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Abstract

The main topic of the thesis is approximation properties for locally compact groups with appli-
cations to operator algebras. In order to study the relationship between the Haagerup property
and weak amenability, the weak Haagerup property and the weak Haagerup constant are intro-
duced. The weak Haagerup property is (strictly) weaker than both weak amenability and the
Haagerup property.

We establish a relation between the weak Haagerup property and semigroups of Herz-Schur
multipliers. For free groups, we prove that a generator of a semigroup of radial, contractive
Herz-Schur multipliers is linearly bounded by the word length function.

In joint work with Haagerup, we show that a connected simple Lie group has the weak Haagerup
property if and only if its real rank is at most one. The result coincides with the characterization
of connected simple Lie groups which are weakly amenable. Moreover, the weak Haagerup
constants of all connected simple Lie groups are determined.

In order to determine the weak Haagerup constants of the rank one simple Lie groups, knowledge
about the Fourier algebras of their minimal parabolic subgroups is needed. We prove that
for these minimal parabolic subgroups, the Fourier algebra coincides with the elements of the
Fourier-Stieltjes algebra vanishing at infinity.

In joint work with Li, we characterize the connected simple Lie groups all of whose countable

subgroups have the weak Haagerup property. These groups are precisely the connected simple

Lie groups locally isomorphic to either SO(3), SL(2,R), or SL(2,C).

Resumé

Hovedemnet for denne afhandling er approksimationsegenskaber for lokalkompakte grupper med
anvendelser inden for operatoralgebra. Den svage Haagerupegenskab og den svage Haagerup-
konstant introduceres med det form̊al at undersøge forholdet mellem Haagerupegenskaben og
svag amenabilitet. Den svage Haagerupegenskab er (strengt) svagere end b̊ade svag amenabilitet
og Haagerupegenskaben.

Der etableres en sammenhæng mellem den svage Haagerupegenskab og semigrupper af Herz-
Schurmultiplikatorer. For frie grupper vises det, at en frembringer for en semigruppe af radiale
Herz-Schurmultiplikatorer med norm højst én er lineært begrænset af ordlængdefunktionen.

I samarbejde med Haagerup vises det, at en sammenhængende simpel Liegruppe har den svage
Haagerupegenskab, netop hvis dens reelle rang er højst én. Resultatet er sammenfaldende
med klassifikationen af sammenhængende simple Liegrupper, som er svagt amenable. Desuden
bestemmes den svage Haagerupkonstant af samtlige sammenhængende simple Liegrupper.

For at kunne bestemme den svage Haagerupkonstant for simple Liegrupper af rang én undersøges
Fourieralgebraen af gruppernes minimale parabolske undergrupper. Det bevises, at for disse
minimale parabolske undergrupper best̊ar Fourieralgebraen netop af de elementer i Fourier-
Stieltjesalgebraen, som forsvinder i det uendeligt fjerne.

I samarbejde med Li bestemmes de sammenhængende simple Liegrupper, hvori alle tællelige

undergrupper har den svage Haagerupegenskab. Disse grupper er netop de sammenhængende

simple Liegrupper, som er lokalt isomorfe med enten SO(3), SL(2,R) eller SL(2,C).
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Part I

Thesis overview



The material contained in this part is meant to provide an overview of the articles that
follow. The main results of the articles are described, and some background is provided.
No proofs are given here. Proofs can be found in the articles.

Sections 1–6 are introductory and describe previously known results. Sections 7–11
describe the results of the thesis. Finally, Section 12 discusses some open problems and
possibilities for further research.

1. Introduction

The infinite is an unavoidable part of mathematics and has been so more or less since the
beginning of mathematics. When dealing with the infinite, approximations and limits
appear naturally as necessary and invaluable tools. Going back at least as early as
Eudoxus’ method of exhaustion around 400 BC, the idea of approximating intractable
objects by manageable objects and then passing to a limit has played a crucial role in
mathematics. Many concepts in mathematical analysis are defined as limits of some
kind, e.g., integrals, derivatives, and even the real numbers. In short: approximation is
everywhere in mathematical analysis.

In functional analysis, one often deals with infinite dimensional spaces, and the need for
finite dimensional approximations is apparent. One way of formalizing this idea is due
to Grothendieck [26]: a Banach space X is said to have the approximation property if
every compact operator from a Banach space into X can be approximated in the norm
topology by finite rank operators. Equivalently, X has the approximation property if
the identity operator idX can be approximated uniformly on compact subsets of X by
bounded operators of finite rank (see [41, Theorem 1.e.4]). The approximation problem
of Grothendieck asks whether every Banach space has the approximation property.

The approximation problem was open for a long time until Enflo [25] solved the prob-
lem in the negative by providing an example of a separable Banach space without the
approximation property. As a consequence, Enflo also solved the famous basis prob-
lem posed by Banach, asking whether every separable Banach space has a Schauder
basis. Any Banach space with a Schauder basis has the approximation property, and
therefore Enflo had solved the basis problem with the same counterexample. Enflo’s
construction is quite technical, but later easier examples of Banach spaces without the
approximation property have been found. For instance, Szankowski [51] proved that the
space of bounded operators on an infinite dimensional Hilbert space does not have the
approximation property.

2. Groups and operator algebras

Several other approximation properties of Banach spaces and more specifically operator
algebras (C∗-algebras, von Neumann algebras) have been introduced since then, and it
turns out that seemingly unrelated properties of operator algebras have characterizations
in terms of approximation properties. For instance, a C∗-algebra is nuclear if and only
if its identity map is a point-norm limit of finite rank, completely positive contractions
[11], [38]. The book [7] gives a thorough treatment of approximation properties in the
setting of operator algebras.
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Since the early days of the subject of operator algebras, it has been known that groups
give rise to interesting examples of operator algebras. One such construction is the
group von Neumann algebra. Using this construction, Murray and von Neumann [43]
produced the first example of two non-isomorphic II1 factors, and groups continue to
provide relevant examples of operator algebras. Today, much research goes into figuring
out how forgetful the group von Neumann algebra construction and also the related
reduced group C∗-algebra construction are, and how well these constructions remember
properties of the group.

In [27], Haagerup showed that the complete positivity in the above characterization of
nuclearity is essential. He showed that the reduced group C∗-algebra C∗λ(F2) of the free
group F2 on two generators has the metric approximation property, that is, the identity
map on C∗λ(F2) is a point-norm limit of finite rank contractions. However, by a result
of Lance [39], as F2 is not amenable, the C∗-algebra C∗λ(F2) is not nuclear.

A central idea in Haagerup’s proof is that the free group has a certain approximation
property: the constant function 1 on F2 can be approximated pointwise by positive
definite functions vanishing at infinity. This fact initiated the study of groups with
what is now called the Haagerup property (Definition 5.1).

In [27], Haagerup also showed that the Fourier algebra of the free group F2 admits
an approximate unit which is bounded in multiplier norm. It was already known by
a result of Leptin [40] that the Fourier algebra of a locally compact group admits an
approximate unit bounded in norm, if and only if the group is amenable. The condition
about boundedness in multiplier norm can be seen as a weak form of amenability. This
fact initiated the study of weakly amenable groups (Definition 5.5).

3. Discrete groups and locally compact groups

As we have tried to argue above, groups are interesting from the viewpoint of operator
algebras, because they provide interesting examples of operator algebras. Also, often it
is easier to work with groups directly than with operator algebras. Many well-studied
groups come naturally equipped with some extra structure, e.g., a topology or a manifold
structure. Lie groups, in particular, are well suited for analysis.

On the other hand, discrete groups are the most interesting from the viewpoint of
operator algebras. For instance, the reduced group C∗-algebra C∗λ(G) of a discrete
group G is nuclear if and only if G is amenable [39], whereas C∗λ(G) is nuclear for any
separable locally compact group which is connected (see [12, Corollary 6.9] and [10,
Theorem 3]). Discrete groups are, on the other hand, not so well suited for analysis.
For instance, discrete groups rarely have a nice representation theory in the sense that
they are rarely of type I [53].

The basic idea in the theory of approximation properties for groups and operator alge-
bras is to remedy this by embedding discrete groups as lattices in Lie groups, do the
analysis on the Lie groups and then transfer the results back to the lattice and in the
end to the group C∗-algebra or group von Neumann algebra.
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Recall that a lattice in a locally compact group G is a discrete subgroup Γ such that the
quotient space G/Γ admits G-invariant, regular probability measure. A standard exam-
ple of a lattice is the integer lattice Zn in the Euclidean space Rn. A less straightforward
example is the subgroup SL(n,Z) in SL(n,R) (see [6, Appendix B]).

The examples of groups in what follows are Lie groups and their lattices, but since many
of the definitions make sense in the more general context of locally compact groups,
we have chosen to work in that setting. Locally compact groups seem like a natural
framework to work within.

4. Function algebras associated with groups

This section was supposed to contain descriptions of various function algebras associated
with locally compact groups. However, since we feel that this is already done in enough
detail in [B, Section 3] and [D, Section 2], we have chosen instead to refer the reader to
those places and simply include a list of the relevant notation in Table 1.

Symbol Name Comment

Cc(G) compactly supported, continuous functions

C0(G) continuous functions vanishing at infinity

C∞(G) smooth functions when G is a Lie group

Lp(G) Lebesgue space p ∈ {1, 2,∞}
A(G) Fourier algebra predual of L(G)

B(G) Fourier-Stieltjes algebra dual of C∗(G)

M0A(G) completely bounded Fourier multipliers dual of Q(G)

C∗(G) full/universal group C∗-algebra predual of B(G)

C∗λ(G) reduced group C∗-algebra

L(G) group von Neumann algebra dual of A(G)

B2(G) Herz-Schur multipliers B2(G) = M0A(G)

Q(G) predual of M0A(G)

Table 1. Function algebras related to a locally compact group G

5. The Haagerup property and weak amenability

The following definition is motivated by the results on free groups in [27].

Definition 5.1. A locally compact group G has the Haagerup property if there exists
a net (uα)α∈A of continuous positive definite functions on G vanishing at infinity such
that uα converges to 1 uniformly on compact sets.

The book [8] gives a nice and thorough treatment of groups with the Haagerup property.
Apart from the free groups, there are many groups with the Haagerup property. For
instance, it follows from (4) in the following well-known characterization of amenability
that any amenable group has the Haagerup property. Amenable groups include all
compact groups and all abelian groups.
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Theorem 5.2 (Leptin, Hulanicki). Each of the following equivalent conditions charac-
terize amenability of a locally compact group G.

(1) There is a left-invariant mean on L∞(G).
(2) The Fourier algebra A(G) admits a bounded approximate unit.
(3) The trivial representation of G is weakly contained in the regular representation

of G.
(4) There is a net of continuous, compactly supported, positive definite functions

on G converging to the constant function 1G uniformly on compact sets.

Many examples of groups with the Haagerup property are given in [8]. Here we only
wish to include [8, Theorem 4.0.1] which characterizes the connected Lie groups with
the Haagerup property.

Theorem 5.3 ([8]). A connected Lie group has the Haagerup property if and only if it
is locally isomorphic to a direct product

M × SO(n1, 1)× · · · × SO(nk, 1)× SU(m1, 1)× · · · × SU(ml, 1),

where M is an amenable Lie group.

Before we leave the Haagerup property and turn to weak amenability, we record the
following characterization of the Haagerup property.

Theorem 5.4 ([1]). Let G be a locally compact, σ-compact group. The following are
equivalent.

(1) G has the Haagerup property, that is, there exists a sequence of positive definite
functions in C0(G) converging to 1G uniformly on compact subsets of G.

(2) There is a continuous, proper function ψ : G → [0,∞[ which is conditionally
negative definite.

The definition of weak amenability introduced by Cowling and Haagerup [16] is moti-
vated by the results from [14],[17],[27].

Definition 5.5. A locally compact group G is weakly amenable if there exist a constant
C > 0 and a net (uα)α∈A in A(G) such that

‖uα‖M0A ≤ C for every α ∈ A, (5.6)

uα → 1 uniformly on compacts. (5.7)

The norm ‖ ‖M0A is the completely bounded multiplier norm. The best (i.e. lowest)
possible constant C in (5.6) is called the weak amenability constant and denoted ΛWA(G).
If G is not weakly amenable, then we put ΛWA(G) =∞. The weak amenability constant
ΛWA(G) is also called the Cowling-Haagerup constant and denoted Λcb(G) or ΛG in the
literature.

Remark 5.8. In the definition of weak amenability one could replace (5.7) by the
following condition (see [16, Proposition 1.1]):

‖uαv − v‖A → 0 for every v ∈ A(G). (5.9)

Moreover, one could also replace the requirement uα ∈ A(G) with the requirement
uα ∈ B2(G) ∩ Cc(G) (see [B, Appendix B]).
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Some of the results on free groups in [27] were improved in [17, Corollary 3.9], where it
was shown that A(F2) admits an approximate unit which is bounded in the completely
bounded multiplier norm. In short: F2 is weakly amenable. A list of other weakly
amenable groups can be found in [8, p. 7]. It is worth noting the big overlap between
groups with the Haagerup property and groups that are weakly amenable with constant
one.

Although the description of weak amenability for connected Lie groups is not completely
finished (yet), a lot is known (see [15]). Here we record the case of simple Lie groups
which is the combined work of [14], [16], [17], [23], [24], [28], [32].

Theorem 5.10. A connected simple Lie group G is weakly amenable if and only if the
real rank of G is zero or one. In that case, the weak amenability constant is

ΛWA(G) =





1 when G has real rank zero

1 when G ≈ SO0(1, n)

1 when G ≈ SU(1, n)

2n− 1 when G ≈ Sp(1, n)

21 when G ≈ F4(−20).

(5.11)

Above, G ≈ H means that G is locally isomorphic to H.

Several permanence results are known for the class of groups with the Haagerup property
and the class of weakly amenable groups [8], [16], [35], [37], [28]. We list some of them
here. Some of the statements hold in greater generality, but here we wish to emphasize
the mostly used cases.

The class of groups with the Haagerup property is closed under forming (finite) direct
products, passing to closed subgroups and passing to a directed union of open subgroups.
Let G be a locally compact, second countable group. If G has a closed normal subgroup
N with the Haagerup property such that the quotient is amenable, then G has the
Haagerup property. If a lattice in G has the Haagerup property then so does G.

The same permanence results as for the Haagerup property hold for the class of groups
G satisfying ΛWA(G) = 1. Moreover, ΛWA is multiplicative [16, Corollary 1.5].

The group R2 o SL(2,R) does not have the Haagerup property as the non-compact
subgroup R2 has relative property (T) in R2oSL(2,R) (see [6]). In particular, extensions
of groups with the Haagerup property need not have the Haagerup property, and the
assumption above about amenability of the quotient cannot be removed. Similarly, for
weak amenability the following holds.

Theorem 5.12 ([28],[23]). The group R2 o SL(2,R) is not weakly amenable.

Combining the results on weak amenability and the Haagerup property for simple Lie
groups (Theorem 5.3 and Theorem 5.10) one obtains the following theorem.

Theorem 5.13. Let G be a connected simple Lie group. The following are equivalent.

(1) G is compact or locally isomorphic to SO(n, 1) or SU(n, 1) for some n ≥ 2.
(2) G has the Haagerup property.
(3) G is weakly amenable with constant 1.

Looking at Theorem 5.13 and comparing the lists of weakly amenable groups and groups
with the Haagerup property from [8], it is tempting to assume some sort of relation
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between the two classes of groups. The following question was posed by Cowling [8,
p. 7].

Question 5.14 (Cowling). Let G be a locally compact group. Is G weakly amenable
with ΛWA(G) = 1 if and only if G has the Haagerup property?

Question 5.14, or more precisely Question 7.1 below, has been the main problem in my
thesis.

6. A counterexample in one direction: wreath products

Around 2008, two results on wreath products appeared which together solve one direc-
tion of Question 5.14 in the negative. We recall that the (standard or restricted) wreath
product H oG of two groups H and G is the semidirect product

H oG =

(⊕

G

H

)
oG,

where G acts by shifting the direct sum
⊕

GH of copies of H.

The first result, proved by de Cornulier, Stalder and Valette [19], is that if H is a finite
group and Fn is a free group on n generators, then the wreath product group H o Fn
has the Haagerup property. They later generalized their result to include all wreath
products H oG where H and G are countable groups with the Haagerup property [20].

The second result on wreath products, obtained by Ozawa and Popa [46, Corollary 2.12],
is that ΛWA(H o G) > 1 whenever H is a non-trivial group and G is non-amenable.
Combining the two results, one obtains a counterexample to Question 5.14: the wreath
product group W = Z/2 o F2 has the Haagerup property, but ΛWA(W ) > 1. Here, Z/2
denotes the group with two elements.

As the weak amenability constant ΛWA is multiplicative [16, Corollary 1.5], one can
produce an even stronger counterexample to Question 5.14: the infinite direct sum⊕

ZW has the Haagerup property, but is not weakly amenable.

Subsequently, Ozawa proved [45, Corollary 4] that a wreath product H oG is not weakly
amenable, whenever H is non-trivial and G is non-amenable.

Proposition 6.1 ([20],[45]). The wreath product Z/2 o F2 of the group on two elements
with the free group on two generators has the Haagerup property, but is not weakly
amenable.

More generally, if H is any non-trivial countable group with the Haagerup property, and
G is any countable non-amenable group with the Haagerup property, then H oG has the
Haagerup property, but is not weakly amenable.

Combining the results of [20],[45] with the permanence results (see Section 5), one ob-
tains the following complete classification of wreath products with the Haagerup prop-
erty and wreath products that are weakly amenable. Proposition 6.2 does not appear
explicitly in [20],[45].

Proposition 6.2 ([20],[45]). Let G and H be non-trivial, countable groups. The follow-
ing are equivalent.

(1) The wreath product H oG has the Haagerup property.



14

(2) Both H and G have the Haagerup property.

If G is infinite the following are equivalent.

(1’) The wreath product H oG is weakly amenable, that is, ΛWA(H oG) <∞.
(2’) ΛWA(H oG) = 1.
(3’) G is amenable and ΛWA(H) = 1.

If G is finite, then ΛWA(H oG) = ΛWA(H)|G| so the following are equivalent.

(1”) The wreath product H oG is weakly amenable.
(2”) H is weakly amenable.

7. An attempt in the other direction

The results on wreath products described in the previous section solved half of Ques-
tion 5.14 in the negative, but left open the remaining half:

Question 7.1. Let G be a locally compact group with ΛWA(G) = 1. Does G have the
Haagerup property?

The article [A] dealt with Question 7.1, but no conclusive results were obtained. As of
today, Question 7.1 is still open.

It is clear that if a locally compact group G satisfies ΛWA(G) = 1, then there is a
net (ui)i∈I of contractive Herz-Schur multipliers in C0(G) tending to 1 uniformly on
compact subsets of G. The point of this trivial observation is that the latter condition
is equivalent to condition (2) in Theorem 7.2 below which is reminiscent of condition
(2) in Theorem 5.4 characterizing the Haagerup property.

Theorem 7.2 ([A],[B]). Let G be a locally compact, σ-compact group. The following
are equivalent.

(1) There is a sequence of contractive Herz-Schur multipliers in C0(G) converging
to 1 uniformly on compact subsets of G.

(2) There is a continuous, proper function ψ : G → [0,∞[ such that ‖e−tψ‖B2 ≤ 1
for every t > 0.

Instead of attacking Question 7.1 directly, the idea in [A] was to take condition (2) of
Theorem 7.2 as a starting point and consider the following related problem.

Problem 7.3 ([A]). Let G be a countable, discrete group, and let ϕ : G → R be a
symmetric function satisfying ‖e−tϕ‖B2 ≤ 1 for all t > 0. Does there exist a conditionally
negative definite function ψ on G such that ϕ ≤ ψ?

A positive solution to this problem would provide a positive solution to Question 7.1.
Problem 7.3 was not solved, but the following related result was obtained. Note that ϕ
is not required to be proper in the theorem below.

Theorem 7.4 ([A]). Let G be a countable, discrete group with a symmetric function
ϕ : G→ R. Then ‖e−tϕ‖B2 ≤ 1 for every t > 0 if and only if ϕ splits as

ϕ(y−1x) = ψ(x, y) + θ(x, y) + θ(e, e) (x, y ∈ G),

where



15

· ψ is a conditionally negative definite kernel on G vanishing on the diagonal,
· and θ is a bounded, positive definite kernel on G.

The downside of the above theorem is that the ψ and θ are kernels on G, i.e., defined
on G × G, and not necessarily functions on G. One can, of course, hope to be able to
strengthen Theorem 7.4 and produce functions ψ and θ defined on the group G itself,
but as the following theorem shows, this is not always possible unless G is amenable.

Theorem 7.5 ([A]). Let G be a countable, discrete group. Then G is amenable if and
only if the following condition holds. Whenever ϕ : G→ R is a symmetric function such
that ‖e−tϕ‖B2 ≤ 1 for every t > 0, then ϕ splits as

ϕ(x) = ψ(x) + ||ξ||2 + 〈π(x)ξ, ξ〉 (x ∈ G)

where

· ψ is a conditionally negative definite function on G with ψ(e) = 0,
· π is an orthogonal representation of G on some real Hilbert space H,
· and ξ is a vector in H.

Note that the function x 7→ 〈π(x)ξ, ξ〉 is positive definite, and every positive definite
function has this form.

Problem 7.3 was solved in the special case where G is a free group and the function ϕ
is radial. Indeed, as the word length function on a free group is conditionally negative
definite [27], the following solves Problem 7.3 in the special case.

Theorem 7.6 ([A]). Let Fn be the free group on n generators (2 ≤ n ≤ ∞), and let
ϕ : Fn → R be a radial function, i.e., ϕ(x) depends only on the word length |x|. If
‖e−tϕ‖B2 ≤ 1 for every t > 0, then there are constants a, b ≥ 0 such that

ϕ(x) ≤ b+ a|x| for all x ∈ Fn.

8. The weak Haagerup property

The equivalent conditions in Theorem 7.2 motivated the definition of the weak Haagerup
property introduced in [A], [B].

Definition 8.1 (Weak Haagerup property [A], [B]). A locally compact group G has the
weak Haagerup property if there are a constant C > 0 and a net (uα)α∈A inB2(G)∩C0(G)
such that

‖uα‖B2 ≤ C for every α ∈ A,
uα → 1 uniformly on compacts as α→∞.

The weak Haagerup constant ΛWH(G) is defined as the infimum of those C for which
such a net (uα) exists, and if no such net exists we write ΛWH(G) =∞. It is not difficult
to see that the infimum is actually a minimum.

It is natural to compare the weak Haagerup property with the previously introduced
approximation properties, weak amenability and the Haagerup property. Obviously,
the weak Haagerup property is weaker than both of them. It turns out that the weak
Haagerup property is in fact strictly weaker:
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Example 8.2 ([B]). The class of groups with the weak Haagerup property contains
groups that are neither weakly amenable nor have the Haagerup property. One such
example can be manufactured in the following way: Let Γ be the quaternion integer
lattice in the simple Lie group Sp(1, n). In other words, Γ consists of the matrices in
Sp(1, n) whose entries belong to Z+ iZ+ jZ+kZ (with standard notation). It is known
that Γ does not have the Haagerup property. In fact, Γ has property (T). However, Γ
is weakly amenable. The group

Γ× (Z/2 o F2)

then has the weak Haagerup property, but does not have the Haagerup property and is
not weakly amenable.

In [B], the weak Haagerup property for groups is systematically studied. Also, [B]
treated the weak Haagerup property for von Neumann algebras (see Section 11). The
main results of [B] on groups are the permanence results summarized in the following
theorem. Some of these results were generalized by Jolissaint [37] and by Deprez, Li
[21].

Theorem 8.3 ([B]). Let G be a locally compact group.

(1) If H is a closed subgroup of G, and G has the weak Haagerup property, then H
has the weak Haagerup property. More precisely,

ΛWH(H) ≤ ΛWH(G).

(2) If K is a compact normal subgroup of G, then G has the weak Haagerup property
if and only if G/K has the weak Haagerup property. More precisely,

ΛWH(G) = ΛWH(G/K).

(3) The weak Haagerup property is preserved under finite direct products. More
precisely, if G′ is a locally compact group, then

ΛWH(G×G′) ≤ ΛWH(G)ΛWH(G′).

(4) If (Gi)i∈I is a directed set of open subgroups of G, then

ΛWH(
⋃

i

Gi) = lim
i

ΛWH(Gi).

(5) If 1 −→ N ↪−→ G −→ G/N −→ 1 is a short exact sequence of locally compact
groups, where G is second countable or discrete, and if G/N is amenable, then
G has the weak Haagerup property if and only if N has the weak Haagerup
property. More precisely,

ΛWH(G) = ΛWH(N).

(6) If Γ is a lattice in G and if G is second countable, then G has the weak Haagerup
property if and only if Γ has the weak Haagerup property. More precisely,

ΛWH(Γ) = ΛWH(G).

In subsequent work joint with Haagerup [C], the weak Haagerup property was studied in
connection with simple Lie groups. Since everything is known about weak amenability
and the Haagerup property for simple Lie groups, it is reasonable to expect that similar
results can be obtained for the weak Haagerup property. This is indeed the case, but
the proofs of the following results use several deep results from [31], [29], [30], [D] that
were not available when similar results were established for weak amenability.
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The following result extends a result from [28], [23] (see Theorem 5.12).

Theorem 8.4 ([C]). The group R2oSL(2,R) does not have the weak Haagerup property.

The following result completely characterizes connected simple Lie groups with the weak
Haagerup property.

Theorem 8.5 ([C]). Let G be a connected simple Lie group. Then G has the weak
Haagerup property if and only if the real rank of G is at most one.

Theorem 8.5 follows essentially from structure theory and the following theorem.

Theorem 8.6 ([C]). The groups SL(3,R), Sp(2,R), and S̃p(2,R) do not have the weak
Haagerup property.

Theorem 8.6 is a fairly easy consequence of recent results of Haagerup and de Laat
[30], [29]. In the real rank one case, it is interesting to compute the weak Haagerup
constants. Comparing Theorem 8.7 with (5.11) one sees that ΛWA(G) = ΛWH(G) for
every connected simple Lie group G.

Theorem 8.7 ([C]). Let G be a connected simple Lie group of real rank one. Then

ΛWH(G) =





1 for G ≈ SO0(1, n)

1 for G ≈ SU(1, n)

2n− 1 for G ≈ Sp(1, n)

21 for G ≈ F4(−20)

where G ≈ H means that G is locally isomorphic to H.

The proof of Theorem 8.7 is based on the work of Cowling and Haagerup [16], who
computed the weak amenability constants of most of the rank one simple Lie groups
(5.11).

9. An aside on Fourier algebras

Recall that A(G) and B(G) denote the Fourier algebra and the Fourier-Stieltjes algebra
of a locally compact group G, respectively. A key ingredient in the proof of Theorem 8.7
is the fact that the simple Lie groups of real rank one contain certain parabolic subgroups
P with the property that every element of B2(P ) ∩ C0(P ) is a matrix coefficient of the
regular representation of P , i.e., belongs to A(P ).

Let n ≥ 2, let G be one of the classical simple Lie groups SO0(n, 1), SU(n, 1), Sp(n, 1),
or the exceptional group F4(−20), and let G = KAN be the Iwasawa decomposition. If
M is the centralizer of A in K, then P = MAN is the minimal parabolic subgroup of G.
As the parabolic subgroups are amenable, B2(P ) = B(P ), and the result we are after is
the following.

Theorem 9.1 ([D]). Let P be the minimal parabolic subgroup in one of the simple Lie
groups SO0(n, 1), SU(n, 1), Sp(n, 1), or F4(−20). Then A(P ) = B(P ) ∩ C0(P ).

Similarly, the proof of Theorem 8.4 is based on the following result.
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Theorem 9.2 ([D]). For the group

P =







λ a c

0 λ−1 b

0 0 1




∣∣∣∣∣∣∣
a, b, c ∈ R, λ > 0





we have A(P ) = B(P ) ∩ C0(P ).

There is a natural way to think of P as a subgroup of R2 o SL2(R), and this is how
Theorem 9.2 is used in the proof of Theorem 8.4.

The proofs of Theorem 9.1 and Theorem 9.2 are based on [D, Theorem 4] which gives
sufficient conditions on a locally compact group G that allows one to conclude

A(G) = B(G) ∩ C0(G). (9.3)

The paper [D] starts with a general discussion of groups G with/without the property
(9.3).

10. Countable subgroups in simple Lie groups

Many amenable groups such as the compact groups SO(n), n ≥ 3, contain non-abelian
free subgroups, and such subgroups are non-amenable when viewed as discrete groups.
Arguably, the existence of free subgroups in SO(3), going back to Hausdorff [33], [34,
p. 469], was the starting point of the study of amenability which eventually led to
the study of the approximation properties described in this thesis. One can ask if the
rotation groups SO(n) contain countable subgroups which are not weakly amenable or
do not have the Haagerup property. More generally, one could ask which simple Lie
groups contain countable subgroups which are not weakly amenable or do not have the
Haagerup property. In [18, Theorem 1.14], de Cornulier answered this question for the
Haagerup property.

Inspired by de Cornulier’s result on the Haagerup property, a similar study was carried
out for weak amenability and the weak Haagerup property in a joint paper with Li [E].
The main result of that paper is (a reformulation of) the following theorem.

Theorem 10.1 ([E]). Let G be a connected simple Lie group. The following are equiv-
alent.

(1) G is locally isomorphic to SO(3), SL(2,R), or SL(2,C).
(2) Every countable subgroup of G has the Haagerup property.
(3) Every countable subgroup of G is weakly amenable with constant 1.
(4) Every countable subgroup of G is weakly amenable.
(5) Every countable subgroup of G has the weak Haagerup property with constant 1.
(6) Every countable subgroup of G has the weak Haagerup property.

The equivalence of (1) and (2) in Theorem 10.1 is due to de Cornulier [18, Theorem 1.14]
and holds in greater generality. Note that Theorem 10.1 answers Question 5.14 for the
class of connected simple Lie groups equipped with the discrete topology similar to how
Theorem 5.13 answers Question 5.14 for connected simple Lie groups with their usual
(Lie group) topology. The methods used to prove Theorem 10.1 are similar to those in
[18] but use also the recent classification of simple Lie groups with the weak Haagerup
property (Theorem 8.5).
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11. Von Neumann algebras

As mentioned in Section 2, a major motivation for studying approximation properties
of groups is to obtain results about operator algebras. Approximation properties of
groups that have operator algebraic analogues are of particular interest. Here we will
focus on the case of finite von Neumann algebras, but C∗-algebraic versions of some of
the approximation properties discussed earlier also exist. Throughout this section, M
denotes a von Neumann algebra equipped with a faithful normal tracial state τ .

The weak∗ completely bounded approximation property. In [28], the weak∗

completely bounded approximation property (in short: W∗CBAP) was introduced. The
von Neumann algebra M has the W∗CBAP if there is a net Tα of ultraweakly continuous,
finite rank operators on M such that Tα → 1M point-ultraweakly and ‖Tα‖cb ≤ C for
some C > 0 and every α. Here ‖ ‖cb denotes the completely bounded operator norm.
The infimum of all C for which such a net exists is denoted Λcb(M). It was shown in
[28] that a discrete group Γ is weakly amenable if and only if its group von Neumann
algebra L(Γ) has the W∗CBAP, and moreover

Λcb(L(Γ)) = ΛWA(Γ). (11.1)

In [16, Corollary 6.7], the W∗CBAP was used to give an example of a II1 factor M such
that all its tensor powers M , M⊗M , M⊗M⊗M , . . . , are non-isomorphic. Apart from
(11.1), the example was, among other things, based on the fact that the weak amenability
constant ΛWA is multiplicative with respect to direct products [16, Corollary 1.5] (see
also [50, Theorem 4.1]). We refer the reader to [7, Section 12.3] and [2, Section 4] for
more on the W∗CBAP.

The Haagerup property. The Haagerup property for II1 factors was introduced by
Connes [13] and Choda [9] and later generalized to finite von Neumann algebras by
Anantharaman-Delaroche [2, Definition 4.15]. See also [36] and the references therein
for more on the Haagerup property. The von Neumann algebra M (with trace τ) has
the Haagerup property if there is a net Tα of ultraweakly continuous, completely positive
operators on M such that

(1) τ ◦ Tα ≤ τ for every α,
(2) Tα extends to a compact operator on L2(M, τ),
(3) ‖Tαx− x‖τ → 0 for every x ∈M .

As proved by Jolissaint [36], one can arrange that τ ◦ Tα = τ and that Tα is unital.
Moreover, the Haagerup property of M does not depend on the choice of τ .

Choda [9] proved that a discrete group Γ has the Haagerup property if and only if its
group von Neumann algebra L(Γ) has the Haagerup property.

The weak Haagerup property. In [B], the weak Haagerup property was introduced
for von Neumann algebras. As the name suggests, it is weaker than the Haagerup
property.

Definition 11.2 ([B]). Let M be a von Neumann algebra with a faithful normal tracial
state τ . Then (M, τ) has the weak Haagerup property, if there are a constant C > 0 and
a net Tα of ultraweakly continuous, completely bounded maps on M such that
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(1) ‖Tα‖cb ≤ C for every α,
(2) 〈Tαx, y〉τ = 〈x, Tαy〉τ for every x, y ∈M ,
(3) each Tα extends to a compact operator on L2(M, τ),
(4) Tαx→ x ultraweakly for every x ∈M .

The weak Haagerup constant ΛWH(M, τ) is defined as the infimum of those C for which
such a net Tα exists, and if no such net exists we write ΛWH(M, τ) =∞.

The weak Haagerup constant of M is independent of the choice of trace on M , that is,
ΛWH(M, τ) = ΛWH(M, τ ′) for any two faithful normal tracial states τ and τ ′ on M [B,
Proposition 8.4]. Thus, one often writes ΛWH(M) instead of ΛWH(M, τ).

It is not immediately clear that the weak Haagerup property is weaker than the Haagerup
property, but this follows basically from Jolissaint’s characterization and [3, Lemma 2.5]
(see [B, Proposition 7.6]). As should be expected, the following holds.

Theorem 11.3 ([B]). Let Γ be a discrete group. The following conditions are equivalent.

(1) The group Γ has the weak Haagerup property.
(2) The group von Neumann algebra L(Γ) has the weak Haagerup property.

More precisely, ΛWH(Γ) = ΛWH(L(Γ)).

One can also prove several permanence results for the class of von Neumann algebras
with the weak Haagerup property.

Theorem 11.4 ([B]). Let M,M1,M2, . . . be von Neumann algebras which admit faithful
normal tracial states.

(1) If M2 ⊆M1 is a von Neumann subalgebra, then ΛWH(M2) ≤ ΛWH(M1).
(2) If p ∈M is a non-zero projection, then ΛWH(pMp) ≤ ΛWH(M).
(3) Suppose that 1 ∈ M1 ⊆ M2 ⊆ · · · are von Neumann subalgebras of M gen-

erating all of M , and there is an increasing sequence of non-zero projections
pn ∈Mn with strong limit 1. Then ΛWH(M) = supn ΛWH(pnMnpn).

(4)

ΛWH

(⊕

n

Mn

)
= sup

n
ΛWH(Mn).

(5)
ΛWH(M1 ⊗M2) ≤ ΛWH(M1)ΛWH(M2).

Example 11.5 ([B]). Using Theorem 11.3 and the results on groups with the weak
Haagerup property (mostly Theorem 8.4 and Theorem 8.7) it is possible to give examples
of two II1 factors whose weak Haagerup constants differ. Moreover, an example can be
constructed such that the other approximation properties (W∗CBAP and the Haagerup
property) do not distinguish the two factors. We describe the factors here and refer to
[B, Section 9] for more details.

Let Γ0 be the quaternion integer lattice in Sp(1, n) modulo its center {±I}, and let
W = Z/2 o F2 be the wreath product group (Section 6). We let Γ1 = Γ0 × W and
Γ2 = Z2 o SL(2,Z).

For i = 1, 2, let Mi be the group von Neumann algebra L(Γi) of Γi. Then M1 and M2

are II1 factors and
ΛWH(M1) = 2n− 1, ΛWH(M2) =∞.
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Another example could have been obtained using only M1 by simply choosing two dif-
ferent values for n.

12. What now?

Although the thesis has provided some partial answers to Question 7.1, no definite
answer was obtained. We list the question here together with a series of related problems.

Problem 12.1. Let G be a locally compact group with ΛWA(G) = 1. Does G have the
Haagerup property?

Non-simple Lie groups. One of the main results of the thesis is the computation of
the weak Haagerup constants ΛWH(G) for all connected simple Lie groups G (Section 8).
It is natural to ask what role the assumptions of connectedness and simplicity play. The
assumption of connectedness cannot be avoided since otherwise we would also need
to deal with all discrete groups, and this is clearly a very different (and inaccessible)
problem.

Removing the assumption of simplicity, on the other hand, is more interesting. First
of all, it is easy to classify connected semisimple Lie groups with the weak Haagerup
property, if they are direct products of simple Lie groups. This is because a finite
direct product of groups has the weak Haagerup property if and only if each factor
has the property. The computation of the weak Haagerup constant ΛWH, however, is
not obvious. The weak Haagerup constant is sub-multiplicative with respect to direct
products [B, Proposition 5.5], but the following is unsolved.

Problem 12.2. Let G and H be locally compact groups. Is

ΛWH(G×H) = ΛWH(G)ΛWH(H)?

We remark that the similar problem for the weak amenability constant ΛWA is known
to be true [16, Corollary 1.5].

In [23], Dorofaeff showed that the groups RnoSL(2,R), n ≥ 2, are not weakly amenable.
Here, the action of SL(2,R) on Rn is by the unique irreducible representation. Subse-
quently, in [24], Dorofaeff used this fact to complete the classification of connected
simple Lie groups that are weakly amenable. The paper [15] deals with the non-simple
case and almost completes the classification of connected Lie groups that are weakly
amenable. This is based on Dorofaeff’s results combined with the fact (proved in [15])
that the groups Hn o SL(2,R), n ≥ 1, are not weakly amenable. Here, SL(2,R) acts
on the Heisenberg group Hn of dimension 2n+ 1 by fixing the center of Hn and acting
on the vector space R2n by the unique irreducible representation of dimension 2n. It is
plausible that these groups also fail to have the weak Haagerup property.

Problem 12.3. Do the groups Rn o SL(2,R), n ≥ 3, fail to have the weak Haagerup
property? Do the groups HnoSL(2,R), n ≥ 1, fail to have the weak Haagerup property?

If true, a strategy for solving Problem 12.3 could be to locate a suitable solvable group
P inside Rn o SL(2,R) or Hn o SL(2,R) and then mimic the proof for R2 o SL(2,R)
(see [C]). The meaning of “suitable” is that P contains a certain nilpotent subgroup of
RnoSL(2,R) or HnoSL(2,R) on which many estimates are made in [23] and [15], and
at the same time P should satisfy A(P ) = B(P ) ∩ C0(P ). This is one motivation for
studying Problem 12.10 below.
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Generalizing Problem 12.3, one can ask the following:

Problem 12.4. Is ΛWA(G) = ΛWH(G), when G is a connected Lie group?

Note that Problem 12.4 is true for connected simple Lie groups [C], although at the
moment the proof is not intrinsic but uses instead the computation of ΛWA and ΛWH

for every connected simple Lie group. As mentioned in Example 8.2, Problem 12.4 is
not true for discrete groups in general.

Locally compact groups made discrete. As mentioned in Section 10, the equiv-
alence of (1) and (2) in Theorem 10.1 holds more generally (see [18, Theorem 1.14]).
Thus, it is natural to ask the following.

Problem 12.5. Are statements (2)–(6) in Theorem 10.1 equivalent for all connected
Lie groups G?

It is a curious fact that if G is a locally compact group which as a discrete group is
amenable, then G is also amenable as a locally compact group [47, Proposition 4.21].
One can ask whether the same thing holds with weak amenability:

Problem 12.6 ([E]). If G is a locally compact group and Gd denotes the group G
equipped with the discrete topology, is it then true that if Gd is weakly amenable, then
G is weakly amenable?

Or more specifically, does the inequality ΛWA(G) ≤ ΛWA(Gd) hold? Similar questions
can of course be asked for the Haagerup property and the weak Haagerup property.

It is not reasonable to expect an implication in the other direction. For instance, many
(amenable) compact groups such as SO(n), n ≥ 3, are non-amenable as discrete groups.
It follows from Theorem 10.1 that when n ≥ 5, then SO(n) as a discrete group does not
even have the weak Haagerup property.

Free products. It was shown by Jolissaint that free products of discrete groups with
the Haagerup property have the Haagerup property (see [35, Proposition 2.5] or [8,
Proposition 6.2.3]). By a result of Ricard and Xu [49, Theorem 4.13], it is also known
that the class of discrete groups with weak amenability constant 1 is closed under free
products. The corresponding result for weakly amenable groups (no assumption on the
constant) is unknown.

Problem 12.7. Is the class of discrete groups with weak Haagerup constant 1 closed
under free products?

Von Neumann algebras. For groups it is clear that both weak amenability and the
Haagerup property imply the weak Haagerup property. For von Neumann algebras, the
Haagerup property still implies the weak Haagerup property [B, Proposition 7.6], but
the corresponding result for the W∗CBAP is not known.

Problem 12.8. Let M be a von Neumann algebra which admits a faithful normal tracial
state. If M has the W∗CBAP, does M have the weak Haagerup property?

Linear groups. Recall that a group is linear if it has a faithful representation in a
general linear group GL(n,K) for some natural number n and some field K. Linear
groups are much studied, see e.g. the book [55] by Wehrfritz. Finitely generated, linear
groups are known to be residually finite by a theorem of Mal’cev [42], and linear groups
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satisfy Tits’ alternative [54]: Over a field of characteristic zero, a linear group either
has a non-abelian free subgroup or possesses a solvable subgroup of finite index. Over a
field of non-zero characteristic, a linear group either has a non-abelian free subgroup or
possesses a normal solvable subgroup such that the quotient is locally finite (i.e. every
finite subset generates a finite subgroup).

A longstanding problem, going back to von Neumann and the origin of amenability,
asks whether every non-amenable group contains a non-abelian free subgroup. The
problem was solved in the negative by Ol’̌sanskĭı [44], but Tits’ alternative shows that
any counterexample to the problem cannot be linear.

Similarly, it follows from Tits’ alternative that any (discrete) counterexample to the
unsolved Dixmier problem [22], asking whether unitarizable groups are amenable, cannot
be linear. See [48] for more on the Dixmier problem.

The group Z/2 o F2, which has played an important role in relation to Question 5.14, is
not linear, as we will now see. It is finitely generated.

Linear wreath products were completely classified by Vapne and Wehrfritz, indepen-
dently (see e.g. [55, Theorem 10.21]). It follows from their classification that if G oH is
linear for some non-trivial group G, then H is a finite extension of an abelian group. In
particular, H must be amenable in order for the wreath product G oH to be linear. As
free groups are not amenable, the group Z/2 o F2 is not linear.

Since wreath product groups are the only known counterexamples to Question 5.14, the
following problem is still open.

Problem 12.9. Is it true that a discrete, linear group Γ is weakly amenable with
ΛWA(Γ) = 1 if and only if Γ has the Haagerup property?

Fourier algebras. Recall that A(G) and B(G) denote the Fourier algebra and the
Fourier-Stieltjes algebra of a locally compact group G, respectively. It is always the case
that A(G) ⊆ B(G)∩C0(G) whereas B(G) contains the constant functions. In particular,
when G is non-compact A(G) 6= B(G). Consider the following problem.

Problem 12.10 ([D]). Let G be a second countable, locally compact group. When does
the equality

A(G) = B(G) ∩ C0(G) (?)

hold?

A great deal is already known about this problem (see e.g. [52], [D]). It is known that
if (?) holds, then the regular representation of G is completely reducible [5], that is, the
regular representation decomposes as a direct sum of irreducible unitary representations.
Such groups are usually called [AR]-groups (atomic regular). For a while, (?) was
thought to characterize [AR]-groups, but this turned out not to be the case [4]. However,
the relation between [AR]-groups and groups satisfying (?) is still quite unclear. For
instance the following problem is still unsettled.

Problem 12.11 ([4]). Let G be a second countable, locally compact [AR]-group. Sup-
pose moreover that G is unimodular. Does (?) hold?
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Abstract

In order to investigate the relationship between weak amenability and the Haagerup property for groups,
we introduce the weak Haagerup property, and we prove that having this approximation property is equiv-
alent to the existence of a semigroup of Herz–Schur multipliers generated by a proper function (see
Theorem 1.2). It is then shown that a (not necessarily proper) generator of a semigroup of Herz–Schur
multipliers splits into a positive definite kernel and a conditionally negative definite kernel. We also show
that the generator has a particularly pleasant form if and only if the group is amenable. In the second half of
the paper we study semigroups of radial Herz–Schur multipliers on free groups. We prove that a generator
of such a semigroup is linearly bounded by the word length function (see Theorem 1.6).
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of amenability for groups was introduced by von Neumann [17] and has played an
important role in the field of operator algebras for many years. It is well-known that amenability
of a group is reflected by approximation properties of the C∗-algebra and von Neumann algebra
associated with the group. More precisely, a discrete group is amenable if and only if its (re-
duced or universal) group C∗-algebra is nuclear if and only if its group von Neumann algebra is
semidiscrete.

E-mail address: knudby@math.ku.dk.
1 Supported by ERC Advanced Grant No. OAFPG 247321 and the Danish National Research Foundation through the

Centre for Symmetry and Deformation (DNRF92).

0022-1236/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jfa.2013.11.002

29



1566 S. Knudby / Journal of Functional Analysis 266 (2014) 1565–1610

Amenability may be seen as a rather strong condition to impose on a group, and several weak-
ened forms have appeared, two of which are weak amenability and the Haagerup property. Recall
that a discrete group G is amenable if and only if there is a net (ϕi)i∈I of finitely supported, pos-
itive definite functions on G such that ϕi → 1 pointwise. When the discrete group is countable,
which will always be our assumption in this paper, we can of course assume that the net is actu-
ally a sequence. We have included a few well-known alternative characterizations of amenability
in Theorem 5.1.

A countable, discrete group G is called weakly amenable if there exist C > 0 and a net (ϕi)i∈I

of finitely supported Herz–Schur multipliers on G converging pointwise to 1 and ‖ϕi‖B2 � C for
all i ∈ I where ‖ · ‖B2 denotes the Herz–Schur norm. The infimum of all C for which such a net
exists, is called the Cowling–Haagerup constant of G, usually denoted Λcb(G).

The countable, discrete group G has the Haagerup property if there is a net (ϕi)i∈I of pos-
itive definite functions on G converging pointwise to 1 such that each ϕi vanishes at infinity.
An equivalent condition is the existence of a conditionally negative definite function ψ : G → R
such that ψ is proper, i.e. {g ∈ G | |ψ(g)| < n} is finite for each n ∈ N (see for instance [5, The-
orem 2.1.1]). It follows from Schoenberg’s Theorem that given such a ψ , the family (e−tψ )t>0

witnesses the Haagerup property.
For a general treatment of weak amenability and the Haagerup property, including examples

of groups with and without these properties, we refer the reader to [4].
Since positive definite functions are also Herz–Schur multipliers with norm 1, it is clear that

amenability is stronger than both weak amenability with (Cowling–Haagerup) constant 1 and the
Haagerup property. A natural question to ask is how weak amenability and the Haagerup property
are related. For a long time the known examples of weakly amenable groups with constant 1
also had the Haagerup property and vice versa. Also, the groups that were known to not be
weakly amenable also failed the Haagerup property. So it seemed natural to ask if the Haagerup
property is equivalent to weak amenability with constant 1. This turned out to be false, and the
first counterexample was the wreath product Z/2 � F2. This group is defined as the semidirect
product (

⊕
F2

Z/2) � F2, where the action F2 �
⊕

F2
Z/2 is the shift. In [6] it is shown that the

group Z/2 �F2 has the Haagerup property, and in [12, Corollary 2.12] it was proved that Z/2 �F2

is not weakly amenable with constant 1. In fact, the group is not even weakly amenable [11,
Corollary 4].

It is still an open question if groups that are weakly amenable with constant 1 have the
Haagerup property. It may be formulated as follows. Given a net (ϕi)i∈I of finitely supported
functions on G such that ‖ϕi‖B2 � 1 and ϕi → 1 pointwise, does there exist a proper, condition-
ally negative definite function on G? We do not answer this question here, but we consider the
following related problem. If we replace the condition that each ϕi is finitely supported with the
condition that ϕi vanishes at infinity, what can then be said? We make the following definition.

Definition 1.1. A discrete group G has the weak Haagerup property if there exist C > 0 and a net
(ϕi)i∈I of Herz–Schur multipliers on G converging pointwise to 1 such that each ϕi vanishes at
infinity and satisfies ‖ϕi‖B2 � C. If we may take C = 1, then G has the weak Haagerup property
with constant 1.

A priori the weak Haagerup property is even less tangible than weak amenability, but the point
is that with the weak Haagerup property with constant 1, we can assume that the net in question
is a semigroup of the form (e−tϕ)t>0, as the following holds.
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Theorem 1.2. For a countable, discrete group G, the following are equivalent.

(1) There is a sequence (ϕn) of functions vanishing at infinity such that ϕn → 1 pointwise and
‖ϕn‖B2 � 1 for all n.

(2) There is ϕ : G → R such that ϕ is proper and ‖e−tϕ‖B2 � 1 for every t > 0.

The proof of the above is reminiscent of the proof concerning the equivalent formulations of
the Haagerup property (see Theorem 2.1.1 in the book [5]). We provide a proof in Section 2 (see
Theorem 3.1).

Clearly, weak amenability with constant 1 implies the weak Haagerup property with con-
stant 1, and the converse is false by the example Z/2 � F2 from before. It is also obvious that the
Haagerup property implies the weak Haagerup property with constant 1. It is not clear, however,
if they are in fact equivalent.

In the light of the previous theorem we consider the following problem.

Problem 1.3. Let G be a countable, discrete group, and let ϕ : G → R be a symmetric function
satisfying ‖e−tϕ‖B2 � 1 for all t > 0. Does there exist a conditionally negative definite function
ψ on G such that ϕ � ψ?

Note that ϕ is proper if and only if each e−tϕ vanishes at infinity. A positive solution to the
problem would prove that the Haagerup property is equivalent to the weak Haagerup property
with constant 1. So in particular, a solution to Problem 1.3 would prove that weak amenability
with constant 1 implies the Haagerup property.

We will prove the following theorem.

Theorem 1.4. Let G be a countable, discrete group with a symmetric function ϕ : G → R. Then
‖e−tϕ‖B2 � 1 for every t > 0 if and only if ϕ splits as

ϕ
(
y−1x

) = ψ(x, y) + θ(x, y) + θ(e, e) (x, y ∈ G),

where

• ψ is a conditionally negative definite kernel on G vanishing on the diagonal,
• and θ is a bounded, positive definite kernel on G.

The downside of the above theorem is that the functions ψ and θ are defined on G×G instead
of simply G. A natural question to ask is in which situations we may strengthen Theorem 1.4
to produce functions ψ and θ defined on the group G itself. It is not so hard to prove that
this happens if G is amenable. Moreover, this actually characterizes amenability. We thus have
following theorem.

Theorem 1.5. Let G be a countable, discrete group. Then G is amenable if and only if the
following condition holds. Whenever ϕ : G → R is a symmetric function such that ‖e−tϕ‖B2 � 1
for every t > 0, then ϕ splits as

ϕ(x) = ψ(x) + ‖ξ‖2 + 〈
π(x)ξ, ξ

〉
(x ∈ G)
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where

• ψ is a conditionally negative definite function on G with ψ(e) = 0,
• π is an orthogonal representation of G on some real Hilbert space H ,
• and ξ is a vector in H .

Note that the function x �→ 〈π(x)ξ, ξ 〉 is positive definite, and every positive definite function
has this form.

We solve Problem 1.3 in the special case where G is a free group and the function ϕ is radial.
The result is the following theorem, which generalizes Corollary 5.5 from [7].

Theorem 1.6. Let Fn be the free group on n generators (2 � n � ∞), and let ϕ : Fn → R be a
radial function, i.e., ϕ(x) depends only on the word length |x|. If ‖e−tϕ‖B2 � 1 for every t > 0,
then there are constants a, b � 0 such that

ϕ(x) � b + a|x| for all x ∈ Fn.

The paper is organized as follows. In Section 2 we introduce many of the relevant notions
needed in the rest of the paper. Section 3 contains the proof of Theorem 1.2, and Section 4
contains the proof of Theorem 1.4. Section 5 considers the case of amenable groups. Here we
prove Theorem 1.5.

The proof of Theorem 1.6 concerning Fn takes up the second half of the paper. The proof is
divided into two cases depending on whether n is finite or infinite. In Section 6 we deal with
the infinite case, and Section 7 contains the finite case. The strategy of the proof is to compare
the Herz–Schur norm of e−tϕ with the norm of certain functionals on the Toeplitz algebra. This
is accomplished in Propositions 6.12 and 6.13. It turns out that a certain norm bound on the
functionals produces a splitting of our function ϕ into a positive definite and a conditionally
negative definite part (Theorem 6.9). Characterizing the positive and conditionally negative parts
(Corollary 6.4 and Proposition 6.6) then leads to Theorem 1.6 in the case of F∞.

When n < ∞, Theorem 1.6 is deduced in basically the same way as the case n = ∞, but the
details are more complicated. The transformations introduced in Section 7.1 allow us to reduce
many of the arguments for Fn with n finite to the case of F∞.

2. Preliminaries

Let X be a non-empty set. A kernel on X is a function k : X × X → C. The kernel is called
symmetric if k(x, y) = k(y, x) for all x, y ∈ X, and hermitian if k(y, x) = k(x, y).

The kernel k is said to be positive definite, if

n∑
i,j=0

cicj k(xi, xj ) � 0

for all n ∈ N, x1, . . . , xn ∈ X and c1, . . . , cn ∈ C. It is called conditionally negative definite if it
is hermitian and
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n∑
i,j=0

cicj k(xi, xj ) � 0

for all n ∈ N, x1, . . . , xn ∈ X and c1, . . . , cn ∈ C such that
∑n

i=0 ci = 0.
Recall Schoenberg’s Theorem which asserts that k is conditionally negative definite if and

only if e−tk is positive definite for all t > 0.
Let H be a Hilbert space, and let a : X → H be a map. Then the kernel ϕ : X × X → C

defined by

ϕ(x, y) = 〈
a(x), a(y)

〉
is positive definite. Conversely, every positive definite kernel is of this form for some suitable
Hilbert space H and map a. On the other hand, the kernel ψ : X × X → C defined by

ψ(x, y) = ∥∥a(x) − a(y)
∥∥2

is conditionally negative definite, and every real-valued, conditionally negative definite kernel
that vanishes on the diagonal {(x, x) | x ∈ X} is of this form.

