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RESUME i

This document is Martin Wedel Jacobsen’s Ph.D. thesis, written at the
Department of Mathematical Sciences at the University of Copenhagen un-
der the supervision of Jesper Michael Møller. It was submitted on April
30, 2014. The author’s Ph.D. studies at the department were supported by
the Danish National Research Foundation through the Center for Symmetry
and Deformation.

Abstract

This thesis develops some aspects of the theory of block fusion systems.
Chapter 1 contains a brief introduction to the group algebra and some simple
results about algebras over a field of positive characteristic. In chapter 2
we define the concept of a fusion system and the fundamental property of
saturation. We also define block fusion systems and prove that they are
saturated. Chapter 3 develops some tools for relating block fusion systems
to the structure of the center of the group algebra. In particular, it is proven
that a block has trivial defect group if and only if the center of the block
algebra is one-dimensional. Chapter 4 consists of a proof that block fusion
systems of symmetric groups are always group fusion systems of symmetric
groups, and an analogous result holds for the alternating groups.

Resume

Denne afhandling udvilker nogle aspekter af teorien for blokfusionssys-
temer. Kapitel 1 indeholder en kort introduktion til gruppealgebraen og
nogle simple resultater om algebraer over et legeme med positiv karakteris-
tik. I kapitel 2 definerer vi konceptet et fusionssystem og den grundlæggende
egenskab mættethed. Vi definerer ogs̊a blokfusionssystemer og beviser at de
er mættede. Kapitel 3 udvikler nogle værktøjer til at relatere blokfusion-
ssystemer til strukturen af gruppealgebraens center. Specielt bevises det at
en blok har triviel defektgruppe hvis og kun hvis blokalgebraens center er
en-dimensionalt. Kapitel 4 best̊ar af et bevis for at blokfusionssystemer for
symmetriske grupper altid er gruppefusionssystemer for symmetriske grup-
per, og et analogt resultat gælder for de alternerende grupper.
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CHAPTER 1

Introduction and preliminaries

The main object of study of this thesis is the group ring of a finite group
G.

Definition 1.1. For any field F and any finite group G, the group
ring FG is an algebra over F. As a F-vector space, it has basis G, and its
multiplication is the unique F-bilinear map satisfying g · h = gh for all
g, h ∈ G.

An element of FG is typically written in the form
∑

g∈G cgg with each
cg being an element of F. An alternative description of FG is to regard it
as the set of functions from G to F, with the multiplication being given
by the convolution formula (α ∗ β)(a) =

∑
g∈G α(g)β(g−1a). The function

α in this formulation corresponds to the element
∑

g∈G α(g)g in the other
formulation.

The main reason for studying the group ring is that it determines the
possible actions of G on an F-vector space. Given an F-vector space V
on which G acts, V becomes an FG-module by setting v.(

∑
g∈G cgg) =∑

g∈G cgv
g for any v ∈ V . Understanding the module theory of FG then

makes it possible to determine the ways in which G can act on a vector
space.

We record a few basic properties of group rings.

Proposition 1.2. For any group homomorphism ϕ : G → H, the map
ϕ∗ : FG → FH given by ϕ∗(

∑
g∈G cgg) =

∑
g∈G cgϕ(g) is an F-algebra

homomorphism.

Proposition 1.3. For any finite groups G and H, FG⊗FH is isomor-
phic to F(G×H). The isomorphism is given by mapping g ⊗ h to (g, h).

A compact way of stating the above two properties is to say that the
group ring over F is a monoidal functor from the category of finite groups
with the direct product to the category of F-algebras with the tensor prod-
uct.

Definition 1.4. The map η : FG→ F induced by the group homomor-
phism G→ 1 is called the augmentation map of FG.

The group ring can actually be given significantly more structure. It is
possible to define a comultiplication on FG which together with the aug-
mentation map makes FG into a coalgebra. Furthermore, the algebra and
coalgebra structure on FG interact in such a way as to make FG a Hopf
algebra. We will not need this additional structure, however.

We now fix the following notation. Choose a prime p, and let k be the
algebraic closure of the field with p elements; unless otherwise specified, we

1



2 1. INTRODUCTION AND PRELIMINARIES

will generally be working in a group ring kG where G is a finite group.
When X is a finite set of elements in an algebra A, we write ΣX for the
sum of the elements of X. When H is a group acting on an algebra A and
x is an element of A, we write xH for the orbit containing x. When H is
a group acting on a set (or algebra) X, we write XH for the subset (or
-algebra) consisting of the fixed points of the action. When x is an element
of an algebra A, we write AnnA(x) for the (left) annihilator of x in A. (The
left/right distinction will not matter as we will only use the notation in cases
where x is central in A.)

When H is a group acting on another group G, we write ClH(G) for
the set of orbits in G of the action of H. The main use of this notion is
that there is an action of H on kG induced by the action on G, and the
subalgebra (kG)H has a basis of the form {ΣC | C ∈ ClH(G)}. We also write
Cl(G) for ClG(G), the set of conjugacy classes in G. Since Z(kG) = (kG)G,
Z(kG) then has a basis of the form {ΣC | C ∈ Cl(G)}. When H and K are
subgroups of a group G, we write AutH(K) for the group of automorphisms
of K having the form x 7→ xh for some h ∈ H. This group is isomorphic
to NH(K)/CH(K) and to NH(K)CG(K)/CG(K). We also write Aut(K) for
the group of all automorphisms of K. We write Sn and An for the symmetric
and alternating groups on {1, . . . , n}. When N is any finite set, we also write
SN and AN for the symmetric and alternating groups on N . We write Cn
for the cyclic group of order n.

When g is an element of G, we say that g is a p-element if its order is a
power of p, and we say that g is p-regular if its order is not divisible by p.
When P is a p-group and Q is a subgroup of P , we say that Q is centric in
P if CP (Q) is contained in Q.

We record two useful facts from group theory:

Proposition 1.5. Let g be an element of the finite group G and let
p be a prime. Then there are unique elements gp and gp′ of G such that
g = gpgp′ = gp′gp, gp is a p-element, and gp′ is p-regular.

Proposition 1.6. Let P be a p-group and let Q be a proper subgroup
of P . Then NP (Q) 6= Q, and there is a chain of normal inclusions Q =
Q0 EQ1 E . . .EQn = P .

We will routinely make use of the following fact: when P is a p-group
acting on a finite set X, |X| and |XP | are congruent modulo p. Often X
will be a set whose size expresses the coefficient on an element of G in some
x ∈ kG, and we will then replace X by XP for a suitable P .

1. Algebra decomposition

In this section we will establish a few basic facts about k-algebras. We
will show that a finite-dimensional k-algebra has a unique maximal decom-
position as a direct product of subalgebras, and that the center of the algebra
can de decomposed as the sum of two subspaces, of which one is a nilpotent
ideal and the other is isomorphic to kn for some n. The proofs in this section
are mostly standard. For the results on lifting idempotents, we follow the
approach of [10].



1. ALGEBRA DECOMPOSITION 3

Unless otherwise specified, we always assume that our k-algebras have a
multiplicative identity.

Definition 1.7. Let A be a k-algebra. A decomposition of unity in A
is a finite set X of elements of A such that 0 6∈ X, x2 = x and xy = 0 for
all x, y ∈ X with x 6= y, and ΣX = 1.

Proposition 1.8. For any decomposition of unity X in Z(A), A is
isomorphic to the direct product of the subalgebras Ax as x runs over X.
The isomorphism is given by mapping an element in

∏
x∈X Ax to the sum

of its components, while the inverse is given by mapping a ∈ A to ax in each
component Ax. In each factor Ax, the unit element is x.

There is a similar result for decompositions of unity in A: they provide
a decomposition of A into a direct sum of A-submodules. We will not need
this, however. Since we are only interested in central decompositions of unity,
we will only consider decompositions of unity in commutative rings, which
are somewhat easier to handle. Nevertheless, most of the results below have
analogues for noncommutative k-algebras.

Lemma 1.9. Any decomposition of unity is linearly independent.

Proof. Suppose that
∑

x∈X dxx = 0. For any y ∈ X, multiplying by y
gives dyy = 0, and then dy = 0 as y 6= 0. �

Definition 1.10. A decomposition of unity X is said to be a refinement
of another decomposition Y if there exists a partition

∐
iXi of X such that

for each i, ΣXi is an element of Y .

Lemma 1.11. The relation “X is a refinement of Y ” is a partial order
on the set of decompositions of unity, with {1} as its minimal element.

Proof. Write X ≥ Y if X is a refinement of Y ; it is obvious that X ≥
X. Suppose that X ≥ Y , and let Xi and Xj be two different blocks in the
partition of X. Then ΣXi ·ΣXj = 0 since xy = 0 for all x ∈ Xi and y ∈ Xj ,
so ΣXi and ΣXj are different elements of Y . Then

∑
i ΣXi = ΣX = 1 is a

sum over some subset of Y ; if it is a proper subset, the sum of the remaining
elements of Y is zero. But this is impossible since Y is linearly independent,
so every element of Y corresponds to a block of X. In particular, we must
have |X| ≥ |Y |.

Now if X ≥ Y and Y ≥ X, then |X| = |Y |. Then the partition of X
used in X ≥ Y has as many blocks as there are elements of X, so each block
consists of a single element. This implies X = Y .

Now suppose that X ≥ Y and Y ≥ Z. Given an element z of Z, there
is a block Yi of Y that sums to z. Each element of Yi now corresponds to a
block of X; gathering these blocks together, we create a coarser partition of
X that has a block that sums to z. By doing this for each element of Z, we
create a partition of X in which every block sums to an element of Z, which
shows that X ≥ Z. We have now shown that refinement is indeed a partial
order.

It is clear that {1} is a decomposition of unity. For any other decom-
position X, we have X ≥ {1}, since we can take the partition of X with a
single block. �
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Lemma 1.12. Suppose that A is commutative. Any two decompositions
of unity have a common refinement.

Proof. Let X and Y be decompositions of unity and let Z = {xy |
x ∈ X, y ∈ Y, xy 6= 0}. For any xy ∈ Z, we have (xy)2 = x2y2 = xy,
and given x, x′ ∈ X and y, y′ ∈ Y with either x 6= x′ or y 6= y′, we have
(xy)(x′y′) = (xx′)(yy′) = 0. Then we also have xy 6= x′y′ when x 6= x′ or
y 6= y′, unless xy and x′y′ are both 0, so ΣZ = ΣX · ΣY = 1. Thus Z is a
decomposition of unity. We also have Z ≥ X, since we can partition Z as∐
x∈X{xy | y ∈ Y, xy 6= 0}, and similarly we have Z ≥ Y . �

Theorem 1.13. Suppose that A is finite-dimensional and commutative.
Then there is a unique maximal decomposition of unity.

Proof. Since a decomposition of unity is linearly independent, its size
is no larger than the dimension of A. Let X be a decomposition of unity with
|X| maximal, let Y be any other decomposition, and let Z be a common
refinement of X and Y . Since Z ≥ X, we have |Z| ≥ |X|, and since |X|
is maximal, this implies |Z| = |X|. As seen above, |Z| = |X| and Z ≥ X
together imply Z = X, and then we have X ≥ Y . Since Y was arbitrary, X
is maximal. �

The generalisation of Theorem 1.13 to noncommutative k-algebras says
that any two maximal decompositions of unity are conjugate under A×.

Example 1.14. The requirement that A is finite-dimensional is essential
for Theorem 1.13. Consider an infinite-dimensional k-algebra A with basis
{e, e1, e2, e3, . . .} and multiplication given by e2 = e, eei = eie = e2

i = ei for
all i, and eiej = 0 for all i and j with i 6= j. Here e is the multiplicative
identity of A, and for any n, the set {ei | 1 ≤ i ≤ n} ∪ {e −

∑n
i=1 ei} is

a decomposition of unity. These decompositions do not all have a common
refinement, so there is no maximal decomposition of unity.

Definition 1.15. The elements of the maximal decomposition of unity
in Z(A) are called the primitive central idempotents of A. They may also
be called block idempotents or just blocks.

Corollary 1.16. Any central idempotent of A can be written as a sum
of block idempotents.

Proof. Let e be a central idempotent; {e, 1 − e} is a decomposition
of unity in Z(A), so we have X ≥ {e, 1 − e} where X is the maximal
decomposition. �

Corollary 1.17. Given any decomposition of unity X in Z(A) and any
block idempotent e, there is a unique x ∈ X such that xe = e. For any other
element y of X, ye = 0.

Proof. Let Z be the maximal decomposition of unity. Then Z ≥ X,
and as seen above, each element of X is a sum of elements of Z, each element
of Z appearing in exactly one sum. This applies in particular to e; taking
x ∈ X to be the element whose sum decomposition contains e we get xe = e.
For any other y ∈ X, we get ye = 0, since y can be written as a sum of
elements of Z that differ from e. �
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Next we define a particular ideal of k-algebras, the Jacobson radical. We
will see that the Jacobson radical of Z(A) is nilpotent, and the k-span of the
blocks of A is a complementary subspace to the Jacobson radical in Z(A).

Definition 1.18. Let A be a k-algebra. The Jacobson radical J(A) of
A is the set of elements of A that annihilate all simple A-modules.

Lemma 1.19. Let A be a finite-dimensional k-algebra. J(A) is nilpotent,
and all nilpotent ideals of A are contained in J(A). When A is commutative,
J(A) is exactly the set of all nilpotent elements of A.

Proof. In the sequence of inclusions J(A) ⊇ J(A)2 ⊇ J(A)3 ⊇ . . . the
dimension is weakly decreasing and hence must stabilise. Let n be such that
J(A)n and J(A)n+1 have the same dimension; since J(A)n+1 ⊆ J(A)n, we
then have J(A)n+1 = J(A)n. Letting J = J(A)n, J is then an A-module
such that J · J(A) = J . If J 6= 0, J contains a maximal submodule K, and
J/K is then simple. This implies J/K · J(A) = 0, and so J · J(A) ⊆ K,
which contradicts J · J(A) = J . Hence J = 0, and J(A) is nilpotent.

Now let I be a nilpotent ideal in A and let M be a simple A-module.
Then MI is a submodule of M , so it is either M or 0. If MI = M , we get
MIn = M for all n; but there is an n such that In = 0 since I is nilpotent.
Hence we have MI = 0, so I annihilates all simple A-modules. It is then
contained in J(A).

For the last part, note that when A is commutative, Ax is an ideal of A
for any x ∈ A. If x is nilpotent, then so is Ax, so we get x ∈ Ax ⊆ J(A).
Thus every nilpotent element of A lies in J(A); conversely, all elements of
J(A) are nilpotent since J(A) itself is nilpotent. �

Lemma 1.20. For any k-algebra A, J(A/J(A)) = 0.

Proof. Let K be the preimage of J(A/J(A)) in A; this is an ideal in A.
Since J(A/J(A)) is nilpotent, there is some n such that J(A/J(A))n = 0;
then Kn ⊆ J(A). But J(A) is also nilpotent, so there is some m such that
J(A)m = 0. Then Knm ⊆ J(A)m = 0, so K is nilpotent and hence contained
in J(A). Then J(A/J(A)) = K/J(A) = 0. �

Theorem 1.21. Let A be a finite-dimensional k-algebra. Then J(Z(A))
equals J(A) ∩ Z(A).

Proof. Since J(A) is nilpotent, J(A)∩Z(A) is a nilpotent ideal of Z(A);
it is then contained in J(Z(A)). Conversely, any element x of J(Z(A)) is
nilpotent, so Ax is a nilpotent ideal of A. It is then contained in J(A) by
Lemma 1.19, so x ∈ J(A). Then we also have J(Z(A)) ⊆ J(A) ∩Z(A), and
so J(Z(A)) = J(A) ∩ Z(A). �

Theorem 1.22. Let A be a finite-dimensional commutative k-algebra
with J(A) = 0. Then A is isomorphic to kn where n is the dimension of A.

