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Summary
This thesis consists, in excess to an introductory chapter, of five papers within the area of
consumption and investment decision making. The unifying topic is optimization of a stochastic
wealth process. The underlying investment market is for all five papers the celebrated Black-
Scholes market. What differentiates the papers are different wealth dynamics, optimization
objectives, and possibly restrictions on the wealth process.

The first paper considers an investor, endowed with deterministic labor income, who searches
to maximize expected cumulated utility from consumption and terminal wealth, while being
restricted to keep wealth above a given barrier. The problem is solved by use of the Martingale
Method for stochastic optimization problems in complete markets. The solution becomes an
OBPI (option based portfolio insurance) strategy where the option bought to protect against
losses in the unrestricted portfolio is an American put option.

The second paper extends the ideas of the first paper in two ways. First, we consider an
investor with an uncertain lifetime, thereby also including utility from bequest, and introduce
the possibility to invest in a life-insurance market. Second, the wealth restriction is allowed to
depend, in a general way, on the wealth process. This allows for an analysis of the widespread
pension saving product where a minimum rate of return on pension contributions is guaranteed.

The first two papers are summarized in Section 1.2, and the full papers are presented in
Chapter 2 and 3, respectively.

The third paper, summarized in Section 1.3 and presented in Chapter 4, contributes to the
new area of consistent optimization within classes of inconsistent problems. More formally, a class
of non-linear objectives, for which the Bellman Optimality Principle does not hold, is considered.
The two key examples treated are the mean-variance and mean-standard deviation problems,
including both consumption, labor income, and terminal wealth, for an investor without pre-
commitment. As explained in the paper the term “without pre-commitment” refers to the fact
that we look for optimal strategies in the sense of Nash equilibrium strategies.

The forth paper of this thesis takes a utility approach to quantify the impact of investment
costs. Concretely, we consider a power utility investor searching to maximize expected utility
from terminal wealth. The impact of investment costs is split into a direct loss and an indirect
loss. The direct loss is due to paying investment costs, and the indirect loss is due to lost
investment opportunities, caused by the investors risk aversion. The indirect loss is measured
by an indifference compensation ratio, defined as the minimum relative increase in the initial
wealth the investor demands in compensation to accept incurring investment costs of a certain
size. The magnitude of the indirect loss turns out to be between the same as and half of the
expected direct loss, i.e. surprisingly big. Finally, a related analysis allows us to conclude that
the size of the investment costs is of far more importance than the specific choose of investment
strategy. The paper is summarized in Section 1.4, and the full paper is presented in Chapter 5.

Finally, the last paper, summarized in Section 1.5 and presented in Chapter 6, considers
entrance times of random walks, i.e. the time of first entry to the negative axis. Partition sum
formulas are given for entrance time probabilities, the nth derivative of the generating function,
and the nth falling factorial entrance time moment. Similar formulas for the characteristic
function of the position of the random walk both conditioned on entry and conditioned on no
entry are also established. All quantities are also considered for the stationary process. The
theoretical results are applied to analyze the widespread with-profit pension product. More
precisely, exact (computable) formulas for the bonus time probabilities, the expected bonus size,
and the expected funding ratio given no bonus are presented. Moreover, to conduct a mean-
variance analysis for a fund in stationarity we devise a simple and effective exact simulation
algorithm for sampling from the stationary distribution of a regenerative Markov chain.
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Sammenfatning
Denne afhandling består, i tillæg til et introducerende kapitel, af fem artikler inden for feltet
omhandlende forbrugs- og investeringsbeslutninger. Det gennemgående emne er optimering af
stokastiske formueprocessor. Det underlæggende investeringsmarked er for alle fem artikler det
anderkendte Black-Scholes marked. Artiklerne adskiller sig fra hinanden ved forskellige formue-
dynamikker, optimeringskriterier og mulige formuerestriktioner.

I den første artikel betragtes en investor, med en deterministisk lønindkomst, der søger at
optimere den forventede akkumulerede nytte af forbrug og slutformue, under restriktionen at
formuen altid skal være større end en givet barrie. Problemet løses ved brug af Martingal Meto-
den for stokastiske optimeringsproblemer i komplette markeder. Løsningen består af en options-
baseret porteføljestrategi, hvor optionen der købes som forsikring mod tab i den urestringerede
portefølje er en amerikansk put option.

Den anden artikel bygger videre på ideerne fra den første artikel på to måder. For det første
betragtes en investor med en stokastisk levetid. Som følge heraf introduceres nytte af testa-
mentering samt et livsforsikringsmarked. For det andet tillades formuen at være restringeret af
en generel proces der afhænger af formuehistorikken. Dette muliggør en analyse af det udbredte
pensionsprodukt der indeholder minimums garantiforrentninger af pensionsbidragene.

En opsummering af de to første artikler findes i sektion 1.2, og artiklerne er præsenteret i
deres fulde længde i hhv. kapitel 2 og 3.

Den tredje artikel, der opsummeres i sektion 1.3 og præsenteres i kapitel 4, bidrager til det
nye felt omhandlende konsistent optimering af inkonsistente problemer. Formelt betragtes en
klasse af ikke-lineære optimeringsobjekter hvor Bellmans Optimal Princip ikke er gældende. De
to behandlede hovedeksempler er middelværdi-varians og middelværdi-spredning, med lønind-
komst, forbrug og slutformue, for en investor uden præ-præferencer. Som forklaret i artiklen
refererer udtrykket “præ-præferencer” til det at vi søger efter optimale strategier i form af Nash
ligevægtsstrategier.

Den fjerde artikel i afhandlingen kvantificerer betydningen af investeringsomkostninger ved
brug af nytteteori. Konkret betragtes en potensnytte-investor der søger at maksimere den for-
ventede nytte af slutformuen. Tabet som følge af investeringsomkostninger splittes op i et direkte
og et indirekte tab. Det direkte tab er de faktisk betalte omkostninger, og det indirekte tab er
knyttet til de, som konsekvens af investorens risikoaversion, tabte investeringsmuligheder. Det
indirekte tab måles ved brug af et indifferent kompensations mål givet som størrelsen af den kom-
pensation investoren forlanger for at acceptere investeringsomkostninger af en vis størrelse. Vi får
at det indirekte tab er mellem den samme og halvdelen af det forventede direkte tab (altså over-
raskende stor). Endeligt fås ved en relateret analyse, at størrelsen af investeringsomkostningerne
er af markant større betydning relativt til valg af investeringsstrategi. Artiklen opsummeres i
sektion 1.4, og den fulde artikel præsenteres i kapitel 5.

Den sidste artikel, der opsummeres i sektion 1.5 og præsenteres i kapitel 6, betragter in-
dgangstidspunkter for random walks (tidspunkt for første gang processen bliver negativ). Parti-
tionssumsformler for indgangstidspunktssandsynlighederne, den nth afledte af den genererende
funktion, og det nth faldende fakultetsmoment for indgangstidspunkterne præsenteres. Lignende
formler udledes for den karakteristiske funktion af positionen af random walk processen både
betinget med indgang og ingen indgang. Alle størrelser betragtes også for den stationære proces.
De teoretiske resultater bruges til at analysere det udbredte med bonus pensions produkt. Mere
præcist præsenteres eksakte formler for bonustidspunktsandsynlighederne, den forventede bonus,
og den forventede fundinggrad givet ingen bonus. Derudover opfindes en simpel men effektiv ek-
sakt simuleringsalgoritme til sampling fra den stationære fordeling af den regenerende Markov
kæde. Dette bruges til at udføre en middelværdi-varians analyse af en fond i stationaritet.
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1. Introduction
This introductory chapter gives an overview of the contributions of this thesis. To this end the
chapter is divided into 6 sections. Section 1.1 briefly presents the legacy of Merton (1969, 1971)
and the general market model which forms the foundation for the work done in this thesis. Sec-
tion 1.2 summarizes two papers about binding capital restrictions. Section 1.3 presents the main
results from a paper which contributes to the new area of consistent optimization within classes
of inconsistent problems. Section 1.4 presents a paper taking a risk-adjusted utility approach
to quantify the impact of investment costs. Finally, Section 1.5 sums up the content of a paper
containing several results for discrete-time random walks with continuous innovations together
with an application to a collective with-profit pension scheme.

1.1 General inspiration for this thesis
To a large extent this thesis builds upon the celebrated pioneering work of Merton (1969, 1971).
Within a continuous-time model Merton considered an investor with the objective to maximize
the time-additive utility from consumption and terminal wealth: In its simplest form we have

sup
(c,π)∈A′

E

[∫ T

0

u(c(t))dt+ u(X(T ))

]
, (1.1)

where T > 0 is the investment horizon, u a utility function, A′ the set of admissible strategies,
and (c, π) the consumption-investment strategy affecting the wealth process (X(t)t∈[0,T ]) with
initial wealth X(0) = x0. The approach used by Merton is called dynamic programming which
turns the stochastic problem (1.1) into a deterministic optimization problem and a deterministic
linear differential equation, known as the Hamilton-Jacobi-Bellman equation. In the special
case of a Black-Scholes investment market and HARA (hyperbolic absolute risk aversion) utility
functions, Merton found closed-form solutions for the optimal investment-consumption strategy
in feedback forms.

For this thesis the Black-Scholes market is also the market model of choice. In principle, a
financial market model should contain more than one stock. However, it is well known from the
Mutual Fund Theorem by Merton (1971) that for a HARA utility investor, as we shall consider,
the optimal asset allocation will always be between an optimal portfolio of the stocks weighted
by their sharp ratios, and the risk-free bank account (at least for diffusion processes with de-
terministic coefficients). Also, the main focus of this thesis is to extend the classic optimization
problem of Merton’s in new directions. A possible extension of the market model at the same
time will blur the picture by allowing only for semi-explicit results and more cumbersome nota-
tion, thereby blurring the points to be made in this thesis.

1.2 Capital guarantees
In reality, the number of portfolio problems which can be solved explicitly by the dynamic
programming approach used by Merton are very limited. In fact, even the numerical tractability
is very limited.

Therefore, in Chapters 2 and 3 we consider another approach to solve such problems, called
the Martingale method. The method, developed by Cvitanic et al. (1987), Cox and Huang (1989)
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and Cox and Huang (1991), builds upon the martingale theory for complete markets. It is a
more direct approach which splits the problem into a time-static optimization problem for the
optimal consumption process and the terminal wealth process, and the problem of constructing a
self-financing strategy replicating the optimal terminal wealth. To demonstrate the simplicity of
the martingale method we consider briefly Merton’s problem given by (1.1). Define the inverse
of the derivative of the utility function u as the function I : (0,∞] → [0,∞) and define the
adjusted state price deflator

H(t) = Λ(t)e−rt,

where Λ is the Girsanov kernel from the measure transformation from the real probability mea-
sure P to the equivalent pricing measure Q. Only two central results and one simple observation
are needed to solve the problem.

1. The completeness of the market model ensures that the budget constraint,

EQ

[∫ T

0

e−rtc(t)dt+ e−rTX(T )

]
≤ x0, (1.2)

is true for all admissible strategies (see. e.g Korn (1997b) Theorem 7).

2. There exists a unique constant ξ∗ > 0 such that (see. e.g. Korn (1997b) Proposition 15
(27))

EQ

[∫ T

0

e−rtI(ξ∗H(t))dt+ e−rT I(ξ∗H(T ))

]
= x0. (1.3)

3. From the concavity of u, and since u′(I(z)) = z, we obtain

u(x) ≤ u(I(z))− z(I(z)− x), ∀x ≥ 0, z > 0. (1.4)

Now, by use of (1.2)–(1.4) it follows easily that for an arbitrary strategy (c, π)

E

[∫ T

0

u(c(t))dt+ u(X(T ))

]

≤ E

[∫ T

0

u(I(ξ∗H(t)))dt+ u(I(ξ∗H(T )))

]
.

We get directly the candidate optimal strategy

c∗(t) = I(ξ∗H(t)), (1.5)
X∗(T ) = I(ξ∗H(T )). (1.6)

The replicating investment strategy, yielding the optimal wealth process, can be found by use of
the martingale representation theorem (see e.g. Karatzas and Shreve (1991)). The calculation of
an exact expression for the consumption-investment strategies from (1.5) and (1.6) is the hard
part. However, if no closed-form solution is available, numerical computations can be obtained
from (1.5), (1.6) and (1.2) by Monte Carlo simulations.

The Martingale method is convenient for solving the problems considered in Chapter 2 and
3. We use the fact that the optimal strategy can be represented in the forms given by (1.5) and
(1.6) to solve expanded versions of Merton’s problem, including binding capital constraints.

Consider an investor endowed with a deterministic labor income ℓ and define the financial
value of the income stream by g(t) =

∫ T

t
e−r(s−t)ℓ(s)ds and the total wealth process by

2



X(t) + g(t). Solving Merton’s problem for such an investor is simple since it turns out that
the problem is equivalent to the problem without labor income but with an enlarged initial
wealth equal to x0 + g(0). In Chapter 2 we consider Merton’s problem (1.1) with the addition
of a possible time-preference (discount) parameter β, deterministic labor income at rate ℓ, and
(most importantly) a capital restriction allowing only for strategies with corresponding wealth
processes being greater or equal to a certain barrier K at all times. Moreover, we consider a
CRRA (constant relative risk aversion) utility function. The problem is set as

sup
(c,π)∈A′

E

[∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+ e−

∫ T
0

β(s)dsu(X(T ))

]
. (1.7)

under the capital constraint
X(t) ≥ K(t), ∀t ∈ [0, T ].

Note that if K(t) = Ae−r(T−t)−g(t) for some constant A ≤ erT (x0+g(0)), the capital constraint
reduces to the terminal constraint X(T ) ≥ A. This problem, including a terminal constraint
(only), was first solved by Teplá (2001). The solution consists of an OBPI (option based portfolio
insurance). The investor optimally invests a fraction of the initial total wealth in the unrestricted
portfolio and uses the remainder to buy a European put option with strike price A on that
portfolio. The split between money spent on the unrestricted portfolio and the put option is
determined by the initial budget constraint. The important lesson to learn is that a rate of return
guarantee of r on a part of the initial wealth does not significantly increase the complication
since the capital restriction reduces to a terminal restriction. To get a glimpse of the strategy
Figure 1.1 illustrates for a CRRA investor the two components of the OBPI, the unrestricted
portfolio and the put option, for a stock market outcome where the free optimal solution to
Merton’s problem does not fulfill the terminal capital constraint.

On the other hand, a rate of return guarantee less than the risk free rate, r̃ < r, on
a part of the initial wealth (possible the entire) complicates things much more. That is,
K(t) = Ae−r̃(T−t) − g(t) for some constant A ≤ er̃T (x0 + g(0)). In that case the constraint
does not reduce to a terminal constraint. In a setting excluding consumption and labor income
El-Karoui et al. (2005) show that the optimal strategy is, again, an OBPI strategy. However,
opposed to Merton’s problem with or without a terminal capital constraint, including labor in-
come to this setting is not trivial. Being endowed with labor income or being endowed with an
enlarged (by the financial value of future labor income) initial wealth are not equivalent for this
case. In fact, the latter is preferable. This indicates that adding deterministic labor income to
the setting considered by El-Karoui et al. (2005) is not as easy as it may seem. The strategy
actually differs from the case excluding deterministic labor income. The main contribution of
Chapter 2 is to show that the OBPI approach taken by El-Karoui et al. (2005) can be gener-
alized to the case including consumption and labor income, thereby solving the problem stated
in (1.7). The solution becomes, as in Teplá (2001), an OBPI strategy. However, for this case
the option bought to protect against losses in the unrestricted portfolio is an American put
option. The investor optimally invests a fraction of the initial total wealth in the unrestricted
portfolio and uses the remainder to buy an American put option. However, in order for the
strategy to fulfill the capital constraint at all times the strike price of the put option becomes
K(t) + g(t), i.e. the strike price becomes time dependent and involves the financial value of the
future labor income. Moreover, in order for the strategy to be admissible, the American put
option has to be sold whenever it is optimal to do so. This involves a continuous re-calibration of
the split between the money spent on the unrestricted portfolio and the money spent on buying
insurance. In other words, the budget constraint for the unrestricted portfolio must be adjusted
whenever the capital constraint is active. A great part of the work done in Chapter 2 is to show
that this strategy is in fact admissible. This done, using the expression for the unrestricted
strategy (1.5) and (1.6), using the concavity of the utility function, and the product property of
CRRA utility, it becomes elegant to show that the strategy dominates all admissible strategies

3
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Figure 1.1: The initial wealth is one unit, and the smooth dashed curve illustrates the capital
restriction K(t) = 0.8x0e

rt, which is a terminal constraint only. Left: The unrestricted optimal
Merton portfolio. Right: The optimal OBPI (solid curve), the corresponding down-scaled unre-
stricted portfolio (dotted curve), and the corresponding put option value (dashed curve) (which
ends up "in-the-money").

in terms of expected utility. One special example of problem (1.7) considered in Chapter 2 is
the case K = 0. In that case the wealth process has to be non-negative at all times. In the
present of labor income, this becomes a real restriction since then the investor can not borrow
against future labor income. Numerical illustrations for this example are presented in Chapter 2.

In Chapter 3 the setting of Chapter 2 is expanded. First, we consider an investor with an
uncertain lifetime, thereby also including utility from bequest. To make the market complete
we introduce the possibility to invest in a life-insurance market. Second, the capital restriction
is allowed to depend, in a general way, on the wealth process, i.e. the constraint becomes
stochastic. This is done in order to model the real-life example of a pension savings account
where a minimum guarantee on the rate of return is promised by the pension company. Money
not spent becomes pension contributions and we interpret the wealth process as the reserve.
Traditionally, the reserve is maintain by the pension company, and upon death before retirement
the pension saver receives the life-insurance sum (bequest) and not the reserve itself. This is
also the case in Chapter 3. Note that a bequest larger (smaller) than the reserve corresponds to
buying life-insurance (annuities). The problem can be written as

sup
(c,θ,D)∈A′

E
[ ∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

(
u(c(t)) +K1µ(t)u(D(t))

)
dt

+K2e
−

∫ T
0

(β(s)+µ(s))dsu(X(T ))
]
, (1.8)

4



under the capital guarantee restriction

X(t) ≥ k(t, Z(t)), ∀t ∈ [0, T ],

where µ is the mortality rate, D the sum to be paid out upon death before the time of retirement
T , and Z(t) :=

∫ t

0
h(s,X(s))ds for deterministic functions k and h (K1 and K2 are weight). Of

special interest arethe two examples

k(t, z) = 0, (1.9)

and

k(t, Z(t)) = x0e
∫ t
0 (r

(g)+µ(y))dy +

∫ t

0

e
∫ t
s (r

(g)+µ(y))dy [ℓ(s)− c(s)− µ(s)D(s)] ds, (1.10)

where r(g) < r is the guaranteed rate of return on the investments, and µD the fair price for
the life-insurance. The first case (1.9) is simply motivated by the fact that by law the reserve is
restricted to be non-negative at all times. The latter case (1.10) imitates the real life example of
a pension fund guaranteeing a minimum rate of return rg on the pension contributions. Clearly,
the constraint is binding at every intermediate time point in the saving period. We call it a
“surrender option guarantee”. In most countries the pension saver holds the right, by law, to
stop paying premiums and leave the company (to surrender). Therefore the guarantee must be
fulfilled at all times.

The solution to the problem consists of an even more complicated OBPI strategy on the
unrestricted optimal portfolio. This time the strike price of the American put option becomes
k(s, Z(s))+g(s), i.e. a stochastic strike price. The fact that the guarantee, and consequently the
strike price, depends on the wealth process through an integral over the wealth process, and not
on present wealth, the approach taken in Chapter 2 becomes applicable once more. However,
since the strike price of the put option becomes path dependent, in the same kind of manner as
for an American-Asian put option, extra terms arise when using Itô’s calculus to show that the
OBPI strategy is admissible. For further details see Chapter 3, Appendix 3.6. To get a sense
of how a minimum guarantee rate of return on the pension contributions affects the pension at
retirement, see Table 3.1. Here it is demonstrated, for a guaranteed rate of return equal to half
the risk-free rate, that the portfolio insurance incorporated in the OBPI strategy turns out very
useful in the event of a very unfortunate investment market, while the loss incurred by holding
a portfolio insurance out of the money, in the event of a fortunate investment market, is less
perceptible.

1.3 Inconsistent problems
Traditional stochastic control problems in finance, such as Merton’s problem (1.1), are aimed
at linear objectives. For such problems the iterated expectation property holds. Consequently,
we say that the Bellman Optimality Principle holds: Consider an investor with wealth process
(X(t))t∈[0,T ] and initial wealth X(0) = x0. Suppose that we find the optimal strategy u∗ for a
time-0 problem P0,x0 and suppose that we use this strategy on the time interval [0, t], t < T .
Then at time t the strategy u∗ will still be optimal for the time-t problem Pt,Xµ∗ (t) (here we
have specified that the wealth process at time t depends on the strategy used before time t).

In recent years a small amount of literature on inconsistent problems has emerged. One very
relevant and easy to understand example is the endogenous habit formation problem considered
by Kryger and Steffensen (2010). Again we consider a Black-Scholes market and an investor
with time horizon [0, T ] and an investment strategy π denoting the fraction of wealth to invest
in risky stocks. The non-linear object of consideration is

inf
π
E

(
1

2
(Xπ(T )− x0β(t))

2
∣∣∣ X(t) = xt

)
. (1.11)
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Letting β(t) = er̃t, for some target rate of return r̃, the interpretation of the problem is clear.
For the time-0 version of this problem, the goal is to earn a rate of return over the interval
[0, T ] equal to r̃, and the performance of any investment strategy π is measured by the quadratic
variation of the terminal wealth process to this goal. This is a solvable problem which can be
handled by dynamic programming or the martingale method (see Korn (1997a) and Zhou and Li
(2000)), and we refer to the solution as the pre-commitment solution. The problem seems at first
glance reasonable since a target for the rate of return on investments is something many investors
have a strong opinion about. Now the question is whenever this objective is actually the real
objective for the investor? The not so attractive feature of the objective is that if the investor
obtains large returns from investments in the period (say) [0, t], t < T , the investor becomes
less ambitious about the rate of return for the remainder of the period, (t, T ]. In practice, if
the investor becomes rich enough, the optimal pre-commitment strategy for the objective (1.11)
tells the investor to stop taking risky positions. An objective which may seem more realistic is
the objective to earn a certain rate of return at any time. In discrete time, the investor chooses
his investment strategy bearing in mind that the next day, with the investment horizon one
day shorter, the target will also be to earn the target rate of return over this horizon. In other
words, the investor does not become less ambitious regarding his investment profit just because
he did well last year (week or day, etc.). The intuition can be preserved when considering the
continuous-time case. As explained by Björk and Murgoci (2009) the approach corresponds to
looking for a Nash equilibrium strategy for the problem. We refer to the approach as without
pre-commitment.

This way of thinking has lead to a literature founded by Basak and Chabakauri (2010) who
considers the dynamic asset allocation problem for a portfolio investor searching to maximize
the mean-variance objective

Et,x [X
π(T )]− γ

2
V art,x [X

π(T )] , (1.12)

for a constant γ. By applying a so-called total variance formula they obtain an extension of
the classical Hamilton-Jacobi-Bellman equation for solving the problem for an investor without
pre-commitment. Björk and Murgoci (2009) extend the class of standard solvable problems to
the class of objectives

Et,x

[∫ T

t

C(x, s,Xu(s), u(s))ds+ ϕ(x,Xu(T ))

]
+G

(
x,Et,x [X

u(T )]
)
, (1.13)

for some function G. In (1.13) time inconsistency enters at two points: First, the present state x
appears in C, ϕ and G, and second, the function G is allowed to be non-linear in the conditional
expectation. The central example of Björk and Murgoci (2009) is the mean-variance problem
(1.12) of Basak and Chabakauri (2010). One unfortunate feature of the problem is that the
optimal amount of money to invest in stocks is constant. In responds, Björk et al. (2012) extend
the problem to a more complicated problem allowing for a state dependent risk aversion. The
motivation is the key example

Et,x [X
π(T )]− γ

2x
V art,x [X

π(T )] . (1.14)

In Chapter 4 we expand the existing literature to a larger class of problems also taking
into account consumption and possible labor income. Loosely speaking, the class of stochastic
problems we consider is, for any (t, x) ∈ [0, T )× R, to maximize

f(t, x, yc,π(t, x), zc,π(t, x)), (1.15)
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where f ∈ C1,2,2,2, A is the class of admissible strategies, and

yc,π(t, x) = E

[∫ T

t

e−ρ(s−t)c(s)ds+ e−ρ(T−t)Xc,π(T )

∣∣∣∣∣ X(t) = x

]
,

zc,π(t, x) = E

(∫ T

t

e−ρ(s−t)c(s)ds+ e−ρ(T−t)Xc,π(T )

)2 ∣∣∣∣∣ X(t) = x

 ,
with ρ being a constant discount rate, possibly different from the interest rate r. Compared to
the general problem (1.13) considered by Björk and Murgoci (2009), and for state dependent risk
aversion by Björk et al. (2012), the class of problems (1.15) differs in three ways. First, in excess
for the reasons listed for problem (1.13), the inconsistency also arises from taking a non-linear
function of the expected (utility of) consumption. Second, the class contains problems, such as
the mean-standard deviation problem, which are not contained in (1.13). Third, we allow for a
capital injection in the form of a deterministic labor income. This leads to some mathematical
difficulties but we manage to establish a verification theorem containing a Bellman-type set of
differential equations for determination of the optimal strategies for an investor without pre-
commitment. The two main problems considered in Chapter 4 are the mean-variance and mean-
standard-deviation problems given for (t, x) ∈ [0, T )× R by

f(t, x, y, z) = y − ψ(t, x)

2

(
z − y2

)
, (1.16)

f(t, x, y, z) = y − ψ(t, x)
(
z − y2

) 1
2 , (1.17)

respectively. Here ψ ∈ C1,2 is a function which is allowed to depend on time and wealth.
As an example we consider (1.16) for the case of time and state dependent risk aversion

where the investor’s risk aversion is hyperbolic in present wealth plus the financial value of future
labor income net of consumption. Solving the mean-variance problem we restrict the class of
admissible strategies to strategies for which the corresponding wealth plus the financial value
of future labor income net of consumption stays positive. This conforms with the well-known
and often required constraint that wealth plus human capital must stay positive at all times.
Consequently, terminal wealth becomes positive. The optimal investment strategy becomes
linear in the investor’s wealth plus financial value of future labor income net of consumption.
The optimal consumption rate becomes a deterministic bang-bang strategy. The deterministic
function determining when it is optimal to consume the maximum or minimum allowed is given
by a system of non-linear differential equations for which we have no explicit solution. It turns
out that it is not always optimal to either consume the maximum or minimum allowed at all
times. For some investors we find that it is optimal to consume the maximum allowed for a
period of time, and then to consume the minimum allowed for the remainder of the period.

Finally, we show that the mean-standard-deviation problem (1.17) admits the trivial strategy
of zero risky investment. The problem and its solution helps us gain some intuition about
inconsistent optimization problems for investors without pre-commitment. We conclude that
over an infinitesimal time interval, dt, standard deviation is of the order

√
dt, which means that

the punishment is so hard that any risk taking is unattractive. For a very intuitive explanation,
which also could serve as a first introducing to optimization of inconsistent problems for investors
without pre-commitment, see Subsection 4.5.2 of Chapter 4.

1.4 Investment costs
Introducing proportional investment costs for risky investments, ν, to the Black-Scholes market
implies, of course, a loss for the investor. If, again, we let π denote the investment strategy in
terms of the fraction of wealth to invest in stocks, the loss is often simply quantified by the direct
loss in the median rate of return given by πν.
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However, there seems to be a lack of more serious approaches to quantify the impact of
investment costs. Therefore, we return in Chapter 5 to the original problem of Merton, and
consider (1.1) for an investor with CRRA preferences for terminal wealth (no consumption).
This opens up the possibility to do a risk-adjusted evaluation of investment costs. By use of a
Value at Risk measure Guillén et al. (2013) also perform a risk-adjusted evaluation of investment
costs.

The main assumption essential for the analysis in Chapter 5 is that no investor can beat
the market. Something many expensive mutual fund managers claim when asked by customers
about the high fees they demand. In other words, we assume a zero correlation between cost
ratios and expected investment returns. Something showed to be true by a vast amount of
literature (see Chapter 5, Subsection 5.1, for references).

The point of view taken in Chapter 5 is the situation of declining investment costs. One
should bear in mind the situation of an investor who has handed over his savings to a mutual
fund that on his behalf invests the money. For the service the mutual fund charges a fee.
Under the assumption of the existence of another fund charging a lower fee and performing (in
expectation) equally well, we quantify the impact of paying the higher fee. We call an investor
taking risk aversion into account, by use of a concave strictly increasing utility function, when
deciding upon an investment strategy a sophisticated investor. The first main point of Chapter 5
is:

• The sophisticated investor experiences a greater change in the rate of return induced by a
change in investment costs compared to the direct loss.

• This is so since the risk aversion of the investor optimally dictates a part of the money the
investor saves by paying less investment costs to be invested in stocks.

The evaluation is based on an indifference compensation ratio defined as the minimum relative
increase in the initial wealth the investor demands in compensation to accept incurring the higher
investment costs. Let ν1 and ν2 denote the higher and lower cost ratio, respectively. Formally,
we define the indifference compensation ratio ICR(ν1,ν2) by the relation

sup
π
E
[
u
(
X(ν2,π)(T )

) ∣∣∣X(ν2,π)(0) = x0

]
= sup

π
E
[
u
(
X(ν1,π)(T )

) ∣∣∣X(ν1,π)(0) = x0
(
1 + ICR(ν1,ν2)

)]
. (1.18)

We show that for a CRRA function (µ) the measure is equivalent to the relative change in
certainty equivalents. We compare this measure to the present value of the investment costs the
investor is expected to pay over the investment horizon, evaluated as a fraction of the initial
wealth. We interpret the latter value as the direct effect of investment costs, and the difference
between the direct effect and the ICR-value, as the indirect effect of investment costs. For
realistic market parameters the conclusion is rather surprising. For an investor, who on one
hand has the possibility to invest through a mutual fund being charged 0.6% in investment
costs, but who invest through a mutual fund charging him investment costs at a ratio equal to
1.4%, with an optimally stock allocation of 60%, the indirect effect is between 50–100% of the
direct effect, dependent on the investment horizon (longer horizon, higher indirect effect).

Finally, the approach allows us to answer a related question: Is the investment strategy or
the size of the investment costs of most importance? Concretely, we study an investor facing
high investment costs and an optimal investment strategy (w.r.t. his risk profile), and ask which
investment strategies the investor is willing to accept if he at the same time is offered lower
investment costs. The conclusion, the second main point of Chapter 5, is very clear

• Independent of the time horizon, the particular allocation towards risky stocks seems to
be of very little importance compared to the size of investment costs.

8



To demonstrate the magnitude consider again the investor who invests through the expensive
mutual fund charging him high investment costs at rate 1.4%, with an optimally stock alloca-
tion of 60%. For realistic market parameters we calculate that for the investor who shifts to
the cheaper fund offering to manage his savings charging him a lower cost rate off 0.6%, any
investment strategy allocating between 28% and 129% of his wealth in stocks makes him equally
or better of. This examples quantifies why collective investment scheme with a common strategy
for all members, thereby maintaining costs low, could be preferable for many investors.

1.5 A collective with-profit pension scheme
In the last chapter of this thesis, Chapter 6, we derive several results for discrete-time random
walks with continuous innovations. Of special interest is the entrance time (time of return to ori-
gin) distribution. We derive an expansion formula for the entrance time probabilities, a formula
for the nth derivative of the generating function, a formula for the nth moment of the waiting
times, and formulas for the conditional undershoot process given the first entrance time. All
quantities are also considered for the stationary process.

First, the analysis of the discrete-time random walk with continuous innovations is triggered
by the desire to analyze the investment decision for a so called with-profit collective pension
scheme, a very widespread pension product in e.g. the Nordic countries and the Netherlands.

In Chapter 6 each contribution is split into a part giving a guaranteed payment and a part
invested in a, possibly leveraged, investment portfolio. Define the funding ratio F by

F (t) =
A(t)

R(t)
,

where A(t) denotes the total assets of the fund and R(t) the financial value of the guaranteed
benefits, known as the reserve. In our model both contributions and benefits are paid and
withdrawn, respectively, such that the funding ratio is not affected, i.e. the product is fair.
The difference between the total assets and the reserve, A(t) − R(t), is known as the bonus
potential. It is the bonus potential which is invested in stocks (possible leveraged). The product
is with-profit in the sense that all guaranteed payments are increased, known as bonus, when
the funding ratio exceeds a given threshold κ. The decision to attribute bonus or not is taken
at a set of equidistant discrete set of time points 0 = t0 < t1 < . . .. We assume for simplicity
that contributions and benefits also fall at these times. After (possible) bonus attribution the
funding ratio becomes min{F (ti), κ}.

A simple version of the pension product, to be considered as an example in Chapter 6, is the
case of a unit contribution made at time t = 0 for a benefit paid out in its entirety at time t = T
(retirement). In this case the benefit at retirement becomes

F (T )

F (0)
erT

T∏
i=1

(
1 + rBi

)
, (1.19)

where rBi is the possible bonus attribution at time ti.
It follows from Preisel et al. (2010) that in a Black-Scholes market model the funding ratio

process becomes a (discrete-time) Markov chain with dynamics

Fi = min
{
(Fi−1 − 1)e(Cµ− 1

2C
2σ2

Z)∆+CσZ

√
∆Ui + 1, κ

}
, (1.20)

where the Ui’s are i.i.d. standard normal variables, µ and σZ the expected excess return and
volatility on stocks, respectively, and C the fraction of the bonus potential invested in stocks.
The funding ratio process (1.20) has also been studied by Preisel et al. (2010) and Kryger (2010)
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using a number of analytical approximations. In contrast, Chapter 6 relies almost exclusively
on exact results. We consider the following transformation

Yn = − log

(
Fn − 1

κ− 1

)
for n ∈ N0. (1.21)

This turns the funding ratio process (1.20) into the one-sided random walk

Yn = (Yn−1 +Xn)
+, (1.22)

where the Xn’s are i.i.d. normally distributed with mean −
(
Cµ− 1

2C
2σ2

Z

)
∆ and variance

C2σ2
Z∆. Note that Fn = κ corresponds to Yn = 0, while funding ratios close to one corre-

spond to high values of Y . In other words, bonus is attributed whenever the Y -process returns
to zero. Along with Y we also consider the (unrestricted) random walk

S0 = 0 and Sn = Sn−1 +Xn for n ∈ N, (1.23)

with the same Xn’s as in (1.22).

Now with the model of inspiration in place we return to a general discrete-time random walk
with continuous innovations. First we consider the entrance time probabilities

τn = P (τ− = n) = P (S1 > 0, . . . , Sn−1 > 0, Sn ≤ 0). (1.24)

A central concept in Chapter 6 is the set of integer partitions of a given order n ≥ 1 given by

Dn =

{
(σ1, . . . , σn)

∣∣∣σ1 ∈ N0, . . . , σn ∈ N0,

n∑
i=1

iσi = n

}
,

where N0 = {0, 1, 2, . . .}.
First, we show by use of the generating function, τ(s) =

∑∞
n=1 τns

n, and the Theorem of
Sparre-Andersen (see Theorem 6.2.1) which expresses the generating function in terms of the
marginal probabilities P (Sn ≤ 0), that the first entrance time probabilities (1.24) can be com-
puted as a partition sum over the marginal probabilities of the random walk, see Theorem 6.2.3.
The Theorem is also implicit in the paper by Spitzer (1956), but in Chapter 6 we give a simpler
self-contained proof.

Second, we derive an expression for the n’th derivative of the generating function for the
entrance times, τ (n)(s), see Theorem 6.2.5, which we subsequently use to derive a formula for
the factorial moments, E((τ−)n), see Theorem 6.2.6. Again the results consist of a partition sum
over marginal probabilities of the random walk. Both results are new and presented for the first
time in Chapter 6.

Third, we derive formulas for the characteristic function of the position of the random walk
conditioned on entrance at time n, E

(
eiζSn |τ− = n

)
, see Theorem 6.2.8, and on entrance after

time n, E(eiζSn |τ− > n), see Theorem 6.2.9. The results consist of partition sum formulas of
partial expectations for the characteristic function of the random walk. The first of these results
is known, but the proof offered by Chapter 6, which builds upon Theorem VII 4.1 of Asmussen
(2003) which is a generalization of the Sparre-Andersen theorem to combined generating and
characteristic functions (see Theorem 6.2.7), is new. The second result is new and presented for
the first time in Chapter 6.

Returning to the pension model our prime interest is the stationary process. The stationary
process has the interpretation of an average scenario. We therefore define by

T1 = inf{n ≥ 1 : Fn = κ} = inf{n ≥ 1 : Yn = 0}, (1.25)
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and, recursively, for k ≥ 2

Tk = inf{n ≥ 1 : FTk−1+n = κ} = inf{n ≥ 1 : YTk−1+n = 0}, (1.26)

the time between consecutive bonus attributions. The results of Theorem 6.2.3–6.2.9 is connected
to the case where F0 = κ. In Subsection 6.4 the case F0 ∼ π, i.e. the stationary process, is
under consideration. Using the results for the F0 = κ case more or less explicit closed form
solutions, for the first entrance time probabilities and the characteristic function of the position
of the random walk conditioned on entrance at time n, are derived for the stationary process.
The key to analyzing the pension model is (1.21). For F0 = κ the events (T1 = n) and (τ− = n)
are identical and on this event the bonus percentage becomes

rBn =
κ− 1

κ

(
e−Sn − 1

)
.

Likewise on F0 = κ the events (T1 > n) and (τ− > n) are identical and on this event

Fn = (κ− 1)e−Sn + 1.

By these quantities we analyze the first bonus time probabilities (the time between consecutive
bonus attributions), the probability distribution of the number of bonuses, the expected bonus
size, and the expected funding ratio. Furthermore, these results allow us to analyze the mean and
variance of the pension benefit (1.19). For an average scenario (in stationarity) we develop an
exact simulation approach and show that the expected pension benefit admits an interior solution
in the investment strategy C. At some point, taking more risk results in a lower expected payoff.
This is in great contrast to the prevailing idea that taking more risk should be compensated
by higher expected returns, but the interpretation is clear. High allocation towards risky assets
implies a high conditional expected bonus, but comes with the risk of being trapped at low
funding ratios for a long time (rare bonuses). The analysis of Chapter 6 presents the optimal
trade-off between the two effects.
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2. Optimal consumption and investment
with labor income and
European/American capital guarantee

Abstract: We present the optimal consumption and investment strategy for an
investor, endowed with labor income, searching to maximize utility from consumption
and terminal wealth when he is restricted to fulfill a binding capital constraint of a
European (constraint on terminal wealth) or an American (constraint on the wealth
process) type. In both cases the optimal strategy is proven to be of the option based
portfolio insurance type. The optimal strategy combines a long position in the optimal
unrestricted allocation with a put option. In the American case, where the investor is
restricted to fulfill a capital guarantee at every intermediate time point over the interval
of optimization, we prove that the investor optimally changes his budget constraint for
the unrestricted allocation whenever the constraint is active. The strategy is explained
in a step by step manner and graphically illustrations are presented in order to support
the intuition and to compare the restricted optimal strategy with the unrestricted
optimal counterpart.

Keywords: Stochastic control; martingale method; option based portfolio insur-
ance; American put option; human capital; borrowing constraint; CRRA utility.

2.1 Introduction
We study the optimal consumption and investment decision problem for an investor, endowed
with deterministic labor income, who faces an American capital guarantee restriction. An Amer-
ican capital guarantee is a capital constraint which is valid at all time points in the time interval
of consideration. Likewise, we refer to at capital guarantee only valid at the terminal time point
as a European capital guarantee. The names are inherited from the option framework, i.e. from
American and European options. The problem is set in a continuous-time frictionless Black-
Scholes market and the investor measures his tolerance towards risk by a constant relative risk
aversion utility function.

The corresponding free consumption and investment decision problem, where the investor
is not restricted to fulfill any capital guarantee, is a very well understood problem, see Merton
(1969) and Merton (1971). Traditionally, such problems have been solved using stochastic dy-
namic programming. However, stochastic dynamic programming becomes difficult when adding
a capital constraint since the value function, in addition to a stochastic differential equation,
must satisfy some boundary condition whenever the wealth is at the boundary. This leaves us
with a non-linear Hamilton-Jacobi-Bellman equation for which the existence of a solution has to
be established.

Consequently, this article uses instead the martingale methodology developed by Cvitanic
et al. (1987), Cox and Huang (1989) and Cox and Huang (1991). We adopt the ideas from El-
Karoui et al. (2005) and use the put option based approach to derive the optimal consumption
and investment strategy for an investor who faces an American capital guarantee restriction
defined as a deterministic function. It turns out that the optimal strategy consists of investing
a part of the initial total wealth1 in the corresponding optimal unrestricted allocation and the

1Initial wealth plus the financial value of future labor income.
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remainder in a put option written on the optimal unrestricted portfolio. In order for this strategy
to be admissible we show that the investor must adjust the portfolio continuously whenever the
constraint is active. This result is similar to the one of El-Karoui et al. (2005), although they
do not allow for consumption and labor income. The main contribution of this article is that we
show that the put option based approach can also be carried out to find the optimal strategy
in the case including consumption and labor income. Clearly the introduction of consumption
leads to further mathematical difficulties, but in fact nor is the introduction of deterministic la-
bor income trivial. One important thing to note is that, in contrast to the unrestricted problem
of Merton, being endowed with labor income or being endowed with an initial wealth enlarged
by the financial value of future labor income is not equivalent when considering an American
capital guarantee restriction. In the case of an American capital guarantee the latter case is
preferable. This indicates that adding deterministic labor income to the setting considered in
El-Karoui et al. (2005) is not as easy as it may seem. The strategy actually differs from the case
excluding deterministic labor income. We show that adding deterministic labor income can be
handled by buying an insurance, a put option, with a strike price substantially different from
the one obtained by El-Karoui et al. (2005). To ease the understanding of the optimal strategy
derived the analysis also contains a step by step explanation of the optimal strategy together
with a numerically graph-based explanation. In the special case of a restriction to borrow against
future labor income (an American capital guarantee equal to zero), we compare numerically the
restricted solution with the unrestricted counterpart.

A reasonable question is whether a wealth constraint is relevant for an individual endowed
with deterministic labor income. As mentioned, for the unrestricted problem the investor opti-
mally sells his future labor income in the market and acts as if he had an enlarged initial wealth.
Consequently, the investor’s terminal wealth becomes positive, but the investor’s wealth may
become negative at some point in time before terminal time. If labor income really is determin-
istic one could argue that this is perfectly acceptable. The motivation of generally introducing
an American capital guarantee, and specifically to analyze the case of a restriction to borrow
against future labor income, is however manifold. Consider for example the lending business.
In reality you can borrow a great amount of money from the bank to buy a house if you are
the receiver of a (possible stochastic) labor income. The reason is that you invest your loan
in the house and thereby maintain a positive wealth. Of course the value of the house could
drop, but since the loan comes with an amortization plan2 the wealth stays positive (with a high
probability). You can also get a mortgage loan from the bank to finance consumption. On the
other hand it is almost impossible to get a loan from the bank to finance pure consumption if you
can not provide security for the loan3. Why is that? Of course this is partly because the bank
consider your labor income stochastic (e.g. you might lose your job), but there are many other
reasons. Most of them are connected to obvious reasons as moral hazards, adverse selection and
administration problems. Or one could say that the bank just does not want to take on that
risk. This paper is motivated by the real life situation many individuals face. As an individual
you do not consider your labor income as stochastic. At least you do not act as if you do. This is
partly because it is very hard to model labor income since the list of relevant stochastic variables
to include in the modulation should be very long. The modeling should, among other things,
include future political decisions, possible world wars, personal accidents (you may become dis-
able), your mortality (you may die) and the demand of tomatoes (if you make a living of selling
tomatoes). In addition many people actually have a very stabile and secure labor income, and
thereby have a very strong belief about how their life long labor income would be. If this was
not true, why are more people not buying unemployment insurance? Summing up, the question
many individuals face is: You consider your labor income deterministic and you act responsibly
as a good citizen. Unfortunately the bank does not agree with you and consequently the bank

2In addition most banks require the investor himself to provide (say) 5 percent funding.
3In some countries this is actually possible, but since expenses are incredible high we assume that the investor

does not consider this as an opportunity.
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is only willing to issue a loan if you invest in such a way that they do not stand the chance of
ending up with a loss (your total assets has to be positive at all times). Given this situation
how should you optimally consume and invest? This is one interpretation of the question of
consideration in this article.

Furthermore, the problem studied in this article is, putting consumption equal to zero, highly
relevant for many financial institutions. The most obvious example is pension companies which
are forced by law (by the Financial Supervisory Authority (FSA)) to fulfill certain capital re-
quirements at all times. In such a framework labor income has the interpretation as pension
contributions and the American capital guarantee, introduced by the FSA, puts restrictions on
the pension company’s actions.

The paper by Lakner and Nygren (2006) consider a similar problem. They maximize ex-
pected utility from consumption and terminal wealth when both the consumption rate and
terminal wealth must not fall below a given minimum consumption level and a minimum wealth
level, respectively. This is handled by dividing initial wealth into two parts, x1 and x2, and then
solving the constrained pure consumption problem with initial wealth x1 and the constrained
pure portfolio problem with initial wealth x2. The superposition of the actions for the two
constrained subproblems is then shown to be the optimal strategy provided that x1 and x2 are
chosen such that the "marginal expected utilities" from the two constrained subproblems are
identical. In this article we do not consider a minimum level of consumption constraint since we
do not want the consequence of the introduction of an American capital guarantee to be blurred
by other constraints. One could, using the results obtained in this article, apply the approach
of Lakner and Nygren (2006) to solve such a problem.

Using different approaches, the restriction to borrow against future labor income has been
analyzed in different settings with spanned stochastic income rate. He and Pagès (1993) use
duality theory to show the existence of an optimal strategy and find that the presence of a liq-
uidity constraint has a smoothing effect on the optimal consumption. El-Karoui and Jeanblanc
(1998) introduce the concept of super strategies to show that the fair-value, defined as the min-
imal investment required to replicate a consumption investment strategy with a super strategy,
consists of investing a part of the initial wealth in a free portfolio and to use the remaining part
to buy an American put option on this underlying asset. A setting with un-spanned stochastic
income is analyzed by Duffie and Zariphopoulou (1993), Duffie et al. (1997), Koo (1998) and
Munk (2000) who also gives a very complete overview of the field as a whole.

