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Abstract

In this thesis we introduce a ∆-set ΨPL
d (RN )• which we regard as the piecewise

linear analogue of the space Ψd(RN ) of smooth d-dimensional submanifolds
in RN introduced by Galatius in [4]. Using ΨPL

d (RN )• we define a bi-∆-set
Cd(RN )•,• whose geometric realization BCPL

d (RN ) =
∥∥Cd(RN )•,•

∥∥ should be
interpreted as the PL version of the classifying space of the category of smooth
d-dimensional cobordisms in RN , studied in [7], and the main result of this
thesis describes the weak homotopy type of BCPL

d (RN ) in terms of ΨPL
d (RN )•,

namely, we prove that there is a weak homotopy equivalence BCPL
d (RN ) '

ΩN−1|ΨPL
d (RN )•| when N − d ≥ 3.

The proof of the main theorem relies on properties of ΨPL
d (RN )• which arise

from the fact that this ∆-set can be obtained from a more general contravariant
functor PLop → Sets defined on the category of finite dimensional polyhedra
and piecewise linear maps, and on a fiberwise transversality result for piecewise
linear submersions whose fibers are contained in R × (−1, 1)N−1 ⊆ RN . For
the proof of this transversality result we use a theorem of Hudson on exten-
sions of piecewise linear isotopies which is why we need to include the condition
N − d ≥ 3 in the statement of the main theorem.

Resumé

I denne afhandling introducerer vi en ∆-mængde ΨPL
d (RN )• som vi betragter

som den stykkevis lineære analog til rummet Ψd(RN ) af glatte d-dimensionale
delmangfoldigheder i RN introduceret af Galatius i [4]. Ved at benytte ΨPL

d (RN )•
definerer vi en bi-∆-mængde Cd(RN )•,• hvis geometriske realisationBCPL

d (RN ) =∥∥Cd(RN )•,•
∥∥ bør fortolkes som PL versionen af det klassificerende rum for kat-

egorien af glatte d-dimensionale kobordismer i RN , studeret i [7], og afhan-
dlingens hovedresultatet beskriver den svage homotopitype af BCPL

d (RN ) ved
hjælp af ΨPL

d (RN )•, nemlig, vi beviser at der findes en svag homotopiækvivalens
BCPL

d (RN ) ' ΩN−1|ΨPL
d (RN )•| n̊ar N − d ≥ 3.

Beviset for hovedsætningen bygger p̊a egenskaper ved ΨPL
d (RN )•, som stam-

mer fra at denne ∆-mængde kan udledes fra en mere generel kontravariant
funktor PLop → Sets defineret p̊a kategorien af endelig dimensioanle polyeder
og stykkevis linære afbildninger, og p̊a et fibervist transversalitetsresultat for
stykkevis linære submersioner hvis fibre er indeholdt i R × (−1, 1)N−1 ⊆ RN .
I beviset af dette transversalitetsresultat benytter vi en sætning af Hudson om
isotopiudvidelser, hvilket er grunden til at vi er nødt til at inkludere betingelsen
N − d ≥ 3 i formuleringen af hovedsætningen.
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1 Introduction

In the last two decadces there has been a great deal of success in applying
homotopy theoretic methods to solve geometric problems, in particular, such
methods have been applied extensively to understand the (co)homology and
homotopy type of diffeomorphism groups Diff(M) and their classifying spaces
BDiff(M). This trend was initiated with the work of Tillmann in [22] and later
consolidated with the proof of the Mumford conjecture of Madsen and Weiss in
[14]. This thesis can be seen as a starting point to work on similar problems in
the piecewise linear category, i.e., use similar techniques to the ones applied to
smooth manifolds in order to study the (simplicial) groups of pl automorphisms
PL(M) of a pl manifold M and their classifying spaces BPL(M). Although the
actual study of the algebraic topology of PL(M) and BPL(M) shall be saved
for future projects the author believes that the necessary simplicial techniques
and results on fiberwise piecewise linear transversality to start working on such
problems are given in this thesis.

Background

a. Riemann surfaces and the Madsen-Weiss Theorem

Let Σg denote the oriented surface of genus g. The classifying spacesBDiff+Σg
of the groups of orientation preserving diffeomorphisms of the surfaces Σg ini-
tially attracted interest due to their connection with moduli spaces of Riemann
surfaces Mg. More precisely, for each g ≥ 0 we have that the BDiff+Σg is
homotopy equivalent to BΓg, the classifying space of the mapping class group
of Σg, which in turn has rational cohomology isomorphic to that of the mod-
uli space of Riemann surfaces Mg. A long standing conjecture, known as the
Mumford conjecture, stated that in a range of degrees the rational cohomology
ring H∗(Mg,Q) (or H∗(BDiff+Σg,Q)) is a polynomial algebra Q[κ1, κ2, . . .] on
certain classes κi known as the Mumford-Morita-Miller classes. This conjecture
was answered in the affirmative by Madsen and Weiss in [14] by proving a much
stronger result, now known as the Madsen-Weiss Theorem, than the one sug-
gested by Mumford. More precisely, let Σg,1 be the oriented surface of genus
g with one boundary component, let Γg,1 = π0Diff(Σg,1, rel∂) be the group of
components of diffeomorphisms restricting to the identity on the boundary, let
Γ∞ be the stable mapping class group, i.e., the colimit of the diagram of maps

· · · → Γg → Γg+1 → Γg+2 · · · ,

where each map Γg → Γg+1 is the one induced by gluing to Σg,1 the torus Σ1,2

with two boundary components, and let MTSO(2) be the Madsen-Tillmann
spectrum, whose space at degree n is equal to the Thom space Th(γ⊥d,N ) of

the normal bundle over the Grassmannian of oriented 2-planes in RN . In [14]
Madsen and Weiss proved the following result.
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Theorem (Madsen, Weiss). There is a homology equivalence

Z×BΓ∞ → Ω∞MTSO(2).

The Mumford conjecture is then obtained from this theorem by applying
stability results of Harer [11] and by observing that the rational cohomology ring
H∗(Ω∞0 MTSO(2),Q) of the 0-th component of Ω∞MTSO(2) is a polynomial
algebra Q[κ1, κ2, . . .] generated by certain classes κi which pull back to the
Mumford-Morita-Miller classes κi of BDiff+Σg along a map αg : BDiff+Σg →
Ω∞0 MTSO(2) obtained by the fiberwise Pontrjagin-Thom construction.

b. The smooth cobordism category

The proof of the Madsen-Weiss Theorem given in [14] is extremely tech-
nical and several simplifications of it have been made over the last few years.
The first of these was offered by Galatius, Madsen, Tillman and Weiss in [6]
and the strategy they followed was to introduce a topological category Cd of
d-dimensional oriented cobordisms such that in the case d = 2 the classifying
space BC2 served as an intermediate step between Z×BΓ∞ and Ω∞MTSO(2).

Let us outline the definition of Cd as an untopologized category. This discus-
sion will follow closely the one given in [6] and we shall restrict our attention
only to manifolds without orientation. The set of objects of Cd is defined as
follows: for a positive integer N let BN denote the set of all d− 1-dimensional
closed submanifolds M in RN . The natural inclusion RN ↪→ RN+1 induces a
map BN ↪→ BN+1 and the set of objects ObCd is then defined to be the set of
all tuples (M,a) where a ∈ R and M is an element of the colimit B∞ of the
following sequence of maps

· · · ↪→ BN ↪→ BN+1 ↪→ . . . .

Given any two objects (M1, a1) and (M2, a2) in ObCd the set of non-identity
morphisms Cd

(
(M1, a1), (M2, a2)

)
is the set of all triples (W,a0, a1) where W is

a d-dimensional compact submanifold

W ⊆ [a0, a1]× RN

for some finite N for which there is an ε > 0 such that

i) W ∩ ([a0, a0 + ε]× RN ) = [a0, a0 + ε]×M0.

ii) W ∩ ((a1 − ε, a1]× RN ) = (a1 − ε, a1]×M1.

iii) ∂W = W ∩ ({a0, a1} × RN ).

Two morphisms (W1, a0, a1) and (W2, a1, a2) in Cd are composable if the
outgoing boundary of W1 is equal to the incoming boundary of W2 and their
composition is equal to the triple

(W1 ∪W2, a0, a2).
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In [6] a topology on both obCd and morCd is defined so that Cd becomes a
topological category. In fact, with these topologies we have the following equiv-
alences

obCd '
∐
[M ]

BDiff(M), morCd '
∐
[W ]

BDiff(W,∂W ),

where the coproducts are indexed respectively by all diffeomorphism types of
d − 1-dimensional closed manifolds and diffeomorphism types of d-dimensional
cobordisms.

The main result in [6] is the following theorem.

Theorem (Galatius, Madsen, Tillmann, Weiss). There is a weak homo-
topy equivalence

BCd ' Ω∞−1MTO(d).

A more general version of this theorem is also proven in [6] for the case of
manifolds with tangential structures. In particular, for the case of manifolds
with orientations we obtain an equivalence

BC+
d ' Ω∞−1MTSO(d)

and the Madsen-Weiss Theorem is deduced by applying this result to the case
d = 2 and then showing that there is a homology equivalence

Z×BΓ∞ → ΩBC+
2 .

c. Scanning methods

Another significant simplification of the proof of the Madsen-Weiss Theorem
came with the work of Galatius in the article [5] in which he used scanning
methods and spaces of graphs Φ(RN ) to prove a result about automorphism
groups of free groups similar in spirit to the Madsen-Weiss theorem. Namely,
in [5] Galatius shows that there is an isomorphism in homology

Z×Aut∞ → QS0 (1)

where Aut∞ is the colimit of the diagram

. . .→ Aut(Fn)→ Aut(Fn+1)→ . . .

and QS0 is the infinite loop space of the sphere spectrum S0. An intermediate
step in the proof of (1) is to introduce a topological category CG of graph
cobordisms and show a result similar to the main theorem of [6], namely, that
there is a weak equivalence

ΩBCG → QS0. (2)

Galatius concludes [5] with an outline of how the scanning methods used to prove
(1) still hold when Φ(RN ) is replaced by a space Ψd(RN ) of d-dimensional sub-
manifolds of RN and how in this case the scanning methods yield the following
unstable version of the main theorem of [6].
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Theorem (Galatius, Randal-Williams). There is a weak equivalence

BCd(RN ) ' ΩN−1Th(γ⊥d,N ).

In the limit N →∞ the main result of [6] is recovered from the theorem of
Galatius and Randal-Williams. Details of this proof were later expanded in [7]
in which the space Ψd(RN ) played a central role.

The underlying set of Ψd(RN ) is equal to the set of all d-dimensional submani-
folds of RN which are closed as subspaces. The empty set ∅ is also included in
this set and it serves as a base boint for Ψd(RN ). Although the details of the
definition of the topology on Ψd(RN ) are quite involved (see section § 2 of [7])
we can easily list the two crucial properties of Ψd(RN ) which suffice to study
its weak homotopy type:

i) If M is an m-dimensional smooth manifold and W ⊆ M × RN is a smooth
(d + k)-submanifold that is closed as a subspace and such that the natural
projection π : W → M is a submersion of codimension d, then the func-
tion f : M → Ψd(RN ) defined by x 7→ π−1(x) is continuous. Such a map
f : M → Ψd(RN ) obtained from a submersion is called a smooth map in [7].

ii) Any continuous map f : M → Ψd(RN ) is homotopic to a smooth map.

The weak equivalence BCd(RN ) ' ΩN−1Th(γ⊥d,N ) is obtained by showing that
there are two weak equivalences

BCd(RN ) ' ΩN−1Ψd(RN ), (3)

and
Th(γ⊥d,N )

'→ Ψd(RN ). (4)

The proof of the first of these weak equivalences makes extensive use of the two
properties of Ψd(RN ) listed above whereas the second one uses the fact that a
manifold W in Ψd(RN ) which intersects the origin in RN can be deformed by
scanning to its germ at the origin, i.e., its tangent space T0W at the point 0 ∈W .

Outline of this thesis and statement of results

The main result of this thesis is a piecewise linear version of the weak equivalence
(3). More precisely, in this thesis I prove the following theorem.

Theorem (Gomez Lopez). If N − d ≥ 3 then there is a weak equivalence

BPLCd(RN ) ' ΩN−1|Ψd(RN )•|.

In this statement, Ψd(RN )• is a ∆-set which should be viewed as a space
of d-dimensional piecewise linear submanifolds of RN and BPLCd(RN ) is the
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space which should be regarded as the piecewise linear analogue of the classify-
ing space of the category of the d-dimensional smooth cobordisms in RN studied
in [7].

The strategy of the proof of this theorem follows the one given in [7]. Namely,
we introduce a filtration

ψd(N, 1)• ↪→ ψd(N, 2)• ↪→ . . . ↪→ ψd(N,N)• = Ψd(RN )• (5)

and show that there are two weak equivalences

BPLCd(RN ) ' |ψd(N, 1)•| (6)

and
|ψd(N, 1)•|

'−→ ΩN−1|Ψd(RN )•|. (7)

This thesis is organized as follows: section §2 is an introduction to several
concepts and results from piecewise linear topolology. In particular, we intro-
duce the notions of piecewise linear submersion and regular values for piecewise
linear maps which we need for several of the definitions involved in this thesis
and which might be unfamiliar to most topologists. Furthermore, in §2 we in-
trouduce ∆-sets (simplicial sets without degeneracies) and include a discussion
about some of the geometric constructions that can be applied to these objects,
like for example subdivision.

In section §3 we introduce the main definition of this thesis, namely, the ∆-
set Ψd(RN )•. A p-simplex of Ψd(RN )• should be viewed as a family of d-
dimensional piecewise linear submanifolds of RN parametrized piecewise linearly
by ∆p. We shall make this interpretation rigorous using the concept of piecewise
linear submersion. We also introduce the sub-∆-sets ψd(N, k)• of the filtration
(5). Furthermore, we show that these ∆-sets can be obtained from much more
general contravariant functors ψd(N, k) : PLop → Sets defined on the category
of finite dimensional polyhedra and that for any compact polyhedron P the ele-
ments of the set ψd(N, k)

(
P
)

are classified by ψd(N, k)•. This claim is stated a
lot more rigorously in Theorem 3.5, and we conclude this section using Theorem
3.5 to show that each ψd(N, k)• is a Kan ∆-set.

In section §4 we use the functor Ψd(RN ) : PLop → Sets to define a map
ρ : |Ψd(RN )•| → |Ψd(RN )•|, which we will call in this thesis the subdivision
map of Ψd(RN )•, which has the following properties:

i) ρ is homotopic to the identity map on |Ψd(RN )•|.

ii) For any morphism of ∆-sets f• : X• → Ψd(RN )• and any non-negative in-
teger r ≥ 0 there is a unique morphism g• : sdrX• → Ψd(RN )•, defined on
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the r-th barycentric subdivision of X•, which makes the following diagram
commute

|sdrX•|
|g•| //

∼=
��

|Ψd(RN )•|

|X•|
|f•| // |Ψd(RN )•|

ρr

OO

where the left vertical is the canonical homeomorphism |sdrX•|
∼=→ |X•|.

In section §5 we define the space BPLCd(RN ), which is the geometric of a
bi-∆-set, and we start the proof of the following theorem.

Theorem 1. If N − d ≥ 3 then there is a weak equivalence

BPLCd(RN ) ' |ψd(N, 1)•|.

The proof of the smooth version of this result given in [7] is very brief and
it uses the following geometric fact:

Fact. Let Mm be an m-dimensional smooth manifold, let W be a smooth (d+
m)-submanifold of M ×Rk× (0, 1)N−1 such that the projection π : W →M is a
smooth submersion of codimension d and let λ ∈M . If a0 ∈ R is a regular value
for the projection x1 : π−1(λ) → R onto the first component of R × (0, 1)N−1

then there is an open set U of λ such that a0 is a regular value for

x1 : π−1(α)→ R

for each α ∈ U .

Unfortunately, this fact is definitely not true in the piecewise linear category.
Counterexamples are really easy to produce and hence we cannot follow the
proof of [7] too closely. However, one thing we can do is define a sub-∆-set of
ψd(N, 1)• for which this kind of fiberwise regularity does hold. Namely, in §5
we introduce a sub-∆-set ψRd (N, 1)• of ψd(N, 1)• where for each simplex W of
this sub-∆-set the projection x1 : W → R does have a fiberwise regular value
(see defintion 5.2) and the rest of section §5 is devoted to proving that

BPLCd(RN ) ' |ψRd (N, 1)•|.

In section §5 we conclude the proof of Theorem 1 by proving the following
theorem, which is one of the central results of this thesis.

Theorem 2. The inclusion ψRd (N, 1)• ↪→ ψd(N, 1)• is a weak homotopy equiv-
alence when N − d ≥ 3.

The proof of this theorem uses a result of Hudson about extensions of piece-
wise linear isotopies (see [12]), which is why we need the condition N − d ≥ 3.
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In §7 we compare the spaces |ψd(N, 1)•| and ΩN−1|Ψd(RN )•|. This is done
by introducing, for each k ≥ 1, a scanning map

Sk : |ψd(N, k)•| → Ω|ψd(N, k + 1)•|

and proving the following theorem.

Theorem 3. If N − d ≥ 3 and if k ≥ 1 then the scanning map

Sk : |ψd(N, k)•| → Ω|ψd(N, k + 1)•|

is a weak homotopy equivalence. Consequently, there is a weak homotopy equiv-
alence

|ψd(N, 1)•|
'−→ ΩN−1|Ψd(RN )•|

Finally, we obtain the main result of this thesis in Theorem 7.21 by combin-
ing Theorems 1 and 3.
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2 Preliminaries on piecewise linear topology

2.1 Basic definitions

We start this section with the three most basic definitions from pl topology.

Definition 2.1. A simplex of dimension p (a p-simplex ) σ in Rn is the convex
hull of a set of p+ 1 geometrically independent points {v0, . . . , vp} in Rn. That
is, each point x in σ can be expressed uniquely as Σtivi where 0 ≤ ti ≤ 1 for
0 ≤ i ≤ p and Σti = 1.

Convention 2.2. In this thesis the vertices of the standard basis of Rp+1 shall
be denoted by e0, e1, . . . , ep, i.e., we shall label the elements of this basis using
the set {0, . . . , p} instead of {1, . . . , p+ 1}.

The convex hull of the vectors e0, . . . , ep is called the standard geometric
p-simplex and we will denoted by ∆p.

Definition 2.3. A collection K of simplices in Rn is called a simplicial complex
provided

i) If σ ∈ K and τ < σ (τ is a face of σ), then τ ∈ K.

ii) If σ, τ ∈ K, then σ ∩ τ < σ and σ ∩ τ < τ .

iii) K is locally finite, that is, given x ∈ σ ∈ K then there is a neighborhood
of x in Rn which meets finitely many simplices of K.

Definition 2.4. P ⊆ Rn is said to be an Euclidean polyhedron if it is equal to
a finite union of simplices σ1, . . . , σp in Rn.

In particular, if K is a finite simplicial complex in Rn then the union of all
the simplices of K, usually denoted by |K|, is an Euclidean polyhedron. |K| is
usually called the underlying polyhedron of K. The following proposition, whose
proof can be found in [17], tell us that all Euclidean polyhedra are of the form
|K|.

Proposition 2.5. If P is an Euclidean polyhedron in Rn then there exists a
finite simplicial complex K in Rn such that P = |K|.

If P = |K| then we say that K triangulates P . An Euclidean polyhedron P
is said to be of dimension p if for any simplicial K such that |K| = P we have
that K has a simplex σ of dimension p but no simplices of dimension higher
than p.

A compact subsapce Q of an Euclidean polyhedron P is said to be a subpoly-
hedron of P if Q is itself an Euclidean polyhedron. The notion of subpolyhedron
allows us to formulate the following definition.
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Definition 2.6. A continuous map f : P → Q between two Euclidean poly-
hedra P and Q is said to be piecewise linear if the graph Γ(f) ⊆ P × Q is a
subpolyhedron of P ×Q.

The following proposition describes the image of a pl map.

Proposition 2.7. The image of a pl map f : P → Q is a subpolyhedron of Q.

The following is one of the most important defintions in the theory of sim-
plicial complexes.

Definition 2.8. Let K be a simplicial complex in Rm. A simplicial complex
K1 in Rm is a subdivision of K provided that |K1| = |K| and that each simplex
τ of K1 is contained in a simplex σ of K.

One particular important kind of subdivision is the stellar subdivision, which
we will define in 2.11 below. In order to formulate this definition we need the
following.

Definition 2.9. i) The join AB of two Euclidean polyhedra A and B is
the set AB = {λa + µb : a ∈ A, b ∈ B} where λ, µ ∈ R, λ, µ ≥ 0 and
λ+ µ = 1.

ii) Two Euclidean polyhedra A and B are said to be independent if each point
in AB may be written uniquely in the form λa + µb with λ, µ ≥ 0 and
λ+ µ = 1.

Example 2.10. The following are standard facts about simplicial complexes
that we will need in order to formulate the definition of stellar subdivision:

1. The join AB of two independent polyhedra is again a polyhedron.

2. If A and B are independent simplices then AB is a simplex of dimension
dimA+ dimB + 1 spanned by the vertices of A and B.

3. If K and L are two finite simplicial complexes in Rm such that P := |K|
and Q := |L| are independent then the polyhedron PQ is triangulated by
the simplicial complex KL (the simplicial join of K and L) which consists
of simplices of the form A, B and AB with A ∈ K and B ∈ L.

4. For any p-simplex A in Rm and any a ∈ intA we have that ∂A and a are
independent.

The definition of stellar subdivision is done in the following two steps (see
the definition given in page 3 of [1]):

Definition 2.11. i) If A is a p-simplex in Rm, L a simplicial complex which
triangulates ∂A and if a0 ∈ intA then

K := a0L = {a0} ∪ L ∪ {a0B : B ∈ L}
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is the simplicial complex which triangulates A obtained by starring A at
a0 over L.

ii) Let K be a simplicial complex in Rm and for each simplex A of K let cA
be a point in intA (if A is a vertex we set cA = A). The stellar subdivision
L of K obtained by starring at the points cA is the one obtained by the
following inductive procedure: assume that the (p−1)-skeleton Kp−1 of K
is subdivided by a complex Lp−1 and for each p-simplex A of K denote by
Lp−1,∂A the subcomplex of Lp−1 which triangulates ∂A. Then, we define
Lp to be the simplicial complex

Lp :=
⋃
A

cALp−1,∂A

where the union ranges over all p-simplices of K and where for each p-
simplex A we have that cALp−1,∂A is the simplicial complex obtained by
starring A at cA over Lp−1,∂A. It is clear that Lp subdivides Kp.

A particular important kind of stellar subdivision is the following.

Definition 2.12. Let K be a simplicial complex in Rm and for each simplex
A of K let bA denote its barycentric point. The first barycentric subdivision of
K, denoted by sdK, is the stellar subdivision of K obtained by starring at the
points bA.

Piecewise linear maps have the following alternate characterization in terms
of simplicial complexes. The proof can be found in [17].

Proposition 2.13. A continuous map f : P → Q is piecewise linear if and
only if there exists simplicial complexes K and L such that |K| = P , |L| = Q
and such that f : |K| → |L| is simplicial.

From this proposition we get the following corollary.

Corollary 2.14. If f : P → Q is both a pl map and a bijection then the inverse
f−1 is also a pl map.

Proof. Observe that the inverse of f is continuous since P is compact and Q
is Hausdorff. Let K and L be simplicial complexes such that f becomes a
simplicial map if we traingulate P and Q with K and L respectively. Then, if σ
is a simplex of L spanned by f(v0), . . . , f(vq) then for any point x =

∑
λjf(vj)

in σ we have that
f−1(x) =

∑
λjvj ,

that is, f−1 is also a simplicial map and by 2.13 we have that f−1 is also pl.
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2.2 Abstract pl spaces

In this section we introduce the notion of abstract pl spaces and state some
of their basic properties but without giving many of the proofs, which can be
found in for example [11]. We remark that in the literature the term locally finite
complex is sometimes used instead of abstract pl space, see for example [23].
We also remark that this subsection follows closely the presentation given in
§3 of [11].

Definition 2.15. Let X be a topological space.

i) A coordinate map is a tuple (f, P ) with P an Euclidean polyhedron and
f : P → X an embedding, i.e., a homeomorphism onto its imge.

ii) Two coordinate maps (f, P ) and (g,Q) are said to be compatible if either
f(P )∩ g(Q) = ∅ or there exists a coordinate map (h,R) such that h(R) =
f(P )∩ g(Q) and f−1 ◦h and g−1 ◦h are both piecewise linear in the sense
of definition 2.6.

Definition 2.16. A piecewise linear structure T on a space X is a family of
coordinate maps (f, P ) such that

i) Any two elements of T are compatible.

ii) For every x ∈ X there exists (f, P ) such that f(P ) is a neighborhood of
x in X.

iii) T is maximal, i.e., if (f, P ) is compatible with every element of T then
(f, P ) ∈ T .

Definition 2.17. An abstract pl space is a tuple (X, T ) with X a second count-
able Hausdorff space and T a piecewise linear structure on X. Furthermore,
(X, T ) is said to be of dimension p if there exists (f0, P0) ∈ T with P0 of di-
mension p and if for any other element (f, P ) ∈ T the Euclidean polyhedron P
is of dimension at most p.

A pl space is said to be finite dimensional if it is of dimension p for some
non-negative integer p.

Definition 2.18. A family of coordinate maps B on X satisfying conditions i)
and ii) of definition 2.16 is called a base for a pl structure on X.

Sometimes it is easier to define for a space X a base for a pl strucure instead
of an actual pl strucure. However, the next proposition, which is proven in [11],
tells us that both pieces of data contain the same amount of information.

Proposition 2.19. Every base B for a piecewise linear structure on a space X
is contained in a unique piecewise linear structure T .
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Examples 2.20. 1. For any Euclidean polyhedron P ⊆ Rn let iP : P ↪→ Rn
be the natural inclusion into Rn. The collection of all tuples (P, iP ) with
P an Euclidean polyhedron in Rn is a base for a pl structure on Rn. This
pl structure is usually called the standard pl structure on Rn.

2. More generally, if U is open in Rn then the collection of tuples (P, iP )
with P ⊆ U is also a base for a pl structure on U .

3. Any Euclidean polyhedron P can also be viewed as an abstract pl space.
Indeed, if P is an Euclidean polyhedron then the singleton which contains
the tuple (P, IdP ) is a base for a pl structure on P .

We conclude our discussion about abstract pl spaces with the following two
useful lemmas about coordinate maps. Details for the proofs of both lemmas
can be found in §3 of [11].

Lemma 2.21. If (X, T ) is a pl space and if C ⊆ X is a compact subspace then
there exists (h,R) ∈ T such that C ⊆ inth(R).

Lemma 2.22. Let (X, T ) be a pl space. If (h, P ) is a coordinate map whose im-
age is covered by the images of a finite number of elements (h1, P1), . . . , (hq, Pq)
of T with which (h, P ) is compatible then (h, P ) is also an element of T .

Eventhough all the definitions and results in this subsection apply to any
pl space we will from now on only work with pl spaces of finite dimension.
Therefore, in the rest of this section and thesis the term pl space means finite
dimensional pl space.

2.3 Abstract piecewise linear maps

The definition of pl map given in definition 2.6 can be used to formulate a
definition of pl map between abstract pl spaces very much in the same way that
smooth coordinate charts are used in order to formulate the defintion of smooth
map between abstract smooth manifolds. Again, we are going to borrow the
presentation given in §3 of [11].

Definition 2.23. Let (X,F) and (Y,G) be abstract pl spaces. A continuous
map h : X → Y is said to be a piecewise linear map if for all (f, P ) ∈ F and all
(g,Q) ∈ G we have that f−1◦h−1◦g(Q) is either empty or R := f−1◦h−1◦g(Q)
is a subpolyhedron of P and, if the latter case holds,

g−1 ◦ h ◦ f : R→ Q

is a piecewise linear map in the sense of definition 2.6.

The following propostion implies that the pl spaces and pl maps are respec-
tively the objects and morphisms of a category.

Proposition 2.24. i) For any pl space (X, T ) the identity map IdX : X →
X is a pl map.
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ii) The composition g ◦ f of two pl maps f : X → Y and g : Y → Z is again
a pl map.

Defintion 2.25. The piecewise linear category PL is the category of (finite
dimensional) pl spaces and pl maps in the sense of definition 2.23.

Proposition 2.14 can be used to prove the following.

Proposition 2.26. Let (X,F) and (Y,G) be pl spaces. If f : X → Y is both
a piecewsie linear map and a homeomorphism of topological spaces then the
inverse f−1 : Y → X is also a piecewise linear map.

Proof. Let g : Q → Y be any coordinate chart in G. We wish to show that
f−1 ◦ g is a chart compatible with any chart of F . By the continuity of f−1 the
image f−1◦g(Q) is compact in X and by lemma 2.21 there is a chart h : R→ X
in F such that f−1 ◦ g(Q) ⊆ inth(R). We wish to show first that h−1 ◦ f−1 ◦ g
is a pl map in the sense of definition 2.6. Let then g′ : Q′ → Y be an element in
G such that f ◦ h(R) ⊆ intg′(Q′). By assumption, g′−1 ◦ f ◦ h is pl. In fact, by
2.14 and 2.7, it is a pl homeomorphism onto its image R′ in Q′. The inclusion
f−1 ◦g(Q) ⊆ inth(R) implies that g′−1 ◦g(Q) ⊆ R′. Also, the map h−1 ◦f−1 ◦g
can be expressed as the composition of two pl maps, namely, g′−1 ◦ g and the
restriction of h−1 ◦ f−1 ◦ g′ on g′−1 ◦ g(Q). Since the composition of pl maps is
again pl we have that h−1◦f−1◦g is a pl map. But by corollary 2.14 we actually
have that f−1 ◦ g : Q → X is a coordinate chart compatible with h : R → X.
Since h(R) covers the image of f−1 ◦g it follows from lemma 2.22 that f−1 ◦g is
compatible with all the elements of F . Since this argument holds for any chart
in G we have that f−1 is also an abstract pl map.

2.4 Products of pl spaces

Let X and Y be two abstract pl spaces. Proposition 2.19 can be used to define a
pl structure on the product X×Y such that, with this pl structure, the universal
property of X × Y in the category of spaces also holds in the category PL (see
proposition 2.29 below.)

Proposition 2.27. Let (X, T ) and (Y,S) be abstract pl spaces. The collection
of coordinate charts on X × Y given by

B := {(f × g, P ×Q) : (f, P ) ∈ T , (g,Q) ∈ S}

is a base for a pl structure on X × Y .

Proof. It is straightforward to verify that B satisfies condition ii) of 2.18. In
order to verify that condition i) also holds one just needs to use the fact that
the product f1 × f2 of two pl maps fi : Pi → Qi, i = 1, 2, between Euclidean
polyhedra is also a pl map in the sense of definition 2.6.
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Definition 2.28. Let (X, T ) and (Y,S) be abstract pl spaces. The product of
X and Y is the abstract pl space (X×Y, T ×S) where T ×S is the pl structure
induced by the base defined in proposition 2.27.

The proof of the following proposition can be found in [23] (lemma 1.2.1,
page 4).

Proposition 2.29. Let X,Y1, Y2 be abstract polyhedra and let Pi : Y1×Y2 → Yi
be the projection onto the i-th factor. Then a map f : X → Y1×Y2 is piecewise
linear if and only if P1f and P2f are piecewise linear.

2.5 Triangulations of polyhedra

Proposition 2.5 tells us that any Euclidean polyhedron P is just the underlying
polyhedron of a simplicial complex K, i.e, |K| = P . In the case of abstract pl
spaces we cannot make the exact same statement since these objects are not
necesseraly contained in some Euclidean space. However, the following propo-
sition says that any abstract pl space is pl homemomorphic to the underlying
polyhedron of a simplicial complex K in some Euclidean space Rm.

Proposition 2.30. Let (X, T ) be an abstract pl space. There exists a simplicial
complex K in some Euclidean space Rm and a homeomorphism h : |K| → X
such that the restrctions of h on finite subcomplexes of K are elements in T .
Moreover, the set

B = {h||L| : L ⊆ K finite}

is a base for the pl structure T .

Definition 2.31. Let (X, T ) be a pl space. A triangulation of X is a pair
(K,h) with K a simplicial complex and h : |K| → X a homeomorphism such
that for each finite subcomplex L of K the restriction h||L| is an element in T .

