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Summary

The mathematical problems treated in this thesis concern the dynamics
of charged quantum mechanical particles coupled with their classical self-
generated electromagnetic field. This coupling suggests that we not only de-
scribe the physical system by the Schrödinger equation of quantum mechan-
ics but also by the Maxwell equations of classical electrodynamics. Through
the years experiments have to a very large extent confirmed that each of
these fundamental physical laws serves as an accurate description of reality,
but the coupling of them raises some interesting mathematical questions –
in this thesis we consider two of these questions.

Does the initial value problem associated with the coupled system of
equations at all have a mathematical solution? We interpret an affirm-
ative answer as an explanation that macroscopic matter – consisting of
several charged particles – can exist and evolve in time (assuming that
nature strives to fulfill the Maxwell equations and the Schrödinger equa-
tion). In [55], we prove the unique existence of a local in time solution
to the many-body Maxwell-Schrödinger initial value problem expressed in
Coulomb gauge.

Of course the actual particle motions predicted by the coupled system
also ought to correspond with our expectations. For instance we expect a
single charged particle to be able to travel in space at a constant velocity so
certainly there ought to exist a solution to the coupled system describing
this kind of motion. In the joint work [56] with Jan Philip Solovej, we prove
the existence of such travelling wave solutions to the one-body Maxwell-
Schrödinger system and likewise to the related one-body Maxwell-Pauli
system – both of them expressed in Coulomb gauge. Finally, we prove that
the effective mass of the particle equals it’s bare mass.
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Dansk oversættelse
De i denne afhandling behandlede matematiske problemstillinger drejer sig
om dynamikken af ladede kvantemekaniske partikler koblet til deres klas-
siske, selv-genererede elektromagnetiske felt. Denne kobling giver os grund
til ikke kun at beskrive det fysiske system ved hjælp af kvantemekanikkens
Schrödingerligning, men også ved hjælp af den klassiske elektrodynamiks
Maxwell-ligninger. Gennem tiderne har eksperimenter i meget høj grad be-
kræftet, at hver af disse fundamentale fysiske love fungerer som en akkurat
beskrivelse af virkeligheden, men koblingen af dem foranlediger nogle inter-
essante matematiske spørgsmål – i denne afhandling vil vi betragte to af
disse spørgsmål.

Har begyndelsesværdiproblemet hørende til det koblede ligningssystem
overhovedet en matematisk løsning? Vi fortolker et bekræftende svar som
en forklaring på, at makroskopisk stof – bestående af adskillige partikler –
kan eksistere og udvikle sig i tiden (under antagelse af, at naturen søger
at opfylde Maxwell-ligningerne og Schrödingerligningen). I [55] beviser vi
den entydige eksistens af en tidslokal løsning til mange-legeme Maxwell-
Schrödinger begyndelsesværdiproblemet udtrykt i Coulomb gauge.

Naturligvis bør de af det koblede system forudsagte partikelbevægelser
også stemme overens med vore forventninger. Eksempelvis forventer vi, at
en enkelt ladet partikel er i stand til at bevæge sig i rummet med konstant
hastighed, så der bør helt bestemt findes en løsning til det koblede lignings-
system, som beskriver denne type bevægelse. I samarbejdet [56] med Jan
Philip Solovej beviser vi eksistensen af sådanne solitære bølge-løsninger til
en-partikel Maxwell-Schrödinger systemet og tilsvarende til det relaterede
en-legeme Maxwell-Pauli system – begge udtrykt i Coulomb gauge. Endelig
beviser vi, at partiklens effektive masse er lig med dens bare masse.
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Abstract

In this thesis, we study the mathematics used to describe systems of charged
quantum mechanical particles coupled with their classical self-generated
electromagnetic field. We prove the existence of a unique local in time solu-
tion to the many-body Maxwell-Schrödinger initial value problem expressed
in Coulomb gauge and we show that the one-body Maxwell-Schrödinger
system as well as the related one-body Maxwell-Pauli system both admit
travelling wave solutions.

Dansk oversættelse
I denne afhandling studerer vi den matematik, som benyttes til at beskrive
systemer af ladede kvantemekaniske partikler koblet til deres klassiske selv-
genererede elektromagnetiske felt. Vi beviser den entydige eksistens af en
tidslokal løsning til mange-legeme Maxwell-Schrödinger begyndelsesværdi-
problemet udtrykt i Coulomb gauge og vi viser, at en-legeme Maxwell-
Schrödinger systemet samt det relaterede en-legeme Maxwell-Pauli system
har solitære bølge-løsninger.

v





Introduction 1
Why can matter exist in the form we observe around us every day? Mat-
ter is made up of a wealth of charged particles that are all influenced by
forces – some of them originating from the Coulomb interactions between
the particles and some of them originating from the electromagnetic fields
induced by the movement of the particles themselves – so it seems rather re-
markable that this enormous system can settle into a stable state. Even the
much simpler question concerning stability of the hydrogen atom is quite
complex – it can not be answered by means of classical electrodynamics
alone and in fact, the explanation of the hydrogen atom’s stability is one of
the celebrated results of quantum mechanics. In this thesis we will consider
a quantum mechanical model for a system of N ∈ N nonrelativistic dynamic
particles with positive masses m1, . . . ,mN and nonzero charges Q1, . . . , QN .
In addition, we think of M ∈ N0 infinitely heavy nuclei with atomic num-
bers Z1, . . . , ZM and fixed distinct positions R1, . . . ,RM ∈ R3 as being
present in the system – the configuration of these nuclei will for notational
convenience be denoted by R = (R1, . . . ,RM). Our main objective will be
to investigate the coupling of such a system with some classical electromag-
netic field (E,∇×A), where the electromagnetic potential is chosen so that
the Coulomb gauge condition divA = 0 is satisfied. Suppose that each of
the N dynamic particles have ν ∈ N internal (spin-)degrees of freedom so
that the possible quantum mechanical states of the system are described by
vectors in

⊗N [L2(R3)]ν , a space that is naturally isomorphic to [L2(R3N)]ν
N
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by the unitary operator U sending a given pure tensor product

ψ1 ⊗ · · · ⊗ ψN =



ψ1
1
...
ψν1


⊗ · · · ⊗



ψ1
N
...
ψνN




into the [L2(R3N)]ν
N -function with components given by

Us(ψ1 ⊗ · · · ⊗ ψN)(x) = ψs11 (x1) · · ·ψsNN (xN)

for s = (s1, . . . , sN) ∈ {1, . . . , ν}N and x = (x1, . . . ,xN) ∈ R3N . Through-
out this thesis we restrict our attention to the cases ν = 1 or ν = 2,
corresponding to the situations where either all of the particles are spinless
or all of the particles have spin 1

2
.

The total energy of the physical system is in Gaussian units described
by the (formal) operator

H
(
A,−PE

4π

)
=

N∑

j=1

Tj[A] + VC + EEM[A,−c2PE], (1.1)

on the quantum mechanical state space, where P = 1 − ∇div∆−1 is the
Helmholtz projection onto divergence free vector fields, Tj[A] denotes for
j ∈ {1, . . . , N} the kinetic energy of the j’th particle, the electromagnetic
field energy EEM[A,−c2PE] is

EEM

[
A,−c2PE] =

1

8π

∫

R3

(
|∇ ×A(y)|2 + c2|PE(y)|2

)
dy

and VC is the potential energy

VC(x1, . . . ,xN) =
∑

1≤j<k≤N

QjQk

|xj − xk|
+

N∑

j=1

M∑

k=1

QjZke

|xj −Rk|

+
∑

1≤j<k≤M

ZjZke
2

|Rj −Rk|
.

Here, c, e > 0 denote the speed of light and the elementary charge. The
three sums in the expression for VC represent the particle-particle, particle-
nucleon and nucleon-nucleon Coulomb interactions. To specify the expres-
sion for the kinetic energy operator let ~ > 0 be the reduced Planck constant
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and let σ denote the 3-vector with the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)

as components. Then the operator Tj[A] is often chosen to be either the
magnetic Laplacian 1

2mj

(
i~∇xj +

Qj
c
A(xj)

)2 or – if ν = 2 – the Pauli oper-

ator 1
2mj

(
σ ·
(
i~∇xj +

Qj
c
A(xj)

))2. The former choice describes the energy
originating from the coupling between the magnetic field and the orbital
motion of the particles, whereas the latter choice also takes the interactions
between the magnetic field and the spin of the particles into account, as
can be read off from the Lichnerowicz formula
(
σ ·
(
i~∇xj +

Qj

c
A(xj)

))2
=
(
i~∇xj +

Qj

c
A(xj)

)2
− ~Qj

c
σ · ∇ ×A(xj).

(1.2)

The last term on the right hand side of (1.2) is often referred to as the Zee-
man term. We will always describe allN dynamic particles by the same type
of kinetic energy so either we choose all of the operators T1[A], . . . ,TN [A]
as magnetic Laplacians or else we choose them all as Pauli operators.

There are of course several different ways to formulate rigorous criteria
expressing stability of the physical system described above. First, we con-
sider an approach where stability is expressed as a condition on the total
energy of the system – this notion of stability will therefore be called ener-
getic stability. We will give a brief introduction to this concept below, but
for an in-depth and very educational discussion of energetic stability and
related topics we refer the interested reader to [44].

Energetic Stability of Matter
Whether or not the system is energetically stable – in the sense introduced
below – turns out to be significally dependent on the statistics of the dy-
namic particles involved in the model. Let us consider the physically rel-
evant case where all of the N dynamic particles are (indistinguishable)
electrons so that m1 = · · · = mN = m and Q1 = · · · = QN = −e for
some m > 0. The fermionic nature of the electrons is reflected in the
Pauli exclusion principle according to which the wave function ψ is totally

3



antisymmetric, meaning that

ψ(s1,...,sj ,...,sk,...,sN )(x1, . . . ,xj, . . . ,xk, . . . ,xN)

= −ψ(s1,...,sk,...,sj ,...,sN )(x1, . . . ,xk, . . . ,xj, . . . ,xN) (1.3)

for all j < k, (s1, . . . , sN) ∈ {1, . . . , ν}N and (x1, . . . ,xN) ∈ R3N . For
comparison, boson wave functions have the property (1.3) with the minus
sign being absent. The square integrable, totally antisymmetric functions
form a closed subspace

∧N [L2(R3)]ν of
⊗N [L2(R3)]ν – thereby

∧N [L2(R3)]ν

is itself a Hilbert space with the inner product inherited from
⊗N [L2(R3)]ν .

Stability of the First Kind
The principle of minimum energy says that in a closed system (with constant
entropy) the internal energy will always decrease and approach the least
possible value. This suggests a natural criterion for stability of a physical
system, namely boundedness from below of the total energy. We formalize
this idea in the following way. Given any (E,A) ∈ L2(R3;R3)×L4

loc(R3;R3)
with ∇ × A ∈ L2(R3;R3) and divA ∈ L2

loc(R3;R) we realize (1.1) as a
symmetric unbounded operator H

(
A,−PE

4π

)
in
∧N [L2(R3)]ν with dense

domain [C∞0 (R3N)]ν
N ∩∧N [L2(R3)]ν . Suppose that the quantity

EM
N (R) = inf

ψ∈[C∞0 (R3N )]ν
N∩∧N [L2(R3)]ν ,‖ψ‖∧N [L2]ν

=1

A∈L4
loc(R

3;R3),∇×A∈L2(R3;R3),divA∈L2
loc(R

3;R)
E∈L2(R3;R3)

(
ψ,H

(
A,−PE

4π

)
ψ
)
∧N [L2]ν

= inf
ψ∈[C∞0 (R3N )]ν

N∩∧N [L2(R3)]ν ,‖ψ‖∧N [L2]ν
=1

A∈L4
loc(R

3;R3),∇×A∈L2(R3;R3),divA∈L2
loc(R

3;R)

(ψ,H (A,0)ψ)∧N [L2]ν

is finite. This means that all of the operators H
(
A,−PE

4π

)
are bounded

from below, uniformly in
(
A,−PE

4π

)
, whereby their Friedrichs extensions are

well defined and have the common lower bound EM
N (R). Being selfadjoint

operators these extensions can serve as energy observables and with this
understanding we can interpret EM

N (R) as the least possible energy the
system can achieve, no matter which electromagnetic field the particles are
being exposed to. A system satisfying the condition EM

N (R) > −∞ for all
vectors R = (R1, . . . ,RM) ∈ R3M with distinct coordinates is thus said
to be stable of the first kind and EM

N (R) is called the ground state energy
associated with the configuration R of the nuclei.
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When the kinetic energies of the N particles are measured by means
of the magnetic Laplacian one can use the diamagnetic and Sobolev in-
equalities to dominate the average potential energy (ψ, VCψ)⊗N [L2]ν by the
average kinetic energy, thus obtaining stability of the first kind even if one
subtracts the nonnegative field energy term from the Hamiltonian. It turns
out that things change dramatically when spin-effects are taken into con-
sideration by letting the Pauli operator represent the kinetic energies of the
particles. To see this let us consider the simple situation of one particle and
one oppositely charged nucleus.

Example (Hydrogenic atom with Pauli kinetic energy). Consider a
system of N = 1 electron and M = 1 infinitely heavy nucleus fixed at the
origin R1 = 0 with atomic number Z1 = Z – such a system is called a
hydrogenic atom. When the kinetic energy of the electron is measured by
means of the Pauli operator the total energy of the electron-nucleus pair is
described by the unbounded operator

H
(
A,−PE

4π

)
=

1

2m

(
σ ·
(
i~∇− e

c
A
))2
− Ze2

|x| + EEM[A,−c2PE]

in the Hilbert space [L2(R3)]2 with domain [C∞0 (R3)]2. Showing that this
system is stable of the first kind is a matter of controlling −Ze2

|x| by the

two nonnegative terms 1
2m

(
σ ·
(
i~∇− e

c
A
))2 and EEM[A,−c2PE]. For this

purpose the kinetic energy term is not particularly useful because unlike
the magnetic Laplacian the Pauli operator has zero modes, i.e. nontrivial
states with zero kinetic energy. Were it not for the presence of the field
energy term in the Hamiltonian this property of the Pauli operator would
in fact imply instability of all hydrogenic atom-systems with Pauli kinetic
energy – as will be apparent below the field energy term is strong enough
to stabilize the system in some (but not all) cases.

For an arbitrary normalized φ0 ∈ C2 introduce w = 〈φ0,σφ0〉C2 and set

(ψ,A)(x)

=

(
1

π

1 + iσ · x
(1 + x2)

3
2

φ0,
3

(1 + x2)2
(
(1− x2)w + 2(w · x)x+ 2w × x

)
)
.

(1.4)

The pair (ψ,A) ∈ [C∞(R3)]2 × C∞(R3;R3) is a zero mode for the Pauli
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operator in the sense that

σ · (i∇+A)ψ = 0

and ψ,∇ × A are both square integrable – in fact, (1.4) was the first of
the Pauli operator’s zero modes that was discovered (see Loss and Yau
[51]). We now scale and regularize the zero mode, i.e. for any ` ∈ N and
sufficiently large n ∈ N we set

(ψ`,n,A`)(x) =


 `

3
2χ
(
x
n

)
ψ(`x)

(∫
R3

∣∣χ
(
y
`n

)∣∣2|ψ(y)|2 dy
) 1

2

,−~c
e
`A(`x)


 ,

where χ is any cut-off function with

χ(x)





= 1 if |x| ≤ 1

∈ [0, 1] if 1 < |x| < 2

= 0 if |x| ≥ 2

.

For any ` and large enough n the pair (ψ`,n,A`) ∈ [C∞0 (R3)]2×C∞(R3;R3)
then satisfies ‖ψ`,n‖L2 = 1, ∇×A` ∈ L2(R3;R3) and

(
ψ`,n,H

(
A`,0

)
ψ`,n

)
L2 =

~2

2mn2

∫
R3

∣∣∇χ
(
y
`n

)∣∣2|ψ(y)|2 dy
∫
R3

∣∣χ
(
y
`n

)∣∣2|ψ(y)|2 dy
+
`~2c2

e2
EEM[A,0]

− `Ze2
∫
R3

1
|y|
∣∣χ
(
y
`n

)∣∣2|ψ(y)|2 dy
∫
R3

∣∣χ
(
y
`n

)∣∣2|ψ(y)|2 dy

−−−→
n→∞

`
(
−Ze2

(
ψ,

1

|x|ψ
)
L2

+
~2c2

e2
EEM[A,0]

)
,

so under the condition Zα2 > EEM[A,0]

(ψ, 1
|x|ψ)L2

we can make
(
ψ`,n,H

(
A`,0

)
ψ`,n

)
L2

arbitrarily negative by choosing ` and n appropriately large1. In other
words, the hydrogenic atom with Pauli kinetic energy is unstable for large
values of Zα2. Fröhlich, Lieb and Loss show in [24] that the critical value of
Zα2 is Θ = inf EEM[A,0]

(ψ, 1
|x|ψ)L2

, where the infimum is taken over all zero modes of

1α = e2

~c denotes the fine-structure constant. It is dimensionless and has a numerical
value of approximately 1

137 . However, in the literature concerning energetic stability of
matter α is often thought of as a parameter that can take any positive value.
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the Pauli operator. This means that the system is stable for Zα2 < Θ and
unstable for Zα2 > Θ. The authors also provide a positive lower bound on
Θ explaining stability of the hydrogenic atom in more than all physically
relevant cases, but to determine the precise value of Θ is still an open
problem. Lieb and Loss study in [40] the N -electron atom with a single
nucleus fixed at the origin and prove that it’s ground state energy is finite
provided that Zα

12
7 is sufficiently small.

Stability of the Second Kind

Let us return to the full many-body problem. Suppose that we do manage
to show that the system is stable of the first kind, but suppose also that
it’s ground state energy decreases superlinearly as a function of the total
particle number N + M . In principle, we would then be able to extract
an arbitrarily large amount of energy simply by bringing together two suffi-
ciently large objects – this property is certainly not in agreement with what
we observe in our daily life. The system is said to be stable of the second
kind if the ground state energy decreases at most linearly as a function of
the number of particles, i.e.

EM
N (R) ≥ −C(N +M) (1.5)

for some constant C > 0 that is independent of the nuclear configuration
R but might depend on the atomic numbers Z1, . . . , ZM of the nuclei. De-
manding that C is independent of R corresponds to allowing the nuclei to
move around (but still neglecting their kinetic energies). For completeness
we mention that the inequality (1.5) can be used as an important step when
proving that the free energy per particle in an infinite system at fixed tem-
perature and density has a thermodynamic limit, at least when A = 0 (see
[36, 39]).

Dyson and Lenard [15, 37] were the first to prove stability of the second
kind in the case A = 0 and the result was later rederived – both by Feder-
bush [17] as well as by Lieb and Thirring [47]. In the latter paper, systems
without magnetic fields are proven to be stable of the second kind by an
argument based on a new type of inequalities – now referred to as Lieb-
Thirring inequalities. As noted earlier it is in this context essential that the
dynamic particles are fermions – systems of bosonic dynamic particles are
unstable of the second kind (even though they are stable of the first kind).

7



For electrically neutral systems of N bosons and M infinitely heavy nuclei
the ground state energy has been shown [15, 5, 38] to behave like −KN 5

3

for some constant K > 0 and if the nuclei have finite positive masses the
ground state energy behaves like −K ′N 7

5 for some other constant K ′ > 0,
as demonstrated in [14, 10, 46, 58].

Due to the diamagnetic inequality the inclusion of magnetic fields in the
model introduces no further complications to the stability question when
using the magnetic Laplacian as the kinetic energy observable. When the
kinetic energy is measured by the Pauli operator we can of course only
expect stability of the second kind to hold for sufficiently small values of
max{Z1, . . . , ZM}α2, as is apparent from the example above. However, as
shown by Lieb and Loss’ treatment [40] of the one-electron molecule a bound
on the fine-structure constant itself is also necessary to ensure stability. The
full many-body stability problem with Pauli kinetic energy is solved by Fef-
ferman in [19, 20] for Z1 = · · · = ZM = 1 and sufficiently small α. Finally,
Lieb, Loss and Solovej prove in [43] that as long as max{Z1, . . . , ZM}α2 and
α are sufficiently small then any system of N fermions with Pauli kinetic
energy interacting withM nuclei will be stable of the second kind. More pre-
cisely, they show the existence of a constant C > 0, depending only on the
atomic numbers of the nuclei, such that the estimate EM

N (R) ≥ −CN 1
3M

2
3

holds true for all R, provided that

max{Z1, . . . , ZM}α2 ≤ 0.041 and α ≤ 0.06. (1.6)

Here, (1.6) easily covers all physically relevant cases. Interestingly, one
also finds the necessity of a bound on the fine-structure constant itself to
ensure stability in the analogous theory for relativistic systems. In order
to prove that such systems are stable it is necessary and sufficient that
max{Z1, . . . , ZM}α and α are small – this holds both in the absence of
magnetic fields [11, 9, 18, 48], in the presence of magnetic fields (that are
only coupled to the orbital motion of the particles) [22, 42] and in the mod-
ified Brown-Ravenhall model [45]. Let us finally mention that models with
quantized electromagnetic fields have also been studied – see for instance
[7, 21, 6, 41, 32].
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Charge- and
current-densities

Electromagnetic
field

Hamiltonian
State of the

charged particles

Maxwell equations

Schrödinger equation

Figure 1: When modelling a system of charged dynamic particles we think
of the Schrödinger equation as being coupled to the Maxwell equations.

Dynamic Stability of Matter

We will study a completely different approach to the concept of stability
focusing on the dynamics of the particles instead of their total energy. The
idea of describing complex systems’ time evolution by simple fundamental
laws is a cornerstone in science. For instance we describe the evolution of
systems in quantum mechanics by the Schrödinger equation and likewise we
describe the evolution of systems in electrodynamics by the Maxwell equa-
tions – the results of several experiments suggest that each of these equa-
tions serve as accurate descriptions of reality. The matter system introduced
above is of both quantum mechanical and electrodynamical nature and thus
it seems reasonable to model it’s dynamics by the Schrödinger equation and
the Maxwell equations. This leaves us with a nonlinear system of partial
differential equations and as shown schematically in Figure 1 these equa-
tions are genuinely coupled in the sense that the dependent variable of one
equation enters as an independent variable of the other. Considered from
a mathematical point of view there is of course no guarantee whatsoever
that this coupled system has a solution – we interpret the affirmative case
as an explanation that matter can at all exist and evolve in time (under the
assumption that nature acts in accordance with the Schrödinger equation
and the Maxwell equations).

9



From now on we consider the case with M = 0 infinitely heavy nuclei
so in other words the system simply consists of N nonrelativistic dynamic
particles with charges Q1, . . . , QN and masses m1, . . . ,mN . In fact, setting
M = 0 is no restriction since the model describing dynamic as well as static
particles can be restored in a suitable large mass limit.

The many-body Maxwell-Schrödinger System
We first consider the particles as being spinless and describe their kinetic
energies by the magnetic Laplacian. Then for any given

(
A,−PE

4π

)
with

divA = 0 we can express the quantum mechanical Hamiltonian of the
system formally by

H
(
A,−PE

4π

)

=
N∑

j=1

1

2mj

(
i~∇xj +

Qj

c
A(xj)

)2
+

∑

1≤j<k≤N

QjQk

|xj − xk|
+ EEM[A,−c2PE].

(1.7)

The associated many-body Maxwell-Schrödinger system in Coulomb gauge
reads

�A =
4π

c

N∑

j=1

PJS
j [ψ,A],

i~∂tψ =

(
N∑

j=1

(
i~∇xj +

Qj
c
A(xj)

)2

2mj

+
∑

1≤j<k≤N

QjQk

|xj − xk|
+ EEM[A, ∂tA]

)
ψ,

divA = 0,

(1.8)

where we now think of ψ(t) : R3N → C and A(t) : R3 → R3 as time-
dependent functions. We have also set � = 1

c2
∂2t −∆ and for j ∈ {1, . . . , N}

we have introduced the probability current density JS
j [ψ,A](t) : R3 → R3

associated with the j’th particle that is given by

JS
j [ψ,A](t)(xj)

= −Qj

mj

Re

∫

R3(N−1)

ψ(t)(x)
(
i~∇xj +

Qj

c
A(t)(xj)

)
ψ(t)(x) dx′j,

10



where x = (x1, . . . ,xN) and x′j = (x1, . . . ,xj−1,xj+1, . . . ,xN). As motiv-
ated above we will say that matter is dynamically stable if there exists a
solution to the Cauchy problem corresponding to (1.8), where the initial
conditions are formulated in the form

ψ(0) = ψ0,A(0) = A0 and ∂tA(0) = A1 (1.9)

for some (ψ0,A0,A1) that is given beforehand. The main objective of the
paper [55] is to show this kind of dynamic stability of matter.

Objective 1 : Prove that for any sufficiently regular initial state
(ψ0,A0,A1) with divA0 = divA1 = 0 there exists a unique local in
time solution of appropriate regularity to (1.8)–(1.9).

Of course it would be desirable to prove that the solution exists globally
in time and that it depends continuously on the initial data, sometimes
expressed by saying that the many-body Maxwell-Schrödinger system is
globally well-posed. This is still an open problem. However, there are global
well-posedness results for other formulations of the Maxwell-Schrödinger
system – we elaborate on this in Chapter 2. Before stating the precise
result of [55] we give a (formal) motivation for the appearance of (1.8).

Derivation of the many-body Maxwell-Schrödinger System

In quantum mechanics one often derives the equations of motion directly
from the analogous classical equations of motion by a procedure called
quantization. Let us apply this procedure to the matter system introduced
above and thereby derive (1.7)–(1.8). As already mentioned, one can de-
scribe systems of charged particles classically by the Maxwell equations
and in combination with the Lorentz force law these equations in principle
allow us to calculate the time evolution of all forces influencing the sys-
tem. However, the Maxwell-Lorentz coupling turns out to be ill-posed for
point particles, as observed in [59]. In the outset, we will therefore consider
the Abraham model of charged particles, where the charge Qj of the j’th
particle is thought of as being smeared out on a small region of positive
measure. At time t the charge- and current-densities associated with the
j’th particle are thus represented by

ρR,j(t) : y 7→ QjχR(xj(t)− y) respectively JR,j(t) : y 7→ dxj
dt

(t)ρR,j(t)(y),

11



where xj(t) denotes the location of the particle and χR can be written on
the form y 7→ 1

R3χ
(
y
R

)
for some R > 0 and some positive cut-off function

χ ∈ C∞0 (R3) satisfying
∫
R3 χ(y) dy = 1. It is instructive to think of the

charge Qj as being distributed throughout the ball of radius R, centered at
xj(t) – our intention of studying genuine point particles will later lead us to
take the limit R → 0+. Applying the Maxwell equations to the Abraham
model tells us that the electromagnetic field (E,B) induced by the particles
satisfies

divB(t) = 0, (1.10)

∇×E(t) = −1

c
∂tB(t), (1.11)

divE(t) = 4π
N∑

j=1

ρR,j(t), (1.12)

∇×B(t) =
1

c

(
∂tE(t) + 4π

N∑

j=1

JR,j(t)
)
, (1.13)

and the Lorentz force law reads

mj
d2xj
dt2

(t) = Qj

(1

c

dxj
dt

(t)×B(t) +E(t)
)
∗ χR(xj(t)) for j ∈ {1, . . . , N}.