It is well-known that the set of positive definite kernels on X is closed under pointwise prod-
ucts and pointwise convergence. Also, the set of conditionally negative definite kernels is closed
under adding constants and under pointwise convergence. We refer to [1, Chapter 3] for details.

A kernel k : X × X → C is called a Schur multiplier if for every operator A = [axy]x,y∈X ∈
B(�2(X)) the matrix [k(x, y)axy]x,y∈X represents an operator in B(�2(X)), denoted mk(A). If k

is a Schur multiplier, it is a consequence of the closed graph theorem that mk defines a bounded
operator on B(�2(X)). We define the Schur norm ‖k‖S to be ‖mk‖. The following characteriza-
tion of Schur multipliers is well-known (see [4, Appendix D]).

Proposition 2.1. Let k : X × X → C be a kernel, and let C � 0 be given. The following are
equivalent.

(1) The kernel k is a Schur multiplier with ‖k‖S � C.
(2) There exist a Hilbert space H and two bounded maps a, b : X → H such that

k(x, y) = 〈
a(x), b(y)

〉
, for all x, y ∈ X,

and ‖a(x)‖‖b(y)‖ � C for all x, y ∈ X.

Let G be a discrete group, and let ϕ : G → C be a function. Let ϕ̂ : G×G → C be defined by
ϕ̂(x, y) = ϕ(y−1x). All the terminology introduced above is inherited to functions ϕ : G → C
by saying, for instance, that ϕ is positive definite if the kernel ϕ̂ is positive definite. The only
exception is that a function ϕ : G → C is called a Herz–Schur multiplier if ϕ̂ is a Schur multiplier.

All positive definite functions on G are of the form ϕ(x) = 〈π(x)ξ, ξ 〉 for a unitary represen-
tation π on some Hilbert space H and a vector ξ ∈ H . If ϕ is real, then π may be taken as an
orthogonal representation on a real Hilbert space.

The set of Herz–Schur multipliers on G is denoted B2(G). It is a Banach space, in fact a
Banach algebra, when equipped with the norm ‖ϕ‖B2 = ‖ϕ̂‖S = ‖mϕ̂‖. The unit ball B2(G)1
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is closed in the topology of pointwise convergence. It was proved in [3] that the space of
Herz–Schur multipliers coincides isometrically with the space of completely bounded Fourier
multipliers.

Another useful algebra of functions on G is the Fourier–Stieltjes algebra, denoted B(G). It
may be defined as the linear span of the positive definite functions on G. It is isometrically iso-
morphic to the dual of the full group C∗-algebra of G, i.e., B(G) � C∗(G)∗. Since any positive
definite function is a Herz–Schur multiplier, it follows that B(G) ⊆ B2(G). Equality holds, if
and only if G is amenable (see [2] or Proposition 5.6 below).

Given C∗-algebras A and B and a linear map ϕ : A → B we denote by ϕ(n) the map ϕ(n) =
ϕ ⊗ idn : A ⊗ Mn(C) → B ⊗ Mn(C), where idn : Mn(C) → Mn(C) is the identity. The map ϕ is
called completely bounded, if

‖ϕ‖cb = sup
n

∥∥ϕ(n)
∥∥ < ∞.

We say that ϕ is completely positive, if each ϕ(n) is positive between the C∗-algebras Mn(A)

and Mn(B). We abbreviate unital, completely positive as u.c.p. It is well-known that bounded
functionals ϕ : A → C are completely bounded with ‖ϕ‖cb = ‖ϕ‖. States on C∗-algebras as well
as ∗-homomorphism are completely positive.

3. Characterization of the weak Haagerup property with constant 1

The following theorem gives the promised alternative characterization of the weak Haagerup
property with constant 1.

Theorem 3.1. Let G be a countable, discrete group. The following are equivalent.

(1) There is a sequence (ϕn) of functions vanishing at infinity such that ϕn → 1 pointwise and
‖ϕn‖B2 � 1 for all n.

(2) There is ϕ : G → R such that ϕ is proper and ‖e−tϕ‖B2 � 1 for every t > 0.

Proof. (2) �⇒ (1): This is trivial: put ϕn = e−ϕ/n.
(1) �⇒ (2): Choose an increasing, unbounded sequence (αn) of positive real numbers and

a decreasing sequence (εn) tending to zero such that
∑

n αnεn converges. We enumerate the
elements in G as G = {g1, g2, . . .}. For each n we may choose a function ϕn in C0(G) with
‖ϕn‖B2 � 1 such that

max
{∣∣1 − ϕn(gi)

∣∣ ∣∣ i = 1, . . . , n
}

� εn.

We may replace ϕn by |ϕn|2 to ensure that 0 � ϕn � 1. Now, let ϕ : G → R+ be given by

ϕ(g) =
∞∑

n=1

αn

(
1 − ϕn(g)

)
.

Note that this sum converges. We claim that ϕ is also proper. Let R > 0 be given, and choose
k such that αk � 2R. Since ϕk ∈ C0(G), there is a finite set F ⊆ G such that |ϕk(g)| < 1/2

34



S. Knudby / Journal of Functional Analysis 266 (2014) 1565–1610 1571

whenever g ∈ G \ F . Now if ϕ(g) � R, then ϕ(g) � αk/2, and in particular αk(1 − ϕk(g)) �
αk/2, which implies that 1 − ϕk(g) � 1/2. Hence, we have argued that

{
g ∈ G

∣∣ ϕ(g) � R
} ⊆ {

g ∈ G
∣∣ 1 − ϕk(g) � 1/2

} ⊆ F.

This proves that ϕ is proper.
Now let t > 0 be fixed. We need to show that ‖e−tϕ‖B2 � 1. Define

ψi =
i∑

n=1

αn(1 − ϕn).

Since ψi converges pointwise to ϕ, it will suffice to prove that ‖e−tψi ‖B2 � 1 eventually (as
i → ∞), because the unit ball of B2(G) is closed under pointwise limits. Observe that

e−tψi =
i∏

n=1

e−tαn(1−ϕn),

and so it suffices to show that e−tαn(1−ϕn) belongs to the unit ball of B2(G) for each n. And this
is clear, since

∥∥e−tαn(1−ϕn)
∥∥

B2
= e−tαn

∥∥etαnϕn
∥∥

B2
� e−tαnetαn‖ϕn‖B2 � 1. �

4. Splitting a semigroup generator into positive and negative parts

The key idea in the proof of Theorem 1.4 is that a Schur multiplier is a corner in a positive
definite matrix (Lemma 4.2). Together with an ultraproduct argument this will give the proof of
Theorem 1.4.

We consider the following as well-known.

Lemma 4.1. Let ϕ : X × X → C be a kernel. Then

‖ϕ‖S = sup
{‖ϕ|F×F ‖S

∣∣ F ⊆ X finite
}
.

The following follows from Proposition 2.1.

Lemma 4.2. Let a ∈ Mn(C). The following are equivalent.

(1) ‖a‖S � 1.
(2) There exist b, c ∈ Mn(C)+ with bii � 1, cii � 1, i = 1, . . . , n such that

(
b a

a∗ c

)
� 0.
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Proof. Let X = {1, . . . , n} and consider a ∈ Mn(C) as a kernel a : X × X → C.
Suppose first ‖a‖S � 1. By Proposition 2.1 there is a Hilbert space H and two maps p,q :

X → H such that aij = 〈p(i), q(j)〉 and ‖p‖∞‖q‖∞ � 1 for all i, j . After replacing p(i) and
q(j) by

p′(i) =
√‖p‖∞‖q‖∞

‖p‖∞
p(i), q ′(j) =

√‖p‖∞‖q‖∞
‖q‖∞

q(j)

respectively, we may assume that ‖p‖∞ � 1 and ‖q‖∞ � 1. Let

bij = 〈
p(i),p(j)

〉
, cij = 〈

q(i), q(j)
〉
.

Then b and c are positive matrices with diagonal below 1 and the matrix

M =
(

b a

a∗ c

)
= (〈

r(i), r(j)
〉)2n

i,j=1

is positive where

r(i) =
{

p(i), 1 � i � n,

q(i − n), n < i � 2n.

Conversely, suppose that

M =
(

b a

a∗ c

)
� 0,

for some b, c ∈ Mn(C)+ with bii � 1, cii � 1. Then there is a Hilbert space H and map
r : {1, . . . ,2n} → H such that Mij = 〈r(i), r(j)〉 for i, j = 1, . . . ,2n. Put p(i) = r(i) and
q(i) = r(i + n), i = 1, . . . , n. Then aij = 〈p(i), q(j)〉 and

∥∥p(i)
∥∥2 = bii � 1,

∥∥q(j)
∥∥2 = cjj � 1.

It now follows from Proposition 2.1 that ‖a‖S � 1. �
Theorem 1.4 is an immediate consequence of the following.

Proposition 4.3. Let G be a countable, discrete group with a symmetric function ϕ : G → R. The
following are equivalent.

(1) ‖e−tϕ‖B2 � 1 for every t > 0.
(2) There exist a real Hilbert space H and maps R,S : G → H such that

ϕ
(
y−1x

) = ∥∥R(x) − R(y)
∥∥2 + ∥∥S(x) + S(y)

∥∥2
for all x, y ∈ G.

In particular, ‖S(x)‖2 is constant.
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Proof. We will need to work with two disjoint copies of G, so let G denote another copy of G.
We denote the elements of G by g, when g ∈ G.

(2) �⇒ (1): It suffices to prove the case when t = 1. After replacing the maps R and S by the
maps R′, S′ : G → H ⊕ H given by R′(x) = (R(x),0) and S′(x) = (0, S(x)), we may assume
that R and S have orthogonal ranges. Then

ϕ
(
y−1x

) = ∥∥R(x) + S(x) − (
R(y) − S(y)

)∥∥2
.

Let P = R + S and Q = R − S. Define a map T : G � G → H by

T (x) =
{

P(x), x ∈ G,

Q(x), x ∈ G.

Then the function ρ(x, y) = ‖T (x)−T (y)‖2 is a conditionally negative definite kernel on the
set G�G, and by Schoenberg’s Theorem the function e−ρ is positive definite, and we notice that
e−ρ takes the value 1 on the diagonal.

Given any finite subset F = {g1, . . . , gn} of G we let F denote its copy inside G. We see that
the 2n × 2n matrix (e−ρ(x,y))x,y∈F�F in B(�2(F � F)) is

A =
(

e−‖P(gi )−P(gj )‖2
e−‖P(gi )−Q(gj )‖2

e−‖Q(gi)−P(gj )‖2
e−‖Q(gi)−Q(gj )‖2

)
.

Since e−ρ is positive definite, A is positive. Now, Lemma 4.2 implies that the upper right block
of A has Schur norm at most 1. And this precisely means that ‖e−ϕ |F ‖S � 1. An application of
Lemma 4.1 now shows that ‖e−ϕ‖S � 1.

(1) �⇒ (2): We list the elements of G as G = {g1, g2, . . .} and we let Gn = {g1, . . . , gn}
when n ∈ N. Since ‖e−ϕ/n‖B2 � 1 by assumption, we invoke Lemma 4.2 to get matrices bn, cn ∈
Mn(C)+ with diagonal entries at most one, and so that

An =
(

bn e−ϕ/n

e−ϕ/n cn

)
� 0.

Here e−ϕ/n denotes the n × n matrix whose (i, j) entry is e
−ϕ(g−1

j gi )/n. After adding the appro-
priate diagonal matrix we may assume that the diagonal entries of bn and cn are 1, and An is still
positive.

Let kn : (Gn � Gn)
2 → C be the kernel that represents An in the sense that

kn(gi, gj ) = (bn)i,j , kn(gi, gj ) = (cn)i,j ,

kn(gi, gj ) = e
−ϕ(g−1

j gi ), kn(gi, gj ) = e
−ϕ(g−1

j gi ).

Since An is positive, kn is a positive definite kernel. We define kn to be zero outside (Gn � Gn)
2,

which gives us a positive definite kernel on G�G. Then the function n(1− kn) is a conditionally
negative definite kernel with zero in the diagonal, and hence there is a map Tn : G � G → Hn

such that
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∥∥Tn(x) − Tn(y)
∥∥2 = n

(
1 − kn(x, y)

)
, x, y ∈ G � G

for some real Hilbert space Hn. We may assume that Tn(e) = 0.
Now, as we let n vary over N we obtain a sequence of maps (Tn)n�1. Because limt→0(1 −

e−ta)/t = a, we see that for (x, y) ∈ GN × GN and n � N

∥∥Tn(x) − Tn(y)
∥∥2 = n

(
1 − kn(x, y)

) = n
(
1 − e−ϕ(y−1x)/n

) → ϕ
(
y−1x

)
as n → ∞.

Since Tn(e) = 0, this shows in particular that (‖Tn(x)‖)n�1 is a bounded sequence for each
x ∈ G and hence also for each x ∈ G.

Consider the ultraproduct of the Hilbert spaces Hn with respect to some free ultrafilter ω. We
denote this space by H . Let T (x) denote the vector corresponding to the sequence (Tn(x))n�1,
i.e., the equivalence class of that sequence. Then

ϕ
(
y−1x

) = ∥∥T (x) − T (y)
∥∥2 for every (x, y) ∈ G × G. (4.1)

Let P = T |G and let Q be defined on G by Q(x) = T (x). We think of Q as the restriction of T

to G but defined on G. Then Eq. (4.1) translates to

ϕ
(
y−1x

) = ∥∥P(x) − Q(y)
∥∥2 for every x, y ∈ G.

Let R = (P + Q)/2 and S = (P − Q)/2. The rest of the proof is simply to apply the parallelo-
gram law. We have

1

2

(∥∥P(x) − Q(y)
∥∥2 + ∥∥P(y) − Q(x)

∥∥2) = ∥∥S(x) + S(y)
∥∥2 + ∥∥R(x) − R(y)

∥∥2
.

Since ϕ is symmetric, the left-hand side equals ϕ(y−1x), and the proof is complete. �
5. The amenable case

In this section we prove Theorem 1.5. Theorem 5.3 and Theorem 5.8 combine to give Theo-
rem 1.5.

We will need a few characterizations of amenability. The following theorem is well-known
(for a proof, see [4, Theorem 2.6.8]).

Theorem 5.1. Let G be a discrete group. The following are equivalent.

(1) G is amenable, i.e., there is a left-invariant, finitely additive probability measure defined on
all subsets of G.

(2) There is a net of finitely supported, positive definite functions on G converging pointwise
to 1.

(3) For any finite, symmetric subset E ⊆ G we have ‖λ(1E)‖ = |E|. Here λ denotes the left
regular representation, and 1E denotes the characteristic function of the subset E.
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Corollary 5.2. If G is discrete and non-amenable, then for each ε > 0 there exists a positive,
finitely supported, symmetric function g ∈ Cc(G) such that

∥∥λ(g)
∥∥ < ε‖g‖1,

where λ denotes the left regular representation.

Proof. If G is non-amenable, there is a finite, symmetric set S ⊆ G such that ‖λ(1S)‖ < |S|. Let
g = 1S ∗ · · · ∗ 1S be the n-fold convolution of 1S with itself, where n is to be determined later.
Then g is positive, finitely supported and symmetric. Observe that

‖g‖1 = |S|n.

Now, given any 0 < ε < 1, choose n so large that ‖λ(1S)‖
|S| < n

√
ε < 1. Then

∥∥λ(g)
∥∥ �

∥∥λ(1S)
∥∥n

< ε|S|n = ε‖g‖1. �
The following theorem proves one direction in Theorem 1.5.

Theorem 5.3. Let G be a countable, discrete amenable group with a symmetric function
ϕ : G → R. If ‖e−tϕ‖B2 � 1 for every t > 0, then ϕ splits as

ϕ(x) = ψ(x) + ‖ξ‖2 + 〈
π(x)ξ, ξ

〉
(x ∈ G),

where

• ψ is a conditionally negative definite function on G with ψ(e) = 0,
• π is an orthogonal representation of G on some real Hilbert space H ,
• and ξ is a vector in H .

Proof. The idea of the proof is to use the characterization given in Proposition 4.3 and then
average the two parts of ϕ by using an invariant mean on G.

Suppose we are given a function ϕ as in the statement of the proposition. By Proposition 4.3
we may write ϕ in the form

ϕ
(
y−1x

) = ∥∥R(x) − R(y)
∥∥2 + ∥∥S(x) + S(y)

∥∥2 for all x, y ∈ G,

where R, S are maps from G with values in some real Hilbert space H . We define kernels ϕ1
and ϕ2 on G by

ϕ1(x, y) = ∥∥R(x) − R(y)
∥∥2

, ϕ2(x, y) = ∥∥S(x) + S(y)
∥∥2 for all x, y ∈ G.

Then ϕ(y−1x) = ϕ1(x, y)+ϕ2(x, y). Note that ϕ2 is a bounded function, since ‖2S(x)‖2 = ϕ(e)

for every x ∈ G. In general, ϕ1 is not bounded, but it is bounded on the diagonals, i.e., for each
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x, y ∈ G the function z �→ ϕ1(zx, zy) is bounded. To see this, simply observe that

ϕ1(zx, zy) = ϕ
(
(zy)−1(zx)

) − ϕ2(zx, zy) = ϕ
(
y−1x

) − ϕ2(zx, zy).

Since ϕ2 is bounded, it follows that ϕ1 is bounded on diagonals.
As we assumed G to be amenable, there is a left-invariant mean μ on G. Let

χi(x, y) =
∫
G

ϕi(zx, zy) dμ(z), x, y ∈ G, i = 1,2.

The left-invariance of μ implies that χi(wx,wy) = χi(x, y) for every x, y,w ∈ G, so χi induces
a function ϕi defined on G by

ϕi

(
y−1x

) = χi(x, y).

An easy computation will show that ϕ = ϕ1 + ϕ2.
Since ϕ1 is a conditionally negative definite kernel on G, it follows that χ1 is conditionally

negative definite. So ϕ1 is conditionally negative definite. The same argument shows that ϕ2 is
positive definite, because ϕ2 is. More precisely we have

ϕ2
(
y−1x

) =
∫
G

∥∥S(zx) + S(zy)
∥∥2

dμ(z) = ϕ(e)

2
+ 2

∫
G

〈
S(zx), S(zy)

〉
dμ(z),

where each function (x, y) �→ 〈S(zx), S(zy)〉 is a positive definite kernel. So the function on G

given by

y−1x �→
∫
G

〈
S(zx), S(zy)

〉
dμ(z)

is positive definite, and so it has the form

g �→ 〈
π(g)ξ ′, ξ ′〉

for some orthogonal representation π . Since ϕ1(e) = 0, we must have

ϕ(e) = ϕ2(e) = ϕ(e)

2
+ 2

∥∥ξ ′∥∥2
,

and so ϕ(e)
2 = 2‖ξ ′‖2. The proof is now complete if we let ψ = ϕ1 and ξ = √

2ξ ′. �
We now turn to prove that the amenability assumption is essential in the theorem above. This

will be accomplished in Theorem 5.8.
In [2] Bożejko proved that a countable, discrete group G is amenable if and only if its

Fourier–Stieltjes algebra B(G) (the linear span of positive definite functions) coincides with the
Herz–Schur multiplier algebra B2(G). In Proposition 5.6 we will strengthen this result slightly
to fit our needs. Our proof of Proposition 5.6 is merely an adaption of Bożejko’s proof.
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In the following we will introduce the Littlewood kernels and Littlewood functions. Let X be
a non-empty set. A bounded operator T : �1(X) → �2(X) is identified with its matrix T = [Txy]
given by Txy = 〈T δy, δx〉. We also identify the matrix with the corresponding kernel t on X

given by t (x, y) = Txy . Similarly, the Banach space adjoint T ∗ : �2(X)∗ → �1(X)∗ has matrix
T ∗

xy = 〈T δx, δy〉 and may be identified with a kernel on X.

We shall identify �1(X)∗ = �∞(X) and �2(X)∗ = �2(X). It is known that every bounded
operator �2(X) → �∞(X) arises as the adjoint of a (unique) bounded operator �1(X) → �2(X).
We note that a kernel b : X × X → C is the matrix of a bounded operator �1(X) → �2(X) if and
only if

‖b‖2
�1→�2 = sup

y∈X

∑
x∈X

|bxy |2

is finite. In the same way, c : X × X → C is the matrix of a bounded operator �2(X) → �∞(X)

if and only if

‖c‖2
�2→�∞ = sup

x∈X

∑
y∈X

|cxy |2

is finite.
We define the Littlewood kernels on X to be

t2(X) = {
b + c

∣∣ b ∈ B
(
�1(X), �2(X)

)
, c ∈ B

(
�2(X), �∞(X)

)}
.

The space t2(X) is naturally equipped with the (complete) norm

‖a‖L = inf
{
max

(‖b‖�1→�2 ,‖c‖�2→�∞
) ∣∣ a = b + c

}
.

The following characterization of Littlewood kernels is due to Varopoulos and is a special case
of [16, Lemma 5.1]. For completeness, we include a proof of our special case.

Lemma 5.4. Let X be a countable set, and let a : X ×X → C be a kernel. Then a is a Littlewood
kernel if and only if the norm

‖a‖t2 = sup

{
1

|F1|
∑
i∈F1
j∈F2

|aij |2
∣∣∣ F1,F2 ⊆ X finite, |F1| = |F2|

}1/2

is finite. The norms ‖ ‖t2 and ‖ ‖L are equivalent.

It is implicit in the statement that ‖ ‖t2 in fact defines a norm on t2(X). This is not hard to
check, and moreover t2(X) is a Banach space with this norm. The lemma is also true when X is
uncountable, but we have no need for this generality.

Proof of Lemma 5.4. Suppose first that a is a Littlewood kernel, and write a = b + c as in the
definition. Given finite subsets F1,F2 ⊆ X of the same size we have
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1

|F1|
∑
i∈F1
j∈F2

|aij |2 � 2

|F1|
∑
i∈F1
j∈F2

|bij |2 + |cij |2 � 4 max
(‖b‖2,‖c‖2),

and so

‖a‖t2 � 2 max
(‖b‖,‖c‖) < ∞.

We have actually shown that ‖a‖t2 � 2‖a‖L.
Suppose conversely that a is a kernel such that C = ‖a‖t2 is finite. We will show that a is

a Littlewood kernel of the form b + c, where b and c have disjoint supports, and ‖b‖ � C and
‖c‖ � C. We finish the proof of the lemma first in the case where X is finite and proceed by
induction on |X|. The case |X| = 1 is trivial. Assume then n = |X| � 2 and write

a =
⎛⎝ a11 · · · a1n

...
. . .

...

an1 · · · ann

⎞⎠ .

Choose an index i such that
∑

j |aij |2 is as small as possible. In particular, our assumption im-

plies that
∑

j |aij |2 � C. Similarly, choose an index j such that
∑

i |aij |2 is as small as possible.
Consider then the submatrix a′ of a with i’th row and j ’th column removed. To simplify the
notation we assume that i = j = 1. Then

a′ =
⎛⎝ a22 · · · a2n

...
. . .

...

an2 · · · ann

⎞⎠ .

By our induction hypothesis a′ is a Littlewood kernel with ‖a′‖L � C, and so we may write
a′ = b + c, that is⎛⎝ a22 · · · a2n

...
. . .

...

an2 · · · ann

⎞⎠ =
⎛⎝ b22 · · · b2n

...
. . .

...

bn2 · · · bnn

⎞⎠ +
⎛⎝ c22 · · · c2n

...
. . .

...

cn2 · · · cnn

⎞⎠ ,

where b and c have disjoint supports and max(‖b‖,‖c‖) � C. We then obtain the desired splitting
for a by putting the removed rows back (we do not care whether aij = a11 is put in the first or
second matrix, so simply put it in the first),⎛⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n

0 b22 · · · b2n

...
...

. . .
...

0 bn2 · · · bnn

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
0 0 · · · 0

a21 c22 · · · c2n

...
...

. . .
...

an1 cn2 · · · cnn

⎞⎟⎟⎟⎠ .

This completes the induction step.
We now turn to the general case, where X is countably infinite. We may assume X = N. Let

ω be a free ultrafilter on N. For each k ∈ N we let a(k) be the restriction of a to {1, . . . , k}2, and
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choose a splitting a(k) = b(k) + c(k). For each i, j ∈ N and k � i, j we have |b(k)
ij |2 � C, so each

sequence (b
(k)
ij )k is bounded. Similarly, (c

(k)
ij )k is bounded. Let

bij = lim
k→ω

b
(k)
ij , cij = lim

k→ω
c
(k)
ij .

Since aij = b
(k)
ij + c

(k)
ij for every k � i, j , it follows that aij = bij + cij . Also, since b

(k)
ij ∈ {aij ,0}

for every k, we must have bij ∈ {aij ,0}. Similarly with cij . This shows that b and c have disjoint
supports. The sum conditions

sup
j

∑
i

|bij |2 � C, sup
i

∑
j

|cij |2 � C

are also satisfied. In particular we have ‖a‖L � ‖a‖t2 . �
If X = G is a group, and a : G → C is a function, we say that a is a Littlewood function,

if â(x, y) = a(y−1x) is a Littlewood kernel. We denote the set of Littlewood functions on G

by T2(G) and equip it with the norm ‖a‖T2 = ‖â‖t2 . It is easy to see that ‖a‖T2 � ‖a‖�2 , so
�2(G) ⊆ T2(G).

Let M(�∞(G),B2(G)) = M(�∞,B2) be the set of functions a : G → C such that the point-
wise product a · f is a Herz–Schur multiplier for every f ∈ �∞(G). It is a Banach space when
equipped with the norm

‖g‖M(�∞,B2) = sup
{‖a · f ‖B2

∣∣ ‖f ‖∞ � 1
}
.

Lemma 5.5. The following inclusion holds.

T2(G) ⊆ M
(
�∞(G),B2(G)

)
.

Proof. Note first that T2(G) ⊆ B2(G), since if a ∈ T2(G) is given, and â = b + c is a splitting
as in the definition of Littlewood kernels, then

a
(
y−1x

) = 〈bδy, δx〉 + 〈cδx, δy〉.

Now use Proposition 2.1.
Secondly, it is easy to see that t2(X) · �∞(X × X) ⊆ t2(X), and we conclude that

T2(G) · �∞(G) ⊆ T2(G) ⊆ B2(G). �
In the proof of Proposition 5.6 we will need the notion of a cotype 2 Banach space. A Banach

space X is of cotype 2 if there is a constant C > 0 such that for any finite subset {x1, . . . , xn} of
X we have

C

(
n∑

k=1

‖xk‖2

)1/2

�
1∫

0

∥∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥∥dt.
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Here rn are the Rademacher functions on [0,1]. It is well-known that Lp-spaces are of cotype
2 when 1 � p � 2. Also, the dual of a C∗-algebra is of cotype 2 (see [15]). (See also [13] for a
simple proof of this fact.)

Whenever A is a set of functions G → C defined on a group G, we denote by Asym the
symmetric functions in A, i.e., Asym = {ϕ ∈ A | ϕ(x) = ϕ(x−1) for all x ∈ G}.

Proposition 5.6. Let G be a discrete group. The following are equivalent.

(1) G is amenable.
(2) B2(G) = B(G).
(3) B2(G)sym = B(G)sym.

Proof. For the implication (1) �⇒ (2) we refer to Theorem 1 in [14]. The implication (2) �⇒
(3) is trivial. So we prove (3) �⇒ (1), and we do this by adapting Bożejko’s proof of (2) �⇒ (1).

Since B(G) may be identified with the dual of the full group C∗-algebra of G, it is of co-
type 2. Being of cotype 2 obviously passes to (closed) subspaces, so B(G)sym is of cotype 2. By
assumption B2(G)sym = B(G)sym, and because the two spaces have equivalent norms, B2(G)sym
is also of cotype 2.

Now we show that

M
(
�∞(G),B2(G)

)
sym ⊆ �2(G).

Suppose g ∈ M(�∞(G),B2(G))sym and write g in the form

g =
∞∑

n=1

an(δxn + δ
x−1
n

)

with no repetitions among the sets {xn, x
−1
n }∞n=1. For each t ∈ [0,1] and N ∈ N the function

gt,N =
N∑

n=1

anrn(t)(δxn + δ
x−1
n

)

lies in B2(G)sym and ‖gt,N‖B2 � ‖g‖M(�∞,B2). Using that B2(G)sym has cotype 2 we get

C

(
N∑

n=1

|an|2
)1/2

�
1∫

0

∥∥∥∥∥
N∑

n=1

rn(t)an(δxn + δ
x−1
n

)

∥∥∥∥∥
B2

dt � ‖g‖M(�∞,B2)

for any N ∈ N, so g ∈ �2(G).
Now, consider the set T 2(G) of Littlewood functions. As noted in Lemma 5.5,

T2(G) ⊆ M
(
�∞(G),B2(G)

)
,

so it follows that T2(G)sym ⊆ �2(G). Conversely, the inclusion �2(G) ⊆ T2(G) is trivial, so
we must have T2(G)sym = �2(G)sym.
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Let f̃ (x) = f (x−1). It is easy to check that

〈
λ(f )x, y

〉 = 〈f,y ∗ x̃〉 for all f,x, y ∈ C[G].

Hence for any symmetric f ∈ C[G] we have

‖f ‖2
T2

= sup
|F1|=|F2|<∞

{
1

|F1|
〈|f |2, χF1 ∗ χ̃F2

〉}

= sup
|F1|=|F2|<∞

{
1

|F1|
〈
λ
(|f |2)χF2, χF1

〉}
�

∥∥λ
(|f |2)∥∥.

Since T2(G)sym = �2(G)sym, and these spaces have equivalent norms, we get

∥∥|f |∥∥2
�2 � C′∥∥λ

(|f |2)∥∥ for all f ∈ C[G]sym

for some constant C′. This implies that

‖g‖�1 � C′′∥∥λ(g)
∥∥

for any positive, symmetric function g ∈ C[G] and some constant C′′. Corollary 5.2 yields that
G must be amenable. �
Lemma 5.7. Let G be a group, and ψ : G → R a conditionally negative definite function. If
ψ is bounded, then ψ = c − ϕ for some constant c ∈ R and some positive definite function
ϕ : G → R.

Proof. Without loss of generality we may assume ψ(e) = 0. It is then well-known that ψ has
the form ψ(y−1x) = ‖σ(x) − σ(y)‖2 for some 1-cocycle σ : G → H with coefficients in an
orthogonal representation π : G → O(H), where H is a real Hilbert space. Since ψ is bounded,
so is σ . Any bounded 1-cocycle is a 1-coboundary (see [4, Lemma D.10]). Hence there is ξ ∈ H

such that σ(x) = ξ − π(x)ξ for every x ∈ G. Then

ψ
(
y−1x

) = ∥∥σ(x) − σ(y)
∥∥2 = 2‖ξ‖2 − 2

〈
π

(
y−1x

)
ξ, ξ

〉
.

Now, put c = 2‖ξ‖2 and ϕ(x) = 2〈π(x)ξ, ξ 〉. �
We are now ready to prove the other direction of Theorem 1.5.

Theorem 5.8. Let G be a countable, discrete group. Suppose every symmetric function
ϕ : G → R such that ‖e−tϕ‖B2 � 1 for every t > 0 splits as

ϕ(x) = ψ(x) + ‖ξ‖2 + 〈
π(x)ξ, ξ

〉
(x ∈ G),

where
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• ψ is a conditionally negative definite function on G,
• π is an orthogonal representation of G on some real Hilbert space H ,
• and ξ is a vector in H .

Then G is amenable.

Proof. It is always the case that B(G) ⊆ B2(G). Suppose ρ ∈ B2(G) is real, symmetric, with
‖ρ‖B2 = 1. If we put ϕ = 1 − ρ, then∥∥e−tϕ

∥∥
B2

= e−t
∥∥etρ

∥∥
B2

� e−t et‖ρ‖B2 = 1.

By our assumption we have a splitting

ϕ(x) = ψ(x) + ‖ξ‖2 + 〈
π(x)ξ, ξ

〉
(x ∈ G).

Obviously, ρ is bounded, and it follows that ψ is bounded. By the previous lemma there is some
positive definite function ϕ′ on G and a constant c ∈ R such that ψ = c − ϕ′. Hence ψ ∈ B(G).
From this we get that ϕ ∈ B(G), so ρ ∈ B(G).

It now follows that B2(G)sym ⊆ B(G), so B2(G)sym = B(G)sym. From Proposition 5.6 we
conclude that G is amenable. �
6. Radial semigroups of Herz–Schur multipliers on FFF∞

We now change the focus of Problem 1.3 to the particular case where the group in question is
a free group. We briefly recall Problem 1.3. Suppose ϕ : G → R is symmetric and ‖e−tϕ‖B2 � 1
for every t > 0. Is it then possible to find a conditionally negative definite function ψ : G → R
such that ϕ � ψ . In the case of radial functions on free groups we provide a positive solution to
the problem (see Theorem 6.15).

Let N0 = {0,1,2, . . .}, and let σ : N2
0 → N2

0 denote the shift map given as σ(m,n) = (m +
1, n + 1). Let Fn denote the free group on n generators, where 2 � n � ∞. We use |x| to denote
the word length of x ∈ Fn.

Definition 6.1. A function ϕ : Fn → C is called radial if there is a (necessarily unique) function
ϕ̇ : N0 → C such that ϕ(x) = ϕ̇(|x|) for all x ∈ Fn, i.e., if the value ϕ(x) only depends on |x|.

A function ϕ : N0 × N0 → C is called a Hankel function if the value ϕ(m,n) only depends on
m + n.

Given a radial function ϕ on Fn, we let ϕ̃ be the kernel on N0 defined by ϕ̃(m,n) = ϕ̇(m+n).
Note that ϕ̃ is a Hankel function.

Actually, the free groups will not enter the picture before Theorem 6.11. Until then we will
simply study properties of kernels on N0.

6.1. Functionals on the Toeplitz algebra

Let S be the unilateral shift operator on �2(N0). The C∗-algebra C∗(S) generated by S is the
Toeplitz algebra. Since S∗S = I , the set
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D = span
{
Sk

(
S∗)l ∣∣ k, l ∈ N0

}
(6.1)

is a ∗-algebra, and its closure is C∗(S). The Toeplitz algebra fits in the exact sequence

0 → K → C∗(S)
π→ C(T) → 0, (6.2)

where K denotes the C∗-algebra of compact operators (on �2(N0)), C(T) is the C∗-algebra of
continuous functions on the unit circle T, and π is the quotient map that maps S to the generating
unitary idT.

When ϕ : N2
0 → C is a kernel we let ωϕ denote the linear functional defined on D by

ωϕ

(
Sm

(
S∗)n) = ϕ(m,n). (6.3)

It may or may not happen that ωϕ extends to a bounded functional on C∗(S). If it does, we also
denote the extension by ωϕ . Along the same lines we consider the linear map Mϕ defined on D

by

Mϕ

(
Sm

(
S∗)n) = ϕ(m,n)Sm

(
S∗)n

,

and if it extends to a bounded linear map on C∗(S), we also denote the extension by Mϕ . We call
it the multiplier of ϕ.

Remark 6.2. Consider the C∗-algebra C∗(S ⊗ S) generated by the operator S ⊗ S inside
B(�2(N0) ⊗ �2(N0)). Since the operator S ⊗ S is a proper isometry, it follows from Coburn’s
Theorem (see [10, Theorem 3.5.18]) that there is a ∗-isomorphism α : C∗(S) → C∗(S ⊗ S) such
that α(S) = S⊗S. Let π be the quotient map C∗(S) → C(T) from before and let ev1 : C(T) → C
be evaluation at 1 ∈ T. Then we note that ωϕ = ev1 ◦ π ◦ Mϕ , while Mϕ = (idC∗(S) ⊗ ωϕ) ◦ α,
where we have identified C∗(S) ⊗ C with C∗(S).

It follows from the mentioned relation between ωϕ and Mϕ that ωϕ extends to C∗(S) if and
only if Mϕ extends to C∗(S). If this is the case, then Mϕ is even completely bounded, since
bounded functionals and ∗-homomorphisms are always completely bounded. Similarly, ωϕ is
positive if and only if Mϕ is positive if and only if Mϕ is completely positive. Finally, ‖Mϕ‖ =
‖ωϕ‖.

6.2. Positive and conditionally negative functions

The following proposition characterizes the functions ϕ that induce states on the Toeplitz
algebra.

Proposition 6.3. Let ϕ : N0 × N0 → C be a function. The following are equivalent.

(1) The functional ωϕ extends to a state on the Toeplitz algebra C∗(S).
(2) The multiplier Mϕ extends to a u.c.p. map on the Toeplitz algebra C∗(S).
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(3) There exist a positive trace class operator h = [h(i, j)]∞i,j=0 on �2(N0) and a positive definite
function ϕ0 : Z → C such that

ϕ(k, l) =
∞∑
i=0

h(k + i, l + i) + ϕ0(k − l)

for all (k, l) ∈ N0 × N0 and ϕ(0,0) = 1.
(4) ϕ is a positive definite kernel with ϕ(0,0) = 1 and ϕ − ϕ ◦ σ is a positive definite kernel.

Proof. The equivalence (1) ⇐⇒ (2) follows from Remark 6.2.
The rest of the proof goes as follows: (1) �⇒ (4) �⇒ (3) �⇒ (1).
(1) �⇒ (4): Given complex numbers c0, . . . , cn, we see that

ωϕ

((
n∑

k=0

ckS
k

)(
n∑

l=0

clS
l

)∗)
=

n∑
k,l=0

ckclϕ(k, l),

so ϕ is positive definite, since ωϕ is a positive functional. If we let (ekl)
∞
k,l=0 denote the standard

matrix units in B(�2(N0)), then

ekl = Sk
(
S∗)l − Sk+1(S∗)l+1

,

and so

ϕ(k, l) − ϕ(k + 1, l + 1) = ωϕ

(
Sk

(
S∗)l − Sk+1(S∗)l+1) = ωϕ(ekl).

It follows that

0 � ωϕ

((
n∑

k=0

ckek0

)(
n∑

l=0

clel0

)∗)
=

n∑
k,l=0

ckcl

(
ϕ(k, l) − ϕ(k + 1, l + 1)

)
,

so ϕ − ϕ ◦ σ is positive definite. Finally, ϕ(0,0) = ωϕ(1) = 1.
(4) �⇒ (3): Since ϕ − ϕ ◦ σ is positive definite, ϕ(0,0) � ϕ(1,1) � · · · , and since ϕ is

positive definite, ϕ(k, k) � 0 for every k. Hence limk ϕ(k, k) exists. Let h = ϕ − ϕ ◦ σ . Then h

is positive definite, and

∞∑
k=0

h(k, k) =
∞∑

k=0

(ϕ − ϕ ◦ σ)(k, k) = ϕ(0,0) − lim
k→∞ϕ(k, k) < ∞.

By the Cauchy–Schwarz inequality,

∞∑
i=0

∣∣h(k + i, l + i)
∣∣ �

∞∑
i=0

√
h(k + i, k + i)

√
h(l + i, l + i) < ∞,
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so limi ϕ(k+ i, l + i) exists for every k, l and depends of course only on k − l. Define ϕ0(k − l) =
limi ϕ(k + i, l + i). Since ϕ is positive definite, it follows that ϕ ◦ σ i is positive definite, so the
limit ϕ0 is as well. Finally note that

ϕ(k, l) =
∞∑
i=0

h(k + i, l + i) + ϕ0(k − l).

(3) �⇒ (1): Let ω1 be the functional on B(�2(N0)) given by ω1(x) = Tr(htx), where ht

denotes the transpose of h. Since h is positive, this is a positive, normal, linear functional. Note
that ω1(ekl) = Tr(e0lh

t ek0) = ht (l, k) = h(k, l), so that

ω1
(
Sk

(
S∗)l) = ω1(ekl + ek+1,l+1 + · · ·) =

∞∑
i=0

h(k + i, l + i).

The positive definite function ϕ0 : Z → R corresponds to a positive functional ω0 on C(T)

given by ω0(z
k−l ) = ϕ0(k − l), where z denotes the standard unitary generator of C(T). Letting

π : C∗(S) → C(T) be the quotient map as usual, we see that ω = ω1 +ω0 ◦π is a positive linear
functional on C∗(S) with

ω
(
Sk

(
S∗)l) =

∞∑
i=0

h(k + i, l + i) + ϕ0(k − l) = ϕ(k, l).

Hence ωϕ = ω is the desired positive functional on C∗(S). Since ω(1) = ϕ(0,0) = 1, it is a
state. �
Corollary 6.4. Let θ : N0 × N0 → C be a function. The conditions (1) and (2) below are equiva-
lent. Moreover, (1) implies (3).

(1) The function θ − 1
2θ(0,0) is positive definite, and θ − θ ◦ σ is positive definite.

(2) There exist a Hilbert space H with vectors ξi ∈ H such that
∑∞

i=0 ‖ξi‖2 < ∞ and a positive
definite function θ0 : Z → C such that θ is given as

θ(k, l) =
∞∑
i=0

‖ξi‖2 +
∞∑
i=0

〈ξk+i , ξl+i〉 + θ0(0) + θ0(k − l), k, l ∈ N0.

(3) For all t > 0 we have ‖Me−tθ ‖ � 1.

Proof. Let ϕ = θ − 1
2θ(0,0), and observe that θ −θ ◦σ = ϕ−ϕ◦σ . The equivalence (1) ⇐⇒ (2)

follows easily from Proposition 6.3 applied to ϕ. For the norm estimate in (3) (assuming (1)) we
use

‖Me−tθ ‖ = e−tϕ(0,0)‖Me−tϕ‖ � e−tϕ(0,0)et‖Mϕ‖ = 1,

where we used Proposition 6.3 to get ‖Mϕ‖ = ϕ(0,0). �
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Our next goal is to characterize the functions ψ : N0 × N0 → C that generate semigroups
(e−tψ )t>0 so that each e−tψ induces a state on the Toeplitz algebra. With Schoenberg’s Theorem
in mind, the result in Proposition 6.6 is not surprising. But first we prove a lemma.

Lemma 6.5. Let ψ : N0 × N0 → C be a function. Suppose ψ is a conditionally negative definite
kernel, and ψ ◦σ −ψ is a positive definite kernel. Then there exist a Hilbert space H , a sequence
of vectors (ηi)

∞
i=0 in H such that for every m,n ∈ N0

∞∑
k=0

‖ηm+k − ηn+k‖2 < ∞,

and (ψ ◦ σ − ψ)(m,n) = 〈ηm,ηn〉.

Proof. Let ϕ = ψ ◦ σ − ψ . Since by assumption ϕ is positive definite, there are vectors ηi ∈ H ,
where H is a Hilbert space, such that ϕ(k, l) = 〈ηk, ηl〉 for every k, l ∈ N0. Define

ρ(k, l) = ψ(k + 1, l) + ψ(k, l + 1) − ψ(k, l) − ψ(k + 1, l + 1).

Then

(ρ − ρ ◦ σ)(k, l) = −ϕ(k + 1, l) − ϕ(k, l + 1) + ϕ(k, l) + ϕ(k + 1, l + 1)

= 〈ηk − ηk+1, ηl − ηl+1〉,

so ρ − ρ ◦ σ is a positive definite kernel. In particular,

ρ(0,0) � ρ(1,1) � ρ(2,2) � · · · . (6.4)

Since ψ is conditionally negative definite,

−ρ(k, k) = (1,−1)

(
ψ(k, k) ψ(k, k + 1)

ψ(k + 1, k) ψ(k + 1, k + 1)

)(
1

−1

)
� 0,

so ρ(k, k) � 0 for every k. Combining this with (6.4) we see that limk ρ(k, k) exists. Hence

∞∑
k=0

‖ηk − ηk+1‖2 =
∞∑

k=0

(ρ − ρ ◦ σ)(k, k) = ρ(0,0) − lim
k

ρ(k, k) < ∞.

Let C = (
∑∞

k=0 ‖ηk − ηk+1‖2)1/2. The triangle inequality (for the Hilbert space H ⊕ H ⊕ · · ·)
yields that

( ∞∑
k=0

‖ηk − ηk+2‖2

)1/2

� C +
( ∞∑

k=0

‖ηk+1 − ηk+2‖2

)1/2

� 2C,

and similarly
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( ∞∑
i=0

‖ηk+i − ηl+i‖2

)1/2

� |k − l|C < ∞

for all k, l ∈ N0. �
Proposition 6.6. Let ψ : N0 × N0 → C be a function. The following are equivalent.

(1) For all t > 0 the function e−tψ satisfies the equivalent conditions in Proposition 6.3.
(2) ψ is a conditionally negative definite kernel with ψ(0,0) = 0, and ψ ◦ σ − ψ is a positive

definite kernel.

Moreover, if ψ takes only real values, this is equivalent to the following assertion.

(3) There exist a Hilbert space H , a sequence of vectors (ηi)
∞
i=0 in H and a conditionally neg-

ative definite function ψ0 : Z → R with ψ0(0) = 0 such that

ψ(k, l) = 1

2

(
k−1∑
i=0

‖ηi‖2 +
l−1∑
i=0

‖ηi‖2 +
∞∑
i=0

‖ηk+i − ηl+i‖2

)
+ ψ0(k − l)

for all (k, l) ∈ N0 × N0 (and the infinite sum is convergent).

Proof. (1) �⇒ (2): We assume that condition (4) of Proposition 6.3 holds for e−tψ for each
t > 0. Then the function e−tψ is a positive definite kernel for each t > 0, and so ψ is conditionally
negative definite by Schoenberg’s Theorem. Since e−tψ(0,0) = 1 for all t > 0, we must have
ψ(0,0) = 0. Moreover, e−tψ − e−tψ◦σ is positive definite for each t > 0, and hence is

ψ ◦ σ − ψ = lim
t→0

e−tψ − e−tψ◦σ

t
,

where the limit is pointwise.
(2) �⇒ (1): For obvious reasons it suffices to prove the case t = 1. We verify condition (4)

of Proposition 6.3. An application of Schoenberg’s Theorem shows that e−ψ is positive definite,
and of course e−ψ(0,0) = 1. Consider

e−ψ − e−ψ◦σ = e−ψ◦σ (
e(ψ◦σ−ψ) − 1

)
. (6.5)

The function e−ψ◦σ is positive definite by Schoenberg’s Theorem. Expanding the exponential
function in the parenthesis as a power series we get

eψ◦σ−ψ − 1 =
∞∑

n=1

(ψ ◦ σ − ψ)n

n! ,

and since ψ ◦ σ − ψ is positive definite, so is each power (ψ ◦ σ − ψ)n, and so is the sum, and
hence also the product in (6.5). The conditions in (4) of Proposition 6.3 have now been verified.

Suppose ψ takes only real values.
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(2) �⇒ (3): By Lemma 6.5 there are vectors (ηi)
∞
i=0 in a Hilbert space H , such that (ψ ◦σ −

ψ)(m,n) = 〈ηm,ηn〉 and

∞∑
k=0

‖ηm+k − ηn+k‖2 < ∞

for every m,n ∈ N0. Since ψ is hermitian and real, it is symmetric. Hence 〈ηm,ηn〉 = 〈ηn, ηm〉.
Let f (k) = 1

2

∑k−1
i=0 ‖ηi‖2, and set

ψ2(k, l) = ψ(k, l) − f (k) − f (l), ψ1(k, l) = ψ2(k, l) − 1

2

∞∑
i=0

‖ηk+i − ηl+i‖2.

We claim that ψ1 is conditionally negative definite, ψ1(0,0) = 0, and that ψ1(k, l) only depends
on k − l. These claims will finish the proof of (2) �⇒ (3). We find

(ψ1 ◦ σ − ψ1)(k, l) = (ψ ◦ σ − ψ)(k, l) − 1

2
‖ηk‖2 − 1

2
‖ηl‖2 + 1

2
‖ηk − ηl‖2

= 〈ηk, ηl〉 − 1

2
‖ηk‖2 − 1

2
‖ηl‖2 + 1

2
‖ηk − ηl‖2 = 0,

and hence ψ1(k, l) only depends on k − l. Letting ψ0(k − l) = ψ1(k, l) gives a well-defined
function ψ0 : Z → R. Note that

ψ0(0) = ψ1(0,0) = ψ2(0,0) = ψ(0,0) = 0.

It remains to be seen that ψ0 is conditionally negative definite. Observe that ψ2 is conditionally
negative definite, because ψ is. Also,

ψ2(k, l) = ψ0(k − l) + 1

2

∞∑
i=0

‖ηk+i − ηl+i‖2.

Replacing (k, l) by (k + n, l + n) we see that

ψ2(k + n, l + n) = ψ0(k − l) + 1

2

∞∑
i=n

‖ηk+i − ηl+i‖2,

and so

lim
n→∞ψ2(k + n, l + n) = ψ0(k − l).

Since ψ2 was conditionally negative definite (and hence also ψ2 ◦ σn), it follows that ψ0 is con-
ditionally negative definite being the pointwise limit of conditionally negative definite kernels.
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(3) �⇒ (2): Since each of the functions

(k, l) �→
k−1∑
i=0

‖ηi‖2, (k, l) �→ ‖ηk+i − ηl+i‖2, ψ0

is a conditionally negative definite kernel, so is ψ . Also ψ(0,0) = ψ0(0) = 0. Finally, (ψ ◦ σ −
ψ)(k, l) = 〈ηk, ηl〉, and hence ψ ◦ σ − ψ is positive definite. �
6.3. Decomposition into positive and negative parts

In the following section we will describe the kernels ϕ such that ‖ωe−tϕ‖ � 1 for every t > 0.
The main result here is contained in Theorem 6.9.

Definition 6.7. Denote by S the set of hermitian functions ϕ : N2
0 → C that split as ϕ = ψ + θ ,

where

• ψ is a conditionally negative definite kernel with ψ(0,0) = 0,
• ψ ◦ σ − ψ is a positive definite kernel,
• θ − 1

2θ(0,0) is a positive definite kernel,
• θ − θ ◦ σ is a positive definite kernel.

Observe that S is stable under addition, multiplication by positive numbers and addition by
positive constant functions.

Lemma 6.8. The set S is closed in the topology of pointwise convergence.

Proof. Let (ϕi)i∈I be a net in S converging pointwise to ϕ, and let ϕi = ψi + θi be a splitting
guaranteed by the assumption ϕi ∈ S .

An application of the Cauchy–Schwarz inequality to the positive definite kernel θi − 1
2θi(0,0)

gives ∣∣∣∣θi(k, l) − 1

2
θi(0,0)

∣∣∣∣ �
(
θi(k, k) − 1

2
θi(0,0)

)1/2(
θi(l, l) − 1

2
θi(0,0)

)1/2

and using positive definiteness of θi − θi ◦ σ then gives∣∣∣∣θi(k, l) − 1

2
θi(0,0)

∣∣∣∣ � θi(0,0) − 1

2
θi(0,0) = 1

2
θi(0,0) = 1

2
ϕi(0,0).

Since θi(0,0) = ϕi(0,0) → ϕ(0,0), this shows that the net (θi(k, l))i∈I is eventually bounded
for each pair (k, l). It follows that for each pair (k, l) the net ψi(k, l) is also eventually bounded.

Let (ψj )j∈J and (θj )j∈J be universal subnets of (ψi)i∈I and (θi)i∈I (we can assume, as we
have done, that they have the same index set J ). Since the net (ψj )j∈J is pointwise eventually
bounded, it converges to some limit ψ . Similarly let θ = limj θj . Since the defining properties of
the splitting ϕj = ψj + θj pass to the limits ψ and θ , we have the desired splitting ϕ = ψ + θ ,
and the proof is done. �
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We have the following alternative characterization of the set S . This should be compared with
the result in Theorem 1.4.

Theorem 6.9. Let ϕ : N2
0 → C be a hermitian function. Then ϕ ∈ S if and only if

‖ωe−tϕ‖ � 1 for every t > 0,

where ωe−tϕ is the functional associated with e−tϕ as in (6.3).

For the proof we need the following lemma.

Lemma 6.10. Let ϕ : N2
0 → C be a hermitian function. If ‖ωϕ‖ � 1, then 1 − ϕ ∈ S .

Proof. Since ϕ is hermitian, ωϕ is hermitian. Now, use the Hahn–Jordan Decomposition The-
orem to write ωϕ = ω+ − ω−, where ω+,ω− ∈ C∗(S)∗ are positive functionals. If we define
functions ϕ+, ϕ− by

ϕ±(m,n) = ω±(
Sm

(
S∗)n)

,

then ϕ+ and ϕ− satisfy the second condition of Proposition 6.3 (up to a scaling factor). Also, it
is clear that ϕ = ϕ+ − ϕ−.

Let c = ϕ+(0,0), and put

ψ = c − ϕ+, θ = 1 − c + ϕ−.

Obviously, ψ + θ = 1 − ϕ. It remains to show that ψ and θ have the desired properties used in
the definition of S .

Since ϕ+ is positive definite, ψ is conditionally negative definite with ψ(0,0) = 0. Also,
ψ ◦ σ − ψ = ϕ+ − ϕ+ ◦ σ , which is positive definite by Proposition 6.3.

Moreover, θ − θ ◦ σ = ϕ− − ϕ− ◦ σ is positive definite. Finally,

θ − 1

2
θ(0,0) = 1

2

(
1 − ϕ(0,0)

) + ϕ−,

and since |ϕ(0,0)| � ‖ωϕ‖ � 1 and ϕ(0,0) is real, it follows that 1−ϕ(0,0) � 0, so θ − 1
2θ(0,0)

is positive definite (using that ϕ− is positive definite). �
Proof of Theorem 6.9. Suppose first ‖ωe−tϕ‖ � 1 for all t > 0. It follows from the previous
lemma that 1 − e−tϕ ∈ S for every t > 0. Hence the functions (1 − e−tϕ)/t are in S , and they
converge pointwise to ϕ as t → 0. Since S is closed under pointwise convergence, we conclude
that ϕ ∈ S .

Conversely, suppose ϕ ∈ S . Write ϕ = ψ + θ as in the definition of S . From Proposition 6.6
we get that Me−tψ is a u.c.p. map for every t > 0, and hence ‖Me−tψ ‖ = 1. Also, from Corol-
lary 6.4 we get that ‖Me−tθ ‖ � 1 for every t > 0. This combines to show

‖ωe−tϕ‖ = ‖Me−tϕ‖ � ‖Me−tψ ‖‖Me−tθ ‖ � 1. �
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6.4. Comparison of norms

In this section we establish the connection between norms of radial Herz–Schur multipliers
on F∞ and functionals on the Toeplitz algebra. This will be accomplished in Proposition 6.13.

In [8] the following theorem is proved (see Theorem 5.2 therein).

Theorem 6.11. Let F∞ be the free group on (countably) infinitely many generators, let
ϕ : F∞ → C be a radial function, and let ϕ̇ : N0 → C be as in Definition 6.1. Finally, let
h = (hij )i,j∈N0 be the Hankel matrix given by hij = ϕ̇(i + j) − ϕ̇(i + j + 2) for i, j ∈ N0.
Then the following are equivalent:

(i) ϕ is a Herz–Schur multiplier on F∞.
(ii) h is of trace class.