Remark 2.32. We remark that proposition 2.30 is not stated as a proposition
in [11]. However, all the necessary arguments to prove this result are given in
[11] and the reader is urged to consult page 82 of [11] for an outline of the proof.

Remark 2.33. We also remark that from proposition 2.30 it follows that any
pl space is first-countable.

The following proposition, whose proof can be found in [11], describes a very
useful fact about the interacton of pl maps and triangulations. Recall that a
map f : X → Y is said to be proper if the pre-image of a compact subspace is
again compact.

Proposition 2.34. Let f : X → Y be a pl map and let h : |K| → X and
g : |L| → Y be triangulations of X and Y respectively. If f is a proper map
then there are subdivisions K ′ and L′ of K and L such that the composition
g−1 ◦ f ◦ h : |K ′| → |L′| is a simplicial map.
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2.6 Piecewise linear subspaces

Definition 2.35. Let (X,F) be a a piecewise linear space and let (Y,F ′) be
another piecewise linear space with Y ⊆ X. Then (Y,F ′) is called a piecewise
linear subspace of (X,F) provided

1. Y has the subspace topology induced by X, and

2. i : Y → X, i(x) = x, is a piecewise linear map.

If (Y,F ′) is a piecewise linear subspace of (X,F) we shall usually denote the
piecewise linear structure F ′ by FY .

Remark 2.36. If (Y,FY ) is a piecewise linear subspace of (X,F) then it is
easy to verify that we have the following equality

FY = {(f, P ) ∈ F : f(P ) ⊆ Y }.

Definition 2.37. A piecewise linear map f : (X ′,F ′) → (X,F) is called a
piecewise linear embedding provided that f is a topological embedding and that(
f(X ′),G

)
is a piecewise linear subspace of (X,F), where G = {f ◦ g : g ∈ F ′}.

The definition of pl embedding given above allows us to formulate the fol-
lowing definitions.

Defintion 2.38. i) A pl space (M,F) is a piecewise linear manifold of di-
mension m if for each point m0 of M there is a piecewise linear embedding
h : Rm →M such that h(Rm) is an open neighborhood of m0 in M .

ii) Let Rm+ denote the set of all points (x1, . . . , xm) in Rm such that xm ≥ 0.
A pl space (M,F) is a piecewise linear manifold of dimension m with
boundary if for each point m0 of M there is a piecewise linear embedding
h : V → M defined on an open subspace V of Rm+ such that h(V ) is an
open neighborhood of m0 in M .

iii) Let (M,F) be an m-dimensional piecewise linear manifold (with bound-
ary) and let 0 ≤ n ≤ m. A pl subspace (N,F ′) of (M,F) is an n-
dimensional piecewise linear submanifold (with boundary) of M if (N,F ′)
is in itself an n-dimensional piecewise linear manifold (with boundary).

The following proposition tells us when the union of two sub pl spaces is
again a pl subspace.

Proposition 2.39. Let P1 and P2 be pl subspaces of a pl space (X,F). Let
P := P1 ∪ P2 and suppose that P1 and P2 are open subspaces of P . Then,
FP1
∪ FP2

is a base for a piecewise linear structure F ′ on P . Furthermore, the
inclusion i : (P,F ′) ↪→ (X,F) is a piecewise linear map in the sense of defintion
2.23. In particular, F ′ = FP .
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Proof. The union FP1
∪FP2

clearly satisfies condition i) of definition 2.18 since
all the charts of this union are just charts that belong to F . On the other
hand, since every open subspace in either P1 and P2 is also an open subspace
in P we have that FP1

∪ FP2
also satisfies condition ii) of definition 2.18. Let

then F ′ be the piecewise linear structure on P generated by this base. Since
FP1 ∪ FP2 ⊆ F and since FP1 ∪ FP2 is a base for F ′ we can use lemma 2.22 to
prove that i : (P,F ′) ↪→ (M,F) is a piecewise linear map. In particular we have
that F ′ = FP .

The following proposition says that we can triangulate pairs of pl spaces
(X,Y ) provided that Y is a closed subspace of X.

Proposition 2.40. Let Y be a closed pl subspace of a pl space X. Then there
exists a triangulation h : |K| → X of X such that K has a subcomplex K0 which
triangulates Y , i.e., the restriction h||K0| is a triangulation of Y .

With this proposition we can prove the following result which tells us what
happens when we intersect two closed pl subspaces of a pl space.

Proposition 2.41. Let (X1, T1) and (X2, T2) be two closed pl subspaces of
(X, T ). Then, if X1 ∩X2 6= ∅ we have that X1 ∩X2 is the underlying space of
a pl subspace of (X, T ).

Proof. By proposition 2.40 we can find two triangulations h1 : (|K|, |K1|) →
(X,X1) and h2 : (|L|, |L2|) → (X,X2) and by proposition 2.34 we can find
subdivisions K ′ and L′ of K and L respectively such that the composite g :=
h−1

2 ◦ h1 : |K ′| → |L′| is a simplicial isomorphism. Then, K ′ contains a sub-
complex K ′1 which subdivides K1 and the image of K ′1 under g is going to be
a subcomplex J of L′. There is also a subcomplex L′2 in L′ which subivides L2

and it is easy to see that the restriction of h2 on |J ∩ L′2| is a triangulation for
X1∩X2 and thus we have that X1∩X2 is the underlying space of a pl subspace
of X.

We will be working a lot with closed pl subspaces of Euclidean spaces RN
and hence it would be good to have a concrete way of describing such subspaces.
This is done in the following two propositions.

Proposition 2.42. Let T denote the standard pl strucure on RN and let (X, TX)
be a closed pl subpace of RN . Then there exists a collection of simplices {σλ}λ∈Λ

which is locally finite in RN and such that X =
⋃
λ σλ.

Proof. That {σλ}λ∈Λ is locally finite in RN means that each x in RN has a
neighborhood U which intersects only finitely many of the simplices of {σλ}λ∈Λ.
Pick any simplicial complex L in RN such that |L| = RN , for example, we can
pick a finite simplicial complex which triangulates the cube [0, 1]N and then we
use translations of this simplicial complex to triangulate any cube of the form
[p, p+1]N with p ∈ Z. In particular, we have that the identity map Id : |L| → RN
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is a triangulation in the sense of definition 2.30. By proposition 2.40 there is
a pair of locally finite simplicial complexes (K,K0) and a homeomorphism h :
(|K|, |K0|)→ (RN , X) such that the restriction of h on each finite subcomplex of
K is a chart that belongs to the standard pl strucure of RN and by proposition
2.34 there are subdivisions K ′ and L′ of K and L respectively such that the
map

|K ′| h→ |L′| (8)

becomes a simplicial map. In fact, it will be a simplicial isomorphism. K ′

contains a subdivision K ′0 of K0 and since (8) is a simplicial isomorphism we
have that the image h(K ′0) of the subcomplex K ′0 under h is a subcomplex of L′,
which we will denote by L′′, which triangulates X. Since K ′ is a locally finite
simplicial complex it follows that the set of all simplices in L′′ is a collection of
simplices which is locally finite in RN and whose union equals X.

Proposition 2.43. Let T be the standard pl structure on RN , let {σλ}λ∈Λ be a
collection of simplices in RN which is locally finite in RN and let X =

⋃
λ∈Λ σλ.

Then, taking the subspace topology on X, the collection

B = {
⋃
λ∈Z

σλ ↪→ X : Z ⊆ Λ finite}

is a base for a pl structure T ′ on X such that the inclusion i : (X, T ′) ↪→ (RN , T )
is a pl map, i.e., (X, T ′) is a pl subspace of (RN , T ). Furthermore, X is a closed
subspace of RN

Proof. Lets show first that X is a closed subspace of RN . Pick a point x ∈ RN
which is not in X. By assumption, x has a neighborhood U which intersects only
finitely many simplices σ1, . . . , σq of {σλ}λ∈Λ. But since each simplex σ1, . . . , σq
is compact we can find a value δ > 0 small enough so that the ball B(x, δ) cen-
tered at x with radius δ is contained in U and does not intersect any of the
simplices σ1, . . . , σq and therefore none of the simplices in {σλ}λ∈Λ. This shows
that X is a closed subspace of RN .

Clearly we have that all the charts in B are compatible to each other since
they are just charts in the standard pl structure of RN . Furthermore, each x
in X has a neighborhood U in X which intersects only finitely many simplices
σ1, . . . , σq of {σλ}λ∈Λ. Thus

x ∈ int
(
σ1 ∪ . . . ∪ σq

)
and it follows that B is indeed a base for a pl structure. Let then T ′ be the unique
pl structure induced by B. To see that the inclusion i : (X, T ′) ↪→ (RN , T ) is
pl we just need to observe that the image of any chart (h, P ) of T ′ can be
covered by the images of finitely many charts in B and since these charts are
in T we have by lemma 2.22 that (h, P ) is compatible with all the charts in T .
Consequently, the inclusion map i is piecewise linear.
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The two previous propositions give us then the following corollary.

Corollary 2.44. Let T be the standard pl structure on RN . Then, a subspace
X of RN is the underlying space of a pl subspace of (RN , T ) if and only if there
is a collection of simplices {σλ}λ∈Λ in RN which is locally finite in RN and such
that X =

⋃
λ∈Λ σλ.

Remark 2.45. At this point we introduce the following change in terminology:
instead of using the term pl space we shall use from now on the term polyhe-
dron and instead of using the term sub pl space we shall simply use the term
subpolyhedron. Also, we will from now on denote a polyhedron (X, T ) simply
by X whenever this simpler notation does not produce any confusion.

2.7 Regular values for pl maps

Definition 2.46. (See [23], page 4) Let f : P → Q be a piecewise linear map.
A point q ∈ Q is said to be a regular value of f if there is an open neighborhood
U of q in Q and a pl homeomorphism h : f−1(q) × U → f−1(U) such that
fh = p, where p is the natural projection f−1(q)× U → U .

One of the main results proven in [23] is the following theorem which plays
a similar role in pl topology to the one played by Sard’s theorem in the smooth
category (see theorem 1.3.1 in [23]).

Theorem 2.47. Let P be a polyhedron and let f : P → ∆p be a pl map. Suppose
that there is a triangulation h : |K| → P of P such that the composition f ◦ h
is a simplicial map. Then any point λ in Int∆p is a regular value of f .

The following result is a special case of a more general theorem about open
neighborhoods in pl manifolds which have the structure of a pl microbundle (see
section § 4.2 of [23] for the statement of this more general result).

Proposition 2.48. If M×Rp is a piecewise linear manifold of dimension m+p
then M is a piecewise linear manifold of dimension m.

Remark 2.49. Proposition 2.48 is a special case of the lemma stated in § 4.2 of
[23] in the sense that we are considering the case when the neighborhood is just
a product of the form M ×Rp. The way we are going to apply this proposition
is as follows: suppose we have a pl map f : Mm → ∆p from an m-dimensional
pl manifold M and suppose that h : |K| →M is a triangulation of M such that
the composition f ◦ h is simplicial. Then, by theorem 2.47, for any point λ in
int∆p we have that f−1(λ) has a neighborhood which is pl homeomorphic to
the product f−1(λ)×Rp and by proposition 2.48 we will have that f−1(λ) is a
pl submanifold of M of dimension m− p.

2.8 Piecewise linear submersions

Definition 2.50. 1. A piecewise linear map π : E → P is called a piecewise
linear submersion if for each x ∈ E there is a piecewise linear space U , an
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open neighborhood V of π(x) in P and an open piecewise linear embedding
h : V × U → E onto an open neighborhood of x such that π ◦ f is equal
to the projection pr1 : V × U → V .

2. π : E → P is said to be a piecewise linear submersion of codimension
d ∈ N if in the previous definition we can take U to be equal to Rd and
h(π(x), 0) = x where 0 is the origin in Rd. In particular, each fiber of π is
a d-dimensional piecewise linear manifold.

If π : E → P is a piecewise linear submersion and if x is in E then any em-
bedding h : V × U → E onto an open neighborhood of x such that pr1 = π ◦ h
will be called a submersion chart around x. Furthermore, if U is an open neigh-
borhood of x in the fiber π−1(π(x)) and if h(π(x), y) = y for all y ∈ U we say
that h is a normalized product chart around x.

The proof of the following proposition is given in page 81 of [2].

Proposition 2.51. Let P be a pl manifold, let π : W → P be a piecewise
linear submersion of codimension d ∈ N and let λ ∈ P . For any y0 in the fiber
π−1(λ) and any compact subspace C of π−1(λ) such that y0 ∈ C we can find a
normalized product chart g : V ×U → π−1(V ) of π around y0 such that C ⊆ U .

The following important proposition tells us that we can pull back the fibers
of certain pl submersions along pl maps in order to obtain new pl submersions.
This proposition is what we are going to use in order to define the structure
maps of the ∆-set Ψd(RN )• that we mentioned in the introduction.

Proposition 2.52. Let f : P → Q be a piecewise linear map. If W ⊆ Q× RN
is a closed subpolyhedron of Q × RN such that the projection π : W → Q,
π(q, x) = q, is a piecewise linear submersion of codimension d then

f∗W = {(p, x) ∈ P × RN : (f(p), x) ∈W}

is a closed subpolyhedron of P ×RN and the projection π̃ : f∗W → P , π̃(p, x) =
p, is also a piecewise linear submersion of codimension d.

Proof. Observe first that the product P × W is a closed sub-polyhedron of
P × Q × RN and that the product IdP × π is a piecewise linear sumbersion
of codimension d. Since the map f is piecewise linear we have that the graph

Γ(f) of f is a subpolyhedron of P × Q. The pre-image
(
IdP × π

)−1
(Γ(f))

is a closed sub-polyhedron of Γ(f) × RN since it is equal to the intersection

(P×W )∩(Γ(f)×RN ) and the restriction of IdP×π on
(
IdP×π

)−1
(Γ(f)), which

we shall denote by π′, is also a piecewise linear submersion of codimension d since

for any x in
(
IdP × π

)−1
(Γ(f)) and any submersion chart h : V ×Rd → P ×W

for IdP × π around x we have that the restriction of h on (Γ(f) ∩ V ) × Rd is
a submersion chart for π′ around x. Let g : Γ(f) → P be the piecewise linear
map which sends (p, f(p)) to p and let G : Γ(f)×RN → P ×RN be equal to the
product g × IdRN . The map G is a piecewise linear homeomorphism and thus
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the image of
(
IdP × π

)−1
(Γ(f)) under G is a closed sub-polyhedron of P ×RN .

It is easy to verify that this image is equal to the subpace f∗W given in the
statement of this propostion. Furthermore, the map π̃ : f∗W → P given by
π̃(p, x) = p is equal to the composition g ◦ π′ ◦ G−1|f∗W and since both g and
G−1|f∗W are piecewise linear homeomorphisms we have that π̃ is a piecewise
linear submersion of codimension d.

Definition 2.53. The closed sub-polyhedron f∗W of P × RN obtained in the
previous proposition will be called the pull back of W along f .

Proposition 2.54. Let M,N and P be polyhedra and let W be a closed sub-
polyhedron of M × RN such that the projection πM : W → M is a piecewise
linear submersion of codimension d. If f : N →M and g : P → N are piecewise
linear maps then (f ◦ g)∗W = g∗f∗W .

Proof. This lemma follows from the following equality

(f ◦ g)∗W = {(p, x) ∈ P × RN : (f ◦ g(p), x) ∈W} =

{(p, x) ∈ P × RN : (g(p), x) ∈ f∗W} = g∗f∗W.

The argument used to prove 2.52 works as a template to prove also the
following results.

Lemma 2.55. Let P,M be polyhedra and let h : P ×M → P ×M be a pl
homeomorphism which commutes with the projection onto P . If f : Q → P is
any pl map then the map g : Q×M → Q×M defined by g(q,m) =

(
q, hf(q)(m)

)
is a pl homeomorphism which commutes with the projection onto Q.

Proof. As we said before the method of this proof is somewhat similar to the
one given in proposition 2.52. Consider first the product of maps IdQ × h :
Q×P ×M → Q×P ×M . The graph Γ(f) of the pl map f is a subpolyhedron
of the product Q × P and hence we can restrict the map IdQ × h on the sub-
polyhedron Γ(f) ×M . Let us denote this restriction by g′. Observe also that
the map r : Q→ Γ(f) which sends q to the tuple (q, f(q)) is a piecewise linear
homeomorphism and that the map g : Q×M → Q×M given in the statement
is equal to the following composite map

(r × IdM )−1 ◦ g′ ◦ (r × IdM )

which clearly is a piecewise linear homeomorphism which commmutes with the
projection onto Q.

An argument similar to the one given in the previous proof can be used to
prove the following.
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Lemma 2.56. Let P,M,N be polyhedra and let h : P × N → P ×M be a pl
embedding which commutes with the projection onto P . If f : Q→ P is any pl
map then the map g : Q×N → Q×M defined by g(q, n) =

(
q, hf(q)(n)

)
is a pl

embedding which commutes with the projection onto Q.

We can also adapt the methods of the proof of proposition 2.52 to prove the
following result about open pl embeddings. A pl embedding is said to be open if
its image is open in the target.

Proposition 2.57. Let F : P × RN → P × RN be an open piecewise linear
embedding which commutes with projection onto P and let g : Q → P be a
piecewise linear map. Then, the map G : Q×RN → Q×RN which sends (q, x)
to (q, Ff(q)(x)) is an open piecewise linear embedding which commutes with the
projection onto Q.

Proof. Consider first the piecewise linear map IdQ×F : Q×P ×RN → Q×P ×
RN . This map is an open pl embedding which commutes with the projection
onto Q× P and by pre-composing this map with the obvious inclusion Γ(f)×
RN ↪→ Q× P × RN we obtain an open piecewise linear embedding H : Γ(f)×
RN → Γ(f) × RN which commutes with the projection onto Γ(f). Since the
map G : Q×RN → Q×RN given in the statement of this proposition is equal to
the map obtained by pre-composing and post-composing H with the obvious pl
homoemorphism h : Q×RN → Γ(f)×RN we have that G satisfies the desired
properties.

2.9 ∆-sets and simplicial complexes

In this subsection we will introduce the notion of ∆-set. A good reference for
this material is [18].

For each non-negative integer n let [n] denote the set {0, . . . , n}. The set [n]
has an obvious linear order.

Definition 2.58. The category ∆ is the category whose set of objects is equal
to {[n] : n ∈ N} and where the set of morphisms ∆

(
[n], [m]

)
between [n] and

[m] is empty if n > m or it is equal to the set of all strictly increasing functions
[n]→ [m] if n ≤ m.

Definition 2.59. A ∆-set X is a contravariant functor X : ∆op → Sets. We
shall usually denote the set X

(
[p]
)

by Xp for any object [p] in ∆. Also, for any
morphism δ in ∆ the function of sets X(δ) shall usually be denoted by δ∗ and
the functor X itself shall usually be denoted by X•.

The following more combinatorial definition of ∆-set is equivalent to defini-
tion 2.59 and it is sometimes more useful when one is trying to define ∆-sets by
hand. See for example definition 2.69 below.

25



Definition 2.60. (See definition 2.6 in [3]) A ∆-set X• consists of a sequence
of sets X0, X1, . . . and, for each n ≥ 0, maps ∂i : Xn+1 → Xn for each i,
0 ≤ i ≤ n+ 1, such that

∂i∂j = ∂j−1∂i

whenever i < j.

For each morphism α : [p] → [q] in ∆ let us denote by α∗ : ∆p → ∆q the
simplicial map which sends ej to eα(j). The geoemtric realization of a ∆-set X•
is defined to be the quotient

|X| =
∞∐
n=0

Xn ×∆n/ ∼

where ∼ is the equivalence relation generated by the relations
(
x, α∗(λ)

)
∼(

α∗(x), λ
)
.

In the literature ∆-sets are sometimes described as a generalization of sim-
plicial complexes. What people really mean by this is that from any simplicial
complex K we can produce in a natural way, after ordering the vertices of K,

a ∆-set K• and that there is a canonical homeomorphism |K•|
∼=→ |K|. This

shall be described in remark 2.63. But first we need to introduce the following
definition.

Defintion 2.61. Let A be a set. An ordered simplicial complex with vertices
in A is a tuple (K,≤) where K is a subset of P(A) (the power set of A) and ≤
is a relation on A which satisfy the following conditions:

1. ∅ /∈ K and for every a ∈ A the singleton {a} is in K.

2. Every element σ in K is finite.

3. If σ ∈ K then any non-empty subset of σ is also in K.

4. The restriction of ≤ on any σ ∈ K is a linear order on σ, which we will
denote by ≤σ.

Definition 2.62. A tuple (K,≤) is called an ordered Euclidean simplicial com-
plex if K is a simplicial complex in some Euclidean space and if ≤ is a relation
on Vert(K) (the set of vertices of K) satisfying condition 4) of defintion 2.61.

Remark 2.63. Observe that from an ordered simplicial complex K we can
obtain a ∆-set K• by assigning to [p] the subset of K consisting of all elements

of cardinality p + 1 and by assigning to a morphism [n]
s→ [m] the function

s∗ : Km → Kn which sends an element a0 ≤ . . . ≤ am of cardinality m + 1 to
the set as(0) ≤ . . . ≤ as(n). In particular, if ∆p is the standard geoemetric p-
simplex we can use its canonical simplicial complex structure and the canonical
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ordering ≤ on the set of vertices {e0, . . . , ep} to produce a ∆-set ∆p
• whose set

of k-simplices consists of all strings

ei0 ≤ . . . ≤ eik

of length k.

For any ∆-set X• and any p-simplex σ of X• the subset of X0 consisting of
all points x for which there is a morphism s ∈ ∆([0], [p]) such that s∗(σ) = x
will be called the set of vertices of σ and we will denote it by Vert(σ). The
following lemma offers a complete characterization of those ∆-sets which are
isomorphic to ∆-sets obtained from ordered simplicial complexes as indicated
in remark 2.63.

Lemma 2.64. A ∆-set X• is isomorphic to a ∆-set K• obtained from an
ordered simplicial complex K if and only if the following holds:

1. For any non-negative integer p and for any p-simplex σ the set Vert(σ)
has cardinality p+ 1.

2. If σ1 and σ2 are simplices such that Vert(σ1) = Vert(σ2) then σ1 = σ2.

Proof. The first implication is obvious since conditions 1) and 2) hold for any
∆-set obtained from an ordered simplicial complex. Suppose then that X• is a
∆-set which satisfies conditions 1) and 2). For i = 0, . . . , p let δi,p : [0]→ [p] be
the morphism in ∆ which sends 0 to i, let ≤ be the subset of X0 × X0 which
consists of all tuples (x, y) for which there is a p-simplex σ and morphisms
δi,p, δj,p with i < j such that δ∗i,p(σ) = x and δ∗j,p(σ) = y. Observe that this last
condition is equivalent to the existence of a 1-simplex α such that δ∗0,1(α) = x
and δ∗1,1(α) = y and by condition 2) such a 1-simplex must be unique. Let K
now be the subset of P(X0) which consists of all finite subsets β of X0 such that
β = Vert(σ) for some simplex σ of X•. We claim that for each element β in K
the restriction of ≤ on β, which we denote by ≤β , is a linear order. Indeed, let
σ be the unique simplex of X• such that Vert(σ) = β and let p be the dimension
of σ. If x and y are two different elements in β then there are morphisms δi,p
and δj,p in ∆

(
[0], [p]

)
such that i 6= j and such that δ∗i,p(σ) = x and δ∗j,p(σ) = y.

This implies that either x ≤β y or y ≤β x holds. However both relations cannot
hold at the same time since if that were the case we would have two different 1-
simplices with the same set of vertices which contradicts condition 2). Suppose
now that x, y, z are elements in β such that x ≤β y and y ≤β z. Observe that
there are unique values j0, j1, j2 such that δ∗j0,p(σ) = x, δ∗j1,p(σ) = y, δ∗j2,p(σ) = z
and since x ≤β y and y ≤β z we must have that j0 < j1 < j2 which implies that
x ≤β z. We will show now that if β = {v0 ≤ . . . ≤ vp} is in K then any subset
β′ of β is also in K and that the restriction of ≤β on β′ is equal to ≤β′ . Let
then vi0 ≤ . . . ≤ viq be the elements of β arranged in increasing order using the
order relation ≤β ald let s : [q] → [p] be the morphism in ∆ which sends j to
ij . Then we clearly have that δ∗j,q

(
s∗(σ)

)
= vij for j = 0, . . . , q and this implies

both that β′ ∈ K and that the restriction of ≤β on β′ is ≤β′ and we conclude
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that the tuple (K,≤) is an ordered simplicial complex with vertices in X0.
Let K• be the ordered simplicial complex obtained from the tuple (K,≤) and for
each non-negative integer p let fp : Xp → Kp be the function which sends a p-
simplex σ to the set Vert(σ). We claim that the functions fp are the components
of an isomorphism f• : X• → K• of ∆-sets. Let then σ be a p-simplex of X•,
let s : [q] → [p] be a morphism in ∆ and let v0 ≤ . . . ≤ vp be the vertices of σ
arranged in increasing order. By the way we defined the structure maps of K• we
have that s∗

(
{v0, . . . , vp}

)
= {vs(0), . . . , vs(q)}. On the other hand, we have that

Vert
(
s∗(σ)

)
is equal to {δ∗0,q

(
s∗(σ)

)
, . . . , δ∗q,q

(
s∗(σ)

)
} = {vs(0), . . . , vs(q)}, which

is exactly fq
(
s∗(σ)

)
and thus we conclude that the maps fp are the components

of a morphism f• of ∆-sets. Furthermore, f• is obviously surjective and by
condition 2) we have that it is also injective.

We conclude this section with a very useful fact about products of ∆-sets.
This result shall mostly be used in § 6. Recall that the product X• × Y• of two
∆-sets X• and Y• is the functor ∆op → Sets which sends [p] to Xp × Yp and
which sends a morphism δ : [q]→ [p] to the product δ∗×δ∗ : Xp×Yp → Xq×Yq.
For this proposition we shall omit the symbol • from the notation X•.

Proposition 2.65. Let X̃1 and X̃2 be simplicial sets and let F : Ssets →
∆-sets be the forgetful functor from the category of simplicial sets to the category
of ∆-sets. If X1 and X2 denote respectively the ∆-sets F (X̃1) and F (X̃2) and
if pj : X1 ×X2 → Xj is the projection onto Xj for j = 1, 2 then

(|p1|, |p2|) : |X1 ×X2| −→ |X1| × |X2|

is a weak homotopy equivalence where the topology on |X1|× |X2| is the product
topology.

Proof. For j = 1, 2 let us denote by |X̃j |M the geometric realization of the sim-

plicial set X̃j (The subscript M stands for Milnor). We recall the following fact
proven in [18]:

Fact: If F : Ssets → ∆-sets is the forgetful functor from Ssets to ∆-sets
and if X̃ is a simplicial set then there exists a natural map |F (X̃)| → |X̃|M
which is a homotopy equivalence.

Consider the following diagram:

|X1 ×X2|

��

// |X̃1 × X̃2|M

'
��

|X1| × |X2| // |X̃1|M × |X̃2|M

where the topology on the spaces in the bottom row is the product topology.
The horizontal maps in the square are the ones obtained by applying the fact
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mentioned above to the simplicial sets X̃1 × X̃2, X̃1 and X̃2. For j = 1, 2
the j-th component in either vertical map is just the geometric realization of
the morphism pj which projects the product onto the j-th component. The
naturality of the horizontal maps implies that the square is commutative. The
right verical map is a weak equivalence since it is equal to the composition

|X̃1 × X̃2|M
∼=→
(
|X̃1|M × |X̃2|M

)
K

'→ |X̃1|M × |X̃2|M

where the middle term is endowed with the compactly generated topology. Since
the two horizontal maps are also weak homotopy equivalences we conclude that
the map

(|p1|, |p2|) : |X1 ×X2| −→ |X1| × |X2|

is also a weak equivalence.

By induction we have the have the following corollary.

Proposition 2.66. Proposition 2.65 continues to hold if we consider finitely
many simplicial sets X̃1, . . . , X̃p.

2.10 Subdivisions of ∆-sets

Let X• be a ∆-set. We can regard X• as a category X with objects

obX =
∐
p≥0

Xp

and with a morphism η∗ : β → σ for each morphism η in ∆ such that η∗(σ) = β.
In particular, for each p-simplex σ , p > 0, and each j in {0, . . . , p} there is a
morphism ∂j : ∂jσ → σ (see §1 of [16]).

From a small category C one can produce a ∆-set NC•, called the nerve of
C, which is defined as follows (see [20]). Each object [p] in the category ∆ can
be regarded as a category with objects {0, . . . , p} and with a unique morphism
i → j whenever i ≤ j. Furthermore, each morphism η : [q] → [p] induces a
functor [q] → [p] in an obvious way, which by abuse of notation shall also be
denoted by η. The ∆-set NC• is then defined to be the functor ∆op → Sets

which sends [p] to Func
(
[p], C

)
and which sends a morphism [q]

η→ [p] of ∆ to
the function

η∗ : Func
(
[p], C

)
−→ Func

(
[q], C

)
which sends a functor α to the composite α ◦ η. In particular, we have that the
set of 0-simplices NC0 is just the set of objects obC and for p > 0 the set of
p-simplices NCp is the the set of all strings of lenght p

x0 → . . .→ xp
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of p composable morphisms.

Applying this construction to the category X obtained from a ∆-set X• we
can formulate the following definition.

Definition 2.67. (See definition 1.6 in [16]) The barycentric subdivision of X•
is the sub-∆-set sdX• of NX• whose set of 0-simplices is equal to NX0 and
whose set of p-simplices, p > 0, is equal to the set of all strings of lenght p

x0 → . . .→ xp

of non-identity composable morphisms.

Let X• = ∆p
• be the ∆-set obtained from the canonical ordered simplicial

complex structure of the standard p-simplex ∆p as indicated in remark 2.63. In
order to spell out what sdX• looks like it is better if we identify each k-simplex
ei0 ≤ . . . ≤ eik of ∆p

• with the face F of ∆p spanned by the vertices ei0 , . . . , eik .
With these identifications we have that the category X is the category with
objects the faces F of ∆p and with a unique non-identity morphism F1 → F2

whenever F1 is a proper face of F2. By definition 2.67 we have that sd∆p
• is the

∆-set whose of k-simplices consists of all flags

Fi0 → . . .→ Fik

of lenght k.

We can define the m-barycentric subdivision sdmX• of X• for m > 1 by
iterating the previuos construction. In particular, for any ∆-set X• we have the
following result about sd2X•.

Lemma 2.68. For any ∆-set X• the second barycentric subdivision sd2X• is
isomorphic to a ∆-set K• obtained from an ordered simplicial complex K.

Proof. We are going to apply lemma 2.64 for the proof of this lemma. Let us
start this proof by proving the following claim: if X• is a ∆-set such that for
each simplex σ the set Vert(σ) has dimσ + 1 points then the first barycentric
subdivision sdX• is isomorphic to a ∆-set K• obtained from an ordered simpli-
cial complex K. For a fixed simplex σ we will denote by Xσ

• the sub-∆-set of
X• generated by σ. The fact that Vert(σ) has dimσ+ 1 points implies that the
morphism ∆dimσ

• → Xσ
• which sends e0 ≤ . . . ≤ edimσ to σ is an isomorphism

of ∆-sets which implies that each ∆-set of the form sdXσ
• is isomorphic to a

∆-set obtained from an ordered simplicial complex. Since each simplex β of
sdX• is contained in one of the sub-∆-sets sdXσ

• we have that sdX• satisfies
condition 1) of lemma 2.64. To see that it also satisfies condition 2) consider
any two p-simplices β1 and β2 of sdX• such that Vert(β1) = Vert(β2). We can
find p-simplices σ1 and σ2 in X• such that βi ∈ sdXσi

• for i = 1, 2. Observe
that we must have σ1 = σ2 since if this were not the case we would have that
the barycentric points sσ1 and sσ2 are two different 0-simplices in sdX0 which
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would contradict the assumption that Vert(β1) = Vert(β2) since sσ1 ∈ Vert(β1)
and sσ2 ∈ Vert(β2). Thus σ1 = σ2 and since sdXσ1 is isomorphic to an ordered
simplicial complex we have by condition 2) of 2.64 that β1 = β2 and thus we
have that sdX• is isomorphic to a ∆-set obtained from an ordered simplicial
complex.
Let X• now be an arbitrary ∆-set. We claim that the first barycentric subdi-
vision sdX• satisfies condition 1) of lemma 2.64. We remark that in order for
a ∆-set to satisfy condition 1) of 2.64 it is sufficient that the condition holds
for all of its 1-simplices. But sdX• satisfies this equivalent condition since for
any 1-simplex α of sdX• we have that δ∗0,1(α) = sσ0 and δ∗1,1(α) = sσ1 where
σ0 is a proper face of σ1 and thus δ∗0,1(α) 6= δ∗1,1(α) and by the first part of

this proof we conclude that sd2X• is isomorphic to a ∆-set obtained from an
ordered simplicial complex.

