is amenable;

(2) π is weakly contained in the left regular representation of T ;

(3) π|F is weakly contained in the left regular representation of F ;

Proof. As in the last section, we let X denote the set of dyadic rational points in the
interval [0, 1) so that π is the representation of T on the Hilbert space `2(X) induced
by the action. Suppose now that F is amenable. As F is the stabilizer of the point {0}
of the action of T on X, we get from Proposition 3.1.10 that π is weakly contained in
the left regular representation of T .

Assume that π is weakly contained in the left regular representation of T . Then
π|F is weakly contained in the left regular representation of F , by Theorem 3.1.9.

Last, suppose that π|F is weakly contained in the left regular representation
of F . Since each element of F fixes 0, we get that Cδ0 is a π(F )-invariant sub-
space of `2(X). Let p denote the projection onto this subspace. Then g 7→ pπ(g)p
is the trivial representation of F . This representation is clearly weakly contained
in π|F , so by transitivity of weak containment, we get that the trivial representation
of F is weakly contained in the left regular representation of F . By Condition (iii) of
Theorem 3.1.6 this means that F is amenable.

Theorem 4.2.2. If C∗λ(T ) is simple, then F is non-amenable.

Proof. Suppose that F is amenable, and let us then prove that C∗λ(T ) is not simple.
By Proposition 4.2.1 we know that π is weakly contained in the left regular represen-
tation of T , so, by Theorem 3.1.9, there exists a ∗-homomorphism σ : C∗λ(T ) → O2

so that σλ = π. Our goal is to show that the kernel of σ is a non-trivial ideal in
C∗λ(T ). As the kernel of σ is clearly not all of C∗λ(T ), it suffices to prove that the
kernel contains some non-zero element. The left regular representation is clearly in-
jective on the complex group algebra CT , so, if we find an element x 6= 0 in CT such
that π(x) = 0, then λ(x) will be a non-zero element in the kernel of σ.

Consider the elements a and b of T given by a = CDC and b = D2CDCD2,
that is, the elements whose graphs look as follows:

a = CDC b = D2CDCD2
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It is easy to see that the elements a and b commute, as the former fixes all points in
the interval [0, 12 ) and the latter fixes all points in the interval [ 12 , 1). Their product is
the element with the following graph:

ab (= ba)

Let x = a+b−ab−e. We claim that π(x) = 0, so that λ(x) is a non-trivial element of
the kernel of σ. Through tedious calculations, this can be verified using the relations
defining the Cuntz algebra O2, as well as the expressions of π(a) and π(b) in terms
of s0 and s1. Namely,

π(a) = s0s
∗
0 + s1s0s

∗
0s
∗
0s
∗
1 + s1s2s0s

∗
1s
∗
0s
∗
1 + s1s1s1s

∗
1s
∗
1;

π(b) = s1s
∗
1 + s0s0s0s

∗
0s
∗
0 + s0s0s1s

∗
0s
∗
1s
∗
0 + s0s1s

∗
1s
∗
1s
∗
0.

However, there is a more intuitive explanation of why π(x) is zero. Loosely speaking,
the reason is that drawing the graphs of a and b on top of each other one gets the same
picture as drawing the graphs of ab and e on top of each other, namely,

Formally speaking, the point is that {a(x), b(x)} = {ab(x), x}, because a(x) = x
and b(x) = ab(x) on [0, 12 ), and a(x) = ab(x) and b(x) = x on [ 12 , 1). From this it
follows that

π(a+ b)δx = δa(x) + δb(x) = δab(x) + δx = π(ab+ e)δx,
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for all x ∈ [0, 1), so that π(a+ b−ab− e) = 0. This proves that λ(x) is in the kernel
of σ, which is therefore a non-trivial ideal in C∗(T ).

Let us at this point properly introduce the notions of C∗-simplicity and unique
trace property for groups.

Definition 4.2.3. A groupG is said to be C∗-simple if C∗λ(G) is simple, and it is said
to have the unique trace property if C∗λ(G) has a unique tracial state.

The interest in these two properties arose in 1975 when Powers [60] proved that
the free group on two generators has both of these properties. Since then many more
groups have been shown to have these two properties, and a rather comprehensive
list can be found in the survey by de la Harpe [23]. All of these groups are non-
amenable, and, indeed, it is a well-known fact that non-trivial amenable groups are
not C∗-simple and do not have the unique trace property. This follows from the
fact that the full and the reduced group C∗-algebras of such groups coincide. More
precisely, the full group C∗-algebra always has a one dimensional representation,
so, if it agrees with the reduced group C∗-algebra, it also has a one dimensional
representation. This representation is, in itself, a tracial state different from the usual
trace on the reduced group C∗-algebra if the group is non-trivial, and its kernel is a
non-trivial ideal. In fact, this is not only true for amenable groups, but for all groups
containing an amenable subgroup. More precisely, Day [21] proved that every group
possesses a largest normal amenable subgroup, called the amenable radical, and it
is a well-known fact that groups with a non-trivial amenable radical are neither C∗-
simple nor have the unique trace property.

A famous question of de la Harpe[22] from 1985 (see §2 question (2) therein)
asks whether C∗-simplicity and the unique trace property are equivalent. This ques-
tion received a lot of attention over the years, and many examples were found which
seemed to suggest that these two properties were equivalent. As Dudko and Me-
dynets [25] proved in 2012 that T and V have the unique trace property, a positive
solution to this problem would prove that the Thompson group F was non-amenable,
using Theorem 4.2.2. However, recently it has been proved that C∗-simplicity im-
plies the unique trace property, whereas the unique trace property does not imply
C∗-simplicity. More precisely, in 2014 Kalantar and Kennedy [43] gave a charac-
terization of C∗-simplicity involving boundary actions. The same year Breuillard,
Kalantar, Kennedy and Ozawa [7] proved a number of spectacular results, one of
them being that C∗-simplicity implies the unique trace property. In fact, they proved
that having the unique trace property is equivalent to the group having trivial amena-
ble radical. The year after, Le Boudec [48] gave an example of a C∗-simple group
without the unique trace property.

The results of Breuillard, Kalantar, Kennedy and Ozawa also provide a new proof
of the fact that the Thompson groups T and V have the unique trace property. Indeed,
both groups are simple and non-amenable, which clearly implies that their amenable
radicals are trivial.
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Remark 4.2.4. As we explained earlier, non-trivial amenable groups are neither C∗-
simple, nor do they have the unique trace property, so, in particular, the Thompson
group F is non-amenable if it is either C∗-simple or has the unique trace property.
Using the characterization of the unique trace property above, it is easy to see that
if F is non-amenable, then it has the unique trace property. To see this, one just
has to recall that every non-trivial normal subgroup of F contains the commutator
subgroup F ′ [10, Theorem 4.3], and, as this group contains a copy of F , then every
non-trivial normal subgroup of F is non-amenable if F is.

We find it surprising that amenability of F is related to C∗-simplicity of T as
shown in Theorem 4.2.2. Very recently, Le Boudec and Matte Bon [49] proved that
the converse of this theorem also holds, so that F is non-amenable if and only if T
is C∗-simple. Prior to this, in 2014, Bleak and Juschenko [6], as well as Breuillard,
Kalantar, Kennedy and Ozawa [7], obtained partial converses of Theorem 4.2.2. The
latter of these two results states that F is not C∗-simple if T is not C∗-simple. The
converse of this result was also proved by Le Boudec and Matte Bon, so that either F
and T are both C∗-simple, or none of them is. Let us mention that they, in addition,
prove that the Thompson group V is, in fact, C∗-simple.

Let us now discuss the partial converse proved by Bleak and Juschenko. By
scrutinizing the proof of Theorem 4.2.2, we see, with the notation therein, that the
Thompson group F is non-amenable if the closed two-sided ideal generated by the
element 1 + λ(ab) − λ(a) − λ(b) inside C∗λ(T ) is the whole C∗λ(T ). This element
is not unique with this property, as the proof shows that this will be true for λ(x),
whenever x is an element of CT with π(x) = 0. Bleak and Juschenko proved
that if the Thompson group F is non-amenable, then there exist disjoint finite sub-
sets H1 and H2 of F so that

∑
g∈H1

π(g) =
∑
g∈H2

π(g) and the ideal generated
by
∑
g∈H1

λ(g) −∑g∈H2
λ(g) is all of C∗λ(T ). As it turns out, one may choose

H1 = {a, b} and H2 = {ab, e}. We will prove this in Proposition 4.2.7 below.
First we need a few results. The first one is well-known, and a proof, when the

action is left translation of the group on itself, can be found in [57, Lemma 2.1(c)]
or [36, Lemma 4.1].

Lemma 4.2.5. Let G be group acting on a set X, and let σ denote the corresponding
representation on `2(X). Then ‖σ(x) + σ(y)‖ ≥ ‖σ(x)‖, for any x, y ∈ R+G.

Haagerup [36] gave the following characterization of the unique trace property.

Theorem 4.2.6. A group G has the unique trace property if and only if the closed
convex hull of {λ(sts−1) : s ∈ G} contains zero, for all t ∈ G \ {e}.

Using this characterization, we can prove the following proposition.

Proposition 4.2.7. With a and b denoting the elements of F as above, the following
are equivalent:

(1) The Thompson group F is non-amenable;
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(2) The closed two-sided ideal generated by 1+ λ(ab)− λ(a)− λ(b) in C∗λ(T ) is
all of C∗λ(T );

(3) The closed convex hull of {λ(hah−1) + λ(hbh−1) : h ∈ T} contains 0;

(4) The closed two-sided ideal generated by 1+ λ(ab)− λ(a)− λ(b) in C∗λ(F ) is
all of C∗λ(F );

(5) The closed convex hull of {λ(hah−1) + λ(hbh−1) : h ∈ F} contains 0.

Proof. We prove that (1) implies (4) and (5), that (4) implies (2), that (5) implies (3),
that (2) implies (1), and that (3) implies (1). A few of these implications are straight-
forward. That (4) implies (2) follows from the fact that the inclusionC∗λ(F ) ⊆ C∗λ(T )
is unital, that is, if (4) holds, then the closed two-sided ideal in C∗λ(T ) generated by
1+ λ(ab)− λ(a)− λ(b) contains C∗λ(F ), in particular, the unit. That (5) implies (3)
follows directly from the fact that the inclusion C∗λ(F ) ⊆ C∗λ(T ) is isometric.

That (2) implies (1) can be deduced from the proof of Theorem 4.2.2, as already
mentioned. More precisely, since we know that π(a + b − ab − e) = 0, the ideal
generated by λ(a) + λ(b) − λ(ab) − 1 must be contained in the kernel of any ∗-
homomorphism from C∗λ(T ) to O2. If this ideal is all of C∗λ(T ), there are no non-
zero ∗-homomorphisms from C∗λ(T ) to O2. It follows that π is not contained in the
left regular representation of T , by Theorem 3.1.9. Therefore F is non-amenable, by
Proposition 4.2.1.

Let us now prove that (3) implies (1). This is done similarly to the previous
implication. Again we know that π(a) + π(b) = 1 + π(ab), so it follows that

conv{π(hah−1) + π(hbh−1) : h ∈ T} = 1 + conv{π(habh−1) : h ∈ T}.

Now, if x is a finite convex combination of elements of the form habh−1 with h ∈ T ,
then x ∈ R+T and, by Lemma 4.2.5, we conclude that ‖1+π(x)‖ ≥ ‖1‖ = 1. Thus
we see that ‖π(x)‖ ≥ 1, for all x ∈ conv{hah−1 + hbh−1 : h ∈ T} ⊆ CT . As
conv{λ(hah−1) + λ(hbh−1) : h ∈ T} contains 0 by assumption, we may choose
a finite convex combination x of elements of the form hah−1 + hbh−1 with h ∈
T so that ‖λ(x)‖ < 1. However, by the first part we know that ‖π(x)‖ ≥ 1, so
we conclude that x is an element of CT with ‖π(x)‖ > ‖λ(x)‖. It follows from
Theorem 3.1.9 that π is not contained in the left regular representation of T , and,
again, by Proposition 4.2.1, that F is non-amenable.

The only thing left is to prove that (1) implies (4) and (5), so assume that F is
non-amenable. We will prove (4) and (5) in one step. To prove (4), it suffices to
prove that the closed two-sided ideal in C∗λ(F ) generated by 1+λ(ab)−λ(a)−λ(b)
contains 1. Clearly this ideal contains

conv
{
λ(h)

(
1 + λ(ab)− λ(a)− λ(b)

)
λ(h)∗ : h ∈ F

}

= 1 + conv
{
λ(habh−1)− λ(hah−1)− λ(hbh−1) : h ∈ F

}
,



4.2. SIMPLICITY AND UNIQUE TRACE 65

so it suffices to show that the closed convex hull on the right hand side contains 0. Let
ε > 0 be given. As mentioned in Remark 4.2.4, we know that F has the unique trace
property. Let F1 and F2 denote the subgroup of F consisting of elements f ∈ F
so that f(x) = x, for all x ∈ [0, 12 ), and f(x) = x, for all x ∈ [ 12 , 1), re-
spectively. Note that elements of these two subgroups commute, and that b ∈ F1

and a ∈ F2. Since F1 and F2 are isomorphic to F , they both have the unique
trace property. By Theorem 4.2.6, this means that there exist positive real num-
bers s1, . . . , sn, t1, . . . , tm with

∑n
k=1 sk =

∑m
k=1 tk = 1, as well as elements

g1, . . . , gn ∈ F1 and h1, . . . , hm ∈ F2, so that

∥∥∥
n∑

k=1

skλ(gkbg
−1
k )
∥∥∥ < ε and

∥∥∥
m∑

k=1

tkλ(hkah
−1
k )
∥∥∥ < ε.

For simplicity, let us denote
∑m
k=1 tkλ(hkah

−1
k ) and

∑n
k=1 skλ(gkbg

−1
k ) by ã and b̃,

respectively. Using that the gi’s commute with the hj’s and b, as well as the fact that
the hj’s commute with the gi’s and a, it is straightforward to check that

n∑

i=1

m∑

j=1

sitjλ(gihj)
(
λ(a) + λ(b)

)
λ(gihj)

∗ = ã+ b̃.

Since
∑n
i=1

∑m
j=1 sitj = 1, the left hand side above belongs to the convex hull of

{λ(hah−1) + λ(hbh−1) : h ∈ F}, and, since ‖ã + b̃‖ < 2ε, we conclude that the
convex hull of {λ(hah−1) + λ(hbh−1) : h ∈ F} contains elements of arbitrarily
small norm. This proves (5). By similar calculations one can check that

n∑

i=1

m∑

j=1

sitjλ(gihj)
(
λ(ab)− λ(a)− λ(b)

)
λ(gihj)

∗ = ãb̃− ã− b̃.

The left hand side above is an element in the convex hull of

{λ(habh−1)− λ(hah−1)− λ(hbh−1) : h ∈ F}.

Since ‖ãb̃ − ã − b̃‖ < ε2 + 2ε, we conclude that the closure of this convex hull
contains 0, and as mentioned above, this means that the ideal generated by 1+λ(ab)−
λ(a) − λ(b) in C∗λ(F ) is the whole C∗λ(F ), that is, (4) holds. This proves that (1)
implies (4) and (5), concluding the proof.

We point out that, since Le Boudec and Matte Bon proved the converse of The-
orem 4.2.2 a slightly shorter proof of the proposition above can be given, using a
characterization of C∗-simplicity discovered independently by Haagerup [36] and
Kennedy [46].
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4.3 The rapid decay property

In this section we will give a brief introduction to the rapid decay property and list
some well-known results about it. The rapid decay property for groups was intro-
duced by Jolissaint [39] in 1990, inspired by a result of Haagerup [35] from 1979
where he proves that the free group on n generators Fn has this property.

We will first recall the notion of a length function on a group.

Definition 4.3.1. A length-function on a group G is a function L : G → [0,∞)
satisfying

(1) L(gh) ≤ L(g) + L(h),

(2) L(g) = L(g−1),

(3) L(e) = 0,

for all g, h ∈ G. If L1 and L2 are two length functions on G, we say that L1 is
dominated by L2 if there exist a, b > 0 such that L1(g) ≤ aL2(g) + b, for all g ∈ G.
Two length functions are said to be equivalent if they dominate each other.

Given a length function L on a group G and a positive real number s, we define
the norm ‖ · ‖s,L on CG by

‖f‖s,L =

√∑

g∈G
|f(g)|2(1 + L(g))2s,

for all f ∈ CG. Note that ‖f‖s,L ≤ ‖f‖t,L, for all f ∈ CG, when s ≤ t.
Definition 4.3.2. Let L be a length function on G. Then G is said to have the rapid
decay property with respect to L if there exist constants C, s > 0 such that

‖λ(f)‖ ≤ C‖f‖s,L,
for all f ∈ CG. Furthermore, G is said to have the rapid decay property if it has the
rapid decay property with respect to some length function.

Let us make some comments concerning to what degree the rapid decay property
depends on the length function. It is not difficult to see that if G possesses the rapid
decay property relative to some length function L1 which is dominated by another
length function L2, then G has the rapid decay property with respect to L2, as well.
Indeed, we may choose a, b > 0 so that L1(g) ≤ aL2(g) + b, for all g ∈ G, so with
d = max{a, b+ 1}, we have L1(g) + 1 ≤ dL2(g) + d. In particular, we have

(1 + L1(g))2s ≤ d2s(1 + L2(g))2s,

for all g ∈ G, and, therefore, also ‖f‖s,L1 ≤ ds‖f‖s,L2 , for all f ∈ CG. This clearly
implies that G has the rapid decay property with respect to L2. As a consequence,
the rapid decay property with respect to a length function does not depend on the
particular length function up to equivalence.
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Remark 4.3.3. Suppose that we are given a finitely generated group G, with a gener-
ating set S. The word length on G with respect to S is the length function l defined
as follows: we let l(e) = 0 and, for g ∈ G\{e}, we let l(g) be the minimal number k
so that g can be written as a product of k elements from the set S∪S−1. It is straight-
forward to check that this defines a length function, and that l dominates every other
length function L on G. Indeed, if we let M = max{L(g) : g ∈ S}, it follows that

L(g1g2 · · · gn) ≤ L(g1) + . . .+ L(gn) ≤ nM,

for all g1, . . . , gn ∈ S ∪ S−1. This implies that L(g) ≤ l(g)M , for all g ∈ G, so
that L is dominated by l. In particular, it follows that all word length functions on G
are equivalent, that is, up to equivalence, the length function l does not depend on the
generating set S. Moreover, it also follows that a finitely generated group G has the
rapid decay property if and only if it has the rapid decay property with respect to any
word length function.

If L is a length function onG, denoteBL(r) = {g ∈ G : L(g) ≤ r} the L-ball of
radius r centered at the identity element ofG. The following result is due to Chatterji
and Ruane [13]. We have included a proof for completeness.