(1.14)

Here, (1.10)–(1.11) ensure that we can find an electromagnetic potential
corresponding to (E,B), meaning a pair (V,A) of mappings V (t) : R3 → R
and A(t) : R3 → R3 satisfying

B(t) = ∇×A(t) and E(t) = −1

c
∂tA(t)−∇V (t) (1.15)

at all times t. The potential is clearly not unique since
(
V − 1

c
∂tη,A+∇η

)

also serves as an electromagnetic potential for any η(t) : R3 → R. This
leaves us with freedom to choose a potential (V,A) fulfilling the Coulomb
gauge condition

divA(t) = 0

for all t.

12



We now formulate the classical equations of motion in a more concise
form, namely as the Euler-Lagrange equations associated with a certain
Lagrangian. For this purpose we choose Q0 = R3N × D1 × PL2 as con-
figuration space, where D1 is the space of locally integrable functions that
vanish at infinity and have first order derivatives in L2. With Q1 denoting
the manifold domain R3N ×D1×PH1 of Q0 we then define the Lagrangian
LR on TQ0|Q1 ∼= Q1 ×Q0 by setting

LR

(
x, V,A, ẋ, V̇ , Ȧ

)
=

N∑

j=1

(1

2
mjẋ

2
j +

Qj

c
ẋj ·A ∗ χR(xj)−QjV ∗ χR(xj)

)

+
1

8π

∫

R3

(∣∣∣1
c
Ȧ(y) +∇V (y)

∣∣∣
2

− |∇ ×A(y)|2
)

dy,

where H1 is the usual Sobolev space of order 1. The corresponding Euler-
Lagrange equations are indeed (1.12)–(1.14), but unfortunately the Lag-
rangian formalism does not lend itself to the quantization process as ef-
fectively as the Hamiltonian formalism does. To pass between these two
formalisms we introduce the fiber derivative FLR mapping from velocity
phase space TQ0|Q1 to momentum phase space T ∗Q0|Q1 by the prescrip-
tion

FLR(v)(w) =
d

dt
LR(v + tw)

∣∣∣
t=0

for q ∈ Q1 and v, w ∈ TqQ0.

In coordinates, FLR can be expressed as

FLR(x, V,A, ẋ, V̇ , Ȧ)(x, V,A, ẋ′, V̇ ′, Ȧ′)

=
N∑

j=1

ẋ′j ·
(
mjẋj +

Qj

c
A ∗ χR(xj)

)
+

∫

R3

Ȧ′(y) · Ȧ(y)

4πc2
dy,

whereby the total energy ER : TQ0|Q1 3 v 7→
(
FLR(v)(v) −LR(v)

)
∈ R

as a function of coordinates and velocities is given by

ER(x, V,A, ẋ, V̇ , Ȧ)=
N∑

j=1

(1

2
mjẋ

2
j +QjV ∗ χR(xj)

)
− 1

8π

∫

R3

|∇V (y)|2 dy

+
1

8π

∫

R3

(∣∣∣1
c
Ȧ(y)

∣∣∣
2

+ |∇ ×A(y)|2
)
.
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The Hamiltonian, on the other hand, expresses the total energy as a function
of coordinates and momenta. Thus, our goal is to find a function HR that
is defined on (part of) T ∗Q0|Q1 ∼= Q1 × (Q0)∗ and satisfies

HR ◦ FLR = ER. (1.16)

The identity (1.16) does happen to uniquely determine a function defined
on the imageM1 = FLR(TQ0|Q1), namely the function

(
x, V,A,p, U,−PE

4π

)
7→

N∑

j=1

(
1

2mj

(
pj −

Qj

c
A ∗ χR(xj)

)2
+QjV ∗ χR(xj)

)

− 1

8π

∫

R3

|∇V (y)|2 dy + EEM[A,−c2PE],

(1.17)

where we, as usual, identify the spaces Q0 and (Q0)∗ by the isometric
isomorphism Q0 → (Q0)∗,

(
p, U,−PE

4π

)
7→
(

(ẋ, V̇ , Ȧ) 7→
(
ẋ · p+

∫

R3

(
∇V̇ · ∇U − Ȧ · PE

4π

)
(y) dy

))
.

But the formalism requires that the domain of the Hamiltonian is a (weak)
symplectic manifold – M1 does not fit into this scheme when equipped
with the pull-back ω1 = j∗1Ω of the canonical 2-form Ω on T ∗Q0 via the
inclusionM1

j1
↪−→ T ∗Q0 since ω1 is a degenerate 2-form. We therefore aim

to restrict (1.17) to some embedded submanifold M2

j2
↪−→ M1 that when

equipped with ω2 = j∗2ω1 becomes a (weak) symplectic manifold. To find
such a submanifold we use the algorithm invented by Gotay, Nester and
Hinds [31] as a further development of Anderson, Bergmann and Dirac’s
constraint theory [1, 12, 13]. The algorithm produces the manifold

M2 =
{(
x, V,A,p, 0,−PE

4π

)
∈ Q1 ×Q0

∣∣∣−∆V = 4π
N∑

j=1

QjχR(xj − ·)
}

(1.18)
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and restricting (1.17) to this manifold results in the function sending an
element

(
x, V,A,p, 0,−PE

4π

)
∈M2 into the number

N∑

j=1

1

2mj

(
pj −

Qj

c
A ∗ χR(xj)

)2
+ EEM[A,−c2PE]

+
N∑

j=1

N∑

k=1

QjQk

2

∫

R3

∫

R3

χR(xj − y)χR(xk − z)

|y − z| dy dz, (1.19)

where we have explicitly used that V is not an independent variable but is
given uniquely in terms of x as the function z 7→∑N

j=1Qj

∫
R3

χR(xj−y)
|y−z| dy.

Due to this dependence of V on x we might as well identifyM2 with the
space R3N × PH1 × R3N × PL2 by the isomorphism

M2 3
(
x, V,A,p, 0,−PE

4π

)
7→
(
x,A,p,−PE

4π

)
∈ R3N × PH1 × R3N × PL2

and correspondingly let the Hamiltonian HR : R3N×PH1×R3N×PL2 → R
be the function sending a given

(
x,A,p,−PE

4π

)
into the expression written

in (1.19).
Having defined HR we will now take the point particle limit R → 0+.

The (j, k)’th term of the double sum in (1.19) represents the potential
energy of particle j due to the Coulomb force exerted by particle k. But
in reality a given particle does not Coulomb interact with itself so it is
reasonable to neglect the diagonal terms Q2

j

2R

∫
R3

∫
R3

χ(y)χ(z)
|y−z| dy dz from the

Hamiltonian. The resulting function converges pointwise to

H0

(
x,A,p,−PE

4π

)
=

N∑

j=1

1

2mj

(
pj −

Qj

c
A(xj)

)2
+

∑

1≤j<k≤N

QjQk

|xj − xk|
+EEM[A,−c2PE],

(1.20)

at least ifA is continuous at x1, . . . ,xN . We are now in position to quantize
the charged particles in the model, which formally takes place by reinter-
preting (1.20) as an (electromagnetic potential-dependent) operator on the
quantum mechanical state space: For given

(
A,−PE

4π

)
∈ PH1×PL2 we thus

let the quantum mechanical Hamiltonian H
(
A,−PE

4π

)
act as prescribed in

(1.20), where we perceive x = (x1, . . . ,xN) as the independent variable
of functions belonging to the state space, we interpret A(xj), 1

|xj−xk| and
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EEM[A,−c2PE] as multiplication operators acting on this space and we re-
place pj by the differentiation operator −i~∇xj . The resulting Hamiltonian
is exactly the one described in (1.7), where we under the Coulomb gauge
condition divA = 0 interpret the square

(
i~∇xj +

Qj
c
A(xj)

)2 as

(
i~∇xj +

Qj

c
A(xj)

)2
= −~2∆xj + 2i

~Qj

c
A(xj) · ∇xj +

Q2
j

c2
[
A(xj)

]2

for j ∈ {1, . . . , N}.
Finally, to derive (1.8) we let ψ : R3N → C be a normalized state

and consider the average energy
(
A,−PE

4π

)
7→
(
ψ,H

(
A,−PE

4π

)
ψ
)
L2 as a

classical Hamiltonian defined on the weak symplectic manifold PH1×PL2

equipped with the 2-form ω given by

ωm
(
m,A1,−PE1

4π
,m,A2,−PE2

4π

)
=

1

4π

∫

R3

(
PE1 ·A2 − PE2 ·A1

)
(y) dy

for m,
(
A1,−PE1

4π

)
,
(
A2,−PE2

4π

)
∈ PH1 × PL2. The associated Hamilton

equations read

1

c2
∂tA(t) = −PE(t) and − ∂tPE(t) = ∆A(t) +

4π

c

N∑

j=1

PJS
j [ψ,A(t)].

(1.21)

Here, the electromagnetic field is regarded as a dynamic quantity, while the
wave function ψ is considered to be fixed in time. However, according to
the postulates of quantum mechanics the state ψ is also expected to evolve
in time, namely as governed by the Schrödinger equation

i~∂tψ(t) = H
(
A(t),−PE(t)

4π

)
ψ(t). (1.22)

The system (1.8) can now be obtained by coupling (1.21) with (1.22) in
the sense that we replace the fixed ψ appearing in (1.21) with the time-
dependent ψ(t) that is present in (1.22).

The many-body Maxwell-Pauli System
If all of the N particles have spin 1

2
and we describe their kinetic energies by

means of the Pauli operator then the (electromagnetic potential-dependent)
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Hamiltonian of the system is given by

H
(
A,−PE

4π

)
=

N∑

j=1

(
σ ·
(
i~∇xj +

Qj
c
A(xj)

))2

2mj

+
∑

1≤j<k≤N

QjQk

|xj − xk|
+EEM[A,−c2PE]

and the corresponding many-body Maxwell-Pauli system expressed in Cou-
lomb gauge reads

�A =
4π

c

N∑

j=1

PJP
j [ψ,A],

i~∂tψ =

(
N∑

j=1

(
σ ·
(
i~∇xj +

Qj
c
A(xj)

))2

2mj

+
∑

1≤j<k≤N

QjQk

|xj − xk|

)
ψ

+ EEM[A, ∂tA]ψ,

divA = 0.

(1.23)

Here, the `’th component of the current density JP
j [ψ,A](t) : R3 → R3 is

for ` ∈ {1, 2, 3} given by
{
JP
j [ψ,A](t)

}`
(xj)

= −Qj

mj

∑

s∈{1,2}N

3∑

k=1

2∑

v=1

2∑

w=1

Re

∫

R3(N−1)

{
ψ(t)

}(s1,...,sj ,...,sN )
(x1, . . . ,xj, . . . ,xN)

· σ`sjwσkwv
(
i~∂xkj +

Qj

c
Ak(t)(xj)

){
ψ(t)

}(s1,...,v,...,sN )
(x1, . . . ,xj, . . . ,xN) dx′j,

where xj = (x1j , x
2
j , x

3
j), x′j = (x1, . . . ,xj−1,xj+1, . . . ,xN), σk =

(
σkwv
)2
w,v=1

,
A = (A1, A2, A3) and s = (s1, . . . , sN) for (j, k) ∈ {1, . . . , N} × {1, 2, 3}.

For simplicity let us consider the one-body Maxwell-Pauli system that
models a single spin-1

2
particle of mass m > 0 and charge Q ∈ R \ {0}

interacting with it’s self-generated electromagnetic field. By using the Lich-
nerowicz formula (1.2) we can formulate this system in Coulomb gauge as

�A =
4π

c
PJP[ψ,A],

i~∂tψ =

(
1

2m

(
i~∇+

Q

c
A
)2
− ~Q

2mc
σ · ∇ ×A+ EEM[A, ∂tA]

)
ψ,

divA = 0

(1.24)
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and the probability current density JP[ψ,A](t) : R3 → R3 reduces to

JP[ψ,A](t)(x) = −Q
m

Re
〈
ψ(t)(x),

(
i~∇+

Q

c
A
)
ψ(t)(x)

〉
C2

+
~Q
2m
∇×

〈
ψ(t)(x),σψ(t)(x)

〉
C2 .

Note that this system only differs from the (N = 1)-case of (1.8) by the
presence of − ~Q

2mc
σ ·∇×Aψ in (1.24) and the presence of ~Q

2m
∇×

〈
ψ,σψ

〉
C2

in the expression for the probability current density. To our knowledge the
well-posedness of the Maxwell-Pauli system has not yet been studied by
anyone, even in the simplest case N = 1. We have tried several different
approaches to proving local in time existence of a solution to the Cauchy
problem associated with (1.24), but all of these methods seem to break
down due to the presence of the two derivative-terms mentioned above.
Instead, we have turned to the problem of proving existence of travelling
wave solutions to the one-body Maxwell-Pauli (and Maxwell-Schrödinger)
system, as explained in the following section.

Travelling Waves
Until now we have only considered whether the laws of quantum mechanics
and electrodynamics admit matter to exist and evolve in time. But in
order to give an appropriate description of reality these laws also ought
to predict particle motions that correspond with our expectations. For
instance, we expect a single charged particle to be able to move in space
at a constant velocity v ∈ R3, while still obeying the Maxwell equations
as well as the Schrödinger equation. Put another way, there should exist a
solution (ψt,At) to the (N = 1)-case of (1.8) (or (1.24)) in the form

ψt(t)(x) = e−iωtψ(x− vt),
At(t)(x) = A(x− vt), (1.25)

where (ψ,A) is defined on R3 and ω is a real number. Such a solution
(ψt,At) is called a travelling wave solution for obvious reasons.

Objective 2 : Given any appropriate velocity v ∈ R3 prove that we
can find an ω ∈ R such that the pair (ψt,At) defined in (1.25) solves
the (N = 1)-case of (1.8) (or (1.24)).
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Under suitable conditions on the velocity v we manage to meet Objective
2 in [56]. If the particle were uncharged it’s total energy would naturally
be given by 1

2
m|v|2 as a function of the speed |v| of motion. But a particle

with nonzero charge has to drag it’s self-generated electromagnetic field
along with it – to what extent does this affect the dependence of the total
energy on the speed |v|? We provide an answer to this question in [56].
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Overview of the Results 2
We will now state the precise results of the two papers contained in this
thesis. For a more indepth explanation of the notation we refer the reader
to the Introduction.

Existence of a Unique Local Solution to the
Many-body Maxwell-Schrödinger Initial
Value Problem
The many-body Maxwell-Schrödinger system, describing a system of N
charged particles, reads

�A =
4π

c

N∑

j=1

PJj[ψ,A],

i~∂tψ =

(
N∑

j=1

(
i~∇xj +

Qj
c
A(xj)

)2

2mj

+
∑

1≤j<k≤N

QjQk

|xj − xk|
+ EEM[A, ∂tA]

)
ψ,

(2.1)

where A(t) : R3 → R3 is the magnetic vector potential expected to satisfy
the Coulomb gauge condition divA(t) = 0 at all times, ψ(t) : R3N → C is
the quantum mechanical wave function and Jj[ψ,A](t) : R3 → R3 is the
probability current density

xj 7→
(
−Qj

mj

Re

∫

R3(N−1)

ψ(t)(x)
(
i~∇xj +

Qj

c
A(t)(xj)

)
ψ(t)(x) dx′j

)
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associated with the j’th particle. It seems that well-posedness questions
concerning this system have not yet been considered in the literature. On
the other hand, several authors have studied the d-dimensional Maxwell-
Schrödinger system

−∆dϕ−
1

c
∂tdivdA = 4πQ|ψ|2,

�dA+∇d

(1

c
∂tϕ+ divdA

)
= −4π

c

Q

m
Re
(
ψ
(
i~∇d +

Q

c
A
)
ψ
)
,

i~∂tψ =
( 1

2m

(
i~∇d +

Q

c
A
)2

+Qϕ
)
ψ,

(2.2)

where (ψ, ϕ,A)(t) : Rd → C × R × Rd, ∆d =
∑d

k=1 ∂
2
xk
, �d = 1

c2
∂2t − ∆d,

∇d = (∂x1 , . . . , ∂xd) and divdA =
∑d

k=1 ∂xkA
k. However, the known results

concerning (2.2) can not be directly applied to (2.1) due to the presence of
the Coulomb singularities 1

|xj−xk| in (2.1). For d = 3 the system (2.2) can
be expressed in Coulomb gauge by

�A =
4π

c
P
(
−Q
m

Re
(
ψ
(
i~∇+

Q

c
A
)
ψ
))

i~∂tψ =
( 1

2m

(
i~∇+

Q

c
A
)2

+Q2
(
|x|−1 ∗ |ψ|2

))
ψ,

(2.3)

which only deviates from the (N = 1)-case of (2.1) by the presence of the
term Q2

(
|x|−1 ∗ |ψ|2

)
ψ and the absence of the term EEM[A, ∂tA] on the

right hand side of (2.3)’s second equation. The term Q2
(
|x|−1 ∗ |ψ|2

)
ψ

should definitely not be included in the equations of motion describing a
single charged particle so at least in this simple case (2.1) is evidently a
better description of reality than (2.3). Nakamitsu and Tsutsumi treat
(2.2) expressed in Lorenz gauge in the paper [52], where they prove local
well-posedness of the system for all dimensions d and in the special cases
d ∈ {1, 2} they even prove global well-posedness. The well-posedness theory
regarding (2.2) is developed further in the papers [27, 28, 29, 30, 33, 52, 53,
54, 57, 61] and the research culminates with Bejenaru and Tataru [2] proving
global well-posedness in the energy space of the three-dimensional version of
(2.2) expressed in Coulomb gauge and with Wada [62] proving the analogous
result for the two-dimensional variant of (2.2) expressed in Lorenz gauge.
Our main result concerning the many-body Maxwell-Schrödinger system
says the following.
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Theorem 1. Let (ψ0,A0,A1) ∈ H2(R3N)×H 3
2 (R3;R3)×H 1

2 (R3;R3) sat-
isfy divA0 = divA1 = 0. Then there exist a T > 0 and a unique (ψ,A) in
C([0, T ];H2(R3N)) ×

(
C([0, T ];H

3
2 (R3;R3)) ∩ C1([0, T ];H

1
2 (R3;R3))

)
that

solves (2.1), fulfills the condition divA(t) = 0 for all t ∈ [0, T ], and takes
the values

ψ(0) = ψ0,A(0) = A0 and ∂tA(0) = A1

at time t = 0.

To prove Theorem 1 we use the same strategy as in [53, 54]: We first intro-
duce a solution mapping (ψ,A) 7→ (ξ,B) associated with the linearization

(� + 1)B =
4π

c

N∑

j=1

PJj[ψ,A] +A (2.4)

i~∂tξ =
( N∑

j=1

1

2mj

(
i~∇xj +

Qj

c
A(xj)

)2
+

∑

1≤j<k≤N

QjQk

|xj − xk|
)
ξ,

(2.5)

of (2.1) supplied with the initial conditions

ξ(0) = ψ0, B(0) = A0 and ∂tB(0) = A1.

Then we show that this mapping is a contraction on an appropriate complete
normed space – this implies the desired result by the Banach fixed-point
theorem. The solution operator corresponding to (2.5) is defined by means
of Kato’s result [34, 35] concerning Cauchy problems related to quite general
linear evolution equations – the required estimate on a certain norm of this
operator is obtained by using Gronwall’s inequality. To treat the solution to
the linear Klein-Gordon equation (2.4) we use a known Strichartz estimate
[4, 25, 26, 60].

Existence of Travelling Wave Solutions to
the Maxwell-Pauli and Maxwell-Schrödinger
Systems
In this paper that is joint work with Jan Philip Solovej, we prove the exist-
ence of travelling wave solutions to the Maxwell-Schrödinger system (j = S)
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provided that the velocity of the wave is not too large – we also prove the
analogous result for the Maxwell-Pauli system (j = P). These systems can
be formulated in Coulomb gauge as

�At =
4π

c
PJj[ψt,At],

i~∂tψt =
( 1

2m
∇2
j,At

+ EEM[At, ∂tAt]
)
ψt

(2.6)

for j ∈ {S,P}, where ψt(t) : R3 → C2 denotes the spinor wave function, the
magnetic vector potential At(t) : R3 → R3 should satisfy divAt(t) = 0 at
all times t and we use the abbreviations

∇j,At =





i~∇+
Q

c
At for j = S

σ ·
(
i~∇+

Q

c
At

)
for j = P

as well as

Jj[ψt,At](t)(x) =





−Q
m

Re
〈
ψt(t)(x),∇S,Atψt(t)(x)

〉
C2 for j = S

−Q
m

Re
〈
ψt(t)(x),σ∇P,Atψt(t)(x)

〉
C2 for j = P

.

By a travelling wave – at velocity v ∈ R3 – we mean a pair (ψt,At) that
can be written in the form

ψt(t)(x) = e−iωtψ(x− vt),
At(t)(x) = A(x− vt)

for some real number ω and some time independent (ψ,A) : R3 → C2×R3.
There are not that many known results concerning travelling wave solu-
tions to the equations of motion for a single charged particle. Coclite and
Georgiev prove in [8] that the three-dimensional version of (2.2) expressed
in Lorenz gauge has no nontrivial solutions (ψt,At, ϕt) in the form

ψt(t)(x) = e−iωtψ(x),

At(t)(x) = 0,

ϕt(t)(x) = ϕ(x)
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and they also find that such solutions do exist when one adds to the
Schrödinger equation a potential energy term originating from an attractive
Coulomb force. In the paper [3], Benci and Fortunato study the correspond-
ing problem in a bounded space region and in [16], Esteban, Georgiev and
Séré prove the existence of stationary solutions to the Maxwell-Dirac and
Klein-Gordon-Dirac systems. Finally, we mention that Fröhlich, Jonsson
and Lenzmann [23] show the existence of travelling solitary wave solutions
to an equation describing the dynamics of pseudo-relativistic boson stars in
the mean field limit – again under a smallness assumption on the speed of
the wave. As mentioned above the system (2.6) serves as a better descrip-
tion of a single charged particle than (2.2) – the existence of travelling wave
solutions to (2.6) has never been studied before. Let us formulate our main
theorem concerning the Maxwell-Schrödinger system. We remind the reader
that H1(R3;C2) denotes the usual Sobolev space of order 1 and D1(R3;R3)
denotes the space of locally integrable maps R3 → R3 that vanish at infinity
and have square integrable first derivatives.

Theorem 2. For all λ > 0 and v ∈ R3 with 0 < |v| < c there exist
ω ∈ R and (ψ,A) ∈ H1(R3;C2) × D1(R3;R3) satisfying ‖ψ‖2L2 = λ and
divA = 0 such that (ψt,At)(t)(x) =

(
e−iωtψ(x−vt),A(x−vt)

)
solves the

(j = S)-case of (2.6).

Here, λ = 1 is the physically relevant case since ‖ψ‖2L2 should be interpreted
as the total probability that the charged particle is located somewhere in R3.
We see that the Maxwell-Schrödinger system admits charged particles (and
their self-generated electromagnetic fields) to travel with nonzero speeds
less than that of the light’s – this upper bound on the allowed speeds of
motion is in agreement with the special theory of relativity so travelling
wave solutions to (2.6) with |v| ≥ c do most likely not exist. However, we
have not proven this. Our main theorem about the Maxwell-Pauli system
says the following – we let KS be the constant occurring in the Sobolev
inequality ‖A‖L6 ≤ KS‖∇A‖L2 .

Theorem 3. Consider an arbitrary λ > 0 as well as some given velocity
v ∈ R3 satisfying

0 < |v| < −8πK3
SQ

2λ

~
+

√
(8π)2K6

SQ
4λ2

~2
+ c2.

Then there exist an ω ∈ R and a pair (ψ,A) ∈ H1(R3;C2) × D1(R3;R3)
fulfilling the identities ‖ψ‖2L2 = λ and divA = 0 such that the travelling
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wave (ψt,At)(t)(x) =
(
e−iωtψ(x− vt),A(x− vt)

)
solves the (j = P)-case

of (2.6).

As illustrated on Figure 2 the upper bound on the values of |v| presented
in Theorem 3 is strictly less than c – this is supposedly an outcome of the
technique used to prove Theorem 3 and should probably not be attributed
any physical importance. In other words, we expect that there exist travel-

Figure 2: The allowed speeds |v| of motion in the physical case λ = 1 are
highlighted in red.

ling wave solutions to the Maxwell-Pauli system with any velocity v ∈ R3

satisfying 0 < |v| < c.
The Theorems 2 and 3 are proven by minimizing the functional

E v
j (ψ,A) =

1

2m

∥∥∇j,Aψ
∥∥2
L2 +

1

8π

(
‖∇ ⊗A‖2L2 −

∥∥∥
(v
c
· ∇
)
A
∥∥∥
2

L2

)

+(ψ, i~v · ∇ψ)L2

on the set

Sλ =
{

(ψ,A) ∈ H1 ×D1
∣∣ ‖ψ‖2L2 = λ, divA = 0

}

for j ∈ {S,P}. Here, the translation invariance of E v
j (ψ,A) complicates the

minimization problem considerably, but we resolve this issue by deriving
and applying a variant of the concentration-compactness principle by Lions
[49, 50]. Unfortunately, this method of proof does not allow us to draw any
conclusions regarding uniqueness of the solution.

Instead, we investigate the dependence of the found travelling wave solu-
tions’ energies on the speed |v| of the particle for small values of |v|. By

25



the energy of a (sufficiently nice) solution (ψt,At) to (2.6) we here mean
the average

(
ψt,Hj

(
At,

∂tAt

4πc2

)
ψt

)
L2 of the energy observable given by

Hj

(
A,−PE

4π

)
=

1

2m
∇2
j,A + EEM[A,−c2PE].

For travelling wave solutions (ψt,At)(t)(x) =
(
e−iωtψ(x− vt),A(x− vt)

)

the energy takes the form

Ej(v, ψ,A) =
1

2m
‖∇j,Aψ‖2L2 +

1

8π

∫

R3

(
|∇ ×A|2 +

∣∣∣
(v
c
· ∇
)
A
∣∣∣
2)

dxλ.

We have found the following result concerning this energy function.

Theorem 4. Let j ∈ {S,P} and λ > 0 be arbitrary. Then there exist
universal constants θj, κj > 0 such that the inequality

∣∣∣Ej(v, ψ,A)− mv2

2
λ
∣∣∣ ≤ κj|v|3

holds for all velocities v ∈ R3 with 0 < |v| < θj and all minimizers (ψ,A)
of E v

j on Sλ.

Thus, the energy of the charged particle essentially behaves as if the particle
were uncharged (for small velocities).
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Conclusions and
Perspectives 3

Let us now mention some interesting problems that are related to the ones
studied in this thesis and would be natural to pursue in further research.

