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Abstract

In this thesis we study the rational homotopy theory of the spaces of self-equivalences of Koszul

spaces - that is, of simply connected spaces which are simultaneously formal and coformal in

the language of rational homotopy theory. The primary tool to do so is the Homotopy Transfer

Theorem for L∞-algebras. We begin with a Lie model for the universal cover of B autX where

X is a Koszul space, and construct a well-behaved contraction to a smaller chain complex using

relations between the cohomology algebra and homotopy Lie algebra of a Koszul space. Then we

study the transferred structure which retains all information about the rational homotopy type,

and derive several structural properties. We establish criteria for coformality of the universal

cover of B autX, improving on existing results, and provide examples: highly connected mani-

folds and two-stage spaces, among others. Our main example is that of ordered configurations in

Rn, for which our model is small enough that we can compute several rational homotopy groups

of the universal cover of B autX. Finally we study the group of components π0(autXQ) for a

Koszul space X, and establish a sufficient condition for it to be isomorphic to the group of algebra

automorphisms of the cohomology algebra of X, or equivalently the Lie algebra automorphisms

of the homotopy Lie algebra of X.

Resumé

I denne afhandling studerer vi den rationale homotopiteori for rummene af selvækvivalenser af

Koszul rum - det vil sige, af enkeltsammenhængende rum der er b̊ade formelle og koformelle.

Det primære værkstøj til at foretage studiet er “Homotopy Transfer Theorem” for L∞-algebraer.

Vi begynder med en Lie model for den universelle overlejring til B autX hvor X er et Koszul

rum, og konstruerer en pæn sammentrækning til et mindre kædekompleks ved hjælp af relationer

mellem kohomologialgebraen og homotopi Lie algebraen for et Koszul rum. S̊a studerer vi den

overførte struktur der husker al information om rational homotopi type, og udleder flere struktu-

relle egenskaber. Vi fastsætter kriterier for koformalitet af den universelle overlejring af B autX

der forbedrer eksisterende resultater og giver eksempler: højtsammenhængende mangfoldigheder

og “two-stage” rum, blandt andre. Vores hovedeksempel er ordnede konfigurationer i Rn, for hvil-

ke vores model er tilstrækkelig lille til at vi kan udregne adskillige rationale homotopigrupper af

den universelle overlejring for B autX. Endeligt studerer vi gruppen af komponenter π0(autXQ)

for et Koszul rum X, og finder tilstrækkelige betingelser for at denne er isomorf til gruppen af al-

gebraautomorfier af kohomologialgebraen, eller ækvivalent af Lie algebraautomorfier af homotopi

Lie algebraen for X.
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1. Introduction

1.1. Background. This thesis is about the rational homotopy type of the space of
self-homotopy equivalences, or homotopy automorphisms, of certain nice topological
spaces, called Koszul spaces. These are simply connected spaces of finite Q-type
with the property that they are simultaneously formal and coformal in the language
of rational homotopy theory. Returning to more explicit statements at a later
point, we just note here that there are plenty of interesting examples of spaces
which satisfies this condition: loop spaces, suspensions of connected spaces, various
classes of manifolds, ordered configuration spaces for points in Rn. We may also
note that products and wedges of Koszul spaces are again Koszul spaces.

The terminology: Koszul space, is borrowed from Berglund [2], and justified
by the fact that the rational cohomology algebra H∗(X;Q) of such a space X
is a graded commutative Koszul algebra and the rational homotopy Lie algebra
π∗(ΩX) ⊗ Q is a graded Koszul Lie algebra, such that these are Koszul dual to
one another under the duality between the operads governing respectively graded
commutative algebras and graded Lie algebras.

It has long been known that for a simply connected space X of finite Q-type
with Quillen model L , the space of homotopy automorphisms autX is related to
the derivations on L , cf. Schlessinger-Stasheff [33]. Concretely the positive part
of the homotopy quotient of the derivations by the inner derivations Der L //L , is
a Lie model for the universal cover of B autX (see Tanré [38]). See also [34] for a
survey of the literature on homotopy theory of mapping spaces, and in particular
spaces of self-equivalences.

Where as the model of Schlessinger-Stasheff and the work of Tanré does not
address π0(autX), there are also results on this. Denote by XQ the rationalisation
of X. There are obvious maps

π0(autXQ)→ autH∗(X;Q),

π0(autXQ)→ autπ∗(ΩX)⊗Q,

given by sending a homotopy class to the induced map on respectively cohomology
and homotopy. Sullivan [37] showed that the first of these maps is always surjective
for a formal space, and Neisendorfer-Miller [30] showed that the second map is
always surjective for a coformal space. Sullivan [37] and Wilkerson [40] also showed
that π0(autXQ) is a linear algebraic group if X is either a finite CW-complex, or
has finite Postnikov tower.

There exist general models for mapping spaces expressed in terms of so called
Maurer-Cartan elements of a simplicial dg Lie algebra constructed from models
of source and target respectively. See Berglund [3] for details on this, or Buijs-
Félix-Murillo [9] for a related approach. The first of these is particularly useful to
investigate set of path components of autXQ, but for the main part our starting
point is the Lie model of derivations given by Schlessinger-Stasheff, from which we
proceed as follows.

1.2. Overview. For a formal space the Quillen model L is relatively small - we
may take the Quillen construction on the cohomology A = H∗(X;Q). For a space
which is also coformal, the Quillen model is quasi-isomorphic to the homotopy Lie
algebra L of the space. The explicit nature of the Koszul duality lets us do even
better: there is always an explicit surjective quasi-isomorphism f : L

∼−→ L. We
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extend this to a well-behaved contraction of L onto L, and by standard homological
perturbation theory this induces a contraction of Der L onto the f -derivations
Derf (L , L). This in turn is isomorphic to the complex sA⊗L twisted by a Maurer-
Cartan element κ corresponding to f . Thus the positive homology of this twisted
complex sA⊗κL computes the positive rational homotopy groups π∗(autX, 1X)⊗Q.
This has been noticed by Berglund [2, 3]. However our approach here lets us obtain
more information in two distinct ways.

Recall that the homotopy Lie algebra of a simply connected space X, is the
graded abelian group π∗(ΩX)⊗Q, equipped with the Samelson bracket. The first
way we obtain more information is by the Homotopy Transfer Theorem for L∞-
algebras: the dg Lie structure on Der L transfers along the contraction to sA⊗κL,
and further to the homology H∗(sA ⊗κ L). With this transferred structure, the
homology computes π∗(autX, 1X)⊗Q not only as a graded abelian group, but as
a graded Lie algebra - the homotopy Lie algebra of the 1-connected covering space
B autX〈1〉. Even better: the L∞-algebra H∗(sA⊗κ L) completely determines the
rational homotopy type of B autX〈1〉.

Secondly, the degree zero homology of the dg Lie algebra Der L contains infor-
mation about π0 autXQ. In addition to Sullivan and Wilkersons results mentioned
above, Block-Lazarev [6] later identified the Lie algebra of π0 autXQ in terms of
the Harrison cohomology of the minimal Sullivan model for X, and we observe how
the Lie algebra for π0 autXQ is computed by H0(sA⊗κ L) in our case where X is
a Koszul space.

To obtain more information about π0 autXQ we also employ the model alluded
to above. Berglund [3] shows that there is a bijection

[XQ, XQ] ' π0(MC•(A⊗ L))

between the homotopy classes of self-maps of XQ and the path components of the
Kan complex MC•(A ⊗ L). This Kan complex is the simplicial set of Maurer-
Cartan elements in the simplicial dg Lie algebra Ω• ⊗A⊗L, where Ω• is Sullivans
simplicial de Rham algebra. We use this to identify a sufficient condition for when
the group π0 autXQ is isomorphic to the groups autL and autA.

1.3. Consequences of main results. The following are some interesting conse-
quences of the main technical results of the thesis discussed further below. First
we express the rational homotopy of automorphisms of certain manifolds in terms
of derivations of their homotopy Lie algebras.

Theorem 1.1 (cf. Example 4.14). For n ≥ 1, let M be an n-connected manifold
of dimension d ≤ 3n + 1, and let L denote the rational homotopy Lie algebra
π∗(ΩM)⊗Q.

If rankH∗(M) > 4 then there are isomorphisms of graded Lie algebras

π>0(aut∗M, 1M )⊗Q ' (DerL)>0,

π>0(autM, 1M )⊗Q ' (DerL/ adL)>0.

If rankH∗(M) = 4 then L may have a center, on which the derivations act, and
there are isomorphisms of graded Lie algebras

π>0(aut∗M, 1M )⊗Q ' (DerL)>0 n sZ(L)>0,

π>0(autM, 1M )⊗Q ' (DerL/ adL)>0 n sZ(L)>0.
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If rankH∗(M) ≥ 4 then the universal cover of the classifying space B aut∗M〈1〉 is
coformal, and B autM〈1〉 is coformal if the centre Z(L) is zero.

This generalises the result by Berglund-Madsen [5] who showed this for a 2d-
dimensional (d − 1)-connected manifold M with rankH∗(M) > 4. The strongest
statement of this kind that we obtain here, is that the conclusion holds for any
Poincaré duality space X which is Koszul and has cup length at most 2.

The following can be thought of as a Koszul dual statement to Theorem 1.1,
which will be more clear from the context where it appears in the thesis.

Theorem 1.2 (cf. Theorem 4.19). Let X be a simply connected space with finitely
generated cohomology A concentrated in even degrees, and let q be a homogeneous
non-degenerate quadratic form in the generators of A, such that

A ' Q[x1, . . . , xn]/(q).

Then there is an action of (DerA)>0 on the centre Z(L) which is 1-dimensional,
and isomorphisms of graded Lie algebras

π>0(autX)⊗Q ' (DerA)>0 n sZ(L),

π>0(aut∗X)⊗Q ' (DerA)>0,

and B aut∗X〈1〉 is coformal.

Secondly, for some Koszul spaces the group π0(autXQ) is as small as it can
possibly be. Recall that according to Sullivan [37] and Neisendorfer-Miller [30],
π0(autXQ) surjects onto aut(H∗(X;Q)) and respectively onto aut(π∗(ΩX) ⊗ Q)
for a Koszul space, and compare to the following.

Theorem 1.3 (cf. Corollary 4.36). Let X be a Koszul space such that H∗(X;Q) is
generated as an algebra in a single cohomological degree d. Equivalently π∗(ΩX)⊗Q
is generated as a Lie algebra in degree d− 1. If

(i) Hi(X;Q) = 0 for all i ≥ d2, or
(ii) πi(ΩX)⊗Q = 0 for all i ≥ d(d− 1),

then there are isomorphisms of groups

aut(π∗(ΩX)⊗Q) ' π0(autXQ) ' aut(H∗(X;Q))

Two interesting classes of Koszul spaces with rational cohomology (or homotopy)
generated in a single degree, arise as examples for Theorem 1.3: those

1) for which the cup length is less than the rational connectivity,
2) for which the Whitehead length is less than the rational connectivity.

Both cases are subsumed by the condition of having rational L.S.-category less than
the rational connectivity.

A non-trivial example from the first class, is that of ordered configuration spaces.
Consider the space F (Rn, k) of k ordered points in Rn. Cohomology is generated
in degree n−1 and vanishes above degree (k−1)(n−1), which is less than (n−1)2

provided that k < n. Thus we get

autπ∗(ΩF (Rn, k))⊗Q ' π0(autF (Rn, k)Q) ' autH∗(F (Rn, k);Q).

Staying with the example of configuration spaces, we produce several computational
results about their rational homotopy groups. For k = 3 and even n ≥ 4 we give
closed formulae for the dimensions of all rational homotopy groups of autF (Rn, 3),
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and compute several rational homotopy groups in the cases k = 4, 5, 6. Further we
identify the Lie algebra associated to the linear algebraic group π0(autF (Rn, 3)Q),
and see that it is neither semi-simple, solvable or nilpotent.

Finally, we note that the simplicial techniques used to study π0(autXQ) for a
Koszul space X, immediately yields an explicit computation of π0(aut(BG)Q) and
of π0(autGQ) for a (simply) connected compact Lie group G - cf. Example 4.42. In
both cases we get a product of general linear groups, and in the simply connected
case, where both groups can be computed by our techniques, we see that they are
isomorphic

π0(autGQ) '
m+1∏
j=1

GL(ij ,Q) ' π0(aut(BG)Q),

where ij is the number of generators of the rational cohomology algebras in a
particular degree, and m + 1 is the number of distinct degrees for generators. In
the same way we easily compute π0(autVQ) for a real, complex or quartenion Stiefel
manifold V - cf. Example 4.43

π0(autVQ) '
n∏
j=1

Q×,

where n is the number of generators for the rational cohomology algebra.

1.4. Technical results. To state the main technical results of the thesis we need
the following observation. Koszul algebras come equipped with a weight grading,
that is

A = A(0)⊕A(1)⊕A(2)⊕ · · ·

and

L = L(1)⊕ L(2)⊕ · · ·

such that the multiplication and respectively bracket preserves the weight. The
weight 1 parts are naturally identified with the indecomposables, and we may choose
presentations for A and L such that all relations are quadratic, in particular we may
identify the weight n parts with elements of word length and respectively bracket
length n. The tensor product A ⊗ L is bigraded by weights, and we may define
the shifted weight grading on the complex sA⊗κ L by letting bidegree (p, q) be the
elements in sA(p+ 1)⊗κ L(q + 1). Then the main technical result of the thesis is:

Theorem 1.4 (Corollary 4.2). The L∞-structure on H∗s(A⊗κL) transferred from
the derivations Der L //L , respects the shifted weight grading in the sense that for
any r ≥ 1 the operation `r has bidegree (2− r, 2− r).

From this we obtain several structural results about H∗(sA⊗κ L), and thus the
homotopy Lie algebra π∗(autX, 1X)⊗Q. We identify part of the homology as DerL
and part as DerA and show:

Theorem 1.5 (cf. Structure Theorem 4.8). Let X be a Koszul space with homotopy
Lie algebra L. The graded Lie algebra π∗(aut∗X, 1X) ⊗ Q is a split extension of
the positive derivations (DerL)>0.
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The kernel of the extension is known together with the action on it, but writing
out the extension requires more detail than is appropriate here. We refer to the
Structure Theorem 4.8 for details. There is a similar result for π∗(autX, 1X)⊗Q,
where we have to take the centre of L into account, and both versions have Koszul
dual statements expressed in terms of the derivations on the rational cohomology
algebra of X.

Theorem 1.6 (cf. Proposition 4.34). Let X be a Koszul space with cohomology
algebra A and homotopy Lie algebra L. If all Maurer-Cartan elements of A⊗L are
tensors of indecomposables in A and L, then the maps given by sending a homotopy
class to the induced map

π0(autXQ)→ autA,

π0(autXQ)→ autL,

are isomorphisms of groups.

Theorem 1.6 is the most general version of Theorem 1.3 that we obtain here.
It gives a sufficient condition for the surjections by respectively Sullivan [37] and
Neisendorfer-Miller [30] to be injective, under the assumption that X is simultane-
ously formal and coformal.

1.5. Structure of the thesis. The thesis consists of six sections including the
current introduction. Second section is a collection of standard facts from the
literature presented in a need to know fashion. That is, each subsection will cover
only what the reader needs to know on a particular subject in order to read the
thesis, and is not meant as a comprehensive introduction to the respective subjects.
We also establish most notation in the second section.

Third section is a technical walk-through on how to obtain a nice contraction of
the general Lie model for universal covers of classifying spaces of self-equivalences
B autX〈1〉 presented by Tanré , in our case of a Koszul space X. Using this nice
contraction we record the main technical results about the interplay between the
L∞-structure transferred along the contraction, and the various gradings present.

In the fourth section we study the homology of smaller complex produced by the
contraction from above. The homology equipped with the transferred L∞-structure
retains all rational homotopy information about B autX〈1〉 - in particular the pos-
itive part is isomorphic to the rational homotopy Lie algebra of B autX〈1〉, when
we only consider the binary operation of the L∞-structure. From the results of
Section 3 we obtain structural result about the homotopy Lie algebra, and identify
sufficient conditions in for coformality of B autX〈1〉 in several interesting cases.
The degree zero part of the homology is related to π0(autX), and Section 4 con-
cludes by studying this, both from the point of the complex produced, and by
simplicial methods using a very different model for the space autX.

The fifth section is dedicated to our main example for application of our theory:
F (Rn, k) - spaces of configurations of ordered points in Rn. We provide computa-
tions of several rational homotopy groups of autF (Rn, k) (all when k = 3 and n
is even), and investigate the induced L∞-structure on π∗(autF (Rn, 3)) ⊗ Q in an
attempt to clarify if B autF (Rn, 3) is coformal.

Section six is the final section of the thesis and contains suggestions for further
research based on the techniques presented the thesis.
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2. Preliminaries

In this section we will set up some facts for the rest of the thesis. Subsections
are not intended to give exhaustive overviews justifying their titles, but just to give
bare essentials within those areas, needed in the thesis.

We begin by fixing notation and conventions. First of all, we will always be
working over the field of rational numbers Q. We shall use the word map for a
morphism of the relevant category, after we have described what these are. We will
write composition of maps g : A→ B and f : B → C, either as f ◦ g, or simply by
juxta-position fg.

2.1. Differential graded (co)algebras and Lie algebras. All claims in this
subsection are standard facts in the literature. See for example Loday-Vallette [27],
Quillen [32] and Félix-Halperin-Thomas [13].

2.1.1. Graded vector spaces. A graded vector space V , is a vector space together
with a decomposition V =

⊕
n∈Z Vn. An element v ∈ Vn is said to have degree

|v| = n. A morphism (f,m) ∈ mor(V,W ) of graded vector spaces is a linear map
f : V →W and an m ∈ Z, such that f(Vn) ⊆Wn+m. We will just denote this by f ,
and say that it has degree |f | = m. This is a symmetric monoidal category under
the tensor product of graded vector spaces, where (V ⊗W )n =

⊕
p+q=n Vp ⊗Wq.

Notably, the symmetry isomorphism τ : V ⊗W →W ⊗ V is given by

τ(v ⊗ w) = (−1)pqw ⊗ v(1)

for v ∈ Vp and w ∈Wq.
Graded vector spaces form a closed symmetric monoidal category by setting

Hom(V,W )n =
∏

q−p=n
Hom(Vp,Wq) = {f ∈ mor(V,W ) | |f | = n}

The rationals Q may be viewed as a graded vector space by setting

Qi =

{
Q for i = 0
0 else

,

and the linear dual V ∨ of a graded vector space V is the graded vector space
Hom(V,Q). Note that (V ∨)n ' (V−n)∗, the n’th subspace of the linear dual, is
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isomorphic to the regular linear dual of −n’th subspace. We will avoid negative
indexing and instead write V n for V−n, as is convention throughout the literature.

We say that a graded vector space V is bounded above (respectively below) if
there exist a m ∈ Z such that Vk = 0 for all k > m (respectively k < m). Thus, if
V is bounded above, then V ∨ is bounded below, and opposite.

We say that a graded vector space is of finite type, if it is finite dimensional in
each degree.

2.1.2. Chain complexes. A chain complex (V, dV ) is a graded vector space V to-
gether with a differential: a linear map dV : V → V , of degree −1, such that d2

V = 0.
For short we write V for this chain complex, and d = dV . A chain map f : V →W
is a map of graded vector spaces such that, such that dW ◦ f = (−1)|f |f ◦ dV , and
we denote the graded vector space of such by Homdg(V,W ). Chain complexes also
form a symmetric monoidal category by the tensor product of graded vector spaces,
and defining the differential for V ⊗W by

d(v ⊗ w) = dV (v)⊗ w + (−1)|v|v ⊗ dW (w).

It is a closed symmetric monoidal category with the Hom from graded vector spaces,
equipped with the differential ∂ given by

∂f = dW ◦ f − (−1)|f |f ◦ dV , f ∈ Hom(V,W ).

For a chain complex (V, d), we define the cycles Z ⊆ V to be the kernel of d,
and the boundaries B ⊆ V to be the image of d. Since the d squares to zero, we
have B ⊆ Z and we define the homology of V to be the quotient Z/B. We write
H∗(V, d) for the homology, with

Hn(V, d) := (H∗(V, d))n = ker(d : Vn → Vn−1)/ Im(d : Vn+1 → Vn).

Accordingly the degree of an element in a chain complex is called the homological
degree. By cohomological degree we shall mean the negative homological degree.

For a chain complex (V, d), we define the positive part V+ as follows,

(V+)i =

 Vi i > 1
ker d : V1 → V0 i = 1

0 i ≤ 0
.

Denote by sQ the chain complex for which

sQi =

{
Q for i = 1
0 else

.

I.e. sQ is generated by the single element s in degree 1. For a chain complex
(V, dV ), we define the suspension (sV, dsV ) as sV = sQ⊗ V , and there is a natural
isomorphism sVi ' Vi−1 for all i. The differential on sV is then given by dsV = −dV ,
with the sign enforced by (1). The suspension map is the isomorphism V → sV
given by v 7→ s⊗ v, the image denoted simply by sv.

The dual (sQ)∨ is generated by s∗ in degree −1, and s∗Q ⊗ V is called the
desuspension of V , always written s−1V . The isomorphism given by v 7→ s∗ ⊗ v is
similarly called the desuspension isomorphism, with the image simply denoted by
s−1v.
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2.1.3. dg algebras. By an algebra A, we shall mean a unital associative algebra:
a vector space A equipped with a multiplication morphism µ : A ⊗ A → A and
a unit morphism η : Q → A satisfying the usual axioms to make it a monoid in
the symmetric monoidal category of vector spaces. We will be explicit about other
properties, i.e. whether A is commutative, or augmented. We say that A is aug-
mented, if it comes equipped with an algebra homomorphism ε : A→ Q. The kernel
of ε is denoted by A, and is called the augmentation ideal.

A dg (differential graded) algebra is a monoid in the symmetric monoidal cat-
egory of chain complexes with only degree zero morphisms. Unfolding the defi-
nitions, it is a chain complex (A, dA) with multiplication µ and unit η of degree
zero: µ(Ap ⊗ Aq) ⊆ Ap+q and η(Q) ⊆ A0, and the differential dA is a deriva-
tion with respect to the multiplication: it satisfies the Leibniz rule dA(ab) =
dA(a)b + (−1)|a|adA(b) for a, b ∈ A, which corresponds to the commutative dia-
gram:

A⊗A
µ //

dA⊗1+1⊗dA
��

A

dA

��
A⊗A

µ // A.

Note that for a graded commutative algebra, the commutativity relation carries
the sign from (1): ab = (−1)|a||b|ba.

We say that a dg algebra A is n-connected if A0 = Q and Ak = 0 for n ≥ k. If
A is 0-connected we just say that A is connected, or that A is a cochain algebra.

Let V be a graded vector space. Denote by ΛV the free graded commutative
algebra on V . It is the tensor algebra

TV =
⊕
n≥0

V ⊗n,

where multiplication is given by v · w = v ⊗ w, modulo the ideal generated by all
elements of the form v⊗w− (−1)|v||w|w⊗ v for v, w ∈ TV . Alternatively it can be
defined using the coinvariants for the obvious symmetric action ΛV =

⊕
n≥0 ΛnV

where

ΛnV =
(
V ⊗n

)
Σn
,

with the induced product from the tensor algebra. We write an element v ∈ ΛnV
as v = v1 ∧ . . . ∧ vn where vi ∈ V .

2.1.4. dg coalgebras. Completely dual to above, by a coalgebra C we mean a couni-
tal coassociative coalgebra, which may be cocommutative, or coaugmented. I.e. a
vector space C with a comultiplication map ∆: C → C⊗C and a counit ε : C → Q
satisfying the usual axioms making it a comonoid in the symmetric monoidal cat-
egory of vector spaces. We say that C is coaugmented, if it comes equipped with
a coalgebra homomorphism η : Q → C. The cokernel of η is denoted by C, and is
called the coaugmentation coideal.

A dg coalgebra (C, dC) is a comonoid in the symmetric monoidal category of
chain complexes with only degree zero morphisms. It is a chain complex (C, dC)
with comultiplication and counit of degree zero as for an dg algebra, and dC is a
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coderivation with respect to the comultiplication: the diagram

C ⊗ C C
∆oo

C ⊗ C

dC⊗1+1⊗dC

OO

C
∆oo

dC

OO

commutes.
We say that a coaugmented dg coalgebra C is n-connected if Ck = 0 for k ≤ n.
The linear dual of a dg coalgebra always has the structure of a dg algebra: there

is a (degree zero) chain map ϕ : C∨ ⊗ C∨ → (C ⊗ C)∨ and the composition

C∨ ⊗ C∨ ϕ−→ (C ⊗ C)∨
∆∨−→ C∨

is indeed a multiplication on C∨. The linear dual of a dg algebra which is of finite
type and bounded above or below, has the structure of a dg coalgebra: finite type
and boundedness implies that ϕ is an isomorphism, and the composition

A∨
µ∨−→ (A⊗A)∨

ϕ−1

−→ A∨ ⊗A∨

is indeed a comultiplication on A∨.
The free graded commutative algebra ΛV can be equipped with the unshuffle

coproduct : the comultiplication defined by letting

∆(v1 ∧ . . . ∧ vn) =

n−1∑
i=1

∑
σ

(−1)ε(vσ(1) ∧ . . . ∧ vσ(i))⊗ (vσ(i+1) ∧ . . . ∧ vσ(n)),

where σ runs over the set of (i, n− i)-unshuffles, i.e.

σ−1(1) < · · · < σ−1(i) and σ−1(i+ 1) < · · · < σ−1(n).

The sign is determined by

ε =
∑
i<j

σ−1(i)>σ−1(j)

|vi||vj |.

This comultiplication turns out to be cocommutative, and further makes ΛV the
cofree graded cocommutative (conilpotent) coalgebra on V . When we think about it
in this way we may sometimes denote it ΛcV , not to be confused with the summands
of the graded vector space structure.

