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Abstract

The Taylor coefficients of weight k Eisenstein series wrt. SLs(Z) are related
to values of L-functions for Hecke characters in the point k. We show some
congruences for Taylor coefficients of Eisenstein series of weight 4 and 6 and use
them to establish congruences for values of L-functions for Hecke characters in
the points 4 and 6.

It is well known, that all zeros of the Eisenstein series Ej wrt. SLs(Z) in the
standard fundamental domain has modulus 1. We show that this is also true for
9" E), where ¢ is a certain differential operator.

We then proceed to study logarithms of multiplier systems. For automorphic
forms wrt. Hecke triangle groups and Fuchsian groups with no elliptic elements
and genus 0, we show that some logarithms of multiplier systems can be inter-
preted as a linking number.

Finally we show a "twisted” version of the prime geodesics theorem, and
use this to show some results about the distribution of prime geodesics wrt.
logarithms of multiplier systems.

Resumé

Taylor-koefficienter for veegt k Eisenstein-reekker mht. SLo(Z) er relateret til
veerdien af L-funktioner for Hecke-karakterer i k. Vi viser nogle kongruenser for
Taylor koefficienter for Eisenstein-raekkerne af vaegt 4 og 6, og far dermed ogsa
kongruenser for L-funktioner for Hecke-karakterer i punkterne 4 og 6.

Det er velkendt, at alle nulpunkter for Eisenstein reekker Ej mht. SLo(Z)
har modulus 1. Vi viser, at dette ogsa geelder for v"FE,, hvor ¢ er en given
differentialoperator.

Derefter studerer we logaritmer af multiplikator systemer. For automorfe
former mht. Hecke trekantsgrupper og genus 0 Fuchs-grupper uden elliptiske
elementer viser vi, at sadanne logaritmer af multiplikator systemer kan fortolkes
som et linkingtal.

Endelig beviser vi en ”twisted” version primgeodatsaetningen og bruger denne
til at vise nogle resultater om fordelingen af primgeodaeter mht. logartimer af
multiplikator systemer.
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Chapter 1

Introduction

1.1 Taylor Coefficients for Eisenstein Series

For any z, in the upper half-plane, we can define

—Z0 20
e (%),

0., acts as a Mobius transformation on H, it maps the unit disc D bijectively to
the upper half-plane H, and 0,,0 = 2,. For any function f : H — C, and even
integer k, we can therefore define a function f|o, : D — C given by

(det o, )k/Qf(UZOZ)

(fleoz)(2) = (jgzo (2))* ’

where j.(z) = cz +d, when v = (29).

The function f|yo,, is holomorphic, if f is holomorphic, and so it has a Taylor
expansion in 0. This Taylor series is convergent in all of D (opposed to Taylor
expansions of f, which will only converge in all of H, if f can be continued
analytically to all of C). If f is a weight & modular form wrt. SLs(Z), and we
set zg = 4, then for the Taylor expansion of f|zo;

(fleoi)(z) = ) e(n, f)2",

n=0

we have
41 (2n+k) = c(n, f)=0.

For even k > 4 let Ei(z) be the holomorphic weight k& Eisenstein series wrt.
SLy(7Z), that is
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and let
E‘]€|;€O'Z ZC TL Ek

For 4|(k + 2n), we then have

k+n— 1)l k2 A/ \)E/2n
ok AeZ[i\{0}
4(k +n — 1)1§2k/2

= n'Bk(\/_ﬂ') (ka 77Z}I<:/2-&-n)a

where By, is the k’th Bernoulli number, and L(-, ¢y /24,) is the L-function for the
Hecke character ¢y o4p.
Now we define

—(27) 2 H0612n/271p)
ey

Z'(27T>2n+912(n73)/2n!
(I'(1/4)) 4+

We can prove the following congruence for A,, and 5,, (which gives us congruences
for ¢(n, Ey) and ¢(n, Eg) and for L(4,1,42) and L(6,1,43)).

A, =

and

B, =

c(n, Eg).

Theorem A. The numbers A, and B, are integers, and we have
Aspi1 = Bay = 0.
Forn > 1, we have
A, = A (mod 13),
and if n is even, then 131 A,. For m >0, we have
Bimi1 = 1 (mod 5)
Bimis = 3 (mod 5).
To prove Theorem A we use the differential operator

1 d kE;

p= —— —

oridy 12

where FE5 is the weight 2 holomorphic Eisenstein series. This operator sends
weight k& holomorphic modular forms to weight k42 holomorphic modular forms,
and hence the operator

?92 = Upyon—20 Vpyom-a0--- 00y
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sends weight k£ holomorphic modular forms to weight k+2m holomorphic modular
forms.

In 1970 F. K. C. Rankin and H. P. F. Swinnerton-Dyer ([13]) proved that for
k > 4 all zeros of Ej, in the standard fundamental domain

F={zeH|Rz<1/2, |z| > 1}
are located on the arc

A ={exp(it) | t € [v/3,27/3]}.
Using this we prove the following theorem.

Theorem B. For k > 4 and n > 1 all the zeros of the function 9" E), in F are
located on A.

1.2 Interpretations of Logarithms of Multiplier
Systems

Let I" be a Fuchsian group. If a holomorphic function f : H — C, transforms like

F(yz) = v(1)(5y(2)" f (2),

for aall v € I' and z € H, and f is also holomorphic in the cusp, we say that f
is a weight k£ automorphic form with multipler system v wrt. I'. If v = 1, we say
that f is a weight k£ modular form wrt. T'.

Let f be a weight k& holomorphic automorphic form with multiplier system
v wrt. I'. If f has no zeros in H, then it has a holomorphic logarithm, and by
taking logarithms in the transformation equation we get

az+b
cz+d

(log f) ( ) = (log f)(2) + klog(cz + d) + 2mik® (Z Z) , (1.1)

where log f is a holomorphic logarithm, log(cz + d) is the main logarithm (i.e.
the logarithm that has imaginary part in (—m, 7]) of cz+d, and exp(2wik®) = v.
Since f is zero free, the power f! = exp(t(log f)) is well defined and holomorphic
for any ¢ € R. Furthermore if ¢t > 0 f! is a weight tk automorphic form with
multiplier system v* = exp(2mitk®) wrt. T' (if ¢ < 0 f* will have a pole in a cusp).

An example of such an zero free automorphic form is the Dedekind eta function
n, which is a weight 1/2 automorphic form with multiplier system v, wrt. I' =
SLy(Z). In [2] E. Ghys gives an interpretation, for any hyperbolic v € SLy(Z)
with positive trace, of the logarithm 7i®, () of v,(y) as a linking number of a
trefoil knot and a closed curve (i.e. the number of times the curve winds around
the trefoil knot).
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Inspired by this we consider Fuchsian groups I' for which I'\H has finite
volume, genus zero and one or more cusps. For such a group there exists modular
forms, which are zero free in H (they do however have zeros in one or more cusps).
If n > 3 is an integer, and we define the Hecke triangle group H,,, to be the group
generated by the 2 matrices

((1) —01) | ((1) 2 COSYr/ﬂ)) |

then H,\H has volume 7(n — 2)/n, genus 0 and one cusp, so H, is a group of
the desired type.

The point p,, = exp(wi/n) is elliptic of order n wrt. to H, and i are elliptic
of order 2, and there exists automorphic forms ¢ and h wrt. H,, such that g has
a simple zero in p, and h has a simple zero in 4, and the only other zeros are
H,-translates of these. We define a function A : SLy(R) — S? (where S® is the
unit sphere in C?) by

Xo) = g(ai) h(ci)
= <(tja(i))4/ (n=2)’ (tjc,(z'))%/(n—2)> !

where t depends on o and is given such that A(c) € S3. Furthermore we define
an equivalence relation ~ on S%, given by (z1,29) ~ ((z1,(22) for all n — 2'nd
roots of unity ¢, and we let x be the set {(z1,22) € S | 21" = 25}. We then show
that the function Ag : H,\SLy(R) — (5%\r)/ ~, given by

Ao(Hyoo) = {z € S* |z ~ A(0)},

is well defined and a homeomorphism.

Any hyperbolic element of H,, corresponds to a geodesic f, : R — SLy(R)
(PSLs(R) is a realization of the unit tangent bundle on H, so it also corresponds
to a geodesic on this unit tangent bundle), with f,(t) = vf,(t+1) for some [ > 0,
and B, : [0,1(n — 2)] = S*\k given by

B, (t) = A(fyn=2(1)),

is a closed curve. If n is odd, then the set x is (the image of) one knot, and hence
it makes sense to talk about the linking number link(x, B,) of x and B,. When
n is even, then x is two knots k1, ko, and we define

link(k, B,) = link(x1, B,) + link(ko, B,).

Now let D be a weight k£ modular form wrt. H,, that only has zeros in the
cusp, and define ¢ : H,, — Q as in (1.1). Because H,, only has one cusp any
weight &' modular forms, that only has zeros in the cusp, are on the form aD*/*
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for some a € C, so ® is independent on which modular form we choose (as long
as it has no zeros in H).

We prove the following theorem, which displays a connection between multi-
plier systems values in hyperbolic elements and the closed geodesics corresponding
to the hyperbolic elements.

Theorem C. Let v € H,, be hyperbolic and have positive trace, then
link(k, B,) = 4n®(y).

For n =3 H, = SLy(Z) and ® = ®,. This case of Theorem C, is proved by
Ghys in [2].

If T is a Fuchsian group with no elliptic elements and I"\H has finite area and
genus zero, then we can make an interpretation much like the one in Theorem C
of logarithms of multiplier systems.

To do this we show that T'\H has at least 3 cusps. We denote the cusps
ai,...,a, and define weight 2 modular forms F}, ..., F},, such that F} has all its

zeros in aq, while for j # 1 F has a simple zero in a; and the rest of its zeros in
ai. We define ®; to be such that (1.1) holds for F; and ®;. We then use F; and

F5 to define a homeomorphism, which we also call A, between \SLy(R) and

h
33\ U I{j,
j=1

where k; is a knot, that corresponds to the cusp a;.
If we let A, be the closed curve, that A maps the closed geodesic associated
with v to, then we can prove the following theorem.

Theorem D. Let v € I' be hyperbolic and have positive trace, then

Since F} has all but one zero in a,, it matters which cusp we choose to label
ar. So{F; |1 < j < h} depends on, which cusp we label a;, and {®; | 1 < j < h}
depends on {F; | 1 < j < h}. Hence the value of the right hand side of (1.2)

changes, if we change, which cusp is a; (this also changes K, and hence it changes
A, and the left hand side of (1.2))

1.3 Distributions wrt. Logarithms of Multiplier
Systems

For any Fuchsian group I' and hyperbolic element v € I', there is an associated
closed geodesic in I'\H with length

I(7) = 2log <|T”| il VQ(TTW - 4) .
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Two hyperbolic elements v, 7 € I' have the same associated geodesic if and only
if +7 is in the conjugacy class [7], that is

+7 € {oyo ' |0 €T}

If there is no 7 € ' and n > 2, such that v = 7", then we say that ~ is
primitive, and we say, that the associated geodesic is a prime geodesic. The
prime geodesics are the closed geodesics, that are not periodic (we can think of
this as they ”go once around”), while the geodesic associated with 4™, will ”go n
times around” the geodesic associated with ~.

We will denote the set of conjugacy classes of primitive hyperbolic matrices
with positive trace I'. So there is a one-to-one correspondence between the
elements of I and the prime geodesics. When I'\H has finite area, then the
prime geodesics theorem gives the following estimate on the number of prime
geodesics of bounded length on I"'\H

> )~ el

[v]er”
I(y)<T

In [18] and [10] Sarnak and Mozzochi gives an estimate of

[]€SL2(Z)
Uy)<T

which depends on the power k. This can be seen as a "twisted” version of the
prime geodesic theorem, and Sarnak and Mozzochi use this to prove a distribution
result for the prime geodesics on SLy(Z)\H.

Now let I" be a cofinite Fuchsian group, i.e. let I'\H have finite area, and let
f be a zero free modular form wrt. I'. Then we can define ® as in (1.1), and
let ' := exp(2mit®). We will assume that f" is not modular (i.e. does not have
trivial multiplier system) for 0 < r < 1 and we define N to be the weight of f.
Inspired by the work of Mozzochi and Sarnak, we use Selberg’s trace formula for
a suitable pair of test functions to prove following estimate (which can be viewed
as a "twisted” version of the prime geodesics theorem).

Theorem E. There exists a 6 > 0, such that for k € (=1, N — 1]

Sl TO-6) T (JF)) if 11| <
2 VWMZ{ W sy v
[y]el”
Wy<T

The function L(v*) in the theorem grows like — log |k|, when k approaches 0
(but is 0 in & = 0), and might grow in a similar fashion, when k approaches some
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(finitely many) other points in (—1, N — 1], but it is otherwise bounded. The
constant ¢ depends (only) on I', and so does the implied constant in the error
term.

By integrating the expression from Theorem E wrt. exp(—2wikn/N)dk, we
get a version of the prime geodesic theorem, where we only sum over prime
geodesics, with a specific ®-value.

Theorem F. There exists a 6 > 0, such that forn € Z

. logy 1-6
Z B N/ (47n/N)? + (logy)? dy+O(z").

[y]er”
I(v)<logx
N&(v)=n

Again ¢ depends (only) on I', and so does the implied constant in the error
term.

As a consequence of this theorem we get an asymptotic relation between the
number of prime geodesics of bounded length and the number of prime geodesics
of bounded length with a given ®-value.

Theorem G. Forn € Z

ZlN% 1.

[y]eT” [v]er”
l(y)<= (v
N&(y)=n

We can use these results to prove that the prime geodesics are asymtotically
Cauchy distributed wrt. ® /I, that is, we can show the following.