Proposition 4.3.4. Let G be a group with a length function L. Then G has the rapid
decay property with respect to L if and only if there exists a polynomial P so that

‖λ(f)‖ ≤ P (r)‖f‖2,

for all r > 0 and f ∈ C supported on BL(r).

Proof. Suppose that G has the rapid decay property with respect to L. Choose some
C, s > 0 so that ‖λ(f)‖ ≤ C‖f‖s,L, for all f ∈ CG, and choose a natural num-
ber n ≥ s. Fix f ∈ CG supported on BL(r), and let P (x) = C(1 + x)n. Then

‖f‖2n,L =
∑

g∈G
|f(g)|2(1 + L(g))2n ≤

∑

g∈G
|f(g)|2(1 + r)2n =

1

C
P (r)2‖f‖22.

It follows that ‖λ(f)‖ ≤ C‖f‖s,L ≤ C‖f‖n,L ≤ P (r)‖f‖2, as wanted.
Now, suppose that there exists a polynomial P with the stated property, and let

us prove that G has the rapid decay property with respect to L. Choose n ∈ N
and C > 0 so that P (x) ≤ Cxn−1, for x ≥ 1. Fix f ∈ CG and let us prove
that ‖λ(f)‖ ≤ πC√

6
‖f‖n,L. Write f =

∑∞
k=0 fk with fk(g) = 0, for all g with

L(g) /∈ [k, k + 1). Then ‖λ(fk)‖ ≤ P (k + 1)‖fk‖2 by assumption, which means
that ‖λ(fk)‖ ≤ C(1 + k)n−1‖f‖2. Using the triangle inequality followed by the
Cauchy-Schwarz inequality, we see that

‖λ(f)‖ ≤ C
∞∑

k=0

(1+k)n−1‖fk‖2 ≤ C
( ∞∑

k=0

(1+k)−2
)1/2( ∞∑

k=0

(1+k)2n‖fk‖22
)1/2

.
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Now, as k ≤ L(g) for all g in the support of fk, we see that (1 + k)2n‖fk‖22 ≤
‖fk‖2n,L. Moreover, it follows directly from the definition of the norm ‖ · ‖n,L that

∞∑

k=0

‖fk‖2n,L = ‖f‖2n,L.

Since
∑∞
k=0(1+k)−2 = π2

6 , we conclude that ‖λ(f)‖ ≤ πC√
6
‖f‖n,L, as desired.

Given a length function L on a group G, we can restrict it to a subgroup H to
obtain a length function L′ on H . Clearly ‖f‖s,L′ = ‖f‖s,L, for all f ∈ CH , so it
follows straight from the definition, that H has the rapid decay property with respect
to L′ if G has the rapid decay property with respect to L. This proves the following
result from [39].

Proposition 4.3.5. The rapid decay property passes to subgroups.

Let us end this section by mentioning the following theorem due to Jolissaint [39],
which relates rapid decay, amenability and growth of finitely generated group. Recall
that a finitely generated group G with a word length L is said to have exponential
growth, respectively, polynomial growth if the number of elements in the set BL(n)
increases exponentially and polynomially in n, respectively. It is not difficult to see
that this is independent of the choice of word length.

Theorem 4.3.6. A finitely generated amenable group has the rapid decay property if
and only if it is of polynomial growth.

4.4 A criterion for C∗-simplicity

In this section we prove a criterion for a group to beC∗-simple involving the rapid de-
cay property. Namely, we show that non-inner amenable groups with the rapid decay
property are C∗-simple. Let us introduce the Dixmier property for C∗-algebras.

Definition 4.4.1. A unital C∗-algebra A is said to have the Dixmier property if the
norm-closed convex hull of {uxu∗ : u ∈ A is unitary} intersects C1 non-trivially,
for all x ∈ A.

Remark 4.4.2. Suppose that A is a C∗-algebra with a tracial state τ . It is easy to see
that if the closed convex hull of {uxu∗ : u ∈ A is unitary} intersects C1, then it must
be in a single point, namely, τ(x)1. Indeed, as τ(uxu∗) = τ(x), for all x, u ∈ A

with u unitary, τ must be constant on the closed convex hull, and, therefore, also
constant on the intersection with C1. From this it follows that A has the Dixmier
property if and only if, for each ε > 0 and x ∈ A, there exist unitaries u1, . . . , un
in A and positive real numbers s1, . . . , sn with s1 + . . .+ sn = 1 so that

∥∥∥
n∑

k=1

skukxu
∗
k − τ(x)1

∥∥∥ < ε.
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It easily follows from the observation above that a trace τ on a C∗-algebra A with
the Dixmier property must necessarily be unique if it exists, since the intersection of
the convex hull of {uxu∗ : u ∈ A is unitary} with C1 is τ(x), independent of the
trace τ . In particular, a group whose reduced group C∗-algebra has the Dixmier
property, also has the unique trace property. In fact, it is C∗-simple as well. This
is an observation of Powers [60] and it was the method he used to prove that F2 is
C∗-simple and has the unique trace property. We include the proof for convenience.

Proposition 4.4.3. If the reduced groupC∗-algebra of a group has the Dixmier prop-
erty, then the group is C∗-simple and has the unique trace property.

Proof. Suppose that G is a group such that C∗λ(G) has the Dixmier property. We
have already explained above why G then has the unique trace property, so let us
prove that it is also C∗-simple.

Let I be a non-zero ideal in C∗λ(G). Then we need to prove that I is all of C∗λ(G),
that is, that I contains an invertible element. Choose some non-zero x ∈ I . As the
canonical trace τ on C∗λ(G) is faithful, we know that τ(x∗x) > 0. Now, letting y =
τ(x∗x)−1x∗x, we see that y is an element of I with τ(y) = 1. In particular, because
of the Dixmier property, we can choose unitaries u1, . . . , un in C∗λ(G) and positive
real numbers s1, . . . , sn with s1 + . . .+ sn = 1 so that ‖∑n

k=1 skukyu
∗
k − 1‖ < 1.

Now, z =
∑n
k=1 skukyu

∗
k belongs to I , and it is invertible, as ‖z − 1‖ < 1. Thus

I = C∗λ(G), and we conclude that G is C∗-simple.

Remark 4.4.4. As it happens, the converse of the above proposition is also true. In
fact, a group isC∗-simple if and only if its reduced groupC∗-algebra has the Dixmier
property. Let us explain why this is the case. In 1984 Haagerup and Zsidó [37] proved
that a simple C∗-algebra with at most one tracial state has the Dixmier property.
Combining this with the result by Breuillard, Kalantar, Kennedy and Ozawa that C∗-
simplicity implies the unique trace property, we conclude that a group is C∗-simple
if and only if its reduced group C∗-algebra has the Dixmier property.

Now we prove the criterion forC∗-simplicity and unique trace property announced
in the beginning of the section.

Theorem 4.4.5. Suppose that G is a non-inner amenable group with the rapid decay
property. Then C∗λ(G) has the Dixmier property. In particular, G is C∗-simple and
has the unique trace property.

Proof. Suppose G is a non-inner amenable group with the rapid decay property. By
Proposition 3.2.5, we may choose elements g1, g2, . . . , gn in G and a positive real
number c < 1 so that

∥∥∥ 1

n

n∑

k=1

λ(gk)xλ(gk)∗
∥∥∥
τ
≤ c‖x‖τ ,
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for all x ∈ C∗λ(G) with trace zero. Let σ : C∗λ(G)→ C∗λ(G) be the map given by

σ(f) =
1

n

n∑

k=1

λ(gk)fλ(gk)∗,

for all f ∈ C∗λ(G). Note that σ is a linear contraction and that σ(f) is in the convex
hull of {ufu∗ : u ∈ C∗λ(G) is unitary}, for every f ∈ C∗λ(G). In particular, σk(f) is
in this convex hull, for every k ∈ N, where σk denotes the k-fold composition of σ.
Our strategy is to prove that σk(f) converges to τ(f)1 in norm, as k → ∞, for all
f ∈ C∗λ(G). Since σ is a linear contraction with σ(1) = 1, a standard approximation
argument shows that it suffices to prove that σk(λ(s)) converges to 0, as k →∞, for
all s ∈ G \ {e}, as the span of {λ(g) : g ∈ G} is dense in C∗λ(G).

Fix s ∈ G\{e}, and letH be the subgroup ofG generated by s and g1, g2, . . . , gn.
By Proposition 4.3.5, H has the rapid decay property. By Remark 4.3.3 we conclude
that H has the rapid decay property with respect to the word length function L cor-
responding to the generators s, g1, g2, . . . , gn. Let P be the polynomial from Propo-
sition 4.3.4 corresponding to this word length function. It is easy to see that if f
an element in CG supported on BL(r), for some r > 0, then λ(gk)fλ(gk)∗ is sup-
ported on BL(r + 2), for every k ∈ {1, 2, . . . , n}. In particular, σ(f) is supported
on BL(r+ 2). An induction argument shows that σk(f) is supported on BL(r+ 2k),
so it follows by the choice of P and g1, . . . , gn, that

‖σk(λ(s))‖ ≤ P (2 + 2k)‖σk(λ(s))‖2 ≤ P (2 + 2k)ck‖λ(s)‖2.

Since c ∈ (0, 1), we know that P (2 + 2k)ck goes to zero, as k → ∞. This proves
that σk(λ(s)) goes to zero in norm, as wanted.

It is natural to ask at this point whether the theorem above can be used to prove
that the Thompson group F is non-amenable. Recall that we have proved in Theo-
rem 3.3.1 that T is not inner amenable and in Theorem 4.2.2 that F is non-amenable
if T is C∗-simple. As kindly pointed out to us by Valette, T does not have the rapid
decay property, so that the above theorem does not apply. This seems to be known,
see [14], but we will briefly indicate the argument given to us by Valette. The key
point is that T has an amenable subgroup with exponential growth, which by Propo-
sition 4.3.5 and Theorem 4.3.6 will exclude the possibility that T has the rapid decay
property. As explained in [17, Section 3], F contains a subgroup isomorphic to Z oZ.
Recall that Z o Z is the group

⊕
Z Z o Z, that is, the semi-direct product of

⊕
Z Z

and Z where Z acts on the index set of
⊕

Z Z by translation. This group is clearly
amenable, and it is not difficult to see that it has exponential growth.

We end this section with some applications of the criterion for C∗-simplicity
obtained above. First, let us recall the following theorem of Akemann and Walter [1].
For the definition of Kazhdan’s property (T) the reader may consult [3].

Theorem 4.4.6. ICC groups with Kazhdan’s property (T) are non-inner amenable.
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Combining our criterion with the theorem above, we obtain C∗-simplicity and
the unique trace property for the following groups.

Non-abelian free groups

That the non-abelian free groups are C∗-simple with unique trace was proved
by Powers [60] in 1975. That these groups are not inner amenable was proved
by Effros [26] the same year, and that they have the rapid decay property was
proved by Haagerup [35] four years later.

Free products G ∗H of rapid decay groups with (|G| − 1)(|H| − 1) ≥ 2

Such free products were proved to be C∗-simple with the unique trace property
by Paschke and Salinas [59] in 1979, even without the assumption of rapid
decay. Furthermore, these groups were shown to be non-inner amenable by
Chifan, Sinclair and Udrea [15] in 2016 (see Example 2.4(a), Proposition 4.4
and Theorem 4.5 therein). Moreover, Jolissaint [39] proved that the rapid decay
property is preserved by free products (see Corollary 2.2.3 therein).

ICC amalgamated free products G ∗A H with A finite

These groups have the rapid decay property by work of Jolissaint [39], since A
is finite (see Theorem 2.2.2 therein). Their non-inner amenability follows from
Example 2.4(a), Theorem 4.5 and (the proof of) Proposition 4.4 in [15].

Co-compact ICC lattices in SL(3,R) and SL(3,C)

These groups have the rapid decay property by [47]. They also have Kazhdan’s
property (T), see, for example, [3, Theorem 1.4.15] and [3, Theorem 1.7.1].

Let us end this section with a few relative versions of Theorem 4.4.5.

Proposition 4.4.7. If G has the rapid decay property, and H is a subgroup such that
the conjugation action of H on G \ {e} is non-amenable, then

conv{uxu∗ : u ∈ C∗λ(H) is unitary} ∩ C1 6= ∅,

for all x ∈ C∗λ(G). In particular, both G and H are C∗-simple with the unique trace
property.

Proof. The proof is exactly the same as the one of Theorem 4.4.5, with the change
that the elements g1, g2, . . . , gn are chosen in H . It is easy to see from the proof
of Proposition 3.2.5 that we may choose the elements in H , as the action of H
on G \ {e} is assumed to be amenable. This means that σ(x) is in {uxu∗ : u ∈
C∗λ(H) is unitary}, for all x ∈ C∗λ(G), so that we get the desired conclusion.

In order to state the next result, recall the following definition of Jolissaint [42].
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Definition 4.4.8. A proper subgroup H of a group G is said to be inner amenable
relative to G if the conjugation action of H on G \H is amenable.

Proposition 4.4.9. Suppose that H is a C∗-simple subgroup of a group G, which is
not inner amenable relative to G. Suppose further that there exist C, r > 0 and a
length function onG such that ‖λ(f)‖ ≤ ‖f‖r,L, for all f ∈ CGwhich are supported
on G \H . Then

conv{uxu∗ : u ∈ C∗λ(H) is unitary} ∩ C1 6= ∅,

for all x ∈ C∗λ(G). In particular, G is C∗-simple and has the unique trace property.

Proof. Let us start by making a few comments on the assumptions. First of all, it is
easy so see from the proof of Proposition 3.2.5 that we can obtain a relative version
of this. More precisely, we can choose elements h1, . . . , hm ∈ H and a positive real
number c < 1, such that

∥∥∥ 1

m

m∑

j=1

λ(gj)xλ(gj)
∗
∥∥∥
τ
≤ c‖x‖τ ,

this time not for all x ∈ C∗λ(G) with trace zero, but for all x with EH(x) = 0, where
EH is the conditional expectation from C∗λ(G) to C∗λ(H), that is, for all x in the
closure of the subspace {λ(f) : f ∈ CG supported on G \H}.

It is not difficult to see from the proof of Proposition 4.3.4 that, in the case of our
relative version of the rapid decay property, we can choose a polynomial P such that

‖λ(f)‖ ≤ P (r)‖f‖2,

for all f ∈ CG supported on BL(r).
By a standard approximation argument, it suffices to show that, given ε > 0 and

f ∈ CG with trace zero, there exist unitaries u1, . . . , un ∈ C∗λ(H), such that

∥∥∥ 1

n

n∑

j=1

ujfu
∗
j

∥∥∥ < ε. (4.1)

First of all, we may write f = f1 + f2 with f1 supported on H and f2 supported on
G \ H . By arguments identical to those in the proof of Theorem 4.4.5, we get that
‖σk(f2)‖ → 0, as k → ∞, where σ is defined by σ(f) = 1

m

∑m
j=1 λ(hj)fλ(hj)

∗

as in there . In particular, we may choose k ∈ N so that ‖σk(f2)‖ < ε
2 . Since

h1, . . . , hm ∈ H , we see that σk(f1) is an element of CG which is supported
on H . Moreover, it is again an element of trace zero since {e} is conjugation in-
variant. As H is C∗-simple by assumption, we get from Remark 4.4.4 that C∗λ(H)
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has the Dixmier property. Thus we may choose unitaries v1, . . . , vn in C∗λ(H) so that
‖ 1n
∑n
j=1 vjσ

l(f1)v∗j ‖ < ε
2 . By putting these things together, we see that

∥∥∥ 1

n

n∑

j=1

vjσ
k(f)v∗j

∥∥∥ ≤
∥∥∥ 1

n

n∑

j=1

vjσ
k(f1)v∗j

∥∥∥+
1

n

n∑

j=1

‖vjσk(f2)v∗j ‖ < ε.

Since 1
n

∑n
j=1 vjσ

k(f)v∗j is an averaging of the form (4.1) with mnk unitaries, this
concludes the proof.





Chapter 5

Families of irreducible
representations

In this chapter we will construct one-parameter families of representations of the
Thompson group F . We will investigate when these representations are irreducible
and when they are unitarily equivalent. The work in this chapter is inspired by a
result by Garncarek [30] from 2012. In this paper he constructs an analogue for
the Thompson group F of a one-parameter family of representations of PSL(2,R),
known as the principal series. Garncarek proves that these representations are all
irreducible and mutually equivalent exactly when the parameters differ by an integer
multiple of 2π

log 2 . The representations we will construct in this chapter are similar to
those of Garncarek, but with different realizations of F as homeomorphisms of the
unit interval. We would like to thank Monod for suggesting this problem to us, during
a longer stay in Lausanne.

Throughout this chapter we will let H denote the Hilbert space L2([0, 1],m).
Moreover, given points a, b ∈ [0, 1] with a < b, we let Ha,b denote the Hilbert
space L2([a, b],m), and we let Fa,b denote the subgroup of F consisting of ele-
ments f satisfying f(x) = x, for all x /∈ [a, b]. For convenience we will return
to thinking of the elements in F as functions of [0, 1] rather than [0, 1).

5.1 One map, lots of representations

In this section, we describe a way of constructing a one-parameter family of irre-
ducible representations from certain homeomorphisms of [0, 1], as well as investigate
when these representations are unitarily equivalent. First, however, we need to in-
troduce a few notions from measure theory. Note that we only consider positive
measures.

Recall that a set X with a σ-algebra Σ is called a measurable space. The elements
of Σ are called measurable sets and a map between measurable spaces is called a

75
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measurable map if pre-images of measurable sets are measurable. If µ is a measure
on X, then (X, µ) is called a measure space. A measurable set is called a null set
if it has measure zero, and the complement of a null set is called a co-null set. In
case the space X is a topological space, the σ-algebra generated by the topology
is called the Borel σ-algebra and its elements are called Borel sets. Moreover, a
measure on the Borel σ-algebra is called a Borel measure. As we will not be handling
spaces with multiple σ-algebras at the same time, we will suppress the σ-algebra, and
measurability of a set should be understood as relative to the given σ-algebra.

Definition 5.1.1. Let ν and µ be two measures on a measurable space X. The mea-
sure ν is said to be absolutely continuous with respect to the measure µ if every µ-null
set is a ν-null set. The measures µ and ν are said to be equivalent measures if they
are absolutely continuous with respect to each other.

Definition 5.1.2. A measurable action of a group G on a measurable space X is an
action α on the set X such that the map (g, x) 7→ α(g)x is measurable from G × X
to X. If µ is a measure on X, then the action α is said to leave the measure quasi-
invariant if the image measure α(g)∗µ is equivalent to µ, for all g ∈ G.

