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Summary

In this thesis we explore the use of functional data analysis as a method to analyse chemo-
metric data, more specifically spectral data in metabolomics. Functional data analysis is
a vibrant field in statistics. It has been rapidly expanding in both methodology and ap-
plications since it was made well known by Ramsay & Silverman’s monograph in 1997. In
functional data analysis, the data are curves instead of data points. Each curve is mea-
sured at discrete points along a continuum, for example, time or frequency. It is assumed
that the underlying process generating the curves is smooth, but it is not assumed that
the adjacent points measured along the continuum are independent. Standard chemomet-
ric methods originate from the field of multivariate analysis, where variables are often
assumed to be independent. Typically these methods do not explore the rich functional
nature of spectral data.

Metabolomics studies the ‘unique chemical fingerprints’ (Daviss, 2005) that cellular pro-
cesses create in living systems. Metabolomics is used to study the influence of nutrition on
the human metabolome. Nutritional metabolomics shows great potential for the discovery
of novel biomarkers of food consumption, personal nutritional status and metabolic pheno-
type. We want to understand how metabolomic spectra can be analysed using functional
data analysis to detect the influence of different factors on specific metabolites. These fac-
tors can include, for example, gender, diet culture or dietary intervention. In Paper I we
apply wavelet-based functional mixed model methodology and use bootstrap-based infer-
ence on functions to find jointly significant differences in metabolites, or spectral regions.
In more detail, wavelets are used to model sharp, localised peaks in the spectra. Wavelet
shrinkage reduces the noise and provides a sparse representation of each spectrum. Sub-
set selection of wavelet coefficients generates the input to mixed models. Mixed-model
methodology enables us to take the study design into account while modelling covariates.
Bootstrap-based inference preserves the correlation structure between curves and enables
the estimation of functional confidence intervals for mean curves. We also discuss the
many practical considerations in wavelet estimation and thresholding, and the important
influence the choices can have on the resulting estimates.

On a conceptual level, the purpose of this thesis is to build a stronger connection between
the worlds of statistics and chemometrics. We want to provide a glimpse of the essential
and complex data pre-processing that is well known to chemometricians, but is generally
unknown to statisticians. Pre-processing can potentially have a strong influence on the
results of consequent data analysis. Our focus is on nuclear magnetic resonance data and
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we discuss the inherent structure in this type of data. However, many of the methods
covered in this thesis are also applicable to other spectral data, e.g. mass spectrometry or
infrared.

In Paper II we give a brief overview of functional data analysis – a field that is known to
statisticians, but often obscured from chemometricians. We illustrate the rich nature of
functional derivatives in simulated nuclear magnetic peaks with characteristic Lorentzian
line shape. Using phase-plane plots to explore the anatomy of NMR peaks, we introduce
the novelty of heart plots for spectral data.

The important aspect of registration, also called warping or alignment, emerges from both
the chemometric and statistical perspectives. In Paper III we apply functional registration
in the context of biomechanics, specifically to data from a juggling experiment. The novelty
of this work is that the registration is done towards an idealized biomechanical model. In
this way, the warping is performed subject to biomechanical constraints.

The supplemental paper, Paper IV, demonstrates the application of classical mixed-model
methodology in the context of targeted metabolomics. Dietary effects on biomarkers of
bone turnover in children were investigated as part of the pan-European DiOGenes dietary
intervention trial. The metabolomics data in paper I originated from a pilot study of the
DiOGenes trial.

Overall this thesis gives an indication of the huge possibilities for functional data analysis in
metabolomics and chemometrics. Spectral data are inherently functional in nature. Func-
tional data analysis provides access to many functional equivalents of methods currently
used in chemometrics, with the benefits of no strong assumptions regarding neighbouring
observations. Functional data analysis also provides access to the data’s derivatives and
opens up the ability to analyse information that is otherwise locked away in the data.
The use of functional data analysis in metabolomics can make a valuable contribution to
the emerging technology in personalised medicine and health care, including personalised
nutrition for prevention and treatment.



“Functional data analysis has a long historical shadow, extending at least back to the at-
tempts of Gauss and Legendre to estimate a comet’s trajectory (Gauss, 1809; Legendre,
1805).”

“Statistics shows its finest aspects when exciting data find existing statistical technology
not entirely satisfactory. It is this process that . . . ensures that unforeseen adventures in
research awaits us all. ”

Jim Ramsay & Bernard Silverman
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1
Introduction

Functional data analysis (FDA) is a well-established and fast-growing field in statistics.
FDA is an especially exciting field of research based on its wide range of applications.
Nevertheless, it is not well known in the field of chemometrics, which focuses on the
statistical analysis of chemical data.

Metabolomics is a relatively new and expanding field where the chemical ‘fingerprints’ of
metabolism are measured and analysed. In human nutrition, metabolomics shows great
potential in dietary monitoring, discovery of biomarkers and development in personalised
nutrition. The technology for chemical analysis of samples has rapidly expanded, but the
technology for the analysis of the complex data gathered in metabolomics experiments is,
in general, lagging behind. Close collaboration between metabolomics experts, chemome-
tricians and statisticians would bring the complex and interesting data analysis problems
from metabolomics to the attention of statisticians, thus fuelling new theoretical develop-
ments. Conversely, such a close collaboration will bring new statistical methods to the at-
tention of chemometricians, and will enable novel statistical applications in metabolomics.

1.1 Objective of the Thesis

The purpose of this thesis is two fold. On a statistical level, we explore the use of functional
data analysis as a chemometric tool in metabolomics. On a conceptual level, we aim to
build a bridge between the worlds of chemometrics and statistics.

Considering these aims in more detail: Firstly, we want to understand how metabolomic
spectra can be analysed using FDA to detect the influence of different factors on specific
metabolites in the spectra. Secondly, we want to provide a glimpse of the essential and
complex pre-processing of nuclear magnetic resonance data that are well known to chemo-
metricians, but, generally, unknown to statisticians. Additionally, the important aspect of
registration, also called warping or alignment, emerges from both the chemometric and
statistical perspectives.
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2 Chapter 1. Introduction

1.2 Thesis outline

Chapter 2 gives a general background on metabolomics and how it relates to human
nutrition. This is relevant to Papers I, II and the supplementary Paper IV.

Chapter 3 provides an overview of the basic concepts in functional data analysis, as it
pertains to Papers I, II and III. Chapter 4 presents the mathematical background for
wavelets and the practical considerations relating to wavelet shrinkage, relevant to Paper
I. In particular, we discuss the challenging parameter choices related to wavelet shrinkage
of the data in Paper I.

In Chapter 5 we cover the structure of NMR data and the various steps involved in chemo-
metric pre-processing. This is intended as background for statisticians and is specifically
relevant to Papers I and II.

Papers I to III, focus on different aspects of functional data analysis: wavelet based func-
tional mixed models (Paper I); the use of functional derivatives for phase-plane plots (Pa-
per II); and, registration of functional data subject to constraints (Paper III). In Chapter
6 and Paper III we deviate from functional data analysis in the field of human nutrition
metabolomics to functional data analysis in the field of human movement and biome-
chanics. The importance of registration (or alignment) is central in this chapter. In fact,
alignment is a current topic in both functional data analysis and chemometrics.

Perspectives are discussed in Chapter 7.

As a supplemental paper, we include an application of mixed models in Paper IV. This
work does not utilise functional data analysis, but the biomarker data originate from the
same human nutrition metabolomics study that motivated the pilot study in Paper I.

The papers and are attached in the format of the journal where they were accepted for
publication (Paper III) or published (Paper IV) and in manuscript form where they are
in preparation for submission to be published (Papers I and II).



2
Metabolomics

2.1 Metabolomics

“Metabolomics is the systematic study of the unique chemical fingerprints that specific
cellular processes leave behind” (Daviss, 2005).

This is only one of the numerous definitions of metabolomics. Van der Greef and Smilde
(2005) defined metabolomics as “the comprehensive quantitative and qualitative analysis
of all small molecules (in samples of cells, body fluids, tissues, etc.)”.

The terms metabolomics and metabonomics are, in practice, used interchangeably and the
distinction is largely philosophical: according to Nicholson and Lindon (2008)“Metabolomics
seeks an analytical description of complex biological samples, and aims to characterize and
quantify all the small molecules in such a sample” and “Metabonomics broadly aims to
measure the global, dynamic metabolic response of living systems to biological stimuli
or genetic manipulation. The focus is on understanding systemic change through time in
complex multi cellular systems.”

In humans, metabolic response can be due to lifestyle, diet (nutrition), disease, gut mi-
croflora, drugs, toxins, environment, and genetic modulations (Beckonert et al., 2007).

2.2 Analysis of urine - a short history

Metabonomic fingerprint data are generally sourced from cell extracts, tissue extracts,
or biofluids. Biofluids include urine, serum, plasma, cerebrospinal fluid and saliva from
animals or humans. (Beckonert et al., 2007)

Bouatra et al. (2013) described urine (in mammals) as surplus water, sugars, soluble
wastes and other compounds extracted from the bloodstream by the kidneys. Metabolic
breakdown products in urine can originate from a variety of sources: nutritional (solids or
liquid), medication, by-products from bacteria, inner-waste metabolites and environmental
contamination. High concentrations of certain compounds can be expected in urine: urea
(generated by metabolism of amino acid), organic acids, creatinine, ammonia, coloured
haemoglobin breakdown products, water-soluble toxins and inorganic salts (potassium,
sodium and chloride) (Bouatra et al., 2013).

3



4 Chapter 2. Metabolomics

It has long been recognised that urine is more that just a waste product (Bouatra et al.,
2013). Urinalysis has been around for over 6000 years (Echeverry et al., 2010) and medical
texts from Babylon, Egypt, and the Far East refer to the use of urine to diagnose diseases
(Eknoyan, 2007).

Around four centuries ago, Hindus practicing Ayurveda described insects being attracted
to certain patients’ urine. They also made the link between sweet-tasting urine and certain
diseases. At about the same time Chinese traditional healers diagnosed diabetes, using ants
to distinguish between high and low levels of glucose in urine. (Van der Greef and Smilde,
2005)

Hippocrates (around 400 BC) first described the use of urine to interpret human body
functioning and for prognostic purposes, i.e. prediction of outcomes of illness. However,
Theophilus (around 700 AD) described the systematic use of uroscopy for diagnosis of
illnesses (Kouba et al., 2007).

The term uroscopy comes from the Greek words for urine and visual examination. It
refers to the macroscopic examination of urine and it informed diagnosis and treatment
(Pardalidis et al., 2008). In uroscopy, four criteria were applied: the consistency, odour,
non-soluble constituents and, most importantly, the colour of urine (Wittern-Sterzel, 1999).

The Byzantines adopted uroscopy and closely associated urine with food intake, diges-
tive disorders and the liver’s bile production that influenced the heart and the body
at large (Pardalidis et al., 2008). Papers from Byzantine (Theophilos, 7th century) and
Egypt (Judãus, 10th century) were translated into Latin and influenced medieval Western
medicine.

Throughout the Byzantine era and even past the Middle Ages (Voswinckel, 2000), urine
colour wheels were widely used as diagnostic tools (Nicholson and Lindon, 2008). The
oldest known colour wheel dates to 1400 (Wittern-Sterzel, 1999). These diagrams asso-
ciated the colours, odours and tastes of urine with different diseases. Obviously, these
characteristics are of metabolic origin. Although metabonomics/metabolomics relies on
state-of-the-art analytical chemistry, the fundamental concept remains unaltered: linking
chemical patterns to biology. (Nicholson and Lindon, 2008)

2.3 The Human Metabolome

The metabolome can be defined as“the entire complement of all the small molecular weight
molecules (metabolites in cells, body fluids, tissues etc.)”(Van der Greef and Smilde, 2005).
Metabolomics is a more recent development in the ‘omics’ sciences, following genomics,
transcriptomics and proteomics. Unlike other ‘omes’ the metabolome is not even close to
near-complete coverage. (Bouatra et al., 2013).

The Human Metabolome Database (HMDB) (www.hmdb.ca), first published in 2007, pro-
vides the most recent and complete coverage of the human metabolome. The latest HMDB
(version 3.5) contains more than 41 519 metabolite entries. These metabolites comprise
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water-soluble as well as lipid soluble metabolites. Furthermore, both rare (< 1 nM) and
abundant (> 1 uM) metabolites are included. (Wishart et al., 2013)

The HMDB contains detected and expected metabolites in blood, urine, cerebrospinal fluid
(CSF), saliva, other biofluids and tissue. The origin of these metabolites can be generated
by human cells or endogenous gut microflora, a toxin/pollutant, drug derived, microbial
and/or food derived. Apart from spectroscopic information about human metabolites,
the HMDB also contains their associated enzymes, their abundance and their relation to
diseases. The HMDB is freely available at www.hmdb.ca (Wishart et al., 2013)

2.3.1 The human urine metabolome

Consequently, a metabolome-wide characterisation of human urine was conducted. The
Urine Metabolome Database (UMDB: www.urinemetabolome.ca) describes metabolites
that are detectable with today’s technology, as well as their concentrations and known
associated diseases. They identified 445 unique urine metabolites or metabolite species
through experiments. Literature mining produced identification of an additional 2206 com-
pounds found in urine. The UMDB contains all 2651 small-molecule metabolites found in
human urine, their concentrations and known related diseases. (Bouatra et al., 2013)

2.3.2 NMR in human urine metabolomics

In metabolomics, nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry
(MS) are widely used to measure a biological system’s metabolic state (Liland, 2011).

For the characterisation of urine, NMR is currently the most complete quantitative method.
A typical 1H-NMR spectra from human urine is displayed in Figure 2.1. Compared to other
analytical techniques, NMR identified and quantified the greatest number of metabolites
in urine (209, of which 108 are unique compared to other analytical methods) and also pro-
duced the largest chemical diversity. Additionally, NMR requires minimal sample prepa-
ration and is non-destructive. For untargeted (global) metabolomics urine analysis, NMR
spectroscopy emerged as the method of choice. Nevertheless, NMR is only able to measure
approximately 8% (209/2561) of the known human urine metabolome. (Bouatra et al.,
2013)

Compared to GC-MS and LC-MS spectroscopy, NMR spectroscopy has the advantages
of being non-destructive (the sample is recoverable), fast (2–3 min per sample vs. 20–
30 min), requires no separation, and allows for identification of novel compounds. The
latter is difficult in GC-MS and LC-MS. The disadvantages of NMR spectroscopy are the
requirement for larger samples (0.5 ml), a large instrument footprint, less sensitivity and
the inability to detect inorganic molecules, salts or non-protonated compounds. Similar
to GC-MS, NMR spectroscopy is a robust and mature technology, and there are various
databases and software for identification of metabolites. (Wishart, 2009)
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Figure 2.1: Typical 500 MHz 1H-NMR spectra from human urine. Source: Bouatra et al. (2013).
Numbers indicates the following metabolites: 1: creatinine; 2: citric acid; 3: glycine; 4: formic acid; 5: methanol; 6:
guanidoacetic acid; 7: acetic acid; 8: L-cysteine; 9: glycolic acid; 10: creatine; 11: isocitric acid; 12: hippuric acid;
13: L-glutamine; 14: L-alanine; 15: L-lysine; 16: gluconic acid; 17: 2-hydroxyglutaric acid; 18: D-glucose; 19: indoxyl
sulfate; 20: trimethyl-N-oxide; 21: ethanolamine; 22: L-lactic acid; 23: taurine; 24: L-threonine; 25: dimethylamine;
26: pyroglutamic acid; 27: trigonelline; 28: sucrose; 29: trimethylamine; 30: mannitol; 31: L-serine; 32: acetone; 33: L-
cystine; 34: adipic acid; 35: L-histidine; 36: L-tyrosine; 37: imidazole; 38: mandelic acid; 39: dimethylglycine; 40: Cis-
aconitic acid; 41: urea; 42: 3-(3-hydroxyphenyl)-3-hydroxypropanoic acid (HPHPA); 43: phenol; 45: isobutyric acid;
46: methylsuccinic acid; 47: 3-aminoisobutyric acid; 48: L-fucose; 49: N-acetylaspartic acid; 50: N-acetylneuraminic
acid; 51: acetoacetic acid; 52: Alpha-aminoadipic acid; 53: methylguanidine; 54: phenylacetylglutamine
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For a detailed discussion of the strengths and weaknesses of different technologies in
metabolomics, see Lenz and Wilson (2006). More technical details on NMR data are pro-
vided in section 5.1 in Chapter 5.

2.4 Nutritional metabolomics

Savorani et al. (2013) describes nutritional metabolomics as “metabolomics applied to the
study of the human (or animal) metabolome as a function of nutritional status or as a
function of a nutritional challenge”.

It is widely known that nutrition plays a role in both the development as well as the
prevention of disease and the promotion of health. Nevertheless, the relationship between
a person’s nutrition and explicit health/disease results is largely unknown. For example,
for two persons with the same diet, what are the reasons that one develops diabetes type
2 and the other remains healthy? (McNiven et al., 2011)

Many lifestyle diseases, including obesity, cardiovascular disease and type-II diabetes, are
metabolic disorders which imply a mismatch between what is ingested (i.e. diet) and the
needs of the (human) organism (O’Sullivan et al., 2011; Savorani et al., 2013). The aim of
nutritional metabolomics is to understand how diet, and adjustment in diet, influences the
metabolome (McNiven et al., 2011). For example, Martin et al. (2009) showed that dark
chocolate, consumed daily for two weeks, is sufficient to modify the metabolism of healthy
human subjects. This is evident in the decreased levels of stress-associated hormones and
normalisation of the systemic stress metabolic signatures.

There are two complementary approaches to metabolomics:
Targeted profiling is based on the analysis of a pre-specified group of metabolites as-
sociated with a specific metabolic pathway. Certain information regarding the complete
metabolic network and its links to the physiological processes underlying health/disease
may be lost. (Llorach et al., 2012; Dettmer and Hammock, 2004)

Targeted profiling is often driven by a hypothesis. The selection of metabolites for anal-
ysis is based on the questions asked. In nutrition, targeted profiling is used to determine
bioavailability, concentration, turnover, or metabolism of nutritional compounds. (Astarita
and Langridge, 2013)

In Paper IV Dalskov et al. (2014) we used targeted profiling driven by the hypothesis that
high protein intake compromises bone mineralisation in children. Plasma osteocalcin and
urinary N-terminal telopeptide of collagen type I were used as biomarkers of bone turnover
in children.

Targeted profiling is also called targeted metabolomics (Astarita and Langridge, 2013),
metabolic profiling (Dettmer and Hammock, 2004), chemometric metabolomics or non-
quantative metabolomics (Wishart, 2009).

Non-targeted fingerprinting is a global approach that aims to get an extensive portrait
of a whole metabolome. This includes metabolites that are not well characterised or that
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are unknown. (Llorach et al., 2012)

The intention of fingerprinting is not to identify all observed metabolites, instead it intends
to compare patterns or fingerprints of metabolites that differ in response to an exposure,
e.g. diet (Dettmer and Hammock, 2004). Fingerprinting is often hypothesis-generating
as opposed to a targeted profiling approach which is hypothesis-driven (Llorach et al.,
2012). In nutrition, fingerprinting is used to define individuals’ metabolic phenotypes,
study metabolite patterns in response to dietary interventions and scan food to determine
molecular composition (Astarita and Langridge, 2013).

The benefit of this untargeted approach is that there are no assumptions about candidate
metabolites. These candidate metabolites are often unforeseen based on the inadequacy of
prevailing knowledge (Primrose et al., 2011).

The wavelet-based functional mixed model approach to chemometrics, as applied in our Pa-
per I (Muller and Tolver, 2014) corresponds to a fingerprinting approach in metabolomics.
We study metabolite fingerprint patterns in response to a dietary intervention in the pres-
ence of gender and dietary culture differences.

Fingerprinting is also called untargeted metabolomics (Astarita and Langridge, 2013),
metabolic fingerprinting (Dettmer and Hammock, 2004), metabonomics, global metabolic
profiling (Lenz and Wilson, 2006) or quantative metabolomics (Wishart, 2009).

2.4.1 Metabotypes and variation

Metabolites provide snapshots of metabolic processes and metabolomics enables the char-
acterisation of individual metabolic phenotypes or metabotypes (Rezzi et al., 2007; Rubio-
Aliaga et al., 2012).

Gavaghan et al. (2000) defined the metabotype as a “probabalistic multi-parametric de-
scription of an organism in a given physiological state based on analysis of its cell types,
biofluids or tissues”. Metabotype is n-dimensional and makes it possible to statistically
compare the influence of interventions or disease progression on metabolism (Gavaghan
et al., 2000).

Variation in the human metabolome, and thus in metabolic fingerprints, can be attributed
to a number of factors: age, gender, body composition, body mass index (BMI), cultural
differences, dietary factors (e.g. nutrient intake, nutrient-nutrient interactions), diurnal
variation, physiological and lifestyle factors (e.g. exercise, smoking, stress), menstrual cy-
cle, gut microflora, genetic variability and host-microbial interactions (Brennan, 2008;
Heinzmann et al., 2011; Jenab et al., 2009).

In metabolomics studies the differences among individuals are often greater than the treat-
ment effect (Scalbert et al., 2009). A standardised diet can, to some extent, control the
inter-individual differences in a study of urine samples (Walsh et al., 2006). In Paper I,
Muller and Tolver (2014), we use a functional data approach to analyse data from a diet
standardisation study with participants of both genders and from different cultures.
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Variation can also be caused by non-compliance to dietary interventions and differences
in the time at which samples were taken related to meals and fluid intake (Scalbert et al.,
2009). Variation caused by sampling and analytical methods should be controlled, e.g.
sample collection and treatment, storage conditions and analytical instrument performance
(Jenab et al., 2009). Unwanted variation in metabolomics studies should be controlled, as
far as possible, and should be taken into account in the interpretation of results (Scalbert
et al., 2009).

2.4.2 Biomarkers in nutritional metabolomics

Nutritional metabolomics often focuses on the definition of normal physiological variation
and differences in metabolomic profiles due to specific dietary interventions. The potential
for identification of dietary biomarkers has emerged more recently. (O’Sullivan et al., 2011)

A nutritional (or dietary) biomarker is an indicator of nutritional status, dietary intake,
nutrient metabolism, or biological results of dietary patterns or intake. Biomarkers can be
clinical, biochemical or functional in nature. (Potischman, 2003)

Nutritional biomarkers from metabolomics can potentially be used as markers of (Llorach
et al., 2012; Potischman, 2003)

• dietary intakes in observational studies (nutritional/dietary exposure, food consump-
tion);

• biological effects of a nutritional intervention (nutritional impacts);

• biological effects of dietary habits (personal nutritional status);

• dietary compliance in controlled trials; and

• metabolic mechanisms in a particular metabolic phenotype, in response to a diet.

Dietary biomarkers can more accurately assess nutritional intake compared to self-reported
methods (Potischman, 2003). Food-specific biomarkers in urine have been associated with
dietary intake of red meat, cooked meats, fish, vegetables, citrus fruits, coffee, green and
black tea (O’Gorman et al., 2013; Astarita and Langridge, 2013).

Metabolomics in human nutrition is a growing field and may encourage novel biomarker
discovery for specific food consumption and, as a result, for health status (Zivkovic and
German (2009) cited in Hedrick et al. (2012)). Nutritional deficiencies in population co-
horts could, in the future, be routinely assessed, once rapid assays for biomarkers of food
intake have been developed (Primrose et al., 2011). Research encouraging compliance to
national nutrition recommendations could benefit greatly from biomarkers that estimate
the intake of specific dietary components and foods (Hedrick et al., 2012). Screening of
metabolites could soon be used to monitor food consumption in epidemiological or dietary
intervention studies, together with self-reported methods for dietary intake (Llorach et al.,
2012; O’Sullivan et al., 2011).
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Combining metabolic responders with non-responders in an intervention study is an im-
portant source of variation and could be the reason for studies with different conclusions.
Biomarkers of response could, in future, be used to stratify subjects and reduce variance
in data, enhancing identification of biologically significant effects. (Zeisel et al., 2013)

2.4.3 Personalised health and nutrition

Nutrition scientists used to assume that humans are metabolically alike, but evidence is
increasingly pointing to considerable metabolic individuality. This is sparking interest in
personalised nutrition and lifestyle recommendations. (Zeisel et al., 2013; Heinzmann et al.,
2011; Brennan, 2008)

Specific human metabolic phenotypes display variations in dietary requirements. This
suggests the potential role of metabolomics in personalised nutrition, where diet is attuned
to the nutritional needs of the individual (Astarita and Langridge, 2013; Brennan, 2008).

Heinzmann et al. (2011) demonstrated the importance of individuals’ metabotype identifi-
cation as a starting point for lifestyle intervention. Future stratified medicine programmes
and personalised health care are likely to rest on this new paradigm of metabotype strat-
ification of individuals for implementation of dietary and drug interventions (Heinzmann
et al., 2011).

By comparing metabotypes between healthy versus diseased groups, or between treat-
ment versus control groups, patterns of variation can be determined. Furthermore, posi-
tive treatment outcomes of pharmacological or dietary interventions can be monitored by
transition of patients from the cluster of diseased metabolic phenotype to the cluster of
healthy metabolic phenotype. (Nicholson et al., 2012)

2.5 Chemometric methods in Metabolomics

Spectral data in metabolomics, e.g. NMR spectra, are often analysed using chemometric
methods. According to Wold (1995) “The art of extracting chemically relevant informa-
tion from data produced in chemical experiments is given the name of chemometrics in
analogy with biometrics, econometrics, etc.”. Wishart (2007) defined chemometrics as “the
application of mathematical, statistical, graphical or symbolic methods to maximize the
information which can be extracted from chemical or spectral data”.

Chemometric methods are typically among methods that are called multivariate analysis
(MVA) in statistics. In metabonomics, the most widely used chemometric method is princi-
pal component analysis (PCA) (Trygg et al., 2006). Projections to latent structures (PLS),
also called partial least squares (PLS) regression, and orthogonal PLS (O-PLS) are also
popular methods (Barding et al., 2012). When the response variable is categorical, par-
tial least squares discriminant analysis (PLS-DA) and orthogonal PLS-DA (O-PLS-DA)
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can be used. Statistical total correlation spectroscopy (STOCSY) generates a pseudo-two-
dimensional spectrum from a set of spectra and visualises the correlation among peak
heights across all spectra Cloarec et al. (2005). Other data analysis techniques include
soft independent modelling of class analogy (SIMCA), analysis of variance (ANOVA),
multivariate ANOVA (MANOVA), ANOVA-simultaneous component analysis (ASCA),
k -means clustering, hierarchical clustering, artificial neural networks and support vector
machines (Wishart, 2009).

Standard chemometric methods typically do not explore the rich functional nature of
metabolomics data.
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3
Functional Data Analysis

In this chapter we aim to give a concise conceptual overview of the basic steps involved in
functional data analysis (FDA) while keeping mathematical details to a minimum. We also
mention some of the many possible statistical methods that can be applied to functional
data. This chapter is aimed at the reader not familiar with FDA.

In conventional data analysis the data consist of a set of measurements or observations.
In functional data analysis the data consist of a set of functions or curves. Each function
is measured at discrete points along a continuum. The continuum is often time, but can
be any continuous domain.

The assumption in FDA is that the underlying process generating the data is smooth,
although the data are still observed at discrete time points and subject to measurement
error, i.e. noise. The underlying process may typically be measured on as few as 20 or up
to tens of thousands of discrete points on the continuum. Additionally the process may
also be measured repeatedly, either multiple samples of a single process (within subjects),
or samples from the process measured in multiple subjects (across subjects). In many
data sets a given observation is dependent on adjacent observations, i.e. correlated. This
situation violates the independence assumption in traditional multivariate analysis. In
FDA we do not assume that adjacent observations are independent.

FDA operates on functions instead of single data values. For example, in conventional data
analysis we calculate the mean of a sample of single data values, but in functional data
analysis we calculate the mean of a sample of functions.

Ramsay and Silverman (2005) made FDA widely known through the first edition of their
monograph in 1997.

3.1 Smoothing

The first step in FDA is to smooth discretely observed data points to obtain a single
functional datum or object. The original discrete data points are then ‘discarded’ and
only the functions, and possibly their derivatives, are used in the analyses that follow.

A variety of smoothing methods are available. Often basis expansions are used and smooth-
ness is imposed by either restricting the basis or by explicitly specifying a roughness

13
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penalty. Fourier bases, polynomial spline bases and B-spline bases are popular. Alterna-
tively, free-knot splines and wavelets provide data-adaptive basis systems. Wavelets are
especially useful for data with sharp peaks. Splines are well suited to cases where deriva-
tives of functions are required.

We used wavelets to smooth discretely observed nuclear magnetic spectra (Chapter 5 and
(Muller and Tolver, 2014)).

3.2 Registration or Feature Alignment

There are two sources of variability present in smoothed curves that form the functional
data. Amplitude variation is displayed in the different size of features between curves: the
height of curve peaks and the depth of curve valleys. Phase variation can be seen in the
difference in the timing, or location on the continuum, of specific features between curves.
Phase variation is often referred to as misalignment of curves. The aim of registration in
functional data is to separate amplitude and phase variation by aligning curves. Functional
registration is also called warping, time warping or alignment.

The most well known registration methods in FDA are landmark registration and contin-
uous registration. Landmark registration uses well-defined features in the data and warps
the curves in such a way that these features appear at the same time (or at the same
position on the horizontal axis) for all curves. Continuous registration uses a measure of
closeness to quantify the similarity between curves. The method aligns curves by warping
their time (or horizontal axis) parameters by selecting the optimal warping function from
a class of warping functions in order to maximise the similarity between curves. In prac-
tice alignment is done to a reference curve. However, in the absence of a reference curve
an iterative process is used: estimating a reference curve, for example, the mean curve,
and aligning to this estimated reference curve and repeating this process. Note that the
functional registration is always performed on curves and not on data points.

It is essential to perform registration of the smooth functions before further analyses, since
misalignment can have a serious effect on results.

3.3 Derivatives and Phase-plane plots

Smoothness of a curve usually implies that a number of derivatives can be calculated from
the data. The first derivative, ‘velocity’ indicates the rate of change. The second deriva-
tive ‘acceleration’ indicates the curvature of the function. Analysis of these derivatives is
an important aspect of FDA: phase-plane plots display velocity versus acceleration and
differential equations are applied as models to describe dynamic processes. Classical multi-
variate statistical methods typically either do not have access to or do not take advantage
of the derivatives of the underlying functions.



3.4. Analysis 15

We used the first and second derivates of nuclear magnetic resonance peaks to create
phase-plane plots in Paper II. We call these phase-plane plots of Lorentzian curves ‘heart
plots’ (Muller and Ramsay, 2014).

3.4 Analysis

Many statistical methods have counterparts in functional data analysis: functional ANOVA,
(Zhang, 2013), functional linear models, generalised functional linear models, functional
principal component analysis, functional clustering and functional classification to name
a few. Functional regression can use a functional response and/or functional covariates:
scalar-on-function, function-on-scalar and function-on-function regression. Functional data
analysis methods respect the structure found in complex data and can accommodate data
measured within and across subjects.

In Paper I we used wavelet-based functional mixed models on NMR data from a nutri-
metabolomics study (Muller and Tolver, 2014).

3.5 Functional data analysis in chemometrics

Alsberg (1993) introduced the idea to represent spectra by continuous functions to the
chemometric community. More than a decade later Saeys et al. (2008) mentioned that the
potential of functional data analysis was still not well known to most chemometricians and
suggested a functional data approach to spectrometric data. Nevertheless, standard and
widely used methods in chemometrics (and metabolomics) rely heavily on multivariate
statistical methods (Section 2.5) and rarely utilise FDA. A bi-annual review of the field of
chemometrics summarised the development of new methods in chemometrics and novel or
important applications of these methods over the past two decades (Lavine and Workman,
2013, 2010, 2008, 2006, 2004, 2002; Lavine, 2000, 1998). Functional data analysis has never
featured in these reviews. Nevertheless, there have been a number of publications that
considered FDA applications in chemometrics.

Published applications of FDA in chemometrics include the following: functional princi-
pal component regression and functional partial least squares (Reiss and Ogden, 2007),
functional linear regression with a scalar response, functional ANOVA to analyse spectro-
scopic data from designed experiments (Saeys et al., 2008) linear regression with functional
predictors and scalar responses (Zhao et al., 2012) All of the above applications were in
near-infrared (NIR) spectroscopy where the data are measured as functions of wavelengths.

Berk et al. (2011) described a smoothing splines mixed effects (SME) model for metabolomic
time course data. They treated longitudinal measurements (within each spectral bin) as
a smooth function of time and performed a functional t-test to detect between-group
differences. Statistical significance was assessed using non-parametric bootstrapping. Our
approach is similar in terms of using an FDA approach, more specifically a functional
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mixed model, to NMR metabolomic data with the aim of detecting biomarker differences
between groups. However, we consider each NMR profile (consisting of many metabolites)
as a function over chemical shift (ppm) and model differences between groups as a fixed
effect. These groups can be defined by a covariate, a treatment or even discrete times. We
can alternatively include time as a continuous covariate in our model. We use wavelets
for estimating the spiky NMR profiles, before applying the mixed effect model. On the
contrary, Berk et al. (2011) used smoothing splines to estimated differences in groups for
individual metabolite (more technically individual spectral bin) functions over time (not
chemical shift) to be modelled using a mixed effect model. Berk et al. (2011) determined
p-values for each spectral bin from a nonparametric bootstrap procedure and corrected
for multiple testing using the false discovery rate.