If these two equivalent conditions are satisfied, then there exist unique constants c± ∈ C and a
unique ψ̇ : N0 → C such that

ϕ̇(n) = c+ + c−(−1)n + ψ̇(n) (n ∈ N0) (6.6)

and

lim
n→∞ ψ̇(n) = 0.

Moreover,

‖ϕ‖B2 = |c+| + |c−| + ‖h‖1.

The Fourier–Stieltjes algebra B(Z) of the group of integers is the linear span of positive
definite functions on Z. It is naturally identified with dual space of C∗(Z) � C(T), i.e., with the
set M(T) of complex Radon measures on the circle, where ϕ ∈ B(Z) corresponds to μ ∈ M(T),
if and only if

ϕ(n) =
∫
T

zn dμ(z) for all n ∈ Z. (6.7)

Under this identification B(Z) becomes a Banach space when the norm ‖ϕ‖B(Z) is defined to be
‖μ‖, the total variation of μ.

Proposition 6.12. Let ϕ : N0 × N0 → C be a function, and let h = ϕ − ϕ ◦ σ . The functional
ωϕ extends to a bounded functional on C∗(S) if and only if h is of trace class, and the function
ϕ0 : Z → C given by ϕ0(m−n) = limk ϕ(m+ k,n+ k) (which is then well-defined) lies in B(Z).
If this is the case, then

‖ωϕ‖ = ‖h‖1 + ‖ϕ0‖B(Z).
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Proof. The proposition is actually a special case of a general phenomenon. Given an extension
0 → I → A → A/I → 0 of C∗-algebras, then A∗ � I ∗ ⊕1 (A/I)∗ isometrically. The extension
under consideration in our proposition is (6.2). The general theory is described in the book [9].
We have included a more direct proof.

Suppose first h is of trace class, and ϕ0 ∈ B(Z). Let μ ∈ M(T) be given by (6.7), and define
ω0 ∈ C(T)∗ by

ω0(f ) =
∫
T

f dμ for all f ∈ C(T).

Define a functional ω1 on C∗(S) by ω1(x) = Tr(htx) for x ∈ C∗(S), and also let ω = ω1 +ω0 ◦π .
Observe that

ω1
(
Sm

(
S∗)n) =

∞∑
k=0

h(m + k,n + k).

It follows that

ω
(
Sm

(
S∗)n) =

∞∑
k=0

h(m + k,n + k) + ϕ0(m − n) = ϕ(m,n),

so that ω = ωϕ . Hence ωϕ extends to a bounded functional on C∗(S).
Suppose instead that ωϕ extends to a bounded functional on C∗(S). Proposition 2.8 in [8]

ensures the existence of a complex Borel measure μ on M(T) and a trace class operator T on
�2(N0) such that

ωϕ

(
Sm

(
S∗)n) =

∫
T

zm−n dμ(z) + Tr
(
Sm

(
S∗)n

T
)

for all m,n ∈ N0.

From this we get that T t
mn = h(m,n), where T t is the transpose of T , and

ϕ0(m − n) =
∫
T

zm−n dμ(z).

Hence h is of trace class and ϕ0 ∈ B(Z). From [8] we also have ‖ωϕ‖ = ‖μ‖ + ‖T ‖1, which
concludes our proof, since

‖μ‖ = ‖ϕ0‖ and
∥∥T t

∥∥
1 = ‖h‖1. �

Proposition 6.13. Let ϕ : F∞ → C be a radial function, and let ϕ̃ : N0 × N0 → C be as in
Definition 6.1. Then ‖ωϕ̃‖ = ‖ϕ‖B2 .
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Proof. Let hij = ϕ̃(i, j) − ϕ̃(i + 1, j + 1). From Theorem 6.11 and Proposition 6.12 we see
that it suffices to consider the case where h is the matrix of a trace class operator, since oth-
erwise ‖ωϕ̃‖ = ‖ϕ‖B2 = ∞. If h is of trace class, then we let ϕ̃0(n) = limk ϕ̃(k + n, k). From
Theorem 6.11 and Proposition 6.12 it follows that

‖ωϕ̃‖ = ‖h‖1 + ‖ϕ̃0‖B(Z),

‖ϕ‖B2 = ‖h‖1 + |c+| + |c−|,

where c± are the constants obtained in Theorem 6.11. It follows from (6.6) that

ϕ̃0(n) = c+ + (−1)nc−.

Now we only need to see why |c+| + |c−| = ‖ϕ̃0‖B(Z). Let ν ∈ C(T)∗ be the functional given
by ν(f ) = c+f (1) + c−f (−1) for all f ∈ C(T). Observe that ν(z �→ zn) = c+ + (−1)nc−.
Hence ν corresponds to ϕ̃0 under the isometric isomorphism B(Z) � C(T)∗. It is easily seen that
‖ν‖ = |c+| + |c−|. So

‖ϕ̃0‖B(Z) = |c+| + |c−|.

This completes the proof. �
6.5. The linear bound

We now restrict our attention to functions ϕ : N2
0 → C of the form ϕ(m,n) = ϕ̇(m + n) for

some function ϕ̇ : N0 → C. Recall that such functions are called Hankel functions.
A function ϕ : N0 × N0 → C is called linearly bounded if there are constants a, b � 0 such

that |ϕ(m,n)| � b + a(m + n) for all m,n ∈ N0.

Proposition 6.14. If ϕ is a Hankel function and ϕ ∈ S , then ϕ is linearly bounded.

Proof. Write ϕ = ψ + θ as in Definition 6.7. Note that

ϕ ◦ σ − ϕ = (ψ ◦ σ − ψ) − (θ − θ ◦ σ),

where h1 = ψ ◦ σ − ψ and h2 = θ − θ ◦ σ are positive definite. As in the definition of a Hankel
function, write ϕ(m,n) = ϕ̇(m + n), and let ḣ(m) = ϕ̇(m + 2) − ϕ̇(m), so that

ḣ(m + n) = (ϕ ◦ σ − ϕ)(m,n) = h1(m,n) − h2(m,n).

We will now prove that ḣ is bounded, and this will lead to the conclusion of the proposition.
From Corollary 6.4 and Lemma 6.5 we see that there are vectors ξk , ηk in a Hilbert space such

that

h1(m,n) = 〈ηm,ηn〉, h2(m,n) = 〈ξm, ξn〉
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for all m,n ∈ N0, and

∞∑
k=0

‖ηk − ηk+1‖2 < ∞,

∞∑
k=0

‖ξk‖2 < ∞.

From this we see that h2 is the matrix of a positive trace class operator. Also, there is c > 0 such
that ‖ηk −ηk+1‖ � c for every k and ‖η0‖ � c, so we get the linear bound ‖ηk‖ � c(k +1). From
the Cauchy–Schwarz inequality we get∣∣h1(m,n)

∣∣ � c2(m + 1)(n + 1). (6.8)

Since h2 � ‖h2‖I � ‖h2‖1I (as positive definite matrices, where I is the identity operator),
we deduce that the function

(m,n) �→ ḣ(m + n) + ‖h2‖1δmn = h1(m,n) + (‖h2‖1δmn − h2(m,n)
)

is a positive definite kernel. By the Cauchy–Schwarz inequality we have

∣∣ḣ(k)
∣∣2 �

(
ḣ(0) + d

)(
ḣ(2k) + d

)
(6.9)

for every k � 1, where d = ‖h2‖1. If e = ḣ(0) + d is zero, then clearly ḣ(k) = 0 when k � 1.
Suppose e > 0. Then we may rewrite (6.9) as

ḣ(2k) � |ḣ(k)|2
e

− d.

We claim that ḣ is bounded by 2e + d . Suppose by contradiction that |ḣ(k0)| > 2e + d for some
k0 � 1. Then by induction over n we may prove that for any n ∈ N0

ḣ
(
k02n+1) � 22n

(2e + d). (6.10)

For n = 0 we have

ḣ(2k0) � |ḣ(k0)|2
e

− d � (2e + d)2

e
− d � 4e + 3d � 2(2e + d).

For n � 1 we get (using our induction hypothesis)

ḣ
(
k02n+1) � |ḣ(k02n)|2

e
− d �

(
22n−1)2 (2e + d)2

e
− d

� 22n

(4e + 4d) − d � 22n

(2e + d).

Using (6.8) we observe that for every m ∈ N0 we have∣∣ḣ(m)
∣∣ �

∣∣h1(m,0)
∣∣ + ∣∣h2(m,0)

∣∣ � c2(m + 1) + d.
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Since e > 0, this contradicts (6.10). This proves the claim. It follows that∣∣ϕ̇(2k)
∣∣ �

∣∣ϕ̇(0)
∣∣ + (2e + d)k

and ∣∣ϕ̇(2k + 1)
∣∣ �

∣∣ϕ̇(1)
∣∣ + (2e + d)k.

With b = max{|ϕ̇(0)|, |ϕ̇(1)|} and a = 2e + d this shows that∣∣ϕ̇(m)
∣∣ � b + am,

and thus |ϕ(m,n)| � b + a(m + n), which proves the proposition. �
Theorem 6.15. If ϕ : F∞ → R is a radial function such that ‖e−tϕ‖B2 � 1 for each t > 0, then
there are constants a, b � 0 such that ϕ(x) � b + a|x| for all x ∈ F∞. Here |x| denotes the word
length function on F∞.

Proof. Suppose ϕ : F∞ → R is a radial function such that ‖e−tϕ‖B2 � 1 for each t > 0, and
let ϕ̃ be as in Definition 6.1. First observe that ϕ̃ is real, symmetric, and thus hermitian. From
Proposition 6.13 we get that ‖ωe−t ϕ̃‖B2 � 1 for every t > 0, so Theorem 6.9 implies that ϕ̃ ∈ S .
Since ϕ̃ is a Hankel function, Proposition 6.14 ensures that∣∣ϕ̃(m,n)

∣∣ � b + a(m + n) for all m,n ∈ N0

for some constants a and b. This shows that

ϕ(x) � b + a|x| for all x ∈ F∞. �
This finishes the proof of Theorem 1.6 in the case of the free group on infinitely many gener-

ators.

7. Radial semigroups of Herz–Schur multipliers on FFFn

The proof of Theorem 1.6 for the finitely generated free groups is more technical than the
proof concerning F∞, but the general approach is the same, and most of the steps in the proof
can be deduced from what we have already done for F∞. In order to do so we introduce the
transformations F and G that, loosely speaking, translate between the two cases, the finite and
the infinite.

7.1. The transformations F and G

From now on we fix a natural number q with 2 � q < ∞. If the number of generators of the
free group under consideration is n, we will let q = 2n−1. The parametrization using q instead of
n is adapted from [8]. As before, the free groups will enter the picture quite late (Theorem 7.19),
and we will mainly focus on functions ϕ : N0 × N0 → C.
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We still denote the unilateral shift operator on �2(N0) by S. For each m,n ∈ N0 we let Sm,n

denote the operator

Sm,n =
(

1 − 1

q

)−1(
Sm

(
S∗)n − 1

q
S∗Sm

(
S∗)n

S

)
.

Observe that

Sm,n =
{

Sm(S∗)n if min{m,n} = 0,

(1 − 1
q
)−1(Sm(S∗)n − 1

q
Sm−1(S∗)n−1) if m,n � 1,

(7.1)

and

Sm
(
S∗)n =

(
1 − 1

q

)
Sm,n + 1

q
Sm−1(S∗)n−1

, when m,n � 1. (7.2)

It follows by induction over min{m,n} that Sm(S∗)n ∈ span{Sk,l | k, l ∈ N0} for all m,n ∈ N0, so
span{Sk,l | k, l ∈ N0} = D, where D is given by (6.1).

When ϕ : N2
0 → C is a function we let χϕ denote the linear functional defined on D by

χϕ(Sm,n) = ϕ(m,n),

and if it extends to a bounded functional on C∗(S), we also denote the extension by χϕ .
Let V be the set of kernels on N0, that is, V = CN0×N0 = {ϕ : N2

0 → C}. Then V is a vector
space over C under pointwise addition and scalar multiplication. We equip V with the topology
of pointwise convergence.

Recall that σ : N2
0 → N2

0 is the shift map σ(k, l) = (k + 1, l + 1). We now define operators τ

and τ ∗ on V . For ϕ ∈ V the operator τ ∗ is given by τ ∗(ϕ) = ϕ ◦ σ , and τ(ϕ) given by

τ(ϕ)(k, l) =
{

ϕ(k − 1, l − 1), k, l � 1,

0, min{k, l} = 0.

Then τ ∗ ◦ τ = id, and (τ ◦ τ ∗)(ϕ) = 1N×Nϕ. We have the following rules

(
τ ◦ τ ∗)2 = τ ◦ τ ∗, τ ∗ ◦ τ ◦ τ ∗ = τ ∗, τ ◦ τ ∗ ◦ τ = τ.

Each element of B(�2(N0)) may be identified with its matrix representation (with respect
to the canonical orthonormal basis) and may in this way be considered as an element of V .
Under this identification τ and τ∗ restrict to maps on B(�2(N0)) given by τ(A) = SAS∗ and
τ ∗(A) = S∗AS. Clearly, τ is an isometry on the bounded operators. As noted in [8], it is also an
isometry on the trace class operators B1(�

2(N0)) (with respect to the trace norm). The operator

(
1 − τ

α

)−1

=
∞∑

n=0

τn

αn
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on B1(�
2(N0)) is therefore well-defined when α > 1, and its norm is bounded by (1 − 1

α
)−1. To

shorten notation we let

F =
(

1 − 1

q

)(
id − τ

q

)−1

=
(

1 − 1

q

) ∞∑
n=0

τn

qn
. (7.3)

We note that F defined by (7.3) also makes sense as an invertible operator on V as
(τnϕ)(k, l) = 0 for n � 0.

Let G be the operator on V defined recursively by

Gϕ(m,n) = ϕ(m,n) if min{m,n} = 0

and

Gϕ(m,n) =
(

1 − 1

q

)
ϕ(m,n) + 1

q
Gϕ(m − 1, n − 1), if m,n � 1,

when ϕ ∈ V . We can reconstruct ϕ from Gϕ. In fact G−1ϕ is given by

G−1ϕ(k, l) =
{

ϕ(k, l), min{k, l} = 0,

(1 − 1
q
)−1(ϕ(k, l) − 1

q
ϕ(k − 1, l − 1)), k, l � 1.

(7.4)

We may express G−1 in terms of τ and τ ∗. We have

G−1 = id + 1

q − 1

(
τ ◦ τ ∗ − τ

) =
(

id + 1

q − 1
τ ◦ τ ∗

)
◦

(
id − 1

q
τ

)
. (7.5)

Using (τ ◦ τ ∗)n = τ ◦ τ ∗ we obtain

(
id − 1

q
τ ◦ τ ∗

)−1

= id +
(

1

q
+ 1

q2
+ · · ·

)
τ ◦ τ ∗ = id + 1

q − 1
τ ◦ τ ∗,

so it follows that

G =
(

id − 1

q
τ

)−1

◦
(

id + 1

q − 1
τ ◦ τ ∗

)−1

=
(

id − 1

q
τ

)−1

◦
(

id − 1

q
τ ◦ τ ∗

)
.

We now record some elementary facts about F and G, which will be used later on without
reference.

Lemma 7.1. The transformations F and G are linear and continuous on V . Furthermore, G takes
the constant function 1 to itself. Also, Gϕ(0,0) = ϕ(0,0) for every ϕ ∈ V .

Lemma 7.2. Let ϕ ∈ V , and fix m,n ∈ N. If limk→∞ Gϕ(m+k,n+k) exists, then limk→∞ ϕ(m+
k,n + k) exists, and the limits are equal.
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Proof. We may assume that m,n � 1. Suppose limk Gϕ(m + k,n + k) exists. Since

ϕ(m + k,n + k) =
(

1 − 1

q

)−1(
Gϕ(m + k,n + k) − 1

q
Gϕ(m + k − 1,m + k − 1)

)
when k � 1, we see that the limit limk ϕ(m + k,n + k) exists and is equal to limk Gϕ(m + k,

n + k). �
Lemma 7.3. The transformations F and G both take hermitian functions to hermitian functions.
So do their inverses F−1 and G−1.

Proof. For G this easily follows from inspecting the definition. For G−1 simply look at (7.4).
For F it suffices to note that τn preserves hermitian functions for each n, and hence does the sum
in (7.3). For F−1 it suffices to note that τ preserves hermitian functions. �
Lemma 7.4. There is the following relationship between F and G.(

1 − τ ∗) ◦ G = F ◦ (
1 − τ∗).

In other words, Gϕ − Gϕ ◦ σ = F(ϕ − ϕ ◦ σ) for every ϕ ∈ V .

Proof. It is equivalent to show F−1 ◦ (1 − τ ∗) = (1 − τ ∗) ◦G−1, and this is easy using (7.3) and
(7.5). �
Proposition 7.5. For any ϕ : N2

0 → C we have χϕ = ωGϕ , where ωGϕ is as in (6.3).

Proof. It is enough to show that χϕ attains the value Gϕ(m,n) at Sm(S∗)n for every m,n ∈ N0.
Observe that if min{m,n} = 0 we obviously have

χϕ

(
Sm

(
S∗)n) = χϕ(Sm,n) = ϕ(m,n) = Gϕ(m,n).

Inductively, for m,n � 1 we get using (7.2) that

χϕ

(
Sm

(
S∗)n) =

(
1 − 1

q

)
χϕ(Sm,n) + 1

q
χϕ

(
Sm−1(S∗)n−1)

=
(

1 − 1

q

)
ϕ(m,n) + 1

q
Gϕ(m − 1, n − 1)

= Gϕ(m,n). �
The following proposition is analogous to Proposition 6.12, and the proof is to deduce it from

Proposition 6.12 by using transformations F and G.

Proposition 7.6. Let ϕ : N0 × N0 → C be a function, and let h = ϕ − ϕ ◦ σ . The functional
χϕ extends to a bounded functional on C∗(S) if and only if h is of trace class, and the function
ϕ0 : Z → C given by ϕ0(m−n) = limk ϕ(m+ k,n+ k) (which is then well-defined) lies in B(Z).
If this is the case, then
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‖χϕ‖ = ‖Fh‖1 + ‖ϕ0‖B(Z),

where F is the operator defined in (7.3).

Proof. From Proposition 7.5 we know that χϕ = ωGϕ . From the characterization in Proposi-
tion 6.12 we deduce that χϕ extends if and only if Gϕ −Gϕ ◦σ is of trace class and the function
ϕ′

0 given by

ϕ′
0(m − n) = lim

k→∞Gϕ(m + k,n + k) (m,n ∈ N0)

lies in B(Z). Recall (Lemma 7.4) that Gϕ − Gϕ ◦ σ = F(ϕ − ϕ ◦ σ) = Fh, and h is of trace
class if and only if F(h) is of trace class. Also from Lemma 7.2 we see that ϕ′

0 = ϕ0.
It remains to show the norm equality. We have from Proposition 6.12

‖χϕ‖ = ‖ωGϕ‖ = ‖Fh‖1 + ∥∥ϕ′
0

∥∥
B(Z)

,

and this completes to proof. �
7.2. Relation between multipliers and functionals

Similarly to how we defined χϕ as the analogue of ωϕ we will now define Nϕ as the analogue
of Mϕ . More precisely, let Nϕ be the linear map defined on D by

Nϕ(Sm,n) = ϕ(m,n)Sm,n.

It may or may not happen that Nϕ extends to C∗(S), and if it does we will also denote the exten-
sion by Nϕ . It turns out that this happens exactly when χϕ extends (see Proposition 7.10), but the
proof is not as easy as the case with Mϕ and ωϕ . The reason is that there is no ∗-homomorphism
α : C∗(S) → C∗(S ⊗ S) that maps Sm,n to Sm,n ⊗ Sm,n. So we cannot directly follow the ap-
proach of Remark 6.2.

Observe that χϕ = ev1 ◦π ◦Nϕ , where ev1 and π are as in Remark 6.2. Hence ‖χϕ‖ � ‖Nϕ‖.
We will now prove the reverse inequality (Proposition 7.10). The proof is partly contained in the
proof of Theorem 2.3 in [8], so we will refer to that proof and emphasize the differences.

The overall strategy of our proof is the following. We find an isometry U on a Hilbert space
�2(X) and a function ϕ̃ : X × X → C such that ϕ̃ is a Schur multiplier. We construct them in
such a way that we may find a ∗-isomorphism β between C∗(S) and C∗(U) such that Nϕ =
β−1 ◦ mϕ̃ ◦ β , where mϕ̃ is the multiplier corresponding to ϕ̃. The construction is similar to the
one in [8].

Let X be a homogeneous tree of degree q + 1, i.e., each vertex has degree q + 1. We will
identify the vertex set with X. We fix an infinite, non-returning path ω = (x0, x1, x2, . . .) in X,
i.e., xi �= xj when i �= j . Define the map c : X → X such that for any x ∈ X the sequence
x, c(x), c2(x), . . . is the unique infinite, non-returning path eventually following ω. This path is
denoted [x,ω[. Visually, c is the “contraction” of the tree towards the boundary point ω.

Definition 7.7. Observe that for each pair of vertices x, y ∈ X there are smallest numbers m,n ∈
N0 such that cm(x) ∈ [y,ω[ and cn(y) ∈ [x,ω[. When we need to keep track of more than two
points at a time, we denote m and n by m(x,y) and n(x, y) respectively.
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Given a function ϕ : N2
0 → C we define the function ϕ̃ : X × X → C by

ϕ̃(x, y) = ϕ(m,n).

Lemma 7.8. Using the notation of Definition 7.7 we have

m(x,y) − n(x, y) = m(x, z) − n(x, z) + m(z, y) − n(z, y)

for every x, y, z ∈ X.

Proof. Let v ∈ X be a point sufficiently far out in ω such that v lies beyond the following three
points:

cm(x,y)(x) = cn(x,y)(y), cm(x,z)(x) = cn(x,z)(z), cm(z,y)(z) = cn(z,y)(y).

If we let d denote the graph distance, then

m(x,y) − n(x, y) = m(x,y) + d
(
cm(x,y)(x), v

) − d
(
cn(x,y)(y), v

) − n(x, y)

= d(x, v) − d(y, v), (7.6)

and similarly

m(x, z) − n(x, z) = d(x, v) − d(z, v), m(z, y) − n(z, y) = d(z, v) − d(y, v). (7.7)

The lemma now follows by combining (7.6) and (7.7). �
Lemma 7.9. Let ϕ0 ∈ B(Z) be given, and let ϕ(m,n) = ϕ0(m − n). The function ϕ̃ from Defini-
tion 7.7 is a Schur multiplier, and

‖ϕ̃‖S � ‖ϕ0‖B(Z).

Proof. It is enough to prove the lemma when ‖ϕ0‖B(Z) � 1. Write ϕ0 in the form

ϕ0(n) =
∫
T

zn dμ(z), n ∈ Z,

for some complex Radon measure μ on T. First assume that μ = δs for some s ∈ T, so that ϕ0 is
of the form ϕ0(n) = sn. Then ϕ0 is a group homomorphism, so from Lemma 7.8 we get

ϕ̃(x, y) = ϕ̃(x, z)ϕ̃(z, y), x, y, z ∈ X.

In particular, if we fix some vertex, say x0 from before, we have

ϕ̃(x, y) = ϕ̃(x, x0)ϕ̃(y, x0),
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so ϕ̃ is a positive definite kernel on X. Since also ϕ̃(x, x) = 1 for every x ∈ X, it follows that ϕ̃

is a Schur multiplier with norm at most 1 (see [4, Theorem D.3]).
It follows that if μ lies in the set C = conv{cδs | c, s ∈ T}, then ϕ̃ is a Schur multiplier of norm

at most 1.
Now, let μ in M(T)1 be arbitrary. It follows from the Hahn–Banach Theorem that the vague

closure of the set C is M(T)1, so there is a net (μα)α∈A in C such that μα → μ vaguely, that is,∫
T

f dμα →
∫
T

f dμ as α → ∞

for each f ∈ C(T). In particular,∫
T

zn dμα(z) → ϕ0(n) as α → ∞,

so ϕ̃ is the pointwise limit of Schur multipliers with norm at most 1. The proof is now complete,
since the Schur multipliers of norm at most 1 are closed under pointwise convergence. �

Let U be the operator on �2(X) defined by

Uδx = 1√
q

∑
c(z)=x

δz,

where (δx)x∈X are the standard basis vectors in �2(X), and let Um,n be defined similarly to how
we defined Sm,n:

Um,n =
(

1 − 1

q

)−1(
Um

(
U∗)n − 1

q
U∗Um

(
U∗)n

U

)
.

It is shown in [8] that U is a proper isometry. Also if ϕ̃ is a Schur multiplier, then C∗(U) is
invariant under mϕ̃ , and

mϕ̃(Um,n) = ϕ(m,n)Um,n.

Actually the authors only state the mentioned result under the assumption that ϕ(m,n) depends
only on m + n, but the proof without this assumption is exactly the same (see Lemma 2.6 and
Corollary 2.7 in [8]).

Since U is a proper isometry, there is a ∗-isomorphism β : C∗(S) → C∗(U) such that
β(S) = U . It follows that β(Sm,n) = Um,n for all m,n ∈ N0.

Proposition 7.10. Let ϕ : N2
0 → C be a function. Then χϕ extends to a bounded functional on

C∗(S) if and only if Nϕ extends to a (completely) bounded map on C∗(S), and in this case

‖Nϕ‖ = ‖χϕ‖.
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Proof. As mentioned earlier it suffices to prove that if χϕ extends to a bounded functional on
C∗(S), then Nϕ extends to a bounded map on C∗(S) as well, and ‖Nϕ‖ � ‖χϕ‖, since the other
direction has already been taken care of.

Suppose χϕ extends to C∗(S). From Proposition 7.6 we know that h = ϕ − ϕ ◦ σ is of trace
class, and the function ϕ0 : Z → C given by ϕ0(m − n) = limk ϕ(m + k,n + k) is well-defined
and lies in B(Z). Also

‖χϕ‖ = ‖Fh‖1 + ‖ϕ0‖B(Z).

Let ψ(m,n) = ϕ(m,n) − ϕ0(m − n), and notice that

ψ(m,n) =
∞∑

k=0

h(m + k,n + k) = Tr
(
Sm,n(Fh)

)
(7.8)

by [8, Lemma 2.2]. In the proof of [8, Theorem 2.3] it is shown that there are maps Pk,Qk :
X → �2(X) such that if m, n are chosen as in Definition 7.7, then

∞∑
k=0

〈
Pk(x),Qk(y)

〉 = Tr
(
Sn,m(Fh)

)
(x, y ∈ X), (7.9)

and

∞∑
k=0

‖Pk‖∞‖Qk‖∞ = ‖Fh‖1. (7.10)

We set

ϕ̃(x, y) = ϕ(m,n) and ψ̃(x, y) = ψ(m,n)

as in Definition 7.7. Combining (7.8), (7.9) and (7.10) we see that the function (x, y) �→
ψ̃(y, x) = ψ(n,m) is a Schur multiplier on X with norm at most ‖Fh‖1. Hence ψ̃ is also a
Schur multiplier with norm at most ‖Fh‖1.

We have

ϕ̃(x, y) = ψ̃(x, y) + ϕ0(m − n),

so by using Lemma 7.9 we see that ϕ̃ is a Schur multiplier with

‖ϕ̃‖S � ‖Fh‖1 + ‖ϕ0‖B(Z).

By definition, ‖mϕ̃‖ = ‖ϕ̃‖S , and since Nϕ = β−1 ◦ mϕ̃ ◦ β , we conclude that Nϕ is completely
bounded with

‖Nϕ‖ � ‖mϕ̃‖ � ‖Fh‖1 + ‖ϕ0‖B(Z) = ‖χϕ‖. �
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7.3. Positive and conditionally negative functions

Our next goal is to prove analogues of Propositions 6.3 and 6.6. The following proposition
characterizes the functions ϕ that induce states on the Toeplitz algebra.

Proposition 7.11. Let ϕ : N0 × N0 → C be a function. Then the following are equivalent.

(1) The functional χϕ extends to a state on the Toeplitz algebra C∗(S).
(2) The multiplier Nϕ extends to a u.c.p. map on the Toeplitz algebra C∗(S).
(3) The functions F(ϕ − ϕ ◦ σ) and Gϕ are positive definite, and ϕ(0,0) = 1.

Proof. The equivalence (1) ⇐⇒ (3) follows from Proposition 6.3 and Proposition 7.5 together
with Lemma 7.4. The implication (2) �⇒ (1) follows from the equality χϕ = ev1 ◦ π ◦ Nϕ . So
we will only be concerned with (1) �⇒ (2).

Assume χϕ extends to a state on C∗(S). Following the proof of Proposition 7.10 we see that
F(ϕ −ϕ ◦σ) is the matrix of a trace class operator, and it is also positive definite. Going through
the proof of [8, Theorem 2.3] we make the following observation. When Fh = F(ϕ − ϕ ◦ σ) is
positive definite, we may choose Pk = Qk , and ϕ̃ becomes a positive definite kernel on the tree X.
Since ϕ̃(x, x) = ϕ(0) = 1 for every x ∈ X, we deduce that mϕ̃ is u.c.p. Finally, Nϕ = β−1 ◦mϕ̃ ◦β

is also u.c.p., where β is the ∗-isomorphism from C∗(S) → C∗(U) from before. �
Corollary 7.12. Let θ : N2

0 → C be a function. If G(θ − 1
2θ(0,0)) is positive definite, and F(θ −

θ ◦ σ) is positive definite, then

‖Ne−tθ ‖ � 1 for every t > 0.

Proof. Observe first that for any ϕ : N2
0 → C we have ‖Ne−tϕ‖ � et‖Nϕ‖.

Let ϕ = θ − 1
2θ(0,0). From Proposition 7.11 we deduce that ‖Nϕ‖ = ϕ(0,0). Since θ =

ϕ + ϕ(0,0) we find

‖Ne−tθ ‖ = e−tϕ(0,0)‖Ne−tϕ‖ � e−tϕ(0,0)et‖Nϕ‖ = 1. �
Proposition 7.13. Let ψ : N0 × N0 → C be a function. Then the following are equivalent.

(1) For all t > 0 the function e−tψ satisfies the equivalent conditions in Proposition 7.11.
(2) Gψ is a conditionally negative definite kernel, F(ψ ◦ σ − ψ) is a positive definite kernel,

and ψ(0,0) = 0.

Proof. (1) �⇒ (2): Assume that condition (3) of Proposition 7.11 holds for e−tψ for each t > 0.
Then Ge−tψ is positive definite. It follows that 1 − Ge−tψ is a conditionally negative definite
kernel, and therefore so is the pointwise limit

lim
t→0

1 − Ge−tψ

t
= lim

t→0
G

(
1 − e−tψ

t

)
= Gψ.

Since e−tψ(0,0) = 1, we get ψ(0,0) = 0. Moreover, F(e−tψ − e−tψ◦σ ) is positive definite by
assumption. It follows that the pointwise limit
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lim
t→0

F

(
e−tψ − e−tψ◦σ

t

)
= F(ψ ◦ σ − ψ)

is positive definite.
(2) �⇒ (1): First we note that the set of functions ϕ satisfying the equivalent conditions of

Proposition 7.11 is closed under products and pointwise limits. Stability under products is most
easily established using condition (2), while closure under pointwise limits is most easily seen in
condition (3).

By assumption Gψ is conditionally negative definite, so the function e−sGψ is positive defi-
nite for each s > 0. We let

ρs = G−1
(

e−sGψ

s

)
,

so that Gρs is positive definite, and

1

s
− ρs → G−1Gψ = ψ (7.11)

pointwise as s → 0. Using Lemma 7.4 we see that F(ρs − ρs ◦ σ) = Gρs − (Gρs) ◦ σ , so

F(ρs − ρs ◦ σ) = (e−sGψ − e−s(Gψ)◦σ )

s
= e−s(Gψ)◦σ (es((Gψ)◦σ−Gψ) − 1)

s
.

Since Gψ is conditionally negative definite, so is (Gψ) ◦ σ , and hence e−s(Gψ)◦σ is positive
definite. Expanding the exponential function gives

es((Gψ)◦σ−Gψ) − 1 =
∞∑

n=1

(sF (ψ ◦ σ − ψ))n

n! .

Since F(ψ ◦σ −ψ) is positive definite, so are its powers and hence the sum in the above equation.
It follows that F(ρs − ρs ◦ σ) is a product of two positive definite functions and hence itself
positive definite.

Looking at Proposition 7.11 we see that Nρs is completely positive. It follows that Netρs is

completely positive, so e−t ( 1
s
−ρs) satisfies the conditions of Proposition 7.11. Finally, since

e−tψ = lim
s→0

e−t ( 1
s
−ρs),

we conclude that e−tψ satisfies the conditions of Proposition 7.11. �
7.4. The linear bound

As in the case of F∞ we prove that if a kernel ϕ satisfies ‖χe−tϕ‖ � 1 for every t > 0, then it
splits in a useful way. We are also able to compare norms of radial Herz–Schur multipliers on Fn

with norms of functionals on the Toeplitz algebra. These are Theorem 7.16 and Proposition 7.20.
Recall the definition of the set S from Definition 6.7.

68



S. Knudby / Journal of Functional Analysis 266 (2014) 1565–1610 1605

Lemma 7.14. Let ϕ : N2
0 → C be a function. If Gϕ ∈ S , then

‖Ne−tϕ‖ � 1 for every t > 0.

Proof. Suppose Gϕ ∈ S and write Gϕ = Gψ + Gθ , where

• Gψ is a conditionally negative definite kernel with Gψ(0,0) = 0,
• F(ψ ◦ σ − ψ) is a positive definite kernel,
• G(θ − 1

2θ(0,0)) is a positive definite kernel,
• F(θ − θ ◦ σ) is a positive definite kernel.

Then also ϕ = ψ + θ . From Proposition 7.13 we get that Ne−tψ is a u.c.p. map for every t > 0,
and hence ‖Ne−tψ ‖ = 1. Also, from Corollary 7.12 we get that ‖Ne−tθ ‖ � 1 for every t > 0. This
combines to show

‖Ne−tϕ‖ � ‖Ne−tψ ‖‖Ne−tθ ‖ � 1. �
Lemma 7.15. Let ϕ : N2

0 → C be a hermitian function. If ‖χϕ‖ � 1, then 1 − Gϕ ∈ S .

Proof. Use Proposition 7.5 together with Lemma 6.10 and Lemma 7.3. �
Theorem 7.16. Let ϕ : N2

0 → C be a hermitian function. Then Gϕ ∈ S if and only if ‖χe−tϕ‖ � 1
for every t > 0.

Proof. Suppose ‖χe−tϕ‖ � 1 for every t > 0. From the previous lemma we see that G(1 − e−tχ )

lies in S for every t > 0. Hence, so does G(1 − e−tχ )/t which converges pointwise to Gχ as
t → 0. It now follows from Lemma 6.8 that Gχ ∈ S .

The converse direction is Lemma 7.14 combined with Proposition 7.10. �
Lemma 7.17. Let h ∈ V . Then h is bounded if and only if F(h) is bounded.

Proof. Let h ∈ V be bounded. We prove that F(h) and F−1(h) are bounded. This will complete
the proof.

Observe that τ(h) is bounded with the same bound as h. Then (id − τ/q)(h) is bounded, so

F−1(h) =
(

1 − 1

q

)−1(
id − τ

q

)
(h)

is also bounded.
Suppose c � 0 is a bound for h. Using (7.3) we find

∣∣Fh(m,n)
∣∣ �

(
1 − 1

q

) ∞∑
k=0

|τ k(h)(m,n)|
qk

�
(

1 − 1

q

) ∞∑
k=0

c

qk
= c.

This proves that F(h) is bounded as well. �
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Proposition 7.18. If ϕ is a Hankel function, and Gϕ ∈ S , then ϕ is linearly bounded.

Proof. Suppose ϕ ∈ V is a Hankel function, and Gϕ ∈ S . Let h = ϕ ◦ σ − ϕ. We wish to prove
that h is bounded, since this will give the desired bound on ϕ. Observe that h is also a Hankel
function. We write h(m,n) = ḣ(m + n) for some function ḣ : N0 → C.

Since Gϕ lies in S , there is a splitting of the form Gϕ = Gψ + Gθ , where

• Gψ is a conditionally negative definite kernel with Gψ(0,0) = 0,
• F(ψ ◦ σ − ψ) is a positive definite kernel,
• G(θ − 1

2θ(0,0)) is a positive definite kernel,
• F(θ − θ ◦ σ) is a positive definite kernel.

Write h1 = ψ ◦ σ − ψ and h2 = θ − θ ◦ σ , and observe that h = h1 − h2. By the above, Corol-
lary 6.4 and Proposition 6.6 we see that there are vectors ξk , ηk in a Hilbert space such that

Fh1(m,n) = 〈ηm,ηn〉, Fh2(m,n) = 〈ξm, ξn〉,
for all m,n ∈ N0 and

∞∑
k=0

‖ηk − ηk+1‖2 < ∞,

∞∑
k=0

‖ξk‖2 < ∞.

From this we see that Fh2 is the matrix of a positive trace class operator, and from Lemma 7.17
we see that h2 is a bounded function. Also, there is c > 0 such that ‖ηk − ηk+1‖ � c for every k

and ‖η0‖ � c, and so we get the linear bound ‖ηk‖ � c(k + 1). We may even choose c such that
|h2(m,n)| � c2 for every m,n ∈ N0. From the Cauchy–Schwarz inequality we get∣∣Fh1(m,n)

∣∣ � c2(m + 1)(n + 1).

We remark that Fh(0, n) = (1 − 1
q
)h(0, n), so the above with m = 0 gives us

∣∣h1(0, n)
∣∣ =

(
1 − 1

q

)−1∣∣Fh1(0, n)
∣∣ � 2c2(n + 1).

Putting all this together gives the linear bound∣∣ḣ(n)
∣∣ = ∣∣h1(0, n) − h2(0, n)

∣∣ � 2c2(n + 1) + c2 � 2c2(n + 2). (7.12)

Since Fh2 � ‖Fh2‖I � ‖Fh2‖1I = ‖h2‖1I (as positive definite matrices, where I is the
identity operator), we deduce that the function

Fh(m,n) + ‖h2‖1δmn = Fh1(m,n) + (‖h2‖1δmn − Fh2(m,n)
)

is positive definite. By the Cauchy–Schwarz inequality we have∣∣Fh(0, n)
∣∣2 �

(
Fh(0,0) + ‖h2‖1

)(
Fh(n,n) + ‖h2‖1

)
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for every n � 1, and hence

∣∣ḣ(n)
∣∣2 � e

(
Fh(n,n) + ‖h2‖1

)
, (7.13)

where we, in order to shorten notation, have put

e =
(

1 − 1

q

)−2(
Fh(0,0) + ‖h2‖1

)
.

If e is zero, then clearly ḣ(k) = 0 when k � 1. Suppose e > 0. Then from (7.13) we get

|ḣ(n)|2
e

− ‖h2‖1 �
n∑

k=0

h(n − k,n − k)

qk

=
n∑

k=0

ḣ(2n − 2k)

qk

� q

q − 1
max

{∣∣ḣ(2n − 2k)
∣∣ ∣∣ 0 � k � n

}
� 2 max

{∣∣ḣ(2k)
∣∣ ∣∣ 0 � k � n

}
.

In particular we have the following useful observation. Let a = 2e and b = ‖h2‖1/2. Then for
each n ∈ N there is a k � 2n such that

∣∣ḣ(k)
∣∣ � |ḣ(n)|2

a
− b.

We will now show that |ḣ(n)| � 2a + b for every n. Suppose by contradiction that |ḣ(n0)| >

2a + b for some n0. We claim that this assumption will lead to the following. For each m ∈ N0

there is a km � 2m+1n0 such that

∣∣ḣ(km)
∣∣ � 22m

(2a + b). (7.14)

We prove this by induction over m. From our observation above we get that there is a k0 � 2n0
such that

∣∣ḣ(k0)
∣∣ � |ḣ(n0)|2

a
− b � 4a + b2

a
+ 4b − b � 2(2a + b),

and so (7.14) holds for m = 0.
Assume that we have found k0, . . . , km. Using our observation we may find km+1 � 2km such

that

71



1608 S. Knudby / Journal of Functional Analysis 266 (2014) 1565–1610

∣∣ḣ(km+1)
∣∣ � |ḣ(km)|2

a
− b � (22m

(2a + b))2

a
− b

= 22m+1 4a2 + b2 + 4ab

a
− b � 22m+1

(4a + 4b) − b

� 22m+1
(2a + b).

Finally, note that km+1 � 2km � 2(2m+1n0) = 2m+2n0 as desired. This proves (7.14). But clearly
(7.14) is in contradiction with (7.12), and so we conclude that |ḣ(n)| � 2a + b for all n ∈ N0.
This proves that ḣ is bounded, and hence ϕ is linearly bounded. �

In [8] the following theorem is proved (Theorem 5.2).

Theorem 7.19. Let Fn be the free group on n generators (2 � n < ∞), let ϕ : Fn → C be a radial
function, and let ϕ̇ : N0 → C be as in Definition 6.1. Finally, let h = (hij )i,j∈N0 be the Hankel
matrix given by hij = ϕ̇(i + j) − ϕ̇(i + j + 2) for i, j ∈ N0. Then the following are equivalent:

(i) ϕ is a Herz–Schur multiplier on Fn,
(ii) h is of trace class.

If these two equivalent conditions are satisfied, then there exist unique constants c± ∈ C and a
unique ψ̇ : N0 → C such that

ϕ̇(k) = c+ + c−(−1)k + ψ̇(k) (k ∈ N0) (7.15)

and

lim
k→∞ ψ̇(k) = 0.

Moreover, with q = 2n − 1

‖ϕ‖B2 = |c+| + |c−| + ‖Fh‖1,

where F is the operator defined by (7.3).

Proposition 7.20. If ϕ : Fn → C is a radial function, and ϕ̃ is as in Definition 6.1, then ‖χϕ̃‖ =
‖ϕ‖B2 .

Proof. Let hij = ϕ̃(i, j) − ϕ̃(i + 1, j + 1). From Theorem 7.19 and Proposition 7.6 we see that
it suffices to consider the case where h is the matrix of a trace class operator, since otherwise
‖χϕ̃‖ = ‖ϕ‖B2 = ∞. If h is of trace class, then we let ϕ̃0(n) = limk ϕ̃(k + n, k). From Theo-
rem 7.19 and Proposition 7.6 it follows that

‖χϕ̃‖ = ‖Fh‖1 + ‖ϕ̃0‖B(Z),

‖ϕ‖B2 = ‖Fh‖1 + |c+| + |c−|,
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where c± are the constants obtained in Theorem 7.19. It follows from (7.15) that

ϕ̃0(n) = c+ + (−1)nc−.

Now we only need to see why |c+| + |c−| = ‖ϕ̃0‖B(Z).
Let ν ∈ C(T)∗ be given by ν(f ) = c+f (1) + c−f (−1) for all f ∈ C(T). Observe that

ν(z �→ zn) = c+ + (−1)nc−. Hence ν corresponds to ϕ̃0 under the isometric isomorphism
B(Z) � C(T)∗. Hence,

‖ϕ̃0‖B(Z) = ‖ν‖ = |c+| + |c−|.
This completes the proof. �
Theorem 7.21. If ϕ : Fn → R is a radial function such that ‖e−tϕ‖B2 � 1 for each t > 0, then
there are constants a, b � 0 such that ϕ(x) � b + a|x| for all x ∈ Fn. Here |x| denotes the word
length function on Fn.

Proof. Suppose ϕ : Fn → R is a radial function such that ‖e−tϕ‖B2 � 1 for each t > 0, and let
ϕ̃ be as in Definition 6.1. First observe that ϕ̃ is real and symmetric, and hence hermitian. From
Proposition 7.20 we get that ‖χe−t ϕ̃‖ � 1 for every t > 0, so Theorem 7.16 implies that G(ϕ̃) ∈ S .
Since ϕ̃ is a Hankel function, Proposition 7.18 ensures that∣∣ϕ̃(m,n)

∣∣ � b + a(m + n) for all m,n ∈ N0

for some constants a and b. This implies that

ϕ(x) � b + a|x| for all x ∈ Fn. �
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THE WEAK HAAGERUP PROPERTY

SØREN KNUDBY

ABSTRACT. We introduce the weak Haagerup property for locally compact groups and
prove several hereditary results for the class of groups with this approximation property.
The class contains a priori all weakly amenable groups and groups with the usual Haagerup
property, but examples are given of groups with the weak Haagerup property which are not
weakly amenable and do not have the Haagerup property.

In the second part of the paper we introduce the weak Haagerup property for finite von
Neumann algebras, and we prove several hereditary results here as well. Also, a discrete
group has the weak Haagerup property if and only if its group von Neumann algebra does.

Finally, we give an example of two II1 factors with different weak Haagerup constants.
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2 SØREN KNUDBY

1. INTRODUCTION

In connection with the famous Banach-Tarski paradox, the notion of amenability was intro-
duced by von Neumann [57], and since then the theory of amenable groups has grown into
a huge research area in itself (see the book [49]). Today, we know that amenable groups
can be characterized in many different ways, one of which is the following. A locally com-
pact group G is amenable if and only if there is a net (uα)α∈A of continuous compactly
supported positive definite functions onG such that uα → 1 uniformly on compact subsets
ofG (see [49, Chap. 2, Sec. 8]). When formulated like this, amenability is viewed as an ap-
proximation property, and over the years several other (weaker) approximation properties
resembling amenability have been studied. For a combined treatment of the study of such
approximation properties we refer to [7, Chapter 12]. We mention some approximation
properties below and relate them to each other (see Figure 1).

Recall that a locally compact group G is weakly amenable, if there is a net (uα) of com-
pactly supported Herz-Schur multipliers on G, uniformly bounded in Herz-Schur norm,
such that uα → 1 uniformly on compacts. The least uniform bound on the norms of such
nets (if such a bound exists at all) is the weak amenability constant of G. We denote the
weak amenability constant (also called the Cowling-Haagerup constant) by ΛWA(G). The
notation ΛG and Λcb(G) for the weak amenability constant is also found in the literature.
For the definition of Herz-Schur multipliers and the Herz-Schur norm we refer to Section 3,
but let us mention here that any (normalized) positive definite function on the group G is a
Herz-Schur multiplier (of norm 1). Hence all amenable groups are also weakly amenable
(how lucky?) and their weak amenability constant is 1. If a group is not weakly amenable
we write ΛWA(G) =∞.

If, in the definition of weak amenability, no condition were put on the boundedness of the
norms, then any G group would admit such a net of functions approximating 1 uniformly
on compacts: It follows from Lemma 3.2 in [23] that given any compact subset K of a
locally compact group G, there is a compactly supported Herz-Schur multiplier u taking
the value 1 on all ofK. The lemma in fact states something much stronger, namely that one
can even arrange for u to be in the linear span of the set of continuous compactly supported
positive definite functions. But the Herz-Schur norm of u will in general not stay bounded
when the compact set K grows.

Weak amenability of groups has been extensively studied. Papers studying weak amenabil-
ity include [14], [15], [16], [17], [20], [21], [26], [27].

The Haagerup property is another much studied approximation property (see the book
[8]). It appeared in connection with the study of approximation properties for operator
algebras (see e.g. [26] and [10]). It is known that groups with Haagerup property satisfy
the Baum-Connes conjecture [33], [34]. The definition is as follows.

A locally compact group G has the Haagerup property, if there is a net (uα) of continuous
positive definite functions on G vanishing at infinity such that uα → 1 uniformly on
compacts. It is clear that amenability implies the Haagerup property, but the free groups
demonstrate that the converse is not true (see [26]). It is however not clear what the relation
between weak amenability and the Haagerup property is. When Cowling and Haagerup
proved that the simple Lie groups Sp(1, n) are weakly amenable [16], it became clear that
weak amenability does not imply the Haagerup property, because these groups also have
Property (T) when n ≥ 2 (see [41],[42],[3]), and Property (T) is a strong negation of the
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THE WEAK HAAGERUP PROPERTY 3

Haagerup property. However, since the weak amenability constant of Sp(1, n) is 2n − 1,
it does not reveal if having ΛWA(G) = 1 implies having the Haagerup property.

In the light of the approximation properties described so far, and in order to study the re-
lation between weak amenability and the Haagerup property, the weak Haagerup property
was introduced (for discrete groups) in [40]. The class of groups with the weak Haagerup
property encompasses in a natural way all the weakly amenable groups and groups with
the Haagerup property. The definition goes as follows (see also Definition 4.1).

A locally compact groupG has the weak Haagerup property, if there is a net (uα) of Herz-
Schur multipliers on G vanishing at infinity and uniformly bounded in Herz-Schur norm
such that uα → 1 uniformly on compacts. The least uniform bound on the norms of such
nets (if such a bound exists at all) is the weak Haagerup constant of G, denoted ΛWH(G).

In the same way that one deduces that amenable groups are weakly amenable, one sees
that groups with the Haagerup property also have the weak Haagerup property. Also, it is
trivial that 1 ≤ ΛWH(G) ≤ ΛWA(G) for every locally compact group G, and in particular
all weakly amenable groups have the weak Haagerup property.

It is not immediately clear if the potentially larger class of groups with the weak Haagerup
property actually contains groups which are not weakly amenable and at the same time
without the Haagerup property. In Corollary 5.7 we will demonstrate that this is the case.

There are many examples of groups G where ΛWH(G) = ΛWA(G), e.g. all amenable
groups and more generally all groups G with ΛWA(G) = 1. There are also examples
where the two constants differ. In fact, the wreath product groupH = Z/2oF2 of the cyclic
group of order two with the non-abelian free group of rank two is such an example. The
group H = Z/2 o F2 is defined as the semidirect product of

⊕
F2

Z/2 by F2 where F2 acts
on
⊕

F2
Z/2 by the shift action. It is known that H has the Haagerup property (see [18]),

and hence ΛWH(H) = 1. But in [47, Corollary 2.12] it was shown that ΛWA(H) 6= 1. It
was later shown in [46, Corollary 4] that in fact ΛWA(H) =∞.

There is another approximation property of locally compact groups that we would like to
briefly mention. It is called the Approximation Property or simply AP and was introduced
in [31] (see the end of Section 3 for the definition). It is known that all weakly amenable
groups have AP, and there are non-weakly amenable groups with the AP as well (see [31]).

Amenability
(1) //

(2)

��

Haagerup property

(3)

��
Weak amenability with constant 1

(4)//

(5)

��

Weak Haagerup property with constant 1

(6)

��
Weak amenability

(7) //

(8)

��

Weak Haagerup property

Approximation Property (AP)

FIGURE 1. Approximation properties
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4 SØREN KNUDBY

Figure 1 displays the relations between the approximation properties mentioned so far. At
the moment, all implications are known to be strict except for (3) and (6). In a forthcoming
paper [30] by Haagerup and the author, implication (6) will be shown to be strict as well.

The study of approximation properties of groups has important applications in the theory
of operator algebras due to the fact that the approximation properties have operator alge-
braic counterparts. The standard examples are nuclearity of C∗-algebras and semidiscrete-
ness of von Neumann algebras which correspond to amenability of groups in the sense
that a discrete group is amenable if and only if its reduced group C∗-algebra is nuclear
if and only if its group von Neumann algebra is semidiscrete (see [7, Theorem 2.6.8]).
Also weak amenability and the Haagerup property have operator algebra analogues (see
[7, Chapter 12]). In the second part of the present paper we introduce a von Neumann
algebraic analogue of the weak Haagerup property and the weak Haagerup constant (see
Definition 7.2).

2. MAIN RESULTS

The main results of this paper concern hereditary properties of the weak Haagerup property
for locally compact groups and von Neumann algebras. As applications we are able to
provide many examples of groups and von Neumann algebras with the weak Haagerup
property. We additionally provide some reformulations of the weak Haagerup property
(see Proposition 4.3 and Proposition 4.4).

See Definition 4.1 for the definition of the weak Haagerup property for locally compact
groups. Concerning the weak Haagerup property for locally compact groups we prove the
following collection of hereditary results in Section 5.

Theorem A. Let G be a locally compact group.

(1) If H is a closed subgroup of G, and G has the weak Haagerup property, then H
has the weak Haagerup property. More precisely,

ΛWH(H) ≤ ΛWH(G).

(2) If K is a compact normal subgroup of G, then G has the weak Haagerup property
if and only if G/K has the weak Haagerup property. More precisely,

ΛWH(G) = ΛWH(G/K).

(3) The weak Haagerup property is preserved under finite direct products. More pre-
cisely, if G′ is a locally compact group, then

ΛWH(G×G′) ≤ ΛWH(G)ΛWH(G′).

(4) If (Gi)i∈I is a directed set of open subgroups of G, then

ΛWH(
⋃

i

Gi) = lim
i

ΛWH(Gi).

(5) If 1 −→ N ↪−→ G −→ G/N −→ 1 is a short exact sequence of locally compact
groups, where G is second countable or discrete, and if G/N is amenable, then G
has the weak Haagerup property if and only ifN has the weak Haagerup property.
More precisely,

ΛWH(G) = ΛWH(N).
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THE WEAK HAAGERUP PROPERTY 5

(6) If Γ is a lattice in G and if G is second countable, then G has the weak Haagerup
property if and only if Γ has the weak Haagerup property. More precisely,

ΛWH(Γ) = ΛWH(G).

As mentioned, examples of groups with the weak Haagerup property trivially include all
weakly amenable groups and groups with the Haagerup property. Apart from all these ex-
amples, we provide an additional example in Corollary 5.7 to show that the class of weakly
Haagerup groups is strictly larger than the class of weakly amenable groups and groups
with the Haagerup property combined. Examples of groups without the weak Haagerup
property will be one of the subjects of another paper [30] by Haagerup and the author.

See Definition 7.2 and Remark 7.3 for the definition of the weak Haagerup property for
finite von Neumann algebras. Concerning the weak Haagerup property for finite von Neu-
mann algebras we will prove the following theorems.

Theorem B. Let Γ be a discrete group. The following conditions are equivalent.

(1) The group Γ has the weak Haagerup property.
(2) The group von Neumann algebra L(Γ) has the weak Haagerup property.

More precisely, ΛWH(Γ) = ΛWH(L(Γ)).

Theorem C. Let M,M1,M2, . . . be finite von Neumann algebras which admit faithful
normal traces.

(1) If M2 ⊆M1 is a von Neumann subalgebra, then ΛWH(M2) ≤ ΛWH(M1).
(2) If p ∈M is a non-zero projection, then ΛWH(pMp) ≤ ΛWH(M).
(3) Suppose that 1 ∈ M1 ⊆ M2 ⊆ · · · are von Neumann subalgebras of M generat-

ing all ofM , and there is an increasing sequence of non-zero projections pn ∈Mn

with strong limit 1. Then ΛWH(M) = supn ΛWH(pnMnpn).
(4)

ΛWH

(⊕

n

Mn

)
= sup

n
ΛWH(Mn).