The paper is organized as follows: In Section 2.2 we present the economic model, the concept
of admissible strategies and other preliminaries. In Section 2.3 we solve the unrestricted problem
using the martingale technique. As an inspirational example we solve, in Section 2.4, the optimal
consumption and investment decision problem when the investor is restricted to fulfill a binding
terminal capital guarantee (any terminal guarantee strictly greater than zero), also known as a
European capital guarantee. Using the building blocks derived in Section 2.3 and 2.4, and the
theory of American put options in a Black-Scholes market, we construct in the main section,
Section 2.5, an admissible put option based portfolio insurance strategy. We show that this
strategy is optimal for the consumption and investment decision problem where the investor
is restricted to fulfill an American capital guarantee. Finally, in Subsection 2.5.3 graphical
illustrations of the optimal restricted strategy together with a comparison with the optimal
unrestricted strategy are presented for the special case of a restriction to borrow against future
labor income.
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2.2 Setup
Consider a frictionless Black-Scholes market consisting of a bank account, B, with risk-free short
rate, r, and a risky stock, S, with dynamics given by

dB(t) = rB(t)dt, B(0) = 1,

dS(t) = αS(t)dt+ σS(t)dW (t), S(0) = s0 > 0.

Here α, σ, r > 0 are constants and it is assumed that α > r. The process W is a standard
Brownian motion on an abstract probability space (Ω,F , P ) equipped with the filtration FW =(
FW (t)

)
t∈[0,T ]

given by the P -augmentation of the filtration σ{W (s); 0 ≤ s ≤ t}, ∀t ∈ [0, T ].

We consider an investor endowed with a continuous deterministic labor income of rate ℓ, an
initial amount of money x0 and a time horizon of interest [0, T ], T > 0 . Over the time interval,
[0, T ], the investor has the opportunity to continuously consume a fraction of his wealth and to
invest his wealth in the Black-Scholes market. More specific, let c denote the rate of consumption
and let π denote the fraction of wealth to be invested in the risky asset, S. For a given strategy,
(c, π), the wealth process of the investor, (X(t))t∈[0,T ], is given by the dynamics

dX(t) = [(r + π(t)(α− r))X(t) + ℓ(t)− c(t)]dt+ σπ(t)X(t)dW (t), t ∈ [0, T ), (2.1)
X(0) = x0 ≥ 0.

We assume the consumption rate c(t), t ∈ [0, T ], to be a non-negative, FW (t)-adapted process
with

∫ T

0
c(t)dt < ∞ a.s., and the investment strategy π(t), t ∈ [0, T ], to be an FW (t)-adapted

process such that (2.1) has a unique solution X(t), t ∈ [0, T ], satisfying
∫ T

0
(π(t)X(t))2dt <

∞ a.s.. We have, ∀t ∈ [0, T ], the representation

X(t) = x0e
rt +

∫ t

0

er(t−s)[π(s)X(s)(α− r) + ℓ(s)− c(s)]ds+

∫ t

0

er(t−s)σπ(s)X(s)dW (s).

It is well known that in the Black-Scholes market the equivalent martingale measure, Q, is unique
and given by the Radon-Nikodym derivative

dQ(t)

dP (t)
= Λ(t) := exp

(
−
(
α− r

σ

)
W (t)− 1

2

(
α− r

σ

)2

t

)
, t ∈ [0, T ],

and that the process WQ given by WQ(t) = W (t) + α−r
σ t, t ∈ [0, T ], is a standard Brownian

motion under Q. We get that the investor’s wealth can be represented, ∀t ∈ [0, T ], by

X(t) = x0e
rt +

∫ t

0

er(t−s)(ℓ(s)− c(s))ds+

∫ t

0

er(t−s)σπ(s)X(s)dWQ(s). (2.2)

Definition 2.2.1. Define the set of admissible strategies, denoted by A, as the consumption and
investment strategies for which the corresponding wealth process given by (2.2) is well-defined,

X(t) + g(t) ≥ 0, ∀t ∈ [0, T ], (2.3)

where g is the time t financial value of future labor income defined by g(t) :=
∫ T

t
e−r(s−t)ℓ(s)ds,

and

EQ

[∫ T

0

e−rsσπ(s)X(s)dWQ(s)

]
= 0. (2.4)
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The technical condition (2.4) is equivalent to the condition that under Q the process∫ t

0

e−rsσπ(s)X(s)dWQ(s), t ∈ [0, T ],

is a martingale (in general it it only a local martingale, and also a supermartingale if (2.3) is
fulfilled, see e.g. Karatzas and Shreve (1998)). From this we conclude that (2.4) insures that
(c, π) ∈ A if and only if X(T ) ≥ 0 and, ∀t ∈ [0, T ],

X(t) + g(t) = EQ

[∫ T

t

e−r(s−t)c(s)ds+ e−r(T−t)X(T )

∣∣∣∣∣ FW (t)

]
.

At time zero this means the strategies have to fulfill the budget constraint

x0 + g(0) = EQ

[∫ T

0

e−rtc(t)dt+ e−rTX(T )

]
. (2.5)

For latter use we state the following remark.

Remark 2.2.1. Define

Z(t) :=

∫ t

0

e−rs(c(s)− ℓ(s))ds+ e−rtX(t), t ∈ [0, T ]. (2.6)

By (2.2) we have that condition (2.4) is fulfilled if and only if Z is a martingale under Q. The
natural interpretation is that under Q the discounted wealth plus discounted consumption excess
of labor income should be a martingale. It is useful to note that if Z is a martingale under Q
the dynamics of X can be represented in the form

dX(t) = [(rX(t) + ℓ(t)− c(t)]dt+ ϕ(t)dWQ(t), t ∈ (0, T ], (2.7)

for some FW (t)-adapted process ϕ. Moreover, if the dynamics of X can be represented in the
form given by (2.7) for some FW (t)-adapted process ϕ satisfying ϕ(t) ∈ £2, ∀t ∈ [0, T ], then Z
is a martingale under Q.

Finally, by condition (2.3) we allow the wealth process to become negative, as long as it does
not exceed (in absolute value) the financial value of future labor income. Note that condition
(2.3) puts a lower boundary on the wealth process and therefore rules out doubling strategies
(see e.g. Karatzas and Shreve (1998)).

2.3 The unrestricted control problem
For the rest of this paper we assume that the investor’s preferences can be stated in terms of a
constant relative risk aversion (CRRA) utility function u : [0,∞) → [−∞,∞) in the form

u(x) =

{
xγ

γ , if x > 0

limx↘0
xγ

γ , if x = 0,

for some γ ∈ (−∞, 1)\{0}. In the unrestricted control problem, known as Merton’s problem
(Merton (1969) and Merton (1971)), the investor seeks to find the strategy fulfilling the supre-
mum

sup
(c,π)∈A′

E

[∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+ e−

∫ T
0

β(s)dsu(X(T ))

]
, (2.8)
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where X(0) = x0 and β is a deterministic function representing the investor’s time preferences.
The supremum in (2.8) is taken over the subset of the admissible strategies, referred to as the
feasible strategies, defined by

A′ :=

{
(c, π) ∈ A

∣∣∣∣∣ E
[∫ T

0

e−
∫ t
0
β(s)ds min(0, u(c(t)))dt+ e−

∫ T
0

β(s)ds min(0, u(X(T )))

]
> −∞

}
,

(2.9)

i.e. it is allowed to draw an infinite utility from a strategy (c, π) ∈ A′, but only if the expectation
over the negative parts of the utility function is finite. Clearly, for γ ∈ (0, 1) we have that A and
A′ coincide.

The unrestricted control problem (2.8) can be solved using either the conventional Hamilton-
Jacobi-Bellman (HJB) method (see e.g. Fleming and Richel (1975)) or the newer martingale
method (see Cvitanic et al. (1987), Cox and Huang (1989) and Cox and Huang (1991)). Despite
the fact that this is most easily done using the HJB-method we now sketch the solution to (2.8)
in terms of the martingale method. We do so because the solution to the corresponding Ameri-
can capital guarantee version of (2.8), presented in Section 2.5, is based on terms derived from
the martingale method.

Define the inverse of the derivative of u as the function I : (0,∞] → [0,∞) and define the
adjusted state price deflator

H(t) := Λ(t)e
∫ t
0
(β(s)−r)ds.

Since I is continuous and decreasing and maps (0,∞] onto [0,∞) we get the useful result that
there exist a unique constant ξ∗ > 0 such that (see. e.g. Karatzas and Shreve (1998))

EQ

[∫ T

0

e−rtI(ξ∗H(t))dt+ e−rT I(ξ∗H(T ))

]
= x0 + g(0). (2.10)

Finally, note that from the concavity of u and u′(I(z)) = z we get

u(x) ≤ u(I(z))− z(I(z)− x), ∀x ≥ 0, z > 0. (2.11)

Now, take an arbitrary strategy (c, π) ∈ A′ with corresponding wealth process (X(t))t∈[0,T ] as
given. Using (2.11), the budget constaint (2.5) and finally (2.10) we get that

E

[∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+ e−

∫ T
0

β(s)dsu(X(T ))

]

≤ E

[∫ T

0

e−
∫ t
0
β(s)dsu(I(ξ∗H(t)))dt+ e−

∫ T
0

β(s)dsu(I(ξ∗H(T )))

]
.

Since (c, π) was arbitrarily chosen we conclude that the candidate optimal strategy (c∗, π∗) is
given by

c∗(t) = I(ξ∗H(t)), (2.12)
X∗(T ) = I(ξ∗H(T )), (2.13)

where X∗(T ) is the corresponding terminal wealth obtained from using the strategy (c∗, π∗). By
use of the martingale representation theorem (see e.g. Karatzas and Shreve (1991)) we obtain
(after some rather cumbersome calculations)

c∗(t) =
X(t) + g(t)

f(t)
, (2.14)

π∗(t)X∗(t) =
1

γ

α− r

σ2
(X∗(t) + g(t)), (2.15)
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where

f(t) =

∫ T

t

e−
∫ s
t
[r̃(y)+β(y)]dyds+ e−

∫ T
t

[r̃(y)+β(y)]dy,

with r̃(y) = γ
γβ(y) −

γ
γ r −

1
2

γ
(1−γ)2

(
α−r
σ

)2. Inserting the candidate optimal strategy (c∗, π∗)

in (2.1) we observe that X∗(t) + g(t), t ∈ [0, T ], referred to as the total wealth, follows a time
inhomogeneous geometric Brownian motion4. More specifically we get, ∀t ∈ [0, T ], that

X∗(t) + g(t) = (x0 + g(0)) exp

{(
r +

1
2 − γ

(1− γ)2

(
α− r

σ

)2
)
t−

∫ t

0

1

f(s)
ds+

1

γ

α− r

σ
W (t)

}
.

(2.16)

In particular, since f is bounded away from zero, ∀t ∈ [0, T ], we have that X∗(t), t ∈ [0, T ], is
well-defined, and clearly (2.3) is fulfilled. From (2.14) we also conclude that the candidate optimal
consumption rate is non-negative. Moreover, since X∗(t) + g(t) is lognormally distributed,
∀t ∈ [0, T ], one can easily show that

EQ

[∫ T

0

(σπ∗(t)X∗(t))2dt

]
<∞, (2.17)

which ensures that (2.4) is fulfilled. In fact, by use of the martingale representation theorem we
have that the candidate optimal investment strategy can be written as

π∗(t)X∗(t) =
ertψ(t)

σ
, t ∈ [0, T ],

where ψ is the unique integrand from the martingale representation theorem, i.e.∫ t

0

ψ(s)dWQ(s), t ∈ [0, T ],

is a martingale under Q. From this it follows immediately that (2.4) is fulfilled. Thus, the
candidate optimal strategy (c∗, π∗) is admissible. Finally, since x0 and g(0) cannot both be zero
we get, from (2.14) and (2.16), that c∗(t) > 0, ∀t ∈ [0, T ], and X∗(T ) > 0, and we note that the
additional condition given in (2.9) is fulfilled, i.e. (c∗, π∗) is feasible. We conclude that (c∗, π∗),
given by (2.14) and (2.15), is the optimal strategy for the unrestricted problem (2.8).

Remark 2.3.1. It is well known that the control problem (2.8) with and without deterministic
labor income coincide in the sense that an investor with an initial wealth equal to x0+ g(0), but
no labor income, optimally consumes and invests the same amount of money as the investor we
consider. Define Y (t) := X(t) + g(t) and the obvious notation Y ∗(t) := X∗(t) + g(t),∀t ∈ [0, T ].
In Section 2.4 and 2.5 we exploit the fact that an investor with wealth process (Y (t))t∈[0,T ],
i.e. no labor income, starting with an initial amount of money y0 := x0 + g(0), can replicate
the wealth process (Y ∗(t))t∈[0,T ], by following the consumption and investment strategy given,
∀t ∈ [0, T ], by

c∗(t) =
Y ∗(t)

f(t)
, (2.18)

π∗
y =

1

γ

α− r

σ2
. (2.19)

From (2.16) is follows that Y ∗(t),∀t ∈ [0, T ], is proportional to the initial amount of money y0.
We see that starting out with the initial amount of money λy0, λ ∈ R+, and no labor income,
one can replicate λY ∗(t),∀t ∈ [0, T ], by following the strategy (λc∗, π∗

y).

4In particular X∗(t) + g(t), t ∈ [0, T ], is a geometric Brownian motion if β is constant.
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Note that the optimal strategy (c∗, π∗) guarantees that X∗(t) > −g(t),∀t ∈ [0, T ]. This is
in some sense a direct consequence of CRRA utility. Loosely speaking, the marginal increase
in utility is going to infinity as terminal wealth is going to zero, i.e. a terminal wealth equal to
zero cannot be optimal. To be able to avoid this in all scenarios the investor simply ensures
that X∗(t) > −g(t),∀t ∈ [0, T ]. As mentioned in Section 2.1, one should also notice that
the formulation of problem (2.8) assumes that the bank allows the investor to have a negative
wealth at any given time point t ∈ (0, T ). This will in reality, due to reasons discussed in
the introduction, likely not be the case. Furthermore, most investors tend to have some sort
of preference or demand for a capital guarantee. The most obvious example is that pension
companies often are required by authorities (FSA) to fulfill a certain American capital guarantee.
Jensen and Sørensen (2001) quantify that an individual facing a (European) mandatory minimum
interest rate guarantee, as an integrated part of the pension contract, is forced to invest in an
embedded put option. They argue that the investor may face a constraint on the feasible set of
portfolio choices which may induce a significant utility loss.

Including an American capital guarantee to problem (2.8) is the main problem of interest in
this article. Inspired by El-Karoui et al. (2005) we, as an inspirational example, start out by
solving the easier case including a binding European capital guarantee. This problem was first
solved by Teplá (2001).

2.4 The European capital guarantee control problem
Consider the problem

sup
(c,π)∈A′

E

[∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+ e−

∫ T
0

β(s)dsu(X(T ))

]
, (2.20)

under the capital constraint X(T ) ≥ K. In Section 2.3 we saw that K ≤ 0 is a non-binding
constraint. Note that in order for the European capital guarantee problem to be solvable and
non-trivial5 we must demand that

K < erT (x0 + g(0)). (2.21)

Proposition 2.4.1 presents the optimal strategy for problem (2.20). The strategy is based on
a so-called option based portfolio insurance (OBPI) written on a ’budget-adjusted’ version of the
optimal portfolio derived for the unrestricted problem. First, we need some notation: Denote
by P e

X(t, T,K) the time t value of a European put option with strike price K and maturity T
written on a portfolio (X(s))s∈[t,T ]. As in Section 2.3 X∗(t), c∗(t) and π∗(t), t ∈ [0, T ], denote
the optimal wealth, the optimal consumption strategy and the optimal investment strategy for
the unrestricted problem (2.8), respectively.

Proposition 2.4.1. Consider the strategy (ĉ, λY ∗) where, ∀t ∈ [0, T ],

ĉ(t) :=
λY ∗(t)

f(t)
= λc∗(t),

Y ∗(t) := X∗(t) + g(t),

combined with a position in a European put option with strike price K and maturity T written
on the portfolio (λY ∗(s))s∈[t,T ], where λ is determined by the budget constraint

X̂(λ)(0) := λ(x0 + g(0)) + P e
λY ∗(0, T,K)− g(0) = x0. (2.22)

5In the case of equality in (2.21) the investor has no choice but to invest all his wealth including labor income
in the risk-free short rate to be sure to fulfil the capital guarantee.
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Observing that Y ∗(T ) = X∗(T ), it follows that the terminal value of the corresponding option
based portfolio insurance becomes

X̂(λ)(T ) := λX∗(T ) + (K − λX∗(T ))
+
= max (λX∗(T ),K) , (2.23)

i.e. the European capital guarantee is fulfilled. We have that

1. The strategy is affordable, i.e. there exist a unique λ ∈ (0, 1) such that the budget constraint
(2.22) is fulfilled.

2. The strategy is optimal for the European capital guarantee control problem given by (2.20).

Note that, clearly, the strategy in Proposition 2.4.1 is feasible since the unrestricted strategy
(c∗, π∗) given in Section 2.3 is feasible.

Remark 2.4.1. To clarify, following the strategy
(
ĉ, X̂(λ)

)
given by Proposition 2.4.1 means

that the investor should:

1. Take a loan of size g(0) and reserve the labor income to pay back the loan over the time
interval [0, T ].

2. Reserve the initial amount of money λ(x0+g(0)) to follow the consumption and investment
strategy (ĉ, π) given by

ĉ(t) := λc∗(t),

π := π∗
y .

Doing this the investor replicates the portfolio λY ∗(t),∀t ∈ [0, T ], i.e. the investor replicates
the terminal value λY ∗(T ) = λX∗(T ) (see Remark 2.3.1).

3. Use the remaining initial amount of money (1−λ)(x0+g(0)) to buy a European put option
with strike price K and time to maturity T written on the portfolio (λY ∗(t))t∈[0,T ].

The European put option is likely not to be sold in the market, but since the market is complete
and frictionless such options can be replicated dynamically by a Delta-hedge, i.e. the optimal
investment strategy π̂(t), t ∈ [0, T ], is given by

π̂(t)X̂(λ)(t) =

(
1 +

∂

∂y
P e
λY ∗(t, T,K)

)
π∗
yλY

∗(t).

Since the European put option has an opposite exposure to changes in the underlying portfolio
λY ∗(t), t ∈ [0, T ], we note that the total amount of money to invest in the risky asset, S,
becomes smaller when we introduce a European capital guarantee to the control problem (2.8).

Proof of affordability. First note that X̂(λ)(T ) = max (λX∗(T ),K) is non-decreasing in λ with
values in [K,∞). For λ1 < λ2 we get

0 ≤ X̂(λ2)(T )− X̂(λ1)(T ) ≤ (λ2 − λ1)X
∗(T ).

Discounting and taking the expectation under Q we get by use of (2.5) that

0 ≤ X̂(λ2)(0)− X̂(λ1)(0) ≤ (λ2 − λ1)E
Q
[
e−rTX∗(T )

]
= (λ2 − λ1)

(
x0 + g(0)− EQ

[∫ T

0

e−rtc∗(t)dt

])
< (λ2 − λ1)(x0 + g(0)).

We conclude that X̂(λ)(0) is an increasing and Lipschitz function with respect to λ (Lipschitz
constant equal to x0 + g(0)). No-arbitrage gives us X̂(λ)(0) ∈

[
e−rTK − g(0),∞

)
. Since K <

erT (x0 + g(0)) and X̂(1)(0) > x0 we conclude that there exist a unique λ ∈ (0, 1) fulfilling
(2.22).
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Before we prove the optimality of the strategy in Proposition (2.4.1) we present the following
well-known result (see e.g. Karatzas and Shreve (1998)):

Lemma 2.4.2. Since (c∗, X∗) is the optimal strategy for the unrestricted problem (2.8) we have
that

∂

∂ϵ
E

[∫ T

0

e−
∫ t
0
β(s)dsu

(
ϵc∗(t) + (1− ϵ)c(t)

)
dt+ e−

∫ T
0

β(s)dsu
(
ϵX∗(T ) + (1− ϵ)X(T )

)]
|ϵ=1

= 0

=⇒ E

[∫ T

0

e−
∫ t
0
β(s)dsu′(c∗(t))(c∗(t)− c(t))dt+ e−

∫ T
0

β(s)dsu′(X∗(T ))(X∗(T )−X(T ))

]
= 0,

for any feasible strategy (c,X) with X(0) = x0.

We are now ready to prove that the put option based strategy defined in Proposition 2.4.1
is optimal among all feasible strategies which satisfy the European capital guarantee.

Proof of optimality. Let (c, π) ∈ A′, with corresponding wealth process (X(t))t∈[0,T ], be any
given feasible strategy satisfying X(0) = x0 and X(T ) ≥ K. Using the concavity of u we get
that ∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+ e−

∫ T
0

β(s)dsu(X(T ))

−

(∫ T

0

e−
∫ t
0
β(s)dsu (ĉ(t)) dt+ e−

∫ T
0

β(s)dsu
(
X̂(λ)(T )

))

=

∫ T

0

e−
∫ t
0
β(s)ds (u(c(t))− u (ĉ(t))) dt+ e−

∫ T
0

β(s)ds
(
u(X(T ))− u

(
X̂(λ)(T )

))
≤
∫ T

0

e−
∫ t
0
β(s)dsu′ (ĉ(t)) (c(t)− ĉ(t)) dt+ e−

∫ T
0

β(s)dsu′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
:= (∗).

Since (c, π) was arbitrarily chosen we end the proof by showing that E[(∗)] ≤ 0.
A special feature of CRRA utility is that u′(xy) = u′(x)u′(y). Using this feature we get

u′ (ĉ(t)) (c(t)− ĉ(t)) = u′(λ)u′(c∗(t)) (c(t)− c∗(t)) + u′(λ)u′(c∗(t)) (c∗(t)− ĉ(t)) . (2.24)

By use of (2.23) and noting that u′ is a decreasing function we obtain

u′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
= (u′(λ)u′(X∗(T )) ∧ u′(K))

(
X(T )− X̂(λ)(T )

)
= u′(λ)u′(X∗(T ))

(
X(T )− X̂(λ)(T )

)
− (u′(λ)u′(X∗(T ))− u′(K))

+
(X(T )−K) ,

where we in the last equality have used that X̂(λ)(T ) = K on the set {(T, ω) : u′(λ)u′(X∗(T )) ≥ u′(K)}.
Since by assumption X(T ) ≥ K this reduces to

u′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
≤ u′(λ)u′(X∗(T ))

(
X(T )− X̂(λ)(T )

)
= u′(λ)u′(X∗(T )) (X(T )−X∗(T )) + u′(λ)u′(X∗(T ))

(
X∗(T )− X̂(λ)(T )

)
. (2.25)

Finally, combining (2.24) and (2.25) and using Lemma 2.4.2 twice give us E[(∗)] ≤ 0.
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2.5 The American capital guarantee control problem
Consider the problem

sup
(c,π)∈A′

E

[∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+ e−

∫ T
0

β(s)dsu(X(T ))

]
, (2.26)

under the capital constraint X(t) ≥ K(t), ∀t ∈ [0, T ], where K is a deterministic function of
time. In Section 2.3 we saw that K(t) ≤ −g(t), ∀t ∈ [0, T ], is a non-binding constraint. Note
that K = 0 corresponds to the case where the investor is restricted from borrowing against
future labor income. In order for the American capital guarantee problem to be solvable and
non-trivial6 we must demand

K(t) < ert
(
x0 +

∫ t

0

e−rsℓ(s)ds

)
, ∀t ∈ (0, T ]. (2.27)

Remark 2.5.2 presents the case without terminal consumption. Equivalent to the unrestricted
problem we get that the optimal strategies in the cases with and without terminal consumption
are very closely related.

2.5.1 An admissible American put option based portfolio
In Subsection 2.5.2 we present the optimal strategy for the problem (2.26). In turns out that
the optimal strategy is very similar to the optimal strategy for the European capital guarantee
problem presented in Proposition 2.4.1. Again, the optimal strategy consists of a position in
a budget-adjusted version of the optimal portfolio derived for the unrestricted problem plus a
put option written on that portfolio. This time though, to fulfil the American capital guarantee
the OBPI strategy must consist of an American put option. However, the introduction of an
American put option is not uncomplicated. In turns out that the part of the strategy which
consist of the American put option is not admissible by default. Loosely speaking, to make the
strategy admissible we have to continuously adjust the budget whenever the constraint is active.
In the following this will be made clear.

Still, we denote byX∗(t), c∗(t) and π∗(t), t ∈ [0, T ], the optimal wealth, the optimal consump-
tion strategy and the optimal investment strategy for the unrestricted problem (2.8), respectively.
Observe that the portfolio Y ∗(t) = X∗(t) + g(t), t ∈ [0, T ], has dynamics

dY ∗(t) =

(
r +

1

γ

(
α− r

σ

)2

− 1

f(t)

)
Y ∗(t)dt+

1

γ

α− r

σ
Y ∗(t)dW (t)

=

(
r − 1

f(t)

)
Y ∗(t)dt+

1

γ

α− r

σ
Y ∗(t)dWQ(t), t ∈ [0, T ), (2.28)

Y ∗(0) = y0,

where y0 = x0+g(0). Denote by P a
y (t, T,K+g) the time t value of an American put option with

strike price K(s)+g(s),∀s ∈ [t, T ], and maturity T written on a portfolio Y , where (Y (s))s∈[t,T ]

is the solution to (2.28) which equals y at time t. By definition the price of such a put option is
given by

P a
y (t, T,K + g) := sup

τ∈Tt,T

EQ
[
e−r(τ−t)(K(τ) + g(τ)− Y (τ))+

∣∣∣ Y (t) = y
]
, ∀t ∈ [0, T ],

6In the case of equality in (2.27) the investor has no choice but to invest all his wealth including labor income
in the risk-free short rate to be sure to fulfil the capital guarantee.
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where Tt,T is the set of stopping times taking values in the interval [t, T ].

By analogy with the European case we introduce the American put option based portfolio

X(λ)(t) := λY ∗(t) + P a
λY ∗(t, T,K + g)− g(t), ∀t ∈ [0, T ], (2.29)

where λ ∈ (0, 1) is determined by the budget constraint

X(λ)(0) = λ(x0 + g(0)) + P a
λy0

(0, T,K + g)− g(0) = x0. (2.30)

By definition of an American put option P a
λY ∗(t, T,K+g) ≥ (K(t)+g(t)−λY ∗(t))+, ∀t ∈ [0, T ].

We conclude that X(λ) fulfills the American capital guarantee since, ∀t ∈ [0, T ], we have

X(λ)(t) = λY ∗(t) + P a
λY ∗(t, T,K + g)− g(t)

≥ λY ∗(t) + (K(t) + g(t)− λY ∗(t))+ − g(t)

≥ K(t). (2.31)

Now, recall some basis properties for American put options in a Black-Scholes market (see
e.g. Karatzas and Shreve (1998)):

P a
y (t, T,K + g) = K(t) + g(t)− y, ∀(t, y) ∈ Cc,

LP a
y (t, T,K + g) = rP a

y (t, T,K + g), ∀(t, y) ∈ C,
∂

∂y
P a
y (t, T,K + g) = −1, ∀(t, y) ∈ Cc,

where (see (2.28) and (2.19))

L :=
∂

∂t
+

(
r − 1

f(t)

)
y
∂

∂y
+

1

2
σ2(π∗

y)
2y2

∂2

∂y2
,

and
C := {(t, y) : P a

y (t, T,K + g) > (K(t) + g(t)− y)+},
defines the continuation region. By Cc we mean the complementary of C, i.e. the stopping region.
The continuation region can be described via the exercise boundary

b(t) = sup
{
y : P a

y (t, T,K + g) = (K(t) + g(t)− y)
+
}
.

Note, that b is a deterministic function of time. We get

C = {(t, y) : y > b(t)} .

Introducing the function A by

A(t, y) := y + P a
y (t, T,K + g)− g(t),

we can write (2.29) as
X(λ)(t) = A(t, λY ∗(t)), ∀t ∈ [0, T ].

From the properties of P a
y (t, T,K + g) we deduce that

A(t, y) = K(t), ∀(t, y) ∈ Cc,

LA(t, y) =
(
r − 1

f(t)

)
y + rP a

y (t, T,K + g)− (−ℓ(t) + rg(t))

= rA(t, y) + ℓ(t)− y

f(t)
, ∀(t, y) ∈ C, (2.32)

LA(t, y) = ∂

∂t
K(t), ∀(t, y) ∈ Cc, (2.33)

∂

∂y
A(t, y) = 0. ∀(t, y) ∈ Cc. (2.34)
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Since Y ∗(t) is linear in its initial value, ∀t ∈ [0, T ], we have that λY ∗(t) has the same dynamics
as Y ∗(t), ∀t ∈ [0, T ]. By use of (2.32), (2.33) and (2.18) we get that7

dA(t, λY ∗(t)) =
∂

∂y
A(t, λY ∗(t))σπ∗

yλY
∗(t)dWQ(t) + LA(t, λY ∗(t))dt

=
∂

∂y
A(t, λY ∗(t))σπ∗

yλY
∗(t)dWQ(t)

+ [rA(t, λY ∗(t)) + ℓ(t)− λc∗(t)]1(λY ∗(t)>b(t))dt+
∂

∂t
K(t)1(λY ∗(t)≤b(t))dt.

(2.35)

From the condition (2.7) we see that the strategy
(
λc∗, X(λ)

)
is admissible up to the hitting time

of the exercise boundary b. If we allow λ to be a function of time, we can choose (λ(t), t ∈ [0, T ])
to be constant whenever λ(t)Y ∗(t) > b(t) and increasing at the boundary such that λ(t)Y ∗(t) ≥
b(t),∀t ∈ [0, T ]. More precise, define

λ(t) = λ0 ∨ sup
s≤t

(
b(s)

Y ∗(s)

)
, ∀t ∈ [0, T ], (2.36)

where λ0 is determined by the budget constraint (2.30).

Proposition 2.5.1. The strategy
(
λc∗, X(λ)

)
where, ∀t ∈ [0, T ],

X(λ)(t) := λ(t)Y ∗(t) + P a
λY ∗(t, T,K)− g(t)

with λ(t), t ∈ [0, T ], being the function defined by (2.36) and (2.30), is admissible8 .

Proof. Using Itô’s formula, (2.35) and that λ increases only at the boundary, we get that

dA(t, λ(t)Y ∗(t)) = [dA(t, λY ∗(t))]|λ=λ(t) + Y ∗(t)
∂

∂y
A(t, λ(t)Y ∗(t))dλ(t)

=
∂

∂y
A(t, λ(t)Y ∗(t))σπ∗

yλ(t)Y
∗(t)dWQ(t)

+ [rA(t, λ(t)Y ∗(t)) + ℓ(t)− λ(t)c∗(t)]1(λ(t)Y ∗(t)>b(t))dt+
∂

∂t
K(t)1(λ(t)Y ∗(t)≤b(t))dt

+ Y ∗(t)
∂

∂y
A(t, λ(t)Y ∗(t))1(λ(t)Y ∗(t)=b(t))dλ(t).

Since by (2.34) ∂
∂yA(t, λ(t)Y

∗(t)) = 0 on the set {(t, ω) : λ(t)Y ∗(t) = b(t)} this reduces to

dA(t, λ(t)Y ∗(t)) =
∂

∂y
A(t, λ(t)Y ∗(t))σπ∗

yλ(t)Y
∗(t)dWQ(t) + [rA(t, λ(t)Y ∗(t)) + ℓ(t)− λ(t)c∗(t)]dt

+

(
∂

∂t
K(t)− (rK(t) + ℓ(t)− λ(t)c∗(t))

)
1(λ(t)Y ∗(t)≤b(t))dt.

Finally, since {(t, ω) : λ(t)Y ∗(t) ≤ b(t)} =
{
(t, ω) : λ(t) = b(t)

Y ∗(t)

}
has a zero dt⊗ dP -measure we

conclude that

dA(t, λ(t)Y ∗(t)) = [rA(t, λ(t)Y ∗(t)) + ℓ(t)− λ(t)c∗(t)]dt+
∂

∂y
A(t, λ(t)Y ∗(t))σπ∗

yλ(t)Y
∗(t)dWQ(t),

i.e. by (2.7) the strategy is admissible.
7 ∂
∂y

now means differentiating w.r.t. the second variable.
8It is implicit given that PaλY ∗ (t, T,K) now refers to an American put option written on the portfolio

(λ(s)Y ∗(s))s∈[t,T ].
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2.5.2 The optimal strategy
As mentioned, the put option based strategy introduced in Subsection 2.5.1 turns out to be
optimal for the American capital guarantee problem (2.26).

Theorem 2.5.2. Consider the strategy (ĉ, λY ∗) where, ∀t ∈ [0, T ],

ĉ(t) :=
λ(t)Y ∗(t)

f(t)
= λ(t)c∗(t),

Y ∗(t) := X∗(t) + g(t),

combined with a position in an American put option with strike price K(s) + g(s),∀s ∈ [t, T ],
and maturity T written on the portfolio (λ(s)Y ∗(s))s∈[t,T ], where λ(s), s ∈ [t, T ], is the function
defined by (2.36) and (2.30). By (2.31) the value of the corresponding option based portfolio
insurance becomes

X̂(λ)(t) := λ(t)Y ∗(t) + P a
λY ∗(t, T,K + g)− g(t) ≥ K(t), (2.37)

i.e. the American capital guarantee is fulfilled. Observing that Y ∗(T ) = X∗(T ) the terminal
value becomes

X̂(λ)(T ) = λ(T )X∗(T ) + (K(T )− λ(T )X∗(T ))+ = max(λ(T )X∗(T ),K(T )). (2.38)

We have that

• The strategy is optimal for the American capital guarantee control problem given by (2.26).

Note that, clearly, the strategy in Theorem 2.5.2 is feasible since the unrestricted strategy
(c∗, π∗) given in Section 2.3 is feasible.

Remark 2.5.1. To clarify, following the strategy
(
ĉ, X̂(λ)

)
given by Theorem 2.5.2 (heuristi-

cally) means that the investor should:

1. Take a loan of size g(0) and reserve the labor income to pay back the loan over the time
interval [0, T ].

2. Reserve the initial amount of money λ0(x0+g(0)) to follow the consumption and investment
strategy (ĉ, π) given by

ĉ(t) := λ0c
∗(t), (2.39)

π := π∗
y . (2.40)

Doing this the investor replicates the portfolio λ0Y ∗(t),∀t ∈ [0, T ] (see Remark 2.3.1).

3. Use the remaining initial amount of money (1 − λ0)(x0 + g(0)) to buy an American put
option with strike price K(s) + g(s),∀s ∈ [0, T ], and time to maturity T written on the
portfolio (λ0Y

∗(t))t∈[0,T ].

4. The first time (say τ) λ0Y ∗ drops below the optimal exercise boundary b, sell the American
put option. Not taking the loan we made in 1. into account, the portfolio will then be
worth K(τ) + g(τ)9. Reserve now the amount of money λ(τ)(K(τ) + g(τ)) to follow the
consumption and investment strategy (ĉ, π) given by

ĉ(t) := λ(τ)c∗(t),

π := π∗
y .

Doing this the investor replicates the portfolio λ(τ)Y ∗(t),∀t ∈ [τ, T ]. Use the remaining
initial amount of money (1−λ(τ))(K(τ)+g(τ)) to buy an American put option with strike
price K(t)+g(t),∀t ∈ [τ, T ], and maturity T written on the portfolio λ(τ)Y ∗(t),∀t ∈ [τ, T ].

9Taken the loan we made in 1. into account the portfolio is worth K(τ), i.e. we stand at the capital guarantee
boundary.

26



5. In case the new portfolio λ(τ)Y ∗(t) drops below the optimale exercise boundary b at some
point in time, t ∈ (τ, T ], repeat step 4.

Identically to the European case, the American put option is likely not to be sold in the market,
but since the market is complete and frictionless such options can be replicated dynamically by
a Delta-hedge. i.e. the optimal investment strategy π̂(t), t ∈ [0, T ], is given by

π̂(t)X̂(λ)(t) =

(
1 +

∂

∂y
P a
λY ∗(t, T,K + g)

)
π∗
yλ(t)Y

∗(t).

One should notice, that at the boundary no risk is taken, i.e. the position in the American put
option offsets the position in the underlying portfolio such that the total exposure to changes in
the risky asset, S, becomes zero. Clearly, at the boundary it is optimal to consume a certain time-
dependent part of the labor income, thereby leaving room for a risky position in S immediately
after hitting the capital boundary. This is numerically illustrated in Subsection 2.5.3.

Proof of optimality. Let (c, π) ∈ A′, with corresponding wealth process (X(t))t∈[0,T ], be any
given feasible strategy satisfying X(0) = x0 and X(t) ≥ K(t), ∀t ∈ [0, T ]. Since u is concave we
get ∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+ e−

∫ T
0

β(s)dsu(X(T ))

−

(∫ T

0

e−
∫ t
0
β(s)dsu (ĉ(t)) dt+ e−

∫ T
0

β(s)dsu
(
X̂(λ)(T )

))

=

∫ T

0

e−
∫ t
0
β(s)ds (u(c(t))− u (ĉ(t))) dt+ e−

∫ T
0

β(s)ds
(
u(X(T ))− u

(
X̂(λ)(T )

))
≤
∫ T

0

e−
∫ t
0
β(s)dsu′ (ĉ(t)) (c(t)− ĉ(t)) dt+ e−

∫ T
0

β(s)dsu′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
=: (∗).

Since (c, π) was arbitrarily chosen we end the proof by showing that E[(∗)] ≤ 0.
Again by the CRRA property u′(xy) = u′(x)u′(y) we have

u′ (ĉ(t)) (c(t)− ĉ(t)) = u′(λ(t))u′(c∗(t)) (c(t)− ĉ(t)) . (2.41)

By use of (2.38) and noting that u′ is a decreasing function we get that

u′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
= (u′(λ(T ))u′(X∗(T )) ∧ u′(K(T )))

(
X(T )− X̂(λ)(T )

)
= u′(λ(T ))u′(X∗(T ))

(
X(T )− X̂(λ)(T )

)
− (u′(λ(T ))u′(X∗(T ))− u′(K(T )))

+
(X(T )−K(T )) ,

where the last equality is established by using that X̂(λ)(T ) = K(T ) on the set
{(T, ω) : u′(λ(T )X∗(T )) ≥ u′(K(T ))}. Since by assumption X(t) ≥ K(t), ∀t ∈ [0, T ], this
reduces to

u′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
≤ u′(λ(T ))u′(X∗(T ))

(
X(T )− X̂(λ)(T )

)
. (2.42)
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Inserting (2.41) and (2.42) and then (2.12) and (2.13) we get

E[(∗)] := E

[∫ T

0

e−
∫ t
0
β(s)dsu′ (ĉ(t)) (c(t)− ĉ(t)) dt

]
+ E

[
e−

∫ T
0

β(s)dsu′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)]
≤ E

[∫ T

0

e−
∫ t
0
β(s)dsu′(λ(t))u′(c∗(t)) (c(t)− ĉ(t)) dt

]
+ E

[
e−

∫ T
0

β(s)dsu′(λ(T ))u′(X∗(T ))
(
X(T )− X̂(λ)(T )

)]
= E

[∫ T

0

e−
∫ t
0
β(s)dsu′(λ(t))ξ∗H(t) (c(t)− ĉ(t)) dt

]
+
[
e−

∫ T
0

β(s)dsu′(λ(T ))ξ∗H(T )
(
X(T )− X̂(λ)(T )

)]
= ξ∗EQ

[∫ T

0

e−rtu′(λ(t)) (c(t)− ĉ(t)) dt+ e−rTu′(λ(T ))
(
X(T )− X̂(λ)(T )

)]
.

Since u′(λ(t)) is a decreasing function10 we can use the integration by parts formula

E[(∗)] ≤ ξ∗

(
EQ

[∫ T

0

e−rtu′(λ(t)) (c(t)− ĉ(t)) dt+

∫ T

0

u′(λ(t))d
(
e−rt

(
X(t)− X̂(λ)(t)

))
︸ ︷︷ ︸

(⋆)

]

+ EQ

[∫ T

0

e−rt
(
X(t)− X̂(λ)(t)

)
du′(λ(t))︸ ︷︷ ︸

(⋆⋆)

])
. (2.43)

The second part of (2.43) can be rewritten as

EQ[(⋆⋆)] = EQ

[∫ T

0

e−rt(X(t)−K(t))du′(λ(t))

]

+ EQ

[∫ T

0

e−rt
(
K(t)− X̂(λ)(t)

)
du′(λ(t))

]
.

The first term is non-positive since per definition X(t) ≥ K(t), ∀t ∈ [0, T ], and du′(λ(t)) ≤
0, ∀t ∈ [0, T ] (u′ is decreasing and λ is increasing). The second term equals zero since du′(λ(t)) ̸=
0 only on the set {(t, ω) : X̂(λ)(t) = K(t)}. We conclude that EQ[(⋆⋆)] ≤ 0. The first part of
(2.43) can be rewritten as

EQ[(⋆)] = EQ

[∫ T

0

u′(λ(t))d

(∫ t

0

e−rs(c(s)− ĉ(s))ds

)]

+ EQ

[∫ T

0

u′(λ(t))d
(
e−rt

(
X(t)− X̂(λ)(t)

))]

= EQ

[∫ T

0

u′(λ(t))d

(∫ t

0

e−rs(c(s)− ℓ(s))ds+ e−rtX(t)

)]

− EQ

[∫ T

0

u′(λ(t))d

(∫ t

0

e−rs(ĉ(s)− ℓ(s))ds+ e−rtX̂(λ)(t)

)]
. (2.44)

10This ensures the that the stochastic integral in (2.43) is well-defined.
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Since both strategies are admissible we note that according to (2.6), equation (2.44) consists of
two stochastic integrals with respect to Q-martingales. Since u′(λ(t)) ≤ u′(λ0),∀t ∈ [0, T ], we
get

EQ[(⋆)] = 0.

Finally, we can conclude that

E[(∗)] = EQ[(⋆)] + EQ[(⋆⋆)] ≤ 0.

Remark 2.5.2. As a final remark we want to emphasize that the case where the investor assigns
zero utility to terminal wealth can be handled equivalent to Section 2.3–2.5. To be clear, consider
the unrestricted problem

sup
(c,π)∈A′

E

[∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt

]
, (2.45)

where the investors wealth follows the dynamics given by (2.1) with initial wealth equal to x0.
It is well known that the solution to (2.45) is equivalent to the unrestricted solution given by
(2.14) and (2.15), the only difference being that the deterministic function f is now given by

f(t) =

∫ T

t

e−
∫ s
t
[r̃(y)+β(y)]dyds, (2.46)

with r̃(y) = γ
γβ(y)−

γ
γ r −

1
2

γ
(1−γ)2

(
α−r
σ

)2. Now f converges to zero as time goes to T . Conse-
quently, since by (2.14)

c∗(t) =
X(t) + g(t)

f(t)
,

we notice that the optimal terminal wealth will be zero (since the investor assigns no utility
to the terminal wealth he simply consumes everything before time T ). The solution to (2.45)
under a European or an American capital guarantee is equivalent to the solutions presented in
Proposition 2.4.1 respectively Theorem 2.5.2, the only difference being that f is now given by
(2.46).

2.5.3 Numerical illustrations
In this subsection we illustrate the optimal strategy presented in Theorem 2.5.2 in the case
with a restriction to borrow against future labor income, i.e. K(t) = 0, ∀t ∈ [0, T ]. Naturally,
we compare the strategy to the unrestricted strategy derived in Section 2.3. More specifically,
consider an investor with time horizon T = 10, time and utility preferences (β, γ) = (0.01,−2),
endowed with zero initial wealth and a labor income rate starting out at ℓ(0) = 40000 followed
by a monthly half a percent raise. The investor faces a Black-Scholes market with parameters
(α, r, σ) = (0.12, 0.04, 0.2) resulting in π∗

y = 1
γ

α−r
σ2 = 2

3 . The time interval has been discretizied
equidistantly into 120 time points, i.e. monthly time points. By this we mean that the American
put option has been evaluated as a discrete time option such that the guarantee is only valid
monthly. Likewise, λ and therefore the optimal consumption and investment strategy has only
been changed monthly. Saying that, it is important to stress that in-between the monthly time
points, the amount of money to consume and invest, respectively, have been re-balanced contin-
uously11.

11We have used (2.16). Note that X(t)∗+g(t), t ∈ [0, T ], is a geometric Brownian motion since we have chosen
β to be constant.
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Figure 2.1: Upper left: The underlying portfolio λ(t)Y ∗(t) (solid curve), together with the strike
price g(t) (dotted curve) and the optimal exercise boundary b(t) of the American put option
(dashed curve). Upper right: λ(t). Lower left: The American put option (solid curve) together
with the optimal exercise value (dashed curve). Lower right: The optimal portfolio X̂(λ)(t) (solid
curve) together with the corresponding optimal unrestricted portfolio X∗(t) (dashed curve) and
the guarantee (K = 0).

Figure 2.1 illustrates the optimal portfolio together with its building blocks (the underlying
portfolio and the associated American put option). The investor starts out by splitting the initial
borrowed amount of money g(0) = 441361.8 into two portions: One of size λ(0)g(0) = 307759.9
reserved to finance the investment and consumption strategy given by (2.39) and (2.40) (i.e.
a hedge of λ0Y ∗), and one of size (1 − λ(0))g(0) = 133601.9 used to buy (or delta-hedge) an
American put option with strike g(t) and maturity T written on the underlying portfolio λ0Y ∗.
Looking at Figure 2.1 upper left corner we see that initially this corresponds to choosing an
underlying portfolio of size equal to the exercise boundary of the corresponding American put
option. One can realize that this is always the case when the initial amount of money equals the
capital guarantee K(0).

As seen in Figure 2.1, as time goes by the optimal portfolio hits the boundary. For this
specific example we observe (after evaluating a large number of sample paths) that the optimal
portfolio hits the boundary within the (say) first 3 years with a rather large probability, and
that it hits the boundary in the (say) last 2 years before terminal time T with a negligible prob-
ability. Realizations like this can often be found to be a consequence of the model design. In
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this example the reason is partly due to the fact that the investor is endowed with an increasing
labor income and no initial wealth. Looking at the optimal consumption strategy (2.39) one
observes that this labor income design causes the investor, who holds a small portfolio, to save
a little fraction of the labor income in the beginning of the period, whereas he chooses to save
a large fraction of the labor income in the years just before terminal time T (see Figure 2.2).