Theorem H. For x € R we have

1 arctan(4mz) 1
lim — l=—"-—"-—"F4+ - 1.3
P 7(t) Z T * 2 (13)
[yler”
Uv)<t
() <=zl(v)

Note that, when ® can be interpreted as a linking number, ®/[ is the number
of times the geodesic winds around the knot divided by the length of the geodesic.
The I' = SLy(Z) case of Theorem E-H was already proved by Sarnak and
Mozzochi in [10] and [18].
If the limit 41 A jnl < A1)
) n € n| <
d(A4) = Jm oM + 1

exists for a subset A C Z, then we say that A has natural density d(A), and we
conclude the thesis by proving the following theorem about such A.
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Theorem 1. If A C Z has natural density d(A), then

> o1~d(A) )1,
[

[v]er’ y]eT”
()T (y)<T
NO(y)eA

when T — oo.



Chapter 2

Prerequisites

We start out by recalling some properties of Fuchsian groups and automorphic
forms. Some general references for this section is [5], [7], [9], [15] and [16].

2.1 Hyperbolic Geometry and Fuchsian Groups

Let H = {z € C| 3z > 0} be the upper half plane, and equip it with the Poincaré
metric ds given by
_da? + dy?
y2
(where z = = + dy). The geodesics on H is then the vertical half lines and
semicircles with center on the real axis.
The isometries on H is the functions on the form

ds?

b
o Y b e deR, ad—be=1

cz+d

or i
z»—)af—i_ , a,b,c,d € R, ad — bc = —1.

cz+d

The first type of isometries are called Mobius transformations and are of special
interest to us. We note that Mobius transformations correspond to matrices in

SLy(R), so for
a b
’7:(0 d)ESLQ(R),

az+b
cz+d

we define

Yz =

We see that v, and 7, gives us the same Mobius transformation, if and
only if 74 = 47, so we can identify the set of Mobius transformations with

9
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PSLy(R) = SLy(R)/{£I}, where [ is the identity matrix. Furthermore a simple
calculation shows that for 7,72 € SLy(R) and z € H, we have

(M72)2 = 1(122).

So this identification of matrices with Mobius transformations is a homomorphism
with kernel {£7}.

In the following we will often not distinguish between the matrix v € SLy(R),
the equivalence class {7, —y} € PSLy(R) and the corresponding transformation.
Sometimes it is however important to make a distinction between v and —~ (for
instance when we discuss multiplier systems).

The Mobius transformation for v(2%) € SLy(R) is naturally extended to a
bijection on the Riemann sphere C U {oo}, by

a/c if z = o0

vz = oo if z=—d/c .
az+b :
prari otherwise

One can easily show that

i) The Mobius transformation v has two fix points if |Try| < 2. One in the
upper half plane and its conjugate.

ii) The Mobius transformation « has one fix points if |Try| = 2 and vy # £1.
This fix point is on R U {oc0}.

iii) The Mé&bius transformation v has two fix points if |Try| > 2. Both of these
are located on R U {o0}.

We call a matrix/transformation elliptic, if it is of type i), parabolic if it is of type
ii), and hyperbolic if it of type iii). We call a point fixed by an elliptic matrix F
for an elliptic point, and we say that it has order m, if m is the smallest positive
integer such that £ = +1.

The hyperbolic measure p on H is given by

dxdy
Y2
This measure is invariant under Mobius transformations.
A Fuchsian group I' is a discrete subgroup of SLs(R) (to define discreteness

we can identify SLy(R) with a subspace of R*). We say that a measurable subset
F of H is a fundamental domain for I' if TF ={vyz |y €T,z € F} = H, and

dp(z) =

Yz = 29 = 21,725 € OF

for v € I'\{£1} and 21,2, € F. Since pu is invariant under Mébius transforma-
tions, we get that u(F) = p(G) if both F and G are fundamental domains for T',
and we define p(I"\H) = u(F).
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We say that " is cocompact, if it has a compact fundamental domain, and that
[ is cofinite if u(I'\H) < oco. If T' is cofinite, there exists a hyperbolic polygon,
which is a fundamental domain for I', this implies that I" is finitely generated. If I"
is cocompact, all of the vertices of this polygon is in H, but if I is not cocompact,
one or more of these vertices will be in RU{oco}. Such a vertex a is called a cusp,
and its stabilizer 'y = {7y € ' | ya = a} is generated by a parabolic matrix. We
will consider two cusps a, b to be equivalent, if they are I' equivalent, i.e. if there
exists a v € ' such that ya = b. The cusps are exactly the (I'-equivalence classes
of) points in RU {oo}, that are fixed by some element of I

If T is a Fuchsian group, then

tr'={y|yel' VvV —yel}

is a Fuchsian group, and it generates the same set of Mobius transformations.
Because of this the difference between I' and 41" is relatively small, but some
results are easier to state if we assume, that —I € I'. Hence we will in the rest
of the thesis only study Fuchsian groups, that contains —I, and when we write
Fuchsian group, it will be implicit, that this means Fuchsian group containing
—1I.

As mentioned earlier cofinite Fuchsian groups are finitely generated, and the
following theorem by Fricke and Klein (see [8] p. 42) gives us some information
about a set of generators.

Theorem 2.1.1. Let I' be a cofinite Fuchsian group. Let g denote the genus of
the surface T\H, h the number of its cusps, and let r be the number of conjugacy
classes of elliptic matrices in I'. Then g, h,r < oo, and I' is generated by —1I,
2g hyperbolic matrices Ay, ..., Ay, By, ..., By, 1 elliptic matrices (one from each
conjugacy class) Fy, ..., E, and h parabolic matrices (one from each conjugacy
class) Py, ..., P,. These matrices satisfy the identity

[A, Bi] -+ [Ag, BBy - E,Py - Py =1,
where [A;, Bj] denotes the commutator A;B;A; B

There is an important formula about the area of fundamental domains, called
the Gauss-Bonnet formula (see [8] p. 43), which states that

N(F\H) o - -1
= —29—2+h+2(1—eT ). (2.1)
7j=1
Here g, h,r are as in Theorem 2.1.1, and ey, ..., e, are the smallest positive inte-

gers such that E = £1.
The Gauss defect formula is another important formula for calculating hyper-
bolic areas. This formula states that a hyperbolic triangle T" (i.e. the area between
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three hyperbolic geodesics, that pairwise intersects each other in HUR U {o0}),
is given by

WT) =7 —a—B—7, (2.2)

where «, (5,7 is the angles of T

2.2 Automorphic Forms and Functions

Let I' be a Fuchsian group. If I" has a cusp in @ € R U {oo}, with stabilizer
Iy, then T', is generated by —I and some matrix ~,, where Tr~v, = 2. We then
have a matrix o, € SLy(R) such that o,(a) = oo and o,7,0,' = (§1). If we for
f:H — C, have f(y,2) = f(z), then we see that foo, ! is 1-periodic. So foo,*
has a Fourier expansion, if f is sufficiently nice. We write this expansion as

flo'2) = Z b, exp(2minz). (2.3)

ne”L

If there is m € Z, such that b, = 0 for n < m, we say that f is meromorphic at
a, and if b, = 0 for all negative n we say that f is holomorphic at a.
If f:H — C is meromorphic, and

f(vz) = f(2), for z € Hand vy € T,

then we call f an automorphic function (with respect to I'), if f is also meromor-
phic in the cusps of I'. If f has a zero (resp. a pole) at zo of order m, then for
any v € I', f has a zero (resp. a pole) of order m at vz. Hence, if f # 0, we can
define a function py on I'\H, given by

m if f has a zero of order m at z
pe(l'z) =< —m if f has a pole of order m at z .
0 otherwise

Let f # 0 have the Fourier expansion (2.3) in a, and let m € Z be such that
by, # 0 and b, = 0 for n < m. We see that for v € I', we have o, = o,y Y, and
since f is I'-invariant, we get the same Fourier expansion in vya. So we can define
pr(Fa) to be m, and if m > 0 (resp. m < 0) we say that f has a zero (resp. pole)
of order m (resp —m) in a.

Let z € H be a elliptic point i.e. a fix point for some elliptic matrix v, € I.
We define ord(z) to be the order of v, (that is, ord(z) is the smallest n € N such
that 4 = 7). For all non-elliptic points z € H we define ord(z) = 1. For any
z € H and v € T we have ord(yz) = ord(z), so we can define ord(I'z) = ord(z).
Hence the following is well defined, for f # 0,

Deg(f)= Y Y )

ord(z)’
a€lM\RU{co} cusp zel\H
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and it can be shown that Deg(f) = 0 for all non-zero automorphic functions.
Especially any non-zero automorphic function that is holomorphic (in H and in
the cusps), will be zero free.

We now change the condition f(vyz) = f(z) slightly. For v = (2Y), we define
Jv : C = C by j,(2) = cz + d, and note that

I (2) = Jn (72Z)j72 (2). (2.4)

Let f: H — C be holomorphic, and given such that

Flyz) = v(1) (G5 (2)" f(2) (2.5)

for all 2 € H and v € T, where k € R (we define (j,(2))* = exp(klog(j,(z)),
where log is the main logarithm), and v is a function on I' taking values in
St={2eC||z|=1}. If f#£0and v;,7 € T, we see that

V(1) = v(1) (s (122)"f (22) _ v(1)v(32) (s (722))* (1 (2))"
(j%w(z))kf(z) (]7172( ))k

)

and
F(2) = F((=1)2) = v(~I) exp(kri) f(2).
We note that

(i (922))* (3 (2))"

Una(ZDE exp(ki(arg j,, (722) + arg ji, (2) — arg jyi4,(2)))

and that by (2.4)

argj71 (722) + argj’Yz (2) — argj’ym’z(z)
2

w(y,72) =

is an integer between -1 and 1, and since it is continuous in z, it is independent
of z € H. So if we define

wi(M,72) = exp(2mikw(71,72))
the following holds for v
v(—=I) = exp(—kmi),
v(imyz) = we(v,2)v(n)v(re)
A function such as v is called a multiplier system.

Definition 2.2.1. Let k € R, let I be a Fuchsian group, and let v : I' — St
If(2.6) and (2.7) holds for v and k, when v1,v, € T, we say that v is a weight k
multiplier system on I'.
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Note that if v is a weight k& multiplier system, then it is also a weight k + 2n
multiplier system for all n € Z.

When calculating values of multiplier systems it is useful, with some formulas
for w. In § 2.6 in [7] we find the following formulas

w(AB,C)4+w(A,B) = w(A,BC)+w(B,C) .
w(DA,B) = w(A, BD) = w(A,B) (2.9)
W(ADA™H A) = w(A,AT'DA) =0 (2.10)

when A, B,C, D € SLy(R), and D is on the form (} 7).

Let a be a cusp of I', and let f : H — C be a function, for which (2.5)
holds. We define f|,(2) = (j,(2)) % f(yz), and we let x, € [0,27) be such that
exp(kai) = v(7,). The function z — exp(—r,iz)f|,-1(2) is then I-periodic, and
it has a Fourier expansion

exp(—kKqi2) fl,-1(2) = an exp(2minz).. (2.11)

ne”L

If b, = 01in (2.11) for n < 0, we say that f is holomorphic in a. We can show
that, if f is holomorphic in a, then f is holomorphic in va for all v € T'.
We can now state the definition of holomorphic automorphic forms.

Definition 2.2.2. We say that f : H — C is a weight k (classical) holomorphic
automorphic form with multiplier system v wrt. T, if the following holds:

i) f is holomorphic in H,
ii) f is holomorphic in the cusps,
ii1) equation (2.5) holds for all z € H and v € T.

If fis a weight & € Z modular form with trivial multiplier system (i.e.
v(y) = 1 for all v € T'), we call f a modular form. If v is trivial, (2.6) im-
plies that £ is even.

Let f be an automorphic form and a a cusp, and write f|,, on the form (2.11).
We say that f has a zero of order m in a if b,, # 0 and b, = 0 for n < m, and it
can easily be shown, that f has a zero of order m in a, if and only if f has a zero
of order m in ya for any v € I'. Furthermore if f has a zero of order m in z € H,
then it follows from (2.5), that f has a zero of order m in vz for all v € I". So we
can define py and Deg(f) just as we did for automorphic functions (but p, will
not assume negative values for automorphic forms).

For cofinite Fuchsian groups we have the following two theorems about the
number of zeros of the modular forms and the number of modular forms (see [20]
Proposition 2.16. p. 39 and Theorem 2.23. p. 46).
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Theorem 2.2.3. Let I' be a cofinite Fuchsian group. Let g denote the genus of
the surface T\H, h the number of its cusps, and let r be the number of conjugacy
classes of elliptic matrices in I'. If f # 0 is a weight k modular form, then

Deg(f)zg(29—2+h+2(1—e;1)>

j=1

Theorem 2.2.4. Let I' be a cofinite Fuchsian group. Let g denote the genus of
the surface T\H, h the number of its cusps, and let r be the number of conjugacy
classes of elliptic matrices in I'. If Gy denotes the space of weight k modular
forms, then for even k

(k- D(g-D)+E 43 {%J if k> 2
g+h—1 ifk=2and h >0
Dim(Gy,) = g ifk=2and h=0 -
1 if k=0
\ 0 if k<0

We note that if we combine Theorem 2.2.3 with formula (2.1), then we get

p(I\H)
s
Especially the degree is positive, if the weight is positive.
(G is the space of holomorphic automorphic functions. It contains the con-
stant functions and according to Theorem 2.2.4, these are the only holomorphic

automorphic functions.

2.3 Spectral Theory of Automorphic Forms

This section is concerned with functions that transforms almost like holomorphic
automorphic forms. That is, functions f : H — C, for which we have a multiplier
system v on a cofinite Fuchsian group I', and a weight £ € R, such that for z € H
and y eI’

o) =oto) (£ ) (2.12)

¥ means exp(klog ), where log is the main loga-

(as in the previous sections x
rithm).

