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Abstract

In the study of the Novikov conjecture, property A and coarse embedding of metric
spaces were introduced by Yu and Gromov, respectively. The main topic of the thesis is
property A and coarse embedding for locally compact second countable groups. We prove
that many of the results that are known to hold in the discrete setting, hold also in the
locally compact setting.

In a joint work with Deprez, we show that property A is equivalent to amenability
at infinity and the strong Novikov conjecture is true for every locally compact group that
embeds coarsely into a Hilbert space (see Article A).

In a joint work with Deprez, we show a number of permanence properties of property A
and coarse embeddability into Hilbert spaces (see section 4).

In section 6 we give a completely bounded Schur multiplier characterization of locally
compact groups with property A. In particular, weakly amenable groups have property A.

In a joint work with Knudby, we characterize the connected simple Lie groups with the
discrete topology that have different approximation properties (see Article B). Moreover,
we give a contractive Schur multiplier characterization of locally compact groups coarsely
embeddable into Hilbert spaces (see Article C). Consequently, all locally compact groups
whose weak Haagerup constant is 1 embed coarsely into Hilbert spaces.

In a joint work with Brodzki and Cave, we show that exactness of a locally compact
second countable group is equivalent to amenability at infinity, which solves an open problem
raised by Anantharaman-Delaroche (see section 8).

Resumé

I undersøgelsen af Novikovs formodning, blev egenskab A og grov indlejring af metriske
rum indført af henholdsvis Yu og Gromov. Hovedemnet for denne afhandling er egenskab A
og grov indlejring for lokalkompakte andentællelige grupper. Vi viser, at mange af de kendte
resultater fra det diskrete tilfælde også holder i det lokalkompakte tilfælde.

I samarbejde med Deprez, vises, at egenskab A svarer til amenabilitet ved uendelig, og at
den stærke Novikov-formodning er sand for enhver lokalkompakt gruppe, der indlejrer groft
i et Hilbertrum (se artikel A).

I samarbejde med Deprez, vises, at egenskab A og grov indlejring i Hilbertrum bevares
ved en række almindelige konstruktioner (se afsnit 4).

I afsnit 6 gives en karakterisering af lokalkompakte grupper med egenskab A ved brug af
fuldstændigt begrænsede Schur-multiplikatorer. Dette viser, at svagt amenable grupper har
egenskab A.

I samarbejde med Knudby, karakteriseres de sammenhængende simple Lie-grupper der,
udstyret med den diskrete topologi, har forskellige approksimationsegenskaber (se artikel B).
Desuden gives en karakterisering af lokalkompakte grupper groft indlejret i Hilbertrum ved
brug af kontraherende Schur-multiplikatorer (se artikel C). Derfor indlejrer alle lokalkom-
pakte grupper, hvis svage Haagerup konstant er 1, groft i Hilbertrum.

I samarbejde med Brodzki og Cave, vises, at eksakthed af en lokalkompakt andentæl-
lelig gruppe svarer til amenabilitet ved uendelig. Dette løser et åbent problem stillet af
Anantharaman-Delaroche (se afsnit 8).
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1. Introduction

Gromov introduced the notion of coarse embeddability of metric spaces and suggested that
finitely generated discrete groups that are coarsely embeddable in a Hilbert space, when
viewed as metric spaces with a word length metric, might satisfy the Novikov conjecture
[33, 37]. Yu showed that this is indeed the case, provided that the classifying space is
a finite CW-complex [89]. In the same paper Yu introduced a weak form of amenability
on discrete metric spaces that he called property A, which guarantees the existence of a
coarse embedding into Hilbert space. Higson and Roe proved in [50] that the metric space
underlying a finitely generated discrete group has property A if and only if it admits a
topologically amenable action on some compact Hausdorff space. Ozawa showed in [70] that
a discrete group admits a topologically amenable action on a compact Hausdorff space if and
only if the group is exact. In the case of property A groups, Higson strengthened Yu’s result
by removing the finiteness assumption on the classifying space [47]. Indeed, he proved that
the Baum-Connes assembly map with coefficients, for any countable discrete group which
has a topologically amenable action on a compact Hausdorff space, is split-injective. Baum,
Connes and Higson showed that this implies the Novikov conjecture [7]. Using Higson’s
descent technique (see [47]), Skandalis, Tu and Yu [81] were able to generalize the split-
injectivity result to arbitrary discrete groups which admit a coarse embedding into Hilbert
space, and hence they answered Gromov’s question.
All mathematical concepts mentioned above, except for the Novikov conjecture, not only
make sense in the discrete setting but also in the locally compact setting. The main topic
of my Ph.D. thesis is to study property A and coarse embedding on locally compact second
countable groups. In the following, we show that many of the results that are known to hold
in the discrete setting, hold also in the locally compact setting.

2. The Baum-Connes conjecture and the strong Novikov conjecture

The Baum-Connes conjecture was first introduced by Paul Baum and Alain Connes in 1982
[6]1 and its current formulation was given in [7]. The origins of the conjecture go back to
Connes’ foliation theory [21] and Baum’s geometric description of K-homology theory [8].
Let us first state the Baum-Connes conjecture with coefficients and provide some scientific
background for the conjecture. Consider a second countable locally compact group G and
a separable G-C∗-algebra A. Let E(G) denote a locally compact universal proper G-space.
Such a space always exists and unique up to G-homotopy equivalence [7, 57]. In many cases
there is a natural model for E(G) with geometric interpretation ([7], [57]). The topological
K-theory of G with coefficient A is defined as follows:

Ktop
∗ (G,A) = lim

X
KKG

∗ (C0(X), A),

where X runs through all G-invariant subspaces of E(G) such that X/G is compact, and
KKG

∗ (C0(X), A) denotes Kasparov’s equivariant KK-theory [56]. Baum, Connes and Higson
[7] produces a particular map between the topological K-theory of G with coefficient A,
Ktop(G,A) and the operator K-theory of the reduced crossed product C∗-algebra A or G,
called the assembly map

µA : Ktop
∗ (G,A)→ K∗(Aor G).

1However, the paper was published 18 years later.
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3. PROPERTY A AND COARSE EMBEDDING 6

Conjecture 1 (The Baum-Connes Conjecture with Coefficients). Let G be a second count-
able locally compact group. The assembly map µA is an isomorphism of abelian groups for
every separable G-C∗-algebra A.

The conjecture itself provides a way to compute the operator K-theory of Aor G from the
equivariant K-homology theory. The Baum-Connes conjecture with coefficients has been
proved for some large families of groups. In particular, Higson and Kasparov [49] proved the
Baum-Connes conjecture with coefficients for groups having the Haagerup property, which
contain all locally compact amenable groups. In 2012, Lafforgue [64] proved it for all word-
hyperbolic groups. However, the Baum-Connes conjecture with coefficients is known to be
false in general. The first counterexamples were obtained by Higson, Lafforgue and Skandalis
in [48] for certain classes of Gromov’s random groups [38], [4], [69].
The Baum-Connes conjecture with coefficients consists of two parts, injectivity of the assem-
bly map and surjectivity of the assembly map. The injective part of the conjecture is called
"the strong Novikov conjecture":
Conjecture 2 (The Strong Novikov Conjecture). Let G be a second countable locally
compact group. The assembly map µA is injective for every separable G-C∗-algebra A.

The strong Novikov conjecture for countable discrete groups implies the Novikov conjecture
on homotopy invariance of higher signatures [7]. This is the reason for the name of this
conjecture. As far as I know, at present there are no known counterexamples to the strong
Novikov conjecture. As mentioned in the introduction, the strong Novikov conjecture holds
for countable groups which admit a coarse embedding into Hilbert space [81]. Later, Chabert,
Echterhoff and Oyono-Oyono showed in [14] that the strong Novikov conjecture is still true
for locally compact second countable groups that admit a topologically amenable action on
some compact Hausdorff space.
The strong Novikov conjecture has been the main motivation for me to study property A
and coarse embedding on locally compact second countable groups. In a joint work with
Deprez [A], we are able to prove the strong Novikov conjecture for every locally compact
second countable group that embeds coarsely into a Hilbert space. Hence we have answered
Gromov’s question in greater generality.

3. Property A and coarse embedding

In [37], Gromov introduced the notion of the coarse embedding of a metric space into another
one. In the literature what we have called a coarse embedding is often referred to as an
uniform embedding after M. Gromov. We use the term coarse embedding, because uniform
embedding means something different in the Banach geometry (see [12]).
Definition 3.1 ([37]). Let X and Y be any metric spaces. A map f : X → Y is called a
coarse embedding if there exist non-decreasing functions ρ1, ρ2 : [0,∞)→ [0,∞) such that
(i) ρ1(d(x, y)) ≤ d(f(x), f(y)) ≤ ρ2(d(x, y)) for all x, y ∈ X.
(ii) limr→∞ ρi(r) =∞ for i = 1, 2.

Property A was first introduced by Yu on discrete metric spaces and the original motivation
for introducing property A was that it is a sufficient condition to coarsely embed a discrete
metric space into a Hilbert space.
Definition 3.2 ([89]). A discrete metric space (X, d) is said to have property A if for any
R > 0, ε > 0, there exist S > 0 and a family (Ax)x∈X of finite, non-empty subsets of X ×N,
such that
(i) (y, n) ∈ Ax implies d(x, y) ≤ S.
(ii) For all x, y ∈ X with d(x, y) ≤ R we have |Ax∆Ay |

|Ax∩Ay | < ε.

The following result is inspired by the Bekka-Cherix-Valette therem which states that every
amenable group admits a proper and isometric action on Hilbert space [10].



3. PROPERTY A AND COARSE EMBEDDING 7

Theorem 3.3 ([89]). If a discrete metric space X has property A, then X admits a coarse
embedding into Hilbert spaces.

The coarse embeddability of locally compact (σ-compact) groups into Hilbert spaces has
already studied by Anantharaman-Delaroche in [3]. Moreover, Roe in [78] generalized prop-
erty A to proper metric spaces with bounded geometry in the sense of [76]. Deprez and I
introduced in [A] our own notion of property A for locally compact second countable groups.
This notion of property A is closely modelled on Yu’s definition and unifies the coarse prop-
erty on the underlying metric space and the topological property on the group in the following
way. Every second countable locally compact group G has a proper left-invariant metric d
that implements the topology on G, and such a metric is unique up to coarse equivalence
(see [45] and [82]). Moreover, the proper metric space (G, d) has bounded geometry (see
[45]). So Roe’s property A makes sense for every locally compact second countable group
and it agrees with our property A in this case. Furthermore, our property A is equivalent to
amenability at infinity, which is a topological property on locally compact groups.
In the following we will recall the relevant definitions and state the main theorems in [A].
From now on, G will always denote a locally compact, second countable, Hausdorff topological
group. Let µ′ denote the product measure of a left Haar measure µ on G with the counting
measure on N. If K ⊆ G is a subset, we denote Tube(K) := {(s, t) ∈ G×G : s−1t ∈ K}.

Definition 3.4. ([A]) A locally compact group G has property A if for any compact subset
K ⊆ G and ε > 0, there exist a compact subset L ⊆ G and a family {As}s∈G of Borel subsets
of G× N with 0 < µ′(As) <∞ such that

• for all (s, t) ∈ Tube(K) we have µ′(As∆At)
µ′(As∩At) < ε,

• (t, n) ∈ As implies (s, t) ∈ Tube(L).

This definition can be regarded as a generalization of Yu’s property A for finitely generated
discrete groups with the counting measure and any word length metric.

Definition 3.5 ([3]). A map u from a locally compact group G into a Hilbert space H is
said to be a coarse embedding if u satisfies the following two conditions:
a) for every compact subset K of G there exists R > 0 such that

(s, t) ∈ Tube(K)⇒ ||u(s)− u(t)|| ≤ R;

b) for every R > 0 there exists a compact subset K of G such that

||u(s)− u(t)|| ≤ R⇒ (s, t) ∈ Tube(K).

It is not hard to see that the preceding definition of coarse embedding is equivalent to
Gromov’s notion of coarse embeddability of the metric space (G, d) into Hilbert spaces for
the "unique" proper metric d as mentioned above.
Already observed by Anantharaman-Delaroche in [3] that a locally compact σ-compact group
which is amenable at infinity, embeds coarsely into a Hilbert space. However, the converse
implication is not true (see [69]). Recall that a locally compact group G is said to be
amenable at infinity if G admits a topologically amenable action in the sense of [1] on some
compact Hausdorff space X. It is well-known from [3] that a locally compact group G is
amenable at infinity if and only if its action on βlu(G) by the left translation is topologically
amenable, where βlu(G) is the universal compact Hausdorff left G-space equipped with a
continuous G-equivariant inclusion of G as an open dense subspace, which has the following
property: any (continuous) G-equivariant map from G into a compact Hausdorff left G-
space K extends uniquely to a continuous G-equivariant map from βlu(G) into K. When G
is discrete, the space βlu(G) is exactly the Stone-Čech compactification of the group G.
The implication (1)⇒ (2) in the next theorem is proved by Anantharaman-Delaroche in [3].
Deprez and I proved the converse implication and that both conditions in fact characterize
property A for all locally compact second countable groups:
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Theorem 3.6. ([A]) Let G be a locally compact second countable group. T.F.A.E.:
(1) G is amenable at infinity.

(2) For any compact subset K ⊆ G and ε > 0, there exist a compact subset L ⊆ G and
a (continuous) positive type kernel k : G×G→ C such that supp k ⊆ Tube(L) and
sup(s,t)∈Tube(K) |k(s, t)− 1| < ε.

(3) For any compact subset K ⊆ G and ε > 0, there exist a compact subset L ⊆ G and
a (continuous) map ξ : G → L2(G) such that ||ξt||2 = 1, supp ξt ⊆ tL for every
t ∈ G and sup(s,t)∈Tube(K) ||ξs − ξt||2 < ε.

(4) G has property A.

As a consequence of Theorem 3.6, all locally compact second countable groups with property
A embed coarsely into Hilbert spaces. In fact, Deprez and I showed the following:
Theorem 3.7. ([A]) Let G be a locally compact second countable group. T.F.A.E.:

(1) G admits a coarse embedding into a Hilbert space.

(2) G admits an action with Haagerup property on some compact Hausdorff space.

(3) For any compact subset K ⊆ G and ε > 0, there exists a (continuous) positive type
kernel k : G×G→ C such that sup(s,t)∈Tube(K) |k(s, t)− 1| < ε and for every δ > 0,
there exists a compact subset Lδ ⊆ G satisfying |k(s, t)| > δ ⇒ (s, t) ∈ Tube(Lδ).

Recall that an action Gy X on a compact Hausdorff space X has the Haagerup property if
the action admits a continuous proper conditionally negative type function. More precisely,
a conditionally negative type function of the action G y X is a function ψ : X × G → R
such that
1) ψ(x, e) = 0 for all x ∈ X;
2) ψ(x, g) = ψ(g−1x, g−1) for all (x, g) ∈ X ×G;
3)
∑n
i,j=1 titjψ(g−1

i x, g−1
i gj) ≤ 0 for all {ti}ni=1 ⊆ R satisfying

∑n
i=1 ti = 0, gi ∈ G and x ∈ X.

Deprez and I applied Higson’s descent technique in [47] and the going–down functor of
Chabert, Echterhoff and Oyono-Oyono in [14], to obtain an analogue result of Skandalis, Tu
and Yu (see [81]):
Theorem 3.8. ([A]) If G is a locally compact second countable group which admits a coarse
embedding into a Hilbert space, then the Baum-Connes assembly map

µA : Ktop
∗ (G;A)→ K∗(Aor G)

is split-injective for any separable G-C∗-algebra A.

We conclude this section by the following implications:

G has property A

��

ks +3 Gy βlu(G) is topologically amenable

��
G is coarsely embedded into Hilbert space

��

ks +3 Gy βlu(G) has Haagerup property

The Strong Novikov Conjecture

4. Property A pairs and proper cocycles

The material in this section is joint work with Steven Deprez and is based on the preprint
"Permanence properties of property A and coarse embeddability for locally compact groups".
Since the preprint contains some errors, I decide to rewrite a part of the preprint.
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In this section we will discuss many important permanence properties of property A and
coarse embeddability for locally compact groups. It is clear that property A and coarse
embeddability into Hilbert spaces pass to closed subgroups. In the following we will be
interested in the other direction: if G is a locally compact second countable group and a
closed subgroup H ⊆ G has property A or is coarsely embeddable into Hilbert spaces, under
which conditions on the inclusion H ⊆ G can we conclude that G has property A or is
coarsely embeddable into Hilbert spaces?

Theorem 4.1. Let G and H be locally compact second countable groups. In each of the
following situations, if H has property A or is coarsely embeddable into a Hilbert space, then
G has property A or is coarsely embeddable into a Hilbert space.

(1) H ⊆ G is a closed co-compact subgroup.
(2) H ⊆ G is a closed co-amenable subgroup.
(3) H is a closed normal subgroup of G and the quotient group G/H has property A.
(4) H = G/Q where Q ⊆ G is a compact normal subgroup.

Note that property A is closed under extensions. However, we have to require that H is
coarsely embeddable into a Hilbert space and the quotient group G/H has property A in
order to conclude that G is coarsely embeddable into a Hilbert space too. The reason is that
the analogue condition of (3) in Theorem 3.6 can not be obtained in coarse embedding case
(compare Theorem 3.7). Recall that a closed subgroup H of G is co-compact if the quotient
space G/H is compact and is co-amenable if the homogeneous space G/H is amenable in
Eymard’s sense [32] that the quasi-regular representation λG/H weakly contains the trivial
representation 1G. It is well-known that if the homogeneous space G/H is amenable, then
H is amenable if and only if G is amenable (see e.g. [9, Corollary G.3.8]). In particular, the
co-compactness does not imply the co-amenability (e.g. let G = SL2(R) and H be the closed
subgroup of upper triangular matrices) unless the closed subgroup H is normal or discrete.
All the statements in Theorem 4.1 are special cases of a more general result, which is proved
by Deprez and me. The crucial ingredients of this result are proper cocycles inspired by
Jolissaint [53, 54] and property A pairs inspired by amenable pairs [36, 32, 90, 52].
Let G y (X,µ) be a measurable action of a locally compact second countable group G on
a standard probability space (X,µ) (e.g. X = [0, 1] and µ the Lebesgue measure). We say
the action is non-singular if the action preserves the measure class of µ (i.e. µ(A) = 0 ⇔
µ(gA) = 0 for every measurable set A and every g ∈ G). A family A of measurable sets in
X is said to be large if it is closed under finite unions and under taking measurable subsets
and moreover, for every ε > 0 there is a measurable set A ∈ A such that µ(X\A) < ε. It
is clear that the σ-algebra on X is always large. If the standard probability space (X,µ) is
also a σ-compact locally compact Hausdorff space, it is not hard to see that the family A0
of all precompact Borel sets in X is large. The reason to consider large families is explained
by the following lemma:

Lemma 4.2. Let A be a large family on a standard probability space (X,µ) and 1 ≤ p <∞.
Then for every ε > 0 and ξ ∈ Lp(X,µ), there exist a measurable set A ∈ A and ξ0 ∈ Lp(X,µ)
such that supp ξ0 ⊆ A and ||ξ − ξ0||p < ε. In fact, we may choose ξ0 to be 1Aξ.

Proof. Since the family A is large, we choose a sequence (Bn)n∈N ⊆ A such that
µ(X\Bn) < 1

n for each n ∈ N. Since the family A is closed under finite unions, we define
An := ∪ni=1Bi ∈ A. Obviously, (An)n∈N is an increasing sequence of elements in A satisfying
µ(X\∪∞n=1An) = 0. It follows from Lebesgue’s dominated convergence theorem that ||1Anξ−
ξ||p → 0, for n→∞. The conclusion follows easily from this fact. �

Definition 4.3. Let G and H be locally compact second countable groups and let G y
(X,µ) be a non-singular measurable action on a standard probability space (X,µ).

• A measurable map ω : G×X → H is called a cocycle if the relation
ω(gh, x) = ω(g, hx)ω(h, x)
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holds for all g, h ∈ G and for almost every x ∈ X.
• Let A be a large family on (X,µ). A cocycle ω : G ×X → H is said to be proper
with respect to A if

(1) for every compact subset K ⊆ G and every A,B ∈ A, there exists a pre-
compact subset L(K,A,B) of H such that

ω(g, x) ∈ L(K,A,B)

for all g ∈ K and almost every x ∈ A ∩ g−1B.
(2) for every compact subset L ⊆ H and every A,B ∈ A, the set

K(L,A,B) := {g ∈ G : µ({x ∈ A ∩ g−1B : ω(g, x) ∈ L}) > 0}

is precompact in G.

Example 4.4. Let G be a locally compact second countable group.

a) Let H ⊆ G be a closed subgroup and consider the homogeneous G-space X = G/H
equipped with any quasi-invariant probability measure µ. Let s : X → G be a
regular Borel section (see [66, Lemma 1.1]), i.e. s(x)H = x for all x ∈ X and s(K)
is precompact in G for every compact subset K ⊆ X. Then it is not difficult to
check that the Borel cocycle ω : G ×X → H defined by ω(g, x) = s(gx)−1gs(x) is
proper with respect to the large family A0 of all precompact Borel sets in X.

b) Let Q ⊆ G be a closed normal subgroup and H = G/Q be the quotient group.
Moreover, let X be the one-point space with the counting measure and π : G×X →
H be the quotient map. Then the Borel cocycle π is proper with respect to the
(trivial) σ-algebra on X if and only if Q is compact, which is also equivalent to the
topological properness of the continuous map π : G→ G/Q.

