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Summary
This thesis consists of an introductory chapter and five papers. The papers
are each concerning questions within the topics life insurance, optimal stop-
ping or the interplay between these. Each paper is presented in a chapter,
and thus each of the chapters are self-contained and may be read alone. Be-
low, I give a brief overview of the results of each of the chapters. A more
thorough overview is presented in Chapter 1.

In Chapter 2 we consider a general geometric Lévy process and solve
the non-linear optimal stopping problem of maximizing the variance at the
stopping time. For solving this problem we solve an auxiliary quadratic op-
timal stopping problem. We show that the solution to maximizing variance
depends on whether randomized stopping times are included in the set of
stopping times we maximize over. For some problems the inclusion of ran-
domized stopping times increase the value function and for some it does
not. Even when the value function is not affected by inclusion of randomized
stopping times, a solution may be easier to identify when they are.

In Chapter 3 we consider the non-linear optimal stopping problem of
maximizing the mean minus a positive constant times the variance at the
stopping time. First we solve the problem for spectrally negative geometric
Lévy process. We derive both static and dynamic solutions which are excess
boundary stopping times. Afterwards we solve the problem for a Cramér-
Lundberg process with exponential upwards jumps. We derive a statically
optimal stopping time which is a hitting time of an interval, and we derive
a dynamically optimal stopping time which is an excess boundary stopping
time. Finally, we derive optimal stopping times to the optimal stopping
problem of minimizing the variance conditioned on a lower bound on the
mean.

In Chapter 4 we consider the American put in a Black-Scholes market. We
suggest a model for irrational exercises. We model the exercise by a stochas-
tic intensity which depends on the profitability. Our model contains a single
parameter which express how strongly the exercise intensity is affected by
the profitability. This parameter we denote the rationality parameter. We
give sufficient conditions and a probabilistic proof that when the rationality
parameter increases to infinity the corresponding prices converge to to clas-
sical arbitrage-free price. We conclude the chapter with partial differential
equations for valuation under irrational exercise, and we discuss relations to
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the penalty method.
In Chapter 5 is related to Chapter 4, but in Chapter 5 we consider mod-

elling the time of surrender in a classical life insurance model. We suggest a
model where the probability of surrender at any time depends on the prof-
itability. We measure the profitability as the difference between the value
of the insurance contract and the surrender value. The value of the insur-
ance contract may be determined as a solution to a differential equation
much similar to the Thiele differential equation. As in Chapter 4 the model
contains a rationality parameter which express how strongly the surrender
probability is affected by the profitability. Again we derive a probabilistic
proof of the intuitive convergence result that when the rationality parameter
increases to infinity, the value of the life-insurance contract converge to the
value corresponding to if the policyholder surrendered at the optimal time.

In Chapter 6 we add stochastic retirement to a classical finite state life
insurance model. We do this by splitting the active state in a premium pay-
ing state and a retired state. We derive formulas for scaling the benefits
reasonably according to the time of retirement. Then we show how to cal-
culate the reserves and expected cash. Afterwards we describe a way to add
to the model that policyholders might change their benefit structure upon
retirement. We determine formulas for calculating reserves and cash flows in
this model too. Finally, we conclude with a numerical investigation of the
implication stochastic retirement has on reserves and cash flows.



Sammenfatning på dansk
Denne afhandling består af et introducerende kapitel og fem artikler. Ar-
tiklerne beskæftiger sig med spørgsmål indenfor emnerne livsforsikring, op-
timale stoppetider og samspillet mellem disse. Hver artikel er præsenteret i
et kapitel, og kapitlerne kan derfor alle læses enkeltstående. Nedenfor giver
jeg et meget overordnet overblik over resultaterne fra hvert kapitel. Et mere
grundigt overblik præsenteres i Kapitel 1.

I Kapitel 2 betragter vi en generel geometrisk Lévy proces og løser det
ikke-lineære optimale stoppetidsproblem om at maksimere variansen på stop-
petidspunktet. For at løse dette problem løser vi først et hjælpeproblem.
Hjælpeproblemet er et klassisk, kvadratisk optimal stoppetidsproblem. Vi
finder at løsningen til problemet med at maksimere varians afhænger af hvor-
vidt randomiserede stoppetiden er inkluderet i den mængde af stoppetider vi
maksimerer over. For nogle processer vil inklusionen af randomiserede stop-
petider hæve værdifunktionen og for andre processer vil det ikke. Selv når
værdifunktionen ikke påvirkes af at de randomiserede stoppetider er inklu-
deret, er problemet nogle gange lettere at løse når de er.

I Kapitel 3 betragter vi det ikke-lineære optimale stoppetidsproblem som
går ud på at maksimere middelværdien minus en konstant gange variansen
på stoppetidspunktet. Først løser vi problemet for spektralt negative geo-
metriske Lévy processer. Vi udleder både statiske og dynamiske løsninger
som er givet ved første gang processen krydser over en grænse. Derefter løser
vi problemet for en Cramér-Lundberg proces med exponentialfordelte spring
opad. Vi udleder en statisk optimal stoppetid givet ved første gang processen
rammer et interval, og vi udleder en dynamisk optimal stoppetid givet ved
første gang processen kommer over en grænse. Til sidst udleder vi optimale
stoppetider for det optimale stoppetidsproblem som går ud på at minimere
variansen givet en nedre grænse på middelværdien.

I Kapitel 4 betragter vi en amerikansk put option i et Black-Scholes mar-
ked. Vi foreslår en model for irrationel indløsning af optionen. Vi modellerer
indløsningstidspunktet ved hjælp af en stokastisk intensitet som afhænger af
hvor profitabelt det er at indløse. Vores model indeholder en enkelt parameter
som udtrykker hvor stærkt indløsningsintensiteten påvirkes af hvor profita-
belt det er at indløse. Denne parameter kalder vi rationalitetsparameteren.
Vi giver tilstrækkelige betingelser og et sandsynlighedsteoretisk bevis for at
når rationalitetsparameteren konvergerer mod uendelig, så vil de tilsvarende
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priser konvergere mod den arbitrage-fri pris. Vi afslutter kapitlet med par-
tielle differentialligninger for prisen i en model med irrationel indløsning, og
vi diskuterer forbindelsen til penalty method.

Kapitel 5 er relateret til Kapitel 4, men i Kapitel 5 betragter vi model-
lering af genkøbstidspunktet i en klassisk livsforsikringsmodel. Vi foreslår en
model hvor sandsynligheden for at genkøbe på et vilkårligt tidspunkt afhæn-
ger af hvor profitabelt det er. Vi måler hvor profitabelt det er som forskellen
mellem værdien af forsikringskontrakten og genkøbsværdien. Værdien af for-
sikringskontrakten kan nu bestemmes som løsningen til en differentialligning
som minder meget om Thieles differentialligning. Som I Kapitel 4 indeholder
vores model en rationalitetsparameter som udtrykker hvor stærkt genkøbs-
sandsynligheden påvirkes af hvor profitabelt det er at genkøbe. Igen giver
vi et sandsynlighedsteoretisk bevis for det intuitive resultat at når rationali-
tetsparameteren vokser mod uendelig, så vil værdien af forsikringskontrakten
konvergere værdien svarende til at forsikringstageren genkøbte på det opti-
male tidspunkt.

I Kapitel 6 tilføjer vi et stokastisk pensioneringstidspunkt til den klassiske
endelig tilstands livsforsikrings model. Vi gør dette ved at splitte aktiv til-
standen i en præmiebetalende tilstand og en pensioneret tilstand. Vi udleder
formler til at skalere ydelser rimeligt efter pensioneringstidspunktet. Deref-
ter viser vi hvordan reserver og forventede betalingsstrømme kan beregnes.
Derefter beskriver vi hvordan vi i modellen kan tilføje at forsikringstagerne
kan ændre deres ydelsesstruktur ved pensionering. Vi bestemmer også form-
ler til at beregne reserver og forventede betalingsstrømme i denne model. Til
sidst slutter vi af med numerisk at undersøge påvirkningen på reserver og
forventede betalingsstrømme fra at tilføje stokastisk pensionering.
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1. Introduction
This chapter gives an overview of the contributions of the thesis and it ex-
plains to what extent the forthcoming chapters are connected. The introduc-
tion here contains no references. References are found in the introductions
of the individual chapters.

The topics addressed in this thesis are centred around stopping times.
Stopping times is a key term within applications of probability theory in
finance and insurance. When an agent faces the choice of taking a spe-
cific action at a time of his own choice, stopping times may formalize which
strategies the agent can possibly follow.

Though stopping times may be seen as a unifying element in the thesis,
the individual papers cover very different problems. There is a long way from
the optimal stopping problems addressed in Chapter 2 and Chapter 3 to the
modelling of retirement in Chapter 6. However, Chapter 4 and Chapter
5 present some of the ways optimal stopping problems may be reasonably
included in life-insurance and financial modelling.

When we use a stopping time to describe the time an agent takes an
action, the stopping time may be based on different types of strategies. In
Chapter 2 and Chapter 3 we consider problems where we search for stopping
times which are optimal relative to some objective. The other extreme we
consider is Chapter 6, where the agent is a life-insurance policyholder with a
choice of when to retire. Here we model the stopping time as unaffected by
what is optimal. We model it by an intensity and a retirement probability
which only depends on time and the state of the policyholder. A strategy in
between these two extremes is used in Chapter 4 and Chapter 5. Here we
consider an agent which is respectively a life-insurance policyholder with a
choice to surrender his contract, and a holder of an American put with the
choice to exercise his option. In both cases we model the stopping time of
the agent with a stochastic intensity which depends on how profitable the
action is at the given time.
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2 CHAPTER 1. INTRODUCTION

1.1 Non-Linear Optimal Stopping for Geomet-
ric Lévy Processes

In classical optimal stopping problems we consider a stochastic process, X,
adapted to a filtration, F . We let T denote the class of stopping times with
respect to F and then we search for a stopping time τ ∗ ∈ T such that

sup
τ∈T

E[G(Xτ )] = E[G(Xτ∗)], (1.1)

where G is some measurable function which we denote the gain function.
Classical optimal stopping problems have been thoroughly studied. Though
solving specific problems still require work, we have fairly general results
stating that if there is a solution, then typically there is a solution given as
a hitting time.

In Chapter 2 and Chapter 3 we have studied two optimal stopping prob-
lems where the objective we wish to maximize depends on the variance of the
process. These problems fall outside the scope of classical optimal stopping
as they may not be represented in the form of (1.1), and thus we cannot
directly rely on classical results. Instead the problems may be represented as

sup
τ∈T

H(E[Xτ ],E[X2
τ ]) = H(E[Xτ∗ ],E[X2

τ∗ ]), (1.2)

where H : R × [0,∞) → R is a second order polynomial. Specifically, H is
non-linear, and for this reason the problems we study are denoted non-linear
optimal stopping problems. If H was linear, the problem (1.2) would fall
under the scope of problem (1.1).

The two non-linear optimal stopping problems studied in this thesis are
the following. In Chapter 2 we study the problem

sup
τ∈T

V[Xτ ], (1.3)

and in Chapter 3 we study the problem

sup
τ∈T

(E[Xτ ]− cV[Xτ ]) , (1.4)

where c > 0 and V denotes variance. Both these problems have been solved
when X is a geometric Brownian motion and T is all stopping times with
respect to the completion of the filtration generated from X. In both cases
it was shown that whenever the problems are well posed and they have a
solution, there is an optimal stopping time which is an excess boundary
time, that is, a stopping time on the form τ+

a = inf{t ≥ 0 : Xt ≥ a}.
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In this thesis, we have searched to expand the results to the case where X
is a geometric Lévy process. For both problems our approach resembles the
approach taken for geometric Brownian motions. It relies in both cases on
identifying families of embedded classical optimal stopping problems which
we first solve. We then search for a solution to the non-linear optimal stop-
ping problem among the solutions to the family of embedded problems. With
this approach it is not surprising if we find hitting time solutions as we often
do for classical optimal stopping problems.

However, for some geometric Lévy processes the jumps of the process
immediately complicates the above mentioned technique for various reasons.
For some processes the problems (1.3) and (1.4) become easier to solve if we
expand the class of stopping times to a class T̂ which includes what is de-
noted randomized stopping times. We define randomized stopping times by
augmenting the filtration with the information of a random variable which is
uniformly distributed on [0, 1] and which is independent ofX. From an appli-
cation viewpoint it is probably not a problem to expand the class of stopping
times to include randomized stopping times. The randomized stopping times
are typically not considered in classical optimal stopping problems because
they do not change the value function. However, as we show in Chapter 2, the
randomized stopping times may have a significant impact on the non-linear
optimal stopping problems.

Below we present in more details results and the structure of the proofs
for problem (1.3) and (1.4).

In Chapter 2 we consider problem (1.3) of maximizing the variance. We
denote this problem the variance problem. In an applied context, variance
is a possible measure for risk, and when we maximize variance we find an
upper boundary for this risk. However, the variance problem is also inter-
esting because there are few papers on non-linear optimal stopping. Solving
this problem is a step towards a better understanding of non-linear optimal
stopping problems.

Let ψ(β) = logE[Xβ] be the Laplace exponent of the underlying Lévy
process. For ψ(2) > 0 the possible variance is either zero or unbounded, and
the problem is primarily interesting for processes with ψ(2) < 0, whereas
ψ(2) = 0 is a boundary case treated separately.

The variance problem is solved by noticing that if there exists some con-
stant c > 0 and some stopping time τ ∗ ∈ T such that

sup
τ∈T

E[(Xτ − c)2] = E[(Xτ∗ − c)2] (1.5)

and
E[Xτ∗ ] = c (1.6)
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then τ ∗ solves the variance problem. We first solve the classical optimal
stopping problem of (1.5), and derive that for any c there exists an optimal
stopping boundary y such that both τ+

y and the stopping time τ++
y = inf{t ≥

0 : Xt > y} are optimal for (1.5). However, whereas for any geometric
Brownian motion with ψ(2) < 0 there is a combination of c and τ ∗ which
fulfill both (1.5) and (1.6), this is not the case for geometric Lévy processes.

We show that 0 being regular for (0,∞) ensures that the variance problem
has an excess boundary solution which fulfills both (1.5) and (1.6). It is
sometimes possible to use the approach above even when 0 is irregular for
(0,∞). We deduce two equations for when we may use the above method
for finding an excess boundary solution.

When there is no excess boundary time fulfilling both (1.5) and (1.6), the
variance problem becomes significantly easier by maximizing over the class
of randomized stopping times instead. This way we are able to find more
solutions to the problem (1.5) and we derive that there will be one solving
both (1.5) and (1.6).

We return to the original variance problem where randomization is not
allowed. When there is no combination of τ ∗ and c which fulfill both (1.5)
and (1.6), then the situation depends on the jump structure and the drift of
the Lévy process. For compound Poisson processes the randomized stopping
times can be mimicked by a stopping time from T . The processes which are
not compound Poisson processes have no stopping time in T giving as high a
variance as the one obtained by the randomized solution. If the jump part is
not a Poisson process, we may find a sequence of stopping times from T for
which the variance converges to the variance of the randomized solution. But
if the jump part is a compound Poisson process then there is a gap between
the value function of the variance problem with and without randomized
stopping times.

In Chapter 3 we consider the problem (1.4) of maximizing expectation
minus a constant times the variance. We denote this problem the mean-
variance problem. The mean-variance problem has the interpretation as to
maximize some objective while minimizing risk.

We approach the mean-variance problem by noticing that

sup
τ :Ex[Xτ ]

(Ex[Xτ ]− cVx[Xτ ]) = sup
M≥x

(
M + cM2 − c inf

τ :Ex[Xτ ]=M
Ex[X2

τ ]

)
.

Thus, we may solve the mean-variance problem if we solve all the inner con-
ditional problems. The inner conditional problem we solve by the Lagrange
approach searching for a λ such that there exists a τ ∗, which is optimal for

sup
τ

Ex[λXτ −X2
τ ] (1.7)
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and fulfills Ex[Xτ∗ ] = M . This way we for spectrally negative Lévy processes
derive excess boundary times which are optimal for the mean-variance prob-
lem, and we derive an implicit expression for the bound. From the derivation
of the optimal stopping time to the mean-variance problem, we deduce the
solution to the optimal stopping problem given by

inf
τ :E[Xτ ]≥M

V[Xτ ].

This problem we denote the conditional variance problem and again we find
an optimal stopping time which is an excess boundary time.

For processes with upwards jumps the mean-variance problem becomes
more involved. This is mainly because the classical optimal stopping prolems
(1.7) becomes difficult to solve. For the spectrally negative Lévy processes
there is no difference between hitting times of an interval above the starting
value of the process and an excess boundary times of the intervals lower
bound. However, these two stopping times are not the same if the process
may jump across the interval. From a first glance at the classical optimal
stopping problem (1.7) we guess that this problem is solved by a hitting time
for an interval, and these are in general difficult to work with for geometric
Lévy processes.

We study a Cramér-Lundberg process with upwards exponentially dis-
tributed jumps. For this process we have explicit formulas for the distribu-
tion of the process value upon hitting times of intervals. By first expanding
the class of stopping times we maximize over to the randomized stopping
times, we find an optimal stopping time for each of the inner conditional
problems. From these, we find a stopping time from T , which is optimal
for the mean-variance problem. As anticipated the solution we find for the
Cramér-Lundberg process is a hitting time of an interval. This may be
problem for applicational purposes of the mean-variance problem, since the
punishment of risk was only supposed to protect against large downside risk,
but apparently for these processes also prevent large values.

The randomized stopping times do not have an impact on the solution
of the mean-variance problem for the Cramér-Lundberg process. However,
for the conditional variance problem for the Cramér-Lundberg process, then
for some starting values they do. This is not a problem for applicational
purposes, but it is a remarkable feature.

One of the draw-downs to the mean-variance problem is that it is not
time-consistent, and thus the stopping regions of the optimal stopping times
depend on the starting value. As has been suggested in the study of geometric
Brownian motions we may create time consistency by instead considering
the corresponding dynamic problem. For the mean-variance problem this
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corresponds to searching for a stopping time τ ∗ such that there is no other
stopping time, σ with

Px(EXτ∗ [Xσ]− cVXτ∗ [Xσ] > Xτ∗) > 0,

where the subscript refers to the starting value of the process. For the dy-
namic problem we find that the mean-variance problem for the studied pro-
cesses have excess boundary times as optimal stopping times.

1.2 Behaviour Modelled by Stopping Times
This thesis has been written as part of the Actulus project. The Actulus
project focusses on solving Solvency II issues for pension funds. One of the
challenges pension funds face regarding the forthcoming Solvency II regula-
tions is the enhanced requirement for modelling of policyholder behaviour.
In paragraph 79 of the Solvency II directive it is stated that ". . .Any as-
sumptions made by insurance and reinsurance undertakings with respect to
the likelihood that policy holders will exercise contractual options, including
lapses and surrenders, shall be realistic and based on current and credible in-
formation. . . ". This requirement has motivated the studies in the last three
chapters of the thesis. These chapters all concern modelling the exercise of
contractual options more realistically by use of stopping times. One chapter
concerns a problem from finance and the two others are problems directly
relevant in the process of meeting the Solvency II requirements for pension
funds.

Thus, the last three Chapters of this thesis concern contracts where an
agent has an option to take an action at a time of his own choice. We model
the agents behaviour by a stopping time which describes if and when he
takes the action, and we investigate the impact this has on market valuation
and cash flows of the contracts. The content of Chapter 4 and Chapter 5
is described in Section 1.2.1, and the content of Chapter 6 is described in
Section 1.2.2.

1.2.1 Modelling Surrender and Exercise of an American
Put by Rational Behaviour

In Chapter 4 the agent is a holder of an American put and the choice he faces
is the right to exercise the put. In Chapter 5 the agent is a life insurance
policyholder and the choice he faces is the right to surrender his insurance
contract and in return receive a surrender sum. The two options immediately
seem to have a lot in common. However, in traditional financial modelling
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the holder of the American put is assumed to behave as if he is solving an
optimal stopping problem wanting to maximize the expected pay-off of the
put under some pricing measure. And in traditional actuarial modelling the
policyholder with the surrender option is assumed to behave unaffected by
what is optimal. It is probably true that the exercise of the put has a stronger
dependence on what is optimal, than the exercise of the surrender option has.
Nevertheless, in both cases a more realistic modelling of the agents behaviour
is probably somewhere in between these two extremes.

In between the extremes exist all kinds of models where the time of inter-
vention is modelled by a stochastic intensity, but where the intensity not only
depends on time, but also some stochastic factors. Various external factors
appear obvious. However, rather than letting the intensity depend on exter-
nal factors, one could let the intensity depend on internal factors relevant to
the specific contract. We propose in Chapter 4 and Chapter 5 models where
the intensity depends on how profitable it is to take the action. In both
situations we measure this profitability as the difference between the pay-off
upon intervention and the value of the contract if no immediate intervention
is done. The value when no intervention is done should however take into
account the possibility of future intervention.

In both Chapter 4 and Chapter 5 we introduce an intervention function,
which gives the intensity of intervention as a function of the profitability.
We find differential equations which if only they have a unique solution,
give the value function of the contract. The differential equations resemble
respectively the familiar Black-Scholes PDE and the Thiele differential equa-
tion with the only difference that they have a non-linear term representing
intervention. The definition of the value of the contract and the intensity
of intervention is circular, but we show how existence and uniqueness of a
solution to the differential equation ensures that this is not a problem.

In both cases we think that a reasonable choice for the intensity functions
f is a function which is positive and increasing. Instead of just considering
one intensity function, we may consider a parametrized family of intensity
functions. We may choose the parametrized family such that the parameter
expresses how much the agent is affected by what is optimal. Two examples
of such families are:

fψ,θ(x) = ψeθx, (1.8)
fθ(x) = θ1(x≥0), (1.9)

where ψ, θ are parameters. For (1.8) ψ controls the overall tendency to
intervene, whereas θ controls how profitability creates deviations from the
overall tendency. For (1.9) θ controls both. In both cases we may think of θ
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as a rationality parameter, and each parameter value gives a contract value
which we may denote Vθ

In both Chapter 4 and Chapter 5 we give a probabilistic proof and clarify
sufficient conditions for a convergence result that may seem intuitively clear:
If the tendency to intervene tends to zero when the gain from intervention
is negative, and if it tends to infinity whenever the gain from intervention is
positive, we reach in the limit at the value based on optimal behaviour.

What is meant by this mathematically is that if we let the rationality
parameter increase to infinity and the corresponding intensity functions fulfill
some convergence requirements as given in Chapter 4 and Chapter 5, then
Vθ → VA pointwise, where VA denotes the contract value if agents behave
optimally. This further motivates the name of the rationality parameter.

The convergence result gives a way to approximate the worst-case re-
serves. Particularly for the intensity function (1.9) this approximation method
is known in finance as the penalty method. Our contribution in Chapter 4 is
twofold. First we show how the values obtained for a fixed parameter value
may be thought of as the price in a model where the agent is affected by
what is profitable without behaving completely optimal though. Secondly
we give a probabilistic proof that the convergence holds, by breaking down
the sub-optimal behaviour in too early versus too late intervention and var-
ious degrees of severity of the time of intervention. For the surrender option
the penalty method has, to the knowledge of the authors not been used be-
fore, and thus the contributions of Chapter 5 is threefold as it is both the
suggested modelling of rational behaviour, the approximation method of the
worst case reserve, and the probabilistic proof.

The fact that the method works for the American put gives us reason
to believe that the method might work for the surrender option in a model
with stochastic interest rate as well. However, one should be aware that
the extra stochasticity in the model of the American put has lead us to
extra restrictions on the parametrized family of intensity functions to ensure
convergence. We would most likely need these enhanced restrictions for the
surrender model as well if we want to add a stochastic interest rate.

In the model studied in Chapter 4 and Chapter 5 the agents are affected
by what would be optimal behaviour with regards to expected value of dis-
counted future payments. In line with the reasoning done by Markowitz,
which motivated the study of Chapter 3, we may consider if it is reasonable
to have the agent affected by the risk of the future payments. Within some
financial applications such modelling might be reasonable. However, for life
insurance policyholders a reasonable valuation of the policyholders risk is
not straight forward. This is primarily because the intend of the life insur-
ance contract is to hedge a stochastic, personal need for money. Thus, the
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stochasticity of future payment is not in itself undesirable.

1.2.2 Stochastic Retirement

In Chapter 6 the agent is a life insurance policyholder and the choices he faces
are when to retire and what benefit structure he wants. Traditionally the
time of retirement has been modelled as a deterministic time point, and the
benefit structure is assumed to be settled upon the settlement of the contract.
However, in reality policyholders are often allowed to change both the time
of retirement and convert between different structures of the benefits. In
Chapter 6 we address some of the challenges from modelling the time of
retirement and the structure of the benefit as stochastic. Combined we call
it stochastic retirement.

In classical models the state of the policyholder is described by a finite
state Markov chain. Usually the state of premium paying and retired are the
same. We introduce a stochastic time of retirement by letting the state of
premium paying and retired be two different states in the Markov model. We
assume that all transition probabilities are deterministic and known, but un-
like the other transitions, we let retirement happen with positive probability
at predefined time points.

In Chapter 6 we consider two setups. One is a simple life-death model
with a premium, a pension sum, and a life annuity. The other setup is
an expanded model where the policyholder in excess may become disabled,
reactivate, and he may convert to free policy. His product is also expanded
as it includes a disability annuity.

In a model with stochastic retirement it is reasonable to have the size
of the benefits depend on the time of retirement. As is common for mod-
elling of the policyholder behaviours surrender and conversion to free policy
we choose the scaling of the benefits such that the risk sum upon retire-
ment is zero under the technical basis. We formalize benefit scaling by first
defining reference benefits corresponding to the benefits of a model with no
policyholder options. We then define time dependent scaling factors to be
multiplied on the reference benefits upon each policyholder behaviour. In
each case we show that the factors may be calculated from traditional Thiele
differential equations based on the reference benefits. In the simple model
the scalings are given uniquely when we use the condition that the contract
is divided into partial product and within each the benefits are scaled pro-
portionally in a way such that the the principle of zero risk sum is fulfilled.
However, in the complex model we need an extra specification which may
be thought of as the expected retirement date. This specification serves to
fix the relation between the downscaling of disability coverage relative to
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downscaling of retirement benefits upon conversion to free policy.
With the benefit scaling determined it is no problem to derive a Thiele dif-

ferential equation for the market values. Calculation of expected discounted
cash flows are more involved. We find that the expected discounted cash
flow may be calculated in a tractable way through transition probabilities
and some modified transition probabilities. The method we use has previ-
ously been used for a model containing only free policy scaling, and we show
how the method may be expanded to a situation where we have multiple
types of behaviour induced scalings.

The final topic covered in Chapter 6 is benefit conversion. We model
this by assuming that upon retirement the policy holder may choose to con-
vert a proportion of the reserve to each other benefit type. And we assume
he is allowed to buy benefits on the technical basis. We define the conver-
sion proportion as a stochastic process which we assume to be independent
on everything else in the model. The model does not immediately fit in
the traditional Markov model we have worked with since payments now are
not given directly from the state process (they are not measurable with re-
spect to the filtration generated from the state-process). We construct a new
model which has payments given directly from the state-process and which is
equivalent to our benefit conversion model in the sense that it produces the
same market values and the same expected cash flows. However it should
be stressed that the equivalent model only produces equivalent expectations
and may not be used for risk analysis, which require other distributional
properties of the cash flow.

We conclude Chapter 6 with numerical examples which illustrate a sig-
nificant impact on both expected discounted cash flows and market values.
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Abstract

The main result of this paper is the solution to the optimal stopping prob-
lem of maximizing the variance of a geometric Lévy process. We call this
problem the variance problem. We show that, for some geometric Lévy
processes, we achieve higher variances by allowing randomized stopping.
Furthermore, for some geometric Lévy processes, the problem has a solu-
tion only if randomized stopping is allowed. When randomized stopping is
allowed, we give a solution to the variance problem. We identify the Lévy
processes for which the allowance of randomized stopping times increases
the maximum variance. When it does, we also solve the variance problem
without randomized stopping.

Keywords: Variance criterion; variance optimal stopping; geometric Lévy
processes; quadratic optimal stopping.

2.1 Introduction
In this paper we solve the optimal stopping problem of maximizing the vari-
ance of a geometric Lévy process. We call this problem the variance problem.
It is distinguished from classical optimal stopping problems in that we max-
imize the variance and not the expectation. The nonlinear structure of the
variance moves the problem outside the scope of classical optimal stopping
problems, and, thus, we cannot directly rely on results from, e.g. [7] and [9].

As in Markowitz mean-variance analysis [3] we identify the variance of a
stock price with a risk. In the context of risk management, where an investor
wishes to sell an asset, the variance problem provides the worst-case scenario,
that is, the value function is an upper bound for the risk (variance) for any
strategy and the optimal strategy is the strategy at highest risk.

The results in this paper extend the results of [6], in which the variance
problem is solved for various diffusions. However, we face different techni-
cal issues in working with geometric Lévy processes. Whereas the optimal
stopping times for the diffusions in [6] are hitting times, this is not the case

11
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for all geometric Lévy processes. For some geometric Lévy processes, the
solution is of another kind. Furthermore, for some of these processes, we
achieve higher variances by allowing randomized stopping. For some pro-
cesses the variance problem has a solution only if randomized stopping is
allowed. This is in contrast to classical optimal stopping problems and vari-
ance problems for diffusions where randomized stopping times do not change
the value function.

Mathematically, the problem addressed in this paper is the following. Let
X be a Lévy process, let F be the augmented natural filtration satisfying
the usual conditions, and let T denote the set of stopping times with respect
to F (all terms defined as in [2]). The main problem we consider is to find a
stopping time τ ∗ ∈ T such that

sup
τ∈T

V[eXτ ] = V[eXτ∗ ]. (2.1)

We call this problem the variance problem.
Initially, we identify the Lévy processes for which the variance problem is

trivial to solve. If X is a deterministic process then T contains only almost
surely (a.s.) deterministic times and the variance for any stopping time is 0.
Let ψ(β) = log(E[eβX1 ]) denote the Laplace exponent. If ψ(2) > 0 and the
Lévy process is nondeterministic, then ψ(2) > 2ψ(1) by Jensen’s inequality.
Therefore, V[eXt ] = E[e2X1 ]t−E[eX1 ]2t = eψ(2)t− e2ψ(1)t →∞ for t→∞ and
the variance problem is unbounded.

In the following we consider Lévy processes with ψ(2) < 0. Lévy processes
with ψ(2) = 0 are considered separately (see Theorem 2.3.1).

In [6], the variance problem was solved for various diffusions. This was
achieved using a method of embedding the problem into the following classical
optimal stopping problem, which we call the quadratic problem

sup
τ∈T

E[(eXτ − c)2] = E[(eXτ∗ − c)2], c > 0. (2.2)

The solution to the variance problem of this paper is also based on this
embedding method, and the solution to the quadratic problem is presented
in Theorem 2.2.1 below. As shown in [6], it holds that if a solution τ ∗ to
(2.2) solves

E[eXτ∗ ] = c (2.3)

then it is also an optimal stopping time for variance problem (2.1).
The processes studied in [6] all have a combination of τ ∗ ∈ T and c ∈ R

that solves both (2.2) and (2.3). But some Lévy processes do not. Let X̄∞ =
supt≥0Xt. The problem of finding a combination of τ ∗ and c that solves both
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(2.2) and (2.3) arises from possible discontinuities in the distribution of X̄∞.
Discontinuities exist exactly when 0 is irregular for (0,∞) (see Lemma 2.2.2),
and continuity of the distribution of X̄∞ ensures that the variance problem
has an excess boundary time solution. It is sometimes possible to use the
embedding method even when the distribution of X̄∞ has discontinuities. We
derive two equations that each give sufficient conditions that the embedding
method can be used to find an excess boundary time solution (see Theorem
2.3.1).

When there is no excess boundary time that solves both (2.2) and (2.3),
we solve the variance problem by introducing randomized stopping times.
The concept is to allow stopping decisions to depend not only on the Lévy
process, but also on a random variable independent of the Lévy process. As
argued in [9], this may be powerful when solving optimal stopping problems
with constraints, because it sometimes easily gives a wider class of solutions
to the unconstrained problem. We see in Theorem 2.4.2 that the class of
randomized optimal stopping times for the quadratic problem (2.2) is so
wide that one of them also solves (2.3). Thus, for any Lévy process, it is
possible to solve the variance problem with the embedding method if we
maximize over the randomized stopping times.

We return to the original variance problem, where randomization is not
allowed. In the case there is no combination of τ ∗ and c that solves both
(2.2) and (2.3), the situation depends on the jump structure and the drift of
the Lévy process. For compound Poisson processes, the randomized stopping
times can be mimicked because the processes stay for a positive time at 0
before the first jump. This positive time is independent of the rest of the
behaviour of the process and in Theorem 2.5.2 we show how this is used
as the independent random information needed. The process which are not
compound Poisson processes moves from 0 right away. In Theorem 2.5.3 we
show that, for these processes, it holds that if there is no excess boundary
time solution then the randomized solutions cannot be mimicked and there
is no stopping time in T giving as high a variance as that obtained by the
randomized solution. If the jump part is not a compound Poisson process
then the filtration grows sufficiently fast that we may find a sequence of
stopping times from T for which the variance converges to the variance of the
randomized solution. But if the jump part is a compound Poisson processes
then the filtration does not generate sufficient information and there is a
gap between the value function of the variance problem with and without
randomized stopping times (see Theorem 2.5.3).
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2.2 The Quadratic Optimal Stopping Problem
In this section we solve the quadratic optimal stopping problem (2.2) for
Lévy processes with ψ(2) < 0. This problem has some resemblance to the
optimal stopping problem presented in [1] and is solved by similar method.

The quadratic problem is a classical optimal stopping problem for a Lévy
process with gain function G(x) = (ex − c)2. As G is continuous, and Lévy
processes are Feller processes, then the state space can be divided into a
stopping region and a continuation region (see [7]), with an optimal stopping
time being the first time the process reaches the stopping region. To get a
first idea of the stopping region, note that, from Jensen’s inequality, a Lévy
process with ψ(2) < 0 has E[X1] < 0 and, thus, it converges to −∞ when
t goes to ∞ (see [2, Theorem 7.2]). Hence, when maximizing E[(eXτ − c)2],
it is clear that the value c2 may be obtained by never stopping the process.
Therefore, it is never optimal to stop the process if (eXt − c)2 < c2 and the
stopping region has to be above log(2c).

