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Abstract
This thesis has two main parts. The first part, which consists of two papers, is concerned with the role of
equivariant loop spaces in the K-theory of exact categories with duality. We prove a group completion-type
result for topological monoids with anti-involution. The methods in this proof also apply in the context
of K-theory and we obtain a similar result there. We go on to prove equivairant delooping results for
Hesselholt and Madsen’s Real algebraic K-theory. From these we obtain an equivalence of the fixed points
of Real algebraic K-theory with Schlichting’s Grothendieck-Witt space. This equivalence implies a group
completion result for Grothendieck-Witt-theory, and for Real algebraic K-theory it implies that the analogs
of the Cofinalty and Dévissage theorems hold.

The second part of the thesis, which consists of one paper, is about the equivariant homotopy theory of
so-called G-diagrams. Here G is a finite group that acts on a small category I. A G-diagram in a category
C is a functor from I to C together with natural transformations that give a “generalized G-action” on
the functor. We give a model structure on the category of I-indexed G-diagrams in C , when the latter is
a sufficiently nice model category. Important examples are the categories of topological spaces, simplicial
sets and orthogonal spectra with the usual model structures. We formulate a theory of G-linear homotopy
functors in terms of cubical G-diagrams. We obtain a new proof of the classical Wirthmüller isomorphism
theorem using the fact that the identity functor on orthogonal spectra is G-linear.

Resumé
Denne afhandling har to hoveddele. Den første, som best̊ar af to artikler, handler om ækvivariante
løkkerums rolle i algebraisk K-teori af eksakte kategorier med daulitet. Vi viser et gruppekompletter-
ingsresultat for topologiske monoider med anti-involuton. Metoderne i dette bevis kan ogs̊a anvendes i
K-teori og vi viser et analogt resultat der. Vi viser ækvivariante afløkningsresultater for Hesselholt og
Madsens Reelle algebraiske K-teori. Fra disse f̊ar vi en ækvivalens mellem fikspunkterne til Reell alge-
braisk K-teori og Schlichtings Grothendieck-Witt-rum. Ved hjælp af denne ækvivalens udleder vi b̊ade
et gruppekompletteringsresultat for Grothendieck-Witt-teori og at Kofinalitet- og Dévissage-sætningerne
gælder for Reell algebraisk K-teori.

Den anden del af afhandlingen, som best̊ar af én artikel, handler om ækvivariant homotopiteori af
s̊akaldte G-diagrammer. Her er G en endelig gruppe der virker p̊a en lille kategori I. Et G-diagram er
en funktor fra I til en kategori C sammen med naturlige transformationer der giver en “generaliseret
G-virkning” p̊a funktoren. Vi giver en modelstruktur p̊a kategorien af G-diagrammer i C n̊ar denne er
en tilstrækkelig pæn modelkategori. Viktige eksempler er kategorierne af topologiske rum, simplicielle
mængder og ortogonale spektra, med de sædvanlige modelstrukturer. Vi formulerer en teori for G-lineære
homotopifunktorer, i form af betingelser for hvordan funktoren virker p̊a kubiske G-diagrammer. Derefter
giver et nyt bevis for den klassiske Wirthmüller-isomorfi, ved at bruge at identitetsfunktoren p̊a ortogonale
spektra er G-lineær.
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Introduction

This thesis consists of the following three papers:

A. Equivariant loops on classifying spaces

B. Equivariant deloopings in Real algebraic K-theory

C. Homotopy theory of G-diagrams and equivariant excision.

Overview and background

To put the papers in context we begin by giving an overview of the subject and indicate how the papers
fit into the bigger picture.

Homotopical group completion

A central topic in homotopy theory is so-called group completion for topological monoids or for H-spaces,
which are “monoids up to homotopy”. Informally, group completion is a topological version of the process
of passing from a monoid to the “closest” group by adding inverses. In topology one often deals with
topological monoids, or H-spaces M which do not behave like groups, and one would like a “closest” H-
space M ′ which does behave like a group, at least up to homotopy. Topological group completion is often
formulated in terms of the map induced on homology. For the purposes of this introduction we will call
an H-map between H-spaces M → M ′ a group completion if π0(M

′) is a group and there is an induced
isomorphism on homology rings

H∗(M)[π0(M)−1]
∼=−→ H∗(M

′).

Exact categories with duality

An exact category, as defined by Quillen, is an additive category C with a class of sequences X ′ → X → X ′′,
called exact, which are required to behave more or less like the exact sequences in an abelian category. A
minimal choice of exact sequences is all sequences of the form

X → X ⊕ Y → Y

where the maps are the canonical inclusion and projection, respectively, and sequences isomorphic to
these. Such sequences are called split-exact, and with this class of exact sequences C is called a split exact
category. We will study exact categories which are also equipped with subcategory of weak equivalences
wC containing the isomorphisms of C . In addition there will be an exact functor D : C op → C with a
natural weak equivalence η : IdC → D2 satisfying D(ηc) ◦ ηDc = idTc for all c in C . This structure is
called a duality on C . A non-degenerate symmetric form in C is an object c with a weak equivalence
ϕ : c → Dc which is self-dual in the sense that D(ϕ) ◦ ηC = ϕ. The category of such forms, with the
structure preserving weak equivalences between them is denoted by Sym(wC ). If D2 = IdC and η = id
the duality is called strict.

The canonical example to keep in mind is the following: For a commutative ring A let P (A) be the
(split exact) category of finitely generated projective A-modules. The weak equivalences in P (A) are
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the isomorphisms. The duality is the functor D = Hom(−, A) and ηε : P → DDP is the isomorphism
p 7→ (f 7→ εf(p)). Here ε is either 1 or −1 giving symmetric and symplectic forms as objects of Sym(iP (A)),
respectively. Another example is the category of bounded chain complexes in P (A) with quasi-isomorphisms
as weak equivalences and the duality is given by applying D levelwise.

If (C , wC , D, η) is an exact category with duality and weak equivalences and duality then there is
a strictification (Ĉ , wĈ , D̂) which has a strict duality. There are weak equivalences |wC | ' |wĈ | and
|Sym(wC )| ' |Sym(wĈ )|, where in general |A | denotes the geometric realization of the nerve of A . This
is important because when the duality on C is strict the is a natural C2-action on |wC | given by

[(c0
f1−→ . . .

fn−→ cn, t0, . . . tn)] 7→ [(Dcn
Dfn−→ . . .

Df1−→ Dc0, tn, . . . t0)],

for (c0
f1−→ . . .

fn−→ cn, t0, . . . tn) ∈ NnwC ×∆n. There is a natural homeomorphism |Sym(wC )| ∼= |wC |C2 ,
so the study of the former space can therefore be phrased in terms of equivariant homotopy theory. Since

the duality functor D is additive there is a natural isomorphism νX,Y : DX ⊕ DY
∼=−→ D(X ⊕ Y ) for

any pair X,Y of objects of C . We point out that the category Sym(wC ) has a sum-operation given by
(X,ϕ) ⊥ (Y, ψ) = (X ⊕ Y, νX,Y ◦ (ϕ⊕ ψ)), which is called the orthogonal sum.

Algebraic K-theory

Broadly speaking, algebraic K-theory is the study of “generalized” group completion of categories which
have a sum-operation and sometimes additional structure such as weak equivalences, exact sequences and
so on. By group completion of such a category C we mean the group completion of the space |wC |, where
wC is often just the groupoid of isomorphisms in C . The group completion consists of an H-space K(C )
such that K0(C ) = π0K(C ) is a group and a map |wC | → K(C ). This map is a “generalized” group
completion in the following sense: Even for exact sequences X ′ → X → X ′′ that do not split, the relation
[X] = [X ′] + [X ′′] is required to hold in K0(C ). For a ring A it is customary to write K(A) for K(P (A))
and Kn(A) for πnK(A).

Relation to C2-equivariant loop spaces

Most forms of K-theory or group completion involve loop spaces. A typical approach to group completion
of an H-space M is to construct a space B and an H-map M → ΩB, and prove that it is a group completion.
The multiplication on the latter space is given by concatenation of loops. The space B comes in various
guises depending on the nature of M . For topologocal monoids one has the classifying space, or bar
construction, BM . For nerves of exact categories one has Quillen’s Q-construction, and its close relative,
the S-construction of Waldhausen. When the exact category in question has a strict duality the nerve has
an action of C2 and one can ask for a C2-action on ΩB = K(C ) such the map |wC | → ΩB is equivariant.
Now we must fix some notation. For a pointed C2-space X we write Sp,q for the one-point compactification
SRp

= Rp ∪ {∞}, where C2 acts by multiplication by −1 in the last q variables. Denote by Ωp,qX the
space of pointed maps Map∗(S

p,q, X) with the conjugation action of C2. Note that the fixed point space
(Ωp,qX)C2 is the space of pointed equivariant maps f : Sp,q → X. In the papers A and B we study and
compare various equivariant candidates for the space B which come with equivariant maps

|wC | → Ω1,1B or |wC | → Ω2,1B.

Since the fixed point space |wC |C2 is homeomorphic to the H-space |Sym(wC )| a natural question is
whether the maps induced on fixed points are also group completions. If this is the case we call the
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target space a C2-equivariant group completion. In general, K-theory spaces are infinite loop spaces
with associated spectra. An equivariant K-theory space should be an infinite loop C2-space and have an
associated C2-spectrum.

Tools for C2-equivariant loop spaces

To study ordinary loop spaces it is often useful to construct fiber sequences F → E → B where the middle
space is contractible, because then there is a weak equivalence F ' ΩB. This also works for pointed
C2-spaces and gives an equivariant weak equivalence F ' Ω1,0B. For the equivariant loop space Ω1,1B we
must take a different approach. We call a square of pointed spaces

X
pr
//

pl
��

Yr

qr
��

Yl ql
// Z

a C2-square if there are actions of C2 on X and Z and mutually inverse maps f : Yl → Yr and g : Yr → Yl
which are appropriately compatible with the C2-actions. In this case the homotopy pullback Yr ×hZ Yl =
holim(Yl → Z ← Yr) has a natural action of C2 and the usual map X → Yr×hZ Yl is equivariant. Moreover,
if Yl, and hence also Yr, is contractible there is an induced homotopy equivalence

Yr ×hZ Yl ' Ω1,1Z.

With some more work one obtains a method for determing when X is weakly C2-equivalent to Ω1,1Z. These
methods are used extensively in the paper B as well as in Emanuele Dotto’s thesis [Dot12]. A simplified
version is also used in A. The third paper C grew out of a series of discussions with Emanuele Dotto about
constructing a general framework for such delooping argumenments.

Linear homotopy functors and equivariant loop spaces

Two of the main questions at the outset of the work on the paper C were as follows: Can one make similar
arguments to the one for Ω1,1 sketched above for an arbitrary finite group G and ΩV for a (sufficiently nice)
G-representation V ? And, in a different direction, what is the relation to the cube theory in Goodwillie’s
calculus of functors ([Goo90], [Goo03])? The answer to the first question turns out to be affirmative and
this allows us to formulate an answer to the second question. We begin by recalling that a homotopy
functor on pointed spaces is a functor Φ: Top∗ → Top∗ which preserves weak equivalences. We will only
consider reduced homotopy functors here, i.e., functors such that Φ(∗) ' ∗. Such a functor is called linear
if for every homotopy cocartesian square

X //

��

Y

��

Z //W,

the image under Φ
Φ(X) //

��

Φ(Y )

��

Φ(Z) // Φ(W ),
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is homotopy cartesian. The canonical example to keep in mind is the functor X 7→ hocolimn ΩnΣn(X).
By evaluating Φ on the homotopy pushout square

X //

��

CX

��

CX // ΣX,

and using linearity of Φ we get a weak equivalence Φ(X) ' ΩΦ(ΣX). This procedure can be iterated to
get weak equivalences Φ(X) ' ΩnΦ(ΣnX) for all n, so Φ(X) is an infinite loop space. The paper C gives a
theory of equivariant cubes making it possible to build loop spaces and suspension spaces with respect to
a large class of representations of G. It also provides a theory of equivariantly linear homotopy functors. If
Ψ is such a functor, then in the same way that we got Φ(X) ' ΩΦ(ΣX) above, we get weak G-equivalences
Ψ(X) ' ΩV Ψ(ΣVX), showing that Ψ(X) is an infinite loop G-space.

A. Equivariant loops on classifying spaces

If M is a topological or simplicial monoid there is a natural map

λ : M → ΩBM

to the loop space of the classifying space of M . A classical theorem (see e.g. [May75]) states that if M
is grouplike, i.e., if the monoid π0(M) is a group, then λ is a weak equivalence. If π0(M) is not a group
but instead a central multliplicative subset in the homology ring H∗(M) then by the group completion
theorem of McDuff-Segal [MS76] and Quillen [FM94], the map λ induces an isomorphism

H∗(M)[π0(M)−1]
∼=−→ H∗(ΩBM).

If the monoid M has an anti-invloution m 7→ m̄ such that mn = n̄m̄ and m̄ = m then the classifying space
inherits an action of C2. The map λ is equivariant as a map M → Ω1,1BM and hence induces a map on
fixed point spaces

λC2 : MC2 → (Ω1,1BM)C2 .

Nisan Stiennon showed in his thesis [Sti13] that if M is grouplike then λC2 is a weak equivalence. The first
new result of this paper is a description of what happens in the non-grouplike case. Note that the monoid
M acts on the fixed points MC2 by m · n = mnm̄ inducing an H∗(M)-module structure on the homology
H∗(M

C2).

Theorem (A, 3.12): Let M be a simplicial monoid with anti-involution such that π0M is in the center of
H∗(M). Then the map λC2 induces an isomorphism of left H∗(M)-modules

H∗(M
C2)[π0(M)−1]

∼=−→ H∗((Ω
1,1BM)C2).

In general this is not a group completion because MC2 is usually not an H-space.
Let C be an additive category with weak equivalences strict duality. Then there is an equivariant

Γ-space type model |wC (S1,1)| for the “classifying space” of the category wC and a map

|Sym(wC )| → (Ω1,1|wC (S1,1)|)C2

4



analogous to the map λC2 above. The analog of the action by M on MC2 here is the so-called hyperbolic
action which we present in a simplified form. An object c of C pairs with a symmetric form (d, ϕ) to give
(d, ϕ) ⊥ H(c). Here H(c) is the so-called hyperbolic form on c. It has underlying object c ⊕Dc and the
form is described by the matrix

(
0 idDc
ηc o

)
.

Theorem (A, 5.14): Let (C , wC , D) be an additive category with strict duality and weak equivalences.
Then the map |Sym(wC )| → (Ω1,1|wC (S1,1)|)C2 induces an isomorphism

H∗(|Sym(wC )|)[π0|wC |−1]→ H∗((Ω
1,1|wC (S1,1)|)C2)

of left H∗(|wC |)-modules.

Here the fixed point space |Sym(wC )| is an H-space and in many cases the map to (Ω1,1|wC (S1,1)|)C2

is a group completion. This happens for instance if all the Hom-groups of C are Z[12 ]-modules.

B. Equivariant deloopings in Real algebraic K-theory

Atiyah’s Real K-theory functor KR combines into one C2-equivariant object the cohomology theories
KU , KO and Anderson’s self-conjugate K-theory KSC. An analog of this has been defined for exact
categories with duality by Hesselholt and Madsen in [HM]. They introduce a simplicial construction called
the S2,1-construction, which is similar to Waldhausen’s S-construction. When applied to an exact category
with weak equivalences and strict duality, the output is a pointed C2-space KR(C ) = Ω2,1|wS2,1C |, which
comes with an equivariant map λ2,1 : |wC | → Ω2,1|wS2,1C |. The underlying pointed space of KR(C ) has
the homotopy type of the Waldhausen K-theory space K(C ) = Ω|wSC |. If C is split exact, the map λ2,1 is
an equivariant group completion in the sense explained above. In the 70’s Karboubi introduced and studied
K-theory of quadratic and symmetric forms. The theory was later recast in a more modern framework
by Schlichting in the papers [Sch10a] and [Sch10b]. To an exact category C with weak ewuivalences and
duality it assigns the Grothendieck-Witt space GW (C ), and a map γ : |Sym(wC )| → GW (C ). If the
Hom-groups of C are Z[12 ]-modules, then γ is a group completion (cf. [Sch04]). Grothendieck-Witt theory
also has an interpretation as a space of equivariant loops. The duality on C induces a C2-action on the
usual S-construction. We denote the resulting pointed C2-space by |wS1,1C | where the decoration “1, 1”
is used because the usual delooping map in K-theory is equivariant as a map

|wC | → Ω1,1|wS1,1C |.

There is a natural weak equivalence (Ω1,1|wS1,1C |)C2 ' GW (C ). From the outset the goal of this paper was
to generalize foundational theorems of K-theory to KR-theory. The theorems go by the names Cofinality,
Dévissage, Resolution and Localization and were originally proved for K-theory by Quillen. The first three
have been proved for Grothendieck-Witt theory by Schlichting. Localization was proved by Hornbostel
and Schlichting under the assumption that the Hom-groups are Z[12 ]-modules. It is not known whether
this assumptoin is necessary. The goals of the paper have mostly been acheived, though not quite in the
way that was expected.

Searching for a way to generalize the foundational theorems for the functors K(−) and GW (−) even-
tually led to the construction of deloopings such as

|wS1,1C | ' Ω2,1|wS1,1S2,1C | and |wS1,1S2,1C | ' Ω1,0|wS2,1S2,1C |,

and so on. These were used to prove the following:
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Theorem (4.9 B): There is a natural weak C2-equivalence

|wS1,1C | '→ Ω1,0|wS2,1C |.

This result, which is surprising in itself, has a number of interesting consequences. On the one hand, it
allows us to transfer our knowledge of KR(C )C2 to GW (C ). This shows that in the split-exact case, the
map |Sym(wC )| → GW (C ) is a group completion map, even when the Hom-groups are not Z[12 ]-modules.
This was previously not known. On the other hand, the theorem allows us to transfer knowledge the other
way. In the paper we show in detail how the Cofinality and Dévissage theorems generalize to KR.

C. Homotopy theory of G-diagrams and equivariant excision (Joint with
Emanuele Dotto)

Let G be a finite group which acts on a small category I by functors g∗ : I → I. An I-indexed G-diagram
in a category C is a diagram X : I → C together with natural transformations gX : X → X ◦ g∗, satisfying
certain associativity conditions. See also Villarroel-Flores’s thesis [VF99], and Jackowski and S lomińska’s
paper [JS01]. The I-indexed G-diagrams in C form a category in the evident way. Both the limit and the
colimit of a G-diagram X have natural actions of G. If X is a diagram of say, spaces or simplicial sets
then this also holds for the homotopy limit and the homotopy colimit. We have already seen one instance
of this above for the homotopy pullback in a C2-square.

In order to study the homotopy theory of G-diagrams in a model category C we give a model structure
on the category C I

a of I-indexed G-diagrams provided C is a so-called G-model catgeory.

Theorem: Let C be a G-model category. There is a cofibrantly generated sSetG-enriched model structure
on the category of G-diagrams C I

a with weak equivalences (resp. fibrations) the maps of G-diagrams f : X →
Y such that the value fi at the object i ∈ obI is a weak equivalence (resp. fibration) in the model category
CGi of objects with an action of the stabilizer group Gi.

Examples include the categories of topological spaces, simplicial sets and orthogonal spectra with the
usual model structures. We prove analogs of classical theorems from homotopy theory such as homotopy
invariance of homotopy (co)limits and an Elmendorf theorem for G-diagrams.

Our main application of this abstract setup is to construct a theory of cubical G-diagrams and G-linear
homotopy functors. In the case of topological spaces our theory turns out to be more or less equivalent
to Blumberg’s theory of continuous G-functors [Blu06]. We prove a generalized Wirthmüller isomorphism
theorem for enriched G-linear homotopy functors. The identity functor on the category of orthogonal
spectra is such a functor, and in this case our theorem specializes to the classical Wirthmüller isomorphism
theorem.
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Perspectives

Localization for KR-theory

The Localization theorem is the crown jewel in Quillen’s work on algebraic K-theory. It gives a way to
describe the homotopy cofiber on K-theory spectra of the map induced by a localization of sufficiently
nice rings. As an example consider the localization map Z → Q. By the localization theorem there is an
induced cofiber sequence of spectra

K(Z)→ K(Q)→
∨
p

ΣK(Fp).

The homotopy type of K(Fp) were determined by Quillen in [Qui72], so the cofiber sequence tells us a lot
about the relation between K(Z) and K(Q). The sequence is an essential ingredient in Quillen’s proof that
the groups Kn(A) = πnK(A) are finitely generated for all n when A is the ring of integers in a number
field [Qui10].

Conjecturally, the localization theorem for KR should give a cofiber sequence of KR-spectra

KR(Z)→ KR(Q)→
∨
p

Σ1,1KR(Fp).

Non-equivariantly, this is just Quillen’s sequence above, but note the suspension Σ1,1 which is very differ-
ent from Σ1,0. Hornbostel and Schlichting have proved a GW -version of the above sequence when all the
involved rings contain 1

2 . The classical localization sequence for Witt groups [MH73, IV.2.1] can be inter-
preted as a sequence of homotopy groups of KR. Under this interpretation the classical exact sequence is
just the exact sequence of homotopy groups of the above cofiber sequence. We mostly know the homotopy
type of KR(Fp) thanks to the work of Quillen in [Qui10] and Friedlander in [Fri76], where they determined
the homotopy types of K(Fp) and GW (Fp) (for p 6= 2), respectively. The Localization theorem for KR
would be a very powerful tool for concrete computations in a field that is quite abstract at the moment.

Equivariant Goodwillie calculus

The linearity condition for homotopy functors is expressed in terms of square-shaped diagrams. Such
a square is a diagram indexed on the power set P (S) of a set with two elements. Linear functors are
also called “excisive” because the collection of functors {πnΦ(−)}n∈N behaves like a homology theory, in
particular satisfying the excision axiom. Higher order excision is expressed using cubical diagrams of higher
dimension. These diagrams are indexed on power sets P (S) where S has more than 2 elemtents. Using
these one can define, not only linear approximations, but a whole “Taylor tower” of approximations to
a functor. In many ways this behaves like the Taylor series of a smooth function. This theory goes by
the name “Goodwillie calculus”[Goo03]. It has been used extensively in algebraic K-theory, both to study
Waldhausen’s A-theory and via the Dundas-McCarthy theorem [DGM13] to study algebraic K-theory of
rings.

In the paper C, equivariant linearity is expressed by taking G-diagrams indexed on P (G+) where G+

is the G-set G with a disjoint basepoint. Note that the number of G-orbits of G+ is 2. In the equivariant
context the (free) G-orbits in S seem play the role that the elements of S play non-equivariantly. This
suggests that a formulation of higher equivariant excision should involve G-cubes indexed on P (S) where
S contains several free orbits. It is natural to ask whether “Goodwillie calculus” has an equivariant analog
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which extends the setup of C. Some progress has been made in this direction by Dotto. There is also a
simpler version of this, not using G-diagrams which has been written up by Dotto in [Dot13]. There the
relation to the “Real” trace maps from KR to “Real” versions of TC and THH has been studied.
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1 Introduction

It is well known that for a group-like simplicial monoid M the natural map

λM : |M | → Ω|BM |

is a weak homotopy equivalence, where B denotes the bar construction and | − | denotes geometric real-
ization. In the non-group-like case the classical group completion theorem of McDuff-Segal [MS76] and
Quillen [FM94, Q.4] states that for a simplicial monoid M satisfying certain conditions λM induces an
isomorphism of H∗(M)-algebras

H∗(M)[π0(M)−1]
∼=−→ H∗(Ω|BM |).

The first goal of this paper is to investigate the corresponding situation when M has an anti-involution, i.e.
a map (−) : M →M such that (mn) = n̄m̄. This extra structure allows us to define maps wi : BiM → BiM
where BiM = M×

i
given by

wp(m1,m2, . . . ,mp) = (mp, . . . ,m2,m1)

which satisfy wn ◦ wn = id and compatibility relations with the simplicial structure maps (see Section 3).
As a consequence the geometric realization |BM | has a natural action by the cyclic group C2 of order two.

We let R1,1 denote the minus-representation of C2 on R and write S1,1 for its one-point compactification.
For a pointed C2-space X we write Ω1,1X for the space Map∗(S

1,1, X) with the conjugation action of C2.
In his thesis [Sti13] Nisan Stiennon has shown that λM is in fact an equivariant map

|M | → Ω1,1|BM |,

and that if M is group-like, then the induced map on fixed points

|M |C2 → (Ω1,1|BM |)C2

is a weak equivalence. In view of the group completion theorem it is natural to ask what happens when
M is not group-like. The answer is given as follows in Theorem 3.12:

Theorem: Let M be a simplicial monoid with anti-involution such that π0M is in the center of H∗(M).
Then the map

λC2
M : |M |C2 → (Ω1,1|BM |)C2

induces an isomorphism

π0(MC2)[π0(M)−1]
∼=−→ π0(Ω1,1|BM |)C2

of left π0(M)-sets and an isomorphism of left H∗(M)-modules

H∗(M
C2)[π0(M)−1]

∼=−→ H∗((Ω
1,1|BM |)C2).

In [Seg74, 4] Segal proved a variant of the group completion theorem for Γ-spaces. Shimakawa [Shi89]
later considered the G-equivariant situation for G a finite group. He described an equivariant delooping
machine in terms of ΓG-spaces and proved a group completion statement for these deloopings provided
one is delooping with respect to a representation sphere SW such that WG 6= 0. In this paper we consider
the case G = C2 and W = R1,1. Since (R1,1)C2 = 0, Shimakawa’s result does not apply. We describe
a construction of a Segal-type delooping of an additive category with duality with respect to S1,1. The
analog of Theorem 3.12 in this setting is as the following (see Theorem 5.14):
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Theorem: Let (C , wC , T ) be an additive category with strict duality and weak equivalences. Then the
map |NSym(wC )| → (Ω1,1|NwC (S1,1)|)C2 induces isomorphisms

π0(NSymwC )[π0NwC−1]
∼=−→ π0((Ω1,1|NwC (S1,1)|)C2)

of monoids and
H∗(NSymwC )[π0NwC−1]→ H∗((Ω

1,1|NwC (S1,1))C2)

of left H∗(NwC )-modules.

As an application we make π0-computations for symmetric (5.15) and symplectic (5.16) form spaces
over Z.

The author would like to thank Søren Galatius and Lars Hesselholt for suggesting the problem for
monoids and additive categories with duality, respectively, and his adviser Ib Madsen for guidance along
the way. He would also like to thank Emanuele Dotto and Nisan Stiennon for important discussions.
Thanks go to Wolfgang Steimle for pointing out an error in an older version of the manuscript and to Sune
Precht Reeh for help with proofreading.

2 Homology fibrations

In this section we collect some basic facts about homology fibrations of simplicial and bisimplicial sets. We
make no claim to originality; the results here can either be found in [PS04], [GJ09, IV.5] or [Jar08] or are
easy consequences of the results there.

A map of spaces or simplicial sets inducing an isomorphism on integral homology will be called a
homology equivalence.

Definition 2.1. A commuting square
A //

��

B

f
��

C g
// D

of simplicial sets is called homology cartesian if for any factorization of f : B → D as a trivial cofibration
followed by a fibration

B
'
�W � D

the induced map from A to the pullback C ×D W is a homology equivalence.

Note that a homotopy cartesian square is automatically homology cartesian. Just as for homotopy
cartesian squares it doesn’t matter which factorization we use or whether we choose to factor f or g. By
analogy with the case of homotopy cartesian squares [GJ09, II.8.22] we have the following Lemma whose
proof we omit:

Lemma 2.2: Let
A //

��

I

A′ //

��
II

A′′

��

B // B′ // B′′

be a diagram of simplicial sets such that the square II is homotopy cartesian. Then I is homology cartesian
if and only if the outer rectangle I + II is homology cartesian.
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Let Y be a simplicial set. An m-simplex σ ∈ Ym of Y corresponds to a unique map ∆m → Y which we
will also call σ. The simplices of Y form a category Simp(Y ) where an object is a map σ : ∆m → Y , and
where a morphism

(σ : ∆m → Y )→ (τ : ∆n → Y )

is a map α : [m]→ [n] in ∆ such that the diagram

∆m

σ
!!

α∗ // ∆n

τ
}}

Y

commutes. Composition is given by composition of maps in ∆.
Let f : X → Y be a map of simplicial sets. Then, for any simplex σ : ∆m → Y we define f−1(σ) to be

the pullback in the square

f−1(σ) //

��

X

f

��

∆m
σ

//// Y.

For a diagram

∆m

σ
!!

α∗ // ∆n

τ
}}

Y

there is an induced map
f−1(α∗) : f−1(σ)→ f−1(τ).

The assignments
σ 7→ f−1(σ)

and
(α∗ : (σ : → ∆m)→ (τ : → ∆n)) 7→

(
f−1 (α∗) : f−1 (σ)→ f−1 (τ)

)
form the object and morphism components, respectively, of a functor

f−1 : Simp(Y )→ sSet.

If g : Z → Y is another map to Y , then a map h : X → Z of objects over Y induces a natural transformation

h∗ : f−1 → g−1.

Note that the natural map colim f−1 → X over Y is an isomorphism, in particular colim id−1
Y
∼= Y . The

homotopy colimit hocolim f−1 is the diagonal of the bisimplicial set
∐
∗ f
−1 (see [GJ09, IV.1.8]) which is

given in degree n by (
∐
∗ f
−1)n =

∐
σ∈NnSimp(Y ) f

−1(σ(0)). The canonical maps f−1(σ(0))→ X combine

to give a map
∐
∗ f
−1 → X of bisimplicial sets, where X is constant in the “nerve” simplicial direction.

This map induces a weak equivalence on diagonal simplicial sets (see [GJ09, IV.5.1]).

Lemma 2.3: Let f : X → Y be a map of simplicial sets. The following are equivalent:
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1. For every simplex σ : ∆m → Y the pullback diagram

f−1(σ) //

��

X

f

��

∆m
σ

//// Y

is homology cartesian.

2. For any pair of simplices σ : ∆m → Y and τ : ∆n → Y and for any diagram

∆m

σ
!!

α∗ // ∆n

τ
}}

Y

the induced map on pullbacks along f

f−1(α∗) : f−1(σ)→ f−1(τ)

is a homology equivalence.

In the proof of this lemma we will use the following result which is proven in [GJ09, IV.5.11], see [PS04]
for a different proof of 2.3.

Theorem 2.4: Let X : I → sSet be a functor such that for any morphism i → j in I the induced map
X(i)→ X(j) is a homology equivalence, then for all objects i of I the pullback diagram

X(i) //

��

hocolimI X

��

∗
i

// NI

is homology cartesian.

Proof of lemma 2.3. 1 =⇒ 2 : We begin by factoring f as

X
g
�W

f̄
� Y,

where g is a cofibration and a weak equivalence. Condition 1 says precisely that the natural transformation
g∗ : f−1 → f̄−1 has components which are homology equivalences. Since f̄ is a fibration the functor f̄−1

sends all maps in Simp(Y ) to weak equivalences. Therefore, a map α : σ → τ in Simp(Y ) gives a naturality
square

f−1(σ)
f−1(α∗)

//

g∗,σ
��

f−1(τ)

g∗,τ
��

f̄−1(σ)
'

f̄−1(α∗)
// f̄−1(τ)
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where the vertical maps are homology equivalences and the lower horizontal map is a weak equivalence. It
follows that f−1(α∗) is a homology equivalence.
2 =⇒ 1 (cf. [GJ09, IV.5.18]): For every simplex σ : ∆m → Y there is a diagram of bisimplicial sets

f−1(σ)

I

//

��

∐
∗f
−1 ' //

��

II

X

f

��

∆m //

'

��

III

∐
∗id
−1
Y

' //

'
��

Y

∗ //
∐
NSimp(Y ) ∗.

Write d(I) for the square obtained by taking diagonals in the square I and similarly for the other sub-
diagrams. The square d(I + III) is

f−1(σ) //

��

hocolim f−1

��

∗ σ
// NSimp(Y ),

which is homology cartesian by Theorem 2.4. Since the square d(III) is homotopy cartesian it follows by
Lemma 2.2 that d(I) is homology cartesian. The square d(II) is also homotopy cartesian so it follows,
again by Lemma 2.2, that d(I + II) is homology cartesian.

Definition 2.5. A map f : X → Y of simplicial sets is called a homology fibration if it satisfies one (and
hence both) of the conditions of Lemma 2.3.

Definition 2.6. A map p : E → B of topological spaces is called a homology fibration if for any point
b ∈ B the natural map from the fiber Fb at b to the homotopy fiber hFb induces an isomorphism on integral
homology.

The relation between the two kinds of homology fibrations is given as follows:

Theorem 2.7: [PS04, 4.4] A map f : X → Y of simplicial sets is a homology fibration if and only if the
induced map on realizations |f | : |X| → |Y | is a homology fibration of topological spaces.

Recall Segal’s edgewise subdivision functor Sd : sSet → sSet, which has (SdX)n = X2n+1 (see the
appendix A and [Seg73] for details). An important property of this construction is that the realization of
a simplicial set X is naturally homeomorphic to the realization of its subdivision SdX. Using this, we get
the next lemma from Theorem 2.7.

Lemma 2.8: A map f : X → Y of simplicial sets is a homology fibration if and only if the induced map
Sdf : SdX → SdY is a homology fibration.

The next lemma follows easily from condition 2 of Lemma 2.3.

Lemma 2.9: Homology fibrations are closed under base change, i.e., the pullback of a homology fibration
along any map is a homology fibration.
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Lemma 2.10: Let f : X → Y be a homology fibration and let g : Z → Y be any map. Then the pullback
square

Z ×Y X //

h
��

X

f
��

Z g
// Y

is homology cartesian.

Proof. Factor the map f as

X
i
�W

f̄
� Y,

where i is a trivial cofibration. There is an induced factorization

Z ×Y X
j→ Z ×Y W

h̄
� Z

of h and we must show that j is a homology equivalence.
Let

Hq(h
−1,Z) : Simp(Z)→ Ab

be the composite functor given by

σ 7→ h−1(σ) 7→ Hq(h
−1(σ),Z),

and similarly for Hq(h̄
−1,Z), where Ab is the usual category of abelian groups. The natural transformation

j∗ : Hq(h
−1,Z)→ Hq(h̄

−1,Z) is an isomorphism of functors, since f is a homology fibration and the maps
from the pullbacks over σ to the pullbacks over g(σ) are isomorphisms. Recall that for a functor F : I → Ab
the translation object EF of F is the simplicial abelian group given in degree n by

EFn =
⊕

i0→···→in

F (i0)

with structure maps as for
∐
∗ F (see [GJ09, IV.2.1]). The map

E(Hq(h
−1,Z))→ E(Hq(h̄

−1,Z))

induced by j∗ is an isomorphism. By [GJ09, IV.5.1] there is a first quadrant spectral sequence

Ep,q2 = πpE(Hq(h
−1,Z)) =⇒ Hp+q(Z ×Y X,Z)

and a corresponding one for h̄−1 converging to Hp+q(Z ×Y W,Z). The map j induces an isomorphism of
E2-pages and is therefore a homology equivalence by the comparison theorem for spectral sequences.

For a homology fibration f : X → Y the functor Hq(f
−1,Z) sends all maps to isomorphism and hence

factors through the groupoid GSimp(Y ) obtained from Simp(Y ) by inverting all morphisms (see [GJ09,
p. 235]). This groupoid is naturally equivalent to the fundamental groupoid of the realization |Y | (see
[GJ09, III.1.1]). If for any pair of maps ξ, ζ : σ → τ in GSimp(Y ) the induced maps

ξ∗, ζ∗ : Hq(f
−1(σ),Z)→ Hq(f

−1(τ),Z)
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agree, we say that the fundamental groupoid acts trivially on the homology of the fibers of f . If Y is
connected then for any simplex ρ in Y there is a unique isomorphism of functors

(σ 7→ Hq(f
−1σ,Z)) ∼= (σ 7→ Hq(f

−1ρ,Z))

whose value at ρ is the identity map.

Lemma 2.11: Let f : X → Y be a homology fibration such that the fundamental groupoid of Y acts
trivially on the homology of the fibers of f . Then, for any homology equivalence g : Z → Y the induced
map

g′ : Z ×Y X → X

is a homology equivalence.

Proof. Assume, without loss of generality, that Y is connected and choose a fiber F over some vertex of
Y . Then, by [GJ09, IV.5.1], there are Serre spectral sequences, for f

Ep,q2 = Hp(Y,Hq(F )) =⇒ Hp+q(X),

and for the pullback of f along g

Ep,q2 = Hp(Z,Hq(F )) =⇒ Hp+q(Z ×Y X).

The map induced by g′ on E2-pages is an isomorphism by the universal coefficient theorem, and the fact
that g is a homology equivalence. It follows that g′ is a homology equivalence.

We now turn to bisimplicial sets. A map of bisimplicial sets will be called a homology equivalence if the
induced map on diagonals is a homology equivalence. Note that any element σ ∈ Ym,n, called a bisimplex,
is classified by a unique map σ : ∆m,n → Y from a representable bisimplicial set.