3.6 Further reading

For further reading Levitin et al. (2007) provides a conceptual introduction to FDA in the
context of psychology and behavioural science. Sørensen et al. (2013) gives an introduction
to FDA with medical applications. The monograph on functional data analysis Ramsay
and Silverman (2005) and accompanying book on case studies Ramsay and Silverman
(2002) provide a comprehensive theoretical basis and a wide variety of applications. For
an introduction to FDA with R and MATLAB, see Ramsay et al. (2009).
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Wavelets and wavelet shrinkage

In functional data analysis, a variety of smoothing methods are used (see section 3.1).
We chose wavelets to convert discretely observed noisy spectral data to smooth functions.
Wavelets are families of basis functions and are widely used in signal processing. Wavelets
exhibit time and frequency localisation, i.e the ability to accommodate smooth as well
as spiky functions efficiently (Hastie et al., 2009). This is an important feature for the
smoothing of spectral data, since a spectral signal often contains relatively smooth features
on a larger scale as well as characteristic spiky (or bumpy) features on a smaller, more
local scale.

We provide a mathematical introduction to wavelets in Section 4.1. This includes multires-
olution analysis, families of orthonormal wavelet bases and the discrete wavelet transform.
For a detailed explanation of wavelet theory the reader is referred to the original text
of Daubechies (1992). Percival and Walden (2006) covers wavelets for time series anal-
ysis and Ogden (1997a) covers the use of wavelets in statistics. In Section 4.2 we cover
wavelet shrinkage and thresholding. A number of practical issues relating to the choice
of parameters in wavelet transformation and shrinkage of spectral data are discussed in
Section 4.3.

In essence, wavelet coefficients describe features of a function at different times and fre-
quencies. In this way, the wavelet decomposition gives a time and frequency localisation,
also called a location and scale decomposition of the underlying function. Wavelet decom-
position provides a sparse representation of a function and is fast to compute.

4.1 A mathematical introduction to wavelets

Functional data analysis deals with discrete observations (yi1, . . . , yini) of functional vari-
ables fi : I → R, i = 1, . . . , N . Typically, we will assume that fi belongs to the Hilbert
space L2(R) of square integrable functions and we may be interested in expanding f1, . . . , fN
in a suitable finite basis.

Obviously, there is no unified basis capable of representing (or approximating) any finite
sample of functions f1, . . . , fN using only a limited number of non-zero coefficients. How-
ever, it is possible to construct families of different basis systems allowing a reasonably
sparse representation of many functional data set in terms of a least one of the basis

17



18 Chapter 4. Wavelets and wavelet shrinkage

systems. The purpose of this section is to introduce families of basis systems based on
orthogonal wavelets and discuss their ability to efficiently yield a sparse approximation to
a discrete sample of a function.

4.1.1 Motivation

Suppose (y1, . . . , yn) are discrete observations of a function f on [0,1]. We consider the
approximation of f by the piecewise constant function

f̃(t) =

n∑

k=1

ykI{k−1
n ≤ t < k

n}

where I is the indicator function. The sum can be considered as a representation of f̃ in
terms of the orthonormal basis in L2(R) given by

√
nI{k−1

n ≤ t < k
n}, k = 1, . . . , n. (4.1)

If n = 2J denote by VJ the subspace of L2(R) spanned by (4.1) and denote

φJ,k(t) = 2J/2I{k−1
2J
≤ t < k

2J
}, k = 1, . . . , 2J .

Since n = 2J is even VJ−1 ⊂ VJ and the following relation exists between the basis vectors

φJ−1,k(t) = 2(J−1)/2I{ k−1
2J−1 ≤ t < k

2J−1 }
= 2(J−1)/2I{2k−2

2J
≤ t < 2k−1

2J
}+ 2(J−1)/2I{2k−1

2J
≤ t < 2k

2J
}

=
1√
2
φJ,2k−1(t) +

1√
2
φJ,2k(t).

To formulate an orthonormal basis for the orthogonal complement of VJ−1 within VJ let

WJ−1 = VJ ∩ V ⊥J−1

and

ψJ−1,k(t) = 2(J−1)/2I{2k−2
2J
≤ t < 2k−1

2J
} − 2(J−1)/2I{2k−1

2J
≤ t < 2k

2J
}, k = 1, . . . , 2J−1.

It follows that {ψJ−1,k}k are mutually orthogonal as well as orthogonal to any basis vector
φJ−1,k of VJ−1. Note that

φJ−1,k(t) + ψJ−1,k(t) = 2 · 2(J−1)/2I{2k−2
2J
≤ t < 2k−1

2J
} =
√

2φJ,2k−1(t)

and
φJ−1,k(t)− ψJ−1,k(t) = 2 · 2(J−1)/2I{2k−1

2J
≤ t < 2k

2J
} =
√

2φJ,2k(t).

Thus ψJ−1,k(t) spansWJ−1. Thus, we have two different orthonormal bases for VJ : {φJ,k}2
J

k=1

or the union of {φJ−1,k}2
J−1

k=1 and {ψJ−1,k}2
J−1

k=1 . Changing from coordinates in the former
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basis (y) to the latter basis (say d) is a linear mapping and can be represented by an n×n
matrix W where

d = Wy. (4.2)

In general, the complexity of computing the matrix product Wy is of O(n2). However,
for the particular bases considered here, the computation can be performed in only O(n)
operations, using the fast pyramid algorithm (Mallat, 1989). This is quite remarkable. This
‘fast’ algorithm enables us to change rapidly between the two orthonormal basis systems
used to represent functions in VJ .

By iterating the construction above we obtain orthogonal decompositions

VJ = VJ0 ⊕WJ0 ⊕ . . .⊕WJ−1

for any J0 = 0, . . . , J − 1, where

φj,k(t) = 2j/2I{k−1
2J
≤ t < k

2J
} , k = 1, . . . , 2j

is an orthonormal basis for Vj and

ψj,k(t) = 2j/2I{2k−2
2j+1 ≤ t < 2k−1

2j+1 } − 2j/2I{2k−1
2j+1 ≤ t < 2k

2j+1 } , k = 1, . . . , 2j−1

is an orthonormal basis for Wj . Computationally fast algorithms exist to move between
coordinate representations corresponding to different choices of J0.

The motivation for changing between the basis systems is that for many functions there
exists a choice of J0 such that the corresponding basis representation is sparse. Moreover,
we have computationally fast algorithms to find a basis representation allowing us to disre-
gard many of the coefficients that are close to zero and yet still have a good approximation
to the original function.

The discontinuity of the basis functions considered above transfers to the functions in the
vector spaces Vj and Wj . This is unsatisfactory if the observation (y1, . . . , yn) is a discrete
sample of a continuous function. Therefore we seek (in the next section) to generalise the
construction to obtain other systems of orthonormal basis functions based on smoother
functions. We still focus on the ability to efficiently move from coordinate representations
with respect to the different basis systems.

4.1.2 Multiresolution analysis and wavelets

Any increasing family

. . . ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ . . . , j ∈ Z,

of closed subspaces of L2(R) allows us to consider the orthogonal complement Wj =
Vj+1 ∩ V ⊥j and decompositions of the form

Vj = Vj0 ⊕Wj0 ⊕ . . .⊕Wj−1
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for any j0 ≤ j. The question arises: when do we have efficient algorithms to switch between
representations of the same function f ∈ Vj corresponding to different j0 ≤ j?

Similar to the motivating example above, we impose more structure on the spaces Vj . We
require the spaces Vj to be scaled versions of each other

t→ f(t) ∈ Vj ⇔ t→ f(2jt) ∈ V0

and that V0 is invariant to translations

t→ f(t) ∈ V0 ⇔ t→ f(t− k) ∈ V0,

for any k ∈ Z. If further ∪j∈ZVj = L2(R) and ∩j∈ZVj = ∅ we say that {Vj}j∈Z constitutes
a multiresolution analysis in L2(R).

The definition of a multiresolution analysis given above does not involve any basis system
for Vj . Consequently, the concept is too general to guarantee efficient orthogonal decom-
positions as in Section 4.1.1. It is therefore common to consider multiresolution analyses
where each Vj is given as the closed vector space spanned by

φj,k(t) = 2j/2φ(2jt− k), j, k ∈ Z,

where the generating function φ is referred to as the father wavelet of the family {Vj}j∈Z.
We first note that the requirement that {Vj}j∈Z be increasing puts heavy restrictions on
which father wavelets may be used as generator for a multiresolution analysis. Further,
observe that if {φ0,k}k∈Z happens to be an orthonormal basis for V0 then {φj,k}k∈Z will
be a orthonormal basis for Vj for any j ∈ Z.

Example 1. The vector spaces Vj generated by the father wavelet

φ(t) =

{
1 , t ∈ [0, 1)
0 , otherwise

constitute a multiresolution analysis. This follows from the fact that the father wavelet may
be written as

φ(t) =
1√
2

√
2φ(2t) +

1√
2

√
2φ(2t− 1)

where the righthand side is a linear combination of functions in V1. Since φ0,k lives on
disjoint intervals, we further have that {φj,k}k∈Z is an orthonormal basis for Vj for any
j ∈ Z.

It follows from Section 4.1.1 that an orthonormal basis for Wj = Vj+1 ∩ V ⊥j for this
multiresolution analysis is given by

ψj,k(t) = 2j/2ψ(2jt− k), k ∈ Z,

where

ψ(t) =





1 , t ∈ [0, 1/2)
−1 , t ∈ [1/2, 1)
0 , otherwise

.

The generating function ψ is referred to as the mother wavelet. �
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The functions {ψj,k}j,k∈Z of the previous example constitute a, so-called, orthonormal
wavelet basis for L2(R). In this example, the wavelet basis is associated with a multireso-
lution analysis and we can write down a father wavelet φ generating the multiresolution
analysis. The fundamental identity behind the multiresolution analysis is that

φ(t) =
1√
2

√
2φ(2t) +

1√
2

√
2φ(2t− 1)

and the identity linking the father and mother wavelets is

ψ(t) =
1√
2

√
2φ(2t)− 1√

2

√
2φ(2t− 1).

This leads to the following definition.

Definition 1 (Wavelet analysis). A wavelet analysis is an orthonormal wavelet basis for
L2(R) consisting of functions

ψj,k(t) = 2j/2ψ(2jt− k), j, k ∈ Z, (4.3)

generated by a mother wavelet ψ, with j the dilation index and k the translation index.
Furthermore, the wavelet basis should be associated to a multiresolution analysis {Vj}j∈Z
generated by some father wavelet φ so that

• Wj = Vj+1 ∩ V ⊥j = Span{ψj,k|k ∈ Z}

• {φ0,k}k∈Z is an orthonormal basis for V0

• Vj = Span{φj,k|k ∈ Z}

where we have defined φj,k(t) = 2j/2φ(2jt− k), j, k ∈ Z. �

For a given wavelet basis constituting a wavelet analysis, any function f ∈ VJ has infinitely
many coordinate representations (one for each j0 ≤ J):

f(t) =
∑

k∈Z
cj0,kφj0,k(t) +

J−1∑

j=j0

∑

k∈Z
dj,kψj,k(t).

For a wavelet analysis we refer to Vj as the scale space at level j generated by the scale
function φ.
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4.1.3 Families of orthonormal wavelet bases

In this section we discuss the construction of families of orthonormal wavelet bases. Any
of these families of orthonormal wavelet bases can form the basis for a wavelet analysis.
Though it may seem difficult to meet all requirements in Definition 1 a key result by
Daubechies (1992) allows the construction of a wavelet analysis from a multiresolution
analysis.

Start with a father wavelet φ. Let V0 denote the vector space spanned by the functions

φ0,k(t) = φ(t− k), k ∈ Z.

For {φ0,k(t)}k∈Z to be an orthonormal basis of V0 we need ||φ|| = 1 and

∀k ∈ Z :

∫
φ(t)φ(t− k)dt = 0.

For any j ∈ Z then {φj,k}k∈Z defined as

φj,k(t) = 2j/2φ(2jt− k)

will also be an orthonormal basis for a vector space Vj . For V0 to be a subspace of V1 we
must have

φ(t) =
∑

k∈Z
hkφ1,k(t) (4.4)

for appropriate filter coefficients hk. The main result by Daubechies (1992) states that if
{Vj}j∈Z forms a multiresolution analysis then there is a wavelet basis {ψj,k}j,k∈Z for the
spaces Wj = Vj+1 ∩ V ⊥j and the mother wavelet can be chosen as

ψ(t) =
∑

k∈Z
(−1)k−1h−k−1︸ ︷︷ ︸

:=gk

φ1,k(t) (4.5)

Note that the choice of mother wavelet is not unique!

The above result enables us to construct orthonormal wavelet bases for L2(R): Look for
generating functions (φ) such that

1. t→ φ(t− k) are orthogonal for k ∈ Z

2. there exists filter coefficients {hk}k∈Z such that

φ(t) =
∑

k∈Z
hk2

1/2φ(2t− k).

3. the sequence of scaling spaces Vj spans L2(R)
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For the Haar wavelets discussed in Section 4.1.1 and Example 1 we had φ(t) = I[0,1)(t)

and h0 = h1 = 1√
2
. This implies the following mother wavelet

ψ(t) = −h0φ1,−1(t) + h1φ1,−2(t)

= − 1√
2

√
2φ(2t− (−1)) +

1√
2

√
2φ(2t− (−2))

= I[−1,−1/2)(t)− I[−1/2,0)(t).

Note that the choice of mother wavelet is not unique and usually the preferred choice is

ψ(t) = I[0,1/2)(t)− I[1/2,1)(t).

Example 2 (Compactly supported wavelets). To simplify the problem of constructing a
mother wavelet for an orthonormal wavelet basis, it is convenient to consider families of
orthonormal wavelet bases generated by a compactly supported father wavelet φ. Assume
that the support for some φ with ||φ|| = 1 is contained in [0, k0] for some k0 ∈ N then
{φ0,k}k∈Z is an orthonormal system if only

∫
φ(t)φ(t− k)dt = 0

for 0 < |k| < k0. Then we only need to consider the finite number of equations for |k| < k0.
Consider the vector space V1 spanned by the orthonormal functions

φ1,k(t) = 21/2φ(2t− k), k ∈ Z.

If we can show that V0 ⊂ V1 then it follows more generally that the vector spaces Vj spanned
by

φj,k(t) = 2j/2φ(2jt− k), k ∈ Z

constitute a multiresolution analysis provided that ∩jVj = ∅ and ∪jVj = L2(R). Assume
the filter coefficients hk are known for

φ(t) =
∑

k∈Z
hkφ1,k(t).

We then have a method for constructing the mother wavelet of an orthonormal wavelet
basis. Several examples constructed along this line can be found in Daubechies (1992). �

4.1.4 The discrete wavelet transform

The discrete wavelet transform acts on a vector (y1, . . . , yn) of length n = 2J . The first step
is to represent the discrete sample by a square integrable function f ∈ L2(R). Formally,
this is done by approximating (y1, . . . , yn) with f ∈ VJ where f is of the form

f(t) =
∑

k∈Z
cJ,kφJ,k(t).
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We think of (y1, . . . , yn) as a discrete sample of a function f ∈ VJ , obtained over a uniform
grid of length n = 2J on [0, 1]. From a theoretical point of view the k-th scaling coefficient
at level J (i.e. cJ,k) should be chosen to approximate the integral

∫
f(t)φJ,k(t)dt.

For the Haar basis we just get cJ,k = yk, k = 1, . . . , n (cJ,k = 0 otherwise) but better
approximations exist for other wavelet bases.

The second step of the discrete wavelet transform is to establish the filter equations to
obtain the coefficients corresponding to wavelet decompositions of the form

f(t) =
∑

k∈Z
cj0,kφj0,k(t) +

J−1∑

j=j0

∑

k∈Z
dj,kψj,k(t). (4.6)

for j0 ≤ J . We know that the wavelet coefficients (dj,k) and the scaling coefficients (cj,k)
are given by inner products

cj,k =

∫
f(t)φj,k(t)dt and dj,k =

∫
f(t)ψj,k(t)dt. (4.7)

Assume the wavelet basis is given by filter equations of the form (4.4) and (4.5) then, in
general,

φj−1,l(t) = 2(j−1)/2φ(2j−1t− l) = 2(j−1)/2
∑

k∈Z
hkφ1,k(2

j−1t− l)

= 2(j−1)/2
∑

k∈Z
hk2

1/2φ(2(2j−1t− l)− k)

= 2(j−1)/2
∑

k∈Z
hk2

1/2φ(2j − (2l + k))

=
∑

k∈Z
hkφj,2l+k(t)

and
ψj−1,l(t) =

∑

k∈Z
gkφj,2l+k(t).

The above formulations allow us to recursively compute scaling and wavelet coefficients at
level j − 1 from scaling coefficients at level j.

Due to orthogonality of the discrete wavelet transform (4.2), the inverse discrete wavelet
transform is given by

Y = W Td. (4.8)

A wavelet is characterised by a number of vanishing (or zero) moments for a given support
(point where the function is not zero). A function ψ ∈ L2(R) have v vanishing moments if

∫
xmψ(x)dx = 0
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for m = 0, . . . , v − 1 (unders specific technical conditions). For a wavelet with v vanishing
moments all wavelet coefficients of any v-degree polynomial or polynomials of lesser degree
will equal zero. When v increases, the wavelet φ is smoother, and so is the scaling function
φ.

4.1.5 Energy preservation and data compression

The energy of a signal is the sum of the squared values of the function

‖y‖2 = y2
1 + y2

2 + · · ·+ y2
n

The orthonormal wavelet transform preserves energy : the energy of the wavelet coefficients
of a function equals the energy of the function:

‖d‖2 = dTd = (Wy)TWy = yTW TWy = yT y = ‖y‖2

since W is an orthogonal matrix.

On a relatively smooth function the wavelet coefficients will be very close to or equal
to zero for the smooth parts where the function behaves as a polynomial of order v or
less. Thus, the wavelet transform of a relatively smooth function will be sparse: many
wavelet coefficients will have zero values and can be disregarded. On the other hand,
discontinuities and noise in a function will be represented by non-zero coefficients. Thus
we say the wavelet transform compacts energy : a function is ‘compressed’ into a small set of,
typically large, wavelet coefficients with the remaining wavelet coefficients equal to or close
to zero. However, the wavelet transform does not compress noise: an orthogonal wavelet
transform will transform iid Gaussian noise to a set of iid Gaussian wavelet coefficients.
(Nason, 2008; Walker, 2008)

4.2 Wavelet shrinkage

In the literature wavelet methods are often used as a form of nonparametric regression
(Nason (2008), p.83) and occur under various names, including wavelet shrinkage, curve
estimation and wavelet regression.

In the process of wavelet shrinkage we observe a function contaminated with additive noise,
(1) take a wavelet transform (DWT), (2) modify or shrink the noisy function’s wavelet
coefficients, and (3) take the inverse wavelet transform to estimate the function (IDWT)
(Nason, 2008). In this three-step procedure the estimates of the functions are regularised
such that local features, like sharp peaks, are kept but noise is removed (Morris and Carroll,
2006). This is called adaptive regularisation. The modification or shrinkage of wavelet
coefficients in step 2 can be done by thresholding methods described in sections 4.2.1 and
4.3.3.
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In statistical terms, we think of observations y = (y1, . . . , yn) arising from the model

yk = f(tk) + εk, for k = 1, . . . , n (4.9)

where tk = k/n. The objective is to estimate the unknown function f(t), for t ∈ [0, 1],
using the noisy observations y. We assume that εk ∼ N(0, σ2) are independent, i.e. white
noise.

Donoho and Johnstone (1994) introduced the concept of wavelet shrinkage to the statistical
literature (Donoho and Johnstone, 1994, 1995; Donoho et al., 1995). Their general idea is
that the discrete wavelet transform is applied to (4.9) as described below.

Let W denote the discrete wavelet transform that we choose and let y denote the vector
of observations, f the true unknown function and ε the noise. Since the discrete wavelet
transform is linear, the wavelet transformed model can be written as

Wy = Wf +Wε (4.10)

d∗ = d+ e (4.11)

where W is the n×n orthogonal wavelet transform matrix associated with the orthonormal
periodic wavelet basis chosen. d∗ is the n× 1 vector of empirical wavelet coefficients.

Donoho and Johnstone (1994) proposed the following wavelet shrinkage technique for
estimation of g(x), as described in Nason (2008):

Large values of the empirical wavelet coefficients, d∗, probably consist of true signal (and
noise); in contrast, small coefficients probably consist of only noise. Thus, to estimate
d, the thresholding idea creates and estimates, d̂, by removing coefficients in d∗ that are
smaller than some threshold, and thereby keeps the coefficients that are larger.

4.2.1 Thresholding

The hard and soft thesholding functions are defined by (Donoho and Johnstone, 1994)

d̂ = ηH(d∗, λ) = d∗I{|d∗| > λ} (4.12)

d̂ = ηS(d∗, λ) = sgn(d∗)(|d∗| − λ)I{|d∗| > λ} (4.13)

where I is the indicator function, d∗ is the empirical coefficient to be thresholded, and λ is
the threshold. Hard thresholding takes a ‘keep’ or ‘kill’ approach in the sense that wavelet
coefficients, in absolute value, greater than the threshold λ are kept and those smaller than
or equal to λ are set to zero. Soft thresholding also sets wavelet coefficients with absolute
value smaller than or equal to λ to zero, but shrinks the remaining coefficients to zero by
an amount λ. The choice of λ is crucial and different thresholding methods are discussed
in section 4.3.3.

Soft thresholding shrinks large coefficients uniformly towards 0 by λ and thus results
in larger bias than hard thresholding (Vidakovic, 1999). On the other hand, the hard
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thresholding rule is discontinuous and thus results in larger variance (Vidakovic, 1999).
Marron et al. (1998) showed that hard shrinkage has smaller bias but larger variance than
soft shrinkage, and that significantly smaller thresholds should be used for soft shrinkage.

There are numerous thresholding methods that can be used in combination with either a
hard or soft threshold. Donoho and Johnstone (1994) introduced the universal threshold

λ = σ
√

2 log n (4.14)

where n is the number of observations in the signal and σ̂, the estimate of the noise level
is calculated from some measure of the common standard deviation of the noise εi. See
Section 4.3.3 for more on thresholding methods, specifically SureShrink.

In certain applications it may be desirable to retain relatively large-scale components in g.
Thresholding is then limited to higher levels, say j > j0 of the empirical wavelet coefficients
d∗. For lower levels j ≤ j0 d̂j,k = d∗j,k. In Section 4.3.4 we discuss the choice of primary
resolution j0.

Using the IDWT with the thresholded wavelet coefficients d̂,

f̂ = W T d̂. (4.15)

we obtain an estimate f̂ of the true underlying function f in (4.9) and a smoothed, i.e.
denoised version of the noisy observations y.

Measure of error

To judge the successful estimation of f an error measure is defined. The most commonly
used error is the l2 or integrated square error (ISE) which is given by

M̂ = n−1
n∑

k=1

{f̂(tk)− f(tk)}2. (4.16)

This error depends on f̂ which depends on the specific error sequence {ek}. The mean
ISE (MISE), or risk, is defined by M = E(M̂) where M may depend on the estimator,
the true function, the number of observations, and the properties of the sequence {ek}. M
depends not only on the chosen ‘smoothing parameters’ of the estimator, but also on the
underlying wavelet family selected to perform the smoothing. (Nason, 2008)

4.3 Parameter choices and practical considerations

Throughout this section we refer to the Bumps test function, defined by Donoho and
Johnstone (1994) and displayed in Figure 4.1. Together with other test functions, it has
been used in a number of wavelet-related articles. The Bumps test function resembles a
typical spectrum with a flat baseline and several sharp peaks and can be used as a template
for a simplified NMR spectrum.
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Figure 4.1: The Bumps test function (left) (Donoho and Johnstone, 1994) and with added Gaussian
noise of root signal to noise ratio of 3 (right) as used by Antoniadis et al. (2001). Axes are scaled
to be similar to Donoho and Johnstone (1994).

4.3.1 Boundary conditions

The discrete wavelet transform takes the vector of scaling coefficients cJ,k at level J as its
starting point. Depending on the support of the father wavelet φ then computation of the
coefficients needed to restore the function f on [0, 1] requires that we extend f just outside
the interval [0, 1]. The two common approaches implemented in the waveThresh package
(Nason, 2013) is to either recycle or reflect the values of (y1, . . . , yn) near the boundaries.

These two simple solutions are respectively called periodic and symmetric boundary han-
dling. For periodic boundaries, the wavelet and scaling functions are basically ‘wrapped
around’ by pasting the function together at the start and end of the interval. It as-
sumes f(−x) = f(1 − x) where x ∈ (−1, 0) or x ∈ (0, 1). Symmetric boundaries assume
f(−x) = f(x) and f(1 + x) = f(1− x) where x ∈ (0, 1). (Nason, 2008)

The disadvantage of periodic boundaries is the possibility of large wavelet coefficients, with-
out data-related interpretation, for wavelets centred near the boundaries (Ogden, 1997a).
Nevertheless, the advantage of independent empirical wavelet coefficients with identical
variances for orthogonal wavelet families and Gaussian noise has made periodic boundary
handling a popular method (Ogden, 1997a). Symmetric boundary handling preserves con-
tinuity of the function, while periodic boundary handling does not, but results in more than
2j wavelet coefficients at level j and introduces dependencies by having more coefficients
than data points (Ogden, 1997a).

Abramovich and Benjamini (1996) and Zhao et al. (2012) used periodic boundary condi-
tions for a modified version of the Bumps test function (Figure 4.1). We also chose to use
periodic boundary handling conditions for our analysis of the NMR data from the diet
standardisation study.
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4.3.2 Sample sizes that are not a power of two

To perform a discrete wavelet transform, the data are required to have a sample size of
n = 2J where J is a positive integer.

The original data set can be pre-conditioned to be of length 2J where J is a positive integer.
Ogden (1997b) described two computationally simple approaches and assumed periodic
boundary handling. Firstly, the data set can be extended to the next larger power of two
by ‘padding’ with zeros, or ‘padding’ with a data value like the last value in the data set.
Secondly, interpolation of data values can be done to create a new data set with length of
2J . Ogden (1997a) (section 6.4) pointed out that ‘padding’ with zeros will result in zeros
being averaged into computation of wavelet coefficients and as such will ‘dilute’ the signal
towards the end of the original data set. In the case of NMR data, where large areas at
the ends of each signal are typically regarded as not containing any meaningful peaks, a
reasonable alternative is to ‘cut’ the data carefully at the ends, not removing meaningful
peaks, but reducing the data to length 2J . The residual water peak and urea peak are
typically removed by ‘cutting’ a part from the centre of the NMR signal (section 5.4). It
may arguably be better to leave this area intact and thus avoid a jump in the signal where
the otherwise remaining parts of the signal would be ‘joined’.

Ogden (1997b) warned that wavelet coefficients resulting from ‘padding’ or interpolation
should never be blindly thresholded by a procedure that depends on independent wavelet
coefficients with equal variance. Apart from choosing a pre-conditioning method that serves
the application of interest, regarding the importance of estimating the correct mean, cor-
rect variance or having minimal correlation, the variance of wavelet coefficients should be
variance corrected before thresholding Ogden (1997b).

In our analysis of the NMR data from the diet standardisation study, we reduced the
number of values per spectrum from 19 930 (after pre-processing) to the largest power of
2, smaller than 19 930, i.e. 214 =16 384. We did this by cutting the data carefully at the
ends of each of the two sections, before joining the two sections.

4.3.3 Thresholding methods

Antoniadis et al. (2001) conducted an extensive simulation study to compare a wide variety
of wavelet thresholding and wavelet shrinkage estimators, to denoise signals containing
additive Gaussian noise. Of the 12 test functions they used, the Bumps signal (Figure 4.1)
is the most similar to a typical NMR signal in structure (See section 4.3). Among many
other simulation results, they evaluate the performance of 34 chosen wavelet denoising
procedures using 100 simulations for the Bumps signal with a high noise level (root signal-
to-noise ratio of 3) at larger sample size (n = 512) and using a symmlet-8 wavelet filter
(Antoniadis et al. (2001) Figure 8.8). This scenario (from among other scenarios described)
for the Bumps signal is the one most closely resembling a typical NMR signal, although
the sample size would be into the tens of thousands.
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A discussion of the wide variety of available thresholding methods is outside the scope of
this thesis, but we briefly mention the relevant results from the graphical output in the
abovementioned simulation study (Antoniadis et al. (2001) Figure 8.8) Considering the
Bayesian denoising methods (both term-by-term and block thresholding and shrinkage
methods) 15 of the 16 methods performed well in terms of RMSE, root mean squared bias
(RMSB) and maximum deviation (MXDV). Among the non-Bayesian denoising meth-
ods, the only level-dependent thresholding methods that performed equally well were the
SureShrink and hybrid SureShrink, both using soft thresholds. Among the non-Bayesian
methods, a number of global thresholding methods performed equally well, but only when
using a hard threshold: VisuShrink, Minimax, False Discovery Rate and Translation- In-
variant. Cross-Validation also performed equally well with both hard and soft thresholds.
In terms of CPU time, non-Bayesian methods were superior to Bayesian methods (An-
toniadis et al., 2001). The authors concluded that “no wavelet-based denoising procedure
uniformly dominates in all aspects”.

For our analysis of NMR data from the diet standardisation study, we chose the hybrid
SureShrink procedure. In the next section we discuss this procedure that adapts to un-
known smoothness in more detail.

SureShrink thresholding

Donoho and Johnstone (1995) introduced SureShrink, an automatically smoothness adap-
tive thresholding of empirical wavelet coefficients to suppress noise. They considered the
Bumps signal (Figure 4.1) as a signal that mimics a simple NMR or other spectrum. In
a small simulation study they compared the RMSE for SureShrink (using the Daubechies
D4, Coiflet-3 and Symmlet-8 wavelet filters), RiskShrink (i.e. Minimax) (using Coiflet-3
and Symmlet-8) and VisuShrink (using Symmlet-8) for sample sizes of 27 to 214 with 20
replications for each sample size (except for smaller number of replications for the last two
sample sizes) (Donoho and Johnstone (1995), Table 2). For the Bumps signal RiskShrink
performed better than VisuShrink, but SureShrink performed the overall best. The per-
formance of all methods improved with sample size. Results for SureShrink were very
similar regardless of which wavelet filter was used. Hastie et al. (2009) used SureShrink
for adaptive wavelet filtering of an NMR signal, which is similar in structure to the NMR
data that we consider.

SureShrink assigns a threshold level to each resolution level by minimising the Stein (1981)
unbiased risk estimator (SURE) for threshold estimates. Let µ = (µ1, . . . , µn) and let
xi ∼ N(µi, 1) be multivariate normal observations and x = (x1, . . . , xn). Let µ̂(x) be a
specific ‘nearly arbitrary, nonlinear biased’ estimator for µ. Stein demonstrated that the
loss ‖ µ̂ − µ ‖2 can be estimated unbiasedly. Let µ̂(x) = x + g(x), where g = (g1, . . . , gn)
and g : Rn → Rn. Stein (1981) proved that, for g(x) weakly differentiable

Eµ ‖ µ̂− µ ‖2= n+ Eµ{‖ g(x) ‖2 +2∇ · g(x)} (4.17)
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where

∇ · g =
∑

i

∂

∂xi
gi.

Referring to d and d∗ in the wavelet transform (4.11) Donoho and Johnstone (1995) wrote
the mean vector d as µ = (µ1, . . . , µn) and the elements of d∗ as independent xi ∼ N(µi, 1)
and applied Stein’s result to the soft threshold estimator (4.13) as an estimate of µ. We

can write µ̂
(λ)
i (x) = ηS(xi, λ). Then it can be shown that, where y ∧ z = min(y, z),

SURE(λ;x) = n− 2 ·#{i : |xi| ≤ λ}+

n∑

i=1

(|xi| ∧ λ)2 (4.18)

is an unbiased estimate of risk, i.e. EµSURE(λ, x) = Eµ ‖ µ̂ − µ ‖2. The SURE risk
estimator is then used to select a threshold, by finding 0 ≤ λ ≤ √2 log n that minimises
(4.18).

When the true signal wavelet coefficients are extremely sparse, the SURE principle has
disadvantages and a hybrid method is implemented in SureShrink (Donoho and Johnstone,
1995). It uses the universal threshold (4.14) where the signal is sparse and the SURE
threshold otherwise. In more detail, let s2

n = n−1
∑

i(x
2
i − 1) and γn be a critical value,

typically taken as log
3/2
2 n/

√
n, then the estimator µ̂∗ is defined (Donoho and Johnstone,

1995) as

µ̂
∗(λ)
i =

√
2 log n s2

n ≤ γn
= ηS(xi, λ) s2

n > γn
(4.19)

In practice, the noise level σ is not assumed as known, but estimated from the data. In
the threshold.wd function in the R package WaveThresh (Nason, 2013), the SureShrink
procedure by default uses the median absolute deviation function to compute the noise
level across all levels to be thresholded and adjusts sn accordingly:

σ̂ = median(|xi −median(x)|)

s2
n = n−1

∑

i

((xi
σ̂

)2
− 1

)
(4.20)

and in (4.19) xi is replaced by xi/σ̂.

The performance of a thresholding method does not only depend on the choice of threshold-
ing method, but also on the type of wavelet underlying the transform. According to Nason
(2008) there appears to be “very little systematic work” done on the choice of wavelet.
He expressed his disappointment with this state of affairs, since the type of wavelet can
have a “potentially dramatic effect on concrete performance” of thresholding methods. We
return to this issue in Section 4.3.5.
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4.3.4 Primary resolution

In wavelet shrinkage the primary resolution, j0, is the coarsest level at which thresholding is
applied. Some authors refer to the primary resolution level as the level where thresholding
begins (i.e. the first coarse levels up to j0 are not thresholded) or the lowest level of
decomposition. (Abramovich and Benjamini (1996); Nason (2008); Nason’s discussion of
Donoho and Johnstone (1995)).

The primary resolution can take on values from 0 to log2(n)− 1. If the primary resolution
level is set very low, over-smoothing typically appears in the sections where the underlying
curve is smooth (Hall and Penev, 2001). Also, if n increases but j0 is kept fixed, over-
smoothing will result, specifically when the underlying curve is smooth or piecewise smooth
(Hall and Panil’s comment on Donoho and Johnstone (1995)).