We use the following notation for the excess boundary times. For y ∈ R,
define

τ+
y = inf{t ≥ 0|Xt ≥ y} and τ++

y = inf{t ≥ 0|Xt > y}.
Recall that

X̄∞ = sup
t≥0

Xt.

When we solve the quadratic and the variance problems, we repeatedly
need the following fluctuation identity, which is a minor generalization of
[1, Lemma 1]. If x, y, β ∈ R and E[eβX̄∞ ] <∞, then

Ex
[
e
βX

τ+
y 1(X̄∞≥y)

]
= eβx

E[eβX̄∞1(X̄∞≥y−x)]

E[eβX̄∞ ]
, (2.4)

where the subscript on the expectation refers to the starting value of the
process. The proof follows in the same way as the proof of [1, Lemma 1].

As in [2], we say that we have continuous fit if the value function is con-
tinuous at the boundary of the stopping region, and we say that we have
smooth fit if the value function is differentiable at the boundary of the stop-
ping region.

Theorem 2.2.1. Let X be a Lévy process with ψ(2) < 0. Then τ+
yc and

τ++
yc are both optimal stopping times of the quadratic problem (2.2), where
yc = log(2cE[e2X̄∞ ]/E[eX̄∞ ]).

a) If X is spectrally negative then yc = log(2c(φ(0)−1)/(φ(0)−2)), where
φ is the right inverse of ψ.
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b) There is always continuous fit at yc, and there is smooth fit at yc exactly
if the distribution of X̄∞ is continuous at 0.

Proof. We choose τ ∗ = τ+
yc as a candidate for an optimal stopping time and

define the corresponding function v∗(x) = Ex[G(Xτ∗)]. By [5, Lemma 1],
ψ(2) < 0 implies that E[e2X̄∞ ] < ∞ and E[eX̄∞ ] < ∞, and yc and v∗(x)
are well defined. Then we use the well-known sufficient conditions (see [2,
Lemma 9.1]) that τ ∗ is an optimal stopping time if the following conditions
holds:

i) Px( there exists limt→∞G(Xt) <∞) = 1,

ii) v∗(x) ≥ G(x) for all x ∈ R,

iii) (v∗(Xt))t≥0 is a right continuous supermartingale.

We show that each of the three conditions are fulfilled.
i) Whenever ψ(2) < 0, the Lévy process converges to −∞ when t goes to

∞ and, thus, the requirement is fulfilled.
ii) It follows from (2.4) and the definition of yc that

v∗(x) = Ex[(e
X
τ+
yc − c)2]

= c2 − 2cEx[e
X
τ+
yc 1(X̄∞≥yc)] + Ex[e

2X
τ+
yc 1(X̄∞≥yc)]

= c2 − 2cex
E[eX̄∞1(X̄∞≥yc−x)]

E[eX̄∞ ]
+ e2x E[e2X̄∞1(X̄∞≥yc−x)]

E[e2X̄∞ ]
(2.5)

= (c− ex)2 + 2cex
(

1− E[eX̄∞1(X̄∞≥yc−x)]

E[eX̄∞ ]

)
− e2x

(
1− E[e2X̄∞1(X̄∞≥yc−x)]

E[e2X̄∞ ]

)
= G(x) + ex

(
eyc

E[eX̄∞1(X̄∞<yc−x)]

E[e2X̄∞ ]
− ex E[e2X̄∞1(X̄∞<yc−x)]

E[e2X̄∞ ]

)
≥ G(x) + ex

(
eyc

E[eX̄∞1(X̄∞<yc−x)]

E[e2X̄∞ ]
− ex e

yc−xE[eX̄∞1(X̄∞<yc−x)]

E[e2X̄∞ ]

)
(2.6)

= G(x).

iii) Let Y be an independent copy of X, and let X̄[t,∞) = sups∈[t,∞) Xs.
Note that X̄[t,∞) is equal in law to Xt+ Ȳ∞. Then use (2.5) and the definition
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of yc to get:

E[v∗(Xt + x)] = E[c2 − 2cex+Xt E[eȲ∞1(Ȳ∞≥yc−(x+Xt))
|X]

E[eȲ∞ ]
+ e2(x+Xt) E[e2Ȳ∞1(Ȳ∞≥yc−(x+Xt))

|X]

E[e2Ȳ∞ ]
]

= c2 − 2c
E[eX̄∞ ]

E[eȲ∞+x+Xt1(Ȳ∞+x+Xt≥yc)] + 1
E[e2X̄∞ ]

E[e2Ȳ∞+x+Xt1(Ȳ∞+x+Xt≥yc)]

= c2 − 2c
E[eX̄∞ ]

eyc
(
Ex[eX̄[t,∞)−yc1(X̄[t,∞)≥yc)]− Ex[e2(X̄[t,∞)−yc)1(X̄[t,∞)≥yc)]

)
≤ c2 − 2c

E[eX̄∞ ]
eyc
(
Ex[eX̄∞−yc1(X̄∞≥yc)]− Ex[e2(X̄∞−yc)1(X̄∞≥yc)]

)
= v∗(x).

Hence, for s ≤ t it follows that E[v∗(Xt)|Fs] = E[v∗((Xt −Xs) + Xs)|Fs] ≤
v∗(Xs). Thus, v∗(Xt) is a supermartingale. We then need to prove that
v∗(Xt) is right continuous in t. As Xt is right continuous in t, it is sufficient
to prove that x 7→ v∗(x) is continuous. From (2.5), it follows that the jump
size of v∗ at x is

P(X̄∞ = yc−x)
(
−2cex eyc−x

E[eX̄∞ ]
+ e2x e2(yc−x)

E[e2X̄∞ ]

)
= P(X̄∞=yc−x)eyc

E[e2X̄∞ ]

(
−2cE[e2X̄∞ ]

E[eX̄∞ ]
+ eyc

)
= 0.

Thus, v∗ is continuous and, hence, τ+
yc is an optimal stopping time for the

quadratic problem.
We can prove that τ++

yc is also an optimal stopping time in the same way
as for τ+

yc . The only difference is that we need the following modification of
(2.4): Whenever x, y, β ∈ R and E[eβX̄∞ ] <∞, we have

Ex
[
e
βX

τ++
y 1(X̄∞>y)

]
= eβx

E[eβX̄∞1(X̄∞>y−x)]

E[eβX̄∞ ]
. (2.7)

a) When X is spectrally negative, X̄∞ ∼ Exp(φ(0)) and it follows that
yc = log(2c(φ(0)− 1)/(φ(0)− 2)).

b) Finally, we present the statements about the continuous fit and the
smooth fit. As v∗ is continuous, we have continuous fit. It follows from
ii) that there is smooth fit at yc exactly if h(x) = eycE[eX̄∞1(X̄∞<yc−x)] −
exE[e2X̄∞1(X̄∞<yc−x)] is differentiable in yc. For ε > 0, we have h(yc + ε) −
h(yc) = 0 and

h(yc)−h(yc− ε) = eycE[eX̄∞(1− eX̄∞)1(X̄∞<ε)](e
yc− eyc−ε)(−E[eX̄∞1(X̄∞<ε)]).

Thus, 1
ε
(h(yc) − h(yc − ε)) → e−ycP(X̄∞ = 0), and, hence, we have smooth

fit at yc exactly if the distribution of X̄∞ is continuous at 0. This completes
the proof.
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Remark 2.2.1. Recall that 0 is regular for (0,∞) if τ++
0 = 0 a.s., and 0

is irregular for (0,∞) if τ++
0 > 0 a.s.. By [2, Theorem 6.5], the latter is a

subclass of Lévy processes with bounded variation, and it contains compound
Poisson processes and processes with strictly negative drift. Finally, by [8,
Lemma 49.6] we obtain τ+

y = τ++
y a.s. for y > 0, if X is not a compound

Poisson process.

Lemma 2.2.2. Let X be a Lévy process with ψ(2) < 0.

a) If 0 is regular for (0,∞) then the distribution of X̄∞ is continuous.

b) If 0 is irregular for (0,∞) then the distribution of X̄∞ has discontinuity
points that includes 0. If, additionally, X is not a compound Poisson
process then 0 is the only discontinuity point for the distribution of X̄∞.

Proof. a) Assume that 0 is regular for (0,∞). Clearly, P(X̄∞ = 0) = 0. From
Remark 2.2.1, it follows that τ+

y = τ++
y a.s. for y > 0 and, thus, for y > 0,

P(X̄∞ = y) = P(τ+
y <∞)− P(τ++

y <∞) = 0.

Recall that ψ(2) < 0 implies that X converges to −∞. Thus, X̄∞ <∞, and
it follows that the distribution of X̄∞ is continuous.

b) Assume that 0 is irregular for (0,∞). We prove the statement by
contradiction and, thus, assume that P(X̄∞ = 0) = 0. Then τ++

0 < ∞
a.s.. Let Y1 = Xτ++

0
and X(1) = X, and, for n ∈ {2, 3, . . .}, let Yn =

X
(n)

τ++
0

and X
(n)
t = X

(n−1)

τ++
0 +t

− X
(n−1)

τ++
0

. It follows from induction, the strong
Markov property, and the fact that τ++

0 < ∞ a.s. that, for all n ∈ N,
the Lévy processes X(n) are identically distributed and a.s. well defined.
Let τ++

0 (X(n)) = inf{t ≥ 0 : X
(n)
t > 0}. Then the sequences (Yn)n∈N and

(τ++
0 (X(n)))n∈N are both independent and identically distributed (i.i.d.). For

all N ∈ N,

X∑N
n=1 τ

++
0 (X(N)) =

N∑
n=1

Yn.

From the law of large numbers, it follows that
∑N

n=1 τ
++
0 (X(n)) → ∞ a.s.

when N → ∞. Since Yn ≥ 0 for n ∈ N, then, for X, there will a.s. exist
arbitrarily large t ∈ (0,∞) with Xt ≥ 0. But this is in contradiction to
Xt → −∞ a.s. when t→∞.

Lemma 2.2.3. Let X be a Lévy process with ψ(2) < 0 which is not a com-
pound Poisson process. If yc = 0 from Theorem 2.2.1 and τ is an opti-
mal stopping time for the quadratic problem such that P(τ > 0) > 0, then
τ ≥ τ++

0 .
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Proof. If 0 is irregular for (0,∞), the statement follows easily. If 0 is irregular
for (0,∞), we prove the statement by contradiction and assume that P(τ <
τ++

0 ) > 0. First note, by Blumenthal’s 0-1 law, that τ > 0 a.s. It holds that
v∗(x) = Ex[G(Xτ++

0
)] and, by (2.6), it follows that G(x) < v∗(x) for x < 0

because P(X̄∞ = 0) > 0. By [8, Exercise 50.4], the assumption that P(τ <
τ++

0 ) > 0 implies that P(Xτ < 0) > 0. Hence, P(v∗(Xτ ) > G(Xτ )) > 0 and it
follows that E[G(Xτ )] < E[v∗(Xτ )] ≤ v∗(x) since v∗(Xt) is a supermartingale,
leading to a contradiction with the fact that τ is optimal.

Example 2.2.1. Let X be a Lévy process such that −X is given by the
Cramér-Lundberg model with exponential jumps, that is, Xt = −dt+

∑Nt
n=1 Zn,

where d > 0, N is a Poisson process with parameter λ > 0, and (Zn)n∈N is
an i.i.d. sequence of random variables independent of N with Z1 ∼ Exp(α)
for some α > 0. From [4, Chapter 4.2], it follows that P(X̄∞ = 0) = 1− λ

αd

and, for (0,∞), the density of X̄∞ is f(x) = λ
αd

(α − λ
d
)e−(α−λ

d
)x. There-

fore, ψ(2) < 0 corresponds to α > 2 + λ
d
. When this condition is ful-

filled, we find that, for β = α − λ
d
then E[eX̄∞ ] = α

λd

(
2β−1
β−1

)
and E[e2X̄∞ ] =

α
λd

(
2β−2
β−2

)
. From Theorem 2.2.1 we find that the optimal stopping point is

yc = log(4c(β − 1)2/((β − 2)(2β − 1))). By Remark 2.2.1, it follows that
τ+
yc = τ++

yc .

Example 2.2.2. Let X be a compound Poisson process given by Xt =∑Nt
n=1 Zn, where N is a Poisson process with parameter λ > 0, and (Zn)n∈N

is an i.i.d. sequence of random variables which is independent of N and for
which P(Z1 = α) = 1−P(Z1 = −α) = p for some p ∈ (0, 1). When p < 1

2
, the

distribution of 1
α
X̄∞ is geometric with P(X̄∞ ≥ kα) = (p/(1−p))k and, when

p ≥ 1/2, then X̄∞ = ∞ a.s. Therefore, assume that p < 1/2, and we then
obtain E[eX̄∞ ] = 1−2p

1−p−eαp and E[e2X̄∞ ] = 1−2p
1−p−e2αp . By Theorem 2.2.1, it fol-

lows that the optimal stopping point is yc = log(2c(1−p−eαp)/(1−p−e2αp)).
Both τ+

yc and τ
++
yc are solutions.

2.3 The Variance Optimal Stopping Problem
In this section we solve the variance problem (2.1) for those processes where
the method of embedding can be applied. Recall that if there exists some
stopping time τ ∗ and some constant c such that both (2.2) and (2.3) are
fulfilled, then τ ∗ solves the variance problem. Indeed, for all τ , we have

V[eXτ ] ≤ E[(eXτ∗ − c)2]− (E[eXτ ]− c)2 (2.8)
= V[eXτ∗ ]− (E[eXτ ]− E[eXτ∗ ])2. (2.9)
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The existence of a combination of τ ∗ and c that fulfills both of the two
requirements is not certain. We show that it depends on whether at least
one of the following equations has a solution:

E[eX̄∞ ]

2E[e2X̄∞ ]
ey =

E[eX̄∞1(X̄∞≥y)]

E[eX̄∞ ]
, (2.10)

E[eX̄∞ ]

2E[e2X̄∞ ]
ey =

E[eX̄∞1(X̄∞>y)]

E[eX̄∞ ]
. (2.11)

We call these the embedding equations.

Theorem 2.3.1. Let X be a Lévy process with ψ(2) < 0. If the embedding
equation (2.10) has a solution ŷ then τ+

ŷ is an optimal stopping time for
variance problem (2.1). If embedding equation (2.11) has a solution ŷ, then
τ++
ŷ is an optimal stopping time for variance problem (2.1).

a) Assume that 0 is regular for (0,∞). Then the embedding equations
coincide and there exists a solution ŷ. If, additionally, X is spectrally
negative then

ŷ = 1
φ(0)

log
(

2φ(0)−1
φ(0)−2

)
.

b) Assume that 0 is irregular for (0,∞). Then if

E[eX̄∞ ]2 > 2E[e2X̄∞ ]E[eX̄∞1(X̄∞>0)], (2.12)

the embedding equations have no solutions. Assume, additionally, that
X is not a compound Poisson process and that (2.12) is not satisfied,
then at least one of the embedding equations have a solution.

c) Assume that ψ(2) = 0. Then, for all τ ∈ T , we have V[eXτ ] < 1, but
V[eXt ]→ 1 as t→∞.

Proof. From Theorem 2.2.1, both τ+
ŷ and τ++

ŷ are solutions to the quadratic

problem with parameter c = E[eX̄∞ ]

2E[e2X̄∞ ]
eŷ. Thus, the left-hand side of the

embedding equations give the parameter value of c needed for τ+
ŷ and τ++

ŷ

to solve the quadratic problem. From (2.4) we deduce that the right-hand

side of the embedding equations give respectively the values E[e
X
τ+
ŷ ] and

E[e
X
τ++
ŷ ]. This proves that, when ŷ solves as least one of the embedding

equations, then τ+
ŷ and τ++

ŷ respectively solve the variance problem.
Next, we investigate the existence of a solution to embedding equation

(2.10). First, note that E[eX̄∞ ] ≤ E[e2X̄∞ ] and, thus, for y = 0, the left-hand
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side is less than or equal to 1
2
, whereas the right-hand side is 1. For y →∞,

the left-hand side increases continuously to ∞, whereas the right-hand side
converges to 0.

a) As 0 is regular for (0,∞), then, by Lemma 2.2.2, the distribution of X̄∞
is continuous. Hence, the right-hand side of (2.10) is also continuous and,
hence, the embedding equation (2.10) has a solution. As the distribution of
X̄∞ is continuous, the embedding equations coincides and, thus, they both
have a solution. In the special case where X is a spectrally negative Lévy
process, we recall that X̄∞ is exponentially distributed with parameter φ(0)
and, hence, the result is straight forward.

b) The left-hand side of the embedding equations are equal. As a function
of y, the right-hand side of (2.10) is left continuous, and the right-hand side of
(2.11) is the right continuous version. Thus, if the right-hand side of (2.11)
is smaller than the left-hand side of (2.11) for y = 0 then the embedding
equations have no solutions. This corresponds to (2.12). The right-hand sides
of (2.10) and (2.11) have discontinuities only at points where the distribution
of X̄∞ has discontinuities. If X is not a compound Poisson process then 0
is the only discontinuity point for the distribution of X̄∞ and, thus, if (2.12)
does not hold then the embedding equations must have a solution.

c) Consider a τ ∈ T . If τ = ∞ a.s., then V[eXτ ] = 0. If P(τ < ∞) > 0
then E[eXτ ] > 0 and, thus,

V[eXτ ] < E[e2Xτ ] ≤ E[e2Xτ1(τ<∞)] ≤ lim
t→∞

E[e2Xτ∧t ] = 1.

Next, recall that ψ(2) = 0 implies that e2Xt is a martingale and recall that
X is not deterministic. Thus, V[eX1 ] > 0 and we obtain ψ(1) = E[eX1 ] < 1.
Therefore, V[eXt ] = (eψ(2)t − eψ(1)t)→ 1 as t→∞.

Remark 2.3.1. Let Yt = Xt + x be a Lévy process starting at x. Then, for
any stopping time τ ,

V[eYτ ] = V[eXτ+x] = e2xV[eXτ ].

Therefore, a stopping time is optimal for the variance problem for process
Y , if it is optimal for the variance problem for process X. Whenever the
variance problem for X is solved by a hitting time, then so is the variance
problem for Y . However, the stopping region will be shifted by the starting
value x.

Remark 2.3.2. When X is a spectrally negative process, it is usually possi-
ble to calculate φ(0) and, therefore, we may determine the optimal stopping
time for the quadratic problem given in Theorem 2.2.1. Furthermore, as the
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distribution of X̄∞ is Exp(φ(0)), we can solve the embedding equations and
find a solution in order to determine the optimal stopping time for the vari-
ance given in Theorem 2.3.1. However, if X is not spectrally negative, we
need to determine E[eX̄∞ ] and E[e2X̄∞ ] in order to apply Theorem 2.2.1, and
to solve the embedding equations in order to apply Theorem 2.3.1. These are,
in most cases, impossible to calculate as the distribution of X̄∞ is often not
known.

Example 2.3.1. Consider the negative Cramér-Lundberg Lévy process given
in Example 2.2.1. Again, assume that α > 2 + λ

d
and recall the distribution

of X̄∞ given in Example 2.2.1. For y > 0, we compute E[eX̄∞1(X̄∞≥y)] =
α
λd

(
β
β−1

e−(β−1)y
)
and write embedding equation (2.10) as

e−βy =
(2β − 1)2(β − 2)

4β(β − 1)2
. (2.13)

This equation has a solution, and it follows from Theorem 2.3.1 that the vari-
ance problem has solutions τ+

ŷ and τ++
ŷ with ŷ solving (2.13). For example,

if α = 3, λ = 2 and d = 4 then ŷ = (2/5) log(45/16) ≈ 0.413630, see Figure
2.1.

Example 2.3.2. Consider the compound Poisson process given in Example
2.2.2 with p = 1/11 and α = log(2). Recall from Section 2.2 that X̄∞ has a
geometric distribution with P(X̄∞ ≥ k · log(2)) = ( 1

10
)k. Thus, the left-hand

side of (2.12) equals 27/64, whereas the right-hand side equals 9/40. As
9/40 < 27/64, it follows that the embedding equations have no solution and,
therefore, Theorem 2.3.1 does not give a solution for the variance problem
for this process. See Figure 2.1.

2.4 Randomized Stopping
Theorem 2.3.1 only offers a solution to the variance problem if one of the
embedding equations has a solution. In this section we introduce randomized
stopping to overcome this problem. When the embedding equations have no
solution an immediate complication arises because it is not easy to find a
constant c and stopping time τ ∗ such that both (2.2) and (2.3) are solved,
and so the embedding method cannot be applied. By taking the supremum
over a wider class of stopping times we overcome this problem.

We introduce randomized stopping times for an optimal stopping prob-
lem by expanding the filtration without removing the Markov property of



22 CHAPTER 2. VARIANCE OPTIMAL STOPPING

the process. We create this expansion by introducing a random variable U ,
which is defined on the same probability space as X, and which is uniformly
distributed on [0, 1] and independent of X. We note that this may require
that we augment the probability space on which X is defined. We then de-
fine the new filtration (F̂t)t≥0 by F̂t = σ(U) ∨ Ft. We let T̂ be the set of
stopping times with respect to the new filtration F̂t, and we refer to these
as randomized stopping times. Randomized stopping times are discussed in
a discrete-time setup in [9], where it was shown that the value function of a
classical optimal stopping problem does not change when randomized stop-
ping times are introduced. This result carries over to the quadratic problem,
but it does not carry over to the variance problem. The verification theorem
in the proof of Theorem 2.2.1 is based on the optional sampling theorem, and,
hence, it also holds for a classical optimal stopping problem with randomized
stopping. This is due to the fact that the Lévy process remains a Markov
process with the augmented filtration. In particular, the stopping times of
Theorem 2.2.1 also solve the quadratic problem with randomized stopping.

Theorem 2.4.1. Let X be a Lévy process with ψ(2) < 0, and consider
the quadratic optimal stopping problem with randomized stopping. Let U
be a random variable uniformly distributed on [0, 1] and independent of X.
Let yc = log(2cE[e2X̄∞ ]/E[eX̄∞ ]), p ∈ [0, 1] and Y = 1(U<p). Then τ ∗ =
Y τ+

yc + (1− Y )τ++
yc is also an optimal stopping time.

Proof. The result follows from the fact that τ ∗ is a stopping time with respect
to the augmented filtration, and the expected gain at τ ∗ equals the expected
gain at τ+

yc and τ
++
yc .

By Remark 2.2.1, we see that, for some Lévy processes, τ+
y = τ++

y for
all y ≥ 0 and the stopping times τ ∗ in Theorem 2.4.1 do not introduce a
new class of optimal stopping times for the quadratic problem. However,
if 0 is irregular for (0,∞) then, for some discontinuity points y of the dis-
tribution of X̄∞, we have that τ+

y < τ++
y . In this case the introduction of

randomized stopping times creates a new family of optimal stopping times
for the quadratic problem such that τ+

yc ≤ τ ∗ ≤ τ++
yc . With the wider family

of stopping times we can solve the variance problem in all cases.

Theorem 2.4.2. Let X be a Lévy process with ψ(2) < 0.

a) If at least one of embedding equations (2.10) and (2.11) has a solution,
then the optimal stopping times given in Theorem 2.3.1 are also optimal
for the variance problem with randomized stopping.
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b) If embedding equations (2.10) and (2.11) have no solutions, let

ŷ ≡ inf{y ≥ 0 : E[eX̄∞ ]

2E[e2X̄∞ ]
ey >

E[eX̄∞1(X̄∞≥y)]

E[eX̄∞ ]
}. (2.14)

Let U be uniformly distributed on [0, 1] and independent of X, and let
Y = 1(U<p), where

p =

E[eX̄∞ ]

2E[e2X̄∞ ]
eŷ − E[e

X
τ++
ŷ ]

E[e
X
τ+
ŷ ]− E[e

X
τ++
ŷ ]

. (2.15)

Then τ ∗ = Y τ+
ŷ + (1− Y )τ++

ŷ is optimal for the variance problem with
randomized stopping. Moreover, the distribution of X̄∞ has a discon-
tinuity in ŷ, and if 0 is irregular for (0,∞) and X is not compound
Poisson process, then ŷ = 0.

Proof. a) The optimal stopping times given in Theorem 2.3.1 solve the cor-
responding problems with randomized stopping. This result follows in the
same way as in the proof of Theorem 2.3.1.

b) From the proof of Theorem 2.3.1 b), it follows that if the embedding
equations (2.10) and (2.11) have no solution, then the distribution of X̄∞
has a discontinuity in the value ŷ, defined in (2.14). The inequality in (2.14)
holds for every y > ŷ. Thus, from (2.7), it follows that

E[eX̄∞ ]

2E[e2X̄∞ ]
ey > E[e

X
τ++
y ]

for every y > ŷ. As both sides are right continuous in y and as the embedding
equations have no solution, then the same holds for y = ŷ. On the other hand,
the inequality in (2.14) does not hold for any y < ŷ. As E[e

X
τ+
ŷ ] is the left

continuous version of E[e
X
τ++
ŷ ] then

E[eX̄∞ ]

2E[e2X̄∞ ]
eŷ ≤ E[e

X
τ+
ŷ ].

Hence p ∈ [0, 1] and it follows from Theorem 2.4.1 that τ ∗ is an optimal
stopping time for the quadratic problem with parameter c = E[eX̄∞ ]

2E[e2X̄∞ ]
eŷ. Then

we need only to prove that E[eXτ∗ ] = c:

E[eXτ∗ ] = pE
[
e
X
τ+
ŷ

]
+ (1− p)E

[
e
X
τ++
ŷ

]

=

 E[eX̄∞ ]

2E[e2X̄∞ ]
eŷ − E[e

X
τ++
ŷ ]

E[e
X
τ+
ŷ ]− E[e

X
τ++
ŷ ]

E
[
e
X
τ+
ŷ

]
+

E[e
X
τ+
ŷ ]− E[eX̄∞ ]

2E[e2X̄∞ ]
eŷ

E[e
X
τ+
ŷ ]− E[e

X
τ++
ŷ ]

E
[
e
X
τ++
ŷ

]
= E[eX̄∞ ]

2E[e2X̄∞ ]
eŷ = c.
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If the Lévy process is not a compound Poisson process then, by Lemma 2.2.2,
the distribution of X̄∞ has a discontinuity point only at 0. Therefore, ŷ = 0
and the optimal stopping time is a combination of τ+

0 = 0 and τ++
0 .

Example 2.4.1. Let X denote the compound Poisson process considered
in Example 2.3.2 with p = 1/11 and α = log(2). Recall that we cannot
solve the variance problem for this process by Theorem 2.3.1. From (2.15)
we calculate p = 7/32. Let Y be a random variable independent of X and
with P(Y = 1) = 1 − P(Y = 0) = p. By Theorem 2.4.2, it follows that
τ ∗ = Y τ+

0 + (1 − Y )τ++
0 = (1 − Y )τ++

0 is an optimal stopping time for the
variance problem with randomized stopping. See Figure 2.2. The variance
for this stopping time is

V[eXτ∗ ] = pE[e
2X

τ+
0 ]+(1−p)E[e

2X
τ++
0 ]−(pE[e

X
τ+
0 ]+(1−p)E[e

X
τ++
0 ])2 = 0.390625.

We determine the best stopping time of the form τ+
y and τ++

y for y ≥ 0. It
is sufficient to consider stopping times of the form τ+

k log(2) for k ∈ N. For

these, V[e
X
τ+
k log(2) ] = 0.4k − 0.04k. Inspection of this function reveals that

the maximal value is obtained for k = 1 with V[e
X
τ+
log(2) ] = 0.36. This is

a smaller variance than the one we got from our solution τ ∗ from Theorem
2.4.2. However, the stopping time τ ∗ is not a stopping time with respect to
the filtration generated from X.

2.5 Variance ProblemWithout Randomized Stop-
ping Revisited

As demonstrated in Example 2, the embedding equations do not always have
a solution. In this section we want to solve the variance problem without
randomized stopping when the embedding equations have no solution. At
first, one may hope that some new approach reveals an excess boundary
solution for the variance problem when the embedding equations have no
solution. However, Theorem 2.5.1 below reveals this is not possible.

Theorem 2.5.1. Let X be a Lévy process with ψ(2) < 0. Assume that
the embedding equations have no solutions. Then the variance problem with
randomized stopping does not have an optimal stopping time of the form τ+

y

or τ++
y for any y ∈ R.

Proof. Let τ ∗ be the optimal stopping time for the variance problem given
in Theorem 2.4.2, and let ŷ be given by (2.14). It follows from (2.9) that for
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some τ to solve the variance problem, we need E[eXτ ] = E[eXτ∗ ]. However,
from the proof of Theorem 2.4.2, it follows that E[eXτ∗ ] = E[eX̄∞ ]

2E[e2X̄∞ ]
eŷ and

E[e
X
τ+
ŷ ] > E[eX̄∞ ]

2E[e2X̄∞ ]
eŷ > E[e

X
τ++
ŷ ].

The inequalities are strict because the embedding equations have no solu-
tion. From (2.4) and (2.7), it follows that E[eXτ∗ ] 6= E[e

X
τ+
y ] and E[eXτ∗ ] 6=

E[e
X
τ++
y ] for all y. Thus, there will not be any solutions of the form τ+

y or
τ++
y for y ∈ R.

2.5.1 Compound Poisson Processes

Let X be a compound Poisson process with jump intensity λ. That is, the
Poisson processN that counts the number of jumps has parameter λ. Assume
the embedding equations have no solution and consider the optimal stopping
time of the variance problem with randomized stopping, given in Theorem
2.4.2. From Theorem 2.5.2 below, it follows that one may mimic τ ∗ by a
stopping time in T . The idea is based on the observation that F contains
information about the process N , and N is independent of both Xτ+

ŷ
and

Xτ++
ŷ

. Hence, we may use the process N to choose between the two stopping
times τ+

y and τ++
y instead of using the random variable Y .

Theorem 2.5.2. Let X be a compound Poisson process with ψ(2) < 0 and
jump intensity λ > 0. Let T be the first jump time of X. Assume that the
embedding equations have no solution, and let ŷ and p be given as in Theorem
2.4.2. Then

τ̃ ∗ = Ỹ τ̃+
ŷ + (1− Ỹ )τ++

ŷ

is an optimal stopping time for the variance problem without randomized
stopping where τ̃+

ŷ = t0 ∨ τ+
ŷ , t0 = −1

λ
log(p) and Ỹ = 1(t0<T ).

Proof. First note that τ ∗ is a stopping time of T . For every t < t0 we have
that

{τ̃ ∗ ≤ t} = {τ̃+
ŷ ≤ t, Ỹ = 1} ∪ {τ++

ŷ ≤ t, Ỹ = 0}
= {τ++

ŷ ≤ t, Ỹ = 0} = {τ++
ŷ ≤ t} ∈ Ft,

and, for t ≥ t0

{τ̃ ∗ ≤ t} = ({τ+
ŷ ∨ t0 ≤ t} ∩ {Ỹ = 1}) ∪ ({τ++

ŷ ≤ t} ∩ {Ỹ = 0}) ∈ Ft.

Thus, τ ∗ ∈ T .
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Recall that, on the event {Ỹ = 1}, Xτ̃+
ŷ

and Xτ+
ŷ

have the same distri-
bution. Let τ ∗ be the optimal randomized stopping time given in part b) of
Theorem 2.4.2. Then, for β = 1, 2 we have

E[eβXτ̃∗ ] = p · E[e
βX

τ̃+
ŷ |Ỹ = 1] + (1− p) · E[e

βX
τ++
ŷ |Ỹ = 0]

= p · E[e
βX

τ+
ŷ |Ỹ = 1] + (1− p) · E[e

βX
τ++
ŷ |Ỹ = 0]

= p · E[e
βX

τ+
ŷ ] + (1− p) · E[e

βX
τ++
ŷ ]

= E[eβXτ∗ ].

Hence, we see that V[eXτ̃∗ ] = V[eXτ∗ ] and we conclude that τ̃ ∗ is an optimal
stopping time of the variance problem without randomized stopping.

Example 2.5.1. Let X denote the compound Poisson process considered in
Example 2.3.2 with p = 1/11 and α = log(2). Recall that, for this process, we
cannot use Theorem 2.3.1 to solve the variance problem. In Theorem 2.4.2,
we obtain a randomized solution, τ ∗, and we have seen that no stopping
time of the form τ+

y or τ++
y gives as high a variance as τ ∗. However, by

use of Theorem 2.5.2, we may actually find a stopping time of T , giving
the same variance as the randomized solution τ ∗. Let Ỹ = 1{Nt0=0} and
t0 = − log(25/32), and define τ̃ ∗ = Ỹ t0 + (1 − Ỹ )τ++

0 . Then it follows that
τ̃ ∗ ∈ T and τ̃ ∗ solve the variance problem without randomized stopping with
as high a variance as that obtained by τ ∗.

2.5.2 Lévy Processes which are not Compound Poisson
Processes

In this section we consider Lévy processes of bounded variation with ψ(2) < 0
which are not compound Poisson processes.

Theorem 2.5.3. Let X be a Lévy process of bounded variation with ψ(2) < 0
which is not a compound Poisson process, and let d denote the drift of X.
Assume that the embedding equations have no solution. Let τ ∗ ∈ T̂ be the
randomized optimal stopping time given in Theorem 2.4.2. Then V[eXτ ] <
V[eXτ∗ ] for all τ ∈ T .

a) If Xt − dt is not a compound Poisson process then supτ∈T V[eXτ ] =
V[eXτ∗ ].

b) If Xt−dt is a compound Poisson process then supτ∈T V[eXτ ] < V[eXτ∗ ].
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Proof. For τ = 0, we have the inequality V[eXτ ] < V[eXτ∗ ], and, by Blu-
menthal’s 0-1 law, it is enough to consider τ > 0 in T . Assume that
V[eXτ ] = V[eXτ∗ ]. It follows from Theorem 2.4.2 that ŷ = 0, and from (2.8)
and (2.9) that τ solves the quadratic problem with parameter E[eXτ∗ ] and
E[eXτ ] = E[eXτ∗ ]. By Lemma 2.2.3 we obtain τ ≥ τ++

0 and, hence, E[eXτ ] ≤
E[e

X
τ++
0 ], as eXt is a supermartingale. However, from the proof of Theorem

2.5.1, it follows that E[e
X
τ++
0 ] < E[eXτ∗ ]. Therefore, E[eXτ ] < E[eXτ∗ ] and we

cannot have V[eXτ ] = V[eXτ∗ ].
a) Let αqt be the q-fractile of Xt. That is, αqt = inf{α ∈ R : P(Xt ≤ α) >

q}. It follows from [8, Theorem 27.4] that the distribution of Xt is continuous
and, hence, for every t > 0 and q ∈ (0, 1), we have P(Xt ≤ αqt ) = P(Xt <
αqt ) = q.

