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Université libre de Bruxelles and Vrije Universiteit Brussel,
Brussels, Belgium

Professor Jostein Paulsen,
University of Copenhagen,
Denmark (Chairman)

ISBN: 978-87-7078-965-3



Contents

Preface iii

Summary v

Sammenfatning vii

List of papers ix

1 Introduction 2

2 Local risk-minimization with longevity bonds 10

3 Markov chain modeling of policyholder behavior in life insurance and pension 38

4 Stress scenario generation for solvency and risk management 62

5 Affine processes and Markov chains: Interest Rate-Dependent Transition Rates
in Life Insurance 88

6 Optimal surplus distribution problems for regulated funds with assets and
liabilities 112

Bibliography 159

i



ii



Preface

This thesis has been prepared in fulfillment of the requirements for the PhD degree at the Depart-
ment of Mathematical Sciences, Faculty of Science, University of Copenhagen, Denmark. The
work has been carried out under the supervision of Professor Mogens Steffensen and Jesper Lund
Pedersen, University of Copenhagen, in the period from October 1, 2011 to September 30, 2014.
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Summary

This thesis consists, in excess to an introductory chapter, of five papers within the broad area of
life insurance mathematics. The last of the papers can also be considered as within the area of
non-life insurance mathematics. There is no unifying topic, but many recurrent subtopics.

In the first paper, we consider a market where the interest rate and mortality intensity are
modelled as affine processes. The market consists of zero coupon bonds and longevity bonds and
we do not assume that the price processes are martingales under the real measure. In this setup
we find an optimal hedging strategy for a portfolio of general life insurance contracts by using
the criterion of local risk-minimization.

The second paper studies expected policyholder behavior in a multistate Markov chain model
with deterministic intensities. Valuation techniques in the cases where policyholder behavior is
modelled to occur independently or dependently of insurance risk, respectively, are discussed and
studied numerically. The impact (quantitatively and computationally) of different simplifying
assumptions are investigated for representative insurance contracts.

In the third paper, we derive worst-case scenarios and reserves in a life insurance model in the
case where the interest rate and the various transition intensities are mutually dependent. The
calculations are based on deterministic optimal control theory. The results of a single insurance
contract are extended to inhomogeneous portfolios of insurance contracts and various numerical
studies are presented. These studies qualify the standard formula of Solvency II.

In the fourth paper, we study the class of affine processes. We obtain transform results which can
be used for valuation of life insurance contracts modelled within general, hierarchical, multistate
Markov chains. The affine setup makes the calculations computationally tractable because we
only need to solve systems of ordinary differential equations and not partial differential equations.
The setup allows for mutual dependence between interest rate and transition intensities which
makes it possible to e.g. model interest rate dependent surrender rates.

Finally, the fifth paper obtains optimal surplus distribution strategies in a model with infinite
time horizon where assets and liabilities are modelled by correlated, geometric Brownian motions.
The controls considered are, that we either increase liabilities or decrease assets. The increase
of liabilities could be used in the modelling of non-for-profit mutual funds or pension funds. On
the other hand, the decrease in assets could be used for modelling of for-profit companies. We
impose a simple solvency constraint and prove optimality of barrier strategies, where the barrier
is defined in terms of the funding ratio. We also study barrier strategies within a model with a
more advanced solvency constraint, where the allowance of controlling either liabilities or assets,
when the funding ratio is between a lower and upper barrier, depends on which of the two barriers
that have been crossed last. We also consider barrier strategies under the assumption that ruin
must be prevented which is done by either decreasing the liabilities or by capital injections. All
the results are illustrated numerically.
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Sammenfatning

Denne afhandling best̊ar, i tillæg til et introduktionsafsnit, af fem artikler indenfor the brede felt
af livsforsikringsmatematik. Den sidste artikel kan ogs̊a anses som værende indenfor skadesforsik-
ringsmatematik. De fem artikler har ikke noget overordnet emne, men der er mange underemner,
der g̊ar igen i artiklerne.

I den første artikel betragter vi et marked, hvor renten og dødsintensiteten er modelleret som affine
processer. Markedet best̊ar af nulkuponobligationer og longivity obligationer, og vi antager, at
prisprocesserne ikke er martingaler under det sande m̊al. I dette setup finder vi den optimale
afdækningsstrategi for en portefølje best̊aende af generelle livsforsikringskontrakter ved kriteriet
lokal risikominimering.

Den anden artikel undersøger forventet policetageradfærd i en flertilstands-Markovkæde model
med deterministiske intensiteter. Beregningsteknikker, for de tilfælde hvor policetagernes adfærd
er modelleret som afhængig eller uafhængig af forsikringsrisikoen, diskuteres og studeres numerisk.
Effekten (kvantitativt og beregningsmæssigt) af forskellige simplificerende antagelser undersøges
for repræsentative forsikringskontrakter.

I den tredje artikel udleder vi worst-case scenarier og reserver i en livsforsikringsmodel i det tilfæl-
de, hvor renten og de forskellige overgangssandsynligheder er indbyrdes afhængige. Beregningerne
er baseret p̊a deterministisk optimal kontrolteori. Resultaterne for en enkelt forsikringskontrakt
udvides til inhomogene porteføljer af forsikringskontrakter, og diverse numeriske studier præsen-
teres. Disse studier kvalificerer Standardformelen fra Solvens II.

I den fjerde artikel betragter vi klassen af affine processer. Vi finder transformationsresultater,
som kan bruges til beregning af livsforsikringskontrakter modelleret indenfor generelle, hierar-
kiske Markovkæder med flere tilstande. Det affine setup gør udregningerne beregningsmæssigt
medgørlige, idet vi kun skal løse systemer af ordinære differentialligninger og ikke partielle diffe-
rentialligninger. Setuppet tillader indbyrdes afhængighed mellem renten og overgangssandsynlig-
hederne, som gør det muligt f.eks. at modellere renteafhængige genkøbsrater.

Endeligt finder vi i den femte artikel optimale strategier for udlodning af overskud i en model med
uendelig tidshorisont, hvor aktiver og passiver er modelleret ved hjælp af korrelerede, geometriske
Brownske bevægelser. Kontrollerne, der betragtes, er, at vi enten øger passiverne eller mindsker
aktiverne. Forøgelsen af passiverne kan bruges i modelleringen af non-profit mutual funds eller
pensionsfonde. P̊a den anden side kan mindskelsen af aktiverne bruges i modelleringen af for-profit
selskaber. Vi indfører en simpel solvensbegrænsning og viser optimalitet af barrierestrategier,
hvor barrieren er defineret i forhold til funding-ratioen. Vi undersøger ogs̊a barriererstrategier
i en model med mere avancerede solvensbegrænsninger, hvor tilladelsen til at kontrollere enten
passiver eller aktiver, n̊ar funding-ratioen er mellem en øvre og en nedre barriere, afhænger af
hvilken af de to barrierer, der blev krydset sidst. Vi undersøger ogs̊a barriererstrategier under den
antagelse, at ruin skal forhindres. Dette opn̊as ved enten en mindskelse af passiverne eller ved en
kapitalinjektion. Alle resultaterne er illustreret numerisk.
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Chapter 1

Introduction

This chapter gives an overview of the contributions of the thesis and highlights some of the
connections between the five separate papers, which circles around many of the same themes but
consider these from quite different perspectives. None of the papers are continuations of each
other nor are they using results of each other as foundation. Several of the chapters address how
to react to parts of the Solvency II legislation. These reactions include how to reduce the solvency
capital requirement (SCR) and how to make the more advanced compulsory calculations more
tractable seen from a numerical point of view.

1.1 Local risk-minimization

In Chapter 2 we consider the problem of hedging an insurance payment stream for a portfolio,
where the lives of the policyholders are mutually independent and identically distributed con-
ditional on the mortality intensity. The affine framework is chosen to make the calculations
tractable such that the insurance reserves can be calculated by solving ordinary differential equa-
tions (ODEs) instead of partial differential equations (PDEs). The work is partly motivated
by the increasing interest for mortality derivatives, see Blake et al. (2008), Blake et al. (2010)
and Blake (2011), and the increasing improvements in life expectancy seen over the last decade,
which exposes life insurance companies and pension funds to a non-diversifiable risk. This work
is inspired by Dahl et al. (2008) but here we don’t require the discounted price processes of the
traded assets to be martingales under the real measure. Moreover, we focus on longevity bonds
instead of survivor swaps. The quantitative impact studies relating to the Solvency II legislation
have shown, that especially longevity is a major risk which requires a lot of capital. By hedging
the longevity risk, the companies can reduce their solvency capital requirement, and the chapter
analyses how this can be done in an optimal way.

The interest rate is modeled by an affine process, the financial market consists of zero-coupon
bonds and a longevity bond, and the number of survivors is modeled via a double-stochastic pro-
cess, where the mortality intensity is driven by a time-inhomogeneous CIR-model. The longevity
bond is a mortality linked derivative paying a coupon, which is proportional to the actual number
of survivors in a portfolio. That is, the payment process of the longevity bond is given by

dALB(x, t) = (n−N(x, t))dt, 0 ≤ t ≤ T,

where n is the number of insured lives and N(x, t) is the numbers of deaths in the portfolio at
time t. The payment stream, we are hedging, is quite general and covers the most common life
insurance products. Because the market is incomplete, we cannot hedge the insurance payment
stream perfectly. Instead we use the quadratic criterion “local risk-minimization” to find the
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best way of hedging the risk. Local risk-minimization was introduced by Schweizer (1988) as a
generalization of risk-minimization to the case where the price processes of the traded assets are
not martingales under the real measure, which often is the case in practice. The chapter extends
Dahl et al. (2008) to the case where the price processes of the traded assets are not martingales
under the measure used for determining the optimal strategies.

The criterion local risk-minimization, which is equivalent to risk-minimization in the martingale
case, is that one minimizes the conditional expected quadratic deviation between the costs today
and the costs at termination time in a local manner. That is, one tries to make the strategy as
close to selffinancing as possible (in a quadratic sense). To obtain the risk-minimizing strategy
we find the value of the reserve under a class of equivalent martingale measures, the real measure
and a specific martingale measure called the minimal martingale measure. Here, one of the
challenges is that we need to prove that the minimal martingale measure exists (is a well-defined
probability measure) for the market, which in general is not the case when the price processes
of the assets have jumps. The value function of the reserve under different measures helps us
construct the local risk-minimizing strategy in an explicit way and finally checking that various
technical conditions are satisfied. The overall form of the optimal strategy resembles the optimal
strategy found in Dahl et al. (2008) in some ways but various terms are calculated under different
measures. The size of the impact on the strategy of these differences depends of course on the
differences between the measures and the other parameters of the model. Also note that local risk-
minimization requires calculations of the reserve under the minimal martingale measure where
interest rate and mortality intensity are not necessarily affine processes. That is, we are forced to
solve PDEs. In summary, it is possible to find the local risk-minimizing strategy under the correct
measure but it comes with a fairly high price in terms of technical challenges and computational
workload.

1.2 Policyholder options and affine processes

Chapter 3 deals with calculation of life insurance reserves where we take expected policyholder
behaviour and options into account in a computationally tractable way. The policyholder behavior
we think of here are the surrender option and the free policy options, which means that for a
disability product, we want to calculate reserves and cash flows in a Markov chain model like
the one illustrated in Figure 1.1. There is a wide range of options for modelling of policyholder

a

Active
i

Disabled

d

Dead

s

Surrender

fa

Active, free policy
fi

Disabled, free policy

fd

Dead, free policy

µai

µad
µid

µas

µafµfs

µai

µad
µid

Figure 1.1: State space for a disability model with lapse.
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behavior. One extreme option is to assume that the policyholder exercises options based on an
economically optimal strategy meaning that the reserves should be valuated like American type
options. However, it is highly questionable whether the average policyholder has the information
and knowledge to exercise these options when beneficial. Moreover, many contracts are linked
to a job making these behavioral options more difficult to exercise. Another extreme approach
is to assume that the intervention options are exercised completely incidentally, which allows us
to model the transitions of the Markov chain by deterministic intensities. In between these two
extremes are models where the intervention intensities depend on interest rates or other internal
(to the model) variables. These models also include the cases, where the intervention intensities
are split into rational parts and irrational parts. In Chapter 3 we take the extreme approach to
have an intensity based model with deterministic intensities, whereas Chapter 5 deals with the
approach in between, where intensities for example can be linked to the interest rate.

Figure 1.1 illustrates the case with dependence between insurance risk and behavior risk in the way
that you e.g. cannot exercise the free policy option in state “Disabled”. This dependence between
insurance risk and behavior essentially arises from the product design. One of the main points of
this chapter is to study and relate formulas and numerical results in the two cases of dependence
and independence, respectively. The chapter shows formalistic and computational advantages
and disadvantages under different simplifying assumptions in the case where dependence is part
of the contract design. The numerical part studies the effects (is it beneficial or not to take
behavioral options into account for insurance companies) for some standard contracts. It also
quantifies the impact of using various simplifying assumptions. An example of this quantification
can be seen in Figure 1.2 where one also observes that the effect of using simplifying assumptions
depends on the type of the contract.
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Figure 1.2: The technical reserve, the “dependent” reserve (including reactivation), and the two
market reserves without behavioral options. Left plot is for a “new policy” and the right plot is
for an “old policy”.

In Chapter 5 we present a theoretical framework for valuation of life insurance contracts within
a Markov chain model by solving ODEs instead of PDEs in models where the interest rate and
the transition rates are modeled as stochastic processes. This is e.g. motivated by the Solvency
II legislation that demands that life insurance companies take into account future policyholder
behavior such as the likelihood of lapse during the remaining period of an insurance contract.
Moreover, the work of Kuo et al. (2003) and De Giovanni (2010) have been an inspiration for
interest-dependent modelling of intervention intensities. More precisely, we model the interest
rate and the transition rates as affine processes, where we allow for dependence between the
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interest rate and the transition rates. Affine processes are stochastic processes with the property
that the conditional characteristic functions are exponentially affine. To be able to calculate
reserves in a stochastic setup is useful in itself as shown in Chapter 2. The theory in this chapter
extends some of the results used in Chapter 2, which can be used if one for example wants to
make local risk-minimization within more general Markov chain models than the life-death model
discussed in Chapter 2. The reason why it is useful to allow for dependence between the processes,
is outlined above. The class of affine processes is a popular choice for many types of stochastic
modelling due to mathematical and computational tractability. The results are not only useful
in life insurance but also areas like credit risk.

We obtain results for general hierarchical Markov chain models which is an generalization of the
results in Duffie et al. (2000) to an arbitrary number of transitions within hierarchical Markov
chain models. An example of such a model is given in Figure 1.1. Moreover, we give two different
representations of transforms of affine processes, which are both useful but in different models.
One of the representations has the form

E

[
eu0(v)+u1(v)X(v)−

∫ v
s ρ0(τ)+ρ1(τ)X(τ)dτ

n∑
i=0

gi(v)Xi(v)

∣∣∣∣∣F(s)

]
= eβ(s,v)X(s)

n∑
i=0

Ci(s, v)Xi(s),

(1.2.1)

where uj , ρj , j = 1, 2, and gi, i = 0, . . . , n, are deterministic functions, X is an affine process,
and the functions β and Ci are solutions to a system of ODEs. We denote this representation the
dense representation since it requires calculation of a minimum number of ODEs. To calculate
reserves in state “Active” for the example illustrated in Figure 1.1, one needs to calculate terms
of the form (1.2.1) for i up to three and hereafter integrate the terms over all possible jump times.
It turns out that the class of affine processes is very useful and computational tractable for many
Markov chain models used in life insurance but that the approach also has its limitations. These
limitations arise when there are possibility of making many “jumps” within the Markov chain
before reaching an absorbing state, since this requires calculation of a huge number of ODEs.
This challenge is described in more details in one of the last parts of Chapter 5. However, the
dimension of the underlying affine process does not give rise to computational problems, since
the number of ODEs is sublinear in the dimension. Another limitation is that the affine setup is
only useful in a limited number of non-hierarchical models.

1.3 Worst-case calculations

In Chapter 4 we calculate worst-case scenarios for probability weighted life insurance reserves.
The chapter extends Christiansen and Steffensen (2013) in the following way: Like us, they search
for optimal deterministic scenarios and obtain simple formulas for these but in a quite restricted
class of models. The class is defined endogenously by requiring that certain argmax operations
over transition intensities are constant with respect to the transition probabilities they generate,
see Christiansen and Steffensen (2013, Proposition 4.1 and 4.2). The work in this paper is very
much inspired from the structure of problems and solutions in that article, but we succeed in also
finding the worst-case scenario without imposing their restrictive assumptions. Like in Chapter
2, we address the question of how to deal with the Solvency II legislation but in a quite different
manner. In Chapter 2 we do this by considering an optimal hedge, and here we do so by suggesting
an alternative to the standard formula or at least a way of qualifying the standard formula of
Solvency II. The framework described in the chapter allows for the case where the interest rate
and the various transition intensities are mutually dependent, which means that the worst-case
scenarios are typically not “corner solutions”. As opposed to Chapter 5, the dependence is not
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modeled directly but indirectly by the shape of the sets of scenarios over which we are maximising
the reserves. Some types of dependencies one can think of in the context of life insurance is e.g.
surrender intensities and interest rates that are high at the same time, that mortality intensities
of a policyholder as active and disabled, respectively, are low at the same time, and that mortality
intensities of the policyholders in a portfolio are low at the same time.

The first part of the chapter deals with describing the worst-case probability weighted reserve
(and scenario) for a single policyholder by a system of ODEs. By worst-case scenario we mean,
that for unknown interest and transition rates (φ, µ), we want to find deterministic interest and
transition rates (φ̃, µ̃) such that for the liabilities L, it holds that

P
(
L(t, φ̃, µ̃) ≥ L(t, φ, µ)

)
≥ 1− α,

where α ∈ [0, 1). That is, we want to find a deterministic calculation basis such that the liabilities
calculated with this basis with a certain probability are larger than the liabilities calculated with
the real (stochastic) basis. This can be obtained by choosing (φ̃, µ̃) = argmax(φ,µ)∈M L(t, φ, µ)
for a set M such that P ((φ, µ) ∈ M) ≥ 1 − α. The object of study in this paper is, given a set
M , to calculate the argmax, (φ̃, µ̃), of L(t, φ, µ).

As shown in Christiansen and Steffensen (2013), we can use this to obtain an upper bound for
the SCR given by

sup
(φ,µ)∈M

{L(t, φ, µ)} − L
(
t, φBE, µBE

)
,

where φBE and µBE are best estimates for the interest rate and transition intensities, respectively.
This study also includes a verification lemma, which has deterministic control theory as foun-
dation, stating that the system of ODEs characterizes the worst-case reserve and results about
existence of a worst-case scenario and reserve, which requires delicate functional analysis. One of
the main focus points in this chapter is to obtain a tractable characterisation of the worst-case
scenario and reserve by a system of ODEs, like it is the goal in Chapter 5. The ODEs have
boundary conditions in different time points and two numerical methods (fixed point equation
method and the shooting method) for obtaining numerical results are outlined.

Seen from a company and solvency perspective, this type of calculations are by far most interest-
ing for a portfolio of life insurance contracts. The theory for a single policy can be used to cover
special cases of homogeneous portfolios but does not in general cover inhomogeneous portfolios.
The second half of Chapter 4 extends the theory to cover inhomogeneous portfolios in a compu-
tationally tractable way and investigate the results numerically. Figure 1.3 shows that there can
be a big difference between calculating the worst-case intensities for a portfolio of policyholders
compared to calculating the worst-case intensity for each policyholder individually. The solid
lines are worst-case death intensities for the whole portfolio and the dotted lines are worst-case
death intensities for the individual policyholders. The three representative policyholders have
the same product but different ages. This difference is also illustrated in Table 1.1, where we
have made a numerical study of the impact on SCR when using the standard formula, using the
worst-case intensities for the portfolio and by using the worst-case intensities for the individual
policyholders. The table should not be read in the way that we think the SCR of Solvency II is
too low but it illustrates what results we obtain if we use the percentages of the mortality and
longevity shocks of Solvency II as lower and upper bounds relative to a best-estimate mortality
intensity for the sets we are maximizing the reserves with respect to. This leads to a transparent
SCR where one exactly knows where the worst-case scenario comes from.
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Solvency II Worst-case (PF) Worst-case (separate)

1.59 1.83 2.19

Table 1.1: SCR calculated by different methods.

1.4 Optimal surplus distribution problems

In Chapter 6, we consider optimal surplus distribution strategies for pension funds and for-profit
companies. The problems we are studying in this chapter belong to the class of stochastic control
theory problems with infinite time horizon. The controls considered are that we either increase
liabilities or decrease assets. The increase of liabilities could be used in the modeling of non-for-
profit mutual funds or pension funds. On the other hand, the decrease in assets could be used for
modelling of for-profit companies. The latter case is equivalent with paying out dividends. The
work is an extension of Gerber and Shiu (2003) and the main contribution is to take different kinds
of solvency constraints into account and to perform numerical explorations of these constraints.

We model assets and liabilities as a correlated two-dimensional geometric Brownian motion and
allow for singular controls but we impose some solvency constraints. In the first part of the
chapter we consider simple solvency constraints as the ones suggested in Paulsen (2003) which
impose that the pension fund or company is not allowed to increase liabilities or pay out dividends
if the funding ratio is below a level α1. It turns out that barrier strategies, where the barrier is
for the funding ratio, are optimal and that the optimal barriers are the same for both the case
where we increase liabilities and pay out dividends.

In the second and third part of the chapter we consider a model with more advanced solvency
constraints and a model where ruin must be prevented. The idea of advanced solvency constraints
was first suggested in Avanzi and Wong (2012) and is illustrated in Figure 1.4. The interpretation
of the advanced solvency constraint in the pension fund case is the following: We assume that
the fund is not fully funded if its funding ratio is below α1 (although it is not severe enough to
declare bankruptcy). Hence it is not realistic to assume that a fund that has just recovered and
just reached α1 could immediately start distributing some of its excess profits. In other words,
α2 > α1 describes a situation where downcrossing α1 would trigger some alarm and put the fund
in an emergency state under which no distribution is allowed (and perhaps, the fund is closely
monitored by the regulator). This state would revert back to normal when the process upcrosses
level α2 > α1 again. For the case of a for-profit company, α1 = α2 may lead to erratic periods of
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dividend payments if the barrier is equal to α1, which is unrealistic in practice; see also Avanzi
and Wong (2012) for a discussion of this. In this setup, we also study barrier strategies.

Funding ratio

0

Ruin

α0

Not allowed to distribute

α1

Depends. Allowed to distribute if coming from α2, not from α1

α2

Allowed to distribute

Figure 1.4: Graphical illustration of model with advanced solvency constraints.

In the part where ruin must be prevented, we evaluate strategies where lowering of liabilities are
forced at the ruin level for pension funds and where capital injections are forced at the ruin level
for for-profit companies. Since lowering of liabilities and injection of capital comes with a price
(modelled by a multiplicative factor), it is only optimal to do so when absolutely necessary, i.e.
at the ruin level. We also investigate the more realistic assumption, that the price of capital
injection is dependent on the funding ratio by the rationale that the lower the funding ratio the
greater the cost of raising capital. This will make it more attractive to inject before the ruin
level. The calculations come with lots of numerical illustrations elucidating whether solvency
constraints are good or bad and whether forced injections are optimal relative to declaring ruin.
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Chapter 2

Local risk-minimization with
longevity bonds

Abstract: This paper studies the criterion of local risk-minimization for life insurance
contracts in a financial market which includes longevity bonds. The longevity bond
is a bond specifying payments which are linked to the current number of survivors in
a given portfolio of insured lives. The number of survivors is modeled via a double-
stochastic process, where the mortality intensity is driven by a time-inhomogeneous
CIR-model. In addition to the longevity bond, the financial market is assumed to
consist of a traditional bond and a savings account. We define the price process of the
longevity bond by introducing a pricing measure. The paper extends previous work
in the literature to the case where the traded assets are not martingales under the
measure used for determining the optimal strategies. We compare our results under
the real measure with the former results of globally risk-minimizing strategies, obtained
using an equivalent martingale measure.

Keywords: Longevity bond, minimal martingale measure, local risk-minimization.

2.1 Introduction

The focus on biometric risks in life insurance is increasing vigorously these years. This is in
particular motivated by the forthcoming Solvency II legislation. Based on the results of Fifth
Quantitative Impact Study for Solvency II (QIS V), see EIOPA (2011), one realises that the
longevity stress is the second largest risk of the life module. Hedging this risk by means of
longevity derivatives could potentially reduce the solvency capital requirement.

In this paper we discuss the problem of finding a locally risk-minimizing hedging strategy for
life insurance contracts in a financial market containing longevity bonds. The study of mortality
derivatives has increased in popularity during the last years. The motivation is the increasing
average lifetime in many countries, which exposes the life insurance companies to a major non-
diversifiable risk. This risk comes along with the financial risk. One challenge for the life insurance
companies in the coming years will be to control or minimize the combined risk. A possible way
to do this is to hedge the risk by trading mortality derivatives. This has to a limited extent been
done alongside the introduction of mortality derivatives in the financial markets the last few years.
The potential market for mortality derivatives is huge, since the global longevity risk exposure
in the private pension sector is estimated to about $25 trillions, see Blake and Biffis (2012).
The general interest in mortality derivatives is increasing rapidly these years, see e.g. Blake et al.
(2008), and some people also advocate for the introduction of government-issued longevity bonds,
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see Blake et al. (2010). A current account of the market for longevity derivatives can be found
in Blake (2011).

Here, we give a short review of the literature on risk-minimization and its applications in life in-
surance. Risk-minimization was introduced by Föllmer and Sondermann (1986), and the criterion
has been applied in several papers subsequently. Dahl et al. (2008) carries out risk-minimization
for insurance payment streams for different markets in the case where the interest rate process
and the mortality intensity process are continuous. Schweizer (1988) introduces the theory of
local risk-minimization and Schweizer (2008) gives a streamlined theoretical description of local
risk-minimization for multidimensional payment processes.

The criterion local risk-minimization has recently been used by various authors in insurance
applications. Barbarin (2007) finds locally risk-minimizing strategies for insurance contracts
with surrender options in a setting without jumps. As examples of the theory used in a setting
with jumps, we mention Riesner (2006) and Vandaele and Vanmaele (2008), where locally risk-
minimizing strategies are determined for an insurance contract in a market with a risky asset
containing jumps and a deterministic interest rate.

We apply the criterion of local risk-minimization within the model of Dahl et al. (2008) in the
case where the discounted price processes of the traded assets are not martingales under the
objective measure. Local risk-minimization may be viewed as a more natural way of minimizing
the hedging-error than risk-minimization under some equivalent martingale measure, since the
price processes of the traded assets evolve with respect to the objective measure.

The paper is organized as follows: In Section 2.2 we introduce a financial market with zero coupon
bonds, a model for the mortality intensity and a portfolio of insured lives. Both the interest rate
and the mortality intensity are modeled as in Dahl et al. (2008). We present the combined model
for the financial market and the portfolio of insured lives and study a class of equivalent martingale
measures. In Section 2.3 and 2.4 we examine mortality derivatives in the form of longevity bonds
and a general insurance contract and find their stochastic representations. The theory of local
risk-minimization is reviewed in Section 2.5. In Section 2.6, we prove that the minimal martingale
measure exists (is a well-defined probability measure) for the market, and we find an expression
for this measure. In Section 2.7, we finally derive locally risk-minimizing strategies for the market
under the objective measure and compare the result with some results obtained using the criterion
global risk-minimization. The appendix presents proofs of some technical results.

2.2 The model

This section contains a brief review of the model and some main results of Dahl et al. (2008).
Let T be a fixed finite time horizon and (Ω,F , P ) a probability space with filtration IF =
(F(t))0≤t≤T satisfying the usual conditions of right-continuity and completeness. All random
variables and stochastic processes are defined on (Ω,F , P ). We also define the subfiltrations
IG = (G(t))0≤t≤T , II = (I(t))0≤t≤T and IH = (H(t))0≤t≤T generated by two standard Brownian
motions W r (determines the interest rate), Wµ (determines the mortality intensity) and a count-
ing process N (counting the deaths in the insurance portfolio), respectively. These processes are
defined later. We define the filtration IF by F(t) = (G(t) ∨ I(t) ∨H(t)).
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2.2.1 Interest rate model

The short rate is determined by a standard Vasiček model, i.e. the short rate dynamics under P
are

dr(t) = (γr − δrr(t))dt+ σrdW r(t),

with r(0) = r0 > 0 fixed. Here, γr, δr and σr are constants, and W r is a standard Brownian
motion.

2.2.2 The financial market

The basic financial market consists of two traded assets: A savings account and a zero-coupon
bond with maturity T . Later on, the market will be extended with a longevity bond.

The price process of the savings account is given by

dB(t) = r(t)B(t)dt, B(0) = 1,

and the price process of the zero coupon bond expiring at time T is given by

P (t, T ) = EQ
r
[
e−
∫ T
t r(u)du

∣∣∣F(t)
]
.

Here, the unique equivalent martingale measure Qr for the market is defined by

dQr

dP
= Λr(T ), (2.2.1)

where

dΛr(t) = Λr(t)hr(r(t), t)dW r(t), Λr(0) = 1. (2.2.2)

We assume that EP (Λr(T )) = 1. In addition, we assume that

hr(r(t), t) = −
(
c̃

σr
+
cr(t)

σr

)
,

where c and c̃ are constants. It follows from Girsanov’s Theorem that the dynamics of the short
rate under Qr are given by

dr(t) =
(
γr,Q − δr,Qr(t)

)
dt+ σrdW r,Q(t),

where W r,Q is a standard Brownian Motion under Qr, γr,Q = γr − c̃ and δr,Q = δr + c. Under
Qr the interest rate process is affine, and it is well-known that the price process of a zero coupon
bond is given by

P (t, T ) = eα(t,T )−β(t,T )r(t),

where

β(t, T ) =
1

δr,Q

(
1− e−δr,Q(T−t)

)
,

α(t, T ) =
(β(t, T )− T + t)(γr,Qδr,Q − 1

2(σr)2)

(δr,Q)2
− (σr)2(β(t, T ))2

4δr,Q
.

Under Qr, the dynamics of the discounted price process of the zero coupon bond are given by

dP ∗(t, T ) = −σrβ(t, T )P ∗(t, T )dW r,Q(t). (2.2.3)
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2.2.3 The mortality intensity

The mortality intensity is modeled by a 1-dimensional stochastic process. As in Dahl et al.
(2008), we start by defining an underlying process ζ, which determines the relative change in the
mortality intensity. Let ζ(x, t) be a Markov process with dynamics

dζ(x, t) = (γ(x, t)− δ(x, t)ζ(x, t)) dt+
√
ζ(x, t)σ(x, t)dWµ(t), (2.2.4)

ζ(x, 0) = 1. Note that ζ is a process depending only on the variable t, not on x. The parameter x
just indicates that we consider a cohort, where each individual has the same age x at time 0. In
contrast to Dahl et al. (2008), we work with a 1-dimensional ζ-process. The functions γ, δ and σ
are deterministic functions only depending on t, and Wµ is a 1-dimensional standard Brownian
motion.

We let the mortality intensity µ(x, t) be given by µ(x, t) = µ◦(x, t)ζ(x, t), where µ◦(x, t) is a
positive, deterministic function. By modeling the mortality intensity as the product µ◦ζ, we
can view µ◦ as the time-0 mortality intensity and ζ as a process describing the changes of the
mortality intensity relative to the time-0 mortality intensity.

By Itô’s formula and by using (2.2.4) we get

dµ(x, t) = µ◦(x, t)dζ(x, t) + (dµ◦(x, t)) ζ(x, t)

= Θ(x, t, µ(x, t))dt+ σµ(t, µ(x, t))dWµ(t), (2.2.5)

where

Θ(x, t, µ(x, t)) = µ◦(x, t)γ(x, t) +

((
d

dt
µ◦(x, t)

)
µ◦(x, t)−1 − δ(x, t)

)
µ(x, t),

σµ(t, µ(x, t)) =
√
µ(x, t)

√
µ◦(x, t)σ(x, t).

To ensure that the mortality intensity is strictly positive, we assume that

2γ(x, t) ≥ (σ(x, t))2.

2.2.4 The lifetimes in the portfolio

We consider a portfolio consisting of n insured lives. They are all of same age x at time 0.
We assume that the lives are mutually independent and identically distributed conditional on the
mortality intensity. The remaining lifetimes are given by the positive random variables T1, . . . , Tn.
The probability of surviving until time t, given the mortality intensity up to time t, is given by

P (T1 > t|I(t)) = e−
∫ t
0 µ(x,s)ds.

The number of deaths in the portfolio is given by the counting process

N(x, t) =

n∑
i=1

1(Ti≤t).

The stochastic intensity process λ(x, ·) related to N(x, ·) is informally given by

λ(x, t)dt = EP (dN(x, t)|I(t−) ∨H(t−)) = (n−N(x, t−))µ(x, t)dt.

That is, λ is the mortality intensity times the number of survivors. The martingale corresponding
to the counting process N(x, t) is given by dM(x, t) = dN(x, t)− λ(x, t)dt.
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2.2.5 Change of measure in the combined model

We consider a combined model comprising the financial market, the mortality intensity and the
portfolio of insured lives. We assume that the financial market is independent of the mortality
intensity and the portfolio of lives, i.e. G(t) ⊥ (H(t), I(t)). The assumption of independence
implies that processes which are martingales with respect to a subfiltration are also martingales
with respect to IF .

We consider a class of equivalent martingale measures for the combined financial and insurance
market. We let a martingale measure Q be given by

dQ

dP
= Λ(T ), (2.2.6)

where

dΛ(t) = Λ(t−) (hr(r(t), t)dW r(t) + g(t)dM(x, t)) , Λ(0) = 1. (2.2.7)

We assume that EP (Λ(T )) = 1. The change of measure given by (2.2.6) is a generalization of the
change of measure given by (2.2.1). We maintain the assumptions described in Section 2.2.2 for
the first term of the likelihood process Λ. Moreover, we assume that the deterministic function g
depends on t only, is differentiable, and that g > −1.

This measure change is slightly less general than the one studied in Dahl et al. (2008), which also
includes a change of measure for Wµ. Here, we need to restrict ourselves to the measure change
given by (2.2.6) to ensure that the minimal martingale measure found below in Section 2.6 is a
well-defined probability measure.

The dynamics of the likelihood process Λ(t) consist of two parts. The first part is related to
the interest rate and the second part to the counting process N . By Girsanov’s Theorem, the
dynamics of ζ and µ are unchanged under Q.

Under the measure Q, the stochastic intensity process is given by

λQ(x, t) = (n−N(x, t−))µQ(x, t),

where

µQ(x, t) = (1 + g(t))µ(x, t).

The associated Q-martingale is given by

dMQ(x, t) = dN(x, t)− λQ(x, t)dt. (2.2.8)

We end this section by writing the dynamics of the process µQ(x, ·) in an affine form. A straight-
forward calculation shows that the dynamics of µQ can be written as

dµQ(x, t) =
(
γµ,Q(x, t)− δµ,Q(x, t)µQ(x, t)

)
dt+

√
µQ(x, t)σµ,Q(x, t)dWµ(t),

where

γµ,Q(x, t) = (1 + g(t))µ◦(x, t)γ(x, t),

δµ,Q(x, t) = δ(x, t)−
d
dtg(t)

1 + g(t)
−

d
dtµ
◦(x, t)

µ◦(x, t)
,

σµ,Q(x, t) =
√

(1 + g(t))µ◦(x, t)σ(x, t).

14



2.2.6 Survival probability under Q

We provide a characterization of the survival probabilities under this equivalent martingale mea-
sure. This characterization is used frequently when studying longevity bonds and insurance
contracts, which contain risk related to survival probabilities. We define the conditional expected
survival probabilities under the measure Q by

SQ(x, t, T ) = EQ
[
e−
∫ T
t µQ(x,s)ds

∣∣∣∣F(t)

]
.

The associated Q-martingale is given by

SQ,M (x, t, T ) = EQ
[
e−
∫ T
0 µQ(x,s)ds

∣∣∣∣F(t)

]
= e−

∫ t
0 µ

Q(x,s)dsSQ(x, t, T ).

The martingale property follows from the rule of iterated expectations.

By the results in Dahl et al. (2008), we get that the survival probability can be written in the
following form:

EQ
[
e−
∫ T
t µQ(x,s)ds

∣∣∣∣F(t)

]
= eα

µ(t,T )−βµ(t,T )µQ(x,t), (2.2.9)

where βµ and αµ satisfy the following differential equations

∂

∂t
βµ(t, T ) = δµ,Q(x, t)βµ(t, T ) +

1

2

(
σµ,Q(x, t)

)2
(βµ(t, T ))2 − 1, βµ(T, T ) = 0,

∂

∂t
αµ(t, T ) = γµ,Q(x, t)βµ(t, T ), αµ(T, T ) = 0.

2.3 Extended financial market

We extend the financial market introduced in Section 2.2.2 with a longevity bond, which is a
so-called mortality derivative, see also Dahl et al. (2008), who consider a market with survivor
swaps. The longevity bond pays a coupon, which is proportional to the actual number of survivors
in a given portfolio. Longevity bonds are financial instruments that can be used to hedge the
longevity risk. The survivor swap pays a coupon which is the difference between the actual
number of survivors in a portfolio and a fixed number of survivors. There are some resemblances
between these two mortality derivatives but also important differences. One difference is that the
survivor swap requires a smaller initial investment than the longevity bond. Another difference
is that the payment process of the longevity bond is non-negative, whereas the payment process
of the survivor swap can be both negative and positive.

2.3.1 Longevity bonds

In the following sections we consider a fixed, arbitrary equivalent martingale measure Q from
the class of measures given by (2.2.6). Under this fixed measure we preserve the independence
between the basic financial market and the mortality intensity. This follows since the likelihood
process does not contain mixed terms, but only terms related to either the financial market or
to the mortality intensity. To start with we find the price of a longevity bond on the insurance
portfolio.

The payment process of the longevity bond is given by

dALB(x, t) = (n−N(x, t))dt, 0 ≤ t ≤ T,
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and ALB(x, 0) = 0. We denote by Z∗,Q(x, t) the conditional expected value under Q at time t of
the discounted value of payments from ALB, i.e. we let

Z∗,Q(x, t) = EQ
[∫ T

0
e−
∫ τ
0 r(s)dsdALB(x, τ)

∣∣∣∣F(t)

]
= A∗,LB(x, t) + Z̃∗,Q(x, t),

where A∗,LB is the discounted payment process of the longevity bond and

Z̃∗,Q(x, t) = e−
∫ t
0 r(u)duEQ

[∫ T

t
e−
∫ τ
t r(s)dsdALB(x, τ)

∣∣∣∣F(t)

]
= (n−N(x, t))

∫ T

t
P ∗(t, τ)SQ (x, t, τ) dτ.

We assume that an asset with the discounted price process Z∗,Q can be traded dynamically in the
financial market. It follows by the rule of iterated expectations that the discounted price process
Z∗,Q is indeed a Q-martingale. Thus, the measure Q is also an equivalent martingale measure for
the extended financial market

(
B∗, P ∗(·, T ), Z∗,Q

)
consisting of a savings account, a zero coupon

bond and a longevity bond.

We assume that Z̃∗,Q is continuously differentiable with respect to t and twice continuously
differentiable with respect to r and µ. By use of Itô’s formula, it is possible to find a stochastic
representation of Z∗,Q(x, t). The stochastic representation is given by

dZ∗,Q(x, t) = ηZ,Q(t)dW r,Q(t) + νZ,Q(t)dMQ(t) + ρZ,Q(t)dWµ,Q(t), (2.3.1)

where

ηZ,Q(t) = −σr(n−N(x, t−))

∫ T

t
β(t, τ)P ∗(t, τ)SQ (x, t, τ) dτ,

νZ,Q(t) = −
∫ T

t
P ∗(t, τ)SQ (x, t, τ) dτ,

ρZ,Q(t) = −σ
√
µ◦(x, t)µ(x, t)(n−N(x, t−))

×(1 + g(t))

∫ T

t
βµ(t, τ)P ∗(t, τ)SQ (x, t, τ) dτ.

For details and similar calculations for survivor swaps, see Dahl et al. (2008). Note that ηZ,Q,
νZ,Q and ρZ,Q are functions of t, N , r and µ.

Remark 2.3.1. We have chosen to extend the market with a longevity bond on the insurance
portfolio. We are aware of the fact, that it is more common to trade longevity bonds on a
population rather than the insurance portfolio. We have chosen to stick to the longevity bond
on the insurance portfolio, since the approach and techniques are the same as for the longevity
bond on a population and because the setup with a 1-dimensional mortality intensity keeps the
calculations and results more simple.

2.4 Insurance contracts

In this section, we introduce an insurance contract which specifies premiums paid by the policy-
holders and benefits paid by the insurance company. The payment process is constructed in such
a way that premiums are negative and benefits are positive, and we study the payment process
for an entire portfolio of insured lives. The payment process allows for a single premium πs(0)
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paid at time 0, continuously paid premiums πc, lump sum payments ar(T̄ ) upon retirement and
ad upon death, and life annuity payments ap from retirement until death. The payment process
is identical to the one considered in Dahl et al. (2008) and is given by

dA(t) = −nπs(0)d1{t≥0} − πc(t)(n−N(x, t))1{0≤t≤T̄}dt+ ad(t)dN(x, t)

+(n−N(x, T̄ ))ar(T̄ )d1{t≥T̄} + ap(t)(n−N(x, t))1{T̄≤t≤T}dt. (2.4.1)

Here, T̄ is the time of retirement, n is the number of policyholders in the portfolio at time 0 and
N(x, t) is the number of deaths until time t. Analogous to the rest of the paper, we denote by
A∗ the discounted version of the payment process.

2.4.1 Market reserves

The so-called intrinsic value process associated with the payment process A is given by

V ∗,Q(t) = EQ

[∫ T

0−
dA∗(τ)

∣∣∣∣∣F(t)

]

=

∫ t

0−
e−
∫ τ
0 r(s)dsdA(τ) + EQ

[∫ T

t
e−
∫ τ
0 r(s)dsdA(τ)

∣∣∣∣∣F(t)

]
= A∗(t) + Ṽ ∗,Q(t), (2.4.2)

where the process

Ṽ ∗,Q(t) = EQ

[∫ T

t
e−
∫ τ
0 r(s)dsdA(τ)

∣∣∣∣∣F(t)

]

is called the discounted market reserve. The discounted market reserve is the number of survivors
times the discounted market reserve for a single policy holder, which we denote by Ṽ ∗,Qp (t), i.e.

Ṽ ∗,Q(t) = (n−N(x, t))Ṽ ∗,Qp (t), (2.4.3)

where

Ṽ ∗,Qp (t) =

∫ T

t
P ∗(t, τ)SQ(x, t, τ)

(
− πc(τ)1{0≤τ≤T̄}dτ + ad(τ)fµ,Q(x, t, τ)dτ

+ ap(τ)1{T̄≤τ≤T}dτ
)

+ P ∗(t, T̄ )SQ(x, t, T̄ )ar(T̄ )1{t<T̄}. (2.4.4)

For a proof of (2.4.3) and (2.4.4), we refer to Dahl and Møller (2006).

In (2.4.4), fµ,Q(x, t, τ) is called the forward mortality intensity and is given by

fµ,Q(x, t, τ) = − ∂

∂τ
logSQ(x, t, τ).

For further details about the forward mortality intensity, see e.g. Dahl et al. (2008).

We assume that Ṽ ∗,Qp ∈ C1,2,2, i.e. Ṽ ∗,Qp is continuously differentiable with respect to t and twice
continuously differentiable with respect to r and µ. In the following proposition, we state a
stochastic representation of the insurance contract.
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Proposition 2.4.1. The intrinsic value process V ∗,Q(t) admits the representation

dV ∗,Q(t) = ηV,Q(t)dW r,Q(t) + νV,Q(t)dMQ(t) + ρV,Q(t)dWµ,Q(t),

where

ηV,Q(t) = − (n−N(x, t−))σr

(∫ T

t
P ∗(t, τ)β(t, τ)SQ(x, t, τ)

×
(
−πc(τ)1{0≤τ≤T̄}dτ + ad(τ)fµ,Q(x, t, τ)dτ + ap(τ)1{T̄≤τ≤T}dτ

)
+P ∗(t, T̄ )β(t, T̄ )SQ(x, t, T̄ )ar(T̄ )1{t<T̄}

)
,

νV,Q(t) = B(t)−1ad(t)− Ṽ ∗,Qp (t),

ρV,Q(t) = − (n−N(x, t−))σ
√
µ◦(x, t)µ(x, t)(1 + g(t))

×

(∫ T

t
P ∗(t, τ)βµ(t, τ)SQ(x, t, τ)

(
− πc(τ)1{0≤τ≤T̄}

+ ap(τ)1{T̄≤τ≤T} + ad(τ)

(
fµ,Q(x, t, τ)−

∂
∂τ β

µ(t, τ)

βµ(t, τ)

))
dτ

+P ∗(t, T̄ )βµ(t, T̄ )SQ(x, t, T̄ )ar(T̄ )1{t<T̄}

)
.

We leave out the proof but note that it is based on techniques similar to the ones used in the
proof of (Dahl et al., 2008, Lemma 3.2).

2.5 Local risk-minimization

Since the market
(
B∗, P ∗(·, T ), Z∗,Q

)
is incomplete, one cannot in general hedge the insurance

payment stream perfectly. That is, the risk cannot be totally eliminated, and one needs to choose
between different approaches in order to minimize the risk. A special case deviating from this
general observation would be insurance contracts consisting of annuity payments only. In this
case we would be able to hedge the payment stream perfectly, since we are trading longevity
bonds on the insurance portfolio.

Föllmer and Sondermann (1986) introduced the measurement of risk by a quadratic criterion and
various quadratic hedging methods have been studied hereafter. In the case where the discounted
price processes of the traded assets are local martingales, the criterion of risk-minimization is
often applied, but in the case where the discounted price processes are not local martingales,
risk-minimization cannot in general be applied. For details and discussions of this result see
(Schweizer, 2001, Proposition 3.1), which states that a contingent claim in general does not
admit a risk-minimizing strategy if the discounted price processes of the assets are not local
martingales.

The discounted price processes in the present market are in general not local martingales under
the objective measure P , but one can make a change of measure from the objective measure to an
equivalent martingale measure and apply the criterion of risk-minimization under this measure.
Doing so, we have not accomplished risk-minimization (under the objective measure, as desired),
but only found strategies which, depending on the change of measure, can be more or less close
to a strategy minimizing the conditional second moments of the increments of the cost process.
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This approximation can in some cases be the best one can hope to obtain. Another approach is
to apply the more general criterion of local risk-minimization.

The aim of local risk-minimization is essentially to minimize the conditional second moments of
the increments of the cost process in the case where the price processes of the traded assets are not
local martingales under the measure P . The cost process measures any additional investments
needed to finance the strategy and pay the insurance obligations. The difference between local
risk-minimization and risk-minimization (under an equivalent martingale measure different from
P ) is that local risk-minimization is formulated in terms of the objective measure. In some cases,
the so-called minimal martingale measure can be useful, which we describe below in Section 2.5.2.

2.5.1 A short review of local risk-minimization

This section is based on Schweizer (2008) and contains a short review of the criterion of local
risk-minimization; for more details, see Schweizer (2008).

Let X = (X(t))t∈[0,T ], where T > 0 is finite, be a d-dimensional semimartingale defined on a
filtered probability space. The process X has a Doob-Meyer decomposition given by

X = X0 +MX +AX = X0 +MX +

∫
d
〈
MX

〉
λX , (2.5.1)

where MX is a d-dimensional local martingale, AX is a d-dimensional predictable process of
bounded variation and λX is a d-dimensional predictable process. We note that

〈
MX

〉
=〈

MX ,MX
〉
, where

〈
MX

〉
t
∈ IRd × IRd, is the predictable variation process, and that

AXi (t) =
d∑
j=1

λXj (t)d
〈
MX
i ,M

X
j

〉
(t),

where
〈
MX
i ,M

X
j

〉
is the predictable covariation process of MX

i and MX
j . One can think of X

as the discounted price processes of the d risky assets.

We assume that X fulfills the so-called structure condition, which is a technical condition from
Schweizer (2008). The condition is that MX is locally P -square-integrable starting in 0 and that
AX has the form AX =

∫
d
〈
MX

〉
λX for an IRd-valued predictable process λX ∈ L2

loc(M
X) so that

the mean-variance tradeoff process K :=
∫
λXdAX =

∫ (
λX
)tr
d
〈
MX

〉
λX satisfies K(T ) < ∞

P -a.s. We use the notation (·)tr for the transpose of a vector.

In the following, we consider an L2 portfolio strategy ϕ = (ϑ, ς) such that the value process of
the portfolio ϕ, defined by

V (ϕ, t) = ϑ(t) ·X(t) + ς(t),

is right-continuous and square-integrable. The process ϑ is d-dimensional and ϑi describes the
number of units of asset i. The process ς is 1-dimensional and describes the number of units of
the risk free asset. A strategy belongs to L2 if ϑ is predictable, ς is a real-valued adapted process,
and

E

[∫ T

0
ϑtr(s)d

〈
MX

〉
(s)ϑ(s) +

(∫ T

0

∣∣ϑtr(s)dAX(s)
∣∣)2
]
<∞. (2.5.2)
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Consider a payment process A∗ = (A∗(t))t∈[0,T ], where A∗(t) are the discounted payments related
to the insurance contract during [0, t]. The cost process of an L2-strategy corresponding to the
payment process A∗ is defined by

C(ϕ, t) = A∗(t) + V (ϕ, t)−
∫ t

0
ϑ(s)dX(s), t ∈ [0, T ].