It is easy to see that if G is a countable group and α is an action of G on a
measurable space X, the action is measurable if and only if α(g) is a measurable map,
for each g ∈ G. In this chapter all our action will be actions by homeomorphisms
meaning that α(g) is a homeomorphism, for all g ∈ G. In particular, these actions
will be measurable actions, and we will use this fact implicitly.

Recall that a measure space is said to be σ-finite if it is a countable union of sets of
finite measure. The following is the Radon-Nikodym theorem, which characterizes
when σ-finite measures are absolutely continuous with respect to each other. A proof
can be found in [28, Proposition 3.8].

Theorem 5.1.3. Let µ and ν be σ-finite measures on X. Then µ is absolutely continu-
ous with respect to ν if and only if there exists a non-negative measurable function f ,
such that

µ(E) =

∫

E

f(x) dν(x),

for all measurable setsE ⊂ X. Moreover, any two such functions are identical almost
everywhere.

Definition 5.1.4. With the set-up of Theorem 5.1.3, the function f is called the
Radon-Nikodym derivative of µ with respect to ν, and is denoted by dµ

dν .

Remark 5.1.5. Suppose that µ and ν are two measures on a measurable space X
so that ν is absolutely continuous with respect to µ. If E ⊆ X, is measurable set
such that µ and ν are equal when restricted to E, that is, µ(A) = ν(A), for all
A ⊆ E measurable, then dν

dµ (x) = 1 almost everywhere on E. Let us explain
why this is the case. It is easy to see from the definition of absolute continuity that
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ν|E , the restriction of ν to E, will be absolutely continuous with respect to µ|E , the
restriction of µ to E. From the uniqueness of the Radon-Nikodym derivative, we see
that d(ν|E)

d(µ|E) = dν
dµ

∣∣
E

, and, since µ|E = ν|E , the right hand side must be equal to 1

almost everywhere on E.

We are now ready to define the representations of F we are interested in. Given
an order preserving homeomorphism ϕ of [0, 1] and an element g ∈ F , we obtain a
new order preserving homeomorphism, namely ϕ−1 ◦ g ◦ϕ, which we denote by gϕ.
To ease the notation, we will denote (g−1)ϕ by g−ϕ so that g−ϕ is the inverse of gϕ.
Furthermore, we let Fϕ denote the group {gϕ : g ∈ F} of homeomorphism of [0, 1],
which by construction is isomorphic to F .

We are particularly interested in certain homeomorphisms of [0, 1], and to sim-
plify matters later on we will adopt the terminology that a function ϕ satisfies condi-
tion (?) if

(?) ϕ is an order preserving homeomorphism of [0, 1], and the action of Fϕ

on [0, 1] leaves m quasi-invariant, that is, the image measure gϕ∗m is equiva-
lent to m, for all g ∈ F .

It is not difficult to find homeomorphisms ϕ which satisfy condition (?), for ex-
ample, any increasing homeomorphism which is continuously differentiable will do
so. However, as it will be apparent later, we are more interested in less nice functions.
In fact, an increasing homeomorphism will satisfy condition (?) if and only if gϕ is
an absolutely continuous function, for all g ∈ F . We will come back to this later.

Remark 5.1.6. Suppose that ϕ satisfies condition (?). The fact that the action of Fϕ

leaves m quasi-invariant means that E is a null set if and only if gϕ(E) is a null set,
for all g ∈ F . It follows from the definition that if dgϕ∗m

dm is zero on a measurable
set E, then E is a gϕ∗m-null set. Thus we see that these Radon-Nikodym derivatives
are strictly positive almost everywhere on [0, 1].

Now, given a measurable action of a group on a measure space such that the action
leaves the measure quasi-invariant, there is a well-known way to construct a one-
parameter family of representations. In our particular case, the representations are
defined as follows. Given a real number s and a function ϕ satisfying condition (?),
we let πϕs denote the representation of F on H given by

πϕs (g)f(x) =
( dgϕ∗m

dm
(x)
) 1

2+is

f ◦ g−ϕ(x)

almost everywhere on [0, 1], for f ∈ H and g ∈ F . It is straightforward to check that
this is actually a unitary representation of F . In the case s = 0, this representation
is known as the Koopman representation corresponding to the action of F on the
interval [0, 1].

Remark 5.1.7. If we choose ϕ to be the identity id on [0, 1], then it clearly satisfies
condition (?), and the one-parameter family of representations (πid

s )s∈R is the one
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of Garncarek [30]. Among other things, he proved that these representations are all
irreducible, and that πid

s and πid
t are unitarily equivalent if and only if s = t+ 2π

log 2k,
for some k ∈ Z.

Our goal in this section is to investigate these representations, or, more precisely,
to investigate when they are irreducible and when they are equivalent to each other.
To begin with, we have an easy technical lemma about elements in the Thompson
group.

Lemma 5.1.8. Let ϕ be an increasing homeomorphism of [0, 1] and let a, b ∈ [0, 1]
with a < b. Given c, d, c′, d′ ∈ (a, b) with c < d and c′ < d′, there exists some
g ∈ Fϕ(a),ϕ(b) satisfying gϕ([c, d]) ⊆ [c′, d′].

Proof. Given g ∈ F , it is straightforward to check that gϕ([c, d]) ⊆ [c′, d′] if and
only if g([ϕ(c), ϕ(d)]) ⊆ [ϕ(c′), ϕ(d′)], so the existence of g ∈ F with the desired
properties follows directly from Lemma 2.2.5.

The following lemma is an easy adaptation of a lemma of Garncarek [30] and
will be the key point of the investigation of the representations of the form πϕs .

Lemma 5.1.9. Suppose that ϕ satisfies condition (?). Fix some 0 ≤ a < b ≤ 1 and
let f ∈ H. Then f ∈ H⊥a,b if and only if πϕs (g)f = f , for all g ∈ Fϕ(a),ϕ(b).

Proof. Fix g ∈ Fϕ(a),ϕ(b) and f ∈ H⊥a,b. It is easy to see that gϕ ∈ Fa,b so that
gϕ is constant on the intervals [0, a] and [b, 1]. In particular, the two measures gϕ∗m
andm agree on this interval, so it follows from Remark 5.1.5 that the radon Nikodym
derivative in the definition of πϕs (g) is constantly equal to 1 on the interval [0, a].
Obviously this implies that πϕs (g)f = f .

Suppose instead that f /∈ H⊥a,b, and let us find some g ∈ Fϕ(a),ϕ(b) such that

πϕs (g)f 6= f . By assumption
∫ b
a
|f(x)|2 dm(x) > 0, so there exists c, d ∈ (a, b)

with c < d such that
∫ d
c
|f(x)|2 dm(x) > 0. Choose also c′, d′ ∈ (a, b) with

a < c′ < d′ < b such that
∫ d′

c′
|f(x)|2 dm(x) <

∫ d

c

|f(x)|2 dm(x).

By Lemma 5.1.8, we choose g ∈ Fϕ(a),ϕ(b) satisfying g−ϕ([c, d]) ⊆ [c′, d′]. Then

∫ d

c

|πϕs (g)f(x)|2 dm(x) =

∫ d

c

∣∣f ◦ g−ϕ(x)
∣∣2 d(gϕ)∗m(x)

=

∫ g−ϕ(d)

g−ϕ(c)

|f(x)|2 dm(x)

≤
∫ d′

c′
|f(x)|2 dm(x) <

∫ d

c

|f(x)|2 dm(x).
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This proves that πϕs (g)f 6= f , since we now have

∫ d

c

|πϕs (g)f(x)|2 dm(x) <

∫ d

c

|f(x)|2 dm(x).

The above lemma describes certain subspaces of H in terms of the representa-
tions πϕs , which will enable us to say something about when these representations are
unitary equivalent for different ϕ and s. However, first we will recall the notion of
unitary equivalence of representations.

Definition 5.1.10. Let σ1 and σ2 be representations of G on Hilbert spaces K1

and K2, respectively. The two representations are said to be unitarily equivalent
if there exists a unitary operator U : K1 → K2 so that σ2(g) = Uσ1(g)U∗, for
all g ∈ G.

Now, let us prove the following lemma about unitary operators implementing a
unitary equivalence between representations of the form πϕs .

Lemma 5.1.11. Let s, t ∈ R and suppose that ϕ and ψ satisfy condition (?) and
the representations πϕs and πψt are unitarily equivalent. Let U be an implementing
unitary, that is, a unitary operator on H with Uπϕs (g)U∗ = πψt (g), for all g ∈ F .
Then f ∈ Hϕ−1(a),ϕ−1(b) if and only if Uf ∈ Hψ−1(a),ψ−1(b), for every f ∈ H and
a and b with 0 ≤ a < b ≤ 1.

Proof. Fix a and b with 0 ≤ a < b ≤ 1 and let us for simplicity denote the Hilbert
spaces Hϕ−1(a),ϕ−1(b) and Hψ−1(a),ψ−1(b) by Kϕ and Kψ , respectively. Our goal is
to prove that f ∈ Kϕ if and only if Uf ∈ Kψ . Let us prove that the latter imply the
former. The converse implication then follows by interchanging ϕ and ψ, as well as
U and U∗.

Suppose that f /∈ Kϕ. Write f = f1 + f2 with f1 ∈ Kϕ and f2 ∈ K⊥ϕ . Our
assumption is that f2 6= 0, which, of course, implies that Uf2 6= 0. As U is unitary,
Uf1 and Uf2 are orthogonal, so, if we can prove that Uf2 ∈ K⊥ψ , then this will mean
that Uf /∈ Kψ . Now, as f2 ∈ K⊥ϕ , we know from Lemma 5.1.9 that πϕs (g)f = f , for
every g ∈ Fa,b. Note that the lemma was applied with the points ϕ−1(a) and ϕ−1(b),
rather than a and b. We now see that πψt (g)Uf = Uπϕs (g)f = Uf , for every g ∈
Fa,b. By applying Lemma 5.1.9 again, we conclude that Uf2 ∈ K⊥ψ , as wanted.

Recall that L∞([0, 1],m) acts as multiplication operators on H, and it is a maxi-
mal abelian subalgebra of B(H). Thus every operator which commutes with these is
itself a multiplication operator. Moreover, as {1[a,b] : 0 ≤ a < b ≤ 1} spans a strong
operator dense subalgebra of L∞([0, 1],m), every operator commuting with these is
also a multiplication operator. With this in mind, let us prove the following lemma
giving a characterization of unitary equivalence of πϕs for different s.
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Lemma 5.1.12. Suppose that ϕ satisfies condition (?). If s, t ∈ R and U is a unitary
operator on H with Uπϕs (g)U∗ = πϕt (g), for all g ∈ F , then U is a multiplication
operator, multiplication by u say, and satisfies

u ◦ g−ϕ(x) =
( d(gϕ)∗m

dm
(x)
)i(s−t)

u(x)

almost everywhere, for all g ∈ F . Moreover, if there exists some measurable function
u from [0, 1] to the complex unit circle satisfying the above equality, then πϕs and πϕt
are unitarily equivalent with multiplication by u as implementing unitary operator.

Proof. First assume that U is a unitary operator satisfying Uπϕs (g)U∗ = πϕt (g), for
all g ∈ F . By applying Lemma 5.1.11 in the case where ψ = ϕ, we see that the
unitary U must satisfy U(Ha,b) = Ha,b, for all a, b ∈ [0, 1] with a < b, or, in other
words, U commutes with 1[a,b], for all such a and b. As noted above, this means
that U is a multiplication operator, in fact, multiplication by u = U(1). The desired
formula for u is obtained by writing out the equation Uπϕs (g)1 = πϕt (g)U1 and
dividing by the Radon-Nikodym derivative from πϕt . This is possible, as the Radon-
Nikodym derivative is non-zero almost everywhere by Remark 5.1.6.

It is straightforward to check that πϕs and πϕt are unitarily equivalent if a function
u with the stated property exists.

As we, among other things, are interested in determining when the representa-
tions πϕs are irreducible, let us first recall what this means.

Definition 5.1.13. A representation σ of a group G on a Hilbert space K is said to be
irreducible if it has no invariant subspaces. That is, if K0 is a closed subspace of K
so that σ(g)K0 ⊆ K0, for all g ∈ G, then either K0 = {0} or K0 = K.

The following theorem about irreducible representations is known as Schur’s
Lemma, and a proof can be found in [3, Theorem A.2.2].

Theorem 5.1.14. Let σ be a representation of a group G on a Hilbert space K. Then
σ is irreducible if and only if σ(G)′ = C1, that is, if and only if the only operators
inB(K) which commute with σ(g), for all g ∈ G, are scalar multiples of the identity.

Before continuing let us recall the definition of ergodic actions and essentially
invariant functions, as well as the connection between these.

Definition 5.1.15. A measurable action α of a group G on a measure space (X, µ) is
said to be ergodic if there are no non-trivial, invariant, measurable subsets of X. That
is, if A ⊆ X is measurable with α(g)A = A, for all g ∈ G, then A is either a null set
or a co-null set.

Definition 5.1.16. Let G be a group and α a measurable action of G on a measure
space (X, µ). A measurable function f : X → C is said to be essentially invariant if
f(α(g)x) = f(x), for all g ∈ G and µ-almost all x ∈ X.
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The following is a characterization of ergodic actions in terms of essentially in-
variant functions, and a proof can be found in [4, Theorem 1.3].

Theorem 5.1.17. An action of a group on a σ-finite measure space which leaves the
measure quasi-invariant is ergodic if and only if every essentially invariant function
is constant almost everywhere.

We are now ready to give a characterization of when the representations of the
form πϕs are irreducible.

Proposition 5.1.18. Suppose that ϕ satisfies condition (?) and let s ∈ R. The repre-
sentation πϕs is irreducible if and only if the action of Fϕ on ([0, 1],m) is ergodic.

Proof. By Schur’s Lemma, Theorem 5.1.14 above, the representation is irreducible
if and only if the commutant of πϕs (F ) is trivial. As the commutant is a C∗-algebra,
it is spanned by its unitaries, so we just need to prove that the action is ergodic
if and only if every unitary operator commuting with πϕs (F ) is a multiple of the
identity. Supposing that U is a unitary operator on H which commutes with πϕs (g),
for all g ∈ F , we get from Lemma 5.1.12, applied in the case where t = s, that U
is a multiplication operator, namely, multiplication by u = U1. Furthermore, the
lemma tells us that u ◦ gϕ(x) = u(x) almost everywhere, for all g ∈ F . Now,
if we assume that the action is ergodic, then u is constant almost everywhere, by
Theorem 5.1.17, which means that U is a scalar multiple of the identity. Thus, as U
was arbitrary, the commutant only consists of the scalars. If we instead assume that
the action is not ergodic, then, by Theorem 5.1.17, there exists a measurable function
h : [0, 1]→ C which is essentially invariant and not constant almost everywhere. We
may assume that the function is real valued, as we may just replace it with its real
or imaginary part. Both of these will also be essentially invariant, and they cannot
both be constant almost everywhere. Now, as h is real valued, the function u on [0, 1]
defined by u(x) = exp(ih(x)) will be a function whose values lie on the complex
unit circle, which is not constant almost everywhere and is essentially invariant. By
Lemma 5.1.12 the corresponding unitary operator lies in the commutant, and, as the
function is not constant almost everywhere, this unitary is not a scalar multiple of the
identity.

We now turn to the second problem, namely, to determine when the different
representations of the form πϕs are unitarily equivalent. First we need a few more
standard results from measure theory about measures on the unit interval. A proof of
the following result can be found in [45, Theorem 17.10].

Theorem 5.1.19. All finite Borel measures on [0, 1] are regular, that is, all finite
Borel measures µ on [0, 1] satisfy

µ(A) = sup{µ(K) : K ⊆ [0, 1] compact with K ⊆ A}
= inf{µ(U) : U ⊆ [0, 1] open with A ⊆ U}
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for every measurable set A ⊆ [0, 1].

The above result holds in a much more general setting than the interval [0, 1], but
we are only interested in this particular case. The following lemma is an easy applica-
tion of the theorem above, Theorem 5.1.3 and the Lebesgue dominated convergence
theorem.

Lemma 5.1.20. Let µ and ν be finite Borel measures on [0, 1]. If there exists a non-
negative µ-integrable function h such that

ν(I) =

∫

I

h(x) dµ(x),

for all closed intervals I ⊆ [0, 1], then ν is absolutely continuous with respect to µ,
and dν

dµ = h.

Recall the following straightforward result about absolute continuity and Radon-
Nikodym derivatives.

Lemma 5.1.21. Suppose that µ and ν are σ-finite measures on [0, 1] with ν abso-
lutely continuous with respect to µ. If ϕ is a measurable bijection of [0, 1], then the
image measure ϕ∗ν is absolutely continuous with respect to the image measure ϕ∗µ
and

dϕ∗ν
dϕ∗µ

=
dν

dµ
◦ ϕ−1.

Furthermore, if µ1, µ2 and µ3 are finite measures on [0, 1] such that µ3 is absolutely
continuous with respect to µ2 and µ2 is absolutely continuous with respect to µ1, then
µ3 is absolutely continuous with respect to µ1 and

dµ3

dµ2
· dµ2

dµ1
=

dµ3

dµ1
.

We are now ready to prove a result about when the representations of the form πϕs
are unitarily equivalent for different ϕ and s.

Proposition 5.1.22. Suppose that ϕ and ψ both satisfy condition (?) and let s, t ∈ R.
If the representations πϕs and πψt are unitarily equivalent, then the measures ϕ∗m
and ψ∗m are equivalent. Moreover, if the measures ϕ∗m and ψ∗m are equivalent
and s = t, then the representations πϕs and πψt are unitarily equivalent.

Proof. The last of the two statements is straightforward to check. Indeed, supposing
that the measures are equivalent, if follows from Lemma 5.1.21 that both the mea-
sures (ψ−1ϕ)∗m and (ϕ−1ψ)∗m are absolutely continuous with respect to m, and a
direct computation shows that the formula

Uf(x) =
( d(ψ−1ϕ)∗m

dm
(x)
) 1

2+is

fϕ−1ψ(x)
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defines a unitary operator U on H, with inverse

U∗f(x) =
( d(ϕ−1ψ)∗m

dm
(x)
) 1

2+is

fψ−1ϕ(x),

satisfyingUπϕs (g)U∗ = πψs (g), for all g ∈ F . Hence the representations are unitarily
equivalent if the measures are equivalent.

Assume that the two representation are unitarily equivalent. Choose some unitary
operator U on H with Uπϕs (g)U∗ = πψt (g), for all g ∈ F . This time U is not neces-
sarily a multiplication operator, but it turns out that we can still say something about
what U looks like. Let h = U1. Then h ∈ H, so |h ◦ ψ−1|2 is ψ∗m-integrable. We
will show that

ϕ∗m(I) =

∫

I

|h ◦ ψ−1(x)|2 dψ∗m(x),

for all closed intervals I ⊆ [0, 1]. In particular, this proves that ϕ∗m is absolutely
continuous with respect to ψ∗m by Lemma 5.1.20.