Next, we choose a sequence of stopping times, (τn)n∈N ⊂ T , in the fol-
lowing way:

τn = inf{t > 1/n|Xt > 0} · 1
(X1/n∈(α

(1−p)/2
1/n

,α
(1+p)/2
1/n

))
+

1

n
1

(X1/n /∈(α
(1−p)/2
1/n

,α
(1+p)/2
1/n

))
.

That is, if the process at time 1/n is not between the fractiles α(1−p)/2
1/n and

α
(1+p)/2
1/n , then the process is stopped. On the other hand, if the process at

time 1/n is between the two fractiles, then the process is stopped at the
first time after 1/n when it gets above 0. We show that the variance at the
stopping time τn approximates the variance at the randomized stopping time
given in Theorem 2.4.2.

It holds that

E[eXτn1
(X1/n /∈(α

(1−p)/2
1/n

,α
(1+p)/2
1/n

))
] = E[eX1/n ]− E[eX1/n1

(X1/n∈(α
(1−p)/2
1/n

,α
(1+p)/2
1/n

))
]

is bounded from below by

E[eX1/n ]− eα
(1+p)/2
1/n P(X1/n ∈ (α

(1−p)/2
1/n , α

(1+p)/2
1/n )) = E[eX1/n ]− eα

(1+p)/2
1/n p,

and from above by

E[eX1/n ]− eα
(1−p)/2
1/n P(X1/n ∈ (α

(1−p)/2
1/n , α

(1+p)/2
1/n )) = E[eX1/n ]− eα

(1−p)/2
1/n p.

As E[eX1/n ] converges to 1 as n tends to ∞ and as Xt converges to 0 in
probability as t converges to 0, it follows that both α

(1−p)/2
1/n and α

(1+p)/2
1/n

converge to 0 as n tends to infinity. Hence, E[eXτn1
(X1/n /∈(α

(1−p)/2
1/n

,α
(1+p)/2
1/n

))
]

converges to 1− p as n tends to ∞.
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Next, let H(x) = Ex[e
X
τ++
0 ]. Then

E[eXτn1
(X1/n∈(α

(1−p)/2
1/n

,α
(1+p)/2
1/n

))
] = E[H(X1/n)1

(X1/n∈(α
(1−p)/2
1/n

,α
(1+p)/2
1/n

))
]. (2.16)

We claim that, for every q ∈ (0, 1), there exists some tq > 0 such that, for
t < tq, we have αqt ≤ 0. We prove the statement by contradiction. Thus,
assume there is a q ∈ (0, 1) and a sequence tn → 0 such that, for every n,
αqtn > 0. Then

P(lim sup
n→∞

Xtn > 0) = lim
n→∞

P(
∞⋃
k=n

{Xtk > 0}) ≥ lim
n→∞

(1− q) = 1− q.

However, this is in contradiction with 0 being irregular for (0,∞). As H is
nondecreasing, we conclude that (2.16) is bounded from below by

E[H(α
(1−p)/2
1/n )1

(X1/n∈(α
(1−p)/2
1/n

,α
(1+p)/2
1/n

))
] = H(α

(1−p)/2
1/n )p,

and from above by

E[H(α
(1+p)/2
1/n )1

(X1/n∈(α
(1−p)/2
1/n

,α
(1+p)/2
1/n

))
] = H(α

(1+p)/2
1/n )p.

Both terms converge to H(0)p as n tends to ∞. This is because it from
(2.4) follows that H is continuous and increasing on (−∞, 0] and because
there exists some tq > 0 such that for t < tq we have αqt ≤ 0. Therefore,
E[eXτn1

(X1/n∈(α
(1−p)/2
1/n

,α
(1+p)/2
1/n

))
] converges to H(0)p as n tends to ∞. Taken

together, these results imply that, when n tends to ∞,

E[eXτn ]→ (1− p) +H(0)p = (1− p)E[e
X
τ+
0 ] + pE[e

X
τ++
0 ] = E[eXτ∗ ].

Similarly, it follows that E[e2Xτn ]→ E[e2Xτ∗ ], and hence, V[eXτn ]→ V[eXτ∗ ].
b) We prove the statement by contradiction. Assume that there exists

a sequence, (τn)n∈N ⊂ T such that limn→∞V[eXτn ] = V[eXτ∗ ]. The proof is
quite lengthy and, therefore, it is broken into parts to clarify the structure.

Part i) It follows from (2.9) that limn→∞ E[eXτn ] = E[eXτ∗ ] = c . Let
τ ∈ T and y < 0 be given. Then

E[eXτ ] = E[eXτ1(τ<τ++
0 )1(Xτ>y)] + E[eXτ1(τ<τ++

0 )1(Xτ≤y)] + E[eXτ1(τ≥τ++
0 )]

≤ P(τ < τ++
0 , Xτ > y) + ey + E[eXτ1(τ≥τ++

0 )]

≤ P(τ < τ++
0 , Xτ > y) + ey + E[e

X
τ++
0 ].
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Thus, to obtain limn→∞ E[eXτn ] = c, then, for any ε > 0 and y < 0, we need,
for large enough n, P(τn < τ++

0 , Xτn > y) + ey − (c − E[e
X
τ++
0 ]) ≥ −ε. As

X is not a compound Poisson process, it follows from Theorem 2.4.2 that
ŷ = 0. Thus, E[e

X
τ++
0 ] < c, and we may choose ε and y small enough that

(c−E[e
X
τ++
0 ])− ε− ey > 0. We conclude that there exists p > 0, y < 0, and

N ∈ N such that for all n > N ,

P(τn < τ++
0 , Xτn > y) ≥ p. (2.17)

Part ii) Let T denote the first jump time of the process. Assume that
P(τ < T ) > 0 for some τ ∈ T . With t∗ as in Lemma 2.5.4 a) below, it follows
that

E[eXτ ] = E[eXτ1(T≤t∗)] + E[eXτ1(T>t∗)]

= E[eXτ1(T≤t∗)] + e−dt
∗P(T > t∗)

≥ e−(d+λ)t∗ .

Now, for each n, where P(τn < T ) > 0, let t∗n be as in Lemma 2.5.4. If
there are infinitely many such n then to have limn→∞ E[eXτn ] = c, it must
hold that, for any ε > 0 then for large enough n, E[eXτn ] < c + ε and, thus,
e−(d+λ)t∗n < c + ε. Hence, we need, from a certain step, t∗n ≥

− log(c+ε)
d+λ

. By
Lemma 2.5.4 b), it follows that if P(τn < T ) > 0 then P(τn < T, τn < t∗n) = 0.
Therefore, for large enough n it must hold that

P(τn < T, Xτn >
log(c+ε)d
d+λ

) = P(τn < T, τn <
log(c+ε)
d+λ

)

≤ P(τn < T, τn < t∗n) = 0.

Let u1 = log(c+ε)d
d+λ

. Note that d < 0 else 0 would be regular for (0,∞) and we
get that

∃u1 < 0, N ∈ N ∀n > N : P(τn < T, Xτn > u1) = 0. (2.18)

Part iii) Let Y = sup{Xt| t ∈ [T, τ++
0 )}1(T<τ++

0 ). We want to show that
Y < 0 almost surely. Let Tn = inf{t > T : Xt >

−1
n
}. Note that this

is an increasing sequence of stopping times bounded by τ++
0 . Hence, the

sequence of stopping times will a.s. converge to some random time T̃ , with
T̃ ≤ τ++

0 a.s.. From the quasi-left-continuity we obtain XT̃ = limn→∞XTn ≥
limn→∞(−1

n
) = 0 and, hence, T̃ = σ+

0 . It then follows that

P(Y = 0) = P(Tn < τ++
0 ∀n ∈ N)

= P(XTn < 0∀n)

≤ P(XT̃ = 0)

= P(Xσ+
0

= 0) = 0.
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Hence, there exists some u2 < 0 such that P(Y > u2) < 1
2
p, and this implies

that, for all p > 0, there exist u2 < 0 and N ∈ N such that for all n > N ,

P(τn ∈ [T, τ++
0 ), Xτn > u2) < 1

2
p. (2.19)

Part iv) Combining (2.18) and (2.19) we obtain, with u = max{u1, u2},

P(τn < τ++
0 , Xτn > u) =P(τn ∈ [T, τ++

0 ), Xτn > u)

+ P(τn < T, Xτn > u))

<1
2
p.

Combining this with (2.17) it follows that, for all p > 0, there exists y, u < 0
and N ∈ N such that for all n > N ,

P(τn < τ++
0 , Xτn ∈ (y, u]) > 1

2
p. (2.20)

Part v) First, we recall from the proof of Theorem 2.2.1 that

G(x) = v∗(x)− e2x

E[e2X̄∞ ]
(e−xE[eX̄∞1(X̄∞<−x)]− E[e2X̄∞1(X̄∞<−x)]).

Define

D(x1, x2) = e2x1

E[e2X̄∞ ]
(e−x2E[eX̄∞1(X̄∞<−x2)]− E[e2X̄∞1(X̄∞<−x2)]),

and note that when x1, x2 ∈ (y, u],

D(x1, x2) ≥ D(y, u) ≥ ey

E[e2X̄∞ ]
(e−u − 1)P(X̄∞ = 0) > 0. (2.21)

Therefore, it follows that, for every τ ∈ T ,

E[(eXτ − c)21(τ<τ++
0 , Xτ∈(y,u])]

= E[G(Xτ )1(τ<τ++
0 , Xτ∈(y,u])]

= E[(v∗(Xτ )−D(Xτ , Xτ ))1(τ<τ++
0 , Xτ∈(y,u])]

≤ E[(v∗(Xτ )−D(y, u))1(τ<τ++
0 , Xτ∈(y,u])]

= E[v∗(Xτ )1(τ<τ++
0 , Xτ∈(y,u])]−D(y, u)P(τ < τ++

0 , Xτ ∈ (y, u])

≤ E[G(Xτ++
0

)1(τ<τ++
0 , Xτ∈(y,u])]−D(y, u)1

2
p.
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Hence, we obtain

V[eXτ ] = E[(eXτ − c)2]− (c− E[eXτ ])2

= E[(eXτ − c)21(τ<τ++
0 , Xτ∈(y,u])]

+ E[(eXτ − c)21({τ≥τ++
0 } ∪ {Xτ /∈(y,u]})]− (c− E[eXτ ])2

≤ E[(e
X
τ++
0 − c)21(τ<τ++

0 , Xτ∈(y,u])]−D(y, u)1
2
p

+ E[(eXτ − c)21({τ≥τ++
0 } ∪ {Xτ /∈(y,u]})]− (c− E[eXτ ])2

= E[(eXτ̂ − c)2)]−D(y, u)1
2
p− (c− E[eXτ ])2

≤ V[e
X
τ++
0 ]−D(y, u)1

2
p,

where τ̂ = τ1(τ<τ++
0 , Xτ∈(y,u]) + τ++

0 1({τ≥τ++
0 } ∪ {Xτ /∈(y,u]}). We conclude that

sup
τ∈T ∗

V[eXτ ] ≤ V[e
X
τ++
0 ]−D(y, u)1

2
p,

where y and u are as given in (2.17) and (2.20). From (2.21) we have
D(y, u) > 0; thus, the statement of the theorem follows. This completes
the proof of Theorem 2.5.3.

The following lemma, used in the proof of Theorem 2.5.3, is intuitive.
Before the first jump of a compound Poison process, the process has not
created any other information than the fact that there have been no jumps.
Hence, if a stopping time with respect to F has a positive probability of
stopping before the first jump then, given the stopping time occurs before
the first jump, it is deterministic.

The lemma is the key reason why there is a gap between the variances at
the stopping times for the solutions to the variance problem with and without
randomized stopping, and that is the reason we have included a proof of it.

Lemma 2.5.4. Let X be a compound Poisson process with negative drift.
Let T denote the first jump time of the process, let τ be a stopping time with
respect to F , and assume P(τ < T ) > 0. Then there exists some t∗ ≥ 0 such
that:

a) {T > t∗} ∩ {τ = t∗} a.s.= {T > t∗}.

b) {T > τ} ∩ {τ = t∗} a.s.= {T > τ}.

Proof. a) Let F∗t = σ(Xs|s ∈ [0, t]). Then all sets in F∗t will either contain
{T > t} or be contained in {T > t}c. As τ is a stopping time with respect
to F , then, for every t ≥ 0, {τ ≤ t} is a.s. equal to some set which is
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measurable with respect to F∗t . Thus, for all t ≥ 0 it follows that {T >
t} ∩ {τ ≤ t} a.s.= {T > t} or {T > t} ∩ {τ ≤ t} a.s.= ∅. As P(τ < T ) > 0,
we cannot have {T > t} ∩ {τ ≤ t} a.s.

= ∅ for all t ≥ 0. Hence, we define
t∗ = inf{t ≥ 0 : {T > t} ∩ {τ ≤ t} a.s.= {T > t}} and there exists a sequence
tn ↓ t∗ such that {T > tn} ∩ {τ ≤ tn}

a.s.
= {T > tn} for every n. Hence, it

follows that {T > t∗} ∩ {τ ≤ t∗} ⊇
⋂∞
k=1 ({τ ≤ tk} ∩ {T > tk})

a.s.
= {T > t∗}.

Thus, we obtain {T > t∗} ∩ {τ ≤ t∗} a.s.= {T > t∗}. Besides, {T > t∗} ∩ {τ <
t∗} ⊆

⋃∞
n=1({T > t∗} ∩ {τ ≤ t∗ − 1

n
}) a.s.

= ∅ and part a) follows.
b) Define a new process Yt = Xτ+t−Xτ , and let T Y denote the time of the

first jump of Y . Thus, if T > τ then T = T Y + τ . Note that P(T Y > t∗) > 0
because Y has the same distribution as X. As T Y is independent of Fτ and
using part a) we find that

P(τ < T, τ 6= t∗)P(T Y > t∗) = P(τ < T, τ 6= t∗, T Y > t∗)

= P(τ < T, τ 6= t∗, T > t∗ + τ)

= P(τ < T, τ 6= t∗, T > t∗ + τ, τ = t∗) = 0.

It must therefore hold that P(τ < T, τ 6= t∗) = 0 and, thus, part b) follows.

Example 2.5.2. In this example we show that there exist compound Poisson
processes with negative drift and ψ(2) < 0 for which the embedding equations
have no solution. Let X be the compound Poisson process of Example 2.3.2
with p = 1/11 and α = log(2). For this process, we have ψ(2) < 0 and
the embedding equations have no solution. We define a compound Poisson
processes with negative drift by Yt = Xt−dt, where d > 0 is a constant. Then
Y also has ψ(2) < 0. When d converges to 0, then Y converges a.s. to X
dominated by X. Therefore, by choosing sufficiently small d, the embedding
equations for Y have also no solution.
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Figure 2.1: The dotted lines indicate the (y, c) values for which τ+
y solves the

quadratic problem with parameter c, and the solid lines indicates the (y, c)
values for which c = E[exp(Xτ+

y
)]. When the two lines intersect, the y-value

of the intersection gives a value for which τ+
y solves the variance problem.

Top: Cramér-Lundberg process of Example 2.3.1 with α = 3, d = 4 and
λ = 2. Bottom: Compound Poisson process of Example 2.3.2 with p = 1/11
and α = log(2).
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Figure 2.2: An illustration of Example 2.4.1 with p = 1/11 and α = log(2).
The dotted line indicates the (y, c) values for which τ+

y and τ++
y solves the

quadratic problem with parameter c, and the solid line indicates the (y, c)

values for c = E[e
X
τ+
y ]. The dashed line and the cross illustrate how, by

randomizing between τ+
0 and τ++

0 , we may obtain a (τ, c) such that both
requirements are fulfilled.
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3. Mean-Variance Optimal
Stopping for some Geometric
Lévy Processes

Kamille Sofie Tågholt Gad

Abstract

Given a geometric Lévy process, X, we consider the problem of maximizing

sup
τ

(E[Xτ ]− cV[Xτ ]) .

This we denote the mean-variance problem. In the first part we study geo-
metric spectrally negative Lévy processes and the main result is derivation
of optimal stopping times to the mean-variance problem, both statically
and dynamically. In both cases the solution is an excess boundary time.
The results extend the results of [7], and the method relies on solving the
same auxiliary optimal stopping problems.
In the second part the main result is an optimal stopping time for the
mean-variance problem for a particular Cramér-Lundberg process with ex-
ponential upwards jumps. The solution for this process is interesting as
the static solution is no longer an excess boundary time, but instead a hit-
ting time of an interval. The dynamic solution remains an excess boundary
time. At last, we derive the remarkable result that for some starting values
randomized stopping times are optimal for the problem of minimizing the
variance conditional on a lower bound on the mean.

Keywords: Mean-variance criterion; Optimal stopping; Geometric Lévy
processes; Quadratic optimal stopping.

3.1 Introduction
Given a geometric Lévy process, X, we study the optimal stopping problem

sup
τ∈T

(E[Xτ ]− cV[Xτ ]) , (3.1)

where c > 0 is a constant and T is the stopping times generated from X,
for which the variance of the process evaluated at that time is finite. This

37
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problem we denote the mean-variance problem. The idea of maximizing mean
while minimizing variance is familiar in economic and financial application
and is dating back to Markowitz [4], however not in the optimal stopping
setting. In [7], a thorough presentation of the origin of the mean-variance
problem within economic and finance is found.

The mean-variance problem is a non-linear optimal stopping problem.
Hence it falls outside the scope of classical optimal stopping problems, and we
cannot directly rely on results from [8] and [10]. Solving non-linear optimal
stopping problems is a rather new field. The mean-variance optimal stopping
problem is solved for geometric Brownian motions in [7]. We extend these
results to some geometric Lévy processes. From the study of maximizing
variance in [6] and [2] it is known that the jumps may have a significant
influence on the solution to non-linear optimal stopping problems. We find
that this is also the case for the mean-variance problem.

In the first part of the paper, the mean-variance problem is solved for
spectrally negative Lévy processes. That is, geometric Lévy processes which
does not have upwards jumps. The proof follows the main lines of the ap-
proach taken in [7] and is thus based on investigating an auxiliary classical
quadratic optimal stopping problem. We find that the solution to the mean-
variance problem is an excess boundary time and we find an implicit expres-
sion for the boundary. From the derivation of the optimal stopping time to
the mean-variance problem we deduce the solution to the optimal stopping
problem given by

inf
τ∈T :E[Xτ ]≥M

V[Xτ ]. (3.2)

This problem we denote the conditional variance problem, and we find an
optimal stopping time which is an excess boundary time.

In Section 3.4 we solve the mean-variance problem for a particular Cramér-
Lundberg process with exponential jumps upwards. This process is interest-
ing because it is possible to carry through the computations, and the solu-
tions are interesting. In the proof the class we maximize over is expanded
to include randomized stopping times as defined in [1] and [10] for discrete
time problems. The inclusion of randomized stopping times eases the search
for an optimal stopping time. This is because our approach for solving the
mean-variance problem relies on solving classical optimal stopping problems
with constraints. As mentioned for discrete time problems in [10], such prob-
lems are eased by allowing randomized stopping times. Maximizing over this
expanded class of stopping times we still find an optimal stopping time to
the mean-variance problem from the original class of stopping times. It is
interesting that the optimal stopping time we find is a hitting time for an
interval. Even more remarkably, the conditional variance problem for some
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starting values has optimal stopping times which are randomized stopping
times.

The fact that the mean-variance problem is solved by the hitting time of
an interval is likely problematic for many applications. When maximizing
expectation while punishing variance it is for application purposes meant to
prevent risk from loses and not risk from high gains. In the solutions we
find, we do not stop if we get a high gain, but wait for the process to fall
down again because we know it eventually will. This is a disadvantage to the
application of the mean-variance optimization and it comes from the variance
having too much power in the extremes.

The fact that the conditional variance problem in some cases is solved
by randomized stopping times is not a problem for applicational purposes,
but we find it remarkable that random choices may be an advantage when
minimizing variance conditioned on a minimum expectation.

For the mean-variance problem the stopping boundaries we find depend
on the starting value of the process, and thus the problem is time inconsistent.
A time consistent version of the problem is introduced in [7] by what is
denoted dynamic optimization in contrast to the traditional optimal stopping
problem of (3.1) which is denoted static optimization. In Section 3.5 we give
dynamically optimal stopping times to the mean variance problem. For both
the studied cases these optimal stopping times are excess boundary times
with fixed boundaries.

3.2 Problem Formulation and Approach
Let Y = (Yt)t≥0 be a Lévy process and let Xt = eYt for t ≥ 0. Let F be the
augmented natural filtration satisfying the usual conditions and let T denote
the set of stopping times with respect to F (all terms defined as in [3]). Given
a constant c > 0 we study the optimal stopping problem of (3.1). When we
solve the problem in the traditional static sense we wish to determine V and
find a τ ∗ ∈ T such that

V (x) ≡ sup
τ∈T

(Ex[Xτ ]− cVx[Xτ ]) = Ex[Xτ∗ ]− cVx[Xτ∗ ], (3.3)

where Ex and Vx denote respectively mean and variance given the process
starts in x. For Brownian motions the solution is known from [7] to be found
among excess boundary times. Given a process, Y , we use the following
notation for hitting times. For any y < a and A an interval, then

τ+
a ≡ inf{t ≥ 0 : Yt ≥ a}
τA ≡ inf{t ≥ 0 : Yt ∈ A}.
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The present paper is built on the Lagrange approach from [7]. We describe
it here. It is first noted that

V (x) = sup
τ :Ex[Xτ ]≥x

(Ex[Xτ ]− cVx[Xτ ])

= sup
M≥x

(M + cM2 − c inf
τ :Ex[Xτ ]=M

Ex[X2
τ ]). (3.4)

Then it is noted that for x ≤M if there is a λ > 0 and a τ ∗ ∈ T such that

sup
τ∈T

Ex[λXτ −X2
τ ] = Ex[λXτ∗ −X2

τ∗ ], (3.5)

and
M = Ex[Xτ∗ ], (3.6)

then τ ∗ also fulfil
inf

τ :Ex[Xτ ]=M
Ex[X2

τ ] = Ex[X2
τ∗ ]. (3.7)

This we can insert in (3.4). We may also use the result of (3.7) to solve the
conditional variance problem since

inf
τ :Ex[Xτ ]≥M

Vx[Xτ ] = inf
β≥M

(
inf

τ :Ex[Xτ ]=β
Ex[X2

τ ]− β2

)
. (3.8)

3.3 Spectrally Negative Lévy Processes
Assume Y is spectrally negative. That is, Y has no upwards jumps. Spec-
trally negative Lévy processes has the advantage that their value upon an
excess boundary time is given by the boundary whenever the stopping time
is attained. Whenever y < a then Yτ+

a
1(τ+

a <∞) = a1(τ+
a <∞). Besides, the

spectrally negative processes have the advantage that the distribution of the
maximum value of the process is known. Let the Laplace exponent of Y be
given by:

ψ(θ) = − log(E0[eθY1 ]),

and define φ as the right inverse of ψ. Then it is known from e.g. [3] that
the distribution of the maximum is exponential with parameter φ(0).

Our main result is Theorem 3.3.1.

Theorem 3.3.1. Assume Y is a spectrally negative Lévy process and define
φ(0) from Y . Let X = eY and consider the mean-variance problem of (3.3).

a) If φ(0) = 0, then Ex[Xτ+
b

]− cVx[Xτ+
b

]→∞ when b→∞.



3.3. SPECTRALLY NEGATIVE LÉVY PROCESSES 41

b) If φ(0) ∈ (0, 1), then τ+
b(x) is an optimal stopping time for (3.3), where

b(x) is the solution to

b(x)φ(0)−1 + 2cxφ(0) − c2−φ(0)
1−φ(0)

b(x)φ(0) = 0.

Let b∗ ≡ (1−φ(0))/(φ(0)c). Specifically it is optimal to stop right away
if x < b∗.

c) If φ(0) ≥ 1, then it is optimal to stop right away.

Before we turn to the proof of Theorem 3.3.1, we solve the classical op-
timal stopping problem of (3.5) for sufficiently many combinations of (x, λ)
that it is possible to solve the problem of (3.6), and from this (3.7). These
preliminary problems are solved in Proposition 3.3.2 and Lemma 3.3.3.

Proposition 3.3.2. Given λ > 0 and a spectrally negative Lévy process Y ,
define φ(0) from Y and let X = eY . Let

b∗λ = λ
1− φ(0)

2− φ(0)
. (3.9)

If φ(0) ∈ (0, 1) and eY0 < b∗, then τ+
b∗λ

is an optimal stopping time for (3.5).

Proof. Let G(x) = λx − x2. Then G is continuous and Ex[supt>0G(Xt)] ≤
λλ

2
− λ2

22 = λ2

4
< ∞. Thus, we know from [8] that the problem of (3.5)

has a solution which is a hitting time. Let D denote the stopping region
of the optimal hitting time. Since Y is spectrally negative, then for any
x < inf D it holds that τD = τ+

inf D. Notice that G is a second order concave
polynomial with supremum attained in λ/2. Thus, it is reasonable to guess
that −∞ < inf D < λ/2. For x < λ/2 we search for the best stopping time
of the form τ+

b , where b ∈ (x, λ/2). For x ≤ b < λ/2

Ex[λXτ+
b
−X2

τ+
b

] = (λb− b2)Px(τ+
b <∞)

= xφ(0)(λb1−φ(0) − b2−φ(0))

≡ xφ(0)H(b).

H is C2 and by differentiation we find that b∗λ is the only critical point.
H ′′(b∗λ) < 0 and thus b∗λ is a unique supremum.

Now, we wish to show that b∗λ = inf D. Assume x < b∗λ, then

Ex[G(Xτ+
b∗
λ

)] = xφ(0)Hλ(b
∗
λ) > xφ(0)Hλ(x) = λx− x2 = Ex[G(X0)].
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This shows that when starting in X0 = x lower than b∗λ, the stopping time
τ+
b∗λ

is strictly better than stopping right away. Thus, for all x < b∗λ we have
x /∈ D, and thus −∞ < x < b∗λ. We may now conclude that for every x < b∗λ
the solution is the hitting time of an upper boundary. We have found that
b∗λ is the best choice for a boundary, so τ+

b∗λ
is an optimal stopping time for

x < b∗λ.

Lemma 3.3.3. Given x, M with M > x and a spectrally negative Lévy
process, Y , with x = eY0. Define φ(0) from Y and let X = eY . Assume
φ(0) ∈ (0, 1), let b∗λ be given from (3.9) and choose

λ(M,x) = (Mx−φ(0))
1

1−φ(0)
2− φ(0)

1− φ(0)
.

Then τ ∗b∗
λ(M,x)

is an optimal stopping time for (3.7) and

inf
τ :Ex[Xτ ]=M

Ex[X2
τ ] = M

2−φ(0)
1−φ(0)x

−φ(0)
1−φ(0) .

Proof. First we search for an optimal stopping time τ ∗λ = τ ∗λ(M,x) to the prob-
lem (3.5) with λ = λ(M,x) such that also (3.6) is fulfilled. From Proposition
3.3.2 it follows that if x < b∗λ(M,x) then τ

+
b∗
λ(M,x)

is optimal for (3.5). And when
x < b∗λ(M,x) then (3.6) corresponds to

M = Ex[Xτ+
b∗
λ(M,x)

] = xφ(0)(
1− φ(0)

2− φ(0)
)(1−φ(0))(λ(M,x))(1−φ(0)),

and thus
λ(M,x) = (Mx−φ(0))

1
1−φ(0)

2− φ(0)

1− φ(0)
. (3.10)

With this λ(M,x) then

b∗λ(M,x) = λ(M,x)
1− φ(0)

2− φ(0)

= (Mx−φ(0))
1

1−φ(0) (3.11)

≥ (x1−φ(0))
1

1−φ(0) = x,

and thus λ from (3.10) can be used to obtain the desired property (3.6).
Thus, from [7] as repeated in Section 3.2, τ+

b∗
λ(M,y)

is optimal for (3.7). By use
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of (3.11) we get

inf
τ :Ex[Xτ ]=M

Ex[X2
τ ] = Ex[X2

τ+
b∗
λ(M,y)

]

= (b∗λ(M,y))
2Px(τ+

b∗
λ(M,x)

<∞)

= (b∗λ(M,y))
2e−φ(0)(log(b∗

λ(M,y)
)−log(x))

= M
2−φ(0)
1−φ(0)x

−φ(0)
1−φ(0) .

We are now ready to prove Theorem 3.3.1

Proof of Theorem 3.3.1.
a) If φ(0) = 0, then Px(τ+

b < ∞) = 1 for all x, b. The process is creeping
over any upper boundary, and thus for x < b

Ex[Xτ+
b

]− cV[Xτ+
b

] = b

Thus, by choosing an arbitrary large upper bound we may obtain an arbi-
trarily high value.

c) If φ(0) ≥ 1, then ψ(1) ≤ 0. In general (eYt−ψ(1)t)t≥0 is a martingale, and
thus, since ψ(1) ≤ 0, then (Xt)t≥0 = (eYt)t≥0 is a positive supermartingale.
Thus, from Fubini and the Optional Sampling Theorem,

Ex[Xτ ] = Ex[lim inf
N→∞

Xτ∧N ] ≤ lim inf
N→∞

Ex[Xτ∧N ] ≤ lim inf
N→∞

Ex[X0] = x

Thus, no stopping time will give a better mean value than stopping right
away, and thus it is optimal to stop at once.

b) Combining (3.4) and the result of Lemma 3.3.3 we get

V (x) = sup
M≥x

(M + cM2 − c(M
2−φ(0)
1−φ(0)x

−φ(0)
1−φ(0) )) ∨ x

= sup
M≥x

Fx(M) ∨ x = sup
M≥x

Fx(M), (3.12)

where

Fx(M) = M + cM2 − c(M
2−φ(0)
1−φ(0)x

−φ(0)
1−φ(0) )

The latter equality in (3.12) follows because Fx(x) = x. Notice that 2−φ(0)
1−φ(0)

>
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2 and therefore Fx(M)→ −∞ as M →∞.

F ′x(M) = 1 + 2cM − c2−φ(0)
1−φ(0)

M
1

1−φ(0)x
−φ(0)
1−φ(0)

F ′′x (M) = 2c− c2−φ(0)
1−φ(0)

1
1−φ(0)

M
φ(0)

1−φ(0)x
−φ(0)
1−φ(0)

F ′x(0) = 1

F ′x(0) > 0 and F ′′x (M) is increasing for M > 0. Thus, Fx has a unique
maximum forM > 0 and it is attained in the uniqueM > 0 with F ′x(M) = 0.
The maximum of Fx(M) for M > 0 is attained for M > x if F ′x(x) > 0.

F ′x(x) = 1 + 2cx− c2−φ(0)
1−φ(0)

x
1

1−φ(0)x
−φ(0)
1−φ(0) = 1− 2x φ(0)

1−φ(0)
.

So maximum is attained above x if

x <
1− φ(0)

φ(0)c
. (3.13)

The optimal stopping time is the solution to Lemma 3.3.3 where M is the
one which maximizes Fx(M), and thus under the condition (3.13)M is given
from 0 = F ′x(M), which corresponds to

0 = 1 + 2cM − c2−φ(0)
1−φ(0)

M
1

1−φ(0)x
−φ(0)
1−φ(0) . (3.14)

From (3.11) we have that given M , the optimal stopping time of Lemma
3.3.3 is an excess boundary time with a boundary b(x) given by

b(x) = (Mx−φ(0))
1

1−φ(0)

Since the relation between b(x) and M is injective, we may rewrite the con-
dition of (3.14) to a condition on b(x) instead. We then get that the optimal
boundary b(x) is the solution to

0 = 1 + 2cxφ(0)b(x)1−φ(0) − c2−φ(0)
1−φ(0)

b(x).

However, only if (3.13) is fulfilled. Otherwise it is optimal to stop at once.

2

Proposition 3.3.4. Given a spectrally negative Lévy process, Y , with φ(0) ∈
(0, 1), let X = eY . Then τ ∗b∗

λ(M,x)
of Lemma 3.3.3 is also optimal for the

conditional variance problem (3.2).
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Proof. Let

F (β) = inf
τ :Ex[Xτ ]=β

(E[X2
τ ]− β2) = β

2−φ(0)
1−φ(0)x

−φ(0)
1−φ(0) − β2.

Then, for β ≥ x

F ′(β) = 2−φ(0)
1−φ(0)

β
1

1−φ(0)x
−φ(0)
1−φ(0) − 2β

≥ 2−φ(0)
1−φ(0)

β
1

1−φ(0)β
−φ(0)
1−φ(0) − 2β > 0.

Thus, the infimum over [M,∞) is obtained for β = M . Therefore

inf
τ :Ex[Xτ ]≥M

Vx[Xτ ] = inf
β≥M

(
inf

τ :Ex[Xτ ]=β
(E[X2

τ ]− β2)

)
= inf

τ :Ex[Xτ ]=M
E[X2

τ ]−M2,

and the result foliows.

3.4 A Cramér-Lundberg Process
We consider the process

Yt = y − dt+
Nt∑
n=1

Zn, (3.15)

where, d > 0 is a constant, (Zn)n≥1 is a sequence of i.i.d. random variables
with Z1 ∼ exp(α) with α = 3, and where Nt is a Poisson process with
intensity ν, and ν

d
= 5

2
. Assume N and (Zn)n≥1 are independent and let

(Xt)t≥0 = (eYt)t≥0.
For this process we derive that the optimal stopping time for the problem

(3.3) is the hitting time of an interval. It becomes convenient to define the
constants q, F1(q), F2(q) and κ, where

q =
9−
√

21

20
≈ 0.221.