Problem 1: Global well-posedness of the
many-body Maxwell-Schrödinger System

In [55], we have shown local existence of a unique solution to the many-body
Maxwell-Schrödinger initial value problem expressed in Coulomb gauge. As
is apparent from Theorem 1 the triple (ψ0,A0,A1) of initial data is required
to belong to H2(R3N)×H 3

2 (R3;R3)×H 1
2 (R3;R3) and then as a function of

time the corresponding solution (ψ,A, ∂tA) will map continuously into the
same space. However, it would be desirable to derive the same result for a
space of less regularity, for instance H2(R3N)×H1(R3;R3)×L2(R3;R3) or
H2(R3N) × D1(R3;R3) × L2(R3;R3). On another note, our intuition tells
us that changing the initial data a “little bit” should only imply a “small”
change in the solution. It would be desirable to confirm this intuition by
showing that the solution depends continuously on the initial data. Finally,
we would like to prove that the solution exists globally in time.
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Problem 2: Well-posedness of the
Maxwell-Pauli system
As already mentioned, even proving the existence of a local solution to the
one-body Maxwell-Pauli initial value problem is an open problem. Well-
posedness of the Maxwell-Pauli system is an intriguing topic, especially
when seen in the light of the already known results concerning energetic
stability. Remember that systems of charged particles with Pauli kinetic
energy are only energetically stable under certain conditions on the fine-
structure constant and on the atomic numbers of the nuclei. This raises
some interesting questions regarding the influence of these parameters on
the well-posedness of the Maxwell-Pauli system. Does global (or even local)
well-posedness for instance fail to hold for large values of α? We do not
know.

Problem 3: Uniqueness of travelling wave
solutions
In [56], we prove the existence of travelling wave solutions to the Maxwell-
Schrödinger and Maxwell-Pauli systems, provided that the speed of the
wave is not too large – this is done by minimizing some functional E v

j on
a certain set. The solution produced by this method is clearly not unique
due to translation invariance of E v

j , but it would be satisfactory to show
uniqueness of the solution up to symmetries.
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Abstract. We study the many-body problem of charged particles
interacting with their self-generated electromagnetic field. We model
the dynamics of the particles by the many-body Maxwell-Schrödinger
system, where the particles are treated quantum mechanically and the
electromagnetic field is a classical quantity. We prove the existence of a
unique local in time solution to this nonlinear initial value problem using
a contraction mapping argument.
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1 Introduction

The three-dimensional many-body Maxwell-Schrödinger system in Coulomb
gauge is a system of partial differential equations that models the dynamics of
several charged point particles interacting via their self-generated electromag-
netic fields – in Gaussian units it reads

�A =
4π

c

N∑

j=1

PJj [ψ,A],

i~∂tψ =
( N∑

j=1

1

2mj
∇2
j,A +

∑

1≤j<k≤N

QjQk
|xj − xk|

+ EEM[A, ∂tA]
)
ψ,

(1)

where ~ > 0 is the reduced Planck constant, c > 0 is the speed of light, N ∈ N is
the number of particles, m1, . . . ,mN > 0 are the particles’ respective masses,
Q1, . . . , QN ∈ R are their charges, ψ(t) : R3N → C is the wave function,

35



A(t) : R3 → R3 is the vector potential, ∇j,A = i~∇xj +
Qj
c A(xj) is the

covariant derivative with respect toA acting on the j’th particle, � = 1
c2
∂2
t −∆

denotes the d’Alembertian, P = 1 − ∇div∆−1 is the Helmholtz projection,
EEM[A, ∂tA](t) is the field energy

EEM[A, ∂tA](t) =
1

8π

∫

R3

(
|∇ ×A(t)(y)|2 +

∣∣∣1
c
∂tA(t)(y)

∣∣∣
2)

dy

and Jj [ψ,A](t) denotes the j’th particle’s probability current density

Jj [ψ,A](t) : R3 3 xj 7→
(
−Qj
mj

Re

∫

R3(N−1)

ψ(t)(x)∇j,Aψ(t)(x) dx′j
)
∈ R3

where x = (x1, . . . ,xN ) and x′j = (x1, . . . ,xj−1,xj+1, . . . ,xN ). That we have
chosen Coulomb gauge means that the magnetic vector potential A should
satisfy

divA(t) = 0. (2)

As we will see later we might just as well study the system

�A =
4π

c

N∑

j=1

PJj [ψ,A],

i~∂tψ =
( N∑

j=1

1

2mj
∇2
j,A +

∑

1≤j<k≤N

QjQk
|xj − xk|

)
ψ,

(3)

where the field energy-term EEM[A, ∂tA] is no longer present in the Schrödinger
equation. In the literature the d-dimensional Maxwell-Schrödinger system of-
ten refers to the coupled equations

−∆dϕ−
1

c
∂tdivdA = 4πQ|ψ|2,

�dA+∇d
(1

c
∂tϕ+ divdA

)
= −4π

c

Q

m
Re
(
ψ
(
i~∇d +

Q

c
A
)
ψ
)
,

i~∂tψ =
( 1

2m

(
i~∇d +

Q

c
A
)2

+Qϕ
)
ψ,

(4)

with unknowns ψ(t) : Rd → C, A(t) : Rd → Rd, ϕ(t) : Rd → R and a hopefully
obvious notation. If d = 3 and A satisfies the Coulomb gauge-condition (2)
the system (4) reads

�A = P
(
−4π

c

Q

m
Re
(
ψ
(
i~∇+

Q

c
A
)
ψ
))
,

i~∂tψ =
( 1

2m

(
i~∇+

Q

c
A
)2

+Q2
(
|x|−1 ∗ |ψ|2

))
ψ,

(5)
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which only differs from the (N = 1)-case of (3) by the presence of the nonlinear
term Q2(|x|−1 ∗ |ψ|2)ψ in the Schrödinger equation. This term comes from the
particles’ Coulomb self-interactions. From a physical point of view it is wrong
to include self-interactions in this context. In fact, the system (5) may be
considered as a mean field approximation to the many-body description (3).
In the (c→∞)-limit the second equation in (3) reduces to the standard many-
body Coulomb problem

i~∂tψ =
(
−

N∑

j=1

~2

2mj
∆xj +

∑

1≤j<k≤N

QjQk
|xj − xk|

)
ψ

which is the basis of almost all work done in quantum chemistry. On the
other hand, the system (5) reduces in the (c → ∞)-limit to a mean field
approximation, which at best would be good in the large N limit. The system
(4) has been studied (up to different choices of units) by several authors, both
when expressed in the Coulomb gauge [4, 12, 13, 14, 15, 17, 21, 22, 24, 28],
the Lorenz gauge [17, 20, 21, 22, 29] and the temporal gauge [17, 21, 22]. In
[20], Nakamitsu and Tsutsumi prove local well-posedness in sufficiently regular
Sobolev spaces of the d-dimensional Maxwell-Schrödinger initial value problem
– for d ∈ {1, 2} they also show global existence of the solution. Tsutsumi shows
in [28] that for d = 3 the problem has a global solution for a certain set of
final states (i.e. data given at t = +∞) and studies the asymptotic behavior of
such a solution. In [17], Guo, Nakamitsu and Strauss prove global solvability
of the three-dimensional system in Coulomb gauge (but not uniqueness of the
solution) for initial data (ψ(0),A(0), ∂tA(0)) in the space of H1 × H1 × L2-
functions satisfying divA(0) = div∂tA(0) = 0. Using techniques on which the
arguments in the present paper are based, Nakamura and Wada [21] prove local
well-posedness of the three-dimensional problem in Sobolev spaces of sufficient
regularity, expanding significantly on the previously known results – in [22]
they even prove global existence of unique solutions. Bejenaru and Tataru [4]
prove global well-posedness in the energy-space of the three-dimensional initial
value problem and in the recent paper [29], Wada proves unique solvability in
the energy space of the two-dimensional analogue. The scattering theory for
(5) has also been studied by several authors – see the papers by Tsutsumi [28],
Shimomura [24] as well as Ginibre and Velo [12, 13, 14, 15]. It seems that the
solvability of the system (1) has not yet been studied and the known results
concerning (4) are not directly applicable to this system due to the presence of
the Coulomb singularities 1

|xj−xk| in (1). The aim of this paper is to prove the
unique existence of a local solution to (1) as expressed in the following main
theorem.

Theorem 1. For all (ψ0,A0,A1) ∈ H2(R3N ) × H
3
2 (R3;R3) × H

1
2 (R3;R3)

with divA0 = divA1 = 0 there exist a number T > 0 and a unique solution
(ψ,A) ∈ C([0, T ];H2(R3N ))×

(
C([0, T ];H

3
2 (R3;R3))∩C1([0, T ];H

1
2 (R3;R3))

)
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to (1) such that divA(t) = 0 for all t ∈ [0, T ] and the initial conditions

ψ(0) = ψ0,A(0) = A0 and ∂tA(0) = A1 (6)

are satisfied.

Remark 2. In this paper, we consider all of the charged particles as being
spinless. Let us just mention that by thinking of the particles as having spin
and by including the interaction between this spin and the electromagnetic
field in the kinetic energy operator we are led to another interesting system
of partial differential equations: The many-body Maxwell-Pauli system. For
now, let us just write up the one-body Maxwell-Pauli system – in Coulomb
gauge it reads

�A =
4π

c
PJ [ψ,A],

i~∂tψ =

(
1

2m

(
i~∇+

Q

c
A
)2
− ~Q

2mc
σ · ∇ ×A+ EEM[A, ∂tA]

)
ψ,

(7)

where the probability current density J [ψ,A](t) : R3 → R3 is given by

J [ψ,A](t)(x) = −Q
m

Re
〈
ψ(t)(x),

(
i~∇+

Q

c
A
)
ψ(t)(x)

〉
C2

+
~Q
2m
∇×

〈
ψ(t)(x),σψ(t)(x)

〉
C2

and σ is the vector with the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)

as components. The techniques used in this paper to treat the many-body
Maxwell-Schrödinger system do not seem to be immediately adaptable to the
Maxwell-Pauli system and so the existence of a local solution to the initial
value problem corresponding to (7) is an open problem.

Remark 3. Suppose that m1 = · · · = mN and Q1 = · · · = QN so that the N
particles are indistinguishable and consider an initial state ψ0 where either all
of the particles are bosonic (s = 0) or all of the particles are fermionic (s = 1).
If e`n : R3N → R3N is the coordinate exchange map given by

e`n(x1, . . . ,x`, . . . ,xn, . . . ,xN ) = (x1, . . . ,xn, . . . ,x`, . . . ,xN )

this means that ψ0 = (−1)sψ0 ◦ e`n for all `, n ∈ {1, . . . , N} with ` < n.
With (ψ,A) denoting the solution to (1)+(6) whose existence is established in
Theorem 1 one can easily verify that t 7→

(
(−1)sψ(t)◦e`n,A(t)

)
solves (1)+(6)

too. But then the uniqueness result of Theorem 1 implies that the identity
ψ(t) = (−1)sψ(t) ◦ e`n holds at all times t of existence so in other words the
particles will continue to obey the same particle statistics as they did in the
initial state.
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The paper is organized as follows. We will end this introduction by estab-
lishing some notation and in Section 2 we (formally) motivate the model (1).
In Section 3 we take the first steps towards proving Theorem 1 – the basic
strategy for obtaining the existence part of the theorem will be to find a fixed
point for the solution mapping associated with a certain linearization of the
many-body Maxwell-Schrödinger system. The linear equations constituting
this linearization are studied in Sections 4 and 5 – more specifically, the many-
body Schrödinger equation is studied in Section 4 by means of a result by Kato
[18, 19] and in Section 5 we recall a result developed by Brenner [5], Strichartz
[27], Ginibre and Velo [10, 11] concerning the Klein-Gordon equation. Finally,
we prove existence of the desired solution in Section 6 and the uniqueness part
is proven in Section 7.

As can be seen from the statement of Theorem 1 the values of the time
variable will vary in some closed interval IT = [0, T ] where T > 0. For some
given reflexive Banach space (X , ‖ · ‖X ) we will let C(IT ;X ) denote the space
of continuous mappings IT → X and C1(IT ;X ) will denote the subspace of
maps ψ ∈ C(IT ;X ) whose strong derivative

∂tψ(t) =





lim
h→0+

ψ(t+ h)− ψ(t)

h
for t = 0

lim
h→0

ψ(t+ h)− ψ(t)

h
for t ∈ (0, T )

lim
h→0−

ψ(t+ h)− ψ(t)

h
for t = T

is well defined and continuous everywhere in IT . For p ∈ [1,∞] we let
Lp(IT ;X ) denote the space of (equivalence classes of) strongly Lebesgue-
measurable functions ψ : IT → X with the property that

‖ψ‖LpTX =





(∫

IT
‖ψ(t)‖pX dt

) 1
p if 1 ≤ p <∞

ess sup
t∈IT

‖ψ(t)‖X if p =∞

is finite. Equipping Lp(IT ;X ) with the norm ‖·‖LpTX results in a Banach space.
Just as in the case where X = C any given ψ ∈ Lp(IT ;X ) can be identified with
the X -valued distribution that sends f ∈ C∞0 (I◦T ) into the Bochner integral∫
IT ψ(t)f(t) dt ∈ X ; thus, it makes sense to consider the space W 1,p(IT ;X ) of
Lp(IT ;X )-functions with distributional derivative ∂tψ in Lp(IT ;X ), which is
a Banach space when endowed with the norm

‖ψ‖
W 1,p
T X

=
(
‖ψ‖2LpTX + ‖∂tψ‖2LpTX

) 1
2 .

For a nice introduction to the spacesW 1,p(IT ,X ) we refer to Section 1.4 in [3].
Let us just mention one result that we will often use: For ψ ∈ Lp(IT ;X ) the
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condition that ψ ∈W 1,p(IT ;X ) is equivalent to the existence of an absolutely
continuous ψ0 : IT → X with strong derivative ∂tψ0 : t 7→ limh→0

ψ0(t+h)−ψ0(t)
h

in Lp(IT ;X ) such that ψ(t) = ψ0(t) for almost all t ∈ IT . Moreover, the
Sobolev embedding W 1,p(IT ;X ) ↪→p,T L

∞(IT ;X ) holds true. If (Y, ‖ · ‖Y) is
another Banach space we let (L(X ,Y), ‖ · ‖L(X ,Y)) denote the Banach space
of bounded linear operators X → Y and set L(X ) = L(X ,X ). By A . B we
mean that there exists a universal constant c > 0 such that A ≤ cB. Finally,
we let p′ = p

p−1 denote the Hölder conjugate to a given p ∈ [1,∞] and set
〈s〉 =

√
1 + s2 for s ∈ R.
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2 Motivation for the Model

As our starting point we use the Abraham model of charged particles. So for
some arbitrary R > 0 and some positive C∞0 -function χ with

∫
R3 χ(x) dx = 1

we set χR : x 7→ 1
R3χ

(
x
R

)
and associate the smeared out charge distribution

ρR,j : x 7→ QjχR(xj − x) to the j’th particle – the corresponding Maxwell
equations can be written as

divB(t) = 0, (8)

∇×E(t) = −1

c
∂tB(t), (9)

divE(t) = 4π
N∑

j=1

ρR,j(t), (10)

∇×B(t) =
1

c

(
∂tE(t) + 4π

N∑

j=1

dxj
dt

(t)ρR,j(t)
)
, (11)

and the Lorentz force law states that

mj
d2xj
dt2

(t) = Qj

(1

c

dxj
dt

(t)×B(t) +E(t)
)
∗ χR(xj(t)) for j ∈ {1, . . . , N},

(12)

where we interpret the coordinates of x = (x1, . . . ,xN ) ∈ R3N as the positions
of the N particles, B is the magnetic field and E denotes the electric field.
The reason for smearing out the charges is that the coupled Maxwell-Lorentz
system does not make sense in the point particle case as explained in [26].

Now, (8) ensures that B(t) : R3 → R3 can be written as the curl of some
magnetic vector potential A(t) : R3 → R3, whereby (9) allows us to write
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−E(t) − 1
c∂tA(t) : R3 → R3 as the gradient of some electric scalar potential

V : R3 → R. In other words,

B(t) = ∇×A(t) and E(t) = −1

c
∂tA(t)−∇V (t). (13)

The choice of potentials is not unique – if (V,A) is an electromagnetic potential
corresponding to the fields E and B then for any η(t) : R3 → R the pair(
V − 1

c∂tη,A+∇η
)
will also serve as such a potential. This freedom of choice

allows us to demand that A satisfies the Coulomb gauge condition (2).
To formulate the problem in the Lagrangian formalism we choose the

Hilbert manifold Q0 = R3N × D1 × PL2 as configuration space, where D1

is the space of locally integrable mappings that vanish at infinity and have
square integrable first derivatives. Then the formulas (10)–(12) are the Euler-
Lagrange equations associated with the Lagrangian

LR

(
x, V,A, ẋ, V̇ , Ȧ

)
=

N∑

j=1

(1

2
mjẋ

2
j +

Qj
c
ẋj ·A ∗ χR(xj)−QjV ∗ χR(xj)

)

+
1

8π

∫

R3

(∣∣∣1
c
Ȧ(y) +∇V (y)

∣∣∣
2
− |∇ ×A(y)|2

)
dy.

defined on the restricted tangent bundle TQ0|Q1 ∼= Q1×Q0, where Q1 denotes
the manifold domain R3N ×D1×PH1 of Q0. The associated energy function
is ER : TQ0|Q1 3 v 7→

(
FLR(v)(v) −LR(v)

)
∈ R, where the fiber derivative

FLR : TQ0|Q1 → T ∗Q0|Q1 is given by

FLR(v)(w) =
d

dt
LR(v + tw)

∣∣∣
t=0

for q ∈ Q1 and v, w ∈ TqQ0.

With the intention of later passing to a quantum mechanical description of
the charged particles we would like to define a Hamiltonian corresponding to
LR – such a Hamiltonian expresses the energy in terms of coordinates and
momenta, in the sense that the identity

HR ◦ FLR = ER (14)

holds on some appropriate subset of TQ0|Q1 as we shall explain. The La-
grangian LR is degenerate since it does not at all depend on V̇ and so FLR

is not even locally invertible, but as can easily be verified (14) does define
a mapping HR on all of the image M1 = FLR(TQ0|Q1) ⊂ T ∗Q0. The
pull-back ω1 = j∗1Ω to M1 of the canonical 2-form Ω on T ∗Q0 via the inclu-

sion M1
j1
↪−→ T ∗Q0 is degenerate and so (M1, ω1) is not a symplectic mani-

fold. To remedy this problem we can restrict FLR to the subset of elements
(x, V,A, ẋ, V̇ , Ȧ) ∈ TQ0|Q1 satisfying Gauss’ law

−∆V (z) = 4π
N∑

j=1

QjχR(xj − z),
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meaning that V is the function z 7→ ∑N
j=1Qj

∫
R3

χR(xj−y)
|y−z| dy. The image

M2 of this set under the map FLR becomes a weak symplectic manifold
in the sense of [1] and this procedure is completely natural in the framework
devised by Gotay, Nester and Hinds [16] as a further development of Anderson,
Bergmann and Dirac’s constraint theory [2, 7, 8] – see also [23]. Identifying
M2 with R3N × PH1 × R3N × PL2 we can write the Hamiltonian HR as

HR

(
x,A,p,−PE

4π

)

=
N∑

j=1

1

2mj

(
pj −

Qj
c
A ∗ χR(xj)

)2
+

1

8π

∫

R3N

(
c2|PE(y)|2 + |∇ ×A(y)|2

)
dy

+
1

2

N∑

j=1

N∑

k=1

QjQk

∫

R3

∫

R3

χR(xj − y)χR(xk − z)

|y − z| dy dz. (15)

Now take the point particle-limit R → 0+ in the following (formal) sense:
Consider the mapping HR acting as prescribed in (15) on the R-independent
space R3N ×PH1×R3N ×PL2. The first term on the right hand side of (15)
represents the kinetic energy of the N particles, the second term is the energy
stored in the electromagnetic field and the double sum is the potential energy
induced by the Coulomb interactions between the N particles. In particular,
the double sum’s diagonal term

Q2
j

2R

∫
R3

∫
R3

χ(y)χ(z)
|y−z| dy dz is the energy coming

from the j’th particle’s interaction with itself. We subtract this self-energy
from HR and note that as R → 0+ the result converges pointwise to the
mapping

H0

(
x,A,p,−PE

4π

)
=

N∑

j=1

1

2mj

(
pj −

Qj
c
A(xj)

)2
+

∑

1≤j<k≤N

QjQk
|xj − xk|

+
1

8π

∫

R3N

(
c2|PE(y)|2 + |∇ ×A(y)|2

)
dy,

provided A is continuous at the points x1, . . . ,xN . We now quantize the
charged particles in our model and obtain the Hamilton operator

H
(
A,−PE

4π

)
=

N∑

j=1

1

2mj

(
i~∇xj +

Qj
c
A(xj)

)2
+

∑

1≤j<k≤N

QjQk
|xj − xk|

+
1

8π

∫

R3N

(
c2|PE(y)|2 + |∇ ×A(y)|2

)
dy,

acting on a certain dense subspace of the Hilbert space L2(R3N ). Instead of
also quantizing the fields A and −PE

4π we leave them as classical variables. In
this spirit we will for a given (normalized) quantum state ψ : R3N → C of the
particles regard the average energy (A,−PE

4π ) 7→
(
ψ,H

(
A,−PE

4π

)
ψ
)
L2 as a
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classical Hamiltonian defined on the weak symplectic manifold (PH1×PL2, ω)
with

ωm
(
m,A1,−PE1

4π ,m,A2,−PE2
4π

)
=

1

4π

∫

R3

(
PE1 ·A2 − PE2 ·A1

)
(y) dy

for m,
(
A1,−PE1

4π

)
,
(
A2,−PE2

4π

)
∈ PH1 × PL2. The corresponding Hamilton

equations express that

1

c2
∂tA(t) = −PE(t) and − ∂tPE(t) = ∆A(t) +

4π

c

N∑

j=1

PJj [ψ,A(t)]. (16)

In reality, we do of course not expect the quantum state of the charged particles
to be time independent – the time evolution of ψ is governed by the Schrödinger
equation

i~∂tψ(t) = H
(
A(t),−PE(t)

4π

)
ψ(t). (17)

We investigate the situation where the fixed time-independent state ψ ap-
pearing in (16) is replaced by the time-dependent state ψ(t) satisfying the
Schrödinger equation (17). (1) is precisely obtained by doing this coupling of
(16) with (17).

3 Preliminaries

First, we collect some simple estimates that will be useful to us later.

Lemma 4. For all 1 ≤ j ≤ N , A ∈
[
L4(R3)

]3, B ∈ L2(R3), ψ ∈ L2(R3N )
with ∆xjψ ∈ L2(R3N ), 0 < ε < 1 and 0 < δ < 1

2 we have

∥∥A(xj) · ∇xjψ
∥∥
L2 . ‖A‖L4

(
ε−7‖ψ‖L2 + ε‖∆xjψ‖L2

)

‖B(xj)ψ‖L2 . ‖B‖L2

(
ε−

3+2δ
1−2δ ‖ψ‖L2 + ε‖∆xjψ‖L2

)
∥∥∥∥

1

|xj − xk|
ψ

∥∥∥∥
L2

. ε−
3+2δ
1−2δ ‖ψ‖L2 + ε‖∆xjψ‖L2 for 1 ≤ j < k ≤ N

(18)

and for all 1 ≤ j ≤ N , A ∈
[
L4(R3)

]3, B ∈ L2(R3) and ψ ∈ L2(R3N ) the
estimates

‖divxj (A(xj)ψ)‖H−2 . ‖A‖L4‖ψ‖L2 ,

‖B(xj)ψ‖H−2 . ‖B‖L2‖ψ‖L2 ,∥∥∥∥
1

|xj − xk|
ψ

∥∥∥∥
H−2

. ‖ψ‖L2 for 1 ≤ j < k ≤ N
(19)
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hold true. Moreover, we have

∥∥Jj [ψ1,A1]− Jj [ψ2,A2]
∥∥
H1

.
2∑

k=1

(
(1 + ‖Ak‖D1)‖ψk‖H2

)
‖ψ1 − ψ2‖H2 + ‖ψ1‖H2‖ψ2‖H2‖A1 −A2‖D1

(20)

for any 1 ≤ j ≤ N and (ψ1,A1), (ψ2,A2) ∈ H2(R3N )×D1(R3).

Proof. For instance we can use Tonelli’s theorem, Hölder’s inequality, the
Sobolev embeddingH

3
4 ↪→ L4 as well as the Young inequalities p2

j ≤ 1
2ε2

+ ε2

2 p
4
j

and |pj |
7
2 ≤ 1

8ε14
+ 7ε2

8 p
4
j to obtain

‖A(xj) · ∇xjψ‖2L2 ≤
∫

R3(N−1)

(∫

R3

|A(xj)|4 dxj

) 1
2
(∫

R3

|∇xjψ(x)|4 dxj

) 1
2

dx′j

. ‖A‖2L4

∫

R3(N−1)

∫

R3

∣∣(1−∆)
3
8∇ψj,x′j (xj)

∣∣2 dxj dx′j

. ‖A‖2L4

(
ε−14‖ψ‖2L2 + ε2‖∆xjψ‖2L2

)
,

where we for x′j = (x1, . . . ,xj−1,xj+1, . . . ,xN ) ∈ R3(N−1) introduce the map-
ping ψj,x

′
j : xj 7→ ψ(x1, . . . ,xj−1,xj ,xj+1, . . . ,xN ) that for almost all vec-

tors x′j is contained in the Sobolev space H2(R3) and satisfies the identities

(1−∆)
s
2

[
ψj,x

′
j
]

=
[
(1−∆xj )

s
2ψ
]j,x′j and ∂α

[
ψj,x

′
j
]

= [∂αxjψ]j,x
′
j for any s ≤ 2

and any multi-index α with |α| ≤ 2. The other estimates in (18) follow analo-
gously by using the Sobolev embedding H

3
2

+δ ↪→ L∞ instead of H
3
4 ↪→ L4.

To prove the first inequality in (19) we first note that for ξ ∈ C∞0 ,

‖divxj (A(xj)ξ)‖H−2 ≤ (2π)3N
3∑

k=1

sup
‖η‖L2=1

∣∣∣
(
Ak(xj)F

−1
[
(1 + p2)−

1
2 η
]
, ξ
)
L2

∣∣∣

. ‖A‖L4‖ξ‖L2 , (21)

where we use the Riesz-Fréchet theorem and the Sobolev embeddingH1 ↪→ L4.
For a given ψ ∈ L2 we can therefore choose a sequence (ψn)n∈N of C∞0 -functions
converging in L2 to ψ and use (21) to conclude that (divxj (A(xj)ψn))n∈N is a
Cauchy sequence in the Hilbert space H−2, whereby it must converge to some
limit in H−2. But this limit has to be divxj (A(xj)ψ) since the convergence
divxj (A(xj)ψn) −−−→

n→∞
divxj (A(xj)ψ) holds in the space D ′ of distributions.