Proof. By induction on n. We assume that A is a k-algebra with no
nilpotent elements other than 0, but we do not assume that A has a multi-
plicative identity. This will be useful for the induction step.

If n = 1, A has a generator x such that x2 = cx for some c ∈ k. Since x
is not nilpotent, c is not zero, so c−1x is an idempotent element of A. Then
A is isomorphic to k by the map dx 7→ dc for d ∈ k.
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Now let n ≥ 2; we first prove that there is a nonzero x ∈ A such that
xA 6= A. Suppose that x satisfies xA = A. Picking some k-basis B of A,
we can express the map a 7→ xa as a matrix M . Since M has finitely many
entries, its entries are all contained in some finite subfield Fq of k. Then
multiplication by x preserves the Fq-subspace generated by B; since this
space has finitely many points, any automorphism of it has finite order.
There is then some l such that M l is the identity matrix, so xlb = b for
any b ∈ B. Thus A has the multiplicative identity xl, and x is invertible.
This implies that if xA = A for all nonzero x ∈ A, then A is a field. This is
impossible, since there are no nontrivial finite-dimensional field extensions
of k.

Thus we have a nonzero x ∈ A with xA 6= A. Now the map a 7→ xa has
image xA and kernel AnnA(x), so dim(xA) + dim(AnnA(x)) = n. For any
xa ∈ xA and any y ∈ AnnA(x), we now have xa · y = y · xa = 0. Given
a z ∈ xA ∩ AnnA(x), we then have z2 = 0, so that z is nilpotent. Since
J(A) = 0, this implies z = 0. Then xA and AnnA(x) have trivial intersection;
combined with the dimension formula above, this gives A = xA⊕AnnA(x)
as a k-vector space. Because of the multiplication formula, we actually have
A = xA×AnnA(x) as a k-algebra. We have already seen AnnA(x) 6= 0, and
we also have xA 6= 0 since it contains A. Thus both factors have dimension
less than n, so we may apply the induction hypothesis to them. �

The noncommutative analogue of Theorem 1.22 states that a finite-
dimensional k-algebra A with J(A) = 0 is isomorphic to a product of matrix
rings over k.

Corollary 1.23. Let A be a finite-dimensional commutative k-algebra.
Then A/J(A) is isomorphic to kn for some n.

Proof. By Lemma 1.20, J(A/J(A)) = 0, so the result follows from
Theorem 1.22. �

Theorem 1.24. Let A be a finite-dimensional commutative k-algebra.
Any idempotent of A/J(A) lifts to an idempotent of A, and this lift is unique.
Conversely, any primitive idempotent of A maps to a primitive idempotent
of A/J(A) under the quotient map.

Proof. Let e be an idempotent element of A/J(A), and let a1 be any
lift of e. Define a sequence (an) by setting an = 3a2

n−1 − 2a3
n−1 for n ≥ 2.

Then by induction each an is a lift of e: an maps to 3e2− 2e3 = 3e− 2e = e.
Now since a2

1− a1 maps to e2− e = 0, we have a2
1− a1 ∈ J(A). We prove by

induction that a2
n − an ∈ J(A)n:

a2
n − an = (3a2

n−1 − 2a3
n−1)2 − (3a2

n−1 − 2a3
n−1)

= 4a6
n−1 − 12a5

n−1 + 9a4
n−1 + 2a3

n−1 − 3a2
n−1

= (a2
n−1 − an−1)(4a4

n−1 − 8a3
n−1 + a2

n−1 + 3an−1)

= (a2
n−1 − an−1)2(4a2

n−1 − 4an−1 − 3)

Since a2
n−1−an−1 ∈ J(A)n−1, we have (a2

n−1−an−1)2 ∈ J(A)2n−2 ⊆ J(A)n,

and so a2
n − an ∈ J(A)n. Now since every element of J(A) is nilpotent and
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A is finite-dimensional, there is some n such that J(A)n = 0. For this n, an
is then idempotent.

For the uniqueness, suppose that e has two different idempotent lifts a
and b. Then a − b is nilpotent, so there is some n such that (a − b)m = 0

for m ≥ n. But we also have (a − b)pl = ap
l − bpl = a − b for all positive l,

which is a contradiction.
For the converse, let X be the set of primitive idempotents of A that

occur as lifts of primitive idempotents of A/J(A). Then ΣX maps to the sum
of all primitive idempotents of A/J(A), which is 1, so ΣX−1 ∈ J(A). Since
ΣX and 1 are both idempotents, we can use the same uniqueness argument
to conclude that ΣX = 1. Then the set of primitive idempotents of A that
do not lie in X sums to 0, so it is empty since the primitive idempotents are
linearly independent. �

Theorem 1.25. Let A and B be finite-dimensional commutative k-alge-
bras, and let ϕ : A→ B be a surjective map. Every primitive idempotent of
B lifts to a primitive idempotent of A.

Proof. Write πA : A → A/J(A) and πB : B → B/J(B) for the quo-
tient maps. The kernel of the map πB ◦ ϕ : A → B/J(B) contains J(A),
since J(A) is nilpotent and the only nilpotent element of B/J(B) is 0. Then
the map factors through A/J(A), so there is a map ϕ̄ : A/J(A)→ B/J(B)
such that ϕ̄ ◦ πA = πB ◦ ϕ. Now if e is a primitive idempotent of B, πB(e)
is a primitive idempotent of B/J(B). Suppose that we can lift πB(e) to a
primitive idempotent of A/J(A); we can then lift it further to A, obtain-
ing a primitive idempotent f of A such that ϕ(f) − e ∈ J(B). Picking a
large enough n, we then have (ϕ(f) − e)p

n
= 0; this implies ϕ(f) − e =

ϕ(f)p
n − epn = (ϕ(f)− e)pn = 0, so that ϕ(f) = e. It is therefore enough to

prove that any primitive idempotent of B/J(B) can be lifted to A/J(A).
A/J(A) and B/J(B) both have trivial Jacobson radical, so they are

isomorphic to some power of k. LetX be the maximal decomposition of unity
in A/J(A); this is a basis for A/J(A) since A/J(A) ∼= kn. Let X ′ = {x ∈
X | ϕ̄(x) 6= 0}; then ϕ̄(X ′) spans B/J(B) since ϕ̄ is surjective. Additionally,
ϕ̄(X ′) is a decomposition of unity, so it is linearly independent and so a basis
of B/J(B). No decomposition of unity in B/J(B) can have more elements
than ϕ̄(X ′), since it would then not be linearly independent, so ϕ̄(X ′) is the
maximal decomposition of unity in B/J(B). It then contains all primitive
idempotents of B/J(B). �

Theorem 1.26. Let A be a finite-dimensional commutative k-algebra,
and let X = {e1, . . . , en} be the maximal decomposition of unity in A. The
k-span of X is a subalgebra E isomorphic to kn such that A = E ⊕ J(A) as
a k-vector space. Additionally, J(A) is isomorphic to

∏n
i=1 J(Aei).

Proof. The multiplication rules for elements of X ensure that E is a
subalgebra. Given an element x =

∑n
i=1 diei ∈ E, we have xm =

∑n
i=1 d

m
i ei,

which can be zero only when x = 0. Then E∩J(A) = 0. Conversely, A/J(A)
is isomorphic to kl for some l, and the primitive idempotents of A/J(A) lift
to primitive idempotents in A. It follows that E maps surjectively onto
A/J(A), so we must have A = E ⊕ J(A) as a k-vector space.
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Now for any x ∈ J(A) and any ei, xei is nilpotent. Then J(A)ei ⊆ J(A),
so we get

∏n
i=1 J(A)ei ⊆ J(A). The other inclusion is obvious, so we have∏n

i=1 J(A)ei = J(A). Finally, we have J(Aei) ⊆ Aei ∩ J(A) ⊆ J(A)ei since
every element of J(Aei) is nilpotent, and we also have J(A)ei ⊂ J(Aei) since
every element of J(A)ei is nilpotent. Hence J(Aei) = J(A)ei. �

We also note a small lemma that will be useful later.

Lemma 1.27. Let A be a finite-dimensional commutative k-algebra, and
suppose that 1 is a primitive idempotent of A. Then J(A) is the unique
maximal ideal of A.

Proof. It is enough to show that every element of A that is not in
J(A) is invertible. We have A = E ⊕ J(A) as a k-vector space where E is
the subspace generated by 1. An element of A that is not in J(A) can then be
written as c+x with c ∈ E, x ∈ J(A), and c 6= 0. Since c is a nonzero element
of E, it is invertible, and x is nilpotent since it is an element of J(A). Then∑∞

n=0(−1)nc−n−1xn is a well-defined element of A, and a straightforward
calculation shows that it is the multiplicative inverse of c+ x. �

Lemma 1.28 (Rosenberg’s lemma). Let A be a finite-dimensional com-
mutative k-algebra, let I1, . . . , In be ideals in A, and let e be a primitive
idempotent of A. If e is an element of the ideal

∑n
i=1 Ii, then there is some

i such that e ∈ Ii.

Proof. For each i, eIi is an ideal of eA. Since e2 = e, e is an element of∑n
i=1 eIi, so this ideal is all of eA. Since every proper ideal of eA is contained

in J(eA), there must be an i such that eIi = eA. Since eIi ⊆ Ii, it follows
that e ∈ Ii. �

To round out this section, we use the augmentation map of kG to dis-
tinguish one particular block.

Theorem 1.29. Let η : kG→ k be the augmentation map. There exists
a unique block b of kG with η(b) = 1; for any other block e, η(e) = 0.

Proof. Let e1, . . . , en be the blocks of kG. Since each ei is idempotent,
η(ei) is an idempotent element of k, so it is either 0 or 1. Now given two
different idempotents ei and ej , we have η(ei)η(ej) = η(eiej) = η(0) = 0, so
η(ei) can be 1 for at most one i. On the other hand, we have

∑n
i=1 η(ei) =

η (
∑n

i=1 ei) = η(1) = 1, so there must be some i for which η(ei) = 1. �

Definition 1.30. The unique block b of kG with η(b) = 1 is called the
principal block of kG.



CHAPTER 2

Fusion systems

For any finite group G and any prime p, one can define a fusion system
at p on G. The main idea behind this concept is to isolate the part of the
structure of G that can be described in terms of the p-subgroups of G.

Definition 2.1. Given a group G with Sylow p-subgroup P , the fusion
system FP (G) is a category defined as follows. The objects of FP (G) are
the subgroups of P , and given any two objects Q and R, the maps from
Q to R are all group homomorphisms of the form x 7→ xg for some g ∈ G
such that Qg ≤ R. The composition of maps is the usual composition of
homomorphisms.

The particular choice of P is irrelevant since a conjugation map from
one Sylow p-subgroup to another provides an isomorphism between the cor-
responding fusion systems.

Example 2.2. Let G be the symmetric group on 4 elements, let d =
(1234) and let s = (13). Then P = 〈s, d〉 is a Sylow 2-subgroup of G,
isomorphic to the dihedral group of order 8. The fusion system FP (G) con-
tains the four inner automorphisms of P (given respectively by mapping
(s, d) to (s, d), (sd2, d), (s, d3), and (sd2, d3)) and all their restrictions. It
additionally contains all six automorphisms of the subgroup 〈sd, d2〉 (given
by permutations of the three nontrivial elements sd, d2, and sd3) and all
their restrictions. It does not contain any other morphisms.

1. Abstract fusion systems

In order to better study fusion systems of groups, it is useful to have an
abstract description of what these fusion systems look like. The definitions
and much of the theory were originally developed by Lluis Puig (see [9]).
Puig did not initially publish his work, but his approach was taken up by
others in the interim. As a result, there are now two competing sets of
terminology. This thesis uses the second set, which was also used in [3] and
[2], both of which are broad surveys of the then-current literature.

This chapter broadly follows [2] in its approach, although many of the
proofs are simplified because we do not consider the more general case of
arbitrary k-algebras with G-action.

Definition 2.3. Let P be a p-group. A fusion system F on P is a
category whose objects are the subgroups of P . The set of morphisms from
Q to R must be a subset of the set of injective homomorphisms from Q to R,
with composition given by the usual composition of homomorphisms. The
morphisms from Q to R must include all morphisms given by x 7→ xg for
some g ∈ P such that Qg ≤ R. For any morphism ϕ : Q→ R, the restriction

9
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ϕ : Q → ϕ(Q) and its inverse ϕ−1 : ϕ(Q) → Q must also be morphisms in
F .

It should be noted that whenever ϕ is a homomorphism in a fusion
system F with domain Q, the restriction of ϕ to any subgroup of Q is also a
morphism in F . This is because given any R ≤ Q, the inclusion map from R
to Q lies in F since it is given as conjugation by the identity element. Then
we can compose this inclusion map with ϕ to obtain the restriction of ϕ to
R.

The definition obviously encompasses fusion systems of finite groups,
but it is much too general to be of any real use by itself. Because of this,
one defines a property called saturation that provides strong restrictions on
the structure of a fusion system.

Definition 2.4. Two subgroups Q and R of P are called F-conjugate if
there exists an isomorphism from Q to R in F . A subgroup Q is called fully
automised if AutP (Q) is a Sylow p-subgroup of AutF (Q). A subgroup Q is
called receptive if the following holds: for any F-isomorphism ϕ : R → Q
there exists an F-morphism ϕ̄ : Nϕ → P whose restriction to Q equals ϕ,
where Nϕ = {g ∈ NP (R) | (x 7→ ϕ(ϕ−1(x)g)) ∈ AutP (Q)}.

A fusion system F is called saturated if every subgroup of P is F-
conjugate to a subgroup that is fully automised and receptive.

Proposition 2.5. Let G be a finite group and P a Sylow p-subgroup of
G. The fusion system FP (G) is saturated.

Proof. Let Q be a subgroup of P and let S be a Sylow p-subgroup of
NG(Q) containing Q. Pick a g ∈ G such that Sg ≤ P ; then Qg ≤ P and
Q is FP (G)-isomorphic to Qg. We will show that Qg is fully automised and
receptive. Since Sg is contained in P and is a Sylow p-subgroup of NG(Qg),
we must have NP (Qg) = Sg. Then AutP (Qg) = NP (Qg)CG(Qg)/CG(Qg) is
a Sylow p-subgroup of AutG(Qg) = NG(Qg)/CG(Qg). Since AutFP (G)(Q

g) =
AutG(Qg), this shows that Qg is fully automised.

Next we will prove that Qg is also receptive. To ease the notation a bit,
we drop the g and just write Q and S instead of Qg and Sg. We then have
Q ≤ S ≤ P with S = NP (Q) and S being a Sylow p-subgroup of NG(S).

Now let R ≤ P and h ∈ G such that Rh = Q. Let ϕ : R→ Q be the map
x 7→ xh and set Nϕ = {k ∈ NP (R) | (x 7→ ϕ(ϕ−1(x)k)) ∈ AutP (Q)}. Note

that ϕ(ϕ−1(x)k) equals xh
−1kh. Then for any k ∈ Nϕ, we have Qk

h
= Q, so

that Nh
ϕ ≤ NG(Q). In fact we have Nh

ϕ ≤ SCG(Q) since for any k ∈ Nϕ, the

automorphism x 7→ xk
h

of Q is represented by an element of NP (Q) = S.
Note that SCG(Q) is in fact a group, since S normalizes Q and hence

also CG(Q). Furthermore, S is a Sylow p-subgroup of SCG(Q), since it is
a Sylow p-subgroup of the larger group NG(Q). Since Nh

ϕ is a p-subgroup

of SCG(Q), there exists then an a ∈ SCG(Q) such that Nha
ϕ ≤ S. Then

ϕ̄ = (x 7→ xha) is an FP (G)-morphism from Nϕ to P . If we can prove that
we can choose a to be an element of CG(Q), we also find that the restriction
of ϕ̄ to R equals ϕ. Then Q is receptive.

