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PREFACE

In September 2011 a new government took over the political power in Denmark
and their ambitious goals of renewable energy penetrations was a great motiva-
tion for me to dive head first into the world of renewable energy and electricity
markets by taking on a position as PhD student at the Intelligent Energy Sys-
tems Programme at Risg, DTU, under the supervision of Peter Meibom. Unfor-
tunately, for me, Peter soon left for a job in the industry, but luckily Trine Krogh
Boomsma took over on my supervision, and she brought me back “home” to the
Department of Mathematical Sciences at the University of Copenhagen, where
my mathematical education had taken place. Here, I continued working on my
first project on an intra-hour model for the balancing market in a system with a
high wind penetration. This work was done in collaboration with Nina Detlef-
sen who at the time was employed at the Danish transmission system operator
(TSO), Energinet.dk, and Jeanne Aslak Petersen from the University of Aarhus.
It resulted in the paper, Short-term balancing of supply and demand in an electricity
system: forecasting and scheduling which is published in Annals of Operations Re-
search, see Petersen et al. (2016). I had my first daugther in the summer 2012
and after a 9 months maternity leave I brought my family along on my visit to
Andy Philpott at the University of Auckland from April through June 2013. Our
discussions kick-started my academic machinery after its maternity leave out-
age. These discussions continued with Trine when I came home and the second
project on a dynamic programming model for the stochastic single-unit commit-
ment problem formed. I continued working on the project with my co-supervisor
Pierre Pinson at DTU Elektro while Trine was on maternity leave in the summer
of 2014 and I presented it at the CMS and IFORS conferences that summer. From
November 2014 until the beginning of December 2015 I was on leave with my sec-
ond daughter. Upon my return I wrapped up the second project resulting in the
paper A dynamic programming approach to the ramp-constrained intra-hour stochastic
single-unit commitment problem which is submitted to an operations research and
management science journal. Towards the end of my PhD I worked with equi-
librium problems of the electricity markets, but still with emphasis on stochas-
tic models with high time resolution. This work lead to my third project Open-
and closed-loop equilibrium models for the day-ahead and balancing markets which was
done in collaboration with both Trine and my co-supervisor Salvador Pineda. I
presented the project at the CMS 2016 conference, however, this is still work in
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progress.

The thesis consists of an introduction to electricity markets and modelling
thereof, including paragraphs on the influence of renewables and uncertainty.
Furthermore, I briefly introduce some aspects of game theory in the context of
electricity markets. Then three chapters follow — one for each of the three projects
I have worked on during my time as a PhD student.
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SUMMARY

Electricity market models have often been modelled as deterministic or two-stage
stochastic models with an hourly time resolution. This thesis looks into possi-
ble ways of extending such models and formulating new models to handle both
higher time resolution than hourly and stochastics without losing computational
tractability. The high time resolution is crucial to correctly describe renewables,
such as wind power, and capture how they affect the system and the system costs,
since they are often fluctuating and hard to predict, also within the hour.

The thesis consists of four chapters. The first is an introduction to the back-
ground for the work with stochastic electricity market models with a high time
resolution. It is followed by three self-contained chapters.

The second chapter Short-term balancing of supply and demand in an electricity
system: forecasting and scheduling is on a balancing market model like in the Nordic
countries with high time resolution, and it takes extensive balancing rules into
consideration. We look into how wind forecast errors can be handled in a system
with a large and increasing amount of wind power and at what costs. The project
was done in collaboration with Jeanne Aslak Petersen, a PhD student at Aarhus
University and the Danish TSO Energinet.dk, and the chapter is identical to the
published paper Petersen et al. (2016) except that the reference list is part of the
common reference list for the thesis.

The third chapter A dynamic programming approach to the ramp-constrained intra-
hour stochastic single-unit commitment problem considers a real-time market setup.
We describe two stochastic multi-stage single-unit commitment models in which
commitment decisions are made on an hourly basis and dispatch decisions are
made on a higher time resolution, e.g. 5 minutes. The stochastic input is the
electricity price modelled as a time-inhomogenous Markov chain that the power
producer uses to maximise profits. To maintain computational tractability with
such high time resolution and stochastics the models are solved with dynamic
programming. The two models differ in the way the dynamic programming al-
gorithm handles the integer variables leading to two different non-anticipativity
assumptions.

In the fourth chapter Open- and closed-loop equilibrium models for the day-ahead
and balancing markets we look into how power producers act in a market which
is not perfectly competitive. Specifically, we look into the possibility of exercis-
ing market power when the electricity market consists of two sequential markets
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— the day-ahead market and the balancing market — and some power produc-
ers have access to both markets whereas others only can participate in the first
market. The model is formulated with both an open-loop and a closed-loop ap-
proach, and we find that the solution to the more realistic, but also computation-
ally harder closed-loop model differs substantially from the open-loop solution.
Again the day-ahead market is assumed to have hourly time resolution, but the
balancing market has a higher time resolution.
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RESUME

Elmarkedsmodeller er ofte formuleret som deterministiske eller som to-stadie
stokastiske modeller med data og beslutninger taget pa timebasis. Denne afhan-
dling ser pd mulighederne for at udvide modellerne eller formulere nye modeller,
sd de kan handtere hgjere tidsoplesning og stokastik uden at den egede kom-
pleksitet odeleegger beregningstiden. Den heje tidsoplesning er afgerende for
at kunne beskrive vedvarende energikilder sdsom vindkraft, samt hvordan de
pavirker systemet og systemomkostningerne, korrekt, da de ofte er fluktuerende
og sveere at prognosticere, ogsa inden for timen.

Athandlingen bestar af fire kapitler. Det forste er en introduktion til baggrun-
den for arbejdet med stokastiske modeller af elmarkedet med hgj tidsoplesning.
Herefter folger tre selvsteendige kapitler.

Det andet kapitel Short-term balancing of supply and demand in an electricity
system: forecasting and scheduling omhandler en balancemarkedsmodel som i de
nordiske lande. Modellen har hej tidsoplesning og tager hejde for avancerede
balancemarkedsregler. Vi undersoger hvordan vindprognosefejl kan handteres i
et elsystem med en hej og stigende vindkraftsandel, samt hvilke omkostninger
dette medforer. Projektet blev udfert i samarbejde med PhD studerende Jeanne
Aslak Petersen fra Aarhus Universitet og den danske systemansvarlige (TSO),
Energinet.dk. Kapitlet er identisk med den publicerede artikel Petersen et al.
(2016) pa neer at der i denne afhandling er én feelles litteraturliste.

I det tredie kapitel A dynamic programming approach to the ramp-constrained
intra-hour stochastic single-unit commitment problem betragter vi elmarkedet som
et realtidsmarked. Her beskriver vi to stokastiske multi-stadie single-unit com-
mitment modeller, hvor commitment beslutningerne tages pa timebasis og dis-
patch beslutningerne bliver taget med en hgjere tidsoplesning, fx 5 minutter. Den
stokastiske del af modellen er elprisen, der modelleres som en tidsinhomogen
Markovkede, som elproducenten bruger for at maksimere sin profit. For at holde
beregningstiden nede selv med en hej tidsoplesning og stokastisk data, bliver
modellen lost vha. dynamisk programmering. De to modeller adskiller sig fra
hinanden ved den made den dynamiske programmeringsalgoritme handterer de
binzere variable, hvilket forer til to forskellige non-anticipativitetsbetingelser.

I det fjerde kapitel Open- and closed-loop equilibrium models for the day-ahead
and balancing markets undersoger vi, hvordan elproducenter agerer i elmarkedet,
nar der ikke er perfekt konkurrence. Specielt ser vi pd muligheden for at udeve
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markedsmagt, ndr elmarkedet er sammensat af to markeder — spot- og balance-
markedet — og nogle producenter har adgang til begge markeder mens andre kun
har adgang til det forste marked. Modellen formuleres bade med en open-loop og
en closed-loop tilgang og vi finder, at losningen til den mere realistiske, men ogsa
mere komplekse og beregningstunge closed-loop model adskiller sig veesentligt
fra open-loop lesningen. Vi lader igen spot markedet veere pa timebasis, mens
balancemarkedet har hejere tidsoplesning.
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—1 =
INTRODUCTION

This chapter provides an overview over the three problems addressed in Chap-
ters 2, 3 and 4 including the relevant background, related literature and the ap-
plied methodology. First, I explain the functioning of electricity markets as well
the electricity system challenges that need to be addressed and the theoretical
background. This serves as a basis for the presentation of the social welfare max-
imising, deterministic balancing market model in Chapter 2, the profit maximis-
ing, stochastic, perfect competition single-unit commitment models in Chapter 3
and finally the profit maximising, stochastic, but strategic equlibrium models of
Chapter 4. The three chapters are self contained, except for the common reference
list at the end of the thesis.

1.1 Electricity markets and unit commitment

In this thesis I consider the electricity wholesale market. The buyers in the market
are electricity consumers or more often retailers serving as a link between the
market and the individual households or companies, all referred to as consumers
in the following. I assume the sellers are electricity producers, with some physical
and/or contractual constraints on their production and some costs related to the
production that will affect the price at which the producers are willing to produce
and sell electricity.

If we consider sequential markets, under some circumstances I would also
like to consider a third player, an arbitrageur, someone who buys electricity from
the producers or sells it to the consumers, in the first market and then sells the
electricity to the consumers or buys it from the producers, respectively, in the
second market while trying to make a profit via potential price differences.

Electricity markets work in many ways as other physical markets. Consumers
and producers submit buying and selling offers to the market, and then the mar-
ket clearing settles the price and the volume e.g. by matching an aggregated sup-
ply curve with an aggregated demand curve. However, there are some char-
acteristics of electricity that differentiate it from other commodities. First of all
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1. INTRODUCTION

electricity cannot be efficiently stored, and since deficit of electricity leads to un-
desired blackouts and surplus of electricity may lead to melt downs of e.g. cables
which likewise results in blackouts, the supply and demand much match both on
an hour-to-hour, minute-to-minute and even second-to-second basis.

In the 1990ies the electricity markets were liberalised to avoid the monopoly
like settings that caused high prices, but still electricity systems have system oper-
ators (SOs) responsible for maintaining the balance between supply and demand.
Some markets, e.g. the NEM in Australia! and the APX UK in the UK, see Weber
(2010), are real time markets that clear close to the hour of operation and several
times a day. In other places a day-ahead spot market is cleared the day ahead
of production, to allow for the use of slow units that need several hours to turn
on/off or change production level. Then a subsequent intra-day or balancing
market is run several times closer to the hour of operation to handle imbalances
that have occurred in the meantime, due to outages of power lines, unplanned
shut downs of units, changes in demand or wind power production etc. This is
the way the markets function in e.g. Germany and the Nordic Countries, see We-
ber (2010). For both electricity market setups, expensive automatic reserves are
ready to handle differences between supply and demand that may occur after the
markets have cleared.

The socio-economics of balancing supply and demand in an electricity system
from the SOs point of view, can be modelled as the economic dispatch problem (ED).
For a given time horizon, H = {1,..., H}, and a set of power production units,
Z = {1,...,1} the aim is to determine the optimal production level gq;; of each
power producing unit, i € Z in each time period h € H given a minimum and
maximum production level, g™" and g™, for each unit i € Z, while ensuring
that the exogenously given demand in the system dj is matched by the sum of
the production of all the units and minimising the sum of the production costs
¢i(gin). Thus assuming that producers offer their production at marginal costs,
which is equivalent to assuming perfect competition in the market. If the cost
function ¢; is linear, this can be formulated as a linear programming problem (LP),
which is easy to solve with a stadard solver utilizing the simplex algorithm.

minz Z ci(qin)

Gih ieT hen
St. ) qn=dy heH
i€l

g < g < g, heH, i €T

The problem can be extended in several ways, e.g. to cover multiple areas con-
nected via transmission lines. Moreover, additional technical constraints can be
included in the problem, e.g. ramp rates and constraints representing market
instruments like reserve capacity constraints ensuring that there is enough idle

ISee Chapter 3.



1.2. Challenges for the electricity systems

capacity to maintain system reliability in the case of outages of units or cables. If
the cost function is not linear, but still convex, this is a convex programming problem
(CP) and can still be readily solved.

More often the problem includes decisions on when to start up and shut down
the production units. Then it is called the unit commitment problem (UC), see
Garver (1962); Sheble and Fahd (1994); Gollmer et al. (2000); Hobbs et al. (2001);
Anjos (2013). The online/offline status of the units is modelled with binary vari-
ables so the problem (with linear costs) is no longer an LP, but a mixed integer
linear programming problem (MIP).

For every i € 7 and h € H, the online status is represented by u;,, which is
1 when the unit is online, and 0 otherwise. The binary start-up variable v;; is 1
if unit 7 is started up at time &, and 0 otherwise. Let ¢! denote the cost of being
online and ¢} represent the start-up cost for unit i. Sometimes offline costs and
shut-down costs are defined similarly to the online and start-up costs, but I will
omit them here. Now, we obtain the objective

min Z Z (Ci(qZ’h) + cfuy, + C?Z)ih> .
GintinCin j =7 heH

With the balance constraint as above and minimum/maximum capacity con-
straints now applied only when the unit is online

Y qn=dy heH
ez
min

g™ < qin < 7" uy, heH, i€l

Minimum up- and down-time constraints ensure that a unit is online in at least
T!” consecutive time intervals before it shuts down and offline in at least T7°%"
consecutive time intervals before it turns on. Finally, logical constraints ensure
the start-up variables are set by the commitment variables.

Wiy — i1 < g, k=h+1,..., min{h+ Tiup —1,H}, heH, iel
Uip_1 — iy <1 —uyg, k=h+1,...,min{h+ T —1,H}, heH, icT
wip — up—1 <o, hEH\{1}, i€
up, v €40,1}, heH, iel.
The MIP formulation is a hard problem to solve with realistic sized data. Several
solution methods including Lagrangian relaxation and dynamic programming (DP)

has been proposed in the literature, see Zhuang and Galiana (1988); Muckstadt
and Koenig (1977); Frangioni et al. (2008); Rong et al. (2008).

1.2 Challenges for the electricity systems

Pollution and climate changes have encouraged political decisions to integrate
renewable energy in the electricity systems. For instance, national and EU goals
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1. INTRODUCTION

for renewable energy have resulted in a wind power production increase in Den-
mark, such that up to 50% of the electricity will be from wind power production
in 2020 and 35% of the total energy consumption will be from renewable energy
resources?. In the EU the goal is that 20% of the energy consumption comes from
renewables in 2030°, and also here electricity consumption will be a large part of
the renewable energy consumption. These political decisions have led to massive
investments in renewable energy, of which especially the large amounts of wind
power challenge the security of supply. Wind power is variable, also within the
hour, to a large degree uncontrollable and hard to predict, making it hard for
the SOs to maintain balance in systems with a lot of wind power. In fact, Weber
(2010) finds that the total imbalance in the system and the wind forecast error
are strongly correlated in systems with a high wind penetration. The SOs mainly
handle the imbalances by adjusting production of the conventional power pro-
ducing units, known as activation of reserves. Hence, there is a growing need for
flexible conventional power producing units in the electricity systems.

To model these challenges for electricity systems with a high share of renew-
ables appropriately, we need

1. Models with a higher time resolution than hourly to capture the variations
of wind power and the accompanying ramping requirements precisely.

2. Multi-stage stochastic models to make it possible to represent the uncer-
tainty in the wind power production and updated information between e.g.
the day-ahead market and the balancing market.

The first requirement can be accommodated simply by introducing a more
fine grained time horizon, t € T = {1, ..., T} such that H can be interpretted as
a number of hours and 7 a number of intra-hour time periods. In the following I
denoteby 7, = {Tj,_1 +1,..., T} C T the intra-hour time periods in hour & and
let T, = 1/(T), — Tj,—1) be the reciprocal value of the number of intra-hour time
periods in hour h. Usually 7, = 7, for h,k € H. The second requirement is e.g.
handled by letting d; represent the net demand (demand minus uncertain renew-
able production) in time period t and assuming it is a discrete random variable
on some probability space (), F,IP). The realization is denoted dy,. Commit-
ment decisions and an initial production schedule are made before knowing the
realized net demand and then adjusted afterwards. This corresponds to the day-
ahead and balancing market in a two stage setup where each market is cleared
once. Let g7 denote the production increase on unit 7 in time period ¢ and sce-
nario w and let g;, = denote the production decrease. Then we have the two-stage
stochastic unit commitment problem (SUC) which is a stochastic programming problem

2From http:/ /www.ens.dk/en/policy/danish-climate-energy-policy on July 21st 2016.
SDIRECTIVE 2009/28/EC.
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(SP) with recourse, see Birge and Louveaux (2011).

min Yy ¥ <C?Mih + v+ Y, Elei(thgin + g, — q;w)]>

. SO R T T
qihw it ditw YinVih i€ T heH, teTy

S.t. quh = E[dtw], heH

i€l
Y (Tlin + Gy — Gire) = dtor W E€Q, t€Ty, heH
i€l
M < g < @M%y, heH, i€

min

a" i < g+ qih, — G < G0 U, wE€Q, te€T, heH, i€l

wip — wip—1 < g, k=h~+1,..., min{lh+T" —1,H}, he H, i€l
U1 — iy <1 —uy, k=h+1,...,min{h+ T —1,H}, heH, icT
uip —uip—1 <oy, he H\{1}, ieT

Q0w >0, t€T, i€l

i, v €40,1}, heH, iel.

Some work has already been done on variants of such two-stage SUC models,
but mainly on hourly models (7" = H), e.g. Papavasiliou and Oren (2013); Bouf-
fard and Galiana (2008); Morales et al. (2009a); Pritchard et al. (2010). However,
the balancing market is usually cleared several times a day with updated infor-
mation each time, which can be represented by multi-stage reformulations of the
SUC. Since the problem already contains multiple time periods, it can be reformu-
lated as a multi-stage SP with recourse by introducing explicit non-anticipativity
constraints in the problem:

q?t_w = E];w, if (dlw/--~/dtw) = (dlw’/--~/dtw’)/ w,w’ e, teT,iel
qi_tw = qi_tw’ if (dlw/- . ~/dtw) = (dlw’/- . ~/dtw’)/ w,w' eO), teT,iel

Considering the multi-stage SUC from the point of view of a production plan-
ner rather than a market modeller, the multi-stage problem looks slightly differ-
ent. Here, the production is not split into two markets with separate sets of pro-
duction variables, but rather a single variable, g;;,, represents the production at
each time period i € 7, i € Z and w € ). The multi-stage production planners
SUC is
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min Z Z (C?Mih + Cls-vih + Z E[Q‘(‘]itw)])

Tincortin:Oih § T ey =
St ) Gitw =dr, weD, teT
i€l
7", < Giro < qM U, w€Q, te T, heH, icT
wip — g1 < g, k=h+1,..., min{h+T" —1,H}, he H, i€l
U1 — iy <1 —uy, k=h+1,...,min{h+ T —1,H}, he M, icT
Up — U1 <vy, heHt, iel
up, v €40,1}, heH, i€l
Gitw = Gitw if (1w, d1w) = (A1t -, dr), w,0' € teT, i€l

The stochastic extensions — and in particular the multi-stage SUC — make the
already computationally challenging UC problem even harder to solve, since
both the high time resolution and the stochastic setting will increase the num-
ber of binary variables considerably. Hence only few multi-stage models can be
found in the literature, e.g. Nowak and Romisch (2000), but still the number of
stages is rather low.

1.2.1 A social welfare maximising, deterministic, intra-hour balancing
market model under perfect competition

To overcome 1. Chapter 2 presents the balancing market model OPTIBA, which
is coupled in a rolling planning fashion to a UC model for the day-ahead market.
After the UC model has run for a day, the production and transmission plan is
converted to a high time resolution, e.g. 5 minutes, and wind forecast errors are
simulated via the wind forecast module. OPTIBA subsequently runs for every
hour of the day optimising a pro-active reserve activation like a balancing market.
Here, the production levels from the UC model can be adjusted by increasing
production, called activation of up-regulation or by decreasing production called
activation of down-regulation. To better represent the actual reserve activation
we consider a number of technical rules for the balancing market. The rolling
planning setup enables us to model frequent updates of the wind power forecasts
even though the model is deterministic. In this way, there is updated information
between the run of the day-ahead market and the balance market. The high time
resolution (5 minutes compared to an hour) reveals intra-hour imbalances due
to wind forecasts errors, ramping of power producing units and of transmission
lines. Further, we investigate the effect of different ramping speeds to and from
regions. The model finds the most cost effective way to handle these imbalances
as a trade off between the up- and down-regulation (restricted by the technical
balancing rules) and the expensive automatic reserves. Our main result is that
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1.2. Challenges for the electricity systems

in spite of the increase in wind power production in the system from the 2010
level to the expected 2020 level the increased balancing costs do not outweigh
the benefits of the inexpensive wind power. Finally, we consider the costs of
simply leaving the imbalances to the expensive automatic reserves, which shows
that there are considerable cost savings in a pro-active reserve activation already
in the current system, and that these savings only increase for the 2020 wind
power production. The natural extension of the work on OPTIBA is to consider
a two-stage setup with several scenarios for the wind forecast errors and then to
quantify the impact on the system balance, production schedules and balancing
costs taking into account uncertainty. This has been done in Andersen (2015) for
a simplified version of OPTIBA.

1.2.2 A multi-stage stochastic, profit maximising, intra-hour
single-unit commitment problem under perfect competition

As mentioned above, Lagrangian relaxation can be used to solve the UC problem,
by relaxing the balance constraint that couples all the production units together
by matching supply and demand. This decouples the units, so the problem can
be solved one unit at a time or even in parallel. Furthermore, it allows for the use
of solution methods that can solve the single-unit commitment problem (1UC)
effectively. The 1UC subproblem now consists of deciding the online status of a
single unit as well as the production level, given the electricity price in each time
period and maximising profits. After the liberalisation of the electricity markets
this problem is also interesting in itself from a producers point of view. To handle
both 1. and 2. at the same time we propose in Chapter 3 two dynamic program-
ming (DP) approaches to solve the stochastic, intra-hour 1UC.

As mentioned above, DP has previously been used in the literature to solve
the system-wide unit commitment problem, but also the single-unit commitment
see Frangioni and Gentile (2006); Tseng and Barz (2002). Usually, commitment
and dispatch is decided for a given state consisting of the time and possibly the
online status of the units, etc., and then moving forwards or backwards in time,
at each state determining the optimal solution for this state given the optimal so-
lution for previous states respectively future states. The advantage of using DP is
that we can handle all the binary variables separately as state variables. Only the
scheduling of the power producing unit remains, which, as earlier mentioned,
is an convex programming problem and hence easy to solve. The drawback is
that DP cannot handle constraints that couple continuous variables over time,
e.g. constraints that couple the continuous production variables, unless the state
space is discretized. This is because the state space for the dynamic program-
ming algorithm is discrete. However, Frangioni and Gentile (2006) overcome this
by defining the states of the DP algorithm such that the time in a state is not just
one time period, but a whole online or offline period of a unit. This way, they
can handle the ramping within each state. The model is a forward moving deter-
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ministic dynamic programming model. We extend this to a backwards moving,
stochastic, dynamic programming model with high time resolution, which we
name the multi-hour model, since each state covers several hours. This can be
seen as a stronger non-anticipativity condition in stochastic programming and it
provides a lower bound on the original problem. Tseng and Barz (2002) propose
a backwards moving dynamic programming algorithm to handle both the de-
terministic and stochastic single-unit commitment problem. They handle ramp-
ing heuristically and propose to discretise the production levels. We extend this
model to a high time resolution model, which we name the single-hour model,
that handles ramping within the hour continuously and discretise only the pro-
duction level in the last time period in each hour. Numerical results show that
the discretisation is fine grained enough to represent the solution accurately. Fur-
thermore, we find for both models that the high time resolution reveals profit
opportunities that are invisible on the hourly level. The savings are relevant for
producers optimising their production schedule, but also for SOs to evaluate the
total costs of running the electricity system. Future work could look into utilizing
the single-hour model for the UC problem solved by Lagrangian relaxation.