Using Lemma 5.1.11 we see that, for all a, b ∈ [0, 1] with a < b, we have

U(f |(ϕ−1(a),ϕ−1(b))) = U(f)|(ψ−1(a),ψ−1(b)).

In particular, for all closed intervals I ⊆ [0, 1], we get that U(1ϕ−1(I)) = h1ψ−1(I).
This shows that

ϕ∗m(I) = ‖1ϕ−1(I)‖22 = ‖U(1ϕ−1(I))‖22 =

∫

ψ−1(I)

|h(x)|2 dm(x)

=

∫

I

|h ◦ ψ−1(x)|2 dψ∗m(x),

for all closed intervals I ⊆ [0, 1]. By Lemma 5.1.20, this means that ϕ∗m is ab-
solutely continuous with respect to ψ∗m. Repeating the argument with ϕ and ψ
interchanged, we get that they are in fact equivalent.

As mentioned earlier, we are not particularly interested in too “nice” functions
satisfying condition (?), and the proposition above tells us exactly why. If the function
is too nice, then it will preserve the Lebesgue measure class and we will not really
get anything different than if we chose ϕ to be the identity on [0, 1]. However, we do
need gϕ to be nice enough to preserve the Lebesgue measure class, for every g ∈ F ,
so we are interested in a strange kind of functions. An example of such a function is
the Minkowski question mark function, described in Section 2.3; see Remark 5.4.9.

So far we know exactly when the representations πϕs and πψt are unitarily equiv-
alent for s = t, but for s 6= t we only get a necessary criterion, namely, that the
measures ϕ∗m and ψ∗m are equivalent. In case the two measures indeed are equiv-
alent and s 6= t, we cannot, at the moment, say anything about whether or not the
representations are equivalent. One would be tempted to conjecture that the repre-
sentations πϕs and πϕt are always equivalent, or that they are never equivalent, except
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when s = t. Neither of these statements are true. In fact, Garncarek [30] proved
that, if ϕ is the identity on [0, 1], then the representations are equivalent if and only if
s− t = 2πk

log 2 , for some k ∈ Z. Thus, the question of equivalence for different values
of the parameter is a bit more subtle than that, as evidenced also by the following
proposition.

Proposition 5.1.23. Suppose that ϕ satisfies condition (?) and let H denote the set
of t ∈ R such that πϕt is equivalent to πϕ0 . Then H is a subgroup of R, and, given
s, t ∈ R, the two representations πϕs and πϕt are unitarily equivalent if and only if
s+H = t+H in R/H .

Proof. It is easy to see from Lemma 5.1.12 that whether or not πϕs and πϕt are uni-
tarily equivalent only depends on the difference s − t. Indeed, if u is the function
from Lemma 5.1.12 whose multiplication operator implements the unitary equiva-
lence between πϕs and πϕt for some s, t ∈ R, then this same function implements the
equivalence between s+ r and t+ r, for all r ∈ R. Thus, the latter part of the state-
ment follows from the fact that H is a subgroup of R. Now, using the above, we see
that πϕt is equivalent to πϕ0 if and only if πϕ−t is equivalent to πϕ0 , by setting r = −t.
Also, clearly 0 ∈ H . Thus, we only need to prove that s+t ∈ H for s, t ∈ H . This is
easily checked by hand. If us and ut are functions from Lemma 5.1.12 satisfying the
equations corresponding to s and t, respectively, then the function x 7→ us(x)ut(x)
will satisfy the equation corresponding to s+ t. Thus, the corresponding multiplica-
tion operator will implement an equivalence between πϕs+t and πϕ0 .

As mentioned in the beginning of this section, we use a well-known method of
obtaining a one-parameter family of representation from an action on a measure space
which leaves the measure quasi-invariant. It is well-known that such representations
are strongly continuous in the parameter. This fact is easily proved directly using
the Lebesgue dominated convergence theorem. We will give an argument for our
particular representations by proving a well-known general result, which we will need
later, and then deduce it from that.

Proposition 5.1.24. Let (X, µ) be a measure space, Y be a subset of Rn and y0 ∈ Y .
Suppose that f : X×Y → R is measurable, and that h is a µ-integrable function with
|f(x, y)| ≤ h(x), for all x ∈ X and y ∈ Y . If the function y 7→ f(x, y) is continuous
at the point y0, for almost all x ∈ X, then the function from Y to R defined by

y 7→
∫
f(x, y) dµ(x)

is continuous at the point y0.

Proof. Clearly the function x 7→ f(x, y) is µ-integrable, for all y ∈ Y , as its absolute
value is bounded above by h. Thus, the function y 7→

∫
f(x, y)dµ(x) is well-defined

from Y to R, and we denote it by F . Suppose that (yn)n∈N is a sequence in Y
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converging to y0, and let us prove that F (yn) converges to F (y0) as n → ∞. Let
gn : X→ R be given by gn(x) = f(x, yn), for all x ∈ X. By assumption there exists
a null set A ⊆ X so that limn→∞ gn(x) = f(x, y0), for all x ∈ X \ A. From the
Lebesgue dominated convergence theorem we conclude that

lim
n→∞

F (yn) = lim
n→∞

∫

X\A
gn(x) dµ(x) =

∫

X\A
f(x, y0) dµ(x) = F (y0).

Note that the first and last equality follow from the fact that A is a null set. Thus, F
is continuous at the point y0, as wanted.

Proposition 5.1.25. Suppose that (X, µ) is a measure space. Let Y be a subset of
Rn and F be a map from Y to L2(X, µ) so that there exists ξ ∈ L2(X, µ) with
|F (y)(x)| ≤ ξ(x), for all x ∈ X. If, for each y0 ∈ Y , the function y 7→ F (y)(x) is
continuous at the point y0, for almost all x ∈ X, then F is continuous.

Proof. By assumption ξ2 is µ-integrable. Fix y0 ∈ Y , and let us prove that F is
continuous at y0. Let f : X× Y → R denote the function given by

f(x, y) = |F (y)(x)− F (y0)(x)|2.

Then |f(x, y)| ≤ 2ξ(x)2, for all x ∈ X. By assumption, the function y 7→ f(x, y) is
continuous at y0 for almost all x ∈ X. It follows by Proposition 5.1.24 that the map

y 7→
∫
f(x, y) dµ(x) = ‖F (y)− F (y0)‖22.

is continuous at the point y0. Clearly this means that F is continuous at y0, and we
conclude that F is continuous.

We now easily get the continuity result mentioned earlier.

Proposition 5.1.26. If ϕ is a map satisfying condition (?), then the map s 7→ πϕs (g)
from R to B(H) is strongly continuous, for each g ∈ F .

Proof. We need to prove that the map s 7→ πϕs (g)ξ is norm continuous, for all g ∈ F
and ξ ∈ H. This follows directly from Proposition 5.1.25 applied with F (y) =
πϕy (g)ξ and h = πϕ0 (g), as the map y 7→ (πϕy (g)ξ)(x) is clearly continuous, for
all x ∈ [0, 1], and |πϕy (g)ξ| = |πϕ0 (g)ξ|, for all y ∈ R.

Remark 5.1.27. Let us end this section with a remark about two different views on the
representations we are concerned with. So far the focus has been the map ϕ, but there
is also the possibility to think of the representations in terms of measures. Indeed,
there is a natural one-to-one correspondence between atomless probability measures
on [0, 1] with full support and increasing homeomorphisms of [0, 1]. (By full support
we mean that no open set has measure zero.) Let us elaborate on this correspondence.
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If ϕ is an increasing homeomorphism of [0, 1], then the image measure ϕ∗m is an
atomless probability measure on [0, 1] with full support. Conversely, if µ is such a
measure, then the function x 7→

∫ x
0
1 dµ is an increasing homeomorphism of [0, 1].

If we temporarily denote this latter function by Fµ, then the correspondence goes as
follows:

µ = (F−1µ )∗m and ϕ = F−1ϕ∗m.

Since we are interested in investigating when the action of Fϕ on ([0, 1],m) is er-
godic, let us give a description of this in terms of the measure instead of the function.
Clearly, a subset A of [0, 1] is invariant under the action of F if and only if the
set ϕ−1(A) is invariant under the action of Fϕ. From this it is easily seen that the
action of Fϕ on ([0, 1],m) is ergodic if and only if the action of F on ([0, 1], ϕ∗m)
is ergodic. Thus finding maps ϕ that give rise to irreducible representations becomes
a question of finding atomless probability measures on [0, 1] with full support which
F leaves quasi-invariant and such that the action of F on [0, 1] is ergodic. In fact, it is
not difficult to see that any measure on [0, 1] for which {0, 1} is a null set and which
F leaves quasi-invariant must necessarily have full support.

5.2 Ergodicity and equivalence relations

In this section we explain how the Thompson group F acts on the Cantor set, as well
as formulate ergodicity of the actions we are interested in in terms of ergodicity of
the tail equivalence relation. We start by introducing the concept of a countable Borel
equivalence relations and notions associated with these.

To do so, recall that a Polish space is a separable topological space which is
completely metrizable, that is, there exists a complete metric on the space generating
the topology. Examples of Polish spaces include the unit interval and the Cantor set
with their usual topologies. A standard Borel space is a Polish space equipped with
the Borel σ-algebra. An equivalence relation E on a standard Borel space X is called
a Borel equivalence relation if E is Borel as a subset of X× X. Such an equivalence
relation is said to be countable if each of its equivalence classes are countable.

A natural example of a countable Borel equivalence relation is the orbit equiva-
lence relation induced by a measurable action α of a countable groupG on a standard
Borel space X, that is, the equivalence relation

{(x, α(g)x) : x ∈ X, g ∈ G} ⊆ X× X.

In other words, a point x ∈ X is related to another point y ∈ X if and only if there
exists g ∈ G such that y = α(g)x. It is a non-trivial fact that all countable Borel
equivalence relations arise in this fashion. This result was proved by Feldman and
Moore [27] in 1977 and is known as the Feldman-Moore theorem, which we now
state.
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Theorem 5.2.1. If E is a countable Borel equivalence relation on a standard Borel
space X, then there exists a measurable action of a countable group on X such that
E is the orbit equivalence relation of this action.

Let X be a standard Borel space and E a countable Borel equivalence relation
on X. Given a Borel subset A of X, the restriction of E to A is the equivalence
relation E ∩ (A × A). This will again be a countable Borel equivalence relation as
A is in itself a standard Borel space; see for example [45, Corollary 13.4]. We will
denote the restriction of E to A by E|A. Now, the saturation or E-saturation of A,
denoted by [A]E , is the set of points in X which are related to a point in A, that is,

[A]E = {x ∈ X : (x, y) ∈ E for some y ∈ A}.

It is not difficult to see from the Feldman-Moore theorem that the saturation of a
Borel set is again a Borel set. A subset A is said to be invariant or E-invariant if it is
equal to own saturation, that is, if [A]E = A.

Definition 5.2.2. Let X be a standard Borel space, let E be a Borel equivalence
relation on X and let µ be a Borel measure on X. If every E-invariant Borel set is
either a null set or a co-null set, we say that the equivalence relation E is ergodic
with respect to µ, or that the measure µ is ergodic with respect to the equivalence
relation E.

Given a measurable action of a countable group on a standard Borel space X, it
is easy to see that a Borel subset A ⊆ X is invariant under the action if and only if it
is invariant under the orbit equivalence relation. In particular, the action is ergodic if
and only if the orbit equivalence relation is ergodic.

The following are well-known results about ergodicity for restricted measures and
equivalence relations.

Proposition 5.2.3. Let E be a Borel equivalence relation on a measure space (X, µ)
and let A ⊆ X be a measurable subset. If E is ergodic with respect to µ, then E|A is
ergodic with respect to µ|A.

Proof. If A is a null set, then the statement is trivial, since all equivalence relations
on a space with the zero measure are ergodic. Thus, we may assume that µ(A)
is not zero. Suppose that B ⊆ A is an E|A-invariant subset of positive measure.
Then we want to prove that A \ B has measure zero. The set [B]E is by definition
E-invariant, so, since it has positive measure, it must be a co-null set in X. In other
words, X \ [B]E has measure zero. It is easy to see that (X \ [B]E) ∩ A = A \ B,
since B is E|A-invariant. In particular, A \B is a null set.

Lemma 5.2.4. Let E be a Borel equivalence relation on a measure space (X, µ) and
let A ⊆ X be a co-null set. Then E is ergodic with respect to µ if and only if E|A is
ergodic with respect to µ|A.
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Proof. By Proposition 5.2.3 the restriction is ergodic if the original equivalence re-
lation is ergodic, so let us assume that the restricted equivalence relation is ergodic.
Let B ⊆ X be E-invariant of positive measure. Since X \A is a set of measure zero,
B \ A is a set of measure zero, so B ∩ A must have positive measure. It is easy to
check that B ∩ A is E|A-invariant since B is E-invariant, so, by ergodicity, B ∩ A
must be a co-null set in A. Since A is itself a co-null set in X, the set B ∩ A, and
therefore also B, must be a co-null set in X.

Remark 5.2.5. It is a well-known fact that the action of PSL(2,Z) on R̂ by fractional
linear transformations is ergodic with respect to the Lebesgue measure (see [18, Ex-
ample 3.5]). This means that the orbit equivalence relation of this action is ergodic,
and, by Proposition 5.2.3, the restriction of this relation to (0, 1) is ergodic with re-
spect to the Lebesgue measure on (0, 1). Clearly this relation is also the orbit equiv-
alence relation of the action of F ? on the interval (0, 1), where ? is the Minkowski
question mark function, as we know from Section 2.4 that F ? is the representation
of F as fractional linear transformations of [0, 1]. By Lemma 5.2.4 this means that the
action of F ? on [0, 1] is also ergodic with respect to the Lebesgue measure. Therefore,
we see that the representations π?

s are irreducible, for all s ∈ R, by Proposition 5.1.18.

Let us now turn our attention to the mentioned realization of the Thompson
groups as homeomorphisms of the Cantor set, by which we mean the space {0, 1}N
with the product topology. Loosely speaking, F can be thought of as the group of
homeomorphisms of the Cantor set which are locally a change of prefix and which
preserve the lexicographical order on the Cantor set. Let us make this more precise.
There is a natural map from the Cantor set onto the unit interval, namely, the map
that, to a sequence of zeroes and ones, associates the real number in [0, 1] having the
corresponding base-2 expansion, that is, the map κ given by

κ(x1, x2, x3, . . .) =
∞∑

n=1

xn2−n. (5.1)

This map is continuous and it preserves the lexicographical order on {0, 1}N. It is
not injective, though. However, since real numbers have a unique base-2 expansion
unless they are dyadic rationals, in which case they have exactly two different base-2
expansions, it is close to being injective. For good measure, let us explain what we
mean by the lexicographic order on {0, 1}N. It is the order described as follows:
given (xn)n∈N and (yn)n∈N in {0, 1} we have (xn)n∈N < (yn)n∈N if and only if
x1 < y1 or there exists some k ∈ N such that xn = yn, for all n ∈ {1, 2, . . . , k}, and
xk+1 < yk+1. We will explain in details how F is represented as homeomorphisms
of the Cantor set. We first introduce some notation and terminology.

Definition 5.2.6. By a cylinder set we shall mean a subset of the Cantor space of the
form {(x1, x2, . . . , xn)}×{0, 1}N, for some n ∈ N and x1, x2, . . . , xn ∈ {0, 1}. We
will denote such a set by Sx1,...,xn

.
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Now, back to the interpretation of F as homeomorphisms of the Cantor set.
Consider the set of homeomorphisms f of {0, 1}N that preserve the lexicographi-
cal order and for which there exists a partition of {0, 1}N into cylinder sets such that
each of these cylinder sets is mapped to a another cylinder set by changing the pre-
fix. More precisely, if Sx1,...,xn is one of the sets in the partition, then there exist
y1, . . . , yk ∈ {0, 1} such that

f(x1, . . . , xn, z1, z2, . . .) = (y1, . . . , yk, z1, z2, . . .),

for all points (x1, . . . , xn, z1, z2, . . .) in Sx1....,xn . Note that the prefix x1, x2, . . . , xn
need not have the same length as the prefix y1, y2, . . . , yk. Since all these elements
preserve the order, they fix the sequence which is constantly equal to one and that
which is constantly equal to zero. Note that, since the cylinder sets are open and
since the Cantor set is compact, the partition must necessarily be finite. It is easy to
see that a homeomorphism f of this type defines a homeomorphism, f̃ say, of the
unit interval as follows: given x ∈ [0, 1], let y be a pre-image of x under the map κ
from (5.1) and define f̃(x) to be κ(f(y)), which is easily seen to be well-defined.
It is straightforward to check that the image of a cylinder set via κ is a standard
dyadic interval, and that the map f̃ must be linear with slope being a power of 2
on each of the cylinder sets from the definition of f . In particular, f̃ is an element
of the Thompson group F . Thus, the map defined by f 7→ f̃ is an injective group
homomorphism. It is easy to see that the elementsA andB generating the Thompson
group corresponds to the following prefix changes

A =





0 7→ 00
10 7→ 01
11 7→ 1

B =





0 7→ 0
10 7→ 100
110 7→ 101
111 7→ 11

Similarly, one can realize the Thompson groups T and V as homeomorphisms of the
Cantor set. To some people this will seem very familiar, and, indeed, what we have
been describing so far is the representation of the Thompson group F as tree dia-
grams. In this interpretation, the elements A and B are represented by the following
tree diagrams, on which we have added 0-1-labels in the natural way to indicate the
connection:

0

10 11

−→

00 01

1 0

10

110 111

−→ 0

100 101

11

Remark 5.2.7. Before continuing, let us make a remark concerning the already men-
tioned fact that κ from (5.1) maps cylinder sets to standard dyadic intervals. Let us
fix some cylinder set Sx1,...,xn

. The fact that κ(Sx1,...,xn
) is an interval is easy to
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see, as κ is surjective and clearly order-preserving. The left endpoint of this inter-
val is

∑n
k=1 xk2−k and the right endpoint is

∑n
k=1 xk2−k +

∑∞
k=n+1 2−k, or, in

other words, 2−n +
∑n
k=1 xk2−k. It is not difficult to see that a standard dyadic

interval is uniquely determined by its midpoint, for if x is the midpoint of two stan-
dard dyadic intervals [m2j ,

m+1
2j ] and [m

′

2j′
, m
′+1
2j′

], then 2m+1
2j+1 = x = 2m′+1

2j′+1 , which
clearly implies that j = j′, since 2m + 1 and 2m′ + 1 are both odd. As this is the
case, m and m′ must also be equal, and the two standard dyadic intervals were then
equal to begin with. Thus, the cylinder set Sx1,...,xn exactly corresponds to the stan-
dard dyadic interval whose midpoint is κ(x1, . . . , xn, 1, 0, 0, . . .), that is, the point
2−(n+1) +

∑n
k=1 xk2−k, and dyadic rational points in the interior of this interval are

exactly those of the form
∑n
k=1 xk2−k +

∑j
k=1 zk2−(n+k)

for some j ∈ N and z1, z2, . . . , zj ∈ {0, 1}. Now, suppose that g maps this standard
dyadic interval linearly onto the standard dyadic interval with midpoint 2−(m+1) +∑m
k=1 yk2−k, then

g
(∑n

k=1 xk2−k +
∑j
k=1 zk2−(n+k)

)
=
∑m
k=1 yk2−k +

∑j
k=1 zk2−(m+k)

for every j ∈ N and zn+1, zn+2, . . . , zn+j ∈ {0, 1}.
Let us introduce a well-known equivalence relation on the Cantor set.