To prove this last part, let T be an arbitrary Sylow p-subgroup of
SCG(Q). Then there is an a ∈ SCG(Q) such that Sa = T . Write a = st
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with s ∈ S and t ∈ CG(Q); then T = Sst = St. Thus T is conjugate to S
under CG(Q), so all the Sylow p-subgroups of SCG(Q) are conjugate under
CG(Q). �

It is not true, however, that every saturated fusion system occurs as the
fusion system of a group. The first example of this phenomenon is essentially
due to Ron Solomon, who discovered a family of fusion systems on certain
2-groups that could not occur as fusion systems of a finite group. Solomon’s
work predates the development of the concept of fusion systems, but was
reformulated in these terms by Ran Levi and Bob Oliver (see [7] and [8]).

When a fusion system is saturated, its structure can be fully recovered
from a comparatively small amount of information. It is sufficient to know
the F-automorphism groups of the centric subgroups of P . This was first
proved by Jonathan Alperin for group fusion systems (see [1]), and his result
extends nicely to all saturated fusion systems.

Lemma 2.6. Let F be a fusion system on P , let Q be a fully automised
and receptive subgroup of P , and let R be a subgroup of P that is F-
isomorphic to Q. Then there is a map ϕ : NP (R) → NP (Q) such that
ϕ(R) = Q.

Proof. Let ψ : R → Q be an F-isomorphism. The set H = {ψκψ−1 |
κ ∈ AutP (R)} is a p-subgroup of AutF (Q). Since Q is fully automised,
AutP (Q) is a Sylow p-subgroup of AutF (Q), so there is a ρ ∈ AutF (Q) such
that Hρ ≤ AutP (Q). Now ρ−1ψ is an F-isomorphism from R to Q, and
Hρ equals {ρ−1ψκψ−1ρ | κ ∈ AutP (R)}. Then Nρ−1ψ = NP (R), so ρ−1ψ
extends to a map ϕ : NP (R) → P with ϕ(R) = Q. Obviously ϕ(NP (R))
normalizes ϕ(R) = Q, so ϕ restricts to a map from NP (R) to NP (Q). �

Theorem 2.7 (Alperin’s Fusion Theorem). Let F be a saturated fu-
sion system on P , and let E be the smallest fusion system on P satisfying
AutE(Q) = AutF (Q) whenever Q is a centric subgroup of P . Then E = F .

Proof. Obviously, E is a subsystem of F . Suppose that E 6= F , and
let ϕ : Q → R be an F-morphism that is not in E . We can choose ϕ such
that |Q| is maximal; then Q 6= P since AutE(P ) = AutF (P ). Since F is
a fusion system, we can also assume that ϕ is an isomorphism. Since F is
saturated, we can pick a fully automised and receptive subgroup S of P such
that S is F-isomorphic to both Q and R. Then F contains isomorphisms
ψ : Q → S and ρ : R → S that extend to NP (Q) and NP (R), respectively.
Since Q 6= P , NP (Q) and NP (R) are larger than Q, so ψ and ρ are maps in F
by the maximality of |Q|. Then κ = ρϕψ−1 is an F-automorphism of S that
is not an E-morphism; it follows that S is not centric. Since S is receptive,
κ extends to an automorphism of Nκ, and it is clear from the definition
that Nκ contains CP (S). Then Nκ is larger than S, and the extension of κ
is an F-morphism by the maximality of |Q|. Then κ is an F-morphism, a
contradiction. �

Corollary 2.8. Let E and F be saturated fusion systems on P , and
suppose that AutE(Q) = AutF (Q) whenever Q is a centric subgroup of P .
Then E = F .
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Theorem 2.7 is is a rather weak form of Alperin’s Fusion Theorem. It is
possible to require AutF (Q) = AutE(Q) for a somewhat smaller collection of
subgroups of P (see for example [2, Theorem I.3.5]). Defining this collection
requires one to know the fusion system F , however, so the stronger forms of
the theorem do not lead to a strengthening of Corollary 2.8.

Example 2.9. Let P be the dihedral group of order 8, with generators
s and d such that s2 = d4 = 1 and ds = sd3. Using Alperin’s Fusion
Theorem, we can determine all saturated fusion systems on P . P has four
centric subgroups: P itself, C = 〈d〉, V1 = 〈s, d2〉 and V2 = 〈sd, d2〉. Now
let F be a saturated fusion system on P . AutF (P ) is a subgroup of Aut(P )
that has AutP (P ) as a Sylow 2-subgroup; since AutP (P ) has index 2 in
Aut(P ), we must have AutF (P ) = AutP (P ). Similarly we have AutP (C) =
Aut(C), so AutF (C) = AutP (C). This leaves V1 and V2. Here Aut(Vi) is
isomorphic to S3, and AutP (Vi) is a subgroup of order 2. Then AutF (Vi)
must be either AutP (Vi) or all of Aut(Vi). There are then at most four
saturated fusion systems on P , depending on the choice for AutF (V1) and
AutF (V2), and all four possibilities can actually be realised. Two of these are
isomorphic through an outer automorphism of P that interchanges V1 and
V2, so this leaves three essentially different saturated fusion systems on P .
All three occur as fusion systems of groups: the fusion system of P itself has
AutF (Vi) = AutP (Vi), the fusion system of S4 has AutF (V1) = Aut(V1) and
AutF (V2) = AutP (V2), and the fusion system of A6 has AutF (Vi) = Aut(Vi).

2. Block fusion systems

It is possible to associate a fusion system to each block of a group ring.
The first step to constructing these fusion systems is to define the Brauer
pairs, which function as an analogue of the p-subgroups of G.

Definition 2.10. A Brauer pair is a pair (P, e) where P is a p-subgroup
of G and e is a primitive central idempotent of kCG(P ).

The group G acts on the set of Brauer pairs the action (P, e)g = (P g, eg).
This definition makes sense because the map x 7→ xg provides an isomor-
phism from kCG(P ) to kCG(P g). We can then define the group NG(P, e) to
consist of those elements g of G for which (P, e)g = (P, e). This is always a
subgroup of NG(P ) that contains PCG(P ). When P is the trivial subgroup
of G, this implies NG(P, e) = G, so that every element of g fixes (P, e).

We next define a partial order on the set of Brauer pairs, analogous to
inclusion of p-subgroups.

Definition 2.11. Let P and Q be p-subgroups of G with Q E P . The
Brauer homomorphism BrP/Q is the map from (kCG(Q))P to kCG(P ) given
by
∑

g∈CG(Q) dgg 7→
∑

g∈CG(P ) dgg (note the change in summation range).

When Q is the trivial subgroup, BrP/Q may also be denoted BrP .
A Brauer pair (Q, f) is said to be normal in another pair (P, e) if QEP ,

f ∈ (kCG(Q))P , and BrP/Q(f)e = e; this is written (Q, f) E (P, e). (Q, f)
is said to be contained in (P, e) if there is a chain of normal inclusions
(Q, f)E (Q1, f1)E . . .E (Qn, fn)E (P, e); this is written (Q, f) ≤ (P, e).



2. BLOCK FUSION SYSTEMS 13

The requirement BrP/Q(f)e = e deserves some explanation. It will turn
out that when (Q, f) is a Brauer pair, BrP/Q(f) is a central idempotent of
kCG(P ). Thus BrP/Q(f)e is equal to either e or 0.

It is easy to see that the Brauer homomorphism commutes with the
action ofG, in the sense that ((kCG(Q))P )g = (kCG(Qg))P and BrP/Q(x)g =

BrP g/Qg(x
g) for any x ∈ (kCG(Q))P . This implies that the action of G

preserves inclusion of Brauer pairs.

Example 2.12. Consider the group G = A4 at p = 3, and let P =
〈(123)〉. kCG(1) = kG has two primitive central idempotents, namely e =
1+(12)(34)+(13)(24)+(14)(23) and f = 2·(12)(34)+2·(13)(24)+2·(14)(23).
CG(P ) is just P and kCG(P ) has one primitive central idempotent, namely 1.
Both e and f are P -invariant, and we have BrP/Q(e) = 1 and BrP/Q(f) = 0.
Thus (1, e)E (P, 1), while (1, f) is not contained in a Brauer pair at P .

Example 2.13. Consider the group G = 〈g, h | g3 = h4 = 1, hg = h2〉
at p = 2. Define subgroups P = 〈h〉 and Q = 〈h2〉, and let α ∈ k be
a primitive third root of unity. kCG(1) = kG has two primitive central
idempotents, e = 1 + h + h2 and f = h + h2. Now CG(Q) = 〈g, h2〉, and
there are three primitive central idempotents of kCG(Q): e′ = 1 + h + h2,
f ′1 = 1 +αh+α2h2, and f ′2 = 1 +α2h+αh2. Both e and f are Q-invariant,
and we have BrQ(e) = e′ and BrQ(f) = h+h2 = f ′1 +f ′2. Then (1, e)E(Q, e),
(1, f)E (Q, f ′1), and (1, f)E (Q, f ′2).

Now CG(P ) is 〈h〉, and kCG(P ) has just one primitive central idempo-
tent, namely 1. Now e′ is P -invariant and BrP/Q(e′) = 1, so (Q, e′)E (P, 1).
Then we also have (1, e) ≤ (P, 1). f ′1 and f ′2 are not P -invariant, since
(f ′1)h = f ′2, so (Q, f1) and (Q, f2) are not contained in any Brauer pair at
P . Finally, both e and f are P -invariant, and we have BrP (e) = 1 and
BrP (f) = 0. Then (1, e) E (P, 1), while (1, f) is not contained in a Brauer
pair at P .

The next step will be to show that whenever (P, e) is a Brauer pair
and Q ≤ P , there exists a unique primitive central idempotent f of kCG(Q)
such that (Q, f) ≤ (P, e). First we record some useful facts about the Brauer
homomorphism.

Theorem 2.14. The Brauer homomorphism is a surjective k-algebra
homomorphism.

Proof. It is obvious that BrP/Q is k-linear, and it is surjective since

kCG(P ) is a subalgebra of (kCG(Q))P and BrP/Q(x) = x for x ∈ kCG(P ).
It only remains to check that BrP/Q preserves multiplication. Let C,D ∈
ClP (CG(Q)); we will show that BrP/Q(ΣC ·ΣD) = BrP/Q(ΣC) ·BrP/Q(ΣD).
If both C and D are contained in CG(P ), this is obvious.

If C is not contained in CG(P ), then every element in C lies outside of
CG(P ) since P fixes CG(P ). This implies BrP/Q(ΣC) = 0. In this case we
should then have BrP/Q(ΣC · ΣD) = 0. Now if D is contained in CG(P ), an
element of the form cd with c ∈ C and d ∈ D cannot lie in CG(P ), since we
would then have c = (cd)d−1 ∈ CG(P ). This implies BrP/Q(ΣC · ΣD) = 0,
as desired. Suppose instead that D lies outside CG(P ), and let g ∈ CG(P )
be arbitrary. The coefficient of g in ΣC · ΣD is the size of the set {(c, d) |
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c ∈ C, d ∈ D, cd = g}. P acts on this set by conjugation, and since C and D
lie outside of CG(P ), this action has no fixed points. It follows that g has
coefficient zero, and so we get BrP/Q(ΣC · ΣD) = 0. �

Lemma 2.15. Let QEREP be p-subgroups of G, and suppose that QEP .
Then BrP/R ◦BrR/Q is a well-defined map from (kCG(Q))P to kCG(P ), and
it equals BrP/Q.

Proof. Since P normalizes both Q and R, its action on kCG(Q) maps
(kCG(Q))R to itself, and we have BrR/Q(x)h = BrR/Q(xh) for any x ∈
(kCG(Q))R and h ∈ P . Then BrR/Q((kCG(Q))P ) ⊆ (kCG(R))P , so BrP/R ◦
BrR/Q is a well-defined map on (kCG(Q))P . It is clear from the definition of
the Brauer homomorphisms that it equals BrP/Q. �

Lemma 2.16. Let Q E P be p-subgroups of G, let x ∈ kCG(Q), and
suppose that x 6∈ (kCG(Q))P . Then BrP/Q(ΣxP ) = 0.

Proof. Since x 6∈ (kCG(Q))P , xP has size divisible by p. Now let g ∈
CG(P ); then x and xh has the same coefficient on g for all h ∈ P . It follows
that ΣxP has coefficient zero on g, so BrP/Q(ΣxP ) = 0. �

Lemma 2.17. Let Q E P be p-subgroups of G, and let X be a set of
elements of kCG(Q) such that Xg = X for all g ∈ P . Then BrP/Q(ΣXP ) =
BrP/Q(ΣX).

Proof. Let Y = X\XP and write Y =
⋃n
i=1 Yi where each Yi is a single

P -orbit. By the Lemma 2.16, BrP/Q(ΣYi) = 0 for all i, so BrP/Q(ΣY ) =∑n
i=1 BrP/Q(Yi) = 0. Then BrP/Q(ΣX) = BrP/Q(ΣXP ) + BrP/Q(ΣY ) =

BrP/Q(ΣXP ). �

Lemma 2.18. Let (P, e) be a Brauer pair and let QE P . There exists a
unique primitive central idempotent f of kCG(Q) such that (Q, f)E (P, e).

Proof. Let X be the set of primitive central idempotents of kCG(Q);
then BrP/Q(ΣXP ) = BrP/Q(ΣX) = 1 by Lemma 2.17. Z(kCG(Q))P is obvi-

ously central in (kCG(Q))P , so we have BrP/Q(Z(kCG(Q))P ) ⊆ Z(kCG(P ))

since BrP/Q is surjective. Then the set {BrP/Q(x) | x ∈ XP ,BrP/Q(x) 6= 0}
is a decomposition of unity in kCG(P ). By Corollary 1.17, there is then a
unique f ∈ XP such that BrP/Q(f)e = e, and then (Q, f) is the unique
Brauer pair at Q such that (Q, f)E (P, e). �

Lemma 2.19. Let (P, e) be a Brauer pair and let Q ≤ P . There exists a
Brauer pair (Q, f) at Q such that (Q, f) ≤ (P, e).

Proof. Since P is a p-group, there is a chain of normal inclusions Q =
Qn E Qn−1 E . . . E Q1 E Q0 = P . Set (Q0, f0) = (P, e); then by induction
and Lemma 2.18, there exists a Brauer pair (Qi, fi) such that (Qi, fi) E
(Qi−1, fi−1). Then (Qn, fn) ≤ (P, e). �

Lemma 2.20. Let (Q, f) ≤ (P, e) be two Brauer pairs, and suppose that
QE P . Then (Q, f)E (P, e).

Proof. Consider first the case that there is a pair (R, g) such that
(Q, f)E (R, g)E (P, e). Then BrR/Q(f)g = g and BrP/R(g)e = e. Let (Q, f ′)
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be the unique Brauer pair at Q with (Q, f ′)E(P, e); then f ′ ∈ (kCG(Q))P ⊆
(kCG(Q))R, so we may apply BrR/Q to f ′. Assume that f 6= f ′; then f ′f = 0.
This implies BrR/Q(f ′)g = BrR/Q(f ′)BrR/Q(f)g = BrR/Q(f ′f)g = 0. Apply-
ing BrP/R, we get 0 = BrP/R(BrR/Q(f ′))BrP/R(g) = BrP/Q(f ′)BrP/R(g) by
Lemma 2.15. But then BrP/Q(f ′)e = BrP/Q(f ′)BrP/R(g)e = 0, contradicting
(Q, f ′)E (P, e). Thus f ′ = f and (Q, f)E (P, e).

Now consider the general case: we have a sequence of normal inclusions
of Brauer pairs (Q, f)E (R1, g1)E . . .E (Rm−1, gm−1)E (Rm, gm) = (P, e).
Since Q is normal in P , it is also normal in each of the groups Ri. Then
by the previous case, the normal inclusions (Q, f) E (Ri, gi) E (Ri+1, gi+1)
imply (Q, f)E (Ri+1, gi+1), so by induction we find that (Q, f)E (P, e). �

Theorem 2.21. Let (P, e) be a Brauer pair and let Q ≤ P . There exists
a unique Brauer pair (Q, f) at Q such that (Q, f) ≤ (P, e).