1.3 Competition in electricity markets

A large amount of the literature on electricity markets (e.g. all of the above) im-
plicitly assumes that the markets are perfectly competitive. This means that ac-
tors in the markets cannot influence the market price, i.e. they cannot exercise
market power and hence offer production at their marginal costs. However, there
are several circumstances in electricity systems that enable the possibility of ex-
ercising market power. Some markets have actors of a size superior to the others
enabling them to exercise market power. Furthermore, congestion issues in the
electricity system can isolate areas with only a few actors propragating this prob-
lem. Actors participating in markets in several areas can thus profit from setting
marginal price in (at least) some of the areas. Also, in setups with sequential mar-
kets like the day-ahead market followed by the balancing market, in which some
actors may only participate in one of the markets, and in which production in the
first market directly influences the available capacity in the second market, there
may be opportunities to exercise market power and alter prices. Due to these
issues, many game theoretic models of mono-, duo- and oligopolistic electricity
markets exist in the literature.

1.3.1 Types of competition

There are several ways of modelling imperfect competition in electricity markets.
A large part of the literature is concerned with Cournot competition in which actors
bid in a quantity they are willing to produce with knowledge of the demand
curve and anticipating the bids of the other actors, see e.g. Murphy and Smeers
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(2005). Then the actors are paid the market price for the volume they offered to
the market. This is called competition in quantity. It is also possible to compete
in price, which is known as Bertrand competition. As this involves offering a price
(again knowing the demand curve) and then adjusting production to the market
demand, it is, however, seldomly used in electricity markets since generators
often operate close to their capacity limits.

If one player is dominant and the rest of the players await the action of the
dominant player before acting themselves, the competition can be described as a
Stackelberg game, von Stackelberg (1934); Gabriel et al. (2013). Here, the dominant
player, also called the leader, makes decisions while anticipating the response
from the other players, also called the followers, and then they subsequently
make their decisions while competing in e.g. a Cournot setup, once the decision
of the leader is known.

The concept of Cournot competition can be generalized by conjectural varia-
tions. The conjectural variations govern how a producer expects the other produc-
ers to react to a change in the system price, see Song et al. (2003); Garcia-Alcalde
et al. (2002); Wogrin et al. (2013). In a setup with a linear demand function this
can be reformulated to a conjectured price response, in which a parameter cap-
tures how a producer believes a change in its production can influence the system
price. When this parameter varies it is possible to describe oligopolistic settings
ranging from perfect competition over Bertrand and collusion to Cournot.

Finally, it is also possible to describe the offers in the market by supply func-
tions, i.e. offers consisting of both prices and corresponding capacities. The con-
cept of supply function equilibrium (SFE) models was first introduced in electricity
market modelling by Klemperer and Meyer (1989). The supply provides the vol-
ume the power producer is willing to produce at a given price. With uncertainty
in demand or price, the supply function provides a way of hedging. Still, the
Cournot setting is often preferred due to its computational tractability Ventosa
et al. (2005).

1.3.2 Open-loop models

The modelling of sequential markets raises the question of whether to use an
open-loop or a closed-loop model. In the open-loop model the two markets are
co-optimised, i.e. it is assumed that all decisions are made simultaneously, see
Murphy and Smeers (2005). For a Cournot or conjectural variations based model
this will result in an equlibrium problem that can be formulated as a mixed com-
plementarity problem (MCP) via the Karush Kuhn Tucker (KKT) conditions, see
Gabriel et al. (2013).

In the following simple one market MCP example, we consider an oligopoly
with a number of producers, i € 7 optimising their production level, x;, given a
production cost function ¢;(x;) and the inverse demand function for the market,
p = B — ad, where p is the market price, d is the demand and « > O and B > 0
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are inverse demand function parameters. The market equilibrium problem can
be formulated as

(o1) )
max ¢ px; — ci(x;) 1 x; > ,iel

p=p—ad
d= Z Xi,
i€l

where 0; is the dual variable of the non-negativity constraint. Assuming px; —
ci(x;) is concave, the KKT MCP reformulation is

gixier—gZJra:O, icel
0<x;Lo;>0,iel
p=p—ad
d:in.

i€l

Here, the difference between Cournot, perfect competition or more general con-
jectural variations lies in the partial derivative of the price. Perfect competition
is obtained by letting % = 0 and Cournot by % = —ua. See also Wogrin et al.
(2013).

1.3.3 Closed-loop models

In a closed-loop model, on the other hand, it is assumed that decisions in each
market are made sequentially in time, and that decisions in the first market (de-
noted the upper level) are known, when decisions in the second market (denoted
the lower level) are made, while the upper level decisions are made anticipating
the lower level effects, see again Murphy and Smeers (2005). An example is a
multi-leader Stackelberg game, where the leaders are the participants in the first
market and the followers the participants in the second market. To solve this
problem it can be formulated as an equilibrium problem for the upper level con-
strained by the e.g. the KKT equilibrium conditions from the market in the lower
level, resulting in an equilibrium problem with equilibrium constraints (EPEC).
Sequential markets models, like the forward spot markets, the day-ahead and
balancing markets and also the capacity expansion and spot market models, all
have the property that the decisions are taken sequentially in time after new infor-
mation has arrived as opposed to simultaneously. Therefore closed-loop models
is the natural choice for the modelling of these problems. However, the EPECs
are much harder to solve than the MCPs, and existence and uniqueness of solu-
tions can in many cases only be established under restrictive assumptions, see
Shanbhag et al. (2011); Zhang et al. (2010). The first use of closed-loop modelling
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of sequential electricity markets was in Allaz (1992), in which reflections on the
differences from assumptions in the open-loop modelling framework is also dis-
cussed. Some work has been done on comparing the solutions for the two differ-
ent kinds of models, see Wogrin et al. (2013) for the capacity expansion problem.
The authors find that when considering only one time period in the spot market,
the open- and closed-loop solutions are the same, but otherwise the solutions
may differ. Similarly, for the forward spot problem, Shanbhag et al. (2011) estab-
lish a setup in which the open- and closed-loop solutions are the same. Ito and
Reguant (2015) present a closed-loop model resembling both the forward spot
and the day-ahead balancing markets, considering a monopolist and fringe sup-
pliers. The authors do not consider the open-loop formulation. In Chapter 4, we
consider the sequential day-ahead and balancing markets, however we assume
a duopolistic setting. We assume a high time resolution in the balancing market
and formulate a stochastic model with update of the intercept of the inverse de-
mand function corresponding to changes in net demand, i.e. demand minus wind
power production. The upper level variables, i.e. the day-ahead production, are
linked to the lower level variables via constraints on total capacity. Costs and
profits are functions of total production as well. This way the model differs from
the capacity expansion problem and the forward spot problem in which the up-
per level variables, capacity respectively forward trade, are not constrained by
total capacity limits binding them to lower level variables. Also, the models usu-
ally have separate profits and separate (if any) costs for variables in each market.
With these differences in the sequential market setup, we investigate whether the
open- and closed-loop solutions are still the same for the day-ahead and balanc-
ing markets.

1.3.4 Profit maximising, stochastic, strategic open- and closed-loop
models of the day-ahead and balancing markets

We consider a duopolistic Cournot setup with symmetric players, with high time
resolution and stochastic demand. We solve both the open-loop and the closed-
loop model with varying parameters for the inverse demand function. Our re-
sults show that solutions differ substantially, due to the relation between the day-
ahead and balancing market inverse demand function and due to the difference
in time resolutions or equivalently the different scenarios in the stochastic setup.
Assuming that arbitrage is explicitly handled, the differences are even larger. It
is evident that for proper representation of the day-ahead and balancing markets
it is necessary to consider the computionally harder closed-loop models. When
comparing perfect competition with Cournot we see that market power is exer-
cised by holding back production in the day-ahead market to increase production
in the balancing market. Finally, we address the problem of limited access to the
balancing market. Surprisingly, we find that in a duopoly it is not always ad-
vantageous to be the producer with access to the balancing market. Rather, it de-
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pends on the parameters of the inverse demand functions whether the producers
with or without access to the balancing market can exploit the situation to make
the largest profit gain compared to a single-market setup. The next step is to con-
sider the effect on the social welfare of the mentioned observations rather than
just the profit of the units. Further it would be interesting to extend the models
to general conjectural variations, introduce more technical constraints like ramp
rates and carry out larger case studies with stochastic parameters.
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ABSTRACT Until recently, the modelling of electricity system op-
erations has mainly focused on hour-by-hour management. How-
ever, with the introduction of renewable energy sources such as wind
power, fluctuations within the hour result in imbalances between sup-
ply and demand that are undetectable with an hourly time resolution.
Ramping restrictions on production units and transmission lines con-
tribute further to these imbalances. In this paper, we therefore pro-
pose a model for optimising electricity system operations within the
hour. Taking a social welfare perspective, the model aims at reduc-
ing intra-hour costs by optimally activating so-called manual reserves
based on forecasted imbalances. Since manual reserves are signifi-
cantly less expensive than automatic reserves, we expect a consider-
able reduction in total costs of balancing. We illustrate our model in
a Danish case study and investigate the effect of an expected increase
in installed wind capacity. We find that the balancing costs do not
outweigh the benefits of the inexpensive wind power, and that the
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savings from activating manual reserves are even larger for the high
wind capacity case.

KEYWORDS OR in energy; Scheduling; Forecasting; Power system balanc-
ing

2.1 Introduction

For more than a century, electricity supply has been highly dependent on fossil
fuels such as coal and oil, and even today, fossil fuels continue to make up a large
part of the global supply chain for electricity. Due to depletion of fossil fuels and
looming climate changes, development of sustainable energy, not least electricity,
has received considerable attention over the last two decades. Sustainable elec-
tricity development concentrates on three major aspects: savings on the demand
side, efficiency improvements on the supply side, and replacement of fossil fuel
based production by various sources of renewable production (Lund (2007)).

With the introduction of renewable production, security of supply has become
an issue of utmost importance. Unlike most commodities, electricity cannot be ef-
ficiently stored. Furthermore, major imbalances between supply and demand are
extremely undesirable, since deficit or excess in production may result in black-
outs. In fact, production and consumption have to balance constantly. However,
whereas conventional production can be controlled, renewable production is of-
ten intermittent and non-controllable. Therefore, increasing shares of renewables
significantly challenge the ability of an electricity system to balance supply and
demand.

In addition to the fluctuating nature of intermittent production, several other
aspects affect the balancing of supply and demand in the electricity system. Sub-
stantial transmission distances between regions and different ramping speeds to
and from a region may result in large imbalances between supply and demand.
Ramping restrictions on conventional power units, failures of power units and
transmission lines, and fluctuations in the demand for electricity likewise impact
the balance of the system.

The monitoring and maintenance of the balance between supply and demand
is controlled by System Operators (50s), who each have their own control area.
How to balance between control areas is agreed upon by the SOs or by interna-
tional cooperation. To maintain the balance within a control area, an SO manages
so-called reserves. Reserves are activated or deactivated by either increasing or
decreasing conventional production.

In general, reserves can be categorised into automatic and manual reserves.
Automatic reserves are fast (operational within seconds) and flexible, hence ex-
pensive, and used for controlling the system frequency. Manual reserves are
slower (operational e.g. within minutes) and less flexible, hence less expensive,
and usually activated in order to release automatic reserves. In the Nordic coun-
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tries, manual reserves are provided by producers submitting bids to the SO close
to real-time. These bids are activated on a least cost basis. In contrast, automatic
reserves are negotiated between producers and the SO on long-term contracts.
With the integration of renewables, a major problem for the SO is how to manage
the system in the most cost efficient way:.

Common practice of many SOs for managing supply and demand is a reac-
tive approach in which they first leave the observed imbalance to be handled by
the fast automatic reserves, and second let the slower manual reserves take over.
Nevertheless, by activating slow reserves prior to the observation of the imbal-
ance and rather on the basis of an expected imbalance, the SO could utilise slower
reserves much more efficiently. In particular, such proactive activation of manual
reserves would reduce the need for automatic reserves and thereby the costs of
balancing.

This paper establishes a framework for short-term management of electricity
system operations. The purpose of the presented model is to analyse the oper-
ational consequences of proactive activation of manual reserves under different
configurations of the electricity system. Furthermore, it may be used in advance
of negotiating contracts on automatic reserves. We consider a system in which
wind power is the renewable source. Still, the methodology applies equally well
to many other renewable sources such as solar power and run-of-river hydro-
power. We assume that the associated electricity market includes a day-ahead
market for hourly dispatch and an intra-hour balancing market like the electric-
ity markets in the Nordic countries. However, the set-up of the paper can easily
be adapted to other market designs. Our contribution is the following:

We develop a mixed integer linear programming model for the optimal man-
agement of a future electricity system with significant shares of wind power. We
use it to analyse system operation from a social welfare perspective. This model is
a multi-area economic dispatch (ED) model that proactively activates manual re-
serves such as to minimise balancing costs, while taking operational constraints
into account, including detailed ramping restrictions on transmission lines and
conventional generation units. In taking the social welfare perspective, we as-
sume that conventional units make their idle capacity available to the SO, and so
the optimal bids of manual reserves are determined endogenously by our model.
To appropriately represent intra-hour system operations, the model has a time
resolution of a few minutes. However, to ensure consistency with hour-by-hour
day-ahead planning, it is integrated with a unit commitment (UC) model that has
an hourly time resolution.

Furthermore, we generate a representative forecast of wind power production
that serves as input to the intra-hour model. To capture the lower fat tail of wind
power production at a given point in time we assume marginal Beta distributions.
In constructing the joint distribution, we model the temporal correlation structure
using the Gaussian copula.

In the following, we refer to the intra-hour model and the accompanying
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framework with the unit commitment and forecasting as OPTIBA (OPTimisation
of the Intra-hour BAlance).

We illustrate the intra-hour model with a number of case studies based on the
Danish electricity system for varying seasons in a year and for the current and
planned future level of wind power penetration. Furthermore, in each case we
run our model in a rolling planning fashion to incorporate updated information
and thereby simulate the results of optimal intra-hour balancing over time.

2.2 Related literature

The hour-by-hour management of an electricity system is handled by solving the
UC problem. The first mixed-integer linear programming approach to this prob-
lem dates back to Garver (1962), and a review of the early work on UC models
and corresponding solution methods can be found in Sheble and Fahd (1994).
These models consider a regulated electricity sector, whereas the deregulation of
the electricity markets in the 1990s motivated the development of new state-of-
the-art models, see Hobbs et al. (2001). These usually take the viewpoint of either
a price-taker or a central market operator. A price-taker maximises profit by op-
timally operating the power generating units subject to the market structure and
prices, e.g. in Heredia et al. (2012). In contrast, the central market operator op-
timises the system operation while maximising social welfare, or with inflexible
demand, minimising total production costs, see Doorman and Nygreen (2003).

Many UC models incorporate uncertainty in some form. Already in Dillon
et al. (1978), unit outages and the resulting capacity shortage were addressed
in a stochastic programming setting. More recent contributions also consider
uncertain demand, e.g. see Bunn and Paschentis (1986); Takriti et al. (1996); Caroe
and Schultz (1998); Nowak and Romisch (2000); Gollmer et al. (2000).

With the improvement of demand forecasts and the large scale penetration
of sustainable energy, renewable production has become the major source of un-
certainty and again new models have emerged. One such example is found in
Weber et al. (2009). This UC model is likewise a stochastic programming model,
but accounts for the variability and unpredictability of wind power. To reflect oc-
casional updating of wind power forecasts, limit problem size, and reduce com-
putation time, the model is run in a rolling planning fashion with re-optimisation
every few hours.

Others handle the uncertainty by solving the UC and the subsequent intra-
day ED problem as a two-stage stochastic mixed-integer program. An example
is Papavasiliou and Oren (2013) who handle unit commitment of slow units in
the first stage and commitment of fast units as well as dispatch of all units in
the second stage. This model takes into account ramp rates, contingencies, and
transmission network constraints. A wind scenario generation and selection al-
gorithm is included as well as a subgradient algorithm to solve the stochastic pro-
gramming problem. Similar two-stage models are found in Bouffard and Galiana
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(2008); Zheng et al. (2012); Morales et al. (2009a); Pritchard et al. (2010). However,
in all of these references, the time resolution is hourly, and being only two-stage
models, they do not capture the frequent update of wind forecasts carried out in
reality. Moreover, the models do not include the technical constraints on reserve
power that are presented in this paper.

For UC models in general, it is the mixed-integer nature of the problem com-
bined with a large number of generating units and time intervals throughout
the optimisation horizon that makes problem complexity and computation time
drastically increase. Several attempts to tighten the constraints and limit the
number of binary variables have therefore been made, e.g. see Carrién and Ar-
royo (2006); Ostrowski et al. (2012); Morales-Espana et al. (2013). Furthermore,
considerable attention has been devoted to specifically designed solution meth-
ods, most of them based on a decoupling of units by Lagrangian relaxation, see
Takriti et al. (1996); Nowak and Romisch (2000). The inclusion of uncertainty
makes computational intractability even worse. In spite of this, to fully account
for variations in renewable production, the need for models with higher time
resolutions is indisputable.

Our model attempts to overcome this need by optimising balancing decisions
with a time resolution of a few minutes. To make the problem computationally
feasible, we decouple hourly and intra-hourly scheduling and carry out the op-
timisation in a sequential fashion (which provides an upper bound on the costs
of joint optimisation). Since UC is often made ahead of operation, this decou-
pling allows us to formulate the intra-hour optimisation as an ED problem and
thereby it facilitates the use of a higher time resolution. By considering a short
time horizon of only one or two hours, predictability increases and we are able to
formulate a deterministic problem.

Related models for intra-hour management include Lindgren and Séder (2008),
who present a mixed-integer multi-area optimisation model based on the North-
ern European system. This paper simulates wind forecasts over time and mod-
els the reserve market with re-optimisation when new forecasts become avail-
able, taking frequency controls and transmission into consideration, but ignor-
ing operational constraints such as ramping. Reserve activation is done via pre-
determined bid lists. Other models replace such exogenously given bid lists
by endogenous activation of reserve power, see Jaechnert and Doorman (2012);
Farahmand and Doorman (2012). As in our model, these models are based on se-
quential optimisation of day-ahead and balancing operations. Focus is likewise
on cost savings in an integrated Northern European power market, but with em-
phasis mainly on hydro-power resources. Furthermore, the authors do not ac-
count for ramping restrictions and market rules for the activation of reserves.
Finally, Ela and O’Malley (2012) address the sequence of day-ahead planning,
intra-hour balancing, and second-to-second automatic generation control. The
idea is to investigate how variability and unpredictability of wind power affect
system costs and reliability. Although this model includes technical constraints
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such as ramp rate restrictions, it likewise does not account for the reserve activa-
tion rules of the market.

As the intra-hour models mentioned above, our ED model has a sufficiently
high time resolution to represent the variability of wind, while it in addition con-
siders the complex market rules and restrictions on ramping and activation of
reserve power. By receiving output from a UC model, it optimises the operation
of the system with a two-hour time horizon based on adjustments to the day-
ahead schedule via activation of reserves. The model is run in a rolling planning
fashion to accommodate hourly updates of wind forecasts.

The rest of the paper is divided into sections as follows: The interface be-
tween hour-by-hour and intra-hour scheduling is outlined in Section 2.3. The
generation of wind power forecasts can be found in Section 2.4, and our model
for optimisation of intra-hour balancing is presented in Section 2.5. Data and
assumptions of the case study are provided in Section 2.6, and the results are
discussed in Section 2.7. Finally, a conclusion is provided in Section 3.6.

2.3 From hour-by-hour to intra-hour scheduling

We aim at short-term balancing of supply and demand through forecasting of
wind power production and scheduling of conventional generation. In doing so,
we decouple hourly and intra-hourly scheduling. This decoupling allows us to
make an hour-by-hour UC plan, reflecting day-ahead market clearing, and on
the basis of this plan, make an ED plan with an intra-hour resolution. In doing
so, we assume that the hour-by-hour production schedule is made by an existing
model using a wind power forecast, and that our intra-hour model carries out a
rescheduling of the generating units with an updated forecast.

The development of an intra-hour model requires detailed information. We
assume power producers provide hourly generation schedules while the SO up-
dates consumption and wind power production forecasts close to real-time op-
eration. To reflect this, we generate input to our model on the basis of an hour-
by-hour UC model. The time horizon may be different depending on the market
design, but here we refer to the hour-by-hour UC as day-ahead planning. The
link between this model and our intra-hour model, OPTIBA, is illustrated by the
framework in Fig. 2.1.

The first module, UC, collects hourly values of predicted consumption, fore-
casted wind power production, planned production schedules for conventional
units, and allocated flow on transmission lines from the UC model. OPTIBA
reads this data into three modules that convert it to T-minute time resolution?.

The module HA_cons (Hour Ahead consumption) converts the predicted hour-
ly consumption level to an hour-ahead prediction with T-minute time resolution.

2Depending on the frequency with which activation of manual reserves is permitted by the
market rules or technical restrictions of the units, and taking into account the running time of the
model, T can for example be taken to be five or ten minutes.
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Figure 2.1: Our modelling framework, including the link between the hour-
by-hour UC model (run a day ahead of operation) and our intra-hour model
(run an hour ahead of operation)

For simplicity, and assuming demand is a smooth function of time, we do this
using a third order spline interpolation between the hourly values.

HA_prod (Hour Ahead conventional production) likewise converts the sched-
ule for hourly production, and transmission between internal areas as well as to
and from external areas (import/export) into T-minute data. For the conventional
power generating units, we assume that ramping is scheduled in the first and last
T time intervals of an hour, where 2 - 7™ is the number of time intervals per
hour a unit is allowed to ramp according to the technical restrictions of the gen-
erating unit or the power system. The same ramping patterns are used for the
transmission lines to both internal and external areas.

HA_wind (Hour Ahead wind power production) collects the hourly values of
wind power production and updates the forecast in T-minute intervals. A more
detailed description can be found in Section 2.4.

The information generated by the modules, HA_cons, HA_prod, and
HA_wind, is used as input to the intra-hour model. The model then re-schedules
the generating units that are online according to the hourly UC model in order to
cover imbalances between supply and demand, which is what we refer to as the
activation of manual reserves.

2.4 Wind power forecasts

For scheduling in power systems with high wind penetration, an accurate wind
power forecast is crucial. The aim of this section is therefore to generate a rep-
resentative wind power production forecast that will serve as input to the intra-
hour model presented in Section 2.5.