Thus, the first estimate of (19) is true and each of the remaining two inequal-
ities follow by combining the Riesz-Fréchet theorem with the corresponding
estimate in (18).
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Finally, (20) is easy to derive from the general estimates

(∫

R3

∣∣∣
∫

R3(N−1)

Ψ1(x)∇xjΨ2(x) dx′j
∣∣∣
2

dxj

) 1
2

. min
{
‖(1−∆xj )

1
4 Ψ1‖L2‖∇xj ⊗∇xjΨ2‖L2 ,

‖(1−∆xj )
3
4

+ δ
2 Ψ1‖L2‖∇xjΨ2‖L2

}

and
(∫

R3

∣∣∣
∫

R3(N−1)

A(xj)Ψ1(x)Ψ2(x) dx′j
∣∣∣
2

dxj

) 1
2

. min
{
‖A‖L6‖∇xjΨ1‖L2‖∇xjΨ2‖L2 , ‖A‖L2

2∏

k=1

‖(1−∆xj )
3
4

+ δ
2 Ψk‖L2

}

on mappings Ψ1,Ψ2 : R3N → C and A : R3 → C3 that follow for δ > 0 from
Minkowski’s integral inequality, the Sobolev embeddings D1 ↪→ L6, H

1
2 ↪→ L3,

H
3
2

+δ ↪→ L∞ and Hölder’s inequality. By ∇xj ⊗ ∇xjΨ2 we here mean a 9-
vector with the derivatives ∂xkj ∂x`jΨ2 as components (k, ` ∈ {1, 2, 3}). �

Remark 5. The lemma above allows us to clarify the exact meaning of a
solution to (1). If for some given pair (ψ,A) ∈ C(IT , H2) × C

(
IT ;H

3
2

)
the

derivative ∂tA of A ∈ D ′
(
I◦T ;H

3
2

)
is a continuous mapping IT → H

1
2 then by

boundedness of P : H1 → H1 and the estimates in Lemma 4 we have

c2
(

∆A+
4π

c

N∑

j=1

PJj [ψ,A]
)
∈ C

(
IT ;H−

1
2
)

(22)

and

− i
~

( N∑

j=1

1

2mj
∇2
j,Aψ +

∑

1≤j<k≤N

QjQk
|xj − xk|

ψ + EEM[A, ∂tA]ψ
)
∈ C(IT ;L2).

(23)

A pair (ψ,A) ∈ C(IT ;H2)×
(
C
(
IT ;H

3
2

)
∩C1

(
IT ;H

1
2

))
is said to solve (1) if

the second derivative ∂2
tA of A ∈ D ′

(
I◦T ;H

3
2

)
equals (22) and the derivative

∂tψ of ψ ∈ D ′(I◦T ;H2) equals (23).

For any solution (ψ,A) ∈ C(IT ;H2) ×
(
C
(
IT ;H

3
2

)
∩ C1

(
IT ;H

1
2

))
to (3)

the pair
(
e−

i
~
∫ t
0 EEM[A,∂tA](s) dsψ,A

)
will solve (1) – here, the field energy

EEM[A, ∂tA] is absolutely continuous IT → R because ∂tA and ∇ × A are
both absolutely continuous IT → H−

1
2 and continuous IT → H

1
2 . Conversely,

any (ψ,A) ∈ C(IT ;H2) ×
(
C
(
IT ;H

3
2

)
∩ C1

(
IT ;H

1
2

))
solving (1) gives rise
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to the solution
(
e
i
~
∫ t
0 EEM[A,∂tA](s) dsψ,A

)
to (3). Therefore we can concen-

trate on uniquely solving the simplified initial value problem (3)+(6) instead
of (1)+(6).

It is noteworthy that for any solution (ψ,A) to the system (3) (or (1) for
that matter) the norm ‖ψ‖L2 : IT 3 t 7→ ‖ψ(t)‖L2 ∈ R will be a constant
of the motion. The absolute continuity of ψ : IT → L2 implies namely that
‖ψ‖2L2 is absolutely continuous and for almost all t ∈ IT

∂t‖ψ‖2L2(t) =
2

~
Im


ψ(t),

N∑

j=1

1

2mj
∇2
j,Aψ(t) +

∑

1≤j<k≤N

QjQk
|xj − xk|

ψ(t)



L2

= 0.

(24)

So if the initial condition ψ0 is a unit vector in L2 then the wave function ψ
will continue to be a unit vector in L2 at all later times of existence – this is
consistent with the quantum mechanical interpretation of |ψ(t)(x1, . . . ,xN )|2
as the probability density at time t for finding particle 1 at x1, particle 2 at
x2 etc.

Let us emphasize a final important consequence of Lemma 4 – namely
that for any choice of divergence free vector potential A ∈ L4(R3;R3) the
formal operator acting on ψ on the right hand side of the second equation in
(3) can be realized as a symmetric operator in L2(R3N ) with dense domain
H2(R3N ). By the Kato-Rellich theorem the selfadjointness of the nonnegative
operator −∑N

j=1
~2

2mj
∆xj : H2(R3N ) → L2(R3N ) and the estimates (18) even

imply that
∑N

j=1
1

2mj
∇2
j,A +

∑
1≤j<k≤N

QjQk
|xj−xk| is selfadjoint on the domain

H2(R3N ) with a lower bound that goes like some power of 〈‖A‖L4〉.

4 The Many-Body Schrödinger Equation

We will eventually solve (3) by applying the Banach fixed-point theorem to the
solution operator of a certain linearization of (3). In this section we approach
the many-body Schrödinger equation

i~∂tξ =
( N∑

j=1

1

2mj
∇2
j,A +

∑

1≤j<k≤N

QjQk
|xj − xk|

)
ξ (25)

by considering A as a fixed (time-dependent) vector potential. We supply (25)
with the initial condition

ξ(τ) = ψ0, (26)

where τ ∈ IT and ψ0 are also fixed and thought of as given beforehand. We
will show that this initial value problem is well-posed by applying the following
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fundamental result by Kato concerning general linear evolution equations of
the type

∂tξ + A(t)ξ = F(t),

ξ(τ) = ψ0

in a Banach space X .
Theorem 6. [19, Theorem I] Suppose that

(i’) For all t ∈ IT the operator −A(t) generates a strongly continuous one-
parameter semigroup [0,∞) 3 s 7→ exp

(
−sA(t)

)
∈ L(X ) and the family

{A(t) | t ∈ IT } is quasi-stable with stability index (M,β), in the sense
that

∥∥∥
k∏

j=1

exp(−sjA(tj))
∥∥∥
L(X )

≤M exp
( k∑

j=1

sjβ(tj)
)

for all k ∈ N, 0 ≤ t1 ≤ · · · ≤ tk ≤ T and s1, . . . , sk ∈ [0,∞), where M is
a constant, β : IT → R is upper Lebesgue integrable and the product on
the left hand side is time-ordered so that a factor with larger tj stands to
the left of ones with smaller tj.

(ii’’’) There exists a Banach space Y, continuously and densely embedded in
X , and a family {S(t) | t ∈ IT } of isomorphisms Y → X , such that

S(t)A(t)S(t)−1 = A(t) + B(t) for almost all t ∈ IT ,

where B maps into L(X ), B(·)x is strongly measurable (as an X -valued
mapping) for all x ∈ X and ‖B(·)‖L(X ) is upper Lebesgue integrable.
Furthermore, there exists a function Ṡ defined almost everywhere on IT
and mapping into L(Y,X ) such that Ṡ(·)y is strongly measurable for
all y ∈ Y,

∥∥Ṡ(·)
∥∥
L(Y,X )

is upper Lebesgue integrable and S is a strong

indefinite integral of Ṡ.

(iii) For all t ∈ IT the domain of the operator A(t) in X contains Y and
A : IT → L(Y,X ) is norm-continuous.

Then there exists a unique U defined on the triangle TT = {(t, τ) ∈ I2
T | t ≥ τ}

with the following properties.

(a) U is strongly continuous TT → L(X ) with U (t, t) = 1 for all t ∈ IT ,

(b) U (t, τ)U (τ, s) = U (t, s) for all (t, τ, s) satisfying 0 ≤ s ≤ τ ≤ t ≤ T ,

(c) For all (t, τ) ∈ TT the inclusion U (t, τ)Y ⊂ Y holds and U is strongly
continuous TT → L(Y),
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(d) The strong partial derivatives ∂tU (t, τ)y = −A(t)U (t, τ)y as well as
∂τU (t, τ)y = U (t, τ)A(τ)y exist in X for all (t, τ, y) ∈ TT × Y and
∂tU , ∂τU : TT → L(Y,X ) are both strongly continuous.

Remark 7. If A satisfies the points (i’), (ii’’’) and (iii) then A′ = −A ◦ <
with < : IT 3 t 7→ (T − t) ∈ IT will automatically fulfill (ii’’’) and (iii).
This can easily be checked by choosing

(
S′,B′, Ṡ′

)
=
(
S,−B,−Ṡ

)
◦ < (with

a hopefully obvious notation) and using that for any Banach space Z the
function f 7→ (−f ◦<) not only conserves the property of strong measurability
IT → Z, but it also maps L1(IT ;Z) isometrically onto itself. If A′ also happens
to satisfy (i’) in the sense that −A′(t) generates a C0-semigroup for all t ∈ IT
and the family {A′(t) | t ∈ IT } is quasi-stable with stability index (M,β ◦ <),
then we can combine the evolution operators UA and UA′ – whose existence
are ensured by Theorem 6 – into a single evolution operator U defined in all
points (t, τ) ∈ I2

T by setting

U (t, τ) =

{
UA(t, τ) for t ≥ τ
UA′(T − t, T − τ) for t < τ

.

This operator satisfies

(a’) U is strongly continuous I2
T → L(X ) with U (t, t) = 1 for all t ∈ IT ,

(b’) U (t, τ)U (τ, s) = U (t, s) for all (t, τ, s) ∈ I3
T ,

(c’) For all (t, τ) ∈ I2
T the inclusion U (t, τ)Y ⊂ Y holds and U is strongly

continuous I2
T → L(Y),

(d’) The strong partial derivatives ∂tU (t, τ)y = −A(t)U (t, τ)y as well as
∂τU (t, τ)y = U (t, τ)A(τ)y exist in X for all (t, τ, y) ∈ I2

T × Y and
∂tU , ∂τU : I2

T → L(Y,X ) are both strongly continuous.

Here, (b’) is the only point that does not follow immediately from the proper-
ties listed in Theorem 6 of the individual operators UA and UA′ – however, it
suffices to prove the identities

UA(t0, τ0)UA′(T − τ0, T − t0) = UA′(T − τ0, T − t0)UA(t0, τ0) = 1 (27)

for all (t0, τ0) ∈ TT . To prove (27) note first that by [18, Proposition 4.4] the
operator Ã(t) (resp. Ã′(t)) in Y acting like A(t) (resp. A′(t)) on the domain
{y ∈ Y | A(t)y ∈ Y} (resp. {y ∈ Y | A′(t)y ∈ Y}) is quasi-stable and the sec-
ond coordinate of it’s stability index can be chosen to be β̃ = β+M‖B(·)‖L(X )

(resp. β̃ ◦ <). Without loss of generality we can here assume that β and
β̃ are integrable IT → [0,∞) (otherwise replace them by integrable majo-
rants). With the help of [19, Lemma A1] and the remark after [19, Lemma
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A2] consider now a sequence
(
{In1

T , . . . , InmnT }
)
n∈N of partitions of the inter-

val IT into subintervals with supj
∣∣InjT

∣∣ −−−→
n→∞

0 and a corresponding sequence
(
{tn1, . . . , tnmn}

)
n∈N with tnj ∈ InjT for n ∈ N and j ∈ {1, . . . ,mn} such

that the Riemann step functions
∑mn

j=1 β
(
tnj
)
1InjT

and
∑mn

j=1 β̃
(
tnj
)
1InjT

ap-

proximate β respectively β̃, in L1(IT ) as well as pointwise almost everywhere.
Then by the proof of [19, Theorem I] the operator UA(t, τ) is the strong limit
in L(L2) (uniformly in (t, τ) ∈ TT ) of a sequence

(
U n

A (t, τ)
)
n∈N of operators

satisfying

• U n
A (t, τ) = e−(t−τ)A(tnj) for t, τ ∈ InjT with t ≥ τ ,

• U n
A (t, τ) = U n

A (t, s)U n
A (s, τ) for t ≥ s ≥ τ .

But here the sequence
(
{T − In1

T , . . . , T − InmnT }
)
n∈N of partitions of IT sat-

isfies supj
∣∣T − InjT

∣∣ −−−→
n→∞

0 and the corresponding Riemann step functions
∑mn

j=1(β ◦ <)
(
T − tnj

)
1
T−InjT

and
∑mn

j=1

(
β̃ ◦ <

)(
T − tnj

)
1
T−InjT

approximate

β ◦ < respectively β̃ ◦ <, in L1(IT ) as well as pointwise almost everywhere.
Consequently, UA′(T − τ, T − t) is also the strong limit in L(L2) (uniformly in
(t, τ) ∈ TT ) of a sequence

(
U n

A′(T − τ, T − t)
)
n∈N satisfying

• U n
A′(T − τ, T − t) = e(t−τ)A(tnj) for t, τ ∈ InjT with t ≥ τ ,

• U n
A′(T − τ, T − t) = U n

A′(T − τ, T − s)U n
A′(T − s, T − t) for t ≥ s ≥ τ .

Now, (27) follows immediately from the four properties of U n
A and U n

A′ listed
above.

We now apply Theorem 6 to the problem (25)–(26).

Corollary 8. For all T > 0 and all A ∈W 1,1
(
IT ;L4(R3;R3)

)
whose continu-

ous representative is divergence free at all times there exists a unique evolution
operator UA defined on I2

T such that

(A) UA is strongly continuous I2
T → L(L2) with UA(t, t) = 1 for t ∈ IT ,

(B) UA(t, τ)UA(τ, s) = UA(t, s) for all (t, τ, s) ∈ I3
T ,

(C) UA(t, τ)H2 ⊂ H2 for (t, τ) ∈ I2
T and UA : I2

T → L(H2) is strongly
continuous,

(D) The strong partial derivatives ∂tUA(t, τ)ψ0 and ∂τUA(t, τ)ψ0 exist in L2

for all (t, τ) ∈ I2
T and ψ0 ∈ H2 and are given by

i~∂tUA(t, τ)ψ0 =
( N∑

j=1

1

2mj
∇2
j,A(t) +

∑

1≤j<k≤N

QjQk
|xj − xk|

)
UA(t, τ)ψ0
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respectively

~∂τUA(t, τ)ψ0 = iUA(t, τ)
( N∑

j=1

1

2mj
∇2
j,A(τ) +

∑

1≤j<k≤N

QjQk
|xj − xk|

)
ψ0.

Moreover, ∂tUA, ∂τUA : I2
T → L(H2, L2) are strongly continuous.

Proof. Let A : IT → L4 denote (the absolutely continuous representative
of) a magnetic vector potential satisfying the hypotheses of the corollary and
consider it’s strong derivative ∂tA that is defined almost everywhere on IT and
contained in L1(IT ;L4). Our goal will be to apply Theorem 6 and Remark 7
to the family of operators

A(t) =
i

~

( N∑

j=1

1

2mj
∇2
j,A(t) +

∑

1≤j<k≤N

QjQk
|xj − xk|

)

in X = L2
(
R3N

)
with domain Y = H2

(
R3N

)
. By Stone’s theorem the self-

adjointness of iA(t) implies that −A(t) generates a strongly continuous one-
parameter group R 3 s 7→ exp

(
−sA(t)

)
∈ L(L2) of unitary operators for each

t ∈ IT . Thereby [0,∞) 3 s 7→ exp
(
−sA(t)

)
and [0,∞) 3 s 7→ exp

(
sA(T − t)

)

are strongly continuous one-parameter semigroups generated by −A(t) respec-
tively A(T − t). Moreover, the unitarity of the operators exp

(
−sA(t)

)
for

t ∈ IT and s ∈ R ensures that both of the families {A(t) | t ∈ IT } and
{−A(T − t) | t ∈ IT } are (quasi-)stable with the common stability index
(1, 0). Thus, A and −A ◦ < both satisfy the point (i’) from Theorem 6.

The operator −iA(t) in L2 is selfadjoint and bounded from below, uni-
formly in t, by some constant −M so by setting

S(t) = M + 1− iA(t) for t ∈ IT ,

we obtain a family of selfadjoint operators in L2 that all have lower bounds
≥ 1 and thereby map their common domain H2 bijectively onto L2. Lemma
4 even gives that S(t) is bounded, when considered as an operator from the
Hilbert space H2 to the Hilbert space L2, whereby it’s inverse must also be
bounded according to the bounded inverse theorem. Consequently, S(t) is
an isomorphism H2 → L2 and the identity S(t)A(t)S(t)−1 = A(t) holds by
construction for all t ∈ IT . To show the final part of (ii’’’) we define

Ṡ(t) =
N∑

j=1

Qj
~mjc

∂tA(t)(xj) · ∇j,A(t)

as an L(H2, L2)-element for almost all points t ∈ IT – namely the points where
∂tA is well-defined. Lemma 4 and the strong measurability IT → L4 of A and
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∂tA allow us to conclude that S and Ṡ are strongly measurable IT → L(H2, L2)
with the estimates

‖S(t)‖L(H2,L2) . 1 + ‖A(t)‖2L4 ,
∥∥Ṡ(t)

∥∥
L(H2,L2)

. ‖∂tA(t)‖L4(1 + ‖A(t)‖L4)

holding true for almost all t ∈ IT . Consequently, S and Ṡ are both Bochner
integrable IT → L(H2, L2) – in fact, it follows from (30) that S is continuous.
Given an arbitrary C∞0 (I◦T )-function g we now get

∫ T

0
Ṡ(t)g(t) dt

=

N∑

j=1

Qj
mjc~

(
i~
∫ T

0
∂tA(t)g(t) dt(xj) · ∇xj +

Qj
c

∫ T

0

(
∂tA ·A

)
(t)g(t) dt(xj)

)

= −
∫ T

0
S(t)g′(t) dt. (28)

where we use that A2 ∈W 1,1
(
IT ;L2(R3)

)
with

∂tA
2(t) = 2∂tA(t) ·A(t) for almost all t ∈ IT , (29)

which follows from approximating A in W 1,1
(
IT ;L4(R3;R3)

)
by functions in

the form An : t 7→ ∑Mn

m=1 a
n
mf

n
m(t) with Mn ∈ N, an1 , . . . ,anMn ∈ L4(R3;R3)

and fn1 , . . . , fnMn ∈ C∞(IT ) for n ∈ N. We conclude from (28) that the function
S ∈W 1,1

(
IT ,L(H2, L2)

)
has Ṡ as it’s derivative, whereby (ii’’’) from Theorem

6 has been verified.
Finally, we obtain from Lemma 4 that for all t, t′ ∈ IT

‖A(t)− A(t′)‖L(H2,L2) .
(
1 + ‖A(t) +A(t′)‖L4

)
‖A(t)−A(t′)‖L4 (30)

so the continuity of A : IT → L4 implies that A : IT → L(H2, L2) is norm-
continuous. Thus, also the point (iii) of Theorem 6 is satisfied. �

Remark 9. Let ψ0 ∈ H2 and τ ∈ IT be given and set ξ(t) = UA(t, τ)ψ0 for
t ∈ IT . Being strongly differentiable IT → L2 with continuous derivative the
function ξ can be expressed as

ξ(t) = ξ(0) +

∫ t

0
∂tξ(s) ds for all t ∈ IT ,

since the right hand side as a function of t is strongly differentiable in L2

with ∂tξ as it’s derivative by the mean value theorem. Thus, ξ is absolutely
continuous IT → L2, which in turn means that ξ ∈W 1,1(IT ;L2) and that it’s
distributional derivative agrees with it’s strong derivative.
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Remark 10. By the same argument as in (24) the mapping ξ(t) = UA(t, τ)ψ0

has a conserved L2-norm for any ψ0 ∈ H2 and τ ∈ IT . This together with the
continuity of UA(t, τ) : L2 → L2 implies that the L2-norm of ξ(t) is in fact a
constant of the motion for all ψ0 ∈ L2 and τ ∈ IT .

Given a potential A ∈ W 1,1
(
IT ;L4(R3;R3)

)
whose continuous representative

is divergence free at all times we can according to Corollary 8 apply UA(t, τ)
to any L2-function ψ0 and thereby obtain another L2-function, even though we
are only guaranteed that the result UA(t, τ)ψ0 actually solves (25) if ψ0 ∈ H2.
However, by the estimates (19) the right hand side of (25) is in fact meaningful
(as an H−2-element) when ξ(t) is merely an L2-function, provided that we
interpret ∇2

j,A(t)ξ(t) as the sum

−~2∆xjξ(t) + 2i
~Qj
c

divxj

(
A(t)(xj)ξ(t)

)
+
Q2
j

c2

[
A(t)(xj)

]2
ξ(t). (31)

A special case of the result below shows that for ψ0 ∈ L2 there can not be
any other C(IT ;L2) ∩ W 1,1(IT ;H−2)-solutions to the initial value problem
(25)–(26) than UA(t, τ)ψ0. In order to formulate this result we introduce for
(t, τ) ∈ I2

T the linear operator H−2 → H−2 (that we will again call UA(t, τ))
by setting

〈UA(t, τ)ξ, ζ〉H−2,H2 = 〈ξ,UA(τ, t)ζ〉H−2,H2

for ξ ∈ H−2 and ζ ∈ H2, where we remember that H−s is isometrically anti-
isomorphic to the dual space (Hs)∗ of Hs by the mapping

H−s 3 ξ 7→
(
〈ξ, ·〉H−s,Hs : ζ 7→ 1

(2π)3

(
〈p〉−sξ̂, 〈p〉sζ̂

)
L2

)
∈
(
Hs
)∗
.

Then UA(t, τ) is bounded with

‖UA(t, τ)‖L(H−2) ≤ ‖UA(τ, t)‖L(H2) ≤ sup
(t′,τ ′)∈I2T

∥∥UA

(
t′, τ ′

)∥∥
L(H2)

, (32)

for (t, τ) ∈ I2
T , where the right hand side is finite by the uniform boundedness

principle. Moreover, UA(t, τ) : H−2 → H−2 is an extension of the unitary
operator UA(t, τ) : L2 → L2 in the sense that they agree on L2-functions.

Lemma 11. Let the continuous representative of A ∈ W 1,1
(
IT ;L4(R3;R3)

)

be divergence free at all times and consider some arbitrary f ∈ L1
(
IT ;H−2

)
.

Then if ξ ∈ C(IT ;L2)∩W 1,1
(
IT ;H−2

)
satisfies the inhomogeneous many-body

Schrödinger equation

i~∂tξ =
( N∑

j=1

1

2mj
∇2
j,A +

∑

1≤j<k≤N

QjQk
|xj − xk|

)
ξ + f
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then

ξ(t) = UA(t, τ)ξ(τ)− i

~

∫ t

τ
UA(t, s)f(s) ds, (33)

for all (t, τ) ∈ I2
T .

Proof. Given some t ∈ IT and ζ ∈ H2 the map 〈UA(t, ·)ξ(·), ζ
〉
H−2,H2 is

absolutely continuous since ξ : IT → H−2, UA(·, t)ζ : IT → L2 are absolutely
continuous (see Remark 9) and ξ : IT → L2, UA(·, t)ζ : IT → H2 are continu-
ous. It’s derivative is well defined almost everywhere in IT and for almost all
s ∈ IT
∂s
〈
UA(t, s)ξ(s), ζ

〉
H−2,H2 =

〈
∂sξ(s),UA(s, t)ζ

〉
H−2,H2 +

(
ξ(s), ∂sUA(s, t)ζ

)
L2

=
i

~
〈
UA(t, s)f(s), ζ

〉
H−2,H2 , (34)

where
〈(∑N

j=1
1

2mj
∇2
j,A(s) +

∑
j<k

QjQk
|xj−xk|

)
ξ(s),UA(s, t)ζ

〉
H−2,H2 is seen to be

equal to
(
ξ(s),

(∑N
j=1

1
2mj
∇2
j,A(s) +

∑
j<k

QjQk
|xj−xk|

)
UA(s, t)ζ

)
L2 by approximat-

ing ξ(s) and UA(s, t)ζ in L2 respectively H2 by sequences of C∞0 -functions
and using the estimates (18) and (19). Thus,

〈ξ(t), ζ〉H−2,H2 = 〈UA(t, τ)ξ(τ), ζ〉H−2,H2 +
i

~

∫ t

τ
〈UA(t, s)f(s), ζ〉H−2,H2 ds

for all τ ∈ IT . Here, (32) and the assumption that f ∈ L1(IT , H−2) give
that UA(t, ·)f(·) is Bochner integrable IT → H−2, whereby we can use [30,
Corollary V.5.2] to commute the integral with the bounded anti-linear operator
〈·, ζ〉H−2,H2 : H−2 → C and obtain

〈
ξ(t)−UA(t, τ)ξ(τ) +

i

~

∫ t

τ
UA(t, s)f(s) ds, ζ

〉
H−2,H2

= 0

for all τ ∈ I, whereby the identity (33) follows. �

As already mentioned in (32) the norms ‖UA(t, τ)‖L(H2) are uniformly bounded
in (t, τ) ∈ I2

T . We will now find an explicit upper bound.

Lemma 12. Consider a vector potential A ∈ W 1,1
(
IT ;L4(R3;R3)

)
whose

continuous representative is divergence free at all times. Then for all 0 < δ < 1
2

there exists a constant C > 0 (depending on c, ~, δ, N , m1, . . . ,mN and
Q1, . . . , QN ) such that

‖UA(t, τ)‖L(H2) ≤ C〈‖A‖L∞T L4〉
8

1−2δ exp
(
C

∫ t

τ
〈‖A(s)‖L4〉‖∂tA(s)‖L4 ds

)

(35)

for all (t, τ) ∈ TT .
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Proof. Given ψ0 ∈ H2 and τ ∈ IT we set ξ(·) = UA(·, τ)ψ0 ∈ C(IT ;H2) and
note that the time derivative

∂tξ = − i
~

( N∑

j=1

1

2mj
∇2
j,A +

∑

1≤j<k≤N

QjQk
|xj − xk|

)
ξ

has the distributional derivative given by

∂2
t ξ = − i

~

( N∑

j=1

1

2mj
∇2
j,A +

∑

1≤j<k≤N

QjQk
|xj − xk|

)
∂tξ −

i

~
f (36)

where ∇2
j,A is interpreted as in (31) and we introduce the L1(IT ;L2)-map

f(t) = i
N∑

j=1

~Qj
cmj

divxj

(
∂tA(t)(xj)ξ(t)

)
+

N∑

j=1

Q2
j

c2mj
A(t)(xj) · ∂tA(t)(xj)ξ(t).