(5)
ΛWH(M1 ⊗M2) ≤ ΛWH(M1)ΛWH(M2).

As an application of the theorems above, in Section 9 we give an example of two von Neu-
mann algebras, in fact II1 factors, which are distinguished by the weak Haagerup property,
i.e. the two von Neumann algebras do not have the same weak Haagerup constant. None of
the other approximation properties mentioned in the introduction (see Figure 1), or more
precisely the corresponding operator algebraic approximation properties, can distinguish
the two factors (see Remark 9.1).

As another application of Theorem C (or rather Theorem C’ in Section 8) we are able to
prove that the weak Haagerup constant of a von Neumann algebra with a faithful normal
trace does not depend on the choice of trace (see Proposition 8.4).

Although the following result is not proved in this paper, we would like to mention it
here, because it gives a complete description of the weak Haagerup property for connected
simple Lie groups.
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Theorem ([30]). A connected simple Lie group has the weak Haagerup property if and
only if it has real rank zero or one.

3. PRELIMINARIES

We always let G denote a locally compact group equipped with left Haar measure. We
always include the Hausdorff requirement whenever we discuss topological groups and
spaces.

The space of continuous functions on G (with complex values) is denoted C(G). It con-
tains the subspace C0(G) of continuous functions vanishing at infinity and the subspace
Cc(G) of compactly supported continuous functions. When G is a Lie group, C∞(G)
denotes the space of smooth functions on G.

In the following we introduce the Fourier algebra A(G), the group von Neumann algebra
L(G), the completely bounded Fourier multipliers M0A(G), the algebra of Herz-Schur
multipliers B2(G) and its predual Q(G). This is quite a mouthful, so we encourage you
to take a deep breath before you read any further. The most important of these spaces in
the present context is the space of Herz-Schur multipliers B2(G) which occurs also in the
definition of the weak Haagerup property, Definition 4.1.

When π is a continuous unitary representation of G on some Hilbert space H, and when
h, k ∈ H, then the continuous function u defined by

u(x) = 〈π(x)h, k〉 for all x ∈ G (3.1)

is a matrix coefficient of π. The Fourier algebra A(G) is the space of matrix coefficients
of the left regular representation λ : G → L2(G). That is, u ∈ A(G) if and only if there
are h, k ∈ L2(G) such that

u(x) = 〈λ(x)h, k〉, for all x ∈ G. (3.2)

With pointwise operations, A(G) becomes an algebra, and when equipped with the norm

‖u‖A = inf{‖h‖2‖k‖2 | (3.2) holds}.
A(G) is in fact a Banach algebra.

Given u ∈ A(G) there are f, g ∈ L2(G) such that u = f ∗ ǧ and ‖u‖ = ‖f‖2‖g‖2, where
ǧ(x) = g(x−1) and ∗ denotes convolution. This is often written as

A(G) = L2(G) ∗ L2(G).

It is known that ‖u‖∞ ≤ ‖u‖A for any u ∈ A(G), and A(G) ⊆ C0(G).

The Fourier algebra was introduced and studied in Eymard’s excellent paper [23] to which
we refer to details about the Fourier algebra. When G is not compact, the Fourier algebra
A(G) contains no unit. But it was shown in [44] that A(G) has a bounded approximate
unit if and only if G is amenable (see also [49, Theorem 10.4]).

The von Neumann algebra generated by the image of the left regular representation λ :
G→ B(L2(G)) is the group von Neumann algebra, L(G). The Fourier algebra A(G) can
be identified isometrically with the (unique) predual of L(G), where the duality is given
by

〈u, λ(x)〉 = u(x), x ∈ G, u ∈ A(G).
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A function v : G → C is called a Fourier multiplier, if vu ∈ A(G) for every u ∈ A(G).
A Fourier multiplier v is continuous and bounded, and it defines bounded multiplication
operator mv : A(G) → A(G). The dual operator of mv is a normal (i.e. ultraweakly
continuous) bounded operator Mv : L(G)→ L(G) such that

Mvλ(x) = v(x)λ(x).

In [17, Proposition 1.2] it is shown that Fourier multipliers can actually be characterized
as the continuous functions v : G→ C such that

λ(x) 7→ v(x)λ(x)

extends to a normal, bounded operator on the group von Neumann algebra L(G). If Mv

is not only bounded but a completely bounded operator on L(G), we say that v is a com-
pletely bounded Fourier multiplier. We denote the space of completely bounded Fourier
multipliers by M0A(G). When equipped with the norm ‖v‖M0A = ‖Mv‖cb, where ‖ ‖cb

denotes the completely bounded norm, M0A(G) is a Banach algebra. It is clear that

‖vu‖A ≤ ‖v‖M0A‖u‖A for every v ∈M0A(G), u ∈ A(G). (3.3)

One of the key notions of this paper is the notion of a Herz-Schur multiplier, which we
now recall. Let X be a non-empty set. A function k : X × X → C is called a Schur
multiplier on X if for every bounded operator A = [axy]x,y∈X ∈ B(`2(X)) the matrix
[k(x, y)axy]x,y∈X represents a bounded operator on `2(X), denoted mk(A). If k is a
Schur multiplier, it is a consequence of the closed graph theorem thatmk defines a bounded
operator on B(`2(X)). We define the Schur norm ‖k‖S to be the operator norm ‖mk‖ of
mk.

Let u : G→ C be a continuous function. Then u is as Herz-Schur multiplier if and only if
the function û : G×G→ C defined by

û(x, y) = u(y−1x), x, y ∈ G,
is a Schur multiplier on G. The set of Herz-Schur multipliers on G is denoted B2(G). It is
a Banach space, in fact a unital Banach algebra, when equipped with the Herz-Schur norm
‖u‖B2

= ‖û‖S = ‖mû‖.
It is known that B2(G) = M0A(G) isometrically (see [5], [35], [50, Theorem 5.1]). We
include several well-known characterizations of the Herz-Schur multipliers B2(G) below.

Proposition 3.1. Let G be a locally compact group, let u : G → C be a function, and let
k ≥ 0 be given. The following are equivalent.

(1) u is a Herz-Schur multiplier with ‖u‖B2
≤ k.

(2) u is continuous, and for every n ∈ N and x1, . . . , xn ∈ G
‖u(x−1

j xi)
n
i,j=1‖S ≤ k.

(3) u is a completely bounded Fourier multiplier with ‖u‖M0A(G) ≤ k.
(4) There exist a Hilbert space H and two bounded, continuous maps P,Q : G→ H

such that

u(y−1x) = 〈P (x), Q(y)〉 for all x, y ∈ G
and

(sup
x∈G
‖P (x)‖)(sup

y∈G
‖Q(y)‖) ≤ k.
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If G is second countable, then the above conditions are equivalent to

(5) There exist a Hilbert space H and two bounded, Borel maps P,Q : G → H such
that

u(y−1x) = 〈P (x), Q(y)〉 for all x, y ∈ G
and

(sup
x∈G
‖P (x)‖)(sup

y∈G
‖Q(y)‖) ≤ k.

A proof taken from the unpublished manuscript [27] of the equivalence of (4) and (5) is
included in the appendix (see Lemma C.1).

The space B2(G) of Herz-Schur multipliers has a Banach space predual. More precisely,
let Q(G) denote the completion of L1(G) in the norm

‖f‖Q = sup

{∣∣∣∣
∫

G

f(x)u(x) dx

∣∣∣∣ | u ∈ B2(G), ‖u‖B2
≤ 1}

}
.

In [17] it is proved that the dual Banach space of Q(G) may be identified isometrically
with B2(G), where the duality is given by

〈f, u〉 =

∫

G

f(x)u(x) dx, f ∈ L1(G), u ∈ B2(G).

Thus, B2(G) may be equipped with the weak∗-topology arising from its predual Q(G).
This topology will also be denoted the σ(B2, Q)-topology.

We note that since ‖u‖∞ ≤ ‖u‖B2
for any u ∈ B2(G), then ‖f‖Q ≤ ‖f‖1 for every

f ∈ L1(G). In particular, Cc(G) is dense in Q(G) with respect to the Q-norm, because
Cc(G) is dense in L1(G) with respect to the 1-norm.

The Approximation Property (AP) briefly mentioned in the introduction is defined as fol-
lows. A locally compact groupG has AP if there is a net (uα) inA(G) such that uα → 1 in
the σ(B2, Q)-topology. It was shown in [31, Theorem 1.12] that weakly amenable groups
have AP. Only recently (in [28], [29], [43]) it was proved that there are (m)any groups with-
out AP. Examples of groups without AP include the special linear groups SLn(R) when
n ≥ 3 and their lattices SLn(Z).

4. THE WEAK HAAGERUP PROPERTY FOR LOCALLY COMPACT GROUPS

The following definition is the main focus of the present paper.

Definition 4.1. Let G be a locally compact group. Then G has the weak Haagerup prop-
erty, if there are a constant C > 0 and a net (uα)α∈A in B2(G) ∩ C0(G) such that

‖uα‖B2
≤ C for every α ∈ A,

uα → 1 uniformly on compacts as α→∞.

The weak Haagerup constant ΛWH(G) is defined as the infimum of thoseC for which such
a net (uα) exists, and if no such net exists we write ΛWH(G) = ∞. It is not hard to see
that the infimum is actually a minimum. If a group G has the weak Haagerup property, we
will also sometimes say that G is weakly Haagerup.
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THE WEAK HAAGERUP PROPERTY 9

If, in the above definition, ones replaces the requirement uα ∈ C0(G) with the stronger
requirement uα ∈ Cc(G), one obtains the definition of weak amenability.

Apart from the norm topology, there are (at least) three interesting topologies one can
put on the norm bounded sets in B2(G) one of which is the locally uniform topology
used in Definition 4.1 and the others being the σ(B2, Q)-topology and the point-norm
topology (see Appendix A). Proposition 4.2 and 4.3 below show that any of these three
topologies could have been used in Definition 4.1. More precisely, we have the following
characterizations of the weak Haagerup property.

Proposition 4.2. Let G be a locally compact group. Then ΛWH(G) ≤ C if and only if
there is a net (uα) in B2(G) ∩ C0(G) such that

‖uα‖B2 ≤ C for every α,

uα → 1 in the σ(B2, Q)-topology.

Proof. Suppose first ΛWH(G) ≤ C. Then by Lemma A.1 (2), the conditions in our propo-
sition are satisfied.

Conversely, suppose we are given a net (uα) in B2(G) ∩ C0(G) such that

‖uα‖B2
≤ C for every α,

uα → 1 in the σ(B2, Q)-topology.
Let vα = h ∗ uα, where h is a continuous, non-negative, compactly supported function on
G such that

∫
h(x) dx = 1. Then using the convolution trick (see Lemma B.1, Lemma B.2

and Remark B.3) we see that the net (vα) witnesses ΛWH(G) ≤ C. �

The following Proposition (and its proof) is inspired by [16, Proposition 1.1].

Proposition 4.3. Let G be a locally compact group and suppose ΛWH(G) ≤ C. Then
there exists a net (vα)α∈A in B2(G) ∩ C0(G) such that

‖vα‖B2
≤ C for every α,

‖vαu− u‖A → 0 for every u ∈ A(G),

vα → 1 uniformly on compacts.

If L is any compact subset of G and ε > 0, then there exists w ∈ B2(G) ∩ C0(G) so that

‖w‖B2
≤ C + ε,

w = 1 for every x ∈ L.
Moreover, if K is a compact subgroup of G, then the net (vα) can be chosen to consist
of K-bi-invariant functions. Finally, if G is a Lie group, the net (vα) can additionally be
chosen to consist of smooth functions.

Proof. Let (uα) be a net witnessing ΛWH(G) ≤ C. Using the bi-invariance trick (see
Appendix B) we see that the net (uKα ) obtained by averaging each uα from left and right
over the compact subgroup K is a net of K-bi-invariant functions witnessing ΛWH(G) ≤
C. We let vα = hK ∗ uKα , where h ∈ Cc(G) is a non-negative, continuous function
with compact support and integral 1. Using the convolution trick (see Lemma B.1 and
Lemma B.2) we see that the net (vα) has the desired properties (that vα → 1 uniformly on
compacts follows from Lemma A.1).
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Let L ⊆ G be compact and ε > 0 be arbitrary. By [23, Lemma 3.2] there is u ∈ A(G)
such that u(x) = 1 for all x ∈ K. According to the first part of our proposition, there is
v ∈ B2(G) ∩ C0(G) such that ‖v‖B2 ≤ C and ‖vu − u‖A ≤ ε. Let w = v − (vu − u).
Then w has the desired properties.

If G is a Lie group, we let h be as before with the extra condition that C∞(G) and use the
arguments above. �

Proposition 4.4 gives an equivalent formulation of the weak Haagerup property with con-
stant 1. Recall that a continuous map is proper if the preimage of a compact set is compact.

Proposition 4.4. Let G be a locally compact and σ-compact group. Then G is weakly
Haagerup with constant 1, if and only if there is a continuous, proper function ψ : G →
[0,∞[ such that ‖e−tψ‖B2 ≤ 1 for every t > 0.

Moreover, we can take ψ to be symmetric.

The idea of the proof of the proposition is taken from the proof of Proposition 2.1.1 in [8].
A proof in the case where G is discrete can be found in [40].

Proof. Suppose first such a map ψ exists, and let ut = e−tψ . The fact that ψ is proper
implies that ut ∈ C0(G) for every t > 0. If K ⊆ G is compact, then ψ(K) ⊆ [0, r] for
some r > 0. Hence ut(K) ⊆ [e−tr, 1]. This shows that ut → 1 uniformly on K as t→ 0.
It follows that G is weakly Haagerup with constant 1.

Conversely, suppose G is weakly Haagerup with constant 1. Since G is locally compact
and σ-compact, it is the union of an increasing sequence (Un)∞n=1 of open sets such that the
closureUn ofUn is compact and contained inUn+1 (see [25, Proposition 4.39]). Choose an
increasing, unbounded sequence (αn) of positive real numbers and a decreasing sequence
(εn) tending to zero such that

∑
n αnεn converges. For every n choose a function un ∈

B2(G) ∩ C0(G) with ‖un‖B2
≤ 1 such that

sup
g∈Un

|un(g)− 1| ≤ εn/2.

Replace un by |un|2, if necessary, to ensure 0 ≤ un ≤ 1 and

sup
g∈Un

|un(g)− 1| ≤ εn.

Define ψi : G→ [0,∞[ and ψ : G→ [0,∞[ by

ψi(g) =

i∑

n=1

αn(1− un(g)), ψ(g) =

∞∑

n=1

αn(1− un(g)).

It is easy to see that ψ is well-defined. We claim that ψi → ψ uniformly on compacts. For
this, let K ⊆ G be compact. By compactness, K ⊆ UN for some N , and hence if g ∈ K
and i ≥ N ,

|ψ(g)− ψi(g)| = |
∞∑

n=i+1

αn(1− un(g))| ≤
∞∑

n=i+1

αnεn.

Since
∑
n αnεn converges, this proves that ψi → ψ uniformly on K. In particular, since

each ψi is continuous, ψ is continuous.
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We claim that ψ is proper. Let R > 0 be given, and choose n such that αn ≥ 2R. Since
un ∈ C0(G), there is a compact set K ⊆ G such that |un(g)| < 1/2 whenever g ∈ G \K.
Now if ψ(g) ≤ R, then ψ(g) ≤ αn/2, and in particular αn(1 − un(g)) ≤ αn/2, which
implies that 1− un(g) ≤ 1/2. Hence we have argued that

{g ∈ G | ψ(g) ≤ R} ⊆ {g ∈ G | 1− un(g) ≤ 1/2} ⊆ K.
This proves that ψ is proper.

Now let t > 0 be fixed. We must show that ‖e−tψ‖B2 ≤ 1. Since ψi converges locally
uniformly to ψ, it will suffice to prove that ‖e−tψi‖B2 ≤ 1, because the unit ball of B2(G)
is closed under locally uniform limits (see Lemma A.3). Observe that

e−tψi =

i∏

n=1

e−tαn(1−un),

and so it suffices to show that e−tαn(1−un) belongs to the unit ball of B2(G) for each n.
And this is clear, since

‖e−tαn(1−un)‖B2 = e−tαn‖etαnun‖B2 ≤ e−tαnetαn‖un‖B2 ≤ 1.

To prove the last assertion, put ψ̄ = ψ+ψ̌, where ψ̌(g) = ψ(g−1). Clearly, ψ̄ is continuous
and proper. Finally, for every t > 0

‖e−tψ̄‖B2
≤ ‖e−tψ‖B2

‖e−tψ̌‖B2
≤ 1,

since ‖ǔ‖B2
= ‖u‖B2

for every Herz-Schur multiplier u ∈ B2(G).

�

Having settled the definition of the weak Haagerup property for locally compact groups
and various reformulations of the property, we move on to prove hereditary results for the
class of groups with the weak Haagerup property.

5. HEREDITARY PROPERTIES I

In this section we prove hereditary results for the weak Haagerup property of locally com-
pact groups. The hereditary properties under consideration involve passing to closed sub-
groups, taking quotients by compact normal subgroups, taking finite direct products, taking
direct unions of open subgroups and extending from co-Følner subgroups and lattices to
the whole group.

We begin this section with an easy lemma.

Lemma 5.1. Suppose G is a locally compact group with a closed subgroup H .

(1) If u ∈ C0(G), then u|H ∈ C0(H).
(2) If u ∈ B2(G), then u|H ∈ B2(H) and

‖u|H‖B2(H) ≤ ‖u‖B2(G).

Proof. (1) is obvious, and (2) is obvious from the characterization in Proposition 3.1. �

An immediate consequence of the previous lemma is the following.
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Proposition 5.2. The class of weakly Haagerup groups is stable under taking subgroups.
More precisely, ifG is a locally compact group with a closed subgroupH , then ΛWH(H) ≤
ΛWH(G).

Lemma 5.3. If K ⊆ G is a compact, normal subgroup, then

(1) C(G/K) may be canonically and isometrically identified with the subspace of
C(G) of functions constant on the cosets of K in G.

(2) Under the canonical identification from (1), C0(G/K) is isometrically identified
with the subspace of C0(G) of functions constant on the cosets of K in G.

(3) Under the canonical identification from (1), B2(G/K) is isometrically identified
with the subspace of B2(G) of functions constant on the cosets of K in G.

(4) Moreover, the canonical identification preserves the topology of locally uniform
convergence.

Proof.

(1) Let q : G→ G/K denote the quotient map. If f ∈ C(G) is constant on K-cosets, it is
easy to see that the induced map f̄ defined by f̄([x]K) = f(x) is continuous. Conversely,
if g ∈ C(G/K) is given, then the composite g ◦ q is continuous on G and constant on
cosets.

(2) One must check that g ∈ C0(G/K) if and only if g ◦ q ∈ C0(G). Note first that a
subset L ⊆ G/K is compact if and only if q−1(L) is compact. In other words, q is proper.
The rest is elementary. It is also clear, that the correspondence is isometric with respect to
the uniform norm. This completes (2).

(3) This is Proposition 1.3 in [16].

(4) One must check that if (gn) is a net in C(G/K) and g ∈ C(G/K), then gn → g
uniformly on compacts if and only if gn ◦ q → g ◦ q uniformly on compacts. This is
elementary using properness of q. �

Proposition 5.4. IfG is a locally compact group with a compact, normal subgroupK/G,
then ΛWH(G/K) = ΛWH(G).

Proof. Apply the last part of Proposition 4.3 and Lemma 5.3. �

Concerning direct products of groups we have the following proposition.

Proposition 5.5. The class of weakly Haagerup groups is stable under finite direct prod-
ucts. More precisely, we have

ΛWH(G×H) ≤ ΛWH(G)ΛWH(H) (5.1)

for locally compact groups G and H .

Proof. From the characterization in Proposition 3.1, it easily follows that if u ∈ B2(G)
and v ∈ B2(H), then u × v ∈ B2(G × H) and ‖u × v‖B2 ≤ ‖u‖B2‖v‖B2 . Also, if
u ∈ C0(G) and v ∈ C0(H), then clearly u × v ∈ C0(G × H). It is now clear that if
(uα) and (vβ) are bounded nets in B2(G) ∩ C0(G) and B2(H) ∩ C0(H), respectively,
converging locally uniformly to 1, then the product net (uα × vβ) (with the product order)
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belongs to B2(G ×H) ∩ C0(G ×H) and converges locally uniformly to 1. This proves
that

ΛWH(G×H) ≤ ΛWH(G)ΛWH(H).

�

Remark 5.6. It would of course be interesting to know if equality actually holds in (5.1).
The corresponding result for weak amenability is known to be true (see [16, Corollary 1.5]).
It is not hard to see that if either ΛWH(G) = 1 or ΛWH(H) = 1, then (5.1) is an equality.

With Proposition 5.5 at our disposal, we can show the following.

Corollary 5.7. The class of weakly Haagerup groups contains groups that are neither
weakly amenable nor have the Haagerup property.

Proof. It is known that the Lie group G = Sp(1, n) is weakly amenable with ΛWA(G) =
2n − 1 (see [16]). It is also known that G has Property (T) when n ≥ 2 (see [3, Sec-
tion 3.3]), and hence G does not have the Haagerup property (since G is not compact).
As we mentioned earlier, the group H = Z/2 o F2 has the Haagerup property, but is not
weakly amenable. Hence both G and H have the weak Haagerup property. It now follows
from the previous proposition that the group G×H has the weak Haagerup property.

Both the Haagerup property and weak amenability passes to subgroups, so it also follows
that G×H has neither of these properties. �

Remark 5.8. An example of a discrete group with the weak Haagerup property outside
the class of weakly amenable groups and the Haagerup groups is given by taking Γ to be a
lattice in Sp(1, n) and considering the group Γ×H , where again H = Z/2 o F2.

The group constructed in the proof of Corollary 5.7 is of course tailored exactly to prove
the corollary, and one might argue that it is not a natural example. It would be interesting
to find more natural examples, for instance a simple group.

Using the characterization of Herz-Schur multipliers given in Proposition 3.1, it is not hard
to prove the following (see [59, Lemma 4.2]).

Lemma 5.9. LetH be an open subgroup of a locally compact groupG. Extend u ∈ B2(H)
to ũ : G→ C by letting ũ(x) = 0 when x /∈ H . Then ũ ∈ B2(G) and ‖u‖B2

= ‖ũ‖B2
.

Moreover, if u ∈ C0(H), then ũ ∈ C0(G).

We note that there are examples of groups H ≤ G, where some u ∈ B2(H) has no
extension to B2(G) (see [6, Theorem 4.4]). In these examples, H is of course not open.

Proposition 5.10. If (Gi)i∈I is a directed set of open subgroups in a locally compact group
G, and G =

⋃
iGi, then

ΛWH(G) = sup
i

ΛWH(Gi).

Proof. From Proposition 5.2 we already know that ΛWH(G) ≥ supi ΛWH(Gi). We will
now show the other inequality. We may assume that supi ΛWH(Gi) <∞ since otherwise
there is nothing to prove.
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Let L ⊆ G be a compact set and let ε > 0 be given. By compactness and directedness there
is j ∈ I such that L ⊆ Gj . Using Proposition 4.3 we may find w ∈ B2(Gj) ∩ C0(Gj) so
that

‖w‖B2
≤ ΛWH(Gj) + ε ≤ sup

i
ΛWH(Gi) + ε,

w(x) = 1 for every x ∈ L.
By Lemma 5.9, there is w̃ ∈ B2(G) ∩ C0(G) such that

‖w̃‖B2
≤ sup

i
ΛWH(Gi) + ε,

w̃(x) = 1 for every x ∈ L.
Since L and ε were arbitrary, it now follows that

ΛWH(G) ≤ sup
i

ΛWH(Gi),

and the proof is complete. �

The next result, Proposition 5.15, is inspired by [36]. Let G be a locally compact, second
countable group, and let (X,µ) be a standard measure space with a Borel action of G. We
assume that the measure µ is a probability measure which is invariant under the action.
In [36], quasi-invariant measures are considered as well, but we will stick to invariant
measures all the time, because the invariance is needed in the proof of Lemma 5.13 (1) and
(3).

Further, let H be a locally compact, second countable group, and let α : G ×X → H be
a Borel cocycle, i.e. α is a Borel map and for all g, h ∈ G we have

α(gh, x) = α(g, hx)α(h, x) for µ-almost all x ∈ X.

The following definition of a proper cocycle is taken from [36], although we have modified
it slightly.

Definition 5.11. Let α : G ×X → H be as above. We say that α is proper, if there is a
generating family A of Borel subsets of X such that the following three conditions hold.

(1) X is the union of an increasing sequence of elements in A.
(2) For every A ∈ A and every compact subset L of G the set α(L × A) is pre-

compact.
(3) For every A ∈ A and every compact subset L of H , the set K(A,L) of elements

g ∈ G such that {x ∈ A ∩ g−1A | α(g, x) ∈ L} has positive µ-measure is
pre-compact.

We mention the following examples of proper cocycles. All examples are taken from [36,
p. 490].

Example 5.12.

(a) Suppose H is a closed subgroup of G and that X = G/H has an invariant proba-
bility measure µ for the action by left translation. Let σ : G/H → G be a regular
Borel cross section of the projection map p : G → G/H , i.e. a Borel map such
that p ◦ σ = idG/H and σ(L) has compact closure for each compact L ⊆ G/H
(see [45, Lemma 1.1]). We define α : G×X → H by

α(g, x) = σ(gx)−1gσ(x).
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With A the family of all compact subsets of X , we verify the three conditions in
Definition 5.11. Since G is second countable, it is also σ-compact. Then X is also
σ-compact, and condition (1) is satisfied.

Let A ∈ A and let L ⊆ G be compact. By regularity of σ,

α(L×A) ⊆ σ(LA)−1Lσ(A)

is pre-compact, and condition (2) is satisfied.
Let A ∈ A and let L ⊆ H be compact. It is easy to see that

K(A,L) ⊆ σ(A)Lσ(A)−1.

Again by regularity of σ, it follows that K(A,L) is pre-compact. Thus, condition
(3) is satisfied.

(b) Suppose K / G is normal and compact. Let H = G/K, let X = K and let µ be
the normalized Haar measure on K. Then G acts on K by conjugation, and µ is
invariant under this action. We let A be the collection of all Borel subsets of K,
and we define α : G×X → H by

α(g, x) = p(g),

where p : G → H is the quotient map. Conditions (1) and (2) of Definition 5.11
are immediate. For condition (3) we first note that if L ⊆ H is compact, then
α−1(L) = p−1(L) × K. Since p is a quotient homomorphism with compact
kernel, it is proper. Hence p−1(L) is compact, and K(A,L) ⊆ p−1(L).

We emphasize the following special case of (a).

(c) Recall that a subgroup Γ ⊆ G is a lattice, if Γ is discrete and the quotient space
G/Γ admits a finite G-invariant measure. Hence, when H = Γ is a lattice in G,
we are in the situation mentioned in (a).

Let G and H be locally compact, second countable groups, and let (X,µ) be a standard
G-space with a G-invariant probability measure. Let α : G ×X → H be a proper Borel
cocycle. When u ∈ B2(H) we define û : G→ C by

û(g) =

∫

X

u(α(g, x)) dµ(x), g ∈ G. (5.2)

The construction is taken from [36], where it is shown in Lemma 2.11 that û ∈ B2(G) and
also ‖û‖B2

≤ ‖u‖B2
. We refer to Lemma C.1 for the continuity of û.

Lemma 5.13. Let α : G×X → H be a proper cocycle as above, and let u ∈ B2(H) be
given.

(1) û ∈ B2(G) and ‖û‖B2 ≤ ‖u‖B2 .
(2) ‖û‖∞ ≤ ‖u‖∞.
(3) If u ∈ C0(H), then û ∈ C0(G).

Proof.

(1) This is [36, Lemma 2.11].

(2) This is obvious.
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16 SØREN KNUDBY

(3) Given ε > 0 there is L ⊆ H compact such that h /∈ L implies |u(h)| ≤ ε. Since
X is the union of an increasing sequence of sets in A, we may take A ∈ A such that
µ(X \A) ≤ ε. The set K = K(A,L) is compact in G, and if g /∈ K then

Xg = {x ∈ A ∩ g−1A | α(g, x) ∈ L}
is a null set. Hence for g /∈ K

|û(g)| ≤
∫

X\Xg
|u(α(g, x))| dµ(x)

≤
∫

X\(A∩g−1A)

‖u‖∞ dµ(x) +

∫

(A∩g−1A)\Xg
ε dµ(x)

≤ 2ε‖u‖∞ + ε.

This shows that û ∈ C0(G). �
Lemma 5.14. Let α : G×X → H be a proper cocycle as above. The contractive linear
map B2(H)→ B2(G) defined by u 7→ û, where û is given by (5.2), is continuous on norm
bounded sets with respect to the topology of locally uniform convergence.

Proof. Suppose un → 0 in B2(H) uniformly on compacts, and ‖un‖B2
< c for every n.

In particular, ‖un‖∞ < c for every n. Let K ⊆ G be compact, and let ε > 0 be given.
Choose A ∈ A such that µ(X \ A) ≤ ε/2c, and let L = α(K ×A). Since L is compact,
we have eventually that |un(h)| < ε/2 for every h ∈ L. Then for g ∈ K we have

|ûn(g)| =
∣∣∣∣
∫

X

un(α(g, x)) dµ(x)

∣∣∣∣ ≤
∫

A

ε/2 dµ(x) +

∫

X\A
c dµ(x) ≤ ε.

This completes the proof. �
Proposition 5.15. Let G and H be locally compact, second countable group, and let
(X,µ) be a standard Borel G-space with a G-invariant probability measure. If there is
a proper Borel cocycle α : G×X → H , then ΛWH(G) ≤ ΛWH(H).

Proof. Suppose ΛWH(H) ≤ C, and choose a net (ui) in B2(H) ∩ C0(H) such that

‖ui‖B2
≤ C for every i,

ui → 1 uniformly on compacts .
It follows from Lemma 5.13 that ûi ∈ B2(G) ∩ C0(G) and

‖ûi‖B2
≤ C for every i.

From Lemma 5.14 we also see that

ûi → 1 uniformly on compacts .

This shows that ΛWH(G) ≤ C, and the proof is complete. �

In view of Example 5.12 (a) we get the following corollary.

Corollary 5.16. Let G be a locally compact, second countable group with a closed sub-
group H such that G/H admits a G-invariant probability measure. Then G is weakly
Haagerup if and only if H is weakly Haagerup. More precisely, ΛWH(G) = ΛWH(H).

Proof. From Proposition 5.2 we know that ΛWH(H) ≤ ΛWH(G). The other inequality
follows from Proposition 5.15 in view of Example 5.12. �
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THE WEAK HAAGERUP PROPERTY 17

Corollary 5.17. Let G be a locally compact, second countable group with a lattice Γ ⊆
G. Then G is weakly Haagerup if and only if Γ is weakly Haagerup. More precisely,
ΛWH(G) = ΛWH(Γ).

Inspired by the proof of Proposition 5.15 we now set out to prove that the weak Haagerup
property can be lifted from a co-Følner subgroup to the whole group. In particular, exten-
sions of amenable groups by weakly Haagerup groups yield weakly Haagerup groups.

Recall that a closed subgroup H in a locally compact group G is co-Følner if there is a
G-invariant Borel measure µ on the coset space G/H and if for each ε > 0 and compact
set L ⊆ G there is a compact set F ⊆ G/H such that 0 < µ(F ) <∞ and

µ(gF4F )

µ(F )
< ε for all g ∈ L.

Here4 denotes symmetric difference of sets. The most natural examples of co-Følner sub-
groups are closed normal subgroups with amenable quotients. Indeed, it follows from the
Følner characterization of amenability (see [49, Theorem 7.3] and [49, Proposition 7.4])
that such groups are co-Følner.

Proposition 5.18. Let G be a locally compact group with a closed subgroup H . Assume
that G is second countable or discrete. If H is weakly Haagerup and co-Følner, then G is
weakly Haagerup. More precisely, ΛWH(G) = ΛWH(H).

Proof. Let C = ΛWH(H). We already know from Proposition 5.2 that ΛWH(G) ≥ C, so
it suffices to prove the other inequality. For this it is enough prove that for each compact
L ⊆ G and ε > 0 there is v ∈ B2(G) ∩ C0(G) with ‖v‖B2

≤ C such that

|v(g)− 1| ≤ 2ε for all g ∈ L.

Thus, suppose that L ⊆ G is compact and ε > 0. Let σ : G/H → G be a regular Borel
cross section. IfG is discrete the existence of σ is trivial, and ifG is second countable then
the existence of σ is a standard result (see [45, Lemma 1.1]). Define the corresponding
cocycle α : G×G/H → H by

α(g, x) = σ(gx)−1gσ(x) for all g ∈ G, x ∈ G/H.
Choose an invariant Borel measure µ on G/H and a compact set F ⊆ G/H such that
0 < µ(F ) <∞ and

µ(gF4F )

µ(F )
< ε for all g ∈ L.

By regularity of σ, the set K = α(L× F ) is compact, because

α(L× F ) ⊆ σ(LF )−1Lσ(F ).

Since ΛWH(H) ≤ C there is a Herz-Schur multiplier u ∈ B2(H) ∩ C0(H) such that
‖u‖B2

≤ C and
|u(h)− 1| ≤ ε for all h ∈ K.

Define v : G→ C by

v(g) =
1

µ(F )

∫

G/H

1F∩g−1F (x)u(α(g, x)) dµ(x).
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18 SØREN KNUDBY

We claim that v has the desired properties. First we check that v ∈ B2(G) with ‖v‖B2
≤

C. Since u ∈ B2(H) there are a Hilbert space H and bounded, continuous maps P,Q :
H → H such that

u(ab−1) = 〈P (a), Q(b)〉 for all a, b ∈ H.
If G is second countable, then so is H and we can (and will) assume that H is separable.
Consider the Hilbert spaceL2(G/H,H), and define Borel maps P̃ , Q̃ : G→ L2(G/H,H)
by

P̃ (g)(x) =
1

µ(F )1/2
1g−1F (x)P (α(g, x))

Q̃(g)(x) =
1

µ(F )1/2
1g−1F (x)Q(α(g, x))

for all g ∈ G, x ∈ G/H . We note that ‖P̃ (g)‖2 ≤ ‖P‖∞ and ‖Q̃(g)‖2 ≤ ‖Q‖∞ for every
g ∈ G. Using the cocycle identity and the invariance of µ under the action of G, we find
that

〈P̃ (g), Q̃(h)〉 =
1

µ(F )

∫
1g−1F∩h−1F (x) 〈P (α(g, x)), Q(α(h, x))〉 dµ(x)

=
1

µ(F )

∫
1g−1F∩h−1F (x) u(α(g, x)α(h, x)−1) dµ(x)

=
1

µ(F )

∫
1g−1F∩h−1F (x) u(α(gh−1, hx)) dµ(x)

=
1

µ(F )

∫
1F∩(gh−1)−1F (x) u(α(gh−1, x)) dµ(x)

= v(gh−1).

Thus, v ∈ B2(G) by Proposition 3.1 and ‖v‖B2
≤ ‖u‖B2

≤ C.

To see that v ∈ C0(G) we let δ > 0 be given. Since u ∈ C0(H) there is a compact set
M ⊆ H such that h /∈M implies |u(h)| ≤ δ.

If x ∈ G/H and g ∈ G is such that x ∈ F ∩ g−1F and α(g, x) ∈ M , then g ∈
σ(F )Mσ(F )−1, which is pre-compact since σ is regular. Then it is not hard to see that if
g /∈ σ(F )Mσ(F )−1 then

|v(g)| ≤ 1

µ(F )

∫

F∩g−1F

|u(α(g, x))| dµ(x) ≤ δ.

This proves that v ∈ C0(G).

Finally, suppose g ∈ L. We show that |v(g) − 1| ≤ 2ε. If x ∈ F , then α(g, x) ∈ K and
|u(α(g, x))− 1| ≤ ε. Hence

|v(g)− 1| = 1

µ(F )

∣∣∣∣
∫

1F∩g−1F (x)u(α(g, x))− 1F∩g−1F (x)− 1F\g−1F (x) dµ(x)

∣∣∣∣

≤ 1

µ(F )

∫
1F∩g−1F (x)|u(α(g, x))− 1|+ 1F\g−1F (x) dµ(x)

≤ ε+
µ(F \ g−1F )

µ(F )

≤ 2ε. �
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Corollary 5.19. LetN be a closed normal subgroup in a locally compact groupG. Assume
that G is either second countable or discrete. If N has the weak Haagerup property and
G/N is amenable, thenG has the weak Haagerup property. In fact, ΛWH(G) = ΛWH(N).

Remark 5.20. Proposition 5.15 has recently been generalized by Jolissaint [38] and De-
prez, Li [19]. The more general version allows probability measures µ on X which are not
invariant, but only quasi-invariant. It is then assumed that the pair (G,X) is amenable in
the sense described in [38]. This includes also Proposition 5.18 as a special case.

6. THE WEAK HAAGERUP PROPERTY FOR SIMPLE LIE GROUPS

This section contains results from [30] about the weak Haagerup property for connected
simple Lie groups. The results are merely included here for completeness. The results
are consequences of some of the hereditary properties proved here in Section 5 combined
with work of de Laat and Haagerup [28], [29]. But before we mention the results, we
summarize the situation concerning connected simple Lie groups, the Haagerup property
and weak amenability.

Since compact groups are amenable, they also possess the Haagerup property, and they
are weakly amenable. So only the non-compact case is of interest. It is known which
connected simple Lie groups have the Haagerup property (see [8, p. 12]). We summarize
the result.

Theorem 6.1 ([8]). Let G be a non-compact connected simple Lie group. Then G has the
Haagerup property if and only if G is locally isomorphic to either SO0(1, n) or SU(1, n).
Otherwise, G has property (T).

Concerning weak amenability the situation is more subtle, if one wants to include the weak
amenability constant, but still the full answer is known.

Theorem 6.2 ([14],[16],[17],[21],[27],[32]). Let G be a non-compact connected simple
Lie group. Then

ΛWA(G) =





1 for G ≈ SO(1, n)

1 for G ≈ SU(1, n)

2n− 1 for G ≈ Sp(1, n)

21 for G ≈ F4(−20).

∞ otherwise .

Here ≈ denotes local isomorphism. We remark that in the above situation ΛWA(G) = 1 in
exactly the same cases as where G has the Haagerup property.

If the only concern is whether or not ΛWA(G) < ∞, i.e., whether or not G is weakly
amenable, then the result can be rephrased as follows.

Corollary 6.3 ([14], [16], [17], [27],[32]). A connected simple Lie group is weakly amenable
if and only if it has real rank zero or one.

As mentioned earlier, ΛWH(G) ≤ ΛWA(G) for every locally compact group G, and
there are examples to show that the inequality can be strict in the most extreme sense:
ΛWA(H) =∞ and ΛWH(H) = 1, when H = Z/2 oF2. For connected simple Lie groups,
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however, it turns out that the weak Haagerup property behaves like weak amenability. The
following is proved in [30] using results of [28], [29].

Theorem 6.4 ([30]). A connected simple Lie group has the weak Haagerup property if and
only if it has real rank zero or one.

7. THE WEAK HAAGERUP PROPERTY FOR VON NEUMANN ALGEBRAS

In this section we introduce the weak Haagerup property for finite von Neumann algebras,
and we prove that a group von Neumann algebra has this property, if and only if the group
has the weak Haagerup property.

In the following, let M be a (finite) von Neumann algebra with a faithful normal trace τ .
By a trace we always mean a tracial state. We denote the induced inner product on M by
〈 , 〉τ . In other words, 〈x, y〉τ = τ(y∗x) for x, y ∈M . The completion of M with respect
to this inner product is a Hilbert space, denoted L2(M, τ) or simply L2(M). The norm
on L2(M) is denoted ‖ ‖2 or ‖ ‖τ and satisfies ‖x‖2 ≤ ‖x‖ for every x ∈ M , where ‖ ‖
denotes the operator norm on M .

When T : M → M is a bounded operator on M , it will be relevant to know sufficient
conditions for T to extend to a bounded operator on L2(M). The following result uses a
standard interpolation technique.

Proposition 7.1. Let (M, τ) be a finite von Neumann algebra with faithful normal trace,
and let S : M →M and T : M →M be bounded operators on M . Suppose 〈Tx, y〉τ =

〈x, Sy〉τ for every x, y ∈ M . Then T extends to a bounded operator T̃ on L2(M), and
‖T̃‖ ≤ max{‖T‖, ‖S‖}.

Proof. After scaling both T and S with max{1, ‖T‖, ‖S‖}−1, we may assume that ‖S‖ ≤
1 and ‖T‖ ≤ 1. By [9, Theorem 5] the set of invertible elements inM is norm dense, since
M is finite. Hence it suffices to prove that ‖Tx‖2 ≤ ‖x‖2 for every invertible x ∈M . We
prove first that ‖Tx‖1 ≤ ‖x‖1, and an interpolation technique will then give the result.

Let M1 denote the unit ball of M . Recall that ‖x‖1 = τ(|x|) = sup{|τ(y∗x)| | y ∈M1}.
Hence

‖Tx‖1 = sup
y∈M1

|τ(y∗Tx)| = sup
y∈M1

|τ((Sy)∗x)| ≤ sup
z∈M1

|τ(z∗x)| = ‖x‖1.

Since also ‖Tx‖ ≤ ‖x‖, it follows by an interpolation argument that ‖Tx‖2 ≤ ‖x‖2. The
interpolation argument goes as follows.

Assume for simplicity that ‖x‖2 ≤ 1. We will show that ‖Tx‖2 ≤ 1. Since x is invertible,
it has polar decomposition x = uh, where u is unitary, and h ≥ 0 is invertible. For s ∈ C
define

F (s) = uh2s, G(s) = T (F (s)), g(s) = τ(G(s)G(1− s̄)∗).
Since h is positive and invertible, F is well-defined and analytic. It follows that G and g
are analytic as well.

Next we show that g is bounded on the vertical strip Ω = {s ∈ C | 0 ≤ Re(s) ≤ 1}. Since
τ and T are bounded, it suffices to see that F is bounded on Ω. We have

‖F (s)‖ = ‖uh2s‖ ≤ ‖h2Re(s)‖ ≤ sup
0≤t≤1

‖h2t‖ <∞.
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Observe that if v andw are unitaries inM , andw commutes with y ∈M , then |vyw| = |y|,
and hence ‖vyw‖1 = ‖y‖1. On the boundary of Ω we have the following estimates.

‖G(it)‖ = ‖T (uh2it)‖ ≤ 1,

since ‖T‖ ≤ 1, and u and h2it are unitaries. Also

‖G(1 + it)‖1 = ‖T (uh2h2it)‖1 ≤ ‖uh2h2it‖1 = ‖h2‖1 = ‖x‖22 ≤ 1,

It follows that

|g(it)| = |τ(G(it)G(1 + it)∗)| ≤ ‖G(it)‖ ‖G(1 + it)‖1 ≤ 1

and
‖g(1 + it)‖ = |τ(G(1 + it)G(it)∗)| ≤ ‖G(it)‖ ‖G(1 + it)‖1 ≤ 1.

In conclusion, g is an entire function, bounded on the strip Ω and bounded by 1 on the
boundary of Ω. It follows from the Three Lines Theorem that |g(s)| ≤ 1 whenever s ∈ Ω.

Finally, observe that g( 1
2 ) = τ(Tx(Tx)∗) = ‖Tx‖22. This proves ‖Tx‖2 ≤ 1. Hence T

extends to a bounded operator on L2(M) of norm at most one. �

Definition 7.2. Let M be a von Neumann algebra with a faithful normal trace τ . Then
(M, τ) has the weak Haagerup property, if there is a constant C > 0 and a net (Tα) of
normal, completely bounded maps on M such that

(1) ‖Tα‖cb ≤ C for every α,
(2) 〈Tαx, y〉τ = 〈x, Tαy〉τ for every x, y ∈M ,
(3) each Tα extends to a compact operator on L2(M, τ),
(4) Tαx→ x ultraweakly for every x ∈M .

The weak Haagerup constant ΛWH(M, τ) is defined as the infimum of those C for which
such a net (Tα) exists, and if no such net exists we write ΛWH(M, τ) = ∞. It is not hard
to see that the infimum is actually a minimum and that ΛWH(M, τ) ≥ 1. If τ is implicit
from the context (which will always be the case later on), we simply write ΛWH(M) for
ΛWH(M, τ).

Remark 7.3. The weak Haagerup constant of M is actually independent of the choice
of faithful normal trace on M , that is, ΛWH(M, τ) = ΛWH(M, τ ′) for any two faithful,
normal traces τ and τ ′ on M (Proposition 8.4). Because of this, we sometimes write
ΛWH(M) instead of ΛWH(M, τ).

Remark 7.4. Note that by Proposition 7.1, condition (2) ensures that each Tα extends to
a bounded operator on L2(M, τ), and the extension is a self-adjoint operator on L2(M, τ)
with norm at most ‖Tα‖.
Remark 7.5. The choice of topology in which the net (Tα) converges to the identity map
on M could be one of many without affecting the definition, as we will see now.

Suppose we are given a net (Tα) of normal, completely bounded maps on M such that

(1) ‖Tα‖cb ≤ C for every α,
(2) 〈Tαx, y〉τ = 〈x, Tαy〉τ for every x, y ∈M ,
(3) each Tα extends to a compact operator on L2(M, τ),
(4) Tα → 1M in the point-weak operator topology.
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Since the closure of any convex set in B(M,M) in the point-weak operator topology
coincides with its closure in the point-strong operator topology, there is a net (Sβ) such
that Sβ ∈ conv{Tα}α and

(1’) ‖Sβ‖cb ≤ C for every β,
(2’) 〈Sβx, y〉τ = 〈x, Sβy〉τ for every x, y ∈M ,
(3’) each Sβ extends to a compact operator on L2(M, τ),
(4’) Sβ → 1M in the point-strong operator topology.

Since the net (Sβ) is norm-bounded and the strong operator topology coincides with the
trace norm topology on bounded sets of M , condition (4’) is equivalent to

(4”) ‖Sβx− x‖2 → 0 for any x ∈M .

If we let S̃β denote the extension of Sβ to an operator on L2(M), then by Proposition 7.1
‖S̃β‖ ≤ ‖Sβ‖, so the net (S̃β) is bounded, and hence (4”) is equivalent to the condition
that

(4”’) S̃β → 1L2(M) strongly.

Using that ‖y∗‖2 = ‖y‖2 for any y ∈M , condition (4”) implies that

(4””) ‖(Sβx)∗ − x∗‖2 → 0 for any x ∈M

so also, Sβ → 1M in the point-strong∗ operator topology. Finally, since the net (Sβ)
is bounded in norm, and since the ultrastrong and strong operator topologies coincide on
bounded sets, we also obtain

(4””’) Sβ → 1M in the point-ultrastrong∗ operator topology.

Let us see that the weak Haagerup property is indeed weaker than the (usual) Haagerup
property. Let M be a von Neumann algebra with a faithful normal trace τ . We recall (see
[1],[37]) that (M, τ) has the Haagerup property if there exists a net (Tα)α∈A of normal
completely positive maps from M to itself such that

(1) τ ◦ Tα ≤ τ for every α,
(2) Tα extends to a compact operator on L2(M),
(3) ‖Tαx− x‖2 → 0 for every x ∈M .

One can actually assume that τ ◦ Tα = τ and that Tα is unital (see [37, Proposition 2.2]).
Moreover, the Haagerup property does not depend on the choice of τ (see [37, Proposi-
tion 2.4]).

Proposition 7.6. Let M be a von Neumann algebra with a faithful normal trace τ . If
(M, τ) has the Haagerup property, then (M, τ) has the weak Haagerup property. In fact,
ΛWH(M, τ) = 1.

Proof. The proof is merely an application of the following result (see [2, Lemma 2.5]). If
T is a normal unital completely positive map on M , then τ ◦ T = τ if and only if there is
a normal unital completely positive map S : M → M such that 〈Tx, y〉τ = 〈x, Sy〉τ for
every x, y ∈M .
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Suppose M has the Haagerup property and let (Tα)α∈A be a net of normal unital com-
pletely positive maps from M to itself such that

• τ ◦ Tα = τ for every α,
• Tα extends to a compact operator on L2(M),
• ‖Tαx− x‖2 → 0 for every x ∈M .

Then there are normal unital completely positive maps Sα : M →M such that 〈Tαx, y〉τ =
〈x, Sαy〉τ for every x, y ∈ M . Let Rα = 1

2 (Tα + Sα). Then Rα is normal unital com-
pletely positive and

• 〈Rαx, y〉τ = 〈x,Rαy〉τ for every α,
• Rα extends to a compact operator on L2(M),
• ‖Rαx− x‖2 → 0 for every x ∈M .

Since unital completely positive maps have completely bounded norm 1, this shows that
ΛWH(M, τ) ≤ 1. This completes the proof. �

It is mentioned in [37] that injective finite von Neumann algebras have the Haagerup prop-
erty. Indeed, it is a deep, and by now classical, result that injective von Neumann algebras
are semidiscrete [11], [12], [13] (see [7, Theorem 9.3.4] for a proof of the finite case based
on [58]). It then follows from [52, Proposition 4.6] that injective von Neumann algebras
which admit a faithful normal trace have the Haagerup property. In particular, injective
von Neumann algebras with a faithful normal trace have the weak Haagerup property.

We now turn to discrete groups and their group von Neumann algebras. For the moment, fix
a discrete group Γ. We let λ denote the left regular representation of Γ on `2(Γ). The von
Neumann algebra generated by λ(Γ) inside B(`2(Γ)) is the group von Neumann algebra
denoted L(Γ). It is equipped with the faithful normal trace τ given by τ(x) = 〈xδe, δe〉
for x ∈ L(Γ).

Theorem B. Let Γ be a discrete group. The following conditions are equivalent.

(1) The group Γ has the weak Haagerup property.
(2) The group von Neumann algebra L(Γ) (equipped with its canonical trace) has the

weak Haagerup property.

More precisely, ΛWH(Γ) = ΛWH(L(Γ)).

Proof. Suppose the net (uα) of maps in B2(Γ) ∩ C0(Γ) witnesses the weak Haagerup
property of Γ with ‖uα‖B2

≤ C for every α. Upon replacing uα with 1
2 (uα+ ūα) we may

assume that uα is real. Let Tα = Muα be the corresponding multiplier on L(Γ), that is

Tαλ(g) = uα(g)λ(g), g ∈ Γ. (7.1)

Then Tα is normal and completely bounded on L(Γ) with ‖Tα‖cb = ‖uα‖B2
. From (7.1)

it follows that Tα extends to a diagonal operator T̃α on L2(L(Γ)), when L2(L(Γ)) has the
standard basis {λ(g)}g∈G. Since uα is real, T̃α is self-adjoint. In particular 〈Tαx, y〉τ =

〈x, Tαy〉τ for all x, y ∈ L(Γ). Also, T̃α is compact, because uα ∈ C0(Γ). Since uα →
1 pointwise and ‖uα‖∞ ≤ C, it follows that T̃α → 1L2 strongly on L2(L(Γ)). By
Remark 7.5, this proves that L(Γ) has the weak Haagerup property with ΛWH(L(Γ)) ≤ C.
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Conversely, suppose there is a net (Tα) of maps on L(Γ) witnessing the weak Haagerup
property of L(Γ) with ‖Tα‖cb ≤ C for every α. Let

uα(g) = τ(λ(g)∗Tα(λ(g))).

Since Tα → idL(Γ) point-ultraweakly, and τ is normal, it follows that uα → 1 pointwise.

Let V : `2(Γ) → `2(Γ) ⊗ `2(Γ) be the isometry given by V δg = δg ⊗ δg . Observe then
that

V ∗(λ(g)⊗ λ(h))V =

{
λ(g) if g = h,

0 if g 6= h,

so
V ∗(λ(g)⊗ a)V = τ(λ(g)∗a)λ(g).

By Fell’s absorption principle [7, Theorem 2.5.5] there is a normal ∗-homomorphism σ :
L(Γ) → L(Γ) ⊗ L(Γ) such that σ(λ(g)) = λ(g) ⊗ λ(g). Using Lemma 8.1 we see that
the operator idL(Γ)⊗Tα on L(Γ)⊗ L(Γ) exists, and it is easily verified that

V ∗((idL(Γ)⊗Tα)(λ(g)⊗ λ(g)))V = uα(g)λ(g),

when g ∈ Γ, and so

V ∗((idL(Γ)⊗Tα)(σ(a)))V = Muα(a) for all a ∈ L(Γ).

It follows that Muα is completely bounded and uα ∈ B2(Γ) with

‖uα‖B2
= ‖Muα‖cb ≤ ‖Tα‖cb ≤ C,

where the first inequality follows from Proposition D.6 in [7].

It remains to show that uα ∈ C0(Γ). We may of course suppose that Γ is infinite. Since
Tα extends to a compact operator on L2(L(Γ)), it follows that

lim
g
‖Tα(λ(g))‖2 = 0,

because (λ(g))g∈Γ is orthonormal in L2(Γ). By the Cauchy-Schwarz inequality

|uα(g)| ≤ ‖Tαλ(g)‖2 → 0 as g →∞.
This completes the proof. �

8. HEREDITARY PROPERTIES II

In this section we prove hereditary results for the weak Haagerup property of von Neumann
algebras. As an application we are able to show that the weak Haagerup property of a von
Neumann algebra does not depend on the choice of the faithful normal trace.

When M is a finite von Neumann algebra with a faithful normal trace τ , and p ∈ M is a
non-zero projection, we let τp denote the faithful normal trace on pMp given as τp(x) =
τ(p)−1τ(x).

Since we have not yet proved that the weak Haagerup property of a von Neumann algebra
does not depend on the choice of faithful normal trace (Proposition 8.4), we state The-
orem C in the following more cumbersome way. Once we have shown Proposition 8.4,
Theorem C makes sense and is Theorem C’.

Theorem C’. Let (M, τ), (M1, τ1) and (M2, τ2) be a finite von Neumann algebras with
faithful normal traces.
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(1) Suppose (M, τ) is weakly Haagerup with constant C, and N ⊆ M is a von Neu-
mann subalgebra. Then (N, τ) is weakly Haagerup with constant at most C.

(2) Suppose (M, τ) is weakly Haagerup with constant C, p ∈ M is a non-zero pro-
jection. Then (pMp, τp) is weakly Haagerup with constant at most C.

(3) Suppose 1 ∈ N1 ⊆ N2 ⊆ · · · are von Neumann subalgebras of M generating all
of M , and that there is an increasing sequence of non-zero projections pn ∈ Nn
with strong limit 1. If each (pnNnpn, τpn) is weakly Haagerup with constant at
most C, then (M, τ) is weakly Haagerup with constant at most C.