If (2.12) holds for f : H — C and F; and F» are two fundamental domains
wrt. ', then

fPdu= [ |fI?dp,
Fi1 F2
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and hence it makes sense to define

1/2
11l = (/f\f\%) ,

for any fundamental domain F wrt. I'. We define H(T',v, k) to be the set of
functions f for which (2.12) holds, and ||f|| < oco. We can define an inner

product (-,-) on H(I', v, k) by
~ [ foau
f

The following 3 differential operators are of interest

K — Z'g—i- 24_&—(2_5)2_’_&
T Yo yay 2 dz 2

o0 0 k 0 k
M = iyg gt =Rt

0? o? 0
Ay = ¢ ey — .
g Y (8902 0y? ) " 0w
We call K}, the (weight k) Maass raising operator, Aj the (weight k) Maass
lowering operator and Ay the (weight k) Laplacian. If f is C, then

() ) - () e

< <
. ((\ﬂ((?)) d ””) - (u:((?))mm’ff - (214)

Hence if (2.12) holds for f, then (2.12) with k replaced by k + 2 (resp. k — 2)
holds for K f (resp. Axf). So the raising operator increases the weight by 2 and
the lowering operator decreases the weight by 2.

If feH(T,vk),ge H({,v,k+2) and f,g are C! (in z,y), then we have
the following identity

(Kif,9) = (f, Mrs29). (2.15)
Since
k k k k

(see [15] formula (3.4) p. 305) this means that if f, g € H(T, v, k) are C?, then

(Anf,9) = (f; Axg).
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So if we define the subset D(I', v, k) C H(T', v, k) by
DL, v, k) ={f € H({T,v,k) | fis C*, Arf € H(T, v, k)}

then Ay is symmetric on D(T', v, k).

The subset D(I', v, k) is dense in H(I', v, k), and when we consider D(I', v, k)
to be the domain of Ay, then this operator is essentially self-adjoint (see [15] Satz
3.2 p. 310). So A} = Ay = Ay, and we can extend A, to be an operator on
H(T, v, k), by defining Ay := Aj.

When f,g € D(T', v, k), then by formula (2.15) and (2.16)

(f.=Arg) = (Kif Kig) - g (1 + §> (f.9), (2.17)
-tug) = (fbig)+ 5 (1-5) (o (2.15)
So
v-ouy= B (1= B e

for f € D(I',v, k), and when we take the closure, we get that the same in-
equality holds for f € H(I',v, k). Hence the spectrum of —Aj is contained in
[1K]/2(1 = [k[/2), 00).

All the eigenfunctions of —Ay are in D(I', v, k) (see [15] Satz 5.7a p. 325).
By (2.17) and (2.18) the smallest possible eigenvalue is |k|/2(1 — |k|/2), and we
can only obtain this eigenvalue, if we for the corresponding eigenfunction f have
Arf =0 or Kif = 0. On the other hand it follows from formula (2.16), that if
Af =0o0or Kpf =0, then f is an eigenfunction with this eigenvalue.

If A,f =0, then

) ) k
0 = i () -y ()4 1)
) )
= Ry () -yt 2a—y(y”“/ °f(2))
)
= YT (),

so y~*/2f(2) is holomorphic. If (2.12) holds for f, then (2.5) holds for y=*/2f(z),
since $(vz2) = ylj,(2)[72 for v € SLy(R). If furthermore ||f|| < oo, then
y~*/2f(2) will be holomorphic in the cusps, and hence it will be a holomor-
phic automorphic form. On the other hand if y=*/2 f(z) is weight & holomorphic
automorphic form wrt. I" and with multiplier system v, then f € D(T', v, k), and
Arf =0 (by reversing the arguments).
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Similar arguments show that K,f = 0 and f € D(I',v, k), if and only if
y*/ 2@ is a weight —k holomorphic automorphic form wrt. I and with multiplier
system .

We let Ay < A < ... be the eigenvalues of —Ay (on H(I',v, k)), where we
have A = A\, for m different n’s if X is an eigenvalue of multiplicity m. We define
T i= (A — 1/4)1/2, 50 that

(o) (- G- o) o)

Let T'y, 7, and o, be as in the start of section 2.2, and let 7' := (§1). If v is
a weight & € R multiplier system on I', z € H, s € C and Rs > 1, then we define

Balsi) = 3 wilonn ) ({2205 ) Gonay. 219)

= o (2)

if a is singular wrt. v, i.e. if v(y,) = 1 (we call a non-singular cusp regular).
Here the sum makes sense since

S(0aVav2) = S(Togvz) = S(1+ 0472) = S(0472),
ja'a’Ya’Y(z> = jTUa'Y<Z) = jUa'Y<Z)

and by (2.8), (2.9) and (2.10)

W(0a, YaY) +W(Va:y) = w(0aVa,7) + w(0a;Va)
w(T0a,7) 4+ w(0q,0, ' Toy)

= w(04,7),

so the terms in (2.19) do not change if we replace v by 74~ (i.e. takes another
representative in I',7).

It can easily be shown that formula (2.12) holds for E,(-, s, v, k).

If a and b are (not necessarily distinct) singular cusps, and we define a mul-
tiplier system v, on o,I'c, U by

vab(7) = v(oy 'you)wi (04, 0 yow)wi(vos, 03 ")

then we can rewrite (2.19) in the following way

@O\ o (3@ Y e
(u%—l (2)‘> Bleitsont) = 3 ) (25 (82

= Ex(z,8,Vap, k).
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We have Ky® = (k/2 + s)y® and Ary® = (k/2 — s)y®, so by (2.13) and (2.14)

k
KyEy(0; 'z, 8,v,k) = (5 + S) E.(o; 2, 8,0,k +2)
-1 k -1
A E (0, z,8,v,k) = 55 E (0, 2z, 8,0,k —2),

and hence by (2.16)
—AE, (0, 2, 8,0,k) = s(1—38)Eu(0; 'z, 8,1, k).
For s > 1, the function
<ﬂ>_kl? (0,12, 8,0, k) = Ex(2,8, Vap, k)
G ) ez ) = Bl v

is 1-periodic in z, and it has a Fourier expansion. This Fourier expansion is given

by

Ew(2,5,Vab k) = Oay® + an(s,v)y'~* + Z abn(y, 8, v)e*™™
neZ\ {0}

where

741757 (25 — 1) e /2 Vap( 5 %)
w(sv) = ik cd)(9.20
Pals:V) = TR/ —k/3) N 2. 2 (220)
(e d)EFw\UaFUI;l/FOO
c>0

(see [5] formula (5.20) and (5.22) p. 368), and @upn. (Y, s,v) is holomorphic in
s (see [5] formula (5.23) p. 369 for specific expressions). By formula (5.21) on
p.368 in [5], we have for Rs > 1,

Eoo(zus7yaa7k) - ys+0(y1_s)7
and hence
|Ea(-, 5,0, k)| = || Eo (-, 8, Vap, K)|| = o0.
So (2.12) holds for F,(-,s,v, k), and it is an eigenfunction of —Ay, but it is not
in H(L, v, k).
The functions (s, v) and E,(z, s, v, k) are holomorphic for Rs > 1, and they

can be meromorphically extended to all s € C (see [16] p. 293). Let ay,...,axk,
be all the singular cusps (wrt. v) and define ®(s, ) to be the matrix given by

D(5,) = (Pasa; (8, V) )1<ij<Ko-
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When we let £(z, s, v, k) be the vector

E, (z,s,v,k)

E

(ZKO (Z7 87 V? k)
we get
E(z,s,v,k) = D(s,v)E(2,1 — s,v,k) (2.21)

(see [16] formula (10.19) p. 296).
The matrix ®(s,v) is called the scattering matrix, and we define

(5, v) = det b(s, ),
and call (s, v) the scattering determinant. Formula (2.21) gives us
O(s,v)P(1 —s,v) =1, (2.22)

where [ as usual denotes the identity matrix (but in this case the Ky x Ky-identity
matrix), and we have (see [5] formula (5.24) p. 369)

Pab(8,V) = Ppa(5, V). (2.23)

Hence for s = 1/2 + it we get
@@\ -1
1—|—'t L x4 B 1+'t
—+it,v | = — —it,v = —+it,v
(p 2 Y (p 2 ? (P 2 Y Y

= 1. (2.24)

SO

Furthermore by (2.22) and (2.23)

1 1 ! 1 1
@(§+it,y)®(§+it,y> = (I>(§+it,y><1><§—z’t,y> =1,

where @' is the transposed of ®. So by considering the entries in the diagonal,

Eb 7£(1b 2 )

If E.(z0,$,v,k) has a pole in s = sg, then E,(z,s,v, k) has a pole in s = s
for all z € H, and sy # 1/2, furthermore if Rsy > 1/2 (because of (2.21) it

2:1. (2.25)
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is enough to study the zeros and the poles s with $ts > 1/2), then the pole is
simple (for all z € H), so € (1/2,1] and ¢u.(s) also has a simple pole in s = s
(see [16] Satz 10.3 p. 297 and Satz 10.4 p. 299). Conversely if .q(s) has a pole
in s = sg, with Rsy > 1/2, then it follows from the Maass-Selberg relations (see
[16] Lemma 11.2 p. 300-301), that E,(z,s,v, k) has a pole in s = 5.

The residue hqs,(2) of E,(z,s,v,k) in s = s¢ is in D(I', v, k), and h, 4, is an
eigenfunction of —A; with eigenvalue so(1 — s¢) (see [16] Satz 11.2 a) p. 302).
If hg s, (%) are the residue of E,(z,s,v,k) in s = s, and hy s, (2) is the residue of
Ey(z,s,v,k) in s = s, then

(hasos Pbsy) = Res(pa(s),s = so) (2.26)

(see [16] Satz 11.2 b) p. 302).

If k : H? — C is a suitable nice function, then

/FZV(V) ( j7(2|>kf<a(z,VZ) dp(z), (2.27)

is well defined (as usual F is a fundamental domain for I'). If we divide I' into
conjugacy classes, we can rewrite (2.27) to the following

; /vam (ﬁ)(v) du(2),

yeC

where the first sum is over the conjugacy classe C' C I'. Dividing this sum into
the four cases of the identity, hyperbolic, parabolic and elliptic matrices, lets us
express (2.27) in terms that relates to the geometry of I"\H.

The function

K(z) =S () ( 7(2)

215G

)kfe(mz)

is in H(I', v, k) and can be expressed as a linear combination of eigenfunctions of
—A}, plus some integrals over Eisenstein series. We can use this to express (2.27)
in terms related to the spectrum of —Aj. Combining these expressions we get
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Selberg’s trace formula (see [5] Theorem 6.3 p. 412-413)

- u(}")/ sinh(27r)dr
= =7 2.2
;h(rn) A Rrh(r)cosh(%rr) + cos(mk) (2.28)
p(F) oy (R =D
+ > (Ik] l)h( 5 (2.29)
I odd
1<I<|k|
v(7)1(%)

+ g(l(y 2.30
2w - wy s (230
Trvy>2

i(k—1)0 <€u 2i9)du
(k=1)u/2 (2.31

+ {ZR; 4MRsm9 /Rg(u)e cosh u — cos(26) 31)
Tr R<2
0<O(R)<m

(0) ) log |1 — i) (2.32)
a; #0
(L = (h—tyuy2 (€" — 1)du

+ (Z);O L — ;) PV mg(u)e oy (233)

> g(u)(1 — cosh(%u))

+ KK, /0 e (2.34)

1 I"(1 +ir)
- K log2 + — —_ 2.
< (0)log2 + o h(ﬂF(l—i—z’r) dr) (2.35)
1

—|—1h(0)Tr (I—®(3,v)) (2.36)
1 o (1 .

— (= . 9.

+47r Rh(t) - (2 + it, 1/) dt (2.37)

Here h is any holomorphic even function defined on

kEl—11
{ZE(C ’|y\<max{%,§}+5},

for some 6 > 0, such that h(r) = O((1 4 17)~%7%), and

g(u) = % /R h(r)e™ " dr

(h and g comes from the Selberg/Harish-Chandra transform of ). If there are
no singular cusps, then the scattering matrix is not defined, and we define the
terms (2.36) and (2.37) to be 0 in this case.

The term (2.37) and the left hand side of (2.28), comes from (2.27) expressed
in terms of the spectrum of —Aj, and hence we call these terms the spectral
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terms. The other terms originates from (2.27) expressed in terms related to the
geometry of I'\H, and hence we call them geometric terms.

The term (2.30) is related to the hyperbolic conjugacy classes, and hence we
refer to it as the hyperbolic term. The 7y, that occurs in this term, is defined to
be the primitive hyperbolic matrix, which v is a positive power of. The functions
[ and N are the length and norm, which we will give a definition of in the next
section.

The term (2.31) is related to elliptic conjugacy classes, and we call it the
elliptic term. Here 6 = 0(R) is defined to be in (0, 27), such that R is a SLy(R)-

conjugate of
cos@ —sinf
sinf cosf |-

For a cusp a we define a,(v) € [0,1) to be given by v(7,) = exp(2mic,(v)),
if b is a cusp equivalent to a, then «a,(v) = a(v) so if we call the equivalence
classes of cusps ¢y, ..., ¢y, we can define a;(v) := a,(v), where a is some cusp in
¢j. So in (2.32) and (2.33) we sum over the regular cusps.

2.4 Closed Geodesics on ['\H

We can identify the group PSLy(R) with SH (the unit tangent bundle on H).
The standard way to do this is to use the homeomorphism

a b ai+0b . 9
:l:(c d)'-)(m,(CZ"—d) g),

where ( is the unit vector at ¢ up along the imaginary axis. For ¢t € R the matrix

o ( expgm) eXp(g " ) ,

sends i to exp(t)i. So the family {¢; }er moves i along the geodesic through 7 in
direction ¢, and dist(i, pui) = |t|.

Since Mobius transformations sends geodesics to geodesics and preserves dis-
tances, we see that f, : R — H, given by

[+ () = i, (2.38)

is a geodesic for any v = (29) € SLy(R), and dist(~yi, ypii) = |¢|. Furthermore
the geodesic (2.38) goes through i in direction (ci + d)~2¢. For any given point
in H and any direction, there is a unique geodesic going through this point in
this direction, so we can write any geodesic in the form (2.38).

Now let I be a Fuchsian group, and let v € T be hyperbolic. Then 7 can be
diagonalized, i.e.

- A0
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for A = 2(|Try| 4+ +/(Try)?> —4) > 1 and some A € SLy(R). The A in (2.39) is
not unique, but if A; and A, are two such A’s, then A; = Ay¢; for some t € R.
Since ¢ s = P15, We have

fYnAgbt = (A¢2 log AA_l)nA¢t = A¢2n10g A+t

and hence the points A¢yi and Aoy, ioq a4t On the geodesic {Agyi | s € R} are
I'-equivalent.