In Section 2.5.1 we found how to change λ dynamically in order for the put option based
strategy to be admissible. In Figure 2.1 upper right corner we see how λ(t), t ∈ [0, T ], increases
when the underlying process (λY ∗)t∈[0,T ] hits the exercise boundary of the American put option.
Consequently, the American put option never exceeds its inner value as seen in Figure 2.1 lower
left corner.

Finally, Figure 2.1 lower right corner shows the optimal portfolio plotted against the corre-
sponding unrestricted optimal portfolio. We see how the optimal portfolio stays above or at zero
during the time period while the unrestricted optimal portfolio becomes negative over several
distinct time intervals. The fact that the optimal portfolio increases drastically away from zero
the last two years before terminal time T is primary due to the fact that the investor’s optimal
consumption strategy leaves room for saving labor income in the final years whenever wealth is
sufficient low (see Figure 2.2).
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Figure 2.2: The optimal consumption rate (solid curve) together with the optimal unrestricted
consumption rate (dashed curve), the deterministic labor income rate (dotted curve) and the
deterministic optimal boundary consumption rate (solid smooth curve).

In Figure 2.2 we see how the optimal consumption rate fluctuates around the labor income
rate. To begin with it is optimal to save a certain fraction of the labor income. As invest-
ments start to pay off it eventually becomes optimal to consume more than the labor income
(t ∈ [2.5, 6.5]). After 6.5 years the investor loses money on his investments (for this specific
sample path) and it therefore becomes optimal for him to start saving money again. One can
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say that Figure 2.2 simply shows the investor’s preferences for consuming now versus consuming
later. Comparing to the optimal unrestricted consumption rate, we see that the restriction to
borrow against future labor income has a smoothing effect on consumption (as shown by He and
Pagès (1993)). The reason that the optimal consumption rate at the boundary goes to zero is
clear: As time approaches T while wealth is equal to zero it becomes infinitely valuable to save
money since the marginal utility of terminal wealth goes to infinity as terminal wealth goes to
zero.
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Figure 2.3: Upper window: The density of the optimal terminal wealth (solid curve) together
with the density of the optimal unrestricted terminal wealth (dashed curve). Vertical lines
indicate the 95 percent confidence intervals. Lower window: The optimal fraction of total
wealth invested in the risky stock. The solid curve represents the median while the dashed
curves indicate the 95 percent confidence interval. The line y = 2

3 represents the unrestricted
optimal fraction to invest in the risky stock.

In Figure 2.3 upper window we compare the optimal terminal wealth with the unrestricted
optimal terminal wealth of Merton. Not surprisingly, the restriction to borrow against future
labor income results in a much more narrow distribution for the terminal wealth. The optimal
terminal wealth has 95 percent of its density mass within the interval [41854, 134252], whereas
for the unrestricted problem this interval is [32590, 169928]. Figure 2.3 lower window illustrates
the risk taken in the optimal portfolio. The risk taken is defined as the fraction of total wealth
(wealth plus the financial value of future labor income) invested in the risky stock. We see that
the median forms a ’s-curve’ towards the unrestricted Merton fraction

(
π = 2

3

)
. This is due to

the fact that eventually, the optimal portfolio will increase away from the boundary (K = 0)
and the American put option will become very cheap, resulting in a strategy almost identical to
the one of Merton. It should be stressed that we could easily find another example where this
will not be the case. The very wide 95 percent confidence interval illustrates how the optimal
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investment strategy can be very different for different sample paths. It also illustrates how much
the optimal investment strategy differs from the unrestricted strategy of Merton. Even in the
case where the investor gets a very large and steady payoff from his risky investments he do not
invest nearly as aggressively as Merton before after 5 years (halfway). Reversely, in the case of
very large and steady loses on the investments the investor places after 5 years only about 6
percent of total wealth in the risky stock.

2.6 Conclusion
We have solved the classic consumption and investment control problem of Merton in the presence
of labor income and an American capital guarantee restriction. The solution obtained is an
option based portfolio insurance (OBPI) combining a long position in the optimal unrestricted
allocation with an American put option. More precisely, the investor optimally invests in a
budget adjusted version of the unrestricted portfolio and buys an insurance on that portfolio
in the form of an American put option. Initially the budget for the unrestricted portfolio is
adjusted such that this is affordable. The introduction of consumption and labor income to
such a setting is, to the author’s knowledge, not considered before, and the main contribution
from this article was to show, by use of the martingale approach to arbitrage-free theory in
finance, that the OBPI approach can be carried out to find the optimal strategy in the presence
of consumption and labor income. The introduction of a deterministic labor income by itself, in
the presence of an American capital guarantee, is not trivial. Unlike the unrestricted problem of
Merton, being endowed with a deterministic labor income or being endowed with an initial wealth
enlarged by the financial value of future labor income is not equivalent. We have shown that
the introduction of deterministic labor income can be handled by choosing an appropriate strike
value for the American put option used to insure the investors portfolio from falling below the
capital restriction. The strategy, which has to be re-balanced whenever the constraint is active,
is rather complicated. Another contribution offered by this article is an in-depth explanation
and analysis of the optimal strategy supported by graphical illustrations.
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3. Optimal consumption, investment and
life insurance with surrender option
guarantee

Abstract: We consider an investor, with an uncertain life time, endowed with deter-
ministic labor income, who has the possibility to continuously invest in a Black-Scholes
market and to buy life insurance or annuities. We solve the optimal consumption, in-
vestment and life insurance problem when the investor is restricted to fulfill an Ameri-
can capital guarantee. By allowing the guarantee to depend, in a very general way, on
the past we include, among other possibilities, the interesting case of a minimum rate
of return guarantee, commonly offered by pension companies. The optimal strategies
turn out to be on option based portfolio insurance form, but since the capital guaran-
tee is valid at every intermediate point in time, re-calibration is needed whenever the
constraint is active.

Keywords: Stochastic control; martingale method; life insurance; rate guarantee;
option based portfolio insurance; CRRA utility.

3.1 Introduction
We unify two directions of generalizing the classical Merton’s consumption-investment problem
with labor income, namely the introduction of life insurance decisions and the introduction of
capital constraints. This unification is particularly relevant since the savings in a life and pension
contract often contain restrictions that are special examples of our capital constraint. We solve
the joint problem where the individual with an uncertain life time can buy life insurance or
annuities and, at the same time, there is a general capital constraint on his savings.

The uncertain life time is well-motivated but it turns a deterministic income rate while being
alive into a stochastic income rate. Access to life insurance and annuities completes the market
and makes the financial value of labor income unique.

The capital constraint allowed for in this paper is sufficiently general to cope with two well-
motivated situations:

1) One possible capital constraint is that the savings are not allowed to become negative. We
can speak of this as a no-borrowing constraint but it is important to stress that it is a constraint
on wealth and not on investment position. In a life insurance context one would speak of such
a constraint as a non-negative reserve constraint. The intuition is that it should always be the
pension institution that owes money to the policy holder and not the other way around. This
is a standard institutional/regulatory constraint that serves to separate, institutionally, saving
business from lending business.

2) Another possible capital constraint is that the savings earn a minimum return. We speak
of this as an interest rate guarantee. This is a delicate capital guarantee since it protects the
dynamics of wealth rather than wealth itself. Thus, formalized as a constraint on the capital
itself, this constraint depends on the trajectory of the state variables. Such a guarantee appears
in many different types of life insurance contracts, ranging from participating life insurance with
a so-called surrender option with a guaranteed sum upon surrender to unit-link life insurance
where you can add on different types of options on the return.

In both situations one may ask why is the constraint there at all? The separation of saving
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business from lending business perhaps serves to protect the pension institution from unspanned
policy holder credit risk. We stress the word unspanned here because one could argue that
spanned life insurance risk is also credit risk in the context of borrowing against future income.
Credit risk is a matter for the lending business who would require some material collateral, like
a house or something, in addition to a ’planned’ working life. But there is no such unspanned
policy holder credit risk within our model, so who asked for a constraint? Also the guarantee on
return may seem odd: Who asked for that? The titular question posed by Jensen and Sørensen
(2001) means almost the same. Well, the answer ’the social planner’ applies to both questions. If
the society prefers that savings are non-negative, or if the society prefers that policy holders (via
their delegated pension institutions) invest as safely as it is dictated by an interest rate guarantee,
then the constraints can appear through the regulatory environment. Thus, these constraints
should not necessarily be interpreted as a twist on the policy holders preferences within the
model but as a societal constraint from outside the model/preferences. Formalistically, the two
interpretations are the same, though. It is interesting to discuss if and when such constraints
really are meaningful from the point of view of the social planner. However, this is beyond
the scope of this paper. Furthermore, during these decades where certain markets show a
tendency from classical interest rate guarantee participating life insurance towards modern unit-
link products, the policy holders tend to actually buy these options on the return. So, could it be
something that the people want, after all? Prospect theory may help motivating guarantees, see
e.g. Døskeland and Nordahl (2008). We do not incorporate prospect theory in our preferences
but take the guarantees to be exogenously given.

Life insurance was introduced to Merton’s classical consumption-investment problem first
already by Richard (1975) but Yaari (1965) had even earlier results in discrete time. It took three
decades before the actuarial academic community realized the importance of the fundamental
patterns of thinking by Richard (1975). Since then, many articles generalize the results by
Richard in various directions. They include Pliska and Ye (2007) who allow for an unbounded
lifetime; Huang and Milevsky (2008) who allow for unspanned labor income; Huang et al. (2008)
who separate the breadwinner income process from the family consumption process; Steffensen
and Kraft (2008) who generalize to a multistate Markov chain framework typically used by
actuaries for modeling a series of life history events; Nielsen and Steffensen (2008) who work
with constraints on the insurance sum paid out upon death; Bruhn and Steffensen (2011) who
generalize to a multiperson household, with focus on a married couple with economically and/or
probabilistically dependent members; Kwak et al. (2011) who also consider a household but focus
on generation issues.

Our contribution compared to the list of papers in the former paragraph is that we add
capital constraints. They are particularly interesting since the life insurance and pension savings
contracts typically contain borrowing or return constraints set by either the insurance company
directly or by the regulatory authorities indirectly.

Capital constraints have been studied in a series of papers. They were first studied as a
European (i.e. terminal) capital constraint in Teplá (2001) and Jensen and Sørensen (2001) who,
interestingly, motivated the study of capital constraints from guarantees in pension contracts.
Later results of El-Karoui et al. (2005) concern an American (i.e. continuous) capital guaranteed.
The three papers on capital constraints mentioned above all deal with the investment problem
exclusively, disregarding labor income and consumption. Kronborg (2011) generalizes the results
of El-Karoui et al. (2005) to include spanned labor income and optimal consumption.

Our contribution compared to the list of papers in the former paragraph is that we add
life insurance risk and decisions and allow for more general path dependent constraints. This
combination makes it possible to study realistic decision processes and product designs including
relevant regulatory and/or institutional constraints in the pension savings market.

Speaking of terminal and continuous constraints as being European and American, respec-
tively, may seem a bit far-fetched until the resulting strategy appears: The best strategy is to
follow a so-called option based portfolio insurance strategy (OBPI) where a certain part of the
capital is invested in the optimal portfolio for the unconstrained problem and then put option
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protected downwards for the residual amount such that the guarantee is fulfilled and such that
the combined position is worth the wealth. In the European case the portfolio is protected by a
European put option whereas in the American case the portfolio is protected by an American put
option. The underlying portfolio of the American put option is continuously updated, though,
paid by the cash flow from the put option, see El-Karoui et al. (2005). A particular feature arises
in the presence of income and consumption, namely, that also the strike is updated, see Kronborg
(2011). This ’updating of the American strike’ pattern appears also in the present paper in the
presence of life insurance risk and protection. The update becomes even more delicate due to
the path dependence of the capital guarantee.

Two other lines of literature should be mentioned for dealing with related problems although
the market or the control fundamentally differ: Optimal annuitization has been studied in a
series of papers, see Milevsky and Young (2007) and references therein. Optimal retirement
timing has been studied in e.g. Farhia and Panageas (2007). We also wish to mention Dybvig
and Liu (2010) since they combine the retirement decision with capital constraints similar to the
ones we deal with here.

We apply the martingale method developed by Cvitanic et al. (1987), Cox and Huang (1989),
Cox and Huang (1991) and Cvitanic and Karatzas (1992). This method deals efficiently with
capital constraints and has been used in all the papers on capital constraints mentioned above.
However, Kraft and Steffensen (2012) show how also dynamic programming applies to problems
with capital constraints.

The outline of the paper is as follows: In Section 2, we present the state processes and define
the natural set of admissible strategies in presence of spanned labor income. In Section 3, we
formalize and solve the unconstrained problem. Section 4 contains a formalization and a solution
to the constrained problem. Numerical examples of the (constrained and unconstrained) optimal
wealth dynamics are illustrated. We conclude in Section 5. Finally, a rigorous proof showing
the admissibility of the strategy found in Section 4 is presented in the appendix.

3.2 Setup
Consider a policyholder with a life insurance policy issued at time 0 and terminated at a deter-
ministic point in time 0 < T < ∞. One should think of T as the time of retirement decided
beforehand by the policyholder. The policyholder’s time of death is given by a non-negative
random variable τd defined on a given probability space (Ω,F , P ). We assume that τd has a
probability distribution given by a function F with density function denoted by f . We can then
define the survivor function F by

F (t) := P (τd ≥ t) = 1− F (t) where F (t) := P (τd < t) =

∫ t

0

f(s)ds. (3.1)

The instantaneous time-t mortality rate of the policyholder is given by the hazard function

µ(t) := lim
ϵ→0

P (t ≤ τd < t+ ϵ | τd ≥ t)

ϵ
= lim

ϵ→0

F (t+ ϵ)− F (t)

ϵ

1

F (t)
=
F ′(t)

F (t)
=
f(t)

F (t)
= − ∂

∂t
logF (t).

We get the following well-known expressions frequently used by actuaries

F (t) = e−
∫ t
0
µ(s)ds, (3.2)

f(t) = µ(t)e−
∫ t
0
µ(s)ds. (3.3)

In this paper we assume that the mortality rate is deterministic and given by a continuous
function µ : [0,∞) → [0,∞).

We now describe the investment and life insurance market available to the policyholder.
Consider a Black-Scholes market consisting of a bank account, B, with risk free short rate, r,
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and a risky stock, S, with dynamics given by

dB(t) = rB(t)dt, B(0) = 1,

dS(t) = αS(t)dt+ σS(t)dW (t), S(0) = s0 > 0.

Here α, σ, r > 0 are constants and we assume α > r. The process W is a standard Brownian
motion on the probability space (Ω,F ,P) equipped with the filtration FW = (FW (t))t∈[0,T ]

given by the P -augmentation of the filtration σ{W (s); 0 ≤ s ≤ t},∀t ∈ [0, T ]. We assume that
the policyholder’s random time of death τd is stochastically independent of the filtration FW .

The policyholder is assumed to be endowed with a continuous deterministic labor income
of rate ℓ(t) ≥ 0,∀t ∈ [0, T ], as long as he is alive, and possibly an initial amount of money
x0 ≥ 0. The policyholder should be thought of as an agent who has the possibility to invest and
continuously consume from or save on a pension account. Naturally, we, as done by actuaries,
refer to the policyholder’s wealth, denoted by X, as the reserve. The reserve is maintained
and invested by the pension company, but the policyholder chooses, in a continuous way, the
risky asset allocation and the sum insured to be paid out upon death before time T 1. More
specifically, let c ≥ 0 be the rate of consumption and let θ be the amount of money invested
in the risky stock. Furthermore, let D ∈ [0,∞) be the sum insured to be paid out upon death
before time T . Choosing D, the policyholder agrees to hand over the amount of money X−D to
the pension company upon death before time T , i.e. the pension company keeps the reserve X for
themselves and pays out D as life insurance. Disregarding policy expenses the natural actuarial
risk premium rate to pay for the life insurance D at time t is µ(t)(D(t)−X(t))dt. Observe that
choosing D > X corresponds to buying a life insurance and choosing D < X corresponds to
selling a life insurance, i.e. buying an annuity. The dynamics of the reserve at the state alive2

becomes

dX(t) = [rX(t) + θ(t)(α− r) + ℓ(t)− c(t)− µ(t)(D(t)−X(t))]dt+ σθ(t)dW (t), t ∈ [0, T ),
(3.4)

X(0) = x0.

Once again we stress that in the case of death before the terminal time T only the sum insured,
D, is paid out to the policyholder. We call the cash flow injected to the reserve given by
ℓ(t)− c(t)− µ(t)D(t), ∀t ∈ [0, T ], the pension contributions.

We assume the trading strategy, θ, to be an FW
t -adapted process with

∫ T

0
(θ(t))2dt <∞ a.s.,

the consumption rate, c, to be a non-negative FW
t -adapted process with

∫ T

0
c(t)dt <∞ a.s., and

the insurance strategy, D, to be a non-negative FW
t -adapted process with

∫ T

0
D(t)dt < ∞ a.s.

Note that this ensures that X is well-defined and we get the unique solution, ∀t ∈ [0, T ], known
as the time-t retrospective reserve

X(t) = x0e
∫ t
0
(r+µ(y))dy +

∫ t

0

e
∫ t
s
(r+µ(y))dy[θ(s)(a− r) + ℓ(s)− c(s)− µ(s)D(s)]ds

+

∫ t

0

e
∫ t
s
(r+µ(y))dyσθ(s)dW (s). (3.5)

It is well known that in the Black-Scholes market the equivalent martingale measure, Q, is unique
and given by the Radon-Nikodym derivative

dQ(t)

dP (t)
= Λ(t) := exp

(
−
∫ t

0

α− r

σ
dW (s)− 1

2

∫ t

0

(
α− r

σ

)2

ds

)
, t ∈ [0, T ], (3.6)

1An alternative interpretation, also given by Nielsen and Steffensen (2008), is that the company chooses the
investment and life insurance strategy on the behalf of the policyholder.

2For the rest of the paper we refer to the reserve at the state alive as simply the reserve.
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and that the process WQ given by

WQ(t) =W (t) +
α− r

σ
t, t ∈ [0, T ], (3.7)

is a standard Brownian motion under the martingale measure Q. We get that the time-t retro-
spective reserve can be represented, ∀t ∈ [0, T ], by

X(t) = x0e
∫ t
0
(r+µ(y))dy +

∫ t

0

e
∫ t
s
(r+µ(y))dy[ℓ(s)− c(s)− µ(s)D(s)]ds

+

∫ t

0

e
∫ t
s
(r+µ(y))dyσθ(s)dWQ(s). (3.8)

Definition 3.2.1. Define the set of admissible strategies, denoted by A, as the consumption,
investment and life insurance strategies for which the corresponding wealth process given by (3.8)
is well-defined,

X(t) + g(t) ≥ 0, ∀t ∈ [0, T ], (3.9)

where g is the time-t actuarial value of future labor income defined by

g(t) :=

∫ T

t

e−
∫ s
t
(r+µ(y))dyℓ(s)ds,

and

EQ

[∫ T

0

e−
∫ s
0
(r+µ(y))dyσθ(s)dWQ(s)

]
= 0. (3.10)

The technical condition (3.10) is equivalent to the condition that under Q the process∫ t

0

e−
∫ s
0
(r+µ(y))dyσθ(s)dWQ(s), t ∈ [0, T ],

is a martingale (in general it it only a local martingale, and also a supermartingale if (3.9) is
fulfilled, see e.g. Karatzas and Shreve (1998)). From this we conclude that (3.10) insures that
(c, θ,D) ∈ A if and only if X(T ) ≥ 0 and, ∀t ∈ [0, T ],

X(t) + g(t) = EQ

[∫ T

t

e−
∫ s
t
(r+µ(y))dy(c(s) + µ(s)D(s))ds+ e−

∫ T
t

(r+µ(y))dyX(T )

∣∣∣∣∣ FW (t)

]
.

(3.11)

At time zero this means that the strategies have to fulfill the budget constraint

x0 + g(0) = EQ

[∫ T

0

e−
∫ t
0
(r+µ(y))ds(c(t) + µ(t)D(t))dt+ e−

∫ T
0

rdsX(T )

]
. (3.12)

For latter use we state the following remark.

Remark 3.2.1. Define

Z(t) := −
∫ t

0

e−
∫ s
0
(r+µ(y))dy(ℓ(s)− c(s)− µ(s)D(s))ds+ e−

∫ t
0
(r+µ(y))dyX(t), t ∈ [0, T ]. (3.13)

By (3.8) we have that condition (3.10) is fulfilled if and only if Z is a martingale under Q.
The natural interpretation is that under Q the discounted reserve minus the discounted pension
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contributions should be a martingale. It is useful to note that if Z is a martingale under Q the
dynamics of X can be represented in the form

dX(t) = [(r + µ(t))X(t) + ℓ(t)− c(t)− µ(t)D(t)]dt+ ϕ(t)dWQ(t), t ∈ (0, T ], (3.14)

for some FW (t)-adapted process ϕ. Moreover, if the dynamics of X can be represented in the
form given by (3.14) for some FW (t)-adapted process ϕ satisfying ϕ(t) ∈ £2, ∀t ∈ [0, T ], then
Z is a martingale under Q.

Finally, by condition (3.9) we allow the reserve process to become negative, as long as it does
not exceed (in absolute value) the actuarial value of future labor income. Note that condition
(3.9) puts a lower boundary on the reserve process and therefore rules out doubling strategies
(see e.g. Karatzas and Shreve (1998)).

3.3 The unrestricted pension problem
For the unrestricted pension problem the policyholder chooses his consumption, investment and
life insurance strategy in order to optimize the expected utility from consumption, bequest upon
death, and terminal pension. That is, he searches for the strategy fulfilling the supremum

sup
(c,θ,D)∈A′

E

[∫ T∧τd

0

e−
∫ t
0
β(s)dsu(c(t))dt+K1e

−
∫ τd
0 β(s)dsu(D(τd))1(τd<T )

+K2e
−

∫ T
0

β(s)dsu(X(T ))1(τd≥T )

]
, (3.15)

where u : R → [−∞,∞) is a utility function representing the policyholder’s risk aversion and β
is a deterministic function representing the policyholder’s time preferences. The set A′, called
the set of feasible strategies, is a subset of the admissible strategies, defined by

A′ :=

{
(c, θ,D) ∈ A

∣∣∣∣∣ E
[∫ T∧τd

0

e−
∫ t
0
β(s)ds min(0, u(c(t)))dt

+ e−
∫ τd
0 β(s)dsK1 min(0, u(D(τd)))1(τd<T ) + e−

∫ t
0
β(s)dsK2 min(0, u(X(T )))1(τd≥T )

]
> −∞

}
.

(3.16)

We see that it is allowed to draw an infinite utility from a strategy (c, θ,D) ∈ A′, but only if the
expectation over the negative parts of the utility function is finite. Clearly, for a positive utility
function we have that A and A′ coincide. The constant weight factors K1 > 0 and K2 > 0 are
measures of the policyholder’s preferences concerning life insurance versus immediate consump-
tion, and terminal pension versus immediate consumption, respectively. The case K1 = 0 has
the well-known solution given by the pioneering work of Merton (1971). The case K2 = 0 and
the case excluding consumption can be analyzed along the same lines as the analysis given in
this paper. In order not to complicate the analysis further this will not be done since it requires
special treatment. The results are given by natural modifications of the results obtained in this
paper.

We want to write the optimization problem (3.15) in terms of the policyholder’s instanta-
neous mortality rate. By the assumption that the random time of death, τd, is stochastically
independent of the filtration FW , and by use of (3.1), we can rewrite the expectation in (3.15)
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as

E

[
1{τd≥T}

∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+ 1{τd<T}

∫ τd

0

e−
∫ t
0
β(s)dsu(c(t))dt

+K1e
−

∫ τd
0 β(s)dsu(D(τd))1(τd<T ) +K2e

−
∫ T
0

β(s)dsu(X(T ))1(τd≥T )

]

= E

[
F (T )

∫ T

0

e−
∫ t
0
β(s)dsu(c(t))dt+

∫ T

0

f(y)

∫ y

0

e−
∫ t
0
β(s)dsu(c(t))dtdy

+K1

∫ T

0

e−
∫ t
0
β(s)dsu(D(t))f(t)dt+K2e

−
∫ T
0

β(s)dsu(X(T ))F (T )

]
. (3.17)

Observe that∫ T

0

f(y)

∫ y

0

e−
∫ t
0
β(s)dsu(c(t))dtdy =

∫ T

0

e−
∫ t
0
β(s)dsu(c(t))

∫ T

t

f(y)dydt

=

∫ T

0

e−
∫ t
0
β(s)dsu(c(t))

[
F (t)− F (T )

]
dt.

Plug this into (3.17) to obtain

E

[∫ T

0

e−
∫ t
0
β(s)dsu(c(t))F (t)dt+K1

∫ T

0

e−
∫ t
0
β(s)dsu(D(t))f(t)dt+K2e

−
∫ T
0

β(s)dsu(X(T ))F (T )

]
.

(3.18)

Finally, inserting (3.2) and (3.3) into (3.18) we can write the optimization problem (3.15) as

sup
(c,θ,D)∈A′

E

[∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds[u(c(t)) +K1µ(t)u(D(t))]dt+K2e

−
∫ T
0

(β(s)+µ(s))dsu(X(T ))

]
.

(3.19)

For the rest of this paper we assume that the policyholder’s preferences towards risk are given
by a constant relative risk aversion function (CRRA) in the form

u(x) =


xγ

γ , if x > 0,

limx↘0
xγ

γ , if x = 0,

−∞, if x < 0,

for some γ ∈ (−∞, 1)\{0}.

Remark 3.3.1. We conjecture that the analysis presented in this paper can be extended to the
case of a general utility function. This would, following the ideas of El-Karoui and Karatzas
(1995) and El-Karoui et al. (2005), require use of the Gittins index methodology. We specialize to
the case of CRRA utility due to the well-known property that the maximization problem (3.15)
becomes linear in initial total wealth. Even in the case of a general path dependent constraint
on the reserve (see Section 3.4) this feature allows us to derive fairly explicit expressions for
the optimal strategies, leaving us with a greater understanding of the impact on the strategies
caused by the introduced constraints.

3.3.1 How to choose K2 - consumption after retirement
Choosing K1 is really a matter of personal preferences. How much do you love yourself relatively
to your inheritors? However, choosing K2 can be done in a natural way. A common choice in
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the literature of consumption/portfolio selection is K2 = 1 by simply not allowing any weight
constant. This corresponds to the case where the agent prefers a terminal wealth approximately
equal to the size of accumulated consumption over the last year before the terminal time T . At
least in a pension context this seems to be a very odd choose. What the policyholder (probably)
wants is a terminal pension big enough for him to be able to maintain his standard of living
throughout his uncertain remaining life time. At the same time, he should still take his time
preferences into account. Define therefore the actuarial time-T value of a life annuity paying 1
per year continuously until the time of death as

a(T ) := E

[∫ ∞

T

e−
∫ s
T
r dy1(τd≥s)ds

∣∣∣∣∣ τd > T

]
=

∫ ∞

T

e−
∫ s
T
(r+µ(y))dyds.

Disregarding policy expenses, the policyholder standing at the time of retirement, T , might use
his terminal pension X(T ) to buy, in the life insurance market, a life annuity of rate X(T )/a(T ).
Assume that he chooses to do so and thereafter simply consumes the entire life annuity (leaving
no room for saving)3. We get that

E

[∫ ∞

T

e−
∫ s
0
β(y)dyu

(
X(T )

a(T )

)
1(τd≥s)ds

]
= E

[∫ ∞

T

e−
∫ s
0
(β(y)+µ(y))dyu

(
X(T )

a(T )

)
ds

]
= E

[
e−

∫ T
0

(β(y)+µ(y))dy

∫ ∞

T

e−
∫ s
T
(β(y)+µ(y))dydsu

(
X(T )

a(T )

)]
= E

[
e−

∫ T
0

(β(y)+µ(y))dyaS(T )u

(
X(T )

a(T )

)]
, (3.20)

where

aS(T ) := E

[∫ ∞

T

e−
∫ s
T
β(y)dy1(τd≥s)ds

∣∣∣∣∣ τd > T

]
=

∫ ∞

T

e−
∫ s
T
(β(y)+µ(y))dyds

defines the subjective actuarial time-T value of a life annuity paying 1 per year continuously
until the time of death. Comparing the terminal term in (3.19) with (3.20) we get the natural
choice

K2 = aS(T )a(T )−γ . (3.21)

3.3.2 Solving the unrestricted problem
We now solve the unrestricted optimization problem given by (3.15). In the calculations we focus
on the representation of the problem given by (3.19). The methodology used in the following,
introduced by Cvitanic et al. (1987), Cox and Huang (1989), Cox and Huang (1991) and Cvi-
tanic and Karatzas (1992), is know as the martingale method. One could, as done in Richard
(1975), Pliska and Ye (2007), Nielsen and Steffensen (2008), Huang et al. (2008) and others,
have used the Hamilton-Jacobi-Bellman (HJB) technique to derive the optimal consumption,
investment and life insurance strategy. We choose the martingale approach since the solution
to the restricted capital guarantee problem introduced in Section 3.4 is based on terms derived
from the martingale method in the unrestricted case. Since the HJB technique seems to be the
approach applied in the literature to solve such unrestricted optimization problems as (3.15)
this subsection may also serve, in its own right, as an example of how to apply the martingale
approach to a classic continuous time unrestricted optimization problem including life insurance.
First we state the result in Proposition 3.3.1. The result is also obtained, in slightly different

3The classical annuity result of Yaari (1965) proves that consuming the entire annuity income is optimal in
the absence of bequest.
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forms due to different setups and notation, by e.g. Richard (1975), Pliska and Ye (2007) and
Nielsen and Steffensen (2008).

Proposition 3.3.1. The optimal strategy for the problem (3.15) is given by the feedback forms

c∗(t) :=
X(t) + g(t)

f(t)
, (3.22)

D∗(t) :=
X(t) + g(t)

f(t)
K

1
1−γ

1 , (3.23)

θ∗(t) :=
1

1− γ

α− r

σ2
(X(t) + g(t)), (3.24)

where

g(t) :=

∫ T

t

e−
∫ s
t
(r+µ(y))dyℓ(s)ds, (3.25)

f(t) :=

∫ T

t

e−
∫ s
t
(r̃(y)+µ(y))dy

(
1 + µ(s)K

1
1−γ

1

)
ds+K

1
1−γ

2 e−
∫ T
t

(r̃(y)+µ(y))dy, (3.26)

and

r̃(t) := − γ

1− γ
r − 1

2

γ

(1− γ)2

(
α− r

σ

)2

+
1

1− γ
β(t). (3.27)

Proof. Let I : (0,∞] → [0,∞) denote the inverse of the derivative of the utility function u and
observe that by use of the concavity of u we have

u(x) ≤ u(I(z))− z(I(z)− x), ∀x ≥ 0, z > 0. (3.28)

Define the adjusted state price deflator H as

H(t) := Λ(t)e
∫ t
0
(β(s)−r)ds,

and define ξ∗ > 0 as the constant satisfying

H(ξ∗) := EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))ds

[
I(ξ∗H(t)) + µ(t)I

(
K−1

1 ξ∗H(t)
)]
dt

+ e−
∫ T
0

(r+µ(s))dsI
(
K−1

2 ξ∗H(T )
) ]

= x0 + g(0). (3.29)

Such a ξ∗ clearly exist since I is continuous and decreasing and maps (0,∞] onto [0,∞) (see e.g.
Karatzas and Shreve (1998), Chapter 3, Lemma 6.2).

Now, take an arbitrary strategy (c, θ,D) ∈ A′ with corresponding wealth process (X(t))t∈[0,T ]

as given. Using (3.28), the budget constraint (3.12) and finally (3.29) we get that

E

[∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds[u(c(t)) +K1µ(t)u(D(t))]dt+K2e

−
∫ T
0

(β(s)+µ(s))dsu(X(T ))

]

≤ E

[∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds[u(I(ξ∗H(t))) +K1µ(t)u(I(K

−1
1 ξ∗H(t)))]dt

+K2e
−

∫ T
0

(β(s)+µ(s))dsu(I(K−1
2 ξ∗H(T )))

]
.
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Since (c, θ,D) was an arbitrarily chosen feasible strategy we obtain the candidate optimal strat-
egy (c∗, θ∗, D∗) given by

c∗(t) = I(ξ∗H(t)), (3.30)

D∗(t) = I(K−1
1 ξ∗H(t)), (3.31)

X∗(T ) = I(K−1
2 ξ∗H(T )). (3.32)

We have expressed the candidate optimal investment strategy in terms of the optimal terminal
pension given by (3.32). Since (c∗, θ∗, D∗), by the definition of ξ∗, fulfills the budget constraint
(3.12) it is well known that, in a complete market, there exist an investment strategy θ∗ such
that X(T ) = X∗(T ) and (c∗, θ∗, D∗) is admissible (see e.g. Cvitanic and Karatzas (1992) or
Karatzas and Shreve (1998)). We are now going to calculate the hedging investment strategy θ∗
and to write the expressions (3.30) and (3.31) in more explicit forms.

Observing that I(x) = x−1/(1−γ) we get from (3.29) that

H(ξ∗) = E

[∫ T

0

H(t)e−
∫ t
0
(µ(s)+β(s))ds(ξ∗)

−1
1−γH(t)

−1
1−γ

(
1 + µ(t)K

1
1−γ

1

)
dt

+H(T )e−
∫ T
0

(µ(s)+β(s))dsK
1

1−γ

2 (ξ∗)
−1
1−γH(T )

−1
1−γ

]
= (ξ∗)

−1
1−γ f(0),

where we have defined

f(t) = E

[∫ T

t

e−
∫ s
t
(µ(y)+β(y))dy

(
H(s)

H(t)

) −γ
1−γ

(
1 + µ(s)K

1
1−γ

1

)
ds

+ e−
∫ T
t

(µ(y)+β(y))dyK
1

1−γ

2

(
H(T )

H(t)

) −γ
1−γ

∣∣∣∣∣ FW (t)

]
. (3.33)

Since H(ξ∗) = x0 + g(0) per definition, we get that

ξ∗ = (x0 + g(0))−(1−γ)f(0)1−γ .

Inserting this into (3.30)–(3.32) and using the budget constraint (3.12) we get the following
expressions for the candidate optimal strategy

c∗(t) =
X(t) + g(t)

f(t)
,

D∗(t) =
X(t) + g(t)

f(t)
K

1
1−γ

1 ,

X∗(T ) =
X(t) + g(t)

f(t)

(
H(T )

H(t)

) −1
1−γ

K
1

1−γ

2 ,

and we recognize (3.22) and (3.23) from Proposition 3.3.1. To calculate f note that

E

[
e−

∫ s
t
(µ(y)+β(y))dy

(
H(s)

H(t)

) −γ
1−γ

∣∣∣∣∣ FW (t)

]
= e

−
∫ s
t

(
µ(y)+ 1

1−γ β(y)− γ
1−γ r− 1

2
γ

(1−γ)2
(α−r

σ )
2
)
dy
.

(3.34)

Now combine (3.33) and (3.34) to obtain

f(t) =

∫ T

t

e−
∫ s
t
[r̃(y)+µ(y)]dy

(
1 + µ(s)K

1
1−γ

1

)
ds+K

1
1−γ

2 e−
∫ T
t

[r̃(y)+µ(y)]dy,

44



with r̃ given by (3.27), which we identify as (3.26) from Proposition 3.3.1.
From the Girsanov Theorem we have

dH(t) = H(t)

(
(β(t)− r)dt− α− r

σ
dW (t)

)
.

An application of Itô’s lemma gives that

dX∗(t) = . . . dt+ (X∗(t) + g(t))
1

1− γ

α− r

σ
dW (t). (3.35)

If we compare (3.35) with the X-dynamics of the reserve given by (3.4) we get that

θ∗(t) =
1

1− γ

α− r

σ2
(X∗(t) + g(t)),

which we recognize as (3.24).
Finally, plug in (3.22)–(3.24) into (3.4) to obtain

d(X∗(t) + g(t)) =

(
r + µ(t) +

1

1− γ

(
α− r

σ

)2

−
(
1 + µ(t)K

1
1−γ

1

)
1

f(t)

)
(X∗(t) + g(t))dt

+
1

1− γ

α− r

σ
(X∗(t) + g(t))dW (t). (3.36)

We get the solution

X∗(t) + g(t) = (x0 + g(0)) exp

{∫ t

0

r + µ(s) +
1
2 − γ

(1− γ)2

(
α− r

σ

)2

− 1 + µ(s)K
1

1−γ

1

f(s)

 ds

+
1

1− γ

α− r

σ
W (t)

}
. (3.37)

In particular, since f is bounded away from zero, ∀t ∈ [0, T ], we have that X∗(t), t ∈ [0, T ], is
well-defined, and clearly (3.9) is fulfilled. Moreover, since X∗ + g is lognormally distributed one
can easily show that

EQ

[∫ T

0

(θ∗)2dt

]
<∞,

which ensures that (3.10) is fulfilled. We conclude that the candidate optimal strategy (c∗, D∗, θ∗)
given by (3.22)–(3.24) is admissible. Since x0 and g(0) cannot both be zero we get, from (3.22),
(3.23) and (3.37), that c∗(t), D∗(t) > 0, t ∈ [0, T ], and X∗(T ) > 0, and we note that the
additional condition (3.16) is fulfilled, i.e. (c∗, θ∗, D∗) is feasible. We conclude that (c∗, θ∗, D∗)
is the optimal strategy for the unrestricted problem (3.15).

3.3.3 Comments on the unrestricted solution
The function g defined by (3.25) is referred to as the actuarial present value of future labor
income. It is actuarial practice to define the reserve as a conditional expected present value of
future payments. Isolating X in (3.11) leaves us with such an expression for the reserve. We
get, ∀t ∈ [0, T ],

X(t) = EQ

[∫ T

t

e−
∫ s
t
(r+µ(y))dy(c(s)− ℓ(s) + µ(s)D(s))ds+ e−

∫ T
t

(r+µ(y))dyX(T )

∣∣∣∣∣ FW (t)

]
.
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We call the sum of the reserve and the actuarial present value of future labor income, given by
(3.37), the total reserve. By (3.24) we have that the optimal amount invested in the stock is,
comparable to Merton (1971), proportional to the total reserve and to the Sharpe ratio of the
market, and dependent on the policyholder’s risk aversion. The optimal consumption rate and
the optimal life insurance strategy, given by (3.22) and (3.23), equals the total reserve divided
by the deterministic function f given by (3.26), and for the optimal life insurance, multiplied
by the weight factor K1/(1−γ)

1 . The function f can be interpreted as a subjective value of
a unit consumption rate until terminal time T or time of death, whatever occurs first, plus a
subjective actuarial present value of an endowment insurance paying K1/(1−γ)

1 upon death before
time T and K

1/(1−γ)
2 upon survival until time T . The value of f is subjective since the time

dependent function r̃ given by (3.27), used for discounting in the expression of f , depends on
the policyholder’s risk aversion and time preferences. Naturally, we conclude that the optimal
consumption strategy is decreasing in K1 and K2. That is, a policyholder to whom bequest
and/or terminal pension are more important will optimally consume less. We also observe, that
a more impatient policyholder, i.e. a policyholder with a greater time preference parameter β,
optimally consumes more and buys more life insurance than a less patient policyholder. The
optimal consumption and life insurance strategy depends in a much more complex way on the
risk aversion parameter γ. By use of (3.36) we get, as also obtained in Steffensen and Kraft
(2008), that, ∀t ∈ [0, T ],

dc∗(t) =
d(X∗(t) + g(t))

f(t)
− X∗(t) + g(t)

f(t)2
f ′(t)dt

=

(
r − β(t) +

(
α−r
σ

)2
1− γ

+
1

2

γ

(1− γ)2

(
α− r

σ

)2
)
c∗(t)dt+

1

1− γ

α− r

σ
c∗(t)dW (t).

We get, ∀t ∈ [0, T ], the solutions

c∗(t) = c∗(0) exp

{∫ t

0

(
r − β(s) + 1

2

(
α−r
σ

)2
1− γ

)
ds+

1

1− γ

α− r

σ
W (t)

}
,

D∗(t) = D∗(0) exp

{∫ t

0

(
r − β(s) + 1

2

(
α−r
σ

)2
1− γ

)
ds+

1

1− γ

α− r

σ
W (t)

}
.

Note that c∗(t) and D∗(t) do not depend on µ(t). The optimal consumption and life insurance
strategy depend only on µ through f(0) and g(0) (through c∗(0) and D∗(0)), i.e. on the overall
level of µ. Further discussions of the qualitative behavior of the optimal controls are found in
Pliska and Ye (2007).

3.4 The restricted pension problem
From (3.37) we have for the unrestricted optimal solution that

X∗(t) > −g(t), ∀t ∈ [0, T ],

where g(t) is the time-t actuarial value of future labor income given by (3.25). Allowing for a
negative reserve is in conflict with the usual constraint in life insurance that the reserve should
be non-negative at any time. This should be the case since, in practice, at any time the pol-
icyholder holds the right to stop paying pension contributions. We say that the policyholder
holds the right to surrender. This serves to separate, institutionally, the pension business from
the lending business. For further discussion of this issue see the Introduction, Section 3.1. As
pointed out by Nielsen and Steffensen (2008), solving the unrestricted pension problem (3.15)
we assume that the policyholder sticks to the pension contribution plan stipulated in the policy.
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The interpretation is that in the unrestricted pension problem given by (3.15) the policyholder
decides initially on a consumption strategy, together with a life insurance strategy and an in-
vestment strategy, and is thereafter obligated to follow that specific strategy, i.e. he does not
hold the right to surrender at any time.

The purpose of this paper is to find the optimal consumption, investment and life insurance
strategy when the reserve is restricted to fulfill a capital guarantee at any point in time. As
discussed, a capital guarantee of size zero is simply motivated by the policyholder’s right to
surrender at any time during the saving period. Often pension companies offer a minimum
constant rate guarantee to the policyholders. In fact, such a guarantee is often found to be
mandatory in compulsory (employer) pension schemes. In that case, the pension company
guarantees a minimum rate of return on all pension contributions. Of course, no pension company
can guarantee a constant minimum rate of return larger than the risk free short rate plus the
objective mortality rate4 since such a guarantee cannot be fulfilled with certainty. To cover a
hole class of capital guarantee problems, including the two cases discussed, we allow the capital
guarantee restriction to depend on the past in a very general way. Note that since future pension
contributions may be stochastic, the future capital guarantee may becomes stochastic. For a
comprehensive discussion and motivation of the problem see the Introduction, Section 3.1. More
specific, consider the problem given by the indirect utility function

sup
(c,θ,D)∈A′

E

[∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

(
u(c(t)) +K1µ(t)u(D(t))

)
dt+K2e

−
∫ T
0

(β(s)+µ(s))dsu(X(T ))

]
,

(3.38)

under the capital guarantee restriction

X(t) ≥ k(t, Z(t)), ∀t ∈ [0, T ], (3.39)

where Z(t) :=
∫ t

0
h(s,X(s))ds, and k and h are deterministic functions. The two guarantees

discussed above are covered by

k(t, z) = 0, (3.40)

and

k(t, z) = x0e
∫ t
0 (r

(g)+µ(s))ds + e
∫ t
0 (r

(g)+µ(s))dsz, (3.41)

with h(s, x) = e−
∫ s
0 (r

(g)+µ(y))dy (ℓ(s)− c(s, x)− µ(s)D(s, x)), where r(g) ≤ r is the minimum
rate of return guarantee excess of the objective mortality rate µ. Note that we in the expression
of h have indicated the possible x dependence in the consumption and life insurance strategy.
We can write (3.41) as

k(t, Z(t)) = x0e
∫ t
0 (r

(g)+µ(y))dy +

∫ t

0

e
∫ t
s (r

(g)+µ(y))dy [ℓ(s)− c(s)− µ(s)D(s)] ds. (3.42)

To clarify things, one could preferably compare (3.42) with the retrospective reserve expression
given by (3.5).

The solution to the restricted capital guarantee problem given by (3.38) and (3.39) turns out
to be of the Option Based Portfolio Insurance (OBPI) form. OBPI strategies are also obtained
in El-Karoui et al. (2005) and Kronborg (2011), and for a European capital constraint in Teplá
(2001). The big differences, compared to El-Karoui et al. (2005) and Kronborg (2011), are the

4Remember that the mortality rate is given by a deterministic function, i.e. the pension company has no risk
concerning life times.
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introduction of life insurance and the possible stochastic capital guarantee restriction. In addi-
tion, El-Karoui et al. (2005) does not include consumption and labor income. Combining classic
results from the American option theory in a Black-Scholes market and the OBPI construction
technique we are able to solve the restricted optimization problem given by (3.38) and (3.39).

Before we present the results we need some notation: Still, denote by X∗, c∗, θ∗ and D∗

the optimal unrestricted reserve and the unrestricted optimal consumption, investment and life
insurance strategy derived in Subsection 3.3.2, respectively. Let Y ∗(t) := X∗(t) + g(t) denote
the optimal unrestricted total reserve. By (3.36) and (3.7) we have that

dY ∗(t) =

(
r + µ(t)−

(
1 + µ(t)K

1
1−γ

1

)
1

f(t)

)
Y ∗(t)dt+

1

1− γ

α− r

σ
Y ∗(t)dWQ(t), t ∈ (0, T ),

(3.43)

Y ∗(0) = y0,

where y0 := x0 + g(0). Denote by P a
y,z(t, T, k + g) the time-t value of an American put option

with strike price k(s, Z(s)) + g(s),∀s ∈ [t, T ], where Z(t) = z, and maturity T written on a
portfolio Y , where Y is the solution to (3.43) which equals y at time t. By definition the price
of such a put option is given, ∀t ∈ [0, T ], by

P a
y,z(t, T, k + g) := sup

τ∈Tt,T

EQ
[
e−

∫ τ
t
(r+µ(s))ds(k(τ, Z(τ)) + g(τ)− Y (τ))+

∣∣∣ Y (t) = y, Z(t) = z
]
,

where Tt,T is the set of stopping times taking values in the interval [t, T ].