One can interpret the cost process as the discounted amount one needs to provide in order to
pay the insurance obligations and to fund the portfolio strategy ϕ. In the following, we consider
0-achieving strategies, i.e. strategies where V (ϕ, T ) = 0 P -a.s. The risk process is given by

R(ϕ, t) = EP
[

(C(ϕ, T )− C(ϕ, t))2
∣∣∣F(t)

]
. (2.5.3)

For a given strategy, the risk process measures the conditional expected quadratic deviation
between the costs today and the costs at termination time T . We want to minimize the risk
process in order to hedge the payment process as closely as possible. If the payment stream is
hedgeable, the cost process is constant, and the risk process is zero-valued.

Before we can define the criterion of local risk-minimization, we need to introduce the concept of a
small perturbation. To do this, we define a partition of [0, T ] as a set τ , where τ = {τ0, τ1, . . . , τn},
such that τ0 = 0, τn = T and τi < τi+1. A sequence of partitions (τn)n∈IN is tending to the identity,
if the maximum distance between the points τi converges to 0, i.e. if limn→∞max(τi+1−τi|τi, τi+1 ∈
τn)→ 0. Moreover, we define σ̃ by the equation d

〈
MX

〉
= σ̃dD, where D is a strictly increasing,

predictable 1-dimensional process with D(0) = 0, and with
〈
MX
i ,M

X
j

〉
� D for all i, j. That

is,
〈
MX
i ,M

X
j

〉
has a density with respect to D.

Definition 2.5.1. A pair ∆ = (δ, ε) consisting of an IRd-valued predictable process δ and an
adapted real-valued process ε is called a small perturbation if

〈∫
δdMX

〉
and

∣∣δtrσ̃λ∣∣ are bounded
(uniformly in t, ω), the process V (∆) = δ · X + ε is square-integrable, and V (∆, T ) = 0 P -a.s.
For each subinterval (s, t] of [0, T ], we then define the small perturbation

∆|(s,t] =

{(
δ1(s,t], ε1[s,t)

)
, if t < T,(

δ1(s,t], ε1[s,t]

)
, if t = T.

(2.5.4)

A small perturbation is used for the purpose of making a small modification of a strategy. For
an L2-strategy ϕ, a small perturbation ∆ and a partition τ , we define

rτ |ϕ,∆;A∗| =
∑

ti,ti+1∈τ

R
(
ϕ+ ∆|(ti,ti+1], ti

)
−R (ϕ, ti)

E [D(ti+1)−D(ti)|F(ti)]
1(ti,ti+1]. (2.5.5)

We are now ready to define local risk-minimization.

Definition 2.5.2. For a fixed payment stream A∗, an L2-strategy ϕ is called locally risk-minimizing
for A∗ if for every small perturbation ∆ and every increasing sequence (τn)n∈IN of partitions tend-
ing to the identity, we have

lim inf
n→∞

rτ
n
[ϕ,∆;A∗] ≥ 0 PD-a.e., (2.5.6)

where PD is given by PD(E) =
∫ T

0 1E(ω, s)dD(ω, s).
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The intuition behind Definition 2.5.2 is that the stochastic process rτ
n
[ϕ,∆;A∗] measures the

total change of risk. The total risk (in terms of the risk process) is given by the sum of risks for
all subintervals until time T when perturbing the strategy ϕ locally by ∆. The total change of
risk when perturbing ϕ needs to be positive for ϕ to be locally risk-minimizing. The denominator
of (2.5.5), E [D(ti+1)−D(ti)|F(ti)], specifies a time scale for the measurement of the risk.

Fortunately, we do not need to work with this rather cumbersome definition, because we have a
theorem stating how local risk-minimization is related to the cost process, and a theorem stating
how local risk-minimization is related to the so-called Föllmer-Schweizer decomposition.

The following main result of local risk-minimization is from (Schweizer, 2008, Theorem 1.6).
Recall that two square-integrable martingales are called strongly orthogonal if their product is a
martingale.

Theorem 2.5.3. Suppose the IRd-valued semimartingale X with decomposition (2.5.1) satisfies
the structure condition and let A∗ be a payment stream. If AX is continuous, the following are
equivalent for an L2-strategy ϕ:

1. ϕ is locally risk-minimizing for A∗. (2.5.7)

2. ϕ is 0-achieving and mean self-financing, and the cost process C(ϕ)

is strongly orthogonal to MX . (2.5.8)

In particular, the concept “locally risk-minimizing” does not depend on the choice of D.

The next result, Theorem 2.5.5, creates a connection between local risk-minimization and the
so-called Föllmer-Schweizer decomposition, see (Schweizer, 2008, Proposition 5.2). It is a simple
application of Theorem 2.5.3 and we use the result to obtain the locally risk-minimizing strategy
for our market. First, we define the decomposition.

Definition 2.5.4. (Föllmer-Schweizer decomposition)
Let H be an F(T )-measurable random variable with EP

[
H2
]
< ∞. Then H admits a Föllmer-

Schweizer decomposition, if H can be written as

H = H(0) +

∫ T

0
ϑH(s)dX(s) + LH(T ) P − a.s.,

where H(0) is F(0)-measurable with EP
[
H2(0)

]
< ∞, ϑH is predictable and fulfilling (2.5.2),

and LH is a square integrable martingale null at time 0 and strongly orthogonal to MX .

Theorem 2.5.5. Suppose the IRd-valued semimartingale X satisfies the structure condition and
AX is continuous. Then a payment stream A∗ admits a locally risk-minimizing L2-strategy ϕ if
and only if A∗(T ) admits a Föllmer-Schweizer decomposition. In that case, ϕ = (ϑ, ς) is given by

ϑ = ϑA
∗
T , ς = V A∗T − (ϑA

∗
T )trX, (2.5.9)

with

V A∗T (t) = A
∗,(0)
T +

∫ t

0
ϑA
∗
T (s)dX(s) + LA

∗
(t)−A∗(t), t ∈ [0, T ], (2.5.10)

and then

CA
∗
(ϕ, t) = A

∗,(0)
T + LA

∗
(t), t ∈ [0, T ]. (2.5.11)

21



Proof: See Schweizer (2008).

We analyze the so-called minimal martingale measure as a starting point for the study of local
risk-minimization within our model. The minimal martingale measure is an important tool when
one wants to determine locally risk-minimizing strategies in the case where the underlying assets
are continuous. In this case, the Föllmer-Schweizer decomposition under the original measure
P can be obtained from a Galtchouk-Kunita-Watanabe decomposition (under some integrability
conditions) under the minimal martingale measure, which leads to the locally risk-minimizing
strategy. If the price processes are not continuous, this is in general not the case (see for example
Vandaele and Vanmaele (2008) for an example of this phenomenon). The price processes are
not continuous in our setting, so we cannot follow this path. However, the minimal martingale
measure still plays an important role as we show in Section 2.7.

2.5.2 The minimal martingale measure

As noted above, the Föllmer-Schweizer decomposition can be obtained from the Galtchouk-
Kunita-Watanabe decomposition under the minimal martingale measure if the discounted price
processes are continuous. This makes the task of finding the locally risk-minimizing strategy
similar to the task of finding a risk-minimizing strategy. We cannot benefit from this result,
because the continuity condition is violated by the jumps of the counting process N , which gen-
erate jumps in the price process of the longevity bond. However, it is still relevant to determine
the minimal martingale measure since the measure appears when applying the criterion of local
risk-minimization.

The concept of a minimal martingale measure was formally defined in Föllmer and Schweizer
(1990). Consider a d-dimensional semimartingale X with decomposition given by (2.5.1). A mar-
tingale measure P̂ is said to be the minimal martingale measure, if P̂ is equivalent to the physical
measure P , P̂ = P on F(0), and every square-integrable P -martingale strongly orthogonal to
MX remains a martingale under P̂ .

The minimal martingale measure was introduced for the first time in Schweizer (1988), and a
formal definition and an existence result (for d = 1 and X continuous) were given in Föllmer and
Schweizer (1990). For the more general case, see e.g. Föllmer and Schweizer (2010), the minimal
martingale measure (if it exists) is defined by the likelihood process given by

Λ̂(t) =E
(
−
∫ t

0
λX(τ)dMX(τ)

)
=e−

∫ t
0 λ

X(τ)dMX(τ)− 1
2

∫ t
0 (λX)

tr
(τ)d[MX ](τ)λX(τ)

·
∏
s≤t

((
1−

(
λX
)tr

(s)∆MX(s)
)
e
(λX)

tr
(s)∆MX(s)+ 1

2

(
(λX)

tr
(s)∆MX(s)

)2)
.

(2.5.12)

Here, E is the stochastic exponential and [·] is the quadratic variation process. We have that
the minimal martingale measure exists if the three following conditions are fulfilled: Λ̂ is strictly
positive, which is the case if

(
λX
)tr
MX < 1, Λ̂ is a true P -martingale, and Λ̂ is square-integrable.

Under these conditions the minimal martingale measure is given by dP̂
dP = Λ̂(T ).
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2.6 The minimal martingale measure for the market

As stated in the previous section, we cannot be sure that the minimal martingale measure exists.
In this section, we find the minimal martingale measure for the financial market and prove that
the minimal martingale measure exists under certain additional integrability conditions. We
start by writing the dynamics of the zero coupon bond and the longevity bond under the original
measure P .

It follows from Girsanov’s Theorem and equation (2.2.3) that the dynamics under P of the
discounted zero coupon bond are

dP ∗(t, T ) = hr(r(t), t)P ∗(t, T )β(t, T )σrdt− P ∗(t, T )β(t, T )σrdW r(t), (2.6.1)

and from Girsanov’s Theorem and equation (2.3.1), that the dynamics under P of the discounted
longevity bond are

dZ∗,Q(x, t) = −νZ,Q(t)λ(x, t)g(t)dt− ηZ,Q(t)hr(r(t), t)dt

+ηZ,Q(t)dW r(t) + νZ,Q(t)dM(x, t) + ρZ,Q(t)dWµ(t). (2.6.2)

We henceforth use the notation X = (P ∗, Z∗) and let AX1 denote the drift part of the zero
coupon bond and let MX

1 denote the martingale part. Similarly, we denote by AX2 the drift of
the longevity bond and by MX

2 the martingale part.

Hence, the dynamics of the drift parts are

dAX1 (t) = hr(r(t), t)P ∗(t, T )β(t, T )σrdt, (2.6.3)

dAX2 (t) = −νZ,Q(t)λ(x, t)g(t)dt− ηZ,Q(t)hr(r(t), t)dt, (2.6.4)

and the predictable variation and covariation processes are

d〈MX
1 〉(t) = (P ∗(t, T )β(t, T )σr)2 dt,

d〈MX
2 〉(t) =

(
ηZ,Q(t)

)2
dt+

(
νZ,Q(t)

)2
λ(x, t)dt+

(
ρZ,Q(t)

)2
dt,

d〈MX
1 ,M

X
2 〉(t) = −P ∗(t, T )β(t, T )σrηZ,Q(t)dt.

Define processes λX1 (t) and λX2 (t) as the solution to the vector equation

dAX(t) = d〈MX〉(t)λX(t).

The solution to the equation may be written informally as

λX1 (t) = −
d
〈
MX

1 ,M
X
2

〉
(t)dAX2 (t)− d

〈
MX

2

〉
(t)dAX1 (t)

d
〈
MX

1

〉
(t)d

〈
MX

2

〉
(t)−

(
d
〈
MX

1 ,M
X
2

〉
(t)
)2 , (2.6.5)

λX2 (t) =
d
〈
MX

1

〉
(t)dAX2 (t)− d

〈
MX

1 ,M
X
2

〉
(t)dAX1 (t)

d
〈
MX

1

〉
(t)d

〈
MX

2

〉
(t)−

(
d
〈
MX

1 ,M
X
2

〉
(t)
)2 . (2.6.6)

Proposition 2.6.1. Assume that Λ̂ is a square-integrable martingale. Then the minimal mar-
tingale measure for the present market denoted by P̂ exists. The minimal martingale measure is
given by

dP̂

dP
= dΛ̂(T ),
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where the likelihood process Λ̂ is given by

dΛ̂(t) = Λ̂(t−)

(
hr(r(t), t)dW r(t)

− λX2 (t)

(
νZ,Q(t)dM(x, t) + ρZ,Q(t)dWµ(t)

))
,

Λ̂(0) = 1, (2.6.7)

and where

λX2 (t) =
−νZ,Q(t)λ(x, t)g(t)

(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2 . (2.6.8)

Proof: It follows from Section 2.5.2 that the minimal martingale measure (if it exists) is given by
the measure change, where the likelihood process is

dΛ̂(t) = Λ̂(t−)
(
−
(
λX1 (t)

(
−P ∗(t, T )β(t, T )σr

)
+ λX2 (t)ηZ,Q(t)

)
dW r(t)

−λX2 (t)
(
νZ,Q(t)dM(x, t) + ρZ,Q(t)dWµ(t)

))
. (2.6.9)

To guarantee that the minimal martingale measure is in fact a martingale measure, we must have
that the Girsanov kernel corresponding to the Brownian motion W r for the short rate process is
equal to hr. This enables us to rewrite the likelihood process (2.6.9) in the simpler way given by
(2.6.7), where

hr = λX1 P
∗(·, T )β(·, T )σr − λX2 ηZ,Q. (2.6.10)

The condition that Λ̂ is strictly positive is equal to the condition

λX2 (t)νZ,Q(t) < 1. (2.6.11)

We want to check that condition (2.6.11) holds true. By use of (2.6.6) and by doing some
simplifications we get that

λX2 (t)νZ,Q(t) =
−
(
νZ,Q(t)

)2
λ(x, t)g(t)

(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2 . (2.6.12)

The term
(
νZ,Q(t)

)2
λ(x, t) is greater than or equal to 0 and less than or equal to the denominator

of the right hand side of (2.6.12). That is, the condition (2.6.11) is fulfilled for g > −1. To obtain
the expression for λX2 given by (2.6.8), we divide (2.6.12) by νZ,Q(t).

�

We introduce the notation M c and Md for the continuous and the purely discontinuous martingale
parts of −

∫
λXdMX , respectively. By (Protter and Shimbo, 2008, Theorem 9), Λ̂ is a martingale,

if −
∫
λXdMX is a locally square-integrable martingale such that ∆

(
−
∫
λXdMX

)
> −1 and

EP
[
e

1
2
〈Mc〉(T )+〈Md〉(T )

]
<∞.

Under the measure P̂ ,

dW r,Q(t) = dW r(t)− hr(r(t), t)dt and dŴµ(t) = dWµ(t) + λX2 (t)νZ,Q(t)dt
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are standard Brownian motions, and N is a pure jump process, where N has intensity λ̂(x, t) =
λ(x, t)

(
1− λX2 (t)νZ,Q(t)

)
and jumps of size 1.

We denote by M̂Q the martingale under P̂ associated with N . We note that we do not maintain
the independence of the stochastic sources under the minimal martingale measure and that the
minimal martingale measure does not belong to the class of measures given by (2.2.6).

The intuition of the result in Proposition 2.6.1 is that the drift of the price process is divided
between the processes M and Wµ based on their variation processes. The requirement that
the minimal martingale measure is a well-defined probability measure implies that the measure
change (2.2.6) differs from the measure change in Dahl et al. (2008). If we had chosen the same
measure change as in Dahl et al. (2008), the right hand side of (2.6.12) would have been

−
(
νZ,Q(t)

)2
λ(x, t)g(t)− νZ,Q(t)ρZ,Q(t)hµ(t, ζ(t))

(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2 (2.6.13)

for a given class of functions hµ. In general we cannot find assumptions for the functions g and
hµ which ensure that (2.6.13) is smaller than 1.

From the above comments we see, that it is not trivial to have a market with a well defined
minimal martingale measure. However, it will not impose any problems to the minimal martingale
measure, if the market consists of a survivor swap instead of a longevity bond. The minimal
martingale measure is still a probability measure for g > −1, since we can repeat the proof of
Proposition 2.6.1, where we exchange the terms relating to the stochastic representation of the
longevity bond by some similar terms for the survivor swap, which can be found in Dahl et al.
(2008).

2.7 Local risk-minimization for the market

In this section, we find the locally risk-minimizing strategy for the market and compare it with
the strategy found by risk-minimization under the minimal martingale measure. Moreover, we
compare the strategy with the one found by following the procedure of Dahl et al. (2008).

The approach for finding the locally risk-minimizing strategy is to find the Föllmer-Schweizer
decomposition of A∗(T ) and prove that the conditions in Theorem 2.5.5 are fulfilled. To achieve
this, we impose certain restrictions for the decomposition, see (2.7.6)-(2.7.10), that lead to a set
of equations that must be satisfied.

For this purpose we consider a general measure P̌ given by

dP̌

dP
= Λ̌(T ), (2.7.1)

where the likelihood process is given by

dΛ̌(t) = Λ̌(t−)
(
%M (t)dM(x, t) + %W

µ
(t)dWµ(t) + %W

r
(t)dW r(t)

)
, Λ̌(0) = 1.

We have suppressed that the Girsanov kernels can depend on the underlying stochastic processes
r(t), µ(x, t) and N(x, t−). We note that the minimal martingale measure belongs to the class of
measures given by (2.7.1).

Under the measure P̌ , dW̌ r(t) = dW r(t) − %W r
(t)dt is a standard Brownian motion, dW̌µ(t) =

dWµ(t) − %Wµ
(t)dt is a standard Brownian motion and N is a counting process with intensity

λ(x, t)
(
1 + %M (t)

)
and jumps of size 1.

In the following, we denote by M̌ the martingale corresponding to the jump process N under the
measure P̌ . We assume that %M , %W

µ
and %W

r
are chosen such that the discounted price process
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of the zero coupon bond and the discounted price process of the longevity bond are martingales
under P̌ . Under the original measure P , the dynamics of these discounted price processes are
given by (2.6.1) and (2.6.2), respectively. The dynamics under the measure P̌ are given by

dP ∗(t, T ) = hr(r(t), t)P ∗(t, T )β(t, T )σrdt− P ∗(t, T )β(t, T )σrdW̌ r(t)

−P ∗(t, T )β(t, T )σr%W
r
(t)dt (2.7.2)

and

dZ∗,Q(x, t) = −νZ,Q(t)λ(x, t)g(t)dt− ηZ,Q(t)hr(r(t), t)dt+ ηZ,Q(t)dW̌ r(t)

+νZ,Q(t)dM̌(t) + ρZ,Q(t)dW̌µ(t) + νZ,Q(t)λ(x, t)%M (t)dt

+ρZ,Q(t)%W
µ
(t)dt+ ηZ,Q(t)%W

r
(t)dt. (2.7.3)

That is, P̌ is a martingale measure if and only if the drift of the two discounted risky assets equals
0. That is, we need the following equations to be fulfilled:

0 = −P ∗(t, T )β(t, T )σr%W
r
(t) + hr(r(t), t)P ∗(t, T )β(t, T )σr,

and

0 = νZ,Q(t)λ(x, t)%M (t) + ρZ,Q(t)%W
µ
(t) + ηZ,Q(t)%W

r
(t)

−νZ,Q(t)λ(x, t)g(t)− ηZ,Q(t)hr(r(t), t).

For the purpose of explicitly finding a Föllmer-Schweizer decomposition of A∗(T ), we need a
stochastic representation of the expected discounted payments of the insurance contract under
P̌ . That is, we need a stochastic representation of

V ∗,P̌ (t) = EP̌

[∫ T

0−
dA∗(τ)

∣∣∣∣∣F(t)

]
, (2.7.4)

which is given in Lemma 2.7.1. To obtain this, we assume that EP̌
[∫ T

t e−
∫ τ
0 r(s)dsdA(τ)

∣∣∣F(t)
]

is

continuously differentiable with respect to t and twice continuously differentiable with respect to
r and µ.

Lemma 2.7.1. The P̌ -martingale V ∗,P̌ (t) admits the representation

V ∗,P̌ (t) = V ∗,P̌ (0) +

∫ t

0
η̌V (τ)dW̌ r(τ) +

∫ t

0
ρ̌V (τ)dW̌µ(τ) +

∫ t

0
ν̌V (τ)dM̌(τ),

where

η̌V (t) = e−
∫ t
0 r(s)dsGr(t, Y (t−))σr,

ρ̌V (t) = e−
∫ t
0 r(s)dsGµ(t, Y (t−))σµ(t, µ(x, t)),

ν̌V (t) = e−
∫ t
0 r(s)ds

(
ad(t) +G(t, r(t), N(x, t−) + 1, µ(x, t))

−G(t, r(t), N(x, t−), µ(x, t))
)
,

and

G(t, r(t), N(x, t), µ(x, t)) = G(t, Y (t)) ≡ EP̌
[∫ T

t
e−
∫ τ
t r(s)dsdA(τ)

∣∣∣∣F(t)

]
.
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The function G satisfies the following partial differential equation:

0 = Gt +Gxr
(
(γr − δrxr) + %W

r
(t)σr

)
+Gxµ

(
Θ(x, t, xµ) + %W

µ
(t)
√
xµ
√
µ◦(x, t)σ(x, t)

)
+

1

2
Gxrxr (σr)2 +

1

2
Gxµxµxµµ

◦(x, t)σ(x, t)2

+
(
ad(t) + ∆G

)
λ(x, t)

(
1 + %M (t)

)
− πc(t)(n− xN )1{0≤t≤T̄} + ap(t)(n− xN )1{T̄≤t≤T} − xrG,

(2.7.5)

where ∆G = G(t, xr, xN + 1, xµ)−G(t, xr, xN , xµ).

The boundary condition is G(T, xr, xN , xµ) = (n− xN )ar(T̄ )1{T=T̄}.

Moreover, we have an extra boundary condition if T̄ < T . The condition is:

G(T̄−, xr, xN , xµ) = G(T̄ , xr, xN , xµ) + (n− xN )ar(T̄ ).

Note that we suppressed the arguments (t, xr, xN , xµ) of G in Lemma 2.7.1. The PDE for G
would be hard to solve numerically. This is because the solution depends on the entire grid and
because G depends on four variables, which requires calculations in many grid points.

We use the notation Gt, Gxr and Gµ for the derivatives of G with respect to the first, second, and
fourth argument, respectively. For the double derivative of G with respect to the first argument
we use the notation Gxrxr . The proof of the proposition is postponed to Appendix 2.A.

To find the risk-minimizing strategy, we need to find the Föllmer-Schweizer decomposition of
the discounted payment stream at the terminal time T . In order to do so, we introduce the
auxiliary process V̌ (ϕ, ·). Following the approach of Colwell and Elliott (1993) and Vandaele and
Vanmaele (2008), it is possible to put up conditions for V̌ (ϕ, ·), which can be used to find the
locally risk-minimizing strategy. The conditions are as follows:

• V̌ (ϕ, T ) =

∫ T

0−
dA∗(τ) = A∗(T ). (2.7.6)

• V̌ (ϕ, t) = V̌ (ϕ, 0) +

∫ t

0
φ1(s)dP ∗(s, T ) +

∫ t

0
φ2(s)dZ∗,Q(x, s) + Γ(t). (2.7.7)

• Γ is a martingale under P and strongly orthogonal to the martingale parts

of the discounted risky assets. (2.7.8)

• The price processes of the discounted risky assets are martingales under P̌ . (2.7.9)

• V̌ (ϕ, ·) is a martingale under P̌ . (2.7.10)

These conditions help to specify the Föllmer-Schweizer decomposition, which leads to the locally
risk-minimizing strategy in Theorem 2.7.2.

Condition (2.7.6) follows because V̌ (ϕ, T ) should be equal to the quantity we want to find a
Föllmer-Schweizer decomposition for. The conditions (2.7.7) and (2.7.8) are related to the re-
quirements of the Föllmer-Schweizer decomposition. Condition (2.7.9) says that the measure
defined by (2.7.1) is an equivalent martingale measure. Finally, we use condition (2.7.10) to
obtain a unique measure P̌ .
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Theorem 2.7.2. Let ξ∗ denote the number of zero coupon bonds, let $∗ denote the number
of longevity bonds and let η∗ be the amount deposited in the savings account. The locally risk-
minimizing strategy ϕ∗ is given by

ϕ∗(t) = (ξ∗(t), $∗(t), η∗(t))

=
(
φ1(t), φ2(t), V̌ (ϕ, t)−A∗(t)− φ1(t)P ∗(t, T )− φ2(t)Z∗,Q(t)

)
, (2.7.11)

where φ1 is given by

φ1(t) =
η̌V (t)

−P ∗(t, T )β(t, T )σr

+

ηZ,Q(t)

(
νZ,Q(t)ν̌V (t)λ(x, t) + ρZ,Q(t)ρ̌V (t)

)
P ∗(t, T )β(t, T )σr

(
(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2

) , (2.7.12)

φ2 is given by

φ2(t) =
νZ,Q(t)ν̌V (t)λ(x, t) + ρZ,Q(t)ρ̌V (t)

(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2 (2.7.13)

and P̌ = P̂ . The associated risk process is given by

R(ϕ∗, t) =

∫ T

t
EP
[(
ρ̌V (τ)− φ2(τ)ρZ,Q(τ)

)2∣∣∣F(t)
]
dτ

+

∫ T

t
EP
[(
ν̌V (τ)− φ2(τ)νZ,Q(τ)

)2
λ(x, τ)

∣∣∣F(t)
]
dτ.

The proof of the theorem is postponed to Appendix 2.B.

We end this section by comparing the strategy found using risk-minimization under the minimal
martingale measure and the strategy found using local risk-minimization. In order to do so, we
first state the risk-minimizing strategy under the minimal martingale measure and give a descrip-
tion of how to obtain the result. The risk-minimizing strategy under the minimal martingale
measure is given by

ϕ̄(t) = (ξ̄∗(t), $̄∗(t), η̄∗(t))

=
(
φ̄1(t), φ̄2(t), V ∗,P̌ (t)−A∗(t)− φ̄1(t)P ∗(t, T )− φ̄2(t)Z∗,Q(t)

)
, (2.7.14)

where

φ̄1(t) =
η̌V (t)

−P ∗(t, T )β(t, T )σr

+
ηZ,Q(t)

(
νZ,Q(t)ν̌V (t)λ̂(x, t) + ρZ,Q(t)ρ̌V (t)

)
(

(νZ,Q(t))2 λ̂(x, t) + (ρZ,Q(t))2
)
P ∗(t, T )β(t, T )σr

(2.7.15)

and

φ̄2(t) =
νZ,Q(t)ν̌V (t)λ̂(x, t) + ρZ,Q(t)ρ̌V (t)

(νZ,Q(t))2 λ̂(x, t) + (ρZ,Q(t))2 . (2.7.16)
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We can get the result in the same manner as the results in Dahl et al. (2008), or we can calculate
the coefficients given in (2.7.15) and (2.7.16) by use of the covariation processes. With informal
notation, the coefficients are given by

(
φ̄1(t)
φ̄2(t)

)
=

d〈Z∗,Q〉(t)d
〈
V ∗,P̂ ,P ∗

〉
(t)−d〈Z∗,Q,P ∗〉(t)d

〈
V ∗,P̂ ,Z∗,Q

〉
(t)

d〈Z∗,Q〉(t)d〈P ∗〉(t)−(d〈Z∗,Q,P ∗〉(t))2

d〈P ∗〉(t)d
〈
V ∗,P̂ ,Z∗,Q

〉
(t)−d〈Z∗,Q,P ∗〉(t)d

〈
V ∗,P̂ ,P ∗

〉
(t)

d〈Z∗,Q〉(t)d〈P ∗〉(t)−(d〈Z∗,Q,P ∗〉(t))2

 , (2.7.17)

where

V ∗,P̂ (t) =EP̂

[∫ T

0−
dA∗(τ)

∣∣∣∣∣F(t)

]
.

Thus, the locally risk-minimizing strategy is given by (2.7.11), and the risk-minimizing strategy
under the minimal martingale measure is given by (2.7.14). Since P̌ = P̂ , it follows that the two
strategies are closely related. In fact, the only difference is that the compensator of the counting
process N , which is the jump intensity, since the jump sizes are 1, under P̂ is exchanged with the
compensator of N under the original measure P . That is, λ̂(x, t), which appears in the case of
risk-minimization under the minimal martingale measure, is exchanged by λ(x, t) in the case of
local risk-minimization. This difference is due to the fact that the predictable variation process
of the N -term under P does not equal the predictable variation process under P̂ . However, the
predictable variation processes of the Brownian motion terms are the same under P and P̂ .

2.7.1 Comparison with the results of Dahl et al. (2008) (Dahl et al. (2008))

We conclude by comparing the results of Theorem 2.7.2 with the results of (Dahl et al., 2008,
Proposition 5.1). There are some difficulties in doing so, because the setups in the two papers are
a little different. Firstly, there are two portfolios of lives in Dahl et al. (2008) and they are driven
by a two-dimensional standard Brownian motion. In addition, Dahl et al. (2008) uses survivor
swaps and not longevity bonds to hedge the mortality risk. Finally, in Dahl et al. (2008) the
Brownian motion Wµ is affected by the change of measure from P to Q.

Taking these differences into account, we can adapt the result from Dahl et al. (2008) to the setup
in the present paper and get that the risk-minimizing strategy under an equivalent martingale
measure Q is given by Theorem 2.7.3. The result can be found by a calculation similar to (2.7.17),
but done under the measure Q.

Theorem 2.7.3. Let ξ̃∗ denote the number of zero coupon bonds, let $̃∗ denote the number of
longevity bonds, and let η̃∗ be the deposit in the savings account. The risk-minimizing strategy
under the measure Q is given by

ϕ̃∗(t) = (ξ̃∗(t), $̃∗(t), η̃∗(t))

=
(
φ̃1(t), φ̃2(t), V̌ (ϕ̃, t)−A∗(t)− φ̃1(t)P ∗(t, T )− φ̃2(t)Z∗,Q(t)

)
, (2.7.18)

where

φ̃1(t) =
ηV (t)

−P ∗(t, T )β(t, T )σr

+
ηZ,Q(t)

(
νZ,Q(t)νV (t)λQ(x, t) + ρZ,Q(t)ρV (t)

)(
(νZ,Q(t))2 λQ(x, t) + (ρZ,Q(t))2

)
P ∗(t, T )β(t, T )σr

,
(2.7.19)
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and where

φ̃2(t) =
νZ,Q(t)νV (t)λQ(x, t) + ρZ,Q(t)ρV (t)

(νZ,Q(t))2 λQ(x, t) + (ρZ,Q(t))2 . (2.7.20)

There are two differences between the locally risk-minimizing strategy found in Theorem 2.7.2 and
the risk-minimizing strategy found under the measure Q given in Theorem 2.7.3. The differences
exist because certain quantities in the expressions of the optimal number of risky assets are
calculated under different probability measures for the locally risk-minimizing strategy and the
risk-minimizing strategy under Q, respectively. First, we note that the compensator of the jump
process is calculated under P and Q, respectively. In addition, we see that the integrands of
the stochastic representation of the intrinsic value process are calculated under the minimal
martingale measure and under the measure Q, respectively. The size of the impact on the
strategy of these differences depends of course on the difference of the two measures and the
other parameters of the model.
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Appendix

2.A Proof of Lemma 2.7.1

We utilize that

V ∗,P̌ (t) = A∗(t) + e−
∫ t
0 r(s)dsEP̌

[∫ T

t
e−
∫ τ
t r(s)dsdA(τ)

∣∣∣∣F(t)

]
, (2.A.1)

and that V ∗,P̌ is a martingale. Thus, we do not focus on the drift of V ∗,P̌ . We denote by

θi, i = 1, 2, 3, 4, some processes concerning the drift. We do not need to specify the exact form of
these processes, since the drift of a martingale is zero. Let Y = (r,N, µ)tr. By Itô’s Lemma we
get

dV ∗,P̌ (t) = dA∗(t)− r(t)e−
∫ t
0 r(s)dsG(t, Y (t))dt

+e−
∫ t
0 r(s)dsdG(t, Y (t)), (2.A.2)

and

dG(t, Y (t)) = θ1(t)dt+Gr(t, Y (t−))dr(t) +Gµ(t, Y (t−))dµ(x, t)

−(n−N(x, T̄ ))ar(T̄ )d1{t≥T̄} +G(t, Y (t−) + ∆Y (t))−G(t, Y (t−)).

Calculations yield that

dG(t, Y (t)) = θ2(t)dt+Gr(t, Y (t−))σrdW̌ r(t) +Gµ(t, Y (t−))σµ(t, µ(x, t−))dW̌µ(t)

+G(t, r(t−), N(x, t−) + ∆N(x, t), µ(t−))−G(t, r(t−), N(x, t−), µ(t−))

−(n−N(x, T̄ ))ar(T̄ )d1{t≥T̄}.

We use that the jump sizes of N are 1 and write the dynamics of G in terms of the compensated
jump process.

dG(t, Y (t))

= θ3(t)dt+Gr(t, Y (t−))σrdW̌ r(t) +Gµ(t, Y (t−))σµ(t, µ(x, t))dW̌µ(t)

+ (G(t, r(t−), N(x, t−) + 1, µ(t−))−G(t, r(t−), N(x, t−), µ(t−))) dM̌(t)

− (n−N(x, T̄ ))ar(T̄ )d1{t≥T̄}.

Since

dA∗(t) = θ4(t) + e−
∫ t
0 r(s)dsad(t)dM̌(t) + e−

∫ t
0 r(s)ds(n−N(x, T̄ ))ar(T̄ )d1{t≥T̄}
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and θ3(t) = −θ4(t), the stochastic representation given in the theorem follows.

To obtain the PDE for G we again utilize that V ∗,P̌ is a martingale, thus it has drift equal to 0,
and is given by (2.A.1). Moreover, we have that (using shorthand notation)

dG(t, Y (t))

= Gtdt+Grdr(t) +Gµdµ(t) +
1

2
Gr,rd[r, r]t +

1

2
Gµ,µd[µ, µ]t

+G(t, r(t−), N(x, t−) + ∆N(x, t), µ(x, t−))−G(t, r(t−), N(x, t−), µ(x, t−))

− (n−N(x, T̄ ))ar(T̄ )d1{t≥T̄}.

Note that some zero-valued quadratic covariation terms have been disregarded in the equation.

The dynamics of the interest rate under the measure P̌ are

dr(t) = (γr − δrr(t))dt+ %W
r
(t)σrdt+ σrdW̌ r(t),

whereas the dynamics of the mortality intensity under P̌ are

dµ(x, t) = Θ (x, t, µ(x, t)) dt+ %W
µ
(t)σµ(t, µ(x, t))dt

+σµ(t, µ(x, t))dW̌µ(t).

In addition, the compensator of the process N is given by λ(x, t)
(
1 + %M (t)

)
.

We split the dynamics into a drift part and martingale part and use that the drift part is equal

to 0. We multiply the drift of the right hand side of (2.A.2) by e
∫ t
0 r(s)ds and obtain the partial

differential equation given by (2.7.5).

The first boundary condition follows, since, with probability 1, there is no lump sum payments at
time T , unless T = T̄ , and because the lump sum payment at time T is given by (n−N(x, T̄ ))ar(T̄ )
if T = T̄ . If T̄ < T and n − N(x, T̄ ) > 0, there is a jump in the G-process corresponding to
the lump sum payment at time T̄ . This is reflected by the second boundary condition. This
completes the proof.

�

2.B Proof of Theorem 2.7.2

First, we use (2.7.10), (2.7.6), and (2.7.4) to obtain:

V̌ (ϕ, t) = EP̌
[
V̌ (ϕ, T )

∣∣F(t)
]

= EP̌ [A∗(T )|F(t)] = V ∗,P̌ (t). (2.B.1)

Next, we find the dynamics of the process Γ in (2.7.7) under the measure P . Since we know that
Γ is a martingale under P , thus, has no drift, we get an equation, which has to be fulfilled by the
decomposition of V̌ (ϕ, ·).

We use (2.7.7), (2.B.1) and the representation given in Lemma 2.7.1 to obtain the following
representation of Γ under P̌ :

Γ(t) = V̌ (ϕ, t)− V̌ (ϕ, 0)−
∫ t

0
φ1(τ)dP ∗(τ, T )−

∫ t

0
φ2(τ)dZ∗,Q(x, τ)

=

∫ t

0
η̌V (τ)dW̌ r(τ) +

∫ t

0
ρ̌V (τ)dW̌µ(τ) +

∫ t

0
ν̌V (τ)dM̌(τ)

−
∫ t

0
φ1(τ)dP ∗(τ, T )−

∫ t

0
φ2(τ)dZ∗,Q(x, τ).
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By writing the dynamics of the stochastic sources and the price processes of the discounted claims
under the measure P , we get the following representation:

Γ(t)

=

∫ t

0
η̌V (τ)dW r(τ) +

∫ t

0
ρ̌V (τ)dWµ(τ) +

∫ t

0
ν̌V (τ)dM(x, τ)

−
∫ t

0
η̌V (τ)%W

r
(τ)dτ −

∫ t

0
ρ̌V (τ)%W

µ
(τ)dτ −

∫ t

0
ν̌V (τ)λ(x, τ)%M (τ)dτ

+

∫ t

0
φ1(τ) (P ∗(τ, T )β(τ, T )σrdW r(τ)− hr(r(τ), τ)P ∗(τ, T )β(τ, T )σrdτ)

−
∫ t

0
φ2(τ)

(
− νZ,Q(τ)λ(x, τ)g(τ)dτ − ηZ,Q(t)hr(r(τ), τ)dτ

+ ηZ,Q(τ)dW r(τ) + νZ,Q(τ)dM(x, τ) + ρZ,Q(τ)dWµ(τ)
)
.

Since Γ is a martingale under P we get the following equation:

φ2(t)
(
νZ,Q(t)λ(x, t)g(t) + ηZ,Q(t)hr(r(t), t)

)
− φ1(t)hr(r(t), t)P ∗(t, T )β(t, T )σr

= η̌V (t)%W
r
(t) + ρ̌V (t)%W

µ
(t) + ν̌V (t)λ(x, t)%M (t). (2.B.2)

That is, we can write Γ in this more appealing way:

Γ(t) =

∫ t

0

(
η̌V (τ) + φ1(τ)P ∗(τ, T )β(τ, T )σr − φ2(τ)ηZ,Q(τ)

)
dW r(τ)

+

∫ t

0

(
ρ̌V (τ)− φ2(τ)ρZ,Q(τ)

)
dWµ(τ)

+

∫ t

0

(
ν̌V (τ)− φ2(τ)νZ,Q(τ)

)
dM(x, τ). (2.B.3)

We get the next equations from the condition that Γ is strongly orthogonal to the martingale
parts of the discounted risky assets under P . We start by calculating the covariation processes
between Γ and the zero coupon bond and the longevity bond, respectively.

d 〈Γ(·), P ∗(·, T )〉 (t)

= −P ∗(t, T )β(t, T )σr
(
η̌V (t) + φ1(t)P ∗(t, T )β(t, T )σr − φ2(t)ηZ,Q(t)

)
dt. (2.B.4)

We denote by Z∗,QMG the martingale part of the price process of the longevity bond under Q. The
process has dynamics

dZ∗,QMG(t) = ηZ,Q(t)dW r(t) + νZ,Q(t)dM(x, t) + ρZ,Q(t)dWµ(t).

We find the covariation process between Γ and Z∗,Q to be

d
〈
Γ(·), Z∗,Q(·)

〉
(t)

= d
〈

Γ(·), Z∗,QMG(·)
〉

(t)

= ηZ,Q(t)
(
η̌V (t) + φ1(t)P ∗(t, T )β(t, T )σr − φ2(t)ηZ,Q(t)

)
dt

+ νZ,Q(t)
(
ν̌V (t)− φ2(t)νZ,Q(t)

)
λ(x, t)dt

+ ρZ,Q(t)
(
ρ̌V (t)− φ2(t)ρZ,Q(t)

)
dt. (2.B.5)
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By setting the two covariation processes (2.B.4) and (2.B.5) equal to 0, we obtain a system of
equations, which we can solve for (φ1(t), φ2(t)). The solution is given by

φ1(t) =
η̌V (t)

−P ∗(t, T )β(t, T )σr

+

ηZ,Q(t)

(
νZ,Q(t)ν̌V (t)λ(x, t) + ρZ,Q(t)ρ̌V (t)

)
P ∗(t, T )β(t, T )σr

(
(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2

) (2.B.6)

and

φ2(t) =
νZ,Q(t)

(
ν̌V (t)

)
λ(x, t) + ρZ,Q(t)ρ̌V (t)

(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2 . (2.B.7)

Now we have found φ1 and φ2 for a given measure P̌ , but we still need to determine the measure
P̌ .

We get the next equations from the fact that the discounted risky assets have to be martingales
under P̌ . The equation

hr(r(t), t)P ∗(t, T )β(t, T )σr = P ∗(t, T )β(t, T )σr%W
r
(t) (2.B.8)

needs to hold in order to guarantee that the zero coupon bond is a martingale. Moreover, the
equation

νZ,Q(t)λ(x, t)g(t) + ηZ,Q(t)hr(r(t), t)

= νZ,Q(t)λ(x, t)%M (t) + ρZ,Q(t)%W
µ
(t) + ηZ,Q(t)%W

r
(t) (2.B.9)

needs to hold for the longevity bond to be a martingale.

We insert the values of φ1 and φ2 in equation (2.B.2). Together with (2.B.8) and (2.B.9) this
lead to a system of 3 equations. Now, the task is to find values for %W

r
, %W

µ
and %M fulfilling

the equations. In order to do so, we insert the coefficients given by the likelihood process (2.6.7)
of the minimal martingale measure and find that they constitute a claim-independent solution to
the equation system. This approach is inspired by the results of Vandaele and Vanmaele (2008).
In the following, it is worth noticing that we have a nice representation of λX2 (t)νZ,Q(t) given by
(2.6.8).

First note, that (2.B.8) holds for %W
r

= hr(r(t), t), which is the Girsanov kernel related to W r

of the minimal martingale measure. We now insert the coefficients from the minimal martingale
measure into equation (2.B.9). This yields the equation:

νZ,Q(t)λ(x, t)g(t) + ηZ,Q(t)hr(r(t), t)

= −λX2 (t)
(
νZ,Q(t)λ(x, t)νZ,Q(t) +

(
ρZ,Q(t)

)2)
+ ηZ,Q(t)hr(r(t), t). (2.B.10)

Using (2.6.8), we see that

νZ,Q(t)λ(x, t)g(t) + ηZ,Q(t)hr(r(t), t)

=
νZ,Q(t)λ(x, t)g(t)

((
νZ,Q(t)

)2
λ(x, t) +

(
ρZ,Q(t)

)2)
(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2 + ηZ,Q(t)hr(r(t), t).
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We reduce this and get

νZ,Q(t)λ(x, t)g(t) + ηZ,Q(t)hr(r(t), t) = νZ,Q(t)λ(x, t)g(t) + ηZ,Q(t)hr(r(t), t),

which shows that equation (2.B.9) holds.

Inserting φ1, φ2, and the coefficients from the minimal martingale measure into equation (2.B.2)
yields (

νZ,Q(t)
(
ν̌V (t)

)
λ(x, t) + ρZ,Q(t)ρ̌V (t)

) (
νZ,Q(t)λ(x, t)g(t) + ηZ,Q(t)hr(r(t), t)

)
(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2

+hr(r(t), t)η̌V (t)

+
hr(r(t), t)P ∗(t, T )β(t, T )σr

(
ηZ,Q(t)

(
νZ,Q(t)ν̌V (t)λ(x, t) + ρZ,Q(t)ρ̌V (t)

))
−P ∗(t, T )β(t, T )σr

(
(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2

)
= η̌V (t)hr(r(t), t) +

(
νZ,Q(t)λ(x, t)g(t)

) (
ρ̌V (t)ρZ,Q(t) + ν̌V (t)λ(x, t)νZ,Q(t)

)
(νZ,Q(t))2 λ(x, t)dt+ (ρZ,Q(t))2 .

Since several of these terms cancel out, we get the equation(
νZ,Q(t)

(
ν̌V (t)

)
λ(x, t) + ρZ,Q(t)ρ̌V (t)

) (
νZ,Q(t)λ(x, t)g(t)

)
(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2 + hr(r(t), t)η̌V (t)

= η̌V (t)hr(r(t), t) +
νZ,Q(t)λ(x, t)g(t)

(
ρ̌V (t)ρZ,Q(t) + ν̌V (t)λ(x, t)νZ,Q(t)

)
(νZ,Q(t))2 λ(x, t)dt+ (ρZ,Q(t))2 .

This shows, that equation (2.B.2) indeed holds.

Before we can apply Theorem 2.5.5, we also need to check, that the decomposition is in fact
a Föllmer-Schweizer decomposition. Note that V̌ (ϕ, T ) = A∗(T ) is F(T )-measurable and that
A∗(T ) has second order moment, since all payments, the time length and the number of policy
holders are bounded. In addition, it follows that V̌ (ϕ, 0) = −nπs(0)+nṼ ∗,Qp (t) is F(0)-measurable
and clearly has second order moment under P . We see from (2.7.12) and (2.7.13), that φ1 and φ2

are clearly predictable. Earlier in the proof, we have shown, that Γ is a martingale and strongly
orthogonal to MX . By (2.B.3), we also have that Γ is null at time 0. In principle, we also need
to show that

E

[∫ T

0
(φ1(s), φ2(s)) d

〈
MX

〉
(s) (φ1(s), φ2(s))tr

]
+ E

[(∫ T

0

∣∣(φ1(s), φ2(s))dAX(s)
∣∣)2
]
<∞,

(2.B.11)

and that

Γ is square-integrable. (2.B.12)

We have showed that the coefficients of the minimal martingale measure fulfill the necessary
equations and can be used to find the Föllmer-Schweizer decomposition of the claim.

We finally check some extra conditions in order to ensure, that we can use Theorem 2.5.5. We
write down these conditions with the notation from equation (2.5.1):

AX is continuous, (2.B.13)

MX is locally square integrable starting in 0, (2.B.14)

λX is predictable and in L2
loc

(
MX

)
. (2.B.15)
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Condition (2.B.13) is obviously fulfilled (the drift parts of the price processes of the discounted
risky assets are continuous, since the Lebesgue measure for the time points of the jumps is zero).
We show that MX is locally square integrable by showing the more restrictive condition that MX

is square integrable. We do this by showing that
[
MX

]
is integrable, which we do by showing

that each entry of the vector is integrable. The first entry is:

EP
[[∫ T

0
P ∗(t, T )β(t, T )σrdW r(t)

]]
= EP

[∫ T

0
(P ∗(t, T )β(t, T )σr)2 d [W r(t)]

]
= EP

[∫ T

0
(P ∗(t, T )β(t, T )σr)2 dt

]
=

∫ T

0
EP
[
(P ∗(t, T ))2

]
(β(t, T )σr)2 dt <∞,

(2.B.16)

where we have used that a log-normal distribution has variance. The second entry is:

EP
[[∫ T

0
ηZ,Q(t)dW r(t) + νZ,Q(t)dM(x, t) + ρZ,Q(t)dWµ(t)

]]
=EP

[∫ T

0

(
ηZ,Q(t)

)2
dt+

(
νZ,Q(t)

)2
dN(x, t) +

(
ρZ,Q(t)

)2
dt

]
≤
∫ T

0
(σrn)2

∫ T

t
β2(t, τ)EP

[
(P ∗(t, τ))2

]
dτdt

+

∫ T

0

∫ T

t
EP
[
(P ∗(t, τ))2 λ(x, τ)

]
dτdt

+

∫ T

0
(σn(1 + g(t)))2 µ◦(x, t)

∫ T

t
(βµ(t, τ))2 EP

[
µ(x, t) (P ∗(t, τ))2

]
dτdt

<∞,

(2.B.17)

where we in the first inequality have used that SQ < 1, since the mortality intensity is positive,
and we have used Jensen’s inequality to interchange the integral and the quadratic function. For
the second inequality we have used that a log-normal distribution has variance and that a CIR-
process has first moment. We also note that MX is starting in 0. That is, we have that (2.B.14)
holds.