In the following, we will recall the notion of amenable pairs and then define the notion of
property A pairs. The properties and relations of these two notions will also be discussed.
Let Gy (X,µ) be a non-singular measurable action on a standard probability space (X,µ).
The Koopman representation πX : G→ U(L2(X,µ)) of the action Gy (X,µ) is given by

(πX(g)ξ)(x) = ξ(g−1x)
√
χ(g−1, x), where g ∈ G, x ∈ X and ξ ∈ L2(X,µ).

Here χ : G×X → R∗+ denotes the Radon-Nikodym derivative given by χ(g, x) := dgµ
dµ (x).

Theorem 4.5 ([90, 52]). Let Gy (X,µ) be a non-singular measurable action on a standard
probability space (X,µ). The following are equivalent:

(1) The Koopman representation πX weakly contains the trivial representation 1G: there
is a sequence of unit vectors (ξn) in L2(X,µ) satisfying ||ξn − πX(g)ξn||2 → 0
uniformly on compact subsets of G.

(2) There exists a G-invariant state on L∞(X,µ).
(3) The Koopman representation πX is amenable in the sense of Bekka [11]: there exists

a state M on B(L2(X,µ)) satisfying M(πX(g)TπX(g−1)) = M(T ) for g ∈ G and
T ∈ B(L2(X,µ)).

If one of the conditions in Theorem 4.5 holds, we say that (G,X) is an amenable pair.

Remark 4.6. The definition of amenable pairs is independent on the choices of the quasi-
invariant measures within the same measure class. This is because two equivalent measures µ
and ν give rise to unitarily equivalent Koopman representations and the intertwining unitary
U : L2(X, ν)→ L2(X,µ) is given by

U(f)(x) =
(
dν

dµ
(x)
) 1

2
f(x), for almost every x ∈ X.
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The basic example is that if µ is a G-invariant probability measure on X, then the pair
(G,X) is amenable. It is well-known that a locally compact group G is amenable if and
only if every pair (G,X) is amenable [11, Theorem 2.2]. If X = G/H for H is a closed
subgroup, then πG/H is equal to the quasi-regular representation λG/H . In particular, the
pair (G,G/H) is amenable if and only if the homogeneous space G/H is amenable.
Definition 4.7. Let G y (X,µ) be a non-singular measurable action on a standard prob-
ability space (X,µ) and let A be a large family on (X,µ). We say that the pair (G,X)
has property A with respect to A if for any compact subset K ⊆ G and ε > 0, there exist a
measurable set A ∈ A and a family (ξt)t∈G of unit vectors in L2(X,µ) such that supp ξt ⊆ tA
for every t ∈ G and sup(s,t)∈Tube(K) ||ξs − ξt||2 < ε.

Since L2(X,µ) 3 ξ 7→ |ξ|2 ∈ L1(X,µ) is uniformly continuous on the unit sphere, we can
easily replace L2(X,µ) by L1(X,µ) in the above definition. Moreover, the definition of
property A pairs with respect to the same large family A is independent on the choices of
the quasi-invariant measures within the same measure class. This is because the intertwining
unitary U in Remark 4.6 also preserves supports as (dν/dµ)(dµ/dν) = 1 almost everywhere.
Example 4.8. Let G be a locally compact second countable group.

a) If H ⊆ G is a closed subgroup, then (G,G/H) has property A with respect to
the σ-algebra on G/H. Moreover, if H is co-compact, then the σ-algebra on G/H
coincides with the large family A0 of all precompact Borel sets in G/H.

b) Let H ⊆ G be a closed subgroup. If G has property A, then the pair (G,G/H)
has property A with respect to the large family A0 of all precompact Borel sets in
G/H.

c) Let H ⊆ G be a closed normal subgroup. If the quotient group G/H has property
A, then the pair (G,G/H) has property A with respect to the large family A0 of all
precompact Borel sets in G/H. As a consequence of Example 4.8 b) the converse
implication is not true in general. Otherwise, property A passes to quotients.

d) An amenable pair (G,X) has property A with respect to any large family A on X.

Proof. a): Let ξ0 be a fixed unit vector in L2(G/H), then the constant family (ξ0)t∈G
implies that the pair (G,G/H) has property A with respect to the σ-algebra on G/H.
b): We are going to use the extended formula of Mackey-Bruhat for quasi-invariant measures
(see [75] Section 8.2) in the following.
Recall that a rho-function for the pair (G,H) is a continuous function ρ : G→ R∗+ satisfying

ρ(xh) = ∆H(h)
∆G(h)ρ(x),

for all x ∈ G and h ∈ H. Let dx and dh be a left Haar measure on G and H, respectively.
If we denote dρ(xH) the quasi-invariant regular Borel measure on G/H associated to the
rho-function ρ, then the extended formula of Mackey-Bruhat is given by∫

G/H

∫
H

f(xh)
ρ(xh) dhdρ(xH) =

∫
G
f(x) dx, for all f ∈ L1(G, dx).

Define a linear map TH,ρ : L1(G, dx)→ L1(G/H, dρ(xH)) by

(TH,ρf)(xH) =
∫
H

f(xh)
ρ(xh) dh, for all f ∈ L

1(G, dx).

It follows from the extended formula of Mackey-Bruhat that the linear map TH,ρ is contractive
and isometric on L1(G)+.
Given a compact subset K ⊆ G and ε > 0. Since the group G has property A, there exist
a compact subset L ⊆ G and a continuous map η : G → L1(G) such that ||ηt||1 = 1,
supp ηt ⊆ tL for every t ∈ G and sup(s,t)∈Tube(K) ||ηs − ηt||1 < ε. We may assume that
each ηt is non-negative, since |||ηs| − |ηt|||1 ≤ ||ηs − ηt||1 for all s, t ∈ G. In particular,
||TH,ρ(ηt)||1 = ||ηt||1 for every t ∈ G.
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Now, define a (continuous) map ξ := TH,ρ ◦ η : G→ L1(G/H)1. If (s, t) ∈ Tube(K), then
||ξs − ξt||1 = ||TH,ρ(ηs − ηt)||1 ≤ ||ηs − ηt||1 < ε.

Let L̇ be the image of L under the canonical quotient map G → G/H. Obviously, L̇ is a
compact subset of G/H and belongs to A0. It is not hard to see that supp ξt ⊆ tL̇ for every
t ∈ G: for every t ∈ G, if ξt(xH) 6= 0 then there exists h ∈ H such that ηt(xh) 6= 0. In
particular, xh ∈ supp ηt ⊆ tL. We conclude that xH = xhH ∈ tL̇.
c): Since property A pairs is independent on the choices of the quasi-invariant measures
within the same measure class, we may choose a left Haar measure on the quotient group
G/H.
Given a compact subsetK ⊆ G and ε > 0. Let q : G→ G/H be the quotient homomorphism.
Since the quotient group G/H has property A, there exist a compact subset L ⊆ G/H and a
continuous map ξ : G/H → L2(G/H) such that ||ξx||2 = 1, supp ξx ⊆ xL for every x ∈ G/H
and sup(x,y)∈Tube(q(K)) ||ξx − ξy||2 < ε.
Define a (continuous) map η := ξ ◦ q : G → L2(G/H). It is clear that ||ηt||2 = ||ξq(t)||2 = 1
for every t ∈ G. If (s, t) ∈ Tube(K), then we see that (q(s), q(t)) ∈ Tube(q(K)) and

||ηs − ηt||2 = ||ξq(s) − ξq(t)||2 < ε.

Finally, we notice that L ∈ A0 and for every t ∈ G,
supp ηt = supp ξq(t) ⊆ q(t)L = tL.

d): Given a compact subset K ⊆ G and ε > 0. We choose a small ε′ > 0 such that
ε′/(1− ε′/3) < ε. Since (G,X) is an amenable pair, there exists a unit vector ξ in L2(X,µ)
such that supg∈K ||πX(g)ξ−ξ||2 < ε′/3. By Lemma 4.2 we find a measurable set A ∈ A such
that ξ0 = 1Aξ and ||ξ0 − ξ||2 < ε′/3. In particular, ||ξ0||2 > 1− ε′/3.
Now, define a (continuous) map η : G → L2(X,µ)1 by ηg := πX(g)(ξ0/||ξ0||2). For each
g ∈ G, {x ∈ X : ηg(x) 6= 0} ⊆ gA. In particular, supp ηg ⊆ gA.
If (g, h) ∈ Tube(K), we see that

||ηg − ηh||2 = 1
||ξ0||2

||ξ0 − πX(g−1h)ξ0||2

≤ 1
||ξ0||2

(||ξ0 − ξ||2 + ||πX(g−1h)(ξ − ξ0)||2 + ||ξ − πX(g−1h)ξ||2)

<
ε′

1− ε′/3
< ε.

�

In all examples above the map G 3 t 7→ ξt ∈ L2(X,µ) from Definition 4.7 is continuous.
However, we don’t need the continuity in the proofs. It is clear that Theorem 4.1 is a
consequence of Example 4.4 and Example 4.8 as well as the following theorem.

Theorem 4.9. Suppose that both G and H are locally compact second countable groups. Let
G y (X,µ) be a non-singular measurable action on a standard probability space (X,µ) and
A be a large2 family on (X,µ) such that

• the pair (G,X) has property A with respect to A,
• there exists a measurable cocycle ω : G×X → H that is proper with respect to A.

If H has property A or is coarsely embeddable into a Hilbert space, then so does G.

Proof. Suppose that H has property A or is coarsely embeddable into a Hilbert space.
Given a compact subset K ⊆ G and ε > 0, we want to find a positive type kernel k : G×G→
C satisfying the following two conditions:

2The largeness will not be used in the proof.
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• sup(s,t)∈Tube(K) |k(s, t)− 1| < ε and
• for every δ ≥ 0, there exists a compact subset Lδ ⊆ G such that (s, t) /∈ Tube(Lδ)⇒
|k(s, t)| ≤ δ.

We note that the second condition for δ = 0 is exactly the same as supp k ⊆ Tube(L0). So it
follows from Theorem 3.6 and Theorem 3.7 that G has property A or is coarsely embeddable
into a Hilbert space in that case.
Since the pair (G,X) has property A with respect to A, we find a measurable set A ∈ A
and a family (ξt)t∈G of unit vectors in L2(X,µ) such that supp ξt ⊆ tA for every t ∈ G and

sup
(s,t)∈Tube(K)

||ξs − ξt||2 < ε/2.

We apply the properness of the cocycle ω in order to find a compact subset L := L(K,A,A)
of H such that ω(s, x) ∈ L for all s ∈ K and almost every x ∈ A∩ s−1A. By the assumption
on H there exists a continuous positive type kernel k0 : H ×H → C satisfying

sup
(s,t)∈Tube(L)

|k0(s, t)− 1| < ε

2

and for every δ ≥ 0, there exists a compact subset Mδ ⊆ H such that
(s, t) /∈ Tube(Mδ)⇒ |k0(s, t)| ≤ δ.

Since a positive type kernel is bounded if and only if it is bounded on the diagonal, we may
assume that k0 is bounded. Define a new kernel k : G×G→ C by the formula

k(s, t) =
∫
X
ξs(x)ξt(x)k0(ω(s, s−1x), ω(t, t−1x))dµ(x).

The new kernel k is well-defined, because for fixed s, t ∈ G, the function

X 3 x 7→ ξs(x)ξt(x)k0(ω(s, s−1x), ω(t, t−1x))

belongs to L1(X,µ). Moreover, It is routine to verify that the kernel k is of positive type,
because k0 is the case.
We note that if (s, t) ∈ Tube(K), then ω(s−1t, t−1x) ∈ L for almost every x ∈ sA ∩ tA. The
cocycle relation implies that

ω(s, s−1x)−1ω(t, t−1x) = ω(s−1t, t−1x) (4.1)
for all s, t ∈ G and almost every x ∈ X. In particular,

|k0(ω(s, s−1x), ω(t, t−1x))− 1| < ε

2
for all (s, t) ∈ Tube(K) and almost every x ∈ sA ∩ tA.
Whenever (s, t) ∈ Tube(K), we see that

|k(s, t)− 1| =|
∫
X
ξs(x)ξt(x)(k0(ω(s, s−1x), ω(t, t−1x))− 1)dµ(x) +

∫
X
ξs(x)ξt(x)− 1 dµ(x) |

≤
∫
sA∩tA

|ξs(x)||ξt(x)||k0(ω(s, s−1x), ω(t, t−1x))− 1| dµ(x) + |〈ξs, ξt〉 − 1|

<
ε

2 · ||ξs||2||ξt||2 + ||ξs − ξt||2||ξt||2
< ε.

Given δ ≥ 0, we would like to find a compact subset Lδ ⊆ G such that
(s, t) /∈ Tube(Lδ)⇒ |k(s, t)| ≤ δ.

Define Lδ := K(Mδ, A,A). It is a compact subset of G by the properness of ω. Let (s, t) /∈
Tube(Lδ). Then s−1t /∈ K(Mδ, A,A). It follows that {x ∈ A ∩ (s−1t)−1A : ω(s−1t, x) ∈Mδ}
has measure zero. Since t−1µ and µ are equivalent to each other, we conclude that

As,t := {x ∈ tA ∩ sA : ω(s−1t, t−1x) ∈Mδ}
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also has measure zero. Since each ξt is supported in tA, the cocycle relation 4.1 implies that

|k(s, t)| = |
∫

(tA∩sA)\As,t
ξs(x)ξt(x)k0(ω(s, s−1x), ω(t, t−1x))dµ(x)|

≤ δ · ||ξs||2||ξt||2
= δ.

Hence, we complete the proof. �

5. Uniform Roe algebras and ghost operators

In this section, we will introduce uniform Roe algebras and ghost operators and explain
how these notions can be used to characterize Yu’s property A. We will also discuss the
connection between Yu’s property A and property A on locally compact second countable
groups G through metric lattices in G.

Definition 5.1. Let (X, dX) and (Y, dY ) be metric spaces. We say a map f : X → Y is
coarse if the inverse image under f of any bounded subset in Y is bounded in X and if for
any R > 0, there exists S > 0 such that dX(x, x′) ≤ R implies dY (f(x), f(x′)) ≤ S for any
x, x′ ∈ X. Two coarse maps f, g : X → Y are close if dY (f(x), g(x)) is bounded on X.

Definition 5.2. We say that two metric spaces X and Y are coarsely equivalent if there
exist two coarse maps f : X → Y and g : Y → X such that g ◦ f and f ◦ g are close to the
identity maps on X and Y , respectively.

It is clear that a coarse embedding (see Definition 3.1) is a coarse map. In fact, a map
f : X → Y is a coarse embedding if and only if it induces a coarse equivalence between
X and f(X) (see [40, Proposition A.2]). It is well-known that property A and coarse
embeddability into Hilbert spaces both are coarsely invariant properties (See [87]).

Definition 5.3. A metric space (Z, d) is uniformly locally finite if supz∈Z |B(z, S)| <∞ for
all S > 0, where B(z, S) denotes the closed ball {x ∈ Z : d(z, x) ≤ S}.

Since finite metric space is discrete and Z = ∪n∈NB(z0, n) for any z0 ∈ Z, a uniformly
locally finite metric space is necessarily discrete and countable. However, the uniformly
local finiteness is not coarsely invariant even on uniformly discrete spaces [45, Example 3.4]:

Example 5.4. Consider the triple (Dn, dn, xn), where Dn is the discrete space with n points,
dn is the discrete metric on Dn and each xn is a fixed element in Dn.
Let Z = tn∈NDn equipped with the following metric d:

d(z, y) = dj(z)(z, xj(z)) + |j(z)− j(y)|+ dj(y)(y, xj(y)),

where j(x) = n if and only if x ∈ Dn. So (Z, d) is a proper uniformly discrete space. It
is not hard to see that Z is coarsely equivalent to N, which is uniformly locally finite. In
particular, (Z, d) has bounded geometry (see definition below). However, the metric space
(Z, d) itself is not uniformly locally finite as |B(xn, 1)| ≥ n.

In order to make it coarsely invariant, we consider the following notion on metric spaces.

Definition 5.5. A metric space (X, d) has bounded geometry if it is coarsely equivalent to
a uniformly locally finite (discrete) metric space (Z, d).

In fact, we can choose (Z, d) in the above definition to be a "lattice" of X:

Definition 5.6. Let (X, d) be a metric space. We say that a uniformly discrete subspace
Z ⊆ X is a metric lattice, if there is R > 0 such that X = ∪z∈ZB(z,R).

Note that the inclusion map Z ⊆ X is a coarse equivalence and it follows easily from Zorn’s
lemma that every metric space always contains metric lattices.
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Proposition 5.7 ([26], Proposition 3.D.15). For a metric space (X, d), the following con-
ditions are equivalent:

(1) The space (X, d) has bounded geometry.
(2) The space (X, d) contains a uniformly locally finite metric lattice (Z, d).

Recall that every locally compact second countable group G admits a proper left-invariant
compatible metric d and such a metric is unique up to coarse equivalence. Moreover, the
proper metric group (G, d) has bounded geometry. There is a nice connection between Yu’s
property A and property A on locally compact groups through metric lattices.

Proposition 5.8 ([A], Theorem 2.3 and [78], Lemma 2.2). Let G be a locally compact second
countable group equipped with a proper left-invariant compatible metric d. Then the following
conditions are equivalent:

(1) The group G has property A.
(2) Every uniformly locally finite metric lattice (Z, d) in G has Yu’s property A.
(3) There exists a uniformly locally finite metric lattice (Z, d) in G satisfying Yu’s

property A.

It is clear from Definition 3.5 that coarse embeddability into Hilbert spaces for locally com-
pact groups is a coarsely invariant property. The proposition above implies the same con-
clusion for property A on locally compact groups.
There is a well-known operator algebraic characterization of Yu’s property A on uniformly
locally finite metric spaces in terms of uniform Roe algebras. Let us recall the definition of
the uniform Roe algebra C∗u(Z) of a uniformly locally finite metric space (Z, d). Every a ∈
B(l2(Z)) can be represented as a Z ×Z matrix: a = [ax,y]x,y∈Z , where ax,y := 〈aδy, δx〉 ∈ C.
We define the propagation of a = [ax,y]x,y∈Z ∈ B(l2(Z)) by

sup{d(x, y) : x, y ∈ Z, ax,y 6= 0}.

Let ER be the set of all bounded operators on l2(Z) whose propagations are at most R. In
fact, ER is an operator system, i.e., a self-adjoint closed subspace of B(l2(Z)) which contains
the unit of B(l2(Z)). Moreover, the union

⋃
R>0ER is a ∗-subalgebra of B(l2(Z)) .

Definition 5.9. The C∗-algebra defined by the operator norm closure in B(l2(Z))

C∗u(Z) =
⋃
R>0

ER

is called the uniform Roe algebra of Z.

Theorem 5.10. [81, Theorem 5.3] Let (Z, d) be a uniformly locally finite metric space. The
following conditions are equivalent:

(1) The metric space (Z, d) has Yu’s property A.
(2) The uniform Roe algebra C∗u(Z) is nuclear.

Definition 5.11. (Yu) An operator a ∈ C∗u(Z) is called a ghost if ax,y → 0 as x, y → ∞.
We denote by G∗(Z) the collection of all ghost operators, which forms a closed two sided
ideal in C∗u(Z) and contains the compact operators on l2(Z).

A natural question is that are all ghost operators compact? It is easy to prove that for a
uniformly locally finite space with Yu’s property A, all ghost operators are compact ([77,
Theorem 11.43]). Recently, the converse implication is proved by Roe and Willett:

Theorem 5.12. [79] A uniformly locally finite metric space without Yu’s property A always
admits non-compact ghosts.
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6. Approximation properties for locally compact groups

The notion of amenability for groups was first introduced by von Neumann in order to study
the Banach-Tarski paradox [86]. It is well-known that amenability has numerous charac-
terizations and one of them, proved by Hulanicki around 1960, is the following: a locally
compact Hausdorff group G is amenable if and only if there exists a net of continuous com-
pactly supported, positive type functions on G tending to the constant function 1 uniformly
on compact subsets of G [73].
In [41], Haagerup proved that the constant function 1 on free groups can be approximated
pointwise by positive type functions vanishing at infinity. Since free groups are not amenable,
it can not be approximated pointwise by compactly supported, positive type functions. In
[41], Haagerup also showed that the Fourier algebra of the free groups admits an approximate
unit which is bounded in multiplier norm. It is weaker than amenability, because the Fourier
algebra of a locally compact group has an approximate unit bounded in norm if and only
if the group is amenable [65]. In the light of Haagerup’s ground-breaking work, two weak
forms of amenability were introduced in the 1980s: the Haagerup property by Connes [22]
and Choda [19] and the next one is weak amenability by Cowling and Haagerup [24]. They
extend amenability in different directions as follows:

Definition 6.1 (Haagerup property [18]). A locally compact group G has the Haagerup
property if there exists a net of positive type C0-functions on G, converging uniformly to 1
on compact sets.

Definition 6.2 (Weak amenability [24]). A locally compact group G is weakly amenable if
there exists a net (ϕi)i∈I of continuous, compactly supported Herz-Schur multipliers on G,
converging uniformly to 1 on compact sets, and such that supi ‖ϕi‖B2 <∞.
The weak amenability constant ΛWA(G) is defined as the best (lowest) possible constant Λ
such that supi ‖ϕi‖B2 ≤ Λ, where (ϕi)i∈I is as just described.

As we have already mentioned in Section 2, the Haagerup property implies the Baum-Connes
conjecture with coefficients. It is natural to ask about the relation between the Haagerup
property and weak amenability. In general, weak amenability does not imply the Haagerup
property and vice versa. However, the following question was conjectured by Cowling [18]:

Conjecture 3 (The Cowling’s Conjecture). Let G be a locally compact group. Is G weakly
amenable with ΛWA(G) = 1 if and only if G has the Haagerup property?