For both forecasting and scheduling, we discretise the time horizon into -
minute intervals, and by 7 = {1,..., T} we denote the set of these intervals. In
the case of hours, we use the notation # = {1,..., H}. Finally, we denote the
T-minute intervals within hour / by 7, where h € H.
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Energy (MWh/12)

Time (hours)

Figure 2.2: Measured energy from wind power production in Denmark
from 5 am. to 8 am,, January 21st 2012. The figure shows the measured
5-minute values (dots), as well as aggregated 15-minute values (diamonds)
and hourly values (dashes)

We assume that an hour-by-hour forecast {@y, },c3 is already known, but we
wish to make a forecast with higher time resolution. As seen from the histor-
ical data in Fig. 2.2, variations within the hour are significant and the 5-minute
wind power production deviates substantially from values obtained with a lower
time resolution. Thus, we aim to generate a T-minute forecast {w; };c7. Without
further intra-hour information, one could use linear interpolation between the
hourly values w;, and @y, to determine w; for t € 7,. Here, we use a slightly
different approach.

The idea is to approximate the linear interpolation forecast by a simulation
mean. The advantage of the simulation approach is its ability to describe the
entire distribution of wind power production. The simulation mean may not fully
agree with the values obtained by linear interpolation. In reality, however, the SO
receives more detailed information, including an updated wind power forecast,
close to real-time operation. As a result, deviations occur between the hour-by-
hour and intra-hour forecasts. We assume that the simulation mean represents
an updated forecast, and interpret the deviations between the simulation and
interpolation as forecast errors.

The simulation approach is based on the use of copulas to describe the tem-
poral dependence structure of the stochastic process, {W;}ic7, of wind power
production. Whereas a low-dimensional joint distribution may be explicitly spec-
ified by a parametric model, joint parametric modelling becomes cumbersome in
higher dimensions. The use of copulas allows us to independently model the
marginal distributions and the multivariate dependence structure. We assume
marginal Beta distributions to capture the lower fat tail of wind power produc-
tion, and choose the Gaussian copula, which offers a simple sample procedure to
capture the dependence structure. To the best of our knowledge, the modelling
of non-Normal marginal distributions and a temporal correlation structure for
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2.4. Wind power forecasts

wind power production has not previously been suggested in the literature.

2.4.1 Marginal Beta distributions

Whereas many forecasting studies are based on the assumption of a (symmet-
ric) Normal distribution, we assume marginal Beta distributions to appropriately
reflect that high wind speeds are less frequent than low wind speeds. Further
justifications of the choice of Beta distribution can be found in Louie (2010).

For wind power production at a given point in time, we let W; ~ Be(ay, Bt),
where Be(a;, B;) is the Beta distribution with parameters a; > 0,8; > 0. The
distribution function of W; is then

T'(at + Bt)
T(ar)T(By)
where I'(+) is the gamma function. In the following, we denote this function

simply by F;(-). For parameter estimates, see the supplementary material in Ap-
pendix 2.A.

w
Ft(w;lxt,ﬁt) = /O U“f_l(l — v)ﬁt_ldv, 0<w<l,

2.4.2 Gaussian copula

Although wind power production at a given point in time can be described by
a Beta distribution, we have disregarded the temporal correlation structure in
the specification of the marginal distributions. The Gaussian copula allows us to
construct a joint distribution that captures this dependence.

Let X be a T x T-correlation matrix. For how to estimate this, see the supple-
mentary material in Appendix 2.A. The Gaussian copula is then

F(wy,...,wr; ) = (O (F(wy)),..., 2 L (Fr(wr));Z),

where the term ®~1(+) is the inverse distribution function of a standard Normal
distribution and the term ®7(-; %) is the distribution function of a T-variate Nor-
mal distribution with correlation matrix .

Now, let (Uy,...,Ur)" ~ N7(0,%), where N'7(0,X) is the T-variate Normal
distribution, and fort =1,..., T, let

Wi = FH(@(Uy),

where F,1(-) is the inverse of the marginal distribution function F;(-). We then
obtain that W; ~ Be(ay, B;) with marginal distribution function F;(-) and that
(Wy,...,Wr)T have joint distribution function F(-; X).

2.4.3 Simulation

We can use the above observations for sampling. If we generate a number of
sample paths (uj,...,u5), s = 1,...,S from the T-variate Normal distribution
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2. SHORT-TERM BALANCING OF SUPPLY AND DEMAND

N71(0,%), and for each such sample path compute
wi = 7 (®(u})),

then (wj, ... ,wST)T,s =1,...,5 can be viewed as samples from a joint distribu-
tion with marginal Beta distributions Be(a;, ;) and temporal correlation matrix
2.

To generate samples from the T-variate Normal distribution N1(0,%2), we
make the following observations. Let (V3,..., Vr)T ~ N7(0,1), where I denotes
the T x T-identity matrix. The marginals V; are independent and all have a stan-
dard Normal distribution. Apply Cholesky decomposition of the correlation ma-
trix such that

>=1LL"T,

where L is a lower triangular T x T-matrix and L' its transpose. We now have
that (Uy,..., Ur)" := L(V4,...,Vr)" ~ N7(0,Z). Hence, if we generate inde-
pendently a number of samples v{,s =1, ..., S from the standard Normal distri-
bution, then

(s, ..., u) :=L(v5,...,v5) ,s=1,...,8

can be viewed as samples from the T-variate Normal distribution with correlation
matrix 2.

The generated sample paths (w3, ..., wST)T, s =1,...,5 describe the distribu-
tion of wind power production and allow us to investigate the sensitivity of the
model to uncertainty. Since our model is deterministic, however, we also com-
pute the simulation mean

1 S
wt:§2w§, teT,
s=1
and use {w; }e7 as the wind power forecast.

2.4.4 Forecasting results

In the above, we work on wind power production normalised by capacity. In our
case study, we therefore multiply the forecast with a given wind power capacity
for each geographical area. Fig. 2.3 illustrates 15 of 5000 sample paths used for
computing the simulation mean. The data is based on expected wind penetration
in Western Denmark in 2020, and the generated forecast has a five minute time
resolution. Clearly, wind power production shows large variations over time.
Moreover, Fig. 2.4 displays the simulation mean computed on the basis of 500
and 5000 samples. It is likewise clear that our updated forecast shows significant
intra-hour variations around the linear interpolation between the hourly values,
as would be the case in reality.
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Figure 2.4: Three wind power
production forecasts:  The
intra-hour wind power pro-
duction forecasts based on
linear interpolation between
hourly values (dashed) and
simulation means of 500 (dot-
ted) and 5000 (black) samples,
respectively

Figure 2.3: 15 wind power
production sample paths
(grey) and their mean (black)

2.5 The intra-hour model

The aim of the intra-hour model is efficient short-term balancing of supply and
demand in the electricity system. We consider balancing close to real-time op-
eration when a production plan has already been made by day-ahead market
clearing. On the basis of this plan, our model re-dispatches the generating units,
which is what we refer to as intra-hour scheduling of manual reserves. In do-
ing so, we assume that the UC schedule has been fixed and consider only the
re-dispatch of already committed units®. As already mentioned, short-term bal-
ancing is the responsibility of the SO, and therefore we base our model on social
welfare maximisation, or equivalently, assuming inflexible demand, minimisa-
tion of balancing costs.

We take the scheduling horizon to be a few hours, which we discretise into
T-minute intervals. For the notation, see Section 2.4. To formulate the intra-hour
model, we further introduce the following notation.

The transmission grid is modelled as a network (A, A) with nodes N and
arcs A={a:a= (nn),nn €N,n < n'} representing transmission lines. We
denote by 5! (n) = {a:a = (n,n'),n’ € N}and 6"(n) = {a:a= (n',n),n €
N} the sets of arcs originating from and terminating in node n € N, respectively.

3This assumption can be justified for power generation units with start-up times in excess of a
few hours. However, some power generation units may have start-up times less than an hour, in
which case this is a simplifying assumption.
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2. SHORT-TERM BALANCING OF SUPPLY AND DEMAND

For a € A, we let the capacity of transmission line a be L) and the maximum
ramping rate be R,. Moreover, we let the flow allocated day-ahead to line a in
time interval ¢ be Ly. There is a net import from n to n’, or equivalently a net
export from n’ ton, if a = (n,n’) and L, > 0. We represent the intra-hour sched-
uled import on the transmission line in the same time interval by the variable Al
using the same conventions regarding its sign.

The set of conventional units is denoted by Z, the set of units online in the
time interval f is denoted by Z;, and the units located in node n by Z,,. Fori € Z,
we let the minimum and maximum generation level of unit i be P™" and PMax,
respectively, and the maximum rates for ramping up and down be R;" and R; .
We denote by C; the variable generation cost of unit i € Z. Note that whereas
activation of reserves generates an additional cost, deactivation of reserves results
in cost savings. We therefore let C" := (1 + 7)C; and C; := (1 — )C; be the
cost of activating manual reserves and savings of deactivating manual reserves,
respectively, where v € [0,1] is a mark-up or a mark-down. The idea is to allow
the costs and savings to reflect the additional stress imposed on the unit when
using it for balancing purposes. We assume that the mark-up and mark-down are
the same, although this may not always be the case in the market. The costs and
savings of activating or deactivating automatic reserves in node n are denoted by
C,f and C,;, where most likely, C,/ > max; C;" and C,, < min, C; .

We now let day-ahead planned generation on unit 7 in time interval ¢ be given
by the parameter P;;. The variables Ap;; > 0 and Ap;, > 0 represent the intra-
hour activation and deactivation of manual reserves on the unit, respectively.
Likewise, the variables g, > 0 and g,, > 0 represent the generation shortage and
surplus in node n during time interval t. To keep track of whether reserves are
activated or deactivated, we introduce two binary variables, z;tr and z;,. Hence,
z = 1if we have activated reserves in time interval f and zero otherwise. Like-
wise, z;, = 1 if we have deactivated reserves and zero otherwise.

To model detailed ramping restrictions, we let the binary variables 1 and u;,
be one if unit i is ramping in the direction of or in the opposite direction of target
generation level, respectively, in time interval ¢ and zero otherwise. The binary
variable v;; is set to one when the ramping in the direction of target generation
level has finished. Activated and deactivated reserves at time ¢ are represented
by the variable g;; > 0, and the minimum level of reserves that can be activated
at a given time is given by the parameter G™". This modelling resembles the
bidding practice of the balancing market, but allows for optimising the use of
reserves as opposed to using bid lists.

Finally, we assume that wind power production and demand is inflexible, and
denote their values by the parameters w,; and D,; in node n and time interval ¢.

In the following section, we present the model. For an illustrative example of
it, see also Section 2.5.2.
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2.5. The intra-hour model

2,51 Economic dispatch

We schedule the activation of manual reserves to cover any imbalance between
supply and demand. Manual reserve capacity is offered to the SO by produc-
ers submitting bids. In the presence of market power, producers may hold back
capacity to influence market prices. The model can easily account for this by ad-
justing the reserve capacity accordingly. However, in taking a social welfare per-
spective, we assume that idle capacity is always offered to the SO. Occasionally,
however, reserve activation may be technically infeasible or it may be feasible
only at very high cost, in which case imbalances are left to automatic reserves.
The optimal schedule is therefore determined by a trade-off between the activa-
tion costs of manual and automatic reserves. The objective is

Y (L (Crap; —Crdp) + ¥ (Cian — Cad)),
teT el neN

which is minimised subject to the following constraints. Although some of these
are purely technical restrictions, whereas others appear to be due to contractual
agreement, the basis for all of them is the physical limitations of the system.

The balancing constraint ensures system balance between supply and de-
mand. According to this constraint, if, at any point in time, scheduled production
exceeds predicted consumption or vice versa, we experience generation surplus
or shortage, which is left to automatic reserves. We assume that it is always pos-
sible to provide sufficient automatic reserves. Production includes day-ahead
planned generation on conventional units, intra-hour activation and deactivation
of manual reserves, forecasted wind power production, and finally day-ahead
and intra-hour net import/export on the transmission lines. Thus, we have that

Y. (Pe+Dpf—Bpi)+ Y (Lat+Ala)

icNZy, agsin(n)
— Y. (Lat+Alu)+ 4, — Gy = Dyt —wnr, n€ N, teT. (2.1)
ae(sout(n)

Transmission flow is restricted by the available line capacity, possibly agreed
by contract. In particular, intra-hour scheduled import on the transmission lines
is bounded above by the line capacity less the capacity allocated day-ahead.
Thus, we have that

_(Lumax - Lut) S Alat S L;nax - Lut, ac A,t € T

Activation of reserves is bounded above by the capacity that has not already
been dispatched day-ahead, whereas deactivation is bounded by the dispatched
capacity in excess of the minimum capacity. Formally,

Apl < (PP —Py)zit, i€eL,teT,

Ap, < (Py—P™M)z., i€ T,teT.
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2. SHORT-TERM BALANCING OF SUPPLY AND DEMAND

Finally, to ensure that a unit does not activate and deactivate reserves at the same
time, we have that

zi+z; <1, ie,teT.
In the absence of these constraints, positive activated and deactivated reserve lev-
els may occur simultaneously, as their difference produces a reserve level below
the minimum activation level.
The above constraints are very similar to those of the hour-by-hour ED prob-

lem. In our formulation of the intra-hour balancing problem, however, we in-
clude much more detailed ramping restrictions.

Ramping

We assume simple ramping constraints on the transmission lines. These are re-
strictions on the change in allocated transmission flow from one time interval to
another and apply to net import. Thus,

—Ra — Lygr41) + Lat < Alyrq) — Alat < Ra — Lygeqq) + Lat,
acAteT t<T-1
For the generation units, we include detailed ramping restrictions,
—(R7 4 Pyer1) = Phuy < Apyjy gy = Apyy < (R = Piyny + PiJuy,  (22)
ie,teT :t<T-1,
— Pigey1y + Piuy, < APji1y = Bpy < (Ri” + Pir41) — Pi)uj;,
i€eL,teT  t<T-1

_(Rjir

1

Here we also record if a unit is ramping in the direction of (1;; = 1) or in the
opposite direction of (u;, = 1) target generation level. To prevent the ramping
variables from being one when no ramping occurs, we assume a minimum ramp
rate. Thus,

euf + M(uj —1) < Ap;EtH) — Ap + APirsr) — BPir

iel,teT t<T-1,

euy, + M'(u; —1) < Apj; — Ap?{tﬂ) +Api; = AP0y

iely,teT t<T-1,

where ¢ is a sufficiently small number and M and M’ are sulfficiently large num-
bers.

Ramping in consecutive time intervals is restricted to a maximum time of
T, to reduce the stress imposed on the unit when using it for balancing pur-
poses. This is enforced by the constraints

min{T, 7™}
Yoo (uhtuy) < T, i€ teT. (2.3)

t'=t
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2.5. The intra-hour model

Target generation level

Upon activation of reserves, a unit must be scheduled to operate at a minimum
level for a fixed time interval. However, by consecutively activating or deacti-
vating reserves at the same level, this is equivalent to considering a minimum
activation time. Additional levels of reserves may be activated or deactivated on
the same unit at a given point in time. This we refer to as new reserve levels*. For
an illustration of the resulting operation schedule of a unit, see Section 2.5.2.

To ensure a minimum activation level, we have

Gy < git < Moy, i € Tt €T, (24)

where M is a sufficiently large number, e.g. P/"®*. The minimum generation level
is activated upon ramping in the direction of target level. Hence,

u;?t_l) —uf <vy, i€, teT. (2.5)
The ramping in the direction of target generation level, the ramping in the oppo-

site direction of target level, and the activation of a new generation level cannot
occur simultaneously, and so

uf +u; +op <1, ie,teT.

Finally, the total amount of reserves provided is the sum of previously acti-
vated (respectively de-activated) reserve levels with a fixed time of 7. Hence,

t t
)3 gin < Apjf +Bpy; < )3 i+ M(ujy +uy), (2.6)
t'=max{1,t—tres+1} t'=max{1,t—tres+1}

e, teT,

for M sulfficiently large, e.g. P/,

2.5.2 Example of activation of reserves

The following provides an example of how to manage reserves in our model.
For simplicity, we confine ourselves to intra-hour scheduling and activation of
reserves.

Consider a time horizon of 50 minutes with a resolution of T = 5 minutes,
a fixed activation time of 7 = 6 time intervals and a maximum ramping time
of "™ = 2 time intervals. Furthermore, let the minimum ramping level be
¢ =1 MWh/12, and the minimum reserve activation level be Glmin =2MWh/12,

4For example, assume that 5 MWh (per T-minute time interval) is activated at time 12:00 for 20
minutes. At 12:10, we may additionally activate 5 MWh for 20 minutes. Total amount of reserves
provided is then 5 MWh at 12:00, 10 MWh at 12:10, and 5 MWh at 12:20.
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2. SHORT-TERM BALANCING OF SUPPLY AND DEMAND

corresponding to ramping 1 MW and producing at 2 MW during each five minute
time interval, respectively.

From the balancing constraint (2.1), we detect the following deficit of energy
compared to the day-ahead planned production:

t
Energy (MWh/12)
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This deficit can be covered by a reserve activation of length 7™ = 6 with Ap;; =
2 MWh/12 for some unit 7 in the time intervals t = 3,...,8. Assuming that the
unit starts to ramp in the direction of this target level at time t = 1, and ramp in
a maximum of ™™ = 2 intervals, the ramping constraints (2.2) set ui'; =1. At
t = 2, we further ramp in the direction of target level, setting also u}, = 1. Since
we can only ramp for two consecutive time intervals, u}; = 0. With the minimum
ramping of ¢ = 1 MWh/12, the unit also covers the deficit in the ramping period
t = 2. As the unit reaches the desired level of production, ramping is finished and
constraints (2.5) ensure that v;3 = 1. This means that a new activation of reserves
has taken place. Constraints (2.4) now force the reserve level to be at least at the
minimum level of G™" = 2 MWh/12, and so g3 = 2. The reserve activation
variable Ap; is maintained at 2 MWh/12 by (2.6) during the six time intervals;
see the dark grey reserve activation in Fig. 2.5. In case no additional reserves
are activated, after six time intervals, constraints (2.6) force the unit to ramp in
the opposite direction of target towards the day-ahead level, which again forces
ug = uy = 1by (2.2). Since we can only ramp for two consecutive intervals,
Uy, = 0by (2.3). As before, the unit covers the deficit in the ramping period
t = 9. Finally, constraints (2.6) ensure that we are back at the day-ahead planned
production level at time t = 10.

In the case of further need for reserves, e.g. in time interval t = 6, we activate
new reserves on top of the initial activation. Now, let the time horizon be 65
minutes and the total deficit compared to the day-ahead planned production be:

5
35
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1
Energy (MWh/12) | 0
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The unit starts ramping in the direction of target level in time interval t = 4,
forcing u; = 1 by (2.2) and continues to ramp in time interval ¢ = 5, so that also
u;r = 1. Note that we could not have started ramping in the direction of target
level at t = 3 due to the maximum ramping restrictions (2.3). This new activation
is shown as the light grey area of Fig. 2.5. Again by (2.6) we ramp back from the
initial reserve activation in time intervals t = 8 and t = 9, however, preserving
our latest and still running reserve activation. This continues to run at the level
gic = 3 MWh/12 for the rest of the activation period.
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Figure 2.5: Two reserve activations on the same unit and the corresponding
values of the binary variables

Should there be need for a longer reserve activation period, by (2.6) it is pos-
sible to continue at the same reserve level directly after the previous activation
has finished, and without ramping in the opposite direction, by letting gi9 = gi3.

2.6 Case study

In our case studies, we consider a time horizon of two hours with a five minute
time resolution, corresponding to T = 5and T = 24.

2.6.1 Rolling planning

We generate an hour-by-hour production plan by running the UC model from
Weber et al. (2009) called WILMAR with data from the Danish electricity system
of 2010°. When the UC model has run for a day, the intra-hour model is launched.
Initially, it updates the wind forecast and converts the hourly output from the UC
model (production, consumption, etc.) to intra-hour values, see Section 2.3. To
reflect the frequent updating of wind forecasts, we run the model in a rolling
planning fashion. Hence, the intra-hour model reschedules the generation units
for the first two hours of the day, discards the second hour, and is rerun for the
second and third hour of the day, etc. By using a two-hour time horizon, we
avoid undesired end effects in the intra-hour optimisation such as the tendency
of production units to decrease the generation level towards the end of the hour.
The end values from the hour previous to the two-hour horizon serve as input
to the optimisation in order to accommodate reserve activation across the shift
between hours. The model is run for each hour of the day, with the final run
corresponding to the time period from 10 p.m. until midnight. In this run, both
the first and the second hour of the optimisation horizon are used. Finally, the
UC model is run for another day. The process is repeated for each day of a week.

5System data has kindly been provided by Energinet.dk, which is the Danish transmission
system operator (TSO).

29



2. SHORT-TERM BALANCING OF SUPPLY AND DEMAND

2.6.2 Cases

We consider a winter week in January 2010 as our base case, and compare this
to a week in May, July, and October of 2010 corresponding to spring, summer,
and fall cases. To complement the 2010 cases, we increase the capacity of wind
power in the data to fit the Danish 2020 goal according to guidelines from the
Danish TSO. This results in four cases corresponding to the same weeks but with
a significantly higher wind penetration. For our case studies, this represents an
increase in the wind power penetration from an average of 22.4% in the current
wind penetration cases to 30.4% in the high wind penetration cases.

In all eight cases, the ramping on transmission lines to areas outside the two
balancing areas is handled as for the production units, see Section 2.3. We con-
sider T™™ = 3 time intervals, resulting in a ramping pattern where the trans-
mission lines are ramping from one hourly level to the next within the last 15
minutes of the previous hour and the first 15 minutes of the current hour. How-
ever, according to the Danish TSO, this is only the case for transmission lines to
the Nordic countries. Ramping on transmission lines to Central Europe is done
within the last five minutes of the previous hour and the first five minutes of
the current. We investigate how this inconsistency, that is, different ramping pat-
terns, leads to additional system imbalances in the case of Winter 2010.

2.6.3 Model complexity and running times

The model is run with an Intel Core 3.10GHz processor and 4 GB RAM. The
model is implemented in the 64 bit GAMS framework version 24.1.3 for Windows
using the CPLEX 12.5.3.0 solver.

For each case, the rolling planning setup of OPTIBA with a total time horizon
of a week leads to seven runs of the UC model and a total of 168 runs of the
intra-hour model. For the eight 2010 and 2020 cases, running times vary between
11 hours and 31 minutes (Winter 2010) and 22 hours and 31 minutes (Summer
2010), whereas the Winter 2010 case with different ramping patterns is somewhat
slower. Considering the relatively long running times for a whole week, recall
that the purpose of our model runs is analysis of the system rather than actual
rescheduling. The average running time for the two hour horizon is less than
six minutes which would easily be applicable for an SO wishing to reschedule
proactively.