In the following we will save some notation and assume, that the sign in (2.39)
is positive.

The hyperbolic metric on H induces a metric on I'\H, hence G, : R — I'\H,
given by

G,(t) ={ro¢yi | T €T}, (2.40)
is a geodesic, for any o € SLy(R). When o is the A in (2.39), we get
{rAgi | T €'} = {1yAdi | 7 € I'} = {TAPri210g0 | T €T},
so the geodesic C, : [0,2log A\] — I'\H, given by
Cy(t) ={rA¢u | T €T} (2.41)

is a closed curve.
When Try = A+A"!, then the geodesic C, has length 21og A. So for hyperbolic
v with trace A + A™!, we define the length

[(y) :=2log A,

and norm
N(y) = exp(l(7)) = X%,
If f,g:[0,a] — I'\H are closed geodesics and

(1) = gt+b) ift+b<a
| gt+b—a) ift+b>a

for some b € [0,a] (i.e. fis g except that it starts and ends in another point), then
we will consider f and g to be the same closed geodesic. So to each hyperbolic
element v = A¢; A~ in I, we can associate a unique closed geodesic C, of length
l.
Conversely if we have a curve C on I'\H, then we can lift C to H, so we get
the set
Cu={z€eH|TzeC}.

We can choose a zy € Cy, and a neighborhood U of zy. Then I'U is a neighborhood
of 'z in T'\H, and I'z is on a segment of Cy, which is contained in I'U. By lifting
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this segment to H we get infinitely many curves in H (one for each element in I').
If we assume, that C is a geodesic on I'\H], then these curves becomes segments of
geodesics on H. If we name the geodesic through 2y Cp, then the other geodesics
are on the form 7Cy for 7 € I", and I'Cy = Cy. If we now assume C to be closed
and of length [, we can choose a point z; on Cy, and we denote by z the point
that is at distance | from z; along Cy (in direction of the orientation). Moving
from z; to z then corresponds to move [ along C, i.e. once around C, from ['z;.
But then I'z; = I'z,, so two points on Cy, that are the [ apart, are I' equivalent.
Since this is true for any two points at distance [ on Cy, it follows by continuity
of the geodesic and discreteness of I', that there is a v € I" that moves any point
on Cy [ along Cy. Furthermore Cy is on the form (2.38), so C is on the form (2.41)
for some A € SLy(R), and A = exp(l/2).

So to any hyperbolic matrix v € I' we can associate a closed geodesic C,, on
["\H, and for any closed geodesic C there is at least one hyperbolic matrix -, such
that C = C,.

If v = Ag; A1, then for n € N, we have v = A¢;, A~!, and hence

Cv"(t""ﬂ) = C”/”@) = C’Y(t)7

for any j € {0,...,n—1}. So Cy» "runs around” C, n times. If v is a hyperbolic
matrix, and v is not a positive power of another matrix, then we say that v is
primitive, and we say that C, is a prime geodesic.

If v = A¢A~" and C, runs around the same geodesic Cy n > 1 times, then
we must have 0 < t; < ty < [, such that

Cy(t1) = Cy(t2),

and small neighborhoods U; 3 t; and U 3 t5, such that
C,(Uh) = C,(Ua).

So

A¢t1i = 70A¢t2i
for some 7y € I', and for s € U; there is r € U such that

Apsi = o Ap,i

for some o € I'.

Since we can choose U; and U, arbitrarily small, and since I is discrete and
Mobius transformations are continuous, we see that o = 7 for all s € U;. So 7
moves all points Aggi, with s € U; a fixed distance [y < [ (since it is an isometry)
along the geodesic t — A¢,i, and hence it does so for all s € R, so it is hyperbolic
(it fixes both endpoints of the geodesic), and on the form A¢g, A~*. Since C, runs
around the same geodesic Cy n times, we have [ = [pn. So v = v, which means vy
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is not primitive. Hence the prime geodesics are the closed geodesics, that ”goes
once around”.

If v1,7% € I' are hyperbolic matrices with C,, = C,,, then we have v, =
Ay ATY and v, = Ay Ay, for some [ > 0 and Aj, Ay € SLy(R). We note
that Aji = oAyt for some o € T' and t € [0,]), so if we move along the
geodesic, we get Ay¢si = 0 Ay si, for s € [0,1 —t]. Hence A; = 0 Ay¢, and since
Yo = (Aady)dy(Agpy) ™, we see that

Y1 = A1 AT = (0 A di(o Aayy) ™ = 000

In other words 7, is a I'-conjugate of vs.
If v,0 € I' and ~ is hyperbolic, then we can write v = A¢;A~t. We then have
oyo~! = g Ag(cA)~!, and we see that for t € [0, ]

Coro-1(t) ={10AQsi | T €'} = {TAgyi | T € '} =C, ().

We have shown, that there is a one-to-one correspondence between closed
geodesics on T'\H and conjugacy classes [y] = {oyo™! | ¢ € '} of hyperbolic
matrices v € I with positive trace.

Selberg’s trace formula gives us a correspondence between conjugacy classes
of elements in I" and the spectrum of the operator Ag. The elements in I (and
conjugacy classes of the elements) can be divided into the identity, elliptic ele-
ments, parabolic elements, and hyperbolic elements. To each elliptic elements
corresponds an elliptic point, to each conjugacy class of parabolic elements cor-
responds a cusp, and to conjugacy classes of the hyperbolic elements corresponds
closed geodesics. So we can also view the trace formula as a correspondence be-
tween the spectrum of Ay and the geometry of I'\H. Especially will (2.30), the
term we get from the hyperbolic matrices, be a sum over the closed geodesics
on I'\H, where we sum expressions given by the length of the geodesics and the
multiplier system. The length of the geodesic is obviously closely related to the
geodesic itself, but it is not clear, how to interpret the multiplier system as some-
thing concerning the geodesic. In section 4 we will suggest how the multiplier
systems value for a hyperbolic matrix, can be interpreted as a number (rather)
closely related to the geodesic.

For now we will however ignore the multiplier system, by simply letting it be
1 for every element in I". For this to make sense, the weight k& must be even,
so we will let £ = 0. We can choose the g in the trace formula to depend on
s € {z € C| Rz > 1} in such a way, that (2.30) becomes a function in s, that is
much like the logarithm of Riemann’s zeta function (and is known as Selberg’s
zeta function), but instead of being a sum over prime numbers, it is a sum over
prime geodesics. We can then proceed as in the proof of the prime number
theorem (for a different approach see chapter 10.8-9 p. 152-156 in [8]), to get an
estimate on the number of closed geodesics of a certain length. This estimate is
known as the prime geodesic theorem (see p. 155 of [§]).
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Theorem 2.4.1 (Prime geodesic theorem). Let 1 =51 > 59 > -+- > 5, > 1/2
be given, such that the discrete spectrum of Ag intersected with [0,1/4) is given
by {s0(1— $1)....50(1 — )}, then

D) =D s XY 4 Op(XPY), (2.42)
[y]eT’ J
N(y)<X

We define
m(t) = #{[y] € I" [ (y) < t}.

By using partial summation on Theorem 2.4.1 we get the following corollary.

Corollary 2.4.2. We have
m(log X) = li(X) + Op(X*2 + X34, (2.43)

where s9 is as in Theorem 2.4.1.



Chapter 3

Taylor Coeflicients for Eisenstein
Series

3.1 Modular Forms wrt. SL,(7Z)

When no other reference is given, the results in this section can be found in Chap-
ter 2 and 5 in Don Zagier’s ”Elliptic Modular Forms and Their Applications”,
which is the first part of [1].

For even k > 4 we define the Eisenstein Series of weight k& wrt. SLo(Z)
E, :H — C by

E(z) = L > (mz+n)F, (3.1)

m,nez
(m,n)=1

where (m,n) denotes the greatest common divisor of m and n. Ej is a weight
k holomorphic modular form wrt. SLy(Z), and any holomorphic modular form
wrt. SLy(7Z) can be written as a polynomial in F4 and Eg.

In the rest of this chapter we will omit "wrt. SLy(Z)” and just write "modular
form”, when we consider modular forms wrt. SLy(Z).

We would like to define a weight 2 Eisenstein Series, but (3.1) does not make
sense for k = 2, since the sum is not absolutely convergent in this case. We can
however define F, : HH — C by

Ey(z) = %Z Z (mz +n)~2

meZ n€EZ
(m,n)=1

The function FEs5 is holomorphic and has a transformation equation much like the
one for modular forms. That is

Ey(vz) = (cz + d)*Ex(2) + %c(cz +d) for v = (Z Z) € SLy(Z).

28
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Since

o [az+b - ez +dPP O (ez+d)? 2ic(cz +d)?
Y\t d ~ (ad —bc)Sz  (ad — be)Sz (ad —bc)

we see that £} : H — C defined by

. , 3
B3 (x +iy) = Ex(x +iy) — pt

transforms like a weight 2 modular form. Ej is however not holomorphic.
We define a differential operator D by D := ﬁd%. If f is a weight &k modular
form, we have

(7, () 2D f(v2) = D(f o 7)(2) = D(f - j5)(2) = Df(2)35(2) + ;—Zf(Z)jﬁ_l,

when v = (2%) € SLy(Z). So, much like Es, D f transforms in the following way

k
Df(12) = Df(2)15*2(2) + 5= F ()15,

Because of this it makes sense to define two other (families of) differential
operators. For k € N define d;, and 9, by

k

472

Orf(z) = Df(2)

k
f(2), Of=Df — EEzf-

We then see that J takes almost holomorphic (understood as polynomials in Sz
with holomorphic functions as coefficients) modular forms of weight & to almost
holomorphic modular forms of weight k£ + 2, and ¥J; takes holomorphic modular
forms of weight k to holomorphic modular forms of weight k£ + 2. If f is a weight
k modular form, we will save notation by writing df and 9 f instead of 0y f and
i f.

Since ¥ takes holomorphic modular forms of weight %k to holomorphic modular
forms of k + 2, we have VE; = cFEjg for some ¢ € C. By comparing the constant
terms in the Fourier expansions of 9 E, and Eg, we see that ¢ = —1/3. In the same
way we see that VEg = —E?%/2. Since ¥(fg) = f¥g+ g f, and since holomorphic
modular forms are polynomials in F4 and Eg, we can write 9 in the following way

9g=_—209 P19 (3.2)

If f is a weight £ modular form, then we define

anf = ak+2n—2"'ak+2akfa
ﬁnf = ﬁk+2nf2"'19k+219kf-
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So 0" takes almost holomorphic modular forms of weight £ to almost holomorphic
modular forms of weight k& + 2n, and ¥" takes holomorphic modular forms of
weight &k to holomorphic modular forms of weight £ + 2n.

It turns out, that there is a (in some sense) better way to define powers of
¥ than ¥". For a modular form f of weight k, we define 9" f by 90 f = f.
V[1]f = Vi f and for n > 1

I = 9 f) —n(k +n — 1)ﬂ

g1y,
"

Formula (4.3) in [11] gives us the following relation between the derivatives 0™

and 9™
af_mzzom! <m—|—k—1)(12) s

For f :H — C, 0 € GLy(C) and k € Z even, we define f|,o to be

det()*2 f(02)
i5(2)

(for 0 € SLy(R) this is consistent with the way we defined f|,o in section 2.2).
For zy = x¢ + iyy € H define
-2y Z
e (39,

We then have o0,,0 = 2, and z — 0.,z is a holomorphic bijection from the unit
disc D to H.

Now let f be a weight k& holomorphic modular form. Then f|zo., is holomor-
phic in D, and so it has a Taylor expansion around 0

(flko)(2) =

(Flro=0)(z) = Y caon, )" (3:3)

n=0

We then have
(20 —Z0
f(z) = 0 Ok EcZOnfaz)

Z — ZO
If 2y is an elliptic point (i.e. zp is a SLQ( )-translate of i or pexp(mi/3)), and
Iz = {’7 € SL2(Z) | Y20 = ZO} = <70>7
then

1 .
o O, = .
20 10920 ( 0 Jvo(20)

furthermore j.,(z0) = %1 if 29 € SLy(Z)i, and j.,(20) = p** if 29 € SLa(Z)p (see
6] section 4.1).
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Since

etlio k/2 g..2
(Fleom)(0mi0mz) = SMO) I 0002) _ )6y,

k -1 o o
J5., (0217022) 0 1750

we see that

75 (z0) (ko) (T) = 50 (Flko) (07 0002)

= ) () (flow)(2)
= (lios)(2)

By Cauchy’s integral formula we have

[ fhow(?)

271 S, Zn+1

Czo (na f) = dz

where r > 0 is small, and S, is the cirkel with radius r and center 0. Hence

1 z 1 0, 2 20z
i) = L[ oGy L[ Thon (i (F0)2)
2mi Jg, 2T 2mi Jg, ]éco (z9) 2+

— flkUZO —k—2n
B 2#2],];3;'2” 20) / n+1 d 2=1Jy (20)cn(n, f)

So if zy € SLy(Z)i and 4 does not divide k + 2n, then ¢, (n, f) = 0, and likewise
if z9 € SLy(Z)p and 6 does not divide k + 2n, then ¢, (n, f) = 0.