This can be shown by approximating ξ in W 1,1
(
IT ;L2

(
R3N

))
by a sequence

of maps ξn : t 7→ ∑Mn

m=1 ξ
n
mf

n
m(t) with Mn ∈ N, ξn1 , . . . , ξnMn ∈ L2

(
R3N

)
and

fn1 , . . . , f
n
Mn ∈ C∞(IT ) for n ∈ N. From (19) and (29) it follows for example

that
∫ T

0
divxj

(
A(t)(xj)ξ(t)

)
g′(t) dt = lim

n→∞

Mn∑

m=1

divxj

(∫ T

0
A(t)(fnmg

′)(t) dt(xj)ξ
n
m

)

= −
∫ T

0
divxj

(
∂tA(t)(xj)ξ(t) +A(t)(xj)∂tξ(t)

)
g(t) dt

and
∫ T

0

[
A(t)(xj)

]2
ξ(t)g′(t) dt = lim

n→∞

Mn∑

m=1

∫ T

0

[
A(t)

]2
(fnmg

′)(t) dt(xj)ξ
n
m

= −
∫ T

0

[
A(t)(xj)

]2
∂tξ(t)g(t) dt− 2

∫ T

0
A(t)(xj) · ∂tA(t)(xj)ξ(t)g(t) dt,

for all j ∈ {1, . . . , N} and g ∈ C∞0 (I◦T ), where the limits are taken in H−2.
From (18), (19), (36), Corollary 8 and Lemma 11 we get for all t ∈ IT that

∂tξ(t) = UA(t, τ)∂tξ(τ)− i

~

∫ t

τ
UA(t, s)f(s) ds.

By using (18) and Remark 10 we therefore get the existence of a constant
K > 0 such that

‖ξ(t)‖H2

≤ K
(
〈‖A‖L∞T L4〉

8
1−2δ ‖ξ(τ)‖H2 +

∫ t

τ
‖∂tA(s)‖L4〈‖A(s)‖L4〉‖ξ(s)‖H2 ds

)

for all t ∈ [τ, T ] so (35) holds by Gronwall’s inequality. �
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5 The Klein-Gordon Equation

Given σ ∈ R, (A0,A1) ∈ Hσ × Hσ−1 and F ∈ L1
(
IT ;Hσ−1

)
define the

continuous function VF (·, 0)[A0,A1] : IT → Hσ by

VF (t, 0)[A0,A1] = ṡ(t)A0 + s(t)A1 + c2

∫ t

0
s(t− τ)F (τ) dτ, (37)

where the two linear operators ṡ(t) = cos
(
c(1 − ∆)1/2t

)
: Hσ → Hσ and

s(t) = sin(c(1−∆)1/2t)

c(1−∆)1/2
: Hσ−1 → Hσ are defined as Fourier multipliers for

t ∈ IT . Then VF (·, 0)[A0,A1] has the C(IT ;Hσ−1)-mapping

∂tVF (t, 0)[A0,A1] = c2(∆− 1)s(t)A0 + ṡ(t)A1 + c2

∫ t

0
ṡ(t− τ)F (τ) dτ

as distributional first derivative and the L1(IT ;Hσ−2)-function

∂2
t VF (t, 0)[A0,A1] = c2(∆− 1)VF (t, 0)[A0,A1] + c2F (t).

as distributional second derivative. In other words, VF (·, 0)[A0,A1] solves the
Klein-Gordon equation

(�+ 1)B = F (38)

with initial conditions

B(0) = A0 and ∂tB(0) = A1. (39)

As expressed below in Lemma 13 the function (37) can be shown to be a
C(IT ;Hσ) ∩ C1(IT ;Hσ−1)-solution to the initial value problem (38)–(39) for
even more general choices of inhomogeneity F . We will need the accompanying
Strichartz estimate. The result is due to Brenner [5], Strichartz [27], Ginibre
and Velo [10, 11], but is formulated on the basis of [21, Lemma 4.1].

Lemma 13. [21, Lemma 4.1] Let 0 ≤ 2
qk

= 1 − 2
rk
< 1 for k ∈ {0, 1}. Then

for σ ∈ R, (A0,A1) ∈ Hσ ×Hσ−1 and F ∈ Lq′1
(
IT ;W

σ−1+ 2
q1
,r′1
)
the function

B(t) = VF (·, 0)[A0,A1] in (37) is contained in C(IT ;Hσ)∩C1(IT ;Hσ−1) and
the Strichartz estimate

max
k∈{0,1}

‖∂ktB‖
L
q0
T W

σ−k− 2
q0
,r0
. ‖(A0,A1)‖Hσ×Hσ−1 + ‖F ‖

L
q′1
T W

σ−1+ 2
q1
,r′1

holds true.

6 The Contraction Argument

Let (ψ0,A0,A1) ∈ H2(R3N )×H 3
2 (R3;R3)×H 1

2 (R3;R3) satisfy the identities
divA0 = divA1 = 0 and consider for T,R1, R2 ∈ (0,∞) the mapping Φ sending
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a pair (ψ,A) from the (T,R1, R2)-dependent space

ZT =
{

(ψ,A) ∈ L∞(IT ;H2)×
(
L∞
(
IT ;H1(R3;R3)

)
∩W 1,4

(
IT ;L4(R3;R3)

))∣∣
the continuous representative IT → L4(R3;R3) of A is divergence free
at all times, ‖ψ‖L∞T H2 ≤ R1,max{‖A‖L∞T H1 , ‖A‖W 1,4

T L4} ≤ R2

}

into the solution Φ(ψ,A) =
(
UA(·, 0)ψ0,V 4π

c

∑N
j=1 PJj [ψ,A]+A(·, 0)[A0,A1]

)
to

the linearized system

i~∂tξ =
( N∑

j=1

1

2mj
∇2
j,A +

∑

1≤j<k≤N

QjQk
|xj − xk|

)
ξ, (40)

(�+ 1)B =
4π

c

N∑

j=1

PJj [ψ,A] +A (41)

with initial data

ξ(0) = ψ0, B(0) = A0 and ∂tB(0) = A1,

where we observe that W 1,4
(
IT ;L4(R3;R3)

)
↪→ W 1,1

(
IT ;L4(R3;R3)

)
and

PJj [ψ,A] ∈ L∞(IT ;H1(R3;R3)) for j ∈ {1, . . . , N} by (20) and the bound-
edness of the Helmholtz projection H1 → H1. Combining Corollary 8 with
Lemma 13 gives that Φ(ψ,A) ∈ C(IT ;H2)×

(
C(IT ;H

3
2 ) ∩ C1(IT ;H

1
2 )
)
and

we observe directly from (37) that the second coordinate of Φ(ψ,A) must be
divergence free at all times, whereby a fixed point of Φ will have the desired
properties. Our strategy will therefore be to invoke the Banach fixed-point
theorem and for this we equip ZT with the metric d given by

d
(
(ψ,A), (ψ′,A′)

)
= max

{
‖ψ − ψ′‖L∞T L2 , ‖A−A′‖

L∞T H
1
2
, ‖A−A′‖L4

TL
4

}

for (ψ,A), (ψ′,A′) ∈ ZT .
Lemma 14. For all choices of positive numbers T , R1 and R2 the metric
space (ZT , d) is complete.

Proof. Let
(
(ψn,An)

)
n∈N be a Cauchy sequence in (ZT , d). Then (ψn)n∈N is a

Cauchy sequence in the Banach space L∞(IT ;L2) and (ψn)n∈N is furthermore
known to be bounded by the constant R1 in the space L∞(IT ;H2) – a space
that can be identified with the dual of the separable space L1(IT ;H−2) by the
isometric anti-isomorphism

L∞(IT ;H2) 3 F 7→
(
G 7→

∫ T

0
〈F (t), G(t)〉H2,H−2 dt

)
∈
(
L1(IT ;H−2)

)∗
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as expressed in [9, Theorem 8.18.3]. Therefore we can use the Banach-Alaoglu
theorem to conclude that there exist ψ ∈ L∞(IT ;L2) and ψ∗ ∈ L∞(IT ;H2)
such that

ψn −−−→
n→∞

ψ in L∞(IT ;L2) and ψnk
w∗−−−⇀
k→∞

ψ∗ in L∞(IT ;H2). (42)

For ϕ ∈ L2(IT ;L2) the sequence
(
(ψnk , ϕ)L2L2

)
k∈N then converges to both

of the numbers (ψ,ϕ)L2L2 and (ψ∗, ϕ)L2L2 so the functions ψ and ψ∗ must
be identical. Likewise, (An)n∈N is bounded by the constant R2 in the dual
L∞(IT ;H1) of the separable space L1(IT ;H−1) and in addition (An)n∈N
is a Cauchy sequence in each of the two Banach spaces L∞

(
IT ;H

1
2

)
and

L4(IT ;L4). Consequently, there exists an A ∈ L∞(IT , H1) ∩ L4(IT , L4) such
that

An −−−→
n→∞

A in L∞
(
IT ;H

1
2
)
and L4(IT ;L4),An′k

w∗−−−⇀
k→∞

A in L∞(IT ;H1).

(43)

Moreover, the boundedness of the sequence (∂tAn)n∈N in the reflexive space
L4(IT ;L4) gives the existence of an Ȧ ∈ L4(IT ;L4) such that the weak con-
vergence

∂tAn′′k
−−−⇀
k→∞

Ȧ in L4(IT ;L4) (44)

holds. But for any k ∈ N, η ∈ L 4
3 (R3) and ϕ ∈ C∞0 (I◦T ) we then have

∫ T

0

∫

R3

An′′k
(t)(x)η(x) dxϕ′(t) dt = −

∫ T

0

∫

R3

∂tAn′′k
(t)(x)η(x) dxϕ(t) dt

whereby letting k →∞ and using (43)–(44) gives that Ȧ is the distributional
time derivative of A. Concerning the divergence of A we observe that

∫ T

0
‖divA(t)‖4W−1,4 dt ≤ ‖A−An‖4L4

TL
4 −−−→
n→∞

0

so divA(t) = div∂tA(t) = 0 for almost all t ∈ IT . For any t ∈ (0, T ] the
continuous representative IT → L4(R3;R3) of A therefore satisfies

divA(t) = divA(t′) +

∫ t

t′
div∂tA(s) ds = 0,

where we have chosen some time t′ ∈ [0, t] in which A takes a divergence
free value – the identity divA(0) = 0 then follows by using the continuity
of IT 3 t 7→ divA(t) ∈ W−1,4(R3). Finally, [6, Propositions 3.5 and 3.13]
concerning boundedness of weakly (respectively weak-∗) convergent sequences
combined with (42)–(44) give

‖ψ‖L∞T H2 ≤ R1 and max
{
‖A‖L∞T H1 , ‖A‖W 1,4

T L4

}
≤ R2,

whereby we are in position to conclude that (ψ,A) is contained in ZT and
that d

(
(ψ,A), (ψn,An)

)
−−−→
n→∞

0. �
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Next, we investigate the properties of the mapping Φ.

Lemma 15. Given any (ψ0,A0,A1) ∈ H2(R3N )×H 3
2 (R3;R3)×H 1

2 (R3;R3)
satisfying divA0 = divA1 = 0 and any R > 0 there exist R1, R2 ∈ (R,∞) and
T† > 0 such that for all T ∈ (0, T†] the function Φ maps ZT into itself.

Proof. Let (ψ0,A0,A1) ∈ H2(R3N ) × H 3
2 (R3;R3) × H 1

2 (R3;R3) satisfy the
identities divA0 = divA1 = 0 and consider arbitrary positive constants T,R1

and R2. For any fixed pair (ψ,A) ∈ ZT we get from Lemma 12, the Sobolev
embedding H

3
4 ↪→ L4, Lemma 13 and (20) that not only is Φ(ψ,A) = (ξ,B)

contained in C(IT ;H2)×
(
C(IT ;H

3
2 ) ∩ C1(IT ;H

1
2 )
)
as noted above, but we

also have B ∈W 1,4(IT , L4) with the two estimates

‖ξ‖L∞T H2 ≤ C〈R2〉
8

1−2δ exp
(
CT

3
4 〈R2〉R2

)
‖ψ0‖H2

and

max
{
‖B‖

L∞T H
3
2
, ‖B‖L4

TL
4 , ‖∂tB‖L4

TL
4

}

≤ C
(
‖(A0,A1)‖

H
3
2×H 1

2
+ T (1 +R2)R2

1 + TR2

)

holding true for some constant C > 0 (depending on c, ~, N , m1, . . . ,mN and
Q1, . . . , QN ). Given some (ψ0,A0,A1) ∈ H2(R3N )×H 3

2 (R3;R3)×H 1
2 (R3;R3)

with divA0 = divA1 = 0 and some positive number R we can therefore choose
R2 > max

{
2
√

2C‖(A0,A1)‖
H

3
2×H 1

2
, R
}
, R1 > max

{
2C〈R2〉

8
1−2δ ‖ψ0‖H2 , R

}

and T† = min
{

R2

2
√

2C((1+R2)R2
1+R2)

,
( log 2
CR2〈R2〉

) 4
3
}
to make sure that Φ maps ZT

into itself for any T ∈ (0, T†]. �

Finally, we show that by choosing T sufficiently small we can make Φ a con-
traction on (ZT , d), which by the Banach fixed-point theorem guarantees the
existence of a unique fixed point for Φ.

Lemma 16. For any (ψ0,A0,A1) ∈ H2(R3N ) × H
3
2 (R3;R3) × H

1
2 (R3;R3)

with divA0 = divA1 = 0 and any R ≥ 0 there exist R1, R2 ∈ (R,∞) and
T∗ > 0 such that Φ is a contraction on

(
ZT , d

)
for all T ∈ (0, T∗].

Proof. Given R ≥ 0 and (ψ0,A0,A1) ∈ H2(R3N )×H 3
2 (R3;R3)×H 1

2 (R3;R3)
satisfying divA0 = divA1 = 0 we use Lemma 15 to choose R1, R2 ∈ (R,∞)
and T† > 0 such that Φ maps ZT into itself for any time span T ∈ (0, T†].
Given an arbitrary such T ∈ (0, T†] we consider (ψ,A), (ψ′,A′) ∈ ZT and
write Φ(ψ,A) = (ξ,B) as well as Φ(ψ′,A′) = (ξ′,B′). After introducing
f ∈ C(IT ;L2) by setting

f(t) =
N∑

j=1

1

2mj

(
∇2
j,A(t) −∇2

j,A′(t)

)
ξ′(t) for t ∈ IT
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we observe that ξ − ξ′ solves the initial value problem

i~∂t(ξ − ξ′) =
( N∑

j=1

1

2mj
∇2
j,A +

∑

1≤j<k≤N

QjQk
|xj − xk|

)
(ξ − ξ′) + f

(ξ − ξ′)(0) = 0.

Combining this with Lemma 11 gives that (ξ − ξ′)(t) = − i
~
∫ t

0 UA(t, s)f(s) ds
for all t ∈ IT , whereby Remark 10, Lemma 4 and Hölder’s inequality help us
obtain the estimate

‖ξ − ξ′‖L∞T L2 .
∫ T

0
(1 + ‖A(s) +A′(s)‖L4)‖A(s)−A′(s)‖L4‖ξ′(s)‖H2 ds

≤ R1

(
T

3
4 + 2R2T

1
2
)
‖A−A′‖L4

TL
4 . (45)

The map B − B′ = V 4π
c

∑N
j=1 P (Jj [ψ,A]−Jj [ψ′,A′])(·, 0)[0,0] + VA−A′(·, 0)[0,0]

satisfies

max
{
‖B −B′‖

L∞T H
1
2
, ‖B −B′‖L4

TL
4

}

.
N∑

j=1

∥∥P
(
Jj [ψ,A]− Jj [ψ′,A′]

)∥∥
L

4
3
T L

4
3

+ ‖A−A′‖
L1
TH
− 1

2
(46)

by Lemma 13. To estimate the first term on the right hand side of (46) we
write

(
Jj [ψ,A] − Jj [ψ′,A′]

)
(t) for almost all t ∈ IT as a sum of the three

L
4
3 -functions

g1
j (t) : xj 7→

Qj
mj

Re

∫

R3(N−1)

(ψ′ − ψ)(t)(x)∇j,A(t)ψ(t)(x) dx′j ,

g2
j (t) : xj 7→

Q2
j

mjc
(A′ −A)(t)(xj)Re

∫

R3(N−1)

(
ψ
′
ψ
)
(t)(x) dx′j

and

g3
j (t) : xj 7→

{
−Qj
mj

Re

∫

R3(N−1)

∇j,−A′(t)ψ
′
(t)(x)(ψ′ − ψ)(t)(x) dx′j

− Qj~
mj
∇xj Im

∫

R3(N−1)

[
ψ
′
(ψ′ − ψ)

]
(t)(x) dx′j

}
. (47)

where the expression for the third function can also be written more compactly
as xj 7→ Qj

mj
Re
∫
R3(N−1) ψ

′
(t)(x)∇j,A′(t)(ψ′ − ψ)(t)(x) dx′j . However, in the

present context we prefer to express g3
j in the form (47) since applying the

Helmholtz projection kills the last term in (47) and leaves us with a term with
no derivatives applied to the difference (ψ′−ψ)(t). As in the proof of Lemma 4
we can therefore use Minkowski’s integral inequality, the Sobolev embeddings
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H
3
4 ↪→ L4, H

3
2

+δ ↪→ L∞, boundedness of the Helmholtz projection L
4
3 → L

4
3

and Hölder’s inequality to obtain that for almost all t ∈ IT ,
∥∥P
(
Jj [ψ,A]− Jj [ψ′,A′]

)
(t)
∥∥
L

4
3

. ‖g1
j (t)‖L 4

3
+ ‖g2

j (t)‖L 4
3

+
∥∥∥xj 7→

∫
∇j,−A′(t)ψ

′
(t)(x)(ψ′ − ψ)(t)(x) dx′j

∥∥∥
L

4
3

.
{

(1 + ‖A(t)‖L4)‖ψ(t)‖H2 + (1 + ‖A′(t)‖L4)‖ψ′(t)‖H2

}
‖(ψ′ − ψ)(t)‖L2

+ ‖ψ′(t)‖L2‖ψ(t)‖H2‖(A′ −A)(t)‖L4 .

and so
∥∥P
(
Jj [ψ,A]− Jj [ψ′,A′]

)∥∥
L

4
3L

4
3

. R1

(
T

3
4 +R2T

1
2
)
‖ψ′ − ψ‖L∞T L2 +R2

1T
1
2 ‖A′ −A‖L4

TL
4 . (48)

From (45), (46) and (48) we realize that there exists a constant C > 0 such
that

d
(
Φ(ψ,A),Φ(ψ′,A′)

)
≤ C

(
R1

(
T

3
4 +R2T

1
2
)

+R2
1T

1
2 + T

)
d
(
(ψ,A), (ψ′,A′)

)

so for small enough T the mapping Φ will be a contraction on (ZT , d). �

The existence part of Theorem 1 has now been proven.

7 Uniqueness

We now turn our attention to the uniqueness question.

Lemma 17. Let (ψ0,A0,A1) ∈ H2(R3N ) × H 3
2 (R3;R3) × H 1

2 (R3;R3) with
divA0 = divA1 = 0 and T > 0 be given. Then if the pairs (ψ1,A1) and
(ψ2,A2) belong to C(IT ;H2)×

(
C
(
IT ;H

3
2

)
∩C1

(
IT ;H

1
2

))
, solve (3)+(6) and

both of the vector fields A1, A2 are divergence free at all times in [0, T ] then
there exists a T∗ ∈ (0, T ] such that (ψ1,A1) and (ψ2,A2) agree on the time
interval [0, T∗].

Proof. For ` ∈ {1, 2} let (ψ`,A`) satisfy the hypotheses of the lemma and
choose with the help of Lemma 16 some radii

R1, R2 > max
{
‖ψ`‖L∞T H2 , ‖A`‖L∞T H1 , ‖A`‖

W 1,4
T L4

∣∣` ∈ {1, 2}
}

and a time T∗ ∈ (0, T ] such that Φ is a contraction on ZT∗ . Then the vector
field B = A`|IT∗ ∈ C

(
IT∗ ;H

3
2

)
∩C1

(
IT∗ ;H

1
2

)
solves the initial value problem

(41)+(39) on IT∗ with (ψ,A) =
(
ψ`|IT∗ ,A`|IT∗

)
so by uniqueness of solutions

to the Klein-Gordon initial value problem [25, Theorem 3.2] we have

A`|IT∗ (t) = V 4π
c

∑N
j=1 PJj [ψ`|IT∗ ,A

`|IT∗ ]+A`|IT∗
(t, 0)[A0,A1]
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for t ∈ IT∗ . We conclude that A1|IT∗ ,A2|IT∗ ∈ W 1,4
(
IT∗ ;L4(R3;R3)

)
by

Lemma 13. Likewise, for ` ∈ {1, 2} the map ξ = ψ`|IT∗ ∈ C(IT∗ ;H2) solves
the initial value problem (25)+(26) on IT∗ with A = A`|IT∗ so Lemma 11
gives that

ψ`|IT∗ (t) = UA`|IT∗
(t, 0)ψ0

for t ∈ IT∗ . Consequently,
(
ψ1|IT∗ ,A1|IT∗

)
and

(
ψ2|IT∗ ,A2|IT∗

)
are both

fixed points for the contraction Φ : ZT∗ → ZT∗ , whereby we must have(
ψ1|IT∗ ,A1|IT∗

)
=
(
ψ2|IT∗ ,A2|IT∗

)
. �

In fact, Lemma 17 holds true with T∗ = T .

Lemma 18. Given (ψ0,A0,A1) ∈ H2(R3N )×H 3
2 (R3;R3)×H 1

2 (R3;R3) with
divA0 = divA1 = 0 and T > 0 there exists at most one pair (ψ,A) in the
space C(IT ;H2)×

(
C
(
IT ;H

3
2

)
∩C1

(
IT ;H

1
2

))
that solves (3)+(6) and satisfies

divA(t) = 0 for all t ∈ IT .

Proof. For T > 0 and (ψ0,A0,A1) ∈ H2(R3N ) ×H 3
2 (R3;R3) ×H 1

2 (R3;R3)
with divA0 = divA1 = 0 consider two solutions (ψ1,A1) and (ψ2,A2) to
(3)+(6) that belong to C(IT ;H2) ×

(
C
(
IT ;H

3
2

)
∩ C1

(
IT ;H

1
2

))
and satisfy

divA1(t) = divA2(t) = 0 for all t ∈ IT . Then the continuity of the mappings
ψ1, ψ2 : IT → H2, A1,A2 : IT → H

3
2 and ∂tA1, ∂tA

2 : IT → H
1
2 gives that

the number

t0 = sup
{
t ∈ [0, T ]

∣∣ (ψ1,A1) = (ψ2,A2) on [0, t]
}

satisfies

(ψ1(t0),A1(t0), ∂tA
1(t0)) = (ψ2(t0),A2(t0), ∂tA

2(t0)).

With the intention of reaching a contradiction we assume that t0 < T . Then for
` ∈ {1, 2} the pair

(
ψ̃`, Ã`

)
∈ C(IT−t0 ;H2)×

(
C
(
IT−t0 ;H

3
2

)
∩C1

(
IT−t0 ;H

1
2

))

given by
(
ψ̃`(t), Ã`(t)

)
=
(
ψ`(t+ t0),A`(t+ t0)

)
for t ∈ IT−t0

takes the initial values

ψ̃`(0) = ψ1(t0), Ã`(0) = A1(t0) and ∂tÃ`(0) = ∂tA
1(t0)

and satisfies (3) on IT−t0 . Thus, Lemma 17 gives the existence of some time
T∗ ∈ (0, T − t0] such that

(
ψ̃1, Ã1

)
and

(
ψ̃2, Ã2

)
agree on [0, T∗], whereby

the pairs (ψ1,A1) and (ψ2,A2) agree on [t0, t0 + T∗]. This contradicts the
definition of t0, whereby we can conclude that (ψ1,A1) and (ψ2,A2) agree on
all of the interval IT . �
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Abstract. We study two mathematical descriptions of a charged par-
ticle interacting with it’s self-generated electromagnetic field. The first
model is the one-body Maxwell-Schrödinger system where the interaction
of the spin with the magnetic field is neglected and the second model is
the related one-body Maxwell-Pauli system where the spin-field interac-
tion is included. We prove that there exist travelling wave solutions to
both of these systems provided that the speed |v| of the wave is not too
large. Moreover, we observe that the energies of these solutions behave
like mv2

2 for small velocities of the particle, which may be interpreted as
saying that the effective mass of the particle is the same as it’s bare mass.

Mathematics Subject Classification 2010: 35Q51, 35Q40, 35Q61

1 Introduction

Consider a single spin-1
2 particle of mass m > 0 and charge Q ∈ R \ {0} inter-

acting with it’s self-generated electromagnetic field – the Maxwell-Schrödinger
system in Coulomb gauge says1 that

�At =
4π

c
PJS[ψt,At],

i~∂tψt =
( 1

2m
∇2

S,At
+ EEM[At, ∂tAt]

)
ψt,

divAt = 0.

(1)

1We use Gaussian units.
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where ~ > 0 is the reduced Planck constant, ψt(t) : R3 → C2 is the quantum
mechanical wave function describing the particle, At(t) : R3 → R3 is the
classical magnetic vector potential induced by the particle, with c > 0 denoting
the speed of light we let ∇S,At = i~∇ + Q

cAt denote the covariant derivative
with respect to At, � = 1

c2
∂2
t −∆ is the d’Alembertian, P = 1−∇div∆−1 is

the Helmholtz projection onto the solenoidal subspace of divergence free vector
fields, EEM[At, ∂tAt](t) is the energy

EEM[At, ∂tAt](t) =
1

8π

∫

R3

(
|∇ ×At(t)(y)|2 +

∣∣∣1
c
∂tAt(t)(y)

∣∣∣
2)

dy

associated with the electromagnetic field and JS[ψt,At](t) : R3 → R3 denotes
the probability current density given by

JS[ψt,At](t)(x) = −Q
m

Re
〈
ψt(t)(x),∇S,Atψt(t)(x)

〉
.

Here, 〈·, ·〉 is the usual inner product in C2 and | · | denotes the norm induced
by this inner product. We will also study an alternative (more accurate)
description of the physical system’s time evolution that takes the interactions
between the magnetic field and the quantum mechanical spin of the particle
into account. By letting σ denote the 3-vector with the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)

as components we can write the Maxwell-Pauli system in Coulomb gauge as

�At =
4π

c
PJP[ψt,At],

i~∂tψt =
( 1

2m
∇2

P,At
+ EEM[At, ∂tAt]

)
ψt,

divAt = 0.