Let X̄∞ = supt≥0Xt. From [5] Chapter 4.2 it follows that P(X̄∞ = 0) = 1
6

and that X̄∞ has density f(x) = 5
12
e−0.5x on (0,∞). With this we easily

calculate for λ > 0 and x < λq that

Ex[Xτ[λq,λ/2]
] =
√
x
√
λ(5

4
q

1
2 − 5

3
q

5
2 ) ≡

√
x
√
λF1(q)

Ex[X2
τ[λq,λ/2]

] =
√
xλ

3
2 (5

2
q

3
2 − 10

3
q

5
2 ) ≡

√
xλ

3
2F2(q)

κ =
F2(q)

(F1(q))3
≈ 1.105.
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Theorem 3.4.1. Let Y be given from (3.15) and let X = eY . Let

b∗ =
3κ

w2
+ − 1

≈ 0.426,

where w2
+ is the larger root of

0 = 2w3 + (3− 9κ)w2 + 9κ− 1,

and let

λ∗(x) =
x(1 +

√
1 + 3κ

cx
)

9κF1(q)2
.

Then the following is an optimal stopping time for mean-variance problem of
(3.3):

τ ∗(x) =

{
τ[λ∗(x)q,λ∗(x)/2)] cx ≤ b∗,

0 cx ≥ b∗.

Specifically it is optimal to stop right away if and only if cx ≤ b∗.

In order to prove the theorem it is useful first to solve two auxiliary
problems.

Proposition 3.4.2. Let Y be given from (3.15) and let X = eY . Then both
τ[λq,λ/2] and τ(λq,λ/2] are optimal for (3.5).

Proof. Let G(x) = λx − x2. G is a concave second order polynomial with
maximum attained in x = λ/2. X has no downwards jumps and Xt → −∞
almost surely as t→∞. Thus, if X starts above λ/2, then it almost surely
reaches λ/2 at some time, but if it starts below λ/2 then it is not certain
that it reaches λ/2. For this reason we guess there is a solution of the form
τ[b,λ/2] for some b. Let GY (y) = λey − e2y. Then

Vλ(x) ≡ sup
τ∈T

Ex[G(Xτ )] = sup
τ∈T

Elog(x)[G
Y (Yτ )].

We approach the problem based on Y instead of the problem X. Let τYA =
inf{t ≥ 0 : Yt ∈ A}, for any interval A and note that

Ex[G(Xτ[b,λ/2]
)] = Elog(x)[G

Y (YτY
[log(b),log(λ/2)]

)]
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For y < log(b) < log(λ
2
) we have

Ey[GY (YτY
[log(b),log(λ/2)]

)] = λEy[e
Y
τY
[log(b),log(λ/2)] ]− Ey[e

2Y
τY
[log(b),log(λ/2)] ]

= 5
6
ey/2(3

2
λb

1
2 − 3b

3
2 + 2λ−1b

5
2 )

≡ R(b)ey/2.

Let
R̃(b̄) ≡ R(b̄2) = 5

6
(3

2
λb̄− 3b̄3 + 2λ−1b̄5)

Then optimizing R(b) for b ∈ (0, λ/2] corresponds to optimizing R̃(b̄) for
b̄ ∈ (0,

√
λ/2] with b = b̄2.

R̃′(b̄) = 5
6
(3

2
λ− 9b̄2 + 10λ−1b̄4)

and thus the critical points of R̃ are b̄ = ±
√
λ(9±

√
21)/20. We wish to opti-

mize R̃ over (0,
√
λ/2], and since−

√
λ(9±

√
21)/20 < 0 and

√
λ(9 +

√
21)/20 >√

λ/2, and R̃(b) → ∞ for b → ∞, then R̃ is maximized over (0,
√
λ/2] by

b̄ =
√
λ(9−

√
21)/20 =

√
λq. And thus, R is maximized over (0, λ/2] by

a = log(λq).
We guess that τY

[log(λq),log(
λ
2

)]
is optimal and compute the corresponding

value function V̄λ(y) ≡ Elog(x)[G
Y (YτY

[log(λq),log(λ/2)]
)]

V̄λ(y) =


R(log(λq))ey/2 if y < log(λq),

GY (y) if y ∈ [log(λq), log(λ
2
)],

GY (log(λ
2
)) = λ2

4
if y > log(λ

2
).

(3.16)

Notice that V̄λ ≥ G, which is the first crucial requirement for V̄λ to be the
value function.

For F differentiable from the right in y, and the following integral well
defined let

AF (y) = −dF ′(y) +

∫ ∞
0

(F (y + z)− F (y))ναe−αzdz.

V̄λ(y) is constant for y ≥ log(λ
2
) and thus AV̄λ(y) = 0 for y ≥ log(λ

2
).
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For y ∈ [log(λq), log(λ
2
)] it holds that

AV̄λ(y) = −dV̄ ′λ(y) +

∫ ∞
0

(V̄λ(y + z)− V̄λ(y))ναe−αzdz

= −2ν
5

(λey − 2e2y) +

∫ log(
λ
2

)−y

0

GY (y + z)ναe−αzdz

+

∫ ∞
log(

λ
2

)−y
GY (log(λ

2
))ναe−αzdz − (λey − e2y)ν

= νey

10λ
[λ2 − 12λey + 20e2y].

This is non-positive for ey ∈ [λ/10, λ/2]. Notice that [λq, λ/2] ⊂ [λ/10;λ/2].
We then have AV̄λ(y) ≤ 0 for y ∈ [log(λq), log(λ/2)].

For y < log(λq) it holds that

AV̄λ(y) = −2
5
νR(log(λq))1

2
ey/2 +

∫ log(λq)−y

0

R(log(λq))e(y+z)/2ναe−αzdz

+

∫ log(
λ
2

)−y

log(λq)−y
(λey+x − e2(y+z))ναe−αzdz

+

∫ ∞
log(

λ
2

)−y

λ2

4
ναe−αzdz −R(ā)νey/2 = 0.

Then notice that

V̄λ(Yt) = V̄λ(y)− d
∫ t

0

V̄ ′λ(Ys)1(Ys 6=ā)ds+

∫ t

0

(V̄λ(Ys)− V̄λ(Ys−))dNs

= V̄λ(y) +

∫ t

0

AV̄λ(Ys−)ds+Mt,

where

Mt =

∫ t

0

(V̄λ(Ys)− V̄λ(Ys−))dNs −
∫ t

0

∫ ∞
0

(V̄λ(Ys− + z)− V̄λ(Ys−))ναeαzdzds

is a martingale since V̄λ is bounded (follows from e.g. [11]). Then for any
τ ∈ T

Ey[GY (Yτ )] = Ey[lim inf
t→∞

GY (Yτ∧t)]

≤ Ey[lim inf
t→∞

V̄λ(Yτ∧t)]

≤ lim inf
t→∞

Ey[V̄λ(Yτ∧t)]

= lim inf
t→∞

Ey[V̄λ(y) +

∫ τ∧t

0

AV̄λ(Ys−)ds+Mτ∧t]

≤ V̄λ(y) + lim inf
t→∞

Ey[Mτ∧t] = V̄λ(y).
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Since V̄λ is the value from choosing τY[log(λq),log(λ/2)], then V̄λ is the value func-
tion for (??). Vλ(x) = V̄λ(log(x)) and τ[λq,λ/2] is optimal for (3.5).

When the process, X, starts in x < λq then τ[λq,λ/2]
a.s.
= τ(λq,λ/2] (see e.g.

[9] Lemma 49.6), and continuous fit is easily verified from (3.16)

Eλq[G(Xτ[λq,λ/2]
)] = V̄λ(λq) = lim

x↑λq
V̄λ(x) = Eλq[G(Xτ(λq,λ/2]

)].

Thus the two stopping times τ(λq,λ/2] and τ[λq,λ/2] are equally good.

Lemma 3.4.3. Let Y be given from (3.15) and let X = eY . Consider the
problem of (3.7).

For M ≥ F1(q)√
q
x let λ(M,x) = M2x−1F2(q)−2. Then τ[λ(M,x)q,λ(M,x)/2) is

an optimal stopping time and

inf
τ :Ex[Xτ ]=M

Ex[X2
τ ] = x−1M3κ.

For M ∈ (x, F1(q)√
q
x), let U be a random variable independent of X and

taking values in {0, 1} with

P(U = 1) = p(M) =

F1(q)√
q
−Mx−1

F1(q)√
q
− 1

. (3.17)

Then (1− U)τ(x,x(2q)−1] is an optimal stopping time and

inf
τ :Ex[Xτ ]=M

Ex[X2
τ ] = x2p(M) + x2q−2/3F2(q)(1− p(M)).

Remark 3.4.1. (1 − U)τ(x,x(2q)−1] is a randomized stopping time as known
from e.g. [1] and [10].

Proof. Let τ ∗λ be optimal to the classical optimal stopping problem of Propo-
sition 3.4.2. Given, x < M we wish to find a λ(M,x) such that (3.6) is
fulfilled. From Proposition 3.4.2 it follows that τ ∗λ = τ[λq,λ/2] is optimal to
the quadratic classical optimal stopping problem (3.5). Thus, (3.6) can be
obtained if x < λ(M,x)q and

M =
√
x
√
λ(M,x)F1(q)⇔

λ(M,x) =
M2

x(F1(q))2
. (3.18)

Notice that the requirement x ≤ λ(M,x)q corresponds to

M ≥ F1(q)
√
q
x ≈ 1.17x.
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Thus, if M ≥ F1(q)√
q
x, then λ(M,x) of (3.18) and τ ∗λ = τ[λ(M,x)q,λ(M,x)/2] fulfil

the two requirements.
For M ∈ (x, F1(q)√

q
x) take λ(M,x) = x/q, then both τ[x,x(2q)−1)] = 0 and

τ(x,x(2q)−1] are optimal for (3.5). Let p(M) and U be given from the statement
of the lemma. Define τ ∗λ(M,x) = 1(U=0)τ(x,x(2q)−1]. Then

Ex[G(Xτ∗
λ(M,x)

)] = Ex[G(X0)]p(M) + Ex[G(Xτ(x,x(2q)−1]
)](1− p(M))

= Vλ(M,x)(x)p(M) + Vλ(M,x)(x)(1− p(M)) = Vλ(M,x)(x),

so τ ∗λ(M,x) is optimal for (3.5). Besides

Ex[Xτ∗
λ(M,x)

] = Ex[X0]p(M) + Ex[Xτ(x,x(2q)−1]
](1− p(M))

= x

F1(q)√
q
−Mx−1

F1(q)√
q
− 1

+ F1(q)√
q
x
Mx−1 − 1
F1(q)√

q
− 1

= M.

Thus τ ∗λ(M,x) fulfill both of the two requirements and thus is optimal for (3.7).
For M ≥ F1(q)√

q
x

inf
τ :Ex[Xτ ]=M

Ex[X2
τ ] = Ex[X2

τ∗
λ(M,x)

]

=
√
x(λ(M,x))

3
2F2(q)

= x−1M
3F2(q)

(F1(q))3
≡ x−1M3κ.

and for M ∈ (x, F1(q)√
q
x) then

inf
τ :Ex[Xτ ]=M

Ex[X2
τ ] = Ex[X2

τ∗
λ(M,x)

]

= Ex[X2
0 ]p(M) + Ex[X2

τ(x,x(2q)−1]
](1− p(M))

= x2p(M) + (
√
xλ(M,x)3/2F2(q))(1− p(M))

= x2p(M) + x2q−3/2F2(q)(1− p(M))

Proof of Theorem 3.4.1:
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We have

V (x) = sup
M≥x

(M + cM2 − c inf
τ :Ex[Xτ ]=M

Ex[X2
τ ])

= sup

M≥
F1(q)√

q
x

(
M + cM2 − cx−1κM3

)
∨ x

∨ sup

M∈(x,
F1(q)√

q
x)

(
Ex[Xτ∗(y,M)]− cVx[Xτ∗(M,x)]

)
,

where τ ∗(M,x) is the randomized optimal stopping time of Lemma 3.4.3
for when M ∈ (x, F1(q)√

q
). However, it holds in general that the mixture of

two stopping times cannot solve the mean-variance problem. If we have two
stopping times τ1 and τ2 and let U ∈ {0, 1} be a random variable independent
of X and with P(U = 1) = p ∈ (0, 1), and define τ = τ1U + τ2(1− U), then

E[Xτ ]− cV[Xτ ] = (E[Xτ1 ]− cV[Xτ1 ]) p+ (E[Xτ2 ]− cV[Xτ1 ]) (1− p)
− cp(1− p)

(
E[Xτ1 ]2 + E[Xτ2 ]2

)
.

Thus either τ1 or τ2 is strictly better than τ . Let

H(M) = M + cM2 − cx−1 F2(q)

(F1(q))3
M3.

Then

Ex[Xτ∗(y,M)]− cVx[Xτ∗(y,M)] ≤ p(M)x+ (1− p(M))H(F1(q)√
q
x)

≤ max{x,H(F1(q)√
q
x)},

and then

V (x) = sup

M≥
F1(q)√

q
x

H(M) ∨ x.

H ′ is a concave second order polynomial. The larger root of H ′(M) = 0 is

M+ = x
1

3κ

(
1 +

√
1 + 3

c
x−1κ

)
(3.19)

(3.20)

and the smaller root is negative. H(M) converges to −∞ when M converges
to infinity. Thus, if M+ ≤ F1(q)√

q
x then the supremum of H(M) over M ≥
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xF1(q)√
q

is H(F1(q)√
q
x) and if M+ ≥ F1(q)√

q
x then the supremum of H(M) over

M ≥ xF1(q)√
q

is H(M+). From the expression of M+ in (3.19) we find that

M+ > F1(q)√
q
x⇔

cx <
(

3 F2(q)
qF1(q)

− 2F1(q)√
q

)−1

(≈ 0.46). (3.21)

Besides

H(M+) =
x

3κ
(1 +

√
1 + 3κ

cx
x−1) + c(

x

3κ
(1 +

√
1 + 3κ

cx
))2

− cx−1κ(
x

3κ
(1 +

√
1 + 3κ

cx
))3

= (
x

3κ
)2[3κx−1 + 2

3
c+ (2κx−1 + 2

3
c)
√

1 + 3κ
cx

].

Now, we must only relate the two values H(M+) and H(xF1(q)√
q

) to x. First

compare x to H(xF1(q)√
q

).

x ≤ H(xF1(q)√
q

)⇔

x ≤ (xF1(q)√
q

) + c(xF1(q)√
q

)2 − cκx−1(xF1(q)√
q

)3 ⇔

cx ≤
F1(q)√

q
− 1

F2(q)
q
√
q
− (F1(q)√

q
)2

(≈ 0.424) (3.22)

Then compare x to H(M+).

x ≤ H(M+) (3.23)

9κ2 ≤ 3κ+ 2
3
xc+ (2κ+ 2

3
xc)
√

1 + 3κ
cx

Let w =
√

1 + 3κ/(cx). Then w > 1 and (3.23) corresponds to

0 ≤ 2w3 + (3− 9κ)w2 + 9κ− 1 (3.24)

Solving this numerically it is found that (3.23) corresponds approximately to
cx /∈ (0.426, 2.59). Combining this with (3.22) and (3.21) we get

V (x) =

{
H(M+) cx ≤ b∗,

x cx ≥ b∗.
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where b∗ = 3κ
w2

+−1
≈ 0.426 and w+ is the highest root in (3.24). Therefore, we

find the optimal stopping times τ ∗(x)

τ ∗(x) =

{
τ[λ̄(x)q,λ̄(x)/2)] cx ≤ b∗,

0 cx ≥ b∗,

with

λ̄(x) = λ(M+, x) =
M2

+

xF1(q)2
=
x(1 +

√
1 + 3κ

cx
)

9κF1(q)2
.

2

From Proposition 3.4.2 we deduce

Proposition 3.4.4. Let Y be given from (3.15) and let X = eY . Then the
optimal stopping times of Lemma 3.4.3 are also optimal for the conditional
variance problem (3.2).

Proof. Let
F (β) = inf

τ :Ex[Xτ ]=β
(E[X2

τ ]− β2)

Then, for β ≥ xF1(q)√
q

we have F (β) = x−1β3κ− β2 and

F ′(β) = 3x−1β2κ− 2β ≥ β(3κF1(q)√
q
− 2) > 0.

For β ∈ [x, xF1(q)√
q

) then F (β) = x2p(β) + x2q−3/2F2(q)(1− p(β))− β2 and

F ′(β) = −x 1
F1(q)√

q
− 1

+ x
q−3/2F2(q)
F1(q)√

q
− 1

− 2β

≥ x
F1(q)√

q
− 1

(
q−3/2F2(q)− 1− 2(F1(q)√

q
− 1)

)
> 0.

It is easily verified that F is continuous on [x,∞), and thus the infimum of
F over [M,∞) is obtained for β = M . Therefore

inf
τ :Ex[Xτ ]≥M

Vx[Xτ ] = inf
β≥M

(
inf

τ :Ex[Xτ ]=β
(E[X2

τ ]− β2)

)
= inf

τ :Ex[Xτ ]=M
E[X2

τ ]−M2,

and it follows that the optimal stopping time of Lemma 3.3.3 is also optimal
for the conditional variance problem.
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It is interesting that for M ∈ (ey, F1(q)√
q

) the optimal stopping time we
derive is a randomized stopping time. The randomized solutions we know
from maximizing variance [2], but it is remarkable that even though we saw
in the proof of Theorem 3.4.1 that the randomization between two stopping
times can never be optimal for the mean-variance problem, they may still be
optimal for the conditional variance problem when the traditional solutions
do not work.

It would be interesting to expand the solution to the mean-variance prob-
lem to include general geometric Lévy processes with upwards jumps. How-
ever, this is particularly difficult because we believe that whenever the prob-
lem has an optimal stopping time, this is in general a hitting time of an
interval. If it is always possible to find a solution to (3.5) and (3.6) by
including randomized stopping times when necessary, then the optimal stop-
ping time to the mean-variance problem for geometric spectrally negative
Lévy processes is found among solutions to the classical quadratic problem
of (3.5). Thus, the solution is found among solutions to an optimal stopping
problem with a gain function which is a concave second order polynomial.
It seems likely that the solution to this auxiliary classical optimal stopping
problem has a stopping region as an interval around the maximum.

Another reason to expect the solution to be an interval is illustrated
through the following example. Let X be a random variable and define
another random variable Z = X1A+x1Ac , where x is a real number. Consider
the problem of choosing x so to maximize E[Z]− cV ar[Z] for some given c.
The best choice is never to choose x as high as possible. For high enough
values of x the cost from the variance will be higher than the gain from the
mean. This is seen from

E[Z]− cV ar[Z] = E[X]P (A)− cE[X2]P (A) + cE[X]2P (A)2

− x2cP (Ac)P (A) + xP (Ac)(1 + c2E[X]P (A)).

The processes for which the mean-variance problem is interesting all con-
verge to 0. Thus it is always possible to get a lower value by waiting. The
calculations above motivates that if the gain is set on some event A, the ideal
stopping time on Ac is not to get as high a gain as possible.

3.5 Dynamic Optimization
One of the drawbacks of the mean-variance problem is that it is not time
consistent. For this reason it is in [7] suggested to instead look at the corre-
sponding dynamic optimal stopping problem. For the corresponding dynamic
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problem we search for a stopping time τ∗ ∈ T such that there is no other
stopping time σ ∈ T with

Px(EXτ∗ [Xσ]− cVXτ∗ [Xσ] > Xτ∗) > 0. (3.25)

When the solution to the traditional (static) optimal stopping problem is
known, it is easy to deduce the solution to the corresponding dynamic prob-
lem. For the mean-variance problem we get the following result

Corollary 3.5.1. Assume Y is spectrally negative and define φ(0) from Y .
Consider the dynamic mean-variance problem (3.25).

a) If φ(0) = 0, then it is never optimal to stop.

b) If φ(0) ∈ (0, 1), then it is optimal to stop by τ+
b∗c
, where b∗c is as defined

in Theorem 3.3.1

c) If φ(0) ≥ 1, then it is optimal to stop right away.

Assume Y is given from (3.15) and let X = eY with X0 = x = ey. Consider
the dynamic mean-variance problem (3.25). Let bx be given as in Theorem
3.4.1, then τ+

[bx,∞] is an optimal stopping time.



56 CHAPTER 3. MEAN-VARIANCE OPTIMAL STOPPING



References for Chapter 3

[1] Baxter J. R. and Chacon, R. V. (1977). Compactness of Stopping
Times. Probab Theory Relat Fields 40, 169–181.

[2] Gad, K. S. T. and Pedersen, J. L. (2015). Variance Optimal Stop-
ping for Geometric Lévy Processes. Adv Appl Probab To appear.

[3] Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of
Lévy Processes with Applications. Springer.

[4] Markowitz, H. M. (1952). Portfolio selection. J Financ 7, 77–91.

[5] Mikosch, T. (2004). Non-Life Insurance Mathematics. Springer.

[6] Pedersen, J. L. (2011). Explicit solutions to some optimal variance
stopping problems. Stoch 83, 505–518.

[7] Pedersen, J. L. and Peskir, G. (2012). Optimal Mean-Variance
Selling strategies. Research Report No. 12, 2012, Probab. Statist. Group
Manchester .

[8] Peskir, G. and Shiryaev, A. N. (2006). Optimal Stopping and Free-
Boundary Problems. Birkhäuser.

[9] Sato, K. I. (2002). Lévy Processes and Infinitely Divisible Distributions.
Cambridge University Press.

[10] Shiryaev, A. N. (1978). Optimal Stopping Rules. Springer.

[11] Øksendal, B. and Sulem, A. (2007). Applied Stochastic Control of
Jump Difusions. Springer.

57



58 REFERENCES FOR CHAPTER 3



4. Rationality Parameter for
Exercising American Put

Kamille Sofie Tågholt Gad, Jesper Lund Pedersen

Abstract

In this paper, irrational exercise behavior of the buyer of an American put
is characterized by a single parameter. We model irrational exercise rules
as the first jump time of a point processes with stochastic intensity. By
the rationality parameter, we parameterize a family of stochastic intensities
that depends on the value of the put itself. We then give a probabilistic
proof that the value of the put using the irrational exercise rule converges
to the arbitrage-free price as the rationality parameter converges to infinity.
Another application of this result, is the penalty method for approximating
the price of an American put.

Keywords: Behavioural modelling; Optimal stopping; Partial differential
equation; Penalty method.

4.1 Introduction
The buyer of an American put can exercise at any time of his choice within
the time of the contract. The arbitrage-based theory for the pricing of the
American put is formulated as an optimal stopping problem (see Karatzas
& Shreve [8]), where the optimal stopping time is an optimal exercise rule
for the buyer of the American put. The buyer’s exercise behaviour is called
optimal (in this paper) if he follows the rules of the optimal exercise strategy.
Empirical studies in Diz & Finucane [5] and Poteshman & Serbin [10] show
that there are a large number of irrational exercises. The irrational exercises
may have various reasons. For example, the irrationality may be due to
that the buyer does not have the correct input for the model, he does not
monitor his position sufficiently, or he holds the American put as part of a
hedge where it might not be optimal to apply the optimal exercise rule. The
irrational exercises might then tend to cause over-valuation of the American
put.

In the present paper we develop a methodology that takes irrational ex-
ercise behaviour into consideration. We use an intensity-based model in

59
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which the exercise rule is modelled as the first jump of a point process with
stochastic intensity. We let the exercise intensity depend on the endogenous
parameter of how profitable it is to exercise. This profitability we measure as
the difference between the pay-off and the value of the put if it is not exercised
yet. In line with the game-theoretical approach of irrational decision making
(see e.g. Chen et al. [3]), we characterize the rationality of the buyer of the
American put by a parameter. This parameter measures how strongly the
exercise intensity is affected by the profitability, and for that reason we de-
note it the rationality parameter. The main contribution of the present paper
is a probabilistic proof of the following convergence result: Under mild and
reasonable restrictions the price of the put under the intensity-based model
converges to the classical arbitrage-free price when the rationality parameter
converges to infinity. This proof breaks down the price of the put under the
intensity-based model into the arbitrage-free price and losses coming from
respectively exercising when it is not optimal and not exercising when it is
optimal.

An intensity based approach has been used for valuation of executive stock
options by e.g. Jennergren & Naslund [7] and by Carr & Linetsky [2]. In the
latter paper the intensity of exercising depends on time and the underlying
stock. Dai et al. [4] model the mortgagor’s prepayment in mortgage loans
and the issuer’s call in the American warrant as an event risk where the
intensity of prepayment or calling depends on the value and may be view
as one of the examples in this paper. Moreover, as also pointed out by Dai
et al. [4] the valuation equations may be viewed as the penalty method (see
Forsyth & Vetzal [6]) for approximating the value of the American put.

The paper is structured in the following way. In Section 4.2, we introduce
the rationality parameter for exercising the put and show the convergence
result that the value of the put under irrational exercise conferges to the
arbitrage-free price when the rationality parameter converges to infinity. In
Section 4.3, we derive valuation equations for the put under the exercise
strategies considered in Section 4.2 and we set up sufficient conditions for
the strategies in Section 4.2 to be well defined.

4.2 Rationality Parameter for Exercising
We assume a Black-Scholes market where the underlying stock price satis-
fies the stochastic differential equation (under the risk-neutral probability
measure)

dSu = rSu du+ σSu dWu



4.2. RATIONALITY PARAMETER FOR EXERCISING 61

for u ≥ t with St = s under Pt,s. Here r is a constant interest rate, σ > 0 is
a constant volatility, and W is a Brownian motion.

Consider an American put with strike price K and maturity date T ,
written on the stock and thus the payoff process is given by (K − St)+. The
arbitrage-free value, PA, of the American put is given as an optimal stopping
problem

PA(t, s) = sup
t≤τ≤T

Et,s[e−r(τ−t)(K − Sτ )+]

= Et,s[e−r(τ
∗−t)(K − Sτ∗)+]

where the supremum is taken over all exercise rules (stopping times) with
values in [t, T ]. Furthermore, there is an optimal exercise rule τ ∗ for which the
supremum is attained. This optimal exercise rule has a stopping boundary
b(·) such that it is given by

τ ∗ = inf{t ≤ u ≤ T : Su ≤ b(u)}.

We define irrational exercise rules τ , as the minimum of first jump time of a
point process with stochastic intensity (µu)t≤u≤T (see Bremaud [1]) and the
terminal time T . The value of the American put exercising at time τ is given
by

P (t, s; τ) = Et,s[e−r(τ−t)(K − Sτ )+].

We wish to model that despite the holder of the American put does not
exercise according to the optimal exercise strategy, then whether he exercises
the option is at any time affected by how profitable it is to exercise. The
profitability we measure as the difference between the pay-off and the value
of the put if he does not exercise immediately. Thus, for exercise strategy τ
the profitability at time t is given by (K − St)+ − P (t, St, τ). The relation
between the profitability and the stochastic exercise intensity is given by an
intensity function, f : [−K,K]→ [0,∞) by

µu = f
(
(K − Su)+ − P (u, Su; τ)

)
.

For modelling purposes it is reasonable to require the function f to be in-
creasing. Conditions on f for the circular definition to by well defined are
given is Section 4.3.

We now introduce a single, strictly positive parameter, θ, that measures
how rational the behaviour of the holder of the put is. This is done in the
following way: We let θ be the index of a family of intensity functions, f θ
and thereby a family of exercise strategies, τ θ. We wish the corresponding
values of the put converge to the arbitrage-free price when the parameter θ
converges to infinity. This gives us the definition
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Definition 4.2.1. Let (τ θ)θ>0 be a family of irrational exercise rules indexed
by θ > 0 and denote the corresponding values by

P θ(t, s) = P (t, s; τ θ).

We say θ is a rationality parameter for exercising if P θ(t, s) → PA(t, s) for
θ →∞.

In the case that the exercise intensity depends of the value of the put
itself,

Theorem 4.2.1 below is the main result of this paper. It gives sufficient
conditions for an index of a family of intensity functions to be a rationality
parameter. The proof consists of a probabilistic analysis of the exercise
strategies. The key idea is to define events that categorize how profitable an
exercise strategy turn out to be upon exercise. Given some tolerance, ε1 > 0,
we use the following definition

{τ good} = {(K − Sτ )+ − P (τ, Sτ ; τ) ≥ 0}
{τ ok} = {(K − Sτ )+ − P (τ, Sτ ; ) ∈ [−ε1, 0)}
{τ bad} = {(K − Sτ )+ − P (τ, Sτ ) < −ε1}.

Theorem 4.2.1. Let (f θ)θ>0 be a family of positive, deterministic intensity
functions and for each θ > 0, let a stochastic intensity process be given by

µθu = f θ
(
(K − Su)+ − P θ(u, Su)

)
where P θ(t, s) = P (t, s; τ θ) and τ θ is the strategy of the put exercised at the
first jump of the point process with intensity µθ.

Let νθ(x) = 1(x<0) supy≤x f
θ(y) + 1(x≥0) supy≥x f

θ(y) and suppose that

• νθ(0+)→∞ as θ →∞.

• There exists a function ε : (0,∞) → (0,∞) such that νθ(−ε(θ)) → 0
and ε(θ)νθ(0−)→ 0 as θ →∞.

Then θ is a rationality parameter, that is, for every (t, s) ∈ [0, T ] × R+ we
have that P θ(t, s)→ PA(t, s) as θ →∞.

Remark 4.2.1. If we include the natural restriction that that f θ is increas-
ing, then f θ = νθ.

Proof. 1. Let τ θn be the sequence of jump times of the point process with the
stochastic intensity process µθ. Note that τ θ1 = τ θ. Let τ̂ θ be the minimum
of T and the first jump time after the rational exercise rule τ ∗, that is,

τ̂ θ =
∞∑
i=1

τ θi 1(τθi−1<τ
∗≤τθi )
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with τ θ0 = t under Pt,s. The value of the put exercising at this jump time

P (t, s; τ̂ θ) = Et,s
[
e−r(τ̂

θ−t)(K − Sτ̂θ)+
]

=
∞∑
i=1

Et,s
[
e−r(τ

θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )

]
. (4.1)

The strategy τ̂ θ corresponds to the strategy τ θ where we have removed
the chance of the holder of the put exercising to early. Studying τ̂ θ we may
separate the loss from exercising to early from the loss of exercising too late.

We first study the loss of exercising too early. The overall idea of this
part is the following. The starting point is the representation of P (t, s; τ̂ θ)
from (4.1). Through the representation (4.1) it follows that the strategy τ̂ θ
corresponds to the strategy τ θ, except each time there is a jump in the point
process before τ ∗ the holder of the put regrets and do not exercise. At each
time of regret the holder looses some value if the exercise time was good, and
he gains at most ε1 if the exercise time was ok, and if the exercise time was
bad then he gains more that ε1. As the exercise intensity in times which are
ok or bad are sufficiently restricted, then the expected value one gains from
exercising at a time which is ok may be made arbitrarily small by using a
small ε1. No matter when the exercise is one cannot gain more than K on an
exercise, and given an arbitrary ε1 the intensity for exercising at bad times
can be made uniformly arbitrarily small by choosing a large θ. Then the gain
from regretting the exercises when τ is bad can be made arbitrarily small.

2. We verify the following inequality. For given ε1 > 0 and n ∈ N then

P θ(t, s) ≥ Et,s[e−r(τ
θ
n−t)P θ(τ θn, Sτθn)1((τθn<τ

∗)1((τθj good or ok)j=1,...,n)]

+
n∑
i=1

Et,s[e−r(τ
θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )1((τθj good or ok)j=1,...,i−1)]

− ε1

n∑
i=1

Pt,s(τ θi < τ ∗, (τ θj good or ok)j=1,...,i−1, τ
θ
i ok). (4.2)
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We show this by induction. For n = 1 we have that

P θ(t, s) = Et,s[e−r(τ
θ
1−t)(K − Sτθ1 )+1(τθ1<τ

∗)] + Et,s[e−r(τ
θ
1−t)(K − Sτθ1 )+1(τ∗≤τθ1 )]

≥ Et,s[e−r(τ
θ
1−t)(K − Sτθ1 )+1(τθ1<τ

∗)1(τθ1 good)]

+ Et,s[e−r(τ
θ
1−t)(K − Sτθ1 )+1(τθ1<τ

∗)1(τθ1 ok)]

+ Et,s[e−r(τ
θ
1−t)(K − Sτθ1 )+1(τ∗≤τθ1 )]

≥ Et,s[e−r(τ
θ
1−t)P θ(τ θ1 , Sτθ1 )1(τθ1<τ

∗)1(τθ1 good)]

+ Et,s[e−r(τ
θ
1−t)(P θ(τ θ1 , Sτθ1 )− ε1)1(τθ1<τ

∗)1(τθ1 ok)]

+ Et,s[e−r(τ
θ
1−t)(K − Sτθ1 )+1(τ∗≤τθ1 )]

= Et,s[e−r(τ
θ
1−t)P θ(τ θ1 , Sτθ1 )1(τθ1<τ

∗)1(τθ1 good or ok)]

− ε1Et,s[e−r(τ
θ
1−t)1(τθ1<τ

∗)1(τθ1 ok)]

+ Et,s[e−r(τ
θ
1−t)(K − Sτθ1 )+1(τ∗≤τθ1 )]

≥ Et,s[e−r(τ
θ
1−t)P θ(τ θ1 , Sτθ1 )1(τθ1<τ

∗)1(τθ1 good or ok)]

− ε1Pt,s(τ θ1 < τ ∗, τ θ1 ok)

+ Et,s[e−r(τ
θ
1−t)(K − Sτθ1 )+1(τ∗≤τθ1 )]

We assume that the inequality is true for n. Then we have that

Et,s[e−r(τ
θ
n−t)P θ(τ θn, Sτθn)1(τθn<τ

∗)1((τθj good or ok)j=1,...,n)]

= Et,s[e−r(τ
θ
n−t)Et,s[e−r(τ

θ
n+1−τθn)(K − Sτθn+1

)+|τ θn, Sτθn ]1(τθn<τ
∗)1((τθj good or ok)j=1,...,n)]

= Et,s[e−r(τ
θ
n+1−t)(K − Sτθn+1

)+1(τθn<τ
∗)1((τθj good or ok)j=1,...,n)]

≥ Et,s[e−r(τ
θ
n+1−t)(K − Sτθn+1

)+1(τθn+1<τ
∗)1((τθj good or ok)j=1,...,n)1(τθn+1 good)]

+ Et,s[e−r(τ
θ
n+1−t)(K − Sτθn+1

)+1(τθn+1<τ
∗)1((τθj good or ok)j=1,...,n)1(τθn+1 ok)]

+ Et,s[e−r(τ
θ
n+1−t)(K − Sτθn+1

)+1(τθn<τ
∗≤τθn+1)1((τθj good or ok)j=1,...,n)]

≥ Et,s[e−r(τ
θ
n+1−t)P θ(τ θn+1, Sτθn+1

)1(τθn+1<τ
∗)1((τθj good or ok)j=1,...,n)1(τθn+1 good)]

+ Et,s[e−r(τ
θ
n+1−t)(P θ(τ θn+1, Sτθn+1

)− ε1)1(τθn+1<τ
∗)1((τθj good or ok)j=1,...,n)1(τθn+1 ok)]

+ Et,s[e−r(τ
θ
n+1−t)(K − Sτθn+1

)+1(τθn<τ
∗≤τθn+1)1((τθj good or ok)j=1,...,n)]

= Et,s[e−r(τ
θ
n+1−t)P θ(τ θn+1, Sτθn+1

)1(τθn+1<τ
∗)1((τθj good or ok)j=1,...,n+1)]

− ε1Et,s[e−r(τ
θ
n+1−t)1(τθn+1<τ

∗)1((τθj good or ok)j=1,...,n)1(τθn+1 ok)]

+ Et,s[e−r(τ
θ
n+1−t)(K − Sτθn+1

)+1(τθn<τ
∗≤τθn+1)1((τθj good or ok)j=1,...,n)].
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Thus, using the induction assumption we find

P θ(t, s) ≥ Et,s[e−r(τ
θ
n−t)P θ(τ θn, Sτθn)1(τθn<τ

∗)1((τθj good or ok)j=1,...,n)]

+
n∑
i=1

Et,s[e−r(τ
θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )1((τθj good or ok)j=1,...,i−1)]

− ε1

n∑
i=1

Pt,s(τ θi < τ ∗, (τ θj good or ok)j=1,...,i−1, τ
θ
i ok)

≥ Et,s[e−r(τ
θ
n+1−t)P θ(τ θn+1, Sτθn+1

)1(τθn+1<τ
∗)1((τθj good or ok)j=1,...,n+1)]

+
n+1∑
i=1

Et,s[e−r(τ
θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )1((τθj good or ok)j=1,...,i−1)]

− ε1

n+1∑
i=1

Pt,s(τ θi < τ ∗, (τ θj good or ok)j=1,...,i−1, τ
θ
i ok).