Let zp € H and f be a holomorphic modular form. According to [11] formula
(3.7) we have

Czo(na f) = f(m)(z(])?

n (n—}-k’—l) (ZQ—ZO)m+k/2

m+k—1 m!

m=0

and by formula (3.9) in [11]

9 f(2) = n! - (n +k— 1) (2i32)™

(—4mSz)r e \m + k—1

SO

(2m0) " (2iS29)" /2

Caoln, ) = TR0 f (). (3.4
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3.2 Values of L-Functions

In [1] (p. 89-90) Zagier shows a connection between 0" Fj(i), with 0™ and Ej, as
in section 3.1, and L-series for Hecke characters. More precisely he shows, that
for 4|k + 2n

+n—1) X'
— n(k —1)! Z k+n
2 (k) (—Am(k =D | 2= A

O"Ey(i) = IE

k+n—1) A/ \)k/24n
( ) .- (A/A)

k

- AR
rez[i)\ {0}

_ 2(k+n — 1)! Z wk/2+n<a>
SR (—amy (k- 1)1 2= N(a)F
where the last sum runs over the ideals a of Z[i], N is the norm, and /o1y is
the Hecke character given by ¢y /2., (a) = (A\/A)¥2*" where X is a generator of a
(this is independent of the choice of A, since 4|k + 2n).
We know that if 4 does not divide k + 2n, then ¢;(n, Ex) = 0, and hence by
(3.4) 0"E(i) = 0. Another way to see this is by noting
(a—bi)"  (a—bi)kt2n (ai +b)*  (b+ai)"

(a 4+ bi)k+n B (a2 + b2)k+n - (a2 + b2)k+n - (b — ai)k+n’

for k 4+ 2n =2 (mod 4). So the terms cancel out in the sum over Z[i]\{0}.
So when k + 2n = 2 (mod 4), 0"Ex(i) = ¢;(n, Ex) = 0. But what happens,

when 4|k + 2n?
For
0 —1
=1 0)
St =1, and hence
E;(i) = E3(Si) = i°E3(i).

So E3(i) = 0. Hence

I =~ nl +hk—=1\ (BN i ol
aEk(z):Zm(:”H—k‘—l)( ié>> WM E (i) = 9T EL (i),

m=0

So we can study the holomorphic modular form 9™ E), instead of the almost
holomorphic modular form 0" E},.

If fis a weight & holomorphic modular form, then f is a polynomial in Fj
and Fg. So we can write

f= Z cla,b)ESEL.
a,b>0
dat-6b=F
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We can then use (3.2) and get

—120f = ) cla,b)(6bE; YT + daBT ESTY)

4a+6b=k

= kEGE;'(—=12)"f —6(EgE;* —=1) Y c(a,b)bEy 'E4T

4a+6b=k+2n
For n > 0 we write
(129 f = > c(a,b)ESE, (3.5)
a,b>0
4a+6b=k+2n

and define a family of complex polynomials {p, }5°,, by

pa(t) = Z c(a, b)t. (3.6)
a,b>0
4a+6b=k+2n

So

(_12)7179[71]]0 — Eik+2n)/4pn<E6Ez;3/2)-
Since Eg(i) = 0 and Ey(i) = 12Q*,, with Q_, = T'(1/4)?/(47%/2) (see [11] section
5.1) we especially have

I (i) = (=1)"128 42Ok, (0). (3.7)

We can use the definition of 9™ and our calculation of —129f to get a recur-
rence relation on the p,’s

pi(t) = ktpo(t) — 6(* — 1)py(t),
Paii(t) = @n+k)tpa(t) —6(t* — Dpl (t) —n(n+k — 1)p,_1(t) forn > 1.

Note that this implies, that p,(t) € Z[t] for all n € N, if py € Z[t].
For m € N we define an equivalence relation =,, on Z[t], by

Z ant” = Z b,t",

if a, = b, (mod m) for 0 < n < m — 1. So there are m™ equivalence classes
wrt. =,,, and we see from the recurrence relation on {p,},, that if we know,
which equivalence classes p,(t) and p,_;(t) are in, we can calculate which class
Pnt1(t) is in. Furthermore if pp, () =m Protmn, (1) and ppg41(t) =m Protmn,+1(1),
then p,(t) = Pranym(t) for n > ng. Especially p,(0) = prin,m(0) (mod m) for
n > ng.

If f = E4, then po(t) = 1 and hence pi(t) = 4¢. Running the following
commands in Maple calculates polynomials that are =;3-equivalent to the first
1000 p,’s
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p 0] 1; pl1] := 4xt; for i from 2 to 1000 do

pli] := ‘mod‘(simplify((2*i+2)*t*p[i-1]

6% (t"2-1)*(diff (p[i-11, t))-(i-1)*(i+2)*p[i-2]), 13) end do:
for i from O to 1000 do q[i] := taylor(p[il, t = 0, 13) end do;

We see that

p1o(t) =13 poss(t) =13 4t* + 1142 + 11
pii(t) =13 poar(t) =13 Tt + 6t,

and since 936 = 72-13, this means that p,(f) =13 pnroese(t) for n > 10. Especially

for n > 10.
After having run the previous commands in Maple, we can run these com-
mands

for i from 1 to 1000 do n[i] :=coeff(p[i],t,0) end do;
sum(’if’ (n[j+72]-n[jl=0, 0, 1), j= 1 .. 928);

The first command finds p,(0) (mod 13) for 1 < n < 1000, and the second

calculates that
928

Z(l - 5[Pn+72(0)]13[ n(O)]13) = Oa

n=1

where 0, 10 (0)13pn(0)]1z = 1 if Pnt72(0) = pp(0) (mod 13) and 0 otherwise. Hence

Pn(0) = ppi72(0)  (mod 13),

for 1 < n < 928 (we do however have py(0) = 1 and p72(0) = 11 (mod 13)). When
we combine this with (3.8), we see, that for any n,m € N we have p,(0) = p,,,(0)
(mod 13), when n = m (mod 72).

If we run the following command in Maple

‘mod‘ (coeff (product(p[2*n], n =1 .. 36), t, 0),13);

we see, that
[[72:(0)=5 (mod 13).
n=1

Especially 13 does not divide p,(0), when n < 72 is even (when n is odd p,(0) = 0,
since V" E,(i) = 0).
So we have proven, that for all n > 0,

pa(0) = (—=1)"12727 17472 B, () = (—1)"12727 1012 0" B, (i)
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is an integer. If n is odd, we trivially have p,(0) = 0, but when n is even, 13 does
not divide p,(0), and p,(0) = p,n(0) (mod 13), when n = m (mod 72).

By combining this with the relation between L-series and 0"Fy(i), and by
using that ((4) = 7*/90, we see that

4—2n n/2
pnl0) = (~112 gty ) = 2 323+ n)! Z@/mn

(27’(’ n+4
40 - Q757 3M2(3 + n)!
So we have proven the following.
Theorem 3.2.1. For even n > 0, define
40 - Q757" 3M2(3 + n)!
A, = 4 ( ) L(gyn, 4).

(2m)nt4
Then A, € Z, and A,, is not divisible by 13. Furthermore for n > 2 we have
A, = A7 (mod 13).
If we look at Fjg instead of Fy, we can in a similar way prove the following.
Theorem 3.2.2. For odd n € N, define

14 . Q:Z—Qng(n+l)/2(n + 5)[

Bn = (27T)n+6 L(w3+n7 6)
Then B,, € Z, and for m > 0 we have
Bimni1 = 1 (mod 5),
Bimiz = 3 (mod 5).

Proof. 1f we let f = Eg, and we define p, by (3.5) and(3.6), we get po(t) =t and
pi(t) = 6.

We can then proceed, almost as we did for E;. Running the following com-
mands in Maple

pLo] t; pll] := 6; for i from 2 to 27 do

pli]l := ‘mod‘(simplify((2*i+4)*t*p[i-1]
-6 (t72-1)*(diff (p[i-1], t))-(i-1)*(i+4)*p[i-2]), 5) end do:

gives us ps(t) =5 pas(t), and ps =5 pag(t) , Pans1(0) =1 (mod 5) and py,.3(0) = 3
(mod 5) for 0 < n < 6.
Hence by (3.7), we have

Pu(0) = (—1)"120=3/2Q=6=2nygll g () = (—1)"12(=3/2Q=0=2mgn ()
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is 0 if n is odd, congruent to 1 (mod 5) if n = 1 (mod 4), and congruent to 3
(mod 5) if n =3 (mod 4). Since ((6) = 7°/945, we have

14 - Q787230402 (n 4 B)! = 1
_1\n19(n—3)/2y—6—2n9n N 3+n
(=1)"12 Q7 """ Eg(i) = ) E
14 - Q-§72"3(n+1/2(n 4 5)!
= - L n, 0).
(27T)n+6 (¢3+ )
So B,, = p,(0), which proves the theorem. ]

A similar approach works for Eisenstein series of higher weight. From k = 12
the Eisenstein series £y will not in general (if ever) have integer coefficients, when
written as a polynomial in F4 and Fjs. It will however have rational coefficients,
so we can multiply with a suitable constant to get something with integer co-
efficients. By proceeding as in this section, we can then construct congruences
modulo p (for some prime p) for polynomials related to 9™ Ej, (i) and L(¢y o0, k).
However, we might not be able to find a p, such that these values are non-zero
modulo p.

We could also consider Taylor coefficients for Ej in p instead of ¢, which in
the same way, could give us some congruences for some other L-functions.

3.3 Zeros of V"L,

Instead of studying of ¥I" E), we can study zeros of ¥"E},.
In [13] F. K. C. Rankin and H. P. F. Swinnerton-Dyer proved that for any
even k > 4 all zeros of ), are in the set

. 2
{76“ v € SLy(Z), t € {g, ?ﬁ} } :

They did this by showing, that e®*/2E, (') € R for t € (0,7), and e**/2E,(e) =
2cos(tk/2) + Ry(t), with Ry(t) < 2 for t € [7/2,27/3]. So if t € [r/2,27/3],
then e*/2 [ (e™) is positive when tk/(27) is an even integer, and negative when
tk/(2m) is odd. If we define 6 = tk/(27), we see that t € [7/2,27/3] is equivalent
to 6 € [k/4,k/3], and hence Ej(e") has at least #([k/4,k/3] N N) — 1 different
zeros t € (1/2,2m/3).

If we define s € {0,4,6,8,10,14} by s = k (mod 12), we see (by considering
each possible value of s separately), that

k—s

12
By Theorem 2.2.3 we have Deg(E})) = k/12, and since all points in {exp(it) | t €
[7/2,27/3]} are SLy(Z) inequivalent, we see, that

> E > .
Deg(E}) > L L, () + 5 t—3 25 Tt T3

#(k/4,k/3]NN) — 1=
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If a,b, c are non-negative integers and

n b n c s
“TyT3 T 1y
we see, that
((0,0,0) ifs=0
(0,0,1) ifs=4
B (0,1,0) ifs=6
(a,b,¢) = (0,0,2) ifs=38
(0,1,1) if s=10
\ (0,1,2) if s=14
Hence we must have
o) | pe(p) s
2 3 12°

So all Ei’s zeros are in {y(e") | v € SLs(Z), t € [r/2,27/3]}, and they
are all simple, except if & = 2 (mod 6), then there is a double zero in p (and
S Lo(Z)-translates of p).

It turns out, that this can be generalized to v" Ej, and that the zeros of V" E},
and 9"t E}, interlaces.

Theorem 3.3.1. For k > 4 even and n > 0 the modular form 9" E} has only
zeros in {y(e") | v € SLy(Z), t € [r/2,2w/3]}. Except for a possible double
zero in SLy(Z)p, all these zeros are simple, and if w/2 < t; < to < 27/3 and
I Ey(e') = 9" Eg(e"2) = 0, then 9" Ej(e") = 0 for some t € (t1,t3).

Proof. Since Ej, is a modular form wrt. SLy(Z), it can be expressed as a poly-
nomial in £, and Ejg, so we have

E,= ) cla,b)E{EL.

4a+6b=k

Hence
eitk/2Ek<€it) — Z c(a, b) (€2itE4>a(€3itE6)b,
4a+6b=Fk
and since e*/2F (e), e2* E, (™), ¥ Eg(e) € R for t € [r/2,27/3], we see that
the c¢(a,b)’s are real. By (3.2) 9" Ej) have real coefficient, when expressed as a
polynomial in F, and Eg. So e®F/2Fynf (¢*) € R for t € [1/2,21/3].
We define Fy,, : [7/2,27/3] — R by

Fk,n (t) _ 6it(k/2+n)19nEk<€it).
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We then have

Fk,n+1(t) _ €it(k/2+n+1)1919nEk(6it)

_ez‘t(k/2+n) d ) (k,+2n)E2(6it)eit(k/2+n+1) )
= A /ﬁnE 2 — ,ﬁ?’lE 1t
om U Bee) 12 K(e")
-1 i Ey(et)e’
— R 0+ (= = 2RO (kg on) F (D).
o Flalt) + (1 = P55 ) G 20 Fiae)

If t; <--- <t, are the different zeros of Fj,,,, then we see that 2w F}, ,,+1(t;) =
—Fy o (t5), for j =1,...,v. Especially Fy ,11(t;) # 0 unless j = v and k +2n =2
(mod 6).

If 1 <j <, then t; is a simple zero of Fy ,, so Fy, (t;) < 0if Fy,(t;+¢€) <0
for small € and Fy ,(t;) > 0 if Fy,(t; +¢€) > 0. If t;,, # 27/3 or k + 2n # 2
(mod 6), then ¢;1 is a simple zero of F},,, and hence F,;n(tjﬂ) < 0if Fipn(tjsr —
6) > 0 and F]é,n(tj—&—l) > 0 if ka(t]‘_‘_l — 6) < 0.

Since Fj,, does not have any zeros in (¢;,;41), Fin(t; +€) and Fj,(tj41 —€)
have the same sign, and hence Fy ,(t;) and Fj  (t;41) have opposite signs, unless
k+2n =2 (mod 6) and j + 1 = v. Hence Fj, 41 has a zero in (¢;,¢; + 1) unless
k+2n=2 (mod 6) and j + 1 =v.

If £+ 2n = 2 (mod 6), then Fy, has a double zero in t, = 27/3, and so
Fy.,, has a simple zero in 27 /3. So for ¢ close to 27 /3 F}.,41(t) is approximately
—(2m) 7' Fy,,(t), especially Fy 41 (t) and F,, (t) has opposite signs.

If £y, (t,—1) > 0, then Fy ,(t) > 0 for t € (t,_1,27/3), and since F},,(27/3) =
0, Fj.n(t) is descending for ¢ close to 27/3, so Fy ,(t) < 0. So

Finirltumr) = 5 Fi(tumt) <0,
T
and Fy ,41(t) > 0 for ¢ close to 27/3 since —2mF} ,,41(t) = F,(t) < 0, and hence
Fyns1 has a zero in (t,-1,t,).