(4) Suppose (M1, τ1), (M2, τ2), . . . is a (possibly finite) sequence of von Neumann
algebras with faithful normal traces, and that α1, α2, . . . are strictly positive num-
bers with

∑
n αn = 1. Then the weak Haagerup constant of

(⊕

n

Mn,
⊕

n

αnτn

)

equals supn ΛWH(Mn, τn), where
⊕

n αnτn denotes the trace defined by
(⊕

n

αnτn

)
(xn) =

∑

n

αnτn(xn), (xn)n ∈
⊕

n

Mn.

.
(5) Suppose (M1, τ1) and (M2, τ2) are weakly Haagerup with constant C1 and C2,

respectively. Then the tensor product (M1⊗̄M2, τ1⊗̄τ2) is weakly Haagerup with
constant at most C1C2.

Proof.

(1) Let E : M → N be the unique trace-preserving conditional expectation. Given a
net (Tα) witnessing the weak Haagerup property of M we let Sα = E ◦ Tα|N . Clearly,
‖Sα‖cb ≤ ‖Tα‖cb. Since E is an N -bimodule map, trace-preserving and positive, an easy
calculation shows that 〈Sαx, y〉 = 〈x, Sαy〉 for every x, y ∈ N .

As is customary, the Hilbert space L2(N) is naturally identified with the closed subspace
of L2(M) spanned by N ⊆ M ⊆ L2(M), and the conditional expectation E : M → N
extends to a projection eN : L2(M) → L2(N). Since Tα extends to a compact operator
T̃α on L2(M), it follows that E ◦ Tα extends to the compact operator eN T̃α on L2(M).
Hence Sα extends to the compact operator eN T̃α|L2(N) on L2(N).

Since E is normal, E|N = 1N , and Tα → 1M point-ultraweakly, we obtain Sα → 1N
point-ultraweakly.

(2) Let P : M → pMp be the map P (x) = pxp, x ∈M . Then P is unital and completely
positive. Given a net (Tα) witnessing the weak Haagerup property of M we let Sα =
P ◦ Tα|pMp. Clearly, ‖Sα‖cb ≤ ‖Tα|pMp‖cb ≤ ‖Tα‖cb. An easy calculation shows that

〈Sαx, y〉τp = 〈x, Sαy〉τp for all x, y ∈ pMp.

Let V : L2(pMp) → L2(M) be the map V x = τ(p)−1/2x. Then V is an isometry,
and evidently V ∗x = τ(p)1/2pxp for every x ∈ M . It follows that on pMp we have
Sα = V ∗TαV . Hence Sα extends to the compact operator

S̃α = V ∗T̃αV,

on L2(pMp), where T̃α denotes the extension of Tα to a compact operator on L2(M).

101



26 SØREN KNUDBY

Since P is normal, it follows that Sα → 1 point-ultraweakly.

(3) We denote the trace-preserving conditional expectation M → Nn by En and its ex-
tension to a projection L2(M) → L2(Nn) by en. Note first that since M is generated by
the sequence Nn, for each x ∈ M we have En(x) → x strongly. Indeed, the union of
the increasing sequence of Hilbert spaces L2(Nn) is a norm dense subspace of the Hilbert
space L2(M), and thus en ↗ 1L2(M) strongly. In other words, ‖En(x)− x‖τ → 0.

For each n ∈ N we define Sn : M → pnNnpn by Sn(x) = pnEn(x)pn. It follows that
Sn(x)→ x strongly.

Let F ⊆M be a finite set, and let ε > 0 be given. Choose n such that

‖Sn(x)− x‖τ ≤ ε for all x ∈ F.
By assumption there is a completely bounded map R : pnNnpn → pnNnpn such that
‖R‖cb ≤ C, R extends to a self-adjoint compact operator on L2(pnNnpn), and

‖R(Sn(x))− Sn(x)‖τpn ≤ ε for all x ∈ F.
Let Tα = R ◦ Sn, where α = (F, ε). Clearly,

‖Tαx− x‖τ ≤ 2ε when x ∈ F.
It follows that Tα → 1 point-strongly.

Since Sn is unital and completely positive, we get ‖Tα‖cb ≤ ‖R‖cb ≤ C. When x, y ∈M
we have

〈Tαx, y〉τ = 〈R(pnEn(x)pn), pnEn(y)pn〉τ
= 〈pnEn(x)pn, R(pnEn(y)pn)〉τ = 〈x, Tαy〉τ

using the properties of En and R. Since Tα is the composition

M
En // Nn

Pn // pnNnpn
R // pnNnpn

ι // Nn
ι // M,

where ι denotes inclusion, it follows that the extension of Tα toL2(M) is compact, because
the extension of R to L2(pnNnpn) is compact:

L2(M)
en // L2(Nn)

P̃n // L2(pnNnpn)
R̃ // L2(pnNnpn)

ι̃ // L2(Nn)
ι̃ // L2(M).

The net (Tα)α∈A indexed by A = {(F, ε) | F ⊆ M finite, ε > 0} shows that the weak
Haagerup constant of M is at most C.

(4) It is enough to show that the weak Haagerup constant of M1 ⊕M2 with respect to the
trace τ = λτ1 ⊕ (1− λ)τ2 equals

max{ΛWH(M1, τ1),ΛWH(M2, τ2)}
for any 0 < λ < 1, and then apply induction and (3) to obtain the general case of (4). We
only prove

ΛWH(M1 ⊕M2) ≤ max{ΛWH(M1),ΛWH(M2)}, (8.1)

since the other inequality is clear from (2).

Two points should be made. Firstly, if T1 and T2 are normal completely bounded maps on
M1 and M2 respectively, then T1 ⊕ T2 is a normal completely bounded map on M with
completely bounded norm

‖T1 ⊕ T2‖cb = max{‖T1‖cb, ‖T2‖cb}.
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Secondly, the map V (x ⊕ y) = λ1/2x ⊕ (1 − λ)1/2y on M1 ⊕M2 extends to a unitary
operator

V : L2(M1 ⊕M2, τ)→ L2(M1, τ1)⊕ L2(M2, τ2).

Now, let ε > 0 be given and let (Sα)α∈A and (Tβ)β∈B be normal completely bounded
maps on M1 and M2, respectively such that

• ‖Sα‖cb ≤ ΛWH(M1, τ1) + ε for every α,
• 〈Sαx, y〉τ1 = 〈x, Sαy〉τ1 for every x, y ∈M1,
• each Sα extends to a compact operator on L2(M1, τ1),
• Sαx→ x ultraweakly for every x ∈M1,

and similar properties hold for (Tβ)β∈B and M2. We may assume that A = B. Now, let
Rα = Sα ⊕ Tα. Using the net (Rα) it is easy to show that

ΛWH(M1 ⊕M2) ≤ max{ΛWH(M1),ΛWH(M2)}+ ε.

Letting ε→ 0 we obtain (8.1).

(5) We remark that the product trace τ1⊗̄τ2 on the von Neumann algebraic tensor product
M1⊗̄M2 is a faithful normal trace (see [56, Corollary IV.5.12]). Suppose we are given
nets (Sα)α∈A and (Tβ)β∈B witnessing the weak Haagerup property of M1 and M2, re-
spectively. By Remark 7.5 we may assume that

S̃α → 1L2(M1) strongly and T̃β → 1L2(M2) strongly, (8.2)

where S̃α and T̃β denote the extensions to operators on L2(M1) and L2(M2), respec-
tively. For each γ = (α, β) ∈ A × B, we consider the map Rγ = Sα⊗̄Tβ given
by Lemma 8.1 below. Then Rγ is a normal, completely bounded map on M⊗̄N with
‖Rγ‖cb ≤ ‖Sα‖cb‖Tβ‖cb. Let τ = τ1⊗̄τ2 be the product trace. We claim that when
A×B is given the product order, the net (Rγ)γ∈A×B witnesses the weak Haagerup prop-
erty of M1⊗̄M2, i.e. that

(a) 〈Rγx, y〉τ = 〈x,Rγy〉τ for every x, y ∈M1⊗̄M2.
(b) Each Rγ extends to a compact operator R̃γ on L2(M1⊗̄M2, τ).
(c) R̃γ → 1L2(M1⊗̄M2) strongly.

Condition (a) is easy to check on elementary tensors, and then when x and y are in the
algebraic tensor product M1 ⊗ M2. Since the unit ball of the algebraic tensor product
M1 ⊗M2 is dense in the unit ball of M1⊗̄M2 in the strong∗ operator topology, it follows
that (a) holds for arbitrary x, y ∈M1⊗̄M2.

If V : L2(M1)⊗L2(M2)→ L2(M1⊗̄M2) is the unitary which is the identity onM1⊗M2,
then

Rγ = V (Sα⊗̄Tβ)V ∗

Thus, since the tensor product of two compact operators is compact, Rγ extends to a com-
pact operator on L2(M1⊗̄M2).

Condition (c) follows easily from (8.2) and the general fact that if two bounded nets (Vα)
and (Wβ) of operators on Hilbert spaces converge strongly with limits V and W , then the
net Vα ⊗Wβ converges strongly to V ⊗W . �

In the course of proving (5) above, we postponed the proof of Lemma 8.1 concerning
the existence of the tensor product of two normal, completely bounded map between von

103



28 SØREN KNUDBY

Neumann algebras. A version of the lemma exists for completely contractive maps be-
tween operator spaces, when the tensor product under consideration is the operator space
projective tensor product (see [22, Proposition 7.1.3]) or the operator space injective tensor
product (see [22, Proposition 8.1.5]). The operator space injective tensor product coincides
with the minimal C∗-algebraic tensor product, when the operator spaces are von Neumann
algebras (see [22, Proposition 8.1.6]). Also, a version of the lemma exists for normal,
completely positive maps between von Neumann algebras ([56, Proposition IV.5.13]). See
also [17, Lemma 1.5].

Lemma 8.1. SupposeMi andNi (i = 1, 2) are von Neumann algebras and Ti : Mi → Ni
are normal, completely contractive maps. Then there is a normal, completely contractive
map T1⊗̄T2 : M1⊗̄M2 → N1⊗̄N2 such that

T1⊗̄T2(x1 ⊗ x2) = T1x1 ⊗ T2x2 for all xi ∈Mi (i = 1, 2).

Proof. It follows from [22, Proposition 8.1.5] and [22, Proposition 8.1.6] that there is a
completely contractive map T1 ⊗ T2 : M1 ⊗min M2 → N1 ⊗min N2 between the minimal
tensor products such that

T1 ⊗ T2(x1 ⊗ x2) = T1x1 ⊗ T2x2 for all xi ∈Mi (i = 1, 2).

We must show that T1 ⊗ T2 extends continuously to a completely contractive map from
the ultraweak closure M1⊗̄M2 of M1⊗minM2. First we show that T1⊗T2 is ultraweakly
continuous. For this, it will suffice to show that ρ ◦ T1 ⊗ T2 is ultraweakly continuous on
M1 ⊗min M2 for each ultraweakly continuous functional ρ ∈ (N1⊗̄N2)∗.

Suppose first that ρ is of the form ρ1 ⊗ ρ2 for some ρ1 ∈ (N1)∗ and ρ2 ∈ (N2)∗. Then
if we let σi = ρi ◦ Ti, it is clear that σ1 ⊗ σ2 is ultraweakly continuous [39, 11.2.7], and
ρ◦(T1⊗T2) = σ1⊗σ2. In general, ρ is the norm limit of a sequence of functionals ρn where
each ρn is a finite linear combination of ultraweakly continuous product functionals [39,
11.2.8], and it then follows from [39, 10.1.15] that ρ ◦ T1 ⊗ T2 is ultraweakly continuous.

Now, from [39, 10.1.10] it follows that T1 ⊗ T2 extends (uniquely) to an ultraweakly
continuous contractionM1⊗̄M2 → N1⊗̄N2. The same argument applied to T1⊗T2⊗idn,
where idn : Mn(C) → Mn(C) is the identity, shows that T1⊗̄T2 is not only contractive,
but completely contractive. �
Remark 8.2. Theorem C (1)–(3) may conveniently be expressed as the following inequal-
ities.

ΛWH(N) ≤ ΛWH(M),

ΛWH(pMp) ≤ ΛWH(M),

ΛWH(M) = sup
n∈N

ΛWH(pnNnpn),

when N ⊆ M is a subalgebra, p ∈ M is a non-zero projection, (Nn)n≥1 is an increasing
sequence of subalgebras generating M with projections pn ∈ Nn, pn ↗ 1. Theorem C (5)
reads

ΛWH(M1⊗̄M2) ≤ ΛWH(M1)ΛWH(M2). (8.3)

Remark 8.3. We do not know if ΛWH(M1⊗̄M2) = ΛWH(M1)ΛWH(M2) holds for any
two finite von Neumann algebras M1 and M2. The corresponding result for the weak
amenability constant ΛWA is known to be true, [53, Theorem 4.1]. If either ΛWH(M1) = 1
or ΛWH(M2) = 1, then equality holds in (8.3).
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We will now show that the weak Haagerup property does not depend on the choice of the
faithful normal trace. The basic idea of the proof is to apply the noncommutative Radon-
Nikodym theorem. Since the Radon-Nikodym derivative in general may be an unbounded
operator, we will need to cut it into pieces that are bounded and then apply Theorem C (4)
in the end.

Let M be a von Neumann algebra acting on a Hilbert space H, and let M ′ denote the
commutant of M . A (possibly unbounded) closed operator h is affiliated with M if hu =
uh (with agreement of domains) for every unitary u ∈ M ′. If h is bounded, then by the
bicommutant theorem h is affiliated with M if and only if h ∈ M . In general, if h is
affiliated with M , then f(h) lies in M for every bounded Borel function f on [0,∞[. See
e.g. [54, Appendix B] for details.

We recall the version of the Radon-Nikodym theorem that we will need. We refer to [48]
for more details. We denote the center of M by Z(M). Let τ be a faithful normal trace
on M and suppose h is a self-adjoint, positive operator affiliated with Z(M). For ε > 0
put hε = h(1 + εh)−1. Then hε ∈ Z(M)+ for every ε > 0. When x ∈ M+, define the
number τ(hx) by

τ(hx) = lim
ε→0

τ(hεx). (8.4)

Then τ ′ defined by τ ′(x) = τ(hx) is a normal semifinite weight on M . If moreover
limε τ(hε) = 1, then (8.4) makes sense for all x ∈ M and defines a normal trace τ ′

on M . The Radon-Nikodym theorem [48, Theorem 5.4] gives a converse to this: Given
any normal trace τ ′ on M there is a unique self-adjoint positive operator h affiliated with
Z(M) such that τ ′(x) = τ(hx) for every x ∈M .

Proposition 8.4. Let M be a von Neumann algebra with two faithful normal traces τ and
τ ′. Then M has the weak Haagerup property with respect to τ if and only if M has the
weak Haagerup property with respect to τ ′. More precisely,

ΛWH(M, τ) = ΛWH(M, τ ′).

Proof. Let ε > 0 be arbitrary. We will show that

ΛWH(M, τ ′) ≤ ΛWH(M, τ)(1 + ε). (8.5)

By symmetry and letting ε → 0, this will complete the proof. We may of course assume
that ΛWH(M, τ) <∞, since otherwise (8.5) obviously holds.

We let Z(M) denote the center of M . Suppose first that there is a positive, invertible
operator h ∈ Z(M) such that τ ′(x) = τ(hx) for every x ∈ M and h has spectrum σ(h)
contained in the interval [c(1 + ε)n, c(1 + ε)n+1] for some c > 0 and some integer n. Note
that then

‖h1/2‖‖h−1/2‖ ≤ (1 + ε)1/2.

Let (Tα) be a net of normal, completely bounded operators on M such that

(1) ‖Tα‖cb ≤ ΛWH(M, τ)(1 + ε)1/2 for every α,
(2) 〈Tαx, y〉τ = 〈x, Tαy〉τ for every x, y ∈M ,
(3) each Tα extends to a compact operator on L2(M, τ),
(4) Tαx→ x ultraweakly for every x ∈M .
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Since h belongs to Z(M)+, it is easily verified that the map U : M → M defined by
Ux = h1/2x extends to an isometry L2(M, τ ′) → L2(M, τ), and since h is invertible, U
is actually a unitary. We let Sα be the operator on M defined as Sα = U∗TαU , that is
Sαx = h−1/2Tα(h1/2x). Then Sα is normal and completely bounded with

‖Sα‖cb ≤ ‖h1/2‖‖h−1/2‖‖Tα‖cb ≤ ΛWH(M, τ)(1 + ε).

Since U is a unitary, it is clear from (2), (3) and (4) that Sα extends to a self-adjoint,
compact operator on L2(M, τ ′) and that Sαx → x ultraweakly for every x ∈ M . This
shows that

ΛWH(M, τ ′) ≤ ΛWH(M, τ)(1 + ε).

In general, there is a (possibly unbounded) unique self-adjoint positive operator h affiliated
with Z(M) such that τ ′(x) = τ(hx). For each n ∈ Z let pn denote the spectral projection
of h defined as

pn = 1[(1+ε)n,(1+ε)n+1[(h),

and let q = 1{0}(h). Then pn and q are projections in Z(M). Since (the closure of) hq is
zero we see that

τ ′(q) = τ(hq) = τ(0) = 0,

and then we must have q = 0, since τ ′ is faithful. Hence
∞∑

n=−∞
pn = 1]0,∞[(h) = 1.

Let I be the set of those n ∈ Z for which pn 6= 0, and for n ∈ I let Mn denote the
von Neumann algebra pnM with faithful normal trace τn = τ(pn)−1τ . Then from the
decomposition

M =
⊕

n∈I
Mn

we get by Theorem C (4) that

ΛWH(M, τ) = sup
n∈I

ΛWH(Mn, τn).

Similarly,
ΛWH(M, τ ′) = sup

n∈I
ΛWH(Mn, τ

′
n),

where τ ′n = τ ′(pn)−1τ ′.

For n ∈ I , let fn : R+ → R+ be defined by fn(t) = t1[(1+ε)n,(1+ε)n+1[(t) and put
hn = cnfn(h), where cn = τ(pn)τ ′(pn)−1. Then hn ∈ Z(Mn)+ is invertible in Mn with
spectrum σ(hn) ⊆ [cn(1 + ε)n, cn(1 + ε)n+1] and

τ ′n(x) = τn(hnx) for every x ∈Mn.

By the first part of the proof applied toMn we get that ΛWH(Mn, τ
′
n) ≤ ΛWH(Mn, τn)(1+

ε) for every n ∈ I . Putting things together we obtain

ΛWH(M, τ ′) = sup
n∈I

ΛWH(Mn, τ
′
n) ≤ sup

n∈I
ΛWH(Mn, τn)(1 + ε) = ΛWH(M, τ)(1 + ε).

This proves (8.5), and the proof is complete.

�
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9. AN EXAMPLE

In this section we give an example of two von Neumann algebras, in fact II1 factors arising
from discrete groups, with different weak Haagerup constants. None of the other approx-
imation properties mentioned in the introduction (see Figure 1) are useful as invariants to
distinguish precisely these two factors (see Remark 9.1).

It is well-known that if Γ is an infinite discrete group, then L(Γ) is a II1 factor if and only if
all conjugacy classes in Γ are infinite except for the conjugacy class of the neutral element.
Such groups are called ICC (infinite conjugacy classes).

It is known from [4] that every arithmetic subgroup of Sp(1, n) is a lattice. Let Hint be
the quaternion integers Z + Zi + Zj + Zk inside the quaternion division ring H, and let
n ≥ 2 be fixed. Then the group Γ consisting of matrices in Sp(1, n) with entries in Hint

is an arithmetic subgroup of Sp(1, n) and hence a lattice. To be explicit, Γ consists of
(n+ 1)× (n+ 1) matrices with entries in Hint that preserve the Hermitian form

h(x, y) = x0y0 −
n∑

k=1

xmym, x = (xi), y = (yi) ∈ Hn+1.

Here Hn+1 is regarded as a right H-module. If I denotes the identity matrix in Sp(1, n),
then the center of Sp(1, n) is {±I}, and it is proved in [16, p. 547] that Γ0 = Γ/{±I} is
an ICC group.

Let H = Z/2 o F2 be the wreath product of Z/2 and F2 (see Section 1). Then H is ICC
(see [51, Corollary 4.2]) and the direct product group Γ1 = Γ0 ×H is also ICC (see [51,
p. 74]).

Let Γ2 = Z2 o SL2(Z). It is well-known that Γ2 is ICC and a lattice in R2 o SL2(R).
We claim that the II1 factors L(Γ1) and L(Γ2) are not isomorphic. Indeed, we show
below that their weak Haagerup constants differ. Since both von Neumann algebras are II1

factors, there is a unique trace on each of them, so any isomorphism would necessarily be
trace-preserving.

Using Theorem B, Proposition 5.5/Remark 5.6, Proposition 5.4, Corollary 5.17 and Theo-
rem 6.2 we get

ΛWH(L(Γ1)) = ΛWH(Γ1)

= ΛWH(Γ0)ΛWH(H)

= ΛWH(Γ)

= ΛWH(Sp(1, n))

≤ ΛWA(Sp(1, n))

= 2n− 1 <∞.

In [30, Theorem D] it is proved that R2 o SL2(R) does not have the weak Haagerup
property. Thus, using also Theorem B and Corollary 5.17 we get

ΛWH(L(Z2 o SL2(Z))) = ΛWH(Z2 o SL2(Z)) = ΛWH(R2 o SL2(R)) =∞.
In view of Theorem C this shows that L(Γ2) cannot be not embedded into any corner of
any subalgebra of L(Γ1). In particular, L(Γ1) and L(Γ2) are not isomorphic.
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32 SØREN KNUDBY

Remark 9.1. We remark that Γ1 and Γ2 do not have the Haagerup property. Also,

ΛWA(Γ1) = ΛWA(Γ2) =∞,
and Γ1 and Γ2 both have AP. Thus, none of these three approximation properties distin-
guish L(Γ1) and L(Γ2).

Appendices

The appendices contain a collection of results that are used to show the equivalence of
several definitions of the weak Haagerup property and of weak amenability. The results
are certainly known to experts, but some of the results below do not appear explicitly or in
this generality in the literature.

In all of the following G is a locally compact group equipped with left Haar measure dx.
For definitions concerning the Fourier algebra A(G), the Herz-Schur multipliers B2(G)
and its predual Q(G) we refer to Section 3.

APPENDIX A. TOPOLOGIES ON THE UNIT BALL OF B2(G)

We are concerned with three different topologies on bounded sets in B2(G) besides the
norm topology: The first topology is the weak∗-topology, where we view B2(G) as the
dual space of Q(G). It will be referred to as the σ(B2, Q)-topology. The second topology
is the locally uniform topology, i.e., the topology determined by uniform convergence on
compact subsets of G. The third topology is the point-norm topology, where we think
of elements in B2(G) as operators on A(G). The following lemma reveals the relations
between these topologies.

Lemma A.1. Let (uα) be a net in B2(G) and let u ∈ B2(G).

(1) If ‖(uα − u)w‖A → 0 for every w ∈ A(G), then uα → u uniformly on compacts.
(2) If the net is bounded and uα → u uniformly on compacts, then uα → u in the

σ(B2, Q)-topology.

Proof. Suppose ‖(uα − u)w‖A → 0 for every w ∈ A(G), and let L ⊆ G be a compact
subset. By [23, Lemma 3.2] there is a w ∈ A(G) which takes the value 1 on L. Hence

sup
x∈L
|uα(x)− u(x)| ≤ ‖(uα − u)w‖∞ ≤ ‖(uα − u)w‖A → 0.

This proves (1).

Suppose uα → u uniformly on compacts. Since the net (uα) is bounded, and Cc(G)
is dense in Q(G), it will suffice to prove 〈uα, f〉 → 〈u, f〉 for every f ∈ Cc(G). Let
L = supp f . Then since uα → u uniformly on L, we obtain

〈f, uα〉 =

∫

L

f(x)uα(x) dx→
∫

L

f(x)u(x) dx = 〈f, u〉.

This proves (2). �
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Remark A.2. In the proof of (2), the assumption of boundedness is essential. In general,
there always exist (possibly unbounded) nets (uα) in A(G) ⊆ B2(G) converging to 1
uniformly on compacts (use [23, Lemma 3.2]), but for groups without the Approximation
Property (AP) such as SL3(Z) no such net can converge to 1 in the σ(B2, Q)-topology (see
[31] and [43, Theorem C]).

Lemma A.3. The unit ball ofB2(G) is closed in C(G) under locally uniform convergence
and even pointwise convergence.

Proof. This is obvious from the equivalence (1)⇐⇒ (2) in Proposition 3.1. �

Lemma A.4. The unit ball of B2(G) is closed in B2(G) in the σ(B2, Q)-topology.

Proof. This is a consequence of Banach-Alaoglu’s Theorem. �

APPENDIX B. AVERAGE TRICKS

B.1. The convolution trick. In all of the following h is a continuous, non-negative, com-
pactly supported function on G such that

∫
h(x) dx = 1. Such functions exist, and if G is

a Lie group, one can even take h to be smooth.

The convolution trick consists of replacing a given convergent net (uα) in B2(G) with
the convoluted net h ∗ uα to obtain convergence in a stronger topology. Recall that the
convolution of h with u ∈ Lp(G) is defined by

(h ∗ u)(x) =

∫

G

h(y)u(y−1x) dy =

∫

G

h(xy)u(y−1) dy, x ∈ G.

Lemma B.1 (The convolution trick – Part I). Let u ∈ C(G) be given and let h be as above.

(1) If u ∈ Cc(G), then h ∗ u ∈ Cc(G).
(2) If u ∈ C0(G), then h ∗ u ∈ C0(G).
(3) If u is uniformly bounded, then ‖h ∗ u‖∞ ≤ ‖u‖∞.
(4) If u ∈ A(G), then h ∗ u ∈ A(G) and ‖h ∗ u‖A ≤ ‖u‖A.
(5) If u ∈ B2(G), then h ∗ u ∈ B2(G) and ‖h ∗ u‖B2(G) ≤ ‖u‖B2(G).
(6) If G is a Lie group and h ∈ C∞c (G), then h ∗ u ∈ C∞(G).

Proof.

We leave (1)–(3) as an exercise.

(4) If u ∈ A(G), then u = f ∗ ǧ for some f, g ∈ L2(G) with ‖u‖A = ‖f‖2 ‖g‖2. Then
h∗u = (h∗f)∗ ǧ. Since h∗f ∈ L2(G) with ‖h∗f‖2 ≤ ‖f‖2 (see [24, p. 52]), it follows
that h ∗ u ∈ A(G) with ‖h ∗ u‖A ≤ ‖u‖A.

(5) We use the characterization of Herz-Schur multipliers given in Proposition 3.1. Given
y ∈ G we let y.u be defined by (y.u)(x) = u(y−1x) for x ∈ G. Clearly, y.u ∈ B2(G)
and ‖y.u‖B2

= ‖u‖B2
.

Let n ∈ N and x1, . . . , xn ∈ G in be given and let m ∈Mn(C) be the n× n matrix

m =
(
u(x−1

j xi)
)n
i,j=1

.
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More generally, for any y ∈ G, let y.m denote the matrix

y.m =
(
u(y−1x−1

j xi)
)n
i,j=1

Clearly, ‖y.m‖S ≤ ‖y.u‖B2
= ‖u‖B2

and y 7→ y.m is continuous from G into Mn(C),
when Mn(C) is equipped with the Schur norm. Thus, by usual Banach space integration
theory,

(
(h ∗ u)(x−1

j xi)
)n
i,j=1

=

∫

G

h(y)(y.m) dy

has Schur norm at most ‖u‖B2
. By Proposition 3.1 (2) it follows that the Herz-Schur norm

of h ∗ u satisfies
‖h ∗ u‖B2(G) ≤ ‖u‖B2(G).

(6) This is elementary. �

The proof of (1) in the lemma below is taken from [16, p. 510]. Although the authors of
[16] assume that uα ∈ A(G) and u = 1, the proof carries over without changes.

Lemma B.2 (The convolution trick – Part II). Let (uα) be a bounded net in B2(G), let
u ∈ B2(G) and let h be as above. We set

vα = h ∗ uα and v = h ∗ u.

(1) If uα → u uniformly on compacts then ‖(vα − v)w‖A → 0 for every w ∈ A(G).
(2) If uα → u in the σ(B2, Q)-topology then vα → v uniformly on compacts.

Proof.
(1) Assume uα → u uniformly on compacts. Since the net (uα) is bounded in B2-norm,
and since A(G)∩Cc(G) is dense in A(G), it follows from (3.3) that it will suffice to prove
that

‖(vα − v)w‖A → 0

for every w ∈ A(G) ∩ Cc(G). We let S denote the compact set supp(h)−1 supp(w) and
1S its characteristic function. Then if x ∈ supp(w)

(h ∗ uα)(x) =

∫

G

h(y)uα(y−1x) dy =

∫

G

h(y)(1Suα)(y−1x) dy

because if y−1x /∈ S, then h(y) = 0. It follows that

(vαw)(x) = ((h ∗ 1Suα)w)(x). (B.1)

Note that (B.1) actually holds for all x ∈ G, since if x /∈ supp(w), then both sides vanish.
Similarly one can show

(vw)(x) = ((h ∗ 1Su)w)(x) for all x ∈ G.
By assumption, 1Suα → 1Su uniformly, and hence

‖h ∗ 1Suα − h ∗ 1Su‖A ≤ ‖h‖2 ‖~1Suα − }1Su‖2 → 0.

Since multiplication in A(G) is continuous we also have

‖(vα − v)w‖A → 0.

This completes the proof of (1).

(2) For each x ∈ G, let t(x) = hx ∈ Cc(G) be the function hx(y) = h(xy). The
map t : G → Cc(G) is continuous, when Cc(G) is equipped with the L1-norm (see [24,
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Proposition 2.41]). Since the Q-norm is dominated by the L1-norm, it follows that t is
continuous into Q(G).

Assume that uα → u in the σ(B2, Q)-topology, and let L ⊆ G be compact. Since the net
(uα) is bounded, the convergence is uniform on compact subsets of Q(G). By continuity
of t, the set

T = {hx ∈ Cc(G) | x ∈ L}
is a compact subset of Q(G). Hence

(h ∗ uα)(x) = 〈hx, ǔα〉 → 〈hx, ǔ〉 = (h ∗ u)(x)

uniformly on L. �

Remark B.3. In applications, u will often be the constant function 1 ∈ B2(G), and in that
case h ∗ u = 1.

Lemma B.4. Let (uα) be a net in B2(G) and let u ∈ B2(G). We set

vα = h ∗ uα and v = h ∗ u.

(1) If uα → u uniformly on compacts then vα → v uniformly on compacts.
(2) If uα → u in the σ(B2, Q)-topology then vα → v in the σ(B2, Q)-topology.

Proof.

(1) For any subset L ⊆ G we observe that

sup
x∈L
|vα(x)− v(x)| ≤ sup

x∈supp(h)−1L

|uα(x)− u(x)| → 0.

If L is compact, then supp(h)−1L is compact as well. This is sufficient to conclude (1).

(2) Let ∆ : G→ R+ be the modular function. When f ∈ L1(G) we let

(Rf)(y) = ∆(y−1)

∫

G

f(x)h(xy−1) dx.

It is not hard to show that ‖Rf‖1 ≤ ‖f‖1 and in particular Rf ∈ L1(G). We observe that
if w ∈ B2(G) then

〈f, h ∗ w〉 =

∫

G

f(x)(h ∗ w)(x) dx

=

∫

G×G
f(x)h(xy−1)w(y)∆(y−1) dydx

= 〈Rf,w〉.

It now follows from Lemma B.1 (5) that R extends uniquely to a linear contraction R :
Q(G)→ Q(G), and that the dual operator R∗ : B2(G)→ B2(G) satisfies R∗w = h ∗ w.
Since R∗ is weak∗-continuous we conclude

〈f, vα〉 = 〈f,R∗uα〉 → 〈f,R∗u〉 = 〈f, vα〉

for any f ∈ Q(G) as desired. �
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B.2. The bi-invariance trick. In all of the following K is a compact subgroup of G
equipped with normalized Haar measure dk.

Lemma B.5 (The bi-invariance trick – Part I). Let u ∈ C(G) or u ∈ L1(G) be given, and
define

uK(x) =

∫

K×K
u(kxk′) dkdk′, x ∈ G. (B.2)

Then uK is a K-bi-invariant function on G. Moreover, the following holds.

(1) If u ∈ C(G), then uK ∈ C(G).
(2) If u ∈ Cc(G), then uK ∈ Cc(G).
(3) If u ∈ C0(G), then uK ∈ C0(G).
(4) ‖uK‖∞ ≤ ‖u‖∞.
(5) If u ∈ L1(G), then uK ∈ L1(G) and ‖uK‖1 ≤ ‖u‖1.
(6) If u ∈ A(G), then uK ∈ A(G) and ‖uK‖A ≤ ‖u‖A.
(7) If u ∈ B2(G), then uK ∈ B2(G) and ‖uK‖B2(G) ≤ ‖u‖B2(G).
(8) If G is a Lie group and u ∈ C∞(G), then uK ∈ C∞(G).

Proof.

(1) Suppose u ∈ C(G). To simplify matters, we first show that uK given by

uK(x) =

∫

K

u(kx) dk, x ∈ G

is a continuous function on G. A similar argument will then show that uK is continuous,
because

uK(x) =

∫

K

uK(xk) dk, x ∈ G.

Let x ∈ G and ε > 0 be given. We will find a neighborhood V of the identity such that

|uK(x)− uK(zx)| ≤ ε for all z ∈ V.
Actually, it will be sufficient to verify that

|u(kx)− u(kzx)| ≤ ε for all z ∈ V and k ∈ K.
For each k ∈ K, the function x 7→ u(kx) is continuous, so there exists a neighborhood Uk
of the identity such that

|u(kx)− u(kzx)| ≤ ε/2 for all z ∈ Uk.
Let Vk be a neighborhood of the identity such that VkVk ⊆ Uk. Observe that the sets kVk
where k ∈ K together cover K, so by compactness

K ⊆ k1Vk1 ∪ · · · ∪ knVkn
for some k1, . . . , kn ∈ K. Let V =

⋂n
i=1 Vki . Now, let k ∈ K and z ∈ V be arbitrary,

and choose i ∈ {1, . . . , n} such that k ∈ kiVki . Note that then k−1
i k ∈ Vki ⊆ Uki and

k−1
i kz ∈ VkiVki ⊆ Uki . Thus,

|u(kx)− u(kzx)| ≤ |u(ki(k
−1
i k)x)− u(kix)|+ |u(kix)− u(ki(k

−1
i kz)x)| ≤ ε

as desired.

(2)-(4) we leave as an exercise.
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(5) Recall (see [24, Section 2.4]) the fundamental relation of the modular function ∆,

∆(y)

∫

G

f(xy) dx =

∫

G

f(x) dx.

Also, ∆|K = 1, since K is compact. We now compute
∫

G

|uK(x)| dx ≤
∫

K×K

∫

G

|u(kxk′)| dxdkdk′

=

∫

K×K
∆(k′)

∫

G

|u(x)| dxdkdk′

= ‖f‖1.
This proves (5).

(6) It suffices to note that A(G) is a Banach space, that left and right translation on A(G)
is continuous and isometric, and then apply usual Banach space integration theory.

(7) This is mentioned in [16]. An argument similar the proof of Lemma B.1 (5) applies.
Alternatively, one can use the proof from [55, Section 3].

(8) This is elementary. �

Lemma B.6 (The bi-invariance trick – Part II). Let (uα) be a net in B2(G) and let u ∈
B2(G). We set

uKα (x) =

∫

K×K
uα(kxk′) dkdk′ and uK(x) =

∫

K×K
u(kxk′) dkdk′

(1) If uα → u uniformly on compacts then uKα → uK uniformly on compacts.
(2) If uα → u in the σ(B2, Q)-topology then uKα → uK in the σ(B2, Q)-topology.

Proof.

(1) Suppose uα → u uniformly on compacts. Let L ⊆ G be compact. Then since uα → u
uniformly on the compact set KLK, we have

sup
x∈L
|uKα (x)− uK(x)| ≤ sup

x∈L

∫

K×K
|uα(kxk′)− u(kxk′)| dkdk′

≤ sup
y∈KLK

|uα(y)− u(y)| → 0.

This shows that uKα → uK uniformly on L.

(2) This is proved in [28, Lemma 2.5]. We sketch the proof here. Observe that

〈f, vK〉 = 〈fK , v〉
for any v ∈ B2(G) and f ∈ L1(G). Thus ‖fK‖Q ≤ ‖f‖Q by Lemma B.5 (7), and the
map f 7→ fK extends uniquely to a linear contraction R : Q(G) → Q(G). The dual
operator R∗ : B2(G) → B2(G) obviously satisfies R∗v = vK and is weak∗-continuous.
Hence

〈f, uKα 〉 = 〈f,R∗uα〉 → 〈f,R∗u〉 = 〈f, uK〉
for any f ∈ Q(G) as desired. �
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APPENDIX C. CONTINUITY OF HERZ-SCHUR MULTIPLIERS

U. Haagerup has allowed us to include the following lemma whose proof is taken from
Appendix A in the unpublished manuscript [27].

Lemma C.1 ([27]). Let G be a locally compact group, let u : G → C be a function, and
suppose there exist a separable Hilbert spaceH and two bounded Borel maps P,Q : G→
H such that

u(y−1x) = 〈P (x), Q(y)〉 for all x, y ∈ G.
Then u is continuous, u ∈ B2(G) and

‖u‖B2
≤ ‖P‖∞‖Q‖∞.

Proof. We construct another Hilbert space K and two continuous bounded maps P̂ , Q̂ :
G→ K such that

u(y−1x) = 〈P̂ (x), Q̂(y)〉 for all x, y ∈ G
and

‖P̂‖∞‖Q̂‖∞ ≤ ‖P‖∞‖Q‖∞.
This will complete the proof in the light of Proposition 3.1 (4).

Take h ∈ Cc(G) satisfying ‖h‖2 = 1, and define

P̂ (x), Q̂(x) ∈ L2(G,H) for all x ∈ G
by

P̂ (x)(z) = h(z)P (zx), z ∈ G;

Q̂(x)(z) = h(z)Q(zx), z ∈ G.
We find

〈P̂ (x), Q̂(y)〉 =

∫

G

|h(z)|2〈P (zx), Q(zy)〉 dz

=

∫

G

|h(z)|2u(y−1x) dz

= u(y−1x).

It is also easy to see that

sup
x∈G
‖P̂ (x)‖2 ≤ sup

x∈G
‖P (x)‖, sup

x∈G
‖Q̂(x)‖2 ≤ sup

x∈G
‖Q(x)‖,

so in particular the maps P̂ , Q̂ : G → L2(G,H) are bounded. It remains only to check
continuity of x 7→ P̂ (x) and x 7→ Q̂(x). Let ρ : G → B(L2(G)) be the right regular
representation

ρx(f)(z) = ∆1/2(x)f(zx), f ∈ L2(G), x, z ∈ G.
We let R be the representation ρ⊗ 1 of G on L2(G,H) = L2(G)⊗H, that is,

Rx(f)(z) = ∆1/2(x)f(zx), f ∈ L2(G,H), x, z ∈ G.
It is well-known that ρ is strongly continuous (see Proposition 2.41 in [24]), and hence R
is strongly continuous.
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Suppose xn → x in G. Then Rxnx−1 P̂ (x)→ P̂ (x) in L2(G,H). Also,

‖Rxnx−1 P̂ (x)− P̂ (xn)‖2 =

∫

G

‖Rxnx−1 P̂ (x)(z)− P̂ (xn)(z)‖2 dz

=

∫

G

‖∆(xnx
−1)1/2h(zxnx

−1)P (zxn)− h(z)P (zxn)‖2 dz

=

∫

G

|∆(xnx
−1)1/2h(zxnx

−1)− h(z)|2‖P (zxn)‖2 dz

≤
∫

G

|∆(xnx
−1)1/2h(zxnx

−1)− h(z)|2‖P‖2∞ dz

= ‖P‖2∞‖ρxnx−1h− h‖2 → 0.

Hence P̂ (xn)→ P̂ (x) as desired. Continuity of Q̂ is verified similarly. �
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THE WEAK HAAGERUP PROPERTY II: EXAMPLES

UFFE HAAGERUP AND SØREN KNUDBY

Abstract. The weak Haagerup property for locally compact groups and the weak
Haagerup constant was recently introduced by the second author in [27]. The weak
Haagerup property is weaker than both weak amenability introduced by Cowling and
the first author in [9] and the Haagerup property introduced by Connes [6] and Choda
[5].

In this paper it is shown that a connected simple Lie group G has the weak Haagerup
property if and only if the real rank of G is zero or one. Hence for connected simple
Lie groups the weak Haagerup property coincides with weak amenability. Moreover, it
turns out that for connected simple Lie groups the weak Haagerup constant coincides
with the weak amenability constant, although this is not true for locally compact groups
in general.

It is also shown that the semidirect product R2 o SL(2,R) does not have the weak
Haagerup property.

1. Introduction

Amenability is a fundamental concept for locally compact groups, see, for example, the books
[15], [30]. In the 1980s, two weaker properties for locally compact groups were introduced,
first the Haagerup property by Connes [6] and Choda [5] and next weak amenability by
Cowling and the first author [9]. Both properties have been studied extensively (see [3,
Chapter 12], [4] and [8] and the references therein). It is well known that amenability of
a locally compact group G is equivalent to the existence of a net (uα)α∈A of continuous,
compactly supported, positive definite functions on G such that (uα)α∈A converges to the
constant function 1G uniformly on compact subsets of G.
Definition 1.1 ([6],[4]). A locally compact group G has the Haagerup property if there
exists a net (uα)α∈A of continuous positive definite functions on G vanishing at infinity such
that uα → 1G uniformly on compact sets.

As usual we let C0(G) denote the continuous (complex) functions on G vanishing at infinity
and let Cc(G) be the subspace of functions with compact support. Also, B2(G) denotes the
space of Herz–Schur multipliers on G with the Herz–Schur norm ‖ ‖B2 (see Section 2 for
more details).
Definition 1.2 ([9]). A locally compact group G is weakly amenable if there exist a constant
C > 0 and a net (uα)α∈A in B2(G) ∩ Cc(G) such that

‖uα‖B2 ≤ C for every α ∈ A, (1.1)
uα → 1 uniformly on compacts. (1.2)
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The best possible constant C in (1.1) is called the weak amenability constant denoted
ΛWA(G). If G is not weakly amenable, then we put ΛWA(G) = ∞. The weak amenability
constant ΛWA(G) is also called the Cowling–Haagerup constant and denoted Λcb(G) or ΛG
in the literature.

The definition of weak amenability given here is different from the definition given in [9],
but the definitions are equivalent. In one direction, this follows from [9, Proposition 1.1] and
the fact that A(G) ⊆ B2(G), where A(G) denotes the Fourier algebra of G (see Section 2).
In the other direction, one can apply the convolution trick (see [27, Appendix B]) together
with the standard fact that Cc(G) ∗ Cc(G) ⊆ A(G).

Definition 1.3 ([26],[27]). A locally compact group G has the weak Haagerup property if
there exist a constant C > 0 and a net (uα)α∈A in B2(G) ∩ C0(G) such that

‖uα‖B2 ≤ C for every α ∈ A, (1.3)
uα → 1 uniformly on compacts. (1.4)

The best possible constant C in (1.3) is called the weak Haagerup constant denoted ΛWH(G).
If G does not have the weak Haagerup property, then we put ΛWH(G) =∞.

Clearly, the weak Haagerup property is weaker than both the Haagerup property and weak
amenability, and hence there are many known examples of groups with the weak Haagerup
property. Moreover, there exist examples of groups that fail the first two properties but
nevertheless have the weak Haagerup property (see [27, Corollary 5.7]).
Our first result is the following theorem.

Theorem A. The groups SL(3,R), Sp(2,R), and S̃p(2,R) do not have the weak Haagerup
property.

The case of SL(3,R) can also be found in [28, Theorem 5.1] (take p = ∞). Our proof
of Theorem A is a fairly simple application of the recent methods and results of de Laat
and the first author [17], [18], where it is proved that a connected simple Lie group G of
real rank at least two does not have the Approximation Property (AP), that is, there is no
net (uα)α∈A in B2(G) ∩ Cc(G) which converges to the constant function 1G in the natural
weak∗-topology on B2(G). By inspection of their proofs in the case of the three groups
mentioned in Theorem A, one gets that for those three groups the net (uα)α∈A cannot even
be chosen as functions in B2(G) ∩ C0(G), which proves Theorem A.
By standard structure theory of connected simple Lie groups, it now follows that the con-
clusion of Theorem A holds for all connected simple Lie groups of real rank at least two.
Moreover, by [7], [9], [10], [20] every connected simple Lie group of real rank zero or one is
weakly amenable. We thus obtain the following theorem.

Theorem B. Let G be a connected simple Lie group. Then G has the weak Haagerup
property if and only if the real rank of G is at most one.

For connected simple Lie groups G the constants ΛWA(G) are known: if the real rank is
zero, then G is compact and ΛWA(G) = 1. If the real rank is at least two, then by [16], [12]
the group G is not weakly amenable and hence ΛWA(G) =∞. Finally, in the real rank one
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case, one has by [7], [9], [10], [20] that

ΛWA(G) =





1 for G ≈ SO0(1, n)
1 for G ≈ SU(1, n)
2n− 1 for G ≈ Sp(1, n)
21 for G ≈ F4(−20)

(1.5)

where G ≈ H means that G is locally isomorphic to H. We prove the following theorem.

Theorem C. For every connected simple Lie group G, ΛWA(G) = ΛWH(G).

It is clear that for every locally compact group G one has 1 ≤ ΛWH(G) ≤ ΛWA(G). The-
orem C then amounts to show that ΛWH(G) = ΛWA(G) when G is locally isomorphic to
Sp(1, n) or F4(−20). Moreover, since the groups Sp(1, n) and F4(−20) are simply connected
and have finite center, one can actually restrict to the case when G is either Sp(1, n) or
F4(−20). The proof of Theorem C in these two cases relies heavily on a result from [25],
namely that for Sp(1, n) and F4(−20) the minimal parabolic subgroup P = MAN of these
groups has the property that A(P ) = B(P )∩C0(P ). Here, A(P ) and B(P ) denote, respec-
tively, the Fourier algebra and the Fourier–Stieltjes algebra of P (see Section 2).
For all the groups mentioned so far, the weak Haagerup property coincides with weak
amenability and with the AP. As an example of a group with the AP which fails the weak
Haagerup property we have the following theorem.

Theorem D. The group R2 o SL(2,R) does not have the weak Haagerup property.

Combining Theorem D with [27, Theorem A] we observe that the discrete group Z2 o
SL(2,Z), which is a lattice in R2oSL(2,R), also does not have the weak Haagerup property.
Theorem D generalizes a result from [16] where it is shown that R2 oSL(2,R) is not weakly
amenable. Crucial to our proof of Theorem D are some of the techniques developed in
[16]. These techniques are further developed here using a result from [19], namely that
R2 oSL(2,R) satisfies the AP. Also, [25, Theorem 2] is essential in the proof of Theorem D.
Both groups R2 and SL(2,R) enjoy the Haagerup property and hence also the weak Haagerup
property. Theorem D thus shows that extensions of groups with the (weak) Haagerup
property need not have the weak Haagerup property.

2. Preliminaries

Let G be a locally compact group equipped with a left Haar measure. We denote the left
regular representation of G on L2(G) by λ. As usual, C(G) denotes the (complex) continuous
functions on G. When G is a Lie group, C∞(G) is the space of smooth functions on G.
We first describe the Fourier–Stieltjes algebra and the Fourier algebra of G. These were
originally introduced in the seminal paper [14] to which we refer for further details about
these algebras. Afterwards we describe the Herz–Schur multiplier algebra.
The Fourier–Stieltjes algebra B(G) can be defined as set of matrix coefficients of strongly
continuous unitary representations of G, that is, u ∈ B(G) if and only if there are a strongly
continuous unitary representation π : G → U(H) of G on a Hilbert space H and vectors
x, y ∈ H such that

u(g) = 〈π(g)x, y〉 for all g ∈ G. (2.1)
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The norm ‖u‖B of u ∈ B(G) is defined as the infimum (actually a minimum) of all numbers
‖x‖‖y‖, where x, y are vectors in some representation (π,H) such that (2.1) holds. With
this norm B(G) is a unital Banach algebra. The Fourier–Stieltjes algebra coincides with
the linear span of the continuous positive definite functions on G. For any u ∈ B(G) the
inequality ‖u‖∞ ≤ ‖u‖B holds, where ‖ ‖∞ denotes the uniform norm.
The compactly supported functions in B(G) form an ideal in B(G), and the closure of this
ideal is the Fourier algebra A(G), which is then also an ideal. The Fourier algebra coincides
with the set of matrix coefficients of the left regular representation λ, that is, u ∈ A(G) if
and only if there are vectors x, y ∈ L2(G) such that

u(g) = 〈λ(g)x, y〉 for all g ∈ G. (2.2)

The norm of u ∈ A(G) is the infimum of all numbers ‖x‖‖y‖, where x, y ∈ L2(G) satisfy
(2.2). We often write ‖u‖A for the norm ‖u‖B when u ∈ A(G).
The dual space of A(G) can be identified with the group von Neumann algebra L(G) of G
via the duality

〈a, u〉 = 〈ax, y〉 =
∫

G

(ax)(g)y(g) dg

where a ∈ L(G) and u ∈ A(G) is of the form (2.2).
When G is a Lie group, it is known that C∞c (G) ⊆ A(G) (see [14, Proposition 3.26]).
Since the uniform norm is bounded by the Fourier–Stieltjes norm, it follows that A(G) ⊆
B(G)∩C0(G). For many groups this inclusion is strict (see e.g [25]), but in some cases it is
not. We will need the following result when proving Theorem C.

Theorem 2.1 ([25, Theorem 3]). Let G be one of the groups SO(1, n), SU(1, n), Sp(1, n)
or F4(−20), and let G = KAN be the Iwasawa decomposition. The group N is contained in
a closed amenable group P satisfying A(P ) = B(P ) ∩ C0(P ).

We will need the following lemma in Section 5. For a demonstration, see the proof of
Proposition 1.12 in [10].

Lemma 2.2 ([10]). Let G be a locally compact group with a closed subgroup H ⊆ G. If
u ∈ A(G), then u|H ∈ A(H). Moreover, ‖u|H‖A(H) ≤ ‖u‖A(G). Conversely, if u ∈ A(H),
then there is ũ ∈ A(G) such that u = ũ|H and ‖u‖A(H) = inf{‖ũ‖A(G) | ũ ∈ A(G), ũ|H = u}.

We now recall the definition of the Herz–Schur multiplier algebra B2(G). A function k : G×
G→ C is a Schur multiplier on G if for every bounded operator A = [axy]x,y∈G ∈ B(`2(G))
the matrix [k(x, y)axy]x,y∈G represents a bounded operator on `2(G), denotedmk(A). If this
is the case, then by the closed graph theorem mk defines a bounded operator on B(`2(G)),
and the Schur norm ‖k‖S is defined as the operator norm of mk.
A continuous function u : G→ C is a Herz–Schur multiplier, if k(x, y) = u(y−1x) is a Schur
multiplier on G, and the Herz–Schur norm ‖u‖B2 is defined as ‖k‖S . We let B2(G) denote
the space of Herz–Schur multipliers, which is a Banach space, in fact a unital Banach algebra,
with the Herz–Schur norm ‖ ‖B2 . The Herz–Schur norm dominates the uniform norm.
It is known that B(G) ⊆ B2(G), and ‖u‖B2 ≤ ‖u‖B for every u ∈ B(G). In [22, The-
oreme 1(ii)], it is shown that B2(G) multiplies the Fourier algebra A(G) into itself and
‖uv‖A ≤ ‖u‖B2‖v‖A for every u ∈ B2(G), v ∈ A(G). In this way, we can view B2(G) as
bounded operators on A(G), and B2(G) inherits a point-norm (or strong operator) topology
and a point-weak (or weak operator) topology.
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It is known that the space of Herz–Schur multipliers coincides isometrically with the com-
pletely bounded Fourier multipliers, usually denoted M0A(G) (see [2] or [23]). It is well
known that if G is amenable then B(G) = B2(G) isometrically. The converse is known to
hold, when G is discrete (see [1]).
Given f ∈ L1(G) and u ∈ B2(G) define

〈f, u〉 =
∫

G

f(x)u(x) dx (2.3)

and
‖f‖Q = sup{|〈f, u〉| | u ∈ B2(G), ‖u‖B2 ≤ 1}.

Then ‖ ‖Q is a norm on L1(G), and the completion of L1(G) with respect to this norm is
a Banach space Q(G) whose dual space is identified with B2(G) via (2.3) (see [10, Proposi-
tion 1.10(b)]). In this way B2(G) is equipped with a weak∗-topology coming from its predual
Q(G). The weak∗-topology is also denoted σ(B2, Q).
We recall that G has the Approximation Property (AP) if there is a net (uα)α∈A in B2(G)∩
Cc(G) which converges to the constant function 1G in the σ(B2, Q)-topology. As with weak
amenability, the definition of the AP just given can be seen to be equivalent to the original
definition by use of the convolution trick (see [27, Appendix B]). For more on the σ(B2, Q)-
topology and the AP we refer to the original paper [19].
The following lemma is a variant of [19, Proposition 1.3 (a)]. The statement of [19, Proposi-
tion 1.3 (a)] involves an infinite dimensional Hilbert space H , but going through the proof
of [19, Proposition 1.3 (a)] one can check that the statement remains true, if H is just the
one-dimensional space C. Hence, we have the following lemma.

Lemma 2.3 ([19]). Let G be a locally compact group. Suppose a ∈ L(G), v ∈ A(G) and that
f ∈ A(G) is a compactly supported, positive function with integral 1. Then the functional
ωa,v,f : B2(G)→ C defined as

ωa,v,f (u) = 〈a, (f ∗ u)v〉, u ∈ B2(G)
is bounded, that is, ωa,v,f ∈ Q(G).

It is known that weakly amenable groups have the AP [19, Theorem 1.12], and extensions of
groups with the AP have the AP [19, Theorem 1.15]. In particular, the group R2 oSL(2,R)
has the AP.
Given a compact subgroup K of G we say that a continuous function f : G → C is K-bi-
invariant, if f(kx) = f(xk) = f(x) for every k ∈ K and x ∈ G. The space of continuous
K-bi-invariant functions on G is denoted C(K\G/K).
The following two lemmas concerning weak amenability and the AP are standard averaging
arguments. For the convenience of the reader, we include a proof of the second lemma. A
proof of the first can be manufactured in basically the same way. We note that the special
cases whereK is the trivial subgroup follow from [9, Proposition 1.1] and [19, Theorem 1.11],
respectively.