Lemma 2.12: Let f : X → Y be a map of bisimplicial sets. The following are equivalent:

1. The diagonal df : dX → dY is a homology fibration.

2. For any pair of bisimplices σ : ∆m,n → Y and τ : ∆p,q → Y and for any diagram

∆m,n

σ
""

(α,β)∗
// ∆p,q

τ
||

Y

the induced map on pullbacks along f

f−1(α, β)∗ : f−1(σ)→ f−1(τ)

is a homology equivalence.
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Proof. 1 =⇒ 2 : Given a bisimplex σ : ∆m,n → Y we choose a vertex v ∈ Y0,0 belonging to σ. Since
pullbacks commute with diagonals, we get a diagram

df−1(v) //

��

df−1(σ) //

��

dX

df

��

∆0 // ∆m ×∆n // dY

in which the two squares and the outer rectangle are pullback diagrams. The middle vertical map is a
homology fibration, by Lemma 2.9, since it is a pullback of df . The lower left map is a weak equivalence,
so it follows by Lemma 2.11 that the induced map df−1(v) → df−1(σ) is a homology equivalence. By
definition this means that the map f−1(v) → f−1(σ) is a homology equivalence. A map (α, β) : σ → τ
gives a commuting triangle

f−1(v)

zz %%

f−1(σ)
f−1(α,β)

// f−1(τ).

By the argument above the two downward maps are homology equivalences, so it follows that f−1(α, β) is
as well.

2 =⇒ 1 : The proof follows roughly the same outline as the corresponding proof for simplicial sets.
As for simplicial sets there is a category Simp(Y ) of bisimplices of Y and condition 2 says that the functor
f−1 : Simp(Y )→ bisSet takes values in homology equivalences. Composing f−1 with the diagonal functor
d : bisSet → sSet gives a functor df−1 : Simp(Y ) → sSet taking values in homology equivalences. For a
simplex σ : ∆n → dY there is a diagram of bisimplicial sets like the one in the proof of Lemma 2.3 and by
the same argument we conclude that df is a homology fibration.

Definition 2.13. A map f : X → Y of bisimplicial sets is called a homology fibration if it satisfies one
(and hence both) of the conditions of Lemma 2.12.

The exposition of propositions 2.14 and 2.15 below, and their proofs follows [Jar08] closely. Of course
any errors or omissions are my own. If X is a bisimplicial set we will write Xn for the vertical simplicial
set

[p] 7→ Xn,p.

Proposition 2.14: Let f : X → Y be a map of bisimplicial sets such that for each n ≥ 0 the map
fn : Xn → Yn is a Kan fibration. Assume that for each θ : [m]→ [n] and each v ∈ Yn,0 the induced map on
fibers f−1

n (v)→ f−1
m (θ∗(v)) is a homology equivalence. Then f is a homology fibration.

Proof. We show that f satisfies condition 2 of Lemma 2.12. Given a bisimplex τ : ∆p,q → Y choose a
vertex v of ∆q and let (id[p], v)∗ : ∆p,0 → ∆p,q be the corresponding map of bisimplicial sets. In level n we
can form the iterated pullback∐

γ∈∆p
n
f−1
n (v)

v∗ //

��

∐
γ∈∆p

n
f−1
n (((γ, id[q])

∗τ)n) //

��

Xn

fn
����∐

γ∈∆p
n

∆0 '∐
v

//
∐
γ∈∆p

n
∆q ∐

((γ,id[q])
∗τ)n

// Yn

9



where the map v∗ is a weak equivalence since fn is a fibration. This says precisely that the map
f−1((id[p], v)∗τ) → f−1(τ) is a level-wise weak equivalence, and so in particular a homology equivalence.
Therefore it suffices to consider diagrams of the form

∆m,0

v
""

(α,id)∗
// ∆p,0

w
}}

Y.

In level n the induced map f−1(v)→ f−1(w) fits as the top row in the diagram∐
γ∈∆m

n
f−1
n (((γ, id)∗v)n) //

∐
δ∈∆p

n
f−1
n (((δ, id)∗w)n)

∐
γ∈∆m

n
f−1
m (v)

OO

∐
γ∈∆m

n
f−1
p (w)oo //

∐
δ∈∆p

n
f−1
p (w)

OO
,

where the vertical maps and the lower left hand map are homology equivalences by assumption on f . The
lower right hand map becomes the weak equivalence

α∗ × id : ∆m × f−1
p (w)→ ∆p × f−1

p (w)

after taking diagonals.

Theorem 2.15: Let f : X → Y be a map of bisimplicial sets such that for each n ≥ 0 the map fn : Xn → Yn
is a homology fibration and for each v ∈ Yn,0 the induced map on fibers f−1

n (v)→ f−1
m (θ∗(v)) is a homology

equivalence. Then f is a homology fibration.

Proof. We begin by factoring the map f : X → Y as a level-wise trivial cofibration followed by a level-wise

fibration X
g−→W

h−→ Y . Given a bisimplex σ : ∆p,q → Y we get a diagram of bisimplicial sets

f−1(σ) //

��

X

g

��

f

��

h−1(σ) //

��

W

h
��

∆p,q // Y,

which in level n looks like ∐
θ∈∆p

n
f−1
n (((θ, id[q])

∗σ)n) //

��

Xn��

' gn

��

fn

��

∐
θ∈∆p

n
h−1
n (((θ, id[q])

∗σ)n) //

��

Wn

hn
����∐

θ∈∆p
n

∆q ∐
((θ,id[q])

∗σ)n

// Y n.
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Since fn is a homology fibration the upper left vertical map induces a homology equivalence on each
summand, and is therefore a homology equivalence. This says that the map f−1(σ) → h−1(σ) is a level-
wise homology equivalence and hence it is a homology equivalence by [GJ09, IV.2.6].

Given a vertex v ∈ Yn,0 and a map θ : [m]→ [n] there is a commuting square of fibers

f−1
n (v) //

��

f−1
m (θ∗v)

��

h−1
n (v) // h−1

m (θ∗v).

The vertical maps are homology equivalences since f is a level-wise homology fibration and the upper
horizontal map is a homology equivalence by assumption on f . From this we see that lower horizontal map
is a homology equivalence which by Proposition 2.14 implies that h is a homology fibration. A map σ → τ
in Simp(Y ) induces a square of pullbacks

f−1(σ) //

��

f−1(τ)

��

h−1(σ) // h−1(τ),

where the vertical maps are homology equivalences. Moreover, the lower horizontal map is homology
equivalence since h is a homology fibration. Hence the top horizontal map is a homology equivalence and
f is a homology fibration.

For a bisimplicial set X we write SdhX for the Segal edgewise subdivision of X in the first (horizontal)
variable and SdvX for the subdivision in the second (vertical) variable. Clearly SdhSdvX = SdvSdhX
and dSdhSdvX = Sd(dX).

Lemma 2.16: Let f : X → Y be a map of bisimplicial sets satisfying the conditions of Theorem 2.15.
Then Sdhf and Sdvf also satisfy the conditions.

Proof. We treat Sdhf first. In level n the map Sdhf is just the map f : X2n+1 → Y2n+1 which is a
homology fibration by assumption. Assume given a vertex v ∈ (SdhY )n,0 = Y2n+1,0 and a simplicial
structure map θ : [m]→ [n]. The induced map θ∗ : (SdY )n → (SdY )m is the map simplicial structure map
(θ t θop)∗ : Y2n+1 → Y2m+1 so the map on fibers is a homology equivalence by assumption.

Now for the map Sdvf . For n ≥ 0 the map (Sdvf)n is the subdivision Sd(fn) of the map fn : Xn → Yn,
so by Lemma 2.8 it is a homology fibration. A vertex v ∈ (SdYn)0 = Yn,1 need not come from a vertex
in Yn,0, but it can be connected to such a vertex by an edge. Since Sd(fn) is a homology fibration it
then follows that the fiber over v is equivalent to the fiber over a vertex in Yn. This implies that for any
simplicial structure map θ : [m] → [n] the fiber over v maps by a homology equivalence to the fiber over
(Sdθ∗)(v).

3 Simplicial monoids with anti-involution

Definition 3.1. An anti-involution on a monoid M is a function m 7→ m̄ from M to itself such that
(m̄) = m and m · n = n̄ · m̄ for all m,n ∈ M . A simplicial monoid with anti-involution is a simplicial
monoid M with a self-map, which is an anti-involution in each simplicial level.
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Given a monoid M we can form the bar construction BM which is the simplicial set [n] 7→M×
n

with
the usual structure maps. If M has the extra structure of an anti-involution we get extra structure on the
bar construction as well. The system of maps

{wi : BiM → BiM}

given in level p by

wp(m1,m2, . . . ,mp) = (mp, . . . ,m2,m1)

together with the simplicial structure maps of BM form a real simplicial set (see appendix A), which we
by abuse of language also call BM . Similarly, for a simplicial monoid M with anti-involution we get a
functor

BM : (∆R)op → sSet.

We write ∆1
R �M for the (∆R)op ×∆op-indexed functor (p, q) 7→ ∆1

p ×Mq with the obvious bisimplicial
structure maps and real structure maps given by wp(ζ,m) = (ζop, m̄). Since the simplicial set of 1-simplices
of BM is just M there is an induced map

∆1
R �M → BM.

As a consequence, we get a C2-equivariant map on realizations

|∆1| × |M | → |BM |

which sends the C2-subspace |∆1| × {e} ∪ {0, 1} × |M | to the basepoint. Here the C2 acts on |∆1| by
reflection through the midpoint (see Example A.2), so there is an induced C2-map S1,1 ∧ |M | → |BM |
whose adjoint is the canonical map

λM : |M | → Ω1,1|BM |.

Non-equivariantly, the topological monoid |M | acts by left multiplication on itself and acts homotopy
associatively on the loop space by m · γ = λ(m) ∗ γ, where ∗ means concatenation of loops. Up to
homotopy λ commutes with the actions of C2 and of |M |. We are interested in the properties of the map
induced by λ on fixed points

λC2
M : |M |C2 → (Ω1,1|BM |)C2 .

The topological monoid |M | acts continuously on the fixed points |M |C2 by m · n = mnm̄ and up to
homotopy on the fixed points of the loop space by m · γ = λ(m) ∗ γ ∗ λ(m̄). These actions commute with
λC2
M up to homotopy.

Definition 3.2. Let N be a commutative monoid. An element s ∈ N is called a cofinal generator if for
any x ∈ N there is an n ≥ 0 and an element y ∈ N such that xy = sn. A vertex t in a simplicial monoid
M with π0(M) commutative is called a homotopy cofinal generator if its class [t] ∈ π0(M) is a cofinal
generator.

Example 3.3. Let M be a simplicial monoid such that the monoid π0(M) is finitely generated and
commutative. Pick vertices t1, . . . , tn ∈ M0 whose path components [t1], . . . , [tn] generate π0(M). Then
the vertex t = t1t2 · · · tn is a homotopy cofinal generator of M .

12



From now on let M denote a simplicial monoid with π0(M) in the center of H∗(M) and let t be a
homotopy cofinal generator of M . For a simplicial set X with a left M -action we set

X∞ = hocolim(X
t·−→ X

t·−→ X
t·−→ · · · ).

In particular, we have

M∞ = hocolim(M
t·−→M

t·−→M
t·−→ · · · ).

The homology of M is a graded ring. Since [t] is in the center multiplication by [t] on H∗(M) is H∗(M)-
linear. Hence there is an isomorphism of left H∗(M)-modules

H∗(M∞) ∼= colim(H∗(M)
[t]·−→ H∗(M)

[t]·−→ H∗(M)
[t]·−→ · · · ).

Lemma 3.4: The map M → M∞ including M at the start of the diagram induces an isomorphism of
H∗(M)-algebras

H∗(M)[π0(M)−1]→ H∗(M∞).

Proof. Since π0(M) is central in H∗(M) there is an isomorphism

colim(H∗(M)
[t]·−→ H∗(M)

[t]·−→ H∗(M)
[t]·−→ · · · ) ∼= H∗(M)[t−1]

and H∗(M) → H∗(M)[t−1] is the localization map. Since [t] is a cofinal generator of π0(M) the further
localization map

H∗(M)[t−1]→ H∗(M)[π0(M)−1]

is an isomorphism.

It follows that the vertices M0 of M act on M∞ by homology equivalences. The following can also be
found in e.g., [GJ09, IV.5.15].

Lemma 3.5: Let X be a simplicial set with a right action of M such M0 acts by homology equivalences.
Then the canonical map p : B(X,M, ∗) → BM satisfies the conditions of Theorem 2.15. In particular, it
is a homology fibration.

Proof. In each level n ≥ 0 the map

pn : X ×M×n →M×n

is a homology fibration because the induced map on realizations is, by Theorem 2.7.

Let v ∈ M×n0 be a vertex and let θ : [m] → [n] be a map in ∆. Note that the fiber over any vertex is
isomorphic to X. We must show that the map on fibers

p−1
n (v)→ p−1

m (θ∗(v))

is a homology equivalence. Since θ∗ can be factored into face and degeneracy maps we reduce to these
cases. If θ∗ = dj with j 6= 0 then the map p−1

n (v) → p−1
n−1(θ∗(v)), similarly for θ∗ = si. Otherwise,

if θ∗ = d0, then the induced map corresponds to acting on X by an element of M0 and is therefore a
homology equivalence.

13



Lemma 3.6: Let sSet −M be the category of simplicial sets with right M -action and equivariant maps
and let G : I → sSet − M be a functor. If X is a simplicial set with left M -action there is a natural
isomorphism of simplicial sets

dB(hocolimG,M,X) ∼= hocolim dB(G,M,X).

Proof. Both simplicial sets are obtained by taking iterated diagonals of the trisimplicial set B(
∐
∗G,M,X)

given by

[p], [q], [r] 7→

 ∐
σ∈Nr(I)

G (σ (0))q

×M×pq ×Xq.

Corollary 3.7: For any simplicial set X with a left M -action there is an isomorphism

dB(M∞,M,X) ∼= (dB(M,M,X))∞.

Theorem 3.8 (Group completion): (cf. [MS76], [FM94] and [PS04]) Let M be a simplicial monoid such
that π0M is in the center of H∗(M). Then there is an isomorphism of left H∗(M)-algebras

H∗(M)[π0(M)−1]
∼=−→ H∗(Ω|BM |).

Proof. Assume first thatM has a homotopy cofinal generator t. Then, by lemma 3.5 the mapB(M∞,M, ∗)→
BM is a homology fibration with fiber M∞. Taking X = ∗ in Corollary 3.7 shows that the simplicial set
dB(M∞,M, ∗) is a homotopy colimit of contractible spaces and hence is contractible. From this we get a
homology equivalence |M∞| → Ω|BM | and we conclude by Lemma 3.4.

For general M we let F (M) denote the poset of submonoids of M with finitely generated monoid of
path components. Then there is an isomorphism of simplicial monoids colimMi∈F (M)Mi

∼= M and the
colimit is filtering. The functors | − |, B, Ω, H∗(−) and inverting π0 commute with the filtering colimit in
question so the result now follows since each Mi ∈ F (M) has a homotopy cofinal generator by 3.3.

Inspired by Theorem 3.8 we will now proceed to analyze the map λC2
M . It becomes easier to work with

the anti-involution when we take the Segal subdivision in the horizontal (i.e., bar construction-) direction
of BM . The output is the bisimplicial set SdhBM which has a simplicial action of C2 and whose fixed
points we will now describe. An element in level (p, q) of SdhBM is a tuple

(m1, . . . ,m2p+1) ∈M×2p+1

q ,

and the action of the non-trivial element in C2 is

(m1, . . . ,mp,mp+1,mp+2, . . . ,m2p+1) 7→ (m2p+1, . . . ,mp+2,mp+1,mp, . . . ,m1).

The fixed points of this action are of the form

(m1, . . . ,mp,mp+1,mp, . . . ,m1), where mp+1 = mp+1.

Here, the last p factors are redundant and projection on the first p+ 1 factors gives a bijection

bp,q : (M×
2p+1

q )C2
∼=−→M×

p

q ×MC2
q .
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The monoid Mq acts on MC2
q on the left by (m,n) 7→ m ·n ·m. Both this action and the description of the

fixed points are compatible with the simplicial structure maps of M . Combining this with the fact that

dp(m1, . . . ,mp,mp+1,mp, . . . ,m1) = (m1, . . . ,mp ·mp+1 ·mp, . . . ,m1),

we get the following:

Lemma 3.9: Let M be a simplicial monoid with anti-involution. Then the maps bp,q determine natural
isomorphism of bisimplicial sets

b : (SdhBM)C2
∼=−→ B(∗,M,MC2).

The map p : B(M∞,M, ∗)→ BM induces a map

Sdhp : SdhB(M∞,M, ∗)→ SdhBM

on subdivisions. Since p satisfies the conditions of Theorem 2.15, the map Sdhp does as well, by Lemma
2.16. Therefore Sdhp is a homology fibration.

Lemma 3.10: The pullback of Sdhp along the inclusion

B(∗,M,MC2) ↪→ SdhBM

is isomorphic to B(M∞,M,MC2).

The proof is straightforward. It now follows from Lemma 2.10 that the square

B(M∞,M,MC2) //

��

SdhB(M∞,M, ∗)

��

B(∗,M,MC2) // SdhBM

(*)

becomes homology cartesian after taking diagonals. We consider MC2 as a bisimplicial set which is constant
in the first variable. Define the map

i : MC2 → B(M,M,MC2)

level-wise by

m 7→ (e, e, . . . , e,m).

This map has a retraction r given by

r(m0,m1, . . . ,mp,m) = m0 ·m1 · · ·mp ·m ·mp · · ·m1 ·m0

and there is a standard simplicial homotopy r ◦ i ' id. The map M →M∞ of Lemma 3.4 induces a map

j : B(M,M,MC2)→ B(M∞,M,MC2).

15



Lemma 3.11: The map j ◦ i : MC2 → B(M∞,M,MC2) induces an isomorphism of left π0(M)-sets

π0(MC2)[π0(M)−1]
∼=−→ π0(dB(M∞,M,MC2))

and an isomorphism of left H∗(M)-modules

H∗(M
C2)[π0(M)−1]

∼=−→ H∗(dB(M∞,M,MC2)).

Proof. We present the argument for homology, the one for π0 is similar. By Corollary 3.7 there is an
isomorphism (dB(M,M,MC2))∞ ∼= dB(M∞,M,MC2). In the diagram

dB(M,M,MC2)
t· //

dr
��

dB(M,M,MC2)
t· //

dr
��

dB(M,M,MC2)
t· //

dr
��

· · ·

MC2 t· //MC2 t· //MC2 t· // · · ·

the vertical maps are weak equivalences and hence induce a weak equivalence of homotopy colimits
dB(M,M,MC2)∞

r∞−→MC2
∞ . In homology we get a sequence of isomorphisms of left H∗(M)-modules

H∗(B(M∞,M,MC2))
∼=−→ H∗(M

C2
∞ )

∼=−→ H∗(M
C2)[π0(M)−1].

Let (X,x) be a based C2-space with σ : X → X representing the action of the non-trivial element of
C2. The homotopy fiber hFιX of the canonical inclusion ιX : XC2 ↪→ X of the fixed points can be identified
with the space of paths χ : [0, 1

2 ]→ X such that χ(0) = x and χ(1
2) ∈ XC2 . There is a map

bX : hFιX → (Ω1,1X)C2

given by bX(χ) = χ ∗ (σ ◦ χ) where ∗ is the concatenation operation and χ is the path t 7→ χ(1− t). This
map is a homeomorphism with inverse given by restricting loops to [0, 1

2 ].

Now we apply geometric realization to the square (*) to obtain a homology cartesian square of spaces

|B(M∞,M,MC2)| //

��

|B(M∞,M, ∗)|

��

|B(∗,M,MC2)| // |BM |.

The space |B(M∞,M, ∗)| is contractible and so |B(M∞,M,MC2)| is homology equivalent to the homotopy
fiber of the composite

|B(∗,M,MC2)| ∼= |BM |C2 ↪→ |BM |.

By the discussion above, this space is homeomorphic to (Ω1,1|BM |)C2 and so we get a homology
equivalence

g : |B(M∞,M,MC2)| → (Ω1,1|BM |)C2 .
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Theorem 3.12: Let M be a simplicial monoid with anti-involution such that π0M is in the center of
H∗(M). Then the map

λC2
M : MC2 → (Ω1,1|BM |)C2

induces an isomorphism

π0(MC2)[π0(M)−1]
∼=−→ π0(Ω1,1|BM |)C2

of left π0(M)-sets and an isomorphism of left H∗(M)-modules

H∗(M
C2)[π0(M)−1]

∼=−→ H∗((Ω
1,1|BM |)C2).

Proof. Assume first that M has a homotopy cofinal generator t ∈M0. By Lemma 3.11 the map

|j ◦ i| : |MC2 | → |B(M∞,M,MC2)|

induces the desired localization map on homology. Since the homology equivalence g : |B(M∞,M,MC2)| →
(Ω1,1BM)C2 is induced by the contracting homotopy on |B(M∞,M, ∗)| which is homotopic to a homotopy
that induces the map λC2

M we conclude that λC2
M also induces the desired map on homology.

If M does not have a cofinal generator we reduce to the above case by a colimit argument as in the
proof of theorem 3.8. The above proof easily generalizes to prove the π0-statement of the theorem.

4 Categories with duality

In this section we summarize some facts we will need later. Again we make no claim of originality and
the reader can consult [Dot12], [Sch10a] or [HM] for details. To avoid set-theoretic problems we fix two
Grothendieck universes U ∈ V and we will assume without further mention that all categories in this
section and the next are V -small.

Definition 4.1. A (V -small) category with duality is a triple (C , T, η) where C is a (V -small) category,
T : C op → C is a functor and η : id → T ◦ T op is a natural transformation such that for each c in C the
composite map

Tc
ηTc // TT opTc

T (ηc)
// Tc

is the identity on Tc. If η = id, so that T ◦ T op = IdC , then the duality is said to be strict.

Example 4.2. A monoid M can be thought of as a category CM with one object ∗ and HomCM (∗, ∗) = M
as monoids. Then a duality T, η on CM is the same as a monoid map t : Mop → M , i.e., such that
t(mn) = t(n)t(m) for all m,n ∈ M , and an element η ∈ M such that ηt2(m) = mη for all m ∈ M and
t(η)η = e. The duality is strict if and only if t is an anti-involution on M .

The main example of interest to us is the following (see e.g. [Wal70]).

Example 4.3. A Wall anti-structure is a triple (R,α, ε) where R is a ring in the smaller universe U ,
α is an additive map R → R such that α(rs) = α(s)α(r) and ε is a unit in R such that α2(r) = εrε−1

and α(ε) = ε−1. For an anti-structure (R,α, ε) there is a naturally associated category with duality
P (R,α, ε) with underlying category P (R) the category of finitely generated projective (f.g.p) U -small
right R-modules. The duality functor on P (R,α, ε) is HomR(−, R) where for an f.g.p. module P we give
HomR(P,R) the right (!) module structure given by (fr)(p) = α(r)f(p). The map

ηP : P
∼=−→ HomR(HomR(P,R), R)
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is the isomorphism given on elements p ∈ P by ηP (p)(f) = α(f(p))ε. It is straightforward to check that
the equation (ηP )∗ ◦ ηHomR(P,R) = idHomR(P,R) holds for all f.g.p. modules P . The smallness conditions on
R and the modules ensures that P (R) is small with respect to the larger universe V .

Definition 4.4. A duality preserving functor

(F, ξ) : (C , T, η)−→(C ′, T ′, η′)

consists of a functor F : C → C ′ and a natural transformation

ξ : F ◦ T → T ′ ◦ F op

such that for all c in C the diagram

F (c)
η′
F (c)

//

F (ηc)

��

T ′(T ′)opF (c)

T ′(ξc)
��

FTT op(c)
ξT (c)

// T ′F opT op(c)

commutes.

Composition is given by (G, ζ) ◦ (F, ξ) = (G ◦ F, ζF ◦ G(ξ)). An equivalence of categories with duality
is a duality preserving functor

(F, ξ) : (C , T, η)−→(C ′, T ′, η′)

such that there is a duality preserving functor (F ′, ξ′) : (C ′, T ′, η′)−→(C , T, η) and natural isomorphisms

u : F ′ ◦ F
∼=−→ IdC and u′ : F ◦ F ′

∼=−→ IdC ′ satisfying ξ′F (c) ◦ F
′(ξc) = T (uc) ◦ uT (c) for c in C and similarly

for u′.

Definition 4.5. Let (C , T, η) be a category with duality. The category Sym(C , T, η) of symmetric forms
in (C , T, η) is given as follows:

• The objects of Sym(C , T, η) are maps f : a→ Ta such that f = Tf ◦ ηa.

• A morphism from f : a→ Ta to f ′ : a′ → Ta′ is a map r : a→ a′ in C such that the diagram

a
f
//

r
��

Ta

a′
f ′
// Ta′

Tr

OO

commutes.

• Composition is given by ordinary composition of maps in C .
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The reason for the name “symmetric form” in the preceding definition is the following. Let (R,α, ε) be
a Wall-anti-structure. The category SymP (R,α, ε) has as objects maps ϕ : P → HomR(P,R) such that
the adjoint map ϕ̃ : P ⊗Z P → R is a biadditive form on P satisfying

ϕ̃(pr, qs) = α(r)ϕ̃(p, q)s

ϕ̃(q, p) = α(ϕ̃(p, q))ε,

for r, s ∈ R and p, q ∈ P . A map

h : (P
ϕ−→ HomR(P,R))→ (P ′

ϕ′−→ HomR(P ′, R))

is an R-module homomorphism h : P → P ′ such that ϕ̃′(h(p), h(q)) = ϕ̃(p, q) for all p, q ∈ P . An object
ϕ : P → HomR(P,R) such that ϕ is an isomorphism is called non-degenerate.

Definition 4.6. (cf. [HM]) For a category with duality (C , T, η) the strictification D(C , T, η) has objects
triples (c, c′, f) where f : c′ → Tc is a map and morphisms from (c, c′, f) to (d, d′, g) are pairs (r : c →
d, s : d′ → c′) such that the diagram

c′
f
// Tc

d′ g
//

s

OO

Td

Tr

OO

commutes. Composition is given by composition in each component. The duality on D(C , T, η) is given

by sending an object f : c′ → Tc to the composite c
ηc−→ TT opc

Tf−→ Tc′ and (r : c → d, s : d′ → c′) to
(s : d′ → c′, r : c→ d).

It is easy to see that the duality on D(C , T, η) is strict. There are duality preserving functors

(I, ι) : (C , T, η)→ D(C , T, η)

given by I(c) = (c, T c, idT (c)), I(f) = (f, Tf) and ιc = (idT (c), ηc) and

(K,κ) : D(C , T, η)→ (C , T, η),

given by K(c, c′, f) = c, K(r, s) = r and κ(c,c′,f) = f . These induce homotopy inverse weak equivalences
NC ' NDC and NSym(C ) ' NSym(DC ). Both the construction D and the functors K and I are
functorial in (C , T, η) for duality preserving functors.

A strict duality T on a category C gives a map

NT : (NC )op = N(C op)
∼=−→ NC

such that NT ◦ (NT )op = idNC . We know from Lemma A.1 that this is equivalent to extending the
simplicial structure of NC to a real simplicial structure. It follows that the realization has an induced
C2-action given by

[(c0
f1−→ . . .

fn−→ cn, t0, . . . tn)] 7→ [(cn
Tfn−→ . . .

Tf1−→ Tc0, tn, . . . t0)],

for (c0
f1−→ . . .

fn−→ cn, t0, . . . tn) ∈ NnC × ∆n. Thus, from the topological perspective the effect of the
D-construction is to replace the geometric realization |NC |, which has an action of C2 in the homotopy
category, by the bigger space |NDC | which has a continuous action of C2. The actions are compatible in
the sense that the maps |NI| and |NK| are mutually inverse isomorphisms of C2-objects in the homotopy
category.
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Definition 4.7. Let C be a category. Its subdivision SdC is a category given as follows: An object of
SdC is a morphism f : a→ b in C and a map from f : a→ b to g : c→ d is a pair (h, i) of maps such that
the following diagram commutes

a
f
//

h

��

b

c g
// d.

i

OO

Composition is given by (h′, i′) ◦ (h, i) = (h′ ◦ h, i ◦ i′).

Note that SdNC = NSdC . If (C , T, η) is a category with duality then there is an induced functor

SdT : SdC → SdC

given by SdT (a
f−→ b) = Tb

Tf−→ Ta and SdT (h, i) = (Ti, Th). If T is a strict duality then Sym(C ) is the
category fixed under the C2-action defined by SdT , so using the strictification D every Sym-category is
up to homotopy a category of fixed points.

5 K-theory of additive categories with duality

Definition 5.1. Let C be a category and let X1 and X2 be objects of C . A biproduct diagram for the
pair (X1, X2) is a diagram

X1
i1
// Y

p2
//

p1
oo X2

i2
oo (1)

in C such that pj ◦ ij = idXj , the pj-s express Y as the product of X1 and X2 and the ij-s express Y as a
coproduct of X1 and X2.

If C is a category which has a zero object and each pair of objects has a biproduct diagram in C the
hom-sets of C naturally inherit the structure of commutative monoids such that composition is bilinear
[ML98, VIII,2]. We call such a category C additive if the hom-sets are abelian groups, not just monoids. A
functor between additive categories is called additive if it preserves biproducts and zero-objects. Additive
functors induce group homomorphisms on hom-groups.

Let X be a finite pointed set. The category Q(X) is defined as follows: The objects in Q(X) are the
pointed subsets U ⊆ X. A morphism U → V of pointed subsets is a pointed subset of the intersection
U ∩ V . The composition of two subsets A ⊆ U ∩ V and B ⊆ V ∩ W is A ∩ B ⊆ U ∩ W . Note that
A ⊆ U ∩ V can be thought of both as a map from U to V and as a map from V to U this gives an
isomorphism Q(X) ∼= Q(X)op.

Definition 5.2. Let C be an additive category and X a finite pointed set. A sum-diagram in C indexed
by X is a functor

A : Q(X)→ C

such that for any pointed subset U ⊆ X the maps A(U) → A({u, ∗}) induced by the pointed subsets
{u, ∗} ⊆ U induce an isomorphism

A(U)
∼=−→

∏
u∈U\{∗}

A({u, ∗}).

We write C (X) for the full subcategory of sum-diagrams in the functor category Fun(Q(X),C ).
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A pointed category is a category C with a chosen object 0C . When C is additive 0C will always be
a zero-object, but in general it need not be. We say that a functor between pointed categories is pointed
if it preserves the chosen objects. Many of the constructions we will do in the following rely on having
chosen base points. To avoid confusion and to make our constructions functorial we will usually work with
pointed categories.

For a pointed additive category and a finite pointed set X we require that the elements of C (X) be
pointed, i.e., that the send the subset {∗} to 0C . We write CX for the (pointed) category Fun∗(X,C ) of
pointed functors from X to C , where we think of X as a discrete category. There is a natural evaluation
functor eX : C (X) → CX given on objects by eX(A)(x) = A({x, ∗}) and similarly for morphisms. The
following lemma is easily verified.

Lemma 5.3: Let C be a pointed additive category. For any finite pointed set X the functor

eX : C (X)→ CX

is an equivalence of categories.

A pointed map f : X → Y induces a pushforward functor f∗ : C (X)→ C (Y ) given by

(f∗(A))(U) = A(f−1(U \ {∗}) ∪ {∗})).

Given two composable maps f and g of finite pointed sets it is not hard to see that (f ◦ g)∗ = f∗ ◦ g∗, so
that we get a functor

C (−) : FinSet∗ → Cat∗,

where FinSet∗ is the category of finite sets and pointed maps and Cat∗ is the category of V -small pointed
categories and pointed functors between them. This notion coincides up to suitable equivalence with Segal’s
Γ-category construction [Seg74]. If S is a pointed simplicial set which is finite in each simplicial level we
can regard it as a functor S : ∆op → FinSet∗ and form the composite functor C (S) which is a simplicial
pointed category, i.e. a simplicial object in Cat∗.

Definition 5.4. An additive category with weak equivalences is a pair (C , wC ) where C is an additive
category and wC ⊆ C is a subcategory such that all isomorphisms are in wC and such that if f and g are
in wC then their coproduct f ⊕ g is in wC .

A map F : (C , wC ) → (C ′, w′C ′) of additive categories with weak equivalences is an additive functor
which preserves weak equivalences. It is an equivalence of additive categories with weak equivalences if it
has an additive inverse which preserves weak equivalences. If C is pointed we take wC to be pointed with
the same chosen object as C .

Let (C , wC ) be a pointed additive category with weak equivalences and X a finite pointed set. Then
C (X) is additive and we define the subcategory wC (X) ⊆ C (X) to have the same objects as C (X) and
morphisms that are pointwise in wC . It is a subcategory of weak equivalences in C (X). If f : X → Y is a
pointed map the functor f∗ maps wC (X) into wC (Y ), so there is an induced functor

wC (−) : FinSet∗ → Cat∗.

As in Lemma 5.3 the functor weX : wC (X) → wCX induced by eX is an equivalence of categories. We
write S1 for the simplicial circle ∆1/∂∆1, with basepoint [∂∆1]. Segal showed in [Seg74] that the space
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Ω|NwC (S1)| is a model for the algebraic K-theory of (C , wC ), analogous to the space Ω|BM | for a
simplicial monoid M .

The functor wC → wC (S1
1) sending an object c to the diagram with value c on the non-trivial subset

of S1
1 and 0C on {∗} is an equivalence of categories. There is an induced map

∆1 �NwC → NwC (S1)

of bisimplicial sets which in turn induces a map

λC : |NwC | → Ω|NwC (S1)|

of spaces. In [Seg74, 4] Segal proves a group completion theorem for the map λC analogous to 3.8. We will
mimic the treatment of the monoid case above to reprove Segal’s result and extend it to an equivariant
statement analogous to Theorem 3.12 in the case that C has an additive duality.

Lemma 5.5: (see e.g. [HM]) Let (C , wC ) be an additive category with weak equivalences. Then there is
a pointed additive category with weak equivalences (C ′, w′C ′) and an additive equivalence F : (C , wC ) →
(C ′, w′C ′) such that (C ′, w′C ′) has a coproduct functor

⊕ : C ′ × C ′ → C ′

making C ′ a strictly unital, strictly associative symmetric monoidal category.

The construction wC (S1) makes sense also for non-pointed C but one must choose a basepoint for
Ω|NwC (S1)| and λC to be defined. This can be done is such a way that the induced map FS1 : wC (S1)→
w′C ′(S1) gives a homotopy equivalence on realizations and there is a commutative diagram

|NwC |

F
��

λC // Ω|NwC (S1)|

Ω|NFS1 |
��

|Nw′C ′|
λ′C

// Ω|Nw′C ′(S1)|

of spaces, in which the vertical maps are homotopy equivalences and H-maps. From now on we assume,
without loss of generality, that (C , wC ) is pointed and has a coproduct functor ⊕ as in Lemma 5.5.

The path components of the nerve NwC will be called weak equivalence classes. The set π0NwC of
such classes is a commutative monoid under the operation [a] + [b] = [a⊕ b]. We assume that the π0NwC
has a cofinal generator represented by an object t of C . Then there is a functor t ⊕ − : C → C which
restricts to an endofunctor on wC . By analogy with the monoid case above we form the diagram

wC
t⊕−−→ wC

t⊕−−→ wC
t⊕−−→ · · ·

of categories. We define N to be the poset category of natural numbers with the usual ordering

0→ 1→ 2→ · · ·

so that the above diagram of categories becomes a functor D : N → Cat in the obvious way. Now set
wC∞ = N o D, where o denotes the Grothendieck construction (see e.g. [Tho79]). The objects of the
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category wC∞ are pairs (m, c) ∈ N× obC and a map (n, c) → (n+ k, d) is a map (t⊕−)k(c) → d in wC
(see also [Gra76, p.8]). Thomason [Tho79, 1.2] constructs a natural weak equivalence

hocolim(ND)→ NwC∞.

Since the nerve NwC is a simplicial monoid, its homology H∗(NwC ) is a ring under the induced Pontrjagin
product. The following is a special case of Lemma 3.4.

Lemma 5.6: The canonical functor wC → wC∞ sending an object c to (0, c) induces an isomorphism of
H∗(NwC )-algebras

H∗(NwC )[π0(NwC )−1]
∼=−→ H∗(NwC∞).

We now recall the simplicial path construction (see [Wal85, 1.5] for details). Define the shift functor
P : ∆ → ∆ by P ([n]) = [0] t [n] = [n+ 1] and P (α) = id[0] t α. For a simplicial object X : ∆op → A the
(simplicial) path object PX on X is defined as PX = X ◦ P op. The natural transformation δ0 : Id∆ → P
given on objects by δ0 : [n] → [n + 1] gives a natural map d0 : PX → X. For a simplicial set X there
is a natural map PX → X0 onto the vertices of X which is a simplicial homotopy equivalence [Wal85,
1.5.1]. In the case of the simplicial circle the map d0 : PS1 → S1 induces a map wC (PS1) → wC (S1)

of simplicial categories which we will also call d0. There is a simplicial homotopy equivalence PS1 '−→ ∗
which induces a weak equivalence NwC (PS1)

'−→ NwC (∗) ' ∗ of bisimplicial sets. Let ζn ∈ ∆1
n be the

element such that ζn(0) = 0 and ζn(i) = 1 for i ≥ 1. We denote its image in the quotient set ∆1
n/∂∆1

n

by zn and write c̃n+1 for the diagram in C ((PS1)n) = C (S1
n+1) whose value is c ∈ obC on all pointed

subsets containing zn+1 and 0C on the other subsets. The maps between c’s in c̃n+1 are all identities and
the remaining maps are zero. The functor d0 : C (S1

n+1)→ C (S1
n) restricts diagrams to the part away from

zn+1, so d0(c̃n+1) = 0wC (S1
n), the 0-diagram. Now let c = t, a homotopy cofinal generator. Adding the

object t̃n+1 from the left gives a functor

t̃n+1 ⊕− : wC (S1
n+1)→ wC (S1

n+1).