It is clear from (2.6.8) and (2.6.10) that λX is predictable. Finally, we prove that λX ∈ L2
loc(M

X)
by showing that

EP
[∫ T

0

(
λX
)tr

(s)d
〈
MX

〉
(s)λX(s)

]
= EP

[∫ T

0

(
λX
)tr

(s)dAX(s)

]
<∞, (2.B.18)

where the equality follows by the definition of λX . In the above equation, λX2 is given by (2.6.8)
and λX1 is given by equation (2.6.10). We can write λX1 as

λX1 =
hr + λX2 η

Z,Q

P ∗(·, T )β(·, T )σr

=
hr

P ∗(·, T )β(·, T )σr
+

−νZ,Q(t)λ(x, t)g(t)ηZ,Q(
(νZ,Q(t))2 λ(x, t) + (ρZ,Q(t))2

)
P ∗(·, T )β(·, T )σr

. (2.B.19)
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Moreover, dAX is given by (2.6.3) and (2.6.4). Thus, we get that EP
[∫ T

0

(
λX
)tr

(s)dAX(s)
]

is

equal to

EP

[∫ T

0
(hr(r(s), s))2 +

−νZ,Q(s)λ(x, s)g(s)ηZ,Q(s)hr(r(s), s)

(νZ,Q(s))2 λ(x, s) + (ρZ,Q(s))2 ds

]

+EP

[∫ T

0

(
−νZ,Q(s)λ(x, s)g(s)

(
−νZ,Q(s)λ(x, s)g(s)− ηZ,Q(s)hr(r(s), s)

)
(νZ,Q(s))2 λ(x, s) + (ρZ,Q(s))2

)
ds

]

= EP

[∫ T

0

(
c̃

σr
+
cr(t)

σr

)2

+

(
νZ,Q(s)λ(x, s)g(s)

)2
(νZ,Q(s))2 λ(x, s) + (ρZ,Q(s))2ds

]

≤ EP

[∫ T

0

(
c̃

σr
+
cr(t)

σr

)2

+ λ(x, s) (g(s))2 ds

]

=

∫ T

0
EP

[(
c̃

σr
+
cr(t)

σr

)2

+ λ(x, s) (g(s))2

]
ds <∞,

where the last equality follows because the Vasiček process has variance and the CIR-process
has first moment. By Theorem 2.5.5 we have that the first part of the theorem holds. The risk
process is given by

R(ϕ∗, t) = EP
[

(C(ϕ∗, T )− C(ϕ∗, t))2
∣∣∣F(t)

]
= EP

[(
LA
∗
(T )− LA∗(t)

)2
∣∣∣∣F(t)

]
= EP

[
(Γ(T )− Γ(t))2

∣∣∣F(t)
]

= EP
[(∫ T

t

(
η̌V (τ) + φ1(τ)P ∗(τ, T )β(τ, T )σr − φ2(τ)ηZ,Q(τ)

)
dW r(τ)

+

∫ T

t

(
ρ̌V (τ)− φ2(τ)ρZ,Q(τ)

)
dWµ(τ)

+

∫ T

t

(
ν̌V (τ)− φ2(τ)νZ,Q(τ)

)
dM(x, τ)

)2∣∣∣∣F(t)

]
=

∫ T

t
EP
[(
η̌V (τ) + φ1(τ)P ∗(τ, T )β(τ, T )σr − φ2(τ)ηZ,Q(τ)

)2∣∣∣F(t)
]
dτ

+

∫ T

t
EP
[(
ρ̌V (τ)− φ2(τ)ρZ,Q(τ)

)2∣∣∣F(t)
]
dτ

+

∫ T

t
EP
[(
ν̌V (τ)− φ2(τ)νZ,Q(τ)

)2
λ(x, τ)

∣∣∣F(t)
]
dτ

=

∫ T

t
EP
[(
ρ̌V (τ)− φ2(τ)ρZ,Q(τ)

)2∣∣∣F(t)
]
dτ

+

∫ T

t
EP
[(
ν̌V (τ)− φ2(τ)νZ,Q(τ)

)2
λ(x, τ)

∣∣∣F(t)
]
dτ.

The last equality follows since the covariation process between Γ and the zero coupon bond is 0,
see equation (2.B.4). This completes the proof. Note however, that one in principle should verify
that the conditions (2.B.11) and (2.B.12) are fulfilled.

�
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Chapter 3

Markov chain modeling of
policyholder behavior in life
insurance and pension

Abstract: We calculate reserves regarding expected policyholder behavior. The be-
havior is modeled to occur incidentally similarly to insurance risk. The focus is on
multi-state modelling of insurance risk and behavioral risk in terms of free policy risk
and surrender risk. We discuss valuation techniques in the cases where behavior is
modeled to occur independently or dependently of insurance risk, respectively. Ordi-
nary differential equations make it easier to work with dependence between insurance
risk and behavior risk. We analyze the effects of the underlying behavioral assumptions
for two contracts. For a “new” contract with low technical interest rate relative to
the market interest rate, we obtain the lowest reserve by counting in dependence. For
an “old” contract with high technical interest rate relative to the market interest rate,
the picture is more blurred, depending on assumptions on reactivation (recovery) and
independence.

Keywords: Surrender option, free policy option, ordinary differential equation, recov-
ery, dependence.

3.1 Introduction

We characterize reserves under finite-state Markov chain modeling of policyholder behavior and
illustrate numerically the effects on values from modeling behavior in various ways. By behavior
we think, in particular, of policyholder interventions like transcription to free policy and surrender.
The reserves are characterized by ordinary differential equations having more or less explicit
solutions, depending on the behavior model and the insurance risk model. These solutions are
particularly tractable if one assumes independence between insurance risk and behavior, although
such independence is often ruled out by contract design: Disability annuitants and life annuitants
are typically not allowed to exercise such behavior options. In the illustrations we calculate values
for standard contracts in order to analyze the effects of taking into account behavior in various
ways. In particular, we study the consequences of assuming independence between insurance risk
and behavior.

Dependence between insurance risk and behavior is a classical object of study since this is what
notions like moral hazard and adverse selection are, formalistically, all about. The idea of for-
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malising the dependence via a multi-state Markov chain may be generalized to cover also these
aspects. However, our focus here is on the absence of the annuitant’s behavioral options. Still,
we are interested in the case of independence, since it offers some shortcuts with respect to cal-
culations. These shortcuts may be attractive if they ease calculations a lot but only change the
values a little. Actually, the rationale for this paper is to study and relate formulas and numerical
results in the two cases of dependence and independence, respectively.

Current developments in insurance accounting and solvency rules take an explicit approach to
behavior. For calculating reserves it is to an increasing extent required to take into account
behavior. Behavior should be thought of as actions taken by the policyholder that influence
either the risk in the processes that drive the payment streams of an insurance contract or the
payments themselves. In this paper we pay special attention to the surrender option, i.e. the
option to terminate the contract in exchange for a lump sum payment, and the free policy option,
i.e. the option to stop paying the premium against a reduction of benefits. Among other options
held by the policyholder may be the annuitization option in case the default coverage is a pension
sum that can then, on basis of technical assumptions about interest and mortality, be converted
to an annuity. Although this distinction is not necessarily a clean cut in practice, annuitization is
an option that can be exercised upon retirement and can therefore be thought of as a European
type option. The surrender and free policy options can, in general, be exercised at any point in
time and can therefore be thought of as American type options. Another option that is sometimes
mentioned explicitly is the option to raise the premiums. Typically, such an option is provided
in connection with an occupational pension scheme, where e.g. premiums are calculated as a
percentage of the salary.

There exists a range of approaches to modeling of behavior. One extreme position to take is to
assume that the policyholder exercises his options based on an economically optimal strategy, i.e.
in order to maximize the value of the payment stream of the contract. This approach is taken in
Steffensen (2002) leading to characterization of values by so-called variational inequalities known
in a financial context from American option pricing. Compared to a standard American option
it is a delicate feature of the contract that both a free policy and a surrender option exist.
Furthermore, if the free policy option is exercised, the contract continues under different terms
and possibly still including a surrender option. This is all dealt with by Steffensen (2002). The
same extreme American option approach is taken by e.g. Grosen and Jørgensen (2000), Bacinello
(2003), and Siu (2005). A primitive approximation of the value obtained from this approach is to
reserve, at any point in time, the larger of the value based on no exercise and the surrender value.
This is what has been called a “now or never”-reserve since it corresponds to optimizing over two
intervention strategies corresponding to exercising now or never. Due to its tractability, this is
often seen as a first approach to take intervention options into account in practical accounting
rules. Clearly, this approximation underestimates the true value since the optimal strategy may
be to exercise somewhen between now and never.

Another extreme approach is to assume that the intervention options are exercised completely
incidentally. Then intervention risk can be treated formalistically as a diversifiable insurance risk,
although they are different concepts and the treatment considerably complicates, in general, the
states of the world that have to be taken into account. This approach is taken e.g. by Buchardt
and Møller (2013) and Buchardt et al. (2013).

A modern approach in accounting and solvency is to base reserves on expected policyholder be-
havior rather than rational policyholder behavior. This approach is taken e.g. in preliminary
formulations of both Solvency II and IFRS. This draws attention towards the latter of the two
extremes. However, the expected policyholder behavior is explicitly required to take into account
also e.g. the economic environment and/or whether the option is beneficial. This appears to be
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one step back towards the first extreme without really going that far. Such intermediary mod-
eling is an interesting object of study with a lot of challenges concerning the statistical material
available, economic intuition and mathematical tractability of the studied objects depending on
the driving factors. Simple ideas are to let the intervention intensity depend on interest rates, as
was done by De Giovanni (2010), or a relation between the intervention value and (some notion
of) the market reserve. These ideas address the questions regarding the economic environment
and whether the option is beneficial.

There exists a large amount of empirical literature discussing explanatory variables. These range
from macro variables like interest rates, e.g. studied by Kuo et al. (2003) and Tsai et al. (2002), to
micro variables like for instance policyholder age or policy duration. Some authors study macro
and micro explanatory variables simultaneously, see e.g. Kim (2005) and Milhaud (2013). Note
that working with macro variables creates dependence across policyholders in a portfolio which
is crucial for solvency issues, see Loisel and Milhaud (2011). We refer to Eling and Kiesenbauer
(2014) and references therein for a comprehensive literature overview.

In this paper we take the extreme approach to assume that the intervention options are exercised
completely incidentally. This does not mean that we do not believe that working with interest rate
or reserve dependent intervention intensities is interesting, important, challenging, or relevant. We
are just focusing on something else. Also, we focus on something rather different from Buchardt
and Møller (2013) who mainly concentrate on representation and calculation of cash flows in one
of the special cases of our study, and Buchardt et al. (2013) who in a more theoretical framework
deal with duration dependence in the risk model. Dependence between mortality and surrender
risk was actually studied by Valdez (2001) but he worked in a model setup and with a focus quite
different from ours. The relation between our approach and the idea of counting in external risk
factors with respect to behavior is discussed in the conclusion raising several issues for future
research.

We are interested in discussing the dependence between insurance risk and behavior that essen-
tially arises from the product design. We do this in a finite state Markov chain framework. That
allows us to characterize conditional expected values by ordinary differential equations and to
specify their solutions. Their structures make it clear in what sense one can choose between a
complicated differential equation based approach and a solution based on simplifying assump-
tions. Or said in a different way: Keep it simple or keep it right! To make the good choice here,
it is of course relevant to qualify this one-liner. How simple is simple? And if simple means
wrong, then how wrong is wrong? These questions are discussed from a theoretical point of
view throughout the first part of the paper in Sections 3.2 - 3.5 and addressed numerically in
Section 3.6 after which Section 3.7 concludes. In a thorough analysis where several aspects are
taken into account, including varying over the value of the intervention options, the answer is not
surprising: It depends! This paper illuminates on what it depends. A conclusion is that it really
does matter for the entry values whether one takes the “simple” or the “right” approach. This
makes a case for our advanced methods. All numerical results are obtained by Actulus R© Cal-
culation Platform that has been developed to deal with such questions of importance to the life
insurance and pensions sector by numerically solving the relevant systems of ordinary differential
equations.

3.2 Risk and Behavior Models

In this section we present the idea of considering a combined model for risk and behavior as
being decomposed into two separate models for risk and behavior, respectively, that are or are
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not probabilistically dependent of each other. We think of a risk state model Zrisk and a behavior
state model Zbehavior and consider the state model

(
Zrisk, Zbehavior

)
.

Given (the whole process history of) Zbehavior, Z
risk is assumed to be a finite-state Markov

chain taking values in Zrisk. Thus, conditional on Zbehavior, there exist transition intensities
µjk (t) for j, k ∈Zrisk and t ≥ 0, such that for all k ∈Zrisk,

∫ t
0 µ

Zrisk(s)k (s) ds is (conditional on
Zbehavior) a compensator for the counting process counting the number of jumps into risk state
k. The transition intensities may be independent of Zbehavior and in that case Zrisk is, even
unconditionally, a finite-state Markov chain. A canonical multi-state example of a risk model is
the disability model illustrated in Figure 3.1. We have labeled the states {active, disabled, dead}
by the letters {a, i, d}. This risk model is a key example below and in the numerical illustrations
in particular.

aactive
µai

�
µia

idisabled

µad

↘
µid

↙
ddead

Figure 3.1: Disability risk model.

Symmetrically to the paragraph above we can now introduce the Markov chain Zbehavior given
(the whole process history of) Zrisk. We denote by νjk (t) for j, k ∈Zbehavior and t ≥ 0 the
transition intensities and illustrate the canonical example of a behavior model in Figure 3.2. We
have labeled the states {premium payment, free policy, surrender} by the letters {p, f, s}. This
behavior model is a key example below and in the numerical illustrations in particular.

ppremium payment

νpf
�
νfp

ffree policy

νps
↘

νfs
↙

ssurrender

Figure 3.2: Behavior model.

As can be seen above, we refer consequently to specifications and states in the risk model by su-
perscripts and to specifications and states in the behavior model by subscripts. When Zrisk given
Zbehavior and Zbehavior given Zrisk are Markov models, the combined model Z =

(
Zrisk, Zbehavior

)
is a Markov model. Thus, there exist risk transition intensities µjkl (t) for j, k ∈Zrisk, l ∈Zbehavior

and t ≥ 0, such that for all k ∈Zrisk,
∫ t

0 µ
Zrisk(s)k
Zbehavior(s)

(s) ds is a compensator for the counting process
counting the number of jumps into risk state k. Similarly, there exist risk transition intensities

νljk (t) for j, k ∈Zbehavior, l ∈Zrisk and t ≥ 0, such that for all k ∈Zbehavior,
∫ t

0 ν
Zrisk(s)
Zbehavior(s)k

(s) ds
is a compensator for the counting process counting the number of jumps into behavior state k.

We introduce the notation pjklm (t, s) for the transition probability that the risk process moves from
j to k and the behavior process moves from l to m over (t, s). In the case where the two sub-
models for Zrisk and Zbehavior are independent, i.e. the transition intensities µ do not depend on
Zbehavior and the transition intensities ν do not depend on Zrisk, we can simplify this probability
into a product of probabilities with respect to each sub-model, i.e.

pjklm (t, s) = pjk (t, s) plm (t, s) .
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In case of independence we here specify the transition probabilities in the two models exemplified
above. If µai and µia are both positive, we have no closed-form expressions for the probabilities(
paa, pii, pai, pia, pad, pid

)
. However, in the case of no reactivation, i.e. µia = 0, we do:

paa (t, s) = e−
∫ s
t (µai(τ)+µad(τ))dτ , pii (t, s) = e−

∫ s
t µ

id(τ)dτ ,

pai (t, s) =

∫ s

t
paa (t, τ)µai (τ) pii (τ, s) dτ, pia (t, s) = 0.

The probabilities pad and pid are calculated residually by conditional probabilities summing to 1.
Correspondingly, if νpf and νfp are both strictly positive, we have no closed-form expressions for
the probabilities (ppp, pff , ppf , pfp, pps, pfs). However, in the case of no premium resumption, i.e.
νfp = 0, we do:

ppp (t, s) = e−
∫ s
t (νpf (τ)+νps(τ))dτ , pff (t, s) = e−

∫ s
t νfs(τ)dτ ,

ppf (t, s) =

∫ s

t
ppp (t, τ) νpf (τ) pff (τ, s) dτ, pfp (t, s) = 0.

The probabilities pps and pfs are calculated residually by conditional probabilities summing to 1.

A specific model for behavior is a model for the demand from policyholders. By a probabilistic
model for demand we formalise a tendency that policyholders hold certain types of contracts.
There are many motivations for thinking of the two processes Zrisk and Zbehavior as being de-
pendent. Two classical features in risk trading represent each one direction of influence between
the two sub-models. On one hand, adverse selection means that policyholders with certain risks
tend to demand certain contracts. We can reflect this in our model by letting the transition
intensities in the behavior model be more or less explicitly dependent on the risk process. On the
other hand, moral hazard means that policyholders with certain behavior/demand tend to cause
certain levels of risks. We can reflect this in our model by letting the transition intensities in the
risk model depend, more or less explicitly, on the behavior model. Thus, causal effects between
the models have different directions and each direction has a given economic interpretation. At
the end of the day, though, we observe a combined process where it may be difficult or even
impossible to detect the direction of causal effects from the experienced dependence.

The canonical behavior model illustrated in Figure 3.2 above also forms a model for demand of
certain types of payment profiles. There may be effects of adverse selection, i.e. policyholders in
different risk states tend to exercise their free policy and surrender options differently. Moreover,
there may be effects of moral hazard, i.e. mortality and disability rates differ for policyholders in
the premium payment and free policy states, respectively. Below we pay full attention to a simple
effect in the policy design where the dependence between the risk and behavior models is part
of the contract. It is common practice that e.g. only policyholders in the risk state “active” are
allowed to transcribe into a free policy or surrender. A standard contractual formulation is that
such exercise options fall away when the contract goes from a premium paying contract to a benefit
receiving contract, either by transition of state or by transition of time. We assume throughout
that the risk of policyholders resuming their premium payment after having been transcribed
to free policy is zero, i.e. νfp = 0. This is often a harmless assumption since a contract, when
premiums are resumed, is typically handled as a new contract and should therefore not be taken
into account. With such a dependence coming exclusively from the behavioral options in the
contract, we have illustrated the two-dimensional model in Figure 3.3.
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(a, p)
µaip
�
µiap

(i, p)

νaps
↙

µadp
↘

µidp
↙

(a, s) ↓ νapf (d, p)
νafs
↖

(a, f)
µaif
�
µiaf

(i, f)

µadf
↘

µidf
↙

(d, f)

Figure 3.3: Combined model.

3.3 Values and Cash Flows in Risk and Behavior Models

In this section we describe the contractual payments and present formulas for calculation of their
conditional expected present values. We assume a general risk model in combination with the
canonical behavior model illustrated in Figure 3.2 with the premium resumption rate set to zero.

We take as starting point a contract that, in the first place, specifies its payments in the risk
model, conditional on the behavior model being in the premium payment state p. We assume
that the contract pays net benefits to the policyholder at rate bj as long as the policyholder is in
state j and a lump sum net benefit bjk upon a transition from j to k. By net benefit we mean
(positive) benefits paid to the policyholder minus (positive) premiums paid by the policyholder.
The contract terminates at time n. We can now formalize the expected payment rate at time s
given that the policyholder is in risk state k at time s as

ck (s) = bk (s) +
∑
l:l 6=k

µklp (s) bkl (s) ,

where the sum here and in the rest of the paper is over states in Zrisk.

We assume that the contract specifies that upon surrender from risk state k at time t, all future
payments are canceled and a surrender sum Gk (t) is paid out in return. Moreover, we assume that
the contract specifies that if the policy is transcribed into a free policy while the policyholder is in
risk state h at time t, the future payments are changed in the following way. The negative elements
of bj and bjk, i.e. premiums, are set to zero whereas positive elements of bj and bjk, denoted by
bj+ and bjk+, are multiplied by a so-called free policy factor which depends, exclusively, on t and
h and we denote by fh (t). First we introduce the expected payment rate of positive payments
(before multiplication by fh) as

ck+ (s) = bk+ (s) +
∑
l:l 6=k

µklf (s) bkl+ (s) .

We can also write the expected payment rate at time s given that the policyholder is in risk state
k at time s and jumped into the behavior state free policy at time t while being in risk state h as

fh (t) ck+ (s) = fh (t)

bk+ (s) +
∑
l:l 6=k

µklf (s) bkl+ (s)

 .
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The surrender sum and the effects on the benefits in case the free policy option is exercised
are parts of the contract terms. The contract specifies what happens in case of surrender or
free policy. It should be clear that, if the policyholder decides to stop the premium payments
prematurely, the benefits have to be recalculated accordingly in order to prevent speculation.
The free policy factor typically reduces the benefits proportionally. A reduction occurs since
a part of the benefits are related to the future premiums that fall away upon the exercise. A
proportional reduction is motivated by a wish to treat all benefits equally. One can imagine a
series of alternative recalculations of payments upon transition into the free policy state. E.g. the
policyholder may want his risk coverages (like term insurance and disability annuities) to either
fall away or to be fully kept upon transcription, and then the saving coverages (like deferred life
annuities) are changed residually. We elaborate briefly on such alternatives in Section 3.5 below.
However, we develop the valuation formulas under the assumption that all future benefits are
changed proportionally. That even goes for the surrender payment in the following sense. If the
policy was transcribed into a free policy while the policyholder was in risk state h at time t, and
the policy is surrendered at time u > t while the policyholder is in risk state j, the policy pays
out a surrender sum fh (t)Gj+ (u). All payment coefficients, including f and G, are assumed to
be bounded and continuous. All formulas can easily be generalized to coefficients with countably
many discontinuities by using that the reserves are still continuous, although not differentiable,
in these points.

It is important to note the following. Since the process Z is Markovian the intensity of making a
jump at time t depends on the position of Z only. However, this does not mean that the payment
rate at time t only depends on Z. Since the expected payment rate at time s, fh (t) ck+ (s), de-
pends on t and h through the free policy factor, we have introduced a specific duration dependence
in the payment process which is not present in the probability model.

For the rest of the paper we consider a deterministic interest rate, r, but skip the time dependence
in the formulas. In the numerical calculations in Section 3.6 we use a forward rate observed in
the market at a fixed valuation date.

3.3.1 Given the free policy state

In this subsection we present a differential equation characterizing the reserve defined as the
expected present value of future payments at time t > τ given that the policy jumped to the free
policy state while the policyholder was in risk state h at time τ . We also specify its solution.
Here and throughout we refer to Steffensen (2000) for all differential equations and their solutions.
Denoting by V j

f (t)τh the reserve if the policyholder is in risk state j at time t and became a free
policy while being in risk state h at time τ , we can characterize this reserve by the differential
equation (here and in the rest of the paper we skip the specification of the trivial boundary
condition, V j

f (n)τh = 0)

d

dt
V j
f (t)τh = rV j

f (t)τh − f
h (τ) bj+ (t)−

∑
k:k 6=j

µjkf (t)
(
fh (τ) bjk+ (t) + V k

f (t)τh − V
j
f (t)τh

)
−νjfs (t)

(
fh (τ)Gj+ (t)− V j

f (t)τh

)
.

The solution can be written as

V j
f (t)τh = fh (τ)

∫ n

t
e−
∫ s
t r
∑
k

pjkff (t, s)
(
ck+ (s) + νkfs (s)Gk+ (s)

)
ds,
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where e−
∫ s
t r is shorthand notation for e−

∫ s
t r(u)du and pjkff (t, s) is the probability that the policy-

holder moves from j to k in the risk model while staying in state f in the behavior model. This
interpretation of pjkff (t, s) relies on the assumption that νfp = 0, such that pjkff (t, s) = pjk

ff
(t, s),

where the notation ff denotes that the transition from f to f is made by staying uninterruptedly
in state f . The solution is not in closed form, since the transition probabilities, in general, do not
exist in closed form. From the integral solution we can see that the reserve consists of payments
during sojourn in the free policy state (the ck+ (s) terms) and payments paid upon surrender (the
Gk+ (s) terms).

In the special case where the behavior and the risk models are independent, we have the simple
form,

pjkff (t, s) = pff (t, s) pjk (t, s) ,

such that

V j
f (t)τh = fh (τ)

∫ n

t
e−
∫ s
t rpff (t, s)

∑
k

pjk (t, s)
(
ck+ (s) + νfs (s)Gk+ (s)

)
ds.

This formula is particularly convenient since it can be built around the “original” expected cash

flow rates
∑
k

pjk (t, s) ck+ (s) and the rates
∑
k

pjk (t, s) νfs (s)Gk+ (s). Thus, when making use of

the integral solution, one may, for computational convenience, be inclined to assume probabilistic
independence. This is not correct, but the numerical errors may or may not be negligible. We
elaborate on this in Section 3.6. On the other hand, when working with the differential equations,
using the correct model does not introduce any additional complexity. Hence, there is no excuse
for not performing the right calculations.

3.3.2 Given the premium payment state

In this subsection we present a differential equation characterizing the reserve given that the
policy is in the premium payment state and in risk state j at time t. We also specify its solution.
Denoting this reserve by V j (t), tacitly skipping the subscript p on all reserves below, we can
characterize this reserve by the differential equation,

d

dt
V j (t) = rV j (t)− bj (t)−

∑
k:k 6=j

µjkp (t)
(
bjk (t) + V k (t)− V j (t)

)
(3.3.1)

−νjpf (t)
(
V j
f (t)tj − V

j (t)
)
− νjps (t)

(
Gj (t)− V j (t)

)
.

Note that the reserve V j
f (t)tj is obtained by solving the differential equation for V j

f (t)τj for fixed
τ and subsequently replacing τ by t. The solution can be written as

V j (t) =

∫ n

t
e−
∫ s
t r
∑
k

pjkpp (t, s)
(
ck (s) +Gk (s) νkps (s)

)
ds (3.3.2)

+

∫ n

t
e−
∫ s
t r
∑
k

W jk (t, s)
(
ck+ (s) + νkfs (s)Gk+ (s)

)
ds,

where pjkpp (t, s) is the probability that the policyholder moves from j to k in the risk model while

staying in state p in the behavior model. This interpretation of pjkpp (t, s) relies on the assumption

that νfp = 0, such that pjkpp (t, s) = pjkpp (t, s). Furthermore,

W jk (t, s) =

∫ s

t

∑
h

pjhpp (t, τ) νhpf (τ) phkff (τ, s) fh (τ) dτ.
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In the integral solution we can see that the reserve consists of payments during sojourn in the
premium payment state (the ck (s) terms), payments due upon surrender from the premium
payment state (the Gk (s) terms), payments during sojourn in the free policy state (the ck+ (s)
terms), and payments upon surrender from the free policy state (the Gk+ (s) terms). The ratio

W jk (t, s) /pjkpf (t, s) is the expected free policy factor given that the policyholder jumps in the risk
model from j to k and in the behavior model from p to f over (t, s).

In the special case where the behavior and the risk models are independent, we have the simple
form (recall the simple forms for ppp, pff , and ppf from Section 3.2)

pjkpp (t, s) = ppp (t, s) pjk (t, s) ,

pjkff (t, s) = pff (t, s) pjk (t, s) ,

pjkpf (t, s) = ppf (t, s) pjk (t, s) ,

such that

V j (t) =

∫ n

t
e−
∫ s
t rppp (t, s)

∑
k

pjk (t, s)
(
ck (s) + νps (s)Gk (s)

)
ds

+

∫ n

t
e−
∫ s
t r
∑
k

W jk (t, s)
(
ck+ (s) + νfs (s)Gk+ (s)

)
ds,

W jk (t, s) =

∫ s

t
ppp (t, τ) νpf (τ) pff (τ, s)

∑
h

pjh (t, τ) phk (τ, s) fh (τ) dτ.

This formula appears convenient since the first line can be built around the “original” expected

cash flow rates
∑
k

pjk (t, s) ck (s) and the rates
∑
k

pjk (t, s) νps (s)Gk (s). Thus, when making

use of the integral solution, one may, for computational convenience, again be inclined to assume
probabilistic independence. However, this shortcut is not as appealing as it seems. In spite of the
probabilistic independence, the second line is still an involved quantity. In order to really benefit
from “original” expected cash flow rates, we further need to assume that fh (τ) does not depend
on h, in case we denote fh by f . Then

W jk (t, s) = pjk (t, s)W (t, s) ,

with

W (t, s) =

∫ s

t
ppp (t, τ) νpf (τ) pff (τ, s) f (τ) dτ, (3.3.3)

such that the second line becomes∫ n

t
e−
∫ s
t rW (t, s)

∑
k

pjk (t, s)
(
ck+ (s) + νfs (s)Gk+ (s)

)
ds.

Finally, we have now reached the most elegant, but incorrect, expression since all elements are

built around “original” cash flow rates
∑
k

pjk (t, s) ck (s) and
∑
k

pjk (t, s) ck+ (s) and the rates∑
k

pjk (t, s) νps (s)Gk (s) and
∑
k

pjk (t, s) νfs (s)Gk+ (s).
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3.4 Important special cases

In this section we specialize the main results from Section 3.3 to two particularly important
special cases. We consider the canonical disability model illustrated in Figure 3.1 and the survival
model, respectively. In both cases we present the relevant differential equations and their more
or less explicit solutions depending on the assumptions about the underlying model or contract.
Particular attention is paid to the various simplifying assumptions that one can make in order
to ease calculations. We concentrate on the valuation of policies that are in the behavior state
“premium payment” since this is where the main calculation challenges arise.

3.4.1 The disability model

First we consider the disability model. We assume that all payments are zero in the state “dead”
and label the different states according to Figure 3.1. Then the reserve corresponding to the
policyholder being premium paying and active at time t can be characterized by a special case of
(3.3.1) given by

d

dt
V a (t) = rV a (t)− ba (t)

−µai (t)
(
bai (t) + V i (t)− V a (t)

)
− µad (t)

(
bad (t)− V a (t)

)
−νapf (t)

(
V a
f (t)ta − V

a (t)
)
− νaps (t) (Ga (t)− V a (t)) .

Here, the second line contains the risk premia related to the state transitions in the risk model
whereas the third line contains risk premia related to the state transitions in the behavior model.

The general solution represented in (3.3.2) becomes

V a (t) =

∫ n

t
e−
∫ s
t r

(
paapp(t, s)

(
ca (s) + νaps (s)Ga (s)

)
+paipp(t, s)

(
ci (s) + νips (s)Gi (s)

) ) ds
+

∫ n

t
e−
∫ s
t r

 W aa (t, s)
(
ca+ (s) + νafs (s)Ga+ (s)

)
+W ai (t, s)

(
ci+ (s) + νifs (s)Gi+ (s)

)  ds,

where

W aa (t, s) =

∫ s

t

(
paapp (t, τ) νapf (τ) paaff (τ, s) fa (τ)

+paipp (t, τ) νipf (τ) piaff (τ, s) f i (τ)

)
dτ,

W ai (t, s) =

∫ s

t

(
paapp (t, τ) νapf (τ) paiff (τ, s) fa (τ)

+paipp (t, τ) νipf (τ) piiff (τ, s) f i (τ)

)
dτ.

We now make the realistic assumption that the contract specifies that behavioral events only take
place as long as the policyholder is active. This means that νipf (t) = νips (t) = 0 such that W aa

and W ai reduce to

W aa (t, s) =

∫ s

t
paapp (t, τ) νapf (τ) paaff (τ, s) fa (τ) dτ,

W ai (t, s) =

∫ s

t
paapp (t, τ) νapf (τ) paiff (τ, s) fa (τ) dτ.

These formulas are, of course, not explicit due to the allowance for a positive reactivation rate.
This makes the probabilities impossible to calculate explicitly. However, if we do not allow for
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reactivation, we get simpler expressions for the probabilities, e.g.

paapp (t, s) = paapp (t, s) = e−
∫ s
t µ

ai
p +µadp +νapf+νaps ,

paaff (t, s) = paaff (t, s) = e−
∫ s
t µ

ai
f +µadf +νafs .

This has simplifying consequences for the calculation of paiff (t, s), W aa (t, s), and W ai (t, s).

Instead of assuming that the contract allows for behavioral events from the “active” state only, we
now make the “opposite” assumption and say that the risk and behavior models are independent.
We know from the previous section that this may help make the calculations much simpler. We
get the following expression for the reserve,

V a (t) =

∫ n

t
e−
∫ s
t rppp (t, s)

(
paa (t, s) (ca (s) + νps (s)Ga (s))
+pai (t, s)

(
ci (s) + νps (s)Gi (s)

) ) ds
+

∫ n

t
e−
∫ s
t r

(
W aa (t, s) (ca+ (s) + νfs (s)Ga+ (s))
+W ai (t, s)

(
ci+ (s) + νfs (s)Gi+ (s)

) ) ds,
where

W aa (t, s) =

∫ s

t
ppp (t, τ) νpf (τ) pff (τ, s)

(
paa (t, τ) paa (τ, s) fa (τ)
+pai (t, τ) pia (τ, s) f i (τ)

)
dτ,

W ai (t, s) =

∫ s

t
ppp (t, τ) νpf (τ) pff (τ, s)

(
paa (t, τ) pai (τ, s) fa (τ)
+pai (t, τ) pii (τ, s) f i (τ)

)
dτ.

There are still several difficulties with this representation. Even though some elements relate to
conditional expected cash flows from the original contract, we note that we cannot calculate the
transition probabilities explicitly as long as we allow for reactivation. Furthermore, the expected
cash flows from the free policy state are still quite complicated and do not relate to the original
cash flows in an easy manner. Referring to the results in the previous section, we propose the
additional assumption that f i = fa. Then

W aa (t, s) = paa (t, s)W (t, s) ,

W ai (t, s) = pai (t, s)W (t, s) ,

with W defined as in (3.3.3), such that

V a (t) =

∫ n

t
e−
∫ s
t rppp (t, s)

(
paa (t, s) (ca (s) + νps (s)Ga (s))
+pai (t, s)

(
ci (s) + νps (s)Gi (s)

) ) ds
+

∫ n

t
e−
∫ s
t rW (t, s)

(
paa (t, s) (ca+ (s) + νfs (s)Ga+ (s))
+pai (t, s)

(
ci+ (s) + νfs (s)Gi+ (s)

) ) ds.
Finally, the ingredients relate to the original cash flows. In these cash flows appear the transition
probabilities. How accessible they are, depends on whether or not we allow for reactivation. If
we do not, the probabilities are explicit and we have reached the “simplest” representation of our
reserve.

3.4.2 The Survival model

Now we specialize to the survival model by skipping the disability state in Subsection 3.4.1. We
skip the superscript a in the reserve V a since all quantities are conditional on the policyholder
being alive. This is a special case that deserves special attention. Namely, if there is no payments
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in the death state, the simplifying and, in general, harmful assumptions are in this particular
case harmless. This is so because all behavioral options and payments fall away upon death. The
general solution represented in (3.3.2) becomes

V (t) =

∫ n

t
e−
∫ s
t rpaapp (ca (s) + νps (s)Ga (s)) ds

+

∫ n

t
e−
∫ s
t rW aa (t, s)

(
ca+ (s) + νfs (s)Ga (s)

)
ds,

where

W aa (t, s) =

∫ s

t
paapp (t, τ) νpf (τ) paaff (τ, s) fa (τ) dτ.

If we assume independence between the models we essentially assume that the mortality rate
is not affected by the state of the behavior model and the transition intensities in the behavior
model are not affected by the state of the risk model. The latter assumption is harmless since we
have assumed that there are no payments in the death state. This means that it does not affect
the value to allow for transcription into a free policy or surrendering among dead policyholders.
If instead there were payments in the death state it would, of course, make a difference for
these payments whether we allow for behavioral intervention or not. Under the assumption of
independence we get the simplifications,

V (t) =

∫ n

t
e−
∫ s
t rppp (t, s) paa (t, s) (ca (s) + νps (s)Ga (s)) ds

+

∫ n

t
e−
∫ s
t rW aa (t, s)

(
ca+ (s) + νfs (s)Ga+ (s)

)
ds,

where

W aa (t, s) =

∫ s

t
ppp (t, τ) νpf (τ) pff (τ, s) paa (t, τ) paa (τ, s) fa (τ) dτ

= paa (t, s)

∫ s

t
ppp (t, τ) νpf (τ) pff (τ, s) fa (τ) dτ.

Then we have reached an expression based on the original cash flows. In the survival model, the
final simplification, fh = f , is not necessary. However, we stress that this is true only because
we have no payments in the death state.

3.5 The free policy factor

In the calculations above we have assumed that all future benefits are multiplied by the same
factor f j(t) upon transcription into free policy while being in risk state j at time t. We have not
discussed what this f j should be, though, and we have not discussed the situation where different
factors apply to different future benefits. If f j applies to all future benefits, a natural idea is to
let f j be determined by

f j(t) =
V j∗(t)

V j+∗(t)
,

where “∗” denotes valuation of the contractual payments corresponding to a technical basis
consisting of (r∗, µ∗), possibly different from our valuation basis, (r, µ), and “+” means that only
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positive payments (benefits) are taken into account. To see why this idea is natural, consider the
free policy sum at risk V j

f (t)tj − V j (t). Since V j
f (t)tj = f j (t)V j+ (t), we have that

V j
f (t)tj − V

j (t) = f j (t)V j+ (t)− V j (t) .

Now, a particular version of our valuation basis would of course be the technical basis. In that

case, as f j(t) = V j∗(t)
V j+∗(t)

, we get

V j∗
f (t)tj − V

j∗ (t) = f j (t)V j+∗ (t)− V j∗ (t) = 0.

In that sense we can say that under the technical basis the policyholder pays himself fully for the
free policy risk. An important consequence of this approach is that one can disregard the free
policy option for technical valuation purposes, e.g. for setting an equivalence premium. We can
require from the free policy factor, that the free policy sum at risk is zero under the technical
basis. Under this constraint, we can consider situations where different reduction factors apply
to different benefits.

If a group of benefits (“keep”) is fully kept upon transcription while another group of benefits
is deleted (“delete”), a residual group is reduced by the factor f j(t). It is found by solving the
equation

0 = V j+(keep)∗(t) + f j (t)
(
V j+∗ (t)− V j+(keep)∗(t)− V j+(delete)∗(t)

)
− V j∗ (t) . (3.5.1)

Hence

f j (t) =
V j∗ (t)− V j+(keep)∗(t)

V j+∗ (t)− V j+(keep)∗(t)− V j+(delete)∗(t)
. (3.5.2)

If there is a prioritized order in which the benefits are to be kept and the rest deleted, one could
start filling the group “keep” as long as V j∗ (t) ≥ V j+(keep)∗(t). The first benefit that violates
this inequality should be reduced by the f j in (3.5.2) and the residual benefits should be deleted.
Two special cases of this are when either the group “keep” or the group “delete” is empty. If the
group “keep” is empty and the group “delete” is not, then

f j (t) =
V j∗ (t)

V j+∗ (t)− V j+(delete)∗(t)

for the residual benefits. Note that this may lead to f > 1. If the group “delete” is empty and
the group “keep” is not, then

f j (t) =
V j∗ (t)− V j+(keep)∗(t)

V j+∗ (t)− V j+(keep)∗(t)
,

for the residual benefits. Note that this leads to f ≤ 1. However, in principle we may now end
up with f < 0.

In all these cases the free policy sum at risk is

V j
f (t)tj−V

j (t) = V j+(keep) (t)+f j (t)
(
V j+ (t)− V j+(keep) (t)− V j+(delete) (t)

)
−V j (t) . (3.5.3)

Plugging f j defined in (3.5.2) into (3.5.3) under the technical basis gives the desired result that
the technical free policy sum at risk is equal to zero, cf. (3.5.1).
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3.6 Numerical results and discussion

We consider here the situation in Section 3.4.1, i.e. where the risk chain is a disability model with
states “active” (a), “disabled” (i) and “dead” (d) (cf. Figure 3.1) and the behavioral chain con-
sists of the states “premium payment” (p), “free policy” (f) and “surrender” (s) (cf. Figure 3.2).
For the various setups (modeling of dependent/independent chains, using the same/different free
policy factors in risk states and including/disregarding reactivation from disability) mentioned
in Section 3.4.1, regarding the disability model, we compute the reserve conditional on the pol-
icyholder being in the risk state “active” and the behavioral state “premium payment”. The
purpose of this is to quantify the implications of using the various alternatives to the correct
model, which is the dependent model where reactivation is included. Here “dependent” cor-
responds to including policyholder options only from the risk state “active”, cf. Section 3.6.1
below. All numerical calculations are performed by numerically solving the system of ordinary
differential equations (3.3.1). In case of no reactivation the system has a hierarchical structure
and the equations corresponding to the different states can be solved one at a time. In case of a
positive reactivation rate, the equations of the system are solved simultaneously. The results are
obtained by Actulus R© Calculation Platform.

3.6.1 Model parameters

The two computational bases in play are the technical (sometimes referred to as “first order”)
basis and the market (sometimes referred to as “third order”) basis. In other words, we omit
including a separate so-called “second order” basis (which is sometimes used to model bonus
distribution schemes). As usual, the payments resulting from exercise of surrender and free
policy options are defined such that the corresponding sums at risk under the technical basis are
zero (cf. Section 3.6.2). Hence we disregard these options under the technical basis, see also the
discussion in Section 3.5.

We start off by defining the transition intensities for the risk chain under the bases, see Table 3.1.
Throughout this section these are independent of the behavioral chain implying e.g. that the
mortality of a premium paying policyholder is the same as the mortality of a holder of a free
policy at the same age.

From To Technical basis Market basis

active dead µ∗ad(age) = 0.0005 + 105.728−10+0.038(age) µad = µ∗ad

active disabled µ∗ai(age) = 0.0006 + 104.71609−10+0.06(age) µai = µ∗ai

disabled dead µ∗id(age) = µ∗ad(age) µid = µ∗id

disabled active µ∗ia(age) ≡ 0 µia(age) = e−0.06(age) or 0

Table 3.1: Transition intensities, risk chain.

We remark that for the technical basis we use the standard intensities for a female occurring in
the Danish G82 risk table. We let the mortality and disability intensities of the two bases be
the same whereas the interest rates, on the other hand, are different (cf. Section 3.6.2 below).
Furthermore, we consider both the case when the market reactivation intensity, µia, is non-zero
and when it is zero (as the latter assumption generally simplifies the semi-closed formulae, cf.
Section 3.4.1).

Finally, we introduce the transition intensities in the behavioral model, see Table 3.2. We consider
two situations.
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1. The behavioral intensities are dependent of the policyholder’s current state in the risk
chain in the sense that they are zero unless the policyholder is in the risk state “active”.
This corresponds to disallowing policyholder interventions in the risk states “disabled” and
“dead”.

2. The behavioral intensities are independent of the risk chain. This corresponds to allowing
for policyholder interventions in the risk states “disabled” and “dead”. Since there are no
payments in the state “dead”, the latter consequence is irrelevant.

From To Independent model Dependent model

premium payment free policy νpf (age) = e−0.07(age) ν̃pf = 1{active} · νpf
premium payment surrender νps(age) = νpf (age) ν̃ps = 1{active} · νps
free policy surrender νfs(age) = νpf (age) ν̃fs = 1{active} · νfs

Table 3.2: Transition intensities, behavioral chain.

Hence, as is the general assumption throughout this paper, we do not model the option of “re-
entering” the premium paying state from the free policy state, and furthermore the state “sur-
render” is absorbing. There does not seem to exist a standard parametrization for the behavioral
transition intensities. The idea behind their forms used here is simply that the inclination to ex-
ercise policyholder options decreases with the age of the policyholder. For a fixed age of contract
initiation, which is the case in this paper, this is equivalent to accounting for a loyalty effect.

3.6.2 Contracts

3.6.2.1 The surrender and free policy options

The surrender option gives the policyholder the choice of abandoning the contract in exchange
for a lump sum payment, Gj(t), where j is the risk state in which the policyholder resides at
time t. In what follows, we let Gj(t) be the value of the contract under the technical basis, i.e.
Gj(t) := V j∗(t). In reality the sum received is sometimes reduced by a constant factor but we
disregard that in what follows. Note that this choice of Gj makes the sum at risk upon surrender
equal to zero under the technical basis. The free policy option gives the policyholder the choice
of stopping the premium payment. The contract is then kept but the benefits are scaled by a
certain factor, f j(t).

Before we turn to specifying the factors f j , we note that the size of the technical reserve in
relation to the market reserve is what determines if the surrender option increases or decreases
the market value of the contract. In a situation where the technical reserve is higher than the
market reserve, it is to be considered profitable for the policyholder to surrender and conversely
when it is lower. In order to account for both situations, we consider two different contracts as
specified below.

In some cases the policyholder options are only allowed from the risk state “active”. It is then
standard to define fa(t) = V a∗(t)

V a∗+(t)
, i.e. the quotient between the technical reserve and the techni-

cal benefit reserve (premium removed, all benefits kept). When allowing policyholder options also

from the “disabled” state, the most natural choice appears to be f i(t) = V i∗(t)
V i∗+(t)

≡ 1. However,

as is mentioned in Section 3.4.1 above, setting f i := fa yields even simpler closed-form solutions,
and we therefore consider both these variants of f i. We refer to the situations as using “Separate
f” and “Same f”, respectively.
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3.6.2.2 Common

We outline the common features of the two contracts considered.

• Contract expiry at age 65

• Premium payment of intensity 20,000 USD p.a.

• Disability annuity of intensity 100,000 USD p.a.

• Term insurance at 400,000 USD

• Pure endowment at expiry (corresponding to a life annuity) determined at initiation time
of the contract such that it gives the contract a technical value (i.e. V a∗) of zero at the
time of initiation

Furthermore, the market interest rate, r, is the forward rate equivalent to the yield curve as
published by the Danish FSA at 2013-04-08 (cf. appendix 3.A).

3.6.2.3 New contract

We consider here the situation where a relatively young policyholder has just signed the contract,
and where the technical interest rate (r∗) is low relative to the current market interest rate. This
makes the technical reserve higher than the market reserve. More precisely we have the following
additional parameters.

• Contract initiation at age 30

• Age 30 at the time of calculation (t = 0)

• r∗ = 1% p.a. (continuously compounded)

• Pure endowment at expiry of 552,796 USD (corresponding to the reserve of a life annuity,
at expiry, of 38.070 USD p.a. computed under the market value basis)

3.6.2.4 Old contract

We consider here the situation where an older policyholder signed the contract 20 years earlier,
and where the technical interest rate (r∗) is high relative to the current market interest rate. This
makes the technical reserve lower than the market reserve. The rationale for this is that when
the contract was signed, r∗ was indeed low compared to the contemporary market interest rate.
More precisely we have the following additional parameters.

• Contract initiation at age 30

• Age 50 at the time of calculation (t = 0)

• r∗ = 5% p.a. (continuously compounded)

• Pure endowment at expiry of 1,597,593 USD (corresponding to the reserve of a life annuity,
at expiry, of 110,023 USD p.a. computed under the market value basis)
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3.6.2.5 Remarks

We comment on the significant difference in the pure endowments of the two contracts. The
endowment sum computed at initiation of the contract should be viewed as what was then guar-
anteed. If the insurance company can obtain a higher interest than the technical interest rate,
this sum is typically increased via surplus bonus as time goes by. Assuming, in the context of the
new contract, that the insurance company realizes an interest rate of 5% p.a. and uses all surplus
contributions to increase, immediately and continuously, the guaranteed pure endowment sum,
it will be exactly the same as that computed for the old contract when the policyholder reaches
the age of 50.

3.6.3 Numerical results

We now display and discuss the numerical results obtained in the two contractual contexts.

We first mention that model variations occur in two “dimensions”. On the one hand regarding
whether or not we include reactivation from disability and on the other hand whether or not we
model the risk and behavioral chains independently. Finally, in the case when the chains are
modeled independently, we consider the two situations when the free policy factors are the same,
f i(t) := fa(t), from the states “active” and “disabled”, and when they are not (they are defined
in Subsection 3.6.2.1 above).

Figure 3.4 illustrates the various computational setups that we consider. For each box we have
computed the corresponding reserve for both contracts. The numerical results allow us to find
variations in the reserve by alternating the model “one step at a time”. In Figure 3.4 the arrows
illustrate a situation where we start off by using a model without reactivation and independent
chains and then additionally consider dependence and reactivation, one at a time. Hence, we
have a way of decomposing the change between two models. In the case below the parts being
a consequence of introducing dependence and reactivation, respectively. We emphasize that the
top left box, corresponding to the correct model, is always considered as the benchmark result
for comparisons.

Figure 3.4: The included model variations and a possible path between two of them.

Some inequalities between reserves computed under different setups can be obtained in general by
theoretical considerations. For example, it is fairly obvious that using f i(t) := fa(t) ≤ 1 rather
than f i(t) ≡ 1 in the independent models yields, fixing the remaining parameters, a smaller
market reserve. We show, however, by means of examples that other inequalities are indeed
dependent on the concrete setup (e.g. the reactivation intensity).
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3.6.3.1 New contract

Figure 3.5 below displays four reserves as functions of time and conditional on being in the state
“active, premium payment”: The technical reserve (“Technical”), the reserve in the model in-
cluding reactivation from disability and the aforementioned dependence between the risk and
behavioral Markov chains (“Dep., react.”), the reserve disregarding behavioral options and re-
activation (“No options, no react.”), and the reserve disregarding behavioral options only (“No
options, react.”). The market reserves are smaller than the technical reserve since the policy is
newly issued on the “safe side”. Disregarding reactivation (here illustrated under - but not only
true for - no behavioral options) increases the reserve since less premiums and more benefits will
be paid in the future. Disregarding behavioral options (here illustrated including reactivation)
substantially decreases the reserve, setting a warning sign to the authorities that these options
have a significant value and must be taken into account. The reason why the behavioral op-
tions increase the reserve is that they take the (larger) technical reserve as starting point for
all fairness considerations and they therefore draw the reserve up towards the technical reserve.
Larger behavioral intensities would draw the reserve including behavioral options up towards to
the technical reserve.
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Figure 3.5: The technical reserve, the “dependent” reserve (including reactivation), and the two
market reserves without behavioral options.

We now present all computed reserves evaluated at a few time points in Table 3.3. These are the
technical reserve and eight different market reserves. The market reserve based on dependence
and reactivation (V Dep., react.) is spoken of as the correct reserve, whereas the other seven market
reserves are calculated under simplifying assumptions. We also list the free policy factor in Table
3.3. Furthermore, we plot the difference between the five market reserves including behavioral
options and the correct market reserve in Figure 3.6. More precisely, for a given reserve V Model,
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where Model is e.g. “Dep., no react.”, we have plotted the function

t 7→ V Model(t)− V Dep., react.(t).