Hence we have shown inequality (4.2).
3. Now we investigate the second term in (4.2)

n∑
i=1

Et,s[e−r(τ
θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )1((τθj good or ok)j=1,...,i−1)]

=
n∑
i=1

Et,s[e−r(τ
θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )]

−
n∑
i=1

Et,s[e−r(τ
θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )1(∃j∈{1,...,i−1}:τθj bad)]

≥
n∑
i=1

Et,s[e−r(τ
θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )]

−K
n∑
i=1

Pt,s(τ θi−1 < τ ∗ ≤ τ θi ,∃j ∈ {1, . . . , i− 1} : τ θj bad)

≥
n∑
i=1

Et,s[e−r(τ
θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )]−KPt,s(∃i ∈ N : τ θi < τ ∗, τ θi bad)

≥
n∑
i=1

Et,s[e−r(τ
θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )]−K(1− e−(T−t)νθ(−ε1)).

Note that given ε1 > 0 the latter term can be made arbitrarily small by
choosing θ large. This means that with large θ there is small probability



66 CHAPTER 4. AMERICAN PUT

that the option with price P (t, s; τ̂ θ) has an exercise time which contains
regrets of bad jump times.

Next we investigate the third term in (4.2)

n∑
i=1

Pt,s(τ θi < τ ∗, (τ θj good or ok)j=1,...,i−1, τ
θ
i ok)

≤ Et,s(]{i ∈ N : τ θi < τ ∗, τ θi ok})
≤ (T − t)νθ(0−).

The latter inequality follows from that the ok jump times at most occur
with intensity νθ(0−) in the time until T . This shows that the expected
number of regrets of ok stopping times for the exercise time of the option
with price P (t, s; τ̂ θ) is uniformly bounded with respect to ε1. Therefore the
contribution from here can be made arbitrarily small by making ε1 small,
as ε1 is then an upper bound for the contribution for every regret of an ok
stopping time. Combined we get:

P θ(t, s) ≥
n∑
i=1

Et,s[e−r(τ
θ
i −t)(K − Sτθi )+1(τθi−1<τ

∗≤τθi )]

−K(1− e−(T−t)νθ(−ε1))− ε1(T − t))νθ(0−).

As this holds for all n ∈ N we find

P θ(t, s)− P (t, s; τ̂ θ) ≥ −K(1− e−(T−t)νθ(−ε1))− ε1(T − t)νθ(0−)

4. We now investigate the losses from too late exercise. Let

σε2 = inf{u ≥ τ ∗ : |(K − Su)+e−r(u−t) − (K − Sτ∗)+e−r(τ
∗−t)| ≥ ε2},

and let

Cε2 = {u ∈ [τ ∗, σε2 ]|(K − Su)+ − PA(u, Su) = 0}
= {u ∈ [τ ∗, σε2 ]|Su ≤ yu}.

Let L denote the Lebesgue measure. As the rational exercise boundary u 7→
b(u) is increasing and Su is a geometric Brownian motion, then L(Cε2) > 0
almost surely for every ε2 > 0. Hence for every ε2, ε3 > 0 there exists a δ ≥ 0
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such that Pt,s(L(Cε2) > δ) > 1− ε3. Now we get

PA(t, s)− P (t, s; τ̂ θ) = Et,s[e−r(τ
∗−t)(K − Sτ∗)+ − e−r(τ̂θ−t)(K − Sτ̂θ)+]

= Et,s[(e−r(τ
∗−t)(K − Sτ∗)+ − e−r(τ̂θ−t)(K − Sτ̂θ)+)1τ̂θ≤σε2 ]

+ Et,s[(e−r(τ
∗−t)(K − Sτ∗)+ − e−r(τ̂θ−t)(K − Sτ̂θ)+)1τ̂θ>σε2 ]

≤ ε2 +KPt,s(τ̂ θ > σε2)

= ε2 +K(Pt,s(τ̂ θ > σε2 ,L(Cε2) > δ) + Pt,s(τ̂ θ > σε2 ,L(Cε2) ≤ δ))

≤ ε2 +K(Pt,s(τ̂ θ > σε2|L(Cε2) > δ) + Pt,s(L(Cε2) ≤ δ))

≤ ε2 +K(e−δνθ(0+) + ε3).

Thus

PA(t, s)−P θ(t, s) ≤ ε2+K(e−δνθ(0+)+ε3)+K(1−e−(T−t)νθ(−ε1))+ε1(T−t)νθ(0−).

Choose ε1 : R+ → R+ such that f θ(−ε1(θ)) → 0 as θ → ∞ and such that
ε1(θ)f θ(0+) → 0 as θ → ∞. Then we find that P θ(t, s) → PA(t, s), when
θ →∞.

4.3 Valuation Equations
In this section, we use the set-up in the previous section to obtaining valua-
tion equations for the put under irrational exercise.

Consider an irrational exercise rule, τ which is given as the first jump time
of a point process with stochastic intensity µu = λ(u, Su) for some positive,
deterministic, measurable function λ. As in the previous section we have
that the value of the put is given by the risk-neutral expectation

P µ(t, s) = Et,s[e−r(τ−t)(K − Sτ )+]

= e−r(T−t)E[(K − ST )+1(τ≥T )] + Et,s[e−rτ (K − Sτ )+1(τ<T )]

By [9, Proposition 3.1], the expectation can be re-written to

P µ(t, s) = e−r(T−t)Et,s
[

exp
(
−
∫ T

t

λ(u, Su) du
)

(K − ST )+
]

+

∫ T

t

e−r(u−t)Et,s
[
λ(u, Su) exp

(∫ u

t

λ(v, Sv) dv
)

(K − Su)+
]
du.

By the Feynman-Kac (see [8]), the value of the put P µ is the solution for the
partial differential equation

P µ
t (t, s) + rsP µ

s (t, s) + 1
2
σ2s2P µ

ss(t, s)

= rP µ(t, s) + λ(t, s)
(
(K − s)+ − P µ(t, s)

)
. (4.3)
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with P µ(T, s) = (K − s)+, whenever this partial differential equation has a
unique solution.

Now, given some intensity function f : [−K,K] → [0,∞) consider the
partial differential equation

pt(t, s) + rsps(t, s) + 1
2
σ2s2pss(t, s)

= rp(t, s) + f
(
(K − s)+ − p(t, s)

)(
(K − s)+ − p(t, s)

)
. (4.4)

with p(T, s) = (K − s)+. If this partial differential equation has a unique
solution, then use this solution to define λ(t, s) = f((K − s)+ − p(t, s)).
Consider (4.3) for this function λ. Now the solution p of (4.4) must fulfill
(4.3). Thus, if the solution to (4.3) is unique, then from the above arguments
we get the following. p is the value of a put which is exercised by a strategy
which is given by the the minimum of T and first jump time of a point
process with intensity µu = λ(t, Su). By the construction of λ we have
µu = f((K − Su)

+ − p(u, Su)). Thus, the existence and uniqueness of the
solutions to (4.3) and (4.4) ensures that the strategies of Section 4.2 are well
defined.

Finally, we suggest two simple specifications of the function f θ given in
Theorem 2.2. In the first example the function is specified as follows

f θ(x) = θeθ
2x.

In the second example the function is specified by

f θ(x) =

{
θ for x ≥ 0

0 for x < 0.

Related to this second function is the penalty method found in recent com-
putational finance literature (see e.g. [6]) which approximate the rational
value of the American by semi-linear PDE (4.3).
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5. Reserve-Dependent Surrender
Kamille Sofie Tågholt Gad, Jeppe Juhl, Mogens Steffensen

Abstract

We study the modelling and valuation of surrender and other behavioural
options in life insurance and pension. We place ourselves in between the
two extremes of completely arbitrary intervention and optimal interven-
tion by the policyholder. We present a method that is based on differential
equations and that can be used to approximate contract values when poli-
cyholders exhibit optimal behaviour. This presentation includes a spec-
ification of sufficient conditions for both consistency of the model and
convergence of the contract values. When not going to the limit in the
approximation we obtain a technique for balancing off arbitrary and op-
timal behaviour in a simple, intuitive way. This leads to our suggestions
for intervention models where one single parameter reflects the extent of
rationality among policyholders. When expenses are taken into account we
loose the duality between the policyholder’s valuation of the contract and
the market reserve. We include this in our model, and we give an upper
bound for the difference between the market reserve when the policyholder
exhibit optimal behaviour and the worst case market reserve from the pen-
sion fund point of view. In a series of numerical examples we illustrate the
impact of the rationality parameter on the contract values.

Keywords: Behavioural option; ordinary differential equation; penalty
method; optimal stopping; Solvency II.

5.1 Introduction
Modern solvency and accounting rules (Solvency II and IFRS) require that
expected policyholder behaviour is taken into account. In Article 79 of the
Solvency II Directive [17] it is stated that

". . .Any assumptions made by insurance and reinsurance undertak-
ings with respect to the likelihood that policy holders will exercise con-
tractual options, including lapses and surrenders, shall be realistic and
based on current and credible information. . . "

71
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It is further stated in Article 26 of Commission Delegated Regulation [16] for
Solvency II that

". . .That analysis shall take into account all of the following:

(a) how beneficial the exercise of the options was and will be to the
policy holders under circumstances at the time of exercising the
option;

(b) the influence of past and future economic conditions; . . . "

In IFRS in B63 [12] it is stated that

". . .The measurement of an insurance contract shall reflect, on an
expected value basis, the entity’s view of how the policyholders in the
portfolio that contains the contract will exercise options available to
them, and the risk adjustment shall reflect the entity’s view of how
the actual behaviour of the policyholders in the portfolio of contracts
may differ from the expected behaviour..."

Thus, the expected policyholder behaviour is supposed to take into ac-
count both the economic conditions under which the behaviour takes place as
well as the extent to which intervention is to the benefit of the policyholder.
These factors may change over time. Therefore, one should properly speak
of dynamic behaviour models when formalizing these effects in the actuarial
valuation formulas. Changing economic conditions could e.g. be a changing
level of interest rates, and one idea would be to let the intensity or probability
of intervention depend on the current (possibly stochastic) level of interest
rates. How beneficial an action is can be formalized by the gain from inter-
vention. Determining the gain may be a delicate issue since both intervening
and not intervening opens up for new intervention options in the future that
also have to be taken into account. E.g., not to surrender typically opens up
for surrendering later, and transcription into free policy changes the effect
of the surrender option. This challenge calls for a recursive solution such
that the gain is always measuring correctly the tendencies of intervening in
the future. We disregard the economic condition by assuming deterministic
interest rates and focus on the latter idea of a recursive formula to deal with
the benefit of intervention. One motivation for this focus is that, perhaps,
the external economic conditions are supposed to approximate to the internal
benefit.

There exists a range of approaches to modelling of behavioural risk. One
extreme is to say that intervention occurs in a completely arbitrary way, like
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insurance risk. We hereby mean that we model the behaviour as indepen-
dent of everything else in our model than the state of the policyholder and
the time measured through calendar time, the policyholder’s age, time since
initiation, or time to (deterministic) retirement. Specifically, the behaviour
depends on neither the contract the policyholder holds nor the interest rate.
With this approach it is tractable to study various aspects beyond just adding
surrender to a survival model. Buchardt et al. [3] studied the formalistic in-
teraction between semi-Markov modelling of insurance risk and behavioural
risk, including duration dependence of mortality and payments in the dis-
ability state and recognizing duration dependence of free policy payments.
A simpler exposition is found in Buchardt and Møller [2]. Henriksen et al.
[11] also combine surrender and free policy options and study the impact
on reserving from different simplifying assumptions about the dependence
between insurance risk and behaviour risk.

Another extreme is to say that intervention occurs in a completely ratio-
nal, optimal way. We hereby mean that the policyholder, who is assumed
to have the same information as the pension fund has, intervenes accord-
ing to a strategy that maximizes the value of her contract. If we assume
duality between the policyholder’s and the pension fund’s valuation of the
contract, then this approach gives worst case reserves for the pension fund.
The approach was taken in Steffensen [18], who derived general variational
inequalities that characterize the reserve in case of a multi-state Markov
model for insurance risk and a multi-state model for behavioural risk. In the
surrender case, this is known as American option pricing of surrender risk.
Other early references based on this approach to surrender risk are Grosen
and Jørgensen [10] and Bacinello [1].

In between these extremes exist all different kinds of models where inter-
vention is modelled by an intensity, but where the intensity not only depends
on time but also some stochastic factors. The dependence on the interest rate
appears obvious and is thoroughly examined by De Giovanni [9], who cal-
culate reserves by solving partial differential equations numerically. There
exists a large amount of literature examining relevant explanatory variables
but since these studies appear somewhat marginal to our approach we refer
to Eling and Kiesenbauer [5] and references therein for a comprehensive lit-
erature overview. See also Gatzert [8] and references therein for an overview
on approaches to policyholder options.

Rather than letting the intensity depend on external factors, one could
let the intensity depend on internal factors relevant to the specific policy.
That could e.g. be to take the difference between the surrender value and
(some notion of the) reserve as a measure of how beneficial an intervention
is. If the reserve compared with the surrender value does not take future in-
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tervention options into account, the calculation can be split up in two stan-
dard exercises: First, calculate the reserve without intervention and then
plug this reserve into the intensity for a calculation including surrender. If
the reserve compared with the surrender value does take future intervention
into account, the (usually) linear Thiele differential equation characterizing
the reserve becomes in general a non-linear differential equation. Reserve-
dependent changes to Thiele’s differential equation has been studied before
by Christiansen et al. [4]. However, whereas the changes to Thiele’s differen-
tial equation studied in [4] are linear changes in the benefits and costs, then
the change in our model comes from the intensity of the surrender event that
contains a non-linear function of the reserve itself. The rationale for this
paper is to take a thorough look at this non-linear differential equation in
order to motivate it, interpret it, generalize it, and solve it numerically. Also,
we present a probabilistic proof of and clarify sufficient conditions for a con-
vergence result that may seem intuitively clear: If the tendency to intervene
tends to zero whenever the gain from intervention is negative and tends to
infinity whenever the gain from intervention is positive, we reach in the limit
at the reserve based on completely rational behaviour. We establish suffi-
cient convergence of intensities to reach such a conclusion. When expenses
are not taken into account we find it reasonable to assume duality between
the policyholder’s and the pension fund’s valuation of the contract. Thus,
the reserve based on completely rational behaviour equals the reserve based
on the policyholder behaving according to the worst case strategy from the
pension fund point of view. If expenses are included in the model we lose
this duality. We show how expenses may be taken into account in our model,
and we give an upper bound for the difference between the reserve based
on completely rational behaviour and the reserve based on the policyholder
behaving according to the worst case strategy from the pension fund point
of view. Thus, our approach to intervention option pricing has two purposes:
First, it represents in itself a relevant approach in between the two extremes
that, certainly, takes into account the extent to which intervention is to the
benefit of the policyholder. Second, for simple parametric forms of the inten-
sity, our calculation may approximate the largest possible liability. As such
it can be used as a worst-case or stress calculation with respect to surrender
risk.

The idea of approximating the maximum value by a series of solutions
to differential equation has been known as the penalty method. In compu-
tational finance it has been used as an approximation method for American
option pricing. In Forsyth and Vetzal [6] the penalty method is compared
with alternative techniques for pricing of the American put option. In Gad
and Pedersen [7] the modelling of non-rational option holder behaviour is
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studied in a way similar to what is done here. The contribution of the present
paper is three-fold: First, we introduce, to the knowledge of the authors, for
the first time the penalty method in intervention option pricing in insurance.
Second, we prove sufficient conditions for the convergence to hold. Third,
we do not only think of the intensity model as a means of approximating
the largest value, but as a highly relevant approach to general intervention
option pricing, useful in accounting and solvency. The approach balances
arbitrariness and benefit in a simple form, and in some examples we catch
the notion of rationality in one single parameter.

5.2 Standard Setup
Consider a model with a policyholder who is either alive (active) or dead.
We assume the state of the policyholder is governed by a state process with
a deterministic, continuous mortality intensity, µ(t), see Figure 5.1. Let I
be the process indicating whether the policyholder is alive, and let N be the
process counting the numbers of deaths of the policyholder. The policyholder

Active Dead-µ(t)

Figure 5.1: Standard survival model.

is assumed to have the following simple contract. She pays a deterministic
premium with continuous intensity π(t) until a terminal time, n, as long as
she is alive. If she is alive at time n she receives a deterministic pension sum
ba(n), and if she dies before then upon death she gets a deterministic death
sum, bad(t). Thus, the accumulated payments in the time interval [0, t] is
given by the following process of accumulated payments:

B(t) = B(0)−
∫ t

0

π(u)I(u)du+

∫ t

0

bad(u)dN(u) + I(n)ba(n)1(t≥n),

for t ∈ [0, n]. We assume that the market offers a deterministic, continuous
interest rate, r(t). We introduce the reserve corresponding to the policyholder
being active as the conditional expected present value of future payments,

V (t) = E
[∫ n

t

e−
∫ u
t r(τ)dτdB(u)

∣∣∣∣ I(t) = 1

]
.

We then know, e.g. from [14], that the reserve, V , is continuously differen-
tiable on [0, n) and that it is the solution to Thiele’s differential equation,

V ′(t) = r(t)V (t) + π(t)− µ(t)(bad(t)− V (t)), (5.1)
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with V (n−) = ba(n).
We now add to our model the possibility that the policyholder surrenders.

That is, we add the possibility that the policyholder terminates her contract
and instead receives a deterministic, continuous surrender value, G(t). This
can, e.g., be added to the model by assuming that the policyholder at any
time surrenders with some deterministic, continuous intensity, ν(t), see Fig-
ure 5.2. We use the term active for when the policy is in force.

Surrender
?

ν(t)

Active Dead-µ(t)

Figure 5.2: Standard surrender model.

Mathematically, the state of surrender is in this model not different from
the state of death, except that the associated payments are different. The
reserve, Vν , is continuously differentiable and solves the following Thiele’s
differential equation, see e.g. [14],

V ′ν(t) = r(t)Vν(t) + π(t)− µ(t)
(
bad(t)− Vν(t)

)
− ν(t) (G(t)− Vν(t)) , (5.2)

with Vν(n−) = ba(n).
For Vv to be continuously differentiable we need, in general, that ν is con-

tinuous as assumed above. However, what is really needed is that ν(t) (G(t)− Vν(t))
is continuous and this can be obtained even when ν is discontinuous and
properly defined at the point where G(t) = Vν(t).

The surrender value G can be anything exogenously given. In practice it
is, typically, a technical value of the same payment stream based on technical
assumptions on interest rates and intensities that we denote by (r∗, µ∗). In
that case, the surrender value is the technical reserve V ∗ that solves (5.1)
with (r, µ) replaced by (r∗, µ∗).

5.3 Reserve Dependent Surrender
The forthcoming Solvency II regulations requires that the traditional mod-
elling of surrender is revisited. Thus, we need to investigate and model what
influences the policyholders choice to surrender and we need to be able to
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calculate the reserves in the more advanced models. In the present section
we suggest a way to do this, and discuss our method.

In a more realistic model of surrender we want to be able to express both
that surrender is likely influenced by how profitable it is, but also that it
is still random. On one hand, we wish surrender to be influenced by how
profitable it is, because surrender is a decision the policyholder makes. On
the other hand we also have multiple reasons for surrender being random.
Randomness is natural because the policyholder most likely lacks information
to decide what is profitable. Even if she had all the information that the
pension fund has and were able to use it, then her preferences may differ
seemingly randomly from the model set up by the pension fund because of
the policyholders personal preference and economical situation. She might
shift her job and get an offer from a new pension fund or she might need
cash for a divorce.

We can obtain randomness in our model by keeping the surrender mod-
elled by an intensity. Further, we model that the policyholders decision
depends on how profitable it is by letting the surrender intensity depend on
how profitable it is for the policyholder to surrender. If she surrenders at time
t she gains G(t), but she loses the rest of the contract including her right to
exercise later. Hence, she loses Vν(t). Therefore, we denote by G(t) − Vν(t)
her profit from surrendering at time t. We would like the surrender intensity
to be non-negative and increasing in this profit. At first glance this mod-
elling seems to have a problem that the definition of the surrender intensity
is circular. However, Theorem 5.3.1 below gives sufficient conditions for this
circular definition not to be a problem.

Theorem 5.3.1. For some given non-negative function, h, consider the fol-
lowing differential equation in the function U :

U ′(t) = r(t)U(t) +π(t)−µ(t)(bad(t)−U(t))−h(t, U(t))(G(t)−U(t)), (5.3)

with U(n−) = ∆B(n). Suppose (5.3) has a unique solution, U , and define
a surrender intensity by ν(t) ≡ h(t, U(t)). Then U is the reserve when the
policyholder chooses to surrender at time t with intensity ν(t).

Proof. The possible problem in this model is the circular definition of the
surrender intensity. However, the existence and uniqueness of the solution
to both (5.2) and (5.3) ensures that this does not become a problem.

The process ν defined by ν(t) ≡ h(t, U(t)) is uniquely determined from
(5.3) and the reserve is then uniquely determined from (5.2). It follows from
the definition of U that U solves (5.2), and then from the uniqueness of the
solution to (5.2) it follows that the reserve is given by U .
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Once we have decided on a policyholder with a specific policy and a
function h, and thereby also ν, then for this single policyholder, our model
does not differ from a model with a deterministic time dependent surrender
intensity as what we had in the classical model of (5.2). However, when we
use the model for pricing a portfolio of insurance contracts for a group of
policyholders, then the model assigns different surrender intensities to each
policyholder. Thereby, the reserves in general become higher than if we had
used a constant surrender intensity or a specific time dependent surrender
intensity for the whole portfolio.

The relation between the surrender intensity and the profitability may be
chosen in many different ways. Two examples we investigate are:

ν(t) = h(t, Vν(t)) = ψ exp{θ(G(t)− Vν(t))}, (5.4)

ν(t) = h(t, Vν(t)) = θ1(G(t)−Vν(t)>0), (5.5)

where ψ, θ > 0 are constants. For equation (5.4), ψ tells about the overall
tendency to surrender, whereas θ tells about how profitability creates devia-
tions from this tendency. For equation (5.5), θ controls both. In both cases
we speak of θ as the rationality parameter. Other intensity functions can be
chosen and one should choose a functional form which matches with data.
The only mathematical requirement is that the function h has to make it
possible to use Theorem 5.3.1.

One immediate drawback of our model is that we most often do not have
an explicit solution for the differential equation (5.3). This implies that
we do not have an explicit expression for the reserve. However, we do have
algorithms available for numerical solutions to ordinary differential equations.

5.4 Reserve Dependent Policyholder Behaviour
The idea of modelling behaviour by profit dependent intensities may be used
for other applications as well. Within life insurance the policyholder’s choice
to convert into free policy (paid-up policy) has some resemblance with the
surrender choice. Thereby we may find it reasonable to expand our model
with the possibility of conversion into free policy in the same way as we
added surrender. Figure 5.3 displays a simple model where νaf denotes the
intensity of conversion into free policy, νas denotes the intensity of surrender
when active and νfs denotes the intensity of surrender after converted into
free policy. Here the term active is used when the policyholder is paying
premiums.

If all transition intensities are known explicitly, this model is studied in
[11]. When a policyholder converts into free policy the payments are reduced
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νas(t) µ(t)

νfs(t) µ(t)

Active

Surrender Dead

Figure 5.3: Free policy and surrender model.

depending of the time of conversion. Let bfd(t, u) denote the death sum at
time t if converted into free policy at time u, let bf (n, u) denote the terminal
payment at time n if converted into free policy at time u, and let Gf (t, u)
denote the surrender value at time t when converted into free policy at time
u. For the reserves we let Va(t) denote the reserve at time t if the policyholder
is active, and let Vf (t, u) denote the reserve at time t if the policyholder is in
the free policy state and converted to free policy at time u. Now, we assume
that the intensities are reserve dependent and given in the form

νas(t) = has(t, Va(t)),

νaf (t) = haf (t, Va(t)),

νfs(t, u) = hfs(t, u, Vf (t, u)).

Then the reserves are given from the following differential equations:

d

dt
Va(t) = r(t)Va(t) + π(t)− µ(t)(bad(t)− Va(t))

− has(t, Va(t))(G(t)− Va(t))− haf (t, Va(t))(Vf (t, t)− Va(t)),
Va(n−) = ba(n),

∂

∂t
Vf (t, u) = r(t)Vf (t, u)− µ(t)(b∗fd(t, u)− Vf (t, u))

− hfs(t, u, Vf (t, u))(Gf (t, u)− Vf (t, u)),

Vf (n−, u) = bf (n, u).

The only requirement is that the system of differential equations has a unique
solution. However, the differential equations from above are heavy to work
with, as we need to solve a new differential equation for each value of Vf (t, t).
When modelling the free policy option, this problem is usually overcome by
introducing a scaling function, f , that describes the reduction of payments
as a result of the conversion to free policy. Thus, bfd(t, u) = f(u)bad(t),
bf (n, u) = f(u)ba(n) and Gf (t, u) = f(u)Gf (t). Assume the transition inten-
sity νfs does not depend on the time of transition to free policy. Then the
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prospective reserve, V ∗f (t), from the free policy state based on the payments
Gf (t), bad(t) and ba(n) does not depend on this transition time either, and
we get Vf (t, u) = f(u)V ∗f (t) with

d

dt
V ∗f (t) = r(t)V ∗f (t)− µ(t)(bad(t)− V ∗f (t))

− νfs(t)(Gf (t)− V ∗f (t)),

V ∗f (n−) = ba(n).

This makes Vf (t, u) a lot easier to calculate. For more on the determination
of the reference payments and scaling function, see [11]. Note however that if
νfs cannot depend on the time of transition to free policy, u, then it cannot
depend on Gf (t, u)− Vf (t, u) either and this is a large disadvantage.

To get profit dependent choices we may use

νas(t) = has(t, Va(t)) = ψase
θas(G(t)−Va(t)),

νaf (t) = haf (t, Va(t)) = ψafe
θap(Vf (t,t)−Va(t)),

νfs(t, u) = hfs(t, u, Vf (t, u)) = ψfse
θfs(Gf (t,u)−Vf (t,u)).

5.5 Approximation of the Worst Case Reserve
In the two previous sections we discussed our model with reserve dependent
surrender and we found it being a reasonable model for predicting the dy-
namics of surrender. However, in the following section we discuss how the
model may also be used for determining worst case reserves when the true
dynamics of the surrender intensity is not known. This is because our model
is a version of what in the literature is known as the penalty method, and a
large rationality parameter gives us the worst case reserve.

Typically the technical reserve is paid out upon surrender (potentially
minus expenses). In that case, if we take maximum of the technical reserve
and the market reserve calculated under the assumption of no surrender,
then we get a worst case reserve of either surrendering immediately or never
surrender. However, a surrender strategy somewhere in between the two
extremes may result in a higher market reserve. For determining the worst
case reserve we consider all possible surrender strategies. To do this we
construct a more general model. We assume that the transition from active
to surrender is governed by a randomized stopping time, τ , with respect to
the state of the policyholder, with randomized stopping times being defined
as in [15]. That is, the time of surrender may depend on everything but the
future time of death and the future interest rate. If the policyholder never
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surrenders her contract we let τ = n. The model is illustrated in Figure 5.4.
The class of admissible surrender strategies at time t are the variables in [t, n]
that are randomized stopping times with respect to the filtration generated
from I. We denote this class by Tt.

Surrender
?

τ

Active Dead-µ(t)

Figure 5.4: Optimal surrender model.

We hereby disregard the possibility that the policyholder has more infor-
mation about her future time of death than the pension fund has. We do
this despite that such knowledge could influence the policyholders decisions.

Let Vτ denote the prospective reserve if the policyholder surrenders ac-
cording to the randomized stopping time τ . Assume G(n) = 0, assume
G(n−) ≤ V (n−) and assume G continuous on [0, n). Then from [14] it
follows that Vτ is given by:

Vτ (t) = E
[∫ τ

t

e−
∫ u
t r(x)dxdB(u) + e−

∫ τ
t r(x)dxG(τ)I(τ)

∣∣∣∣ I(t) = 1

]
(5.6)

= V (t) + E
[
e−

∫ τ
t r(x)dxG(τ)I(τ)−

∫ n

τ

e−
∫ u
t r(x)dxdB(u)

∣∣∣∣ I(t) = 1

]
= V (t) + E

[
e−

∫ τ
t r(x)dxI(τ)G(τ)

∣∣∣ I(t) = 1
]

− E
[
e−

∫ τ
t r(x)dxI(τ)E

[∫ n

τ

e−
∫ u
τ r(x)dxdB(u)

∣∣∣∣ τ, I(τ) = 1

]∣∣∣∣ I(t) = 1

]
= V (t) + E

[
e−

∫ τ
t r(x)dxI(τ) (G(τ)− V (τ))

∣∣∣ I(t) = 1
]
.

Consider the worst case scenario for the pension fund, where the policy holder
chooses the surrender strategy as the stopping time, τ , that maximizes Vτ .
This is an optimal stopping problem. Any classical stopping time from the
filtration generated by I must fulfil τI(τ) = t0I(t0) for some deterministic
t0 ∈ [t,∞]. The reserve is then given by:

Vτ (t) = V (t) + E
[
e−

∫ τ
t r(x)dxI(τ) (G(τ)− V (τ))

∣∣∣ I(t) = 1
]

= V (t) + e−
∫ t0
t r(x)+µ(x)dx (G(t0)− V (t0)) .
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Thus, for the classical optimal stopping problem, without randomization
allowed, it is optimal to choose t0 as any time from the set:

At ≡ arg max
u∈[t,n]

(
e−

∫ u
t r(x)+µ(x)dx(G(u)− V (u))

)
.

As the inner part is continuous in u on [0, n) and as G(n−) − V (n−) <
G(n) − V (n), then At must have a largest element. Denote this element by
u∗, i.e. let u∗(t) ≡ maxAt, such that u∗(t) is the latest optimal time to
surrender. Let τ ∗ = u∗(t)I(u∗(t)) +n(1− I(u∗(t))). We define the worst case
reserve, W , by:

W (t) = sup
τ∈Tt

Vτ (t) = Vτ∗(t).

By a proof similar to the one of the verification theorem of Chapter 9 of
[13] it may be seen that τ ∗ is optimal even if we allow randomized surrender
strategies.

Now, assume a family of functions, hθ, is implied. Let τθ denote the
surrender strategy of surrendering at time u with intensity νθ(u) = hθ(G(u)−
Vνθ(u)) and let Vθ = Vνθ with Vνθ as defined in Sect. 5.3. Let

h̄θ(x) ≡ sup
y≤x

hθ(y),

and
hθ(x) ≡ inf

y≥x
hθ(y).

Now, the following holds:

Theorem 5.5.1. Suppose that for each θ ≥ 0 we have that hθ is defined in
a way such that we may use Theorem 5.3.1 and suppose that the surrender
value G is continuous on [0, n) with G(n−) ≤ V (n−) and G(n) = 0. Also
assume for x < 0:

h̄θ(x)→ 0, θ →∞, (5.7)

and for x > 0:
hθ(x)→∞, θ →∞. (5.8)

Then, for every t ∈ [0, n]:

Vθ(t)→ W (t), θ →∞.

Proof. See the appendix.
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Remark 5.5.1. Some of the details in the proof has been omitted, but a fully
detailed proof following the same reasoning for a closely related result for an
American Put option may be found in [7]. The fact that the penalty method
provides convergence and the rate of convergence is not new. However, we
find the proof of our article and of [7] interesting. This is because they visu-
alize how the error terms may be thought of as probabilities of economically
bad choices of the policyholder times the loss the policyholder faces from her
bad choices.