Zhao et al. (2012) experienced that the choice of j0 impacted the resulting wavelet estimate
and therefore recommends that the choice of j0 should be carefully considered. In practice,
the choice of j0 has a large influence on the accuracy of the estimate and can determine
the success of the thresholding method: the choice of j0 influences the accuracy of the
estimate nearly to the same extent that the choice of threshold does (Nason (2008); Nason’s
discussion of Donoho and Johnstone (1995)).

The primary resolution level is a smoothing parameter. One option to avoid large bias
in peaks and valleys is to choose j0 empirically (Hall and Penev, 2001). The choice of
an appropriate value for j0 should intuitively depend on the noise level as well as on
the smoothness of the estimated function and j0 should arguably be smaller for smooth
functions and larger for oscillating functions (Abramovich and Benjamini, 1996).

The coefficients on the lower coarse levels characterise ‘low-frequency’ terms. These ‘low-
frequency’ terms often contain vital components of the underlying function and should
ideally be kept intact (i.e. not thresholded) (Antoniadis et al., 2001). The threshold.wd()
function in the R package WaveThresh uses a default value of 3 for the lowest level of
decomposition, but this parameter can be changed by the user (Nason, 2013).

Concerning the choice of primary resolution in the literature, Hastie et al. (2009) used
j0 = 4 for n = 210 for an NMR signal. Donoho and Johnstone (1995) used j0 = 6 for
samples sizes n = 2J , for J = 7 . . . 14 for a simulation study that included the Bumps
signal.

Antoniadis et al. (2001) chose the primary resolution level to be j0(n) = log2(log(n))+1 in
a simulation study using n = 128, 256, 512, 1024. For our analysis of the NMR data from
the diet standardisation study n = 16 384 and we chose to select a primary resolution of
j0 = 11 (see Section 4.4.1).

4.3.5 Type of wavelet and number of vanishing moments

The most simple mother wavelet is the Haar wavelet, but Daubechies extremal phase
wavelets, Daubechies least asymmetric (LA) wavelets and coiflets, among others, are com-
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monly used. Daubechies least asymmetric wavelets are also known as symmlets. The symm-
lets are more symmetric than the Daubechies extremal phase wavelets. A good choice of
an appropriate wavelet filter depends on the application (Percival and Walden, 2006).

The number of vanishing moments, v, provides an index for the specific member of a
wavelet family, e.g. Daubechies least asymmetric 8. Some references, however, use v to
denote the length of the filter coefficients, which is twice the number of vanishing moments
(Nason, 2008). The Daubechies least asymmetric wavelet family has vanishing moments
starting from 4 (i.e. 8 filter coefficients). See Section 4.1.4 for more on vanishing moments.

Regarding the choice of wavelet (specifically number of vanishing moments) Percival and
Walden (2006) recommends a strategy directed by balancing two aspects: on the one hand,
avoiding possible artifacts introduced by wavelets of very short widths (i.e. 2, 4 or 6) and,
on the other hand, using wavelets with larger widths to better correspond to features in
a signal. Wavelets with very short widths may typically introduce artifacts of triangular,
block-like or ‘shark fin’-like shapes in the results. However, wavelets with large width
have drawbacks in terms of more computational effort, boundary conditions negatively
affecting more wavelet coefficients and a lower degree of localisation of the discrete wavelet
coefficients. A reasonable strategy would be to use the smallest wavelet width that produces
a reasonable wavelet analysis (Percival and Walden, 2006). By increasing wavelet width and
comparing the wavelet analyses results, the wavelet width should be chosen to correspond
with the first wavelet analysis that does not produce artifacts that are due to the wavelet
only (Percival and Walden, 2006).

Considering the application of wavelets to spectral data, Antoniadis et al. (2001) used
the symmlet-8 and coiflet-3 wavelet filters to model the Bumps function (Figure 4.1) and
reported similar results for the two wavelet filters. Abramovich and Benjamini (1996) used
the Daubechies-4 wavelet transform. Donoho and Johnstone (1994) also used symmlet-8
wavelets. Zhao et al. (2012) used Daubechies least asymmetric wavelets (i.e. symmlets)
with eight vanishing moments for a modified version of the Bumps test function.

Specifically for NMR spectra Kim et al. (2008) used the symmlet-16 wavelet transform.
Astle et al. (2012) used symmlet-6 to model NMR peaks. They motivate the choice of
wavelets by the similarity in shape between these wavelets and the Lorentzian peaks ob-
tained from NMR signals. The Lorentzian shape (Cauchy distribution shape) of these
peaks are specified by the physics of NMR (Hore and Compton, 1995). Astle et al. (2012)
reports that other wavelet bases gave very similar results to the symmlet-6 transform in
terms of reconstructing spectra. Morris et al. (2008) used Daubechies wavelets with four
vanishing moments for two different mass spectrometry proteomics (similar in structure
to NMR data) examples. They also report that other wavelet bases gave similar results.
Hastie et al. (2009) utilised the symmlet-8 basis on an NMR signal.

We chose to use the Daubechies least asymmetric wavelet with four vanishing moments
(Figure 4.2) for our analysis of the NMR data from the diet standardisation study (see
Section 4.4.2). Some authors would call it the symmlet-4 basis but other authors would
call it a symmlet-8 basis.
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Figure 4.2: The Daubechies least asymmetric wavelet (symmlet) with four vanishing moments and
the corresponding scaling function.

4.3.6 Subset selection of wavelet coefficients across multiple
signals

In the case of a single signal y = (y1, . . . , yn), a set of non-zero wavelet coefficients, say
D0, where

D0 = {(j, k)I(d̂j,k 6= 0) : j, k ∈ Z, j0 ≤ j ≤ J − 1} (4.21)

(4.22)

is obtained after wavelet decomposition and thresholding. When there are multiple signals
yi = (yi1, . . . , yin), i = 1, . . . , N of the same length n, wavelet decomposition and thresh-
olding will result in a set of retained (non-zero) wavelet coefficients, say d̂0

(i) for each signal
i. However, it is possible that the sets of retained coefficients differ, i.e.

D0
(i) 6= D0

(i′) where i, i′ = 1, . . . , N and i 6= i′.

For our purpose of a wavelet-based functional mixed model, we want to model each wavelet
coefficient dj,k using a mixed model. The model assumptions require that the random
effects as well as the errors should be normally distributed. This assumption will be violated
when a wavelet coefficient has zero values d(i),j,k for a number of i’s in the N signals in
the data set. The challenge is to select a subset of wavelet coefficients from the various
sets of non-zero coefficients D0

(1) ∪ D0
(2) ∪ · · · ∪ D0

(N). We could select only those wavelet
coefficients that have non-zero values for all 48 signals

D0
(1) ∩D0

(2) ∩ · · · ∩D0
(N)
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and will thus definitely satisfy the model assumptions. In this way we risk excluding wavelet
coefficients where a small number of signals have zero values for the specific coefficient. At
the other extreme we could select all wavelet coefficients with at least one non-zero value
across the 48 signals

D0
(1) ∪D0

(2) ∪ · · · ∪D0
(N).

In this way we will not exclude any wavelet coefficients from the subset, but for model
assumptions may be violated for some wavelet coefficient models.

For our analysis of the NMR data from the diet standardisation study we chose to se-
lect only those wavelet coefficients that have non-zero values for all 48 signals (see Sec-
tion 4.4.3).
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4.4 Parameter choices: NMR diet standardisation

data

As mentioned in Section 4.3 we made the following choices for our analysis of the NMR
data from the diet standardisation study:

• Periodic boundary handling;

• Reduction of the number of values per spectrum to the largest power of 2, smaller
than n;

• Hybrid SureShrink thresholding by level and using a soft threshold;

• Daubechies least asymmetric wavelet with four vanishing moments; and

• Primary resolution 11 combined with subset selection of wavelet coefficients that are
non-zero (after thresholding) for all 48 spectra.

We discuss the motivation for our choices regarding type of wavelet, primary resolution
and subset selection in the following sections.
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4.4.1 Primary resolution

For the spectra in the NMR diet standardisation study the primary resolution j0 can
take on values from 0 to 13 (log2(16384) − 1) (See Section 4.3.4). Here we carefully and
empirically consider the choice of j0 and its impact on the resulting wavelet estimates.
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Figure 4.3: Wavelet decomposition coefficients for a single spectrum from the diet standardisation
study (left) using Daubechies Least Asymmetric wavelets with four vanishing moments. Coeffi-
cients are scaled for each resolution level separately and depends on the largest absolute value of
coefficients in that level. For the wavelet coefficients (left), the inverse wavelet transform for each
level separately is shown on the right.

Figure 4.3 shows the wavelet decomposition for one of the 48 original spectra. Each wavelet
coefficient is represented by a vertical bar and the (positive or negative) height of the bar
indicates the size of the coefficient. The corresponding inverse wavelet transform on the
right gives an indication of the component in the signal represented by the specific level
of wavelet coefficients. The first number of levels contain very broad ‘low-frequency’ terms
that span the entire width of the spectrum. The higher the level (the further down in
the figure), the more localised the effects are, representing ‘higher-frequency’ terms. The
highest level, level 13, can contain mostly noise.

Figure 4.4 shows the same wavelet decomposition as in Figure 4.3 (left), with the difference
that SureShrink thresholding was applied with primary resolution 3 and 11 respectively.
Most strikingly, all coefficients on level 13 (n = 8 192) were shrunk to 0 (and are not
displayed) in both thresholding procedures. On level 12 only 2 of the 4096 coefficients
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Figure 4.4: Wavelet decomposition coefficients for a single spectrum from the diet standardisation
study: SureShrink with primary resolution 3 (left) and 11 (right). Compare with Figure 4.3

were not shrunk to zero in both graphs. One of these coefficients is related to a boundary
effect and the other to the location where two parts of the spectrum were joined. On level
11, for both cases, a substantial number of the 2048 coefficients were shrunk to zero, but
a number of coefficients are retained. From level 10 and lower (upwards in the figure), the
coefficients in the graph on the right remain unchanged (compared to Figure 4.3 (left))
since thresholding only started from level 11. For the graph on the left, it is difficult to see
changes at levels 10 to 7 and level 5. The shrinkage in coefficients may just not be visible
at this scale. In the graph of the left, for levels 6 and 4, smaller coefficients were clearly
shrunk to zero. At level 3 no non-zero coefficients remained after thresholding.

Considering only a small section of the same spectrum, Figure 4.5 demonstrates the
smoothing effect (top row) of using SureShrink with primary resolution of 11. The cor-
responding wavelet coefficients (bottom row) indicate that, in this specific section, all
coefficients on levels 12 and 13 were regarded as noise and shrunk to zero. On level 11
a few large coefficients were retained. We only show coefficients from level 5, since lower
levels (0 to 4) contain very wide ‘low-frequency’ terms.

Figures 4.6 demonstrates the smoothing effect of different primary resolutions for a single
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Figure 4.5: An enlarged section (8.0 to 7.9 ppm) of a single spectrum from the diet standardisation
study. The effect of SureShrink with primary resolution level 11 (top right, blue) compared to the
inverse wavelet transform of the data (top left). Corresponding wavelet coefficients (from level 5)
are shown in the bottom row.

spectrum from the diet standardisation study: thresholding from level 0 (to 13) over-
smoothes some of the ‘low-frequency terms’ and notably overestimates some sections (8.0
to 7.7 ppm) and underestimates other sections (7.6 to 7.5 ppm) in the spectrum; thresh-
olding from level 3 still over-smoothes some of the ‘low-frequency terms’ and thus overes-
timates and underestimates some sections of the spectrum (most notably 7.8 to 7.7 ppm
and 8.0 to 7.95 ppm), but the errors are not necessarily in the same direction as for thresh-
olding from level 0 (note 8.0 to 7.9 ppm); thresholding from level 6 seem to better preserve
most of the ‘low-frequency terms’ and the broad areas of overestimation and underestima-
tion disappear, although some over-smoothing remains (smaller areas of overestimation or
underestimation around 7.8 and 7.99 ppm).

Figures 4.7 demonstrates the effect of thresholding from even higher levels (compare with
8.0 to 7.9 ppm in Figure 4.6): there is no over-smoothing of ‘low-frequency terms’ and
all three estimates follow the shape of the spectrum; thresholding from level 7 possibly
still results in over-smoothing some smaller areas and underestimates the peak at 7.97
ppm and overestimates the valley around 7.92 ppm; there are very little visible differences
between the estimates that threshold from levels 9 and 11.

The challenge is to find a good primary resolution. Starting thresholding too low (e.g.
level 3 or 6) will over-smooth ‘low-frequency’ terms and starting too high (e.g. level 13)
will not remove enough noise. In Figure 4.8 the contributions from different levels of the
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Figure 4.6: A section (8.0 to 7.5 ppm) of a single spectrum from the diet standardisation study. The
effect of SureShrink thresholding for primary resolution levels: 0 (top), 3 (middle) and 6 (bottom).
The curve with no thresholding (black) is the inverse wavelet transform of the data.

wavelet decomposition to the spectrum is illustrated. Roughly speaking: levels 0 to 4 seem
to constitute broad ‘low-frequency’ effects that reach over the entire range of the spectrum
(and cannot be seen in this small section of the spectrum), levels 5 to 7 seem to construct
the basic shape of large peaks, levels 8 to 11 seem to construct smaller peaks and add the
detail to construct larger peaks, and levels 12 and 13 seem to contain mostly noise. Ideally,
we want to select the primary resolution such that levels containing peaks and noise are
thresholded, while levels containing the broad underlying structure of the spectrum are
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Figure 4.7: An enlarged section (from the region in Figure 4.6) of a single spectrum from the diet
standardisation study. The effect of SureShrink thresholding for primary resolution levels: 7 (red),
9 (blue) and 11 (light blue). The curve with no thresholding (black) is the inverse wavelet transform
of the data.

left unaltered.

For the diet standardisation with n = 16 384 for each of 48 spectra. By using j0 =
log2(logN)) + 1 (Antoniadis et al., 2001) we obtain a primary resolution level of j0 ≈ 4.
Visually (Figure 4.6) it seems that we still remove low-frequency terms, even with a primary
resolution of 6. These visual results, however, are only shown for a small section of one
of the 48 spectra in the NMR data set. To investigate the effect of different primary
resolutions on our entire data set, we calculated the MISE (4.16) for each spectrum. We
present a box plot per primary resolution level (Figure 4.9). For an individual spectrum
it is to be expected that the MISE will decrease as the primary resolution increase. Note
the decreasing, yet large, range in MISE per primary resolution level, up to approximately
level 6. The median and range of the MISE across the 48 spectra seem to stabilise at level
8. Here we used Daubechies Least Assymetric wavelets with four vanishing moments. In
Section 4.3.5 we discuss the choice of the type of wavelet.

Knowledge of the shape of NMR peaks may further guide our choice of primary resolution
level (Section 5.1). NMR peaks have a Lorentzian shape and the peak width is related
to the peak height. Consequently we consider the highest peak in the data as having the
largest possible peak width present in the data. This peak occurs at 3.048 ppm in all
spectra. Empirically, the width of this peak points to a primary resolution of at least 7
(Figure 4.10. Obviously it will also depend on the location of the peak with respect to the
location of wavelets on level 7, whether a wavelet from this level could represent this peak.
If not, wavelets from higher levels would automatically be used to model this peak. If we
chose level 7 as the primary resolution, we should arguably include all peaks (and noise)
in the thresholding and exclude most ‘low-frequency terms’ from thresholding.
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Figure 4.8: An enlarged section (8.0 to 7.9 ppm) of a single spectrum from the diet standardisation
study. The inverse wavelet transform: by level (middle), combined for levels 0 – 4, 5 – 7, 8 – 11
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We further consider the type of wavelet, subject to the choice of primary resolution level,
in Section 4.4.3. In our application, the subset selection of thresholded wavelet coefficients
across spectra, for the purpose of modelling, further complicates the choice of primary
resolution. We discuss this issue in Section 4.4.3.
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Figure 4.9: Box plots of mean integrated square error (MISE) (×1000) for 48 signals from the diet
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wavelets with four vanishing moments.
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Figure 4.10: The largest peak in relative height and width from the diet standardisation study.
Possible ‘fitting’ Daubechies Least Asymmetric wavelets with four vanishing moments and dilation
corresponding to levels 5 to 8.
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4.4.2 Type of wavelet and number of vanishing moments
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Figure 4.11: Box plots of Mean Integrated Square Error (MISE) (×1000) by number of vanishing
moments (4 to 10) for primary resolution level (j0, 6 to 11) using Daubechies Least Asymmetric
wavelets.

We chose to use Daubechies least asymmetric wavelets for our analysis of the NMR data
from the diet standardisation study. It is not obvious how many vanishing moments we
should choose for the wavelets. We calculated the MISE for each of the 48 spectra and
produced a box plot per combination of the number of vanishing moments (ranging from
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4 to 10) and the primary resolution (ranging from 6 to 11). Apart from the median, we are
interested in the upper extremes of each distribution, i.e. the maximum error we would
encounter for any of the 48 spectra.

At primary resolutions 8 to 11 the MISE is very small (< 0.03) for any number of vanishing
moments. At a primary resolution of j0 = 7 the MISE is relatively small (< 0.1) for any
number of vanishing moments except 10, where there is one outlier. At a primary resolution
of j0 = 6 a choice of seven or nine vanishing moments seem to produce the smallest MISEs
(< 0.175).

In our data, the number of vanishing moments is not a crucial choice for primary resolution
of 8 to 11. At a primary resolution of j0 = 7 a choice of four, five or seven vanishing
moments appear to produce somewhat smaller MISEs than other numbers of vanishing
moments. At level j0 = 6 the choice is more critical with seven or nine vanishing moments
as the best options for our data.

4.4.3 Subset selection of wavelet coefficients across multiple
signals

For an individual NMR spectrum from the diet standardisation study, the wavelet decom-
position results in 16 383 wavelet coefficients on 14 levels (levels 0 to 13). The SureShrink
thresholding procedure reduces the number of non-zero wavelet coefficients by shrinking
many coefficients to zero. The number of coefficients remaining depends on the primary
resolution. Furthermore this number may vary from spectrum to spectrum. For example,
for SureShrink with j0 = 5 a specific spectrum has 2 061 non-zero coefficients, but across
the 48 spectra this number ranges from 1 500 to 2 576 with a median of 1 910. A number
of these may be the same wavelet coefficients across all spectra, but some may be unique
to one spectrum or present in a few spectra. For j0 = 5 there are 286 wavelet coefficients
that are present (non-zero) for all 48 spectra after thresholding. All together there are 3
944 different non-zero wavelet coefficients across the 48 spectra. Since j0 = 0 there are 31
coefficients belonging to levels 0 to 4 that will be included among both the 286 and the 3
944 wavelet coefficients mentioned above. These numbers and corresponding numbers for
j0 = 6 . . . 11 are shown in Table 4.1. Note that the number of non-zero wavelet coefficients
present for at least one of the 48 spectra (second column) decreases from 4 455 at j0 = 11
to 3944 at j0 = 5. However, there is a drastic decrease in the number of wavelet coefficients
present for all 48 spectra (column 6), from 2 049 at j0 = 11 to only 286 at j0 = 5.

The question of subset selection across spectra is “what criteria should be specified for
the least number (say x) of spectra that should contain a specific wavelet coefficients for
this coefficient to be included in mixed modelling of the 48 spectra?”. Specifying x = 1
may result in violating model assumptions, whereas specifying x = 48 may be too strict in
excluding any wavelet coefficient not present in all spectra. In Figure 4.12 subset selection
amounts to choosing a cut-off point (from 0 to 48) along the x-axis and including all
wavelet coefficients present (non-zero) for more spectra than the value of the cut-off point,
to be included in modelling. Clearly the distribution of the number of wavelet coefficients
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Figure 4.12: Histograms indicating the number of spectra (of 48) with wavelet coefficients larger
than zero for a primary resolution of j0 = 7 (left) and j0 = 11 (right). Note that number of spectra
with wavelet coefficients equal to zero is not shown (12 429 and 11890 respectively).

present for a certain number of spectra depends on the primary resolution (compare j0 = 7
(left) with j0 = 11 (right)). The most obvious difference in these two graphs is that the
distribution around the higher end shifts dramatically from values just below 48 to 48 with
the increase in j0 from 7 to 11.

In Tables 4.2 and 4.3 we explore how the non-zero wavelet coefficients are distributed across
resolution levels for respectively x = 1 and x = 48. Note that the last columns (Total)
in Table 4.2 and Table 4.3 correspond to the second and the sixth columns in Table 4.1
respectively. Interestingly, in Table 4.2 all the wavelet coefficients in a resolution level are
retained up to level 10, regardless of the primary resolution (compare with the maximum
number of possible wavelet coefficients per level in the bottom row). Thus, only from level
11 there appear wavelet coefficients that are not present after thresholding for any spectra.
In Table 4.3 relatively small numbers of wavelet coefficients within each resolution level
are common among all spectra, e.g. 2 of a possible 64 at level 6, 23 of a possible 128
at level 7, etc. For levels 11 to 13 at most one wavelet coefficient is retained regardless
of j0. The increase in the total number of wavelet coefficients retained (last column) as
j0 increases, is mainly due to the number of wavelets coefficients ‘forced’ to be retained
(second column) which increase from 31 at j0 = 5 to 2 047 at j0 = 11.

The combined effect of primary resolution and subset selection is demonstrated for a
section of a single spectrum in Figure 4.13. Subset selection of wavelet coefficients present
(non-zero) across all 48 spectra, combined with j0 = 7 markedly ‘excludes’ a large number
of peaks in estimation of the spectrum, even in this small section. Even at j0 = 9 a number
of peaks are still ‘excluded’ by subset selection. At j0 = 11 there is no visual evidence of
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Table 4.1: Number of wavelet coefficients selected, by coarsest level of thresholding (j0) and various
criteria for wavelet coefficient selection across spectra

j0 At least x wavelet coefficients No. of wavelet

present across 48 spectra coefficients for

x j = 0, 1, . . . , j0 − 1

1 16 32 44 48

5 3944 2290 1761 778 286 31
6 3930 2310 1779 807 318 63
7 3950 2333 1817 864 382 127
8 3950 2342 1852 934 485 255
9 4031 2355 1869 1037 682 511
10 4142 2428 1893 1260 1080 1023
11 4455 2556 2072 2050 2049 2047

Table 4.2: Number of wavelet coefficients selected, by coarsest level of thresholding (j0), for the
criteria that a wavelet coefficient should be present (not equal to 0) for at least one of 48 individual
spectra

j0 # wavelet No. of wavelet coefficients

coefficients retained at thresholded levels Total

j < j0 5 6 7 8 9 10 11 12 13

5 31 32 64 128 256 512 1024 1554 342 1 3944
6 63 - 64 128 256 512 1024 1558 334 1 3930
7 127 - - 128 256 512 1024 1572 330 1 3950
8 255 - - - 256 512 1024 1575 327 1 3950
9 511 - - - - 512 1024 1601 382 1 4031
10 1023 - - - - - 1024 1656 438 1 4142
11 2047 - - - - - - 1813 594 1 4455
Max. no. possible 32 64 128 256 512 1024 2048 4096 8192

peaks being ‘excluded’ by subset selection in this small section of the spectrum. We suspect
the possible reasons for this dramatic effect is possibly misalignment.

Finally, Figure 4.14 sheds light on subset selection. If we do not ‘force’ the inclusion of any
wavelet coefficients in individual spectra by setting j0 = 0, all 14 levels of each spectrum
are thresholded. By counting the number of spectra (of 48) that have non-zero coefficients
for a specific wavelet we obtain the values in Figure 4.14, displayed by resolution level.
Wavelet coefficients where the count is zero (below the red dotted line at the bottom)
are irrelevant to our model. Subset selection amounts to moving the criteria to include
only wavelet coefficients present for all 48 spectra (red dotted line at the top) down to
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Table 4.3: Number of wavelet coefficients selected, by coarsest level of thresholding (j0), for the
criteria that a wavelet coefficient should be present (not equal to 0) for all 48 individual spectra

j0 # wavelet No. of wavelet coefficients

coefficients retained at thresholded levels Total

j < j0 5 6 7 8 9 10 11 12 13

5 31 0 2 23 63 114 52 1 0 0 286
6 63 - 2 23 63 114 52 1 0 0 318
7 127 - - 23 63 116 52 1 1 0 382
8 255 - - - 62 115 52 1 0 0 485
9 511 - - - - 117 53 1 0 0 682
10 1023 - - - - - 56 1 1 0 1080
11 2047 - - - - - - 1 1 0 2049
Max. no. possible 32 64 128 256 512 1024 2048 4096 8192

the chosen value for subset selection. By increasing the value of j0, wavelet coefficients for
levels j < j0 (levels towards the righthand side of the graph) will be forced’ to ‘jump’ to
a value of 48 at the top of the graph and will be included for modelling regardless of the
value chosen for subset selection (top red dotted line). Ideally j0 should be chosen large
enough to preserve ‘low-frequency’ terms, but to threshold noise where few spectra have
the wavelet coefficients present. At the same time, the subset selection criteria should be
chosen to preserve wavelet coefficients associated with features in the data while ensuring
model assumptions are met by excluding wavelet coefficients with a low count of spectra.

To prioritise model assumptions we chose a subset selection criteria of 48 spectra. This
required a high value for j0 and we chose 11. Variations on these choices is of interest in
future research.
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Figure 4.13: A section (8.25 to 7.35 ppm) of a single spectrum from the diet standardisation study.
The effect of subset selection where all 48 wavelet coefficients are present, together with SureShrink
thresholding for primary resolution levels 7 (top), 9 (middle) and 11 (bottom). The curve with no
thresholding (black) is the inverse wavelet transform of the data.
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Figure 4.14: Number of spectra (of 48) for which wavelet coefficients are retained after SureShrink
thresholding on all levels, by individual wavelet coefficients within level (13 to 0). Red dotted
lines indicate number of spectra where either no wavelet coefficients ‘survived’ thresholding (below
bottom line) or all 48 wavelet coefficients ‘survived’ thresholding (above top line).



5
NMR data and pre-processing

Nuclear magnetic resonance (NMR) spectra are complex. To obtain meaningful results
from analysing NMR data, the ideal is to have spectral measurements that are without
noise, errors and missing data. Furthermore, peaks from the same metabolite should line
up across spectra; peaks should be comparable in intensity across spectra; variation in the
intensity of a specific peak (across spectra) should be comparable across peaks; and, the
intensity of a peak should reflect the abundance of the associated metabolite. In practice,
NMR data rarely, if ever, comply with all these requirements and a substantial amount of
pre-processing is required to prepare the data for analysis.

This chapter is mainly concerned with the pre-processing of NMR data, but first we discuss
the structure and technical details of an NMR spectrum.

5.1 Technical details on NMR data

NMR spectroscopy of urine produces a complex ‘fingerprint’ with thousands of resolved
peaks and typically 50 or more identifiable compounds (See Figure 2.1). Bouatra et al.
(2013) recently identified 209 unique compounds in NMR urine spectra of 22 healthy
individuals. Each compound consists of one or more peaks. The peaks from different com-
pounds often overlap.

NMR data are measured in the time domain, where magnetic resonance signals are ex-
pressed as exponentially decaying sinusoidal waves. After Fourier transform, the resonances
are expressed as Lorentzian peaks in the frequency domain (Figure 5.1).

The basic structure of an NMR spectrum is a vector (y1, . . . , yn) of resonance intensities
measured at regularly spaced points on the chemical shift axis. Typically n is in the order
of tens of thousands. By convention the chemical shift axis is labelled δ and decreases from
left to right, typically with a range from 10 to 0 ppm. The unit for chemical shift is parts
per million (ppm) and it is inversely related to frequency. The vector y is, in principle,
strictly positive, but since it is observed with noise y can also take on values below zero.

An NMR spectrum consists of a large number of convolved peaks. The Lorentzian shape
of each peak is better known in statistics as a Cauchy distribution with scale parameter

51
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Frequency

Figure 5.1: An exponentially decaying sinusoidal wave is Fourier transformed to a Lorentzian peak
shape

γ/2. In NMR spectroscopy γ is called the line width or full width half maximum (FWHM)
and indicates the width of the peak at half the maximum height.

1H NMR is also called proton NMR and measures the resonance of hydrogen nuclei. The
proton (hydrogen nuclei) resonates at specific frequencies. The resonant frequencies of a
proton are determined by its bonding and the chemical structure of the molecule in which
it is contained. The resonating frequencies, in turn, determine the specific chemical shift
values of peaks in the 1H NMR spectrum.

A metabolite (small molecule compound) displays an individual signature in an 1H NMR
spectrum: a convolution of Lorentzian peaks at specific chemical shift positions. A metabo-
lite’s peaks can appear in multiplets, defined by a specific number of peaks, relative peak
heights and separations between these peaks.

In an NMR spectrum, a metabolite can be identified by its characteristic multiplet(s). The
concentration of a metabolite in a mixture is proportional to the intensity of the peaks
belonging to the metabolite. The area under a peak indicates the relative concentration
of the associated metabolite.

5.2 Pre-processing

Goodacre et al. (2007) differentiate between pre-processing and pre-treatment:
Pre-processing is a “Generic term for methods to go from raw instrumental data to clean
data for data analysis”.
Pre-treatment is “Transforming the clean data to make them ready for data analysis”.

The clean data are also described as the initial data matrix, X, with each row (i) containing
one sample and each column (j) containing one feature (variable or chemical shift region).

Pre-processing includes (Goodacre et al., 2007):
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• Deconvolution Resolving overlapping peaks in a spectrum;

• Peak-picking Selection of peaks to produce a table with ppm and corresponding
intensities;

• Target analysis Peaks at specific chemical shift values are integrated and used in
a peak table;

• Alignment Synchronisation of spectra (globally or in local regions) such that each
metabolite signal has the same chemical shift in each sample;

• Apodization function and weighting factors Function and parameters used
to multiply free induction decays (FIDs) before Fourier transformation to NMR
spectra;

• Phasing To phase-correct peaks in Fourier transformed NMR spectra, manually or
automatically by NMR software;

• Baseline Correction To address baseline tilts and drifts in Fourier transformed
NMR spectra, automatically or semi-automatically; and

• Bucketing (or Binning) To define chemical shift bin sizes and integrate the bin
intensities.

Pre-treatment includes (Goodacre et al., 2007):

• Normalisation Performed within or across rows (samples) to make the row profiles
comparable in size;

• Centring Performed across the rows (samples) to translate the centre of gravity of
the dataset;

• Scaling Performed within a column (variable) to make the column profiles more
comparable; and

• Transformation Performed to linearise or otherwise change the scale of the data
(total matrix), e.g., to remove heteroscedastic noise.

In the literature, the term ‘pre-processing’ (or sometimes ‘pre-treatment’) is often used to
include what Goodacre et al. (2007) describes as ‘pre-processing’, as well as Alignment,
Baseline-correction and/or Binning (Liland, 2011; Van den Berg et al., 2006; Bloemberg
et al., 2013). In applied statistics and chemometrics, ‘pre-processing’ is generally used to
describe all adjustments to the data, up to the start of analysis (Liland, 2011). We will
refer to the spectra, obtained from the NMR instrument and already pre-processed to a
certain degree (e.g. apodization and phasing), typically with instrument specific software,
as ‘raw data’. This part of pre-processing falls outside the scope of this overview. We will
refer to what Goodacre et al. (2007) call ’pre-treatment’, as well as alignment and baseline
correction methods, using the term ‘pre-processing’.
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Pre-processing of chemometric data requires substantial background knowledge, relating
to the measurement platform, the biofluid being analysed, experimental conditions and
biochemistry. For this reason, we provide an introduction and overview of the steps in the
pre-processing of NMR data, from a chemometric point of view. To the statistician, this
provides an understanding of the relevant issues in spectral data. Spectral pre-processing
is a wide and expanding topic. We do not claim that this is a complete overview.

It should be noted that, although we focus on the pre-processing and analysis of NMR data,
most of the aspects are relevant to other spectral and chromotographic data, e.g. mass
spectrometry and infrared. We restrict the overview to what is called ‘one-dimensional’
(1-D) data in chemometrics, which is technically two-dimensional data, i.e. chemical shift
(δ in ppm units) on the horizontal axis vs. relative intensity values on the vertical axis.

The typical steps in chemometric data pre-processing, in no specific order, are:

• Baseline correction;

• Alignment;

• Normalisation;

• Scaling and transformation; and

• Removing of spectral regions.

There is no consensus in the literature regarding the order of pre-processing steps. Engel
et al. (2013) recently pointed out that the choice of pre-processing methods can strongly
influence the results of subsequent data analysis. The problems related to certain pre-
processing steps are more serious than others: alignment emerges as a crucial step, since
peaks from the same chemical compound/metabolite should line up across spectra Wehrens
(2011). Misalignment can result in inaccurate or even wrong results. Independent from
chemometrics, the topic of alignment also emerged as a critical step and current topic in
Functional Data Analysis (See Section 3.2).

Pre-processing of chemometric data is time intensive, often an iterative process, requires
visual inspection of results, and is dependent on a number of subjective choices. In many
ways, pre-processing is more an art than a science. Nevertheless, it is a critical process
and no analysis can fix bad pre-processing. (Wehrens, 2011)

In the following sections we provide an overview of some of the steps in chemometric pre-
processing. This review is not exhaustive, but is intended to give statisticians an idea of
the broad range of methods used for pre-processing data in chemometrics.