Proof. By Lemma 2.19, there exists a Brauer pair at Q such that
(Q, f) ≤ (P, e), so we only need to prove uniqueness.

Suppose that that there are Brauer pairs (P, e), (Q, f), and (Q, f ′) such
that (Q, f) ≤ (P, e), (Q, f ′) ≤ (P, e), and f 6= f ′; we can pick P and Q
such that |P : Q| is minimal with this property. Then we have sequences of
normal inclusions (Q, f) = (Rm, gm)E (Rm−1, gm−1)E . . .E (R1, g1)E (P, e)
and (Q, f ′) = (R′n, g

′
n)E (R′m−1, g

′
m−1)E . . .E (R′1, g

′
1)E (P, e) where we can

assume that R1 and R′1 are proper normal subgroups of P . Now we have a
sequence of normal inclusions Q = (Rm ∩R′1)E (Rm−1 ∩R′1)E . . .E (R1 ∩
R′1)E(P∩R′1) = R′1 running from R′1 down to Q. We can refine this sequence
to a sequence of Brauer pairs ending in (R′1, g

′
1) by working downwards: a

Brauer pair at Ri ∩ R′1 contains a unique normal subpair at Ri+1 ∩ R′1.
In this way, we find a Brauer pair at Q that is a subpair of (R′1, g

′
1); this

must be (Q, f ′) by the minimality of |P : Q|. We make note of the Brauer
pair at R1 ∩ R′1 in this sequence and denote it (R1 ∩ R′1, h′). We then have
(Q, f ′) ≤ (R1 ∩R′1, h′)E (R′1, g

′
1)E (P, e).

Interchanging the roles of (Q, f) and (Q, f ′), we similarly construct an-
other Brauer pair (R1 ∩R′1, h) such that (Q, f) ≤ (R1 ∩R′1, h)E (R1, g1)E
(P, e). Since f 6= f ′, we must have h 6= h′ by the minimality of |P : Q|. Now
R1 ∩R′1 is the intersection of two normal subgroups of P , so it is normal in
P . Then we must have (R1 ∩R′1, h)E (P, e) and (R1 ∩R′1, h′)E (P, e), so by
Lemma 2.18, we have h = h′. This is a contradiction. �

Before continuing, we note a few useful corollaries of this result.

Corollary 2.22. Let (P, e) and (Q1, f1), . . . , (Qn, fn) be Brauer pairs
with (Qi, fi) ≤ (P, e) for all i, and let R be a subgroup of P that contains all
the Qi. Then there is a unique Brauer pair (R, f) at R such that (R, f) ≤
(P, e) and (Qi, fi) ≤ (R, f) for all i.

Proof. Let (R, f) be the unique Brauer pair at R that is contained in
(P, e). Then for each Qi, there is a unique Brauer pair (Qi, f

′
i) at Qi with

(Qi, f
′
i) ≤ (R, f). Then (Qi, f

′
i) ≤ (R, f) ≤ (P, e), so (Qi, f

′
i) is the unique

Brauer pair at Qi contained in (P, e). It is then equal to (Qi, fi). �
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Corollary 2.23. Let (P, e) be a Brauer pair containing (Q, f) and
(R, g), and let h ∈ P be an element with the property that Qh ≤ R. Then
(Q, f)h ≤ (R, g).

Proof. Let (Qh, f ′) be the unique Brauer pair atQh contained in (R, g);
then (Qh, f ′) ≤ (R, g) ≤ (P, e). (Q, f)h is also a Brauer pair at Qh contained
in (P, e), so (Q, f)h = (Qh, f ′) by uniqueness of subpairs. �

Corollary 2.24. Let (Q, f) ≤ (P, e) be an inclusion of Brauer pairs.
Then NP (Q, f) = NP (Q) and AutP (Q, f) = AutP (Q).

Proof. For any h ∈ NP (Q), we have Qh = Q. Then (Q, f)h = (Q, f)
by the Corollary 2.23, so NP (Q) = NP (Q, f). Dividing out by CG(Q), we
also get AutP (Q) = AutP (Q, f). �

The uniqueness of subpairs makes it possible to partition the set of
Brauer pairs into disjoint subsets, one for each block.

Definition 2.25. The Brauer pair (P, e) is said to be associated to
the block b if (1, b) ≤ (P, e). A Brauer pair associated to b is also called a
b-Brauer pair.

Theorem 2.26. Each Brauer pair is associated to a unique block. For
any inclusion of Brauer pairs (Q, f) ≤ (P, e), (Q, f) and (P, e) are associated
to the same block. For any Brauer pair (P, e) and any g ∈ G, (P, e) and
(P, e)g are associated to the same block.

Proof. Given a Brauer pair (P, e), there is a unique block b with (1, b) ≤
(P, e) by Theorem 2.21. Then (P, e) is associated to b but not to any other
block. If we have (Q, f) ≤ (P, e) with (Q, f) associated to b, then (1, b) ≤
(Q, f) ≤ (P, e), so (P, e) is associated to b. If (1, b) ≤ (P, e) and g ∈ G, then
(1, b) = (1, b)g ≤ (P, e)g since b is central in kG, so (P, e)g is associated to
b. �

Since G acts trivially on the set of blocks of kG, the action on the set of
Brauer pairs restricts to an action on the set of b-Brauer pairs, where b is
any block of G. This makes it possible to define a fusion system associated
to the block b.

Definition 2.27. Given a block b and a maximal b-Brauer pair (P, e),
the fusion system F(P,e)(b) is defined as follows. For any Q ≤ P , let (Q, eQ)
be the unique Brauer pair at Q with (Q, eQ) ≤ (P, e). The maps in F(P,e)(b)
from Q to R are all maps of the form x 7→ xg where g is an element of G
such that (Q, eQ)g ≤ (R, eR).

Note that Corollary 2.23 guarantees that F(P,e)(b) is in fact a fusion
system.

Example 2.28. Consider the group G = 〈g, h, k | g5 = h3 = s2 =
1, gh = hg, gs = g4, hs = h2〉 at p = 5. Set P = 〈g〉 and let α ∈ k be
a primitive third root of unity. G has two blocks, e = 2 + 2 · h + 2 · h2

and f = 4 + 3 · h + 3 · h2. We have CG(P ) = 〈g, h〉 and there are three
Brauer pairs at P , given by the primitive idempotents e′ = 2 + 2 · h+ 2 · h2,
f ′1 = 2+2α ·h+2α2 ·h2 and f ′2 = 2+2α2 ·h+2α ·h2. (P, e′) is associated to e,
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while (P, f ′1) and (P, f ′2) are associated to f . Now s maps (P, e′) to itself, so
F(P,e′)(e) is the fusion system on P that contains the automorphism g 7→ g4

of P in addition to the identity map. It is also the group fusion system of
the subgroup 〈g, s〉. (P, f ′1) and (P, f ′2) are interchanged by s, so F(P,f ′1)(f)
is the fusion system on P that has only the identity map on P . It is also the
group fusion system of P itself.

As written, the definition of F(P,e)(b) depends on the choice of (P, e).
The next step will therefore be to prove that all maximal b-Brauer pairs are
conjugate, so that the choice of (P, e) becomes irrelevant. Afterwards we will
prove that F(P,e)(b) is in fact saturated.

Definition 2.29. We write SClp(G) for the set of conjugacy classes of
p-subgroups of G. This is a partially ordered set, with ordering given by
C ≤ D if there exist P ∈ C and Q ∈ D such that P ≤ Q. We define a map
S : Cl(G) → SClp(G) by letting S(C) be the conjugacy class of the Sylow
p-subgroups of CG(c) where c is any element of C. When C ∈ Cl(G) and
c ∈ C, we also write S(c) for S(C). Whenever b =

∑
g∈G cgg is a block of kG,

we write S(b) for the set {S(g) | cg 6= 0}.
Let b be a block of kG and let C be a maximal element of S(b). The

groups in C are called defect groups of b.

The reason for this definition is that it will turn out that when (P, e) is
a maximal b-Brauer pair, P is a defect group of b.

Theorem 2.30. Let M be a downward closed subset of SClp(G), and let
IM be the k-span of {ΣC | C ∈ Cl(G),S(C) ∈ M}. Then IM is an ideal of
Z(kG).

Proof. It is enough to prove that if C and D are elements of Cl(G)
with S(C) ∈ M , then ΣC · ΣD ∈ IM . For any g ∈ G, the coefficient on g in
ΣC ·ΣD is the size of the set X = {(c, d) | c ∈ C, d ∈ D, cd = g}. Let P be a
Sylow p-subgroup of CG(g); P acts on X by conjugation. Suppose now that
S(g) 6∈ M . Since M is downward closed, we have S(g) � S(C), implying
that P is not contained in a Sylow p-subgroup of CG(c) for any c ∈ C. Then
P � CG(c) for all c ∈ C, so the action of P on X has no fixed points. Then
g has coefficient zero in ΣC · ΣD. �

Theorem 2.31. For any block b of kG, S(b) has a unique maximal
element.

Proof. Let Y be the set of maximal elements of X, and define C≤ =
{D ∈ SClp(G) | D ≤ C} for any C ∈ SClp(G). Set M =

⋃
C∈Y C≤; then

X ⊆ M so that e ∈ IM . We clearly have IM =
∑
C∈Y IC≤ , so by Lemma

1.28, b lies in IC≤ for some C ∈ Y . This is only possible if Y consists of a
single element. �

Thus defect groups of a block are unique up to conjugation.
In [2], one characterisation of defect groups is given in terms of the

trace map. For any subgroup H of G, the trace map from (kG)H to (kG)G

is given by x 7→
∑

g∈H\G x
g, and the defect groups of b are characterised

as the minimal subgroups with the property that b lies in the image of the
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subgroup’s trace map. The connection with this characterisation is that the
ideal IC≤ is in fact the image of the trace map of any group in C.

Next we establish the connection between defect groups and maximal
Brauer pairs.

Lemma 2.32. Let (P, e) be a maximal Brauer pair. (P, e) is associated
to a block b with defect group P , and all Brauer pairs at P associated to b
are conjugate.

Proof. Let X = eNG(P ), and let R be a p-subgroup of G such that
P E R; we then have BrR/P (ΣX) = BrR/P (ΣXR) by Lemma 2.17. For

any f ∈ XR we have BrR/P (f) = 0 since (P, f) is conjugate to (P, e) and
therefore maximal. Then BrR/P (ΣX) = 0. Now let g ∈ CG(P ) be an element
with nonzero coefficient in ΣX, and let T be a Sylow p-subgroup of CG(g)
containing P . If P 6= T , we can set U = NT (P ), and we then have U 6= P
and BrU/P (ΣX) 6= 0, a contradiction. Then T = P , and we have S(g) = [P ]
for all g ∈ CG(P ) with nonzero coefficient in ΣX.

Now suppose that x and y are elements of CG(P ) such that S(x) =
S(y) = [P ], and x and y are conjugate in G. Pick a g ∈ G with xg = y;
then P ≤ CG(y) and P g ≤ CG(xg) = CG(y). Since S(y) = [P ], P and
P g are then conjugate in CG(y), so there is some h ∈ CG(y) such that
P gh = P . Then gh ∈ NG(P ) and xgh = yh = y, so x and y are conjugate
under NG(P ). It follows that for any x ∈ CG(P ) with S(x) = [P ], we have

BrP (ΣxG) = ΣxNG(P ). In particular, ΣxNG(P ) lies in BrP (Z(kG)) provided
that x ∈ CG(P ) and S(x) = [P ]. Now ΣX is a linear combination of elements
of this form in kCG(P ), because only elements g with S(g) = [P ] can have
nonzero coefficient in ΣX and ΣX is invariant under NG(P ). Then ΣX is
an idempotent in BrP (Z(kG)), so by Theorem 1.25 and Corollary 1.16 there
is some idempotent b of Z(kG) with BrP (b) = ΣX.

In fact, b can be chosen to be primitive. Let b′ be the primitive idem-
potent such that (1, b′) ≤ (P, e); then BrP (b′)e = e. Conjugating by any
element g of NG(P ), we get BrP (b′)eg = eg, and adding these equations, we
obtain BrP (b′) · ΣX = ΣX. Then BrP (b′b) = BrP (b′) · ΣX = ΣX 6= 0, so
b′b 6= 0. By Corollary 1.17 we must then have b′b = b′, and so BrP (b′) =
BrP (b′b) = ΣX.

Now suppose that S(b′) contains a C with [P ] < C. Then we can pick an
R with P CR such that BrR(b′) 6= 0; but this is impossible since BrR(b′) =
BrR/P (BrP (b′)) = BrR/P (ΣX) = 0. Then [P ] is a maximal element of S(b′),
so b′ has defect P . Finally, since BrP (b′) = ΣX, the Brauer pairs at P
associated to b′ are precisely the pairs (P, f) with f ∈ X, and these are all
conjugate. �

Theorem 2.33. All maximal Brauer pairs associated to a particular
block of G are conjugate.

Proof. Let b be a block of G with defect P and let (Q, e) be a maximal
Brauer pair associated to b. By the previous lemma, Q is also a defect group
of b and so conjugate to P . Then (Q, e) is conjugate to a maximal Brauer pair
at P associated to b. As all Brauer pairs at P associated to b are conjugate,
the result follows. �
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Before we proceed with the proof of saturation, we show that the fusion
system associated to the principal block is particularly simple.

Lemma 2.34. Let b be the principal block of G. A Brauer pair (P, e) is
associated to b if and only if e is the principal block of kCG(P ).

Proof. We prove first that if (Q, f) ≤ (P, e) and e is principal, then
f is principal. It is enough to consider the case (Q, f) E (P, e), since the
general case follows by a straightforward induction.

Write ηQ and ηP for the augmentation maps of kCG(Q) and kCG(P );

we will first prove that ηP (BrP/Q(x)) = ηQ(x) for any x ∈ (kCG(Q))P .

(kCG(Q))P has the basis {ΣC | C ∈ ClP (CG(Q))}, and it is enough to prove
the formula for each element of this basis. Take a C ∈ ClP (CG(Q)), and
suppose first that C consists of a single element. Then this single element lies
in CG(P ), so ηP (BrP/Q(ΣC)) = 1 = ηQ(ΣC). If C does not consist of a single
element, none of its elements are fixed points of P , so ηP (BrP/Q(ΣC)) =
ηP (0) = 0. Since P is a p-group, the size of C is divisible by p in this case,
so we also have ηQ(ΣC) = 0.

Now BrP/Q(f) is a sum of primitive idempotents of kCG(Q); since e is
one of these idempotents, we must have ηP (BrP/Q(f)) = 1. Then ηQ(f) = 1
and f is principal. Considering the case Q = 1, we see that if (P, e) is a
Brauer pair with e principal, then (P, e) is associated to the principal block
b of G.

Let S be a Sylow p-subgroup of G and let g be the principal block of
kCG(S). Then (S, g) is associated to the principal block b, and (S, g) is
maximal since S is a Sylow p-subgroup. Then the maximal Brauer pairs
associated to b are all principal. Any Brauer pair associated to b is then
contained in one of these pairs, so it is also principal. �

Theorem 2.35. The fusion system associated to the principal block of
G is isomorphic to the group fusion system of G.

Proof. Let b be the principal block of G. By the previous lemma, there
is exactly one Brauer pair associated to b at each p-subgroup of G; write
(Q, eQ) for the Brauer pair at Q associated to b. Then a Sylow p-subgroup S
of G is a defect group of b. For any subgroups P and Q of S and any g ∈ G,
we see that P g ≤ Q implies (P, eP )g ≤ (Q, eQ) since (P, eP )g is the unique
Brauer pair at P g associated to b. Then F(S,eS)(b) = FS(G). �

Finally we prove that the fusion system associated to a block is saturated.
The proof is rather similar to the proof for fusion systems of a group, but it
requires a few lemmas first.

Lemma 2.36. Let P be a p-subgroup of G, and let H be a subgroup of
G that contains PCG(P ). Then for any p-subgroup Q of H that contains P ,
there is a one-to-one correspondence between Brauer pairs in H at Q and
Brauer pairs in G at Q given by the identity map on kCG(Q), and these
correspondences preserve inclusion.