2.11 Cone of a ∆-set

In this section we define the cone of a ∆-set X•. This is a construction that we
are going to use to define the scanning map in § 6. This construction is similar
to that of a cone of a simplicial set given in [8]. However the approach we are
going to take is different in the sense that we are going to define the cone of
a ∆-set X• by specifying all the extra simplices we need to add to X• and by
indicating the images of these new simplices under face maps. More precisely,
we have the following definition.

Definition 2.69. Let X• be a ∆-set. The cone CX• of X• is defined as follows:
the set of 0-vertices CX0 is equal to

X0 ∪ {∗},

i.e., is the set of vertices X0 plus a new vertex ∗. For p ≥ 0 the set of p + 1-
simplices CXp+1 is equal to

Xp+1 ∪ {σ̃ : σ ∈ Xp},

i.e., for every p-simplex σ of X• we add a new p+ 1-simplex σ̃. Face maps are
defined as follows:

i) On Xp+1 ⊆ CXp+1 the j-th face map ∂j : CXp+1 → CXp agrees with the
j-th face map ∂j : Xp+1 → Xp of X•.

ii) For a p+1-simplex of the form σ̃ we have the following identities: ∂p+1σ̃ =

σ and ∂j σ̃ = ∂̃jσ for j = 0, . . . , p.

iii) For a 1-simplex of the form σ̃ we have that ∂1σ̃ = σ and ∂0σ̃ = ∗.

The new vertex ∗ is meant to be the tip of the cone. It is straightforward,
although slightly tedious, to verify that the functions ∂j we just defined satisfy
the ∆-set identity ∂i∂j = ∂j−1∂i whenever i < j and hence the sequence of sets
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{CXp}p and the functions ∂j indeed determine a ∆-set. Details are left to the
reader.

Furthermore, it is clear that there is a canonical homeomorphism

|CX•| → C|X•|

where C|X•| is the usual cone of |X•|

By the way we defined CX• we have that there is a natural inclusion

j : X• ↪→ CX•

which sends a p-simplex σ to its copy in CXp. This inclusion shall be used in
the following definition.

Definition 2.70. The unreduced suspension SX• of X• is the push out of the
following diagram

X•
j //

j

��

CX•

CX•.

(9)

This is by no means a standard definition of suspension for either ∆-sets or
simplicial sets. See for example section III.5 in [8]. However, the author found
this construction useful in order to define the scanning map given in §7 and to
show that it is a weak equivalence.

3 Spaces of PL manifolds

3.1 Definitions

In the following definition we introduce the piecewise linear analogue of the
space of smooth manifolds Ψd(RN ) used in [7].

Definition 3.1. Ψd(RN )• is the ∆-set which assigns to an object [p] of ∆ the
set Ψd(RN )p of all closed sub-polyhedra W of ∆p × RN for which the natural
projection π : W → ∆p is a piecewise linear submersion of codimension d.
The i-th face map ∂i : Ψd(RN )p+1 → Ψd(RN )p is defined by W 7→ δ∗iW ,
i.e., a p-simplex W is mapped to its pull back along the canonical inclusion
δi : ∆p → ∆p+1 into the i-th face of ∆p+1 (See proposition 2.52).

We shall also need the following sub-∆-sets of Ψd(RN )•.

Definition 3.2. ψd(N, k)•, 0 ≤ k ≤ N , is the sub-∆-set of Ψd(RN )• given by

ψd(N, k)p = {W : W ⊆ ∆p × Rk × (−1, 1)N−k}.

In particular, we have that Ψd(RN )• = ψd(N,N)•.
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In order to define the ∆-set Ψd(RN )• we applied proposition 2.52 to very
specific kinds of polyhedra and pl maps, namely, the standard geometric sim-
plices ∆p and simplicial injective maps ∆q ↪→ ∆p which preserve the canonical
ordering on the set of vertices. However, proposition 2.52 applies to all polyhedra
and all pl maps and therefore we can define a more general kind of functor.

Definition 3.3. For 0 ≤ k ≤ N let

ψd(N, k) : PLop −→ Sets (10)

be the contravariant from the category PL of polyhedra and piecewise linear
maps to the category Sets which sends a polyhedron P to the set ψd(N, k)

(
P
)

of all closed sub-polyhedra W of P × Rk × (−1, 1)N−k for which the natural
projection map π : W → P is a piecewise linear submersion of codimension d
and which sends a pl map f : P → Q to the pull back along f

ψd(N, k)
(
f
)

: ψd(N, k)
(
P
) f∗→ ψd(N, k)

(
Q
)
,

i.e., the function which maps W to f∗W .

Observe that by proposition 2.54 we have for any pair of pl maps f : P → Q
and g : Q→ S that (g ◦ f)∗ = f∗ ◦ g∗ and hence we have that (10) is indeed a
contravariant functor. Also, observe that the set of p-simplices ψd(N, k)p of the
∆-set defined in 3.2 is equal to

ψd(N, k)
(
∆p
)

and that the i-th face map ∆i : ψd(N, k)p+1 → ψd(N, k)p is equal to

ψd(N, k)
(
δi : ∆p ↪→ ∆p+1

)
and hence ψd(N, k)• can be completely recovered from the functor (10).

We shall also make use of the following terminology.

Definition 3.4. Let P be a polyhedron. Two elementsW0 andW1 of ψd(N, k)
(
P
)

are said to be concordant if there is an element W̃ of ψd(N, k)
(
[0, 1] × P

)
such that i∗0W̃ = W0 and i∗1W̃ = W1, where for j = 0, 1 we have that ij :

P ↪→ [0, 1] × P is the inclusion defined by λ 7→ (j, λ). An element W̃ in

ψd(N, k)
(
[0, 1]×P

)
such that i∗jW̃ = Wj for j = 0, 1 is said to be a concordance

between W0 and W1.

3.2 Properties of Ψd(RN)•

The main result in this section is proposition 3.5 given below which describes
a way of classifying all the elements of the set Ψd(RN )

(
P
)

using the ∆-set
Ψd(RN )• when the polyhedron P is a compact Euclidean polyhedron and when
P is triangulated by a simplicial complex K. Recall that an Euclidean simplicial
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complex is said to be ordered if there is a relation≤ on the set of vertices Vert(K)
which restricts to a linear order on Vert(σ) for each simplex σ of K. Also, in the
statement of propostion 3.5 we shall make use of the following convention: if A
is a p simplex in some Euclidean space with vertices v0, . . . , vp and if e0, . . . , ep
are the elements of the standard basis of Rp+1 then sv0...vp : ∆p → A is the
simplicial map defined by ej 7→ vj .

Proposition 3.5. Let (K,≤) be a finite ordered simplicial complex in some
Euclidean space Rm, let P be the underlying polyhedron of K and let K• be the
∆-set obtained from K as indicated in 2.63. Then the function of sets

SK : Ψd(RN )(P )→ ∆(K•,Ψd(RN )•)

which sends an element W ⊆ P×RN of Ψd(RN )(P ) to the morphism fW : K• →
Ψd(RN )• of ∆-sets defined by fW (v0 ≤ . . . ≤ vp) = s∗v0...vqW is a bijection.

Definition 3.6. Let (K,≤) be a finite ordered simplicial complex in some
Euclidean space Rm. If W is an element in Ψd(RN )

(
|K|
)

and if h• := SK(W )
we say that h• classifies the element W .

Note 3.7. For the proof of 3.5 it will be useful to use the following convention:
if W ⊆ P ×RN is an element of Ψd(RN )

(
P
)

and if S is a sub-polyhedron of P
we denote by WS the pre-image π−1(S), where π is the projection of W onto
P , and we denote by πS the restriction of the map π on WS . In particular,
WS ∈ Ψd(RN )

(
S
)
.

Lemma 3.8. Let
H+ := {(x1, . . . , xp) : xp ≥ 0}

be the closed half space in Rp, let W be an element in Ψd(RN )
(
H+

)
, let λ0 and

y0 be points in ∂H+ and π−1(λ0) respectively, and let f : V × Rd → W and
g : U×Rd →W∂H+

be submersion charts around y0 for π and π∂H+
respectively

such that Img ⊆ Imf and such that U×[0, δ) ⊂ V for a suitable value 0 < δ < 1.
Then there exists a submersion chart g′ : U × [0, δ)×Rd →W around y0 for π
such that Img′ ⊆ Imf and g′|U×Rd = g.

Proof. Let h : U × Rd → U × Rd be equal to the composite

U × Rd
g // Img

f−1

// U × Rd .

where the second map is just the restriction of f−1 on Img. Since both maps
in this composition are piecewise linear embeddings then h is also a piecewise
linear embedding. Furthermore, we also have that the image of h is open in
U × Rd. Indeed, Img is an open subset of Imf ∩W∂H+ and since the restrici-
tion of f−1 on Imf ∩W∂H+ is a pl homeomorphism between Imf ∩W∂H+ and
(V ∩ ∂H+) × Rd we have that Imh = f−1(Img) is open in (V ∩ ∂H+) × Rd.
However, since the image of h lies entirely in U ×Rd we have that Imh is open
in U ×Rd. This observation will be useful when we prove that the image of the
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chart g′ which extends g is open.

Let h̃ : U × [0, δ)× Rd → U × [0, δ)× Rd be the piecewise linear embedding
which maps (u, t, x) to

(
u, t, h2(u, x)

)
, where h2 is the second component of the

map h : U × Rd → U × Rd, and let g′ : U × [0, δ) × Rd → W be the following
composite of piecewise linear embeddings

g′ = f ◦ h̃.

It is easy to verify that g′(λ0, 0, 0) = y0 and that the following diagram com-
mutes

U × [0, δ)× Rd
g′ //

pr1

��

W

π

��
U × [0, δ)

� � // H+.

where the bottom map is just the obvious inclusion U × [0, δ) ↪→ H+. Further-

more, since the image of the map h is open it follows that the image of h̃ is also
open which implies that the image Img′ is open in W and thus we have that g′

is a submersion chart for π around y0.

Finally, we also have that g′ extends g since for any point (u, 0, x) in U ×
{0} × Rd we have the following:

g′(u, 0, x) = f ◦ h̃(u, 0, x)

= f(u, 0, h2(u, x))

= f(h(u, x))

= g(u, x).

Lemma 3.9. Let K be a finite simplicial complex in Rm, let W be a closed sub-
polyhedron of |K|×RN and let K be the poset of simplices of K. If F : K → Top
is the functor which sends σ to Wσ := W ∩

(
σ × RN

)
and which sends the

unique morphism β → σ to the inclusion Wβ ↪→ Wσ whenever β ≤ σ then the
map f : colimK F → W obtained by the universal property of colimits is a
homeomorphism.

Proof. By the definition of colimit there is for each σ ∈ K a unique map hσ :
Wσ → colimK F such that the inclusion Wσ ↪→ W is equal to the composite
f ◦ hσ. The result now follows from the fact that the map g : W → colimK F
defined by g(x) = hσ(x) if x ∈Wσ is a continuous inverse for f .

Lemma 3.10. Let K be a finite simplicial complex in Rm of the form a0 ∗ L,
let W be a closed sub-polyhedron of |K| × RN and let π : W → |K| be the
projection from W onto |K|. Suppose that for each simplex σ of K the projection
πσ : Wσ → σ is a piecewise linear submersion of codimension d. Then π is a pl
submersion of codimension d on a neighborhood of π−1(a0).
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Proof. Let q be the dimension of the simplicial complex K and let us fix a point
y0 in the fiber π−1(a0). For each skeleton Ki of K let π|Ki| : W|Ki| → |Ki| be
the restriction of π on W|Ki|. The idea of the proof is to define, by induction

on the dimension of the skeleta Ki, open pl embeddings hi : Ui × Rd → W|Ki|
such that hi

(
(a0, 0)

)
= y0 and such that the following diagram commutes

Ui × Rd
hi //

pr1

��

W|Ki|

π|Ki|

��
Ui

� � // |Ki|.

Let then σ1, . . . , σp be the 1-simplices of K which contain the vertex a0 and

let fi : Ũi × Rd → Wσi be a submersion chart around y0 ∈ π−1
σi (a0) for πσi .

We can assume that each Ũi doesn’t intersect the link lk(a0,K
1). Observe that

(
⋂p
i=1 Imfi)∩π−1(a0) is an open neighborhood of y0 in π−1(a0) = Wa0

. Hence,
since Wa0

is a d-dimensional piecewise linear manifold, we can find a piecewise
linear embedding g0 : Rd → Wa0 with open image such that g0(0) = y0 and
Img0 ⊆

⋂p
i=1 Imfi. By lemma 3.8 there is for each 1 ≤ i ≤ p a submersion chart

g′i : V ′i × Rd →Wσi

for πσi around y0 such that Img′i ⊆ Imfi and such that g′i extends g. Let Vi be a
compact neighborhood of a0 in σi contained in intV ′i and consider the restriction
of g′i on Vi× [−1, 1]d. By abuse of notation , we will also denote this restriction
simply by g′i. We now define a piecewise linear map

g1 :
( p⋃
i=1

Vi

)
× [−1, 1]d →W|K1|

by setting g1(λ, x) = g′i(λ, x) if (λ, x) is in Vi×[−1, 1]d. Observe that this map is
well defined since for each g′i we have g′i|{a0}×[−1,1]d = g0|[−1,1]d after we identify

{a0} × [−1, 1]d with [−1, 1]d and since each g′i is a submersion chart we have
both that g1(a, 0) = y0 and that the diagram(⋃p

i=1 Vi

)
× [−1, 1]d

pr1

��

g1 // W|K1|

π|K1|

��⋃p
i=1 Vi

// |K1|

commutes. Finally, let us denote the union
⋃p
i=1 intσiVi by U1 and let us now

show that the image g1(U1 × (−1, 1)d) is open in W|K1|. Observe that each

g′i
(
intσiVi × (−1, 1)d

)
is open in Wσi and since g1(U1 × (−1, 1)d) ∩ Wσi =

g′i
(
intσiVi × (−1, 1)d

)
we have by lemma 3.9 that Img1 is open in W|K1|. Thus,

after identifying (−1, 1)d with Rd, we obtain a submersion chart g1 : U1×Rd →
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W|K1| around y0 for the projection π|K1|.

Suppose now that we have a submersion chart gn : Un × Rd → W|Kn| for

π|Kn| around y0 ∈ π−1
|Kn|(a0). We can assume that Un doesn’t intersect the

link lk(a0,K
n). Let σ1, . . . , σp be the n + 1-simplices of K which contain a0.

Observe that the restriction of gn on (Un ∩ ∂σi) × Rd is a submersion chart
for π∂σi : W∂σi → ∂σi around y0. Now, for each one of the n + 1-simplices σi
pick a submersion chart fi : Ũi × Rd → Wσi for πσi around y0. After possibly
shrinking Un and rescaling Rd we can assume that gn((Un ∩ ∂σi)×Rd) ⊆ Imfi
for all i = 1, . . . , p. Applying again lemma 3.8 we can find a submersion chart
g′i : V ′i × Rd → Wσi for πσi around y0 such that Img′i ⊆ Imfi and such that g′i
extends the restriction of gi on (Un ∩ ∂σi) × Rd. As we did in the first step of
the induction we can take smaller compact neighborhoods Vi ⊂ intσiV

′
i of a0,

restrict each g′i on intσiVi × (−1, 1)d and glue all of these restricitions together
to obtain a piecewise linear embedding gn+1 : Un+1 × (−1, 1)d → W|Kn+1|,
where Un+1 =

⋃p
i=1 intσiVi, which commutes with the projection onto Un+1

and which has open image. After identifying (−1, 1)d with Rd we have that
gn+1 is a submersion chart for π|Kn+1| around y0. Since the simplicial complex

K is finite we conclude that there exists a submersion chart h : U×Rd → π−1(U)
for π : W → |K| around y0.

We remark that in the previous proof we can assume that the open neigh-
borhood U of a0 in |K| is contained in the open set |K| − |L|. This observation
will be used in the following lemma.

Lemma 3.11. Let K be a finite simplicial complex in Rm and let W be a closed
sub-polyhedron of |K|×RN such that for each simplex σ of K the projection map
πσ : Wσ → σ is a piecewise linear submersion of codimension d. Then the pro-
jection map π : W → |K| is also a piecewise linear submersion of codimension
d.

Proof. Let y0 be any point in the polyhedron W and let a0 = π(y0). We can
subdivide the simplicial complex K in order to obtain a simplicial complex K ′

which has a0 as a vertex and such that |K ′| = |K|. By proposition 2.52 we have
that for each simplex σ of K ′ the projection πσ : Wσ → σ is a piecewise linear
submersion of codimension d . Let lk(a0,K

′) be the link of a0 in K ′ and let
st(a0,K

′) be the star of a0 in K ′. Observe that st(a0,K
′) = lk(a0,K

′) ∗ a0 and
that st(a0,K

′) − lk(a0,K
′) is an open neighborhood of a0 in |K ′|. Applying

lemma 3.10 to the projection πst(a0,K′) : Wst(a0,K′) → st(a0,K
′) we obtain a

submersion chart h : U ×Rd →Wst(a0,K′) for πst(a0,K′) around y0. However, by
the remark preceding this proof, the open subspace U of st(a0,K

′) can be taken
to be contained in st(a0,K

′)− lk(a0,K
′) and thus we have that h is actually a

submersion chart for π : W → |K| around y0. Since we can do this argument
for any y0 ∈W we conclude that π : W → |K| is a piecewise linear submersion
of codimension d.
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Recall that if σ is a p-simplex inside some eucildean space Rm spanned by
a collection of points v0, . . . , vp in general position and if {e0, . . . , ep} is the
standard basis of Rp+1 then sv0...vp : ∆p → σ is the simplicial map which sends
ej to vj . Let us now denote the inverse of sv0...vp by tv0...vp .

Lemma 3.12. Let (K,≤) be a finite ordered simplicial complex of dimension
k in Rm, let K• be the ∆-set obtained from K as indicated in 2.63 and let
g• : K• → Ψd(RN )• be a morphism of ∆-sets. For each simplex β of K• let
W β ⊆ ∆dimβ × RN be the underlying polyhedron of the image of β under g•.
Then the union

W =

k⋃
j=0

( ⋃
v0≤...≤vj

t∗v0...vjW
v0≤...≤vj

)
is a closed sub-polyhedron of |K| × RN and the projection π : W → |K| from
W onto |K| is a piecewise linear submersion of codimension d. In particular,
W ∈ Ψd(RN )

(
|K|
)
.

Proof. Recall that we are denoting by WS the pre-image π−1(S) of a sub-
polyhedron S of |K| under π : W → |K|. For each simplex v0 ≤ . . . ≤ vp
of K• let 〈v0, . . . , vp〉 denote the simplex of K spanned by the points v0, . . . , vp.
We begin this proof by observing that for each simplex v0 ≤ . . . ≤ vp of K• we
have

W〈v0,...,vp〉 = t∗v0...vpW
v0≤...≤vp .

Indeed, if w0 ≤ . . . ≤ wp and w′0 ≤ . . . ≤ w′q are simplices of K• such that
w0 ≤ . . . ≤ wp is a face of w′0 ≤ . . . ≤ w′q and if i : 〈w0 ≤ . . . ≤ wp〉 ↪→ 〈w′0 ≤
. . . ≤ w′q〉 is the obvious inclusion from 〈w0 ≤ . . . ≤ wp〉 into 〈w′0 ≤ . . . ≤ w′q〉
then we have that t∗w0...wpW

w0≤...≤wp = i∗t∗w′0...w′q
Ww′0≤...≤w

′
q and this implies

that W〈v0,...,vp〉 = t∗v0...vpW
v0≤...≤vp for any simplex v0 ≤ . . . ≤ vp of K•. Now,

since for each simplex σ = 〈v0, . . . , vp〉 the space W〈v0,...,vp〉 is a closed sub-

polyhedron of |K|×RN we have that the union
⋃
σ∈KWσ, which is equal to W ,

is a closed sub-polyhedron of |K|×RN since it is just the union of finitely many
closed sub-polyhedrons. Finally, by lemma 3.10 we have that the projection
π : W → |K| is a piecewise linear submersion of codimension d.

Note. The element W in Ψd(RN )
(
|K|
)

obtained from the morphism g• : K• →
Ψd(RN )• shall be denoted by W g. We shall use this notation in the following
proof.

Proof of proposition 3.5: Let K be a finite ordered simpilcial complex in
Rm and let K• be the ∆-set obtained from K as indicated in definition 2.63.
Recall that the function of sets

SK : Ψd(RN )(|K|)→ ∆(K•,Ψd(RN )•)

sends an a element W of Ψd(RN )(|K|) to the morphism of ∆-sets fW,• : K• →
Ψd(RN )• which maps a simplex v0 ≤ . . . ≤ vp to the simplex s∗v0...vpW〈v0≤...≤vp〉.
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To see that fW,• is indeed a morphism of ∆-sets observe that if w0 ≤ . . . ≤ wq
is a face of v0 ≤ . . . ≤ vp and if i1 : 〈w0 ≤ . . . ≤ wq〉 ↪→ 〈v0 ≤ . . . vp〉 and
i2 : ∆q ↪→ ∆p are the obvious inclusions then we have that

s∗w0...wq i
∗
1W〈v0≤...≤vp〉 = i∗2s

∗
v0...vpW〈v0≤...≤vp〉

and this implies that fW,• commutes with the structure maps ofK• and Ψd(RN )•.
Let

TK : ∆(K•,Ψd(RN )•)→ Ψd(RN )(|K|)

be the function of sets which sends a morphism g• : K• → Ψd(RN )• of ∆-sets to
the element W g of Ψd(RN )(|K|) defined in lemma 3.12. We will show that SK
and TK are inverses of each other. For any morphism g• ∈ ∆(K•,Ψd(RN )•) let
us denote by W g(σ) the underlying polyhedron of the simplex gdimσ(σ). To see
that the composition SK ◦ TK is the identity on ∆(K•,Ψd(RN )•) observe that
for a morphism g• ∈ ∆(K•,Ψd(RN )•) the image SK ◦ TK(g•) is the morphism
fW g,• which sends a simplex σ = v0 ≤ . . . ≤ vp to s∗v0...vpt

∗
v0...vpW

g(σ). But
since sv0...vp and tv0...vp are inverses of each other we have that g• = fW g,•. A
similar argument works to show that the composition TK ◦SK is the identity on
Ψd(RN )(|K|) since for any W in Ψd(RN )(|K|) we have that W and W fW can
be expressed as

W =
⋃
σ∈K

Wσ

and
W fW =

⋃
σ∈K

W fW
σ

respectively, and as we observed in the proof of lemma 3.12 for each simplex
σ = 〈v0 ≤ . . . ≤ vp〉 of K the sub-polyhedron W fW

σ is equal to t∗v0...vpW
fW (σ)

which in turn is equal to t∗v0...vps
∗
v0...vpWσ. Since tv0...vp and sv0...vp are inverses

of each other we obtain that that W = W fW and we can now conclude that SK
is a bijection.

Using this proposition and proposition 2.52 we can prove the following the-
orem.

Theorem 3.13. Ψd(RN )• is a Kan ∆-set.

Proof. Let Λpj be the j-th horn of ∆p, let Λpj• be the ∆-set obtained from

Λpj using the canonical order on Vert(Λpj ) and let g• : Λpj• → Ψd(RN )• be a
morphism of ∆-sets. We need to show that g• can be extended to ∆p

•. The
inclusion i : Λpj ↪→ ∆p is actually an inclusion of ordered simplicial complexes
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and using this fact it is easy to verify that the following diagram commutes

Ψd(RN )
(
∆p
) S∆p //

i∗

��

∆(∆p
•,Ψd(RN )•)

−◦i•
��

Ψd(RN )
(
Λpj
) SΛ

p
j // ∆(Λpj•,Ψd(RN )•).

Since SΛpj
is surjective we can find W in Ψd(RN )

(
Λpj
)

such that SΛpj
(W ) = g•

and by the commutativity of the above diagram it suffices to find a lift of
W in Ψd(RN )

(
∆p
)

in order to find a lift of g• in ∆(∆p
•,Ψd(RN )•). But if

r : ∆p → Λpj is any pl retraction onto Λpj then the pull back r∗W is a lift for W
and consequently f• := S∆p(r∗W ) is a lift for g•.

Kan ∆-sets are very convenient objects to work with in light of the following
theorem which is proven in [18].

Theorem 3.14. Suppose Z• ⊂ Y• is a pair of ∆-sets and X• is a Kan ∆-set.
Suppose given a map f : |Y•| → |X•| such that f ||Z•| is the realization of a
morphism of ∆-sets. Then f is homotopic relative to |Z•| to the realization of
a morphism of ∆-sets f ′• : Y• → X•.

Note 3.15. We remark that the exact same argument used to prove theorem
3.5 also works to prove the exact same result for each sub-∆-set ψd(N, k)• of
Ψd(RN )• defined in 3.2. In particular, we have that each ψd(N, k)• is a Kan-
∆-set.

3.3 The sheaf Ψd(RN)

In 3.1 we defined the space of pl manifolds Ψd(RN )• using RN as the background
space. However, we could have easily defined a ∆-set Ψd(U)• using any open
subspace U ⊆ RN as the background space and furthermore for any inclusion
of open sets V ↪→ U we have that the function which sends a p-simplex W of
Ψd(U)• to the intersection W ∩

(
∆p × V

)
is actually a morphism of ∆-sets.

With these observations we can formulate the following definition.

Definition 3.16. Let

Ψd(−) : O(RN )op −→ ∆-sets

be the pre-sheaf of ∆-sets on RN which sends an open set U to the ∆-set
Ψd(U)• whose set of p-simplices consists of all closed sub-polyhedrons W of
∆p × U such that the projection onto ∆p is a piecewise linear submersion of
codimension d. An inclusion of open sets V ↪→ U is mapped to the restriction
morphism Ψd(U)• → Ψd(V )• which sends a p-simplex W to W ∩

(
∆p × V

)
.

The following proposition tells us that the functor Ψd(−) is actually a sheaf.
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Proposition 3.17. Let U1 and U2 be open subsets of RN . If W1 ⊆ P ×U1 and
W2 ⊆ P × U2 are elements in Ψd(U1)(P ) and Ψd(U2)(P ) respectively such that
W1 ∩

(
P × U2

)
= W2 ∩

(
P × U1

)
then the union W := W1 ∪W2 is an element

in Ψd(U1 ∪ U2)(P ).

Proof. Since W1 and W2 are both open subspaces of W and since W1 and W2

are both piecewise linear subspaces of P × U then by proposition 2.39 we have
that W is a piecewise linear subspace of P ×U . To see that W is closed in P ×U
observe that the limit of any convergent sequence of points (xn)n in W must be
either in U1 or U2 and thus it must lie in either W1 or W2 since Wi is closed in
Ui for i = 1, 2. Finally, the projection π : W → P must be a piecewise linear
submersion of codimension d since the restrictions of π on W1 and W2, which
are both open subspaces of W , are assumed to be piecewise linear submersions
of codimension d.

By applying this proposition to the case when the base space P is equal to
one of the standard simplices ∆p we obtain the following corollary.

Corollary 3.18. The pre-sheaf

Ψd(−) : O(RN )op −→ ∆-sets

defined in 3.16 is a sheaf of ∆-sets.

We conclude this subsection with the following useful proposition which tells
how to produce elements in Ψd(RN )

(
P
)

using open pl embeddings P × RN →
P × RN which commute with the projection onto P .

Proposition 3.19. Let P be a compact polyhedron and let W be an element
of Ψd(RN )(P ). Then for any open piecewise linear embedding H : P × RN →
P × RN which commutes with the projection onto P we have that H−1(W ) is
an element of Ψd(RN )(P ).

Proof. The intersection of W and ImH is a closed sub-polyhedron of ImH and
since H is a piecewise linear homeomorphism from P ×RN to ImH we also have
that H−1(W ) is a closed sub-polyhedron of P×RN . Finally, the projection from
H−1(W ) to P is a piecewise linear submersion of codimension d since it is equal
to the composition of H|H−1(W ), which is a piecewise linear homeomorphism
from H−1(W ) to W , and the projection from W onto P .

4 Functors F : Plop → Sets

In the previous section we introduced both the ∆-set Ψd(RN )• and the more
general contravariant functor Ψd(RN ) : PLop → Sets defined on the category
PL of (finite dimensional) polyhedra and piecewise linear maps. It is the aim of
this section to show how this more general functor defined on PLop can be used
to analyze the ∆-set Ψd(RN )•. In particular, we are going to show that there
is a map ρ :

∣∣Ψd(RN )•
∣∣→ ∣∣Ψd(RN )•

∣∣ which satisfies the following properties:
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1. ρ is homotopic to the identity map on
∣∣Ψd(RN )•

∣∣.
2. For any morphism of ∆-sets f• : X• → Ψd(RN )• and for any non-negative

integer r there is a unique morphism g• : sdrX• → Ψd(RN )• which makes
the following diagram commute

|X•|
|f•| //

∣∣Ψd(RN )•
∣∣

ρr

��
|sdrX•|

∼=

OO

|g•| //
∣∣Ψd(RN )•

∣∣
where the left vertical map is just the canonical homeomorphism from the
geometric realization |sdrX•| of the r-th barycentric subdivision of X• to
|X•| .

Because of property 2) the map ρ will be called the subdivision map of Ψd(RN )•.

4.1 Preliminary simplicial constructions

Before we can define the subdivision map ρ :
∣∣Ψd(RN )•

∣∣→ ∣∣Ψd(RN )•
∣∣ we need

to introduce some basic constructions using simplicial complexes. We start by
recalling the following definition given in 2.12 of § 1.

Definition 4.1. Let K be a simplicial complex in Rm and for each simplex F let
bF be its barycentric point. The (first) barycentric subdivision of K, denoted
by sdK, is the stellar subdivision obtained by starring K at the barycentric
points bF .

In order to define the subdivision map ρ we first need to introduce for
each p ∈ N a simplicial complex L(p) in Rp+2 which triangulates the prod-
uct ∆p × [0, 1]. We define these simplicial complexes by induction on p. In
order to make our notation easier to follow we will throughout this section de-
note by K(m) and ∂K(m) the canonical simplicial complexes which triangulate
∆m and ∂∆m respectively. Also, if K is any simplicial complex in RM , if a0 is
any point in RP and if T : RM → RM ′ is any affine linear embedding we will
denote by K × a0 and by T (K) the simplicial complexes in RM+P and in RM ′

consisting of all simplices of the form σ×{a0} and T (σ) respectively with σ ∈ K.

Recall that twe are denoting the canonical basis of Rp+1 by e0, . . . , ep. In
order to distinguish the canonical bases of different Euclideant spaces we shall
in this section denote the canonical basis of Rp+1 by

e0,p+1, . . . , ej,p+1, . . . , ep,p+1.

We begin now with the construction of the simplicial complex L(p). For p = 0
let L(0) be the simplicial complex in R2 consisting of the following simplices
(see figure (1)):

(1, 0), (1, 1), (1,
1

2
), {1} × [0,

1

2
], {1} × [

1

2
, 1].
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Figure (1)
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Using L(0) we define L(1) in the following way: let T0 : R2 → R3 and
T1 : R2 → R3 be the injective linear maps defined respectively by

T0(e0,2) = e0,3, T0(e1,2) = e2,3

and
T1(e0,2) = e1,3, T1(e1,2) = e2,3.

Also, let L(1)′ denote the following union of simplicial complexes in R3:

T0

(
L(0)

)
∪ T1

(
L(0)

)
∪
(
sdK(1)× 1

)
∪
(
K(1)× 0

)
.

L(1)′ is a simplicial complex which triangulates ∂(∆1 × [0, 1]) and we define
L(1) to be the join L(1)′ ∗ (b∆1, 1

2 ), where b∆1 is the barycentric point of ∆1.
Observe that by construction we have that T0

(
L(0)

)
, T1

(
L(0)

)
, sdK(1) × {1}

and K(1)×{0} are subcomplexes of L(1) and, if we identify R3 with R2×R, these
subcomplexes triangulate respectively the polyhedra {e0,2}×[0, 1], {e1,2}×[0, 1],
∆1×{1} and ∆1×{0}. Figure (2) below illustrates what L(1) should look like.