5.3 Baseline correction

The baseline of a spectrum is supposed to be a horizontal line located at zero, i.e. no signal.
This is rarely the case, with a baseline typically displaying some linear trend, curved shape
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(especially towards the ends of the spectra) or other nonlinear effects. There is usually no
pattern in how the baseline varies from spectrum to spectrum. (Liland et al., 2010)

Baseline correction (identification and removal) is often an automatic procedure performed
on the NMR instrument. In addition, software can be used to remove any baseline struc-
ture remaining in the spectra. A baseline is undesired, since it influences the intensity of
metabolites and thus the analysis. (Smolinska et al., 2012)

There are many methods for baseline correction, including, among others:

• B-splines and P-splines (B-splines with Penalisation) (Eilers and Marx, 1996);

• Locally weighted scatterplot smoothing (LOWESS) (Xi and Rocke, 2008); and

• Mixture models for baseline estimation (De Rooi and Eilers, 2012).

Evaluation of the fit of a baseline is typically done on a selected number of spectra and by
visual inspection only. This is a very subjective way to choose an algorithm and parameters,
and is not sufficiently systematic for statistical analysis. (Liland et al., 2010)

Liland et al. (2010) used the root mean squared error of cross-validation as a quality
measure with multivariate regression to find optimal baseline algorithms and correspond-
ing parameter values. This was applied to baseline-corrected and normalised data from
two spectral data sets. The following algorithms were included in the search for optimal
methods and parameter settings:

• Local medians (Friedrichs, 1995);

• Rolling ball (Kneen and Annegarn, 1996);

• Robust baseline estimation (closely related to LOWESS) (Ruckstuhl et al., 2001);

• Simultaneous peak detection and baseline correction (Coombes et al., 2003);

• Asymmetric Least Squares (Eilers, 2003) (regression using penalised least squares);

• Wavelets (Coombes et al., 2005); and

• Iterative polynomial-fitting (Gan et al., 2006; Lieber and Mahadevan-Jansen, 2003).

Instead of using a favourite baseline correction method with traditional parameter settings
that provides a visually appealing result, the choice of algorithm and parameters should be
optimised for each data set. In this way, simpler and more stable models can be obtained.
Over-fitting is always a concern. No overall best algorithm was found, and the results were
data-set dependent. The best baseline correction methods for one data set, turned out to
be the worst for another data set. (Liland et al., 2010)

Komsta (2011) introduced two new automatic baseline methods for chromatographic sig-
nals, based on quantile regression (Koenker and Park, 1996):
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• quantile polynomial regression; and

• quantile B-spline smoothing.

The methods are equally applicable to NMR spectra. The main advantage is fully au-
tomatic processing of spectra, without parameter setting. The two new quantile methods
were compared with existing methods (each with a thresholding and reweighting approach)
based on (Komsta, 2011):

• polynomial fitting (Gan et al., 2006);

• spline fitting (Eilers and Marx, 1996);

• LOWESS (Ruckstuhl et al., 2001); and

• Whittaker smoother (penalised regression) (Eilers and Boelens, 2005).

Komsta (2011) also introduced a new method to select curve flexibility in existing algo-
rithms. It is based on the skewness of the residuals. The newly introduced quantile methods
performed better than existing methods and required shorter computational time. The ex-
isting algorithms were comparable, but polynomial regression had shorter computational
time than other existing methods. (Komsta, 2011)

5.4 Removal of specific spectral regions

In human metabolomics, the spectral regions smaller than 0.2 ppm and larger than 10.0
ppm are usually cut off, since they do not contain metabolites produced by the host
organism (human). In biofluids, like urine and plasma, the water signal dominates the
area from approximately 5.0 to 4.7 ppm, even when water suppression techniques are
used. This water region is typically removed from the spectrum. Second to water, urea is
the most abundant metabolite in urine. Water suppression as well as pH influences the
urea signal. (Smolinska et al., 2012)

In urine, the spectral region from around 6.2 to 4.4 ppm, containing the water (∼ 4.8 ppm)
and urea (∼ 5.8 ppm) signals, is frequently excluded.

5.5 Normalisation, Scaling and Transformation

Methods applicable to NMR spectra can be grouped (Zhang et al., 2009) into methods
that

(i) remove unwanted sample-to-sample variation (normalisation)
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(ii) adjust the variance of the different metabolites (scaling), including variance stabili-
sation methods and variable scaling methods.

Some methods, like Variance Stabilisation Normalisation (VSN, see section 5.5.2) combines
normalisation (i) with variance stabilisation (ii). (Kohl et al., 2012)

In the rest of this chapter, let xij represent the intensity value for the ith spectrum at
position j on the chemical shift axis, where i = 1. . .N and j = 1. . .n. Then, at each
position i on the chemical shift axis, the estimated mean and standard deviation (across

spectra) are respectively x̄j = 1
N

∑N
i=1 xij and sj =

√∑N
i=1(xij−x̄j)2

N−1 . Let yij represent the
data xij after the relevant normalisation, scaling or transformation method was applied.

5.5.1 Normalisation

Normalisation methods aim to remove unwanted sample–to–sample variation (Kohl et al.,
2012). This includes correction for the overall concentrations of samples, which influences
metabolite dilution (Smolinska et al., 2012).

Samples can display greatly varying concentrations of metabolites from subject to subject.
A large part of these subject-to-subject variations are similar across the spectrum for each
subject. Thus, all metabolites can be scaled based on some common measure, in order to
obtain comparable samples, regardless of variations in concentration in the raw spectra.
(Liland, 2011)

Normalisation is classically a multiplication of each NMR spectrum by a constant (Craig
et al., 2006). The use of integral normalisation is quite common, but there are many other
methods to calculate the normalisation constant for each spectrum (Smolinska et al., 2012).

These include the basic methods (Liland, 2011):

• mean;

• median;

• total standard deviation;

• length of the spectrum vector; and

• total area under the curve, also called total of sum normalisation, integral normali-
sation (Smolinska et al., 2012) or constant sum normalisation (Craig et al., 2006).

as well as some more refined methods (Smolinska et al., 2012):

• creatinine normalisation, i.e. normalisation using the area under the creatinine peak
as reference (for NMR spectra of urine) (Holmes et al., 1994);

• probabilistic quotient normalisation (PQN) (Dieterle et al., 2006);
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• histogram matching normalisation (Torgrip et al., 2008); and

• group aggregating normalisation (GAN) (Dong et al., 2011).

Kohl et al. (2012) compared a number of normalisation methods to Probabilistic Quotient
Normalisation (Dieterle et al., 2006) on NMR-based metabolomics data. Probabilistic quo-
tient normalisation (PQN) proceeds as follows (Kohl et al., 2012):

1. integral normalisation of every spectrum

2. calculate a reference spectrum (the best is a median spectrum of control samples)

3. for each variable, calculate the quotient of a given test spectrum and the reference
spectrum

4. calculate the median of all quotients

5. divide all variables of the test spectrum by the median quotient.

The following methods were compared to PQN:

• Cyclic Loess Normalisation (Cleveland and Devlin, 1988; Dudoit et al., 2002);

• Contrast Normalisation (Åstrand, 2003);

• Quantile Normalisation (Bolstad et al., 2003) ;

• Linear Baseline Normalisation (Bolstad et al., 2003);

• Li-Wong Normalisation (Li and Wong, 2001);

• Cubic-Spline Normalisation (Workman et al., 2002); and

• Variance Stabilisation Normalisation (VSN) (Huber et al., 2002).

The reader is referred to Kohl et al. (2012) for an overview of these methods and the
relevant equations in their Supplemental Table S1.

Choice of normalisation methods

With regard to the basic normalisation methods Liland (2011) mentioned that the median
is more robust than the mean, especially when sample–to–sample variation in the number
of peaks is large. Given p variables, the total area under the curve is simply p times the
mean. (Liland, 2011)

Quantification of metabolites in different samples may be more accurate when a standard
is used for normalisation, implying that normalisation is not affected by the amount of
peaks or other interfering effects. A stable standard that can be added to a sample for
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NMR is trimethylsilyl propionate (TSP) or tetramethylsilane (TMS). Another chemical
compound of known concentration (i.e. peak height) can also be used. If the absolute
concentration in each sample is of relevance, normalising towards a standard can be a
good choice. (Liland, 2011)

According to Zhang et al. (2010) total area under the curve normalisation and creatinine
normalisation are widely used. In spectra from very disturbed systems (such as diabetes)
or spectra with high concentration metabolites (e.g. glucose in blood), total area under
the curve and creatinine normalisation display quantitative inaccuracy and these meth-
ods have been questioned (Zhang et al., 2009). Probabilistic quotient normalisation and
histogram matching normalisation display advantages compared to total area under the
curve normalisation and creatinine normalisation (Zhang et al., 2010).

The integral normalisation and vector length normalisation methods have constraints such
as a total integral or a total vector length, respectively. If these constraints are not valid,
the methods fail. The probabilistic quotient normalisation method has no such constraints.
In a real-world metabonomic data set, the PQN outperformed the integral and vector
normalisation methods by far, and compensated well for different urine dilutions. Both
integral normalization and vector length normalisation, in particular, are hampered by
extreme amounts of sample metabolites, such as glucose. The PQN is more robust than
integral normalisation, but also more exact for control subjects with only low metabolic
variations. The PQN is the better pre-processing method for all possible scenarios of NMR
spectra from metabonomic studies, and benefits subsequent multivariate data analyses and
quantifications of metabolites. (Dieterle et al., 2006)

PQN supposes that biologically interesting concentration changes affects the NMR spec-
trum only in certain parts, while dilution effects will influence all metabolite signals. Vari-
ations in fluid intake, for example, result in dilution of urine spectra (Kohl et al., 2012).
Integral normalisation presupposes that the total integral, which covers all signals, is a
function of dilution only. In contrast, the PQN assumes that the intensity of a majority
of signals is a function of dilution only. (Dieterle et al., 2006)

Kohl et al. (2012) evaluated the performance of a number of normalisation methods on
NMR-based metabolomics data:

Overall between-sample normalisation performance was best for PQN, with Quantile,
Cyclic Loess, VSN, and Cubic Spline normalisation methods all performing very well
compared to the only creatinine-normalised data. This performance evaluation was in one
NMR urine dataset, with kidney disease patients and healthy volunteers. TSP referencing,
equidistant binning and normalisation to creatinine were applied. Between-sample nor-
malisation should, however, be balanced with reduction of the real biological signal in the
data.

Next, Kohl et al. (2012) evaluated the performance with regards to identification of dif-
ferentially produced metabolites and the estimation of fold changes in a ‘spiked in’ data
set. TSP referencing, and equidistant binning was applied, but no creatine normalisation
was required, since all samples came from the same matrix of pooled urine samples.
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For the non-normalised data, Kohl et al. (2012) found that good separation was achieved
between spiked and non-spiked data points. The same results were found for the PQN and
the Linear Baseline methods. For the Cyclic Loess, Quantile, Cubic Spline, Contrast and
VSN methods, there was somewhat less, but still good separation between spike-in and
non-spiked data points. (Kohl et al., 2012)

With regard to intensity-dependent bias, Quantile and Cubic Spline performed well, with
Cyclic Loess, PQN and VSN evening out most, but not all, of the bias.

For correcting dynamic range (ratio of the largest to the smallest detectable peaks in a
spectrum), Quantile and VSN methods performed the best with Cubic Spline and PQN
still doing better than creatine-only normalised data as well as spiked-in data.

Concerning standard deviation relative to dynamic spectrum, the standard deviation de-
creases with feature intensity, is relatively low, and also performs similar or better than the
creatinine– or non-normalised data for PQN, Cyclic Loess, Quantile, Linear baseline and
Cubic Spline. The VSN improves by keeping the standard deviation relatively constant
over the feature intensity range.

In terms of classification performance (by a support vector machine with nested cross vali-
dation) on the creatinine–normalised data, normalisation methods are strongly dependent
on sample size in the training set. Although the authors claim that Quantile normalisation
had the best classification for data sets with over 50 samples and Cubic Splines for smaller
data sets, the results were obtained from one data set (ADPKD) and need to be verified
on more data sets.

Furthermore, their recommendations are based on the average AUC values for classifica-
tion, but fail to take into account the confidence intervals around these estimates. When
this is taken into account, Quantile, Cubic Spline, VSN and PQN performs similarly from
n = 20 to n = 60, with Quantile and Cubic Spline occasionally having larger CIs, and VSN
smaller CIs, than other methods. Creatinine also performs similar at n = 40 and n = 60,
but worse at n = 20. At n = 80, VSN, Quantile and Cubic spline perform equally well
and at n = 100, Quantile slightly outperforms VSN and Cubic spline. These results can be
interpreted broadly to say VSN is the most consistent over all samples sizes investigated
here; that PQN performs comparable up to n = 60; from n = 80 Quantile performs the
best, with cubic spline still doing better than VSN. Still, these results should be verified
on data sets from different studies and classification groups (e.g. diseases or treatments).

The authors concluded that inappropriate normalisation methods could considerably dam-
age the data. Although they concluded that widely used normalisation methods were out-
performed by Quantile Normalisation (especially for n ≤ 50 samples), and Cubic Spline
Normalisation as an alternative (Kohl et al., 2012), their results should be interpreted with
caution. We interpret their results to indicate that VSN is not only a reasonable choice,
but may be the preferred method, together with PQN.

In the end, the choice of normalisation method will depend on the application and the
known variations between samples (Liland, 2011).
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5.5.2 Scaling

Intensity of metabolites can range over orders of magnitude. Furthermore, metabolites
with high intensity will often have high variation and thus the greatest effect on the
analysis. Scaling is done to prevent selection of the metabolites with the largest intensity
as significant. (Smolinska et al., 2012)

Scaling methods are aimed at adjusting the variance of the different metabolites. These
include variable scaling and variance stabilisation approaches. (Kohl et al., 2012)

Transformation methods can be included under scaling, but we discuss them in section
5.5.3. Mean-centring is not technically a scaling method, but is described in this section,
since it is a pre-processing step applied per variable across samples. We list the different
scaling methods according to category, before discussing each method in more detail.

1. Variable scaling methods divide each variable by a scaling factor determined individ-
ually for each variable. Variable scaling can be divided into two subclasses (Van den
Berg et al., 2006), namely methods that use

A measure of data dispersion as a scaling factor

• Auto scaling;

• Pareto scaling (Wold, 1995);

• Vast scaling (Keun et al., 2003); and

• Range scaling (Smilde et al., 2005).

A size measure as a scaling factor

• Level scaling.

2. Variance stabilisation methods which reduce heteroscedasticity

• Variance Stabilisation Normalisation (Huber et al., 2002; Parsons et al., 2007).

Auto scaling

yij =
xij − x̄j
sj

Auto scaling is also called unit variance (uv) scaling and the standard deviation of the
data is used as a scaling factor. In short, the data are first mean-centred across spectra
(i.e. by feature), then divided by the standard deviation of each feature. After Auto scaling
all features in the data set are considered equally important, but the effect of noise will
be increased. (Kohl et al., 2012)

By Auto scaling unit variance is attained, therefore data are then analysed based on the
correlations instead of covariances (Smolinska et al., 2012). Between-sample variation,
caused by different dilution of samples, is not removed by Auto scaling. In urine samples,
dilution can be due to differences in fluid intake. (Kohl et al., 2012)
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Wehrens (2011) recommended that Auto scaling not be used for spectral data, since the
noise is enlarged to similar importance than the section of the spectra that include the
important information.

Pareto scaling

yij =
xij − x̄j√

sj

Pareto scaling is similar to Auto scaling, but uses the square root of the standard deviation
as a scaling factor, instead of the standard deviation (Wold, 1995).

The scaling effect of Pareto scaling is not as strong as for Auto scaling, i.e. after Pareto
scaling the data remain closer in value to the original data. Pareto scaling is less likely
to inflate noisy background data and to diminish the importance of large fold changes
compared to small ones. Huge fold changes may, nevertheless, still display a dominating
effect. (Kohl et al., 2012)

Pareto scaling is popular in biomarker identification. Specifically in metabolomics, the aim
is to identify metabolites that behave differently in two populations, and the interest is
focused on high-intensity variables. (Wehrens, 2011)

Vast scaling

yij =
(xij − x̄j)

sj
× x̄j
sj

Vast scaling is an extension of Auto scaling (Keun et al., 2003). Vast is an acronym
for variance stability scaling (Van den Berg et al., 2006). The method concentrates on
metabolites with small variations, i.e. metabolites that are stable. (Smolinska et al., 2012)

Range scaling

yij =
xij − x̄j

(max(xj)−min(xj))

In Range scaling, the range of each metabolite is used as the scaling factor (Smilde et al.,
2005). Range scaling is sensitive to outliers (Smolinska et al., 2012). For spectral data, the
natural lower bound is zero and in this way Range scaling only considers the maximum
(Wehrens, 2011).

Level scaling

yij =
xij − x̄j
x̄j

The mean is used as scaling factor in Level scaling. Level scaling is relevant when large
relative changes are of interest. (Smolinska et al., 2012)
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Variance Stabilisation Normalisation

Variance Stabilisation Normalisation (VSN) is a set of non-linear transformations that
aim to keep the variance constant over the entire data range (Huber et al., 2002; Parsons
et al., 2007). VSN addresses the problem of non-constant coefficient of variation by using
the inverse hyperbolic sine. The data are returned on a generalised logarithm (glog) scale
to base 2. For large values, this transformation approaches the logarithm, thus remov-
ing heteroscedasticity. For small values, it approaches the linear transformation, and the
variance remains unchanged. (Kohl et al., 2012)

Mean-centring

As mentioned previously, mean-centring is not technically a scaling method. It can be
applied as a pre-processing step or as part of statistical analysis (Liland, 2011).

yij = xij − x̄j
Mean-centring is applied per variable across samples (Liland, 2011). It converts all values
to vary around zero instead of around the mean, thus regulating for differences between
high-intensity and low-intensity chemical compounds (metabolites). Mean-centring does
not remove heteroscedasticity. The method is often used in combination with other scaling
methods. (Smolinska et al., 2012)

5.5.3 Transformation

Apart from scaling methods, transformation methods can be utilised as a step in pre-
processing. When metabolite concentrations vary in orders of magnitude, it is wise to do a
transformation in order to avoid the statistical analysis emphasising only metabolites with
larger concentrations. The disadvantage of transforming spectra is the potential increase
in the noise. (Liland, 2011)

Log transformation

yij = log10 (xij)

Large dominant features in the data can get in the way of analysis or pre-processing, e.g. in
alignment (Wehrens, 2011). In logarithmic (log) transformation, large dominant features
(peaks) in the data are reduced relatively more than smaller features (Smolinska et al.,
2012) and noise is made more constant over the whole range (Wehrens, 2011). In this way,
the log transform removes heteroscedasticy from data, provided that the relative standard
deviation is constant (Smolinska et al., 2012). Note that yij does not exist for xij ≤ 0.

When noise is multiplicative rather than additive, i.e. the level of variation depends on
the signal strength, log-transformation of the data is appropriate. (Wehrens, 2011)



64 Chapter 5. NMR data and pre-processing

Square root transformation

yij =
√
xij

The square root transformation is typically used for spectral data where the data can
be seen as generated from a Poisson process, e.g. ion count, in time-of-flight (TOF) mass
spectrometry (MS) (Liland, 2011). The square root transformation is sometimes referred to
as the power transformation (Van den Berg et al., 2006), although power transformations
other than 1/2 are possible. These are described under Box-Cox transformations.

Box–Cox transformation

y
(λ)
ij =

{
xλij−1

λ if λ 6= 0,

log(xij) if λ = 0.

The Box–Cox transformation (Box and Cox, 1964) is a parametric power transformation
technique. It reduces the effect of non-normality and heteroscedasticity (Sakia, 1992) and
can be used for pre-processing (Smolinska et al., 2012).

Glog transform

The generalised logarithm (glog) transform (Durbin et al., 2002) is a variance stabilising
method and makes use of a transform parameter, λ. If x represents the untransformed
data, then y is the glog transformed data:

yij = ln(xij +
√
x2
ij + λ) (5.1)

Parsons et al. (2007) extended the glog to suppress noise. The extended glog transform is
given by

yij = ln((xij − x0) +
√

(xij − x0)2 + λ) (5.2)

where x0 shifts the glog function to suppress noise and x0 is dependent on the choice of λ.

The reader is referred to Parsons et al. (2007) for details on optimisation of λ and x0 in
the glog and extended glog transforms.

Choice of scaling/transformation methods

The scaling method used can have a huge influence on the result of an analysis (Wehrens,
2011). Van den Berg et al. (2006) compared Centring, Auto Scaling, Range Scaling, Pareto
Scaling, Vast Scaling, Level Scaling, Log Transformation and Power Transformation to GC-
MS based metabolomics data. They found that the selection of the scaling/transformation
method depended on (i) the biological question; (ii) the data set’s general properties;
and, (iii) the statistical methodology following the pre-processing. Principal Component
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Analysis (PCA) was used to evaluate the effect of scaling/transformation methods on
data analysis and PCA score plots were judged visually based on distance within as well
as between clusters belonging to different groups. On one of the data sets Range Scaling
and Auto Scaling performed best: clear clustering was visible in PCA score plots and the
dependence of the rank of metabolites on the average concentration and the magnitude of
fold changes were removed. (Van den Berg et al., 2006)

Kohl et al. (2012) evaluated normalisation and scaling methods, for their application to
NMR-based metabolite fingerprinting, as mentioned in section 5.5.1. Concerning the scal-
ing methods (auto, Pareto and VSN), VSN outperformed auto and Pareto scaling. VSN
improved on other scaling/normalisation methods by keeping the standard deviation rela-
tively constant over the feature intensity range. VSN performed consistently well over all
sample sizes investigated (n=20 to 100). VSN also compared very well with normalisation
methods. Apart from performing very well on overall between-sample normalisation, VSN
attained good separation between spike-in and non-spiked data points, evened out most
of the intensity-dependent bias, and performed excellently for correcting dynamic range.

Parsons et al. (2007) compared the glog and extended glog transforms to Auto scaling,
Pareto scaling and unscaled NMR metabolomics data. For three NMR datasets glog and
extended glog transforms attained the best, or equal to the best, classification accuracy.
Classification accuracy was determined by PCA followed by linear discriminant analysis
(LDA) on the first two PCs. Sensitivity, specificity and cross-validation accuracy were cal-
culated. Furthermore, the glog transform was considerably better at discovering metabolic
biomarkers that can discriminate between sample classes. This was based on the top five
peaks in the corresponding PCA loadings plots. Note that spectra were grouped in 0.005
ppm bins, residual water and urea (where relevant) sections were removed and spectra
were normalised to a total spectral area of 1. (Parsons et al., 2007)

5.6 Alignment

The problem of misalignment is also referred to as peak shift. It originates when, for
different samples (spectra), the same molecule displays peaks at different chemical shift
positions (on the horizontal axis). A single sample displays in the order of hundreds to
thousands of peaks. When a data set contains many samples, it will be unclear which
peaks, from among the many possibilities, should be aligned between different spectra.
(Torgrip et al., 2010)

Considering statistical analysis, the minor peak shifts between different NMR spectra are
disturbing (Ebbels et al., 2011): it is assumed that, for a certain molecule, peak intensity is
contained in a unique column of the data; in the case of peak shifts, the relevant intensities
are not limited to a unique column; thus it is more likely to miss potential biomarkers
(interesting molecules); and given systematic peak shifts, it is possible to detect false
(positive) markers (Torgrip et al., 2010). In short, minor but important peak shifts can
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make it impossible to detect patterns that exist in the spectra (Smolinska et al., 2012) and
for this reason peak alignment is critical.

Similar to NMR data, many other types of analytical chemistry data are subject to minor
misalignments (Wehrens, 2011) and, as such, the peak shift problem is platform indepen-
dent (Torgrip et al., 2010). However, NMR data are more complex in the sense that peak
shifts are not at all uniform over the chemical shift axis: many peaks can stay at their
initial positions, a number of peaks can shift with varying distances, and, to complicate
matters, in different directions (on the chemical shift axis) (Wehrens, 2011).

In alignment of peaks between two different spectra, the match will, for many peaks, be
quite obvious. For some peaks, however, there will be more than one peak in the other
spectrum with which they can be aligned and it will be unclear which is correct. There
are essentially three instances of ambiguous peak alignment (Torgrip et al., 2010):

1. A single peak from spectrum A match either of two peaks in spectrum B

2. Two peaks in spectrum A match two peaks in spectrum B, but with minor or no
shifting the last peak in A matches the first peak in B

3. Peaks alter their order between samples A and B.

Most alignment methods only consider the first two cases of ambiguous peak alignment.

In chemometrics the aim of alignment is to obtain individual profiles (spectra) that look
alike as far as possible, though the area and shape of peaks should preferably not be
changed. Thus, alterations should best be done in the spectra’s baseline. This is only
possible if the spectra are reasonably similar (Skov et al., 2006). Moreover, and often not
explicitly stated, peaks from the same molecule should be aligned (Torgrip et al., 2010).

In terms of terminology, the process of alignment is also called warping or occasionally
(Torgrip et al., 2010) synchronisation. Misalignment is also referred to as peak shift, posi-
tional uncertainty or sometimes (Torgrip et al., 2010) unsynchronised data. Torgrip et al.
(2010) described the alignment of chemical analytes within the context of a general prob-
lem formulation, known as the ‘inter-sample correspondence problem’.

5.6.1 Reasons for peak shift (misalignment)

There can be a number of reasons for peak shifts in NMR (Torgrip et al., 2010):

(a) instrumental drift

(b) physio-chemistry of the sample

(c) random variation

(d) post-processing artifacts.
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Instrumental drift

For any instrumental technique, e.g. NMR or MS, a component of instrumental drift is
ubiquitous in the data. The amount of drift relative to the duration of the experiment’s
measurement time will determine if the instrumental drift is seen as random or system-
atic. Misalignment due to instrumental drift should usually be reasonably small. If not,
experimental protocol should be revised. (Torgrip et al., 2010)

Physicochemical properties of the sample

In NMR data, the peak shifts (misalignment) along horizontal axis (chemical shift) are due
to either the sample’s physio-chemical properties or changes in these properties: (Torgrip
et al., 2010; Smolinska et al., 2012; Fan and Lane, 2008):

• Overall dilution;

• Changes in temperature;

• Changes in pH;

• Changes in salt concentration; and/or

• Relative concentration of specific ions.

It is standard procedure to add a buffer to reduce pH variations in the sample (Fan
and Lane, 2008) and to manage temperature throughout data acquisition. Even when
samples are buffered, this does not guarantee peak alignment. For example, citrate peaks
are sensitive to salt and pH and are well known for shifting in 1H NMR spectra, regardless
of buffering. To complicate matters, different metabolites are affected in very different
ways by changes in the physio-chemical properties of the sample. (Torgrip et al., 2010)

Pre-processing

Peaks can be misaligned due to pre-processing, e.g. NMR peaks can change in shape
after Gaussian line-broadening, i.e. free induction decays (FIDs) (convolution) for noise
repression and smoothing. (Torgrip et al., 2010)

Random shift

Random shift is the portion of peak misalignment that cannot be ascribed to a systematic
nature, e.g. instrumental drift or chemistry. Supposedly, the random shift is minor and
can be dealt with using almost any current alignment method. (Torgrip et al., 2010)
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5.6.2 Alignment methods

As a first step in alignment of NMR spectra, spectral referencing is used. An internal
reference (or internal standard), is added to each sample before chemical analysis. Typically
tetramethylsilane (TMS) or trimethylsilyl propionate (TSP) is used. Spectral referencing
fixes the internal reference signal, e.g. TSP, to 0 ppm. This is a global alignment method
that shifts the entire spectrum on the chemical shift axis. However, this method is not
sufficient to address local alignment issues and should be followed by another alignment
method. (Smolinska et al., 2012)

In a recent review of alignment methods for NMR spectra Vu and Laukens (2013) included
18 alignment methods, and discussed these according to methodological variations, i.e.:

• Alignment using extracted peaks (peak picking) vs. full spectra;

• Pairwise alignment to a reference spectrum vs. inter-sample methods with no refer-
ence spectrum (compare section 5.6.3);

• Alignment of entire spectra vs. spectral segments;

• Different ‘target functions’ for optimisation of alignment, e.g. Pearson correlation
coefficient, (squared) Euclidian distances, FFT cross-correlation for segment align-
ment or other method-specific ‘target functions’;

• Correction of misalignment via shifting and/or stretching/compression, or a model,
e.g. polynomial or Bayesian;

• Evaluation of quality of alignment (compare section 5.7); and

• Method complexity, including computational time and the number of user-defined
parameters (excluding parameters required for peak extraction

In a recent tutorial on warping methods for spectroscopic and chromatographic signal
alignment, Bloemberg et al. (2013) provided a critical introduction to what they consider
the most important warping methods. A number of methods were demonstrated on an
NMR example.

An in-depth description of these alignment methods falls outside the scope of this work
and the reader is referred to the abovementioned review and tutorial.

5.6.3 Selection of a Reference Spectrum

Fundamental to the alignment process is the challenge of selecting a suitable reference
spectrum to align to (Skov et al., 2006). The reference profile should preferably be repre-
sentative of all chemical compounds (metabolites) in the data and their associated intensity
peaks. (Veselkov et al., 2009) (Supporting Information)
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One solution is to select the mean spectrum over the data as the reference spectrum.
Another option is to select the first principal component loadings. Neither of these is
ideal, since they can have profoundly deformed peaks, negatively impacting on the success
of the alignment. (Veselkov et al., 2009) (Supporting Information)

In a study by Giskeodegard et al. (2010), a bad choice of reference had a larger influence
on the correlations between spectra, than the particular warping method used.

Similarity index

Skov et al. (2006) presented a similarity index to select a reference profile for chromato-
graphic data. It is equally relevant in spectroscopy.

This similarity index is the product of Pearson correlation coefficients (CCs) between a
test spectrum xT and all other spectra of interest xi:

similarity index =
N∏

i=1

|cc(xT ,xi)| (5.3)

where the correlation coefficient (cc) is given by (5.8) (Skov et al., 2006).

For each spectrum in the data set the similarity index will be less than or equal to one.
The spectrum with the largest similarity index is chosen as the most suitable reference
spectrum for the specific data set. This spectrum will be the most similar to all others.
(Skov et al., 2006)

The index does not give a good indication of the similarity among spectra, because the
correlation coefficient between spectra is disproportionally influenced by the difference in
peak heights, as well as by the covariance of the highest peaks. (Veselkov et al., 2009)
(Supporting Information) (also see section 5.7.1)

Closeness index

To address the problem of undue influence of a few large peaks on the similarity index (5.3),
Veselkov et al. (2009) (Supporting Information) scaled the local areas to an equal variance
prior to calculating the segment-wise correlation coefficient ccbin (5.7). They re-defined the
similarity index as the closeness index:

closeness index =

N∏

i=1

ccα(xT , xi) (5.4)

where cc is the correlation coefficient between the variance-scaled potential reference (or
target), xT , and the ith spectrum, xi.

The subscript α, for example α = 0.02 indicates that spectral segments down to step size
of 0.02 ppm are scaled to unit variance. The value of α should be chosen as equivalent to
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the size of an average peak. This will provide the same influence of small as well as large
peaks. The spectrum with the highest closeness index is selected as a reference. (Veselkov
et al., 2009)

A variety of reference spectra

Giskeodegard et al. (2010) recommended the use of various reference spectra for alignment.
Attempting a number of references is not a large effort, yet it will create awareness of the
results’ variability and will possibly give a result near the optimum (Giskeodegard et al.,
2010).

The authors used a selection of 10 different reference spectra (Giskeodegard et al., 2010):

• the spectrum with the highest average correlation with all other spectra (say, this
spectrum is from class 1). This choice appears to always give good results, but it is
not certain that it is the optimal result.

For data sets with two (or more) classes, alignment will possibly be influenced by the
class to which the reference belongs. Trying references from both classes may therefore be
advisable. Apart from the reference spectrum mentioned above, also:

• the (on average) second most highly correlated spectrum from class 1;

• two random spectra from class 1;

• the most highly correlated spectrum from class 2;

• the second most highly correlated spectrum from class 2; and

• two random spectra from class 2.

Using a ‘central’ spectrum as a reference is also an option:

• the overall mean spectrum; and

• the overall median spectrum.

For data sets with large misalignments, the mean or median spectrum may be a bad
reference spectrum since it can have wide peaks and will not look like any one of the
real spectra. Aligning the data with the mean or median spectrum and then recalculating
the mean or median as a reference spectrum, may solve the problem in an iterative way.
(Giskeodegard et al., 2010)

Veselkov et al. (2009) also recommended the use several reference profiles per data set.
When substantial metabolic changes occur due to a treatment, they advise a separate
reference spectrum per treatment group, with the two (or more) reference spectra aligned
before aligning other spectra to them. (Veselkov et al., 2009) (Supporting Information)



5.7. Evaluation of Alignment 71

Variable reference alignment

MacKinnon et al. (2012) proposed a variable reference alignment, as opposed to a single
reference alignment (see 5.6.3, 5.6.3 and 5.6.3).