Definition 5.2.8. The tail equivalence relation on {0, 1}N is the equivalence relation
defined as follows: (xk)k∈N is equivalent to (yk)k∈N if there exist natural numbers n
and m such that xn+k = ym+k, for all k ∈ N.

It is not difficult to see that the orbit equivalence relation generated by the action
of either T or V on the Cantor set is exactly the tail equivalence relation. The orbit
equivalence relation of F , though, is not the tail equivalence relations, since it fixes
the points (0, 0, 0, . . .) and (1, 1, 1, . . .). In some sense, this is the only defect. More
precisely, if X denote the Cantor set minus the two constant sequences, then the
restriction of the tail equivalence relation to X is exactly the orbit equivalence relation
of the action of F restricted to X. Using this, we easily obtain the following result.

Lemma 5.2.9. Let µ be an atomless measure on the Cantor set which F leaves quasi-
invariant. Then the action of F on ({0, 1}N, µ) is ergodic if and only if µ is ergodic
with respect to the tail equivalence relation.

Proof. Let X be defined as above. Since µ is atomless, we get from Lemma 5.2.4 that
the tail equivalence relations is ergodic with respect to µ if and only if its restriction
to X is ergodic with respect to µ|X. Similarly, we get that the orbit equivalence
relation of the action of F on the Cantor set is ergodic with respect to µ if and only
if its restriction to X is ergodic with respect to µ|X. However, we noted above that
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the tail equivalence relation and the orbit equivalence relation agree when restricted
to X, so we conclude that they are ergodic with respect to µ exactly at the same time.
That is, the action of F on the Cantor set is ergodic with respect to µ if and only if
the tail equivalence is so.

Remark 5.2.10. Let us explain why we are interested in ergodicity of the action of F
on the Cantor set. As explained in Remark 5.1.27, what we are really interested in are
atomless measures on [0, 1] which F leaves quasi-invariant and for which the action
of F is ergodic. However, given an atomless measure µ on the Cantor set we get an
atomless measure on the unit interval as the image measure of µ via the map (5.1).
It is not difficult to see that this is a bijective correspondence between the atomless
measures on the Cantor set and those on the unit interval. Moreover, since this map κ
commutes with the action of F , it is easily seen that the measure µ is left quasi-
invariant by the action of F on the Cantor set if and only if its image measure is left
quasi-invariant by the action of F on the unit interval. For the same reason, we also
get that the action of F on the Cantor set is ergodic with respect to µ if and only if the
action of F on the unit interval is ergodic with respect to the image measure. Thus, in
our search for measures producing different families of irreducible representations,
we can look for measures on the Cantor set instead. Indeed, it is easy to see that
two such measures on the Cantor set are equivalent if and only if the corresponding
measures on the unit interval are so.

The simplest measures on the Cantor set are the product measures. In fact, the
product measures which are atomless and which F leaves quasi-invariant are auto-
matically measures for which the action of F is ergodic. Before we explain this in
more detail, let us introduce the notion of product measures on the Cantor set. For
this, we need a result known as the Hahn-Kolmogorov Theorem; see [45, Proposi-
tion 17.16]. Recall that a Boolean algebra on a set X is a collection of subsets of X
which contains the empty set and is closed under finite union and complements.

Theorem 5.2.11. Let A be a Boolean algebra on a set X, and let µ : A → [0,∞]
be a map satisfying µ(∅) = 0 and µ(

⋃∞
n=1An) =

∑∞
n=1 µ(An), for any family

A1, A2, . . . of pairwise disjoint sets in A whose union is also in A. Then µ has an
extension to a measure on X defined on the σ-algebra generated by A. Furthermore,
if µ is bounded, then the measure is finite, and, moreover, unique.

Applying this theorem to the Boolean algebra on the Cantor set consisting of the
empty set and all finite unions of cylinder sets, we arrive at a well-known description
of the Borel probability measures on the Cantor set.

Theorem 5.2.12. For each n ∈ N, suppose that µn is a probability measure on the
set
∏n
k=1{0, 1} with the power set σ-algebra. If the measures satisfy

µn+1(A× {0, 1}) = µn(A),
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for all n ∈ N and A ⊆ ∏n
k=1{0, 1}, then there exists a unique Borel probability

measure µ on the Cantor set {0, 1}N such that, given A ⊆∏n
k=1{0, 1},

µ(A× {0, 1}N) = µn(A).

Moreover, all Borel probability measures on {0, 1}N are obtained in this fashion.

Proof. It is easy to see that the conditions put on the measures are exactly the con-
ditions needed to define a measure on the Boolean algebra on {0, 1}N containing the
empty set and all finite unions of cylinder sets. Hence the Hahn-Kolmogorov theorem
gives us a unique extension to a measure on the σ-algebra generated by these sets.
This σ-algebra is, of course, the Borel σ-algebra, as the cylinder sets are a basis for
the topology on {0, 1}N. Clearly this measure satisfies µ(A×{0, 1}N) = µn(A), for
all n ∈ N and A ⊆ ∏n

k=1{0, 1}. That all Borel probability measures are obtained in
this way is obvious.

Remark 5.2.13. Given a sequence of probability measures (νn)n∈N on {0, 1}, de-
fine µn to be the ordinary product measure ν1 ⊗ ν2 ⊗ · · · ⊗ νn on {0, 1}n, for
each n ∈ N, such that

µn(x1, . . . , xn) = ν1(x1)ν2(x2) · · · νn(xn). (5.2)

Clearly the sequence (µn)n∈N satisfies the conditions of Theorem 5.2.12, and, there-
fore, induces a unique Borel probability measure on the Cantor set. We will refer to
these measures as product measures. With these measures, the measure of the cylin-
der sets are easily calculated. Indeed, for x1, x2, . . . , xn ∈ {0, 1}, the measure of the
cylinder set Sx1,...,xn is exactly given by (5.2). It is not difficult to see that a product
measure has full support if and only if none of the νn’s are concentrated in a single
point. Since measures that F leaves quasi-invariant automatically have full support,
as explained in Remarks 5.1.27 and 5.2.10, these are the only candidates for product
measures that F leaves quasi-invariant. The measure of a single point (x1, x2, . . .)
with respect to the product of (νn)n∈N is exactly

∏∞
n=1 νn(xn), so whether or not a

product measure has atoms depends on whether one can choose a sequence so that
the product does not converge to zero. One case where it is easy to see that there
are no atoms is if there exists some c ∈ (0, 1) so that νn(xk) < c, for all n ∈ N
and k ∈ {0, 1}.

The following theorem is known as the Kolmogorov Zero-One Law; a proof can
be found in [5, Theorem 4.5]. We will only state it in the context we are interested in.

Theorem 5.2.14. Let µ be a product measure on {0, 1}N and let A ⊆ {0, 1}N be a
Borel subset such that, if (xn)n∈N ∈ A and (yn)n∈N ∈ {0, 1}N with xn = yn, for all
but finitely many n ∈ N, then (yn)n∈N ∈ A. Then either µ(A) = 0 or µ(A) = 1.

A subset A as in the above theorem is often referred to as a tail set, and it is
easy to see that a subset of the Cantor set which is invariant under the tail equivalence
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relation is necessarily such a set, but not the other way around. Thus, we immediately
get the following corollary.

Corollary 5.2.15. The tail equivalence relation is ergodic with respect to every prod-
uct measure on the Cantor set.

In fact, one way to state the Kolmogorov Zero-One Law is that the equivalence
relation usually denoted E0 is ergodic with respect to all product measures on the
Cantor set. This equivalence relation is given as follows: two sequences (xn)n∈N
and (yn)n∈N are equivalent if and only if there exists k ∈ N so that xn = yn, for
all n ≥ k. Note that this relation is distinct from the one we call the tail equivalence
relation; see Definition 5.2.8.

Now, backtracking from a measure on the Cantor set to a measure on the unit
interval and then to a map satisfying condition (?), as explained in Remark 5.2.10 and
Remark 5.1.27, we get the following result as an application of the above corollary.

Proposition 5.2.16. If µ is an atomless product measure on the Cantor set {0, 1}N
which F leaves quasi-invariant, then, with ϕ denoting the corresponding map satis-
fying condition (?), the representation πϕs is irreducible, for all s ∈ R.

Proof. By Corollary 5.2.15 we know that the tail equivalence relation is ergodic with
respect to the measure µ, so by Lemma 5.2.9 we know that the action of F on the
Cantor set is ergodic with respect to µ. From Remark 5.2.10 we know that the mea-
sure µ corresponds to an atomless measure on [0, 1] which F leaves quasi-invariant
and for which the action of F on [0, 1] is ergodic. By Remark 5.1.27, we know that
this measure on [0, 1] corresponds to a map ϕ satisfying condition (?) such that the
action of Fϕ on ([0, 1],m) is ergodic. By Proposition 5.1.18, the representation πϕs
is irreducible, for all s ∈ R.

The above proposition gives us a large class of measures which produce irre-
ducible representations of F when the construction from the previous section is ap-
plied. However, it is not obvious which of these measures will produce equivalent
representations.

5.3 Bernoulli measures on the unit interval

In this section, we will give examples of different families of irreducible unitary
representations of F arising in the fashion described in Section 5.1. As explained
in Remark 5.2.10, we do not have to start the construction with a map ϕ satisfying
condition (?) to obtain a one-parameter family of representations. Instead, we may
start with an atomless measure on the Cantor set which F leaves quasi-invariant, and
this, indeed, is what we will do.
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Given p ∈ (0, 1), we can consider the probability measure ν on {0, 1} given
by ν(0) = p and ν(1) = 1 − p. Let µp denote the infinite product of this mea-
sure, which is a probability measure on the Cantor set {0, 1}N. As mentioned in
Remark 5.2.13 these product measures are atomless with full support. In particu-
lar, we get a corresponding atomless measure µ̃p on [0, 1] with full support and a
map φp satisfying condition (?), as explained in Remark 5.2.10 and Remark 5.1.27.
Recall that this map is an increasing homeomorphism of [0, 1], and its inverse is given
by φ−1p (x) =

∫ x
0
1 dµ̃p.

Definition 5.3.1. With the notation described above, we will refer to the measures µp
and µ̃p as the Bernoulli measures for p ∈ (0, 1).

Let us briefly recall the notion of singularity of measures, as well as the Lebesgue
decomposition theorem. A proof of the latter can be found in [28, Theorem 3.8].

Definition 5.3.2. Two measures µ and ν on a space X are said to be singular with
respect to each other if there exist two disjoint measurable subsetsA andB of X with
X = A ∪B so that A is a µ-null set and B is a ν-null set.

Theorem 5.3.3. Let µ and ν be σ-finite measures on a space X. Then there exists
σ-finite measures νa and νs on X with ν = νa+νs so that νa is absolutely continuous
with respect to µ, and νs and µ are singular with respect to each other.

As mentioned, the Bernoulli measures are all atomless, and it is not difficult to
realize that the action of F on the Cantor set leaves them quasi-invariant, but we
postpone the argument. This means that the Bernoulli measures are of the kind we
are interested in, and, as they are all product measures, Proposition 5.2.16 tells us that
the representation πφp

s is irreducible for each p in (0, 1) and s ∈ R. In fact, we can
say even more about these. Recall the following well-known fact about the Bernoulli
measures. The proof is a simple application of the Strong Law of Large Numbers,
which we include for completeness.

Proposition 5.3.4. The Bernoulli measures are singular with respect to each other.
In fact, the set

{
(xn)n∈N : lim

n→∞
1
n (x1 + · · ·+ xn) = 1− p

}

has measure 1 with respect to µp.

Proof. Clearly, the measures are singular with respect to each other if the indicated
set has measure one, since these sets are disjoint for distinct values p. Note that
the limit does not exists for all sequences, so it should be understood as the set of
sequences for which the limit exists, and is as indicated.

For each n ∈ N, let Xn : {0, 1}N → R be the n’th coordinate projection. Then
(Xn)n∈N is a sequence of real random variables. It is easy to see that these are
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independent, since µp is a product measure, and they are identically distributed as
µp is a product of a single measure. By the Strong Law of Large Numbers (see for
example [5, Theorem 6.1]) the averages 1

n (X1 + X2 + . . . + Xn) converge almost
surely to E[X1], the expected value of X1. Hence there exists a set A ⊆ {0, 1}N of
measure one such that limn→∞ 1

n (X1(y)+X2(y)+. . .+Xn(y)) exists, for all y ∈ A,
and equals E[X1]. Now, E[X1] = 0 · p + 1 · (1 − p) = 1 − p, so A is contained in
the set we are interested in, and it follows that it must have measure one, as well.

We have not yet justified the fact that the action of F on the Cantor set leaves
the Bernoulli measures quasi-invariant. This will follow easily when we know more
about the elements ofFφp ; see Remark 5.3.12. However, assuming that we know this,
we can collect what we know about the representations πφp

s so far in the following
proposition.

Proposition 5.3.5. Given p, q ∈ (0, 1) distinct and s, t ∈ R, the representations πφp
s

and πφq

t are irreducible, but not unitarily equivalent.

Before continuing the investigation of these representations, let us describe the
maps φp and the corresponding group of homeomorphisms Fφp . To do so, let us
fix p ∈ (0, 1), and let us recursively define an increasing sequence (Anp )n∈N of finite
subsets of [0, 1]. We start by letting A0

p = {0, 1}. Supposing that we have defined
the set Anp , for some n ≥ 0, we define

An+1
p = Anp ∪

{
(1− p)xk−1 + pxk : k = 1, 2, . . . ,m

}
,

where x0, x1, · · · , xm are the elements of Anp arranged increasingly. It is easy to see
that the set Anp has exactly 2n + 1 elements, and, to illustrate, the first three sets are
given by:

A0
p =

{
0, 1

}
, A1

p =
{

0, p, 1
}

and A2
p =

{
0, p2, p, (1− p)p+ p, 1

}
.

Now, let Ap denote the union
⋃∞
k=1 A

k
p . It is easy to see that Ap is a dense subset

of [0, 1] since the distance between two successive points of Anp is no greater than
max{p, 1 − p}n. In the case where p = 1

2 , the sets An1/2 and A1/2 are exactly the
sets Dn and D, respectively, which we introduced in Section 2.3, that is, D is the set
of dyadic rational numbers in [0, 1], and Dn is the set {m2n : 0 ≤ m ≤ 2n}.
Remark 5.3.6. Let n ∈ N ∪ {0} and let x and y be two consecutive elements of Anp
with x < y. It follows from the construction that the set [x, y] ∩A

n+(k+1)
p is obtained

from the set [x, y] ∩ An+kp by adding (1 − p)x′ + py′, for x′ and y′ consecutive in
[x, y]∩An+kp with x′ < y′. Clearly, [x, y]∩Anp = {x, y}, as x and y are consecutive
in Anp . This identity can be rewritten as [x, y] ∩ Anp = {(1 − s)x + sy : s ∈ A0

p},
and, in fact, an easy induction argument shows that

[x, y] ∩An+kp = {(1− s)x+ sy : s ∈ Akp},
for all k ∈ N ∪ {0}. In particular, [x, y] ∩Ap = {(1− s)x+ sy : s ∈ Ap}.
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We already know that φp satisfies φ−1p (x) =
∫ x
0
1 dµ̃p, so, in particular,

µ̃p
(
[x, y]

)
= φ−1p (y)− φ−1p (x),

for all x, y ∈ [0, 1] with x < y. However, if the interval is a standard dyadic interval,
then we can say something more as the following lemma shows.

Lemma 5.3.7. Let p ∈ (0, 1) and suppose that [x, y] ⊆ [0, 1] is a standard dyadic
interval. Then

φ−1p
(
x+y
2

)
= (1− p)φ−1p (x) + pφ−1p (y).

In particular, φp(Anp ) = Dn, for all n ∈ N, and φp(Ap) = D.

Proof. If [x, y] = [0, 1], then the statement is that φ−1p ( 1
2 ) = p, which is easily seen

from the formula φ−1p (x) =
∫ x
0
1 dµ̃p. Suppose instead that [x, y] is a proper subset

of [0, 1]. As explained in Remark 5.2.7 the standard dyadic interval [x, y] corresponds
to some cylinder set Sx1,...,xn

, for some x1, . . . , xn ∈ {0, 1}. Moreover, the inter-
vals [x, x+y2 ] and [x+y2 , y] correspond to the cylinder sets Sx1,...,xn,0 and Sx1,...,xn,1,
respectively. We see that

µ̃p
(
[x, x+y2 ]

)
= pµ̃p

(
[x, y]

)
and µ̃p

(
[x+y2 , y]

)
= (1− p)µ̃p

(
[x, y]

)
.

In particular, it follows that

φ−1p
(
x+y
2

)
− φ−1p (x) = µ̃p

(
[x, x+y2 ]

)
= pµ̃p

(
[x, y]

)
= pφ−1p (y)− pφ−1p (x),

which, after rearranging the terms, is the desired identity.
The fact that φp(Anp ) = Dn, for all n ∈ N, follows directly from this equation

and the definition of the sets. Indeed, if φp(Anp ) = Dn, then φp(An+1
p ) = Dn+1,

so, since φp(A0
p) = D0, the statement follows by induction. Clearly this implies that

φp(Ap) = D.

Using the lemma above, we can express the value of φ−1p (x) explicitly in terms
of the base-2 expansion of x, for all x ∈ [0, 1].

Lemma 5.3.8. Let p ∈ (0, 1) and (xn)n∈N ∈ {0, 1}N. Then, with x0 = 0,

φ−1p
( ∞∑

k=1

xk2−k
)

=
∞∑

k=1

xkp
k
k−1∏

j=0

(1− p
p

)xj

.