Proof. Let Q be a p-subgroup of H containing P . Then CG(Q) ≤
CG(P ) ≤ H, so CH(Q) = CG(Q). Then a Brauer pair at Q in H is given by
a primitive central idempotent in kCG(Q), so the identity map on kCG(Q)
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provides a one-to-one correspondence with Brauer pairs at Q in G. Given
two p-subgroups Q and R of H with P ≤ R E Q, the Brauer map BrQ/R
is defined identically in G and in H. The correspondences then preserve
normal inclusions of Brauer pairs and hence all inclusions. �

Lemma 2.37. Let (P, e) be a Brauer pair with NG(P, e) = G, and let T
be a defect group of the block to which (P, e) is associated. Then TCG(P )
contains a Sylow p-subgroup of G.

Proof. Since NG(P, e) = G, we have P E G. Then also CG(P ) E G,
so TCG(P ) is a subgroup of G. Let R be a Sylow p-subgroup of TCG(P )
containing T , and let S be a Sylow p-subgroup of G containing R. We now
have AutT (P ) ≤ AutS(P ). If AutT (P ) = AutS(P ), then TCG(P )/CG(P ) =
SCG(P )/CG(P ); lifting through CG(P ), we get S ≤ TCG(P ). Then S = R
and we are done. We can therefore assume that AutS(P ) 6= AutT (P ).

To ease the notation a bit, we let C = CG(P ). We define a map ϕ :
Z(kC) → k as follows. Z(kC)e is a direct factor in Z(kC), and since e is
primitive in Z(kC), Z(kC)e/J(Z(kC)e) is isomorphic to k. We then let ϕ be
the projection Z(kC) → Z(kC)e followed by the quotient map Z(kC)e →
Z(kC)e/J(Z(kC)e). It is clear that ϕ(e) = 1. Note that since eg = e for
all g ∈ G, ϕ(xg) = ϕ(x) for any x ∈ Z(kC) and g ∈ G. In particular,
if x ∈ Z(kC) is not fixed by S, then ϕ(ΣxS) = 0, since the number of
elements in xS is divisible by p and they all have the same image under ϕ.

We can consider e as an element of kG. Since NG(P, e) = G, e is then
an element of Z(kG), and clearly BrP (e) = e. Thus e lies in BrP (Z(kG)),
so we must have BrP (b) = e where b is the block to which e is associated.
Now let g ∈ CG(P ) be an element with nonzero coefficient in e. Then g has
nonzero coefficient in b, which implies S(g) ≤ [T ] since b has defect T . Since
SC ≤ NG(P, e), e lies in the span of the set {ΣC | C ∈ ClSC(C),S(C) ≤ [T ]}.
We will show that we have ϕ(ΣC) = 0 for all elements of this set, which
contradicts ϕ(e) = 1.

Let C ∈ ClSC(C); then C can be written as a union
⋃n
i=1 Ci with each

Ci being an element of Cl(C). Since S normalizes C, it permutes the Ci. In
fact, it acts transitively, since for any D ∈ Cl(C),

⋃
s∈S Ds is obviously an

element of ClSC(C). Setting x = ΣCi for some i, we then have x ∈ Z(kC)
and ΣC = ΣxS . If we can show that Ci is a proper subset of C, we will have
ϕ(ΣC) = ϕ(ΣxS) = 0 since x is not fixed by S.

To finish the proof, we show that when S(C) ≤ [T ], C does not consist of a
single element of Cl(C). Let g ∈ C; we first note that since S(g) ≤ [T ], any p-
subgroup of AutCG(g)(P ) is conjugate in AutG(P ) to a subgroup of AutT (P ).
This follows from the fact that AutG(P ) is a quotient of G = NG(P ), and
in this quotient, the image of T is AutT (P ) while the images of p-subgroups
of CG(g) are p-subgroups of AutCG(g)(P ).

Suppose now that C ∈ Cl(C). Then for any s ∈ S, there is some c ∈ C
such that gsc = g. Then the automorphism x 7→ xsc of P lies in AutCG(g)(P );
since c ∈ C = CG(P ), this is the same automorphism as x 7→ xs. Then
AutS(P ) ≤ AutCG(g)(P ); but we already know that AutT (P ) is a proper
subgroup of AutS(P ). Then AutS(P ) is not conjugate to a subgroup of
AutT (P ), a contradiction. �
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Theorem 2.38. The fusion system associated to a block is saturated.

Proof. Let b be a block with defect group P , let (P, e) be a maximal
b-Brauer pair, let F = F(P,e)(b), and let (Q, f) ≤ (P, e). Set N = NG(Q, f);
note that Q and CG(Q) are normal subgroups of N . Consider (Q, f) as a
Brauer pair in N , and let (T, fT ) be a maximal Brauer pair in N contain-
ing (Q, f). Considered as a Brauer pair in G, (T, fT ) is then contained in
a maximal Brauer pair that is conjugate to (P, e), so after applying this
conjugation, we have (Q, f) E (T, fT ) ≤ (P, e). We will prove that in this
situation, (Q, f) is fully automised and receptive.

We first prove that NP (Q, f) = T . If (R, fR) is a Brauer pair in G such
that (Q, f) E (R, fR), then R ≤ NG(Q, f) = N , so (R, fR) is also a Brauer
pair in N . Then (R, fR) is contained in some conjugate of (T, fT ) in N , so
in particular, |R| ≤ |T |. Applying this to the unique Brauer pair in G at
NP (Q, f) that contains (Q, f) and is contained in (P, e), we get |NP (Q, f)| ≤
|T |. We also have T ≤ P∩NG(Q, f) = NP (Q, f), so T = NP (Q, f). It follows
that AutP (Q, f) = AutT (Q, f) = TCG(Q)/CG(Q).

We now prove that (Q, f) is fully automised. For this, we need AutP (Q)
to be a Sylow p-subgroup of AutF (Q). Now AutF (Q) = NG(Q, f)/CG(Q),
and we have AutP (Q) = AutP (Q, f) = TCG(Q)/CG(Q) by Corollary 2.24.
It is then enough to show that TCG(Q) contains a Sylow p-subgroup of
NG(Q, f) = N . This was shown in Lemma 2.37.

Finally, we prove that (Q, f) is receptive. For this, we consider (T, fT )
as a Brauer pair in TCG(Q). It is in fact a maximal Brauer pair in TCG(Q):
any larger Brauer pair would also be a Brauer pair in N , which is impossible
since (T, fT ) is maximal in N .

We note that all Brauer pairs in TCG(Q) that are conjugate to (T, fT )
are in fact conjugate under CG(Q). For this, let (T ′, fT ′) be one such pair,
and let ts ∈ TCG(Q) with (T, fT )ts = (T ′, fT ′). Then (T, fT )t = (T, fT )
since t ∈ T , so we have (T, fT )s = (T ′, fT ′).

Now let (Q′, f ′) be a Brauer pair that is contained in (P, e), and let
ϕ : (Q′, f ′) → (Q, f) be an isomorphism in F . Then there is some g ∈ G
such that ϕ(x) = xg for all x ∈ Q′. We extend ϕ to NG(Q′, f ′) by setting
ϕ̄(x) = xg for all x ∈ NG(Q′, f ′); ϕ̄ is then an isomorphism from NG(Q′, f ′)
to NG(Q, f). Define as usual Nϕ = {h ∈ NP (Q′, f ′) | (x 7→ ϕ(ϕ−1(x)h)) ∈
AutP (Q)}, and let (Nϕ, n) be the Brauer pair at Nϕ that is contained in
(P, e) and contains (Q′, f ′). As before, (Nϕ, n) is then a Brauer pair in
NG(Q′, f ′) containing (Q′, f ′), so ϕ̄(Nϕ, n) is a Brauer pair in NG(Q, f) = N
containing (Q, f).

Consider now the group ϕ̄(Nϕ). It is a subgroup of ϕ̄(NP (Q′, f ′)) con-

sisting of those elements h for which (x 7→ ϕ(ϕ−1(x)ϕ̄
−1(h))) ∈ AutP (Q).

But we now have ϕ(ϕ−1(x)ϕ̄
−1(h)) = ϕ̄(ϕ̄−1(x)ϕ̄

−1(h)) = ϕ̄(ϕ̄−1(xh)) = xh,
so we just get ϕ̄(Nϕ) = {h ∈ ϕ̄(NP (Q′, f ′)) | (x 7→ xh) ∈ AutP (Q)}. It
follows that Autϕ̄(Nϕ)(Q) ≤ AutP (Q); since AutP (Q) = TCG(Q)/CG(Q),
we get ϕ̄(Nϕ) ≤ TCG(Q). Then ϕ̄(Nϕ, n) is a Brauer pair in TCG(Q)
with (Q, f) ≤ ϕ̄(Nϕ, n). It is then contained in a maximal Brauer pair in
TCG(Q), and this maximal Brauer pair must be conjugate to (T, fT ) since
(T, fT ) and ϕ̄(Nϕ, n) are associated to the same block. Then there is an
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s ∈ CG(Q) that conjugates this maximal Brauer pair into (T, fT ), so we get
(ϕ̄(Nϕ, n))s ≤ (T, fT ).

In total, we now have (Nϕ, n)gs = (ϕ̄(Nϕ, n))s ≤ (T, fT ), and for any
x ∈ Q′, xgs = xg since (Q′)g = Q and s ∈ CG(Q). Then the map x 7→ xgs is
the desired extension of ϕ. �

From Theorem 2.35, it is clear that any saturated fusion system that
occurs as a group fusion system also occurs as a block fusion system. The
converse is not known, and it is difficult to predict whether it should be true.
It is however known that there exist saturated fusion systems that do not
occur as block fusion systems (see [2, Theorem IV.6.9]).



CHAPTER 3

The center of the group ring

Fix a finite group G. In this chapter, we will develop some tools for
describing Z(kG), and we will use these tools to relate the structure of
Z(kG)e to the fusion system associated to e, where e is any block of kG.

We fix the following notation. Let q be the smallest power of p such that
|G|p′ divides q− 1, and let r be any power of q such that r ≥ |G|p. Let P be
the set of p-elements in G.

Proposition 3.1. For any element g of G, gr equals gp′.

Proof. If g is a p-element, we have gr = 1 since r is a power of p and
r ≥ |G|p. If g is p-regular, its order divides |G|p′ which divides q − 1. Then
gq = g, and so gr = g since r is a power of q. For any g, we then have
gr = grp · grp′ = gp′ . �

Theorem 3.2. Let C be any conjugacy class of G. If g ∈ G is not p-
regular, the coefficient of g in (ΣC)r is zero. If g is p-regular, the coefficient
equals the coefficient of g in ΣC · ΣP.

Proof. Let Cr be the set of r-tuples of elements of C. Define a map π :
Cr → G by π(x1, x2, . . . , xr) = x1x2 · · ·xr. Then (ΣC)r equals

∑
α∈Cr π(α).

For an α ∈ Cr we denote the entries in the tuple by α1, . . . , αr, and we
extend the notation αi to all i ∈ Z by setting αlr+j = αj for 1 ≤ j ≤ r

and all l ∈ Z. For a, b ∈ Z with a < b, we set πba(α) = αa+1αa+2 · · ·αb.
We extend this to all integers a and b by setting πaa(α) = 1 and πba(α) =
(πab (α))−1 for a > b. Then for all a, b, c and l, we have πba(α) = πab (α)−1,

πca(α) = πba(α)πcb(α), and πb+lra+lr(α) = πba(α). We also have π(α) = πr0(α).
Now let 〈σ〉 be an infinite cyclic group with generator σ. We define an

action of this group on Cr by setting (ασ
n
)i = (αi−n)π

0
−n(α) for all i ∈ Z. This

satisfies πba(α
σn) = πb−na−n(α)π

0
−n(α) for all a and b. To see that it is actually

an action, we calculate:

((ασ
n
)σ
m

)i =
(
(ασ

n
)i−m

)π0
−m(ασ

n
)

=
(

(αi−m−n)π
0
−n(α)

)(π−n−m−n(α))
π0−n(α)

= (αi−m−n)π
0
−n(α)(π0

−n(α))−1π−n−m−n(α)π0
−n(α)

= (αi−m−n)π
0
−m−n(α) = (ασ

m+n
)i

Now for any n, we have

π(ασ
n
) = πr0(ασ

n
) = πr−n−n (α)π

0
−n(α) = π−n0 (α)πr−n−n (α)π0

−n(α)

= πr−n0 (α)πrr−n(α) = πr0(α) = π(α)

We can therefore pick a g ∈ G and restrict the action to those elements
α ∈ Cr that satisfy π(α) = g. Denote this set by Crg ; its size equals the

23
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coefficient of g in (ΣC)r. From now on, we assume that α is an element of
Crg .

We now have (ασ
r
)i = (αi−r)

π0
−r(α) = (αi)

π(α) = αgi , so that the action

of σr is just to conjugate by g. Then σr|g| acts by conjugation by g|g| = 1,
so it acts trivially. We then have an action of a cyclic group of order r|g|
on Crg , where we still denote the generator by σ. Now the p′-part of r|g| is
|g|p′ ; this divides |G|p′ which in turn divides r − 1. It follows that the order
of σr−1 is a power of p, so any nontrivial orbit of 〈σr−1〉 has length divisible
by p. Then modulo p, the size of Crg equals the size of its set of fixed points

under σr−1. Denote this set by Xg.

Now let α ∈ Xg; we then have αi = (ασ
r−1

)i = (αi−r+1)π
0
−r+1(α) =

(αi+1)π
r
1(α). Set h = πr1(α); then α1h = πr0(α) = g so that h = α−1

1 g. Since

we have αi = αhi+1 for all i, we can write α as (α1, α
h−1

1 , αh
−2

1 , . . . , αh
−r+1

1 );
in particular, α is defined by its first element alone.

It is now a straightforward induction to check that πn0 (α) = (α1h)nh−n

for 0 ≤ n ≤ r, so that π(α) = (α1h)rh−r = grh−r = gp′hp′ . For this to
equal g, we must have hp′ = gp, which can happen only if both elements
are trivial. Thus g must be p-regular for Xg to be nonempty, so if g is not
p-regular, it has coefficient zero.

In the case where g is p-regular, we have obtained that any α ∈ Xg is

determined by α1 alone, and that h = α−1
1 g is a p-element, since hp′ is trivial.

We can therefore represent these elements by pairs (α1, h) satisfying α1 ∈ C,
hp′ = 1, and α1h = g. On the other hand, given a pair (α1, h) satisfying these

three conditions, we do obtain an element α of Xg by setting αi = αh
1−i

1 for
all i ∈ Z, this being well-defined since hr = hp′ = 1. To determine the size
of Xg, we may therefore count these pairs instead. In the obvious way, the
number of such pairs equals the coefficient of g in ΣC · ΣP. �

Theorem 3.3. Every block idempotent of kG has coefficients in Fq, the
field with q elements, and the coefficient of any element that is not p-regular
is zero.

Proof. Let e be a central idempotent of kG and write e =
∑
C∈Cl(G) dC ·

ΣC. Then e = er =
∑
C∈Cl(G) d

r
C · (ΣC)r. Since non-p-regular elements have

coefficient zero in (ΣC)r for all C ∈ Cl(G), they also have coefficent zero in
e.

Now set X = {(ΣC)r | C ∈ Cl(G)}, and let Y be a subset of X that is
a basis for the k-span of X. For any (ΣC)r ∈ X, we have (ΣC)rq = (ΣC)r
since rq would also have been a valid choice for r. Then we also have xq = x
for all x ∈ Y . Now write e =

∑
x∈Y dx · x; then also e = eq =

∑
x∈Y d

q
x · x.