(2)

Here, ∇P,At is short for σ · ∇S,At whose square by definition is the Pauli
operator – the Lichnerowicz formula says that this operator can alternatively
be expressed as

∇2
P,At

= ∇2
S,At
− ~Q

c
σ · ∇ ×At. (3)

The probability current density JP[ψt,At](t) : R3 → R3 is given by

JP[ψt,At](t)(x) = −Q
m

Re
〈
ψt(t)(x),σ∇P,Atψt(t)(x)

〉
.
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In the literature, the Maxwell-Schrödinger system often refers to the fol-
lowing equations in ψt(t) : R3 → C2, At(t) : R3 → R3 and ϕt(t) : R3 → R

−∆ϕt −
1

c
∂tdivAt = 4πQ|ψt|2,

�At +∇
(1

c
∂tϕt + divAt

)
=

4π

c
JS[ψt,At],

i~∂tψt =
( 1

2m
∇2

S,At
+Qϕt

)
ψt.

(4)

This system approximates the quantum field equations for an electrodynamical
nonrelativistic many-body system. When expressed in Coulomb gauge it reads

�At =
4π

c
PJS[ψt,At],

i~∂tψt =
( 1

2m
∇2

S,At
+Q2

(
|x|−1 ∗ |ψt|2

))
ψt,

divAt = 0,

(5)

which only deviates from (1) by the absence of the term EEM[At, ∂tAt]ψt

(making no difference for the existence question studied in this paper) and by
the presence of Q2

(
|x|−1 ∗ |ψt|2

)
ψt on the right hand side of the Schrödinger

equation. The nonlinear term Q2
(
|x|−1 ∗ |ψt|2

)
ψt should be perceived as a

mean field originating from the Coulomb interactions between the particles
present in the many-body system – when the system only consists of a sin-
gle particle there simply are no other particles to interact with and so (1)
is a better decription than (5) of the one-body system. In [6], Coclite and
Georgiev observe that there do not exist any nontrivial solutions in the form
(ψt,At, ϕt)(t)(x) = (e−iωtψ(x),0, ϕ(x)) to the system (4) expressed in Lorenz
gauge – they also prove that such solutions do exist when one adds an attrac-
tive potential of Coulomb type to the Schrödinger equation. The analogous
problem in a bounded space region has been studied by Benci and Fortunato
[3]. Several authors have studied the existence of solitary solutions to other
systems than (1) and (2). For example Esteban, Georgiev and Séré [7] prove
the existence of stationary solutions to the Maxwell-Dirac system in Lorenz
gauge – in the same paper they also treat the Klein-Gordon-Dirac system. The
existence of travelling wave solutions to a certain nonlinear equation describ-
ing the dynamics of pseudo-relativistic boson stars in the mean field limit has
been proven by Fröhlich, Jonsson and Lenzmann [8] and also the existence
of solitary water waves has been studied extensively – let us mention the re-
cent paper by Buffoni, Groves, Sun and Wahlén [5]. Finally, we mention that
the well-posedness of the initial value problem associated with (4) expressed
in different gauges has been subject to a lot of research – see [2, 9, 15, 16]
and references therein. In [18], the unique existence of a local solution to the
many-body Maxwell-Schrödinger initial value problem expressed in Coulomb
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gauge is proven. For j ∈ {S,P} the aim of the present paper is to show that

�At =
4π

c
PJj [ψt,At],

i~∂tψt =
( 1

2m
∇2
j,At

+ EEM[At, ∂tAt]
)
ψt,

divAt = 0

(6)

admits solutions (ψt,At) in the form

ψt(t)(x) = e−iωtψ(x− vt),
At(t)(x) = A(x− vt), (7)

with ω ∈ R, v ∈ R3 and both of the functions ψ and A defined on R3. As time
evolves the shapes of these functions do not change – the initial states ψ and A
are simply translated in space with constant velocity v (and in case ω 6= 0 the
phase of the wave function oscillates too). For this reason solutions in the form
(7) are often called travelling waves. To formulate our main theorem ensuring

Figure 1: A travelling wave solution models the situation where a particle
travels in space at a constant velocity v and it’s self-generated electromagnetic
field travels along with it.

the existence of travelling wave solutions to (6) we let H1 denote the usual
Sobolev space of order 1 and introduce the space D1 of locally integrable
functions A on R3 that have distributional first order derivatives in L2 and
vanish at infinity, in the sense that the (Lebesgue-)measure of the set

{x ∈ R3 | |A(x)| > t}

is finite for all t > 0. The elements in the space D1 satisfy the Sobolev
inequality ‖A‖L6 ≤ KS‖∇A‖L2 and by equipping D1 with the inner product
(A,B) 7→ (∇A,∇B)L2 we obtain a Hilbert space in which C∞0 is a dense
subspace. Also, for λ > 0 we define the quantities

Θλ
j,± =

{
±c if j = S,

−8πK3
SQ

2λ
~ ±

√
(8π)2K6

SQ
4λ2

~2 + c2 if j = P
.

Our main theorem then asserts the following.
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Theorem 1. For all j ∈ {S,P}, λ > 0 and v ∈ R3 with 0 < |v| < Θλ
j,+ there

exist ω ∈ R and functions (ψ,A) ∈ H1 ×D1 satisfying ‖ψ‖2L2 = λ such that
(ψt,At)(t)(x) =

(
e−iωtψ(x− vt),A(x− vt)

)
solves (6).

Remark 2. In quantum mechanics the quantity ‖ψ‖2L2 is interpreted as the
total probability of the particle being located somewhere in space. Therefore
λ = 1 is the physically interesting case.

We do not prove any uniqueness results concerning the travelling wave so-
lutions, but in Theorem 18 we show that the energies of the solutions pro-
duced by the proof of Theorem 1 behave like mv2

2 λ for small |v|, meaning
that the effective mass of the particle equals it’s bare mass. Here, the en-
ergy of a (sufficiently nice) solution (ψt,At) to (6) refers to the inner product(
ψt,Hj

(
At,

∂tAt
4πc2

)
ψt

)
L2 , where

Hj

(
A,−PE

4π

)
=

1

2m
∇2
j,A + EEM[A,−c2PE]. (8)

is the quantum mechanical (electromagnetic potential-dependent) Hamiltonian
of the system. In [18, 17], we have motivated the expression for (8) in the case
j = S. For any given normalized state ψ the Hamilton equations associated
with the classical Hamiltonian

(
A,−PE

4π

)
7→
(
ψ,Hj

(
A,−PE

4π

)
ψ
)
L2 defined on

the symplectic manifold PH1 × PL2 say that

1

c2
∂tAt(t) = −PEt(t) and − ∂tPEt(t) = ∆At(t) +

4π

c
PJj [ψ,At(t)]. (9)

In light of (9)’s first equation it is natural to represent the energy of a given so-
lution (ψt,At) by the average of Hj evaluated at the point

(
At,

∂tAt
4πc2

)
. Observe

also that the operator acting on the right hand side of (6)’s second equation is
exactly Hj

(
At,

∂tAt
4πc2

)
and that replacing ψ in (9) by the time-dependent wave

function ψt produces the first equation in (6). Note that the energy of any
solution (ψt,At) to (6) with ‖ψt‖L2 = 1 is a conserved quantity – in particular,
the energy of a travelling wave solution as in theorem 1 is given by

Ej(v, ψ,A) =
1

2m
‖∇j,Aψ‖2L2 +

1

8π

∫

R3

(
|∇ ×A|2 +

∣∣∣
(v
c
· ∇
)
A
∣∣∣
2)

dxλ.

(10)

The paper is organized as follows: In Section 2 we show that Theorem 1
can be proven by minimizing a certain functional. This functional is shown
to be bounded from below under suitable conditions in Section 3, whereby it
is meaningful to consider the functional’s infimum under those conditions. In
Section 4 we investigate the properties of the infimum and in Section 5 the
infimum is shown to be attained by proving a variant of the concentration-
compactness principle of Lions [12, 13]. Finally, in Section 6 we consider the
behavior of the physical system’s energy for small velocities of the particle.
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2 Formulation as a Variational Problem

As a natural step towards proving Theorem 1 we plug the travelling wave
expressions (7) into (6), resulting in the system of equations

( 1

c2
(v · ∇)2 −∆

)
A =

4π

c
PJj [ψ,A],

−~(θ + iv · ∇)ψ =
1

2m
∇2
j,Aψ,

divA = 0

(11)

on R3, where we have set θ = 1
~EEM[A, (v · ∇)A] − ω. The existence of a

solution to (11) can be proven by finding a minimum point – or any other type
of stationary point for that matter – of the functional

E v
j (ψ,A) =

1

2m

∥∥∇j,Aψ
∥∥2

L2 +
1

8π

(
‖∇ ⊗A‖2L2 −

∥∥∥
(v
c
· ∇
)
A
∥∥∥

2

L2

)

+
(
ψ, i~v · ∇ψ

)
L2 , (12)

on the set

Sλ =
{

(ψ,A) ∈ H1 ×D1
∣∣ ‖ψ‖2L2 = λ,divA = 0

}
,

where ∇⊗A denotes a 9-vector with the first derivatives ∂xjAk as components
(j, k ∈ {1, 2, 3}). To prove this we will use the boundedness of P as an operator
on Lp for all p ∈ (1,∞), which follows from the Mikhlin multiplier theorem
[14] since any function p 7→ pβ

p2 with |β| = 2 is contained in C∞(R3 \{0}) with
∣∣∣∂α
(pβ
p2

)∣∣∣ ≤ Cα,β

|p||α|

for any multi index α and all p ∈ R3 \ {0}.
Lemma 3. Let v ∈ R3, λ > 0 and j ∈ {S,P} be given. Then any minimizer
(ψ,A) of E v

j on Sλ solves (11) for some θ ∈ R.

Proof. Suppose that E v
j has a minimum point (ψ,A) on Sλ. Consider also

some function Ψ ∈ C∞0 as well as an arbitrary real valued C∞0 -vector field
a. Then Pa is divergence free and contained in D1 (in fact, in all positive
exponent Sobolev spaces), so the functions fΨ and ga given on an open interval
containing 0 by

fΨ : ε 7→ E v
j

(
(ψ + εΨ)

√
λ

‖ψ + εΨ‖L2

,A

)
respectively ga : ε 7→ E v

j (ψ,A+ εPa)
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have local minima at ε = 0. Now, set θ = −‖∇j,Aψ‖
2
L2+2m(ψ,i~v·∇ψ)L2

2m~λ and ob-
serve that the mappings fΨ and ga are both differentiable at 0 with derivatives

dfΨ

dε
(0) = 2Re

〈 1

2m
∇2
j,Aψ + ~θψ + i~v · ∇ψ,Ψ

〉
D ′

(13)

and

dga
dε

(0)

=

∫

R3

(
−1

c
Pa · Jj [ψ,A] +

1

4π

3∑

k=1

∂kPa · ∂kA−
1

4πc2
(v · ∇)Pa · (v · ∇)A

)
dx

=
〈
−1

c
PJj [ψ,A]− 1

4π
∆A+

1

4πc2
(v · ∇)2A,a

〉
D ′
. (14)

To obtain the expression for
dgaj
dε (0) we have here used the fact that

∫

R3

(1− P )b · PK dx =

∫

R3

Pb · (1− P )K dx = 0

for any choice of fields b ∈ C∞0 and K ∈ Lp with p ∈ (1, 2]. Let us argue that
the second of these identities holds true. For this purpose choose a sequence
(Kn)n∈N of C∞0 -fields converging in Lp to (1− P )K. Then by the Hausdorff-
Young inequality the sequence

(
K̂n

)
n∈N will converge in L

p
p−1 to the Fourier

transform F
[
(1− P )K

]
of (1− P )K and so

(2π)3

∫

R3

Pb(x) · (1− P )K(x) dx

= lim
n→∞

(∫

R3

b̂(−p) · K̂n(p) dp−
∫

R3

(
p · b̂(−p)

)(
p · K̂n(p)

)

p2
dp

)

=

∫

R3

b̂(−p) ·F
[
(1− P )K

]
(p) dp−

∫

R3

(
p · b̂(−p)

)(
p ·F

[
(1− P )K

]
(p)
)

p2
dp

= 0,

where we use the Parseval-Plancherel formula and that b̂ ∈ S . Thus, we have
established the identities (13) and (14) – since the functions fΨ, fiΨ and ga
have local minima at ε = 0 we are in position to conclude that (ψ,A) solves
(11). �

We will finish this section by making two important observations concerning
the functional E v

j . First of all, it is sometimes useful to rewrite the expression
(12) by using the Hermiticity of the Pauli matrices and the general matrix
identity

(σ · F )(σ ·G) = (F ·G)id2×2 + iσ · (F ×G) (15)
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to obtain

E v
j (ψ,A) =

1

2m

∥∥∇j,A+mc
Q

vψ
∥∥2

L2 −
Q

c

(
ψ,v ·Aψ

)
L2 −

mv2

2
λ

+
1

8π

(
‖∇ ⊗A‖2L2 −

∥∥∥
(v
c
· ∇
)
A
∥∥∥

2

L2

)
(16)

for all (ψ,A) ∈ Sλ. Secondly, any element O in the rotation group SO(3)
gives rise to the identity

E v
j (ψ,A) = E Ov

j

(
UO ◦ ψ ◦O−1, O ◦A ◦O−1

)
for (ψ,A) ∈ Sλ,

where UO is one of the two elements in the preimage of {O} under the double
cover SU(2)→ SO(3) defined by mapping U ∈ SU(2) to the matrix represen-
tation with respect to the basis (σ1, σ2, σ3) of the endomorphismM 7→ UMU∗

on the space of Hermitean, traceless matrices. Hence, we can without loss of
generality think of v as pointing, say, in the x1-direction.

3 Boundedness from below

At this point we have defined our main goal, namely to minimize the functional
E v
j on the set Sλ. In order for this task to even make sense E v

j of course has to
be bounded from below on Sλ. In special cases – e.g. for v = 0 – the question
about boundedness from below is trivially answered affirmatively, but it turns
out that E v

j is not in general bounded from below on Sλ.

Proposition 4. For all j ∈ {S,P}, λ > 0 and v ∈ R3 with sufficiently large
length the functional E v

j is unbounded from below on Sλ. On the other hand
for any j ∈ {S,P}, λ > 0 and v ∈ R3 with 0 < |v| < Θλ

j,+ the functional E v
j

is bounded from below on Sλ.

Proof. Let j ∈ {S,P}, λ > 0 and v ∈ R3\{0} be given. Choose arbitrary real
functions (ψ0,A0) ∈ Sλ satisfying ‖(v ·∇)A0‖L2 > 0 and (ψ0,v ·A0ψ0)L2 > 0;
if we think of v as pointing in the x1-direction we can set A0 = (∂2Ξ,−∂1Ξ, 0)
for some standard cut-off function Ξ ∈ C∞0 and let the components of ψ0 be
some other cut-off function with appropriate L2-norm which is supported on{
x ∈ R3

∣∣ ∂2Ξ(x) > 0
}
. We will show that if |v| is so large that the quantity

c2‖∇ ⊗A0‖2L2 − v2
∥∥( v
|v| · ∇

)
A0

∥∥2

L2 is negative then E v
j can not be bounded

from below on Sλ. For this purpose define

ψv
R(x) = R−

3
2 ei

mv
~ ·xψ0

(x
R

)
and Aa

R(x) =
ac

Q
A0

(x
R

)
(17)
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for a,R > 0. Then (ψv
R,A

a
R) ∈ Sλ and by simply calculating each of the terms

on the right hand side of (16) we get

E v
j (ψv

R,A
a
R) =

~2

2mR2
‖∇ψ0‖2L2 +

a2

2m
‖A0ψ0‖2L2 − a

(
ψ0,v ·A0ψ0

)
L2 −

mv2

2
λ

+
Ra2

8πQ2

(
c2‖∇ ⊗A0‖2L2 − v2

∥∥∥
( v
|v| · ∇

)
A0

∥∥∥
2

L2

)

−
~a1{P}(j)

2mR

∫

R3

〈ψ0(x),σ · ∇ ×A0(x)ψ0(x)〉dx;

(18)

Here, we explicitly use that ψ0 and A0 are chosen to be real. From (18) we
clearly see that when |v| is as described above then for any a > 0 we have

lim
R→∞

E v
j (ψv

R,A
a
R) = −∞

and consequently E v
j is not bounded from below on Sλ in this case.

We now let j ∈ {S,P}, λ > 0 as well as v ∈ R3 with 0 < |v| < Θλ
j,+ be

arbitrary and consider as a first step the case where some given (ψ,A) ∈ Sλ
satisfies

‖∇ ⊗A‖L2 < 16πKSc|Q|λ
3
4
|v|

c2 − v2
‖ψ‖

1
2

L6 . (19)

The Lichnerowicz formula (3) and approximation of ψ in H1 by C∞0 -functions
make it possible to write the quantity ‖∇j,A+mc

Q
vψ‖2L2 appearing on the right

hand side of (16) as ‖∇S,A+mc
Q

vψ‖2L2 − 1{P}(j)
~Q
c

∫
R3

〈
ψ,σ · ∇ ×Aψ

〉
dx. By

using the diamagnetic inequality, the Hölder inequality, the Sobolev inequality
and (19) we therefore get

‖∇j,A+mc
Q

vψ‖2L2 ≥ ~2‖∇|ψ|‖2L2 − 1{P}(j)
~|Q|λ 1

4

c
‖∇ ⊗A‖L2‖ψ‖

3
2

L6

≥ ~2

K2
S

(Θλ
j,+ − |v|)(|v| −Θλ

j,−)

c2 − v2
‖ψ‖2L6

In addition, we apply Young’s inequality for products
(
ab ≤ ap

p + bp
′

p′ where
1
p + 1

p′ = 1
)
and Sobolev’s inequality to the term −Q

c (ψ,v ·Aψ)L2 and obtain

E v
j (ψ,A) ≥ ~2

4mK2
S

(Θλ
j,+ − |v|)(|v| −Θλ

j,−)

c2 − v2
‖ψ‖2L6 +

1

8π

(
1− v

2

c2

)
‖∇ ⊗A‖2L2

−3K2
S |Qv|

4
3m

1
3λ

4~
2
3 c

4
3

(
c2 − v2

(Θλ
j,+ − |v|)(|v| −Θλ

j,−)

) 1
3

‖∇ ⊗A‖
4
3

L2 −
mv2

2
λ.

(20)
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Another application of Young’s inequality for products reveals that

E v
j (ψ,A) ≥ ~2

4mK2
S

(Θλ
j,+ − |v|)(|v| −Θλ

j,−)

c2 − v2
‖ψ‖2L6 +

1

16π

(
1− v

2

c2

)
‖∇ ⊗A‖2L2

−(4π)2K6
SQ

4mλ3

~2

v4

(c2 − v2)(Θλ
j,+ − |v|)(|v| −Θλ

j,−)
− mv2

2
λ

(21)

so for pairs (ψ,A) ∈ Sλ satisfying (19) there is indeed a lower bound on the
possible values of E v

j (ψ,A). Consider now the scenario where the given pair
(ψ,A) ∈ Sλ satisfies the inequality

‖∇ ⊗A‖L2 ≥ 16πKSc|Q|λ
3
4
|v|

c2 − v2
‖ψ‖

1
2

L6 . (22)

In this case we simply use the nonnegativity of the kinetic energy term in (16)
to get

E v
j (ψ,A)≥−KS |Q||v|λ

3
4

c
‖∇ ⊗A‖L2‖ψ‖

1
2

L6−
mv2

2
λ+

1

8π

(
1− v

2

c2

)
‖∇ ⊗A‖2L2

≥ 1

16π

(
1− v

2

c2

)
‖∇ ⊗A‖2L2 −

mv2

2
λ (23)

where the assumption (22) is applied at the final step. Consequently, the
values of E v

j (ψ,A) are bounded below by −mv2

2 for pairs (ψ,A) ∈ Sλ satisfying
(22). �

Remark 5. For j ∈ {S,P}, λ > 0, v ∈ R3 with 0 < |v| < Θλ
j,+ as well as

(ψ,A) ∈ Sλ we can bound the quantities ‖ψ‖L6 and ‖∇ ⊗A‖L2 from above
in terms of E v

j (ψ,A). More precisely, (21) and (23) give that

‖∇ ⊗A‖2L2 ≤
28π3K6

Sc
2Q4mλ3

~2

v4

(c2 − v2)2(Θλ
j,+ − |v|)(|v| −Θλ

j,−)

+
16πc2

c2 − v2

(
E v
j (ψ,A) +

mv2

2
λ
)
. (24)

Moreover, if (ψ,A) satisfies (19) we obtain from (21) that

‖ψ‖2L6 ≤
4mK2

S

~2

c2 − v2

(Θλ
j,+ − |v|)(|v| −Θλ

j,−)

(
E v
j (ψ,A) +

mv2

2
λ
)

+
26π2K8

SQ
4m2λ3

~4

v4

(Θλ
j,+ − |v|)2(|v| −Θλ

j,−)2
(25)

and if (ψ,A) on the other hand satisfies (22) then by (23) we have

‖ψ‖L6 ≤ c2 − v2

16πK2
SQ

2λ
3
2v2

(
E v
j (ψ,A) +

mv2

2
λ
)
. (26)
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By Proposition 4 it is impossible for the functional E v
j to attain a minimum

on Sλ for sufficiently large values of |v|. Of course this does not rule out the
existence of solutions to (11), but the nonexistence of such solutions for large
|v| would in fact be perfectly compatible with our understanding from the
theory of special relativity that a particle with rest mass can not travel faster
than light. We therefore guess that the value Θλ

S,+ is optimal in the sense that
E v

S can not be shown to be bounded from below on Sλ for |v| > c. On the
other hand, the value of Θλ

P,+ is not optimal.

4 Properties of the infimum

For any given v ∈ R3 consider the set

Λv
j =

{
λ > 0 | |v| < Θλ

j,+

}
.

We have just seen that given v ∈ R3 with 0 < |v| < c and λ ∈ Λv
j it makes

Figure 2: The set Λv
j is an open interval since λ 7→ Θλ

j,+ is decreasing and
continuous. In fact, Λv

S = (0,∞) regardless of the choice of v with |v| < c.

sense to define

Iλj = inf
{
E v
j (ψ,A)

∣∣ (ψ,A) ∈ Sλ
}

and we aim to show that this infimum is attained. Imagine that the functional
E v
j indeed does take the value Iλj in some point. It follows from the following

simple observation that for such a minimizing point (ψ,A) ∈ Sλ neither the
wave function ψ nor the magnetic vector potential A can be identically equal
to zero.

Lemma 6. Let j ∈ {S,P} and v ∈ R3 with 0 < |v| < c be given. Then

Iλj < −
mv2

2
λ

for any λ ∈ Λv
j .
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Proof. Choose the pair (ψ0,A0) ∈ Sλ as in the beginning of the proof of
Proposition 4 and define (ψv

R,A
a
R) ∈ Sλ for R, a > 0 as prescribed in (17).

According to (18) we can let R take the specific value

Ra =

(
2~Q
a

√
π

m
‖∇ψ0‖L2

) 2
3 (
c2‖∇ ⊗A0‖2L2 − ‖(v · ∇)A0‖2L2

)− 1
3 ,

and get

E v
j (ψv

Ra ,A
a
Ra) =

(
~2

16π2Q4m

) 1
3 (
c2‖∇ ⊗A0‖2L2 − ‖(v · ∇)A0‖2L2

) 2
3 ‖∇ψ0‖

2
3

L2a
4
3

−
(

1{P}(j)~(c2‖∇⊗A0‖2
L2−‖(v·∇)A0‖2

L2 )

25m2Q2π‖∇ψ0‖2
L2

) 1
3

∫

R3

〈ψ0,σ · ∇ ×A0ψ0〉dxa
5
3

+ 1
2m‖A0ψ0‖2L2a

2 − (ψ0,v ·A0ψ0)L2a− mv2

2 λ.

Thus, E v
j (ψv

Ra
,Aa

Ra
) can be extended to a continuously differentiable function

of a on the entire real line – moreover, the extension takes the value −mv2

2 λ
and has a negative derivative at a = 0. For sufficiently small a > 0 the values
of E v

j (ψv
Ra
,Aa

Ra
) must therefore be strictly less than −mv2

2 λ. �

In the following proposition we investigate Iλj ’s dependence on λ.

Lemma 7. Let j ∈ {S,P} and v ∈ R3 with 0 < |v| < c be given. Then

Isνj < sIνj (27)

for all ν ∈ Λv
j and s > 1 with sν ∈ Λv

j . Moreover,

Iλj < Iµj + Iλ−µj (28)

for µ, λ ∈ Λv
j with µ < λ.

Proof. Let ν ∈ Λv
j and s > 1 with sν ∈ Λv

j be given and choose (by means of
Lemma 6) some constant k ∈

(
0,−mv2

2 ν − Iνj
)
. Given a positive ε satisfying

ε < min



−

mv2

2
ν − Iνj − k,

s− 1

s

k
3
2~
√(

c2 − v2
)(

Θν
j,+ − |v|

)(
|v| −Θν

j,−
)

3
3
2πK3

SQ
2
√
mν

3
2v2





we can then choose a pair (ψ,A) ∈ Sν such that

E v
j (ψ,A) ≤ Iνj + ε, (29)

which together with (20), (23) and the assumption ε < −mv2

2 ν − Iνj − k gives

‖∇ ⊗A‖2L2 >
8k

3
2~c2

3
3
2K3

SQ
2
√
mν

3
2v2

((
Θν
j,+ − |v|

)(
|v| −Θν

j,−
)

c2 − v2

) 1
2

. (30)
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Then (29) and (30) imply that

Isνj ≤ E v
j (
√
sψ,A)

= sE v
j (ψ,A) +

1− s
8π

(
‖∇ ⊗A‖2L2 −

∥∥∥
(v
c
· ∇
)
A
∥∥∥

2

L2

)
(31)

< sIνj + sε+ (1− s)
k

3
2~
√(

c2 − v2
)(

Θν
j,+ − |v|

)(
|v| −Θν

j,−
)

3
3
2πK3

SQ
2
√
mν

3
2v2

< sIνj ,

proving that (27) indeed does hold true.
This enables us to prove (28), so let µ, λ ∈ Λv

j with µ < λ be given. If
µ > λ− µ is satisfied we can use (27) twice

(
with (s, ν) =

(
λ
µ , µ

)
respectively

(s, ν) =
( µ
λ−µ , λ− µ

))
and obtain

Iλj = I
λ
µ
µ

j <
λ

µ
Iµj = Iµj +

λ− µ
µ

I
µ

λ−µ (λ−µ)

j < Iµj + Iλ−µj

and if on the other hand µ ≤ λ− µ we can likewise apply (27) to get

Iλj = I
λ

λ−µ (λ−µ)

j <
λ

λ− µI
λ−µ
j =

µ

λ− µI
λ−µ
µ
µ

j + Iλ−µj ≤ Iµj + Iλ−µj ,

so (28) also holds true. �

Remark 8. The strict subadditivity expressed in (28) implies that ν 7→ Iνj is
strictly decreasing on Λv

j since the term Iλ−µj is negative by Lemma 6.

As a consequence of Remark 8 the function ν 7→ Iνj has limits from the left as
well as from the right in all points of Λv

j . In fact, we can show the following
result.

Lemma 9. Given j ∈ {S,P} and v ∈ R3 with 0 < |v| < c the mapping ν 7→ Iνj
is continuous on Λv

j .