Out of the 168 model runs for each of the eight current and high wind pene-
tration cases, at least 80.9% solve with a gap less than 2%, 89.9% solve with a gap
less than 5%, and 95.2% with a gap less than 10%. For the Winter 2010 case with
different ramping patterns, the gaps are slightly larger.
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2.6.4 System characteristics

The system consists of two balancing areas with a total of 118 power produc-
ing units. For each of the two balancing areas the wind farms are grouped into
offshore and onshore wind power producing units. Aggregated characteristics
of hourly power system operations from the modules HA_cons, HA_prod, and
HA_wind are displayed in Table 2.1. As expected, the higher the wind power

Table 2.1: The table shows aggregated characteristics of hourly power sys-
tem operations for a selected week in each season with current and high
wind power share. The aggregated characteristics consist of the means
(standard deviations) of demand, conventional production, conventional
capacity, wind power production, wind power capacity, import, and export.
Capacities are in MW and all other values in MWh /12 corresponding to the
five minute intervals. Note that the wind capacity does not vary over time
as we assume turbines are never shut down

All areas — 2010 cases — current wind penetration

Winter Spring Summer Fall
Demand (MWh/12) 4183(884)  3554(667)  3463(631)  3876(778)
Conv. prod. (MWh/12) 3110(483)  2857(301)  2670(204)  3412(493)
Online capacity (MW) 4397(492)  4015(361)  4053(255)  4605(499)
Wind power prod. (MWh/12)  1880(878) 251(242) 657(545) 586(591)
Installed wind capacity (MW) 4752 4752 4752 4752
Import (MWh/12) 1438(493)  2222(610)  2187(544)  1974(625)
Export (MWh/12) 2227(475)  1778(534) 2054 (88)  2098(330)
All areas — 2020 cases — high wind penetration
Winter Spring Summer Fall
Demand (MWh/12) 4183 (884)  3554(667)  3463(631)  3876(778)
Conv. prod. (MWh/12) 2945 (384)  2836(259)  2687(181)  3379(477)
Online capacity (MW) 4197 (396)  3966(311)  3949(214)  4578(481)
Wind power prod. (MWh/12)  2492(1111) 364(347) 920(747) 812(800)
Installed wind capacity (MW) 6752 6752 6752 6752
Import (MWh/12) 1245 (571)  2164(596)  1943(657)  1881(632)
Export (MWh/12) 2499 (621)  1811(524)  2076(157)  2195(407)

share is, the lower the conventional production and import are, and the higher
the export is.

2.6.5 Intra-hour balancing characteristics

Current guidelines from the Danish TSO, based on physical restrictions on the
generating units, lead to the following assumptions. Each reserve activation or
deactivation lasts 77 = 6 time intervals. Longer activation times are handled in
the model as a multiple of individual reserve activations. The minimum activa-
tion or deactivation level is G™" = 10 MWh/12 corresponding to a production
level of 10 MW in the activation or deactivation period. The maximum ramping
time is 7M™ = 3 time intervals, and the minimum ramping limit is ¢ = 1 MW.
Regarding the costs of reserves, we assume that the costs of manual activation
or deactivation of reserves are the marginal cost of the unit multiplied by a mark-
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up or mark-down, respectively. Furthermore, we assume system-wide costs of
the automatic reserves, which we estimate from the historical price of manual
reserves. In particular, we set the cost of activating and deactivating automatic
reserves to the 95% and the 5% quantile of the historical distribution of reserve
prices in the Danish system, respectively. The costs can be found in Table 2.2.

Table 2.2: The costs of reserves. The costs of manual reserves depend on the
marginal cost of the units and a mark-up or mark-down for activation and
deactivation, respectively. The costs of automatic reserves are system-wide
costs

Marginal cost ~ Mark-down  Mark-up  Down  Up

Manual reserves (€) 3.8-216.2 0.9 1.1
Automatic reserves (€) 20 95

In future power systems with even higher wind power penetrations, the SOs
may have to install further reserves to maintain system reliability. This would
be at an additional cost, which is not present in our model. However, the cost
could be included as a higher cost on automatic reserves. We have investigated
the influence of a change in the costs of automatic reserves in the supplementary
material, see Appendix 2.B.

2.7 Results and discussion

In this section, we present numerical results from our intra-hour model and thereby
aim to justify the need for such models.

2.7.1 Cost savings from using proactive reserve activation

We report the costs of proactive manual reserve activation as given by our model
results. To compare, we likewise report the costs of leaving imbalances solely to
automatic reserves, referred to as reactive reserve activation. The difference be-
tween these costs is the savings from proactive reserve activation. From Table 2.3,
it is evident that hourly scheduling with reactive re-dispatch leads to extensive
use of the expensive automatic reserves. By proactively activating and deacti-
vating reserves, these reserve costs can be reduced. For the 2010 cases, savings
vary between 2.1 — 4.9%. of total system costs for different seasons. In spite of
the small share of total costs, the absolute savings of €391, 601 — 628, 070 are not
insignificant. For the 2020 cases, the savings are slightly larger, varying between
2.4 —9.3%o of total system costs corresponding to €408,758 — 738,137. These
savings will increase if the costs of automatic reserves rise in the future.

When comparing the 2010 cases with the 2020 cases, it is clear that higher
wind penetration results in lower total system costs for both the proactive and
the reactive strategy. Thus, the benefits from the inexpensive wind power are

32



2.7. Results and discussion

Table 2.3: Weekly costs of operating the system proactively and reactively.
For each strategy, costs are divided into manual activation and deactivation
of reserves and automatic activation and deactivation of reserves. Moreover,
the table shows total balancing costs and total system costs including day-
ahead costs. Finally, the savings from being proactive as opposed to reactive
are depicted. All numbers listed are in €

All areas — 2010 cases — current wind penetration

Strategy Winter Spring Summer Fall
Proactive Man. act. 414128 283371 279582 396 637
Man. deact. ~ —427554 —224730 —206994  —309489
Auto. act. 5066 3280 4298 5342
Auto. deact. —6201 —5803 —7067 —6303
Total —14560 56118 69820 86188
Total system 126668489 186520657 143835549 180548204
Reactive Man. act. 0 0 0 0
Man. deact. 0 0 0 0
Auto. act. 847870 581497 574898 812584
Auto. deact.  —234360 —116952 —113478  —161261
Total 613510 464545 461421 651323
Total system 127296558 186929084 144227150 181113339
Savings 628070 408427 391601 565135
All areas — 2020 cases — high wind penetration
Strategy Winter Spring Summer Fall
Proactive Man. act. 616352 299673 270315 395581
Man. deact.  —337719 —246961 —289132 —331126
Auto. act. 14159 4093 4380 6669
Auto. deact. —15128 —6598 —6536 —6666
Total 123947 50207 —20972 64458
Total system 78989767 175514299 124950092 161777073
Reactive Man. act. 0 0 0 0
Man. deact. 0 0 0 0
Auto. act. 1090133 599378 540179 806828
Auto. deact.  —228049 125144 —152392 —173694
Total 862084 474234 387786 633133
Total system 79727904 175938326 125358850 162345747
Savings 738137 424027 408758 568 675

not outweighed by the balancing costs. Furthermore, the savings from using the
proactive approach are larger for the 2020 case, and hence, future wind penetra-
tions of even greater magnitude will only make the intra-hour model increasingly
relevant.

2.7.2 Imbalances, updating of wind power forecast and ramping

Table 2.4 shows that total balancing costs depend on total imbalances in the sys-
tem. More specifically, total costs of activation and deactivation of reserves can
in most cases be explained by the corresponding total deficit and surplus in the
system. In all cases, except Fall 2020, deficit of power incurs positive total reserve
costs, whereas surplus of power incurs negative overall reserve costs because of
the need for activation and deactivation of reserves, respectively. The standard
deviations of the imbalances in Table 2.4 indicate that there are more frequent
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and/or larger imbalances in some cases than in others. This may increase the
costs of balancing the system since activation of automatic reserves is more ex-
pensive than deactivation. Thus, the large standard deviation of imbalances in
the Fall 2020 case leads to positive total balancing costs, even though there is a
total excess of power before the intra-hour model is run. The standard deviation
of imbalances can likewise explain some of the differences in total balancing costs
for the proactive approach in Table 2.3 between cases with average imbalance of
the same sign. For instance, for the 2010 cases, the standard deviation is smaller
in the spring, followed by summer and fall, which corresponds to the balancing
costs being smaller for the spring case, followed by summer and fall.

Table 2.4: Weekly averages (standard deviation) of total imbalances and
wind forecast errors in the system before re-dispatch in each five minute in-
terval. Moreover, the table shows the average positive and negative imbal-
ances and the average positive and negative forecast errors. The values are
in MWh/12 corresponding to the five minute intervals. When the forecast
error is positive, the updated forecast is higher than the original forecast

All areas — 2010 cases — current wind penetration

Winter Spring Summer Fall
Deficit -52.6 -36.4 -36 -50.8
Surplus 69.2 34.8 33.8 47.9
Imbal. 16.6(189.6) -1.6(104.5) -2.3(110.9) -2.9(142.3)
Neg. error -1.7 -5.5 -19.6 9.2
Pos. error 8 2.4 3.8 6.1

Wind error 63 (93) 31 (91) -68 (167)  -3.1 (17.9)

All areas — 2020 cases — high wind penetration

Winter Spring Summer Fall
Deficit -67.9 -37.6 -33.8 -50.5
Surplus 67.5 372 45.4 51.6
Imbal. -0.4(217.3) -0.3(107.8) 11.5(118.1) 1.1(153.2)
Neg. error -18.1 -4.7 -8.8 <72
Pos. error 5.7 3.2 15.7 8.9
Wind error  -12.4 (28.4) -1.6  (10) 69 (31) 1.7 (21.8)

Table 2.4 also shows wind forecast errors. In all cases, the total system imbal-
ance is negative (positive) when the total wind forecast error is negative (positive)
as expected. In fact, the average wind forecast errors contribute substantially to
total imbalances, cause activation and deactivation of reserves, and thereby ac-
count for a significant share of balancing costs.

2.7.3 Imbalances and ramping

The updating of wind power forecasts, the ramping, and the higher time resolu-
tion of demand data all affect the imbalances in the system. The imbalances are
reduced by proactive deployment of reserves. These are, however, not entirely
eliminated, which is evident from Fig. 2.6. This is due to the ramping restrictions
on production units that impose bounds on the use of reserves, making it impos-
sible to precisely meet demand. It would be very expensive to meet imbalances
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at the spikes, as this would require many of the slower units to ramp up and
thereby incur large imbalances in the time intervals before and after the spikes.
Hence, this would never be optimal from a cost minimisation point of view.

Energy (MWh/12)
| |
Energy (MWh/12)
|
——
E S
= |
—_

Time (hours) Time (hours)

Figure 2.6: The total imbal- Figure 2.7: The total imbal-
ance, i.e. the sum of imbal- ance before (grey) and after
ances in the two areas, before (black) activation of manual
(grey) and after (black) acti- reserves for the systerp in the
vation of manual reserves for Winter 2010 case with dif-
the system in the Winter 2010 ferent ramping patterns for

transmission to the Nordic
Countries and transmission to
Central Europe.

case.

For the Winter 2010 case with different ramping patterns on transmission
lines, the imbalances are larger than for the Winter 2010 base case. The imbal-
ances are depicted in Fig. 2.7 which shows how the imbalances exhibit additional
spikes that will not be captured in hourly UC models. These substantially larger
imbalances increase balancing costs by €57,909 corresponding to 0.5%o of the to-
tal system costs. As in the base case, the imbalances are reduced by proactive
deployment of reserves. However, the imbalances are not entirely eliminated,
and a higher frequency of spikes remain after re-dispatch than in the base case.

2.7.4 Reserve activations

A closer look at the Winter 2010 base case shows additional results from the intra-
hour model. First, Fig. 2.8 shows a given power generating unit for a two-hour
time horizon. It is seen how reserve power is activated in several overlapping
blocks of the same length, i.e. 7% = 6 time intervals. Moreover, the figure shows
how the unit ramps. This unit can ramp 70 MW from one five minute interval to
the next and is seen to ramp to the limit several times. Second, deactivation of re-
serves is likewise utilised, as seen in Fig. 2.9. The figure shows the re-scheduling
of another power generating unit for a two-hour time horizon. Here, reserve
power is deactivated in overlapping blocks. The ramp rate of the unit is 125.2
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MW. These two examples confirm that the ability to ramp within the hour is ex-

tensively used, and is therefore highly important in short-term scheduling.
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Figure 2.8: Two-hour sched-
ule for activation of reserves
on a selected unit, showing
five separate reserve activa-
tions. Each column repre-
sents the amount of energy ac-
tivated in a five minute inter-
val, e.g. 70 MWh/12, corre-
sponding to adding 70 MW to
the production level in that in-
terval.
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Figure 2.9: Two-hour sched-
ule for deactivation of reserves
on a selected unit, showing
five separate reserve deactiva-
tions. Each column represents
the amount of energy deacti-
vated in a five minute interval,
e.g. 21 MWh/12, correspond-
ing to producing at 21 MW
below the planned production
level in that interval.

Finally, Fig. 2.10 shows how a unit is rescheduled over a longer time horizon.
In particular, the figure displays planned production and how reserves are acti-
vated and deactivated while the total production of the unit remains inside the
minimum and maximum bounds for production.
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Figure 2.10: Rescheduling of a selected conventional unit. The dark grey
area is the planned production, the white area is activation of reserves, and
the light grey area is deactivation of reserves. The two dashed lines show
the minimum and maximum production levels of the unit.
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2.7.5 Sensitivity to uncertainty

For computational reasons, we formulate our model as deterministic, and accord-
ingly, the results in Table 2.3 are based on the expected value of wind power pro-
duction, assuming perfect foresight. Although predictability increases by consid-
ering a short time horizon of only one or two hours, the uncertainty in renewable
production may, nevertheless, still have an impact. For this reason, we investi-
gate the sensitivity of the model to uncertainty in the wind power production
(referred to as perfect foresight) and quantify the results of using the determinis-
tic solution in the presence of uncertainty (referred to as using expected value)®.

We aggregate the 5000 scenarios of the Winter 2010 case into three scenarios
by the use of K-means clustering. Initially, each scenario is assigned to the closest
of three scenarios. The cluster averages are then computed and all 5000 scenarios
are again distributed to three clusters depending on their distance to the aver-
ages. This iterative process continues until the averages are stable. The wind
power production of the three final scenarios is displayed in Table 2.5. Whereas
scenario 2 is close to base case, scenario 1 and 3 are relatively extreme.

Table 2.5: Mean and standard deviation in three wind power production
scenarios

Base case Scenariol Scenario2 Scenario 3

Mean 939.81 1775.12 1002.46 343.33
Std. 809.41 1156.32 862.80 395.04

In Table 2.6 we report the costs of perfect foresight in the three scenarios and
the result of using the expected value solution, which is computed by fixing the
levels of manual reserve and transmission in the base case, while assuming re-
alised wind power production is given by the scenario’. Finally, we also display
the costs of fixing the levels of manual reserve to zero, allowing only for reactive
reserves.

As seen from the results, the total costs vary significantly with variations in
wind power production, as does the result of using the expected value solution.
When comparing the results of fixing manual reserves to the base case level and
to zero, we observe that in Scenario 2, our model outperforms the reactive ap-
proach, whereas the opposite is the case for Scenarios 1 and 3. Hence, when wind
power production varies in the neighbourhood of its expectation our model re-
mains to be superior.

®In stochastic programming terms, this corresponds to the subproblems used in computing the
expected value of the wait-and-see solutions and the expected result of using the expected value
solution.

7In stochastic programming terms, this corresponds to a assuming a two-stage decision pro-
cess, in which manual reserve and transmission decisions are made before the realisation of uncer-
tainty and automatic reserve decision are made after the realisation.
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Table 2.6: Total system costs listed in €.

Scenario 1 Scenario 2  Scenario 3

Perfect foresight —9181134 —663448 10812021
Using expected value  —5631901 552974 19001380
Reactive costs —-5669202 646412 18786792

2.8 Conclusion

In this paper, we formulate an intra-hour model that proactively re-dispatches
the power generating units scheduled by an hourly unit commitment model to
account for imbalances in the system within the hour. Our model can be used by
the SO as decision-support for real-time activation of manual reserve bids, as it
can be used in advance of negotiating contracts on automatic reserves. However,
it is particularly useful in analysing the operational consequences of different
configurations of the electricity system. Contrary to existing models from the
literature, our model includes complex market rules for activation of reserves.
Imbalances are caused by wind power forecast errors, ramping on power units
and transmission lines, as well as intra-hour variations in demand. We gener-
ate a representative forecast of wind power production that serves as input to
the model. When investigating the influence of wind power forecast errors and
ramping, we find that the ability to ramp within the hour is used extensively by
the units. In spite of the cost of doing so, our results show that the benefits of
growth in inexpensive wind power production are not outweighed by increased
balancing costs. Moreover, we find that the proactive approach to re-dispatch the
units is superior to the reactive approach, especially for the 2020 high wind cases.
Thus, the approach is increasingly interesting for future power systems with the
expected growth in wind penetrations.

Future work includes an extension of the deterministic model to include sto-
chastic wind power production. Furthermore, different solution methods may be
explored to efficiently solve stochastic intra-hour models with high time resolu-
tion.
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APPENDIX

2.A Wind power forecasts: Parameters and correlations
Supplementary material to

Short-term balancing of supply and demand in an electricity
system: Forecasting and scheduling

in Annals of Operations Research

Parameters of the Beta distributions

Consider the Beta distribution Be(ay, B) with a; > 0,8 > 0. To determine its
parameters, we use the mean-variance model of Pinson and Madsen (2009).

The intra-hour mean is given by the linear interpolation between hourly val-
ues Wy, and @y, 1, and so

Ut = ((60]’1 - Tt)/(60 - T))YD;Z
+ ((t(t—=1)—60(h—1))/(60 — T))Wps1, t € Ty

The variance is determined from the mean such that
(th =01+ QZVtVt(l — ]/lt),

where, for a constant mean, the function

w= (i)

with A € [0,1] makes the variance an increasing and concave function of time.
Here, Ug is a reference variance of the forecast at time T/ 7 (the end of the schedul-
ing horizon), and f, is the time between generating and starting the forecast.

We use the parameter values Ug = 0.1and A € [0.4,0.6] as in Pinson (2006),
and 6; = 0.02 and 6, = 4, since the maximum variance (i.e. for y; = 0.5 and
t = T/7) should be close to (Tg.
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Finally, the parameters of the Beta distribution are computed using the iden-
tities®
ay ’ at P

pe = ar + Bt %= (ar + Be)*(ar + B + 1)

Correlation matrix

Denote the (T /1) x (T/7)-correlation matrix by X = (o ); 7. With inspiration
from Morales et al. (2009b); Pinson and Girard (2012), we assume exponential
decay of the correlations over time such that

o = exp(—(t' —t)(1/60)).

We use the parameter value ¢ = 1/7 as in Pinson and Girard (2012).

2.B The effect of the cost of the automatic reserves
Supplementary material to

Short-term balancing of supply and demand in an electricity
system: Forecasting and scheduling

in Annals of Operations Research

We investigate how the cost of balancing the system depends on the cost of au-
tomatic reserves. This is illustrated in Figure 2.B.1. It is seen how total costs

0 -0,3 ;0,2 -0,1 /Z ~ B /0,3
WG4 T 7 7 7 7
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Figure 2.B.1: Balancing costs for the Winter 2010 base case. The cost of
automatic reserves is €95(1 + «y) for activating reserves and €20(1 — v) for
deactivating reserves

increase when activation of reserves becomes more expensive and deactivation
becomes less expensive. By estimating the linear trend, we find the average total

8For some t, we occasionally obtain a; < 0 or B; < 0, which means that the Beta distribution is

not an accurate model for the data. In these cases we slightly modify y; or o7.
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balancing costs to increase by 3.9%, when the reserve costs are increased by 10%
(i.e. costs of activation of reserves increase by 10% and the costs of deactivation
of reserves decrease by 10%).
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A DYNAMIC PROGRAMMING
APPROACH TO THE
RAMP-CONSTRAINED INTRA-HOUR
STOCHASTIC SINGLE-UNIT
COMMITMENT PROBLEM

Ditte M. Heide-Jorgensen, Dep. of Math. Sciences, University of Copenhagen,
Pierre Pinson, Dep. of Electrical Engineering, Technical University of Denmark,
Trine K. Boomsma, Dep. of Math. Sciences, University of Copenhagen

ABSTRACT We consider the problem of a profit-maximizing power
producer in a liberalised market. With the increasing penetration of
intermittent renewable production in many power systems, variabil-
ity and uncertainty in electricity prices become major concerns and
the ability to ramp becomes increasingly important. We therefore pro-
pose a multi-stage stochastic formulation of the single-unit commit-
ment problem with a high resolution of the time horizon and ramping
constraints. In particular, we assume intra-hour electricity prices are
available on an hourly basis and allow for hourly binary unit commit-
ment (UC) decisions and intra-hour continuous economic dispatch
(ED) decisions. We solve the hourly UC problem by dynamic pro-
gramming and the intra-hour ED problem as a convex quadratic pro-
gram. To avoid excessive discretization, we suggest a compact DP
formulation, which is either exact or approximates ramping across
hours, whereas intra-hour ramping is handled by the quadratic pro-
gram. To appropriately represent market price uncertainty and cap-
ture temporal correlations, we suggest a time-inhomogeneous first-
order finite-state discrete-time Markov chain (MC). We illustrate the
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significant profit potential from considering the high time resolution
and the ability to ramp (up to 13.88%) and the substantial impact of
uncertainty in a realistic case study.

KEYWORDS Dynamic programming; OR in energy; Stochastic program-
ming; Unit Commitment; Markov processes

3.1 Introduction

In a regulated market, the unit commitment problem (UC) is solved by a central
planner who operates all units in the system, while minimizing total production
cost and ensuring balance between total supply and total demand. An early re-
view on this formulation of the UC problem is found in Sheble and Fahd (1994),
whereas overviews of more recent developments can be found in Hobbs et al.
(2001) and Anjos (2013). Previously, extensions of the problem have mainly con-
sidered uncertain demand, e.g. Bunn and Paschentis (1986). As the quality of de-
mand forecasts has improved, however, demand is often assumed to be known
and more effort has been put into developing efficient solution methods. An ex-
ample is the dynamic programming (DP) solution by Rong et al. (2008), in which
the dimension of the DP problem is reduced by relaxing the integrality condi-
tions of the on/off state variables and sequentially committing subsets of units.
An alternative decomposition method is Lagrangian relaxation of the balancing
constraints, see Zhuang and Galiana (1988), Muckstadt and Koenig (1977) and
Frangioni et al. (2008). This decouples the units, and the UC can be solved for
one unit at a time, making DP directly applicable.

During the 1990s, the electricity markets went through a liberalisation pro-
cess. As a result, planning and scheduling is no longer made by a central plan-
ner, but rather by independent power producers with the objective of profit max-
imization, while the market now ensures the balance between demand and sup-
ply. This problem has likewise been the subject of study in the literature, both as
a single-unit Lagrangian subproblem and as a profit maximization problem, see
e.g. Arroyo and Conejo (2000) and Frangioni and Gentile (2006).