The two market reserves without behavioral options are illustrated in Figure 3.5. It is seen how
the reduction factor tends from 0 to 1 as a larger and larger proportion of the agreed premiums
are paid. Here, we stress that “same f” versus “separate f” refers to whether the tabled reduction
factor or 1 is used in case of transcription to free policy from the disability state.

Age 30 35 40 45 50 55 60 65

Technical 0 83,621 167,653 249,401 325,518 393,614 458,275 552,796

Indep., no react., separate f -19,493 34,300 85,716 143,915 206,457 287,067 391,278 552,796

Dep., no react. -21,625 31,852 83,269 141,833 205,131 286,489 391,171 552,796

Indep., no react., same f -23,212 30,728 82,425 141,259 204,800 286,340 391,145 552,796

Indep., react., separate f -26,450 25,026 74,769 133,055 198,205 282,578 390,216 552,796

Indep., react., same f -28,341 22,876 72,484 130,987 196,794 281,913 390,088 552,796

Dep., react. -30,014 21,198 71,130 130,124 196,436 281,852 390,094 552,796

No options, no react. -143,050 -63,576 14,272 97,326 181,550 276,817 388,905 552,796

No options, react. -174,674 -88,755 -6,249 81,507 171,357 271,825 387,800 552,796

f 0.000 0.153 0.300 0.440 0.573 0.702 0.838 1.000

Table 3.3: Computed reserves in descending order (in USD).
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Figure 3.6: Reserve differences compared to “Dep., react.”.

We draw some conclusions from Figures 3.5 and 3.6 and Table 3.3.
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1. Given that behavioral options are taken into account, we see that an insurance company
would in fact benefit from using the correct model since this gives the smallest reserve.
By incorporating reactivation, the reserves become smaller. For the intervention options
it holds that working with dependence gives that fewer policyholders (compared to the
independent case) exercise options that are technically fair and therefore the attraction up
towards the technical reserve is smaller.

2. One cannot conclude from the above that using the model yielding the simplest closed form
expression for the reserve, “Indep., no react., same f”, is “at least on the safe side” of the
correct reserve. Namely, from the numbers above it is clear that letting the reactivation
intensity approach zero, the reserve in “Dep., react” converges to that in “Dep., no react.”,
which is larger than the one in “Indep., no react., same f”. Hence the order relation between
the two reserves is in fact intensity dependent.

3. It is by no means a surprise that the largest market reserve is “Indep., no react., separate
f”. We omit a formal argument but note that when assuming independent chains we have a
surrender and free policy option in the disability state. When using separate f , i.e. f i ≡ 1,
exercising the free policy option from the disability state gives the policyholder V i+(t), in
other words the value of his own contract with premium payment streams removed from all
states. The surrender option, when exercised from the disability state, gives the policyholder
an amount equal to the value of his contract computed under an interest rate lower than the
market interest rate and furthermore disregarding reactivation and free policy (namely, the
technical reserve, V i∗(t)). Hence the disability state is as expensive as possible and further
omitting reactivation from this state additionally increases the reserve (the policyholder can
never resume the premium payment instead of receiving the disability annuity).

4. Note that the difference between the reserves “Indep., no react., separate f” and “Dep., no
react.” is caused solely by the surrender option. To see this, note that transcribing to free
policy from the disability state gives the corresponding benefit reserve, V i+(t) = V i(t) (no
reactivation), scaled by the free policy factor f i(t) ≡ 1.

5. The numerical results allow for a study of the isolated effect of counting in reactivation.
This is done by comparing the reserve for “Dep., no react.” with the reserve for “Dep.,
react.” (or any other set of reserves where everything but the “react./no react.” dimension
is fixed). We see that reactivation reduces the reserve considerably at low ages where the
reserves are low, but even after 20 years where the reserves are around 200,000 USD the
reduction is in the order of 5%.

3.6.3.2 Old contract

Figure 3.7 below displays four reserves for the old contract similarly to Figure 3.5 for the new
contract. Now the market reserves are larger than the technical reserve since the technical basis is
not on the same “safe side” today as it was upon initiation 20 years ago. Disregarding reactivation
(here illustrated under - but not only true for - no behavioral options) increases the reserve as
for the new contract since this qualitative effect does not rely on a particular relation between
the bases. Disregarding behavioral options (here illustrated including reactivation) increases
the reserve. The qualitative effect is opposite that of Figure 3.5 because the technical reserve
is now smaller. Counting in behavioral options that take the (smaller) technical reserve into
account for all fairness considerations draws the reserve towards the technical reserve. Larger
behavioral intensities would draw the reserve including behavioral options down towards the
technical reserve. The order of magnitude of the differences are comparable with the order of
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magnitude of the differences in Figure 3.5, when focusing on age 50 and onwards. In Figure 3.5 the
effects are nominally large but relatively (to the reserves themselves) small in the first 20 years,
where both the probability of being reactivated and exercising behavioral options are large. In
the last 15 years the probability of ever being reactivated (given that you are active) is small
and the behavioral options are relatively unlikely to be exercised. The order of magnitude of the
effect from behavioral options can easily change if we work with other behavioral intensities than
the ones suggested here.
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Figure 3.7: The technical reserve, the “dependent” reserve (including reactivation), and the two
market reserves without behavioral options.

In Figures 3.7 and 3.8 and Table 3.4 we present the numerical results for the old contract in the
same form as the numerical results for the new contract. We draw some conclusions from these
results.

1. Given that behavioral options are taken into account, we see that the different assumptions
move the reserve in different directions, and no general conclusion can be drawn. Working
with reactivation gives, of course, a smaller reserve but among the reserves with reactiva-
tion, actually the correct model with dependence is the larger of the three reserves, “Dep.,
react.”, “Indep., react., separate f”, and “Indep., react., same f”. This sets a warning sign
to the authorities that these options must be taken correctly into account. The effect is
opposite compared to the new contract. Working with independence means that more pol-
icyholders exercise (technically fair) intervention options drawing down the reserve towards
the technical reserve.

2. As mentioned in the comments to Figure 3.7 above, the effect from calculating with any
simplifying assumption is smaller for the old contract than it was for the new contract. This
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Age 50                55                60                65                

Technical 573,984      815,950      1,132,248  1,597,593  

No options, no react. 922,259      1,036,998  1,249,800  1,597,593  

No options, react. 909,487      1,031,425  1,248,647  1,597,593  

Dep., no react. 872,815      1,020,138  1,246,235  1,597,593  

Indep., no react., separate f 870,710      1,019,318  1,246,089  1,597,593  

Indep., no react., same f 869,112      1,018,675  1,245,971  1,597,593  

Dep., react. 861,537      1,014,869  1,245,103  1,597,593  

Indep., react., separate f 860,342      1,014,298  1,244,981  1,597,593  

Indep., react., same f 858,947      1,013,702  1,244,867  1,597,593  

f 0.754          0.854          0.933          1.000          

Table 3.4: The technical reserve and the market reserves in descending order (in USD).
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Figure 3.8: Reserve differences compared to “Dep., react.”.

is because any impact from behavioral options is reduced towards the end of the contract
where the behavior intensities are small.

3. The reserve obtained when using the correct model “Dep., react.” is below those in the
models yielding the simplest semi-closed form solutions, “Indep., no react., separate f” and
“Indep., no react., same f”. Note, however, that when making the reactivation intensity
small the reserve in “Dep., react.” tends to that in “Dep., no react.” which is larger than
both. Hence, the relations between reserves are intensity dependent.

4. For precisely the same reason as in Section 3.6.3.1, we note that the difference between
the reserves “Indep., no react., separate f” and “Dep., no react.” is caused solely by the
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surrender option.

5. The isolated effect of counting in reactivation can again be studied by comparing the reserve
for “Dep., no react.” with the reserve for “Dep., react.” or similar. Reactivation reduces
the reserves by an order of magnitude of 1%-2%.

3.7 Conclusion

We have characterized reserves by differential equations and explicit formulas and illustrated
them numerically under different assumptions about underlying policyholder behavior. We have
shown the formalistic and computational advantages and disadvantages under different simplify-
ing assumptions in the case where dependence is part of the contract design. We have numerically
illustrated the effects of these assumptions. The conclusion is that both the sign and the mag-
nitude of these effects are blurred and depend on the relation between the assumptions of the
technical basis and the market basis. Here, we conclude by a couple of remarks about what we
have not done, also as a hint for future research.

• We have used Markov chains to model dependence between insurance risk and behavior
stipulated in the contract. We have also mentioned, but not studied, cases where the
dependence arises from the fundamental notions of adverse selection and moral hazard. It
could be interesting to use the ideas of the paper as an approach to these notions. That
would require specific multi-state models catching the effects observed.

• The numerical results are obtained by solving systems of ordinary differential equations,
allowing for cycles in the Markov chain, e.g. in connection with reactivation. The effects
from reactivation are pointed out in the tables but further studies on the sensitivity with
respect to reactivation rate could be of interest.

• Since we take the approach of completely incidental exercise of the options we wish to add
a comment on the applicability of our framework beyond this case. In case of external risk
factors influencing policyholder behavior, the manuscript can be seen as a starting point
in one of two different directions. One direction is to assume a Markovian structure of
the external factors and then insist on exploiting this structure in order to represent all
values by solutions to differential equations. The ordinary differential equations in this
manuscript then make up special cases of e.g. the general partial differential equations
that are necessary in order to deal with diffusive economic risk. As such they can serve as
supporting the understanding and as a test point, formalistically and numerically, for more
general cases. Another direction is to consider the values obtained here as corresponding
to a given realization of an external (possibly non-Markovian) risk factor. Allowing e.g.
behavioral intensities to depend on the realization, we can calculate the generalized values
by simulation and calculation of empirical means. This method would delicately combine
the ordinary differential equation approach to micro risk and the Monte-Carlo approach to
macro risk. We leave both directions as studies for future research.
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Appendix

3.A The Danish FSA yield curve used in the market basis

In Figure 3.9, we plot the (discretely compounded) yield curve, R, published on 2013-04-08 by
the Danish FSA, from which we extracted the equivalent continuous forward rate used in the
market basis. We also plot the technical interest rates used in the two contracts considered in
Section 3.6.2, here discretely compounded (R∗ = er

∗ − 1).
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Figure 3.9: The interest rates used in the bases of the examples.
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Chapter 4

Stress scenario generation for
solvency and risk management

Abstract: We derive worst-case scenarios in a life insurance model in the case where
the interest rate and the various transition intensities are mutually dependent. Exam-
ples of this dependence are that a) surrender intensities and interest rates are high at
the same time, b) mortality intensities of a policyholder as active and disabled, respec-
tively, are low at the same time, and c) mortality intensities of the policyholders in
a portfolio are low at the same time. The set from which the worst-case scenario is
taken reflects the dependence structure and allows us to relate the worst-case scenario-
based reserve, qualitatively, to a Value-at-Risk-based calculation of solvency capital
requirements. This brings out perspectives for our results in relation to qualifying the
standard formula of Solvency II or using a scenario-based approach in internal models.
Our results are powerful for various applications and the techniques are non-standard in
control theory, exactly because our worst-case scenario is deterministic and not adapted
to the stochastic development of the portfolio. The formalistic results are exemplified
in a series of numerical studies.

Keywords: Life insurance, worst-case scenario, deterministic control, Solvency II, mul-
tistate Markov chain.

4.1 Introduction

From a specific set of scenarios we find the scenario that leads to the worst-case, i.e. largest, value
of future obligations. The idea of such worst-case scenarios has a wide range of applications in
life insurance pricing, management, and regulation. They include settlement of premiums and
surrender values as well as calculation of risk margins and solvency capital requirements (SCR). In
particular we draw the attention to the scenario-based standard formula in Solvency II, see Steffen
(2008) for an overview of the Solvency II project. So far it has been difficult to say something
qualitatively about the relation between a standard scenario and the original Value-at-Risk-based
SCR. We generate scenarios such that SCRs based on these scenarios are proven sufficient under
the Value-at-Risk measure within a given model. As input to our calculation, we take a set of
interest and transition rates such that the probability of realizing interest and transition rates
within that set is bounded. For such a set we calculate the scenario that maximizes the reserve.
We do not generally address the difficult but interesting question of detecting such a set although
we exemplify possible sets in some examples.

Our results are applicable to an inhomogeneous portfolio of contracts. Then the worst-case sce-
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nario generated is worst-case for a whole portfolio with different policyholder ages and contracts.
This makes the approach particularly useful in the discussion about portfolio SCRs. The results
can qualify this discussion in two dimensions. First, for a regulator who wants to develop a
stress scenario-based SCR we provide a scenario corresponding to bounds on shortfall probabil-
ities. This qualified standard formula should be derived for a stylized market-realistic portfolio.
Second, an insurance company can replace the standard SCR formula by a so-called (partial)
internal model-based calculation and still exploit advantages working with scenarios. Our results
show how such “internal stress scenarios” can be derived.

In relation to recent academic literature on worst-case scenario generation, we emphasize that our
stress scenarios are deterministic in the sense that e.g. the portfolio worst-case mortality intensity
at a future time point is calculated today and will not depend on the survivors of the portfolio at
that future time point. This means that we are, briefly speaking, finding optimal deterministic
processes maximizing an expectation in a stochastic environment. This is a non-standard exercise
that contains methodological and computational challenges. The upside is that, once they are
overcome, the resulting scenario can be better understood, communicated, implemented and
extrapolated for usage in other (similar) portfolios. The idea to look for deterministic worst-case
intensities is in sharp contrast to e.g. Li and Szimayer (2011, 2014) who, in a different framework,
also study worst-case intensities. They, however, use more standard stochastic control techniques
to derive intensities that are adapted to the development of the contract under study. This
development amounts, in their cases, to the development of asset prices but, in a more general
setting, it could be the number of, or even the names of, survivors in a portfolio. Such adapted
scenarios may be useful for other applications but not necessarily for solvency issues. Thus,
the conceptual innovation in relation to Li and Szimayer (2011, 2014) is that our worst case is
deterministic and its derivation therefore draws on other techniques.

The present work extends the results of Christiansen and Steffensen (2013) in the following way:
Like us, they search for optimal deterministic scenarios and obtain simple formulas for these
but in a quite restricted class of models. The class is defined endogenously by requiring that
certain argmax operations over transition intensities are constant with respect to the transition
probabilities they generate, see Christiansen and Steffensen (2013, Proposition 4.1 and 4.2). The
work in this paper is very much inspired from the structure of problems and solutions in that
article, but we succeed in finding the worst-case scenario also outside their restrictive assumptions.
This allows for studying much more realistic and important cases like a hierarchical disability
model or a model for a portfolio of heterogeneous contracts hit by the same worst case. Thus,
we develop a powerful tool for various applications while sticking to the natural but challenging
idea of Christiansen and Steffensen (2013) that the worst-case should be deterministic. Thus, the
innovation in relation to Christiansen and Steffensen (2013) is that we find, by means different
than theirs, the worst case for interesting products and portfolios that they rule out.

In order to show how the studies in this paper can be applied to solvency calculations we choose
to give the reader, already here in the introduction, a glance of the formalistic argument. Details
can be found in Christiansen and Steffensen (2013). For (real, unknown) interest and transition
rates (φ, µ), we want to find deterministic interest and transition rates (φ̃, µ̃) such that for the
liabilities L, it holds that

P
(
L(t, φ̃, µ̃) ≥ L(t, φ, µ)

)
≥ 1− α, (4.1.1)

where α ∈ [0, 1). That is, we want to find a deterministic calculation basis such that the liabilities
calculated with this basis with a certain probability are larger than the liabilities calculated with
the real (stochastic) basis. This can be obtained by choosing (φ̃, µ̃) = argmax(φ,µ)∈M L(t, φ, µ)
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for a set M such that P ((φ, µ) ∈M) ≥ 1− α. We do not pay any attention to how the set M is
formed, except for in a few numerical examples. The object of study in this paper is, given a set
M , to calculate the argmax, (φ̃, µ̃).

As shown in Christiansen and Steffensen (2013), we can use this to obtain an upper bound for
the SCR given by

sup
(φ,µ)∈M

{L(t, φ, µ)} − L
(
t, φBE, µBE

)
,

where φBE and µBE are best estimates for the interest rate and transition intensities, respectively.

The quality of an SCR based on a standard stress scenario compared to a Value-at-Risk-based
calculation has been intensively discussed in the literature. Doff (2008) analyses, critically, the
Solvency II proposal and the shortcomings of the standard stress model, which is also discussed
by Devineau and Loisel (2009). Specific attention has been given to longevity risk and Olivieri
and Pitacco (2008) study the pitfalls of approaching longevity risk by means of stress scenarios. A
comprehensive numerical study that compares the stress scenarios to the Value-at-Risk calculation
can be found in Börger (2010). To the authors’ knowledge, all comparative studies are quantitative
in the sense that the various principles for SCR calculations are numerically related to each other.
If the stress-based SCR is significantly smaller than the Value-at-Risk based SCR, the whole idea
of inducing financial stability from the standard formula may be criticised for being an optical
illusion. We distinguish ourselves from this quantitative discussion by searching for a stress, such
that the SCR derived from this stress scenario is at least as large as the SCR that can be derived
from a Value-at-Risk approach. Thus, rather than criticising the idea of stress scenarios, we admit
its advantages and seek to qualify the discussion about what the stress scenarios should look like.
Our study is general enough to help answer this question no matter if the unit is a contract or a
portfolio.

The paper is organized as follows: In Section 4.2 we introduce the insurance market and get a
representation of the probability weighted reserve. In Section 4.3 we obtain worst-case scenarios
and reserves for a single policy and describe numerical methods which are needed for the numerical
calculations of these quantities. In Section 4.4, we extend the theory to cover a portfolio of
policyholders, and finally we present some numerical calculations for both single policies and
portfolios in Section 4.5.

4.2 Modelling and valuation of an insurance policy

Let T be a fixed finite time horizon and (Ω,F , (F(t))0≤t≤T , P ) a filtered probability space with
filtration satisfying the usual conditions of right-continuity and completeness. Let X be a pure
jump process defined on this probability space with finite state space S which we assume consists
of n states. The process (X(t))t∈[0,T ] represents the state of a policyholder. We do not assume
a deterministic starting value for X but only a starting distribution, which we denote π. This
enables us to easily calculate the worst-case reserve for a homogeneous portfolio of insurance
contracts, where each policyholder can be in different initial states like “Active” and “Disabled”.
This is a simple special case of the more general theory for portfolios presented in Section 4.4.
We denote by J the transition space of X defined by J =

{
(j, k) ∈ S2|j 6= k

}
.

Following the lines of Norberg (1999), we assume that the interest rate intensity φ is piecewise

continuous and that
∫ T

0 φ(s)ds is finite. We define a discounting function v by the following
forward equation:

d

dt
v(t) = −v(t)φ(t), v(t0) = 1, (4.2.1)
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where t0 is not necessarily the initiation time of the contract. One can intuitively think of t0 as
0 but we introduce the notation t0 in order to be able to accurately formulate the verification
lemma. The solution to (4.2.1) is given by

v(t) = e
−
∫ t
t0
φ(τ)dτ

,

and the discounting factor for the time span from s to t is given by

v(s, t) =
v(t)

v(s)
= e−

∫ t
s φ(τ)dτ .

We let the n×n transition matrix for X be denoted by p, which is a function with two arguments.
That is, for t0 ≤ s ≤ t ≤ T we have that

p(s, t) = (P (X(t) = k|X(s) = j))(j,k)∈S2 .

By µ we denote the corresponding n× n intensity matrix. It is well-known that p is determined
by Kolmogorov’s forward equation:

∂

∂t
p(s, t) = p(s, t)µ(t), p(s, s) = In,

where In is the n-dimensional identity matrix.

With a little abuse of notation we denote by p (a function of one variable only) the marginal
distribution of the random pattern of states:

p(t) =


p1(t)
p2(t)

...
pn(t)

 ,

where pj(t) = P (X(t) = j). The forward equation for p is given by

d

dt
p(t) = µtr(t)p(t), p(t0) = π, (4.2.2)

where π is a given initial distribution over the n states and µtr(t) is the transpose of µ(t). Equation
(4.2.2) follows by Kolmogorov’s forward equation by using that pj =

∑
i∈S πipij , which gives us

that the dynamics of pj are equal to pi times the columns of µ. This is exactly equal to µtr(t)p(t).

We consider an insurance contract with the following type of payments:

1. bi(t) is the rate of payments in state i at time t.

2. bij(t) is a lump sum payment payable upon transition from state i to state j at time t.

We denote by Bi(t) the accumulated payments in state i up to time t and by B(t) we denote
the present value at time t of future payments of the contract. We assume that all the functions
bij and Bi have bounded variation on [0, T ] and that the functions bi and bij are C1 on [0, T ].
The latter assumption can easily be relaxed to piecewise C1 but this will result in cumbersome
notation, since we need to deal with extra boundary conditions.

To keep the notation simple, we assume that no lump sum payments are paid out while sojourning
in a state. That is, for all t ∈ [0, T ] we have that

∆Bi(t) = Bi(t)−Bi(t−) = 0. (4.2.3)
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However, the results of the paper can easily be extended to the case, where assumption (4.2.3)
does not hold.

We are now able to define the statewise prospective reserves. The statewise prospective reserve
in state j ∈ S is given by

Vj(t) = E [B(t)|X(t) = j]

=
∑
k∈S

∫ T

t
v(t, u)pjk(t, u)

bk(u) +
∑

l∈S:l 6=k
µkl(u)bkl(u)

 du.

The standard Thiele’s (backward) differential equation for the reserve is given by

d

dt
Vj(t) = −bj(t) + φ(t)Vj(t)−

∑
k∈S:k 6=j

(bjk(t) + Vk(t)− Vj(t))µjk(t), Vj(T ) = 0, (4.2.4)

where the boundary condition follows because of assumption (4.2.3). Note that the integral
form of (4.2.4) is known as Thiele’s integral equation of type II. With defining a mapping W :
[t0, T ]× (0,∞)× [0, 1]|S| → R by

W (t, v, p) := v
∑
j∈S

pjVj(t), (4.2.5)

the expected present value at time t0 of the future payments between time t and time T equals

W (t, v(t), p(t)) =
∑
j∈S

πjE [v(t)B(t)|X(t0) = j]

= v(t)
∑
j∈S

pj(t)Vj(t)

=
∑
k∈S

∫ T

t
pk(u)v(u)

bk(u) +
∑

l∈S:l 6=k
bkl(u)µkl(u)

 du. (4.2.6)

Here, the last equality follows from the Chapman-Kolmogorov equation and by collecting the
discounting terms. The functions p and v in (4.2.6) follow from (4.2.1) and (4.2.2) and the initial
values v(t) and p(t).

4.3 Calculation of the worst-case reserve

In this section, we derive the worst-case scenario for the probability weighted reserve, πtrV (t0),
which is related to W by (4.2.5). First, we establish a verification lemma and give a heuristic
argument for the main ingredients. Second, we show existence of a worst-case scenario. Third,
we translate the verification result for the probability weighted reserve W into a corresponding
result for the statewise reserves Vj in a corollary. Finally, we outline two numerical methods for
calculation of the worst-case reserve.

4.3.1 Verification lemma

We note that πtrV (t0) = W (t0, v(t0), p(t0)) = W (t0, 1, π). This is useful since dynamic pro-
gramming applies to W and not to πtrV . This allows us to attack our optimization problem by
maximizing W for all future time points, whereas Vj , j ∈ S is not in itself maximized for t > t0.

In the following, we search for the worst-case reserve (the optimal value function) with respect

to a set M , where M ⊂ L1+|J |
1 ([t0, T ]) is a set of integrable interest rate and transition intensity
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paths. A set M belongs to L
1+|J |
1 ([t0, T ]) if

∑1+|J |
i=1

∫ T
t0
|fi(s)|ds < ∞ for all fi(t) in Mi(t). The

“slices” M(t) of M ,

M(t) = {(φ(t), µ(t))|(φ, µ) ∈M},

describe the parameter space at time t. We start by establishing a classical verification lemma.

Proposition 4.3.1. (Verification lemma) Let W̄ be a solution to the partial differential equation

0 =
∂

∂t
W̄ (t, v, p)− φ̄(t, v, p)v

∂

∂v
W̄ (t, v, p) +

∑
k∈S

pk

vbk(t)
+

∑
l∈S:l 6=k

µ̄kl(t, v, p)

(
vbkl(t) +

∂

∂pl
W̄ (t, v, p)− ∂

∂pk
W̄ (t, v, p)

), W̄ (T, v, p) = 0,

(
φ̄(t, v, p), µ̄(t, v, p)

)
= argmax

(f,m)∈M(t)

− fv ∂∂vW̄ (t, v, p) +
∑
k∈S

pk

vbk(t)
+

∑
l∈S:l 6=k

mkl

(
vbkl(t) +

∂

∂pl
W̄ (t, v, p)− ∂

∂pk
W̄ (t, v, p)

).

(4.3.1)

Furthermore, let the ordinary differential equation system

0 =
d

dt
v̄(t) + φ̄(t, v̄(t), p̄(t))v̄(t),

0 =
d

dt
p̄j(t)−

∑
k∈S:k 6=j

(µ̄kj(t, v̄(t), p̄(t))p̄k(t)− µ̄jk(t, v̄(t), p̄(t))p̄j(t)) , j ∈ S,
(4.3.2)

have a unique solution on [s, T ] for any initial condition (v̄(s), p̄(s)) = (v, p) at any time s ∈ [t0, T ]
and any pair (v, p) ∈ (0,∞)× [0, 1]|S|. Then

W̄ (s, v, p) = sup
(φ,µ)∈M

W (s, v, p;φ, µ) = sup
(φ,µ)∈M

v
∑
j∈S

pjVj(s;φ, µ) (4.3.3)

for all triples (s, v, p).

Proof. See Bertsekas (2005, Section 3.2).

Note that the notation “;φ, µ” in W (s, v, p;φ, µ) and Vj(s;φ, µ) emphasises that W and Vj de-
pends on the entire processes φ and µ.

In the following, we heuristically derive the differential equations in Proposition 4.3.2. We start
by combining two different differential equations for W for a given (φ, µ). First, the derivative of
W with respect to t, using (4.2.6), is given by

d

dt
W (t, v(t), p(t)) = −

∑
k∈S

pk(t)v(t)

bk(t) +
∑

l∈S:l 6=k
bkl(t)µkl(t)

 . (4.3.4)
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Second, we can also consider W as a function of three variables with dynamics given by

d

dt
W (t, v(t), p(t)) =

∂

∂t
W (t, v(t), p(t)) +

∂

∂v
W (t, v(t), p(t))

(
d

dt
v(t)

)
+∇pW (t, v(t), p(t))

(
d

dt
p(t)

)
,

(4.3.5)

where

∇pW =

(
∂

∂p1
W,

∂

∂p2
W, · · · , ∂

∂pn
W

)
.

By inserting the differential equations for v(t) and p(t) (given by (4.2.1) and (4.2.2), respectively)
into (4.3.5), combining with (4.3.4) and rearranging the terms, we obtain the following differential
equation

0 =
∂

∂t
W (t, v(t), p(t))− φ(t)v(t)

∂

∂v
W (t, v(t), p(t))

+
∑
k∈S

pk(t)

 ∑
l∈S:l 6=k

µkl(t)

(
v(t)bkl(t) +

∂

∂pl
W (t, v(t), p(t))− ∂

∂pk
W (t, v(t), p(t))

)

+ v(t)bk(t)

,
(4.3.6)

with terminal condition given by W (T, v, p) = 0. Choosing (φ, µ) such that the time-derivative is
as small as possible at each time point and also using this (φ, µ) in the differential equations for
v and p give us the equations that characterize the worst-case reserve. We obtain the differential
equations for v̄ and p̄ by inserting the worst-case interest rate into (4.2.1) and the worst-case
intensities into a coordinate-wise version of (4.2.2). Hereby, we have heuristically derived the
system of differential equations in Proposition 4.3.2.

4.3.2 Existence

We now turn to the question of existence of a worst-case reserve.

Proposition 4.3.2. (Existence of a worst-case scenario) Let M be a compact subset of the

space L
1+|J |
1 ([t0, T ]) which contains only nonnegative interest rates φ and nonnegative transition

intensities µjk, (j, k) ∈ J . Then for each (t, v, p) ∈ [t0, T ] × (0,∞) × [0, 1]|S| there exists a
maximizing argument (φ̄, µ̄) ∈M for which W (t, v, p;φ, µ) = W̄ (t, v, p).

Proof. Since φ and µjk, (j, k) ∈ J are nonnegative, we necessarily have |v(t)| ≤ 1 and |pj(t)| ≤ 1
for all t and j. Therefore, the reserves Vj(t) are uniformly bounded by

|Vj(t)| ≤
∑
k∈S

∫ T

t

(
|bk(s)|+

∑
k∈S:l 6=k

|bkl(s)|µkl(s)
)
ds < C

for a finite constant C (which is independent of j, t and µ) since the functions bk(t) and bkl(t)

are bounded and M is a compact subspace of L
1+|J |
1 ([t0, T ]). Consequently, on the set M the

mapping W (t, v, p;φ, µ) has the uniform upper bound given by

W (t, v, p;φ, µ) ≤ v
∑
j∈S

pjC.
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Furthermore, Christiansen (2008, Theorem 4.4) showed that the reserves Vj(t) are Fréchet differ-

entiable with respect to the cumulative intensities t 7→
∫ t
t0
φ(u)du and t 7→

∫ t
t0
µ(u)du in the total

variation norm. Since the operator that maps the intensities to the cumulative intensities is con-
tinuous and since the L1-norm of the intensities equals the total variation norm of the cumulative
intensities, we can conclude that Vj(t;φ, µ) is continuous with respect to (φ, µ). Because of the
linear representation (4.2.5), the mapping W (t, v, p;φ, µ) is continuous in (φ, µ), as well. From
the boundedness and continuity of W (t, v, p; ·, ·) on M and the compactness and completeness of
M we can finally conclude that there exists a maximizing argument in M .

Proposition 4.3.2 gives existence of a worst-case reserve but we do not say anything about unique-
ness and existence of a solution to the system of differential equations given by (4.3.2). What
type of solution we can possibly expect crucially depends on the set M . We do not dig further
into this question in this exposition.

In some examples later on we will construct sets M by specifying the t-slices, and the following

lemma will help that we obtain sets that are compact in L
1+|J |
1 .

Lemma 4.3.3. Let B,S be subsets of L
1+|J |
1 ([t0, T ]) where B is a bounded and closed set and

S :=
{
f ∈ L1+|J |

1 ([t0, T ]) :

there exists a version of f with variation norm not greater than C
} (4.3.7)

for some C <∞. Then the closure of B ∩ S is a compact subset of B.

Proof. Because of Tychonoff’s theorem, it suffices to show the lemma just for the space L1([t0, T ]).
We let h ∈ IR. Using that all elements in S have a version that has finite variation, we can, with
the help of Fubini’s theorem, show that

sup
f∈B∩S

∫ T

t0

|f(t+ h)1t+h≤T − f(t)|dt ≤ sup
f∈B∩S

∫ T

t0

∫
[t,t+h]

d|f |(s)dt

≤ sup
f∈B∩S

∫
[t0,T+h]

∫ s

s−h
dt d|f |(s)

≤ sup
f∈B∩S

Ch,

where f(t) := 0 for t outside of [t0, T ] and where |f | := f+ + f− for minimal non-decreasing
functions f+, f− with f = f+ − f−. Since Ch converges to zero for h → 0 (uniformly in f),
and since B is bounded, from the Kolmogorov-Riesz theorem we can conclude that B ∩ S is
pre-compact. Hence, the closure of B ∩ S is compact. Since B is closed, the closure of B ∩ S
must be a subset of B.

In the following, we approach the differential equations by numerical methods. The existence of
a worst-case reserve given by Proposition 4.3.2 together with convergence in various numerical
calculations indicates that we do approximate a worst-case reserve.

4.3.3 Results for statewise reserves

We have throughout the section worked with the probability weighted reserve W . In order to
prepare for the numerical calculations, we reformulate the verification theorem in the following
corollary in terms of the statewise reserves Vj . The result follows directly from Proposition 4.3.1
and (4.2.6).
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Corollary 4.3.4. Let the assumptions of Proposition 4.3.1 be fulfilled, and let the ordinary dif-
ferential equation system

d

dt
V̄k(t) =− bk(t) + V̄k(t)φ̄(t)−

∑
l∈S:l 6=k

(
bkl(t) + V̄l(t)− V̄k(t)

)
µ̄kl(t), V̄k(T ) = 0,

d

dt
v̄(t) =− v̄(t)φ̄(t), v̄(t0) = 1,

d

dt
p̄(t) =− µ̄tr(t)p̄(t), p̄(t0) = π,(

φ̄(t), µ̄(t)
)

= argmax
(f,m)∈M(t)

{
− f

∑
k∈S

p̄k(t)V̄k(t)

+
∑
k∈S

p̄k(t)
∑

l∈S:l 6=k
mkl

(
bkl(t) + V̄l(t)− V̄k(t)

)}
(4.3.8)

have a unique solution V̄ =
(
V̄1, . . . , V̄n

)tr
. Then

v̄(t)p̄tr(t)V̄ (t) = sup
(φ,µ)∈M

v̄(t)
∑
j∈S

p̄j(t)Vj(t;φ, µ), (4.3.9)

in particular

πtrV̄ (t0) = sup
(φ,µ)∈M

∑
j∈S

πjVj(t0;φ, µ). (4.3.10)

By solving the system (4.3.8) we are also able to calculate W̄ and V̄ . Note, we have implicitly
assumed that the interest rate and the intensities are not allowed to depend on the current state
of the Markov chain. We do not know p̄(T ) and v̄(T ) but if we make a guess of the values p̄(T )
and v̄(T ) (this is a guess of dimension (n + 1) in total) and the guess is correct, we get that
p̄(t0) = π and v̄(t0) = 1. The problem is that we do not know the boundary conditions for all the
differential equations at the same time point. This implies that we cannot use standard iterative,
numerical methods to solve the differential equations. We now outline two methods, which can
be used to obtain results numerically.

Shooting method: One way to overcome problems with boundary conditions at different time
points is to apply the shooting method, see e.g. Orava and Lautala (1976). Here, we need to guess
terminal conditions for v̄ and p̄ and then “shoot” until we hit the “right” starting values for v̄
and p̄. The shooting method is a method aiming at updating these guesses in order to obtain the
right starting values as fast as possible. The system of ordinary differential equations given by
(4.3.8) consists in total of 2n+ 1 equations; n+ 1 forward equations and n backward equations.
The standard way to choose whether to guess for the missing starting or terminal values is to
make a guess of the lowest possible dimension. In the present case, this approach implies that
we should guess the starting values for Vj and solve the equation system forward. Note however,
that the differences between the two choices for the present case are minimal. Assuming that
we make initial guesses xT,0 and yT,0 for the terminal values of p̄(T ) and v̄(T ) we obtain results
p̄xT,0(t0) and v̄yT,0(t0), which we hope are close to π and 1, respectively. One should of course
choose xT,0 in the set [0, 1]n and yT,0 in the set [0, 1] since they are transition probabilities and a
discount factor. Now the aim is to find roots for the function f given by

f(x, y) =

(
π
1

)
−
(
p̄x(t0)
v̄y(t0)

)
.
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We can find these roots by choosing some starting values and apply a standard algorithm like
Newton’s Method to update the guesses. Hereby, we obtain a series of terminal conditions
(xT,i, yT,i), i = 0, 1, . . .. We stop the algorithm, when each entry of f(xT,i, yT,i) is below a
given tolerance level ε.

Fixed point equation method: Another numerical method that can be used to solve the
system of differential equations is the “fixed point equation method”, see e.g. Bailey et al. (1968).
They study problems a bit different from ours but the iteration idea is the same. They denote the
method “Picard iteration” instead of “fixed-point equation method”. We note that this method
is the one that has been used to obtain the numerical results in Section 4.5. The method is an
iterative algorithm, which aims at solving the equation system (4.3.8) within a given tolerance
level. The approach is to apply the following algorithm:

1. Choose a reasonable starting interest rate and transition intensities (φ̄0 and µ̄0).

2. Solve the equations for v̄ and p̄ (forwards) using φ̄0 and µ̄0 and denote the solutions v̄0 and
p̄0.

3. Solve the system of equations for V̄j and
(
φ̄, µ̄

)
(backwards) using the values obtained in

the former steps. We denote the solutions V̄ 0
j and

(
φ̄1, µ̄1

)
4. Repeat step 2 and 3 (and increase the numbers of the superscripts accordingly) ī times,

where ī is defined by

ī = argmin
i∈IN

sup
t∈[t0,T ]

max

{
max
j∈S

{
V̄ i
j (t)− V̄ i−1

j (t)
}
,max
j∈S

{
p̄ij(t)− p̄i−1

j (t)
}
, v̄i(t)− v̄i−1(t),

φ̄i+1(t)− φ̄i(t), max
(j,k)∈J

{
µ̄i+1
jk (t)− µ̄ijk(t)

}}
< ε,

where ε is a given tolerance level. The fixed-point equation method is not necessarily converging,
unless we make further model restrictions; in particular assumptions on the set M in (4.3.8). How-
ever, once we have found a sequence (V̄ i, p̄i, v̄i)i∈IN that converges pointwise to a limit (V̄ ∗, p̄∗, v̄∗),
we can, under mild conditions, conclude that the latter limit is a solution to (4.3.8): Given that
the assumptions of Proposition 4.3.2 hold and that the argmax in (4.3.8) is continuous with re-
spect to the parameters V̄ i(t) and p̄i(t) at V̄ ∗(t) and p̄∗(t), we can show that (V̄ ∗(t), p̄∗(t), v̄∗(t))
solves the integral version of (4.3.8). This is shown by applying the dominated convergence the-
orem and using the constant C in the proof of Proposition 4.3.2 as a uniform majorant for the
functions V̄ i

j (t).

Remark 4.3.5. If we assume that the argmax in (4.3.8) does not depend on any of the factors
p̄k(t) for all k ∈ S things get numerically simpler. Unfortunately, this only holds for a very limited
type of models like a multiple causes of death model, see Christiansen and Steffensen (2013). The
numerical simplification is that the calculation of p̄ and µ̄ decouples from the calculation of V̄k.
That is, one can first solve the ODEs for V̄k with v̄(t)p̄(t) = 1 (backwards) to obtain values
for (µ̄, φ̄), secondly use these results to calculate (p̄, v̄) (forwards), and lastly use the results of
(µ̄, φ̄) and (p̄, v̄) to calculate V̄k (backwards). In this case the use of the shooting method is not
necessary. If the argmax in (4.3.8) is dependent on but constant in the factors p̄k(t) one can do
exactly the same as before by basing the first values v̄ and p̄ on some arbitrary values of µ and φ
in M . These simplifications are for a fixed starting state covered by Christiansen and Steffensen
(2013).
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4.3.4 Some notes about the set M

One crucial ingredient of the calculations in the present paper is the set M , over which we
maximize the probability weighted reserve. To make the calculations useful for a company they
need to know certain probabilistic properties of the set, e.g. the confidence level. One non-
statistical way of obtaining a set is to use an expert opinion. However, it is hard to deduce any
properties from sets based on an expert opinion.

An alternative and more attractive method is to deduce a set with a certain coverage from a
stochastic model by either analytical or numerical methods. One could ask for the advantages of
this approach compared to just simulating reserves and finding confidence intervals numerically.
The answer to this is twofold. First, you gain some insight about the nature of your risk by
calculating the sets. Second, for many life insurance companies this method will be computa-
tionally faster and for some easier to implement. The speedup relative to directly simulating the
reserves occurs because you only need to solve the system of differential equations characterizing
the reserve once, after having found the set. The alternative is to simulate scenarios and solve dif-
ferential equations over and over again to get reliable results. This is particularly important when
making calculations for complex products modeled in Markov chains with many states in which
case the differential equations take a long time to solve. An additional advantage comes from
the possibility of using the same calculated sets for different products (for the same policyholder)
and for different policyholders, who have similar characteristics. We do not think that it is a big
drawback to use a parametric approach, since many companies already deal with estimation in
such models when e.g. forecasting the future mortality.

4.4 Worst-case calculations for portfolios

In this section we consider an inhomogeneous portfolio, whereby allowing for nonidentical dis-
tributions of the jump processes modelling the policyholders. We generally assume that the
policyholders are stochastically independent and that the force of interest is the same for all con-
tracts. Given this independence assumption and assuming that there exists an intensity matrix
for each policyholder, we can conclude that two or more policyholders change state at the same
point in time with probability zero.

If the same set M is used for all policyholders in the portfolio but no interactions between the
worst cases of different contracts are taken into account, we can easily obtain the worst-case
reserve for the portfolio by calculating the worst-case reserve for each policyholder separately and
then summing over all the reserves. In practice, we think the mortalities across the population
are closely connected (dependent), so this is the case we want to study. Such a study is not doable
within the theory of Christiansen and Steffensen (2013), because the requirements of that paper
are not fulfilled in this case. This is because dependence between policyholders in a portfolio
implies that the argmax in Christiansen and Steffensen (2013, Proposition 4.1) is not constant
with respect to all the discounted transition probabilities; see also Remark 4.3.5. The simple
approach outlined above leads to a rough upper bound only, for the worst-case in a portfolio. We
illustrate this with a numerical example in Section 4.5.

There are a few simple cases of inhomogeneous portfolios, where we can confine ourselves to
the theory of Section 4.3. One of the cases, which was shortly mentioned in the beginning of
Section 4.3, is where the policyholders are governed by the same intensities and have the same
insurance product but have different starting distributions. This case is covered because it is
equivalent to calculation of the worst-case scenario for a single policy with a specific starting
distribution. Another simple case is where the policyholders of the portfolios are governed by the
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same intensities and starting distributions but have different insurance products. In this case, the
worst-case reserve of the portfolio can be found as the worst-case reserve of a single policy, where
the policyholder has the sum of the products of all the policyholders in the portfolio. However,
in general we need some extended results to cover portfolios.

4.4.1 A representation for the worst-case reserve

The aim of this subsection is to find a simple representation for the worst-case reserve for a port-
folio of policyholders. To do so, we start by introducing some additional notation for the setting
with multiple policyholders. For the terms where the notation from Section 4.3 is applicable, we
do not repeat these.

• L: Number of policyholders in the portfolio.

• (X(t))t∈[0,T ] = (X1(t), . . . , XL(t))t∈[0,T ]: Representation of the state of the policyholders of
the portfolio.

• S = {(S1, . . . ,SL)|Si ⊂ S}: State space for all policies.

• J =
{

(j,k) ∈ S × S| j = (j1, . . . , jl, . . . , jL),k = (j1, . . . , j̃l, . . . , jL), jl 6= j̃l,

l ∈ {1, ..., L}
}

:

Transition space for all policies. The condition in the above formula means, that the vectors
j and k differ in exactly one coordinate.

• V l
i (t): Statewise reserve at time t for policyholder l in state i.

• bljk(t) and blj(t): Lump sum and continuous payments at time t for policyholder l.

• µljk(t): Transition intensities at time t for policyholder l.

• pljk(s, t): Transition probabilities between time t and s for policyholder l.

In the following, we show that the “big model” collapses to something simpler. By “big model” we
mean that the portfolio is modeled as a single policy, such that we can use the theory of Section 4.3.
In the “big model”, we have |S1| · . . . · |SL| states that cover all the different combinations of
policyholders and states. By defining

bj(t) =
L∑
l=1

bljl(t) and bjk(t) = bl
jlj̃l

(t)

for j = (j1, . . . , jL) and k = (j1, . . . , j̃l, . . . , jL) (recall that two or more jumps at the same time
occur with probability zero), we get that the present portfolio value B(t) equals the sum of the
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single present values,

B(t) =
∑
j∈S

∫ T

t
v(t, s)1{X(s)=j}bj(s)ds+

∑
(j,k)∈J

∫ T

t
v(t, s)bjk(s)dNjk(s)

=
∑
j∈S

∫ T

t
v(t, s)1{X(s)=j}

L∑
l=1

bljl(s)ds+
∑

(j,k)∈J

∫ T

t
v(t, s)bl

jlj̃l
(s)dN l

jlj̃l
(s)

=

L∑
l=1

∑
j1∈S1,...,jL∈SL

∫ T

t
v(t, s)

L∏
k=1

1{Xk(s)=jk}b
l
jl

(s)ds

+
L∑
l=1

∑
(j,k)∈Jl

∫ T

t
v(t, s)bljk(s)dN

l
jk(s)

=
L∑
l=1

∑
j∈Sl

∫ T

t
v(t, s)1{Xl(s)=j}b

l
j(s)ds+

∑
(j,k)∈Jl

∫ T

t
v(t, s)bljk(s)dN

l
jk(s)


=

L∑
l=1

Bl(t),

(4.4.1)

where Bl is the present value of future payments for policyholder l, and N l
jk counts the number

of jumps from state j to state k for policyholder l.

We have that the reserve for each policyholder follows a differential equation of the type (4.2.4)
and that the transition probabilities, plj , follow the Kolmogorov equations given by (4.2.2). We
now want to find the worst-case scenario for the portfolio. For this purpose, we define a mapping
W : [t0, T ]× (0,∞)× [0, 1]|S| → R by

W(t, v,p) = v
∑
j∈S

pjE [B(t)|X(t) = j] .

That is, we want to find the worst-case scenario for

W(t, v(t),p(t)) = v(t)
∑
j∈S

πjE [B(t)|X(t0) = j]

= v(t)
∑
j∈S

pj(t)E [B(t)|X(t) = j] ,

where p(t) = (P (X(t) = j))j∈S and πj = π1
j1
· . . . · πLjL because of the independence assumption.

Using again the stochastic independence of the policyholders and the additive structure of (4.4.1),
we can show that

W(t, v(t), p(t)) = v(t)

L∑
l=1

∑
j∈Sl

πljE
[
Bl(t)|Xl(t0) = j

]

=
L∑
l=1

∑
j∈Sl

∫ T

t
plj(u)v(u)

blj(u) +
∑

k∈Sl:k 6=j
bljk(u)µljk(u)

 du.

We aim to find

sup
(φ,µ1,...,µL)∈M

W(t0, v(t0),p(t0);φ, µ1, . . . , µL), (4.4.2)
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where M ⊂ L1+|J |
1 ([t0, T ]) is a set of integrable interest rate and transition intensity paths. The

starting point t0 is the same for all policyholders of the portfolio and should therefore be thought
of as a calendar time point rather than an age in case of a heterogeneous portfolio. Considering
this portfolio as a single contract on the state space S, one can apply the theory of Section 4.3
and obtain the desired results. Because of the huge state space S, the computational workload
seems enormous. However, we can simplify the formulas in (4.3.8).

Proposition 4.4.1. For the “big model” the solutions of the differential equation system given
by (4.3.8) are equivalent to the solutions of

d

dt
V̄ l
j (t) =− blj(t) + V̄ l

j (t)φ̄(t)−
∑

k∈Sl:k 6=j

(
bljk(t) + V̄ l

k(t)− V̄ l
j (t)

)
µ̄ljk(t),

V̄ l
j (T ) = 0, l = 1, . . . , L,

d

dt
v̄(t) =− v̄(t)φ̄(t), φ̄(t0) = 1,

d

dt
p̄l(t) =−

(
µ̄l(t)

)tr
p̄l(t), p̄(t0) = πl, l = 1, . . . , L,

(φ̄(t), µ̄1(t), . . . , µ̄L(t)) = argmax
(f,m1,...,mL)∈M(t)

− f
L∑
l=1

∑
jl∈Sl

p̄ljl(t)V̄
l
jl

(t) +

L∑
l=1

∑
(jl,j̃l)∈Jl

p̄ljl(t)m
l
jlj̃l

×
(
bl
jlj̃l

(t) + V̄ l
j̃l

(t)− V̄ l
jl

(t)
).

(4.4.3)

Proof. We start by considering the argmax given in (4.3.2) for the entire portfolio. The interior
of the argmax is given by

− fv ∂
∂v

W̄ +
∑
j∈S

pj

vbj +
∑

k∈S:k 6=j

mjk

(
vbjk +∇pk

W̄ −∇pj
W̄
)

=− fv ∂
∂v

W̄ +
∑
j∈S

pjvbj +
∑

(j,k)∈J

pjmjk

(
vbjk +∇pk

W̄ −∇pj
W̄
)
.

(4.4.4)

In (4.4.4), j and k are vectors of dimension L. We use that the lives of the policyholders are
independent conditional on the intensities and assume that j = (j1, . . . , jl, . . . jL)tr and k =
(j1, . . . , j̃l, . . . , jL)tr with jl 6= j̃l. This means that we obtain:

(4.4.4) =− fv
L∑
l=1

∑
jl∈Sl

pljlV
l
jl

+ v
L∑
l=1

∑
jl∈Sl

pljlb
l
jl

+

L∑
l=1

∑
(jl,j̃l)∈Jl

pljlmjlj̃l
v

(
bl
jlj̃l

+ V 1
j1 + · · ·+ V l

j̃l
+ · · ·+ V L

jL
−

L∑
i=1

V i
ji

)

=− fv
L∑
l=1

∑
jl∈Sl

pljlV
l
jl

+

L∑
l=1

∑
jl∈Sl

vpljlb
l
jl

+

L∑
l=1

∑
(jl,j̃l)∈Jl

pljlm
l
jlj̃l
v
(
bl
jlj̃l

+ V l
j̃l
− V l

jl

)
.

(4.4.5)
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We see that (4.4.5) splits into components relating to each of the policyholders and that the
argmax does not depend on the second of the three terms. That is, we have proved the proposition.