Proof. Let us begin by proving that ν 7→ Iνj is left continuous: Given ν ∈ Λv
j ,

ε > 0 and 0 < s < 1 we choose (ψ,A) ∈ Sν such that E v
j (ψ,A) ≤ Iνj + ε and

proceed just as in (31) to obtain

Isνj ≤ sIνj + sε+
1− s
8π

(
‖∇ ⊗A‖2L2 −

∥∥∥
(v
c
· ∇
)
A
∥∥∥

2

L2

)
.

Letting s → 1− therefore gives lims→1− I
sν
j ≤ Iνj + ε and the fact that this

holds true for any ε > 0 implies that lims→1− I
sν
j ≤ Iνj . Since ν 7→ Iνj is

decreasing the opposite inequality also holds true, whereby

lim
s→1−

Isνj = Iνj .
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To prove right continuity of ν 7→ Iνj we let ν ∈ Λv
j , ε > 0 as well as

s > 1 with sν ∈ Λv
j be arbitrary and choose a pair (ψ,A) ∈ Ssν such that

E v
j (ψ,A) ≤ Isνj + ε. Then (24) and Lemma 6 give that

Isνj + ε ≥ sE v
j

( ψ√
s
,A
)

+
1− s
8π

(
‖∇ ⊗A‖2L2 −

∥∥∥
(v
c
· ∇
)
A
∥∥∥

2

L2

)

≥ sIνj +
2c2(1− s)
c2 − v2

(
ε+

(4π)2K6
SQ

4m(sν)3v4

~2(c2 − v2)(Θsν
j,+ − |v|)(|v| −Θsν

j,−)

)
,

whereby lims→1+ I
sν
j +ε ≥ Iνj . By letting ε→ 0+ we thus obtain the inequality

lims→1+ I
sν
j ≥ Iνj and the opposite inequality follows immediately from (27),

which leaves us in position to conclude that the identity

lim
s→1+

Isνj = Iνj

holds true. �

5 Existence of a Minimizer

We will now consider a strategy that is frequently used for approaching min-
imization problems such as ours – it is often called the direct method in the
calculus of variations and was introduced by Zaremba and Hilbert around the
year 1900. Here, one first considers a minimizing sequence for the functional
at hand.

Definition 10. Let j ∈ {S,P}, v ∈ R3 with 0 < |v| < c and λ ∈ Λv
j be given.

By a minimizing sequence for E v
j we mean a sequence of points (ψn,An) ∈ Sλ

such that
(
E v
j (ψn,An)

)
n∈N converges to Iλj in R.

The philosophy of the direct method in the calculus of variations is to first
argue that a given minimizing sequence must have a subsequence converging
weakly to some point (ψ,A) and then as a second step one hopes to show lower
semicontinuity properties of E v

j ensuring that the identity E v
j (ψ,A) = Iλj holds

true. However, our specific functional E v
j is translation invariant – meaning

that any translation τy : x 7→ (x + y) in space gives rise to the identity
E v
j (ψ◦τy,A◦τy) = E v

j (ψ,A). Thus, even if E v
j indeed does have a minimizer,

there will exist lots of minimizing sequences whose ψ-part converges weakly
in L2 to the zero function and the possible limit of (any subsequence of) such
a minimizing sequence can clearly not serve as a minimizer for E v

j . In other
words, we have to break the translation invariance in some way and to do this
we will prove a variant of the concentration-compactness principle by Pierre-
Louis Lions (see [12, 13]). We can not just apply the result of Lions to our
problem since this result concerns a sequence of H1- (or L1-)functions ψn
whereas we are dealing with a sequence of Sλ-pairs (ψn,An). Let us begin by

78



proving the following simple – but important – lemma that provides us with
some control over any given minimizing sequence for E v

j .

Lemma 11. Let j ∈ {S,P}, v ∈ R3 with 0 < |v| < c as well as λ ∈ Λv
j be

given and consider a minimizing sequence
(
(ψn,An)

)
n∈N ⊂ Sλ for E v

j . Then
(ψn)n∈N is bounded in H1 and (An)n∈N is bounded in D1.

Proof. The sequence
(
E v
j (ψn,An)

)
n∈N is bounded (because it is convergent)

and therefore it follows from the estimates (24), (25) and (26) that (‖ψn‖L6)n∈N
and (‖∇⊗An‖L2)n∈N are also bounded. Moreover, the sequence (‖ψn‖L2)n∈N is
constant so all that remains to be shown is the boundedness of (‖∇ψn‖L2)n∈N.
For this we expand the kinetic energy in the expression (12) for E v

j (ψn,An),
use the nonnegativity of Q2

2mc2
‖Anψn‖2L2 + 1

8π

(
‖∇ ⊗An‖2L2 −

∥∥(v
c · ∇

)
An

∥∥2)

and apply Hölder’s as well as Sobolev’s inequalities to get

~2

2m
‖∇ψn‖2L2 ≤ |E v

j (ψn,An)|+ KS~|Q|λ
1
4

mc
‖∇ψn‖L2‖∇ ⊗An‖L2‖ψn‖

1
2

L6

+~λ
1
2 |v|‖∇ψn‖L2 + 1{P}(j)

~|Q|λ 1
4

2mc
‖∇ ⊗An‖L2‖ψn‖

3
2

L6 . (32)

Here, we can use Young’s inequality for products to absorb the ‖∇ψn‖L2 ’s on
the right hand side of (32) into the left hand side of (32) and obtain an upper
bound on ‖∇ψn‖2L2 . �

Remark 12. From now on we will consider some fixed minimizing sequence(
(ψn,An)

)
n∈N for E v

j . It follows from Lemma 11 that all of the terms appear-
ing in the expressions (12) and (16) for E v

j (ψn,An) define bounded sequences
in R. We will let C denote a constant that majorizes each of the sequences
(‖ψn‖H1)n∈N, (‖∇ ⊗An‖L2)n∈N and (‖∇j,An+mc

Q
vψn‖L2)n∈N.

5.1 Breaking the Translation Invariance

We hope to find a sequence (yn)n∈N of points in R3 such that the direct method
in the calculus of variations can be applied to the translated minimizing se-
quence

(
(ψn ◦ τyn ,An ◦ τyn)

)
n∈N for E v

j . As an essential tool in our search for
such a sequence we introduce for each n ∈ N the nondecreasing concentration
function Cn : (0,∞)→ (0, λ] given by

Cn(r) = sup
y∈R3

∫

B(y,r)
|ψn(x)|2 dx for r > 0. (33)

Remember that we think of the ψ-variable as being a quantum particle’s wave
function and so the physical interpretation of a large value of Cn(r) (compared
to λ) is that the quantum particle is likely to be localized in some ball ⊂ R3

with radius r. In this sense Cn expresses how concentrated the wave function is
(see Figure 3). We summarize the most important properties of the functions
Cn in the following lemma.
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Figure 3: If Cn increases quickly to the value λ then it means that the corre-
sponding wave function ψn is very concentrated around some point y in space,
i.e. the quantum particle is with high probability positioned in close vicinity
of y.

Lemma 13. Given λ > 0 let ψn ∈ H1 satisfy ‖ψn‖2L2 = λ and ‖∇ψn‖L2 ≤ C
for all n ∈ N and define the function Cn : (0,∞)→ (0, λ] by (33). Then Cn is
nondecreasing with the limits limr→0+ Cn(r) = 0 as well as limr→∞ Cn(r) = λ
holding true and by passing to a subsequence (Cn)n∈N converges pointwise to
some nondecreasing mapping C : (0,∞)→ [0, λ] with limr→0+ C (r) = 0.

Proof. For an arbitrary n ∈ N the mapping Cn : (0,∞)→ (0, λ] is obviously
nondecreasing and the identity limr→0+ Cn(r) = 0 holds true since

∫

B(y,r)
|ψn(x)|2 dx ≤

(4

3
πr3K3

SC
3
) 2

3 (34)

for all (r,y) ∈ (0,∞)×R3 by Hölder’s and Sobolev’s inequalities. Moreover, we
have limr→∞ Cn(r) = λ since Lebesgue’s theorem on dominated convergence
gives that the difference

λ− Cn(r) ≤ λ−
∫

B(0,r)
|ψn(x)|2 dx =

∫

R3\B(0,r)
|ψn(x)|2 dx

can be made arbitrarily small by choosing r sufficiently large. Helly’s selection
principle [10, Theorem 10.5] ensures the existence of a subsequence of (Cn)n∈N
converging pointwise to some function C . The limit function C inherits the
nondecreasingness from the Cn’s and (34) gives that limr→0+ C (r) = 0. �

To simplify notation we will also denote the subsequence described in Lemma
13 by (Cn)n∈N. It is apparent that C and the Cn-functions have almost iden-
tical properties. But even though the lemma depicts limr→∞ Cn(r) as being
equal to λ it does not at all mention the value of the limit

µ := lim
r→∞

C (r), (35)
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(a) µ = 0 (b) 0 < µ < λ (c) µ = λ

Figure 4: Examples of possible situations where µ = 0, 0 < µ < λ respectively
µ = λ. Let us consider the behaviour of |ψn|2 in each of these cases as n
increases: In the (a)-case the wave function spreads out and diminishes, in the
case (b) it splits up into lumps that move further and further away from each
other whereas |ψn|2 approaches a specific probability distribution in a way that
conserves the total probability mass of the particle in the (c)-situation.

which is obviously well defined and contained in the interval [0, λ]. To deter-
mine the value of µ we first turn to our physical intuition: Remember that
the points (ψn,An) form a minimizing sequence and we hope to show weak
convergence (in some sense) of these points to a pair (ψ,A) minimizing E v

j .
For a moment let us focus on the ψ-variable: It can be fruitful to think of our
quantum particle as being prepared in some initial state and as time evolves
we receive snapshots (corresponding to the sequence elements ψ1, ψ2, ψ3, . . .)
of the system’s intermediate states that steadily approach the limiting state
ψ, which has the least possible energy. Of the three scenarios illustrated on
Figure 4 the possibility µ = λ seems to be the most reasonable from a physical
point of view and as we will see later the identity µ = λ does indeed hold true.
We will basically prove this by ruling out the two other alternatives shown on
Figure 4.

We begin by proving that it is impossible for µ to be equal to 0. This will
be done by first establishing the following lower bound on E v

j (ψn,An).

E v
j (ψn,An) ≥ −Q2 v2

c2 − v2

∫

R3

∫

R3

|ψn(x)|2|ψn(y)|2
|x− y| dx dy − mv2

2
λ. (36)

This means that we can control E v
j (ψn,An) by information on the wave func-

tions ψn alone – we remember from Figure 4(a) that the case µ = 0 would
morally correspond to the eventual disappearance of these wave functions. So
in that case we expect the first term on the right hand side of (36) to disappear
in the large n limit. Our strategy will therefore be to show that the identity
µ = 0 would violate the inequality in Lemma 6 stating that Iλj is strictly less
than −mv2

2 .

Lemma 14. Let j ∈ {S,P}, v ∈ R3 with 0 < |v| < c as well as λ ∈ Λv
j be

given and consider a minimizing sequence
(
(ψn,An)

)
n∈N ⊂ Sλ for E v

j . Define
for n ∈ N the concentration function Cn by (33) and let C be the pointwise
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limit of (a subsequence of ) (Cn)n∈N. Then µ = limr→∞ C (r) is different from
0.

Proof. The estimate (36) is actually quite rough because in the first step
towards obtaining it we simply dispense with the kinetic energy term on the
right hand side of (16), resulting in

E v
j (ψn,An) ≥ Gn(An)− mv2

2
λ, (37)

where Gn : D1 → R is defined by

Gn(D) =
1

8π

(
1− v

2

c2

)
‖∇ ⊗D‖2L2 −Q

v

c
·
∫

R3

D(x)|ψn(x)|2 dx.

This functional is bounded from below since applying the Sobolev and Hölder
inequalities as well as optimizing in each of the variables

∥∥D1
∥∥
L6 ,
∥∥D2

∥∥
L6 and∥∥D3

∥∥
L6 gives that for any D ∈ D1

Gn(D) ≥ 1

16π

(
1− v

2

c2

)
‖∇ ⊗D‖2L2 − 4πK3

SQ
2Cλ

3
2

v2

c2 − v2
(38)

so it seems straightforward to meet our intention of obtaining a lower bound on
E v
j (ψn,An) only depending on ψn – we can simply estimate the term Gn(An)

appearing on the right hand side of (37) by infD∈D1 Gn(D). Therefore it
will be worthwhile for us to spend some time studying the properties of this
infimum.

We first show the existence of a minimizer Dn for Gn. This will be done
by the direct method in the calculus of variations so consider a minimizing se-
quence for Gn, i.e. a sequence

(
Dk
n

)
k∈N ofD1-functions such that

(
Gn
(
Dk
n

))
k∈N

converges to infD∈D1 Gn(D). Then (38) together with the Sobolev inequality
gives that the sequence

(
Dk
n

)
k∈N is bounded in the reflexive Banach space

L6 and in addition that
(
∇ ⊗ Dk

n

)
k∈N is bounded in the Hilbert space L2.

Thereby the Banach-Alaoglu theorem guarantees the existence of a subse-
quence of

(
Dk
n

)
k∈N converging weakly in L6 to some Dn and by passing to yet

another subsequence,
(
∇⊗Dk

n

)
k∈N converges weakly in L2 to some D′n. But

then we have Dk
n −−−→

k→∞
Dn and ∇⊗Dk

n −−−→
k→∞

D′n in the distribution sense,

whereby we must have ∇⊗Dn = D′n. In other words, we have (after passing
to a subsequence)

Dk
n −−−⇀

k→∞
Dn in L6 and ∇⊗Dk

n −−−⇀
k→∞

∇⊗Dn in L2. (39)

That |ψn|2 ∈ L
6
5 implies together with the first convergence in (39) that

limk→∞ v ·
∫
R3D

k
n(x)|ψn(x)|2 dx is equal to v ·

∫
R3Dn(x)|ψn(x)|2 dx and the

second convergence in (39) gives together with the weak lower semicontinuity
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[11, Theorem 2.11] of ‖ · ‖L2 that the quantity lim infk→∞
∥∥∇ ⊗Dk

n

∥∥2

L2 is at
least

∥∥∇⊗Dn

∥∥2

L2 . Thereby

inf
D∈D1

Gn(D) =
1

8π

(
1− v

2

c2

)
lim inf
k→∞

∥∥∇⊗Dk
n

∥∥2

L2 −Q
v

c
·
∫

R3

Dn(x)|ψn(x)|2 dx

≥ Gn(Dn)

and so we must have infD∈D1 Gn(D) = Gn(Dn). Then the functional derivative
δGn
δD must take the value 0 in the point Dn, which implies that Dn satisfies the
Poisson equation

−∆Dn = 4πQ
cv

c2 − v2
|ψn|2 (40)

in the distribution sense. The function on the right hand side is contained in
L1 ∩ L3 and has gradient in L1 ∩ L 5

4 so according to Lemma 19 and Remark
20 we must have

Dn(x) = Q
cv

c2 − v2

∫

R3

|ψn(y)|2
|x− y| dy

for almost every x ∈ R3. Consequently, we can continue the estimate (37) and
get (36).

We now realize that for almost all y ∈ R3 and all choices of positive
numbers r and R satisfying r < R we have
∫

R3

|ψn(x)|2
|x− y| dx ≤ ‖ψn‖2L6

∥∥∥∥1B(0,r)
1

| · |

∥∥∥∥
L

3
2

+
1

r
‖1B(y,R)ψn‖2L2 +

1

R
‖ψn‖2L2

≤
(8π

3

) 2
3
K2
SC

2r +
1

r
Cn(R) +

1

R
λ;

this is seen by splitting the integral on the left hand side into contributions
from B(y, r), B(y, R) \ B(y, r) and R3 \ B(y, R). Combining this with (36)
gives

E v
j (ψn,An) ≥ −Q2 v2

c2 − v2
λ

((8π

3

) 2
3
K2
SC

2r +
1

r
Cn(R) +

1

R
λ

)
− mv2

2
λ.

so sending n to infinity results in

Iλj ≥ −Q2 v2

c2 − v2
λ

((8π

3

) 2
3
K2
SC

2r +
1

r
C (R) +

1

R
λ

)
− mv2

2
λ.

Under the assumption that µ = 0 we can therefore let R→∞ and get

Iλj ≥ −Q2 v2

c2 − v2
λ
(8π

3

) 2
3
K2
SC

2r − mv2

2
λ,

which sets us in position to take the limit r → 0+ and obtain the inequality
Iλj ≥ −mv2

2 λ, contradicting Lemma 6. �
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We now turn to proving that µ /∈ (0, λ), which will again be done using the
method of proof by contradiction. Remember from Figure 4(b) that if µ ∈
(0, λ) we expect the wave function to split up into lumps that move further
and further away from each other as n increases. It seems reasonable that
these lumps will eventually be so far apart that the interaction between them
is negligible, whereby we can practically consider them as independent systems.
Given a term (ψn,An) of the minimizing sequence our strategy will therefore
be to construct a pair (ψi

n,A
i
n) which is ‘almost’ an element of Sµ and a pair

(ψo
n,A

o
n) ‘almost’ belonging to Sλ−µ such that E v

j (ψi
n,A

i
n) + E v

j (ψo
n,A

o
n) is

at most E v
j (ψn,An) (up to a small error). A limiting argument will then

give a conclusion contradicting (28). The splitting will of course be done by
using cut-off functions, so let us first introduce some mappings χi and χo (‘i’
for ‘inner’ and ‘o’ for ‘outer’) with the following properties: The supports of
χi ∈ C∞0 (R3) and χo ∈ C∞(R3) are disjoint and

χi(x)





= 1 for |x| ≤ 1,

∈ [0, 1] for 1 < |x| < 2,

= 0 for |x| ≥ 2,

and χo(x)





= 0 for |x| ≤ 1,

∈ [0, 1] for 1 < |x| < 2,

= 1 for |x| ≥ 2.

Figure 5: Possible choices for χi and χo.

Lemma 15. Consider j ∈ {S,P}, v ∈ R3 with 0 < |v| < c and λ ∈ Λv
j . Let

also
(
(ψn,An)

)
n∈N ⊂ Sλ be a minimizing sequence for E v

j , define Cn by (33)
for n ∈ N and consider the pointwise limit C of (a subsequence of ) (Cn)n∈N.
Then µ = limr→∞ C (r) is not contained in (0, λ).

Proof. Suppose that µ ∈ (0, λ). On the basis of ψn we want to construct a
function ψi

n whose L2-norm squared is close to µ, so to which region of space
should we localize ψn? The answer is of course encoded in the concentration
function of ψn, so more precisely: Given

0 < ε < min





2534C6K6
SQ

4

m3c4v2
, 4mv2µ, 4mv2(λ− µ),

2
11
4 3C

3
2K

3
2
S |Qv|

c
(λ− µ)

3
4





(41)
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we choose (by the definition of µ) a number

R > max

{
2

3
2~
√

λ

εm
‖∇χ`‖L∞ ,

16C~λ
1
2

εm
‖∇χ`‖L∞

∣∣∣∣∣ ` ∈ {i, o}
}

∨ 2234K2
SC

2Q2λ2v2

ε2
√
πc2

(
max

{∥∥∇χi
∥∥
L12 ,

∥∥∇χo
∥∥
L3

})2 (42)

such that µ− ε4/3c4/3

211/334/3C2K2
S |Qv|4/3 < C (R). As a first step we will consider n’s

so large that

µ− ε
4
3 c

4
3

2
11
3 3

4
3C2K2

S |Qv|
4
3

< Cn(R) < µ+
ε

4
3 c

4
3

2
11
3 3

4
3C2K2

S |Qv|
4
3

. (43)

Here, the upper bound on Cn(R) is strictly speaking redundant, since we will
later obtain a better upper bound by considering even larger values of n – but
already at this point it is advantageous to think of Cn(R) as being close to µ.
We should not just perceive Cn(R) as being an abstract supremum – it is in
fact the probability mass of the particle in the vicinity of some point in space.
Because ψn ∈ L2 the continuous function y 7→

∫
B(y,R) |ψn(x)|2 dx will namely

approach zero as |y| → ∞, whereby we can choose a point yn ∈ R3 such that

Cn(R) =

∫

B(yn,R)
|ψn(x)|2 dx. (44)

So in the ball B(yn, R) we have found a ψn-lump whose probability mass is
essentially µ. The other lumps are expected to move away as n increases, so for
large n there should be a large area around B(yn, R) where ψn has essentially
no probability mass. As a consequence we can construct the function ψo

n by
cutting away the values of ψn on a ball centered at yn with quite a large radius.
It turns out that we can in fact choose this radius on the form 2knR, where
the sequence (kn)n∈N of integers satisfies

(I) kn →∞ for n→∞,

(II) Cn(2knR) ≤ µ+ ε4/3c4/3

211/334/3C2K2
S |Qv|4/3 for all n ∈ N.

One can namely easily verify that the sequence of numbers

kn =

log2

sup C−1
n

((
0, µ+ ε4/3c4/3

211/334/3C2K2
S |Qv|4/3

])

2R



has the desired properties, where b·c denotes the floor function and log2 denotes
the binary logarithm2. Thus, we will construct ψi

n and ψo
n by multiplication

2The floor function is x 7→ max{m ∈ Z | m ≤ x} and the binary logarithm is x 7→ log(x)
log(2)

,
where log denotes the natural logarithm.
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with the cut-off functions given by

χi,ψ
n (x) = χi

(x− yn
R

)
respectively χo,ψ

n (x) = χo
( x− yn

2kn−1R

)

for x ∈ R3. Let us emphasize that we use the superscript ψ because these
functions will be used to cut the wave function ψ into the two pieces ψi

n and
ψo
n – later we will define corresponding cut-off functions χi,A

n and χo,A
n to cut

A into two pieces Ai
n and Ao

n.
Let us now do this splitting of the An-field into Ai

n- and Ao
n-fields. We will

aim to make the cuts in the big gap between B(yn, 2R) and R3\B(yn, 2
kn−1R),

where the functions ψi
n and ψo

n are guaranteed to vanish. So we decompose
space into the disjoint union R3 = B(yn, R) ∪

(⋃∞
m=1Amn

)
, where

Amn =
{
x ∈ R3

∣∣ 2m−1R ≤ |x− yn| < 2mR
}

for m ∈ N (see Figure 6).

Figure 6: The two-dimensional analogues of the spherical shells A0
n,A1

n, . . ..

By point (I) from above we have kn ≥ 4 for n sufficiently large and for such n’s
there must exist a numbermn in the set {2, . . . , kn−2} such that the inequality∥∥1Amnn An

∥∥6

L6 ≤ (kn − 3)−1
∥∥1A2

n∪···∪Akn−2
n

An

∥∥6

L6 holds true, whereby we have
for n sufficiently large that
∥∥1Amnn An

∥∥
L6

< min
{ 1

4‖∇χ`‖L3

(√
C2 +

επc2

c2 + v2
− C

)
,

1

2‖∇χ`‖L3

√
επc2

c2 + v2

∣∣∣` ∈ {i, o}
}
.

(45)

In this way we can control An on Amnn , so we will define Ai
n and Ao

n using the
cut-off functions

χi,A
n (x) = χi

( x− yn
2mn−1R

)
and χo,A

n (x) = χo
( x− yn

2mn−1R

)
.

More precisely, we will for ` ∈ {i, o} introduce the mapping u`n : R3 → R
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Figure 7: The distance to yn is measured along the first axis.

given by

u`n(x) =
1

4π

∫

R3

1

|x− y|div
(
χ`,An An

)
(y) dy for almost every x ∈ R3

and define ψi
n, ψo

n, Ai
n and Ao

n by

ψ`n = e
iQ
~c u

`
nχ`,ψn ψn and A`

n = χ`,An An +∇u`n.

We observe that div
(
χ`,An An

)
= ∇χ`,An ·An is contained inH1 and has compact

support so from Lemma 19 we obtain that ψ`n ∈ H1, A`
n ∈ D1 with divA`

n = 0
and

∇u`n(x) = − 1

4π

∫

R3

x− y
|x− y|3 div

(
χ`,An An

)
(y) dy for almost every x ∈ R3.

(46)

Moreover, ψi
n and ψo

n satisfy

max

{∣∣∣∣µ−
∫

R3

|ψi
n(x)|2 dx

∣∣∣∣ ,
∣∣∣∣λ− µ−

∫

R3

|ψo
n(x)|2 dx

∣∣∣∣
}
<

ε
4
3 c

4
3

2
11
3 3

4
3C2K2

S |Qv|
4
3

.

(47)

which follows from (43), (II) as well as the estimates

Cn(R) ≤
∫

R3

|ψi
n(x)|2 dx ≤

∫

B(yn,2R)
|ψn(x)|2 dx ≤ Cn(2R) ≤ Cn(2knR)

and

Cn(R) ≤ λ−
∫

R3

|ψo
n(x)|2 dx ≤

∫

B(yn,2knR)
|ψn(x)|2 dx ≤ Cn(2knR).