The increasing deployment of intermittent renewable generation in recent
years challenges the balancing of supply and demand. To account for the un-
certainty in supply, the literature has proposed stochastic programming formula-
tions of the UC problem, see for example Papavasiliou and Oren (2013), Bouffard
and Galiana (2008), Morales et al. (2009a) and Pritchard et al. (2010). Typically,
uncertainty is represented by a so-called scenario tree that branches in each stage.
The formulation implies a copying of decision variables for each scenario and,
thus, the number of variables grows exponentially with the number of stages.
The copying of binary variables is especially likely to make multi-stage problems
computationally intractable. Consequently, most stochastic programming for-
mulations are two-stage (as all of the above), and even when multi-stage models
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are considered, as in Nowak and Romisch (2000), the number of stages is rather
small. As a result, these models are unable to capture the frequent update of pro-
duction forecasts etc. Furthermore, many problem formulations suggested in the
literature (again, as all of the above) consider hourly time intervals. Renewable
generation and wind power in particular, however, shows significant variations
within an hour, which makes the ramping abilities of conventional generation in-
creasingly important. For this reason, UC problems should ideally have a higher
time resolution and a sufficiently detailed representation of ramping constraints,
as also demonstrated by the simulation models for sequential electricity markets
in Jaehnert and Doorman (2012) and Ela and O’Malley (2012) as well as the two-
stage stochastic UC with intra-hour dispatch in Wang et al. (2013). Obviously,
such features further increase the complexity of the problem and thereby also the
task of solving it.

In the application of Lagrangian relaxation to the stochastic central planner
UC problem, variability and uncertainty of renewable generation is reflected in
the shadow price of electricity (i.e. the Lagrangian multiplier of the balancing
constraint). Similarly, in the UC problems of independent power producers, re-
newable generation yields variability and uncertainty in electricity market prices,
see Tseng and Barz (2002). With renewables in the system, the intra-hour variabil-
ity of prices is clearly significant, as illustrated by Australian electricity price data
in Figure 3.1.
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Figure 3.1: The electricity price on February 15th, 2013, from 6 to 8 AM in
New South Wales, Australia, which at the time had a wind power penetra-
tion of 27%.

We refer to the single-unit problem with uncertainty in the objective function
as the stochastic 1UC. The large number of binary variables in this problem has
occasionally been handled by DP, see e.g. Tseng and Barz (2002) for a backward
dynamic programming approach. The drawback of the DP approach is that the
straightforward application cannot handle constraints on the continuous vari-
ables across time intervals, such as ramping constraints, without approximation
by discretization. An example is provided by Tseng and Barz (2002), who propose
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to either discretize the production variables or to handle the constraints heuris-
tically. In Frangioni and Gentile (2006) another approach is presented. Here, the
authors propose a forward moving dynamic programming algorithm in which
the online or offline status of the unit determines the stages. In particular, the DP
subproblem in online stages consists of production scheduling between the start-
up of the unit in the beginning of the stage and the shut-down in the end. This
way, ramping of generating units applies only to time intervals within a stage as
opposed to across stages.

Different market designs have been implemented throughout various power
markets. Today, many markets such as Nord Pool® for the Nordic countries,
clears the day-ahead market with an hourly time resolution. The intra-day mar-
ket subsequently handles unplanned changes in production and consumption
by a settling of the balancing market an hour ahead of operation. Other mar-
kets such as the Australian National Electricity Market (NEM) are operated as
real-time spot markets that settle every half hour and determine electricity prices
every 5 minutes?. Such markets may more easily accommodate the variations in
renewable energy production, which is why this is our focus.

In this paper, we consider the stochastic 1UC problem in a real-time market
with a daily time horizon and updated forecasts of 5-minute electricity prices
every hour. Our contribution is threefold. First, we extend the stochastic but
hourly and approximate DP formulation of Tseng and Barz (2002) to include intra-
hour variations in market prices and ramping constraints of the generating units.
To avoid excessive discretization, we suggest a more compact DP formulation.
This formulation is exact under certain assumptions on planning in view of un-
certainty (the multi-hour model), and otherwise approximates ramping across
hours (the single-hour model), whereas intra-hour ramping is always handled
by a convex quadratic program. The formulations can likewise be seen as an ex-
tension of the exact and potentially intra-hourly but deterministic DP formulation
of Frangioni and Gentile (2006) to account for uncertainty in market prices. We
propose two alternative approaches to planning in view of uncertainty. In par-
ticular, as the straightforward application is not possible if planning decisions
are made on an hourly basis (the single-hour model), we also suggest a multi-
hour planning formulation (the multi-hour model) in which decisions are made
for several hours at once. Second, we suggest a time-inhomogeneous first-order
finite-state discrete-time Markov chain (MC) to appropriately represent market
price uncertainty. The result is a multi-stage stochastic ramp-constrained 1UC
problem with a high time resolution and multi-hourly stages. To the best of our
knowledge such a model has not previously been considered. While facilitating
the application of the DP, this allows us to capture temporal correlation in prices.
Third, we illustrate the significant profit potential from considering the high time
resolution and the ability to ramp (up to 13.88%) and the substantial impact of

1gee www.nordpoolspot.com.
2Gee www.aemo.com.au.
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uncertainty.

The paper is structured as follows. First, the decomposition of the UC to the
1UC is explained in Section 3.2, which also contains the DP formulations. The
application of DP to the stochastic ramp-constrained 1UC model is presented in
Section 3.3, while details on the Markov chain for electricity prices are found in
Section 3.4. Section 3.5 contains the numerical results for a representative case
study. Finally, the contributions of the paper are summarized and discussed in
Section 3.6.

3.2 Methodology

The unit commitment problem determines when to start up and shut down a
power producing unit. We consider a given time horizon, 7 = {1,...,T}, and
a set of power production units, Z = {1,...,I}. Foreveryi € Zand h € T,
the online status is represented by a binary variable u;;, which is 1 when the
unit is online, and 0 otherwise. The production level is a continuous variable g;,.
Furthermore, v;;, is a binary variable, which is 1 if unit 7 is started up at time 5,
and 0 otherwise. We let ¢ denote the cost of being online, cj represent the start-
up cost and ¢;(q) = ag® + bg + ¢ the convex quadratic production cost for unit i.
Now, we obtain the objective

I T
min Y Y (ci(qin) + Suip + o) - (3.1)
JinMinOin ;3 4
The problem is subject to a set of balance constraints matching supply with de-
mand, dj, in every time interval, h,

1
Y qn=dy heT. (3.2)

i=1

Further constraints include technical restrictions on every unit, usually including
minimum and maximum production limits, ;" and g;"**,

g7 i < g < " uy h e T,i €I, (33)

1

ramping restrictions allowing the production level in two consecutive time inter-

do . up

vals only to decrease by r{*“" or increase by r;",
d u

= < gy —qin <1;7 hEeT, (34)

and minimum up- and down-time constraints ensuring that the unit is online in
at least Tl.”p consecutive time intervals and offline in at least Tfl“w” consecutive
time intervals when the online/offline status changes

Uiy — Uip—1 < Ujk, k=h+1,.. .,min{h+ Tl-up —1, T},h eT,iel, (35)
Uip—1 — iy <1 —uyg, k=h+1,...,min{h+ T -1, T},he T,icZ. (3.6)
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Finally, logical constraints relate the binary start-up variable to the binary unit
commitment variable

Ui — wip—1 < vy, h€ T\{1}, i € L. (3.7)

This is a deterministic mixed integer programming formulation of the prob-
lem, which, as mentioned in Section 3.1, can be solved e.g. by Lagrangian re-
laxation. If we denote the Lagrangian multipliers of equation (3.2), also known
as the shadow prices, by A, h € T, the Lagrangian single unit problem can be
formulated as the following maximisation problem

,Cl(/\) = Imnax Z (/\hqh — Cl'(qh) — C?Mh - cfvh) P (38)

AnMUh,On heT

subject to (3.3)-(3.7) with the unit index of the variables omitted. To accelerate the
solution process these subproblems could be solved in parallel as the subprob-
lems of the Lagrangian relaxation in Papavasiliou et al. (2015). The Lagrangian
dual is

mAinzﬁi()\) — . du

i€eZ heT

which provides an upper bound to the UC problem.

Solving the Lagrangian 1UC subproblem corresponds to solving the profit
maximising 1UC problem in a deregulated market (assuming the Lagrangian re-
laxation algorithm converges). Denoting by pj, the market price for every h € T,
the problem is

max ) (pugn — ci(qn) — cfup — o), (3.9)

A Up,Op heT

under the constraints (3.3)-(3.7), again with the unit index of the variables omit-
ted.

We propose two formulations of the stochastic 1UC problem, which differ in
how decisions are adapted to the evolution of prices. In the first formulation,
we assume that the online/offline status of the unit is adapted to the price on
an hourly basis (as is the production schedule). This corresponds to extending
the stochastic approach of Tseng and Barz (2002) to a backwards DP program-
ming algorithm with high time resolution and a discretization of the production
variables at an hourly level to include ramping constraints. In the second formu-
lation, we further assume the number of hours online/offline is adapted to the
prices (as is the production schedule for the entire online/offline period). This
results in an extension of Frangioni and Gentile (2006) likewise to a stochastic
backwards dynamic programming algorithm with high time resolution, but with
stages consisting of online and offline periods. The latter approach allows us
to consider ramping restrictions without discretizing the continuous production
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variables. It, therefore, has the advantage of an exact solution, whereas the solu-
tion to the first has to be approximated. Both models enable a higher time res-
olution than hourly without compromising computational tractability even for
a stochastic model with many binary variables. We show that the second for-
mulation provides a lower bound to the first, as this can be seen as a stronger
non-anticipativity condition in stochastic programming. We use a case study to
illustrate and quantify the importance of a fine time resolution, ramping con-
straints, and the inclusion of uncertainty in a power system with a significant
share of renewable energy.

3.3 Stochastic single-unit commitment and intra-hour
dispatch

3.3.1 A dynamic programming formulation for the 1UC

To solve the 1UC problem efficiently we use a DP approach. A thorough intro-
duction to DP can be found in Bertsekas (1987). In the DP formulation of the
1UC problem we let a state be defined by the status of the unit in the preceding
hour, uj,_1, i.e. whether the unit was online or offline, how long the unit has been
online or offline, T, and a price vector, py, of the intra-hour electricity prices in
hour h. Note, that we omit the unit index as we now consider the 1UC problem.
We denote the stages by h = 1,..., T, which in our case represent the hours of a
T = 24 hour time horizon. We solve the intra-hour subproblem for each stage de-
ciding the production level in each intra-hour time interval. These subproblems
are ED problems since the binary online/offline decision variables are decided
on the hourly basis in the DP formulation.

We redefine start-up (/shut-down) cost as cj (uj,_1, uy,), and online (/offline)
cost as cf, (uy). Offline and shut-down costs may be zero as in Section 3.2, but it is
not necessary for the following to work.

We denote the value function of the intra-hour ED problem by f;,(py). Now
we are ready to define the DP recursion also known as the Bellman equation as
follows. If the unit was offline in stage 1 — 1 we denote the expected future profit
from stage h and onwards by F;? . If, furthermore, the unit has been offline for at
least T9°“" hours it can either start up or remain offline, and hence,

FO(T®", py) = max { — 65,0, 1) — cf (1)
+ (fu(pn) + E[Fyy1 (1 i) [pa] )
+E[EY (T, prya)[pal (1= ) : iy € {0,1} .

Fort € {1,..., Tdown _ 1} the unit has to remain offline due to the minimum
down-time restrictions, and thus,

F(t,pi) = — (0) + E[F) 1 (T + 1, prs1) | pal-
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If the unit was online in stage & — 1 we denote the expected future profit from
stage h and onwards by F!. If the unit has been online for at least T*? hours and
the production level in the previous hour is at minimum capacity it can remain
online or shut down,

(T, pi) = max { — c;(1,u) — ¢ (1)
+ (fu(pn) + E[Fy 1 (T, ppsa) [pn] ) 1
+ E[F) 1 (L prs) [ pnl (1 — ) sy € {011}}-

For T € {1,...,T" — 1}, the unit has to remain online due to the minimum up-
time restrictions,

Fi (T, pn) = = ¢4(1) + fu(pn) + E[Fpy (T + 1 P [pa)-

3.3.2 Economic dispatch with high time resolution

We solve the economic dispatch (ED) problem as a convex quadratic program-
ming problem assuming the variable costs, ¢(q;), are quadratic and convex. In
accordance with operational practice, production levels may be changed every
few minutes, whereas start up or shut down of units takes longer and is often
made on an hourly basis. We, therefore, allow for a higher time resolution in the
ED problem by assuming that each time period of the UC problem, £, is divided
into Tj, intra-hour time intervals t = 1, ..., Tj,. The production level in each time
interval is subject to capacity constraints and the objective is to maximize profit.

Letting p;, = ( pt)tTi 1, the ED problem is

Ty
fu(pn) = max Y (p:q: — c(qs))

t=1
st qmi” <qg <g", t=1,..., T,

3.3.3 Non-anticipativity

In the above, we assume that the online/offline status of the unit is adapted to the
price on an hourly basis. More specifically, we assume that the electricity prices
of the current hour are known in the beginning of the hour enabling the producer
to decide whether to remain online/offline or shut down/start up. In stochastic
programming terms, this corresponds to so-called non-anticipativity constraints.
To formulate this, let 7 = {F}, } 7 be a filtration, where F, is generated by p,.
Then, the constraints are as follows
Assumption 1(i) u;, must be adapted to F,.

We likewise assume that the ED decisions are adapted to the price on an
hourly basis, i.e.
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Assumption 1(ii) Let q;, = (qt)tT’; 1- Then, q;, must be adapted to Fy,.

We refer to this model as single-hour planning as opposed to the multi-hour
planning presented in the following.

3.34 A compact formulation

The UC problem can be formulated in a more compact fashion, which we will
exploit in the following sections. Let pyx = (py, - - -, px), Where p;, = (pt)tTi 1, and
let the multi-hour ED problem be

kT
fuk(prk) = max Y Y (pigr — c(qy))

j=ht=1
st E]MinSthqmaxl t:l,...,Tjr ]:h,,k

Moreover, let ¢f, (1) = Z;-‘: 5 ¢ (up). By iterating until the unit is no longer forced

online or offline (using the law of iterated expectations), the problem is equivalent
to

F(p1) = max { — 63,0, 1) + (= w1 (1)
+ IE[fhh+Tl‘P—1(Phh+T“P—1) + F}}+T”P (PHT“P) ’Ph])”h
+ (= (un) + E[E) 4 (Prsr) [ pn)) (1 — up) : uy € {0,1}},

and

F;(py) = max { — i (Lup) + (= (un) + fun(Pun) + E[Fpq (Prs1)) [Pr)) n
+ ( - C;,)lh+Tdnwn,1 (uh)
+E[EY pton Py e ) [ Pa)) (1 — 103) = 10y € {0, 1}}.

Note that in this formulation, the multi-hour ED subproblem of F 0is a multi-
stage problem (with hourly stages) due to the non-anticipativity constraints.

3.3.5 Strong non-anticipativity

As an alternative to Assumption 1, we may assume that the decision to start
up/shut down and the number of hours to remain offline/online depend on the
prices in a given hour. In stochastic programming terms, this corresponds to a
stronger non-anticipativity condition and can be formulated as

Assumption 2(i) Let k;, = min{k > h : u;, # uy,}, i.e. the first time the unit
changes status. Then, k;, must be adapted to F,.
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We likewise assume strong non-anticipativity in the ED problem. Formally,
we impose

Assumption 2(ii) Let q; = (qt)tTil and k;, = min{k > h : uj, # ux1}. Then,
qr must be adapted to Fj, fork = h,. .., k.

3.3.6 Multi-hour planning

We denote the UC and ED value functions under Assumption 2 by F{, F! and
fur- Note that with a stronger non-anticipativity condition, the multi-hour ED
problem becomes the deterministic problem

ki T,
ik, (Pik,) = max k; ;(E[Pth’h]qf —c(qr))

st qmin SQt Sqmax, t:l,...,Tk,k:h,...,kh~

Moreover, the DP problem becomes a shortest path problem. To see this, we may
further iterate until the unit changes status. As a result, the DP formulation is
equivalent to

B (pr) = max{ —c(0,1) — cfy, (1) + fir, (Pt

+E[F} 1 (Pk,+1)|pn) tkn € {h+T" — 1,~--,T}},
and

Fi(pa) = max { —;(1,0) = cf, (0)

+E[E) 1 (k1) |pa) < ki € {h+ T*"" — 1,...,T}}.

Now consider a directed graph with nodes corresponding to feasible online pe-
riods (i.e. respecting minimum up-time restrictions) and arcs representing fea-
sible offline periods going from one node corresponding to an online stage to
another, while respecting minimum down-time restrictions. Furthermore, let arc
costs represent start-up costs of the unit and let node costs represent the sum of
online costs and the negative profits associated with each stage. Then the so-
lution to the problem can be found as the shortest path between a source node
with arcs to all nodes and a sink node with arcs coming in from all nodes (see
Frangioni and Gentile (2006)). Note that in this formulation, the binary decisions
to start-up/shut-down are replaced by the integral number of hours to remain
online/offline.

The value function of the multi-hour planning problem provides a lower
bound on the single-hour problem, i.e.
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Proposition 1

Fl(pn) < Fl(py), j=0,1.

For a formal proof, see 3.A.

Without the stronger non-anticipativity, intra-hour dispatch with ramping re-
quires discretization of the production level on an hourly basis. This is unneces-
sary in the case of the stronger non-anticipativity condition, which has an exact
solution. We consider the inclusion of ramping constraints in the following sec-
tion.

3.3.7 Ramp-constrained single-hour planning

To accommodate the inclusion of ramping constraints, we introduce an addi-
tional state variable, g;_1, in the DP formulation that accounts for the production
level in the last intra-hour time interval of the preceding hour.

The ramp-constrained intra-hour ED problem is then

Ty
P hcr, ) = max Y- (g —e(a)
st ¢"" < g < g™, t=1,...,T,
— piown < o1 —qe <1, t=1,...,Ty
g0 = {%—_1/ if gp-1>0
gmt —r"P, if g1 =0,
qat, = 9n,

where the condition on g ensures that the unit always starts production at g""
in the first time interval of the hour when it has been offline the previous hour.
We let Q = [¢™", "] and

3(q) = QN [g— Tyro®m, g+ T,r'?], if g >0,
q QN [qmi”, qmin + (Th _ 1),,11]:7]’ if g = 0,

such that the production level complies with the minimum and maximum pro-
duction and can be reached within an hour (T}, intra-hour intervals) and thereby
also comply with the ramping restrictions. The DP recursion is as follows. If the
unit has been offline for at least T%°“" hours it can either remain offline or start

up,
Fy (T, py) = maX{ — ¢,(0, up) — ¢ (up) + max{fy(ps, 0, qn)

+E[Fy 1 (1L, pa i) [pa] < an € Q(0) }uy,
+E[F) (T, prya) [ pn) (1 — up)  uy, € {011}}'
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For T € {1,..., T%%" — 1} it must stay offline,

F(t,pn) = —c§(0) + IE[F;?H(T + 1, pni1)|pnl-

If the unit has been online for at least T#? hours it can shut down if the production
level in the previous hour ends at 4™, otherwise it has to remain online. Hence,

EL(T™, i g™™) = max { = ¢} (L0,) — ch(un) -+ max{fi (P, q"", )
+E[Ey o (T, prsr, i) [pa] = 4w € QUg"™™) u
+E[F (1P [Pl (1 — )y € {0,1} .

min

and for g,_1 > ¢

FL(T", pu, qn-1) = — cj(1) + max {fh(Ph,Qh—L%)

FE[FL (T, pacr, @) lpl 2 91 € Qi) }-

Fort € {1,...,T"? — 1}, the unit likewise has to remain online,

B (0P gi-1) = — (1) + max { fu (P, i1, 1)

+E[FL o (T+ 1, pris, qn)|Pn) : qn € Q(qh—l)}

In this problem, we have imposed Assumption 1. To solve it, we discretize
the production level. Note that in spite of solving a problem with high-resolution
time horizon, it is sufficient to discretize the production level in the beginning of
an hour and let the ED problem handle the ramping for the remaining intra-hour
intervals as continuous variables. Thus, intra-hour ramping can be handled in an
exact manner, whereas we approximate hour by hour ramping.

By alternatively imposing Assumption 2 we avoid the discretization of the
production level, and hence, an exact solution can be found, in spite of including
ramping restrictions. Indeed, the DP recursion is the same with or without ramp-
ing restrictions since the ED covers the entire online or offline period and thus
handles all the ramping.

3.4 Electricity price modelling

The modelling of electricity prices has been extensively studied, especially with
the deregulation of electricity markets in the 1990s and the increasing deploy-
ment of renewable power sources in the following decade, see Weron (2014) for
a comprehensive study of the literature. Here, we model the hourly sets of 5-
minute electricity prices by means of an inhomogeneous, first-order, finite-state,
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discrete-time Markov chain. The Markov property allows for the inclusion of
temporal correlation in prices while facilitating the application of the dynamic
programming algorithm. Although current prices may not only depend on the
immediately preceding prices but also on prices further back in time, Markov
chains have been argued to be a reasonable choice for modelling of electricity
prices, see for instance Gonzélez et al. (2005). Finally, it is well-known that elec-
tricity prices exhibit daily patterns, Weron (2014), which is accommodated by
considering a time-inhomogeneous Markov chain, see e.g. Iversen et al. (2014).
Recall that Tj is the number of intra-hour intervals in hour h. For every h =
1,...,H, we assume that the intra-hour prices of a given hour, &, are represented
by a discrete stochastic vector, P, = (Py,, ..., PhtTh ), that takes values within a

finite set of states {p},..., pZ} with p! = (pztl, cee, pZtT ). Each of these vectors
h

represents a high-resolution intra-hour price path corresponding to the price bin.
The Markov property ensures that

b b b by, b
PPy = Ph;i:HPl =p,-,Pp= Phh) =P(Pyq = Ph}++11|Ph = Phh)r

where by, ..., b1 € {1,...,B}. Note that we may have that le # PZZ/ since the
Markov chain is time-inhomogeneous.

We construct the price paths by clustering of historical data. For every h =
1,...,H, we define B price bins |pyy, Prp), b = 1,. .., B such that each price in the
first time interval of hour / is in exactly one of these bins. For consecutive stages
h and h + 1, we consider the observed price paths beginning in bin |py, prp) in
the first time period of the current stage, /, and ending in bin |pj4 1y, Frs1p], in
the first time period of the next stage, h + 1, for b, b’ € {1,...,B}. As a represen-
tative price vector p? = (pztl, ey pztn ) we choose the price path with smallest

Euclidean distance to the rest of the pa{ths (the centre). By choosing the centre of
the cluster, we represent price variations throughout the hour, which enables us
to assess the effect of ramping. Another possibility would be the average of the
cluster, but as this would diminish variations in prices, we would underestimate
the costs of ramping restrictions.

The probability, 7, p, ., that the Markov chain is in state by, in stage i + 1
given that it is in state by, in stage h is called the one-step transition probability
and can be estimated as the number of times the price started in bin b in the
beginning of hour & and ended in bin by, 1 in the beginning of hour / + 1 divided
the number of times the price started in bin by,

L
B 7
Y p—1 My b

Ty, byr —

where 1y, 5, is the number of observed price paths beginning in state by, and
ending in state by, ;.

An example of the price paths and the chosen representative can be seen in
Figure 3.2.
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Figure 3.2: Choosing a price path between two bins. The intra-hour price
path has 5-minute time resolution. The grey lines are the observed price
paths and the black is the chosen representative. The left and right y-axis
represent the price bin values for the current and coming hour, respectively.