Comparing coefficients, we get dx = dqx so that dx ∈ Fq for all x. Then e has
Fq-coefficients in this basis. Since each element of X has Fp-coefficients in
the usual basis, e also has Fq-coefficients in the usual basis. �

We consider now the map ρ : Z(kG) → Z(kG) given by ρ(ΣC) = ΣC
if g ∈ C is p-regular and ρ(ΣC) = 0 otherwise. This is a k-linear map, but
generally not a k-algebra homomorphism.

Theorem 3.4. Let Z(kG) = E ⊕ J(Z(kG)) as in Theorem 1.26. Then
the projection map π : Z(kG)→ E is given by π(x) = ρ(ΣP · x).
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Proof. By Theorem 3.2, we have xr = ρ(ΣP · x) whenever x ∈ {ΣC |
C ∈ Cl(G)}. Both sides of this formula are Fq-linear, since r is a power of q,
so the formula holds for all elements of FqG. By Theorem 3.3, this includes
the primitive idempotents of Z(kG), so for any such idempotent, we have
π(e) = e = er = ρ(ΣP · e).

For any x ∈ J(Z(kG)), we have π(x) = 0, so we would like to prove
that ρ(ΣP · x) = 0 for all x ∈ J(Z(kG)). Having done this, we will then
have π(x) = ρ(ΣP · x) whenever x is a primitive idempotent or an element
of J(Z(kG)). Together, these elements span Z(kG) by Theorem 1.26, so we
will then be done since both π(x) and ρ(ΣP · x) are k-linear.

Now J(Z(kG)) is nilpotent, so there is some n such that J(Z(kG))rq
n

=
0. Writing x =

∑
C∈Cl(G) dC ·ΣC for some x ∈ J(Z(kG)), we have 0 = xrq

n
=∑

C∈Cl(G) d
rqn

C ·ρ(ΣP ·ΣC) by Theorem 3.2, since rqn would also have been a

valid choice for r. Since ρ is k-linear, this implies 0 = ρ(ΣP · x′) where x′ =∑
C∈Cl(G) d

rqn

C ΣC. Consider Z(kG) as an Fq-algebra; it has an automorphism

σ given by σ(
∑
C∈Cl(G) dC · ΣC) =

∑
C∈Cl(G) d

q
C · ΣC. Now x′ = σm(x) for

some m, not depending on x, so we see that for any x ∈ J(Z(kG)), we have
ρ(ΣP·σm(x)) = 0. As x runs over J(Z(kG)), σm(x) runs over σm(J(Z(kG)),
which must equal J(Z(kG)) since σm is an automorphism. Then we have
ρ(ΣP · x) = 0 for all x ∈ J(Z(kG)). �

Theorem 3.4 appears as (65) in [6], with a very different proof.
From now on, we will consider ρ as a map from ΣP · Z(kG) to E.

Lemma 3.5. Let x =
∑

g∈G dgg be an element of ΣP · Z(kG). Then
dg = dgp′ for all g ∈ G.

Proof. It is clearly enough to prove that the statement holds for ΣP·ΣC
for all C ∈ Cl(G). Fix a C; the coefficient of g in ΣP ·ΣC is the size of the set
X = {(h, c) | h ∈ P, c ∈ C, hc = g}. Set P = 〈gp〉; this p-group acts on X by
conjugation, and we have XP = {(h, c) | h ∈ P∩CG(P ), c ∈ C∩CG(P ), hc =
g}. We analogously define Y = {(h, c) | h ∈ P, c ∈ C, hc = gp′}, and note
that P also acts on Y . Now gp is a central p-element of CG(P ), so whenever
h ∈ P∩CG(P ), we also have gph ∈ P∩CG(P ) and g−1

p h ∈ P∩CG(P ). We can

then define an bijection from XP to Y P by the map (h, c) 7→ (g−1
p h, c). �

Theorem 3.6. The map ρ : ΣP ·Z(kG)→ E is bijective, and its inverse
is given by x 7→ ΣP · x

Proof. By Lemma 3.5, ρ is injective. Now let e be any block idempotent
of kG; then we have e = ρ(ΣP · e) by Theorem 3.4. This implies that e is
in the image of ρ and that ρ−1(e) = ΣP · e. Since the block idempotents of
kG form a basis of E, we see that ρ is also surjective, with inverse given by
x 7→ ΣP · x. �

Theorem 3.7. J(Z(kG)) equals AnnZ(kG)(ΣP).

Proof. The projection Z(kG) → E is given by x 7→ ρ(ΣP · x) and
has kernel J(Z(kG)). Then ρ(ΣP · x) = 0 for all x ∈ J(Z(kG)), and then
ΣP·x = 0 since ρ is bijective. Then J(Z(kG)) is contained in AnnZ(kG)(ΣP).
Conversely, suppose that x ∈ Z(kG) is an element with ΣP · x = 0. Then
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obviously ρ(ΣP · x) = 0, so x ∈ J(Z(kG)). Thus J(Z(kG)) must equal
AnnZ(kG)(ΣP). �

Lemma 3.8. Let e be a block idempotent of kG. ΣP · e equals e if and
only if e has trivial defect group.

Proof. We have ρ(ΣP · e) = e by Theorem 3.4. Write e =
∑

g∈G dgg

and ΣP ·e =
∑

g∈G d
′
gg. By Lemma 3.5, we have dg = d′g when g is p-regular,

and when g is not p-regular, we have dg = 0 and d′g = d′gp′ = dgp′ . Suppose

now that e does not have trivial defect group. Then there is a nontrivial
p-subgroup P such that BrP (e) 6= 0. This implies that there is a p-regular
element g ∈ CG(P ) with dg 6= 0; taking an arbitrary h ∈ P with h 6= 1, we
then get d′gh = d′g = dg 6= 0. Then ΣP · e and e are not equal.

Conversely, suppose there is some g ∈ G with dg 6= d′g. Then g is not
p-regular, so P = 〈gp〉 is a non-trivial p-subgroup. We now have gp′ ∈ CG(P )
and dgp′ = d′gp′ = d′g 6= 0, so that BrP (e) 6= 0. Then e does not have trivial

defect group. �

Lemma 3.9. For any nontrivial p-subgroup P , BrP ((ΣP)2) equals 0. In
particular, (ΣP)2 has coefficient zero on all elements of G that are not p-
regular.

Proof. We have BrP ((ΣP)2) = (BrP (ΣP))2 and BrP (ΣP) = Σ(P ∩
CG(P )). Let g ∈ CG(P ); the coefficient of g in BrP ((ΣP)2) is then the
size of {(h, h′) | h, h′ ∈ P ∩ CG(P ), hh′ = g}. Z(P ) acts on this set by
(h, h′)x = (hx, x−1h′), and this is clearly a free action. Thus the coefficient
of g in BrP ((ΣP)2) is zero.

Now let g ∈ G be an element that is not p-regular. Then g centralizes
the nontrivial p-subgroup P = 〈gp〉, so g has coefficient zero in (ΣP)2 since
BrP ((ΣP)2) = 0. �

Theorem 3.10. (ΣP)2 equals the sum of those block idempotents that
have trivial defect group.

Proof. We have ρ((ΣP)2) = (ΣP)2 since (ΣP)2 has coefficient zero
on elements that are not p-regular. Then (ΣP)2 ∈ E, so we can write
(ΣP)2 =

∑n
i=1 diei where di ∈ k and the ei are the block idempotents

of kG. Applying BrP for some nontrivial P , we get
∑n

i=1 diBrP (ei) = 0.
Since the set {BrP (ei) | 1 ≤ i ≤ n,BrP (ei) 6= 0} is a decomposition of
unity in kCG(P ), it is linearly independent, so we get di = 0 whenever
BrP (ei) 6= 0. This applies to every nontrivial p-subgroup, so (ΣP)2 must
be a linear combination of those block idempotents that have trivial defect
group. For such an idempotent e we have (ΣP)2e = (ΣP)e = e by Lemma
3.8, so the coefficient on e must be 1. �

Theorem 3.11. Let e be a block idempotent of kG. J(Z(kG)e) = 0 if
and only if e has trivial defect group.

Proof. By Theorem 3.7, we have seen that J(Z(kG)) = AnnZ(kG)(ΣP),
so J(Z(kG)e) must be AnnZ(kG)e(ΣP · e). Now if e has trivial defect group,
we have ΣP · e = e; as e is the multiplicative identity of Z(kG)e, it follows
that J(Z(kG)e) = 0. Suppose now that e does not have trivial defect group.
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Then (ΣP · e)2 = (ΣP)2e = 0, so ΣP · e is an element of J(Z(kG)e). It is
also not zero, since ρ(ΣP · e) = e. �

Having established precisely when J(Z(kG)e) is trivial, the natural next
step is to ask for the structure of J(Z(kG)e) when it is non-trivial. As part
of this, one can consider under what circumstances the ideal ker(BrP ) ∩
J(Z(kG)e) of Z(kG)e is trivial, when P is contained in some defect group of
e. Calculations of some small examples seem to suggest that this is related
to the presence of nontrivial fusion maps inside P in the fusion system
associated to e.

Example 3.12. Consider again the group G = 〈g, h, k | g5 = h3 = s2 =
1, gh = hg, gs = g4, hs = h2〉 of Example 2.28, and set P = 〈g〉. kG has two
blocks at p = 5, e = 2 + 2 · h + 2 · h2 and f = 4 + 3 · h + 3 · h2. Both have
defect group P , and the fusion system associated to e is the group fusion
system of 〈g, s〉, while the fusion system associated to f is the group fusion
system of P . There are three Brauer pairs at P , (P, e′) associated to e and
(P, f ′1) and (P, f ′2) associated to f . Now Z(kCG(P )) splits as Z(kCG(P ))e′×
Z(kCG(P ))f ′1 × Z(kCG(P ))f ′2 with each factor being isomorphic to Z(kP ).
Z(kG)e maps onto Z(kCG(P ))e′ under BrP , but not surjectively; the image
is in fact the subalgebra of Z(kCG(P ))e′ that is fixed by s. J(Z(kG)e) has
dimension 3, and it has a basis consisting of two elements that map into a
basis of J(Z(kCG(P ))e′) and one element (ΣkG, in fact) that is contained
in the kernel of BrP . In this way, Z(kG)e is isomorphic to Z(k〈g, s〉), and
there is also an isomorphism between Z(kC〈g,s〉(P )) and Z(kCG(P ))e′ such
that these isomorphisms commute with the Brauer homomorphisms BrP .

For f , we find that Z(kG)f is isomorphic to Z(kP ). The Brauer map
sends Z(kG)f injectively into Z(kCG(P ))f ′1 × Z(kCG(P ))f ′2. Both of these
factors are isomorphic to Z(kP ), and they are interchanged by s. BrP em-
beds Z(kG)f diagonally into this product; combining with the projection
map π onto the first factor, we get a map π◦BrP : Z(kG)f → Z(kCG(P ))f ′1.
Now Z(kG)f was isomorphic to Z(kP ) and Z(kCG(P ))f ′1 is isomorphic to
Z(kCP (P )), and these isomorphisms map π ◦BrP in kG into BrP in kP . In
this way they preserve the Brauer homomorphism structure of Z(kG)f .

Example 3.13. Let G be a group with Sylow p-subgroup P , and suppose
that FP (G) = FP (P ). One version of Frobenius’ normal p-complement the-
orem (see [4, 7.4.5]) states that in this situation, G has a normal subgroup
N of order prime to p such that G is isomorphic to semidirect product of P
with N . In this situation, any block b with maximal Brauer pair (Q, f) has
F(Q,f)(b) = FQ(Q). An element of G is p-regular if and only if it is contained
in N ; then for any g ∈ N , the only p-regular element appearing in ΣP · g
is g itself. It follows that ρ(ΣP · x) = x for any x ∈ Z(kG) ∩ kN . Writing
Z(kG) = J(Z(kG))⊕ E as usual, we actually have E = Z(kG) ∩ kN .

Suppose further that P is abelian. Further study of Z(kG) shows that for
any block e with defect group Q, Z(kG)e is isomorphic to Z(kQ) (which is
just kQ, of course), and that ker(BrR)∩Z(kG)e = 0 for any proper subgroup
R of Q, as expected.

Example 3.14. Consider the group G = A5 at p = 3, and set P =
〈(123)〉. G has five conjugacy classes, which we denote by their cycle type:



28 3. THE CENTER OF THE GROUP RING

[1], [22], [3], [5A] and [5B]. Here [5A] is the class containing (12345) while
[5B] is the class containing (12354). Z(kG) then has dimension 5, and it
contains two blocks with trivial defect group and one block e with defect
group P . e equals [1] + [22] + [5A] + [5B], and Z(kG)e has dimension 3. Set
x = [1]+[3]+[22]+[5A]+[5B] and y = 2·[22]+[5A]+[5B]; then the set {e, x, y}
is a basis for Z(kG)e and both x and y are elements of J(Z(kG)e). We have
x2 = xy = y2 = 0 so that J(Z(kG)e)2 = 0, and y is contained in the kernel
of BrP while x is not. In this way, Z(kG)e is isomorphic to Z(kNG(P )), and
the isomorphism includes the Brauer homomorphism structure.

Example 3.15. Consider the group G = S5 at p = 5, and set P =
〈(12345)〉. We denote the seven conjugacy classes of G by their cycle type:
[1], [2], [3], [4], [5], [22], and [23]. G has two blocks with trivial defect group
and one block e with defect group P . e equals [1] + 3 · [3] + 2 · [22], and
Z(kG)e has dimension 5. We write t = [1] + 3 · [3] + [5] + 2 · [22], x =
[3] + 3 · [22], y = [4] + 4 · [23], and z = [2] + [4] + [23]. Then {e, t, x, y, z}
is a basis for Z(kG)e with t, x, y, and z being elements of J(Z(kG)e), and
J(Z(kG))2 = 0. The kernel of BrP contains x, y, and z, but not t. In this
way, Z(kG)e is isomorphic to Z(kNG(P )), and this isomorphism includes
the Brauer homomorphism structure.

It is however far from obvious where the elements x, y, and z come
from. The most immediate idea, if we want to relate the existence of these
elements to the existence of nontrivial automorphisms of P , is to pick a g ∈ G
representing a nontrivial automorphism of P and perform some operation
with the sum over the conjugacy class of G that contains g. This works out in
kNG(P ), but it does not work in G. The three nontrivial automorphisms of P
can be represented by (1243), (14)(23), and (1342), and other representatives
of a given automorphism belong to the same conjugacy class in G. Here
(1243) and (1342) are conjugate in G, so the obvious approach only gives us
two different conjugacy classes to work with, instead of three.

Having discarded the obvious ideas as unworkable, one possible approach
is then to look for nilpotent ideal inside the entire domain of BrP , (kG)P ,
and try to relate them to nilpotent ideals in Z(kG). We will show that in
fact Ann(kG)P (ΣP ) is nilpotent. This requires some lemmas.

Lemma 3.16. Let P be a p-group and let I be the kernel of the augmen-
tation map of kP . Then I |P | = 0 and I = J(kP ).

Proof. By induction on |P |. If P has order p, it is cyclic, so kP is a
commutative algebra. Let g be a generator of P ; the elements of I then have
the form

∑p−1
i=0 cig

i with
∑p−1

i=0 ci = 0. Since kP is commutative, we then have

(
∑p−1

i=0 cig
i)p =

∑p−1
i=0 c

p
i e = (

∑p−1
i=0 ci)

pe = 0 where e is the identity element
of P . Thus every element of I is nilpotent, and since kP is commutative,
I itself is then nilpotent. Then the sequence I ⊇ I2 ⊇ I3 ⊇ . . . is strictly
decreasing until it reaches 0; since I has dimension p − 1, this happens no
later than Ip. This covers the base case.

For the general case, let Q be a normal subgroup of P of index p, and
let T ⊂ P be a set of representatives for the cosets of Q in P . Let ϕ : kP →
k(P/Q) be the map induced by the surjection P → P/Q; then ϕ(I) lies in
the kernel of the augmentation map of k(P/Q). Since P/Q has order p, it
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follows that ϕ(Ip) = ϕ(I)p = 0, so Ip lies in the kernel of ϕ. Now kerϕ
consists of those elements

∑
g∈P cgg for which

∑
g∈Q cgt = 0 for all t ∈ T .