We define wC (S1
n+1)∞ to be the Grothendieck construction on the diagram

wC (S1
n+1)

t̃n+1⊕−−→ wC (S1
n+1)

t̃n+1⊕−−→ wC (S1
n+1)

t̃n+1⊕−−→ · · · .

Since 0 is a strict unit in C the system functors {t̃n+1 ⊕ −}n≥0 commutes with the structure maps of
wC (PS1), and the map d0 : wC (PS1) → wC (S1). Therefore the wC (S1

n+1)∞’s assemble to a simplicial
category wC (PS1)∞ with a map d0,∞ : wC (PS1)∞ → wC (S1). The inclusion of wC (S1

n+1) in the first
spot of the diagram gives a map wC (PS1)→ wC (PS1)∞ such that the diagram

wC (PS1) //

d0 &&

wC (PS1)∞

d0,∞xx

wC (S1)

commutes.

Proposition 5.7: The induced map on nerves

Nd0,∞ : NwC (PS1)∞ → NwC (S1)

is a homology fibration of bisimplicial sets.
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Proof. We will show that the map satisfies the conditions of Theorem 2.15. First, we verify that it is a
level-wise homology fibration. The functor t̃n+1⊕− commutes with (d0,∞)n so the evaluation functors give
a commuting square

wC (S1
n+1)∞

en,∞
//

��

wC∞ × wC×
n

p

��

wC (S1
n) en

// wC×
n
,

(2)

where the horizontal arrows are equivalences of categories. Assume given a simplex σ : ∆m → NwC (S1
n)

and consider the resulting diagram

∆m σ //

id

��

NwC (S1
n)

Nen
��

NwC (S1
n+1)∞

Nen,∞
��

N(d0,∞)n
oo

∆m

N(en◦σ)
// NwC×

n
NwC∞ ×NwC×

n
.p

oo

Since the vertical maps are weak equivalences the induced map on homotopy pullbacks is a weak equiva-
lence. The map p is obviously a homology fibration, so it suffices to show that the map on actual pullbacks
is a weak equivalence. Nerves commute with limits, so this pullback can be taken in Cat∗ where it is
straightforward to check that the map on pullbacks is an equivalence of categories.

To see that the second condition of 2.15 holds we observe that the fiber over an object c in wC (S1
n) is

equivalent to wC∞. Now we conclude by Lemma 5.6 in the same way as in the proof of Lemma 3.5.

The proof of the following theorem (cf. [Seg74, 5], [FM94, Q.9]) is similar to that of 3.8.

Theorem 5.8 (K-theoretic group completion): The map λC induces an isomorphism of H∗(NwC )-
algebras

H∗(NwC )[π0(NwC )−1]
∼=−→ H∗(Ω|NwC (S1)|).

We now turn to additive categories with duality.

Definition 5.9. An additive category with duality and weak equivalences is a tuple (C , T, η, wC ) such
that:

• T is additive and η is takes values in weak equivalences,

• T and η give a duality on C ,

• T sends (opposites of) weak equivalences to weak equivalences,

• (C , wC ) is an additive category with weak equivalences.

Example 5.10. Let (R,α, ε) be a Wall-anti-structure. Then the category P (R,α, ε) becomes an additive
category with duality and weak equivalences if we take the weak equivalences to be the isomorphisms.
In applications it is sometimes useful to work with bounded chain complexes in P (R,α, ε) with quasi-
isomorphisms as weak equivalences, see e.g. Schlichting’s paper [Sch10b].
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To get a strict duality we can apply the functor D ; the category DC is additive since C is so. Taking the
weak equivalences in DC to be pairs of maps in wC gives D(C , T, η) the structure of an additive category
with duality and weak equivalences which is a functorial and better behaved replacement of (C , T, η, wC ).
There is a commutative square of H-spaces and H-maps

|NwC |

��

λC // Ω|NwC (S1)|

��

|NwDC | λDC // Ω|NwDC (S1)|

where the vertical maps are weak equivalences. Note that Lemma 5.5 also applies to additive categories
with duality and weak equivalences, so that we may assume that our categories have a strict duality T , a
duality preserving direct sum functor (−⊕−) which is strictly associative and strictly unital and that the
unit 0 is fixed under the duality.

Remark 5.11. Let ν : T (−) ⊕ T (−) → T (− ⊕ −) be the canonical natural isomorphism. The category
Sym(wC ) has a functorial sum operation ⊥ called the orthogonal sum given by

(f : c→ T (c)) ⊥ (g : d→ Td) = c⊕ d f⊕g−→ T (c)⊕ T (d)
νc,d−→ T (c⊕ d).

Under the induced operation the set π0(Sym(wC )) becomes a commutative monoid with unit represented

by the 0-form 0→ 0. For any object c
f−→ d of Sd(wC ) we can form the hyperbolic form H(f) on c

f−→ d
which is the object

c⊕ T (d)

 0 T (f)
ηd ◦ f 0


// T (c)⊕ TT (d)

νc,T (d)
// T (c⊕ T (d))

of Sym(wC ). This is also compatible with maps in SdwC . Together the functors ⊥ and H give an action
of SdwC on Sym(wC ), in the sense of [Gra76, p.2], which analogous to the action of M on MC2 of section
3.

Let X be a pointed C2-set with σ : X → X representing the action of the non-trivial group element.
The category Q(X) inherits a strict duality t by taking t(U) = σ(U) and similarly for morphisms. If C is
an additive category with weak equivalences and strict duality there is an induced duality TX on wC (X)
given by taking a diagram

A : Q(X)→ C

to the composite diagram

Q(X)
top−→ Q(X)op

Aop−→ C op T−→ C .

Clearly the duality TX is strict and functorial in both X and (C , T ). Let n+ = {0, 1, . . . , n} based at 0
with the action of C2 taking an element k ≥ 1 to n − k + 1 and fixing 0. If X = 2+ then the action
interchanges the two non-trivial elements and the duality on C (2+) sends the diagram

X
i1
// Y

p2
//

p1
oo X ′

i2
oo
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to the diagram

TX ′
Tp2

// TY
T i1 //

T i2oo TX.
Tp1
oo

We will always give wC×
n

the strict duality given on objects by

(X1, . . . , Xn) 7→ (TXn, . . . , TX1)

and similarly for maps. The evaluation map

en : wC (n+)→ wC×
n

is compatible with these dualities and is an equivalences of categories with duality.

We will now use the real simplicial set S1,1 = ∆1
R/∂∆1

R to describe an action of C2 on the algebraic
K-theory space of an additive category with strict duality and weak equivalences. For each m ≥ 0 and
each non-basepoint simplex x ∈ S1,1

m there is a unique m-simplex ξ ∈ ∆1
m mapping to x under the quotient

map. The simplices ∆1
m are linearly ordered by ξ ≤ ζ ⇐⇒ ξ(i) ≤ ζ(i) for all i, and this gives a linear

ordering of S1,1
m \ {∗} which is reversed by the real simplicial structure map wm. For each n ≥ 0 the

category wC (S1,1
n ) inherits a duality Tn from the action of wn and the duality T . There are induced maps

wm,n : NnwC (S1,1
m )→ NnwC (S1,1

m )

given by

wm,n(A0
f1−→ . . .

fn−→ An) = (TmAn
Tmfn−→ . . .

Tmf1−→ TmA0),

which satisfy the relations wm,n◦wm,n = id and wm,n◦(α, β)∗ = (αop, βop)∗◦wp,q for maps (α, β) : ([m], [n])→
([p], [q]) in ∆×∆. After subdivision these assemble to a map of bisimplicial sets

W : SdNwC (SdS1,1)→ SdNwC (SdS1,1)

which in level (m,n) is the map Nw2m+1,2n+1.

The bisimplicial set SdNwC (SdS1,1) is naturally isomorphic to NSdwC (SdS1,1) and under this iden-
tification the map W comes from a map of simplicial categories

W̃ : SdwC (SdS1,1)→ SdwC (SdS1,1)

which squares to the identity and hence defines an action of C2 on SdwC (SdS1,1). Let

e1,1
n : wC (S1,1

n )→ wC×
n

be the evaluation map which preserves the ordering of the underlying indexing set. It is an equivalence of
categories with duality and it induces a functor

Sde1,1
2n+1 : SdwC (S1,1

2n+1)→ SdwC×
2n+1

which is C2-equivariant. The category SdwC×
2n+1

has the action given by

(f1, . . . , f2n+1) 7→ (Tf2n+1, . . . , T f1),
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so a fixed object is of the form (f1, . . . , fn, fn+1, T fn, . . . , T f1) with Tfn+1 = fn+1. We see that the last n
factors are redundant, so evaluation followed by projection on the first n+ 1 coordinates defines a functor

Sym(wC (S1,1
2n+1))→ SdwC×

n × Sym(wC )

which is an equivalence of categories.
The map d0 : PS1 → S1 induces a map Sdd0 : SdPS1 → SdS1 and hence a map of simplicial categories

SdwC (SdPS1)→ SdwC (SdS1).

Define Pb(C , T, wC ) to be the pullback in the diagram

Pb(C , T, wC ) //

��

SdwC (SdPS1)

��

Sym(wC (SdS1,1)) // SdwC (SdS1)

of simplicial categories (without C2-actions) where the bottom map is the inclusion functor and the right
hand vertical map is induced by Sdd0. Note that the evaluation map gives an equivalence of categories
(without duality)

Pb(C , T, wC )n ' SdwC × SdwC×
n × Sym(wC ).

Thinking of Sym(wC ) as a constant simplicial category we define a map of simplicial categories

i : Sym(wC )→ Pb(C , T, wC )

which in level n sends an object f : a→ Ta to the sum-diagram with value f : a→ Ta on subsets containing
the unique non-trivial fixed point of S1,1

2n+1 and id : 0→ 0 on subsets not containing it. The morphisms in
in(f) are identities or 0 as for t̃n.

Lemma 5.12: The map i induces a homology equivalence on nerves.

Proof. Under the equivalences Pb(C , T, wC ) ' SdwC × SdwC×
n × Sym(wC ) the functor in corresponds

to the inclusion of Sym(wC ) by

(f : a→ Ta) 7→ (id : 0→ 0, id : 0→ 0, . . . , id : 0→ 0, f : a→ Ta).

Let k be a field and let h∗(−) be homology with coefficients in k. We take R to be the graded ring
h∗(NSdwC ) and P to be the graded left R-module h∗(NSym(wC )), where the action comes from the
one described in Remark 5.11. Since k is a field the Künneth formula gives an isomorphism between the
simplicial graded k-vector space [n] 7→ h∗(Pb(C , T, wC )n) and the bar construction B(R,R, P ). The map
in homology induced by i is map P → B(R,R, P ) which in degree n is the map P → R ⊗R⊗n ⊗ P given
on generators by

p 7→ 1⊗ 1⊗ · · · ⊗ 1⊗ p.

This is a quasi-isomorphism of simplicial graded k-vector spaces. Hence, using the spectral sequence

Ep,q2 = Hp(hq(X)) =⇒ hp+q(dX)

for bisimplicial sets X (see e.g., [GJ09, IV.2]) we get an isomorphism on homology with k coefficients and,
since this holds for any field k, an isomorphism on homology with integral coefficients.
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Now assume that C has an object t whose class in π0NwC is a cofinal generator. By a colimit argument
as in the proof of Theorem 3.8 this can be done without loss of generality. The subdivision of the functor

t ⊕ − : wC → wC is the functor that adds t
id−→ t to objects a → b of SdwC . Similarly, the subdivision

Sdt̃n ⊕− of the functor t̃⊕−, defined earlier, adds the map of sum-diagrams t̃n
id−→ t̃n to objects A→ B

in SdwC (S1,1
n ). For each n ≥ 0 there is a diagram

SdwC (S1
n)

Sdt̃n⊕−−→ SdwC (S1
n)

Sdt̃n⊕−−→ · · ·

and we define SdwC∞ and SdwC (S1
n)∞ to be the Grothendieck constructions on the diagrams as before.

Also the map
(Sdd0)∗ : SdwC (S1

2n+2)→ SdwC (S1
2n+1)

commutes with the maps Sdt̃n ⊕− and just as before there is an induced map

SdwC (SdPS1)∞ → SdwC (SdS1)

which induces a homology fibration on nerves. The maps Sdt̃n ⊕ − also induce a map on the pullback
Pb(C , T, wC ) which commutes with the projection to Sym(wC (SdS1,1)). There results a pullback square
of simplicial categories

Pb(C , T, wC )∞ //

��

SdwC (SdPS1)∞

��

Sym(wC (SdS1,1)) // SdwC (SdS1)

where the vertical maps induce homology fibrations on nerves. The inclusion of Pb(C , T, wC ) into
Pb(C , T, wC )∞ at the start of the diagram defining the latter will be called j.

Lemma 5.13: The map
j ◦ i : Sym(wC )→ Pb(C , T, wC )∞

induces an isomorphism

H∗(NSym(wC )[π0NwC−1]
∼=−→ H∗(NPb(C , T, wC )∞)

of left H∗(NSdwC )-modules.

Proof. By Lemma 5.12 the map i induces an isomorphism H∗(NSym(wC )) ∼= H∗(NPb(C , T, wC )) of left
H∗(NSdwC )-modules. The map

Sdt̃ : Pb(C , T, wC )→ Pb(C , T, wC )

induces left multiplication by [t] on H∗(NPb(C , T, wC )), and by Thomason’s theorem [Tho79, 1.2] we get
a sequence of isomorphisms

H∗(NPb(C , T, wC )∞) ∼= colim

(
H∗ (NSym(wC ))

[t]·−→ H∗ (NSym(wC ))
[t]·−→ . . .

)
∼= H∗(NSym(wC ))[t−1]

∼= H∗(NSym(wC ))[π0NwC−1]

of left H∗(NSdwC )-modules as desired.
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The proof of the following statement is similar to that of Theorem 3.12. We use that there is a natural
ring isomorphism H∗(NSdwC ) ∼= H∗(NwC ).

Theorem 5.14: Let (C , wC , T ) be an additive category with strict duality and weak equivalences. Then
the map |NSym(wC )| → (Ω1,1|NwC (S1,1)|)C2 induces isomorphisms

π0(NSym(wC ))[π0NwC−1]
∼=−→ π0((Ω1,1|NwC (S1,1)|)C2)

of monoids and
H∗(NSym(wC ))[π0NwC−1]→ H∗((Ω

1,1|NwC (S1,1)|)C2)

of left H∗(NwC )-modules.

We write iA for the subcategory og isomorphisms in the category A . For a Wall-anti-structure (R,α, ε),
see Examples 4.3 and5.10, we set

K1,1
0 (R,α, ε) = π0(Ω1,1|NSym(iDP (R,α, ε))(S1,1)|)C2 .

We will now investigate the two fundamental cases when R = Z and α = idZ. They are ε = 1 and ε = −1.
In the first case observe that Sym(iP (Z, idZ, 1) is the category of non-degenerate symmetric bilinear form
spaces over Z.

Proposition 5.15: The monoid K1,1
0 (Z, idZ, 1) is not a group.

Proof. By Theorem 5.14 there is an isomorphism

K1,1
0 (Z, idZ, 1) ∼= π0|NSym(iDP (Z, idZ, 1))|[π0(NiD(P (Z)))−1]

and the right hand side is isomorphic to the monoid M := π0NSym(iP (Z, idZ, 1))[π0(Ni(P (Z)))−1]. We
will show that the latter is not a group by finding an element that does not have an inverse.

The n-th hyperbolic space Hn is the symmetric bilinear form space with underlying abelian group Z2n

and the symmetric form given by the matrix (
0 In
In 0

)
,

where In denotes the n× n identity matrix. The monoid π0(Ni(P (Z))), which is isomorphic to N, acts on
π0NSym(iP (Z, idZ, 1)) by adding hyperbolic spaces Hn via the orthogonal sum. Let 〈1〉 denote the group
Z with the symmetric bilinear form given by ordinary multiplication. Assume that [〈1〉] has an inverse
in M . Elements of M can be represented as differences [a] − [Hm] where a is in Sym(iP (Z, idZ, 1). An
inverse for [〈1〉] is a difference [a]− [Hm] such that [〈1〉] + [a]− [Hm] = 0 in M , or equivalently such that
for some n the equation

[〈1〉] + [a] + [Hn] = [Hm] + [Hn]

holds in π0NSym(iP (Z, idZ, 1)). Since Hm ⊥ Hn ∼= Hm+n, this means that we have an isomorphism

〈1〉 ⊥ a ⊥ Hn ∼= Hm+n.

On the left hand side the element (1, 0, 0) pairs with itself to 1 ∈ Z under the bilinear form. However,
by direct calculation one can see that on the right hand side any element in Hm+n gives an even number
when paired with itself. Hence no such isomorphism can exist and K1,1

0 (Z, idZ, 1) is not a group.
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The second case is Sym(iP (Z, idZ,−1)), the category of non-degenerate symplectic bilinear form spaces
over Z. We write −1H

n(Z) for the symplectic form module with matrix(
0 In
−In 0

)
.

By [MH73, 4, 3.5] any symplectic form module over Z is isomorphic to −1H
n(Z) for a uniquely determined

n ≥ 0. We call this number the rank of the symplectic module. The corresponding rank map

π0|NSym(iP (Z, idZ,−1)| → N

is an isomorphism of monoids.

Proposition 5.16: The rank map induces an isomorphism

K1,1
0 (Z, idZ,−1) ∼= Z.

A Appendix: The category ∆R

The category ∆R has the same objects as the finite ordinal category ∆ but more morphisms. In addition
to the maps of ∆ there is for each n ≥ 0 a morphism ωn : [n]→ [n], which should be thought of as reversing
the ordering on [n]. The maps satisfy the relations

ωn ◦ ωn = id[n] (3)

ωn ◦ σj = σn−j ◦ ωn+1 (4)

ωn ◦ δi = δn−i ◦ ωn−1 (5)

for 0 ≥ i, j ≥ n. Following [HM] a functor from (∆R)op to sets is called a real simplicial set and similarly
for functors into other categories. The maps induced in a real simplicial object by ωn is denoted by wn.

If we restrict a real simplicial set X to ∆op the realization |(X|∆op)|carries an action of C2 which for
(x, t0, . . . , tn) ∈ Xn ×∆n acts by

[(x, t0, . . . , tn)] 7→ [(wn(x), tn, . . . , t0)],

(see [HM] for details). Recall the functor

(−)op : ∆→ ∆

which is the identity on objects and which sends δi : [n]→ [n+ 1] to (δi)op = δn+1−i and σj : [n]→ [n− 1]
to (σj)op = σn−1−j . Clearly (−)op ◦ (−)op = Id∆. Let A be any category. Given a simplicial object
X : ∆op → A its opposite is defined by

Xop = X ◦ (−)op.

This defines a functor on the functor category A ∆op
which squares to the identity.

Lemma A.1: Giving an extension of a functor X : ∆op → A to the category ∆Rop is equivalent to giving
a map ω : Xop → X such that ω ◦ ωop = idX .
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Now recall the functor Sd : ∆→ ∆ given by Sd[n] = [2n+ 1] and Sd(θ) = θ t θop. The Segal edgewise
subdivision of X is defined by SdX = X ◦ Sd. It gives an endofunctor on A ∆op

and it is not hard to see
that Sd ◦ (−)op = Sd, so that SdXop = SdX for any simplicial object X. Given any real simplicial object
X : (∆R)op → A we can regard it as a simplicial object X|∆op with a map ω : Xop → X as in Lemma A.1.
On the subdivision we get a map

Sd(ω) : SdXop = SdX → SdX

such that Sd(ω)2 = idSdX . In other words, Sd(ω) defines an action of C2 on SdX. For a real simplicial

set X the natural homeomorphism |Sd(X|∆op)|
∼=−→ |X|∆op | of [Seg73, A.1] is C2-equivariant.

Example A.2. The representable functor ∆1
R = hom∆R(−, [1]) realizes to the topological 1-simplex with

the action of C2 given by reflection through the middle point. Its boundary ∂∆1
R realizes to the two end

points, which are interchanged by the C2-action. By abuse of notation we write S1,1 for the real simplicial
set ∆1

R/∂∆1
R. The realization |S1,1| is C2-homeomorphic to the usual S1,1.
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Equivariant deloopings in Real Algebraic K-theory
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Abstract

This paper is about Real algebraicK-theory which is an algebraic analogue of Atiyah’s RealK-theory,
defined by Hesselholt and Madsen. Real algebraic K-theory is a functor, denoted by KR, which asso-
ciates to an exact category C with duality and weak equivalence a C2-space whose underlying homotopy
type is that of the usual Waldhausen K-theory of C . We first describe Hesselholt and Madsen’s defini-
tion of KR in terms of the S2,1-construction, which is similar in spirit to Waldhausen’s S-construction.
Then we prove two equivariant delooping result for both Waldhausen’s original construction and for the
S2,1-construction. Using this we show that the two constructions yield the same result up to homotopy,
which shows that the fixed points of KR-theory agree with Grothendieck-Witt-theory, or hermitian K-
theory, as studied by Karoubi, Schlichting, Hornbostel and others. As applications of this we translate
some classical results of Quillen and Schlichting into equivariant language.
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1 Introduction

In his paper “K-theory and Reality” [Ati66] Atiyah defined an equivariant cohomology theory called
“Real K-theory” or KR-theory which combines into one C2-equivariant object the (non-equivariant) co-
homology theories KO, KU and Anderson’s so called self-conjugate K-theory KSC. Recently Hesselholt
and Madsen have defined a similar C2-equivariant version of algebraic K-theory called Real algebraic
K-theory or algebraic KR-theory. Its input is an exact category C with weak equivalences and duality
and its output is a C2-space KR(C ). The underlying pointed space of KR(C ) has the homotopy type
of the algebraic K-theory space of C in the sense of Quillen [Qui73] and Waldhausen [Wal85].

In the present paper we investigate the relation of algebraic KR-theory to Waldhausen K-theory
and to Grothendieck-Witt theory GW , also called hermitian K-theory, which goes back to Karoubi’s
work in the 70’s and in recent years to the work of Schlichting, Hornbostel and others. After giving the
necessary setup for exact categories and categories with duality we recall Waldhausen’s S-construction
for an exact category with weak equivalences and strict duality. This is essentially the same construction
as the one used by Schlichting in [Sch10b] to define GW (C ) except that we do not need to apply any
subdivisions and the geometric realization |wS1,1C | is a pointed C2-space. We will use the notation
Sp,q for the p-sphere SRp

where C2 acts by switching signs on the last q-coordinates. The reason for the
superscript ”1, 1” in |wS1,1C | is the equivariant delooping map

|wC | → Ω1,1|wS1,1C |,

where in general, for a pointed C2-space X we define Ωp,qX = Map∗(S
p,q, X) with the conjugation

action of C2. In order to define algebraic KR-theory we introduce a second S-construction called S2,1C ,
which was first defined by Hesselholt and Madsen in [HM]. It is similar in spirit to the S1,1-construction
discussed above and comes with a delooping map

|wC | → Ω2,1|wS2,1C |

with respect to the regular representation sphere S2,1 of C2.
In the next section we prove that the two S-construction give equivariant deloopings with respect

to each other. The proof is an equivariant version of Waldhausen’s delooping argument using a path
constructions and additivity in the equivariant setting. The approach is inspired by the one used in
the PhD-thesis of Dotto [Dot12] to construct equivariant deloopings for “Real Topological Hochschild
Homology”, or THR. Putting several of these deloopings together we conclude in 4.8 that the KR-
spectrum, defined by iterating the S2,1-construction on C , is a positively fibrant ρC2 -spectrum. This
mirrors the non-equivariant behavior of Waldhausen’s K-theory spectrum. Another important outcome
of the delooping results is Theorem 4.9 which gives a natural weak C2-equivalence

|wS1,1C | ' Ω1,0|wS2,1C |.

From this we see that KR-theory, which is defined in terms of the right hand space agrees up to
homotopy with the K-theory and Grothendieck-Witt theory which are defined in terms of the left hand
space. Hesselholt and Madsen give a group completion result, see Theorem 3.5 or [HM], for KR-theory
of split exact categories and the above result extends this to Grothendieck-Witt theory, i.e., it shows
that GW (C ) is a group completion of the category of symmetric forms in C . Previously this was only
known under the hypothesis that 2 acts invertibly on the Hom-groups of C , see [Sch04, Corollary 4.6].

The last section is devoted to reformulating two classical results in algebraic K-theory for algebraic
KR-theory. The first one is the Cofinality Theorem, see [Gra76, p.8] for K-theory and [Sch10a, 5.2]
for Grothendieck-Witt theory. The second result is the Dévissage Theorem, again see [Qui73, 5.4] for
the K-theory version and [Sch10a, 6.1] for the Grothendieck-Witt result. The results in this section are
not essentially new but we feel there is something to be gained by formulating them in the equivariant
context. The reader familiar with the classical theorems in algebraic K-theory may wonder how the
Resolution Theorem and the Localization Theorem generalize to KR-theory. For Resolution the reader
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should consult Schlichting’s formulation [Sch10b, Lemma 9] which carries over easily to KR-theory by
Theorem 4.10. Localization is proved for Grothendieck-Witt theory by Hornbostel and Schlichting in
[HS04] under the assumption that 2 is a unit in all the involved rings. The author plans to address
localization in KR-theory in a future paper.

The author wishes to thank his advisor Ib Madsen for guidance and support and for, along with Lars
Hesselholt, sharing results from [HM] with the author.

2 Definitions and setup

2.1 Real simplicial sets

Recall that the opposite of a map α : [m] → [n] in the finite ordinal category ∆ is the map ᾱ which is
given by ᾱ(i) = n− α(m− i). A real simplicial set is a simplicial set X with additional structure maps
wn : Xn → Xn satisfying the relations

w2
n = id (1)

α∗ ◦ wn = wm ◦ ᾱ∗, (2)

for all maps m,n ≥ 0 and α : [m]→ [n]. This can be encoded by defining the Real simplex category ∆R
which is the category ∆ extended by morphisms ωn : [n] → [n] satisfying relations dual to (1) and (2)
above. Note that in ∆R the equation

ωn ◦ α ◦ ωm = ᾱ

holds for all maps α : [m] → [n] from ∆. A Real simplicial set can equivalently be defined as a functor
X : ∆Rop → Set. The geometric realization of a Real simplicial set carries a natural C2-action given by

[x, t0, t1, . . . , tn] 7→ [wn(x), tn, . . . , t1, t0], for (x, t0, t1, . . . , tn) ∈ Xn ×∆n.

We write |X|R for this C2-space and |X| for the realization of the underlying simplicial set, considered
as an ordinary space. A map f : X → Y of Real simplicial sets is called a weak equivalence if it induces
an equivariant homotopy equivalence of C2-spaces after realization. The geometric realization of a Real
simplicial set is a C2-CW complex. It follows by the equivariant Whitehead theorem that f : X → Y is a
weak equivalence if and only if the maps |f | : |X| → |Y | on underlying spaces and |f |C2

R : |X|C2

R → |Y |
C2

R

on fixed points are weak eqiuvalences.
Recall Segal’s edgewise subdivision Sd which takes a simplicial set X to the simplicial set SdX given

by (SdX)n = X2n+1 with maps α : [m]→ [n] inducing (αq ᾱ)∗ : X2n+1 → X2m+1(see [Seg73, Appendix
1]). Where α q ᾱ is the map [2m + 1] → [2n + 1] that acts by α on the first m + 1 elements and ᾱ on
the last m + 1 elements. If X is a real simplicial set then it is easy to see that SdX has a simplicial
C2-action induced from the maps wn on X. For a simplicial set (or space) X Segal gives a natural

homeomorphism |SdX|
∼=−→ |X| (see [Seg73, A.1]). When X is Real simplicial this map is easily seen to

be equivariant, so we get:

Lemma 2.1: Let X be a real simplicial set. The natural map

|SdX| → |X|R

is a C2-equivariant homeomorphism.

A Real bisimplicial set is a bisimplicial set X with structure maps wp,q : Xp,q → Xp,q satisfying
w2
p,q = id and wp,q ◦ (α, β)∗ = (ᾱ, β̄)◦wm,n for all maps (α, β) : ([m], [n])→ ([p], [q]) in ∆×∆. Note that

a Real bisimplicial set is not the same as a functor from ∆Rop ×∆Rop to sets. However, the diagonal
of a Real bisimplicial set is a Real simplicial set. A real simplicial space will be simply a functor from
∆Rop to the category Top of compactly generated weak Hausdorff spaces and continuous maps.
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2.2 Exact categories with weak equivalences

Recall from [Qui73, 2], [Sch10a, p.4] that an exact category is a pair (C ,E ) where C is an additive
category and E is a class of sequences of maps

A
i−→ B

p−→ C (3)

in C which are called exact. Morphisms, such as i above, that appear as the first map in some exact
sequence will be called admissible monomorphism and will be depicted by �. Dually, a map which
appears as the last map in an exact sequence will be called an admissible epimorphism and will be
depicted by �. The class E is required to satisfy the following properties (cf. [Sch10a, p.4]):

1. In an exact sequence (3), the map i is a kernel of p and p is a cokernel of i.

2. If a sequence is isomorphic to an exact sequence, then it is an exact sequence.

3. Admissible monomorphisms are closed under composition and admissible epimorphisms are closed
under composition.

4. Any diagram Z ← X � Y can be completed to a pushout square

X // //

��

Y

��

Z //
j
// W

and the map j is an admissible monomorphism.

5. Any diagram Z � X ← Y can be completed to a pullback square

W
q
// //

��

Y

��

Z // // X

and the map q is an admissible epimorphism.

6. For any pair X,Y of objects of C the sequence

X
i1−→ X ⊕ Y p2−→ Y (4)

is exact, where i1 and p2 are the canonical inclusion and projection maps, respectively.

An exact sequence is called split exact if it is isomorphic to a sequence of the form (4). If all sequences
in an exact category C are split exact then C is called a split exact category. There is a unique split
exact structure on any additive category C and we will therefore suppress the class E from the notation
when discussing split exact categories.

A subcategory of weak equivalences in an exact category is a subcategory wC ⊆ C which contains
all isomorphisms in C , has the 2 out of 3 property for composition of maps and which is closed under
pushouts along admissible monomorphisms and pullbacks along admissible epimorphisms.

To avoid set theoretic problems we fix two Grothendieck universes U and V such that U ∈ V . All
exact categories will be small relative to V . To achieve this we will always assume that groups, rings,
modules and so on which inhabit our exact categories are in the smaller universe U . The nerves of our
exact categories and their geometric realizations will then be simplicial sets and topological spaces in V .
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2.3 Categories with duality

Definition 2.2. A category with duality is a triple (C , D, η) where D : C op → C is a functor and η is a
natural transformation IdC → D ◦Dop such that for each object c of C the equation ηDc = D(ηc) ◦ ηDc
holds.

The duality is called strict if D ◦ Dop = IdC and η = id, in this case we will omit η from the
notation. The category Sym(C , D, η) of symmetric forms in C has as objects pairs (c, ϕ) where c is an
object of C and ϕ : c → Dc is a map such that ϕ = Dϕ ◦ ηc. A map from (c, ϕ) to (d, ψ) is morphism
f : c→ d such that ϕ = Df ◦ ψ ◦ f , and composition is given by ordinary composition in C . A duality
preserving functor between categories with duality is a pair (F, ξ) : (C , D, η) → (C ′, D′, η′) where F is
a functor F : C → C ′ and ξ : F ◦D → D′ ◦ F is a natural transformation such that for each c in C the
equation ξDc◦F (ηc) = D′(ξc)◦η′F (c) holds. Such a functor induces a functor Sym(F, ξ) : Sym(C , D, η)→
Sym(C ′, D′, η′) which is given on objects by Sym(F, ξ)(c, ϕ) = (Fc, ξc ◦ Fϕ).

The subdivision SdC of C is the category whose objects are maps f : c → c′ in C and where a
morphism from f : c→ c′ to g : d→ d′ is a pair (h : c→ d, i : d′ → c′) such that f = i ◦ g ◦ h. The nerve
NSdC is Segal’s edgewise subdivision SdNC of the nerve of C . Since there is a natural isomorphism
of categories Sd(C op) ∼= SdC a duality D on C gives a covariant functor SdD : SdC → SdC . The
category Sym(C , D, η) is a kind of subcategory of fixed points in SdC . In the case of a strict duality
this is literally true; we have SdD2 = IdSdC and Sym(C , D, id) is the fixed category under the action
defined by SdD. Moreover, SdNC is a C2-simplicial set and Sym(C , D, id) = SdNCC2 .

A real simplicial category is a simplicial category C with duality maps in each simplicial degree
Dn : C op

n → Cn satisfying the relations D2
n = Id and Dm ◦ (α∗)op = (ᾱ)∗ ◦Dn for maps α : [m] → [n].

The nerve of a Real simplicial category is a Real bisimplicial set with wp,q = NpDq.

2.4 Exact categories with weak equivalences and duality

Definition 2.3. An exact category with weak equivalences and duality is a tuple (C ,E , wC , D, η) such
that

1. the pair (C ,E ) is an exact category,

2. the triple (C , D, η) a category with duality,

3. the transformation η takes values in wC ,

4. the functor D preserves exact sequences and weak equivalences.

We write Sym(C , w) for the category Sym(wC , D|wC , η|wC ). An object in Sym(C , w) will be called
a non-degenerate symmetric form in C . Such a form is a pair (X,ϕ), where ϕ : X

∼→ DX is a weak
equivalence. Note that in the equation ϕ = Dϕ ◦ ηX all maps are weak equivalences.

Example 2.4. Let A be a ring with anti-involution, that is, an additive self-map a 7→ ā such that
a · b = b̄ · ā and ¯̄a = a for all a, b ∈ A. We write P (A) for the category of finitely generated projective
right A-modules and for each P in P (A) we give P ∗ = HomA(P,A) the right(!) module structure
(λ · a)(p) = āλ(p), for λ ∈ P ∗. We give P (A) the split exact structure. Note, however, that since every
epimorphism onto a projective module splits, a sequence P ′ → P → P ′′ in P (A) is split exact if and
only if it is exact as a sequence of A-modules.

Let ε be either 1 or −1 and define εη to be the natural transformation with components εηP : P → P ∗∗

given by

p 7→ (λ 7→ ελ(p)).

We take the weak equivalences in P (A) to be the isomorphisms. The category of these will be denoted
by iP (A). With these choices the tuple (P (A), iP (A), (−)∗, εη) is a (split) exact category with weak
equivalences and duality.
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Next we consider the category Sym(P (A), i) of non-degenerate symmetric forms in P (A). Under

the (Hom,⊗)-adjunction for A-modules an object (P,ϕ : P
∼=−→ P ∗) corresponds to a biadditive map

ϕ̃ : P × P → A satisfying
ϕ̃(pa, qb) = āϕ̃(p, q)b and ϕ̃(p, q) = εϕ̃(q, p)

for p, q ∈ P and a, b ∈ A. Such maps are called non-degenerate ε-hermitian forms. A map in
Sym(P (A), i) is precisely an A-linear map on the underlying modules which preserves the ε-hermitian
form.

Example 2.5. Let fAb be the category of finite abelian groups. We set G∗ = HomAb(G,Q/Z) the
Pontryagin dual of G. The natural map ηG : G → G∗∗ is given by g 7→ (λ 7→ λ(g)). We take weak
equivalences to be isomorphisms and sequences to be exact if they are exact in the usual sense. These
choices give the structure of an exact category with weak equivalences and duality on fAb.

The category Sym(fAb, i) is the category of finite abelian groups G with a map ϕ : G
∼=−→ G∗ such

that the adjoint map ϕ̃ : G ⊗ G → Q/Z is a non-degenerate bilinear form. Such forms are sometimes
called ’linking forms’, since they appear as linking forms on homology groups of manifolds.

Here is an example where the weak equivalences are not isomorphisms.

Example 2.6. (cf. [Sch10b]) Let A be as in Example 2.4 and consider the category Chb(P (A)) of
bounded chain complexes in P (A). This becomes an exact category when we take the exact sequences
to be the ones that are level-wise split exact. We define the weak equivalences in Chb(P (A)) to be the
quasi-isomorphisms, i.e., the maps inducing isomorphisms on homology. The duality structure can be
extended from P (A) by taking a chain complex (C., d) to the chain complex given by D(C.)n = (C−n)∗

with n-th differential D(d−n). This amounts to “flipping” the chain complex upside down and dualizing
in each degree. The transformation η can be taken to be εη in each degree.