Figure (2)
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From now on we will denote the unit interval [0, 1] simply by I. Suppose
now that for a positive integer m0 we have defined simplicial complexes

L(0), . . . , L(m0)

which satisfy the following properties:

1. If p ≤ q ≤ m0 and if s : |K(p)| ↪→ |K(q)| is any simplicial embedding which
preserves the ordering of the vertices then the map s×IdI : ∆p×I ↪→ ∆q×I
becomes also a simplicial embedding if we triangulate ∆p × I and ∆q × I
with L(p) and L(q) respectively.

2. For each p ≤ m0 the simplicial complex L(p) contains K(p) × {0} and
sdK(p)× {1} as subcomplexes.

3. L(p) contains a subcomplex L(p)′ which triangulates ∂(∆p × I) and L(p)
is equal to the join L(p)′ ∗ (b∆p, 1

2 ), where b∆p denotes the barycentric
point of ∆p.

Let now δi : ∆m0 ↪→ ∆m0+1 be the canonical inclusion of ∆m0 into the ith
face of ∆m0+1 and let L′′(m0 +1) be the following union of simplicial complexes

L′′(m0 + 1) :=

m0+1⋃
j=0

δj × IdI(L(m0)).

This set of simplices covers ∂∆m0+1×I and by the first assumption given above
it follows that it is actually a simplicial complex which triangulates ∂∆m0+1×I.
Furthermore, by the second assumption given above we have that L′′(m0 + 1)
contains both sd(∂K(m0 + 1)) × {1} and ∂K(m0 + 1) × {0} as subcomplexes
and it follows that the union

L′(m0 + 1) := L′′(m0 + 1) ∪
(
sdK(m0 + 1)× {1}

)
∪
(
K(m0 + 1)× {0}

)
is a simplicial complex which triangulates ∂(∆m0+1 × I). Finally, we define
L(m0 +1) to be the join L′(m0 +1)∗(b∆m0+1, 1

2 ) and by the way we constructed
L(m0 + 1) we have that the sequence

L(0), . . . , L(m0), L(m0 + 1)

satisfies the same three assumptions given above. This concludes the construc-
tion of the simplicial complexes L(p).

Observe that the set of vertices of both K(p) and sdK(p) have canonical
partial orderings ≤∆p and ≤sd∆p . Indeed, for the vertices of Kp we have that
ei ≤∆p ej if and only if i ≤ j whereas for the vertices of sdK(p) we have that
sF1 ≤sd∆p sF2 if and only if F1 is a proper face of F2 (See definition 4.1). Both
of these partial orderings yield ∆-sets ∆p

• and s∆p
• for which there are canonical

homeomorphisms |∆p
•|
∼=→ ∆p and |s∆p

•|
∼=→ ∆p. Using the simplcial complexes
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L(p) we wish now to define for each p a ∆-set L(p)• such that there is a canonical
homeomorphism from the geometric realization |L(p)•| to ∆p × I. To this end,
for each non-negative integer p and each simplex σ of L(p) we are going to
define a linear order ≤p,σ on the set of vertices Vert(σ) of σ so that whenever
we have a pair of simplices σ1 and σ2 in L(p) such that σ2 is a face of σ1 then
the restriction of ≤p,σ1 on Vert(σ2) is equal to ≤p,σ2 . We will define all such
orderings by induction on p. For L(0) we declare the vertex (1, 1

2 ) to be greater
than the other two vertices of L(0). Suppose now that for a non-negative integer
m we have defined relations ≤0, . . . ,≤m on the sets Vert

(
L(0)

)
, . . . ,Vert

(
L(m)

)
such that for each non-negative integer q ≤ m the following holds:

1. For any simplex σ of L(q) the restriction of ≤q on Vert(σ), which we will
denote by ≤q,σ, is a linear order.

2. If iq,0 : ∆q ↪→ ∆q × [0, 1] is the canonical inclusion of ∆q into the bottom
face of ∆q × [0, 1] then iq,0(ei) ≤q iq,0(ej) if and only if ei ≤∆q ej .

3. Similarly, if iq,1 : ∆q ↪→ ∆q × [0, 1] is the inclusion into the top face then
iq,1(bFi) ≤q iq,1(bFj) if and only if bFi ≤sd∆q bFj .

4. If q ≤ q′ ≤ p and if s : ∆q ↪→ ∆q′ is any simplicial embedding that
preserves the ordering of the vertices then s× Id[0,1](vi) ≤q′ s× Id[0,1](vj)
if and only if vi ≤q vj .

Let δi : ∆m ↪→ ∆m+1 be again the canonical inclusion from ∆m into the
i-th face of ∆m+1 and let δ̃i denote the product δi × IdI . We define ≤m+1 to
be the relation on Vert

(
L(m+ 1)

)
such that u ≤m+1 v if and only if one of the

following holds:

• v = (b∆m+1, 1
2 ).

• u, v ∈ ∆m+1 × {0} and i−1
0 (u) ≤∆m+1 i−1

0 (v).

• u, v ∈ ∆m+1 × {1} and i−1
1 (u) ≤sd∆m+1 i−1

1 (v).

• u, v ∈ δ̃j(∆m × [0, 1]) for some j ∈ {0, . . . ,m+ 1} and δ̃−1
j (u) ≤m δ̃−1

j (v).

It is straightforward to verify that the sequence of relations ≤0, . . . ,≤m
,≤m+1 satisfy conditions 1),2),3) and 4) given above for any non-negative inte-
gers q′, q ≤ m+ 1.

Let L(p)• be the ∆-set induced by the relation ≤p. For this ∆-set we have
that vi0 ≤p . . . ≤p vij is a j-simplex of L(p)• if and only if the vertices vi0 , . . . , vij
span a j-simplex of the simplicial complex L(p). Thus, the map

h′p :

p+1∐
j=0

L(p)j ×∆j → |L(p)|
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defined by (
(vi0 , . . . , vij ), λ0 + . . .+ λj

)
7→

j∑
i=0

λi · vi

factors through |L(p)•| ∐p+1
j=0 L(p)j ×∆j

��

h′p

''OOOOOOOOOOO

|L(p)•|
hp // |L(p)| .

The vertical map in this diagram is just the obvious quotient map and it is
straightforward to verify that hp is bijective. Furthermore, since |L(p)•| is
compact and |L(p)| is Haussdorf we have that hp is a homeomorphism. In fact,
hp is linear on each simplex of |L(p)•|.

4.2 The subdivision map ρ :
∣∣Ψd(RN)•

∣∣ −→ ∣∣Ψd(RN)•
∣∣

In this section, ∆ is going to denote the category whose objects are all the stan-
dard simplices ∆p and where the set of morphisms between any two simplices
are just the simplicial maps which preserve the ordering on the set of vertices.

Instead of defining the subdivision map ρ :
∣∣Ψd(RN )•

∣∣ −→ ∣∣Ψd(RN )•
∣∣ just

for Ψd(RN )• we are going to define it for any ∆-set F : ∆op → Sets which comes
from a functor defined on PLop. We first introduce the following definition.

Definition 4.2. Let F : PLop → Sets be a contravariant functor defined on
PL. The ∆-set F• obtained by restricting the functor F on the subcategory ∆
is called the underlying ∆-set of F .

Fix then a functor F : PLop → Sets and let F• be its underlying ∆-set.
In order to make our arguments easier to follow we will denote the functor
F : PLop → Sets by F̃ .

PLop

F̃
��

∆op F //

;;wwwwwwwww
Sets

We are going to break down the construction of the subdivision map ρ into
several lemmas. Before stating the first of these we need to introduce a little
bit of notation: for any q-simplex F = Fj0 < . . . < Fjq of sd∆p

• we denote by
φF the linear pl embedding ∆q ↪→ ∆p which maps ei to the barycentric point
bFji of Fji .

Lemma 4.3. Let F : ∆op → Sets be the underlying ∆-set of the functor F̃ :
PLop → Sets. Then, for any p-simplex β of F• the functions ρβ0 : sd∆p

0 → F0,
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. . . , ρβp : sd∆p
p → Fp given by

ρβk(F = Fj0 < . . . < Fjk) = F̃(φF : ∆k ↪→ ∆p)(β)

are the components of a morphism of ∆-sets ρβ• : sd∆p
• → F•.

Proof. In the statement of this lemma F̃(φF : ∆k ↪→ ∆p)(β) denotes the image
of the p-simplex β of F• under the function of sets

F̃(φF : ∆k ↪→ ∆p) : F̃(∆p)→ F̃(∆k).

For any k = 0, . . . , p − 1 and any i = 0, . . . , k + 1 we have to show that the
following diagram is commutative

sd∆p
k+1

ρβk+1 //

∂i

��

Fk+1

∂i

��
sd∆p

k

ρβk // Fk.

Let then F = Fj0 < . . . < Fji−1
< Fji < Fji+1

< . . . < Fjk+1
be a k + 1-simplex

of sd∆p
•. We have that the ith face of F is

∂iF = Fj0 < . . . < Fji−1 < Fji+1 < . . . < Fjk+1

and that the diagram

∆k
φ∂iF //

δi

��

∆p

∆k+1
φF // ∆p

is commutative, where δi is the inclusion into the ith face of ∆k+1. It follows
then that

F̃(φF ◦ δi)(β) = F̃(φ∂iF )(β)

F̃(δi) ◦ F̃(φF )(β) = F̃(φ∂iF )(β)

∂iF̃(φF )(β) = F̃(φ∂iF )(β).

Since the left hand side of the last equality is equal to ∂iρ
β
k+1(F ) and the right

hand side is equal to ρβk(∂iF ) we conclude that ρβ• commutes with face maps
and hence it is a morphism of ∆-sets.

Let hp be the inverse of the canonical homeomorphism |sd∆p
•|
∼=−→ ∆p. The

subdivision map ρ will be obtained by applying the universal property of quo-
tient spaces to a map ρ̃ :

∐
p Fp ×∆p → |F•| which is defined as follows: first

take for each p ≥ 0 the following composite gp

gp : Fp ×∆p I×hp−→ Fp × |sd∆p
•| −→ |F•|

47



where the second map sends a tuple (β, x) to |ρβ• |(x). The map ρ̃ :
∐
p Fp×∆p →

|F•| is then defined to be the coproduct of all the maps gp

ρ̃ :
∐
p

Fp ×∆p
∐
gp−→ |F•|.

Proposition 4.4. The map ρ̃ factors through |F•|, i.e. there is a unique map
ρ : |F•| → |F•| making the following diagram commute∐

p Fp ×∆p

��

ρ̃

%%KKKKKKKKKK

|F•|
ρ // |F•|

Proof. We just need to verify that any two points in
∐
p Fp × ∆p which are

mapped to the same point in |F•| under the canonical quotient map q :
∐
p Fp×

∆p → |F•| have the same image under the map ρ̃, i.e. for any map ∆p s
↪→ ∆q in

the category ∆ we have to show that ρ̃(σ1, λ1) = ρ̃(σ2, λ2) if F(s)(σ2) = σ1 and
s(λ1) = λ2. It is enough to consider the case when s is the inclusion δi of ∆p

into the i-th face of ∆p+1 for some i = 0, . . . , p+1. Let us denote again by K(p)
the canonical simplicial complex in Rp+1 which triangulates ∆p. The inclusion
δi : ∆p ↪→ ∆p+1 is also a simplicial map when we triangulate ∆p and ∆p+1 with
sdK(p) and sdK(p + 1) and this simplicial map induces a morphism of ∆-sets
g• : sd∆p

• → sd∆p+1
• which sends F0 < . . . < Fk to δi(F0) < . . . < δi(Fk). This

morphism of ∆-sets makes the following diagram commute

sd∆p
•

ρ
σ1
•

##FF
FF

FF
FF

F

g•

��
sd∆p+1

•
ρ
σ2
• // F•

and we obtain that the following diagram also commutes

∆p
hp

∼=
//

δi

��

|s∆p
•|

|ρσ1
• |

""FFFFFFFFF

|g•|
��

∆p+1
hp+1

∼=
//
∣∣∣s∆p+1

•

∣∣∣ |ρσ2
• | // |F•|

.

It then follows that any two points which are identified in |F•| have the same
image under ρ̃.

Definition 4.5. The map ρ : |F•| −→ |F•| obtained in proposition 4.4 is called
the subdivision map of F•.

As we indicated at the beginning of this section the map ρ satisfies the
following important property.
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Theorem 4.6. The subdivision map ρ : |F•| → |F•| is homotopic to the identity
map on |F•|.

Proof. In this proof we are going to use the ∆-sets L(p)• and the relations
≤p that we defined in § 3.1. For each p-simplex σ of F• denote by σ × I the

image of σ in F̃(∆p × I) under the function F̃(pr1 : ∆p × I → ∆p) where
pr1 : ∆p × I → ∆p is just the projection onto the first component, and let
Rσ• : L(p)• → F• be the morphism of ∆-sets which at the level of k-simplices is
given by

Rσk(V = v0 ≤p . . . ≤p vk) = F̃(sV : ∆k → ∆p × I)(σ × I).

The map sV that appears on the right side of this equality is just the simplicial
map |K(k)| → |L(p)| which maps the vertex ej to the vertex vj of the simplex
V . An argument completely analogous to the one given in the proof of 4.3
shows that Rσ• is indeed a morphism of ∆-sets. Let ip,0 : |K(p)| → |L(p)|
and ip,1 : |sdK(p)| → |L(p)| be the inclusions into the bottom and top face
respectively of ∆p × [0, 1]. These two simplicial maps induce morphisms of
∆-sets ip,0,• : ∆p

• → L(p)• and ip,1,• : sd∆p
• → L(p)• which at the level of

k-simplices are respectively given by

ip,0,k(ei0 ≤∆p . . . ≤∆p eik) = ip,0(ei0) ≤p . . . ≤p ip,0(eik)

and
ip,1,k(vi0 ≤sd∆p . . . ≤sd∆p vik) = ip,1(vi0) ≤p . . . ≤p ip,1(vik),

and for any simplex σ of F• we have that

ρσ• = Rσ• ◦ ip,1,•

and that Rσ• ◦ip,0,• is the morphism φσ,• which maps the unique p-simplex of ∆p
•

to σ. For each non-negative integer p let fp be the inverse of the homeomorphism
hp : |L(p)•| → |L(p)| given at the end of § 3.1 and for each p-simplex σ of F•
let Γσ : ∆p × I → |F•| be equal to the following composite

Γσ := |Rσ• | ◦ fp.

We want to show that the coproduct of maps∐
p

∐
σ∈Fp

{σ} ×∆p Γσ−→ |F•|

factors through |F•| × I. The desired homotopy between Id|F•| and ρ will be
then the map Γ : |F•| × I → |F•| that we obtain by the universal property of
quotient spaces. In order to show that the coproduct of all the maps Γσ factors
through |F•| × [0, 1] it is enough to show that the diagram

∆p × I
s×IdI //

Γσ1 %%JJJJJJJJJJ ∆q × I

Γσ2

��
|F•|

(11)
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commutes for any injective simplicial map s : ∆p → ∆q which preserves the
order of the vertices and for any simplices σ1 and σ2 of F• such that F(s)(σ2) =
σ1. Again, it is enough to consider the case when the map s is an inclusion
δi from ∆p into one of the faces of ∆p+1. Fix then p ∈ N and fix an i in
{0, . . . , p + 1}. The inclusion g := δi × IdI : ∆p × I ↪→ ∆p+1 × I becomes
a simplicial embedding when we triangulate ∆p × I and ∆p+1 × I with the
simplicial complexes L(p) and L(p + 1) respectively. Furthermore, for any two
vertices v0 and v1 of L(p) such that v0 ≤p v1 we have that g(v0) ≤p+1 g(v1) and
thus g induces a morphism of ∆-sets

g• : L(p)• → L(p+ 1)•

which at the level of k-simplices is given by gk(V = v0 ≤p . . . ≤p vk) =
g(v0) ≤p+1 . . . ≤p+1 g(vk). Observe that by the commutativity of the diagram

∆p × I
g //

pr1

��

∆p+1 × I
pr1

��
∆p

δi // ∆p+1

we have that F̃(g)(σ2 × I) = σ1 × I and for any k-simplex V of L(p) which
is spanned by vertices v0, . . . , vk such that v0 ≤p . . . ≤p vk we have that the
diagram

∆k

sV

��

∆k

sg(V )

��
∆p × I

g // ∆p+1 × I

commutes, which implies that

F̃(sV )(σ1 × I) = F̃(sV )(F̃(g)(σ2 × I)) = F̃(g ◦ sV )(σ2 × I) = F̃(sg(V ))(σ2 × I).

By the way we defined the morphismsRσ• we obtain from the equality F̃(sV )(σ1×
I) = F̃(sg(V ))(σ2 × I) that

Rσ1

k (v0 ≤p . . . ≤p vk) = Rσ2

k (g(v0) ≤p+1 . . . ≤p+1 g(vk)).

Since this holds for any simplex V of L(p)• we conclude that Rσ1
• = Rσ2

• ◦ g•
which implies that diagram (20) is commutative when s = δi. It follows that all
the maps Γσ can be glued together to produce a map

Γ : |F•| × I → |F•| . (12)

Furthermore, since we had for each simplex σ of F• that |ρσ• | = |Rσ• ◦ i1,•| and
|φσ,•| = |Rσ• ◦ i0,•| we have that Γ0 = Id|F•| and Γ1 = ρ and we conclude that
ρ is homotopic to Id|F•|
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Besides being homotopic to the identity map Id|F•| the subdivision map ρ
also satisfies the following:

Proposition 4.7. Let F : ∆op → Sets be the underlying ∆-set of F̃ : PLop →
Sets. If f• : X• → F• is a morphism of ∆-sets and h : |sdX•| → |X•| is the
canonical homeomorphism between |X•| and |sdX•| then there exists a unique
morphism g• : sdX• → F• of ∆-sets which makes the following diagram com-
mute

|F•|
ρ // |F•|

|X•|

|f•|

OO

|sdX•|
h

∼=oo

|g•|

OO

Proof. Consider first the case when X• = ∆p
• for some p ≥ 0. Let then f• :

∆p
• → F• be a morphism of ∆-sets and let β be the image of e0 ≤∆p . . . ≤∆p ep

under fp. In this case we are going to show that the geometric realization of the

morphism ρβ• : sd∆p
• → F• defined in lemma 4.3 makes the following diagram

commute

|F•|
ρ // |F•|

|∆p
•|

|f•|

OO

|sd∆p
•| .

|ρβ• |
OO

h∆p

∼=oo

The bottom map of this diagram is just the canonical homeomorphism from
|sd∆p

•| to |∆p
•|, which can be expressed as the composition of the canonical

homeomorphism h2 : |sd∆p
•|
∼=→ ∆p and the inverse of the canonical homeomor-

phism h1 : |∆p
•|
∼=→ ∆p. Instead of showing directly that the previous diagram

commutes we will show that the outer rectangle of the following diagram com-
mutes

|F•|
ρ // |F•|

|∆p
•|

|f•|

OO

|sd∆p
•|

|ρβ• |
OO

h∆p

∼=oo

∆p

h−1
1
∼=

OO

∆p.

h−1
2
∼=

OO

(13)

The composition of the right vertical maps of this diagram is equal to the restric-
tion of the map ρ̃ defined before proposition 4.4 on {β}×∆p and the composition
of the left vertical maps is just the characteristic map of the simplex β and it
then follows from proposition 4.4 that the outer rectangle of diagram (13) com-
mutes. Since the lower square obviously commutes and since of all its maps are
homeomorphisms we have that the top square also commutes.
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Let now f• : X• → F• be an arbitrary morphism of ∆-sets. For each p-
simplex σ of X• we have by the first part of this proof that

ρ ◦
∣∣φf(σ)•

∣∣ ◦ h∆p =
∣∣∣ρf(σ)
•

∣∣∣ (14)

where φf(σ)• : ∆p
• → F• is the morphism which maps the unique p-simplex of

∆p
• to fp(σ). It is easy to verify that the diagram

sd∆p
•

ρ
fp(α)
•

��

sdθ• // sd∆q
•

ρ
fq(β)
•

��
F• F•

commutes (see note 4.8 below) for any morphism θ : ∆p → ∆q in the category
∆ and for any simplices β and α of X• of dimension q and p respectively such
that θ∗(β) = α, and since sdX• is equal to

colim∆↓X•sd∆p
•

we obtain a unique morphism g• : sdX• → F• such that for every simplex σ of
X• we have that

ρ
f(σ)
• = g• ◦ sdφσ,•

where sdφσ,• is the map sd∆dimσ
• → sdX• induced by the characteristic map

φσ,• : ∆dimσ
• → X• of the simplex σ. Finally, since (14) is an equality which

holds for any simplex σ of X• it follows that the geometric realization |g•| is

equal to ρ ◦ |f•| ◦ h, where h is the canonical homeomorphism |sdX•|
∼=→ |X•|.

Note 4.8. In the previous proof we used the fact that for any morphism θ :
∆p → ∆q in the category ∆ and for any pair of simplices β and α of dimension
q and p respectively such that θ∗(β) = α we have that ρα• = ρβ• ◦ sdθ•. To see
this, let F0 < . . . < Fm be an m-simplex of sd∆p

•. By the definition of the

morphisms ρβ• and ρα• we have that ραm(F0 < . . . < Fm) = F(∆m j1→ ∆p)(α)

and ρβm(θ(F0) < . . . < θ(Fm)) = F(∆m j2→ ∆q)(β), where j1 : ∆m → ∆p is the
linear map which maps ei to the barycentric point of Fi and j2 : ∆m → ∆q

is the linear map which maps ei to the barycentric point of θ(Fi). But since
j2 = θ ◦ j1 and since θ∗(β) = α we have that

F̃(∆m j1→ ∆p)(α) = F̃(∆m j1→ ∆p) ◦ F̃(∆p θ→ ∆q)(β) = F̃(∆m j2→ ∆q)(β)

and thus ραm(F0 < . . . < Fm) = ρβm(θ(F0) < . . . < θ(Fm)). Since F0 < . . . < Fm
was any simplex of sd∆p

• we conclude that ρα• = ρβ• ◦ sdθ•.

From proposition 4.7 we obtain the following corollary.
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Corollary 4.9. For any morphism f• : X• → F• and any r > 0 there is a
unique morphism g• : sdrX• → F• which makes the following diagram commute

|F•|
ρr // |F•|

|X•|

|f•|

OO

|sdrX•|∼=
oo

|g•|

OO

where the bottom map is the canonical homeomorphism |sdrX•|
∼=→ |X•|.

Corollary 4.9 can be used the prove the following useful result about maps
from compact spaces into |F•|.

Proposition 4.10. Any map f : P → |F•| from a compact space P is homotopic
to a composition of the form

P → |K•|
|g•|→ |F•|

where K• is a finite ∆-set obtained from a finite ordered simplicial complex.

Proof. Since P is compact its image under f is going to intersect only finitely
many simplices of |F•|. If Y• is the sub-∆-set of F• generated by these simplices

then the map f is equal to the composition P
f ′→ |Y•|

|i•|→ |F•| where the first
map is the map obtained from f by restricting the target to |Y•| and the second
map is just the geometric realization of the obvious inclusion of ∆-sets. By 4.9
we have that there exists a unique morphism g• : sd2Y• → F• of ∆-sets such

that ρ2 ◦ |i•| = |g•| ◦ h, where h : |Y•|
∼=→ |sd2Y•| is the inverse of the canonical

homeomorphism from |sd2Y•| onto |Y•| and since ρ is homotopic to the identity
on |F•| we have that |i•| is homotopic to |g•| ◦h which implies that f = |i•| ◦ f ′
is homotopic to

P
h◦f ′→ |sd2Y•|

|g•|→ |F•|. (15)

Furthermore, by lemma 2.68 we have that sd2Y• is isomorphic to a ∆-set ob-
tained from a simplicial complex K and hence we can replace sd2Y• with K• in
(15).

Note 4.11. Let ρ : |Ψd(RN )•| → |Ψd(RN )•| be the subdivision map of Ψd(RN )•.
If ρk : |ψd(N, k)•| → |ψd(N, k)•| is the subdivision map of the sub-∆-set
ψd(N, k)• then by the way we constructed the maps ρ and ρk we have that

ρ||ψd(N,k)•| = ρk.

Furthermore, if Γ is the homotopy between Id|Ψd(RN )•| and ρ defined in the proof
of theorem 4.6 then the restriction of Γ on [0, 1] × |ψd(N, k)•| is a homotopy
between Id|ψd(N,k)•| and ρ||ψd(N,k)•|.
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5 The piecewise linear cobordism category

In this section we are going to introduce the space BPLCd(RN ) which should
be interpreted as the piecewise linear analogue of the classifying space of the
smooth cobordism category defined in [7]. One of the central results of this
thesis is that there is a weak equivalence

BPLCd(RN ) ' |ψd(N, 1)•| . (16)

if we assume that N − d ≥ 3. This is done by showing that there is a sub-∆-set
ψRd (N, 1)• of ψd(N, 1)• which fits into a chain of weak homotopy equivalences

BPLCd(RN ) '
∣∣ψRd (N, 1)•

∣∣ '↪→ |ψd(N, 1)•| .

This section is organized as follows: we first introduce the notion of fiberwise
regular value for the projection x1 : W → R from the underlying polyhedron
of a simplex of ψd(N, 1)• onto the first coordinate of RN and we introduce the
∆-set ψRd (N, 1)•. In the second subsection we discuss the notion of bi-∆-sets,
which is a notion that we need in order to define the space BPLCd(RN ), and in
the third section we obtain the weak equivelence BPLC(RN )d '

∣∣ψRd (N, 1)•
∣∣.

In the next section we prove that the inclusion
∣∣ψRd (N, 1)•

∣∣ ↪→ |ψd(N, 1)•| is a
weak homotopy equivalence when N − d ≥ 3 and therefore conclude the proof
of (16). We point out that we don’t need to assume that N − d ≥ 3 in order to
show that BPLCd(RN ) '

∣∣ψRd (N, 1)•
∣∣.

5.1 The ∆-set ψR
d (N, 1)•

For a p-simplex W ⊆ ∆p × Rk × (−1, 1)N−k of ψd(N, k)• let

xk : W → Rk

be the projection from W onto the second factor of ∆p×Rk × (−1, 1)N−k. Ob-
serve that this map is piecewise linear since it is the restriction of the projection
∆p × Rk × (−1, 1)N−k → Rk, which is pl, on the subpolyhedron W . Further-
more, xk is proper since ∆p×Rk×(−1, 1)N−k → Rk is proper and W is a closed
subspace of ∆p × Rk × (−1, 1)N−k.

Note 5.1. In the following definition B(a, δ) shall denote the closed ball cen-
tered at a ∈ Rk with radius δ > 0 with respect to the norm ‖·‖ in Rk defined
by

‖(x1, . . . , xk)‖ = max{|x1|, . . . , |xk|}.
Definition 5.2. Let W ⊆ ∆p × Rk × (−1, 1)N−k be a p-simplex of the ∆-
set ψd(N, k)• and let π : W → ∆p be the natural projection onto ∆p. A
value a0 ∈ Rk is said to be a fiberwise regular value of the projection map
xk : W → Rk if for every point w in the pre-image x−1

k (a0) there is a δ > 0, an
open neighborhood V of λ0 = π(w) in ∆p and a piecewise linear homeomorphism

h : (π, xk)−1
(
(λ0, a0)

)
× V ×B(a0, δ)→ (π, xk)−1

(
V ×B(a0, δ)

)
such that (π, xk) ◦ h is equal to the projection onto V ×B(a0, δ).
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Observe that if a0 is a fiberwise regular value of xk : W → Rk then by
proposition 2.48 we have that the pre-image (π, xk)−1

(
(λ0, a0)

)
is a (d − k)-

dimensional piecewise linear manifold for any λ0 ∈ ∆p.

In this section we shall only be concerned with the ∆-set ψd(N, 1)• and with
fiberwise regular values of projections of the form x1 : W → R with W a simplex
in the ∆-set ψd(N, 1)•. As we said before, the ∆-set given in the following
definition is going to serve as a bridge between BPLCd and |ψd(N, 1)•|.

Definition 5.3. ψRd (N, 1)• is the sub-∆-set of ψd(N, 1)• which consists of all
the simplices W such that the projection x1 : W → R has a fiberwise regular
value.

5.2 Bi-∆-sets

As we indicated at the beginning of this section before we can define the space
BPLCd(RN ) we need to introduce the notion of bi-∆-set.

Definition 5.4. A bi-∆-set F•,• is a functor F : ∆op ×∆op → Sets.

Observe that from a bi-∆-set F•,• we can produce two ∆-objects in the cat-
egory of ∆-sets, namely, the functor ∆op → Fun(∆op,Sets) which sends [m] to
the ∆-set Fm,• and the functor which sends [m] to F•,m. We can picture the
sets {Fm,n}m,n as being arranged on a grid where the sets on the m-th column
are the sets of simplices of the ∆-set Fm,• and the sets on the n-th row are the
sets of simplices of F•,n. From now on the first parameter of a bi-∆-set F•,•
will be referred to as the interior simplicial direction of F•,• and the second
parameter will be referred to as the exterior simplicial direction.

In view of all this a bi-∆-set F•,• can equivalnetly be defined as a ∆-object
in the category of ∆-sets, i.e, a functor F : ∆op → Fun(∆op,Sets). From this
definition we recover definition 5.4 by setting G([m], [n]) := F ([m])n.

Recall that for any morphism α : [n] → [m] in the category ∆ the map
α∗ : ∆n → ∆m is the simplicial map which sends the vertex ej to the vertex
eα(j). We are going to use this notation in the following definition.

Definition 5.5. The geometric realization of a bi-∆-set F : ∆op×∆op → Sets
is defined to be the quotient space

‖F•,•‖ :=
∐
n,m

Fn,m ×∆n ×∆m/ ∼

where ∼ is the equivalence relation generated by(
x, α∗(λ1), β∗(λ2)

)
∼
(
(α, β)∗(x), λ1, λ2

)
for morphisms α : [p] → [m] and β : [q] → [n] in ∆, x ∈ Xn,m and λ1 ∈ ∆p,
λ2 ∈ ∆q.
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Let F : ∆op×∆op → Sets be a bi-∆-set and consider the functor G : ∆op →
Fun(∆op,Sets) which sends [m] to Fm,• and which sends a morphism [m]

s→ [n]
to the natural transformation Fn,• ⇒ Fm,• whose q-th component is equal to
F (s, Id[q]). We could have also defined the geometric realization of F•,• as the
geometric realization of the ∆-space

∆op G→ Fun(∆op,Sets)
|−|→ Spaces

where |−| is the usual geoemtric realization functor for ∆-sets. The next lemma
shows that both geometric realizations are functorially homeomorphic.

Lemma 5.6. Let F : ∆op × ∆op → Sets be a bi-∆-set and let G : ∆op →
Fun(∆op,Sets) be the functor which sends [m] to Fm,• and which sends a mor-
phism s : [m]→ [n] to the ∆-set morphism Fn,• ⇒ Fm,• whose q-th component
is equal to F (s, Id[q]). For each m in N denote the geoemtric realization |G([m])|
by Am. Then the map HF : ‖F•,•‖ −→ ‖A•‖ given by[

(x, λ, β)
]
7→
[(

[(x, λ)], β
)]

is a natural homeomorphism.

Proof. Let H̃F :
∐
n,mXn,m ×∆n ×∆m → ‖A•‖ be the composition∐

n,m

Xn,m ×∆n ×∆m −→
∐
m

Am ×∆m −→ ‖A•‖

where the first map is given by (x, λ, β) 7→
(
[x, λ], β

)
and the second map is just

the usual quotient map onto ‖A•‖. It is easy to verify that this map factors
through ‖F•,•‖ and that the map ‖F•,•‖ → ‖A•,•‖ we obtain by the universal
property of quotient spaces is equal HF . This shows that HF is continuous. To
define an inverse for HF we will define for each m in N a map gm : Am×∆m →
‖F•,•‖ such that the coproduct of maps

∐
m gm factors through ‖A•‖. Both

Am and ∆m have canonical CW-complex structures and since ∆m is compact
a CW-complex structure for Am × ∆m is obtained by taking product of cells
and characteristic maps of the CW-complex structures of Am and ∆m (see [10],
page 524). If x is a p-simplex of G([m])•, i.e. an (m, p)-simplex of F•,•, we
define Gx,∆m : ∆p ×∆m → ‖F•,•‖ to be the characteristic map corresponding
to the (m, p)-simplex x. Furthermore, if x is a p-simplex of G([m])• and σ is
any face of ∆m we define Gx,σ : ∆p×σ → ‖F•,•‖ to be the restriction of Gx,∆m

on ∆p × σ. It is straightforward to verify that the coproduct of maps∐
p≥0

∐
x∈Fm,p

∐
σ≤∆m

Gx,σ

factors through Am×∆m and that the map gm : Am×∆m → ‖F•,•‖ obtained by
the universal property of quotient spaces is given by gm([(x, λ)], β) = [(x, λ, β)].
Furthermore, it is also an easy exercise to verify that the coproduct of maps∐

m

Am ×∆m
∐
gm−→ ‖F•,•‖
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factors through ‖A•‖ and that the map g : ‖A•‖ → ‖F•,•‖ that we obtain
is given by [([(x, λ)], β)] 7→ [(x, λ, β)] which is clearly a continuous inverse for
HF .