Theorem 3.4.1. Consider the strategy
(
ĉ, θ, D̂

)
given by, ∀t ∈ [0, T ],

ĉ(t) := λ(t, Z(t))c∗(t) =
λ(t, Z(t))Y ∗(t)

f(t)
, (3.44)

D̂(t) := λ(t, Z(t))D∗(t) =
λ(t, Z(t))Y ∗(t)

f(t)
K

1
1−γ

1 , (3.45)

θ(t) := λ(t, Z(t))θ∗(t) =
1

1− γ

α− r

σ2
λ(t, Z(t))Y ∗(t), (3.46)

combined with a position in an American put option written on the portfolio (λ(t)Y ∗(t))s∈[t,T ]

with strike price k(s, Z(s)) + g(s),∀s ∈ [t, T ], and maturity T . Here λ is the increasing function
defined by

λ(t, Z(t)) = λ(0, z0) ∨ sup
s≤t

(
b(s, Z(s))

Y ∗(s)

)
, (3.47)

with λ(0, z0) determined by

λ(0, z0)(x0 + g(0)) + P a
λ(0,z0)y0,z0

(0, T, k + g)− g(0) = x0, (3.48)

and b being the optimal exercise boundary for the American put option given by

b(t, z) := sup
{
y : P a

y,z(t, T, k + g) = (k(t, z) + g(t)− y)+
}
. (3.49)

We have that

• The strategy is optimal for the restricted capital guarantee problem given by (3.38) and
(3.39).
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Remark 3.4.1. By (3.37) the optimal unrestricted total reserve, Y ∗, is proportional to the
initial total reserve y0. Recall also that the optimal unrestricted consumption, life insurance
and investment strategy, given by (3.22)–(3.24), are proportional to the total reserve. It should
then be clear that starting out with reduced initial total reserve equal to λ(0, z0)(x0 + g(0))

and following the strategy (ĉ, θ, D̂) given by (3.44)–(3.49) results in a total reserve equal to
λ(t, Z(t))Y ∗(t),∀t ∈ [0, T ]. In total we get that the optimal restricted reserve becomes

X̂(λ)(t) := λ(t, Z(t))Y ∗(t) + P a
λY ∗,Z(t, T, k + g)− g(t), t ∈ [0, T ], (3.50)

i.e. the optimal restricted reserve consists of a portfolio, an insurance on that portfolio and a
loan equal to the actuarial value of future labor income.

Remark 3.4.2. The specific American put option is likely not to be sold in the market, but
since the market is complete and frictionless such options can be replicated dynamically by a
Delta-hedge, i.e. the optimal investment strategy can be written as

θ̂(t) =

(
1 +

∂

∂y
P a
λY ∗,Z(t, T, k + g)

)
θ. (3.51)

Since the put option has an opposite exposure to changes in the underlying portfolio
(λ(t)Y ∗(t))t∈[0,T ] we note that the total amount of money to invest in the risky asset, S, becomes
smaller when we introduce an American capital guarantee to the control problem (3.15). One
should notice, that at the boundary no risk is taken, i.e. the position in the American put option
offsets the position in the underlying portfolio such that the total exposure to changes in the
risky asset, S, becomes zero. Clearly, at the boundary it is optimal to consume a certain time-
dependent part of the labor income, thereby leaving room for a risky position in S immediately
after hitting the capital boundary.

Proof of Theorem 3.4.1. First, one should check that the strategy defined by Theorem 3.4.1
fulfills the capital guarantee restriction given by (3.39). Using that the value of an American
put option is always greater than or equal to its inner value this is easily done. We get

X̂(λ)(t) := λ(t, Z(t))Y ∗(t) + P a
λY ∗,Z(t, T, k + g)− g(t)

≥ λ(t, Z(t))Y ∗(t) + [k(t, Z(t)) + g(t)− λ(t, Z(t))Y ∗(t)]+ − g(t)

≥ k(t, Z(t)), (3.52)

Second, one should check that the strategy defined by Theorem 3.4.1 is admissible. It turns
out that the rather complex strategy

(
ĉ, D̂, X̂(λ)

)
involving the stochastic increasing function λ

is the natural way to make the OBPI admissible. The heuristic argument is as follows. Consider
the strategy

(
ĉ, D̂,X(λ)

)
where λ(t, Z(t)) = λ0,∀t ∈ [0, T ], i.e. where we do not adjust λ. By

(3.52) such a strategy clearly fulfills the capital guarantee restriction. The strategy corresponds
to, in addition to follow the consumption, life insurance and investment strategy given by (3.44)–
(3.46), to hold the initially bought American put option to maturity. In some scenarios this is to
throw away money since the American put option is not sold when it is optimal to do so, i.e. the
strategy is not admissible (self-financing). The complicated strategy defined in Theorem 3.4.1
is exactly designed to avoid this. The function λ defined by (3.47) and (3.48) corresponds
to selling the American put option and re-balancing the strategy whenever optimal to do so.
For a comprehensive explanation of the nature of the OBPI strategies see Kronborg (2011). A
rigorous proof showing that the strategy in Theorem 3.4.1 is admissible is given in Appendix 3.6.

To prove the optimality of the strategy given in Theorem 3.4.1 we consider an arbitrar-
ily chosen feasible strategy (c, θ,D) with corresponding reserve process (X(t)t∈[0,T ]) satisfying
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X(0) = x0 and X(t) ≥ k(t, Z(t)),∀t ∈ [0, T ]. Since u is a concave function we get that∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds [u(c(t)) +K1µ(t)u(D(t))] dt+K2e

−
∫ T
0

(β(s)+µ(s))dsu(X(T ))

−

(∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

[
u(ĉ(t)) +K1µ(t)u

(
D̂(t)

)]
dt+K2e

−
∫ T
0

(β(s)+µ(s))dsu
(
X̂(λ)(T )

))

=

∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

[
u(c(t))− u(ĉ(t)) +K1µ(t)

(
u(D(t))− u

(
D̂(t)

))]
dt

+K2e
−

∫ T
0

(β(s)+µ(s))ds
(
u(X(T ))− u

(
X̂(λ)(T )

))
≤
∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

[
u′(ĉ(t))(c(t)− ĉ(t)) +K1µ(t)u

′
(
D̂(t)

)(
D(t)− D̂(t)

)]
dt

+K2e
−

∫ T
0

(β(s)+µ(s))dsu′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
=: (∗). (3.53)

Since (c, θ,D) was arbitrarily chosen we simply end the proof by showing that E[(∗)] ≤ 0. By
the CRRA property u′(xy) = u′(x)u′(y) we have

u′(ĉ(t))(c(t)− ĉ(t)) = u′(λ(t, Z(t)))u′(c∗(t))(c(t)− ĉ(t)), (3.54)

u′
(
D̂(t)

)(
D(t)− D̂(t)

)
= u′(λ(t, Z(t)))u′(D∗(t))

(
D(t)− D̂(t)

)
. (3.55)

Observe that since Y ∗(T ) = X∗(T ) the value of the terminal capital pension becomes

X̂(λ)(T ) = λ(T,Z(T ))X∗(T ) + [k(T,Z(T ))− λ(T,Z(T ))X∗(T )]+

= max[λ(T,Z(T ))X∗(T ), k(T,Z(T ))]. (3.56)

By use of (3.56) and using that u′ is a decreasing function we get that

u′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
= min[u′(λ(T,Z(T )))u′(X∗(T )), u′(k(T,Z(T )))]

(
X(T )− X̂(λ)(T )

)
= u′(λ(T,Z(T )))u′(X∗(T ))

(
X(T )− X̂(λ)(T )

)
− [u′(λ(T,Z(T )))u′(X∗(T ))− u′(k(T ), Z(T ))]+ (X(T )− k(T,Z(T ))) ,

where the last equality is established by using that X̂(λ)(T ) = k(T,Z(T )) on the set
{(T, ω) : u′(λ(T,Z(T ))X∗(T )) ≥ u′(k(T,Z(T )))}. Since by assumption X(t) ≥ k(t, Z(t)),∀t ∈
[0, T ], we conclude that

u′
(
X̂(λ)(T )

)(
X(T )− X̂(λ)(T )

)
≤ u′(λ(T,Z(T )))u′(X∗(T ))

(
X(T )− X̂(λ)(T )

)
. (3.57)
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Now insert (3.54), (3.55) and (3.57) and then (3.30)–(3.32) into (3.53) to get

E[(∗)] ≤ E

[∫ T

0

e−
∫ t
0
(β(s)+µ(s))ds

[
u′(λ(t, Z(t)))u′(c∗(t)) (c(t)− ĉ(t))

+K1µ(t)u
′(λ(t, Z(t)))u′(D∗(t))

(
D(t)− D̂(t)

) ]
dt

+K2e
−

∫ T
0

(β(s)+µ(s))dsu′(λ(T,Z(T )))u′(X∗(T ))
(
X(T )− X̂(λ)(T )

)]

= ξ∗EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))dsu′(λ(t, Z(t)))

(
(c(t)− ĉ(t)) + µ(t)

(
D(t)− D̂(t)

))
dt

+ e−
∫ T
0

(r+µ(s))dsu′(λ(T,Z(T )))
(
X(T )− X̂(λ)(T )

)]
.

Since u′(λ(t, Z(t))) is a decreasing function5 we can use the integration by parts formula to get

E[(∗)] ≤ ξ∗

(
EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))dsu′(λ(t, Z(t)))

(
(c(t)− ĉ(t)) + µ(t)

(
D(t)− D̂(t)

))
dt︸ ︷︷ ︸

(⋆)

+

∫ T

0

u′(λ(t, Z(t)))d
(
e−

∫ t
0
(r+µ(s))ds

(
X(t)− X̂(λ)(t)

))
︸ ︷︷ ︸

(⋆⋆)

]

+ EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))ds

(
X(t)− X̂(λ)(t)

)
du′(λ(t, Z(t)))︸ ︷︷ ︸

(⋆⋆⋆)

])
. (3.58)

The third term in (3.58) can be rewritten as

EQ[(⋆ ⋆ ⋆)] = EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))ds(X(t)− k(t, Z(t)))du′(λ(t, Z(t)))

]

+ EQ

[∫ T

0

e−
∫ t
0
(r+µ(s))ds

(
k(t, Z(t))− X̂(λ)(t)

)
du′(λ(t, Z(t)))

]
.

The first term is non-positive since per definitionX(t) ≥ k(t, Z(t)),∀t ∈ [0, T ], and du′(λ(t, Z(t))) ≤
0,∀t ∈ [0, T ] (u′ is decreasing and λ is increasing). The second term equals zero since du′(λ(t, Z(t))) ̸=
0 only on the set {(t, ω) : X̂(λ)(t) = k(t, Z(t))}. We conclude that EQ[(⋆ ⋆ ⋆)] ≤ 0. The two first
terms of (3.58) can be rewritten as

EQ[(⋆) + (⋆⋆)] = EQ

[∫ T

0

u′(λ(t, Z(t)))dM1(t)

]
− EQ

[∫ T

0

u′(λ(t, Z(t)))dM2(t)

]
, (3.59)

where

M1(t) :=

∫ t

0

e−
∫ s
0
(r+µ(y))dy(c(s) + µ(s)D(s)− ℓ(s))ds+ e−

∫ t
0
(r+µ(y))dyX(t),

M2(t) :=

∫ t

0

e−
∫ s
0
(r+µ(y))dy

(
ĉ(s) + µ(s)D̂(s)− ℓ(s)

)
ds+ e−

∫ t
0
(r+µ(y))dyX̂(λ)(t).

5This ensures the that the stochastic integral in (3.58) is well-defined.
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Since both strategies are admissible we have by (3.13) that M1 and M2 are martingales under
the equivalent measure Q. Since u′(λ(t, Z(t))) ≤ u′(λ(0, z0),∀t ∈ [0, T ], we get that

EQ[(⋆) + (⋆⋆)] = 0.

Finally, we can conclude that

E[(∗)] = EQ[(⋆) + (⋆⋆)] + EQ[(⋆ ⋆ ⋆)] ≤ 0.

3.4.1 Numerical illustrations
In this subsection we illustrate the optimal strategy presented in Theorem 3.4.1 for the case of a
minimum rate of return guarantee given by (3.42) with r(g) = 1

2r. The parameter values used for
the simulations are, for the Black-Scholes market, r = 0.01885, α = 0.05885 and σ = 0.2. The
rather low risk free short rate and expected stock rate return should be interpreted as inflation
adjusted parameters (subtracted 2.115 percent which is the average inflation in Denmark over
the last 20 years). Adjusting for inflation allow us to directly compare the size of the terminal
pension with past reserve values and labor income. The personal preference towards risk is set to
γ = −4 which is in accordance with the popular choice to have 20 percent of the reserve invested
in stocks after retirement (we have 1

1−γ
α−r
σ2 = 0.2). The time preference is set to the natural

value β = r, but one could of cause equally well had chosen the time preference parameter to be
smaller or greater than the risk free short rate. However, it seems natural to have β ≥ r since this
assures that one cannot, in a risk free way, obtain a greater amount of utility by simply investing
in the risk free short rate and then consume at a later point in time. Finally, we have chosen to
model the uncertain life time by a Gompertz-Makeham hazard rate, u(x) = exp((x −m)/b)/b,
with modal value and scale parameter as in Milevsky and Young (2007); (m, b) = (88.18, 10.5).

The individual we consider has just turned 50 years old, has a reserve of size 200000 euro
and a constant future labor income of ℓ(t) = 30000, t ∈ [50, T ], with terminal time T = 65.
The weight factor K2 in (3.38) is calculated by use of (3.21), but since it seems natural that the
reserve will also be invested after retirement we have chosen to use r̄ = 0.2α + 0.8r = 0.02685
(since 1

1−γ
α−r
σ2 = 0.2) for discounting in the expression of a(T ). The weight factor K1 in (3.38)

is set to K1 =
∫ 10

0
e−

∫ t+x
t

β(y)dydx
(
b
(10)
)−γ

with b
(10)

=
∫ 10

0
e−

∫ s
0
rdyds. One can realize that

this is in accordance with the standard Danish choice of a 10 years period certain pension to the
inheritor starting at the time of death (if death occurs before terminal time T ).

The remaining 15 years of optimization has been discretizied equidistantly into quarterly
time points, i.e. into 60 time points. By this we mean that the guarantee is only valid quarterly
and the American put option has been evaluated as a Bermuda put option with quarterly ex-
ercise dates. Likewise, λ and therefore the optimal consumption, investment and life insurance
strategy has only been changed quarterly. Saying that, it is important to stress that between
the quarterly time points, consumption, investments and bequest have been re-balanced contin-
uously6.

It seems natural to compare the restricted solution with the unrestricted counterpart. Fig-
ure 3.1 illustrates how the restricted optimal reserve always is greater or equal to the guarantee
while the unrestricted reserve sometimes is greater and sometimes smaller than the ’fictive’ guar-
antee7. In fact we conclude that ignoring a guarantee requirement, and behaving optimal from
the no guarantee point of view, will very likely result in a reserve smaller than the guarantee.

6We have used (3.37).
7To be clear, there is of cause no guarantee belonging to the unrestricted reserve, but we can calculate the

guarantee anyway and then compare the unrestricted reserve with the guarantee.
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Note that the restricted strategy can, for certain outcomes, outperform the unrestricted strat-
egy both in terms of accumulated utility and terminal pension. In fact we have a 24 percent
probability that the restricted investor will obtain more utility over the interval of optimization
than the unrestricted investor.

50 55 60 65

15
00

00
20

00
00

25
00

00
30

00
00

35
00

00
40

00
00

45
00

00

Age

Re
se

rve

50 55 60 65

15
00

00
20

00
00

25
00

00
30

00
00

35
00

00
40

00
00

45
00

00

Age

Re
se

rve

50 55 60 65

15
00

00
20

00
00

25
00

00
30

00
00

35
00

00
40

00
00

45
00

00

Age

Re
se

rve

50 55 60 65

15
00

00
20

00
00

25
00

00
30

00
00

35
00

00
40

00
00

45
00

00

Age

Re
se

rve

50 55 60 65

15
00

00
20

00
00

25
00

00
30

00
00

35
00

00
40

00
00

45
00

00

Age

Re
se

rve

50 55 60 65

15
00

00
20

00
00

25
00

00
30

00
00

35
00

00
40

00
00

45
00

00

Age

Re
se

rve

Figure 3.1: The restricted reserve (solid curves) and the unrestricted reserve (dashed curves)
together with the corresponding guarantee (solid smooth curves) and fictive guarantee (dashed
smooth curves), respectively. The lower right plot indicates the average scenario.

In Table 3.1 we see that the restricted optimal terminal pension has a slightly smaller me-
dian than the unrestricted one, but at the same time the restricted terminal pension has a much
more narrow distribution. We also see that the pension saver with the minimum rate of re-
turn guarantee will, in contrast to the one without, more or less avoid ending up with a very
small terminal pension. We want to stress that one cannot use Table 3.1 to compare the perfor-
mances of two strategies since money spent before the terminal time T is not taking into account.

The actuarial value of future labor income is g(50) = 380387 euro leaving the 50 years old
investor with a total reserve of size Y (50) = 580387. By simulation we calculate λ(50) = 0.9041
meaning that initially about 90 percent of the total reserve is invested in the optimal unrestricted
portfolio and the remaining 10 percent is used to buy the American put option as an insurance
against downfalls in the portfolio. Figure 3.2 shows how lambda increases at the time points
where the insurance is in use (where it is optimal to sell the put option and re-calibrate the
OBPI strategy accordingly to the new lambda value).
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Fractal 0.001% 0.01% 2.5% 25% median 75% 97.5% 99.99 % 99.999%
Restricted 10.21 10.58 11.33 12.18 13.12 14.30 17.08 22.03 23.60
Unrestricted 6.10 7.53 10.02 12.22 13.57 15.09 18.39 24.09 25.91

Table 3.1: Reserve at retirement expressed in numbers of yearly labor income (the terminal
reserve divided by the labor income rate). Chosen fractals for both the restricted and unrestricted
case are presented.
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Figure 3.2: The lambda process corresponding to the reserve processes from Figure 3.1.

The optimal investment strategy is given by (3.51) and (3.46). Figure 3.3 shows the optimal
fraction of the total reserve invested in stocks. The main observation to do is to note how
wide the 95 percent confidence interval is. Even in the case of very big investment returns it
takes about seven years (about half the optimization interval) before the insurance part becomes
negligible and the restricted investor starts to invest (almost) as aggressively as the unrestricted
investor. In the case of very low investment returns we see that the restricted investor gets
stocked with the guarantee and cannot afford to take very much risk.
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Figure 3.3: The restricted investment strategy presented as the fraction of the total reserve
invested in stocks. The average scenario (solid curve) as well as the 95 percent confidence
interval (dotted curves) are indicated together with the unrestricted case (π = 0.2).

At last we have in Figure 3.4 illustrated the optimal life insurance and pension contributions
as a fraction of the reserve and labor income, respectively. We see that at the age 50-55 the
investor stops protecting parts of his future labor income and buys annuities instead. One
should note how narrow the 95 percent confidence interval is in the restricted case compared
to the unrestricted case. We also see that the restricted investor saves more money than the
unrestricted investor. In other words: The introduction of a minimum rate of return guarantee
seems to imply bigger pensions contributions. This is somehow surprising from a logical point
of view but this is simply a consequence of the OBPI strategy.
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Figure 3.4: Left window: The restricted (solid curves) and unrestricted (dashed curves) life
insurance strategy presented, for the average scenario, as the fraction of the reserve to be payed
out upon death. The 95 percent confidence intervals are indicated. Right window: The restricted
(solid curve) and unrestricted (dashed curve) pension contribution strategy presented, for the
average scenario, as a fraction of the labor income rate. The 95 percent confidence intervals are
indicated.

3.5 Conclusion
This paper solves the classic consumption, investment and life insurance control problem in
the present of an American capital guarantee. Pension saving products often come with a
minimum rate of return guarantee, which seems to be quiet a popular feature. Therefore the main
focus, and the entire numerical section, has been on the solution for this specific type of capital
guarantee. By use of cleaver chosen weight factors concerning the utility from consumption vs
bequest and consumption vs pension the problem seems to be rather close to the real life question
of how to save for retirement. The solution is an option based portfolio insurance (OBPI) strategy
which is well know from the portfolio selection literature. However, to the authors knowledge
this paper applies for the first time the OBPI approach to the saving for retirement problem. The
encouraging realization offered by this paper is that the OBPI approach can handle the inclusion
of a life insurance market as well as the introduction of a non-deterministic American guarantee,
thereby allowing the capital guarantee to depend upon the size of the pension contributions.
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3.6 Appendix
Proof of admissibility. To prove that the strategy in Theorem 3.4.1 is admissible we first recall
some basis properties of an American put option in a Black-Scholes market (see e.g. Karatzas
and Shreve (1998)). We have

P a
y,z(t, T, k + g) = k(t, z) + g(t)− y, ∀(t, y, z) ∈ Cc,

LP a
y,z(t, T, k + g) = (r + µ(t))P a

y,z(t, T, k + g), ∀(t, y, z) ∈ C,
∂

∂y
P a
y,z(t, T, k + g) = −1, ∀(t, y, z) ∈ Cc,

where (see (3.43))

L :=
∂

∂t
+

(
r + µ−

(
1 + µ(t)K

1
1−γ

1

)
1

f(t)

)
y
∂

∂y
+ h

∂

∂z
+

1

2

(
1

1− γ

α− r

σ
y

)2
∂2

∂y2
,

and
C := {(t, y, z) : P a

y,z(t, T, k + g) > (k(t, z) + g(t)− y)+},

defines the continuation region. By Cc we mean the complementary of C, i.e. the stopping region.
The continuation region can be described via the exercise boundary b given by (3.49). We get

C = {(t, y, z) : y > b(t, z)} .

Introducing the function A by

A(t, y, z) := y + P a
y,z(t, T, k + g)− g(t),

we can write (3.50) as
X(λ)(t) = A(t, λ(t, Z(t))Y ∗(t), Z(t)).

From the properties of P a
y,z(t, T, k + g) we deduce that

A(t, y, z) = k(t, z), ∀(t, y, z) ∈ Cc,

LA(t, y, z) =
(
r + µ−

(
1 + µ(t)K

1
1−γ

1

)
1

f(t)

)
y + (r + µ(t))P a

y,z(t, T, k + g)

− (−ℓ(t) + (r + µ(t))g(t))

= (r + µ(t))A(t, y, z) + ℓ(t)−
(
1 + µ(t)K

1
1−γ

1

)
y

f(t)
, ∀(t, y, z) ∈ C,

(3.60)

LA(t, y, z) = ∂

∂t
k(t, z) + h(t, z)

∂

∂z
k(t, z), ∀(t, y, z) ∈ Cc,

(3.61)
∂

∂y
A(t, y, z) = 0. ∀(t, y, z) ∈ Cc.

(3.62)

Observe that since Y ∗(t) is linear in its initial value, ∀t ∈ [0, T ], we have for a constant λ
that λY ∗(t) has the same dynamics as Y ∗(t), ∀t ∈ [0, T ]. We now get by use of Itô’s formula,
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(3.60)–(3.61), (3.22)–(3.24), and the fact that λ increases only at the boundary, that8

dA(t, λ(t, Z(t))Y ∗(t), Z(t))

= [dA(t, λY ∗(t), Z(t))]|λ=λ(t,Z(t)) + Y ∗(t)
∂

∂y
A(t, λ(t, Z(t))Y ∗(t), Z(t))dλ(t, Z(t))

= λ(t, Z(t))
∂

∂y
A(t, λ(t, Z(t))Y ∗(t), Z(t))σθ∗(t)dWQ(t)

+
[
(r + µ(t))A(t, λ(t, Z(t))Y ∗(t), Z(t))

+ ℓ(t)− λ(t, Z(t))c∗(t)− µ(t)λ(t, Z(t))D(t)∗
]
1(λ(t,Z(t))Y ∗(t)>b(t,Z(t)))dt

+

[
∂

∂t
k(t, Z(t)) + h(t, Z(t))

∂

∂z
k(t, Z(t))

]
1(λ(t,Z(t))Y ∗(t)≤b(t,Z(t)))dt

+ Y ∗(t)
∂

∂y
A(t, λ(t, Z(t))Y ∗(t), Z(t))1(

λ(t,Z(t))Y ∗(t)=b(t,Z(t))
)dλ(t, Z(t)).

Since by (3.62) ∂
∂yA(t, λ(t)Y

∗(t), Z(t)) = 0 on the set {(t, ω) : λ(t, Z(t))Y ∗(t) = b(t, Z(t))} this
reduces to

dA(t, λ(t, Z(t))Y ∗(t), Z(t))

= λ(t, Z(t))
∂

∂y
A(t, λ(t, Z(t))Y ∗(t), Z(t))σθ∗(t)dWQ(t)

+ [(r + µ(t))A(t, λ(t, Z(t))Y ∗(t), Z(t)) + ℓ(t)− λ(t, Z(t))c∗(t)− µ(t)λ(t, Z(t))D(t)∗] dt

+

[
∂

∂t
k(t, Z(t)) + h(t, Z(t))

∂

∂z
k(t, Z(t))

− [(r + µ(t))k(t, Z(t)) + ℓ(t)− λ(t, Z(t))c∗(t)− µ(t)λ(t, Z(t))D(t)∗]

]
1(λ(t,Z(t))Y ∗(t)≤b(t,Z(t)))dt.

Finally, since {(t, ω) : λ(t, Z(t))Y ∗(t) ≤ b(t, Z(t))} =
{
(t, ω) : λ(t, Z(t)) = b(t,Z(t))

Y ∗(t)

}
has a zero

dt⊗ dP -measure we conclude that

dA(t, λ(t, Z(t))Y ∗(t), Z(t))

= [(r + µ(t))A(t, λ(t, Z(t))Y ∗(t), Z(t)) + ℓ(t)− λ(t, Z(t))c∗(t)− µ(t)λ(t, Z(t))D(t)∗] dt

+ λ(t, Z(t))
∂

∂y
A(t, λ(t, Z(t))Y ∗(t), Z(t))σθ∗(t)dWQ(t),

i.e. by (3.14) the strategy is admissible.

8 ∂
∂y

now means differentiating w.r.t. the second variable.
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4. Inconsistent investment and
consumption problems

Abstract: In a traditional Black-Scholes market we develop a verification theo-
rem for a general class of investment and consumption problems where the standard
dynamic programming principle does not hold. The theorem is an extension of the
standard Hamilton-Jacobi-Bellman equation in the form of a system of non-linear dif-
ferential equations. We derive the optimal investment and consumption strategy for a
mean-variance investor without pre-commitment endowed with labor income. In the
case of constant risk aversion it turns out that the optimal amount of money to invest
in stocks is independent of wealth. The optimal consumption strategy is given as a
deterministic bang-bang strategy. In order to have a more realistic model we allow
the risk aversion to be time and state dependent. Of special interest is the case were
the risk aversion is inversely proportional to present wealth plus the financial value
of future labor income net of consumption. Using the verification theorem we give a
detailed analysis of this problem. It turns out that the optimal amount of money to
invest in stocks is given by a linear function of wealth plus the financial value of future
labor income net of consumption. The optimal consumption strategy is again given
as a deterministic bang-bang strategy. We also calculate, for a general time and state
dependent risk aversion function, the optimal investment and consumption strategy
for a mean-standard deviation investor without pre-commitment. In that case, it turns
out that it is optimal to take no risk at all.

Keywords: Investment costs, risk aversion, stochastic control, indifferent compen-
sation measure, certainty equivalents.

4.1 Introduction
The dynamic asset allocation problem for a portfolio investor searching to maximize the mean-
variance objective

Et,x [X
π(T )]− γ

2
V art,x [X

π(T )] , (4.1)

for a constant γ, has in recent years been subject to numerous studies. The problem is non-
standard in the sense that it cannot be formalized as a standard stochastic control problem,

sup
u
Et,x

[∫ T

t

C(s,Xu(s), u(s))ds+ ϕ(Xu(T ))

]
, (4.2)

for some functions C and ϕ. Therefore, the traditional dynamic programming approach does not
apply directly. This is due to the lack of the iterated expectation property, and, consequently, we
refer to such problems as time inconsistent. For every time inconsistent control problem we can
fix an initial point and then solve the problem. The corresponding optimal control will at a later
fixed point in time then not be optimal. We refer to this solution as the optimal pre-commitment
control (for the mean-variance case see Korn (1997a) and Zhou and Li (2000)). The first to solve
the problem (4.1) without pre-commitment were Basak and Chabakauri (2010). They present the
problem in a quite general incomplete Wiener driven framework and by applying a so called total
variance formula they obtain an extension of the classical Hamilton-Jacobi-Bellman equation for
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solving the problem. Björk and Murgoci (2009) extend the class of standard solvable problems
(4.2) to the class of objectives

Et,x

[∫ T

t

C(x, s,Xu(s), u(s))ds+ ϕ(x,Xu(T ))

]
+G

(
x,Et,x [X

u(T )]
)
, (4.3)

for some function G. They work in a general Markovian financial market having the results of
Basak and Chabakauri (2010) as a special case. In (4.3) time inconsistency enters at two points:
First, the present state x appears in C, ϕ and G, and second, the function G is allowed to be
non-linear in the conditional expectation. Another work having Basak and Chabakauri (2010) as
a special case is Kryger and Steffensen (2010). They analyze, in a classic Black-Scholes market,
the class of problems given by the objectives

f (t, x, Et,x [ϕ1(X
π(T ))] , . . . , E [ϕn(X

π(T ))]) , (4.4)

where f is allowed to be a non-affine function of the expectation of the ϕ functions. One special
example of interest only contained in (4.4) is the dynamic asset allocation problem for a portfo-
lio investor with mean-standard deviation criteria. Kryger and Steffensen (2010) show that the
optimal strategy derived for a mean-standard deviation investor without pre-commitment is to
take no risk at all. The latest contribution to the literature treating mean-variance optimization
problems without pre-commitment comes from Björk et al. (2012). They argue that the somehow
unsatisfactory solution to (4.1), saying that the optimal amount to invest in stocks is constant,
is due to the fact that the risk aversion parameter γ is constant. They solve the problem (4.1)
for a general risk aversion function γ(x) depending on present wealth and obtain for the spe-
cial case γ(x) = γ/x that the corresponding optimal amount invested in stocks is linear in wealth.

Working with inconsistent stochastic optimization problems without pre-commitment it might
not be totally clear what we mean by an optimal control. This is well discussed in both Björk
and Murgoci (2009) and Björk et al. (2012). They argue that the right thing to do is to study
time inconsistency within a game theoretic framework and then look for a subgame perfect Nash
equilibrium point for this game. This approach is first described in Strotz (1955), and the first
to give a precise definition of the game theoretic equilibrium concept in continuous time were
Ekeland and Lazrak (2006), and, Ekeland and Pirvu (2008). Conceptually, we attack the prob-
lems in the same manner.

Björk and Murgoci (2009) also take consumption into account. However, their preferences
over consumption do not contribute to the inconsistency in the sense that the consumption
term is just added as in a standard stochastic control problem, see (4.3) and (4.2). In this
paper we introduce a new class of optimization problems. In these problems inconsistency also
arises from taking a non-linear function of the expected (utility of) consumption. In addition
we also allow for a capital injection in the form of a deterministic labor income. This leads
to some mathematical difficulties but we manage to establish a verification theorem containing
a Bellman-type set of differential equations for determination of the optimal strategies. Two
concrete examples of economic interest covered by our approach are the mean-variance and the
mean-standard deviation problems without pre-commitment including consumption and labor
income. Those cases are analyzed in details in Section 4.3–4.5. One should recognize that we
consider the problems for a general risk aversion function. More specific, we allow the risk
aversion function to be both time and state dependent.

The structure of the paper is as follows: In Section 4.2 we present our formal model and
the problems of interest. We discuss the concept of inconsistency, admissible strategies, and
what we mean by an optimal strategy. Finally a verification theorem characterizing the solution
to our class of problems is provided, leaving the proof to the Appendix. In Section 4.3 we
derive the optimal consumption and investment strategy for a mean-variance investor without
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pre-commitment and constant risk aversion. In Section 4.4 we derive the optimal consumption
and investment strategy for a mean-variance investor without pre-commitment and risk aversion
inversely proportional to present wealth plus the financial value of future labor income net
of consumption. In Section 4.5 we show, for a general time and state dependent risk aversion
function fulfilling some reasonable assumptions, that a mean-standard deviation investor without
pre-commitment should optimally take no risk at all.

4.2 The basic framework
In this section we present the basic model and the problems of interest. We discuss what we
mean by an inconsistent problem, admissible strategies, and a corresponding optimal strategy.
To solve the problems one need a Bellman-type set of partial differential equations. These are
presented at the end of this section in the verification theorem, Theorem 4.2.1. Proofs are
outlined in the Appendix.

4.2.1 The economic model
The economic setup is a standard Black-Scholes model consisting of a bank account, B, with
risk free short rate, r, and a stock, S, with dynamics given by

dB(t) = rB(t)dt, B(0) = 1,

dS(t) = αS(t)dt+ σS(t)dW (t), S(0) = s0 > 0.

Here α, σ, r > 0 are constants and it is assumed that α > r. The process W is a standard
Brownian motion on an abstract probability space (Ω,F , P ) equipped with the filtration FW =(
FW (t)

)
t∈[0,T ]

given by the P -augmentation of the filtration σ{W (s); 0 ≤ s ≤ t}, ∀t ∈ [0, T ].
We consider an investor with time horizon [0, T ], T > 0, and wealth process (X(t))t∈[0,T ].

The investor is assumed to be endowed with a continuous deterministic labor income rate ℓ
and an initial amount of money x0. At time t the investor chooses a non-negative consumption
rate c(t) and places a proportion π(t) of his wealth in the stock, and the remainder in the
bank account. Denoting by Xc,π(t) the investors wealth at time t given the consumption and
investment strategy (c, π), from now on just called strategy, the dynamics of the investor’s wealth
become

dXc,π(t) = [(r + π(t)(α− r))Xc,π(t) + ℓ(t)− c(t)] dt+ π(t)σXc,π(t)dW (t), t ∈ [0, T ), (4.5)
X(0) = x0 > 0.

For later use, see Section 4.4, we present the equivalent martingale measure, P̂ , which for
the Black-Scholes market is well-known to be given by the unique Radon-Nikodym derivative

dP̂ (t)

dP (t)
= exp

(
−
(
α− r

σ

)
W (t)− 1

2

(
α− r

σ

)2

t

)
, t ∈ [0, T ]. (4.6)

The process W P̂ given by

W P̂ (t) =W (t) +
α− r

σ
t, t ∈ [0, T ],

is a standard Brownian motion under the martingale measure P̂ .
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4.2.2 The problems of interest
Before introducing the problems of interest we introduce two conditional expectations

y(t, x) = E

[∫ T

t

e−ρ(s−t)c(s)ds+ e−ρ(T−t)Xc,π(T )

∣∣∣∣∣ X(t) = x

]
,

z(t, x) = E

(∫ T

t

e−ρ(s−t)c(s)ds+ e−ρ(T−t)Xc,π(T )

)2 ∣∣∣∣∣ X(t) = x

 .
Here ρ is a constant discounting rate, possibly different from the interest rate r. Loosely speaking,
the class of stochastic problems we consider is, for any (t, x) ∈ [0, T )× R, to maximize

f(t, x, yc,π(t, x), zc,π(t, x)), (c, π) ∈ A, (4.7)

where f ∈ C1,2,2,2 and A is the class of admissible strategies to be defined in Theorem 4.2.1.
The class of problems given by (4.7) contains two examples (among others) of economic interest,
which we analyze in Section 4.3–4.5:

• Mean-variance without pre-commitment:

f(t, x, y, z) = y − ψ(t, x)

2

(
z − y2

)
, (t, x) ∈ [0, T )× R, (4.8)

where ψ ∈ C1,2 is a function which is allowed to depend on time and wealth. The problem
is non-standard because of the non-linearity in y and because of the presence of t and x
in the function ψ1. For a pure portfolio investor (c and ℓ set to zero) variants of (4.8)
have been treated: For ψ constant, the problem is treated, in an incomplete Wiener driven
framework, by Basak and Chabakauri (2010). Further, the problem is studied as a special
(the simplest) case by Björk and Murgoci (2009). The case ψ(t, x) = γ/x, for a constant
γ, is investigated by Björk et al. (2012).

• Mean-standard deviation without pre-commitment:

f(t, x, y, z) = y − ψ(t, x)
(
z − y2

) 1
2 , (t, x) ∈ [0, T )× R, (4.9)

where ψ ∈ C1,2 is a function allowed to depend on time and wealth. In addition to the
arguments for the mean-variance problem this problem is non-standard due to the non-
linearity in z. For a pure portfolio investor (c and ℓ set to zero) the problem has been
treated in Kryger and Steffensen (2010) for the case ψ constant.

To the authors knowledge mean-variance and mean-standard deviation without pre-commitment
including consumption and terminal wealth have not before been analyzed.

4.2.3 Inconsistency and the concept of an optimal strategy
The stochastic problems presented in (4.8) and (4.9) are called time inconsistent in the sense
that the Bellman Optimality Principle does not hold: Suppose that we find the optimal strat-
egy (c∗, π∗) for the time-0 problem P0,x0 and suppose that we use this strategy on the time
interval [0, t]. Then at time t the strategy (c∗, π∗) will not be optimal for the time-t problem
Pt,Xc∗,π∗ (t). This is because the law of iterated expectations does not apply for a given strategy.
If the investors preference really is to pre-commit at time 0, he should of course simply solve the
problem P0,x0 and follow the corresponding optimal pre-commitment strategy. Here optimal is

1The appearance of z and thereby terms like "the conditional expectations of cumulated consumption to the
power of 2" also makes the problem non-standard.
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interpreted as optimal from the point of view of time zero. For some investors, this might be
meaningful.

On the other hand it could easily be argued that most investors assign the same weight to
all points in time, i.e. they do not look for an optimal strategy from the point of view of (say)
time zero. Or put it another way, it seems reasonable that the investor assign no particular
importance to a single point in time. Therefore, Björk and Murgoci (2009) and Björk et al.
(2012) attack the problems in a game theoretic framework. That is, our preferences change in
a temporally inconsistent way as time goes by and we can thus think about the problem as a
game where the players are the future incarnations of ourselves. More specific, at every point in
time t we have a player (and incarnation of ourselves) which we denote Pt. Player Pt chooses
the strategy (c(t), π(t)) at time t. The reward to Pt of course depends on the choice made by
Pt, but also on the choices made by the players Ps for all s ∈ (t, T ]. We can now loosely define
a subgame perfect Nash equilibrium strategy as a strategy (c∗, π∗) for which the following holds
(for all players):

• If Pt knows that all players coming after him will use the strategy (c∗, π∗), then it is
optimal for Pt also to use (c∗, π∗).

In a discrete time setup the concept of a subgame perfect Nash equilibrium strategy is very
intuitive and it seems natural to look for subgame perfect Nash equilibrium strategies. However,
it turns out to be a lot more complicated to define an equilibrium strategy in continuous time.
The problem is that a single point in time has Lebesque measure zero, i.e. the individual player
Pt does not influence the outcome of the game. Ekeland and Lazrak (2006) and Ekeland and
Pirvu (2008) gave a precise definition of the game theoretic equilibrium concept in continuous
time:

Definition 4.2.1. Consider a strategy (c∗, π∗), choose a fixed reel point (c, π), a fixed real number
h > 0, and an arbitrary initial point (t, x). Define the strategy (c̃h, π̃h) by

(c̃h(s), π̃h(s)) =

{
(c, π), for t ≤ s < t+ h,

(c∗(s), π∗(s)), for t+ h ≤ s < T.
(4.10)

If

lim
h→0

inf
f
(
t, x, yc

∗,π∗
(t, x), zc

∗,π∗
(t, x)

)
− f

(
t, x, yc̃h,π̃h(t, x), zc̃h,π̃h(t, x)

)
h

≥ 0,

for all (c, π) ∈ R+ × R, we say that (c∗, π∗) is an equilibrium strategy.

Looking for equilibrium strategies as defined in Definition 4.2.1 Björk et al. (2012) solve in-
consistent control problems in the form (4.3). Consequently, they refer to the function defining
the expected value of using the equilibrium strategy as the equilibrium value function.

We also choose to look for equilibrium strategies and refer, as Björk et al. (2012), to the
strategies by the term optimal. However, in contrast to Björk et al. (2012) we choose to refer
to the corresponding value function as the optimal value function. Denoting the optimal value
function by V we write

V (t, x) = f
(
t, x, yc

∗,π∗
, zc

∗,π∗
)
, (4.11)

for a strategy (c∗, π∗) fulfilling the equilibrium criteria in Definition 4.2.1. Doing so, our problem
is to look for the optimal value function and the corresponding optimal strategies for objectives
in the form given by (4.7).
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Remark 4.2.1. It is all about how we look at the problem. Assume we are standing at time t
and consider, for example, the mean-variance problem given by

f(t, x, yc,π(t, x), zc,π(t, x)), (4.12)

where f(t, x, y, z) = y − γ
2

(
z − y2

)
. To write the pre-commitment version of this problem (that

is the investor pre-commit to his time-t preferences) one should define

ỹ = E

[∫ T

t

e−ρ(s−t)c(s)ds+ e−ρ(T−t)Xc,π(T )

∣∣∣∣∣ X(t) = x

]
,

and then write the problem as

f̃(t, x, yc,π(t, x), zc,π(t, x), ỹ), (4.13)

where f̃(t, x, y, z, ỹ) = y− γ
2

(
z + (ỹ)2 − 2yỹ

)
. At this point the reader might be confused since,

at time t, we obviously have

f(t, x, yc,π(t, x), zc,π(t, x)) = f̃(t, x, yc,π(t, x), zc,π(t, x), ỹ),

i.e. from the starting point of view the two problems look identical. However, at time s ∈ (t, T ),
we have

f(s,Xc,π(s), y(s,Xc,π(s)), z(s,Xc,π(s))) ̸= f̃(s,Xc,π(s), y(s,Xc,π(s)), z(s,Xc,π(s)), ỹ).

The point is that by (4.13) we have made it clear that ỹ, opposed to x, y and z, is not a dynamic
variable, i.e. the investor pre-commits to the time-t target when evaluating the variance term.
To solve the pre-commitment problem (4.13) the trick is to write the problem as

sup
(c,π)∈A, ỹ=K

f̃(t, x, yc,π(t, x), zc,π(t, x),K).

This can be solved in two steps: First solve the problem for a general K (this is a standard
control problem), thereby obtaining an optimal strategy, (c∗(K), π∗(K)), as a function of K.
Then insert (c∗(K), π∗(K)) in ỹ and determine the optimal K∗ as the solution to the nonlinear
equation ỹ = K∗. For references see Korn (1997a) and Zhou and Li (2000).

4.2.4 The main result
In this subsection we present an extension of the standard Hamilton-Jacobi-Bellman equation for
characterization of the optimal value function and the corresponding optimal strategy. The power
of the verification theorem, as in the classic HJB framework, is that it transforms the stochas-
tic problem into a system of deterministic differential equations and a deterministic pointwise
infimum problem.

64



Theorem 4.2.1. Let f : [0, T ] × R3 → R be a function in C1,2,2,2. Define the set of admissi-
ble strategies, A, as those, (c, π), for which the partial differential equations (4.63)–(4.64) and
(4.70)–(4.71) have solutions, and for which the stochastic integrals in (4.69), (4.75) and (4.86)
are martingales. Let, ∀(t, x) ∈ [0, T )×R, the optimal value function V (t, x) be defined by (4.11),
and define

yc,π(t, x) = E

[∫ T

t

e−ρ(s−t)c(s)ds+ e−ρ(T−t)Xc,π(T )

∣∣∣∣∣ X(t) = x

]
, (4.14)

zc,π(t, x) = E

(∫ T

t

e−ρ(s−t)c(s)ds+ e−ρ(T−t)Xc,π(T )

)2 ∣∣∣∣∣ X(t) = x

 . (4.15)

If there exist three functions F , F (1) and F (2) such that, ∀(t, x) ∈ (0, T )× R, we have

Ft = inf
(c,π)∈A

{
− [(r + π(α− r))x+ ℓ− c](Fx −Q)− 1

2
π2σ2x2(Fxx − U) + J

}
, (4.16)

F (T, x) = f
(
T, x, x, x2

)
,

F
(1)
t = −[(r + π∗(α− r))x+ ℓ− c∗]F (1)

x − 1

2
π∗2σ2x2F (1)

xx − c∗ + ρF (1), (4.17)

F (1)(T, x) = x,

F
(2)
t = −[(r + π∗(α− r))x+ ℓ− c∗]F (2)

x − 1

2
π∗2σ2x2F (2)

xx − 2c∗F (1) + 2ρF (2), (4.18)

F (2)(T, x) = x2,

where

Q = fx, (4.19)

U = fxx +
(
F (1)
x

)2
fyy +

(
F (2)
x

)2
fzz + 2F (1)

x F (2)
x fyz + 2F (1)

x fxy + 2F (2)
x fxz, (4.20)

J =
(
ρF (1) − c

)
fy + 2

(
ρF (2) − cF (1)

)
fz + ft, (4.21)

and

(π∗, c∗) = arg inf
(c,π)∈A

{
−[(r + π(α− r))x+ ℓ− c](Fx −Q)− 1

2
π2σ2x2(Fxx − U) + J

}
,

then

V (t, x) = F (t, x), yc
∗,π∗

(t, x) = F (1)(t, x), zc
∗,π∗

(t, x) = F (2)(t, x),

and the optimal strategy is given by (c∗, π∗).

Proof. See Appendix 4.6.1.
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4.3 Mean-variance with constant risk aversion
The simplest case of mean-variance optimization without pre-commitment including consump-
tion and terminal wealth is obtained by assuming constant risk aversion. Using Theorem 4.2.1
we are able to derive the optimal strategy. It turns out that the optimal investment strategy
corresponds to a constant amount of money invested in stocks and that the optimal consump-
tion strategy becomes a deterministic bang-bang-strategy. The solution and the problem are
discussed below.

4.3.1 Presenting and solving the problem
Consider the problem of finding the optimal strategy for the objective given by

E0,x0

[∫ T

0

e−ρsc(s)ds+ e−ρTXc,π(T )

]
− γ

2
V ar0,x0

[∫ T

0

e−ρsc(s)ds+ e−ρTXc,π(T )

]
, (4.22)

where γ > 0 is a constant defining the investor’s risk aversion, and where we restrict the admis-
sible strategies to (c, π) ∈ A

∩
(D × R), where D(s) := [cmin(s), cmax(s)], s ∈ [0, T ], is a finite

interval. The corresponding function f is given by

f(t, x, y, z) = y − γ

2

(
z − y2

)
.