The category Sym(Chb(P (A), q) is a chain level version of Sym(P (A), i). Non-degeneracy here means
that an object is quasi-isomorphic to its dual. This does however imply a stricter notion of duality on
homology. For details and generalizations the reader should consult subsection 6.1 of [Sch10b].

The structure preserving maps for exact categories with weak equivalences and duality are pairs
(F, ξ) : (C , wC ,E , D, η) → (C ′, w′C ′,E ′, D′, η′) where F : C → C ′ is an exact functor that preserves
weak equivalences and the pair (F, ξ) is a duality preserving functor from (C , D, η) to (C ′, D′, η′) such
that ξ takes values in weak equivalences.

We will assume that we have chosen for each pair X,Y of objects of C a biproduct diagram

X
i1
// X ⊕ Y

p2 //
p1oo Y

i2
oo .

These choices determine a coproduct functor ⊕ : C × C → C and a natural isomorphism ν : D(−) ⊕
D(−)→ D(−⊕−). This structure allows us to define the orthogonal sum

⊥ : Sym(C , w)× Sym(C , w)→ Sym(C , w)

given by (c, ϕ) ⊥ (d, ψ) = (c ⊕ d, νc,d ◦ (ϕ ⊕ ψ)) which, along with the appropriate choices of unit etc.,
makes Sym(C , w) into a symmetric monoidal category.

2.5 Strictification

In the next sections it will be necessary to have strict dualities on the categories we work with, but as
can be seen from the examples above the dualities arising in nature are not strict in general. To remedy
this failure we will use the following strictification procedure: (cf. [Sch10b, Lemma 4]) Given an exact
category with duality and weak equivalences (C , wC ,E , D, η) its strictification will be an exact category

with strict duality and weak equivalences (Ĉ , wĈ , Ê , D̂) which we will now define. The objects of Ĉ
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are triples (c, c′, f) where f : c′
∼→ Dc is a weak equivalence. A map from (c, c′, f) to (d, d′, g) is a pair

(r : c→ d, s : d′ → c′) such that f ◦ s = Dr ◦ g, and composition is defined component-wise. The duality
D̂ is defined on objects by D̂(c, c′, f) = (c′, c,Df ◦ ηc) and on morphisms by D̂(r, s) = (s, r). It is not

hard to see that D̂2 = IdC . The weak equivalences in wĈ are the pairs (r, s) where both r and s are
weak equivalences in C and a sequence is exact if it is exact component-wise. Note that this construction
is functorial in (C , wC ,E , D, η) and that there is a natural duality preserving functor

(J, ι) : (C , wC ,E , D, η)→ (Ĉ , wĈ , Ê , D̂)

where J is given by J(c) = (Dc, c, idDc) on objects and J(f) = (Df, f) on morphisms. The transforma-
tion ι has components ιc = (idDc, ηc). There is also a functor

(K,κ) : (Ĉ , wĈ , Ê , D̂)→ (C , wC ,E , D, η)

given by K(c, c′, f) = c on morphisms K(r, s) = r on morphisms and κ(c,c′,f) = f . The functors
(J, ι) and (K,κ) are mutual inverses up to natural weak equivalence. This implies in particular that

the induced functors wC → wĈ and Sym(C , w) → Sym(Ĉ , w) become homotopy equivalences after
geometric realization.

A pointed category is a category C with a chosen object c. A functor between pointed categories
will be called pointed if it preserves the chosen object. In the presence of a duality we will also need our
categories to be pointed in the sense that the chosen object c is fixed under the duality, i.e., Dc = c.
For an exact category with weak equivalences the chosen object will be a zero-object. In this case we
will consider the nerves NC and NwC as pointed at the vertex corresponding to the chosen object.
A choice 0 of zero-object in C determines a 0-object 0̂ = (D0, 0, idD0) in the strictification Ĉ which
satisfies D̂0̂ = 0̂ and which makes the functor J is pointed on underlying categories (without duality).

3 K-theory and S-constructions

3.1 Lower K-theory and the hyperbolic sequence

Recall that the Grothendieck group of an exact category with weak equivalences, denoted by K0(C ) =
K0(C , w,E ) is the abelian group generated isomorphism classes [X] of objects of C modulo the relations

1. if f : X
∼→ Y is a weak equivalence then [X] = [Y ],

2. if X � Y � Z is an exact sequence then [Y ] = [X] + [Z].

Similarly, the Grothendieck-Witt group GW0(C ) = GW0(C ,E , w,D, η) of an exact category with
weak equivalences and duality is the abelian group generated isomorphism classes [X,ϕ] of non-singular
symmetric forms modulo the following relations (cf. [Sch10b, §2.3, Def. 1])

1. [X,ϕ] + [Y, ψ] = [(X,ϕ) ⊥ (Y, ψ)],

2. if f : X → Y is a weak equivalence then [Y, ψ] = [X, f∗ψf ],

3. if the diagram

X0
// i //

∼ ϕ0

��

X1
p
// //

∼ ϕ1

��

X2

∼ ϕ2

��

DX2
//
Dp
// DX1

Di // // DX0

has exact rows and horizontal weak equivalences and is self-dual in the sense that (X1, ϕ1) is a
non-singular symmetric form and the equations ϕ0 = Dϕ2 ◦ ηc0 and ϕ2 = Dϕ0 ◦ ηc2 hold, then

[X1, ϕ1] =

[
X0 ⊕X2, νX0,X2 ◦

(
0 ϕ2

ϕ1 0

)]
.
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For any object X of C one has the hyperbolic form on X given by

H(X) =

(
X ⊕DX, νX,DX ◦

(
0 idDX
ηX 0

))
.

The hyperbolic map H : K0(C ) → GW0(C ) is given on generators by H([X]) = [H(X)]. To see that
this defines a map K0(C ) → GW0(C ) we must check that H is compatible with the relations 1 and 2
for K0. The first case holds, since a weak equivalence f : X

∼→ Y gives rise to the diagram

X ⊕DX

(
0 idDX
ηX 0

)
��

X ⊕DY
f⊕idDY //

idX⊕Dfoo

(
0 Df

ηX◦f 0

)
��

Y ⊕DY

(
0 idDY
ηY 0

)
��

DX ⊕D2X
id⊕D2f

// DX ⊕D2Y DY ⊕D2Y
Df⊕id
oo

which, upon composing the vertical maps with the appropriate ν’s gives a zig-zag of weak equivalence
connecting H(X) and H(Y ). For relation 2 observe that from an exact sequence

X
i
� Y

p
� Z

one can construct a diagram

X ⊕DZ(
0 idDZ
ηX 0

)
��

i⊕Dp
// X ⊕DY

p⊕Di
//

(
0 idDY
ηY 0

)
��

Z ⊕DX(
0 idDX
ηZ 0

)
��

DZ ⊕D2X
Dp⊕D2i

// DY ⊕D2Y
Di⊕D2i

// DX ⊕D2Z

which after composing with ν’s becomes as in relation 3 for GW0(C ). It follows that

H([Y ]) = H([X ⊕ Z]) = H([X]) +H([Y ])

where the last equality holds since H(X ⊕ Y ) ∼= H(X) ⊥ H(Y ) in Sym(C , w).
The cokernel of the hyperbolic map is called the Witt group of C and is denoted by W (C ) (cf.

[Sch10b, §2.3]). The hyperbolic sequence is the resulting exact sequence of abelian groups

K0(C )
H−→ GW0(C )−→W (C )−→0. (5)

It is natural in C and is of fundamental importance in the study of Witt, and Grothendieck-Witt groups.

Remark 3.1. In the case when every exact sequence in C splits both K0(C ) and GW0(C ) simply group
completions of the monoids of weak equivalence classes of objects with respect to the operations ⊕ and
⊥, respectively. This is shown e.g. in [Sch10a, Corollary 2.10] in the case when the weak equivalences
are isomorphisms.

3.2 The S1,1-construction

From now on (C ,E , D,wC , 0) will denote a pointed exact category with weak equivalences and strict
duality. The S1,1-construction is our name for Waldhausen’s S-construction (see [Wal85, 1.3]) applied
to (C , D,wC , 0) with dualities in each level making it a real simplicial category.
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Let Rp,q denote the C2-representation on Rp where C2 acts trivially on the first p−q coordinates and
acts by multiplication with −1 on the last p coordinates. We write Sp,q for the one-point compactification
of Rp,q. Thus S1,1 is the one-dimensional sign circle and S2,1 is the sphere of the regular representation
ρC2 = R2,1. The superscript “1, 1” on S1,1C is used because the S1,1-construction gives an equivariant
delooping with respect to the sign representation circle S1,1.

We will consider the objects [n] of the finite ordinal category ∆ as categories in the usual way,
depicted diagrammatically as

0→ 1→ · · · → n.

The morphisms in ∆ are functors between these categories. We write Cat([m], [n]) for the category
of functors from [m] to [n]. The object set of Cat([m], [n]) is just the set ∆n

m of m-simplices in the
n-simplex and there is a map α → β if α(i) ≤ β(i) for all 0 ≤ i ≤ m. There is a unique isomorphism
[n]op ∼= [n], which sends i to n− i. This induces a duality α 7→ ᾱ on the category Cat([m], [n]) which is
given by ᾱ(i) = n− α(m− i).

Define S1,1
n C to be the full subcategory of the functor category Cat(Cat([1], [n]),C ) of objects X

such that

• for all 0 ≤ i ≤ n the value Xi,i is 0, the chosen zero-object of C

• for all i ≤ j ≤ k the sequence Xi,j � Xi,k � Xj,k is exact.

For a map α : [p] → [n] the induced functor Cat(Cat([1], [n]),C ) → Cat(Cat([1], [p]),C ) restricts to a
functor

α∗ : S1,1
n C → S1,1

p C

and thus S1,1C = ([n] 7→ S1,1
n C ) is a simplicial category. There is a canonical duality Dn on S1,1

n C given
by (DnX)i,j = D(Xn−j,n−i). The action of D3 on an object X of S1,1

3 C can be pictured as follows: The
diagram

X0,1
// // X0,2

// //

����

X0,3

����

X1,2
// // X1,3

����

X2,3

is mapped to DX2,3
// // DX1,3

// //

����

DX0,3

����

DX1,2
// // DX0,2

����

DX0,1

where we have omitted the diagonal elements Xi,i which are 0 by definition. The interaction of the
dualities Dn with the simplicial structure maps is given by

Dp ◦ (α∗)op = (ᾱ)∗ ◦Dn

for maps α : [p]→ [n], thus S1,1C is a real simplicial category.
The categories S1,1

n C are themselves pointed exact categories with weak equivalences and strict
duality when we make the following choices: The duality is the functor Dn defined above. Exact
sequences and weak equivalences are defined pointwise and we take the zero-object to be the constant
diagram on the chosen zero-object of C .

To increase readability we will write |wC | for the geometric realization |NwC | and for simplicial cat-
egories such as wS1,1C we will write |wS1,1C | for the geometric realization of the diagonal |dNwS1,1C |.
There is an isomorphism of categories with duality wC

∼=−→ wS1,1
1 C sending an object X to the diagram

with value X on 0 ≤ 1. This induces a C2-equivariant map

∆1
R × |wC |R → |wS1,1C |R

9



where ∆1
R here means the topological 1-simplex with the flip action of C2. Since S1,1

0 C = ∗ this map
factors over the smash product S1,1 ∧ |wC |R and by adjunction there is an induced C2-equivariant map

|wC |R → Ω1,1|wS1,1C |R,

which, as we shall see later, behaves like an equivariant group completion map.
In the paper [Sch10b, 2.7] Marco Schlichting defines the Grothendieck-Witt space of an exact category

with duality and a chosen zero-object as the homotopy fiber of the composite map |Sym(SdSC , w)| u→
|Sd(wSdSC )| l→ |wSC |. Here Sd denotes Segal’s edgewise subdivision, which is applied both in the “S-
direction” and in the “nerve direction” to get a simplicial category Sd(wSdSC ). Its nerve NSd(wSdSC )
is the bisimplicial set obtained from N(wSC ) by subdiving both simplicial directions. The map u is the
geometric realization of the map which level-wise is the inclusion Sym(S2n+1C , w) ↪→ SdwS2n+1C of
symmetric forms into the subdivision. The map l is the “last vertex map” induced by the inclusion of [n]
into the first summand of [n]q [n]op. It is a weak equivalence and so the natural map from the homotopy
fiber hFu of u to GW (C ) = GW (C ,E , wC , D, η, 0) is a weak equivalence as well. The combined effect
of u and l should be thought of as taking a symmetric form (c, ϕ) to the underlying object c.

Lemma 3.2: Let (C ,E , wC , D, η) be an exact category with weak equivalences and duality and a zero
object 0 which is not necessarily fixed under D. There is a natural zig-zag of weak equivalences connecting
GW (C ,E , wC , D, η, 0) and (Ω1,1|wS1,1Ĉ |)C2 .

Proof. Let J : C → Ĉ be the strictification map as defined in section 2.5 and consider the following
diagram of pointed spaces

GW (C ) // |Sym(SdSC , w)| l◦u // |wSC |

hFu

'

OO

//

'
��

|Sym(SdSC , w)|

'
��

=

OO

u // |SdwSdSC |

'
��

l

OO

hFû //

∼=
��

|Sym(SdSĈ , w)|

∼=
��

û // |SdwSdSĈ |

∼=
��

(Ω1,1|wS1,1Ĉ |)C2 // |wS1,1Ĉ |C2 // |wS1,1Ĉ |.

The first three horizontal sequences are fiber sequences by definition and the lower sequences is the fiber
sequence obtained by mapping the cofiber sequence of C2-spheres

C2+ ∧ S0 → S0,0 → S1,1

into the C2-space |wS1,1Ĉ | and taking fixed points. The middle vertical maps are induced by J and the

lower right hand vertical map is the natural homeomorphism |SdX|
∼=−→ |X| for X equal to the diagonal

simplicial set Sd(dNwSĈ ) = dNSdwSdSĈ . This map identifies NSym(SdSĈ , w) with the fixed points

(dNSdwSdSĈ )C2 , giving the lower middle vertical homeomorphism. The lower left vertical map is the
induced homeomorphism of homotopy fibers.

Now the zig zag of weak equivalences of homotopy fibers is the desired one.

Remark 3.3. In [Sch10b] Schlichting shows how the hyperbolic sequence

K0(C )→ GW0(C ) �W0(C )→ 0
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is isomorphic to segment

π1|wSC | → π0GW (C ) � π0|Sym(SdSC , w)| → π0|wSC |

of the exact homotopy sequence of the top fiber sequence in the proof above. The proof given here shows
how the hyperbolic sequence can be reinterpreted as a sequence of equivariant homotopy groups of the
C2-space |wS1,1Ĉ |.

3.3 The S2,1-construction

Now we introduce the S2,1-construction. A four-term sequence

A� B → C � D

will be called exact if the map B → C factors as B � E � C such that the sequences A� B � E and
E � C � D are exact. Define the category S2,1

n C to be the full subcategory of Cat(Cat([2], [n]),C ) of
diagrams X such that

• if i = j or j = k then Xi,j,k equals 0, the chosen zero-object of C ,

• for all i ≤ j ≤ k ≤ l the four term sequence Xi,j,k � Xi,j,l → Xi,k,l � Xj,k,l is exact.

The categories S2,1
n C for small n can be described as follows: Both S2,1

0 C and S2,1
1 C have one object

and one morphism. The category S2,1
2 C is isomorphic to C and S2,1

3 C can be described as the category
of four term exact sequences as defined above. An object of S2,1

4 C can be pictured as

X2,3,4

X1,2,4
// X1,3,4

OOOO

X0,1,4
// X0,2,4

//

OOOO

X0,3,4

OOOO

X1,2,3

==

==

X0,1,3

==

==

// X0,2,3

OOOO

==

==

X0,1,2

==

==

where we have omitted the terms in the diagram which are 0 by definition. See also Dotto’s thesis
[Dot12] for more pictures of the structure of S2,1

n C .

The categories S2,1
n C become pointed exact categories with strict duality in the same way as S1,1

n C
are and [n] 7→ wS2,1

n C is a real simplicial category in the same way. As in the S1,1-case the isomorphism

wC
∼=−→ wS2,1

2 C induces an equivariant map

|wC | → Ω2,1|wS2,1C |,

since both S2,1
0 C and S2,1

1 C have one object and one morphism.

Definition 3.4. The Real algebraic K-theory space of C is the pointed C2-space given by

KR(C ) = Ω2,1|wS2,1C |.
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A symmetric ρC2
-spectrum is a sequence of pointed spaces {Xn}n≥0 with pointed actions of C2×Σn

on Xn along with based structure maps Xn ∧ S2,1 → Xn+1 such that the iterated structure maps

Xm ∧ S2,1 ∧ · · · ∧ S2,1︸ ︷︷ ︸
n

→ Xm+n

are C2 × Σm × Σn-equivariant (cf. [Man04]).
If (C , w,D, 0) is a pointed exact category with weak equivalences and strict duality then its Real

algebraic K-theory spectrum, denoted KR(C ) = KR(C ,E , wC , D, 0) is the symmetric ρC2
-spectrum

given by
KR(C )n = |w(S2,1)(n)C | = |wS2,1 . . . S2,1︸ ︷︷ ︸

n

C |

with structure maps induced by the inclusion of the 2-simplices and with Σn acting by permuting the
S2,1-factors.

The following result from [HM] generalizes Remark 3.1:

Theorem 3.5: [HM] If (C , D, 0) is a pointed split exact category with strict duality then the map

|wC | → Ω2,1|wS2,1C |

induces isomorphisms

H∗(|wC |)[π0|wC |−1]
∼=−→ H∗(Ω

2,1|wS2,1C |)
and

H∗(|Sym(C , w)|)[π0|Sym(C , w)|−1]
∼=−→ H∗((Ω

2,1|wS2,1C |)C2).

3.4 Additivity

The constructions S1,1C and S2,1C are clearly functorial with respect to functors preserving 0-objects,
weak equivalences and exact sequences. We will now use this to state two additivity results which are
proved in [HM].

Definition 3.6. Let (C , D, η) be a category with duality. Then we write H(C , D, η) for the category
C ×C equipped with the duality DH(c, c′) = (Dc′, Dc) and with (η, η) as the double-dual isomorphism.

We will often suppress D and η from the notation and simply write H(C ) for H(C , D, η). If C is an
exact category with weak equivalences and duality we extend this structure to H(C ) by defining weak
equivalences and exact sequences component-wise. If 0 is our chosen zero-object of C we take (0, 0) to
be the chosen zero-object of H(C ).

Projecting onto the diagonal defines duality preserving functors

∆2k : S1,1
2k C → H(C )×k

and
∆2k+1 : S1,1

2k+1C → H(C )×k × C .

Since the S1,1- and S2,1-constructions both commute non-equivariantly with products one can easily
prove the following:

Lemma 3.7: The projection maps induce weak equivalences of pointed C2-spaces

|wS1,1H(C )|R → |wS1,1(C )| × |wS1,1(C )|

and
|wS2,1H(C )|R → |wS2,1(C )| × |wS2,1(C )|

where C2 acts on the products by interchanging the two factors.
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The following additivity theorem is proved in [HM]. The |wS1,1(−)|-case also follows from Schlicht-
ing’s additivity theorem [Sch10b, Theorem 4].

Theorem 3.8 (Additivity for S1,1
k ): The functors |wS1,1(−)| and |wS2,1(−)| take the functors ∆n to

weak equivalences.

The functor d0 ◦ dn+2 : S2,1
n+2C → S2,1

n C sends a diagram X to the diagram obtained by “deleting”
all the entries indexed by tuples i ≤ j ≤ k such that at least one of i, j, k is 0 or n+ 2. Following Dotto’s
thesis [Dot12, p. 129] we define the functor In : S1,1

2n+1C → S2,1
n+2C on objects by

In(X)i,j,k =


Xj−1,k−1 if i = 0 and k 6= n+ 2

Xj−1,j+n if i = 0 and k = n+ 2

Xi+n,j+n if i 6= 0 and k 6= n+ 2

0 otherwise

and similarly on morphisms. The functor I2 : S1,1
5 C → S2,1

4 C may be pictured as sending the diagram

X0,1
// // X0,2

// //

����

X0,3
// //

����

X0,4
// //

����

X0,5

����

X1,2
// // X1,3

// //

����

X1,4
// //

����

X1,5

����

X2,3
// // X2,4

// //

����

X2,5

����

X3,4
// // X3,5

����

X4,5

to the diagram

X4,5

X3,4
// X4,5

OOOO

X0,3
// X1,4

//

OOOO

X2,5

OOOO

0
==

==

X0,2

<<

<<

// X1,2

OOOO

==

==

X0,1

>>

>>

See [Dot12, p.131] for a picture of this map when n = 7. The maps in the diagram In(X) are simply
composites of maps in X. Note that by construction the composite d0 ◦ dn+2 ◦ In equals the constant
map on the zero object. There is some loss of information when applying In but the original diagram
can be reconstructed “up to extensions”. More precisely one has the following additivity theorem from
[HM]:
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Theorem 3.9 (Additivity for S2,1
n+2): The sequence

S1,1
2n+1C

In−→ S2,1
n+2C−→S2,1

n C

becomes a split fiber sequence after applying |wS1,1(−)| or |wS2,1(−)|. In particular, there are induced
weak equivalences

|wS1,1(S2,1
n+2C )| ' |wS1,1(S1,1

2n+1C )| × |wS1,1(S2,1
n C )|

and

|wS2,1(S2,1
n+2C )| ' |wS2,1(S1,1

2n+1C )| × |wS2,1(S2,1
n C )|.

4 The delooping theorems

4.1 Technical preliminaries

Let Shl : ∆→ ∆ be the functor [n] 7→ [0]q [n] and Shr be [n] 7→ [n]q [0]. We write Shrl for Shr ◦ Shl.
Note that Shrl commutes with the opposite-functor α 7→ ᾱ on ∆ and therefore extends to a functor
ShR : ∆R→ ∆R. There is a natural transformation m : Id∆R → ShR which is given by

mn = dn+2 ◦ d0 : [n]→ [0]q [n]q [0] = [n+ 2].

The map in : [1] → [n + 2] which sends 0 to 0 and 1 to n + 2 extends to a natural transformation
i : [1]→ ShR where [1] here means the constant functor to [1] on ∆R.

For a real simplicial object X : ∆R → A we write PRX for the composite X ◦ ShR. Then, by the
discussion above there are natural maps of real simplicial objects

X1
iX←− PRX

mX−→ X.

The map iX does not have a section in real simplicial sets but when we pass to subdivisions we note
that SdPRX = PlSdX and so here the sequence of natural transformations on ∆ (see e.g.[Wal85, 1.5.1])

[n] 7→ ([n+ 1]→ [0]→ [n+ 1])

where the last map sends 0 to 0 induces a sequence of maps

SdPRX
iX−→ X1

sX−→ SdPRX

where the last map sX gives a section to Sd(iX).

Lemma 4.1: There is a natural C2-equivariant homotopy ∆1 × |PRX|R → |PRX|R from the identity
to the realization of the composite |sX ◦ Sd(iX)|R, where ∆1 is the geometric 1-simplex with trivial
C2-action. In particular, the map iX : PRX → X1 is a weak homotopy equivalence of real simplicial
sets.

Proof. The map is the geometric realization of Waldhausen’s simplicial homotopy in [Wal85, 1.5.1]. It
is easily seen to be equivariant.

The same argument proves the analog of the lemma for real simplicial spaces, real simplicial simplicial
sets and so on.

Lemma 4.2: The space |wS1,1C |C2

R is an H-commutative H-group and the map |wS1,1C |C2

R → |wS1,1D |C2

R

induced by a pointed exact functor C → D is an H-map.

14



Proof. Since |wS1,1C |C2

R
∼= |Sym(SdS1,1C , w)| we will work with the latter space. The orthogonal sum

⊥ makes |Sym(SdS1,1C , w)| into an H-commutative H-space. The monoid π0|Sym(SdS1,1C , w)| is in
fact a group (it is the Witt group W0(C )) so it follows that |Sym(SdS1,1C , w)| has a homotopy inverse
(see e.g. [MP12, Lemma 9.2.3]), hence it is an H-group.

Exact functors preserve ⊥ up to isomorphism and hence induce H-maps on |Sym(SdS1,1−, w)|-
spaces.

The next theorem of Bousfield and Friedlander uses the rather technical π∗-Kan condition [BF78,
B.3] which we will not recall here. Instead we will recall two conditions on a bisimplicial set which
both ensure that it satisfies the π∗-Kan condition. For a bisimplicial set X write Xn for the simplicial
set ([p] 7→ Xn,p). We then have a simplicial object ([n] 7→ Xn) in the category of simplicial sets. If
either the simplicial sets Xn are connected for all n, or the simplicial object ([n] 7→ Xn) takes values in
H-groups and H-maps, then X satisfies the π∗-Kan condition. The following theorem is formulated for
bisimplicial sets but easily generalizes to sufficiently nice simplicial spaces, in particular those obtained
by geometrically realizing one variable of a bisimplicial set.

Theorem 4.3 (Bousfield-Friedlander): [BF78, B.4] Let

X //

��

Y

��

Z // W

be a commuting square of bisimplicial sets such that for each n ≥ 0 the square

Xn
//

��

Yn

��

Zn // Wn

obtained by evaluating in the first variable is homotopy cartesian. Then, if Y and W satisfy the π∗-Kan
condition and the map of simplicial sets ([n] 7→ π0Yn)→ ([n] 7→ π0Wn) is a Kan fibration the square

dX //

��

dY

��

dZ // dW

of diagonals is homotopy cartesian.

In order to prove that certain maps are weak C2-homotopy equivalences we will make repeated use of
the following setup (cf. [Dot12, §6.2] and [DM14]): A C2-square of pointed spaces consists of a diagram

X
pr //

pl

��

Yr

qr

��

Yl ql
// Z

along with pointed C2 actions on X and Z, with σX and σZ representing the actions of the non-trivial
element of C2, and mutually inverse maps f : Yl → Yr and g : Yr → Yl satisfying the equivariance
conditions pl ◦σX = g ◦ pr, pr ◦σX = f ◦ pl, σZ ◦ ql = qr ◦ g and σZ ◦ qr = ql ◦ f . The homotopy pullback

Yl ×hZ Yr = {(y, γ, y′) ∈ Yl × ZI × Yr | γ(0) = ql(y) and γ(1) = qr(y)}

has a natural C2-action given by (y, γ, y′) 7→ (g(y′), σZ ◦γ̄, f(y)) where γ̄(t) = γ(1−t) and ZI is the space
of unpointed maps from the unit interval I to Z. The usual map h : X → Yl ×hZ Yr is C2-equivariant.
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Lemma 4.4: In a C2-square as above assume that both the underlying square of pointed spaces and the
square

XC2

(qr◦pr)C2

��

pr◦ιX // Yr

qr

��

ZC2
ιZ
// Z

are homotopy cartesian, where ιX and ιZ are the inclusions of the fixed point spaces. Then the map
h : X → Yl ×hZ Yr is a weak C2-equivalence.

If, moreover, the spaces Yl and Yr are contractible, there is an induced a weak C2-equivalence

X → Ω1,1Z.

Proof. For the first part we must show that h induces weak equivalences on underlying spaces and on
fixed points. On underlying spaces h is a weak equivalence, since the underlying square is homotopy
cartesian. For the fixed points note that hC2 factors as

XC2 → ZC2 ×hZ Yr
∼=−→ (Yl ×hZ Yr)C2 .

The latter map is the natural homeomorphism given by (z, γ, y) 7→ (g(y), (σZ ◦ γ̄) ∗ γ, y), where ∗ means
concatenation of paths. The former map is a weak equivalence by assumption, hence hC2 is a weak
equivalence.

For the second part let Hl : I × Yl → Yl be a homotopy from the constant map to the basepoint to
the identity. Then Hr(y, t) = f(Hl(g(y), 1 − t)) is a homotopy from the identity to the constant map
to the basepoint on Yr. The map Yl ×hX Yr → Ω1,1X given by (y, γ, y′) 7→ Hl(−, y) ∗ γ ∗Hr(−, y′) is an
equivariant homotopy equivalence and precomposing this with h gives the desired weak equivalence.

4.2 Delooping with respect to S1,1

Theorem 4.5: There are natural weak equivalences of pointed C2-spaces

|wS2,1C | '−→ Ω1,1|wS2,1S1,1C |

and
|wS1,1C | '−→ Ω1,1|wS1,1S1,1C |.

Proof. For both cases we will use the commuting square of simplicial exact categories

PRS
1,1C //

��

PrSC

��

PlSC // S1,1C .

There are dualities on the lower right and upper left objects, but not on the two remaining objects.
instead, the dualities (Sn+1C )op → S1+nC combine to give a map ((PrS)opC )op → PlSC which com-
mutes with the dualities on PRS

1,1C and S1,1C . Similarly there is a map ((PlS)opC )op → PrSC and
its opposite is inverse to the previous map.

Now let F (−) denote either |wS1,1(−)| or |wS2,1(−)|. If C is a simplicial exact category we write
F (C ) for the geometric realization |[n] 7→ F (Cn)|. The dualities give the diagram

F (PRS
1,1C ) //

��

F (PrSC )

��

F (PlSC ) // F (S1,1C )
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the structure of a C2-square. We will show that the conditions of Lemma 4.4 are satisfied so that we
get a weak C2-equivalence

f : F (PRS
1,1C )

'−→ Ω1,1F (S1,1C ).

We first show that the underlying square is homotopy cartesian. It is obtained by geometrically
realizing the square of simplicial spaces given in level n ≥ 0 by

F (S1+n+1C ) //

��

F (Sn+1C )

��

F (S1+nC ) // F (SnC )

.

By the usual additivity theorem [Wal85, 1.4.2] this is weakly equivalent to the homotopy cartesian square

F (C )1×n×1 //

��

F (C )n×1

��

F (C )1×n // F (C )×n

and is therefore homotopy cartesian. Theorem 4.3 now applies, since the simplicial spaces are all level-
wise connected.

Next we must show that the square

F (PRS
1,1C )C2 //

��

F (PlSC )

��

F (S1,1C )C2 // F (S1,1C )

of pointed spaces is homotopy cartesian. In order to analyze the C2-fixed points we will subdivide
both in the simplicial direction of the S-construction and in the nerve direction. We write FSd(−) for
|SdwSdS1,1(−)| or |SdwSdS2,1(−)|. The square above is obtained by geometrically realizing the square
of simplicial spaces given in level n ≥ 0 by

FSd(S
1,1
2n+3C )C2 //

��

FSd(S2n+2C )

��

FSd(S
1,1
2n+1C )C2 // FSd(S

1,1
2n+1C ).

The Additivity Theorem 3.8 implies that this square is weakly equivalent to the homotopy cartesian
square

FSd(C )×n × FSd(C )× FSd(C )C2 //

pr×id
��

FSd(C )×2n+1 × FSd(C )

pr

��

FSd(C )×n × FSd(C )C2 // FSd(C )×2n+1

and is therefore homotopy cartesian. Again, Theorem 4.3 applies, since the right hand spaces are level-
wise connected.

The spaces F (PlSC ) and F (PrSC ) are contractible by [Wal85, 1.5.1], so all the conditions of the
lemma are satisfied. By the analog of Lemma 4.1 for real simplicial spaces there is natural weak
equivalence

F (C )
∼=−→ F (S1,1

1 C )
'−→ F (PRS

1,1C ).
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Composing this with the map to the homotopy limit gives a weak C2-equivalence

F (C )
'−→ Ω1,1F (S1,1C )

as desired.

4.3 Delooping with respect to S2,1

By Theorem 3.9, the sequence
S1,1

2n+1C → S2,1
n+2C → S2,1

n C

becomes a split fiber sequence after applying |wS1,1(−)|R or |wS2,1(−)|R. It is the n-th level of a
sequence

Sd2S
1,1C → PRS

2,1C → S2,1C

of simplicial categories with strict duality. Here Sd2 is the subdivision induced by the functor [n] 7→
[n]q [n] on ∆, introduced by Bökstedt, Hsiang and Madsen in [BHM93].

Proposition 4.6: The sequence

Sd2S
1,1C → PRS

2,1C → S2,1C

becomes a fiber sequence after applying |wS1,1(−)|R or |wS2,1(−)|R.

Proof. The case |wS2,1(−)|R will be treated first. For each n ≥ 0 the sequence

|wS2,1S1,1
2n+1C |R → |wS2,1S2,1

n+2C |R → |wS2,1S2,1
n C |R

of pointed C2-spaces is a fiber sequence by the Additivity Theorem 3.8. Both the underlying simplicial
spaces and the fixed point simplicial spaces are level-wise connected, so it follows from Theorem 4.3 that
the sequence

|wS2,1Sd2S
1,1C |R → |wS2,1PRS

2,1C |R → |wS2,1S2,1C |R,

obtained by geometric realization, is a fiber sequence of C2-spaces.
We now turn to the case |wS1,1(−)|R. On underlying spaces the argument is the same as for S2,1.

On the other hand the fixed point space |wS1,1C |C2

R is usually not connected, indeed π0|wS1,1C |C2 is
the classical Witt group W0(C ) of symmetric forms in C . By Lemma 4.2 the functor C 7→ |wS1,1C |C2

takes values in H-groups and H-maps. Hence, by Theorem 4.3 the level-wise fiber sequences

|wS1,1S1,1
4n+3C |C2 → |wS1,1S2,1

2n+3C |C2 → |wS1,1S2,1
2n+1C |C2

realize to a fiber sequence if the map of simplicial sets

([n] 7→ π0|wS1,1S2,1
2n+3C |C2)→ ([n] 7→ π0|wS1,1S2,1

2n+1C |C2)

is a Kan fibration. This is shown in Lemma 4.7 below.

Lemma 4.7: The map of simplicial sets

([n] 7→ π0|wS1,1S2,1
2n+3C |C2)→ ([n] 7→ π0|wS1,1S2,1

2n+1C |C2)

is isomorphic to the map
EW0(C )→ BW0(C ).

In particular, it is a Kan fibration.
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Proof. By the Additivity Theorem 3.9, there is a weak equivalence of C2-spaces

|wS1,1S2,1
2k+1|

'−→ |wS1,1S2,1
2k−1| × |wS

1,1H(C )|×k × |wS1,1C |,

so by induction on k we get the decomposition

|wS1,1S2,1
2k+1| '

k∏
i=0

(
|wS1,1H (C ) |×i × |wS1,1C |

)
Taking C2-fixed points on both sides we obtain a homotopy equivalence

|wS1,1S2,1
2k+1|

C2 '
k∏
i=0

(
|wS (C ) |×i × |wS1,1C |C2

)
,

since |wS1,1H (C ) |C2 ' |wSC |. The space |wSC | is connected, so applying π0 gives

π0(|wS1,1S2,1
2k+1|

C2) ∼= π0((|wS1,1C |C2)×k) ∼= W0(C )×k.

Under this isomorphism the simplicial structure maps of ([n] 7→ π0|wS1,1S2,1
2n+3C |C2) and (([n] 7→

π0|wS1,1S2,1
2n+1C |C2) correspond to the structure maps of EW0(C ) = B(∗,W0(C ),W0(C )) andBW0(C ) =

B(∗,W0(C ), ∗), respectively, and that the map between them is the usual projection map. This map is
well known to be a Kan fibration.

Note that there is natural C2-homeomorphism |wS2,1Sd2S
1,1C |R ∼= |wS2,1S1,1C |R and similarly for

|wS1,1Sd2S
1,1C |R. The contracting homotopy on the middle term of the fiber sequence

|wS2,1S1,1C |R → |wS2,1PRS
2,1C |R → |wS2,1S2,1C |R

induces a weak C2-equivalence |wS2,1S1,1C |R
'→ Ω1,0|wS2,1S2,1C |R. Similarly, for the S1,1-construction

there is an induced weak C2-equivalence |wS1,1S1,1C |R
'→ Ω1,0|wS1,1S2,1C |R. Composing with the weak

equilences of Theorem 4.5 gives weak equivalences

|wS2,1C |R
'→ Ω2,1|wS2,1S2,1C |R and |wS1,1C |R

'→ Ω2,1|wS1,1S2,1C |R.

In terms of KR-spectra this means the following:

Corollary 4.8: The spectrum KR(C ) is positively fibrant, i.e., the adjoint structure maps

|wS2,1(n)C |R → Ω2,1|wS2,1(n+1)C |R

are weak equivalences for n > 0.

Armed with the above deloopings we can now prove the following equivalence of S-constructions,
proved in [HM] by different methods:

Theorem 4.9: The sequence

|wS1,1C |R → |wPRS2,1C |R → |wS2,1C |R

is a fiber sequence of C2-spaces. The contracting homotopy on |wPRS2,1C |R induces a weak C2-
equivalence

|wS1,1C |R
'→ Ω1,0|wS2,1C |R.
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Proof. The sequence

|wS1,1C |R → |wPRS2,1C |R → |wS2,1C |R,

fits in a diagram

|wS1,1C |R //

��

|wPRS2,1C |R //

��

|wS2,1C |R

��

Ω1,1|wS1,1S1,1C |R // Ω1,1|wPRS2,1S1,1C |R // Ω1,1|wS2,1S1,1C |R

where the vertical maps are from the proof of Theorem 4.5. The diagram commutes since the vertical
maps are induced by contracting homotopies of path constructions which are functorial. By Theorem
4.5 the left and right hand vertical maps are weak equivalences and since the middle spaces are both
contractible the middle map is a weak equivalence. The lower sequence is obtained by applying Ω1,1(−)
to the first fiber sequence in Proposition 4.6, and is therefore a fiber sequence. The desired weak
equivalence is induced by the contracting homotopy on |wPRS2,1C |.