Lemma 2.4. Let G be a locally compact group with compact subgroup K. If G is weakly
amenable, say ΛWA(G) ≤ C, then there is a net (vβ) in A(G) ∩ Cc(K\G/K) such that

‖vβv − v‖A(G) → 0 for every v ∈ A(G)
and supβ ‖vβ‖B2 ≤ C. Moreover, if G is a Lie group, we may arrange that each vβ is
smooth.
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Lemma 2.5. Let G be a locally compact group with compact subgroup K. If G has the AP,
then there is a net (vβ) in A(G) ∩ Cc(K\G/K) such that

‖vβv − v‖A(G) → 0 for every v ∈ A(G).
Moreover, if G is a Lie group, we may arrange that each vβ is smooth.

Proof. We suppose G has the AP. Then there is a net (uα) in A(G)∩Cc(G) such that uα → 1
in the σ(B2, Q)-topology (see [19, Remark 1.2]). Choose a positive function f ∈ A(G) with
compact support and integral 1. By averaging from left and right over K (see Appendix B
in [27]), we may further assume that f and each uα is K-bi-invariant. Let wα = f ∗ uα.
Then wα ∈ A(G) ∩ Cc(K\G/K).
Given a ∈ L(G) and v ∈ A(G) we have the following equation:

〈a,wαv〉 = ωa,v,f (uα)→ ωa,v,f (1) = 〈a, v〉.
Hence wα → 1 in the point-weak topology on B2(G). It follows from [13, Corollary VI.1.5]
that there is a net (vβ) where each vβ lies in the convex hull of {wα} such that vβ → 1 in
the point-norm topology. In other words, there is a net (vβ) in A(G) ∩ Cc(K\G/K) such
that

‖vβv − v‖A(G) → 0 for every v ∈ A(G).
If G is a Lie group, we may further assume that f ∈ C∞c (G), in which case vβ becomes
smooth. �

3. Simple Lie groups of higher real rank

It is known that a connected simple Lie group of real rank at least two is not weakly
amenable [12],[16]. In fact, an even stronger result was proved recently [28], [17],[18]. One
could ask if such Lie groups also fail the weak Haagerup property. Using results from
[17],[18] we completely settle this question in the affirmative. We thus prove Theorems A
and Theorem B.

3.1. Three groups of real rank two. We will prove that the three groups SL(3,R),
Sp(2,R) and the universal covering group S̃p(2,R) of Sp(2,R) do not have the weak Haagerup
property. The cases of SL(3,R) and Sp(2,R) are similar and are treated together. The case
of S̃p(2,R) is more difficult, essentially because S̃p(2,R) is not a matrix Lie group, and we
will go into more details in this case.
When we consider the special linear group SL(3,R), then K = SO(3) will be its maximal
compact subgroup. We now describe the group Sp(2,R) and a maximal compact subgroup.
Consider the matrix 4× 4 matrix

J =
(

0 I2
−I2 0

)

where I2 denotes the 2× 2 identity matrix. The symplectic group Sp(2,R) is defined as
Sp(2,R) = {g ∈ GL(4,R) | gtJg = J}.

Here gt denotes the transpose of g. The symplectic group Sp(2,R) is a connected simple Lie
group of real rank two. It has a maximal compact subgroup

K =
{(

A −B
B A

)
∈M4(R) | A+ iB ∈ U(2)

}
(3.1)

which is isomorphic to U(2).
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The following is immediate from [27, Proposition 4.3, Lemma A.1(2)].

Lemma 3.1. Let G be locally compact group with a compact subgroup K. If G has the
weak Haagerup property, then there is a bounded net (uα) in B2(G)∩C0(K\G/K) such that
uα → 1 in the weak∗-topology.

We remind the reader that B2(G) coincides isometrically with the completely bounded
Fourier multipliers M0A(G). The following result is then extracted from [17, p. 937 + 957].

Theorem 3.2 ([17]). If G is one of the groups SL(3,R) or Sp(2,R) and K is the corre-
sponding maximal compact subgroup in G, then B2(G)∩C0(K\G/K) is closed in B2(G) in
the weak∗-topology.

Theorem 3.3. The groups SL(3,R) and Sp(2,R) do not have the weak Haagerup property.

Proof. Let G be one of the groups SL(3,R) or Sp(2,R). Obviously, 1 /∈ B2(G)∩C0(K\G/K).
Since B2(G)∩C0(K\G/K) is weak∗-closed, there can be no net uα ∈ B2(G)∩C0(K\G/K)
such that uα → 1 in the weak∗-topology. Using Lemma 3.1, we conclude that G does not
have the weak Haagerup property. �

Remark 3.4. An alternative proof of Theorem 3.3 for the group SL(3,R), avoiding the use
of the difficult Theorem 3.2, is to use the fact that R2 o SL(2,R) is a closed subgroup of
SL(3,R). From Theorem D (to be proved in Section 5), we know that R2 o SL(2,R) does
not have the weak Haagerup property, and this is sufficient to conclude that SL(3,R) also
fails to have the weak Haagerup property (see [27, Theorem A(1)]).

We now turn to the case of S̃p(2,R). To ease notation a bit, in the rest of this section we
let G = Sp(2,R) and G̃ = S̃p(2,R). We now describe the group G̃. This is based on [31]
and [18, Section 3].
By definition, G̃ is the universal covering group of G. The group G has fundamental group
π1(G) ' π1(U(2)) which is the group Z of integers. There is a smooth function c : G → T,
where T denotes the unit circle in C, such that c induces an isomorphism of the fundamental
groups of G and T (such a c is called a circle function). An explicit description of c can be
found in [31] and [18]. The circle function c satisfies

c(1) = 1 and c(g−1) = c(g)−1.

There is a unique smooth map η : G×G→ R such that

c(g1g2) = c(g1)c(g2)eiη(g1,g2) and η(1, 1) = 0

for all g1, g2 ∈ G. The map η is also explicitly described in [31] and [18]. The universal
cover G̃ of G can be realized as the smooth manifold

G̃ = {(g, t) ∈ G× R | c(g) = eit}
with multiplication given by

(g1, t1)(g2, t2) = (g1g2, t1 + t2 + η(g1, g2)).

The identity in G̃ is (1, 0), where 1 denotes the identity in G, and the inverse is given by
(g, t)−1 = (g−1,−t). The map σ : G̃ → G given by σ(g, t) = g is the universal covering
homomorphism, and the kernel of σ is {(1, 2πk) ∈ G × R | k ∈ Z}, which is of course
isomorphic to Z.
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Let K be the maximal compact subgroup of G given in (3.1). Then one can show that

η(g, h) = 0 for all g, h ∈ K. (3.2)

Under the obvious identification K ' U(2), we consider SU(2) ⊆ U(2) as a subgroup of K.
Define a compact subgroup H̃ of G̃ by

H̃ = {(g, 0) ∈ G× R | g ∈ SU(2)}.
By (3.2) H̃ is indeed a subgroup of G̃.
When t ∈ R let vt ∈ G be the element

vt =




cos t 0 − sin t 0
0 cos t 0 − sin t

sin t 0 cos t 0
0 sin t 0 cos t


 ,

and define ṽt = (vt, 2t) ∈ G̃. Then η(vt, g) = η(g, vt) = 0 for any g ∈ G. Obviously, (ṽt)t∈R
is a one-parameter family in G̃, and it is a simple matter to check that conjugation by ṽt is
π-periodic. A simple computation will also show that if g ∈ K, then gvt = vtg and hence
hṽt = ṽth for every h ∈ H̃.
Consider the subspace C of C(G̃) defined by

C = {u ∈ C(G̃) | u is H̃-bi-invariant and u(ṽtgṽ−1
t ) = u(g) for all t ∈ R}.

Further, we let C0 = C ∩C0(G̃). For any f ∈ C(G̃) or f ∈ L1(G̃), let fC : G̃→ C be defined
by

fC(x) = 1
π

∫ π

0

∫

H̃

∫

H̃

f(h1ṽtxṽ
−1
t h2) dh1dh2dt, x ∈ G̃,

where dh1 and dh2 both denote the normalized Haar measure on the compact group H̃.

Lemma 3.5. With the notation as above the following holds:

(1) If u ∈ C(G̃), then uC ∈ C.
(2) If f ∈ L1(G̃), then fC ∈ L1(G̃) and ‖fC‖Q ≤ ‖f‖Q.
(3) If u ∈ B2(G̃), then uC ∈ B2(G̃) and ‖uC‖B2 ≤ ‖u‖B2 .
(4) If u ∈ C0(G̃), then uC ∈ C0(G̃).

Proof.
(1) This is elementary.
(2) Suppose f ∈ L1(G̃). Connected simple Lie groups are unimodular (see [24, Corol-
lary 8.31]), and hence each left or right translate of f is also in L1(G̃) with the same norm.
Since left and right translation on L1(G) is norm continuous, it now follows from usual
Banach space integration theory that fC ∈ L1(G̃).
We complete the proof of (2) after we have proved (3).
(3) This statement is implicit in [18] in the proof of [18, Lemma 3.10]. We have chosen to
include a proof.
For each g ∈ B2(G̃) or g ∈ L1(G̃) and α = (h1, h2, t) ∈ H̃ × H̃ × R define

gα(x) = g(h1ṽtxṽ
−1
t h2), x ∈ G̃.
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If g ∈ B2(G̃), then gα ∈ B2(G̃) and ‖gα‖B2 = ‖g‖B2 . Similarly, if g ∈ L1(G̃), then gα ∈
L1(G̃) and ‖gα‖1 = ‖g‖1. Note also that 〈g, fα〉 = 〈gα−1 , f〉 where α−1 = (h−1

1 , h−1
2 ,−t). In

particular,
|〈g, uα〉 − 〈g, uβ〉| ≤ ‖gα−1 − gβ−1‖1‖u‖B2

for α, β ∈ H̃ × H̃ × R, and α 7→ uα is weak∗-continuous.
The set S = {uα | α ∈ H̃ × H̃ × [0, π]} is a norm bounded subset of B2(G̃). If T =
convσ(B2,Q)(S) is the weak∗-closed convex hull of S, then T is weak∗-compact by Banach–
Alaoglu’s Theorem. By [32, Theorem 3.27] the integral

uC = 1
π

∫

H̃×H̃×[0,π]
uα dµ(α)

exists in B2(G̃). Here dµ(α) = dh1dh2dt. Since the set T is bounded in norm by ‖u‖B2 ,
and because it follows from [32, Theorem 3.27] that uC ∈ T , we obtain the inequality
‖uC‖B2 ≤ ‖u‖B2 .
(2) Continued. Let u ∈ B2(G̃) be arbitrary. Observe that 〈fC , u〉 = 〈f, uC〉. Hence the norm
estimate ‖fC‖Q ≤ ‖f‖Q follows from (3).
(4) This is elementary. �

Proposition 3.6. If G̃ had the weak Haagerup property, then there would exist a bounded
net (vα) in B2(G̃) ∩ C0 such that vα → 1 in the weak∗-topology.

Proof. We suppose G̃ has the weak Haagerup property. Using [27, Proposition 4.2] we see
that there exist a constant C > 0 and a net (uα) in B2(G̃) ∩ C0(G̃) such that

‖uα‖B2 ≤ C for every α,

uα → 1 in the σ(B2, Q)-topology.
Let uCα be given by

uCα(x) = 1
2π

∫ 2π

0

∫

H̃×H̃
uα(h1ṽtgṽ

−1
t h2) dh1dh2dt, x ∈ G̃,

where dh1 and dh2 both denote the normalized Haar measure on H̃. By Lemma 3.5 we see
that uCα ∈ B2(G̃)∩C0 and that (uCα) is a bounded net. Thus, it suffices to prove that uCα → 1
in the weak∗-topology.
By Lemma 3.5, the map L1(G̃) → L1(G̃) given by f 7→ fC extends uniquely to a linear
contraction R : Q(G̃) → Q(G̃). The dual operator R∗ : B2(G̃) → B2(G̃) obviously satisfies
R∗v = vC and is weak∗-continuous. Hence

〈f, uCα〉 = 〈f,R∗uα〉 → 〈f,R∗1〉 = 〈f, 1〉
for any f ∈ Q(G). This proves that uCα → 1 in the weak∗-topology. �

For β ≥ γ ≥ 0, we let D(β, γ) denote the element in G given as

D(β, γ) =




eβ 0 0 0
0 eγ 0 0
0 0 e−β 0
0 0 0 e−γ


 .
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We define D̃(β, γ) as the element (D(β, γ), 0) in G̃. Let u ∈ B2(G̃) ∩ C be given. If we put

u̇(β, γ, t) = u(ṽ t
2
D̃(β, γ)),

then it is shown in [18, Proposition 3.11] that the limit lims→∞ u̇(2s, s, t) exists for any
t ∈ R. If we let

T = {u ∈ B2(G̃) ∩ C | lim
s→∞

u̇(2s, s, t) = 0 for all t ∈ R},

then we can phrase part of the main result of [18] in the following way.

Lemma 3.7 ([18, Lemma 3.12]). The space T is closed in the weak∗-topology.

Using Lemma 3.7, it is not hard to show that G̃ does not have the weak Haagerup property.
The argument goes as follows.
Obviously, 1 /∈ T . We claim that B2(G̃) ∩ C0 ⊆ T . Indeed, if u ∈ C0(G̃) and t ∈ R, then

u̇(2s, s, t) = u(ṽ t
2
D̃(2s, s))→ 0 as s→∞.

Since T is weak∗-closed, we conclude by Proposition 3.6 that G̃ does not have the weak
Haagerup property.

Theorem 3.8. The group G̃ = S̃p(2,R) does not have the weak Haagerup property.

3.2. The general case. Knowing that the three groups SL(3,R), Sp(2,R), and S̃p(2,R)
do not have the weak Haagerup property, it is a simple matter to generalize this result
to include all connected simple Lie groups of real rank at least two. The idea behind the
general case is basically that inside any connected simple Lie group of real rank at least two
one can find a subgroup that looks like one of the three mentioned groups. We will make
this statement more precise now. The following is certainly well known.

Lemma 3.9. Let G be a connected simple Lie group of real rank at least two. Then G
contains a closed connected subgroup H locally isomorphic to either SL(3,R) or Sp(2,R).

Proof. Consider a connected simple Lie group G of real rank at least two. It is well known
that the Lie algebra of such a group contains one of the Lie algebras sl(3,R) or sp(2,R) (see
[29, Proposition 1.6.2]). Hence there is a connected Lie subgroup H of G whose Lie algebra
is either sl(3,R) or sp(2,R) (see [21, Theorem II.2.1]). By [21, Theorem II.1.11] we get that
H is locally isomorphic to SL(3,R) or Sp(2,R). It remains only to see that H is closed. This
is [12, Corollary 1]. �

Theorem B. A connected simple Lie group has the weak Haagerup property if and only if
it has real rank zero or one.

Proof. It is known that connected simple Lie groups of real rank zero and one have the weak
Haagerup property. Indeed, connected simple Lie groups of real rank zero are compact, and
connected simple Lie groups of real rank one are weakly amenable (see [9],[20]). This is
clearly enough to conclude that such groups have the weak Haagerup property. Thus, we
must prove that connected simple Lie groups of real rank at least two do not have the weak
Haagerup property.
Let G be a connected simple Lie group of real rank at least two. Then G contains a
closed connected subgroup H locally isomorphic to SL(3,R) or Sp(2,R). Because of [27,
Theorem A(1)], it is sufficient to show that H does not have the weak Haagerup property.
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Suppose first that H is locally isomorphic to SL(3,R). The fundamental group of SL(3,R)
has order two, and SL(3,R) has trivial center. Hence the universal covering group of SL(3,R)
has center of order two, and H must have finite center Z of order one or two. Then
SL(3,R) ' H/Z. Since SL(3,R) does not have the weak Haagerup property, we deduce
from [27, Theorem A(2)] that H does not have the weak Haagerup property.
Suppose instead that H is locally isomorphic to Sp(2,R). Then there is a central subgroup
Z ⊆ S̃p(2,R) such that S̃p(2,R)/Z ' H. Since the center of S̃p(2,R) is isomorphic to
π1(Sp(2,R)) ' Z, every nontrivial subgroup of the center of S̃p(2,R) is infinite and of
finite index. Hence, if H has infinite center, then S̃p(2,R) ' H. In that case, H does
not have the weak Haagerup property. Otherwise, H has finite center Z, and then H/Z '
Sp(2,R)/{±1}. Since Sp(2,R) does not have the weak Haagerup property, we deduce from
[27, Theorem A(2)] that H does not have the weak Haagerup property.

�

4. Simple Lie groups of real rank one

In this section we compute the weak Haagerup constant of the groups Sp(1, n) and F4(−20).
We thus prove Theorem C. Throughout this section G denotes one of the groups Sp(1, n),
n ≥ 2 or F4(−20). The symbol R+ denotes the nonnegative reals, that is, R+ = [0,∞[.

4.1. Preparations. The group Sp(1, n) is defined as the group of quaternion matrices of
size n+ 1 that preserve the Hermitian form

〈x, y〉 = ȳ1x1 −
n+1∑

k=2
ȳkxk, x = (xk)n+1

k=1 , y = (yk)n+1
k=1 ∈ Hn+1.

Equivalently,
Sp(1, n) = {g ∈ GL(n+ 1,H) | g∗I1,ng = I1,n}

where I1,n is the (n+ 1)× (n+ 1) diagonal matrix

I1,n =




1
−1

. . .
−1


 .

The exceptional Lie group F4(−20) is described in [33].
For details about general structure theory of semisimple Lie groups we refer to [24, Chap-
ters VI-VII] and [21, Chapter IX]. The proof of Theorem C builds on [9], where (1.5) is
proved. We adopt the following from [9].
Recall that throughout this section G denotes one of the connected simple real rank one
Lie groups Sp(1, n), n ≥ 2 or F4(−20). Let g be the Lie algebra of G. Let θ be a Cartan
involution, g = k⊕ p the corresponding Cartan decomposition and K the analytic subgroup
corresponding to k. Then K is a maximal compact subgroup of G. Let a be a maximal
abelian subalgebra of p, and decompose g into root spaces,

g = m⊕ a⊕
∑

β∈Σ
gβ ,
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where m is the centralizer of a in k and Σ is the set of roots. Then a is one dimensional and
Σ = {−2α,−α, α, 2α}. Let n = gα ⊕ g2α. We have the Iwasawa decomposition at the Lie
algebra level

g = k⊕ a⊕ n

and at the group level
G = KAN

where A and N are the analytic subgroups of G with Lie algebras a and n, respectively. The
group A is abelian and simply connected, and N is nilpotent and simply connected.
Let B be the Killing form of g. Let v = gα, z = g2α and equip the Lie algebra n = v ⊕ z
with the inner product

〈v + z, v′ + z′〉 = −1
2p+ 4qB

(
v

2 + z

4 , θ
(
v′

2 + z′

4

))

v, v′ ∈ v, z, z′ ∈ z where, as in [9],
2p = dim v, q = dim z.

The inner product on n of course gives rise to a norm | | on n defined by |n| =
√
〈n, n〉,

n ∈ n.
The following convenient notation is taken from [9]. Let

(v, z) = exp(v + z/4), v ∈ v, z ∈ z. (4.1)
Then (v, z) ∈ N . Since N is connected, nilpotent and simply connected, the exponential
mapping is a diffeomorphism of n onto N ([24, Theorem 1.127]), and hence every element
of N can in a unique way be written in the form (4.1).
We let a = p/2. It is well known that the values of p, q, and a are as follows:

Group p q a

Sp(1, n) 2n− 2 3 n− 1
F4(−20) 4 7 2

(4.2)

As a is one-dimensional there is a unique element H in a such that ad(H)|gα = idgα . Let
at = exp(tH) ∈ A, t ∈ R,

and A+ = {exp tH | t > 0} = {at ∈ A | t ≥ 0}. Then we have the KAK decomposition of
G (see [21, Theorem IX.1.1])

G = KA+K. (4.3)

More precisely, for each g ∈ G there is a unique t ≥ 0 such that g ∈ KatK. Concerning the
KAK decomposition of elements of N we can be even more specific. The following lemma
is completely analogous to part of [9, Proposition 2.1], and thus we leave out the proof.

Lemma 4.1. For every v ∈ v and z ∈ z exists a unique t ∈ R+ such that
(v, z) ∈ KatK.

Moreover, t satisfies
4 sinh2 t = 4|v|2 + |v|4 + |z|2.

The following fact proved by Whitney [34, Theorem 1] identifies the smooth even functions
on R with smooth functions on R+ = [0,∞[.
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Lemma 4.2 ([34]). An even function g on R is smooth if and only if it has the form
g(x) = f(x2) for some (necessarily unique) f ∈ C∞(R+).

The following proposition is inspired by Theorem 2.5(b) in [9].

Proposition 4.3. Suppose u ∈ C(N). Then u is the restriction to N of a K-bi-invariant
function on G if and only if u is of the form

(v, z) 7→ f(4|v|2 + |v|4 + |z|2) (4.4)

for some f ∈ C(R+). In that case, the function f is uniquely determined by u.
The function f is in C∞(R+), Cc(R+), or C0(R+) if and only if u is in C∞(N), Cc(N), or
C0(N), respectively.

Proof. Assume u ∈ C(N) is the restriction to N of a K-bi-invariant function on G. Then
by Lemma 4.1, u(v, z) only depends on 4|v|2 + |v|4 + |z|2 when v ∈ v, z ∈ z. Hence there is
a unique function f on R+ such that

u(v, z) = f(4|v|2 + |v|4 + |z|2), v ∈ v, z ∈ z.

If we fix a unit vector z0 ∈ z then t 7→ u(0,
√
tz0) = f(t) is continuous on R+, since u is

continuous. In other words, f ∈ C(R+).
Assume conversely that u is of the form (4.4) for some (necessarily unique) f ∈ C(R+). We
define a function ũ on G using the KA+K decomposition as follows. For an element katk′
in G where k, k′ ∈ K and t ∈ R+ we let

ũ(katk′) = f(4 sinh2 t).

By the uniqueness of t in the KA+K decomposition, this is well-defined. Clearly, ũ is a
K-bi-invariant function on G. When (v, z) ∈ N we find by Lemma 4.1 that

ũ(v, z) = f(4|v|2 + |v|4 + |z|2) = u(v, z)

so that ũ restricts to u on the subgroup N .
It is easy to see that u has compact support if and only if f has compact support, and
similarly that u vanishes at infinity if and only if f vanishes at infinity. It is also clear that
smoothness of f implies smoothness of u.
Finally, assume that u is smooth. If again z0 ∈ z is a unit vector, then t 7→ u(0, tz0) = f(t2)
is a smooth even function on R. By Lemma 4.2 we obtain f ∈ C∞(R+). �

We remark that ‖u‖∞ = ‖f‖∞.

Lemma 4.4. Let (uk) be a sequence, where uk ∈ C(N) is the restrictions to N of a K-
bi-invariant function in C(G), and let fk ∈ C(R+) be as in Proposition 4.3. If uk → 1
pointwise, then fk → 1 pointwise.

Proof. This is obvious, since the map (v, z) 7→ 4|v|2 + |v|4 + |z|2 is a surjection of N onto
R+. �
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4.2. Proof of Theorem C. With almost all the notational preparations in place, we are
now ready to aim for the proof of Theorem C. The starting point is the inequality in
Proposition 4.5 which is taken almost directly from [9]. To ease notation a bit, let

C =
2p+1Γ

(
p+q

2
)

Γ(p)Γ
(
q
2
) . (4.5)

We remark that with this definition C and (1.5) and (4.2) in mind, then
C

4 Γ(a) = ΛWA(G). (4.6)

Combining Theorem 2.5(b), Proposition 5.1, and Proposition 5.2 in [9] one obtains the
following proposition.

Proposition 4.5 ([9]). If u ∈ C∞c (N) is the restriction of a K-bi-invariant function on G,
then u is of the form

u(z, v) = f(4|v|2 + |v|4 + |z|2)
for some f ∈ C∞c (R), and

∣∣∣∣∣C
∫

R+

f (a)(4t2 + t4)t2p−1 dt

∣∣∣∣∣ ≤ ‖u‖A(N).

We now aim to prove a variation of the above proposition where we no longer require the
function u to be compactly supported.
Following [9], we let h : ]0,∞[→ R be defined by h(s) = (s1/2− 2)p−1s−1/2, and let g be the
(a− 1)’th derivative of h. It is known (see [9, p. 544]) that

∫ ∞

4
|g′(s)| ds <∞ and

∫ ∞

4
g′(s) ds = Γ(a). (4.7)

Proposition 4.6. If u ∈ A(N) ∩C∞(N) is the restriction of a K-bi-invariant function on
G, then u is of the form

u(z, v) = f(4|v|2 + |v|4 + |z|2)
for some f ∈ C∞0 (R+), and

∣∣∣∣
C

4

∫ ∞

4
f(s− 4)g′(s) ds

∣∣∣∣ ≤ ‖u‖A(N).

Proof. We use the fact that G is weakly amenable [9]. We will then approximate u by
functions in C∞c (N) and apply Proposition 4.5 to those functions.
Choose a sequence vk ∈ C∞c (G) of K-bi-invariant functions such that ‖vk‖B2 ≤ ΛWA(G)
and

‖vkv − v‖A(G) → 0 for every v ∈ A(G)
(see Lemma 2.4). Put wk = vk|N . Then by Lemma 2.2 we have

‖wkv − v‖A(N) → 0 for every v ∈ A(N).

If we put uk = wku, then we get uk → u uniformly. Note that uk ∈ C∞c (N). Let f ∈
C∞0 (R+) and fk ∈ C∞c (R+) be chosen according to Proposition 4.3 such that

u(v, z) = f(4|v|2 + |v|4 + |z|2), uk(v, z) = fk(4|v|2 + |v|4 + |z|2).
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Using the substitution s = 4 + 4t2 + t4 and then partial integration we get

‖u‖A(N) = lim
k
‖uk‖A(N)

≥ lim
k

∣∣∣∣∣C
∫

R+

f
(a)
k (4t2 + t4)t2p−1 dt

∣∣∣∣∣

= lim
k

∣∣∣∣
C

4

∫ ∞

4
f

(a)
k (s− 4)h(s) ds

∣∣∣∣

= lim
k

∣∣∣∣
C

4

∫ ∞

4
fk(s− 4)g′(s) ds

∣∣∣∣ .

There are no boundary terms, since fk has compact support, and because the first p − 2
derivatives of h vanish at s = 4. We observe that

‖fk‖∞ = ‖uk‖∞ ≤ ‖uk‖B2 ≤ ‖wk‖B2‖u‖B2 ≤ ‖vk‖B2‖u‖B2 ≤ ΛWA(G) ‖u‖B2 ,

so in particular, supk ‖fk‖∞ <∞. Finally, since g′(s) is integrable (see (4.7)), we can apply
Lebesgue’s Dominated Convergence Theorem and get

‖u‖A(N) ≥
∣∣∣∣
C

4

∫ ∞

4
f(s− 4)g′(s) ds

∣∣∣∣ .

�

Proposition 4.7. Suppose uk ∈ A(N) ∩ C∞(N) is the restriction of a K-bi-invariant
function on G, and suppose further that uk → 1 pointwise as k →∞. Then

sup
k
‖uk‖A(N) ≥ ΛWA(G).

Proof. If supk ‖uk‖A(N) =∞, there is nothing to prove. So we assume that supk ‖uk‖A(N) <
∞.
Let fk ∈ C∞0 (R+) be chosen according to Proposition 4.3 such that

uk(v, z) = fk(4|v|2 + |v|4 + |z|2).

Observe that fk → 1 pointwise, and supk ‖fk‖∞ < ∞. By Lebesgue’s Dominated Conver-
gence Theorem we have

sup
k
‖uk‖A(N) ≥ lim

k

∣∣∣∣
C

4

∫ ∞

4
fk(s− 4)g′(s) ds

∣∣∣∣ = C

4

∫ ∞

4
g′(s) ds = C

4 Γ(a).

As mentioned in (4.6), ΛWA(G) = CΓ(a)/4. �

Theorem C is an immediate consequence of the following, since we already know the value
ΛWA(G) and that ΛWH(G) ≤ ΛWA(G).

Proposition 4.8. If G is either Sp(1, n), n ≥ 2, or F4(−20), then ΛWH(G) = ΛWA(G).

Proof. We only prove ΛWH(G) ≥ ΛWA(G), since the other inequality holds trivially. Using
Proposition 4.3 in [27], it is enough to prove that if a sequence vk ∈ B2(G)∩C∞0 (G) consisting
of K-bi-invariant functions satisfies

‖vk‖B2 ≤ L for all k,

vk → 1 uniformly on compacts as k →∞,

135



THE WEAK HAAGERUP PROPERTY II: EXAMPLES 16

then L ≥ ΛWA(G). So suppose such a sequence is given. Consider the subgroup P from
Theorem 2.1. Since P is amenable, B2(P ) = B(P ) isometrically. Then

vk|P ∈ B2(P ) ∩ C0(P ) = B(P ) ∩ C0(P ) = A(P )
by Theorem 2.1, and so vk|N ∈ A(N). To ease notation, we let uk = vk|N . Then (using
amenability of N)

‖uk‖A(N) = ‖uk‖B(N) = ‖uk‖B2(N) ≤ ‖vk‖B2(G).

Hence by Proposition 4.7 and the above inequalities we conclude
ΛWA(G) ≤ sup

k
‖uk‖A(N) ≤ L.

This shows that ΛWA(G) ≤ ΛWH(G), and the proof is complete. �

Proof of Theorem C. Suppose G is a connected simple Lie group. If the real rank of G is
zero, then G is compact and ΛWA(G) = ΛWH(G) = 1. If the real rank of G is at least two,
then ΛWA(G) =∞ by [16], [12]. By Theorem B also ΛWH(G) =∞.
Only the case when the real rank of G equals one remains. Then G is locally isomorphic
to either SO0(1, n), SU(1, n), Sp(1, n) where n ≥ 2 or locally isomorphic to F4(−20) (see,
for example, the list [24, p. 426] and [21, Theorem II.1.11]). If G is locally isomorphic to
SO0(1, n) or SU(1, n) then by (1.5) we conclude that ΛWA(G) = ΛWH(G) = 1.
Finally, let G̃ be either Sp(1, n) or F4(−20) and suppose G is locally isomorphic to G̃. If
KAN is the Iwasawa decomposition of G̃ then K is Sp(n)× Sp(1) or Spin(9), respectively
(see Section 4, Proposition 1 and Section 5, Theorem 1 in [33] for the latter). Here Spin(9)
is the two-fold simply connected cover of SO(9). In any case, K is simply connected and
compact, so it follows that G̃ is simply connected with finite center ([24, Theorem 6.31]).
From Proposition 4.8, we get that ΛWH(G) = ΛWA(G) if G = G̃. Otherwise G is a quotient
of G̃ by a finite central subgroup, and then it follows from (1.5), Proposition 4.8 and [27,
Proposition 5.4] that ΛWH(G) = ΛWH(G̃) = ΛWA(G). �

5. Another group without the weak Haagerup property

Throughout this section, we let G be the group G = R2 o SL(2,R). We show here that this
group does not have the weak Haagerup property. In short, we prove ΛWH(G) = ∞. This
generalizes a result from [11] and [16], where it is proved that ΛWA(G) =∞.
We shall think of G as a subgroup of SL(3,R) in the following way:

G =




SL(2,R) R2

0 1


 .

We consider the compact group K = SO2(R) as a subgroup of G using the inclusions
SO2(R) ⊆ SL(2,R) ⊆ R2 o SL(2,R).

We will make use of the following closed subgroups of G.

N =








1 x z

0 1 y

0 0 1




∣∣∣∣∣∣∣
x, y, z ∈ R




, P =







λ x z

0 λ−1 y

0 0 1




∣∣∣∣∣∣∣
x, y, z ∈ R, λ > 0




. (5.1)
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The group N is the Heisenberg group. The following is proved in [11, Section 10] (see also
[16, Lemma A and Lemma E]).

Proposition 5.1 ([11]). Consider the Heisenberg group N . If u ∈ C∞c (N) is the restriction
of a K-bi-invariant function in C∞(G), then

∣∣∣∣∣

∫ ∞

−∞

u(x, 0, 0)√
1 + x2/4

dx

∣∣∣∣∣ ≤ 12π‖u‖A(N).

We now prove a variation of the above lemma where we no longer require the function in
question to be compactly supported.

Proposition 5.2. Suppose u ∈ A(N)∩C∞(N) is the restriction of a K-bi-invariant function
in C∞(G). Then ∫ ∞

−∞

|u(x, 0, 0)|2√
1 + x2/4

dx ≤ 12π‖u‖2A(N).

Proof. The idea is to use the fact (see [19, p. 670]) that G = R2 o SL(2,R) has the AP.
We will approximate u with compactly supported, smooth functions on N and then apply
Proposition 5.1.
By Lemma 2.2, there is an extension ũ ∈ A(G) of u. It follows from Lemma 2.5 that there
is a sequence (vk) in C∞c (K\G/K) such that

‖vkũ− ũ‖A(G) → 0.
We let wk = vk|N . Since restriction does not increase the norm, we have

‖wku− u‖A(N) = ‖(vkũ− ũ)|N‖A(N) ≤ ‖vkũ− ũ‖A(G) → 0.
Since wku→ u pointwise we have by Fatou’s Lemma and Proposition 5.1 applied to |wku|2

‖u‖2A(N) ≥ lim inf
k→∞

‖|wku|2‖A(N) ≥
1

12π

∫ ∞

−∞
lim inf
k→∞

|wku(x, 0, 0)|2√
1 + x2/4

dx

= 1
12π

∫ ∞

−∞

|u(x, 0, 0)|2√
1 + x2/4

dx.

In the first inequality we have used that for every v ∈ A(N) we have |v|2 = vv ∈ A(N) and
‖|v|2‖A ≤ ‖v‖A‖v‖A = ‖v‖2A. �

Having done all the necessary preparations, we are now ready for

Theorem D. The group R2 o SL(2,R) does not have the weak Haagerup property.

Proof. Suppose there is a net (un) of Herz–Schur multipliers on G = R2oSL(2,R) vanishing
at infinity and converging uniformly to the constant function 1G on compacts. We will show
that supn ‖un‖B2 =∞. By Proposition 4.3 in [27], we may assume that un ∈ C∞0 (K\G/K),
and since G is second countable, we may assume that the net is a sequence.
Consider the group P defined in (5.1). Since P is amenable, even solvable, we know that
B2(P ) = B(P ) isometrically. We also know that A(P ) = B(P )∩C0(P ) (see [25, Theorem 2]).
Then

un|P ∈ B2(P ) ∩ C0(P ) = B(P ) ∩ C0(P ) = A(P ),
and so un|N ∈ A(N). To ease notation, we let wn = un|N . Then, using amenability of N ,

‖wn‖A(N) = ‖wn‖B(N) = ‖wn‖B2(N) ≤ ‖un‖B2(G).
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Hence it will suffice to show that supn ‖wn‖A(N) =∞. By Proposition 5.2, we have
∫ ∞

−∞

|wn(x, 0, 0)|2√
1 + x2/4

dx ≤ 12π‖wn‖2A(N).

Since un → 1G uniformly on compacts, we have in particular wn(x, 0, 0)→ 1 as n→∞. It
follows that

lim inf
n→∞

‖wn‖2A(N) ≥
1

12π

∫ ∞

−∞

1√
1 + x2/4

dx =∞.

This completes the proof. �

Remark 5.3. It was proved by the first author [16] that the group R2 o SL(2,R) is not
weakly amenable. This result was later generalized by Dorofaeff [11] to include the groups
Rn o SL(2,R) where n ≥ 2. Here the action of SL(2,R) on Rn is by the unique irreducible
representation of dimension n.
In view of Theorem D, and especially since our proof of Theorem D uses the same techniques
as [16] and [11], it is natural to ask if the groups Rn o SL(2,R) also fail to have the weak
Haagerup property when n ≥ 3.
We note that an affirmative answer in the case n = 3 would give a different proof of The-
orem A. This is because SL(3,R) contains R2 o SL(2,R) as a closed subgroup, and both
groups Sp(2,R) and S̃p(2,R) contain R3 o SL(2,R) as a closed subgroup (see [12]).
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ARTICLE D

Fourier algebras of parabolic subgroups

This chapter contains the preprint version of the following article:

Søren Knudby. Fourier algebras of parabolic subgroups. 2013.

A preprint version is publicly available at http://arxiv.org/abs/1311.5400.
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FOURIER ALGEBRAS OF PARABOLIC SUBGROUPS

SØREN KNUDBY

Abstract. We study the following question: Given a locally compact group
when does its Fourier algebra coincide with the subalgebra of the Fourier-
Stieltjes algebra consisting of functions vanishing at infinity? We provide suf-
ficient conditions for this to be the case.

As an application we show that when P is the minimal parabolic subgroup
in one of the classical simple Lie groups of real rank one or the exceptional
such group, then the Fourier algebra of P coincides with the subalgebra of
the Fourier-Stieltjes algebra of P consisting of functions vanishing at infinity.
In particular, the regular representation of P decomposes as a direct sum of
irreducible representations although P is not compact.

We also show that P contains a non-compact closed normal subgroup with
the relative Howe-Moore property.

1. Introduction

If G is a locally compact abelian group with dual group Ĝ, then the Fourier trans-
form on Ĝ maps the group algebra L1(Ĝ) injectively onto a subset A(G) of the
continuous functions on G. Also, the Fourier-Stieltjes transform on Ĝ maps the
measure algebra M(Ĝ) injectively onto a subset B(G) of the continuous functions
on G. Using the usual identification L1(Ĝ) ⊆ M(Ĝ) we see that A(G) ⊆ B(G).
Every function in B(G) is bounded, and every function in A(G) vanishes at infinity.
In the very special case when Ĝ = Rn, the fact that functions in A(G) vanish at
infinity is the Riemann-Lebesgue lemma.

In the paper [11], Eymard introduced the algebras A(G) and B(G) in the setting
where G is no longer assumed to be abelian. Let G be a locally compact group.
The Fourier-Stieltjes algebra B(G) is defined as the linear span of the continuous
positive definite functions on G. There is a natural identification of B(G) with the
Banach space dual of the full group C∗-algebra C∗(G), and under this identification
B(G) inherits a norm with which it is a Banach space. The Fourier algebra A(G)
is the closed subspace in B(G) generated by the compactly supported functions in
B(G). Other descriptions of A(G) and B(G) are available (see Section 2). The
Fourier and Fourier-Stieltjes algebras play an important role in non-commutative
harmonic analysis.

Date: September 12, 2014.
Supported by ERC Advanced Grant no. OAFPG 247321 and the Danish National Research

Foundation through the Centre for Symmetry and Deformation (DNRF92).
1
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For general locally compact groups it is still true that A(G) ⊆ C0(G) just as in
the abelian case, and it is natural to ask whether every function in B(G) which
vanishes at infinity belongs to A(G).

Question 1. Let G be a locally compact group. Does the equality
A(G) = B(G) ∩ C0(G) (1.1)

hold?

Of course, if G is compact then B(G) = A(G), and (1.1) obviously holds. But for
non-compact groups the question is more delicate.

In 1916, Menchoff [26] proved the existence of a singular probability measure µ on
the circle such that its Fourier-Stieltjes transform µ̂ satisfies µ̂(n)→ 0 as |n| → ∞.
In other words, µ̂ ∈ B(Z)∩C0(Z), but µ̂ /∈ A(Z), and thus the answer to Question 1
is negative when G is the group Z of integers. In 1966, Hewitt and Zuckerman [15]
proved that for any abelian locally compact group G the answer to Question 1 is
always negative, unless G is compact. In 1983 it was shown that for any countable,
discrete group G one has A(G) 6= B(G)∩C0(G), unless G is finite (see [30, p. 190]
and [5]).

The first non-compact example of a group satisfying (1.1) was given by Khalil in
[19] and is the (non-unimodular) ax+ b group consisting of affine transformations
x 7→ ax+b of the real line, where a > 0 and b ∈ R. We remark that the ax+b group
is isomorphic to the minimal parabolic subgroup in the simple Lie group PSL2(R)
of real rank one.

It is proved in [12],[5] that if (1.1) holds for some second countable, locally com-
pact group G, then the regular representation of G is completely reducible, i.e., a
direct sum of irreducible representations. For a while, this was thought to be a
characterization of groups satisfying (1.1), but this was shown not to be the case
(see [4] or [25]). However, it follows from the fact that second countable, locally
compact groups satisfying (1.1) have completely reducible regular representations
combined with [30] that (1.1) fails for second countable, locally compact IN-groups,
unless they are compact. Recall that an IN-group is a group which has a compact
neighborhood of the identity which is invariant under all inner automorphisms. In
particular, abelian, discrete and compact groups are all IN-groups.

It follows from Baggett’s work [3] that if G is a locally compact, second countable
group which is also connected, unimodular and has a completely reducible regular
representation, then G is compact (see [31, Theorem 3]). In particular, Question 1
has a negative answer for locally compact second countable connected unimodular
groups which are non-compact. This gives an abundance of examples of groups
where Question 1 has a negative answer. An example given in [25] and [32] (inde-
pendently) of a unimodular group satisfying (1.1) shows that the assumption about
connectedness cannot be removed from the previous statement, and of course the
assumption about unimodularity cannot be removed as the ax+ b group shows.

It should be apparent from the above that there are plenty of examples of groups
for which Question 1 has a negative answer. In this paper we provide new examples
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of groups answering Question 1 in the affirmative. Our main source of examples is
formed by the minimal parabolic subgroups in connected simple Lie groups of real
rank one. But first we give a more straightforward example which is a subgroup
of SL3(R). The method of proof in this example can be seen as an easy version of
what follows after. We prove the following.

Theorem 2. For the group

P =







λ a c
0 λ−1 b
0 0 1



∣∣∣∣∣∣
a, b, c ∈ R, λ > 0



 (1.2)

we have A(P ) = B(P ) ∩ C0(P ).

If we think of SL2(R) nR2 as a subgroup of SL3(R) in the following way

 SL2(R) R2

0 1


 ,

then we can think of P as a subgroup of SL2(R) n R2. This viewpoint will be
relevant in a forthcoming paper [14] by the author and U. Haagerup.

Apart from the group in (1.2), our examples of groups satisfying (1.1) arise in the
following way. Let n ≥ 2, let G be one of the classical simple Lie groups SO0(n, 1),
SU(n, 1), Sp(n, 1) or the exceptional group F4(−20), and let G = KAN be the
Iwasawa decomposition. If M is the centralizer of A in K, then P = MAN is the
minimal parabolic subgroup of G. We refer to Section 6 for explicit descriptions of
the groups G, K, A, N and M . We prove the following theorem concerning the
Fourier algebra of the minimal parabolic subgroup.

Theorem 3. Let P be the minimal parabolic subgroup in one of the simple Lie
groups SO0(n, 1), SU(n, 1), Sp(n, 1) or F4(−20). Then A(P ) = B(P ) ∩ C0(P ).

In order to prove Theorem 2 and Theorem 3 we develop a general strategy for
providing examples of groups that answer Question 1 affirmatively. The strategy
is based on (1) determining all irreducible representations of the group, (2) de-
termining the irreducible subrepresentations of the regular representation and (3)
disintegration theory. An often useful tool for (1) is the Mackey Machine (see [13,
Chapter 6] and [17]).

Our strategy for proving Theorem 2 and Theorem 3 is contained in the following
theorem.

Theorem 4. Let G be a second countable, locally compact group satisfying the
following two conditions.

(1) G is type I.
(2) There is a non-compact, closed subgroup H of G such that every irreducible

unitary representation of G is either trivial on H or is a subrepresentation
of the left regular representation λG.
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Then

A(G) = B(G) ∩ C0(G).

In particular, the left regular representation λG is completely reducible.

It was pointed out to the author by T. de Laat that with the assumptions of
Theorem 4 one can deduce that (G,H) has the relative Howe-Moore property (de-
fined in [6]). In fact, condition (1) can be dropped, and condition (2) still implies
that (G,H) has the relative Howe-Moore property as is immediately seen from
[6, Proposition 2.3] and the well-known fact that the regular representation is a
C0-representation.

Since we prove Theorem 2 and Theorem 3 by verifying the conditions in Theorem 4
for the groups in question, we obtain the following corollary.

Corollary 5. Let P be the group in (1.2) or the minimal parabolic subgroup in
one of the simple Lie groups SO0(n, 1), SU(n, 1), Sp(n, 1) or F4(−20). Then there
is a normal, non-compact closed subgroup H in P such that (P,H) has the relative
Howe-Moore property.

The non-compact subgroup H can be described explicitly. For a more precise
statement see Corollary 28 below. We refer to [6] for a treatment of the relative
Howe-Moore property.

In order to verify the two conditions in Theorem 4 for the minimal parabolic sub-
groups P , we rely primarily on earlier work of J.A. Wolf. In [33] the irreducible rep-
resentations of some parabolic subgroups are determined by employing the Mackey
Machine, and the approach of [33] carries over to our situation almost without
changes. Using [20] we can easily determine the irreducible subrepresentations of
the regular representation of P .

The paper is organized as follows. In Section 2 we describe the basic properties of
the Fourier and Fourier-Stieltjes algebra, and Section 3 contains the proof of Theo-
rem 4. Section 4 contains a few results to be used later when we verify condition (2)
of Theorem 4 for the groups in question. In Section 5 we prove Theorem 2. This
includes determining all irreducible unitary representations of the group (1.2), de-
termining the Plancherel measure for the group and finally verifying conditions (1)
and (2) of Theorem 4 for the group.

In Section 6 we turn to the minimal parabolic subgroups P in the simple Lie groups
of real rank one that we will be working with. We give an explicit description of the
groups as matrix groups (at least in the classical cases). In Section 7 we describe
the irreducible representations of the minimal parabolic subgroups, and then, in
Section 8, we verify the two conditions in Theorem 4 for the minimal parabolic
subgroups. Theorem 3 then follows immediately.

Section 9 contains the proof of Corollary 5 concerning the Howe-Moore property,
and Section 10 contains some concluding remarks.
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2. The Fourier and Fourier-Stieltjes algebra

This section contains a brief description of the Fourier and Fourier-Stieltjes algebra
of a locally compact group introduced by Eymard in [11]. We refer to the original
paper [11] for more details. Let G be a locally compact group equipped with a
left Haar measure. By a representation of G we always mean a continuous unitary
representation of G on some Hilbert space (except for the vector and spin repre-
sentations in Section 6.2). If π is a unitary representation of G on a Hilbert space
H, and x, y ∈ H, then the continuous complex function

ϕ(g) = 〈π(g)x, y〉, (g ∈ G)
is a matrix coefficient of π. The Fourier-Stieltjes algebra of G is denoted B(G) and
consists of the complex linear span of continuous positive definite functions on G.
It coincides with the set of all matrix coefficients of representations of G,

B(G) = {〈π(·)x, y〉 | (π,H) is a representation of G and x, y ∈ H}.
Since the pointwise product of two positive definite functions is again positive def-
inite, B(G) is an algebra under pointwise multiplication. Given ϕ ∈ B(G), the
map

f 7→ 〈f, ϕ〉 =
∫

G

f(x)ϕ(x) dx

is a linear functional on L1(G) which is bounded, when L1(G) is equipped with
the universal C∗-norm. Hence ϕ defines a functional on C∗(G), the full group
C∗-algebra of G, and this gives the identification of B(G) with C∗(G)∗ as vector
spaces. The Fourier-Stieltjes algebra inherits the norm

‖ϕ‖ = sup{|〈f, ϕ〉| | f ∈ L1(G), ‖f‖C∗(G) ≤ 1}
of C∗(G)∗ from this identification. With this norm B(G) is a unital Banach algebra.

Given ϕ ∈ B(G), a representation (π,H) and x, y ∈ H such that ϕ(g) = 〈π(g)x, y〉
we have

‖ϕ‖ ≤ ‖x‖‖y‖,
and conversely, it is always possible to find (π,H) and x, y ∈ H such that ϕ(g) =
〈π(g)x, y〉 and ‖ϕ‖ = ‖x‖‖y‖.

The Fourier algebra of G is denoted A(G) and is the closure of the set of compactly
supported functions in B(G), and A(G) is in fact an ideal. The Fourier algebra
coincides with the set of all matrix coefficients of the left regular representation of
G,

A(G) = {〈λ(·)x, y〉 | x, y ∈ L2(G)},
and given any ϕ ∈ A(G), there are x, y ∈ L2(G) such that ϕ(g) = 〈λ(g)x, y〉 and
‖ϕ‖ = ‖x‖‖y‖. This can be rephrased as follows. Given ϕ ∈ A(G), there are
f, h ∈ L2(G) such that ϕ = f ∗ ȟ and ‖ϕ‖ = ‖f‖‖h‖, where ȟ(g) = h(g−1). This is
often written as

A(G) = L2(G) ∗ L2(G).
It is known that ‖ϕ‖∞ ≤ ‖ϕ‖ for any ϕ ∈ B(G), and hence A(G) ⊆ C0(G).

Although we will not study von Neumann algebras in this paper, we note that
A(G) may be identified with the predual of the group von Neumann algebra L(G)
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of G. When G is abelian, the Fourier transform provides an isometric isomorphism
between L1(Ĝ) and A(G), and in this way A(G) is identified isometrically with the
predual of group von Neumann algebra L(G) ' L∞(Ĝ). In the non-abelian case
it is still true that A(G) identifies isometrically with the predual of the group von
Neumann algebra via the duality

〈T, ϕ〉 = 〈Tf, h〉,
where T ∈ L(G) and ϕ = h̄ ∗ f̌ for some f, h ∈ L2(G).

3. Proof of Theorem 4

In this section we prove Theorem 4, which is the basis of proving Theorems 2
and 3. We first prove that the conditions in Theorem 4 ensure that the regular
representation is completely reducible.

Lemma 6. Let G be a locally compact group. Any unitary representation of G on
a separable Hilbert space has at most countably many inequivalent (with respect to
unitary equivalence) irreducible subrepresentations.

Proof. Let π be a unitary representation of G. The subrepresentations of π are in
correspondence with the projections in the commutant π(G)′, equivalent subrepre-
sentations correspond to projections that are equivalent in π(G)′ (in the sense of
Murray-von Neumann), and the irreducible subrepresentations correspond to min-
imal projections in π(G)′. It is therefore enough to show that a von Neumann
algebra on a separable Hilbert space has at most countably many inequivalent min-
imal projections. Let M be such a von Neumann algebra.

Recall that two minimal projections are inequivalent if and only if their central
supports are orthogonal (see [16, Proposition 6.1.8]). Let (pi)i∈I be a family of
inequivalent minimal projections, and let ci be the central support of pi. Then
(ci)i∈I is a family of orthogonal projections. By separability of the Hilbert space, I
must be countable. Hence there are at most countably many inequivalent minimal
projections in M . �

Corollary 7. Let G be a locally compact, second countable group. Then the left
regular representation of G has at most countably many inequivalent irreducible
subrepresentations.

Proof. The left regular representation represents G on the Hilbert space L2(G),
which is separable, since G is second countable. The statement now follows. �

We recall that a unitary representation is of type I, if the image of the representation
generates a type I von Neumann algebra. A locally compact group is said to be
of type I, if all its unitary representations are of type I (see [10, Chapter 13]).
Disintegration theory works especially well in the setting of type I groups. We refer
to [13, Chapter 7] for more on type I groups and disintegration theory. Several
equivalent characterizations of type I groups can also be found in [10, Chapter 9],
but let us just mention one characterization here. The unitary equivalence classes
of irreducible representations form a set Ĝ called the unitary dual of G. The dual
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Ĝ is equipped with the Mackey Borel structure, and G is of type I if and only if Ĝ
is a standard Borel space. When G is abelian, the unitary dual coincides with the
usual dual group.

Proposition 8. Let G be a second countable, locally compact group satisfying the
following two conditions.

(1) G is type I.
(2) There is a non-compact, closed subgroup H of G such that every irreducible

unitary representation of G is either trivial on H or is a subrepresentation
of the left regular representation λG.

Then the left regular representation λG is completely reducible.

Proof. For each p ∈ Ĝ, we let πp denote a representative of the class p, and we
assume that the choice of representative is made in a measurable way ([13, Lemma
7.39]). We write the left regular representation as a direct integral of irreducibles,

λG =
∫ ⊕

Ĝ

npπp dµ(p),

where µ is a Borel measure on Ĝ and np ∈ {0, 1, 2, . . . ,∞} (see [13, Theorem 7.40]).
Let A = {p ∈ Ĝ | πp(h) = 1 for all h ∈ H} and let B = Ĝ \ A. It is not hard to
check that A ⊆ Ĝ is a Borel set.

We note that if πp ∈ B, then by assumption πp is a subrepresentation of λG. By
the previous corollary, B is countable. Since λG has no subrepresentation which is
trivial on a non-compact subgroup, we must have µ(A) = 0. Then

λG =
∫ ⊕

B

npπp dµ(p),

and since B is countable, λG is a direct sum of irreducibles. �

When π is a representation and α is a cardinal number we denote by πα the direct
sum of α copies of π.

Lemma 9. Let G be a locally compact, second countable group with left regular
representation λ and a closed subgroup H such that

(1) G is type I;
(2) Every irreducible unitary representation of G is either trivial on H or is a

subrepresentation of λ;
(3) λ is completely reducible.

Then every unitary representation π of G is a sum σ1 ⊕ σ2, where σ1 is trivial on
H and σ2 is a subrepresentation of a multiple of λ. By a multiple of λ we mean a
direct sum of copies of λ.

Proof. As in the previous proof, the basic idea is to use disintegration theory.
However, this idea only applies if π is a representation on a separable Hilbert
space. There is a standard way of getting around the issue of separability.
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By a standard application of Zorn’s lemma we may write π is a direct sum
⊕

i πi
of cyclic representations πi. Since G is second countable, each πi represents G on
a separable Hilbert space.

For each p ∈ Ĝ, we let πp denote a representative of the class p, and we assume
that the choice of representative is made in a measurable way ([13, Lemma 7.39]).

For the moment we fix an i. We may write πi as a direct integral of irreducibles,

πi =
∫ ⊕

Ĝ

npπp dµ(p),

where µ is a Borel measure on Ĝ and np ∈ {0, 1, 2, . . . ,∞} (see [13, Theorem 7.40
]). Let A = {p ∈ Ĝ | πp(h) = 1 for all h ∈ H} and let B = Ĝ \A. Then A ⊆ Ĝ is a
Borel set.