In one direction of the conjecture, the group Z/2 oF2 has the Haagerup property [27], but is
not weakly amenable, i.e., ΛWA(G) =∞ [71]. In order to study the other direction, the weak
Haagerup property was introduced in [61, 62], and the following questions were considered.

Definition 6.3 (The weak Haagerup property [62]). A locally compact group G has the
weak Haagerup property if there exists a net (ϕi)i∈I of C0 Herz-Schur multipliers on G,
converging uniformly to 1 on compact sets, and such that supi ‖ϕi‖B2 <∞.
The weak Haagerup constant ΛWH(G) is defined as the best (lowest) possible constant Λ
such that supi ‖ϕi‖B2 ≤ Λ, where (ϕi)i∈I is as just described.

Question 6.4. For which locally compact groups G do we have ΛWA(G) = ΛWH(G)?

Question 6.5. Is ΛWH(G) = 1 if and only if G has the Haagerup property?

Both Question 6.4 and Question 6.5 have positive answer for connected simple Lie groups
by the work of many authors [23, 24, 25, 30, 42, 46, 43, 18]. Knudby and I consider the
same class of groups, but made discrete:

Theorem 6.6. ([B]) Let G be a connected simple Lie group, and let Gd denote the group G
equipped with the discrete topology. The following are equivalent.

(1) G is locally isomorphic to SO(3), SL(2,R) or SL(2,C).
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(2) Gd has the Haagerup property.
(3) Gd is weakly amenable with constant 1.
(4) Gd is weakly amenable.
(5) Gd has the weak Haagerup property with constant 1.
(6) Gd has the weak Haagerup property.

In order to obtain the above theorem Knudby and I prove the following result, which follows
ideas of Guentner, Higson and Weinberger [39].

Theorem 6.7. ([B]) Let K be any field. The discrete group GL(2,K) is weakly amenable
with constant 1.

The remaining of the section is devoted to compare the approximation properties mentioned
so far with property A and coarse embeddability into Hilbert spaces. It follows clearly
from Theorem 3.6 and Theorem 3.7 that locally compact amenable groups have property A
and locally compact groups satisfying the Haagerup property are coarsely embeddable into
Hilbert spaces. It is also well-known that discrete countable weakly amenable groups have
property A [42, 63, 70, 50]. In the sequel, I will show that the same statement is even true
for all locally compact second countable groups. The idea of the proof is to give a uniformly
bounded Schur multiplier characterization of property A.
Let us start by recalling some basic definitions. Let X be a non-empty set and a kernel
k : X × X → C is called a Schur multiplier on X if for every operator a = [ax,y]x,y∈X ∈
B(l2(X)) the matrix [k(x, y)ax,y]x,y∈X represents an operator in B(l2(X)), denoted mk(a).
If k is a Schur multiplier, it follows easily from the closed graph theorem that mk defines a
bounded operator on B(l2(X)). We define the Schur norm ||k||S to be the operator norm
||mk|| of mk. For instance, any normalized (i.e., k(x, x) = 1 for every x ∈ X) positive type
kernel is a Schur multiplier of norm 1. The following characterization of Schur multipliers is
well-known and is essentially due to Grothendieck.

Theorem 6.8 ([74], Theorem 5.1). Let k : X × X → C be a function, and let C ≥ 0 be
given. The following conditions are equivalent:

(1) k is a Schur multiplier with ||k||S ≤ C.
(2) There exist a Hilbert space H and two bounded maps ξ, η : X → H such that

k(x, y) = 〈ηy, ξx〉 for all x, y ∈ X and supx∈X ||ξx|| · supy∈X ||ηy|| ≤ C.

Let G be a locally compact group. A continuous function ϕ : G → C is a Herz-Schur
multiplier if and only if the (continuous) function ϕ̂ : G×G→ C defined by

ϕ̂(s, t) = ϕ(s−1t), s, t ∈ G

is a Schur multiplier on G. We denote by B2(G) the Banach space of Herz-Schur multipliers
on G equipped with the Herz-Schur norm ||ϕ||B2 = ||ϕ̂||S .
The proof of the coming proposition is identical to the one used to prove [77, Theorem 11.43].

Proposition 6.9. Let (Z, d) be a uniformly locally finite metric space. If there is a constant
C > 0 such that for any R > 0 and ε > 0, there exist S > 0 and a Schur multiplier
k : Z × Z → C with ||k||S ≤ C such that

• If d(x, y) > S, then k(x, y) = 0.
• If d(x, y) ≤ R, then |k(x, y)− 1| < ε.

Then every ghost operator in C∗u(Z) is compact. In particular, it follows from Theorem 5.12
that the metric space (Z, d) has Yu’s property A.

Proof. For each n ∈ N there exist Sn > 0 and a Schur multiplier kn : Z × Z → C with
||kn||S ≤ C such that |kn(x, y) − 1| < 1

n for d(x, y) ≤ n and kn(x, y) = 0 for d(x, y) > Sn.
From Theorem 6.8 we note that supx,y∈Z |kn(x, y)| ≤ C for all n ∈ N.
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Let mkn : B(l2(Z)) → B(l2(Z)) be the bounded operator associated with kn. For every
R > 0 and any a ∈ ER, it is not hard to see that

||mkn(a)− a|| ≤ sup
z∈Z
|B(z,R)| · ||a|| · sup

{(x,y)∈Z×Z: d(x,y)≤R}
|kn(x, y)− 1| → 0, for n→∞.

Since ||mkn || ≤ C for all n ∈ N, we have that ||mkn(a)− a|| → 0 for all a ∈ C∗u(Z).
If H ∈ C∗u(Z) is a ghost operator, then each mkn(H) is a compact operator (see [16, Theo-
rem 3.1]). So H is compact, as mkn(H)→ H in the operator norm. �

The following theorem extends [29, Theorem 6.1], which proved the same statement for
discrete groups. However, the proof of [29, Theorem 6.1] relies heavily on the discreteness of
groups. For instance, it used the fact from [59] that if a reduced discrete group C∗-algebra
is exact, then the discrete group itself is exact.

Theorem 6.10. Let G be a locally compact second countable group. The following conditions
are equivalent:

(1) The group G has property A.
(2) If there is a constant C > 0 such that for any compact subset K ⊆ G and ε > 0, there

exist a compact subset L ⊆ G and a (continuous) Schur multiplier k : G × G → C
with ||k||S ≤ C such that supp k ⊆ Tube(L) and sup(s,t)∈Tube(K) |k(s, t)− 1| < ε.

If G is weakly amenable, then in particular the group G has property A.

Proof. (1)⇒ (2): It follows easily from Theorem 3.6. In fact, we can take C = 1 if we
assume that the positive type kernel in Theorem 3.6 is normalized.
(2) ⇒ (1): Let d be a proper left-invariant compatible metric on G such that the metric
group (G, d) has bounded geometry. By the assumption, any uniformly locally finite metric
lattice Z in (G, d) satisfies the assumption in Proposition 6.9, and hence (Z, d) has Yu’s
property A. We complete the proof by applying Proposition 5.8. �

In a joint work with Knudby, we give a contractive Schur multiplier characterization of locally
compact groups coarsely embeddable into Hilbert spaces (see also [29, Theorem 5.3] for the
discrete case) and this characterization can be regarded as an answer to the non-equivariant
version of Question 6.5.

Theorem 6.11. ([C]) Let G be a locally compact second countable group. The following
conditions are equivalent:

(1) The group G embeds coarsely into a Hilbert space.
(2) For any compact subset K ⊆ G and ε > 0, there exists a (continuous) Schur

multiplier k : G × G → C with ||k||S ≤ 1 such that sup(s,t)∈Tube(K) |k(s, t) − 1| < ε

and for every δ > 0, there exists a compact subset Lδ ⊆ G satisfying |k(s, t)| > δ ⇒
(s, t) ∈ Tube(Lδ).

If G has the weak Haagerup property with constant 1, then in particular the group G embeds
coarsely into a Hilbert space.

7. Topologically amenable actions and crossed products of C∗-algebras

In this section we recall some definitions and state a few results on topologically amenable
actions and crossed products of C∗-algebras. We refer to [1, 3] for topologically amenable
actions and refer to [72, 88] for crossed products of C∗-algebras.
Let Prob(G) denote the space of Borel probability measures on a locally compact group G.
It is the state space of the C∗-algebra C0(G) and it carries two natural topologies: the norm
topology and the weak-∗ topology. Recall that a locally compact group G acts on a locally
compact Hausdorff space X if there exists a homomorphism α : G → Homoe(X) such that
the map G×X → X given by (g, x) 7→ α(g)(x) is continuous.
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Definition 7.1. [1] We say that the action Gy X is topologically amenable if there exists
a net (mi)i∈I of weak-∗ continuous maps x 7→ mx

i from X into the space Prob(G) such that

lim
i
||s.mx

i −ms.x
i || = 0

uniformly on compact subsets of X ×G.

Definition 7.2. [3] We say that a locally compact group G is amenable at infinity if it
admits a topologically amenable action on a compact Hausdorff space X.

Since the following lemma is obvious from the above definition, we omit the proof.

Lemma 7.3. Let X and Y be compact Hausdorff G-spaces. Assume that there exists a
continuous G-equivariant map f : X → Y . If the action G y Y is topologically amenable,
so is the action Gy X.

If a locally compact group G is amenable at infinity, then there are some canonical choices
of compact spaces on which the group G acts topologically amenable. For instance, let us
denote by C lub (G) the C∗-algebra of bounded left-uniformly continuous functions on G. Let
βlu(G) be the spectrum of C lub (G) and it is the universal compact Hausdorff left G-space
equipped with a continuous G-equivariant inclusion of G as an open dense subspace. Let
∂G := βlu(G)\G denote the boundary of the group G. It is also a compact Hausdorff space
and the left translation action of G on βlu(G) restricts to an action on ∂G. The inclusion
map from ∂G into βlu(G) is clearly equivariant. We obtain the following result from the
lemma stated above.

Proposition 7.4. [3, Proposition 3.4] Let G be a locally compact group. The following
conditions are equivalent:

(1) G is amenable at infinity.
(2) The left translation action of G on βlu(G) is topologically amenable.
(3) The left translation action of G on ∂G is topologically amenable.

Definition 7.5. Let G be a locally compact group and A be a G-C∗-algebra equipped
with the action α. A covariant representation of the G-C∗-algebra A is a pair (π, U) where
π : A → B(H) is a ∗-homomorphism and U : G → B(H) is a unitary representation of G
such that Usπ(a)U∗s = π(αs(a)) for all s ∈ G and a ∈ A.

We denote by Cc(G,A) the vector space of continuous A-valued functions on G with compact
support. Define a convolution product and involution on Cc(G,A) by

f ∗ g(s) =
∫
G
f(t)αt(g(t−1s)) dµ(t) and f∗(s) = αs(f(s−1)∗)

∆(s) ,

where ∆ is the modular function and µ is a left Haar measure on G, respectively. In this
way, Cc(G,A) becomes a ∗-algebra.
Given a covariant representation (π, U) of a G-C∗-algebra A on a Hilbert space H. Then

π o U(f) =
∫
G
π(f(s))Us dµ(s)

defines a ∗-representation of Cc(G,A) on the Hilbert space H.

Definition 7.6. Let G be a locally compact group and A be a G-C∗-algebra equipped with
the action α. The full crossed product AoαG is the completion of Cc(G,A) with respect to
the universal C∗-norm || · ||u given by

||f ||u := sup{||π o U(f)|| : (π, U) is a covariant represention of A}.

It is clear from the definition of the full crossed product, πoU extends to a ∗-representation
of Aoα G for every covariant representation (π, U) of a G-C∗-algebra A.
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To define the reduced crossed product, we begin with a faithful ∗-representation π of the
G-C∗-algebra A on a Hilbert space H. Define a ∗-representation πAα of A on L2(G,H) by

(πAα (a)ξ)(t) = π(αt−1(a))ξ(t),

for a ∈ A, t ∈ G and ξ ∈ L2(G,H). Let λ denote the left regular representation of G
on L2(G). Then (πAα , λ ⊗ 1) is a covariant representation of A. The regular representation
πAα o (λ⊗1) of Cc(G,A) on L2(G,H) is easily seen to be faithful. In particular, the universal
C∗-norm || · ||u really is a norm.

Definition 7.7. Let G be a locally compact group and A be a G-C∗-algebra equipped with
the action α. The reduced crossed product Aoα,rG is the completion of Cc(G,A) with respect
to the reduced C∗-norm || · ||r given by

||f ||r := ||πAα o (λ⊗ 1)(f)||.

It is well-known that the reduced crossed product A oα,r G does not depend on the choice
of the faithful representation π : A → B(H). Moreover, we have a natural surjective ∗-
homomorphism Aoα G→ Aoα,r G.
For a given locally compact group G, the full crossed product (−)oG and the reduced crossed
product (−) or G form functors from the category of G-C∗-algebras to the category of C∗-
algebras. Indeed, let A and B be G-C∗-algebras with actions α and β, respectively. If θ :
A→ B is an equivariant ∗-homomorphism, then there are two canonical ∗-homomorphisms
θu : A oα G → B oβ G and θr : A oα,r G → B oβ,r G whose restrictions in each case to A
and G are θ and idG, respectively.

Example 7.8. Let Cb(G) be the space of bounded continuous complex valued functions on
G. Let M : Cb(G)→ B(L2(G)) be the multiplication operator given by

(M(f)ξ)(x) = f(x)ξ(x),

where f ∈ Cb(G), ξ ∈ L2(G) and x ∈ G. It is clear that M is a faithful ∗-representation.
Let L and R be the left and right translations on Cb(G), respectively. More precisely,

(Lgf)(x) = f(g−1x) and (Rgf)(x) = f(xg),

for f ∈ Cb(G) and x, g ∈ G. We denote the space of bounded left (right) uniformly contin-
uous functions on G by C lub (G) (respectively Crub (G)). We have the left and right regular
representations λ, ρ : G→ U(L2(G)) given by

(λgξ)(x) = ξ(g−1x) and (ρgξ)(x) = ξ(xg)∆(g)1/2,

where ξ ∈ L2(G) and g, x ∈ G. It is not hard to show that (M,λ) and (M,ρ) are covariant
representations of the C∗-dynamical systems (C lub (G), G, L) and (Crub (G), G,R), respectively.
It is well-known that M o ρ : Crub (G) oR G → B(L2(G)) factors through a faithful ∗-
representationMor ρ of Crub (G)or,RG. Moreover,Mor ρ induces a ∗-isomorphism between
C0(G)or,RG andK(L2(G). We can also conclude the same facts for (M,λ) on (C lub (G), G, L).

We end this section with an important theorem, which will be used in the next section.

Theorem 7.9. [2, 3] Let G be a locally compact group and X be a locally compact Hausdorff
G-space. Consider the following conditions:

(1) The action of G on X is topologically amenable.
(2) (C0(X)⊗A) oG = (C0(X)⊗A) or G for every G-C∗-algebra A.
(3) C0(X) or G is nuclear.

Then (1)⇒ (2)⇒ (3). Moreover, (3)⇒ (1) if G is discrete.

Remark 7.10. The condition (3) does not imply the condition (1) in general. For example,
the reduced group C∗-algebra C∗r (G) is always nuclear if the group G is connected (see [20]).
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8. Exactness of locally compact groups

In this section we show that the exactness of a locally compact second countable group is
equivalent to amenability at infinity, which solves an open problem raised by Anantharaman-
Delaroche ([3], Problem 9.3). The material here is joint work with Jacek Brodzki and Chris
Cave and is based on the unpublished manuscript "Exactness of locally compact groups".
Exact groups were introduced by Kirchberg and Wassermann in order to study the continuity
of the reduced crossed product C∗-bundles. We recall the definition of exact groups:

Definition 8.1. [59, 60] We say that a locally compact group G is exact, if the reduced
crossed product functor A → A oα,r G is exact for any G-C∗-algebra (A,α). To be more
precise, for every G-equivariant short exact sequence of G-C∗-algebras 0→ I → A→ B → 0,
the corresponding sequence 0→ IorG→ AorG→ BorG→ 0 of reduced crossed products
is exact too.

Remark 8.2. The corresponding morphisms ιr : IorG→ AorG and qr : AorG→ BorG
are still injective and surjective, respectively. Moreover, Im ιr ⊆ ker qr. So the group G is
exact if and only if this inclusion is always an equality. Note that Gromov’s random groups
and Osajda’s groups are not exact [38, 4, 69]. However, the full crossed product functor is
always exact by its universal property.

We would like to identify all elements in A or G which are in ker qr. The next proposition
provides a useful criterion in terms of slice maps. Recall that for any normal linear functional
ψ ∈ B(L2(G))∗, the slice map Sψ corresponding to ψ is defined as follows

Sψ : Aoα,r G
πAαo(λ⊗1)−−−−−−→ B(L2(G,H)) ∼= B(H)⊗B(L2(G))

idB(H)⊗ψ−−−−−−→ B(H),

where πAα o (λ ⊗ 1) is the regular representation associated to the reduced crossed product
Aoα,r G. If ψ = ωξ,η, where ξ, η ∈ Cc(G) and ωξ,η(x) = 〈xξ, η〉 for x ∈ B(L2(G)). Then

Sψ(f) =
∫
G

∫
G
ξ(g−1h)η(h)αh−1(f(g)) dµ(g)dµ(h), f ∈ Cc(G,A).

Proposition 8.3. [59, Proposition 2.2] For x ∈ Aor G, the following are equivalent:
(1) x ∈ ker qr.
(2) Sψ(x) ∈ I for all ψ ∈ B(L2(G))∗.
(3) Sωξ,η(x) ∈ I for all ξ, η ∈ Cc(G).

Before we prove the main theorem, we need the following proposition.

Proposition 8.4. Let G be a locally compact second countable group equipped with a proper
left-invariant compatible metric d. If Z is a (uniformly) locally finite metric lattice in the
metric group (G, d), then there exist a faithful ∗-homomorphism Φ : C∗u(Z)→ Crub (G)or,RG
and a c.c.p. map E : Crub (G) or,R G→ C∗u(Z) satisfying the following properties:

(1) E ◦ Φ = IdC∗u(Z).
(2) T ∈ K(l2(Z)) if and only if Φ(T ) ∈ C0(G) or,R G.
(3) Φ maps G∗(Z) into the kernel of Crub (G) or,R G→ (Crub (G)/C0(G)) or,R G.

Proof. Since Z is uniformly discrete, we fix δ > 0 such that for all z, w ∈ Z, d(z, w) > δ,
whenever z 6= w. Let ϕ be a continuous compactly supported positive valued function on
G such that suppϕ ⊆ B(e, δ/4) and ||ϕ||2 = 1. For z ∈ Z, set ϕz to be the function
g 7→ ϕ(z−1g) for g ∈ G. Clearly, each ϕz is supported on a δ/4-neighbourhood around z. As
Z is δ-uniformly discrete, each ϕz has disjoint support. In particular {ϕz : z ∈ Z} forms an
orthonormal set in L2(G).
Define an operator W : `2(Z) → L2(G), δz 7→ ϕz and extend linearly. Hence for η ∈ `2(Z),
(Wη)(x) =

∑
z∈Z η(z)ϕz(x) for all x ∈ G. For ξ ∈ L2(G), W ∗ξ(z) =

∫
ξ(y)ϕz(y) dµ(y). It is

clear that W is an isometry as it sends an orthonormal basis to an orthonormal set.
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Let T ∈ C∗u(Z) be a finite propagation operator and denote 〈Tδw, δz〉 by Tz,w. By left
invariance of the Haar integral we have that for x ∈ G and ξ ∈ L2(G) we have that

(WTW ∗)(ξ)(x) =
∑
z∈Z

ϕz(x)
∑
w∈Z

Tz,w

∫
G
ξ(y)ϕw(y) dµ(y)

=
∫
G

∑
z,w∈Z

ϕz(x)ϕw(xy)Tz,wξ(xy) dµ(y).

As T has finite propagation and Z is (uniformly) locally finite, we are only performing finitely
many sums. This means we are able to exchange the order of summation and integration.
Now, we define a function T̂ : G×G→ C given by

T̂y(x) =
∑
z,w∈Z

ϕz(x)ϕw(xy)Tz,w∆(y)−1/2. (8.1)

The supports of ϕz are pairwise disjoint so for all x, y ∈ G, either T̂y(x) = 0 or there exists
at most one pair (z, w) ∈ Z × Z such that ϕz(x) and ϕw(xy) are non-zero. Observe in this
case z ∈ B(x, δ/4) and w ∈ B(xy, δ/4) as the support of ϕ is contained in a ball of radius
δ/4. Moreover, if we choose (x′, y′) ∈ G×G, which is very close to (x, y), then we can choose
the same pair (z, w) for both (x, y) and (x′, y′) such that ϕz(x), ϕz(x′) and ϕw(xy), ϕw(x′y′)
are non-zero. From these observations it is not hard to show that T̂ is continuous at y-
variable and right uniformly continuous at x-variable. Moreover, the continuous map y 7→ T̂y
is compactly supported. This is because if there exists an R > 0 such that Tz,w = 0
whenever d(z, w) > R then the function y 7→ T̂y is supported on a ball of radius R + δ/2.
Finally, we notice that T̂y(x) is bounded at x-variable. Therefore the function T̂ belongs to
Cc(G,Crub (G)).
LetM : Crub (G)→ B(L2(G)) be the multiplication operator on L2(G) and ρ : G→ B(L2(G))
be the right regular representation. Then M or ρ : Crub (G) or,R G → B(L2(G)) induces a
faithful ∗-representation of Crub (G)or,RG. We claim that the operator WTW ∗ in B(L2(G))
is the image of T̂ under the faithful ∗-representation M or ρ:
Indeed for all ξ ∈ L2(G) and x ∈ G

(M or ρ)(T̂ )(ξ)(x) =
∫
G
T̂y(x)ξ(xy)∆(y)1/2 dµ(y) = (WTW ∗)(ξ)(x).