In fact ΛV is even a Hopf algebra with the two defined operations above, but we
will not be using this.

2.1.5. dg Lie algebras. Recall that a graded Lie algebra is a graded vector space L
equipped with a Lie bracket: a graded anti-symmetric binary operation

[−,−] : L⊗ L→ L,

with any triple of elements satisfying the Jacobi relation:

[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]].

A dg Lie algebra (L, dL) is a graded Lie algebra L such that (L, dL) is a chain
complex, the Lie bracket has degree zero, and dL is a derivation with respect to the
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Lie bracket: the diagram

L⊗ L
[−,−] //

dL⊗1+1⊗dL
��

L

dL

��
L⊗ L

[−,−] // L

commutes.
Again note that anti-commutativity, and Jacobi relations carry the signs enforced

by (1), that is for all x, y ∈ L we have

[x, y] = −(−1)|x||y|[y, x].

We say that a dg Lie algebra L is n-connected if Lk = 0 for k ≤ n.
For a dg Lie algebra L, the positive part L+ is a Lie subalgebra.
Let V be graded vector space. Denote by L(V ) the free graded Lie algebra on

V . It is the smallest graded Lie subalgebra of TV such that V ⊂ L(V ), where the
tensor algebra on V is equipped with the bracket given by anti-symmetrising the
usual multiplication:

[v, w] = v ⊗ w − (−1)|v||w|w ⊗ v.

2.1.6. Quasi-isomorphisms. For any of the above types of dg (co)algebras, there
is an induced structure of the same type on the homology of the underlying chain
complex. A dg algebra homomorphism A → B is a quasi-isomorphism if the
induced map H∗(A)→ H∗(B) is an isomorphism. A quasi-isomorphism from A to

B is often denoted A
∼−→ B.

We say that two dg algebras A1 and An are quasi-isomorphic if there exist a
zig-zag of quasi-isomorphisms

A1
∼←− A2

∼−→ · · · ∼←− An−1
∼−→ An.

Similarly for dg Lie algebras and dg coalgebras.

2.1.7. Contractions. Let (W,dW ) and (V, dV ) be chain complexes. A contraction
of W onto V is a diagram

Wh 88
p // V,
i

oo

where p and i are chain maps such that pi = 1V , dWh + hdW = ip − 1W . The
maps have degrees |p| = |i| = 0, and necessarily |h| = 1. Without loss of generality
we may assume the annihilation conditions, that h2 = hi = ph = 0, see [24].
Necessarily p and i are quasi-isomorphisms of chain complexes.

Contractions can be composed as follows:

Wh <<
p // V
i
oo and Vg <<

q // U
j
oo

compose to

Wh+igp <<
qp // U.
ij

oo

This is easily checked by using the annihilation conditions.
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Lemma 2.1. For any chain complex V (over a field), we may choose a contraction

Vh 88
p // H∗(V ),
i

oo

where we consider the graded vector space H∗(V ) as a chain complex with zero
differential.

Proof. Consider the short exact sequences

0 // Zn
j
// Vn

d
//

τtt
Bn−1

//
σ

tt
0

0 // Bn // Zn q
//

ρ
tt

Hn(V ) //
ωtt

0.

Since we are working over a field, these are split exact, and we may choose splittings
as already indicated. It is easy to check that the data

Vσρτ 88
qτ // H∗(V ),
jω
oo

is a contraction of V onto its homology. �

Finally for this section, note that the homotopy h of a contraction always satisfies
the equation dhd = d.

2.2. Twisting morphisms, bar and cobar constructions. Given a dg coalge-
bra C and a dg Lie algebra L, the set of twisting morphisms is a certain subset of
all linear maps C → L, and in Appendix B of [32] Quillen shows that the bifunctor
assigning this set to C and L is representable and corepresentable. We review parts
of the theory below.

Definition 2.2. Let (L, d) be a dg Lie algebra. A Maurer-Cartan element of L is
a degree −1 element τ , satisfying the equation

dτ +
1

2
[τ, τ ] = 0.(2)

Any such Maurer-Cartan element τ gives rise to a twisted differential dτ on L
defined by

dτ = d+ [τ,−].

It is easy to check that this is a differential precisely when the equation (2) is
satisfied. The set of Maurer-Cartan elements of a dg Lie algebra L is denoted
MC(L), and clearly for a dg Lie map f : L→ L′ we have f(MC(L)) ⊆ MC(L′).

Let (C, dC) be a coaugmented dg cocommutative coalgebra, and (L, dL) a dg Lie
algebra. The chain complex Hom(C,L) has the structure of a dg Lie algebra, called
the convolution dg Lie algebra. The Lie bracket [f, g] for f, g ∈ Hom(C,L) is given
by the composition

C
∆ // C ⊗ C

f⊗g // L⊗ L
[−,−] // L .

A Maurer-Cartan element of the convolution Lie algebra gives rise to a twisted
differential ∂τ on Hom(C,L), and we denote by Hom(C,L)τ the resulting dg Lie
algebra.
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Definition 2.3. Let (C, dC) be a coaugmented dg cocommutative coalgebra, and
(L, dL) a dg Lie algebra. A twisting morphism τ from C to L is a Maurer-Cartan
element of the convolution Lie algebra τ ∈ MC(Hom(C,L)), such that τ is zero on
the coaugmentation of C. We write Tw(C,L) for the set of twisting morphism from
C to L.

The assignment of Tw(C,L) to the data C and L defines a bifunctor by pre-
composition of dg coalgebra maps, and composition of dg Lie maps. It turns out
to be the representable and corepresentable bifunctor mentioned above, but be-
fore stating this as a proposition, we briefly review the corepresenting respectively
representing objects.

Definition 2.4 (Cobar construction). Let C denote an coaugmented dg coalgebra.
The cobar construction on C is denoted L (C), and it is the free Lie algebra L(s−1C)
on the desuspension of C, equipped with a differential dL = δ0 + δ1. Here δ0 and
δ1 are derivations given respectively by

δ0(s−1x) = −s−1dC(x),

δ1(s−1x) = −1

2

∑
i

(−1)|x
′
i|[s−1x′i, s

−1x′′i ],

for x ∈ C, and the sum is given by the reduced comultiplication on C, which we
write ∆(x) =

∑
i x
′
i ⊗ x′′i .

The cobar construction gives rise to corepresenting objects for Tw(−,−).

Definition 2.5 (Bar construction). Let L denote a dg Lie algebra. The bar con-
struction on L is denoted C (L), and it is the cofree cocommutative coalgebra Λc(sL)
on the suspension of L, equipped with a differential dC = d0 + d1. The differential
is given by the formulae

d0(sx1 ∧ . . . ∧ sxn) = −
n∑
i=1

(−1)εisx1 ∧ . . . ∧ sdL(xi) ∧ . . . ∧ sxn,

d1(sx1 ∧ . . . ∧ sxn) =
∑
i<j

(−1)|sxi|+εijs[xi, xj ] ∧ sx1 ∧ . . . ŝxi . . . ŝxj . . . ∧ sxn,

for x ∈ L, with signs determined by

εi =
∑
i<j

|sxj |,

εij = |sxi|
i−1∑
r=1

|sxr|+ |sxj |
j−1∑
r=1

|sxr|.

The bar construction gives rise to representing objects for Tw(−,−).

Remark 2.6 Classically the bar and cobar construction takes dg algebras respec-
tively coalgebras to dg Hopf algebras. The cobar construction defined above is
exactly the dg Lie algebra of primitives in the classical setting. It also coincides
with the Quillen construction on the dual A := C∨.

The bar construction as defined above coincides with the linear dual of the
Chevalley-Eilenberg construction. It is not the same as taking the classical bar
construction on the universal enveloping algebra UL, but the two constructions are
quasi-isomorphic.
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2.2.1. Universal twisting morphisms. By the definition of the cobar and bar con-
structions it follows immediately that projection to cogenerators and inclusion of
generators give degree −1 morphisms

π : C (L)→ L, ι : C → L (C).

It is easy to check that these are twisting morphisms, and any twisting morphism
τ : C → L factors in two ways

C (L)

π

""
C

ϕτ
<<

τ //

ι ""

L

L (C)

ψτ

<<

with ϕτ a dg coalgebra map and ψτ a dg Lie map, such that both are uniquely
determined by τ . This is originally due to Quillen, see [32] App B, 6.1 and 6.2. We
summarize as follows.

Proposition 2.7. Let C be a coaugmented dg cocommutative coalgebra, and let L
be a dg Lie algebra. The universal twisting morphisms induce bijections

Homdgl(L (C), L)
'
ι∗
//Tw(C,L) Homdgc coalg(C,C (L)).

'
π∗
oo

In particular the bar and cobar constructions form a pair of adjoint functors

DGCC
L

,,
DGL

C

mm

between dg Lie algebras and coaugmented dg cocommutative coalgebras. In fact,
when restricting to connected Lie algebras and 1-connected coalgebras this is even
a Quillen equivalence [32].

2.3. Koszul duality for Lie and commutative algebras. Koszul algebras were
first introduced by Priddy in [31], where the theory is developed for associative al-
gebras. Ginzburg-Kapranov [16] developed Koszul duality for operads, and Koszul
duality for algebras over certain Koszul operads. This in particular encompasses
Koszul duality for Lie and commutative algebras. See also Milles [29] for this. An
introduction to operads and Koszul duality for operads can be found in [27] by
Loday-Vallette. Berglund [2] gives a short and concise review of parts of the the-
ory, and we specialize some of that account here to the case of Lie and commutative
algebras.

A weight grading on a coaugmented graded cocommutative coalgebra C, is a
decomposition

C = C(1)⊕ C(2)⊕ · · ·

such that the comultiplication of C is weight preserving, i.e. for n ≥ 2

∆(C(n)) ⊆
⊕
p+q=n

C(p)⊗ C(q),
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and ∆(C(1)) = 0. Setting C(0) ' Q to be the image of the coaugmentation, we get
a corresponding weight decomposition of C such that the comultiplication ∆ on C
is weight preserving.

Example 2.8 Let V be a graded vector space. The free graded cocommutative
coalgebra ΛcV is coaugmented by the identification Q ' Λ0V and has natural
weight grading with ΛcV (n) = ΛnV .

The cobar construction (L (C), δ0+δ1) on a coaugmented graded cocommutative
coalgebra C with a chosen weight grading is bigraded by bracket length `b and total
weight `w. Bracket length is self-explanatory for a free graded Lie algebra, and
total weight of an element is simply the sum of weights appearing in the brackets.
E.g. suppose we have an element x = [[x1, x2], x3] ∈ L (C) with xi ∈ C(i), then
`b(x) = 3 and `w(x) = 1 + 2 + 3 = 6.

Since any weight grading is positive, L (C) is concentrated in bigradings with
`w ≥ `b, and we let

DL := {x ∈ L (C) | `w(x) = `b(x)} ⊂ L (C)

denote the diagonal. Define the Koszul dual graded Lie algebra to C to be the
quotient Lie algebra

C ¡ := DL /DL ∩ Im(δ1).

The natural projection followed by the quotient f : L (C) → C ¡ gives rise to a
twisting morphism κ : C → C ¡ by restriction to generators (Proposition 2.7 and
discussion above it).

Definition 2.9. We say that C is a Koszul coalgebra if there exist a weight grading
on C such that the natural projection followed by the quotient L (C) → C ¡ is a
quasi-isomorphism of dg Lie algebras.

A weight grading on a graded Lie algebra L, is a decomposition

L = L(1)⊕ L(2)⊕ · · ·
such that the bracket of L is weight preserving, i.e. [L(p), L(q)] ⊆ L(p+ q).

Example 2.10 Let V be graded vector space. The free graded Lie algebra on
L(V ) has a natural weight grading given by L(V )(n) = L(V ) ∩ V ⊗n. This is just
the bracket length in the free Lie algebra, and we also write it Ln(V ).

The bar construction (C (L), d0 + d1) on a graded Lie algebra L with a chosen
weight grading is bigraded by wedge length `b and total weight `w. Wedge length is
the obvious grading for a cofree graded coalgebra, and total weight of an element
is the sum of weights of letters appearing as letters in a word. E.g. suppose we
have an element y = [y1, y2] ∧ y3 ∧ y4 ∈ C (L) with yi ∈ L(i). Then `b(y) = 3 and
`w(y) = (1 + 2) + 3 + 4 = 10.

Since any weight grading is positive, C (L) is concentrated in bigradings with
`w ≥ `b, and we let

DC := {x ∈ C (L) | `w(x) = `b(x)} ⊂ C (L)

denote the diagonal. Define the Koszul dual cocommutative coalgebra to L to be
the sub coalgebra

L¡ := DC ∩ ker(d1) ⊂ C (L).



21

The inclusion g : L¡ → C (L) always gives rise to a twisting morphism κ′ : L¡ → L
by projection to cogenerators κ′ = πg, cf. Proposition 2.7. Explicitly it is the
composition

κ′ : L¡ � DC � sL(1)
s−1

−→ L(1)� L.

Definition 2.11. We say that L is a Koszul Lie algebra if there exist a weight
grading on L such that the inclusion L¡ → C (L) is a quasi-isomorphism of dg
coalgebras.

Notice that the quasi-isomorphisms of Definition 2.9 and 2.11 correspond to
certain twisting morphism L¡ → L, respectively C → C ¡ cf. Proposition 2.7.

Definition 2.12. An augmented graded commutative algebra A of finite type is a
Koszul algebra if A∨ is a Koszul coalgebra.

Definition 2.13. Let L be a Koszul Lie algebra. The Koszul dual graded commu-
tative algebra is L! := (L¡)∨.

Definition 2.14. Let A be a Koszul algebra of finite type. The Koszul dual graded
Lie algebra to A is A! := (A∨)¡.

The following theorem is a special case of Berglund [2], Theorem 2.11.

Theorem 2.15. Let L be a Koszul Lie algebra. Then L has a presentation of the
form

L = L(V )/(R)

for some R ⊂ L(V )(2). The Koszul dual graded commutative algebra L! has a
presentation

L! = Λ((sV )∨)/(R⊥),

where R⊥ ⊂ Λ2((sV )∨) is the annihilator of R with respect to the pairing of degree
2

〈 , 〉 : Λ2((sV )∨)⊗ L2(V )→ Q,

induced from the standard pairing V ∨ ⊗ V → Q.

Explicitly the induced pairing is given in terms of the standard pairing by the
formula

〈a ∧ b, [α, β]〉 = (−1)|b||α|+|a|+|α|〈a, α〉〈b, β〉 − (−1)|α||β|+|b||β|+|a|+|β|〈a, β〉〈b, α〉,

with a, b ∈ sV ∨ and α, β ∈ V .

2.4. L∞-algebras. Our results rely on contracting the underlying complex of a dg
Lie algebra, and studying what structure the contracted complex has. One might
expect it to be a Lie algebra “up to homotopy” in some appropriate sense, and
this is indeed the case. The correct notion is that of an L∞-algebra or strongly
homotopy Lie algebra, introduced by Lada and Stasheff [23], with reference to [33]
by Schlessinger-Stasheff, unpublished at the time. Many of the ideas concerning
L∞-algebras are present in the work of Kontsevich, and a modern treatment is
given in [27] by Loday-Vallette.

We follow the sign conventions from the latter.
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Definition 2.16. Let V be a graded vector space. An L∞-structure on V is a
family of linear maps

`n : V ⊗n → V, n ≥ 1,

of degree n− 2, satisfying anti-symmetry

`n(. . . , x, y, . . .) = −(−1)|x||y|`n(. . . , y, x, . . .),

and for all n ≥ 1, the generalized Jacobi identities,
n∑
p=1

∑
σ

sgn(σ)(−1)ε`n+1−p(`p(xσ(1), xσ(2), . . . , xσ(p)), xσ(p+1), . . . , xσ(n)) = 0,

where we sum over all (p, n− p)-unshuffles, i.e.

σ−1(1) < · · · < σ−1(p) and σ−1(p+ 1) < · · · < σ−1(n).

The sign is given by

ε = p(n− p) +
∑
i<j

σ−1(i)>σ−1(j)

|xi||xj |.

The generalized Jacobi identities for n ≤ 3 are

`21(x) = 0,

`2(`1(x), y) + (−1)|x|`2(x, `1(y)) = `1(`2(x, y)),

`2(`2(x, y), z) + (−1)|y||z|+1`2(`2(x, z), y)− `2(x, `2(y, z)) =

−(`1`3 + `3`1)(x⊗ y ⊗ z).(3)

From this we see that `1 is a differential, and a derivation with respect to `2. For
an L∞-structure on a graded vector space V , the chain complex (V, `1) is called the
underlying chain complex. We see from (3) that if either `1 or `3 are zero, then `2
is a Lie bracket, but in general (3) just states that the Jacobi relation holds up to
chain homotopy in V ⊗3 given by −`3 (note that we have abused notation slightly
so the differential on V ⊗3 induced by `1, is also denoted by `1).

We shall say that `n for n > 2, is a higher operation. An L∞-structure with
trivial higher operations is just a dg Lie structure.

Definition 2.17. An L∞-morphism g : (V, `)→ (W, l) is a family of graded alter-
nating linear maps {gn : V ⊗n → W}n of degree n − 1, such that for every n ≥ 1,
gn satisfies

n∑
p=1

∑
σ

sgn(σ)(−1)εgn+1−p(`p(xσ(1), xσ(2), . . . , xσ(p)), xσ(p+1), . . . , xσ(n)) =

∑
k≥1

i1+···+ik=n

∑
τ

sgn(τ)(−1)ηlk(gi1(xτ(1), . . . , xτ(i1)), . . . , gik(xτ(ik−1+1), . . . , xτ(ik))),

where σ is a (p, n− p)-unshuffles as above, and τ is an (i1, . . . , ik)-unshuffles, i.e.

τ−1(ij + 1) < · · · < τ−1(ij+1), for all j ∈ {0, . . . , k − 1}, i0 := 0,

satisfying the extra condition that

τ−1(1) < τ−1(i1 + 1) < · · · < τ−1(i1 + i2 + · · ·+ ik−1 + 1).
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The signs are given by

ε = p(n− p) +
∑
i<j

σ−1(i)>σ−1(j)

|xi||xj |,

η =

k∑
j=1

(k − j)(ij − 1) +
∑
i<j

τ−1(i)>τ−1(j)

|xi||xj |+
k∑
j=2

(ij − 1)

ij−1∑
m=1

|xτ(m)|.

For n = 1 the condition is simply that g1 is a chain map. For n = 2, it is

−g2(`1(x1), x2)− (−1)|x1||x2|+1g2(`1(x2), x1) + g1(`2(x1, x2))

= l2(g1(x1), g1(x2)) + (−1)|x1||x2|+1l2(g1(x2), g1(x1)) + l1(g2(x1, x2)),

which we rearrange

g2(`1(x1), x2) + (−1)|x1|g2(x1, `1(x2)) + l1(g2(x1, x2))

= g1(`2(x1, x2))− l2(g1(x1), g1(x2))

and see that the condition is precisely that g2 is a chain homotopy between g1`2
and l2(g1⊗ g1), so g1 respects the binary operations up to homotopy. Similarly the
higher maps {gn}n≥3 can be thought of as homotopies between homotopies, and so
on.

Definition 2.18. An L∞ quasi-isomorphism is an L∞-morphism {gn}n, such that
g1 is a quasi-isomorphism of chain complexes.

There is an equivalent definition of L∞-algebras, which the following theorem
expresses.

Theorem 2.19. Let V be graded vector space. An L∞-structure on V corresponds
precisely to a square zero coderivation of degree −1 on the cofree cocommutative
coalgebra Λ(sV ).

An L∞-morphisms is a dg coalgebra morphism under this correspondence.

A coderivation δ on a cofree coalgebra is completely determined by its corestric-
tion πδ : Λ(sV ) → sV . Write δ =

∑
r≥0 δr, where δr lowers word length by r.

I.e. for any n ≥ 0 we have restrictions δr : Λn(sV ) → Λn−r(sV ) and in particular
δr : Λ(sV )r+1 → sV . If δ has degree −1, then the family of maps δr correspond to
the operations `n for an L∞-algebra, by setting

s`r(v1, . . . , vr) = (−1)
∑
i i|xr−i|+rδr−1(sv1 ∧ · · · ∧ svr).

The condition δ2 = 0 corresponds to the generalised Jacobi identities.
Taking the graded dual determines a dg algebra, and if V is of finite type and

concentrated in positive degrees, then the opposite is true: A differential d on the
free graded commutative algebra Λ((sV )∨) determines an L∞-structure on V . The
differential is determined by restriction to (sV )∨, and similar to above we write
dn : (sV )∨ → Λn((sV )∨) for the restriction, and the n-ary operation can be read of
from this. Further, an L∞-morphism is then just a dg algebra morphism.

This gives a convenient way of packaging the data of an L∞-algebra with easy
access to structural properties. For example, a minimal L∞-structure on a pos-
itively graded vector space of finite type is given by a free graded commutative
algebra equipped with a differential with no linear part.
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Next, let (W,dW ) and (V, dV ) be chain complexes, and

Wh 88
f // V,
g
oo(4)

a contraction.
If W is an L∞-algebra, then there is an induced L∞-structure on V . This is

the Homotopy Transfer Theorem for L∞-algebras. It is mentioned in [23] without
proof, and shown by Huebschmann [21]. A version with explicit formulae for the
resulting structure appears in [27] and in [1] by Berglund. The latter also contains
details on how to extend the maps occurring to L∞-morphisms.

Before stating the theorem, suppose we are given a contraction (4) and an L∞-
structure {`n} on W , and consider rooted trees with each leaf labeled by g, each
vertex by `n where n+ 1 is the valence of the vertex, each internal edge by h, and
the root by f . Such a tree with n leaves may be taken as recipe for building a map
V ⊗n → V , by composing from leaves to root, each leaf taking an input from one of
the n copies of V in the source.

We can then form a signed sum over all such rooted trees with n leafs and labels
as described, to get a map ln : V ⊗n → V , which we may depict as

ln =

g g g g

`2 h

`2

`2

f

. . . ± · · · ±

g g g g

`n

f

· · ·

If we decorate the root of each tree by h instead of f , we get recipes for building
maps V ⊗n → W , and forming the signed sum over all rooted trees with n leaves
and this decoration, we get a map gn : V ⊗n →W .

Theorem 2.20 (Homotopy Transfer Theorem). Let (L, {`n}) be an L∞-algebra,
and let (V, dV ) be a chain complex. Given a contraction

Lh 99
f // V,
g
oo

the collection of maps {ln} as discussed above defines an L∞-structure on V . The
collection {gn} defines an extension of g to an L∞ quasi-isomorphism (V, {ln})→
(L, {`n}).

There is an extension of f to an L∞ quasi-isomorphism, but the description is
more complicated and we will not need it here, cf. [1].

Denote `2 by [−,−] for now and let x, y ∈ V . For the binary and ternary
transferred operations we get

l2(x, y) = f([g(x), g(y)]),

and

l3(x, y, z) = f ◦ (−[h[g(x), g(y)], g(z)] + (−1)|x|[g(x), h[g(y), g(z)]](5)

+(−1)|y||z|[h[g(x), g(z)], g(y)] + `3(g(x), g(y), g(z)))
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2.5. Algebraic models for rational spaces. There are two approaches by re-
spectively Quillen [32] and Sullivan [37], to model spaces algebraically over Q. With
a few restrictions they succeed in providing complete algebraic invariants for the
rational homotopy type of spaces. Standard references are [13] by Félix-Halperin-
Thomas, and [7] by Bousfield-Gugenheim.

Definition 2.21. A rational space is a simply connected space X such that the
homotopy groups πn(X) are uniquely divisible for all k. Equivalently the homology
groups Hn(X) are uniquely divisible for k > 0.

Recall that a uniquely divisible group is a group G where multiplication G
·n−→ G

is an isomorphism for all non-zero integers n. Equivalently it is a group which
admits the structure of a vector space over Q.

Definition 2.22. A rationalisation of a simply connected space X is a rational
space XQ together with a map r : X → XQ inducing isomorphisms on rational
homotopy groups

πn(X)⊗Q ∼−→ πn(XQ), n > 0.

Equivalently r induces isomorphisms on rational homology groups

Hn(X;Q)
∼−→ Hn(XQ), n > 0.

Definition 2.23. A simplicial object in a category C, is a functor F : ∆op → C,
where ∆ is the category of finite non-empty linearly ordered sets: objects are finite
non-empty linearly ordered sets, and morphisms are order preserving maps.

Let [n] denote the integers from 0 to n with the usual ordering, considered as an
object of ∆. A common way to give the data of a simplicial object is then to specify
the n-simplicies Fn := F ([n]), together with structure maps F (ϕ) : Fm → Fn for
ϕ : [n]→ [m] in ∆.

A fundamental connection between topology and algebra is given by the Sullivan-
de Rham algebra functor. We remind the reader that all algebras here are defined
over Q.

Definition 2.24. The simplicial de Rham algebra Ω∗• is the simplicial commutative
dg algebra with n-simplicies

Ω∗n :=
Λ(ti, dti | i = 0, . . . , n)

(t0 + · · ·+ tn − 1, dt0 + · · ·+ dtn)
, |ti| = 0, |dti| = 1,

differential as suggested by notation and structure maps ϕ∗ : Ω∗n → Ω∗m given by

ϕ∗(ti) =
∑

j∈ϕ−1(i)

tj ,

for ϕ : [m]→ [n].

See [13] for more details.

Definition 2.25. For a simplicial set X, the Sullivan-de Rham algebra functor is
given by

Ω∗(X) := HomsSet(X,Ω
∗
•),

the set of simplicial maps from X to the simplicial de Rham algebra.
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This is naturally a graded commutative cochain algebra, and integration defines
a quasi-isomorphism to the singular cochains Ω∗(X)→ C∗(X;Q), cf. [7].

Definition 2.26. For a graded commutative cochain algebra A, the spatial realiza-
tion functor is given by

〈A〉 := Homcdga(A,Ω∗•),

the simplicial set of algebra morphisms from A to the simplicial de Rham algebra.