In the following two subsections, we show examples of worst-case scenarios for specific models of
a portfolio.

4.4.2 Example 1: Solvency II

In this subsection we illustrate how the general theory above is used to generate a mortality stress
scenario for a portfolio of contracts. This is a way of constructing a stress scenario as for instance
the mortality stress in Solvency II. Depending on whether the portfolio is a specific portfolio
or a stylised market portfolio the generated scenario is internally based or input to a standard
calculation, respectively.

We consider a simple two-state life-death model and assume that there is no payments in the
state “dead”. We are maximizing the reserve with respect to compact sets of the form

M = S ∩B,

where S is given by (4.3.7) and B is defined via its slices

B(t) =
{ (

φ(t), µ1(t), . . . , µL(t)
)
∈ IRL+1

+

∣∣∣
φ(t) ∈ Φ(t), µ1(t) = µ̂1(t)α(t), . . . , µL(t) = µ̂L(t)α(t)

}
.

We assume that α(t) ∈ [αl(t), αh(t)] and Φ(t) = [φl(t), φh(t)] and that αl, αh, φl, φh and µ̂i are

bounded functions. Note that M is compact in L
1+|J |
1 by Lemma 4.3.3. Assuming that the L

policyholders have different ages x1, . . . , xL at the current time, a natural choice would be to
model µ̂i of the form

µ̂i(t) = µbe(xi + t)Λ(xi, t),

where µbe is a best estimate mortality intensity and Λ is a longevity factor meaning that Λ is
decreasing in time. In this setup the interest rate is independent of the mortality intensities and
the mortality intensities are linearly dependent.

The argmax in (4.4.3) becomes

(φ̄(t), µ̄1(t), . . . , µ̄L(t))

= argmax
(f,m1,...,mL)∈M(t)

{
−f

L∑
l=1

p̄la(t)V̄
l
a(t) +

L∑
l=1

p̄la(t)m
l
(
blad(t)− V̄ l

a(t)
)}

.

Because of linearity, this argmax can be found by calculating

argmax
(f,α)∈(Φ(t)×[αl(t),αh(t)])

{
−f

L∑
l=1

p̄la(t)V̄
l
a(t) + α

L∑
l=1

p̄la(t)µ̂
l(t)

(
blad(t)− V̄ l

a(t)
)}

and multiplying µ̂1, . . . , µ̂L with α.

We can also consider a portfolio of disability contracts, see Figure 4.1. That is, we study contracts
which can be modeled within a three state Markov chain where recovery from “disabled” to
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a

Active
i

Disabled

d

Dead

µai

µad µid

Figure 4.1: Disability model without recovery.

“active” is not possible. We assume no payments in the state “dead” and that µai is fixed in the
sense that it is a deterministic function which we are not maximizing the reserve with respect
to. We want to find the worst-case reserve of this portfolio with respect to φ, µad and µid with
respect to the sets of the form

M = S ∩B,

where S is given by (4.3.7) and B is defined via its slices

B(t) =
{ (

φ(t), µ1
ad(t), µ

1
id(t), . . . , µ

L
ad(t), µ

L
id(t)

)
∈ IR2L+1

+

∣∣∣φ(t) ∈ Φ(t),

µ1
ad(t) = µ̂1

ad(t)α(t), µ1
id(t) = µ̂1

id(t)β(t), . . . ,

µLad(t) = µ̂Lad(t)α(t), µLid(t) = µ̂Lid(t)β(t)
}
.

We assume that Φ(t) is defined as above and that α(t) ∈ [αl(t), αh(t)] and β(t) ∈ [βl(t), βh(t)] for

bounded functions αl, αh, βl, βh, µ̂
i
ad and µ̂iid. Note that M is compact in L

1+|J |
1 by Lemma 4.3.3.

Because of linearity, we can obtain (φ̄(t), µ̄1(t), . . . , µ̄L(t)) by calculating

argmax
(f,α,β)∈(Φ(t)×[αl(t),αh(t)]×[βl(t),βh(t)])

{
− f

L∑
l=1

(
p̄la(t)V̄

l
a(t) + p̄li(t)V̄

l
i (t)

)
+ α

L∑
l=1

p̄la(t)µ̂
l
ad(t)

(
blad(t)− V̄ l

a(t)
)

+ β
L∑
l=1

p̄li(t)µ̂
l
id(t)

(
blid(t)− V̄ l

i (t)
)}

and multiplying µ̂1
ad, . . . , µ̂

L
ad with α and µ̂1

id, . . . , µ̂
L
id with β.

In the above calculations the death and disability intensities are independent. Another possibility
could be to make µad and µid dependent. This is exactly what is described in Section 4.4.3. In
the case αl = αh, we optimize over a singleton with respect to µad for each time point and the
argmax becomes trivial.

4.4.3 Example 2: Dependent version of the Solvency II example

This example is an extension of the result in Section 4.4.2 where we include sets of the form given
by the case “Dependence” in Figure 4.2. Again, we assume no payments in the state “dead”. We
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are maximizing the reserve with respect to sets of the form

M = S ∩B,

where S is given by (4.3.7) and B is defined via its slices

B(t) =
{ (

φ(t), µ1
ad(t), µ

1
id(t), . . . , µ

L
ad(t), µ

L
id(t)

)
∈ IR2L+1

+

∣∣∣
φ(t) ∈ Φ(t), µ1

ad(t) = µ̂1
ad(t)α(t), µ1

id(t) = µ̂1
id(t)β(t), . . . , µLad(t) = µ̂Lad(t)α(t),

µLid(t) = µ̂Lid(t)β(t), (α(t), β(t)) ∈ B̌(t)
}
.

We assume that Φ(t) is given as in Section 4.4.2 and B̌(t) is given on the linear programming
form

B̌(t) =

(x, y) ∈ IR2
+

∣∣∣∣∣∣∣∣∣∣


−3(βh(t)−βl(t))

αh(t)−αl(t) 1
3(βh(t)−βl(t))
αh(t)−αl(t) −1

− βh(t)−βl(t)
3(αh(t)−αl(t)) 1
βh(t)−βl(t)

3(αh(t)−αl(t)) −1


(
x
y

)
≤


−3(βh(t)−βl(t))

αh(t)−αl(t) αl(t) + βl(t)
3(βh(t)−βl(t))
αh(t)−αl(t) αh(t)− βh(t)

− βh(t)−βl(t)
3(αh(t)−αl(t))αl(t) + βl(t)
βh(t)−βl(t)

3(αh(t)−αl(t))αh(t)− βh(t)


.

We choose the functions αh, αl, βh, βl in such a way that the slices B̌(t) are closed and uni-
formly bounded (in t). Moreover, we assume that the functions µ̂iad and µ̂iid are bounded. Note

that M is compact in L
1+|J |
1 by Lemma 4.3.3. Because of linearity, we can find the argmax

(φ̄(t), µ̄1(t), . . . , µ̄L(t)) in (4.4.3) by calculating

argmax
(f,α,β)∈(Φ(t)×B̌(t))

{
− f

L∑
l=1

(
p̄la(t)V̄

l
a(t) + p̄li(t)V̄

l
i (t)

)
+ α

L∑
l=1

p̄la(t)µ̂
l
ad(t)

(
blad(t)− V̄ l

a(t)
)

+ β
L∑
l=1

p̄li(t)µ̂
l
id(t)

(
blid(t)− V̄ l

i (t)
)}

(4.4.6)

and multiplying µ̂1
ad, . . . , µ̂

L
ad with α and µ̂1

id, . . . , µ̂
L
id with β. To find (4.4.6), we must at each

time point check each of the four extremal points of the set B̌(t) combined with the extremal
points of Φ(t).

4.5 Numerical calculations

We have performed the numerical calculations in this section by applying the “fixed point equa-
tion method” described in Section 4.3. In all our examples we obtained converging fixed-point
sequences, and in a neighborhood of the limit the argmax in (4.3.8), seen as a mapping of reserves
and transition probabilities, turned out to be continuous for almost all t. Taking into account
the arguments in the lines before Remark 4.3.5, our numerical results are indeed approximations
for the solutions of (4.3.8). First, we consider numerical calculations for a single a policy. Next,
we consider similar calculations for an inhomogeneous portfolio.

78



4.5.1 Numerical calculations for a single policy

We consider the example of a simple disability policy described in Figure 4.1, where the payments
are given by disability benefits in the state “Disabled” at a yearly rate bi = 1 and lump sum
payments paying out an amount of 3 upon transcription to the state “Dead” from either of the
states “Active” or “Disabled”. For simplicity, we assume that no premiums are paid.

In the example we consider a person at the age of 35 and contract expiry at the age of 65.
We let the short rate be 2% and let both the intensity from “Active” to “Disabled” (which we
consider fixed) and the best estimate death intensity be given on a Gompertz-Makeham form.
The exact intensity parameters are given in Table 4.1. We consider the same lower and upper

µbe
ad µai

0.0025 + 105.804−10+0.038χ 0.00148 + 104.97136−10+0.06χ

Table 4.1: Best estimate intensities for a policyholder at age χ.

bounds for both the active-death and the disabled-death intensities. The lower bound is given by
U(t) = 0.8µbe

ad(t) whereas the upper bound is given by L(t) = 1.15µbe
ad(t).

In the following, we find the worst-case scenario for different sets M using numerical methods.
The argmax in (4.3.8) can be either easy or hard to obtain depending on the form of the slices of
the set M . If we can formulate the optimization problem as a linear program, which is the case
for all the sets presented in Figure 4.2, we know that we only need to search for the argmax in the
extremal points of the sets. That is, for the two cases “Independence” and “Dependence”, we only
need to evaluate the object function in four points, whereas for the case “Linear dependence”,
we only need to evaluate the object function in two points. In the case of a linear program,
the extremal points are quite obvious. In the more general case of a strictly convex set M(t),
Christiansen and Steffensen (2013, Appendix) outlines a way of obtaining the extremal points.

𝐿 𝑡 𝑈(𝑡)

M(t): Independence

𝑈 𝑡
𝜇𝑖𝑑(𝑡)

𝜇𝑎𝑑(𝑡)

𝐿 𝑡 𝑈(𝑡)

M(t): Linear dependence

𝜇𝑖𝑑(𝑡)

𝜇𝑎𝑑(𝑡)

𝐿 𝑡 𝑈(𝑡)

M(t): Dependence

𝜇𝑖𝑑(𝑡)

𝜇𝑎𝑑(𝑡)𝐿 𝑡

𝑈 𝑡

𝐿 𝑡

𝑈 𝑡

𝐿 𝑡

Figure 4.2: Three different trust regions.

The figures 4.3-4.5 show the worst-case bases (conditional on that the current state is “Active”)
for the three different types of sets depicted in Figure 4.2. In the case “Dependence”, the four
extremal points are

{(L(t), L(t)), (L(t) + 0.25(U(t)− L(t)), L(t) + 0.75(U(t)− L(t))),

(U(t), U(t)), (L(t) + 0.75(U(t)− L(t)), L(t) + 0.25(U(t)− L(t)))}.

In the case of independence, the worst-case scenario is that the intensity µad is as high as possible
throughout the entire period, since the chances of getting disabled is not that high. On the other
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hand, the intensity µid is only high at the very last part of the period of the contract, because
there are no more disability benefits after the transition. Note that a bigger relative difference
between bi and bad = bid would have caused the shift from low to high intensity to happen earlier.

In the case of dependence, the situation is not equally simple. Here, the tradeoff between having
a high intensity µad and a low intensity µid results in the worst-case scenario for the middle
of the time span of the contract becoming µad(t) = L(t) + 0.75(U(t) − L(t)) whereas µid(t) =
L(t)+0.25(U(t)−L(t)). Note that these are not corner points of the marginals in contrast to the
case of independence. The worst-case scenario occurs because the level of µad is more important
for the size of the reserve than the level of µid. This is because the level of µid is a second-order
effect in the state “Active”, since µid only matters after transition to the state disabled. However,
this second-order effect is so significant that the worst-case scenario is not to maximize both µad
and µid.

For the linear dependent case we, as in the dependent case, see that the impact of µad is more
significant than the impact of µid implying that both are maximized for the entire time span.
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Figure 4.3: The worst-case death intensities in the case of independence.

In Figure 4.6 we see that the convergence to the fixed point is fairly fast: After only four iterations,
we have obtained convergence.

80



0,000

0,005

0,010

0,015

0,020

0,025

0,030

0 10 20 30

In
te

n
si

ty

Time (years)

Upper U(t) and lower L(t) possible intensites Worst case Worst case

Figure 4.4: The worst-case death intensities in the case of dependence.
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Figure 4.5: The worst-case death intensities in the case of linear dependence.
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Figure 4.6: Convergence for the argmax of µad.
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4.5.2 Numerical calculations for a portfolio

In this section we illustrate the theory of Section 4.4 for a representative portfolio consisting
of a young, a middle-aged, and a close-to-pension-aged policyholder. We are in the two state
life-death model and are maximizing over the type of sets described in Section 4.4.2. We assume
that all three representative policyholders have the same type of contract. That is, they have a
term insurance paying 15 at death before retirement (age 67) and a life annuity paying a yearly
rate of 1 starting at retirement. Their baseline death intensities are given as µbe

ad in Table 4.1.
For the present example the set of interest rates is Φ = {0.02}, the lower multiplicative factor is
αl = 0.8, and the upper multiplicative factor is αh = 1.15. The values of αl and αh are motivated
by the mortality and longevity stresses from Solvency II, see EIOPA (2013).

We obtain the worst-case intensities illustrated in Figure 4.7 on a logarithmic scale. We denote
by subscript 30 the youngest policyholder, by subscript 45 the middle-aged policyholder, and
by subscript 60 the oldest policyholder. Moreover, we use “I” to indicate that quantities are
calculated at an individual level, and “P” to indicate that quantities are calculated on portfolio
level. We see from Figure 4.7 that the worst-case scenario for the oldest person is the same as
the worst-case scenario at the portfolio. The scenario is that the intensity is as high as possible
for the first seven years (until retirement of the oldest policyholder), and hereafter it is as low as
possible. On the other hand, the worst case-scenarios for the two other policyholders are quite
different compared to the worst-case scenario for the portfolio. The statewise worst-case reserves
for the policyholders corresponding to the intensities in Figure 4.7 can be found in Figure 4.8.
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Figure 4.7: Worst-case intensities for the portfolio and for each individual policyholder.

In Table 4.2 we compare the reserves for the three policyholders in the portfolio calculated with
different bases. The first is the best estimate basis, the second is αh times the best estimate,
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Figure 4.8: Statewise worst-case reserves calculated on basis of the worst-case scenarios for the
individual policyholders and the worst-case scenario for the portfolio.

the third is αl times the best estimate, and the fourth and fifth are the worst-case bases for the
portfolio and the individual policyholders, respectively.

The numbers for “Solvency II (mortality)” and “Solvency II (longevity)” can be used to calculate
the SCR in the “standard model”. Assuming that only mortality risk and longevity risk apply
to our portfolio, the SCR is defined as

SCR =
√

(∆V mortality)2 + (∆V longevity)2 − 2 · 0.25 ·∆V mortality∆V longevity, (4.5.1)

where

∆V mortality =
L∑
l=1

max
(
V l
(
µbe · 1.15

)
− V l

(
µbe
)
, 0
)
,

∆V longevity =

L∑
l=1

max
(
V l
(
µbe · 0.8

)
− V l

(
µbe
)
, 0
)
.

The result of this calculation together with the calculations of the worst-case reserves lead to
three different “SCR-like” quantities presented in Table 4.3. We here see that the SCR for the
entire portfolio is significantly smaller for the worst-case scenario for the portfolio (≈ 6.8% of
the reserve) compared to the worst-case scenario for the individual policyholders (≈ 8.2% of the
reserve). However, they are both bigger than the SCR calculated using (4.5.1) (≈ 5.9% of the
reserve).

84



PH 1 PH 2 PH 3 Sum

Best estimate 6.91 8.80 11.09 26.81

Solvency II (mortality) 6.81 8.57 10.60 25.97

Solvency II (longevity) 7.17 9.27 11.97 28.40

Worst-case (PF) 7.23 9.35 12.06 28.64

Worst-case (separate) 7.45 9.49 12.06 29.00

Table 4.2: Reserves calculated by different methods (bad = 15) for the three policyholders.

Solvency II Worst-case (PF) Worst-case (separate)

1.59 1.83 2.19

Table 4.3: SCR calculated by different methods (bad = 15).

4.5.2.1 Increasing the term insurance - making more shifts in the worst-case inten-
sities

In the previous example, we saw that there was one shift for the worst-case intensity for the
portfolio; the shift was from low to high intensity after seven years. This kind of structure is
probably quite normal for a big portfolio. However, this is not necessarily the case. There can
be many more shifts, as we illustrate in this section. The only difference compared to the former
example is that the term insurance is increased from 15 to 32. This leads to the worst-case
intensities in Figure 4.9, where we have jumps in the worst-case intensities after the retirement
of each of the policyholders. We also note, as opposed to the example with bad = 15, that none
of the individually worst-case intensities coincide with the worst-case intensity for the portfolio.
A table equivalent to Table 4.3 can be found in Table 4.5. The results there illustrate that the
relative differences between the results of the different calculation methods can be quite big.

A comparison of different types of SCR-like calculations can be found in Table 4.4. We note that
the relative differences of the SCRs are much bigger than in the former example with bad = 15.

PH 1 PH 2 PH 3 Sum

Best estimate 10.01 11.95 13.08 35.05

Solvency II (mortality) 10.30 12.12 12.86 35.28

Solvency II (longevity) 9.71 11.85 13.58 35.15

Worst-case (PF) 10.28 12.78 13.54 36.60

Worst-case (separate) 10.93 13.04 14.33 38.30

Table 4.4: Reserves calculated by different methods (bad = 32) for the three policyholders.

The three different calculation methods lead to the three different SCR presented in Table 4.5.

Solvency II Worst-case (PF) Worst-case (separate)

0.59 1.55 3.25

Table 4.5: SCR calculated by different methods (bad = 32).
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Figure 4.9: Worst-case intensities for the portfolio and for each individual policyholder (bad = 32).

4.5.3 Conclusion

First, what is meant by stressing a portfolio with respect to mortality and longevity by scaling
the mortality rate by between 0.8 and 1.15? The standard formula (4.5.1) represents one inter-
pretation. The negative correlation in (4.5.1) is a (normal) probabilistic formalization of the idea
that experiencing future high mortality rates and future low mortality rates tend not to happen
in the same realization. Our calculations do not assume such “restrictions”. We actually do find
that the worst thing that can happen is that the mortality rate is high in the near future and
low in the distant future and our worst-case approach really allows this realization to occur. Our
numerical example shows that the standard formula based on a negative correlation of 0.25 leads
to a too low capital requirement compared to the one obtained in our calculation. We do not
claim that one can draw strong quantitative conclusions from this. What we do claim is that it
is urgently important to understand exactly what is calculated and what is not. If one tends to
believe that mortality rates actually can be high in the near future and low in the distant future,
then calculations based on the standard formula may be dangerous.

Second, what is the intuition behind the high mortality rates in the near future and the low
mortality rates in the distant future? This conforms with the basic understanding that in the
near future, when policyholders are relatively young and hold positive sums at risk, high mortality
rates are undesirable. Conversely, in the distant future, when policyholders are relatively old and
hold negative sums at risk, low mortality rates are undesirable. The individual calculations in
this section take into account these effects on a policy by policy basis in the sense what defines
the near and distant future depends on the age of the individual policyholder. This is the simpler
calculation giving a worst-case basis separately for each policy. The portfolio calculations deal
with the situation where the same realized mortality rate counts for all policies, thinking of
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uncertainty in the mortality rate as being at macro-level. Inhomogeneity in the portfolio now
reduces the consequences of the worst case and the capital requirement goes down. It is important
to understand that this has absolutely nothing to do with diversification but is related to portfolio
inhomogeneity exclusively. The inhomogeneity in the portfolio with respect to age and products
may be so involved that the worst-case “jumps” up and down before it finds its low when the
distant future is finally met, as illustrated in subsection 4.5.2.1.

Third, what do these solvency calculations have to do with design and pricing, which was men-
tioned in the introduction? Here, it is important to remember that a policy is an object for
safe-side calculation already upon pricing, before the contract is underwritten and goes into the
solvency calculation. So the first safe-side calculations are part of the internal pricing and man-
agement procedures in contrast to solvency calculations where principles and restrictions are given
from outside. Our results illustrate how one can ascertain a given level of prudence by setting the
first order pricing basis. Individual and portfolio level calculations allow for setting the first order
bases differently for different (groups of) policyholders. A more individual unit for pricing leads
to a more prudent pricing basis and, thus, higher surplus contributions from the portfolio. This
idea was maybe not relevant in the past due to technological limitations. We have then indirectly
illustrated the prudency effects of micro-pricing in life insurance by different tailor-made first
order bases used for a portfolio of inhomogeneous policies.

Fourth, what can we conclude in general about scenarios on the basis of our calculations? In
contrast to some of the general references mentioned in the introduction, we do not criticize
scenarios as a mean of solvency calculations and management for being too uninformative, too
inaccurate or too simple. Rather, we push forward scenarios, exactly for being simple to work
with and understand. They just have to be chosen such that information and accuracy is not
lost in the translation between distributional aspects of intensities and reserves, respectively. We
consider general policies and portfolios and find that the worst-case intensities are the ones that
maximize the expected sum at risk. Since the intensities occur in the expectation itself, this is
a delicate optimization and not just a check of the sign of a given sum at risk. However, once
the calculational challenges are overcome, one is left with a stress calculation simple to imple-
ment, simple to interpret, and simple to communicate, while actually bounding the insolvency
probability, see also the paragraph around (4.1.1).

Acknowledgments: We are grateful to an anonymous referee for many fruitful comments that
greatly improved the paper.
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Chapter 5

Affine processes and Markov chains:
Interest Rate-Dependent Transition
Rates in Life Insurance

Abstract: We obtain results for calculations of life insurance reserves where we model
policyholder behavior governed by stochastic intensities within hierarchical Markov
chain models. We model the interest rate and the transition rates as affine processes,
where we allow for dependence between the interest rate and the transition rates. For
many years, affine processes have been popular choices when modelling interest rates
and mortality rates due to mathematical and computational tractability. Our main
example of dependence is interest rate-dependent surrender rates, which are widely ac-
knowledged in the literature, but the presented framework also allows for many other
types of dependencies. The paper extends some results of transforms of affine processes
presented in Duffie et al. (2000). We find two representations of transforms of affine
processes needed for calculation of life insurance reserves and discuss their differences.

Keywords: Affine processes, Solvency II, expected policy holder behavior.

5.1 Introduction

This paper considers valuation of life insurance contracts within a Markov chain model in the
case where the interest rate and the transition rates are dependent stochastic processes. We are
working in an affine setup such that we are able to obtain results without needing to solve partial
differential equations but only systems of ordinary differential equations as long as we consider
models without cycles. Affine processes have for some time been used to model the interest rate
and transition rates in life insurance, see e.g. Dahl and Møller (2006) and Biffis (2005). The
results in this paper can be seen as a continuation of the work in Duffie et al. (2000). The
recent paper Buchardt (2012) addresses some of the same questions as this paper. However, the
focus and methods for proving the results in the two papers are quite different. Moreover, this
paper contains a generalization to an arbitrary number of transitions within hierarchical Markov
chain models and two different representations of transforms of affine processes and discussions
of subjects in continuation to these. By a transform of an affine process we mean the conditional
expected value of the product of the exponential of the integral of an affine transformation of the
process, the exponential of an affine transformation of the process and a polynomial transform of
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the process.

The surrender option is embedded in many life insurance contracts and the attention to the
modelling of surrender rates and valuation of life insurance contracts where one takes into account
the surrender option, has highly increased the last years. This is, in particular, motivated by the
forthcoming Solvency II legislation, where the lapse risk plays an important role. One way to
model the surrender rate is to make it dependent of the interest rate, which is a fairly natural
approach as for example shown in Kuo et al. (2003). In De Giovanni (2010) a model for insurance
liabilities is applied, where the surrender intensity is split into a rational part and an irrational
part. The rational part is modelled as a function of the short rate squared, whereas the rate of
the irrational part is assumed to be constant. The interest rate dependent surrender rates form
our main example of our general results on dependent interest and transition rates.

The affine processes are widely used for interest rate modelling, credit risk modelling and mod-
elling of mortality intensities because of the calculational tractability. That is, one only needs
to solve ordinary differential equations (ODEs) instead of partial differential equations (PDEs)
which in general is a much easier task. When we use affine processes to model transition inten-
sities in a multistate Markov chain model the tractability can be a little reduced due to the fact
that one needs to solve quite a lot of ODEs. The number of calculations necessary to obtain
a result depends highly on the number of possible transitions (between different states) before
reaching an absorbing state. Secondarily, it also depends on the dimension of the underlying
processes.

The paper is organized as follows: In Section 5.2 and 5.3 we motivate the work and introduce
the basic insurance Markov chain model, which we are going to consider throughout the rest of
the paper. Moreover, we introduce the class of affine processes and state conditions to ensure
positivity of these processes. In Section 5.4 we present the main results which allow us to calculate
statewise reserves in general hierarchical Markov models. Section 5.5 contains a small selection of
different subsections relating to the results in Section 5.4. These are a description of the workload
relating to the results in Section 5.4, a presentation of a special case, where one can allow for
cycles in the Markov chain and still be able to benefit from the same results as in the case with
no cycles, and a description of the class of processes called linear-quadratic processes.

5.2 Motivating example

The forthcoming Solvency II legislation demands that the life insurance companies take into
account future policyholder behavior such as the likelihood of lapse during the remaining period of
an insurance contract. In general, lapse refers to the exercise of policyholder options. In this paper
we will focus on the two most important policyholder options. These are the surrender option
and the free policy option, which are quite common features in many life insurance contracts.
Moreover, lapse risk is a significant risk for many life insurance companies, and recognizing lapse
can change the cash flow and reserves of a company significantly, see e.g. Henriksen et al. (2014)
and Buchardt et al. (2013). In the following we will consider valuation of a general life insurance
contract including both disability and lapse. The state space for such a contract is shown in
Figure 5.1, where we have disregarded premium resumption, i.e. the possibility of a transition
from state fa to state a.

In comparison with a standard disability model we have added four extra states to allow for lapse.
It is not important for the results in this paper that e.g. the intensity from state a to state i is
the same as from state fa to state fi, but for most modelling purposes this is the case. Note
that even though the pure jump process, which determines the state of the insurance contract, is
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Figure 5.1: State space for a disability model with lapse.

Markovian, i.e. the intensities only depend on the current state of the process, the payments do
not only depend on the state of the pure jump process. The reason for this is that the payments,
after the contract has entered the free policy state, depend on the time of this jump. That
is, the introduction of a free policy state gives rise to duration depend payments in the model.
The multistate model given in Figure 5.1 is a hierarchical Markov model, i.e. a model without
cycles. Within this model, the state process of the Markov chain can jump at most 3 times before
reaching an absorbing state. Since the model has no cycles, the results for the statewise reserves
can be obtained by integration of solutions to ODEs in the case, where the interest rate and
transition intensities are dependent affine processes. We show this in Section 5.4.

For the purpose of illustrating the general challenge when evaluating contracts in this type of
models and justified by wanting to keep the terms as simple as possible, we consider the (not
very realistic) case where the only payment of the insurance contract is a death sum bid(t) trig-
gered by the transition from state fi to state fd. We allow for the discount factor, r, and the
transition intensities to be affine dependent on an underlying affine stochastic process X. Under
the assumption that the insurance contract only includes one payment, the statewise reserve in
state a at time t, denoted Va(t), is given by (assuming that we are allowed to interchange the
expectation and the integrals):

Va(t) =E

[ ∫ T

t

∫ T

s

∫ T

u
e−
∫ v
t r(τ,X(τ))dτe−

∫ s
t µ

aa(τ,X(τ))dτe−
∫ u
s µ

ff (τ,X(τ))dτe−
∫ v
u µ

id(τ,X(τ))dτ

× f(s)µaf (s,X(s))µai(u,X(u))µid(v,X(v))bid(v)dvduds

∣∣∣∣F(t)

]
=

∫ T

t

∫ T

s

∫ T

u
E

[
e−
∫ v
t r(τ,X(τ))dτe−

∫ s
t µ

aa(τ,X(τ))dτe−
∫ u
s µ

ff (τ,X(τ))dτe−
∫ v
u µ

id(τ,X(τ))dτ

× µaf (s,X(s))µai(u,X(u))µid(v,X(v))

∣∣∣∣F(t)

]
f(s)bid(v)dvduds,

(5.2.1)

where µaa = µai + µad + µaf + µas, µff = µai + µad + µfs and f is the free policy factor. The free
policy factor is determined at time s and is equal to 1 in this example, since the example does not
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include any premium payments. More generally, the free policy factor is given by f(τ) = V ∗(τ)
V ∗+(τ)

,

where V ∗ is the technical reserve, and V ∗+ is the technical reserve where we only take into
account the benefits of the contract. This means, that the free policy factor is a time-dependent,
deterministic function.

From equation (5.2.1) one sees that the important thing is to be able to calculate terms of the
form

E
[
e−
∫ v
t r(τ,X(τ))dτe−

∫ s
t µ

aa(τ,X(τ))dτe−
∫ u
s µ

ff (τ,X(τ))dτe−
∫ v
u µ

id(τ,X(τ))dτ

× µaf (s,X(s))µai(u,X(u))µid(v,X(v))
∣∣∣F(t)

] (5.2.2)

for different assumptions regarding the interest rate and transition intensities. The rest of the
paper is about how to calculate terms like this. Note that for the general case with continuous and
lump sum payments, we are still able to calculate statewise reserves, if we are able to calculate
terms of the form (5.2.2). That is, being able to calculate terms of the form (5.2.2) and integrating
the results makes it possible to obtain the statewise reserves for all states in Figure 5.1. More
generally, the results make us able to calculate transition probabilities and statewise reserves in
arbitrarily large hierarchical Markov chain models.

5.3 Insurance models and affine processes

Let T be a fixed finite time horizon and (Ω,F , P ) a probability space equipped with a filtration
IF = (F(t))0≤t≤T satisfying the usual conditions of right-continuity and completeness. In the
following we consider a class of stochastic processes called affine processes. Affine processes are
stochastic processes with the property that the conditional characteristic functions are exponen-
tially affine. One normally divides affine processes into diffusion processes and jump diffusion
processes, where affine diffusion processes are the continuous subgroup of affine jump diffusion
processes. For detailed descriptions of affine processes, see e.g. Duffie et al. (2003) or Filipović
(2009, Chapter 10).

The dynamics of a d-dimensional time-inhomogeneous affine jump diffusion are given by

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t) + dJ(t), X(0) = x, (5.3.1)

where µ(t, x) = K0(t)+K1(t)x and
(
σ(t, x)σtr(t, x)

)
ij

= H0,ij(t)+
∑d

k=1H
k
1,ij(t)xk. Moreover, W

is a d-dimensional standard Brownian motion and J is a pure jump process with arrival intensity
λ(t, x) = λ0(t) + λtr

1 (t)x and jump distribution ν. We assume that the interest rate has the
form r(t, x) = ρ0(t) + ρtr

1 (t)x. In the above equations we have that λ0, ρ0 ∈ IR, K0, λ1, ρ1 ∈ IRd,
K1, H0 ∈ IRd×d and H1 ∈ IRd×d×d.

The class of processes given by (5.3.1) is fairly general and is living on the statespace IRd. The
purpose of this paper is to use affine processes to model the interest rate and the transition
intensities of the Markov chain. That is, we want to restrict the class of processes in such a
way, that the interest rate is non-negative and such that the transition intensities are strictly
positive. To obtain non-negativity (in the case of time-homogeneous affine processes without
jumps), Filipović (2009, Theorem 10.2) states the following conditions:

• K0 ∈ IRd+.

• K1 has non-negative off-diagonal elements.

• H0 = 0.
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• The only non-zero entries of Hk
1 are Hk

1,kk, which are positive.

This result can be generalized to time-inhomogeneous affine processes (the conditions are the
same), see Buchardt (2012). Positive jumps of X do not destroy the positivity, whereas negative
jumps in general will. For the rest of the paper, we disregard jumps to keep the notation as
simple as possible. Note, however, that the results presented here can easily be generalized from
affine diffusion processes to affine jump diffusion processes.

To obtain the strict positivity for the intensities we need an extra condition to be fulfilled. The
condition is known as the multivariate Feller condition. The condition is that 2K0,k(t) ≥ Hk

1,kk(t).
That is, the structure of the non-negative affine processes is quite restricted compared to the
general case and the structure leads to simplifications of the ODEs for the transforms of the
affine processes. For example, the ODEs relating to the standard transform in Duffie et al. (2000)
given by

E
[
e−
∫ T
t ρ0(s)+ρtr1 (s)X(s)ds+utrX(T )

∣∣∣F(t)
]

= eα(t,T )+βtr(t,T )X(t)

simplify to:

d

dt
β(t, T ) = ρ1(t)−Ktr

1 (t)β(t, T )− 1

2
βtr(t, T )diag

(
H1

1,11(t), . . . ,Hd
1,dd(t)

)
β(t, T ), β(T, T ) = u,

d

dt
α(t, T ) = ρ0(t)−Ktr

0 (t)β(t, T ), α(T, T ) = 0.

However, for the rest of the paper, we consider, for the sake of completeness, the case where for
example H0 can be different from 0. This also allows us to use e.g. a Vasiček process, which can
be negative, to model the interest rate.

5.4 Main result

In this section we present results enabling us to calculate transforms like (5.2.2) and similar trans-
forms for more general hierarchical Markov chain models. We give two different representations
of the results; a dense and a non-dense representation. We make these two concepts clear in
Section 5.4.1. In both cases we rely on conditioning by use of the tower property.

The structure of this section is as follows: First, we present the results for a one-dimensional
underlying stochastic process. Afterwards, we state some of the results for the multidimensional
setting without giving additional proofs.

5.4.1 The conditional approach

The literature has for many years investigated the dependence between the interest rate and
policy holder behavior. This possible dependence is called the interest rate hypothesis, see e.g.
Dar and Dodds (1989) and references therein. A natural way of modelling this dependence is to
model the lapse rates as functions of a one-dimensional interest rate process like in De Giovanni
(2010). Due to this reasoning and because we are not gaining much more insight by extending the
approach to a multidimensional setting, we introduce what we call “the conditional approach”
in a one-dimensional setting. This also makes the results and expressions much more readable.
We consider three intermediate time points t1, t2 and t3 fulfilling that t < t1 < t2 < t3 < T .
Assuming that all the intensities in Figure 5.1 are given as affine transformations of an underlying
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one-dimensional stochastic process, we need to calculate a quantity of the form1

E

[
e−
∫ t1
t f1(τ,X(τ))dτe−

∫ t2
t1
f2(τ,X(τ))dτe−

∫ t3
t2
f3(τ,X(τ))dτe

−
∫ T
t3
f4(τ,X(τ))dτ

× µ1(t1, X(t1))µ2(t2, X(t2))µ3(t3, X(t3))

∣∣∣∣F(t)

]
,

(5.4.1)

where µi and fi, i = 1, 2, 3 are affine functions of X. Note that the term (5.4.1) is closely related
to the calculation of transition probabilities in the Markov chain model, since the triple integral
of (5.4.1) for fi = µi is exactly a transition probability. By successively using the tower property
we obtain that (5.4.1) equals

E

[
e−
∫ t1
t f1(τ,X(τ))dτµ1(t1, X(t1))E

[
e−
∫ t2
t1
f2(τ,X(τ))dτµ2(t2, X(t2))

× E

[
e−
∫ t3
t2
f3(τ,X(τ))dτµ3(t3, X(t3))E

[
e
−
∫ T
t3
f4(τ,X(τ))dτ

∣∣∣∣F(t3)

]∣∣∣∣F(t2)

] ∣∣∣∣F(t1)

]∣∣∣∣F(t)

]
.

(5.4.2)

Towards the end of this section we obtain closed form solutions for (5.4.2) by first calculating
the innermost conditional expected value and then using this result for calculating the next
conditional expected value and so on. To do so we need the results of the following two lemmas.
In the following, we let ρi, ui, i = 1, 2 and gj , j = 0, . . . , n be deterministic functions. To shorten
the notation, we define by ΥX the term

ΥX(s, v) := eu0(v)+u1(v)X(v)−
∫ v
s ρ0(τ)+ρ1(τ)X(τ)dτ .

Lemma 5.4.1 (Dense representation). Let s, v ∈ [t, T ] with s < v. Assume that the system
of ODEs stated in the lemma is uniquely solved by the functions β,Ci, i = 0, . . . , n, and that the
following integrability conditions are fulfilled:

E [|Φ(v)|] <∞

and

E
[(
η2(t)

) 1
2

]
<∞ for η(t) =

(
Φ(t)β(t, v) + ΥX(t, v)

n∑
i=1

Ci(t, v)ixi−1

)
σ(X(t)),

where Φ(t) = e−
∫ t
0 ρ0(τ)+ρ1(τ)X(τ)dτeβ(t,v)X(t)

∑n
i=0Ci(t, v)Xi(t).

Then for n ∈ IN there exist functions β and Ci for i = 0, . . . , n given as solutions to a system of
ODEs such that,

E

[
ΥX(s, v)

n∑
i=0

gi(v)Xi(v)

∣∣∣∣∣F(s)

]
= eβ(s,v)X(s)

n∑
i=0

Ci(s, v)Xi(s). (5.4.3)

The functions β and Ci, i = 0, . . . , n are given by the following systems of ODEs (suppressing the

1We can e.g. think of the term with the integral from t3 to T as giving us the possibility of modelling a contract
where the death sum is due at time T .
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time arguments of the functions)

∂

∂s
β =ρ1 −

(
K1 +

1

2
H1β

)
β,

∂

∂s
C0 =ρ0C0 − (βC0 + C1)K0 −

(
β2C0 + 2βC1 + 2C2

) 1

2
H0,

∂

∂s
C1 =C0

(
∂

∂s
β − ρ1

)
+ ρ0C1 − 2C2K0 − 2C2βH0 − C1K1 − 3C3H0 − C2H1

−
(
K0 +

1

2
H0β +H1

)
C1β −

(
K1 +

1

2
H1β

)
C0β.

For n ≥ 4 and i = 2, . . . , n− 2 we have the ODEs given by

∂

∂s
Ci =− Ci−1

(
∂

∂s
β − ρ1

)
+ ρ0Ci − (i+ 1)K0Ci+1 − (i+ 1)H0Ci+1β

− iK1Ci − iH1Ciβ −
1

2
(i+ 2)(i+ 1)Ci+2H0 − (i+ 1)iCi+1

1

2
H1

−
(
K0 +

1

2
H0β

)
βCi −

(
K1 +

1

2
H1β

)
Ci−1β

)
.

For n ≥ 3 we have the ODE given by

∂

∂s
Cn−1 =− Cn−2

(
∂

∂s
β − ρ1

)
+ ρ0Cn−1 − n(K0 + βH0)Cn − (n− 1)(K1 + βH1)Cn−1

− n(n− 1)Cn
1

2
H1 −

(
K0 +

1

2
H0β

)
Cn−1β −

(
K1 +

1

2
H1β

)
Cn−2β.

Finally, for n ≥ 2 we have the ODE given by

∂

∂s
Cn =− Cn−1

(
∂

∂s
β − ρ1

)
+ ρ0Cn − n(K1 + βH1)Cn −

(
K0 +

1

2
H0β

)
Cnβ

−
(
K1 +

1

2
H1β

)
Cn−1β.

The corresponding boundary conditions are

β(v, v) = u1(v), Ci(v, v) = eu0(v)gi(v), i = 0, . . . , n.

Proof of dense representation. The proof of the dense representation follows the lines of the
proof of Duffie et al. (2000, Proposition 1). We are going to show that

H(s,X(s); v) := E

[
ΥX(s, v)

n∑
i=0

gi(v)Xi(v)

∣∣∣∣∣F(s)

]
= eβ(s,v)X(s)

n∑
i=0

Ci(s, v)Xi(s),

where β and Ci are fulfilling the ODEs stated in the lemma.

We denote by H̃ the martingale corresponding to H. The martingale is given by

H̃(s,X(s); v) = e−
∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτH(s,X(s); v).

By utilizing that the drift of the martingale H̃(s,X(s); v) is 0 we get by Itô’s formula that H̃ is
given by the following PDE:

0 =
∂

∂s
H̃(s, x; v) + (K0(s) +K1(s)x)

∂

∂x
H̃(s, x; v) +

1

2
(H0(s) +H1(s)x)

∂2

∂x2
H̃(s, x; v). (5.4.4)
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We guess that the solution to this PDE is given by the function G:

G(s, x; v) = e−
∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτeβ(s,v)x

n∑
i=0

Ci(s, v)xi

:= E(s, x; v)

n∑
i=0

Ci(s, v)xi,

(5.4.5)

where we have introduced the shorthand notation E for the exponential terms. We want to find
functions β and Ci, such that G is a martingale. If G is a martingale, we have that

E [G(v, x; v)| F(s)] = G(s, x; v)

and we can get the result by multiplying both sides of (5.4.5) by e
∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτ .

Inserting G in the place of H̃ in the right-hand side of (5.4.4) gives us

∂

∂s
G(s, x; v) +

∂

∂x
G(s, x; v) (K0(s) +K1(s)x) +

1

2

∂2

∂x2
G(s, x; v) (H0(s) +H1(s)x)

= E(s, x; v)

((
−ρ0(s)− ρ1(s)x+

∂

∂s
β(s, v)x

) n∑
i=0

Ci(s, v)xi +
n∑
i=0

∂

∂s
Ci(s, v)xi

)

+ E(s, x; v)

(
β(s, v)

n∑
i=0

Ci(s, v)xi +
n∑
i=1

Ci(s, v)ixi−1

)
(K0(s) +K1(s)x)

+
1

2
E(s, x; v)

(
β2(s, v)

n∑
i=0

Ci(s, v)xi + 2β(s, v)

n∑
i=1

iCi(s, v)xi−1

+

n∑
i=2

Ci(s, v)i(i− 1)xi−2

)
(H0(s) +H1(s)x) .

We divide the right-hand side of the above term by E(s, x; v), suppress the arguments of all the
functions, insert indicator functions to take care of small numbers of n, collect terms wrt. x, and

95



obtain that the above term is equal to

− ρ0C0 +
∂

∂s
C0 + (βC0 + C1)K0 +

(
β2C0 + 2βC1 + 2C2

) 1

2
H0

+ x

(
C0

(
∂

∂s
β − ρ1

)
− ρ0C1 +

∂

∂s
C1 + 2C2K0 + 2C2βH0 + C1K1 + 3C3H0 + C2H1

+

(
K0 +

1

2
H0β +H1

)
C1β +

(
K1 +

1

2
H1β

)
C0β

)
+ 1{n≥4}

n−2∑
i=2

xi
(
Ci−1

(
∂

∂s
β − ρ1

)
− ρ0Ci +

∂

∂s
Ci + (i+ 1)K0Ci+1 + (i+ 1)H0Ci+1β

+ iK1Ci + iH1Ciβ +
1

2
(i+ 2)(i+ 1)Ci+2H0 + (i+ 1)iCi+1

1

2
H1

+

(
K0 +

1

2
H0β

)
βCi +

(
K1 +

1

2
H1β

)
Ci−1β

)
+ 1{n≥3}x

n−1

(
Cn−2

(
∂

∂s
β − ρ1

)
− ρ0Cn−1 +

∂

∂s
Cn−1 + n(K0 + βH0)Cn

+ (n− 1)(K1 + βH1)Cn−1

+ n(n− 1)Cn
1

2
H1 +

(
K0 +

1

2
H0β

)
Cn−1β +

(
K1 +

1

2
H1β

)
Cn−2β

)
+ 1{n≥2}x

n

(
Cn−1

(
∂

∂s
β − ρ1

)
− ρ0Cn +

∂

∂s
Cn + n(K1 + βH1)Cn +

(
K0 +

1

2
H0β

)
Cnβ

+

(
K1 +

1

2
H1β

)
Cn−1β

)
+ xn+1Cn

(
∂

∂s
β − ρ1 +

(
K1 +

1

2
H1β

)
β

)
.

(5.4.6)

From (5.4.6) we can see, that we can make the term become zero by setting each of the n + 2
terms equal to zero. In total this gives us a system of (n+ 2) ODEs that β and C0, . . . , Cn need
to fulfill for G to be a martingale. These ODEs are the ones stated in the lemma. The boundary
values are the obvious ones: β(v, v) = u1(v) and Ci(v, v) = eu0(v)gi(v), i = 0, . . . , n.

Given the integrability conditions in the lemma (ensuring that the integral wrt. to the Brownian
motion is a martingale) and functions β,C0, . . . , Cn fulfilling the system of ODEs, we have

e
∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτE [G(v, x; v)| F(s)] = e

∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτG(s, x; v)

= eβ(s,v)X(s)
n∑
i=0

Ci(s, v)Xi(s).
(5.4.7)
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On the other hand we have that

e
∫ s
0 ρ0(τ)+ρ1(τ)X(τ)dτE [G(v, x; v)| F(s)]

= E

[
e−
∫ v
s ρ0(τ)+ρ1(τ)X(τ)dτeβ(v,v)X(v)

n∑
i=0

Ci(v, v)Xi(v)

∣∣∣∣∣F(s)

]

= E

[
ΥX(s, v)

n∑
i=0

gi(v)Xi(v)

∣∣∣∣∣F(s)

]
= H(s,X(s); v).

(5.4.8)

Since the left-hand sides of (5.4.7) and (5.4.8) are the same, we have that

E

[
ΥX(s, v)

n∑
i=0

gi(v)Xi(v)

∣∣∣∣∣F(s)

]
= eβ(s,v)X(s)

n∑
i=0

Ci(s, v)Xi(s),

and we have proved the lemma.

Next, we give a non-dense representation of the transform. In the lemma below, f1 and f2 are
deterministic functions.

Lemma 5.4.2 (Non-dense representation). Let n ∈ IN be fixed an let s, v ∈ [t, T ] with
s < v. Assume that the system of ODEs stated in the lemma is uniquely solved by the functions
α, β,Aj , Bj , j = 1, . . . , n and that we have enough integrability to interchange differentiation and
integration. That is, there exists a stochastic variable Y with finite expectation such that

|ΥX(s, v) (f0(v) + f1(v)X(v))n| ≤ Y for all ω ∈ Ω.

Then for n ∈ IN there exist functions α, β, Aj and Bj for j = 1, . . . , n given as solutions to a
system of ODEs such that,

E [ΥX(s, v) (f0(v) + f1(v)X(v))n| F(s)]

= eα(s,v)+β(s,v)X(s)
∑

(i1,...,in)∈Cn

κn(i1, . . . , in)
n∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij ,
(5.4.9)

where the set Cn is given by

Cn =

{
v ∈ INn

0

∣∣∣∣∣
n∑
i=1

ivi = n

}
,

and κn ∈ IN0 is given recursively by

κn(i1, . . . , in) =1{in=1} + 1{in 6=1}

(
κn−1(i1 − 1, i2, . . . , in−1)

+
n−2∑
k=1

(ik + 1)κn−1(i1, . . . , ik + 1, ik+1 − 1, . . . , in−1)

)
,
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where κn−1(v1, . . . , vn−1) = 0 for min(v1, . . . , vn−1) < 0.

The functions α, β and Ai, Bi, i = 1, . . . , n are given by the following systems of ODEs (suppress-
ing the time arguments of the functions), where we use the notation B0 := β:

∂

∂s
β =ρ1 −

(
K1 +

1

2
H1β

)
β,

∂

∂s
α =ρ0 −

(
K0 +

1

2
H0β

)
β,

∂

∂s
Bm =−K1Bm −

1

2

m∑
i=0

(
m
i

)
BiH1Bm−i, m = 1, . . . , n,

∂

∂s
Am =−K0Bm −

1

2

m∑
i=0

(
m
i

)
BiH0Bm−i, m = 1, . . . , n.

The boundary conditions are given by β(v, v) = u1(v), α(v, v) = u0(v), B1(v, v) = f1(v),
A1(v, v) = f0(v) and Ai(v, v) = Bi(v, v) = 0 for i > 1.

Remark 5.4.3. We note that the class of transforms we are able to calculate with Lemma 5.4.1 is
much broader than the class of transforms we are able to calculate with Lemma 5.4.2. However,
this is not the entire story about the non-dense representation. By following the lines of the
proof of Lemma 5.4.2 one can see, that we can calculate the same type of transforms with the
two lemmas. The price to achieve this, we pay in terms of less simplicity for the non-dense
representation. This means, that the results are not as simple as the ones given by (5.4.9), nor
are we able to have so simple representations of the ODEs as the ones stated in Lemma 5.4.2.
This is due to the fact, that in the general case, there are different “versions” of the functions
Ai and Bi, since they have different boundary values. This also implies different ODEs for the
different “versions” of Ai and Bi, since their dynamics are mutually dependent. Later in this
section, we make these statements clear, and the results in the general case for n = 3 are outlined.

Remark 5.4.4. For a fixed n the values of the functions κn in Lemma 5.4.2 are given by the
recursive formula. For n = 4 we for example get the coefficients in Table 5.1.

κ4(0, 0, 0, 1) κ4(1, 0, 1, 0) κ4(0, 2, 0, 0) κ4(2, 1, 0, 0) κ4(4, 0, 0, 0)

1 4 3 6 1

Table 5.1: Example of the coefficients denoted by κ4().