By assumption, there is a decomposition

λ =
⊕

p∈C
mpπp

for some countable C ⊆ Ĝ and suitable multiplicities mp ∈ {1, 2, . . . ,∞}. Also, it
follows from our assumptions that B ⊆ C. If

σi1 =
∫ ⊕

A

npπp dµ(p), σi2 =
∫ ⊕

B

npπp dµ(p),

then we see that
πi = σi1 ⊕ σi2,

where σi1 is trivial on H. As B is countable, the integral defining σi2 is actually a
direct sum, so that σi2 is a subrepresentation of

⊕

p∈B
npπp

which in turn is a subrepresentation of λ⊕λ⊕· · · . Hence σi2 is a subrepresentation
of a multiple of λ. Finally, let

σ1 =
⊕

i

σi1 and σ2 =
⊕

i

σi2.

Then π = σ1 ⊕ σ2, where σ1 is trivial on H and σ2 is a subrepresentation of a
multiple of λ. �

Lemma 10. Let G be a locally compact group with left regular representation λ
and a closed, non-compact subgroup H. Suppose every unitary representation π of
G is a sum σ1 ⊕ σ2, where σ1 is trivial on H and σ2 is a subrepresentation of a
multiple of λ. Then A(G) = B(G) ∩ C0(G).

Proof. The inclusion A(G) ⊆ B(G) ∩ C0(G) holds for any locally compact group
G. Suppose ϕ ∈ B(G)∩C0(G). Then there is a continuous, unitary representation
π of G on some Hilbert space H and vectors x, y ∈ H such that

ϕ(g) = 〈π(g)x, y〉 for all g ∈ G.

150



FOURIER ALGEBRAS OF PARABOLIC SUBGROUPS 9

By assumption we may split π = σ1⊕σ2. Accordingly, we split ϕ = ϕ1 +ϕ2, where
ϕ1 is a coefficient of σ1 etc. We will show that ϕ1 = 0 and ϕ2 ∈ A(G), which will
complete the proof.

Since σ2 is a subrepresentation of a multiple of λ, we see that ϕ2 is of the form

ϕ2(g) =
∞∑

i=1
〈λ(g)xi, yi〉

for some xi, yi ∈ L2(G) with
∑
i ‖xi‖2 <∞ and

∑
i ‖yi‖2 <∞. Each of the maps

g 7→ 〈λ(g)xi, yi〉
is in A(G) with norm at most ‖xi‖‖yi‖. Since A(G) is a Banach space and∑
i ‖xi‖‖yi‖ < ∞, we deduce that ϕ2 ∈ A(G), and in particular ϕ2 ∈ C0(G). It

then follows that ϕ1 ∈ C0(G). Since σ1 is trivial on H, we see that ϕ1 is constant on
H cosets. Since H is non-compact, we deduce that ϕ1 = 0. Then ϕ = ϕ2 ∈ A(G).
This proves B(G) ∩ C0(G) = A(G). �

Theorem 4 is an easy consequence of the previous statements.
Proof of Theorem 4. We assume that G is a locally compact, second countable
group satisfying the two conditions in the statement of the theorem. It follows
from Proposition 8 that λG is completely reducible. So by Lemma 9, every unitary
representation π of G is a sum σ1 ⊕ σ2, where σ1 is trivial on H and σ2 ≤ λ∞.
From Lemma 10 we conclude that A(G) = B(G) ∩ C0(G). �

4. Invariant measures on homogeneous spaces

To describe the irreducible representations of the groups P in question, we rely on
a general method known to the common man as the Mackey Machine. Essential
in the Mackey Machine is the notion of induced representations. For a general
introduction to the theory of induced representations we refer to [13, Chapter 6]
which also contains a description of (a simple version of) the Mackey Machine. The
general results about the Mackey Machine can be found in the original paper [22].
See also the book [17].

The construction of an induced representation from a closed subgroup H to a group
G is more easily described when the homogeneous space G/H admits an invariant
measure for the G-action given by left translation. Regarding homogeneous spaces
and invariant measures we record the following easy (and well-known) facts.

Proposition 11. Consider topological groups G, N , H, K, A, B and topological
spaces X and Y .

(1) Suppose G is the semi-direct product G = N oH, where N is normal in G.
If K ≤ H is a closed subgroup of H, then there is a canonical isomorphism

NH/NK ' H/K
as G-spaces. Here the G-action on H/K is the H-action, and N acts
trivially on H/K.
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(2) Suppose G = N ×H, and A ≤ N , B ≤ H are closed subgroups. Then there
is a canonical isomorphism

(N ×H)/(A×B) ' N/A×H/B
as G-spaces, where the G-action on N/A × H/B is the product action of
N ×H.

(3) Suppose Gy X and H y Y have invariant, σ-finite Borel measures. Then
the product G×H y X × Y has an invariant, σ-finite Borel measure.

(4) Suppose G is compact (or just amenable) and X is compact. Then any
action Gy X has an invariant probability measure.

Proof.

(1) The map [nh]NK 7→ [h]K is a well-defined, equivariant homeomorphism.
(2) The map [(n, h)]A×B 7→ ([n]A, [h]B) is a well-defined, equivariant homeo-

morphism.
(3) Take the product measure on X × Y of the invariant measures on X and

Y .
(4) This is Proposition 5.4 in [28].

�

The following lemma will be relevant in Section 5 and Section 8 when we verify
condition (2) of Theorem 4 for the minimal parabolic groups P .

Lemma 12. Let G be a locally compact group with closed subgroups N ⊆ H ⊆ G,
and suppose N / G. If σ is a unitary representation of H which is trivial on N ,
and if G/H admits a G-invariant measure, then the induced representation IndGH σ
is also trivial on N .

Proof. Let H denote the Hilbert space of σ, and let q : G→ G/H be the quotient
map. The induced representation π = IndGH σ acts on a completion of the space

F0 =
{
f ∈ C(G,H)

∣∣∣∣
f(gh) = σ(h−1)f(g) for g ∈ G, h ∈ H
and q(supp f) is compact

}
.

Since G/H admits an invariant measure, the action on F0 is simply given by left
translation, (π(x)f)(g) = f(x−1g). With f ∈ F0, g ∈ G and n ∈ N , we compute
(π(n)f)(g). We get

(π(n)f)(g) = f(n−1g) = f(g(g−1n−1g)) = σ(g−1ng)f(g) = f(g),

since g−1ng ∈ N . It follows that π(n) = 1. �

5. The first example

In this section we prove Theorem 2. Let P be the group defined in (1.2). In the
following proposition we describe the unitary dual of P , i.e. the equivalence classes
of the irreducible representations of P . To do so we apply the Mackey Machine,
which works particularly well in our case, where P decomposes as a semidirect
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product N0 oP0 with N0 abelian. For an account on the Mackey Machine we refer
to [13, Chapter 6] and [17].

Consider the following closed subgroups of P .

P0 =







λ a 0
0 λ−1 0
0 0 1



∣∣∣∣∣∣
a ∈ R, λ > 0



 (5.1)

P1 =








1 a 0
0 1 0
0 0 1



∣∣∣∣∣∣
a ∈ R



 (5.2)

N0 =








1 0 c
0 1 b
0 0 1



∣∣∣∣∣∣
b, c ∈ R



 (5.3)

N1 =








1 0 c
0 1 0
0 0 1



∣∣∣∣∣∣
c ∈ R



 (5.4)

Observe that P = N0 oP0. We note that P0 is isomorphic to the ax+ b group, i.e.
the group of affine transformations x 7→ ax + b of the real line, where a > 0 and
b ∈ R. The dual of the ax+b group is well-known (see for instance [13, Section 6.7]).
The dual of N0 ' R2 is N̂0 ' R̂2 which we as usual identify with R2.

Proposition 13. Let π be an irreducible representation of P . Then π is equivalent
to one of the following representations (and these are all inequivalent).

(1) π1 = IndPN0(ν), where ν ∈ N̂0 is ν = (1, 0).
(2) π2 = IndPN0(ν), where ν ∈ N̂0 is ν = (−1, 0).
(3) π3,ρ = IndPN0P1(νρ), where ν ∈ N̂0 is ν = (0, 1) and ρ is a character in

P̂1 ' R.
(4) π4,ρ = IndPN0P1(νρ), where ν ∈ N̂0 is ν = (0,−1) and ρ is a character in

P̂1 ' R.
(5) π5,σ = σ ◦ q, where σ ∈ P̂0 and q : P → P0 is the quotient map.

Proof. We follow the strategy of the Mackey Machine as described in Theorem 6.42
in [13], which gives a complete description of the unitary dual of P . We think of
P = N0 o P0 as a subgroup of R2 o SL2(R), where SL2(R) acts on R2 by matrix
multiplication. The action P0 y N0 is then simply matrix multiplication, and the
dual action P0 y N̂0 is given by (p.ν)(n) = ν(p−1.n) for p ∈ P0, ν ∈ N̂0 and
n ∈ N0. Under the usual identification N̂0 ' R2 we see that p ∈ P0 acts on R2 by
matrix multiplication by the transpose of the inverse of p. Thus, if p has the form
in (5.1), then the action of p on R2 is

(
s
t

)
7→
(
λ−1 0
−a λ

)(
s
t

)
.
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There are five orbits in N̂0 under this action, which give the five alternatives in the
proposition. The orbits are

O1 = {(s, t) | s > 0},
O2 = {(s, t) | s < 0},
O3 = {(0, t) | t > 0},
O4 = {(0, t) | t < 0},
O5 = {(0, 0)}.

Since there are only finitely many orbits, the action of P0 on N̂0 is regular. As
representatives of the orbits we choose the points

(1, 0) ∈ O1, (−1, 0) ∈ O2, (0, 1) ∈ O3, (0,−1) ∈ O4, (0, 0) ∈ O5.

Case 1: ν = (1, 0). In this case the stabilizer subgroup of ν inside P0 is trivial, and
hence we obtain the representation π = IndPN0(ν).

Case 2: ν = (−1, 0). This is similar to case 1.

Case 3: ν = (0, 1). The stabilizer subgroup of ν inside P0 is P1, and hence we
obtain π = IndPN0P1(νρ), where ρ ∈ P̂1. Here the representation νρ on N0P1 is
given by

(νρ)(nh) = ν(n)ρ(h), for all n ∈ N0, h ∈ P1.

Case 4: ν = (0,−1). This is similar to case 3.

Case 5: ν = (0, 0). In this case the stabilizer subgroup of ν inside P0 is everything.
It follows that π is a representation which satisfies π(n) = 〈n, ν〉 for every n ∈ N0.
In other words, π is trivial on N0 and factors to an irreducible representation σ of
P0. That is, π = σ ◦ q. �

The Plancherel measure of a group describes how the left regular representation
decomposes as a direct integral of irreducible representations. For example, the
Plancherel measure of a locally compact abelian group is simply the Haar measure
on the dual group. This is seen using the Fourier transform. The following propo-
sition determines the Plancherel measure of P and shows in particular that the
measure is purely atomic. Hence the left regular representation of P is completely
reducible.

Proposition 14. The left regular representation λP of P is (equivalent to) the
countably infinite direct sum of π1 ⊕ π2, where π1 and π2 are as in Proposition 13.

Proof. Again it is useful to view P as the semidirect product P = N0 o P0. We
follow the approach described in [4, Section 1]. Their results are stated for the right
regular representation, but everything works mutatis mutandis for the left regular.
As before, the dual group N̂0 is identified with R2, and the Plancherel measure
on N̂0 is simply Lebesgue measure. The orbits under the dual action P0 y N̂0
which have positive Lebesgue measure are O1 and O2, and their complement in
N̂0 is a null set (the y-axis). The stabilizer subgroups inside P0 of the points (1, 0)
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and (−1, 0) are trivial, so in particular these stabilizer subgroups have completely
reducible regular representations. Thus criteria (a) and (b) of [4] are satisfied, and
it follows from their calculation on page 595 that

λP =
∞⊕

n=1
(π1 ⊕ π2).

�

Lemma 15. Consider the groups P = N0 oP0 and N1 ⊆ P . If π is an irreducible
unitary representation of P , then one (and only one) of the following holds.

(1) π(g) = 1 for every g in the subgroup N1,
(2) π is a subrepresentation of λP .

Proof. We divide the proof into the cases according to the description in Proposition
13.

If π = π1 or π = π2, then it follows from Proposition 14 that π is a subrepresentation
of λP .

Suppose now π = π3,ρ, where ρ ∈ P̂1. If we let ν = (0, 1) ∈ N̂0, then we see
that N1 = ker ν. Hence the representation νρ of N0P1 is trivial on N1 which
is normal in P . Since N0P1 is a normal subgroup of P , the homogeneous space
P/(N0P1) has a P -invariant measure, Haar measure. It follows from Lemma 12
that π = IndPN0P1(νρ) is trivial on N1.

The case π = π4,ρ is similar to the previous case. We simply note that ker ν̄ = N1,
where ν̄ = (0,−1).

In the case π = π5,σ, it is clear that π(g) = 1 for every g ∈ N0, and hence in
particular for every g ∈ N1. �

Lemma 16. The group P is of type I.

Proof. The group P is a connected, real algebraic group, and such groups are of
type I according to [8, Theorem 1].

�

We collect the previous results of this section in the following proposition, which
together with Theorem 4 immediately implies Theorem 2.

Proposition 17. Let P and N1 be the groups in (1.2) and (5.4). The following
holds.

(1) P is of type I.
(2) Every irreducible unitary representation of P is either trivial on the non-

compact closed subgroup N1 or is a subrepresentation of λP .
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6. Simple Lie groups of real rank one

Let G be a connected simple Lie group with finite center and of real rank one.
Let G = KAN be an Iwasawa decomposition of G. Then K is a maximal compact
subgroup, A is abelian of dimension 1, and N is nilpotent. LetM be the centralizer
of A in K, and let P = MAN be the minimal parabolic subgroup of G.

It is known that G is locally isomorphic to one of the classical groups SO0(n, 1),
SU(n, 1), Sp(n, 1) or the exceptional group F4(−20) (see for instance the list on
p. 426 in [21]), and we now describe these groups in more detail, including explicit
descriptions of the Iwasawa subgroups and the minimal parabolic subgroup P .

6.1. The classical cases. Let F be one of the three finite-dimensional division
algebras over the reals, the real field R, the complex field C or the quaternion
division ring H. In the exceptional case treated later, F will be the non-associative
real algebra O of octonions, also known as the Cayley algebra. We let Re F and
Im F denote the real and imaginary part of F, so that F = Re F+ Im F, and in the
standard notation

Im R = 0, Im C = Ri, Im H = Ri+ Rj + Rk.

We use the notation F′ to denote the unit sphere in F,
F′ = {x ∈ F | ‖x‖ = 1},

and F∗ = F \ {0}.

Let Fp,q denote the real vector space Fp+q equipped with the hermitian form

〈x, y〉 =
p∑

i=1
xiȳi −

p+q∑

i=p+1
xiȳi.

We also think of Fp,q as a right F-module. Of course, Fn = Fn,0. We write wt for
the row vector which is the transpose of a column vector w ∈ Fn. Also, w∗ = w̄t

and |w|2 = w∗w = 〈w,w〉, when w ∈ Fn.

Let U(p, q,F) denote the unitary group of Fp,q, i.e. the square matrices over F of
size p+q that preserve the hermitian form. If F is R or C, we will be concerned with
the unitaries of determinant 1. We write SU(p, q,F) for this group. It is customary
to write

U(p, q,R) = O(p, q), SU(p, q,R) = SO(p, q),
SU(p, q,C) = SU(p, q), U(p, q,H) = Sp(p, q),

The groups SU(p, q) and Sp(p, q) are connected, and Sp(p, q) is even simply con-
nected (see [21, Section I.17]).

We let U0(p, q,F) denote the connected component of U(p, q,F). Note that
U0(n,R) = SO(n), U0(n,C) = U(n), U0(n,H) = Sp(n),

and in particular U0(1,R) = {1}. We remark that U0(n,F) acts transitively on the
unit sphere in Fn except for the case n = 1 and F = R.
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The following is taken from [24]. Let G be one of SO0(n, 1), SU(n, 1), Sp(n, 1).
Then the subgroups related to the Iwasawa decomposition of G are the following.

K =
(
k 0
0 β

)
,

k ∈ U0(n,F), β ∈ U0(1,F),
β det k = 1 if F 6= H

(6.1)

M =



β 0 0
0 u 0
0 0 β


 ,

u ∈ U0(n− 1,F), β ∈ U0(1,F),
β2 detu = 1 if F 6= H

(6.2)

A =




cosh t 0 sinh t
0 I 0

sinh t 0 cosh t


 , t ∈ R

N =




1 + z − 1
2 |w|2 w∗ −z + 1

2 |w|2
−w I w

z − 1
2 |w|2 w∗ 1− z + 1

2 |w|2


 , w ∈ Fn−1, z ∈ Im F (6.3)

The subgroups M and A of P commute. The group N is normal in P , and P is
the semi-direct product of MA and N . To describe the action of M and A on N ,
it will be easier to work with a group isomorphic to P (but no longer a subgroup
of G) obtained by conjugating P by the orthogonal matrix




1√
2 0 1√

2
0 I 0
− 1√

2 0 1√
2


 .

Then A and N become, with α = et,

A =



α 0 0
0 I 0
0 0 α−1


 , α > 0 (6.4)

N =




1 wt z + 1
2 |w|2

0 I w̄
0 0 1


 , w ∈ Fn−1, z ∈ Im F (6.5)

while M remains the same. We have chosen to rescale the parameter z in (6.5) by
a factor of two compared with (6.3) and replace w by its conjugate w̄, so that the
group law in N matches the one from [33]. We think of the group N as Fn−1×Im F
with group structure

(w1, z1)(w2, z2) = (w1 + w2, z1 + z2 + Im〈w1, w2〉)

and write (w, z) for the matrix in (6.5). The action MAy N is given by

α.(w, z) = (αw,α2z) (6.6)
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and

diag(β, u, β).(w, z) = (uwβ−1, βzβ−1). (6.7)

Note that the three subsets {0} × Im F, {0} × Im F∗ and Fn−1 × {0} are invariant
under the action MA. If F = R, then N is abelian, and otherwise the center of N
is

Z(N) = {(0, z) | z ∈ Im F}.

6.2. The exceptional case. The exceptional group F4(−20) has a realization as
automorphisms of a Jordan algebra. A detailed treatment of the group F4(−20) can
be found in [29] including a description of the Iwasawa decomposition F4(−20) =
KAN (see [29, §5 Theoreme 1]). Here we only describe the components M , A
and N of the minimal parabolic subgroup P = MAN and not the group F4(−20)
itself. The group P is best described using the octonion non-associative division
algebra O. For a detailed description of the octonions we refer to [29, §1]. Another
reference is [1, 2].

We recall that O is an 8-dimensional real vector space, and thus we usually identify
O with R8. We use the notation ȳ for the conjugate of y ∈ O, and we let 〈x, y〉 = xȳ.
The real bilinear form (x|y) = Re〈x, y〉 corresponds to the usual inner product on
R8. The imaginary octonions Im O form a subspace identified with R7.

The group N is O× Im O with group product

(w1, z1)(w2, z2) = (w1 + w2, z1 + z2 + Im〈w1, w2〉).
The center of N is Z(N) = {(0, z) | z ∈ Im O}, and the quotient N/Z(N) is then
isomorphic to (O,+). The group N is connected and nilpotent.

The group A is R+, and the action Ay N is given by

α.(w, z) = (αw,α2z), α ∈ R+.

The group M is the spin group Spin(7), which is the (2-sheeted) universal cover of
SO(7). In order to describe the actionM y N , we need to consider two orthogonal
representations of Spin(7), the spin representation σ : M → SO(8) and the vector
representation ν : M → SO(7). Then the action M y N is then given as

u.(w, z) = (σ(u)w, ν(u)z), u ∈ Spin(7).

If we identify Im O with R7 in the usual way, then SO(7) acts on Im O by ma-
trix multiplication. The vector representation ν is simply the covering homomor-
phism ν : Spin(7) → SO(7). Under the identification of Im O with R7, the purely
imaginary unit octonions are identified with the unit sphere S6. Since SO(7) acts
transitively on S6, it follows that MA acts transitively on Im O∗.

The spin representation σ : Spin(7)→ SO(8) gives a transitive action of Spin(7) on
S7 (see [29, §4 Lemme 1]).

The actions of M and A on N commute and thus give an action M ×Ay N . The
group P is the semidirect product P = MAnN .
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Note that the three subsets {0}×Im O, {0}×Im O∗ and O×{0} of N are invariant
under the action MA.

7. The irreducible representations of parabolic subgroups

In this section we describe the unitary dual of the minimal parabolic subgroups P
from the previous section. The result is contained in Theorem 18 and Theorem 20.
We also prove that P and N are of type I.

7.1. The classical cases. Let G be one of the classical groups SO0(n, 1), SU(n, 1),
Sp(n, 1), and let P = MAN be the minimal parabolic subgroup of G. To describe
the irreducible representations of P we rely on the work of [33], in which groups
very similar to our P are considered as well as many other groups. In fact, they
consider the group M̃AN , where M̃ is

M̃ =



β 0 0
0 u 0
0 0 β


 , u ∈ U(n− 1,F), β ∈ U(1,F)

Their conclusion about the irreducible representations is contained in [33, Propo-
sition 7.8]. Actually, if F = H, which is the case we are most interested in because
of future applications [14], then M̃ = M , and Theorem 18 is a special case of [33,
Proposition 7.8].

The discussion below is based on Section 4 and 7 from [33] to which we refer for
proofs and more details. The arguments carry over without any challenges to our
situation. The representations of P fall into three series.

(1) The subgroup N is normal in P , and P/N 'MA. We let q : P → P/N denote
the quotient map. Of course, any irreducible representation σ of P/N gives rise to
the irreducible representation σ ◦ q of P , and these are precisely the irreducibles of
P that annihilate N .

(2) Next we describe the irreducibles of P arising from characters on N . Let
v ∈ Fn−1 be non-zero, and define the character χv on N by

χv(w, z) = exp(iRe〈w, v〉).
The group MA acts on N by conjugation, and this induces a dual action of MA

on N̂ . Let Lv be the stabilizer of χv in MA under this action. Then χv extends to
a character of N o Lv by the formula

χv(w, z, g) = χv(w, z) = exp(iRe〈w, v〉), (w, z, g) ∈ Fn−1 × Im F× Lv.
Let γ be an irreducible representation of Lv. Extend γ to be the irreducible repre-
sentation of N o Lv defined by letting γ be trivial on N . Form the tensor product
representation χv ⊗ γ and induce this representation from N o Lv to P to get a
representation π2,v,γ of P ,

π2,v,γ = IndPNLv
(χv ⊗ γ).
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Before we move on to the last series in P̂ , we describe the action of MA on the
non-trivial characters on N in more detail. The action is given by (6.6) and (6.7),

(u, β, α).χv = χv′ where v′ = u−1α−1vβ. (7.1)

We see that unless G = SO0(2, 1), the action of MA on Fn−1 \ {0} is transitive,
and if G = SO0(2, 1), the action of MA on R∗ has two orbits R+ and R−. A set of
representatives for the orbits MAy Fn−1 \ {0} is then

S2 = {−1, 1} if G = SO0(2, 1) and S2 = {1} if G 6= SO0(2, 1)

The stabilizer Lv is Lv = {(u, β) ∈M | uv = vβ}, and we note that Lv ⊆M .

(3) Finally, we consider representations that do not come from characters on N .
This happens only when F 6= R. Let m ∈ Im F∗, and define λ : Im F → R
by λ(z) = −Re(mz̄). Then λ is a non-trivial R-linear map. It is known that
there exists an infinite dimensional irreducible representation ηm of N , uniquely
determined be the property

ηm(w, z) = eiλ(z)ηm(w, 0), (w, z) ∈ Fn−1 × Im F.

Moreover, ηm is uniquely determined within unitary equivalence by the central char-
acter λ (see [33, Lemma 4.4]). The groupMA acts on the classes of representations
ηm. Let Lm denote the stabilizer in MA of the class [ηm],

Lm = {g ∈MA | g.ηm ' ηm}.
Then ηm extends to a representation of N oLm as discussed in [33, Section 7], and
the extension is of course still irreducible.

Let γ be an irreducible representation of Lm. Extend γ to be the irreducible
representation of N o Lm defined by letting γ be trivial on N . Form the tensor
product representation ηm⊗γ and induce this representation to get a representation
π3,m,γ of P ,

π3,m,γ = IndPNLm
(ηm ⊗ γ).

We now describe the action of MA on the infinite dimensional representations of
N in more detail. Since ηm is uniquely determined within unitary equivalence by
λ (or equivalently by m), the action is best described by the action MA y Im F∗
given by (6.6) and (6.7),

(u, β, α).ηm = ηm′ where m′ = βα−2mβ−1. (7.2)

If F = C, there are two orbits under this action, iR+ and iR−, and if F = H, there
is only one orbit Im F∗. As a set of representatives for the orbits we choose

S3 = {−i, i} if F = C and S3 = {i} if F = H.

The stabilizer of m ∈ {−i, i} is
Lm = {(u, β) ∈M | β ∈ R + Ri}

We note that the stabilizer Lm ⊆M .

The three constructions given above exhaust the unitary dual of P .
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Theorem 18. Let G be one of the classical groups SO0(n, 1), SU(n, 1), Sp(n, 1),
let F be the corresponding division algebra (R, C or H), and let P = MAN be
the minimal parabolic subgroup of G. The irreducible representations of P fall into
three series as follows.

(1) The series
π1,σ = σ ◦ q,

where q : P → P/N is the quotient map, and σ ∈ P̂/N = M̂A. The classes
are parametrized by σ ∈ P̂/N .

(2) The series
π2,v,γ = IndPNLv

(χv ⊗ γ),

where v ∈ Fn−1 is non-zero and γ ∈ L̂v. The classes are parametrized by
v ∈ S2 and γ ∈ L̂v.

(3) The series (only when F 6= R)

π3,m,γ = IndPNLm
(ηm ⊗ γ)

where m ∈ Im F∗ and γ ∈ L̂m. The classes are parametrized by m ∈ S3
and γ ∈ L̂m.

Lemma 19. Consider the minimal parabolic subgroup P = MAN in one of the
classical groups SO0(n, 1), SU(n, 1), Sp(n, 1). Then P and N are of type I.

Proof. It is known that connected nilpotent Lie groups are of type I (see [9, Corol-
laire 4]), and it follows that N is of type I.

Theorem 9.3 in [22] provides a way of establishing that P is type I. First of all, N̂
is a standard Borel space, because N is of type I. The action MA y N̂ has only
finitely many orbits (the exact number depends on F and n), so in particular there
is a Borel set in N̂ which meets each orbit exactly once. By [22, Theorem 9.2] the
action MAy N̂ is regular, that is, N is regularly embedded in P .

We now verify that when π ∈ N̂ , the stabilizer Lπ = {g ∈ MA | g.π ' π} is of
type I. Indeed, if π is the trivial character on N , then Lπ = MA which is a direct
product of the compact group M and the abelian group A. Hence the stabilizer
MA is of type I. If π is not the trivial character, then π = ηm or π = χv, where
m ∈ F∗ or v ∈ Im F∗, and we already saw that Lm and Lv are closed subgroups of
M and hence compact. In particular the stabilizers are of type I.

According to [22, Theorem 9.3] we may now conclude that P is of type I. �

7.2. The exceptional case. Let P = MAN be the minimal parabolic subgroup
of F4(−20). We will now describe the irreducible representations of P . Again, this
is based on [33]. They consider the group M̃AN , where M̃ = Spin(7)×{±1}. The
complete description of the unitary dual of M̃AN can be found in (8.12) and (8.15)
in [33]. The discussion below is based on Section 8 in [33] to which we refer for
proofs and more details. The representations fall into two series.
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(1) Irreducible representations of N that annihilate the center Z(N) = Im O are
characters of the form χv for some v ∈ O, where χv is given by

χv(w, z) = eiRe〈w,v〉 = ei(w|v)

The group MA acts on N , and this induces a dual action of MA on N̂ .

Let Lv be the stabilizer of χv in MA. Then χv extends to a character of N o Lv
by the formula

χv(w, z, g) = χv(w, z) = ei(w|v), (w, z, g) ∈ O× Im O× Lv.
Let γ be an irreducible representation of Lv. Extend γ to be the irreducible repre-
sentation of N o Lv defined by letting γ be trivial on N . Form the tensor product
representation χv ⊗ γ and induce this representation from N o Lv to P to get a
representation π1,v,γ of P ,

π1,v,γ = IndPNLv
(χv ⊗ γ).

This representation π1,v,γ is a representation in the first series.

From the definition of the action MAy N we see that

(u, α).χv(w, z) = ei((ασ(u))−1w|v) = ei(w|ασ(u)v) = χασ(u)v(w, z)

SinceM acts transitively on S7 ⊆ O, we see thatMA acts transitively O∗ and thus
on the characters {χv}v∈O∗ .

If v = 0, the stabilizer Lv is of course all of MA. Otherwise the stabilizer Lv is

Lv = {(u, α) ∈MA | σ(u)αv = v}.
Since σ(u) preserves the norm of elements in O, we see that if (u, α) ∈ Lv, then
α = 1. Hence Lv ⊆M .

(2) Let m ∈ Im O∗ be non-zero, and define λ : Im O → R by λ(z) = −Re(mz̄).
Then λ is a non-trivial R-linear map which is uniquely determined bym. Irreducible
representations of N that do not annihilate the center are infinite dimensional and
of the form ηm for some m ∈ Im O∗, where ηm is uniquely determined by the
property

ηm(w, z) = eiλ(z)ηm(w, 0), (w, z) ∈ N.
Moreover, the equivalence class of ηm is uniquely determined by the central char-
acter λ and hence by m. Since the action of MA on Im O∗ is transitive, MA acts
transitively on the set {ηm}m∈Im O∗ .

Let Lm denote the stabilizer in MA of the class of ηm. Then

Lm = {u ∈M | ν(u)m = m}.
It follows from [33, Lemma 8.14] that ηm extends to a representation of N o Lm.
Let γ be an irreducible representation of Lm, and extend γ to N o Lm by letting
γ be trivial on N . Form the tensor product representation ηm ⊗ γ and induce this
representation to get a representation π2,m,γ of P ,

π2,m,γ = IndPNLm
(ηm ⊗ γ).
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Theorem 20. Let P = MAN be the minimal parabolic subgroup of F4(−20) and
let π be an irreducible representation of P . Then π is unitarily equivalent to one of
the following.

(1) π1,v,γ = IndPNLv
(χv ⊗ γ) for some v ∈ O and γ ∈ L̂v.

(2) π2,m,γ = IndPNLm
(ηm ⊗ γ) for some m ∈ Im O∗ and γ ∈ L̂m.

Lemma 21. Consider the minimal parabolic subgroup P = MAN of F4(−20). Then
P and N are of type I.

Proof. Since N is a connected nilpotent Lie group, N is of type I (see [9, Corol-
laire 4]).

Theorem 9.3 in [22] provides a way of establishing that P is type I. First of all, N̂
is a standard Borel space, because N is of type I. The action MA y N̂ has only
three orbits,

O1 = {χ0}, O2 = {χv}v∈O∗ , O3 = {ηm}m∈Im O∗ ,

where χ0 is the trivial representation. Then, clearly, there is a Borel set in N̂ which
meets each orbit exactly once. By [22, Theorem 9.2] the actionMAy N̂ is regular.

We now verify that when π ∈ N̂ , the stabilizer Lπ = {g ∈ MA | g.π ' π} is of
type I. Indeed, if π = ηm or π = χv, where m ∈ O∗ or v ∈ Im O∗, then we already
saw that Lm and Lv are compact and in particular of type I. If π = χ0, then the
stabilizer is MA which is a direct product of the compact group M and the abelian
group A. Hence the stabilizer MA is of type I.

According to [22, Theorem 9.3] we may now conclude that P is of type I. �

8. The Fourier algebra of P

In this section we verify the last condition in Theorem 4 for the minimal parabolic
subgroups P . The result is contained in Proposition 27.

Recall that part of the Peter-Weyl Theorem asserts that the left regular representa-
tion of a compact group is completely reducible, and every irreducible representation
of the compact group occurs as a direct summand (see [13, Theorem 5.12]).

We now set out to determine which irreducible representations of P that occur
as subrepresentations of the left regular representation. For this we will rely on
Corollary 11.1 in [20]. In order to apply the corollary we first need to verify the
assumptions I-IV from [20]. For this it will suffice to observe that N and P are of
type I (see Lemma 19 and Lemma 21), and all stabilizers Lv and Lm are closed
and contained in M , so they are compact and in particular of type I.

In the case of the representation π1,v,γ , Corollary 11.1 in [20] then applies to show
that π1,v,γ is a subrepresentation of the left regular representation of P if and only if
γ is a subrepresentation of the left regular representation of the stabilizer group Lv
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and the orbit of χv inside N̂ has positive Plancherel measure. Similar conclusions
hold in the other cases.

8.1. The classical cases. We first consider the case where F = R.
Lemma 22. Let G be the group SO0(n, 1), and let P = MAN be the minimal
parabolic subgroup of G. Any irreducible unitary representation π of P is either
trivial on the non-compact subgroup N or is a subrepresentation of λP .

Proof. We divide the proof into the cases according to the description in Theo-
rem 18.

In the case π = π1,σ, it is clear that π(g) = 1 for every g ∈ N .

Consider now a representation π = π2,v,γ where v is non-zero. Since Lv is compact,
γ ∈ L̂v is a subrepresentation of the regular representation of Lv. If n 6= 2, then the
action of MA on the non-zero characters of N is transitive. In particular, the orbit
has positive Plancherel measure in N̂ . If n = 2, then the orbit of χv is either R+ or
R− inside N̂ ' R, and both of these sets have positive measure. By Corollary 11.1
in [20] we conclude that π is a subrepresentation of λP .

The case π = π3,m,γ does not occur, when F = R. �

From Proposition 8 we can now conclude that the left regular representation of P
is completely reducible. From the proof of Lemma 22 we then obtain the following.
Corollary 23. Let G be the group SO0(n, 1), and let P = MAN be the minimal
parabolic subgroup of G. The left regular representation of P is completely reducible
with the representations π2,v,γ as its subrepresentations. Here v ∈ S2 and γ ∈ L̂v.

When F equals C or H we have the following.
Lemma 24. Let G be one of the groups SU(n, 1), Sp(n, 1), and let P = MAN be
the minimal parabolic subgroup of G. Any irreducible unitary representation π of
P is either trivial on the non-compact subgroup Z(N) or is a subrepresentation of
λP .

Proof. We divide the proof into the cases according to the description in Theo-
rem 18.

In the case π = π1,σ, it is clear that π(g) = 1 for every g ∈ N , and hence in
particular for every g ∈ Z(N).

Suppose now π = π2,v,γ . Since χv is trivial on Z(N) and γ is trivial on N , it follows
that χv⊗γ is trivial on Z(N). Since Z(N)/P , it now follows from Lemma 12 that
π is trivial on Z(N), once we show that the homogeneous space P/NLv admits a
P -invariant measure. Using Proposition 11 we find

P/NLv 'MA/Lv 'M/Lv ×A.
The left translation action A y A has the Haar measure as an invariant measure.
Since M is compact, the action M y M/Lv has an invariant measure. It follows
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that P y NLv has an invariant measure, and then by Lemma 12 the representation
π is trivial on Z(N).

Consider now a representation π = π3,m,γ . Since Lm is compact, γ ∈ L̂m is a
subrepresentation of the regular representation of Lm. It remains to show that the
orbit of ηm in N̂ has positive Plancherel measure.

If F = H, then the third series of Theorem 18 forms a single orbit, which must then
have positive Plancherel measure, because all other irreducible representations of
N are trivial on Z(N) and hence must form a null set for the Plancherel measure.

If F = C, then the action of MA on the representations {ηm ∈ N̂ | m ∈ Im F∗} has
two orbits, so the simple argument for H does not apply. Luckily, the Plancherel
measure of N is well-known. In fact, N is the Heisenberg group of dimension 2n−1,
and the Plancherel measure for the Heisenberg group can be found on p. 241 in
[13]. We see that the measure of the orbit of ηi is

µN (P.ηi) =
∫ ∞

0
|m|n−1 dm.

Hence the orbit of ηi has positive, in fact infinite, measure. Similarly, the orbit
of η−i has positive measure. By Corollary 11.1 in [20] we conclude that π is a
subrepresentation of λP . �

From Proposition 8 we can now conclude that the left regular representation of P
is completely reducible. From the proof of Lemma 24 we then obtain the following.

Corollary 25. Let G be one of the classical groups SU(n, 1), Sp(n, 1), and let
P = MAN be the minimal parabolic subgroup of G. The left regular representation
of P is completely reducible with the representations π3,m,γ as its subrepresentations.
Here m ∈ S3 and γ ∈ L̂m.

8.2. The exceptional case.

Lemma 26. Let P = MAN be the minimal parabolic subgroup of F4(−20). Any ir-
reducible unitary representation π of P is either trivial on the non-compact subgroup
Z(N) ' ImO or is a subrepresentation of λP .

Proof. Recall that any irreducible representation of P is given as in Theorem 20. We
will show that representations π1,v,γ are trivial on Z(N) and that representations
π2,m,γ are subrepresentations of λP .

Suppose first π = π1,v,γ . The proof from Lemma 24 carries over verbatim and
shows that π is trivial on Z(N).

Consider now a representation π = π2,m,γ . Since Lm is compact, γ ∈ L̂m is a
subrepresentation of the regular representation of Lm. It remains to show that the
orbit of ηm in N̂ has positive Plancherel measure.

Clearly, the characters {χv}v∈O form a null set for the Plancherel measure on N̂ ,
because they are all trivial on the non-compact subgroup Z(N). As mentioned in
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the proof of Lemma 21, the complement of {χv}v∈O forms a single orbit in N̂ under
the action of MA. Thus, the orbit of ηm must have positive Plancherel measure.
By Corollary 11.1 in [20] we conclude that π is a subrepresentation of λP . �

8.3. Conclusion. The following proposition sums up the necessary results from
this and last section so that we may apply Theorem 4.

Proposition 27. Let n ≥ 2, and let G be one of the simple Lie groups SO0(n, 1),
SU(n, 1), Sp(n, 1) or F4(−20). Let P = MAN be the minimal parabolic subgroup in
G. The following holds.

(1) P is type I.
(2) There is a non-compact, closed subgroup H of P such that every irreducible

unitary representation of P is either trivial on H or is a subrepresentation
of the regular representation λP .

In fact, if G = SO0(n, 1), then one can take H = N , and otherwise one can take
H = Z(N).

From Proposition 27 and Theorem 4 we immediately obtain Theorem 3.

9. The relative Howe-Moore property

In this section we prove Corollary 5 concerning the relative Howe-Moore property.
We recall from [6] that if H is a closed subgroup of a locally compact group G,
then the pair (G,H) has the relative Howe-Moore property, if every representation
π of G either has H-invariant vectors, or the restriction π|H is a C0-representation,
i.e. all coefficients of π|H vanish at infinity. Using a direct integral argument, it
is proved in [6, Proposition 2.3] that it is sufficient to consider only irreducible
representations of G.

From the results in the previous sections we easily obtain the following, which
obviously implies Corollary 5.

Corollary 28. If P is the group in (1.2) and N1 is the group in (5.4), then N1 is
a normal, non-compact closed subgroup of P , and (P,N1) has the relative Howe-
Moore property.

Let n ≥ 2. If P = MAN the minimal parabolic subgroup in the simple Lie group
SO0(n, 1), then N is a normal, non-compact closed subgroup of P , and (P,N) has
the relative Howe-Moore property.

If P = MAN the minimal parabolic subgroup in one of the simple Lie groups
SU(n, 1), Sp(n, 1) or F4(−20), then Z(N) is a normal, non-compact closed subgroup
of P , and (P,Z(N)) has the relative Howe-Moore property.

Proof. Apply Proposition 17 or Proposition 27, respectively. Since any subrepresen-
tation of the left regular representation λP is a C0-representation, we immediately
obtain the result. �

166



FOURIER ALGEBRAS OF PARABOLIC SUBGROUPS 25

10. Concluding remarks

Theorem 3 shows that Question 1 has a positive answer for the minimal parabolic
subgroups P = MAN in the groups SO0(n, 1), SU(n, 1), Sp(n, 1) and F4(−20). One
could ask if the same is true for the smaller groups MN , AN or N . We will
now discuss these cases. Recall from the introduction that a non-compact second
countable connected unimodular groups never satisfy (1.1).

Let G be one of the groups classical groups SO0(n, 1), SU(n, 1), Sp(n, 1) with n ≥ 2
or the exceptional group F4(−20). Let F be the corresponding division algebra, R,
C, H or O. We start by discussing the groups N . Since N is nilpotent, N is
unimodular. Indeed, a locally compact group G is unimodular if and only if G/Z
is unimodular, where Z is the center of G (see [27, p. 92]). Induction on the length
of an upper central series then shows that all locally compact nilpotent groups are
unimodular. Since N is also connected and second countable, it follows that

A(N) 6= B(N) ∩ C0(N).

Next we discuss the groupsMN . SinceMN is a semi-direct product of the unimod-
ular group N by the compact groupM , we will argue thatMN itself is unimodular.
Indeed, this follows directly from [27, Proposition 23] but we also include another
argument here. If we use ∆G to denote the modular function of a locally compact
group G, then since N is normal in MN , we see that the quotient space MN/N
has an invariant measure, Haar measure on M , and using [13, Theorem 2.49] we
see that ∆MN |N = ∆N = 1. Also, since M is compact, ∆MN |M = 1 by [13,
Proposition 2.27]. Since M and N generate MN , it follows that ∆MN = 1. So
MN is connected and unimodular, and hence

A(MN) 6= B(MN) ∩ C0(MN).

Alternatively, one could show that all orbits in N̂ under the action of M have zero
Plancherel measure. This type of argument will be used below for the groups AN .

For the groups SO0(n, 1), Sp(n, 1) and F4(−20) it will usually also be the case that
Question 1 has a negative answer for the groups AN as well. However, there is one
exception. If G = SO0(2, 1), then M is trivial and P coincides with AN . Hence
it follows from Theorem 3 that Question 1 has an affirmative answer for the group
AN . In this special case let us remark that in fact AN is isomorphic to the ax+ b
group, and the result that A(AN) = B(AN) ∩ C0(AN) is actually the original
result of Khalil from [19].

The unimodularity argument used for the groups N and MN cannot be repli-
cated for AN , since these groups are not unimodular (see [18, (1.14)]). As men-
tioned in the introduction, a group satisfying (1.1) has a completely reducible left
regular representation, and in particular the left regular representation has irre-
ducible subrepresentations. Then by [20, Corollary 11.1] at least one of the or-
bits of the action A y N̂ must have positive Plancherel measure. To show that
A(AN) 6= B(AN) ∩ C0(AN) it therefore suffices to show that any orbit of Ay N̂
has zero Plancherel measure.
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It this point we split the argument in cases. Consider first the case when F = R
and n ≥ 3. Then N ' Rn−1, and the Plancherel measure on N̂ ' Rn−1 is the
Lebesgue measure. Since A acts on N̂ by dilation, every orbit except {0} is a a
half-line. Since n ≥ 3 every half-line in Rn−1 has vanishing Lebesgue measure, and
hence every orbit in N̂ has vanishing Plancherel measure.

In the other cases F is C, H or O. For convenience, when F = O, we set n = 2. As
mentioned earlier, the dual N̂ then consists of the characters {χv}v∈Fn−1 and the
infinite dimensional representations N̂r = {ηm}m∈Im F∗ .

Fortunately, the Plancherel measure for N is known. It is described in [7, Section 3].
Since the characters are trivial on the center Im F of N which is non-compact, the
characters form a null set for the Plancherel measure. Let k be the dimension of
Im F as a real vector space so that k is either 1, 3 or 7. If we identify N̂r with Im F∗
which in turn is identified with the punctured Euclidean space Rk \ {0}, then it
follows from [7, p. 524] that the Plancherel measure on N̂r is absolutely continuous
(has density) with respect to the Lebesgue measure.

Since A acts on N̂r by dilation, every orbit in N̂r is a a half-line. Every half-line
has vanishing Lebesgue measure, unless k = 1, and hence every orbit in N̂r has
vanishing Plancherel measure, except when F = C. Combined with the fact that
the characters have vanishing Plancherel measure, we conclude that every orbit in
N̂ has vanishing Plancherel measure. As pointed out, the argument breaks down
when F = C.

We collect the discussion above in the following proposition.

Proposition 29. Let G be one of the simple Lie groups SO0(n, 1) (n ≥ 3), Sp(n, 1)
(n ≥ 2) or F4(−20). Let G = KAN be the Iwasawa decomposition of G. Then if H
is either N , MN or AN , then

A(H) 6= B(H) ∩ C0(H).

Finally, we consider the group AN in G = SU(n, 1).

Proposition 30. Let G be the simple Lie group SU(n, 1) (n ≥ 2) with Iwasawa
decomposition G = KAN . Then

A(AN) = B(AN) ∩ C0(AN).

Proof. We will verify the conditions of Theorem 4 for the group AN .

First we verify that AN is a group of type I. We mimic the proof of Lemma 19.
Recall thatN is of type I, and hence N̂ is a standard Borel space. Using the notation
from Section 7, we identify N̂ with the union of the characters {χv}v∈Cn−1 and the
infinite dimensional representations {ηm}m∈iR∗ . The action Ay N̂ is described by
(7.1) and (7.2), and it is easy to read off the orbits of the action.

The characters in N̂ , which we think of simply as Cn−1, form an invariant subset
whose orbits consist of the origin {0} and half-lines originating at the origin. The
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infinite dimensional representations in N̂ , which we think of simply as iR∗ also form
an invariant subset which has two orbits, iR+ and iR−.

If S denotes the unit sphere in Cn−1 ' R2n−2, then R = {0} ∪ S ∪ {i,−i} is a set
of representatives for the orbits of A y N̂ . We claim that R is a Borel subset of
N̂ . To see this, it suffices to prove that S is a Borel subset, since points are always
Borel subsets in a standard Borel space.

The group N is the Heisenberg group of dimension 2n − 1, and the Fell topology
on N̂ is well-known (see e.g. [13, Chapter 7]). The characters {χv}v∈Cn−1 form a
closed subset in N̂ , and on the set of characters the Fell topology coincides with the
Euclidean topology (on Cn−1). In particular S is closed in the Fell topology. By
[13, Theorem 7.6], the Mackey Borel structure on N̂ is induced by the Fell topology,
since N is of type I. It follows that S is a Borel set.

We may now conclude from [22, Theorem 9.2] that the action A y N̂ is regular,
that is, N is regularly embedded in AN .

Next we verify that if π ∈ N̂ , then the stabilizer Lπ = {α ∈ A | α.π ' π} is of type
I. Indeed, if π is the trivial character on N , then Lπ = A which is abelian group.
Hence the stabilizer A is of type I. If π is not the trivial character, then the stabilizer
Lπ is trivial. So all stabilizers are of type I. According to [22, Theorem 9.3] we may
now conclude that AN is of type I.

The unitary dual of AN is described in [33, Proposition 7.6]. The irreducible
representations of AN fall into three series as follows (retaining earlier notation).

(1) The series
π1,σ = σ ◦ q,

where q : AN → A is the quotient map, and σ ∈ Â.
(2) The series

π2,v = IndANN (χv),
where v ∈ Cn−1 is non-zero. The classes are parametrized by the orbits of
Ay Cn−1 \ {0}.

(3) The series
π3,m = IndANN (ηm)

where m ∈ iR∗. The classes are parametrized by m ∈ {i,−i}.

We claim that π1,σ and π2,v are trivial on the center Z(N) of N , and that π3,m is
a subrepresentation of the regular representation.

Clearly, π1,σ annihilates N and in particular Z(N). Consider now a representation
π2,v = IndANN (χv), where v ∈ Cn−1 is non-zero. The character χv ∈ N̂ is trivial
on Z(N). Both A and N normalize Z(N), so Z(N) is normal in AN . The repre-
sentation π2,v is induced from N to AN , and when the quotient space AN/N is
identified with A in the natural way, it is obvious that AN/N carries an invariant
measure for the AN -action, namely the Haar measure on A. From Lemma 12 it
now follows that π2,v is trivial on Z(N).
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Finally, consider a representation π3,m = IndANN (ηm) where m ∈ iR∗. We will
show that the orbit of ηm in N̂ has positive Plancherel measure, and then it follows
from [20, Corollary 11.1] that IndANN (ηm) is a subrepresentation of the left regular
representation of AN .

As mentioned before, the action of A on the representations {ηm ∈ N̂ | m ∈ iR∗}
has two orbits, iR+ and iR−. The Plancherel measure of N is known and can be
found on p. 241 in [13]. We see that the measure of the orbit of ηi is

µN (A.ηi) =
∫ ∞

0
|m|n−1 dm.

Hence the orbit of ηi has positive, in fact infinite, measure. Similarly, the orbit
of η−i has positive measure. By [20, Corollary 11.1] we conclude that π3,m is a
subrepresentation of the left regular representation of AN .

The conditions of Theorem 4 have now been verified for the group AN , and our
proof is complete. �
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APPROXIMATION PROPERTIES OF
SIMPLE LIE GROUPS MADE DISCRETE

SØREN KNUDBY AND KANG LI

Abstract. In this paper we consider the class of connected simple Lie groups
equipped with the discrete topology. We show that within this class of groups
the following approximation properties are equivalent: (1) the Haagerup prop-
erty; (2) weak amenability; (3) the weak Haagerup property (Theorem 1.10).
In order to obtain the above result we prove that the discrete group GL(2, K)
is weakly amenable with constant 1 for any field K (Theorem 1.11).

In the final part of the paper we give a contractive Schur multiplier char-
acterization of locally compact groups coarsely embeddable into Hilbert spaces
(Theorem 1.12). Consequently, all locally compact groups whose weak Haagerup
constant is 1 embed coarsely into Hilbert spaces and hence the Baum-Connes
assembly map with coefficients is split-injective for such groups.

1. Introduction

Amenability for groups was first introduced by von Neumann in order to study the
Banach-Tarski paradox. It is remarkable that this notion has numerous characteri-
zations and one of them, in terms of an approximation property by positive definite
functions, is the following: a locally compact (Hausdorff) group G is amenable if
there exists a net of continuous compactly supported, positive definite functions on
G tending to the constant function 1 uniformly on compact subsets of G. Later,
three weak forms of amenability were introduced: the Haagerup property, weak
amenability and the weak Haagerup property. In this paper we will study these
approximation properties of groups within the framework of Lie theory and coarse
geometry.

Definition 1.1 (Haagerup property [10]). A locally compact group G has the
Haagerup property if there exists a net of positive definite C0-functions on G, con-
verging uniformly to 1 on compact sets.

Definition 1.2 (Weak amenability [17]). A locally compact group G is weakly
amenable if there exists a net (ϕi)i∈I of continuous, compactly supported Herz-
Schur multipliers on G, converging uniformly to 1 on compact sets, and such that
supi ‖ϕi‖B2 <∞.
The weak amenability constant ΛWA(G) is defined as the best (lowest) possible
constant Λ such that supi ‖ϕi‖B2 ≤ Λ, where (ϕi)i∈I is as just described.

Date: October 15, 2014.
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Definition 1.3 (The weak Haagerup property [38]). A locally compact groupG has
the weak Haagerup property if there exists a net (ϕi)i∈I of C0 Herz-Schur multipliers
on G, converging uniformly to 1 on compact sets, and such that supi ‖ϕi‖B2 <∞.
The weak Haagerup constant ΛWH(G) is defined as the best (lowest) possible con-
stant Λ such that supi ‖ϕi‖B2 ≤ Λ, where (ϕi)i∈I is as just described.

Clearly, amenable groups have the Haagerup property. It is also easy to see that
amenable groups are weakly amenable with ΛWA(G) = 1 and that groups with the
Haagerup property have the weak Haagerup property with ΛWH(G) = 1. Also,
1 ≤ ΛWH(G) ≤ ΛWA(G) for any locally compact group G, so weakly amenable
groups have the weak Haagerup property.
It is natural to ask about the relation between the Haagerup property and weak
amenability. The two notions agree in many cases, like generalized Baumslag-
Solitar groups (see [14, Theorem 1.6]) and connected simple Lie groups with the
discrete topology (see Theorem 1.10). In general, weak amenability does not imply
the Haagerup property and vice versa. In one direction, the group Z/2 o F2 has the
Haagerup property [19], but is not weakly amenable [44]. In the other direction,
the simple Lie groups Sp(1, n), n ≥ 2, are weakly amenable [17], but since these
non-compact groups also have Property (T) [5, Section 3.3], they cannot have
the Haagerup property. However, since the weak amenability constant of Sp(1, n)
is 2n − 1, it is still reasonable to ask whether ΛWA(G) = 1 implies that G has
the Haagerup property. In order to study this, the weak Haagerup property was
introduced in [37, 38], and the following questions were considered.

Question 1.4. For which locally compact groups G do we have ΛWA(G) = ΛWH(G)?

Question 1.5. Is ΛWH(G) = 1 if and only if G has the Haagerup property?

It is clear that if the weak amenability constant of a group G is 1, then so is the
weak Haagerup constant, and Question 1.4 has a positive answer. In general, the
constants differ by the example Z/2 o F2 mentioned before. There is an another
class of groups for which the two constants are known to be the same.

Theorem 1.6 ([31]). Let G be a connected simple Lie group. Then G is weakly
amenable if and only if G has the weak Haagerup property. Moreover, ΛWA(G) =
ΛWH(G).

By the work of many authors [16, 17, 18, 24, 30, 33], it is known that a connected
simple Lie group G is weakly amenable if and only if the real rank of G is zero or
one. Also, the weak amenability constants of these groups are known. Recently,
a similar result was proved about the weak Haagerup property [31, Theorem B].
Combining the results on weak amenability and the weak Haagerup property with
the classification of connected Lie groups with the Haagerup property [10, Theo-
rem 4.0.1] one obtains the following theorem, which gives a partial answer to both
Question 1.4 and Question 1.5.

Theorem 1.7. Let G be a connected simple Lie group. The following are equiva-
lent.

(1) G is compact or locally isomorphic to SO(n, 1) or SU(n, 1) for some n ≥ 2.
(2) G has the Haagerup property.

176



APPROXIMATION PROPERTIES OF SIMPLE LIE GROUPS MADE DISCRETE 3

(3) G is weakly amenable with constant 1.
(4) G has the weak Haagerup property with constant 1.

The purpose of this paper is to consider the same class of groups as in theorem
above, but made discrete. When G is a locally compact group, we let Gd denote
the same group equipped with the discrete topology. The idea of considering Lie
groups without their topology (or with the discrete topology, depending on the
point of view) is not a new one. For instance, a conjecture of Friedlander and
Milnor is concerned with computing the (co)homology of the classifying space of
Gd, when G is a Lie group (see [40] and the survey [45]).
Other papers discussing the relation between G and Gd include [13], [4] and [6].
Since our focus is approximation properties, will we be concerned with the following
question.

Question 1.8. Does the Haagerup property/weak amenability/the weak Haagerup
property of Gd imply the Haagerup property/weak amenability/the weak Haagerup
property of G?