3.5 Computational results

3.5.1 Price data

Price data with 5-minute resolution from July 2012 to December 2013 from New
South Wales has kindly been provided by the Australian system operator. The
data is separated into a set of weekdays and a set of special days (including
weekends, school holidays and public holidays). Outliers are removed based on
the histogram of the log-transformed data, see Appendix B in the electronic sup-
plemental material. This gives us a total price range of 0-150 AUD (Australian
dollars).

As mentioned in Section 3.4 the price range is divided into a number of bins
that represent the states of the Markov chain. The upper and lower bounds of
the bins are chosen such that the fraction of prices in each bin is 1/B, where B is
the number of bins. We consider 8 bins for our case studies to represent the price
data properly. Increasing the number of bins would require additional data to
estimate the parameters of the Markov chain appropriately. Excluding the first
and last bin, this results in an average price range of 1.74 AUD per bin for the
weekday data set and 1.78 AUD for the special day data set. The price range of
the first and last bin is naturally somewhat larger as they contain the rare very
low and very high prices, respectively.

In order to provide meaningful comparative models with 15 and 30-minute
time resolution, we aggregate the price trajectories from the Markov chain model
by taking the mean over 15 and 30 minutes, respectively.
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3.5.2 Unit data

We study and compare the ramp constrained intra-hour stochastic 1UC problem
for power producing units with different production characteristics. Table 3.1
displays their technical data regarding capacity, ramp rates, etc. For the 1a unit,
the data is obtained from Conejo et al. (2010). The other units are variants of the
first unit, constructed to compare the influence of ramping constraints and higher
costs on the solution to the stochastic 1UC problem. Table 3.2 holds the start-up,
online and production costs. These numbers are likewise based on Conejo et al.
(2010), but adjusted to comply with the quadratic production cost function. Unit
la resembles a base load unit and is as such assumed to be online at midnight
which is the beginning of the time horizon. Furthermore, we assume that it pro-
duces at 103MW in the last time period of the hour previous to the beginning of
the time horizon. To enable comparison we make the same initial assumptions
for the rest of the units.

Table 3.1: Technical data of generating units. Capacity bounds, ramp rates
and minimum up and down times for each unit. Unit 1a represents a base
load unit. The other units are variants of it increasingly resembling peak

load units.
qmnx qmin Fup pdown Tup Tdown
Unit MW MW MW/min MW/min h h
la& 1c 152 30.4 2.53 2.53 8 4
1b & 1d 152 30.4 6 6 8 4
le 152 30.4 6 6 4 2

Table 3.2: Unit costs. Start-up cost and coefficients of the quadratic produc-
tion cost function for the units.

CSM COH b a
Unit $ $  $/MWh $/(MWh)?2
la & 1b 14304 250 13 0.002
lc&1d & le 14304 300 52.9 0.002

3.5.3 Implementation

The dynamic programming algorithm for solving the UC problem is implement-
ed in Java. The convex quadratic programming formulation ED problem is like-
wise solved in Java with the Cplex callable library using Cplex 12.6. Both are run
with a 2.7GHz processor and 4GB RAM.
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3.5.4 Hourly benchmark

In order to evaluate the models and in particular the benefit of the high time
resolution we implement a simplified model to obtain an hourly benchmark. We
assume that the market continues to have 5-minute prices, but as for the hourly
commitment decisions, the dispatch decisions are hourly. To represent ramping
we let production increase or decrease linearly throughout the hour between the
production level at the end of the previous hour and the production level at the
end of the current hour.

3.5.5 Profit gains from intra-hour dispatch

The results from the single-hour planning model can be found in Table 3.3. Ob-
viously, the expensive units have lower profits than less expensive units. For all
time resolutions, the fast ramping units, 1b and 1d, have at least as high profits
as their slower counterparts, 1la and 1c. Moreover, a doubling of the ramp rate
results in a profit increase of only 0.12%, comparing 1b with la in the 5-minute
stochastic model, but 2.12% when comparing 1d with 1c. In contrast, the corre-
sponding 60-minute resolution profits show no difference between the fast and
slow ramping units. Thus the high time resolutions reveal a profit opportunity
for the expensive fast ramping units. On the contrary, when comparing the profit
of le to that of unit 1d, the 60-minute stochastic model shows a difference of
1.59% whereas the 5-minute stochastic model shows a 1.64% difference. Hence,
the high time resolution reveals only little profit opportunity from the reduction
of up- and down-times.

Obviously, there is a positive difference between the high resolution prof-
its and the 60-minute benchmark. Especially the units 1d and 1le show a posi-
tive profit difference of 2.8% and 2.84%, respectively, for the stochastic 5 minute
model, compared to the 60-minute benchmark. This is higher than for the 1a, 1b
and 1c units. The reason is that 1d and le have high costs and at the same time
have high ramping ability, and thus exploit the possibility of adjusting produc-
tion to the price.

From a deterministic model with expected prices we notice the same pattern
with even greater differences than in the stochastic model. Hence, if all para-
meters are deterministic, and in particular the price is known in advance of plan-
ning, there is a substantial profit gain from considering the intra-hour variations.
In spite of this, the stochastic model generally produces a higher profit in absolute
terms.

Finally, the table shows that the profit difference when compared with the
60 minute benchmark for unit le in the stochastic model decreases from 2.84%
(13.88%) with 5 minute resolution to 2.05% (12.38%) and 0.55% (7.72%) in the
stochastic (respectively deterministic) case as the time resolution decreases to 15
and 30 minutes, respectively. Hence, the 30-minute resolution does not add much
value whereas the 15-minute resolution may be sufficient for intra-hour manage-
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Table 3.3: Unit profits for the single-hour model and the weekday data set.
The profits for 5-, 15- and 30-minute time resolutions are listed along with
their corresponding 60-minute benchmarks. Finally, the difference between
high time resolution profit and 60-minute benchmark profit relative to the
high time resolution profit is shown. Except for the relative difference all
values are in AUD.

Deterministic Stochastic

Unit Solution  60-min bench. Diff. Solution  60-min bench. Diff.
s la 145691.71 145056.64  0.44% 147328.63 146668.68  0.45%
g 1b 145858.90 145056.64  0.55% 147500.55 146668.68 0.56%
é 1c 2085.52 197353  5.37% 6863.12 6812.39  0.74%
o 1d 2291.53 1973.53 13.88% 7008.84 6812.39  2.80%

le 2291.53 1973.53 13.88% 7123.52 6921.00 2.84%
s la 145627.87 145029.56  0.41% 147268.14 14664798 0.42%
g 1b 145734.04 145029.56  0.48% 147377.25 14664798 0.49%
é 1c 1905.82 1825.22  4.23% 6758.14 6717.85 0.60%
s 1d 2120.89 1858.22 12.38% 6904.92 6767.86 1.98%
—  1le 2120.89 1858.22 12.38% 7018.59 6875.03 2.05%
s la 145456.79 144988.59  0.32% 147100.01 146615.55 0.33%
g 1b 145456.79 144988.59  0.32% 147100.01 146615.55 0.33%
é 1c 1608.58 1514.63  5.84% 6569.13 6479.05 1.37%
a 1 1815.48 167539  7.72% 6727.06 6693.13  0.50%
©  Tle 1815.48 1675.39  7.72% 6846.11 6808.17 0.55%

ment.

Table 3.4, in general, shows the same patterns for the multi-hour model. The
intra-hour planning allows fast ramping units to exploit their ramping abilities,
which results in higher profits than for the slow ramping units, both in absolute
terms and the relative difference from the hourly benchmarks. Finally, we see
again that relative profit difference between the high time resolution cases and the
60-minute benchmarks decreases as the time resolution decreases except for some
cases in which profits are very low. What is also evident, however, is that for the
stochastic cases and the fast ramping units the multi-hour model has in general
a much lower profit than its single-hour counterpart, indicating that the lower
bound is not very tight. For the slow and inexpensive units 1a and 1b we see
that the profits are almost the same for the multi-hour model and the single-hour
model, even a little higher for the multi-hour model. In this case the lower bound
isin fact so tight that the discretization of the production levels for the single-hour
model yields a slightly worse result. Thus, a production planner could benefit
from planning only one hour ahead, when planning for fast ramping units with
high variable costs, but we may use the exact and computationally less expensive
multi-hour planning for inexpensive slow ramping units.

Tendencies are the same for the weekday and special days data sets, although
the lower prices in the special days data result in reduced profits overall. The
results can be found in the supplementary material, see Appendix 3.C.
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Table 3.4: Unit profits for the multi-hour model and weekday data set. The
profits for 5-, 15- and 30-minute time resolutions are listed along with their
corresponding 60-minute benchmarks. Finally, the difference between high
time resolution profit and 60-minute benchmark profit relative to the high
time resolution profit is shown. Except for the relative difference all values

are in AUD.
Deterministic Stochastic

Unit Solution  60-min bench. Diff. Solution  60-min bench. Diff.
s la 145691.71 145056.64  0.44% 147330.80 146670.85  0.45%
& 1b 145858.90 145056.64  0.55% 147502.72 146670.85 0.56%
é 1c 2049.61 1962.49  4.25% 3130.16 3064.79  2.09%
| 2190.05 1962.49 10.39% 3267.21 3064.79  6.20%

le 2190.05 1962.49 10.39% 3687.65 3441.69  6.67%
s la 145627.87 145029.56  0.41% 147270.31 146650.14  0.42%
& 1b 145734.04 145029.56  0.48% 147379.42 146650.14  0.49%
é 1c 1882.13 1824.03  3.09% 2969.09 292572  1.46%
| 2027.94 1852.45  8.65% 3107.60 2956.01 4.88%
= le 2027.94 1852.45  8.65% 3530.10 3354.58 4.97%
s la 145456.79 144988.59  0.32% 147102.17 146617.72  0.33%
& 1b 145456.79 144988.59  0.32% 147379.42 146650.14  0.49%
é 1c 1619.65 152556  5.81% 2724.16 2636.27 3.23%
a U 1773.80 167539  5.55% 2866.46 2788.90 2.71%
©  le 1773.80 1675.39  5.55% 3274.62 3219.78 1.67%

3.5.6 Precision

Since we have discretized the hourly production levels to exploit the DP solution
of the stochastic 1UC problem with ramping, we briefly consider the effect of the
number of production levels. We find that increasing the number of production
levels from 16 to 31 generates no profit increase for unit la and only 0.00021%
profit increase for unit le which would be most vulnerable to price volatility
and thus have the greatest risk of having suboptimal hourly production levels.
Finally, we consider an extra unit, 1f, which corresponds to le, but with lower
minimum up- and down-time and lower start-up costs to see if a unit more sus-
ceptible to shutting down and starting up would change this picture. Here the
profit increase remains insignificant at 0.00025%. We conclude that for these units
the 16 production values are sufficient to appropriately represent the hourly pro-
duction levels.

3.5.7 Running times

The running times of the model heavily depends on the number of states in the
Markov chain and for the single-hour model the number of production levels.
In general, the multi-hour model solves quickly with running times around 350
seconds for the stochastic model and less than 10 seconds for the deterministic
model. Due to the increased number of states for the single-hour model the run-
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ning times are higher, around 1000 seconds for the stochastic 5-minute model and
30 seconds for the deterministic model. For a multi-stage model with 24 stages
this is very reasonable. The running times for the special days data set are of
the same order of magnitude. For both data sets we consider 8 price bins and
16 production levels. Note that with these running times it would be possible to
use the single-hour or multi-hour 1UC as the Lagrangian relaxation subproblem
of a large system model, as discussed in Section 3.1, especially if the Lagrangian
subproblems were run in parallel.

3.6 Conclusions and discussion

We consider the stochastic multi-stage 1UC problem with hourly updating of
intra-hour electricity price information. We present two DP formulations that
both make hourly binary UC decisions whereas continuous ED decisions are
made in the DP subproblem, which is a convex quadratic program with higher
time resolution, but differ in their assumptions regarding non-anticipativity. In
our single-hour model the hourly plans are adapted to current prices. In our
multi-hour model, however, plans are made for an entire online period on the
basis of current prices. We show that the multi-hour model can handle ramping
in an exact manner and with little computational effort, whereas the single-hour
model requires discretization of the hourly production levels. However, multi-
hour planning results in a substantial reduction in profits compared to single-
hour planning. Moreover, the single-hour model can be solved with a sufficiently
fine discretization to obtain a satisfactory computational precision within reason-
able running times.

Our results show that there is a significant difference in profits between low
and high time resolution cases, especially when prices are close to marginal costs
and the ramping ability is high. Furthermore, the ability of intra-hour ramping
is revealed with the high time resolution with profit differences of up to 2.00%
which was not detectable in the low time resolution model. However, these ef-
fects are mitigated when the intra-hour time resolution is decreased to 15 and 30
minutes, confirming the importance of the high time resolution.

Future work includes the implementation of Lagrangian relaxation of the
system-wide stochastic UC problem to further investigate computational tract-
ability of our approach.
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APPENDIX

3.A Proof of Proposition 1

Lemma 1 Denote the value functions under Assumption 1 and 2 by fj,, and thkh/
respectively. Then,

Fiior (i) < fik, (P, )-
Proof: Let q;, = (qt)tTil, and let
kp T

ik, (Pik,) = max E [ Yo ) (pear — C(Clt))’Ph}

k=h t=1
st q’”in <q < g™, teT,k=h,... k,

qx is Fj-measurable fork = h, ..., ky,.

Due to the stronger non-anticipativity constraints, the multi-hour ED problem
provides a lower bound to the multi-hour ED problem. Under Assumption 2,
this becomes

kn Tk

fik, (Pri,) = max Y Y (E[pelpalgr — c(q1))
k=ht=1
st qmm <q <g", teTy,k=h,... k
qx is Fj-measurable fork = h, ..., ky,

which is a deterministic problem.

Proposition 1 Denote the value functions under Assumption 1 and 2 by P;];

and F;];/ respectively. Then,

F(pn) < Fy(pn),j =0,1.

Proof: For k = h, ..., ky, the constraint uy is Fx-measurable in the single-hour
UC problem is replaced by uy is Fj,-measurable in the multi-hour UC problem,
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which is a restriction of the problem since F;, C Fj. By definition, u, = uj; =
- = Uy # ug41 if and only if k;, = k. Combining this with Lemma 1, we obtain
the desired result.

3.B Preprocessing of the price data

Supplementary material to

A dynamic programming approach to the ramp-constrained
intra-hour stochastic single-unit commitment problem

Outliers are removed from a data set on the basis of the histogram for the log
transformed data. The price data is log transformed via the formula

p=In(e+p), (3.10)

in which we assume ¢ = 1.
For the special day data set the histogram can be seen in Figure 3.B.1. The
histogram looks very similar for the week day data set.

20000 40000
Freguency
200 400 600

Frequency

0
0

log(1+price) log(1+price)

Figure 3.B.1: The histogram of the log transformed price data in New South
Wales for the special day data set. The figure to the left is a closer look at the
histogram, i.e. with lower values on the y-axis.

We decide to consider all values above p = 150, i.e. approximately 5 in the
histogram, as outliers and remove them from the data set before using it to deter-
mine the Markov chain parameters.

3.C Results for the special day data set

Supplementary material to

A dynamic programming approach to the ramp-constrained
intra-hour stochastic single-unit commitment problem

Clearly, the same patterns apply for the special day data set as for the week day
data set, except that prices are generally lower resulting in overall lower profits.
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In fact, the price is sufficiently low for the expensive units, 1c, 1d and 1le, to have
negative profits in some of the deterministic special day cases for both models.

Table 3.C.1: Unit profits for the single-hour model and the special day data
set. The profits for 5-, 15- and 30-minute time resolutions are listed along
with their corresponding 60-minute benchmarks. Finally, the difference be-
tween high time resolution profit and 60-minute benchmark profit relative
to the high time resolution profit is shown. Except for the relative difference
all values are in AUD.

Deterministic Stochastic

Unit Solution  60-min bench. Diff. Solution  60-min bench. Diff.
s la 138161.73 137539.09 0.45% 139826.09 13917591  0.46%
2 1b 138325.60 137539.09 0.57% 139995.17 13917591  0.59%
g 1c -400.68 -443.18 10.60% 5139.67 5101.37  0.75%
E 1d -380.23 -443.18 16.56% 5233.56 5101.37  2.53%

le -113.38 -364.41  221.41% 5307.35 5175.16  2.49%
s la 138096.10 137509.58 0.42% 139763.23 139152.27  0.44%
2 1b 138200.05 137509.58 0.50% 139870.76 139152.27  0.51%
g 1c -388.71 -430.80 10.83% 5083.76 5042.90 0.80%
E 1d -369.88 -430.80 16.47% 5177.93 5078.69  1.92%
= le -185.16 -406.53  119.55% 5251.68 5151.08 1.92%
s la 137922.80 137463.52 0.33% 139593.52 139116.92  0.34%
2 1b 137922.80 137463.52 0.33% 139593.52 139116.92  0.34%
g 1c -370.34 -410.73 10.91% 4986.24 4898.00 1.77%
g 1d -370.34 -410.73 10.91% 5073.37 5041.86 0.62%
D e -336.77 -410.73 21.96% 5151.95 5112.73  0.76%
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Table 3.C.2: Unit profits for the multi-hour model and the special day data
set. The profits for 5-, 15- and 30-minute time resolutions are listed along
with their corresponding 60-minute benchmarks. Finally, the difference be-
tween high time resolution profit and 60-minute benchmark profit relative
to the high time resolution profit is shown. Except for the relative difference

all values are in AUD.

Deterministic Stochastic

Unit  Solution min  60-min bench. Diff. Solution  60-min bench. Diff.
s la 138161.73 137539.09 0.45% 138555.64 137908.20 0.47%
g 1b 138325.60 137539.09 0.57% 138726.52 137908.20 0.59%
£ 1c -445.31 -607.07  36.32% 469.49 41592 11.41%
LE 1d -445.31 -607.07  36.32% 575.45 41592 27.72%

le -445.31 -607.07  36.32% 708.10 54049  23.67%
s la 138096.10 137509.58 0.42% 138494.59 137884.25 0.44%
g 1b 138200.05 137509.58 0.50% 138603.14 137884.25 0.52%
£ 1c -600.71 -664.84  10.68% 397.90 356.56  10.39%
LE 1d -508.21 -649.83  27.87% 503.48 384.00 23.73%
—  le -508.21 -649.83  27.87% 633.52 509.58  19.56%
s la 137922.80 137463.52 0.33% 138325.89 137848.14 0.35%
g 1b 137922.80 137463.52 0.33% 138325.89 137848.14 0.35%
£ 1c -693.80 -780.09  12.44% 280.62 219.17  21.90%
g 1d -635.94 -712.62  12.06% 372.38 341.85 8.20%
©  Tle 1773.80 1675.39 5.55% 502.88 471.77 6.19%
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OPEN- AND CLOSED-LOOP
EQUILIBRIUM MODELS FOR THE
DAY-AHEAD AND BALANCING
MARKETS

Ditte M. Heide-Jorgensen, Salvador Pineda and Trine K. Boomsma,
Department of Mathematical Sciences, University of Copenhagen

ABSTRACT The increasing penetration of inflexible and uncertain re-
newable energy generation is often accompanied by a sequential mar-
ket setup with a day-ahead market that serves to balance supply and
demand with an hourly time resolution and a balancing market in
which flexible generation handles imbalances closer to real-time and
with a higher time resolution. Different market characteristics, such
as time resolution, the time of market offering and the information
available at this time, price elasticities of demand and the number of
market participants, allow producers to exercise market power to dif-
ferent degrees. In view of this, we consider a joint oligopolistic market
setup of the day-ahead and balancing markets with Cournot competi-
tion. To represent uncertain production from renewables, we assume
a linear inverse demand function with a stochastic intercept. We con-
sider two equilibrium models for the sequential markets. The first
is the open-loop model of the problem which can be solved straight-
forwardly via the Karush Kuhn Tucker conditions. The second is a
more realistic, but computationally harder, closed-loop model, that
results in an equilibrium problem with equilibrium constraints which
we solve by diagonalization. We compare the open- and closed-loop
models with special emphasis on the potential of exercising market
power, and use the closed-loop model to further analyse the case in
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which access to the balancing market is limited to units with a high
degree of flexibility. Contrary to similar models of other sequential
electricity markets our results show that the open- and closed-loop
solutions are in general not the same and, surprisingly, it is not always
beneficial for a producer in a duopoly to enter the balancing market
compared to the producer that can only participate in the day-ahead
market. Finally, our case studies show that a higher time resolution in
the balancing market reveals profit potential for the power producers.

KEYWORDS market power; stochastic programming; electricity markets;
complementarity modelling; sequential market modelling

4.1 Introduction

Electricity systems today are challenged by a growing penetration of renewables.
In many countries, the inflexibility, intra-hour variability and uncertainty of re-
newable generation such as wind power is handled in a market setup with a
day-ahead spot market and a real-time balancing market. The spot market serves
to balance supply and demand with an hourly time resolution. Since market
offering is a day ahead of operation, however, deviations from forecasted net de-
mand, mainly due to renewable production, can be substantial. The purpose of
the balancing market is to determine the optimal redispatch of generating units to
balance unexpected mismatches between production and consumption. Offering
is closer to real-time, e.g. an hour ahead of operation, and therefore the deviations
from the net demand forecast made at this point in time are much smaller than
for the day-ahead forecasts. Furthermore, the higher time resolution in this mar-
ket allows for adjusting sufficiently flexible production when e.g. wind power
varies substantially within the hour. Finally, the two markets may differ in terms
of price elasticities of demand. These different market characteristics allow pro-
ducers to exercise market power to different degrees.

In this paper, we study the characteristics of electricity markets with a high
penetration of renewables, with special emphasis on the modelling of sequen-
tial day-ahead and balancing markets, in which producers may exercise market
power. We consider a joint oligopolistic market setup with Cournot competition
and assume linear inverse demand functions. The day-ahead forecast of renew-
able production is known, whereas uncertainty in realised production is repre-
sented by a stochastic intercept of the inverse demand function. We consider two
equilibrium models for the sequential markets. The first is an open-loop model
of the problem in which day-ahead and balancing decisions are made simulta-
neously and which can be solved straightforwardly via the Karush Kuhn Tucker
conditions. The second is based on sequential decision making and more closely
resembles actual practise by power producers. It is a computationally harder
closed-loop model that results in an equilibrium problem with equilibrium con-
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straints and can solved by e.g. diagonalization.

A review of modelling trends for sequential markets represented as equilib-
rium models is found in Ventosa et al. (2005). The authors highlight two dif-
ferent approaches: the Cournot based models and the supply function equilib-
rium (SFE) models. The SFE electricity market approach, which was introduced
in Klemperer and Meyer (1989), is occasionally argued to create better models
as players submit a supply function, i.e. a set of volumes and prices at which
the player is willing to sell the volumes. The SFE approach, however, is com-
putationally challenging to a degree that limits the representation of electricity
system characteristics, and Cournot models are often preferred, although offers
consist of quantities only, Ventosa et al. (2005). In other words, Cournot compe-
tition assumes that market participants submit the volume they wish to sell or
buy and the market settles the price according to an inverse demand function,
see Allaz (1992). Compared to offering prices only, this is a reasonable assump-
tion for electricity markets as power producers have a maximum capacity, which
must be respected even if the electricity price varies, and they are often produc-
ing close to this limit. Consumers may be modelled as explicit players in the
market, Kazempour and Zareipour (2014), but are typically modelled implicitly
via an inverse demand curve that depends on the electricity price and specifies
how consumers are willing to adapt consumption to the price, see Allaz (1992);
Giilpinar and Oliveira (2014) amongst others. Besides pure Cournot models, sim-
ilar models include Stackelberg competition models, e.g. Hu and Ralph (2007),
which likewise assume competition in quantities, but with a leader (or multiple
leaders) in the market and followers, who know the decision of the leader be-
fore they determine their offers by e.g. competing in Cournot fashion between
themselves. Some work has been done on more general conjectural variations
models in which solutions apply to several kinds of competition determined by a
specific parameter, see Song et al. (2003); Wogrin et al. (2013). These models have
been argued to better reflect offering decisions, while maintaining computational
tractability, as the Cournot models, Ventosa et al. (2005). In spite of this, we focus
on Cournot competition and leave the extension to general conjectural variations
as future research.