Let IQ be the kernel of the augmentation map of kQ; we can then write
kerϕ as

⊕
t∈T tIQ as a k-vector space. Since Q is normal in P , we have

tIQ = IQt for all t; this implies that given a sequence t1, . . . , tn of elements
in T , we have

∏n
i=1(tiIQ) = (

∏n
i=1 ti)I

n
Q. This is 0 when n ≥ |Q|. We can

then write (kerϕ)|Q| = (
⊕

t∈T tIQ)|Q| and use the distributive law to see

that this equals 0. Then we have I |P | = (Ip)|Q| ⊆ (kerϕ)|Q| = 0.
I is contained in J(kP ) since it is a two-sided nilpotent ideal, and it is

a maximal ideal since it has codimension 1. Since J(kP ) is a proper ideal of
kP , we must then have I = J(kP ). �

Lemma 3.17. Let R be a ring with characteristic p, let P be a p-group,
and let n ∈ N be large enough that J(kP )n = 0. Let there be given n|P |
elements ai,g of R, indexed by {1, . . . , n} × P , such that

∑
g∈P ai,g = 0 for

all i. Let π : Pn → P be the map π(g1, g2, . . . , gn) = g1g2 · · · gn and let
X = {α ∈ Pn | π(α) = 1}. Then

∑
α∈X

∏n
i=1 ai,αi = 0.

Proof. For any subset N of {1, . . . , n} and any α ∈ Pn, we write π(αN )
for the product

∏
i∈N αi, with the factors taken in increasing order by i; we

also write N c for the complement of N in {1, . . . , n}. We can then write

∑
α∈X

n∏
i=1

ai,αi =
∑
α∈Pn
π(α)=1

n∏
i=1

ai,αi

=
∑

N⊆{1,...,n}

(−1)n−|N |
∑
α∈PN
π(αN )=1

∏
i∈N

ai,αi
∏
i∈Nc

∑
g∈P

ai,g



In the last expression, only the term N = {1, . . . , n} is nonzero; for any
other N , all terms in the inner sum contain a factor of the form

∑
g∈P ai,g,

which is zero. We apply the distributive law:

∑
α∈PN
π(αN )=1

∏
i∈N

ai,αi
∏
i∈Nc

∑
g∈P

ai,g

 =
∑
α∈PN
π(αN )=1

∏
i∈N

ai,αi

 ∑
β∈PNc

∏
i∈Nc

ai,βi


=

∑
α∈PN
π(αN )=1

∑
β∈PNc

∏
i∈N

ai,αi
∏
i∈Nc

ai,βi

=
∑
α∈Pn

π(αN )=1

N∏
i=1

ai,αi



30 3. THE CENTER OF THE GROUP RING

We insert this and interchange the two sums:∑
N⊆{1,...,n}

(−1)n−|N |
∑
α∈Pn

π(αN )=1

n∏
i=1

ai,αi =
∑
α∈Pn

∑
N⊆{1,...,n}
π(αN )=1

(−1)n−|N |
n∏
i=1

ai,αi

=
∑
α∈Pn

n∏
i=1

ai,αi

 ∑
N⊆{1,...,n}
π(αN )=1

(−1)n−|N |


Now for a given α, the expression

∑
N⊆{1,...,n},π(αN )=1(−1)n−|N | is precisely

the coefficient on the identity element in
∏n
i=1(αi − 1), an element of kP .

Since g − 1 is in the kernel of the augmentation map of kP for all g ∈ P ,∏n
i=1(αi − 1) is an element of J(kP )n, and therefore zero by Lemma 3.16.

Thus the entire sum reduces to 0.
It may appear that this argument requires R to be commutative, but this

is actually not the case. The product
∏
i∈N ai,αi

∏
i∈Nc(

∑
g∈P ai,g) contains

one factor for each i ∈ {1, . . . , n}, and all of these factors should be taken
in increasing order by i. After applying the distributive law, this product
then becomes

∑
β

∏n
i=1 ai,βi where β runs over those elements of Pn whose

restriction to N equals α. This can then be merged with the outer sum, and
the argument proceeds as before. �

Theorem 3.18. Let P be a p-subgroup of G. Ann(kG)P (ΣP ) is nilpotent.

Proof. Let I = Ann(kG)P (ΣP ); we will show that In = 0 if n is large

enough that J(kP )n = 0. Let x1, . . . , xn be elements of (kG)P and consider
the element

∏n
i=1 xi. I

n is spanned by elements of this form, so it is enough
to show that these elements are 0. Write xi =

∑
g∈G ci,gg; we then have∏n

i=1 xi =
∑

α∈Gn π(α)
∏n
i=1 ci,αi . We define an action of Pn−1 on Gn by

setting αβ = (α1β1, β
−1
1 α2β2, β

−1
2 α3β3, . . . , β

−1
n−2αn−1βn−1, β

−1
n−1αn−1). It is

clear from the definition that π(αβ) = π(α) for all α and β, and a simple
induction argument shows that if αβ = α then β = 1. Then the action is
free. Picking a set X of representatives of the orbits of Pn−1 in Gn, we then
get: ∑

α∈Gn
π(α)

n∏
i=1

ci,αi =
∑
α∈X

∑
β∈Pn−1

π(αβ)

n∏
i=1

ci,(αβ)i

=
∑
α∈X

π(α)
∑

β∈Pn−1

n∏
i=1

ci,(αβ)i

It is then enough to show that
∑

β∈Pn−1

∏n
i=1 ci,(αβ)i = 0 for any α ∈ Gn.

Define now di,g = ci,αig−1 for all i and all g ∈ P . Then
∑

g∈P di,g is the

coefficient on αi in xi ·ΣP ; this equals 0, so
∑

g∈P di,g = 0 for all i. Since the

xi are elements of (kG)P , we further have ci,gαih = ci,αihg = di,(hg)−1 =
di,g−1h−1 for any g, h ∈ P . In particular, we get ci,(αβ)i = ci,β−1

i−1αiβi
=

di,βi−1β
−1
i

(where we let β0 = βn = 1). Denoting the identity element of

Gn as 1, we further get di,βi−1β
−1
i

= d
i,(1β−1 )i

. Then
∑

β∈Pn−1

∏n
i=1 ci,(αβ)i =
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β∈Pn−1

∏n
i=1 di,(1β−1 )i

. From the definition of the action, it is clear that

the orbit containing 1 is a subset of Pn in which every element α satisfies
π(α) = 1. It has |P |n−1 elements since the action is free; as there are only
|P |n−1 elements of Pn with π(α) = 1, they must all lie in the orbit containing
1. Then the sum becomes

∑
α∈Pn,π(α)=1

∏n
i=1 di,αi , which is 0 by Lemma

3.17 �

One possible connection between block fusion systems and the result of
Theorem 3.18 is given below.

Theorem 3.19. Let C ∈ ClP (G). Then ΣC ·ΣP = 0 if and only if there
are elements g ∈ C and x ∈ P such that xg ∈ P and x 6= xg.

Proof. Note that since ΣP is central in (kG)P , we have ΣC · ΣP =
ΣP · ΣC.

Suppose that we have g ∈ C and x ∈ P with x 6= xg and x ∈ P . Set
Q = 〈CP (g), x〉 and R = Qg; then R is contained in P and P g and CP (g) is
a proper subgroup of R. Let T be a set of representatives for the right cosets
of CP (g) in R. Since CP (g) is a proper subgroup of R, |T | is then divisible
by p. Let U be a set of representatives for the right cosets of R in P ; then
TU is a set of representatives of the right cosets of CP (g) in P , so we have
ΣC =

∑
z∈TU g

z. Now whenever h is an element of P , we have ΣP ·h = ΣP ,

so in particular we get ΣP · gz = ΣP · z−1gz = ΣP · gz. Then we have

ΣP · ΣC =
∑
z∈TU

ΣP · gz =
∑
z∈TU

ΣP · gz

= ΣP · g · Σ(TU) = g · ΣP g · ΣT · ΣU
Now let V be a set of representatives for the left cosets of R in P g, so that
ΣP g = ΣV ·ΣR. We then have ΣP ·ΣC = g ·ΣV ·ΣR ·ΣT ·ΣU . Now every
element of T is contained in R, so ΣR · ΣT equals |T |ΣR, which is 0 since
|T | is divisible by p. Then ΣP · ΣC = 0.

For the converse, suppose that ΣC · ΣP = 0, and pick a g ∈ C. Let X =
{(c, h) | c ∈ C, h ∈ P, ch = g}, so that the coefficient on g in ΣC · ΣP equals
|X|. Since this coefficient is zero, |X| is divisible by p; it is also nonempty
since it contains (g, 1). Then there are some x, y ∈ P with (gx, y) ∈ X and
(gx, y) 6= (g, 1). Now since gxy = g, gx = g implies y = 1 and vice versa. Then
we must have y 6= 1. Now xg = g−1xg = g−1x(gxy) = g−1xx−1gxy = xy, so
xg ∈ P and xg = xy 6= x. �





CHAPTER 4

The symmetric and alternating groups

In this chapter, we will prove that fusion system associated to a block
of a symmetric group is always the group fusion system of a symmetric
group, and an analogous result holds for alternating groups. This is known
for the symmetric groups (see [5, Theorem 7.2]), and the methods used
there transfer easily to the alternating groups when p > 2. The case of
the alternating groups at p = 2 does not seem to have appeared in print,
however.

Lemma 4.1. Suppose that P is a defect group of a block e of G. Then
there exists a p-regular element g such that P is a Sylow p-subgroup of CG(P )
and g has nonzero coefficient in e.

Proof. This follows directly from the definition of defect groups. �

Lemma 4.2. Every block idempotent of kG is contained in the k-span of
the set {(ΣC)r | C ∈ Cl(G)}.

Proof. Let e be a block idempotent; since e is central, we can write
e =

∑
C∈Cl(G) dC · ΣC. Then e = er =

∑
C∈Cl(G) d

r
C · (ΣC)r. �

Theorem 4.3. Let g be a p-regular element of G. Suppose that there are
p-subgroups P and T of G such that g centralizes P , g does not centralize
T , and T is a normal subgroup of CG(P ). Then g has coefficient zero in all
block idempotents of G.

Proof. We will prove that g has coefficient zero in (ΣC)r for any C ∈
Cl(G); this is sufficient by Lemma 4.2. Pick a C ∈ Cl(G) and set M =
{(c, h) | c ∈ C, h ∈ P, ch = g}; the coefficient of g in (ΣC)r is then equal
to |M | by Theorem 3.2. P acts on M by conjugation, and the coefficient is
then also equal to |MP |.

We now define an action of T on MP by setting (c, h)x = (cx, x−1xch).
Here we have cx ∈ C and cx · x−1xch = x−1cxx−1c−1xch = ch = g. Further,
x−1xc lies in T since c ∈ CG(P ) and T is normal in CG(P ). Then x−1xch
lies in 〈T, h〉, which is a p-group since T is a p-group, h is a p-element, and
h lies in CG(P ) and so normalizes T . Thus x−1xch is a p-element, and so
(c, h)x is an element of M . Since x, c, and h are all contained in CG(P ), so
are cx and x−1xch, so (c, h)x is in fact an element of MP . Finally we check

33
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the associativity of the action:

((c, h)x)y = (cx, x−1xch)y = (cxy, y−1yc
x
x−1xch)

= (cxy, y−1yx
−1cxx−1(c−1xc)h)

= (cxy, y−1(x−1c−1xyx−1cx)x−1c−1xch)

= (cxy, (xy)−1c−1(xy)ch)

= (cxy, (xy)−1cxyh) = (c, h)xy

Thus we have a genuine action of T on MP , and it is enough to prove
that this action has no fixed points. Suppose that (c, h) is a fixed point; then
cx = c for all x ∈ T , so c centralizes T . Now we have c = gh−1 with both
g and h−1 contained in CG(P ), so they both normalize T . Then the maps

x 7→ xg and x 7→ xh
−1

are mutually inverse automorphisms of T . But g is
p-regular and h−1 is a p-element, so this can only happen if both maps are
trivial. Then g centralizes T , contrary to our assumptions. �

We record a we basic facts about conjugacy in the symmetric and alter-
nating groups.

Proposition 4.4. Let g be an element of Sn of cycle type 1mcm1
1 · · · cmss .

The centralizer of g in Sn is isomorphic to Sm ×
∏s
i=1(Cci o Smi), with the

Sm factor embedded as the group of permutations of the m fixed points of g.

Here Cc o Sm is the wreath product, given as the semidirect product of
Cmc with Sm where Sm acts on Cmc by permuting its factors.

Proposition 4.5. Two elements of Sn are conjugate if and only if they
have the same cycle type.

Lemma 4.6. Let Sm ⊆ Sn and let C ∈ Cl(Sn). Then C∩Sm is an element
of Cl(Sm).

Proof. Any two elements of Sm that have the same cycle type in Sn
also have the same cycle type in Sm. Thus elements of Sm that are conjugate
in Sn are already conjugate in Sm. �

Lemma 4.7. Let Am ⊆ An with n −m ≥ 2 and let C ∈ Cl(An). Then
C ∩Am is an element of Cl(Sm).

Proof. Suppose that x, y ∈ Am are conjugate in An. Then they have
the same cycle type in An, so they also have the same cycle type in Am.
They are then conjugate under Sm. �

Lemma 4.8. For any C ∈ Cl(An) and any odd permutation x ∈ Sn,
either Cx = C and C ∈ Cl(Sn) or Cx and C are disjoint and C ∩ Cx ∈ Cl(Sn).

Proof. Because An is normal in Sn, we have Cx ∈ Cl(An) whenever
C ∈ Cl(An) and x ∈ Sn. Then C and Cx are either identical or disjoint. As
every element of Sn lies in either An or xAn, it is clear that in either case,
C ∪ Cx contains all Sn-conjugates of the elements of C, so it is an element of
Cl(Sn). �

Lemma 4.9. Let H ≤ Sm ≤ Sn. Then AutSm(H) = AutSn(H).



4. THE SYMMETRIC AND ALTERNATING GROUPS 35

Proof. Let N be the set of fixed points of H in {1, . . . , n}, and let
M be its complement. Then NSn(H) is contained in SN × SM , and all
of SN is contained in CSn(H) and hence also in NSn(H). Then NSn(H)
splits as NSM (H)×SN , and similarly CSn(H) splits as CSM (H)×SN . Then
AutSn(H) equals (NSM (H) × SN )/(CSM (H) × SN ) = NSM (H)/CSM (H),
so AutSn(H) = AutSM (H). By a similar argument, AutSm(H) also equals
AutSM (H). �

Theorem 4.10. Let G = Sn, or let G = An and p > 2, and let g be a
p-regular element of G. Suppose that g contains p cycles of the same length
greater than 1. Then g has coefficient zero in all block idempotents of Sn.

Proof. We will find p-subgroups P and T of G such that the conditions
of Theorem 4.3 are satisfied. We consider the case G = Sn. When p > 2, P
and T are contained in An, so the case G = An follows immediately.

Suppose that g contains p cycles of length l > 1. We label the pl elements
of {1, . . . , n} involved in these cycles by the elements of Z/lZ × Z/pZ in
such a way that we have g(i, j) = (i+ 1, j) for all (i, j) ∈ Z/lZ×Z/pZ. The
remaining elements of {1, . . . , n} we collect in the set N , so that we have a
bijection between {1, . . . , n} and (Z/lZ× Z/pZ)qN .

For each i ∈ Z/lZ, we now define hi to be the p-cycle mapping (i, j) ∈
Z/lZ×Z/pZ to (i, j + 1) for all j ∈ Z/pZ and fixing all other elements. We
define T to be the group generated by all the hi, and P to be the group
generated by h =

∏
i∈Z/lZ hi. This is unambiguous since the hi all commute

with each other. Now h commutes with g since on N , we have gh = g = hg,
and on Z/lZ×Z/pZ, both hg and gh map (i, j) to (i+ 1, j+ 1) for all i and
j. Then g centralizes P .