Since the image ofMorρ is closed, we conclude thatWC∗u(Z)W ∗ is contained in the image of
M or ρ. Hence, there is a well-defined faithful ∗-homomorphism Φ : C∗u(Z)→ Crub (G)or,RG

defined by Φ(T ) = (M or ρ)−1(WTW ∗). If T has finite propagation, then Φ(T ) = T̂ given
by the formula 8.1. Moreover, we define a c.c.p. map E : Crub (G) or,R G → B(l2(Z)) by
E(a) = W ∗M or ρ(a)W , where a ∈ Crub (G) or,R G.
We claim that the image of E is contained in C∗u(Z). Indeed, let f ∈ Cc(G,Crub (G)) with
support in B(e,R) for some R > 0, then

〈W ∗M or ρ(f)Wδy, δx〉 = 〈M or ρ(f)(ϕy), ϕx〉 =
∫
z∈G

∫
s∈G

fs(z)ϕy(zs)∆(s)1/2ϕx(z)dsdz

It follows that

d(x, y) ≤ d(x, z) + d(z, y) ≤ d(x, z) + d(z, zs) + d(zs, y) ≤ δ/4 +R+ δ/4.

That is to say that E(f) has propagation at most R+ δ/2. Therefore, the claim follows.
The property (1) follows by the constructions of Φ and E. Since W is an isometry and
M or ρ induces a ∗-isomorphism between C0(G) or,R G and K(L2(G)), the property (2)
follows easily from the fact that the compact operators form a two-sided ideal.
We are ready to verify property (3). Let H ∈ G∗(Z), we have to show Sωξ,η(Φ(H)) ∈ C0(G)
for all ξ, η ∈ Cc(G) by Proposition 8.3.
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Given ε > 0, we would like to find C > 0 such that
d(e, x) > C ⇒ |Sωξ,η(Φ(H))(x)| < ε.

Consider the bounded continuous kernel k : G × G → C given by k(g, h) = ξ(g−1h)η(h).
Since both ξ and η are compactly supported, there exist two compact subsets K1 and K2
such that supp k ⊆ K1 ×K2. Let D be a positive number such that

d(g, h) + d(e, h) + ∆(g)−1/2 ≤ D,

for all (g, h) ∈ K1 ×K2. Choose a small ε′ > 0 such that

3ε′D||ξ||∞||η||∞µ(K1)µ(K2)||ϕ||2∞ ≤ ε.

Since H is a ghost, we choose a M > 0 such that if z, w /∈ B(e,M) then |Hz,w| < ε′. As the
slice map Sωξ,η is continuous, we can choose an operator T ∈ C∗u(Z) of finite propagation such
that ||T−H||B(l2(Z)) + ||Sωξ,η(Φ(T )−Φ(H))||∞ < min{ε/3, ε′}. In particular, |Tz,w−Hz,w| <
ε′ for all z, w ∈ Z. We note that Φ(T ) = T̂ and

Sωξ,η(T̂ )(x) =
∫
G

∫
G
ξ(g−1h)η(h)Rh−1(T̂g)(x) dµ(g)dµ(h)

=
∫
G

∫
G
k(g, h)

∑
z,w∈Z

ϕz(xh−1)ϕw(xh−1g)Tz,w∆(g)−1/2 dµ(g)dµ(h)

=
∫
K2

∫
K1
k(g, h)ϕz0(xh−1)ϕw0(xh−1g)Tz0,w0∆(g)−1/2 dµ(g)dµ(h),

for some (z0, w0) ∈ B(xh−1, δ/4)×B(xh−1g, δ/4).
Set C = M +D + δ/4. If d(e, x) > C and (g, h) ∈ K1 ×K2, then

d(e, z0) ≥ d(x, e)− d(h, e)− d(z0, xh
−1) > C −D − δ/4 = M,

d(e, w0) ≥ d(e, x)− d(xh−1g, x)− d(w0, xh
−1g) > C −D − δ/4 = M.

In particular, |Tz0,w0 | ≤ |Tz0,w0 −Hz0,w0 |+ |Hz0,w0 | < 2ε′. It follows that

|Sωξ,η(T̂ )(x)| < 2ε′||ξ||∞||η||∞||ϕ||2∞Dµ(K1)µ(K2) ≤ 2ε
3 ,

for all x /∈ B(e, C). We complete the proof by the following computation:

|Sωξ,η(Φ(H))(x)| ≤ |Sωξ,η(Φ(H)− Φ(T ))(x)|+ |Sωξ,η(Φ(T ))(x)| < ε

3 + 2ε
3 = ε.

�

We are ready to prove the main theorem of this section. Recall that C lub (G) ∼= C(βlu(G))
and C lub (G)/C0(G) ∼= C(∂G).

Theorem 8.5. Let G be a locally compact second countable group. Then the following con-
ditions are equivalent.

(1) G is amenable at infinity.
(2) G is exact.
(3) The sequence

0→ C0(G) or,L G→ C(βlu(G)) or,L G→ C(∂G) or,L G→ 0
is exact.

(4) C(∂G) oL G ∼= C(∂G) or,L G canonically.
(5) C(βlu(G)) or,L G is nuclear.

Proof. We will show that (1)⇒ (2)⇒ (3)⇒ (1), (1)⇒ (4)⇒ (3) and (1)⇔ (5).
(1)⇒ (2): This follows from [3, Theorem 7.2].
(2)⇒ (3): This follows from the definition of the exactness of G.
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(3)⇒ (1): We will show that if G is not amenable at infinity, then the sequence in condition
(3) is not exact. It follows from Theorem 3.6 and Proposition 5.8 that there exists a uniformly
locally finite metric lattice Z in G without Yu’s property A. Theorem 5.12 and Proposition
8.4 imply that C∗u(Z) contains a non-compact ghost T and Φ(T ) is an obstruction for the
exactness of the following sequence:

0→ C0(G) or,R G→ Crub (G) or,R G→ (Crub (G)/C0(G)) or,R G→ 0.

Finally, we claim that this sequence is exact if and only if the sequence in condition (3) is
exact. Indeed, the inverse homeomorphism on G induces a commutative diagram:

0 // C0(G) or,R G //

∼=
��

Crub (G)) or,R G //

∼=
��

(Crub (G)/C0(G)) or,R G //

∼=
��

0

0 // C0(G) or,L G // C lub (G) or,L G // (C lub (G)/C0(G)) or,L G // 0.

The claim follows by an easy diagram chase.
(1)⇒ (4): This follows from Proposition 7.4 and Theorem 7.9.
(4)⇒ (3): Consider the following canonical diagram:

0 // C0(G) oL G //

��

C(βlu(G)) oL G //

��

C(∂G) oL G //

��

0

0 // C0(G) or,L G // C(βlu(G)) or,L G // C(∂G) or,L G // 0.

It is clear that the diagram commutes and the middle vertical arrow is surjective. Since the
top sequence is exact and the right vertical arrow is injective, the bottom sequence is also
exact by an easy diagram chase.
(1)⇒ (5): This follows from Proposition 7.4 and Theorem 7.9.
(5)⇒ (1): By assumption Crub (G)or,RG ∼= C(βlu(G))or,LG is nuclear. Let Z be a uniformly
locally finite metric lattice in G. Then it follows from Proposition 8.4 that the identity map
on C∗u(Z) factors through the nuclear C∗-algebra Crub (G)or,RG. Hence C∗u(Z) is also nuclear.
The conclusion follows by Theorem 5.10, Proposition 5.8 and Theorem 3.6. �

At the end of this section, we would like to mention a ground-breaking result of Hiroki Sako:

Theorem 8.6 ([80]). Let (Z, d) be a uniformly locally finite metric space. Then the following
conditions are equivalent:
(1) The metric space (Z, d) has Yu’s property A.
(2) The uniform Roe algebra C∗u(Z) is nuclear.
(3) The uniform Roe algebra C∗u(Z) is exact.
(4) The uniform Roe algebra C∗u(Z) is locally reflexive.

For a general C∗-algebra, nuclearity implies exactness, and exactness implies local reflexivity.
Moreover, a C∗-subalgebra of a locally reflexive C∗-algebra is also locally reflexive. We refer
to [13] for more details. By Sako’s result and Proposition 8.4 we obtain an analogous result
on locally compact groups.

Corollary 8.7. Let G be a locally compact second countable group. Then the following
conditions are equivalent.

(1) The group G has property A.
(2) Crub (G) or,R G is nuclear.
(3) Crub (G) or,R G is exact.
(4) Crub (G) or,R G is locally reflexive.
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9. Future projects

In this section we list some questions related to my thesis for possible further research. Few
of the questions have already been worked on, but most of them are still only ideas.

9.1. The Baum-Connes conjecture.
(1) One of the main ingredients in [15] to prove the Baum-Connes conjecture for linear

algebraic groups over Qp is Kirillov’s orbit method for p-adic unipotent groups in
[67, 51]. Is it possible to prove the Baum-Connes conjecture for linear algebraic
groups over local fields of positive characteristic by a general Kirillov’s orbit method
developed in [31]? This is possible in many cases, e.g. the Jacobi group H2n+1(k)o
Sp(2n, k) is the semidirect product of the Heisenberg group H2n+1(k) with the
symplectic group Sp(2n, k). The reason is that the unipotent radical H2n+1(k) has
smooth unitary dual. Note that the Jacobi group has Kazhdan’s property (T),
which is an obstacle to prove the Baum-Connes conjecture [55].

9.2. The strong Novikov conjecture.
(1) Recently, Kasparov and Yu [58] proved the strong Novikov conjecture for count-

able discrete groups coarsely embeddable into Banach spaces satisfying a geometric
condition called property (H). For instance, uniformly convex Banach spaces with
certain unconditional bases have property (H) [12]. Is it possible to extend the
result of Kasparov and Yu to all locally compact second countable groups?

(2) Tu proved in [84, 83] that if a locally compact second countable group G admits
a γ-element, then the strong Novikov conjecture is true for G. Later, he proved
in [85] that every discrete group, which admits a coarse embedding into Hilbert
spaces, has a γ-element. So we can ask whether it is true for locally compact
(totally disconnected) groups coarsely embeddable into Hilbert spaces ([85], Final
remark 2).

9.3. Measure equivalence of locally compact groups.
(1) The central notion of measure equivalence on discrete groups was suggested by Gro-

mov in [37]. It is well-known that all approximation properties mentioned in section
6 are invariant under measure equivalence [68, 54]. Since the definition of mea-
sure equivalence also makes sense for locally compact second countable unimodular
groups [34, 5, 35], it is natural to ask whether the same conclusion holds in the
locally compact setting. It is also interesting to ask whether property A and coarse
embedding into Hilbert spaces are invariant under measure equivalence.

9.4. Approximation properties versus property A and coarse embeddability.
(1) It follows from Theorem 6.10 that weak amenability implies property A for all

locally compact second countable groups. In [44], Haagerup and Kraus introduced
the approximation property (AP) for locally compact groups and (AP) is in general
weaker than weak amenability. Does (AP) imply property A for all locally compact
groups? It is true for all locally compact groups with group lattices [44, 63, 70, 28].

(2) Does the weak Haagerup property imply coarse embeddability into a Hilbert space
for all locally compact groups? By Theorem 6.11 it is true for groups with weak
Haagerup constant 1. I think the question is even open for discrete group case.

9.5. Characterization of weak amenability in coarse geometry.
(1) Property A can be regarded as coarse amenability. There are many reasons for that,

but one of them is the following: let Γ be a finitely generated residually finite group.
It is possible to construct a metric space Box(Γ), called the box space associated to
the group Γ [77], such that Γ is amenable if and only if Box(Γ) has Yu’s property A.
Recently, the characterization of the Haagerup property is obtained in [17] by fibred
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coarse embedding of the box space into Hilbert spaces. Is it possible to define a
coarse property on metric spaces such that a finitely generated residually finite group
is weakly amenable if and only if its box space has this property? Since Theorem
6.10 and Theorem 6.11 can be extended from locally compact second countable
groups to proper metric spaces with bounded geometry, it might be useful to attack
the Cowling’s conjecture for finitely generated residually finite groups.

9.6. Exactness of reduced group C∗-algebras.
(1) A C∗-algebra A is said to be exact if the functor A⊗min (−) is exact on the category

of C∗-algebras. From this definition it is rather easy to show that if a locally compact
group G is exact, then its reduced group C∗-algebra C∗r (G) is exact as C∗-algebras.
Kirchberg and Wassermann proved the converse assertion for all discrete groups
(see [59]). It is natural to ask the following question: let G be a locally compact
second countable group. Does exactness of the reduced group C∗-algebra C∗r (G)
imply exactness of the group G?
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Abstract. For locally compact groups, we define an analogue to Yu’s property A that he defined
for discrete metric spaces. We show that our property A for locally compact groups agrees with
Roe’s notion of property A for proper metric spaces, defined in [11]. We prove that many
of the results that are known to hold in the discrete setting, hold also in the locally compact
setting. In particular, we show that property A is equivalent to amenability at infinity (see [9]
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1. Introduction

Gromov introduced the notion of uniform embeddability of metric spaces and
suggested that finitely generated discrete groups that are uniformly embeddable in a
Hilbert space, when viewed as metric spaces with a word length metric, might satisfy
the Novikov conjecture [5, 6]. Yu showed that this is indeed the case, provided that
the classifying space is a finite CW-complex [17]. In the same paper Yu introduced a
weak form of amenability on discrete metric spaces that he called property A, which
guarantees the existence of a uniform embedding into Hilbert space. Higson and
Roe observed in [9] that the metric space underlying a finitely generated discrete
group has property A if and only if it admits a topologically amenable action on
some compact Hausdorff space. Ozawa showed in [10] that a discrete group admits
a topologically amenable action on a compact Hausdorff space if and only if the
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group is exact. In the case of property A groups, Higson strengthened Yu’s result by
removing the finiteness assumption on the classifying space [8]. Indeed, he proved
that the Baum–Connes assembly map with coefficients, for any countable discrete
group which has a topologically amenable action on a compact Hausdorff space, is
split-injective. Baum, Connes and Higson showed that this implies the Novikov
conjecture [2]. Using Higson’s descent technique (see [8]), Skandalis, Tu and
Yu [13] were able to generalize the split-injectivity result to arbitrary discrete groups
which admit a uniform embedding into Hilbert space, and hence they answered
Gromov’s question.

In [11], Roe generalized property A to proper metric spaces with bounded
geometry (in the sense of [12]). All second countable locally compact groups have a
proper left-invariant metric that implements the topology, and such a metric is unique
up to coarse equivalence (see [7] and [14]). Moreover, locally compact groups with
a proper left-invariant metric, have bounded geometry (see [7]). Roe already proved
that his generalization of property A is equivalent to Ozawa’s notion of exactness,
see [11]. A locally compact group G satisfies Ozawa’s notion of exactness if there is
a net of positive type kernels ki W G�G ! C that tends to 1 uniformly on tubes, and
such that each ki is supported in a tube. We say that a subset T � G � G is a tube
if it is contained in a set of the form Tube.K/ D f.s; t/ W s�1t 2 Kg � G � G

for some compact subset K � G. Anantharaman-Delaroche has shown in [1]
that whenever a locally compact group admits a topologically amenable action on
a compact Hausdorff space, it also satisfies Ozawa’s notion of exactness.

We give an alternative definition of property A, that resembles more closely Yu’s
definition, and we show that it is equivalent to Roe’s definition. Moreover, we give a
direct and elementary proof that it is equivalent to Ozawa’s notion of exactness. We
continue by showing that a locally compact group has property A if and only if it has
a topologically amenable action on a compact Hausdorff space. This statement was
proven for discrete groups by Higson and Roe [9].

Whenever a locally compact group admits a topologically amenable action on a
compact Hausdorff space, it is uniformly embeddable into a Hilbert space (see [1]).
By the above, this is also true for groups with property A. We also give an alternative
characterisation of the locally compact groups that embed uniformly into a Hilbert
space. We say that an action G y X on a compact Hausdorff space X has the
Haagerup property if its transformation groupoid X oG admits a continuous proper
conditionally negative type function. Then we show that a locally compact group
embeds uniformly into a Hilbert space if and only if it admits a Haagerup action on
a compact Hausdorff space. Finally, we apply Higson’s descent technique and the
going–down functor of Chabert, Echterhoff and Oyono-Oyono, to obtain an analogue
of the result of Skandalis, Tu and Yu (see [13]): we show that the Baum–Connes
assembly map with coefficients is split-injective for all locally compact groups that
embed uniformly into Hilbert space.
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2. Property A for locally compact groups

In this section, we introduce our own notion of property A for locally compact
second countable (l.c.s.c.) groups. Yu first introduced property A for discrete metric
spaces in [17]. Our own notion of property A is closely modelled on Yu’s definition.
Roe has introduced a generalization of property A for proper metric spaces with
bounded geometry (see [11]). Every second countable locally compact group G has
a proper left-invariant metric d that implements the topology on G. This metric
is unique up to coarse equivalence. Moreover, the proper metric space .G; d/
has bounded geometry, see [7] and [14]. So Roe’s property A makes sense for
l.c.s.c. groups, and we show in Theorem 2.3 that it agrees with our property A.
We combine Theorem 2.3 with Anantharaman-Delaroche’s description of groups
that are amenable at infinity [1, Proposition 3.4 and 3.5], i.e. groups that admit a
topologically amenable action on a compact Hausdorff space. In this way we obtain
Corollary 2.9: a l.c.s.c. group has property A if and only if it is amenable at infinity.

For the rest of the paper, G will always denote a l.c.s.c. group. We fix a left Haar
measure � on G. We also consider the measure �0 on G � N which is the product
measure of � with the counting measure on N.

Definition 2.1. Let G be a l.c.s.c. group and let K � G be a compact subset. Then
we write

Tube.K/ D f.s; t/ 2 G �G W s�1t 2 Kg:

We say that a subset T � G � G is a tube if fs�1t W .s; t/ 2 T g is precompact, or
equivalently, if T � Tube.K/ for some compact subset K � G.

Definition 2.2. A l.c.s.c group G has property A if for any compact subset K � G
and " > 0, there exist a compact subset L � G and a family fAsgs2G of Borel
subsets of G � N with 0 < �0.As/ <1 such that

� for all .s; t/ 2 Tube.K/ we have

�0.As�At /

�0.As \ At /
< ";

� .t; n/ 2 As implies .s; t/ 2 Tube.L/.

Theorem 2.3 below gives a number of equivalent characterizations of property A.
It is an extention of [16] to the locally compact case. Condition (3) says that G has
property A in the sense of Roe [11], as a proper metric space with bounded geometry.
Condition (5) is Ozawa’s notion of exactness for l.c.s.c. groups [10]. The equivalence
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between (3) and (5) has already been proven in [11], by reducing the problem to the
discrete case. Nevertheless, we provide a simple direct proof of their equivalence,
for the sake of completeness.

Theorem 2.3. Let G be a l.c.s.c. group. The following are equivalent:

1/ G has property A;

2/ For any compact subset K � G and " > 0, there exist a compact subset
L � G and a continuous map � W G!L1.G/ such that jj�t jj1 D 1,
supp �t � tL for every t 2 G and

sup
.s;t/2Tube.K/

jj�s � �t jj1 < "I

3/ For any compact subset K � G and " > 0, there exist a compact subset
L � G and a weak-� continuous map � W G!C0.G/�C such that jj�t jj D 1,
supp �t � tL for every t 2 G and

sup
.s;t/2Tube.K/

jj�s � �t jj < "I

4/ For any compact subset K � G and " > 0, there exist a compact subset
L � G and a continuous map � W G!L2.G/ such that jj�t jj2 D 1,
supp �t � tL for every t 2 G and

sup
.s;t/2Tube.K/

jj�s � �t jj2 < "I

5/ For any compact subset K � G and " > 0, there exist a compact subset
L � G and a continuous positive type kernel k W G � G!C such that
supp k � Tube.L/ and

sup
.s;t/2Tube.K/

jk.s; t/ � 1j < ":

In statements (2)–(5), we assume that the maps �; �; �; k are continuous, because
this is standard for locally compact groups. But in fact, each of the statements (2)–
(5) is equivalent to the corresponding statement without the continuity assumption.
In Lemma 2.5, we carefully state and prove this for statement (2). We omit the
argument for statements (3)–(5), as it is entirely analogous. Part of the proof of
Lemma 2.5 below consists of convolving � with a “nice” function. We use the same
class of “nice” functions several times in the paper, so we give them a name.
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Definition 2.4. A cut-off function for G is a function f in Cc.G/ such that

� f � 0;

� f .t�1/ D f .t/ for all t 2 G;

� suppf is a compact neighborhood of the unit element e of G;

�
R
G
f .t/d�.t/ D 1.

Observe that every l.c.s.c. group has cut-off functions.

Lemma 2.5. Let G be a l.c.s.c. group. Suppose that G satisfies the following
property.

20/ For any compact subset K � G and " > 0, there exist a compact subset
L � G and a map � W G!L1.G/ such that k�tk1 D 1, supp �t � tL for
every t 2 G and

sup
.s;t/2Tube.K/

k�s � �tk1 < "I

Then we can assume that the map t 7! �t is continuous, i.e., G satisfies property (2)
from Theorem 2.3 above.