The system of partial differential equations we want to solve in order to obtain the optimal value
function and the optimal strategy is given by (4.16) and (4.17)2. A candidate for the optimal
strategy in terms of the value function is found by differentiating with respect to c and π inside
the curly brackets in (4.16). Thereby

c∗(t, x) =


cmax(t), if Fx(x, t)−Q(x, t) < 1,

non-defined, if Fx(x, t)−Q(x, t) = 1,

cmin(t), if Fx(x, t)−Q(x, t) > 1,

(4.23)

π∗(t, x)x = −α− r

σ2

Fx −Q

Fxx − U
, (4.24)

(provided U > Fxx). Clearly

ψx = ψxx = ψt = 0,

fy = 1 + γy, fyy = γ, fz = −γ
2
,

ft = fx = fxx = fxz = fxy = fzz = fyz = 0.

Inserting this into (4.19)–(4.21) gives

Q = 0, (4.25)

U = γ
(
F (1)
x

)2
, (4.26)

J = ρF (1) − c− γρ

(
F (2) −

(
F (1)

)2)
. (4.27)

We now search for solutions in the form

F (t, x) = A(t)x+B(t),

F (1)(t, x) = a(t)x+ b(t),

2Since Ft = F
(1)
t − γ

2

(
F

(2)
t + 2F (1)F

(1)
t

)
we only need to solve two of the three differential equations given

by (4.16)–(4.18). We choose to solve (4.16) and (4.17).
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where A, B, a and b are deterministic functions of time. In order to calculate J we need to
derive F (2) from our guess. The forms of F and F (1) determine the form of F (2). We have that

F (2)(t, x) =
2

γ
[a(t)x+ b(t)−A(t)x−B(t)] + [a(t)x+ b(t)]2.

The partial derivatives of interest are

Ft = A′(t)x+B′(t), Fx = A(t), Fxx = 0,

F
(1)
t = a′(t)x+ b′(t), F (1)

x = a(t), F (1)
xx = 0.

Inserting this into (4.25)–(4.27) gives

Q(t, x) = 0, (4.28)

U(t, x) = γa(t)2, (4.29)
J(t, x) = ρ[a(t)x+ b(t)]− c(t)− 2ρ[a(t)x+ b(t)−A(t)x−B(t)]. (4.30)

Plugging the relevant derivatives, (4.28) and (4.29) into (4.23) and (4.24) we can now write the
candidate for the optimal strategy in terms of the deterministic functions A and a. We get

c∗(t, x) =


cmax(t), if A(t) < 1,

non-defined, if A(t) = 1,

cmin(t), if A(t) > 1,

(4.31)

π∗(t, x)x =
1

γ

α− r

σ2

A(t)

a(t)2
, (4.32)

(provided γa2 > 0). Inserting (4.28)–(4.32) and the relevant derivatives into the differential
equations (4.16) and (4.17) and including the terminal conditions gives

Atx+Bt = −rxA− 1

2γ

(α− r)2

σ2

A2

a2
− ℓA+ c∗(A− 1)

+ ρ(ax+ b)− 2ρ(ax+ b−Ax−B),

A(T ) = 1,

B(T ) = 0,

atx+ bt = −rxa− 1

γ

(α− r)2

σ2

A

a
− ℓa+ c∗(a− 1) + ρ(ax+ b),

a(T ) = 1,

b(T ) = 0.

We obtain the solutions

A(t) = a(t) = e(r−ρ)(T−t)

and

B(t) = e2ρt
∫ T

t

[
1

2γ

(α− r)2

σ2
+ ℓ(s)e(r−ρ)(T−s) − c∗(s)

(
e(r−ρ)(T−s) − 1

)
+ ρb(s)

]
e−2ρsds,

(4.33)

b(t) = eρt
∫ T

t

[
1

γ

(α− r)2

σ2
+ ℓ(s)e(r−ρ)(T−s) − c∗(s)

(
e(r−ρ)(T−s) − 1

)]
e−ρsds, (4.34)
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as well as the relation

b(t)−B(t) =
1

2γ

(α− r)2

σ2

∫ T

t

e−2ρ(s−t)ds =

{
1

4γρ
(α−r)2

σ2

(
1− e−2ρ(T−t)

)
, if ρ > 0,

1
2γ

(α−r)2

σ2 (T − t), if ρ = 0.
(4.35)

The optimal strategy now follows directly from plugging the solutions for A and a into (4.31)
and (4.32). We summarize the results as follows:

Proposition 4.3.1. For the mean-variance problem given by (4.22) we have the following results.

• The optimal strategy is given by

c∗(t, x) =


cmax(t), if r < ρ,

non-defined, if r = ρ,

cmin(t), if r > ρ,

π∗(t, x)x =
1

γ

(α− r)

σ2
e−(r−ρ)(T−t).

• The optimal value function is given by

V (t, x) = e(r−ρ)(T−t)x+B(t).

• The conditional expected value of the discounted cumulated optimal consumption plus the
discounted optimal terminal wealth is given by

Et,x

[∫ T

t

e−ρ(s−t)c∗(s)ds+ e−ρ(T−t)Xc∗,π∗
(T )

]
= e(r−ρ)(T−t)x+ b(t).

• The conditional variance of the discounted cumulated optimal consumption plus the dis-
counted optimal terminal wealth is given by3

V art,x

[∫ T

t

e−ρ(s−t)c∗(s)ds+ e−ρ(T−t)Xc∗,π∗
(T )

]
=

2

γ
(b(t)−B(t)).

Here B, b and b−B are given by (4.33)–(4.35).

4.3.2 Discussion of the solution and the problem
As mentioned in Björk et al. (2012) one can argue that from an economic point of view the
optimal investment strategy does not make sense. From the expression of the optimal invest-
ment strategy we see that the optimal amount of money to invest in stocks is independent of
wealth, i.e. for a given γ a rich investor and a poor investor optimally invest the same amount
of money in stocks. For a one-period model the optimal investment strategy is reasonable since
we would expect the richer investor to have a lower value of γ. However, for a multi-period
model the strategy seems to be economically unreasonable. If the investor chooses γ such that it
reflects his risk aversion corresponding to his initial wealth, then at a later point in time t, due
to the progression of wealth, this γ (likely) no longer reflect his risk aversion corresponding to
his present wealth Xc∗,π∗

(t). Obviously, the investor should choose his γ in a more sophisticated
3We have that

V art,x

[∫ T

t
e−ρ(s−t)c∗(s)ds+ e−ρ(T−t)Xc∗,π∗

(T )

]
= F (2)(t, x)−

(
F (1)(t, x)

)2
=

2

γ
(b(t)−B(t)).
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way. One approach is to let the risk aversion depend on present time and wealth. This case is
analyzed in Section 4.4. The authors think that it is important, even though some might see
it as equivalent concepts, to emphasize that we twist the objective function because we realize
that the problem, and not the solution, is inappropriate.

We can interpret wealth as a pension saving account and labor income net of consumption
as pension contributions. The constraint that the consumption rate c only is allowed to take
values between a deterministic upper and lower boundary, cmin respectively cmax, has a natural
interpretation. If for example we have cmin(t) = k1ℓ(t) and cmax(t) = k2ℓ(t), for constants
0 < k1 < k2 < 1, we have that the investor is forced to spend no less than a minimal fraction
1−k2 and no more than a maximal fraction 1−k1 of his labor income on pension contributions.
This corresponds to a compulsory pension scheme and a subsistence level, respectively.

From the expression of the optimal consumption strategy we have that the investor optimally
consumes the minimum (maximum) allowed if he is patient (impatient). That is, if he has a
time preference parameter ρ smaller (greater) than the risk free interest rate r. If we take the
optimal investment strategy as given this result is easy to understand: First of all the deter-
ministic consumption strategy minimizes the variance term in (4.22). If the investor chooses
to consume the minimum allowed he saves as much as possible. These savings earn, according
to the optimal investment strategy, the risk-free interest rate. This consumption strategy is
only optimal if these savings including interest are large enough for the investor to be willing
to wait for them, i.e. if r > ρ. Reversely, if r < ρ the investor is to impatient to wait for the
savings including interest and chooses to consume the maximum allowed instead. However, it is
important to emphasize that initial we could not have foreseen this trivial optimal consumption
strategy since we search for c∗ and π∗ simultaneously.

Finally, one should notice that the optimal strategy does not guarantee that wealth stays
non-negative (or above any other given lower boundary). This is also the case for the optimal
strategy derived in Basak and Chabakauri (2010) and Björk and Murgoci (2009). However,
the optimal strategy is perfectly reasonable. In the definition of the problem (4.22) we do
not exclude strategies for which the corresponding wealth has positive probability of becoming
negative. Proposition 4.3.1 simply tells us that, as a consequence hereof, it is optimal to continue
to take risky investment decisions and consume even though this may punish the total utility
obtained over the interval [0, T ] in form of a negative wealth at time T .

4.4 Mean-variance with time and state dependent risk aver-
sion

By introducing a time and state dependent risk aversion function the mean-variance problem
without pre-commitment including consumption and terminal wealth becomes much more com-
plicated. For the case c = ℓ = 0 this is analyzed, for state (but not time) dependent risk aversion,
by Björk et al. (2012). We consider the special case of time and state dependent risk aversion
where the investor’s risk aversion is hyperbolic in present wealth plus the financial value of future
labor income net of consumption. One can argue that the investor, hereby, can influence his own
risk aversion by choosing his consumption rate in a certain way. This is in our opinion however
perfectly reasonable. All it says is that if the investor knows that he in the future is going to save
money by consuming less then he should act as if he already had more money and adapt his risk
aversion to that situation. Solving the mean-variance problem with time and state dependent
risk aversion we only allow the investor to look for strategies for which the corresponding wealth
plus the financial value of future labor income net of consumption stays positive over the entire
interval. This conforms with the well-known and often required constraint that wealth plus
human capital must stay positive at all times. Consequently, terminal wealth becomes positive.
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As in Section 4.3 we restrict consumption by a time dependent upper and lower boundary.
It turns out that the optimal investment strategy becomes linear in the investor’s wealth plus

financial value of future labor income net of consumption. Furthermore, as in the case of constant
risk aversion, the optimal consumption rate becomes a deterministic bang-bang strategy. The
deterministic function determining when it is optimal to consume the maximum or minimum
allowed is given by a system of non-linear differential equations for which we have no explicit
solution. Moreover, the constraint that wealth plus the financial value of future labor income
net of consumption must stay positive at all times may become binding. That is, in order to be
able to finance his consumption stream, the investor optimally consumes the minimum allowed
from the point in time where the constraint (may) becomes active and onwards. Opposed to
the case with constant risk aversion we find that it is not always optimal to either consume the
maximum or minimum allowed at all times. For some investors we find that it is optimal to
first, for a period of time, to consume the maximum allowed and then, for the remainder of the
period, to consume the minimum allowed. The results are analyzed in details below.

4.4.1 Presenting and solving the problem
Define the time-t financial value of future labor income net of consumption by

K(c)(t, x) := EP̂
t,x

[∫ T

t

e−r(s−t)
(
ℓ(s)− c (s,Xc,π(s))

)
ds

]
, (4.36)

and define, for a finite time dependent interval D ∈ R, the set of strategies

B(t) :=
{
(c, π)

∣∣∣ c(s) ∈ D(s) := [cmin(s), cmax(s)], X
c,π(s) +K(c)(s,Xc,π(s)) ≥ 0,∀s ∈ [t, T ]

}
.

In (4.36) the expectation is derived under the martingale measure P̂ defined by (4.6). The
condition x + K(c) ≥ 0 ensures that the strategies in B fulfill the natural requirement that,
at any time, the investor should be able to finance his own consumption stream. That is, the
investor has to be sure that, at any time, consumption can be financed by present wealth, capital
gains and labor income. To ensure that the set of strategies B is non-empty we must assume
that, initially, cmin fulfils the condition x + K(cmin) ≥ 0. Note that depending on the size of
cmax and the size of labor income, consumption is always either restricted directly by the upper
bound cmax or indirectly by the more technical constraint x + K(c) ≥ 0. A lower bound cmin

seems natural since the investor is expected to have a subsistence level. At least consumption
should naturally be restricted to stay non-negative.

We now consider the problem of finding the optimal strategy for the objective given by

E0,x0

[∫ T

0

e−ρsc(s)ds+ e−ρTXc,π(T )

]

− γ

2
(
x0 +K(c)(0, x0)

)V ar0,x0

[∫ T

0

e−ρsc(s)ds+ e−ρTXc,π(T )

]
, (4.37)

where we restrict the class of admissible strategies to (c, π) ∈ A
∩

B. Note that hereby the
risk aversion factor on the conditional variance is a function of the consumption stream. The
corresponding function f is given by

f(t, x, y, z) = y − ψ(t, x)

2

(
z − y2

)
,

where ψ(t, x) = γ
x+K(c)(t,x)

. The system of partial differential equations we want to solve in order
to obtain the optimal value function and the optimal strategy is given by (4.17) and (4.18)4.

4Since Ft = F
(1)
t −

∂
∂t
ψ(t,x)

2

(
F (2) −

(
F (1)

)2)− ψ(t,x)
2

F
(2)
t +ψ(t, x)F (1)F

(1)
t we only need to solve two of the

three differential equations given by (4.16)–(4.18). We choose to solve (4.17) and (4.18).
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Clearly,

ft = −ψt

2

(
z − y2

)
, fx = −ψx

2

(
z − y2

)
, fxx = −ψxx

2

(
z − y2

)
,

fy = 1 + ψy, fyy = ψ, fz = −ψ
2
, fxz = −ψx

2
, fxy = ψxy,

fzz = fyz = 0.

Combining with the formulas (4.19)–(4.21) we obtain, after some rearrangement of terms, the
following expressions which turn out to be useful

Fx −Q = F (1)
x + ψF (1)F (1)

x − ψ

2
F (2)
x , (4.38)

Fxx − U = F (1)
xx − ψ

2
F (2)
xx + ψF (1)F (1)

xx , (4.39)

J = ρF (1) − c−
(
ψρ+

ψt

2

)(
F (2) −

(
F (1)

)2)
. (4.40)

By characterizing (4.36) as the solution to a (Feynman-Kač) PDE we get that

ψt = − γ(
x+K(c)

)2(rK(c) − ℓ+ c− (rx+ ℓ− c)K(c)
x − 1

2
π2σ2x2K(c)

xx

)
.

Note that the coefficient of K(c)
x does not include the excess return (α− r) since K(c) is defined

as a conditional expectation under the martingale measure P̂ . Insert this in (4.40) to obtain

J = ρF (1) − c− γρ

x+K(c)

(
F (2) −

(
F (1)

)2)
+

γ

2
(
x+K(c)

)2(rK(c) − ℓ+ c

− (rx+ ℓ− c)K(c)
x − 1

2
π2σ2x2K(c)

xx

)(
F (2) −

(
F (1)

)2)
. (4.41)

We are now ready to derive a candidate for the optimal strategy. To do this we consider the two
cases where the constraint x +K(c) ≥ 0 is non-binding and binding, respectively. That is, we
consider, for an arbitrary point (t, x), the two cases x+K(cmin)(t, x) > 0 and x+K(cmin)(t, x) = 0,
respectively.

The non-binding case (x+K(cmin)(t, x) > 0)

A candidate for the optimal strategy is found by differentiating with respect to c and π inside
the curly brackets in (4.16). We get

c∗(t, x) =


cmax(t), if C(t, x) < 1,

non-defined, if C(t, x) = 1,

cmin(t), if C(t, x) > 1,

(4.42)

where

C(t, x) := Fx(x, t)−Q(x, t) +
γ

2(x+K(c∗)(t))2

(
1 +K(c∗)

x (t, x)
)(

F (2)(t, x)−
(
F (1)(t, x)

)2)
,

and

π∗(t, x)x = −α− r

σ2

Fx −Q

Fxx − U
, (4.43)
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(provided U > Fxx). The optimal consumption strategy is a bang-bang strategy and, for the
moment, it appears to be stochastic and dependent on wealth. However, we now search for
a solution to the problem in the set of solutions such that the optimal consumption strategy
becomes deterministic. If we find such a solution this is of course no restriction. Thus, we search
for solutions where F (1) and F (2) are in a form designed exactly such that this is the case. We
propose that

F (1)(t, x) = a(t)
(
x+K(c∗)(t)

)
+ b(t),

F (2)(t, x) = f(t)
(
x+K(c∗)(t)

)2
+ g(t)

(
x+K(c∗)(t)

)
+ h(t),

where a, b, f , g and h are deterministic functions of time, where the candidate for the optimal
consumption strategy, c, is assumed to be independent of wealth, and where5

a(t)b(t) =
g(t)

2
, (4.44)

h(t) = b(t)2. (4.45)

In this case we get that

K(c∗)(t) =

∫ T

t

e−r(s−t)(ℓ(s)− c∗(s))ds.

Due to (4.44) and (4.45) we get that the variance term in the value function in (4.37) has the
form

F (2) −
(
F (1)

)2
=

(
f(t)− a(t)2

) (
x+K(c∗)(t)

)2
+ 2

(
g(t)

2
− a(t)b(t)

)(
x+K(c∗)(t)

)
+ h(t)− b(t)2

=
(
f(t)− a(t)2

) (
x+K(c∗)(t)

)2
. (4.46)

The form of F is completely determined by F (1) and F (2). Using (4.46) we get that

F (t, x) = F (1) − γ

2
(
x+K(c∗)(t)

) {F (2) −
(
F (1)

)2}
= a(t)

(
x+K(c∗)(t)

)
+ b(t)− γ

2

(
f(t)− a(t)2

) (
x+K(c∗)(t)

)
.

The partial derivatives of interest become

F
(1)
t = a′(t)

(
x+K(c∗)(t)

)
+ a(t)

(
rK(c∗)(t)− ℓ(t) + c(t)

)
+ b′(t),

F (1)
x = a(t), F (1)

xx = 0,

F
(2)
t = f ′(t)

(
x+K(c∗)(t)

)2
+ 2f(t)

(
rK(c∗)(t)− ℓ(t) + c(t)

)(
x+K(c∗)(t)

)
+ g′(t)

(
x+K(c∗)(t)

)
+ g(t)

(
rK(c∗)(t)− ℓ(t) + c(t)

)
+ h′(t),

F (2)
x = 2f(t)

(
x+K(c∗)(t)

)
+ g(t), F (2)

xx = 2f(t).

5The assumptions given in (4.44) and (4.45) turn out to be consistent with the assumption that the candidate
for the optimal consumption strategy is deterministic.
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Inserting this in (4.38) gives

Fx(t, x)−Q(t, x) = a(t) +
γ

x+K(c∗)(t)

[
a(t)2

(
x+K(c∗)(t)

)
+ a(t)b(t)

]
− γ

2
(
x+K(c∗)(t)

) [2f(t)(x+K(c∗)(t)
)
+ g(t)

]
= a(t) + γ

(
a(t)2 − f(t)

)
+

γ

x+K(c∗)(t)

(
a(t)b(t)− g(t)

2

)
.

By assumption (4.44) this reduces to

Fx(t, x)−Q(t, x) = a(t) + γ
(
a(t)2 − f(t)

)
. (4.47)

Inserting the partial derivatives in (4.39) gives

Fxx(t, x)− U(t, x) = − γf(t)

x+K(c∗)(t)
. (4.48)

Now, insert K(c∗)
x = 0, (4.46) and (4.47) in (4.42) to obtain

c∗(t) =


cmax(t), if a(t) + γ

2

(
a(t)2 − f(t)

)
< 1,

non-defined, if a(t) + γ
2

(
a(t)2 − f(t)

)
= 1,

cmin(t), if a(t) + γ
2

(
a(t)2 − f(t)

)
> 1,

(4.49)

and insert (4.47) and (4.48) in (4.43) to obtain

π∗(t, x)x =
α− r

σ2γf(t)

[
a(t) + γ

(
a(t)2 − f(t)

)] (
x+K(c∗)(t)

)
, (4.50)

provided that6

γf(t)

x+K(c∗)(t)
> 0. (4.51)

Now plug in (4.49), (4.50) and the relevant derivatives into (4.17) and include the terminal
conditions to obtain

at = −
{
(r − ρ) +

(α− r)2

σ2γf

[
a+ γ(a2 − f)

]}
a,

a(T ) = 1,

bt = −c∗ + ρb,

b(T ) = 0.

(4.52)

6The candidate of the optimal investment strategy (4.43) was derived under the condition that U > Fxx. By
use of (4.48) we can write this condition as (4.51).
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Now, insert (4.49), (4.50) and the relevant derivatives into (4.18) and include the terminal
conditions to obtain

ft = −
{
2

(
(r − ρ) +

(α− r)2

σ2γf

[
a+ γ(a2 − f)

])
+

(α− r)2

σ2γ2f2
[
a+ γ(a2 − f)

]2}
f,

gt = −
(
r +

(α− r)2

σ2γf

[
a+ γ(a2 − f)

])
g − 2c∗a+ 2ρg,

ht = −2c∗b+ 2ρh,

f(T ) = 1,

g(T ) = 0,

h(T ) = 0.

(4.53)

From (4.52) and (4.53) we immediately obtain the solutions

b(t) =

∫ T

t

e−ρ(s−t)c∗(s)ds,

h(t) =

(∫ T

t

e−ρ(s−t)c∗(s)ds

)2

,

i.e. assumption (4.45) is indeed fulfilled. Finally, we have three things left to verify!

• We need to show that assumption (4.44) is fulfilled.

• The candidate of the optimal investment strategy (4.50) was derived under the condition
(4.51). This assumption has to be verified.

• The non-linear system of partial differential equations given by (4.52) and (4.53) does
not satisfy the usual Lipschitz and growth conditions. Global existence and uniqueness are
therefore not guaranteed. We need to show that the system of partial differential equations
in fact has a unique solution.

This is all done in Appendix 4.6.2.

The binding case (x+K(cmin)(t, x) = 0)

Whenever the constraint is active the investor is forced to consume at the minimum rate allowed.
By the definition of K(c) given by (4.36) the only investment strategy which can finance this
consumption stream, while keeping x +K(c) ≥ 0, is π = 0. We get that the only strategy, and
thereby the optimal strategy, in A

∩
B is c∗(t) = cmin(t) and π∗(t, x) = 0. Obviously, once the

restriction becomes active it becomes binding for the remaining time of the period. That is, if
x+K(c)(t, x) = 0 we get Xc,π(s) +K(c)(s,Xc,π(s)) = 0 for all s ∈ [t, T ].

Collecting the results from the two cases we summarize as follows
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Proposition 4.4.1. For the mean-variance problem given by (4.37) we have the following results.

• The optimal strategy is given by

c∗(t) =

{
ĉ(t), if t ∈ [0, t∗),

cmin(t), if t ∈ [t∗, T ],

π∗(t, x)x =
α− r

σ2γf(t)

[
a(t) + γ

(
a(t)2 − f(t)

)] (
x+K(c∗)(t)

)
,

where

ĉ(t) =


cmax(t), if a(t) + γ

2

(
a(t)2 − f(t)

)
< 1,

non-defined, if a(t) + γ
2

(
a(t)2 − f(t)

)
= 1,

cmin(t), if a(t) + γ
2

(
a(t)2 − f(t)

)
> 1,

and t∗ is given by

sup

{
t∗ ∈ [t, T ]

∣∣∣∣∣ Xc,π(t) +

∫ t∗

t

e−r(s−t)(ℓ(s)− ĉ(s))ds+

∫ T

t∗
e−r(s−t)(ℓ(s)− cmin(s))ds ≥ 0

}
.

(4.54)

• The optimal value function is given by

V (t, x) = a(t)
(
x+K(c∗)(t)

)
+ b(t)− γ

2

(
f(t)− a(t)2

) (
x+K(c∗)(t)

)
.

• The conditional expected value of the discounted cumulated optimal consumption plus the
discounted optimal terminal wealth is given by

Et,x

[∫ T

t

e−ρ(s−t)c∗(s)ds+ e−ρ(T−t)Xc∗,π∗
(T )

]
= a(t)

(
x+K(c∗)(t)

)
+ b(t).

• The conditional variance of the discounted cumulated optimal consumption plus the dis-
counted optimal terminal wealth is given by

V art,x

[∫ T

t

e−ρ(s−t)c∗(s)ds+ e−ρ(T−t)Xc∗,π∗
(T )

]
=
(
f(t)− a(t)2

) (
x+K(c∗)(t)

)2
.

Here,

K(c∗)(t) =

∫ T

t

e−r(s−t)(ℓ(s)− c∗(s))ds,

and a, b, f , g and h are given by the non-linear system of partial differential equations given by
(4.52) and (4.53).
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Remark 4.4.1. We get that (4.54) can be written as

sup

{
t∗ ∈ [0, T ]

∣∣∣∣∣ x0 +
∫ t∗

0

e−rs(ℓ(s)− ĉ(s))ds+

∫ T

t∗
e−rs(ℓ(s)− cmin(s))ds ≥ 0

}
.

That is, t∗ can be found initially at time t = 0 and will not change at a later point in time. To
make this clear consider, at time t = 0, the two situations:

1. The cases t∗ < T and t∗ = T with x0 +K(c∗)(0, x0) = 0: As already noted, in those cases,
the constraint x+K(c) ≥ 0 becomes binding in the sense that the only investment strategy
which can finance the consumption stream c∗, while keeping x + K(c) ≥ 0, is π∗(t) = 0,
∀t ∈ [0, T ]. Obviously, we get Xc∗,π∗

(t) +K(c∗)(t,Xc∗,π∗
(t)) = 0, ∀t ∈ [0, T ], i.e. t∗ does

not change at a later point in time.

2. The case t∗ = T with x0 +K(c∗)(0, x0) > 0: We get due to π∗ being linear in x +K(c∗)

that Xc∗,π∗
(t) +K(c∗)(t,Xc∗,π∗

(t)) > 0, ∀t ∈ [0, T ]7, i.e. t∗ = T at all future time points.

We emphasize that it is the binding nature of the constraint together with the dynamic invest-
ment strategy that makes t∗, and consequently the optimal consumption strategy, deterministic.
Once again, the optimal consumption strategy c∗(t), t ∈ [0, T ], is completely known at time
t = 0.

Remark 4.4.2. For big enough values of γ we may have (if cmax is big relative to x0) that
x0 +K(c∗)(0, x0) = 0 (see Figure 4.2). One may argue that the optimal value function is then
not well-defined. The concern is about the risk aversion function ψ being non-defined (division
by zero). Naturally, the strategy (c∗, π∗) defined by Proposition 4.4.1 is given as the limit of the
series of strategies (c∗n, π∗)n=1,2,... where the expression in (4.54) is strictly positive but tends to
zero. From Appendix 4.6.2 formula (4.89) we have that x+K(c∗n) follows a geometric Brownian
motion. More precise, Xc∗n,π

∗
(T ) = (x +K(c∗n)(t, x)) exp(. . .) where the stochastic exponential

term depends on the dynamics of W . We conclude that the value function is well-defined since

E0,x0

[∫ T

0

e−ρsc∗n(s)ds+ e−ρTXc∗n,π
∗
(T )

]

− γ

2
(
x0 +K(c∗n)(0, x0)

)V ar0,x0

[∫ T

0

e−ρsc∗n(s)ds+ e−ρTXc∗n,π
∗
(T )

]

=

∫ T

0

e−ρsc∗n(s)ds+
(
x0 +K(c∗n)(0, x0)

)
︸ ︷︷ ︸

↘0

exp(. . .)−
γ
(
x0 +K(c∗n)(0, x0)

)2
2
(
x0 +K(c∗n)(0, x0)

)︸ ︷︷ ︸
↘0

V ar0,x0 [exp(. . .)]︸ ︷︷ ︸
↘0

−→
∫ T

0

e−ρsc∗(s)ds,

which coincides with Proposition 4.4.1.

7See Appendix 4.6.2 formula (4.89) where we, for the non-binding case, show that x +K(c∗) is a geometric
Brownian motion.
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4.4.2 Discussion of the solution
The investment strategy

From the expression of the optimal investment strategy we see that the optimal amount of money
to invest in stocks is proportional to wealth plus the financial value of future labor income net
of consumption. From an economic point of view this seems to be a fairly reasonable investment
strategy. First of all, a rich investor should invest more in stocks than a poor investor. Second,
if we know that a large amount of money will be injected continuously into the savings, then we
should also invest a large amount of money in stocks.

Two important questions are:

• How does the optimal proportion of wealth to invest in stocks develop as time goes by?

• How do shifts in parameter values (γ in particular) influence the optimal proportion of
wealth to invest in stocks?

In order to answer those questions define

π̃∗(t) =
α− r

σ2γf(t)

[
a(t) + γ

(
a(t)2 − f(t)

)]
.

Then

π∗(t, x)x = π̃∗(t)
(
x+K(c∗)(t)

)
.

In Appendix 4.6.2 we show that we have the following integral equation for π̃∗:

π̃∗(t) =
α− r

σ2γ

{
e−

∫ T
t [(r−ρ)+(α−r)π̃∗(s)+σ2π̃∗(s)2]ds + γe−

∫ T
t

σ2π̃∗(s)2ds − γ
}
.

We recognize this integral equation from Björk et al. (2012) who derive this for the case without
consumption and labor income. If r > ρ we conclude that π̃∗ is increasing in time. On the
other hand we have, for the non-binding case, that (Xc∗,π∗

(t) +K(c∗)(t))/Xc∗,π∗
(t) is expected

to decrease with time. How fast π̃∗ increases and how fast (Xc∗,π∗
(t) + K(c∗)(t))/Xc∗,π∗

(t)
decreases depends in a complex way on the value of γ8. From the optimization problem (4.37)
we can argue that (since a smaller value of γ corresponds to giving the variance term a smaller
weight) we expect a smaller value of γ to imply a more aggressive investment strategy in general,
i.e. a larger value of π̃. Due to the complexity of the system of partial differential equations given
in (4.52) and (4.53) it seems difficult to prove this. For a average scenario it is in Figure 4.1
illustrated that a smaller γ indeed implies a more aggressive investment strategy. For small
values of γ we also note that we should indeed expect the optimal proportion of wealth to invest
in stocks to increase over time. However, as seen in Figure 4.1 (γ = 8), we also have that for
γ large enough the optimal proportion of wealth to invest in stocks seems to be approximately
constant.

The consumption strategy

As already mentioned the upper and lower boundary for the consumption rate has a natural
interpretation when we think of wealth as a pension saving account (see Subsection 4.3.2).

Let us consider the non-binding case (x0 + K(c∗)(0, x0) > 0). From the expression of the
optimal consumption strategy we see that it is optimal either to consume the maximum or
minimum allowed dependent on whenever the deterministic expression a(t) + γ

2

(
a(t)2 − f(t)

)
is smaller or larger than 1. Since the functions a and f are given by the non-linear system of

8K(c∗) depends on γ since obviously the optimal consumption strategy does so.
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Figure 4.1: Parameter values are T = 15, r = 0.04, α = 0.12, σ = 0.2 and ρ = 0.02. The initial
wealth is X0 = 1000000 DKK, labor income is during the hole time period 30000 DKK/month
and the minimal consumption allowed (which turns out to equal the optimal consumption for
all choices of γ) is during the hole time period 21000 DKK/month.

differential equations (4.52) and (4.53) it is difficult to analyze the optimal consumption strategy.
However, some insight can be obtained by the following calculations:

∂

∂t

(
a(t) +

γ

2
(a(t)2 − f(t))

)
= a′(t) + γa(t)a′(t)− γ

2
f ′(t)

= −
{
(r − ρ) +

(α− r)2

σ2γf(t)

[
a(t) + γ(a(t)2 − f(t))

]}
a(t)

−
{
(r − ρ) +

(α− r)2

σ2γf(t)

[
a(t) + γ(a(t)2 − f(t))

]}
γa(t)2

+

{
(r − ρ) +

(α− r)2

σ2γf(t)

[
a(t) + γ(a(t)2 − f(t))

]}
γf(t)

+
(α− r)2

σ2γ2f(t)2
[
a(t) + γ(a(t)2 − f(t))

]2 γ
2
f(t)

= −
{
(r − ρ) +

(α− r)2

σ2γf(t)

[
a(t) + γ(a(t)2 − f(t))

]} [
a(t) + γ

(
a(t)2 − f(t)

)]
+
1

2

(α− r)2

σ2γf(t)

[
a(t) + γ(a(t)2 − f(t))

]2
= −(r − ρ)

[
a(t) + γ

(
a(t)2 − f(t)

)]
− 1

2

(α− r)2

σ2γf(t)

[
a(t) + γ(a(t)2 − f(t))

]2
. (4.55)
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Since for all t ∈ [0, T ] we have a(t) + γ
(
a(t)2 − f(t)

)
> 0 9, and f(t) > 0 10, we can for the case

r ≥ ρ conclude that ∂
∂t

(
a(t) + γ

2 (a(t)
2 − f(t))

)
< 0, ∀t ∈ [0, T ]. Since we also have the terminal

condition
(
a(T ) + γ

2 (a(T )
2 − f(T ))

)
= 1 we can now make the following statement:

r ≥ ρ =⇒
(
a(t) +

γ

2
(a(t)2 − f(t))

)
> 1 =⇒ c∗(t) = cmin(t), ∀t ∈ [0, T ). (4.56)

If r < ρ the expression (4.55) consists of a positive term minus a positive term, and we can
therefore not make any conclusions about the optimal consumption behavior. Figure 4.2 shows
how the optimal consumption strategy looks in the case of r < ρ. We see that for γ small
enough it is optimal to consume the minimum allowed during the whole time period, and for γ
large enough it is optimal to consume the maximum allowed during the whole time period. For
certain values of γ we see that it is optimal in the beginning to consume the maximum allowed
and then later to consume the minimal allowed.
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Figure 4.2: Parameter values are T = 15, r = 0.04, α = 0.12, σ = 0.2 and ρ = 0.06. Points
falling below y = 1 corresponds to an optimal consumption rate equal to the maximum allowed
and points falling above y = 1 corresponds to an optimal consumption rate equal to the minimum
allowed.

9The optimal investment strategy is given by

π∗(t, x)x =
α− r

σ2γf(t)

[
a(t) + γ

(
a(t)2 − f(t)

)] (
x+K(c∗)(t)

)
.

From (4.89) we have (for the non-binding case) that Xc∗,π∗
(t) +K(c∗)(t) > 0, t ∈ [0, T ], and it follows that the

optimal amount of money to invest in stocks is strictly positive over the interval [0, T ] iff a(t)+γ
(
a(t)2 − f(t)

)
>

0, ∀t ∈ [0, T ]. Since for a given strategy π1 the strategy defined by π2(t, x)x = max(0, π1(t, x)x) results in a
larger mean and a smaller variance of the terminal wealth, compared to the strategy π1, we conclude that it
will never be optimal to invest a negative amount of money in stocks. We therefore conclude that we must have
a(t) + γ

(
a(t)2 − f(t)

)
≥ 0, ∀t ∈ [0, T ]. By the terminal condition

(
a(T ) + γ

2
(a(T )2 − f(T ))

)
= 1 and (4.55)

we have that the slope is negative at t = T , and we therefore get the strict inequality a(t) + γ
(
a(t)2 − f(t)

)
>

0, ∀t ∈ [0, T ].
10By (4.94) this is clearly the case.
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In order to get a better understanding of the optimal consumption strategy we make the
following observation. If we take the optimal investment strategy as given we can try to comment
on the result given by (4.56) and Figure 4.2. First of all, in contrast to the case with constant
risk aversion, the deterministic consumption strategy does influence the variance term. If we,
during an infinitesimal time interval [t, t+ dt], choose to consume the minimum allowed we save
the amount of money (cmax−cmin)dt in addition to (ℓ− cmax) dt. The fraction π̃∗ of these money
is invested in stocks (which do contribute to the variance term) and the rest is invested in the
bank account (which do not contribute to the variance term).

For the case r ≥ ρ the expected investment return on the saved amount of money is larger
than ρ, and the mean term in (4.37) can therefore, in terms of consumption, be maximized by
choosing the minimum consumption rate allowed. We also have that a minimum consumption
rate minimizes the variance weight term γ/2(x +K(c)(t)), since a minimum consumption rate
maximizes K(c). On the other hand, choosing to consume the minimum allowed also maximizes
the variance term in (4.37) through the investment. From (4.56) we can conclude that maximizing
the mean term and minimizing the variance weight term (in terms of consumption) makes it more
than up for a larger variance term (in terms of consumption through the investment strategy).

The chain of reasoning seems to stay true for the case r < ρ. In this case the expected return
on the saved money is larger than ρ if and only if π̃∗ is big enough. From Figure 4.1 we have
that this is the case for a small enough value of γ. Correspondingly, Figure 4.2 shows that it
is optimal to consume the minimum (maximum) allowed for a small (large) enough value of γ.
The reason that it is optimal for an investor with a given value of γ (not too large neither too
small) first to consume the maximum allowed and after some time the minimum allowed is due
to the fact that π̃∗ is increasing in time.

4.5 Mean-standard deviation without pre-commitment
In this section we study and solve the mean-standard deviation problem without pre-commitment
including consumption and terminal wealth. We consider a general risk aversion function ψ,
which we assume fulfills some reasonable constraints, and show that the optimal investment
strategy becomes the same (π∗ = 0) for all variants of ψ. Finally, we give an interpretation of
the optimal strategy which also helps us understand the fundamental difference between pre-
commitment and without pre-commitment.

4.5.1 Presenting and solving the problem
Consider the problem of finding the optimal strategy for the objective given by

E0,x0

[∫ T

0

e−ρsc(s)ds+ e−ρTXc,π(T )

]
− ψ(0, x0)

(
V ar0,x0

[∫ T

0

e−ρsc(s)ds+ e−ρTXc,π(T )

]) 1
2

,

(4.57)

where ψ ∈ C1,2, ψ > 0, is a risk aversion function with ψx, ψxx and ψt finite ∀(t, x) ∈ [0, T ]×R,
and where we again restrict the admissible strategies to (c, π) ∈ A

∩
(D × R), where D(s) =

[cmin(s), cmax(s)], s ∈ [0, T ], is a finite time dependent interval. The corresponding function f
is given by

f(t, x, y, z) = y − ψ(t, x)
(
z − y2

) 1
2 .
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The system of partial differential equations we want to solve in order to obtain the optimal value
function and the optimal strategy is given by (4.16) and (4.17)11. Clearly,

ft = −ψt

(
z − y2

) 1
2 , fx = −ψx

(
z − y2

) 1
2 , fxx = −ψxx

(
z − y2

) 1
2 ,

fy = 1 + ψ
(
z − y2

)−1
2 y, fyy = ψ

(
z − y2

)−3
2 y2 + ψ

(
z − y2

)−1
2 ,

fz = −ψ
2

(
z − y2

)−1
2 , fzz =

ψ

4

(
z − y2

)−3
2 ,

fxz = −ψx

2

(
z − y2

)−1
2 , fxy = ψx

(
z − y2

)−1
2 y, fyz =

−ψ
2

(
z − y2

)−3
2 y.

Inserting this in (4.19)–(4.21) we obtain the following expression

Q = −ψx

(
F (2) −

(
F (1)

)2) 1
2

, (4.58)

U =
ψ

4

(
F (2) −

(
F (1)

)2)− 3
2 (
F (2)
x − 2F (1)F (1)

x

)2
+ ψ

(
F (2) −

(
F (1)

)2)− 1
2 (
F (1)
x

)2
− ψxx

(
F (2) −

(
F (1)

)2) 1
2

− ψx

(
F (2) −

(
F (1)

)2)− 1
2 (
F (2)
x − 2F (1)F (1)

x

)
, (4.59)

J = ρF (1) − c− ψρ

(
F (2) −

(
F (1)

)2) 1
2

− ψt

(
F (2) −

(
F (1)

)2) 1
2

. (4.60)

We are now ready to derive a candidate for the optimal strategy. Again this is done by differen-
tiating with respect to c and π inside the curly brackets in (4.16). We get

c∗(t, x) =


cmax(t), if C(t, x) < 0,

non-defined, if C(t, x) = 0,

cmin(t), if C(t, x) > 0,

(4.61)

where

C(t, x) := Fx(x, t)−Q(x, t)− 1−
(
∂

∂c
ψt

)(
F (2) −

(
F (1)

)2) 1
2

,

and

π∗(t, x)x = −α− r

σ2

Fx −Q

Fxx − U
, (4.62)

(provided U > Fxx). We now search for solutions in the form,

F (t, x) = A(t)x+B(t),

F (1)(t, x) = a(t)x+ b(t),

where A, B, a, and b are deterministic functions of time. The derivatives of interest are

Ft = A′(t)x+B′(t), Fx = A(t), Fxx = 0,

F
(1)
t = a′(t)x+ b′(t), F (1)

x = a(t), F (1)
xx = 0.

11Since Ft = F
(1)
t − ∂

∂t
ψ(t, x)

(
F (2) −

(
F (1)

)2) 1
2 − ψ(t,x)

2

(
F (2) −

(
F (1)

)2)− 1
2
(
F

(2)
t − 2F (1)F

(1)
t

)
we only

need to solve two of the three differential equations given by (4.16)–(4.18). We choose to solve (4.16) and (4.17).
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Inserting this into the system of partial differential equations given by (4.16) and (4.17) we find

Atx+Bt = −rx(A−Q)− 1

2
π∗(α− r)x(A−Q)− ℓ(A−Q) + c∗(A−Q) + J,

atx+ bt = −rxa− π∗(α− r)xa− ℓa+ c∗(a− 1) + ρ(ax+ b).

Quite surprisingly, this system of differential equations is solved by π∗ = 0 via the parametriza-
tion F (2) =

(
F (1)

)2 12. Note that for this solution, actually U is infinite. However since π∗U
is finite, the solution is admissible. With π∗ = 0 the system of partial differential equations
reduces to

Atx+Bt = −rxA+ ρxa− ℓA+ c∗(A− 1) + ρb,

A(T ) = 1,

B(T ) = 0,

atx+ bt = −(r − ρ)xa− ℓa+ c∗(a− 1) + ρb,

a(T ) = 1,

b(T ) = 0,

where we have added the terminal conditions. We obtain the solutions

A(t) = a(t) = e(r−ρ)(T−t),

and

B(t) = b(t) = eρt
∫ T

t

[
ℓ(s)e(r−ρ)(T−s) − c∗(s)

(
e(r−ρ)(T−s) − 1

)]
e−ρsds.

The optimal strategy now follows directly by plugging in the solutions for A and a together with
the partial derivatives and the relation F (2) =

(
F (1)

)2
into (4.61) and (4.62). We summarize

the results as follows.

12F (2) =
(
F (1)

)2 implies that F (2)
x − 2F (1)F

(1)
x = 0. Inserting this into (4.58) and (4.59) gives

Q = 0,

U = ψ(t, x)

(
F (2) −

(
F (1)

)2
)− 1

2 (
F

(1)
x

)2
.

Formula (4.62) now reduces to

π∗(t, x)x = −
α− r

σ2

A(t)
(
F (2) −

(
F (1)

)2) 1
2

ψ(t, x)
(
F

(1)
x

)2
.

It is then clear that{(
F (2) =

(
F (1)

)2
)

⇒ (π∗ = 0)

}
⇔

{
F

(1)
x ̸= 0 and A(t) bounded from above

}
.

Below we show that F (1)
x = a(t) = A(t) = er(T−t) > 0, and clearly we get π∗ = 0.
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Proposition 4.5.1. For the mean-standard deviation problem given by (4.57) we have the fol-
lowing results.

• The optimal strategy is given by

c∗(t, x) =


cmax(t), if r < ρ,

non-defined, if r = ρ,

cmin(t), if r > ρ,

π∗(t, x) = 0.

• The optimal value function is given by

V (t, x) = e(r−ρ)(T−t)x+B(t).

• The conditional expected value of the discounted cumulated optimal consumption plus the
discounted optimal terminal wealth is given by

Et,x

[∫ T

t

e−ρ(s−t)c∗(s)ds+ e−ρ(T−t)Xc∗,π∗
(T )

]
= e(r−ρ)(T−t)x+ b(t).

• The conditional variance of the discounted cumulated optimal consumption plus the dis-
counted optimal terminal wealth is given by

V art,x

[∫ T

t

e−ρ(s−t)c∗(s)ds+ e−ρ(T−t)Xc∗,π∗
(T )

]
= 0.

Here

B(t) = b(t) = eρt
∫ T

t

[
ℓ(s)e(r−ρ)(T−s) − c∗(s)

(
e(r−ρ)(T−s) − 1

)]
e−ρsds.

4.5.2 Discussion of the solution
The optimal consumption strategy coincides with the one found in Chapter 4.3. We refer to
Subsection 4.3.2 for an interpretation.

The following intuitive explanation of the somehow surprising optimal investment strategy
(π∗ = 0) actually provides us with some helpful insight to understand the nature of inconsistent
stochastic optimization problems. In discrete time, the definition of a subgame Nash equilibrium
strategy is: Consider n players and split the time interval [T0, Tn] in n equally long intervals. Let
player m, 1 ≤ m ≤ n, decide on the strategy (c∗m−1, π

∗
m−1) used over the interval [Tm−1, Tm).

• The equilibrium control (c∗n−1, π
∗
n−1) is obtained by letting player n optimize the value

function at time Tn−1.

• The equilibrium control (c∗n−2, π
∗
n−2) is obtained by letting player n− 1 optimize the value

function at time Tn−2 given the knowledge that player number n will use the strategy
(c∗n−1, π

∗
n−1).

• Proceed recursively by induction.

Now, consider a single period pure portfolio optimization problem with time horizon ∆t given
by

V (0, x) = sup
π

{
E0,x [X

π(∆t)]− ψ(0, x) (V ar0,x [X
π(∆t)])

1
2

}
,
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where Xc,π(∆t) = r∆t(1 − π)x + Rπx and R is a random variable such that E[R] = α∆t and
V ar[R] = σ2∆t. Then we have

E0,x [X
π(∆t)]− ψ(0, x) (V ar0,x [X

π(∆t)])
1
2

= r∆tx+ (α− r)πx∆t− ψ(0, x)
(
σ2∆tπ2x2

) 1
2

= r∆tx+ (α− r)πx∆t− ψ(0, x)σ
√
∆t|π|x.

We directly obtain the optimal strategy

π∗ =


0, if (α− r)∆t < ψ(0, x)σ

√
∆t,

non-defined(R+), if (α− r)∆t = ψ(0, x)σ
√
∆t,

∞, if (α− r)∆t > ψ(0, x)σ
√
∆t.