The Sullivan-de Rham algebra and spatial realization functors form a contravari-
ant adjunction, that is for a simplicial set X and a graded commutative cochain
algebra A there is a bijection

Homcdga(A,Ω∗(X)) ' HomsSet(X, 〈A〉),

and the two functors induce an equivalence of homotopy categories between simply
connected rational Kan complexes of finite Q-type, and cofibrant simply connected
graded commutative cochain algebras of finite type. Together with the standard
Quillen equivalence between simplicial sets and topological spaces, this justifies the
study of rational homotopy theory by the algebraic models discussed below. We
will not introduce too much model category language here, but simply note that
all Sullivan algebras as defined in the following are cofibrant. See [13] for details.

In the following we will write Ω∗(X) for a topological space X, by which we
mean Ω∗(S•X), where S•X is the singular simplicial set of X.

2.5.1. Sullivan models. A Sullivan algebra is a cochain algebra A, which is free as
a graded algebra A = Λ(V ) for some graded vector space V =

⊕
n≥1 V

n, satisfying
the following conditions. There is an increasing sequence of graded subspaces

V (0) ⊆ V (1) ⊆ · · · ⊆
⋃
k

V (k) = V

such that d(V (0)) = 0 and d(V (n)) ⊆ Λ(V (n− 1)). A Sullivan algebra A = ΛV is
minimal if d(V ) is contained in the decomposables Λ≥2V .

Remark 2.27 Recall from above that a dg commutative algebra for which the
underlying algebra is free on a positively graded vector space V of finite type deter-
mines an L∞-structure on sV . In particular a Sullivan algebra for a graded vector
space V of finite type determines an L∞-structure {`n} on sV , and minimality of
the Sullivan algebra translates to the condition that `1 = 0.

This is the defining property for a minimal L∞-algebra in general.

Let X be a simply connected space. A cochain model for X is a cochain algebra
A together with a quasi-isomorphism to the de Rham algebra Ω∗(X). A Sullivan
model for X is a cochain model for which A is a Sullivan algebra. A minimal
Sullivan model for X is a Sullivan model for which A is minimal.

One of the main points of Sullivan’s theory is then the following.

Theorem 2.28 (See [13]). There is always a minimal Sullivan model for a simply
connected space. The minimal model is unique up to isomorphism.

Thus we may speak of the minimal Sullivan model for a simply connected space.
The existence of minimal Sullivan models together with spatial realisation gives

a convenient way of rationalising simply connected spaces.
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Proposition 2.29. Let X be a simply connected space of finite Q-type with minimal
Sullivan model mX

∼−→ Ω∗(S•X). Then the realization of the adjoint map S•X →
〈mX〉 gives a rationalisation of X. In particular we may take XQ = |〈mX〉|.

2.5.2. Quillen models. Let X be a simply connected space. A Lie model for X is
a positively graded dg Lie algebra L = L≥1 such that C (L)∨ is a cochain model
for X. A Quillen model for X is a Lie model for which the underlying Lie algebra
L is free. A minimal Quillen model is a Quillen model for which the differential is
decomposable.

Theorem 2.30 (See [13]). There is always a minimal Quillen model for a simply
connected space. The minimal model is unique up to isomorphism.

Again, we may speak of the minimal Quillen model for a simply connected space.

2.5.3. Formality and coformality.

Definition 2.31. (1) A commutative cochain algebra A is formal if A and
H∗(A) are quasi-isomorphic as commutative cochain algebras.

(2) A simply connected space X is formal if the commutative cochain algebra
Ω∗(X) is formal.

Equivalently X is formal if the minimal Sullivan model is quasi-isomorphic to
H∗(X).

Definition 2.32. (1) A dg Lie algebra L is formal if L and H∗(L) are quasi-
isomorphic as dg Lie algebras.

(2) A simply connected space X is coformal if the minimal Quillen model is
formal.

The homology of the minimal Quillen model for X is the rational homotopy Lie
algebra π∗(ΩX)⊗Q.

Proposition 2.33 (Cf. Loday-Vallette [27] Section 10.4). Let L and L′ be dg Lie
algebras, and consider them as L∞-algebras with trivial higher operations. There ex-
ists an L∞-quasi-isomorphism L

∼−→ L′ if and only if L and L′ are quasi-isomorphic
as dg Lie algebras.

By this proposition, a dg Lie algebra L is formal if and only if there exist an L∞
quasi-isomorphism H∗(L)

∼−→ L, where L and H∗(L) are considered L∞-algebras
with trivial higher operations.

We may always choose a contraction

Lk <<
q // H∗(L)
i

oo(6)

onto the homology, cf. Lemma 2.1. The Homotopy Transfer Theorem for L∞-
algebras then produces a minimal L∞-structure on H∗(L) with l2-operation the
standard bracket induced on the homology, and an L∞-quasi-isomorphism

H∗(L)
∼−→ L.

Corollary 2.34. A dg Lie algebra L is formal if there exist a contraction (6) such
that L∞-structure {ln} on H∗(L) produced by the Homotopy Transfer Theorem has
lr = 0 for all r ≥ 3.
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The detection of a higher operation on the homology is not enough to conclude
that a dg Lie algebra is not formal. There exist minimal L∞-algebras with non-
trivial higher operations which have isomorphic minimal structures where all higher
operations vanish.

Example 2.35 Consider the minimal L∞-algebra determined by

L := (Λ(s, t, u, v), du = v2 + t4 + s6 + 2vt2 + 2vs3 + 2s3t2),

with |s| = 2, |t| = 3, |v| = 6, and |u| = 11. This has non-trivial operations up to
arity 6. The map given by v′ 7→ v + t2 + s3 induces an isomorphism of dg algebras

(Λ(s, t, u, v′), du = v′2)→ L

which determines a minimal L∞-structure with no higher operations. Point in case
is that we may have chosen a basis for the underlying graded vector space in which
higher operations do not vanish, but they do by a “non-linear” change of basis.

However there is a way around this, as we shall see now.

2.5.4. Massey brackets. Completely analogous to Massey products, there are sec-
ondary operations on the homology of a dg Lie algebra L, called Massey brackets.
For a formal dg Lie algebra all Massey brackets vanish. An L∞-structure on the
homology provides the choices needed for the construction of such, and detection
of a higher operation for which the corresponding Massey bracket does not vanish
is enough to conclude that a dg Lie algebra is not formal.

We will only introduce the triple Massey bracket here, as this is all we need to
detect a ternary operation in our examples and conclude non-formality.

Definition 2.36. Let (L, d) be a dg Lie algebra, and let x, y, z ∈ L be cycles,
representing homology classes x, y and z. The triple Massey bracket M3(x, y, z) is
the set of homology classes{

(−1)|x|[x, s]− [t, z]− (−1)|x||y|+|y|[y, u] | ds = [y, z], dt = [x, y], du = [x, z]
}
.

Note that M3(x, y, z) is non-empty if and only if

[y, z] = [x, y] = [x, z] = 0.

Now, let L be a dg Lie algebra with cycles x, y, z such that

[x, y] = [x, z] = [y, z] = 0,

and choose s, t, u ∈ L such that ds = [y, z], dt = [x, y] and du = [x, z]. Define the
operation

〈x, y, z〉s,t,u := (−1)|x|[x, s]− [t, z]− (−1)|x||y|+|y|[y, u].

This defines a cycle in L by the Jacobi identity. Define the subgroup

Ax,y,z := [x,H∗(L)] + [y,H∗(L)] + [z,H∗(L)] ⊆ H∗(L).

We can show that

• The class 〈x, y, z〉s,t,u + Ax,y,z ∈ H∗(L)/Ax,y,z does not depend on the
representatives chosen for x, y and z,
• The class 〈x, y, z〉s,t,u+Ax,y,z does not depend on the representatives chosen

for s, t and u.

Thus M3(x, y, z), when non-empty, is a well-defined class in H∗(L)/Ax,y,z.
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Definition 2.37. We say that M3 vanishes on L if M3(α, β, γ) = 0 ∈ H∗(L)/Aα,β,γ
for all α, β, γ ∈ H∗(L) such that M3(α, β, γ) is non-empty.

The following lemmas are easy consequences of the bullets above.

Lemma 2.38. Let L be a dg Lie algebra. If dL = 0 then M3 vanishes.

Lemma 2.39. Let f : L→ L′ be a map of dg Lie algebras. For all α, β, γ ∈ H∗(L)
such that M3(α, β, γ) is non-empty,

(1) f induces a well-defined map H∗(L)/Aα,β,γ → H∗(L
′)/Af∗(α),f∗(β),f∗(γ),

(2) M3(α, β, γ) is mapped to M3(f∗(α), f∗(β), f∗(γ)) under this map.

Corollary 2.40. Let f : L → L′ be a quasi-isomorphism of dg Lie algebras. For
all α, β, γ ∈ H∗(L) such that M3(α, β, γ) is non-empty, M3(α, β, γ) = 0 if and only
if M3(f∗(α), f∗(β), f∗(γ)) = 0.

Proof. For a quasi-isomorphism f the induced map of Lemma 2.39 (1) is an iso-
morphism. �

Proposition 2.41. Let L be a dg Lie algebra. If L is formal then M3 vanishes on
L.

Proof. When L is formal, there is a zig-zag of quasi-isomorphisms L
'←− · · · '−→

H∗(L). By Lemma 2.38 M3 vanishes on H∗(L), and by Corollary 2.40 we get that
M3 also vanishes on L. �

Proposition 2.42. Let L be a dg Lie algebra, and denote by `3 the ternary opera-
tion on H∗(L) transferred from L along some choice of contraction. If M3(α, β, γ)
is non-empty for α, β, γ ∈ H∗(L) then

`3(α, β, γ) ∈M3(α, β, γ).

Proof. Let α, β, γ ∈ H∗(L) be such that M3(α, β, γ) is non-empty, and let

Lk <<
q // H∗(L)
i

oo

be a contraction.
Recall the explicit formula (5) for `3 on H∗(L), and note that all higher opera-

tions are zero on L. We insert

l3(α, β, γ) = q ◦ (−[k[i(α), i(β)], i(γ)] + (−1)|α|[i(α), k[i(β), i(γ)]]

+(−1)|β||γ|[k[i(α), i(γ)], i(β)]),

and make the choices

x = i(α), y = i(β), z = i(γ)

s = k[i(β), i(γ)], t = k[i(α), i(β)] and u = k[i(α), i(γ)].

Using the fact that [i(β), i(γ)] is a cycle and thus dk[i(β), i(γ)] = [i(β), i(γ)], we
check that ds = [y, z], and similarly that dt = [x, y] and du = [x, z]. Further, it is
easy to check that these choices exhibit l3(α, β, γ) on the form

(−1)|x|[x, s]− [t, z]− (−1)|x||y|+|y|[y, u].

�
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We conclude that the existence of a contraction such that the ternary trans-
ferred operation represents a non-zero class in some Massey bracket, is sufficient to
conclude non-formality.

2.5.5. Koszul Spaces. The term Koszul space is coined by Berglund in [2]. The
essentials for us are outlined below.

Theorem 2.43 (Berglund [2] Theorem 1.2). Let X be a simply connected space
such that H∗(X;Q) is of finite type. The following are equivalent:

(1) X is both formal and coformal.
(2) X is formal and the cohomology algebra H∗(X;Q) is a Koszul graded com-

mutative algebra.
(3) X is coformal and the homotopy Lie algebra π∗(ΩX)⊗Q is a Koszul graded

Lie algebra.

Definition 2.44. A Koszul space is a simply connected space X such that H∗(X;Q)
is of finite type, satisfying the equivalent conditions of Theorem 2.43.

Theorem 2.45 (Berglund [2] Theorem 1.3). Let X be a Koszul space with rational
homotopy Lie algebra L and cohomology algebra A. The Koszul dual graded com-
mutative algebra L! is isomorphic to A, and the Koszul dual graded Lie algebra A!

is isomorphic to L.

Corollary 2.46. Let X be a Koszul space with homotopy Lie algebra L and coho-
mology algebra A. Then

(1) L (A∨) is the minimal Quillen model for X.
(2) There is a surjective quasi-isomorphism

L (A∨)
∼−→ L,

corresponding to a twisting morphism κ : A∨ → L.

Proof. Let mX be a Sullivan model for X. Recall from section 2.2 that the bar and
cobar constructions form a Quillen equivalence, so L (m∨X) is a Quillen model for
X. Since X is formal the minimal model mX is quasi-isomorphic to the cohomology
A, and the functor L preserves all weak equivalences so in particular L (A∨) is the
minimal Quillen model for X.

That X is also coformal means that L (A∨) is quasi-isomorphic to L. We can do
better: A∨ is a Koszul coalgebra so the natural projection followed by the quotient
map is a surjective quasi-isomorphism of dg Lie algebras

L (A∨)
∼−→ (A∨)¡,

which corresponds to the twisting morphism κ as discussed in section 2.3. By
Theorem 2.45 we have (A∨)¡ ' L. �

The existence of this explicit surjective quasi-isomorphism is the special feature
of Koszul spaces upon which this thesis is build.

Remark 2.47 Recall from Theorem 2.15 that L is generated by some graded vector
space V , and that A is generated by the shifted dual (sV )∨. The twisting morphism
κ restricts to the canonical identification ((sV )∨)∨ ' V .
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2.6. Classification of fibrations. The classification of fibrations with a given
fibre is mainly due to Stasheff [36] and May [28].

Let X be a space homotopy equivalent to a finite CW-complex. Denote by
aut(X) the topological monoid of homotopy equivalences X → X, the homotopy
automorphisms of X. Let aut∗(X) denote the submonoid of base point preserving
maps.

The fibrations E → B with fibre homotopy equivalent to X are called X-
fibrations in the following. They are classified by B aut(X) in the following sense.
For any space B with the homotopy type of a CW-complex, the homotopy classes
of maps B → B aut(X) are in bijection with equivalence classes of X-fibrations
E → B, under the equivalence relation generated by fibre homotopy equivalences.

There exists a universal X-fibration EX → BX , and the bijection is realised
by pulling back along maps B → BX . The base BX is homotopy equivalent to
B aut(X).

In a similar way B aut∗(X) classifies fibrations with a section, and further, the
inclusion of monoids aut∗(X) → aut(X) induces a map B aut∗(X) → B aut(X)
which is equivalent to the universal X-fibration. See [28].

2.6.1. Lie algebra derivations. Having just discussed algebraic models for spaces,
it is natural to ask how the universal fibrations are modeled. We here outline an
answer by Schlessinger-Stasheff [33] in terms of Lie models. See also Tanré [38] for
a detailed account, and Berglund-Madsen [5] for a recent discussion and expansion.

Let f : L→M be a map of dg Lie algebras. An f -derivation θ, is a graded linear
map θ : L→M , such that

θ([x, y]) = [θ(x), f(y)] + (−1)|θ||x|[f(x), θ(y)].

The graded vector space of f -derivations is denoted by Derf (L,M), and it naturally
is a subcomplex of Hom(L,M).

If M = L and f is the identity on L, we write DerL and simply call elements
derivations on L. The chain complex DerL has the structure of a dg Lie algebra,
with the bracket given by the graded anti-symmetrized composition of maps. I.e.
for θ, θ′ ∈ DerL,

[θ, θ′] = θ ◦ θ′ − (−1)|θ||θ
′|θ′ ◦ θ.

The Jacobi identity implies that the map adx : L→ L given by adx(y) = [x, y] is a
derivation on L. The map ad: L → DerL, mapping x to adx is a morphism of dg
Lie algebras, and the image is a Lie ideal. The quotient DerL/ adL is thus a dg
Lie algebra, denoted OutL for outer derivations on L.

We may also consider the mapping cone (homotopy cofibre) of the map ad: L→
DerL, denoted by DerL// adL. This can also be equipped with a graded Lie
bracket. As a graded vector space it is the direct sum DerL⊕ sL. The bracket and
differential are extensions of those on the derivations by

[θ, sx] = (−1)|θ|sθ(x), [sx, sy] = 0

d(sx) = adx−sdL(x),

for θ ∈ DerL and x, y ∈ L.
For a dg Lie algebra L with a free underlying graded Lie algebra, the positive

part (DerL// adL)+ is the Schlessinger-Stasheff classifying dg Lie algebra for L. It
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classifies fibrations of Lie algebras with fibre L in way analogous to how B aut(X)
classifies fibrations of spaces with fibre X. Even better:

Theorem 2.48 (Cf. Tanré [38] Corollaire VII.4(4)). Let X be a simply connected
space homotopy equivalent to a finite CW-complex. If L is a Quillen model for X,
then the 1-connected cover of the map induced by inclusion of monoids

B aut∗(X)〈1〉 → B aut(X)〈1〉
is modeled by the map of dg Lie algebras

(Der L )+ → (Der L // ad L )+

given by the inclusion of the derivations.

3. Transferred L∞-structure

The Lie model produced by Schlessinger-Stasheff and Tanré is fine for theoretical
purposes, but it is very large. Quillen models are large in the first place, and taking
the derivation Lie algebra on a Quillen model does not help this. In the case of
homotopy automorphisms on a Koszul space we produce a much smaller L∞-algebra
which retains all the information of the larger model. This can be achieved due to
the formality properties of Koszul spaces.

In this section we produce the smaller model, and study the L∞-structure. The
first part of this section sets up contractions and isomorphisms needed. The second
part specializes to the case of interest: Koszul algebras. The third part is mostly
technical. There are several gradings on the objects we study, and in the third part
we record how these interact with the maps set up. This leads to the fourth part
where we record some fairly immediate consequences as to how the L∞-structure
interacts with one of the gradings. This has interesting consequences for deciding
formality of the model.

3.1. Induced contractions. In this section we reduce the study of the derivations
Der L (C) to the study of a twisted version of the complex C∨⊗L by basic pertur-
bation theory, and application of a standard isomorphism. There is little novelty
in this, and some of the proofs are skipped.

Definition 3.1. Let A be a dg commutative algebra, and L a dg Lie algebra. The
chain complex A⊗L is equipped with a graded Lie bracket making it a dg Lie algebra.
The bracket is given by

[a⊗ x, b⊗ y] = (−1)|b||x|ab⊗ [x, y],

for a, b ∈ A and x, y ∈ L.
For any Maurer-Cartan element in this dg Lie algebra τ ∈MC(A⊗L), we have

the twisted differential dτA⊗L = dA⊗L + adτ , and write A⊗τ L for the resulting dg
Lie algebra (in this way A ⊗ L equals A ⊗0 L - the dg Lie algebra twisted by the
Maurer-Cartan element 0).

Let the following be a contraction of dg Lie algebras

Mh 88
f // L.
g
oo(7)

That is, L and M are dg Lie algebras, f is a quasi-isomorphism of dg Lie algebras,
g is a chain map and h a chain homotopy, such that fg = 1L and dh+hd = gf−1L.
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We may assume that hg = 0, h2 = 0 and fh = 0. Note that g and h are in general
not Lie maps.

Lemma 3.2. Given a graded commutative algebra A, a contraction (7) of dg Lie
algebras and a Maurer-Cartan element τ ∈ MC(A ⊗M) such that A is nilpotent,
there is an induced contraction of chain complexes

A⊗τ Mh′ ;;
1⊗f // A⊗(1⊗f)(τ) L,
g′

oo

where

(1) 1⊗ f is a quasi-isomorphism of chain complexes,
(2) g′ is given by the recursive formula g′ = 1⊗ g + (1⊗ h) adτ g

′,
(3) h′ is given by the recursive formula h′ = 1⊗ h+ h′ adτ (1⊗ h).

These formulae converge because A is nilpotent.

For most of our applications A will be a finite dimensional Koszul algebra (see
Remark 3.7 though), and thus nilpotent. See [1] for a discussion of weaker assump-
tions which may be adapted to our situation.

Proof. The contraction (7) induces a contraction

A⊗M1⊗h <<
1⊗f // A⊗ L.
1⊗g

oo

By the Basic Perturbation Lemma [8, 18] we obtain a new contraction

A⊗τ Mh′ ;;
f ′ // (A⊗ L, 1⊗ dL + t′),
g′

oo

where the maps are defined by the recursive formulae

f ′ = 1⊗ f + f ′ adτ (1⊗ h)

g′ = 1⊗ g + (1⊗ h) adτ g
′

h′ = 1⊗ h+ h′ adτ (1⊗ h)

t′ = f ′ adτ (1⊗ g).

Since f is a morphism of Lie algebras we have for any a⊗m ∈ A⊗M
(1⊗ f) adτ (1⊗ h)(a⊗m) = ad(1⊗f)τ a⊗ fh(m),

and as fh = 0 we get f ′ = 1⊗ f . Further for any a⊗ l ∈ A⊗ L we get

t′(a⊗ l) = (1⊗ f) adτ (1⊗ g)(a⊗ l) = ad(1⊗f)(τ)(a⊗ l),

so that t′ = ad(1⊗f)(τ). �

Proposition 3.3. Let C be a dg coalgebra, L a dg Lie algebra, and let Hom(C,L)
denote the convolution dg Lie algebra. The map

ϕ : C∨ ⊗ L→ Hom(C,L),

given by

ϕ(f ⊗ x)(c) = (−1)|c||x|f(c)x,

is a map of dg Lie algebras with respect to the structure of Definition 3.1 on the
left hand side, natural in C and L. If C and L are of finite type and either C∨ and
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L are either both bounded above or both bounded below, then ϕ is an isomorphism
(if either C or L is finite, the other need just be of finite type for ϕ to be an
isomorphism).

For any Maurer-Cartan element τ ∈ MC(C∨ ⊗ L), the same formula defines a
map

ϕ : C∨ ⊗τ L→ Hom(C,L)ϕ(τ)

with the same properties.

The inverse to ϕ is given by sending a map f : C → L to the expression∑
i

(−1)|ci|(|f |+|ci|)c∗i ⊗ f(ci),

where we have chosen a basis {ci} for C, and {c∗i } is the dual basis for C∨. Note
that this is a finite sum if either C is finite dimensional or if C∨ and L both bounded
above or both below.

Remark 3.4 We will need Proposition 3.3 to relate sA ⊗ L ' Hom(s−1C,L) in
which case the signs work out as follows. For sa⊗ x ∈ sA⊗ L,

ϕ(sa⊗ x)(s−1c) = (−1)|c||x|+|a|a(c)x.

For f ∈ Hom(s−1C,L),

ϕ−1(f) =
∑
i

(−1)|f ||sc
∗
i |+1sc∗i ⊗ f(s−1ci).

Proposition 3.5. Let (L, [−,−]L, dL) be a dg Lie algebra, and (C,∆C , dC) a coaug-
mented dg coalgebra. For any twisting morphism τ ∈ Tw(C,L), restriction to gen-
erators gives a natural isomorphism of chain complexes

ι∗ : Derf (L (C), L)
'−→ Hom(C,L)τ

of degree −1, where f corresponds to τ under the bijection of Proposition 2.7.

Proof. Clearly restriction gives an isomorphism of graded vector spaces. We must
show that ι∗ is a chain map of degree −1, i.e. that

ι∗(∂(θ)) = −∂τ (ι∗(θ))(8)

for any f -derivation θ.
Observe first that ι is a twisting morphism. That is, it satisfies

0 = ∂(ι) +
1

2
[ι, ι] = dL (C)ι+ ιdC +

1

2
[ι, ι].(9)

We expand the left hand side of (8) using (9)

ι∗(∂(θ)) = ι∗(dLθ − (−1)|θ|θdL (C))

= (−1)|θ|−1dLθι+ θdL (C)ι

= (−1)|θ|−1dLθι+ θ(−ιdC −
1

2
[ι, ι]).
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By definition of the bracket in the convolution Lie algebra, and the fact that θ is
an f -derivation, we get

ι∗(∂(θ)) = (−1)|θ|−1dLθι− θιdC − θ
1

2
[−,−]L(ι⊗ ι)∆C)

= −dLι∗(θ)− (−1)|θ|ι∗(θ)dC −
1

2
[−,−]L(θ ⊗ f + f ⊗ θ)(ι⊗ ι)∆C

= −∂(ι∗(θ))− 1

2
((−1)|θ|[ι∗(θ), τ ] + [τ, ι∗(θ)])

= −∂(ι∗(θ))− [τ, ι∗(θ)].

This is precisely −∂τ (ι∗(θ)), and we are done. �

A map of dg Lie algebras f : L→M induces a chain map

f∗ : DerL→ Derf (M,L).

Composing with ad gives a natural chain map L → Derf (M,L), and we may
consider the mapping cone

Derf (M,L)//(f∗ ◦ ad)(L),

which we just write Derf (M,L)//L for short.

Corollary 3.6. Let τ be a twisting morphism in Tw(C,L). Restriction to genera-
tors gives a natural isomorphism of chain complexes

Derf (L (C), L)//L
'−→ sHom(C,L)τ .

Proof. The isomorphism of 3.5 extends to a natural isomorphism of graded vector
spaces

φ : Derf (L (C), L)//L
'−→ sHom(C,L)τ ,

where φ(sx) for x ∈ L, is the (suspension of the) linear map which annihilates C
and on the counit is given by φ(sx)(1) = x. We check that this extension is still a
chain map. On one hand

∂τ (φ(sx))(1) = (∂(φ(sx)) + [τ, φ(sx)])(1)

= dLφ(sx)(1)− (−1)|φ(sx)|φ(sx)dC(1) + [τ(1), φ(sx)(1)]

= dL(x),

and

∂τ (φ(sx))(c) = (∂(φ(sx)) + [τ, φ(sx)])(c)

= −(−1)|φ(sx)|φ(sx)dC(c) + (−1)|c||x|[τ(c), φ(sx)(1)]

= (−1)|c||x|[τ(c), x],

for c ∈ C. On the other hand

φ(∂(sx))(1) = φ(adx f − sdL(x))(1)

= −dL(x),
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and

φ(∂(sx))(c) = φ(adx f − sdL(x))(c)

= φ(adx f)(c)

= (−1)|x|[x, f(s−1c)]

= (−1)|x|+(|c|+1)|x|+1[τ(c), x]

= (−1)|c||x|+1[τ(c), x]

The formula we have given is for a map to Hom(C,L)τ , and as such has degree −1.
Thus the calculation shows that φ is a chain map. �

Let C be a coaugmented dg cocommutative coalgebra and let L be a dg Lie
algebra, such that C or L is finite, or C∨ and L are both bounded above or both
bounded below. Write A := C∨. Observe that

Der L (C) = Derid(L (C),L (C)),

and that the identity on L (C) corresponds to ι ∈ Tw(C,L (C)) - the universal
twisting morphism from Section 2.2. By Proposition 3.3 and 3.5 respectively 3.6,
we get natural isomorphisms

Der L (C)
r // sHom(C,L (C))ι

ϕ−1

// sA⊗ϕ−1(ι) L (C)

Der L (C)//L (C)
r // sHom(C,L (C))ι

ϕ−1

// sA⊗ϕ−1(ι) L (C).