Proof. The proof proceeds in two steps. In step one, we show that we can assume
that t 7! �t is a Borel map. In step two we use a convolution argument to make
t 7! �t continuous.

Step 1: We can assume that t 7! �t is a piecewise constant Borel map.
Fix any compact subset C � G with non-empty interior. Since G is second
countable, we find a sequence .sn/ in G such that G D [nsnC . Define a
sequence .Cn/ of Borel subsets of G by induction as follows. We set C1 D s1C

and for each n > 1, we set Cn D snC n .C1 [ : : : [ Cn�1/.
Let " > 0 and let K � G be a compact subset. Then we see that the product

CKC�1 � G is still a compact subset. Since G satisfies our condition .20/, we
find a map � W G ! L1.G/ and a compact subset L � G such that k�tk1 D 1,
supp �t � tL for every t 2 G and

sup
.s;t/2Tube.CKC�1/

k�s � �tk1 < "I

Define a Borel map � W G ! L1.G/ setting �t D �sn whenever t 2 Cn. This
is well-defined because G is the disjoint union of the Borel sets Cn. We see that
k�tk1 D 1 for all t 2 G. Observe that, if t 2 Cn, then it follows that sn 2 tC�1.
Let .s; t/ 2 Tube.K/ and take n;m 2 N such that s 2 Cn, t 2 Cm. Then we see that
s�1n sm 2 CKC

�1, so

k�s � �tk1 D k�sn � �smk1 < ":
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Moreover, we compute that supp.�t / D supp.�sm/ � smL � tC�1L. It is now
clear that � is a Borel map that satisfies condition .20/.

Step 2: We can assume that t 7! �t is continuous.
Fix a cut-off function f W G ! Œ0;1/. Denote C D supp.f /. Let " > 0 and let
K � G be a compact subset. By step 1, we find a piecewise constant Borel map
� W G ! L1.G/ and a compact subset L � G such that k�tk1 D 1, supp �t � tL
for every t 2 G and

sup
.s;t/2Tube.CKC�1/

k�s � �tk1 < "I

We define � W G ! L1.G/ by the formula

�t .v/ D

Z
G

f .s�1t / j�s.v/j d�.s/:

We check that �t is indeed in L1.G/ and has norm 1 and still satisfies condition (20).
Then we show that � is a continuous map, and hence staisfies condition (2) of
Theorem 2.3.

We compute that

k�tk1 D

Z
G

Z
G

f .t�1s/ j�s.v/j d�.s/d�.v/

D

Z
G

f .t�1s/ k�sk1 d�.s/ D

Z
G

f .s/d�.s/ D 1:

It is clear that the support of �t is contained in the compact subset tCL. Whenever
we have .s; t/ 2 Tube.K/, we see that

k�s � �tk1 D

Z
G

ˇ̌̌̌Z
G

f .r�1s/ j�r.v/j d�.r/ �

Z
G

f .r�1t / j�r.v/j d�.r/

ˇ̌̌̌
d�.v/

�

Z
G

Z
G

f .r�1/ j�sr.v/ � �tr.v/j d�.r/d�.v/

D

Z
G

f .r/ k�sr � �trk1 d�.r/

< "

Z
G

f .r/d�.r/ D ":

where the last inequality follows because .sr; t r/ 2 Tube.CKC�1/ whenever
r�1 2 C .

Suppose that .tn/ is a sequence in G that tends to t . Without loss of generality,
we can assume that tn remains in the compact neighborhood tC . It follows that

k�tn � �tk1 �

Z
G

Z
G

ˇ̌
f .s�1tn/ � f .s

�1t /
ˇ̌
j�s.v/j d�.s/d�.v/
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D

Z
G

ˇ̌
f .s�1tn/ � f .s

�1t /
ˇ̌
k�sk1 d�.s/:

This last integral converges to 0 by the Lebesgue dominated convergence theorem.
We have shown that our continuous map � W G ! L1.G/ satisfies the required

conditions.

Throughout this paper, we often need to “smoothen” a given kernel. For example,
when we are given a measurable kernel k0 on G, we can obtain a continuous
kernel by convolving k0 with a cut-off function. Lemma 2.6 below shows that this
convolution procedure preserves a number of relevant properties of the kernel.
Lemma 2.6. Let G be a l.c.s.c group and let k0 W G � G ! C be a measurable
kernel that is bounded on every tube. Let f W G ! Œ0;1/ be a cut-off function
for G. Define a new kernel k W G �G ! C by the formula

k.s; t/ D

Z
G

Z
G

f .v/f .w/k0.sv; tw/d�.v/d�.w/ (2.1)

This kernel satisfies the following properties
1/ k is bounded on every tube.
2/ k is continuous. In fact, k satisfies the following uniform continuity property:

whenever sn ! s and tn ! t in G, then we have that

sup
v2G

jk.vsn; vtn/ � k.vs; vt/j ! 0:

3/ if the support of k0 is a tube, then also the support of k is a tube.
4/ if k0 is a positive type kernel, then so is k.
5/ if T � G �G is a tube, then

sup
.s;t/2T

jk.s; t/ � 1j � sup
.x;y/2T �.suppf �suppf /

jk0.x; y/ � 1j:

Proof. Observe that the new kernel k is well-defined, because for fixed s; t 2 G, the
function

.v; w/ 7! f .v/f .w/k0.sv; tw/

is a bounded measurable function with compact support. We check that k satisfies
properties .1/ � .5/.

Property (1). Let T � G � G be a tube. Observe that T0 D T .supp.f / �
supp.f // is still a tube. So k0 is bounded on T0, say by C > 0. For any .s; t/ 2 T
and v;w 2 supp.f /, we get that .sv; tw/ 2 T0, hence

jk.s; t/j �

Z
G

Z
G

f .v/f .w/ jk0.sv; tw/j d�.v/d�.w/

� C

Z
G

Z
G

f .v/f .w/d�.v/d�.w/ D C:

So k is bounded by on T .
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Property (2). Suppose that sn ! s and tn ! t in G. Let U be a compact
neighborhood of identity. We can assume that sn 2 sU and tn 2 tU for all n 2 N. By
assumption, k0 is bounded on the tube T D Tube.supp.f /�1U�1s�1tU supp.f //,
say by C > 0. Let r 2 G be arbitrary. We compute that

jk.rsn; rtn/ � k.rs; rt/j

�

ˇ̌̌̌Z
G

Z
G

f .v/f .w/k0.rsnv; rtnw/ � f .v/f .w/k0.rsv; rtw/d�.v/d�.w/

ˇ̌̌̌
�

Z
G

Z
G

ˇ̌
f .s�1n v/f .t�1n w/ � f .s�1v/f .t�1w/

ˇ̌
jk0.rv; rw/j d�.v/d�.w/

� C

Z
G

Z
G

ˇ̌
f .s�1n v/f .t�1n w/ � f .s�1v/f .t�1w/

ˇ̌
d�.v/d�.w/

The last inequality follows from the fact that .rv; rw/ 2 T whenever either
s�1n v; t�1n w 2 supp.f / or s�1v; t�1w 2 supp.f /. The last line does not depend
on r and converges to 0 by the Lebesgue dominated convergence theorem because f
is continuous and has compact support.

Property (3). A simple direct computation shows that the support of k is
contained in supp.k0/.supp.f / � supp.f //.

Property (4). It is well-known that a kernel is of positive type if and only if there
is a Hilbert space H and a map � W G ! H such that k.s; t/ D h�.s/; �.t/i for all
s; t 2 G. The map � can be chosen to be weakly Borel if k is Borel.

Take such a Borel map �0 W G ! H for the kernel k0. Observe that �0 is
bounded because k0 is. So the formula

's.�/ D

Z
G

f .v/h�0.sv/; �id�.v/

defines a bounded anti-linear functional onH . By the Riesz representation theorem,
there is a unique vector �.s/ such that 's.�/ D h�.s/; �i for all � 2 H . It now
suffices to observe that

k.s; t/ D h�.s/; �.t/i:

Property (5). It is straightforward by the properties of the cut-off function f .

We are now ready to prove Theorem 2.3

Proof of Theorem 2.3. 1)) 2): Let K � G be a compact subset and let " > 0. By
Lemma 2.5, we only have to find a map � W G ! L1.G/ that satisfies the conditions
in (20), i.e, condition (2), but � is not necessarily continuous.
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Since G has property A, we find a compact subset L � G and fAsgs2G a family
of Borel subsets in G � N with 0 < �0.As/ <1 such that

� for all .s; t/ 2 Tube.K/ we have

�0.As�At /

�0.As \ At /
<
"

2
;

� .t; n/ 2 As implies .s; t/ 2 Tube.L/.

For s; t 2 G, we denote At;s D .fsg�N/\At . It follows from Tonelli’s theorem
that Z

G

jAt;sjd�.s/ D

Z
G�N
�At

.s; n/d�0.s; n/ D �0.At / <1:

For each t 2 G, consider the almost everywhere defined measurable map �t W G!C
defined by

�t .s/ D
jAt;sj

�0.At /
:

It is clear that 0 � �t 2 L1.G/ and k�tk1 D 1 for all t 2 G. Note that

k�s � �
0.As/ � �t � �

0.At /k1 D

Z
G

j jAs;xj � jAt;xj j d�.x/

�

Z
G

j.fxg � N/ \ .As�At /jd�.x/

D �0.As�At /;

where the last equality follows from Tonelli’s theorem. Hence we see that for all
.s; t/ 2 Tube.K/,

jj�s � �t jj1 �





�s � �t � �0.At /�0.As/






1

C





�t � �0.At /�0.As/
� �t






1

�
�0.As�At /

�0.As/
C

ˇ̌̌̌
�0.At /

�0.As/
� 1

ˇ̌̌̌
� 2 �

�0.As�At /

�0.As/

� 2 �
�0.At�As/

�0.At \ As/
< ":

Note also that if �t .s/ ¤ 0, then .s; n/ 2 At for some n, whence .t; s/ 2 Tube.L/.
Hence supp �t � tL.
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2) ) 1): Given a compact subset K � G and " > 0. We choose a small
0 < "0 < 1 such that 6"0

2�5"0
< ". By 2) there exist a compact subset L � G and a

map � W G!L1.G/ such that jj�t jj1 D 1, supp �t � tL for every t 2 G and

sup
.s;t/2Tube.K/

jj�s � �t jj1 < "
0:

We identify �t with a representative function �t W G ! C. It is not hard to see that
we can assume that fs 2 G W �t .s/ ¤ 0g � tL and �t may also be supposed to be
non-negative, since jj j�sj � j�t j jj1 � jj�s � �t jj1.

Note that �.L/ > 0, for otherwise jj�t jj1 D 0 for all t 2 G. Let M WD

�.L/="0 > 0. For each t 2 G, we set

At WD f.s; n/ 2 G � N W n � �t .s/ �M g:

It is clear that At is a Borel subset of G � N for each t 2 G. For every t 2 G, we
define a measurable map �t W G!Œ0;1/ by

�t .s/ D
jAt;sj

M
;

where At;s WD fn 2 N W .s; n/ 2 Atg. Then �t satisfies the following two relations

�0.At / DM � jj�t jj1

jj�t � �t jj1 < �.L/=M D "
0;

for all t 2 G. It follows that M.1 � "0/ < �0.At / < M.1 C "0/. In particular,
0 < �0.At / <1 for each t 2 G. Moreover,

�0.At�As/ D

Z
G

jAt;x�As;xjd�.x/

D

Z
G

jjAt;xj � jAs;xjjd�.x/ DM � jj�t � �sjj1:

Hence,

�0.As�At /

�0.As \ At /
D

2�0.As�At /

�0.As/C �0.At / � �0.As�At /
D

2jj�s � �t jj1

jj�sjj1 C jj�t jj1 � jj�s � �t jj1
:

Since jj�t jj1 > 1� "0 for every t 2 G and jj�s � �t jj1 < 3"0 for all .s; t/ 2 Tube.K/,
we see that

�0.As�At /

�0.As \ At /
<

6"0

2.1 � "0/ � 3"0
D

6"0

2 � 5"0
< "

for all .s; t/ 2 Tube.K/.
Finally, if .s; n/ 2 At , then �t .s/ ¤ 0. It follows that .t; s/ 2 Tube.L/.
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2)) 3): Recall that there is a linear isometric embedding I W L1.G/ ,! C0.G/
�

given by

I.f /.g/ D

Z
G

gfd�:

Given a compact subset K � G and " > 0, there exist a compact subset L � G

and a continuous map � W G!L1.G/ such that jj�t jj1 D 1, supp �t � tL for every
t 2 G and

sup
.s;t/2Tube.K/

jj�s � �t jj1 < ":

�t may be supposed to be non-negative (since jjj�sj � j�t jjj1 � jj�s � �t jj1). Define
the map � D I ı � W G!C0.G/�C, which is obviously a weak-� continuous map
with jj�t jj D 1. Let g 2 C0.G/ be such that gjtL D 0: Then

�t .g/ D I.�t /.g/ D

Z
tL

g�td� D 0;

i.e., supp �t � tL. Finally,

sup
.s;t/2Tube.K/

jj�s � �t jj D sup
.s;t/2Tube.K/

jjI.�s � �t /jj D sup
.s;t/2Tube.K/

jj�s � �t jj1 < ":

3)) 2): Let f be a cut-off function for G. Using convolution we define a linear
contraction Tf W C0.G/� ! L1.G/ by Tf .�/.s/ D �.fs/ where fs is defined by
fs.t/ D f .s

�1t / for s; t 2 G. Indeed, this is clearly a linear map, and the following
computation shows that T is a contraction. Moreover, T is isometric when restricted
to the positive cone C0.G/�C.

jjTf .�/jj1 D

Z
G

j�.fs/j d�.s/ �

Z
G

Z
G

f .s�1t /d j�j .t/d�.s/

D

Z
G

Z
G

f .t�1s/d�.s/d j�j .t/ D jj�jj:

Observe that the inequality above becomes an equality if � is positive. Given a
compact subset K � G and " > 0, there exist a compact subset L � G and a weak-
� continuous map � W G!C0.G/�C such that jj�t jj D 1, supp �t � tL for every
t 2 G and

sup
.s;t/2Tube.K/

jj�s � �t jj < ":

Define � W G!L1.G/ by the composition

G
�
! C0.G/

�
C

Tf

,! L1.G/:
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It is clear that jj�t jj1 D 1 and supp �t � t .L � suppf / for every t 2 G. Moreover,
we see that

sup
.s;t/2Tube.K/

jj�s � �t jj1 D sup
.s;t/2Tube.K/

jjTf .�s � �t /jj1 � sup
.s;t/2Tube.K/

jj�s � �t jj < ":

Finally, we show that � is continuous. Let tn!t , we want to show that
jj�tn � f � �t � f jj1!0. We can assume that ftngn2N � t � supp f . Since � is
weak-� continuous, we get

.�tn � f /.s/ D �tn.fs/!�t .fs/ D .�t � f /.s/;

for all s 2 G. Note that supp .�tn � f / � tn.L � supp f / � t � supp f � L � supp f
and

.�tn � f /.s/ D �tn.fs/ D

Z
G

fs.x/d�tn.x/ � jjf jj1jj�tn jj D jjf jj1:

It follows that

.�tn � f / � �t �supp f �L�supp f jjf jj1 2 L
1.G/ a:e:

We complete the proof by Lebesgue’s dominated convergence theorem.

2) ) 4): Let � W G!L1.G/ be a map as in (2). For each t 2 G, define
�t D j�t j

1=2. Then

jj�t � �sjj
2
2 D

Z
x2G

j�t .x/ � �s.x/j
2d�.x/

�

Z
x2G

j�t .x/
2
� �s.x/

2
jd�.x/

D

Z
x2G

jj�t .x/j � j�s.x/jjd�.x/

� jj�t � �sjj1:

Now, the rest of the proof is obvious.
4)) 2): Let � W G!L2.G/ be a map as in (4). For each t 2 G, define �t D j�t j2.

Then by the Cauchy–Schwarz inequality, one has

jj�t � �sjj1 D

Z
x2G

jj�t .x/j
2
� j�s.x/j

2
jd�.x/

D

Z
x2G

.j�t .x/j C j�s.x/j/jj�t .x/j � j�s.x/jjd�.x/

� jjj�t j C j�sjjj2jjj�t j � j�sjjj2

� 2jj�t � �sjj2:
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Now, it is not hard to complete the proof.
4)) 5): Given a compact subset K � G and " > 0, let � W G!L2.G/ be a

continuous map as in (4). We identify �t 2 L2.G/ with a representative �t W G ! C.
We may assume that fs 2 G W �t .s/ ¤ 0g � tL. Then we define a continuous
positive type kernel k W G �G!C by the formula

k.s; t/ D h�s; �t i:

It is clear that supp k � Tube.L � L�1/ and we compute that

sup
.s;t/2Tube.K/

jk.s; t/ � 1j D sup
.s;t/2Tube.K/

jh�s � �t ; �t ij � sup
.s;t/2Tube.K/

jj�s � �t jj2jj�t jj2 < ":

5)) 4): Let a compact subset K � G and 0 < " < 1=2 be given. Let f be a
cut-off function for G. Observe that supp f � .K [ feg/ � suppf is a compact subset
of G. By (5), there exist a compact subset L � G and a continuous positive type
kernel k0 on G such that supp k0 � Tube.L/ and

supfjk0.s; t/ � 1j W .s; t/ 2 Tube.suppf � .K [ feg/ � supp f /g < ":

Observe that k0 is bounded because it is of positive type and k0.s; s/ < 1C " for all
s 2 G. It follows from Lemma 2.6 that k W G �G!C given by

k.s; t/ D

Z
G

Z
G

f .v/k0.sv; tw/f .w/d�.w/d�.v/

is a continuous bounded positive type kernel whose support is still a tube, say
supp.k/ � Tube.L0/. If .s; t/ 2 Tube.K [ feg/, then

jk.s; t/ � 1j D

ˇ̌̌̌Z
G

Z
G

f .v/k0.sv; tw/f .w/d�.w/d�.v/

�

Z
G

f .v/d�.v/

Z
G

f .w/d�.w/

ˇ̌̌̌
�

Z
suppf

Z
suppf

f .w/f .v/jk0.sv; tw/ � 1jd�.v/d�.w/

� supfjk0.x; y/ � 1j W .x; y/ 2 Tube.suppf � .K [ feg/ � suppf /g

< ":

Let Tk0
be the integral operator on L2.G/, which is induced by k0, so we

define Tk0
by Tk0

.�/.s/ D
R
G
k0.s; t/�.t/d�.t/. Note that Tk0

is positive and
bounded, and that

k.s; t/ D hTk0
ft ; fsi;

where ft .x/ D f .t�1x/.
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Let p be a polynomial such that 0 � p.t/ and jp.t/2 � t j < "=jjf jj22 for t 2
Œ0; jjTk0

jj�. Define a continuous map � W G!L2.G/ by �t D p.Tk0
/ft . Note that

jh�t ; �si � k.s; t/j D jhp.Tk0
/ft ; p.Tk0

/fsi � k.s; t/j

D jhp2.Tk0
/ft ; fsi � hTk0

ft ; fsij

� jjp2.Tk0
/ � Tk0

jjjjft jj2jjfsjj2

< ";

for all s; t 2 G. It follows that jh�t ; �si�1j � jh�t ; �si�k.s; t/jCjk.s; t/�1j < 2"
for all .s; t/ 2 Tube.K [ feg/, which implies that 1� 2" < Reh�t ; �si < 2"C 1 for
all .s; t/ 2 Tube.K [ feg/.

Since " < 1=2, we see that
p
1C 2" > jj�t jj2 >

p
1 � 2" > 0. We define a

continuous map � W G!L2.G/ by �t D �t=jj�t jj2. This map � satisfies

1 � Reh�t ; �si D 1 �
Reh�t ; �si

h�t ; �t i1=2h�s; �si1=2
� 1 �

1 � 2"

1C 2"
D

4"

1C 2"
< 4"

for all .s; t/ 2 Tube.K[feg/. Therefore we see that jj�s��t jj2 D
p
2 � 2Reh�t ; �si <p

8" for all .s; t/ 2 Tube.K/. Finally, if p is of degree d , then it is not hard to see
that

supp �t � t � suppf � ..Ld /�1 [ � � � [ L�1 [ feg/:

We end this section by showing that property A is equivalent to amenability at
infinity. Recall that a locally compact group G is said to be amenable at infinity
if there exists a topologically amenable action (in the sense of [1]) of G on some
compact Hausdorff space X . In the discrete case, it is known that G is exact if and
only if G is amenable at infinity if and only if the action of G on its Stone-Čech
compactification is topologically amenable if and only if G has property A. In the
locally compact case, we have to replace the Stone-Čech compactification by the
space ˇu.G/ that is defined in the following way. ˇu.G/ is the universal compact
Hausdorff left G-space equipped with a continuous G-equivariant inclusion of G
as an open dense subspace, which has the following property: any (continuous) G-
equivariant map from G into a compact Hausdorff left G-space K extends uniquely
to a continuous G-equivariant map from ˇu.G/ into K. We can identify C.ˇu.G//
with the C�-algebra of bounded left-uniform continuous functions on G, i.e. the
algebra of all bounded continuous functions f on G such that f .t�1s/� f .s/ tends
to 0 uniformly as t tends to the unit element ofG. Anantharaman-Delaroche showed
in [1, Proposition 3.4] that a l.c.s.c. group G is amenable at infinity if and only if its
action on ˇu.G/ by translation is topologically amenable.