Theorem 4.10: (i) For every category C with weak equivalences and duality there is a weak C2-
equivalence

KR(C )C2 ' GW (C ).

(ii) Let F : B → C be a duality preserving exact functor between exact categories with duality weak
equivalences. If the induced maps

K(B)→ K(C ) and GW (B)→ GW (C )

are weak equivalences, then the map

F∗ : KR(B)→ KR(C )

is a weak equivalence of C2-spaces.

5 Consequences of the delooping theorems

In this section we will apply the results of the previous section to reformulate two classical results in
algebraic K-theory and Grothendieck-Witt theory in terms of Real algebraic K-theory. The original K-
theoretic results are due to Quillen and Grayson in the papers [Qui73] and [Gra76] and the Grothendieck-
Witt versions are due to Schlichting and can both be found in [Sch10a]. We will not require the dualities
to be strict in this section; instead, for an exact category C with weak equivalences and (not necessarily

strict) duality we redefine KR(C ) := KR(Ĉ ).

5.1 Cofinality

In order to state the cofinality theorem for Real algebraic K-theory we must first discuss C2-Mackey
functors.

A C2-Mackey functor M consists of the following data:

• a pair of abelian groups M(e) and M(C2).

• a C2-action on M(e), represented by a map t : M(e)→M(e) with t2 = idM(e).

• maps i∗ : M(e) → M(C2) and i∗ : M(C2) → M(e) satisfying the relations t ◦ i∗ = i∗, i∗ ◦ t∗ = i∗
and i∗ ◦ i∗ = idM(e) + t.
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We will display this information in diagrammatical form

M(e)
i∗ //

t :: M(C2)
i∗
oo

Mackey functors are important for us because the homotopy groups of a symmetric ρC2
-spectrum X

naturally form a C2-Mackey functor. We write πnX for the C2-Mackey functor

[C2+ ∧ Sn, X]C2

res //
t :: [Sn,0, X]C2 ,

tr
oo

where [−,−]C2
denotes C2-stable homotopy classes of pointed maps and t is induced by the C2-action

on X. The restriction map res and transfer map tr are induced by the crush map C2+ ∧ S0 → S0 and
the stable Thom collapse map S0 → C2+ ∧ S0 (which only exists in the stable homotopy category),
respectively. Since Ω∞C2

KR(C ) ' Ω1,1|wS1,1C |R it follows that the C2-Mackey functor KR
n
(C ) =

πnKR(C ) is given by

Kn(C )
H //

D :: GWn(C ).
U

oo

Here D denotes the duality action, U is induced by the composite map

GW (C )
∆−→ GW (H(C ))

∼=−→ K(C )

which corresponds in π0 to forgetting forms. The mapH comes from the map Ω|wSC | → (Ω1,1|wS1,1C |)C2

induced by the equivariant pinch map S1,1 → C2+ ∧ S1. It can be thought of as arising from the hy-
perbolic functor H : SdwC → Sym(C , w) which sends an object f : X → Y of SdwC to the symmetric

form on X ⊕DY given by the matrix
(

0 Df
η◦f 0

)
.

An exact inclusion i : A ↪→ B of exact categories, where weak equivalences are isomorphisms, is
called cofinal if it satisfies the following conditions:

1. The functor i is full, i.e., for all objects A and A′ of A the map A (A,A′) → B(i(A), i(A′)) is
surjective.

2. The functor i preserves and detects admissible monomorphisms.

3. The category A is closed under extension in B, i.e., if A′ � B � A′′ is an exact sequence in B
such that A′ and A′′ are isomorphic to objects in the image of i then B is isomorphic to an object
in the image of i.

4. For every object B of B there is an object B′ such that B ⊕B′ is isomorphic to an object in A .

Example 5.1. Let R be a ring with anti-involution and consider a duality structure on P (R) as in
Example 2.4. The subcategory F (R) of finitely generated free R-modules inherits a duality from the
one on P (R) and the inclusion F (R) ↪→ P (R) is cofinal in the above sense.

Let i : A ↪→ B be a duality preserving cofinal inclusion of exact categories with duality such that
the duality on A is obtained by restriction of the duality on B (i.e. ξ = id). Then we define the relative
Grothendieck group by K0(B,A) = coker (i∗ : K0 (A )→ K0 (B)) and the relative Grothendieck-Witt
group by GW0(B,A ) = coker(i∗ : GW0(A ) → GW0(B)). These assemble to form the relative KR-
Mackey-functor of (B,A ) by

KR
0
(B,A ) = K0(B,A )

H //
D :: GW0(B,A ),

U
oo

where H and U here mean the induced maps on cokernels.
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A symmetric ρC2
-spectrum X is an Eilenberg-MacLane spectrum for the Mackey functor M if πnX

is isomorphic to M when n = 0 and is 0 otherwise. Such Eilenberg-Maclane spectra are unique up to
weak equivalence, and (by abuse of notation) we will write H(M) for any Eilenberg-Maclane spectrum
for M .

Theorem 5.2 (Cofinality): A cofinal duality preserving inclusion A ↪→ B induces a cofiber sequence
of symmetric ρC2-spectra

KR(A )→ KR(B)→ H(KR
0
(B,A )).

Proof. The K-theory version of the statement can be found e.g. in [Sta89, Theorem 2.1] and the
Grothendieck-Witt version was shown by Schlichting [Sch10a, Theorem 5.1]. The result follows by
Theorem 4.10.

5.2 Dévissage

In this section we assume that weak equivalences are isomorphisms. If i : N � X is an admissible

subobject we write N⊥ = ker(DX
Di
� DN). Recall that if (X,ϕ) is a symmetric form in an exact

category with duality then a totally isotropic subspace N of (X,ϕ) is an admissible subobject i : N �
X such that the restriction ϕ|N = Di ◦ ϕ ◦ i is 0 and the induced map N → N⊥ is an admissible
monomorphism.

Theorem 5.3 (Dévissage): Let A be an abelian category with duality and let B ⊂ A be a full exact
subcategory which is closed under the duality and under taking subobjects and quotients in A . Assume
also that

1. every object A in A has a finite filtration

0 = A0 � A1 � · · ·� An = A

such that the filtration quotients Ai+1/Ai, for 0 ≤ i ≤ n, are in B

2. for every non-degenerate symmetric form (A,ϕ) in A there is a totally isotropic subspace N � A
such that N⊥/N is in B.

Then the inclusion B ↪→ A induces a weak equivalences of pointed C2-spaces

KR(B)
'−→ KR(A ).

Proof. This follows immediately from the classical Dévissage theorem of Quillen [Qui73, Thm. 4] and
Schlichting’s Dévissage theorem for Grothendieck-Witt spaces [Sch10a, Thm. 6.1] by Theorem 4.10.

Now let A be a Dedekind domain with trivial involution and fraction field K and let ε ∈ {±1}. As
an application of the Dévissage Theorem 5.3 we will compute the KR-theory of torsion modules over A
with “ε-twisted” Pontryagin duality generalizing the situation in Example 2.5.

Let S ⊂ A \ {0} be a multiplicative subset and write TS for the category of finitely generated
S-torsion modules over A. More precisely it is the full subcategory of Mod(A) consisting of finitely
generated modules M such that for each m ∈ M there is an s ∈ S such that ms = 0, or equivalently,
S−1M = 0. We give TS the duality

M∗ = HomA(M,K/A)

with double duality isomorphism
m 7→ (f 7→ εf(m)).

Note that the exact sequence
0−→A−→K−→K/A−→0
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gives an injective resolution of A, so that M∗ ∼= Ext1
A(M,A). If p ⊂ A is a non-zero prime ideal Tp

will denote the category of finitely generated torsion Ap-modules. In general, for a family {Ai}i∈I
of additive categories we can form a new category ⊕i∈IAi whose objects are tuples (Ai)i∈I such
that Ai is an object of Ai and Ai = 0 for all but finitely many i. The morphisms are given by
Hom((Ai), (Bi)) = ⊕i∈IHom(Ai, Bi) with component-wise composition. There is a natural isomor-

phism of simplicial sets N(⊕i∈IAi)
∼=−→
∏′
i∈I NAi where

∏′
denotes the restricted product consisting

of tuples where only finitely many entries are non-zero. The restricted product may be expressed as the
colimit colimJfin⊂I

∏
j∈J NAj where Jfin ranges over all finite subsets of I. The direct sum ⊕i∈IAi

has a similar colimit description, so since KR commutes with products and filtering colimits there is a
pointed equivariant homeomorphism

KR(⊕i∈IAi)
∼=−→
∏′
i∈I KR(Ai).

We write p|S if pS−1A = S−1A and say (by an abuse of language) that p divides S. Since A is Dedekind
each module M in TS has finite support, i.e., Mp 6= 0 for only finitely many primes p. Hence there is a
well-defined functor

F : TS →
⊕
p|S

Tp

sending a module M to the tuple (Mp)p|S . This functor is an equivalence of categories. Moreover, since
each M is finitely generated the natural maps

HomA(M,K/A)→
⊕
p|S

HomAp
(Mp,K/Ap)

are isomorphisms, hence F is also duality preserving. We write KR(TS,ε) for the Real K-theory of
(TS , Hom(−,K/A), ηε) and similarly KR(Tp,ε) and KR(k(p)ε) in the cases Tp and V ec(k(p)). The
functor F induces a weak equivalence of pointed C2-spaces

KR(TS,ε)
'−→ KR

(⊕
p|S

Tp,ε

)
.

Proposition 5.4: There is a weak equivalence of pointed C2-spaces

KR(TS,ε) '
∏
p|S

′
KR(k(p)ε).

Proof. We will apply the Dévissage theorem to the categories Tp. Any module M in Tp has finite p-adic
filtration

0 = pnM ⊂ pn−1M ⊂ · · · ⊂ pM ⊂M

for some n ≥ 0. The filtration quotients pkM/pk+1M are isomorphic to finite direct sums of k(p) = Ap/p
and are therefore semi-simple. By [QSS79, Theorem 6.6] the inclusion of the full subcategory Sp ⊂ Tp

of semi-simple objects satisfies the conditions of the Dévissage Theorem 5.3, hence there is an induced
weak equivalence of C2-spaces

KR(Sp,ε)
'−→ KR(Tp,ε).

Let p be a uniformizer of the discrete valuation ring Ap. The residue field k(p) = A/pA embeds into
K/A by the map ip which is given by

ip(a+ pA) =
a

p
+A.
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The induced map (ip)∗ : HomAp
(k(p), k(p))→ HomAp

(k(p),K/A) is an isomorphism. Now consider the
inclusion of the category V ec(k(p)) := P (k(p)) with the usual ε-twisted duality Homk(p)(−, k(p)) into
Sp, see e.g. Example 2.4. The composite map

Homk(p)(V, k(p))
∼=−→ HomAp

(V, k(p))
ip→ HomAp

(V,K/A))

is an isomorphism because V is a finite direct sum of copies of k(p). Together with the inclusion functor
this map provides a duality preserving equivalence of exact categories with duality V ec(k(p)) ↪→ Sp and
hence a weak equivalence of C2-spaces

KR(V ec(k(p))ε) = KR(V ec(k(p))ε)
'−→ KR(Sp,ε)

The result now follows.
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Abstract
Let G be a finite group acting on a small category I. We study functors X : I → C equipped with

families of compatible natural transformations that give a kind of generalized G-action on X. Such
objects are called G-diagrams. When C is a sufficiently nice model category we define a model structure
on the category of G-diagrams in C . There are natural G-actions on Bousfield-Kan style homotopy
limits and colimits of G-diagrams. We prove that weak equivalences between point-wise (co)fibrant
G-diagrams induce weak G-equivalences on homotopy (co)limits. A case of particular interest is when
the indexing category is a cube. We use homotopy limits and colimits over such diagrams to produce
loop and suspension spaces with respect to permutation representations of G. We go on to develop a
theory of enriched equivariant homotopy functors and give an equivariant “linearity” condition in terms
of cubical G-diagrams. In the case of G-topological spaces we prove that this condition is equivalent to
Blumberg’s notion of G-linearity. In particular we show that the Wirthmüller isomorphism theorem is
a direct consequence of the equivariant linearity of the identity functor on G-spectra.
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Introduction

The concept of G-diagram was introduced, under different names, in Villarroel-Flores’s thesis [VF99] and
independently in the paper [JS01] of Jackowski and S lomińska, and they were further studied in [VF04].
In the current literature the theory of G-diagrams has been only partially developed. It is limited, due to
the fact that it is used for very specific applications, to properties of homotopy colimits of G-diagrams in
the category of spaces or of simplicial sets (see e.g. [JS01] or [TW91]). The contribution of the present
paper is a systematic treatment of G-diagrams in a nice (simplicial, cofibrantly generated, etc.) model
category. An immediate advantage of this general theory is that it allows us to work in the category
of genuine G-spectra. Additionally, it is the first treatment of homotopy limits of G-diagrams. As an
application of this abstract framework, we set up a theory of equivariant enriched homotopy functors
and formulate an “equivariant excision” condition in terms of cubical G-diagrams. This condition agrees
with Goodwillie’s notion of excision [Goo92] when G is the trivial group, and with Blumberg’s definition
from [Blu06] for the category of G-spaces.

Given a finite group G acting on a category I by functors a(g) : I → I, a G-diagram in a category C
is a functor X : I → C together with natural transformations gX : X → X ◦ a(g) for every g in G, which
are compatible with the group structure. A map of G-diagrams is a natural transformation between the
underlying diagrams that commutes with the structure maps (see Definitions 1.1 and 1.2). We write C I

a

for the resulting category of G-diagrams. The category C I
a is isomorphic to the category of diagrams

in C indexed on the Grothendieck construction of the action functor a : G → Cat (see Lemma 1.9 and
[JS01, 2]). If the category of G-objects CG is a sufficiently nice model category, such as G-spaces with
the fixed points model structure, or orthogonal G-spectra with the genuine G-stable model structure,
we prove the following 2.6.

Theorem: Let C be a G-model category (see 2.1). There is a cofibrantly generated sSetG-enriched
model structure on the category of G-diagrams C I

a with weak equivalences (resp. fibrations) the maps of
G-diagrams f : X → Y such that the value fi at the object i ∈ obI is a weak equivalence (resp. fibration)
in the model category CGi of objects with an action of the stabilizer group Gi.

The authors first became interested in G-diagrams while working on equivariant delooping results
for so-called Real algebraic K-theory and Real topological Hochschild homology. A recurring example
of a G-diagram in this work is the following:

Example. Let X be a pointed space with an action of C2, the cyclic group of order two, with σ : X → X
representing the action of the non-trivial group element. A diagram of pointed spaces

Y
p
// X Z

q
oo (1)

together with mutually inverse homeomorphisms r : Y → Z and l : Z → Y which cover σ, in the sense
that p◦ l = σ ◦ q and q ◦ r = σ ◦p, defines a C2-diagram of pointed spaces. The pullback Y ×X Z inherits
a natural C2-action given by (y, z) 7→ (l(z), r(y)), and similarly the homotopy pullback

Y ×hX Z = {(y, γ, z) ∈ Y ×XI × Z | p(y) = γ(0) and γ(1) = q(z)}

inherits the action (y, γ, z) 7→ (l(z), σ ◦ γ̄, r(y)), where γ̄(t) = γ(1− t). The usual inclusion Y ×X Z ↪→
Y ×hX Z is equivariant with respect to these actions. Let R1,1 denote the sign representation of C2 on

R and let Ω1,1X be the space of pointed maps from the one point compactification SR1,1

to X with
C2 acting by conjugation. If Y (and hence Z) is contractible, then a contracting homotopy induces a
C2-homotopy equivalence

Y ×hX Z ' Ω1,1X.

On underlying spaces this just an instance of the well-known homotopy equivalence

ΩX ' holim(∗ → X ← ∗).
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This example illustrates how limits and homotopy limits of punctured C2-squares of spaces carry a
C2-action, and how these can be used to construct the loop space by the sign representation of C2. More
generally, when it makes sense to talk about the limit, colimit, homotopy limit or homotopy colimit of
a G-diagram X in any ambient category C , these constructions have natural G-actions induced by the
structure maps gX (see Corollary 1.5 and §1.2). Moreover, the usual comparison maps limX → holimX
and hocolimX → colimX are equivariant as we already observed for the C2-diagram (1). In general most
constructions involving (co)limits and (co)ends enrichments applied to G-diagrams produce G-objects
and equivariant maps between them. The homotopy limits and colimits of G-diagrams are homotopy
invariant in the following sense (see also Proposition 2.22):

Proposition: The functors holim: C I
a → CG and hocolim: C I

a → CG preserve equivalences between
fibrant diagrams and point-wise cofibrant diagrams respectively.

We prove other fundamental properties of these equivariant homotopy limits and colimits functors,
analogous to classical theorems from homotopy theory of diagrams:

• 2.25 Homotopy cofinality theorem for homotopy limits and colimits of G-diagrams, generalizing the
results [TW91, 1] and [VF04, 6],

• 2.26 A twisted Fubini theorem, showing that homotopy colimits of G-diagrams over a Grothendieck
construction can be calculated “point-wise” (an equivariant analogue of [CS02, 26.5]). As an
immediate corollary we obtain an equivariant analogue of Thomason’s homotopy colimit theorem
from [Tho79],

• 2.28 An Elmendorf theorem, showing that for suitable ambient categories one can equivalently
define the homotopy theory of G-diagrams by replacing G with the opposite of its orbit category (an
equivariant analogue of the classical result of [Elm83]).

As an application of this model categorical theory of G-diagrams, we define and study equivariant
excision. Classically, a homotopy invariant functor between model categories is excisive if it sends homo-
topy cocartesian squares to homotopy cartesian squares (see [Goo92]). Blumberg shows in [Blu06] that
this notion is not well behaved when the categories involved are categories of G-objects; enriched ho-
motopy functors on the category of pointed G-spaces TopG∗ → TopG∗ that are classically linear (excisive
and sending the point to a G-contractible space) are a model only for the category of näıve G-spectra.
In order to model genuine G-spectra, one needs a property stronger than classical linearity. Blum-
berg achieves this by adding an extra condition to linearity; a compatibility condition with equivariant
Spanier-Whitehead duality.

In the present paper we take a different approach to equivariant excision, following the idea that
the relation between equivariant excision and excision should resemble the relation between genuine
G-spectra and näıve G-spectra. Instead of adding an extra condition to classical excision, we replace
squares by “equivariant cubes”, similarly to the way one replaces integers with G-representations in
defining G-spectra. For a finite G-set J we consider the poset category P(J) of subsets of J ordered by
inclusion. This category inherits a G-action from the G-action on J .

Definition (G-excision). A J-cube X in C is a G-diagram in C shaped over P(J), i.e. it is an object

of C
P(J)
a . We say that X is homotopy cartesian if the canonical map

X∅ −→ holim
P(J)\∅

X

is a weak equivalence in the model category of G-objects CG. Dually, it is homotopy cocartesian if
the canonical map hocolim

P(J)\J
X → XJ is an equivalence in CG. A suitably homotopy invariant functor

Φ: CG → DG is called G-excisive if it sends homotopy cocartesian G+-cubes to homotopy cartesian
G+-cubes.
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Here G+ is the set G with an added disjoint base point, and G acts on it by left multiplication. It
plays the role of a “regular” G-set, analogous to the regular representation of G in stable equivariant
homotopy theory. The added basepoint has an important role, discussed in details in 3.12. We prove
in 3.28 that this notion of G-excision is equivalent to Blumberg’s definition from [Blu06] when C is the
category of pointed spaces. The paper contains a series of fundamental properties of G-excision, that
appropriately reflect the fundamental properties of excision to a genuine equivariant context. They can
be summarized as follows:

• 3.11 A G-excisive functor CG → DG is classically excisive, that is, it sends homotopy cocartesian
squares in CG to homotopy cartesian squares in DG,

• 3.20 A G-linear functor is also H-linear for every subgroup H of G,

• 3.33 Every enriched G-linear homotopy functor Φ from finite G-CW-complexes to G-spectra is
equivalent to one of the form EΦ ∧ (−) for some G-spectrum EΦ,

• 3.32 The identity functor on G-spectra is G-excisive: For any finite G-set J , a J-cube of spectra
is homotopy cartesian if and only if it is homotopy cocartesian,

• 3.17 Any G-excisive reduced homotopy functor Φ: CG → DG satisfies the Wirthmüller isomor-
phism theorem, that is, the canonical map Φ(G ⊗H c) → homH(G,Φ(c)) is an equivalence in DG

for every subgroup H of G and H-object c of CH .

• 3.25,3.26 If DG is suitably presentable, a construction similar to Goodwillie’s derivative of [Goo92]
defines a universal G-excisive approximation to any homotopy functor CG → DG.

These properties have interesting consequences for the identity functor on G-spectra. The fact that it
is G-excisive shows that the theory of equivariant cubes provides a good context in which the category of
G-spectra is “G-stable”. Moreover, Theorem 3.17 applied to the identity functor onG-spectra gives a new
proof of the classical Wirthmüller isomorphism theorem. An analysis of the structure of the proofs of 3.17
and 3.32 gives the following argument: The identity on G-spectra is G-excisive as a direct consequence of
the equivariant Freudenthal suspension theorem, by formally manipulating homotopy limits and colimits.
Given an H-equivariant spectrum E, there is an explicit homotopy cocartesian (G/H)+-cube of spectra
WE with initial vertex (WE)∅ = G+ ∧H E, and with holim

P(G/H+)\∅
WE = FH(G+, E). By G-excision for

the identity functor WE is homotopy cartesian, that is, the canonical map G+ ∧H E → FH(G+, E) is a
stable equivalence of G-spectra.

Acknowledgments
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encouraging us to write this paper.

1 Definitions and setup

1.1 Categories of G-diagrams

We first introduce some notation and conventions. If C is a (possibly large) category and I is a small
category we write C I for the usual category of functors from I to C . By topological space we will mean
compactly generated weak Hausdorff space and Top is the category of such spaces with continuous maps
between them. We write Map(X,Y ) for the space of maps from X to Y endowed with the compact-open
topology. The based variants of the above are Top∗ and Map∗(X,Y ).

In the following C will be a category, G a finite group, and I a small category. By a slight abuse of
notations we will also write G for the category with one object ∗ and one morphism g : ∗ → ∗ for each
element g ∈ G, and with composition given by g ◦ h = gh. The group G will act on I from the left and
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we will encode the action as a functor a : G → Cat sending ∗ to I. Most of the content of this section
can be found in the work of Jackowski-S lomińska[JS01] or in Villarroel-Flores’s paper [VF04].

Definition 1.1. (cf. [JS01, 2.2], [VF04, 3.1])Let X : I → C be an I-shaped diagram in C . A G-structure
on X with respect to the action a is a collection of natural transformations {gX : X → X ◦ a(g)} such
that

1. eX = idX

2. (gX)a(h) ◦ hX = (gh)X for all g, h ∈ G,

where (gX)a(h) is the natural transformation obtained by restricting gX along the functor a(h) : I → I.
An I-shaped diagram X with a G-structure will be called an I-shaped G-diagram in C with respect to
the action a, or simply a G-diagram in C if I and a are understood.

In order to simplify the notation we will mostly write g in stead of a(g) when this does not cause
confusion. Accordingly, when X and Y are I-indexed G-diagrams we will write fg for the restriction of
a map f : X → Y along the functor g = a(g) : I → I. In the later sections we will sometimes write g
instead of gX .

Definition 1.2. A map of G-diagrams f : X → Y is a natural transformation f : X → Y of underlying
diagrams such that for each g ∈ G the diagram

X
f

//

gX

��

Y

gY

��

X ◦ g
fg

// Y ◦ g

commutes in C I .

The composite of two maps of G-diagrams is again a map of G-diagrams. For a fixed action a of the
group G on I we write C I

a for the category whose objects are the G-diagrams in C with respect to a
and with morphisms the maps of G-diagrams.

Example 1.3. Let [n] be the usual category with objects 0, 1, . . . , n and a morphism i→ j if and only
if i ≤ j. For a small category I the nerve NI is the usual simplicial set with NIn = Fun([n], I). Taking
over-categories gives a functor N(I/−) : I → sSet. The G-action on I gives maps N/i,g : N(I/i) →
N(I/gi) for g ∈ G and i an object of I, by mapping

(i0 → · · · → in → i)
g7−→ (gi0 → · · · → gin → gi)

These maps combine to give a G-diagram structure on N(I/−). Similarly the functor N(−/I)op : Iop →
sSet with the maps Ni,g/ : N(i/I)op → N(gi/I)op defines a G-diagram in sSet.

Let I and J be small categories with G-actions a and b respectively and let F : I → J be a functor.
We say that F is G-equivariant if it commutes strictly with the G-actions, that is, if F (gi) = gF (i) and
F (gα) = gF (α) for all objects i in I and morphisms α in I. If Y is a J-shaped G-diagram then the
restriction F ∗Y = Y ◦ F has a naturally induced G-structure with maps g(F∗Y ) = F ∗(gY ).

Now assume that C is complete and cocomplete. Then the functor F ∗ : C J → C I has a left adjoint
F∗ and a right adjoint F! given by left and right Kan extension, respectively. We will now see that if X
is an I-shaped G-diagram, then there are natural G-structures on F∗X and F!X. We treat the left Kan
extension first.

The value of the functor F∗X on an object j of J is given by the coequalizer∐
(i0

α→i1,f : F (i1)→j)

Xi0

s //

t
//

∐
(i0,f : F (i0)→j)

Xi0
// // F∗Xj ,

5



where s projects onto the source of the indexing map α and t maps into the target of α by the map
X(α). For an element g ∈ G the natural transformation gX induces a map of diagrams

∐
(i0

α→i1,f : F (i1)→j)

Xi0

s //

t
//

∐
gXi0

��

∐
(i0,f : F (i0)→j)

Xi0
// //

∐
gXi0

��

F∗Xj

gF∗Xj

��∐
(i′0

α′→i′1,f ′ : F (i′1)→gj)

Xi′0

s //

t
//

∐
(i′0,f

′ : F (i′0)→gj)

Xi′0
// // F∗Xgj

and the dotted arrow is the j-component of the natural transformation gF∗X : F∗X → (F∗X) ◦ g. It
is not hard to see that the set {gF∗X}g∈G constitutes a G-structure on F∗X and that the underlying
functor F∗ takes maps of I-indexed G-diagrams to maps of J-indexed G-diagrams. Similarly, for the
right Kan extension F! a dual construction with equalizers gives a G-structure {gF!X}g∈G on F!X. We
write simply F∗X and F!X for the G-diagrams obtained in this way.

Proposition 1.4: The constructions F∗X and F!X define functors F∗ : C I
a → C J

b and F! : C I
a → C J

b .

A particularly interesting case of the above is when J = ∗ the category with one object and one
morphism and trivial G-action. In this case the functors F∗ and F! are more commonly known as colimI

and limI , respectively.

Corollary 1.5: Let X be an I-indexed G-diagram. Then the above constructions induce natural left
G-actions on colimI X and limI X.

Example 1.6. (Products and coproducts) Let I be a discrete category with G-action, i.e., a G-set and
consider a G-diagram X in the category Set of sets. The coproduct

∐
I X is the set of pairs (i, x) where

x ∈ Xi and the action of g ∈ G is given by

g(x, i) = (gXi(x), gi).

The product
∏
I X is the set of functions x : I →

⋃
i∈I Xi such that x(i) ∈ Xi for all i ∈ I. The

action of g ∈ G on x ∈
∏
I X is determined by the equation

(gx)(gi) = gXi(x(i)).

This example generalizes to arbitrary categories with products and coproducts but the notation becomes
more cumbersome when one can no longer speak about elements of objects.

We now give an alternative description of G-diagrams which is sometimes easier to work with.

Definition 1.7. Let Goa I be the following category:

• obGoa I = obI

• A morphism i→ j in Goa I is a pair (g, α : gi→ j) where g ∈ G.

• Composition is given by (h, β : hj → k) ◦ (g, α : gi→ j) = (gh, β ◦ hα : ghi→ k).

Remark 1.8. The category G oa I is the Grothendieck construction of the functor a : G → Cat,
sometimes denoted G

∫
a (see e.g. [Tho79]).

A G-diagram X gives rise to a functor Xoa : Goa I → C by setting

Xoa
i = Xi

on objects, and defining
Xoa(g, α : gi→ j) = X(α) ◦ gXi

on morphisms. We leave it to the reader to check that this respects composition of maps.
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Lemma 1.9: The assignment X 7→ Xoa is functorial and defines an isomorphism of categories

Φ: C I
a

∼=−→ CGoaI .

Proof. The functoriality is clear. We define a functor Φ′ : CGoaI → C I
a which is inverse to Φ. For a

diagram Y : G oa I → C define the underlying diagram of Φ′(Y ) to be (Y |I), i.e., the restriction of Y
along the canonical inclusion ι : I ↪→ G oa I given by ι(i) = i and ι(α : i → j) = (e, α : i → j). For an
element g ∈ G the natural transformation gΦ′(Y ) is defined at an object i by Y (g, id : gi → gi). Both
naturality of the gΦ′(Y )’s and conditions 1) and 2) of Definition 1.1 follow from the functoriality of Y
with respect to morphisms in G oa I. For a natural transformation f : Y → Z in CGoaI we define
Φ′(f) = f |I . It is now easy to check that the functors Φ and Φ′ are mutually inverse.

Corollary 1.10: Let C be a bicomplete category. Then C I
a is also bicomplete.

Proof. The diagram category CGoaI is bicomplete since C is. It follows from 1.9 that C I
a is bicomplete.

1.2 Enrichments and homotopy (co)limits

If C is any category, then the category CG is naturally enriched in left G-sets in the following way. For
objects c, d of CG let C (c, d) be the set of maps between the underlying objects in C . Then G acts on
C (c, d) by conjugation

g · f = gd ◦ f ◦ (g−1)c

where (g−1)c and gd represent the actions of g−1 and g on c and d respectively. The fixed points set
C (c, d)G is precisely the set of G-equivariant maps from c to d.

If I is small a category with an action a of G, then the category C I
a of G-diagrams becomes enriched

in left G-sets by taking C I
a(X,Y ) to be the set C I(X,Y ) of maps of underlying diagrams f : X → Y

with action given by
g · f = (gY )g−1 ◦ fg−1 ◦ (g−1)X .

If f is fixed under the action of G, then

f = g−1f = ((g−1)Y )g ◦ fg ◦ gX = (gY )−1 ◦ fg ◦ gX .

In other words, f is fixed if and only if the square

X
f

//

gX

��

Y

gY

��

X ◦ g
fg

// Y ◦ g

commutes for all g ∈ G. It follows that the fixed points C I
a(X,Y )G are precisely the maps of G-diagrams

C I
a (X,Y ). If I = ∗ then this statement reduces to the one above about maps in CG.

Proposition 1.11: Let I and J be small categories with G-actions a and b, respectively and let F : I → J
be an equivariant functor. Then, for X an I-indexed G-diagram and Y a J-indexed G-diagram the
bijections

φX,Y : C I
a(X,F ∗Y )

∼=−→ C J
b (F∗X,Y )

and
ψX,Y : C I

a(F ∗Y,X)
∼=−→ C J

b (Y, F!X)

induced by the adjunctions on underlying diagrams are G-equivariant.
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Proof. We show that φ = φX,Y is equivariant, the argument for ψX,Y is similar.
Let f : X → F ∗Y be a map of diagrams and g ∈ G. Then φ(g · f) is the unique map F∗X → Y such

that the diagram

X

ηX

��

g·f
// F ∗Y

F ∗F∗X

F∗(φ(g·f))

:: (2)

commutes, where ηX is the unit of the (F∗, F
∗)-adjunction at the object X. Consider the following

diagram:

X
(g−1)X

//

ηX

��

X ◦ g−1
fg−1

//

ηX,g−1

��

(F ∗Y ) ◦ g−1
(F∗gY )g−1

//

=

��

F ∗Y

F ∗F∗X
F∗((g−1)F∗X)

// (F ∗F∗X) ◦ g−1

F∗φ(f)g−1

// (F ∗Y ) ◦ g−1.

(F∗gY )g−1

66

The commutativity of the left hand square follows immediately from the definition of gF∗X and middle
square commutes by the definition of φ(f). Composing the maps in the top row gives (F ∗gY )g−1 ◦fg−1 ◦
(g−1)X = g · f and composing along the bottom row from F ∗F∗X to F ∗Y gives

F ∗((gY )g−1 ◦ φ(f)g−1 ◦ (g−1)F∗X) = F ∗(g · φ(f)).

It follows that F ∗(g · φ(f)) defines a lift in the diagram (2) so, by uniqueness of the lift, we conclude
that φ(g · f) = g · φ(f).

Taking fixed points in Proposition 1.11 we immediately get the following:

Corollary 1.12: The functors F∗ and F! are left and right adjoint, respectively, to the restriction functor
F ∗ : C J

b → C I
a . In particular the diagonal ∆I = p∗ : CG → C I

a induced by the projection p : I → ∗ has
left and right adjoints p∗ = colimI and p! = limI , respectively.

Let I be a category with G-action a and let G act diagonally on the product Iop × I. Given a
G-diagram Z : Iop × I → C recall that the end

∫
i
Zi,i of Z is the equalizer∫

i

Zi,i // //
∏
i

Zi,i
s //

t
//

∏
α : i→j

Zj,i

where s and t act on the left and right, respectively by the map α. The end
∫
i
Zi,i inherits a left G-action

by the maps ∫
i

Zi,i //

g(
∫
Z)

��

∏
i

Zi,i
s //

t
//

∏
i gZ(i,i)

��

∏
α : i→j

Zj,i

∏
α gZ(j,i)

��∫
i

Zi,i //
∏
i

Zi,i
s //

t
//

∏
α : i→j

Zj,i

(∗)

The coend
∫ i
Zi,i is the coequalizer

∐
α : i→j

Zj,i
s //

t
//

∐
i

Zi,i // //

∫
i

Zi,i.
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which inherits a G-action in a similar way.

Example 1.13. If X,Y : I → C are diagrams in C then we can describe the set of maps (natural
transformations) between them as the end

C I(X,Y ) =

∫
i

C (Xi, Yi).

Similarly, for G-diagrams X,Y in C I
a there is a natural isomorphism of G-sets

C I
a(X,Y ) ∼=

∫
i

C (Xi, Yi)

with the G-action on the left hand as described above.

By a simplicial category we will mean a category C that is enriched, tensored and cotensored in
simplicial sets, in the sense of e.g. [DS07, 2.2] or [GJ09, II,2.1]. This means that for any two objects c
and d in C there is a simplicial set MapC (c, d), and a natural bijection C (c, d) ∼= MapC (c, d)0. Moreover,
given a simplicial set K there are objects K ⊗ c and mapC (K, c) of C . These satisfy some associativity
constraints and naturality conditions making MapC (−,−) and mapC (−,−) contravariant functors in
the first variable and covariant in the second variable and −⊗− covariant in both variables. Finally for
all c, d in C and K in sSet there are natural isomorphisms in sSet

MapC (K ⊗ c, d) ∼= Map(K,MapC (c, d)) ∼= MapC (c,mapC (K, d)),

where Map with no subscript denotes the usual internal hom-object in sSet.
Using this structure we will now describe additional structure on the category C I

a of I-indexed G-
diagrams in a simplicial category C . We begin with enrichment. We noted above that for a pair X,Y
of G-diagrams in C the set C I(X,Y ) has a G-action induced by the G-structures on X and Y . This
gives C I

a the structure of a category enriched in left G-sets. The functor i, j 7→ MapC (Xi, Yj) going
from Iop × I to sSet becomes a G-diagram by letting g ∈ G act at i, j by

MapC (g−1
Xi
, gYj ) : MapC (Xi, Yj)→MapC (Xgi, Ygj).

Definition 1.14. With X,Y as above, set

MapC I
a

(X,Y ) =

∫
i

MapC (Xi, Yi)

with the G-action as described in the diagram (∗).
In other words the mapping space MapC I

a
(X,Y ) is the equalizer

MapC I
a

(X,Y ) // //
∏
i

MapC (Xi, Yi)
s //

t
//

∏
α : i→j

MapC (Xj , Yi)

It is not hard to see that this defines an enrichment of C I
a in sSetG and that for each n ≥ 0 there is

an isomorphism of G-sets
MapC I

a
(X,Y )n ∼= C I

a(∆n ⊗X,Y ).

Definition 1.15. Let K : I → sSet, L : Iop → sSet, and X : I → C be G-diagrams. We set

mapaI (K,X) =

∫
i

mapC (Ki, Xi) (3)

L⊗aI X =

∫ i

Li ⊗Xi (4)

and give both the G-actions from (∗).
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When K and L are respectively the G-diagrams of simplicial sets N(I/−) and N(−/I)op from 1.3,
these constructions specify to the following.

Definition 1.16. For a G-diagram X in C the homotopy limit and homotopy colimit of X are respec-
tively

holim
I

X = mapaI (N(I/−), X) hocolim
I

X = N(−/I)op ⊗aI X

This constructions define functors holim,hocolim: C I
a → CG.