Variable reference alignment generates spectral segments that share a common target
spectrum. The goal of this approach is to perform local alignment corrections on spectral
regions, which share a common ‘most similar’ spectrum. Spectral segments are automati-
cally defined in the process. (MacKinnon et al., 2012)

The segmentation and construction of a composite reference spectrum is done by identi-
fying spectral segments sharing a common reference spectrum, as calculated according to
(5.4) (with e.g. α = 0.02ppm). The segments are generated by incremental growth of a
test segment followed by calculation of the reference spectrum, repeated until a different
reference spectrum is identified. The segment boundaries are thus defined and incremental
growth of a new segment occurs in an identical fashion. Subsequently the segments are
individually subjected to an alignment algorithm (Section 5.6.2), with alignment taking
place toward the segment–specific reference spectrum. Finally, the fully aligned spectrum
is reassembled. (MacKinnon et al., 2012)

Parameters to be specified include the maximum inter-peak distance (e.g. 20 Hz) and the
maximum shift threshold (e.g. 25 Hz). Alignment of a segment is accepted subject to an
improvement in the alignment quality parameter (5.7.1 with α = 0.05ppm). As always,
the specific alignment algorithm and respective parameters should be chosen with caution,
and are reliant on the data set as well as the user’s requirements. (MacKinnon et al., 2012)

MacKinnon et al. (2012) used variable reference alignment with both the icoshift (Savo-
rani et al., 2010) and RSPA (Veselkov et al., 2009) alignment algorithms. For icoshift,
the automated selection of spectral segments with non-constant length resulted in bet-
ter alignment. For RSPA, the alignment toward a segment specific reference spectrum
provided improved alignment. Variable reference alignment showed improved quality of
alignment in 1H NMR data sets that exhibit large inter-sample compositional variation
(e.g. ionic strength, pH). (MacKinnon et al., 2012)

5.7 Evaluation of Alignment

In a review of NMR alignment methods Giskeodegard et al. (2010) included five different
measures to assess the results of alignment, namely: correlation, simplicity value, peak
factor, classification and visual inspection (See sections 5.7.1, 5.7.2, 5.7.3, 5.7.4 and 5.7.5
respectively). The simplicity value and peak factor were described in detail by Skov et al.
(2006). They combined these two measures to form the warping effect (section 5.7.3).

Over a large chemical shift interval, major peaks will be very influential on the variance and
consequently on the correlation. Minor peaks will not have much influence (section 5.7.1).
Additionally, correlation, as an evaluation criterion for alignment, only performs well after
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scaling. To overcome this problem of large peaks dominating the correlation, Veselkov
et al. (2009) developed the Alignment Quality measure (section 5.7.1).

Even more recently than the review by Giskeodegard, a similar set of criteria was used
by MacKinnon et al. (2012) to assess alignment, namely, the mean correlation coefficient
(section 5.7.1), the alignment quality parameter (section 5.7.1), the simplicity value (sec-
tion 5.7.2) and the peak factor (section 5.7.3). Additionally the authors also used scree plots
(section 5.7.2) and a pseudo-variable importance to projection (VIP) score (section 5.7.2)
from PCA. The pseudo VIP score is a qualitative measure of improved information recov-
ery (MacKinnon et al., 2012).

Zhang et al. (2012) assessed the alignment quality by correlation maps (section 5.7.5).
They also used the mean of the mean correlation coefficients (mcc) (section 5.7.1) between
the reference spectrum and the spectra to be aligned. Certain alignment methods change
peak shapes. Zhang et al. (2012) quantified changes in peak area and used the mean
relative change in area (mrca) (section 5.7.3) to evaluate the ability to maintain peak
shapes during alignment.

In addition to the Correlation coefficient and the Alignment Quality measure, Veselkov
et al. (2009) also utilised 1D-STOCSY covariance plots (section 5.7.5) to evaluate the
success of alignment relating to details of the molecular structures of complex biological
mixtures.

We have classified the evaluation criteria mentioned above according to the type of measure
used for evaluating the spectral alignment. Sections 5.7.1 to 5.7.5 below respectively cover
measures of correlation, explained variance, peak shape, classification and plots/maps for
visual assessment.

5.7.1 Measures of Correlation

Correlation

Following alignment, spectra should be more similar and thus have a greater correlation.
Calculation of the correlation between spectra, both before and after alignment, gives a
basic criterion for evaluation of spectral alignment. (Giskeodegard et al., 2010)

The correlation coefficient (cc) between two spectra, xi and xi′ is given by

cc(xi,xi′) =
Cov(xi,xi′)√
V ar(xi)V ar(xi′)

(5.5)

As mentioned in section 5.7 correlation requires similarity in spectra’s sample composi-
tion, small peaks are down weighed, and a few large peaks can dominate the correlation
coefficient (Veselkov et al., 2009).
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Mean correlation coefficients (mcc)

Zhang et al. (2012) utilised the mean of the mean correlation coefficients (MCC). This
measure is calculated between the reference spectrum and the spectra to be aligned:

mcc(xT ,X) =
1

N

N∑

i=1

( ∑n
j=1(xT j − x̄T )(xij − x̄i)√∑n

j=1(xT j − x̄T )2
√∑n

j=1 (xij − x̄i)
2

)
(5.6)

where xT is a vector of the target (or reference) signal and X is a matrix with elements
xij and each row of X is a vector xi of a spectrum to be aligned. (Zhang et al., 2012)

Veselkov et al. (2009) removed the difference in metabolite concentrations by variance-
scaling spectra, followed by the mean of correlation coefficients between spectra, to evaluate
quality of alignment (section 5.7.1).

Alignment quality measure (aqbin)

One or more high peaks can dominate the correlation coefficient (cc) (section 5.7.1). To
address this issue, Veselkov et al. (2009) divides the spectra into segments and scales each
segment by mean centring and adjusting to unit variance. They defined the correlation
coefficient, ccbin, on the abovementioned segments (called bins) :

ccbin(xi,xi′) =
Cov(xi,bin,xi′,bin)√
V ar(xi,bin)V ar(xi′,bin)

(5.7)

The ccbin reflects, on a specific segment, the similarity of peaks between any two spectra,
xi and xi′ .

cc(xi,xi′) =
Cov(xi,xi′)√
V ar(xi)V ar(xi′)

(5.8)

Veselkov et al. (2009) used bin sizes of δ = 0.02 or δ = 0.08 ppm. The smaller bin size
(0.02 ppm) was chosen to allow the equal influence of both minor and major peaks in the
alignment quality measure, and was selected as a multiple of the full width half maximum
of a typical peak. The larger bin size (0.08 ppm) is useful for assessing alignment of major
peaks, since the bin size is large enough to minimise the role of minor peaks.

Next, the authors calculated the mean of all pairwise ccbin values, i.e. the values below the
main diagonal of the correlation matrix:

aqbin =
2

N(N − 1)

N∑

i=1

i−1∑

i′=1

ccbin(xi,xi′) (5.9)

where xi and xi′ are the ith and i’ th spectra, respectively. Veselkov et al. (2009) used
aqbin to evaluate the peak alignment quality across all spectra. For a data set, the value
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of aqbin can range from zero (non-aligned) to one (completely aligned). (Veselkov et al.,
2009)

5.7.2 Measures of explained variance

Simplicity value

Skov et al. (2006) initially developed the simplicity value for chromatographic data, but
it has also been applied successfully to spectral data (Giskeodegard et al., 2010).

The simplicity value is connected, via singular value decomposition (SVD) to principal
component analysis (PCA) (Giskeodegard et al., 2010).

The original data X can be decomposed as:

X = USVT (5.10)

where S is a diagonal matrix containing the singular values equal to the square roots of
the eigenvalues of XTX. U and V are both orthogonal matrices, where the columns in U
are the eigenvectors of XXT and the columns of V the eigenvectors of XTX. (Skov et al.,
2006)

In SVD of a matrix, the sum of squared singular values is equal to the total sum of squares
of all the original data entries in the uncentred data matrix, X (Skov et al., 2006).

The sum of the first R squared singular values (scaled to a total sum of squares of one) is
a measure of how much of the variation is explained by the corresponding R components:

Explained variance =
R∑

r=1

(
SVD

(
X√∑
i

∑
j x

2
ij

))2

(5.11)

where SVD(M) denotes the singular value for a given component r. The above expression
is by definition equal to one if all singular values are retained, and, as such, this sum
cannot be used to evaluate pre-processing and the effect of alignment.

The simplicity value (0 ≤ simplicity ≤ 1) of a matrix is defined as the sum of all singular
values of the matrix–scaled to a total sum of squares of one–taken to the fourth power:

Simplicity =
R∑

r=1

(
SVD

(
X√∑
i

∑
j x

2
ij

))4

(5.12)

Aligned spectra will have more variance explained by the first components, and thus the
simplicity value will be higher. In general the simplicity value will be smaller if the spectra
are not well aligned. For perfectly alignment spectra, the simplicity value will be close to,
but not necessarily equal to, one. (Skov et al., 2006)
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Principal Component loadings

Veselkov et al. (2009) evaluated alignment of spectral data by the increase of explained
variance by principal components (PCs), after alignment.

In unscaled data, the largest peaks contribute more to overall variance (section 5.7), and
this poses the same challenge as for the cc analysis (section 5.7.1). Principal component
analysis (PCA) on unscaled data is skewed towards the variation of the highest peaks.
To solve this problem, each variable is scaled to unit variance. In PCA of either scaled
or unscaled data, increase in explained variance should reflect the variation in chemical
composition, but not variation in variable peak positions – and should be investigated.
(Veselkov et al., 2009)

If PC scores explain the variation in chemical composition, the line shapes of PC loadings
will resemble NMR spectral peaks. However, if PC scores explain variation caused by
distortions in phase, variable peak position and peak line shape, the line shapes of PC
loadings will be distorted. For unit-variance scaled models, unlike unscaled models, the line
shapes of loadings are not interpretable and no direct identification of peaks is possible.
However, for unit-variance (uv) scaled models, a loading value can be transformed by
multiplying it by the standard deviation of an original spectral variable for interpretation
of the main source of the variance contribution into PC scores, similar to the unscaled
case. The transformed uv–loadings can be plotted using a colour code corresponding to
the weight value obtained from a unit–variance PC. (Veselkov et al., 2009)

VIP scores from Principal Components Analysis

MacKinnon et al. (2012) utilised a pseudo-variable importance to projection (VIP) score
after they did PCA on the unaligned and aligned data sets. For the PCA they mean-centred
the data.

The pseudo-VIP score provides a measure of the quality of improved information recovery.
The only change from the standard VIP score is, for the pseudo-VIP score, an unsupervised
multivariate method (i.e., PCA) was used, as opposed to a supervised multivariate analysis
technique (e.g., PLS). (MacKinnon et al., 2012)

The sum of the weighted latent variable loadings is, in essence, the VIP score. Each loading
is weighted by the fraction of variation described by the latent variable. The average VIP
over all variables is 1. Therefore, instead of the average, the total number of variables with
a pseudo-VIP score greater than 1 (i.e., regarded as significant), was calculated for the
unaligned and the aligned PCA models, respectively. (MacKinnon et al., 2012)

5.7.3 Measures of Peak shape

Certain alignment methods can alter the shape of peaks. To investigate an alignment
method’s ability to preserve the shape of peaks, the differences in peak shape before and
after alignment can be quantified. (Zhang et al., 2012)
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Peak factor

Giskeodegard et al. (2010) used the peak factor to evaluate alignment or NMR spectra.
The peak factor was originally described by Skov et al. (2006) for chromatograms. A peak
factor of 1, implies there is no change in peak shape (Giskeodegard et al., 2010).

Skov et al. (2006) quantified the change in peak shape and named it peak factor. The
peak factor can range from 0 to 1 and indicates how much the collection of samples has
changed.

Peak factor =

∑N
i=1(1−min(ci, 1)2)

N
(5.13)

where

ci =

∣∣∣∣∣
‖yi‖ − ‖xi‖
‖xi‖

∣∣∣∣∣ (5.14)

and

‖xi‖ =

√√√√
n∑

j=1

x2
ij (5.15)

is the norm (Euclidian length) for xi; xi and yi is the same spectrum, respectively before
and after alignment. If the norm stays the same in (5.14), the relative change is 0, and the
total contribution for that sample is 1 in Equation (5.13). If there is little change in the
spectrum after alignment, ci (5.14) will be between 0 and 1, and the total contribution for
the sample will be smaller than 1 in (5.13). When the aligned spectrum is very distorted,
ci will be larger, and the sample’s total contribution (in (5.13)) will be 0. Higher peaks will
have relatively more influence on the peak factor, because of the use of the norm. (Skov
et al., 2006)

Peak factor values can be plotted with their simplicity values for the data. High simplicity
values, but with ‘low’ peak factor values, does not indicate good alignment. (Skov et al.,
2006)

Mean relative change in area (MRCA)

Zhang et al. (2012) adopted the mean relative change in area to evaluate the changes in
area during alignment.

They defined the mean relative change in area (MRCA) as

mrca =
1

N

N∑

i=1

(
|∑n

j=1 yij −
∑n

j=1 xij |∑n
j=1 xij

)
(5.16)

where xij are elements of N row vectors xi with j elements each. Each vector, or spectrum,
xi need to be aligned. The yij are elements of N row vectors yi after alignment.
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Considering both the mean correlation coefficient (mcc, section 5.7.1) and the MRCA of
two alignment methods: if the MCC for the second method is larger than for the first
method, but the MRCA for the first method is low, the reliability of the large MCC for
the second method, obtained at the cost of peak shapes (large MRCA), is questionable.
(Zhang et al., 2012)

Zhang et al. (2012) compared alignment methods with regard to: alignment quality (sec-
tion 5.7.1), changes in the shapes of peaks (MCRA), speed of the method (time required
by calculations) and the best trade-off between speed and alignment quality.

The warping effect

The warping effect combines the simplicity measure (section 5.7.2) and the peak factor
value (section 5.7.3) and was introduced by Skov et al. (2006)

warping effect = simplicity + peak factor (5.17)

The warping effect can take on values from 0 to 2.

5.7.4 Measures of Classifiability

Classification

After alignment classification results should improve, especially for spectra influenced by
random shifts. On the other hand, different classes of spectra may contain information
based on biological differences and alignment may destroy this biological information.
(Giskeodegard et al., 2010)

Partial Least Squares-Discriminant Analysis (PLS-DA) uses latent variables (LVs) to max-
imise the covariance between the spectra and an outcome variable and aims to discriminate
between classes. In their review of alignment methods, Giskeodegard et al. (2010) applied
PLS-DA to assess the classifiability of aligned and unaligned spectra. They also utilised
the warping path or warping parameters as input to investigate possible shift information.
(Giskeodegard et al., 2010)

5.7.5 Visual inspection of plots and maps

Quantitative measures of alignment (sections 5.7.1, 5.7.2, 5.7.3) are helpful for comparing
specific characteristics of large data sets at a glance, but are not without limitations. The
human eye-brain combination still excels in tasks of pattern recognition. (Giskeodegard
et al., 2010)

Giskeodegard et al. (2010) used visual inspection of end results to assess alignment quality
and detect artefacts. They emphasised that this is ‘an absolute necessity’. Quantitative
measures can produce good results, regardless of artefacts. Nevertheless, visual inspection
on its own is open to personal opinion and not reliable. (Giskeodegard et al., 2010)
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Heat maps

Peak-position variation in raw data and subsequent alignment of peaks can be displayed
in heat maps of peak intensity (with ppm on the x-axis and sample number on the y-axis)
of all samples combined with their spectral plot (intensity by ppm) (Veselkov et al., 2009).

Correlation maps

The results from various alignment methods, applied to the same data set, can be pre-
sented with between-sample correlation maps where the colour of a block represents the
strength of the correlation (See section 5.7.1) between two spectra. The correlation maps
will indicate which methods can improve similarity between samples. The size of between-
sample correlation coefficients can be visually compared for different alignment methods.
A method that aligns peaks more accurately will display the colours associated with higher
correlation coefficients. (Zhang et al., 2012)

1D-STOCSY covariance plots

NMR spectroscopy in biofluids gives detailed information on molecular structures and
peaks in observed 1H NMR data are statistical correlated. These correlations can be pro-
duced by both biological relationships and intra-molecular connectivity of proton nuclei. In
general, the structural correlations are stronger than the biological correlations. (Cloarec
et al., 2005)

Statistical total correlation spectroscopy (STOCSY) analysis exploits this multicolinearity
to unveil structural correlations between certain peaks in a group of spectra. STOCSY
investigates the correlation matrix of a group of 1H NMR spectra

R =
1

N − 1
XX′ (5.18)

where N is the number of samples, X is a data matrix of 1H NMR spectra (columns
are intensity variables scaled to unit variance; rows are spectral observations) and R is a
matrix of pairwise correlations (cc) between intensity variables, but not between spectra.
It is typical to study correlations of one specific variable to all other intensity variables,
and this is called 1D-STOCSY. (Cloarec et al., 2005)

The influence of spectral misalignment on 1D–STOCSY can be displayed by plotting the
covariance between intensity variables, colour coded by their correlations. Line shapes of
covariance patterns should look like peaks in an NMR spectrum, but will be deformed by
misalignment. Identification of biological as well as structural correlations will be enhanced
by effective alignment. (Veselkov et al., 2009)



5.8. Conclusion 79

5.8 Conclusion

In Chapter 5 we provided an introductory overview to some of the most important steps
and issues involved in pre-processing of so called one-dimensional chemometric data. Statis-
ticians are often oblivious to these methods commonly used in chemometrics. We do not
claim that this is a complete overview of this complex topic. Although our focus is on
nuclear magnetic resonance data in metabolomics, most of the methods in Chapter 5 are
also applicable to other spectral and chemometric data and other applications.

The choice of pre-processing methods (section 5.2) and order of baseline correction (sec-
tion 5.3), normalisation (section 5.5.1), scaling (section 5.5.2), transformation (section 5.5.3)
and alignment (section 5.6) are, in general, subjective and dependent on the analyst. These
choices and the order in which these pre-processing methods are applied can individually
or combined have a strong influence on the results of subsequent data analysis Engel et al.
(2013). This is a serious concern regarding the art of chemometric pre-processing.
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6
Functional registration subject to

constraints

Registration of functional data refers to the process of transforming the time argument so
that features in the data are more aligned. The process is often carried out by estimating
a time-warping function for each curve and then applying these warping functions to
the smoothed curves prior to statistical analysis. The warping functions are typically
estimated by minimising the difference between the warped functions while controlling
the roughness of the warping function. The registration process, in essence, separates the
phase and amplitude variation. However, warping may destroy essential properties of the
observed data, i.e. internal data structure, possibly originating from physical constraints in
the system generating the data. This aspect of warping is often ignored, for example when
NMR spectral curves are continuously warped without preserving the shape of peaks.

Statistics of Time Warpings and Phase Variations are current topics in Functional Data
Analysis and were the focus of a workshop at the Mathematical Biosciences Institute
(MBI) in November 2012 in Columbus, Ohio. The juggling data referred to below were
provided as part of this MBI workshop. Results from the workshop, including our Paper
III, Tolver et al. (2014), have been accepted for publication as a Special Section in the
Electronic Journal of Statistics.

Figure 6.1: Diagram of a three-ball juggling cycle. The green diamond indicates the approximate
hand/finger position during three stages of a typical juggling cycle. Adapted from Steve (2014)

The juggling data are from an experiment where a juggler juggled three balls (Figure 6.1).
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The three-dimensional position of the tip of the juggler’s right index finger was recorded
200 times per second. The juggler performed ten juggling trials. Each trial lasted ten
seconds and contained 11 to 13 juggling cycles. A juggling cycle began with throwing a
ball and ended with catching another ball. (Ramsay and Silverman, 2002; Ramsay et al.,
2014)

Considerable pre-processing was done before we received the data. The data were lightly
smoothed to fill in missing values. Furthermore, the data were centred, rotated and trimmed
(Ramsay et al., 2014). Centring and rotation was done in the following way:

A coordinate system was defined by smoothing chest coordinates while preserving gentle
and slow changes in chest position and orientation. Large-scale upper body movements
were removed by averaging the three smoothed chest coordinates at each time point to
create a mean chest curve. This curve was subtracted from right index finger coordinates.
Next each coordinate was zero centred by subtracting the mean of the coordinate over the
entire trial (all position measurements from different body parts). The coordinates were
rotated (Figure 6.2) in such a way that coordinate 1 displays the greatest variation in the
horizontal plane and corresponds mainly to lateral movement across the body plane, with
zero at the body midline and from the viewer’s standpoint positive moment is to the left.
The second rotated coordinate reflected mostly forward-backward movement with forward
corresponding to positive values. The third coordinate, in the vertical direction, was left
unchanged. (Ramsay et al., 2014; Ramsay and Gribble, 1999)

In Paper III we considered the pre-processed data described above. We registered the
juggling trials to allow comparison among trials, and among cycles within trials. Our
approach is to estimate a warping function for each trial and then optimise the fit of the

Figure 6.2: Direction of the three Cartesian coordinates for the juggling data, as defined by Ramsay
et al. (2014). The point of origin is dependent on the data. Diagram adapted from Richfield (2014)
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warped trial to an idealised model. We suggest that the appropriate way to represent phase
variation in the juggling system, is to decompose it into two periodic components, where
one periodic component is of approximate constant length. In this way, we incorporate the
physical constraints of the biomechanic system, namely regular joint movement and fixed
length of a limb, into the registration process.

To create an ideal curve to warp to, we conceptualised an electromechanical juggling robot
as a basic mathematical model of human juggling. The model consists of a periodic joint
movement and a periodic position vector (from the joint to the ‘fingertip’). The position
vector has approximately constant length along the observed trajectory.

For each trial we followed the following procedure:
We used a well-known idea of warping cycles towards each other and then obtained a
periodic average of the warped cycles by projection onto a high-dimensional space of
periodic functions. The periodic average was then decomposed according to the idealised
model of juggling: a periodic joint movement and a periodic deviance (i.e. the position
vector) from the periodic average, subject to the deviance having approximately constant
length along the trajectory.

In more general terms, our approach consists of the following steps:

1. Define the class of idealised average juggling cycles for an imagined ‘juggling robot’

2. Define a class of warping functions

3. For each warping function, w, compute the average, fper, of the warped function
f(w(t)) over the juggling cycles, then compute a measure of the deviance between
fper and the best function from the idealised model of average juggling cycles

4. Estimate the warping function by minimising the deviance measure in step 3 over
the class of warping functions in step 2

We did not address the problem of optimisation w over a class of warping functions, which
admittedly will cause problems for the current implementation.

We demonstrated that the ten juggling trials can be registered in such a way that the
structural average over all cycles is appropriately described by the idealised model.

Apart from addressing the challenge of functional registration subject to constraints, the
solution suggested in Tolver et al. (2014) also addressed the challenge of finding a more
suitable coordinate system for the juggling data. No natural coordinate system exists
for the juggling data. The Cartesian coordinate system is merely convenient. Finger and
wrist movements are influenced by variation of the angle at the elbow, the angle at the
shoulder and movements of the body. Therefore it is likely that the coordinate system
of the juggling data varies with time over the duration of a trial (Ramsay et al., 2014),
i.e. the relevant coordinate system can move around. This complicates the registration
problem. A coordinate system that is not fixed and takes the constraints and mechanics
of the human body into account will possibly be more meaningful and give better results
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(Ramsay and Gribble, 1999). We established an elliptical coordinate system on an arbitrary
plane, subject to biomechanical constraints of the human body (Tolver et al., 2014).

The idea that physical constraints should be taken into account in registration has broader
application than only registration over time and the juggling data. Apart from registration
over time, curves can be registered over other measures like distance or, for example,
chemical shift in the case of NMR data (Sections 5.1 and 5.6). The physical constraints
can be anatomical and biomechanical, as in the case of the juggling data. In the case of
NMR spectra, the constraints relate to peak shape (Lorentizian) (Section 5.1), area under a
peak and minimum detectable peak width based on the specifications of the spectrometer.
If the Lorentzian shape of NMR peaks are not preserved during registration, inherent
structure in the data could be destroyed and the heart shapes in phase-plane plots (see
Muller and Ramsay (2014)) could disappear. Constraints should be carefully considered
in any registration procedure and should be modelled in a way that does not destroy the
structure of the data and that results in interpretable parameters.



7
Conclusions and Perspectives

This thesis describes the use of functional data analysis as a method to analyse spectral
data in metabolomics. Functional data analysis takes advantage of the smoothness un-
derlying the data which are in the form of curves. There is no requirement to assume
that adjacent data points on a curve are independent. These are distinct advantages over
many standard chemometric methods. Additionally, functional data analysis can unlock
the information hidden in the derivatives of spectra.

The motivating example focused on NMR data from a human metabolomics study, specif-
ically a diet standardisation study. However, the methods are also applicable to other
spectral data, like mass spectrometry or infrared. The data are not required to originate
from a human metabolomics study, but can come from, for example, plant metabolomics.
The applications also range much wider than only diet standardisation studies and may
include diet or other clinical interventions.

To summarise the results: In Paper I we successfully applied wavelet-based functional
mixed models together with bootstrap-based inference on functions to detect the influence
of covariates on specific metabolites or spectral regions. To our knowledge, this is the first
time that wavelet-based functional mixed models have been applied in metabolomics. In
Paper II we illustrated the rich nature of functional derivatives in simulated nuclear mag-
netic peaks with characteristic Lorentzian line shapes. Using phase-plane plots to explore
the anatomy of NMR peaks, we introduced the novelty of heart plots for spectral data. In
Paper III we applied functional registration in the context of biomechanics, specifically to
data from a juggling experiment. The novelty of this work is that the registration is done
towards an idealised biomechanical model. In this way, the warping is performed subject
to biomechanical constraints. Additionally, Paper IV, demonstrated the value of classical
mixed model methodology in the context of targeted metabolomics.

In order to build a stronger connection between the worlds of statistics and chemometrics,
we gave a glimpse of the essential and complex data pre-processing that is well known
to chemometricians, but is generally unknown to statisticians. We also touched on the
important aspect of registration, also called warping or alignment, which emerges from
both the chemometric and statistical perspectives.

We offer a number of perspectives on future work.

A natural next step in terms of application would be to analyse the DiOGenes dietary
intervention data using wavelet-based functional mixed models. This study investigated
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the effect of diets with differential protein levels and glycaemic index loads on obese and
overweight individuals over six months. It will be interesting to compare these results with
published results which used more standard methodology.

We have some concerns related to the influence of ‘residual misalignment’ in terms of
data that could be ‘well enough’ aligned for standard chemometric analysis. We suspect
that wavelet-based functional mixed models are sensitive to very small misalignments,
especially in the base of peaks and the valleys between peaks. We plan to investigate this
potential sensitivity of our method to small perturbations in alignment on simulated data.

On a methodological level there is a need to investigate subset selection of wavelet coeffi-
cients for input to mixed modelling, together with the selection of primary resolution. The
abovementioned issue of sensitivity to small misalignments is also relevant in this context.
The use of alignment methods from the functional data analysis literature, specifically
k-means clustering and alignment, as well as simultaneous alignment and modelling may
provide interesting avenues to investigate in the context of NMR metabolomics spectra.

Hearts plots provide a new way to view spectral peaks and the possibilities for future
analyses are exciting: principal component analysis of hearts and hypothesis testing of
hearts would be only the first statistical steps in exploring the anatomy of spectral hearts.

With regards to registration subject to constraints, it would be of interest to extend the
procedure to include the optimisation of each individual warping function over a class of
warping functions.

Overall this thesis gives an indication of the huge possibilities for functional data analysis in
metabolomics and chemometrics. Spectral data are inherently functional in nature. Func-
tional data analysis provides access to many functional equivalents of methods currently
used in chemometrics, with the benefits of no strong assumptions regarding neighbouring
observations. Functional data analysis also provides access to the data’s derivatives and
opens up the ability to analyse information that is otherwise locked away in the data.

On a health research level, nutritional metabolomics shows great potential for the discov-
ery of novel biomarkers of food consumption, personal nutritional status and metabolic
phenotype. The use of functional data analysis in metabolomics can make a valuable con-
tribution to the emerging technology in personalised medicine and health care, including
personalised nutrition for prevention and treatment.
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Courcier, Paris.

Lenz, E. M. and Wilson, I. D. (2006). Analytical strategies in metabonomics. Journal of
Proteome Research, 6(2):443–458.

Levitin, D. J., Nuzzo, R. L., Vines, B. W., and Ramsay, J. O. (2007). Introduction to
functional data analysis. Canadian Psychology/Psychologie canadienne, 48(3):135–155.

Li, C. and Wong, W. H. (2001). Model-based analysis of oligonucleotide arrays: expres-
sion index computation and outlier detection. Proceedings of the National Academy of
Sciences, 98(1):31–36.

Lieber, C. A. and Mahadevan-Jansen, A. (2003). Automated method for subtraction of
fluorescence from biological raman spectra. Applied Spectroscopy, 57(11):1363–1367.

Liland, K. H. (2011). Multivariate methods in metabolomics–from pre-processing to dimen-
sion reduction and statistical analysis. TrAC Trends in Analytical Chemistry, 30(6):827–
841.

Liland, K. H., Almøy, T., and Mevik, B.-H. (2010). Optimal choice of baseline correction
for multivariate calibration of spectra. Applied Spectroscopy, 64(9):1007–1016.

Llorach, R., Garcia-Aloy, M., Tulipani, S., Vazquez-Fresno, R., and Andres-Lacueva, C.
(2012). Nutrimetabolomic strategies to develop new biomarkers of intake and health
effects. Journal of Agricultural and Food Chemistry, 60(36):8797–8808.

MacKinnon, N., Ge, W., Khan, A. P., Somashekar, B. S., Tripathi, P., Siddiqui, J., Wei,
J. T., Chinnaiyan, A. M., Rajendiran, T. M., and Ramamoorthy, A. (2012). Variable
reference alignment: an improved peak alignment protocol for NMR spectral data with
large intersample variation. Analytical Chemistry, 84(12):5372–9.



93

Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet
representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
11(7):674–693.

Marron, J. S., Adak, S., Johnstone, I. M., Neumann, M. H., and Patil, P. (1998). Exact
risk analysis of wavelet regression. Journal of Computational and Graphical Statistics,
7(3):278–309.
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Abstract: In this article we apply wavelet-based functional mixed model
methodology to analyse nuclear magnetic resonance spectrometry data. The
application is a diet standardisation study in human nutrition metabolomics,
where participants provided three repeated measurements. We use bootstrap-
based inference to estimate the difference in means between groups in the
longitudinal functional model. This approach allows us to respect the study
design, while modelling the NMR spectra as functions. We model nonpara-
metric fixed and random effect functions that enable us to incorporate
covariates and repeated measurements in one model. We investigate NMR
spectral regions that are significantly different for gender and diet culture
groups.
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1. Introduction

Nutrition plays a crucial role in preventing disease and, therefore, in establish-
ing and maintaining an acceptable overall population health status. In contrast
to many other areas of health care, nutritional therapy is fairly easy and inex-
pensive. It can potentially be used for preventive and therapeutic treatment of
many diseases. In most western countries, obesity, type-2 diabetes, cardiovas-
cular disease and cancer are affecting a growing number of people. Although
these diseases have been studied extensively, much remains unknown regarding
the direct and indirect impact of nutritional interventions on health status at
the individual as well as the population level. There is reason to believe that
this shortcoming in knowledge potentially has a major socio-economic impact,
specifically in the context of constantly growing health care budgets (Moore
et al., 2000; Biel, Evans and Clarke, 2009).

Our level of understanding as well as our means of monitoring dietary expo-
sure have changed in a revolutionary way over the last decades. This field is em-
bedded in a multidisciplinary context bringing biochemistry, human nutrition,
preventive medicine, systems biology, bioinformatics and statistics together.
Emerging high-throughput screening techniques, like metabolomics, have played
a crucial role in initiating this transition. In parallel to high-throughput screen-
ing techniques within the ‘omics’, new data analytic concepts and methods are

1
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key factors in the pursuit of extracting useful knowledge from metabolomics data
(Wishart, 2007). However, there are two major challenges. First, large amounts
of noisy data that are rapidly amassed and, second, the complexity and dynam-
ics of connected and interrelated data structures. Recent technological improve-
ments in mass spectrometry and nuclear magnetic resonance spectroscopy have
led to greatly enhanced experimental capabilities in metabolomics. However, the
development of better adapted statistical concepts and tools for pre-processing
and data analysis in this field has been identified as a major bottleneck. The
elimination of this bottleneck will add the final link in the technology infras-
tructure and will allow the rapid enhancement of general nutrition knowledge
and health status. Furthermore, it will be a step towards personalised dietary
monitoring and personalised nutritional interventions.

The influx of metabolomics in human nutrition is based on the understanding
that metabolomics offers a powerful approach for reconstructing dietary influ-
ences on biological systems Favé et al. (2009). Several authors have emphasised
that metabolomics offers a truly holistic perception and mode of thinking of
biological processes (Kell, 2004; Quackenbush, 2007; Wishart, 2007). In terms
of both biological understanding and technological improvement, metabolomics
has resulted in a landslide of important results (e.g. Holmes, Wilson and Nichol-
son (2008); Favé et al. (2009)). The potential of metabolomics in the context of
human nutrition has been well-established in the literature over the last decade
(Whitfield, German and Noble, 2004; Goodacre et al., 2004; Gibney et al., 2005).
However, in terms of statistical methodology inference methods often produce
simplistic per-metabolite conclusions that are more exploratory than confir-
matory and that are difficult to combine into an overall characterisation of
metabolomic status.

We present a wavelet-based mixed-model approach for handling high-dimensional
data while respecting the study design in the process of dimension reduction.
The key idea is to approach wavelet regression methods from a functional data
analytic perspective (e.g. Ramsay (2002, 2005)) and to re-cast the entire statisti-
cal methodology in a framework ideal for metabolomics data analysis. Wavelets
were introduced into statistics in the 1990s (Nason, 1996; Johnstone and Sil-
verman, 1997) almost exclusively with applications in time series analysis in
mind but since then they have disappeared out of the mainstream of statistical
methods and had a little renaissance related to proteomics (Morris et al., 2003,
2008), electrophysiology (Davidson, 2009; Pigoli and Sangalli, 2012), human
vision (Ogden and Greene, 2010) and transcriptome analysis (Clement et al.,
2012). In order to re-cast the wavelet theory in a useful statistical framework,
mixed model methodology will be extended to the nutritional metabolomics
data structures. Related extensions of mixed models concepts to other types of
complex data structures were considered by Guo (2002); Qin and Guo (2006);
Morris (2006) and Scheipl, Staicu and Greven (2014).

Although our main purpose is to apply the methodology in a nutritional
metabolomics context, we also provide some methodological advances.