Several interesting electricity market problems can be formulated as two-
stage stochastic market equilibrium models. Examples include the sequential
spot and forward markets considered by Allaz (1992) and the capacity expansion
models with capacity decisions in the first stage and subsequent spot market dis-
patch in the second stage by Wogrin et al. (2013). Many references account for un-
certainty in net demand, assuming that the first and second stages differ by the in-
formation available for decision making, i.e. by whether uncertainty has been re-
alized or not. If decisions in the first and second stages are made simultaneously,
these are referred to as open-loop models, see Giilpinar and Oliveira (2014) for
an example. These models are usually computationally tractable since they can
be solved by use of the Karush Kuhn Tucker (KKT) optimality conditions. If, in
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contrast, decisions are made sequentially in time, the result is a so-called closed-
loop model, which can be found in Allaz (1992); Hu and Ralph (2007); Zhang
et al. (2010); Twomey and Neuhoff (2010); Shanbhag et al. (2011); Wogrin et al.
(2013); Ito and Reguant (2015). Typically, the equilibrium of the second market
is represented by the set of optimality conditions which is then used in the op-
timization problem for each of the players in the equilibrium of the first market.
Thus, the players anticipate optimal decision making in the second market when
participating in the first, but cannot take advantage of the first market when mak-
ing decisions in the second. The problem of finding the Nash equilibrium of the
first market results in an equilibrium model with equilibrium constraints. With
Cournot competition in both markets this can be seen as a Stackelberg game with
multiple leaders (the participants in the first market), and multiple followers (the
participants in the second market), and the equilibrium is sometimes referred to
as a subgame perfect (Nash) equilibrium, see Hu and Ralph (2007). We will con-
sider this type of equilibrium in the sequential market setup for the day-ahead
and balancing markets.

In some cases the solutions to open- and closed-loop problems are the same,
and hence the computationally tractable open-loop model can be used. This is,
however, not true in general, when the time resolution is not the same in the two
markets or equivalently if the inverse demand function for the second market
is stochastic, see Wogrin et al. (2013). For day-ahead and balancing market se-
quential market we find that even when time resolution is the same in the two
markets, it is important whether solutions are made simultaneously or sequen-
tially, i.e. that solutions of the open-loop and closed-loop model differ. In this
case, the closed-loop problem must be solved by approximate methods, e.g. rely-
ing on diagonalization.

4.2 Previous work

One of the first two-stage stochastic sequential market models for electricity mar-
kets is found in Allaz (1992), who models the forward and day-ahead market
in a duopolistic closed-loop setting. More recently, Hu and Ralph (2007) formu-
lated a bilevel optimisation model formulated as a closed-loop model, for the for-
ward and spot market as a multi-leader multi-follower Stackelberg game and has
shown existence of the equilibrium. Moreover, a two-stage duopolistic closed-
loop model for the forward and spot market is used by Twomey and Neuhoff
(2010) to investigate how market power affects the profits from renewable gen-
eration. Another two-stage, but oligopolistic and stochastic closed-loop model
for the forward and day-ahead market is presented in Zhang et al. (2010). The
authors of Shanbhag et al. (2011) likewise propose a closed-loop model for the
forward and spot market. The authors prove existence and uniqueness of an
equilibrium for the resulting EPEC and present a globally convergent, scalable
algorithm to find it. Furthermore, they prove that the open-loop and closed-
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loop solutions are the same for their problem. The comparison of open-loop and
closed-loop equilibria for the capacity expansion problem is studied in Wogrin
et al. (2013). The authors derive some assumptions under which the open- and
closed-loop solutions are the same, but also have examples of multi-period prob-
lems in which solutions may differ.

So far, there has only been little interest in stochastic and sequential day-ahead
and balancing market models. Exceptions include Kazempour and Zareipour
(2014), who presents a variation of the SFE model, a step-wise offer curve model,
for the day-ahead and balancing markets. Two different SFE models for the New
Zealand electricity markets are studied in Khazaei et al. (2014). One of these
models resembles the electricity markets of New Zealand with a day-ahead /pre-
dispatch market and a subsequent balancing market. In the other model suppli-
ers bid both a supply function and linear deviation cost at which they are willing
to change production in the balancing market. They prove that the solutions are
equivalent, but that the second model yields higher social welfare than the first.
To derive analytical solutions, the authors assume symmetry of the producers
and disregard transmission constraints. Finally, Ito and Reguant (2015) formulate
a closed-loop two-stage Cournot model for the forward (or day-ahead) and real-
time markets. The market setup includes a monopolist and a number of fringe
suppliers and look and study their behaviour in both markets under different
arbitrage assumptions and how this affects the social welfare.

In this paper we likewise consider the sequential day-ahead and balancing
markets. This setup differs from the forward and spot market models and the
capacity expansion models by having two demand functions and by the inverse
demand function in the balancing market depending on total production and
thereby variables from both markets. The other problems only include the vari-
ables from the second market. Finally, the time resolution in the day-ahead mar-
ket is lower than in the balancing market. For the forward-spot models the time
resolution is the same in both markets, whereas this is not necessarily the case
for the capacity expansion models. Our time resolutions result in several inverse
demand functions for the balancing market for a given hour, but only one for the
day-ahead market. Equivalently, a stochastic setup involves several intercepts for
the inverse demand function of the balancing market, but only one for the day-
ahead market. The difference in time resolution and/or uncertainty excludes the
results from the literature on open- and closed-loop equivalence.

The different characteristics of the day-ahead and balancing markets allow
producers to exercise market power to different degrees. We investigate the im-
pact of different time resolutions, the time of market offering and the information
available at this time and price elasticities of demand on the open and closed loop
solutions and the difference between them. Furthermore, we consider two spe-
cial cases: In the first case, we study limited access to the balancing market, and
discuss whether balancing market access is an advantage for a power producer
or not. In the second case, we consider the effects of excluding arbitrage, in line
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with some branches of the literature, e.g. Shanbhag et al. (2011).

The paper is structured as follows. We go through the open- and closed-loop
models in Section 4.3. Section 4.4 extends to the case in which arbitrage is hand-
led explicitly. Numerical results can be found in Section 4.5 including studies of
differences between open-loop and closed-loop solutions, profit gain from intra-
hour time resolution and reflections on market power, and finally conclusions are
drawn in Section 4.6.

4.3 Modelling the day-ahead and balancing markets

In the day-ahead market, every producer i € I solves a profit maximisation prob-
lem to determine its production, x;;, in hour & € H subject to its capacity limit,
X", We assume that day-ahead demand is known but flexible and responds to
the market price according to the following affine inverse demand function

da .__ daygday _ pda da yda
P’ =Pt (dy?) = By" — g dy,

where af? > 0 is the demand elasticity of price, B2 > 0 is the intercept corre-
sponding to the inelastic price and d¢{? is the day-ahead demand in hour h € H.
Note that we may, without loss of generality, consider this a relation between
market price and net demand, i.e. the difference between demand and inelastic
generation (e.g. intermittent renewable production), by accounting for the latter
in the intercept. This could result in negative prices for some time periods, but
as this only happens in less than 0.5% of the time!, we will not go further into
this here. We present the problem with the possibility to include several hours,
h € H, for completeness, since the day-ahead market is usually cleared for 24
hours at the time, even though we leave intertemporal constraints like ramping
for future work.

A producer determines its production in the balancing market in a similar
fashion as in the day-ahead market. However, the balancing market has a higher
time resolution with intra-hour time intervals t € T, where |T| > |H| and every
interval belongs to a given hour, i.e. t € Tj, for h € H. In this market produc-
ers may offer both upwards balancing power x;; | (increase of day-ahead sched-
uled supply, x;;,) or downwards balancing power x;,  (decrease of supply), also
known as up-regulation and down-regulation, respectively. Up-regulation is sub-
ject to the remaining availability of capacity following day-ahead market clear-
ing, (x/* — x;,) 1y, where 7, = ﬁ Down-regulation is limited by the day-ahead
production corresponding to the current intra-hour time period, x;,7,, assuming
that hourly day-ahead production is evenly distributed across the intra-hour time

IThe numbers are from Denmark 2013, see the Nordic Market Report 2014:
http:/ /www.nordicenergyregulators.org/wp-content/uploads /2014 /06 /Nordic-Market-Report-
2014.pdf
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4.3. Modelling the day-ahead and balancing markets

intervals. We assume that day-ahead quantities are determined facing an uncer-
tain demand, while balancing quantities are made once the uncertainty is dis-
closed. More specifically, we assume that the intercept 22! is a random variable
on some probability space (Q), F,IP). Furthermore, we assume a discrete dis-
tribution of this random variable and represent its realizations by the so-called
scenarios B53! for w € Q. A stochastic intercept could for example be justified by
inelastic and intermittent renewable production, which would result in shifts of
the demand function according to the scenarios. The inverse demand function in
the balancing market is given by the affine function

bal . bal da gbal bal balx da bal jbal
Pro = Pro (Td),", diy ) = Bro Tuddy" — o dig

where b2l > 0 denotes intercept, i.e. the inelastic price in the balancing market,
a3l > 0 denotes the balancing market demand elasticity of the balancing market
prlce txbalx > 0 denotes the day-ahead market demand elasticity of the price and
dbal is the intra-hour net demand in time interval ¢ € T and scenario w € Q).
Production costs in an intra-hour time interval are given by the convex quad-
ratic function

i (ThXins X Xigeo) =01 (Tuiy + X3, — i) + by (TXin + X, — X35,)
Al 1tw+'y Xy 1€1, teT, heH,

for a; > 0 and with 7" > 0 and y~ > 0 representing the additional costs of stress
imposed on generating units that provide balancing services.

For every producer that engages in both the day-ahead and balancing mar-
kets, the profit maximisation problem is a two-stage stochastic program, with the
tirst stage representing the day-ahead market and the second stage represent-
ing the balancing market. In particular, a producer offers day-ahead production
prior to the realization of uncertainty in net demand, whereas up-regulation and
down-regulation are offered in response to it.

When producers compete, the day-ahead equilibrium problem consists of the
profit maximisation problem of each producer in the market and a market clear-
ing condition to balance supply and demand. The latter consists of the inverse
demand functions and the matching of supply and demand

dﬁa szh ’ bal = Z (x;;w - xftw) :

iel iel

4.3.1 Open-loop

We start by formulating the problem as an open-loop problem, assuming that the
producers make their day-ahead and balancing market decisions simultaneously.
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4. OPEN- & CLOSED-LOOP MODELS FOR THE DAY-AHEAD AND BAL MARKETS

The equilibrium problem for the day-ahead and balancing markets is then the
two-stage stochastic problem

X{ 2 pgaxih + Z Tw E E (pltgf)l( n‘w - xztw) Ci (Thxih’ xlﬂt_w’ xi:cu)) :

heH we) heH teTy,

(Urh) ( )
0 < xj < X', he H

max

< T (X" —xy), t€Ty, heH, we
(gi?w) ((_Ti;w) .
0 < x, < Ty teTl, heH weQy,, iel

pila = pda _ydagda p c g
phal — plal — bl gse — gbghl f e Ty, he H, we O
dP =Y xy, heH
iel
dlt’f}:Z(x;{w—xi:w), teT, heH, weQ,
i€l
where ¢j;,, 0j;, etc. denote the dual variables of the corresponding constraints.

It should be remarked that the objective function is concave under certain
(reasonable) assumptions on the inverse demand function parameters and the
cost function, see Appendix 4.D. Under these circumstances we replace the prob-
lem by the necessary and sufficient KKT conditions (4.1a)-(4.1j). Along with the
market clearing conditions (4.1k)-(4.1n), this results in a mixed complementarity
formulation of the equilibrium problem

aPh oppal - d;
— X — 4.1
oxip R w%) teZT:; T ( Ixip (¥ = %i) oxiy, (41a)
ot — O — Yy, Y, (05, —0p,) =0, i€l, heH (4.1b)
weQ teTy,
o) bal e .
Tlw p:—w (xltw ztw) + plkf):?l —; o Ui—;_w + Q;—l_w = O’ (*) (4‘1C)
ox ztw axitw
dppal - bal _ OCi - -
T | 22 (X — %) = Pro — 5= | = g + Titeo = 0, (%) (4.1d)
a ztw a ztw
0<xjpLoyp>0 heH, iel (4.1e)
ng?‘ax—xth_(Tih>O heH, iel (4.11)
0<xi Lol >0 (x) (4.1g)
0 < g (x™ —xy) —xt Lot >0, (x) (4.1h)
0<x,, Lco,>0 (% (4.19)
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0 < x;, — Xito 1 Tit = 0, (*) (4.1j)
pla = pda _ydagda p g (4.1K)
pal — gpal _ pbabxg gda _ ybalgbal "4 e 7 he H, we (4.11)
a2 =Y xp, heH (4.1m)
iel
deal — Z (xf,—x;,), teTy, heH weq, (4.1n)

iel
where the (%) conditions are fori € I, + € T, h € H, w € Q. We refer to

4.B for the partial derivatives. The mixed complementarity formulation can be
solved with a standard mixed complementarity solver.

4.3.2 Closed-loop

We proceed by formulating the closed-loop problem, in which producers make
their day-ahead decisions prior to making balancing market decisions. Hence,
day-ahead market decisions are made in an upper-level problem, while antici-
pating the profit from optimal offering in the balancing market. In contrast, bal-
ancing market decisions are made in a lower-level problem in response to the
offers and the corresponding profit in the day-ahead market. Whereas this in-
creases model complexity, it is current practice of many power producers in re-
ality. In Denmark, for example, balancing offers are accepted up to 15 minutes
before each hour and therefore, power producers prefer to postpone their offers
until some of the uncertainty is revealed.

Lower-level

At the time of making balancing market decisions, the day-ahead production,
x;n, is known. Now, the lower-level problem consists of the equilibrium of the
balancing market

max { Y Y (Pl — X)) — o (i ) ) - (2a)

xt

ithi?w heH teTy,
(gi:—w) (6—1'11)
< < on(™ —xy), teET, heH weQ  (42b)
(gi?w) (a—i?w) .
ng;tw < Txy, t€T, heH, weQy, i€l (4.2¢)
phat = Bha — b it — oM, te Ty, heH, weQ  (42d)
a2t =Y xp, heH (4.2¢)
i€l
& =Y (xi, —x;.), t€T, heH we, 4.26)
i€l
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4. OPEN- & CLOSED-LOOP MODELS FOR THE DAY-AHEAD AND BAL MARKETS

The nested profit maximisation problem of each producer is concave, which
can be proved similarly as for the open-loop problem above. Thus, (4.2a)-(4.2¢c)
can be replaced by the necessary and sufficient KKT conditions (4.3a)-(4.3f). Along
with the market clearing conditions (4.3g)-(4.3i) these make up the lower-level
balancing market equilibrium problem as follows

e 4 - bal 9G4 .
ox; (Xt = Xitew) T Proo — ox; Uit + ity = 0, (%) (4.3a)
bal .
OIS (1~ )~ PR~ o 0+ 0, =0, () (43D)
itw itw
0<xi Lol >0 (x) (4.3¢)
0 < g (x™ —xy) —xit Lot >0, (x) (4.3d)
0<x;,,Lc,>0 (* (4.3e)
0< hXin — xi:w 1 51;0 >0, (*) (43f)
p]ff} = lt’f} — uclt’alxrhd,‘ja — a?aldlfjl, teTy,, heH, weQ (4.3g)
d =Y xp, heH (4.3h)
i€l
a2 =Y (xj, — %), t€Ty heH weQ, (4.31)

iel

where again the (x) conditions are fori € I, t € T, h€ H, w € Q.

Upper-level

In the upper-level, the equilibrium of the producers committing to a day-ahead
production schedule is found, while taking into account the equilibrium of the
lower-level balancing market. The upper-level day-ahead market equilibrium
problem is therefore

max{ Z pﬁaxih (4.4a)

heH

+ 0 e Y (PR, — i) — 6 (i 3 X)) £ (44b)
we) heH teTy

0< xp < XM, heH, (4.3)}, icl (4.4¢)
P = e —ae Y xy, he H. (4.4d)
i€l

This problem is an equilibrium problem with equilibrium constraints, which is
hard to solve. One approach is to use Fortuny-Amat and McCarl linearization
Gabriel et al. (2013); Fortuny-Amat and McCarl (1981) of the complementarity
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constraints and diagonalization of the upper-level problem Gabriel et al. (2013);
Hu and Ralph (2007), which is a similar as the Gauss-Seidel iteration used in
Ito and Reguant (2015). The pseudo-code for the algorithm can be found in Ap-
pendix 4.A.

4.4 Excluding arbitrage

In the above formulations of sequential market clearing, a producer can profit
from offering production to the day-ahead market and subsequently offer down-
regulation to the balancing market in all scenarios, if the day-ahead price exceeds
the intra-day price and the additional balancing costs. Such arbitrage, however,
may be prohibited by the market operator. For this reason, we extend the for-
mulation to include an arbitrageur who participates in both markets with the
objective to maximise profits from buying (resp. selling) g, in hour & € H in the
day-ahead market and selling (resp. buying) gy, in the balancing market for ev-
ery intra-hour time period t € T, and every scenario, w, in hour h € H. Since the
arbitrageur does not produce anything we must have that the amount bought or
sold in the day-ahead market for a given hour is the same as the amount sold or
bought in the balancing market for all intra-hour time intervals of the hour and
for all scenarios.
The problem of the arbitrageur is

max{ Z Pnqn + Z TTw Z Z Prwqtw -

Al | peq weQ  hEHtET,

gy + 91w =0, t €Ty, heH, wEQ}

By isolation of g, and substitution into the objective function we obtain
maX{ L Pun = L, o ) Tl ) ptw}
A | hepg we heH teT,

Assuming the arbitrageur is a price-taker, the KKT optimality conditions for this
problem are

—ph+Th Y T Y, Pro =0, he€H.

we) teTy,

This constraint is included in the open-loop problem and in the upper-level of
the closed-loop problem. Note that the constraint implies that

da da yda bal balx da bal ybal
n — g d), :ThE”wZ:(tw—“t Tudj,” — g dtw)'
we tETh
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4. OPEN- & CLOSED-LOOP MODELS FOR THE DAY-AHEAD AND BAL MARKETS

The nested profit maximising problems of the producers in the above open- and
closed-loop equilibrium model formulations are always concave, when including
this equation.

4.5 Results

For clarity, we consider a duopoly with two identical units with capacity xj"** =
150 and cost function parameters a; = 0,b; = 10,97 = 5,9~ = 1. Note, the
difference in cost of up- and down-regulation eliminates the possibility of mul-
tiple solutions. The cost function parameters are chosen in accordance with the
inverse demand function parameters below such that the units produce less than
at their full capacity to be able to observe if market power is exercised. Since the
two units are identical, results are reported for one unit only, except in the case
of limited balancing market access. For model analysing purposes, the introduc-
tion of a number of scenarios (with equal probability) is equivalent to having the
same number of intra-hour time periods in a deterministic model. Therefore, we
assume in the following that |Q)| = 1 (and omit the scenario index). Further, we
assume |H| = 1, since we do not have any intertemporal constraints.

The next sections shed light on the following issues. First, in Section 4.5.1
we determine that there may be a significant profit difference between open-loop
and closed-loop solutions and we determine some of the factors influencing the
size of the difference. In Section 4.5.2 we establish that there is a profit gain from
considering a higher time resolution in the balancing market than hourly and
that differences between open-loop and closed-loop solutions also are present in
a setup with high time resolution. Surprisingly, we find in Section 4.5.3 that for
two producers participating in only the day-ahead market, the inclusion of one of
them to the balancing market may benefit the other producer more than the one
in both markets, depending on the inverse demand function parameters. Finally,
for the special case in Section 4.5.4 in which there is no arbitrage, we find that
open- and closed-loop solutions differ to a very high degree.

451 Hourly balancing market time resolution

In our most simple case we assume | T| = 1 and compare the three models: Open-
loop perfect competition, open-loop Cournot and closed-loop Cournot. Note,
that closed-loop perfect competition is not considered, since for perfect competi-
tion producers offer production at marginal costs obviating the need for a closed-
loop formulation. For all three models we consider 5 cases. For our base case we
assume that demand in the two markets is the same and reacts in the same way
to price, i.e. the inverse demand function parameters for the two markets are the
same. Specifically we assume a§? = abax = gbal = 1 and g3l = pfa = 100.
Figure 4.1 shows the resulting inverse demand function for the day-ahead
and balancing markets and the aggregated supply curve for the base case. To
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4.5. Results

Figure 4.1: The inverse demand function (the same for both markets) and
the aggregated supply curve.
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understand the parameter setting in the remaining four cases we first consider
the inverse demand functions and isolate the demand in each market

B0 1 4
dy® = —— — —p5,% 45
h aga lxga Pn ( )
gbal _ R phal (4.6)
t altaal Dc];al h azal t
Clearly, varying the day-ahead demand elasticity of price, a?, corresponds to
da
varying both the inflexible day-ahead demand, %, and the price elasticity of de-
h
mand, ﬁ. We assume a??* = bl in all 5 cases. This means that day-ahead

h
demand should be subtracted from the balancing market demand function inter-
cept. Now, we investigate how the profit of each power producing unit is affected

by

I) Inelastic demand being lower in the day-ahead market than in the balanc-
ing market, letting 2 = 60. This may be the case if renewable energy
production is lower than expected. Further, outages of power production
units and transmission lines can also be translated to higher balancing mar-
ket demand.

IT) Inelastic demand being higher in the day-ahead market than in the balanc-
ing market, in two cases by letting a) 8% = 140 and b) B = 180. This
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4. OPEN- & CLOSED-LOOP MODELS FOR THE DAY-AHEAD AND BAL MARKETS

Table 4.1: The cost and demand function parameters for the single intra-
hour time period case.

Case a b pfa afa phal ghabc pbal
Base 0 10 100 1 100 1 1
I 0 10 60 1 100 1 1
ITa 0 10 140 1 100 1 1
ITb 0 10 180 1 100 1 1
11T 0 10 100 0.8 100 1 1
v 0 10 100 1.25 100 1 1

may be the case in a stochastic setting if renewable generation is higher than
expected or if transmission from external areas is higher than planned.

III) The willingness of demand to adjust to the price being higher in the day-
ahead market than in the balancing market, by letting af® = 0.8 and p}* =
80 corresponding to an inelastic demand of 100 (as for the base case) and
price elasticity of the day-ahead demand of 1.25, see (4.5), whereas the price
elasticity of demand for the balancing market is 1 (as in the base case). This is
reasonable if we assume that the demand in the balancing market is unwill-
ing to adjust to the price as would be the case with a high share of inflexible
renewables.