In the presence of a model structure the words homotopy limit and colimit will always refer to these
particular construction and not, a priori, the derived functors of the limit and colimit respectively.

Note that there are maps of diagrams N(−/I)op → ∗ and N(I/−) → ∗, where ∗ denotes a chosen
one-point simplicial set in both cases. From the formulas above it is easy to see that there are natural
isomorphisms mapaI (∗, X) ∼= limX and X ⊗aI ∗ ∼= colimX. The maps to the terminal diagrams induce
equivariant maps

limX → holimX hocolimX → colimX

This paper is in part motivated by the question “when are these maps weak equivalences in CG?”

1.3 Examples of G-diagrams

In this section we will provide many of the motivating examples for the theory of G-diagrams. The
diagrams will usually have values in the category Top∗ of pointed spaces.

For the first two examples we need to fix some notation. Let Z be a pointed space with an action
by the finite group G. If T is a finite left G-set, we write R[T ] for the permutation representation with
basis {et}t∈T . The subspace of R[T ] generated by the element NT =

∑
t∈T et is a one-dimensional

trivial subrepresentation of R[T ]. We define ST̃ to be the one-point compactification of the orthogonal

complement of R · NT under the usual inner product. We write ΩT̃Z for the G-space of continuous

pointed maps Map∗(S
T̃ , Z) with the conjugation action of G and ΣT̃Z for the smash product ST̃ ∧ Z

with the diagonal G-action.

Example 1.17. The power set P(T ) inherits a left G-action from the action on T . We think of the

poset P(T ) \ ∅ as a category with G-action. Let ωT̃Z be the P(T ) \ ∅-indexed G-diagram whose value

on a subset U ⊆ T is ∗ if U 6= T and Z if U = T . The G-structure on ωT̃Z is given by the action of
G on Z at the fixed object T and by the unique maps ∗ → ∗ elsewhere in the diagram. We claim that
there is a G-homeomorphism

holim
P(T )\∅

ωT̃Z ∼= ΩT̃Z

which is natural in Z. To see this we begin by noticing that the realization of the category |N(P(T ) \ ∅)
is G-homeomorphic to the (barycentric subdivision of the) standard simplex ∆|T |−1 in the complement

of R ·NT in R[T ]. Since ωT̃Z has all entries trivial except at the last vertex T we see that holimωT̃Z
is homeomorphic to the subspace in Map(∆|T |−1, Z) of maps whose restriction to the boundary is the

constant map to the base-point of Z, that is ΩT̃Z. The naturality is clear, so this proves the claim.

Example 1.18. Similarly, we think of the poset P(T ) \ T as a category with G-action and define the

G-diagram σT̃Z to have the value Z at the vertex ∅ and ∗ elsewhere. The G-diagram structure is induced

by the G-action on Z and the unique maps ∗ → ∗. A similar argument to the one for ωT̃Z shows that
there is a natural G-homeomorphism

hocolim
P(T )\T

σT̃Z ∼= ΣT̃Z.
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Example 1.19. More generally, for any pointed category C and G-object c ∈ CG define the T̃ -loop
space and T̃ -suspension of c respectively as the pullback and pushout in CG

ΩT̃ c //

��

mapC (NP(T )\∅, c)

��

∗ // mapC (∂NP(T )\∅, c),

(∂NP(T )op\T )⊗ c //

��

∗

��

(NP(T )op\T )⊗ c // ΣT̃ c.

In the case of a pointed G-space or G-spectra we recover the usual equivariant loop and suspension

spaces. These constructions define an adjoint pair of functors (ΣT̃ ,ΩT̃ ) on CG, by the sequence of
natural bijections

CG(ΣT̃ c, d) ∼= CP(2)\2((NP(T )op\T )⊗ c← (∂NP(T )op\T )⊗ c→ ∗⊗ c,∆d
) ∼=

CP(2)\∅(∆c,mapC (NP(T )\∅, d)→ mapC (∂NP(T )\∅, d)← mapC (∗, d)
) ∼= CG(c,ΩT̃ d).

Here we used that ∗ ⊗ c = ∗ and mapC (∗, d) = ∗, as C is pointed. Similarly to the previous examples
there are natural isomorphisms in CG

holim
P(T )\∅

ωT̃ c ∼= ΩT̃ c and hocolim
P(T )\T

σT̃ c ∼= ΣT̃ c.

Example 1.20. We already saw that for a category I with G-action the functor N(I/−) : I → sSet has
an obvious G-structure. For a functor F : I → J and an object j of J one can form the over-category
F/j and the assignment j 7→ N(F/j) defines a functor N(F/−) : J → sSet. If F is an equivariant
functor between categories with G-action there are functors F/j → F/(gj) induced by the G-actions,
and after applying the nerve these give a G-structure on the diagram N(F/−). In fact, N(F/−) with
this G-structure is the left Kan extension F∗N(I/−) of N(I/−) along F . This will be important later
when we discuss homotopy cofinality and cofibrancy of G-diagrams.

Example 1.21. Let X : I → C be a diagram in a simplicial category C . Define the diagram qX by
qXi = hocolimI/i u

∗
iX where ui : I/i→ I is the functor that forgets the map to i. A map α : i→ j in I

induces a functor I/i→ I/j and hence a map qXi → qXj . The natural map from the homotopy colimit
to the colimit induces maps

qXi = hocolim
I/i

u∗iX → colim
I/i

u∗iX
∼=−→ Xi,

which combine to a map of diagrams ρX : qX → X. If X is a G-diagram then the functor I/i → I/gi
induced by multiplication by g ∈ G induces a map qXi → qXgi and together these maps constitute a
G-structure on qX. It is a classical fact that the objects colimI qX and hocolimI X are isomorphic and
in ii of Proposition 2.16 we prove that this isomorphism is G-equivariant when X is a G-diagram.

2 G-diagrams and model structures

This section provides a framework in which the equivariant constructions of homotopy limits and colimits
defined earlier in the paper have homotopical sense, and are well behaved. The first step in developing
this framework is to give the ambient category C enough structure to be able to define a model structure
on the category of G-diagrams in C . It turns out that having a model structure on the category CG

of G-objects in C is not enough, but one needs to have homotopical information for all the subgroups
of G. The good context for a genuine equivariant homotopy theory seems to be that of an “equivariant
model category”.
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2.1 Equivariant model categories

Let C be a complete and cocomplete category, G a finite group and H,H ′ ≤ G a pair of subgroups. A
finite set K with commuting left H ′-action and right H-action induces a pair of adjoint functors

K ⊗H (−) : CH � CH′ : homH′(K,−)

The left adjoint is defined as

K ⊗H c = colim

(
H

∐
K c
−→ C

)
where

∐
K c is the H-equivariant colimit of the constant H-diagram ∆c on the discrete H-category Kδ,

(see Example 1.6), and the H ′-action is induced by the H ′-action on K. Dually, define

homH′(K, d) = lim

(
H ′

∏
K c
−→ C

)
with left H-action defined by right action on K. These functors are adjoint via the sequence of natural
isomorphisms

CH′(K ⊗H c, d) ∼= C (K ⊗H c, d)H
′ ∼= CH(

∐
K c, d)H

′ ∼=
CK
a (∆Kc,∆Kd)H

′ ∼= CH(c,
∏
K d)H

′ ∼= CH(c, limH′(
∏
K d)) =

CH(c,homH′(K, d))

In the following we will always use the fixed point model structure on sSetG (see e.g. [Shi03, 1.2])
unless otherwise is stated.

Definition 2.1. A G-model category is a cofibrantly generated simplicial model category C , together
with the data of a cofibrantly generated model structure on CH for every subgroup H ≤ G, satisfying

1. The model structure on CH together with the sSetH -enrichment, tensored and cotensored struc-
tures induced from C forms a cofibrantly generated sSetH -enriched model structure on CH ,

2. For every pair of subgroups H,H ′ ≤ G, and finite set K with commuting free left H ′-action and
free right H-action the adjunction

K ⊗H (−) : CH � CH′ : homH′(K,−)

is a Quillen adjunction.

Remark 2.2. For H ′ ≤ H and K = H with actions given by left H ′ and right H multiplications, the
functor

H ⊗H (−) : CH −→ CH′

is isomorphic to the functor resHH′ that restricts the action. Similarly for K = H with left H multipli-
cation and right H ′ multiplication the functor

homH(H,−) : CH −→ CH′

is also isomorphic to the functor resHH′ . It follows from the second condition that resHH′ is both a left and
a right Quillen functor, and therefore it preserves cofibrations, acyclic cofibrations, fibrations, acyclic
fibrations and equivalences between cofibrant or fibrant objects.

Example 2.3. Let C be a cofibrantly generated sSet-enriched model category. The collection of pro-
jective model structures (näıve) on CH for H ≤ G defines a G-model structure on CG. To see this, just
notice that if H ′-acts freely on K, a choice of section for the quotient map K → H ′\K induces a natural
isomorphism

resHe homH′(K, c) ∼=
∏
H′\K

c

where resHe : CH → C is the forgetful functor. Therefore homH′(K,−) preserves fibrations and acyclic
fibrations.
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Example 2.4. Let C be a cofibrantly generated sSet-enriched model category, and fix a pair of finite
groups H ≤ G. For all subgroup L ≤ H, the L-fixed points functor (−)L : CH → C is defined as the
composite

CH resHL−→ C L lim−→ C

If these functors are cellular in the sense of [GM13], the category CH inherits a sSetH -enriched model
structure where weak equivalences and fibrations are the maps that are sent by (−)L respectively to
weak equivalences and fibrations in C , for every subgroup L ≤ H (cf. [MM02, 2.8],[GM13],[Ste10]). This
construction specifies to the standard fixed points model structure on (pointed) spaces with H-action.

The collection of model categories CH , for H running over the subgroups of G, assemble into a
G-model category. Let us see that the left adjoint K ⊗H (−) is a left Quillen functor. The generating
cofibrations of CH are by definition the images of the generating cofibrations of C by the functors

J ⊗ (−) : C −→ CH

where J ranges over finite sets with left H-action. Similarly for generating acyclic cofibrations. There
is a natural isomorphism

K ⊗H (J ⊗ (−)) ∼= (K ×H J)⊗ (−)

and the right hand functor preserves cofibrations and acyclic cofibrations by assumption. Thus K⊗H (−)
preserves generating (acyclic) cofibrations. Since it is a left adjoint it preserves colimits, and therefore
all (acyclic) cofibrations (see e.g. [Hir03, 11.2]).

Example 2.5. Let C = SpO be the category of orthogonal spectra and G a finite group. The category
(SpO)G of G-objects in SpO is naturally equivalent to the category of orthogonal G-spectra J V

G S
of [MM02] indexed on a universe V for finite dimensional G-representations (cf.[MM02, V.1], [Sch13,
2.7]). Given any subgroup H ≤ G, we endow (SpO)H with the model structure induced by the stable
model structure on J i∗V

H S of [MM02] under the equivalence of categories (SpO)H ' J i∗V
H S . Here

i : H → G denotes the inclusion, and i∗V is the universe of representations of H that are restrictions of
representations of G in V . The adjunctions

K ⊗H (−) : (SpO)H � (SpO)H
′
: homH′(K,−)

are the standard induction-coinduction adjunctions, and they are Quillen adjunctions by [MM02, V-2.3].
The collection of model categories {(SpO)H}H≤G then forms a G-model category.

2.2 The “G-projective” model structure on G-diagrams

Let G be a finite group, C a category, and I a small category with G-action a. Given a G-diagram X in
C I
a and an object i ∈ I, the vertex Xi ∈ C inherits from the G-structure on X an action by the stabilizer

group Gi ≤ G of the object i. This gives an evaluation functor evi : C I
a → CGi for every object i.

Theorem 2.6: Let C be a G-model category (see 2.1). There is a cofibrantly generated sSetG-enriched
model structure on the category of G-diagrams C I

a with

1. weak equivalences the maps of G-diagrams f : X → Y whose evaluations evif are weak equivalences
in CGi for every i ∈ I,

2. fibrations the maps of G-diagrams f : X → Y whose evaluations evif are fibrations in CGi for
every i ∈ I,

3. generating cofibrations and acyclic cofibrations

FI =
⋃
i∈I

FiIi and FJ =
⋃
i∈I

FiJi

where Ii and Ji are respectively generating cofibrations and generating acyclic cofibrations of CGi ,
and Fi : CGi → C I

a is the left adjoint to the evaluation functor evi.
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Remark 2.7. Under the isomorphism C I
a
∼= CGoaI of Lemma 1.9 the evaluation functor evi corresponds

to restriction along the functor ιi : Gi → G oa I that sends the unique object to i and a morphism g
to (g, idi : gi = i → i). Since C has all colimits a left adjoint for evi exists. Also notice that the model
structure on C I

a above does not correspond to the projective model structure on CGoaI .

Before proving the theorem we need to identify the left adjoints of the evaluation functors. For fixed
objects i, j ∈ I let Kji be the morphisms set

Kji = homGoaI(i, j) = {(g ∈ G,α : gi→ j)}

The stabilizer group Gj acts freely on the left on Kji by left multiplication on G and by the category
action on the morphism component. The group Gi acts freely on the right on Kji by right multiplication
on the G-component. For every c ∈ CGi define a diagram Fic : I → C by sending an object j ∈ I to

(Fic)j = Kji ⊗Gi c

A morphism β : j → j′ in I induces a map (Fic)j → (Fic)j′ via the Gi-equivariant map β∗ : Kji → Kj′i

β∗(g, α : gi→ j) = (g, β ◦ α)

The Gi-equivariant maps g : Kji → K(gj)i

g(g′, α : g′i→ j) = (gg′, gα : gg′i→ gj)

define a G-structure on Fic. The construction is clearly functorial in c, defining a functor Fi : CGi → C I
a .

Lemma 2.8: The functor Fi : CGi → C I
a is left adjoint to the evaluation functor evi : C I

a → CGi .

Proof. We prove that under the isomorphism C I
a
∼= CGoaI of Lemma 1.9 the functor Fi corresponds to

the left Kan extension along the inclusion ιi : Gi → Goa I. For an object j ∈ I, the category ιi/j is the
disjoint union of categories

ιi/j =
∐

z∈G/Gi
zi→j

Ez

where Ez is the translation category of the right Gi-set z, with one object for every element of the orbit
z, and a unique morphism h : g → g′ whenever g′ = gh−1 for some h ∈ Gi. An object c ∈ CGi induces
a diagram Ec : Ez → Gi

c→ C , where the first functor collapses all the objects to the unique object of
Gi, and sends the unique morphism g → gh−1 to h. The left Kan extension along ιi at c is by definition
the diagram Lic with j-vertex

(Lic)j =
∐

z∈G/Gi
zi→j

colim
Ez

Ec

Notice that the indexing set of the coproduct is precisely the orbit set Kji/Gi. There is a canonical map
of diagrams Fic→ Ljc, which at a vertex j is induced by∐

Kji

c −→
∐

Kji/Gi

colim
Ez

Ec = (Lic)j

which on the (g, α)-component is the canonical map c = (Ec)g → colimE[g]Ec to the [g, α]-coproduct
component. This map respects the Gj-structure, which on Lic acts on the indexing sets Kji/Gi. To
show that it is an isomorphism, choose a section s : G/Gi → G for the projection map. This gives a map

(Lic)j =
∐

Kji/Gi

colim
Ez

Ec −→
∐
Kji

c −→ Kji ⊗Gi c = (Fic)j

that on the (z, α)-component is the map induced by s(z)−1g : (Ez)g = c→ c to the (s(z), α)-component.
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Proof of 2.6. Weak equivalences and fibrations in C I
a are by definition the morphisms that are sent to

weak equivalences and fibrations, respectively, by the functor∏
i∈I

evi : C I
a −→

∏
i∈I

CGi

It follows from Lemma 2.8 that the coproduct of the functors Fi defines a left adjoint

F :
∏
i∈I

CGi
∏
Fi−→
∏
i∈I

C I
a

∐
−→ C I

a

for the product of the evaluation functors. The collections

I =
⋃
i∈I

(Ii ×
∏
j 6=i

id∅j ) and J =
⋃
i∈I

(Ji ×
∏
j 6=i

id∅j )

generate respectively the cofibrations and the acyclic cofibrations of
∏

CGi (see e.g. [Hir03, 11.1.10]),
where ∅j is the initial object of CGi . Moreover their images by F are precisely the families FI and FI
from the statement. Following [Hir03, 11.3.1] and [Ste10, D.21], we prove that

i)
∏

evj takes relative FI-cell complexes to cofibrations: Let λ be a non-zero ordinal and X : λ→ C I
a

a functor such that for all morphism β → β′ in λ the map Xβ → Xβ′ is a pushout of a map in FI.
We need to show that for every j ∈ I the map

evjX0 −→ evj colim
λ

X = colim
λ

evj ◦X

is a cofibration in CGi . Since evj commutes with colimits, each map evjXβ → evjXβ′ is the
pushout of a map in evjFI. Thus we need to show that every map in evjFI is a cofibration of
CGj . By definition of I, this is the same as showing that for all i, j ∈ I every generating cofibration
of Ii is sent by evjFi to a cofibration of CGj . The composite functor evjFi is by definition

evjFi = Kji ⊗Gi (−) : CGi −→ CGj

which sends generating cofibrations to cofibrations as part of the axioms of a G-model category
(see 2.1).

ii)
∏

evj takes relative FJ -cell complexes to acyclic cofibrations: the argument is similar to the one
above.

Moreover
∏

evj preserves colimits. By [Hir03, 11.3.1] and [Ste10, D.21], the families FI and FJ are
respectively a class of generating cofibrations and acyclic cofibrations for the sSetG-enriched model
structure on C I

a with the fibrations and weak equivalences of the statement.

Remark 2.9. Recall the isomorphism C I
a
∼= CGoaI of Lemma 1.9. The model structure on C I

a does
not correspond to the projective model structure on CGoaI . However, every fibration (resp. weak
equivalence) in C I

a is in particular a fibration (resp. weak equivalence) in CGoaI . This means that the
cofibrations of CGoaI are also cofibrations in C I

a . In particular, a sufficient condition for an object of
C I
a to be cofibrant is to be cofibrant in the projective model structure of CGoaI .

Proposition 2.10: If X ∈ C I
a is cofibrant, each vertex Xi is cofibrant in CGi .

Proof. An argument dual to the proof of Lemma 2.8 shows that the right adjoint Ri to the evaluation
functor evi : C I

a → CGi has j-vertex

evjRi = homGi(K
∗
ji,−)

15



where K∗ji is the set Kji with left Gi-action g · k := k · g−1 and right Gj-action k · g := g−1 · k. Hence
evjRi is a right Quillen functor by the axioms of a G-model category. Since the fibrations and the
equivalences on C I

a are point-wise, Ri : CGi → C I
a is also a right Quillen functor. It follows that evi is

a left Quillen functor, and in particular it preserves cofibrant objects.

Definition 2.11. Let C and D be G-model categories. A G-Quillen adjunction (resp. equivalence) is
an enriched adjunction C � D such that the induced adjunction CH � DH is a Quillen adjunction
(resp. equivalence) for every subgroup H ≤ G.

Example 2.12. The Quillen equivalence | − | : sSet� Top : Sing (see [GJ09, I]) is a G-Quillen equiv-
alence for any finite group G.

Corollary 2.13: A G-Quillen equivalence L : C � D : R induces a Quillen equivalence

L : C I
a � DI

a : R.

Proof. The adjunction L : C I
a � DI

a : R is a Quillen adjunction since the right adjoint preserves fibrations
and acyclic fibrations, as they are defined point-wise. Let X ∈ C I

a be cofibrant and Y ∈ DI
a fibrant. A

map X → R(Y ) is an equivalence if and only if its adjoint L(X)→ Y is, since by Proposition 2.10 X is
point-wise cofibrant.

2.3 Cofibrant replacement of G-diagrams

When C is a cofibrantly generated simplicial model category and I is a small category a standard way
to replace a diagram X : I → C by a cofibrant diagram is by the construction of Example 1.21. Namely,
one defines qX by qXi = hocolimI/i(u

∗
iX) where ui : I/i → I is the functor that forgets the map to i.

Then qX is cofibrant in the projective model structure on C I and the natural map ρX : qX → X is a
weak equivalence if X has cofibrant values in C . In this section we will generalize this to G-diagrams
as follows:

Theorem 2.14: If X is a G-diagram such that for all i in I the value Xi is cofibrant in CGi , then the
map ρX : qX → X is a cofibrant replacement of G-diagrams in the sense that qX is cofibrant and ρX is
a weak equivalence.

The proof is technical and will occupy the rest of this section. We begin by fixing some notation. Let
I be a small category with an action a of G. Write Iδ for the discrete category with the same objects
as I but no non-identity morphisms. The inclusion Iδ ↪→ I is equivariant and induces a restriction

functor r : C I
a → C Iδ

a with left adjoint r∗. We abbreviate r(X) as Xδ. Note that the functor r preserves
fibrations and weak equivalences and hence is a right Quillen functor. It follows that the left adjoint
r∗ is a left Quillen functor. We say that an I-indexed G-diagram X is point-wise cofibrant if for each
object i in I the value Xi is cofibrant in CGi .

Lemma 2.15: i) If Y is an Iδ-indexed G-diagram which is point-wise cofibrant, then Y is cofibrant

in C Iδ

a .

ii) In particular, if X is a point-wise cofibrant I-indexed G-diagram then r∗X
δ is cofibrant in C I

a .

Proof. To see that part i) holds, consider a square

∅

��

// Z

f∼
����

Y // W

(5)
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in C Iδ

a , where the right hand vertical map is a trivial fibration and ∅ denotes the initial object. The
map f being a trivial fibration means exactly that each component fi : Zi →Wi is a trivial fibration in
CGi . Choose a representative i of each G-orbit in obI. Each resulting square

∅
��

��

// Zi

∼ fi
����

Yi //

λi

>>

Wi

has a lift λi since Yi is cofibrant and fi is a trivial fibration in CGi . For g ∈ G define λgi = gZi ◦λi ◦g−1
Yi

.

Then, if gi = i the Gi-equivariance of the map λi says precisely that λi = gZi ◦ λi ◦ g−1
Yi

= λgi, so for all
i and all g ∈ G the map λgi is well-defined. It is now easy to see that the λgi’s assemble to a map of
G-diagrams giving a lift in the square (5).

Part ii) follows immediately from part i) and the fact that r∗ is a left Quillen functor and hence
preserves cofibrancy of objects.

The adjunction (r∗, r) induces a comonad r∗r on C I
a in the usual way. For a G-diagram X the value

(r∗r)X on i is

(r∗r)Xi =
∐

α : j→i
Xj .

The counit ε : (r∗r)X → X maps the Xj-component in the coproduct indexed by α : j → i to Xi by the
map X(α). The comultiplication c : (r∗r)X → (r∗rr∗r)X has as i-component the map

∐
α : j→i

Xj →
∐

α : j→i

 ∐
α′ : k→j

Xk


that maps the Xj-summand indexed by α : j → i by the identity to the Xj-summand indexed by idj in
the α-summand of the target.

Let X be a G-diagram indexed on I. The bar construction on the comonad r∗r gives a simplicial
G-diagram B(r∗r)X with Bn(r∗r)X = (r∗r)

n+1X so that

Bn(r∗r)Xi =
∐

α0 : i0→i

∐
α1 : i1→i0

· · ·
∐

αn : in→in−1

Xin
∼=

∐
in→···→i0→i

Xin .

Note that for varying n the indexing Gi-simplicial set can be identified with N(I/i)op. For

σ = in
αn−→ · · · α1−→ i0

α0−→ i

in Nn(I/i)op the face map dn−k for k < 0 composes the maps αk and αk−1 and d0 maps Xin to the
Xin−1

indexed by d0(σ) ∈ Nn−1(I/i)op by the map X(αn). The degeneracy map sn inserts an identity
in the (n− l)-spot. Note that

colim
I

r∗rX = colim
Iδ

rX =
∐
i

Xi,

so that colimI Bn(r∗r)X ∼=
∐
σ∈Nn(Iop)Xσ(n) and colimI B(r∗r)X is isomorphic to the usual simplicial

replacement
∐
∗X of Bousfield and Kan [BK72] with G-action induced by the G-structure on X.

Proposition 2.16: Let X be an I-indexed G-diagram. Then there are natural isomorphisms in CG

i) N(−/I)op ⊗aI X ∼= |
∐
∗X|

ii) |
∐
∗X| ∼= colimI qX.
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Proof. To see i we first decompose the tensor product as an iterated coend (cf. [Rie13, §6.6])

N(−/I)op ⊗aI X =

∫ i

N(i/I)op ⊗Xi
∼=
∫ i
(∫ [n]

∆n ×Nn (i/I)
op

)
⊗Xi.

Here and in the rest of the proof we leave it to the reader to check that this is compatible with the
G-structures on the diagrams. Rearranging the parentheses and switching the order of the coends gives
the isomorphic object∫ [n] ∫ i

∆n ⊗ (Nn (i/I)
op ⊗Xi) ∼=

∫ [n]

∆n ⊗

(∫ i ∐
i→in→···→i0

Xi

)
.

Now we analyze the latter
∫ i

-factor. It is a coend of the G-diagram Iop × I → C given by

(i, j) 7→
∐

i→in→···→i0

Xj .

This is isomorphic to the diagram

(i, j) 7→
∐

in→···→i0

I(i, in)⊗Xj

and we note that since coends commute with colimits there is an isomorphism∫ i ∐
in→···→i0

I(i, in)⊗Xi
∼=

∐
in→···→i0

∫ i

I(i, in)⊗Xi.

Here we must be careful since the representable functor I(−, in) is not itself a G-diagram, but the

coproduct
∐
σ∈Nn(Iop) I(−, σ(n)) of representable functors is. Finally, we observe that

∫ i
I(i, in)⊗Xi

∼=
Xin so that ∫ [n]

∆n ⊗

(∫ i ∐
i→in→···→i0

Xi

)
∼=
∫ [n]

∆n ⊗

( ∐
in→···→i0

Xin

)
= |
∐
∗X|

To get the isomorphism in ii) we recall the isomorphism colimI B(r∗r)X ∼=
∐
∗X. Since realization

commutes with colimits, there are natural isomorphisms

|
∐
∗X| ∼= | colim

I
B(r∗r)X| ∼= colim

I
|B(r∗r)X|.

Evaluating at i gives

|B(r∗r)X|i =

∣∣∣∣∣[n] 7→
∐

in→···→i0→i
Xin

∣∣∣∣∣ ∼= hocolim
I/i

(u∗iX)

where the last isomorphism is an instance of i) for the Gi-diagram u∗iX : I/i → C . This gives an
isomorphism

colim
I
|B(r∗r)X| ∼= colim

I
qX.

Lemma 2.17: If X is a point-wise cofibrant G-diagram, then the simplicial object B(r∗r)X is Reedy
cofibrant in (C I

a )∆op

.
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Proof. Let L = LnB(r∗rX) be the n-th latching object of B(r∗rX). The natural map

LnB(r∗rX)→ Bn(r∗rX) = B

is at each i in I the inclusion of the summands indexed by the degenerate n-simplices in Nn(I/i)op into
the coproduct over all n-simplices. Thus B decomposes as a coproduct B = LqN where the value of N
at i is the coproduct indexed over all the non-degenerate simplices of the nerve. The decomposition is
clearly compatible with the G-diagram structure on each factor. The diagram N is obtained by applying
r∗ to a point-wise cofibrant Iδ-indexed G-diagram and is therefore cofibrant. It follows that the map
L→ B is a cofibration.

Corollary 2.18: If X is a point-wise cofibrant G-diagram, then qX is cofibrant.

Proof. We know from the proof of Proposition 2.16 that qX is the realization of the simplicial object
B(r∗r)X which is Reedy cofibrant by Lemma 2.17. Since realization takes Reedy cofibrant objects to
cofibrant objects [GJ09, VII,3.6] it follows that qX is cofibrant.

Example 2.19. Let ∗I be the I-indexed G-diagram with value the terminal object ∗ of sSet. Then
q(∗I)i = hocolimI/i(∗I/i) ∼= N(I/i)op, so that q(∗I) ∼= N(I/−)op and similarly q(∗Iop) ∼= N(−/I).
By Corollary 2.18 it follows that the diagrams N(I/−) and N(−/I)op are cofibrant as G-diagrams
since ∗ is cofibrant in sSetGi for all i in I and taking opposite simplicial sets preserves cofibrations.
Further, let I and J be categories with respective G-actions a and b, and F : I → J an equivariant
functor. Since the left Kan extension F∗ preserves cofibrancy the diagrams N(F/−) ∼= F∗N(I/−) and
N(−/F )op ∼= F∗N(−/I)op are also cofibrant in sSetJb .

Proof of Theorem 2.14. It only remains to see that the map ρX is a weak equivalence. For this we must
show that for each i the map ρXi : hocolimI/i u

∗
iX → Xi is a weak equivalence in CGi . The functor

ι : ∗ → I/i sending the unique object to the terminal object is homotopy cofinal in the sense of Definition
2.24, so by Theorem 2.25 the map Xi = hocolim∗ ι

∗u∗iX → hocolimI/i u
∗
iX is a weak equivalence. Since

it is also section to the map ρXi it follows by the two out of three property that ρXi is a weak equivalence
as well.

2.4 Homotopy invariance of map, tensor and of homotopy (co)limits

In this section C is a G-model category in the sense of definition 2.1, and a is a G-action on a small
category I.

Proposition 2.20: Let X ∈ C I
a be a G-diagram in C . If X is fibrant, the functor

mapaI (−, X) : (sSetIa)op −→ CG

preserves equivalences of cofibrant objects (in sSetIa). Dually, if X is point-wise cofibrant, the functor

(−)⊗aI X : sSetI
op

a −→ CG

preserves equivalences of cofibrant objects.

Proof. We prove the statement for mapaI , the proof for ⊗aI is similar. Let K → L be an equivalence of
cofibrant diagrams in sSetIa. By Ken Brown’s Lemma we can assume that K → L is a cofibration (cf.
[Hir03, 7.7.1]). To show that the induced map is an equivalence, we need to solve the lifting problem

A��

��

// mapaI (L,X)

��

B

::

// mapaI (K,X)
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for every cofibration A → B in CG. Let MapC (B,X) be the G-diagram in sSet given by i 7→
MapC (B,Xi) and where the G-structure is given by the maps MapC (g−1, gXi) : MapC (B,Xi) →
MapC (B,Xgi). The adjunction isomorphism

CG(B,mapaI (L,X)) ∼= sSetIa(L,MapC (B,X)).

is equivariant, and therefore the lifting problem above is equivalent to the lifting problem in sSetIa

K��

'
��

// MapC (B,X)

��

L

99

// MapC (A,X)

This can be solved if MapC (B,X)→MapC (A,X) is a fibration in sSetIa, i.e., if for every object i ∈ I
the map MapC (B,Xi)→MapC (A,Xi) is a fibration of simplicial Gi-sets. By assumption Xi is fibrant
in CGi and A → B restricts to a cofibration in CGi , so by axiom SM7 for the sSetGi-enriched model
category CGi the map is a fibration.

Proposition 2.21: If K is a cofibrant diagram in sSetIa, the functor

mapaI (K,−) : C I
a −→ CG

preserves equivalences of fibrant objects. Dually if K is cofibrant in sSetI
op

a , the functor

K ⊗aI (−) : C I
a −→ CG

preserves equivalences of point-wise cofibrant objects.

Proof. The proof is the same as for the non-equivariant case of [Hir03, 18.4], using the equivariant
adjunctions as in the proof of 2.20.

The following result generalizes Villarroel’s result [VF04, 6.1]:

Corollary 2.22: The functors holim: C I
a → CG and hocolim: C I

a → CG preserve equivalences between
fibrant G-diagrams and point-wise cofibrant G-diagrams respectively.

Proof. Recall that homotopy limits and homotopy colimits are defined by cotensoring with N(I/−)
and tensoring with N(−/I)op, respectively. By Proposition 2.21 it is enough to show that N(I/−) is
cofibrant in sSetIa and N(−/I)op is cofibrant in sSetI

op

a . This was shown in Example 2.19.

For an equivariant functor F : I → J between categories with G-actions a and b respectively define
the homotopy left Kan extension of a G-diagram X in C I

a by

(hoF∗X)j = hocolim(F/j → I
X→ C )

with the induced G-structure. The usual homotopy colimit hocolimI is the homotopy left Kan extension
along the functor I → ∗. Using the simplicial resolution B(r∗r)X of Section 2.3 it is not hard to see
that there is a natural isomorphism hoF∗X ∼= F∗(qX).

Lemma 2.23: (Transitivity of homotopy left Kan extensions) Let F : I → J and F ′ : J → K be equiv-
ariant functors between small categories with G-actions a, b and c, respectively. If X is a pointwise
cofibrant object in C I

a then the natural map

hoF ′∗(hoF∗X)→ ho(F ′ ◦ F )∗X
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is a weak equivalence in CK
c . In particular, if K = ∗ then there is a weak equivalence

hocolim
J

(hoF∗X)
∼→ hocolim

I
X.

Proof. Since X is pointwise cofibrant the diagram qX is cofibrant and so hoF∗X ∼= F∗qX is cofibrant
as well, since F∗ preserves cofibrancy. The functor F ′∗ preserves weak equivalences between cofibrant
objects, so the natural map F ′∗(q hoF∗X)→ F ′∗(hoF∗X) is a weak equivalence. The map in the lemma
is the composite of the natural maps

hoF ′∗(hoF∗X)
∼=−→ F ′∗(q hoF∗X)

∼−→ F ′∗(hoF∗X)
∼=−→ F ′∗(F∗qX)

∼=−→ ho(F ′ ◦ F )∗X,

where the second map is a weak equivalence by the discussion above.

2.5 Equivariant cofinality

Let I and J be categories with respective G-actions a and b, F : I → J an equivariant functor, and
X : J → C a G-diagram.

We want to know when the canonical maps

hocolim
I

F ∗X −→ hocolim
J

X and holim
J

X −→ holim
I

F ∗X

are equivalences in CG. As in the non-equivariant setting, the categories F/j and j/F play a role
in answering this question. For every object j ∈ J these categories inherit a canonical action by the
stabilizers group Gj ≤ G of j.

Definition 2.24. The functor F : I → J is left (resp. right) cofinal if for every j ∈ J the nerve of the
category F/j (resp. j/F ) is weakly Gj-contractible.

Notice that for H ≤ Gi, the H-fixed points of the nerve of F/j are isomorphic to the nerve of (F/j)H .
Therefore F is left cofinal if and only if the fixed categories (F/j)H are contractible for all H ≤ Gi, and
similarly for right cofinality.

The following cofinality theorem is a generalization of [TW91, 1] and [VF04, 6.3].

Theorem 2.25: Let C be a G-model category, F : I → J be an equivariant functor, and X ∈ C J
b a

G-diagram in C . If F is left cofinal and X is fibrant, the canonical map

holim
J

X −→ holim
I

F ∗X

is an equivalence in CG. Dually, if F is right cofinal and X is point-wise cofibrant, the map

hocolim
I

F ∗X −→ hocolim
J

X

is an equivalence in CG.

Proof. We prove the part of the statement about left cofinality. The map holimJ X → holimI F
∗X

factors as
mapbJ(NJ/(−), X)

∼=−→ mapbJ(NF/(−), X)→ mapaI (NI/(−), F ∗X).

The first map is a cotensor version of the (F∗, F
∗)-adjunction isomorphism. It is equivariant and it is

showed to be an isomorphism in [Hir03, 19.6.6]. The second map is induced by the projection map
NF/(−) → NJ/(−) which is an equivalence in sSetJb , since for all H ≤ G and all object j ∈ JH

both categories F/jH and J/jH are contractible (J/jH has a final object). Moreover, the G-diagrams
NJ/(−) and NF/(−) are cofibrant in sSetJa , by Example 2.19. Therefore the induced map on mapping
objects is an equivalence by the homotopy invariance of mapbJ of Proposition 2.20.
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As an application of cofinality we prove a “twisted Fubini theorem” for homotopy colimits, describing
the homotopy colimit of a G-diagram indexed over a Grothendieck construction. The classical version
can be found in [CS02, 26.5]. Let I be a category with G-action and Ψ ∈ CatIa a G-diagram of small
categories. The Grothendieck construction I o Ψ of the underlying diagram of categories inherits a
G-action, defined on objects by

g ·
(
i, c ∈ ObΨ(i)

)
=
(
gi, g∗c ∈ Ψ(gi)

)
and sending a morphism (α : i→ j, γ : Ψ(α)(c)→ d) from (i, c) to (j, d) to the morphism

g ·
(
α, γ

)
=
(
gα : gi→ gj,Ψ(gα)(gc) = gΨ(α)

gγ→ gd
)

Now let X ∈ C IoΨ
a be a G-diagram in a G-model category C . This induces a G-diagram I → C

defined at an object i of I by hocolimΨ(i)X|Ψ(i), where X is restricted along the canonical inclusion
ιi : Ψ(i)→ I oΨ. The G-structure is given by the maps

hocolim
Ψ(i)

X|Ψ(i)
g→ hocolim

Ψ(i)
X|Ψ(gi) ◦ g

g∗→ hocolim
Ψ(gi)

X|Ψ(gi)

where the first map is induced by the natural transformation of Ψ(i)-diagrams X|Ψ(i) → X|Ψ(gi) ◦ g
provided by the G-structure on X, and the second map is the canonical map induced by the functor on
indexing categories g : Ψ(i)→ Ψ(gi).