As in [1], we denote by � the homeomorphism ofG�G that is given by �.s; t/ D
.s�1; s�1t /. Let Cb;� .G �G/ be the algebra of bounded continuous functions f on
G � G such that f ı � has a continuous extension to ˇu.G/ � G. In fact, we have
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the following characterization of the continuous functions f W G�G ! C such that
f ı � has a continuous extension to ˇu.G/ �G.

Observation 2.7. Let f W G�G!C be a (continuous) function. Then f ı� extends
to a continuous function on ˇu.G/ � G if and only if f satisfies the following two
conditions:

sup
v2G

jf .v; vt/j <1 for all t 2 G

sup
v2G

jf .vsn; vtn/ � f .vs; vt/j!0 for all sn!s and tn!t:

In [1], Anantharaman-Delaroche showed the following characterization of l.c.s.c.
groups that are amenable at infinity.

Theorem 2.8 ([1, Proposition 3.4 and 3.5]). Let G be a l.c.s.c. group. Then the
following are equivalent.

1/ G is amenable at infinity, i.e. there exists a topologically amenable action of
G on a compact Hausdorff space.

2/ the action of G on ˇu.G/ is topologically amenable.

3/ There exists a net .ki / of positive type kernels in Cb;� .G �G/ with support in
tubes such that limi ki D 1, uniformly on tubes.

The uniform continuity property in Observation 2.7 above is precisely the one
we obtained in Lemma 2.6. So it follows from point 5) of Lemma 2.6 that we may
assume that the kernel k in point 5) of Theorem 2.3 is contained in Cb;� .G � G/.
This proves the following result

Corollary 2.9. A l.c.s.c. group G is amenable at infinity if and only if G has
property A.

One of our motivations to study groups with property A is that for such groups,
the Baum–Connes assembly map with coefficients is split-injective. This was proven
first by Higson [8, Theorem 1.1] in the discrete case. Later, Chabert, Echterhoff

and Oyono-Oyono showed [4, Theorem 1.9] that this is still true for l.c.s.c. groups
that are amenable at infinity. Since we have just shown that a l.c.s.c. group with
property A is amenable at infinity, this is still true for groups with property A.

Corollary 2.10. IfG is a locally compact, second countable, Hausdorff group which
has property A, then the Baum–Connes assembly map with coefficients forG is split-
injective.

3. Uniform embeddability into Hilbert space

In this section we study groups that admit a uniform embedding into Hilbert space,
in the sense of Gromov [6], see definition 3.1. As a consequence of Corollary 2.9
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in the previous section, all groups with property A embed uniformly into Hilbert
space. In fact, we show that uniform embeddability into Hilbert space is equivalent
to the existence of a Haagerup action on a compact Hausdorff space. We say
that an action G y X on a compact Hausdorff space has the Haagerup property
if the associated transformation groupoid has a continuous proper conditionally
negative type function. In the previous section, we mentioned that the Baum–
Connes assembly map with coefficients is split-injective for groups with property A.
In Theorem 3.5, we extend this result to groups that embed uniformly into Hilbert
space.

In [6], Gromov introduced the notion of a uniform embedding of a metric space
into another one. On any l.c.s.c. group G, there is a proper left-invariant metric d ,
and this metric is unique up to coarse equivalence, see [7] and [14]. This gives a
well-defined notion of a uniform embedding of a l.c.s.c. group into Hilbert space.
However, for the purpose of this paper, we use the following equivalent definition,
that was first given by Anantharaman-Delaroche in [1].

Definition 3.1. LetG be a locally compact, second countable, Hausdorff topological
group. A map u from G into a Hilbert space H is said to be a uniform embedding
if u satisfies the following two conditions:

a) for every compact subset K of G there exists R > 0 such that

.s; t/ 2 Tube.K/) jju.s/ � u.t/jj � RI

b) for every R > 0 there exists a compact subset K of G such that

jju.s/ � u.t/jj � R) .s; t/ 2 Tube.K/:

We say that a l.c.s.c. group G embeds uniformly into Hilbert space (or admits
a uniform embedding into Hilbert space) if there exists a Hilbert space H and a
uniform embedding u W G ! H .

Anantharaman-Delaroche showed in [1] that l.c.s.c. groups that are amenable at
infinity, embed uniformly into Hilbert space. As a consequence of Corollary 2.9, we
obtain the following:

Proposition 3.2 ([1], Proposition 3.7). If a l.c.s.c. group G has property A, then G
admits a uniform embedding into Hilbert space.

As with property A, whenever there is a uniform embedding of G into H , there
also is a continuous uniform embedding of G into H .

Proposition 3.3. LetG be a locally compact, second countable group. The following
are equivalent:

1/ G admits a uniform embedding into a Hilbert space;

2/ G admits a Borel uniform embedding into a separable Hilbert space;

3/ G admits a continuous uniform embedding into a separable Hilbert space.



Property A and uniform embedding for l.c. groups 813

Proof. It is clear that 3) implies 1).
1)) 2): Let u W G!H be a uniform embedding into a Hilbert space H . Let C

be a compact neighborhood of identity in G. As in the proof of Lemma 2.5, we find
group elements .sn/n and Borel subsets Cn � snC such that G D

F
n Cn. Define

u0 W G!H by the property that u0.s/ D u.sn/ whenever s 2 Cn. This way, u0 is
a Borel step function. Since u is a uniform embedding, we find an R > 0 such that
ku.s/ � u.t/k � R whenever s�1t 2 C . Fix n 2 N and observe that every s 2 Cn
satisfies s�1n s 2 C . As a consequence,

u0.s/ � u.s/

 D ku.sn/ � u.s/k � R:
Since this is true for all n 2 N and s 2 Cn, we see that u0 is at bounded distance
from u, so u0 is still a uniform embedding. Observe that u0 takes values only in the
separable closed subspace H0 � H that is spanned by fu.sn/ W n 2 Ng. In other
words, u0 is a Borel uniform embedding into the separable Hilbert space H0.

2)) 3): Let u W G!H be a Borel uniform embedding into a separable Hilbert
space H . Let f be a cut-off function for G. Since u is a uniform embedding,
we find R > 0 such that ku.s/ � u.t/k � R whenever s�1t 2 supp.f /. For
a fixed t 2 G, we define an anti-linear functional 't W H!C by the formula
't .v/ D

R
G
hf .s�1t /u.s/; vid�.s/ for all v 2 H . Observe that 't is bounded

because

j't .v/j �

Z
G

ˇ̌
hf .s�1t /u.s/; vi

ˇ̌
d�.s/

�

Z
G

f .s�1t /.ku.t/k CR/ kvk d�.s/

D .ku.t/k CR/ kvk ;

for every vector v 2 H . By the Riesz–Fréchet theorem there exists a unique
u0.t/ 2 H such that 't .v/ D hu0.t/; vi for all v 2 H . Observe that u0.t/ is at
distance at most R from u.t/:ˇ̌
hu0.t/ � u.t/; vi

ˇ̌
D

ˇ̌̌̌Z
G

f .s�1t /hu.s/; vid�.s/ � hu.t/; vi

Z
G

f .s�1t /d�.s/

ˇ̌̌̌
�

Z
G

f .s�1t /R kvk d�.s/

� R kvk :

In particular, we see that u0 is still a uniform embedding of G into H .
We show that u0 is continuous. This follows from the following computation: let

.tn/n be a sequence in G that converges to t 2 G. The sequence t�1tn remains in
some compact neighborhood U of identity in G. Since u is a uniform embedding,
we find R2 > 0 such that ku.s/ � u.t/k � R2 whenever t�1s 2 U supp.f /. Now
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we see that, for every v 2 H and n 2 N,ˇ̌
hu0.tn/ � u

0.t/; vi
ˇ̌
�

Z
G

ˇ̌
f .s�1tn/ � f .s

�1t /
ˇ̌
ku.s/k kvk d�.s/

D

Z
G

ˇ̌
f .t�1n s/ � f .t�1s/

ˇ̌
ku.s/k kvk d�.s/

� ktn � f � t � f k1 �.U supp.f //.ku.t/k CR2/ kvk :

Since f is continuous with compact support, we see that ktn � f � t � f k1 tends
to 0. Therefore we also get that ku0.tn/ � u0.t/k tends to 0.

We give an alternative characterization of uniform embedding into Hilbert space
in terms of transformation groupoids and conditionally negative type functions on it.
For the convenience of our readers, we recall these concepts:

Let G be a locally compact group acting continuously on a locally compact
Hausdorff space X . The transformation groupoid X o G consists of all pairs .x; g/
with x 2 X , g 2 G. Its base space is X , and the source and range maps are given by

s.x; g/ D g�1x; r.x; g/ D x:

The composition law is .gx; g/.x; g0/ D .gx; gg0/ and the inversion is given by
.x; g/�1 D .g�1x; g�1/.

A conditionally negative type function on X o G is a function  W X � G!R
such that

1/  .x; e/ D 0 for all x 2 X ;

2/  .x; g/ D  .g�1x; g�1/ for all .x; g/ 2 X �G;

3/
Pn
i;jD1 ti tj .g

�1
i x; g�1i gj / � 0 for all ftigniD1 � R satisfying

Pn
iD1 ti D 0,

gi 2 G and x 2 X .

We say that an action G y X of a group on a compact Hausdorff space has the
Haagerup property if its transformation groupoid X oG admits a continuous proper
conditionally negative type function.

Theorem 3.4. Let G be a l.c.s.c. group. The following are equivalent:

1/ G admits a uniform embedding into a Hilbert space.

2/ There exists a continuous conditionally negative type kernel k on G � G
satisfying

– k is bounded on every tube;

– k is a proper kernel, i.e. f.s; t/ 2 G � G W jk.s; t/j � Rg is a tube for
all R > 0.

3/ The action G y ˇu.G/ has the Haagerup property, i.e, there exists a
continuous proper conditionally negative type function on ˇu.G/oG.



Property A and uniform embedding for l.c. groups 815

4/ There exists a second countable compact Hausdorff left G-space Y which
admits a continuous proper conditionally negative type function on Y oG.

Proof. 2)) 1): Assume that k is a continuous conditionally negative type kernel
on G �G satisfying the conditions in 2). It follows from the GNS construction (see
Theorem C.2.3 [3]) that there exist a real Hilbert space H and a continuous map
u W G!H such that

k.s; t/ D jju.s/ � u.t/jj2:

By the conditions on k, it is easy to see that u is a uniform embedding.
1) ) 3): We may assume that G admits a continuous uniform embedding

u W G!H , where H is a (separable) Hilbert space. Define a continuous function
k0 W G �G!R by

k0.s; t/ D jju.s/ � u.t/jj
2:

It is clear that k0 is bounded on every tube. Let f be a cut-off function for G. It
follows from Lemma 2.6 that the kernel k W G �G!R that is given by

k.s; t/ D

Z
G

Z
G

f .v/k0.sv; tw/f .w/d�.w/d�.v/

is continuous and bounded on every tube. Moreover, kı� has a continuous extension
 0 W ˇ

u.G/ �G!R.
We have already seen in the proof of the previous proposition that there exists a

unique continuous uniform embedding u � f W G!H such that

hu � f .t/; �i D

Z
G

hf .s�1t /u.s/; �id�.s/ for � 2 H:

Now, we define a continuous conditionally negative type kernel ' W G �G!R by

'.s; t/ D jju � f .s/ � u � f .t/jj2:

By the definition of u � f , it is not hard to see that

'.s; t/ D Re
Z
G

Z
G

f .v/hu.sv/ � u.tv/; u.sw/ � u.tw/if .w/d�.w/d�.v/

D

Z
G

Z
G

f .v/Rehu.sv/ � u.tv/; u.sw/ � u.tw/if .w/d�.w/d�.v/

D
1

2

Z
G

Z
G

f .v/f .w/0BBBB@
� ku.sw/k2 C 2Rehu.sv/; u.sw/i � ku.sv/k2

C ku.sv/k2 � 2Rehu.sv/; u.tw/i C ku.tw/k2

� ku.tw/k2 C 2Rehu.tv/; u.tw/i � ku.tv/k2

C ku.tv/k2 � 2Rehu.tv/; u.sw/i C ku.sw/k2

1CCCCA d�.w/d�.v/
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D
1

2

Z
G

Z
G

f .v/f .w/.�k0.sv; sw/C k0.sv; tw/

� k0.tv; tw/C k0.tv; sw//d�.w/d�.v/

D
1

2
.k.s; t/ � k.s; s/ � k.t; t/C k.t; s//

D
1

2
.2k.s; t/ � k.s; s/ � k.t; t//;

where the first equality follows from the fact that ' is real-valued.
Thus, the function  W ˇu.G/ � G ! R that is given by  .y; t/ D

 0.y; t/ �
1
2
. 0.y; e/ C  0.t

�1y; e// extends ' ı � continuously. Note that '
is a conditionally negative type kernel on G � G if and only if ' ı � is a
conditionally negative type function onGoG, which is also equivalent to  being a
conditionally negative type function on ˇu.G/oG. Moreover,  is proper because
f.s; t/ 2 G �G W j'.s; t/j � Rg is a tube for all R > 0.

3)) 4): Let ' W ˇu.G/ � G!R be a continuous proper conditionally negative
type function on ˇu.G/oG. If we identify C.ˇu.G/ �G/ with C.G;C.ˇu.G///,
then G 3 t 7! '.�; t / 2 C.ˇu.G// is a continuous map. Let A be the C �-
algebra generated by the unit in C.ˇu.G// and the set fs:'.�; t / W s; t 2 Gg. It
is clear that A is a unital, separable and G-invariant C �-subalgebra of C.ˇu.G//.
Hence, there exists a compact Hausdorff, second countable left G-space Y such that
A Š C.Y /. It is not hard to see that there exist a continuousG-equivariant surjection
p W ˇu.G/!Y and a continuous function  W Y � G!R such that the following
diagram

ˇu.G/ �G
'

$$

p�id
��

Y �G
 

// R
commutes. The properness of follows from the properness of ' and the surjectivity
of p. Since p is also G-equivariant,  is a conditionally negative type function on
Y oG, as desired.

4)) 2): Let ' W Y �G ! R be a conditionally negative type function on Y oG.
Fix one point y0 2 Y and define a kernel k W G �G ! R by the following formula:

k.s; t/ D '.s�1y0; s
�1t / for all s; t 2 G:

It is now clear that k is a continuous function. Because ' was a conditionally
negative function, one easily computes that k is a conditionally negative type kernel
on G. Moreover, because Y is compact and ' is continuous, it follows that k is
bounded on tubes. Finally, the properness of ' translates to the properness of k, as a
kernel on G.

Our final result shows that for every group G that embeds uniformly into a
Hilbert space, the Baum–Connes assembly map with coefficients is split-injective.
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The analogous result for discrete groups was first proven by Skandalis, Tu and Yu
([13] Theorem 6.1). The argument is almost identical to the one used to prove [4,
Theorem 1.9].

Theorem 3.5. IfG is a l.c.s.c. group which admits a uniform embedding into Hilbert
space, then the Baum–Connes assembly map

�A W K
top
� .GIA/!K�.Aor G/

is split-injective for any separable G-C �-algebra A.

Proof. Suppose that  is a continuous proper conditionally negative type function
on Y o G as in Theorem 3.4 4). We show first that we can assume that Y is a
compact convex space, on which G acts by affine transformations. Let X denote
the space Prob(Y ) of Borel probability measures on Y equipped with the weak-�
topology. Notice that X is a second countable compact Hausdorff left G-space (with
the induced action from G y Y ). We define ' W X �G!R by

'.m; t/ D

Z
Y

 .y; t/dm.y/:

We claim that ' is a continuous proper conditionally negative type function on
X oG. Indeed, if we identify X with the state space of C.Y /, then we see that
'.m; t/ D m. .�; t //. Thus, the continuity of ' follows from the norm-boundedness
of X and the continuity of the map G 3 t 7!  .�; t / 2 C.Y;R/. It is not hard to see
that ' is a continuous proper conditionally negative type function since  is.

We now consider the following commutative diagram, which is called the Higson
descent diagram (cf. the proof of Theorem 3.2 in [8]):

K
top
� .GIA/

i�

��

�A // K�.Aor G/

i�

��

K
top
� .GIA˝ C.X// �A˝C.X/

// K�..A˝ C.X//or G/;

where the vertical arrows are induced by the inclusion i W C!C.X/ and the
horizontal arrows are the Baum–Connes assembly maps. By Lemma 4.1 in [13], the
Baum–Connes assembly map for the groupoidXoG with coefficients in A˝C.X/
is the same as the one for the group G with coefficients in A ˝ C.X/. Because
whenever the groupoid X o G has a continuous proper conditionally negative type
function, it also has a proper affine isometric action on a continuous field of Hilbert
spaces overX [15]. Hence, by Theorem 9.3 in [15] the bottom horizontal arrow is an
isomorphism. Since X is convex and the action of G on X is affine, the space X is
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K-equivariantly contractible for any compact subgroupK ofG. By Proposition 1.10
in [4], the left vertical arrow is an isomorphism. An easy diagram chase then shows
the split-injectivity of the assembly map �A.
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Abstract. In this paper we consider the class of connected simple Lie groups
equipped with the discrete topology. We show that within this class of groups the
following approximation properties are equivalent: (1) the Haagerup property;
(2) weak amenability; (3) the weak Haagerup property (Theorem 1.10). In order
to obtain the above result we prove that the discrete group GL(2,K) is weakly
amenable with constant 1 for any field K (Theorem 1.11).
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1. Introduction

Amenability for groups was first introduced by von Neumann in order to study the
Banach-Tarski paradox. It is remarkable that this notion has numerous characteri-
zations and one of them, in terms of an approximation property by positive definite
functions, is the following: a locally compact (Hausdorff) group G is amenable if
there exists a net of continuous compactly supported, positive definite functions on
G tending to the constant function 1 uniformly on compact subsets of G . Later,
three weak forms of amenability were introduced: the Haagerup property, weak
amenability and the weak Haagerup property. In this paper we will study these
approximation properties of groups within the framework of Lie theory and coarse
geometry.

Definition 1.1 (Haagerup property [10]). A locally compact group G has the
Haagerup property if there exists a net of positive definite C0 -functions on G,
converging uniformly to 1 on compact sets.

Definition 1.2 (Weak amenability [18]). A locally compact group G is weakly
amenable if there exists a net (ϕi)i∈I of continuous, compactly supported Herz-
Schur multipliers on G, converging uniformly to 1 on compact sets, and such that
supi ‖ϕi‖B2 <∞.

ISSN 0949–5932 / $2.50 c© Heldermann Verlag
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The weak amenability constant ΛWA(G) is defined as the best (lowest)
possible constant Λ such that supi ‖ϕi‖B2 ≤ Λ, where (ϕi)i∈I is as just described.

Definition 1.3 (The weak Haagerup property [32]). A locally compact group
G has the weak Haagerup property if there exists a net (ϕi)i∈I of C0 Herz-
Schur multipliers on G, converging uniformly to 1 on compact sets, and such
that supi ‖ϕi‖B2 <∞.

The weak Haagerup constant ΛWH(G) is defined as the best (lowest) possible
constant Λ such that supi ‖ϕi‖B2 ≤ Λ, where (ϕi)i∈I is as just described.

Clearly, amenable groups have the Haagerup property. It is also easy to see
that amenable groups are weakly amenable with ΛWA(G) = 1 and that groups with
the Haagerup property have the weak Haagerup property with ΛWH(G) = 1. Also,
1 ≤ ΛWH(G) ≤ ΛWA(G) for any locally compact group G , so weakly amenable
groups have the weak Haagerup property.

It is natural to ask about the relation between the Haagerup property and
weak amenability. The two notions agree in many cases, like generalized Baumslag-
Solitar groups (see [15, Theorem 1.6]) and connected simple Lie groups with the
discrete topology (see Theorem 1.10). However, in the known cases where the
Haagerup property coincides with weak amenability, this follows from classification
results on the Haagerup property and weak amenability and not from a direct
connection between the two concepts. In general, weak amenability does not imply
the Haagerup property and vice versa. In one direction, the group Z/2 oF2 has the
Haagerup property [14], but is not weakly amenable [39]. In the other direction,
the simple Lie groups Sp(1, n), n ≥ 2, are weakly amenable [18], but since these
non-compact groups also have Property (T) [3, Section 3.3], they cannot have the
Haagerup property. However, since the weak amenability constant of Sp(1, n) is
2n − 1, it is still reasonable to ask whether ΛWA(G) = 1 implies that G has
the Haagerup property. In order to study this, the weak Haagerup property was
introduced in [31, 32], and the following questions were considered.

Question 1.4. For which locally compact groups G do we have ΛWA(G) =
ΛWH(G)?

Question 1.5. Is ΛWH(G) = 1 if and only if G has the Haagerup property?

It is clear that if the weak amenability constant of a group G is 1, then so is
the weak Haagerup constant, and Question 1.4 has a positive answer. In general,
the constants differ by the example Z/2 oF2 mentioned before. There is an another
class of groups for which the two constants are known to be the same.

Theorem 1.6 ([25]). Let G be a connected simple Lie group. Then G is
weakly amenable if and only if G has the weak Haagerup property. Moreover,
ΛWA(G) = ΛWH(G).

By the work of many authors [16, 18, 9, 20, 24, 26], it is known that a
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connected simple Lie group G is weakly amenable if and only if the real rank of
G is zero or one. Also, the weak amenability constants of these groups are known.
Recently, a similar result was proved about the weak Haagerup property [25, The-
orem B]. Combining the results on weak amenability and the weak Haagerup prop-
erty with the classification of connected Lie groups with the Haagerup property
[10, Theorem 4.0.1] one obtains the following theorem, which gives a partial answer
to both Question 1.4 and Question 1.5.

Theorem 1.7. Let G be a connected simple Lie group. The following are
equivalent.