Moreover, every standard dyadic interval has measure pj(1− p)i with respect to µp,
for some i, j ∈ Z depending only on the standard dyadic interval.
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Proof. First of all, it suffices to prove the statement for the dyadic rational numbers
in (0, 1), as these are dense in [0, 1]. The general statement will follow by continuity
of φ−1p . Similarly, it will also follow by continuity that the expression is true for infi-
nite base-2 expansions of dyadic rational numbers, if it is true for finite expansions.
Thus we prove that the formula holds for finite base-2 expansions. We will do so
by induction. More precisely, we will prove that the formula is true for finite base-2
expansions of elements of Dn \ {1} by induction on n. First of all, the case n = 0
is trivially satisfied and the case n = 1 amount to φ−1p ( 1

2 ) = p, which we proved in
Lemma 5.3.7. Thus we suppose that the formula holds for all finite base-2 expansions
of elements in Dn \ {1}, for some n ∈ N, and want to prove that it holds for finite
base-2 expansions of elements in Dn+1 \ {1}.

Clearly we just need to check the formula on Dn+1 \Dn. Note that the elements
of Dn\{1} are exactly the dyadic rational numbers which have a base-2 expansion of
the form

∑n
k=1 xk2−k, whereas the elements of Dn+1 \Dn are exactly those which

have a base-2 expansion of the form
∑n+1
k=1 xk2−k with xn+1 = 1. Therefore, sup-

pose that we are given x1, . . . , xn ∈ {0, 1} and that xn+1 = 1, let x =
∑n+1
k=1 xk2−k

and let us prove that the formula holds for x. Put y0 =
∑n
k=1 xk2−k and y1 =

y0 + 1
2n . Then [y0, y1] is a standard dyadic interval and x is the midpoint of this

interval. From Lemma 5.3.7, we know that

φp(x) = φp(y0) + µ̃p([y0, x]) = φp(y0) + pµ̃p([y0, y1]). (5.3)

As [y0, y1] is a standard dyadic interval with midpoint x and xn+1 = 1, we know from
Remark 5.2.7 that [y0, y1] corresponds to the cylinder set Sx1,...,xn and therefore that

µ̃p
(
[y0, y1]

)
= pn−(x1+...+xn)(1− p)x1+...+xn = pn

n∏

k=1

(1− p
p

)xk

.

By the induction hypothesis, the formula holds for y0, as y0 ∈ Dn. Thus, by inserting
this expression for φ−1p (y0) along with the one for µ̃p([y0, y1]) into the formula (5.3),
we get the equation

φ−1p
( n+1∑

k=1

xk2−k
)

=
n∑

k=1

xkp
k
k−1∏

j=0

(1− p
p

)xj

+ pn+1
n∏

k=1

(1− p
p

)xk

.

Recalling that xn+1 = 1, we see that this is exactly the formula we wanted to prove.
Hence, by induction the formula holds for all finite base-2 expansions, and, by conti-
nuity, it holds for all base-2 expansions. The last claim about the measure of standard
dyadic interval follows from the arguments we used to find the measure of the inter-
val [y0, y1].

Now that we have described the values of the map φ−1p at a point x in terms of the
base-2 expansions of x, we recognize (φ−1p )p∈(0,1) as a family of maps introduced by
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Salem [63] in 1943 in order to give concrete, explicit examples of strictly monotonic
purely singular functions. We introduce the notion of singular functions later. For
now, note that a strictly increasing homeomorphism of the unit interval is purely sin-
gular if and only if the corresponding measure, in the sense of Remark 5.1.27 is sin-
gular with respect to the Lebesgue measure. Thus, the combination of Lemma 5.3.8
and Proposition 5.3.4 is a different way of obtaining Salem’s result.

Lemma 5.3.9. Let p ∈ (0, 1), and let I and J be standard dyadic intervals. If
g : [0, 1] → [0, 1] maps the interval I linearly and increasingly onto the interval J ,
then gφp maps the interval φ−1p (I) linearly and increasingly onto the interval φ−1p (J)

with slope pi(1− p)j , for some i, j ∈ Z depending only on the intervals I and J .

Proof. First, write I = [a, b] and J = [c, d], for dyadic rational numbers a, b, c
and d. For simplicity, we let ap, bp, cp and dp denote the points φ−1p (a), φ−1p (b),
φ−1p (c) and φ−1p (d), respectively. Note that, as I and J are both standard dyadic
intervals, g must have slope 2k, for some k ∈ Z.

As I is a standard dyadic interval, a and b are consecutive in Dn, for some n ∈
N ∪ {0}. Choose such an n. Likewise, choose m ∈ N ∪ {0} so that c and d are
consecutive in Dm. As g maps I linearly and increasingly onto J with slope being
a power of 2, it maps the set [a, b] ∩ Dn+k onto the set [c, d] ∩ Dm+k in an order-
preserving way, for all k ≥ 0. We know from Lemma 5.3.7 that φp(Akp) = Dk,
for all k ≥ 0, so we conclude that gφp maps the set [ap, bp] ∩ An+kp onto the set
[cp, cp] ∩ Am+k

p in an order-preserving way, for all k ≥ 0. It now follows from
Remark 5.3.6 that gφp maps the set {(1 − s)ap + sbp : s ∈ Akp} onto the set {(1 −
s)cp + sdp : s ∈ Akp} in an order-preserving way. Clearly this means that

gφp
(
(1− s)ap + sbp

)
= (1− s)cp + sdp,

for all s ∈ Akp and k ∈ Z. As the set Ap is dense in [0, 1], we conclude that the
map gφp is linear on φ−1p (I).

Now, the slope of the map gφp on the interval φ−1p (I) is, of course, the length
of the interval φ−1p (J) divided by the length of the interval φ−1p (I). The length of
the intervals φ−1p (I) and φ−1p (J) are µ̃p(I) and µ̃p(J), respectively. As the measure
of standard dyadic intervals with respect to µ̃p is pi(1 − p)j , for some i, j ∈ Z, the
statement about the slope of gφp follows.

Using the result above, we can say exactly what the elements of Fφp look like.
Indeed, we immediately get the following result as a consequence.

Proposition 5.3.10. Let p ∈ (0, 1). If g ∈ F , then gφp is piecewise linear. In
fact, if x0, . . . , xn is a standard dyadic partition associated to g, then there exist
integers i1, . . . , in, j1, . . . , jn, depending only on g, so that the map gφp is linear on
[φ−1p (xk−1), φ−1p (xk)] with slope pik(1− p)jk , for all k = 1, 2, . . . , n.
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Let us, at this point, prove the following well-known result about transformations
of the Lebesgue measure on an interval via a sufficiently nice map.

Proposition 5.3.11. Let I and J be open intervals in R, and let φ : I → J be an
order-preserving bijection. If φ−1 is continuously differentiable, the measure φ∗m
on J is absolutely continuous with respect to the Lebesgue measure on J with Radon-
Nikodym derivative

dφ∗m
dm

(x) = (φ−1)′(x),

for all x ∈ J .

Proof. It follows directly from the fundamental theorem of calculus that, for all a, b ∈
J with a < b,
∫ b

a

(φ−1)′(x) dm(x) = φ−1(b)− φ−1(a) = m
(
[φ−1(a), φ−1(b)]

)
= φ∗m

(
[a, b]

)
.

By Lemma 5.1.20, this means that φ∗m is absolutely continuous with respect to m
with the indicated Radon-Nikodym derivative.

Remark 5.3.12. At this point it is pretty clear that the action of Fφp on the unit
interval leaves the Lebesgue measure quasi-invariant. Indeed, we can even say ex-
plicitly what the Radon-Nikodym derivative looks like. Suppose that g ∈ F and that
x0, . . . , xn is a standard dyadic partition associated to g. We know from Proposi-
tion 5.3.10 that there exist i1, . . . , in, j1, . . . , jn, depending only on g, so that, with

Ik =
(
φ−1p (xk−1), φ−1p (xk)

)
and Jk = gφp(Ik),

the map gφp sends Ik linearly onto Jk with slope pik(1−p)jk , for all k = 1, 2, . . . , n.
Clearly, this means that g−φp maps the interval Jk linearly onto the interval Ik with
slope p−ik(1 − p)−jk . Therefore, it easily follows from Proposition 5.3.11 that
(gφp)∗m is absolutely continuous with respect to m, and that

d(gφp)∗m
dm

(x) =
n∑

k=1

(g−φp)′(x)1Jk(x) =
n∑

k=1

1(xk−1,xk)(g
−1φp(x))

pik(1− p)jk ,

for all x ∈ [0, 1].

Our next goal is to prove that the representations πφp
s are strongly continuous in

the parameter p. To do so, we start with the following result.

Lemma 5.3.13. Let g ∈ F . The three maps from (0, 1)× [0, 1] to [0, 1] given by

(p, x) 7→ φp(x), (p, x) 7→ φ−1p (x) and (p, x) 7→ gφp(x)

are all continuous.
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Proof. Denote these maps by Φ, Ψ and Θ, respectively, that is, Φ(p, x) = φp(x),
Ψ(p, x) = φ−1p (x) and Θ(p, x) = gφp(x). We start by showing that Φ is continuous.
It suffices to prove that pre-images of sets of the form [0, x), (x, y) and (y, 1] are
open, for dyadic rational numbers x, y ∈ [0, 1] with x < y. As the three cases are
very similar, we will prove that pre-images of set of the form (x, y) are open. So let x
and y be dyadic rational numbers in [0, 1] with x < y. We know from Lemma 5.3.8
that, given a dyadic rational number z with base-2 expansion

∑n
k=1 zk2−k,

φ−1p (z) =
n∑

k=1

zkp
k
k−1∏

j=0

(1− p
p

)zj
,

where z0 = 0. Obviously this expression varies continuously in p, so in particular,
both φ−1p (x) and φ−1p (y) vary continuously in p. As φ−1p is an increasing homeomor-
phism of [0, 1], for fixed p, we see that

Φ−1
(
(x, y)

)
=
{

(p, z) ∈ (0, 1)× [0, 1] : φ−1p (x) < z < φ−1p (y)
}
.

Clearly this shows that the set Φ−1
(
(x, y)

)
is open, as we noted that both φ−1p (x)

and φ−1p (y) vary continuously in p. Thus, Φ is continuous.
Now that we know that Φ is continuous, it is easy to see that Ψ is continuous.

Given a, b ∈ (0, 1) with a < b, we see that

Ψ−1
(
(a, b)

)
=
{

(p, x) ∈ (0, 1)× [0, 1] : Φ(p, a) < x < Φ(p, b)
}
.

Thus, by continuity of Φ, this set is open. Similarly one realizes that the pre-image
of [0, a) and (b, 1] are open, and we can, therefore, conclude that Ψ is continuous.
Moreover, it is easily seen that Θ(p, x) = Ψ(p, g(Φ(p, x))), so it follows that Θ is
continuous, as well.

At this point we are ready to prove that the representations πφp
s are also continu-

ous in the parameter p.

Proposition 5.3.14. The representations πφp
s are strongly continuous in both s and p,

that is, for all ξ ∈ H and g ∈ F , the map (p, s) 7→ π
φp
s (g)ξ is continuous from

(0, 1)× R to H.

Proof. Fix g ∈ F . We want to show that the map (p, s) 7→ π
φp
s (g)ξ is continuous,

for all ξ ∈ H. As {1(a,b) : 0 ≤ a < b ≤ 1} spans a dense subset of H, it suffices
to prove the statement for ξ in this set, so suppose that a, b ∈ [0, 1] with a < b.
Moreover, it suffices to prove that it is continuous on [c, d] × R, for all c, d ∈ (0, 1)
with c < d, so fix such c and d.

Let x0, . . . , xn be a standard dyadic partition associated to g, and choose integers
i1, . . . , in, j1, . . . , jn as in Proposition 5.3.10. By Remark 5.3.12,

(πφp
s (g)1(a,b))(x) =

n∑

k=1

(1(xk−1,xk)(g
−1φp(x))

pik(1− p)jk
) 1

2+is

1(a,b)(g
−φp(x)).
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As πφp
s (g) is linear, it suffices to prove continuity of each of the terms of the sum,

that is, by letting

fk(p, s) =
(1(xk−1,xk)(g

−1φp(x))

pik(1− p)jk
) 1

2+is

1(a,b)(g
−φp(x)),

it suffices to prove that fk is continuous from [c, d] × R to H, for all k = 1, . . . , n.
We will do so by using Proposition 5.1.25. Fix k ∈ {1, . . . , n}. As [c, d] is compact,
we may chooseM > 0 so that p−ik(1−p)−jk ≤M2, for all p ∈ [c, d], which means
that

|fk(p, s)| ≤ (p−ik(1− p)−jk)
1
2 ≤M,

for all p ∈ [c, d] and s ∈ R. Now, to get the desired conclusion from Proposi-
tion 5.1.25 we need to show that, for every (p0, s0) ∈ [c, d] × R, the map (p, s) 7→
fk(p, s)(x) is continuous at the point (p0, s0), for almost all x ∈ [0, 1]. It is easy to
see from the definition of fk that the map is continuous at (p0, s0), for all x ∈ [0, 1]
possibly excluding

gφp0 (a), gφp0 (b), φ−1p0 (g(xk−1)) and φ−1p0 (g(xk)),

as these are exactly the points where the transition between 0 and 1 happens for
the indicator functions in the definition of fk. Thus we can conclude from Propo-
sition 5.1.25 that the map (p, s) 7→ fk(p, s) is continuous on [c, d] × R, and, we
conclude that the map (p, s) 7→ π

φp
s (g) is strong operator continuous from (0, 1)×R

to H.

As we now know that our family of representations is continuous in both param-
eters, a natural question to ask is what happens when p approaches zero and one.

Lemma 5.3.15. For every x ∈ (0, 1) and g ∈ F we have

lim
p→0

φ−1p (x) = 0, lim
p→1

φ−1p (x) = 1 and lim
p→0

gφp(x) = lim
p→1

gφp(x) = x.

Proof. We prove the statements for p → 1. The case p → 0 is analogous. Choose
some m ∈ N so that 1

2m < x. Since φ−1p is increasing, for each p ∈ (0, 1), it suffices
to prove that limp→1 φ

−1
p ( 1

2m ) = 1. This, though, follows directly from Lemma 5.3.8
as it tells us that φ−1p ( 1

2m ) = pm, which goes to one as p goes to one. Now, let us
prove that limp→1 g

φpn (x) = x. By Lemma 5.3.10 we may choose dyadic rational
numbers a and b such that gφp maps [0, φ−1p (a)] linearly onto [0, φ−1p (b)], for all p ∈
(0, 1). This means that

gφp(y) =
φ−1
p (b)

φ−1
p (a)

y

for y ∈ [0, φ−1p (a)]. As limp→1 φ
−1
p (a) = 1 by the first part of the proof, we

know that x ∈ [0, φ−1p (a)], for p sufficiently close to 1, and, as we also know that
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limp→1 φ
−1
p (b) = 1, we see that

lim
p→1

gφp(x) = lim
p→1

φ−1
p (b)

φ−1
p (a)

x = x,

as wanted

We can now prove that the representations πφp
s converge strongly to the trivial

representation on H for p going to zero or one.

Proposition 5.3.16. Given s ∈ R, the representation πφp
s converges strongly to the

trivial representation as p goes to 0 or 1, that is,

lim
p→0
‖πφp

s (g)ξ − ξ‖2 = 0 and lim
p→1
‖πφp

s (g)ξ − ξ‖2 = 0

for each g ∈ F and ξ ∈ H.

Proof. We will prove the statement for p → 0. The case p → 1 is analogue. Since
the functions 1(a,b), for a, b ∈ (0, 1) with a < b, spans a dense subset of H, it
suffices to check the statement for ξ of this form. Fix such a and b, as well as g ∈ F ,
and choose a standard dyadic partition x0, x1, . . . , xn associated to g. Let us for
simplicity of notation let c = xn−1 and d = g(xn−1). We know from Lemma 5.3.15
that limp→0 φ

−1
p (d) = 0 and limp→0 g

φp(a) = a, so, as a > 0 by assumption, we
know that φ−1p (d) < gφp(a) for sufficiently small p. Fix such a p. If x ∈ [0, 1] with
g−φp(x) ∈ (a, b), then x ∈ (gφp(a), gφp(b)). Now,

(gφp(a), gφp(b)) ⊆ (φ−1p (d), 1) = (φ−1p (g(c)), 1),

which means that x ∈ (φ−1p (g(c)), 1), so that g−1φp(x) ∈ (c, 1). As the intervals
(xk−1, xk) are disjoint for different values of k, we get that

1(xk−1,xk)(g
−1φp(x))1(a,b)(g

−φp(x)) = 0,

for all x ∈ [0, 1] and all k ∈ {1, 2, . . . , n− 1}. Moreover, in the case k = n, we get

1(xk−1,xk)(g
−1φp(x))1(a,b)(g

−φp(x)) = 1(a,b)(g
−φp(x)).

We now get from Remark 5.3.12 that

πφp
s (g)1(a,b)(x) =

( 1− φ−1p (c)

1− φ−1p (d)

) 1
2+is

1(a,b)(g
−φp(x)) (5.4)

for all x ∈ [0, 1], whenever p is sufficiently close to 0. From this point the conclu-
sion easily follows by using the Lebesgue dominated convergence theorem. Indeed,
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if (pn)n∈N is any sequence in (0, 1) converging to 0, then it follows from expres-
sion (5.4) and Lemma 5.3.15 that

|πφpn
s (g)1(a,b)(x)− 1(a,b)(x)|2

converges to zero as n→∞, for all x ∈ [0, 1] with the possible exception of a and b.
By the Lebesgue dominated convergence theorem, this implies that

‖πφpn
s (g)1(a,b) − 1(a,b)‖22 → 0

as n → ∞. We conclude that the representation converge strongly to the trivial
representation on H.

5.4 A construction

In this section we will describe a way of constructing maps satisfying condition (?) in
order to generate families of irreducible representations of the Thompson group F .
The strategy is to construct countable dense subsets of [0, 1] on which F acts by
order-preserving bijections, define an order-preserving map ϕ from this set to the set
of dyadic rational numbers in [0, 1] and then extend this map to a homeomorphism of
the unit interval. By constructing the set in a certain way, we can say exactly how the
elements gϕ will look like, for g ∈ F , and, therefore, decide whether or not the map
satisfies condition (?).

As explained in Section 5.2, the Thompson group F acts on the infinite binary
rooted tree by certain permutations of finite subtrees, or, in other words, it acts on the
Cantor set by certain prefix changes. We will construct the countable dense subsets
of [0, 1] we are interested in as labellings for the infinite binary rooted tree, and then
use the action of the Thompson group of this tree to obtain an action on these sets.
Before we do this, let us discuss a natural order on the vertices of the this tree, as well
as a natural set of labels. When we visualize the infinite binary tree rooted as follows.