By comparison, we see that Lemma 5.4.1 and Lemma 5.4.2 give us two representations for similar
quantities. The reason to give two different representations is, that each of them have advantages
in different situations. We refer to the representation (5.4.3) as the dense representation, whereas
we refer to the representation (5.4.9) as the non-dense representation. The reason for this is that
the dense representation contains at maximum (n+ 2) functions, which can be found by solving
n + 2 ODEs, whereas the non-dense representation is overparameterized in the sense that the
maximum number of functions evolve in an exponential manner. For some real numbers, see
Table 5.2 on page 108.

The dense representation is interesting because it minimizes the number of ODEs we need to solve.
On the other hand, the reason why the non-dense representation is interesting, even though it is
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overparameterized, is due to that we can use the structure of the problem to obtain a nice rep-
resentation, where we can reuse the results of the former calculation steps by “gluing” solutions
to differential equations together. This is explained in Section 5.4.2, where the resulting system
of ODEs is stated in the case of 3 jumps of the pure jump process. This “gluing” method is
not available for the dense representation, since we collect all terms no matte where they come
from to end up solving as few ODEs as possible. Moreover, when using this non-dense represen-
tation, results are easily extended to a multidimensional setting, whereas higher dimensions add
significantly extra calculational workload to the calculation of the dense representation.

Now we give the proof of the non-dense representation.

Proof of non-dense representation. We are going to show that

E [ΥX(s, v) (f0(v) + f1(v)X(v))n| F(s)]

= eα(s,v)+β(s,v)X(s)
∑

(i1,...,in)∈Cn

κn(i1, . . . , in)

n∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij ,
(5.4.10)

where the functions incorporated in the right-hand side of the equation are fulfilling a system of
ODEs. We prove the lemma by an induction proof.

The induction basis: (n = 1)
The result follows in the same way as the “extended transform” in Duffie et al. (2000), where one
includes time-dependence of the functions of the transform.

The induction step:
We assume that (5.4.10) holds for n and show that this implies, that it also holds for n+ 1. To
make the notation simpler, we define Bn by

Bn(s, v) := ΥX(s, v) (f0(v) + f1(v)X(v))n .

We take the derivative of the left-hand side of (5.4.10) wrt. v and obtain

d

dv
E [Bn(s, v)| F(s)]

= E

[(
− ρ0(v)− ρ1(v)X(v) +

d

dv
u0(v) +

d

dv
(u1(v))X(v)

+u1(v) (K0(v) +K1(v)X(v))

)
Bn(s, v)

∣∣∣∣F(s)

]
+ E

[
ΥX(s, v)(n− 1) (f0(v) + f1(v)X(v))n−1

×
(

d

dv
f0(v) +

d

dv
f1(v)X(v) + f1(v) (K0(v) +K1(v)X(v))

) ∣∣∣∣Fs]
= E

[
ΥX(s, v)

(
(f0(v) + f1(v)X(v))n−1 (L0(v) + L1(v)X(v))

+ (f0(v) + f1(v)X(v))n (L2(v) + L3(v)X(v))
)∣∣∣Fs]

(5.4.11)
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for some functions Li.

On the other hand, we can take the derivative of the right-hand side of (5.4.10) wrt. v and obtain:

d

dv

eα(s,v)+β(s,v)X(s)
∑

(i1,...,in)∈Cn

κn(i1, . . . , in)
n∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij


= eα(s,v)+β(s,v)X(s)

∑
(i1,...,in)∈Cn

(
κn(i1, . . . , in)(A1(s, v) +B1(s, v)X(s))i1+1

×
n∏
j=2

(Aj(s, v) +Bj(s, v)X(s))ij

+ κn(i1, . . . , in)
n∑
k=1

n∏
j=1,j 6=k

(
(Aj(s, v) +Bj(s, v)X(s))ij

)
×
(
ik(Ak(s, v) +Bk(s, v)X(s))ik−1 (Ak+1(s, v) +Bk+1(s, v)X(s))

))
.

We collect the terms and obtain:

eα(s,v)+β(s,v)X(s)
∑

(i1,...,in)∈Cn

(
κn(i1, . . . , in)

n∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij+1{j=1}

+
n∑
k=1

ikκ
n(i1, . . . , in)

n+1∏
j=1

(
(Aj(s, v) +Bj(s, v)X(s))ij,k

)
= eα(s,v)+β(s,v)X(s)

∑
(i1,...,in+1)∈Cn+1

κn+1(i1, . . . , in+1)
n+1∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij .

(5.4.12)

Here, ij,k = ij1{j≤n} − 1{j=k} + 1{j=k+1} and

κn+1(i1, . . . , in+1) = 1{in+1=1}

+ 1{in+1 6=1}

(
κn(i1 − 1, i2, . . . , in) +

n−1∑
k=1

(ik + 1)κn(i1, . . . , ik + 1, ik+1 − 1, . . . , in)

)
,

where κn(v1, . . . , vn) = 0 for min(v1, . . . , vn) < 0. We see, that also the right-hand side has the
form stated in the lemma for n+ 1.

We note that neither the left-hand side nor the right-hand side have the exact form stated in
the lemma for n + 1. Here, we outline why the results also hold, if we change some boundary
conditions. We want to replace the boundary conditions L2(v) and L3(v) for f0(v) and f1(v) and
the boundary conditions L0(v) and L1(v) for 0 and 0. The argument relies on the well-behaved
structure of the ODEs. We have that the ODEs for both Bi and Ai, i > 0 are linear ODEs with
closed form solutions. As we show later in the proof, the ODE for Bj is given by

∂

∂s
Bj(s, v) =− (K1(s) + β(s, v))Bj(s, v)− 1

2

j−1∑
i=1

(
j
i

)
Bi(s, v)H1(s)Bj−i(s, v). (5.4.13)
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Given that B(v, v) = ς, the solution to (5.4.13) is given by

Bj(s, v) =e
∫ v
s K1(τ)+β(τ,v)H1(τ)dτ

×

(∫ v

s

1

2

j−1∑
i=1

(
j
i

)
Bi(u, v)H1(u)Bj−i(u, v)e

∫ u
s −K1(τ)−β(τ,v)H1(τ)dτdu+ ς

)
.

Moreover, given Aj(v, v) = ς, Aj is given by

Aj(s, v) =

∫ v

s
K0(τ)Bj(τ, v) +

1

2

j∑
i=0

(
j
i

)
Bi(τ, v)H0(τ)Bj−i(τ, v)dτ + ς.

We claim that the solutions of Aj and Bj in conjunction with the form of the partial derivative
of the right-hand side of (5.4.10) given by (5.4.12) yields, that we can change the boundary
conditions and obtain the result given by (5.4.9).

Regarding the form of the set Cn: Again, we give an induction proof, where the induction basis is
obvious since it follows from Duffie et al. (2000), that the only element in C1 is the singleton {1}.

Now, the induction step. We consider (5.4.12) for a fixed element (i1, . . . , in) ∈ Cn. We note,
that we in total have n + 1 additive terms. By the induction hypothesis for n we have that∑n

j=1 jij = n. This gives us, that the 1 +
∑n

j=1 jij = n+ 1 for the first term of the left-hand side
of (5.4.12). For term k of the last n terms the sums are given by n− k+ (k+ 1) = n+ 1. That is,
for a vector v in Cn+1, we have that

∑n+1
i=1 ivi = n+ 1 and we have proved the form of Ci, i ∈ IN .

Regarding the system of ODEs. We describe the procedure for the terms β and Bi. The calcula-
tions for terms α and Ai follow in exactly the same manner. We know from Duffie et al. (2000),
that β fulfills the ODE:

∂

∂s
β(s, v) = ρ1(s)−K1(s)β(s, v)− 1

2
β2(s, v)H1(s). (5.4.14)

Taken the derivative of (5.4.14) wrt. v and setting ∂
∂vβ(s, v) = B1(s, v) we get

∂

∂s
B1(s, v) = −K1(s)B1(s, v)− β(s, v)H1(s)B1(s, v). (5.4.15)

Taken the derivative of (5.4.15) wrt. v and setting ∂
∂vB1(s, v) = B2(s, v) we get

∂

∂s
B2(s, v) = −K1(s)B2(s, v)− β(s, v)H1(s)B2(s, v)−H1(s)B2

1(s, v). (5.4.16)

The general representation of the ODEs can be proven by an induction proof:

The induction basis: (n = 1)

We use (5.4.15), the notation B0 := β and obtain:

∂

∂s
B1(s, v) =−K1(s)B1(s, v)− 2

1

2
B0(s, v)H1(s)B1(s, v)

=−K1(s)B1(s, v)− 1

2

1∑
i=0

(
1
i

)
Bi(s, v)H1(s)B1−i(s, v).
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That is, the induction basis is correct.

The induction step:
We assume that equation (5.4.17) holds for a natural number n:

∂

∂s
Bn(s, v) =−K1(s)Bn(s, v)− 1

2

n∑
i=0

(
n
i

)
Bi(s, v)H1(s)Bn−i(s, v). (5.4.17)

We want to show, that (5.4.17) also holds for n+ 1. Differentiating the equation wrt. v yields:

∂

∂v

∂

∂s
Bn(s, v) =−K1(s)

∂

∂v
Bn(s, v)− 1

2

n∑
i=0

(
n
i

)(
∂

∂v
(Bi(s, v))H1(s)Bn−i(s, v)

+Bi(s, v)H1(s)
∂

∂v
(Bn−i(s, v))

)
⇒ ∂

∂s
Bn+1(s, v) =−K1(s)Bn+1(s, v)− 1

2

n∑
i=0

(
n
i

)(
Bi+1(s, v)H1(s)Bn−i(s, v)

+Bi(s, v)H1(s)Bn+1−i(s, v)

)
=−K1(s)Bn+1(s, v)− 1

2

n+1∑
i=0

(
n+ 1
i

)
Bi(s, v)H1(s)Bn+1−i(s, v).

This concludes the proof.

We now wrap up the quantity given by (5.4.2) from inside out using the results of Lemma 5.4.1 and
Lemma 5.4.2. Note, we cannot directly apply the results of the two lemmas, since there is some
time-dependence in (5.4.2) which the lemma does not allow for. For the non-dense representation
it means, that we in general are not able to represent the term (5.4.1) on this form:

eα(s,v)+β(s,v)X(s)
∑

(i1,...,in)∈Cn

κn(i1, . . . , in)

n∏
j=1

(Aj(s, v) +Bj(s, v)X(s))ij .

As we show in the following, we still have the same overall structure, but instead of a term like
(A1(t, t1)+Bn(t, t1)x)n we have a term

∏n
k=1(A1(t, t1; tk)+B1(t, t1; tk)x) reflecting that the jumps

of the Markov chain happen at different points in time as opposed to the assumptions in Lemma
5.4.2. The dynamics of B1 are the same as stated in Lemma 5.4.2, but the boundary values
are different. For the functions Bi, i ≥ 2 things get even messier because different “versions”
both have different boundary conditions and different dynamics. The structure of the dynamics
are the same, but the dynamics are different, since the dynamics of different versions of Bi
depend on different versions of Bj , j < i resulting in different versions of Bi. For three jumps,
which include the model represented in Figure 5.1, this system is stated explicitly in Section
5.4.2. Otherwise, the approach is the same as in Lemma 5.4.1 and Lemma 5.4.2. In the terms
below, the functions αi, βi, Cij , Aij and Bij are solutions to systems of ODEs. The exact form of
these ODEs are specified in Section 5.4.2. We let the affine functions µi, i = 1, 2, 3 be given by
µi(t, x) = µi0(t) + µi1(t)x.

To exemplify this difference due to the time-dependence, we calculate the term (5.4.2) from inside
and out by using Lemma 5.4.1 and Lemma 5.4.2. We do so by taking each step (each jump time)
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at a time. This both covers the dense and the non-dense representation. In the notation we
suppress that e.g. C30 implicitly depends on time T .

First we consider the time point t3, i.e. the time point when no jumps have occurred. The
result follows directly from Duffie et al. (2000, Proposition 1):

E

[
e
−
∫ T
t3
f4(τ,X(τ))dτ

∣∣∣∣F(t3)

]
= eα4(t3,T )+β4(t3,T )X(t3),

α4(T, T ) = β4(T, T ) = 0.

(5.4.18)

Using the result (5.4.18), Lemma 5.4.1 and Lemma 5.4.2, we get that the time t2 value, where
one jump has occurred, is given by:

Dense representation:

E
[
e−
∫ t3
t2
f3(τ,X(τ))dτeα4(t3,T )+β4(t3,T )X(t3)µ3(t3, X(t3))

∣∣∣F(t2)
]

= eβ3(t2,t3)X(t2) (C30(t2, t3) + C31(t2, t3)X(t2)) ,

β3(t3, t3) = β4(t3, T ), C30(t3, t3) = eα4(t3,T )µ30(t3), C31(t3, t3) = eα4(t3,T )µ31(t3).

(5.4.19)

Non-dense representation:

E
[
e−
∫ t3
t2
f3(τ,X(τ))dτeα4(t3,T )+β4(t3,T )X(t3)µ3(t3, X(t3))

∣∣∣F(t2)
]

= eα3(t2,t3)+β3(t2,t3)X(t2) (A31(t2, t3) +B31(t2, t3)X(t2)) ,

α3(t3, t3) = α4(t3, T ), β3(t3, t3) = β4(t3, T ), A31(t3, t3) = µ30(t3), B31(t3, t3) = µ31(t3).

(5.4.20)

To get the value at time time t1, where two jumps occurred, we use (5.4.19) and (5.4.20).

Dense representation:

E
[
e−
∫ t2
t1
f2(τ,X(τ))dτeβ3(t2,t3)X(t2) (C30(t2, t3) + C31(t2, t3)X(t2))µ2(t2, X(t2))

∣∣∣F(t1)
]

= eβ2(t1,t2)X(t1)

(
2∑
i=0

C2i(t1, t2)Xi(t1)

)
,

β2(t2, t2) = β3(t2, t3), C20(t2, t2) = C30(t2, t3)µ20(t2),

C21(t2, t2) = C31(t2, t3)µ20(t2) + C30(t2, t3)µ21(t2), C22(t2, t2) = C31(t2, t3)µ21(t2).

(5.4.21)

Non-dense representation:

E

[
e−
∫ t2
t1
f2(τ,X(τ))dτeα3(t2,t3)+β3(t2,t3)X(t2)

× (A31(t2, t3) +B31(t2, t3)X(t2))µ2(t2, X(t2))

∣∣∣∣F(t1)

]
=eα2(t1,t2)+β2(t1,t2)X(t1)

(
(A21(t1, t2) +B21(t1, t2)X(t1)) (A22(t1, t2) +B22(t1, t2)X(t1))

+A23(t1, t2) +B23(t1, t2)X(t1)
)
,

α2(t2, t2) = α3(t2, t3), β2(t2, t2) = β3(t2, t3), A21(t2, t2) = A31(t2, t3), B21(t2, t2) = B31(t2, t3),

A22(t2, t2) = µ20(t2), B22(t2, t2) = µ21(t2), A23(t2, t2) = B23(t2, t2) = 0.

(5.4.22)
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In the same manner, we can also obtain results at time t of the quantities

E

[
e−
∫ t1
t f1(τ,X(τ))dτeβ2(t1,t2)X(t1)

2∑
i=0

(
C2i(t1, t2)Xi(t1, t2)

)
µ1(t1, X(t1))

∣∣∣∣F(t1)

]

= eβ(t,t1)X(s)

(
3∑
i=0

Ci(t, t1)Xi(t)

)
.

(5.4.23)

We can also calculate the non-dense representation

E

[
e−
∫ t1
t f1(τ,X(τ))dτeα2(t1,t2)+β2(t1,t2)X(t1)

(
(A21(t1, t2) +B21(t1, t2)X(t1))

× (A22(t1, t2) +B22(t1, t2)X(t1)) + (A23(t1, t2) +B23(t1, t2)X(t1))

)
µ1(t1, X(t1))

∣∣∣∣∣F(t)

]
.

(5.4.24)

The result is quite lengthy and since it is stated in details in Section 5.4.2, we skip it here.

5.4.2 ODEs for the non-dense transforms

As mentioned in the former subsection we cannot get the ODEs for the terms (5.4.18)-(5.4.24)
directly from Lemma 5.4.2. This is why we state the ODEs in this subsection. When one wants to
calculate a statewise reserve of an insurance contract or the transition probabilities in a Markov
chain model, the approach is to do the calculations backwards starting from the last time point
and obtain the first systems of ODEs. Then we use these values as input for the next system of
ODEs and so on. After discretizing the entire time interval, we need to calculate the transforms
for all different time points and at last integrate.

Because of the dependence of the different jump times, it is not doable for the non-dense rep-
resentation to give a representation as neat as the one in Lemma 5.4.2. By neat we mean a
representation which holds for fixed time points s and v and does not depend on anything after
time v. Therefore, the ODEs for a model with up to 3 jumps are stated here. That is, one is
able to calculate all statewise reserves in the model given by Figure 5.1. In practice, it is not
too interesting to do calculations for a very high n due to the computational workload one en-
counters, see Section 5.5.1. The workload does not come from solving the equations for a single
transform, but rather from the massive number of transforms needed in order to obtain the value
for a reserve.

Before stating the precise results of (5.4.20), (5.4.22) and (5.4.24), one should note, that due
to the structure of the transforms, it is possible to “glue” together the solutions to some of the
ODEs. Among others, it holds for the pairs {α4, α3}, {β4, β3}, {A31, A21} and {B31, B21}. That
is, we can specify some of the ODEs which have boundary conditions at time s wrt. boundary
conditions for time points after time s. This works because for a given function f it is equivalent
to specify a function ε either by

d

dt
ε(t) = f(t), ε(v) = K, (5.4.25)

or by

d

dt
ε(t) = f(t), ε(s) = ε̃(s),

d

dt
ε̃(t) = f(t), ε̃(v) = K, (5.4.26)
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where t < s < v and K is a constant. So by “gluing” we mean, that we instead of the represen-
tation (5.4.25) which arises in a natural way from the conditional approach, use the equivalent
representation (5.4.26). The latter representation highlights that the function ε has its natural
boundary condition at time v.

If we “glue” the various differential equations, we obtain the following results for the different
points in time. To shorten notation, we write (A1 +B1X) (t, t3, T ) rather than A1(t, t3, T ) +
B1(t, t3, T )X(t). We mark by red text the time point for which the boundary condition is specified,
and by blue text we mark the time points in which the functions (excluding the two functions
for which we are specifying the dynamics), that the ODEs are depending on, have boundary
conditions. For example the arguments of A1(t, t3, T ) follow in this way: The T is caused by the
dynamics being dependent on β(t, T ) with boundary condition in T . Moreover, the dynamics
also depend on B1(t, t3, T ) but as stated previously, we suppress this. The argument t3 arise due
to that A1(t, t3, T ) has a boundary condition at time t3.

Time t2 :

(5.4.20) =eα(t2,T )+β(t2,T )X(t2) (A1 +B1X) (t2, t3, T ).

Time t1 :

(5.4.22) =eα(t1,T )+β(t1,T )X(t1)((A1 +B1X) (t1, t3, T ) (A1 +B1X) (t1, t2, T )

+ (A2 +B2X) (t1, t2, t2, t3, T )).

Time t :

(5.4.24) =eα(t,T )+β(t,T )X(t)((A1 +B1X) (t, t3, T ) (A1 +B1X) (t, t2, T )

× (A1 +B1X) (t, t1, T ) + (A2 +B2X) (t, t2, t2, t3, T ) (A1 +B1X) (t, t1, T )

+ (A2 +B2X) (t, t1, t3, T ) (A1 +B1X) (t, t2, T )

+ (A1 +B1X) (t, t3, T ) (A2 +B2X) (t, t1, t2, T )

+ (A3 +B3X) (t, t1, t1, t2, t3, T )).

The above functions are solutions to the following systems of ODEs (we only state the ODEs for
the β and the Bi functions, since the ODEs for α and the Ai functions are the same except that
K0 is substituted for K1, H0 is substituted for H1, and µ0 is substituted for µ1 in the boundary
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conditions):

∂

∂t
B1(t, t3, T ) =−K1(t)B1(t, t3, T )− β(t, T )H1(t)B1(t, t3, T ), B1(t3, t3, T ) = µ1(t3).

∂

∂t
B1(t, t2, T ) =−K1(t)B1(t, t2, T )− β(t, T )H1(t)B1(t, t2, T ), B1(t2, t2, T ) = µ1(t2).

∂

∂t
B1(t, t1, T ) =−K1(t)B1(t, t1, T )− β(t, T )H1(t)B1(t, t1, T ), B1(t1, t1, T ) = µ1(t1).

∂

∂t
B2(t, t2, t2, t3, T ) =−K1(t)B2(t, t2, t2, t3, T )− β(t, T )H1(t)B2(t, t2, t2, t3, T )

−H1(t)B1(t, t2, T )B1(t, t3, T ), B2(t2, t2, t2, t3, T ) = 0.

∂

∂t
B2(t, t1, t2, T ) =−K1(t)B2(t, t1, t2, T )−B1(t, t1, T )H1(t)B1(t, t2, T )

− β(t, T )H1(t)B2(t, t1, t2, T ), B2(t1, t1, t2, T ) = 0.

∂

∂t
B2(t, t1, t3, T ) =−K1(t)B2(t, t1, t3, T )−B1(t, t1, T )H1(t)B1(t, t3, T )

− β(t, T )H1(t)B2(t, t1, t3, T ), B2(t1, t1, t3, T ) = 0.

∂

∂t
B3(t, t1, t1, t2, t3, T ) =−K1(t)B3(t, t1, t1, t2, t3, T )− β(t, T )H1(t)B3(t, t1, t1, t2, t3, T )

−B1(t, t1, T )H1(t)B2(t, t2, t2, t3, T )

−H1(t)B2(t, t1, t3, T )B1(t, t2, T )−H1(t)B2(t, t1, t2, T )B1(t, t3, T ),

B3(t1, t1, t1, t2, t3, T ) = 0.

To illustrate how one obtains the above ODEs, we show how to obtain the ODE for B2(t, t1, t3, T )
by taking the derivative of the ODE for B1(t, t3, T ) wrt. t1.

∂

∂t1

∂

∂t
B1(t, t3, T ) =

∂

∂t1
(−K1(t)B1(t, t3, T )− β(t, T )H1(t)B1(t, t3, T ))

⇒ ∂

∂t

∂

∂t1
B1(t, t3, T ) =−K1(t)

∂

∂t1
B1(t, t3, T )−

(
∂

∂t1
β(t, T )

)
H1(t)B1(t, t3, T )

− β(t, T )H1(t)
∂

∂t1
B1(t, t3, T )

⇒ ∂

∂t
B2(t, t1, t3, T ) =−K1(t)B2(t, t1, t3, T )−B1(t, t1, T )H1(t)B1(t, t3, T )

− β(t, T )H1(t)B2(t, t1, t3, T ).

5.4.3 Generalizing to higher dimensions

The results of the previous subsection can easily be generalized to the case where the underlying
process is a multidimensional affine process. That is, we assume that X is given by the stochastic
differential equation (5.3.1) but without jumps. Unfortunately, it is rather hard to state the
dense representation for a general dimension (d) of the affine process and for a general number
of jumps (n), even though it is doable in practice for fixed numbers n and d by following the
approach in the proof of Lemma 5.4.1. It is especially hard to state a general result for a dense
representation, since one gets all different kinds of mixed terms. For the non-dense approach, the
result is exactly the same except that the dimension of the ODEs is d and not 1. Here, we state
a multidimensional version of Lemma 5.4.2 without giving any proof.
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Theorem 5.4.5 (Non-dense representation). Let s, v ∈ [t, T ] with s < v. Assuming the same
integrability conditions as in Lemma 5.4.2 (in a multidimensional setting), we have that

E
[
e−
∫ v
s ρ0(τ)+ρtr1 (τ)X(τ)dτeu0(v)+utr1 (v)X(v)

(
f0(v) + f tr1 (v)X(v)

)n∣∣∣F(s)
]

= eα(s,v)+βtr(s,v)x
∑

(i1,...,in)∈Cn

κn(i1, . . . , in)

n∏
j=1

(
Aj(s, v) +Btr

j (s, v)x
)ij ,

where κn(i1, . . . , in) ∈ IN0 and the set Cn is given by

Cn =

{
v ∈ INn

0

∣∣∣∣∣
n∑
i=1

ivi = n

}
.

Moreover, α, β,Ai, Bi, i = 1, . . . , n fulfill the ODEs

∂

∂s
β(s, v) = ρ1(s)−Ktr

1 (s)β(s, v)− 1

2
βtr(s, v)H1(s)β(s, v),

∂

∂s
α(s, v) = ρ0(s)−Ktr

0 (s)β(s, v)− 1

2
βtr(s, v)H1(s)β(s, v),

∂

∂s
Bn(s, v) =−Ktr

1 (s)Bn(s, v) +
1

2

n∑
i=0

(
n
i

)
Btr
i (s, v)H1(s)Bn−i(s, v),

∂

∂s
An(s, v) =−Ktr

0 (s)Bn(s, v) +
1

2

n∑
i=0

(
n
i

)
Btr
i (s, v)H0(s)Bn−i(s, v)

with terminal conditions

β(v, v) = u1(v), α(v, v) = u0(v), B1(v, v) = f1(v), A1(v, v) = f0(v),

Bj(v, v) = 0, Aj(v, v) = 0, j > 1.

By similar arguments as in the one-dimensional case, we can “glue” the ODEs and obtain exactly
the same results as in Section 5.4.2. We just need to replace the one-dimensional notation with
the multidimensional vector notation.

5.5 Different subtopics relating to affine processes and reserves
in Markov chain models

In this section we present different topics relating to the results in Section 5.4. These topics are
a comparison of the dense and the non-dense representation and a description of a special case,
where one can obtain simple results even in the case of cycles in the Markov chain model. Lastly,
we comment on that one, under some additional assumptions, can include quadratic terms in
the dynamics of the underlying stochastic process and quadratic terms in the transforms of the
underlying stochastic processes and still be able to obtain results of the same type as the ones in
Section 5.4.

5.5.1 Comparison of representations/computational efficiency

Affine processes have gained their popularity in areas as economics, life insurance and credit risk
modelling because of their computational tractability. This tractability for some modelling pur-
poses is caused by the opportunity to solve ODEs instead of PDEs. In general, it is much simpler
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and computationally faster to solve ODEs instead of PDEs. Since computational efficiency is
one of the main advantages of the class of affine processes, it is relevant to consider the compu-
tational workload. Our main example in this paper is to calculate life insurance reserves, why
we in this section consider the computational workload of calculating these reserves. Moreover,
this section includes some comments about the differences between the dense and the non-dense
representation. In short, the main difference is that the dense representation leads to a minimum
number of ODEs to solve, whereas the non-dense representation is overparameterized. On the
other hand, the ODEs for the dense representation are in general more complicated and harder
to obtain than the ODEs for the non-dense representation.

In Table 5.2 we show a comparison between the dense and the non-dense representation in terms
of the number of ODEs needed to be solved to calculate the “standard transforms” given in
Lemma 5.4.1 for the one-dimensional case. This comparison covers different numbers of jumps
in the case where the underlying stochastic process is of dimension 1 and 2, respectively. When
we state the number of differential equations that needs to be solved, we count two-dimensional
ODE as 2 equations.

Dimension: 1 Dimension: 2

Jumps Dense Non-dense Jumps Dense Non-dense

0 2 2 0 3 3

1 3 4 1 5 6

2 4 8 2 8 12

3 5 16 3 12 24

Table 5.2: Comparison of the number of ODEs in case of one- and two-dimensional affine pro-
cesses.

Regardless of whether we consider the dense or the non-dense representation of the transform,
the main problem with either approach is that one needs to calculate lots of ODEs to obtain a
reserve. The computational challenge is not so much the dimension of the underlying stochastic
process as it is the number of jumps. It does for example hold for the non-dense representation,
that the number of ODEs is linear in the dimension in the sense, that the number of ODEs is
given as a multiple of (d + 1), where d is the dimension of the affine stochastic process. This is
not too bad and the greater problems arise when calculating the value of a reserve. In that case,
one needs to integrate the solutions of the ODEs. Moreover, the different ODEs depend on each
other through the fact that the solutions to some ODEs are needed as boundary values for other
ODEs. To exemplify this, we consider the case with an underlying one-dimensional stochastic
process and a calculation of the quantity given by (5.2.1). If the length of the contract (T − t)
is 30 years, and we assume that we discretize each year into 10 intervals, we in total need to
calculate ODEs in the magnitude of 1 billion time points.

5.5.2 Affine processes and models with cycles

Usually when dealing with Markov chains, affine processes are almost exclusively used for models
without cycles, which are also called hierarchical Markov chain models. The reason for this is
that transition probabilities in such models can be expressed as integrals of solutions to ODEs
as shown in the previous sections. Nonetheless, various products in the life insurance industry
would more naturally be valuated in Markov chain models with cycles. The most prominent of
these examples is the case of disability insurance, where it is naturally to assume, that the insur-
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ance policy can “jump” between the states “active/paying premiums” and “disabled/receiving
disability benefits”.

In models with cycles the affine structure is in the general case not of any help. However, there
is a class of interesting examples, where the affine structure is still useful, which we outline here.
The affine structure is useful in the case, where one can diagonalize an intensity matrix Q (also
known as a transition rate matrix) of a continuous time Markov chain such that

Q(t,X(t)) = V D(t,X(t))V −1,

where V is time-homogeneous and D is a diagonal matrix whose non-zero entries are affine in the
underlying affine process.

The most common case where one is able to diagonalize the intensity matrix is in the case of
proportional intensities. An example of such a matrix could be

Q(t, x) =

−(κ+ ρ)x κx ρx
%x −(%+ φ)x φx
0 0 0

 ,

which corresponds to Figure 5.2.

State 0 State 1

State 2

κx

%x

ρx φx

Figure 5.2: Diagonalizable three state model.

In such a model we can easily obtain results for the transition probabilities. We denote by Z the
state process of the Markov chain and by τT the integral

∫ T
t X(s)ds. By the tower property and

by making a time change in the matrix exponential, we get that for example the probability of
going from “State z” to “State j” from time t to time T is given by

PZ(t)=z,X(t)(Z(T ) = j) = E
[
1{Z(T )=j}

∣∣Z(t) = z,X(t)
]

= E
[
E
[
1{Z(T )=j}

∣∣Z(t) = z,X(s), s ≤ T,
]∣∣Z(t) = z,X(t)

]
= E

[(
eQτT

)
zj

∣∣∣Z(t) = z,X(t)
]

= E
[(
V eDτT V −1

)
zj

∣∣∣Z(t) = z,X(t)
]

=

2∑
i=0

(
vziṽijE

[
edi

∫ T
t X(s)ds

∣∣∣F(t)
])
,

(5.5.1)

where vij are the entries of V , ṽij are the entries of V −1, D = diag(d1X, d2X, d3X) and the

term E
[
edi

∫ T
t X(s)ds

∣∣∣F(t)
]

is a standard transform considered in this paper. That is, one can

obtain transition probabilities by diagonalizing a matrix, calculating simple transforms of affine
processes and summing the terms.
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5.5.3 The linear quadratic class

In the literature one sometimes sees examples of transition rates modelled as linear quadratic
functions. One example is De Giovanni (2010), where the surrender rate γ is given by

γ(t) = L0r
2(t) + L1.

Here, r is the short rate and L0 and L1 are constants. That is, in general it could be interesting
to be able to consider other transforms than the previously described affine ones. Moreover, it
would also make the modelling possibilities more flexible, if we were able to have other types of
dynamics than the affine ones. This section is about including these cases and still be able to
obtain results by solving ODEs instead of PDEs.

If we add some more structure, we can extend the class of stochastic processes from the affine to
the linear quadratic case. This requires some extra conditions to be fulfilled (for the coordinates,
where one has quadratic terms). In one dimension, we can calculate transforms of the form

E
[
e−
∫ T
t ρ0(s)+ρ1(s)X(s)+ 1

2
ρ2(s)X2(s)ds

∣∣∣F(t)
]

= ec(t)+b(t)X(t)+ 1
2

Γ(t)X2(t), (5.5.2)

where the dynamics of the underlying stochastic process are allowed to contain the following
terms:

dX(t) = (K0(t) +K1(t)X(t))dt+
√
H0(t)dW (t). (5.5.3)

For a two-dimensional stochastic process, where there is a quadratic term in one of the dimensions
but not in the other, we can calculate transforms of the form

E
[
e−
∫ T
t ρ0(s)+ρ1(s)X1(s)+ρ2(s)X2(s)+ρ3(s)X2

1 (s)ds
∣∣∣F(t)

]
= ea(t)+b(t)X1(t)+b2(t)X2(t)+c(t)X2

1 (t),

where the dynamics are allowed to contain the following terms:

d

(
X1(t)
X2(t)

)
=

(
K10(t) +K11(t)X1(t)

K20(t) +Ktr
21(t)X(t) +K22(t)X2

1 (t)

)
dt+ σ(t)dW (t), (5.5.4)

where σσtr is given by

σ(t)σtr(t) =

(
H10(t) 0

0 H20(t)X2(t)

)
.

This setup still covers many of the well known interest rate models e.g. the Vasiček and the
Hull-White model. It can be shown in general, that the linear quadratic class is equivalent to the
affine class, which can be proven by an expansion of the statespace for the affine processes. For
a proof and more details about this equivalence, see Cheng and Scaillet (2007).
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Chapter 6

Optimal surplus distribution
problems for regulated funds with
assets and liabilities

Abstract: This paper studies optimal surplus distribution strategies for an infinite
time horizon within a model where asset and liability values are modeled by correlated,
geometric Brownian motions. The controls considered are, that we either increase li-
abilities or decrease assets. The increase of liabilities could be used in the modelling
of non-for-profit mutual funds or pension funds. On the other hand, the decrease in
assets could be used for modelling of for-profit companies. In the first part of the paper,
we prove optimality of a barrier strategy under the simple solvency constraint that no
distribution can be made if the funding ratio is below a certain level. In the second
and third part of the paper, we study barrier strategies in a model with more advanced
solvency constraints and a model where ruin must be prevented. The advanced solvency
constraint is that there is an interval [α1, α2] in which the allowance of controlling the
process depends on which of the two barriers α1 and α2 that has been crossed last.
The interpretation of the advance solvency constraint is that an institution which have
been in an emergency state should not be allowed to distribute before having achieved
a given level of consolidation. To prevent ruin, we either lower the liabilities (in the
pension fund case) or we inject capital (in the for-profit case). This leads to different
levels for the optimal upper barrier for the case where we control liabilities and for the
case where we control assets, respectively. This is different to the case where ruin is
a possibility. The formalistic results are exemplified in a series of numerical studies
including cost/benefit analysis of the different solvency constraints and the effect of
making the price of raising capital dependent on the funding ratio.

Keywords: Optimal dividends, capital injection, funding ratio, stochastic control,
regulation, solvency.

6.1 Introduction

6.1.1 Motivation and main contributions

In actuarial risk theory, the stability problem is about modelling the dynamics of risky businesses
in a stylised fashion in order to help them make decisions about how to manage their risk;
see (Bühlmann, 1970) for a classical reference. Over the past century, a variety of (decision)
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criteria were considered, including the probability of ruin (see Asmussen and Albrecher, 2010,
for a recent comprehensive review) or the expected present value of dividends (see Albrecher and
Thonhauser, 2009; Avanzi, 2009, for recent reviews). In their purest form, these criteria have
various shortcomings, that researchers have tried to address over time. The criteria are also
sometimes modified or augmented to better fit some specific contexts.

One of the criticisms formulated against the expected present value of dividends criterion (see
Gerber, 1974, for instance) as introduced in de Finetti (1957) was the lack of explicit focus
(or consideration) of solvency in the criterion, and in its optimal definition. In this paper, we
consider a profitable, risky setting with two separate, correlated asset and liability processes (see
Section 6.1.2). The company that is considered is allowed to distribute excess profits (traditionally
referred to as dividends in the literature), but is regulated and is subject to particular regulatory
(solvency) constraints (the nature of which, inspired by Paulsen, 2003; Avanzi and Wong, 2012, is
further developed in Section 6.1.4). Importantly, because of its bivariate nature, such distributions
of excess profits can take two alternative forms. These can originate from a reduction of assets
(and hence a payment to owners), but also from an increase of liabilities (when these represent
the wealth of owners, such as in pension funds). The latter is particularly relevant if leakages
do not make sense because of the context, such as in pension funds where assets are locked until
retirement.

Mathematically, both distribution avenues are treated in a very similar way (although there are
material differences in some cases). For the sake of brevity we will provide full details only for one
case, and only results for the other. We elected to focus primarily on the ‘increase of liabilities’
case, as we believe this is the most innovative in this context.

Introducing solvency constraints improve the longevity of the regulated fund, see Sections 6.2
and 6.3, but may not prevent it. In such cases where the company must stop its activities, it may
be profitable to rescue it. We consider this in Section 6.4. The form of the rescue measures—
injections of assets, or decrease of liabilities—will depend on the context; this is briefly discussed
in Section 6.1.5.

A bivariate geometric Brownian motion was introduced in Gerber and Shiu (2003). They con-
sidered two problems: (a) to keep the funding ratio (ratio of assets to liabilities) within a band,
equalising inflows and outflows. They conjectured a fund “should” do so; (b) to maximise (in
absence of inflows) the expected present value of outflows (dividends). They conjectured that a
barrier dividend strategy should be optimal. Decamps et al. (2006) extended (a) to finite time
horizon, while Decamps et al. (2009) proved that the conjecture in (b) is correct. Also, Chen and
Yang (2010) extended the results of Gerber and Shiu (2003) to a regime-switching environment.

In this paper, we extend the results of Gerber and Shiu (2003) and Decamps et al. (2009) by
including simple and advanced solvency constraints. We also consider the case when the company
is rescued to prevent ruin. More specifically, we obtain closed form expressions for the expected
present value of distributions (asset decrements or liability increments), penalised by rescue mea-
sures when those are considered (asset increments or liability decrements), when a distribution
barrier is used, and under a range of solvency constraints. When the company cannot be rescued,
optimal barrier levels are the same whether assets or liabilities are controlled, but these differ
when the company is rescued to prevent ruin. Furthermore, we show that a barrier strategy is
optimal amongst all admissible strategies when a simple solvency constraint is applied.
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6.1.2 A bivariate asset and liability process

As mentioned earlier, we consider a bivariate surplus process, where assets and liabilities are
modeled as correlated geometric Brownian motions. The dynamics of the assets, which we denote
by X1 := A, and the liabilities, which we denote by X2 := L, are given by

d ~X(t) =d

(
A(t)
L(t)

)
=

(
µA 0
0 µL

)(
A(t)
L(t)

)
dt+

(
σAA(t) 0

ρσLL(t)
√

1− ρ2σLL(t)

)
dW (t)

=µ( ~X(t))dt+ σ( ~X(t))dW (t),

(6.1.1)

where A(0) = A0, L(0) = L0, ρ ∈] − 1, 1[ is the correlation factor, and where W is a standard
two-dimensional Brownian motion. Following the lines of Gerber and Shiu (2003), we assume
that the discount rate is greater than the drift of the assets, which is greater than the drift of the
liabilities. That is,

δ > µA (6.1.2)

and

µA > µL. (6.1.3)

Equation (6.1.2) makes us avoid that the supremum of the expected present value of dividends
is infinity and (6.1.3) makes us avoid the case, where it is optimal to pay out all dividends
immediately; see Gerber and Shiu (2003, Section 9). The funding ratio, Y , is defined as the ratio
of assets to liabilities. That is,

Y (t) =
A(t)

L(t)
, t ≥ 0.

This model setting is identical to that of Gerber and Shiu (2003). Note that Sethi and Taksar
(2002) considered dividends and capital injections for a company whose surplus is modeled by a
(univariate) geometric Brownian motion, which is a more traditional, uni-dimensional formula-
tion.

6.1.3 Distribution of profits

Since µA > µL, the funding ratio will increase to infinity on average, and it makes sense that
excess profits would be distributed in some way. In what follows, we will consider two ways of
doing so:

A. Increase liabilities;

B. Decrease assets.

For the rest of the paper, we will refer to both cases as to “Case A” and “Case B”, respectively.
The result of either will be referred to as a “distribution”.

The increase of liabilities (Case A) could be used in the modelling of non-for-profit mutual funds
or pension funds. On the other hand, the decrease of assets (Case B) could be used in the
modelling of for-profit companies. The latter case is equivalent to paying out dividends, which is
the standard assumption in the actuarial dividend literature.

In this paper, we consider barrier type distributions, which we prove optimal in some cases. Note
that here the barrier is defined on the funding ratio (distributions are made if the funding ratio
is beyond a certain barrier level, so that the funding ratio is brought back to that particular
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level). The model is illustrated in Figure 6.1, where assets, liabilities and funding ratio both for
the uncontrolled (black lines) and the controlled (grey lines) processes are depicted for a given
sample path of the two-dimensional Brownian motion. Moreover, the dotted line in the figures
show the positive distribution processes Dπ

A and Dπ
B defined below. Note that the controlled

funding ratio is the same for both cases, whereas the expected present values will be different.
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Figure 6.1: Figure illustrating the model. Left: Case A. Right: Case B. The uncontrolled
processes are in black and the controlled processes are in grey. The dotted lines depict the
undiscounted, aggregated payment processes.

Distributions will either translate into increasing liabilities (Case A) or decreasing assets (Case
B). The controlled processes, which we denote ~Xπ

A and ~Xπ
B, have dynamics

d ~Xπ
A(t) = µ

(
~Xπ

A(t)
)
dt+ σ

(
~Xπ

A(t)
)
dW (t) +

(
0

dDπ
A(t)

)
and

d ~Xπ
B(t) = µ

(
~Xπ

B(t)
)
dt+ σ

(
~Xπ

B(t)
)
dW (t)−

(
dDπ

B(t)
0

)
,

where Dπ
A is the payment stream of increases of the liabilities (Case A) and Dπ

B is the divi-
dend payment stream. We denote by Lπ liabilities after addition of Dπ

A and by Aπ assets after
subtraction of Dπ

B. The funding ratios of the controlled processes are then given by

Y π
A (t) =

A(t)

Lπ(t)
and Y π

B (t) =
Aπ(t)

L(t)
, t ≥ 0,

respectively.

Remark 6.1.1. The model allows for deterministic (multiplicative) increase of the assets and
liabilities, plus (correlated) random variations. Because of the nature of the processes, these vari-
ations are continuous, and one might argue that abrupt changes in assets and liabilities (jumps)
should be allowed in order to reflect the random nature of the businesses, and/or expected changes
in scale. Beyond the fact that these would require developments beyond the scope of a single paper,
we believe our model is still reasonable for the following reasons:
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1. Case A: the formulation of our model means that we consider an accumulation scheme
in equilibrium, that is, where contributions are continuously offset by payouts. This is an
approximation, but we believe it is good enough for our analysis. If significant assets and
liabilities were to enter or leave the fund, this typically would lead to a specific procedure
and distribution rule (partial liquidation).

2. Case B: additional contributions to the company can be made from time to time without
affecting the conclusions as long as these are made so as not to make existing shareholders
richer or poorer. In terms of our model this means that they would be made at the existing
funding ratio. We will see later that a change of scale that does not impact the funding ratio
has no impact on our conclusions (how to control the process).

6.1.4 Bankruptcy and advanced solvency constraints

Of course, the fund may become bankrupt. This will occur as soon as the funding ratio reaches
a given level α0. For either of the cases A and B we denote by τα0 the time of ruin, which is the
stopping time defined as the first time the funding ratio of the controlled processes equals α0.
For the rest of the paper we will use the notation $ ∈ {A,B} to simplify notation where possible.
Using this notation, the bankruptcy time for the two cases is given by

τα0 = inf {t ≥ 0|Y π
$(t) = α0} .

For Case A, α0 could be below or above 1, depending on the nature of the fund (partially funded
public or fully funded private, for instance). For Case B, the level α0 would typically be 1.

We now introduce a simple solvency constraint. Because one might want to restrict admissible
distributions so as not to bring the funding ratio too close to α0, we set a level α1 ≥ α0 under
which distributions cannot bring the funding ratio. For Case A, it is obvious that a regulator
would not allow distributions to be made all the way to the bankruptcy level. In this context, α1

could, for instance, include some statutory reserves dedicated to buffer fluctuations of assets. For
B, such a restriction (unless it is exogenously imposed) does not make much sense in terms of pure
maximisation of dividends as, if it did, this would be taken into account in the maximisation pro-
cess. However, pure maximisation of the expected present value of dividends until ruin is hardly
a perfect objective, and this mechanism has a significant impact on the stability of the process as
illustrated later in Section 6.2.3. Hence, the controller might still want to forego some expected
return in favour of some more stability. Of course, α1 could also be exogenously determined by
a regulator. For example, considering a regulated insurance fund, α0 and α1 could correspond to
the Minimum Capital Requirement and Solvency Capital Requirement, respectively, under the
framework of the new European regulatory system Solvency II.

So far we have two areas: between α0 and α1, where no distribution is allowed, and beyond α1,
where distributions are allowed. Because of diffusion, the fund might fluctuate very often between
both areas if it is in the vicinity of α1 (which is likely to happen in reality, especially if the barrier
level is close to α1). We introduce a third level α2 ≥ α1 with the following mechanism (see also
Figure 6.2). When the process is in the region between α1 and α2 and coming from α2—that
is, when the last visit at either α1 or α2 was α2—distributions are allowed. When the last visit
was α1 we consider that the process is in recovery and no distribution is allowed. This has the
following interpretation:

A. Under A, we assume that the fund is not fully funded if its funding ratio is below α1 (although
it is not severe enough to declare bankruptcy). Hence it is not realistic to assume that a fund
that has just recovered and just reached α1 could immediately start distributing some of its
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Not allowed to distribute

α1

Depends. Allowed to distribute if coming from α2, but not if coming from α1

α2

Allowed to distribute

Figure 6.2: Graphical illustration of a model with advanced solvency constraints {α0, α1, α2}.

excess profits. In other words, α2>α1 describes a situation where downcrossing α1 would
trigger some alarm and put the fund in an emergency state under which no distribution is
allowed (and perhaps, under which the fund is closely monitored by the regulator). This state
would revert back to normal when the process upcrosses the level α2>α1 again.

B. Under B, α1=α2 may lead to erratic periods of dividend payments if the barrier is equal to α1,
which is unrealistic; see also Avanzi and Wong (2012) for a discussion of this. In particular,
erratic dividend payments was another criticism formulated in Gerber (1974).

Remark 6.1.2. The introduction of advanced solvency constraints is in some way similar in
spirit to the introduction of “Parisian implementation delays”; see, for instance, Dassios and Wu
(2009). In their paper, dividends are not payable immediately when the barrier is crossed, but
only if the surplus stays above that barrier for a certain period of time.

6.1.5 Rescue measures

Distributing profits usually means that ruin is certain. If profits are allowed to be distributed, it
makes sense that the reverse operation could also be allowed to prevent ruin, and could indeed be
profitable in certain cases. This idea goes back to Borch (1974, Chapter 20) and Porteus (1977).

Here, ruin will be prevented in different ways, depending on the context. In Case A, it will
be done by decreasing liabilities. Indeed, when in financial distress, rescue measures in pension
funds usually materialise as reductions of benefits, as it may not be possible to ask for additional
money from members. Furthermore, additional contributions from members would normally lead
to increases of liabilities at the same time, which would improve the funding ratio, but rescue
would require a higher amount of money than a reduction in benefits, and may even be unable
to bring the ratio to an acceptable level (if the minimum is higher than or equal to 1). In Case
B, we will be injecting capital, just as in the first problem considered in Gerber and Shiu (2003),
but with an aim at maximizing the difference between dividends and capital injections, rather
than matching them.

Lest the problem becomes trivial, rescue measures will attract transaction costs. With propor-
tional transaction costs, it turns out (unsurprisingly) that if such measures are warranted (have
positive expected value), these will be made only at level α0 to avoid bankruptcy. If a more
complex transaction cost structure is considered (one that would depend on the target funding
ratio, for instance), this may no longer be the case. We discuss this in Section 6.4.3, but a formal
treatment of this is outside the scope of this paper.
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6.2 With simple solvency constraints

In this section we consider a simple solvency constraint setting {α0, α1, α2} where α1 > α0, but
where α2 = α1. This is equivalent to the constraint introduced in Paulsen (2003, in a univariate,
pure diffusion setting). In mathematical terms, this constraint translates into the condition∫ τα0

0
1{Y π$(s)<α1}dD

π
$(s) = 0. (6.2.1)

In this framework, we want to determine the optimal control strategy π that maximizes the
expected present value of the distribution denoted by

J$,1(~x;π) = E~x
[
lim sup
t→∞

∫ t∧τα0

0
e−δsdDπ

$(s)

]
.

where E~x[·] is the expected value given X(0) = ~x. Note that the subscript “1” indicates that we
consider a model with simple solvency constraint. Likewise, we will throughout the paper use
the subscript “2” in the model with advanced solvency constraints and the subscript “3” in the
model where ruin must be prevented. The optimal strategy π∗ fulfills that

V$,1(~x;π∗) = sup
π∈Π

J$,1(~x;π), (6.2.2)

where Π is the set of admissible strategies. A strategy is said to be admissible if Dπ
$ is a non-

decreasing, F-adapted process with Dπ
$(0−) = 0 and satisfies (6.2.1). Moreover, we assume that

Dπ
$ has càdlàg sample paths. The solvency restriction (6.2.1) implies, that we do not allow for

any liquidation (“take your money and run”) strategy, whereby a single dividend payment could
bring the company to bankruptcy.