Remark 5.7. Observe that in the previous lemma we always took geometric
realizations along the internal simplicial direction. A completely analogous ver-
sion of this lemma holds when we take the external direction of F•,• instead of
the internal one.

As we indicated earlier, by taking geometric realizations along the interior
and external directions of a bi-∆-set F•,• we obtain ∆-spaces. These are very
convenient objects to work with for homotopy theoretic arguments as it is illus-
trated in the following lemma whose proof can be found in [15].

Lemma 5.8. Let f• : X• → Y• be a morphism of ∆-spaces such that for each
n ∈ N the map fn : Xn → Yn is a weak homotopy equivalence. Then the induced
map ‖f•‖ : ‖X•‖ → ‖Y•‖ between geometric realizations is a weak homotopy
equivalence.

5.3 The space BPLCd(RN)

We now introduce the bi-∆-set whose geometric realization should be inter-
preted as the piecewise linear analogue of the classifying space of the cobordism
category given in [7]. In this subsection we are going to assume that the un-
derlying polyhedron W of a p-simplex of ψd(N, 1)• is a sub-polyhedron of the
product R × ∆p × (−1, 1)N−1, i.e. we flip the first and second factor. Also,
throughout this subsection we are going to denote by WA the pre-image of a
subset A ⊆ R under the projection x1 : W → R.

Definition 5.9. Let Cd(RN )•,• be the bi-∆-set whose set of (p, q)-simplices is
the subset of ψd(N, 1)p × Rq+1 which consists of tuples

(W ⊆ R×∆p × (−1, 1)N−1, a0 < . . . < aq)

which satisfy the following conditions:

1. Each ai is a fiberwise regular value of the projection x1 : W → R.

2. There exists ε > 0 such that

W ∩ x−1
1

(
(ai − ε, ai + ε)

)
= (ai − ε, ai + ε)×Wai

if 1 ≤ i ≤ q − 1, and such that

W ∩ x−1
1

(
(−∞, a0 + ε)

)
= (−∞, a0 + ε)×Wa0

and
W ∩ x−1

1

(
(aq − ε,∞)

)
= (aq − ε,∞)×Waq .
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Note that in the case when q = 0 the underlying polyhedron W of a (p, 0)-
simplex (W,a0) is equal to R×Wa0

.

The i-th-face map Cd(RN )k+1,q → Cd(RN )k,q is given by restricting the sub-
mersion over the i-th-face of ∆k+1. In the other simplicial direction, if i 6= 0, k+1
then the i-th-face map Cd(RN )p,k+1 → Cd(RN )p,k is just the map that forgets
the term ai in the second component. In the case when i = 0 in addition to
forgetting the term a0 we have to replace the underlying manifold W with the
manifold

W(a1,∞) ∪
(
(−∞, a1 + ε)×Wa1

)
.

Similarly, in the case when i = k+1 we have to replace the underlying manifold
W with the manifold

W(−∞,ak) ∪
(
(ak − ε,∞)×Wak

)
.

We can finally introduce the other space that appears in the statement of the
main theorem of this thesis.

Defintion 5.10. The space BPLCd(RN ) is defined to be the geometric realiza-
tion of the bi-∆-set Cd(RN )•,•.

We wish to show that
∥∥Cd(RN )•,•

∥∥ is weak homotopy equivalent to
∣∣ψRd (N, 1)•

∣∣.
In order to do this we are going to introduce the following two poset models for
the cobordism category.

Definition 5.11. Let Dd(RN )•,• be the bi-∆-set whose set of (p, q)-simplices
is the subset of ψd(N, 1)p × Rq+1 consisting of tuples

(W ⊆ R×∆p × (−1, 1)N−1, a0 < . . . < aq)

which satisfy condition 1) of defintion 5.9.

Definition 5.12. Let D⊥d (RN )•,• be the bi-∆-set whose set of (p, q)-simplices
is the subset of ψd(N, 1)p × Rq+1 consisting of tuples

(W ⊆ R× (−1, 1)N−1 ×∆p, a0 < . . . < aq)

which satisfy condition 1) of defintion 5.9 and for which there is an ε > 0 such
that

x−1
1

(
(ai − ε, ai + ε)

)
=
(
(ai − ε, ai + ε)

)
×Wai

for each i in {0, . . . , q}.

The face maps in the p and q direction for both Dd(RN )•,• and D⊥d (RN )•,•
are defined in the same way as for C(RN )•,• with the exception that in the
q-direction the face maps do not change the underlying manifold W .

We wish to show that there is a zig-zag∥∥Cd(RN )•,•
∥∥ '← ∥∥D⊥d (RN )•,•

∥∥ '→ ∥∥Dd(RN )•,•
∥∥ '→ ∣∣ψRd (N, 1)•

∣∣ . (17)
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of weak equivaleces. In order to do this we are going to need the following tech-
nical lemma which will allow us to produce homotopies [0, 1]×∆p →

∣∣Ψd(RN )•
∣∣

from concordances W̃
π→ [0, 1] ×∆p. Before stating the lemma we need to in-

troduce the following bit of terminology.

Note 5.13. Let P be a compact polyhedron of dimension p in Rm which is
triangulated by a finite ordered simplicial complex (K,≤) and let K• be the
∆-set obtained from (K,≤) as indicated in remark 2.63. For each q-simplex
V = v0 ≤ . . . ≤ vq of K• let fV : ∆q → |K| be the simplicial map which for
0 ≤ j ≤ q maps the vertex ej to vj . The map∐

0≤q≤p

Kq ×∆q → |K| = P

which sends a tuple (V, λ) to fV (λ) factors through |K•|. Furthermore, it is
easy to verify that the map f : |K•| → P we obtain by the universal property
of quotient spaces is bijective and since |K•| is compact and P is Hausdorff we
have that f is a homeomorphism. This homeomorphism f shall be called the
canonical homeomorphism from |K•| to P .

Lemma 5.14. For each p ∈ N there is an ordered simplicial complex (K(p),≤p)
in Rp+2 which satisfies the following properties:

i) K(p) triangulates the product [0, 1]×∆p.

ii) The obvious inclusions i0, i1 : ∆p ↪→ |K(p)| into the bottom and top faces
are embeddings of ordered simplicial complexes.

iii) If ∆q δ
↪→ ∆p is an embedding of ordered simplicial complexes then the

product Id[0,1] × δ : |K(q)| → |K(p)| is also an embedding of ordered
simplicial complexes.

iv) For any element W of Ψd(RN )
(
[0, 1] × ∆p

)
, the map F : [0, 1] × ∆p →

|Ψd(RN )•| obtained by pre-composing the geometric realization of the mor-
phism fW• : K(p)• → Ψd(RN )• obtained from 3.5 with the inverse of

the canonical homeomorphism |K(p)•|
∼=→ [0, 1] × ∆p (see note 5.13) is

a homotopy which at time t = 0, 1 agrees with the characteristic map
of the p-simplex i∗tW obtained by pulling back W along the inclusion
it : ∆p ↪→ [0, 1]×∆p given by λ 7→ (t, λ).

Proof. We are going to define the ordered simplicial complexes (K(p),≤p) by
induction on p. For p = 0 let K(0) be the simplicial complex in R2 which
consists of the points

(0, 0), (
1

2
, 0), (1, 0)

and the segments

[0,
1

2
]× {0}, [

1

2
, 1]× {0}.
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We define ≤0 to be the following partial order relation:

(0, 0) ≤0 (
1

2
, 0), (1, 0) ≤0 (

1

2
, 0).

Suppose that for every natural number p ≤ m we have already defined ordered
simplicial complexes (K(p),≤p) which satisfy properties i), ii) and iii) given
in the statement of this lemma. In order to define K(m + 1) we are going to
introduce the following conventions: the canonical simplicial complex structures
of the bottom and top faces of [0, 1]×∆m+1 shall be denoted simply by {0} ×
∆m+1 and {1} × ∆m+1, and if δj : ∆m → ∆m+1 is the simplicial inclusion
onto j-th face of ∆m+1 then we denote by Kj(m) the image of K(m) under the
embedding Id[0,1] × δj . Let K ′(m+ 1) be the following collection of simplices:

(m+1⋃
j=0

Kj(m)
)
∪
(
{0} ×∆m+1

)
∪
(
{1} ×∆m+1

)
.

Since all the K(p) for p ≤ m satisfy properties i), ii) and iii) we have that
K ′(m + 1) is a simplicial complex which triangulates ∂

(
[0, 1] ×∆m+1

)
and we

define K(m+1) to be the join K ′(m+1)∗
(

1
2 , b(m+1)

)
, where b(m+1) denotes

the barycentric point of ∆m+1.

Let us now define the relation ≤m+1 on the set of vertices of K(m). On the
set of vertices of K ′(m + 1) we define a relation ≤′m+1 by the following rule:
v1 ≤′m+1 v2 if and only if there exists j ∈ {0 . . . ,m} and vertices w1, w2 ∈ K(m)
such that w1 ≤m w2 and (Id[0,1] × δj)(wi) = vi for i = 1, 2. We leave it to the
reader to verify that ≤′m+1 is indeed a relation on the set of vertices of K ′(m+1)
such that for each simplex σ of K ′(m + 1) the restriction of ≤′m+1 on Vert(σ)
is a linear order. Finally, we define ≤m+1 on the set of vertices of K(m+ 1) in
the following way:

v1 ≤m+1 v2 iff

{
v1, v2 ∈ K ′(m+ 1) and v1 ≤′m+1 v2, or

v1 6= v2 and v2 = ( 1
2 , b(m+ 1)).

For each p ∈ N let K(p)• be the ∆-set induced by ≤p (see the comment
following definition 2.61). If W is any element in Ψd(RN )

(
[0, 1] × ∆p

)
and if

f• : K(p)• → Ψd(RN )• is the morphism which classifies the element W (see
definition 3.6) then it is straightforward to verify that the composition

[0, 1]×∆p ∼=→ |K(p)•|
|f•|−→ |Ψd(RN )•|,

where the first map is the inverse of the canonical homeomorphism |K(p)•|
∼=→

[0, 1] × ∆p, is a homotopy which agrees with the characteristic maps of the
p-simplices i∗0W and i∗1W at times t = 0 and t = 1 respectively.

Although it is not going to be used in this section, the construction given in
the previous lemma allows us also to obtain the following useful result.
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Corollary 5.15. Let L be a finite ordered simplicial complex in some Euclidean
space Rm. There is an ordered simplicial complex L̃ in [0, 1]×Rm which satisfies
the following properties

i) L̃ triangulates the product [0, 1]× |L|.

ii) The inclusions i0, i1 : |L| ↪→ |L̃| into the bottom and top face maps are
embeddings of ordered simplicial complexes.

iii) If σ is a p-simplex of L and if ∆p jσ→ σ is the simplicial isomorphism which

preserves the order on the set of vertices then Id[0,1]× δj : |K(p)| → |L̃| is
an embedding of ordered simplicial complexes, where K(p) is the ordered
simplicial complex which triangulates [0, 1]×∆p defined in 5.14.

iv) For any element W of Ψd(RN )
(
[0, 1] × |L|

)
the map F : [0, 1] × |L| →

|Ψd(RN )•| obtained by pre-composing the geometric realization of the mor-

phism fW• : L̃• → Ψd(RN )• obtained from 3.5 with the inverse of the

canonical homeomorphism |L̃•|
∼=→ [0, 1] × |L| (see note 5.13) is a homo-

topy which at time t = 0, 1 agrees with the geometric realization of the
morphism L• → Ψd(RN )• which classifies the pull back i∗tW of W along
the inclusion it : |L| ↪→ [0, 1]× |L| given by x 7→ (t, x).

Proof. For each p-simplex σ of L we triangulate the product [0, 1]×σ using the
image of K(p) under the linear map Id[0,1] × jσ. Let us denote this simplicial

complex by L̃σ. Let L̃ denote the union of all the simplicial complexes L̃σ.
We leave it to the reader to verify that L̃ is indeed a simplicial complex which
triangulates [0, 1] × |L|. We can also define a relation ≤ on Vert(L̃) which

restricts to a linear order on each simplex of L̃ by the follwoing rule: v1 ≤ v2

iff there is a simplex σ, say of dimension p, in L such that v1, v2 ∈ L̃σ and such
that v1 ≤p v2 once we identify L̃σ with K(p). We also leave it to the reader to

check that (L̃,≤) satisfies all the desired properties.

We now define in the next proposition the first map in the zig-zag (17) and
show that it is indeed a weak equivalence. We shall make use of the following
notation: if W is a p-simplex of ψd(N, 1)• and if (x1, π) : W → R ×∆p is the
natural projection onto R×∆p then the pre-image of a product A×S ⊆ R×∆p

under (x1, π) shall be denoted by WA,S .

Proposition 5.16. The morphism of bi-∆-sets D⊥d (RN )•,•
f•,•−→ Cd(RN )•,• de-

fined by

(W,a0 < . . . < aq) 7→ (W[a0,aq ] ∪W(−∞,a0] ∪W[aq,∞), a0 < . . . < aq),

induces a weak homotopy equivalence∥∥D⊥d (RN )•,•
∥∥ '→ ∥∥Cd(RN )•,•

∥∥
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Proof. We wish to show that for each q ≥ 0 the morphism

D⊥d (RN )•,q
f•,q−→ Cd(RN )•,q

is a weak homotpy equivalence. If Cd(RN )•,q
iq•−→ D⊥d(RN )•,q is the obvious

inclusion of ∆-sets then we have that f•,q ◦ iq• is equal to IdCd(RN )•,q . In partic-
ular, the composition f•,q ◦ iq• is a weak homotopy equivalence. Thus, in order
to show that f•,q is a weak homotopy equivalence it suffices to show that iq• is
a weak homotopy equivalence. Consider then a map of pairs

g : (∆k, ∂∆k) −→
( ∣∣D⊥d (RN )•,q

∣∣ , ∣∣Cd(RN )•,q
∣∣ ).

We need to show that g is homotopic, as a map of pairs, to a map

g′ : (∆k, ∂∆k) −→
( ∣∣D⊥d (RN )•,q

∣∣ , ∣∣Cd(RN )•,q
∣∣ )

such that g′(∆k) ⊆
∣∣Cd(RN )•,q

∣∣. Let us identify the pair (∆k, ∂∆k) with the re-
alization of the pair of ∆-sets (∆k

•, ∂∆k
•). Since both D⊥d (RN )•,q and Cd(RN )•,q

are Kan ∆-sets we can assume that the map g is the geometric realization of a
morphism of ∆-sets h• which makes the following diagram commute

|∂∆k
•|

|h′•| //
_�

��

∣∣Cd(RN )•,q
∣∣

|i1•|
��

|∆k
•|

|h•|//
∣∣D⊥d (RN )•,q

∣∣ ,
where h′• is the restriction of h• on ∂∆k

•. The morphism h• : ∆k
• → D⊥d (RN )•,q

classifies a k-simplex (W ⊆ R×∆k × (−1, 1)N−1, a0 < . . . < aq) of D⊥d (RN )•,q
for which there is an ε > 0 such that

W(aq−ε,∞),∂∆k = (aq − ε,∞)×Waq,∂∆k

and
W(−∞,a0+ε),∂∆k = (−∞, a0 + ε)×Wa0,∂∆k .

The strategy of the proof is to define an element W̃ of ψd(N, 1)
(
[0, 1]×∆k

)
which

is a concordance between W and an element W ′ which is the underlying poly-
hedron of a k-simplex of Cd(RN )•,q, and for which the values a0 < . . . < aq are

fiberwise regular for the projection x1 : W̃ → R. Once we have this concordance
we can apply lemma 5.14 to obtain a homotopy F : [0, 1] × |∆k

•| → |D⊥d (RN
•)|

which at time t = 0 agrees with |h•| and which at time t = 1 maps |∆k
•|

to |Cd(RN )•,q|. Furthermore, the concordance W̃ is going to be constant over

∂∆k, i.e. W̃ agrees with [0, 1]×W over the product [0, 1]×∂∆k. It follows then
that the homotopy F we obtain by applying lema 5.14 is actually a homotopy
of maps of pairs (|∆k

•|, |∂∆k
•|)→ (|D⊥d (RN

•)|, |Cd(RN )•,q|).
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In order to construct such a concordance we first pick a value ε′ such that
0 < ε′ < ε and an open pl embedding

f : [0, 1]× R→ [0, 1]× R

which commutes with the projection onto [0, 1] and which satisfies the following
properties:

· f0 is the identity on R.

· f fixes all points in [0, 1]× [a0 − ε′, aq + ε′].

· f1 maps R onto (a0 − ε, aq + ε).

The product of maps f × Id∆k×RN−1 , which we shall denote by e, is an
open piecewise linear embedding from [0, 1]×R×∆k ×RN−1 from itself which
commutes with the projection onto [0, 1]×∆k and thus, by lemma 3.19, the pre-

image W̃ := e−1([0, 1]×W ) is going to be a new element of ψd(N, 1)
(
[0, 1]×∆k

)
.

Since W agrees, over ∂∆k, with the products (−∞, a0)×Wa0
and (aq,∞)×Waq

at heights x1 < a0 and x1 > aq respectively and since f fixes all points in

[0, 1]× [a0−ε′, aq+ε′] we have that W̃ agrees with [0, 1]×W over [0, 1]×∂∆k. It
also follows from the fact that f fixes all points in [0, 1]×[a0−ε′, aq+ε′] that a0 <

. . . < aq are fiberwise regular values for the projection x1 : W̃ → R. Finally,

since f1 maps R onto (a0 − ε, aq + ε) we have that W̃ is a concordance between
W and an element W ′ which is the underlying polyhedron of a k-simplex of
Cd(RN )•,q. Applying 5.14 to W̃ we obtain the desired relative homotopy F and
we conclude that i•,q, and therefore f•,q, is a weak homotopy equivalence.

Proposition 5.17. The inclusion map i•,• : D⊥d (RN )•,• → Dd(RN )•,• is a
weak homotopy equivalence.

Proof. As we did in the proof of proposition 5.16 we are going to show that
i•,q : D⊥d (RN )•,q → Dd(RN )•,q is a weak homotopy equivalence for all q ∈ N. In
order to make our arguments easier to follow we shall only do the proof in the
case when q = 1. The remaining cases are handled similarly. Let then

g : (∆p, ∂∆p)→
( ∣∣Dd(RN )•,1

∣∣ , ∣∣D⊥d (RN )•,1
∣∣ )

be a map of pairs. As we did in the proof of 5.16, we are going to show that g is
homotopic, as a map of pairs, to a map g′ : (∆p, ∂∆p)→

( ∣∣Dd(RN )•,1
∣∣ , ∣∣D⊥d (RN )•,1

∣∣ )
such that g′(∆p) ⊆

∣∣D⊥d (RN )•,1
∣∣. Again, let us identify the pair (∆p, ∂∆p) with

the realization of the pair (∆p
•, ∂∆p

•). Since both Dd(RN )•,1 and D⊥d (RN )•,1
are Kan ∆-sets we can assume that the map g is the geometric realization of a
morphism of ∆-sets h• which makes the following diagram commute

|∂∆p
•|

|h′•|//
_�

��

∣∣D⊥d (RN )•,1
∣∣

|i1•|
��

|∆p
•|

|h•|//
∣∣Dd(RN )•,1

∣∣ ,
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where h′• is the restricition of h• on ∂∆p
•. Let (W,a0 < a1) be the p-simplex

classified by h•. Since both a0 and a1 are fiberwise regular values of the projec-
tion x1 : W → R we have that there is an ε > 0 smaller than a1−a0

2 such that
for i = 0, 1 the restriction of (x1, π) on

W(ai−ε,ai+ε)

is a piecewise linear submersion of codimension d−1. Also, we can assume that
for this value ε it holds that

W(ai−ε,ai+ε),∂∆p = (ai − ε, ai + ε)×Wai,∂∆p

for i = 0, 1. Let δ > 0 be a value less than ε
2 and let j : [0, 1] × R → R be a

piecewise linear homotopy which satisfies the following properties:

· j0 is the identity on R.

· j fixes each point in [0, 1]×
(
R− (a0 − ε

2 , a1 + ε
2 )
)
.

· j fixes each point in [0, 1]× [a0 + ε
2 , a1 − ε

2 ]

· For i = 0, 1 j maps the 2-simplex spanned by (1, ai − δ), (1, ai + δ) and
(0, ai) to ai.

Let J be equal to the product j × Id∆p×(−1,1)N−1 and let W̃ denote the pre-

image J−1([0, 1] ×W ). Observe that W̃ is indeed a closed sub-polyhedron of
[0, 1] × R × ∆p × (1,−1)N−1 since J is a pl map which fixes every point of
[0, 1]×R×∆p× (1,−1)N−1 outside a compact subspace. In order to show that

the natural projection π̃ : W̃ → [0, 1] ×∆p is a piecewise linear submersion of
codimension d we observe first that the restriction of π̃ on

W̃(−∞,a0− ε2 ) ∪ W̃(a0+ ε
2 ,a1− ε2 ) ∪ W̃(a1+ ε

2 ,∞) (18)

is a submersion of codimansion d since on this open set it agrees with the
projection [0, 1]×W → [0, 1]×∆p. On the other hand, for i = 0, 1 the restriction
of π̃ on

W̃(ai−ε,ai+ε) (19)

is equal to the composition

W̃(ai−ε,ai+ε)
x1×π̃−→ (ai − ε, ai + ε)× [0, 1]×∆p → [0, 1]×∆p

where the second map is just the projection onto the last two coordinates, which
is obviously a submersion of codimension 1. It follows from proposition 2.52 that
the first map in this composition is a submersion of codimension d− 1 since the
map

(x1, π) : W(ai−ε,ai+ε) → R×∆p

is a submersion of codimension d− 1 and

W̃(ai−ε,ai+ε) = f∗W(ai−ε,ai+ε)
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where f : [0, 1]× (ai− ε, ai+ ε)×∆p → (ai− ε, ai+ ε)×∆p is the pl map defined

by (s, t, λ) 7→ (j(s, t), λ). It follows then that the restriction of π̃ on W̃(ai±ε)
for i = 0, 1 is a submersion of codimension d. Since the open sets in (18) and

(19) cover all of W we conclude that π̃ : W̃ → [0, 1] × ∆p is a submersion of
codimension d. By construction, both a0 and a1 are fiberwise regular values
for the projection x1 : W̃ → R and W̃ is a concordance between W and an
element W ′ of ψd(N, 1)

(
∆p
)

which is the underlying polyhedron of a p-simplex
of D⊥d (RN )•,1. Furthermore, since for i = 0, 1 we have that

W(ai−ε,ai+ε),∂∆p = (ai − ε, ai + ε)×Wai,∂∆p

then for each t ∈ [0, 1] we will have by construction that

(i∗t W̃ )(ai−ε,ai+ε),∂∆p = (ai − ε, ai + ε)×Wai,∂∆p

where it : ∆p ↪→ [0, 1]×∆p is the inclusion defined by λ 7→ (t, λ). It follows that
the homotopy F : [0, 1]×|∆p

•| → |Dd(RN )•,1| we obtain by applying lemma 5.14

to W̃ is a homotopy of maps of pairs (|∆p
•|, |∂∆p

•|)→
(
|Dd(RN )•,1|, |D⊥d (RN )•,1|

)
such that F1(|∆p

•|) ⊆ |D⊥d (RN )•,1| and we conclude that i•,1 is a weak homo-
topy equivalence. A completely analogous argument shows that i•,q is a weak
homotopy equivalence for all q ≥ 0 and by lemma 5.8 we have that i•,• induces
a weak homotopy equivalence between geometric realizations.

Finally, we compare the spaces
∥∥D(RN )•,•

∥∥ and
∣∣ψRd (N, 1)•

∣∣.
Proposition 5.18. There is a weak equivalence

∥∥Dd(RN )•,•
∥∥ '→ ∣∣ψRd (N, 1)•

∣∣.
Proof. For each p-simplex W of ψRd (N, 1)• let (RW ,≤) be the sub-poset of
(R,≤) consisting of those values a ∈ R which are fiberwise regular values for
the projection x1 : W → R. Observe that if we apply the geometric realization
functor along the exterior simplicial direction of Dd(RN )•,• we obtain a ∆-space
G• whose set of p-simplices is exactly equal to

Gp =
∐

W∈ψRd (N,1)p

{W} ×B(RW ,≤).

But since each B(RW ,≤) is contractible we have that the map of ∆-spaces
g• : G• → ψRd (N, 1)• defined by (W,λ) 7→ W induces by lemma 5.8 a weak
homotopy equivalence

|g•| :
∥∥Dd(RN )•

∥∥ '→ ∣∣ψRd (N, 1)•
∣∣ .

Combining propositions 5.16, 5.17 and 5.18 we obtain that

BPLCd(RN ) ' |ψRd (N, 1)•|.
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In the following section we prove that the inclusion ψRd (N, 1)• ↪→ ψd(N, 1)• is a
weak equivalence when N −d ≥ 3 and therefore finish the proof of the following
claim.

Theorem 5.19. If N − d ≥ 3 then there is a weak homotopy equivalence

BPLCd(RN ) ' |ψd(N, 1)•|.

6 The inclusion ψRd (N, 1)• ↪→ ψd(N, 1)•

6.1 Preliminary lemmas and outline of the proof

The aim of this section is to prove the following result.

Theorem 6.1. If N − d ≥ 3 then the inclusion ψRd (N, 1)• ↪→ ψd(N, 1)• is a
weak homotopy equivalence.

The following lemma is a first step towards understanding the relative ho-
motopy groups πp

(
|ψd(N, 1)•|, |ψRd (N, 1)•|

)
.

Lemma 6.2. Any map of pairs f : (∆p, ∂∆p) →
(
|ψd(N, 1)•|, |ψRd (N, 1)•|

)
is

homotopic, as a map of pairs, to a composite map of the form

(∆p, ∂∆p)
f ′→
(
|K•|, |K ′•|

) |h•|→ (
|ψd(N, 1)•|, |ψRd (N, 1)•|

)
where (K•,K

′
•) is a pair of finite ∆-sets obtained from a pair (K,K ′) of finite

ordered Euclidean simplicial complexes.

Proof. Since ∆p is compact the image of the map f intersects only finitely many
of the simplices of |ψd(N, k)•|. Let L• be the sub-∆-set of ψd(N, k)• generated
by these simplices and let L′• be the sub-∆-set of L• generated by thoses sim-
plices which intersect the image f(∂∆p). In particular, L′• is a sub-∆-set of
ψRd (N, 1)•.

One of the properties of the subdivision map ρ : |ψd(N, 1)| → |ψd(N, 1)|
proven in section §4 is that whenever we have a morphism g• : S• → ψd(N, 1)•
of ∆-sets and a non-negative integer k ≥ 0 then there is a morphism

g′• : sdk(S)• → ψd(N, 1)•

from the k-th barycentric subdivision of S• to ψd(N, 1)• whose geometric real-
ization makes the following diagram commute

|S•|

|g|

��

hk //
∣∣∣sdk(S)•

∣∣∣
|g′|

��
|ψd(N, 1)•|

ρk // |ψd(N, 1)•| ,
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where hk is the canonical homeomorphism between |S•| and
∣∣∣sdk(S)•

∣∣∣. Then,

since the map f : (∆p, ∂∆p)→ (|ψd(N, 1)| ,
∣∣ψRd (N, 1)

∣∣) is equal to the composite
map

(∆p, ∂∆p)
f ′→ (|L•| , |L′•|) ↪→ (|ψd(N, 1)| ,

∣∣ψRd (N, 1)
∣∣),

where f ′ is the map obtained by restricting the target of f to |L•|, we have by
the property of the subdivision map ρ described above that f is homotopic to
a composition of the form

(∆p, ∂∆p)→ (
∣∣sd2(L•)

∣∣ , ∣∣sd2(L′•)
∣∣) |g•|→ (|ψd(N, 1)•| ,

∣∣ψRd (N, 1)•
∣∣). (20)

Furthermore, since Γ
(
[0, 1] × |ψRd (N, 1)•|

)
⊆ |ψRd (N, 1)•|, where Γ is the ho-

motopy between ρ and Id|ψd(N,1)| defined in 4.6, we have that the map (20) is
homotopic to f as a map of pairs.

By lemma 2.68 we have that (sd2(L•), sd
2(L′•)) is isomorphic to a pair of

finite ∆-sets (K•,K
′
•) obtained from a pair of finite ordered euclidean simplicial

complexes (K,K ′) as indicated in remark 2.63 and thus in (20) we can replace
(sd2(L•), sd

2(L′•)) with (K•,K
′
•) to obtain a composite map

(∆p, ∂∆p)
f ′→ (K•,K

′
•)
|g•|→
(
|ψd(N, 1)•| ,

∣∣ψRd (N, 1)•
∣∣ )

which is homotopic to f .

Remark 6.3. Recall that in section §4 we defined the subdvision map ρ :
|ψd(N, 1)•| → |ψd(N, 1)•|. Let now W be a p-simplex of ψRd (N, 1)•. If σ is
any simplex, say of dimension q, of sd∆p and if δ : ∆q → σ is the simplicial
isomorphism which preserves the order relation on the set of vertices then the
pull back δ∗W is a q-simplex of ψRd (N, 1)•. It follows that ρ is a map of pairs
from

(
|ψd(N, 1)•|, |ψRd (N, 1)•|

)
to itself. Similarly, if Γ : [0, 1] × |ψd(N, 1)•| →

|ψd(N, 1)•| is the homotopy from Id|ψd(N,1)| to ρ defined in the proof of theorem
4.6 then we also have that

Γ
(
[0, 1]× |ψRd (N, 1)•|

)
⊆ |ψRd (N, 1)•|.

These observations shall be used in the outline of the proof of theorem 6.1 that
we are going to give at the end of this subsection.

Notation 6.4. Let P be an arbitrary polyhedron. For any product of the form
P ×R× (−1, 1)N−1 we will denote by t1 the projection P ×R× (−1, 1)N−1 → R
onto R whereas for any element W in ψd(N, 1)

(
P
)

we will denote the restriction
t1|W by x1.

The following proposition, which we will prove in the next subsection, is what
will allow us to show that any class in πp

(
|ψd(N, 1)•|, |ψRd (N, 1)•|

)
is trivial.

Proposition 6.5. Assume that N−d ≥ 3. Let P be a compact polyhedron, let β
be some fixed real constant and let W be an element in ψd(N, 1)

(
P
)
. Then there

is an element W̃ in ψd(N, 1)
(
[0, 1]×P

)
which satisfies the following properties:
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i) W̃ agrees with [0, 1]×W in t−1
1

(
(−∞, β]

)
.

ii) W̃ is a concordance between W and an element W ′ in ψd(N, 1)
(
P
)

for
which there is a finite open cover U1, . . . , Uq of P such that for j = 1, . . . , q
the projection

x1 : W ′Uj → R

has a fiberwise regular value aj ∈ (β,∞).

Proof of theorem 6.1. At this point it is convenient to give the proof of the-
orem 6.1 assuming proposition 6.5. We shall enumerate the steps of the proof
and we remark that apart from step iii) none of the other steps need any further
details:

i) Let f : (∆p, ∂∆p) →
(
|ψd(N, 1)•| ,

∣∣ψRd (N, 1)•
∣∣ ) be any map of pairs.