Combining these natural isomorphisms with the maps of Lemma 3.2, we get com-
mutative diagrams of complexes

sA⊗ϕ−1(ι) L (C)

'
��

1⊗f // sA⊗ϕ−1(τ) L

'
��

Der L (C)
f∗

// Derf (L (C), L)

respectively

sA⊗ϕ−1(ι) L (C)

'
��

1⊗f // sA⊗ϕ−1(τ) L

'
��

Der L (C)//L (C)
f∗

// Derf (L (C), L)//L.

Naturality ensures that (1 ⊗ f)(ϕ−1(ι)) = ϕ−1(τ). We will suppress the natural
isomorphism ϕ in the notation from here on.

Under the correspondence expressed by these diagrams, the contraction produced
in Lemma 3.2 is the same as in [5]. Notably, the positive parts of these diagrams
provide contractions of the Schlessinger-Stasheff classifying dg Lie algebra for dg
Lie algebra fibrations with kernels quasi-isomorphic to L (C).

There is no need to treat the case A (modeling B aut∗(X)〈1〉, cf. Theorem 2.48)
separately from the case with A (modeling B aut(X)〈1〉), as we may think of sA⊗κL
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as a subcomplex of sA⊗κ L, at least until we consider homology. Thus we proceed
with only the one case.

Remark 3.7 Lemma 3.2 illustrates the need forA to be nilpotent, and this assump-
tion on A is carried through the thesis until Section 4.3 where completely different
techniques are employed. Our application of Lemma 3.2 will be for M = L (C) and
f corresponding to the Koszul morphism κ of Section 2.3. Nilpotency of A may be
replaced by nilpotency of L as follows.

Sullivan [37] showed that Der MX is a Lie model for B autX〈1〉 for a simply
connected space X, when MX is the minimal Sullivan model for X. See also
Tanré [38]. For a Koszul space X the dual to the bar construction C (L)∨ is the
minimal Sullivan model for X. The injective quasi-isomorphism L¡ → C (L) (cf.
Section 2.3) gives rise to a contraction

C (L)∨h ::
f // A.
g

oo

If L is nilpotent, then for any Maurer-Cartan element τ ∈ MC(C (L)∨ ⊗ L) we get
an induced contraction

C (L)∨ ⊗τ Lh′ ::
1⊗f // A⊗(1⊗f)(τ) L.
g′

oo(10)

with formulae as in Lemma 3.2, now converging because L is nilpotent. Analogous
to above and what follows in the next section for Der L (C), we have an isomorphism
of dg Lie algebras

Der C (L)∨ ' C (L)∨ ⊗π L.

The L∞-structure transferred to sA⊗(1⊗f)(τ) L along (10) will be L∞-isomorphic
to the one we produce below, because there are quasi-isomorphisms such that

Der L (C)//L (C)
∼ //

∼
((

Der C (L)∨

∼
xx

sA⊗κ L

commutes (cf. proof of Theorem 4.22 for the top map). Thus everything goes
through in the case where L and not A is nilpotent.

3.2. Contractions for Koszul algebras. In this section we specialize the results
of the previous section to the setting of our primary interest, the case of Koszul
algebras.

Suppose that C Koszul coalgebra of finite type with Koszul dual graded Lie
algebra L, and that the twisting morphism τ from above is the morphism κ as
described in Section 2.3. Recall that C and L have zero differentials.

Lemma 3.8. Let C be a Koszul coalgebra of finite type with Koszul dual graded
Lie algebra L. The surjective quasi-isomorphisms f : L (C) → L associated to the
twisting morphism κ, gives rise to a contraction

L (C)h ::
f // L,
g

oo

where we may choose h and g to have the following properties:
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(i) the image of g is contained in the diagonal

DL = {x ∈ L (C) | `w(x) = `b(x)},

(ii) h preserves the total weight,
(iii) the contraction satisfies the annihilation conditions: fh = 0, hg = 0 and

h2 = 0.

We may illustrate the structure of L (C) and the above claims with the following
picture.

bracket length//

total weightOO

1

2

3

4

1 2 3 4

D
...

·
d
// ·

d
//

h
yy ·

d
//

h
yy ·

h
yy

·
d
// ·

d
//

h
yy ·

h
yy

·
d
// ·

h
yy

·

In the picture f is the quotient map to the cokernel of the right most differential
in each row and it is zero outside the diagonal. Since L is Koszul dual to C, it
is isomorphic to this cokernel. The diagonal is the free Lie algebra on s−1C(1),
and by Koszul duality each generator corresponds to a dual generator of L. The
quotient map f assigns to each generator of C(1) the dual generator of L.

Definition 3.9. For i ≥ 0, define the i’th offset diagonal

Di =

〈
x ∈ L (C) | x is homogeneous for `w and `b,

`w(x)− `b(x) = i

〉
.

We may illustrate these subspaces as follows

bracket length//

total weightOO

1

2

3

4

1 2 3 4

D0 = DD1D2D3

...

·
d
// ·

d
// ·

d
// ·

·
d
// ·

d
// ·

·
d
// ·

·

Observe that the differential lowers offset index by 1, i.e. d(Di+1) ⊆ Di for all i.
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Proof of Lemma 3.8. For point (i) recall that f is given by projection to D followed
by the quotient map to coker d. A section g of the quotient map D → coker d is
trivially a chain map, it is a section of f , and it has the desired property.

For point (ii) consider the bounded below chain complex

· · · d // D2
d // D1

d // D0
d // 0.

The maps f and g then gives rise to chain maps

· · · d // D2
d //

f2
��

D1
d //

f1
��

D0

f0
��

d // 0

· · · // 0 //

g2

OO

0 //

g1

OO

L //

g0

OO

0

which we also denote f and g. We now have a chain complex of vector spaces
(projective modules) D∗, and a diagram

D∗

∼ f

����
D∗

gf

99

1

DD

f
// L

where both gf and 1 are lifts of f along the surjective quasi-isomorphism f . The
standard proof of the fact that gf and 1 are then homotopic, proceeds by construct-
ing a homotopy.

First note that gf − 1 factors through ker f , so we may construct a homotopy
h : D∗ → ker f ∩D∗. That is, a family of maps hi : Di → ker f ∩Di+1 such that

dhi + hi−1d = gifi − 1i.(11)

We will do this such that and hi preserves the total weight and the annihilation
conditions are satisfied.

First set h−2 = h−1 = 0, since Di = 0 for i < 0. Clearly these maps preserve the
total weight and satisfy the annihilation conditions. Now for n ≥ 0 suppose that
we have constructed hi with the desired property for all i < n.

Consider the map gnfn−1n−hn−1d : Dn → ker f∩Dn. If we apply the differential
and use the fact that gf − 1 is a chain map together with the equation (11), we get

d(gnfn − 1n − hn−1d) = (gnfn − 1n)d− dhn−1d

= (gnfn − 1n)d− (gnfn − 1− hn−2d)d

= 0.

Thus gnfn−1n−hn−1d factors through the cycles Z(ker f∩Dn) which is exactly the
boundaries B(ker f ∩Dn) since f is a quasi-isomorphism. Then we get a diagram

(ker f ∩Dn+1)

d
����

Dn
gnfn−1n−hn−1d

//

hn

66

B(ker f ∩Dn)
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with a lift as indicated because Dn is a vector space (thus projective) and the
differential is surjective from ker f onto the boundaries. Such a lift is just a choice
of pre-images d−1((gnfn− 1n−hn−1d)(xj)) for a linear basis {xj} of Dn. The map
gnfn − 1n − hn−1d preserves the total weight by part (i) and the assumption on
hn−1, and since d preserves the total weight, we can always choose pre-images such
that hn preserves total weight.

Clearly we have fn+1hn = 0, and clearly hngn is zero for n > 0. Now h0g0 is a
lift of

(g0f0 − 10 − h−1d)g0 = (g0f0 − 10)g0 = 0,

along the differential. We may choose h0 to vanish on Im g0 without violating the
condition that h0 preserves total weight. Similarly hn+1hn is a lift of

(gn+1fn+1 − 1n+1 − hnd)hn = −hn − hndhn
= −hn − hn(gnfn − 1n − hn−1d)

= hnhn−1d,

along the differential. Inductively this is zero, and again we may choose hn+1 to be
zero on Imhn without violating the condition that hn+1 preserves total weight.

Finally hn then satisfies (11) for i = n and by construction the resulting homo-
topy h has the properties (ii) and (iii). �

Now the dg Lie structure on Der L (C)//L (C) induces one on sA ⊗ι L (C) by
the natural isomorphisms in Proposition 3.3 and Corollary 3.6. This is not the
same as the one from Definition 3.1. We denote the induced bracket by [−,−]Der

to remind our selfs that it comes from the derivations.
Suppose now that A is nilpotent. By Lemma 3.2 there are contractions along

which we may transfer the structure using the Homotopy Transfer Theorem for
L∞-algebras to get L∞-structures {`n} and {ln} as below

sA⊗ι L (C) // sA⊗κ L //oo H∗(sA⊗κ L).oo

[−,−]Der {`n} {ln}

Recall that the structure {`n} on sA ⊗κ L produced by the Homotopy Transfer
Theorem is obtained by composing maps according to decorations on rooted trees

g′ g′ g′ g′

[−,−]Der h′

[−,−]Der

[−,−]Der

1⊗ f

. . . , . . . ,

g′ g′ g′ g′

[−,−]Der h′ h′ [−,−]Der

[−,−]Der

1⊗ f

...

Since we transfer a dg Lie structure (no higher operations), we only need to consider
binary rooted trees as depicted above.
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It is easy to check that if we transfer the structure further along the contraction
to the homology

sA⊗κ Lk ;;
q // H∗(sA⊗κ L),
i

oo

we get the same result as we do by transferring the original one along the composed
contraction, and the resulting structure can be obtained by composing maps ac-
cording to the same trees where the decorations are changed so that g′ is replaced
by g′i, the homotopy h′ is replaced by h′ + g′k(1 ⊗ f), and finally (1 ⊗ f) at the
root of a tree is replaced by q(1⊗ f).

This prompts us to investigate what can be said about all of these maps in
general.

3.3. Contractions and gradings. The bracket length in L is well-defined since
there is a presentation with purely quadratic relations, cf. Theorem 2.15. Fix this
as weight grading for L in the following.

As mentioned in Example 2.10, there is a natural weight grading for a free graded
Lie algebra given by bracket length. The underlying graded Lie algebra of L (C)
is free, so we may choose the bracket length as a weight grading for this. This is
reflected in the notation: we refer to elements of bracket length q by L (q), and
elements in the subspace Di of bracket length q by Di(q).

The Koszul coalgebra C has a weight grading, and the dual algebra A = C∨ has
an induced weight grading A(p) = C(p)∨. This is clearly preserved by the induced
multiplication on A. We still assume that C or L is finite or that A = C∨ and L
are both bounded in the same direction.

Lemma 3.10 (Weight Lemma). The given maps f and ι, and the maps g and
h chosen as in Lemma 3.8, interact with the weight gradings of A,L and L as
follows. For p ≥ 0, q ≥ 1 and i ≥ 0,

f : L (q)→ L(q)

g : L(q)→ L (q)

h : Di(q)→ Di+1(q − 1)

ι : sA(p)⊗Di(q)→
⊕
m≥1

sA(p+m)⊗Di+m−1(q + 1).

Recall that we write ι as short hand for the map adι using the structure from
Definition 3.1.

Proof of Lemma 3.10. By construction of C ¡ ' L the bracket length in L corre-
sponds to that of L (C(1)) = D . Both f and g factor through the diagonal D .
Since h preserves total weight and raises the offset index for the diagonals, it lowers
bracket length by 1.

The map ι splits as a sum ι =
∑
m≥1 ιm, with one summand for each weight m

in a linear basis for A. The term ιm raises weight by m in A, bracket length by 1
in L (C), and raises total weight by m in L (C). �

In other words, f and g both preserve homological degree and weights (for both
L and C), and h increase homological degree by 1, decrease weight by 1 and
preserve the total weight. As observed in the proof above the map ι splits as a sum
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ι =
∑
m≥1 ιm. Each term ιm decrease homological degree by 1, increase weight in

A by m and in L by 1, and increase total weight m.
A consequence of the Weight Lemma is the following proposition, which we

mention for completeness even though the lemma itself is the key element in what
is to come after the proposition.

Proposition 3.11. The maps g′, h′ and 1⊗ f interact with the weight gradings of
A,L and L as follows. For p ≥ 0 and q ≥ 1,

1⊗ f : sA(p)⊗κ L (q)→ sA(p)⊗κ L(q)

g′ : sA(p)⊗κ L(q)→ sA(≥ p)⊗κ L (q),

h′ : sA(p)⊗κ L (q)→ sA(≥ p)⊗κ L (q − 1).

Proof. By Proposition 3.2 we can identify g′ and h′ from g, h and ι.

g′ =
∑
i≥0

((1⊗ h)ι)i(1⊗ g) and h′ =
∑
i≥0

((1⊗ h)ι)i(1⊗ h).(12)

The proposition now follows by combining these formulae with the Weight Lemma
(Lemma 3.10). �

Similar properties can be deduced for the maps in the contraction to the homol-
ogy.

Proposition 3.12. There is a contraction

sA⊗κ Lk ;;
q // H∗(sA⊗κ L),
i

oo

such that q and i preserve the weight grading in L and the homotopy k decreases
the weight by 1 in both A and L.

Proof. It is easy to check that the splittings as in Lemma 2.1, can be chosen such
that the contraction produced in that lemma has the desired properties. �

3.4. Transferred operations and gradings. Combining the findings of the pre-
vious section, we can work out how the transferred L∞-structure interacts with the
weight gradings. Theorem 3.18 of this section is the main technical theorem of the
thesis.

From here we may write L for short of L (C) for notational convenience. We
begin by giving a formula for the Lie bracket [−,−]Der on sA⊗ι L .

Definition 3.13. For a ∈ A and x ∈ L , denote by x ∂
∂a the unique derivation on

L (C) extending the linear map ϕ(sa⊗ x) : s−1C → L (C), given by

ϕ(sa⊗ x)(s−1c) = (−1)|c||x|+|a|a(c)x

(cf. Proposition 3.3).

Lemma 3.14. The Lie bracket on sA⊗κ L induced by the isomorphism

Der L //L ' sA⊗ι L

is given by

[sa⊗ x, sb⊗ y]Der =

 (−1)αsb⊗ x ∂
∂ay − (−1)βsa⊗ y ∂∂bx a, b ∈ A

(−1)|a|+|x|+1s1⊗ x ∂
∂ay a ∈ A, b ∈ A(0)

0 a, b ∈ A(0)

(13)
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for x, y ∈ L (C). The signs are given by

α = (|x|+ |a|)(|b|+ 1) + 1,

β = |x|(|y|+ |b|+ 1) + |a|.

Proof. Let {ci}i be a basis for C. The bracket [−,−]Der is by definition the com-
position

ϕ−1 ◦ [−,−] ◦ (ϕ⊗ ϕ).

For x, y ∈ L and basis elements a, b ∈ A we get

[sa⊗ x, sb⊗ y]Der =
∑
i

(−1)εsc∗i ⊗
[
x
∂

∂a
, y

∂

∂b

]
(s−1ci)(14)

where the sign is given by

ε =

(∣∣∣∣x ∂∂a
∣∣∣∣+

∣∣∣∣y ∂∂b
∣∣∣∣) |sc∗i |+ 1

= (|x|+ |a|+ |y|+ |b|)|sc∗i |+ 1,

according to Remark 3.4. We evaluate:[
x
∂

∂a
, y

∂

∂b

]
(s−1ci) =

(
x
∂

∂a
◦ y ∂

∂b
− (−1)(|x|+|a|+1)(|y|+|b|+1)y

∂

∂b
◦ x ∂

∂a

)
(s−1ci)

and see that first term is non-zero only if c∗i = b, and second term is non-zero only
if c∗i = a. Thus the sum (14) reduces to

(− 1)(|b|+1)(|x|+|y|+|a|)+1sb⊗ x ∂
∂a
◦ y ∂

∂b
(s−1b∗)

− (−1)(|x|+|a|+1)(|y|+|b|+1)+(|a|+1)(|x|+|y|+|b|)+1sa⊗ y ∂
∂b
◦ x ∂

∂a
(s−1a∗) =

(− 1)(|x|+|a|)(|b|+1)+1sb⊗ x ∂
∂a
y

− (−1)|x|(|y|+|b|+1)+|a|sa⊗ y ∂
∂b
x.

The result follows by extending linearly.
Let x, y, a be as above and now b = 1 ∈ A(0). Recall that ϕ(s1⊗ y) is the linear

map s−1C → L which is non-zero only on C(0) ' Q, and ϕ(s1⊗ y)(1) = sy. Thus

[−,−] ◦ (ϕ⊗ ϕ)(sa⊗ x⊗ s1⊗ y) =

[
x
∂

∂a
, sy

]
= (−1)|a|+|x|+1sx

∂

∂a
y,

by the definition of the bracket restricted to Der L ⊗ sL . The inverse ϕ−1 on sL
is given by sx 7→ s1⊗ x, so we get

[sa⊗ x, s1⊗ y]Der = (−1)|a|+|x|+1s1⊗ x ∂
∂a
y.

Finally for a = b = 1 ∈ A(0) we have [sx, sy] = 0, and thus

[sa⊗ x, sb⊗ y]Der = 0.

�
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Lemma 3.15. The bracket [−,−]Der interacts with the weight gradings of A and
L as follows. For p1, p2 ≥ 0 and q1, q2 ≥ 1

sA(p1)⊗ι L (q1)⊗ sA(p2)⊗ι L (q2)

[−,−]Der

��
sA(p1)⊗ι L (q1 + q2 − 1)
⊕sA(p2)⊗ι L (q1 + q2 − 1).

Proof. Without loss of generality we may assume that a, b, x, y in the formula (13)
each is presented by a single term which is a (bracketed) word in the generators
of A respectively L . Thus they are concentrated in a single weight each. The
composition y ∂∂b ◦ x

∂
∂a is given by,

y
∂

∂b
◦ x ∂

∂a
(s−1c) = (−1)|c||x|+|a|a(c)y

∂

∂b
(x)

and the recursive formula

y
∂

∂b
(x) =

{
(−1)|x||y|+|b|b(x)y x ∈ L (1) = s−1C

([y ∂∂b (x1), x2] + (−1)|y
∂
∂b ||x1|[x1, y

∂
∂b (x2)]) x = [x1, x2]

.

(15)

From this we see that the weight of y ∂∂b ◦ x
∂
∂a (c) is the sum of weights of x and

y minus 1. Further, all terms of (13) for which a(ci) = 0, vanish. Therefore all
the sc∗i appearing in the resulting sum will have the same weight as sa. The same
holds mutatis mutandis, for the other composition x ∂

∂a ◦ y
∂
∂b . �

Example 3.16 Let {ai} be a basis for A, and let {ci} be the dual basis for C. We
can then calculate the first term of the bracket [sa1 ⊗ [c1, c2], sa2 ⊗ [c1, [c2, c3]]]Der

(but leave out the signs):

sa1 ⊗ [c1, c2]
∂

∂sa2
[c1, [c2, c3]]

= sa1 ⊗
(

[[c1, c2]
∂

∂sa2
(c1), [c2, c3]] + [c1, [c1, c2]

∂

∂sa2
[c2, c3]]

)
= sa1 ⊗

(
[c1, [[c1, c2]

∂

∂sa2
(c2), c3]] + [c1, [c2, [c1, c2]

∂

∂sa2
(c3)]]

)
= sa1 ⊗ [c1, [[c1, c2], c3]].

Effectively we have scanned the word [c1, [c2, c3]] for occurrences of the letter a∗2 =
c2, and replaced it with the word [c1, c2].

Notice how sa1 is preserved in the first term, and that the bracket lengths in
L (C) goes from 2 + 3 = 5 in the input, to 4 = 5 − 1 in the output. The second
term is computed in the same way.

Definition 3.17. The complex sA ⊗κ L is bigraded by weight in A and L. The
shifted weight grading is the bigrading which in degree (p, q) is sA(p+1)⊗κL(q+1),
for p, q ≥ 0.

The differential κ has bidegree (1, 1) in the standard weight grading, and so also
in the shifted weight grading. This is a special case of the following theorem on the
entire L∞-structure.
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Theorem 3.18. Let C be a Koszul graded cocommutative coalgebra with Koszul
dual graded Lie algebra L, such that the linear dual A = C∨ is nilpotent. The L∞-
structure on sA ⊗κ L transferred from the derivations Der L (C)//L (C) through
the chosen contraction, respects the shifted weight grading in the sense that for any
r ≥ 1 the operation `r has bidegree (2− r, 2− r).

Recall that the r-ary operation of an L∞-algebra has homological degree r − 2,
so it is reasonable to say that the L∞-structure stated in the theorem respects the
grading. However there is no a priori connection to the homological grading in
what is discussed.

Proof of Theorem 3.18. We introduce yet another grading for sA ⊗ι L (C): the
mass m(sa⊗ x) of an element sa⊗ x is the total weight `w(x) of x in L (C) minus
the weight w(a) of a in A. We verify that h, ι and [−,−]Der preserve the mass
grading.

It straightforward to see that h and ι preserve the mass by Lemma 3.10. From
the formulae (13) and (15) we see that also [−,−]Der preserves the mass: in the
general case we get

m([sa⊗ x, sb⊗ y]Der) = (`w(x)− w(a)) + (`w(y)− w(b))

= (`w(x)− w(b) + `w(y))− w(a)

= (`w(y)− w(a) + `w(x))− w(b),

where second and third line is the mass of respectively first and second term of the
right hand side expression of (13) in the first case. The other cases are similar.

For f and g the total weight in L (C) agrees with the weight in L since f vanish
outside D0 and Im g is contained in this. Thus there is a natural way to speak
of the interaction of f and g with the mass grading, and in this sense they both
preserve it.

In particular, the maps 1 ⊗ f , g′ and h′ all preserve the mass grading. Now
consider the operation ⊗r

k=1 sA(pk)⊗κ L(qk)

`r

��
sA⊗κ L.

It is composed of maps which all preserve mass, as we have just verified. Then since
the weight grading of L coincides with the total weight grading on D0, we have for
any element x in the source that

A-weight of `r(x) = L-weight of `r(x)−mass of `r(x)

= L-weight of `r(x)−mass of x

The mass of x is
∑r
k=1 qk − pk, and by Lemma 3.20 below, the image `r(x) has

weight
∑r
k=1 qk − 2r + 3 in L. Thus the image `r(x) has weight

r∑
k=1

qk − 2r + 3−
r∑

k=1

(qk − pk) =

r∑
k=1

pk − 2r + 3

in A, and `r has bidegree (2− r, 2− r) in the shifted weight grading. �
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Remark 3.19 It is straight forward to check that none of the maps defining the
transferred operations decrease the weight in A. Thus the condition

∑r
k=1 pk ≥

2r − 3 gives a lower bound on the weight in A for where `r is non-zero. E.g. `3
restricted to A(1)⊗L is zero: in the shifted weight grading it is an operation from
three copies of weight (0, ∗) to weight (−1, ∗), but then one of the maps defining `3
would have lowered the weight in A.

Lemma 3.20. For r ≥ 1 the operation `r on sA ⊗κ L, interacts with the weight
grading of L as follows ⊗r

k=1 sA⊗κ L(qk)

`r

��
sA⊗κ L(

∑r
k=1 qk − 2r + 3).

Proof. By the Homotopy Transfer Theorem `r is given by composing along binary
rooted trees with r leaves, decorated by maps as established earlier. For each
vertex we apply the bracket, and for each internal edge we apply the homotopy.
Both decrease bracket length in L by 1 and there are (r − 1) + (r − 2) = 2r − 3
vertices and internal edges. The other maps do not change the bracket length in
L or L. �

If we consider only the transferred binary operation we get the following.

Corollary 3.21. Consider the graded anti-commutative (non-associative) algebra
(sA⊗ L, `2). Then:

(1) sA⊗κ L(1) is a subalgebra of sA⊗κ L,
(2) sA⊗κ L(j) is a module over sA⊗κ L(1) for j ≥ 0,
(3)

⊕
j≥m sA⊗κ L(j) is a subalgebra of sA⊗κ L for all m ≥ 0.

(4) sA(1)⊗κ L is a subalgebra of sA⊗κ L,
(5) sA(i)⊗κ L is a module over sA(1)⊗κ L for i ≥ 0,
(6)

⊕
i≥m sA(i)⊗κ L is a subalgebra of sA⊗κ L for all m ≥ 0.

4. On homology

Having produced a smaller L∞-model for the cover of the classifying space of the
homotopy automorphisms, with some knowledge of the structure, we now proceed
to investigate what can be said in general about the L∞-structure on the homology
of the model.