6.2.1 Value of distributions when liabilities are increased (Case A)

For a given value of ~x, we denote by F (~x) the value function for the optimal strategy π∗. We
allow for singular control strategies and by standard methods we get that F admits the following
HJB equation:

0 = max

{
(A− δ)F (~x), 1 +

∂

∂x2
F (~x)

}
, F (α0x2, x2) = 0, (6.2.3)

where

Af(~x) =µAx1
∂

∂x1
f(~x) + µLx2

∂

∂x2
f(~x) +

1

2
σ2
Ax

2
1

∂2

∂x2
1

f(~x)

+
1

2
σ2
Lx

2
2

∂2

∂x2
2

f(~x) + ρσAσLx1x2
∂2

∂x1∂x2
f(~x).

(6.2.4)

Based on the results in Shreve et al. (1984), Decamps et al. (2009) and Paulsen (2003), a qualified
guess is that the optimal strategy for increasing the liabilities is of the barrier type. By barrier,
we refer to a constant level of funding ratio. We denote the optimal barrier in an unconstrained
model (such as considered in Gerber and Shiu, 2003) by β∗0 and the optimal barrier in the model
with (simple) solvency constraint by β∗1 . We use the notation β∗0 and β∗1 without any subscript
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A to simplify notation. Besides, we show later that the optimal barrier is the same for cases A
and B. We conjecture that the optimal barrier for the assets is given by β∗1L, where

β∗1 =

{
β∗0 , β∗0 ≥ α1,
α1, β∗0 < α1.

With techniques similar to the ones in Decamps et al. (2009) (who also derived β∗0 but had no
solvency constraint) we will show that β∗1 is the optimal barrier. To make the paper self contained,
we also give a proof for the case β∗0 ≥ α1 and we make the proof a bit more detailed compared
to Decamps et al. (2009).

First, we consider the value function of a barrier strategy with an arbitrary barrier level β. The
corresponding value function is denoted by

GβA(~x) = E~x
[∫ τα0

0−
e−δsdCβ(s)

]
,

where Cβ is notation for a strategy, where we increase liabilities in order to keep the funding ratio

below β. The value of GβA is given by

GβA(~x) =

{
GA(~x;β), x1 ∈ [α0x2, βx2],
x1
β − x2 +GA

(
x1,

x1
β ;β

)
, x1 > βx2,

(6.2.5)

where GA(·;β) is given by the differential equation

(A− δ)GA(~x;β) = 0 for α0 ≤
x1

x2
≤ β. (6.2.6)

The differential equation (6.2.6) can be obtained by the following heuristic reasoning. Let x1
x2
≤

β ⇔ x1 ≤ βx2 and consider an infinitesimal time interval of length dt. We get that

GA(x1, x2;β) =e−δdtE
[
GA

(
x1 + µAx1dt+ σAx1W1(dt),

x2 + µLx2dt+ ρσLx2W1(dt) +
√

1− ρ2σLx2W2(dt);β
)]
.

(6.2.7)

Developing the expectation using Taylor series, subtracting GA(x1, x2;β) and dividing by dt on
both sides yields

GA(x1, x2;β)

(
eδdt − 1

dt

)
= AGA(x1, x2;β).

We let dt→ 0 and using l’Hôpital’s rule we obtain (6.2.6).

The boundary conditions for the value function, which hold for all levels of barrier β, are given
by

GA (α0x2, x2;β) = 0, (6.2.8)

∂

∂x2
GA (x1, x2;β)

∣∣∣∣
x2=

x1−
β

= −1. (6.2.9)

Moreover, we have the boundary condition

∂2

∂x2
2

GA (x1, x2;β∗0)

∣∣∣∣
x2=

x1−
β∗0

= 0, (6.2.10)
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which only holds for the optimal barrier β∗0 . Condition (6.2.8) follows directly from the definition
of ruin. Condition (6.2.9) is similar to (2.6) in Avanzi and Gerber (2008) and can be obtained in
a similar way. Lastly, we get condition (6.2.10) by taking the derivative of (6.2.9) with respect to
β. This gives us that (using the chain rule for partial derivatives)

∂

∂β

(
∂

∂x2
GA (x1, x2;β)

∣∣∣∣
x2=

x1−
β

)

=− (x2−)

β2

∂2

∂x2
2

GA (x1, x2;β)

∣∣∣∣
x2=

x1−
β

+
∂2

∂x2∂β
GA (x1, x2;β)

∣∣∣∣
x2=

x1−
β

=
∂

∂β
(−1) = 0.

(6.2.11)

Since the term ∂2

∂x2∂β
GA (x1, x2;β) |

x2=
x1−
β

in (6.2.11) is 0 for the optimal barrier, we get (6.2.10)

by inserting β∗0 and dividing the equation by (x2−)/β2. To find the solution to equation (6.2.6),

we take advantage of the fact that GβA (and GA) are homogeneous functions of degree 1, which
follows since the dynamics of both assets and liabilities are linear in the assets and liabilities,
respectively. That is, for a given constant % it holds that GβA(%x1, %x2;β) = %GβA(x1, x2;β) so
that the important quantity (up to a scaling factor) is the ratio x1/x2. The solution to the system
of equations is given in the following lemma:

Lemma 6.2.1. The solution to differential equation (6.2.6) with boundary conditions (6.2.8) and
(6.2.9) is given by

GA(x1, x2;β) = x2

(
x1
α0x2

)ζ1
−
(

x1
α0x2

)ζ2
(1− ζ2)

(
β
α0

)ζ2
− (1− ζ1)

(
β
α0

)ζ1 , (6.2.12)

where

σ̃2 = σ2
A + σ2

L − 2ρσAσL,

ζ1 =

1
2 σ̃

2 − (µA − µL)−
√

1
4 σ̃

4 + (µA − µL)2 − σ̃2 (µA + µL − 2δ)

σ̃2
,

ζ2 =

1
2 σ̃

2 − (µA − µL) +
√

1
4 σ̃

4 + (µA − µL)2 − σ̃2 (µA + µL − 2δ)

σ̃2
.

(6.2.13)

Proof: See Appendix 6.A.1.

We see from (6.2.12), that only the denominator depends on β and that both the numerator and
the denominator are negative. Furthermore, it is interesting to note that, apart from a scaling
factor of x2, the function is only expressed in terms of ratios of x1 to α0x2. Hence, the shape of
the value function is unaffected by the scale of the two processes.

We now take the derivative of the denominator and set the derivative equal to 0 to find the
maximum of the denominator (and the maximum of GA(·;β)). The resulting optimal barrier
level is

β∗0 = α0

(
ζ2(ζ2 − 1)

ζ1(ζ1 − 1)

) 1
ζ1−ζ2

= α0

(
ζ1(ζ1 − 1)

ζ2(ζ2 − 1)

) 1
ζ2−ζ1

. (6.2.14)

Because of the assumption that µA > µL, we have that β∗0 > α0. We obtain this result by using
the representation given by (6.A.3) for both the numerator and the denominator of (6.2.14)

ζ1(ζ1 − 1)

ζ2(ζ2 − 1)
=
δ − µL − (µA − µL)ζ1

δ − µL − (µA − µL)ζ2
> 1, (6.2.15)
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and using the fact that 1
ζ2−ζ1 > 0; see (6.2.13).

We note that the optimal barrier β∗0 exists and is unique. This is a result of the following
argument: We let f denote the denominator of (6.2.12) as a function of β. Using the assumptions
(6.1.2) and (6.1.3) and the result (6.2.15), we get that f ′(α0) > 0 and f ′′(β) < 0 for all β > α0.
Thus we know the optimal barrier exists and is unique. Also, note that for δ = µA we get that
ζ2 = 1 which implies that β∗0 →∞ for µA → δ (if we become very patient (δ is getting closer to
µA) it is optimal to wait more before distributing profits) and for µA ≤ µL we get β∗0 = α0 (if the
company is not profitable we should liquidate it immediately).

In order for the candidate solution to be useful, we need it to fulfill the HJB equation. That is
the case, as stated in the following lemma:

Lemma 6.2.2. The candidate solution G
β∗0
A given in (6.2.5) with barrier β∗0 given by (6.2.14) ful-

fills all the conditions of the HJB equation (6.2.3) and the partial derivatives of G
β∗0
A are bounded.

Proof: See appendix 6.A.2.

Next, the verification lemma:

Lemma 6.2.3. If a non-negative function G ∈ C1(IR+) is also twice continuously differentiable
except at countably many points and satisfies for x ≥ 0 that

(A− δ)G(~x) ≤ 0, (6.2.16)

∂2

∂x2
1

G(~x) ≤ 0, (6.2.17)

K1 ≥
∂

∂x1
G(~x) ≥ H1, (6.2.18)

∂2

∂x2
2

G(~x) ≤ 0, (6.2.19)

K2 ≤
∂

∂x2
G(~x) ≤ −1 (6.2.20)

for some finite constants K1, H1 and K2, then

G(~x) ≥ VA,1 (~x;π∗) .

Moreover, if there exists a point β∗ ∈ IR+ such that G ∈ C1(IR+) ∩ C2 (IR+\{β∗}) satisfies

(A− δ)G(~x) = 0 and
∂

∂x2
G(~x) ≤ −1 for x2 ∈

[
x1

β∗
,
x1

α0

]
, (6.2.21)

(A− δ)G(~x) < 0 and G(~x) =
x1

β∗
− x2 +G

(
x1,

x1

β∗

)
for x2 ∈

(
0,
x1

β∗

)
, (6.2.22)

then it holds that

G(~x) = VA,1(~x;π∗),

and for the case β∗ ≥ α1, the optimal strategy is a barrier strategy with barrier β∗, whereas for
the case β∗ < α1, the optimal strategy is a barrier strategy with barrier α1.

Proof: See appendix 6.A.3.

The proof of Lemma 6.2.3 extends that of Decamps et al. (2009) to include solvency constraints
and an explicit proof of concavity. The solvency constraint requires a second part of proof, where
we use some subresults of the first part of the proof.
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6.2.2 Value of distributions when assets are decreased (Case B)

In this section we consider the optimal dividend strategy under a simple solvency constraint.
The proofs of the results are similar to the ones in Section 6.2.1 we therefore omit these. The
structure of the section resembles the one of Section 6.2.1, and we state the results without a
long introduction.

The HJB equation is given by

0 = max

{
(A− δ)F (~x), 1− ∂

∂x1
F (~x)

}
, F (α0x2, x2) = 0, (6.2.23)

where A is given by (6.2.4). The value function for a barrier strategy is then given by

GβB(~x) =

{
GB(~x;β), x1 ∈ [α0x2, βx2],
x1 − βx2 +GB(βx2, x2;β), x1 > βx2.

(6.2.24)

The boundary conditions for the value function, which hold for all levels of barrier β, are given
by

GB (α0x2, x2;β) = 0, (6.2.25)

∂

∂x1
GB (x1, x2;β) |x1=βx2− = 1. (6.2.26)

Moreover we have the boundary condition

∂2

∂x2
1

GB (x1, x2;β∗0) |x1=β∗0x2− = 0, (6.2.27)

which only holds for the optimal barrier β∗0 .
The resulting value function is

GB(x1, x2;β) = βx2

(
x1
α0x2

)ζ1
−
(

x1
α0x2

)ζ2
ζ1

(
β
α0

)ζ1
− ζ2

(
β
α0

)ζ2 , (6.2.28)

where ζ1 and ζ2 are given by (6.2.13). Note that for x2 = 1 this result is also given by Gerber
and Shiu (2003, equation (9.6)).
The optimal barrier is the same as the one in Case A, such that β∗0 is given by (6.2.14). As in
Case A, one can show that the optimal barrier exists and is unique.

The verification lemma for Case B is given below:

Lemma 6.2.4. If a non-negative function G ∈ C1(IR+) is also twice continuously differentiable
except at countably many points and satisfies for x ≥ 0 that

(A− δ)G(~x) ≤ 0, (6.2.29)

∂2

∂x2
1

G(~x) ≤ 0, (6.2.30)

K1 ≥
∂

∂x1
G(~x) ≥ 1, (6.2.31)

∂2

∂x2
2

G(~x) ≤ 0, (6.2.32)

K2 ≤
∂

∂x2
G(~x) ≤ H2 (6.2.33)
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for some finite constants K1, K2 and H2 then

G(~x) ≥ VB,1 (~x;π∗) .

Moreover, if there exists a point β∗ ∈ IR+ such that G ∈ C1(IR+) ∩ C2 (IR+\{β∗}) with

(A− δ)G(~x) = 0 and
∂

∂x1
G(~x) ≥ 1 for x1 ∈ [α0x2, β

∗x2], (6.2.34)

(A− δ)G(~x) < 0 and G(~x) = x1 − β∗x2 +G(β∗x2, x2) for x1 ∈ (β∗x2,∞), (6.2.35)

then it holds that

G(~x) = VB,1(~x;π∗),

and for the case β∗ ≥ α1, the optimal strategy is a barrier strategy with barrier β∗, whereas for
the case β∗ < α1, the optimal strategy is a barrier strategy with barrier α1.

The structure of the proof is the same as in the proof of Lemma 6.2.3 though the calculations
and comparisons of the different terms are somewhat different.

6.2.3 The impact of the simple solvency constraint

In this section, we consider the impact of the simple solvency constraint on the stability of
operations. In Figure 6.3, we compare outcomes of 10,000 simulations for the aggregate dis-
tributed amount in cases A (left) and B (right), as well as the time to bankruptcy (middle—note
bankruptcy times are the same for both cases A and B since the funding ratio for the two cases
are the same), when a simple solvency constraint is applied (horizontal axis) or not (vertical axis).
In all three scatterplots, values in the top left triangle are those where the outcome in absence
of constraints beats that in presence of a simple solvency constraint, whereas outcomes in the
bottom right triangle are those where the constraints beats the base case. In terms of dividends,
we know that the absence of constraints will lead to a higher expected present value—on average.
What the three graphs in Figure 6.3 teach us is that, when there is a substantial difference in
terms of distributions, it is in favour of the solvency constraint (especially in Case A). Also,
the coefficient of variation of the average aggregate distribution amount is in both cases lower
with the solvency constraint than without. In terms of solvency itself, the case with solvency
constraint clearly dominates the one without. Therefore, regulators could argue that the solvency
constraint in this case is really effective and comes at a relatively small cost.

Note that the bankruptcy times are the same for both cases A and B since the funding ratio for
the two cases are the same. The plots are for 10.000 simulations performed according to a simple
Euler scheme. The simulations were censored at time T = 15.000 (unless declared bankrupt
before). For the following mean values and variances, the first element in the vector corresponds
to the data on the first axis and the second element corresponds to the data on the second axis.
Left plot: Mean = (0.77395, 0.77806), Variance = (0.04563, 0.04709).
Middle plot: Mean = (5040.92724, 2420.87073), Variance = (4348.9312, 2403.1012).
Righ plot: Mean = (1.81492, 1.84436), Variance = (0.74447, 0.81895).
While these results would be quantitatively different with other parameters, conclusions would
be qualitatively similar.
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Figure 6.3: Scatterplots for no solvency constraints and simple solvency constraint, respectively.
The left figure shows the distributions for Case A, the middle figure shows ruin times (which are
the same for both Case A and Case B), and the right figure shows dividends for Case B. For
parameters used, see Table 6.1 in Appendix 6.B, set no. 1.

6.3 Advanced solvency constraints

In this section, we consider the advanced type of solvency constraint with barriers {α0, α1, α2}
introduced and described in Section 6.1.4; see in particular Figure 6.2. Here, we are allowed to
control the process when the funding ratio is in the interval (α1, α2) if and only if the funding ratio
last crossed α2, rather than α1. Note, that this model is a generalization of that developed in the
previous section. This follows, since this model simplifies to the model in Section 6.2 for α2 = α1.
The main challenges in the current model are how to formulate the constraint mathematically,
how to obtain a value function explicitly, and how to determine the optimal barrier level.

We start by defining a set of stopping times τπn , n ∈ N0 given by

τπ$,0 = inf{t ≥ 0 : Y π
$(t) ≤ α1 ∨ Y π

$(t) ≥ α2},
τπ$,i = inf{t > τ$,i−1 : (Y π

$(t) ≤ α1 ∧ Y π
$(τi−1) ≥ α2) ∨ (Y π

$(t) ≥ α2 ∧ Y π
$(τ$,i−1) ≤ α1)},

i = 1, 2, . . . .

Now that we are equipped with those stopping times, we define a 0-1 process φ$ such that

φ$(t) = 1{t<τ$,0∪Y π$(t)≥α1} +

∞∑
i=1

(
1{t∈[τ$,i−1,τi[}1{Y π$(τ$,i−1)≥α2}

)
. (6.3.1)

The process φ$ is 1 when we are allowed to control the funding ratio and 0, when we are not.
That is, we can formulate the new solvency constraint as∫ τα0

0
(1− φ$(s))dDπ

$(s) = 0. (6.3.2)

Due to the form of the function φ$ given by (6.3.1) we assume that distributions are initially
allowed if α1 < Y π

$(0) < α2 (until the first stopping time τπ$,0).

As in the former section, we denote the optimal barrier in the model without any solvency con-
straints by β∗0 , and we denote the optimal barrier in the model with advanced solvency constraints
by β∗2 . In order to conjecture an optimal barrier strategy, we consider different possibilities for
the relationship between β∗0 and {α0, α1, α2}. We know that β∗0 > α0, so we only need to consider
the following cases:
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Case 1: α0 < β∗0 < α1

Case 2: α1 ≤ β∗0 < α2

Case 3: β∗0 ≥ α2

We want to consider each of the three cases separately:

1. The conjecture is not that you distribute as much as you are allowed to (down to α1).
Instead the conjecture is, that the optimal strategy is a barrier strategy with level Λ > α1

(strictly higher), which enables you to keep paying dividends for some time. If the barrier
was α1 we would lose any opportunity to pay dividends until we reach α2 again.

2. Following the lines of the previous point, we conjecture that the optimal strategy is a barrier
strategy with barrier Λ ≥ β∗0 . The supplement Λ− β∗0 would be larger as β∗0 is close to α1.

This leads to a mix of lump sum distributions of size
(

1
Λ −

1
α2

)
A for Case A and (α2−Λ)L

for Case B (when φ switches from 0 to 1) and payments at the barrier according to the
oscillation of the Brownian motion (when the process φ is in state 1). This control can be
seen both as alternating between a non-singular and an impulse control, or it can be seen
as a singular control.

3. In this case the solvency constraint is no constraint at all in terms of optimal dividend
strategies, and we get the same result as in the unconstrained case. That is, β∗2 = β∗0 .

An example of a sample path for “Case 2” is found in Figure 6.4 where β∗2 is the optimal barrier
(which will be determined later). The dotted lines show the distributions in Case A and Case
B, respectively. The grey parts of the funding ratio process illustrates time spans where you are
not allowed to pay out dividends (φ = 0) and the black parts of the line illustrates time spans
where you are allowed to pay out dividends (φ = 1). Note that β∗0 = 1.3722. We observe that
distributions consist of infinitesimal payments at the barrier β∗2 (when φ = 1) and lump sum

payments of size
(

1
β∗2
− 1

α2

)
A (Case A) and (α2−β∗2)L (Case B), when the funding ratio hits α2.

The objective here is the same as in Section 6.2, where we considered a simple solvency constrain.
The only difference is, that we now consider the solvency constraint (6.3.2) instead of the solvency
constraint (6.2.1).

In what follows, we conjecture that the optimal strategy is as described here, and determine the
associated value function and optimal barrier level β∗2 .

6.3.1 Value of distributions when liabilities are increased (Case A)

We assume that α1 ≤ β, since a control strategy within the present solvency regime is not well
defined/allowed for β < α1. We denote by V β

A,2(~x) the value function for a barrier strategy with
barrier β for the funding ratio. By a barrier strategy we mean exactly the same as described in
Section 6.2. The value function is then given by

V β
A,2(~x) =


V 0

A,2(~x;β), x1 ∈ [α0x2, α2x2[∧φ = 0,

V 1
A,2(~x;β), x1 ∈ [α1x2, βx2] ∧ φ = 1,
x1
β − x2 + V 1

A,2

(
x1,

x1
β ;β

)
, x1 > βx2 ∧ φ = 1,

(6.3.3)
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Figure 6.4: Illustration of the funding ratio and distributions in case of advanced solvency con-
straints.

where V 0
A,2(·;β) and V 1

A,2(·;β) fulfill the following systems of PDEs:

(A− δ)V 0
A,2(~x;β) = 0 for α0 ≤

x1

x2
≤ α2, V 0

A,2(α0x2, x2;β) = 0,

V 0
A,2

(
x1,

x1

α2
;β

)
= V 1

A,2

(
x1,

x1

α2
;β

)
,

(A− δ)V 1
A,2(~x;β) = 0 for α1 ≤

x1

x2
≤ β, V 1

A,2

(
x1,

x1

α1
;β

)
= V 0

A,2

(
x1,

x1

α1
;β

)
,

∂

∂x2
V 1

A,2(x1, x2;β)|
x2=

x1−
β

= −1.

(6.3.4)

Note that for x2 ≤ x1
α2

we automatically have that φ = 1. The notation V 0
A,2 highlights that this

is the value function for φ = 0 and the notation V 1
A,2 highlights that this is the value function for

φ = 1. Moreover, for the optimal level of the barrier, β∗2 , we have the smooth fit condition that

∂2

∂x2
2

V 1
A,2 (x1, x2;β∗2) |

x2=
x1−
β∗2

= 0. (6.3.5)

The boundary conditions V 1
A,2(α1) = V 0

A,2(α1) and V 0
A,2(α2) = V 1

A,2(α2) are due to the continuity

of the diffusion term. Since V 0
A,2 and V 1

A,2 depend on each other, the system of PDEs needs to
be solved simultaneously. A graphical representation of the value function for a given barrier β
is illustrated in Figure 6.5. Note that in the figure we have omitted some arguments for clarity.
The left rectangle illustrates the domain of V 0

A,2 and the right “open” rectangle illustrates the

domain of V 1
A,2.
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Figure 6.5: Illustration of the domains and boundary conditions in the case of advanced solvency
constraints.

We know from Section 6.2, that V i
A,2, i = 0, 1, are given by

V i
A,2(x1, x2;β) = K1,ix

ζ1
1 x

1−ζ1
2 +K2,ix

ζ2
1 x

1−ζ2
2 , (6.3.6)

where ζ1 and ζ2 are given by (6.2.13) and K1,i and K2,i are some constants, that fulfills the
equation (A − δ)V i

A,2 = 0. That is, including the boundary conditions, we get that the value
function is specified by

V 0
A,2(x1, x2;β) = C1x

ζ1
1 x

1−ζ1
2 + C2x

ζ2
1 x

1−ζ2
2 , (x1 ∈ [α0x2, α2x2]), (6.3.7)

V 1
A,2(x1, x2;β) = C̃1x

ζ1
1 x

1−ζ1
2 + C̃2x

ζ2
1 x

1−ζ2
2 , (x1 ∈ [α1x2, βx2]), (6.3.8)

V 0
A,2(α0x2, x2;β) = 0, (6.3.9)

V 0
A,2

(
x1,

x1

α2
;β

)
= V 1

A,2

(
x1,

x1

α2
;β

)
, (6.3.10)

V 1
A,2

(
x1,

x1

α1
;β

)
= V 0

A,2

(
x1,

x1

α1
;β

)
, (6.3.11)

∂

∂x2
V 1

A,2(x1, x2;β)|
x2=

x1−
β

= −1, z ≥ β. (6.3.12)

The solution to this system is provided in Theorem 6.3.1.

Theorem 6.3.1. The solutions V 0
A,2 and V 1

A,2 to the system of equations given by (6.3.7)-(6.3.12)
are given by

V 0
A,2(x1, x2;β) = C1

(
xζ11 x

1−ζ1
2 − α0

ζ1−ζ2xζ21 x
1−ζ2
2

)
and

V 1
A,2(x1, x2;β) =

(
C1

(
1− α0

ζ1−ζ2α1
ζ2−ζ1

)
− C̃2α1

ζ2−ζ1
)
xζ11 x

1−ζ1
2 + C̃2x

ζ2
1 x

1−ζ2
2 ,
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where

ξ =
min (β, α2)ζ2−1 − α1

ζ2−ζ1 min (β, α2)ζ1−1

(1− ζ2)βζ2 − (1− ζ1)αζ2−ζ11 βζ1
,

C1 =

(
1
β
− 1
α2

)+
−ξ

α2
ζ1−1−α0

ζ1−ζ2α2
ζ2−1+(α0

ζ1−ζ2α1
ζ2−ζ1−1) min(β,α2)ζ1−1+ξ(1−ζ1)(1−α0

ζ1−ζ2α1
ζ2−ζ1)βζ1

,

C̃2 =
−1− (1− ζ1)

(
C1 − C1α0

ζ1−ζ2α1
ζ2−ζ1

)
βζ1

(1− ζ2)βζ2 − (1− ζ1)αζ2−ζ11 βζ1
.

Proof: See appendix 6.A.4.

The optimal barrier β∗2 is obtained by maximizing the value function with respect to β. As for β∗0
and β∗1 we omit the subscript A for β∗2 to simplify notation, because the optimal barrier should,
again, be the same for Case A and Case B. The fact that the funding ratio after distribution is
the same in both cases supports this claim, but to prove this formally is surprisingly challenging.
However, based on numerical studies, β∗2 is indeed the same in both cases. Furthermore, the
optimal barrier seems to behave nicely and we did not encounter any problems with existence or
uniqueness.

6.3.2 Value of distributions when assets are decreased (Case B)

For Case B, the value function is given by

V β
B,2(~x) =


V 0

B,2(~x;β), x1 ∈ [α0x2, α2x2[∧φ = 0,

V 1
B,2(~x;β), x1 ∈ [α1x2, βx2] ∧ φ = 1,

x1 − βx2 + V 1
B,2(βx2, x2;β), x1 > βx2 ∧ φ = 1,

(6.3.13)

where V 0
B,2 and V 1

B,2 are given by the following specification:

V 0
B,2(x1, x2;β) = C1x

ζ1
1 x

1−ζ1
2 + C2x

ζ2
1 x

1−ζ2
2 , (x1 ∈ [α0x2, α2x2]), (6.3.14)

V 1
B,2(x1, x2;β) = C̃1x

ζ1
1 x

1−ζ1
2 + C̃2x

ζ2
1 x

1−ζ2
2 , (x1 ∈ [α1x2, βx2]), (6.3.15)

V 0
B,2(α0x2, x2;β) = 0, (6.3.16)

V 0
B,2(α2x2, x2;β) = V 1

B,2(α2x2, x2;β), (6.3.17)

V 1
B,2(α1x2, x2;β) = V 0

B,2(α1x2, x2;β), (6.3.18)

∂

∂x1
V 1

B,2(x1, x2;β)|x1=zx2 = 1, z ≥ β. (6.3.19)

Theorem 6.3.2. The solutions V 0
B,2 and V 1

B,2 to the system of equations given by (6.3.14)-(6.3.19)
are given by

V 0
B,2(x1, x2;β) = C1

(
xζ11 x

1−ζ1
2 − α0

ζ1−ζ2xζ21 x
1−ζ2
2

)
and

V 1
B,2(x1, x2;β) =

(
C1

(
1− α0

ζ1−ζ2α1
ζ2−ζ1

)
− C̃2α1

ζ2−ζ1
)
xζ11 x

1−ζ1
2 + C̃2x

ζ2
1 x

1−ζ2
2 ,
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where

ξ =
min (β, α2)ζ2 − α1

ζ2−ζ1 min (β, α2)ζ1

ζ2βζ2−1 − ζ1α
ζ2−ζ1
1 βζ1−1

,

C1 =
(α2 − β)+ + ξ

α2
ζ1 − α0

ζ1−ζ2α2
ζ2 + (α0

ζ1−ζ2α1
ζ2−ζ1 − 1) min (β, α2)ζ1 + ξ (1− α0

ζ1−ζ2α1
ζ2−ζ1) ζ1βζ1−1

,

C̃2 =
1− ζ1

(
C1 − C1α0

ζ1−ζ2α1
ζ2−ζ1

)
βζ1−1

ζ2βζ2−1 − ζ1α
ζ2−ζ1
1 βζ1−1

.

As in Case A, it is easy to obtain the optimal barrier by maximizing the value function with
respect to β.
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Figure 6.6: Scatterplots for unconstrained and advanced solvency constraints (above) and for
simple and advanced solvency constraint (below), respectively. For parameters used, see Table
6.1 in Appendix 6.B, set no. 1.
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6.3.3 Numerical studies

In this section, we illustrate numerically the impact of imposing advanced solvency constraints.

6.3.3.1 Moving from simple to advanced solvency constraints

We begin by extending our discussion started in Section 6.2.3. Figure 6.6 shows similar results as
the ones in Figure 6.3, but consists of comparisons between no solvency constraint and advanced
solvency constraints, and simple solvency constraints versus advanced solvency constraints. The
left plots show the aggregate distributions, whereas the right plots show the ruin times. Here, we
see that advanced solvency constraints lead to significant improvements wrt. ruin times compared
to the simple constraint, of a nature that is qualitatively the same as what was discussed in Section
6.2.3. In other words, there is an additional, substantial difference between advanced and simple
solvency constraints.

The plots are for 10.000 simulations and a censoring time T = 15.000. For the following vectors
of mean values and variances, the first element in the vector corresponds to the data on the first
axis and the second element corresponds to the data on the second axis.
Left plot above: Mean = (0.76932, 0.77806), Variance = (0.04582, 0.04709).
Right plot above: Mean = (6903.53093, 2420.87073), Variance = (5132.9062, 2403.1012).
Left plot below: Mean = (0.76932, 0.77395), Variance = (0.04582, 0.04563).
Right plot below: Mean = (6903.53093, 5040.92724), Variance = (5132.9062, 4348.9312) .
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Figure 6.7: Value functions for Case B for the unconstrained case, simple solvency constraint and
advanced solvency constraint (φ ∈ {0, 1}) as a function of α1 and α2, respectively. For parameters
used, see Table 6.1 in Appendix 6.B, set no. 1.

Next, we investigate whether most of the differences between simple and advanced solvency
constraints occur when α2 moves a bit away from α1, or whether they occur slowly as α2 moves
away from α1. We also investigate this as α1 moves away from α0 in the simple framework. This
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is illustrated in Figure 6.7 for case B. We see that small spacing between the α’s have marginal
impact initially, even though they can have a large impact on stability as discussed above.
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Figure 6.8: Plot of optimal barrier level for different combinations of α1 and α2. Left: σA = 0.02
and β∗0 = 1.13588. Right: σA = 0.3 and β∗0 = 2.87326. For parameters used, see Table 6.1 in
Appendix 6.B, set no. 2 (left plot) and set no. 3 (right plot).

6.3.3.2 Moving from β∗0 to β∗2

The relationship between β∗1 and β∗0 is trivial, but the relationship between β∗2 and β∗0 is not,
as explained early in this section. Figure 6.8 compares the optimal barrier level in a model
without solvency constraints with the optimal barrier level in the model with advanced solvency
constraints, and shows how the optimal barrier without constraints, β∗0 , is no longer optimal.
Instead we get the optimal barrier β∗2 (adjusted compared to β∗0) when advanced solvency con-
straints are introduced.

The right edge of the surfaces correspond to the simple solvency constraint (α1 = α2, so that
β∗2 = β∗1). There we can see the trivial, linear relationship between β∗1 and β∗0 , which is flat as
long as β∗0 > α1, and then increases linearly such that β∗1 = α1.

When the volatility is rather low (as on the left plot), and we move towards the left on the surface
(α2-wards), for given low α1, the optimal barrier does not change and is very close to β∗0 . This
is because β∗0 is far enough from α1, and the process is very stable. When we increase volatility
(moving to the right plot), β∗0 increases and even for low values of α1, β∗2 increases with α2.

Now, if we move towards the right of the surface for given α2, we can observe an increase of
the optimal barrier even before the kink. This is because moving α1 towards the barrier level
makes periods when no distributions are allowed more likely, which is a problem particularly for
low volatility (a low volatility means that the process can get stuck in a non-distribution state
for a very long period of time). This effect seems to dominate the ‘kink’ effect especially for low
volatilities.
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Figure 6.9: Differences between V 0
B,2 and V 1

B,2. Note that V 0
B,2(α1) = V 1

B,2(α1) and V 0
B,2(α2) =

V 1
B,2(α2). The differences illustrated with the dotted line are relative to the values of V 0

B,2. For
parameters used, see Table 6.1 in Appendix 6.B, set no. 4 (left plot) and set no. 5 (right plot).

6.3.3.3 The cost of not being able to distribute

Under the advanced solvency constraint, we have two different value functions when the funding
ratio is in the interval between α1 and α2. One can interpret the differences between these
two value functions as the cost of being in the undesirable no distribution state. The difference
between the value functions for φ = 0 (the “undesirable” state) and φ = 1 (the “good” state)
in Case B is illustrated in Figure 6.9. The left plot is for a high value of σA (0.25) whereas the
right figure is for a low value of σA (0.01). The reason that the differences are smallest for the
most volatile model is that higher volatility leads to more switches between both environments,
decreasing the influence of whether φ = 0 or φ = 1.

6.3.3.4 Sensitivity analysis for the volatility and correlation

Figure 6.10 shows the impact of volatility (first row) and correlation (second row) on the optimal
barrier in absence of solvency constraint (first column), or with advanced solvency constraints
(second column). The immediate observation is that effects that were trivial before the introduc-
tion of advanced solvency constraints are not trivial anymore. It becomes hard to describe which
forces actually drive this sensitivity analysis.

In terms of correlation one can observe that higher correlation levels will lead to lower levels of the
optimal barrier. This is because high correlation makes the funding ratio evolve in a (relatively)
stable manner, such that we can choose a barrier that is not too far away from α1. On the other
hand, the funding ratio goes wild for low values of ρ which pushes the β∗2 up.

In terms of volatility, absence of solvency constraints means that higher volatility levels will
generally lead to higher barrier levels (except when σA is really close to 0, where σL is driving
the volatility and the lack of correlation pushes the optimal barrier up slightly). For a σA that
is not too high, there is an initial advantage in increasing volatility as it will make it easier to
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leave state φ = 0 if you fall into a no distribution period. However, as σA is going towards 0
or towards infinity, the effects present in absence of solvency constraint seem to dominate this
marginal effect.
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Figure 6.10: Sensitivity plots with respect to σA (above) and ρ (below). For parameters used,
see Table 6.1, set no. 6.

6.4 When ruin must be prevented

In this section, we assume that the fund under consideration has the opportunity to implement
rescue measures in order to prevent ruin; see Section 6.1.5. In this case, we consider the net
distributions

J$,3(~x;π) = E~x
[
lim sup
t→∞

∫ t

0
e−δsdDπ

$(s)−
∫ t

0
κe−δsdEπ$(s)

]
, (6.4.1)

where κ is a constant strictly greater than 1 which recognizes that there is a price of lowering
liabilities or raising capital. The way ruin is prevented will depend on the context, as discussed in
Section 6.1.5: liabilities are decreased in Case A, and assets increased in Case B. In (6.4.1), Dπ

$

is the control process at the upper (distribution) barrier β, and Eπ$ is the control process at the
lower (rescue) barrier γ. This means that the controlled processes for the assets and liabilities in
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the present section have the form

d ~Xπ
A(t) = µ

(
~Xπ

A(t)
)
dt+ σ

(
~Xπ

A(t)
)
dW (t) +

(
0

dDπ
A(t)− dEπA(t)

)
and

d ~Xπ
B(t) = µ

(
~Xπ

B(t)
)
dt+ σ

(
~Xπ

B(t)
)
dW (t)−

(
dDπ

B(t)− dEπB(t)
0

)
.

Because of transaction costs it makes sense that the optimal rescue level is the lowest possible
(such that γ∗ = α0), which is what we will assume in what follows. Note that this may not
hold any more if transaction costs are not constant; see also Section 6.4.3.3. Furthermore, we
conjecture that the form of the optimal distribution strategy is as before, that is, of the barrier
type.
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Figure 6.11: Simulation of the controlled funding ratio in the model where ruin must be prevented.
The dotted lines are the distributions. Left: Case A. Right: Case B.

The model is illustrated in Figure 6.11, where the funding ratios are depicted by solid lines and
net distributions (distributions, minus rescue measures) by dotted lines for a given sample path
of the two-dimensional Brownian motion. The two plots in Figure 6.11 also contain the optimal
upper barriers, which we find in the following two subsections. Note that the sample paths of
the controlled funding ratios are different, even for the same level of distribution barrier. The
optimal barriers in Figure 6.11 are different in Case A and Case B. Note also that the time to
ruin in the preceding sections will be the time of the first lowering of liabilities (Case A) or first
capital injection (Case B).

Remark 6.4.1. In this section, we assume that rescue is forced. If we relaxed that assumption
(but that is outside the scope of this paper), we would need to determine whether such rescue
measures are worth taking or not. It makes sense that this would be the case if, and only if,
V$,3(γx2, x2;β, γ) was greater than or equal to zero. This conjecture is supported by previous
results in the literature (see, for instance Avanzi et al., 2011). This is explored in Section 6.4.3.4.
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6.4.1 In Case A, where rescue measures are to reduce benefits (decrease lia-
bilities)

Preventing ruin by decreasing liabilities at the lower barrier adds an extra branch in the differential
equation characterising the value function given by (6.2.3). The differential equation becomes

0 = max

{
(A− δ)F (~x), 1 +

∂

∂x2
F (~x),− ∂

∂x2
F (~x)− κ

}
. (6.4.2)

We assume that γ < β to make the strategy admissible. The expected present value of net
distributions for a barrier strategy with upper barrier β and lower barrier γ is denoted by Gβ,γA

and is given by

Gβ,γA (~x) =


GA(~x;β, γ), x1 ∈ [γx2, βx2],
x1
β − x2 +GA

(
x1,

x1
β ;β, γ

)
, x1 > βx2,

−κ
(
x2 − x1

γ

)
+GA(x1,

x1
γ ;β, γ), x1 < γx2,

(6.4.3)

where GA(x1, x2;β, γ) is given by the differential equation

(A− δ)GA(~x;β, γ) = 0 for γ ≤ x1

x2
≤ β.

Since we have forced decreases of liabilities at the lower barrier, we do not have a boundary
condition at the ruin level like (6.2.8). Instead, we have a boundary condition at the lower
barrier. In total, the boundary conditions are

∂

∂x2
GA (x1, x2;β, γ) |

x2=
x1−
β

= −1, (6.4.4)

∂

∂x2
GA (x1, x2;β, γ) |

x2=
x1−
γ

= −κ. (6.4.5)

Moreover, for the optimal upper barrier, we also have the boundary condition

∂2

∂x2
2

(
x1, x2;β∗A,3, γ

)
|
x2=

x1−
β∗
A,3

= 0 (6.4.6)

where β∗A,3 is the optimal barrier level for increasing liabilities. For a heuristic derivation of
condition (6.4.5), see Avanzi et al. (2011, Section 3.1).

By the calculations in Appendix 6.A.1, we get that GA(·;β, γ) has the form given by (6.A.5).
Using condition (6.4.5) we obtain that C1 and C2 fulfill the equation

C1(1− ζ1)xζ11

(
x1

γ

)−ζ1
+ C2(1− ζ2)xζ21

(
x1

γ

)−ζ2
= −κ. (6.4.7)

This means that

C2 =
−κ− C1(1− ζ1)γζ1

(1− ζ2)γζ2
=
−κγ−ζ2 − C1(1− ζ1)γζ1−ζ2

1− ζ2
,

for a given level γ. Moreover, using condition (6.4.4), we obtain that

C1(1− ζ1)xζ11

(
x1

β

)−ζ1
+
−κ− C1(1− ζ1)γζ1

(1− ζ2)γζ2
(1− ζ2)xζ21

(
x1

β

)−ζ2
= −1.
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This implies that C1 is given by

C1 =
−1 + κ

(
β
γ

)ζ2
(1− ζ1)

(
βζ1 − γζ1

(
β
γ

)ζ2) (6.4.8)

That is, in total we get that the value function for a strategy with dividend barrier β and capital
injection barrier γ with β > γ is

GA(x1, x2;β, γ) = C1x
ζ1
1 x

1−ζ1
2 +

−κ− C1(1− ζ1)γζ1

(1− ζ2)γζ2
xζ21 x

1−ζ2
2 , (6.4.9)

where C1 is given by (6.4.8). To find the optimal barriers, β∗A,3 and γ∗A, we need to maximize
(6.4.9) for x1

x2
∈ [γ, β]. For general values of x1 and x2 the objective function is given by

OA(x1, x2, γ, β) =

(
x1

β
− x2

)+

− κ
(
x2 −

x1

γ

)+

+GA

(
x1, x2 +

(
x1

β
− x2

)+

−
(
x2 −

x1

γ

)+

;β, γ

)
.

(6.4.10)

We aim at finding the value

sup
(γ,β)∈Π

OA(x1, x2, γ, β).

We assume that the optimal lower barrier is equal to α0 and hence consider γ to be a fixed value
in (6.4.10). We want to maximize (6.4.9) wrt. β. We rearrange the terms and see that

GA(x1, x2;β, γ) =
−κxζ21 x

1−ζ2
2

(1− ζ2)γζ2
+ C1x

ζ1
1 x

1−ζ1
2 + C1

−ζ1γ
ζ1−ζ2

ζ2
xζ21 x

1−ζ2
2 ,

where the first term of the RHS does not depend on β and xζ11 x
1−ζ1
2 , xζ21 x

1−ζ2
2 and −ζ1γ

ζ1−ζ2
ζ2

are
all positive terms. That is, to maximize (6.4.9), we need to maximize C1 as a function of β. The
partial derivative of C1 wrt. β is given by

∂

∂β
C1 =

∂

∂β

 −1 + κ
(
β
γ

)ζ2
(1− ζ1)

(
βζ1 − γζ1

(
β
γ

)ζ2)


=
1

(1− ζ1)

(
βζ1 − γζ1

(
β
γ

)ζ2)2

(
ζ2κγ

−ζ2βζ2−1

((
βζ1 − γζ1

(
β

γ

)ζ2))

+

(
1− κ

(
β

γ

)ζ2)(
ζ1β

ζ1−1 − γζ1−ζ2ζ2β
ζ2−1

))

=
ζ1β

ζ1−1 − ζ2γ
ζ1−ζ2βζ2−1 + ζ2κγ

−ζ2βζ2+ζ1−1 − ζ1κγ
−ζ2βζ2+ζ1−1

(1− ζ1)

(
βζ1 − γζ1

(
β
γ

)ζ2)2 .

Setting this term equal to zero gives us an equation for the optimal barrier:

ζ1β
ζ1−1 − ζ2γ

ζ1−ζ2βζ2−1 = βζ2+ζ1−1(ζ1κγ
−ζ2 − ζ2κγ

−ζ2). (6.4.11)

Based on numerical studies, we conjecture that the optimal barrier β∗A,3 exists and is unique.
However, it has turned out to be surprisingly difficult to formally prove this.
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6.4.2 In case B, where rescue measures are to inject capital (increase assets)

Gerber and Shiu (2003) match inflow and outflow in the situation where κ = 1. Here, we set κ > 1
and obtain the expected present value of outflow minus inflow if a barrier strategy is applied.
The distribution barrier that maximises this difference exists and is unique.

Introducing capital injections adds an extra branch in the differential equation characterizing the
value function given by (6.2.23). The differential equation in the case of capital injections has
the following form:

0 = max

{
(A− δ)F (~x), 1− ∂

∂x1
F (~x),

∂

∂x1
F (~x)− κ

}
. (6.4.12)

We conjecture that the optimal dividend and capital injection strategies are barrier strategies
with dividend barrier β and capital injection barrier γ. We assume that γ < β to make the
strategy admissible. The expected present value of dividends for a barrier strategy with barrier
β and capital injection barrier γ is denoted by Gβ,γB and is given by

Gβ,γB (~x) =


GB(~x;β, γ), x1 ∈ [γx2, βx2],
(x1 − βx2) +GB(βx2, x2;β, γ), x1 > βx2,
−κ(x1 − γx2) +GB(γx2, x2;β, γ), x1 < γx2,

(6.4.13)

where GB(x1, x2;β, γ) is given by the differential equation

(A− δ)GB(~x;β, γ) = 0 for γ ≤ x1

x2
≤ β.

Since we have forced capital injections we do not have a boundary condition at the ruin level as
in (6.2.25). Instead, we have a boundary condition at the capital injection level. In total, the
boundary conditions are

∂

∂x1
GB (x1, x2;β, γ) |x1=βx2− = 1, (6.4.14)

∂

∂x1
GB (x1, x2;β, γ) |x1=γx2− = κ, (6.4.15)

Moreover, for the optimal upper barrier, we also have the boundary condition

∂2

∂x2
1

GB

(
x1, x2;β∗B,3, γ

)
|x1=β∗B,3x2− = 0, (6.4.16)

where β∗B,3 is the optimal level for dividend payments.

By the calculations in Appendix 6.A.1, we get that GB(·;β, γ) has the form given by (6.A.5).
Using condition (6.4.15) we obtain that C1 and C2 fulfill the equation

C1ζ1 (γx2)ζ1−1 x1−ζ1
2 + C2ζ2 (γx2)ζ2−1 x1−ζ2

2 = κ. (6.4.17)

This means that

C2 =
κ− C1ζ1γ

ζ1−1

ζ2γζ2−1
=
κγ1−ζ2 − C1ζ1γ

ζ1−ζ2

ζ2
,

for a given level γ. Moreover, using condition (6.4.14), we obtain that

C1ζ1 (x2β)ζ1−1 x1−ζ1
2 +

κ− C1ζ1γ
ζ1−1

ζ2γζ2−1
ζ2 (x2β)ζ2−1 x1−ζ2

2 = 1.
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This implies that C1 is given by

C1 =
γζ2−1 − κβζ2−1

ζ1 (βζ1−1γζ2−1 − γζ1−1βζ2−1)
=

1− κβζ2−1γ1−ζ2

ζ1 (βζ1−1 − γζ1−ζ2βζ2−1)
. (6.4.18)

That is, in total we get that the value function for a strategy with dividend barrier β and capital
injection barrier γ with β > γ is

GB(x1, x2;β, γ) = C1x
ζ1
1 x

1−ζ1
2 +

κγ1−ζ2 − C1ζ1γ
ζ1−ζ2

ζ2
xζ21 x

1−ζ2
2 , (6.4.19)

where C1 is given by (6.4.18).

To find the optimal barriers, β∗B,3 and γ∗B, we need to maximize (6.4.19) for x1
x2
∈ [γ, β]. For

general values of x1 and x2 the objective function is given by

OB(x1, x2, γ, β) = (x1 − βx2)+ − κ(γx2 − x1)+ +GB(x1 − (x1 − βx2)+ + (γx2 − x1)+, x2;β, γ).
(6.4.20)

We aim at finding the value

sup
(γ,β)∈Π

OB(x1, x2, γ, β).

Again, we assume that the optimal lower barrier is equal to α0 and hence consider γ to be a fixed
value in (6.4.20). We want to maximize (6.4.19) wrt. β. We rearrange the terms and see that

GB(x1, x2;β, γ) =
κγ1−ζ2xζ21 x

1−ζ2
2

ζ2
+ C1x

ζ1
1 x

1−ζ1
2 + C1

−ζ1γ
ζ1−ζ2

ζ2
xζ21 x

1−ζ2
2 ,

where the first term of the RHS does not depend on β and xζ11 x
1−ζ1
2 , xζ21 x

1−ζ2
2 and −ζ1γ

ζ1−ζ2
ζ2

are
all positive terms. That is, to maximize (6.4.19) we need to maximize C1 as a function of β. The
partial derivative of C1 wrt. β is given by

∂

∂β
C1 =

∂

∂β

(
1− κβζ2−1γ1−ζ2

ζ1 (βζ1−1 − γζ1−ζ2βζ2−1)

)
=

1

ζ2
1 (βζ1−1 − γζ1−ζ2βζ2−1)

2

(
− (ζ2 − 1)κβζ2−2γ1−ζ2ζ1

(
βζ1−1 − γζ1−ζ2βζ2−1

)
−
(

1− κβζ2−1γ1−ζ2
)
ζ1

(
(ζ1 − 1)βζ1−2 − (ζ2 − 1)γζ1−ζ2βζ2−2

))
.

Setting this term equal to zero leads to the equation

− (ζ2 − 1)κβζ2−2γ1−ζ2ζ1

(
βζ1−1 − γζ1−ζ2βζ2−1

)
=
(

1− κβζ2−1γ1−ζ2
)
ζ1

(
(ζ1 − 1)βζ1−2 − (ζ2 − 1)γζ1−ζ2βζ2−2

)
.

This gives us an equation of the form (dividing by βζ2−3)

ζ1

(
γ1−ζ2κ(ζ1 − ζ2)βζ1 + (ζ2 − 1)γζ1−ζ2β + (1− ζ1)β1−ζ2+ζ1

)
= 0. (6.4.21)

The optimal dividend barrier level β∗B,3 is given as the solution to (6.4.21). The existence and
uniqueness of the optimal barrier level is given by the following lemma.

Lemma 6.4.2. An optimal barrier level β∗B,3 exists and is unique.