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

We implicitly think of it as an ordered tree in a sense, as we have decided on some
convention of left and right edges. This produces a natural ordering on the vertices of
the tree, which, intuitively speaking, is given by saying that a vertex is less than an-
other vertex if it is “to the left of” that other vertex. This ordering is exactly the same
which is produced by labelling the vertices by dyadic rational numbers or rational
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numbers as shows in the end of Section 2.3. There is also a very natural way of la-
belling the tree with finite word in the letter {0, 1}, so let us explain this in details. Let
us denote the set of finite words in the letters {0, 1}, including the empty word, by S.
The empty word will be denoted ∅. Let us define an order on S as follows. Given
two distinct words α and β in S, we can choose a largest common initial segment γ,
meaning the largest (possibly empty) word γ such that α = γα′ and β = γβ′, for
some finite words α′ and β′ in S. Then α ≤ β if and only if one of the following
statements are true:

◦ β′ = ∅ and α′ begins with a 0;
◦ α′ = ∅ and β′ begins with a 1;
◦ α′ begins with a 0 and β′ begins with a 1.

Here “begins with” should be understood as the word not being empty, and the left
most letter being the specified one. As an example, 000 ≤ 00, 00 ≤ 001 and 010 ≤
011. It is easy to see that, if we label the root of the infinite binary rooted tree by ∅
and then label the left and right children of a vertex by adding a zero and a one to
the right of the word, respectively, we get a labelling which is in accordance with the
natural order on the tree. To illustrate, the first five levels of the tree looks as follows.

∅

0

00

000

0000 0001

001

0010 0011

01

010

0100 0101

011

0110 0111

1

10

100

1000 1001

101

1010 1011

11

110

1100 1101

111

1110 1111

Now, we want to label the tree with a dense set in (0, 1), and then obtain an action
of F on [0, 1] by increasing homeomorphisms. If we do have a labelling of the tree
with a countable dense subset X, so that its order matches the order on the tree, then
we get an order-preserving bijection ϕ from X to the set of dyadic rational numbers
in the interval (0, 1), as we also have a labelling of the tree with the latter set. This
map can then be extended to an increasing homeomorphism of [0, 1] by first letting
ϕ(0) = 0 and then

ϕ(x) = sup{ϕ(y) : y ∈ X, y ≤ x},
for x ∈ (0, 1]. As both X and the set of dyadic rational numbers in (0, 1) are dense
in [0, 1], we end up with an order-preserving bijection, in other words, an order-
preserving homeomorphism. A natural question to ask is which dense subsets we
can do this with, and, as it turns out, this is possible to do with all countable, dense
subsets of (0, 1). However, it will not be all of these which produce maps that satisfy
condition (?), so we will need to do something particular to make sure this happens.
Now, the reason that we can label the infinite binary tree with any countable dense
subset of (0, 1) in an way which matches the order of the tree is because all such
sets are in fact order-isomorphic. This type of ordered set is known as a countable,
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dense, linear order without end-points, and it is a result due to Cantor that these are
all isomorphic; see for example [20, Theorem 541].

Let us describe the construction of the countable, dense subsets of (0, 1). Fix
some order preserving homeomorphism f : [0, 2] → [0, 1]. This function will serve
as our “parameter” on which the construction depends. From this map we obtain two
injective, order preserving, continuous maps f0, f1 : [0, 1] → [0, 1], with f0(1) =
f1(0), by defining

f0(x) = f(x) and f1(x) = f(x+ 1),

for all x ∈ [0, 1]. Let us denote the point f(1) by zf , so that f0(1) = f1(0) = zf .
Note that zf ∈ (0, 1) and that f0 and f1 are order-preserving homeomorphisms from
[0, 1] to [0, zf ] and [zf , 1], respectively. Now, we want to use these functions to label
the infinite binary tree, and we want to do in in a way so that f0 and f1 map the labels
on the entire tree injectively onto the left and right half of the tree, respectively. This
we will make more precise below.

Let us recursively define a sequence of subsets (Bnf )n∈N of [0, 1]. First we start
by letting B0

f = {0, 1}, and then define

Bnf = f0(Bn−1f ) ∪ f1(Bn−1f )

for all n ∈ N. In this way we get a sequence of sets, and in the following lemma
we will prove a few easy results about these sets. However, we will start by intro-
ducing some notation. Given a word w ∈ S different from the empty word, with
w = w1w2 · · ·wn say, for some w1, . . . , wn ∈ {0, 1}, we will let fw denote the
composition fw1 ◦ fw2 ◦ · · · ◦ fwn . Moreover, we will let f∅ denote the identity on
the interval [0, 1]. We clearly have fw ◦ fv = fwv , for every w, v ∈ S.

Lemma 5.4.1. With the notation above, the following statements hold:

(1) the sets B0
f ,B

1
f ,B

2
f , . . . are increasing;

(2) for each n ∈ N ∪ {0},

Bn+1
f \ {0, 1} =

{
fw(zf ) : w ∈ S has length at most n

}
,

so that, in particular

Bn+1
f \Bnf =

{
fw(zf ) : w ∈ S has length n

}

(3) if w, v ∈ S are distinct, then fw(zf ) and fv(zf ) are distinct, so that, in
particular, the sets Bnf and Bnf \ Bn−1f have 2n + 1 and 2n−1 elements, for
every n ∈ N, respectively;

(4) for each pair w, v ∈ S, we have that fw(zf ) < fv(zf ) if and only if w < v
with the usual order on S;



106 CHAPTER 5. FAMILIES OF IRREDUCIBLE REPRESENTATIONS

(5) the sets f0(Bnf \Bn−1f ) and f1(Bnf \Bn−1f ) are disjoint, for every n ∈ N, and

f0(Bnf \Bn−1f ) ∪ f1(Bnf \Bn−1f ) = Bn+1
f \Bnf .

Proof. Clearly (3) follows directly from (4) and (2), so let us start by proving (1).
That B0

f ⊆ B1
f is obviously satisfied, as B1

f = {0, zf , 1}, and, supposing that
Bn−1f ⊆ Bnf , we see that

Bnf = f0(Bn−1f ) ∪ f1(Bn−1f ) ⊆ f0(Bnf ) ∪ f1(Bnf ) = Bn+1
f .

Thus, (1) follows by induction.
Next, let us argue that (5) holds. First of all, the images of f0 and f1 only has zf

in common, so the sets f0(Bnf \Bn−1f ) and f1(Bnf \Bn−1f ) are obviously disjoint if
neither contains zf . Since the maps f0 and f1 are injective and 0, 1 /∈ Bnf \ Bn−1f ,
this follows from the fact that zf = f0(1) = f1(0). Now, along the same lines, we
realize that

f0(Bnf ) \ (f0(Bn−1f ) ∪ f1(Bn−1f )) = f0(Bnf ) \ f0(Bn−1f ),

as the images of f0 and f1 only have zf in common. We get a similar statement
with 0 and 1 interchanged. Using these two equations, we see that

Bn+1
f \Bnf =

(
f0(Bnf ) \ f0(Bn−1f )

)
∪
(
f1(Bnf ) \ f1(Bn−1f )

)
.

Because both f0 and f1 are injective maps, the right hand side is exactly

f0(Bnf \Bn−1f ) ∪ f1(Bnf \Bn−1f ),

which means that we have proved (5).
Let us proceed to prove (2). We start by proving the description Bn+1

f \ Bnf ,
and we do this by induction on n. Clearly it is true for n = 0, so suppose that
the description holds for some n ≥ 0, that is, Bn+1

f \ Bnf is the set of elements
of the form fw(zf ) with w ∈ S a word of length n. Clearly f0(Bn+1

f \ Bnf ) and
f1(Bn+1

f \ Bnf ) are the sets of elements of the form fw(zf ) with w ∈ S a word
of length n + 1 beginning with 0 and 1, respectively. Thus their union is the set
of elements of the form fw(zf ) with w ∈ S a word of length n + 1. By (5) their
union is exactly Bn+2

f \Bn+1
f , so we have proved what we wanted to prove. Now, as

Bm+1
f \ {0, 1} =

⋃m
k=0 B

k+1
f \Bkf , the description of this set follows from what we

have already proved.
Next, let us prove (4). Suppose that w, v ∈ S, and let us prove the statement by

induction over the maximum of the lengths of the two words. If both words have
length equal to zero, then the statement is trivial. Suppose, therefore, that we have
proved the statement for pairs of words for which one has length n and the other less
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than or equal to n, for some n ≥ 0, and let us prove the statement for n+ 1. We may
assume that w has length n + 1 and v length less than or equal to n + 1. The case
where v has length n + 1 is similar. Since w is not the empty word, we may write
w = w1w

′, for some w1 ∈ {0, 1} and w′ ∈ S. Now, suppose that v is the empty
word. Then w < v if and only if w1 = 0, by definition of the order on S. Since v is
the empty word and w is not, we know from (2) that fv(zf ) = zf and fw(zf ) 6= zf .
As fw(zf ) ∈ [0, zf ] if and only if w1 = 0, we have proved the statement in the case
where v was empty. Now, assume that v is not empty, so that we may write v = v1v

′,
for some v1 ∈ {0, 1} and v′ ∈ S. We will consider a few cases. Suppose first that
w1 = v1. In this case fw(zf ) < fv(zf ) if and only if fw′(zf ) < fv′(zf ) since fw1

is injective and order-preserving. Moreover, w < v if and only if w′ < v′, so the
conclusion follows from the induction hypothesis, as the maximum of the lengths
of w′ and v′ is n. Suppose instead that w1 6= v1. Then w < v if and only if w1 = 0
and v1 = 1. Since both w and v are non-empty, both fw(zf ) and fv(zf ) are different
from zf , and, since w1 6= v1, on of these lies on [0, zf ] and one in [zf , 1]. Hence,
fw(zf ) < fv(zf ) if and only if w1 = 0 and v1 = 1. This concludes the induction
step, and so we have proved (4).

Letting Bf denote the union of the sets Bnf , the above lemma tells us that Bf =
{fw(zf ) : w ∈ S} ∪ {0, 1}. Moreover, it tells us that the order on this set, as a subset
of [0, 1], agrees with the one on the set S. Thus, we may label the infinite binary tree
with the elements of {fw(zf ) : w ∈ S} in the way we are interested in, namely, in a
way that agrees with the order on the vertices we discussed. Indeed, if we consider
the labelling by the elements of S described above, then the new labelling is replacing
the label w with the label fw(zf ), for all w ∈ S. The first four levels of the resulting
labelling look as follows:

zf

f0(zf )

f00(zf )

f000(zf ) f001(zf )

f01(zf )

f010(zf ) f011(zf )

f1(zf )

f10(zf )

f100(zf ) f101(zf )

f11(zf )

f110(zf ) f111(zf )

So far we have obtained a countable subset of (0, 1) and an action of F on this
set, namely the one induced from the action on the tree. However, for it to be of
interest to us, we need too know that it is dense and that the corresponding home-
omorphism of [0, 1] satisfies condition (?). We will start by focusing on the latter
problem, namely, the problem of determining when the map satisfied condition (?).
If the set is dense, then we will denote the map we obtain by φf .

First, let us assume that Bf is dense and explain how the map φf is obtained from
the set Bf . We already explained above how the map was extended from Bf to all
of [0, 1], so let us explain how the maps from Bf to D looks. This map is defined
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on Bnf as the order-preserving bijection onto Dn, for each n ∈ N ∪ {0}. However,
we can say more explicitly how it looks on an element fw(zf ) in terms of w. Indeed,
φf (zf ) = 1

2 and, given non-empty w ∈ S, w = w1 · · ·wn say, we have

φf
(
fw(zf )

)
=

n∑

k=1

wk2−k + 2−(n+1). (5.5)

Moreover, we can actually say explicitly how the elements gφf look in terms of the
functions fw, for w ∈ S. To express this, we just need to note that, since both f0
and f1 are injective, the maps fw, for w ∈ S, are all injective, as well. Therefore,
we can consider their inverses. Given some w ∈ S, the image of [0, 1] by fw is some
closed interval in [0, 1], and on this interval the inverse f−1w is defined. It is easy to
see that, given w, v ∈ S, we have f−1w ◦ fwv = fv .

Lemma 5.4.2. Supposing that Bf is dense in [0, 1], and recall the definition of φf
from above. Suppose that g : [0, 1] → [0, 1] maps a dyadic interval I , of length 2−n,
linearly onto another dyadic interval J , of length 2−m, for some n,m ∈ N. Let∑n+1
k=1 xk2−k and

∑m+1
k=1 yk2−k be base 2 expansion of the midpoint of I and J ,

respectively. Then
φ−1f gφf (z) = fy1y2···ymf

−1
x1x2···xn

(z)

for all z in the interval φ−1f (I).

Proof. First, let us note that xn+1 = ym+1 = 1, as the intervals I and J has
length 2−n and 2−m, respectively. Thus, I and J are the images of the cylinder
sets Sx1,...,xn and Sy1,...,ym via κ, respectively, as explained in Remark 5.2.7.

Now, let us rather prove that φ−1f g(z) = fy1···ymf
−1
x1···xn

φ−1f (z), for all z ∈ I , as
this will clearly imply the statement of the lemma. As the set of dyadic rational points
in the interior of I is dense in I , it suffices to check the formula for these points. Let z
be a dyadic rational point in the interior of I . From Remark 5.2.7 we know z has the
form

z =
∑n
k=1 xk2−k +

∑j
k=1 zk2−(n+k)

for some j ∈ N and z1, z2, . . . , zj ∈ {0, 1} with zj = 1. From Equation (5.5) we
know that φ−1f (z) = fx1...xnz1...zj−1

(zf ), so that

fy1···ymf
−1
x1···xn

φ−1f (z) = fy1···ymf
−1
x1···xn

(fx1...xnz1...zj−1
(zf ))

= fy1···ym(fz1...zj−1
(zf ))

= fy1···ymz1...zj−1
(zf ).

As g maps I linearly onto J , we know from Remark 5.2.7 that

g(z) =
∑m
k=1 yk2−k +

∑j
k=1 zk2−(m+k).
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Using Equation (5.5), we see that the right hand side is exactly fy1···ymz1...zj (zf ).
This proves that φ−1f g(z) = fy1···ymf

−1
x1···xn

φ−1f (z), which was what we needed to
prove.

By applying the above lemma to standard dyadic partitions associated to the el-
ements of F , we get a description the elements gφf , namely, that they are piecewise
of the form fy1y2···ymf

−1
x1x2···xn

. Using this, it is easy to determine when the action
of Fφf leaves the Lebesgue measure quasi-invariant. To do this, let us introduce the
notion of absolutely continuous functions and recall a few results about these.

Definition 5.4.3. Let I ⊆ R be a closed interval, and let h be a complex valued
function on I . Then h is said to be absolutely continuous if, for every ε > 0, there
exists some δ > 0 so that, for any finite collection (a1, b1), . . . , (an, bn) of disjoint
subintervals of I with

∑n
k=1 |bk − ak| < δ we have

∑n
k=1 |h(bk)− h(ak)| < ε

It is easy to see from the definition that absolutely continuous functions are also
uniformly continuous. The following theorem gives equivalent characterizations of
absolutely continuous functions. A proof can be found in [28, Theorem 3.35]

Theorem 5.4.4. Given some function h : [a, b] → C, the following conditions are
equivalent:

(1) h is absolutely continuous on [a, b];

(2) h is continuous and differentiable almost everywhere with h′ integrable;

(3) h(x) = h(a) +
∫ x
a
g dm, for some integrable function g;

(4) h is differentiable almost everywhere, the derivative h′ is an integrable func-
tion and h(x) = h(a) +

∫ x
a
h′ dm.

Moreover, if (3) holds, then g = h′ almost everywhere.

For our purposes, we will also need another characterization of absolute conti-
nuity, and to state this characterization, we need to introduce the notions of bounded
variation and of Luzin’s condition N.

Definition 5.4.5. A function h : [a, b]→ C is said to have bounded variation if there
exists a constant M > 0 so that, for every partition

a = x0 < x1 < · · · < xn < xn + 1 = b,

we have
∑n
k=0 |h(xk)− h(xk+1)| < M

Definition 5.4.6. A function f : [a, b] → C is said to satisfy the Luzin condition or
satisfy Luzin’s condition N if f maps null sets to null sets, that is, if f(N) is a null
set for every null set N ⊆ [a, b].
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The following characterization of absolutely continuous functions is known as
the Vitali–Banach–Zaretskij Theorem. A proof can be found in [2, Theorem 3.9].

Theorem 5.4.7. A function is absolutely continuous if and only if it is continuous, of
bounded variation and satisfies Luzin’s condition N.

With the above theorem we immediately get the following easy result.

Proposition 5.4.8. Let I and J be closed intervals in R, and let h : I → J be an
increasing homeomorphism. Then

(1) h is absolutely continuous if and only if h maps null sets to null sets.

(2) the image measure h∗m is absolutely continuous with respect to the Lebesgue
measure if and only if h−1 is an absolutely continuous function.

Moreover, compositions of strictly increasing, absolutely continuous functions are
again absolutely continuous.

Proof. First of all, it is easy to see from the definition that h automatically has
bounded variation, as h is increasing and bounded. Thus, it follows from Theo-
rem 5.4.7 that it it absolutely continuous if and only if it satisfies Luzin’s condition N,
that is, if it maps null sets to null sets. This proves the first part.

Now, as h∗m(A) = m(h−1(A)), for all measurable setsA ⊆ J , we see that h∗m
is absolutely continuous if and only if h−1(A) is a null set whenever A is a null set.
By the first part this is equivalent to the fact that h−1 is absolutely continuous, as h−1

is also an increasing homeomorphism.
By the first part we know that strictly increasing continuous maps are absolutely

continuous if and only if they map null sets to null sets. Clearly compositions of
increasing homeomorphisms are increasing homeomorphisms, so, since the com-
position of maps mapping null sets to null sets clearly also enjoys this property, it
follows from the first part that the composition of increasing, absolutely continuous
homeomorphisms are again absolutely continuous.

Remark 5.4.9. An increasing continuous function from [0, 1] to [0, 1] is called purely
singular if it is differentiable almost everywhere with derivative 0. Such maps, ob-
viously, cannot be absolutely continuous, as they would be constantly equal to zero
by Theorem 5.4.4. As explained in [63], the Minkowski questionmark fucntion ? is
a singular function. Thus by the above proposition and Proposition 5.1.22, the repre-
sentation π?

s is not unitarily equivalent to the representaion πid
t , for all s, t ∈ R. This

means that the one-parameter families (π?
s)s∈R and (πid

s )s∈R are really distinct.

The above proposition allows us to describe easily when the action of Fφf on the
unit interval leaves the Lebesgue measure quasi-invariant in terms of the function f .

Proposition 5.4.10. Suppose that we are in the situation where Bf is dense in [0, 1].
Then Fφf leaves the Lebesgue measure quasi-invariant if and only if both f and f−1

are absolutely continuous.
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Proof. We know from Proposition 5.4.8, that the action of Fφf leaves the Lebesgue
measure quasi-invariant if and only if gφf is absolutely continuous, for all g ∈ F .
Clearly, f and f−1 are absolutely continuous if and only if the maps f0, f1, f−10

and f−11 are all absolutely continuous, so what we need to prove is that gφf is abso-
lutely continuous, for all g ∈ F if and only if f0, f1, f−10 and f−11 are all absolutely
continuous.