We begin the section by noticing that Theorem 3.18 and Corollary 3.21 carries
over to homology. Then we give a “Recognition Proposition”, identifying a small
part of the homology in terms of derivations, not on the Quillen model of the
underlying Koszul space, but on the homotopy Lie algebra.

Having identified the derivations, we use the homology version of Corollary 3.21
to write the positive part of the homology H>0(A ⊗κ L) as an extension of the
derivations, and we establish sufficient conditions for coformality of B autX〈1〉,
which can be verified immediately, and provide examples.

Finally we investigate the homology in degree zero, which is a separate story
entirely. We have two ways of approaching this, and have dedicated one subsection
to each below. The first relies on work by Block-Lazarev [6], and lets us state
similar results for a Lie algebra associated to π0 autX as we have for the higher
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homotopy groups. The second approach is by studying a Kan complex associated
to the Maurer-Cartan elements of A ⊗ L. Hinich [19] and Getzler [15] have both
studied this Kan complex, and Berglund [3] and Buijs-Félix-Murillo [9] have used
it as a model for mapping spaces.

Notation 4.1 Denote the differential on sA⊗κL by κ. It increases weight in both
factors by 1, and so it is convenient to restrict κ to certain weight components. We
will denote by κi the restriction of κ to sA(i)⊗κ L, and set

Hi(sA⊗κ L)∗ := kerκi/ Imκi−1.

Similarly we define κj to be the restriction of κ to sA⊗κ L(j), and set

Hj(sA⊗κ L)∗ := kerκj/ Imκj−1.

Both Hi(sA⊗κ L)∗ and Hj(sA⊗κ L)∗ are graded vector spaces, and ∗ is a place-
holder for the homological grading, not to be confused with gradings induced from
the weight gradings of A and L. We omit i respectively j from the notation if no
restriction is made, so that H(sA⊗ L)∗ := H∗∗ (sA⊗ L)∗.

Corollary 4.2. The L∞-structure on H(sA⊗κL)∗ transferred from the derivations
Der L //L , respects the shifted weight grading in the sense that for any r ≥ 1 the
operation `r has bidegree (2− r, 2− r).

Proof. The maps to and from homology i, q preserve weights and so also the shifted
weight. The contracting homotopy k decreases weights by 1, and the result follows
from counting homotopies appearing in the tree formulae for operations transferred
from sA⊗κ L to H(sA⊗κ L)∗. �

Thus Corollary 3.21 is also valid once we pass to homology.

Corollary 4.3. Consider the graded Lie algebra (H(sA⊗κ L)∗, l2). Then:

(1) H1(sA⊗κ L)∗ is a Lie subalgebra of H(sA⊗κ L)∗,
(2) Hj(sA⊗κ L)∗ is a Lie module over H1(sA⊗κ L)∗ for j ≥ 0,
(3)

⊕
j≥mHj(sA⊗κ L)∗ is a Lie subalgebra of H(sA⊗κ L)∗ for all m ≥ 0.

(4) H1(sA⊗κ L)∗ is a Lie subalgebra of H(sA⊗κ L)∗,
(5) Hi(sA⊗κ L)∗ is a Lie module over H1(sA⊗κ L)∗ for i ≥ 0,
(6)

⊕
i≥mH

i(sA⊗κ L)∗ is a Lie subalgebra of H(sA⊗κ L)∗ for all m ≥ 0.

The L∞-structure on the homology ultimately comes from derivations on L (C),
so it should perhaps not surprise that we are able to recognize derivations on L as
part of the homology.

Proposition 4.4 (Recognition Proposition). Consider the dg anti-commutative
algebra (sA⊗κ L, `2). The map F : DerL→ sA⊗ L given by

F (θ) =
∑
i

(−1)|sai||θ|+1sai ⊗ θ(αi)

where {ai} is a linear basis for A(1), and {αi} the dual basis for L(1), induces
isomorphisms of graded Lie algebras

(1) DerL ' kerκ1, and
(2) adL ' Imκ0.

Further, kerκ0 ' sZ(L) the suspension of the centre of L.
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It follows directly from the proposition that

H0(sA⊗κ L)∗ ' sZ(L), and H1(sA⊗κ L)∗ ' DerL/L = OutL.

Before we prove this we will need some notation and a lemma.
Recall from Theorem 2.15 that L has a presentation L = L(V )/(R), and that

the Koszul dual commutative algebra has a presentation A = Λ((sV )∨)/(R⊥). In
particular we may take A(1) = (sV )∨. Let f : L(V )→ L denote the quotient map.
Then f∗ : DerL → Derf (L(V ), L) is injective, and the formula for F defines an
isomorphism of graded vector spaces

F ′ : Derf (L(V ), L)→ s(sV )∨ ⊗ L.
Since κ = (1⊗ f)(ι) we get the formula

κ1(sa⊗ x) =
∑
i

(−1)|αi||a|+1saia⊗ [αi, x], a ∈ A(1), x ∈ L

where {ai} is a basis for A(1) and {αi} the dual basis for L(1). The same formula
also defines a map

(κ1)′ : s(sV )∨ ⊗ L→ sΛ2(sV ∨)⊗ L.

Lemma 4.5. An f -derivation θ′ is in the image of f∗ if and only if (κ1)′F ′(θ′) is
in sR⊥ ⊗ L.

Proof. The pairing

〈 , 〉 : Λ2(sV ∨)⊗ L2(V )→ Q
of Theorem 2.15 induces a map

sΛ2(sV ∨)⊗ L⊗ L2(V )
p //

symm.⊗1

��

sL

sL⊗ Λ2(sV ∨)⊗ L2(V ).

1⊗〈 , 〉

66

The expression

(κ1)′F ′(θ′) =
∑
i,j

(−1)|αj ||ai|+|sai||θ|sajai ⊗ [αj , θ
′(αi)](16)

is in sR⊥ ⊗ L if and only if

p((κ1)′F ′(θ′)⊗ λ) = 0,

for all λ =
∑
k,l λk,l[αk, αl] in R ⊆ L2(V ). Using the following properties:

• the pairing is given by the formula

〈ab, [α, β]〉 = (−1)|b||α|+|a|+|α|〈a, α〉〈b, β〉 − (−1)|α||β|+|b||β|+|a|+|β|〈a, β〉〈b, α〉,

• without loss of generality we assume that λk,l = (−1)|αk||αl|+1λl,k,
• θ′ is an f -derivation,

we compute

p((κ1)′F ′(θ′)⊗ λ) = 2
∑
i,j

(−1)|αi||θ|+(|αi|+|θ′|+|αj |)λi,js[αi, θ
′(αj)] = sθ′(λ)

to see that (16) is in sR⊥⊗L(V ) precisely when θ′ vanishes on R and thus induces
a map L→ L. It is easy to check that this map is a derivation. �
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Proof of the Recognition Proposition 4.4. Consider the commutative diagram

0

DerL �
� F //� _

f∗

��

sA(1)⊗ L κ // sA(2)⊗κ L

OO

Derf (L, L)
'
F ′
// sA(1)⊗ L κ′ //

''

sΛ2sV ∨ ⊗ L

OO

sR⊥ ⊗ L

OO

0

OO

where the right column is exact. By Lemma 4.5 an f -derivation θ′ maps to sR⊥⊗L
if and only if it comes from a derivation θ on L. By exactness F (θ) is in the kernel
of κ. On the other hand, suppose x is in the kernel of κ. Then by exactness the
f -derivation F ′−1(x) maps to sR⊥ ⊗ L, and by Lemma 4.5 there is derivation ψ
such that F (ψ) = F ′F ′−1(x) = x.

Therefore we get an isomorphism of graded vector spaces F : DerL
'−→ kerκ1.

Even better, in [5] it is shown that there is an L∞-morphism ψ, such that the left
triangle of the following diagram commutes,

Der L
f∗ // Derf (L , L)

' // sA⊗κ L

DerL

ψ

ff

f∗

OO

F

88

.

In particular f∗ extends to an L∞-morphism when Derf (L , L) is given the trans-
ferred L∞-structure, and so is a map of graded Lie algebras on homology. The right
triangle also commutes. Indeed by Remark 3.4 we get

ϕ−1rf∗(θ) = ϕ−1(θf |s−1C) =
∑
i

(−1)|sai||θ|+1sai ⊗ θ(αi) = F (θ),

where ϕ is the isomorphism of Proposition 3.3, and r denotes restriction to genera-

tors. Thus F : DerL
'→ kerκ1 is even an isomorphism of graded Lie algebras. Note

here that even though we are only considering sA⊗L as a graded anti-commutative
algebra, the elements in kerκ1 do satisfy the Jacobi identity.

For point (2), we identify of image and kernel of κ0, again using that κ =
(1⊗ f)(ι). For x ∈ L,

F (adx) =
∑
i

(−1)|sai||x|+1sai ⊗ [x, αi] =
∑
i

sai ⊗ [αi, x] = κ0(s1⊗ x)

Therefore the image of κ0 is F (adL), isomorphic to the inner derivations on L, and
the kernel is obviously the centre of L suspended. �

A direct consequence of Corollary 4.3 is the following proposition.
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Proposition 4.6. The exact sequence of graded vector spaces

0 −→ H≥2(sA⊗κ L)∗ −→ H(sA⊗κ L)∗ −→ H≤1(sA⊗κ L)∗ −→ 0,(17)

is a split extension of graded Lie algebras with brackets given by the transferred
operation l2.

By the Recognition Proposition 4.4 we know the right term as a graded vector
space:

H≤1(sA⊗κ L)∗ ' DerL/ adL⊕ sZ(L),

and from Corollary 4.3 we know that sZ(L) is a Lie module over DerL/ adL.
There is a similar split extension for H(sA ⊗κ L)∗, and it follows from the

Recognition Proposition 4.4 that

H≤1(sA⊗κ L)∗ ' DerL.

Remark 4.7 There is a Koszul dual story to the above. The proof of Proposi-
tion 4.4 can be dualized to yieldH1(sA⊗κL)∗ ' DerA. For the non-augmented case
we note that as a graded vector space H1(sA⊗κL)∗ is a direct sum of H1(sA⊗κL)∗
and the kernel of κ1 : sA(0)⊗κ L(1)→ sA(1)⊗κ L(2). This last summand we may
identify as sZ(L)(1) := sZ(L) ∩ sL(1). It is an abelian Lie algebra, but in general
DerA may act non-trivially on it.

There is a split exact sequence of graded Lie algebras (with transferred bracket),
similar to (17)

0 −→ H≥2(sA⊗κ L)∗ −→ H(sA⊗κ L)∗ −→ H≤1(sA⊗κ L)∗ −→ 0.

In the next sections we investigate these extensions when A and L arise from a
Koszul space. We begin with positive homological degrees, and then proceed with
degree zero.

4.1. Positive homological part. Let X be a Koszul space with nilpotent coho-
mology algebra A and homotopy Lie algebra L. The Schlessinger-Stasheff classi-
fying Lie algebra models the homotopy automorphisms of X, and so far we have
produced a contraction of this model, whilst keeping track of the L∞-structure to
some extent. The content of this is that the homology H(sA ⊗κ L)>0 computes
π>0(autX) ⊗ Q as a graded vector space, and the minimal L∞-structure on the
homology is compatible with the graded Lie structure on rational homotopy.

Theorem 4.8 (Structure Theorem). Let X be a Koszul space with nilpotent coho-
mology algebra A and homotopy Lie algebra L. There are split extensions of graded
Lie algebras

0 −→ H≥2(sA⊗κ L)>0 −→ π>0(aut∗X)⊗Q −→ (DerL)>0 −→ 0

0 −→ H≥2(sA⊗κ L)>0 −→ π>0(autX)⊗Q −→ (DerL/ adL)>0 n sZ(L) −→ 0,

and according to Remark 4.7,

0 −→ H≥2(sA⊗κ L)>0 −→π>0(aut∗X)⊗Q −→ (DerA)>0 −→ 0,

0 −→ H≥2(sA⊗κ L)>0 −→π>0(autX)⊗Q −→ (DerA)>0 n sZ(L)(1) −→ 0.

Proof. Combining Proposition 4.6 with the above observations regarding the Recog-
nition Proposition 4.4, and with Corollary 4.2 we get the first extension. For the
second extension, recall that H0(sA⊗ L)∗ is identified with the centre of L which



51

is concentrated in positive homological degrees. By Corollary 4.2 the centre is a
Lie module for DerL/ adL.

The last two extensions are similarly produced by using Remark 4.7. �

Corollary 4.9. Let X be a Koszul space with nilpotent cohomology algebra A and
homotopy Lie algebra L, for which H≥2(sA⊗κ L)>0 = 0. Then

(1) π>0(aut∗X)⊗Q ' (DerL)>0, and B aut∗X〈1〉 is coformal,
(2) π>0(autX)⊗Q ' (DerL/ adL)>0 n sZ(L), and B autX〈1〉 is coformal if

L has no centre.

Proof. The isomorphisms of graded Lie algebras are direct consequences of The-
orem 4.8. All higher operations of the L∞-structure on π>0(aut∗X) ⊗ Q vanish
because they respect the shifted weight grading and H∗(sA⊗L)>0 is concentrated
in weight ∗ = 1.

In the second case we recall that H1(sA⊗κ L)∗ corresponds to DerL/ adL and
H0(sA⊗κ L)∗ corresponds to sZ(L). There is a priori the option for the operation
l3 to go from three copies of bidegree (0, ∗) to bidegree (−1, ∗) in the shifted weight
grading, but if the centre is zero this operation is then also zero. It is easy to see
that even higher operations also vanish by the same reasoning. �

Corollary 4.10. Let X be a Koszul space with nilpotent cohomology algebra A and
homotopy Lie algebra L, for which H≥2(sA⊗κ L)>0 = 0. Then

(1) π>0(aut∗X)⊗Q ' (DerA)>0, and B aut∗X〈1〉 is coformal,
(2) π>0(autX) ⊗ Q ' (DerA)>0 n sZ(L)(1), and B autX〈1〉 is coformal if

sZ(L) ∩ L(1) = 0 (in particular if L has no centre).

The proof is analogous to that of Corollary 4.9, but easier as L(0) = 0. Several
interesting examples arise from these corollaries. In particular when considering
Poincaré duality spaces. We first give an example which do not rely on Poincaré
duality.

Example 4.11 Let X be a connected space of finite Q-type. Then the suspension
ΣX is rationally equivalent to a wedge of, say n, spheres, and thus a Koszul space
with trivial cohomology algebra generated by the reduced cohomology. The homo-
topy Lie algebra is free on the n dual generators, and we write it L = L(x1, . . . , xn).
In particular H≥2(sA⊗κ L)∗ = 0, and Corollary 4.9 states that

π>0(aut∗ΣX)⊗Q ' (DerL)>0,

and B aut∗(ΣX)〈1〉 is coformal. If n > 1 then there is no centre for the free Lie
algebra, so

π>0(aut ΣX)⊗Q ' (DerL/ adL)>0,

and B aut(ΣX)〈1〉 is coformal.
Note that the model by Sclessinger-Stasheff and Tanré is only slightly larger in

this case. It is obtained as follows. For each odd generator xi, add to to the free Lie
algebra a generator yi of degree 2|xi| − 1, and define a differential dL by mapping
[xi, xi] 7→ yi. Then the Schlessinger-Stasheff model is (DerL(x1, . . . , xn, yi, dL))+.
In particular the two models are equal if there are no odd generators, that is ΣX
is equivalent to a wedge of odd spheres.
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Lemma 4.12. Let X be a Koszul space which satisfies Poincaré duality. Let n
be the largest number such that such that A(m) = 0 for all m > n. Then A(n) is
generated by a single class ν, and with t = |ν| we have

Hn(sA⊗κ L)∗ ' (stL(1))∗.

Further, L(1) is concentrated in homological degrees less than |t|, so we get

Hn(sA⊗κ L)≥0 = 0.

Proof. By Poincaré duality there is a top cohomological degree d for A, and Ad is
generated by a single element ω. Suppose a non-zero element ν′ ∈ A(n) has degree
c < d. Then there is a non-zero element ρ ∈ Ad−c such that ν′ · ρ = ω. Since the
multiplication respects the weight grading in A, we have ρ ∈ A(0) and ω ∈ A(n).
For a Koszul algebra A(0) ' Q, and the multiplication A(0)⊗A(n)→ A(n) is just
scalar multiplication, so ν′ = ρ−1ω for ρ ∈ Q and thus A(n) is the 1-dimensional
graded vector space generated by ω.

It follows that the pairings A(p) ⊗ A(n − p) → A(n) ' Q for all 0 ≤ p ≤ n are
non-degenerate.

The complex A⊗κ L has the form

· · · // A(n− 1)⊗κ L
κn−1 // A(n)⊗κ L

κn // 0(18)

Set d = dimL(1). Let {αi} be a basis for L(1), and let {ai} be the dual basis for
A(1). Now choose a basis {bi} for A(n− 1) such that aibj = δijω, and denote the
homological degrees |bi| = hi for 1 ≤ i ≤ d. The complex (18) is then isomorphic
to

· · · // sh1L⊗ · · · ⊗ shdL ∂ // stL // 0

where ∂(ζ1, . . . , ζd) =
∑
i(−1)|bi||αi|[αi, ζi] for ζj ∈ shjL. The image of ∂ is then

st[L,L]. We may identify L(1) ' L/[L,L] since L is a Koszul Lie algebra, and the
first claim follows.

From the non-degenerate pairing A(1) ⊗ A(n − 1) → A(n) it also follows that
the homological degrees of the generators of A(1) are t− hi for 0 ≤ i ≤ d. Since L
is Koszul dual to A the generators of L(1) have homological degrees hi− t− 1, and
so stL(1) is concentrated in degrees hi − 1 < 0. �

Corollary 4.13. Let X be a Poincaré duality space which is also a Koszul space.
If the cup length of X is less than 2 then

(1) π>0(aut∗X)⊗Q ' (DerL)>0, and B aut∗X〈1〉 is coformal,
(2) π>0(autX)⊗Q ' (DerL/ adL)>0 n sZ(L), and B autX〈1〉 is coformal if

L has no centre .

Proof. Since the cup length for X is less than 2, we have A(n) = 0 and thus
Hn(sA⊗κ L)∗ = 0, for n > 2. By Lemma 4.12 also H2(sA⊗κ L)∗ = 0. The result
now follows from Corollary 4.9. �

With Corollary 4.13 we have recovered the result by Berglund-Madsen [5] that
highly connected manifolds (of sufficiently high rank and even dimension) have
coformal homotopy automorphism spaces. However there are no assumptions on
connectivity or parity of dimension in the present, only that it is Koszul and the
condition that all triple cup products vanish.
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Example 4.14 For n ≥ 1, let M be an n-connected manifold of dimension d ≤
3n+1. Then M is formal by [30], and the cohomology algebra has a natural weight
grading

A = A(0)⊕A(1)⊕A(2),

respected by the cup product. In particular the cup length is less than 2 (and it is
equal to 2 by Poincaré duality). If dimA(1) ≥ 2, then M is also coformal [30], and
Corollary 4.13 applies:

π>0(aut∗M)⊗Q ' (DerL)>0,

and B aut∗X〈1〉 is coformal, and

π>0(autM)⊗Q ' (DerL/ adL)>0 n sZ(L),

and B autX〈1〉 is coformal if L has no centre.
Further if dimA(1) ≥ 3, then there is no centre for the homotopy Lie algebra L,

as shown in [4]: A non-trivial centre for L implies that the Euler characteristic

χ(L) :=
∑

(−1)i dim ExtiUL(Q,Q)

is zero. Koszul duality implies that ExtiUL(Q,Q) ' A(i), so that

χ(L) = 2− dimA(1).

Examples of Koszul spaces which do not satisfy the conditions of Corollary 4.9
are H-spaces. Instead they satisfy the conditions of Corollary 4.10.

Example 4.15 Let X be a simply connected H-space. Then X is rationally equiv-
alent to a product of Eilenberg-MacLane spaces, and thus Koszul with abelian ho-
motopy Lie algebra L = L/[L,L] = L(1), and free cohomology algebra A. Now A
is in general not nilpotent, but L is (very much so) and by Remark 3.7 this is good
enough.

The differential κ is zero, so H(sA⊗κ L)∗ = sA⊗ L, and in particular

Hk(sA⊗κ L)∗ = sA(k)⊗ L 6= 0

for all k ≥ 0.
However, as observed L = L(1) in this case, so H≥2(sA ⊗κ L)∗ = 0 and by

Corollary 4.10 we get that

π>0(aut∗X)⊗Q ' (DerA)>0,

and B aut∗X〈1〉 is coformal, and

π>0(autX)⊗Q '
(
DerA)

)
>0

n sZ(L)(1).

We can not conclude coformality of B autX〈1〉 from Corollary 4.10 in this case,
but since the higher operations respect the shifted weight grading and L = L(1)
these must again all be zero, and B autX〈1〉 is indeed coformal.

Note again that Z(L)(1) = L(1) = L, and by Koszul duality L(1) ' (sA(1))∨,
so we have sZ(L)(1) ' A(1)∨. Any derivation is uniquely determined by its value
on A(1), and since A is free any map A(1) → A determines a derivation on A, in
particular A(1)∨ corresponds bijectively to derivations with values in A(0) ' Q.
Noting that any derivation on A is identically zero on A(0) we thus get(

DerA)
)
>0

nA(1)∨ ' (DerA))>0
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as a graded vector space, and the action of
(
DerA)

)
>0

on A(1)∨ corresponds pre-

cisely to the bracket on (DerA))>0, as can be checked simply by chasing through
the construction.

In this case where A is free, it is also the minimal Sullivan model for X so we
just recover the models for B aut∗X〈1〉 and B autX〈1〉 in terms of the minimal
Sullivan model for X, which are implicit in [33].

Note that if A is generated in a single degree then (DerA)>0 = 0, since a
derivation is determined by its value on generators and A is concentrated in negative
degrees. So for a simply connected H-space X with rational cohomology generated
in a single degree, the positive rational homotopy groups π>0(aut∗X) ⊗ Q are all
zero.

Example 4.16 Consider the simply connectedH-space S3. The rational homotopy
Lie algebra is abelian with a single generator α in degree 2, and the cohomology
algebra is free on a generator x in degree 3. The the complex sA ⊗κ L is then a
graded vector space generated by

s1⊗ α, and sx⊗ α,
in degrees 3 and 0 respectively, and the differential is trivial. The augmented version
sA ⊗κ L is the 1-dimensional graded vector space generated by sx ⊗ α in degree
zero. The positive part of sA ⊗κ L is thus zero, corresponding to the fact that
(DerA)>0 = 0. We get

π>0(aut∗ S
3)⊗Q = 0,

as we should expect, since πi(aut∗ S
3)⊗Q ' πi+3S

3 ⊗Q = 0 for i > 0.
The positive part of sA⊗κL is 1-dimensional generated by s1⊗α, corresponding

to the class sα ∈ sZ(L) = sL. We get

π>0(autS3)⊗Q ' sL,
a 1-dimensional graded vector space in degree 3. This is also what we should expect
from the long exact sequence in rational homotopy associated to the fibration given
by the evaluation map autS3 → S3:

0 = π3 aut∗ S
3 ⊗Q→ π3 autS3 ⊗Q→ π3S

3 ⊗Q→ π2 aut∗ S
3 ⊗Q = 0.

Remark 4.17 Suppose that X is a simply connected formal space such that L is
finite dimensional. Félix-Halperin [12] show that such an X is a so called “two-stage
space”: a simply connected space X such that the rationalisation XQ is the total
space of a principal fibration

K1 −→ XQ −→ K0,

for a pair of generalised Eilenberg-MacLane spaces K0 and K1, such that the inde-
composables of the homotopy Lie algebra L is identified with K0. One consequence
is that L has brackets of length at most 2, and there is a weight grading on L such
that L = L(1) ⊕ L(2) by separating the indecomposables and the decomposables.
If X is Koszul, then this weight grading realises L as a Koszul Lie algebra with
Koszul dual A = H∗(X;Q).

Our study of Koszul spaces such that L is finite dimensional thus reduces to
a study of formal and coformal two-stage spaces. The homotopy automorphisms
of formal two-stage spaces have previously been studied by Smith [35] by different
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methods, and without the condition of coformality. On the other hand, some formal
two-stage spaces are automatically Koszul as we explain below.

A two-stage space X is the total space of a principal fibration∏
n

K(Wn, n) −→ XQ −→
∏
n

K(Vn, n),

for some finite dimensional graded vector spaces V and W . The Sullivan minimal
model of X is given by MX = (Λ(V ∨)⊗Λ(W∨), dX) where the differential satisfies
dX(V ∨) = 0 and dX(W∨) ⊆ Λ(V ∨), and we may assume that the restriction
dX : W∨ → Λ(V ∨) is injective. Choose bases x1, . . . , xm for V ∨ and y1, . . . , yn
for W∨. Then dX(xi) = 0 and dX(yj) = Pj(x1, . . . xm), a polynomial which by
minimality has no linear terms.

The space X is formal if and only if the sequence P1, . . . , Pn is a regular sequence
in Λ(V ) - that is Pj is not a zero divisor in Λ(V )/(P1, . . . , Pj−1) for 1 ≤ j ≤ n.
Then X is Koszul if and only if Pj is quadratic for all j.

Remark 4.18 Let X be a Koszul space with finite dimensional homotopy Lie
algebra. Then X is a two-stage space as noted above. The complex sA⊗κ L then
takes the form

0 // sA⊗ L(1)
κ // sA⊗ L(2) // 0,

which is isomorphic to the complex produced by Smith [35]. As a special case of
Corollary 3.21 we reproduce his result that H2(sA ⊗κ L)>0 is an abelian ideal in
H(sA ⊗κ L)>0 ' π>0(autX) ⊗ Q, in the case where X is Koszul. In addition we
get that H1(sA⊗κ L)∗, and in particular H1(sA⊗κ L)>0, is a Lie subalgebra, and
that this Lie subalgebra supports no higher operations.