In section 2 we describe the data from a human nutritional metabolomics
study which motivated this work. Section 3 covers the wavelet-based functional
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mixed model. Bootstrap-based inference follows in section 4. Details on the
implementation and application of the methodology to the example data are
covered in sections 5 and 6 respectively. Results of the analysis of the example
data are in the last section before the discussion.

2. Motivating example

The diet standardisation study investigated the effect of a specified daily meal
composition on the human urine metabolome over three days (Rasmussen et al.
(2011), study B).

The study included 16 healthy non-smoking human subjects, aged 22 to 39
years. Participants were of Danish or Italian nationality. Table 2 provides a
summary of the number of subjects by gender and nationality. Nationality was
used as an indicator of diet culture.

The diet was standardised, i.e. the composition of the three daily meals was
fixed. However, the amount to be consumed was only fixed for certain food
items (tuna, mackerel, salmon fillet, smoked pork, broccoli, onion, red pepper,
tomato, pesto, raisins, almonds and dark chocolate), and the amount of other
food items could be freely adjusted (oatmeal, soya milk, rye bread, white bread,
pasta, apple, banana, orange, water, black tea, sugar, salt and pepper). Par-
ticipants collected all food, pre-weighted and packed, from the research site.
The details of the standardised diet are described elsewhere (Rasmussen et al.,
2011). Activity level among participants and days were standardised by prohi-
bition of any strenuous physical activity. All 16 participants collected 24-hour
urine samples (from 08:00 till 08:00 the next day) on the three consecutive days
while they were on the standardised diet.

The diet standardisation study was a pilot study for the Diet, Obesity, and
Genes (DiOGenes) dietary intervention trial (Larsen et al., 2010; Aston et al.,
2010; Moore et al., 2010). The objective of the diet standardisation study was
to investigate the effect of a three-day standardised diet on urine metabolomics,
but also to investigate the influence of other factors like diet culture and gender.

2.1. Pre-processing of 1H NMR data from urine samples

The urine samples were analysed by 1H NMR spectroscopy at 500.13 MHz. Tech-
nical details on the acquisition of the spectra can be found in Rasmussen et al.
(2011). The resulting spectra were referenced to the TSP (3-(TrimethylSilyl)-
Propionic acid-d4) peak at 0.00 ppm and automatically baseline corrected using
TopSpinTM (Bruker BioSpin), software related to the spectrometer.

Table 1
Diet standardisation study: number of participants

Female Male Total
Danish 7 3 10
Italian 2 4 6
Total 9 7 16
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The pre-processing steps for the data are described in Rasmussen et al. (2011).
In short, the NMR regions (15.21 to 9.20 ppm, 6.34 to 4.09 ppm and 0.62 to
-5.61 ppm) were removed due to being noise-only regions or due to the strong
influence of the residual water peak. Spectra were aligned using the interval-
based icoshift algorithm (Savorani, Tomasi and Engelsen, 2010). Spectra were
normalised according to the sum of the squared value of all variables for the
given sample (2-Norm) (Craig et al., 2006; Dieterle et al., 2006). Each individual
spectrum consisted of 19 930 values after pre-processing.

2.2. Presentation of the data

A typical NMR spectra from the diet standardisation study is displayed in Fig-
ure 1, first with the original relative intensity scale on the y-axis (top) and
then after variance stabilisation normalisation (VSN) transform, on the gener-
alised logarithm (base 2) scale (glog2) (below). Chemical shift (on the x-axis) is
conventionally called δ, measured in parts per million (ppm) and ordered from
large to small. Here (δ) runs from approximately 9 parts per million (ppm) to
1 ppm, with the region between 6.5 and 4.1 ppm removed. Many smaller peaks
that are not visible on the relative intensity scale become clearly visible on the
glog2 scale. We visually inspect the dependence of standard deviation (or vari-
ance) on the mean, over all samples (per chemical shift value), before and after
VSN transform (Figure 2). The red dots are the running median (window-width
10%). An approximate horizontal line of red dots would indicate no variance-
mean dependence, and thus variance stabilisation. The VSN transform removes
the dependence of the variance on the mean.

Figure 3 displays three daily spectra (blue, red, green), on the glog2 scale, for
each of four individuals. A number of features are noticeable: there is no clear
pattern from day to day across the four subjects, there is daily variation within
each subject, as well as variation between subjects. It is unclear how much of
the variation is due to gender and/or diet culture (nationality) effects.

A simple approach would be, for each day separately, to treat the relative
intensity at each ppm-point on the chemical shift axis as a dependent variable
and use a linear model containing gender, nationality and their interaction as
predictors. Thus, each daily model contains tens of thousands of linear models -
one linear model at each ppm-value. This approach provides predicted spectra
(relative intensity at each ppm-value) per gender-nationality group for each of
the three days separately (Figure 4, left column). The variance in the data, that
cannot be explained by gender and nationality, is represented by the residual
errors. The estimated standard deviation of the residual errors of the three daily
models (Figure 4, right column) reveal a number of aspects: large variance in
residual errors is not necessarily at chemical shift positions where there are large
peaks (this is due to the VSN transform’s variance stabilisation), per day there
are certain patterns (peaks) in the residual error variances that match groups of
peaks in the estimated means (left column), e.g. doublets in 3.90 to 3.85 ppm,
as well as 3.65 to 3.60 ppm. Related to diet standardisation over the three days
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Fig 1. An NMR spectrum from the diet standardisation study: chemical shift (δ) in parts per
million (ppm) and NMR relative intensity (top), VSN transformed relative intensity on the
generalised logarithmic (base 2) scale (bottom)
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Fig 2. Standard deviation (sd) versus ranked mean for all NMR spectra in the diet standard-
isation study, on the original scale (left) and after VSN transform (right).

(rows in Figure 4), there is no obvious reduction in residual error variance across
the three days of the study.
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Fig 3. Relative intensity (on the glog2 scale) for a section of the NMR spectrum (4.1 - 3.5
ppm) for four individual subjects, for day 1 (blue), day 2 (red) and day 3 (green). A Danish
male (top left), an Italian male (top right), a Danish female (bottom left) and an Italian
female (bottom right).

2.3. Challenges related to the data

The data contain 48 urine samples. Each urine sample, after 1H NMR analysis,
generates a spectrum containing 32 768 data points. This number was almost
halved to 19 930 points by cutting out three regions containing mostly noise or
the residual water signal. Nevertheless, this remains a so-called small-n-large-
p problem where the number of the data points per individual spectrum far
exceeds the number of individuals.

The spectral data contain noise which can obscure smaller peaks in the data
and can influence the results of analyses.

The relative intensity values of the data (Figure 1, top) range from a minimum
(per spectrum) of approximately -500 to -50, to a maximum of approximately
84 500 to 116 500. The median in each spectrum ranges from approximately
450 to 830. The data from each spectrum are clearly skewed to the right, due
to a small number of peaks with very large values. Large values can potentially
display large variation, whereas small values will tend to have small variation,
i.e. heterogeneity of variance can be a problem.

There is correlation across an individual spectrum, since each peak consists
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Fig 4. For days 1 to 3 (rows), based on three separate models: sections (4.1 - 3.5 ppm) of
predicted spectra (left column) for Danish males (black), Italian males (blue), Danish females
(red) and Italian females (green) and the square root of the estimated variances of the random
errors (right column).

of a number of neighbouring data points. Furthermore, different peaks can be
correlated, since a single metabolite consists of one or multiple peaks. There is
also within-subject correlation since spectra from the same individual (repeated
measurements on day 1, 2 and 3) will tend to be more similar.
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To pre-process the data in a meaningful way, subject-specific expertise is es-
sential, i.e. understanding the NMR platform and measurement procedures as
well as knowledge of ‘what the data should look like’ and how to correct the
data if they do not conform to expectations. Pre-processing was conducted by
an experienced chemometrician. Some pre-processing steps, e.g. baseline adjust-
ment, were performed on the NMR platform using platform-specific software.
Other pre-processing steps, e.g. normalisation and alignment, were performed
using custom developed software that is publicly available.

There is no established standard for pre-processing these types of data (Engel
et al., 2013) i.e. the order of pre-processing steps and the specific methods cho-
sen depends on the chemometrician conducting the pre-processing. The param-
eters used in pre-processing are often not reported and not available. Thus, pre-
processing can be irreversible and also not reproducible, depending on the meth-
ods used. Different chemometricians may choose different pre-processing meth-
ods and, even when choosing the same methods, may choose different parame-
ters. Even the same chemometrician pre-processing the same data set twice with
the same methods, may choose different parameters. Furthermore, the order of
pre-processing steps can influence each other, e.g. alignment/misalignment will
influence normalisation and vice versa. The specific data pre-processing meth-
ods and order of steps can have a huge influence on the results of the analysis
(Engel et al., 2013).

Considering the above issues, the inherent complexity of these data is evident.
In the next sections we describe our approach to address some of the com-

plexities in the data through:

• a wavelet transform to smooth the data (remove noise) and to reduce the
dimension of the data

• a mixed model with random effect for individual participants, to take
into account correlation related to repeated measurements on the same
participant

• bootstrap-based inference together with a functional data approach in
order to address correlation across the spectrum.

3. Functional mixed models

In this section we first describe how functional observations fit into the classical
mixed model. Second, we distinguish our work from existing literature on the
topic.

For univariate observations yi, i = 1, . . . , N, a mixed model is expressed as

yi = xTi β + zTi u+ εi, (1)

where xi and β are p-dimensional vectors, zi and u are q-dimensional vectors
and εi are iid ∼ N(0, σ2). Here xi and zi are vectors describing the observed
covariates and experimental design, and the random effects are modelled as u ∼
Nq(0,Σ). In (1) any dependence between yi’s are described using the random
effect term zTi u.
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Concatenating the yi’s into an N -dimensional vector y, and introducing the
matrices XN×p and ZN×q with rows given by xTi and zTi we can write the mixed
model (1) for y as

y = Xβ + Zu+ ε, (2)

where ε ∼ NN (0, σ2IN ) and (as before) u ∼ Nq(0,Σ).
In the case of functional observations, we typically observe the value y(tj)

of N curves at j = 1, . . . , n timepoints t = (t1, . . . , tn). We can use a mixed
model for each y(tj) but a full model specification requires a description of
the correlation structure between y(tj) for different j = 1, . . . n. The mixed
model for all y(tj) is specified by stacking observations for different tj ’s into
a vector y of length N · n and by using a model of the form (2). However,
the functional nature of the data often imposes structure between y(tj). This
should be reflected in the structure of the design matrices and the model for the
random terms.

Morris (2006) assumes that the design matrices X and Z do not depend on
the time argument, t, and model random effects u(t) as well as residual errors
ε(t) by multivariate Gaussian processes with N -dimensional cross covariance
functions parameterised by the product of an N ×N matrix Γ and covariance
surface Σ. For a fixed grid of time points t = (t1, . . . , tn) this amounts to a tensor
product structure on the covariance matrix for vectors obtained by stacking the
random effects u(tj) and the error terms ε(tj) respectively.

Instead of modelling the raw functional observations y(tj), Morris (2006)
models the wavelet coefficients obtained from the discrete wavelet transform of
each functional observation. Since this transformation acts independently on ev-
ery function (curve), the correlations between curves remain unchanged after the
discrete wavelet transformation. In particular, a functional mixed model with a
tensor product structure on the covariance matrix on the level of raw data will
lead to a tensor product structure on the covariance matrix for the wavelet coef-
ficients. Morris (2006) assumes the wavelet coefficients within a given curve are
independent across wavelet scale and location making the column covariances
for both the random effects and the residual errors diagonal. This structure
accommodates non-stationarity (e.g. curve-to-curve variances and smoothness
in curve-to-curve deviations both to vary over t) and allows the wavelet space
model (2) to be fitted one column (wavelet coefficient) at a time.

The Morris (2006) model described above does not assume independent
random-effect functions. The between-curve correlation matrices can be chosen
to accommodate different covariance structures between curves that may be sug-
gested by the experimental design. These include simple random-effects, struc-
tures for functional data from nested designs, split-plot designs, sub-sampling
designs and designs involving repeated functions over time (Morris, 2006).

We apply a mixed effect model to each coefficient of the discrete wavelet
transform. However, no model assumptions are made about the correlations
between different wavelet coefficients. Instead, a nonparametric bootstrap pro-
cedure (Crainiceanu et al., 2012) is used to account for correlations between
coefficients within a curve.
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Regularisation is a central issue when applying the mixed model to func-
tional data. The estimation procedure should adapt to the smoothness of the
functional fixed effects. In the notation of (2) we essentially need to estimate
a p-dimensional parameter β(t) for any time argument t. The most common
approach is to used penalised optimisation (Guo, 2002; Chen and Wang, 2011;
Krafty, Hall and Guo, 2011; Scheipl, Staicu and Greven, 2014). However, by
working on the discrete wavelet transform of the functional observations we take
advantage of the sparse representations that wavelets yield for smooth curves
with a varying number of local features such as sharp peaks. By shrinking all
wavelet coefficients towards zero, many of the small wavelet coefficients take on
a zero value. In this way, we obtain a sparse approximation of the wavelet trans-
form. After back transformation this sparse approximation provides a smoothed
version of the original functional observations. Ogden and Greene (2010) also
used a thresholding approach to shrink wavelet coefficients in the functional
mixed model context.

Morris (2006) use a Bayesian prior with point mass at zero for the wavelet
coefficients to regularise the parameters of the functional mixed model. Here
we use a two-step procedure instead: first, a hybrid version of the SureShrink
procedure Donoho (1995) is applied to shrink the wavelet coefficients of each
curve. Second, a subset of sample-wise non-zero wavelet coefficients are retained
as input to the mixed model. The bootstrap procedure addresses the variability
of the estimates from the mixed model while taking into account the subset
selection step.

The wavelet based functional mixed model can be fitted using various ap-
proaches: a Bayesian approach with Markov chain Monte Carlo (MCMC) sim-
ulation (Morris, 2006; Morris et al., 2008), a faster empirical Bayes method
(Clement et al., 2012) or frequentist approaches, either focusing on functional
hypothesis testing (Abramovich and Angelini, 2006; Antoniadis, 2007) or estima-
tion of fixed and random effects (Ogden and Greene, 2010). We use a frequentist
approach for the estimation of differences in fixed effects with joint confidence
intervals.

4. Wavelet-based functional mixed models

The three basic steps for the nonparametric wavelet-based approach to fit a
functional mixed model are (Morris, 2006) :

Step 1 Decompose the N observed spectra to obtain empirical wavelet coeffi-
cients, by using the DWT on each spectrum. This is a projection of the
observed spectra from the data space to the wavelet space.

Step 2 Model the empirical wavelet coefficients using a wavelet space version
of the functional mixed model.

Step 3 Transform the wavelet space model estimates back to the data space,
by using the IDWT, and use these estimates for inference in the original
data space.

We expand step 2 in the following way:
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Step 2a Use the hybrid SureShrink procedure Donoho (1995) to shrink the
wavelet coefficients of each curve.

Step 2b Select a subset of sample-wise non-zero wavelet coefficients to be re-
tained as input to the mixed model.

Step 2c Apply the wavelet-based functional mixed model to empirical wavelet
coefficients

Step 2d Bootstrap the wavelet coefficients from Step 2a while keeping the
structure of the data intact (e.g. repeated measurements) and repeat Steps
2b and 2c.

Step 1
Step 2 focuses on constructing the functional mixed model in the wavelet

space. Right multiplication of both sides of model (2) yields a wavelet space
model:

d = Xβ∗ + Zu∗ + ε∗ (3)

where XN×p and ZN×q are the design matrices, β∗ = βW T is a p × n matrix
whose rows contain the wavelet coefficients for the p fixed effect functions on the
grid t, u∗ = uW T is a q × n matrix whose rows contain the wavelet coefficients
for the q random effect functions and ε∗ = εW T is a N × n matrix consisting
of the residual errors in the wavelet space. Like d, the columns of β∗, u∗ and
ε∗ are all double indexed by the wavelet coefficients’ scale and location. Note
that the between-row covariance structure is retained when projecting into the
wavelet space; only the column covariances change. (Morris, 2006)

In Step 3 the wavelet model results from Step 2 are projected back into the
data space, by using the inverse discrete wavelet transform y = dW .

Our approach in Step 2 combines bootstrap resampling of wavelet coefficients
and subset selection. This yields model estimates for each bootstrap sample.
After inverse discrete wavelet transformation back from the wavelet space to
the original data space the bootstrap estimates can be used to estimate the
uncertainty in the original data space mixed model. The bootstrap procedure is
described in the next section.

5. Bootstrap based inference

Crainiceanu et al. (2012) described a general statistical framework for bootstrap-
based inference for correlated functional processes where the data Y are defined
as functions Yik(t) with t = t1, . . . , tn, i is the individual subject for whom the
function is measured and k is the index associated with the correlated functional
process, e.g. longitudinal observations, repeated measurements or matched pairs.
Let

Yik(t) = η(t,Xik) + Vik (4)

where Xik is a vector of covariates, η(t,Xik) is the population-level mean of the
functional process Yik(t) and Vik is the residual process and can have a complex
correlation structure. In a longitudinal study Xik may depend on subject i only,
or on the subject i and observation k within the subject i. η(t,Xik) can take on
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many forms, e.g. Xikβ (standard parametric linear regression), µ(t)+Xikβ (µ(t)
modelled parametrically or nonparametrically) or µA(t)I{t ∈ A} − µB(t)I{t ∈
B}, where groups A and B have mean functions µA(t) and µB(t) respectively.

Crainiceanu et al. (2012) proposed the following approach:

• Bootstrap subjects and obtain estimators of population-level parameters
η(t,Xik) under the assumption of independence, i.e. Vik(t) are i.i.d. mean
zero and homoscedastic random variables.

• Conduct inference about η(t,Xik) by using the empirical bootstrap distri-
bution of η(t,Xik), namely η̂b(t,Xik) for b = 1, . . . , B.

The bootstrap procedure used should preserve the correlation structure spe-
cific to the study design, e.g. the individual correlation in a longitudinal study.
The initial estimation (to obtain a mean function from data values) as well as
the bootstrap procedure can be performed in various ways.

With regard to bootstrap methods for estimating uncertainty in parameters
of linear mixed effect models Thai et al. (2013) compared a variety of different
parametric and non-parametric bootstrap approaches. The paired bootstrap,
also called the case bootstrap, performed as well as the bootstraps of both
random effects and residuals. The case bootstrap is a nonparametric bootstrap
where entire subjects are resampled with replacement. An entire subject would
consist of the joint vector of design variables and corresponding responses for
subject i (for all observations k) from the original data before fitting a model,
i.e. (Xi, Zi, yi). No assumptions are made about the model. Observations within
subjects are not resampled (Thai et al., 2013). Although the above results are for
the classical mixed effects model, we can apply it in the functional context where
individual wavelet coefficients are modelled using classical mixed effect models.
The case bootstrap corresponds to the nonparametric bootstrap in Crainiceanu
et al. (2012).

Our method is conceptually similar to the ‘nonparametric estimation using
nonparametric bootstrap approach’ in Crainiceanu et al. (2012). However, we
do not use a penalised spline approach for nonparametric smoothing (of either
the entire dataset for each group (over time) or the empirical means for each
group (over time)), but a wavelet-based approach on each individual (over time).
Additionally, instead of calculating bootstrap estimates of differences, we esti-
mated fixed effects from a mixed model on the wavelet coefficients. Our data do
not consist of matched pairs, but of repeated measurements of individuals over
time. Our method entails the following:

1. Instead of obtaining estimators of the mean function (in each group k)
under the independence assumption and then calculating the difference in
group mean functions, we use a functional mixed model to obtain estima-
tors of the fixed effect functions (in the wavelet space).

2. Use nonparametric bootstrap that keeps the structure of the data intact,
i.e. repeated measurements. We used B = 501 bootstrap samples.

3. Fit the mixed model on each bootstrap sample b = 1, . . . , B and obtain es-
timators of η(t,Xik) under the assumption of independence, i.e. under the
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assumption that Vik(t) are i.i.d. zero-mean homoscedastic random vari-
ables. For NMR spectra a functional mixed model as in section 3 will
translate to

η(t,Xik) = µ(t) +Xikβ (5)

where we account for the correlation between repeated measurements
within individual subjects i by defining a multi-level functional model
for the error process as

Vik(t) = Ai(t) + εik(t) (6)

where Ai(t) is a random functional process and εik(t) is the individual
residual error, assumed to be a Gaussian process with variance σ2.

4. Transform the bootstrap model estimates η̂b(t,Xik) back from the wavelet
space to the original data space

ζ̂b(t,Xik) = η̂b(t,Xik)W for b = 1 . . . B (7)

5. Contruct 95% pointwise confidence intervals for ζ(t,Xik(t)) based on the

empirical bootstrap distribution obtained from ζ̂b(t,Xik) for b = 1, . . . , B
where b = 1, . . . , B, i.e. bootstrap percentile 95% confidence intervals
(q0.025(t), q0.975(t)) for all t.

6. Contruct 95% joint confidence intervals based on the empirical bootstrap
distribution: assume ζ̂b(t,Xik) is an estimator for ζ(t,Xik) for bootstrap
b. The pointwise estimators for the mean and standard deviation of the
mean for ζ(t,Xik) are ζ̄(t,Xik) =

∑B
b=1 ζb(t,Xik)/B and sζ̄ (t,Xik) =√∑B

b=1{ζb(t,Xik − ζ̄(t,Xik))}2/B respectively. We construct random vari-

able realisations Mb = maxt|ζb(t,Xik − ζ̄(t,Xik))|/sζ̄ (t,Xik), the maxi-
mum over the entire range of t values of the standardised mean realisa-
tions. Then a 100(1− α)% joint confidence interval for ζ(t,Xik) will take
the form ζ̄(t,Xik)± q1−αsζ̄ (t,Xik), where q1−α is the 1−α quantile of Mb

for b = 1, . . . , B.

The pointwise confidence intervals imply that at each chemical shift position
in repeated samples, the true function will be covered by the pointwise confi-
dence interval 100(1 − α)% of the time. The joint confidence intervals imply
that at all chemical shift positions in repeated samples, the true function will
be covered by the joint confidence intervals 100(1− α)% of the time.

Although the joint confidence intervals should be used for formal hypothesis
testing, pointwise confidence intervals can be used in exploratory analysis for
biomarker discovery, but should be followed by validation.

6. Implementation

The analysis was done in R (R Core Team, 2014). We used the VSN package from
Bioconductor (Huber et al., 2002) to transform the data and the R WaveThresh
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package (Nason, 2013) to perform the discrete wavelet transform, SureShrink
thresholding and the inverse discrete wavelet transform. We modified procedures
from the R boot package (Canty and Ripley, 2014) to perform bootstrapping of
the estimated functions. We used the R lme4 package (Bates et al., 2014) to fit
mixed models on the wavelet coefficients, running the models on the bootstrap
samples in parallel using the R package snow (Tierney et al., 2014).

7. Analysis of the example data

We chose to use the pre-processed data as provided, in order to facilitate com-
parisons of our functional approach with published results (Rasmussen et al.,
2011) and to preserve chemometric expertise embedded in the pre-processing. It
is known that different approaches to pre-processing spectra can seriously influ-
ence the results from subsequent data analysis (Engel et al., 2013). We briefly
described the pre-processing in section 2.1.

We did, however, perform some additional steps to tailor the data for the
wavelet based functional approach. We reduced the spectrum length to the
largest power of two smaller than the initial length, by cutting the ends of
spectral sections without removing areas that may contain meaningful peaks.
Relative intensity data were transformed to reduce skewness - the variance sta-
bilisation normalisation transform was used. We did not adjust the baseline or
the alignment of the spectra, but relied on the pre-processing already conducted.

We use wavelets to estimate the unknown true NMR functions, from the noisy
observations. More specifically, we use Daubechies Least Assymetric wavelets
(Daubechies, 1992) with four vanishing moments, periodic boundary handling
and a primary resolution of 11. After SureShrink thresholding of wavelet coeffi-
cients, we selected a subset of wavelet coefficients that have non-zero values for
all spectra.

An NMR spectrum or signal consists of relative resonance intensities y =
(y1, . . . , yn), which are discrete observations at equally spaced values t = (t1, . . . , tn)
on the chemical shift axis (δ) and we write y(t).

In our application, we write yi(t) to indicate the pre-processed NMR spec-
trum belonging to individual i, where i = 1 . . . 48. The vector t consists of equally
spaced chemical shift values tj with j = 1, . . . , 16384. The elements of Xih, the
fixed effect design matrix are covariates h = 1, . . . , p, e.g. day, gender and na-
tionality (diet culture) and interactions of these, for individual i. In this model
the covariates are discrete (but the model allow for continuous covariates). βh is
the functional coefficients for predictor h over all chemical shift values t of the
NMR spectrum. The elements, Zik with k = 1, 2, 3, of the random effect design
matrix are used to model correlation among spectra, e.g. for repeated spectra
per individual i, an individual-level random effect function is specified.

Our aim is to assess whether levels of relative resonance intensity are pre-
dicted by gender, diet culture, number of days on the standardised diet and/or
any interaction of these terms, and whether these relationships depend on spec-
tral position. We formulate a mixed model that is conditional on the thresholding
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used and on all (N = 48) values of a specific wavelet coeffcient being non-zero
after thresholding. This model can be written as a classical linear mixed model
per coefficient in the wavelet space. For our data there are 2049 wavelet coeffi-
cients where all 48 values are non-zero.

What we expect in a diet standardisation study
It is important to note that the aim of a diet standardisation intervention

is to eliminate individual differences in metabolites, where these differences are
due to diet culture and food intake. It is to be expected that some differences
in metabolites, due to gender and other known or unknown biological or other
sources could remain. Taking these considerations into account, we expect to
find mostly spectral regions with no significant differences between diet culture
groups. We also expect differences in gender groups to be reduced, where differ-
ences were influenced by male or female diet preferences. Some gender differences
that are biological in nature are expected to remain.

Motivation for considering specific spectral regions
Prior to the diet standardisation pilot study, a smaller pilot study was con-

ducted (Rasmussen et al. (2011), study A). Here we refer to it as the non-
intervention study, since participants had no dietary standardisation and fol-
lowed their habitual diets. This study included seven of the 16 individuals who
were later included in the diet standardisation study. The data from this non-
intervention study are not analysed here. Nevertheless, the spectral regions iden-
tified as potentially discriminating for gender groups and diet culture groups,
are used here as a guide to investigate regions with potential differences in
metabolites in the diet standardisation study.

8. Results

We considered different contrasts from the model: contrasts for both main effects
and interaction terms (Table 2). Each contrast consists of a vector with the same
length as the spectrum (n = 16384). Only a small number of points were 95%
jointly significant over the spectrum (ranging from 0 to 73, depending on the
contrast).

To summarise the results, we calculated for each contrast the minimum p-
value that would ensure that a 100(1-p)% joint confidence interval would contain
no difference in the contrast over the entire spectrum. These minimum p-values
are relevant since the study focused on diet standardisation and we are interested
in the reduction of metabolic differences that can be ascribed to diet.

For example, a p-value of < 0.01 indicates that at least a 99% joint confidence
interval is required to ensure that zero (no difference) is contained in the confi-
dence interval for the contrast, over the entire range of the spectrum. Similarly,
a p-value of < 0.05 indicates that a joint confidence interval wider than that
associated with a 95% significance level is required to contain zero values for
the contrast over the entire range of the spectrum.

For the minimum p-values in Table 2 we did not adjust for multiple testing
across contrasts, although the joint confidence intervals that the numbers are
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Table 2
Wavelet-based functional mixed model contrasts

Contrast Min. p-value 95% jointly significant

(over spectrum) No. of points No. of regions

Day 2 Day 1 <0.001 19 3
Day 3 Day 2 0.108 25 3
Day 3 Day 1 0.008 0 0
Female Male <0.001 54 10
Italian Danish <0.001 73 16
Female Day 2 Female Day 1 0.040 7 2
Female Day 3 Female Day 2 0.036 3 1
Female Day 3 Female Day 1 0.030 2 1
Male Day 2 Male Day 1 0.042 14 3
Male Day 3 Male Day 2 0.052 1 1
Male Day 3 Male Day 1 0.048 0 0
Italian Day 2 Italian Day 1 <0.001 22 7
Italian Day 3 Italian Day 2 0.054 15 3
Italian Day 3 Italian Day 1 0.002 0 0
Danish Day 2 Danish Day 1 0.046 4 2
Danish Day 3 Danish Day 2 0.058 4 1
Danish Day 3 Danish Day 1 0.040 0 0
Day 1 Female Day 1 Male 0.006 13 2
Day 2 Female Day 2 Male 0.002 65 7
Day 3 Female Day 3 Male 0.002 14 2
Day 1 Italian Day 1 Danish 0.020 40 5
Day 2 Italian Day 2 Danish 0.006 41 7
Day 3 Italian Day 3 Danish 0.008 30 6

based on were adjusted for multiple testing across the spectrum. In the same
table we present the corresponding number of 95% jointly significant points and
regions (neighbouring points) for each contrast.

Table 2 serves as an informative summary. The smallest minimum p-values
(< 0.001) were obtained for the differences between respectively day 1 and 2,
female and male, Italian and Danish, and Italians on day 1 and 2. No 95%
jointly significant points were obtained in the difference between respectively
day 1 and 3, males on day 1 and 3, and Danes on day 1 and 3. The largest
number of 95% jointly significant regions were obtained for differences between
Italians and Danes, and females and males respectively.

We discuss some specific regions of interest related to gender differences, diet
culture differences and differences over days of diet standardisation in the next
sections. The same can be done for regions of interest related to interaction
terms, but that is beyond the scope of this paper.

8.1. Differences related to gender

We found no 95% jointly significant points in the spectral areas for creatinine,
(singlet at 4.06 ppm), citrate (two doublets at 2.72 - 2.64 and 2.57 - 2.51 ppm,
respectively) or alanine (doublet at 1.50 - 1.47 ppm), displayed in Figure 5.

Our results support Rasmussen’s findings: after diet standardisation differ-
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Fig 5. Top row: Estimated mean curves for males (blue) and females (red) for (1) creatinine
(4.06 ppm), (2) citrate (two doublets, centred at respectively 2.70 and 2.55 ppm) and (3)
alanine (doublet centred at 1.49 ppm). Bottom row: estimated mean differences (blue line)
between females and males, with 95% pointwise (light blue areas) and 95% joint (light yellow
areas) bootstrap confidence intervals for (1) creatinine (2) citrate and (3) alanine. Areas
marked in black indicate regions of 95% pointwise significant differences.

ences in mean estimates for gender groups are not jointly or pointwise significant
for spectral areas related to creatinine, citrate or alanine peaks.

8.2. Differences related to diet culture

Differences between Italians and Danes are discussed below as differences in
‘dietary culture’. These differences are presumably due to different dietary habits
caused by a different diet cultures (Rasmussen et al., 2011).

In the spectral region from 8.0 - 7.3 ppm, we found no 95% jointly signifi-
cant points for difference in diet culture (Figure 6). Several spectral areas are
95% pointwise significant and these areas correspond to a number of peaks (in-
cluding a doublet and triplets belonging to phenylalanine and hippurate) in the
areas where diet culture differences were observed in the non-intervention study
(Rasmussen et al., 2011).

In the spectral regions from 3.9 - 3.6 ppm (Figure 7) and 3.5 - 3.1 ppm
(Figure 8) we found, respectively, two neighbouring points (at 3.846 ppm) and
four neighbouring points (at 3.222 - 3.221 ppm) to be 95% jointly significant
for difference in diet culture. Both of these small spectral areas fall within the
valley between two peaks, but also within a larger spectral area that is 95%
pointwise significant. On inspection of the individual spectra, these two areas
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Fig 6. Top row: Estimated mean curves for Danes (orange) and Italians (green) for (1)
spectral region from 8.0 - 7.3 ppm containing a number of peaks (including a doublet and
triplets belonging to phenylalanine and hippurate) (2) alanine (doublet centered at 1.49 ppm).
Bottom row: estimated mean differences (blue line) between Italians and Danes, with 95%
pointwise (light blue areas) and 95% joint (light yellow areas) bootstrap confidence intervals
for the same chemical shift regions as in the top row. Areas marked in black indicate regions
of 95% pointwise significant differences.

seem to indicate either (a) misalignment in the areas surrounding 3.846 ppm
and 3.222 ppm, (b) that the region of highest significant difference in a peak is
located at the foot on one side of the peak, or (c) both of the above.

We did not find a 95% jointly significant difference between diet culture
groups for the alanine doublet (1.5 - 1.47 ppm) (Figure 6). The differences were,
however, 95% pointwise significant for almost all points in the alanine peak
region.

The spectral features of the most discriminative regions (for diet culture)
were 7.9 - 7.5 ppm, 3.92 - 3.82 ppm and 3.45 - 3.1 ppm (Rasmussen et al.,
2011). Rasmussen reported enhanced signal intensities for Italian subjects in the
spectral region 3.90 -3.60 ppm, but these differences from the non-intervention
study were no longer significant after diet standardisation. The specific area of
3.92 - 3.82 ppm that was one of the most discriminative spectral areas for diet
culture in the non-intervention study (Rasmussen et al., 2011), but disappeared
after diet standardisation, was also not 95% jointly significant in our analysis.

Rasmussen reported that the spectral region containing the alanine doublet
(1.5 - 1.47 ppm) was promising in discriminating between the two diet cultures
in the non-intervention study. For the diet standardisation study, differences
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Fig 7. Left, top: Estimated mean curves for Danes (orange) and Italians (green) for (1)
spectral region from 3.95 - 3.55 ppm containing a number of peaks (including a singlet for
glycine and a number of peaks for mannitol). Left, bottom: estimated mean differences (blue
line) between Italians and Danes, with 95% pointwise (light blue areas) and 95% joint (light
yellow areas) bootstrap confidence intervals for the same chemical shift regions as in the top
row. Areas marked in black indicate regions of 95% pointwise significant differences; the red
dot at the top of the figure indicates a region of 95% joint significant difference. Right, top:
enlargement of the jointly significant region at 3.846 ppm with estimated mean curves and
95% joint bootstrap confidence intervals for Italians (black lines) and Danes (dotted pink line
with light yellow regions), 95% pointwise (black) and joint (red) significant regions marked at
the top of the figure. Right, bottom: wavelet estimates (thresholded) of the individual spectra
in the same region (Danes - orange, Italians - green). Vertical lines correspond to points on
the chemical shift axis where the difference is jointly significant.

in alanine excretion separating Italians from Danes remained and were unex-
plained, and possibly due to chance (Rasmussen et al., 2011). Our results differ
in that we did not find any joint significant differences in the alanine region, but
this supports their suggestion that their finding may be due to chance.