By lemma 6.2 we can assume that f is homotopic as a map of pairs
(∆p, ∂∆p)→

(
|ψd(N, 1)•| ,

∣∣ψRd (N, 1)•
∣∣ ) to a composite map of the form

(∆p, ∂∆p)
f ′→ (|K•|, |K ′•|)

|g•|→
(
|ψd(N, 1)•| ,

∣∣ψRd (N, 1)•
∣∣ ), (21)

where (K•,K
′
•) is a pair of finite ∆-sets obtained from a pair of finite

ordered simplicial complexes (K,K ′) in some Euclidean space Rm.

ii) By theorem 3.5 the morphism g• classifies an element W of ψd(N, 1)
(
|K|
)

from which we can recover the morphism g• as indicated in the statement
of 3.5. Since g•(K

′
•) ⊆ ψRd (N, 1)• then for each simplex σ of the simplicial

complex K ′ there is a fiberwise regular value aσ of the projection x1 :
Wσ → R. For each simplex σ ∈ K ′ pick such a regular value aσ and fix
once and for all some real constant β larger than max{aσ : σ ∈ K ′}.

iii) By proposition 6.5 there is an element W̃ in ψd(N, 1)
(
[0, 1]× |K|

)
which

agrees with [0, 1] ×W in t−1
1

(
(−∞, β]

)
, where β is the real constant we

fixed in step ii), and which is a concordance between W and an element
W ′ in ψd(N, 1)

(
|K|
)

for which there is a finite open cover U1, . . . , Uq of
|K| such that for j = 1, . . . , q the projection

x1 : W ′Uj → R

has a fiberwise regular value aj ∈ (β,∞).

iv) Using corollary 5.15 we can use W̃ to produce a homotopy

F : [0, 1]× |K•| → |ψd(N, 1)•|

such that F0 agrees with the map |g•| of (21) and such that F1 is equal to
the geometric realization of the morphism

g′• : K• → ψd(N, 1)•
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which classifies the element W ′ in ψd(N, 1)
(
|K|
)
. Furthermore, since W̃

agrees with [0, 1] ×W in t−1
1

(
(−∞, β]

)
we have that F

(
[0, 1] × |K ′•|

)
⊆

|ψRd (N, 1)•| and hence F is a homotopy of maps of pairs (|K•|, |K ′•|) →(
|ψd(N, 1)•|, |ψRd (N, 1)•|

)
.

v) By the Lebesgue number lemma we can find a large enough positive integer
k > 0 so that each simplex σ of sdkK is contained in one of the open sets
of the cover U1, . . . , Uq given in step iii). Thus for each simplex σ of sdkK
we have that the projection

x1 : W ′σ → R

has a fiberwise regular value and hence the image of the composition
ρk ◦ |h′•| lies entirely in |ψRd (N, 1)•|. Furthermore, by remark 6.3 we have
that |h′•| and ρk ◦ |h′•| are homotopic as maps of pairs (|K•|, |K ′•|) →(
|ψd(N, 1)•|, |ψRd (N, 1)•|

)
.

vi) Finally, by concatenating the following homotopies of maps of pairs (∆p, ∂∆p)→(
|ψd(N, 1)•|, |ψRd (N, 1)•|

)
f ∼ |h•| ◦ f ′ ∼ |h′•| ◦ f ′ ∼ ρk ◦ |h′•| ◦ f ′

we obtain that the map f that we started out with in step i) represents the
trivial class in πp

(
|ψd(N, 1)•|, |ψRd (N, 1)•|

)
. Since f was an arbitrary map

(∆p, ∂∆p) →
(
|ψd(N, 1)•|, |ψRd (N, 1)•|

)
we conclude that the inclusion

ψRd (N, 1)• ↪→ ψd(N, 1)• is a weak homotopy equivalence.

In the next subsection we state some results about extensions of isotopies of
piecewise linear embeddings that we need for the proof of 6.5. Finally, in §6.3
we give the proof of proposition 6.5 which completes the proof of theorem 6.1.

6.2 The isotopy extension theorem

Before we prove lemma 6.5 we need to state the Isotopy Extension Theorem,
which was proven by Hudson in [12], and prove some additional results about
isotopies of pl embeddings. We begin with the following definitions.

Definition 6.6. 1. Let Mm and Qq be piecewise linear manifolds with M
compact. A pl map f : M × In → Q× In is said to be an n-isotopy if it is
a piecewise linear embedding and if it commutes with the projection onto
In.

2. A piecewise linear n-isotopy f : M × In → Q× In is said to be allowable
if for some piecewise linear (m − 1)-submanifold N of ∂M we have that
i−1
t (∂Q) = N for all t ∈ In. N may be empty or it can be the whole of
∂M .
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3. An ambient n-isotopy of Q is a piecewise linear homeomorphism h : Q×
In → Q× In which commutes with the projection onto In and such that
h0 = IdQ

4. An n-isotopy f of M into Q is said to be fixed on X ⊆M if ft|X = f0|X
for all t ∈ In.

5. An ambient n-isotopy h of Q is said to extend the n-isotopy f : M × In →
Q× In if ht ◦ f0 = ft for all t ∈ In.

Proposition 6.7. Let f : M × In → Q× In be an allowable pl isotopy of M in
Q, fixed on f−1

0 (∂Q). If q −m ≥ 3 then there is an ambient pl n-isotopy of Q,
fixed on ∂Q× In, which extends f . Furthermore, if B is a subpolyhedron of In

such that B is a piecewise linear retract of In, 0 ∈ B and such that there is a pl
homeomorphism h′ : Q×B → Q×B which commutes with the projection onto
B and which extends f |B ×M then the ambient n-isotopy h can be chosen to
agree with h′ on B ×Q.

Proof. The first claim of this proposition is theorem 2 of [12] and the proof can
be found in that article. Assume now that there is a subpolyhedron B of In

with 0 ∈ B, a piecewise linear retraction r : In → B and a pl homeomorphism
h′ : Q×B → Q×B which commutes with the projection onto B, which extends
f |B ×M , and which at time 0 ∈ In is equal to IdQ. If h̃ : In ×Q→ In ×Q is
any ambient n-isotopy which extends f then the map h : In×Q→ In×Q which
at time t ∈ In is given by ht = h̃t ◦ h̃−1

r(t) ◦ h
′
r(t) is also an ambient n-isotopy

of Q by proposition 2.55. Clearly this map agrees with h′ on B × Q and by
pre-composing h̃t ◦ h̃−1

r(t) ◦ h
′
r(t) with f0 we obtain

h̃t ◦ h̃−1
r(t) ◦ h

′
r(t) ◦ f0 = h̃t ◦ h̃−1

r(t) ◦ fr(t) = h̃t ◦ f0 = ft.

Thus we also have that h extends f .

Using the second claim in proposition 6.7 and proposition 2.56 we can prove
the following useful corollary. In this statement, b will denote the point (0, . . . , 0)
in In.

Corollary 6.8. Let Qq be a pl manifold and let Mm be a compact submanifold
of M such that q−m ≥ 3. If g : M × In → Q× In is an allowable n-isotopy of
embeddings of M into Q such that gb is equal to the natural inclusion M ↪→ Q
then there is an ambient isotopy

G : [0, 1]× In ×M → [0, 1]× In ×Q

parametrized by [0, 1]× In which satisfies the following:

i) G1 = IdIn×Q.

ii) G0 extends the isotopy g.
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iii) G(0,b) = IdQ.

Proof. Let c : [0, 1]×In → In be a pl map which satisfies the following properties

· If i0 : In ↪→ [0, 1]×In is the map defined by α 7→ (0, α) then the composite

map In
i0
↪→ [0, 1]× In c→ In is equal to the identity map IdIn .

· c
(
(1, α)

)
= b for all points α in In.

· There is a subpolyhedron S of [0, 1]× In such that

{(0, b)} ∪ {1} × In ⊆ S ⊆ c−1(b)

and for which there is a pl retraction r : [0, 1]× In → S.

Using proposition 2.56 we have that the map

g̃ : [0, 1]× In ×M → [0, 1]× In ×Q

defined by (t, α, x) 7→
(
t, α, gc(t,α)

)
is an isotopy of pl embeddings of M into

Q parametrized by [0, 1] × In. Observe that by construction we have that the
restriction g̃|S×M is equal to the natural inclusion S ×M ↪→ S × Q. By the
isotopy extension theorem there is an ambient isotopy

G : [0, 1]× In ×Q→ [0, 1]× In ×Q

of Q such that
g̃ = G ◦ (Id[0,1]×In × g̃b)

Furthermore, since the identity map covers g̃|S×M then by the second claim of
proposition 6.7 we can assume that G|S×Q = IdS×Q.

6.3 Proof of proposition 6.5

Proposition 6.5 is an immediate consequence of the following more technical
lemma whose proof will occupy the rest of this section.

Lemma 6.9. Let Mm be a pl manifold, possibly with boundary, let P be a
compact subpolyhedron of M such that P ⊆ M − ∂M , let β be some fixed real
constant and let W be an element in ψd(N, 1)

(
M
)
. Then there is an element

W̃ in ψd(N, 1)
(
[0, 1] ×M

)
and finitely many open sets V1, . . . , Vq in M − ∂M

which satisfy the following:

i) W̃ agrees with [0, 1]×W in t−1
1

(
(−∞, β]

)
.

ii) V1, . . . , Vq cover P .
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ii) W̃ is a concordance between W and an element W ′ in ψd(N, 1)
(
M
)

such
that for each of the open sets V1, . . . , Vq the projection

x1 : W ′Vj → R

has a fiberwise regular value aj ∈ (β,∞).

Proof of proposition 6.5. Let us give the proof of proposition 6.5 assuming
lemma 6.9. Let then P be a compact polyhedron, let β be some fixed real
constant and let W be an element in ψd(N, 1)

(
P
)
. Without loss of generality

we can assume that P is embedded in some Euclidean space, say Rm. Let M
be a regular neighborhood of P in Rm, let r : M → P be some pl retraction and
let W ′ denote the pull back of W along r. M is an m-dimensional pl manifold
with boundary such that P ⊆ M − ∂M . Applying lemma 6.9 to M,P,W ′ and
β we obtain an element W̃ in ψd(N, 1)

(
[0, 1]×M

)
and finitely many open sets

V1, . . . , Vq in M − ∂M which satisfy claims i), ii) and iii) of 6.9. Finally, it is

clear that the concordance W̃[0,1]×P and the open sets

U1 := V1 ∩ P, . . . , Uq := Vq ∩ P

satisfy claims i) and ii) of proposition 6.5.

For the proof of lemma 6.9 we are going to need lemmas 6.10, 6.11 and 6.14
below. The reader is advised to skip the proofs of these three lemmas at a first
reading and jump directly to the proof of 6.9, given after lemma 6.14, in order
to grasp how these three lemmas are used to prove 6.9.

Lemmas 6.10 and 6.11 are the results we are going to use to produce fiberwise
regular values. Also, is in 6.10 that we are going to make use of Hudson’s isotopy
extension theorem.

Note. In the proofs of 6.10 and 6.11 we are going to use the following notation:
If W is an element in ψd(N, 1)

(
M
)

and if λ ∈ M then the pre-image of a
subspace S ⊆ R under the projection

x1 : Wλ → R

shall be denoted by Wλ,S .

Lemma 6.10. Let M be a compact m-dimensional piecewise linear manifold,
possibly with boundary, let W be an element of ψd(N, 1)

(
M
)

and let β be a
fixed real constant. Assume that N − d ≥ 3. Then for each λ ∈M − ∂M there
is a regular neighborhood Vλ of λ in M − ∂M , values aλ,0, . . . , aλ,m in R and
piecewise linear automorphisms Fλ,0, . . . , Fλ,m of [0, 1] × Vλ × R × (−1, 1)N−1

which satisfy the following:

i) aλ,j ∈ (β + j + 1
4 , β + j + 3

4 ).

ii) Fλ,j commutes with the projection onto [0, 1]× Vλ.
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iii) Fλ,j0 is the identity map on Vλ × R× (−1, 1)N−1.

iv) Fλ,j is supported on t−1
1

(
[β + j + 1

4 , β + j + 3
4 ]
)

v) Fλ,j
(
[0, 1]×WVλ

)
is a concordance between WVλ and an element W ′Vλ of

ψd(N, 1)
(
Vλ
)

such that aλ,j is a fiberwise regular value of the projection

x1 : W ′Vλ → R.

Proof. In order to make our notation less cumbersome we shall only prove this
lemma in the case when β = 0. Fix a value j in {0, . . . ,m}. By proposition 2.47
we can find a value

a ∈ (j +
1

4
, j +

3

4
)

which is a regular value (in the sense of definition 2.46) of the projection

x1 : Wλ → R,

i.e. there is a pl homeomorphism

h : [a− δ′, a+ δ′]×Wλ,a

∼=→Wλ,[a−δ′,a+δ′] (22)

such that x1 ◦ h is equal to the projection onto [a− δ′, a+ δ′]. We can assume
without loss of generality that [a − δ′, a + δ′] ⊆ (j + 1

4 , j + 3
4 ). From now on

we will denote the ‘cylinder’ Wλ,[a−δ′,a+δ′] simply by Cδ′ . Also, the product

[j + 1
4 , j + 3

4 ]× (−1, 1)N−1 shall be denoted by Q.

Let now V and U be open neighborhoods of λ and Cδ′ in M and Wλ respec-
tively for which there is a normalized product chart

g : V × U →WV (23)

around Cδ′ for the submersion π : W → M . The existence of such a chart g
is guaranteed by corollary 2.51. Let us denote again by g the map obtained by
composing (23) with the natural inclusion WV ↪→ V × RN . After shrinking V
we can further assume that

gα
(
Cδ′
)
⊆ Q

for each α ∈ V and that V is a regular neighborhood of λ in M − ∂M . The
restriction of g on V ×Cδ′ is then an m-isotopy of Cδ′ in Q such that gλ is just
the natural inclusion Cδ′ ↪→ Q. Applying corollary 6.8 we obtain an ambient
isotopy

G : [0, 1]× V ×Q→ [0, 1]× V ×Q

parametrized by [0, 1]× V which satisfies the following:

· G1 = IdIn×Q.

· G0 extends the isotopy g.
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· G(0,λ) = IdQ.

If we precompose G with Id[0,1] ×G−1
0 we obtain a new ambient isotopy

F ′ : [0, 1]× V ×Q→ [0, 1]× V ×Q

which is the identity at time t = 0, which fixes all points in [0, 1]× V × ∂Q and
which transforms the bundle [0, 1]×g(V ×Cδ′), which is a bundle over [0, 1]×V
with fiber Cδ′ , into a new bundle such that over t = 0 it agrees with g(V ×Cδ′)
and at time t = 1 it is equal to

F ′1(V × Cδ′) = V × Cδ′ . (24)

Since F ′ fixes all points in [0, 1]×V ×∂Q we can extend F ′ to a pl automorphism

F : [0, 1]× V × R× (−1, 1)N−1 → [0, 1]× V × R× (−1, 1)N−1

just by setting (t, α, x) 7→ (t, α, x) for each point x ∈ R × (−1, 1)N−1 which
is not in Q. By construction we have that F commutes with the projection
onto [0, 1] × V and that F0 is just the identity and therefore F

(
[0, 1] ×WV

)
is a concordance between WV and some new element F1(WV ) of ψd(N, 1)

(
V
)
.

Furthermore, by construction we also have that F(1,λ) = IdR×(−1,1)N−1 , which
implies that F1(WV )λ = Wλ.

We now wish to show that, after possibly shrinking V , there is a small enough
value δ > 0 so that

F1(WV )[a−δ,a+δ] = V ×Wλ,[a−δ,a+δ]. (25)

If we manage to find such V and δ then we will have that a is a fiberwise regular
value of x1 : F1(WV )→ R since the product

IdV × h : V × [a− δ, a+ δ]×Wλ,a → V ×Wλ,[a−δ,a+δ], (26)

where h is the map from (22), is a pl homeomorphism such that the composite
(π, x1) ◦ h is equal to the projection onto V × [a − δ, a + δ]. In both (25) and
(26) we are identifying the fiber F1(WV )λ with Wλ.

Fix first a value δ′′ > 0 smaller than δ′ > 0. Observe that V could have
been chosen to be a small enough regular neighborhood of λ so that for the
normalized product chart g given in (23) we have that

Wα,[a−δ′′,a+δ′′] ⊆ gα
(
Wλ,(a−δ′,a+δ′)

)
(27)

for each point α in V . In order to obtain (25) we shall use the following obser-
vation:

Observation. For any δ > 0 smaller than δ′′ > 0 we can pick an m-dimensional
pl ball V ′ ⊆ V such that λ ∈ intV ′ and such that

F(1,α)

((
[j +

1

4
, j +

3

4
]− (a− δ′′, a+ δ′′)

)
× (−1, 1)N−1

)
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and
[a− δ, a+ δ]× (−1, 1)N−1

are disjoint for each α ∈ V ′.

This observation just follows from the fact that F(1,λ) is the identity map on
R× (−1, 1)N−1.

Choose then any value δ > 0 smaller than δ′′ > 0 and let V be a smaller
regular neighborhood of λ for which the previous observation holds. We claim
that equation (25) holds with this choice of δ and V . In order to show that the
inclusion V ×Wλ,[a−δ,a+δ] ⊆ F1(WV )[a−δ,a+δ] holds we first observe that

V ×Wλ,[a−δ′,a+δ′] ⊆ F1(WV )[a−δ′,a+δ′]

since V ×Wλ,[a−δ′,a+δ′] is contained in the image of F1. Intersecting both sides

of this last inclusion with t−1
1

(
[a− δ, a+ δ]

)
gives us that

V ×Wλ,[a−δ,a+δ] ⊆ F1(WV )[a−δ,a+δ].

In order to verify the other inclusion in (25) we shall for each α ∈ V decompose
the fiber Wα into the following three subspaces:

Aα = x−1
1

(
[a±δ′′]

)
, Bα = x−1

1

(
[j+

1

4
, j+

3

4
]−(a±δ′′)

)
, Cα = x−1

1

(
R−[j+

1

4
, j+

3

4
]
)
.

By the observation given above we have that

F(1,α)(Bα) ∩ [a± δ]× (−1, 1)N−1 = ∅.

Also, since F1 is supported on V × [j+ 1
4 , j+ 3

4 ]× (−1, 1)N−1 we also have that

F1,α(Cα) ∩ [a± δ]× (−1, 1)N−1 = ∅.

Finally, by (27) we have
Aα ⊆ gα(Wλ,(a±δ′))

for each α ∈ V and since the right hand side of this inclusion is equal to
G(0,α)

(
Wλ,(a±δ′)

)
and since F1 = G−1

0 we obtain that

F(1,α)(Aα) ⊆Wλ,(a±δ′)

which in turn implies that

F1(WV )[a−δ,a+δ] ⊆ V ×Wλ,[a−δ,a+δ]

since we already had that F(1,α)(Bα) and F(1,α)(Cα) do not intersect [a− δ, a+
δ]× (−1, 1)N−1 for each α in V .
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The previous argument shows that for any j = 0, . . . ,m there is a regular
neighborhood Vj of λ in M −∂M , a value aj in (j+ 1

4 , j+ 3
4 ), and a pl automor-

phism F j of [0, 1]×Vj×R×(−1, 1)N−1 over [0, 1]×Vj supported on [j+ 1
4 , j+ 3

4 ]
such that F j

(
[0, 1]×W

)
is a concordance between WVj and an element W ′ in

ψd(N, 1)
(
Vj
)

such that aj is a fiberwise regular value of x1 : W ′ → R. Finally,
if V is any regular neighborhood of λ contained in

⋂m
j=0 intVj we have that V ,

a0, . . . , am and F0, . . . , Fm satisfy all the claims listed in the statement of this
lemma.

Lemma 6.11. Let Mm be a compact piecewise linear manifold, possibly with
boundary, let W be an element of ψd(N, 1)

(
M
)
, let β be some fixed real constant

and let λ ∈ M − ∂M . Let Vλ be the regular neighborhood of λ in M − ∂M
and aλ,0, . . . , aλ,m the values in R obtained in lemma 6.10. Then for any j ∈
{0, . . . ,m} and any pair of m-dimensional piecewise linear balls (U ′, U) in intVλ
such that U ⊆ intU ′ there is a piecewise linear automorphism F̃ of [0, 1]×M ×
R× (−1, 1)N−1 which satistifies the following properties:

i) F̃ commutes with the projection onto [0, 1]×M .

ii) F̃0 is the identity map on M × R× (−1, 1)N−1.

iii) F̃ is supported on

[0, 1]× U ′ × [β + j +
1

4
, β + j +

3

4
]× (−1, 1)N−1.

iv) F̃
(
[0, 1]×W

)
is a concordance between W and an element W ′ in ψd(N, 1)

(
M
)

such that aλ,j is a fiberwise regular value of the projection

x1 : W ′U → R.

Proof. Again, without loss of generality we shall only work with the case when
β = 0. Recall that in lemma 6.10 we obtained a piecewise linear automorphism
Fλ,j of [0, 1]× Vλ ×R× (−1, 1)N−1 which satisfies conditions ii)− v) of lemma
6.10. Let us denote this pl homeomorphism simply by F . Let now f : [0, 1] ×
Vλ → [0, 1]×Vλ be a piecewise linear map which satisfies the following properties:

· f |[0,1]×U = Id[0,1]×U .

· f |{0}×Vλ = Id{0}×Vλ .

· f(t, x) = (0, x) if x ∈ cl(Vλ − U ′).

See the remark following this proof for an explanation on how to define this
map f . The map

F̃ : [0, 1]× Vλ × R× (−1, 1)N−1 → [0, 1]× Vλ × R× (−1, 1)N−1
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defined by F̃ (t, α, x) = (t, α, Ff(t,α)(x)) is a piecewise linear homeomorphism

which commutes with the projection onto [0, 1] × Vλ. Furthermore, F̃ can be

extended to all of [0, 1]×M×R×(−1, 1)N−1 just by setting F̃ (t, α, x) = (t, α, x)

if α ∈M −U ′ and it is straightforward to verify that F̃ satisfies claims i)− iii)
listed in the statement of this lemma. Finally, claim iv) follows from the fact

that F1(WVλ) and F̃1(W ) give the same element in ψd(N, 1)
(
U
)
.

Remark 6.12. We are now going to indicate how to define the map f :
[0, 1]×Vλ → [0, 1]×Vλ that we used at the beginning of the previous proof. For
this construction we are going to need the following piecewise linear product :
the real valued function · : [0, 1] × [0, 1] → [0, 1] which maps a tuple (x, y) to
its product x · y is not a pl function. However, it is piecewise linear when we
restrict it on the boundary of [0, 1]× [0, 1]. In fact, if L′ is the obvious simplicial
complex which triangulates ∂

(
[0, 1]× [0, 1]

)
then · : [0, 1]× [0, 1]→ [0, 1] is linear

on each simplex of L′. Let now L denote the join {( 1
2 ,

1
2 )} ∗L′. L is a simplicial

complex which triangulates [0, 1]× [0, 1] and we define p : |L| → [0, 1] to be the
unique map which is linear on each simplex of L and which sends each vertex
(x, y) of L to the product x · y. We shall refer to this function as the piecewise
linear product on [0, 1].

In order to define the map f : [0, 1] × Vλ → [0, 1] × Vλ observe first that
(Vλ, U

′, U) is a triad of regular neighborhoods of λ in intM such that U ⊆ intU ′

and U ′ ⊆ intVλ and by the Combinatorial Annulus Theorem (see corollary 3.19
in [17]) we can then assume that

(Vλ, U
′, U) = ([−3, 3]m, [−2, 2]m, [−1, 1]m).

Let s : Rm → [0,∞) be the piecewise linear map which sends a vector (x1, . . . , xn)
to max{|x1|, . . . , |xn|} and let φ : R→ [0, 1] be a piecewise linear map which is
constantly equal to 1 on [−1, 1] and constantly equal to 0 on R− [−3, 3]. Finally,
let

f : [0, 1]× [−3, 3]m → [0, 1]× [−3, 3]m

be the map defined by

f(t, x) =
(
p
(
t, φ ◦ s(x)

)
, x
)
.

It follows from proposition 2.29 that f is indeed a piecewise linear map and we
leave it to the reader to verify that f satisfies the three properties listed in the
proof of lemma 6.11.

Lemma 6.14 below describes a convenient way of obtaining open covers for
compact subpolyhedra in a manifold using simplicial complexes. Before stating
the lemma we need to introduce the following definition.

Definition 6.13. Let K be a finite simplicial complex inside some Euclidean
space. Let σ be a simplex of K with barycenric point b(σ). A subset σ̃ of σ is
called a concentric sub-simplex of σ if:
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1. σ̃ = σ if dimσ = 0

2. There is a value 0 < t0 < 1 such that

σ̃ = {(1− t) · b(σ) + t · x : x ∈ ∂σ, 0 ≤ t ≤ t0}

if dimσ > 0.

Lemma 6.14. Let Mm be a compact piecewise linear manifold, possibly with
boundary, embedded in some Euclidean space, let P be a compact subpolyhedron
of M contained in M − ∂M and let Λ = {Vα}α∈Λ be a collection of open sets
in M which cover P . Let K be a simplicial complex which traingulates P and
which is subordinate to Λ. Then for each simplex σ of K there is a concentric
sub-simplex σ̃ and compact neighborhoods Uσ, U

′
σ of σ̃ which satisfy the following

properties:

i) Uσ ⊆ intU ′σ and Uσ, U
′
σ are regular neighborhoods of σ̃ in M − ∂M . In

particular, both compact neighborhoods are m-dimensional piecewise linear
balls.

ii) U ′σ1
∩ U ′σ2

= ∅ if σ1 6= σ2 and dimσ1 = dimσ2.

iii) The collection {intUσ}σ∈K is an open cover for P .

Proof. Let p be the dimension of P . We are going to define the concentric
simplices σ̃ and the compact neighborhoods Uσ and U ′σ by induction on the
dimension of the simplices of K. Let then α1, . . . , αq be the vertices of K
and let Vi be an open set of the cover Λ which contains the vertex αi. Since
|K| is Hausdorff we can find open sets Ũα1 , . . . , Ũαp such that αi ∈ Ũαi and

Ũαi ∩ Ũαj = ∅ if i 6= j. Furthermore we can assume that each Ũαi is contained
in Vi and in M −∂M . Now for each αi pick regular neighborhoods Uαi and U ′αi
contained in Ũαi such that Uαi ⊆ intU ′αi . This completes the first step of the
induction argument. Suppose now that for every simplex σ of the q-skeleton
Kq of K, q < p, there is a concentric simplex σ̃ of σ and regular neighborhoods
Uσ and U ′σ of σ̃ in M − ∂M such that Uσ ⊆ intU ′σ, the collection of open sets
{intUσ}σ∈Kq covers |Kq|, U ′σ1

∩U ′σ2
= ∅ if σ1 and σ2 are two different simplices

of the same dimension, and each U ′σ is contained in an element of Λ. For each

(q + 1)-simplex β of K pick a concentric sub-simplex β̃ such that

cl(β − β̃) ⊆
⋃
σ∈Kq

Uσ

and let Vβ be an open set of the cover Λ which contains β. Observe that all

the concentric simplices β̃ are disjoint since the interiors of any pair of (q + 1)-
simplices are disjoint and since |K| is a normal space we can find for each

β̃ an open neighborhood Ũβ which is contained in Vβ ∩ (M − ∂M) and such

that Ũβ1 ∩ Ũβ2 = ∅ whenever β̃1 6= β̃2. Finally, for each concentric simplex β̃
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pick regular neighborhoods Uβ and U ′β in Ũβ such that Uβ ⊆ intU ′β . By the
way we defined the regular neighborhoods Uβ ,U ′β we have that the collection
{U ′σ, Uσ}σ∈Kq+1 satisfies conditions i) and ii) given in the statement of this
lemma and that the collection of open sets {intUσ}σ∈Kq+1 covers |Kq+1|.

Proof of lemma 6.9. By 6.10 we can find for each λ ∈ P a regular neigh-
borhood Vλ of λ in M − ∂M , values aλ,0, . . . , aλ,m in R and piecewise linear
automorphisms Fλ,0, . . . , Fλ,m of [0, 1]× Vλ ×R× (−1, 1)N−1 which satisfy all
the claims listed in lemma 6.10.

Pick finitely points λ1, . . . , λq in P such that the interiors of the regular
neighborhoods Vλ1

, . . . , Vλq cover P . Let K be a simplicial complex which tri-
angulates P . By the Lebesgue number lemma we can assume that each simplex
σ of K is contained in one of the open sets intVλj . Now, by lemma 6.14 we can
find for each simplex σ of K a concentric sub-simplex σ̃ and regular neighbor-
hoods U ′σ, Uσ of σ̃ which satisfy the following conditions:

· Uσ ⊆ intU ′σ.

· There is an i ∈ {1, . . . , q} such that U ′σ ⊆ intVλi .

· If σ1 6= σ2 and dimσ1 = dimσ2 then U ′σ1
∩ U ′σ2

= ∅.

· {intUσ}σ∈K is an open cover for P .

For each simplex σ in K we fix an open set Vλi such that U ′σ ⊆ intVλi . Denote
this set by Vσ and denote by aσ,0, . . . , aσ,m and Fσ,0, . . . , F σ,m the correspond-
ing values aλi,0, . . . , aλi,m and pl maps Fλi,0, . . . , Fλi,m. Furthermore, for each
simplex σ we shall denote the value aσ,dimσ simply by aσ.

By lemma 6.11 there is for each σ ∈ K a piecewise linear automorphism F̃σ

of [0, 1]×M × R× (−1, 1)N−1 which is supported on

[0, 1]× U ′σ × [β + dimσ +
1

4
, β + dimσ +

3

4
]× (−1, 1)N−1,

which commutes with the projection onto [0, 1] ×M , which is the identity at
time t = 0 and such that the image

Fσ
(
[0, 1]×W

)
is a concordance between W and an element W ′ in ψd(N, 1)

(
M
)

such that aσ
is a fiberwise regular value of the projection

x1 : W ′Uσ → R.

Observe that all the supports of the pl maps Fσ are disjoint. Indeed, if σ1 and
σ2 are two simplices of different dimension then the the supports of Fσ1 and
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Fσ2 are obviously disjoint, and if σ1 and σ2 are simplices of the same dimension
we will have that U ′σ1

∩ U ′σ2
= ∅. We can then compose all the maps Fσ to

obtain a pl automorphism

F : [0, 1]×M × R× (−1, 1)N−1 → [0, 1]×M × R× (−1, 1)N−1

such that the image F
(
[0, 1] ×W

)
, which we will denote by W̃ , is an element

of ψd(N, 1)
(
[0, 1] ×M

)
which is a concordance between W and an element Ŵ

of ψd(N, 1)
(
M
)

such that for each simplex σ of K the value aσ is a fiberwise
regular value of the projection

x1 : ŴUσ → R.

Thus, we have that W̃ and {intUσ}σ∈K satisfy claims ii) and iii) of lemma 6.9.
Finally, since each of the pl maps Fσ fixes all points t−1

1

(
(−∞, β]

)
we also have

that W̃ satsifies point i) of lemma 6.9.

7 The equivalence |ψd(N, 1)•|
'−→ ΩN−1|Ψd(RN)•|

7.1 The scanning map

In order to show that there is a weak equivalence

|ψd(N, 1)•|
'−→ ΩN−1|Ψd(RN )•| (28)

we shall try to follow the same stategy that was used in [7] to reach the same
result in the smooth category. Let us review first how the map (28) is defined
in [7]. For k ≥ 1 consider the map

R× ψd(N, k)→ ψd(N, k + 1)

defined by (t,W ) 7→ W + t · ek+1 where W + t · ek+1 denotes the image of W
under the diffeomorphism x 7→ x + t · ek+1. If we identify the unit circle S1

with the one point compactification R ∪ {∞} then the previous map can be
extended to S1 × ψd(N, k) by setting (∞,W ) 7→ ∅ for any W in ψd(N, k), and
by allowing ∅ to be the base point in both ψd(N, k) and ψd(N, k+ 1) we obtain
a map S1 ∧ ψd(N, k)→ ψd(N, k + 1) with adjoint map

ψd(N, k)
Sk→ Ωψd(N, k + 1). (29)

The strategy of the proof in [7] is then to show that (29) is a weak homotopy
equivalence for k ≥ 1 and the map (28) is defined to be the composite

ΩN−2SN−1 ◦ . . . ◦ S1

which is obviously also a weak equivalence.
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In the rest of this subsection we will define a pl version

|ψd(N, k)•|
Sk→ Ω|ψd(N, k + 1)•| (30)

of the map (29), which will be called the scanning map, and in the subsections
that follow we will give all the details of the proof of the main theorem of this
section, namely, that (30) is a weak homotopy equivalence.

Remark. In order to make our arguments easier to follow we will in this sec-
tion assume that the underlying polyhedron W of a p-simplex of ψd(N, k)• is
contained in

∆p × Rk × (0, 1)N−k.