Likewise if Fy , (t,-1) < 0, then Fy . 1(t,—1) > 0 and =27 F), 1 (t) = Fia(t) >
0 for ¢ close to 27/3. So Fj 541 has a zero in (t,_1,27/3).

So we have proven the interlacing property stated in the theorem. To prove
the rest of the theorem we proceed by induction. Rankin and Swinnerton-Dyer’s
result tells us, that the theorem is true for n = 0. Now assume that it is true
for some fixed n. If £+ 2n = 2 (mod 12), then ¥"E} has a (simple) zero in i
and a (double) zero in p, and (2n + k — 14)/12 other zeros on the arc between
these two points. Hence by the interlacing property 9" Ey has (2n + k —2)/12
zeros in {exp(it) | t € (w/2,27/3)}, and since it is a modular form of weight
k+2n+2 =4 (mod 12), it also has a simple zero in p. Since

k+2n+2_k+2n—2 1
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these are all the zeros of 9"t E), and they are all simple, and so the theorem
holds for 9" E}, (if k + 2n =2 (mod 12)).

Similar considerations for k + 2n = 0,4,6,8,10 (mod 12) shows that the
theorem is true for 9" Ej, regardless of which congruence class k + 2n is in.
This completes the induction and the proof. O



Chapter 4

An Interpretation of some
Multiplier Systems

4.1 Zero Free Automorphic Forms

Let f: H — C\{0} be a weight kg > 0 holomorphic automorphic form wrt. a
cofinite Fuchsian group I', and multiplier system v, and assume that f has no
zeros in H. Since f is zero free, there is a holomorphic logarithm F' of f, and
hence we can define a function ® : I' — R by

F(yz) = F(z) + kolog(jy(2)) 4 2mike®(y),

for some z € H (the definition is independent of which z € H we choose, and
which logarithm F' we choose). If we assume that ® only takes rational values,
it follows from (2.7), that since I' is cofinite and hence finitely generated, there
is an m € N such that m®(y) € Z for all v € T'. Let N be the smallest such m.
Since ®(—1) = 1/2 modulo 1, we know that NNV is even.

We can define powers of v by v = exp(2mitko®). Then exp(kF/ko) is a weight
k automorphic form with multiplier system 1/*/%o.

We see, that fy := fN/*0 = exp(NF/ky) is a modular form of weight N, and
hence it has positive degree. So fy is zero free (in H) but has positive degree,
so it must have a zero in a cusp, and the sum of the multiplicities of the zeros
in the cusps must be the degree. This implies, that if I' is cocompact, we do not
have this type of automorphic forms, since there are no cusps, and hence no zero
free modular forms.

If I'\H has genus 0, and e, ..., e, is the orders of the elliptic matrices, we can
choose ko/2 to be the lowest common multiple of ey, ...,e,. Then by Theorem
2.2.4 we have

koh ko
Dzm(GkO) :1—k0+%+50 (1—6;1).
j=1

40
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We can choose a cusp a and a basis fi, ..., fpim(cy,) for Gk, By writing the f;’s
Fourier expansions in a, and solving a system of Dim(Gy,) — 1 linear equations
with Dim(Gy,) variables, we get a linear combination f # 0 of the f;’s, with the
first Dim(Gy,) — 1 Fourier coefficients in a equal to 0. So f has a zero in a of
order at least Dim(Gy,) — 1. Since f € Gy, and g = 0 we have by Theorem 2.2.3

Deg(f) = % (—2 +h+ Z(l - e;l)> = Dim(Gj,) — 1.

=1

Hence all f’s zeros are in a.

So f is zero free in H, and so we can take powers of f (note that even though
the multiplier system for f is trivial, this will not in general be the case for the
powers of f).

An explicit construction of a holomorphic logarithm of f can be found in [3],
this construction also works for g # 0, but it is not clear whether it produces
something, where ® takes rational values on hyperbolic elements.

4.2 Hecke Triangle Groups and Knots

In [2] E. Ghys makes a connection between the logarithm of the multiplier system
for Dedekinds eta function and the linking number of prime geodesics with a
certain knot. In this section we will make a generalization of this, to multiplier
systems on Hecke Triangle groups.

For integer n > 3 we define \,, = 2 cos(7/n) and

0 -1 1 A\,
= (U ) me (3.

The Hecke triangle group H,, is the group generated by S and 7,, (note that
H3 = SLy(Z)). It can be shown that,

An
Fn = {zeH\ |z| > 1, mz\g?}

is a fundamental domain for H,,.

We have S? = —1, and
A —1
rso(h )

The Chebychev polynomials of the second kind are given by

U_1=0,Uy(z) =1, Un(x) = 22Up_1(x) — Up—2(z) for m € N.
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An equivalent way to define U, is, by

sin((m + 1)t)
sint '

Upn(cos(t)) =

We can show by induction, that for m € N

20 —1\" [ Un(z) —Un_i(z)
( 10 ) = ( Ur() —~Uns(2) > ‘ (4.1)

If we replace = by cos(m/n) in (4.1), we see that (7,,5)" = —I, and that for
0<m<n (T,5)™ #+1.

So T,S is an elliptic matrix of order n, and we note that T,S fixes
pn = exp(im/n).

The set F,, is a hyperbolic triangle, with vertices in oo, p, and —p,. The
angle in oo is 0, and the angles in p,, and —p,, are 7/n, so by formula (2.2)

m(n — 2)
Fn)=——""".
#(Fn) -
Since JF,, has one cusp (in 00), and we have two elliptic matrices in H,, of order

2 and n, formula (2.1) tells us that

Y

p(H\H) > 21 (—2+1+1+ ”_1) _mn=2)

2 n n
with equality if and only if g = 0 and we only have these two conjugacy classes
of elliptic matrices. Since we have pu(F,) = u(H,\H), this must be the case.

We can now use Theorem 2.2.4 to see that there exists modular forms wrt.
H,, of weight 4 and 6 (one of each). These forms are unique up to multiplication
by a constant, and in Lemma 4.2.1 we show, that they do not have zeros in
the cusp. Hence there is a unique weight 4 modular form (wrt. H,) Ej, for
which the constant coefficient in the Fourier expansion is 1. Likewise there is
a unique weight 6 modular form FEg, for which the constant coefficient in the
Fourier expansion is 1.

Lemma 4.2.1. The modular form E4 has a zero of multiplicity n — 2 in p,, Fg
has a zero of multiplicity 1 in v and a zero of multiplicity n—3 in p,. If we define

G = E§—Ej,
D = Gn—2E4—2n+6
H = Gn—3E4—2n+9

then D has a zero of multiplicity n — 2 in the cusp, while H has a zero of mul-
tiplicity n — 3 in the cusp and a zero of multiplicity n in p,. All other zeros of
E,, Eg, D, H in HU {occ} are H,-translates of these zeros.



4.2. HECKE TRIANGLE GROUPS AND KNOTS 43

Proof. By Theorem 2.2.3 E; and Fjs has degrees

4u(F, n—2
Deg(p) = W) _n-2

60 (Frn 3(n —2
Deg(Es) = ZLT ): (Qn )

If we differentiate the transformation formula for modular forms

flrz) = (5,(2)" f(2)
1 times, we get that

pn—1

FP(vz) = ()20 (2) + Y pml(2) [ (2), (4.2)

m=0

for some polynomials py, ..., p,—1 (depending on the choice of ). If v =S, z =i
and g = p7(4) is the multiplicity of f’s zero in ¢ (1 = 0 if 7 is not a zero of f),
formula (4.2) becomes

f(“) (i) = ik+2“f(“)(i),

s0 4|(k 4 2ps(1)).
Likewise if v = T,,5, z = p,, and p = ps(p,) is the multiplicity of f’s zero in
Pn, formula (4.2) becomes

F¥ (p) = exp(im(k + 2u) /n) f4 (pn),

50 2n|(k + 217 (pn)).

Combining this with the degrees of E, and Eg we see, that F, has a zero of
multiplicity n — 2 in p,, and all other zeros are H,-translates of p,, and Fg has
a zero of multiplicity 1 in ¢, a zero of multiplicity n — 3 in p,, and no other zeros
(except for H,-translates).

It follows from the definition of G, Ey, Es, that G has a zero in oo. Since Ej
has a zero of order 3n — 6 in p,,, andE? has a zero of order 2n — 6 in p,,, G has a
zero of order 2n — 6 in p,,. By Theorem 2.2.3 and 2.1 we have

~ 2p(F,)  3(n—2) 2n — 6

Deg(G) = y = " =1+ "

So G’s only zeros are in the cusp and in the H,, translates of p,.
From the definition of D and H, it now follows, that the zeros of D and H
are as stated in the lemma. O]

We can choose a holomorphic n — 2'nd root g of E, in the following way.
Choose ¢ to be an n — 2'nd root of E4(i). For N € N define By to be the ball
consisting of all points in H, with hyperbolic distance to ¢ less than N.
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There are a finite number of H,-translates of p, in By. If we denote these

translates vipn, . . ., Yay Pn, We can for z € By write Ey(z) in the following way
My
Es(z) = exp(¥n(2)) [ [(z = 00)" %,
j=1

where 1y is some holomorphic function on By. Hence we can choose m € N
(depending on N) such that

¢ = oxp (O L2 T[ = ).

n—2
Jj=1

and define a holomorphic function gy : By — C by

o(e) = oxp (2T T[: =00

n—2

J=1

So gi2(2) = Eu(z) for z € By and gn(i) = & Hence for N; < N, and
z € By, we have gy, (2) = gn,(z), and it makes sense to define g(z) to be gn(2),
for any N € N| that is greater than the (hyperbolic) distance from i to z.

The function g has a simple zero in yp, for any v € H,, and since we have

9" 2 (v2) = Ba(y2) = j3(2) Ba(z) = ((5,(2) V"2 g(2))" 2,

we see that
9(v2) = v(7) (G ()" P g(2),

for some n — 2'nd root of unity v(vy) (v(y) is continuous as a function of z,
so it is independent on z). So g is an automorphic form of weight 4/(n — 2)
with multiplier system v. If we define h := FEgg "3, we see that h is a weight
2n/(n — 2) automorphic form with multiplier system v, and that h has simple
zeros in i for v € I', and no other zeros.

We let GL3 (R) be the real 2 x 2-matrices with positive determinant and define
A:GLI(R) — C? by

- g(oi) h(oi)
A(U) = ((ja<i))4/(n2)’ (jo(i))zn/(”2)) .

If we define ~ to be the equivalence relation on C? given by (z1, 29) ~ (23, 24) if
and only if, there is a n — 2’'nd root of unity (, such that z; = (23 and 2o = (24,
then we get the following lemma.

Lemma 4.2.2. For 01,0, € GL(R), A(01) ~ A(03) if and only if o105 € H,.
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Proof. If 0 € GL3 (R) and «y € H,, then we see that

_gbod ) (o)
(Jo (8))4/(=2) (]’ya )) .
= v(y)exp (ng_zz (, )> %’
h(yoi) = u(y) (M) e h(oi)

(o (@) Jrald)
Ani h(o)
= v(vy)exp (n_QW(%U)> W
- 8i h(oi)
= v(vy)exp (n_ZW(%U)> (o (1))20/ (=)

2n/(

So
A(yo) ~ A(o),

which proves the ”if” part.

Now define J = H/D. Then by Lemma 4.2.1 J is an automorphic function
with a simple pole in the cusp, and a zero of multiplicity n in ~vp,, for v € H,,
and these are all the poles and zeros. For any zy € C, J — 2 is an automorphic
function, which has a single simple pole in the cusp, and hence

J N z) = (J — 2)71(0) = H,z,

for some z € H. So H,z — J(z) is a bijection between H,\H and C.
We have
Ei _ B g 9"

J = — = —= - .
G Eg _ Ez (hgnf3)2 _ g3n76 h2 — gn

If we choose 01,09 € GL3(R) such that A(oy) = (21,29) = (A(09), with ¢ a
n — 2'nd root of unity, then we see that

9" (011)¢ " (o (1)) /"2

. ¢
Tlond) = (h*(011) — g™(017))C(Jo, (1)) 40/ (=2

== J(O’QZ)

S0 011 = o9t for some v € H,,. So if A(oy) ~ A(0y), we see that 017 € H,09i.
If 017 = yog9i then 0517_101 fixes ¢ and is hence on the form

Acosf —Asind
()\sine )\COSG)’ (4.3)
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for some A > 0 and 6§ € R. We see, that

9(011) _ g9(yo2i)
('701( ))4/(n 2 (jvagoz_l”/*lm (i))4/(n_2)
(7)07(022))4/(71 2)9(02i)
(Grors (0511 018) 11, ()2
(7)(37(02l))4/ "2 g(0yi)
(Jryoa (1) (iAsin O + A cos 6))* /(n—2)

v(7) exp(Briw(y, 02)/(n = 2)) = g(o2i)
(iAsinf + Acos0)¥ (=2 (j, (i))¥/ (-2

and likewise

h(o41) _ v(7y) exp(8miw(7y, 02)/(n — 2)) . h(o4i)
(Jo (7)) (n=2) (iAsin 0 + A cos 0)27/(n=2) (Jiry (1))20/ (n=2)"

Since A(oy) = (A(og), with |¢| = 1, we see that A = 1, and

9(01) _ () exp(8miw(y,09)/(n = 2))  gloni)

(Jou (8)) ¥/ (=2 (iAsing + Acos )2 (G, (i)’
h(o11) _ () exp(8miw(y, 09)/(n = 2)) ~ h(o1i)

(Jo (i) 4/ (n=2) (iAsing + Acos0)2/(n=2  (j, (i))¥/(n=2)

So if o1 & H,,({i, pn}), then g(o1i), h(o13) # 0, and hence

Cu(y) expBmiw(y, 02)/(n —2)) _ (isinf + cos g)2n/(n=2)
Cv(7y) exp(8miw(y,02)/(n —2))  (isinf + cos #)4/("=2)

1= = (isin @ 4 cos 6)%

Hence o5 7 oy = +1, and so 0102 =4v e H,.
If 019 € Hyi, we see that g(o17) # 0. Then we have

| =2 = (V(’y) exp(8miw(y, 02)/(n — 2)))712 iy
(isin @ + cos §)*/(n=2) :

So 20/m € Z and hence 0517_101 = S™ for some m € Z. We know that o1t = 711
for some v, € H,,, and hence 7, 'o; is on the form (4.3). Since matrices on the
form (4.3) commutes, we see

Yy, =7 e ST = STy Loy,

S0 010y = 118y ty € H,.
Likewise if o1i = 71p,, for some vy, € H,,, then h(oyi) # 0, and o, 'y~ 1oy is on
the form (4.3), with A = 1 and nf/m € Z. Now let

_ (sin%r/n) cos(ir/m) |
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then 7719, !0} is on the form (4.3), so

1

Ty Yoy = (T o) (05 o) T = (o5 y T ey) T o

Hence oy = 117(05 'y Lo1)77 1y 109, and since
O B G i B |
= (T.9™,

we have 10, = v (T,5)™; 'y € H,.
So we have proved for all 01,00 € GL3(R), that o10,' € H, if A(oy) ~
A(Ug). ]

Due to Lemma 4.2.2, we can define a function Ag : H,\GL35 (R) — C?/ ~ by
Ao(Hyo) = {>™ /=2 \(5) | m € Z}.
We have the following lemma about Ag.