A straightforward computation shows that hgi = hi−1 for all i, so that g
does not centralize T when l > 1. It now remains to show that T is normal
in CG(P ). Take an arbitrary x ∈ CG(P ) and an (i, j) ∈ Z/lZ× Z/pZ. Then
x(i, j) 6∈ N since N consists of the fixed points of P and (i, j) is not a fixed
point of P . We then have x(i, j) = (i′, j′) for some i′ and j′. Now for any
n ∈ Z/pZ, we then have xh

n
(i, j − n) = (i′, j′ − n), and xh

n
= x since

x ∈ CG(P ). Thus x(i, j − n) = (i′, j′ − n) for all n. It follows that hxi′ = hi;
applying this to all i, we see that x permutes the hi. Then x normalizes T ,
so T is normal in CG(P ). �

Theorem 4.11. Let G = An and p = 2, and let g be a p-regular element
of G. Suppose that g contains two pairs of cycles of the same length, at least
one of these lengths being greater than 1. Then g has coefficient zero in all
block idempotents of G.

Proof. We again find p-subgroups P and T of G such that the condi-
tions of Theorem 4.3 are satisfied.

Note that since g is 2-regular, its cycles all have odd length. Take two
cycles of length l and two of length m (possibly with l = m), and decompose
{1, . . . , n} as (Z/lZ×Z/2Z)q(Z/mZ×Z/2Z)qN such that on the first two
sets g acts by g(i, j) = (i+1, j). For each i ∈ Z/lZ, define hi to be the trans-
position interchanging the (i, 0) and (i, 1) elements of Z/lZ×Z/2Z, and for
each i ∈ Z/mZ, define analogously h′i to be the transposition interchanging
the (i, 0) and (i, 1) elements of Z/mZ×Z/2Z. Let h =

∏
i∈Z/lZ hi·

∏
i∈Z/mZ h

′
i;
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as before, this is well-defined since the hi and h′i all commute. It is also an
even permutation, since l and m are both odd.

Let P be the group generated by h and let T be the group generated by
the elements hihj , hih

′
j , and h′ih

′
j for all i and j. Then P and T are both

contained in An, and the same arguments as before show that T is normal
in CG(P ) and that g acts on T by hgi = hi−1 and (h′i)

g = h′i−1. Now l and
m are not both 1; suppose without loss of generality that l > 1. Then l ≥ 3,
and we have (h1h2)g = h0h1 6= h1h2, so that g does not centralize T . �

Theorem 4.12. Let G = Sn or G = An and let e be a block of G. The
defect groups of e are Sylow p-subgroups of some Sm or Am respectively for
m ≤ n.

Proof. Consider first G = Sn. Pick a g with nonzero coefficient in e
such that the Sylow p-subgroups of CG(g) are defect groups of e. Writing
the cycle type of g as 1mcm1

1 cm2
2 · · · cmss , we have mi < p and p - ci for all i.

Now CG(g) is isomorphic to Sm×
∏s
i=1(Cci oSmi), and each factor Cci oSmi

now has order prime to p. It follows that the Sylow p-subgroups of CG(g)
are the Sylow p-subgroups of Sm.

In the case G = An, CG(g) has index 1 or 2 in CSn(g). It follows that
if p > 2, CG(g) and CSn(g) have the same Sylow p-subgroups, so the defect
groups of e are the Sylow p-subgroups of some Sm, m ≤ n. These are the
same as the Sylow p-subgroups of Am, again since p > 2.

In the case G = An and p = 2, consider first the possibility that mi < 2
for all i. Since g is p-regular, ci is odd for all i, so the factor

∏s
i=1(Cci oSmi)

has odd order. Then all of its elements are even permutations, so they are
contained in An. It follows that the part of CSn(g) that lies in An is Am ×∏s
i=1(Cci o Smi), and its Sylow p-subgroups are those of Am. Now consider

the possibility that there is some i with mi ≥ 2. Then we still have mi < 4,
and we must have mj < 2 for all j 6= i, and also m < 2. Then the only
factor of the centralizer with even order is Cci o Smi . Since ci is odd and
mi is 2 or 3, the Sylow p-subgroups of this group are each generated by a
transposition in Smi . This transposition is embedded into Sn as a product of
ci transpositions; since ci is odd, this element does not lie in An. It follows
that CG(g) has odd order, so e has trivial defect group. �

This establishes the defect groups. To determine the fusion systems, we
will make use of Corollary 2.8.

Lemma 4.13. Let P be a Sylow p-subgroup of Spm or Apm. For any
centric subgroup Q of P , Q has no fixed points and CSpm(Q) is a p-group.
One exception to this occurs for Apm when p = 2 and m is odd; in this case
there are two points that may be fixed points of some Q.

Proof. Let G = Spm and let z be an element of G of cycle type pm.
CG(z) is then isomorphic to Cp o Sm, which has order pm ·m!. This equals∏m
i=1 pi, the product of those factors of (pm)! that are divisible by p. It

follows that the index of CG(z) in G is prime to p, so the two groups have
isomorphic Sylow p-subgroups. We can therefore assume P ≤ CG(z). Since
z is a central p-element of CG(z) and P is a Sylow p-subgroup of CG(z), we
have z ∈ P . Then z is a central element of P ; since Q contains Z(P ) we
have z ∈ Q, and so Q has no fixed points.
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Suppose now that CG(Q) is not a p-group, and let x be a nontrivial p-
regular element of CG(Q); then x is also an element of CG(z). Since CG(z) is
isomorphic to Cp o Sm, there is a surjective homomorphism ϕ : CG(z)→ Sm
with kernel Cmp , and this kernel has a set of generators g1, . . . , gm such
that the conjugation action of CG(z) permutes these generators with the
permutation given by the map ϕ. Now ϕ(x) is a nontrivial p-regular element
of Sm that commutes with ϕ(Q), a p-subgroup. Let k ∈ {1, . . . ,m} be a
point that is not a fixed point of ϕ(x) and let K be the orbit of k under
ϕ(Q). Assume that ϕ(x)(k) ∈ K; then there is an s ∈ ϕ(Q) such that
s(k) = ϕ(x)(k). By induction we then find sn(k) = ϕ(x)n(k) for all n, since
s and ϕ(x) commute. Since s is a p-element and ϕ(x) is p-regular, this would
imply that k is a fixed point of both elements, contrary to our assumption.
Thus ϕ(x)(k) 6∈ K.

Now let g =
∏
i∈K gi. This is a p-element contained in the normal sub-

group Cmp of CG(z), so it is contained in every Sylow p-subgroup of CG(z).
In particular, g is an element of P ; since it clearly centralizes Q, it is an
element of Q. Then g commutes with x, but since ϕ(x)(k) 6∈ K, gx cannot
equal g. This is a contradiction.

The case G = Apm and p > 2 is immediate, since Spm and Apm have
the same Sylow p-subgroups when p > 2. This leaves the case G = Apm and
p = 2; here CG(Q) is a subgroup of CSpm(Q) of index at most 2, so it is
enough to show that CG(Q) is a p-group. We consider the cases m even and
m odd separately. Suppose that m is even and let z be an element of cycle
type 2m; this is now an element of G. As before, we can assume z ∈ Q, so Q
has no fixed points. CG(z) is now a subgroup of index 2 in CSpm(z) ∼= C2 oSm,
so again we have a map ϕ : CG(z)→ Sm. As before, we assume that there is
a nontrivial p-regular element x in CG(Q), we let k ∈ {1, . . . ,m} be a point
that is not a fixed point of ϕ(x), we let K be the orbit of k under ϕ(Q), and
by the same argument as before, we find ϕ(x)(k) 6∈ K.

We let g1, . . . , gm be the set of transpositions generating Cmp CCSpm(z),
like before. Now if k is not a fixed point of Q, then |K| is a power of 2, so∏
i∈K gi is an even permutation. It is then an element of P that centralizes

Q but not x, which is impossible since Q is centric in P . We can then assume
that every point that is not a fixed point of ϕ(x) is a fixed point of ϕ(Q).
Then Q centralizes gi whenever i is not a fixed point of ϕ(x), so gkgϕ(x)(k)

is an even permutation centralizing Q. It lies in P by the same arguments
as before, so it lies in Q; but it does not centralize x since the cycle in x
involving k has length at least 3. Again we have a contradiction.

There remains the case that m is odd. In this case we let z be an element
of cycle type 122m−1, and we let z′ be the transposition interchanging the
two fixed points of z. As in the previous cases, comparing orders shows
that a Sylow p-subgroup of CG(z) is also a Sylow p-subgroup of G. By the
same arguments as before, Q must contain z, so it has at most two fixed
points, namely the points interchanged by z′. Now CSpm(z) is isomorphic
to 〈z′〉 × (C2 o Sm−1), and CG(z) has index 2 in CSpm(z), so it is normal in
this group. Since CG(z) does not contain z′, CSpm(z) is also isomorphic to
〈z〉×CG(z); dividing out 〈z〉, we see that CG(z) is isomorphic to C2oSm−1. We
can then follow the argument for the case G = Sp(m−1) to get the result. �
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Theorem 4.14. Let G = Sn or G = An and let b be a block of G. There
exists some m ≤ n such that the fusion system associated to b is isomorphic
to the fusion system of Sm or Am, respectively.

Proof. Consider first the case G = Sn. Let P be a defect group of b and
let N be its set of fixed points, let M be the complement of N in {1, . . . , },
let F be the fusion system on P associated to b, and let Q be a centric
subgroup of P . Then by Lemma 4.13, CG(Q) has the form R × SN where
R is a p-group. By Theorem 3.3, every block idempotent of CG(Q) is then
contained in SN , so the map ϕ : kCG(Q)→ kSN induced by the projection
onto SN is bijective on blocks. Then we may identify the Brauer pairs at Q
with the blocks of SN . Additionally, the map ϕ ◦ BrQ : Z(kG) → Z(kSN )
is surjective by Lemma 4.6. It follows that there is a unique Brauer pair
associated to b at each Q, so AutF (Q) = AutG(Q). By Lemma 4.9 we have
AutG(Q) = AutSM (Q), so Corollary 2.8 implies that F = FP (SM ).

Now consider the case G = An and p > 2. Keeping the same notation, we
have CSn(Q) = R × SN , where R is a p-group. Since p > 2, R is contained
in An, so we find CG(Q) = R × AN . We again have a projection map
ϕ : kCG(Q) → kAN , but the map ϕ ◦ BrQ : Z(kG) → Z(AN ) is no longer
surjective (except in the case where P is the trivial group). By Lemma 4
and Lemma 4.8, the image of the map instead consists of those elements x
of Z(AN ) that satisfy xσ = x where σ is any odd element of SN . Then for
any primitive idempotent e of Z(AN ), either e lies in the image of ϕ ◦ BrQ
or e 6= eσ and e+ eσ lies in the image. It follows that there are either one or
two Brauer pairs at Q associated to b, and this number is independent of Q
since the map ϕ ◦BrQ is the same for all Q. In the case of two Brauer pairs,
we also see that they are interchanged by σ.

Now let g ∈ NG(Q). Since N is the set of fixed points of Q, we can write
g = g1g2 with g1 ∈ SM and g2 ∈ SN . Then g1 and g2 are either both even
or both odd. Now in the case of two Brauer pairs at each Q, the g that fix
each Brauer pair are those for which g2 is even. Then g1 must also be even,
so we find AutF (Q) = AutAM (Q) and so F = FP (AM ). When there is one
Brauer pair at each Q and |N | < 2, we also find AutF (Q) = AutAM (Q) and
F = FP (AM ), since g2 is always trivial in this case. This leaves the case of
one Brauer pair at each Q and |N | ≥ 2; here we get AutF (Q) = AutSM (Q)
and so F = FP (SM ). But we can now choose a set M ′ containing M and
two additional points; since p > 2, P is also a Sylow p-subgroup of AM ′ . We
have AutSM (Q) = AutAM′ (Q) for all Q since for any g ∈ SM , either g or gt
lies in AM ′ where t is the transposition interchanging the two elements of
M ′ \M . We then get F = FP (AM ′).

This leaves the case G = An and p = 2. Fix a Q, and let N be its set
of fixed points and M the complement of N in {1, . . . , n}. We then have
CSn(Q) = R × SN where R is a p-subgroup of SM . Now if R is contained
in AM , then CG(Q) is just R × AN . Then we again find that there are one
or two Brauer pairs at Q associated to b, and if there are two, they are
interchanged by any odd permutation in SN . As before, this implies that
AutF (Q) is AutSM (Q) if there is a single Brauer pair and AutAM (Q) if
there are two.
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If R is not contained in AM , CG(Q) consists of (R∩AM )×AN together
with the products of any odd permutation in R and any odd permuta-
tion in SN . Now the block idempotents of kCG(Q) are still found inside
kAN , since AN contains all p-regular elements of CG(Q). Let σ be any
odd permutation in SN ; then we actually have eσ = e for any block e of
kCG(Q), since there exists an element g ∈ CG(Q) such that xg = xσ for
all x ∈ AM . Then there is a unique Brauer pair at Q associated to b, so
we have AutF (Q) = AutSM (Q). But since R = CSM (Q) contains an odd
permutation, any element in AutSM (Q) can be given as conjugation by an
even permutation, so we actually have AutF (Q) = AutSM (Q) = AutAM (Q).

Now let N be the set of fixed points of P , M its complement, and write
|M | = 2m. In the case where m is even, all centric subgroups of P have
N as their set of fixed points by Lemma 4.13, so we get F = FP (SM ) or
F = FP (AM ) as in the case p > 2. If F = FP (AM ) we are done, so sup-
pose that F = FP (SM ). Since F is saturated, AutF (P ) = AutSM (P ) has
AutP (P ) as a Sylow p-subgroup. Let T be a Sylow p-subgroup of SM con-
taining P ; then AutT (P ) is obviously also a Sylow p-subgroup of AutSM (P ).
Then AutT (P ) = AutP (P ), so there exists an odd permutation in T that
centralizes P . This implies that every morphism in FP (SM ) can be given as
conjugation by an even permutation, so F = FP (SM ) = FP (AM ).

Consider now the case where m is odd. For those centric subgroups Q
of P that have N as their set of fixed points, we follow the same arguments
as in the case p > 2 to conclude that AutF (Q) = AutAM (Q) or AutF (Q) =
AutSM (Q), the same case for all Q. As with the case m even, we exclude the
possibility AutF (Q) = AutSM (Q) by considering the Sylow p-subgroups of
AutF (P ). We then have AutF (Q) = AutAM (Q) for all these groups.

Now define K ⊂M to consist of the two points that are fixed points of
some centric subgroup Q of P . Then for any x ∈ P , Qx is a centric subgroup
of P with Kx as fixed points, so we must have Kx = K. Then K is an orbit
under P , and there is a normal subgroup PK of index 2 in P consisting of
those elements in P that do not interchange the two points in K. Writing
M ′ = M \K, it is clear that PK is a subgroup of AM ′ .

Now if Q fixes the two points in K, CSn(Q) has the form R×SK∪N with
R a p-group. By the same considerations as before, there is either one or
two Brauer pairs at Q associated to b, the same number for all Q. Suppose
there are two Brauer pairs. Picking an x ∈ P \ PK , we see that P xK = PK
since PK E P , and x interchanges the two Brauer pairs at Q, since it acts
as a transposition on SK∩N . However, x fixes all Brauer pairs at P , since it
is an element of P , so there would then be two Brauer pairs at PK that are
contained in the same Brauer pair at P . This is impossible, so there must
be one Brauer pair at each Q. Then AutF (Q) = AutSM′ (Q) = AutSM (Q) =
AutAM (Q), where the last equality follows from the fact that SM contains
an odd permutation centralizing Q, namely the transposition interchanging
the two elements of K. We then have AutF (Q) = AutAM (Q) for any centric
subgroup Q of P , and so F = FP (AM ). �
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