If the differential κ happens to be surjective in positive degrees, then B aut∗X〈1〉
is coformal by Corollary 4.10. If Z(L)(1) = 0 in addition, then B autX〈1〉 is
coformal, also by Corollary 4.10.

Theorem 4.19. Let X be a simply connected space with finitely generated coho-
mology A concentrated in even degrees, and let q be a homogeneous non-degenerate
quadratic form in the generators of A, such that

A ' Q[x1, . . . , xn]/(q).

Then there is an abelian extension of graded Lie algebras

H2(sA⊗κ L)>0 −→ π>0(autX)⊗Q −→ (DerA)>0,

where H2(sA ⊗κ L)>0 is 1-dimensional and identifies with the suspension of the
centre sZ(L), and an isomorphism of graded Lie algebras

π>0(aut∗X)⊗Q ' (DerA)>0,

and B aut∗X〈1〉 is coformal.

Note that q is homogeneous with respect to homological degrees when A as here
is the cohomology of a space, as opposed to just being a quadratic form.

Proof. A Sullivan model for X is given by (Λ(x1, . . . , xn, y), dy = q), so X is clearly
formal, and the homotopy Lie algebra is finite dimensional, in particular X is
also two-stage and it follows that X is coformal since q is quadratic, and from
Theorem 2.15 that L(2) is 1-dimensional.
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The only non-zero brackets of L are given by the pairings of generators from
q =

∑
cijxixj . I.e. if we denote the generators dual to xi by αi, then the non-zero

brackets are [αi, αj ] for i, j such that cij 6= 0 (and they are all linearly dependent).
The complex sA⊗κ L splits as a sum with summands

0 // sA(p)⊗ L(1)
κ // sA(p+ 1)⊗ L(2) // 0 .

for p ≥ −1. For p ≥ 0 the differential is surjective because q is non-degenerate.
Choose a basis {x̃i}i for A(1) such that q =

∑
i dix̃

2
i , and let {α̃i}i be the dual

basis for L(1). Notably the coefficients di need not be rational, so we tensor the
complex with R and show that κ is surjective as a linear map between real vector
spaces. Since κ is defined as a map between rational vector spaces, that is the case
if and only if κ is surjective as a linear map between rational vector spaces.

In the new basis κ is given by the adjoint action of
∑
i x̃i ⊗ α̃i. An element of

sA(p+ 1)⊗ L(2) is a linear combination of elements of the form

p+1∏
j=1

x̃ij ⊗ [α̃i1 , α̃i1 ] = ±κ

p+1∏
j=2

x̃ij ⊗ α̃i1


if p ≥ 1, and

x̃i1 ⊗ [α̃i1 , α̃i1 ] = ±κ (1⊗ α̃i1)

if p = 0. The same is true when restricting to the positive part of the complex.
For p = −1 the complex is just A(0)⊗ L(2) with no differentials, and the (posi-

tive) element s1⊗α spans the entire homology H2(sA⊗κL), where α is some choice
of basis for L(2).

The results now follow from the Structure Theorem 4.8 (note that α ∈ L(2)
spans the entire centre of L), and we conclude coformality using again that the
transferred structure respects the shifted weight grading.

�

Example 4.20 Let B be a space with rational cohomology free on finitely many
even generators

H∗(B;Q) ' Q[x1, . . . xn],

for example B = BG, the classifying space of a compact connected Lie group G.
Consider a sphere bundle

S2m−1 → X → B,

with an odd dimensional sphere. Then the cohomology of X is of the form

Q[x1, . . . xn]/(f)

where f is the Euler class of the bundle (cf. [14]), and X is Koszul if and only if f is
quadratic. If f is non-degenerate then Proposition 4.19 applies (f is homogeneous
of degree 2m).
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4.2. Degree zero. The connection between algebra and topology for us, has so far
been the Schlessinger-Stasheff classifying Lie algebra (Der L //L )+, but our study
has been of the non-truncated Lie algebra Der L //L .

It should not be surprising that there is information about π0 autX contained in
the non-truncated version. Here we compare it to the Harrison cohomology of a Sul-
livan model for X, which Block-Lazarev show is related to π0 autX. Block-Lazarev
use the term André-Quillen cohomology, which agrees with Harrison cohomology
in characteristic zero, but they define it using the Harrison complex.

4.2.1. Harrison cohomology. We introduce Harrison cohomology for dg algebras
following the definition of Block-Lazarev [6], and with sign conventions from Lo-
day [26]. For an associative graded algebra A we may consider the truncated
Hochschild complex

· · · // A⊗3 // A⊗2 // 0,

which we denote C(A,A), where the differential is defined as follows. For all n ≥ 3,
there are maps di : A

⊗n+1 → A⊗n given by

di(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an, 0 ≤ i < n

dn(a0 ⊗ · · · ⊗ an) = (−1)εnana0 ⊗ · · · ⊗ an,

with εn = |an+1|
∑n
j=0 |aj |. The differential of C(A,A) is given by

∑n
i=1(−1)idi.

For a dga A, the complex C(A,A) is a double complex. For all n ≥ 2, the
differential dA⊗n on A⊗n is defined as

∑n
i=1(−1)iδi, with δi : A

⊗n → A⊗n given by

δi(a0 ⊗ · · · ⊗ an) = (−1)|a0|+···+|ai−1|a0 ⊗ · · · ⊗ dA(ai)⊗ · · · ⊗ an, 0 ≤ i ≤ n

and the total differential on C(A,A) is then
∑n
i=0(−1)i(di − dA⊗n).

The shuffle product µ : C(A,A)⊗ C(A,A)→ C(A,A) is given by:

µ((a⊗ a1 · · · ⊗ an)⊗ (b⊗ an+1 ⊗ · · · ⊗ an+m))

=
∑
σ

(−1)εab⊗ aσ(1) ⊗ · · · aσ(n+m),

where σ runs through all (n,m)-shuffles, and the sign is given by

ε = |b|
n∑
i=1

|ai|+
∑
i<j

σ−1(i)>σ−1(j)

|ai||aj |.

If A is graded commutative then C(A,A) is a non-unital dg algebra over A with
the shuffle product, and the indecomposables

CHar
∗ (A,A) := C(A,A)/C(A,A)2

is the Harrison complex. This is what Block-Lazarev call the André-Quillen com-
plex.

Definition 4.21. For a dg commutative algebra A we define the complex

C∗Har(A,A) := HomA(CHar
∗ (A,A), A),

and the cohomology of this is Harrison cohomology, denoted H∗Har(A,A).
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The Harrison complex of a graded commutative algebra A comes equipped with a
Lie bracket. Block-Lazarev argues that one way to see this is to identify C∗Har(A,A)
with CoderCA the space of coderivations on the cofree Lie coalgebra on A, which
is naturally a dg Lie algebra.

The following theorem is also a direct consequence of Block-Lazarev [6], based
on work of Schlessinger-Stasheff [33].

Theorem 4.22. Let L be a Quillen model for a simply connected space X of
finite type. The dg Lie algebras Der L //L and C∗Har(C (L )∨,C (L )∨) are quasi-
isomorphic.

Proof. Schlessinger and Stasheff [33] (Theorem 3.17), show that for a dg Lie algebra
L such that the underlying graded Lie algebra is free there is a quasi-isomorphism

Der L //L
'−→ Coder C (L ).

If L is finitely generated in each degree, then dualizing gives an isomorphism

Coder C (L ) ' Der C (L )∨.

Now C∗Har(A,A) is isomorphic to CoderCA, and by Theorem 2.8(3) [6] the dg Lie
algebras DerA and CoderCA are quasi-isomorphic if A is cofibrant. Now apply
this for A = C (L )∨. If L is a Quillen model for a simply connected space X of
finite type, then C (L )∨ is a Sullivan model and in particular cofibrant, and the
underlying graded Lie algebra of L is free, so the result follows. �

Note that π0(autXQ) is a group. Sullivan [37] and Wilkerson [40] showed that
π0(autXQ) is linear algebraic group over Q if X is a finite CW-complex or has a
finite Postnikov tower. See Block-Lazarev [6] for a modern treatment. To avoid
introducing a lot of terminology from algebraic geometry, we refer the reader to
Hochschild [20] and Waterhouse [39] for details on algebraic groups and related
constructions. For us a linear algebraic group over Q is just a subgroup of GLn(Q)
for some n > 0, defined in terms of polynomial equations. E.g.

SL(n,Q) = {M ∈ GLn(Q) | detM = 1},
and the determinant of a matrix is a polynomial in the entries.

To any linear algebraic group G we may associate a Lie algebra Lie(G), which
retains a lot of information about G, but not all, as we here give a brief introduction
to. Again, see [20, 39] for definitions and properties of Lie(G) and what else follows.
In good cases the exponential power series converges and exp(Lie(G)) carries a
group structure given by the Baker-Campbell-Hausdorff formula:

x · y = log(exey)

= x+ y +
1

2
[x, y] +

1

12
([x, [x, y]] + [y, [y, x]])− 1

24
[y, [x, [x, y]]]− · · ·

for x, y ∈ L. See also [22] for details on this. There is a surjection from exp(Lie(G))
to the connected component of the identity element e of G in the Zariski topology,
and the kernel can be identified with π1(G, e). When working over Q, it is necessary
that G is nilpotent to qualify as a “good case”.

Theorem 4.23 (cf. [6] Theorem 3.4). Let X be a nilpotent CW complex which is
either finite or has a finite Postnikov tower, and let A denote a Sullivan model.
Then π0(autXQ) is a linear algebraic group, and the Lie algebra Lie(π0(autXQ))
is isomorphic to H0

Har(A,A).
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For Koszul spaces Theorem 4.22 and 4.23 combine to the following.

Proposition 4.24. Let X be a Koszul space with homotopy Lie algebra L and coho-
mology algebra A, such that A or L is finite. Then the Lie algebra Lie(π0(autXQ))
is isomorphic to H(sA⊗κ L)0 equipped with the transferred bracket.

The analogue to Theorem 4.8 then reads:

Theorem 4.25. Let X be a Koszul space with homotopy Lie algebra L and coho-
mology algebra A, such that A or L is finite. Then there are a split extension of
Lie algebras

0 −→ H≥2(sA⊗κ L)0 −→ Lie(π0(autXQ)) −→ (DerL)0 −→ 0,

0 −→ H≥2(sA⊗κ L)0 −→ Lie(π0(autXQ)) −→ (DerA)0 −→ 0.

Remark 4.26 For a simply connected space X we have π0(aut∗X) ' π0(autX),
and thus the same split extensions for aut∗X.

Example 4.27 We return to the examples of suspensions and H-spaces. Let X be
a connected space such that ΣX is simply connected and rationally equivalent to
wedge of spheres. The cohomology A of ΣX is a trivial graded algebra generated
by the reduced cohomology and H≥2(sA⊗κ L)∗ = 0. The homotopy Lie algebra of
ΣX is free, so we denote it L and Theorem 4.25 gives us

Lie(π0(aut ΣXQ)) ' (DerL)0.

If L is generated on the graded vector space V then (DerL)0 is in bijection with
linear maps V → L of degree zero.

Dually, if X is a simply connected H-space, then X is equivalent to a product
of Eilenberg-MacLane spaces. The cohomology A is free, and the homotopy Lie
algebra is abelian. In particular H≥2(sA⊗κ L)0 = 0, and Theorem 4.25 gives us

Lie(π0(autXQ)) ' (DerA)0.

If A is generated on V then (DerA)0 is in bijection with linear maps V → A of
degree zero.

In general π0(autXQ) is not nilpotent for a Koszul space X, so extracting in-
formation about it from Lie(π0(autXQ)) is not straight forward. We do know the
following.

Proposition 4.28. The Lie algebras H≥2(sA⊗κL)0 and H≥2(sA⊗κL)0 are nilpo-
tent if A or L is finite.

Proof. Suppose that A is finite. The transferred bracket on H(sA⊗κ L)∗ respects
the shifted weight grading, so H≥2(sA⊗κL)0 is nilpotent because there is a maximal
weight m for A such A(m) 6= 0. For H≥2(sA ⊗κ L)0, we note first that L is
concentrated in positive homological degrees, and since the transferred bracket
respects the shifted weight grading it also increases homological degree strictly in
the L factor. As A is finite and concentrated in non-positive homological degrees
it follows that H≥2(sA⊗κ L)0 is nilpotent.

The argument if L is finite is completely analogous. �

This proposition implies that the kernels of the extensions in Theorem 4.25
H≥2(sA⊗ L)0 and H≥2(sA⊗ L)0, correspond to normal subgroups of π0(autXQ)
by the Campbell-Baker-Hausdorff formula. It is also possible to identify a Lie
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subalgebra of the derivations which is nilpotent in both cases. This Lie subalgebra
is also a Lie ideal and the complement is the derivations which preserve the weight
gradings in L and respectively A. In both cases these are identified with degree
zero of the kernel of the restriction of κ:

ker(sA(1)⊗κ L(1)
κ−→ sA(2)⊗κ L(2))0.

This narrows down the problem of non-nilpotency, but as we shall see in Exam-
ple 5.11, we cannot expect to circumvent it entirely.

Instead we take a different approach to gain information about degree zero in
the next section.

4.3. Degree zero by simplicial methods. Consider A ⊗ L as a dg Lie algebra
with the structure given by Definition 3.1, and zero differential. Recall that a
Maurer-Cartan element of A⊗ L is a element τ ∈ (A⊗ L)−1 satisfying 1

2 [τ, τ ] = 0.
We may form the simplicial dg Lie algebra Ω• ⊗A⊗L, and consider the simplicial
set of Maurer-Cartan elements

MC•(A⊗ L) := MC(Ω• ⊗A⊗ L).

Proposition 4.29 ([3]). The simplical set MC•(A⊗L) is a Kan complex [15] and
it is homotopy equivalent to the space of maps Map(XQ, XQ). In particular there is
a bijection

[XQ, XQ] ' π0MC•(A⊗ L).

The path components are given by equivalence classes of Maurer-Cartan elements
in A ⊗ L, with the usual notion of equivalence in a Kan complex: τ and τ ′ are
equivalent if there is a 1-simplex γ such that d0γ = τ and d1γ = τ ′. A 1-simplex γ
is a Maurer-Cartan element in Ω1⊗A⊗L, and we recall the standard identification

Ω1 :=
Λ(t0, t1, dt0, dt1)

(t0 + t1 − 1, dt0 + dt1)
' Λ(t, dt),

where |ti| = |t| = 0 and |dti| = |dt| = 1 with the differential mapping ti to dti and
t to dt as suggested by notation. So γ can be identified with a polynomial γ(t, dt)
in the commuting variables t and dt where dt2 = 0 because |dt| is odd, and with
coefficients in A ⊗ L. Denote by αi the coefficient for ti, and by βj the coefficient
for tjdt. Since |γ| = −1 we get that |αi| = −1 and |βj | = 0 for all i, j. So we can
write

γ(t, dt) = α(t) + β(t)dt :=
∑
i

αit
i +
∑
j

βjt
jdt.

Recall that dA⊗L = 0. The Maurer-Cartan equation for γ expands to

0 =
1

2
[γ(t, dt)γ(t, dt)] + dγ(t, dt)

=
1

2
[α(t) + β(t)dt, α(t) + β(t)dt] + d(α(t)) + d(β(t)dt)

=
1

2
[α(t), α(t)] + [α(t), β(t)dt] +

d

dt
α(t).

The simplicial structure maps are then given by evaluating d0(γ) = γ(0, 0), and
d1(γ) = γ(1, 0), so by unfolding the definitions we get τ ∼ τ ′ if and only if there
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exist polynomials α(t) ∈ (A⊗ L)−1[t] and β(t) ∈ (A⊗ L)0[t] such that

[α(t), α(t)] = 0, [α(t), β(t)] = − d

dt
α(t), α(0) = τ, α(1) = τ ′.

Definition 4.30. The linear part of a Maurer-Cartan element τ ∈MC(A⊗L) is
the image of τ under the projection

π : A⊗ L� A(1)⊗ L(1).

We say that τ is linear if π(τ) = τ .

Proposition 4.31. Two Maurer-Cartan elements τ, τ ′ ∈ MC(A ⊗ L) are in the
same path component of MC•(A⊗L) only if their linear parts agree, that is π(τ) =
π(τ ′).

Proof. Suppose that τ ∼ τ ′. Then there exist polynomials α(t) and β(t) as above.
Write α(t) =

∑
αit

i and β(t) =
∑
j βjt

j . The equation [α(t), β(t)] = − d
dtα(t)

implies that

−(n+ 1)αn+1 =
∑
i+j=n

[αi, βj ], n ≥ 0(19)

from which we see that αn+1 is decomposable for n ≥ 0, and so has no linear part.
In particular the linear part of α0 = τ equals the linear part of

∑
i≥0 αi = τ ′. �

Choose a basis {ai}I for A(1), and let {αi}I denote the dual basis for L(1).
Then a linear Maurer-Cartan element has a presentation τ =

∑
i,j λijai ⊗ αj for

some λij ∈ Q. In this way an I×I matrix with Q-coefficients (λij) may represent a
Maurer-Cartan element. Such a matrix also represents a linear map A(1)→ A(1),
and a linear map L(1)→ L(1) since A(1) and L(1) are dual (up to a shift).

Proposition 4.32. The following are equivalent: an I×I matrix with Q-coefficients
represents

(1) a linear Maurer-Cartan element of A⊗ L,
(2) an endomorphism of A,
(3) an endomorphism of L.

The proof of the proposition uses the same techniques as the proof of the Recog-
nition Proposition 4.4. It is technical and with no separate interest, so we skip
it.

Proposition 4.33 (cf. Sullivan [37], and Neisendorfer-Miller [30]). For any space
X there are maps

π0(autXQ)→ autH∗(X;Q)(20)

π0(autXQ)→ aut(π∗(ΩX)⊗Q)(21)

by functoriality. For a simply connected space X the map (20) is surjective if and
only if X is formal, and the map (21) is surjective if and only if X is coformal.

Proposition 4.34. Let X be a Koszul space with cohomology algebra A and ho-
motopy Lie algebra L. If all Maurer-Cartan elements of A⊗L are linear, then the
maps (20) and (21) are isomorphisms of groups.
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Proof. Since all Maurer-Cartan elements are linear we get by Proposition 4.31 that

π0MC•(A⊗ L) 'MC(A⊗ L),

since two elements are in the same component if and only if they are equal. The
bijections

Hom(L,L) 'MC(A⊗ L) ' Hom(A,A)

resulting from Proposition 4.32 then give us

Hom(L,L) ' [XQ, XQ] ' Hom(A,A)

by Proposition 4.29, and the image of a self-map XQ → XQ can be identified with
the induced map on respectively homotopy and cohomology. Such a self-map is
a homotopy equivalence if and only if it induces isomorphisms in homotopy and
cohomology (XQ is simply connected and Q-local), and so by restricting we get
bijections

autL ' π0 autXQ ' autA

�

From the proof we see that the hypotheses of Proposition 4.34 can be weakened
slightly. It is enough that all the Maurer-Cartan elements which correspond to
homotopy equivalences are linear.

Corollary 4.35. If all Maurer-Cartan elements are linear and A or L is finite,
then

(DerL)0 ' Lie(π0 autXQ) ' (DerA)0.

Proof. Since A or L is finite, π0 autXQ is a linear algebraic group by Theorem 4.23,
and we may apply Lie(−) to the isomorphisms of Proposition 4.34 to get

Lie(π0 autXQ) ' Lie(autL) ' (DerL)0

and

Lie(π0 autXQ) ' Lie(autA) ' (DerA)0.

�

Here we have used two more facts from algebraic geometry:

(1) the association of a Lie algebra to a linear algebraic group given by Lie(−)
is functorial, and

(2) for a finite dimensional graded algebra A (not necessarily associative) the
group of automorphisms is a linear algebraic group, and when working in
characteristic zero Lie(autA) identifies with (DerA)0, the derivations of
degree zero.

Corollary 4.36. Let X be a Koszul space such that H∗(X;Q) is generated in a
single cohomological degree d. Equivalently π∗(ΩX) ⊗ Q is generated in degree
d− 1. If

(i) Hi(X;Q) = 0 for all i ≥ d2, or
(ii) πi(ΩX)⊗Q = 0 for all i ≥ d(d− 1),

then

π0(autXQ) ' aut(H∗(X;Q)) ' aut(π∗(ΩX)⊗Q).



63

Proof. Since A is generated in homological degree−d, and the homotopy Lie algebra
L is generated in degree d− 1, we get

(A⊗ L)−1 =
⊕
i≥0

A(1 + i(d− 1))⊗ L(1 + id)

The assumption on A respectively L, implies that (A ⊗ L)−1 = A(1) ⊗ L(1) since
all summands with i ≥ 1 vanish. In particular all Maurer-Cartan elements must be
linear and the corollary follows by Proposition 4.34. �

Corollary 4.36 is formulated to highlight the analogous roles played by cohomol-
ogy and homotopy, but the apparent (almost) symmetric conditions may be a bit
misleading. Recall from Remark 4.17 that a formal space X has finite dimensional
homotopy only if it is a two-stage space. Thus if π∗(ΩX)⊗Q is generated in degree
d− 1, then πi(ΩX)⊗Q = 0 for all i > 2(d− 1) and necessarily d ≥ 3, so condition
(ii) is automatically satisfied if the homotopy is finite. In that case the assumption
that L is generated in a single degree can be weakened.

Example 4.37 Let X be a Koszul space with finite dimensional rational homotopy
Lie algebra L, and suppose L is generated in degrees 5, 7 and 9. Then the rational
cohomology algebra is generated in cohomological degrees 6, 8 and 10. Now only
the linear part of A⊗ L contributes to degree −1, as we will show.

We know that X is two-stage, so

(A⊗ L)−1 = (A⊗ L(1))−1 ⊕ (A⊗ L(2))−1.

The Lie algebra L contributes positively to degrees of elements in the tensor prod-
uct, and A contributes negatively. Thus we just have to check that no linear
combination of 6, 8 and 10 equal n+m+ 1 for n,m ∈ {5, 7, 9}, so that

(A⊗ L(2))−1 = 0,

and that no linear combination of two or more of 6, 8 and 10 equal n + 1 for
n ∈ {5, 7, 9}, so that ⊕

i≥2

(A(i)⊗ L(1))−1 = 0.

The first condition is satisfied because linear combinations of even numbers are
even, and n + m + 1 is odd, when n and m are odd. The second is satisfied by
inspection: 2 · 6 > 9 + 1.

In conclusion all Maurer-Cartan elements are linear, and Proposition 4.34 ap-
plies.

In general if X is a Koszul space with finite dimensional homotopy L generated
in degrees {ni}mi=1, the condition is that

l∑
i=1

(nil + 1) = nj + nk + 1

has no solutions for 1 ≤ j, k, l ≤ m and 1 ≤ il ≤ m, and

l∑
i=1

(nil + 1) = nj + 1

has no solutions for 1 ≤ j, l ≤ m and 1 ≤ il ≤ m.
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Example 4.37 illustrates a special case where this can easily be checked, and we
may formulate that as

Corollary 4.38. Let X be a Koszul space such that L = π∗(ΩX) ⊗ Q is finite
dimensional, and generated in odd degrees n1 ≤ n2 ≤ · · · ≤ nm with 2n1 > nm.
Then

π0(autXQ) ' aut(H∗(X;Q)) ' aut(π∗(ΩX)⊗Q)

The proof is completely analogous to the reasoning in Example 4.37.

Example 4.39 Consider the classifying space BSU(3) of the classical Lie group
SU(3). The rational cohomology algebra is free on two generators in degrees 4 and
6, and the rational homotopy Lie algebra is abelian on two generators in degrees 3
and 5. By Corollary 4.38 we conclude that

π0(autBSU(3)Q) ' aut(H∗(BSU(3);Q)) ' Q× ×Q×.

Example 4.40 Let K be rationally equivalent to a finite product of rational
Eilenberg-MacLane spaces concentrated in even degrees as above

K 'Q

n∏
i=1

K(Q, 2ki)

Consider an odd sphere bundle

S2m−1 → X → K

with quadratic non-degenerate Euler class defined over Q cf. Example 4.20. Then
the total space X satisfies the conditions of Corollary 4.38.

Rationally we have BSU(3) 'Q K(Q, 4) × K(Q, 6). For K = BSU(3) in the
above, the only non-degenerate quadratic forms are multiples of xy where x and y
are the generators of H∗(BSU(3);Q). Then

π0(autXQ) ' aut (Q[x, y]/(xy)) ' Q× ×Q×.

Example 4.39 also (and perhaps better) serves for the following

Proposition 4.41. Let X be a Koszul space such that A = H∗(X;Q) is free on
generators x1, . . . , xn such that

|x1| = · · · = |xi1 | < |xi1+1| = · · · = |xi2 | < · · · < |xim+1| = · · · = |xn|

(equivalently L = π∗(ΩX)⊗Q is abelian on generators satisfying the above). Then

π0(autXQ) '
m+1∏
j=1

GL(ij ,Q),

that is, a product with a one factor GL(i,Q) for each degree of generator, such that
i is the number of generators of that particular degree, and m+ 1 is the number of
distinct degrees for the generators.

Proof. Since L is abelian, also Ω• ⊗ A ⊗ L is abelian. Then two Maurer-Cartan
elements τ, τ ′ ∈ MC(A⊗L) are in the same path component of MC•(A⊗L) if and
only if there exists a polynomial α(t) ∈ (A ⊗ L)−1[t] such that d

dtα(t) = 0, with
α(0) = τ and α(1) = τ ′. But then α(t) is constant and τ = τ ′, so

π0(MC•(A⊗ L)) = MC(A⊗ L).



65

As in the proof of Proposition 4.34 we conclude that

π0(autXQ) ' autH∗(X;Q),

which we identify with the product we wanted. �

For the following examples we refer to [14] for computations of cohomology
algebras.