Corollary 2.26: For every point-wise cofibrant G-diagram X ∈ C IoΨ
a there is a natural equivariant

weak equivalence

η : hocolim
I

hocolim
Ψ(−)

X|Ψ(−)
'→ hocolim

IoΨ
X.

Remark 2.27. When C is the G-model category of spaces with the fixed point model structures and
X : I oΨ→ Top is the constant one point diagram the corollary gives a G-equivalence

|N(I oΨ)| '−→ hocolim
i∈I

|NΨ(i)|

analogous to Thomason’s theorem [Tho79]. Our proof is modeled on Thomason’s proof.

Proof of 2.26. Let p : I oΨ→ I be the canonical projection. We start by defining a zig-zag of equivalences

hocolim
I

hocolim
Ψ(−)

X|Ψ(−)
λ1← hocolim

I
ho p∗X

λ2→ hocolim
IoΨ

X,

where ho p∗ denotes homotopy left Kan extension, and λ2 is the equivalence of transitivity of homotopy
left Kan extensions 2.23.

For an object i of I define the functor Fi : p/i→ Ψ(i) by Fi(j, c, f : j → i) = Ψ(f)(c) on objects and
on morphisms from (j, c, f0 : j → i) to (k, d, f1 : k → i) by

Fi
(
h : j → k, α : Ψ(h)(c)→ d

)
= Ψ(f1)(α) : Ψ(f0)(c)→ Ψ(f1)(d)

The canonical functor p/i→ I oΨ used to define the homotopy left Kan extension (ho p∗X)i factors as

p/i
Fi−→ Ψ(i)

ιi−→ I o Ψ. This factorization induces a map γi : (ho p∗X)i → hocolimΨ(i)X|Ψ(i) which is
natural in i and is compatible with the G-structures and hence defines a map of I-indexed G-diagrams
γ : ho p∗X → hocolimΨ(−)X|Ψ(−). This induces the map

λ1 : hocolim
I

ho p∗X −→ hocolim
I

hocolim
Ψ(−)

X|Ψ(−)

in the zig-zag. Let us see that this is an equivalence. For an object c of Ψ(i) the right fiber c/Fi has
a (Gi)c-invariant initial object and is therefore contractible. It follows by cofinality 2.25 that the maps

22



γi are weak Gi-equivalences. By homotopy invariance of homotopy colimits the induced map λ1 is a
G-equivalence.

It remains to introduce the map η : hocolimIoΨX → hocolimI hocolimΨ(−)X|Ψ(−) from the state-
ment, and compare it with the zig-zag. It is defined using the simplicial replacements from §2.3. The
iterated homotopy colimit hocolimI hocolimΨ(−)XΨ(−) is isomorphic to the realization of the simplicial
CG-object

[p] 7→
∐

kp→···→k0,ip
fp→···

f1→i0

X(ip,kp),

where the indexing strings of maps are in NpΨ(ip)
op and NpI

op, respectively. The map η in level p maps
a summand X(ip,kp) by the identity map to the summand of∐

σ∈Np(IoΨ)op

Xσ(p),

indexed by the p-simplex (ip, kp) → (ip−1,Ψ(fp)(kp−1)) → · · · → (i0,Ψ(fp · · · f1)(k0)) of N(I o Ψ)op.
Just as in Thomason’s original proof there is a simplicial homotopy from η ◦λ2 to λ1 and it follows that
η is a weak equivalence (see in particular [Tho79, Lemma 1.2.5]).

2.6 The Elmendorf theorem for G-diagrams

Let C be a cofibrantly generated model category with cellular fixed points, in the sense of [GM13].
Then the category CG of G-object admits the fixed point model structure, where weak equivalences
and fibrations are the equivariant maps whose H-fixed points are weak equivalences and fibrations in
C , respectively, for every subgroup H ≤ G. Let OG be the orbit category of G, with quotient sets G/H
as objects and equivariant maps as morphisms. Elmendorf’s theorem (see [Ste10], [Elm83]) describes a
Quillen equivalence

L : CO
op
G � CG : R

where the diagram category CO
op
G has the projective model structure. In this section we prove an

analogous result, giving a Quillen equivalence between the category of G-diagrams in C and a category
of diagrams with the projective model structure.

Let I be a small category with an action a of G. For convenience we will consider the category of
G-diagrams in C as the category CGoaI of diagrams indexed over the Grothendieck construction of
the action (see 1.9). The functor a : G → Cat induces a functor a : OopG → Cat that sends G/H to
the category IH of objects and morphisms of I fixed by the H-action. We denote its Grothendieck
construction by OopG oa I. The inclusion functor G→ OopG that sends the unique object to G/1 induces
a functor Goa I → OopG oa I, which itself induces a restriction functor

L : CO
op
G oaI −→ CGoaI

Recall from 2.4 that if the fixed point functors of C are cellular, the fixed point model structures on
CH , for H ≤ G, assemble into a G-model category.

Theorem 2.28: Let C be a category such that the fixed points functors for the subgroups of G are
cellular. The functor L : CO

op
G oaI → CGoaI is the left adjoint of a Quillen equivalence

L : CO
op
G oaI � CGoaI : R

where CGoaI has the model structure of 2.6 and CO
op
G oaI has the projective model structure.
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Proof. The right adjoint sends a G-diagram X in CGoaI ∼= C I
a to the diagram R(X) : OopG oa I → C

that sends an object (G/H, i ∈ IH) to

R(X)(G/H, i ∈ IH) = XH
i

In order to define R(X) on morphisms, recall that the set of equivariant maps G/K → G/H is in natural
bijection with (G/H)K . A morphism in OopG from (G/H, i) to (G/K, j) is a pair (z ∈ (G/H)K , (α : zi→
j) ∈ IK), which is sent to the composite

XH
i

z−→ XK
zi

αK∗−→ XK
j

A morphism f : X → Y in C I
a is sent to the natural transformation with value XH

i

fHi−→ Y Hi at the object
(G/H, i ∈ IH). It is straightforward to see that R is a right adjoint for L. The counit LRX → X is an
isomorphism, and the unit at a diagram Z of CO

op
G oaI is the natural transformation

ηZ : Z(G/H, i) −→ RL(Z)(G/H, i) = Z(G/1, i)H

induced by the morphism (H ∈ (G/H)1, idi) : (G/H, i)→ (G/1, i) of OopG oa I. By definition of the fixed
point model structure and of the model structure on CGoaI , the right adjoint R preserves and detects
equivalences and fibrations. Thus the adjunction (L,R) is a Quillen pair.

Since R preserves and detects equivalences, (L,R) is a Quillen equivalence precisely if the unit
ηZ : Z → RL(Z) is an equivalence for all cofibrant objects Z in CO

op
G oaI . We prove this following the

argument of [Ste10]. By cellularity of the fixed point functors RL preserves pushouts along generating
cofibrations and directed colimits along point-wise cofibrations. Thus it is enough to show that ηZ is an
isomorphism when Z is a generating cofibrant object, that is, an object of the form

Z = homOopG oaI((G/H, i),−)⊗ c

for fixed objects (G/H, i) of OopG oa I and c of C cofibrant. For such a Z, the unit at an object (G/K, j)
is the top horizontal map of the commutative diagram

homOopG oaI((G/H, i), (G/K, j))⊗ c
η
//

∼=
��

(homOopG oaI((G/H, i), (G/e, j))⊗ c)K

∼=
��

{(z ∈ (G/H)K , α : (zi→ j) ∈ IK)} ⊗ c //
(
{(z ∈ G/H,α : (zi→ j) ∈ I)} ⊗ c

)K

ΛKij ⊗ c // (Λij ⊗ c)K

where Λij is the set of pairs (z ∈ G/H,α ∈ zi → j) with K acting by left multiplication on G/H and
by the category action on the map to j (notice that j belongs to IK). The bottom horizontal map is an
isomorphism by the cellularity conditions on the K-fixed points functor.

For the G-model category of spaces, the Elmendorf theorem gives a description of the fixed points of
the homotopy limit of a G-diagram as a space of natural transformations of diagrams.

Corollary 2.29: For every G-diagram of spaces X in TopIa, there is a natural homeomorphism of spaces

(holim
I

X)G ∼= Map
TopO

op
G

oaI

(
R(BI/(−)), R(X)

)
where R(X) : OopG oa I → Top has vertices R(X)(G/H,i) = XH

i .

24



Proof. The space (holimI X)G is by definition the mapping space from BI/(−) to X in TopIa. As the
counit of the adjunction of the Elmendorf theorem is an isomorphism, there is a sequence of natural
homeomorphisms

MapTopIa
(
BI/(−), X

) ∼= MapTopIa
(
LR(BI/(−)), X

) ∼= Map
TopO

op
G

oaI

(
R(BI/(−)), R(X)

)

3 Equivariant excision

We use the homotopy theory of G-diagrams developed earlier in the paper to set up a theory of G-excisive
homotopy functors.

Classical excision is formulated using cartesian and cocartesian squares, and captures the behavior of
homology theories. Blumberg points out in [Blu06] that in the equivariant setting, squares of G-objects
are not enough to capture the behavior of equivariant homology theories. In the rest of the paper we
explain how to replace squares by cubical G-diagrams to fund a good theory of equivariant excision. We
point out that this has already been achieved in [Blu06] in the category of based G-spaces. We prove in
3.28 that our approach and Blumberg’s are equivalent in this category.

3.1 Equivariant cubes and G-excision

If J is a finite G-set, the poset category of subsets of J ordered by inclusion P(J) has a canonical
G-action, where a group element g ∈ G sends a subset U ⊂ J to the set

g · U = {g · u | u ∈ U}

Let C be a G-model category (cf. 2.1).

Definition 3.1. The category of J-cubes in C is the category of G-diagrams C
P(J)
a for the action a on

P(J) described above.

In order to define a homotopy invariant notion of (co)cartesian cubes, we need to make our homotopy

(co)limits homotopy invariant. Given a cube X ∈ C
P(J)
a let FX denote a fibrant J-cube together with

an equivalence X
'→ FX. Similarly let QX

'→ X denote an equivalence with QX point-wise cofibrant,
that is, with QXU cofibrant in CGU for every U ∈ P(J).

Remark 3.2. To find a replacement FX one can simply use the fibrant replacement in the model

category C
P(J)
a . Similarly, a cofibrant replacement QX in C

P(J)
a is in particular point-wise cofibrant

by 2.10. However, for a given cube one can often find a more explicit point-wise cofibrant replacement

that is not necessarily cofibrant in C
P(J)
a (see e.g. 3.4 and 3.5 below). For example, if a functorial

cofibrant replacement Q in C lifts to a cofibrant replacement in CH for every H ≤ G, the diagram QX
is point-wise cofibrant.

For an object i of I fixed by the G-action, let I\i be the full subcategory of I with objects different
from i. The action on I restricts to I\i, and the inclusion functor ιi : I\i→ I is equivariant.

Definition 3.3. Let C be a G-model category and J a finite G-set. A J-cube X ∈ C
P(J)
a is homotopy

cocartesian if the canonical map

hocolim
P(J)\J

ι∗JQX −→ QXJ
'→ XJ

is an equivalence in CG. Dually, X ∈ C
P(J)
a is homotopy cartesian if the canonical map

X∅
'→ FX∅ −→ holim

P(J)\∅
ι∗∅FX
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is an equivalence in CG.

Example 3.4. Let J be a finite G-set, and J+ be the G-set J with a disjoint fixed base point. For a
cofibrant object c ∈ CG define a J+-cube SJc with verticies

(SJc)U =

 c , U = ∅
CUc , U � J+

ΣJc , U = J+

Here ΣJc = ΣJ̃+c is the suspension by the permutation representation of J defined in 1.19, and CUc
denotes the U -iterated cone

CUc = hocolim
P(U)

(
S 7−→

{
c if S = ∅
∗ otherwise

)
' ∗

Since c is cofibrant, SJc is point-wise cofibrant. Let us prove that it is homotopy cocartesian. Its restric-
tion to P(J+)\J+ is the cofibrant replacement q of Theorem 2.14 for the diagram σJc : P(J+)\J+ → C
with (σJc)∅ = c and the terminal object at the other vertices. Since homotopy colimits and colimits
agree on cofibrant objects (by the homotopy invariance of ⊗aI ), the canonical map from the homotopy
colimit factors as the equivalence

hocolim
P(J+)\J+

SJc = hocolim
P(J+)\J+

q(σJc)
'→ colim
P(J+)\J+

q(σJc) ∼= hocolim
P(J+)\J+

σJc = ΣJc

Example 3.5. Suppose that C has a zero object ∗ and denote the coproduct by
∨

. Let c be a cofibrant
object of CG and J a finite G-set. Define a J-cube W Jc with vertices

(W Jc)U =


∨
J c , U = ∅

c , |U | = 1
∗ , |U | ≥ 2

with initial map (W Jc)∅ =
∨
J c→ c = (W Jc){j} the pinch map that collapses every wedge component

different from j. This has a G-structure defined by the action on
∨
J c on the initial vertex, and by the

action maps g : (W Jc){j} = c → c = (W Jc){gj}. The cube W Jc is homotopy cocartesian, that is, its
homotopy colimit over P(J)\J is equivalent in CG to the zero object. To see this, we replace W Jc by
the equivalent cube

(Wc)U =


∨
J

c , U = ∅

c
∨
J\j

Cc ,U = {j}∨
J

Cc , |U | ≥ 2

where Cc is the one-fold cone Cc = hocolim(c → ∗) and the non-identity maps of the diagram are all
induced by cone inclusions c → Cc. The G-structure is defined similarly as before, by permuting the
wedge components. The cube Wc is cofibrant, since the latching maps are all cofibrations (see A.6). As
homotopy colimits preserve equivalences of point-wise cofibrant diagrams we get

hocolim
P(J)\J

W Jc
'← hocolim
P(J)\J

Wc
'→ colim
P(J)\J

Wc ∼=
∨
J

Cc

This is contractible since
∨
J is a left Quillen functor and therefore preserves equivalences of cofibrant

objects.

We use homotopy cartesian and cocartesian G+-cubes to express equivariant excision for functors
between G-model categories C and D . We shall consider functors for which we can express compatibility
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conditions with the model structures on CH and DH for every subgroup H ≤ G. These are functors
Φ: C → DG. Such a functor Φ induces a functor Φ∗ : C I

a → DI
a for any category with G-action I. The

G-structure on Φ∗(X) = Φ ◦X is defined by the maps

Φ(Xi)
g−→ Φ(Xi)

Φ(g)−→ Φ(Xgi)

Since each map Φ(g) is G-equivariant Φ(g)g = gΦ(g). For I = ∗ the trivial category this functor is
the classical extension Φ∗ : CG → DG. Similarly, the functor Φ: C → DH obtained by restricting the
G-action to H ≤ G, extends to a functor Φ∗ : CH → DH .

Definition 3.6. We call Φ: C → DG a homotopy functor if for every subgroup H ≤ G the extended
functor Φ∗ : CH → DH preserves equivalences of cofibrant objects. In particular the induced functor
Φ∗ : C I

a → DI
a preserves equivalences of point-wise cofibrant G-diagrams.

Remark 3.7. The following are all examples of functors CG → DG that are extensions of homotopy
functors C → DG.

• The identity functor CG → CG,

• For a fixed pointed G-space K, the functors K ∧ (−),Map∗(K,−) : TopG∗ → TopG∗ ,

• For a fixed orthogonal G-spectrum E the functor E ∧ (−) : TopG∗ → (SpO)G.

An example of a functor CG → DG that is not the extension of a functor C → DG is the functor
(−)/G : TopG → TopG that sends a G-space to its orbit space with trivial G-action.

Definition 3.8. Let C and D be G-model categories. A homotopy functor Φ: C → DG is called

G-excisive if the induced functor Φ∗ : C
P(G+)
a → D

P(G+)
a sends homotopy cocartesian G+-cubes to

homotopy cartesian G+-cubes. If C and D are pointed, Φ is called G-linear if it is G-excisive and Φ(∗)
is equivalent to the zero object in DG.

The choice of indexing the cubes on the G-set G+ seems arbitrary at first sight. We justify and
explain this choice, including the extra basepoint added to G, in 3.10 and 3.12 below.

Example 3.9. The following are examples of G-linear homotopy functors, as we will see later in the
paper.

• LetM be an abelian group with additiveG-action. Consider the homotopy functorM(−) : sSet∗ →
sSetG∗ that sends a simplicial set Z to

M(Z)n =
⊕
z∈Zn

Mz/M∗

where G acts diagonally on the direct summands. We show in 3.30 that this functor is G-linear, and
explain how this is related to the equivariant Eilenberg-MacLane spectrum HM being a fibrant
orthogonal G-spectrum. The homotopy groups of the extension of M(−) to sSetG∗ are Bredon
cohomology of the Mackey functor H 7→MH .

• For a fixed orthogonal G-spectrum E in (SpO)G, the homotopy functor E ∧ (−) : Top∗ → (SpO)G

is G-linear (see 3.33). The stable homotopy groups of the extension of E∧ (−) to pointed G-spaces
is the equivariant cohomology theory associated to E.

• The inclusion of spectra with trivial G-action SpO → (SpO)G (which extends to the identity on
G-spectra) is G-linear (see 3.32).

The next result shows that our choice of indexing the cubes on the G-set G+ in the definition of
G-excision plays a minor role, and we could equivalently have indexed the cubes on transitive G-sets
with disjoint basepoints.
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Proposition 3.10: A homotopy functor Φ: C → DG is G-excisive if and only if the induced functor

Φ∗ : C
P(G/H+)
a → D

P(G/H+)
a sends homotopy cocartesian G/H+-cubes to homotopy cartesian G/H+-

cubes, for every subgroup H ≤ G.

Remark 3.11. Setting H = G in 3.10 we see that Φ∗ : C
P(1+)
a → D

P(1+)
a sends cocartesian squares in

CG to cartesian squares in DG. That is, if Φ is G-excisive then the induced functor Φ∗ : CG → DG is
excisive in the classical sense.

Proof of 3.10. The “if”-part of the statement is trivial. For the “only if”-part, let H be a subgroup of G
and consider the projection map p : G+ → G/H+. As part of a broader discussion on how to calculate
homotopy limits and colimits of punctured cubes, we show in A.1 and A.3 that the induced restriction

functor p∗ : C
P(G/H+)
a → C

P(G+)
a preserves homotopy cocartesian cubes and detects homotopy cartesian

cubes. Therefore, given a homotopy cocartesian cube X in C
P(G/H+)
a , the cube p∗X in C

P(G+)
a is

homotopy cocartesian, and by G-excision of Φ the cube Φ∗(p
∗X) = p∗Φ∗(X) is homotopy cartesian in

D
P(G+)
a . As p∗ detects homotopy cocartesian cubes, Φ∗(X) is homotopy cartesian in D

P(G/H+)
a .

Remark 3.12. The basepoint added to G in the definition of G-excision 3.8 has the role of combining
in a single condition the behavior of Φ: C → DG on squares and on G-cubes. We already saw (3.11)
that if Φ is G-excisive it sends homotopy cocartesian squares to homotopy cartesian squares. It turns

out that Φ∗ : C
P(G/H)
a → D

P(G/H)
a also turns homotopy cocartesian G/H-cubes into homotopy carte-

sian ones. This can be proved by extending a G/H-cube to a G/H+-cube by means of the functor
p : P(G/H+) → P(G/H) that intersects a subset with G/H, with a proof analogous to 3.10. Con-
versely, similar techniques show that if Φ: C → DG turns homotopy cocartesian squares and G-cubes
into homotopy cartesian ones, it is G-excisive.

Remark 3.13. G-linearity is hereditary with respect to taking subgroups, under a mild assumption on
the G-model category D . That is to say, if Φ is G-linear it is also H-linear for every subgroup H of G.
The proof we suggest requires a surprizing amount of machinery and it is given in 3.20 as a corollary of
a higher Wirthmüller isomorphism theorem. It is still unknow to the authors if in the unpointed case
G-excision satisfies a similar property.

Proposition 3.14: Let C and D be pointed G-model categories, and Φ: C → DG be a G-linear homo-
topy functor. For any finite G-set J and any cofibrant G-object c ∈ CG the canonical map

Φ(
∨
J

c) −→
∏
J

FΦ(c)

is an equivalence in DG.

Proof. First assume that J = 1+ with trivial G-action. The square V c

c ∨ c
p+

//

p1

��

c

��
c // ∗

in CG is homotopy cocartesian (cf. 3.5). By 3.11 its image Φ(V c) is homotopy cartesian, that is, the
map

Φ(c ∨ c) '→ FΦ(c ∨ c)→ holim
P(1+)\∅

FΦ(V c) ∼= FΦ(c)× FΦ(c)

is a weak equivalence in DG, with diagonal action on the target. By induction, the map of the statement
is an equivalence for every J with trivial G-action. Given a finite G-set J , decompose it as disjoint union
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of transitive G-sets J =
∐
z∈G\J z. The map of the statement decomposes as

Φ(
∨
J

c) = Φ(
∨

z∈G\J

∨
z

c)
'−→

∏
z∈G\J

FΦ(
∨
z

c) −→
∏

z∈G\J

∏
z

FΦ(c) =
∏
J

FΦ(c)

with the first map an equivalence as the action on the quotient G\J is trivial. Therefore it is enough to
show that the map is an equivalence for J = G/H a transitive G-set.

Consider the G/H+-cube Wc with vertices

(Wc)U =


∨
G/H c , U = ∅

c , U = {j 6= +}
∗ , otherwise

It is homotopy cocartesian by an argument completely similar to 3.5. By 3.10 the cube Φ(Wc) is
homotopy cartesian, that is, the canonical map

Φ(
∨
G/H

c)→ holim
P(G/H+)\∅

FΦ(Wc) ∼=
∏
G/H

FΦ(c)

is an equivalence in DG.

Remark 3.15. In this equivariant setting G+-cubes (or equivalently J+-cubes for J transitive) play
the role that squares play in the classical theory. The equivariant analogue of n-cubes should be cubes
indexed on G-sets with n distinct G-orbits and a disjoint basepoint. Following [Goo92], the behavior of
Φ on these cubes should be related to higher order G-excision. This will be the subject of a later article.

3.2 The generalized Wirthmüller isomorphism theorem

Let C be a bicomplete category, and G a finite group. We recall from §2.1 that a finite set K with
commuting left H ′-action and right H-action induces an adjunction

K ⊗H (−) : CH � CH′ : homH′(K,−)

Let K∗ be the set K with left H-action and right H ′-action defined by h ·k ·h′ = (h′)−1 ·k ·h−1. If C has
a zero-object ∗ and if the actions on K are free, a functor Φ: C → DG induces a natural transformation

η : Φ(K ⊗H (−)) −→ homH(K∗,Φ(−))

of functors CH → DH′ . The map ηc is the image by the composition

CH((K∗ ×H′ K)⊗H c, c)
Φ→ DH(Φ((K∗ ×H′ K)⊗H c),Φ(c))→

DH(K∗ ⊗H′ Φ(K ⊗H c),Φ(c))
∼=−→ DH′(Φ(K ⊗H c),homH(K∗,Φ(c)))

of the map
∨
K∗×H′K

c→ c defined by h : c→ c on a (k, k′)-component with k′h = k, and by the trivial
map c → ∗ → c otherwise. Notice that since the H-action is free there is at most one h for which
k′h = k.

Example 3.16. Suppose that K = G = H ′ with left G-multiplication and right H-multiplication.
Sending an element to its inverse defines a H-G-equivariant isomorphism between G∗ and G with left
H-multiplication and right G-multiplication. We saw in 2.2 that the forgetful functor CG → CH is
right adjoint to G ⊗H (−) and left adjoint to homH(G∗,−). The map η for the identity functor is the
standard map

G⊗H (−) −→ homH(G∗,−)

which in the case of spectra is the classical Wirthmüller isomorphism map. In 3.32 we apply 3.17 below
to recover the Wirthmüller isomorphism theorem for G-spectra.
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Theorem 3.17: Let C and D be pointed G-model categories, and suppose that K admits an H ′-H-
equivariant map to G, this happens e.g. if K = G. For every G-linear homotopy functor Φ: C → DG

and every object c in CH the composite

Φ(K ⊗H c)
η−→ homH(K∗,Φ(c)) −→ homH(K∗, FΦ(c))

is an equivalence in DH′ , where Φ(c)
'→ FΦ(c) is a fibrant replacement of Φ(c) in DH .

In particular, if the right Quillen functor homH(K∗,−) preserves all weak equivalences, the map
η : Φ(K ⊗H c)→ homH(K∗,Φ(c)) is a weak equivalence for any c ∈ CH .

Proof. We express the map of the statement as a canonical map into the homotopy limit of a punctured
cube, and we use the G-linearity of Φ to conclude that the map is an equivalence. For this we will
compare the source and target of η with an indexed coproduct and product, respectively.

Choose a section sG : G/H → G and an H ′-H-equivariant map φ : K → G. These choices give a
commutative diagram (of sets)

K
φ

//

πK

��

G

πG

��

K/H

sK

AA

φ

// G/H

sG

]]

where sK(kH) := k · (φ(k)−1 · sGπGφ(k)) is a section for πK , satisfying the relation φsK = sGφ. This
gives a map γ : H ′ ×K/H → H defined by

γ(h′, z) = sG(h′φ(z))−1 · h′ · sGφ(z)

which we use to define two functors
∨
K/H(−) : CH → CH′ and

∏
K/H(−) : DH → DH′ . These send

objects c and d to the coproduct
∨
K/H c and product

∏
K/H d, respectively, with H ′-actions1

h′ · (z, x) = (h′z, γ(h′, z) · x) and (h′ · y)z = γ(h′, z) · y(h′)−1z, respectively.

There is a commutative diagram of natural transformations

Φ(
∨
K/H c)

Φ(sK⊗idc) ∼=
��

//
∨
K/H Φ(c)

sK⊗idΦ(c) ∼=
��

//
∏
K/H Φ(c)

∼= (−)◦sK
��

η : Φ(K ⊗H c) // K ⊗H Φ(c) // homH(K∗,Φ(c))

The top right horizontal map is the canonical map from the coproduct to the product. The first two
vertical maps are induced by the composite

sK ⊗ id :
∨
K/H

c = K/H ⊗ c→ K ⊗ c� K ⊗H c.

It is an isomorphism with inverse (k, x) 7→ (πKk, (sGπGφ(k))−1φ(k) ·x). The right vertical map (−)◦sK
is defined dually and it is also an isomorphism. We can therefore equivalently study the top composition
Φ(
∨
K/H c)→

∏
K/H Φ(c).

Consider the K/H+-cube Wc : P(K/H+)→ C defined by

(Wc)S =


∨
K/H c , S = ∅

c , |S| = 1, S 6= {+}
∗ , |S| ≥ 2 or S = {+}

1For convenience we only spell these actions out in the case that the objects of C have “elements”.
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with initial map
∨
K/H c → c = (Wc){z} the pinch map that collapses all the wedge components not

indexed by {z}. The structure maps c = (Wc)z → (Wc)h′z = c are defined by action by γ(h′, z) ∈ H.

The cube Wc is homotopy cocartesian. Indeed, if QHc
'→ c is a cofibrant replacement of c in CH ,

the cube WQHc is point-wise cofibrant with homotopy colimit over P(K/H+)\K/H+ contractible (see

3.5). Let Φ(Wc)
'→ FΦ(Wc) be a fibrant replacement of Φ(Wc). By linearity of Φ, the canonical map

Φ(
∨
K/H

c)
'−→ holim
P(K/H+)\∅

FΦ(Wc) ∼=
∏
K/H

FΦ(c)

is an equivalence in DH′ . This proves the first part of the theorem.

Moreover, the map above fits into a commutative diagram

Φ(
∨
K/H c)

//

'
''

∏
K/H Φ(c)

��∏
K/H FΦ(c)

where the right vertical map is an equivalence if homH(K∗,−) (and therefore
∏
K/H(−)) preserves weak

equivalences.

Corollary 3.18: If the trivial action inclusion functor C → CG is G-linear, the left and right adjoints
to the evaluation functor evi : C I

a → CGi are naturally equivalent on fibrant objects for every i ∈ I.

Proof. We saw in 2.8 that the left adjoint Fi : CGi → C I
a has j-vertex

(Fic)j = Kji ⊗Gi c

where Kji = homGoaI(i, j) projects Gj-Gi-equivariantly to G. Similarly the right adjoint has j-vertex

(Ric)j = homGi(K
∗
ji, c)

and 3.17 provides a natural equivalence from Fi to Ri.

We give a “higher version” of the Wirthmüller isomorphism theorem, that compares the left and the
right adjoints of the functor on J-cubes that restricts the action to a subgroup H of G. Given a G-set
J , let J |H be the H-set obtained by restricting the G-action to H. The poset category with H-action

P(J |H) is the category P(J) with the restricted action a|H . There is a forgetful functor C
P(J)
a → C

P(J|H)
a|H

that restricts the G-structure to a H-structure. It has both a left and a right adjoint, that we denote
respectively LJ and RJ . This can easily be seen with the description of G-diagrams as diagrams on a
Grothendieck construction of 1.9, as the restriction functor above corresponds to restriction along the
inclusion ι : H oa|H P(J |H) → G oa P(J). The following result specializes to theorem 3.17 for K = G
when J is the empty G-set.

Theorem 3.19: For every G-linear homotopy functor Φ: C → DG and every J |H-cube X ∈ C
P(J|H)
a|H ,

there is an equivalence of J-cubes

ΦLJ(X)
η−→ RJΦ(X) −→ RJFΦ(X)

where Φ(X)
'→ FΦ(X) is a fibrant replacement of Φ(X) .
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Proof. Let us describe the left adjoint LJ explicitly, by calculating the left Kan extension of X along
ι : H oa|H P(J |H)→ Goa P(J). By definition this has values

LJ(X)U = colim
(
ι/U → H oa|H P(J |H)

X−→ C
)
.

The over category ι/U is the poset with objects (g ∈ G,A ∈ P(g−1U)), and a unique morphism
(g,A) → (g′, A′) whenever g(g′)−1 belongs to H and g(g′)−1A ⊂ A′. This can be written as the
disjoint union of categories

ι/U =
∐

z∈G/H

(Ez oΨz)

where Ez is the translation category of the right H-set z (see 2.8) and Ez o Ψz is the Grothendieck
construction of the functor Ψz : Ez → Cat that sends g ∈ G/H to the category P(g−1U). Hence the
left Kan extension LJ(X) is naturally isomorphic to

LJ(X)U ∼=
∨

z∈G/H

colim
(g,A)∈EzoΨz

XA
∼=

∨
z∈G/H

colim
g∈Ez

colim
A∈P(g−1U)

XA

∼=−→
∨

z∈G/H

colim
g∈Ez

Xg−1U

Here the first isomorphism is the Fubini theorem for colimits (see e.g. [CS02, 40.2], as it is an isomorphism
it is enough to see that it is equivariant). The last map is an isomorphism is because g−1U is a terminal
object in P(g−1U). A choice of section s : G/H → G gives a further identification

LJ(X)U ∼=
∨

z∈G/H

Xs(z)−1U

Chasing through the isomorphisms one can see that the G-structure is given by the maps

g : Xs(z)−1U
s(gz)−1gs(z)−→ Xs(gz)−1gU

The same choice of section gives a similar identification for the right adjoint

RJ(X)U ∼=
∏

z∈G/H

Xs(z)−1U

A G/H+-cube argument completely analogous to 3.17 shows that the inclusion of wedges into products
induces a G-equivalence ΦLJ(X)→ RJFΦ(X)

Corollary 3.20: Let Φ: C → DG be a homotopy functor, and suppose that the functor homH(G,−) : DH →
DG detects equivalences of fibrant objects. If Φ∗ : C

P(J)
a → D

P(J)
a sends homotopy cocartesian cubes to

homotopy cartesian cubes, so does Φ∗ : C
P(J|H)
a|H → D

P(J|H)
a|H .

It follows that if Φ is G-linear, it is also H-linear for every subgroup H ≤ G.

Proof. From the explicit descriptions of LJ and RJ of 3.19 one can see that LJ commutes with homotopy
colimits and that RJ commutes with homotopy limits. In particular, if X is a homotopy cocartesian
J |H -cube, the J-cube LJ(X) is also homotopy cocartesian. Hence by our assumption on Φ, the J-cube
Φ∗L

J(X) is homotopy cartesian. The top horizontal map in the commutative diagram

Φ∗L
J(X)∅

' //

��

holim
P(J)\∅

FΦ∗L
J(X)

��

RJFΦ∗(X)∅ // holim
P(J)\∅

RJFΦ∗(X)
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is therefore an equivalence. The vertical maps are also equivalences by the higher Wirthmüller isomor-
phism theorem 3.19. Thus the bottom horizontal map is also an equivalence, and it factors as

RJFΦ∗(X)∅ → R∅ holim
P(J)\∅

FΦ∗(X)
'→ holim
P(J)\∅

RJFΦ∗(X)

The first map of the factorization is therefore also an equivalence, and by the explicit description of RJ

in the proof of 3.19, it is just the canonical map

homH(G,FΦ∗(X)∅) −→ homH(G, holim
P(J)\∅

FΦ∗(X)).

Since homH(G,−) detects equivalences of fibrant objects, Φ∗(X) is homotopy cartesian.
For the second part of the statement, assume that Φ is G-linear and let X be a be a homotopy

cocartesian H+-cube. Consider the H-equivariant surjection p : G+|H → H+ which is the identity on H

and that collapses the complement of H to the basepoint. It induces a functor p∗ : C
P(H+)
a → C

P(G+|H)
a

which by A.3 preserves homotopy cocartesian cubes. Hence p∗X is a homotopy cocartesian G+|H -cube.
By the first part of the corollary and G-linearity, Φ∗(p

∗X) = p∗Φ∗(X) is homotopy cartesian. By A.1,
p∗ detects homotopy cartesian cubes, hence Φ∗(X) is homotopy cartesian.

3.3 G-linearity and adjoint assembly maps

Let C and D be pointed G-model categories, and Φ: C → DG a sSet-enriched reduced homotopy
functor. Its extension Φ: CG → DG is then enriched over G-sSet, and for any simplicial G-set K there
is an assembly map

K ⊗ Φ(c) −→ Φ(K ⊗ c)

in DG. It is adjoint to the map of simplicial G-sets

K −→MapC (c,K ⊗ c) Φ−→MapD(Φ(c),Φ(K ⊗ c))

where the first map is adjoint to the identity on K ⊗ c. When K = N(P(J+)\∅) this induces a map

α : Φ(c) −→ ΩJΦ(ΣJc)

called the adjoint assembly map (see 1.19 for the definitions of ΩJ and ΣJ in a general simplicial
category). The aim of this section is to explore the relationship between G-linearity of Φ and the adjoint
assembly map.

Remark 3.21. Given a cofibrant G-object c in CG and a finite G-set J , recall the cofibrant J+-cube

(SJc)U =

 c , U = ∅
CUc , U � J+

ΣJc , U = J+

from 3.4. This induces a zig-zag

Φ(c)
'→ FΦ(c)→ holim

P(J+)\∅
FΦ(SJc)

'← ΩJFΦ(ΣJc)

where the last equivalence is induced by the equivalence of fibrant P(J+)\∅-diagrams

ωJ
(
FΦ(ΣJc)

) '−→ FΦ(SJc)|P(J+)\∅
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for the G-diagram ωJd from 1.19 associated to an object d of DG, with vertices (ωJd)J+
= d and

(ωJd)U = ∗ for U 6= J+. The adjoint assembly map above fits into the commutative diagram

Φ(c)

α
##

' // FΦ(c) // holim
P(J+)\∅

FΦ(SJc)

ΩJΦ(ΣJc) // ΩJFΦ(ΣJc).

'
OO

Hence the map Φ(c) → holim
P(J+)\∅

FΦ(SJc) can be thought of as a model for the adjoint assembly map

which can be defined without using that Φ is an enriched functor.

Proposition 3.22: Let C and D be pointed G-model categories, and Φ: C → DG a sSet-enriched
G-linear homotopy functor. For any finite G-set J and any cofibrant G-object c ∈ CG the composite

Φ(c)
α−→ ΩJΦ(ΣJc) −→ ΩJFΦ(ΣJc)

is a weak equivalence in DG.

Proof. The decomposition of J as disjoint union of transitive G-sets J+
∼= (
∐
z∈G\J z)+ gives a factor-

ization the map of the statement as an iterated construction

Φ(c)→ Ωz1FΦ(Σz1c)→ · · · → Ωz1 . . .ΩznFΦ(Σz1 . . .Σzmc)

The functor Σz(−) preserves cocartesian cubes and Ωz preserves fibrant objects, so using the natural

weak equivalences ΣzΣwc
'→ Σzqwd for d cofibrant and Ωzqwd

'→ ΩzΩwd for d fibrant, it suffices to
show that the map Φ(c)→ ΩG/HFΦ(ΣG/Hc) is an equivalence for every transitive G-set G/H.