Clearly, for any risk aversion function ψ(0, x) there exist a small enough ∆t such that (α−r)∆t <
ψ(0, x)σ

√
∆t, i.e. such that π∗ = 0 13. Likewise, for a multi period problem we conclude that

for any risk aversion function ψ(t, x), fulfilling our reasonable assumptions, we get the Nash
equilibrium strategy π∗ = 0 whenever the discretization of the interval of optimization is fine
enough. To obtain this note, by the argumentation above, that for a fine enough discretization
of the interval player n (the last player in the game) chooses to take no risk at all. Consequently,
player number n − 1 faces, since there is no randomness after time Tn−1, also a single period
problem and by the same argumentation player number n− 1 also chooses to take no risk at all.
Proceeding recursively we obtain π∗ = 0 for all players.

For any risk aversion function ψ(t, x), fulfilling our reasonable assumptions, we now conclude
that over an infinitesimal time interval, dt, standard deviation is of the order

√
dt, which means

that the punishment is so hard that any risk taking is unattractive.
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4.6 Appendix

4.6.1
Proof of Theorem 4.2.1. Consider an arbitrary admissible strategy (c, π).

1: First we argue that if there exist a function Y such that, ∀(t, x) ∈ (0, T )× R, we have

Yt = −[(r + π(α− r))x+ ℓ− c]Yx − 1

2
π2σ2x2Yxx − c+ ρY, (4.63)

Y (T, x) = x, (4.64)

then

Y (t, x) = yc,π(t, x), (4.65)

where yc,π is given by (4.14).

13This is also indicated by Zhou and Li (2000) who get the same solution for a sufficiently short time horizon.
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To show this define

Ỹ (t, x) = e−ρtY (t, x). (4.66)

From (4.63) and (4.64) we get, ∀(t, x) ∈ (0, T )× R, that

Ỹt = −[(r + π(α− r))x+ ℓ− c]Ỹx − 1

2
π2σ2x2Ỹxx − e−ρtc, (4.67)

Ỹ (T, x) = e−ρTx. (4.68)

Using Itô’s formula

Ỹ (t,Xc,π(t))

= −
∫ T

t

dỸ (s,Xc,π(s)) + Ỹ (T,Xc,π(T ))

= −
∫ T

t

(
Ỹs(s,X

c,π(s)) + [(r + π(s)(α− r))Xc,π(s) + ℓ(s)− c(s)] Ỹx(s,X
c,π(s))

+
1

2
π(s)2σ2Xc,π(s)2Ỹxx(s,X

c,π(s))
)
ds

−
∫ T

t

π(s)σXc,π(s)Ỹx(s,X
c,π(s))dW (s) + Ỹ (T,Xc,π(T )).

Plug in (4.67) and (4.68) to obtain

Ỹ (t,Xc,π(t)) =

∫ T

t

e−ρsc(s)ds+ e−ρTXc,π(T )−
∫ T

t

π(s)σXc,π(s)Ỹx(s,X
c,π(s))dW (s).

(4.69)

Since (c, π) is an admissible strategy taking the conditional expectation given X(t) = x on both
sides of the equality leaves us with

Ỹ (t, x) = E

[∫ T

t

e−ρsc(s)ds+ e−ρTXc,π(T )

∣∣∣∣∣ X(t) = x

]
.

It is now clear that

Y (t, x) = eρtỸ (t, x) = yc,π(t, x).

2: Second we argue that if there exist a function Z such that, ∀(t, x) ∈ (0, T )× R, we have

Zt = −[(r + π(α− r))x+ ℓ− c]Zx − 1

2
π2σ2x2Zxx − 2cY + 2ρZ, (4.70)

Z(T, x) = x2, (4.71)

then

Z(t, x) = zc,π(t, x), (4.72)

where zc,π is given by (4.15).

To show this define Z̃(t, x) = e−2ρtZ(t, x). From (4.70) and (4.71) we get, ∀(t, x) ∈ (0, T )×R,
that

Z̃t = −[(r + π(α− r))x+ ℓ− c]Z̃x − 1

2
π2σ2x2Z̃xx − 2e−ρtcỸ , (4.73)

Z̃(T, x) =
(
e−ρTx

)2
, (4.74)
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where Ỹ (t, x) is given in (4.66). Using Itô’s formula

Z̃(t,Xc,π(t))

= −
∫ T

t

dZ̃(s,Xc,π(s)) + Z̃(T,Xc,π(T ))

= −
∫ T

t

(
Z̃s(s,X

c,π(s)) + [(r + π(s)(α− r))Xc,π(s) + ℓ(s)− c(s)] Z̃x(s,X
c,π(s))

+
1

2
π(s)2σ2Xc,π(s)2Z̃xx(s,X

c,π(s))
)
ds

−
∫ T

t

π(s)σXc,π(s)Z̃x(s,X
c,π(s))dW (s) + Z̃(T,Xc,π(T )).

Plug in (4.73) and (4.74) and thereafter (4.69) to obtain

Z̃(t,Xc,π(t))

= 2

∫ T

t

e−ρsc(s)Ỹ (s,Xc,π(s))ds+
(
e−ρTXc,π(T )

)2
(4.75)

−
∫ T

t

π(s)σXc,π(s)Z̃x(s,X
c,π(s))dW (s)

= 2

∫ T

t

e−ρsc(s)

∫ T

s

e−ρyc(y)dyds+ 2

∫ T

t

e−ρsc(s)ds e−ρTXc,π(T )

− 2

∫ T

t

e−ρsc(s)

∫ T

s

π(y)σXc,π(y)Ỹx(y,X
c,π(y))dW (y)ds

+
(
e−ρTXc,π(T )

)2 − ∫ T

t

π(s)σXc,π(s)Z̃x(s,X
c,π(s))dW (s). (4.76)

Since (c, π) is an admissible strategy taking the conditional expectation given X(t) = x on both
sides of the equality leaves us with

Z̃(t, x) = E

[
2

∫ T

t

e−ρsc(s)

∫ T

s

e−ρyc(y)dyds

+ 2

∫ T

t

e−ρsc(s)ds e−ρTXc,π(T ) +
(
e−ρTXc,π(T )

)2 ∣∣∣∣∣ X(t) = x

]
.

Provided that 2
∫ T

t
e−ρsc(s)

∫ T

s
e−ρyc(y)dyds =

(∫ T

t
e−ρsc(s)ds

)2
we now have that

Z̃(t, x) = E

(∫ T

t

e−ρsc(s)ds+ e−ρTXc,π(T )

)2 ∣∣∣∣∣ X(t) = x

 .
This is however easily realized since

∂

∂t

(
2

∫ T

t

e−ρsc(s)

∫ T

s

e−ρyc(y)dyds

)
= −2e−ρtc(t)

∫ T

t

e−ρyc(y)dy =
∂

∂t

(∫ T

t

e−ρsc(s)ds

)2

(
2

∫ T

t

e−ρsc(s)

∫ T

s

e−ρyc(y)dyds

)
∣∣t=T

= 0 =

(∫ T

t

e−ρsc(s)ds

)2

∣∣t=T

.
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It is now clear that

Z(t, x) = e2ρtZ̃(t, x) = zc,π(t, x).

3: At last we argue that if there exist a function F such that, ∀(t, x) ∈ (0, T )× R, we have

Ft = inf
(c,π)∈A

{
−[(r + π(α− r))x+ ℓ− c](Fx − fx)−

1

2
π2σ2x2(Fxx − U) + J

}
, (4.77)

F (T, x) = f
(
T, x, x, x2

)
, (4.78)

where

U = fxx +
(
F (1)
x

)2
fyy +

(
F (2)
x

)2
fzz + 2F (1)

x F (2)
x fyz + 2F (1)

x fxy + 2F (2)
x fxz, (4.79)

J =
(
ρF (1) − c

)
fy + 2

(
ρF (2) − cF (1)

)
fz + ft, (4.80)

with F (1) and F (2) fulfilling (4.17) and (4.18), respectively, then

F (t, x) = V (t, x),

where V is the optimal value function defined by (4.11).

First step is to derive an expression for

f(t,Xc,π(t), yc,π(t,Xc,π(t)), zc,π(t,Xc,π(t))).

By (4.65) and (4.72) this equals

f(t,Xc,π(t), Y (t,Xc,π(t)), Z(t,Xc,π(t))).

Using Itô’s formula
(
we have assumed f ∈ C1,2,2,2

)
we get that

f(t,Xc,π(t), yc,π(t,Xc,π(t)), zc,π(t,Xc,π(t)))

= −
∫ T

t

df(s,Xc,π(s), Y (s,Xc,π(s)), Z(s,Xc,π(s)))

+f(T,Xc,π(T ), Y (T,Xc,π(T )), Z(T,Xc,π(T )))

= −
∫ T

t

{
(fs + fyYs + fzZs)ds+ (fx + fyYx + fzZx)dX

c,π(s)

+
1

2

[
fyYxx + fzZxx + fxx + fyy (Yx)

2
+ fzz (Zx)

2

+2fxyYx + 2fxzZx + 2fyzYxZx

]
π(s)2σ2Xc,π(s)2ds

}
+f(T,Xc,π(T ), Y (T,Xc,π(T )), Z(T,Xc,π(T ))), (4.81)

where we have skipped some arguments under the integral. Inserting (4.63), (4.70) and the
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dynamics of X given by (4.5) we have that

f(t,Xc,π(t), yc,π(t,Xc,π(t)), zc,π(t,Xc,π(t)))

= −
∫ T

t

{[
fs + fy

(
−
[
(r + π(s)(α− r))Xc,π(s) + ℓ(s)− c(s)

]
Yx

−1

2
π(s)2σ2Xc,π(s)2Yxx − c(s) + ρY

)
+fz

(
−
[
(r + π(s)(α− r))Xc,π(s) + ℓ(s)− c(s)

]
Zx

−1

2
π(s)2σ2Xc,π(s)2Zxx − 2c(s)Y + 2ρZ

)]
ds

+(fx + fyYx + fzZx)
([

(r + π(s)(α− r))Xc,π(s) + ℓ(s)− c(s)
]
ds+ π(s)σXc,π(s)dW (s)

)
+
1

2

[
fyYxx + fzZxx + fxx + fyy (Yx)

2
+ fzz (Zx)

2

+2fxyYx + 2fxzZx + 2fyzYxZx

]
π(s)2σ2Xc,π(s)2ds

}
+f(T,Xc,π(T ), Y (T,Xc,π(T )), Z(T,Xc,π(T ))).

After reduction this is

f(t,Xc,π(t), yc,π(t,Xc,π(t)), zc,π(t,Xc,π(t)))

= −
∫ T

t

{(
fs + fy

(
− c(s) + ρY

)
+ fz

(
− 2c(s)Y + 2ρZ

))
ds

+fx
[
(r + π(s)(α− r))Xc,π(s) + ℓ(s)− c(s)

]
ds+ (fx + fyYx + fzZx)π(s)σX

c,π(s)dW (s)

+
1

2

[
fxx + fyy (Yx)

2
+ fzz (Zx)

2
+ 2fxyYx + 2fxzZx + 2fyzYxZx

]
π(s)2σ2Xc,π(s)2ds

}
+f(T,Xc,π(T ), Y (T,Xc,π(T )), Z(T,Xc,π(T ))).

Define for an arbitrary admissible strategy (c, π) the quantities corresponding to (4.79) and
(4.80) by

Ũ = fxx + (Yx)
2
fyy + (Zx)

2
fzz + 2YxZxfyz + 2Yxfxy + 2Zxfxz, (4.82)

J̃ = (ρY − c) fy + 2 (ρZ − cY ) fz + ft. (4.83)

We now get

f(t,Xc,π(t), yc,π(t,Xc,π(t)), zc,π(t,Xc,π(t)))

= −
∫ T

t

{
J̃(s) + fx

[
(r + π(s)(α− r))Xc,π(s) + ℓ(s)− c(s)

]
ds

+(fx + fyYx + fzZx)π(s)σX
c,π(s)dW (s) +

1

2
Ũ(s)π(s)2σ2Xc,π(s)2ds

}
+f(T,Xc,π(T ), Y (T,Xc,π(T )), Z(T,Xc,π(T ))). (4.84)

Next step is, by use of (4.84), to show that for any admissible strategy (c, π) we have

f(t, x, yc,π(t, x), zc,π(t, x))

≤ F (t, x) +

∫ T

t

(
J(s)− J̃(s) +

1

2
σ2π(s)2Xc,π(s)2(U(s)− Ũ(s))

)
ds. (4.85)
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By use of Itô’s formula we get that

F (t,Xc,π(t)) = −
∫ T

t

dF (s,Xc,π(s)) + F (T,Xc,π(T ))

= −
∫ T

t

(
Fsds+ FxdX

c,π(s) +
1

2
Fxxπ(s)

2σ2Xc,π(s)2ds

)
+ F (T,Xc,π(T )).

Since F solves the pseudo Hamilton-Jacobi-Bellman equation (4.77) we see that for the arbitrary
strategy (c, π) we have, ∀(t, x) ∈ (0, T )× R, that

Ft ≤ −
[
(r + π(α− r))x+ ℓ− c

]
(Fx − fx)−

1

2
π2σ2x2(Fxx − U) + J.

Inserting this with x = Xc,π(s), inserting the dynamics of X given by (4.5), and inserting the
terminal conditions (4.78), (4.64) and (4.71) we get that

F (t,Xc,π(t)) ≥ −
∫ T

t

{(
−
[
(r + π(α− r))Xc,π(s) + ℓ(s)− c(s)

]
(Fx − fx)

− 1

2
π(s)2σ2Xc,π(s)2(Fxx − U(s)) + J(s)

)
ds

+ Fx

([
(r + π(s)(α− r))Xc,π(s) + ℓ(s)− c(s)

]
ds+ π(s)σXc,π(s)dW (s)

)
+

1

2
Fxxπ(s)

2σ2Xc,π(s)2ds

}
+ f(T,Xc,π(T ), Y (T,Xc,π(T )), Z(T,Xc,π(T ))).

After reduction this is

F (t,Xc,π(t)) ≥ −
∫ T

t

{(
fx
[
(r + π(α− r))Xc,π(s) + ℓ(s)− c(s)

]
+

1

2
π(s)2σ2Xc,π(s)2U(s) + J(s)

)
ds+ Fxπ(s)σX

c,π(s)dW (s)

}
+ f(T,Xc,π(T ), Y (T,Xc,π(T )), Z(T,Xc,π(T ))).

Insert (4.84) to obtain

F (t,Xc,π(t)) ≥
∫ T

t

(
fx + fyYx + fzZx − Fx

)
π(s)σXc,π(s)dW (s)

−
∫ T

t

(
J(s)− J̃(s) +

1

2
σ2π(s)2Xc,π(s)2(U(s)− Ũ(s))

)
ds

+ f(t,Xc,π(t), yc,π(t,Xc,π(t)), zc,π(t,Xc,π(t))). (4.86)

Since (c, π) is an arbitrarily chosen admissible strategy, taking the conditional expectation given
X(t) = x of the inequality gives (4.85).

Consider now the specific strategy (c∗, π∗) fulfilling the infimum in (4.77). By (4.65) and
(4.72) it follows that

F (1)(t, x) = yc
∗,π∗

(t, x),

F (2)(t, x) = zc
∗,π∗

(t, x).
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Final step is to show that the Nash equilibrium criteria given by Definition 4.2.1 is fulfilled.

Going through the same calculations as above, and using that for the specific strategy (c∗, π∗)
we have, ∀(t, x) ∈ (0, T )× R, that

Ft = −[(r + π∗(α− r))x+ ℓ− c∗](Fx − fx)−
1

2
(π∗)2σ2x2 (Fxx − U) + J,

we get

F
(
t,Xc∗,π∗

(t)
)
=

∫ T

t

{
(fx + fyYx + fzZx − Fx)π

∗(s)σXc∗,π∗
(s)dW (s)

}
+ f

(
t,Xc∗,π∗

(t), Y
(
t,Xc∗,π∗

(t)
)
, Z
(
t,Xc∗,π∗

(t)
))

. (4.87)

Since (c∗, π∗) is an admissible strategy, taking the conditional expectation given X(t) = x on
both sides of the inequality we obtain

F (t, x) = f
(
t, x, yc

∗,π∗
(t, x), yc

∗,π∗
(t, x)

)
. (4.88)

Now let (c̃h, π̃h) be defined by (4.10). To make it explicit that the expressions in (4.82) and
(4.83) depend on h, when using the strategy (c̃h, π̃h), we write Ũh and J̃h, respectively. By (4.85)
and (4.88) we get that

lim
h→0

inf
f
(
t, x, yc

∗,π∗
(t, x), zc

∗,π∗
(t, x)

)
− f

(
t, x, yc̃h,π̃h(t, x), zc̃h,π̃h(t, x)

)
h

= lim
h→0

inf

∫ T

t

(
J̃h(s)− J(s) + 1

2σ
2π̃h(s)

2X c̃h,π̃h(s)2(Ũh(s)− U(s))
)
ds

h

= lim
h→0

inf

∫ t+h

t

(
J̃h(s)− J(s) + 1

2σ
2π(s)2Xc,π(s)2(Ũh(s)− U(s))

)
ds

h

= J̃0(t)− J(t) +
1

2
σ2π(t)2Xc,π(t)2(Ũ0(t)− U(t))

= 0,

where we have used that (c̃h, π̃h) coincides with (c∗, π∗) on [t+h, T ], and with (c, π) on [t,t+h).
We conclude that F (t, x) = V (t, x), and that (c∗, π∗) is the corresponding optimal strategy.
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4.6.2
First. We want to show that the assumption made in (4.44) given as

a(t)b(t) =
g(t)

2

is fulfilled. This is easily seen to be the case since a(T )b(T ) = g(T )
2 = 0, and by use of (4.52)

and (4.53)

∂

∂t
(a(t)b(t)) = a′(t)b+ ab′(t)

= −
{
(r − ρ) +

(α− r)2

σ2γf(t)

[
a(t) + γ(a(t)2 − f(t))

]}
a(t)b(t)− c∗(t)a(t) + ρa(t)b(t),

and

g′(t)

2
= −

{
(r − ρ) +

(α− r)2

σ2γf(t)

[
a(t) + γ(a(t)2 − f(t))

]} g(t)

2
− c∗(t)a(t) + ρ

g(t)

2
.

Second. We want to show that the condition (4.51) for the non-binding case given as

γf(t)

x+K(c∗)(t)
> 0, ∀(t, x) ∈ [0, T )× R,

required for the investment strategy (4.50) to be optimal, is fulfilled.

In order to verify this condition notice that by use of the candidate for the optimal strategy
given by (4.49) and (4.50) we get that

d
(
Xc∗,π∗

(t) +K(c∗)(t)
)

=

[
rXc∗,π∗

(t) +
(α− r)2

σ2γf(t)

[
a(t) + γ

(
a(t)2 − f(t)

)] (
Xc∗,π∗

(t) +K(c∗)(t)
)
+ ℓ(t)− c∗(t)

]
dt

+
α− r

σγf(t)

[
a(t) + γ

(
a(t)2 − f(t)

)] (
Xc∗,π∗

(t) +K(c∗)(t)
)
dW (t) +

(
rK(c∗)(t)− ℓ(t) + c∗(t)

)
dt

=

(
r +

(α− r)2

σ2γf(t)

[
a(t) + γ

(
a(t)2 − f(t)

)])(
Xc∗,π∗

(t) +K(c∗)(t)
)
dt

+
α− r

σγf(t)

[
a(t) + γ

(
a(t)2 − f(t)

)] (
Xc∗,π∗

(t) +K(c∗)(t)
)
dW (t).

We see that (Xc∗,π∗
(t) +K(c∗)(t)) takes the form of a geometric Brownian motion. We get the

solution

Xc∗,π∗
(t) +K(c∗)(t)

=
(
x0 +K(c∗)(0, x0)

)
exp

{∫ t

0

(
r +

(α− r)2

σ2γf(s)

[
a(s) + γ

(
a(s)2 − f(s)

)]
− 1

2

(α− r)2

σ2γ2f(s)2
[
a(s) + γ

(
a(s)2 − f(s)

)]2)
ds+

∫ t

0

α− r

σγf(s)

[
a(s) + γ

(
a(s)2 − f(s)

)]
dW (s)

}
.

(4.89)

From (4.94) below it follows that f is a strictly positive function over the time interval [0, T ).
Finally, since for the non-binding case x0 +K(c∗)(0, x0) > 0 we conclude that the condition is
fulfilled.
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Third. We want to show that the highly non-linear system of partial differential equations given
by (4.52) and (4.53) has a unique global solution. In order to show this take conditional expec-
tation in (4.89) for t = T to get that (remember that K(c∗)(T ) = 0)

Et,x

[
Xc∗,π∗

(T )
]
=
(
x+K(c∗)(t)

)
e
∫ T
t

[r+(α−r)π̃∗(s)]ds (4.90)

Et,x

[(
Xc∗,π∗

(T )
)2]

=
(
x+K(c∗)(t)

)2
e2

∫ T
t [r+(α−r)π̃∗(s)+ 1

2σ
2π̃∗(s)2]ds, (4.91)

where14

π̃∗(t) =
α− r

σ2γf(t)

[
a(t) + γ

(
a(t)2 − f(t)

)]
. (4.92)

We now get that

a(t)
(
x+K(c∗)(t)

)
+ b(t)

= Et,x

[∫ T

t

e−ρ(s−t)c∗(s)ds+ e−ρ(T−t)Xc∗,π∗
(T )

]

=
(
x+K(c∗)(t)

)
e
∫ T
t

[(r−ρ)+(α−r)π̃∗(s)]ds +

∫ T

t

e−ρ(s−t)c∗(s)ds

and

f(t)
(
x+K(c∗)(t)

)2
+ g(t)

(
x+K(c∗)(t)

)
+ h(t)

= Et,x

(∫ T

t

e−ρ(s−t)c∗(s)ds+ e−ρ(T−t)Xc∗,π∗
(T )

)2


= e−2ρ(T−t)Et,x

[(
Xc∗,π∗

(T )
)2]

+ 2

(∫ T

t

e−ρ(s−t)c∗(s)ds

)
e−ρ(T−t)Et,x

[
Xc∗,π∗

(T )
]

+

(∫ T

t

e−ρ(s−t)c∗(s)ds

)2

=
(
x+K(c∗)(t)

)2
e2

∫ T
t [(r−ρ)+(α−r)π̃∗(s)+ 1

2σ
2π̃∗(s)2]ds

+2

(∫ T

t

e−ρ(s−t)c∗(s)ds

)(
x+K(c∗)(t)

)
e
∫ T
t

[(r−ρ)+(α−r)π̃∗(s)]ds

+

(∫ T

t

e−ρ(s−t)c∗(s)ds

)2

.

14Notice that π̃ defines the optimal proposition of Xc∗,π∗
+K(c∗) to invest in stocks S.
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Collecting terms we obtain

a(t) = e
∫ T
t

[(r−ρ)+(α−r)π̃∗(s)]ds, (4.93)

b(t) =

∫ T

t

e−ρ(s−t)c∗(s)ds,

f(t) = e2
∫ T
t [(r−ρ)+(α−r)π̃∗(s)+ 1

2σ
2π̃∗(s)2]ds, (4.94)

g(t) = 2e
∫ T
t

[(r−ρ)+(α−r)π̃∗(s)]ds

∫ T

t

e−ρ(s−t)c∗(s)ds,

h(t) =

(∫ T

t

e−ρ(s−t)c∗(s)ds

)2

.

Now insert (4.93) and (4.94) into (4.92) to get the following integral equation for π̃∗

π̃∗(t) =
α− r

σ2γf(t)

[
a(t) + γ

(
a(t)2 − f(t)

)]
=
α− r

σ2γ

{
e−

∫ T
t [(r−ρ)+(α−r)π̃∗(s)+σ2π̃∗(s)2]ds + γe−

∫ T
t

σ2π̃∗(s)2ds − γ
}
. (4.95)

The key question now is whether the integral equation (4.95) has a unique global solution.
Fortunately this is the case. The technical work is done in Björk et al. (2012). They show that
the algorithm given by

π̃0(t) := 1,

π̃n+1(t) =
α− r

σ2γ

[
e−

∫ T
t

[(r−ρ)+(α−r)π̃n(s)+σ2π̃2
n(s)]ds + γe−

∫ T
t

σ2π̃2
n(s)ds − γ

]
, (4.96)

converges in C[0, T ], and that the full sequence {π̃n} converges to the solution π̃∗.
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5. Why you should care about investment
costs: A risk-adjusted utility approach

Abstract: Under the assumption of zero correlation between cost ratios and ex-
pected investment returns we analyze the impact of proportional investment costs. We
consider a constant relative risk aversion investor optimizing expected utility from ter-
minal wealth and identify, in addition to the direct effect due to the additional costs
incurred, an indirect effect due to a less risky stock position induced by investment
costs. By use of an indifferent compensation measure, defined as the minimum relative
increase in the initial wealth the investor demands in compensation to accept incurring
investment costs of a certain size, we quantify the impact of investment costs. We ob-
tain, for realistic parameters for risk aversion and the financial market, the surprising
results that the indirect effect is between half (myopic investor) and the same (long
term investor) size as the direct effect, and that the investment decision seems to be
of very little importance compared to the size of the investment costs.

Keywords: Investment costs, risk aversion, stochastic control, indifferent compen-
sation measure, certainty equivalents.

5.1 Introduction
Most investors seem primarily to focus on the ability of excellent stock picking, when deciding
which fund should manage their savings. At the same time costs charged by funds seem to differ
by a great deal. The average U.S. equity mutual fund charges around 1.3–1.5 percent, but cost
ratios range from as low as 0.2 (index funds) to as high as 2 percent. In general, costs can vary
substantially across comparable funds, and larger funds and fund complexes charge lower costs
(see e.g. Khorana et al. (2008)). Clearly, the argument for charging high costs is excellent stock
picking. The expensive fund managers are likely to claim that the additional return they are
expected to generate (compared to any cheaper fund manager) more than compensates for the
extra costs. However, the vast majority of the large literature analyzing whether excellent stock
picking skills exist rejects this hypothesis. This is e.g. demonstrated by Gil-Bazo and Ruiz-Verdú
(2009) who consider a data set including all open-end U.S. mutual funds that are active in the
1961 to 2005 period. They consider a series of robustness checks consisting of checking for the
impact of funds with extreme cost ratios and extreme risk-adjusted performance; the impact
of small funds; exclusive focussing on funds for which annual operating costs account for 100
percent of all costs or focussing only on funds with loads; splitting time into subperiods; split-
ting mutual funds into categories. In all cases the conclusion stays the same: The hypothesis
of a unit slope relation between risk-adjusted before-fee performance and cost ratios falls at any
conventional significance level. In fact, ironically, the estimated slope becomes negative. See also
Carhart (1997) who, using the same data set, concludes that higher costs depress investment
performance while increasing fund companies’ profitability. Also Fama and French (2010) report
that only very few funds produce benchmark-adjusted expected returns sufficient to cover their
costs. One of the reasons that some funds are more expensive is due to the more actively man-
aged investments. Huang et al. (2013) report, using a sample of 2979 U.S. equity funds over the
period between 1980 and 2009, that the top and bottom decile of funds on average change their
annualized volatility by more than six percentage points. They also find, by use of a holding-
based measure of risk shifting, that funds which alter risk perform worse than funds that keep
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stable risk levels over time, suggesting that risk shifting either is an indication of inferior ability
or is motivated by agency issues. Summing up, it seems hard to prove that good performance is
anything but a random phenomena.

Consequently, the impact of investment costs is naturally analyzed under the assumption of
a zero correlation between the cost ratio and the expected investment return. The literature, e.g.
the references above, seems only to focus on the loss in rate of return. However, the loss in rate
of return simply induced by paying higher investment costs might not describe the actual loss
suffered by the investor. A more sophisticated approach would be to take into account the risk
aversion of the investor when evaluating the impact of investment costs, thereby also introducing
a change in the investment strategy induced by investment costs. Introducing proportional
investment costs and by use of utility functions, this is the approach taken in our paper. Two
related papers, also taking the investor’s risk aversion into account while considering proportional
costs are Guillén et al. (2013) and Palczewski et al. (2013) (the latter analyzes the impact of
transaction costs).

Guillén et al. (2013) consider a Value at Risk investor (VaR-investor) who invests in a Black-
Scholes market concerned about a given α-percent quantile of the terminal wealth distribution.
By introducing investment costs the investor is forced to invest less in the stock market in order
to maintain the same α-percent quantile. Consequently, the loss in the geometric rate of return
splits into two effects: (a) A direct effect due to the additional expense incurred and (b) an
indirect effect due to a less risky stock position. Some of the capital the investor, prior to
introducing investment costs, was willing to risk losing is now used to pay investment costs.
Guillén et al. (2013) refer to the indirect effect as loss of investment opportunities. The main
drawback of the VaR-approach is that no monetary quantification of how much the investor
actually suffers from investment costs seems to be possible. Focussing at the geometric rate of
return seems a bit ad hoc since, in the first place, when deciding upon the investment strategy,
the VaR-investor had no particular preferences for a high median. Using the geometric rate of
return to measure the impact of investment costs also restricts the parameter space since for
very risk seeking investors, introducing investment costs actually increases the geometric rate of
return.

In contrast, Palczewski et al. (2013) use utility functions, but focus instead on the impact
of transaction costs. They optimize expected utility from investing in a market consisting of a
risk free asset and a risky asset modeled by a diffusion model with state-dependent drift. The
effect of costs can again be divided into a direct and an indirect effect. This time the indirect
effect is due to less trading in the asset portfolio. By calculating the indifference price, defined
as the amount of money the investor is willing to pay up front to avoid incurring transaction
costs, they find that in general the loss in utility due to proportional transaction costs is about
twice as large as the direct expenses incurred.

Similar findings are offered by our paper for the case of proportional investment costs. We
focus on a constant relative risk aversion (CRRA) utility optimizer who hands over his savings
to a fund investing in a frictionless Black-Scholes market while being charged proportional in-
vestment costs. As in Guillén et al. (2013) and Palczewski et al. (2013) we obtain a direct and an
indirect effect due to a change in investment costs. In contrast to the VaR-approach of Guillén
et al. (2013) the change in investment strategy and, consequently, the change in geometric rate of
return induced by a change in investment costs becomes independent of the investment horizon.
The change in geometric rate of return is the same for both short and long term investors. In
order to quantify the financial impact of investment costs we calculate the indifferent compen-
sation ratio (ICR), defined as the minimum relative increase in the initial wealth the investor
demands in compensation to accept incurring investment costs of a certain size. For a CRRA
utility optimizing investor the ICR is proved to be equal to the relative change in certainty
equivalents. By comparing the ICR value to the fraction of initial wealth expected to be spent
on investment costs, we find, similar to Palczewski et al. (2013), that the magnitude of the indi-
rect effect equals the direct effect when considering a long-term investor (40 years horizon, i.e.
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investing for retirement). For a short term (myopic) investor we find that the magnitude of the
indirect effect is half the size of the direct effect. That is, the amount of money needed up front
to be compensated for investment costs can be twice as big as the amount of money expected
to be used on paying investment costs. We refer to the effect as the risk-adjusted impact of
investment costs or, in the words of Jens Perch Nielsen, the more catchy phrase; The double
blow of investment costs. Finally, we undertake a study of whether the investment strategy or
the size of investment costs is of most importance. Specifically, we study an investor facing high
investment costs and an optimal investment strategy (w.r.t. his risk aversion profile) and ask
which suboptimal investment strategies the investor is willing to accept if he at the same time
is offered lower investment costs. The conclusion is independent of the time horizon and very
clear: The asset allocation is of very little importance compared to the size of investment costs.

The outline of the paper is as follows: In Section 5.2 we introduce the investor and the
financial market to be considered, the wealth dynamics, and quantiles for the terminal wealth
distribution together with the geometric rate of return. In Section 5.3 we analyze for a util-
ity optimizing investor the change in investment strategy induced by a change in investment
costs, and we compare the results with the VaR-approach by Guillén et al. (2013). Finally, in
Section 5.4, we use the indifferent compensation measure to quantify the impact of investment
costs, and to evaluate whether the investment strategy or the size of investment costs is of most
importance.

5.2 The financial model
Consider an investor with time horizon T > 0 who has the possibility to invest in a Black-Scholes
market given by a risky stock, S, and a risk-free bank account, B, with dynamics given by

dB(t) = rB(t)dt, B(0) = 1, (5.1)
dS(t) = µS(t)dt+ σS(t)dW (t), S(0) = s0 > 0. (5.2)

We assume the risk-free rate, r, the expected return of the stock, µ, and the volatility of the
stock, σ, to be constant with µ > r. The risky part of the stock, W , is a standard Brownian mo-
tion on the probability space (Ω,F ,P) equipped with the filtration FW = (FW (t))t∈[0,T ] given
by the P -augmentation of the filtration σ{W (s); 0 ≤ s ≤ t},∀t ∈ [0, T ]. In principle, a financial
market model should contain more than one stock. However, it is well known from the Mutual
Fund Theorem by Merton (1971) that for a HARA (Hyperbolic Absolute Risk Aversion) utility
investor, as we shall consider, the optimal asset allocation will always be between an optimal
portfolio of the stocks weighted by their Sharp ratios, and the risk-free bank account (at least
for diffusion processes with deterministic coefficients).

Let X denote the wealth process of the investor and π the proportion of the wealth invested
in risky stocks. Consequently, the proportion 1 − π of the wealth is invested in the risk-free
bank account. Assume further that the investor hands over the asset management to a second
party (e.g. a mutual fund or a pension company), and therefore is subject to investment costs.
More precisely, assume that a constant fraction, ν, of the amount of money invested in the stock
market is deducted from the wealth process. The dynamics of the wealth process becomes

dX(t) =

(
(1− π(t))

dB(t)

B(t)
+ π(t)

dS(t)

S(t)
− π(t)ν

)
X(t)

= (r + π(t)(µ− ν − r))X(t)dt+ σπ(t)X(t)dW (t), (5.3)
X(0) = x0. (5.4)

Note that costs from investing in the risk-free asset are not explicitly indicated, but are indirectly
present through a possibly lower risk-free rate of return. However, compared to costs emerging
from investing in stocks, costs from investing in the risk-free bank asset are likely to be negligible.
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5.2.1 Wealth percentiles for a constant investment strategy
One extremely popular investment strategy, which also turns out to be optimal for the popular
CRRA (Constant Relative Risk Aversion) utility optimizing investor introduced by the pioneering
work of Merton (1969), is to hold, at all times, a constant fraction of wealth in stocks. In this
paper we consider only such constant strategies. Note that the word constant is rather misleading
since the amount of money invested in stocks is dynamically reallocated to keep the fraction of
wealth invested in stocks constant. Letting π denote a constant investment strategy, the wealth
dynamics (5.3) takes the form of a geometric Brownian motion with solution

X(t) = x0 exp

((
r + π(µ− ν − r)− 1

2
π2σ2

)
t+ πσW (t)

)
. (5.5)

Since W (t)
D
=

√
tU , where U is standard normal distributed, we get from (5.5) that the α-

quantile, qα, of the terminal wealth distribution is given by

qα(ν, π) = x0 exp

((
r + π(µ− ν − r)− 1

2
π2σ2

)
T + πσ

√
Tdα

)
, (5.6)

where dα is the α-quantile of the standard normal distribution. In particular, the median is
given by

q50(ν, π) = x0 exp

((
r + π(µ− ν − r)− 1

2
π2σ2

)
T

)
. (5.7)

From this we get that the median rate of return (geometric rate of return), from now on referred
to as simply the rate of return, ρ, is given by

ρ(ν, π) = r + π(µ− ν − r)− 1

2
π2σ2. (5.8)

Note that the rate of return, in contrast to the expected arithmetic rate of return, possesses a
maximum with respect to the risky stock allocation.

5.3 Investment costs’ impact on the investment strategy
Consider a naive investor who for some reasons invests, without any objective in mind, a constant
fraction, π, of his wealth in risky stocks. For the naive investor the gain/loss in terms of rate of
return caused by a change in the investment costs from ν1 to ν2 is given by

ρ(ν2, π)− ρ(ν1, π) = π(ν1 − ν2), (5.9)

where ρ is defined by (5.8). This simple calculation seems to be how investment costs are
normally quantified.

However, a sophisticated investor should take his risk aversion into account and thereby
adjust his investment strategy accordingly when investment costs change. Our main focus will
be how a utility investor adjusts his investment strategy in response to changes in the investment
costs and how to quantify the associated gain or loss. However, for comparison, we first consider
a VaR-investor as done by Guillén et al. (2013). The main point is that the sophisticated
investor experiences a greater change in the rate of return induced by a change in investment
costs compared to the naive investor.

5.3.1 Base case parameter values
Throughout this paper we will, as a base case example for illustrating results, use the market
parameters µ = 7%, σ = 20% and r = 3%. When illustrating the impact of investment costs
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we consider the difference between paying investment costs at rate ν1 = 1.4% and ν2 = 0.6%,
respectively. Most papers focus on the impact of introducing investment costs. We focus on
an individual who prefers to hand over the asset management to a fund. In that situation it
seems unattainable to obtain zero investment costs. Therefore, we consider instead the “price” of
investing through an expensive fund (ν1) compared to a cheap fund (ν2). The investment costs
considered are consistent with those observed in the market (see references in Section 5.1).

5.3.2 The Value at Risk approach
This subsection briefly presents and explains the impact of investment costs for a VaR-investor,
as presented in Guillén et al. (2013). A VaR(α)-investor is an investor being concerned with
the value of the α-quantile of the terminal wealth distribution, i.e. with the level for which the
realized terminal wealth risk to fall below with a probability of α-percent. Denote the lower level
of wealth by X̂(T ). To be more precise, the VaR(α)-investor facing investment costs ν1 chooses
his investment strategy, π̂1, such that

qα(ν1, π̂1) = X̂(T ), (5.10)

where qα is given by (5.6). The point is that if investment costs change from ν1 to ν2 this relation
holds no more, i.e.

qα(ν2, π̂1) ̸= X̂(T ). (5.11)

Obviously, the VaR-(α)-investor should adjust his investment strategy such that the VaR-criteria
(5.11) is still fulfilled. We therefore look for a change in the investment strategy, ∆, fulfilling
the relation

qα(ν2, π̂1 +∆) = qα(ν1, π̂1), (5.12)

i.e. being faced with investment costs ν2 the investor should instead invest π̂2 = π̂1 + ∆ of his
wealth in risky stocks. We get the solution

∆ =
−b±

√
D

2a
, (5.13)

where D = b2 − 4ac and

a =
σ

2
, (5.14)

b = −(µ− ν2 − r) + π̂1σ
2 − σdα√

T
, (5.15)

c = π̂1(ν2 − ν1). (5.16)

Of the two solutions we focus on the one allowing for more stocks in the case of lower costs (ν2 <
ν1) and fewer stocks in the case of higher costs (ν2 > ν1). Guillén et al. (2013) derive restrictions
on the parameter space ensuring that the median increases and the α-quantile decreases when
exposure in the risky asset increases. In contrast to (5.9) the change in rate of return becomes

ρ(ν2, π̂2)− ρ(ν1, π̂1) = π̂1(ν1 − ν2) + ∆(µ− ν2 − r)− 1

2
∆2σ2 − π̂1∆σ

2. (5.17)

Note that since ∆ and π̂1 depend on the investment horizon so does the change in rate of re-
turn. Figure 5.1 illustrates for the base case example (see Subsection 5.3.1) the VaR-calibration
concept for an investor investing 1 unit initially. First, when investment costs are ν1 = 1.4%
the VaR(10%)-investor chooses to invest π̂1 = 60% of his wealth in stocks corresponding to
a 10-percent quantile for the terminal wealth distribution of q10%(ν1, 60%) = 1.75 and a me-
dian of q50%(ν1, 60%) = 4.65. Not changing the investment strategy, but now being charged
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ν2 = 0.6% in investment costs, the 10-percent quantile becomes q10%(ν2, 60%) = 2.12 and the
median increases, due to paying less costs, to q50%(ν1, 60%) = 5.63. However, due to gained in-
vestment opportunities the investor are able to increase the fraction of wealth invested in stocks
to π̂2 = 74.4% thereby obtaining the original 10-percent target quantile q10%(ν1, 60%) = 1.75
and at the same time an even bigger median of size q50%(ν1, 60%) = 5.87. In other words,
Figure 5.1 illustrates the direct and the indirect effect of investment costs.
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Figure 5.1: Illustration of the VaR-calibration: Terminal wealth distribution for an investor
with time horizon T = 40 years investing π̂1 = 60% (solid curve), π2 = 60% (dotted curve) or
π̂2 = 74.4% (dashed curve) of his wealth in stocks while being charged ν1 = 1.4%, ν2 = 0.6%
or ν2 = 0.6% in investment costs, respectively. The 10-percent quantiles and the medians are
indicated by vertical lines.

Guillén et al. (2013) focus on the loss in rate of return incurred by the VaR-investor from in-
troducing investment costs. For some parameters, going from no costs to costs actually charged
by funds around the world, they conclude that the loss in rate of return calculated by (5.17) is
double the size of the naive loss calculated by (5.9), i.e. the indirect effect is as big as the direct
effect. However, going from low investment costs around 0.6 percent to higher costs at around 1.4
percent, both within the interval of normal costs charged by real life funds, we get a much more
modest additional loss in the rate of return; the loss is about 1/5 higher than the loss from the
naive calculation. To be concrete, for the case illustrated in Figure 5.1, the direct loss in the rate
of return is 0.48 percent, and the indirect loss due to lost investment opportunities is 0.10 percent.

One question the VaR-approach is not capable of answering is how to evaluate the impact of
investment cost taking the entire distribution of terminal wealth into account. E.g. how much is
it “worth” being charged ν2 percent instead of ν1 percent? This is the reason we take on another
approach and consider a utility optimizing investor instead.
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5.3.3 The utility approach
Consider an investor measuring his attitude towards risk by a constant relative risk aversion
(CRRA) function defined by

u(x) =


xγ

γ , if x > 0,

limx↘0
xγ

γ , if x = 0,

−∞, if x < 0,

(5.18)

for some γ ∈ (−∞, 1)\{0} (γ = 0 corresponds to the logarithmic case). A commonly used object
for the investor is to try maximizing the expected utility from terminal wealth. Formally, the
investor looks for the investment strategy π∗ fulfilling

sup
π
E [u(Xπ(T ))] = E

[
u
(
Xπ∗

(T )
)]
, (5.19)

where we have indicated the π-dependence of the terminal wealth in the notation. The problem
given by (5.19) is one of the most well-known optimization problems from the literature of
financial stochastic control and is often referred to as Merton’s problem after the pioneering work
of Merton (1969). The solution to the problem can be obtained by use of dynamic programming,
which turns the stochastic optimization problem into a deterministic optimization problem and
a set of partial differential equations (Hamilton-Jacobi-Bellman equations), or by use of the
modern, more direct, method called the “Martingale method” developed by Cvitanic et al. (1987)
and Cox and Huang (1989), which builds upon modern mathematical finance theory. The
solution turns out to depend on the market price of risk, the investor’s risk aversion, and the
investment costs, and is given by

π∗(ν) =
1

1− γ

µ− ν − r

σ2
. (5.20)

We see that the optimal investment strategy is to hold a constant fraction of wealth in risky
assets. This is a feature of CRRA utility which, from a mathematical point of view, is rather
appealing (see Subsection 5.2.1). The strategy itself dictates directly the change in the risky
position induced by a change in investment costs. We get

∆ = π∗(ν2)− π∗(ν1) =
1

1− γ

ν1 − ν2
σ2

. (5.21)

As for the VaR-approach we see that, naturally, if the investment costs decrease (increase) more
stocks should be bought (sold). However, opposed to the VaR-approach the change in the risky
position is always unique (no short-selling solution). Even more appealing we get in contrast
to the VaR-approach (see (5.17)) that the change in rate of return becomes independent of the
investment horizon. We get, with π∗

i = π∗(νi), that

ρ(ν2, π
∗
2)− ρ(ν1, π

∗
1) = π∗

1(ν1 − ν2) + ∆(µ− ν2 − r)− 1

2
∆2σ2 − π∗

1∆σ
2. (5.22)

Clearly, the rather large change in rate of return induced by lost/gained investment opportuni-
ties, due to a change in investment costs, was for the VaR-investor partly because a very long
investment horizon was considered. Since many private investors mainly invest through being
a member of a pension scheme, i.e. long time horizon, the conclusion still seems to be highly
relevant. However, the fact that for the utility investor the change in rate of return induced
by a change in investment costs does not depend on the investment horizon counters criticism
claiming that the effect is negligible for short horizons.

Figure 5.2 illustrates for the base case example (see Subsection 5.3.1) the utility-calibration
concept for an investor investing 1 unit initially. First, when investment costs are ν1 = 1.4% the
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investor optimally invests π∗
1 = 60% of his wealth in stocks. However, due to gained investment

opportunities the investor increases this fraction to π∗
2 = 78.5% when investment costs decline to

ν2 = 0.6%. In contrast to the VaR-approach we see in Figure 5.2 that the 10-percent quantiles
of the terminal wealth distributions are not equal for the two cases. The utility investor does not
focus solely on the 10-percent quantile, but evaluates the entire distribution of terminal wealth
when he decides how much of the saved investment costs to invest in stocks. In this respect he
acts more sophisticated than the VaR-investor.
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Figure 5.2: Illustration of the utility-calibration: Terminal wealth distribution for an investor
with time horizon T = 40 years investing π∗

1 = 60% (solid curve) or π∗
2 = 78.5% (dashed

curve) of his wealth in stocks while being charged ν1 = 1.4% or ν2 = 0.6% in investment costs,
respectively. The 10-percent quantiles and the medians are indicated by vertical lines.

5.3.4 Comparing the VaR and utility approach
In Subsections 5.3.2 and 5.3.3 we considered a VaR-investor and a utility optimizing investor,
respectively. The VaR-investor picked his investment strategy in order to obtain a target 10-
percent quantile for the terminal wealth distribution equal to 1.75. The utility investor picked
his investment strategy in order to maximize expected utility from terminal wealth while using
the power utility function given by (5.18) with risk aversion given by γ = −0.0833. In order to be
able to compare the two investors’ reaction to changes in investment costs we have constructed
the two examples such that when investment costs are ν1 = 1.4% both investors prefer to invest
π = 60% of the wealth in stocks.