Also, the loops in Ω|ψd(N, k + 1)•| will be parametrized by the interval [−1, 1]
and not by [0, 1].

The scanning map (30) will be the adjoint of a map

T : [−1, 1]× |ψd(N, k)•| → |ψd(N, k + 1)•| (31)

which is defined as follows: let Cψd(N, k)• and Sψd(N, k)• be respectively the
cone and the unreduced suspension of ψd(N, k)• (see definitions 2.69 and 2.70).
The map (31) will be equal to a composite

[−1, 1]× |ψd(N, k)•|
q−→ S|ψd(N, k)•|

∼=−→ |Sψd(N, k)•|
|T•|−→ |ψd(N, k + 1)•|

where the first map is the quotient map which collapses the bottom and top
face of [−1, 1] × |ψd(N, k)•|, the second map is the natural homeomorphism

S|ψd(N, k)•|
∼=−→ |Sψd(N, k)•| and the third map is the geometric realization of

a morphism of ∆-sets T• : Sψd(N, k)• → ψd(N, k + 1)• obtained by applying
the universal property of Sψd(N, k)• to a diagram of the form

ψd(N, k)• //

��

Cψd(N, k)•

�� T+
•

��

Cψd(N, k)• //

T−• --

Sψd(N, k)•
T•

''
ψd(N, k + 1)•

(32)

The upperscripts + and − in T+
• and T−• mean that we are going to push el-

ements of ψd(N, k)• towards +∞ and −∞ respectively along the axis xk+1 of
RN . Let us then define these two morphisms of ∆-sets. We will only describe
how to construct T+

• since the construction of T−• is done exactly the same way
with some minor modifications.
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For the construction of T+
• we will denote by cW the extra (p+ 1)-simplex

in Cψd(N, k)• which corresponds to the p-simplex W of ψd(N, k)• and we will
denote by ∗ the extra 0-vertex of Cψd(N, k)•. Furthermore, we shall need the
following:

i) Fix once and for all an increasing pl homeomorphism

f : [0, 1)→ [0,∞).

This is the map that we are going to use to push things to ∞.

ii) For each p > 0 let δp : ∆p−1 ↪→ ∆p be the inclusion into the p-th face of
∆p, let ep be the p-th vertex of ∆p and let ∆p

1
2

be the convex compact

subspace of ∆p which consists of all points of the form

(1− t) · δp(λ) + t · ep

with 0 ≤ t ≤ 1
2 .

iii) Let {hp : ∆p× [0, 1]→ ∆p+1
1
2

}p be a sequence of pl homeomorphisms with

the following properties:

1. hp(λ, 0) = δp+1(λ).

2. hp(λ, 1) = 1
2δp+1(λ) + 1

2ep+1.

3. If ∆q i
↪→ ∆p is an injective simplicial map which preserves the order

relation on the set of vertices then the following diagram commutes

∆q × [0, 1]

i×Id

��

hq // ∆q+1
1
2

��
∆p × [0, 1]

hp // ∆p+1
1
2

where the right vertical map is the restriction on ∆q+1
1
2

of the map defined

by
(1− t) · λ+ t · eq+1 7→ (1− t) · i(λ) + t · ep+1.

Such a sequence of pl homeomorphisms can be defined by induction on p.

With these constructions we can now define for each p-simplexW of ψd(N, k)•
the (p+1)-simplex W̃+ of ψd(N, k+1)• which will be equal to the image of cW
under T+

• : first, from each p-simplex W of ψd(N, k)• we can obtain an element

Ŵ+ ∈ ψd(N, k + 1)
(
[0, 1]×∆p

)
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which is a concordance between W and ∅ by taking the image of the product
[0, 1)×W under the piecewise linear embedding

F : [0, 1)×∆p × Rk × (0, 1)N−k → [0, 1]×∆p × Rk+1 × (0, 1)N−k−1

defined by

(t, λ, x1, . . . , xk, y1, . . . , yN−k) 7→ (t, λ, x1, . . . , xk, y1 + f(t), . . . , yN−k).

It is easy to verify that Ŵ+ := F
(
[0, 1) × W

)
is a closed sub-polyhedron of

[0, 1] × Rk+1 × (0, 1)N−k−1 and that the projection Ŵ+ → [0, 1] × ∆p is a

piecewise linear submersion of codimension d. Finally, W̃+ is the (p + 1)-

simplex of ψd(N, k + 1)• obtained by first pulling back Ŵ+ along the inverse
h−1
p : ∆p+1

1
2

→ [0, 1] × ∆p and by then taking the composite of the projection

W̃+ → ∆p+1
1
2

and the inclusion ∆p+1
1
2

↪→ ∆p+1. Observe that this compos-

ite is indeed a piecewise linear submersion of codimension d since for any point
α in ∆p+1

1
2

of the form α = 1
2δp+1(λ)+ 1

2ep+1 we have that the fiber W̃+
α is empty.

T+
• : Cψd(N, k)• → ψd(N, k+ 1)• is then the morphism of ∆-sets defined by

W 7→W, cW 7→ W̃+, ∗ 7→ ∅.

Using propery 3) of the maps hp defined in iii) above it is straightforward to
verify that

T+
p ∂j = ∂jT

+
p

for all 0 < p and all 0 ≤ j ≤ p and thus T+
• is indeed a morphism of ∆-sets.

Furthermore, T−• : Cψd(N, k)• → ψd(N, k + 1)• is the morphism of ∆-sets
defined by

W 7→W, cW 7→ W̃−, ∗ 7→ ∅.

where the image W̃− of T−• is defined in exactly the same way as W̃+ but using
the pl homeomorphism

−f : [0, 1)→ (−∞, 0]

instead of f : [0, 1)→ [0,∞). For both T+
• and T−• we have that the composite

map

ψd(N, k)• ↪→ Cψd(N, k)•
T±•→ ψd(N, k + 1)•

is equal to the natural inclusion ψd(N, k)• ↪→ ψd(N, k+1)• and therefore T+
• and

T−• make the outer sub-diagram of (32) commute. By the universal property of
Sψd(N, k)• there exists a unique T• making diagram (32) commute and finally
we are now ready to give the following definition.

Definition 7.1. The scanning map is the adjoint map

Sk : |ψd(N, k)•| → Ω|ψd(N, k + 1)•|
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of the composite

T : [−1, 1]× |ψd(N, k)•|
q−→ S|ψd(N, k)•|

∼=−→ |Sψd(N, k)•|
|T•|−→ |ψd(N, k + 1)•|.

The base point of the loops in Ω|ψd(N, k + 1)•| is the vertex corresponding
to the 0-simplex ∅. Also, observe that by construction we have for any x in
|ψd(N, k)•| that T (±1, x) is equal to the vertex of the 0-simplex ∅ and therefore
the image of Sk lies entirely in Ω|ψd(N, k + 1)•|. From now on we will drop
the subsript k from Sk and just denote the scanning map simply by S. As we
mentioned earlier the main result of this section is the following theorem.

Theorem 7.2. The scanning map

S : |ψd(N, k)•| → Ω|ψd(N, k + 1)•|

is a weak homotopy equivalence.

7.2 Decomposition of the scanning map

Instead of proving directly that the scanning map is a weak homotopy equiva-
lence we are going to express it as the composite of three maps each of which is
a weak homotopy equivalence.

Before we can give this decomposition we need to introduce the following
sub-∆-sets of ψd(N, k)•.

Definition 7.3. 1. ψ∅d(N, k)• will denote the path component of the vertex
∅ in ψd(N, k)•.

2. ψ0
d(N, k)• is the sub-∆-set of ψd(N, k)• whose set of p-simplices consists

of those simplices W ∈ ψd(N, k)p for which there is a piecewise linear
function f : ∆p → R such that

Wλ ∩
(
Rk−1 × {f(λ)} × (0, 1)N−k

)
= ∅

for each λ ∈ ∆p.

Observe that ψ∅d(N, k)• is a Kan ∆-set. Also, it is easy to prove that each
vertex of ψ0

d(N, k)• is concordant with the vertex ∅ and thus we have that
ψ0
d(N, k)• is a sub-∆-set of ψ∅d(N, k)•.

We shall also need the following bi-∆-set (see definition 5.4).

Definition 7.4. Nψd(N, k)•,• is the bi-∆-set whose set of (p, q)-simplices con-
sists of all tuples (W, f0, . . . , fq) where W is a p-simplex of ψd(N, k + 1)• and
where the fi’s are piecewise linear maps ∆p → R such that

f0(λ) < . . . < fq(λ) (33)
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for all λ ∈ ∆p and such that

Wλ ∩
(
Rk × {fj(λ)} × (0, 1)N−k−1

)
= ∅ (34)

for each j in {0, . . . , q} and for each λ ∈ ∆p.

The structure maps in the p-direction are the ones coming from the ∆-set
structure of ψd(N, k + 1)•. In the q-direction the j-th face map

∂j : Nψd(N, k)p,q+1 → Nψd(N, k)p,q

is given by deleting the term fj .

Observe that for each non-negative integer q there is a functor Nqψd(N, k) :
PLop → Sets which sends [p] to the set of all tuples (W, f0 < . . . < fq) such that
W ∈ ψd(N, k+ 1)

(
P
)

and f0, . . . , fq satisfy (34) and which sends a pl map f to
the pull-back function f∗. The ∆-set Nψd(N, k)•,q is then just the restriction
of this functor on the category ∆op once we identify ∆ with the image of its
canonical embedding in PL. Observe also that there is a forgetful map

‖Nψd(N, k)•,•‖ → |ψ0
d(N, k + 1)•| (35)

obtained by forgetting all the functions fj .

We claim that the scanning map defined in 7.1 is homotopic to a composite
map of the form

|ψd(N, k)•| → Ω ‖Nψd(N, k)•,•‖ → Ω|ψ0
d(N, k + 1)•| → Ω|ψ∅d(N, k + 1)•| (36)

where base point of the loops in Ω ‖Nψd(N, k)•‖ is the vertex which corresponds
to the (0, 0)-simplex (∅, 0). The last map in this composition is the one induced
by the inclusion ψ0

d(N, k + 1)• ↪→ ψ∅d(N, k + 1)• and the second map is the one
induced by the forgetful map (35). The first map will be defined in the following
subsection. The aim now is to show that each map in the composite map (36) is
a weak equivalence and that this composite is homotopic to the scanning map.
We start with the following proposition.

Proposition 7.5. The forgetful map ‖Nψd(N, k)•,•‖ → |ψ0
d(N, k + 1)•| is a

weak homotopy equivalence. Consequently, the second map in (36) is a weak
homotopy equivalence.

Proof. This proof is identical to the one given in proposition 5.18 and we refer
the reader to that proof for more details.

The rest of this section is organized as follows: In 7.3 we will introduce
the first map in (36) and show that it is a weak homotopy equivalence using a
group-completion argument which is also used in [7]. In 7.4 we prove that the
inclusion ψ0

d(N, k)• ↪→ ψ∅d(N, k)• is a weak homotopy equivalence when k > 1.
Finally, in 7.5 we show that the scanning map |ψd(N, k)•| → Ω|ψd(N, k + 1)•|
is homotopic to the composite map (36) which concludes the proof of theorem
7.2.
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7.3 The group-completion argument

We start this section by collecting in proposition 7.6 several properties of the bi-
∆-set Nψd(N, k)•,•. Before we state this proposition we introduce the following
notation: if W is a p-simplex of ψd(N, k + 1)• and f : ∆p → R is a piecewise
linear function we will denote by

W + f

the image of W under the piecewise linear automorphism of ∆p × RN defined
by

(λ, x1, . . . , xk+1, . . . , xN ) 7→ (λ, x1, . . . , xk+1 + f(λ), . . . , xN ).

It is clear that W + f is again a p-simplex of ψd(N, k+ 1)•. Also, for any point
a in R we will denote by ca the constant map ∆p → R which sends every point
to a.

Proposition 7.6. 1. For q > 0 the morphism of ∆-sets

ηq• : ψd(N, k)• × . . .× ψd(N, k)•︸ ︷︷ ︸
q

→ Nψd(N, k)•,q

which sends a q-tuple (W1, . . . ,Wq) to

( q∐
j=1

(Wj + cj−1), c0, . . . , cq
)
,

is a weak homotopy equivalence.

2. If ∅• is the sub-∆-set of Nψd(N, k)•,0 whose unique p-simplex is the tuple
(∅, c0) then the inclusion ∅• ↪→ Nψd(N, k)•,0 is a weak homotopy equiva-
lence. In particular |Nψd(N, k)•,0| is contractible.

3. If βj : [1] → [q] is the morphism in ∆ defined by βj(0) = j − 1 and
βj(1) = j then the morphism

Bq := (β∗1 , . . . , β
∗
q ) : Nψd(N, k)•,q → Nψd(N, k)•,1 × . . .×Nψd(N, k)•,1︸ ︷︷ ︸

q

is a weak homotopy equivalence.

4. The function obtained by composing the bijection

π0

(
Nψd(N, k)•,1

)
× π0

(
Nψd(N, k)•,1

) ∼=→ π0

(
ψd(N, k)•

)
× π0

(
ψd(N, k)•

)
obtained from 1) and the function between path components induced by the
composition(

ψd(N, k)• × ψd(N, k)•
) η2
•→ Nψd(N, k)•,2

∂•,1→ Nψd(N, k)•,1

is a product with respect to which π0

(
Nψd(N, k)•,1

)
is a group.
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Proof. In order to make this proof easier to follow we are going to switch the roles
of the coordinates x1 and xk+1. To prove 1) observe first that both ψd(N, k)•×
. . . × ψd(N, k)• and Nψd(N, k)•,q are Kan ∆-sets and hence in order to show
that the morphism ηq• given in the statement is a weak equivalence it suffices to
show that for each commutative diagram of the form

|∂∆p|

��

|g′•| // |ψd(N, k)q•|

|ηq•|
��

|∆p|
|g•|// |Nψd(N, q)•,q|

(37)

there exists homotopies hs : |∆p| → |Nψd(N, q)•,q| and fs : |∂∆p| → |ψd(N, k)q•|,
s ∈ [0, 1], with |ηq•| ◦ fs = hs||∂∆p| such that f0 = |g′•|, h0 = |g•| and such that
f1 : |∂∆p| → |ψd(N, k)q•| extends to a map F : |∆p| → |ψd(N, k)q•| such that
|ηq•| ◦ F = h1 (see [5], exercise 1 in page 6). Consider then a diagram of the
form (37) and let (W, f0, . . . , fq) be the p-simplex of |Nψd(N, k)•,q| classified
by g•. By assumption we have that the map fj agrees with cj on ∂∆p. Using
the simplicial approximation theorem (see [1]) we can find for each 0 ≤ j ≤ q a
piecewise linear homotopy

Hj
t : ∆p → R

between fj and cj which agrees with the constant homotopy on ∂∆p and such

that Hi
t(λ) < Hj

t (λ) for all values t ∈ [0, 1] and λ ∈ ∆p whenever i < j. Observe
that the map

[0, 1]×
(
∆p × {0, . . . , q}

)
→ [0, 1]×∆p × R (38)

defined by
(t, λ, j) 7→ (t, λ,Hj

t (λ))

is actually a locally flat embedding since we can find a small enough ε such that
(38) can be extended to a map

[0, 1]×
(
∆p × [−ε, ε]× {0, . . . , q}

)
→ [0, 1]×∆p × R (39)

by setting
(t, λ, s, j) 7→ (t, λ,Hj

t (λ) + s).

The map (39) should be viewed as an isotopy of embeddings of q disjoint copies
of [−ε, ε] into R parametrized by [0, 1]×∆p. By the isotopy extension theorem
(see [12] and [13]) we can find a piecewise linear automorphism

F : [0, 1]×∆p × R→ [0, 1]×∆p × R

which commutes with the projection onto [0, 1] × ∆p, which is the identity
on ∆p × R at time t = 0 and such that F (t, λ, fj(λ)) = (t, λ,Hj

t (λ)). Let

F̃ denote the product F × IdRN−1 and let W̃ denote the image of [0, 1] ×W
under F̃ . (W̃ ,H0, . . . ,Hq) is then a concordance between (W, f0, . . . , fq) and
a p-simplex of Nψd(N, k)•,q of the form (W ′, c0, . . . , cq). Using lemma 5.14
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we can produce a homotopy h : [0, 1] × ∆p → |Nψd(N, k)•,q| between |g•|
and the geometric realization of the morphism g′• which classifies the simplex
(W ′, c0, . . . , cq). Furthermore by the way this homotopy is defined we also have
by 5.14 that ht(∂∆p) is contained in Im|ηq•| for all t in [0, 1]. Finally, since W ′

does not intersect x−1
1 (0) nor x−1

1 (q) we can push to infinity those parts of W ′

below x−1
1 (0) and above x−1

1 (q) to obtain a concordance between (W ′, c0, . . . , cq)
and a p-simplex (W ′′, c0, . . . , cq) which lies in the image of η•. By applying
again 5.14 we can produce a homotopy, relative to Im|ηq•|, between h1 and a
map which maps ∆p to Im|ηq•|. This concludes the proof of 1). Also, observe
that the arguments used in this proof can be used to show that any diagram

|∂∆p|

��

// |∅•|

��
|∆p| // |Nψd(N, q)•,0|

represents the trivial class in πp
(
|Nψd(N, k)•,0|, |∅•|

)
. This proves claim 2).

Point 3) is basically a consequence of 1), of the techniques used to prove 1)
and of proposition 2.65. Indeed, let

Nψd(N, k)•,1 × . . .×Nψd(N, k)•,1
pj→ Nψd(N, k)•,1

be the projection onto the jth factor and let

|Nψd(N, k)•,1 × . . .×Nψd(N, k)•,1|
p→ |Nψd(N, k)•,1| × . . .× |Nψd(N, k)•,1|

be equal to the map p = (|p1|, . . . , |pq|). By 2.65 we have that p is a weak
homotopy equivalence. Using the techniques that we used to prove 1) we can
show that

p ◦ |Bq| ◦ |ηq|

is homotopic to
|η1| × . . .× |η1|,

and since this map is a weak homotopy equivalence we have that p ◦ |Bq| ◦ |ηq|
is also a weak equivalence which implies finally that Bq is a weak homotopy
equivalence.

In order to prove 4) we are first going to introduce a little bit of notation:

for any interval (a, b) we are going to denote by ψ
(a,b)
d (N, k+ 1)• the sub-∆-set

of ψd(N, k + 1)• whose set of p-simplices consists of all those simplices whose
underlying polyhedron is strictly contained in ∆p×(a, b)×Rk×(0, 1)N−k−1. It is
clear that any vertex of Nψd(N, k)•,1 is path connected to a vertex (W,a, b) with

W ∈ ψ(a,b)
d (N, k)0. Let us denote by × the product defined in the statement of
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4). If we take two vertices (W1, a1, b1) and (W2, a2, b2) with Wi ∈ ψ(ai,bi)
d (N, k+

1)0 for i = 1, 2 and if we evaluate the product × on the tuple([
(W1, a1, b1)

]
,
[
(W2, a2, b2)

])
of the corresponding path components we obtain the path component[

(W1 ∪ (W2 + b1 − a2), a1, b1 + (b2 − a2))
]
.

From this we have immedeately that × is associative. Furthermore, it is clear

that any vertex (W,a, b) with W ∈ ψ
(a,b)
d (N, k + 1)• is path connected to

(W,a − λ1, b + λ2) where λ1, λ2 are any non-negative constants and hence the
path component which contains all the vertices of the form (∅, a, b) is the iden-
tity element with respect to ×.

It remains to show that every path component of Nψd(N, k)•,1 has an in-
verse with respect to ×. In order to this we again reeverse the roles of x1 and
xk+1. Pick then a vertex (W,a, b). Assume without loss of generality that a = 0

and b = 1 and that W ∈ ψ(0,1)
d (N, k + 1)0. The projection p : W → Rk onto

the first k euclidean factors is a proper pl map and by lemma 2.47 we can find
a regular value a ∈ Rk of the projection p : W → Rk in the sense of definiton
2.46. If N denotes the pre-image p−1(a), which we can view as a pl submanifold
of (0, 1)N−k, then by applying lemmas 7.15 and 3.19 we can show that (W, 0, 1)
is concordant to (Rk × N, 0, 1) (see the last paragraph of this proof) and thus
we can assume from now on that (W, 0, 1) is of the form (Rk ×N, 0, 1).

Pick a pl embedding e : R× (0, 1)→ R× (0, 3) whose image is equal to the
one illustrated in the following figure:

?

6

�

3

1

1 2
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Let E : RN → RN denote the product of maps IdRk−1 × e × IdRN−k−1 and

consider the image E(W ). This image is a vertex of ψ
(0,3)
d (N, k + 1)• which is

concordant to ∅ since it is empty at all heights xk+1 > 1 and hence it can be
pushed to xk+1 = −∞. On the other hand, since W is of the form Rk ×N we
obtain a concordance between E(W ) and a vertex of the form W

∐
W ′ where

W ′ ∈ ψ(1,3)
d (N, k + 1)0 by pushing E(W ) to xk+1 = ∞. This implies that the

product [
(W, 0, 1)

]
×
[
(W ′, 1, 3)

]
is equal to [

(∅, 0, 3)
]

and thus the element
[
(W, 0, 1)

]
has an inverse with respect to ×.

It remains to justify why the vertex W is concordant to Rk×N . Recall that
N is the pre-image of a ∈ Rk under the projection p : W → Rk. Assume without
loss of generality that a = 0. By lemma 7.15, which we will state and proof in
§ 6.4, we have that W is concordant to another vertex W ′ which agrees with
Rk×N in (−δ, δ)k×(0, 1)N−k for some δ > 0. Let e : [0, 1]×Rk → [0, 1]×Rk be
an open piecewise linear embedding which commutes with the projection onto
[0, 1], which is the identity at time t = 0 and which maps Rk onto (−δ, δ)k at
time t = 1. Then, by applying lemma 3.19 to the embedding e× Id(0,1)N−k and
to the constant concordance [0, 1] ×W ′ we obtain a concordance between W ′

and Rk ×N .

The following proposition is the main tool that we are going to use in order
to prove that the first map in (36) is a weak homotopy equivalence (compare
with statement of lemma 3.14 in [7]).

Proposition 7.7. Let X• be a ∆-space such that the face maps induce a ho-
motopy equivalence Xk ' X1 × . . . × X1. (when k = 0 this means that X0 is
contractible). Then the natural map

X1 → ΩX0 |X•|

is a homotopy equivalence if and only if X• is group-like, i.e. π0(X1) is a group
with respect to the product induced by d1 : X2 → X1.

Remark 7.8. In this statement ΩX0 |X•| denotes the space of paths [−1, 1]→
|X•| which map −1 and 1 to X0 ⊆ |X•|. A version of this result for simplicial
spaces is given in [19]. Although proposition 7.7 is about ∆-spaces, the proof
of proposition 1.5 in [19] goes through when we work with ∆-spaces instead
of simplicial spaces. The reader is referred to the proof given in [19] for more
details.

If we apply the geometric realization functor to the external simplicial direc-
tion of Nψd(N, k)•,• we obtain a ∆-space, namely, the ∆-space whose space of
k-simplices is equal to |Nψd(N, k)•,k|. In order to be able to apply proposition
7.7 we need to prove first the following lemma.
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Lemma 7.9. The ∆-space [k] 7→ |Nψd(N, k)•,k| satisfies the assumptions stated
in proposition 7.7.

Proof. In this proof we shall denote Nψd(N, k)•,k simply by Nk and the ∆-space
[k] 7→ |Nψd(N, k)•,k| shall simply be denoted by |N•|. The contractability of
|N0| follows from point 2) of 7.6 and the fact that |N•| is group-like follows from
point 4) of 7.6.

For each k ≥ 1 the map |Nk|
'→ |N1| × . . .× |N1| induced by the face maps

of |N•| is equal to the diagonal map in the following diagram

|Nk|
|Bk|//

''NNNNNNNNNNNN |N1 × . . .×N1|

��
|N1| × . . .× |N1|,

where the horizontal map Bk is the one defined in point 2) of 7.6 and the j-th
component of the vertical map is just the geometric realization of the morphism
pj which projects the product onto the j-th component. Since Bk is a weak
homotopy equivalence by proposition 7.6 and since the vertical map is a weak
homotopy equivalence by 2.65 we have have that the diagonal map is also a
weak homtopy equivalence.

The following composition

h′1 : |ψd(N, k)•|
|η1|→ |Nψd(N, k)•,1| → Ω|N0| ‖Nψd(N, k)•,•‖ , (40)

where the second map is the adjoint of the natural map [−1, 1]×|Nψd(N, k)•,1| →
‖Nψd(N, k)•,•‖, is an auxiliary map that we are going to use to define the first
map in the composition (36). We remind the reader that |N0| stands for the
geometric realization of Nψd(N, k)•,0. Applyig 1) of 7.6 and proposition 7.7 we
have that h′1 is a weak homotopy equivalence.

Using h′1 we will now define the first map in (36). Let T− and T+ denote
the restrictions of the adjoint

T : [−1, 1]× |ψd(N, k)•| → |ψd(N, k + 1)•|

of the scanning map on [−1, 0]×|ψd(N, k)•| and [0, 1]×|ψd(N, k)•| respectively,
and let ψ0,0

d (N, k + 1)• and ψ0,1
d (N, k + 1)• be the sub-∆-sets of ψ0

d(N, k + 1)•
which consists of those simplices W ∈ ψd(N, k + 1)p such that

Wλ ∩ Rk × {0} × (0, 1)N−k−1 = ∅

and
Wλ ∩ Rk × {1} × (0, 1)N−k−1 = ∅
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rescpectively for each λ ∈ ∆p. Observe that both of these sub-∆-sets embed
into Nψd(N, k+ 1)•,0 by setting W 7→ (W, 0) and W 7→ (W, 1) respectively. By
a slight abuse of notation, the image of a point x under the geometric realization
of these embeddings will be denoted by (x, 0) and (x, 1) respectively. (This is
a notation that we are going to use in equation (42) below). We remark that
the image of T− and T+ land entirely in |ψ0,1

d (N, k + 1)| and |ψ0,0
d (N, k + 1)•|

respectively.

It is easy to verify that the adjoint g′1 : [−1, 1]×|ψd(N, k)•| → ‖Nψd(N, k)•,•‖
of the map h′1 given in (40) is homotopic to the map

g̃1 : [−1, 1]× |ψd(N, k)•| → ‖Nψd(N, k)•,•‖

defined by

g̃1(t, x) =


(
T−(2t+ 1, x), 1

)
if t ∈ [−1, −1

2 ]
g′1(2t, x) if t ∈ [− 1

2 ,
1
2 ],(

T+(2t− 1, x), 0
)

if t ∈ [ 1
2 , 1].

(41)

Also, if
c : ∆1 ∼= [0, 1]→ |Nψd(N, k)•,0|

is the characteristic map of the the 1-simplex (∅, i : [0, 1] ↪→ R) with i the
natural inclusion of [0, 1] into R then it is easy to verify that g̃1 is homotopic to
the map

g1 : [−1, 1]× |ψd(N, k)•| → ‖Nψd(N, k)•,•‖
defined by

g1(t, x) =

{
c(1 + t) if t ∈ [−1, 0]

g̃′1(−1 + 2t, x) if t ∈ [0, 1]
(42)

Let
h1 : |ψd(N, k)•| → Ω|N0| ‖Nψd(N, k)•,•‖

be the adjoint of the map g1. Since g1 and g′1 are homotopic it follows that
h1 and h′1 are also homotopic and thus h1 is a weak equivalence as a map into
Ω|N0| ‖Nψd(N, k)•,•‖. But since the image of h1 lies in Ω ‖Nψd(N, k)•,•‖, where
loops are based at the vertex corresponding to the tuple (∅, 0), we have that the
diagram

|ψd(N, k)•|
h1//

h1

((RRRRRRRRRRRRR
Ω|N0| ‖Nψd(N, k)•,•‖

Ω ‖Nψd(N, k)•,•‖
� ?

OO

is commutative. Furthermore, by the contractability of |N0| we have that the
inclusion Ω ‖Nψd(N, k)•,•‖ ↪→ Ω|N0| ‖Nψd(N, k)•,•‖ is a weak homotopy equiv-
alence which implies finally that the map

h1 : |ψd(N, k)•| → Ω ‖Nψd(N, k)•,•‖ (43)
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i.e. h1 as a map into Ω ‖Nψd(N, k)•,•‖, is a weak homotopy equivalence. This
is the first map in the decomposition (36).

7.4 The inclusion ψ0
d(N, k)• ↪→ ψ∅d(N, k)•

It remains to show that the last map of the decompostion (36) is a weak homo-
topy equivalence. This will follow from the following proposition.

Proposition 7.10. Assume that N − d ≥ 3. Then the inclusion ψ0
d(N, k)• ↪→

ψ∅d(N, k)• is a weak homotopy equivalence when k > 1.

Note 7.11. 1. In this subsection we shall work with the norm ‖·‖ in Rk
defined by

‖(x1, . . . , xk)‖ = max{|x1|, . . . , |xk|}.

Furthermore, B(a, δ) shall denote the closed ball centered at a ∈ Rk with
radius δ > 0.

2. Also, in this subsection we will exchange again the rolles of the coordinates
xk and x1. In particular, a p-simplex W of ψd(N, k)• is in ψ0

d(N, k)p if
there is a piecewise linear function f : ∆p → R such that for each λ in ∆p

we have that
Wλ ∩

(
{f(λ)} × Rk−1 × (0, 1)N−k

)
.

Notation 7.12. Let W be an element in ψd(N, k)
(
P
)
. In particular, W is a

closed subpolyhedron of P ×Rk × (0, 1)N−k. In this section we are going to use
the following notation:

1. xk : W → Rk is the projection from W onto Rk, i.e., the second factor of
P × Rk × (0, 1)N−k.

2. tk : P × Rk × (0, 1)N−k → Rk is the projection onto Rk.

3. t1 : P ×Rk × (0, 1)N−k → R is the projection onto the first component of
Rk.

The proof of proposition 7.10 is almost identical to that of theorem 6.1 once
we have the following lemma at hand.

Lemma 7.13. Assume that N−d ≥ 3 and let k > 1. Let P be a compact polyhe-
dron, let β be some fixed real constant and let W be an element in ψ∅d(N, k)

(
P
)
.

Then there is an element W̃ in ψ∅d(N, k)
(
[0, 1]×P

)
which satisfies the following

properties:

i) W̃ agrees with [0, 1]×W in t−1
1

(
(−∞, β]

)
.

ii) W̃ is a concordance between W and an element W ′ in ψ∅d(N, k)
(
P
)

for
which there is a finite open cover U1, . . . , Uq of P and real values a1, . . . , aq >
β such that for j = 1, . . . , q we have
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W ′λ ∩
(
{aj} × RN−1

)
for each λ ∈ Uj.

Proof of proposition 7.10. Let us give a proof of 7.10 assuming lemma 7.13.
Consider a map of pairs

f : (∆p, ∂∆p)→
( ∣∣∣ψ∅d(N, k)•

∣∣∣ , ∣∣ψ0
d(N, k)•

∣∣ ). (44)

By an argument completely analogous to the one given in the proof of lemma
6.2 we have that f is homotopic (as a map of pairs) to a composition of the
form

(∆p, ∂∆p)
f ′→ (|K•| , |K ′•|)

|h•|→ (
∣∣∣ψ∅d(N, k)•

∣∣∣ , ∣∣ψ0
d(N, k)•

∣∣)
where (K•,K

′
•) is a pair of finite ∆-sets obtained from a pair of finite ordered

simplicial complexes (K,K ′) in some Euclidean space Rm.

Let W be the element of ψ∅d(N, k)
(
|K|
)

classified by the morhism h• (see
definition 3.6). Since h•(K

′
•) ⊆ ψ0

d(N, k)• then for each simplex σ of K ′ there
is a piecewise linear function fσ : σ → R such that

Wσ ∩ (Γ(fσ)× Rk−1 × (0, 1)N−k) = ∅.

Fix some real constant β larger than all the maxima of the functions fσ. By
applying lemma 7.13 to W and β we can find an element W̃ in ψ∅d(N, k)

(
[0, 1]×

|K|
)

which agrees with [0, 1]×W in t−1
1

(
(−∞, β]

)
and which is a concordance

between W and an element W ′ in ψ∅d(N, k)
(
|K|
)

for which there is a finite open
cover U1, . . . , Uq of |K| such that for j = 1, . . . , q there is a real value aj > β
such that

W ′λ ∩
(
{aj} × RN−1

)
= ∅

for each λ ∈ Uj . Finally, by arguments completely analogous to the ones given
in steps iv), v) and vi) of the proof of theorem 6.1 we can conclude that the map
f in (44) represents the trivial class in πp

( ∣∣ψ∅d(N, k)•
∣∣ , ∣∣ψ0

d(N, k)•
∣∣ ) and since

f was arbitrary we conclude that ψ0
d(N, k)• ↪→ ψ∅d(N, k)• is a weak homotopy

equivalence.