5.6 Advanced Surrender Values
In Section 5.3 we made simplifying assumptions on the surrender value, G.
In Section 5.6.1 and Section 5.6.2 below we investigate two ways to generalize
this model. First, in Section 5.6.1 we allow the surrender value to depend on
the market value of the reserve. This makes it possible for the pension fund
to avoid a loss upon surrender. Second, in Section 5.6.2 we add expenses
upon surrender.

5.6.1 Surrender Value Dependent on the Market Re-
serve

In Section 5.3, we assumed the surrender value, G, to be given exogenously
from the market valuation. That is, we assumed the surrender value was
based on the guaranteed benefits and the technical basis only, and not on
the market basis. However, to prevent losses from surrender the pension
fund may choose that the surrender value depends on the market value of the
contract. Thus there may be an explicitly given function h : R+×[0, n]→ R+

such that G(t) = h(V (t), t). In a similar way as argued in Section 5.3 we
may expect that the policyholder finds that the profit from surrender is
h(V (t), t)−V (t). If the surrender intensity is given by a rationality function,
fθ, of the profit, the market value of the reserve becomes

V ′(t) = r(t)V (t) + π(t)− µ(t)
(
bad(t)− V (t)

)
− fθ (h(V (t), t)− V (t)) (h(V (t), t)− V (t)) , (5.9)

with V (n−) = ba(n). Similar to Section 5.3 we have to consider if our
construction of the intensity for surrender is well defined. With arguments
similar to the proof of Theorem 5.3.1 it is sufficient that there exists a unique
solution to (5.9) as well as a unique solution to (5.9) with fθ replace by ν(t)
for ν sufficiently regular.
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With G(t) = h(V (t), t) the technical reserve, and thereby the equivalence
premium, in general depends on h(V (t), t). Besides, it is likely that h is
chosen such that it depends on the value of the technical reserve. Then the
technical and market reserves are mutually dependent in a mathematically
intractable way. However, if we choose the technical surrender intensity to
zero, then the technical reserve and thereby the equivalence premium may
be calculated independently of the market reserve. If the surrender value is
set such that the pension fund avoids losses upon surrender, then a technical
surrender intensity of zero is a safe-side choice in the following sense: We
define a safe-side technical basis as a technical basis that ensures the market
reserve is never higher than the technical reserve. Let V ∗ denote the technical
reserve. By differentiation it is easily verified that

V ∗(t)− V (t)

=

∫ n

t

e
∫ s
t r+µ(u)+ν∗(u)du

(
(r − r∗)V ∗(s)− (µ(s)− µ∗(s))(bad(s)− V ∗(s))

− (ν(s)− ν∗(s))(G(s)− V (s))

)
ds. (5.10)

Note that the technical surrender intensity in the exponential function con-
forms with the replacement of the replacement of the technical reserve with
the market reserve in the surrender risk term. If ν∗ = 0 then the technical
reserve equals the technical reserve from a model without surrender. Thus,
the first line of (5.10) corresponds to V ∗ − V if surrender were not included
in the model. It follows that if the surrender value is set such that G ≤ V ,
then ν∗ = 0 is safe-side for a model with surrender.

Note that with ν∗ = 0 and G = V , then both V ∗ and V equal the
corresponding reserves in a model where surrender is not included.

5.6.2 Expenses upon Surrender

In Section 5.3 we assumed that G(t) − Vν(t) is an appropriate measure for
the policyholder’s profit from surrendering, and that this same value reflects
the loss for the pension fund if the policyholder surrenders. However, in a
more realistic model, this duality is not as precise. Surrender has a cost,
which is lost both for the policyholder and the pension fund. In the present
section we first assume surrender has a cost εG(t) which is deterministic and
independent of the market basis. E.g., this may be a constant value as is
common in Denmark, or it may be some deterministically varying proportion
of the technical reserve as described in [4]. The expense is paid by the
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policyholder upon surrender, and thus the payout to the policyholder upon
surrender is G(t)− εG(t).

Since we have lost the duality between the policyholder and the pensions
fund with regards to the payments of the contract, the policyholder and
the pension fund find different values for the contract. We introduce Ṽ
to denote the market value of the contract from the policyholders point of
view. Now the profit of the policyholder from surrendering instead becomes
G(t) − εG(t) − Ṽ (t). With a profit-intensity function fθ the market value
from the policyholder’s point of view is characterized by

Ṽ ′(t) = r(t)Ṽ (t) + π(t) + µ(t)
(
bad(t)− Ṽ (t)

)
− fθ

(
G(t)− εG(t)− Ṽ (t)

)(
G(t)− εG(t)− Ṽ (t)

)
, (5.11)

whereas the market value from the pension fund’s point of view is character-
ized by

V ′(t) = r(t)V (t) + π(t) + µ(t)
(
bad(t)− V (t)

)
− fθ

(
G(t)− εG(t)− Ṽ (t)

)
(G(t)− V (t)) , (5.12)

with Ṽ (n−) = V (n−) = ba(n). The surrender sum at risk reflects that, in
addition to the net surrender value G(t) − εG(t), also the expense εG(t) is
lost. In this model the two reserves may be calculated simultaneously or the
policyholder market value may be calculated first. Let G̃(t) = G(t)− εG(t).
We see from (5.11) that under the conditions of Theorem 5.5.1 we have that
when the rationality parameter goes to infinity, then Ṽ converges to the pol-
icyholder market value corresponding to optimal surrender from her point of
view. However, due to the lack of duality, this value is not the worst case mar-
ket value for the pension fund, which was found in Section 5.5. The pension
fund market value of (5.12) no longer fits with the requirements of Theorem
5.5.1 and from Example 6 we see that V does not converge to the worst case
reserve for the pension fund’s point of view, when the rationality parameter
increases to infinity. However, if we have an upper bound for the expenses
upon surrender, then we may use the optimal policyholder market value to
create an upper bound for the worst case market reserve. Let τ ∗ph denote the
optimal surrender time from the policyholder point of view, and let τ ∗pf de-
note the worst case surrender strategy from the pension fund point of view.
Assume the surrender expenses are bounded by εG(t) ≤ C for some constant
C. Suppose that for any rationality parameter higher that θ then τθ is a
good approximating strategy in the sense that Ṽτθ(t) ∈ [Ṽτ∗ph(t) − ε, Ṽτ∗ph(t)].
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Let VεG,τ (t) denote the present value of the future surrender expenses under
the strategy τ . From (5.6) we find that for any surrender strategy τ ,

Vτ (t) = E
[∫ τ

n

e−
∫ u
t r(x)dxdB(u) + e−

∫ τ
t r(x)dxG(τ)I(τ)

∣∣∣∣ I(t) = 1

]
= E

[∫ τ

n

e−
∫ u
t r(x)dxdB(u) + e−

∫ τ
t r(x)dx(G̃(τ) + εG(τ))I(τ)

∣∣∣∣ I(t) = 1

]
= Ṽτ (t) + E

[
e−

∫ τ
t r(x)dxεG(τ)I(τ)

∣∣∣ I(t) = 1
]
≡ Ṽτ (t) + VεG,τ (t).

Thus,

Vτθ(t) = Ṽτθ(t) + VεG,τθ(t) ≥ Ṽτ∗ph(t)− ε+ VεG,τθ(t) ≥ Ṽτ∗pf (t)− ε+ VεG,τθ(t)

= Vτ∗pf (t)− VεG,τ∗pf (t)− ε+ VεG,τθ(t) = Vτ∗pf (t)− ε− C.

Thus, even though a high rationality parameter does not give the worst case
market value for the pension fund, then in the limit the difference is bounded
by the maximum surrender expenses. The maximum surrender value is the
best general fixed bound we can find since Example 6 shows that there exists
a product and a scenario for which we have this difference between Vτ∗pf and
Vτ∗ph . Of course, exploiting knowledge of the product and the market interest
rate makes it possible to find better bounds.

5.7 Numerical Examples
In this section we show four examples of how various surrender models impact
the development of the reserves in four different interest rate situations. In
each example we consider a contract with a death sum of bad = 1, 000, 000, a
pension sum of 2, 000, 000 and a constant premium intensity of π = 16, 218.
All values measured in DKK and the premium is the equivalence premium
set at age 25. These numbers are chosen as they have a realistic level for a
Danish pension policy. For fairly realistic numbers in EUR divide by ten.
The policyholder is assumed to be 35 years old at time 0 and the time of
retirement is at age 65. Time is measured in years and her mortality intensity
is assumed to be given by:

µ(t) = 0.0005 + 105.728−10+0.038∗(t+35).

This is the mortality intensity from the Danish life table G82 for females.
If the policyholder surrenders her contract, she receives a surrender value
given by the technical reserve. The technical reserve is based on the same
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payments as the contract, and on a technical interest rate intensity of r∗ =
0.05. Interest rates are chosen high to better visualize the impact of the
choice of surrender intensity. We assume no extra expenses at surrender.
Thus, the surrender value is given from the differential equation:

G′(t) = r∗G(t) + π − µ(t)(bad −G(t)), (5.13)

with G(n−) = 2, 000, 000. We consider the following five surrender models:

Model a : νa(t) = 0.05 · exp{0.000003(G(t)− Vθ,ψ(t))}
Model b : νb(t) = 0.05 · 1(G(t)−Vθ(t)>0)

Model c : νc(t) = 0.05
Model d : νd(t) = 0
Model e : νe(t) = 5 · 1(G(t)−Vθ(t)>0).

The first three models are based on a surrender intensity of around 5%.
The last model is a model with a rationality parameter θ = 5, which has
been found to be high enough for us to approximate the worst case reserve.
Additionally, we consider four different developments of the interest rate, r,
used for pricing market reserves. For the two first interest rate situations we
compare the surrender value and the reserves for the five different surrender
models. For the two last interest rate situations we compare the surrender
value and the reserves for surrender Model d and Model e.

Example 1: Market interest rate is above technical interest rate
Assume r = 0.15. The reserve developments are displayed in Figure 5.5. In
this situation it is at all time points optimal for the policyholder to surrender.
The worst case reserve corresponds to the surrender value. The lowest reserve
is the market reserve based on no surrender, Model d. Models with a chance
of surrender has reserves in between. Since there is no risk of surrendering
too early, then Model b and the traditional Model c do not differ. For Model
a we get a slightly higher reserve than the one for Model b and Model c,
because the basic intensity 0.05 is slightly increased at all time points by the
exponential factor in the intensity.

Example 2: Market interest rate is below technical interest rate
Assume r = 0.02. The reserve developments are displayed in Figure 5.6. In
this situation it is never optimal for the policyholder to surrender. The worst
case reserve corresponds to the market reserve with no surrender. In Model
b and Model e the policyholder does not make the mistake of surrendering if
it is not profitable, and thus, this has an equally high reserve. The surrender
value is the lowest value and the reserves of Model a and the traditional Model
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Figure 5.5: Example 1. The technical interest rate is r∗ = 0.05. The market
interest rate is r = 0.15. Immediate surrender is always optimal.

c are in between. Model a has a higher reserve than Model c, because the
basic intensity 0.05 is slightly increased at all time points by the exponential
factor in the intensity.

Example 3: Market interest rate is decreasing Assume r(t) = 0.10 ·
1(t≤20) + 0.04 · 1(t>20). The qualitative feature we capture is that the interest
rate crosses the guaranteed interest rate downwards. The reserve develop-
ments are displayed in Figure 5.7. In this situation it is optimal to surrender
if the surrender value is higher that the market reserve in Model d with no
surrender. Thus, after time t = 20 it is optimal to keep the contract because
the technical interest rate is higher than the market interest rate. Right be-
fore time t = 20 the interest rate of the market is higher than the technical
interest rate, but this is only for a short time, and thus it is still optimal to
keep the policy in order to benefit from the technical interest rate later on.
At some point before time t = 20 the surrender value and the market reserve
of Model d intersects. Before this time it is optimal to surrender because
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Figure 5.6: Example 2. The technical interest rate is r∗ = 0.05. The market
interest rate is r = 0.02. Surrender is never optimal.

the gain from the high market interest rate before time t = 20 is then higher
than the future loss from the low market interest rate. All together the worst
case reserve is given as the maximum of the surrender value and the market
reserve with no surrender.

Example 4: Market interest rate is increasing Assume r(t) = 0.01 ·
1(t≤20) + 0.065 ·1(t>20). The qualitative feature we capture is that the interest
rate crosses the guaranteed interest rate upwards. The reserve developments
are displayed in Figure 5.8. In this situation we have that after time t = 20 it
is optimal to surrender. Before time t = 20 it is optimal to plan to surrender
at time t = 20. With this strategy the policyholder benefits from both the
high market interest rate after time t = 20 and the technical interest rate
before time t = 20 when the market interest rate is low. Thereby, unlike in the
previous three examples, the worst case reserve is no longer the supremum
of the surrender value and the market reserve with no surrender. Before
time t = 20 the worst case reserve is higher than both of the other reserves,
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Figure 5.7: Example 3. The technical interest rate is r∗ = 0.05. The market
interest rate is r(t) = 0.10 · 1(t≤20) + 0.04 · 1(t>20). Surrender is optimal if the
surrender value is higher than the market reserve with no surrender.

because there exists a surrender strategy which is better for the policyholder
than both immediate surrender and no surrender.

We recall that the reserves of Model a and Model b converge to the worst
case reserve when the rationality parameter converges to infinity. Thus, if the
rationality parameter is sufficiently high and the future increase in interest
rate is sufficiently high, then the reserves of Model a and Model b become
higher than the maximum of the surrender value and the market reserve of
Model d with no surrender.

The values in Example 4 is chosen to clearly visualize the possible impact
of a market interest rate that crosses the guaranteed interest rate upwards.
This is not an unrealistic scenario today. In a model with a deterministic
market interest rate, a natural choice for the market interest rate in Denmark
is the Danish FSA yield curve. Figure 5.9 displays the Danish FSA yield curve
as of March 25th 2015. It is common in Denmark to sell pension products
with a technical interest rate of 0%− 1%. Thus the Danish FSA yield curve
gives a market rate that is currently lower than a technical interest rate of
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Figure 5.8: Example 4. The technical interest rate is r∗ = 0.05. The market
interest rate is r(t) = 0.01 · 1(t≤20) + 0.065 · 1(t>20). After time t = 20 it is
optimal to surrender. Before time t = 20 it is wise to plan to surrender at
time t = 20.

0.5% or 1%, but within the next 20 years increases to above.

Example 5: The Effect of Expenses We revisit Example 1 and as-
sume a surrender intensity function of fθ(x) = 0.05eθx. We now investi-
gate the impact on the market reserve from adding a surrender expense
of εG = 2, 000 to the model. We assume G is the technical reserve. We
calculate the market reserve without expenses, Vno expenses, from (5.2) with
ν(t) = fθ(G(t) − Vno expenses(t)), and we calculate the market reserve with
expenses, Vexpenses, from (5.12). Figure 5.10 displays Vno expenses − Vexpenses
for various values of the rationality parameter θ.

The effect of adding expenses to the model is very sensitive to θ. For
θ = 0 the policyholder’s surrender intensity is not affected by profitability.
Thus, the market reserve from the pension fund point of view is not affected
by adding surrender expenses. If θ = 0.000003 the policyholders become less
inclined to surrender when expenses are added to the model. This results in
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Figure 5.9: Example 4. The Danish FSA yield curve as of March 25th 2015.

a decrease in the market reserve. From numerical calculations we find that
the maximal decrease over time in this model is 458. In a more extreme case
with θ = 0.003 the maximal decrease over time is 1, 196.

However, the impact of the rationality parameter and the expenses is more
involved than the numbers above reflect. For θ = 0.000003 the impact of the
expenses has a broad peak, whereas and for θ = 0.003, it has a narrow spike.
Further, these patterns depend of course on the product and the interest rate
scenario. In Example 6 below we show that for specific examples we can also
have a broad peak with a high impact.

Example 6: Maximal Duality Gab In Section 5.6.2 we discussed the
maximal duality gap between the market reserve based on the policyholder
acting completely rational and the market reserve based on the the strategy
which is worst case for the pension fund. We found that if there is an upper
bound on the surrender expenses, then this is also an upper bound for the
duality gap. In the present example we show that hitting this maximal
duality gab is realistic.

Consider a contract where the premium is π = 9.500, the death sum is
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Figure 5.10: Example 5. The impact of expenses measured by Vno expenses −
Vexpenses for fθ(x) = 0.05eθx with various rationality parameters.

bad = 200, 000 and the pension sum is 400, 000. Upon surrender the policy-
holder receives the technical reserve minus an expense of εG = 2, 000. All
values measured in DKK. The policyholder is assumed to be 50 years old and
the age at retirement is 65. We assume the same mortality intensity and the
same technical interest rate as in the previous examples.

Figure 5.10 displays the duality gap Vτ∗pf − Vτ∗ph of Section 5.6.2. That is,
the difference between the market reserve based on the policyholder surren-
dering completely rational the market reserve if the policyholder surrenders
according to the strategy which maximizes the market reserve from the pen-
sion fund point of view. Note that Vno expenses − Vexpenses converges to this
value when the rationality parameter goes to infinity. In this example 2, 000
is an upper bound for the surrender expenses and from Figure 5.11 it is seen
that it is possible to experience a duality gab of this size.
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Figure 5.11: Example 6. The difference between the market reserve, Vτ∗ph ,
based on the policyholder being completely rational, and the market reserve,
Vτ∗pf , based on the strategy which is the worst for the pension fund.

5.8 Conclusion
In this paper we have proposed a way to model surrender, as happening with
an intensity that depends on how profitable it is to surrender. The model has
a parameter denoted the rationality parameter that controls how strongly the
behaviour of the policyholder is affected by profitability. We have identified
sufficient conditions and given a probabilistic proof of the intuitive result that
when the rationality parameter increases to infinity the reserve converges to
the reserve based on completely rational behaviour.

If expenses upon surrender are not taken into account we have a duality
between the contract value from the policyholder’s point of view and from
the pension fund’s point of view, respectively. This duality implies that
completely rational behaviour of the policyholder corresponds to the worst
case scenario for the pension fund. If expenses are included in the model
this duality is lost. However, we have shown that if there is an upper bound
on the expenses upon surrender, the this is also an upper bound for the
difference between the worst case reserve for the pension fund and the value
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based on completely rational behaviour.
In the model studied first we assumed that the surrender value may be

calculated prior to the calculation of the market reserve. We have also in-
vestigated a model where the surrender value may depend on the market
reserve. This possibly results in more involved differential equations for the
market reserve and the technical reserve. However, if the surrender value
is bounded from above by the market reserve, then the surrender intensity
of the technical basis may be set to zero, and the surrender value may be
calculated prior to the calculation of the market reserve.

In the numerical section we first considered a model where expenses were
not taken into account. Through numerical examples we compared the devel-
opment of the technical reserve with the development of the market reserve
under various assumptions of the surrender intensity and under various inter-
est rate scenarios. A key finding is that the common method in Denmark of
taking the maximum of the technical reserve and the market reserve under an
assumption of no surrender does not give an upper bound for the worst case
reserve. We also see how traditional Danish expenses have little influence on
the market reserves in the surrender model we suggest.



96 CHAPTER 5. RESERVE-DEPENDENT SURRENDER



Appendix

5.A Proof of Convergence
We Proof the convergence result of Theorem 5.5.1. The proof is divided in
two parts. One part associated with the risk from the νθ based stopping
time surrendering before the optimal time u∗ and another part associated
with the risk from the νθ based stopping time surrendering after the optimal
time u∗. For this reason we define an intermediate reserve,Wθ. The surrender
strategy related to Wθ resembles the one related to Vθ. The only difference is
that the strategy related to Wθ does not surrender before the optimal time.
Mathematically we make the following definition. Let τ̂θ,t be the minimum of
n and a stopping time for which the policyholder surrenders at time u with
intensity νθ(u)1(u≥u∗(t)). We may write this stopping time in a convenient way
by introducing stopping times, τ̂ iθ,t, given recursively by τ̂ 0

θ,t ≡ 0 and τ̂ iθ,t for
i ∈ N is the minimum of n and of surrendering with intensity νθ(u)1(u≥τ̂ i−1

θ,t ).
With these definitions we get:

(I, τ̂θ,t)
d
= (I,

∞∑
i=1

τ̂ iθ,t1(τ̂ i−1
θ,t <u

∗(t)≤τ̂ iθ,t)
).

This identity comes from renewal theory and the memoryless property of
the exponential distribution. It says that it does not matter if we set the
surrender intensity to zero before the optimal time or if we make the policy
holder regret her decision every time she is about to surrender before the
optimal time. We denote for s ∈ [t, n] by Wθ(t, s) the reserve at time s
associated with the surrender strategy τ̂θ,t. Then, from the identity above
we find that

Wθ(t, s) = V (s) +
∞∑
i=1

Es
[
e−

∫ τ̂ iθ
s r(u)+µ(u)du(G(τ̂ iθ)− V (τ̂ iθ))1(τ̂ i−1

θ <u∗(t)≤τ̂ iθ)

]
.

It follows that if u∗(t) = n then Wθ(t, s) = V (s) = W (s).

97
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1. First we show that for every t ∈ [0, n]:

lim inf
θ→∞

Vθ(t) ≤ lim inf
θ→∞

Wθ(t, t).

To prove this we use, given t ∈ [0, n] and ε > 0, the following notation about
stopping times, τ :

{τ good} = {G(τ)− Vθ(τ) ≥ 0},
{τ ok} = {G(τ)− Vθ(τ) ∈ [−ε, 0)},
{τ bad} = {G(τ)− Vθ(τ) < −ε}.

Thus, a stopping time, τ , is called good when it is profitable to surrender
at the corresponding time, and it is called bad when the policy holder loses
more than ε on surrendering. In the following, let u∗ ≡ u∗(t) and let τ̂ iθ ≡ τ̂ iθ,t.
By induction one can show that for every m ∈ N:

Vθ(t) = V (t) + Et
[
e−

∫ τ̂1
θ

t r(u)+µ(u)du(G(τ̂ 1
θ )− V (τ̂ 1

θ ))

]
≥ V (t)

+
m∑
i=1

Et
[
e−

∫ τ̂ iθ
t r(u)+µ(u)du(G(τ̂ iθ)− V (τ̂ iθ))1(τ̂ i−1

θ <u∗≤τ̂ iθ,τ̂
1
θ ,...,τ̂

i−1
θ ok or good)

]
+ Et

[
e−

∫ τ̂m+1
θ

t r(u)+µ(u)du(G(τ̂m+1
θ )− V (τ̂m+1

θ ))1(τ̂mθ <u
∗,τ̂1

θ ,...,τ̂
m
θ ok or good)

]
+

m∑
i=1

Et
[
e−

∫ τ̂ iθ
t r(u)+µ(u)du(G(τ̂ iθ)− V (τ̂ iθ))1(τ̂ iθ<u

∗,τ̂1
θ ,...,τ̂

i−1
θ ok or good,τ̂ iθbad)

]
− ε

m∑
i=1

Et
[
e−

∫ τ̂ iθ
t r(u)+µ(u)du1(τ̂ iθ<u

∗,τ̂1
θ ,...,τ̂

i−1
θ ok or good,τ̂ iθok)

]
(5.14)

The idea is that the reserve Vθ corresponds to the technical reserve, V , plus
the expected gain from surrender. We investigate what happens if the pol-
icyholder regrets to surrender. The impact if the policy holder regrets to
surrender at the observed stopping time, τ̂ 1

θ , depends on whether this stop-
ping time was good, ok or bad. If the stopping time is good, then we know
that the value of the gain of surrender is at least as high as waiting for the
next time to surrender, and if the stopping time is ok, then we know that the
value of the gain of surrender is at most ε worse than waiting for the next
time to surrender. In the above expression we have made these judgements
for up to m surrender possibilities before the optimal time.

The sum in the first line corresponds to the case when one of the first m
stopping times reaches beyond the optimal time, u∗. The terms of the second
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line correspond to the case when all of the first m stopping times are before
the optimal time, u∗, and they have all been ok or good. In this case, the
value of the gain of surrendering at the first stopping time is no higher than
waiting for the m+1’th stopping time. The sum in the third line corresponds
to the case when one of the m first stopping times is bad and is before the
optimal time, u∗. The sum of the fourth line is a correction of the ε-small
loses from ok stopping times.

If we display the bound relative to Wθ instead of relative to the technical
reserve, V , then we get the following expression:

Vθ(t)

≥ Wθ(t, t)−
∞∑
i=1

Et
[
e−

∫ τ̂ iθ
t r(u)+µ(u)du(G(τ̂ iθ)− V (τ̂ iθ))1(τ̂ i−1

θ <u∗≤τ̂ iθ,∃j∈{1,...,i−1}: τ̂ jθ bad)

]
−

∞∑
i=m+1

Et
[
e−

∫ τ̂ iθ
t r(u)+µ(u)du(G(τ̂ iθ)− V (τ̂ iθ))1(τ̂ i−1

θ <u∗≤τ̂ iθ,τ̂
1
θ ,...,τ̂

i−1
θ ok or good)

]
+ Et

[
e−

∫ τ̂m+1
θ

t r(u)+µ(u)du(G(τ̂m+1
θ )− V (τ̂m+1

θ ))1(τ̂mθ <u
∗,τ̂1

θ ,...,τ̂
m
θ ok or good)

]
+

m∑
i=1

Et
[
e−

∫ τ̂ iθ
t r(u)+µ(u)du(G(τ̂ iθ)− V (τ̂ iθ))1(τ̂ iθ<u

∗,τ̂1
θ ,...,τ̂

i−1
θ ok or good,τ̂ iθbad)

]
− ε

m∑
i=1

Et
[
e−

∫ τ̂ iθ
t r(u)+µ(u)du1(τ̂ iθ<u

∗,τ̂1
θ ,...,τ̂

i−1
θ ok or good,τ̂ iθok)

]
.

In the limit of θ, ε and m, then Wθ is the only term which does not converge
to 0. To see this, notice that there exists some K > 0 such that for all
u ∈ [t, n]:

G(u)− V (u),∈ [−K,K], and G(u)− Vθ(u) ∈ [−K,K].

That is, for any stopping time, the adjustment G − V is bounded by K.
Thereby we may further bound the value of Vθ by replacing each of these
adjustments with −K times an upper bound of the probability of the corre-
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sponding event:

Vθ(t) ≥ Wθ(t, t)−KPt(∃j ∈ N : τ̂ jθ bad, τ̂
j
θ < u∗)−K

∞∑
i=m+1

Pt(τ̂ i−1
θ < u∗ ≤ τ̂ iθ)

−KPt(τ̂mθ < u∗, τ̂ 1
θ , . . . , τ̂

m
θ ok or good)−KPt(∃j ∈ N : τ̂ jθ bad, τ̂

j
θ < u∗)

− ε
m∑
i=1

Pt(τ̂ iθ < u∗, τ̂ iθok)

≥ Wθ(t, t)−K(1− e(n−t)h̄θ(−ε))−K
∞∑

i=m+1

Pt(τ̂ i−1
θ < u∗ ≤ τ̂ iθ)

−KPt(τ̂mθ < u∗)−K(1− e(n−t)h̄θ(−ε))− εn.
Given θ and ε, then this holds for every n. Thus, the second sum can be made
arbitrarily small and so can Pt(τ̂nθ < u∗), the later follows because given θ,
then the intensity of surrender is bounded on [0, n] and thus the distribution
of the number of τ̂ iθ before u∗ is bounded by a Poisson distribution. Thereby:

lim inf
θ→∞

Vθ(t) ≥ lim inf
θ→∞

Wθ(t, t).

We find from the calculations above that the lower bound holds because the
surrender strategy of Wθ and Vθ only differs by the strategy of Wθ, regret-
ting every surrender before the optimal time. The impact of this difference
is bounded because the following main reasons: The probability of a bad
stopping time converges to zero in the limit because of (5.7). The number of
ok or good stopping times occurring before the optimal time is finite. Regret
of a good stopping time decreases the value. Regret of an ok stopping time
has an impact bounded by ε. At last, the technical calculations justify that
the convergence of ε does not cancel the impact of the convergence of (5.7).

2. Consider some arbitrary t ∈ [0, n]. We wish to show that:

Wθ(t, t)→ W (t), θ →∞.
Let u∗ ≡ u∗(t) and τ̂θ = τ̂θ,t, and notice that since the policyholders related
to Wθ, W and Vθ behave similarly before time u∗, then convergence at time
t corresponds to convergence at time u∗. This is seen from:

W (t)−Wθ(t, t) = Et
[
e−

∫ u∗
t r(u)+µ(u)du(G(u∗)− V (u∗))

−e−
∫ τ̂θ
t r(u)+µ(u)du(G(τ̂θ)− V (τ̂θ))

]
= e−

∫ u∗
t r(u)+µ(u)du(W (u∗)−Wθ(u

∗, u∗))

= e−
∫ u∗
t r(u)+µ(u)du(W (u∗)− Vθ(u∗)).
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Thereby, it is sufficient to prove that Vθ(u∗)→ W (u∗) when θ →∞. Either
this holds, or there is some ε1 > 0 and some sequence (θi)i∈N converging to
infinity such that for all i ∈ N: Vθi(u∗) < W (u∗) − 2ε1. Thereby Vθi(u∗) <
G(u∗)− 2ε1.

The derivative of Vθi is uniformly bounded over i as long as Vθi < G.
Thus, there exists some δ1 such that Vθi(u) ≤ G(u)− ε1 for u ∈ [u∗, u∗ + δ1].
For this time interval the gain of surrender compared to waiting is at least
ε1, and thereby, for this time interval the intensity for surrender is at least
hθi(ε1).

As V is continuous, then, for every ε2 > 0, there exists some δ2 such that
(G(u∗)−V (u∗))−e−

∫ t
u∗ r(u)+µ(u)du(G(t)−V (t)) ≤ ε2 for t ∈ [u∗, u∗+δ2]. That

is, if surrender happens within time δ2 of the optimal time then the loss of
the delay is at most ε2.

Now, let δ = δ1 ∧ δ2. Then the loss of surrender according to τ̂θi instead
of at the optimal time is bounded in the following way:

W (u∗)− Vθi(u∗)

= E
[

(G(u∗)− V (u∗))− (G(τ̂θi)− V (τ̂θi))e
−

∫ τ̂θi
u∗ r(x)+µ(x)dx

∣∣∣∣ τ̂θi ≤ δ

]
P(τ̂θi ≤ δ)

+ E
[

(G(u∗)− V (u∗))− (G(τ̂θi)− V (τ̂θi))e
−

∫ τ̂θi
u∗ r(x)+µ(x)dx

∣∣∣∣ (τ̂θi ≤ δ)c
]
P((τ̂θi ≤ δ)c)

≤ ε2 + E
[

(G(u∗)− V (u∗))− (G(τ̂θi)− V (τ̂θi))e
−

∫ τ̂θi
u∗ r(x)+µ(x)dx

∣∣∣∣ (τ̂θi ≤ δ)c
]
e−δhθi (ε1)

≤ ε2 + 2Ke−δhθi (ε1).

Thus Vθi(u∗)→ W (u∗) as θ →∞, and the result follows.
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6. Reserves and Cash Flows under
Stochastic Retirement

Kamille Sofie Tågholt Gad, Jeppe Woetmann Nielsen

Abstract

Uncertain time of retirement and uncertain structure of retirement benefits
are risk factors for life insurance companies. Nevertheless, classical life
insurance models assume these are deterministic. In this paper we include
the risk from stochastic time of retirement and stochastic benefit structure
in a classical finite state Markov model for a life insurance contract. We
include discontinuities in the distribution of the retirement time. First,
we derive formulas for appropriate scaling of the benefits according to
the time of retirement and discuss the link between the scaling and the
guarantees provided. Stochastic retirement creates a need to rethink the
construction of disability products for high ages and ways to handle this
are discussed. We show how to calculate market reserves and how to use
modified transition probabilities to calculate expected cash flows without
significantly more complexity than in the traditional model. At last, we
demonstrate the impact of stochastic retirement on market reserves and
expected cash flow in numerical examples.

Keywords: Behavioural option; Solvency II; benefit scaling; ordinary dif-
ferential equation; discontinuous transition probabilities.

6.1 Introduction
In classical life insurance models the time of retirement and the structure
of the retirement benefits are typically settled at the beginning of the con-
tract. However, in practice pension funds often allow the policyholders to
both change the time of retirement and convert between different benefit
structures. Conversion of benefit structures may for example be converting
a pension sum into a life annuity.

Modelling retirement as a deterministic time with a deterministic benefit
structure does not take the risk of these options into account and this is
a source of error both in market reserves and, to an even higher degree in
expected cash flows. The forthcoming Solvency II rules require that any
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contractual option is taken into account. In this paper we address challenges
from modelling the time of retirement and the structure of the benefits as
stochastic. Combined we call it stochastic retirement.

In classical models, the state of the policyholder is described by a finite
state Markov chain. Here, the states of premium paying and retired are the
same, and at some fixed time the payments change sign corresponding to the
change from premiums to benefits. We introduce a stochastic time of retire-
ment by letting the states of premium paying and retired be two different
states in the Markov model. We assume that all transition probabilities are
deterministic and known, but unlike the other transitions, we let retirement
happen with positive probability at predefined time points.

The idea of modelling retirement by a state in the Markov model has been
mentioned before, e.g. in [8] and [12]. In [8] the idea of modelling retirement
as a separate state in the classical actuarial Markov model is mentioned en
passant, but no calculations or discussions are done. In [12] the Markov
model with a retirement state is used for calculations of demographical vari-
ables such as time to retirement. However, impacts on retirement savings
are not mentioned. To the knowledge of the authors we present the first dis-
cussion of the actuarial implications of modelling stochastic retirement. We
find that this subject deserves attention for several reasons. One reason is
the relevance of the numerical impact of the forthcoming Solvency II regula-
tions. Another reason is the unconventional considerations we find is needed
for constructing reasonable products in a model with stochastic retirement.
A third reason is the mathematical impact on the calculation of reserves,
benefits and expected cash flows induced by stochastic retirement through
e.g. discontinuous transition probabilities, interaction with the free policy
option and our introduction of an auxiliary Markov model for describing
benefit conversions.