One of the implications is easy. Suppose that f0, f1, f−10 and f−11 are absolutely
continuous, and let g ∈ F . Choose a standard dyadic partition x0, x1, · · · , xn as-
sociated to to g. By Lemma 5.4.2 we know that gφf has the form fw ◦ f−1v , for
some w, v ∈ S, on each of the intervals [φ−1f (xk−1), φ−1f (xk)], for n = 1, 2, . . . , n.
Since we know from Proposition 5.4.8 that the composition of strictly increasing, ab-
solutely continuous maps are again absolutely continuous, it follows that functions
of the form fw ◦ f−1v are absolutely continuous, since they are compositions of the
functions f0, f1, f−10 and f−11 . This shows that gφf is absolutely continuous on each
of these intervals. It is rather easy to see from the definition of absolute continuity
that a function which is absolutely continuous on all the subintervals from a finite
partition of the interval is itself absolutely continuous. Thus we conclude that gφf is
absolutely continuous.

Now, suppose instead that all the elements gφf are absolutely continuous, for g ∈
F , and let us prove that the functions f0, f1, f−10 and f−11 are absolutely continuous.
Since the proof in the four cases are very analogous, we will do the proof in the case
of f0 and then explain what you would need to change in the three other cases. For
each n ∈ N, let gn be an element of F such that gn(x) = 1

2x, for x ∈ [0, 2
n−1
2n ]. It is

not difficult to see that such an element exists, and, indeed, by Lemma 2.2.4 we just
need to specify two standard dyadic partitions in which will ensure this. For this one
may choose the partitions

{ 2k−1
2k

: k = 0, . . . , n+ 1} ∪ {1} and { 2k−1
2k+1 : k = 0, . . . , n} ∪ { 12 , 1}.

If the reader is familiar with the representation of the elements of F as tree diagrams,
the element gn is represented in the following way:

n
−→

n

Now, put xn = φ−1f ( 2n−1
2n ), put g̃n = g

φf
n and let us prove that g̃n(x) = f0(x), for

all x ∈ [0, xn]. Afterwards we will explain why this implies that f0 is absolutely
continuous. Suppose that we are given a word w ∈ S so that fw(zf ) ∈ [0, xn]. Then
φf (fw(zf )) ∈ [0, 2

n−1
2n ], which means that

gφf (fw(zf )) = φ−1f gn(φf (fw(zf ))) = φ−1f ( 1
2φf (fw(zf )))
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Since fw(zf ) is a dyadic rational number and dividing a dyadic rational number by
two amounts to shifting the coefficient of the dyadic expansion one place to the left
and inserting a zero on the first place, it is easy to see from equation (5.5), that

φ−1f ( 1
2φf (fw(zf ))) = f0w(zf ) = f0(fw(zf )).

Hence, g̃n(x) = f0(x), for all x ∈ [0, xn] ∩ (Bf \ {0, 1}), as we know from
Lemma 5.4.1 that Bf \{0, 1} = {fv(zf ) : v ∈ S}. Since we have assumed that Bf is
dense in the unit interval, we conclude that g̃n(x) = f0(x), for all x ∈ [0, xn]. Let us
now explain why this implies that f0 is absolutely continuous. By Proposition 5.4.8
we just need to prove that f0 maps null sets to null sets. Suppose that N ⊆ [0, 1]
is a null set. We have assumed that gφf is absolutely continuous, for all g ∈ F . In
particular, f0 is absolutely continuous on the interval [0, xn], for each n ∈ N, as g̃n is
absolutely continuous for all n ∈ N. This means that f0(N ∩ [0, xn]) is a null set, for
each n ∈ N. As limn→∞ xn = 1, it follows that f0(N \{1}) =

⋃∞
n=1 f(N∩[0, xn]),

which clearly means that f0(N) is a null set. Thus, we conclude that f0 is absolutely
continuous. Similarly we prove that f−10 is absolutely continuous by replacing gn
with g−1n , as f−10 is defined on [0, zf ] and it follows from what we have already
proved that g̃−1n (x) = f−10 (x), for all x ∈ [0, φ−1f ( 2n−1

2n+1 )].
Now, to prove that f1 and f−11 are absolutely continuous, one does the same, but

replaces gn with the element defined by the standard dyadic partitions:

{0} ∪ { 1
2k

: k = 0, . . . , n+ 1} and {0, 12} ∪ { 2
k+1
2k+1 : k = 0, . . . , n}.

In term of tree diagrams, this is the element defined by:

n −→ n

This element has the form x 7→ 1
2x+ 1

2 , for x ∈ [ 1
2n , 1].

This proposition tells us exactly when the map φp satisfies condition (?), assum-
ing that Bf is dense in [0, 1]. Let us consider the question of when Bf is actually
dense. To do so, let start by introducing the notion of Lipschitz continuity. This
makes sense in general metric space, but we only need if for functions on closed and
bounded intervals of R.

Definition 5.4.11. A function h : [a, b] → C is called Lipschitz if there exists some
k ≥ 0 such that

|h(y)− h(x)| ≤ k|y − x|,
for all x, y ∈ [a, b]. Furthermore, h is called a contraction if this happens for
some k < 1. In general, the smallest possible k is called the Lipschitz constant.
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It is easy to see that Lipschitz continuous maps are also absolutely continuous.
The following propositions gives a characterization of Lipschitz continuity. As this is
an easy consequence of the results we have already listed, we have included a proof
of this.

Proposition 5.4.12. A function h : [a, b]→ C is Lipschitz continuous if and only if it
may be written as

h(x) = h(a) +

∫ x

a

g dm

for some essentially bounded function g. Moreover, the Lipschitz constant of h is
exactly ‖g‖∞.

Proof. Assume that the function h is Lipschitz, and let k be so that |h(y)− h(x)| ≤
k|y − x|. As mentioned above, it is evident from the definitions that h is absolutely
continuous, so, in particular, we know from Theorem 5.4.4 that h is differentiable
almost everywhere. Clearly, |h′(x)| ≤ k in all points of differentiability, which
means that h′ is essentially bounded with ‖h′‖∞ ≤ k. By Theorem 5.4.4 we know
that

h(x) = h(a) +

∫ x

a

h′ dm,

so this takes care of the first implication.
Now, for the converse direction, assume that h has the desired form. Then h is

absolutely continuous by Theorem 5.4.4, and, since

|h(y)− h(x)| ≤
∫ y

x

|g| dm ≤ (y − x)‖g‖∞,

for x, y ∈ [a, b] with x < y, we see that h is Lipschitz with Lipschitz constant no
greater than ‖g‖∞. This proves that h is Lipschitz if and only if it has the desired
form. Moreover, we have actually also shown that the Lipschitz constant must be
equal to ‖g‖∞.

At this point, we are able to give a sufficient condition for when Bf is dense
in [0, 1]. Namely that f is a contraction.

Proposition 5.4.13. If f is a contraction, then Bf is dense in [0, 1].

Proof. By assumption we may choose some positive number k < 1 so that |f(x) −
f(y)| ≤ k|x− y|, for all x, y ∈ [0, 2]. In particular, f0 and f1 are both contractions,
as well, with the same constant k. Now, it is straightforward to check by induction
that consecutive elements in Bnf has distance at most kn to each other. In particular,
we get that, for each x ∈ [0, 1] and n ∈ N, there exists an element y ∈ Bnf with
|x− y| ≤ kn

2 . Evidently this means that Bf is dense in [0, 1].
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The proposition above is our only sufficient condition we have for Bf to be dense
in [0, 1]. We will see in Remark 5.5.2, that it is not necessary, though.

Proposition 5.4.14. Suppose that Bf is dense in [0, 1]. Then f0(x) 6= x and f1(x) 6=
x, for all x ∈ (0, 1), or, in other words, the graphs of f0 and f1 do not intersect the
diagonal except in 0 and 1, respectively.

Proof. Suppose that f0 intersects the diagonal, that is, there is some x ∈ (0, 1) so
that f0(x) = x. The case where f1 intersects the diagonal is similar. First note that
x < zf , since we otherwise would have zf = 1, contradicting the fact that f is a
homeomorphism. Let us prove that Bf \ {0} is contained in [x, 1]. Since x > 0, this
will prove that (0, x) ∩ Bf is empty, so that, in particular, Bf is not dense in [0, 1].
This is easily proved by induction. Clearly y > x, for all y ∈ B0

f \ {0} = {1},
and supposing that y > x, for all y ∈ Bnf \ {0}, we see that, since f0 is strictly
increasing, f0(y) > f0(x) = x, for all y ∈ Bnf \ {0}. Moreover, we also see that
f1(y) ≥ zf > x, for all y ∈ Bnf . Since Bn+1

f \ {0} = f0(Bnf \ {0}) ∪ f1(Bnf ),
we conclude that y > x, for all y ∈ Bn+1

f . Thus, by induction, Bf is contained
in [x, 1].

This gives us a necessary criterion for when Bf is dense in [0, 1], but we can say
a bit more about the set than this.

Proposition 5.4.15. The limits limn→∞ fn0 (zf ) and limn→∞ fn1 (zf ) both exists. Let
us denote them x0 and x1, respectively. Then x0 is the largest point fixed by f0, and
x1 is the smallest point fixed by f1. Moreover, Bf \ {0, 1} is contained in [x0, x1].

Proof. First note that the sets of fixed points of f0 and f1 are closed, and hence com-
pact. Since zf < 1 and f0 strictly increasing, we get, by repeated application of f0,
that fn0 (zf ) is a strictly decreasing sequence. Hence it is convergent as it is bounded
from below. Similarly the sequence fn1 (zf ) is increasing and also convergent. Let
us prove that x0 and x1 are largest and smallest among the fixed points of f0 and f1,
respectively, that is, x′0 ≤ x0 and x′1 ≥ x1, for all x′0, x

′
1 ∈ [0, 1] with f0(x′0) = x′0

and f1(x′1) = x′1. So suppose that we are given such x′0 and x′1. It follows from the
proof of Proposition 5.4.14 that Bf is contained [x′0, x

′
1], but then clearly x0 and x1

are contained in this interval, since they are both in the closure of Bf . This shows
that x′0 ≤ x0 and x′1 ≥ x1, as desired. That Bf is contained in [x0, x1] follows from
the proof of Proposition 5.4.14, as well.

Proposition 5.4.16. Either Bf is dense in [0, 1] or nowhere dense in [0, 1].

Proof. Suppose that Bf is not dense in [0, 1], and let us prove that it is nowhere
dense in [0, 1]. It suffices to prove that in-between each pair of element in Bf there
is an open interval which does not intersect Bf . For, if the closure of Bf contains
an open interval, then this must contains infinitely many points from Bf , and so will
any interval in-between these points.



5.5. A RE-CONSTRUCTION 115

By assumption we may choose some open interval (a, b) in [0, 1] which does not
intersect Bf . We are going to prove the statement by induction in the following sense.
We will prove by induction that, for all n ∈ N, given two consecutive elements in Bnf ,
there exist an open interval in-between these which does not intersect Bf . This will
clearly imply that there exists such an interval in-between each pair of points in Bf .
Clearly the statement is true for n = 0 since B0

f = {0, 1}. So suppose that we
have proved the statement for Bnf , and let us prove it for Bn+1

f . Let x, y ∈ Bn+1
f be

consecutive. Then x and y are either both in the image of f0 or both in the image
of f1. We may assume that it is f0 since the case of f1 is similar. This means, by
definition of Bn+1

f , that x = f0(x′) and y = f0(y′), for some consecutive elements x′

and y′ in Bnf . Now, let I be an open interval in-between x′ and y′ which does not
intersect Bf . Then we see that

f0(I) ∩Bf = f0(I) ∩ f0(Bf ) = f0(I ∩Bf ) = ∅.

Here we used that Bf = f0(Bf ) ∪ f1(Bf ), so that the intersection of Bf with the
image of f0 is exactly f0(Bf ). Since f0(I) is an interval in-between x and y since f0
is strictly increasing, we have proved the desired statement. Thus it follows that Bf
is nowhere dense in [0, 1].

5.5 A re-construction

In the last section we introduced a construction to obtain functions φf satisfying
condition (?), under the assumption that the set Bf is dense in [0, 1]. A natural
question to ask is whether we can obtain interesting maps satisfying condition (?)
using this method. It turns out that this is indeed the case, as we will prove that all
maps satisfying condition (?) can be obtained in this fashion. Moreover, we already
know of some maps satisfying condition (?), and we will describe how to obtain these
using this construction.

Proposition 5.5.1. Suppose that ϕ is a map satisfying condition (?). Then there exists
a unique increasing homeomorphism f : [0, 2] → [0, 1] so that Bf is dense in [0, 1]
and ϕ = φf . Indeed, this f is given by

f(x) =

{
ϕ−1( 1

2ϕ(x)) for x ∈ [0, 1]

ϕ−1( 1
2ϕ(x− 1) + 1

2 ) for x ∈ [1, 2]
.

In particular, the two functions f0 and f1 are given by f0(x) = ϕ−1( 1
2ϕ(x)) and

f1(x) = ϕ−1( 1
2ϕ(x) + 1

2 ), respectively.

Proof. Let f be defined as in the statement. In order to show that ϕ = φf , it suffices
to prove that ϕ(Bnf ) = Dn, for all n ∈ N. Indeed, this implies that ϕ−1(D) = Bf ,
and, as D is dense in [0, 1] and ϕ−1 is a homeomorphism, we get that Bf is dense
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in [0, 1], as well. Moreover, because of this, φf is well-defined, and since φ−1f (Bnf ) =
Dn by definition, it follows that ϕ and φf agree on the dense set Bf . Hence, they
agree on all of [0, 1] by continuity.

We prove that ϕ(Bnf ) = Dn by induction on n. Clearly ϕ(B0
f ) = D0, so assume

that ϕ(Bnf ) = Dn, for some n ≥ 0, and let us prove that ϕ(Bn+1
f ) = Dn+1. Since

ϕ is injective, we just have to prove that ϕ(Bn+1
f ) is contained in Dn+1, as both

sets are finite and has the same number of elements. In particular, by our induction
hypothesis, we only need to prove that ϕ(Bn+1

f \ Bnf ) is contained in Dn+1. Let
x ∈ Bn+1

f \ Bnf . By definition, this means that there exits some x′ ∈ Bnf so that
x = f0(x′) or x = f1(x′). Let us assume that we are in the former of the two cases.
The latter case is analogue. Now,

ϕ(x) = ϕ(f0(x′)) = ϕ(ϕ−1( 1
2ϕ(x′)) = 1

2ϕ(x′),

so since x′ ∈ Bnf , we get from our induction hypothesis that ϕ(x′) ∈ Dn. In particu-
lar, ϕ(x) = 1

2ϕ(x′) ∈ Dn+1, as wanted. By induction we get that ϕ(Bnf ) = Dn, for
all n ∈ N, and as explained, this implies that ϕ = φf .

It is easy to see that f is uniquely determined by the property ϕ = φf . Indeed, the
sets Bnf is uniquely determined by ϕ, for all n ∈ N ∪ {0}, as Bnf = ϕ−1(Dn). Thus,
the function f0 is uniquely determined by ϕ, as well, as f0(Bnf ) = Bn+1

f ∩ [0, zf ],
for all n ∈ N ∪ {0}, and Bf is dense in [0, 1]. A similar argument shows that f1 is
uniquely determined. It follows that f is uniquely determined as well.

Let us describe how to re-construct the maps φp, for p ∈ (0, 1), from Section 5.3.
Fix some p ∈ (0, 1) and let fp denote the function from Proposition 5.5.1 satis-
fying φp = φfp . Then it is straightforward to check, using Lemma 5.3.8, that
φ−1p ( 1

2φp(x)) = px and φ−1p ( 1
2φp(x) + 1

2 ) = (1− p)x+ p, so that the functions fp0
and fp1 are given by

fp0 (x) = px and fp1 (x) = (1− p)x+ p.

It is not difficult to realize that, if we let f be the function from Proposition 5.5.1
corresponding to the Minkowski question mark function, then the functions f0 and f1
are given by

f0(x) =
x

x+ 1
and f1(x) =

1

−x+ 2
.

Remark 5.5.2. A thing to note, concerning Proposition 5.4.13, is that, although the
function fp is clearly a contraction, the function f , corresponding to the Minkowski
question mark function, is not. This follows from the fact that the derivative of f0 is
(1 + x)−2, which is 1 at 0. It is still Lipschitz, though.
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5.6 Further thoughts and projects

In this chapter we have left several questions unanswered. The aim of this section is
to list some of these, and to discuss possible further related projects.

Probably the most interesting question we have not answered in this thesis, is the
following about the representations πφp

s .

Question 5.6.1. Given p ∈ (0, 1) \ { 12}, when are the representations πφp
s and πφp

t

unitarily equivalent, for s and t different real numbers?
As mentioned, Garncarek proved that, for p = 1

2 , the representations π
φ1/2
s

and π
φ1/2

t are unitarily equivalent if and only if the parameters satisfy s = t+ 2π
log 2k,

for some k ∈ Z. We have not been able to decide the question for p 6= 1
2 , but we sus-

pect that, in this case, the representations πφp
s and πφp

t are never unitarily equivalent,
when s 6= t.

Recalling that the set of t ∈ R such that πϕt is unitarily equivalent to πϕ0 forms a
subgroup of R, an interesting question is the following.
Question 5.6.2. Which subgroups H ⊆ R can be realized as the subgroup from
Proposition 5.3.8 corresponding to a map ϕ satisfying condition (?)?

Stating the comment above differently, Garncarek proved that, for p = 1
2 the

subgroup H corresponding to φp is equal to 2π
log 2Z.

Another point which was not dealt with, was when the set Bf is dense. We proved
in Proposition 5.4.13 that it suffices for f to be a contraction, however, as mentioned
in Remark 5.5.2 it is not a necessary condition. In fact, it is not difficult to come up
with an absolutely continuous map f so that Bf is dense, but the derivative of f is
unbounded.
Question 5.6.3. Is the set Bf always dense in [0, 1]? If not, can it be determined from
the function f?

Now, for the construction of Section 5.4 to be really interesting, it would be nice
to be able to determine when the representations φf are irreducible and equivalent
for different f . This however, seems like a difficult question to answer.
Question 5.6.4. Can ergodicity of the action of Fφf on the unit interval be character-
ized as a property of f?
Question 5.6.5. Given two functions f and g, is there an easy way to determine
whether or not the representations πφf

s and πφg
s are unitarily equivalent?

To determine this is equivalent to determining whether or not the function φ−1f φg
is absolutely continuous.

The last question we will mention is about whether or not the continuity result of
Proposition 5.3.14 can be proved in a more general setting.
Question 5.6.6. Is it possible to prove some sensible sort of continuity of the repre-
sentations πφf

s in terms of the function f?
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