Changing investment costs from ν1 = 1.4% to ν2 = 0.6% we saw in Subsections 5.3.2 and 5.3.3
that the change in the investment strategy was ∆ = 14.4% for the VaR-investor and ∆ = 18.5%
for the utility investor. From this example we conclude that the utility investor reacts more
strongly compared to the VaR-investor when investment costs change. However, as illustrated
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by Figure 5.3, this is not a general rule of thumb. In fact, by changing the risk profiles such
that both investors prefer a π = 30% position of wealth in stocks when investment costs are
ν1 = 1.4%, lowering the investment costs now makes the VaR-investor change his investment
strategy more than the utility optimizing investor.
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Figure 5.3: Illustrations of how the utility optimizing investor (solid curves) and the VaR-investor
(dashed curves) change investment strategy when investment costs decrease from ν1 = 1.4% to
ν2 ∈ [0, ν1]. The left plot illustrates the case where the investors prefers a π = 60% allocation in
stocks, and the right plot the case of a preferable π = 30% allocation in stocks, when investment
costs are ν1 = 1.4%. The dots indicate the base case example from earlier subsections where
investment costs decrease to ν2 = 0.06%. The investment horizon is T = 40.

5.4 Quantification of the impact of investment costs
In this section we use the utility approach described in Subsection 5.3.3 to quantify the impact
of investment costs. Inserting the optimal investment strategy (5.20) into (5.5) we are able to
calculate the optimal expected utility given by (5.19). We get

sup
π
E
[
u
(
X(ν,π)(T )

)]
= E

[
u
(
X(ν,π∗)(T )

)]
=

1

γ
xγ0 exp

((
r + π∗(µ− r − ν)− 1

2
(π∗)

2
σ2

)
Tγ +

1

2
(π∗)

2
σ2γ2T

)
=

1

γ
xγ0 exp

{(
r +

1

2

γ

1− γ

(
µ− r − ν

σ

)2
)
T

}
, (5.23)
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where x0 denotes the initial wealth. Now, define the Indifferent Compensation Ratio as the
minimum relative increase in the initial wealth the investor demands in compensation to accept
incurring higher investment costs. Formally, the indifferent compensation ratio for two given
levels of investment costs, ICR(ν1,ν2), is for v2 ≤ v1 given by the relation

sup
π
E
[
u
(
X(ν2,π)(T )

) ∣∣∣X(ν2,π)(0) = x0

]
= sup

π
E
[
u
(
X(ν1,π)(T )

) ∣∣∣X(ν1,π)(0) = x0
(
1 + ICR(ν1,ν2)

)]
. (5.24)

The certainty equivalent is the smallest amount of money the investor is willing to receive
with certainty at the horizon in exchange for the possibility to invest in the stock market. In
formula, the certainty equivalent for a given level of investment costs, CEQ(ν), is defined by the
relation

u
(
CEQ(ν)

)
= sup

π
E
[
u
(
X(ν,π)(T )

)]
. (5.25)

Since by (5.5) the wealth process is linear in initial wealth we obtain

u
(
CEQ(ν2)

)
= u

((
1 + ICR(ν1,ν2)

)
CEQ(ν1)

)
. (5.26)

From this we conclude that for power utility the two measures are equivalent in the sense that

CEQ(ν2) − CEQ(ν1)

CEQ(ν1)
=

(
1 + ICR(ν1,ν2)

)
CEQ(ν1) − CEQ(ν1)

CEQ(ν1)
= ICR(ν1,ν2), (5.27)

i.e. the relative change in certainty equivalents equals the indifferent compensation ratio. This
is another appealing feature of power utility. Note that the indifferent compensation ratio given
by (5.24) can easily be calculated by (5.27) and (5.23).

We are now in a position to quantify the impact of investment costs using the indifferent
compensation measure given by (5.24). Consider the base case example of Subsection 5.3.1 with
one unit initially invested and investment costs ν1 = 1.4% and ν2 = 0.6%, respectively. We get

ICR(ν1,ν2) =
CEQ(ν2) − CEQ(ν1)

CEQ(ν1)
=

5.66− 4.54

4.54
= 0.248, (5.28)

i.e. the investor profits a gain equal to 24.8 percent of the initial wealth when investment costs
decrease from ν1 to ν2. In Subsection 5.3.2 we considered the change in rate of return induced by
a change in investment costs and compared the naive change given by (5.9) with the change the
VaR-investor experienced given by (5.17). For the utility optimizing investor it seems natural
to compare the indifferent compensation ratio with the present value of expected accumulated
investment costs over the horizon. In order to do so note that

d(e−rtX(t)) = −re−rtX(t)dt+ e−rtdX(t)

= e−rtX(t)π(µ− r − ν)dt+ e−rtX(t)πσdW (t), (5.29)

which implies

e−rTX(T ) = x0 +

∫ T

0

e−rtX(t)π(µ− r − ν)dt+

∫ T

0

e−rtX(t)πσdW (t). (5.30)

Taking expectation, noting that the wealth process is strictly positive, and using (5.5), we get
the following expression for the expected accumulated investment costs over the horizon.

adm(ν, π) ≡ E

[∫ T

0

e−rtX(t)πνdt

]
= E[x0 − e−rTX(T ) +

∫ T

0

e−rtX(t)π(µ− r)dt]

= x0

(
ν

µ− r − ν

)(
eπ(µ−ν−r)T − 1

)
. (5.31)
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From this we define the Relative present value of the Expected Change in accumulated investment
costs induced by lowering investment costs from ν1 to ν2, REC(ν1,ν2), by

REC(ν1,ν2) ≡
adm(ν1, π

∗
1)− adm(ν2, π

∗
2)

x0
. (5.32)

Note that, as is the case for the indifferent compensation ratio, this value is independent of the
size of the initial wealth. We interpret (5.32) as the direct effect and the difference between (5.27)
and (5.32) as the indirect effect of investment costs. The left plot in Figure 5.4 compares the
indifferent compensation ratio (5.27) with (5.32) for different investment costs. In other words,
we compare the size of the compensation sum with the expected accumulated investment costs
over the horizon, relative to the size of the initial wealth. For the base case example (ν∗1 , ν

∗
2 ) =

(1.4%, 0.6%) with corresponding optimal investment strategies (π1, π2) = (60%, 78.4%) we get

REC(ν1,ν2) = 0.467− 0.337 = 0.130, (5.33)

i.e. 13 percent of the initial wealth is expected to be used to pay for the extra investment costs.
In contrast, we got in (5.28) that the investor demands an increase of 24.8% of initial wealth
in compensation to accept incurring the higher investment costs ν1 = 1.4% instead of the lower
ν2 = 0.6%. The great gap between these two values (the indirect effect) is due to the risk aver-
sion of the utility investor. The “fear” that the actual amount of money spent on investment
costs exceeds the expectation is overwhelming compared to the “benefit” that it is below. This
is exactly what most analyses seem to forget. The fact that for reasonable values of investment
costs the effect of higher costs seems to double is quiet surprising. As mentioned, one could refer
to the phenomenon as The double blow of investment costs. Clearly, one wonders how much this
double effect is due to the long horizon (T=40) considered by the base case example. The right
plot in Figure 5.4 illustrates that the effect is substantial even for a short term investor. Still,
for a myopic investor the indirect effect is half the size of the direct effect.

Finally we analyze the relative importance of the investment strategy and investment costs.
Specifically, we consider a power utility optimizing investor who hands over his savings to a fund
charging him high investment costs at a rate ν1. In return, the fund offers a tailored investment
strategy π∗

1 fitted to meet the risk preferences of the client, i.e. the object given by (5.19)
is optimized. The investor now becomes aware that another fund offers to manage his savings
while only charging him investment costs at a lower rate ν2. However, in order to offer this cheap
product, the fund is organized as an investment collective meaning that all members follow the
same investment strategy π2. Obviously, if the common investment strategy π2 exercised by the
cheap fund happens to equal the tailored optimal investment strategy π∗

2 it’s a no-brainer —
the investor should move to the cheap fund. However, how much can the collective investment
strategy π2 offered by the cheap fund differ from the optimal tailored investment strategy π∗

2

while still being preferable for the investor to move to the cheap fund? In formula, we look for
the investment strategies π2 satisfying the relation

u
(
CEQ(ν1)

)
= E

[
u
(
X(ν2,π2)(T )

)]
. (5.34)

By use of (5.23) we get the solution

π2 =
−b±

√
D

2a
, (5.35)

where D = b2 − 4ac and

a =
σ

2
γ(1− γ), (5.36)

b = −(µ− ν2 − r), (5.37)

c =
1

2

γ

1− γ

(
µ− v1 − r

σ2

)2

. (5.38)
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Figure 5.4: Illustrations of the indifferent compensation ratio (ICR) and the relative present
value of the expected change in accumulated investment costs (REC). The left plot illustrates
for a fixed horizon T = 40 the values when investment costs decreases from ν1 = 1.4% to
ν2 ∈ [0, ν1] (ICR solid curve, REC dashed curve). The dots indicate the base case example from
earlier subsections where investment costs decrease to ν2 = 0.06%. The right plot illustrates for
a decrease in investment costs from ν1 = 1.4% to ν2 = 0.6% the proportion between the two
measures (ICR/REC) for varying time horizons.

Note that the solution does not depend on the investment horizon.
The right-most curve in Figure 5.5 illustrates, for the parameters (ν1, π∗

1) = (1.4%, 60%) and
ν2 ∈ [0, ν1], the cost-dependent value of π2 for which the investor is indifferent between the two
funds. From left to right the next 5 curves illustrates cost-dependent values of π2 for which
the investor is 10, 20, 30, 40 and 50 percent better off being a member of the cheaper fund.
The line illustrates the cost-dependent optimal risk allocation π∗

2 . The conclusion is surprisingly
clear. If the investor is offered the lower cost rate ν2 = 0.6% instead of the higher cost rate
ν1 = 1.4%, he is better off almost no matter how much the investment strategy differs from his
risk preferences. Any investment strategy π2 ∈ (0.28, 1.29) makes the cheaper fund preferable
(remember π∗

2 = 78.5% is optimal). As seen in Figure 5.5 this interval shrinks when considering
scenarios where the investor is 10, 20, 30, 40 and 50 percent better off. Still, the range of
investment strategies are incredible large. Once again, the conclusion, which is independent
of the investment horizon, is very clear: The investor should be much more concerned with
investment costs compared to being concerned with which investment strategy exactly meets his
risk preferences.
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Figure 5.5: The curves illustrate for given investment costs ν2 ∈ [0, ν1] the investment strategies
π2 which makes the investor (from right to left) 0, 10, 20, 30, 40 and 50 percent better off
compared to being charged ν1 = 1.4% while using the optimal investment strategy π∗

1 = 60%.
The line illustrates the cost-dependent optimal stock allocation.
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6. Entrance times of random walks: With
applications to pension fund modeling

Abstract: The purpose of the paper is twofold. First, we consider entrance times
of random walks, i.e. the time of first entry to the negative axis. Partition sum for-
mulas are given for entrance time probabilities, the nth derivative of the generating
function, and the nth falling factorial entrance time moment. Similar formulas for the
characteristic function of the position of the random walk both conditioned on entry
and conditioned on no entry are also established. Second, we consider a model for a
with-profits collective pension fund. The model has previously been studied by ap-
proximate methods, but we give here an essentially complete theoretical description
of the model based on the entrance time results. We also conduct a mean-variance
analysis for a fund in stationarity. To facilitate the analysis we devise a simple and
effective exact simulation algorithm for sampling from the stationary distribution of a
regenerative Markov chain.

Keywords: Random walks, entrance times, generating function, factorial moment,
partition sum, stationarity, exact simulation, collective pension fund, with-profits con-
tracts.

6.1 Introduction
This paper analyzes a “with-profits collective pension scheme”; this type of scheme and variants
hereof are widespread, among other places, in the Nordic countries and the Netherlands. Mem-
bers of the scheme are guaranteed a minimum benefit. The guarantees are a liability for the
pension fund for which it must reserve an amount of money equal to the net present value of
future guaranteed benefits (the reserve). In addition to the already guaranteed benefits mem-
bers may receive bonus in the form of increased guarantees. Bonus is attributed periodically,
e.g. annually, when the ratio of total assets to the reserve (the funding ratio) is sufficiently high.
The phrase “with-profits” refers to this profit-sharing mechanism.

Assets in excess of the reserve are termed the bonus potential. The bonus potential allows the
fund to invest in risky assets by absorbing adverse investment results. The scheme is “collective”
in the sense that the bonus potential is considered common to all members. It is also collective in
the sense that the investment strategy and bonus policy is the same for all members. Collective
funds generally benefit from economy of scale in the form of low administration and investment
costs. The flip side is the lack of an individual investment strategy.

We consider a model for a collective pension fund in which bonus is attributed when the
funding ratio exceeds a given bonus threshold. The fund follows a CPPI (Constant Proportion
Portfolio Insurance) investment strategy in order to stay solvent, i.e. to ensure that total assets
exceed the reserve. The paper gives an essentially complete description of the fund dynamics
including the time between bonuses, the (conditional) expected bonus percentage and the (con-
ditional) expected funding ratio. The analysis is based on a detailed study of an embedded
one-sided random walk obtained by a transformation of the funding ratio process sampled at
the discrete set of time points where bonus can be attributed. We consider both a fund starting
at the bonus threshold and a fund in stationarity. Furthermore, we use the results to perform a
mean-variance analysis of a standardized benefit payout. The analysis is performed for a fund
in stationarity representing the “average” member. To facilitate the analysis we also employ an
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exact simulation algorithm, which might be of independent interest.

The theoretical foundation for the analysis is a series of new results for entrance times of
random walks derived in this paper. For a random walk started at the origin the entrance time
is the time of entry into (−∞, 0]. The main theoretical results are partition sum formulas for the
nth derivative of the entrance time generating function and for the nth falling factorial entrance
time moment. The latter result generalizes the well-known formula for the mean entrance time.
We also give a partition sum formula for entrance time probabilities, and a similar formula for
the position of the random walk conditioned on entrance at time n. These results are implicit
in Spitzer (1956) and Asmussen (2003), but the proofs are new and simpler. Finally, we give a
new partition sum formula for the position of the random walk conditioned on entrance taken
place after time n.

The results allow explicit calculations of the entrance time probabilities and moments in terms
of the marginal distribution of the random walk. The computational effort gradually becomes
prohibitive, but the first 100, say, entrance time probabilities and moments are computationally
feasible. We use the results to study the one-sided random walk embedded in the funding ra-
tio process by utilizing the fact that a one-sided random walk and its associated (unrestricted)
random walk are identical up to the time of first entry into (−∞, 0]. However, the results are
generally applicable and not limited to our pension fund application.

Optimizing utility from terminal wealth for an individual saving for retirement is treated by
numerous papers. The foundation was laid by Richard (1975) and to mention a few, who among
other results obtain optimal investment strategies, there is, Huang and Milevsky (2008) who allow
for unspanned labor income; Huang et al. (2008) who separate the breadwinner income process
from the family consumption process; Steffensen and Kraft (2008) who generalize to a multi-
state Markov chain framework typically used by actuaries for modeling a series of life history
events; Bruhn and Steffensen (2011) who generalize to a multi-person household, with focus on
a married couple with economically and/or probabilistically dependent members; Kwak et al.
(2011) who also consider a household but focus on generation issues; Kronborg and Steffensen
(2013) who calculate the optimal investment strategy for a pension saver in the present of a
minimum rate guarantee; and Gerber and Shiu (2000) who present a comprehensive discussion
of terminal utility optimization in a pension saving context. There is also a vast literature on
modern investment management, founded by Markowitz (1952) and Merton (1971), aimed at
finding optimal investment strategies without the pension aspect.

In contrast to the literature cited above this paper takes the point of view of a pension
fund where a group of people share a common investment strategy. Investment gains are shared
through a bonus strategy by which collective funds above a threshold are transferred to individual
guarantees. Based on results on utility optimization of durable goods by Hindi and Huang (1993)
it can be shown that the optimal bonus strategy is to continuously attribute bonus whenever the
funding ratio exceeds a certain barrier — thereby not allowing the funding ratio to exceed the
barrier. In this paper, and in real life, the transfer is done periodically rather than continuously.
References for continuous-time analysis of pension schemes taking both assumed (technical)
returns, realized returns and bonus into account include Norberg (1999), Steffensen (2000),
Norberg (2001), Steffensen (2004) and Nielsen (2006).

We assume the fund to follow a CPPI strategy. This strategy ensures that the fund remains
funded, and it is “locally” optimal if we consider the periods between possible bonus attributions
as local horizons. More precisely, Preisel et al. (2010) point out that CPPI is optimal in a finite
horizon setting with HARA-utility and a subsistence level corresponding to a terminal funding
ratio of one. CPPI strategies are treated, for the unrestricted case, by Cox and Huang (1989),
and for the restricted case, by Teplá (2001). Using a CPPI strategy, and thereby avoiding insol-
vency, as done in this paper, stands in contrast to the literature on constructing contracts that
are fair between owners and policyholders, see e.g. Briys and de Varenne (1997) and Grosen and
Jørgensen (2000).
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The current paper is related to Preisel et al. (2010), Kryger (2010) and Kryger (2011). We use
the same underlying funding ratio dynamics, but the pension product and the terms by which
members enter and leave the fund differ. In the cited papers members pay a fixed share (possibly
zero) of contributions to the bonus potential on entry. This raises a number of issues regarding
intergenerational fairness. In the present setup the share depends on the funding status of the
fund in such a way that the contract is always financially fair. Methodologically, the cited papers
use various analytical approximations while the current paper relies almost exclusively on exact
results.

The main insight of Preisel et al. (2010) is that a given year’s apparent success of a large
bonus resulting from a high equity allocation can come at the even higher price of subsequent
large losses trapping the company at a low funding ratio for a long period. They also derive
approximations to the expected bonus and funding ratio in stationarity. Kryger (2010) finds
optimal investment strategies for power utility and mean-variance criteria. For fixed values of
the bonus threshold, he finds optimal investment strategies in the class of CPPI strategies for a
fund in stationary. It is found that different investment strategies imply only modest differences
in utility and, hence, that an investment collective can accommodate quite different attitudes
towards risk. Finally, Kryger (2011) studies the impact of the pension design on efficiency and
intergenerational fairness.

The rest of the paper is organized as follows. Section 6.2 presents the theoretical contributions
on entrance times and moments of random walks. Section 6.3 describes the pension fund model,
and Section 6.4 applies the random walk results to study bonus waiting times, size of bonus and
the funding ratio. Results are given for a fund started at the bonus threshold and for a fund
in stationarity. Section 6.5 contains a comprehensive numerical application including a mean-
variance analysis. It also explains the exact simulation algorithm used in the analysis. Finally,
the appendix contains proofs for the results of Section 6.2 and additional lemmas.

6.2 Random walks
In this section we present a series of results on entrance times and conditional characteristic
functions of random walks. The results will be used in subsequent sections to provide a detailed
description of the distribution of bonus times, size of bonus and funding ratio of the collective
pension fund model under study. However, the results are generally applicable and can be
applied in many other contexts as well.

The entrance time of a random walk is defined as the (first) time of entry into (−∞, 0] after
time 0. The results to follow devise how a number of quantities related to entrance times can
be computed as sums over partition sets. We present both new results and existing results with
new and simpler proofs. The results fall in three parts.

First, we derive a closed-form formula for the entrance time probabilities of a random walk
started at the origin (Theorem 6.2.3). This result is also implicit in the seminal paper by Spitzer
(1956), but we give here a simpler self-contained proof. Second, we derive an expression for
the nth derivative of the generating function for the entrance time (Theorem 6.2.5), which we
subsequently use to derive a formula for the factorial moments (Theorem 6.2.6). These results are
new. Third, we derive formulas for the characteristic function of the position of the random walk
conditioned on entrance at time n (Theorem 6.2.8) and on entrance after time n (Theorem 6.2.9).
The first of these results is known, but the proof is new, while the second result is new. Most of
the proofs rely on combinatorial arguments, some of which might be of independent interest, in
particular Lemma 6.6.1.
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6.2.1 Entrance times and partitions
Consider the random walk

S0 = 0 and Sn = Sn−1 +Xn for n ∈ N, (6.1)

where X1, X2, . . . are i.i.d. random variables. Following the notation and terminology of As-
mussen (2003) we let τ− denote the entrance time to (−∞, 0], also known as the first (weak)
descending ladder epoch, defined by

τ− = inf{n ≥ 1 : Sn ≤ 0}. (6.2)

In this section our prime interest is the calculation of the entrance time probabilities

τn = P (τ− = n) = P (S1 > 0, . . . , Sn−1 > 0, Sn ≤ 0), (6.3)

i.e. the probability that the entry into (−∞, 0] occurs at the nth step. To facilitate the study of
(τn)n∈N we introduce its generating function, defined for 0 ≤ s ≤ 1 by

τ(s) =
∞∑

n=1

τns
n. (6.4)

Let pn = P (Sn ≤ 0) for n ≥ 1. The following surprising theorem, originally due to Andersen
(1954)1, expresses τ in terms of the (marginal) probabilities pn. The original proof is complicated
but a simple combinatorial proof now exists, see e.g. Theorem XII.7.1 of Feller (1971).

Theorem 6.2.1. (Sparre Andersen Theorem) For 0 ≤ s < 1

log

(
1

1− τ(s)

)
=

∞∑
n=1

sn

n
pn. (6.5)

By Theorem 6.2.1 we can write the generating function as

τ(s) = 1− eH(s), where H(s) = −
∞∑

n=1

sn

n
pn. (6.6)

Now, since

τn =
τ (n)(0)

n!
, (6.7)

where τ (n) denotes the nth derivative of τ , the entrance time probabilities can in principle be
calculated by repeated differentiation of expression (6.6). However, direct differentiation leads
to an exponentially increasing number of terms (the number of terms almost triples on each
iteration) so this approach is infeasible in practise for all but the smallest n. Fortunately, the
number of different terms is substantially smaller. This observation gives rise to a summation
formula which makes it computationally feasible to calculate τn for n up to at least 100. In order
to state the result we define the set of integer partitions of a given order.

Definition 6.2.1. Define for n ≥ 1 the partition set of order n by

Dn =

{
(σ1, . . . , σn)

∣∣∣σ1 ∈ N0, . . . , σn ∈ N0,

n∑
i=1

iσi = n

}
, (6.8)

where N0 = {0, 1, 2, . . .}.
1Erik Sparre Andersen (1919–2003) was a Danish mathematician and actuary. He played a prominent role in

the design and operation of the Danish Labour Market Supplementary Pension Scheme (ATP) from its foundation
in 1964 and in the years to follow. The results of this paper rest to a large extent on the work of our former
colleague.
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By definition D0 consists of the empty partition. Integer partitions occur in number theory
and combinatorics, and the size of Dn as a function of n (the partition function) is a well-studied
object. The following asymptotic expression is due to Hardy and Ramanujan (1918)

#Dn ≈
1

4n
√
3
eπ
√

2n/3. (6.9)

We note that the size of Dn increases sub-exponentially in n.
For later use, we define for σ ∈ Dn the sign of the partition and two combinatorial coefficients

sgn(σ) = (−1)
∑n

i=1 σi , dσ =
n∏

i=1

σi!i
σi , cσ =

n!∏n
i=1 σi!(i!)

σi
. (6.10)

We also need the following fundamental identity often used in connection with generating
functions, see e.g. Chapter 7 of Szpankowski (2001) for a proof.

Theorem 6.2.2. Provided
∑∞

n=1 anb
n converges absolutely

exp

( ∞∑
n=1

anb
n

)
= 1 +

∞∑
m=1

∑
σ∈Dm

bm

σ1!σ2! · · ·σm!

m∏
n=1

aσn
n . (6.11)

Combination of Theorem 6.2.1 and Theorem 6.2.2 yields a partition sum formula for the
entrance time probabilities in terms of the probabilities pn. This result can also be derived from
Spitzer (1956), but the present proof is considerably simpler.

Theorem 6.2.3. For n ≥ 1

τn = −
∑
σ∈Dn

sgn(σ)

dσ

n∏
i=1

pσi
i . (6.12)

Proof. See Appendix 6.6.1.

Provided pn are available Theorem 6.2.3 makes it feasible to calculate entrance time prob-
abilities for fairly large values of n. Table 6.2.1 shows the size of Dn, i.e. the number of terms
in the partition sum (6.12), and the number of terms when (6.7) is used directly.2 Clearly, the
computational gain is massive.

n 1 2 3 4 5 10 40 100 200
#Dn 1 2 3 5 7 42 37338 1.9057 · 108 3.9730 · 1012

#Naive 1 2 4 10 26 5.476 · 103 1.1257 · 1018 4.7720 · 1046 2.4594 · 1094

Table 6.1: Number of terms needed to calculate the entrance time probabilities by formula (6.12)
and (6.7), respectively.

Theorem 6.2.3 also provides the following purely combinatoric result (which is used in the
proof of Lemma 6.6.1). For n ≥ 2 ∑

σ∈Dn

sgn(σ)

dσ
= 0. (6.13)

This follows from (6.12) by considering the degenerate case Xi ≡ 0 in which case pn = 1 for all
n, τ1 = 1 and τn = 0 for n ≥ 2.

The coefficients dσ obey a number of other interesting relations, e.g. the following theorem
which shows that 1/dσ can be interpreted as a probability distribution on Dn. The proof of the
theorem also serves as an illustration of the combinatorial method used throughout.

2The number of terms obtained by differentiating the generating function n times without collecting terms.
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Theorem 6.2.4. For n ≥ 1 and 1 ≤ k ≤ n∑
σ∈Dn

1

dσ
=
∑
σ∈Dn

kσk
dσ

= 1. (6.14)

6.2.2 Entrance time moments
In principle the entrance time moments (and other characteristics) can be calculated from the
entrance time probabilities, τn. However, since the calculation of τn becomes increasingly diffi-
cult it is both theoretically and practically important to have more direct means of calculating
moments. In this section we present a formula for the falling factorial entrance time moments.
This result generalizes the well-know formula for the mean entrance time3

E(τ−) = exp

( ∞∑
k=1

1

k
P (Sk > 0)

)
. (6.15)

The formula for the factorial moments rely on the following main result which gives a partition
sum representation of the nth derivative of the generating function. We denote by f (n) the nth

derivative of a function f .

Theorem 6.2.5. For n ≥ 1 and 0 ≤ s < 1

τ (n)(s) = −eH(s)
∑
σ∈Dn

cσHσ(s), (6.16)

where cσ is given by (6.10) and

Hσ(s) =
n∏

i=1

(
H(i)(s)

)σi

. (6.17)

Proof. See Appendix 6.6.2.

Note that Theorem 6.2.3 can be derived from Theorem 6.2.5 since τn = τ (n)(0)/n! and
H(i)(0) = −(i − 1)!pi. This constitutes an alternative proof of Theorem 6.2.3 which does not
rely on Theorem 6.2.2.

For integers m and n we denote by (m)n the nth falling factorial of m,

(m)n = m(m− 1) · · · (m− n+ 1). (6.18)

In particular, (m)1 = m and (m)n = 0 for n > m. By monotone convergence the nth factorial
moment of τ− is given by

E((τ−)n) = lim
s→1−

τ (n)(s), (6.19)

whether or not the limit is finite. Using Theorem 6.2.5 and (6.19) in combination with Lem-
mas 6.6.1 and 6.6.2 the following result for the nth factorial moment can be derived.

Theorem 6.2.6. If n ≥ 1 and
∑∞

k=1 k
n−2P (Sk > 0) <∞ then

E((τ−)n) = exp

( ∞∑
k=1

1

k
P (Sk > 0)

)
n!

∑
σ∈Dn−1

n−1∏
i=1

(
hi
i!

)σi 1

σi!
<∞, (6.20)

where, for n = 1, the last sum is 1 by definition, and for 1 ≤ i ≤ n− 1

hi =
∞∑
k=i

(k)i
k
P (Sk > 0). (6.21)

3Expression (6.15) can be derived from Theorem 6.2.1 by a limit argument, see e.g. Theorem XII.7.3 of Feller
(1971).
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Proof. See Appendix 6.6.2.

By use of Theorem 6.2.6 we can calculate entrance time moments of any order. For the first
three moments we get

E (τ−) = exp

( ∞∑
k=1

qk
k

)
, (6.22)

E
(
τ2−
)
= E((τ−)2) + E(τ−) = E (τ−)

(
2

∞∑
k=1

qk + 1

)
, (6.23)

E
(
τ3−
)
= E((τ−)3) + 3E((τ−)2) + E(τ−)

= E (τ−)

(
3

∞∑
k=2

(k − 1)qk + 3
∞∑
k=1

qk

[ ∞∑
k=1

qk + 2

]
+ 1

)
, (6.24)

where qk = 1 − pk = P (Sk > 0). These formulas are all easy to evaluate to any desired degree
of accuracy.

6.2.3 Conditional characteristic functions
In this section we present results characterizing the position of the random walk upon entrance
to (−∞, 0] (the weak descending ladder height) and the position when entrance has not yet
occurred. We will need the combined generating and characteristic function defined for |s| < 1
and ζ ∈ R by

χ(s, ζ) = E
(
sτ−eiζSτ−

)
. (6.25)

For a random variable X and an event A we write E(X;A) for E(X1A), and E(X|A) for
E(X1A)/P (A). From Theorem VII 4.1 of Asmussen (2003) we have the following generalization
of Theorem 6.2.1

Theorem 6.2.7. For |s| < 1 and ζ ∈ R

log

(
1

1− χ(s, ζ)

)
=

∞∑
n=1

sn

n
E
(
eiζSn ;Sn ≤ 0

)
. (6.26)

By combining Theorem 6.2.7 and Theorem 6.2.2 we obtain a partition sum formula for the
characteristic function of the random walk given entrance to (−∞, 0] at time n. This result is
similar to Theorem 6.2.3 for the entrance time probabilities.

Theorem 6.2.8. For n ≥ 1 and ζ ∈ R

E
(
eiζSn |τ− = n

)
= − 1

τn

∑
σ∈Dn

sgn(σ)

dσ

n∏
k=1

(
E
(
eiζSk ;Sk ≤ 0

))σk
. (6.27)

Proof. See Appendix 6.6.3.

It is also of interest to know the distribution of the random walk given that it has not yet
entered (−∞, 0]. It turns out that the characteristic function for this distribution can also
be calculated as a partition sum. The result is established by subtracting the characteristic
function of Theorem 6.2.8 up to time n from the unconditional characteristic function and using
Lemma 6.6.1 to identify the resulting structure.
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Theorem 6.2.9. For n ≥ 1 and ζ ∈ R

E(eiζSn |τ− > n) =
1

P (τ− > n)

∑
σ∈Dn

1

dσ

n∏
k=1

(
E(eiζSk ;Sk > 0)

)σk
. (6.28)

Proof. See Appendix 6.6.3.

Note that if P (τ− < ∞) = 1 then P (τ− > n) = 1 −
∑n

i=1 τi such that (6.28) can indeed be
calculated.

6.3 Pension fund model
We consider a model for a collective pension fund with a with-profits pension product. Each
contribution is split into a part giving a guaranteed payment and a part invested in a, possibly
leveraged, investment portfolio. The product is with-profit in the sense that all guaranteed pay-
ments are increased, known as bonus, when the funding ratio exceeds a given threshold level.
The investment strategy and bonus policy are common and all members receive the same bonus
(percentage). In our model members enter and leave the fund on financially fair terms, although
this is not necessarily strictly true in practice. Despite its simplicity the model resembles the
traditional collective pension funds known from e.g. the Nordic countries and the Netherlands.
The random walk results presented in Section 6.2 will be used to give an essentially complete
description of the dynamics of the fund.

First, consider a frictionless Black-Scholes market consisting of a bank account, B, with risk
free short rate, r, and a risky stock, S, with dynamics given by

dB(t) = rB(t)dt, B(0) = 1, (6.29)
dZ(t) = (r + µ)Z(t)dt+ σZZ(t)dW (t), Z(0) = z0 > 0. (6.30)

Here r, µ and σZ are strictly positive constants. The process W is a standard Brownian motion
on the probability space (Ω,F ,P) equipped with the filtration FW = (FW (t))t≥0 given by the
P -augmentation of the filtration (σ{W (s); 0 ≤ s ≤ t})t≥0.

The decision to attribute bonus or not is taken at a set of equidistant, discrete set of time
points 0 = t0 < t1 < . . .. We assume for simplicity that contributions and benefits also fall at
these times. The market value of the guaranteed benefits, the reserve, is denoted R(t). Not
taking mortality into account (paramount to assuming that mortality risk can be neglected by
the law of large numbers) the evolution of the reserve between potential bonus times is given by

R(t) = R(ti)e
r(t−ti), where i = max{j ∈ N0 : tj ≤ t}. (6.31)

The total assets of the fund is denoted A(t) and the funding ratio of the fund is defined as

F (t) =
A(t)

R(t)
. (6.32)

The difference between total assets and the reserve, A(t) − R(t), is called the bonus potential
(or surplus). We assume that the fund attributes bonus according to a threshold bonus strategy
such that at time ti all guaranteed payments are increased by

rBi =

{
0 if F (ti−) ≤ κ,
F (ti−)−κ

κ if F (ti−) > κ,
(6.33)

where κ is assumed to be strictly larger than 1. Note that immediately after a bonus attribution
the funding ratio equals κ. Let F̃i denote the funding ratio at time ti after (possible) bonus
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attribution, but before contributions and benefits have fallen. Thus F̃i = F (ti−)/(1 + rBi ) =
min{F (ti−), κ}.

The pension product:

• Contributions do not affect the funding ratio, i.e. for contributions received at time ti only
the fraction 1/F̃i is guaranteed (at rate r) and enters to the reserve while the remainder
enters to the bonus potential.

• The initially guaranteed benefit is entitled to bonus from the time of contribution to the
time of payment.

• Benefits do not affect the funding ratio, i.e. guaranteed benefits paid out at time ti are
increased by F̃i (terminal bonus).

Note that the fraction of contributions guaranteed at the risk-free rate4 depends on the
current funding ratio of the fund. Also note that for each contribution the member pays a price
to enter the collective fund, but he also receives his share of the surplus for each benefit paid
out.

Let ci and bi denote the contributions and benefits, respectively, at time ti, and let cGi and
bGi denote the part of contributions and benefits guaranteed. Total assets and the reserve at
time ti is then given by

A(ti) = A(ti−) + ci − bi, (6.34)

R(ti) =
(
1 + rBi

)
R(ti−) + cGi − bGi , (6.35)

where cGi = ci/F̃i and bGi = bi/F̃i. Hence, by construction F (ti) = F̃i irrespective of the size
of contributions and benefits. It is not hard to show that the fact that pension savers enter
and leave the pension fund without effecting the funding ratio makes the scheme financially fair.
There is no redistribution of wealth between generations.

The simplest pension product to be considered is the case in which a contribution of one is
made at time t = 0 for a benefit paid out in its entirety at t = T (retirement). In this case the
benefit at retirement becomes

OT =
F (T )

F (0)
erT

T∏
i=1

(
1 + rBi

)
. (6.36)

Different contribution and benefit profiles can also be analyzed within this model. The point to
note is that the payoff depends solely on the funding ratio dynamics.

We assume that the pension fund has to stay funded at all times, i.e. its assets must not
fall below the reserve or, equivalently, the funding ratio must not fall below one. In order to
achieve this the fund pursues a CPPI (constant proportion portfolio insurance) strategy by which
a constant fraction, C, of the bonus potential is invested in stocks. The remaining assets are
invested in the risk-free asset. We allow for values of C greater than one, i.e. leverage of the
bonus potential is possible. The dynamics of the assets between time ti and ti+1 is given by

dA(t) = (r + γ(t)µ)dt+ γ(t)σZdW (t), (6.37)

where γ(t) = C F (t)−1
F (t) .

Let ∆ denote the time between possible bonus attributions, ti = i∆, and let Fi = F (ti).
It follows from Preisel et al. (2010)) that the funding ratio process sampled at ti evolves live a
(discrete-time) Markov chain with dynamics

Fi = min
{
(Fi−1 − 1)e(Cµ− 1

2C
2σ2

Z)∆+CσZ

√
∆Ui + 1, κ

}
, (6.38)

4We disregard throughout mortality and the associated mortality bequest from the deceased to the survivors
which acts as an increased rate of return in the case of life annuities.
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where the Ui’s are i.i.d. standard normal variables. In particular, if F0 > 1 all subsequent Fi’s
are strictly larger than 1 (and at most κ).

The fund has to decide on an investment strategy, C, and a bonus policy, κ. A high bonus
threshold implies that the fund can invest more freely but also that only a small fraction of
the pension is guaranteed. This may or may not be in the interest of the members. Similarly,
an aggressive investment strategy implies a higher probability of very high returns, but also a
higher risk of very low returns (on the bonus potential).

The purpose of the rest of the paper is twofold. First, we characterize the impact of C and
κ in terms of bonus time (time between bonus attributions), bonus size and funding ratio. The
characterization is provided for funds started at κ and in stationarity (the long-run average).
Second, we propose a criterion by which κ and C can be determined. The criterion is evaluated
in stationarity to reflect the fact that the fund is collective and should be designed for the benefit
of the average member.

6.4 Bonus and funding ratio
The time between consecutive bonuses, the size of the bonus and the funding ratio given no
bonus has yet been attributed can all be analyzed by the random walk results of Section 6.2.

Consider the following transformation

Yn = − log

(
Fn − 1

κ− 1

)
for n ∈ N0. (6.39)

This transformation turns the funding ratio process (6.38) into the one-sided random walk

Yn = (Yn−1 +Xn)
+, (6.40)

where the Xn’s are i.i.d. normally distributed with mean −
(
Cµ− 1

2C
2σ2

Z

)
∆ and variance

C2σ2
Z∆. Note that Fn = κ corresponds to Yn = 0, while funding ratios close to one corre-

spond to high values of Y .
Along with Y we also consider the (unrestricted) random walk of Section 6.2,

S0 = 0 and Sn = Sn−1 +Xn for n ∈ N, (6.41)

with the same Xn’s as in (6.40). The distribution of Sn is given by

Sn ∼ N

(
−n
(
Cµ− 1

2
C2σ2

Z

)
∆, nC2σ2

Z∆

)
. (6.42)

Thus, in the notation of Section 6.2 we have

pn = P (Sn ≤ 0) = Φ

(√
n∆

µ− 1
2Cσ

2
Z

σZ

)
, (6.43)

where Φ denotes the cumulative distribution function (CDF) of a standard normal distribution.

6.4.1 Stationarity
The first question of interest is whether the fund admits a stationary distribution or not. In the
stationary case the funding ratio distribution converges towards a non-degenerate distribution,
otherwise it converges (in probability) towards one. The following result answers the question
in terms of the aggressiveness of the investment strategy (the result was also by Preisel et al.
(2010) albeit in a different parametrization).
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Proposition 6.4.1. The funding ratio process (6.38) admits a stationary distribution if and
only if C < 2µ

σ2
Z
.

Proof. By Proposition 11.5.3 of Meyn and Tweedie (2009) we have that the Y -process, and
hence the F -process, admits a stationary distribution iff the mean of the increments Xn is
strictly negative, i.e. iff C < 2µ

σ2
Z

.

When it exists, we will denote the stationary funding ratio distribution by π. We note that
the existence of a stationary distribution is independent of how often (∆) and at which level
(κ) bonus is allotted. A stationary distribution exists if and only if the median return on the
bonus potential is positive. If the bonus potential is invested more aggressively than that it will
eventually get lost (in the boundary case, C = 2µ/σ2

Z , bonus will in fact be attributed infinitely
often, but the average time between each bonus is infinite!).

6.4.2 Bonus times
We refer to the time between consecutive bonus attributions as bonus times, or more precisely
bonus waiting time. Formally, these are defined by

T1 = inf{n ≥ 1 : Fn = κ} = inf{n ≥ 1 : Yn = 0}, (6.44)

and, recursively, for k ≥ 2

Tk = inf{n ≥ 1 : FTk−1+n = κ} = inf{n ≥ 1 : YTk−1+n = 0}. (6.45)

Consider first the case where F0 = κ. Then Y0 = 0 and the first bonus time coincides with
the entrance time of S to (−∞, 0], i.e. T1 = τ−, where τ− is given by (6.2) of Section 6.2. Further,
since the funding ratio is κ after a bonus attribution it follows by the Markov property that all
subsequent bonus times are independent and distributed as T1.

Consider next the stationary case and assume that F0 is distributed according to the sta-
tionary funding ratio distribution. Imagine that the fund has been operating since time minus
infinity. The probability that at time 0 we are in a period (between two bonuses) of length k
is then given by kτk/

∑∞
n=1 nτn, i.e. the probability is proportional to the length of the period

times the frequency by which it occurs. Further, given that we are in a period of length k the
probability that we are n places (n ≤ k) away from the end is 1/k, since each position is equally
likely. Summing over all possible k’s we get that the probability that the next bonus occurs at
time n ≥ 1 is given by

Pπ(T1 = n) =
∞∑

k=n

1

k

(
kτk∑∞

n=1 nτn

)
=

∑∞
k=n τk
E(τ−)

=
1−

∑n−1
k=1 τk

E(τ−)
, (6.46)

where we use subscript π to denote that F0 is drawn from the stationary distribution. When
the first bonus (after time 0) has been attributed the funding ratio is κ. Hence, all subsequent
bonus times are distributed as τ−.

Using subscript κ to denote the case F0 = κ we thus have

Proposition 6.4.2. For k ≥ 1 and n ≥ 1

Pκ(Tk = n) = τn, (6.47)

and, provided the stationary distribution exists,

Pπ(Tk = n) =


(
1−

∑n−1
k=1 τk

)
/E(τ−) for k = 1,

τn for k ≥ 2,
(6.48)

where τn is given by (6.12) of Theorem 6.2.3 and E(τ−) is given by (6.15) of Section 6.2.2
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Note that in stationarity the probability of receiving bonus in any given year is

Pπ(r
B
1 > 0) = Pπ(Y1 = 0) = Pπ(T1 = 1) =

1

E(τ−)
. (6.49)

This relationship is also known as Kac’s theorem.
In the stationary case the drift of S is negative and it is not hard to show that the criterion

of Theorem 6.2.6 is satisfied for all n. Hence, the time between bonuses has factorial moments
of all orders and these can be calculated by (6.20) of Theorem 6.2.6.5

6.4.3 Number of bonuses
The number of bonuses in a given period can be calculated from the bonus time distribution.
Let Rk = T1 + . . . + Tk denote the time of the k’th bonus, also known as the renewal epochs.
For F0 = κ and F0 ∼ π the distribution of Rk can be calculated by the recursion

P∗(R1 = n) = P∗(T1 = n), (6.50)

P∗(Rk = n) =

n−1∑
j=k−1

P∗(Rk−1 = j)τn−j . (6.51)

where P∗(T1 = n) is given by Proposition 6.4.2 (and ∗ is either κ or π).
Let Nn denote the number of bonuses from time 1 to time n. We have

P∗(Nn ≤ k) = P∗(Rk+1 > n) = 1−
n∑

j=k+1

P∗(Rk+1 = j), (6.52)

where ∗ is either κ or π.

6.4.4 Bonus percentage
The bonus percentage distribution can be derived from the (descending) ladder height distribu-
tion of the random walk. For F0 = κ the events (T1 = n) and (τ− = n) are identical and on this
event the bonus percentage given by (6.33) becomes

rBn =
κ− 1

κ

(
e−Sn − 1

)
. (6.53)

The mean bonus percentage given the time of bonus can then be calculated by use of Theo-
rem 6.2.8.

Proposition 6.4.3. For n ≥ 1

Eκ

(
rBn
∣∣T1 = n

)
=
κ− 1

κ

[
E
(
e−Sn

∣∣τ− = n
)
− 1
]
, (6.54)

where

E
(
e−Sn

∣∣τ− = n
)
= − 1

τn

∑
σ∈Dn

sgn(σ)

dσ

n∏
k=1

(
E
(
e−Sk ;Sk ≤ 0

))σk (6.55)

with

E
(
e−Sk ;Sk ≤ 0

)
= ekCµ∆Φ

(√
k∆

µ+ 1
2Cσ

2
Z

σZ

)
. (6.56)

Further, for n ≥ 1 and provided the stationary distribution exists

Eπ

(
rBn
∣∣T1 = n

)
=

1

Pπ(T1 = n)

∞∑
k=0

Eκ

(
rBn+k

∣∣T1 = n+ k
) τk+n

E(τ−)
. (6.57)

5In fact, it can be shown that Y is so-called geometrically ergodic which implies exponential moments of the
return time to 0, i.e. the time between bonuses.
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Proof. Formula (6.54) follows directly from (6.53). Theorem 6.2.8 identifies the conditional
distribution of Sn given τ− = n as a linear combination of conditional normal tail measures.
Since the normal distribution has exponential moments of all orders we conclude (6.55) by
dominated convergence. Expression (6.56) follows from (6.42) by standard calculations.

For the stationary case we consider a fund which has been run since time minus infinity. Let
λ denote time since bonus was last attributed,

λ = inf{n ≥ 0 : F−n = κ} = inf{n ≥ 0 : Y−n = 0}. (6.58)

By the argument of Section 6.4.2 leading to (6.46) and the Markov property we have

Pπ (T1 = n, λ = k) =
1

n+ k

(n+ k)τk+n

E(τ−)
=

τk+n

E(τ−)
, (6.59)

Eπ

(
rBn
∣∣T1 = n, λ = k

)
= Eκ

(
rBn+k

∣∣T1 = n+ k
)
. (6.60)

By summing over all possible values of λ we obtain

Eπ

(
rBn
∣∣T1 = n

)
=

1

Pπ(T1 = n)
Eπ

(
rBn ; T1 = n

)
=

1

Pπ(T1 = n)

∞∑
k=0

Eπ

(
rBn ; T1 = n, λ = k

)
=

1

Pπ(T1 = n)

∞∑
k=0

Eπ

(
rBn
∣∣T1 = n, λ = k

)
Pπ (T1 = n, λ = k) . (6.61)

Finally, inserting (6.59) and (6.60) in (6.61) yields (6.57).

Higher order polynomial moments of rB can be expressed in terms of exponential moments
of Sn by expanding (6.53). It is straightforward to extend Proposition 6.4.3 to cover this case
also.

6.4.5 Funding ratio
We consider at last the funding ratio of the fund given that no bonus has yet been attributed.
For F0 = κ the events (T1 > n) and (τ− > n) are identical and on this event

Fn = (κ− 1)e−Sn + 1. (6.62)

Polynomial funding ratio moments can be derived by use of Theorem 6.2.9. For the mean funding
ratio we have the following result.