Example 4.42 Let G be a compact connected Lie group. Then BG is a Koszul
space with free rational cohomology, and by Proposition 4.41 we get

π0(autBGQ) '
m+1∏
j=1

GL(ij ,Q),

with notation as in the proposition.
Let G be a compact simply connected Lie group. Then G is also a Koszul

space with free rational cohomology (on odd generators). The generators for the
cohomology are the same as for BG, only shifted once in degree, and in particular
we get

π0(autGQ) '
m+1∏
j=1

GL(ij ,Q) ' π0(autBGQ).

Surely π0(autGQ) and π0(autBGQ) have been studied, but we are not aware of
any references at this time.

Example 4.42 also illustrates that having only linear Maurer-Cartan elements is
only a sufficient condition for the maps (20) and (21) to be isomorphisms. Consider
the compact simply connected Lie group SU(7), with

A = H∗(SU(7);Q) ' Λ(x3, . . . , x15)

with cohomological degrees |xi| = i, and abelian homotopy Lie algebra L on dual
generators α3, . . . , α15 with homological degrees |αi| = i − 1. Every element in
(A⊗ L)−1 is a Maurer-Cartan element, in particular the non-linear

x3x5x7 ⊗ α15.

This does not correspond to a homotopy equivalence however, and we have not
decided if having only linear Maurer-Cartan elements which correspond to homotopy
equivalences is necessary for the maps (20) and (21) to be isomorphisms in general.

Example 4.43 Let V be a real, complex or quarternion Stiefel manifold. Then
the rational cohomolgy H∗(V ;Q) is free with generators all in distinct degrees, and
by Proposition 4.41 we get

π0(autVQ) '
n∏
j=1

Q×

where n is the number of generators.

Example 4.44 Denote by F (Rn, k) the space of ordered configurations of k points
in Rn. By Theorem 5.1 in the next section A = H∗(F (Rn, k);Q) is generated in a
single cohomological degree n − 1, and A(i) = 0 for all i ≥ k. Thus if k ≤ n − 1
then Corollary 4.36 is satisfied, and we get

π0(autF (Rn, k)Q) ' autH∗(F (Rn, k);Q) ' aut(π∗(ΩF (Rn, k))⊗Q).
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Remark 4.45 Compare Corollary 4.35 to Theorem 4.25. If H≥2(sA⊗L)0 is non-
zero, the map from Theorem 4.25

Lie(π0(autXQ)) −→ (DerL)0,

has a non-trivial kernel. By Example 4.44 above the map (20) is an isomorphism
for X = F (Rn, k) when k ≤ n − 1, but from the calculations in Section 5 we see
that H≥2(sA⊗ L)0 6= 0 for e.g. k = 3 and even n ≥ 4.

In conclusion, the map from Theorem 4.25 is not in general the image of the
map (20) under the functor Lie.

5. Configuration spaces

Another virtue of using the complex sA ⊗ L as a model for the cover of the
classifying space of homotopy automorphisms, is the possibility of computing the
ranks of the rational homotopy in particular cases. It was done in [5] for highly
connected manifolds, and we give a different example here.

Denote by F (Rn, k) the space of (ordered) configurations of k points in Rn.
These spaces are Koszul for all n and k (see [2] and [25]). Recall the structure of
the cohomology algebra and the homotopy Lie algebra of F (Rn+1, k).

Theorem 5.1 (cf. [11]). The cohomology algebra H∗(F (Rn+1, k);Q) is a free graded
algebra generated by elements apq of cohomological degree n where 1 ≤ p < q ≤ k,
subject to the Arnold relations

apqaqr + aqrarp + arpapq = 0, p, q, r distinct,

a2
pq = 0

with the convention that apq = (−1)n+1aqp, for p > q. This algebra has a linear
basis consisting of all monomials ai1j1 . . . airjr such that i1 < · · · < ir and ip < jp
for 1 ≤ p ≤ r.

Theorem 5.2 (cf. [10]). The rational homotopy Lie algebra π∗(ΩF (Rn+1, k))⊗Q
is generated by elements αpq of homological degree n − 1, with 1 ≤ p < q ≤ k,
subject to the (orthogonal to the above) relations

[αpq, αrs] = 0, {p, q} ∩ {r, s} = ∅
[αpq, αpr + αqr] = 0, p, q, r distinct

with the convention that αpq = (−1)n+1αqp for p > q.

Lemma 5.3. The dimensions of the graded components of the cohomology algebra
A := H∗(F (Rn, k);Q) are given by the Stirling numbers of first kind. Explicitly, in
weight j we have

dimA(j) =

[
k

k − j

]
.

Proof. The homogeneous polynomial

k−1∏
m=0

(y +mx)

generates the Stirling numbers of first kind when x = 1 (backwards), and the
Poincaré polynomial for H∗(F (Rn, k);Q) when y = 1 (with the substitution x =
zn−1). �
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Corollary 5.4. The dimensions of the graded components of the homotopy Lie
algebra L := π∗(ΩF (Rn, k))⊗Q are given by the following formula

dimL(r) =
1

r

∑
d|r

(−1)n(d+r)µ
( r
d

) k−1∑
j=1

jd .

Proof. The Poincaré polynomial for A := H∗(F (Rn, k);Q) is

k−1∏
m=0

(1 +mx)

giving the following equation for the generating series of the dimension of the uni-
versal enveloping algebra

k−1∏
m=0

(1−mx)−1 =

{ ∏∞
m=0(1− xm)εm n even∏∞
m=0(1− (−x)m)(−1)(m+1)εm n odd .

Taking logarithms and comparing coefficients in the resulting Taylor series we get

−1

r

k−1∑
m=1

mr =

{ ∑
d|r εd

d
r n even∑

d|r(−1)d+rεd
d
r n odd

and the corollary follows by the Möbius inversion formula. �

It follows from the given presentation of homotopy Lie algebra that is has the
structure of an iterated semi-direct product of free Lie algebras:

π∗(ΩF (Rn+1, k))⊗Q ' Lk−1 n (Lk−2 n (· · ·n L1) · · · ),(22)

where Li is the free Lie algebra on the generators αij of which there are k − i.
Indeed there are no relations among generators with the same first index, and the
relations

[αpq, αrs] = 0, {p, q} ∩ {r, s} = ∅
[αpq, αpr + αqr] = 0, p, q, r distinct

describe the action of the free Lie algebras of greater first index on those with lesser.
The isomorphism (22) gives a linear basis. As a graded vector space the Lie

algebra is isomorphic to the direct sum of the free Lie algebras, and the natural
bases for those provide one which we will call the unmixed basis. This also gives an
alternative way of arriving at the dimension formula. Simply add up the dimensions
of the free Lie algebras in question. These dimension are given by the well known
Witt formula

dimLi(r) =
1

r

∑
d|r

(−1)d+rµ
(
r
d

)
(k − i)d.

5.1. Rational homotopy groups.

Example 5.5 Consider F (Rn, 3) for n ≥ 6 and even, with cohomology A and
homotopy Lie algebra L. In non-negative degrees the complex (sA⊗κ L)+ splits as
a direct sum with summands

0 // sA(0)⊗κ L(t)
κ0
// sA(1)⊗κ L(t+ 1)

κ1
// sA(2)⊗κ L(t+ 2) // 0,

for t ≥ 1 (with the obvious restrictions of κ0 and κ1).
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By Proposition 4.4 κ0 can be identified with the map ad: L→ DerL, and so the
kernel is the center of L. When n is even the center is 1-dimensional, spanned by
the element α12 + α13 + α23 ∈ L(1). That is, for t ≥ 2 the map κ0 is injective.

Recall that (a12, a13, a23) is a basis for A(1) and (a12a23, a13a23) is a basis for
A(2). Using the presentation of A given in Theorem 5.1, we find that the matrices
representing the maps given by multiplication by a generator, are

a12 :

(
0 1 1
0 −1 0

)
, a13 :

(
−1 0 0
1 0 1

)
, a23 :

(
−1 0 0
0 −1 0

)
.

Now by slight abuse of notation, let αij denote the matrix representing adαij . Then

κ1 is represented by the block matrix(
−α13 − α23 α12 α12

α13 −α12 − α23 α13

)
.

As noted above, the element
∑
ij αij is central in L, and so the matrices denoted

the same way also satisfy
∑
ij αij = 0. Apply this and reduce the resulting block

matrix: (
−α13 − α23 α12 α12

α13 −α12 − α23 α13

)
=

(
α12 α12 α12

α13 α13 α13

)
 

(
0 0 α12

0 0 α13

)
.

The Lie algebra L is isomorphic to

L(α23) n L(α12, α13),

so the maps given by α12 and α13 respectively are injective on L(≥ 2), and therefore
κ1 has rank dimL(t+ 1) when restricted to the t-summand.

We can now compute the homology of each summand. For t = 1 we found that
κ0 has rank 2 and κ1 has rank 1. The dimensions of A(i) and L(j) are found in
Corollary 5.3 and Corollary 5.4 and if we write the t = 1 summand with just the
dimension of each vector space, and the rank of the maps decorating the arrows:

0 // 3
2 // 3

1 // 4 // 0,

we find that the homology is of dimension 1, 0 and 3 respectively. Since A is
generated in homological degree 1 − n and L is generated in homological degree
n− 2, these graded vector spaces are concentrated in degrees n− 2, n− 3 and n− 4
respectively.

For the summands t ≥ 2 the map κ0 is injective, and we get homology of dimen-
sion

2

t+ 1

∑
d|t+1

µ
(
t+1
d

)
(1 + 2d)− 1

t

∑
d|t

µ
(
t
d

)
(1 + 2d) and

2

t+ 2

∑
d|(t+2)

µ
(
t+2
d

)
(1 + 2d)− 1

t+ 1

∑
d|t+1

µ
(
t+1
d

)
(1 + 2d),

concentrated in degrees (t+ 1)(n− 2)− n+ 1 and (t+ 1)(n− 2)− n respectively.
Clearly this is a recurring pattern.



69

When n ≥ 6, only a single summand contribute to each degree of the homology
of the entire complex sA⊗ L, and so we have computed the dimensions of

H(sA⊗κ L)i ' πi(autF (Rn, 3), 1F (Rn,3))⊗Q, i ≥ 1.

Take e.g. n = 6: The first non-zero rational homotopy groups is obtained for t = 1:

dimπ2 = 3, dimπ3 = 0, dimπ4 = 1.

The next ones appear for t = 2, and from the formulae above we get:

dimπ6 = 3, dimπ7 = 4,

and so they keep coming in pairs for every t ≥ 2. We list a few more for 3 ≤ t ≤ 6:

dimπ10 = 9, dimπ11 = 4

dimπ14 = 12, dimπ15 = 9

dimπ18 = 30, dimπ19 = 12.

In general we observe that there are infinitely many homotopy groups of the ratio-
nalised space (autF (Rn, 3))Q and that they grow exponentially: the expression for
the dimension in degree (t+1)(n−2)−n is dominated by the term 2

t+2µ(1)(1+2t+2).

Another observation is that each connected component of (autF (Rn, 3))Q is
(n− 5)-connected.

Remark 5.6 The same approach works for F (R4, 3) also, but in that case sA(2)⊗κ
L(3) is concentrated in degree zero, and removed when we pass to (sA⊗κL)+. Other
than that everything in the above example goes through.

The trick used to compute the rational homotopy groups for F (Rn, 3) by reducing
the block matrix representing the differential κ does not work in general. In the next
example we present the results of computer aided calculations for configurations
with more than three points.

Example 5.7 In general the complex (sA ⊗κ L)+ for F (Rn, k) splits as a direct
sum with summands

0 // A(0)⊗ L(t) // sA(1)⊗ L(t+ 1) // · · · // sA(k − 1)⊗ L(t+ k − 1),

for t ≥ 1. We have computed the homology of some of these summands when
n is even, and k = 4, 5, 6. The computations are implemented in Magma, and
the code is available upon request. Our results are summarised in the following
tables. To give some perspective we first record the dimensions of the algebras in
consideration.

The dimensions for A(i) and 3 ≤ k ≤ 6 are:

i k 3 4 5 6
0 1 1 1 1
1 3 6 10 15
2 2 11 35 85
3 0 6 50 225
4 0 0 24 274
5 0 0 0 120
6 0 0 0 0
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The dimensions for L(i) and 3 ≤ k ≤ 6 are:

i k 3 4 5 6
1 3 6 10 15
2 1 4 10 20
3 2 10 30 70
4 3 21 81 231
5 6 54 258 882
6 9 125 795 3375
7 18 330 2670 13830

The computations in Magma are actually implemented for the complex sA ⊗κ L.
Since we have identified the first differential A(0) ⊗ L → A(1) ⊗ L with ad: L →
DerL, and the centre of L has dimension 1 (generated by

∑
ij αij), it is easy to

correct for this. The case k = 3 has already been exhaustively covered. When
k = 4 the Betti numbers of the summands in the complex are:

summand

1 1 0 45 80
2 0 0 81 230
3 0 1 230 501
4 0 0 502 1410
5 0 1 1410 3515
6 0 0 3516 9571

For k = 5 we get:

summand

1 1 0 0 1254 4355
2 0 0 10 4355 13070
3 0 1 0 13079 45660
4 0 0 ? ? ?

Finally for k = 6 we have computed:

summand

1 1 0 0 ? ? ?
2 0 0 15 ? ? ?
3 0 1 ? ? ? ?

There are several observations to be made from this, but we postpone this to
Section 6.

5.2. L∞-structure. In the following we will study the induced L∞-structure on
H(sA ⊗κ L)∗ for the configuration spaces. First we make some of the general
formulae produced in previous sections explicit in this case. With notation from
previous sections the structure is transferred along the contraction

sA⊗ι Lh′+g′kf ;;
qf // H(sA⊗κ L)∗,
g′i

oo

where we recall that

g′ =
∑
j≥0

((1⊗ h)ι)j(1⊗ g) and h′ =
∑
j≥0

((1⊗ h)ι)j(1⊗ h).
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The map ι splits as a sum ι =
∑
m≥1 ιm where ιm increases the total weight in

L by m and bracket length by 1. The homotopy h preserves total weight and
decreases bracket length by 1, so for any j ≥ 1 the map ((1 ⊗ h)ι)j preserves
bracket length and strictly increases total weight. In our case A(p) = 0 for p ≥ 3,
so only the diagonals D0 and D1 are non-zero, and in particular (1⊗h)ι(1⊗h) = 0.
In conclusion we have

g′ = 1⊗ g + (1⊗ h)ι(1⊗ g) and h′ = 1⊗ h.

The map i is given by a choice of cycle representatives for the homology, and
the map g as produced by Lemma 3.8 is given by a choice of basis for L. Cycle
representatives will be chosen later, while the unmixed basis for L gives a choice of
g. Finally h is inductively constructed according to the proof of Lemma 3.8.

In the following we assume that n is even, but similar calculation can be made
for odd n. To construct h we first need formulae for the differential on L . It
is given by the reduced comultiplication on A∨. It is dual to the multiplication
on A, and with the bases (a12, a13, a23) for A(1) and (a12a23, a13a23) for A(2) the
multiplication A(1)⊗A(1)→ A(2) is represented by the matrix(

0 1 1 −1 0 0 −1 0 0
0 −1 0 1 0 1 0 −1 0

)
.

From which we get

∆(a12a
∗
23) = a∗12 ⊗ a∗13 + a∗12 ⊗ a∗23 − a∗13 ⊗ a∗12 − a∗23 ⊗ a∗12

∆(a13a
∗
23) = −a∗12 ⊗ a∗13 + a∗13 ⊗ a∗12 + a∗13 ⊗ a∗23 − a∗23 ⊗ a∗13.

The differential on L is then given by

d(x12x23) = [x12, x13] + [x12, x23]

d(x13x23) = [x13, x23]− [x12, x13],

where we write xij for s−1a∗ij and xijxkl for s−1aija
∗
kl when denoting elements of

L = L(s−1A
∨
, d).

Now we can begin to construct h. We know that we may choose hg = 0, and
that g is given by choosing the unmixed basis. Explicitly that means that g behaves
as a Lie map on any bracketed word in the generators α12 and α13 and sends α12

to x12 and α13 to x13, e.g.

g([α12, [α12, α13]]) = [x12, [x12, x13]].

Further g(α23) = x23, and if α23 appears in an expression as part of a bracket, then
we can think of g as rewriting the expression using the relations of L, such that it
no longer contains α23 and map it as before, e.g.

g([α12, α23]) = g([α13, α12]) = [x13, x12].

We immediately get

h(xij) = 0, for all ij

h([x12, x13]) = 0.
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Now we will have to make choices for the values of h. To find the valid choices we
apply the differential, and the use inductive definition of h.

dh([x12, x23]) = gf([x12, x23])− [x12, x23]− hd([x12, x23])

= g([α12, α23])− [x12, x23]

= −[x12, x13]− [x12, x23].

We see that this is −d(x12x23) and choose h([x12, x23]) = −x12x23. Completely
similarly we find h([x13, x23]) = −x13x23 as a valid choice.

As above it follows immediately that

h([x12, [x12, x13]]) = h([x13, [x12, x13]]) = 0,

and using that the differential is a derivation we compute (and choose)

h([x12, [x12, x23]]) = −[x12, x12x23],

h([x12, [x13, x23]]) = −[x12, x13x23],

h([x13, [x12, x23]]) = −[x13, x12x23],

h([x13, [x13, x23]]) = −[x13, x13x23].

By the Jacobi identity we further find

h([x23, [x12, x13]]) = h[[x23, x12], x13] + h[x12, [x23, x13]]

= [x12, x13x23]− [x13, x12x23].

All that remain in weight 3 is [x23, [x12, x23]] and [x23, [x13, x23]]. By the same
reasoning as above we find

h([x23, [x12, x23]]) = [x13 − x23, x12x23]− [x12, x13x23],

h([x23, [x13, x23]]) = [x12 − x23, x13x23]− [x13, x12x23].
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From this we can build a table for the values of g′ up to weight 2 in L expressed in
the chosen bases. Recall again that g′ = 1⊗ g + (1⊗ h)ι(1⊗ g). We get:

g′(1⊗ α12) = 1⊗ x12 + a23 ⊗ x12x23,

g′(1⊗ α13) = 1⊗ x13 + a23 ⊗ x13x23,

g′(1⊗ α23) = 1⊗ x23 − a12 ⊗ x12x23 − a13 ⊗ x13x23,

g′(1⊗ [α12, α13]) = 1⊗ [x12, x13] + a23 ⊗ ([x12, x13x23]− [x13, x12x23]),

g′(a12 ⊗ α12) = a12 ⊗ x12 − a12a23 ⊗ x12x23,

g′(a12 ⊗ α13) = a12 ⊗ x13 − a12a23 ⊗ x13x23,

g′(a12 ⊗ α23) = a12 ⊗ x23 + (a12a23 − a13a23)⊗ x13x23,

g′(a13 ⊗ α12) = a13 ⊗ x12 − a13a23 ⊗ x12x23,

g′(a13 ⊗ α13) = a13 ⊗ x13 − a13a23 ⊗ x13x23,

g′(a13 ⊗ α23) = a13 ⊗ x23 + (a13a23 − a12a23)⊗ x12x23,

g′(a23 ⊗ α12) = a23 ⊗ x12,

g′(a23 ⊗ α13) = a23 ⊗ x13

g′(a23 ⊗ α23) = a23 ⊗ x23 − a12a23 ⊗ x12x23 − a13a23 ⊗ x13x23,

g′(a12 ⊗ [α12, α13]) = a12 ⊗ [x12, x13]− a12a23 ⊗ ([x12, x13x23]− [x13, x12x23]),

g′(a13 ⊗ [α12, α13]) = a13 ⊗ [x12, x13]− a13a23 ⊗ ([x12, x13x23]− [x13, x12x23]),

g′(a23 ⊗ [α12, α13]) = a23 ⊗ [x12, x13].

Because ι restricted to A(2)⊗ L is zero, we also get

g′(a12a23 ⊗ α) = a12a23 ⊗ g(α), g′(a13a23 ⊗ α) = a13a23 ⊗ g(α),

for any α ∈ L.
The following proposition shows that there are no higher operations on the trun-

cated complex (sA ⊗κ L)+ associated to the configuration spaces F (Rn, 3). This
may be an indicator that there are no higher operations on the positive homology
of the complex either, which we will discuss further in Section 6. The condition
that we only look at the positive part of the complex is important, as illustrated
by Example 5.10 which follows after the proposition.

Proposition 5.8. For the spaces F (Rn, 3), there are no higher operations on
(sA⊗κ L)+.

Proof. Consider the composition

ν := h[−,−]Der(g
′ ⊗ g′).

Any higher operation on sA⊗L will factor through ν, cf. Section 3.2. The claim is
now that on the positive part (sA⊗κL)+, we have Im ν ⊆ sA⊗ Im g⊕sA⊗D1, and
so the annihilation condition, together with the fact that h(D1) ⊆ D2 = 0, forces
any higher operation to be zero.

Since g is given by rewritings to the unmixed basis, the claim reduces to that
Im ν ∩D consists of sums of elements of the form a⊗ x for a ∈ A and where x is
a bracketed word in the letters x12 and x13 or x = x23.

The image of g′ is contained in

sA⊗ Im g ⊕ sA(2)⊕ Imh,
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where we recall that Im g ⊆ D and Imh ⊆ D1. As explained in Example 3.16, the
bracket [sa⊗x, sb⊗y]Der effectively scans the word x for occurrences of the letter b
and replaces it with the word y (and the other way around). The bracket [−,−]Der

is bilinear, so without loss of generality we may assume that a and b are weight
homogeneous, and that x and y each is contained in either Im g or Imh when both
sa⊗ x and sb⊗ y are in Im g′. The possible scenarios are then:

• x and y are in Im g. In this case x and y are either both bracketed words
in the letters x12 and x13, and so [sa⊗ x, sb⊗ y]Der is again in sA⊗ Im g;
or one or both of x and y equals x23. Suppose x = x23. Then we must
have a ∈ A(0) or else sa ⊗ x would have non-positive homological degree.
The only possibly non-zero term of the bracket [sa⊗ x, sb⊗ y]Der is then a
multiple of 1⊗y ∈ sA⊗ Im g, which happens if b is in the subspace spanned
by a23. The same holds mutatis mutandis for y = x23.

• x is in Im g and y is in Imh (again we may switch x and y with the
appropriate changes). Scanning x for b and replacing by y yields a term in
sA⊗ D1. Scanning y for a and replacing by x yields a term in sA⊗ D1 if
a ∈ A(1). None of these cases are of interest.

Scanning y for a and replacing by x yields a term in sA⊗Im g if a ∈ A(2)
as we now explain: y is contained in D1, so precisely one letter x0 (in each
term) is of weight 2 in A∨, and we get a non-zero term only if a∗ is in the
subspace spanned by x0. In this case x ∈ Im g replaces x0, and it remains
to argue that the rest of the letters in y are either x12 or x13.

We use that sb ⊗ y is not only in Im(1 ⊗ h) but in Im(1 ⊗ h)ι(1 ⊗ g).
The first part (1⊗ g) gives a bracketed word w in the letters x12 and x13.
Then ι produces a term [x,w] for each linear generator x of A∨, that is
x12, x13, x23, x12x23 and x13x23 are set as prefixes to w. Only the term for
x23 is not in the kernel of 1 ⊗ h, as the first two are in Im g and the last
two are in D1. Use the Jacobi relation to write

[x23, w] = [w′, [x12, x23]] + [w′′, [x13, x23]],

where w′, w′′ are sums of words in the letters x12 and x13. Now

dh[x23, w] = gf [x23, w]− [x23, w]

= gf [w′, [x12, x23]] + [w′′, [x13, x23]]− [w′, [x12, x23]]− [w′′, [x13, x23]]

= −[w′, [x12, x13]] + [w′′, [x12, x13]]− [w′, [x12, x23]]− [w′′, [x13, x23]]

= −d([w′, x12x23] + [w′′, x13x23]),

so h[x23, w] = −([w′, x12x23] + [w′′, x13x23]) is a valid choice, and with this
we see that all letters except the one (in each term) of weight 2, are x12 or
x13.

• both x and y are in Imh. Scanning x for b and replacing by y lands us in
sA⊗D1, and similar the other way around.

�

Remark 5.9 In the following we do computations using the formula for the bracket
[−,−]Der from Lemma 3.14, for the configuration spaces F (Rn, 3). If n is even then
A is generated in odd degrees, and L is generated in even degrees. In that case
α and β are both odd. If n is odd then A is generated in even degrees and L is
generated in odd degrees. In that case α and β are both even.
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Example 5.10 We stay with the example of F (Rn, 3) with n even for now. Here
we shall see that in contrast to Proposition 5.8 there are indeed higher operations
on the non-truncated complex sA⊗κ L.

Clearly we must involve a non-positive element, as we see from the example
above. However, a single non-positive element is enough: consider the expression

`3(a12 ⊗ α23, a12 ⊗ [α12, α13], a13a23 ⊗ [α12, [α12, α13]]),

where we suppress the suspensions in the notation. Recall from the general for-
mula (5), that

`3(x, y, z) = f ◦ (−[h′[g′(x), g′(y)], g′(z)] + (−1)|x|[g′(x), h′[g′(y), g′(z)]](23)

+(−1)|y||z|[h′[g′(x), g′(z)], g′(y)]),

and note that, in our case |x| = 0, |y| = n − 2 and |z| = n − 3. If n ≥ 4, there is
only the degree zero element x = a12 ⊗ α23.

We worked out formulae for g′ and h′ above for n even, and with these we find

h′[g′(a12 ⊗ α23), g′(a12 ⊗ [α12, α13])]Der

= h′(a13a23 ⊗ ([x13, x12x23] + [x12, x13x23])− a12 ⊗ [x23, x13]

+a12a23 ⊗ [x23, x13x23])

= −a12 ⊗ x13x23

Next we take the bracket of this and g′(a13a23 ⊗ [α12, [α12, α13]]) and apply f to
get the first term of (23).