1. G is compact or locally isomorphic to SO(n, 1) or SU(n, 1) for some n ≥ 2.

2. G has the Haagerup property.

3. G is weakly amenable with constant 1.

4. G has the weak Haagerup property with constant 1.

The purpose of this paper is to consider the same class of groups as in
theorem above, but made discrete. When G is a locally compact group, we let Gd

denote the same group equipped with the discrete topology. The idea of considering
Lie groups without their topology (or with the discrete topology, depending on
the point of view) is not a new one. For instance, a conjecture of Friedlander and
Milnor is concerned with computing the (co)homology of the classifying space of
Gd , when G is a Lie group (see [34] and the survey [40]).

Other papers discussing the relation between G and Gd include [13], [2]
and [4]. Since our focus is approximation properties, will we be concerned with
the following question.

Question 1.8. Does the Haagerup property/weak amenability/the weak Haagerup
property of Gd imply the Haagerup property/weak amenability/the weak Haagerup
property of G?

It is not reasonable to expect an implication in the other direction. For
instance, many compact groups such as SO(n), n ≥ 3, are non-amenable as
discrete groups. It follows from Theorem 1.10 below (see also Proposition 4.1)
that when n ≥ 5, then SO(n) as a discrete group does not even have the weak
Haagerup property. It is easy to see that Question 1.8 has a positive answer for
second countable, locally compact groups G that admit a lattice Γ. Indeed, G
has the Haagerup property if and only if Γ has the Haagerup property. Moreover,
ΛWA(Γ) = ΛWA(G) and ΛWH(Γ) = ΛWH(G).

Remark 1.9. A similar question can of course be asked for amenability. This
case is already settled: if Gd is amenable, then G is amenable [41, Proposi-
tion 4.21], and the converse is not true in general by the counterexamples men-
tioned above. A sufficient and necessary condition of the converse implication can
be found in [2].
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Recall that SL(2,R) is locally isomorphic to SO(2, 1) and that SL(2,C) is
locally isomorphic to SO(3, 1). Thus, Theorem 1.7 and the main theorem below
together show in particular that Question 1.8 has a positive answer for connected
simple Lie groups. This could however also be deduced (more easily) from the fact
that connected simple Lie groups admit lattices [44, Theorem 14.1].

Theorem 1.10 (Main Theorem). Let G be a connected simple Lie group, and
let Gd denote the group G equipped with the discrete topology. The following are
equivalent.

1. G is locally isomorphic to SO(3), SL(2,R), or SL(2,C).

2. Gd has the Haagerup property.

3. Gd is weakly amenable with constant 1.

4. Gd is weakly amenable.

5. Gd has the weak Haagerup property with constant 1.

6. Gd has the weak Haagerup property.

The equivalence of (1) and (2) in Theorem 1.10 was already done by de Cor-
nulier [13, Theorem 1.14] and in greater generality. His methods are the inspiration
for our proof of Theorem 1.10. That (1) implies (2) basically follows from a the-
orem of Guentner, Higson and Weinberger [21, Theorem 5.4], namely that the
discrete group GL(2, K) has the Haagerup property for any field K . Here we
prove a similar statement about weak amenability.

Theorem 1.11. Let K be any field. The discrete group GL(2, K) is weakly
amenable with constant 1.

Theorem 1.11 is certainly known to experts. The result was already men-
tioned in [43, p. 7] and in [38] with a reference to [21], and indeed our proof of
Theorem 1.11 is merely an adaption of the methods developed in [21]. However,
since no published proof is available, we felt the need to include a proof.

To obtain Theorem 1.10 we use the classification of simple Lie groups and
then combine Theorem 1.11 with the following results proved in Section 4: If G
is one of the four groups SO(5), SO0(1, 4), SU(3) or SU(1, 2), then Gd does not
have the weak Haagerup property. Also, if G is the universal covering group of
SU(1, n) where n ≥ 2, then Gd does not have the weak Haagerup property.

2. Preliminaries

Throughout, G will denote a locally compact group. A kernel ϕ : G × G → C is
a Schur multiplier if there exist bounded maps ξ, η : G→ H into a Hilbert space
H such that ϕ(g, h) = 〈ξ(g), η(h)〉 for every g, h ∈ G . The Schur norm of ϕ is
defined as

‖ϕ‖S = inf{‖ξ‖∞‖η‖∞}
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where the infimum is taken over all ξ, η : G→ H as above. See [42, Theorem 5.1]
for different characterizations of Schur multipliers. Clearly, ‖ϕ ·ψ‖S ≤ ‖ϕ‖S · ‖ψ‖S
and ‖qϕ‖S = ‖ϕ‖S when ϕ and ψ are Schur multipliers and qϕ(x, y) = ϕ(y, x).
Also, any positive definite kernel ϕ on G which is normalized, i.e., ϕ(x, x) = 1 for
every x ∈ G , is a Schur multiplier of norm 1. Finally, notice that the unit ball of
Schur multipliers is closed under pointwise limits.

A continuous function ϕ : G → C is a Herz-Schur multiplier if the associ-
ated kernel ϕ̂(g, h) = ϕ(g−1h) is a Schur multiplier. The Herz-Schur norm of ϕ is
defined as ‖ϕ‖B2 = ‖ϕ̂‖S . When ϕ is a Herz-Schur multiplier, the two bounded
maps ξ, η : G → H can be chosen to be continuous (see [6] and [29]). The set
B2(G) of Herz-Schur multipliers on G is a unital Banach algebra under pointwise
multiplication and ‖ · ‖∞ ≤ ‖ · ‖B2 . Any continuous, positive definite function ϕ
on G is a Herz-Schur multiplier with ‖ϕ‖B2 = ϕ(1).

Below we list a number of permanence results concerning weak amenability
and the weak Haagerup property, which will be useful later on. General references
containing almost all of the results are [1], [18], [24] and [32]. Additionally we refer
to [17, Theorem III.9] and [8, Corollary 12.3.12].

Suppose Γ1 is a co-amenable subgroup of a discrete group Γ2 , that is, there
exists a left Γ2 -invariant mean on l∞(Γ2/Γ1). Then

ΛWA(Γ1) = ΛWA(Γ2). (2.1)

If (Gi)i∈I is a directed family of open subgroups in a locally compact group G
whose union is G , then

ΛWA(G) = sup ΛWA(Gi). (2.2)

For any two locally compact groups G and H

ΛWA(G×H) = ΛWA(G)ΛWA(H). (2.3)

When H is a closed subgroup of G

ΛWA(H) ≤ ΛWA(G) and ΛWH(H) ≤ ΛWH(G). (2.4)

When K is a compact normal subgroup of G then

ΛWA(G/K) = ΛWA(G) and ΛWH(G/K) = ΛWH(G). (2.5)

When Z is a central subgroup of a discrete group G then

ΛWA(G) ≤ ΛWA(G/Z). (2.6)

Recall that a lattice in a locally compact group G is a discrete subgroup Γ such
that the quotient G/Γ admits a non-trivial finite G-invariant Radon measure.
When Γ is a lattice in a second countable, locally compact G then

ΛWA(Γ) = ΛWA(G) and ΛWH(Γ) = ΛWH(G). (2.7)

When H is a finite index, closed subgroup in a group G then

ΛWH(H) = ΛWH(G). (2.8)
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3. Weak amenability of GL(2,K)

This section is devoted to the proof of Theorem 1.11 (see Theorem 3.7 below).
The general idea of our proof follows the idea of [21, Section 5], where it is shown
that for any field K the discrete group GL(2, K) has the Haagerup property. Our
proof of Theorem 1.11 also follows the same strategy as used in [22].

Recall that a pseudo-length function on a group G is a function ` : G →
[0,∞) such that

• `(e) = 0,

• `(g) = `(g−1),

• `(g1g2) ≤ `(g1) + `(g2).

Moreover, ` is a length function on G if, in addition, `(g) = 0 =⇒ g = e .

Definition 3.1. We say that the pseudo-length group (G, `) is weakly amenable
if there exist a sequence (ϕn) of Herz-Schur multipliers on G and a sequence (Rn)
of positive numbers such that

• supn ‖ϕn‖B2 <∞;

• suppϕn ⊆ {g ∈ G | `(g) ≤ Rn};

• ϕn → 1 uniformly on {g ∈ G | `(g) ≤ S} for every S > 0.

The weak amenability constant ΛWA(G, `) is defined as the best possible constant
Λ such that supn ‖ϕn‖B2 ≤ Λ, where (ϕn) is as just described.

Notice that if the group G is discrete and the pseudo-length function l on
G is proper (in particular, G is countable), then the weak amenability of (G, l)
is equivalent to the weak amenability of G with same weak amenability constant.
On other hand, every countable discrete group admits a proper length function,
which is unique up to coarse equivalence ([46, Lemma 2.1]). If the group is finitely
generated discrete, one can simply take the word-length function associated to any
finite set of generators.

The next proposition is a variant of a well-known theorem, which follows
from two classical results:

• The graph distance dist on a tree T is a conditionally negative definite kernel
[23].

• The Schur multiplier associated with the characteristic function χn of the
subset {(x, y) ∈ T 2 | dist(x, y) = n} has Schur norm at most 2n for every
n ∈ N [7, Proposition 2.1].

The proof below is similar to the proof of [8, Corollary 12.3.5].

Proposition 3.2. Suppose a group G acts isometrically on a tree T and that `
is a pseudo-length function on G. Suppose moreover dist(g.v, v)→∞ if and only
if `(g)→∞ for some (and hence every) vertex v ∈ T . Then ΛWA(G, `) = 1.
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Proof. Fix a vertex v ∈ T as in the assumptions. For every n ∈ N we consider
the functions ψn(g) = exp(− 1

n
dist(g.v, v)) and χ̇n(g) = χn(g.v, v) defined for

g ∈ G . Then
χ̇m(g)ψn(g) = exp(−m/n)χ̇m(g)

holds for all g ∈ G and every n,m ∈ N . As G acts isometrically on T , each ψn is
a unital positive definite function on G by Schoenberg’s theorem and ‖χ̇n‖B2 ≤ 2n
for every n ∈ N . It follows that ‖ψn‖B2 = 1 and ‖χ̇mψn‖B2 ≤ 2m · exp(−m/n)
for every n,m ∈ N . Therefore, for any M ∈ N , we have

∥∥∥∥∥
M∑

m=0

χ̇mψn

∥∥∥∥∥
B2

≤ ‖ψn‖B2 +

∥∥∥∥∥
∑

m>M

χ̇mψn

∥∥∥∥∥
B2

≤ 1 +
∑

m>M

2m · exp(−m/n).

Hence, if we choose Mn suitably for all n ∈ N , then the functions ϕn =∑Mn

m=0 χ̇mψn satisfy that
‖ϕn‖B2 ≤ 1 + 1

n
and suppϕn ⊆ {g ∈ G | dist(g.v, v) ≤Mn} .

The assumption
dist(g.v, v)→∞ ⇐⇒ `(g)→∞

then insures that suppϕn ⊆ {g ∈ G | `(g) ≤ Rn} for some suitable Rn and that
ϕn → 1 uniformly on {g ∈ G | `(g) ≤ S} for every S > 0, as desired.

Remark 3.3. The two classical results listed above have a generalization:

• The combinatorial distance dist on the 1-skeleton of a CAT(0) cube complex
X is a conditionally negative definite kernel on the vertex set of X [37].

• The Schur multiplier associated with the characteristic function of the subset
{(x, y) ∈ X2 | dist(x, y) = n} has Schur norm at most p(n) for every n ∈ N,
where p is a polynomial and X is (the vertex set of) a finite-dimensional
CAT(0) cube complex [35, Theorem 2].

To see that these results are in fact generalizations, we only have to notice that
a tree is exactly a one-dimensional CAT(0) cube complex, and in this case the
combinatorial distance is just the graph distance. Because of these generalizations
and the fact that the exponential function increases faster than any polynomial,
it follows with the same proof as the proof of Proposition 3.2 that the following
generalization is true (see also [35, Theorem 3]): suppose a group G acts cellularly
(and hence isometrically) on a finite-dimensional CAT(0) cube complex X and that
` is a pseudo-length function on G. Suppose moreover dist(g.v, v) → ∞ if and
only if `(g)→∞ for some (and hence every) vertex v ∈ X . Then ΛWA(G, `) = 1.

In our context, a norm on a field K is a map d : K → [0,∞) satisfying, for
all x, y ∈ K

(i) d(x) = 0 implies x = 0,

(ii) d(xy) = d(x)d(y),

(iii) d(x+ y) ≤ d(x) + d(y).
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A norm obtained as the restriction of the usual absolute value on C via a field
embedding K ↪→ C is archimedean. A norm is discrete if the triangle inequality
(iii) can be replaced by the stronger ultrametric inequality

(iii’) d(x+ y) ≤ max{d(x), d(y)}

and the range of d on K× is a discrete subgroup of the multiplicative group (0,∞).

Theorem 3.4 ([21, Theorem 2.1]). Every finitely generated field K is discretely
embeddable: For every finitely generated subring A of K there exists a sequence of
norms dn on K , each either archimedean or discrete, such that for every sequence
Rn > 0, the subset

{a ∈ A | dn(a) ≤ Rn for all n ∈ N}
is finite.

Let d be a norm on a field K . Following Guentner, Higson and Weinberger
[21] define a pseudo-length function `d on GL(n,K) as follows: if d is discrete

`d(g) = log max
i,j
{d(gij), d(gij)},

where gij and gij are the matrix coefficients of g and g−1 , respectively; if d is
archimedean, coming from an embedding of K into C then

`d(g) = log max{‖g‖, ‖g−1‖},

where ‖ · ‖ is the operator norm of a matrix in GL(n,C).

Proposition 3.5. Let d be an archimedean or a discrete norm on a field K .
Then the pseudo-length group (SL(2, K), `d) is weakly amenable with constant 1.

Proof. The archimedean case: it is clear that the pseudo-length function on
SL(2, K) is the restriction of that on SL(2,C), so clearly we only have to show
(SL(2,C), `d) is weakly amenable with constant 1. Since `d is continuous and
proper, this follows from the fact that SL(2,C) is weakly amenable with constant
1 as a locally compact group ([9, Remark 3.8]).

The discrete case: this is a direct application of [21, Lemma 5.9] and
Proposition 3.2. Indeed, [21, Lemma 5.9] states that there exist a tree T and
a vertex v0 ∈ T such that SL(2, K) acts isometrically on T and

dist(g.v0, v0) = 2 max
i,j
− log d(gij)

log d(π)
,

for all g = [gij] ∈ SL(2, K). Here dist is the graph distance on T and π , the
uniformizer, is certain element of {x ∈ K | d(x) < 1} . Since the action is
isometric, dist(g.v0, v0) → ∞ if and only if `d(g) → ∞ . Hence, we are done
by Proposition 3.2.
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Corollary 3.6. Let K be a field and G a finitely generated subgroup of SL(2, K).
Then there exists a sequence of pseudo-length functions `n on G such that ΛWA(G, `n) =
1 for every n, and such that for any sequence Rn > 0, the set

⋂
n{g ∈ G | `n(g) ≤

Rn} is finite.

Proof. As G is finitely generated, we may assume that K is finitely generated
as well. Now, let A be the finitely generated subring of K generated by the matrix
coefficients of a finite generating set for G . Clearly, G ⊆ SL(2, A) ⊆ SL(2, K).
Since K is discretely embeddable, we may choose a sequence of norms dn on K
according to Theorem 3.4. It follows from Proposition 3.5 that ΛWA(G, `dn) = 1.
We complete the proof by observing that for any sequence Rn > 0,

⋂

n

{g ∈ G | `dn(g) ≤ Rn} ⊆ SL(2, F ),

where F is the finite set {a ∈ A | dn(a) ≤ exp(Rn) for all n ∈ N} .

Theorem 3.7. Let K be a field. Every subgroup Γ of GL(2, K) is weakly
amenable with constant 1 (as a discrete group).

Proof. By the permanence results listed in Section 2 we can reduce our proof to
the case where Γ is a finitely generated subgroup of SL(2, K). It then follows from
the previous corollary that there exists a sequence `n of pseudo-length functions
on Γ such that ΛWA(Γ, `n) = 1 and for any sequence Rn > 0, the set

⋂
n{g ∈ Γ |

`n(g) ≤ Rn} is finite.

For each fixed n ∈ N there is a sequence (ϕn,k)k of Herz-Schur multipliers
on Γ and a sequence of positive numbers (Rn,k)k such that

1. ‖ϕn,k‖B2 ≤ 1 for all k ∈ N ;

2. suppϕn,k ⊆ {g ∈ Γ | `n(g) ≤ Rn,k} ;

3. ϕn,k → 1 uniformly on {g ∈ Γ | `n(g) ≤ S} for every S > 0 as k →∞ .

Upon replacing ϕn,k by |ϕn,k|2 we may further assume that 0 ≤ ϕn,k ≤ 1 for all
n, k ∈ N .

Given any ε > 0 and any finite subset F ⊆ Γ, we choose a sequence
0 < εn < 1 such that

∏
n(1 − εn) > 1 − ε . It follows from (3) that for each

n ∈ N there exists kn ∈ N such that 1 − εn < ϕn,kn(g) for all g ∈ F . Consider
the function ϕ =

∏
n ϕn,kn . It is not hard to see that ϕ is well-defined, since

0 ≤ ϕn,kn ≤ 1. Additionally, since ‖ϕn,kn‖B2 ≤ 1 for all n ∈ N we also have
‖ϕ‖B2 ≤ 1. Moreover, suppϕ ⊆ ⋂n{g ∈ Γ | `n(g) ≤ Rn,kn} and

ϕ(g) =
∏

n

ϕn,kn(g) >
∏

n

(1− εn) > 1− ε

for all g ∈ F . This completes the proof.

The remaining part of this section follows de Cornulier’s idea from [12]. In
[12] he proved the same results for Haagerup property, and the same argument
actually works for weak amenability with constant 1.
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Corollary 3.8. Let R be a unital commutative ring without nilpotent elements.
Then every subgroup Γ of GL(2, R) is weakly amenable with constant 1 (as a
discrete group).

Proof. Again by the permanence results in Section 2, we may assume that Γ
is a finitely generated subgroup of SL(2, R), and hence that R is also finitely
generated. It is well-known that every finitely generated ring is Noetherian and in
such a ring there are only finitely many minimal prime ideals. Let p1, . . . , pn be
the minimal prime ideals in R . The intersection of all minimal prime ideals is the
set of nilpotent elements in R , which is trivial by our assumption. So R embeds
into the finite product

∏n
i=1R/pi . If Ki denotes the fraction field of the integral

domain R/pi , then Γ embeds into SL(2,
∏n

i=1Ki) =
∏n

i=1 SL(2, Ki). Now, the
result is a direct consequence of Theorem 3.7, (2.3) and (2.4).

Remark 3.9. In the previous corollary and also in Theorem 3.7, the assump-
tion about commutativity cannot be dropped. Indeed, the group SL(2,H) with the
discrete topology is not weakly amenable, where H is the skew-field of quaternions.
This can be seen from Theorem 1.10. Moreover, SL(2,H)d does not even have the
weak Haagerup property by the same argument.

Remark 3.10. In the previous corollary, the assumption about the triviality of
the nilradical cannot be dropped. Indeed, we show now that the group SL(2,Z[x]/x2)
is not weakly amenable. The essential part of the argument is Dorofaeff’s result
that the locally compact group R3 o SL(2,R) is not weakly amenable [19]. Here
the action SL(2,R) y R3 is the unique irreducible 3-dimensional representation
of SL(2,R).

Consider the ring R = R[x]/x2 . We write elements of R as polynomials
ax + b where a, b ∈ R and x2 = 0. Consider the unital ring homomorphism
ϕ : R → R given by setting x = 0, that is, ϕ(ax + b) = b. Then ϕ induces a
group homomorphism ϕ̃ : SL(2, R) → SL(2,R). Embedding R ⊆ R as constant
polynomials, we obtain an embedding SL(2,R) ⊆ SL(2, R) showing that ϕ̃ splits.
The kernel of ϕ̃ is easily identified as

ker ϕ̃ =

{(
a11x+ 1 a12x
a21x a22x+ 1

)∣∣∣∣aij ∈ R, a11 + a22 = 0

}
' sl(2,R)

We deduce that SL(2, R) is the semidirect product sl(2,R) o SL(2,R). A simple
computation shows that the action SL(2,R) y sl(2,R) is the adjoint action. Since
sl(2,R) is a simple Lie algebra, the adjoint action is irreducible. By uniqueness of
the 3-dimensional irreducible representation of SL(2,R) (see [33, p. 107]) and from
[19] we deduce that sl(2,R) o SL(2,R) ' R3 o SL(2,R) is not weakly amenable.

It is easy to see that SL(2,Z[x]/x2) is identified with sl(2,Z) o SL(2,Z)
under the isomorphism SL(2, R) ' sl(2,R) o SL(2,R). Since sl(2,Z) o SL(2,Z)
is a lattice in sl(2,R) o SL(2,R), we conclude from (2.7) that sl(2,Z) o SL(2,Z)
and hence SL(2,Z[x]/x2) is not weakly amenable.

Remark 3.11. We do not know whether SL(2,Z[x]/x2) also fails to have the
weak Haagerup property. As SL(2,Z[x]/x2) may be identified with a lattice in
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R3 o SL(2,R), by (2.7) the question is equivalent to the question [25, Remark 5.3]
raised by Haagerup and the first author concerning the weak Haagerup property of
the group R3 o SL(2,R).