IV) The willingness of demand to adjust to the price being lower in the day-
ahead market than in the balancing market, by letting @ = 1.25 and g@ =
125, corresponding to an inelastic demand of 100 (as in the base case) and
price elasticity of day-ahead demand of 0.8, again see 4.5, whereas itis 1 (as
in the base case) for the balancing market demand/price. This is interest-
ing in future electricity systems where flexible demand controlled by smart
solutions may enter the balancing market.

Open-loop perfect competition

Table 4.2 shows the solution to the open-loop perfect competition model pre-
sented above in (4.1). For the base case up- and down-regulation is zero, con-
firming that the producers offer their production to the day-ahead market only,
when the inverse demand functions are the same, due to additional balancing
market costs.

Up- respectively down-regulation occur when the intercept of the inverse de-
mand function for the day-ahead market is lower respectively higher than that
of the balancing market, see I respectively Ila and IIb in Table 4.2. Further, there
is down-regulation for case IIl with demand elasticity of price being lower in
the day-ahead market than in the balancing market, since this will induce higher
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prices in the day-ahead market, unless production is increased as is the case in
Table 4.2. Likewise there is up-regulation for case IV in which the day-ahead
market has a lower demand elasticity of price than the balancing market. For all
cases, the market price equals the marginal costs since the players are perfectly
competitive: 10 DKK/MWh for the day-ahead market and 15 and 9 DKK/MWh
for the balancing market when up- respectively down-regulation occurs. As ex-
pected, profits are therefore zero.

Table 4.2: Open-loop perfect competition. Varying inverse demand func-
tion parameters. Production volumes are measured in MWh, prices in
DKK/MWh and profit in DKK.

Case xp* xf" x;° Total p@  pbl Profit
Base 45.00 0.00 0.00 45.00 10.00 10.00 0.00
1 25.00 1750 0.00 4250 10.00 15.00 0.00
Ila 65.00 0.00 1950 45,50 10.00 9.00 0.00
b 85.00 0.00 3950 45,50 10.00 9.00 0.00
11T 56.25 0.00 10.75 45,50 10.00 9.00 0.00
v 3750 5.00 0.00 4250 10.00 15.00 0.00

Open-loop Cournot

Table 4.3 shows the open-loop Cournot results. When comparing to the perfect
competition case in Table 4.2, we observe that in general, when competition is im-
perfect, producers hold back production from the day-ahead market to increase
the market price in both markets and thereby their profit, see the base case in the
tables. The same behaviour is not observed in the balancing market, since pro-
duction in the balancing market does not affect the price in the day-ahead market.
With this increase in balancing market price, it becomes profitable to increase up-
and down-regulation even though this reduces the balancing market price. The
higher inelastic demand in the day-ahead market or the higher the demand elas-
ticity of price, the higher total production and profits. In other words the higher
production at equilibrium, the higher benefits of being able to exercise market
power.

Closed-loop Cournot

Table 4.4 shows the solution to the closed-loop Cournot formulation in (4.4) for
hourly balancing market time resolution. In the closed-loop solution, producers
hold back less production in the day-ahead market than in the open-loop solu-
tion in Table 4.3. The total production of a unit is higher, and the day-ahead
market price, the balancing market price and the profit are therefore lower. Thus,
when the day-ahead and balancing market offers are made sequentially, the abil-
ity to exercise market power is lower. In the open-loop model, the producers can
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Table 4.3: Open-loop Cournot. Varying inverse demand function parame-
ters. Production volumes are measured in MWh, prices in DKK/MWh and
profit in DKK.

Case xp* xf" x;° Total pfa  pbl Profit
Base 2643 10.71 0.00 37.14 4714 25.71 1096.43
I 929 2214 0.00 3143 4143 37.14 78214
Ila 4333 0.00 0.00 4333 5333 1333 1877.78
IIb 5986 0.00 957 5029 6029 -0.57 3101.57
111 24.04 1231 0.00 36.35 4154 2731 909.62
v 2811 959 0.00 37.70 54.73 2459 1349.32

benefit from deciding on production in both markets simultaneously. In other
applications of sequential market models, like the forward-spot models, this may
not advantageous, but in the day-ahead and balancing market setup, the demand
(and thereby the production of a given unit) in the day-ahead market influences
the price in the balancing market and makes it profitable to decide on the day-
ahead and balancing market production simultaneously compared to the sequen-
tial decisions in the closed-loop model.

Table 4.4: Closed-loop Cournot. Varying inverse demand function parame-
ters. Production volumes are measured in MWh, prices in DKK/MWh and
profit in DKK.

*xt" x7" Total pfe pbal  Profit
Base 2783 978 0.00 3761 4435 2478 105147

I 1217 2022 0.00 3239 3565 3522 721.03
IIa 4333 000 0.00 4333 5333 1333 1877.78
IIb 5861 0.00 874 4987 6278 026 3169.89
Im 2614 1091 0.00 3705 3818 2591 85558
Iv. 2908 895 0.00 3803 5231 2395 1310.31

Xi1

Now, we investigate when the solutions of the two models are different and
how the inverse demand function parameters influence this difference. Table 4.5
shows that the relative profit difference between the open-loop and closed-loop
Cournot solutions is in most cases significant, with differences above 4%. Since
the difference between the open- and closed-loop models is the interaction be-
tween the day-ahead and balancing markets, the solutions are exactly the same
for case Ila with @ = 140, in which production occurs only in the day-ahead
market. For the same reason, the larger the production in the balancing market
(the larger the up-regulation), the larger the difference in profit. Larger balancing
market production tend to occur in case I and III when the day-ahead inverse
demand function intercept is lower than that of the balancing market or the day-
ahead demand elasticity of price is lower (corresponding to a higher price elas-
ticity of demand) than that of the balancing market. Finally, when increasing the
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day-ahead inverse demand function intercept to 2 = 180 in case IIb, down-
regulation is non-zero enlarging again the differences between the profits. In a

Table 4.5: Differences between open- and closed-loop Cournot solutions
compared to the open-loop solution while varying the inverse demand
function parameters.

xir* b x; Totalprod  pf pbal Profit

Base -5.30%  8.68% - -1.27% 5.92% 3.62% 4.10%
I 31.00%  8.67% - 3.05% 13.95% 5.17% 7.81%
JIE} 0.00% - - 0.00% 0.00% 0.00% 0.00%
b 2.09% - 8.67% 0.84% -413%  -145.61%  -2.20%
1 -8.74%  11.37% - -1.93% 8.09% 5.13% 5.94%
v -345%  6.67% - -0.88% 4.42% 2.60% 2.89%

market with a lot of renewable generation, the intercepts of the inverse demand
function in the day-ahead and balance market will differ and the closed-loop
model is in this case clearly the most appropriate to use to analyse the market
equilibrium.

4.5.2 30-minute balancing market time resolution

In the previous case studies, both the day-ahead and the balancing market are
cleared once for each hour. In the results presented in this section, the day-ahead
market is still cleared on an hourly basis, but the balancing market time resolu-
tion is 30 minutes. We define the parameters for the 30-minute time resolution
base case such that demand corresponds to the demand from the single intra
hour base case above being divided equally over the two intra-hour time peri-
ods. Hence, b3 = g2 = 100, ab?! = ab3 = T; = 2 and af® = 1. To explore
what happens when the market is cleared every 30 minutes we vary the balancing
market parameters inverse demand function intercept g, see Table 4.6.

We will concentrate on the differences between solutions with hourly and 30-
minute market clearing in the balancing market and differences between open-
loop and closed-loop Cournot solutions since the perfect competition case is sim-
ilar to the case for hourly market clearing in the balancing market.

Table 4.6: The cost and demand function parameters for the 30 minute mar-
ket clearing.

da da bal balx bal bal balx bal
Case b BY af Ay oy g o

a

0 10 100 1 100 2 2 100 2 2
0 10 100 1 110 2 2 90 2 2
0 10 100 1 130 2 2 70 2 2

Base
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Open-loop Cournot

Table 4.7 shows the open-loop Cournot results for the 30-minute market clear-
ing in the balance market. At the top the two time period base case is depicted.
Here, the solution is the same as for the single time period base case in Table
4.3, only the intra-hour values are with 30-minute resolution. When intra-hour
demand varies across the two time periods, however, the profit increases due
to additional intra-hour flexibility (the average of the two demand functions in
the 30-minute resolution case is equivalent to the hourly balancing market in-
verse demand function, whereas the production can adjust to the demand in each
of the two time periods). When the inverse demand function intercept varies
with £10% from the average, the profit difference between the two intra-hour
and the single intra-hour case differs with 1.06%, but when the intercept varies
with +30% from the average the profit differs with almost 10%. Hence, with
intra-hourly variations in renewable generation, the value of flexibility clearly
increases. Power producers participating in the day-ahead and balancing mar-

Table 4.7: Open-loop Cournot. Varying g3, The table shows the variable
values as well as the profit difference for each case compared to the single
intra-hour base case. Production volumes are measured in MWh, prices in
DKK/MWh and profit in DKK.

bRyt xfT x," Total  p® phl Profit  Diff
2 10000 2% 2% 000 1s8 M oy 10943 000%
2 0000 2% Je 000 1600 TN oz 110754 101%
2 7000 % 0% 000 1 M jay 19643 1%

kets without perfect competition thus benefit from a higher time resolution in the
balancing market than hourly.

Closed-loop Cournot

Table 4.8 shows the closed-loop Cournot results for the two time period case with
varying balancing market demand throughout the hour as described in Table 4.6.
When the inverse demand function intercept varies with +£10% from the average,
the profit difference between the two intra-hour and the single intra-hour case
differs with 1.06%, but when the intercept varies with £30% from the average
the profit differs with almost 10%. Thus also for the closed-loop model the value
of flexibility increases with intra-hourly variations in renewable generation.

In Table 4.9 the open-loop Cournot and the closed-loop Cournot solutions for
the two intra-hour time periods case are compared. For all the sets of B> values,
the profit difference is about 4%, which corresponds to the differences found for
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Table 4.8: Closed-loop Cournot. Varying g2l The table shows the variable
values as well as the profit difference for each case compared to the single

intra-hour base case. Production volumes are measured in MWh, prices in
DKK/MWh and profit in DKK.

t xip* XI* X * Total psa pbal Profit Diff

2 10000 7% 35 000 1ss0 M gy 10147 000%
2 w00 T 3% oo 171s BB g 10023 106%
2 00 T om0 o 1ae0 H40 g 1R 9

the single intra-hour time period cases. Hence, the difference between the open-
loop and closed-loop solutions is significant regardless of the value of the inverse
demand intercept in the balancing market for the high time resolution market
clearing in the balancing market. Thus the closed-loop model is also the appro-
priate choice in a setting with a high time resolution in the balancing market.

Table 4.9: Differences between open- and closed-loop solutions varying 872!
for 30-minute balancing market time resolution.

t gl xi1* Xf{* X * Total prod p‘lia phal Profit
> 10 S0% grw T hln o sowm SO a10%
D0 gy O3 - L% e 320% g,
R O SRR ST S

4.5.3 Limited access to the balancing market

Some power producing units do not have sufficient ramping ability to participate
in the balancing market, and hence, the balancing market typically consists of
fewer market players. This obviously has an effect on the market equilibrium and
not least the ability to exercise market power, and we therefore consider a case in
which unit 1 has access only to the day-ahead market, whereas unit 2 has access to
both markets. Having established that the closed-loop model is appropriate for
solving these kinds of problems, we consider only the closed-loop formulation
and a single time period in both markets.

Our base case is the same as above. Further we vary aP? and g2 in two
other cases, see Table 4.10.
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Table 4.10: The cost and demand function parameters for the single intra-
hour time period cases with limited access to the balancing market.

Case a b pfa afa pgral pbalx pbal
Base 0 10 100 1 100 1 1
A\ 0 10 100 1 100 0.6 1
VI 0 10 60 1 100 1 1
VII 0 10 140 1 100 1 1
VIII 0 10 180 1 100 1 1

Table 4.11 shows for the base case that the total production of the two pro-
ducers are the same. This is due to the symmetry of the producers and would
not necessarily have been the case for asymmetric producers. The producer with
access to the balancing market holds back production in the day-ahead market to
exploit the monopoly-like conditions in the second market. For comparison, we
found the solution to the day-ahead market equilibrium without the balancing
market to be x;;* = 30, p{® = 40 and profit of each unit to be 900 DKK for the
base case. Hence, both units gain from one of them being able to participate in the
balancing market. In this case, the unit without access to the balancing market
actually experience a larger increase in profits than the unit with access to both
markets. Moreover, by comparing to the base case of Table 4.4, the profit for unit
1 is higher when both units have access to the balancing market, whereas unit
2 reduces its profits from entering the balancing market along with unit 1. Sur-
prisingly, a producer would prefer only the other market players participate in
the balancing market. This counter-intuitive result can be explained as follows.
The two markets are linked via the inverse demand function for the balancing
market in which the day-ahead demand affects the price in the balancing mar-
ket. Hence, the unit without access to the balancing market still influences the
balancing price. In contrast to the counter-intuitive result of the base case, we
find that when the parameter aP2x s small, i.e. when the influence of the day-
ahead market production on the balancing market price is small, the unit with
access to both markets has an advantage compared to the other unit and obtains
higher profits, see case V in Table 4.11. However, it is unlikely that the param-
eter will differ significantly from the other a parameters, so more interestingly,
the same effect is seen when {2 is lower than the intercept in balancing market
and induces up-regulation or higher than the intercept in the balancing market,
leading to down-regulation, case VI and VIII in Table 4.11. Then the balancing
market participant has higher profits than the other unit. For these cases the
balancing market participant also has higher profits than when both producers
participate in both markets, see Table 4.4 case I and IIb. For {2 = 140 both units
only participate in the day-ahead market, and hence the profit is the same as for
the corresponding case Ila in Table 4.4. Thus, when differences in day-ahead and
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4.5. Results

Table 4.11: Closed-loop Cournot, hourly time resolution in both markets.
Note that the units no longer have equal production and hence the values
for both units are depicted. Production volumes are measured in MWh,
prices in DKK/MWh and profit in DKK.

i Case x3* xi° x;° Totalprod pfe pal Profit
1 2000 1500  0.00 35.00 925.00
o Base o0 - 35.00 45003000 155500
1 1957 26.06 0.00 45.64 1368.59
> Voo - - 35.21 4521 4106 153994
1 000 30.00 0.00 30.00 900.00
> VI 500 - . 25.00 3500 4500 (h5 00
1 4333 000  0.00 4333 1877.78
» VI 553 ) 333 338 B3I g
1 6560 0.00 1340  52.20 3603.88
o VI 5o - 52.20 6220 440 o484

balancing market demand lead to down-regulation or up-regulation, e.g. with
intra-hour variations and/or uncertainty in demand, or low balancing demand
elasticity of balancing market price, limited market access increases the exercise
of market power.

4.5.4 Excluding arbitrage

In spite of differences between the above open- and closed-loop models, these
are mostly moderate. If we exclude arbitrage, however, we observe from Table
4.12 that already for the base case with hourly time resolution of the balancing
market equal inverse demand functions in the two markets, the open- and closed-
loop solution differ substantially. For our case, the inability to make decisions
simultaneously reduces profits by 68%. As evidenced from the above results, this
inflexibility is largely offset by the possibility for producers to arbitrage.

Table 4.12: Solution for the hourly time resolution in both markets with
the no arbitrage constraint. Open-loop Cournot at the top, then closed-loop
Cournot and the closed-loop compared to the open-loop at the bottom. Pro-
duction volumes are measured in MWh, prices in DKK/MWh and profit in

DKK.
xi1* xh * X * Total prod pfa pkl’al Profit
30.00 0.00 0.00 30.00 40.00 40.00 900.00
26.00 11.00 0.00 37.00 26.00 26.00  537.00
15.38% - - -18.92%  53.85% 53.85%  67.60%
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4.5.5 Convergence

The diagonalization algorithm for solving the closed loop problem was imple-
mented in GAMS. It utilises the SBB mixed integer non-linear programming prob-
lem (MINLP) solver and the CONOPT non-linear program (NLP) solver. It con-
verges for all the instances and typically within 12 iterations with a tolerance of
10~°. Por selected cases we varied the starting condition curVal (see Appendix
4.A) between 0 and the maximum capacity of the unit to search for multiple so-
lutions, but none was found.

4.6 Conclusion

We have presented an open-loop and a closed-loop model for the day-ahead and
balancing markets. Unlike similar models in the literature we find that solutions
of the open- and closed-loop models for the day-ahead and balancing markets
are in general not the same and may differ substantially, advocating for the com-
putationally harder closed-loop model.

When handling arbitrage explicitly the differences between the open- and
closed-loop solutions are even larger. Hence, closed-loop models, though com-
putationally harder than open-loop models, should receive increased attention
within the field of sequential market modelling, especially when modelling sto-
chastics with demand function parameters that varies a lot between the scenarios.

Finally, when the influence of day-ahead production on the balancing price is
low or when down-regulation occur, a power producer with access to the balanc-
ing market can exercise market power by adjusting production in the day-ahead
market to take advantage of the balancing market and thereby increase profits
above the level of a power producer with access only to the day-ahead market.

Future research includes relating the results to changes in social welfare and
extending the models to general conjectural variations, including stochastic (wind
power) producers as well as introducing further technical constraints in the prob-
lem such as ramp rates.
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APPENDIX

4.A Solving the closed-loop model with diagonalization

We use diagonalization Hu and Ralph (2007), also known as Gauss-Seidel itera-
tion Ito and Reguant (2015), to solve the closed-loop model. The idea is to solve
the MPEC from Section 4.3.2 for each unit while fixing the upper-level solutions
of the other units and then iterating between the units taking into account their
found solutions until no changes in the upper-level decisions are seen. The pro-
cedure is as follows

prevVal(i, h) < 0
curVal(i, h) < initial value # 0

while ||prevVal(i, ) — curVal(i, h)|| > tolerance

fori=1,...,]I|:
prevVal(i, h) < curVal(i, h)
for j # i fix
Xjp «— curVal(j, h)
end for
solve the MPEC for unit i
curVal(i, h) < xy,

end for

end while

4.B Partial derivatives

Assuming Cournot competition in the market we have the partial derivatives of
the inverse demand functions

da da da
o da opp® 9t 0
= PN ¥ T -
axlh axitw axitw
bal bal da
Wi pax. OPhy _ OP b
vy 0 Moxt T ox Mt
Xin xitw xitw
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For perfect competition these partial derivatives are zero.
The partial derivatives of the cost function are

Jc; _
ax;h = 2a;T, (Tyxin + X;, — x;;,) + biTy
dc;
; = 2a; (T +x;f, — x5 ) + b+
axitw
dc; _ _
— = —2a; (mxip + x5, —x;,) —bi+ 7.
axitw

4.C Nomenclature

Table 4.C.1: Sets and indices

The set of hours in the time horizon

Hour in the time horizon

The set of all intra-hour time intervals

Intra-hour time interval, t € T

The subset of intra-hour time intervals inhour i, T, C T

The set of all players, i.e. the production units

A player or production unit, i € I

The set of scenarios for the inverse demand function intercept
A scenario for the inverse demand function intercept, w € ()

E0~~3-3=rx
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4.C. Nomenclature

Table 4.C.2: Parameters

Constant for adjusting low time-resolution values to high
time-resolution values. 7, = 1/|Ty|

Maximum capacity of producer i (MWh)

Day-ahead market demand elasticity of the day-ahead market price at
time i (DKK/MWHh)

Intercept of the inverse demand function at time / in the day-ahead
market (DKK)

Balancing market demand elasticity of the balancing price at time ¢
(DKK/MWh)

Day-ahead demand elasticity of the balancing price at time ¢
(DKK/MWh)

Intercept of the inverse demand function in the balancing market at
time ¢t in scenario w (DKK)

Cost function for unit i

Coefficient of linear term of cost function, c;, of producer i
(DKK/MWHh)

Non-negative coefficient of quadratic term of cost function, c;, of
producer i (DKK/ MWHh?)

Non-negative cost factor for up-regulation (DKK/MWh)
Non-negative cost factor for down-regulation (DKK/MWh)
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Table 4.C.3: Variables

x;, Production planned in the day-ahead market by producer i in hour h

(MWh)

Up-regulation balancing power provided by producer i at time ¢ in

scenario w (MWh)

X, Down-regulation balancing power provided by producer i at time ¢ in
scenario w (MWh)

pda Day-ahead market price at time & (DKK/MWh)

d;‘}a Demand in the day-ahead market at time # (MWh)

p%’fjl Balancing market price at time ¢ in scenario w (DKK/MWh)

d® Demand in the balancing market at time ¢ in scenario w (MWh)

g, Shadow cost of minimum capacity constraint of producer i at time & in
the day-ahead market

0 Shadow cost of maximum capacity constraint of producer 7 at time / in

the day-ahead market

Shadow cost of minimum capacity constraint of the up-regulation by

producer i at time t in scenario w in the balancing market

Shadow cost of maximum capacity constraint of the up-regulation by

producer i at time t in scenario w in the balancing market

i, Shadow cost of minimum capacity constraint of the down-regulation by
producer i at time t in scenario w in the balancing market

0;,, Shadow cost of maximum capacity constraint of the down-regulation
by producer i at time ¢ in scenario w in the balancing market

+

xitw

+
(—Titw

=t
O—itw

4.D Concavity of the problem

The profit maximising objective function of a single producer in the equilibrium
model in Section 4.3.1 is concave for certain parameter values. To see this, observe
that fort € T}, h € H and w € (), the Hessian of the profit function is

=27, (a® + mya;)  —7(aPX 4 24;) T, (ab¥> 4+ 24))
—1,(aP +24a;)  —2(ab +g;) 2(abal + ;)
7, (a2 + 24;) 2(abal +a;) —2(abal + g;)

for which the determinant of the first, second and third leading principal minors
are —27,(a® + a;1,), 47, (af? + a;7,) (ab? + a;) — T2 (ab?> + 24;)? and 0, show-
ing that the Hessian is negatively semi-definite for 4(af + a,7,) (ab® + a;) >
72(af? + 24;)? and, hence, the function is concave when this inequality is sat-
isfied. Examples of such parameter settings are 7, = 1, and aP3 = gda = gbal
a = 0 and 2aPal > gbalx and 2qdan > gbalxi (which we consider in the case
studies). Hence, the maximisation problems of the producers are concave pro-
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gramming problems, the KKT conditions are both necessary and sufficient for
optimality.
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A. ABBREVIATIONS

Table A.1: Abbreviations

10C
AUD
cp
DKK
DP
ED
EPEC
KKT
LP
MCP
MC
miIpr
MW
MWh
SFE
SO
SP
SUC
TSO
ucC

Single-unit commitment problem
Australian dollars

Convex programming problem
Danish crowns

Dynamic programming

Economic dispatch problem
Equilibrium problem with equilibrium constraints
Karush Kuhn Tucker

Linear Programming problem

Mixed complementarity problem
Markov chain

Mixed integer programming problem
Mega watt

Mega watt hours

Supply function equilibrium

System operator

Stochastic programming problem
Stochastic unit commitment
Transmission system operator

Unit commitment
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