Changing the time of retirement or the structure of the benefits is a
policyholder option just like conversion to free policy or surrender. These two
options are typically modelled by adding states to the model, and modelling
of the intensity of exercising them have been studied thoroughly. The studies
ranges from purely random decisions, as mentioned in e.g. [2] and [10], to
optimal exercising strategies as mentioned in e.g. [1], [6] and [10]. In between
we find models which are perhaps more realistic where policyholder actions
happen randomly, but where the intensity depends on some factors such as
the profit from taking the action as in [4], or the interest rate as in [5]. There
is a large amount of literature on explanatory variables and we refer to [3]
for further references and an overview. Many of the studies done on the
modelling of the exercise of the surrender option and the free policy option
would be equally relevant to do for the exercise of the options of stochastic
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retirement. However, that is not our focus in this paper.
In a model with stochastic time of retirement it is reasonable to have

the size of the benefits depend on the time of retirement. As is common
for modelling of other policyholder behaviours (see e.g. [2] and [7]), we
let the benefits be affected in a way such that the risk sum of retirement
is zero under the technical basis. Scaling the benefits this way makes the
policyholder pay for her own retirement under the technical basis at any
time. The guarantee provided by the technical basis thereby remains in
force after the exercise of the option of changing time or structure of the
retirement. This means that even after the exercise of one of the options the
reserves bears interest with the technical interest rate, and risk premiums
are based on the technical transition intensities. The impact of stochastic
retirement bears some resemblance to the impact of conversion to free policy
or surrender. However, whereas the free policy and the surrender options only
induce a risk of reduced or earlier benefits, stochastic retirement also induces
a risk of increased, postponed benefits. Its impact on market reserves relies
heavily on the extent of the guarantee provided by the technical basis. It is
not obvious that a pension fund wants to have deferred retirement covered by
the guarantee from the technical basis. In the case where deferred retirement
after some reference age of the contract is not covered by the guarantee from
the technical basis, we may model the time of retirement with this reference
age as an upper limit for the time of retirement. Policyholders who want to
keep saving after this time may then use their retirement benefits to start a
new contract under new terms.

In this paper we study, in Section 6.2, a simple life-death model with a
retirement state added. We determine how to scale the benefits, we show
how to set up a Thiele differential equation for the market reserves, and we
determine formulas for expected cash flows. This example serves to introduce
the method in a very simple setup. In Section 6.3 we study a complex model
which includes both cycles (through disability and rehabilitation) and other
behaviour scalings (through conversion to free policy). As is seen in [2] the
combination of cycles and behaviour scaling may complicate the calculation
of expected cash flows, and likewise we find that calculations of expected
cash flows are eased by introduction of modified transition probabilities which
incorporates expected scalings. Studying the complex model we find that one
has to be careful in the description of payments and transition probabilities,
as it is easy to formalize models and products which are not practically
meaningful. In Section 6.4 the possibility of conversion of benefits is added
to the complex model. We find that a Markov model, that has one state for
each benefit structure, is equivalent to our model in the sense that it produces
the same expected discounted cash flows. In Section 6.5 we demonstrate the
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impact of stochastic retirement on benefits, market reserves and expected
cash flows by numerical examples from the setup in Section 6.2 and Section
6.4.

6.2 Stochastic Retirement in a Simple Model
In this section we consider a simple model and a simple life insurance con-
tract to illustrate the main lines of the implications from stochastic retirement
clearly. We consider a life-death model with a retirement state as illustrated

p: Retired
?

µap(t)

a: Active d: Dead-µad(t)

��
��

�
��

�
��*

µpd(t)

Figure 6.1: Simple retirement model.

in Figure 6.1. We denote the three states a (active), d (dead) and p (retired).
The state of a policyholder over time is described by a cádlàg, finite state
Markov process, (Zt)t≥0, taking values in E = {a, p, d}. In the continuous
time Markov models commonly used in life insurance, it is natural to assume
that the distribution of the transition times is continuous. However, there
are multiple reasons to expect that there are time points at which there is a
positive probability of retirement. These reasons are among others monetary
advantages coming from legislative rules, and standard dates for termination
of employment. Thus, even though we make retirement stochastic, we want
to place ourselves in between the stochasticity of death and the usual deter-
ministic modelling of retirement. We do this by introducing deterministic
time points at which active policyholders have a positive probability of re-
tiring. Let P̂ denote the probability measure of the technical basis of the
contract. That is, P̂ is the measure used for setting equivalence premiums
and benefits. The distribution of Z is given from the transition probabilities
defined by

p̂jk(t, s) = P̂ (Zs = k|Zt = j), (6.1)

for j, k ∈ E. We assume that for every t ≥ 0 the transition intensities are
well defined by

µ̂jk(t) = lim
ε↓0

1
ε
p̂jk(t, t+ ε), (6.2)
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for j, k ∈ E with j 6= k, and we assume that they are continuous and that
µ̂pa = µ̂da = µ̂dp = 0. For a fixed set of time points t1, . . . , tn and probabilities
p̂1, . . . , p̂n we assume:

p̂jk(th−, th) = P̂ (Zth = k|Zth− = j) =

{
p̂h if (j, k) = (a, p),

0 otherwise,
(6.3)

for j, k ∈ E and we assume p̂n = 1, such that tn = Tmax is a maximum age of
retirement. Such a maximum is chosen to ease computations in practice when
valuing contracts. For each h = 0, . . . , n−1 and t ≤ s we assume s 7→ p̂jk(t, s)
are continuous on [th, th+1) with limits towards the right endpoints of the
interval. Thereby

p̂jk(t, th)− p̂jk(t, th−) =


p̂ja(t, th−)p̂h if k = p,

−p̂ja(t, th−)p̂h if k = a,

0 otherwise,
(6.4)

for j, k ∈ E. From the Kolmogorov equations we have that

∂
∂s
p̂jk(t, s) = −p̂jk(t, s)µ̂k.(s) +

∑
l∈E,l 6=k

p̂jl(t, s)µ̂lk(s), (6.5)

on (th, th+1) for j, k ∈ E and where µ̂k.(s) =
∑
{l∈E: l 6=k} µ̂kl(s). Combined

with (6.4) and p̂jk(t, t) = 1(j=k) for j, k ∈ E this describes the transition
probabilities. Except for the retirement state and the discontinuities in the
transition probabilities, this model is a classical life insurance model as de-
scribed in e.g. [9], [10] and [11].

6.2.1 Scaling the Benefits

We consider a contract containing a premium, π. As it is common in pension
systems, upon retirement at time t there is a lump sum payment, denoted
bap(t), and a beginning of a life annuity payment, denoted bp(t). Since re-
tirement is a policyholder choice, we want benefits to depend on the time
of retirement to be able to reward the policyholder who retires late, and to
avoid speculation. We wish to describe the dependence of benefits on the
time of retirement through scaling functions. Therefore, we choose a refer-
ence retirement time, T , and consider an alternative model where the time
of retirement is deterministically T . Then we determine benefits bTap, bTp for
this model such that the equivalence principle is fulfilled. Now, for the model
with stochastic retirement we define scaling functions that scale the reference
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benefits according to the time of retirement. We speak of scaling functions
as retirement factors. Let ρ1 be the function that gives the factor for scaling
the life annuity and let ρ3 be the function that gives the factor for scaling
the pension sum. The subscripts reflect the Danish tax codes.

Let Ia(t) = 1(Zt=a), Ip(t) = 1(Zt=p), dNap(t) = 1(Zt=p,Zt−=a), and let U
be the process of the duration the policyholder has been retired. Then the
contract has a payment stream given by:

dB(t) = −πIa(t)dt+ ρ1(t− Ut)bTp Ip(t)dt+ ρ3(t)bTapdNap(t), (6.6)

and we expect ρ1(T ) = ρ3(T ) = 1. Let r̂ denote the technical interest
rate and let V̂a(t) denote the retrospective technical reserve in the active
state at time t. In the retirement state we define two prospective technical
reserves: V̂p(t, u) is the reserve at time t after the duration u in the state,
and V̂ T

p (t) is a reserve for a life-annuity with the reference benefits. Then
V̂p(t, u) = ρ1(t − u)V̂ T

p (t). Notice that V̂ T
p does not depend on the time of

retirement. This is a special feature of the life annuity, but it would not be a
problem to extend the results of this paper to duration dependent reference
benefits.

Except for the discontinuity points, t1, . . . , tn, then V̂a is continuous.
Thiele’s differential equation gives

d
dt
V̂a(t) = π + (r̂ + µ̂ad(t)) V̂a(t)

− µ̂ap(t)
(
ρ3(t)bTap + ρ1(t)V̂ T

p (t)− V̂a(t)
)
, (6.7)

and in discontinuity points we have

V̂a(th)− V̂a(th−) = −p̂h
(
ρ3(th)b

T
ap + ρ1(th)V̂

T
p (th)− V̂a(th)

)
. (6.8)

How to choose the scaling depends on how we understand the guarantee pro-
vided by the technical basis. As mentioned in the introduction we choose the
scaling such that the risk sums of the policyholders actions are zero. That
is the expression in the large parentheses in (6.7) and (6.8). Thereby, the
guarantee from the technical basis covers through the exercise of the option
of changing the time of retirement. This means that no matter the time of
the retirement or the benefit structure, the reserve bears interest with the
technical interest rate, and risk premiums are based on the technical tran-
sition probabilities. With this choice of scaling we see from (6.8) that the
retrospective technical reserve of the active state, V̂a, becomes continuous,
and it follows from (6.7) that before time T , V̂a equals the classical retrospec-
tive technical reserve from the reference model with deterministic retirement
at time T .
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To calculate a prospective technical reserve in the active state, V̂ prosp
a

we need to have a terminal boundary condition for (6.7). To get this we
need to either assume an upper retirement age or make assumptions about
the relation between the intensities for death and for retirement for high
ages. We choose to have an upper retirement age, Tmax, as this is easiest
for computations. In this case we get from pn = 1, tn = Tmax and (6.8) the
terminal condition

V̂ prosp
a (Tmax−) = ρ3(Tmax)b

T
ap + ρ1(Tmax)V̂

T
p (Tmax).

Since the retirement factors are chosen such that this equal V̂a(Tmax−), we
find that the prospective reserve equals the retrospective, and our choice for
the retirement factors ensures that the equivalence principle is fulfilled.

However, a zero risk sum for retirement still leaves us with some choices
regarding how to specify the relation between the two retirement factors. The
choices we face here resemble the choices one faces upon conversion to free
policy. For the conversion to free policy it is often seen in the literature (see
e.g. [2], [7]) that the factors of the different benefits are either kept identical
or one factor is fixed at a desired level. However, in practice the saving is
often divided into partial reserves according to the benefit structure, and it
is natural to wish to have each of these pay for itself in a way that makes the
risk terms for each of the partial reserves zero. This is in Denmark done for
tax reasons. We assume that the reserve is divided in two. Let V̂ 1

a denote
the reserve for the annuity and π1 the annuity premium, and likewise let V̂ 3

a

and π3 denote pension sum reserve and premium.

d
dt
V̂ 1
a (t) = π1 + r̂V̂ 1

a (t) + µ̂ad(t)V̂
1
a (t)− µ̂ap(t)(ρ1(t)V̂ T

p (t)− V̂ 1
a (t)),

d
dt
V̂ 3
a (t) = π3 + r̂V̂ 3

a (t) + µ̂ad(t)V̂
3
a (t)− µ̂ap(t)(ρ3(t)bTap − V̂ 3

a (t)).

By choosing the factors such that risk sums from retiring are zero we do
not get any discontinuities. As for the combined reserve we get that the
retrospective reserves equal the technical reserves from the reference model
with fixed retirement at time T and the equivalence principle is kept. The
retirement factors become

ρ1(t) =
V̂ 1
a (t)

V̂ T
p (t)

and ρ3(t) =
V̂ 3
a (t)

bTap
=

V̂ 3
a (t)

V̂ 3
a (T )

. (6.9)

Note that ρ1(T ) = ρ3(T ) = 1 as anticipated. Further, notice that both
scaling factors may be determined from V̂ 1

a , V̂ 3
a and V̂ T

p , which can all be
calculated from the reference benefits alone.
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If we chose ρ1 = ρ3, we would find that the combined technical reserve
would be unchanged by the stochastic modelling of retirement. However,
money would be moved between the partial reserves upon retirement. When
we instead assume that risk terms for both of the partial reserves are zero we
ensure that no money is moved between the partial reserves upon retirement.

When splitting the reserve calculation in partial reserves we may assume
that the policyholder has separate Markov state processes for each partial
reserve. It is common in Denmark that policyholders choose to have their
lump sum retirement payment paid out at a different time than the beginning
of their life annuity. With separate state processes we may choose different
distributions of the time of retirement for each partial reserve and allow the
policyholder to retire for one benefit structure while remaining active for
another.

6.2.2 Market Valuation

We saw above how our benefit scaling resulted in the technical reserves being
unaffected by modelling the retirement as stochastic. However, for market
values the risk terms of retirement are no longer zero and thus market values
are affected by applying stochastic retirement.

We assume a market basis with a deterministic, time-dependent interest
rate, r, and a distribution of Z that resembles the one under the technical
measure. The only difference is that the transition intensities are replaced
with µap, µad, µpd, and p̂1, . . . , p̂n are replaced with p1, . . . , pn, where pn = 1.
the two bases agree on when the transition intensities are zero and on the time
of the discontinuities in the transition probabilities. From this, transition
probabilities pap, pad, ppd are obtained through (6.4) and (6.5).

Let Ea,t denote expectation on the market basis given the policyholder is
active at time t. Then, the prospective market reserve, Va(t), at time t given
that the policyholder is active at this time is

Va(t) = Ea,t
[∫ ∞

t

e−
∫ s
t r(x)dxdB(s)

]
.

Let V T
p denote the prospective market reserve from the retirement state with

reference benefits. Then, in continuity points, Thiele’s differential equation
for the market reserve in the active state becomes

d
dt
Va(t) = π + (r(t) + µad(t))Va(t)− µap(t)

(
ρ3(t)bTap + ρ1(t)V T

p (t)− Va(t)
)
,

with the terminal condition

Va(Tmax−) = ρ3(Tmax)b
T
ap + ρ1(Tmax)V

T
p (Tmax).
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The market reserve is discontinuous in the time points where there is a pos-
itive probability of retiring and the jumps are given by the risk term

Va(th)− Va(th−) = −ph(ρ3(th)b
T
ap + ρ1(th)V

T
p (th)− Va(th)).

As stochastic retirement makes the timing of the benefits stochastic, it is
interesting to look at how the expected cash flow is affected. Accumulated
expected cash flow given the policyholder is active at time t is given by

Aa(t, s) = Ea,t[B(s)−B(t)]. (6.10)

From [2] it follows that the market reserve is given by

Va(t) =

∫ ∞
t

e−
∫ s
t r(x)dxdAa(t, s).

In Appendix 6.A we derive the market reserve. We determine an expression
that allows us to immediately deduce the expected cash flow, which is given
by

dAa(t, s) = −paa(t, s)

(
πds+

(
µap(s)ds+

n∑
h=1

phdεth(s)

)
ρ3(s)bTap

)
+ pρ1

ap(t, s)b
T
p ds, (6.11)

where εth(s) = 1{s≥th} and

pρ1
ap(t, s) = Ea,t[Ip(s)ρ1(s− Us)] (6.12)

=

∫ s

t

paa(t, τ)ρ1(τ)ppp(τ, s)

(
µap(τ)dτ +

n∑
h=1

phdεth(τ)

)
.

The expectation in (6.12) is a kind of modified transition probability with a
weight for the benefit scaling. It resembles the modified transition probabili-
ties used in [2] for calculating cash flows in a model with a free policy option.
At first it seems that this modified probability might be very time consuming
to calculate, because it depends on ppp(τ, v) for every value of both τ and
v in [t,∞) × [t,∞). However, as we have closed form expressions for these
probabilities, the calculation is tractable.

6.3 Stochastic Retirement in a Complex Model
We now consider a more complex model in which we add the possibility
of the policyholder becomingg disabled, re-activating, or converting to free
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policy. We denote the states of our model a (active), p (retired), i (disabled),
d (dead), and ā , p̄, ī, d̄, for the corresponding states after conversion to
free policy. Our model is displayed in Figure 6.2. This model is interesting
because we want to show the interplay between the retirement scaling, the
free policy factor and disability products. Investigating the complex model
we find that it is very easy to accidentally construct contracts which are not
meaningful or assume policyholder behaviour which is unlikely. This is partly
because of the assumption that the policyholder behaviour is stochastic and
independent of everything else whereas it is actually a choice.

a: Active i: Disabled

p: Retired d: Dead

-µai(t)
�

µia(t)

-
µpd(t)

@
@
@
@R

µap(t)
@
@
@
@R

µid(t)

XXXXXXXXXXXXXXXXz

µad(t)

?

µaā(t)

ā: F.P. Active ī: F.P. Disabled

p̄: F.P. Retired d̄: F.P. Dead

-µā̄i(t)
�

µīā(t)

-
µp̄d̄(t)

@
@
@
@R

µāp̄(t)
@
@
@
@R

µīd̄(t)

XXXXXXXXXXXXXXXXz

µād̄(t)

Figure 6.2: Model with disability, free policy and stochastic retirement.

As in Section 6.2 we let Z be a stochastic process that describes the state
of the policyholder, such that Z takes values in E = {a, p, i, d, ā, ī, p̄, d̄} and
we assume Z is cádlàg and Markov. We let P̂ denote the probability measure
of the technical basis, define transition probabilities from (6.1), and assume
that the intensities of (6.2) are well defined for j, k ∈ E. In accordance with
Figure 6.2 we assume that only transitions given in Figure 6.2 are non-zero.
As in Section 6.2 we assume that transition probabilities are continuous in
the second argument on each of the intervals [th, th+1) with limits towards
the left endpoint. In the points t1, . . . , tn, for every h = 1, . . . , n, we replace
(6.3) with

p̂jk(th−, th) = P̂ (Zth = k|Zth− = j) =


p̂h if (j, k) = (a, p),

p̂φh if (j, k) = (ā, p̄),

0 otherwise,
(6.13)
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for j, k ∈ E and thereby

p̂jk(t, th)− p̂jk(t, th−) =



p̂ja(t, th−)p̂h if k = p,

p̂jā(t, th−)p̂φh if k = p̄,

−p̂ja(t, th−)p̂h if k = a,

−p̂jā(t, th−)p̂φh if k = ā,

0 otherwise,

(6.14)

for j, k ∈ E. Kolmogorovs differential equation (6.5) still holds on each
interval (th, th+1).

6.3.1 A Realistic Contract

We consider a simple, but more realistic contract. However, we find that with
stochastic retirement in the model even a simple contract requires careful
investigation. The contract we consider consists of a premium, π, a death
sum, bad(t), from active to death, a disability annuity bi(t), when disabled, a
pension sum of bap(u) if retiring at time u, a life annuity of bp(u) if retiring
at time u, and bad(t, v), bi(t, v), bap(u, v), bp(u, v) corresponding payments
after conversion to free policy at time v. We have to be very careful to not
construct a contract that does not make sense. Our motivation for scaling
of benefits is to reward policyholders who retire late. However, it is not
desirable to give a similar reward to a disabled policyholder who reactivates
at a correspondingly high age and immediately retires. There are several
ways to handle this problem. These have different levels of complexity.

One approach, the simplest, is to set µia(t) = µīā(t) = 0 for t > T .
This implies that policyholders are not able to re-activate after time T . The
biggest drawback from this model is that we lose the information of whether
the policyholder recovered after time T . It is likely that reactivated policy-
holders have lower death intensity than the disabled. However, the death
intensity from the disabled state is commonly estimated from everybody in
this state. If the policyholders who actually have recovered have comparable
benefits to those who are still disabled, then the diversification principle en-
sures that the lost information is not a problem for the insurance company’s
calculation of the collected reserves for all policyholders.

Another approach is to force recovered policyholders after time T di-
rectly to the retirement state or to a new state specifically for late recovered
disabled. In this state it would be natural to have the benefits set as if pol-
icyholder had stayed disabled. This is to have the policyholder neither gain
nor loose from recovering once time T is reached. In this model we gain
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the possibility of managing the information on whether the policyholder has
recovered and thereby calculate more precise death intensities for the single
policyholder.

The last and most complicated approach we mention is to allow the pol-
icyholder to reactivate to the active state or to the free policy state. This
way the policyholder can continue saving or at least have a break in receiving
payments. If this model is chosen it is worth noting that we may equally well
allow retired people to return to work. This modelling option has not been
present in earlier models with fixed retirement date. If this model is used it is
natural to let the reserve of the policyholder be unchanged upon reactivation
after time T . This way the policyholders cannot speculate about whether to
be declared recovered. However, there is a disadvantage that if the reserve
is kept unchanged upon recovery after time T the policyholder is not able to
get the same level of retirement benefits as if she had stayed disabled.

Similar problems arise if it is possible to become disabled after time T .
For fixed premiums it is common in Denmark that disability benefits do not
depend on when the policyholder becomes disabled. It is likely that at some
point after time T the policyholders receive higher benefits from retiring than
from being declared disabled. Again we are faced with options similar to the
ones described above. In the following we let µia(t) = µai(t) = µīā(t) =
µā̄i(t) = 0 for t > T , and assume that people who becomes disabled after
time T choose to retire.

6.3.2 Scaling the Benefits

We define reference benefits from the equivalence principle when the time of
retirement is deterministic, T , and when there is no conversion to free policy.
The reference benefits we denote with a superscript T . We then define scaling
functions that scales the benefits according to the time of retirement and
conversion to free policy. Every time the policyholder takes one of the two
actions, the benefits are scaled by a factor, which depends on the time of the
action. Again, assume x ∈ {1, 3} represents respectively the life annuity and
the pension sum. For her saving for benefits of type x we use the notation
that upon retirement from the active state at time u, the payments are scaled
with a factor ρx(u), upon conversion to free policy at time v the payments
are scaled with a factor φx(v), and upon retirement at time u from the free
policy state the payments are scaled with a factor ρφx(u). We choose scaling
such that risk sums for policyholder behaviour are zero. Now, it follows
from (6.16) that we do not need for the factor ρφx to depend on the time of
conversion to free policy. If the policyholder converges to free policy at time
v and retires at time u ≥ v, then the reference retirement payments in total
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are scaled by φx(v)ρφx(u). Thus, the effect from the time of conversion to
free policy and the effect from the time of retirement after conversion to free
policy are multiplicative. This is natural since the time of conversion to free
policy controls how long premiums are paid, and the time of retirement after
conversion to free policy controls when retirement benefits are paid.

For y, z ∈ E let Iy(t) = 1(Zt=y) and dNyz(t) = 1(Zt−=y,Zt=z), and let U be
a process of the duration the policyholder has been retired, and let V be a
process of the duration the policyholder has been converted to free policy.
Assume the disability annuity and the death sum are paid by the partial
reserve for the life annuity. Now, the contract has payment streams given
by:

dB1(t) = −π1Ia(t)dt+ bi(t)Ii(t)dt+ bad(t)dNad(t) + bTp ρ1(t− Ut)Ip(t)dt
+ bi(t)φ

1(t− Vt)Iī(t)dt+ bad(t)φ
1(t− Vt)dNād̄(t)

+ bTp ρφ1(t− Ut)φ1(t− Vt)Ip̄(t)dt,
dB3(t) = −π3Ia(t)dt+ bTapρ3(t)dNap(t) + bTapρφ3(t)φ3(t− Vt)dNāp̄(t).

As for the simple model we define scalings such that for each of the partial
reserves, risk sums for policyholder behaviour are zero. We use the following
notation for the technical reserves: Let V̂ x

a denote the retrospective technical
reserve of type x saving in the active state. Let V̂ x

i denote the prospective
technical reserve of type x saving in the disabled state. Let V̂ T

p denote the
prospective technical reserve of a life annuity with the reference benefits. Let
V̂ x∗
ā denote the prospective reserve in the free policy active state if the free

policy scaling is omitted. Once converted to free policy, the policyholder
cannot return to the active state. Thus, V̂ x∗

ā is the prospective reserve of the
payment stream Bx∗ with

dB1∗(t) = bi(t)Iī(t)dt+ bad(t)dNād̄(t) + bTp ρφ1(t− Ut)Ip̄(t)dt,
dB3∗(t) = bTapρφ3(t)dNāp(t).

Let V̂ x∗
ī denote the prospective technical reserve for the type x saving for the

free policy disabled with the payment stream Bx∗. Since we have assumed
that the disability annuity and the death sum are paid by the partial reserve
for the life annuity, we let b1

i = bi, b1
ad = bad and b3

i = b3
ad = 0. Now, the

Thiele differential equation for the active state and for the free policy active
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state for each of the partial reserves becomes

d
dt
V̂ x
a (t) = πx + r̂V̂ x

a (t)− µ̂ad(t)
(
bxad(t)− V̂ x

a (t)
)
− µ̂ai(t)

(
V̂ x
i (t)− V̂ x

a (t)
)

− µ̂ap(t)
(

1(x=1)ρ1(t)V̂ T
p (t) + 1(x=3)ρ3(t)bTap − V̂ x

a (t)
)

− µ̂aā(t)
(
φx(t)V̂ x∗

ā (t)− V̂ x
a (t)

)
, (6.15)

and

d
dt
V̂ x∗
ā (t) = r̂V̂ x∗

ā (t)− µ̂ād̄(t)
(
bxad(t)− V̂ x∗

ā (t)
)
− µ̂ā̄i(t)

(
V̂ x∗
ī (t)− V̂ x∗

ā (t)
)

− µ̂āp̄(t)
(

1(x=1)ρφ1(t)V̂ T
p̄ (t) + 1(x=3)ρφ3(t)bTap − V̂ x∗

ā (t)
)
, (6.16)

with terminal conditions

V̂ 1∗
ā (Tmax−) = ρφ1(Tmax)V̂

T
p̄ (Tmax),

V̂ 3∗
ā (Tmax−) = ρφ3(Tmax)b

T
ap.

We choose the scalings such that the risk sums for policyholder behaviours are
zero. Thereby there are no discontinuities, and the reserves V̂ x

a correspond to
the technical reserves from the classical model with deterministic retirement
at time T . We see that in order to have zero risk term we must have scalings
for retirement

ρ1(t) =
V̂ 1
a (t)

V̂ T
p (t)

and ρ3(t) =
V̂ 3
a (t)

bTap
=

V̂ 3
a (t)

V̂ 3
a (T )

.

Specifically we notice that ρ1(T ) = ρ3(T ) = 1, and that the retirement factors
can be calculated exclusively from the reference benefits. The prospective
technical reserves in the active state have terminal conditions

V̂ 1,prosp
a (Tmax−) = ρ1(Tmax)V̂

T
p (Tmax) = V̂ 1

a (Tmax)

V̂ 3,prosp
a (Tmax−) = ρ3(Tmax)b

T
ap = V̂ 3

a (Tmax).

Thus, the retrospective and the prospective reserves for the active state are
the same, and thus our choice of scaling implies that the equivalence principle
is kept.

Scalings for conversion to free policy should fulfil

φ1(t) =
V̂ 1
a (t)

V̂ 1∗
ā (t)

and φ3(t) =
V̂ 3
a (t)

V̂ 3∗
ā (t)

. (6.17)
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And scaling for retiring after conversion to free policy should fulfil

ρφ1(t) =
V̂ 1∗
ā (t)

V̂ T
p (t)

and ρφ3(t) =
V̂ 3∗
ā (t)

bTap
=
V̂ 3∗
ā (t)

V̂ 3
a (T )

. (6.18)

We notice that φx(t)ρφx(t) = ρx(t) for all x, so that one gets the same benefits
for retiring directly as for converting to free policy and immediately retiring.
However, the free policy scaling and the retirement scaling after conversion
to free policy are not uniquely given from the formulas above, since we have
that V̂ x∗

a reserves were given from ρφx. The flexibility we have reflects how
much disability benefits are scaled upon conversion to free policy compared
to how much retirement benefits are scaled. We choose to fix φx(T ) = 1,
in order for the scaling of the disability benefits to vanish when the time of
conversion to free policy tends to T . With φx(T ) = 1 it follows from (6.17)
that V̂ x∗

ā (T ) = V̂ x
a (T ), and this gives a computable boundary condition for

(6.16). With (6.18) we reduce (6.16) to

d
dt
V̂ x∗
ā (t) = r̂V̂ x∗

ā (t)− µ̂ād̄(t)(bxad(t)− V̂ x∗
ā (t))− µ̂ā̄i(t)(V̂ x∗

ī (t)− V̂ x∗
ā (t)), (6.19)

and thus V̂ x∗
ā is uniquely determined. With V̂ x∗

ā given it follows from (6.17)
and (6.18) that also φ3 and ρφ3 are given in every timepoint.

In the present example the partial reserve for the pension sum only con-
tains retirement benefits, and thereby it is actually not important how we
fix φ3(T ). From (6.19) it follows that if φ3(T ) = k, V̂ 3∗

ā is decreased with
a factor k. Thus from (6.17) and (6.18) φ3 is increased with a factor k and
ρφ3 is decreased with a factor k. Every benefit for the partial reserve for the
pension sum is either scaled with both φ3 and ρφ3 or with none of them, and
thus φ3(T ) has no influence.

Combined we have that φx, ρx and ρφx are calculated from V̂ T
p , V̂ x

a and
V̂ x∗
ā . V̂ T

p is as in Section 6.2. V̂ x
a before time T corresponds to the reserve

in a model with deterministic retirement, and after time T , V̂ x
a is given

from (6.15). V̂ x∗
ā is calculated from (6.19) with the boundary condition

V̂ x∗
ā (T ) = V̂ x

a (T ). Notice that since it is assumed that the policyholder
cannot become disabled after time T , we can determine the values of V̂ x

a and
V̂ x∗
ā independently of V̂ x

i and V̂ x∗
ī on [T, Tmax]. This is an advantage numer-

ically, since our boundary conditions for the Thiele differential equations for
V̂ x
a and V̂ x∗

ā are given in T , whereas the boundary conditions for the Thiele
differential equations for V̂ x

i and V̂ x∗
ī are given in Tmax. Thus, for t < T , V̂ x

a

and V̂ x∗
ā are calculated from (6.15) and (6.19) simultaneous with V̂ x

i and V̂ x∗
ī

being calculated from a similar differential equation.



120 CHAPTER 6. STOCHASTIC RETIREMENT

6.3.3 Market Valuation

We have once again seen how the technical reserve in the active state is
unaffected by modelling retirement as stochastic. However, under the market
basis the risk terms are no longer zero, and the market values are thus affected
by modelling retirement as stochastic.

As in Section 6.2.2 we assume a deterministic market interest rate, r,
and we assume the distribution of Z resembles the one under the technical
basis, with the only difference that the transition intensities µ̂xy are replaced
by intensities µxy for x, y ∈ {a, i, p, d, ā, ī, d̄, p̄} and p̂1, . . . , p̂n, p̂

φ
1 , . . . , p̂

φ
n are

replaced by p1, . . . , pn, p
φ
1 , . . . , p

φ
n, with pn = pφn = 1. The transition probabil-

ities are denoted pxy instead of p̂xy and they may be deduced from (6.5) and
(6.14) by replacing µ̂xy with µxy. The two bases agree on when the transition
intensities are zero, and they agree on the time of the discontinuities of the
transition probabilities.

Let V x
a and V x

i denote the market reserves for respectively the active state
and the disability state for the type x saving. Let V T

p denote the market value
of a life annuity with the reference benefits, and let V x∗

ā and V x∗
ī denote the

market values from respectively the free policy active state and the free policy
disability state of the payment steam Bx∗. Let B(s) = B1(s) + B3(s) and
B∗(s) = B1∗(s) +B3∗(s) then

Va(t) = Ea,t[
∫ ∞
t

e−
∫ s
t r(x)dxdB(s)],

V ∗ā (t) = Ea,t[
∫ ∞
t

e−
∫ s
t r(x)dxdB∗(s)].

These are continuous and differentiable except in t1, . . . , tn. By differentiating
the following Thiele differential equation follows

d
dt
Va(t) = π + r(t)Va(t)− µad(t) (bad(t)− Va(t))− µai(t) (Vi(t)− Va(t))

− µap(t)
(
ρ1(t)V T

p (t) + ρ3(t)bTap − Va(t)
)

− µaā(t)
(
φ1(t)V 1∗

ā (t) + φ3(t)V 3∗
ā (t)− Va(t)

)
,

d
dt
V x∗
ā (t) = r(t)V x∗

ā (t)− µād̄(t) (bxad(t)− V x∗
ā (t))− µā̄i(t) (V x∗

ī (t)− V x∗
ā (t))

− µāp̄(t)
(
1(x=1)ρφ1(t)V T

p̄ (t) + 1(x=3)ρφ3(t)bTap − V x∗
ā (t)

)
,

with terminal conditions

Va(Tmax−) = ρ1(Tmax)V
T
p (Tmax) + ρ3(Tmax)b

T
ap,

V 1∗
ā (Tmax−) = ρφ1(Tmax)V

T
p̄ (Tmax),

V 3∗
ā (Tmax−) = ρφ3(Tmax)b

T
ap,
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and in discontinuity points we get

Va(th)− Va(th−) = −ph(ρ1(th)V
T
p (th) + ρ3(th)b

T
ap − Va(th)),

V 1∗
ā (th)− V 1∗

ā (th−) = −pφh(ρφ1(th)V
T
p (th)− V 1∗

ā (th)),

V 3∗
ā (th)− V 3∗

ā (th−) = −pφh(ρφ3(th)b
T
ap − V 3∗

ā (th)).