Recall that a group Γ is residually free if for every g 6= 1 in Γ, there is a
homomorphism f from Γ to a free group F such that f(g) 6= 1 in F . Equivalently,
Γ embeds into a product of free groups of rank two. A group Γ is residually finite if
for every g 6= 1 in Γ, there is a homomorphism f from Γ to a finite group F such
that f(g) 6= 1 in F . Equivalently, Γ embeds into a product of finite groups. Since
free groups are residually finite, it is clear that residually free groups are residually
finite. On the other hand, residually finite groups need not be residually free as is
easily seen by considering e.g. groups with torsion.

Corollary 3.12. Any residually free group is weakly amenable with constant 1.

Proof. Since the free group of rank two can be embedded in SL(2,Z), a resid-
ually free group embeds in

∏
i∈I SL(2,Z) = SL(2,

∏
i∈I Z) for a suitably large set

I . We complete the proof by the previous corollary.

4. Failure of the weak Haagerup property

In this section we will prove the following result.

Proposition 4.1. If S is one of the four groups SO(5), SO0(1, 4), SU(3) or
SU(1, 2), then Sd does not have the weak Haagerup property.

Also, if S is the universal covering group of SU(1, n) where n ≥ 2, then
Sd does not have the weak Haagerup property.

When p, q ≥ 0 are integers, not both zero, and n = p+q , we let Ip,q denote
the diagonal n × n matrix with 1 in the first p diagonal entries and −1 in the
last q diagonal entries. When g is a complex matrix, gt denotes the transpose of
g , and g∗ denotes the adjoint (conjugate transpose) of g . We recall that

SO(p, q) = {g ∈ SL(p+ q,R) | gtIp,qg = Ip,q}
SO(p, q,C) = {g ∈ SL(p+ q,C) | gtIp,qg = Ip,q}

SU(p, q) = {g ∈ SL(p+ q,C) | g∗Ip,qg = Ip,q}.

When p, q > 0, the group SO(p, q) has two connected components, and SO0(p, q)
denotes the identity component. In particular, by (2.8), the group SO(p, q)d has
the weak Haagerup property if and only if the group SO0(p, q)d has the weak
Haagerup property.

Proof of Proposition 4.1. We follow a strategy that we have learned from
de Cornulier [13], where the same techniques are applied in connection with the
Haagerup property. The idea of the proof is the following.

If Z denotes the center of S , then we consider the group S/Z as a real
algebraic group G(R) with complexification G(C). Let K be a number field of
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degree three over Q , not totally real, and let O be its ring of integers. Then by the
Borel Harish–Chandra Theorem (see [5, Theorem 12.3] or [36, Proposition 5.42]),
G(O) embeds diagonally as a lattice in G(R) × G(C). If Γ is the inverse image
in S ×G(C) of G(O), then Γ is a lattice in S ×G(C).

The group G(C) has real rank at least two, and we deduce that Γ does not
have the weak Haagerup property by combining [25, Theorem B] with (2.7). The
projection S ×G(C)→ S is injective on Γ, and hence (2.4) implies that Sd also
does not have the weak Haagerup property.

5. Proof of the Main Theorem

In this section we prove Theorem 1.10. The theorem is basically a consequence of
Theorem 1.11 and Proposition 4.1 together with the permanence results listed in
Section 2 and general structure theory of simple Lie groups.

When two Lie groups G and H are locally isomorphic we write G ≈ H .
An important fact about Lie groups and local isomorphims is the following [27,
Theorem II.1.11]: Two Lie groups are locally isomorphic if and only if their Lie
algebras are isomorphic.

The following is extracted from [11, Chapter II] and [30, Section I.11] to
which we refer for details. If G is a connected Lie group, there exists a connected,
simply connected Lie group G̃ and a covering homomorphism G̃→ G . The kernel
of the covering homomorphism is a discrete, central subgroup of G̃ , and it is
isomorphic to the fundamental group of G . The group G̃ is called the universal
covering group of G . Clearly, G̃ and G are locally isomorphic. Conversely, any
connected Lie group locally isomorphic to G is the quotient of G̃ by a discrete,
central subgroup. If N is a discrete subgroup of the center Z(G̃) of G̃ , then the

center of G̃/N is Z(G̃)/N .

Let G1 and G2 be locally compact groups. We say that G1 and G2 are
strongly locally isomorphic, if there exist a locally compact group G and finite
normal subgroups N1 and N2 of G such that G1 ' G/N1 and G2 ' G/N2 .
In this case we write G1 ∼ G2 . It follows from (2.5) that if G ∼ H , then
ΛWH(Gd) = ΛWH(Hd).

A theorem due to Weyl states that a connected, simple, compact Lie group
has a compact universal cover with finite center [28, Theorem 12.1.17], [27, Theo-
rem II.6.9]. Thus, for connected, simple, compact Lie groups G and H , G ≈ H
implies G ∼ H .

Proof of Theorem 1.10. Let G be a connected simple Lie group. As men-
tioned, the equivalence (1) ⇐⇒ (2) was already done by de Cornulier [13, Theo-
rem 1.14] in a much more general setting, so we leave out the proof of this part. We
only prove the two implications (1) =⇒ (3) and (6) =⇒ (1), since the remaining
implications then follow trivially.

Suppose (1) holds, that is, G is locally isomorphic to SO(3), SL(2,R) or
SL(2,C). If Z denotes the center of G , then by assumption G/Z is isomorphic to
SO(3), PSL(2,R) or PSL(2,C). It follows from Theorem 1.11 and (2.5) that the
groups SO(3), PSL(2,R) and PSL(2,C) equipped with the discrete topology are
weakly amenable with constant 1 (recall that SO(3) is a subgroup of PSL(2,C)).
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From (2.6) we deduce that Gd is weakly amenable with constant 1. This proves
(3).

Suppose (1) does not hold. We prove that (6) fails, that is, Gd does not have
the weak Haagerup property. We divide the proof into several cases depending on
the real rank of G . We recall that with the Iwasawa decomposition G = KAN ,
the real rank of G is the dimension of the abelian group A .

If the real rank of G is at least two, then G does not have the weak Haagerup
property [25, Theorem B]. By a theorem of Borel, G contains a lattice (see [44,
Theorem 14.1]), and by (2.7) the lattice also does not have the weak Haagerup
property. We conclude that Gd does not have the weak Haagerup property.

If the real rank of G equals one, then the Lie algebra of G is isomorphic to
a Lie algebra in the list [30, (6.109)]. See also [27, Ch.X §6]. In other words, G is
locally isomorphic to one of the classical groups SO0(1, n), SU(1, n), Sp(1, n) for
some n ≥ 2 or locally isomorphic to the exceptional group F4(−20) . Here SO0(1, n)
denotes the identity component of the group SO(1, n).

We claim that the universal covering groups of SO0(1, n), Sp(1, n) and
F4(−20) have finite center except for the group SO0(1, 2). Indeed, Sp(1, n) and
F4(−20) are already simply connected with finite center. The K -group from the
Iwasawa decomposition of SO0(1, n) is SO(n) which has fundamental group of
order two, except when n = 2, and hence SO0(1, n) has fundamental group of
order two as well. As the center of the universal cover is an extension of the center
of SO0(1, n) by the fundamental group of SO0(1, n), the claim follows.

The universal covering group S̃U(1, n) of SU(1, n) has infinite center iso-
morphic to the group of integers.

We have assumed that G is not locally isomorphic to SL(2,R) ∼ SO0(1, 2)
or SL(2,C) ∼ SO0(1, 3). If G has finite center, it follows that G is strongly locally
isomorphic to one of the groups

SO0(1, n), n ≥ 4,
SU(1, n), n ≥ 2,
Sp(1, n), n ≥ 2,
F4(−20),

and if G has infinite center, then G is isomorphic to S̃U(1, n). Clearly, there are
inclusions

SO0(1, 4) ⊆ SO0(1, n), n ≥ 4,

SU(1, 2) ⊆ SU(1, n), n ≥ 2,

SU(1, 2) ⊆ Sp(1, n), n ≥ 2.

The cases where G is strongly locally isomorphic to SO0(1, n), SU(1, n) or Sp(1, n)
are then covered by Proposition 4.1. Since SO(5) ⊆ SO(9) ∼ Spin(9) ⊆ F4(−20)
([45, §.4.Proposition 1]), the case where G ∼ F4(−20) is also covered by Proposi-

tion 4.1. Finally, if G ' S̃U(1, n), then Proposition 4.1 shows that Gd does not
have weak Haagerup property.

If the real rank of G is zero, then it is a fairly easy consequence of [28,
Theorem 12.1.17] that G is compact. Moreover, the universal covering group of
G is compact and with finite center.
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By the classification of compact simple Lie groups as in Table IV of [27,
Ch.X §6] we know that G is strongly locally isomorphic to one of the groups
SU(n+ 1) (n ≥ 1), SO(2n+ 1) (n ≥ 2), Sp(n) (n ≥ 3), SO(2n) (n ≥ 4) or one
of the five exceptional groups

E6, E7, E8, F4, G2.

By assumption G is not strongly locally isomorphic to SU(2) ∼ SO(3). Using
(2.5) it then suffices to show that if G equals any other group in the list, then Gd

does not have the weak Haagerup property. Clearly, there are inclusions

SO(5) ⊆ SO(n), n ≥ 5,

SU(3) ⊆ SU(n), n ≥ 3,

SU(3) ⊆ Sp(n), n ≥ 3.

Since we also have the following inclusions among Lie algebras (Table V of [27,
Ch.X §6])

so(5) ⊆ so(9) ⊆ f4 ⊆ e6 ⊆ e7 ⊆ e8

and the inclusion ([47])
SU(3) ⊆ G2,

it is enough to consider the cases where G = SO(5) or G = SU(3). These two
cases are covered by Proposition 4.1. Hence we have argued that also in the real
rank zero case Gd does not have the weak Haagerup property.

Acknowledgements. The authors wish to thank U. Haagerup for helpful dis-
cussions on the subject.
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A Schur multiplier characterization of coarse
embeddability

Søren Knudby Kang Li∗

Abstract

We give a contractive Schur multiplier characterization of locally compact
groups coarsely embeddable into Hilbert spaces. Consequently, all locally
compact groups whose weak Haagerup constant is 1 embed coarsely into
Hilbert spaces, and hence the Baum-Connes assembly map with coefficients
is split-injective for such groups.

In this note we study coarse embeddability of locally compact groups into
Hilbert spaces. An important application of this concept in [16], [13] and [5] is
that the Baum-Connes assembly map with coefficients is split-injective for all lo-
cally compact groups that embed coarsely into a Hilbert space (see [2] and [15]
for more information about the Baum-Connes assembly map). Here, we give a
contractive Schur multiplier characterization of locally compact groups coarsely
embeddable into Hilbert spaces (see also [6, Theorem 5.3] for the discrete case),
and this characterization can be regarded as an answer to the non-equivariant
version of [12, Question 1.5]. As a result, any locally compact group with weak
Haagerup constant 1 embeds coarsely into a Hilbert space and hence the Baum-
Connes assembly map with coefficients is split-injective for all these groups.

Let G be a σ-compact, locally compact group. A (left) tube in G × G is a subset
of G × G contained in a set of the form

Tube(K) = {(x, y) ∈ G × G | x−1y ∈ K}
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where K is any compact subset of G. Following [1, Definition 3.6], we say that
a map u from G into a Hilbert space H is a coarse embedding if u satisfies the
following two conditions:

• for every compact subset K of G there exists R > 0 such that

(s, t) ∈ Tube(K) =⇒ ‖u(s) − u(t)‖ ≤ R;

• for every R > 0 there exists a compact subset K of G such that

‖u(s)− u(t)‖ ≤ R =⇒ (s, t) ∈ Tube(K).

We say that a group G embeds coarsely into a Hilbert space or admits a coarse embed-
ding into a Hilbert space if there exist a Hilbert space H and a coarse embedding
u : G → H. Note that a coarse embedding need not be injective, and we also do
not require it to be continuous.

Every second countable, locally compact group G admits a proper left-inva-
riant metric d, which is unique up to coarse equivalence (see [14] and [9]). So the
preceding definition is equivalent to Gromov’s notion of coarse embeddability of
the metric space (G, d) into Hilbert spaces. We refer to [5, Section 3] for more on
coarse embeddability into Hilbert spaces for locally compact groups.

A kernel ϕ : G × G → C is a Schur multiplier if for every bounded operator
A = (ax,y)x,y∈G ∈ B(ℓ2(G)), the matrix (ϕ(x, y)ax,y)x,y∈G again defines a bounded
operator, denoted Mϕ A, on ℓ2(G). In this case, it follows from the closed graph
theorem that Mϕ in fact defines a bounded operator B(ℓ2(G)) → B(ℓ2(G)), and
the Schur norm ‖ϕ‖S of ϕ is defined to be the operator norm of Mϕ.

A kernel ϕ : G × G → C tends to zero off tubes, if for any ε > 0 there is a tube
T ⊆ G × G such that |ϕ(x, y)| < ε whenever (x, y) /∈ T. Note that if ϕ : G → C

is a function, then ϕ vanishes at infinity (written ϕ ∈ C0(G)), if and only if the
associated kernel ϕ̂ : G × G → C defined by ϕ̂(x, y) = ϕ(x−1y) tends to zero off
tubes.

Theorem 1. Let G be a σ-compact, locally compact group. The following are equivalent.

1. G embeds coarsely into a Hilbert space.

2. There exists a sequence of Schur multipliers ϕn : G × G → C such that

• ‖ϕn‖S ≤ 1 for every natural number n;

• each ϕn tends to zero off tubes;

• ϕn → 1 uniformly on tubes.

If any of these conditions holds, one can moreover arrange that the coarse embedding is
continuous and that each ϕn is continuous.

It is well-known that the notion of coarse embeddability into Hilbert spaces
can be characterized by positive definite kernels (see [8, Theorem 2.3] for the dis-
crete case and [4, Theorem 1.5] for the locally compact case).
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Following [11], G has the weak Haagerup property with constant 1, if there is
a sequence of continuous functions ϕn ∈ C0(G) converging uniformly to 1 on
compact subsets of G and such that the associated kernels ϕ̂n : G × G → C are
Schur multipliers with ‖ϕ̂n‖S ≤ 1.

From Theorem 1 together with [5, Theorem 3.5] we immediately obtain the
following.

Corollary 2. If G is a σ-compact, locally compact group with the weak Haagerup prop-
erty with constant 1, then G embeds coarsely into a Hilbert space. If G is moreover
second countable, then in particular the Baum-Connes assembly map with coefficients is
split-injective.

We now turn to the proof of Theorem 1. It is not hard to see that the count-
ability assumption in [10, Proposition 4.3] is superfluous. We thus record the
following (slightly more general) version of [10, Proposition 4.3].

Lemma 3. Let G be a group with a symmetric kernel k : G × G → [0, ∞). The following
are equivalent.

1. For every t > 0 one has ‖e−tk‖S ≤ 1.

2. There exist a real Hilbert space H and maps R, S : G → H such that

k(x, y) = ‖R(x)− R(y)‖2 + ‖S(x) + S(y)‖2 for every x, y ∈ G.

Recall that a kernel k : G × G → R is conditionally negative definite if k is sym-
metric (k(x, y) = k(y, x)), vanishes on the diagonal (k(x, x) = 0) and

n

∑
i,j=1

cicjk(xi, xj) ≤ 0

for any finite sequences x1, . . . , xn ∈ G and c1, . . . , cn ∈ R such that ∑n
i=1 ci = 0.

It is well-known that k is conditionally negative definite if and only if there is a
function u from G to a real Hilbert space such that k(x, y) = ‖u(x)− u(y)‖2.

A kernel k : G × G → C is called proper, if {(x, y) ∈ G × G | |k(x, y)| ≤ R} is a
tube for every R > 0.

Theorem 1 is contained in Theorem 4 below, which extends both [6, Theo-
rem 5.3] and [4, Theorem 1.5] in different directions. An important ingredient in
the proof of Theorem 4 is the following result (which generalizes without change
from the second countable case to the σ-compact case).

Theorem ([5, Theorem 3.4]). Let G be a σ-compact, locally compact group. The follow-
ing are equivalent.

1. The group G embeds coarsely into a Hilbert space.

2. There is a continuous conditionally negative definite kernel h : G × G → R which
is proper and bounded on tubes.
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Theorem 4. Let G be a σ-compact, locally compact group. The following are equivalent.

1. The group G embeds coarsely into a Hilbert space.

2. There exists a sequence of (not necessarily continuous) Schur multipliers
ϕn : G × G → C such that

• ‖ϕn‖S ≤ 1 for every natural number n;

• each ϕn tends to zero off tubes;

• ϕn → 1 uniformly on tubes.

3. There exists a (not necessarily continuous) symmetric kernel k : G × G → [0, ∞)
which is proper, bounded on tubes and satisfies ‖e−tk‖S ≤ 1 for all t > 0.

4. There exists a (not necessarily continuous) conditionally negative definite kernel
h : G × G → R which is proper and bounded on tubes.

Moreover, if any of these conditions holds, one can arrange that the coarse embedding in
(1), each Schur multiplier ϕn in (2), the symmetric kernel k in (3) and the conditionally
negative definite kernel h in (4) are continuous.

Proof. We show (1) ⇐⇒ (4) ⇐⇒ (3) ⇐⇒ (2).
That (1) implies (4) with h continuous follows directly from [5, Theorem 3.4].
Suppose (4) holds. By the GNS construction there are a real Hilbert space H

and a map u : G → H such that

h(x, y) = ‖u(x)− u(y)‖2 .

It is easy to check that the assumptions on h imply that u is a coarse embedding.
Thus (1) holds.

That (4) implies (3) follows with k = h using Schoenberg’s Theorem and the
fact that normalized positive definite kernels are Schur multipliers of norm 1.
Note also that conditionally negative definite kernels are symmetric and take only
non-negative values.

Suppose (3) holds. We show that (4) holds. From Lemma 3 we see that there
are a real Hilbert space H and maps R, S : G → H such that

k(x, y) = ‖R(x) − R(y)‖2 + ‖S(x) + S(y)‖2 for every x, y ∈ G.

As k is bounded on tubes, the map S is bounded. If we let

h(x, y) = ‖R(x)− R(y)‖2 ,

then it is easily checked that h is proper and bounded on tubes, since k has these
properties and S is bounded. It is also clear that h is conditionally negative defi-
nite. Thus (4) holds.

If (3) holds, we set ϕn = e−k/n when n ∈ N. It is easy to check that the
sequence ϕn has the desired properties so that (2) holds.

Finally, suppose (2) holds. We verify (3). Essentially, we use the same standard
argument as in the proof of [11, Proposition 4.4] and [3, Theorem 2.1.1].
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Since G is locally compact and σ-compact, it is the union of an increasing
sequence (Un)∞

n=1 of open sets such that the closure Kn of Un is compact and con-
tained in Un+1 (see [7, Proposition 4.39]). Fix an increasing, unbounded sequence
(αn) of positive real numbers and a decreasing sequence (εn) tending to zero such
that ∑n αnεn converges. By assumption, for every n we can find a Schur multiplier
ϕn tending to zero off tubes and such that ‖ϕn‖S ≤ 1 and

sup
(x,y)∈Tube(Kn)

|ϕn(x, y)− 1| ≤ εn/2.

Upon replacing ϕn by |ϕn|2 one can arrange that 0 ≤ ϕn ≤ 1 and

sup
(x,y)∈Tube(Kn)

|ϕn(x, y)− 1| ≤ εn.

Define kernels ψi : G × G → [0, ∞[ and ψ : G × G → [0, ∞[ by

ψi(x, y) =
i

∑
n=1

αn(1 − ϕn(x, y)), ψ(x, y) =
∞

∑
n=1

αn(1 − ϕn(x, y)).

It is easy to see that ψ is well-defined, bounded on tubes and ψi → ψ pointwise
(even uniformly on tubes, but we do not need that).

To see that ψ is proper, let R > 0 be given. Choose n large enough such that
αn ≥ 2R. As ϕn tends to zero off tubes, there is a compact set K ⊆ G such
that |ϕn(x, y)| < 1/2 whenever (x, y) /∈ Tube(K). Now if ψ(x, y) ≤ R, then
ψ(x, y) ≤ αn/2, and in particular αn(1 − ϕn(x, y)) ≤ αn/2, which implies that
1 − ϕn(x, y) ≤ 1/2. We have thus shown that

{(x, y) ∈ G×G | ψ(x, y) ≤ R} ⊆ {(x, y) ∈ G×G | 1− ϕn(x, y) ≤ 1/2} ⊆ Tube(K),

and ψ is proper.
We now show that ‖e−tψ‖S ≤ 1 for every t > 0. Since ψi converges pointwise

to ψ, it will suffice to prove that ‖e−tψi‖S ≤ 1, because the set of Schur multipliers
of norm at most 1 is closed under pointwise limits. Since

e−tψi =
i

∏
n=1

e−tαn(1−ϕn),

it is enough to show that e−tαn(1−ϕn) has Schur norm at most 1 for each n. And
this is clear:

‖e−tαn(1−ϕn)‖S = e−tαn‖etαn ϕn‖S ≤ e−tαnetαn‖ϕn‖S ≤ 1.

The only thing missing is that ψ need not be symmetric. Put k = ψ + qψ where
qψ(x, y) = ψ(y, x). Clearly, k is symmetric, bounded on tubes and proper. Finally,
for every t > 0

‖e−tk‖S ≤ ‖e−tψ‖S‖e−t qψ‖S ≤ 1,

since ‖qϕ‖S = ‖ϕ‖S for every Schur multiplier ϕ.
Finally, the statements about continuity follow from [5, Theorem 3.4] and the

explicit constructions used in our proof of (1) =⇒ (4) =⇒ (3) =⇒ (2).
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