Lemma 4.2.3. The function Ay maps H,\GL3(R) homeomorphically to
{(21,22) € C* | 27 # 23}/ ~.

Proof. 1t follows from Lemma 4.2.2, that Ag is injective.
If A(o) = (#1, #22), then we have

9" g"(01) (Jo (i)~ i

J(oi) = m(ai) = (h2(0i) — g(04)) (Jio () )4/ (n=2) - 23— 2

and since J’s only pole is in the cusp, this shows that 27 # 23.

On the other hand, if 21, 2o € C\{0} and 27 # 23, then there is a z € H, such
that .
z
J(z) = 5——.

D=g5

Since z1,29 # 0, J(z) # 0,—1, and hence g(z),h(z) # 0. So we can define
24 = h(2)z1/(g9(%)22), and let a,b,c,d € R be such that, ¢i 4+ d is a square root
of z4, and ai + b = z(ci + d). Then o := (2}) is a 2 X 2-matrix that sends i to
z € H, and hence o € GL3.

We then see that

n
21

gn
() =16 = 5

25— 2
and hence 22¢"(z) = h?(z)z}. This gives us

92" _
(ci+d)*  h2(2)2}
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so g(z)/(ci + d)¥"=2 = (z for some n — 2'nd root of unity ¢. We can then
conclude, that

M) b
(ci+d)/=2 "~ (ci+d)2g(z)

and hence

() h()
Ao) = ((Ci+9d)4/(n_2)7(Cﬁd)w(n_m)~<Z1,z2>.

If z5 # 2z = 0, then we can choose a,b,c,d € R, such that ¢i + d is a 2n’th
root of 23 "h"%(p,) and ai + b = p,(ci + d). Then o := (*}) € GL3 (R), and

h"=2(o)

(ci+ d)>"

__ .n—2
= 2

So A(o) ~ (21, 22).

Likewise if z; # 25 = 0, then we can choose a, b, c,d € R, such that ci 4+ d is a
4’th root of 27 "¢g"2(i) and ai + b =i(ci + d). Then o := (2}) € GL3 (R), and
9" *(ai)
(ci+d)4

_ . n—2
=2z

So A(o) = (21, 22).

This shows that Ay maps H,\GLj (R) surjectively to {(z1,29) € C? | 27" #
%Y/~

Ay is continuous because A is continuous. To see that A is continuous choose

(2,9), (s,t) € {(21,20) € C? | 27" # 22}, such that (z,y) is "close to” ((s, (t) for
some n — 2'nd root of unity ¢, and let o; and o5 be such that

Aor) = (z,y),  Aloz) = (s,1).

Then "
x
J(Ul) - y2 .77”7
is close to (¢s)
s" s)"
J = pu—
N R O
and hence oy is close to yoy for some v € H,. O

Due to the identification of PSLy(R) with the unit tangent bundle on the
hyperbolic plane, H,\SLy(R) can be identified with the unit tangent bundle on
H,\H. Hence if we restrict Ag to H,\SL2(R), Lemma 4.2.3 gives an identification
of the unit tangent bundle on H,\H, with some subset of C?/ ~. This subset is
however not particularly nice.
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We note that if A(o) = (21, 22), and ¢ > 0, then

t 0 _ A1 Zo
A ((0 t) U) h <t4/("—2)’t2n/(n—2)> ' (4.4)

Hence it is natural to define a function A : SLy(R) — S? by

wo-s((3 1))

for t = t(0) > 0 such that A(({9)0) € S* = {(21,22) € C* | |z1]* + |22)> = 1}
We define

k:={(z1,2) € 53 | 21 = zg},

so the image of A is contained in S3\k.

Just like we defined Ag, we can define Ag : H,\SLy(R) — (S*\x)/ ~, by
Ao(H,o) = {2\ () | m € Z}.
We then get

Theorem 4.2.4. The function Ko 1s a homeomorphism.

Proof. We note that for 0 € SLy(R)

Ro(Hoo) = {2 DR(5) | meZ} = Ag (Hn <t(6‘ ) t(?j)) o—> |

The function ¥ : H,\SLy(R) — Ay'((S®\k)/ ~), given by

U(H,o) = H, (t(g ) ) (2_)) o

is continuous, since t(o) is continuous as a function of o. If 01, 09 € SLs(R), then

= Hnal = HnO-Qa

so ¥ is injective.
We see that U~ is given by

-1 o (deta)_1/2 0
v (o) = H"( 0 (deto)12)7

and hence that it is continuous. Since

(det o) ~1/2 0
Hr ( 0 (deto)~1/2) 7
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is well defined for any 0 € GLJ (R), and

(det o) ~1/2 0 B
‘I’(Hn( 0 (deto)12)7) =

when H,o € Ay*((S*\k)/ ~), by definition of ¥, ¥ is surjective.
So VU is a homeomorphism and so is Ag by Lemma 4.2.3, so Ay = Ago VU is
also a homeomorphism. O

The set k = {(21,22) € S® | 2" = 23}, can be rewritten to
{(r? exp(2miz), 7" exp(2miy)) | nx =2y (mod 1)},
where r > 0 is given by 7* + r?" = 1. Hence for n odd & is the knot
{(r* exp(4miz), 7" exp(2nmix)) | z € [0,1]},

so k is a knot, that goes twice around a torus in one direction and n times around
in the other (this is sometimes called a (2, n)-torus knot).
For n even we get

k= {(r?e*™* r"e"™) | 1 € [0,1]} U {(r?e*™, —r"e"™ ) | 2 € [0,1]} = K1 U K.

So k is a link of two trivial knots. If we define f : S* — C by f(z21,22) = zqf/2+22,
then ko is the preimage f~!(0). Hence the linking number of these two knots is
the winding number (around 0) of f taken on x; (or minus the winding number
depending on, which orientations we choose for the knots). This winding number

is
1 /1 2r"(2exp(nmiz))nmi ,  n
2m J,

2r"(2 exp(nmix)) Ty

If v € H,, is hyperbolic with positive trace, then we can write v in the following
way

A0 _ _ b
Y= A (O )\_1) A = Aqﬁzlog)\A 1, A= <CCL d) S SLQ(]R),

with A > 1. We then have a closed geodesic C, : [0,2log A\| = H,\SLs(R) given
by
C’Y(t) — HnACbt-

So A, : [0,2log \] = (S*\k)/ ~ given by
A (t) = Ro(H, Ady)

is a closed curve.
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Furthermore for ¢t € R, there is some n — 2'nd root of unity (, such that
A(A¢r) = CA(Adriz1opn)-

Since t — KO(Aqbt) is continuous, ¢ is continuous in and hence independent of t.
So

K(Aqst) = Cn_zx(A¢t+2(n72) log)\) = K(A¢t+2(n72) log)\)a
and the curve B, : [0,2(n — 2)log \] = S*\x
Bv(t) = /NX(A@:)

is closed.
The modular form D from Lemma 4.2.1 has weight 4n, and all its zeros are in
the cusp, hence D has a holomorphic logarithm d, and we can define a function

®: H,— Qby
d(vz) = d(z) + 4nlog(j,(2)) + 8nmid(y).
Then
X ﬁd(z)
2 exp | o :

is a weight k& automorphic form wrt. H,, with multiplier system exp(2mik®).
We have the following theorem about B, and ®.

Theorem 4.2.5. Let v € H, be hyperbolic and have positive trace, then the
linking number of k and B, is 4n®(7).

If n is even, then we mean the linking number of x; and B, plus the linking
number of k9 and B, when we write the linking number of x and B,.

Proof. If we define f : S* — C by

fla1, ) = 27 — 23,

then f~1(0) = k. Hence the linking number of B, and & is the winding number
around 0 of f o B, (this defines an orientation on «). This winding number is

o (Sog(f 0 B,)(2(n — 2)log ) ~ Sog(f o B,)(0)),

when log(f o B,) is a continuous logarithm.
We have

Slog(f o B,)(t) = arg f(A(Ag,)) = arg f(A(Ady)),
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and

FIA(AGY)) = (6" (Adyi) — h2(Agii)) (jiag, (1))~ =2,

Since (g™ — h?)"~? is a modular form of weight 4n, with a zero of order n — 2 in
the cusp, we have (g, — h?)"? = aD, for some o € C\{0}. Hence we can take
holomorphic logarithms

4n

log(f(A(A¢r))) = log(g" — n*)(A¢yi) — 5 108(Ja¢: (1))

1 , 4dn

log(jag, (1))-
We then get

(n —2)log(f(A(APri210g1))) = d(Ati210g27) — 40 10g(jA¢t+zlogA(i)) + log
= d(yAdi) — dnlog(jyas (1)) +loga
= (n —2)log(f(A(A¢y))) + 8nmi(P(7) + w(y, Ady)),

and

w(7, Ady) = W(Adiha10g 2 (Ady) ™, Ady) = 0
by formula (2.10). Hence

nmid(y)
n—2 "

log(f(A(A¢y))) = log(f(A(Adr-210g2))) +

and we can calculate the linking number of x and B,

L (108(f(A(Adsn-21051))) — log(F(A(A0)))) = dnd().

2mi

link(k, B,) =

[]

The function ® is a logarithm of the multiplier system for the zero free au-
tomorphic form h? — g™ divided by 2mik, where k = 4n/(n — 2) is the weight
of h? — ¢g". Any zero free automorphic form wrt. H, that is a power of some
modular form wrt. H,, will be a power of D and hence of h? — ¢, so if we in the
same way take a normalized logarithm of its multiplier system, we will again get
®. So P is the normalized logarithm of all ”suitably nice” zero free automorphic
forms wrt. H,,.

One way to calculate linking numbers between two knots is to look at a surface
which have boundary given by the first knot, such a surface is called a Seifert
surface, and take the number of times the other knot passes through this surface
in one direction, and subtract the number of times it passes through in the other
direction. So if we do this for x and B,, we get 4n®(v). If we move this from S*
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to S3/ ~, k becomes r/ ~, the Seifert surface becomes a surface with boundary

k/ ~, and B, becomes the closed curve that goes n — 2 times around A,. If we

for two closed curves in S®/ ~ defines their linking number in the same way as

for S3, i.e. we see how many times the one curves goes trough a surface with

boundary given by the other curve in each direction and subtract these numbers,

then we can calculate a linking number for A, and x/ ~ in the following way.
Let S be a Seifert surface in S with boundary x. Then

Sy i= {{(e¥/ =D 5 2™/ (=2 ) | j € N} | (21, 20) € 53},

is a surface in S3/ ~, with boundary k/ ~, and hence the linking number between
k) ~ and A, is determined by how A, passes through Sp. To calculate this, we
lift A, back to S®, and see how many times it intersects any of the surfaces

Sj — {(62wij/(n72)zl’627rij/(n72)z2) ’ (21722) c 53}’

for j € {1,2,...,n — 2} in each direction.
Any of the functions
B’y|[2(jfl) log X,2j log A]»

for j € {1,2,...,n—2} will be a lift of A,, and hence (n—2)link(x/ ~, A,) is the
number of times one of these curves passes through one of the S; surfaces in the
positive direction minus the number of times it passes through in the negative
direction. In other words it is the number of times B, passes through one of the
n — 2 Seifert surfaces in the positive direction minus the number of times it passes
through in the negative direction, so it is (n — 2)link(x, B,). Hence

link (k/ ~, A,) = link (x, B,) = 4n®(y).

So by Theorem 4.2.4 the unit tangent bundle on H,\H is homeomorphic to
S3/ ~, with a knot removed. This homeomorphism sends the geodesic associated
with v to A,, and because of Theorem 4.2.5 we can see that the 4n times the
normalized logarithm of multiplier systems ® () for "nice” zero free automorphic
forms wrt. H,, tells us the number of times A, ”winds around” the removed knot.

4.3 Groups with no Elliptic Elements

As in the previous sections we let g be the genus of I'\H, h be the number of
cusps, and r be the number of conjugacy classes of elliptic elements in I'. We will
assume that ¢ = r = 0, and we will denote the cusps ay, ..., a,. For such groups
there are an interpretation of logarithms of some multiplier systems for such I's,
which is very similar to the one for Hecke triangle groups.
We have by (2.1)
p(I'\H)

0< ——==-2+h
2 th
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and hence h > 3. We can use Theorem 2.2.4, to show that for o, i.e. the space
of modular forms of weight 2 wrt. I', we have

Furthermore if F is a weight 2 modular form wrt. I', then Theorem 2.2.3, tells us
that Deg(F) = h — 2. Since there are h — 1 linearly independent modular forms
of weight 2, we can use basic linear algebra to create weight 2 modular forms
Fy, F5 wrt. T', such that F} has all its h — 2 zeros in the cusp ay, and F3 has h —3
zeros in a; and 1 zero in a,.