Lemma 7.13 is in turn an immediate corollary of the following lemma whose
statement is similar to that of lemma 6.9.

Lemma 7.14. Let Mm be a pl manifold, possibly with boundary, let P be a
compact subpolyhedron of M such that P ⊆ M − ∂M , let β be some fixed real
constant and let W be an element in ψ∅d(N, k)

(
M
)
. Then there is an element

W̃ in ψ∅d(N, k)
(
[0, 1] ×M

)
and finitely many open sets V1, . . . , Vq in M − ∂M

which satisfy the following:

i) W̃ agrees with [0, 1]×W in t−1
1

(
(−∞, β]

)
.
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ii) V1, . . . , Vq cover P .

ii) W̃ is a concordance between W and an element W ′ in ψ∅d(N, k)
(
M
)

such
that for each of the open sets V1, . . . , Vq there is a real value aj > β such
that

W ′λ ∩
(
{aj} × RN−1

)
for each λ ∈ Vj.

Proof of lemma 7.13. Assuming lemma 7.14, the proof of lemma 7.13 is iden-
tical to the proof of lemma 6.5 and the reader is referred to that proof for more
details.

For the proof of 7.14 we shall need lemmas 7.15, 7.16, 7.17, 7.18 and 7.19
given below. The reader is advised to skip the proofs of 7.15, 7.16, 7.17 and 7.18
at a first reading and instead just read carefully their statements and then read
the proof of lemma 7.19, which is the main tool we are going to use to prove
lemma 7.14.

Lemma 7.15. Let W be an element of ψd(N, k)
(
[−1, 1]m

)
and let π : W →

[−1, 1]m be the projection onto [−1, 1]m. Let a = (a1, . . . , ak) ∈ Rk and δ′ > 0
be such that the restriction

(π, xk)|
x−1
k

(
B(a,δ′)

) : x−1
k

(
B(a, δ′)

)
→ [−1, 1]m ×B(a, δ′)

is a pl submersion of codimension d − k. Finally, let M := (π, xk)−1
(
(0, a)

)
.

Then for any 0 < ε < 1 and any 0 < δ < δ′ there is an element W̃ in
ψd(N, k)

(
[0, 1]× [−1, 1]m

)
which satisfies the following conditions:

i) i∗0W̃ = W where i0 is the inclusion [−1, 1]m ↪→ [0, 1]× [−1, 1]m defined by
λ 7→ (0, λ)

ii) W̃[0,1]×V =
(
[0, 1]×W

)
[0,1]×V for a neighborhood V of ∂[−1, 1]m.

iii) For any point (t, λ) in [0, 1]× [−1, 1]m the fiber W̃(t,λ) agrees with Wλ in

t−1
1

(
R− [a1 − δ′, a1 + δ′]

)
.

iv) If i1 is the inclusion [−1, 1]m ↪→ [0, 1]× [−1, 1]m defined by λ 7→ (1, λ) and

if W ′ := i∗1W̃ then for each λ ∈ [−ε, ε]m we have

W ′λ ∩ t−1
k

(
B(a, δ)

)
= B(a, δ)×M.

Proof. Observe that M := (π, xk)−1
(
(0, a)

)
is a closed pl manifold of dimension

d− k. Without loss of generality, we are only going to do this proof in the case
when a is the origin in Rk, δ′ = 1, (i.e., B(a, δ′) = [−1, 1]k) and δ = ε.

Consider first the element [0, 1] × W in ψd(N, k)
(
[0, 1] × [−1, 1]m

)
. Let

π′ : [0, 1]×W → [0, 1]× [−1, 1]m be the projection onto [0, 1]× [−1, 1]m and let
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M̃ denote the pre-image of [−1, 1]m × (−1, 1)k under (π′, xk). By assumption

we have that the restriction of (π′, xk) on M̃ is a submersion of codimension
d − k and that each fiber of this restriction is pl homeomorphic to M . Pick
now any value ε′ such that 0 < ε < ε′ < 1 and let f : [0, 1] × [−1, 1]m+k →
[0, 1]× [−1, 1]m+k be a piecewise linear map satisfying the following condtions:

· f |{0}×[−1,1]m+k = Id{0}×[−1,1]m+k .

· f fixes each point in [0, 1]×
(
[−1, 1]m+k − (−ε′, ε′)m+k

)
.

· f maps {1} × [−ε, ε]m+k to (1, 0).

Applying proposition 2.52 to (π′, xk)|
M̃

: M̃ → [0, 1]×[−1, 1]m×(−1, 1)k and

to the restriction of f on [0, 1]× [−1, 1]m × (−1, 1)k we obtain a subpolyhedron
M ′ of [0, 1]× [−1, 1]m× (−1, 1)k× (−1, 1)N−k such that the projection from M ′

onto [0, 1]× [−1, 1]m × (−1, 1)k is a piecewise linear submersion of codimension
d− k and such that

M ′ ∩
(
{1} × [−ε, ε]m+k

)
=
(
{1} × [−ε, ε]m+k

)
×N.

Observe that the projection of M ′ onto [0, 1] × [−1, 1]m is a piecewise linear
submersion of codimension d since it can be expressed as the following composite
of projections

M ′ → [0, 1]× [−1, 1]m × (−1, 1)k → [0, 1]× [−1, 1]m.

Let F be the pl map from [0, 1] × [−1, 1]m × Rk × (−1, 1)N−k to itself which
fixes all points in [0, 1] × [−1, 1]m ×

(
Rk − [−ε′, ε′]k

)
× (−1, 1)N−k and which

agrees with f × Id(−1,1)N−k on [0, 1] × [−1, 1]m × [−1, 1]k × (−1, 1)N−k, and

let W̃ denote the pre-image F−1
(
[0, 1] ×W

)
. W̃ is a closed subpolyhedron of

[0, 1]× [−1, 1]m×Rk× (−1, 1)N−k since it is the pre-image of a sub-polyhedron

under a pl map with compact support. Furthermore, the projection π̃ : W̃ →
[0, 1] × [−1, 1]m is a pl submersion of codimension d since on (π̃, xk)−1

(
[0, 1] ×

[−1, 1]m×(Rk−[−ε′, ε′]k)
)

this map agrees with π′ : [0, 1]×W → [0, 1]×[−1, 1]m

and on the pre-image (π̃, xk)−1
(
[0, 1] × [−1, 1]m × (−1, 1)k), which is equal to

M ′, it agees with projection M ′ → [0, 1] × [−1, 1]m, which is also submsersion

of codimension d. Furthermore, if W ′ := i∗1W̃ then it is clear that

W ′ ∩
(
[−ε, ε]m ×B(a, ε)× (−1, 1)N−k

)
= [−ε, ε]m ×B(a, ε)×M.

Lemma 7.16. Let W ∈ ψd(N, k)
(
[−1, 1]m

)
, a = (a1, . . . , ak) ∈ Rk, δ′ > 0 and

Md−k be as in the statement of lemma 7.15. Then for any 0 < ε < 1 and any
0 < δ < δ′ there exists a W̃ in ψd(N, k)

(
[0, 1] × [−1, 1]m

)
which satisfies the

following properties:

i) W̃ satisfies condtions i), ii) and iii) of lemma 7.15.
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ii) If W ′ := i∗1W̃ then for each λ ∈ [−ε, ε]m the fiber W ′λ agrees with Rk ×M
in

t−1
1

(
(a1 − δ, a1 + δ)

)
.

Proof. Let ε′ and δ′′ be values such that 0 < ε < ε′ < 1 and 0 < δ < δ′′ < δ′.
By lemma 7.15 we can find an element Ŵ in ψd(N, k)

(
[0, 1] × [−1, 1]m

)
which

satisfies conditions i), ii) and iii) of 7.15 and which is a concordance between
W and an element W ′ in ψd(N, k)

(
[−1, 1]m

)
such that

W ′λ ∩ t−1
k

(
B(a, δ′′)

)
= B(a, δ′′)×M

for each λ in [−ε′, ε′]m. The point now is to stretch the subpaceW ′λ∩ t
−1
k

(
B(a, δ′′)

)
in the direction xk for each λ in [−ε, ε]m but withouth changing the fiber W ′λ in
the region t−1

1

(
R − (a1 − δ′, a1 + δ′)

)
. This is done with the following stretch-

ing map E which is defined as follows: choose first an open piecewise linear
embedding e : [0, 1] × Rk → [0, 1] × Rk over [0, 1] which satisfies the following
properties:

· e is the identity on {0} × Rk and on [0, 1]× [a1 ± δ′′]c × Rk−1.

· e maps {1} × (a1 ± δ)× Rk−1 onto {1} × intB(a, δ).

· e commutes with the projection onto the first component of Rk.

The construction of such a map e will be given at the end of this proof. Using
e we can define an open piecewise linear embedding

E : [0, 1]× [−1, 1]m × Rk × (0, 1)N−k → [0, 1]× [−1, 1]m × Rk × (0, 1)N−k

which satisfies the following properties:

· E commutes with the projection onto [0, 1]× [−1, 1]m.

· E agrees with the identity map on

{0} × [−1, 1]m × Rk × (0, 1)N−k,

[0, 1]×
(
[−1, 1]m − (−ε′, ε′)m

)
× Rk × (0, 1)N−k

and
[0, 1]× [−1, 1]m × (a1 ± δ′′)c × Rk−1 × (0, 1)N−k.

· If

q : [0, 1]× [−1, 1]m × Rk × (0, 1)N−k → [−1, 1]m × [0, 1]× Rk × (0, 1)N−k

is the map that flips the first two factors then E agrees with

q−1 ◦
(
Id[−1,1]m × ej × Id(0,1)N−k

)
◦ q

on [−ε, ε]m × [0, 1]× Rk × (0, 1)N−k.
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The details of the definition of the stretching map E will also be given at
the end of this proof. For now let us conclude the proof of this lemma as-
suming the existence of such a map E. By proposition 3.19, the pre-image
W̃ := E−1

(
[0, 1] ×W ′

)
is an element in ψd(N, k)

(
[0, 1] × [−1, 1]m

)
which, by

the properties of the stretching map E, satisfies conditions i), ii) and iii) of
lemma 7.15 and which is a concordance between W ′ and a new element W ′′

in ψd(N, k)
(
[−1, 1]m

)
such that for each λ in [−ε, ε]m the fiber W ′′λ agrees with

Rk ×M in t−1
1

(
(a1 − δ, a1 + δ)

)
. By construction, the concatenation of the two

concordances Ŵ and W̃ satisfies all the claims listed in the statement of this
lemma.

Let us now explain how to define the map e : [0, 1]× Rk → [0, 1]× Rk used
in the definition of the stretching map E. For simplicity a will be the origin in
Rk, δ′ = 2 and δ = 1. Let A denote the product R× [−2, 2]k−1, and let

c : Rk → intA

be a piecewise linear homeomorphism which is the identity when restricted on
R×[−1, 1]k−1 and which commutes with the projection onto the first component
R. Let

D : [0, 1]× R× [−3, 3]k−1 → [0, 1]× R× [−3, 3]k−1

be a piecewise linear homeomorphism which commutes with the projection onto
[0, 1]×R, which is the identity when restricted on {0} ×R× [−3, 3]k−1 and on
[0, 1]×

(
R− (−2, 2)

)
× [−3, 3]k−1, and such that

(1, x1, x2, . . . , xk) 7→ (1, x1,
x2

2
, . . . ,

xk
2

)

if x1 ∈ [−1, 1] and if (x2, . . . , xk) ∈ [−2, 2]k−1. The composition

e := (Id[0,1] × c)−1 ◦D|[0,1]×intA ◦ (Id[0,1] × c)

is then an open piecewise linear embedding [0, 1] × Rk → [0, 1] × Rk which
commutes with the projection onto [0, 1] and with the projection onto the first
factor of Rk, which is the identity on [0, 1] ×

(
R − (−2, 2)

)
× Rk−1 and which

maps {1} × [−1, 1]× Rk−1 onto {1} × [−1, 1]× (−1, 1)k−1.

Let us finally explain how to define the stretching map

E : [0, 1]× [−1, 1]m × Rk × (0, 1)N−k → [0, 1]× [−1, 1]m × Rk × (0, 1)N−k.

Let E′ be the map from [0, 1]× [−1, 1]m×Rk× (0, 1)N−k to itself which is equal
to the composite

q−1 ◦
(
Id[−1,1]m × ej × Id(0,1)N−k

)
◦ q,

where q is the map defined on [0, 1]× [−1, 1]m ×Rk × (0, 1)N−k which just flips
the first two components. Let φ : R → [0, 1] be the piecewise linear function
defined by
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φ(t) =


1 if t ∈ [−ε, ε],
0 if t ∈ R− [−ε′, ε′],

t−ε′
ε−ε′ if t ∈ [ε, ε′],
t+ε′

ε′−ε if t ∈ [−ε′,−ε]

and let us denote by |·| : [−1, 1]m → [0, 1] the pl map which sends (x1, . . . , xm)
to max{|x1| , . . . , |xm|}. Finally, let

c : [0, 1]× [−1, 1]m → [0, 1]× [−1, 1]m

be the map defined by
(t, λ) 7→

(
p
(
t, φ(|λ|)

)
, λ
)
,

where p : [0, 1]× [0, 1]→ [0, 1] is the piecewise linear product introduced in the
previous section. The map c is piecewise linear by proposition 2.29 and using
proposition 2.57 we can pull back the map E′, which is an open piecewise linear
embedding which commutes with the projection onto [0, 1] × [−1, 1]m, along c
to obatin a new open piecewise linear embedding

E : [0, 1]× [−1, 1]m × Rk × (0, 1)N−k → [0, 1]× [−1, 1]m × Rk × (0, 1)N−k

which is defined by
E(t, λ, x) =

(
t, λ, E′c(t,λ)(x)

)
.

By construction the map E agrees with E′ on [0, 1]×[−ε, ε]m×Rk×(0, 1)N−k and
agrees with the identity map on {0}×[−1, 1]m×Rk×(0, 1)N−k, [0, 1]×

(
[−1, 1]m−

[−ε′, ε′]m)×Rk×(0, 1)N−k and [0, 1]×[−1, 1]m×
(
R−(−2, 2)

)
×Rk−1×(0, 1)N−k,

and hence the map E satisfies all the claims listed in the proof of this lemma.

Lemma 7.17. Let x1 : [0, 1]× (0, 1)N−1 → [0, 1] be the projection onto the first
component and let C ⊆ [0, 1]× (0, 1)N−1 be a d-dimensional compact piecewise
linear submanifold with boundary such that

M := ∂C ⊆ x−1
1 (0), C ∩ x−1

1 (1) = ∅

Then there is a 1-simplex W of ψd(N, 1)• such that

1. W0 = R×M ,

2. W 1
2

=
(
(−∞, 0]×M

)
∪ C, and

3. W1 = ∅.

Proof. Let M̃ denote the closed sub-polyhedron of R × (0, 1)N−1 obtained by
taking the union

(
(−∞, 0]×M

)
∪ C. Observe that the product

[0, 1]× M̃ ⊆ [0, 1]× R× (0, 1)N−1

is a 1-simplex of ψd(N, 1)•. Let e : [0, 1]× R→ [0, 1]× R be an open piecewise
linear embedding which satisfies the following properties
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. e commutes with the projection onto [0, 1].

. e 1
2

is the identity IdR.

. e0(R) = (−1, 0).

. e1(R) = (1, 2).

If E : [0, 1]×R× (0, 1)N−1 → [0, 1]×R× (0, 1)N−1 is equal to the product e×
Id(0,1)N−1 then by lemma 3.19 we have that the pre-image W := E−1([0, 1]×M̃)
is also a 1-simplex of ψd(N, 1)• and by the way we chose the embedding e we
have that W satisfies all the desired properties.

Lemma 7.18. Let W ⊆ Rk × (0, 1)N−k be a 0-vertex of ψ∅d(N, k)•, let a ∈ Rk
be a regular value of the projection xk : W → Rk in the sense of definition 2.46
and let M := x−1

k (a). Then there is a (d−k+1)-dimensional compact piecewise
linear submanifold C ⊆ [0, 1]× (0, 1)N−k with boundary such that

∂C ⊆ {0} × (0, 1)N−k, C ∩
(
{1} × (0, 1)N−k

)
= ∅ (45)

and such that M = ∂C .

Proof. By assumption there is δ > 0 such that the restricition of xk : W →
B(a, δ) on x−1

k

(
B(a, δ)

)
xk|

x−1
k

(
B(a,δ)

) : x−1
k

(
B(a, δ)

)
→ B(a, δ) (46)

is a proper piecewise linear submersion of codimension d−1. We begin this proof
by observing that for any b ∈ B(a, δ) there is a D ∈ ψd−k(N − k, 0)

(
[0, 1

2 ]
)

such
that D0 = M and D 1

2
= M ′ where M ′ is the pre-image of b under xk : W → Rk.

This is done by pulling back (46) along any pl map that identifies [0, 1
2 ] with the

straightline connecting a and b. Then D ⊆ [0, 1
2 ]×(0, 1)N−k is pl homeomorphic

over [0, 1
2 ] to [0, 1

2 ]×M .

Now, since ψd(N, k)• is a Kan ∆-set and since W ∈ ψ∅d(N, k)0 we can find

a 1-simplex W̃ ′ of ψd(N, k)• such that W̃ ′0 = W and W̃ ′1 = ∅. Furthermore, we
can assume that there is 0 < ε < 1 such that

W̃ ′t = W, for all t ∈ [0, ε]. (47)

Let −W̃ ′ ⊆ [−1, 0]×Rk×(0, 1)N−k be the element in ψd(N, k)
(
[−1, 0]

)
obtained

by multiplying the first coordinate of each point in W̃ ′ by −1 and let W̃ ⊆
[−1, 1]×Rk × (0, 1)N−k be the element of ψd(N, k)

(
[−1, 1]

)
obtained by gluing

W̃ ′ and −W̃ ′ along W̃ ′0. Observe then that the projection π : W̃ → [−1, 1] is a

piecewise linear submersion of codimension d and that W̃ is a piecewise linear
manifold without boundary since π−1

(
{−1, 1}

)
= ∅. By applying theorem 2.47
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we can find a regular value b in intB(a, δ) of the projection xk : W̃ → Rk

and by proposition 2.48 the pre-image of b under xk : W̃ → Rk is going to
be a (d+ 1− k)-dimensional closed (compact and without boundary) piecewise

linear submanifold C̃ of W̃ and, after identifying [−1, 1]× {b} × (0, 1)N−k with

[−1, 1]× (0, 1)N−k, we have that C̃ is also a closed piecewise linear submanifold
of [−1, 1] × (0, 1)N−k which doesn’t intersect the bottom and top face of this
product. Furthermore, by (47) we have that

C̃ ∩
(
(−ε, ε)× (0, 1)N−k

)
= (−ε, ε)×M ′,

where M ′ denotes the pre-image of b under xk : W → Rk, and it follows that
the intersection

C ′ := C̃ ∩
(
[0, 1]× (0, 1)N−k

)
is a piecewise linear manifold with boundary ∂C ′ equal to M ′. Without loss
of generality we can assume that C ′ is contained in [ 1

2 , 1] × (0, 1)N−k. Finally,
if D ⊆ [0, 1

2 ] × (0, 1)N−k is the trivial cobordism from M to M ′ defined at the
beginning of this proof then the union

C := D ∪ C ′

is a (d−k+1)-dimensional compact piecewise linear manifold in [0, 1]×(0, 1)N−k

which satisfies the desired properties.

As we said before, the following lemma is the key construction that we are
going to use in the proof of lemma 7.14.

Lemma 7.19. Let W ∈ ψd(N, k)∅
(
[−1, 1]m

)
, a = (a1, . . . , ak) ∈ Rk, δ′ > 0

and Md−k be as in the statement of lemma 7.15. Then for any 0 < ε < 1 there
exists a W̃ in ψd(N, k)

(
[0, 1]× [−1, 1]m

)
which satisfies the following properties:

i) W̃ satisfies conditions i), ii) and iii) of lemma 7.15.

ii) If W ′ := i∗1W̃ then
W ′λ ∩

(
{a1} × RN−1

)
= ∅.

for each λ in [−ε, ε]m.

Proof. By lemma 7.16 we can assume that

Wλ ∩ t−1
1

(
(a1 − δ′′, a1 + δ′′)

)
= (a1 − δ′′, a1 + δ′′)× Rk ×M

for every point λ in [−ε′, ε′]m where ε′ and δ′′ are values in the intervals (ε, 1) and
(δ, δ′) respectively and by lemma 7.18 there is there is a (d− k+ 1)-dimensional
compact piecewise linear submanifold C ⊆ [0, 1]×(0, 1)N−k with boundary such
that M = ∂C and

∂C ⊆ {0} × (0, 1)N−k, C ∩
(
{1} × (0, 1)N−k

)
= ∅.
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Let C̃ be the vertex of ψd−k+1(N − k + 1, 1)• which agrees with the product
R×M in t−1

1

(
(−∞, 0]

)
and which agrees with the cobordism C in t−1

1

(
[0,∞)

)
.

Using 7.17 we can find a 1-simplex D̃ of ψd−k+1(N − k + 1, 1)• such that

D̃0 = R×M, D̃ 1
2

= C̃, D̃1 = ∅.

Since k ≥ 2 we have that each fiber Wλ of W → [−1, 1]m is allowed to be non-
compact in at least to directions, one of them being x1. The point of this proof
is to use the concordance D̃ to push to −∞ in the direction xk the pre-image
x−1

1 (a1) of a1 under the projection x1 : Wλ → R for each λ ∈ [−ε, ε]m but
without changing any of the fibers Wλ in the region t−1

1

(
R− [a1 − δ′, a1 + δ′]

)
.

This is done as follows: let D′′ denote the product

D̃ ×
(
[−ε′, ε′]m × R

)
× Rk−2

and let D′ be the image of D′′ under the map

[0, 1]×R×(0, 1)N−k×
(
[−ε′, ε′]m×R

)
×Rk−2 → [0, 1]×

(
[−ε′, ε′]m×R

)
×Rk−2×R×(0, 1)N−k

which just permutes the factors. D′ is a closed sub-polyhedron of

[0, 1]×
(
[−ε′, ε′]m × R

)
× Rk−1 × (0, 1)N−k,

once we have identified Rk−2 × R with Rk−1, and the natural projection D′ →
[0, 1]× [−ε′, ε′]m ×R is a piecewise linear submersion of codimension d− 1, i.e.,
D′ is an element of

ψd−1(N − 1, k − 1)
(
[0, 1]× [−ε′, ε′]m × R

)
.

Studying closely the construction we just made we see that D′ is a concordance
between (

[−ε′, ε′]m × R
)
× Rk−1 ×M

and ∅ such that at time t = 1
2 we have

D′1
2

=
(
[−ε′, ε′]m × R

)
× Rk−2 × C̃.

Let ε̃ > 0 and δ̃ > 0 be such that ε < ε̃ < ε′ and δ < δ̃ < δ′′. Using the technique
for pulling back submersions given in proposition 2.52 we wish to obtain from the
concordance D′ a new concordance D in ψd−1(N−1, k−1)

(
[0, 1]×[−ε′, ε′]m×R

)
which satisfies the following properties:

· At time t = 0 the concordance is equal to
(
[−ε′, ε′]m × R

)
× Rk−1 ×M .

· Dλ = D′λ for each λ in [0, 1]× [−ε, ε]m × [a1 − δ, a1 + δ].

· D agrees with the constant concordance [0, 1]×
(
[−ε′, ε′]m×R

)
×Rk−1×M

over
[0, 1]× [−ε′, ε′]m ×

(
R− [a1 − δ̃, a1 + δ̃]

)
and over

[0, 1]×
(
[−ε′, ε′]m − [−ε̃, ε̃]m

)
× R.
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Let us indicate how to conclude this proof assuming the existence of such a
concordance D. The composition of the submersion D → [0, 1]× [−ε′, ε′]m × R
and the natural projection [0, 1]×[−ε′, ε′]×R→ [0, 1]×[−ε′, ε′]m is a submersion
of codimension d and thus D can also be viewed as an element of

ψd(N, k)
(
[0, 1]× [−ε′, ε′]m

)
and as element of this set it satisfies the following properties (here we are going
to use the notation introduced in definition 3.16):

i) D agrees with [0, 1]×W in

Ψd

(
t−1
1

(
(a1 − δ′, a1 + δ′)− [a1 − δ̃, a1 + δ̃]

))(
[0, 1]× [−ε′, ε′]m

)
ii) D agrees with [0, 1]×W in

Ψd

(
t−1
1

(
(a1 − δ′, a1 + δ′)

))(
[0, 1]× ([−ε′, ε′]m − [−ε̃, ε̃]m)

)
iii) For each point (1, λ) in {1} × [−ε, ε]m we have that

D(1,λ) ∩
(
{a1} × RN−1

)
= ∅.

By i) and proposition 3.17 there is an element D̂ in

ψd(N, k)
(
[0, 1]× [−ε′, ε′]m

)
which agrees with D in

t−1
1

(
(a1 − δ′, a1 + δ′)

)
and with [0, 1]×W[−ε′,ε′]m in

t−1
1

(
R− [a1 − δ̃, a1 + δ̃]

)
Furthermore, by ii) we have that D̂ can be extended to an element Ŵ in

ψd(N, k)
(
[0, 1]× [−1, 1]m

)
which agrees with [0, 1]×W in t−1

1

(
R−[a1−δ̃, a1+δ̃]

)
and over [0, 1]×

(
[−1, 1]m−

[−ε̃, ε̃]m
)
. Finally, by condition iii) given above we have for each point (1, λ) in

{1} × [−ε, ε]m that

Ŵ(1,λ) ∩ t−1
1 (a1) = ∅.

This concludes the proof of this lemma assuming the existence of the concor-
dance D.

It remains to explain how to obtain the concordance

D ∈ ψd−1(N − 1, k − 1)
(
[0, 1]× [−ε′, ε′]m × R

)
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from the concordance D′. Let then c : [0, 1] × [−ε′, ε′]m → [0, 1] × [−ε′, ε′]m
be a piecewise linear map which fixes all points (t, λ) with λ ∈ [−ε, ε]m, which
maps (t, λ) to (0, λ) if λ is in [−ε′, ε′]m− (−ε̃, ε̃)m and which commutes with the
projection onto [−ε′, ε′]m; and let d : [0, 1]×R→ [0, 1]×R be a piecewise linear
map which fixes all points (t, s) if s ∈ [a1−δ, a1 +δ], which maps (t, s) to (0, s) if
s ∈ R− (a1− δ̃, a1 + δ̃) and which commutes with the projection onto R. Using
d and c we define two pl maps f, g : [0, 1]× [−ε′, ε′]m×R→ [0, 1]× [−ε′, ε′]m×R
as follows

f(t, λ, s) =
(
d1(t, s), λ, s

)
, g(t, λ, s) =

(
c1(t, λ), λ, s

)
.

Finally, applying proposition 2.52 to pull back the concordance D′ along the
map f ◦g we produce a new element D in ψd−1(N−1, k−1)

(
[0, 1]×[−ε′, ε′]m×R

)
which satisfies the desired properties.

Proof of lemma 7.14. By an argument completely analogous to the one used
to prove lemma 6.9 we can show that there is an element

W̃ ∈ ψ∅d(N, k)
(
[0, 1]×M

)
and a finite collection of pairs of pl m-balls (V1, U1), . . . , (Vq, Uq) in intM which
satisfy the following conditions:

i) W̃ agrees with [0, 1]×W in t−1
1

(
(−∞, β)

)
.

ii) Uj ⊆ intVj for j = 1, . . . , q and the collection {intUj}qj=1 is a finite open
cover for P .

iii) W̃ is a concordance between W and an element W ′ of ψ∅d(N, k)(M) such
that for each j = 1, . . . , q the projection

xk : W ′Vj → Rk

has a fiberwise regular value aj = (aj1, . . . , a
j
k) (see definition 5.2) with

aj1 > β.

Let π : W ′ → M be the projection onto M . From iii) we have that there is a
δ > 0 such that for each j = 1, . . . , q the restriction of (π, xk) on

(π, xk)−1
(
Vj ×B(aj , 2δ)

)
is a piecewise linear submersion of codimension d−k. After possibly perturbing
the aj ’s and shrinking δ > 0 we can assume that all the intervals [aj1−2δ, aj1+2δ]
are mutually disjoint and that aj − 2δ > β for j = 1, . . . , q.

Finally, since all the intervals [aj1 − 2δ, aj1 + 2δ] are mutually disjoint we can
apply lemma 7.19 to define inductively an element

Ŵ ∈ ψ∅d(N, k)
(
[0, 1]×M

)
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which agrees with [0, 1] ×W ′ in t−1
1

(
(−∞, β)

)
and which is a concordance be-

tween W ′ and an element W ′′ in ψ∅d(N, k)
(
M
)

such that for j = 0, . . . , q we
have that

W ′′λ ∩
(
{aj1} × RN−1

)
= ∅

for every λ ∈ Uj . The concordance obtained by concatenating W̃ and Ŵ and
the open cover {intUj}pj=1 satisfy then the claims of lemma 7.14.

7.5 Proof of the main theorem

As it was indicated in 7.2, the next step of our strategy to show that the scanning
map S : |ψd(N, k)•| → Ω|ψd(N, k + 1)•| is a weak homotopy equivalence is to
show that S is homotopic to the composite map

|ψd(N, k)•|
h1→ Ω ‖Nψd(N, k)•,•‖ → Ω|ψ0

d(N, k+ 1)•| → Ω|ψ∅d(N, k+ 1)•|, (48)

where h1 is the map introduced in (43) and the other two maps are induced
respectively by the forgetful map f : ‖Nψd(N, k)•,•‖ → |ψ0

d(N, k+ 1)•| and the
inclusion i : |ψ0

d(N, k+ 1)•| ↪→ |ψ∅d(N, k+ 1)•|. In order to do this, we are going
to show instead that the adjoint T : [−1, 1] × |ψd(N, k)•| → |ψd(N, k + 1)•| of
the scanning map is homotopy equivalent to the adjoint of the map (48). The
adjoint

g : [−1, 1]× |ψd(N, k)•| → |ψ∅d(N, k + 1)•|

of the map (48) is equal to the composite map

[−1, 1]× |ψd(N, k)•|
g1→ ‖Nψd(N, k)•,•‖

f→ |ψ0
d(N, k + 1)•|

i→ |ψ∅d(N, k + 1)•|,

where g1 is the adjoint of h1 (see equation (42)). Using the definition of the
adjoint g1 of h1 given in (42) it is easy to verify that the map g : [−1, 1] ×
|ψd(N, k)•| → |ψ∅d(N, k + 1)•| is defined by the formula

g(t, x) = T
(
φ(t), x

)
where φ : [−1, 1]→ [−1, 1] is the continuous function defined by

φ(t) =


−1 if t ∈ [−1, 0],

4t− 1 if t ∈ [0, 1/4],
0 if t ∈ [1/4, 3/4],

4t− 3 if t ∈ [3/4, 1].

If F : [0, 1]× [−1, 1]→ [−1, 1] is any homotopy between φ and Id[−1,1] which
is fixed on −1 and 1 then the map

H : [0, 1]× [−1, 1]× |ψd(N, k)•| → |ψd(N, k + 1)•|

defined by (s, t, x) 7→ T
(
F (s, t), x

)
is a homotopy between g and the adjoint

T of the scanning map which is fixed on {−1, 1} × |ψd(N, k)•|. Consequently,
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the scanning map S is homotopic to the composite map in (48), and since each
map in (48) is a weak homotopy equivalence we have that the scanning map is
a weak homotopy equivalence, thus concluding the proof of theorem 7.2.

Using theorem 7.2 we can prove by induction the following result.

Theorem 7.20. If N − d ≥ 3 then there is a weak homotopy equivalence

|ψd(N, 1)•|
'−→ ΩN−1|Ψd(RN )•|.

Finally, combining theorems 5.19 and 7.20 we obtain the main theorem of
this thesis.

Theorem 7.21. If N − d ≥ 3 then there is a weak homotopy equivalence

BPLCd(RN ) ' ΩN−1|Ψd(RN )•|.
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