By 3.10, Φ sends the homotopy cocartesian G/H+-cube SG/Hc of 3.21 to a homotopy cartesian
G/H+-cube. That is, the second map in the zig-zag

Φ(c)
'→ FΦ(c)→ holim

P(G/H+)\∅
FΦ(SG/Hc)

'← ΩG/HFΦ(ΣG/Hc)

is an equivalence in DG. The statement now follows from the commutativity of the diagram in 3.21
above.

We aim at proving a converse to 3.22. We remind the reader that a simplicial category C is locally
finitely presentable if there is a set Θ of objects in C such that every object of C is isomorphic to a
filtered colimit of objects in Θ, and for every θ ∈ Θ the functor MapC (θ,−) : C → sSet preserves filtered
colimits (see [AR94], [Kel82]). For example the categories of simplicial sets and of spectra (of simplicial
sets) satisfy this condition. We will write Ωρ for ΩG and Σρ for ΣG.

Theorem 3.23: Let C and D be pointed G-model categories and suppose that the simplicial categories
DH are locally finitely presentable for every H ≤ G. Let Φ: C → DG be a sSet-enriched reduced
homotopy functor and let J be a finite G-set. If the canonical map

Φ(c) −→ ΩJ|HFΦ(ΣJ|H c)

is a weak equivalence in DH for every cofibrant object c ∈ CH and every subgroup H ≤ G, then the

induced functor Φ∗ : C
P(J+)
a → D

P(J+)
a sends homotopy cocartesian J+-cubes to homotopy cartesian

J+-cubes.

In particular, if Φ(c)
'→ Ωρ|HFΦ(Σρ|H c) is an equivalence for every subgroup H ≤ G and every

cofibrant H-object c, the functor Φ is G-linear.
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The proof of this theorem is technical and it is given at the end of the section.

Remark 3.24. The theorem above holds also in the G-model categories of pointed spaces or orthogonal
spectra, even though these are not locally finitely presentable. The presentability condition is used to
commute a sequential homotopy colimit and a finite equivariant homotopy limit, as explained in A.8.
These commute also in Top∗ and SpO, for the following reason. They commute in sSet∗ as sSetH∗
is locally finitely presentable. This property can be transported through the G-Quillen equivalence
| − | : sSet∗ � Top∗ : Sing, using that realization commutes with finite limits and Sing with sequential
colimits along cofibrations. It can be further deduced for SpO as limits and colimits are levelwise.

Corollary 3.25: Under the hypotheses of 3.23, suppose additionally that the functor homH(G,−) : DH →
DG detects equivalences of fibrant objects for every subgroup H of G. Then the following are equivalent:

1. Φ is G-linear,

2. For every cofibrant object c ∈ CH and every H ≤ G, the canonical map Φ(c)→ Ωρ|HFΦ(Σρ|H c) is
an equivalence in DH ,

3. For every finite G-set J the functor Φ∗ : C
P(J+)
a → D

P(J+)
a sends homotopy cocartesian J+-cubes

to homotopy cartesian J+-cubes.

Proof. (1) ⇒ (2) By 3.20 the functor Φ is H-linear for every subgroup H ≤ G. The implication then
follows from 3.22 for the H-set G+|H .
(2) ⇒ (3) By 3.23 it is enough to show that Φ(c) → ΩJ|HFΦ(ΣJ|H c) is an equivalence for every finite
G-set J . But Φ is G-linear by 3.23, and hence H-linear by 3.20. The adjoint assembly is then an
equivalence by 3.22.
(3)⇒ (1) For J = G the conclusion in (3) is the definition of G-linearity.

Remark 3.26. Define the G-derivative (at the zero object) of a reduced enriched homotopy functor
Φ: C → DG to be the functor D∗Φ: C → DG defined by

D∗Φ(c) = hocolim
(
QΦ(c)→ QΩρFΦ(Σρc)→ QΩ2ρFΦ(Σ2ρc)→ . . .

)
where Σnρ = ΣnG is the suspension by the permutation representation of n-disjoint copies of G. As a
direct consequence of point 2 of 3.25 the functor D∗Φ is G-linear, and it is equipped with a universal
natural transformation Φ → D∗Φ. The argument of [Goo03, 1.8] applies verbatim to our equivariant
situation, showing that Φ→ D∗Φ is essentially initial among maps from Φ to a G-excisive functor.

Proof of 3.23. We follow the strategy of the proofs of [Goo03, 1.8,1.9] and [Rez13] of showing that the
adjoint assembly map evaluated at a cocartesian cube factors through a cartesian cube. It is convenient
to introduce a new model for the loop space. For a cofibrant object c ∈ CG we define

Ω
J
FΦ(ΣJc) := holim

P(J+)\∅
FΦ(SJc).

This object comes with a natural weak equivalence Ω
J
FΦ(ΣJc)

'←− ΩJFΦ(ΣJc) (see 3.21). Let
X : P(J+)→ C be a cofibrant J+-cube. Define a G-diagram K : P(J+)× P(J+)→ C by

K(U, T ) = hocolim
S∈P(J+)\J+

X(S∩U)∪T

and define a J+-cube Y : P(J+)→ D by

YT = holim
P(J+)\∅

FΦ(K(−, T ))
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The key of this proof is to define, for every T ⊂ J+, a factorization, natural in T

Φ(XT ) //

φ
""

Ω
J
FΦ(ΣJXT )

YT

ψ

99

and show that Y is homotopy cartesian when X is homotopy cocartesian. Writing ∆Ũ for NP(U)\∅,
the first map of the factorization has U -component

φU : Φ(XT ) −→ map(∆Ũ , FΦ(K(U, T )))

adjoint to the composite

∆Ũ ⊗ Φ(XT )→ Φ(∆Ũ ⊗XT )→ Φ(K(U, T ))→ FΦ(K(U, T ))

where the second map is induced by ∆Ũ ⊗XT → ∆Ũ ⊗XT∪U → K(U, T ). The map ψ is the homotopy
limit over U of the map of diagrams FΦ(K(U, T )) → FΦ((SJXT )U ) induced by the map K(U, T ) →
(SJXT )U defined as follows. For U 6= J+, it is the composite

K(U, T ) = hocolim
S∈P(J+)\J+

X(S∩U)∪T = hocolim
S∈P(J+)\J+

(− ∩ U)∗XS∪T → hocolim
S∈P(U)

XS∪T → CUXT

where the first arrow is the canonical map induced by the functor (−∩U) : P(J+)\J+ → P(U) and the
second arrow is induced by collapsing all the non-initial verticies. For U = J+, the map is

K(J+, T ) = hocolim
S∈P(J+)\J+

XS∪T → hocolim
P(J+)\J+

σJXT = ΣJXT

induced on homotopy colimits by the map of J+-cubes given by the identity on the empty set vertex,
and that collapses the other vertices to the point.

Now suppose that X is homotopy cocartesian, and let us see that Y is homotopy cartesian. There is

a natural equivalence K(U, T )
'→ XU∪T . Indeed, the maps X(S∩U)∪T → X((S∪{t})∩U)∪T are the identity

for all t ∈ T , and therefore K(U, T )
'→ XU∪T as long as T 6= ∅, by the lemma 3.27 below. For T = ∅

and U 6= J+ there is a weak equivalence

K(U, ∅) = hocolim
S∈P(J+)\J+

XS∩U
'→ XU

again by 3.27, as the maps XS∩U → X(S∪{v})∩U are the identity for all v ∈ J+\U . Finally,

K(J+, ∅) = hocolim
S∈P(J+)\J+

XS
'→ XJ+

since X is assumed to be homotopy cocartesian. This shows that

YT
'→ holim

U∈P(J+)\∅
FΦ(XU∪T )

For every fixed U 6= ∅, the cube T 7−→ FΦ(XU∪T ) is homotopy cartesian by 3.27, as the maps
FΦ(XU∪T ) → FΦ(XU∪T∪{u}) are the identity for all u ∈ U . The cube Y is then a homotopy limit of
cartesian cubes, and therefore also cartesian since homotopy limits commute with each other.

Iterating this construction and using that ΣJ and Ω
J

preserve homotopy cocartesian and -cartesian
J+-cubes, respectively, one gets a factorization of each map in the colimit system

Φ(X)
'−→ Ω

J
FΦ(ΣJX)

'−→ Ω
2J
FΦ(Σ2JX)

'−→ . . .
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through a homotopy cartesian J+-cube Y (n). The maps in this system are weak equivalences, since
all maps Φ(c) → ΩJ|HFΦ(ΣJ|H c) are assumed to be weak equivalences. By (classical) cofinality for
diagrams in DG the homotopy colimit of the sequence above is equivalent to hocolimn Y

(n). By A.8 in
the appendix we know that under our presentability assumptions sequential homotopy colimits preserve

homotopy cartesian J+-cubes. Therefore Φ(X) ' hocolimnQΩ
nJ
FΦ(ΣnJX) is homotopy cartesian.

Lemma 3.27: Let J be a finite G-set, X : P(J) → C a J-cube and I ⊂ J a non-empty G-invariant
subset such that the maps XS → XS∪i are isomorphisms for all S ⊂ J and i ∈ I. If X is a fibrant
diagram, it is homotopy cartesian. Similarly, if X is point-wise cofibrant, it is homotopy cocartesian.

Proof. Let PI(J) be the subposet of P(J)\∅ consisting of non-empty subsets of J that contain I and
write ι for the inclusion map. The map U 7→ U ∪ I defines a retraction uI : P(J)\∅ → PI(J). The
assumption on the maps XS → XS∪i implies that the natural map X → u∗Iι

∗X is an isomorphism. The
composite of the maps

holim
PI(J)

ι∗X
'→ holim
P(J)\∅

u∗Iι
∗X → holim

PI(J)
ι∗u∗Iι

∗X

is the identity map and the left hand map is a weak equivalence since uI is right G-cofinal. Hence the
right-hand map is a weak equivalence. It fits into a commutative diagram

X∅ //

∼=

��

holim
P(J)\∅

X

'

��

XI '
// holim
PI(J)

X.

The left vertical map is a G-map, which is an isomorphism by assumption and the bottom horizontal
map is a G-equivalence since I is initial in PI(J). Therefore the top map in the square is a weak
equivalence and X is homotopy cartesian.

A completely analogous argument shows that X is homotopy cocartesian.

3.4 G-linear functors on pointed G-spaces

In [Blu06] Blumberg defines a notion of G-linearity for endofunctors of the category of pointed G-spaces,
for a compact Lie group G. When G is finite, we show that his definition and ours agree up to a
suspension factor.

Before starting, let us remark that when working with spaces we can drop all the point-wise fibrant
and cofibrant replacements from the last sections, as homotopy limits and homotopy colimits of G-
diagrams of spaces are always homotopy invariant. For homotopy limits, it is just because every G-space
is fibrant. For homotopy colimits, there is a natural homeomorphism

(hocolim
I

X)H ∼= hocolim
IH

(ι∗HX)H

for every G-diagram X in (Top∗)
I
a and subgroup H ≤ G. Here ιH : IH → I is the inclusion of the

subcategory of I of objects and morphisms fixed by the H-action. Therefore homotopy invariance of
homotopy colimits of G-diagrams follows from homotopy invariance of classical homotopy colimits of
spaces, proved in [DI04].

Proposition 3.28: An enriched reduced homotopy functor Φ: Top∗ → TopG∗ is G-linear if and only if
the following two conditions hold:

a) The induced functor Φ∗ : (TopG∗ )P(1+) → (TopG∗ )P(1+) sends homotopy cocartesian squares of
pointed G-spaces to homotopy cartesian ones.
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b) For all finite G-sets J the natural map

Φ(
∨
J

Z)→
∏
J

Φ(Z)

is an equivalence of pointed G-spaces.

Remark 3.29. The two conditions of 3.28 are essentially the definition of G-linearity in the case of a
finite group G in [Blu06].

Proof. If Φ is G-linear, it sends homotopy cocartesian squares to homotopy cartesian squares by 3.11,
and the map Φ(

∨
J Z)→

∏
J Φ(Z) is an equivalence by 3.14.

Conversely, Blumberg proves in [Blu06] that the two conditions above imply that the adjoint assembly
map Φ(Z) → ΩV Φ(Z ∧ SV ) is a G-equivalence for every G-representation V . By 3.23 this implies G-
linearity of Φ.

Example 3.30. Let M be a commutative well-pointed topological monoid with additive G-action, and
suppose that the fixed point monoids MH are group-like for every subgroup H of G. The equivariant
Dold-Thom construction M(−) : Top∗ → TopG∗ sends a pointed space Z to the space M(Z) of reduced
configurations of points in Z with labels in M , with G acting on the labels. After extending M(−) to
TopG∗ the group acts both on the labels and on the space. If M is discrete the homotopy groups of M(−)
are Bredon cohomology of the Mackey functor H 7→ MH . For a pointed G-simplicial set K the sim-
plicial Dold-Thom construction of 3.9 compares to the topological one by a natural G-homeomorphism
|M(K)| ∼= M(|K|).

We prove that M(−) : Top∗ → TopG∗ is G-linear by checking the two conditions from 3.28. Given a
pointed G-space Z, the fixed points of the map M(Z)→ ΩM(Z ∧ S1) compares by natural homeomor-
phisms to the adjoint assembly map

M(Z)H −→ ΩM(Z ∧ S1)H ∼= Ω(M(Z))(S1)H ∼= ΩM(Z)H(S1)

for the topological group-like monoid M(Z)H . This is an equivalence by standard arguments, see
[May75, 7.6]. This implies, by 3.23 for the trivial G-set J = {1}, that the functor M(−) sends homotopy
cocartesian squares of G-spaces to homotopy cartesian ones, proving the first property of 3.28. The
second property easily follows, as the map M(

∨
J Z)→

∏
JM(Z) is an equivariant homeomorphism.

Notice that by G-linearity the map M(Z)→ ΩJM(Z ∧ SJ) is a G-equivalence for every finite G-set
J . This shows that the associated Eilenberg-MacLane G-spectrum HMn = M(Sn) is fibrant in (SpO)G.

3.5 G-linear functors to G-spectra

We show that the identity functor onG-spectra isG-linear, and deduce from this the classical Wirthmüller
isomorphism theorem. We further classify all G-linear functors from finite pointed simplicial sets to G-
spectra.

Let us start by clarifying that when working with spectra, as for spaces, we can forget all about the
point-wise cofibrant and fibrant replacements from the previous sections, thanks to the following result.

Lemma 3.31: Let G be a finite group and let a be an action of G on a small category I.

• The homotopy colimit functor hocolim: (SpO)Ia → (SpO)G preserves weak equivalences between any
two diagrams (not necessarily of cofibrant objects).

• If I has finite dimensional nerve, the homotopy limit functor holim: (SpO)Ia → (SpO)G preserves
weak equivalences between any two diagrams (not necessarily of fibrant objects).
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Proof. For any H-spectrum E there is a functorial cofibrant replacement QE → E where the map is
a level equivalence. By 2.22 it is enough to show that homotopy colimits preserve level equivalences
of maps of G-diagrams. Since homotopy colimits of spectra are defined level-wise, this follows from
homotopy invariance of homotopy colimits for spaces (see §3.4).

For the statement about homotopy limits, take a G-diagram of spectra X. The positive equivariant
homotopy groups of holimI X are the homotopy groups of the G-space

hocolim
n

Ωnρ(holim
I

X)(nρ).

Here we use the notation E(nρ) = En ∧O(n) L(Rn|G|, nρ)+ for a G-spectrum E, where L(Rn|G|, nρ) is

the space of isomorphisms of vector spaces from Rn|G| to nρ. There are natural weak equivalences

hocolimn Ωnρ(holimI X)(nρ) ∼= hocolimn Ωnρ holimI(X(nρ)) ∼=
hocolimn holimI Ωnρ(X(nρ))

'−→ holimI hocolimn Ωnρ(X(nρ))

where the last map is a weak equivalence by A.8 as sequencial homotopy colimits and finite homotopy
limits of G-diagrams of spaces commute. Therefore, a weak equivalence of G-diagrams of spectra f : X →
Y induces an isomorphism in positive homotopy groups of the homotopy limit precisely when the map
holimI hocolimn Ωnρf (nρ) is an equivalence of G-spaces. Since f is an equivalence of G-diagrams of

spectra, the map hocolimn Ωnρf
(nρ)
i is an equivalence of Gi-spaces for all objects i of I. It follows by

homotopy invariance 2.20 that the map of G-spaces holimI hocolimn Ωnρf (nρ) is a weak equivalence since
it is a homotopy limit of a weak equivalence of G-diagrams of spaces. A similar argument shows that
holimI f is an equivalence in negative homotopy groups.

Theorem 3.32: Let J be a finite G-set and let a be the induced action of G on P(J+). Any homotopy

cocartesian J+-cube X in (SpO)
P(J+)
a is homotopy cartesian. That is, the inclusion functor SpO →

(SpO)G is G-linear.
In particular, this implies the Wirthmüller isomorphism theorem, stating that for any subgroup H ≤ G

and H-spectrum E ∈ (SpO)H the canonical map

η : G⊗H E = G+ ∧H E −→ FH(G+, E) = homH(G,E)

is a weak equivalence of G-spectra.

Proof. By the equivariant suspension theorem, the map E → Ωρ|H (E ∧ Sρ|H ) is a weak equivalence for
any H-spectrum E. By 3.23 (see also 3.24) this is equivalent to G-linearity of the functor SpO → (SpO)G.
The map η : G⊗HE −→ homH(G,E) is a weak equivalence by 3.17, as homH(G,−) : (SpO)H → (SpO)G

preserves weak equivalences.

We end the section with a complete characterization of G-linear functors from the category sSetf∗ of
finite pointed simplicial sets to G-spectra.

Proposition 3.33: Let Φ: sSetf∗ → (SpO)G be a sSet-enriched reduced homotopy functor such that the
spectrum Φ(S0) is level-wise well-pointed. Then the following conditions are equivalent:

1. The functor Φ is G-linear.

2. The functor Φ∗ : ((sSetf∗)
G)P(1+) → ((SpO)G)P(1+) sends homotopy cocartesian squares in (sSetf∗)

G

to homotopy cartesian squares of G-spectra, and Φ(
∨
J K)→

∏
J Φ(K) is an equivalence for every

finite pointed simplicial G-set K and finite G-set J .

3. For every K ∈ (sSetf∗)
G the assembly map

Φ(S0) ∧ |K| −→ Φ(K)

is an equivalence of G-spectra.
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Proof. (1)⇒ (2) This is true in general, by 3.11 and 3.14.
(2) ⇒ (3) This can be proven by induction on the skeleton of K. The wedges into products condition
gives the equivalence for the 0-skeleton, and the induction step follows from the condition on squares.
We refer to [Dot13] for the details.
(3) ⇒ (1) Since G-linearity is invariant under equivalences, we show that E ∧ | − | is G-linear for any

level-wise well-pointed G-spectrum E. If X : P(G+) → sSetf∗ is homotopy cocartesian, the cube of
spectra E∧|X| is also homotopy cocartesian. Indeed, after applying geometric fixed points FH the map
from the homotopy colimit to the value at G+ factors as

FH( hocolim
P(G+)\G+

E ∧ |X|) ∼= FH(E ∧ hocolim
P(G+)\G+

|X|) ∼= FH(E) ∧ ( hocolim
P(G+)\G+

|X|)H '→
'→ FH(E) ∧ |XG+ |H ∼= FH(E ∧ |XG+ |),

where the third map is a weak equivalence since X is homotopy cocartesian, and since smashing with
a level-wise well-pointed spectrum preserves weak equivalences. By 3.32 the diagram E ∧ X is also
homotopy cartesian.

A Appendix

A.1 Computing homotopy (co)limits of punctured cubes

We compare homotopy limits and colimits of punctured cubes of different sizes, specifically how functors
between categories of cubes in C induced by maps p : K → J of finite G-sets behave on homotopy
cartesian and cocartesian cubes.

Proposition A.1: Let p : K → J be a surjective equivariant map of finite G-sets. Taking the image
by p induces an equivariant functor p∅ : P(K)\∅ → P(J)\∅, which is left G-cofinal. In particular, the

induced functor p∗ : C
P(J)
a → C

P(K)
a preserves and detects homotopy cartesian cubes.

Proof. We show that for any subgroup H ≤ G and any non-empty object U ∈ P(J)H the set p−1(U) ⊂ K
is the final object of (p∅/U)H . It is non-empty since p is assumed to be surjective, and clearly satisfies
pp−1(U) = U ⊂ U . It is final since objects V ∈ (p∅/U)H satisfy p(V ) ⊂ U , and therefore

V ⊂ p−1p(V ) ⊂ p−1(U)

This shows that p∅ is left G-cofinal. Now let X : P(J) → C be a J-cube, and X
'→ FX a fibrant

replacement. There is a commutative diagram

holim
P(J)\∅

ι∗∅FX

p∗∅ '

��

FX∅ = (p∗FX)∅oo

��

holim
P(K)\∅

p∗∅(ι
∗
∅FX) holim

P(K)\∅
ι∗∅p
∗FX

where the left vertical map is an equivalence by G-cofinality 2.25 and where ι∅ : P(J)\∅ → P(J) is

the canonical inclusion. Notice moreover that p∗X
'→ p∗FX is a fibrant replacement for p∗X, as for

every subset S ⊂ K there is an inclusion of the stabilizer groups GS ≤ Gp(S), and the forgetful functor

CGp(S) → CGS preserves fibrant objects and equivalences by assumption. From the diagram above we
see that X is homotopy cartesian if and only if p∗X is.

Looking for a similar statement for the behavior of p∗ on cocartesian cubes we run into the problem
that p does not restrict to a functor P(K)\K → P(J)\J . There is a formally dual version of the proof
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of A.1 that uses the complement dualities on P(K) and P(J), but it involves a functor C
P(J)
a → C

P(K)
a

different from p∗. This is discussed in A.5 below. In order to understand the interaction between p∗ and
cocartesian cubes we need to introduce a new functor. Let p−1(j) ⊂ K denote the fiber of an element
j ∈ J , and consider the equivariant functor

λ :
(∏
j∈J
P
(
p−1(j)

)
\p−1(j)

)
× P(J)\J → P(K)\K

that sends a pair ({Uj}j∈J , V ) to (qj∈JUj)∪ p−1(V ). The product
∏
j∈J P

(
p−1(j)

)
\p−1(j) is the limit

of the G-diagram of categories j 7→ P(p−1(j)) \ p−1(j) with the G-structure induced by the G-action on
J .

The functor λ is a categorical analogue of a homeomorphism(∏
j∈J

∆|p
−1(j)|−1

)
×∆|J|−1 ∼= ∆|K|−1

Example A.2. • If p : K+ → 1+ is the pointed map that sends all the elements of K to 1, the
product of the fibers is simply P(K)\K and the functor

λ : P(K)\K × P(1+)\1+ → P(K+)\K+

is analogous to a homeomorphism ∆K×∆1 ∼= ∆K that splits off a copy of the trivial representation
from the permutation representation of K. This is written on a more familiar form as R[K] ×
R ∼= R[K]. One could think of the product of the categories P

(
p−1(j)

)
\p−1(j) as an orthogonal

complement for the image of the embedding p−1(−) : P(J)\J → P(K)\K.

• Let I and J be finite G-sets, and consider the pointed projection p : (I q J)+ → J+ that sends J
to J by the identity, and I to the basepoint +. The preimages over the elements of J consist of
a single point, and the preimage over the basepoint is p−1(+) = I+. The functor λ above is the
functor

λ : P(I+)\I+ × P(J+)\J+ −→ P((I q J)+)\(I q J)+

that sends (U, V ) to U ∪ V . It is analogous to the standard homeomorphism of permutation
representations R[I]× R[J ] ∼= R[I q J ].

Proposition A.3: For a surjective equivariant map p : K → J , the functor λ above is right G-cofinal.

Moreover, the functor p∗ : C
P(J)
a → C

P(K)
a preserves homotopy cocartesian cubes.

Proof. Let us first prove that λ is well defined, that is, it does not take the value K. Write for simplicity
U = {Uj}j∈J and qU = qj∈JUj . Suppose that λ(U, V ) = (qU) ∪ p−1(V ) = K. Take j in the
complement of V in J . The fiber p−1(j) ⊂ K is disjoint from p−1(V ), but it is covered by the collection
U . As each Ui is contained in p−1(i) we must have Uj = p−1(j), but this is absurd since Uj is a proper
subset of p−1(j).

Now let W be an H-invariant proper subset of K. We show that the right fiber category W/λ
is H-contractible by defining a zig-zag of natural transformations between the identity functor and
the projection onto the H-invariant object (∅ = {∅}j∈J , p(W )) of W/λ. This is a well defined object
as λ({∅}j∈J , p(W )) = p−1p(W ) which contains W . The intermediate functor of the zig-zag is the
equivariant functor τ : W/λ→W/λ defined by

τ(U, V ) = (U, p(qU) ∪ V )

The values of τ are indeed objects of W/λ since λ(τ(U, V )) clearly contains (qU) ∪ p−1(V ) which in
turn contains W as (U, V ) belongs to W/λ. There is a zig-zag of natural transformations

id −→ τ ←− (∅, p(W ))

41



Both maps are obvious on the first component. The second component of the rightward pointing map
is the inclusion V ⊂ p(qU) ∪ V . The second component of the left pointing map is induced by the
inclusion W ⊂ λ(U, V ), that when projected down to J gives p(W ) ⊂ p(qU) ∪ pp−1(V ) = p(qU) ∪ V .
The zig-zag above realizes to a contracting H-invariant homotopy of the category W/λ showing that λ
is right G-cofinal.

Now let X ∈ C
P(J)
a be a cocartesian J-cube and QX

'→ X a point-wise cofibrant replacement. As in

the proof of A.1, notice that p∗QX
'→ p∗X is a point-wise cofibrant replacement of p∗X. Let us compute

the homotopy colimit of p∗QX over P(K)\K. By G-cofinality and 2.26 there are G-equivalences

hocolim
P(K)\K

p∗QX
'←− hocolim( ∏

j∈J
P
(
p−1(j)

)
\p−1(j)

)
×P(J)\J

λ∗p∗QX
'←− hocolim( ∏

j∈J
P
(
p−1(j)

)
\p−1(j)

)hocolim
P(J)\J

λ∗p∗QX.

We claim that for every fixed collection U of subsets of the fibers, the canonical map

φU : hocolim
P(J)\J

(λ∗p∗QX)(U,−) → XJ

is a GU -equivalence. From this claim it follows by homotopy invariance of the homotopy colimit that
hocolim
P(K)\K

p∗QX is equivalent to the homotopy colimit over
∏
j∈J
P
(
p−1(j)

)
\p−1(j) of the constant G-

diagram with value XJ . Since the indexing category is G-contractible (it has a G-invariant initial
object) this is G-equivalent to XJ = (p∗X)K , proving that p∗QX is homotopy cocartesian.

Let us show that φU is a weak equivalence. Write ZU = (λ∗p∗QX)(U,−) = QXp(qU)∪(−). This is a
J-cube with the G-action on J restricted to the stabilizer group GU . Then φU is an equivalence precisely
when ZU is homotopy cocartesian. If any of the sets Uj is non-empty, the maps (ZU )V → (ZU )V ∪j
are identities for every subset V ⊂ J . We proved in 3.27 that in this case ZU is homotopy cocartesian.
For the family of empty sets U = ∅, the J-cube Z∅ is the cube X, which is assumed to be homotopy
cocartesian.

Remark A.4. In general p∗ : C
P(J)
a → C

P(K)
a does not detect homotopy cocartesian cubes. In the

proof of A.3 we constructed an equivalence over XJ

hocolim
P(K)\K

p∗QX ' hocolim∏
j∈J
P
(
p−1(j)

)
\p−1(j)

Y

where Y is the diagram that sends ∅ = (∅, . . . , ∅) to hocolim
P(J)\J

QX and all the other verticies to XJ . If

p∗X is homotopy cocartesian the left hand side is also equivalent to XJ , but this is in general not enough
to conclude that Y∅ is equivalent to XJ . However, this is the case if C is the category of spectra, as
homotopy cocartesian J-cubes are the same as homotopy cartesian J-cubes (cf. 3.32). Hence the functor

p∗ : (SpO)
P(J)
a → (SpO)

P(K)
a preserves and detects homotopy cocartesian cubes.

We end this section by discussing the duals of A.1 and A.3. For an equivariant surjective map of
finite G-sets p : K → J , let p : P(K)→ P(J) be the composite functor

p : P(K) −→ P(K)op
pop−→ P(J)op −→ P(J)

that sends a subset U of K to J\p(K\U). The dual of the functor λ is defined by a similar composition,
and an easy calculation shows that it is the functor

λ :
(∏
j∈J
P
(
p−1(j)

)
\∅
)
× P(J)\∅ → P(K)\∅

that sends (U, V ) to (qU) ∩ p−1(V ). The dual proofs of A.1 and A.3 give the following.
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Proposition A.5: The restriction p : P(K)\K → P(J)\J is right G-cofinal, and the functor λ is left

G-cofinal. It follows that p∗ : C
P(J)
a → C

P(K)
a preserves and detects homotopy cocartesian cubes, and

preserves homotopy cartesian cubes.

We end by noticing that this picture does not have an analogue for injective equivariant maps
ι : J → K. It is easy to see that restricting along ι does not preserve any cartesian nor cocartesian
properties of cubes. The right thing to study seems to be the preimage functor ι−1 : P(K) −→ P(J),
but this does not restrict to either P(K)\∅ −→ P(J)\∅ nor P(K)\K −→ P(J)\J . However, if J and K
are pointed and ι preserves the basepoint, there is a retraction p : K → J that collapses the complement
of the image of ι onto the basepoint. In this case we can simply contemplate p∗.

A.2 Finite categories and cofibrant G-diagrams

We give a criterion for determining if a G-diagram is cofibrant in the model structure of 2.6, when
the over-categories of the indexing category I have finite dimensional nerve. Such categories are some-
times called directed Reedy categories. The criterion is in terms of latching maps, and it is completely
analogous to the classical theory (see e.g. [Hir03, §15]).

Let C be a cocomplete category. We denote by (I/i)′ the over-category I/i with the object i = i
removed. The latching diagram of a diagram X : I → C is the diagram L(X) : I → C given on objects
by

L(X)i = colim((I/i)′ −→ I
X−→ C )

and on morphisms f : i → j by the map induced on colimits by f∗ : (I/i)′ → (I/j)′. The inclusions
(I/i)′ ↪→ I/i induce a maps L(X)i → colimI/i u

∗
iX
∼= Xi which give a natural transformation L(X) →

X.

For a G-diagram X ∈ C I
a , the latching diagram L(X) inherits a G-structure. The structure maps

are the composite maps

L(X)i
L(gX)−→ colim

(
(I/i)

′ g−→ (I/gi)′−→I X−→ C
)
−→L(X)gi

induced by taking colimits of the compositions in the diagram

(I/i)′ //

g

��

I

g

��

X

��

(I/gi)′ // I
X
// C

gX{�

and the map canonical map L(X)→ X is a map of G-diagrams.

Proposition A.6: Let C be a G-model category (see 2.1), and I a category with G-action such that
the simplicial set NI/i is finite dimensional for every object i in I. Let X be an object of C I

a such that
for every object i in I the map L(X)i → Xi is a cofibration in CGi . Then X is cofibrant in the model
structure on C I

a of 2.6.

Proof. In order to show that X is cofibrant we need to define a lift for every diagram in C I
a

Y

∼
����

X //

l

>>

Z
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where the vertical map is an acyclic fibration. We build this lift by induction on a filtration of I defined
by the degree function deg : ObI → N

deg(i) = dimNI/i

It is easy to see that the degree function is equivariant (where N has trivial action), and that if α : i→ j
is a non-identity morphism then deg(i) < deg(j). Let I≤n be the full subcategory of I with objects of
degree less than or equal to n. Since the degree function is equivariant, the G-action of I restricts to I≤n,

and the G-structure on X restricts to a G-structure on the restricted diagram X≤n : I≤n → I
X−→ C .

We build the lift inductively on the diagrams X≤n.
For the base step, choose a section s : ObI≤0/G → ObI≤0. For every orbit γ ∈ ObI≤0/G one can

choose a Gs(γ)-equivariant lift

Ys(γ)

∼
����

Xs(γ)
//

ls(γ)

;;

Zs(γ)

since the map ∅ = L(X)s(γ) → Xs(γ) is a cofibration in CGs(γ) by assumption (the map Ys(γ) → Zs(γ)

is an acyclic fibration of CGs(γ) as equivalences and fibrations in C I
a are point-wise). Given any object

i ∈ I≤0 outside the image of s, define li : Xi → Yi as the composite

Xi
g−1

−→ Xs([i])

ls[i]−→ Ys([i])
g−→ Yi

for a choice of g ∈ G with gs[i] = i. Since the category I≤0 is discrete (a G-set) by the properties of
the degree function, these lifts define a map of diagrams l0 : X≤0 → Y≤0 lifting X≤0 → Z≤0. Moreover
l respects the G-structure since the lifts ls(γ) are Gs(γ)-equivariant.

Now suppose we defined a lift ln−1 : X≤n−1 → Y≤n−1. Let In be the full subcategory of I with
objects of degree n. Choose a section sn : ObIn/G→ ObIn, and for every γ ∈ ObIn/G a lift in CGsn(γ)

L(X)sn(γ)
//

��

��

Ysn(γ)

∼
����

Xsn(γ)
//

lsn(γ)

99

Zsn(γ)

The top horizontal map is the canonical map given by the universal property of the colimits defining
L(X). Again, the lifts exist because L(X)sn(γ) → Xsn(γ) is a cofibration. For a general object i of In
define

li : Xi
g−1

−→ Xs([i])

ls[i]−→ Ys([i])
g−→ Yi

Commutativity of the diagram above insures that the resulting map ln : X≤n → Y≤ncommutes with
the structure maps of X≤n and Y≤n. Moreover ln respects the G-structure by Gsn(γ)-equivariance of
ls(γ).

A.3 Sequential homotopy colimits and finite G-homotopy limits

Definition A.7 ([Kel82]). A simplicial category C is locally finitely presentable if there is a set of
objects Θ satisfying

1. For every c ∈ Θ the mapping space functor

MapC (c,−) : C −→ sSet

preserves filtered colimits,
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2. every object of C is isomorphic to a filtered colimit of objects in Θ.

When C is locally finitely presented the functor mapC (K,−) commutes with filtered colimits if K is
a finite simplicial set. This follows from the conditions above and an adjunction argument.

We consider the poset category N of natural numbers as a category with trivial G-action.

Proposition A.8: Let C be a G-model category, and suppose that the underlying simplicial categories
CH are locally finitely presentable for all H ≤ G. Let J be a finite G-set and X : N × P(J+) → C a
G-diagram with the property that for every n ∈ N the J+-cube Xn is homotopy cartesian. Then the
J+-cube hocolimNQXn is also homotopy cartesian.

Proof. We must show that the top horizontal map in the commutative diagram

hocolim
N

QXn,∅ //

'

��

holim
S∈P(J+)\∅

F hocolim
N

QXn,S

'

��

colim
N

Xn,∅ // holim
S∈P(J+)\∅

F colim
N

Xn,S

is a weak equivalence in CG. The left hand vertical map is an equivalence since in the locally finitely
presentable category CG filtered colimits are homotopy invariant (see e.g. [Dug01, 7.3], or [BK72]
for simplicial sets). Similarly, the right hand vertical map is the homotopy limit of an equivalence
of pointwisefibrant G-diagrams, as each CGS is locally finitely presentable. The bottom map can be
factored as

colim
N

Xn,∅ //

'
((

holim
S∈P(J+)\∅

F colim
N

Xn,S

colim
N

holim
S∈P(J+)\∅

FXn,S

OO

with the diagonal map an equivalence in CG since Xn is homotopy cartesian and filtered colimits in CG

preserve equivalences. To show that the vertical map is an equivalence, we compute from the definition
of homotopy limits. Denoting KS = NP(S)\∅ we have isomorphisms in CG

colim
N

holim
S∈P(J+)\∅

FXn,S = colim
N

lim

(∏
S

mapC (KS , FXn,S) ⇒
∏
S→T

mapC (Ks, FXn,T )

)
∼=

∼= lim

(∏
S

mapC (KS , colim
N

FXn,S) ⇒
∏
S→T

mapC (Ks, colim
N

FXn,T )

)
= holim
S∈P(J+)\∅

colim
N

FXn,S

where the middle map is an isomorphism because sequential colimits commute with finite limits and

with the functors mapC (Ks,−), since each KS is finite. Now let FX
∼
� FX be a replacement of FX by

a sequence of diagrams such that for each S ⊂ J+ the sequence FXS is a sequence of GS-cofibrations.
There is a commutative diagram,

colim
N

holim
S∈P(J+)\∅

FXn,S

��

∼= // holim
S∈P(J+)\∅

colim
N

FXn,S

��

holim
S∈P(J+)\∅

colim
N

FXn,S
∼oo

∼

��

holim
S∈P(J+)\∅

F colim
N

Xn,S
∼ // holim

S∈P(J+)\∅
F colim

N
FXn,S holim

S∈P(J+)\∅
F colim

N
FXn,S

∼oo
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where the right hand vertical is a weak equivalence because colimN FXn,S is fibrant by an application
of the small object argument in the cofibrantly generated model category CG (see e.g. [Sch97, 1.3.2]).
It follows that the left hand vertical map is a weak equivalence as desired.
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