8.3. Differences related to diet standardisation

We found 95% jointly significant points for the difference between Day 1 and
Day 2 in three spectral areas: at approximately 8.18 ppm, 3.65 ppm and 3.49
ppm as displayed in Figure 9. We also found 95% jointly significant points
for the difference between Day 2 and Day 3 in three other spectral areas: at
approximately 7.785 ppm, 3.84 ppm and 3.065 ppm as displayed in Figure 10.
The identification of the associated metabolites falls outside the scope of this
study.
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Fig 8. Left, top: Estimated mean curves for Danes (orange) and Italians (green) for (1)
spectral region from 3.5 - 3.1 ppm containing a number of peaks (including peaks from taurine,
phenyalanine, TMAO, carnitine and DMS). Left, bottom: estimated mean differences (blue
line) between Italians and Danes, with 95% pointwise (light blue areas) and 95% joint (light
yellow areas) bootstrap confidence intervals for the same chemical shift regions as in the top
row. Areas marked in black indicate regions of 95% pointwise significant differences; the red
dot at the top of the figure indicates a region of 95% joint significant difference. Right, top:
enlargement of the jointly significant region at 3.846 ppm with estimated mean curves and
95% joint bootstrap confidence intervals for Italians (black lines) and Danes (dotted pink line
with light yellow regions), 95% pointwise (black and joint (red) significant regions marked at
the top of the figure.Right, bottom: wavelet estimates (thresholded) of the individual spectra
in the same region (Danes - orange, Italians - green). Vertical lines correspond to points on
the chemical shift axis where the difference is jointly significant.

Our results support Rasmussen’s findings in the sense that, after diet stan-
dardisation, differences in mean estimates for gender groups are not jointly
significant for spectral areas related to creatinine, citrate or alanine peaks. How-
ever, we identified six distinct spectral areas with jointly significant differences
related to contrasts between days: three spectral areas related to the difference
between Day 1 and Day 2, and three other areas related to Day 2 and Day 3.

8.4. Methodological results

The wavelet-based functional mixed effect model enabled us to investigate fixed
effect contrasts for main effects like gender or day, as well as for interactions,
e.g. gender differences on a specific day or day differences for a specific gender
(Table 2). We took into consideration the design of the study by incorporating
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Fig 9. Top: Estimated mean curves for Day 1 (pink) and Day 2 (purple) for the three different
spectral regions that contain jointly significant points. Bottom: estimated mean differences
(blue line) between Day 2 and Day 1, with 95% pointwise (light blue areas) and 95% joint
(light yellow areas) bootstrap confidence intervals for the same chemical shift regions as in
the top row. Areas marked in black indicate regions of 95% pointwise significant differences;
the red dot at the top of the figure indicates a region of 95% joint significant difference.

random effects per individual for repeated measurements over three days. Addi-
tionally to these advantages, the results are displayed as mean effects or mean
differences across the range of the chemical shift. This is a major advantage for
the interpretation of the results, in the sense that estimated effects and differ-
ences can be related to metabolites at the same position on the chemical shift
axis.

Apart from mean estimates and estimates of mean differences we also ob-
tained pointwise and joint confidence intervals over the entire range of the chem-
ical shift axis. For our model the pointwise confidence intervals imply that at
each chemical shift position in repeated samples over three days, the true mean
(or difference in means) function will be covered by the pointwise confidence in-
terval 95% of the time. The joint confidence intervals imply that at all chemical
shift positions in repeated samples over three days, the true mean (or difference
in means) function will be covered by the joint confidence intervals 95% of the
time.

We used the joint confidence intervals for formal hypothesis testing. We can
use the pointwise confidence intervals in an exploratory analysis for discovery
of potential biomarkers, but validation will be necessary.
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Fig 10. Top: Estimated mean curves for Day 2 (pink) and Day 3 (purple) for the three differ-
ent spectral regions that contain jointly significant points. Bottom: estimated mean differences
(blue line) between Day 3 and Day 2, with 95% pointwise (light blue areas) and 95% joint
(light yellow areas) bootstrap confidence intervals for the same chemical shift regions as in
the top row. Areas marked in black indicate regions of 95% pointwise significant differences;
the red dot at the top of the figure indicates a region of 95% joint significant difference.

The data we analysed in this paper were from a small pilot study and not
representative of any population and results should not be generalised. It serves
merely as an example data set.

In terms of comparison of results from our method with published results
using standard chemometric methods, there are different scenarios that can
play out per spectral area (metabolite) and we offer a possible interpretation:

• we obtain no pointwise significant results and no differences were reported
(published) - the results agree

• we obtain pointwise significant results and no differences were reported -
this suggest a possible biomarker using our method

• we obtain jointly significant results and no differences were reported - we
found a difference that remained otherwise obscured

• we obtain no pointwise significant difference but significant differences
were reported - taking into account the study design may cause significant
differences to disappear

• we obtain pointwise significant differences and significant differences were
reported - differences suggest possible biomarkers, but are not jointly sig-
nificant

• we obtain jointly significant results and significant differences are reported



Muller et al./Wavelet-Based Functional Mixed Models in Nutri-metabonomics 23

- the results agree

9. Discussion

We applied the wavelet-based functional mixed model to NMR nutri-metabolomics
data from a diet standardisation study. This approach allows us to respect the
study design, while modelling the NMR spectra as functions. We modelled non-
parametric fixed and random effect functions that enable us to incorporate co-
variates and repeated measurements in one model. We also demonstrated that it
is possible to model interactions. The adaptive regularisation obtained through
wavelet shrinkage is well suited to the type of data obtained from NMR where
there are many sharp peaks at different locations. We used bootstrap-based in-
ference to calculate 95% pointwise and joint confidence intervals for differences
in gender, diet culture and number of days on the diet.

The method can accommodate more complex sampling designs.
This pilot study is not representative of any population and caution should be

taken in interpreting results. However, the data serve to illustrate the methodol-
ogy and the potential of wavelet-based functional mixed models in diet standard-
isation studies. The methodology is also applicable in intervention studies in nu-
tritional metabolomics and other metabolomics studies like cancer metabolomics
and plant metabolomics.

The diet standardisation study was a pilot study for the Diet, Obesity, and
Genes (DiOGenes) six-month pan-European, multi-centre, randomised, con-
trolled, dietary-intervention trial in obese and overweight families. In DiOGenes
the five dietary interventions consisted of four combinations of low- or high-
Glycaemic Index (LGI or HGI) and low- or high-protein (LP or HP) respec-
tively, and a control diet. (Larsen et al., 2010; Aston et al., 2010; Moore et al.,
2010)

The DiOGenes trial provides the context for future analyses using the wavelet
based functional mixed model that we demonstrate here using the diet standard-
isation study. The adults participating in the DiOGenes study via the Danish
centre were selected for a metabolomic analysis to investigate the influence of
different dietary patterns on the urine metabolome. Of the 109 participants, 77
collected 24-hour urine samples at all four time points in the study (Rasmussen
et al., 2012a,b). The analysis of these data is not included here. It will, however,
be a natural next step to analyse these data using the wavelet based func-
tional mixed model approach, now that proof of concept has been established
on metabolomics data from the diet standardisation study.

It is interesting that some of the 95% joint significant areas lie in the shoulders
of peaks, where the rest of the peak is potentially pointwise significant. We have
some concerns related to the influence of ‘residual misalignment’ in terms of
data that could be ‘well enough’ aligned for standard chemometric analysis.
We suspect that wavelet-based functional mixed models are sensitive to very
small misalignments, especially in the base of peaks and the valleys between
peaks. We plan to investigate this potential sensitivity of our method to small
perturbations in alignment on simulated data.
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On a methodological level there is a need to investigate subset selection of
wavelet coefficients for input to mixed modelling, together with the selection
of primary resolution. The abovementioned issue of sensitivity to small mis-
alignments is also relevant in this context. The use alignment methods from the
functional data analysis literature, specifically k-means clustering and align-
ment, as well as simultaneous alignment and modelling may provide interesting
avenues to investigate in the contact of NMR metabolomics spectra.
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Abstract

We present the concept of heart plots in spectral data, specifically for nuclear magnetic resonance peak of Lorentzian shape, i.e.
with a Cauchy distribution. Heart plots provide a unique and useful view of the anatomy of spectral peaks. By using derivatives
in FDA we extend the range of simple graphical exploratory methods and enable the development of more detailed methodology.
Further statistical analysis may, among other methods, include principal component analysis of peak hearts and hypothesis testing.

Keywords: spectra, NMR, phase-plane plots, functional data analysis

1. Introduction

Analytical chemists are confronted with huge quantities of
data and routinely use multivariate approaches, especially for
pattern recognition.

There is a huge body of statistical literature, of which only
a small portion will eventually be useful to chemists. Modern
statistical approaches are not common in mainstream chemistry,
and very few of the recent developments in statistics will make
their way into the chemometricians’ toolbox. As is the case
in many disciplines, ideas are typically dissipated separately in
chemometrics and statistics. Generally speaking, there is quite
a gap between statisticians and chemometricians. ([1], Chap.
1) In this article we take a first step in terms of bridging the gap
between statisticians and chemometricians.

This paper will appeal to (1) analytical chemists and chemo-
metricians interested in modern statistical techniques applied to
the analysis of spectral data, but also to (2) applied statisticians
who desire to acquire an understanding of spectral data and the
application of functional data analysis in chemometrics.

In terms of mathematical novelty, new theory is not the only
sign of innovation. In fact, much of science involves connect-
ing ideas ([1], Chap. 1). In this article we connect the theory
of functional data analysis (from statistics) with spectral data
(analytical chemistry).

The defining feature of Functional Data Analysis (FDA) is
that a sample, or record, is a function as opposed to a single
data point [2]. The functions are often smooth curves and can
be observed over time or other dimensions such as space, fre-
quency or chemical shift. Statistical analyses are then carried
out on these functions and their derivatives, as opposed to anal-
yses of the data points as repeated measurements (in statistics)
or as multiple variables (in chemometrics).

In terms of spectral data, each function will belong to a sin-
gle (chemical) sample and will be measured over chemical shift

Email addresses: m.muller@math.ku.dk (Martha Muller),
ramsay@psych.mcgill.ca (James O. Ramsay)

(frequency) for NMR data. Although we focus on NMR spec-
tra in this article, many of the concepts are applicable to other
spectral data, e.g. infrared and mass spectrometry.

As is often the case in different disciplines, different termi-
nology is used to describe the same concept. In chemometrics
and functional data analysis/statistics this is also the case. We
provide a glossary of basic terms that are equivalent in the two
fields (Table 1).

Although FDA has not yet featured in recent reviews of the
most significant developments in the field of chemometrics [3,
4], it has been applied in chemometrics [5].

Our objective is to build a bridge between the fields of
chemometrics and functional data analysis by introducing heart
plots. In this article we formulate spectral data as mathematical
functions, in order to reveal important and often hidden fea-
tures of peak anatomy in the data. We plot these peak anatomy
features, namely the slope (first derivative) against the curva-
ture (second derivative), in a phase-plane plot, called a ‘heart
plot’. These heart plots are best utilised per interval and we
name these iheart plots. Heart plots are powerful tools that re-
veal variability in spectral data.

In the first section we present simulated data. Second, we
present a brief overview of the theory and methods of Func-
tional Data Analysis relevant to spectral data in chemometrics.
In the third section, we use simulated data, to illustrate the con-
cept of heart plots. Finally we discuss the significance of our
results and the value of iheart plots as a chemometric tool.

2. Materials and Methods

We use a number of simulated peaks to illustrate the concept
of heart plots.

The chemical shift (x-axis) scale that we use is 3000 points
for 1 ppm (i.e. 1 point = 0.0003 ppm). This is typically what we
can expect from real data acquired at 400.13 MHz. We simulate
the data over 1000 points, which spans an interval of 0.3 ppm.
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Table 1: Glossary of equivalent terms

NMR chemometrics Functional Data Analysis
intensity amplitude
chemical shift (δ) (in location, phase
parts per million (ppm))

sample record, curve, function

smoothing regularisation
alignment registration, warping

line peak
line shape peak shape, distribution
Lorentzian line shape Cauchy distribution

X ∼ Cauchy(θ, γ)
full width half 2γ in the Cauchy distribution
maximum (FWHM)

multiplet a group of (multiple) peaks
singlet one peak
doublet two peaks (1:1)
triplet three peaks (1:2:1)
quartet four peaks (1:3:3:1)
quintet five peaks (1:4:6:4:1)
sextet six peaks (1:5:10:10:5:1)
septet seven peaks (1:6:15:20:15:6:1)

J-coupling distance between peaks
coupling constant magnitude of the splitting (difference

in frequency) between peaks
intensity ratio height ratio (of peaks in a group)

pattern recognition classification
calibration regression
multivariate curve deconvolution
resolution

It is known that NMR line shapes are Lorentzian. Typical
linewidths (FWHM) in 1H NMR spectra of small molecules
in solution are around 0.2Hz [6] (p.7). Therefore we use
Lorentzian line shapes (Cauchy distributions for peaks), with
full width half maximum (FWHM) of 0.2 Hz, i.e. (0.2 Hz /

400.13 MHz =) 0.0005 ppm = 0.83 points. The scale parame-
ter of the Cauchy distributions is thus 0.005 ppm = 1.66 points.

A typical value for the coupling constant would be 7 Hz. We
simulate multiplets with coupling constants of 7 Hz = 0.0175
ppm = 58.33 points and intensity ratios of 1:1 (doublet), 1:2:1
(triplet), 1:3:3:1 (quartet), 1:4:6:4:1 (quintet), 1:5:10:10:5:1
(sextet), and 1:6:15:20:15:6:1 (septet).

2.1. Functional data analysis

The field of FDA has developed rapidly over the last two
decades, both in terms of theory and diverse fields of applica-
tion. We provide a brief overview of the basics of Functional
data analysis (FDA) [2] as it is applicable to functional repre-
sentation of NMR spectra. The concepts can be applied to other

spectra, e.g. mass spectrometry.
In FDA each sample, or record, is a function or curve as op-

posed to a single data point. The functions are often smooth
curves and can be observed over time or other dimensions such
as space, frequency or chemical shift. Functional data are often
measured at equally spaced intervals, but this is not a require-
ment. In each functional sample there is a finite set of numbers
that reflect smooth variation in intensity and can be assessed
at any value in the defined range. Functional data are often of
high dimension, and for practical purposes each record consists
of a fully observed function over the defined range. One of the
aims of FDA is to separate amplitude variation (on the y-axis)
and phase variation (on the x-axis) by curve registration. This
process has some overlap with alignment of spectra in chemo-
metrics. Statistical analyses are performed on the functions and
their derivatives.

NMR spectra are represented as NMR intensity values over
equally spaced intervals on the chemical shift axis (in ppm
units). In each functional record, i.e. each spectrum, there is
a finite set of numbers that reflect smooth variation in the inten-
sity. The intensity can be assessed at any chemical shift (ppm)
value in the range. The data are of high dimension, typical
of functional data, and for practical purposes each record con-
sist of a fully observed function over the defined chemical shift
range.

Typically we will apply the following steps to each functional
record:

1. Smoothing (specification of a basis system, building of
Functional Data objects);

2. Registration / Feature alignment:
3. Calculate first and second derivatives of functional objects;
4. Phase-plane plots; and
5. Functional modelling.

In phase-plane plots we plot the second derivative (acceler-
ation) against first derivative (velocity). A phase-plane plots is
a powerful tool for exploring harmonic variation even in data
where we do not ordinarily think of cyclic variation. Essen-
tially, it is a graphical analogue of a second-order differential
equation.

3. Results

3.1. Simulated data

In Figure 1, on the left, five identical Lorentzian lines
(Cauchy peaks) are displayed (solid lines). Five factors are var-
ied one by one (broken lines). On the righthand side of Figure 1
the corresponding heart plots are displayed. The following con-
cepts are illustrated in (a) to (e):

The heart plot of a Lorentzian line is

a. invariant to the position of the peak (chemical shift)
b. invariant to a constant baseline added to the peak
c. invariant, with regard to shape and size, to a non-constant

baseline added to the peak, but the baseline translates into
a horizontal shift of the heart
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Figure 1: Lorentzian lines (Cauchy peaks) (solid red lines, graphs on the left)
and variations (broken blue lines) with corresponding heart plots (on the right).
Variations in (a) position / chemical shift, (b) constant baseline added t, (c) non-
constant baseline added, (d) height (e) line width/FWHM (scale parameter).

d. invariant in shape, with regard to the height of (i.e. area
under) a peak, but not with regard to size: a smaller peak
height results in a smaller heart

e. an increase in line width results in a reduction in the size
of the heart, but the shape of the heart is invariant to the
line width (FWHM, scale parameter of the Cauchy distri-
bution).

In Figure 2, (a) on the left, a Lorentzian line (Cauchy peak),
identical to those in Figure 1, is displayed (solid red line) with a
Gaussian peak of similar FWHM (broken blue line). Figure 2,
(b-e) on the left displays Lorentzian shape doublets (two peaks)
with decreasing coupling constants of (b) 7 and 2.8 Hz, (c) 1.4
and 1.05 Hz, (d) 0.77 and 0.56 Hz, (e) 0.42 and 0.28 Hz. Cor-
responding hearts plots follow on the righthand side of each
graph.

The following concepts are illustrated in (a) to (e):

a. changing the line shape from Lorentzian to Gaussian re-
sults in a differently shaped heart: much ’fatter’ i.e. shorter
and wider, compared to the Lorentzian heart

b. a doublet, with a coupling constant of equivalent to 7 Hz,
has a practically identical heart plot to that of a singlet
of the same height (see Fig. 1(a)), apart from having two
hearts on top of each other. Even when the coupling con-
stant is reduced to 40% of the original value (blue dashed
line) the heart plot of the doublet is not distinguishable
from a singlet of the same height

c. when the coupling constant decreases further (to 20% and
15% of the original value), the two hearts of a doublet be-
comes distinguishable and the top centre of the smaller
‘heart’ swells upward

d. when the coupling constant decreases even further (to 11%
and 8% of the original value), the smaller of the two
doublet ‘heart’ shapes becomes more tear shaped and the
larger one breaks into two heart points at the bottom

e. when the coupling constant decreases so much (to 6% and
4% of the original value) that the doublet appears as a sin-
glet, firstly (for 6%) the smaller of the two ‘hearts’ (that
became tear shaped) disappears into the larger one that
breaks further into two ‘points’ at the bottom and then (for
4%) become one large ‘heart’ where the bottom point has
been cut off.

In Figure 3, on the left, one large Cauchy peak (red broken
line) is displayed in all five graphs (a to e) and a small Cauchy
peak (20% of the height of the large peak) (solid lines) ap-
proaching the larger peak. The dynamic range is decreasing
the distance between the peaks from (b) 23.4 points to 11.7 to
(c) 8.775 and 7.02 to (d) 5.265 and 4.095 to (e) 2.925 points.

We observe that the small peak approaches the large peak,
but is still clearly distinguishable (b) before it comes so close
that it becomes a ‘shoulder’ on the large peak (c). In (d) and
(e) the small peak is absorbed within the large peak. The heart
plots show that:

a. the large Cauchy peak forms a heart plot (for reference)
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Figure 2: Singlets and doublets (graphs on the left) with corresponding heart
plots (on the right). Variations in (a) the shape of the peak and (b-e) size of the
coupling constant of the doublet.

b. the small peak appears as a small heart inside the large
heart, which is identical to the singlet heart in (a). As the
smaller peak moves closer to the large peak the heart has
a slight and asymmetric swelling in the top centre

c. the more the small peak becomes a shoulder of the large
peak, the more the smaller ‘heart’ deforms, migrates to-
wards the right and the right upper lobe of the heart swells

d. when the small peak is absorbed by the large peak the
small ‘heart’ shrinks and deforms, the previous swelling
of the right upper lobe diminishes and the righthand side
of the large heart also shrinks

e. in the final stage of totally absorbing the small ‘heart’, the
large heart deforms by diminishing the entire right lobe
and swelling the entire left lobe and in so doing tilts the
bottom point of the heart slightly to the left

In Figure 4, on the left, we show (a) a singlet (for reference),
followed by (b-e) a triplet (peak height ratios of 1:2:1), quar-
tet (peak height ratios of 1:3:3:1) , quintet (peak height ratios
of 1:4:6:4:1) and sextet (peak height ratios of 1:5:10:10:5:1).
Corresponding heart plots are show on the righthand side.

The following is displayed:

a. the heart plot of a singlet (for reference)
b. the triplet heart plot with one heart identical to that of the

singlet in (a) with two additional and identical (in shape)
smaller hearts inside

c. the quartet heart plot with two pairs of identically shaped
hearts, one pair identical in size to the singlet heart in (a),
with another pair of smaller hearts inside. Note the quar-
tet’s inner hearts are smaller than that of the doublet in (b)

d. the quintet heart plot results in a heart identical to a singlet,
but with two pairs of identically shaped and smaller hearts
inside

e. the sextet heart plot has six identically shaped hearts, in
three pairs of two identically sized hearts each, with the
largest pair identical in size to the singlet heart. Note the
two pairs of smaller hearts are smaller than those of the
quintet in (d).

In Figure 5, we demonstrate the effect of square root trans-
formation on Cauchy peaks. On the left, in Fig. 5(a) a singlet
Cauchy peak (red) with its square root transformation (blue) is
displayed and enlarged in (b). In spectral data, peak heights are
typically of different orders of magnitude (c and d) e.g. from
right to left (all in red) heights of 100 000, 10 000, 1000 (barely
visible in (c)), 100 (invisible in (c)) and 10 (invisible in (c) and
barely visible in (d)) with the corresponding square root trans-
formation displayed (all in blue in (c and d)).

From the heart plots on the right of Fig. 5(a – e) we see:

a. the heart plot of a square root transformed Cauchy peak
(blue) is much smaller than the original (red)

b. the shape of the square root transformed Cauchy peak
(blue) is more compressed in vertical dimension and the
two top lobes of the heart are stretched towards the out-
side (compare with (a))
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Figure 3: A large Cauchy peak (red broken line, graphs on the left) and a
small Cauchy peak (solid lines) with decreasing dynamic range between the
two peaks. Corresponding heart plots (on the right). (a) is the reference large
Cauchy peak; with decreasing dynamic range between the two peaks: (b) , (c) ,
(d) and (e) s.
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Figure 4: Multiplets (solid lines, graphs on the left) with corresponding heart
plots (on the right). Variations in the number of peaks in the multiplet: (a)
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c. on the original scale only the heart plots of the largest two
peaks (heights of 100 000 and 1000) are visible without
zooming in; the three smaller peaks ‘disappear’ on the
heart plot

d. for the square root transformed peaks, there is less differ-
ence in size among hearts originating from peak heights
with different orders of magnitude in their height and three
of the hearts are clearly visible without zooming in

4. Discussion

Heart plots provide a unique and useful view of the anatomy
of spectral peaks. A number of questions arise with the per-
spective for future analysis of spectral hearts

• Where in the spectra is variability the largest?

• Are there individual records with distinctive curves?

• Why do peaks show up as hearts?

• What information does the size of the heart convey?

• Does inter-record variability correspond to (chemical) en-
ergy?

• Why do certain sections of the phase-plane plot show up
on the right vs. the left?

By using derivatives in FDA we extend the range of simple
graphical exploratory methods and enable the development of
more detailed methodology. Further statistical analysis may,
among other methods, include principal component analysis of
peak hearts and hypothesis testing.
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tioned model.
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1. Introduction

Functional data are often unsynchronized in their raw form, either due to the
sampling process or due to random phase variation (or both). This makes analy-
sis on the raw data problematic since, for example, cross-sectional sample statis-
tics can be misleading. Registration is the process of mapping unsynchronized
curves into a synchronized class of functions, with the purpose of effectively
filtering out noise before subsequent statistical analyses [1].

At best, registration should use any knowledge of the data generating system,
in particular the shape of the underlying signal as well as the nature of possible
pertubations. In this paper we discuss registration for functional data from
juggling, taking into account simple biomechanical considerations.

Ideally, biomechanics of juggling may be described mathematically by nonlin-
ear dynamical systems, but feedback and feedforward motor control mechanisms
are necessary to overrule any disturbed dynamics and thereby impose desired
movements or dynamics. We consider data from juggling cycles within in trial
as pertubated versions of an idealized periodic movement. The periodic curve
represents the average dynamics of the juggling process, whereas the deviations

∗Main article 10.1214/14-EJS937.
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between the observed data and the idealized signal reflect the complex feedback
mechanism between the brain and the motor control system [4].

In conceptualizing an appropriate idealized mathematical model of human
juggling, we consider the creation of an electromechanical juggling robot. How
would we build and program such a robot? As a minimum, we would construct a
rotating finger or hand limb and attach it with a joint to a fixed bar (representing
an arm). We could conveniently label the two ends of the hand limb as ‘finger
tip’ and ‘joint’.

As a first attempt, we keep the position of the joint fixed and let the position
vector from joint to finger tip be periodic. Regarded from a fixed external coor-
dinate frame the position of the finger tip of the robot would trace a trajectory
described by

f(t) = f0(t) + c0

where c0 ∈ R3 corresponds to the fixed position of the joint and f0 : I → R3 is
the periodic position vector function. Assuming that the robot is a rigid body
introduces the geometric constraint that f0 has constant length, d, such that
|f0(t)| = d for all t ∈ I.

The juggling robot can be improved by allowing the position of the joint to
follow a periodic curve. This gives a decomposition of the form

f(t) = f0(t) + c0(t), (1)

where c0 : I → R3 is the trajectory of the joint, while f0 still describes the
vector from joint to finger tip and satisfies |f0(t)| = d for all t ∈ I for some d.
For identification purposes we assume that c0 has a simple structure meaning
that it belongs to a lower dimensional function space.

In this paper, decompositions of the type (1) will be regarded as idealized
juggling signals, and we will demonstrate how to register the observed data
towards such idealized signals, i.e. demonstrate that is it is possible to warp and
filter the juggling trials such that the resulting curves allow a decomposition of
the form (1).

Sections 2 and 3 give a complete description of the registration procedure and
details about implementation. In Section 4 we display the results of applying
the procedure to the ten trials from the juggling data. Finally, in Section 5
we evaluate the perspectives of combining phase registration and biomechanical
constraints.

2. Data and registration procedure

The pre-processed data [2] (lightly smoothed, centered, rotated and trimmed)
is the starting point of our analysis, and is referred to as “observed data” or
“raw data” in the remainder of the paper. The data indicate the position of the
right index finger during juggling and is thus composed of three coordinates. We
write f(t) = (f1(t), f2(t), f3(t)), and let n denote the number of cycles. There
are 10 signals/trials, all collected from the same person. The number of cycles
per trial varies from 11 to 13.



1858 A. Tolver et al.

The suggested registration procedure is applied to each trial separately, but
on all three dimensions and all cycles simultaneously. The implementation de-
tails are described in Section 3, but, in short, the complete procedure is split
into three steps:

1. Warping The observed signal consisting of several cycles is converted
into a warped version f ◦ h, where cycles are warped towards each other
using a periodic average function as target for the registration procedure.

2. Averaging Based on the warped signal, f ◦ h, a periodic average, de-
noted by Pf , is computed as a projection onto the (high-dimensional)
space of periodic functions.

3. Decomposition The periodic average Pf is decomposed into two peri-
odic terms: a joint movement J belonging to a low-dimensional space, V ,
and a remainder Pf − J f with approximately constant length along the
trajectory.

The complete procedure involves estimation of a warping function h, a peri-
odic average, and a joint movement J f . Notice that Pf and J f are periodic
per construction, and thus have no between-cycle variation. In particular, we
only need to plot the curves on the interval corresponding to one cycle. On the
other hand, the warped, but not averaged, curve f ◦ h may potentially show
amplitude variation between cycles, but presumably only little phase variation,
since that has been diminished by warping.

The second step involves projection onto a space of periodic three-dimensional
functions. If this projection is denoted by Qper, then Pf = Qper(f ◦ h). If ‖ · ‖
is the standard L2-norm and g is a three-dimensional curve, then

‖Qperg‖
‖g‖ =

√
‖g‖2 − ‖g −Qperg‖2

‖g‖2 =

√
1− ‖g −Qperg‖2

‖g‖2 (2)

takes values in [0, 1] and is a natural measure of the degree of periodicity in g.
When data from different cycles are warped against each other as in step 1, we
would expect a larger degree of periodicity compared to the raw data. Hence,

comparison of
‖Qperf‖

‖f‖ and
‖Qper(f◦h)‖

‖(f◦h)‖ can be used to quantify the effect of

warping on periodicity (see Section 4).

3. Implementation

This section describes technical details of the implementation of our registra-
tion procedure. The emphasis is on the decomposition step, since warping and
averaging rely on existing techniques and software.

Let f denote a signal consisting of n complete juggling cycles. The duration
of each cycle within a trial is rescaled to [0, 1], then the same implementation
can be used for all trials, even though the number of cycles are different.

Warping First, we expressed f in terms of 201 Fourier basis functions, and
computed the orthogonal projection fper on the space of periodic functions
Lper,n containing n replications of the same signal. Due to the Fourier basis
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representation this amounts to keeping coefficients corresponding to harmonics
of order n, 2n, 3n, . . . ,Kn (where K is the largest K such that Kn ≤ 100).
Second, a time warping function h maximizing the coherence between f ◦h and
fper was estimated. We used the minimal eigenvalue of a cross-product matrix
with a roughness penalty on curvature of h as estimation criterion, see [3, Section
7.6]. In order to ensure a sufficient degree of smoothness of the warped signal
f◦h we restricted h to the space spanned by 101 B-splines of order 5 with equally
spaced break points. The roughness of the warping functions were controlled by
penalizing the squared integral of second order derivatives. The robostness to
the value of the penalty parameter λ was examined and for the results presented
below we used λ = 10−11 based on visual inspection.

Averaging The warped function f ◦ h was projected onto Lper,n (see the
paragraph on the warping step above). Hence, we obtain a periodic average of
f ◦ h, denoted Pf and spanned by periodic harmonics.

Decomposition To implement the estimation of J f in step 3 it was conve-
nient to expand all functions in terms of orthogonal complex exponentials. De-
noting by ak and bk, k = 1, 2, 3, the three coordinate functions of the periodic av-
eragePf (known) and joint movement J f (to be estimated), we have expansions

ak(t) =

m∑

j=−m

ak,j exp(iωjt), bk(t) =

l∑

j=−l

bk,j exp(iωjt)

and hence

a′k(t) =
m∑

j=−m

iωjak,j exp(iωjt), b′k(t) =
l∑

j=−l

iωjbk,j exp(iωjt).

Here ω = 2πn where n is the number of cycles.

We emphasize that Pf has already been expressed in a finite Fourier basis,
thus m and ak,j are all fixed and known at this point of the analysis, whereas
the coefficients bk should be estimated. For l < m fixed, we collect the unknown
parameters in θ:

θ = {bk,j|k = 1, 2, 3, j = −l, . . . , l}

Some comments on the choice of l: The regularization assumption l < m is
necessary for identification, i.e., for the decomposition (1) to be unique since
otherwise we could just let J f = Pf − c0 with c0 ∈ R3 any fixed vector. For
l < m the joint movement J f belongs to a subspace of lower dimension than
Pf , and the idea is to choose a small l, such that the joint movement is simple.

Recall that we aim at finding J f such that Pf − J f has approximately
constant length; hence we want the derivative of the squared length to be ap-
proximately zero for all t:

D|Pf(t)− J f(t)|2 ≈ 0.

This leads to the following criterion function to be minimized:
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C(θ) =

∫ 1

0

[
D|Pf(t)− J f(t)|2

]2
dt (3)

=

∫ 1

0

[
D

3∑

k=1

(ak(t)− bk(t))
2

]2

dt

= 4

∫ 1

0

[
3∑

k=1

D(ak(t)− bk(t)) · (ak(t)− bk(t))

]2

dt.

If we introduce the notation ek,j = ak,j − bk,j (with bk,j = 0, |k| > l) for
the Fourier coefficients of the difference Pf − J f , and furthermore cj1,j2 =

{∑3
k=1 j2ek,j1ek,j2} and let j ∈ Is if j, s− j ∈ {−m, . . . ,m}, then

C(θ) =

∫ 1

0




2m∑

s=−2m

iω
∑

j∈Is

cs−j,j exp(iωst)



2

dt.

Finally, if we let ds =
∑

j∈Is
cs−j,j and use that d−s = −ds (complex conjugate),

then we end up with the following simple formula for the criterion function

C(θ) = −4ω2
2m∑

s=−2m

dsd−s = 4ω2

{
|d0|2 + 2

2m∑

s=1

|ds|2
}
. (4)

The representation (4) makes it feasible to compute numerically the value and
the gradient of the objective function as a function of θ to be used for the
minimization algorithm. Since we are looking for a real valued estimate of the
joint movement J f , we found it convenient to reparameterize the problem in
terms of a basis of sines and cosines. For the results below we used l = 1
corresponding to the joint movement being expressed in terms of first order
harmonics only.

4. Results

We applied the registration procedure described above to each of the ten juggling
trials. We will use trial 8 for detailed illustration, because the effect of the
warping step was largest for this trial.