Proof: See appendix 6.A.5.
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6.4.3 Numerical studies

In this section, we discuss the impact of adding rescue measures in the objective.
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Figure 6.12: The optimal barriers β∗$,3 as a function of κ. In black β∗A,3 and in grey β∗B,3. For
parameters used, see Table 6.1 in Appendix 6.B, set no. 1.

6.4.3.1 The impact of transaction costs on the optimal distribution barrier

Whichever value κ has, the optimal rescue barrier will always be α0. On the other hand, the
optimal distribution barrier is affected by different values of κ. This is illustrated in Figure 6.12.
For κ = 1, the optimal distribution barrier is α0 since there is no reason to hold an extra buffer
when additional capital comes at no cost. It then increases as κ increases.

6.4.3.2 The impact of the rescue and distribution barriers on the value function

In Figure 6.13, we depict surface plots for γ and β of the value function for the model in the case
where ruin must be prevented. We see that the worst choice one can make is to have both β and
γ close to one.

6.4.3.3 Insights into surplus-dependent transaction costs

So far, we have both theoretically and numerically only considered a constant value of κ. However,
one could argue that a fixed cost for raising capital in Case B is not too realistic. A more realistic
approach could be to make the cost dependent on the funding ratio such that the lower the
funding ratio the higher the cost (in other words, it is easier to raise capital when the fund is
better funded). Arbitrarily and for illustration purposes, we choose to model this relationship by

κ(x) = 1.01 + e(K−1.5)−Kx, (6.4.22)

where the argument is the funding ratio and K is a given constant. This means, for instance,
that the price of raising capital for the funding ratio at the ruin level is κ(α0) ≈ 1.23 for α0 = 1.
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Figure 6.13: Surface plots of the value functions as functions of γ and β with κ = 1.05. Left:
Case A. Right: Case B. For parameters used, see Table 6.1 in Appendix 6.B, set no. 7 (left plot)
and set no. 1 (right plot).

For higher values of the funding ratio, κ is exponentially decreasing to 1.01 as the funding ratio
tends to infinity. In Figure 6.14, we see the optimal barriers for different penalty functions of the
form (6.4.22). The modelling of the penalty functions implies that, independent of the parameter
K, the price of capital is the same for the funding ratio equal to α0. This type of price structure
has pushed the optimal lower barrier far away from α0 = 1. As the steepness (the speed of the
exponential decay of κ(x)) of the penalty functions decrease, one can chose an increasingly lower
barrier without getting penalised too much. This also implies that the expected present value of
dividends increases dramatically.

Importantly, these results hold for relatively high levels of volatility. Indeed, if we decreased σA
in Figure 6.14 from 0.2 to 0.05, it would always be optimal to have the barrier as low as possible
(that is, equal to α0). In the right plot of Figure 6.14, we see a plot of the same type as the right
plot in Figure 6.13 but with the difference that transaction costs are according to (6.4.22) with
K = 6. Note that this makes the value function highly negative for many combinations of the
lower and upper bounds and also that it changes the shape of the figure a bit compared to the
right plot in Figure 6.13. The optimal values are given by γ = 1.4225 and β = 2.1448 .

6.4.3.4 Should we rescue?

In this section, we explore the conjecture spelt out in Remark 6.4.1, which asserts that, in fact,
rescue measures should be taken only if the value function at the rescue barrier is nonnegative. In
Figure 6.15, we consider Case A and plot the values of κ which makes the value function exactly
equal to 0 for the optimal choice of the upper barrier. The left plot is with a simple solvency
constraint, the right is without. One observes from the figure that lower risk levels will allow for
higher levels of transaction costs κ.

140



4 5 6 7 8

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Steepness of κ

O
pt

im
al

 b
ar

rie
rs

0.
40

0.
45

0.
50

V
al

ue
 fu

nc
tio

n
γ*

βB,3
*

VB,3

1.0

1.2
1.4

1.6
1.8

1.2

1.4

1.6

1.8

2.0

−5

−4

−3

−2

−1

0

1

γ

β

VB,3

−5

−4

−3

−2

−1

0

Figure 6.14: Left: Optimal capital injection and dividend barrier (in black) and corresponding
value functions (in grey) for different steepness of κ. The values on the first axis refers to values
K in (6.4.22). Right: The value function for different combinations of lower and upper barriers.
For parameters used, see Table 6.1 in Appendix 6.B, set no. 8.

0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

σA

κ

2.
5

2.
6

2.
7

2.
8

2.
9

3.
0

β

0.2 0.4 0.6 0.8 1.0

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

1.
35

σA

κ

2.
75

2.
80

2.
85

2.
90

2.
95

β

Figure 6.15: Illustration of which values of κ (black line) that makes the value function equal to 0
at the funding ratio α0. The corresponding optimal values for β are in grey. The left plot is with
solvency constraint (α1 = 2.5) and the right plot is without solvency constraint. For parameters
used, see Table 6.1 in Appendix 6.B, set no. 9.

141



Acknowledgments: Part of the paper was written while Henriksen was visiting the other authors
at the UNSW Business School and the Department of Mathematics and Statistics of the University
of Montreal. Henriksen would like to thank both Universities for their hospitality.

142



Appendix

6.A Proofs

6.A.1 Proof of Lemma 6.2.1 (Value function without constraints)

Proof of Lemma 6.2.1. We introduce the notation G̃(·;β) by

GA(x1, x2;β) = (x1 + x2)GA

(
x1

x1 + x2
,

x2

x1 + x2
;β

)
= (x1 + x2)GA (y, 1− y;β)

= (x1 + x2)G̃ (y;β) ,

where y = x1
x1+x2

. For reformulation of the HJB equation, we need the following derivatives

∂

∂xi
GA(~x;β) and

∂2

∂xi∂xj
GA(~x;β), i, j = 1, 2.

We get

∂

∂x1
GA(x1, x2;β) =

∂

∂x1

(
(x1 + x2) G̃

(
x1

x1 + x2
;β

))
= G̃

(
x1

x1 + x2
;β

)
+ (x1 + x2) G̃′

(
x1

x1 + x2
;β

)(
1

x1 + x2
− x1

(x1 + x2)2

)
= G̃(y;β) + G̃′(y;β)(1− y),

∂

∂x2
GA(x1, x2;β) =

∂

∂x2

(
(x1 + x2) G̃

(
x1

x1 + x2
;β

))
= G̃

(
x1

x1 + x2
;β

)
+ (x1 + x2) G̃′

(
x1

x1 + x2
;β

)(
− x1

(x1 + x2)2

)
= G̃(y;β) + G̃′(y;β)(−y),

∂2

∂x2
1

GA(x1, x2;β) =
∂2

∂x2
1

(
(x1 + x2) G̃

(
x1

x1 + x2
;β

))
=

∂

∂x1

(
G̃

(
x1

x1 + x2
;β

)
+

x2

x1 + x2
G̃′
(

x1

x1 + x2
;β

))
= G̃′

(
x1

x1 + x2
;β

)(
1

x1 + x2
− x1

(x1 + x2)2
− x2

(x1 + x2)2

)
+

x2

x1 + x2
G̃′′
(

x1

x1 + x2
;β

)
x2

(x1 + x2)2

= G̃′′(y;β)
x2

2

(x1 + x2)3
.
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Likewise,

∂2

∂x2
2

GA(x1, x2;β) =G̃′′(y;β)
x2

1

(x1 + x2)3
,

∂2

∂x1∂x2
GA(x1, x2;β) =− G̃′′(y;β)

x1x2

(x1 + x2)3
.

In total we get that

AGA(~x;β)− δGA(~x;β)

x1 + x2
=

1

2

(
σ2
A + σ2

L − 2ρσAσL
)
y2(1− y)2G̃′′(y;β) + (µA − µL) y(1− y)G̃′(y;β)

+ (µAy + µL(1− y)− δ) G̃(y;β),

(6.A.1)

and the second branch of the HJB equation has the following form

1 +
∂

∂x2
GA(~x;β) = 1 + G̃(y;β)− yG̃′(y;β).

The boundary condition for G̃(·;β) (which holds for all values of β) is given by (6.2.8):

GA(α0x2, x2;β) = 0⇒ (α0 + 1)x2GA

(
α0x2

(α0 + 1)x2
,

x2

(α0 + 1)x2
;β

)
= 0⇒ G̃

(
α0

1 + α0
;β

)
= 0.

(6.A.2)

We guess that the solution to the right-hand side of equation (6.A.1) equal to 0 has a solution of
the form:

G̃(y;β) = yϑ(1− y)ϕ.

Inserting this in (6.A.1) gives:

AGA(~x;β)− δGA(~x;β)

x1 + x2

=
1

2

(
σ2
A + σ2

L − 2ρσAσL
)
y2(1− y)2

×
(
yϑ−2

(
ϑ2 − ϑ

)
(1− y)ϕ − 2 yϑ−1ϑ (1− y)ϕ−1 ϕ+ yϑ (1− y)ϕ−2 (ϕ2 − ϕ

))
+ (µA − µL) y(1− y)

(
ϑyϑ−1(1− y)ϕ − ϕyϑ(1− y)ϕ−1

)
+ (µAy + µL(1− y)− δ) yϑ(1− y)ϕ.

Dividing the above equation with yϑ(1− y)ϕ = G̃(y) and setting σ̃2 = σ2
A + σ2

L − 2ρσAσL yields
that the right-hand side is equal to

1

2

(
ϑ2 − ϑ

)
σ̃2 + ϑ(µA − µL) + µL − δ + (ϑ+ ϕ− 1)

(
(−ϑσ̃2 + µA − µL)y +

1

2
σ̃2(ϑ+ ϕ)y2

)
.

Setting (∗) = 0 gives us a quadratic equation for ϑ:

1

2
σ̃2ϑ2 +

(
µA − µL −

1

2
σ̃2

)
ϑ+ µL − δ = 0, (6.A.3)
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and by setting (∗∗) = 0 we get that ϕ = 1− ϑ. We denote by ζ1 and ζ2 the two solutions to the
quadratic equation. The solutions are given by

−
(
µA − µL − 1

2 σ̃
2
)
±
√(

µA − µL − 1
2 σ̃

2
)2 − 41

2 σ̃
2 (µL − δ)

σ̃2

=

1
2 σ̃

2 − (µA − µL)±
√

1
4 σ̃

4 + (µA − µL)2 − (µA − µL) σ̃2 − 2σ̃2 (µL − δ)
σ̃2

=

1
2 σ̃

2 − (µA − µL)±
√

1
4 σ̃

4 + (µA − µL)2 − σ̃2 (µA + µL − 2δ)

σ̃2
. (6.A.4)

Because the coefficient of the quadratic term of (6.A.3), 1
2 σ̃

2, is greater than 0 and because the
left-hand side of (6.A.3) is negative for ϑ = 0 by (6.1.2) and (6.1.3) the quadratic equation (6.A.3)
has a positive solution, which we denote ζ2, and negative solution, which we denote ζ1. Because
the left-hand side of (6.A.3) is equal to µA − δ < 0 for ϑ = 1, we get that ζ2 > 1.

By using that G̃(y;β) = GA(y, 1− y;β) we get that a general solution is given by

GA(x1, x2;β) = C1x
ζ1
1 x

1−ζ1
2 + C2x

ζ2
1 x

1−ζ2
2 (6.A.5)

Using (6.2.8), we get the following relation between the coefficients C1 and C2:

C1(α0x2)ζ1x1−ζ1
2 + C2(α0x2)ζ2x1−ζ2

2 = 0⇒ −C1α0
ζ1 = C2α0

ζ2 ⇒ C2 = −C1α0
ζ1−ζ2 .

Another boundary condition, given by (6.2.9), is that at the upper barrier at level β, we have
that

∂

∂x2
GA(x1, x2;β)|

x2=
x1−
β

= −1.

We use this to determine C1:

∂

∂x2
GA(x1, x2;β) =

∂

∂x2

(
C1x

ζ1
1 x

1−ζ1
2 − C1α0

ζ1−ζ2xζ21 x
1−ζ2
2

)
= C1

(
(1− ζ1)xζ11 x

−ζ1
2 − α0

ζ1−ζ2(1− ζ2)xζ21 x
−ζ2
2

)
.

(6.A.6)

That is,

∂

∂x2
GA(x1, x2;β)|

x2=
x1−
β

= −1,

⇒C1

(
(1− ζ1)xζ11

(
x1−
β

)−ζ1
− α0

ζ1−ζ2(1− ζ2)xζ21

(
x1−
β

)−ζ2)
= −1,

⇒C1 = − 1

(1− ζ1)βζ1 − α0
ζ1−ζ2(1− ζ2)βζ2

.

In total, this yields that GA(·;β) for a given barrier strategy β is given by

GA(x1, x2;β) =
xζ11 x

1−ζ1
2 − α0

ζ1−ζ2xζ21 x
1−ζ2
2

α0
ζ1−ζ2(1− ζ2)βζ2 − (1− ζ1)βζ1

(6.A.7)

= x2

(
x1
α0x2

)ζ1
−
(

x1
α0x2

)ζ2
(1− ζ2)

(
β
α0

)ζ2
− (1− ζ1)

(
β
α0

)ζ1 . (6.A.8)
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6.A.2 Proof of Lemma 6.2.2 (Fulfillment of conditions in the HJB equation)

Proof of Lemma 6.2.2. We prove the lemma by showing that

(A− δ)Gβ
∗
0

A (~x)

{
= 0, x2 ∈

[
x1
β∗0
, x1α0

]
,

< 0, x2 <
x1
β∗0

,

∂

∂x2
G
β∗0
A (~x)

{
≤ −1, x2 ∈

[
x1
β∗0
, x1α0

]
,

= −1, x2 <
x1
β∗0

.

(6.A.9)

To prove (6.A.9) we need that G
β∗0
A is concave in its first and second variable, respectively. That

is, we start by showing that

∂2

∂x2
1

G
β∗0
A (~x) ≤ 0 and

∂2

∂x2
2

G
β∗0
A (~x) ≤ 0. (6.A.10)

First, we consider the case x2 ≥ x1
β∗0

. The second-order derivative with respect to x1 is given by

∂2

∂x2
1

GA(x1, x2;β∗0) =
ζ1(ζ1 − 1)xζ1−2

1 x1−ζ1
2 − α0

ζ1−ζ2ζ2(ζ2 − 1)xζ2−2
1 x1−ζ2

2

α0
ζ1−ζ2(1− ζ2) (β∗0)ζ2 − (1− ζ1) (β∗0)ζ1

=
−ζ1(ζ1 − 1)

(
x1
x2

)ζ1−2
+ α0

ζ1−ζ2ζ2(ζ2 − 1)
(
x1
x2

)ζ2−2

x2

(
(1− ζ1) (β∗0)ζ1 − α0

ζ1−ζ2(1− ζ2) (β∗0)ζ2
) .

(6.A.11)

Here, the denominator is positive. That is, one needs to show that the numerator is non-positive:

− ζ1(ζ1 − 1)

(
x1

x2

)ζ1−2

+ α0
ζ1−ζ2ζ2(ζ2 − 1)

(
x1

x2

)ζ2−2

≤ 0

⇔
(

x1

x2α0

)ζ2−ζ1
≤ ζ1(ζ1 − 1)

ζ2(ζ2 − 1)

⇔ x1

x2α0
≤
(
ζ1(ζ1 − 1)

ζ2(ζ2 − 1)

) 1
ζ2−ζ1

=
β∗0
α0
,

(6.A.12)

which is exactly the case since we consider the case x2 ≥ x1
β∗0

. In the last step in the above

calculation we have used (6.2.14). Moreover, we have that ∂2

∂x21
G
β∗0
A (~x) = 0 for x2 ≥ x1

β∗0
. That is,

the first half of equation (6.A.10) holds.

For the case x2 ≥ x1
β∗0

, the second-order derivative with respect to x2 is given by

∂2

∂x2
2

GA(x1, x2;β∗0) =
ζ1(ζ1 − 1)xζ11 x

−ζ1−1
2 − α0

ζ1−ζ2ζ2(ζ2 − 1)xζ21 x
−ζ2−1
2

α0
ζ1−ζ2(1− ζ2) (β∗0)ζ2 − (1− ζ1) (β∗0)ζ1

=
−ζ1(ζ1 − 1)

(
x1
x2

)ζ1+1
+ α0

ζ1−ζ2ζ2(ζ2 − 1)
(
x1
x2

)ζ2+1

x1

(
(1− ζ1) (β∗0)ζ1 − α0

ζ1−ζ2(1− ζ2) (β∗0)ζ2
) .

(6.A.13)

Using again that the denominator is positive and by similar calculations as in (6.A.12) we get

that the numerator is non-positive. Together with the observation that ∂2

∂x22
GβA(~x) = 0 for x2 ≥ x1

β∗0
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we have that the second half of equation (6.A.10) also holds.

Also note that the second-order derivative with respect to x2 vanishes at the optimal barrier:
The numerator of (6.A.13) divided by αζ1+1

0 is

− ζ1(ζ1 − 1)

(
x1

α0x2

)ζ1+1

+ ζ2(ζ2 − 1)

(
x1

α0x2

)ζ2+1

.

For x2 = x1
β∗0

and inserting the value of β∗0 given by (6.2.15) we get that

− ζ1(ζ1 − 1)

α0

(
ζ2(ζ2−1)
ζ1(ζ1−1)

) 1
ζ1−ζ2

α0


ζ1+1

+ ζ2(ζ2 − 1)

α0

(
ζ2(ζ2−1)
ζ1(ζ1−1)

) 1
ζ1−ζ2

α0


ζ2+1

= −ζ1(ζ1 − 1)

(
ζ2(ζ2 − 1)

ζ1(ζ1 − 1)

) ζ1+1
ζ1−ζ2

+ ζ2(ζ2 − 1)

(
ζ2(ζ2 − 1)

ζ1(ζ1 − 1)

) ζ2+1
ζ1−ζ2

= ζ1(ζ1 − 1)

−(ζ2(ζ2 − 1)

ζ1(ζ1 − 1)

) ζ1+1
ζ1−ζ2

+

(
ζ2(ζ2 − 1)

ζ1(ζ1 − 1)

) ζ2+1
ζ1−ζ2

+1
 = 0.

That is, we have the smooth fit condition, ∂2

∂x21
GA(~x;β∗0)

∣∣∣
x2=

x1
β∗0

= 0 holds. Hereafter, we are ready

to show the four different conditions in (6.A.9) one by one:

1. Let x2 ∈ [ x1β∗0
, x1α0

]: By construction of the candidate, we have that (A− δ)GA(~x) = 0.

2. Let x2 <
x1
β∗0

. SinceGA(·;β∗0) is homogeneous we have thatGA(x1,
x1
β∗0

;β∗0) = x1GA(1, 1
β∗0

;β∗0).

We use this and get that

(A− δ)Gβ
∗
0

A (~x) =µAx1
∂

∂x1
G
β∗0
A (~x) + µLx2

∂

∂x2
G
β∗0
A (~x) +

1

2
σ2
Ax

2
1

∂2

∂x2
1

G
β∗0
A (~x)

+
1

2
σ2
Lx

2
2

∂2

∂x2
2

G
β∗0
A (~x) + ρσAσLx1x2

∂2

∂x1∂x2
G
β∗0
A (~x)− δGβ

∗
0

A (~x)

=µA
x1

β∗0
+ µAGA

(
x1,

x1

β∗0
;β∗0

)
− µLx2 − δ

(
x1

β∗0
− x2 +GA

(
x1,

x1

β∗0
;β∗0

))
.

(6.A.14)

We have by (6.A.8) that

GA

(
x1,

x1

β∗0
;β∗0

)
=

x1

β∗0

(
β∗0
α0

)ζ1
−
(
β∗0
α0

)ζ2
(1− ζ2)

(
β∗0
α0

)ζ2
− (1− ζ1)

(
β∗0
α0

)ζ1 . (6.A.15)

By (6.2.14) the optimal barrier, β∗0 fulfills the equation:

ζ1(ζ1 − 1)

(
β∗0
α0

)ζ1
= ζ2(ζ2 − 1)

(
β∗0
α0

)ζ2
. (6.A.16)
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By dividing each of the four terms of the big fraction in (6.A.15) with either the left or the
right-hand side of (6.A.16) we obtain

GA

(
x1,

x1

β∗0
;β∗0

)
=
x1

β∗0

1
ζ1(ζ1−1) −

1
ζ2(ζ2−1)

1
ζ1
− 1

ζ2

=
x1

β∗0

ζ1 + ζ2 − 1

ζ1ζ2 − (ζ1 + ζ2 − 1)
.

Using that ζ1 and ζ2 are given by (6.A.4), we get that ζ1 + ζ2 − 1 = 2(µL−µA)
σ̃2 and that

ζ1ζ2 = 2(µL−δ)
σ̃2 . All in all,

GA

(
x1,

x1

β∗0
;β∗0

)
=
x1

β∗0

µA − µL
δ − µA

. (6.A.17)

That is,

(A− δ)Gβ
∗
0

A (~x) =µA
x1

β∗0
− µLx2 + µA

(
x1

β∗0

µA − µL
δ − µA

)
− δ

(
x1

β∗0
− x2 +

x1

β∗0

µA − µL
δ − µA

)
=(µA − δ)

x1

β∗0
+ (δ − µL)x2 − (µA − µL)

x1

β∗0

=(µL − δ)
x1

β∗0
+ (δ − µL)x2

=(δ − µL)

(
x2 −

x1

β∗0

)
<0.

(6.A.18)

3. Due to (6.2.9) and because ∂2

∂x22
G
β∗0
A (~x) is non-positive for x2 ∈

[
x1
β∗0
, x1α0

]
, we have that

∂
∂x2

G
β∗0
A (~x) ≤ −1 for x2 ∈

[
x1
β∗0
, x1α0

]
as wanted.

4. Let x1 > β∗0x2: By (6.2.5), we have that ∂
∂x2

G
β∗0
A (~x) = −1.

Finally, we show the boundedness of the partial derivatives of G
β∗0
A .

Since G
β∗0
A is concave (in its first argument) we have for x1 ∈ [α0x2, β

∗
0x2] that

∂

∂x1
G
β∗0
A (~x;β∗0) ≤

ζ1

(
α0x2
x2

)ζ1−1
− ζ2α0

ζ1−ζ2
(
α0x2
x2

)ζ2−1

α0
ζ1−ζ2(1− ζ2) (β∗0)ζ2 − (1− ζ1) (β∗0)ζ1

≤ K1 <∞

for some constant K1. On the other hand, ∂
∂x1

G
β∗0
A (~x;β∗0) ≥ 1

β∗0
+GA

(
1, 1

β∗0
;β∗0

)
:= H1 > −∞.

The partial derivative of G
β∗0
A with respect to x2 is for x2 ∈

[
x1
β∗0
, x1α0

]
given by

∂

∂x2
G
β∗0
A (~x;β∗0) =

(1− ζ1)xζ11 x
−ζ1
2 − (1− ζ2)α0

ζ1−ζ2xζ21 x
−ζ2
2

α0
ζ1−ζ2(1− ζ2) (β∗0)ζ2 − (1− ζ1) (β∗0)ζ1

< 0, (6.A.19)
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since the numerator is positive and the denominator is negative. Because G
β∗0
A is concave in the

second argument, the minimum for the first derivative of G
β∗0
A (~x;β∗0) with respect to x2 is attained

for the biggest possible value of x2, which is x2 = x1
α0

. We insert in (6.A.19) and get

∂

∂x2
G
β∗0
A (~x;β∗0)

∣∣∣∣
x2=

x1
α0

=
(1− ζ1)αζ10 − (1− ζ2)α0

ζ1

α0
ζ1−ζ2(1− ζ2) (β∗0)ζ2 − (1− ζ1) (β∗0)ζ1

> K2 > −∞

for some constant K2. On the other hand we have previously proved that G
β∗0
A (~x;β∗0) ≤ −1. In

total we get that K2 <
∂
∂x2

G
β∗0
A (~x;β∗0) ≤ −1. This concludes the proof.

Lemma 6.A.1. Let α1 > β∗, where β∗ is the optimal barrier. Then it holds

GA

(
x1,

x1

α1
;α1

)
≥
(
β∗

α1

)
GA

(
x1,

x1

β∗
;β∗
)
.

Proof of Lemma 6.A.1. Using (6.A.7) and that α1
β∗ > 1 we get that

GA

(
x1,

x1

α1
;α1

)
=
xζ11

(
x1
α1

)1−ζ1
− α0

ζ1−ζ2xζ21

(
x1
α1

)1−ζ2

α0
ζ1−ζ2(1− ζ2)αζ21 − (1− ζ1)αζ11

= x1

(
β∗
(
α1
β∗

))ζ1−1
− α0

ζ1−ζ2
(
β∗
(
α1
β∗

))ζ2−1

α0
ζ1−ζ2(1− ζ2)

(
β∗
(
α1
β∗

))ζ2
− (1− ζ1)

(
β∗
(
α1
β∗

))ζ1
= x1

(β∗)ζ1−1
(
α1
β∗

)ζ1−ζ2
− α0

ζ1−ζ2 (β∗)ζ2−1

α0
ζ1−ζ2(1− ζ2) (β∗)ζ2

(
α1
β∗

)
− (1− ζ1) (β∗)ζ1

(
α1
β∗

)ζ1−ζ2+1

= x1

(
β∗

α1

) (β∗)ζ1−1
(
α1
β∗

)ζ1−ζ2
− α0

ζ1−ζ2 (β∗)ζ2−1

α0
ζ1−ζ2(1− ζ2) (β∗)ζ2 − (1− ζ1) (β∗)ζ1

(
α1
β∗

)ζ1−ζ2
≥
(
β∗

α1

)
GA

(
x1,

x1

β∗
;β∗
)
.

The above inequality follows in the following way: The big fraction above consists of a negative
numerator and a negative denominator. The numerator consists of a positive term subtracted by
a positive term, whereas the denominator consists of negative term subtracted by a positive term.

Since
(
α1
β∗

)ζ1−ζ2
< 1, removing this term lead to a bigger (still negative) numerator and lower

value for the denominator. That is, removing the term leads to a lower value. This concludes the
proof.

6.A.3 Proof of Lemma 6.2.3 (Verification Lemma)

Proof of Verification Lemma (Lemma 6.2.3). We let Dπ
A be a general control strategy (not lim-

ited to barrier strategies). For the sake of simplicity we write Xπ instead of Xπ
A in the proof.
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Moreover, we denote the continuous part of Xπ by Xπ,c. By Itô’s Lemma we get that

e−δ(t∧τα0−)G (X1(t ∧ τα0−), Xπ
2 (t ∧ τα0−))

=G(A0, L0)−
∫ t∧τα0−

0−
δe−δsG(X1(s), Xπ

2 (s))ds

+
2∑
i=1

∫ t∧τα0−

0−
e−δs

∂

∂xi
G(X1(s), Xπ

2 (s)))dXπ,c
i (s)

+

∫ t∧τα0−

0−
e−δs

σ2
A (X1(s))2

2

∂2

∂x2
1

G (X1(s), Xπ
2 (s)) ds

+

∫ t∧τα0−

0−
e−δs

σ2
L (Xπ

2 (s))2

2

∂2

∂x2
2

G (X1(s), Xπ
2 (s)) ds

+

∫ t∧τα0−

0−
e−δsρσAσLX1(s)Xπ

2 (s)
∂2

∂x1∂x2
G (X1(s), Xπ

2 (s)) ds

+

∆Xπ
2 (s) 6=0∑

s≤t∧τα0−
e−δs (G (X1(s), Xπ

2 (s−) + ∆Xπ
2 (s))−G (X1(s), Xπ

2 (s−))) .

We insert the dynamics of Xπ, collect terms and obtain:

e−δ(t∧τα0−)G (X1(t ∧ τα0−), Xπ
2 (t ∧ τα0−))

=G(A0, L0) +

∫ t∧τα0−

0−
e−δs (A− δ)G(X1(s), Xπ

2 (s))ds

+

∫ t∧τα0−

0−
e−δsσAX1(s)

∂

∂x1
G(X1(s), Xπ

2 (s))dW1(s)

+

∫ t∧τα0−

0−
e−δsσLX

π
2 (s)

∂

∂x2
G (X1(s), Xπ

2 (s))
(
ρdW1(s) +

√
1− ρ2dW2(s)

)
+

∫ t∧τα0−

0−
e−δs

∂

∂x2
G(X1(s), Xπ

2 (s))dDπ,c
A (s)

+

∆Xπ
2 (s)6=0∑

s≤t∧τα0−
e−δs (G (X1(s), Xπ

2 (s))−G (X1(s), Xπ
2 (s−)))

=G(A0, L0) +

∫ t∧τα0−

0−
e−δs (A− δ)G(X1(s), Xπ

2 (s))ds

+

∫ t∧τα0−

0−
e−δsσAX1(s)

∂

∂x1
G(X1(s), Xπ

2 (s))dW1(s)

+

∫ t∧τα0−

0−
e−δsσLX

π
2 (s)

∂

∂x2
G (X1(s), Xπ

2 (s))
(
ρdW1(s) +

√
1− ρ2dW2(s)

)
−
∫ t∧τα0−

0−
e−δsdDπ

A(s)−
∫ t∧τα0−

0−
e−δs

(
−1− ∂

∂x2
G(X1(s), Xπ

2 (s−))

)
dDπ

A(s)

+

∆Xπ
2 (s)6=0∑

s≤t∧τα0−
e−δs

(
G (X1(s), Xπ

2 (s))−G (X1(s), Xπ
2 (s−))

− ∂

∂x2
G(X1(s), Xπ

2 (s−)) (Xπ
2 (s)−Xπ

2 (s−))
)
,

(6.A.20)
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where the operator A is given by (6.2.4).

Now, the aim is to prove that

G(A0, L0) ≥ JA,1(~x;πd) = EA0,L0

[∫ τπd−

0−
e−δsdDπ

A(s)

]
. (6.A.21)

We rearrange the terms and get that

G(A0, L0) (6.A.22)

=

∫ t∧τα0−

0−
e−δsdDπ

A(s)

+e−δ(t∧τα0−)G (X1(t ∧ τα0−), Xπ
2 (t ∧ τα0−)) (6.A.23)

−
∫ t∧τα0−

0−
e−δs (A− δ)G(X1(s), Xπ

2 (s))ds (6.A.24)

−
∫ t∧τα0−

0−
e−δsσAX1(s)

∂

∂x1
G(X1(s), Xπ

2 (s))dW1(s) (6.A.25)

−
∫ t∧τα0−

0−
e−δsσLX

π
2 (s)

∂

∂x2
G (X1(s), Xπ

2 (s))
(
ρdW1(s) +

√
1− ρ2dW2(s)

)
(6.A.26)

+

∫ t∧τα0−

0−
e−δs

(
−1− ∂

∂x2
G(X1(s), Xπ

2 (s−))

)
dDπ

A(s) (6.A.27)

−
∆Xπ

2 (s)6=0∑
s≤t∧τα0−

e−δs
(
G (X1(s), Xπ

2 (s))−G (X1(s), Xπ
2 (s−))

− ∂

∂x2
G(X1(s), Xπ

2 (s−)) (Xπ
2 (s)−Xπ

2 (s−))
)
. (6.A.28)

To prove the two stated results, we need to show that the limit of (6.A.23) is ≥ 0, that

(A− δ)G (X1(s), Xπ
2 (s)) ≤ 0,

some integrability conditions such that the integrals with respect to the Brownian motions vanish
when taking the expected values of (6.A.25) and (6.A.26). Moreover, we need to show that(
−1− ∂

∂x1
G(~x)

)
≥ 0, such that (6.A.27) is positive , and that for z ≥ y it holds that

z ≥ y : G(x1, z)−G(x1, y)− (z − y)
∂

∂x2
G(~x)

∣∣∣∣
x2=y

| ≤ 0,

such that also the term (6.A.28) is positive. If we are able to show these results, we have that
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G(A0, L0) ≥ EA0,L0

[∫ t∧τα0−
0− e−δsdDπ

A(s)
]
. We consider each of the terms separately.

We have that

lim
t→∞

e−δ(t∧τα0−)G (X1(t ∧ τα0−), Xπ
2 (t ∧ τα0−))

= lim
t→∞

e−δ(t∧τα0−)G (X1(t ∧ τα0−), Xπ
2 (t ∧ τα0−)) 1{τα0−<∞}

+ lim
t→∞

e−δ(t∧τα0−)G (X1(t ∧ τα0−), Xπ
2 (t ∧ τα0−)) 1{τα0−=∞}

= e−δ(τα0−)G (α0X
π
2 (τα0−), Xπ

2 (τα0−)) 1{τα0−<∞}

+ lim
t→∞

e−δ(t∧τα0−)G (X1(t ∧ τα0−), Xπ
2 (t ∧ τα0−)) 1{τα0−=∞}

≥ 0.

That (A− δ)G (X1(s), Xπ
2 (s)) ≤ 0 is exactly assumption (6.2.16). To show that the expected

values of the integrals with respect to the two Brownian motions are zero, we define a monotone
increasing sequence of stopping times by ρn = inf{t : e−δtX1(t) ≥ n}. We now consider the
truncated integral given by∫ t∧τα0−∧ρn

0−
e−δsσAX1(s)

∂

∂x1
G(X1(s), Xπ

2 (s))dW1(s). (6.A.29)

We know that the expected value of (6.A.29) is zero, because the integrand is bounded. This
means (taking the rest of the calculations into account) that

G(A0, L0) ≥ EA0,L0

[∫ t∧τα0−∧ρn

0−
e−δsdDπ

A(s)

]
.

By letting t→∞ and n→∞ we get by using Lebesgue’s monotone convergence theorem that

G(A0, L0) ≥ EA0,L0

[∫ τα0−

0−
e−δsdDπ

A(s)

]
.

Using that the first derivative of the second variable of G is bounded by assumption (6.2.20),
we get by calculations analogously to the ones for the term (6.A.25) that (6.A.26) = 0. That
(6.A.27) is greater than or equal to 0 follows directly from assumption (6.2.18). Finally, because
of the concavity of G in its first argument, which follows by assumption (6.2.17), we have that
for z > y:

∂
∂x2

G(x1, x2)
∣∣∣
x2=y

≥ G(x1,z)−G(x1,y)
z−y ⇒ 0 ≥ G(x1, z)−G(x1, y)− (z − y) ∂

∂x2
G(x1, x2)

∣∣∣
x2=y

,

this implies that (6.A.28) ≥ 0. This ends the proof of the first part of the lemma for the case
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α1 ≤ β∗. The case, α1 > β∗ will be covered below.

For the second half of the proof we show that optimal strategy is in fact a barrier strategy.

We take expectations of (6.A.22), rearrange and obtain

EA0,L0

[
e−δ(t∧τα0−)G (X1(t ∧ τα0−), Xπ

2 (t ∧ τα0−))
]

= G(A0, L0) + EA0,L0

[∫ t∧τα0−

0−
e−δs (A− δ)G(X1(s), Xπ

2 (s))ds

]
+ EA0,L0

[∫ t∧τα0−

0−
e−δs

∂

∂x2
G(X1(s), Xπ

2 (s−))dDπ
A(s)

]

+ EA0,L0

∆Xπ
2 (s)6=0∑

s≤t∧τα0−
e−δs

(
G (X1(s), Xπ

2 (s))−G (X1(s), Xπ
2 (s−))

− ∂

∂x2
G(X1(s), Xπ

2 (s)) (Xπ
2 (s)−Xπ

2 (s−))
).

(6.A.30)

We have that (A− δ)G(X1(s), Xπ
2 (s)) = 0, since we consider a barrier strategy which means that

X1 ≤ β∗Xπ
2 . The last term of (6.A.30) is zero due to the proposed dividend strategy. In total we

get that,

EA0,L0

[
e−δ(t∧τα0−)G (X1(t ∧ τα0−), Xπ

2 (t ∧ τα0−))
]

= G(A0, L0) + EA0,L0

[∫ t∧τα0−

0−
e−δs

∂

∂x2
G(X1(s), Xπ

2 (s−))dDπ
A(s)

]
= G(A0, L0) + EA0,L0

[∫ t∧τα0−

0−
e−δs

∂

∂x2
G(X1(s), Xπ

2 (s−))1{X1(s)≥β∗Xπ
2 (s)}dD

π
A(s)

]
= G(A0, L0)− EA0,L0

[∫ t∧τα0−

0−
e−δsdDπ

A(s)

]
,

(6.A.31)

where we have used assumption (6.2.22). Letting t→∞ in (6.A.31) we get that

G(A0, L0) = EA0,L0

[
lim
t→∞

∫ t∧τα0−

0−
e−δsdDπ

A(s)

]
.

We now assume that β∗ < α1. We denote by Vα1 the value function for a barrier strategy with
barrier for the assets given by α1L. The value function Vα1 is twice continuously differentiable in
both arguments except in the point (α1x2, x2). However, since Vα1(α1x2−) = Vα1(α1x2+) = 1,
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we can use Itô’s Lemma and obtain

e−δ(t∧τα0−)Vα1 (X1(t ∧ τα0−), Xπ
2 (t ∧ τα0−))

=

∫ t∧τα0−

0−
e−δs

(
µA
α1
X1(s)− µLXπ

2 (s) + µAGA

(
X1(s),

X1(s)

α1
;α1

)

− δ
(
X1(s)

α1
−Xπ

2 (s) +GA

(
X1(s),

X1(s)

α1
;α1

)))
1{Y πA (s)>α1}ds

+ Vα1(A0, L0) +

∫ t∧τα0−

0−
e−δsσAX1(s)

∂

∂x1
Vα1(X1(s), Xπ

2 (s))dW1(s)

+

∫ t∧τα0−

0−
e−δsσLX

π
2 (s)

∂

∂x2
Vα1(X1(s), Xπ

2 (s))
(
ρdW1(s) +

√
1− ρ2dW2(s)

)
+

∫ t∧τα0−

0−

∂

∂x2
Vα1 (X1, X

π
2 (s−)) e−δsdDπ

A(s),

(6.A.32)

where we have used that Vα1 is homogeneous. By the same arguments as for the case α1 ≤ β∗, we
can show that the derivatives are bounded, and that we ultimately get that the mean value of the
integrals with respect to the Brownian motion is 0. We only increase liabilities for Xπ

2 ≤
X1(s)
α1

in

which case ∂
∂x2

Vα1 (X1, X
π
2 (s−)) = −1. Moreover, we also have that the left-hand side of (6.A.32)

is 0 in the limit. That is, we can show that

lim
t→∞

E

[∫ t∧τα0−

0−
e−δsdDπ

A(s)

]
≤ Vα1(A0, L0)

by showing that for all positive values t it holds that

E

[∫ t∧τα0−

0−
e−δs

(
µA
α1
X1(s)− µLXπ

2 (s) + µAGA

(
X1(s),

X1(s)

α1
;α1

)

− δ
(
X1(s)

α1
−Xπ

2 (s) +GA

(
X1(s),

X1(s)

α1
;α1

)))
1{Y πA (s)>α1}ds

]
≤ 0.

To show this inequality, we show, that for x1
α1
> x2 we have that

µA
α1
x1 − µLx2 + µAGA

(
x1,

x1

α1
;α1

)
− δ

(
1

α1
x1 − x2 +GA

(
x1,

x1

α1
;α1

))
≤ 0.

Using (6.1.2), (6.1.3), Lemma 6.A.1 (p. 149), that x1
α1
> x2 and that GA

(
x1,

x1
β∗ ;β

∗
)

is given by

(6.A.17), we get that

µA
α1
x1 − µLx2 + µAGA

(
x1,

x1

α1
;α1

)
− δ

(
x1

α1
− x2 +GA

(
x1,

x1

α1
;α1

))

≤ x2

µA − δ + δ − µL − (δ − µA)
GA

(
x1,

x1
α1

;α1

)
x2


≤ x2

(
µA − µL −

δ − µA
x2

(
β∗

α1

)(
x1

β∗
µA − µL
δ − µA

.

))
≤ x2 (µA − µL − (µA − µL))

= 0.
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That is, we get that (after taking limits)

Vα1(A0, L0) ≥ EA0,L0

[∫ τα0−

0−
e−δsdDπ

A(s)

]
.

6.A.4 Proof of Theorem 6.3.1 (Value function under advanced solvency con-
straints)

Proof of Theorem 6.3.1. Using (6.3.7) and (6.3.9) we get:

C2 = −C1α0
ζ1−ζ2 , (6.A.33)

such that

V 0
A,2(x1, x2;β) = C1x

ζ1
1 x

1−ζ1
2 − C1α0

ζ1−ζ2xζ21 x
1−ζ2
2 .

Condition (6.3.11) states that

C1x
ζ1
1

(
x1

α1

)1−ζ1
+ C2x

ζ2
1

(
x1

α1

)1−ζ2
= C̃1x

ζ1
1

(
x1

α1

)1−ζ1
+ C̃2x

ζ2
1

(
x1

α1

)1−ζ2
.

This is a binding condition for either C̃1 or C̃2, whereas the other parameter can vary freely. That
is, we choose to represent C̃1 as

C̃1 =
C1x

ζ1
1

(
x1
α1

)1−ζ1
+ C2x

ζ2
1

(
x1
α1

)1−ζ2
− C̃2x

ζ2
1

(
x1
α1

)1−ζ2

xζ11

(
x1
α1

)1−ζ1

= C1 + C2x
ζ2−ζ1
1

(
x1

α1

)−ζ2+ζ1

− C̃2x
ζ2−ζ1
1

(
x1

α1

)−ζ2+ζ1

= C1 + C2α
ζ2−ζ1
1 − C̃2α

ζ2−ζ1
1 .

(6.A.34)

Using (6.3.8), (6.A.34) and (6.A.33), we get that V 1
A,2 has the representation

V 1
A,2(x1, x2;β) =

(
C1 − C1α0

ζ1−ζ2α1
ζ2−ζ1 − C̃2α1

ζ2−ζ1
)
xζ11 x

1−ζ1
2 + C̃2x

ζ2
1 x

1−ζ2
2 . (6.A.35)

That is, we have the representations for V 0
A,2 and V 1

A,2 given in the theorem but we still need to

determine C1 and C̃2. The partial derivative of V 1
A,2 with respect to x2 in the point x1

β is given
by

∂

∂x2
V 1
A,2(x1, x2;β)|x2=

x1
β

= (1− ζ1)
(
C1 − C1α0

ζ1−ζ2α1
ζ2−ζ1 − C̃2α1

ζ2−ζ1
)
xζ11

(
x1

β

)−ζ1
+ (1− ζ2) C̃2x

ζ2
1

(
x1

β

)−ζ2
= (1− ζ1)

(
C1 − C1α0

ζ1−ζ2α1
ζ2−ζ1 − C̃2α1

ζ2−ζ1
)
βζ1

+ (1− ζ2) C̃2β
ζ2 .

This means, we get the following equation by using condition (6.3.12):

(1− ζ1)
(
C1 − C1α0

ζ1−ζ2α1
ζ2−ζ1 − C̃2α1

ζ2−ζ1
)
βζ1 + (1− ζ2) C̃2β

ζ2 = −1.
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From this it follows that

C̃2

(
(1− ζ2)βζ2 − (1− ζ1)αζ2−ζ11 βζ1

)
+ (1− ζ1)

(
C1 − C1α0

ζ1−ζ2α1
ζ2−ζ1

)
βζ1 = −1,

such that C̃2 is given by

C̃2 =
−1− (1− ζ1)

(
C1 − C1α0

ζ1−ζ2α1
ζ2−ζ1

)
βζ1

(1− ζ2)βζ2 − (1− ζ1)αζ2−ζ11 βζ1
. (6.A.36)

We can represent V 0
A,2

(
x1,

x1
α2

;β
)

by

V 0
A,2

(
x1,

x1

α2
;β

)
= C1x

ζ1
1

(
x1

α2

)1−ζ1
− C1α0

ζ1−ζ2xζ21

(
x1

α2

)1−ζ2

=

(
x1

α2

)
C1

(
α2

ζ1 − α0
ζ1−ζ2α2

ζ2
)
,

(6.A.37)

and V 1
A,2

(
x1,

x1
α2

;β
)

by

V 1
A,2

(
x1,

x1

α2
;β

)
=

(
1

β
− 1

α2

)+

x1 + V 1
A,2

(
x1,

(
x1

min (β, α2)

)
;β

)
=x1

((
1

β
− 1

α2

)+

+
(
C1 − C1α0

ζ1−ζ2α1
ζ2−ζ1 − C̃2α1

ζ2−ζ1
)

min (β, α2)ζ1−1

+ C̃2 min (β, α2)ζ2−1

)
,

(6.A.38)

where we have used (6.A.35). By condition (6.3.10), we have that (6.A.37) equals (6.A.38). Using
this and rearranging the terms give us that

C1

(
α2

ζ1−1 − α0
ζ1−ζ2α2

ζ2−1 + (α0
ζ1−ζ2α1

ζ2−ζ1 − 1) min (β, α2)ζ1−1
)

=

(
1

β
− 1

α2

)+

− C̃2

(
α1

ζ2−ζ1 min (β, α2)ζ1−1 −min (β, α2)ζ2−1

)
.

(6.A.39)

Inserting C̃2 given by (6.A.36) in (6.A.39) leads to the equation

C1

(
α2

ζ1−1 − α0
ζ1−ζ2α2

ζ2−1 + (α0
ζ1−ζ2α1

ζ2−ζ1 − 1) min (β, α2)ζ1−1
)

=

(
1

β
− 1

α2

)+

+ ξ
(
−1− (1− ζ1)

(
C1 − C1α0

ζ1−ζ2α1
ζ2−ζ1

)
βζ1
)
,

where

ξ =
min (β, α2)ζ2−1 − α1

ζ2−ζ1 min (β, α2)ζ1−1

(1− ζ2)βζ2 − (1− ζ1)αζ2−ζ11 βζ1
. (6.A.40)

Solving with respect to C1 gives us that

C1 =

(
1
β
− 1
α2

)+
−ξ

α2
ζ1−1−α0

ζ1−ζ2α2
ζ2−1+(α0

ζ1−ζ2α1
ζ2−ζ1−1) min(β,α2)ζ1−1+ξ((1−ζ1)(1−α0

ζ1−ζ2α1
ζ2−ζ1)βζ1)

.

This concludes the proof.
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6.A.5 Proof of Lemma 6.4.2 (Existence of optimal barrier with capital injec-
tions)

Proof of Lemma 6.4.2. The problem is to show that the equation (6.4.11) has a unique root. We
denote by Ψ the function

Ψ(β) = ζ1

(
βζ1γ1−ζ2κζ1 − βζ1γ1−ζ2κζ2 + γζ1−ζ2βζ2 − β1−ζ2+ζ1ζ1 − γζ1−ζ2β + β1−ζ2+ζ1

)
.

We want to prove that sgn (Ψ(γ)) 6= sgn (limβ→∞Ψ(β)), and that

sgn
(
Ψ′(x)

)
= sgn

(
Ψ′(y)

)
for x, y > γ.

1.

Ψ(γ) =ζ1γ
1−ζ2+ζ1 (κζ1 − κζ2 − ζ1 + ζ2) > 0.

2.

lim
β→∞

Ψ(β) = lim
β→∞

ζ1

(
γζ1−ζ2βζ2 − γζ1−ζ2β

)
= −∞.

3.

Ψ′(β) =− ζ1

(
− βζ1−1ζ1

2γ1−ζ2κ+ βζ1−1ζ1γ
1−ζ2κζ2 + βζ1−ζ2ζ1

2 − βζ1−ζ2ζ1ζ2

+ βζ1−ζ2ζ2 − γζ1−ζ2ζ2 − βζ1−ζ2 + γζ1−ζ2
)
.

We want to show that the inner part of the delimiters is negative. It is given by

κβζ1−1γ1−ζ2 (−ζ1
2 + ζ1ζ2

)
+ βζ1−ζ2

(
ζ1

2 − ζ1ζ2 + ζ2 − 1
)
− γζ1−ζ2 (ζ2 − 1) . (6.A.41)

To get that (6.A.41) is negative, we need the two following conditions to be fulfilled:

βζ1−1γ1−ζ2 ≥ βζ1−ζ2 and γζ1−ζ2 ≥ βζ1−ζ2 . (6.A.42)

Since
(
γ
β

)1−ζ2
≥ 1 and

(
γ
β

)ζ1−ζ2
≥ 1, both inequalities holds and Ψ′(β) < 0.

That is, the optimal barrier exists and is unique.
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6.B Parameter values

No. ρ δ µA µL σA σL α0 α1 α2 κ A0 L0

1 0.5 0.055 0.05 0.04 0.03 0.01 1 1.3 1.35 1.05 1.2 1

2 0.5 0.055 0.05 0.04 0.02 0.01 1 - - 1.05 1.2 1

3 0.5 0.055 0.05 0.04 0.3 0.01 1 - - 1.05 1.2 1

4 0.5 0.05 0.04 0.02 0.25 0.1 1 2 4 1.05 - -

5 0.5 0.05 0.04 0.02 0.01 0.1 1 2 4 1.05 - -

6 0.5 0.055 0.05 0.03 0.03 0.01 1 1.3 1.5 1.05 1.2 1

7 0.5 0.055 0.05 0.04 0.06 0.01 1 1.3 1.35 1.05 1.2 1

8 0.5 0.055 0.05 0.04 0.2 0.01 1 1.3 1.35 1.05 1.2 1

9 0.5 0.055 0.05 0.04 - 0.01 1 1.3 1.35 1.05 1 1

10 0.5 0.055 0.05 0.04 0.03 0.01 1 1.4 - 1.05 1.2 1

Table 6.1: Parameter values for numerical illustrations.
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