As the stochastic retirement makes the time of the benefits stochastic, nu-
merically we find the highest impact on the expected cash flows. In Appendix
6.B we derive the market reserve. We determine an expression that allows
us to immediately deduce the expected cash flow, which is given by

dAa(t, s) = paa(t, s−) (−π + µad(s)bad(s)) ds+ pai(t, s)bi(s)ds

+ paa(t, s−)ρ3(s)bTap

(
µap(s)ds+

n∑
h=1

phdεth(s)

)
+ pρ1

ap(t, s)b
T
p ds+ pφ

1

aā(t, s)bad(s)µād̄(s)ds

+ pφ
1

āi
(t, s)bi(s)ds+ p

φ1ρφ1

ap̄ (t, s)bTp ds

+ pφ
3

aā(t, s−)ρφ3(s)bTap

(
µāp̄(s)ds+

n∑
h=1

phdεth(s)

)
, (6.20)

with

pρ1
ap(t, s) = Ea,t[Ip(s)ρ1(s− Us)]

=

∫ s

t

paa(t, τ−)ρ1(τ)ppp(τ, s)

(
µap(τ)dτ +

n∑
h=1

phdεth(τ)

)
,

pφ
1

āi
(t, s) = Ea,t[Iī(s)φ1(s− Vs)] =

∫ s

t

paa(t, σ)µaā(σ)φ1(σ)pā̄i(σ, s)dσ,

p
φ1ρφ1

ap̄ (t, s) = Ea,t[Ip̄(s)φ1(s− Vs)ρφ1(s− Us)]

=

∫ s

t

∫ s

σ

paa(t, σ)φ1(σ)µaā(σ)pāā(σ, τ−)ρφ1(τ)pp̄p̄(τ, s)(
µāp̄(τ)dτ +

n∑
h=1

pφhdεth(τ)

)
dσ,

pφ
x

aā(t, s) = Eat[Iā(s)φx(s− Vs)] =

∫ s

t

paa(t, σ)µaā(σ)φx(σ)pāā(σ, s)dσ.

The expected cash flow seems time consuming to calculate as we need transi-
tion intensities for all combinations of s, u ∈ [t,∞) with s < u. The modified
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probabilities above ease the calculations as they may be calculated from dif-
ferential equations. This is done in a similar way for a similar model with
deterministic retirement in [2]. For s /∈ {t1, . . . , tn} the modified probabilities
are smooth with:

∂
∂s
pρ1
ap(t, s) = paa(t, s)µap(s)ρ1(s)− µpd(s)pρ1

ap(t, s),

∂
∂s
pφ

x

āi
(t, s) = −pφ

x

āi
(t, s)(µīā(s) + µīd̄(s)) + pφ

x

aā(t, s)µā̄i(s),

∂
∂s
p
φ1ρφ1

ap̄ (t, s) = pφ
1

aā(t, s)µāp̄(s)ρφ1(s)− µp̄d̄(s)p
φ1ρφ1

ap̄ (t, s),
∂
∂s
pφ

x

aā(t, s) = paa(t, s)µaā(s)φ
x(s)− µā.(s)pφ

x

aā(t, s) + µīā(s)p
φx

āi
(t, s).

In the discontinuity points we have

pρ1
ap(t, th)− pρ1

ap(t, th−) = paa(t, th−)ρ1(th)ph,

pφ
x

āi
(t, th)− pφ

x

āi
(t, th−) = 0,

p
φ1ρφ1

ap̄ (t, th)− p
φ1ρφ1

ap̄ (t, th−) = pφ
x

aā(t, th−)ρφ1(th)p
φ
h,

pφ
x

aā(t, th)− pφ
x

aā(t, th−) = pφ
x

aā(t, th−)pφh.

The modified probabilities are no more complicated to calculate than the
traditional transition probabilities. Thus, with these the expected cash flows
are easily calculated.

6.4 Benefit Conversion
In Section 6.2 and Section 6.3 we have modelled the time of retirement as
stochastic. In reality it is also very common that upon retirement the benefits
or parts of these are converted to another structure than originally stated in
the contract. This could mean that a saving originally intended for a pension
sum is used for buying a life annuity. We assume that the policyholder’s
choice regarding this is independent of everything else in the model, except
the time of retirement. E.g. the policyholder may be more inclined to convert
her savings to a life annuity if she retires early rather than if she retires very
late.

Recall that x ∈ {1, 3} represents respectively the annuity and the pension
sum. Let Y x

t denote the proportion of the partial reserve originally intended
for benefit structure x which is used for a life annuity upon retirement if
this happens at time t before conversion to free policy. We let Y φx

t denote
the corresponding proportion if the policyholder has converted to free pol-
icy first. Assume the remaining partial reserve is used for a pension sum.
Y x = (Y x

t )t≥0 and Y φx = (Y φx
t )t≥0 are stochastic processes taking values in
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[0, 1], and (Y x, Y φx) is independent of everything else in our model. Conver-
sion of benefits is often regulated. Many regulation types governing which
conversions are allowed, can be easily implemented in our model through
choice of the distributions of (Y x, Y φx).

6.4.1 Scaling the Benefits

We consider the complex model of Section 6.3. The size of the benefits after
conversion is not obvious. Just like for the retirement factor, setting the
benefits after a conversion depends on the guarantees the policyholder has.
At one extreme is the case where the policyholder is not guaranteed that she
is allowed to convert. Even if the policyholder is allowed to convert, then
she might not have any guarantees regarding the basis used for pricing. In
this case conversion may be modelled as surrender or as full conversion to
a pension sum. We study a case where the policyholder is guaranteed that
upon retirement she may use her retrospective saving to buy a combination
of a pension sum and a life annuity valued under the technical basis. In this
case the guarantee from the technical basis stretches very far and one could
argue that it may not be realistic. If for example a policyholder has a pension
sum saving with a very high technical interest rate, she might not be allowed
to convert the saving to a life annuity with the same high guaranteed interest
rate.

Now, for the partial reserves for each of the benefit structure types x ∈
{1, 3}, we define reference retirement benefits bTxp and bTxap . These corresponds
to the benefits if the policyholder retires at time T and chooses to have every-
thing paid out as respectively a life annuity or a pension sum. The reference
benefits are scaled depending on the time of retirement and conversion to
free policy. When all the saving meant for benefit type x is used for benefit
type w, then the reference benefits are scaled in the following way: If the
policyholder retires from the active state at time t, the scaling ρxw(t) is used.
And if the policyholder retires at time t after conversion to free policy at
time u the scaling φx(u)ρxw(t) is used. Here φx is the free policy scaling from
the model of section 6.3. For every other benefits the scaling of Section 6.3
is used. Thereby we get the payment stream for the partial reserve intended
for benefit type x to be:

dBx(t) = −πxIa(t)dt+ bxi (t)Ii(t)dt+ bxad(t)dNad(t)

+ (1− Y x
t )bTxap ρ

x
3(t)dNap(t) + Y x

t−Utb
Tx
p ρx1(t− Ut)Ip(t)dt

+ bxi (t)φ
x(t− Vt)Iī(t)dt+ (1− Y φx

t )bTxap ρ
x
φ3(t)φx(t− Vt)dNāp̄(t)

+ bxad(t)φ
x(t− Vt)dNād̄(t) + Y φx

t−Utb
Tx
p ρxφ1(t− Ut)φx(t− Vt)Ip̄(t)dt.
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Using the notation from the previous section, but with V̂ Tx
p being the prospec-

tive technical value of a life annuity with payments bTxp the scalings become

ρx1(t) =
V̂ x
a (t)

V̂ Tx
p (t)

and ρx3(t) =
V̂ x
a (t)

V̂ x
a (T )

,

ρxφ1(t) =
V̂ x∗
ā (t)

V̂ Tx
p (t)

and ρxφ3(t) =
V̂ x∗
ā (t)

V̂ x
a (T )

,

Let yxt = E[Y x
t ] and yφxt = E[Y φx

t ]. In Appendix 6.C we derive the market
reserve. We determine an expression that allows us to immediately deduce
the expected cash flow, which is given by

dAxa(t, s) = paa(t, s−) (−πx + µad(s)b
x
ad(s)) ds+ pai(t, s)b

x
i (s)ds

+ paa(t, s−)(1− yxs )bTxap ρ
x
3(s)

(
µap(s)ds+

n∑
h=1

phdεth(s)

)
+ pyρ

x
1

ap (t, s)bTxp ds+ pφ
x

aā(t, s−)bxad(s)µād̄(s)ds

+ pφ
x

āi
(t, s)bxi (s)ds+ p

yφxρx1
ap̄ (t, s)bTxp ds

+ pφ
x

aā(t, s−)(1− yφxs )bTxap ρ
x
φ3(s)

(
µāp̄(s)ds+

n∑
h=1

pφhdεth(s)

)
,

(6.21)

where

pyρ
x
1

ap (t, s) =

∫ s

t

ρx1(τ)yxτ ppp(τ, s)paa(t, τ−)(µap(τ)dτ +
n∑
h=1

phdεth(τ)),

p
yφxρx1
ap̄ (t, s) =

∫ s

t

∫ s

σ

paa(t, σ)µaā(σ)φx(σ)pāā(σ, τ−)yφxτ ρ
x
φ1(τ)pp̄p̄(τ, s)(

µāp̄(τ)dτ +
n∑
h=1

pφhdεth(τ)

)
dσ.

This is the same we would get if we had considered the model of Figure
6.3. This is a Markov model with four states a (active), i (disabled), l (life
annuity), s (pension sum), d (dead) and corresponding free policy states ā,
ī, l̄, s̄ and d̄. Transitions between any of the states {a, i, d, ā, ī, d̄} has the
intensities and probabilities as in the previous model. Transitions to and
from the retirement states has intensities

µal(t) = yxt µap(t), µas(t) = (1− yxt )µap(t), µld(t) = µsd(t) = µpd(t),

µāl̄(t) = yφxt µāp̄(t), µās̄(t) = (1− yφxt )µāp̄(t), µl̄d̄(t) = µs̄d̄(t) = µp̄d̄(t),
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and all other intensities to and from the retirement states are zero. Transition
probabilities to the retirement states are continuous, except for the time
points t1, . . . , tn. In those discontinuities we have

pal(th−, th) = phy
x
th
, pāl̄(th−, th, ) = pφhy

φx
th
,

pas(th−, th) = ph(1− yxth), pās̄(th−, th) = pφh(1− yφxth ).

From this new model we easily deduce the following Thiele differential equa-
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Figure 6.3: Model with disability, free policy and stochastic retirement including
states for benefit conversion.

tion for differentiability points

d
dt
V x
a (t) = πx + (r(t) + µad(t))V

x
a (t)− µai(t) (V x

i (t)− V x
a (t))

− µap(t)
(
yxt ρ

x
1(t)V Tx

p (t) + (1− yxt )ρx3(t)bxap − V x
a (t)

)
− µaā(t) (φx(t)V x∗

ā (t)− V x
a (t)) ,

d
dt
V x∗
ā (t) = (r(t) + µād̄(t))V

x∗
ā (t)− µā̄i(t) (V x∗

ī (t)− V x∗
ā (t))

− µāp̄(t)
(
yφxt ρ

x
φ1(t)V Tx

p (t) + (1− yφxt )ρxφ3(t)bxap − V x∗
ā (t)

)
,
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with terminal conditions

V x
a (Tmax−) = yxTmaxρ

x
1(Tmax)V

Tx
p (Tmax) + (1− yxTmax)ρ

x
3(Tmax)b

3
ap,

V x∗
ā (Tmax−) = yφxTmaxρ

x
φ1(Tmax)V

Tx
p (Tmax) + (1− yφxTmax)ρ

x
φ3(Tmax)b

x
ap.

In discontinuity points we get

V x
a (th)− V x

a (th−) = −ph
(
yxthρ

x
1(th)V

Tx
p (th) + (1− yxth)ρx3(th)b

x
ap − V x

a (th)
)
,

V x∗
ā (th)− V x∗

ā (th−) = −pφh
(
yφxth ρ

x
φ1(th)V

Tx
p̄ (th) + (1− yφxth )ρxφ1(th)b

x
ap − V x∗

ā (th)
)
.

We may also deduce the differential equation by differentiating the integrated
discounted expected cash flow. This approach may be used to verify the
connection to the model of Figure 6.3

We may obtain a similar Thiele equation under the technical basis and we
see from this that the scaling functions are such that the risk sums for retiring
are zero under the technical basis, and so are the risk sums for conversion to
free policy. Specifically the technical reserves in any other state than retired
equals the technical reserves when the structure of the benefits is fixed. Thus
the equivalence principle still holds.

It is tractable that for this more advanced model with benefit conversion
reserves can be calculated from a model of the kind we are used to. However,
we should be aware that the model of Figure 6.3 is constructed to give us
the correct expected cash flow and thereby also the correct market reserve.
This does not guarantee that the model is appropriate risk management
calculations based on other distributional properties. Even if policyholders
in the true model are likely to convert a proportion of their savings, the
model of Figure 6.3 assumes extreme choice. In the model of Figure 6.3
policyholders always decide to have all retirement benefits paid out with the
same benefit structure.

6.5 Numerical Results and Discussion
We consider here the numerical consequences of taking stochastic retirement
into account. We begin in Section 6.5.1 by looking at a simple contract in
the simple model, and examine the numerical consequences of expanding this
to include a stochastic retirement time. This corresponds to what is done in
Section 6.2.

In Section 6.5.2 we look at a more realistic contract in the complex model.
In this model we look at the numerical consequences of adding first the pos-
sibility to convert to free policy, then a stochastic retirement time, and lastly
stochastic benefit conversion at the time of retirement. This corresponds to
what is done in Section 6.3 and Section 6.4.



6.5. NUMERICAL RESULTS AND DISCUSSION 127

6.5.1 Stochastic Retirement in the Simple Model

We consider the model and the contract from Section 6.2. We assume that
the mortality from the active state is the same as from the retired state, and
furthermore we assume that the mortality is the same for the technical and
the market basis. For this mortality we choose the standard intensities for
a female occurring in the Danish G82 risk table. This corresponds to the
following intensity expression

µ̂ad(age) = µad(age) = 0.0005 + 105.728−10+0.038∗age

As mentioned in Section 6.3, modelling the time of retirement as stochastic
does not have any effect on the technical reserves. On the market basis
we consider three different models for the retirement transition. We name
these low retirement intensity, deterministic retirement, and high retirement
intensity, and they are given by

Retirement (t1, . . . , tn) (p1, . . . , pn)=(pφ1 , . . . , pφn) µap(age)
Low intensity (62,67,72) (0.1, 0.2, 1) e0.05∗age−8

Deterministic 67 1 0
High intensity (62,67,72) (0.1, 0.2, 1) e0.1∗age−8

This is in some regards an overly simplistic example since one would also
expect the positive probability mass to be smaller in the example with smaller
retirement intensity.

Figure 6.4 contains the transition probabilities based on the low and high
retirement intensity. For the deterministic retirement, probability mass in
the active state simply moves to the pension state at the agreed time of
retirement. For the low retirement intensity, the three time points with
positive probability mass of retirement are clearly seen, whereas these are
not as clear in the example where policyholders have a high intensity of
retirement between these time points.

We now consider two contracts; one with a high interest rate guarantee
of 5%, and another with a low interest rate guarantee of 1%. For both
contracts the future market yield is assumed to be constant at 3.5%. All
interest rates are continuously compounded. The contracts are assumed to
have a fixed premium and the same two benefits with amounts found by the
equivalence principle; a life annuity, and a pension sum. 10% of the premium
is used to fund the pension sum. Furthermore the contracts are calculated
at the initiation date, and the policyholder is assumed to be 30 years old at
this time. The premium and benefits for retirement at age 67 for the two
contracts are found to be
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Figure 6.4: Transition probabilities based on the low and high retirement
transition intensity.

High interest (r̂ = 5%) Low interest (r̂ = 1%)
Premium 10,000e 10,000e
ref. life annuity (b67

a ) 108,177e 32,121e
ref. pension sum (b67

ap) 125,590e 52,904e

The dependence of the time of retirement on the benefits is described by the
retirement factor. Figure 6.5 displays the scaling factors as a function of the
time of retirement in each of the two cases low / high interest rate. These
graphs are easily accessible tools for guiding policyholders about the impact
of their choice regarding when to retire. We have calculated the market
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Figure 6.5: The retirement scaling factors in the simple model for respectively
a low (1%), and a high (5%) guaranteed interest rate.

reserve at time zero for the two contracts using the three different models for
the transition to retirement. The results were found to be
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Retirement High interest (r̂ = 5%) Low interest (r̂ = 1%)
Low intensity 124,178e -109,425e
Deterministic 113,205e -103,681e
High intensity 107,789e -100,288e

This shows that for a contract with a high interest rate guarantee compared to
the market expectations the reserve is higher for the low retirement intensity
than for deterministic, which is then again higher than the reserve for the
high retirement intensity. This is what we would expect since a late time
of retirement means that more premium is paid. The insurance company
has to bear interest for this premium with an interest rate that is higher
than market interest rate. The opposite is the case for the contract with an
interest rate guarantee lower than market expectations.

In Figure 6.6 the cash flows for each of the three models of the retirement
transition is shown for the contract with the low interest rate guarantee.
These cash flows contain no discounting from the market interest rate. The
cash flows for the contract with the high interest rate guarantee looks similar
to these. In these figures the pension sum can easily be seen in the cash flow
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Figure 6.6: Cash flows for the contract low interest rate (1%) using the
different retirement intensity.

for the low retirement intensity in each of the three time points with positive
probability for retirement. The pension sum is also seen at the agreed upon
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time of retirement for the deterministic retirement. It is also seen that as
expected a higher retirement intensity push payments forward in time, and
leaves smaller expected payments after the latest retirement time.

6.5.2 Stochastic Retirement in the Complex Model

We now consider the models and the contract from Section 6.3 and 6.4. The
same death intensity as in Section 6.5.1 is used for transitions to the dead
states. Furthermore the transitions to retirement states are also as described
in 6.5.1 both before and after conversion to free policy. The transition from
the active state to the disabled state has the same intensity for the technical
and market basis. We choose the standard intensity for a female occurring
in the Danish G82 risk table. This corresponds to the following expression

µ̂ai(age) = µai(age) = 0.0006 + 104.71609−10+0.06∗age.

The transition from the disabled state to the active state is assumed to have
a zero intensity for the technical basis, that is µ̂ia(age) = 0, and the following
intensity for the market basis µia(age) = exp{−0.06 ∗ age}. For the market
basis we assume µaā(age) = exp{−0.11 ∗ age}.

As in Section 6.4, we define y3
t = yφ3

t as the expected proportion of the
partial reserve for the retirement sum used for a life annuity upon retirement.
We set this proportion to zero for the technical basis, and we choose the
following expression for the market basis y3

t = yφ3
t = 0.25+0.5 ·(t−62)/(72−

62). Furthermore we assume that there is no other benefit conversions than
the one from the pension sum to a life annuity, and thus y1

t = yφ1
t = 1.

As in Section 6.5.1, we consider two contracts. These are defined from the
same guaranteed interest rates, and the market interest rate is also assumed
to be the same as in Section 6.5.1. The contracts are assumed to have a
fixed premium with a disability premium waiver, a fixed death sum, a fixed
disability annuity and the same two benefits with amounts found by the
equivalence principle; a life annuity, and a retirement sum. Again 10% of the
premium is used to fund the pension sum. Furthermore the contracts are
calculated at the initiation date, and the policyholder is assumed to be 30
years old at that time. The premium and benefits for the two contracts are
found to be
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High interest (r̂ = 5%) Low interest (r̂ = 1%)
Premium 10,000e 10,000e
ref. life annuity (b67

p ) 84,827e 21,224e
ref. disab. annuity (b67

i ) 30,000e 30,000e
ref. death sum (b67

ad) 100,000e 100,000e
ref. pension sum (b67

ap) 120,584e 49,488e

We have calculated the market reserve at time zero for the two contracts
with various options included. First, we have calculated the reserves using
the deterministic retirement. Next, we have added the free policy option.
Then, we have included a stochastic retirement time using the low retirement
intensity from Section 6.5.1. Lastly, we have added the possibility of benefit
conversion at the time of retirement for the retirement sum. The resulting
market reserves are found to be

High interest (r̂ = 5%) Low interest (r̂ = 1%)
Deterministic Retirement 88,121e -95,559e
+ Free Policy Option 73,523e -78,814e
+ Stochastic Retirement 78,462e -81,027e
+ Benefit Conversion 79,720e -81,752e

As expected, we see that all market reserves for the contract with the high
interest rate guarantee is positive whereas all reserves for the contract with
low interest rate guarantee are negative.

Including the free policy option in the calculation adds a possibility to
stop premium payments and thus decrease the size of the future payments.
This decreases the reserve for the contract with high interest rate guarantee,
and increases the reserve for the contract with low interest rate guarantee.

As in Section 6.5.1 we see that a low stochastic retirement intensity delays
the benefit payments and increase the size of the retirement benefits. This
increases the reserve for the contract with high interest rate guarantee, and
decreases the reserve for the contract with low interest rate guarantee.

Including benefit conversion from retirement sum to life annuity again
delays the benefits and has the same effect as adding low stochastic retirement
intensity. The opposite would be the case if the conversion where from life
annuity to retirement sum.

We see that the market value of the contract with the high interest rate
guarantee in our current economic environment is too small if one only takes
into account the free policy option and not the stochastic retirement and
the benefit conversion. In our setup, stochastic retirement time with a low
retirement intensity increases the market value by approximately 7% while
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benefit conversion on just 10% of the premium increases the market value
by approximately 1.5%. This means that insurance companies and pension
funds not reserving for these types of options might not be setting aside
enough to cover future payments. Furthermore, as illustrated in Figure 6.6,
stochastic retirement has a high influence on the expected cash flow.



Appendix

6.A Market Reserve in the Simple Model
We derive the market reserve for the simple contract in Section 6.2 in a form
that allows us to immediately deduce the expected cash flow of (6.11) and
(6.12).

Va(t) = Ea,t
[ ∫ ∞

t

e−
∫ s
t r(x)dx

(
−Ia(s)π + Ip(s)ρ1(s− Us)bTp

)
ds

+

∫ ∞
t

e−
∫ s
t r(x)dxρ3(s)bTapdNap(s)

]
=

∫ ∞
t

e−
∫ s
t r(x)dx

(
paa(t, s−)

(
−π + ρ3(s)bTapµap(s)

)
+ Ea,t[Ip(s)ρ1(s− Us)]bTp

)
ds.

We define

pρ1
ap(t, s) ≡ Ea,t [Ip(s)ρ1(s− Us)]

=

∫ s

t

Ea,t [Ip(s)ρ1(s− Us)|s− Us = τ ] dPa,t(s− Us ≤ τ)

=

∫ s

t

Ea,t [Ip(s)|s− Us = τ ] ρ1(τ)paa(t, τ−)(
µap(τ)dτ +

n∑
h=1

phdεth(τ)

)

=

∫ s

t

paa(t, τ−)ρ1(τ)ppp(τ, s)

(
µap(τ)dτ +

n∑
h=1

phdεth(τ)

)
.

Now (6.11) and (6.12) immediately follow.
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6.B Market Reserve in the Complex Model
We derive the market reserve for the complex model of Section 6.3 in a form
that allows us to immediately deduce the expected cash flow of (6.20).

Va(t) = Ea,t
[ ∫ ∞

t

e−
∫ s
t r(x)dx

(
− Ia(s)π + Ii(s)bi(s) + Ip(s)b

T
p ρ1(s− Us)

+ Iī(s)bi(s)φ
1(s− Vs) + Ip̄(s)b

T
p φ

1(s− Vs)ρφ1(s− Us)
)

ds

+

∫ ∞
t

e−
∫ s
t r(x)dxbad(s)dNad(s) +

∫ ∞
t

e−
∫ s
t r(x)dxbTapρ3(s)dNap(s)

+

∫ ∞
t

e−
∫ s
t r(x)dxbad(s)φ

1(s− Vs)dNād̄(s)

+

∫ ∞
t

e−
∫ s
t r(x)dxbTapρφ3(s)φ3(s− Vs)dNāp̄(s)

]
=

∫ ∞
t

e−
∫ s
t r(x)dx

(
− paa(t, s−)π + pai(t, s)bi(s)

+ Ea,t [Ip(s)ρ1(s− Us)] bTp + Ea,t
[
Iī(s)φ

1(s− Vs)
]
bi(s)

+ Ea,t
[
Ip̄(s)φ

1(s− V (s))ρφ1(s− Us)
]
bTp + paa(t, s−)µad(s)bad(s)

)
ds

+

∫ ∞
t

e−
∫ s
t r(x)dxρ3(s)bTappaa(t, s−)

(
µap(s)ds+

n∑
h=1

phdεth(s)

)

+ Ea,t
[∫ ∞

t

e−
∫ s
t r(x)dxbad(s)φ

1(s− Vs)dNād̄(s)

]
+ bTapEa,t

[∫ ∞
t

e−
∫ s
t r(x)dxρφ3(s)φ3(s− Vs)dNāp̄(s)

]
.

We evaluate the unresolved expectations one at a time

pρ1
ap(t, s) = Ea,t [Ip(s)ρ1(s− Us)]

=

∫ s

t

Ea,t [Ip(s)ρ1(s− Us)|s− Us = τ ] dPa,t(s− Us ≤ τ)

=

∫ s

t

ρ1(τ)Ep,τ [Ip(s)] paa(t, τ−)

(
µap(τ)dτ +

n∑
h=1

phdεth(τ)

)

=

∫ s

t

paa(t, τ−)ρ1(τ)ppp(τ, s)

(
µap(τ)dτ +

n∑
h=1

phdεth(τ)

)
.
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pφ
1

āi
(t, s) = Ea,t

[
Iī(s)φ

1(s− Vs)
]

=

∫ s

t

Ea,t
[
Iī(s)φ

1(s− Vs)|s− Vs = σ
]

dPa,t(s− Vs ≤ σ)

=

∫ s

t

φ1(σ)Eā,σ [Iī(s)] paa(t, σ−)µaā(σ)dσ

=

∫ s

t

paa(t, σ−)µaā(σ)φ1(σ)pā̄i(σ, s)dσ.

p
φ1ρφ1

ap̄ (t, s) = Ea,t
[
Ip̄(s)φ

1(s− Vs)ρφ1(s− Us)
]

=

∫ s

t

Ea,t[Ip̄(s)φ1(s− Vs)ρφ1(s− Us)|s− Vs = σ]dPa,t(s− Vs ≤ σ)

=

∫ s

t

φ1(σ)Eā,σ [Ip̄(s)ρφ1(s− Us)] paa(t, σ−)µaā(σ)dσ

=

∫ s

t

∫ s

σ

Eā,σ [Ip̄(s)ρφ1(s− Us)|s− Us = τ ] dPā,σ(s− Us ≤ τ)

paa(t, σ−)φ1(σ)µaā(σ)dσ

=

∫ s

t

∫ s

σ

ρφ1(τ)Ep̄,τ [Ip̄(s)] pāā(σ, τ−)

(
µāp̄(τ)dτ +

n∑
h=1

pφhdεth(τ)

)
paa(t, σ−)φ1(σ)µaā(σ)dσ

=

∫ s

t

∫ s

σ

paa(t, σ−)φ1(σ)µaā(σ)pāā(σ, τ)ρφ1(τ)pp̄p̄(τ, s)(
µāp̄(τ)dτ +

n∑
h=1

pφhdεth(τ)

)
dσ.

Ea,t
[∫ ∞

t

e−
∫ s
t r(x)dxbad(s)φ

1(s− Vs)dNād̄(s)

]
= Ea,t

[∫ ∞
t

e−
∫ s
t r(x)dxbad(s)φ

1(s− Vs)Iā(s−)µād̄(s)ds

]
=

∫ ∞
t

e−
∫ s
t r(x)dxbad(s)Ea,t

[
φ1(s− Vs)Iā(s−)

]
µād̄(s)ds.
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with

pφ
x

aā(t, s−) = Ea,t [φx(s− Vs)Iā(s−)]

=

∫ s

t

Ea,t [φx(s− Vs)Iā(s−)|s− Vs = σ] dPa,t(s− Vs ≤ σ)

=

∫ s

t

φx(σ)Eā,σ [Iā(s−)] paa(t, σ−)µaā(σ)dσ

=

∫ s

t

paa(t, σ−)µaā(σ)φx(σ)pāā(σ, s−)dσ.

Ea,t
[∫ ∞

t

e−
∫ s
t r(x)dxρφ3(s)φ3(s− Vs)dNāp̄(s)

]
= Ea,t

[∫ ∞
t

e−
∫ s
t r(x)dxρφ3(s)φ3(s− Vs)Iā(s−)

(
µāp̄(s)ds+

n∑
h=1

pφhdεth(s)

)]

=

∫ ∞
t

e−
∫ s
t r(x)dxρφ3(s)Ea,t

[
φ3(s− Vs)Iā(s−)

](
µāp̄(s)ds+

n∑
h=1

pφhdεth(s)

)

=

∫ ∞
t

e−
∫ s
t r(x)dxρφ3(s)pφ

3

aā(t, s−)

(
µāp̄(s)ds+

n∑
h=1

pφhdεth(s)

)
,

Now (6.20) immediately follows.

6.C Market Reserve with Benefit Conversion
We derive the market reserve for the model with benefit conversion studied
in Section 6.4. We derive it in a form that allows us to immediately deduce
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the expected cash flow of (6.21).

V x
a (t) = Ea,t

[ ∫ ∞
t

e−
∫ s
t r(x)dx

(
− Ia(s)πx + bxi (s)Ii(s)

+ Y x
s−Usb

Tx
p Ip(s)ρ

x
1(s− Us) + bxi (s)φ

x(s− Vs)Iī(s)

+ Y φx
s−Usb

Tx
p φx(s− Vs)ρxφ1(s− Us)Ip̄(s)

)
ds

+

∫ ∞
t

e−
∫ s
t r(x)dxbxad(s)dNad(s)

+

∫ ∞
t

e−
∫ s
t r(x)dx(1− Y x

s )bTxap ρ
x
3(s)dNap(s)

+

∫ ∞
t

e−
∫ s
t r(x)dxbxad(s)φ

x(s− Vs)dNād̄(s)

+

∫ ∞
t

e−
∫ s
t r(x)dx(1− Y φx

s )bTxap ρ
x
φ3(s)φx(s− Vs)dNāp̄(s)

]
=

∫ ∞
t

e−
∫ s
t r(x)dx

(
− paa(t, s−)πx + pai(t, s)b

x
i (s)

+ bTxp Ea,t[Y x
s−UsIp(s)ρ

x
1(s− Us)] + pφ

x

āi
(t, s)bxi (s)

+ bTxp Ea,t[Y x
s−Usφ

x(s− Vs)ρxφ1(s− Us)Ip̄(s)]

+ paa(t, s−)µad(s)b
x
ad(s) + pφ

x

aā(t, s−)µād̄(s)b
x
ad(s)

)
ds

+ bTxap Ea,t
[∫ ∞

t

e−
∫ s
t r(x)dx(1− Y x

s )ρx3(s)dNap(s)

]
+ bTxap Ea,t

[∫ ∞
t

e−
∫ s
t r(x)dx(1− Y x

s )ρxφ3(s)φx(s− Vs)dNāp̄(s)

]
.

We evaluate each of the four unresolved expectations one at a time.

pyρ
x
1

ap (t, s) = Ea,t[Y x
s−UsIp(s)ρ

x
1(s− Us)]

=

∫ s

t

Ea,t[Y x
s−UsIp(s)ρ

x
1(s− Us)|s− Us = τ ]dPa,t(s− Us ≤ τ)

=

∫ s

t

ρx1(τ)E[Y x
τ ]Ep,τ [Ip(s)]paa(t, τ−)

(
µap(τ)dτ +

n∑
h=1

phdεth(τ)

)

=

∫ s

t

ρx1(τ)yτppp(τ, s)paa(t, τ−)

(
µap(τ)dτ +

n∑
h=1

phdεth(τ)

)
.
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p
yφxρxφ1
ap (t, s) = Ea,t[Y φx

s−Usφ
x(s− Vs)ρxφ1(s− Us)Ip̄(s)]

=

∫ s

t

Ea,t[Y φx
s−Usφ

x(s− Vs)ρxφ1(s− Us)Ip̄(s)|s− Vs = σ]

dPa,t(s− Vs ≤ σ)

=

∫ s

t

φx(σ)Eā,σ[Y φx
s−Usρ

x
φ1(s− Us)Ip̄(s)]paa(t, σ−)µaā(σ)dσ

=

∫ s

t

φx(σ)

∫ s

σ

Eā,σ[Y φx
s−Usρ

x
φ1(Us)Ip̄(s)|s− Us = τ ]

dPā,σ(s− Us ≤ τ)paa(t, σ−)µaā(σ)dσ

=

∫ s

t

∫ s

σ

E[Y φx
τ ]ρxφ1(τ)Ep̄,τ [Ip̄(s)]pāā(σ, τ−)(

µāp̄(τ)dτ +
n∑
h=1

pφhdεth(τ)

)
φx(σ)paa(t, σ−)µaā(σ)dσ

=

∫ s

t

∫ s

σ

paa(t, σ−)µaā(σ)φx(σ)pāā(σ, τ−)yφxτ ρ
x
φ1(τ)pp̄p̄(τ, s)(

µāp̄(τ)dτ +
n∑
h=1

pφhdεth(τ)

)
dσ.

Ea,t
[∫ ∞

t

e−
∫ s
t r(x)dx(1− Y x

s )ρx3(s)dNap(s)

]
= Ea,t

[∫ ∞
t

e−
∫ s
t r(x)dx(1− Y x

s )ρx3(s)Ia(s−)

(
µap(s)ds+

n∑
h=1

phdεth(s)

)]

=

∫ ∞
t

e−
∫ s
t r(x)dx(1− yxs )ρx3(s)paa(t, s−)

(
µap(s)ds+

n∑
h=1

phdεth(s)

)
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Ea,t
[∫ ∞

t

e−
∫ s
t r(x)dx(1− Y φx

s )ρxφ3(s)φx(s− Vs)dNāp̄(s)

]
= Ea,t

[ ∫ ∞
t

e−
∫ s
t r(x)dx(1− Y φx

s )ρxφ3(s)φx(s− Vs)Iā(s−)(
µāp̄(s)ds+

n∑
h=1

pφhdεth(s)

)]
=

∫ ∞
t

e−
∫ s
t r(x)dx(1− yφxt )ρxφ3(s)Ea,t[φx(s− Vs)Iā(s−)](

µāp̄(s)ds+
n∑
h=1

pφhdεth(s)

)

=

∫ ∞
t

e−
∫ s
t r(x)dx(1− yφxt )ρxφ3(s)pφ

x

aā(t, s−)

(
µāp̄(s)ds+

n∑
h=1

pφhdεth(s)

)
.

Now (6.21) immediately follows.
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