It is not reasonable to expect an implication in the other direction. For instance,
many compact groups such as SO(n), n ≥ 3, are non-amenable as discrete groups.
It follows from Theorem 1.10 below (see also Corollary 4.3) that when n ≥ 5, then
SO(n) as a discrete group does not even have the weak Haagerup property. It is
easy to see that Question 1.8 has a positive answer for second countable, locally
compact groups G that admit a lattice Γ. Indeed, G has the Haagerup property
if and only if Γ has the Haagerup property. Moreover, ΛWA(Γ) = ΛWA(G) and
ΛWH(Γ) = ΛWH(G).

Remark 1.9. A similar question can of course be asked for amenability. This case
is already settled: if Gd is amenable, then G is amenable [46, Proposition 4.21],
and the converse is not true in general by the counterexamples mentioned above.
A sufficient and necessary condition of the converse implication can be found in [4].

Recall that SL(2,R) is locally isomorphic to SO(2, 1) and that SL(2,C) is locally
isomorphic to SO(3, 1). Thus, Theorem 1.7 and the main theorem below together
show in particular that Question 1.8 has a positive answer for connected simple
Lie groups. This could however also be deduced (more easily) from the fact that
connected simple Lie groups admit lattices [49, Theorem 14.1].

Theorem 1.10 (Main Theorem). Let G be a connected simple Lie group, and
let Gd denote the group G equipped with the discrete topology. The following are
equivalent.

(1) G is locally isomorphic to SO(3), SL(2,R), or SL(2,C).
(2) Gd has the Haagerup property.
(3) Gd is weakly amenable with constant 1.
(4) Gd is weakly amenable.
(5) Gd has the weak Haagerup property with constant 1.
(6) Gd has the weak Haagerup property.

The equivalence of (1) and (2) in Theorem 1.10 was already done by de Cornulier
[13, Theorem 1.14] and in greater generality. His methods are the inspiration for
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our proof of Theorem 1.10. That (1) implies (2) basically follows from a theorem
of Guentner, Higson and Weinberger [26, Theorem 5.4], namely that the discrete
group GL(2,K) has the Haagerup property for any field K. Here we prove a similar
statement about weak amenability.

Theorem 1.11. Let K be any field. The discrete group GL(2,K) is weakly amenable
with constant 1.

Theorem 1.11 is certainly known to experts. The result was already mentioned in
[48, p. 7] and in [43] with a reference to [26], and indeed our proof of Theorem 1.11 is
merely an adaption of the methods developed in [26]. However, since no published
proof is available, we felt the need to include a proof.
To obtain Theorem 1.10 we use the classification of simple Lie groups and then
combine Theorem 1.11 with the following results proved in Section 4: If G is one
of the four groups SO(5), SO0(1, 4), SU(3) or SU(1, 2), then Gd does not have the
weak Haagerup property. Also, if G is the universal covering group of SU(1, n)
where n ≥ 2, then Gd does not have the weak Haagerup property.
In the final part of the paper we study coarse embeddability of locally compact
groups into Hilbert spaces. An important application of this concept in [55], [50]
and [21] is that the Baum-Connes assembly map with coefficients is split-injective
for all locally compact groups that embed coarsely into a Hilbert space (see [3]
for more information about the Baum-Connes assembly map). Here, we give a
contractive Schur multiplier characterization of locally compact groups coarsely
embeddable into Hilbert spaces (see also [22, Theorem 5.3] for the discrete case), and
this characterization can be regarded as an answer to the non-equivariant version of
Question 1.5. As a result, any locally compact group with weak Haagerup constant
1 embeds coarsely into a Hilbert space and hence the Baum-Connes assembly map
with coefficients is split-injective for all these groups.

Theorem 1.12. Let G be a σ-compact, locally compact group. The following are
equivalent.

(1) G embeds coarsely into a Hilbert space.
(2) There exists a sequence of Schur multipliers ϕn : G×G→ C such that

• ‖ϕn‖S ≤ 1 for every natural number n;
• each ϕn tends to zero off tubes (Definition 6.1);
• ϕn → 1 uniformly on tubes.

If any of these conditions holds, one can moreover arrange that the coarse embedding
is continuous and that each ϕn is continuous.

From Theorem 1.12 together with [21, Theorem 3.5] we immediately obtain the
following.

Corollary 1.13. If G is a σ-compact, locally compact group with ΛWH(G) = 1,
then G embeds coarsely into a Hilbert space. In particular, the Baum-Connes assem-
bly map with coefficients is split-injective for all second countable, locally compact
groups G with ΛWH(G) = 1.
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2. Preliminaries

Throughout, G will denote a locally compact group. A kernel ϕ : G ×G → C is a
Schur multiplier if there exist bounded maps ξ, η : G → H into a Hilbert space H
such that ϕ(g, h) = 〈ξ(g), η(h)〉 for every g, h ∈ G. The Schur norm of ϕ is defined
as

‖ϕ‖S = inf{‖ξ‖∞‖η‖∞}
where the infimum is taken over all ξ, η : G → H as above. See [47, Theorem 5.1]
for different characterizations of Schur multipliers. Clearly, ‖ϕ ·ψ‖S ≤ ‖ϕ‖S · ‖ψ‖S
and ‖qϕ‖S = ‖ϕ‖S when ϕ and ψ are Schur multipliers and qϕ(x, y) = ϕ(y, x). Also,
any positive definite kernel ϕ on G which is normalized, i.e., ϕ(x, x) = 1 for every
x ∈ G, is a Schur multiplier of norm 1. The unit ball of Schur multipliers is closed
under pointwise limits.
A continuous function ϕ : G → C is a Herz-Schur multiplier if the associated ker-
nel ϕ̂(g, h) = ϕ(g−1h) is a Schur multiplier. The Herz-Schur norm of ϕ is de-
fined as ‖ϕ‖B2 = ‖ϕ̂‖S . When ϕ is a Herz-Schur multiplier, the two bounded
maps ξ, η : G → H can be chosen to be continuous. The set B2(G) of Herz-Schur
multipliers on G is a unital Banach algebra under pointwise multiplication and
‖ · ‖∞ ≤ ‖ · ‖B2 . Any continuous, positive definite function ϕ on G is a Herz-Schur
multiplier with ‖ϕ‖B2 = ϕ(1).
Below we list a number of permanence results concerning weak amenability and
the weak Haagerup property, which will be useful later on. General references
containing almost all of the results are [1], [17], [30] and [38]. Additionally we refer
to [15, Theorem III.9] and [9, Corollary 12.3.12].
Suppose Γ1 is a co-amenable subgroup of a discrete group Γ2, that is, there exists
a left Γ2-invariant mean on l∞(Γ2/Γ1). Then

ΛWA(Γ1) = ΛWA(Γ2). (2.1)

If (Gi)i∈I is a directed family of open subgroups in a locally compact group G
whose union is G, then

ΛWA(G) = sup ΛWA(Gi). (2.2)

For any two locally compact groups G and H
ΛWA(G×H) = ΛWA(G)ΛWA(H). (2.3)

When H is a closed subgroup of G
ΛWA(H) ≤ ΛWA(G) and ΛWH(H) ≤ ΛWH(G). (2.4)

When K is a compact normal subgroup of G then
ΛWA(G/K) = ΛWA(G) and ΛWH(G/K) = ΛWH(G). (2.5)

When Z is a central subgroup of a discrete group G then
ΛWA(G) ≤ ΛWA(G/Z). (2.6)

Recall that a lattice in a locally compact group G is a discrete subgroup Γ such that
the quotient G/Γ admits a non-trivial finite G-invariant Radon measure. When Γ
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is a lattice in a second countable, locally compact G then

ΛWA(Γ) = ΛWA(G) and ΛWH(Γ) = ΛWH(G). (2.7)

When H is a finite index, closed subgroup in a group G then

ΛWH(H) = ΛWH(G). (2.8)

3. Weak amenability of GL(2,K)

This section is devoted to the proof of Theorem 1.11 (see Theorem 3.7 below). The
general idea of our proof follows the idea of [26, Section 5], where it is shown that
for any field K the discrete group GL(2,K) has the Haagerup property. Our proof
of Theorem 1.11 also follows the same strategy as used in [28].
Recall that a pseudo-length function on a group G is a function ` : G→ [0,∞) such
that

• `(e) = 0,
• `(g) = `(g−1),
• `(g1g2) ≤ `(g1) + `(g2).

Moreover, ` is a length function on G if, in addition, `(g) = 0 =⇒ g = e.

Definition 3.1. We say that the pseudo-length group (G, `) is weakly amenable if
there exist a sequence (ϕn) of Herz-Schur multipliers on G and a sequence (Rn) of
positive numbers such that

• supn ‖ϕn‖B2 <∞;
• suppϕn ⊆ {g ∈ G | `(g) ≤ Rn};
• ϕn → 1 uniformly on {g ∈ G | `(g) ≤ S} for every S > 0.

The weak amenability constant ΛWA(G, `) is defined as the best possible constant
Λ such that supn ‖ϕn‖B2 ≤ Λ, where (ϕn) is as just described.

Notice that if the groupG is discrete and the pseudo-length function l onG is proper
(in particular, G is countable), then the weak amenability of (G, l) is equivalent
to the weak amenability of G with same weak amenability constant. On other
hand, every countable discrete group admits a proper length function, which is
unique up to coarse equivalence ([53, Lemma 2.1]). If the group is finitely generated
discrete, one can simply take the word-length function associated to any finite set
of generators.
The next proposition is a variant of a well-known theorem, which follows from two
classical results:

• The graph distance dist on a tree T is a conditionally negative definite
kernel [29].

• The Schur multiplier associated with the characteristic function χn of the
subset {(x, y) ∈ T 2 | dist(x, y) = n} has Schur norm at most 2n for every
n ∈ N [8, Proposition 2.1].

The proof below is similar to the proof of [9, Corollary 12.3.5].
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Proposition 3.2. Suppose a group G acts isometrically on a tree T and that ` is
a pseudo-length function on G. Suppose moreover dist(g.v, v) → ∞ if and only if
`(g)→∞ for some (and hence every) vertex v ∈ T . Then ΛWA(G, `) = 1.

Proof. Fix a vertex v ∈ T as in the assumptions. For every n ∈ N we consider the
functions ψn(g) = exp(− 1

ndist(g.v, v)) and χ̇n(g) = χn(g.v, v) defined for g ∈ G.
Then

χ̇m(g)ψn(g) = exp(−m/n)χ̇m(g)
holds for all g ∈ G and every n,m ∈ N. As G acts isometrically on T , each ψn is
a unital positive definite function on G by Schoenberg’s theorem and ‖χ̇n‖B2 ≤ 2n
for every n ∈ N. It follows that ‖ψn‖B2 = 1 and ‖χ̇mψn‖B2 ≤ 2m · exp(−m/n) for
every n,m ∈ N. Therefore, for any M ∈ N, we have

∥∥∥∥∥
M∑

m=0
χ̇mψn

∥∥∥∥∥
B2

≤ ‖ψn‖B2 +
∥∥∥∥∥
∑

m>M

χ̇mψn

∥∥∥∥∥
B2

≤ 1 +
∑

m>M

2m · exp(−m/n).

Hence, if we chooseMn suitably for all n ∈ N, then the functions ϕn =
∑Mn

m=0 χ̇mψn
satisfy that ‖ϕn‖B2 ≤ 1 + 1

n and suppϕn ⊆ {g ∈ G | dist(g.v, v) ≤ Mn}. The
assumption

dist(g.v, v)→∞ ⇐⇒ `(g)→∞
then insures that suppϕn ⊆ {g ∈ G | `(g) ≤ Rn} for some suitable Rn and that
ϕn → 1 uniformly on {g ∈ G | `(g) ≤ S} for every S > 0, as desired. �

Remark 3.3. The two classical results listed above have a generalization:

• The combinatorial distance dist on the 1-skeleton of a CAT(0) cube complex
X is a conditionally negative definite kernel on the vertex set of X [42].

• The Schur multiplier associated with the characteristic function of the sub-
set {(x, y) ∈ X2 | dist(x, y) = n} has Schur norm at most p(n) for every
n ∈ N, where p is a polynomial and X is (the vertex set of) a finite-
dimensional CAT(0) cube complex [41, Theorem 2].

To see that these results are in fact generalizations, we only have to notice that
a tree is exactly a one-dimensional CAT(0) cube complex, and in this case the
combinatorial distance is just the graph distance. Because of these generalizations
and the fact that the exponential function increases faster than any polynomial,
it follows with the same proof as the proof of Proposition 3.2 that the following
generalization is true (see also [41, Theorem 3]): suppose a group G acts cellularly
(and hence isometrically) on a finite-dimensional CAT(0) cube complex X and that
` is a pseudo-length function on G. Suppose moreover dist(g.v, v)→∞ if and only
if `(g)→∞ for some (and hence every) vertex v ∈ X. Then ΛWA(G, `) = 1.

In our context, a norm on a field K is a map d : K → [0,∞) satisfying, for all
x, y ∈ K

(i) d(x) = 0 implies x = 0,
(ii) d(xy) = d(x)d(y),
(iii) d(x+ y) ≤ d(x) + d(y).
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A norm obtained as the restriction of the usual absolute value on C via a field
embedding K ↪→ C is archimedean. A norm is discrete if the triangle inequality
(iii) can be replaced by the stronger ultrametric inequality

(iii’) d(x+ y) ≤ max{d(x), d(y)}
and the range of d on K× is a discrete subgroup of the multiplicative group (0,∞).

Theorem 3.4 ([26, Theorem 2.1]). Every finitely generated field K is discretely
embeddable: For every finitely generated subring A of K there exists a sequence of
norms dn on K, each either archimedean or discrete, such that for every sequence
Rn > 0, the subset

{a ∈ A | dn(a) ≤ Rn for all n ∈ N}
is finite.

Let d be a norm on a field K. Following Guentner, Higson and Weinberger [26]
define a pseudo-length function `d on GL(n,K) as follows: if d is discrete

`d(g) = log max
i,j
{d(gij), d(gij)},

where gij and gij are the matrix coefficients of g and g−1, respectively; if d is
archimedean, coming from an embedding of K into C then

`d(g) = log max{‖g‖, ‖g−1‖},
where ‖ · ‖ is the operator norm of a matrix in GL(n,C).

Proposition 3.5. Let d be an archimedean or a discrete norm on a field K. Then
the pseudo-length group (SL(2,K), `d) is weakly amenable with constant 1.

Proof. The archimedean case: it is clear that the pseudo-length function on SL(2,K)
is the restriction of that on SL(2,C), so clearly we only have to show (SL(2,C), `d)
is weakly amenable with constant 1. Since `d is continuous and proper, this follows
from the fact that SL(2,C) is weakly amenable with constant 1 as a locally compact
group ([18, Remark 3.8]).
The discrete case: this is a direct application of [26, Lemma 5.9] and Proposition 3.2.
Indeed, [26, Lemma 5.9] states that there exist a tree T and a vertex v0 ∈ T such
that SL(2,K) acts isometrically on T and

dist(g.v0, v0) = 2 max
i,j
− log d(gij)

log d(π) ,

for all g = [gij ] ∈ SL(2,K). Here dist is the graph distance on T and π is certain
element of {x ∈ K | d(x) < 1}. Since the action is isometric, dist(g.v0, v0)→∞ if
and only if `d(g)→∞. Hence, we are done by Proposition 3.2. �

Corollary 3.6. Let K be a field and G a finitely generated subgroup of SL(2,K).
Then there exists a sequence of pseudo-length functions `n on G such that ΛWA(G, `n) =
1 for every n, and such that for any sequence Rn > 0, the set

⋂
n{g ∈ G | `n(g) ≤

Rn} is finite.

Proof. As G is finitely generated, we may assume that K is finitely generated as
well. Now, let A be the finitely generated subring of K generated by the matrix
coefficients of a finite generating set for G. Clearly, G ⊆ SL(2, A) ⊆ SL(2,K).
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Since K is discretely embeddable, we may choose a sequence of norms dn on K
according to Theorem 3.4. It follows from Proposition 3.5 that ΛWA(G, `dn) = 1.
We complete the proof by observing that for any sequence Rn > 0,

⋂

n

{g ∈ G | `dn(g) ≤ Rn} ⊆ SL(2, F ),

where F is the finite set {a ∈ A | dn(a) ≤ exp(Rn) for all n ∈ N}. �

Theorem 3.7. Let K be a field. Every subgroup Γ of GL(2,K) is weakly amenable
with constant 1 (as a discrete group).

Proof. By the permanence results listed in Section 2 we can reduce our proof to the
case where Γ is a finitely generated subgroup of SL(2,K). It then follows from the
previous corollary that there exists a sequence `n of pseudo-length functions on Γ
such that ΛWA(Γ, `n) = 1 and for any sequence Rn > 0, the set

⋂
n{g ∈ Γ | `n(g) ≤

Rn} is finite.
For each fixed n ∈ N there is a sequence (ϕn,k)k of Herz-Schur multipliers on Γ and
a sequence of positive numbers (Rn,k)k such that

(1) ‖ϕn,k‖B2 ≤ 1 for all k ∈ N;
(2) suppϕn,k ⊆ {g ∈ Γ | `n(g) ≤ Rn,k};
(3) ϕn,k → 1 uniformly on {g ∈ Γ | `n(g) ≤ S} for every S > 0 as k →∞.

Upon replacing ϕn,k by |ϕn,k|2 we may further assume that 0 ≤ ϕn,k ≤ 1 for all
n, k ∈ N.
Given any ε > 0 and any finite subset F ⊆ Γ, we choose a sequence 0 < εn < 1
such that

∏
n(1 − εn) > 1 − ε. It follows from (3) that for each n ∈ N there

exists kn ∈ N such that 1 − εn < ϕn,kn
(g) for all g ∈ F . Consider the function

ϕ =
∏
n ϕn,kn . It is not hard to see that ϕ is well-defined, since 0 ≤ ϕn,kn ≤ 1.

Additionally, since ‖ϕn,kn‖B2 ≤ 1 for all n ∈ N we also have ‖ϕ‖B2 ≤ 1. Moreover,
suppϕ ⊆ ⋂n{g ∈ Γ | `n(g) ≤ Rn,kn

} and
ϕ(g) =

∏

n

ϕn,kn
(g) >

∏

n

(1− εn) > 1− ε

for all g ∈ F . This completes the proof. �

The remaining part of this section follows de Cornulier’s idea from [12]. In [12] he
proved the same results for Haagerup property, and the same argument actually
works for weak amenability with constant 1.

Corollary 3.8. Let R be a unital commutative ring without nilpotent elements.
Then every subgroup Γ of GL(2, R) is weakly amenable with constant 1 (as a discrete
group).

Proof. Again by the permanence results in Section 2, we may assume that Γ is a
finitely generated subgroup of SL(2, R), and hence that R is also finitely generated.
It is well-known that every finitely generated ring is Noetherian and in such a ring
there are only finitely many minimal prime ideals. Let p1, . . . , pn be the minimal
prime ideals in R. The intersection of all minimal prime ideals is the set of nilpotent
elements in R, which is trivial by our assumption. So R embeds into the finite
product

∏n
i=1 R/pi. If Ki denotes the fraction field of the integral domain R/pi,
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then Γ embeds into SL(2,
∏n
i=1 Ki) =

∏n
i=1 SL(2,Ki). Now, the result is a direct

consequence of Theorem 3.7, (2.3) and (2.4). �

Remark 3.9. In the previous corollary and also in Theorem 3.7, the assumption
about commutativity cannot be dropped. Indeed, the group SL(2,H) with the
discrete topology is not weakly amenable, where H is the skew-field of quaternions.
This can be seen from Theorem 1.10. Moreover, SL(2,H)d does not even have the
weak Haagerup property by the same argument.

Remark 3.10. In the previous corollary, the assumption about the triviality of the
nilradical cannot be dropped. Indeed, we show now that the group SL(2,Z[x]/x2)
is not weakly amenable. The essential part of the argument is Dorofaeff’s result
that the locally compact group R3 o SL(2,R) is not weakly amenable [23]. Here
the action SL(2,R) y R3 is the unique irreducible 3-dimensional representation of
SL(2,R).
Consider the ring R = R[x]/x2. We write elements of R as polynomials ax+b where
a, b ∈ R and x2 = 0. Consider the unital ring homomorphism ϕ : R → R given by
setting x = 0, that is, ϕ(ax + b) = b. Then ϕ induces a group homomorphism
ϕ̃ : SL(2, R) → SL(2,R). Embedding R ⊆ R as constant polynomials, we obtain
an embedding SL(2,R) ⊆ SL(2, R) showing that ϕ̃ splits. The kernel of ϕ̃ is easily
identified as

ker ϕ̃ =
{(

a11x+ 1 a12x
a21x a22x+ 1

)∣∣∣∣aij ∈ R, a11 + a22 = 0
}
' sl(2,R)

We deduce that SL(2, R) is the semidirect product sl(2,R) o SL(2,R). A simple
computation shows that the action SL(2,R) y sl(2,R) is the adjoint action. Since
sl(2,R) is a simple Lie algebra, the adjoint action is irreducible. By uniqueness of
the 3-dimensional irreducible representation of SL(2,R) (see [39, p. 107]) and from
[23] we deduce that sl(2,R) o SL(2,R) ' R3 o SL(2,R) is not weakly amenable.
It is easy to see that SL(2,Z[x]/x2) is identified with sl(2,Z) o SL(2,Z) under the
isomorphism SL(2, R) ' sl(2,R) o SL(2,R). Since sl(2,Z) o SL(2,Z) is a lattice
in sl(2,R) o SL(2,R), we conclude from (2.7) that sl(2,Z) o SL(2,Z) and hence
SL(2,Z[x]/x2) is not weakly amenable.

Remark 3.11. We do not know if SL(2,Z[x]/x2) also fails to have the weak
Haagerup property. As SL(2,Z[x]/x2) may be identified with a lattice in R3 o
SL(2,R), by (2.7) the question is equivalent to the question [31, Remark 5.3] raised
by Haagerup and the first author concerning the weak Haagerup property of the
group R3 o SL(2,R).

Recall that a group Γ is residually free if for every g 6= 1 in Γ, there is a homo-
morphism f from Γ to a free group F such that f(g) 6= 1 in F . Equivalently, Γ
embeds into a product of free groups of rank two. A group Γ is residually finite if
for every g 6= 1 in Γ, there is a homomorphism f from Γ to a finite group F such
that f(g) 6= 1 in F . Equivalently, Γ embeds into a product of finite groups. Since
free groups are residually finite, it is clear that residually free groups are residually
finite. On the other hand, residually finite groups need not be residually free as is
easily seen by considering e.g. groups with torsion.

Corollary 3.12. Every residually free group is weakly amenable with constant 1.

184



APPROXIMATION PROPERTIES OF SIMPLE LIE GROUPS MADE DISCRETE 11

Proof. Since the free group of rank two can be embedded in SL(2,Z), a residually
free group embeds in

∏
i∈I SL(2,Z) = SL(2,

∏
i∈I Z) for a suitably large set I. We

complete the proof by the previous corollary. �

4. Failure of the weak Haagerup property

In this section we will prove the following result, which is the combination of Corol-
laries 4.3, 4.5 and 4.6.

Proposition 4.1. If G is one of the four groups SO(5), SO0(1, 4), SU(3) or
SU(1, 2), then Gd does not have the weak Haagerup property.
Also, if G is the universal covering group of SU(1, n) where n ≥ 2, then Gd does
not have the weak Haagerup property.

When p, q ≥ 0 are integers, not both zero, and n = p + q, we let Ip,q denote the
diagonal n × n matrix with 1 in the first p diagonal entries and −1 in the last q
diagonal entries. When g is a complex matrix, gt denotes the transpose of g, and
g∗ denotes the adjoint (conjugate transpose) of g. We recall that

SO(p, q) = {g ∈ SL(p+ q,R) | gtIp,qg = Ip,q}
SO(p, q,C) = {g ∈ SL(p+ q,C) | gtIp,qg = Ip,q}

SU(p, q) = {g ∈ SL(p+ q,C) | g∗Ip,qg = Ip,q}.
When p, q > 0, the group SO(p, q) has two connected components, and SO0(p, q)
denotes the identity component.
To prove Proposition 4.1, we follow a strategy that we have learned from de Cor-
nulier [13], where the same techniques are applied in connection with the Haagerup
property. The idea of the proof is the following. We consider the groups as real
algebraic groups G(R). Let K be a number field of degree three over Q, not totally
real, and let O be its ring of integers. Then G(O) embeds diagonally as a lattice
in G(R)×G(C). The group G(C) will have real rank two, and we deduce that the
group G(O) does not have the weak Haagerup property by combining [31, Theo-
rem B] with (2.7). As G(O) is a subgroup of G(R), (2.4) implies that G(R) also
does not have the weak Haagerup property, and we are done. We will now make
this argument more precise.
Let K denote the field Q( 3

√
2) and O its ring of integers Z[ 3

√
2]. Let ω = e2πi/3

be a third root of unity and let σ : K → C be the field monomorphism uniquely
defined by σ( 3

√
2) = ω 3

√
2. If we denote the image of σ by Kσ, then σ induces a

ring isomorphism, also denoted σ, of matrix algebras

σ : Mn(K)→Mn(Kσ) (4.1)

by applying σ entry-wise.
The field K is an algebra over Q with basis 1, 21/3, 22/3. With respect to this basis,
multiplication is given by



a1
b1
c1


 ◦



a2
b2
c2


 =



a1a2 + 2b1c2 + 2c1b2
a1b2 + b1a2 + 2c1c2
a1c2 + b1b2 + c1a2


 (4.2)
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where ai, bi, ci ∈ Q and i = 1, 2. Multiplication by an element x = a+21/3b+22/3c ∈
K where a, b, c ∈ Q defines an endomorphism of K, and it is clear from (4.2) that
the matrix representation of x is



a 2c 2b
b a 2c
c b a


 . (4.3)

If π(x) denotes the matrix in (4.3) then π : K → M3(Q) is an algebra homomor-
phism.

4.1. The real case. Let A be the R-algebra R3 with multiplication ◦ given by
(4.2) where ai, bi, ci ∈ R and i = 1, 2. The unit of A is (1, 0, 0). Let ξ1 : A→ R and
ξ2 : A→ C be the algebra homomorphisms defined by

ξ1(a, b, c) = a+ 21/3b+ 22/3c, and ξ2(a, b, c) = a+ ω21/3b+ ω22/3c, (4.4)

where a, b, c ∈ R. It is easily verified that ξ = (ξ1, ξ2) is an algebra isomorphism of
A onto R⊕ C.
More generally, we define ξn1 : Mn(A)→Mn(R) and ξn2 : Mn(A)→Mn(C) by

ξni ([xjk]) = [ξi(xjk)] when [xjk] ∈Mn(A)

for i = 1, 2, and we let ξn = (ξn1 , ξn2 ). It follows that ξn is an R-algebra isomorphism
of Mn(A) onto Mn(R) ⊕Mn(C). We also denote the multiplication in Mn(A) by
◦. We note that ξn preserves transposition and the determinant in the sense that
for every x ∈Mn(A)

ξn(xt) = ξn(x)t and detR⊕C ξn(x) = ξ(detA x).

Proposition 4.2. Let p, q ≥ 0 be integers with p+q ≥ 3. If σ is the homomorphism
in (4.1), then the homomorphism 1×σ embeds the group SO(p, q,Z[ 3

√
2]) as a lattice

in SO(p, q)× SO(p, q,C).

Proof. We use the notation introduced before Proposition 4.2. We will show that

Λ = {(l, σ(l)) ∈ SO(p, q)× SO(p, q,C) | l ∈ SO(p, q,O)}

is a lattice in SO(p, q)× SO(p, q,C).
We put n = p+q. Let H be the group consisting of matrices (a, b, c) ∈Mn(A) such
that

(at, bt, ct) ◦ (a, b, c) = (Ip,q, 0, 0) and detA[(a, b, c)] = (1, 0, 0). (4.5)

Observe that
ξn(Ip,q, 0, 0) = (Ip,q, Ip,q).

Then (a, b, c) ∈ H if and only if

ξn(a, b, c)tξn(a, b, c) = (Ip,q, Ip,q) and detR⊕C ξn(a, b, c) = (1, 1),

that is, if and only if ξn(a, b, c) belongs to SO(p, q) × SO(p, q,C). Thus, ξn is a
group isomorphism of H onto SO(p, q)× SO(p, q,C).
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The next idea is to identify H with an algebraic subgroup of M3n(R) by adopting
the matrix representation (4.3) of K. Let π : Mn(A)→M3n(R) be the map sending
(a, b, c) ∈Mn(A) to



a 2c 2b
b a 2c
c b a


 (4.6)

where a, b, c ∈ Mn(R). It is not hard to see that π is an injective ring homomor-
phism.
We let G = π(H). Then G is the subgroup of SL(3n,R) consisting of matrices of the
form (4.6), where a, b, c ∈ Mn(R) satisfies the relations (4.5). The crucial point is
that the definition (4.2) of the multiplication ◦ in A is given by integral polynomials
in the entries, and hence the relations (4.5) are polynomial equations in the entries
of a, b, c with integral coefficients. This shows that G is an algebraic subgroup of
SL(3n,R) defined over Q. Moreover, ρ = ξn ◦π−1 is a group isomorphism of G onto
SO(p, q)× SO(p, q,C), which is also a diffeomorphism. Since SO(p, q)× SO(p, q,C)
is semisimple (here we use p+ q ≥ 3), we deduce that G is semisimple.
By the Borel Harish-Chandra Theorem [7, Theorem 7.8], the subgroup GZ =
SL(3n,Z)∩G is a lattice in G, and hence ρ(GZ) is a lattice in SO(p, q)×SO(p, q,C).
It remains to show that ρ(GZ) = Λ.
Suppose first that g ∈ GZ is of the form (4.6) and put l = ξn1 ◦ π−1(g) = ξn1 (a, b, c).
Then l ∈ SO(p, q,O) and ξn2 (a, b, c) = σ(l). This shows that ρ(g) = (l, σ(l)) ∈ Λ.
Conversely, given (l, σ(l)) ∈ Λ where l ∈ SO(p, q,O) we can in a unique way write
l = a+ 21/3b+ 22/3c = ξn1 (a, b, c) where a, b, c ∈Mn(Z). Then σ(l) = ξn2 (a, b, c) and
if we define g by (4.6) then g ∈ GZ and ρ(g) = l.
This proves that Λ = ρ(GZ), and the proof is complete. �

Corollary 4.3. If G is SO(5) or SO0(1, 4), then Gd does not have the weak
Haagerup property.

Proof. The Lie group SO(5,C) has real rank two (see Table IV of [34, Ch.X §6]).
It is thus a consequence of [31, Theorem B] that SO(5,C) does not have the weak
Haagerup property.
Suppose (p, q) = (5, 0) or (p, q) = (1, 4) and let Γ = SO(p, q,Z[ 3

√
2]). As SO(p, q,C) '

SO(p+ q,C), we see that SO(p, q)× SO(p, q,C) does not have the weak Haagerup
property. Since Γ is embedded via 1 × σ as a lattice in SO(p, q) × SO(p, q,C), it
follows from (2.7) that Γ does not have the weak Haagerup property. Since Γ is a
subgroup of SO(p, q), we conclude that SO(p, q)d does not have the weak Haagerup
property.
We have now shown that SO(5)d and SO(1, 4)d do not have the weak Haagerup
property. To finish the proof, recall that the group SO0(1, 4) has index two in
SO(1, 4), so that by (2.8) we conclude that SO0(1, 4)d also does not have the weak
Haagerup property. �

4.2. The complex case. To prove that SU(3) and SU(2, 1) do not have the weak
Haagerup property we use the same technique as before, but in a complex version.
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Let K = Q( 3
√

2, i) and O = Z[ 3
√

2, i], and let σ : K → C be the field homomorphism
defined by

σ( 3√2) = ω
3√2, σ(i) = i.

We also use σ to denote the ring homomorphism
σ : Mn(K)→Mn(C) (4.7)

obtained by applying σ entry-wise.
Let A be the C-algebra C3 with multiplication ◦ given by (4.2) where ai, bi, ci ∈ C
and i = 1, 2. Let ξ1, ξ2, ξ3 : A→ C be the algebra homomorphisms defined by

ξ1(a, b, c) = a+ 21/3b+ 22/3c,

ξ2(a, b, c) = a+ ω21/3b+ ω22/3c, (4.8)
ξ3(a, b, c) = a+ ω21/3b+ ω22/3c.

Then it is easily verified that ξ = (ξ1, ξ2, ξ3) is an isomorphism of A onto C⊕C⊕C.
More generally, for i = 1, 2, 3 we define ξni : Mn(A)→Mn(C) by

ξni ([xjk]) = [ξi(xjk)] when [xjk] ∈Mn(A)
and let ξn = (ξn1 , ξn2 , ξn3 ). It follows that ξn is a C-algebra isomorphism of Mn(A)
onto Mn(C ⊕ C ⊕ C). Multiplication in Mn(A) is also denoted by ◦. Elements of
Mn(A) are thought of as triples (a, b, c), where a, b, c ∈ Mn(C). We note that for
every (a, b, c) in Mn(A)

(ξn1 , ξn2 , ξn3 )(a∗, b∗, c∗) = ((ξn1 , ξn3 , ξn2 )(a, b, c))∗ (4.9)
and

detC⊕C⊕C ξn(a, b, c) = ξ(detA(a, b, c)). (4.10)
Warning: did you notice the index switch in (4.9)?

Proposition 4.4. Let p, q ≥ 0 be integers with p + q ≥ 2. If σ is as in (4.7),
then the homomorphism 1 × σ embeds the group SU(p, q,Z[ 3

√
2, i]) as a lattice in

SU(p, q)× SL(p+ q,C).

Proof. Put n = p+ q. Let H be the group consisting of matrices (a, b, c) ∈Mn(A)
such that

(a∗, b∗, c∗) ◦ (a, b, c) = (Ip,q, 0, 0) and detA[(a, b, c)] = (1, 0, 0). (4.11)
Observe that

ξn(Ip,q, 0, 0) = (Ip,q, Ip,q, Ip,q).
Using (4.9)-(4.10) we see that (a, b, c) ∈ H if and only if

((ξn1 , ξn3 , ξn2 )(a, b, c))∗(ξn1 , ξn2 , ξn3 )(a, b, c) = (Ip,q, Ip,q, Ip,q)
and

detC⊕C⊕C ξn(a, b, c) = (1, 1, 1).
Thus, ξn is a group isomorphism of H onto the group L consisting of matrices
(s, z, w) ∈Mn(C)3 such that

s∗s = Ip,q, z∗w = Ip,q, w∗z = Ip,q, detC s = detC z = detC w = 1.
It is easily seen that L is in fact

L = {(s, z, (z∗)−1Ip,q) ∈Mn(C)3 | s ∈ SU(p, q), z ∈ SL(n,C)}.
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Let η : L→ SU(p, q)× SL(n,C) be the isomorphism of L onto SU(p, q)× SL(n,C)
given by η(s, z, (z∗)−1) = (s, z). Let π : Mn(A) → M3n(C) be the map sending
(a, b, c) ∈Mn(A) to



a 2c 2b
b a 2c
c b a


 (4.12)

where a, b, c ∈ Mn(C). It is not hard to see that π is an injective ring homomor-
phism. We let G = π(H). Then G is the subgroup of SL(3n,C) consisting of
matrices of the form (4.12), where a, b, c ∈ Mn(C) satisfies the relations (4.11).
The crucial point is that the definition (4.2) of the multiplication ◦ in A is given by
integral polynomials in the entries, and hence the relations (4.11) are polynomial
equations in the real and imaginary parts of the entries of a, b, c with integral co-
efficients. Using the standard embedding of SL(3n,C) into SL(6n,R) (see e.g. [36,
p. 60]) we have then realized G as an algebraic subgroup of SL(6n,R) defined over
Q. Moreover, ρ = η◦ξn ◦π−1 is a group isomorphism of G onto SU(p, q)×SL(n,C),
which is also a diffeomorphism. Since SU(p, q) × SL(n,C) is semisimple (here we
use p+ q ≥ 2), we deduce that G is semisimple.
By the Borel Harish-Chandra Theorem, the subgroup GZ+iZ = SL(3n,Z[i]) ∩G is
a lattice in G, and hence ρ(GZ+iZ) is a lattice in SU(p, q)× SL(n,C).
We will finish the proof by showing that

Λ = {(l, σ(l)) ∈ SU(p, q)× SL(n,C) | l ∈ SU(p, q,O)}

coincides with ρ(GZ+iZ).
Suppose first that g ∈ GZ+iZ is of the form (4.12) and put l = ξn1 ◦ π−1(g) =
ξn1 (a, b, c). Then l ∈ SU(p, q,O) and ξn2 (a, b, c) = σ(l). This shows that ρ(g) =
(l, σ(l)) ∈ Λ.
Conversely, given (l, σ(l)) ∈ Λ where l ∈ SU(p, q,O) we can in a unique way write
l = a+21/3b+22/3c = ξn1 (a, b, c) where a, b, c ∈Mn(Z+ iZ). Then σ(l) = ξn2 (a, b, c)
and if we define g by (4.12) then g ∈ GZ+iZ and ρ(g) = l.
This proves that Λ = ρ(GZ+iZ), and the proof is complete. �

Corollary 4.5. If G is SU(3) or SU(1, 2), then Gd does not have the weak Haagerup
property.

Proof. The Lie group SL(3,C) has real rank two (see Table IV of [34, Ch.X §6]).
It is thus a consequence of [31, Theorem B] that SL(3,C) does not have the weak
Haagerup property.
Suppose (p, q) = (3, 0) or (p, q) = (1, 2) and let Γ = SU(p, q,Z[ 3

√
2]). Since Γ is

embedded via 1× σ as a lattice in SU(p, q)× SL(3,C), it follows from (2.7) that Γ
does not have the weak Haagerup property. Since Γ is a subgroup of SU(p, q), we
conclude that SU(p, q)d does not have the weak Haagerup property. This completes
the proof. �

Corollary 4.6. Let G̃ be the universal covering group S̃U(1, n) of SU(1, n) where
n ≥ 2. Then G̃d does not have the weak Haagerup property.
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Proof. Let G = SU(1, n), and let q : G̃→ G be the covering homomorphism.
If Γ denotes the image of SU(p, q,Z[ 3

√
2]) under 1 × σ, then Γ is a lattice in G ×

SL(n+ 1,C). Let Γ̃ be the lift of Γ to G̃× SL(n+ 1,C), that is, Γ̃ = (q × 1)−1(Γ).
Since q × 1 is a covering homomorphism G̃× SL(n + 1,C) → G× SL(n + 1,C), it
is then easy to check that Γ̃ is a lattice in G̃× SL(n+ 1,C). The rest of the proof
is now similar to the previous proof.
The Lie group SL(n+1,C) has real rank n (see Table IV of [34, Ch.X §6]). It is thus
a consequence of [31, Theorem B] that SL(n+1,C) does not have the weak Haagerup
property. It follows from (2.7) that Γ̃ does not have the weak Haagerup property.
The projection G̃ × SL(n + 1,C) → G̃ is injective on Γ̃, and hence Γ̃ embeds as a
subgroup of G̃. We conclude that G̃d does not have the weak Haagerup property.

�

5. Proof of the Main Theorem

In this section we prove Theorem 1.10. The theorem is basically a consequence of
Theorem 1.11 and Proposition 4.1 together with the permanence results listed in
Section 2 and general structure theory of simple Lie groups.
We recall that two Lie groups G and H are locally isomorphic if there exist open
neighborhoods U and V around the identity elements of G and H, respectively, and
an analytic diffeomorphism f : U → V such that

• if x, y, xy ∈ U then f(xy) = f(x)f(y);
• if x, y, xy ∈ V then f−1(xy) = f−1(x)f−1(y).

When two Lie groups G and H are locally isomorphic we write G ≈ H. An
important fact about Lie groups and local isomorphims is the following [34, Theo-
rem II.1.11]: Two Lie groups are locally isomorphic if and only if their Lie algebras
are isomorphic.
The following is extracted from [11, Chapter II] and [36, Section I.11] to which we
refer for details. If G is a connected Lie group, there exists a connected, simply
connected Lie group G̃ and a covering homomorphism G̃ → G. The kernel of the
covering homomorphism is a discrete, central subgroup of G̃, and it is isomorphic to
the fundamental group of G. The group G̃ is called the universal covering group of
G. Clearly, G̃ and G are locally isomorphic. Conversely, any connected Lie group
locally isomorphic to G is the quotient of G̃ by a discrete, central subgroup. If N
is a discrete subgroup of the center Z(G̃) of G̃, then the center of G̃/N is Z(G̃)/N .
Let G1 and G2 be locally compact groups. We say that G1 and G2 are strongly
locally isomorphic, if there exist a locally compact group G and finite normal sub-
groups N1 and N2 of G such that G1 ' G/N1 and G2 ' G/N2. In this case we
write G1 ∼ G2. It follows from (2.5) that if G ∼ H, then ΛWH(Gd) = ΛWH(Hd).
A theorem due to Weyl states that a connected, simple, compact Lie group has
a compact universal cover with finite center [35, Theorem 12.1.17], [34, Theo-
rem II.6.9]. Thus, for connected, simple, compact Lie groups G and H, G ≈ H
implies G ∼ H.
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Proof of Theorem 1.10. Let G be a connected simple Lie group. As mentioned, the
equivalence (1) ⇐⇒ (2) was already done by de Cornulier [13, Theorem 1.14] in a
much more general setting, so we leave out the proof of this part. We only prove
the two implications (1) =⇒ (3) and (6) =⇒ (1), since the remaining implications
then follow trivially.
Suppose (1) holds, that is, G is locally isomorphic to SO(3), SL(2,R) or SL(2,C).
If Z denotes the center of G, then by assumption G/Z is isomorphic to SO(3),
PSL(2,R) or PSL(2,C). It follows from Theorem 1.11 and (2.5) that the groups
SO(3), PSL(2,R) and PSL(2,C) equipped with the discrete topology are weakly
amenable with constant 1 (recall that SO(3) is a subgroup of PSL(2,C)). From
(2.6) we deduce that Gd is weakly amenable with constant 1. This proves (3).
Suppose (1) does not hold. We prove that (6) fails, that is, Gd does not have the
weak Haagerup property. We divide the proof into several cases depending on the
real rank of G. We recall that with the Iwasawa decomposition G = KAN , the
real rank of G is the dimension of the abelian group A.
If the real rank of G is at least two, then G does not have the weak Haagerup
property [31, Theorem B]. By a theorem of Borel, G contains a lattice (see [49,
Theorem 14.1]), and by (2.7) the lattice also does not have the weak Haagerup
property. We conclude that Gd does not have the weak Haagerup property.
If the real rank of G equals one, then the Lie algebra of G is isomorphic to a
Lie algebra in the list [36, (6.109)]. See also [34, Ch.X §6]. In other words, G is
locally isomorphic to one of the classical groups SO0(1, n), SU(1, n), Sp(1, n) for
some n ≥ 2 or locally isomorphic to the exceptional group F4(−20). Here SO0(1, n)
denotes the identity component of the group SO(1, n).
We claim that the universal covering groups of SO0(1, n), Sp(1, n) and F4(−20)
have finite center except for the group SO0(1, 2). Indeed, Sp(1, n) and F4(−20)
are already simply connected with finite center. The K-group from the Iwasawa
decomposition of SO0(1, n) is SO(n) which has fundamental group of order two,
except when n = 2, and hence SO0(1, n) has fundamental group of order two as
well. As the center of the universal cover is an extension of the center of SO0(1, n)
by the fundamental group of SO0(1, n), the claim follows.
The universal covering group S̃U(1, n) of SU(1, n) has infinite center isomorphic to
the group of integers.
We have assumed that G is not locally isomorphic to SL(2,R) ∼ SO0(1, 2) or
SL(2,C) ∼ SO0(1, 3). If G has finite center, it follows that G is strongly locally
isomorphic to one of the groups

SO0(1, n), n ≥ 4,
SU(1, n), n ≥ 2,
Sp(1, n), n ≥ 2,
F4(−20),
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and if G has infinite center, then G is isomorphic to S̃U(1, n). Clearly, there are
inclusions

SO0(1, 4) ⊆ SO0(1, n), n ≥ 4,
SU(1, 2) ⊆ SU(1, n), n ≥ 2,
SU(1, 2) ⊆ Sp(1, n), n ≥ 2.

The cases where G is strongly locally isomorphic to SO0(1, n), SU(1, n) or Sp(1, n)
are then covered by Proposition 4.1. Since SO(5) ⊆ SO(9) ∼ Spin(9) ⊆ F4(−20) ([52,
§.4.Proposition 1]), the case where G ∼ F4(−20) is also covered by Proposition 4.1.
Finally, if G ' S̃U(1, n), then Proposition 4.1 shows that Gd does not have weak
Haagerup property.
If the real rank of G is zero, then it is a fairly easy consequence of [35, Theo-
rem 12.1.17] that G is compact. Moreover, the universal covering group of G is
compact and with finite center.
By the classification of compact simple Lie groups as in Table IV of [34, Ch.X §6] we
know that G is strongly locally isomorphic to one of the groups SU(n+ 1) (n ≥ 1),
SO(2n + 1) (n ≥ 2), Sp(n) (n ≥ 3), SO(2n) (n ≥ 4) or one of the five exceptional
groups

E6, E7, E8, F4, G2.

By assumption G is not strongly locally isomorphic to SU(2) ∼ SO(3). Using (2.5)
it then suffices to show that if G equals any other group in the list, then Gd does
not have the weak Haagerup property. Clearly, there are inclusions

SO(5) ⊆ SO(n), n ≥ 5,
SU(3) ⊆ SU(n), n ≥ 3,
SU(3) ⊆ Sp(n), n ≥ 3.

Since we also have the following inclusions among Lie algebras (Table V of [34,
Ch.X §6])

so(5) ⊆ so(9) ⊆ f4 ⊆ e6 ⊆ e7 ⊆ e8

and the inclusion ([54])
SU(3) ⊆ G2,

it is enough to consider the cases where G = SO(5) or G = SU(3). These two cases
are covered by Proposition 4.1. Hence we have argued that also in the real rank
zero case Gd does not have the weak Haagerup property. �

6. A Schur multiplier characterization of coarse embeddability

In this section we give a characterization of coarse embeddability into Hilbert spaces
in terms of contractive Schur multipliers. It is well-known that the notion of coarse
embeddability into Hilbert spaces can be characterized by positive definite kernels
(see [27, Theorem 2.3] for the discrete case and [20, Theorem 1.5] for the locally
compact case).
If G is a locally compact group, a (left) tube in G×G is a subset of G×G contained
in a set of the form

Tube(K) = {(x, y) ∈ G×G | x−1y ∈ K}
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where K is a compact subset of G.

Definition 6.1. A kernel ϕ : G × G → C tends to zero off tubes, if for any ε > 0
there is a tube T ⊆ G×G such that |ϕ(x, y)| < ε whenever (x, y) /∈ T .

Note that if ϕ : G → C is a function, then ϕ vanishes at infinity, if and only if the
associated kernel ϕ̂ : G×G defined by ϕ̂(x, y) = ϕ(x−1y) tends to zero off tubes.

Definition 6.2 ([2, Definition 3.6]). Let G be a σ-compact, locally compact group.
A map u from G into a Hilbert space H is said to be a coarse embedding if u satisfies
the following two conditions:

• for every compact subset K of G there exists R > 0 such that
(s, t) ∈ Tube(K) =⇒ ‖u(s)− u(t)‖ ≤ R;

• for every R > 0 there exists a compact subset K of G such that
‖u(s)− u(t)‖ ≤ R =⇒ (s, t) ∈ Tube(K).

We say that a group G embeds coarsely into a Hilbert space or admits a coarse em-
bedding into a Hilbert space if there exist a Hilbert space H and a coarse embedding
u : G→ H.

Every second countable, locally compact group G admits a proper left-invariant
metric d, which is unique up to coarse equivalence (see [51] and [32]). So the
preceding definition is equivalent to Gromov’s notion of coarse embeddability of
the metric space (G, d) into Hilbert spaces. We refer to [21, Section 3] for more on
coarse embeddability into Hilbert spaces for locally compact groups).
It is not hard to see that the countability assumption in [37, Proposition 4.3] is
superfluous. We thus record the following (slightly more general) version of [37,
Proposition 4.3].

Lemma 6.3. Let G be a group with a symmetric kernel k : G ×G → [0,∞). The
following are equivalent.

(1) For every t > 0 one has ‖e−tk‖S ≤ 1.
(2) There exist a real Hilbert space H and maps R,S : G→ H such that

k(x, y) = ‖R(x)−R(y)‖2 + ‖S(x) + S(y)‖2 for every x, y ∈ G.

Recall that a kernel k : G×G→ R is conditionally negative definite if k is symmetric
(k(x, y) = k(y, x)), vanishes on the diagonal (k(x, x) = 0) and

n∑

i,j=1
cicjk(xi, xj) ≤ 0

for any finite sequences x1, . . . , xn ∈ G and c1, . . . , cn ∈ R such that
∑n
i=1 ci = 0.

It is well-known that k is conditionally negative definite if and only if there is a
function u from G to a real Hilbert space such that k(x, y) = ‖u(x)− u(y)‖2.
If G is a locally compact group we say that a kernel k : G×G→ C is proper, if the
set {(x, y) ∈ G×G | |k(x, y)| ≤ R} is a tube for every R > 0.
Theorem 1.12 is contained in the following theorem, which extends both [22, The-
orem 5.3] and [20, Theorem 1.5] in different directions.
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Theorem 6.4. Let G be a σ-compact, locally compact group. The following are
equivalent.

(1) The group G embeds coarsely into a Hilbert space.
(2) There exists a sequence of (not necessarily continuous) Schur multipliers

ϕn : G×G→ C such that
• ‖ϕn‖S ≤ 1 for every natural number n;
• each ϕn tends to zero off tubes;
• ϕn → 1 uniformly on tubes.

(3) There exists a (not necessarily continuous) symmetric kernel k : G × G →
[0,∞) which is proper, bounded on tubes and satisfies ‖e−tk‖S ≤ 1 for all
t > 0.

(4) There exists a (not necessarily continuous) conditionally negative definite
kernel h : G×G→ R which is proper and bounded on tubes.

Moreover, if any of these conditions holds, one can arrange that the coarse embed-
ding in (1), each Schur multiplier ϕn in (2), the symmetric kernel k in (3) and the
conditionally negative definite kernel h in (4) are continuous.

Proof. We show (1)⇐⇒ (4)⇐⇒ (3)⇐⇒ (2).
That (1) implies (4) with h continuous follows directly from [21, Theorem 3.4].
That (4) implies (3) follows from Schoenberg’s Theorem and the fact that normal-
ized positive definite kernels are Schur multipliers of norm 1.
Suppose (3) holds. We show that (4) holds. From Lemma 6.3 we see that there are
a real Hilbert space H and maps R,S : G→ H such that

k(x, y) = ‖R(x)−R(y)‖2 + ‖S(x) + S(y)‖2 for every x, y ∈ G.
As k is bounded on tubes, the map S is bounded. If we let

h(x, y) = ‖R(x)−R(y)‖2,

then it is easily checked that h is proper and bounded on tubes, since k has these
properties and S is bounded. It is also clear that h is conditionally negative definite.
Thus (4) holds.
Suppose now that (4) holds. By the GNS construction there are a real Hilbert
space H and a map u : G→ H such that

h(x, y) = ‖u(x)− u(y)‖2.

It is easy to check that the assumptions on h imply that u is a coarse embedding.
Thus (1) holds.
If (3) holds, we set ϕn = e−k/n when n ∈ N. It is easy to check that the sequence
ϕn has the desired properties so that (2) holds.
Conversely, suppose (2) holds. We verify (3). Essentially, we use the same standard
argument as in the proof of [38, Proposition 4.4] and [10, Theorem 2.1.1].
Since G is locally compact and σ-compact, it is the union of an increasing sequence
(Un)∞n=1 of open sets such that the closure Kn of Un is compact and contained
in Un+1 (see [25, Proposition 4.39]). Fix an increasing, unbounded sequence (αn)
of positive real numbers and a decreasing sequence (εn) tending to zero such that
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∑
n αnεn converges. By assumption, for every n we can find a Schur multiplier ϕn

tending to zero off tubes and such that ‖ϕn‖S ≤ 1 and

sup
(x,y)∈Tube(Kn)

|ϕn(x, y)− 1| ≤ εn/2.

Upon replacing ϕn by |ϕn|2 one can arrange that 0 ≤ ϕn ≤ 1 and

sup
(x,y)∈Tube(Kn)

|ϕn(x, y)− 1| ≤ εn.

Define kernels ψi : G×G→ [0,∞[ and ψ : G×G→ [0,∞[ by

ψi(x, y) =
i∑

n=1
αn(1− ϕn(x, y)), ψ(x, y) =

∞∑

n=1
αn(1− ϕn(x, y)).

It is easy to see that ψ is well-defined, bounded on tubes and ψi → ψ pointwise
(even uniformly on tubes, but we do not need that).
To see that ψ is proper, let R > 0 be given. Choose n large enough such that
αn ≥ 2R. As ϕn tends to zero off tubes, there is a compact set K ⊆ G such
that |ϕn(x, y)| < 1/2 whenever (x, y) /∈ Tube(K). Now if ψ(x, y) ≤ R, then
ψ(x, y) ≤ αn/2, and in particular αn(1 − ϕn(x, y)) ≤ αn/2, which implies that
1− ϕn(x, y) ≤ 1/2. We have thus shown that

{(x, y) ∈ G×G | ψ(x, y) ≤ R} ⊆ {(x, y) ∈ G×G | 1−ϕn(x, y) ≤ 1/2} ⊆ Tube(K),

and ψ is proper.
We now show that ‖e−tψ‖S ≤ 1 for every t > 0. Since ψi converges pointwise to
ψ, it will suffice to prove that ‖e−tψi‖S ≤ 1, because the set of Schur multipliers of
norm at most 1 is closed under pointwise limits. Since

e−tψi =
i∏

n=1
e−tαn(1−ϕn),

it is enough to show that e−tαn(1−ϕn) has Schur norm at most 1 for each n. And
this is clear:

‖e−tαn(1−ϕn)‖S = e−tαn‖etαnϕn‖S ≤ e−tαnetαn‖ϕn‖S ≤ 1.

The only thing missing is that ψ need not be symmetric. Put k = ψ + qψ where
qψ(x, y) = ψ(y, x). Clearly, k is symmetric, bounded on tubes and proper. Finally,
for every t > 0

‖e−tk‖S ≤ ‖e−tψ‖S‖e−t qψ‖S ≤ 1,
since ‖qϕ‖S = ‖ϕ‖S for every Schur multiplier ϕ.
Finally, the statements about continuity follow from [21, Theorem 3.4] and the
explicit constructions used in our proof of (1) =⇒ (4) =⇒ (3) =⇒ (2). �
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