Warping and averaging Figure 1 shows the effect of steps 1 and 2 (warping
and averaging) on trial 8. The vertical coordinate (z)of the raw data (dashed) is
shown together with vertical coordinate of the periodic signal Pf (solid). The
raw signal does not exhibit much misalignment but the signal is indeed warped
slightly. Notice how the warping is more pronounced towards the ends of the
trial. The average curve Pf for trial 8 is shown for each coordinate separately
in the left part of Figure 2, and as a 3d-curve in the right part of the figure
(solid curve).

For the raw data the degree of periodicity, cf. definition (2), was 88.0%,
whereas for the warped data this number increased to 98.6%. All other trials
had degrees of periodicity of 94.3% to 97.2% before warping and between 97.5%
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Fig 1. Warping and averaging for trial 8. The dashed curve shows the z coordinate of the
observed data, while the solid curve shows the z coordinate of Pf .
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Fig 2. Left: The three directions of the warped and averaged curve Pf for trial 8. Right:
3d-illustration of the decomposition for trial 8. The solid curve shows the average Pf , the
dashed curve shows the estimated joint movement curve J f , and the dotted lines illustrate
the trajectory of the difference Pf−J f (each dotted line correspond to a specific time point.)

and 99.2% after warping. Hence, in general, only a limited amount of warping
towards the periodic template was necessary. Visually, the raw and averaged
trials were almost indistinguishable, except for trial 8 (see Figure 1).

The upper left, upper right and lower left plots of Figure 3 show the three
coordinates of the warped curves f ◦ h for all ten trials, split into cycles and
rescaled to the unit interval. The curves are coloured according to trial (but note
that curves from different trials have not been aligned). In general, cycles within
a trial are well aligned. Therefore the projection onto Lper,n is a good repre-
sentation of a trial. Note that the projections are similar across trials (-see the
lower right part of Figure 3). The warping criterion gives less weight to coordi-
nates with lower amplitude variation. This may explain why most misalignment
is present in the y direction.
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Fig 3. Upper left, upper right and lower left: The three coordinates of the warped curves f ◦h
cut into individual cycles for each trial. For a trial with n cyc les, the complete curve was
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Cycles of the same colour and line type stem from the same trial. Lower right: 3d-scatterplot
of the periodic average Pf for all trials.

Decomposition The estimated joint movement J f for trial 8 is shown as a
dashed curve in the right part of Figure 2. Recall that the estimation procedure
seeks the curve J f such that the vector Pf − J f has approximately constant
length over the trajectory. This vector is illustrated by the dotted lines between
the two curves, and its length varies from 0.179 m to 0.182 m for trial 8.

The decompositions for all curves are illustrated in Figure 4. The left part
shows the length |Pf − J f | over the trajectories (scaled to the unit interval),
and the right part shows the joint movements J f . We make the following im-
mediate observations from Figure 4: First, for all ten trials it was possible to
obtain a function J f ∈ V such that the distance |Pf − J f | is approximately
constant over time. This indicates that our simplistic biomechanical consider-
ations leading to equation (1) characterizes some of the main features of the
data generating mechanism. Second, the estimated length varies from 0.077 m
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Fig 4. Left: Estimated trajectory of distances, |Pf − J f |, for all 10 trials. Right: Estimated
joint movement, J f , for all ten trials. In both plots the estimate correponding to trial 8 is
shown as a solid curve.

.

to 0.181 m across the ten trials. This is somewhat disappointing as we had
hoped for an interpretation of this length as the length of a part of the hand or
arm of the juggler. Third, the variation between the estimated joint movement
curves is substantial. The decomposition restricts J f to be spanned by first
order harmonics in all three directions. Allthough the curves are approximately
elliptic they are different regarding angle and position.

5. Discussion

The purpose of the paper was to illustrate how the physical nature of a biome-
chanical system could be taken into account when removing phase variation of
functional data from juggling. We have demonstrated that it is possible to warp
all ten juggling trials such that the resulting structural mean over all cycles
allows a decomposition as in (1).

The most striking observation is that the estimated distance from finger tip
to joint, which should be an internal constant of the body anatomy, varies
substantially across the ten trials. This complicates the physical interpretation
of the estimated decomposition. Looking more carefully at the curves in the left
part of Figure 4, there seems to be some common patterns in the deviations
from constancy. Curves with low values of d seem to have peaks and valleys at
the same time points (for example around 0.38 and 0.82), i.e. at the same time
points of the juggling cycle. This indicates that our simple model might not
have captured all features in the data.

A possible extension of the model would be to allow for more flexibility in
the space V for the joint movement, i.e. by introducing harmonics of higher
order in the basis for J f . However, it seems more likely that adjustments from
the idealized set-up given by (1) is taking place around the finger tip (far from
the corpus) rather than at joints closer to the corpus. This suggest to relax the
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focus on constant length of Pf − J f . For example, the criterion function C(θ)
in the decomposition step, see (3) and (4), could be adjusted to have a time-
varying penalty on deviations from constancy. This would, however, complicate
the optimization problem substantially.

In this connection, it should be mentioned that the numerical optimization
problem for estimating the decomposition was more challenging than expected.
The algorithm we used produced reliable estimates but was slow. This part of
the implementation could be improved.

It is important to realize that amplitude and phase variation are bound to be
intertwined, as an adjustment via a change in speed (phase) will most likely also
change the amplitude. In relation to this, the complicated interplay between
the estimation the warping function (step 1) and the estimation of the joint
movement (step 3) should also be noticed. In particular, the space V for the
joint movement is not invariant to warping (i.e. g ∈ V does not imply that
g ◦ h ∈ V for a warping function h). Too much warping of f may destroy the
interpretation of the decomposition. This could be avoided by simultaneously
estimating the warping function and the decomposition, i.e. to incorporate the
warping (and averaging) step into the decomposition step.

Apart from the suggestions mentioned above, it would be interesting to exam-
ine the robustness of the registration. Simulations could clarify the importance of
the explicit form of the underlying signal on the performance of the registration
procedure. Moreover, it would be interesting to fit a common joint movement
curve to all s, and see the effect on the corresponding position vectors Pf −J f
and their lengths.
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Abstract
For decades, it has been debated whether high protein intake compromises bone mineralisation, but no long-term randomised trial has
investigated this in children. In the family-based, randomised controlled trial DiOGenes (Diet, Obesity and Genes), we examined the effects
of dietary protein and glycaemic index (GI) on biomarkers of bone turnover and height in children aged 5–18 years. In two study centres,
families with overweight parents were randomly assigned to one of five ad libitum-energy, low-fat (25–30% energy (E%)) diets for
6 months: low protein/low GI; low protein/high GI; high protein/low GI; high protein/high GI; control. They received dietary instructions
andwere provided all foods for free. Children, whowere eligible andwilling to participate, were included in the study. In the present analyses,
we included children with data on plasma osteocalcin or urinary N-terminal telopeptide of collagen type I (U-NTx) from baseline and at least
one later visit (month 1 or month 6) (n 191 in total, n 67 with data on osteocalcin and n 180 with data on U-NTx). The level of osteocalcin was
lower (29·1 ng/ml) in the high-protein/high-GI dietary group than in the low-protein/high-GI dietary group after 6 months of intervention
(95% CI 2·2, 56·1 ng/ml, P¼0·034). The dietary intervention did not affect U-NTx (P¼0·96) or height (P¼0·80). Baseline levels of U-NTx
and osteocalcin correlated with changes in height at month 6 across the dietary groups (P,0·001 and P¼0·001, respectively). The present
study does not show any effect of increased protein intake on height or bone resorption in children. However, the difference in the
change in the level of osteocalcin between the high-protein/high-GI group and the low-protein/high-GI group warrants further investigation
and should be confirmed in other studies.

Key words: Children: Bone turnover: Dietary glycaemic: Osteocalcin: Dietary protein: index: DiOGenes: Randomised
controlled trials

Optimal growth and skeletal development during childhood
and young adulthood is crucial for avoiding low bone mass
and osteoporosis later in life. The influence of dietary protein
on bone status has been debated for decades, but remains
controversial. Different study designs have been used to inves-
tigate this, but conflicting results have been reported(1–4).
Experimental studies on the effects of dietary protein on Ca
excretion and absorption have been carried out in adults.
Based on these studies, high protein intake, especially that of
animal origin, has been hypothesised to affect bone

mineralisation adversely by increasing bone resorption and
thereby urinary Ca excretion(5–10). However, some studies in
adults(11–14), but not all(5,6,15,16), have shown compensatory
increased Ca absorption with increasing intake of dietary
protein. When looking at measures of bone status, observa-
tional studies in adults(2,17) and children(18–22) and protein
supplementation trials in adults(2) have shown a small positive
effect of dietary protein on bone status. In a 7 d intervention
study in 8-year-old boys, Budek et al.(23) found that a high
intake of protein from milk, but not from meat, decreased

*Corresponding author: S. Dalskov, fax þ45 35 33 24 83, email smd@life.ku.dk

† DiOGenes is the acronym of the project ‘Diet, Obesity and Genes’.

Abbreviations: DiOGenes, Diet, Obesity and Genes; E%, percentage of energy; GI, glycaemic index; HGI, high glycaemic index; HP, high protein; LGI, low

glycaemic index; LP, low protein; U-NTx, urinary N-terminal telopeptide of collagen type I.
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bone turnover as measured by serum osteocalcin and serum
C-terminal telopeptides of type I collagen. So far, no long-
term trial in children has been conducted to assess the effect
of dietary protein on bone turnover or bone status.
Bone turnover can be assessed by biomarkers in the blood

and urine. Osteocalcin is a non-collagenous extracellular
matrix protein produced by osteoblasts. It contains three gluta-
mic acid residues, which are post-translationally carboxylated
to increase their affinity for mineral ions. In contrast, partial or
no carboxylation makes osteocalcin more susceptible to be
released from osteoblasts into the circulation(24). Traditionally,
osteocalcin measured in serum or plasma has been considered
as a marker of bone formation. However, genetic knockout
studies have indicated no direct relationship between osteocal-
cin and mineral deposition events, but have rather shown that
osteocalcin participates in the regulation of the mineralisation
process(25). Urinary N-terminal telopeptide of collagen type I
(U-NTx) is a breakdown product released during the resorption
of bone, and is used as amarker of bone resorption. Biomarkers
of bone formation and resorption are normally closely related,
and the balance between them may reflect whether a higher
turnover results in increased or reduced bone mass.
The primary aim of DiOGenes (Diet, Obesity and Genes),

a large-scale, European randomised intervention trial, was to
examine the effects of diets varying in protein content and gly-
caemic index (GI) on weight maintenance in adults after a
weight-loss period. However, the children of these adults
were also included in the study. To assess whether a high-
protein diet could be detrimental to bone health in children,
the bone markers osteocalcin and U-NTx were analysed in the
children’s blood and urine samples, respectively. The possible
positive effects of protein on body-weight regulation and the
risk markers of CVD in adults(26) should be weighed up against
concerns about the safety of high-protein diets. The question
then arises: what about the GI part of the DiOGenes study –
does that mean anything to bone health? Since the initiation of
the study, several studies have examined the connection
between energy metabolism (including insulin signalling) and
bone metabolism(27). Looking at some of the findings in these
studies, we postulate that a diet with a low GI might benefit
not only body-weight regulation, but also bone growth.
The aim of the present paper was to examine the effects of

dietary protein andGI on bone turnover based on blood (osteo-
calcin) and urine (U-NTx) analyses in children from two of the
participating centres in the DiOGenes study. To elucidate the
relationship between osteocalcin/U-NTx and bone growth, we
also examined the relationship between the baseline levels of
osteocalcin and U-NTx and the following changes in height
across dietary groups, and examined the relationship between
dietary group and changes in height during the intervention.
All analyses presented in the study are post hoc analyses.

Experimental methods

Experimental design

Children and their parents were enrolled at eight centres
across Europe. In the present study, only data from the centres

in Copenhagen and Maastricht were included. These two
centres (the so-called ‘shop centres’) did run a more strictly
controlled version of the intervention, providing all families
with foods for free from specially designed shops, and dietary
data indicated that the intervention was only successful among
children at these centres.
The study was conducted according to the guidelines in the

Declaration of Helsinki, and all procedures involving human
subjects were approved by the local ethical committees
in the respective countries. Written informed consent
was obtained from all custody holders of the child and from
the child, when considered mature enough to understand
the procedure. During the screening visit, children and
their parents were asked to choose between participation in
all planned examinations (‘full’ protocol) or only take
part in some of the examinations, excluding blood and
urine samples. Only children accepting the full protocol
were included in the present study. The trial was registered
in the Clinical Trials database (ClinicalTrials.gov no.
NCT00390637).
In brief, families with at least one child aged 5–18 years and

one or two overweight or obese parents reaching an initial
weight loss of $8% of their body weight after an 8-week
low-energy diet (3347 kJ (800 kcal)) were randomised to one
of five intervention diets for 6–12 months: low protein (LP)/
low GI (LGI); LP/high GI (HGI); high protein (HP)/LGI; HP/
HGI; control. The randomisation was stratified according to
centre, the number of eligible parents in each family and the
number of parents with a BMI . 34 kg/m2 in each family.
The five intervention diets were all ad libitum (no restriction
on total energy intake), low-fat (25–30 E%) diets. The target
dietary differences were 15 GI units between the LGI and
HGI diets and 13 E% points from protein between the LP
(10–15 E%) and HP (23–28 E%) diets. Families randomised
to the control diet were instructed to eat according to some
general dietary guidelines: eat fruit and vegetables several
times per d; eat fish several times per week; eat potatoes,
rice or pasta and whole-grain bread every day; limit the
sugar intake especially from liquids, candy and cakes; eat
less fat especially from dairy products and meat; eat varied
food and keep the weight stable. The dietetic counselling
was focused on fat quality and amount, and less on carbo-
hydrate intake and sources, to prevent the control group
from becoming just another LP/LGI group.
The participating families were provided with free foods

from a specially designed shop during 6 months of inter-
vention. For more details about the study design and the
dietary intervention strategies used, see Larsen et al.(28) and
Moore et al.(29).
At baseline, two examination days were planned for the

children: one before and one after their parents’ low-energy
diet. For logistic reasons, the majority of children had these
two visits combined in one visit around the scheduled
second examination day. In the present study, the term
‘baseline’ refers to latest of the two visits, whenever two
separate visits were made. In addition to the baseline visit,
examinations were scheduled for 1 month and 6 months
after the start of the intervention.
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Study subjects

Children were excluded from the study if they used prescrip-
tion medication, suffered from diseases or conditions that
might influence the outcome of the study, followed a special
diet (e.g. vegetarian or lactose free) or practised elite sports.
Children with data from baseline and from at least one of
two subsequent visits (month 1 or month 6) were included
in the present analyses.

Examinations

Examinations were carried out in the morning after the child
had fasted (except for 350–500ml water) for at least 4 h.
Height (to the nearest 0·5 cm) and body weight (to the nearest
0·1 kg) were recorded at each examination day. Children were
weighed wearing light clothing. Sex- and age-specific z-scores
for height and BMI were calculated using WHO AnthroPlus
software(30,31).
On the examination days, the children delivered a spot

urine sample, avoiding the first morning urine. A blood
sample was drawn from an antecubital vein. It was not poss-
ible to perform blood sampling and urine collection at exactly
the same hour in the morning each time a child came in for
examination. For the analysis of osteocalcin, Li-heparinised
blood was centrifuged within 1 h after collection at 2500g
for 15min at 48C, and plasma was stored at 2808C until anal-
ysis. Osteocalcin was measured on an Immulite 2500 using a
solid-phase, two-site chemiluminescent immunometric assay
(Siemens Medical Solutions Diagnostics, DPC Scandinavia).
U-NTx was analysed using an ELISA (Osteomark NTx Urine
kit; Wampole Laboratories, Orion Diagnostica). Urinary creati-
nine was measured by a colorimetric assay on a Vitros 950
analyser (Ortho-Clinical Diagnostics, Johnson & Johnson
Medical). To adjust for the concentration of the urine,
U-NTx, expressed in nM-bone collagen equivalents, was
divided by urinary creatinine in mM. Intra- and inter-assay
CV were 3·5 and 5·4% (osteocalcin) and 4·0 and 7·6%
(U-NTx), as reported by the manufacturer. No information
was available for creatinine.
Children and their parents were instructed to register the

dietary intake of the children for three consecutive days
(two weekdays and one weekend day) at baseline, month 1
and month 6. They were equipped with weighing scales
(Soehnle 1208 Actuell Backnang; Leifheit AG), and were
instructed to weigh all foods and beverages consumed
during the registration periods and to provide cooking
methods and recipes for composite meals. When weighing
was not possible, the children and their parents were
instructed to record the dietary intake in household measures.
If the children were not able to perform the dietary regis-
trations themselves, their parents were asked to assist them.
The principles of analysis of dietary records in DiOGenes
have been described elsewhere(28,32). Intakes of protein,
carbohydrates and fat were expressed as E%. Since energy
intake is dependent on sex, age and body size, it was
evaluated relative to an estimated BMR calculated using the
formulas suggested by Henry(33).

Statistical methods

Children with data from baseline and from at least one later
visit (month 1, month 6 or both) were included in the present
analyses.
Baseline characteristics are presented for children included in

the analyses of osteocalcin, U-NTx and either or both of these.
For children whose 6-month data were available, changes in
height and BMI z-score over this 6-month period are also given.
Dietary intake was compared at baseline, month 1 and

month 6 between the five dietary groups. Raw data are
presented as medians and interquartile ranges. Data were
analysed using ANCOVA, with centre as a random effect
detecting variations between centres. Outcomes were trans-
formed if necessary to meet model requirements. P values
based on likelihood ratio tests are reported for the overall
group effect; in addition, P values, estimates and 95% CI are
given for selected pairwise comparisons.
ANCOVA was used for evaluating differences between diets

over time. Initially, the effects of dietary protein and GI were
assumed to modify how the levels of osteocalcin and U-NTx
have changed linearly over time since randomisation (effect
modification). To evaluate whether diet effects were modified
by sex, an additional sex£diet interaction term was included in
the model. To adjust for anticipated child-specific differences,
baseline values of the bone markers, BMI z-score at each of the
time points and sex-specific linear and quadratic trends in age
were included in the model. The adjustment for the BMI
z-score in the present analyses was made so that the results
were not primarily caused by differences in weight change
based on the different diets. Cluster effects were addressed by
means of randomeffects thatwere included for children, families
and centres. Thus, multi-level linear-mixed ANCOVA models
were used. Model checking was based on residual plots and
normal probability plots. If needed, data were logarithmically
transformed to meet model assumptions and, subsequently,
estimates were transformed to the original scale. Likelihood
ratio tests were used to assess the combined effects and inter-
action terms, whereas approximate t tests were used for pairwise
comparisons between the dietary groups. Adjustment for
multiple P values was based on the single-step method(34).
Likewise, a linear-mixed ANCOVA model was used to examine
whether diet influenced height. However, no adjustment for
the BMI z-score over time was made since height is an integral
part of BMI. Finally, a linear model was used to investigate
whether baseline levels of osteocalcin and U-NTx could predict
height at month 6 across all the dietary groups, when adjusting
for height at baseline. Estimates and 95%CI for significant effects
of the linear relationships are reported.
The significance level was set at P,0·05 (two-sided).

The statistical environment R version 2.15.1(35) and, in
particular, the extension packages lme4 and multcomp, as
well as STATA 12.0(36) were used for the analyses.

Results

Data from 191 children were included in the present paper:
n 67, osteocalcin analyses; n 180, U-NTx analyses; n 56,
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both the analyses. The progress of the study participants from
screening to month 6 and the selection criteria for the analyses
of osteocalcin are illustrated in Fig. 1.

Characteristics

Baseline characteristics and 6-month changes in height-for-age
z-scores and BMI-for-age z-scores are presented in Table 1 for
the groups of children included in the analyses of either

osteocalcin or U-NTx, osteocalcin, U-NTx or both. The
median BMI-for-age z-score for the children included in
either of the two analyses was 1·13, which was above the
cut-off (1·0) for overweight according to the WHO growth
reference(30). Having a median height-for-age z-score of
0·77, the children were not only thicker, but also taller
than the WHO growth reference. None of the children was
underweight, which is defined as a BMI-for-age z-score less
than 22, and none of the children was stunted that is defined

Not randomised or no baseline data (n 317)

Reasons include lack of baseline data, parents
were not eligible (including that they did not lose
enough weight on a LED during enrolment) or
the child was not eligible

Allocated intervention  (n 75)

Lost to follow-up (n 8)
due to lack of data from both follow-up measurements (month 1 and month 6):

Screening (n 392) 

Analysed (n 67):

Children with data from baseline and from at least one follow-up measurement
(month 1 or month 6)

LP/LGI
(n 14)

LP/HGI
(n 10)

HP/LGI
(n 14)

HP/HGI
(n 15)

Control diet
(n 14)

En
ro

lm
en

t
A

llo
ca

tio
n

Fo
llo

w
-u

p
A

na
ly

se
d

Baseline examinations (n 76)

Month 1 examinations (n 62):

LP/LGI
(n 13)

LP/HGI
(n 9)

HP/LGI
(n 13)

HP/HGI
(n 14)

Control diet
(n 13)

Month 6 examinations (n 58):

LP/LGI
(n 11)

LP/HGI
(n 8)

HP/LGI
(n 14)

HP/HGI
(n 12)

Control diet
(n 13)

LP/LGI
(n 15)

LP/HGI
(n 13)

HP/LGI
(n 14)

HP/HGI
(n 17)

Control diet
(n 16)

and / or

LP/LGI
(n 1)

LP/HGI
(n 3)

HP/LGI
(n 0)

HP/HGI
(n 2)

Control diet
(n 2)

Fig. 1. Flow diagram illustrating the progress of the study participants from screening to month 6, and the selection criteria for the analyses of osteocalcin. LED,
low-energy diet; LP, low protein; LGI, low glycaemic index; HGI, high glycaemic index; HP, high protein.
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as a height-for-age z-score less than 22. Median changes in
the height-for-age z-score during the 6-month intervention
period were close to 0, and thus it could be considered
within normal limits. Baseline median values of osteocalcin
and U-NTx for boys and girls at different ages are given in
Figs. 2 and 3, respectively. The levels of the biomarkers of
bone turnover were lowest among the oldest children.

Dietary intakes

Among the included children, 85, 83 and 45% registered their
dietary intake at baseline, month 1 and month 6, respectively.
For the four dietary groups whose baseline characteristics are
given in Table 1, these numbers varied from 85 to 91% at
baseline, 82 to 85% at month 1 and 44 to 54% at month 6.
Dietary intakes in the different dietary groups were not

different at baseline (Table 2). Dietary GI was higher at both
month 1 (8·3 (95% CI 6·1, 10·5) GI units, P,0·001) and
month 6 (7·2 (95% CI 4·5, 9·9) GI units, P,0·001) in the
HP/HGI group compared with the HP/LGI group, while the
GI was higher only at month 1 (5·8 (95% CI 3·7, 7·8) GI units,
P,0·001) in the LP/HGI group compared with the LP/LGI
group. The E% from protein was higher at both month 1 (5·2
(95% CI 3·6, 6·7)% points, P,0·001) and month 6 (6·3 (95%
CI 3·6, 9·1)% points, P,0·001) in the HP/LGI group compared
with the LP/LGI group, and the same was the case when com-
paring the HP/HGI and LP/HGI groups at month 1 (4·0 (95%
CI 2·4, 5·5)% points, P,0·001) and month 6 (6·5 (95% CI 3·9,
9·1)% points, P,0·001).

Osteocalcin

A total of sixty-seven children were included in the osteocalcin
analyses (Fig. 1). Of these, fifty-four children provided follow-
up data from both month 1 and month 6, nine children from
month 1 only and four children from month 6 only. After
6 months of intervention, a close-to-significant change in the
level of osteocalcin of 216·5 (95% CI 233·7, 0·74) ng/ml
(P¼0·06) was found in the HP/HGI group, whereas the
corresponding change in the level of osteocalcin of 12·6 ng/ml
in the LP/HGI group was not different from 0 (95% CI 28·2,
33·4) ng/ml (P¼0·23) (Fig. 4). Consequently, after 6 months of
intervention, the overall difference in the level of osteocalcin
between the HP/HGI and LP/HGI groups was 29·1 (95% CI
2·2, 56·1) ng/ml (P¼0·034). There were no differences between
the LP/HGI and LP/LGI (P¼0·45), HP/LGI and LP/LGI (P¼0·40)
and HP/HGI and HP/LGI (P¼0·46) groups after 6 months of
intervention. There was no effect modification of diet £ sex
on osteocalcin (P¼0·71).

Urinary N-terminal telopeptide of collagen type I

A total of 180 children were included in the U-NTx analyses.
Of these, 123 children provided follow-up data from both
month 1 and month 6, thirty-seven children from month 1
only and twenty children from month 6 only. There was no
effect modification of diet on U-NTx (P¼0·96).T
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Height

There was no effect of diet on height (P¼0·80). Baseline levels
of both osteocalcin and U-NTx were strongly correlated with
height at month 6, adjusted for baseline height across the diet-
ary groups (P,0·001 and P¼0·001, respectively). For every
10 ng/ml increase in the level of osteocalcin at baseline, chil-
dren grew on average 0·3 cm more during the following
6 months, and for every 100 nM-bone collagen equivalents/
mM-creatinine increase in the level of U-NTx at baseline,
children grew on average 0·2 cm more during the following
6 months.

Discussion

The present sub-study of the DiOGenes study is the first ran-
domised controlled trial to assess the effects of dietary protein
and GI on bone turnover in children. The observed difference
in the effects of the HP/HGI and LP/HGI diets on the bone
marker osteocalcin (but not between the corresponding LGI
diets) could point to a modulating effect of the GI on the
effects of dietary protein on bone turnover. However, the
diet had no effect on bone resorption and height.
To the best of our knowledge, only one randomised trial

has investigated the relationship between dietary protein
intake and bone turnover in children. It has shown that an
increased intake of protein from milk during 7 d decreased
bone turnover in 8-year-old boys as measured by serum osteo-
calcin and serum C-terminal telopeptides of type I collagen (a
measure of bone resorption) when compared with a similar
increase in protein intake from meat. Thus, the decrease in
bone turnover was not due to protein as such, but to milk
proteins or some other component in milk, e.g. Ca(23).
However, in the present study, all children were instructed
to eat or drink dairy products corresponding to 0·5 litres of
milk daily, and thus the achieved difference in protein
between the HP and LP groups is expected to be derived
primarily from non-dairy products (meat, nuts and cereals).
As in the study in 8-year-old boys by Budek et al.(23), studies

in postmenopausal women have not found any effect of meat
protein on markers of bone turnover(11,37).
In an observational study of 17-year-old children, Budek

et al.(38) found that milk protein was positively associated
with size-adjusted bone mineral content, while no association
was observed for meat protein. In another observational
study, Remer et al.(39) found that urinary N excretion
(a biomarker for protein intake) in 6 to 18-year-old children
was a positive predictor of forearm bone mineral content,
cortical area, strength strain index and periosteal circum-
ference, but not of bone mineral density based on peripheral
quantitative computed tomography.
Considering the apparently different effects of milk protein

and meat protein on bone turnover, it cannot be excluded that
a decrease in bone turnover due to the intake of dairy
products is responsible for the beneficial effects of dairy
protein or total protein on bone status in the aforementioned
observational studies. If that is the case, then a decline in level
of osteocalcin in the HP/HGI group may not be detrimental to
bone health (maybe even the opposite). However, we wonder
whether the observed decline in the level of osteocalcin
without a corresponding decrease in the level of U-NTx
indicates a decreased bone turnover, or rather an unbalanced
bone turnover with a decrease in the formation part of the
modelling and remodelling processes. The latter could have
detrimental effects on bone health in these children.
Biomarkers of bone turnover have the advantage that they

are more sensitive to short time exposure than measures of
bone status. In the present study, the first post-baseline
measurement was after 1month of intervention. According
to the literature, one should expect to detect changes in the
measures of bone resorption before changes in the measures
of bone formation. The full response is typically seen within
1–3 months for the markers of bone resorption v. within
6–9 months for those of bone formation(40). Thus, the lack
of the effect of the dietary intervention in the present study
on the bone resorption marker U-NTx cannot be due to a
too short follow-up. The different mediums used to measure
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the levels of osteocalcin and U-NTx (blood v. urine) could be
an explanation for the different results obtained for U-NTx and
osteocalcin. U-NTx can be measured in both urine and blood.
In the DiOGenes study, more children were willing to partici-
pate in the urine sampling than in the blood sampling, and
thus the U-NTx results reflected a larger fraction of the chil-
dren. However, the larger variability of measures in the
urine than in the blood may offset this larger representative-
ness of the U-NTx data.
When comparing the levels of U-NTx and osteocalcin for

age in this population with those found in other studies, the
overall pattern is similar. Equivalent to the study by Mora
et al.(41), we found that the U-NTx: creatinine ratio is approxi-
mately stable between 5 and 12 years, and then after about
12 years of age, it falls abruptly. Also, the absolute values
are very similar in the two populations. With regard to osteo-
calcin, the present dataset is too small for comparisons of the
effects of sex and age with those found in other populations
such as that of van der Sluis et al.(42).
Results on the biomarkers of bone turnover are difficult to

interpret, particularly in growing children. Concentrations
cannot be directly translated into amounts of bone gained or
lost, and it is not known whether the different biomarkers
mainly reflect growth in size, growth in mass or both(43).
A high bone turnover in late adulthood is considered
unfavourable as it results in net bone loss, while in children,
a high bone turnover may simply be the result of a high
growth velocity. Finally, changes in measures of bone status
may not even presuppose changes in biomarkers of bone
turnover as indicated by a study by Cadogan et al.(44),
where a milk intervention increased bone mass accretion in
12-year-old girls without affecting bone turnover markers.
We found that baseline levels of both U-NTx and osteocal-

cin were strongly correlated with changes in height during
the following 6 months, and thus they indeed seem to
be measures of bone growth in children. However, as
previously reported among DiOGenes children(38), diets did
not affect these changes in height. Previous studies on

osteocalcin(45) and U-NTx(41) have shown that these markers
do not only depend on age and sex, but also on pubertal
development stage. Unfortunately, pubertal status was not
assessed in the present study.
In a 1-year lifestyle intervention based on exercise, beha-

viour and nutrition therapy in sixty obese children, Reinehr
& Roth(46) found a significant negative correlation between
changes in total osteocalcin and changes in the homeostasis
model of assessment for insulin resistance index. Since the
initiation of the DiOGenes study, several studies in children
have linked bone metabolism with energy metabolism(46–52).
Osteocalcin is among the bone turnover markers that has
attracted most attention. Mechanistic studies in rodents have
pointed to an endocrine bone–pancreas loop, through
which insulin signalling in the osteoblasts stimulates osteocal-
cin production, which in turn increases pancreatic insulin
secretion and insulin sensitivity to control glucose homeosta-
sis. Thus, on the one hand, osteocalcin-deficient mice have
shown decreased insulin secretion and decreased insulin
sensitivity – effects that can be reversed by infusions with
osteocalcin(27), while, on the other hand, mice lacking the
insulin receptor in the osteoblasts have shown reduced post-
natal bone acquisition(53). Based on these studies, it would
appear that not only the protein component of the DiOGenes
dietary intervention may have an influence on bone metab-
olism, but also the GI component – through the interplay
between osteocalcin and insulin. This was also what we
observed in the present analyses. The effect of protein on
osteocalcin was only evident within the HGI groups. It is
possible that the effect of protein on osteocalcin depends on
a concurrent high level of insulin. In the present study, only
total osteocalcin was measured – not undercarboxylated and
carboxylated osteocalcin. On the one hand, it is possible
that a decrease in total osteocalcin, primarily caused by a
decrease in carboxylated osteocalcin, may pose a threat to
bone health. On the other hand, a decrease in total osteo-
calcin, primarily caused by a decrease in undercarboxylated
osteocalcin, may possibly not be harmful to bone health(24),
but could have unfavourable effects on insulin sensitivity(54).
Future research should take into account the possible inter-
action with insulin, when examining the relationship between
protein intake, GI and bone turnover in children.
The median intakes of about 18–20 E% protein in the

HP groups were lower than that aimed for these groups
(23–28 E%), while the average intakes of 14–16 E% protein
in the LP groups were slightly higher or within the intended
range for these groups (10–15 E%). Similarly, only approxi-
mately one-half (approximately 6–8 GI units) of the aimed
difference of 15 GI units between the LGI and HGI groups
was achieved, and the difference was not even significant
between the LP/HGI and LP/LGI groups at month 6. Thus,
the effects of more extreme intakes of protein and GI on
bone turnover in children are still unknown. As usually
observed in relation to dietary recording, under-reporting
was very common (median energy intake:BMR 0·90–1·45).
We chose measures for dietary intake that we expected to
be less dependent on age and sex of the child and not to be
so sensitive to general under-reporting, e.g. E% of protein,
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fat and carbohydrate instead of using grams. However, it is
possible that the study participants were more likely to
under-report certain food items than others.
In a mixed diet as used in the present study, other

components than protein and the GI such as Ca, vitamin D,
vitamin K, P and Na, as well as the sources of protein (dairy
products/animal sources other than dairy products/
vegetables) may determine whether protein and the GI
influence bone turnover or not. Also, it is possible that besides
the differences in dietary groups, differences in these other
dietary components were actually the reason for an effect
on bone markers – not GI or total protein per se. However,
we did not find that 3 d dietary records were sufficient to
determine protein sources and intakes of specific micronutri-
ents, and for this reason, these dietary components were not
included in the analyses.
In conclusion, the present study does not show any effect

of increased protein intake on height or bone resorption in
children. However, the difference in changes in the level of
osteocalcin between the HP/HGI group and the LP/HGI
group warrants further investigation and should be confirmed
in other studies.
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