In the motivational remarks made above Lemma 15 we mentioned the desire
to construct ψ`n and A`

n in such a way that they ‘almost’ satisfy
(
ψi
n,A

i
n

)
∈ Sµ

and
(
ψo
n,A

o
n

)
∈ Sλ−µ. The precise meaning of this informal statement is that

the pairs
(
ψ`n,A

`
n

)
∈ H1 ×D1 have the properties divA`

n = 0 and (47).
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The next step in our argument is to show that

E v
j (ψn,An) ≥ E v

j (ψi
n,A

i
n) + E v

j (ψo
n,A

o
n)− ε. (48)

We begin by estimating the 1
2m‖∇j,An+mc

Q
vψn‖2L2-term on the right hand side

of (16). For this we observe that χ`,An χ`,ψn = χ`,ψn , whereby we can rewrite

e−
iQ
~c u

`
n∇j,A`

n+mc
Q

vψ
`
n = ∇j,0χ`,ψn ψn + χ`,ψn ∇j,An+mc

Q
vψn,

which allows us to apply (15), (42) and Remark 12 to obtain

‖∇j,A`
n+mc

Q
vψ

`
n‖2L2

≤ ~2λ

R2
‖∇χ`‖2L∞ + ‖χ`,ψn ∇j,An+mc

Q
vψn‖2L2 +

2C~λ
1
2

R
‖∇χ`‖L∞

≤ ‖χ`,ψn ∇j,An+mc
Q

vψn‖2L2 +
εm

4
.

and consequently
1

2m
‖∇j,An+mc

Q
vψn‖2L2 ≥

1

2m

∑

`∈{i,o}
‖∇j,A`

n+mc
Q

vψ
`
n‖2L2 −

ε

4
. (49)

To treat the term −Q
c (ψn,v ·Anψn)L2 appearing on the right hand side of (16)

we establish two auxiliary estimates: The first estimate
∣∣∣
∫

R3

v ·An

(
|ψn|2 − |ψi

n|2 − |ψo
n|2
)

dx
∣∣∣

≤ |v|‖An‖L6

∥∥∥∥
√

1− (χi,ψ
n )2 − (χo,ψ

n )2ψn

∥∥∥∥
1
2

L6

(∫

R3

(
|ψn|2 − |ψi

n|2 − |ψo
n|2
)

dx
) 3

4

≤ εc

12|Q|
follows from (47), Hölder’s and Sobolev’s inequalities. By choosing n large
enough we previously made sure that kn ≥ 4 and 2 ≤ mn ≤ kn − 2 whereby
(46), the Hölder inequality and (42) yield the second auxiliary estimate
∣∣∣
∫

R3

v · ∇u`n|ψ`n|2 dx
∣∣∣

≤ |v|
4π

∫

R3

∫

Amnn

1

|x− y|2 |∇χ
`,A
n (y)||An(y)| dy |ψ`n(x)|2 dx

≤





|v|
4π

∥∥∥∥1B(0,(2+2mn )R)
1

| · |

∥∥∥∥
2

L
8
3

‖∇χi,A
n ‖L12‖An‖L6‖ψi

n‖2L2 for ` = i

|v|
4π

∥∥∥∥1R3\B(0,(2kn−1−2mn )R)

1

| · |

∥∥∥∥
2

L4

‖∇χo,A
n ‖L3‖An‖L6‖ψo

n‖2L2 for ` = o

≤ 3|v|KSCλ

2π
1
4R

1
2

max
{
‖∇χi‖L12 , ‖∇χo‖L3

}

<
εc

12|Q| .
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By combining the two previous estimates with the identity χ`,An χ`,ψn = χ`,ψn we
obtain

|(ψn,v ·Anψn)L2 − (ψi
n,v ·Ai

nψ
i
n)L2 − (ψo

n,v ·Ao
nψ

o
n)L2 |

=
∣∣∣
∫

R3

v ·An

(
|ψn|2 − |ψi

n|2 − |ψo
n|2
)

dx−
∑

`∈{i,o}

∫

R3

v · ∇u`n|ψ`n|2 dx
∣∣∣

<
εc

4|Q| . (50)

Finally, we estimate the 1
8π

(
‖∇⊗An‖2L2 −

∥∥(v
c · ∇

)
An

∥∥2

L2

)
-term on the right

hand side of (16) by noting that

‖∇ ⊗An‖2L2 −
∥∥∥
(v
c
· ∇
)
An

∥∥∥
2

L2

≥
∑

`∈{i,o}

(
‖χ`,An ∇⊗An‖2L2 −

∥∥∥χ`,An
(v
c
· ∇
)
An

∥∥∥
2

L2

)

≥
∑

`∈{i,o}

(
‖∇ ⊗A`

n‖2L2 −
∥∥∥
(v
c
· ∇
)
A`
n

∥∥∥
2

L2

− 2
(

1 +
v2

c2

)
‖∇ ⊗A`

n‖L2

(
‖∇χ`,An ⊗An‖L2 + ‖∇ ⊗∇u`n‖L2

)

− 2
(

1 +
v2

c2

)
‖∇χ`,An ⊗An‖L2‖∇ ⊗∇u`n‖L2

)
,

(51)

where we at the second step use the identities

χ`,An ∇⊗An = ∇⊗A`
n − (∇χ`,An ⊗An +∇⊗∇u`n), (52)

χ`,An

(v
c
· ∇
)
An =

(v
c
· ∇
)
A`
n −

((v
c
· ∇
)
χ`,An An +

(v
c
· ∇
)
∇u`n

)

and the nonnegativity of
(
1− v2

c2

)
(‖∇χ`,An ⊗An‖2 + ‖∇⊗∇u`n‖2L2). As can be

seen by approximating ∇u`n in D1 by C∞0 -functions, applying the Plancherel
theorem and using the general vector identity |F |2|G|2 = |F ·G|2 + |F ×G|2
we have ‖∇ ⊗ ∇u`n‖2L2 = ‖div∇u`n‖2L2 + ‖∇ × ∇u`n‖2L2 = ‖∇χ`,An · An‖2L2 .
Consequently, ‖∇ ⊗ ∇u`n‖L2 and ‖∇χ`,An · An‖L2 have the common upper
bound ‖∇χ`‖L3

∥∥1Amnn An

∥∥
L6 that is small by (45). Moreover, ‖∇ ⊗A`

n‖L2 is
according to (52) bounded from above by C + 2‖∇χ`‖L3

∥∥1Amnn An

∥∥
L6 and so

we can use (45) to continue (51) and get

1

8π

(
‖∇ ⊗An‖2L2 −

∥∥∥
(v
c
· ∇
)
An

∥∥∥
2

L2

)

≥
∑

`∈{i,o}

1

8π

(
‖∇ ⊗A`

n‖2L2 −
∥∥∥
(v
c
· ∇
)
A`
n

∥∥∥
2

L2

)
− ε

4
. (53)

89



Now, (48) is an immediate consequence of (49), (50), (53) and the inequality

max

{∣∣∣∣µ−
∫

R3

|ψi
n(x)|2 dx

∣∣∣∣ ,
∣∣∣∣λ− µ−

∫

R3

|ψo
n(x)|2 dx

∣∣∣∣
}
<

ε

4mv2
(54)

that follows from (41) and (47).
Finally, Remark 8 and (54) give

E v
j (ψn,An) ≥ I‖ψ

i
n‖2L2

j + I
‖ψo
n‖2L2

j − ε ≥ Iµ+ ε
4mv2

j + I
λ−µ+ ε

4mv2

j − ε,

so letting n diverge to infinity produces the estimate

Iλj ≥ I
µ+ ε

4mv2

j + I
λ−µ+ ε

4mv2

j − ε.

By Lemma 9 we can therefore take the limit ε→ 0+ and obtain the inequality
Iλj ≥ Iµj + Iλ−µj contradicting (28). �

Combining the Lemmas 14 and 15 allows us to reach the conclusion that
limr→∞ C (r) is equal to λ. This is exactly what we need to break the trans-
lation invariance of our problem.

Proposition 16. Given j ∈ {S,P}, v ∈ R3 with 0 < |v| < c and λ ∈ Λv
j

consider a minimizing sequence
(
(ψn,An)

)
n∈N ⊂ Sλ for E v

j . Then there exists
a sequence (yn)n∈N of points in R3 with the following property: For every ε > 0
there exists an R > 0 such that for all n ∈ N

∥∥1B(yn,R)ψn
∥∥2

L2 ≥ λ− ε.

This property is sometimes expressed by saying that the maps x 7→ |ψn(x+yn)|2
are tight.

Proof. Given ν > 0 we will first argue that it is possible to find an rν > 0
such that

Cn(rν) > λ− ν for all n ∈ N. (55)

By the identity limr→∞ C (r) = λ we can namely consider a ρ > 0 such that
C (ρ) > λ− ν and then we can choose an N ∈ N such that Cn(ρ) > λ− ν for
n > N , simply because limn→∞ Cn(ρ) = C (ρ). Finally, we can use the fact
that limr→∞ Cn(r) = λ for each of the finitely many n’s in the set {1, . . . , N}
to find a ρn > 0 satisfying Cn(ρn) > λ−ν. Then because Cn is a nondecreasing
function the inequality (55) holds true with rν = max{ρ, ρ1, . . . , ρN}.

Now, the definition of Cn(rν) guarantees the existence of a sequence (yνn)n∈N
of points in R3 satisfying

∥∥1B(yνn,r
ν)ψn

∥∥2

L2 > λ− ν for all n ∈ N.
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Figure 8: By setting R = r
λ
2 + 2rε we get that B(yεn, r

ε) ⊂ B(yn, R) because
the balls B(yn, r

λ
2 ) and B(yεn, r

ε) are guaranteed not to be disjoint.

Our aim will be to prove that by setting yn = y
λ
2
n for n ∈ N we obtain a

sequence (yn)n∈N with properties as stated in the proposition. To achieve this
goal consider an arbitrary ε in the interval

(
0, λ2

)
. Then for every n ∈ N both of

the integrals
∫
B(yn,rλ/2) |ψn(x)|2 dx and

∫
B(yεn,r

ε) |ψn(x)|2 dx must be strictly
larger than λ

2 , which together with the fact that
∫
R3 |ψn(x)|2 dx = λ gives that

the balls B(yn, r
λ
2 ) and B(yεn, r

ε) have a nonempty intersection. This enables
us to define R = r

λ
2 + 2rε and thereby obtain
∥∥1B(yn,R)ψn

∥∥2

L2 ≥
∥∥1B(yεn,r

ε)ψn
∥∥2

L2 > λ− ε,

for any n ∈ N, which is the desired result. �

5.2 The Lower Semicontinuity Argument

We began by considering an arbitrary minimizing sequence
(
(ψn,An)

)
n∈N for

E v
j . As we will see below our efforts in the previous section enable us to apply

the direct method in the calculus of variations to the sequence of translated
pairs

(ψ′n,A
′
n) = (ψn ◦ τyn ,An ◦ τyn),

where (yn)n∈N denotes the sequence whose existence is guaranteed in Propo-
sition 16. Due to E v

j ’s translation invariance
(
(ψ′n,A

′
n)
)
n∈N will namely be a

minimizing sequence for E v
j and by Proposition 16 we have

∀ε > 0 ∃R > 0∀n ∈ N :
∥∥1B(0,R)ψ

′
n

∥∥2

L2 =
∥∥1B(yn,R)ψn

∥∥2

L2 ≥ λ− ε. (56)

This enables us to show the existence of a minimizer for E v
j on Sλ.

Theorem 17. For every choice of j ∈ {S,P}, v ∈ R3 with 0 < |v| < c and
λ ∈ Λv

j there exists a pair (ψ,A) ∈ Sλ such that E v
j (ψ,A) = Iλj .
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Proof. According to Lemma 11 (together with the Sobolev inequality) the
sequences (ψ′n)n∈N, (A′n)n∈N and (∇ ⊗ A′n)n∈N are bounded in the reflexive
Banach spaces H1, L6 respectively L2. Thus, the Banach-Alaoglu theorem
gives the existence of functions ψ ∈ H1 and A ∈ L6 with square integrable
derivatives such that (passing to subsequences)

ψ′n −−−⇀n→∞
ψ in H1, A′n −−−⇀n→∞

A in L6 and ∂`A
′
n −−−⇀n→∞

∂`A in L2 (57)

for ` ∈ {1, 2, 3}. Observe that we can (after passing to yet another subse-
quence) assume that

ψ′n −−−→n→∞
ψ and A′n −−−→n→∞

A pointwise almost everywhere in R3 (58)

as a consequence of (57) and the result [11, Corollary 8.7] about weak conver-
gence implying a.e. convergence of a subsequence.

The pair (ψ,A) is our candidate for a minimizer, so we begin by showing
that (ψ,A) ∈ Sλ. In this context the only nontrivial condition to check is
that the identity ‖ψ‖2L2 = λ holds true. The inequality ‖ψ‖2L2 ≤ λ follows
immediately from (57) and weak lower semicontinuity of the norm ‖ · ‖L2 (as
expressed in [11, Theorem 2.11]). To prove the opposite inequality we let ε > 0
be given and use (56) to choose an R > 0 such that

∥∥1B(0,R)ψ
′
n

∥∥2

L2 ≥ λ− ε for all n ∈ N. (59)

By (57) and the Rellich-Kondrashov theorem [11, Theorem 8.6] the left hand
side of (59) converges to

∥∥1B(0,R)ψ
∥∥2

L2 as n tends to infinity. Hence we have
‖ψ‖2L2 ≥ λ− ε for any ε > 0 and consequently ‖ψ‖2L2 ≥ λ. Besides giving the
desired conclusion that (ψ,A) ∈ Sλ this also enables us to deduce that

ψ′n −−−→n→∞
ψ in L2, (60)

simply because the recently gained knowledge that ‖ψ‖2L2 = ‖ψ′n‖2L2 = λ gives
together with (57) that

‖ψ − ψ′n‖2L2 = ‖ψ‖2L2 + ‖ψ′n‖2L2 − 2Re
(
ψ,ψ′n

)
L2 −−−→

n→∞
0.

Finally, we observe that by (58) the sequence ((A′n)`ψ′n)n∈N converges point-
wise almost everywhere to A`ψ and by the Hölder inequality it is bounded by
K

3
2
SC

3
2λ

1
4 in L2 for each ` ∈ {1, 2, 3}. We now use that a bounded sequence

of functions converging pointwise a.e. to some L2-limit also converges weakly
in L2 to the same limit – to prove the weak convergence it suffices namely to
test against C∞0 -functions by [19, Theorem V.1.3] and thus the result follows
from Egorov’s theorem [19, Section 0.3]. This yields

(A′n)`ψ′n −−−⇀n→∞
A`ψ in L2,
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which together with (57) implies that

∇j,A′nψ′n −−−⇀n→∞
∇j,Aψ in L2. (61)

The remaining task to overcome is proving that Iλj = E v
j (ψ,A) – or rather

that Iλj ≥ E v
j (ψ,A) since the opposite inequality is trivially true. By super-

additivity of lim inf and (12) we get

Iλj ≥
1

2m
lim inf
n→∞

‖∇j,A′nψ′n‖2L2 + ~ lim inf
n→∞

(ψ′n, iv · ∇ψ′n)L2

+
1

8π
lim inf
n→∞

(
‖∇ ⊗A′n‖2L2 −

∥∥∥
(v
c
· ∇
)
A′n
∥∥∥

2

L2

)
, (62)

so we will have to estimate each of the terms on the right hand side of (62).
That

lim inf
n→∞

‖∇j,A′nψ′n‖2L2 ≥ ‖∇j,Aψ‖2L2 (63)

follows immediately from (61) and the weak lower semicontinuity of ‖ · ‖L2 .
Using (60), (57) and Lemma 11 gives

∣∣(ψ′n, iv · ∇ψ′n)L2 − (ψ, iv · ∇ψ)L2

∣∣

≤ |v|C‖ψ′n − ψ‖L2 +
3∑

`=1

|v`||(ψ, ∂`ψ′n − ∂`ψ)L2 |

−−−→
n→∞

0

and therefore

lim inf
n→∞

(ψ′n, iv · ∇ψ′n)L2 = (ψ, iv · ∇ψ)L2 . (64)

To treat the last term on the right hand side of (62) we imagine that v points
in the direction of the first axis, whereby the functional

H : D1 3 B 7→
√
‖∇ ⊗B‖2

L2 −
∥∥∥
(v
c
· ∇
)
B
∥∥∥

2

L2
∈ R

simply reduces to

H (B) =

∥∥∥∥∥∥∥




√
1− v2

c2
∂1

∂2

∂3


⊗B

∥∥∥∥∥∥∥
L2

.

It is immediately apparent that H is a convex functional (by the triangle
inequality) and H is continuous D1 → R since H (B) ≤ ‖∇ ⊗B‖L2 for all
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B ∈ D1. Therefore we get from Mazur’s theorem [4, Corollary 3.9] that H is
weakly lower semicontinuous, which together with (57) implies that

lim inf
n→∞

(
‖∇ ⊗A′n‖2L2 −

∥∥∥
(v
c
· ∇
)
A′n
∥∥∥

2

L2

)
≥ ‖∇⊗A‖2L2 −

∥∥∥
(v
c
· ∇
)
A
∥∥∥

2

L2
,

(65)

since weak convergence of a sequence (fn)n∈N to some function f in the Hilbert
space D1 by the Riesz representation theorem is characterized by the limit(
∇fn,∇g

)
L2 −−−→

n→∞
(
∇f,∇g

)
L2 holding true for every choice g ∈ D1. Finally,

combining (62), (63), (64) and (65) results in the inequality Iλj ≥ E v
j (ψ,A).�

Combining Theorem 17 with Lemma 3 now gives the main result.

6 Behavior of the Energy for small velocities of the Particle

In this final section we estimate the energy of our travelling wave solutions.
The next Theorem 18 shows that to leading order for small |v| the energy
behaves like mv2

2 λ. We interpret this as saying that there is no change in
effective mass due to the electromagnetic field.

Theorem 18. Let j ∈ {S,P} and λ > 0 be given. Then there exist θj , κj > 0
(only depending on j, λ, ~, c,Q and m) such that

∣∣∣Ej(v, ψ,A)− mv2

2
λ
∣∣∣ ≤ κj |v|3

for any v ∈ R3 with 0 < |v| < θj and any minimizer (ψ,A) of E v
j on Sλ.

Proof. Let j ∈ {S,P}, λ > 0 as well as v ∈ R3 with 0 < |v| < Θλ
j,+ be given

and consider an arbitrary minimizer (ψ,A) of E v
j on Sλ. Then according to

Lemma 6 and (26) the pair (ψ,A) must satisfy (19). Thereby (24), (25) and
Lemma 6 give that

‖ψ‖2L6 ≤
26π2K8

SQ
4m2λ3

~4

v4

(Θλ
j,+ − |v|)2(|v| −Θλ

j,−)2

and

‖∇ ⊗A‖2L2 ≤
28π3K6

Sc
2Q4mλ3

~2

v4

(c2 − v2)2(Θλ
j,+ − |v|)(|v| −Θλ

j,−)
.

Using these estimates together with (16), Lemma 6, Hölder’s and Sobolev’s
inequalities results in the inequality

‖∇j,A+mc
Q

vψ‖2L2 ≤
26π2K6

SQ
4m2λ3

~2

v4
(
c2
(
1 +
√

2
)

+ v2
(
1−
√

2
))

(c2 − v2)2(Θλ
j,+ − |v|)(|v| −Θλ

j,−)
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and so the desired result follows immediately from the identities

ES(v, ψ,A) =
1

2m
‖∇S,A+mc

Q
vψ‖2L2 +

mv2

2
λ− (ψ,v · ∇S,A+mc

Q
vψ)L2

+
1

8π

∫

R3

(∣∣∣
(v
c
· ∇
)
A
∣∣∣
2

+ |∇ ×A|2
)

dxλ

and

EP(v, ψ,A) =
1

2m
‖∇P,A+mc

Q
vψ‖2L2 +

mv2

2
λ− Re(σ · vψ,∇P,A+mc

Q
vψ)L2

+
1

8π

∫

R3

(∣∣∣
(v
c
· ∇
)
A
∣∣∣
2

+ |∇ ×A|2
)

dxλ. �

A The Poisson Equation

Given some function f the corresponding Poisson equation reads

−∆u = f. (66)

Let us briefly recall the contents of [11, Theorem 6.21] and [11, Remark
6.21(2)]: If

f ∈ L1
loc(R3) and

∫

R3

|f(y)|
1 + |y| dy <∞ (67)

then defining u : R3 → C by

u(x) =
1

4π

∫

R3

1

|x− y|f(y) dy (68)

for almost every x ∈ R3 results in a locally integrable solution of (66). More-
over, the distributional gradient ∇u can be identified with the function given
by

∇u(x) = − 1

4π

∫

R3

x− y
|x− y|3 f(y) dy (69)

for almost every x ∈ R3. We will need the following result.

Lemma 19. If f ∈ L1 ∩ L3 and ∇f ∈ L1 ∩ L 5
4 then u defined by (68) is a

D1-function solving (66) in the distribution sense. Likewise, if f ∈ H1 has
compact support then u solves (66) and ∇u ∈ D1.

Proof. Verifying the condition (67) in each of the two scenarios outlined in
the statement of the lemma is an easy task, which is left for the reader – in this
context it is useful to note that y 7→ 1

1+|y| is e.g. an L6-function. Thus, the
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function defined almost everywhere by (68) is indeed a solution of the Poisson
equation in those two cases.

Suppose that f ∈ L1 ∩ L3 and ∇f ∈ L1 ∩ L 5
4 . Then we first show that u

vanishes at infinity: For this let N denote the null set on which the identities
(68) and (69) do not hold true. Then for each sequence (xk)k∈N of elements
in R3 \ N with |xk| −−−→

k→∞
∞ we have

|u(xk)| ≤
1

4π

∥∥1B(xk,1)f
∥∥
L3

∥∥∥∥
1B(0,1)

| · |

∥∥∥∥
L

3
2

+
1

4π

∥∥∥∥
(1R3\B(xk,1)f)(·)
|xk − · |

∥∥∥∥
L1

−−−→
k→∞

0,

where we split the integral involved in the expression for u(xk) into a contri-
bution from B(xk, 1) as well as a contribution from R3 \ B(xk, 1) and treat
these by means of the Hölder inequality and Lebesgue’s dominated conver-
gence theorem. In order to prove that ∇u is square integrable we use the
Hölder inequality and Tonelli’s theorem to get
∫

R3

|∇u(x)|2 dx

≤ 1

8π2

∫

R3

(∫

B(x,1)

|f(y)|
|x− y|2 dy

)2
dx+

1

8π2

∫

R3

(∫

R3\B(x,1)

|f(y)|
|x− y|2 dy

)2
dx

≤ 1

8π2

∫

R3

∫

B(x,1)

|f(y)|
|x− y| 52

dy dx

∥∥∥∥
1B(0,1)

| · |

∥∥∥∥
3
2

L
5
2

‖f‖
1
10

L1‖f‖
9
10

L3

+
1

8π2

∫

R3

∫

R3\B(x,1)

|f(y)|
|x− y| 72

dy dx

∥∥∥∥
1R3\B(0,1)

| · |

∥∥∥∥
1
2

L
7
2

‖f‖
3
14

L3‖f‖
11
14

L1

≤ 1

8π2

∥∥∥∥
1B(0,1)

| · |

∥∥∥∥
4

L
5
2

‖f‖
11
10

L1‖f‖
9
10

L3 +
1

8π2

∥∥∥∥
1R3\B(0,1)

| · |

∥∥∥∥
4

L
7
2

‖f‖
3
14

L3‖f‖
25
14

L1

and so we conclude that u ∈ D1.
Assume now that f ∈ H1 has support in some ball B(0, rf ). Then for all

x ∈ R3 \ N with |x| > rf we have

|∇u(x)| ≤ 1

4π(|x| − rf )2

(4

3
πr3

f

) 1
2 ‖f‖L2

whereby we deduce that ∇u vanishes at infinity. Combining the change of
variables z = x−y with a naive differentiation under the integral sign in (69)
suggests that

∂j∂ku(x) = − 1

4π

∫

R3

xk − yk
|x− y|3∂jf(y) dy (70)

for j, k ∈ {1, 2, 3} and almost every x ∈ R3. Under the assumption that f has
square integrable first derivatives and compact support, the right hand side of
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(a) |x− y| < 3rf (b) |x− y| > rf

Figure 9: Estimates on the distance from x to any y ∈ suppf ⊂ B(0, rf ) in
the cases x ∈ B(0, 2rf ) respectively x ∈ R3 \ B(0, 2rf ). Both estimates follow
from the triangle inequality in R3.

(70) is indeed well defined almost everywhere in R3: The function y 7→ |∂jf(y)|
|x−y|2

(and thereby also y 7→ xk−yk
|x−y|3∂jf(y)) must namely be integrable for almost all

x ∈ B(0, 2rf ), since Tonelli’s theorem, the Cauchy-Schwarz inequality and the
basic observation stated on Figure 9(a) give that

∫

B(0,2rf )

∫

B(0,rf )

|∂jf(y)|
|x− y|2 dy dx ≤

(4

3
πr3

f

) 1
2

∥∥∥∥1B(0,3rf )
1

| · |

∥∥∥∥
2

L2

‖∂jf‖L2 . (71)

On the other hand y 7→ |∂jf(y)|
|x−y|2 is majorized by the integrable function |∂jf |

r2f

for all x ∈ R3 \ B(0, 2rf ), as shown on Figure 9(b). Thus, it makes sense to
consider the function given (a.e.) by the expression on the right hand side
of (70) – the identification of this function with the distribution ∂j∂ku then
follows from a standard argument utilizing Fubini’s theorem (which is outlined
in the proof of [11, Theorem 6.21]). It just remains to be proven that the
functions ∂j∂ku are square integrable – we first verify this square integrability
on the ball B(0, 2rf ). This is done by using the Hölder inequality, the Jensen
inequality and the Hardy-Littlewood-Sobolev inequality:

∫

B(0,2rf )
|∂j∂ku(x)|2 dx

≤ 1

16π2

∫

B(0,2rf )

(∫

B(0,rf )

|∂jf(y)| 65
|x− y| 94

dy
) 10

9
(∫ 1B(0,3rf )(x− y)

|x− y| 2710
dy
) 5

9‖∂jf‖
2
3

L2dx

≤
(

4
3πr

3
f

) 1
9

16π2

∫

B(0,2rf )

∫

B(0,rf )

|∂jf(y)| 43
|x− y| 52

dy dx

∥∥∥∥1B(0,3rf )
1

| · |

∥∥∥∥
3
2

L
27
10

‖∂jf‖
2
3

L2

≤
(

4
3πr

3
f

) 1
9

8π2

(4

3
π
) 5

6
((5

3

) 5
6

+
(5

2

) 5
6
)(4

3
π(2rf )3

) 1
2

∥∥∥∥1B(0,3rf )
1

| · |

∥∥∥∥
3
2

L
27
10

‖∂jf‖2L2 .
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Finally, the Cauchy-Schwarz inequality, Tonelli’s theorem and the observation
on Figure 9(b) give

∫

R3\B(0,2rf )
|∂j∂ku(x)|2 dx ≤ 1

16π2

(4

3
πr3

f

)∥∥∥∥1R3\B(0,rf )
1

| · |

∥∥∥∥
4

L4

‖∂jf‖2L2 ,

whereby ∂j∂ku is also square integrable on R3 \ B(0, 2rf ). Consequently, ∇u
is a D1-function. �

Remark 20. Consider a locally integrable, harmonic function u with square
integrable first derivatives. The harmonicity of ∇u ensures the existence of
vector fields pm on R3 with homogeneous harmonic polynomials of degree m
as coordinates such that

∇u(x) =

∞∑

m=0

pm(x)

for all x ∈ R3 (see [1, Corollary 5.34 and Proposition 1.30]). The series
even converges absolutely and uniformly on compact subsets of R3 so for an
arbitrary given R > 0 we have the series representation ∇u =

∑∞
m=0 pm in[

L2
(
B(0, R)

)]3. Integrating in polar coordinates and using the homogeneity of
the functions pm as well as the spherical harmonic decomposition [1, Theorem
5.12] of L2(∂B(0, 1)) now gives

∥∥1B(0,R)∇u
∥∥2

L2 =
∞∑

m=0

∞∑

`=0

∫ R

0
rm+`+2 dr

(
pm,p`

)
L2(∂B(0,1))

=
∞∑

m=0

R2m+3

2m+ 3
‖pm‖2L2(∂B(0,1)). (72)

By Lebesgue’s dominated convergence theorem the left hand side of (72) con-
verges to ‖∇u‖2L2 as R→∞ so the same must be true for the right hand side.
But the right hand side simply can not converge as R→∞ unless pm ≡ 0 for
all m ∈ N0 – so we conclude that ∇u ≡ 0. Therefore u is a constant function –
consequently, the Poisson equation can at most have one solution in the space
D1.
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