Proposition 6.4.4. For n ≥ 1

Eκ

(
Fn

∣∣T1 > n
)
= (κ− 1)E

(
e−Sn

∣∣τ− > n
)
+ 1, (6.63)

where

E(e−Sn |τ− > n) =
1

P (τ− > n)

∑
σ∈Dn

1

dσ

n∏
k=1

(
E(e−Sk ;Sk > 0)

)σk (6.64)

with

E
(
e−Sk ;Sk > 0

)
= ekCµ∆Φ

(
−
√
k∆

µ+ 1
2Cσ

2
Z

σZ

)
. (6.65)

Further, for n ≥ 1 and provided the stationary distribution exists

Eπ

(
Fn

∣∣T1 > n
)
=

1

Pπ(T1 > n)

∞∑
k=0

Eκ

(
Fn+k

∣∣T1 > n+ k
)
Pπ(T1 = n+ k + 1), (6.66)
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Proof. We will only prove (6.66). With λ as in (6.58) and by use of (6.59) we have

Pπ(T1 > n, λ = k) =

∞∑
i=n+1

Pπ(T1 = i, λ = k) =

∞∑
i=n+1

τi+k

E(τ−)
= Pπ(T1 = n+ k + 1), (6.67)

and, by the Markov property,

Eπ

(
Fn

∣∣T1 > n, λ = k
)
= Eκ

(
Fn+k

∣∣T1 > n+ k
)
. (6.68)

Then

Eπ

(
Fn

∣∣T1 > n
)
=

1

Pπ(T1 > n)
Eπ (Fn; T1 > n)

=
1

Pπ(T1 > n)

∞∑
k=0

Eπ (Fn; T1 > n, λ = k)

=
1

Pπ(T1 > n)

∞∑
k=0

Eπ

(
Fn

∣∣T1 > n, λ = k
)
Pπ(T1 > n, λ = k). (6.69)

By inserting (6.67) and (6.68) into (6.69) we obtain (6.66).

6.5 Numerical application
In the following we calculate key statistics for the pension fund model of Section 6.3, and we
illustrate how these statistics are influenced by the bonus threshold (κ) and the investment
strategy (C). Based on the results of Section 6.4 we calculate the bonus time distribution,
bonus time moments, the number of bonuses, the expected bonus and the expected funding
ratio given no bonus. Statistics are calculated for a fund at the bonus threshold and for a fund
in stationarity.

In Section 6.5.2 we consider a pension saver paying one monetary unit to the pension fund
and receiving 40 years later his terminal pension benefit as a lump sum. Closed form expressions
for the pension benefit mean and variance are derived for a fund at the bonus threshold at the
time of the contribution. Further, we present in Proposition 6.5.1 an exact simulation algorithm
which allows the calculation of the pension benefit mean and variance in stationarity. This is
used to find the investment strategy optimizing the expected payout in stationarity for given
bonus threshold, i.e. the expected payout for the average saver.

Exact samples from the stationary distribution can also be obtained by the algorithm of Ensor
and Glynn (2000). Their algorithm uses exponential tilting and requires exponential moments of
the innovation distribution to generate independent, identically distributed samples. In contrast,
our algorithm generates partly dependent, identically distributed samples with no distributional
assumptions.

We assume throughout that bonus is attributed (possibly) once a year (∆ = 1), and we use
the following capital market parameters r = 3%, µ = 4%, and σZ = 15%.

6.5.1 Characterization
As a base case example we choose C = 1.5 and κ = 1.5. Thus when the fund is at the bonus
threshold 2/3 of contributions are guaranteed the risk-free rate r. For contributions committed to
the fund at lower funding ratios, i.e. in periods between bonuses, a larger fraction is guaranteed.

Note that since C is larger than one the bonus potential is leveraged, i.e. the amount invested
in stocks is larger than the bonus potential. At the bonus threshold the fraction of total assets
invested in stocks is given by (1−(1/κ))C. For a base case fund at the bonus threshold a fraction
of 1/2 of total assets are invested in stocks.
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Stationarity

Only investment strategies which give rise to a stationary funding ratio process are considered
viable options for a collective pension fund. Otherwise the funding ratio will (essentially) con-
verge to one implying that all assets are invested in the risk-free asset only or, equivalently, that
all contributions are fully guaranteed. Since one of the purposes of entering a collective fund is
to get access to the capital market in a cost-effective way, the latter situation defies the purpose
of an investment collective.6

Proposition 6.4.1 provides an upper bound on the investment strategy, C, for a stationary
distribution to exist. The bound depends on the capital market parameters only, and neither on
the threshold (κ) nor the frequency of possible bonus attributions (∆). For the capital market
parameters stated above the fund admits a stationary distribution if and only if C is at most
3.56. Hence, with C = 1.5 the base case fund is stationary.

For higher values of σZ and/or smaller values of µ the upper bound is appreciably smaller.
For the higher, but not unrealistic, volatility of σZ = 20% and with the same risk-premium of
µ = 4% the upper bound on C is 2. For a base case fund at the threshold the bonus potential
constitutes one third of total assets. In this case, a bound of 2 implies that the fund can invest at
most two thirds of its assets in stocks. Thus, the stationarity requirement can impose material
constraints on the investment strategy. Figure 6.1 illustrates the upper bound on C for different
market parameter sets.
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0
5

10
15

20

µ

C

Figure 6.1: Upper bound on the fraction of the bonus potential invested in risky assets (C) for
a stationary funding ratio process to exist. The bound is shown as a function of expected excess
return of the risky asset (µ) for selected values of volatility (σZ). From highest to lowest the
bounds correspond to σZ = 10%, 12.5%, 15%, 17.5% and 20%. The dot indicates the base case
values of (µ,C) = (4%, 1.5).

6The other main purpose of a collective fund is the ability to provide lifelong benefit streams through “di-
versification” of the individual member’s time of death. However, in the current paper we do not consider this
aspect.
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Bonus times

The first bonus time, T1, measures the time of the first bonus after time zero. For a fund initially
at the bonus threshold the distribution of T1 can be identified as the distribution of τ−, i.e. the
entrance time to (−∞, 0] of the associated random walk. For a fund in stationarity, however, it
typically takes longer before the first bonus is attributed since the funding ratio at time zero is
often below the bonus threshold. Once the first bonus is attributed, the waiting time between
all subsequent bonuses is distributed as τ− regardless of the funding ratio at time zero.

It turns out, perhaps somewhat surprising, that for a fund starting out either at the bonus
threshold or in stationary the distribution of T1 depends only on the investment strategy, and
not on the bonus threshold.7 The top left plot of Figure 6.2 shows the distribution of T1 in
these two cases as given by Proposition 6.4.2. For a base case fund at the bonus threshold the
probability of bonus first year is over fifty percent, while the same probability in stationarity is
only about twenty percent. The large difference between these values implies that in stationarity
the fund is typically “between bonuses”.

The probability of bonus first year as a function of the investment strategy is shown in
the bottom left plot of Figure 6.2. For a fund at the bonus threshold, the probability is over
fifty percent for all considered investment strategies albeit decreasing in C. The stationary
probability on the other hand tends to zero as C approaches the upper bound for stationarity
of 3.56. Recall that the stationarity probability also has the interpretation as the long-term
average, i.e. the frequency with which bonus will be attributed over long horizons (regardless of
the initial funding status).

Moments of the time between bonuses can be calculated by Theorem 6.2.6. The mean and
standard deviation for various values of C are shown in Table 6.2; as mentioned above the
distribution and hence the moments depend only on the investment strategy. In the base case
the mean is five years, but with a standard deviation of almost fourteen years. Thus there is
considerable variability in the length of the periods between bonuses. For larger values of C the
mean and, in particular, the standard deviation increase. A fund with C = 3 is still stationary
but there will be decades, and even centuries, with no bonus. However, by Proposition 6.4.1 we
have that the funding ratio admits a stationary distribution iff the median return on the bonus
potential is positive (for a base case fund that is C<3.56). In other words, the stationarity
requirement imposes a median time between bonuses8 of 1. We conclude that the distribution
of the waiting times between bonuses is heavily right skewed.

C 1 1.5 2 2.5 3
E(τ−) 4.12 5.02 6.49 9.35 17.39
SD(τ−) 9.87 13.73 20.93 37.55 98.60

Table 6.2: The mean and standard deviation of time between bonuses for different investment
strategies C. In all cases the median is 1.

Number of bonuses

The number of bonuses from time 1 to time n is denoted Nn. The distribution of Nn can be
calculated from the distributions of T1 and τ− as described in Section 6.4.3. For a fund starting
out either at the bonus threshold or in stationary the distribution of Nn depends only on the
investment strategy, and not on the bonus threshold.

The top right plot of Figure 6.2 shows the distribution of N40 for a base case fund. For a
base case fund starting out at the bonus threshold the distribution of N40 is unimodal and the

7However, for a fund starting out at a given funding ratio (below the bonus threshold) the distribution of T1
does of course depend on the bonus threshold also.

8Defined as min{n ∈ N :
∑n
i=1 τi ≥ 0.5}

124



0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n

P(
T

1=
n)

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

k

P(
N

40
=k

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

C

P(
T

1=
1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

C

P(
N

40
=0

)

Figure 6.2: Solid curves correspond to F0 = κ and dashed curves to the stationary case, F0 ∼ π.
For the upper plots C = 1.5. Upper left: Distribution of first bonus. Lower left: Probability of
bonus first year as a function of the investment strategy C. Upper right: Distribution of number
of bonuses in 40 years. Lower right: Probability of no bonuses in 40 years as a function of the
investment strategy C.

number of bonuses will most likely be around 10. In the stationarity case, however, there is an
additional peak at zero. There is thus a rather large probability of about fifteen percent of no
bonus at all in forty years, corresponding to the events where the fund is initially at a (very)
low funding level. If bonus is attributed at least once the fund evolves like a fund started at the
bonus threshold for the remaining period. The part of the stationary distribution of N40 at one
and above therefore looks like a scaled and shifted version of the “threshold” distribution.

The probability of no bonuses in forty years as function of the investment strategy is depicted
in the bottom right plot of Figure 6.2. For increasing C, the probability is modestly increasing
for a fund at the bonus threshold, while the stationary probability increases to one.

Bonus percentage

In contrast to the time of bonus, the bonus percentage (conditioned on bonus being given)
depends on both the investment strategy and the bonus threshold. It also depends on the time
since last bonus.

The bonus percentage is determined by the funding ratio distribution the year prior; the
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higher the funding ratio the higher the conditional expected bonus.9 If a fund starting at the
bonus threshold does not give bonus in the first year the funding ratio will be strictly below the
bonus threshold. This implies that bonus in the second year (if given) is smaller than bonus
in the first year (if given). This argument is hard to continue formally, but it seems at least
intuitively reasonable that the expected bonus will be decreasing in the time since last bonus.

The bonus percentage conditioned on the value of T1 can be calculated by Proposition 6.4.3.
It is shown in the top left plot of Figure 6.3 for the base case fund. We see that the conditional
expected bonus quickly drops by one to two percentage points depending on how the fund is
started, and then levels off to just below 5.5%.

The middle left plot of Figure 6.3 shows the expected value of the first bonus,

E(rBT1
) =

∞∑
n=1

E(rBn |T1 = n)P (T1 = n), (6.70)

for the base case fund. The expected bonus (when given) is increasing in C, both in stationarity
and for a fund starting at the bonus threshold. In stationarity, however, the frequency with
which bonus is attributed decreases with C, cf. lower left plot of Figure 6.2. The average bonus
in stationarity is therefore a trade-off between many, small bonuses and few, large bonuses. The
average bonus in stationarity,

Eπ(r
B) = Eπ(r

B
1 |T1 = 1)Pπ(T1 = 1), (6.71)

is shown in the lower left plot of Figure 6.3. It is seen that the long-term average bonus is
maximized for C just below 2.

It follows from Proposition 6.4.3 that the average bonus for funds with the same C but
different bonus thresholds are linearly related. Specifically, the average bonus in stationarity is
related by

E(C,κ2)
π (rB) =

κ2 − 1

κ2

κ1
κ1 − 1

E(C,κ1)
π (rB). (6.72)

This implies that plots for different thresholds are scaled versions of each other. In particular,
the average bonus in stationarity is maximized for the same C. It also follows that the average
bonus for a fund with κ = 3 is twice as high as the average bonus for a fund with κ = 1.5 (base
case value). Of course, the guaranteed part to which bonus is applied is correspondingly smaller.

Funding ratio

The pension payoff depends on the funding ratio when contributions are committed, the bonuses
up to the time of payout, and the funding ratio at payout. Thus to evaluate the payoff we need
to consider both the funding ratio at the time money enters the fund, and the funding ratio at
the time money leaves the fund.

The expected funding ratio as a function of the time since last bonus can be calculated by
Proposition 6.4.4. This is shown for the base case fund in the upper right plot of Figure 6.3.
The expected funding ratio is decreasing in the time since last bonus. Intuitively, this seems
reasonable since absence of bonus indicates that the fund is experiencing poor investment results.
It is perhaps surprising, however, that the (expected) funding ratio seems to level off, at around
120%. Thus beyond a certain point the funding ratio does not deteriorate any further. Limiting
distributions of Markov chains conditioned on non-absorption (or in our case no bonus) are known
as Yaglom limits. We conjecture that the fund possesses a Yaglom limit both in stationarity
and when started at the threshold, i.e. that the funding ratio distribution conditioned on no
bonus converges to a non-degenerate distribution. However, establishing existence, let alone
identifying, Yaglom limits is non-trivial and a formal study is outside the scope of this paper.

9This in fact is not obvious, since we condition on bonus being given. It can nevertheless be shown as a
consequence of stochastic ordering and log-concavity of the normal distribution.
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Figure 6.3: Solid curves correspond to F0 = κ and dashed curves to the stationary case, F0 ∼
π. Bonus threshold κ = 1.5 in all plots. Upper left: Conditional expected bonus percentage
(C = 1.5). Middle left: Expected first bonus. Lower left: Expected bonus in stationarity. Upper
right: Conditional expected funding ratio given no bonus (C = 1.5). Middle right: Conditional
expected funding ratio given no bonus in 40 years. Lower right: Expected funding ratio in
stationarity.

The interested reader is referred to the specialist literature on quasi-stationarity, e.g. Tweedie
(1974); Jacka and Roberts (1995); Lasserre and Pearce (2001).10

10The partial result that the funding ratio given no bonus does not converge to one can be obtained without too
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We know that high equity exposures lead to high, but infrequent, bonuses. It also leads to
low expected funding ratios. The expected funding ratio in stationarity,

Eπ(F ) = κPπ(T1 = 1) + E(F1|T1 = 1)Pπ(T1 > 1), (6.73)

is shown in the lower right plot of Figure 6.3, while the expected funding ratio after 40 years
with no bonus is shown in the middle right plot. For low values of C both the unconditional
and conditional expected funding ratio is close to the maximum of 1.5, while as C approaches
the upper limit for stationarity the (expected) funding ratio tends to one.

We finally note that it follows from Proposition 6.4.4 that the expected funding ratio for funds
with the same C but different thresholds are related by an affine transformation. Specifically,
the expected funding ratio in stationarity is related by

E(C,κ2)
π (F ) =

κ2 − 1

κ1 − 1

(
E(C,κ1)

π (F )− 1
)
+ 1. (6.74)

Higher bonus thresholds thereby lead to higher expected funding ratios and hence lower guar-
antees.

6.5.2 Pension benefits
The rationale behind guaranteeing a fixed return on a part of the contributions is that it ensures a
certain minimum benefit. However, guarantees reduce the risk capacity for risky assets impairing
expected returns. Expected returns can be increased by leverage of the bonus potential, but
this in turn increases the variability. The (minimum) fraction guaranteed and the expected
return/variability are controlled by κ and C, respectively.

In this section we calculate the mean and variance of the payout considered in Section 6.3
(repeated here for ease of reference),

OT =
FT

F0
erT

T∏
i=1

(
1 + rBi

)
. (6.75)

This is used to calculate the optimal C for a mean-variance criterion for given κ. We take the
perspective of the “average” member and we therefore perform the optimization for a fund in
stationarity. The analysis proceeds in two steps. First, we calculate the mean and variance
of OT for a fund starting at the threshold. Second, based on these results we apply an exact
simulation algorithm to find the stationary mean and variance. The algorithm is considerably
simpler than existing algorithms and might be of independent interest.

Fund at bonus threshold

The first and second order moment of OT (and thereby the variance) can be calculated by a
so-called last-exit decomposition, see e.g. Meyn and Tweedie (2009) p. 178. Let U denote the
last time bonus was given before and including time T . Note that U is not a stopping time, and

much effort. Loosely speaking, it follows since the bonus waiting time has exponential moments, cf. footnote 5,
and since bonus can only be attributed when the funding ratio is “close” to κ the year prior. Consequently, the
probability that the funding ratio is above a certain level can be bounded away from zero at least along a sub-
sequence. Essentially the same conditions (exponential moments of time to absorbtion and increasing absorbtion
times from states far away) are used in Ferrari et al. (1995) to show the existence of a quasi-stationary distribution
for a continuous-time Markov chain on a discrete state space. Also note Martinez et al. (1998) which studies
quasi-stationarity of a Brownian motion conditioned to stay positive. In our setup this can be seen as the limiting
case where bonus is attributed continuously (∆ ≈ 0).
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that the decomposition is not a consequence of the Markov property. We have

Eκ(OT ) =Eκ(OT ; T1 > T ) +

T∑
j=1

Eκ(OT ;U = j)

=
erT

κ
eκ(T ) +

erT

κ

T∑
j=1

∑
σ∈Dj

c̃σ

j∏
i=1

(
τiEκ

(
1 + rBi

∣∣T1 = i
))σi

 eκ(T − j), (6.76)

where for σ ∈ Dj and n = 0, . . . , T ,

c̃σ =
(
∑j

i=1 σi)!∏j
i=1 σi!

, eκ(n) = Pκ(T1 > n)Eκ(Fn

∣∣T1 > n). (6.77)

The expression for Eκ(OT ;U = j) follows by considering the different ways bonus can be at-
tributed such that the last bonus falls at time j. The different patterns of time between bonuses
are given by the permutations in Dj . For each pattern the probability of it occurring and the
associated expected bonus can be calculated by the Markov property, and this has to be multi-
plied by the number of ways the “bonus waiting periods” can be arranged, given by c̃σ. Finally,
we multiply by the expected funding ratio given that no bonuses are given for the remaining
period, given by eκ(T − j). The quantities appearing in expressions (6.76) and (6.77) can be
calculated by Propositions 6.4.2–6.4.4.

For the second order moment we similarly find

Eκ(O
2
T ) =Eκ(O

2
T ; T1 > T ) +

T∑
j=1

Eκ(O
2
T ;U = j)

=
e2rT

κ2
sκ(T ) +

e2rT

κ2

T∑
j=1

∑
σ∈Dj

c̃σ

j∏
i=1

(
τiEκ

((
1 + rBi

)2 ∣∣T1 = i
))σi

 sκ(T − j), (6.78)

where c̃σ is given by (6.77) and for n = 0, . . . , T ,

sκ(n) = Pκ(T1 > n)Eκ(F
2
n

∣∣T1 > n). (6.79)

In order to calculate sκ(k) note that on the event (T1 > n)

F 2
n =

(
(κ− 1)e−Sn + 1

)2
= (κ− 1)2e−2Sn + 2(κ− 1)e−Sn + 1. (6.80)

Hence, we need to calculate conditional expectations of e−Sn and e−2Sn . The first of these is given
by (6.64) of Proposition 6.4.4. The latter can be calculated by the same formula upon replacing
the term E(e−Sn ;Sn > 0) with E(e−2Sn ;Sn > 0). To evaluate (6.78) we also need to calculate
the second order moment of the bonus percentage. Similarly to F 2

n the term (1 + rBi )2 can be
expanded and expressed in terms of e−Si and e−2Si . The appropriate conditional expectations
of the latter quantities can be calculated by formula (6.55) of Proposition 6.4.3. We omit the
details.

Fund in stationarity

We are interested in calculating the stationary mean and variance of OT . From Proposi-
tions 6.4.2–6.4.4 we know the time and size of first bonus, moments of the initial funding ratio
and moments of the terminal funding ratio conditioned on no bonuses. Unfortunately, we need
the joint distribution of these quantities and this is not available in an analytically tractable
form. Instead we will apply a simulation algorithm based on samples from the joint stationary
distribution of (F0, T1, rBT1

, FT1∧T ). The idea is to split the period in two, the time up to first
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bonus (if it occurs before time T ) and the time after first bonus. Moments of OT can be obtained
by combining samples for the period up to first bonus with analytic results for the period after
first bonus.

Samples from the joint distribution of (F0, T1, rBT1
, FT1∧T ) can be obtained in several ways.

Perhaps the most obvious is to simulate F0 from the stationarity funding ratio distribution.
Given F0 we can then simulate the evolution of the fund until first bonus and record the time
and size of the bonus. Ensor and Glynn (2000) give an algorithm which can be used to obtain
exact samples of F0, and Preisel et al. (2010) give an alternative algorithm by which F0 can be
sampled to any desired level of accuracy. Both algorithms rely on the fact that the invariant
distribution of a one-sided random walk (the Y -chain of Section 6.4) equals the distribution of
the maximum of the associated unrestricted random walk (the S-chain of Section 6.4).

We employ a different idea based on the argument presented in Section 6.4.2. In stationarity
the probability that at time 0 we are in a period between two bonuses of length k is proportional
to kτk. Further, given we are in a period of length k at time 0 it is equally likely that we are in
any of the k positions. This observation gives rise to a very simple algorithm for simulating in
stationarity: For a fund started at the threshold simulate the path up to first bonus, say, at time
k. This happens with probability τk. Now, use this path to generate k samples by shifting it n
places to the left for n = 0, . . . , k − 1. Repeat the algorithm to obtain more samples.

The algorithm generates partly dependent samples from the stationary distribution. However,
when used to estimate expectations with respect to the stationary distribution the dependence
does not pose a problem. For evaluating moments of OT in stationarity we propose the following
method. The method combines the (exact) samples with the analytic results obtained previously
to obtain a consistent estimate of Eπ(OT ). Estimates of second, and higher, order moments of
OT are obtained by suitable modifications of the GT -functional.

Proposition 6.5.1. Let N be given. Starting at the bonus threshold simulate N paths until
first bonus. Denote the funding ratio paths by (F

(i)
0 , . . . , F

(i)

T (i)
1 −1

) and the first bonus by r(i) for

i = 1, . . . , N . Let M =
∑N

i=1 T
(i)
1 . A consistent estimate of Eπ(OT ) can be obtained by

Êπ(OT ) =
1

M

N∑
i=1

T (i)
1 −1∑
k=0

GT

(
F

(i)
k , T (i)

1 − k, r(i), F
(i)

T (i)
1 ∧(T+k)

)
, (6.81)

where

GT (F0, T1, rB , FT1∧T ) =
FT1∧T

F0
×

erT1(1 + rB)Eκ(OT−T1) for T1 ≤ T,

erT for T1 > T,
(6.82)

and O0 = 0 by convention.

Note that the two cases in GT correspond to whether or not the first bonus (in the shifted
path) occurs before or after time T . Also note that bonus occurring before or at time T for the
k-shifted path is equivalent to T (i)

1 ≥ T + k, and in this case the last argument of GT equals κ.
Although Proposition 6.5.1 is presented as a method for estimating a specific quantity the

same method can be used to estimate any stationary expectation. The estimator can also be
made unbiased by replacing M by its expectation, NEκ(T1). As a simple example, stationary
probabilities for F0 can be estimated unbiasedly by

P̂π(F0 ∈ A) =
1

NEκ(T1)

N∑
i=1

T (i)
1 −1∑
k=0

1A

(
F

(i)
k

)
(6.83)

for any event A.11

11Remark: Theorem 10.4.9 of Meyn and Tweedie (2009) together with Kac’s theorem yields the representation
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Mean-variance analysis

We are now in a position to do a mean-variance analysis of the payout OT with respect to
the strategy parameters κ and C. We assume a horizon of T = 40 years. This corresponds
approximately to the average time between when contributions are made and benefits are paid
out in a pension fund with life-long memberships.

We first consider a fund starting at the bonus threshold. Table 6.3 states the mean, the
minimum (guarantee) and the standard deviation of the payout for different sets of (κ,C). In
all cases the mean equals 6. For the smallest value of κ the payout is guaranteed to be at least
2.656. To reach an expected payout of 6 the bonus potential has to be leveraged substantially,
and this in turn leads to a large standard deviation. As κ increases the guarantee decreases and
an expected payout of 6 can be achieved by investing the bonus potential less aggressively. This
reduces the standard deviation at the price of a larger downside risk (lower guarantee). In the
limit as κ tends to infinity there is no guarantee and an expected payout of 6 can be achieved
with a standard deviation of 2.17 by investing 37 percent of total assets in stocks.12

κ 1.25 1.5 2 3 5 10
C 2.705 1.259 0.782 0.570 0.468 0.413
mean 6 6 6 6 6 6
guarantee 2.656 2.213 1.660 1.107 0.664 0.332
std. dev. 3.662 2.603 2.356 2.256 2.214 2.191

Table 6.3: Mean, guarantee and standard deviation of O40 for a pension fund starting at the
bonus threshold. All sets of strategies (κ,C) imply a mean payout of 6.

Consider next a pension fund which has fixed the bonus threshold at κ. This implies that
at least 1/κ of contributions is guaranteed the risk free rate. The value of the threshold might
be stipulated by regulation to ensure a certain minimum pension, or it might be decided by the
board of the pension fund based on social economic considerations. In either case, the fund needs
to determine an investment strategy C. One (common) way to balance the desire for a high
payout against unwanted variability is by use of a mean-variance optimization criterion. Being
a collective pension fund we want to optimize the fund for the benefit of the average member,
i.e. in stationarity. Hence, we consider the following stationary mean-variance problem for fixed
κ

sup
C

{Eπ(OT )− γVarπ(OT )} . (6.84)

In Figure 6.4 the optimization problem with γ = 0.07468 and T = 40 is illustrated for κ = 1.5
and κ = 3. The value of γ is chosen such that 60 percent in stocks is optimal for a mean-
variance investor with no guarantee and a constant proportion of total assets in stocks. We
see from Figure 6.4 that neither the mean nor the standard deviation is monotone in C. The
expected payout is decreasing for C sufficiently large because very aggressive strategies lead to
low funding ratios in stationarity. The fund with low guarantees (κ = 3) has an optimal C of
about 80 percent, while the fund with high guarantees (κ = 1.5) has an optimal C of about 150
percent. The equity exposure, at the threshold, as a fraction of total assets is about 50 percent
for both cases.

The mean-variance criterion is normally applied in situations where more risk (higher C)
leads to higher expected return and higher variability. It might be argued that the mean-
variance criterion is considered out of necessity to avoid degenerate solutions in these situations.

result Pπ(F0 ∈ A) = Eκ(
∑T1−1
k=0 1A(Fk))/Eκ(T1). This result can also be obtained from (6.83) by taking

expectation on both sides. Conversely, it follows from the representation that the right-hand side of (6.83) is an
unbiased estimator of Pπ(F0 ∈ A) as claimed.

12For the optimal mean-variance investment strategy see Korn (1997a) and Zhou and Li (2000).
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In stationarity, however, the expected payout as a function of C is unimodal. We might therefore
alternatively define the optimal investment strategy C∗ as the one maximizing the expected
payout in stationarity. The optimal investment strategy C∗ thus defined is illustrated in Table 6.4
and Figure 6.4 upper left for different values of κ. We see that C∗ is considerably higher than the
one obtained from the mean-variance criterion (for given κ). However, the associated standard
deviation is also considerably higher implying than the payout will typically deviate substantially
from its expectation.

κ 1 1.25 1.5 2 3 5 10
C∗ N/A 2.143 2.313 2.473 2.700 2.850 2.951
maximal mean 3.320 4.923 6.886 11.73 23.66 48.50 93.61
std. dev. 0 2.213 6.649 26.13 151.5 826.9 3540

Table 6.4: The optimal investment strategy, C∗, maximizing the expectation of O40 in station-
arity for different values of κ. The corresponding mean and standard deviation of O40 are also
shown.
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Figure 6.4: Stationary mean and standard deviation of O40 as a function of the investment
strategy C. Solid curves correspond to κ = 1.5 and dotted curves to κ = 3. Upper left:
Expected pension payout. Upper right and lower left: Standard deviation of the pension payout
(note the different scales). Lower right: Illustration of the mean-variance optimization problem
(6.84).
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6.6 Appendix (proofs)

6.6.1 Entrance times and partitions
Proof of Theorem 6.2.3. Rearranging (6.5) we get for 0 ≤ s < 1

1− exp

( ∞∑
n=1

(−1)
pn
n
sn

)
=

∞∑
n=1

τns
n. (6.85)

From Theorem 6.2.2 we get that

exp

( ∞∑
n=1

(−1)
pn
n
sn

)
= 1 +

∞∑
m=1

∑
σ∈Dm

sm

σ1!σ2! · · ·σm!

m∏
n=1

(
(−1)

pn
n

)σn

= 1 +

∞∑
m=1

∑
σ∈Dm

sgn(σ)

dσ
sm

m∏
n=1

pσn
n . (6.86)

Insert this in (6.85) to obtain

−
∞∑

m=1

∑
σ∈Dm

sgn(σ)

dσ
sm

m∏
n=1

pσn
n =

∞∑
n=1

τns
n. (6.87)

Finally, by inspection of the left and right hand side of the above equality we obtain (6.12).

Proof of Theorem 6.2.4. We need to prove two identities∑
σ∈Dn

kσk
dσ

= 1, (6.88)

and ∑
σ∈Dn

1

dσ
= 1. (6.89)

We first note that (6.89) follows from (6.88) by summing over k. Using that
∑n

k=1 kσk = n
for σ ∈ Dn we get

n =
n∑

k=1

∑
σ∈Dn

kσk
dσ

=
∑
σ∈Dn

∑n
k=1 kσk
dσ

=
∑
σ∈Dn

n

dσ
, (6.90)

and dividing through by n yields (6.89).
We next prove (6.88) by induction in n. For n = 1 the relation is trivially satisfied. Assume

that (6.88) holds for n− 1 and all 1 ≤ k ≤ n− 1; then (6.89) also holds for n− 1 as just shown.
To prove that (6.88) holds for n and 1 ≤ k ≤ n there are three cases to consider:

For k = n the only term in the sum different from zero occurs for σ = (0, . . . , 0, 1), and hence∑
σ∈Dn

nσn∏n
i=1 σi!i

σi
=

n

1!n
= 1. (6.91)

For 1 < k < n we use that there is a one-to-one mapping between permutations in Dn with
σk > 0 and permutations in Dn−1 with πk−1 > 0 defined by π = (σ1, . . . , σk−2, σk−1 + 1, σk −
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1, σk+1, . . . , σk−1). Noting that σk > 0 with k < n implies σn = 0 we have∑
σ∈Dn

kσk∏n
i=1 σi!i

σi

=
∑

σ∈Dn:σk>0

kσk∏n−1
i=1 σi!i

σi

=
∑

π∈Dn−1:πk−1>0

k(πk + 1)∏n−1
i=1 πi!i

πi

πk−1!(k − 1)πk−1πk!k
πk

(πk−1 − 1)!(k − 1)πk−1−1(πk + 1)!kπk+1

=
∑

π∈Dn−1:πk−1>0

(k − 1)πk−1∏n−1
i=1 πi!i

πi

= 1, (6.92)

where the last equality follows by the induction hypothesis.
For k = 1 the mapping π = (σ1 − 1, σ2, . . . , σn−1) is one-to-one between permutations in Dn

with σ1 > 0 and all permutations in Dn−1. We then have∑
σ∈Dn

σ1∏n
i=1 σi!i

σi
=

∑
π∈Dn−1

π1 + 1∏n−1
i=1 πi!i

πi

π1!

(π1 + 1)!
=

∑
π∈Dn−1

1∏n−1
i=1 πi!i

πi

= 1, (6.93)

where the last equality follows from (6.89) which holds for n−1 by the induction hypothesis.

6.6.2 Entrance time moments
Proof of Theorem 6.2.5. Let G1 = H ′ and define recursively

Gn = H ′Gn−1 +G′
n−1 (n ≥ 2). (6.94)

We first establish the relation

τ (n) = −eHGn (n ≥ 1). (6.95)

Clearly, the relation holds for n = 1. Assuming (6.95) holds for n− 1 we have by (6.94)

τ (n) =
(
−eHGn−1

)′
= −eH

(
H ′Gn−1 +G′

n−1

)
= −eHGn, (6.96)

and hence (6.95) holds for all n by induction.
Having established (6.95) we now need to prove

Gn =
∑
σ∈Dn

cσHσ (n ≥ 1). (6.97)

As before we will prove this by induction. For n = 1 the equation reads G1 = H ′ which is true
by definition. Assume (6.97) holds for n− 1. By (6.94) and the induction hypothesis we have

Gn =
∑

σ∈Dn−1

cσH
′Hσ +

∑
σ∈Dn−1

cσ(Hσ)
′, (6.98)
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where for σ = (σ1, . . . , σn−1) ∈ Dn−1

(Hσ)
′ = σ1H

σ1−1
1 Hσ2

2

n−1∏
i=2

Hσi
i +Hσ1

1

(
n−1∏
i=2

Hσi
i

)′

= . . .

=
n−1∑
k=1

σkH
σk−1
k Hk+1

∏
i ̸=k

Hσi
i . (6.99)

Thus

Gn =
∑

σ∈Dn−1

cσH
′Hσ +

∑
σ∈Dn−1

n−1∑
k=1

cσσkH
σk−1
k Hk+1

∏
i ̸=k

Hσi
i . (6.100)

Let σ∗ = (σ∗
1 , . . . , σ

∗
n) ∈ Dn be fixed, but arbitrary. We will identify the terms in (6.100) which

contain the factor Hσ∗
and show that the coefficients add up to cσ∗ . There are three cases (note

that in the first two cases the condition implies that σ∗
n = 0):

1. σ∗
1 > 0: Then H ′Hσ = Hσ∗

with σ = (σ∗
1 − 1, σ∗

2 , . . . , σ
∗
n−1) ∈ Dn−1. The first sum in

(6.100) contains a term with this factor and coefficient cσ.

2. σ∗
j > 0 for some 2 ≤ j ≤ n−1: ThenHσk−1

k Hk+1

∏
i ̸=kH

σi
i = Hσ∗

with σ = (σ∗
1 , . . . , σ

∗
j−2, σ

∗
j−1+

1, σ∗
j − 1, σ∗

j+1, . . . , σ
∗
n−1) ∈ Dn−1 and k = j − 1. The second sum in (6.100) contains a

term with this factor and coefficient cσ(σ∗
j−1 + 1).

3. σ∗
n > 0: In this case σ∗ = (0, . . . , 0, 1) and hence Hσ∗

= Hn = Hσk−1
k Hk+1

∏
i ̸=kH

σi
i for

σ = (0, . . . , 0, 1) ∈ Dn−1 and k = n−1. This term is included in the second sum of (6.100)
with coefficient cσ.

Hence, for each positive component of σ∗ there exists a term in (6.100) containing the factor
Hσ∗

. Conversely, every term in (6.100) corresponds to a σ∗ ∈ Dn and is of the form covered in
one of the three cases above. Hence, we have

Gn =
∑

σ∗∈Dn

Hσ∗ ∑
1≤j≤n:σ∗

j>0

(σ∗
j−1 + 1)cσ(j) (6.101)

where σ(j) = (σ∗
1 , . . . , σ

∗
j−2, σ

∗
j−1 + 1, σ∗

j − 1, σ∗
j+1, . . . , σ

∗
n−1) ∈ Dn−1 and we, for notational

convenience, define σ∗
0 ≡ 0. Using (6.10) we can write the inner sum in (6.101) as∑

1≤j≤n:σ∗
j>0

(σ∗
j−1 + 1)cσ(j)

=
∑

1≤j≤n:σ∗
j>0

(σ∗
j−1 + 1)

(n− 1)!∏n−1
i=1 σ

(j)
i !(i!)σ

(j)
i

=
1∏n

i=1 σ
∗
i !(i!)

σ∗
i

∑
1≤j≤n:σ∗

j>0

(σ∗
j−1 + 1)(n− 1)!

∏n
i=1 σ

∗
i !(i!)

σ∗
i∏n−1

i=1 σ
(j)
i !(i!)σ

(j)
i

=
1∏n

i=1 σ
∗
i !(i!)

σ∗
i

∑
1≤j≤n:σ∗

j>0

(σ∗
j−1 + 1)(n− 1)!

σ∗
j j!

(σ∗
j−1 + 1)(j − 1)!

=
1∏n

i=1 σ
∗
i !(i!)

σ∗
i
(n− 1)!

∑
1≤j≤n:σ∗

j>0

σ∗
j j

=
n!∏n

i=1 σ
∗
i !(i!)

σ∗
i

= cσ∗ , (6.102)
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where the penultimate equality uses that
∑

1≤j≤n:σ∗
j>0 σ

∗
j j = n since σ∗ ∈ Dn. This shows that

(6.97) holds and we are finished.

Before proving Theorem 6.2.6 we need to state the following two lemmas:

Lemma 6.6.1. For n ≥ 1, (a1, . . . , an) ∈ Cn and b ∈ C

∑
σ∈Dn

n∏
i=1

(
ai −

bi

i

)σi 1

σi!
=
∑
σ∈Dn

n∏
i=1

aσi
i

σi!
− b

∑
σ∈Dn−1

n−1∏
i=1

aσi
i

σi!
, (6.103)

where the last sum is 1 by definition for n = 1.

Proof. We first note that the left-hand side of (6.103) can be written

∑
σ∈Dn

n∏
i=1

aσi
i

σi!
− b

∑
σ∈Dn

σ1
aσ1−1
1

σ1!

n∏
i=2

aσi
i

σi!
+ . . . , (6.104)

where . . . denotes higher order terms of b. Since there is only a contribution to the first order
term if σ1 > 0, and since σ ∈ Dn with σ1 > 0 if and only if (σ1 − 1, σ2, . . . , σn−1) ∈ Dn−1, we
have that the first order term is given by

b
∑

σ∈Dn:σ1>0

σ1
aσ1−1
1

σ1!

n∏
i=2

aσi
i

σi!
= b

∑
σ∈Dn−1

n−1∏
i=1

aσi
i

σi!
. (6.105)

Hence we are finished if we show that all higher order terms in (6.104) vanish.
For m ≥ 2, the m’th order terms are of the form

n∏
i=1

aηi

i

(
−bi

i

)νi 1

(ηi + νi)!

(
ηi + νi
νi

)
=

sgn(ν)

dν
bm

n∏
i=1

aηi

i

ηi!
, (6.106)

where ν ∈ Dm and η ∈ Dn−m, with the convention that νj = 0 for j > m and, similarly, ηj = 0
for j > n − m (for m = n, ηj = 0 for all j). The higher order terms in (6.104) can then be
written

n∑
m=2

bm
∑

η∈Dn−m

n∏
i=1

aηi

i

ηi!

∑
ν∈Dm

sgn(ν)

dν
= 0, (6.107)

since the inner sum is zero for m ≥ 2 by equation (6.13).

We also need the following combination of Kronecker’s lemma, see e.g. Theorem 2.5.5 of
Durrett (2010), and Frobenius’ theorem, see e.g. Chapter 7 of Duren (2012).

Lemma 6.6.2. If
∑∞

k=1 ak converges to a finite limit then

f(s) = (1− s)
∞∑
k=1

skkak (6.108)

converges for |s| < 1 and f(s) → 0 as s→ 1−.

Proof. Let bk = k and xk = kak. Then bk ↑ ∞ and, by assumption,
∑∞

k=1 xk/bk =
∑∞

k=1 ak
converges. By Kronecker’s lemma this implies that

1

bn

n∑
k=1

xk =
1

n

n∑
k=1

kak → 0 as n→ ∞. (6.109)
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Next, let a0 = 0 and ck = kak − (k − 1)ak−1 for k ≥ 1. Summation by parts yields

f(s) = (1− s)
∞∑
k=1

skkak =
∞∑
k=1

sk(kak − (k − 1)ak−1) =
∞∑
k=1

skck, (6.110)

where the series
∑∞

k=1 ck is Cesàro summable to zero by (6.109), i.e. the average of the par-
tial sums,

∑k
m=1 cm = kak, converges to zero. By Frobenius’ theorem we conclude that f(s)

converges for |s| < 1 and f(s) → 0 as s→ 1−.

With those two lemmas available we are now ready to prove Theorem 6.2.6.

Proof of Theorem 6.2.6. By Theorem 6.2.5 we have for |s| < 1

τ (n)(s) = −eH(s)
∑
σ∈Dn

cσHσ(s), (6.111)

where H(s) = −
∑∞

k=1
sk

k P (Sk ≤ 0) and

Hσ(s) =

n∏
i=1

(
−

∞∑
k=i

(k)i
k
sk−iP (Sk ≤ 0)

)σi

. (6.112)

Using that log(1− s) = −
∑∞

k=1 s
k/k, and hence (i− 1)!/(1− s)i =

∑∞
k=i s

k−i(k)i/k, we get

eH(s) = exp

( ∞∑
k=1

sk

k
(1− P (Sk ≤ 0))−

∞∑
k=1

sk

k

)

= exp

( ∞∑
k=1

sk

k
P (Sk > 0)

)
(1− s), (6.113)

and

cσHσ(s) = n!
n∏

i=1

( ∞∑
k=i

(k)i
k
sk−i(1− P (Sk ≤ 0))−

∞∑
k=i

(k)i
k
sk−i

)σi

1

σi!(i!)σi

= n!
n∏

i=1

( ∞∑
k=i

(k)i
k
sk−iP (Sk > 0)− (i− 1)!

(1− s)i

)σi

1

σi!(i!)σi

= n!

n∏
i=1

(
ai −

bi

i

)σi 1

σi!
, (6.114)

where ai =
∑∞

k=i
(k)i
k sk−iP (Sk > 0)/i! and b = 1/(1− s). By Lemma 6.6.1 we then have

∑
σ∈Dn

cσHσ(s)/n! =
∑
σ∈Dn

n∏
i=1

aσi
i

σi!
− b

∑
σ∈Dn−1

n−1∏
i=1

aσi
i

σi!
. (6.115)

Theorem 6.2.5 in combination with (6.113) and (6.115) yields

τ (n)(s) = exp

( ∞∑
k=1

sk

k
P (Sk > 0)

) ∑
σ∈Dn−1

ncσ

n−1∏
i=1

( ∞∑
k=i

(k)i
k
sk−iP (Sk > 0)

)σi

− exp

( ∞∑
k=1

sk

k
P (Sk > 0)

) ∑
σ∈Dn

(1− s)cσ

n∏
i=1

( ∞∑
k=i

(k)i
k
sk−iP (Sk > 0)

)σi

. (6.116)
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By assumption
∑∞

k=1 k
n−2P (Sk > 0) <∞, and by dominated convergence, all series of order at

most n− 2 thereby converge to finite limits as s tends to 1−. In combination with Lemma 6.6.2
we also have

lim
s→1−

(1− s)
∞∑

k=n

(k)n
k

sk−nP (Sk > 0) = 0, (6.117)

and we conclude

E((τ−)n) = lim
s→1−

τ (n)(s) = exp

( ∞∑
k=1

1

k
P (Sk > 0)

)
n!

∑
σ∈Dn−1

n−1∏
i=1

(
hi
i!

)σi 1

σi!
<∞. (6.118)

6.6.3 Conditional characteristic functions
Proof of Theorem 6.2.8. Define the (partial) characteristic functions

γn(ζ) = E
(
eiζSn ; τ− = n

)
, (6.119)

in terms of which χ can be written as

χ(s, ζ) =
∞∑

n=1

snγn(ζ). (6.120)

Rearranging (6.26) we get

1− exp

(
−

∞∑
n=1

sn

n
gn

)
=

∞∑
n=1

snγn(ζ), (6.121)

where we have defined gn = E
(
eiζSn ;Sn ≤ 0

)
. From Theorem 6.2.2 we get that

exp

( ∞∑
n=1

(−1)
gn
n
sn

)
= 1 +

∞∑
m=1

∑
σ∈Dm

sm

σ1!σ2! · · ·σm!

m∏
n=1

(
(−1)

gn
n

)σn

= 1 +
∞∑

m=1

∑
σ∈Dm

sgn(σ)

dσ
sm

m∏
n=1

gσn
n . (6.122)

Insert this in (6.121) to obtain

−
∞∑

m=1

∑
σ∈Dm

sgn(σ)

dσ
sm

m∏
n=1

gσn
n =

∞∑
n=1

snγn(ζ). (6.123)

By inspection of the left and right hand side of the equality above we obtain

γn(ζ) = −
∑
σ∈Dn

sgn(σ)

dσ

n∏
k=1

(
E
(
eiζSk ;Sk ≤ 0

))σk
. (6.124)

Finally, divide by τn to obtain (6.27).

Proof of Theorem 6.2.9. For fixed ζ and n we have the following first-entrance decomposition

E(eiζSn) =
n∑

k=1

E(eiζSn ; τ− = k) + E(eiζSn ; τ− > n)

=
n∑

k=1

E(eiζSk ; τ− = k)E(eiζSn−k) + E(eiζSn ; τ− > n), (6.125)
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where the second equality follows from the Markov property and the random walk structure.
For ease of notation we let ek = E(eiζSk). In this notation, the decomposition above can be
written

E(eiζSn ; τ− > n) = en −
n∑

k=1

E(eiζSk ; τ− = k)en−k. (6.126)

Multiplying both sides of (6.126) by e1 yields the relation

E(eiζSn ; τ− > n)e1 = en+1 −
n∑

k=1

E(eiζSk ; τ− = k)en+1−k

= E(eiζSn+1 ; τ− > n+ 1) + E(eiζSn+1 ; τ− = n+ 1), (6.127)

where we have used that for all k, eke1 = ek+1.
We are now ready to prove (6.28) by induction in n. Since the events (τ− > 1) and (S1 > 0)

are identical equation (6.28) holds for n = 1. Next, assume that (6.28) holds for n. Let
e+k = E(eiζSk ;Sk > 0) and note that E(eiζSk ;Sk ≤ 0) = ek − e+k . From Theorem 6.2.8 we have

E(eiζSn+1 ; τ− = n+ 1) = −
∑

σ∈Dn+1

n+1∏
k=1

(
e+k − ek

k

)σk
1

σk!
. (6.128)

Using that ek = ek1 we get from (6.127), the induction hypothesis and (6.128) that

E(eiζSn+1 ; τ− > n+ 1) = e1
∑
σ∈Dn

n∏
k=1

(
e+k
k

)σk
1

σk!
+

∑
σ∈Dn+1

n+1∏
k=1

(
e+k − ek1

k

)σk
1

σk!

=
∑

σ∈Dn+1

n+1∏
k=1

(
e+k
k

)σk
1

σk!
, (6.129)

where the second equality uses Lemma 6.6.1 with ak = e+k /k and b = e1. This shows that (6.28)
holds for n+ 1 and we are finished.
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