[−a12 ⊗ x13x23, g
′(a13a23 ⊗ [α12, [α12, α13]])]Der

= −a12 ⊗ [x12, [x12, x13]] + a13a23 ⊗ ([x13x23, [x12, x13]] + [x12, [x13x23, x13]])

which maps to −a12 ⊗ [α12, [α12, α13]] under f , so first term of (23) is a12 ⊗
[α12, [α12, α13]]. We compute the last term:

h′[g′(a12 ⊗ α23), g′(a13a23 ⊗ [α12, [α12, α13]])]Der

= h′(a12a23 ⊗ [x12, [x12, x13]]− a13a23 ⊗ ([x23, [x12, x13]] + [x12, [x23, x13]]))

= −a13a23 ⊗ (2[x12, x13x23]− [x13, x12x23]),

and this we bracket with g′(a12 ⊗ [α12, α13])

[−a13a23 ⊗ (2[x12, x13x23]− [x13, x12x23]), g′(a12 ⊗ [α12, α13])]Der

= −a13a23 ⊗ (2[[x12, x13], x13x23] + [x13, ([x13, x12x23] + [x12, x13x23])]

+a12a23 ⊗ [x12, (2[x12, x13x23]− [x13, x12x23]).

This expression is contained in sA ⊗ D1 so f maps it to zero. It is an example to
illustrate the following.

Let x be an element in sA⊗L , and y ∈ sA⊗ L, and write

g′(y) = s1⊗ v0 + sa1 ⊗ v1 + sa2 ⊗ v2, ai ∈ A(i), vi ∈ L ,

h′(x) = sb1 ⊗ w1 + sb2 ⊗ w2, bi ∈ A(i), wi ∈ L .

Necessarily wi ∈ D1, so for [h′(x), g′(y)]Der to be non-zero, a∗2 must be in the span
of some letter of the word w1 or w2, or b∗i is in the span of some letter of the word
vj for some i, j. In the latter case, the bracket takes values in sA ⊗ D1 again. In
the first case v2 replaces the letter which matches a2, and if y is in sA(1)⊗L then
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v2 is in the image of h, and in particular in D1. In both cases f vanishes on the
bracket.

From this we see that also the middle term of (23) is zero, and in conclusion

`3(a12 ⊗ α23, a12 ⊗ [α12, α13], a13a23 ⊗ [α12, [α12, α13]]) = a12 ⊗ [α12, [α12, α13]],

which is then a non-zero higher operation on the non-truncated complex sA⊗κ L.

Example 5.11 Consider again F (Rn, 3) for n ≥ 6 and even, with cohomology
A and homotopy Lie algebra L. In this example we describe the Lie algebra
H(sA ⊗κ L)0, which by Proposition 4.24 is the Lie algebra of the algebraic group
π0(autF (Rn, 3)Q). Note that by Example 4.44, we also have

autL ' π0(autF (Rn, 3)Q) ' autA.

Since n ≥ 6 the only contribution to homology in degree zero comes from the linear
part of the complex, i.e. the kernel of κ1

0 // sA(1)⊗κ L(1)
κ1
// sA(2)⊗κ L(2) // 0.

Again (a12, a13, a23) is a basis for A(1) and (a12a23, a13a23) is a basis for A(2). The
unmixed basis for L gives a basis (α12, α13, α23) for L(1) and ([α12, α13]) for L(2).
With the standard choice of bases for the tensor products, the map κ1 restricted
to A(1)⊗ L(1) is then represented by the matrix(

0 1 −1 0 1 −1 0 1 −1
−1 0 1 −1 0 1 −1 0 1

)
,

and in particular it is surjective. Thus H(sA⊗ L)0 is a 7-dimensional Lie algebra,
and with the bases chosen we can find generating cycles for the homology. One set
of choices is

a := (a12 − a13)⊗ α12, b := (a12 − a13)⊗ α13, c := (a12 − a13)⊗ α23,

d := (a12 − a23)⊗ α12, e := (a12 − a23)⊗ α13, f := (a12 − a23)⊗ α23,

g := κ = a12 ⊗ α12 + a13 ⊗ α13 + a23 ⊗ α23,

where we have suppressed the suspension from notation. The bracket is given by the
transferred operation l2 which on the chosen representatives equals the composition
f [g′(−), g′(−)]Der followed by the map to homology (cf. end of Section 3.2). Notice
that the map to homology on A⊗L(1) is just the projection to cycles, as there are
no boundaries here.

Recall that g′ = g+htg+(ht)2g+· · · , and that since hth = 0 actually g′ = g+htg.
So we get

g′ : A(1)⊗ L(1)→ A(1)⊗D0 ⊕A(2)⊗D1,

and thus [g′(−), g′(−)]Der also maps to

A(1)⊗D0 ⊕A(2)⊗D1,

where the projection to A(1)⊗D0 comes solely from [g(−), g(−)]Der. The summand
A(2) ⊗ D1 is in the kernel of f , so the restriction of l2 to A(1) ⊗ L(1) is given by
f [g(−), g(−)]Der followed by the map to homology. Now g on L(1) just maps αij
to xij , and f on D(1) is the inverse mapping xij to αij .
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We compute a few values of f [g(−), g(−)]Der to illustrate the method:

f [g(a), g(b)]Der = (a12 − a13)⊗ (x13
∂

∂a12
x12 − x13

∂

∂a13
x12)

− (a12 − a13)⊗ (x12
∂

∂a12
x13 − x12

∂

∂a13
x13)

= (a12 − a13)⊗ x13 + (a12 − a13)⊗ x12

= b+ a,

f [g(a), g(c)]Der = (a12 − a13)⊗ (x23
∂

∂a12
x12 − x23

∂

∂a13
x12)

− (a12 − a13)⊗ (x12
∂

∂a12
x23 − x12

∂

∂a13
x23)

= (a12 − a13)⊗ x23

= c.

The images are cycles, as they are in general, and so we can explicitly compute l2
on all of the generating cycles. The entire structure of the Lie algebra is encoded
by the (anti-symmetric) multiplication matrix for l2:

0 a+ b c a− d b+ d c 0
0 −c −e e 0 0

0 −a− f −b+ f −c 0
0 e f + d 0

0 e 0
0 0

0


.

We see that g = κ spans a central ideal. Another observation is that this Lie algebra
is not nilpotent: e.g.

[a, [a, b]] = [a, a+ b] = [a, b].

With slightly more effort we also find that H(sA ⊗κ L)0 is not semi-simple. If we
quotient by 〈g〉 we find that the Lie ideal generated by [a, b] = a + b is a proper
ideal of H(sA⊗κ L)0/〈g〉. It has a linear basis given by

a+ b, c, a− d, a+ f, and e,

It is easy to see now that H(sA⊗κ L)0 is not semi-simple.
The ideal 〈a+b〉 coincides with [H(sA⊗κL)0, H(sA⊗κL)0], and the derived series

stabilises at this ideal. Thus H(sA⊗κL)0 is not solvable either. Using the computer
algebra program Magma, we find that H(sA⊗κ L)0 has a Levi decomposition

H(sA⊗κ L)0 ' A1 nR

where R denotes the radical and the semisimple factor is isomorphic to the classical
simple Lie algebra A1. Thus R is of dimension 4, and 4-dimensional solvable Lie
algebras over any field are completely classified [17]. Again using Magma, we find
that R is isomorphic to the Lie algebra generated by elements x1, x2, x3 and x4

with non-zero brackets

[x4, x1] = x1, [x4, x2] = x3, [x4, x3] = x3.

We have not had time to find a presentation in the basis given for H(sA⊗κ L)0.
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6. Suggestions for further research

In this section we finish the thesis with a discussion of what further research
might be undertaken directly from the open ends we leave. We have dedicated a
subsection to a few suggestions that are better developed than others. Before we
explore those, we give a short list of more vague questions

• What is the meaning of the negative part of the complex sA⊗κ L?
• Are there other interesting examples of Koszul spaces to apply the theory

to?
• How does the information obtained about autF (Rn, k) give information

about automorphisms of En-operads?

6.1. The role of non-linear Maurer-Cartan elements. Recall Proposition 4.31
and Proposition 4.34: Two Maurer-Cartan elements τ, τ ′ ∈ MC(A ⊗ L) are in the
same component of MC•(A⊗L) only if their linear parts agree, that is π(τ) = π(τ ′).
If all Maurer-Cartan elements are linear then π0(autXQ) is isomorphic to autA and
autL.

Using this technique, we can say almost nothing if there a non-linear Maurer-
Cartan elements of A ⊗ L. In this section we will discuss the role of such, and
connect the two rather different approaches used in the thesis. One being the
complex sA⊗κ L cooked up from contractions of a Lie model, and the other being
the analysis of the components of the Kan complex MC•(A⊗ L).

Let τ ∈MC(A⊗ L) be a Maurer-Cartan element. Denote by τ̃ the part of τ in
kerπ. We call this the non-linear part of τ . We begin with a lemma.

Lemma 6.1. For τ ∈ MC(A ⊗ L) both the linear and non-linear part of τ are
again Maurer-Cartan elements, and τ̃ is a π(τ)-cycle (and vice versa).

Proof. The Lie algebra A⊗L is bigraded by weight in respectively A and L. Write
x(i,j) for the part of an element x ∈ A ⊗ L contained in A(i) ⊗ L(j). Then τ =∑
i,j τ(i,j), (that is π(τ) = τ(1,1)) and expanding we get

0 = [τ, τ ] =
∑
i,k≥0
j,l≥1

[τ(i,j), τ(k,l)],

where the term [τ(i,j), τ(k,l)] is contained in A(i+ k)⊗L(j + l). For degree reasons
τ(0,1) = 0, so the only contribution to the part in A(2) ⊗ L(2) comes from the
linear part [τ(1,1), τ(1,1)]. In particular both the linear and non-linear parts of τ are
Maurer-Cartan elements, and τ̃ is a π(τ)-cycle (and vice versa). �

It is natural to ask how the Maurer-Cartan elements with non-linear parts affect
the picture. As noted after Proposition 4.34, we need only worry about those
corresponding to homotopy equivalences. A first thing to observe is that such non-
linear Maurer-Cartan elements can not in general lie in the same path components
of MC•(A⊗L) as linear elements. Otherwise Proposition 4.34 would hold without
the assumption of linearity. But that is not very much information. Instead we can
try to connect them to the other approach, namely the complex sA⊗κL, where they
occur as elements in degree zero. We will show that a non-linear Maurer-Cartan
element gives rise to a non-linear κ-cycle.

Should it happen that a Maurer-Cartan element τ ∈ MC(A⊗ L) is in the same
path component as κ in MC•(A ⊗ L), then π(τ) = κ by Proposition 4.31, and τ̃
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is a non-linear κ-cycle, as established above. This is equivalent to τ corresponding
to a homotopy equivalence which induces the identity on both cohomology and
homotopy. As observed this is not always the case though.

Recall that there is a one-to-one correspondence between linear Maurer-Cartan
elements and endomorphisms of A respectively L. We can show that

Lemma 6.2. Composition of endomorphisms correspond to matrix products under
the correspondence expressed by Proposition 4.32.

Suppose now that τ is not necessarily in the path component of κ, but just
corresponds to some homotopy equivalence XQ → XQ. We can show that

Lemma 6.3. The I × I-matrix (cf. Proposition 4.32) associated to π(τ), and the
corresponding endomorphisms ϕ and ψ of respectively A and L are all invertible.

The inverse matrix represents a Maurer-Cartan element which we will denote
π(τ)−1, and it represents the inverse automorphisms ϕ−1 and ψ−1.

Extend the linear bases {ai}i∈I and {αj}j∈I for respectively A(1) and L(1) to
linear bases {ai}i∈I′ and {αj}j∈I′′ for A and L, and write

τ =
∑

i∈I′,j∈I′′
λijai ⊗ αj .

Now the linear part of

ϕ−1.τ :=
∑

i∈I′,j∈I′′
λijϕ

−1(ai)⊗ αj

equals κ because the matrix representing ϕ−1 is inverse to λij for i, j ∈ I. At the
same time ϕ−1.τ is again a Maurer-Cartan element because

[ϕ−1.τ, ϕ−1.τ ] =
∑

i,k∈I′,j,l∈I′′
(−1)|ak||αj |λijλklϕ

−1(ai)ϕ
−1(ak)⊗ [αj , αl]

=
∑
j,l∈I′′

ϕ−1

 ∑
i,k∈I′

(−1)|ak||αj |λijλklaiak

⊗ [αj , αl]

is zero if and only if∑
j,l∈I′′

∑
i,k∈I′

(−1)|ak||αj |λijλklaiak ⊗ [αj , αl] = [τ, τ ]

is zero, and τ is a Maurer-Cartan element. Then by Lemma 6.1 the non-linear part
of ϕ−1.τ is a degree zero κ-cycle in sA⊗κ L.

In this way there is a map from non-linear Maurer-Cartan elements which corre-
spond to homotopy equivalences, to non-linear κ-cycles of homological degree zero
given by mapping τ to ϕ−1.τ . This completes the task of connecting the two ap-
proaches, but for all practical purposes we are interested in the positive part of
sA⊗κ L, so we may hope to do better than just finding a κ-cycle of degree zero.

We may use the induced L∞-structure to produce a positive cycle.

Lemma 6.4. If there is a κ-cycle γ ∈ (sA ⊗κ L)>0 such that the induced bracket
`2(ϕ−1.τ, γ) is non-zero, then this bracket is a non-linear element of positive degree
representing a non-zero class in the kernel of (at least one of) the extensions in
Theorem 4.8.
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Proof. The induced operation `2 respects the shifted weight grading, so `2(ϕ−1.τ, γ)
is again non-linear. The induced operation also has homological degree zero, so
`2(ϕ−1.τ, γ) has positive degree, and finally `2 maps cycles to cycles. �

It would be interesting to find conditions for when such an element γ exists. If
it can always be found, then we have shown that existence of non-linear Maurer-
Cartan elements corresponding to homotopy equivalences, implies a non-trivial ker-
nel for the extensions in Theorem 4.8. This again allows for the potential of higher
operations on π>0(autX)⊗Q, but does not guarantee it.

We expect that the phenomenon is connected to the action of π0 autXQ '
π1B autXQ on the higher homotopy groups. Indeed there is an induced action
on homology given by ad[ϕ−1.τ ] the adjoint action of the class of ϕ−1.τ , which may
or may not agree with the usual action of π1.

6.2. Coformality of B autF (Rn, 3). Even though we have studied the induced
structure `n on sA ⊗κ L for autF (Rn, 3) extensively, we have not succeeded in
deciding if there are higher operations on the homology H∗(sA⊗κ L) giving rise to
Massey brackets, and thus preventing coformality of B autF (Rn, 3). We take the
opportunity while suggesting further research, to present our progress and chal-
lenges to this task. The rest of the section proceeds as an analysis of how to
potentially obtain a Massey bracket, or alternatively show that all such vanish.

From Proposition 5.8 we know that there are no higher operations on the positive
part of sA⊗κ L. Thus a higher operation on H(sA⊗κ L)∗ comes from the transfer
of the induced bracket `2 to homology along the contraction

sA⊗κ Lk ;;
q // H(sA⊗κ L)∗,
i

oo

cf. Proposition 3.12. It is natural to begin the search for a ternary operation, which
is necessarily a sum of compositions along trees of the following form

i i i

`2 k

`2
q

From the interplay between the weight gradings and the maps involved we can limit
the search significantly. First write

Hp1
q1 (sA⊗κ L)⊗Hp2

q2 (sA⊗κ L)⊗Hp3
q3 (sA⊗κ L)

l3

��
H(sA⊗κ L).

For degree reasons we must have
∑
i pi ≥ 3 for l3 to be non-zero, and we must have

qi > pi to stay in the positive part of the complex. Now if p1 = p2 = p3 = 1 then
the image is in H0(sA ⊗κ L) which we have identified with the centre of L. But∑
qi ≥

∑
i(pi + 1) ≥ 6, and l3 respects the shifted weight grading, so the image is

in bidegree (0,
∑
i qi − 3). That is, in weight greater than 3 in L, while the centre

of L is concentrated in weight 1. Thus at least one pi is greater than 1.
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If p1 = p2 = p3 = 2 then l3 = 0 for degree reasons, so it is enough to analyse the
situation where

(p1, p2, p3) ∈ {(0, 2, 2), (1, 1, 2), (1, 2, 2)}.

Let us note first that a basis for the cycles of sA(1)⊗κ L is given by

{(a12 − a23)⊗ α, (a13 − a23)⊗ β | α, β in the unmixed basis for L},

and a basis for the cycles of sA(2)⊗κ L is given by

{(a12a23)⊗ α, (a13a23)⊗ β | α, β in the unmixed basis for L},

where we recall that the unmixed basis for L is just iterated brackets of α12 and
α13. That is, we may view α, β as elements of the free Lie algebra L(α12, α13). The
cycles of sA(0)⊗κ L where identified with the centre of L, so they are spanned by
the single element 1⊗ α12 + α13 + α23.

We now analyse the composition

Hp1
q1 (sA⊗κ L)⊗Hp2

q2 (sA⊗κ L)

k`2(i⊗i)
��

sA⊗κ L

,

corresponding to the first part of the trees above which any operation l3 must factor
through. If p1 = p2 = 2 this is zero for degree reasons. If p1 = p2 = 1 then the
image is in sA(0)⊗κ L also for degree reasons, and it must be of the form 1⊗ g(γ)
for some γ ∈ L with weight greater than 1. Similarly, if p1 = 0 and p2 = 2 then we
end up in sA(0)⊗κ L.

In both cases the next part of the composition making up the l3 operation is
given by

sA(0)⊗κ L⊗ sA(2)⊗κ L

`2

��
sA⊗κ L

,

and in both cases the part in sA(0)⊗L is of the form 1⊗α where α is a bracketed
word in the letters α12 and α13. Note that

g′(1⊗ α) = 1⊗ g(α) + a23 ⊗ h[x23, g(α)]

because h vanish on the image of g. Denote the other input to `2 by a ⊗ β ∈
sA(2)⊗ L, and expand

`2(1⊗ α, a⊗ β) = f([1⊗ g(α) + a23 ⊗ h[x23, g(α)], a⊗ g(β)]Der).

Since a ∈ A(2) the only possible non-zero term from this is

a23 ⊗ f
(
g(β)

∂

∂a
h[x23, g(α)]

)
,

but this is not a cycle in sA⊗κL, so such terms of l3 all contribute with zero. Thus
a non-zero contribution to l3 must come from the case p1 = 1 and p2 = 2.

Recall from Section 2.5.4 that to decide formality we must produce a non-zero
Massey bracket, or show that they all vanish. That is, we should look elements
x, y, z ∈ H(sA⊗κ L)∗ such that l2 on any pair is zero, but l3(x, y, z) 6= 0, or show
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that this can not be the case. In combination with the above analysis we see that
we should search for elements x ∈ H1(sA⊗ L) and y ∈ H2(sA⊗ L) such that

l2(x, y) = q`2(i(x), i(y)) = 0,

while

k`2(i(x), i(y)) 6= 0.

Recall that q and k both factor through the projection to cycles, and q then quotient
by boundaries, while k is defined by projection to boundaries and a choice of lift
along the differential. Thus x and y should satisfy that the cycle part of `2(i(x), i(y))
is a (non-zero) boundary. For degree reasons `2(i(x), i(y)) is contained in sA(2)⊗κL,
and all boundaries there are of the form

a12a23 ⊗ [α12, α] + a13a23 ⊗ [α13, α],

for some α ∈ L. For i(x) and i(y) in the chosen bases for the cycles, we get that
`2(i(x), i(y)) is a linear combination of

a12a23 ⊗ g(β)
∂

∂a12a23
h[x23, g(α)] + a12a23 ⊗ g(α)

∂

∂a12
g(β)

a13a23 ⊗ g(β)
∂

∂a12a23
h[x23, g(α)] + a12a23 ⊗ g(α)

∂

∂a13
g(β)

a12a23 ⊗ g(β)
∂

∂a13a23
h[x23, g(α)] + a13a23 ⊗ g(α)

∂

∂a12
g(β)

a13a23 ⊗ g(β)
∂

∂a13a23
h[x23, g(α)] + a13a23 ⊗ g(α)

∂

∂a13
g(β).

We have not been able to decide if it is possible to obtain a non-zero boundary
from this. The analysis for even higher operations is similar but longer, and we are
stuck at the same point.

6.3. On autF (Rn, k) for k ≥ 4. As advertised in Example 5.7 there are several
observations to be made regarding the tables of Betti numbers. Recall that we
identified the first differential

κ : sA(0)⊗ L −→ sA(1)⊗ L
with the map ad: L→ DerL. Thus the first column of each table of Betti numbers
is dimensions of the centre of L in each weight. As noted, the centre is concentrated
in L(1), and is 1-dimensional spanned by the element

∑
ij αij . Second column in

each table is then the dimensions of the space of outer derivations OutL, which
raise weight by respectively 1, 2, 3, . . .. There is one such outer derivation raising
weight by 3 (and 5 for k = 4), and we might guess that there is one raising degree
with 2m + 1 for all m ≥ 1 in each case k ≥ 4. We give a short discussion of how
we might approach this.

Consider the Hochschild-Serre spectral sequence for computing the Lie algebra
cohomology H1(L,L) ' OutL using the split extensions

L −→ Lk −→ Lk−1,

and the fact that L2 is a free Lie algebra on one generator. This gives an inductive
tool to approach higher values of k. Notice also that there is a Σk action on
F (Rn, k) permuting the k ordered points, and this induces actions on both A and
L. We can show that the differential κ is equivariant for this action, and it seems
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likely that there is information to be gained by studying the vector spaces as Σk-
representations.

From the very sparse data, we might also hope that H≤k−3(sA⊗κL)∗ is relatively
small in general. This suggest that it can be possible to check if higher operations
on H∗(sA ⊗κ L) vanish or not, as we know that they respect the shifted weight
grading and so, if they should not vanish for degree reasons, must mainly have
input from small values of im, when writing

`r :

r⊗
m=1

sA(im)⊗ L(jm)→ sA(
∑

im − 2r + 3)⊗ L(
∑

jm − 2r + 3).

Another pattern appears which we are in fact able to explain, and which may
help calculations.

Proposition 6.5. For any value of k, there are exact sequences of graded vector
spaces

0 // H0
j (sA⊗κ L) // H1

j (sA⊗κ L) // · · · // Hk−1
j (sA⊗κ L) // 0

for j ≥ 1, with maps induced by multiplication by any fixed algebra generator a ∈ A.

Recall the table of Betti numbers for k = 4:

summand

1 1 0 45 80
2 0 0 81 230
3 0 1 230 501
4 0 0 502 1410
5 0 1 1410 3515
6 0 0 3516 9571

The exact sequences of Proposition 6.5 can be read on the diagonals from bottom
left to top right. The table is only concerned with positive homological degree, so
the first occurrences of such sequences are

0 // Q // Q81 // Q80 // 0

0 // 0 // Q230 // Q230 // 0

0 // Q // Q502 // Q501 // 0

and so on.

Proof of Proposition 6.5. It is easy to check that the maps ma : A → A given by
multiplication by a fixed generator a gives rise to exact sequences

0 −→ A(0) −→ A(1) −→ · · · −→ A(k − 1) −→ 0,

and that the squares

A(i)⊗ L(j)
κ //

ma

��

A(i+ 1)⊗ L(j + 1)

ma

��
A(i+ 1)⊗ L(j)

κ // A(i+ 2)⊗ L(j + 1)
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commute in the graded sense for all i, j. Thus sA⊗κ L is a double complex which
is exact in one direction, and bounded above and below in either direction for any
fixed degree. We get two spectral sequences, both with Ei,j0 = sA(i− j)⊗L(j) and
both converging to the homology of the total complex. Since one direction is exact
the total complex has zero homology, and so the sequence with

E∗,∗1 = H∗(sA⊗ L, κ), and

E∗,∗2 = H∗(H∗(sA⊗ L, κ), (ma)∗)

converges to zero. In fact it collapses at the E2-page, as we will show below in
Lemma 6.6, and so the maps induced from multiplication by a generator (ma)∗
again give exact sequences

0 // H0
∗ (sA⊗κ L) // H1

∗ (sA⊗κ L) // · · · // Hk−1
∗ (sA⊗κ L) // 0

and the maps (ma)∗ preserve the weight in L. �

These exact sequences give a way of computing dimensions of Hi
j(sA ⊗κ L) for

greater values of i, using what we might know about the space for lesser values
of i. In combination with the suggested approach of studying the spaces as Σk
representations, and gaining knowledge about H1

j (sA⊗κ L) using the Hochschild-
Serre spectral sequence, we might be able to push the calculations further, and
perhaps even give formulae for the Betti numbers in general.

Lemma 6.6. The spectral sequence for the double complex sA⊗κ L, with

E∗,∗1 = H∗(sA⊗ L, κ), and

E∗,∗2 = H∗(H∗(sA⊗ L, κ), (ma)∗),

collapses at the E2-page.

Proof. The higher differentials of the spectral sequence for a double complex are
all constructed in similar fashion, and we only show that all differentials on the
E2-page are zero. The rest follows by similar arguments. Let [x] ∈ E2 represent
the class of an element x ∈ E1, in particular (ma)∗(x) = 0. The element x is itself
the class of x̃ ∈ E0, so in particular [κ, x̃] = 0. The condition that (ma)∗(x) = 0 is
equivalent to a · x̃ = [κ, y] for some y ∈ E0. Now

[κ, a · y] = ±a · [κ, y] = ±a2 · x̃ = 0,

so a · y is a κ-cycle. Then z := [a · y] ∈ E1 is a cycle too, as

(ma)∗(z) = [a2 · y] = 0.

The differential on E2 is then defined by d2([x]) := [z] ∈ E2. For any such [x] we
may write z = a · y + Imκ (notice that z has weight greater than 1 in A), and we
have

a · [κ, v] = ±[κ, a · v] ∈ Imκ,

because the bracket on sA⊗L is essentially just that of L induced by extension of
scalars by A. Thus [z] = 0 as claimed. �
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