Now define A : GL (R) — C? by

) — Fi(oi) Fy(o1)
Alo) ((%(z’))?’ <jg<z'>>2)'

We then get the following lemma.
Lemma 4.3.1. For 01,09 € GLI (R), A(oy) = A(09) if and only if 0105, € T.
Proof. If 0 € GLy (R) and « € T, then we see that for s = 1,2

Fioi) _ (h(e))*Roi) _ Fo)
Ge@? ~ G0 Gl

So
A(yo) = A(o),

which proves the ”if” part.

Now define J = Fy/F;. Then J is an automorphic function with a simple
pole in ay, and a simple zero in ay, and these are all the poles and zeros. For any
zg € C, J — 2y is an automorphic function, which has a single simple pole in ay,
and hence

J N 20) = (J — 2)71(0) = X,

for some X € T\HU {as,...,a,} (when we define J(a;) to be the constant term
in the Fourier expansion in a;). So I'z +— J(z) is a bijection between I'\H and
C\{J(az),...,J(an)}. Hence if J(o1i) = J(o2i), then there exists v € T" such

that o172 = yo9i. Since

W By(oi) [ Fi(oi)\
1) =G 0y ((ja(z‘)P) '

we see that if A(oy) = A(02), then J(017) = J(021).
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So if we assume that A(o;) = A(o2), we have 011 = yoqi, for some v € I'. So
0, 'y Loy fixes i and is hence on the form (4.3). We have

Fl (O’li) Fl (’}/Ugi)
(o, (2))? (yos05 1710, (1))
(jy(020))* Fi (027)
(Jyoz (Uz_lV_lali)ja; 71, (1))?
(Jy (02))* Fi (021)
(Jryoo (2) (A Sin G 4+ A cos 6))?
F1 (0'27;)
(Joo, (1) (iAsin G + A cos6))?

Since A(oq1) = A(oz), we see that
(iAsinf + Acosf)? = 1,
and hence o, 'y 'oy = £1, s0 010, = £y € T. ]

Due to Lemma 4.3.1, we can define a function Ay : T\GL] (R) — C?, given
by
Ao(To) = Ao).

We have the following lemma about Aqg.

Lemma 4.3.2. The function Ay maps T\GL3 (R) homeomorphically to

Q= {<21,22> S CQ

0 A o,j—f ¢ {J(ag),...,J(ah)}}.

Proof. Tt follows from Lemma 4.3.1, that Ag is injective.
If A(o) = (#1, 22), then we have

J(0d) = Fa(00)(jo (1)) _ 2

F(oi)(Js(1)? =

and since 'z — J(z) is a bijection between I'H and C\{J(az), ..., J(an)}, we see
that z; # 0 and 22/2; ¢ {J(a2),...,J(an)}. Since J(az) = 0 this is equivalent to
21,290 7 0 and zo/21 ¢ {J(as), ..., J(an)}.

On the other hand, if 21,2z, € C\{0} and z5/z; ¢ {J(a3),...,J(an)}, then
there is a z € H, such that J(z) = z3/z;. Since 21,29 # 0, Fi(z), F5(z) # 0 and
there is zgp € C\{0}, such that

20 =

21 zZ9
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So we can let a,b,c,d € R be such that, ¢i + d is a square root of zy, and
ai+b=z(ci+d). Then o := (2}%) is a 2 x 2-matrix that sends i to z € H, and
hence o € GL;. We then see that

Ao) = (MM) = (21, 7).

20 20

This shows that Ay maps ['\GLj (R) surjectively to Q.

Ay is continuous because A is continuous. To see that A is continuous choose
(x,y), (s,t) € Q, such that (z,y) is "close to” (s,t), and let oy and oy be such
that

Aor) = (z,y),  Aloz) = (s,1).

Then J(o1) = y/x is close to J(o2) = t/s, and hence o, is close to yoy for some
vel. 0

Due to the identification of PSLy(R) with the unit tangent bundle on the
hyperbolic plane, I'\SLy(R) can be identified with the unit tangent bundle on
I"\H. Hence if we restrict Ay to I'\'SLy(R), Lemma 4.3.2 gives an identification
of the unit tangent bundle on T'\H, with some subset Ay(T'\SLs(R)) C C2.

We define || - || to be the norm on C? given by

(21, 22)|| = V]21]* + |22]?,

so 5% ={x e C?| ||z]| = 1}.

If 0 € GLy (R) and A(0) = (21, 22), then z; # 0, and hence [|A(0)|] # 0. So
it makes sense to define functions A : GLF (R) — SN Q and Ag : I\GL} (R) —
S3NQ, by

N Fi(o(i)) Fy(o(i))
~A(U) B ((ja@'))?IIA(U)H’(ja(i))"’HA(a)II)
Ao(FU) = A(U)

We will now prove that the function jN\O is a homeomorphism. Hence this shows,
that the unit tangent bundle on T'\H is homeomorphic to S* N Q (which seems
like a nicer set than Ag(I'\H)).

Theorem 4.3.3. The function KO 15 a homeomorphism.

Proof. We note that for 0 € SLy(R)

T AN o\
Bollo) = Ao} = A(( 0 HAwHO “)

_ AT 0\
- “(F( o TR )'



4.3. GROUPS WITH NO ELLIPTIC ELEMENTS 57

The function ¥ : T\ SLy(R) — Ay ' (S N Q), given by

o (VIR@T 0 N
v =r (VG e

is continuous, since ||[A(0)|| is continuous as a function of o. If 01,09 € SLy(R),

then
1/2
Ae)]
<|\A<a2>|\> 0

1/2
A
0 (HA(@)n)

\I/(Fal) = \I/(FO'Q) = To; =

= T'o; = FO’Q,

so VU is injective.
We see that U1, is given by

so 1 is continuous.
t 0\ )
A<<o ') a)H — A
we have

Since
‘I’<F(¢doﬁ wf?)") - (VI HAO(U)H)_IJ'

So when I'c € A;*(S® N Q), we have

Vdeto 0 -
v (T =T
( ( 0 deto) 7 %
so VU is surjective.

So VU is a homeomorphism and so is Ay by Lemma 4.3.2; so KO =Ayo V¥ is
also a homeomorphism. O

We define #; : [0, 27] — S® by
’il(t) = (Ou eXp(Zt))7
and for j = 2,...,h we define «; : [0,27] — S* by

k() = (rjexp(it), J(a;)r; exp(it)),
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where
ryo= (14 [J(a))*) 2

So for all j € {1,...,h} k; is homotopic to a circle, and

Sﬂazugﬂa%p

If v € ' is hyperbolic with positive trace, then we can write « in the following
way

A0 . b
VZA(OAl)Ale@mM4a A:(Zd)es@®%

with A > 1. We then have a closed geodesic C, : [0,2log A] — I'\SLy(R) given
by

So A, : [0,2log \] = S*\Q given by
Aw@) = KO(FA@)

is a closed curve.

For each cusp a; j # 1, there exists a weight 2 modular form F}, which have
a simple zero in a;, and the rest in a; (by the same argument that showed the
existence of Fy). For j =1,...,h Fj has a holomorphic logarithm d;, and we can
define a function ®; : I' = Q by

dj(vz) = dj(2) + 21og(j(2)) + 4mi®; (7).

So exp(2mik®,) is the multiplier system for D?/z = exp(kd;/2)
We have the following theorem about A, and ®,.

Theorem 4.3.4. Let v € T' be hyperbolic and have positive trace, and let
1 < j < h, then the linking number of k; and A, is 2®;().

Proof. If we define f; : S® — C by
filz1,22) = 21,
and for j =2,..., h define f;: S* — C by
fi(z1,22) = z1J(a;) — 22,

then f;'(0) = ;. Hence the linking number of A, and £; is the winding number
around 0 of f; o A,. This winding number is

% (Slog(fj 0 A,)(2log ) — Slog(f o A,)(0))
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when log(f; o A,) is a continuous logarithm.
For j =1,...,h we have.

Slog(fj o Ay)(t) = arg f;(A(Ady)) = arg f;(A(A¢r)) = Slog(f;(A(Adr))).

Furthermore

A(MAa) = TR,
fi(A(Agy)) = J(“j)Fl({jfﬁi)_)QFQ(Ad)ti)
for j # 1.
We have
log(f1(A(A¢r))) = log Fi(Adi) — 21og(jas, (7))
= di(Agi) — 2log(jag ().
So we get

log(f1(A(APri21060)) = di(APri210g27) — 2108(1Ag, 1101 (1))
= di(YAQyi) — 210g(jyag, (1))
= log(fi(A(Adr))) + 4mi(P1 () + w(7, Agr)),

and
w(, Ady) = W(AGrdatogr(Ag) ™!, Agy) = 0
by formula (2.10). Hence

link(k,A,) = %(log(fl(A(AQSQlog)\))) —log(f1(A(Ago)))) = 2®1(7).

For j # 1 J(a;)Fy — F5 is a modular form of weight 2, with a zero of order 1
in a; and a zero of order h — 3 in the a;, so

J(aj)Fl - F2 = O{Dj

for some a € C\{0}, and we can assume without loss of generality that o = 1.
Hence we can take holomorphic logarithms

log(f;j(A(Agy))) = log(J(a;)Fy — F)(A¢yi) — 210g(jag, (7))
= dj(A¢si) — 21log(jae, (7).

We then get

log(fj(A(Adii210g2))) = dj(vAGi) — 210g (a0, (1))
= log(fj(A(A¢y))) + 4mid;(v).
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Hence

k(5 Ay) = 5=(l08((A(Adaieg))) — Tor(;(A(Adn)))) = 28, ().
[l

So just as for Hecke triangle groups we see, that we have a homeomorphism
between I'\S L, (R) and the sphere with some knots removed, and that the linking
number of one of these knots and the image of a closed geodesic, is given by a
logarithm of a multiplier system. We can however choose this homeomorphism
in different ways by changing the numbering of the cusps, and we note, that
if h > 4, then it is important which cusp we label a;, since the corresponding
function F has all its zeros in a;, while F}; only has one zero in cusp a; for j # 1.
The ®,’s depends on the F}’s, and so the linking number of A, and the knot &;
corresponding to a certain cusp depends on which cusp we have labeled a;.

So we can give a geometric interpretation of some logarithms of multiplier
systems as linking numbers, but for A > 3 there are h different such interpreta-
tions, that are equally valid. It seems we could avoid this problem by taking a
h — 2'nd root ¢ of Fy, and choose a homeomorphism that used g and Fhg™"*3
instead of F| and F,. This homeomorphism and the corresponding results would
be (even more) similar, to the homeomorphism we used, and the results we got
for Hecke triangle groups.

It is however not clear, that such a homeomorphism gives a better interpreta-
tion, but maybe it is more general. While the construction of the homeomorphism
for Hecke triangle groups uses some properties of these groups, it seems, that a
similar construction should be possible for many other cofinite groups.



Chapter 5

Distribution of Prime (Geodesics

In this chapter we use Selberg’s trace formula to prove a twisted version of the
prime geodesic theorem, and then use this theorem to a show distribution result.
Before we can use the trace formula, we do however need some results related to
the spectral terms.

5.1 A Weyl Law

It is very well known, that for general groups and multiplier systems we can
estimate

1 Yy (1 F
>oo1- o z (5 + it, y) dt ~ #Uz (5.1)
An (1) <U2+1/4 TJ-u ¥ T
(see [5] (ii) p. 414), but we do not know how the error term depends on the

weight and the multiplier system.
We are going to investigate this by making a similar estimate on

U /
1
E 1—|—/ £(——i—izﬁ,l/)
—_Uul|® 2

An<U2+1/4
but one that not only depends on U, but also on the multiplier system. Since v
is a multiplier system of weight k, if and only if it is a multiplier system of weight
k+2, we will only consider |k| <1 (it is however quite easy to extend the results
to all k € R).

Theorem 5.1.1. For U > 0 and v a multiplier system of weight k € [—1, 1], we
have the following estimate

dt,

Y1 < U+ (U+1)L(y), (5.2)
An(V)<U241/4

et
L (— + 1t, 1/>
© \ 2

dt < U?+(U+1)L(v), (5.3)

/.

61
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where

Lv) =1+ Y log(a;(v)™), (5.4)

aﬂéO
and the implied constants are independent of v.
Before we prove this theorem we need some lemmas.

Lemma 5.1.2. If ¢(s,v) has a pole of order n in s = sy, with Rsg > 1/2,
then — Ay, has n linearly independent eigenfunctions in D(T', v, k) with eigenvalue

80(1 — So).

Proof. Let h, s, (2) be the residue of E,(z,s,v, k) in s = so. If all these residues
are identically 0 then none of the Eisenstein series have a pole in sy, and hence
none of the functions ¢, has a residue in sg, so sq is not a pole of .

If one or more of the h,s,’s are not identically zero, then we can choose
ai, ..., Gy, such that hq, s, ..., R, s, s a basis for the space spanned by all the
has,’s. By (2.26) we can make row operations on ®(s,v) and get a matrix, that
only has poles in s = sq in the entries in line ay,...,a,. Since ¢(s,v) is the
determinant of this matrix, ¢(s,v) has a pole of order at most n or no pole at
all in s = sp. Since hq, 5, - - - 5 Pa,.s, are n linearly independent eigenfunctions in
D(T', v, k) with eigenvalue so(1 — sg), this proves the lemma. O

By (2.20) the entries in the scattering matrix is some I'-factors times a Dirich-
let series with coefficients depending (only) on v. Hence the same is true for the
scattering determinant, and we can write

(ATEs -1\ 6,)
p(s,v) = (F(s+k:/2)f‘(8—k’/2)) 1

where 0 < by(v) < by(v) < ... and {a,(V)},en € C. Note that the b,(v)’s
only depends on, which cusps are singular wrt. v. If ng is the smallest n such
that a,(v) # 0, then we define b(v) := b,,(v). There are only finitely many
possibilities for which cusps are singular, and hence

0 < minb (v) < infb(v).

In other words b(v) is bounded from below.
Inspired by [19] (p. 655-656) we show the following.

Lemma 5.1.3. Let 01(v),...,onw)(v) be the poles of ¢(-,v) in the right half-
plane
H1/2 = {S eC | Rs > 1/2}
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(such that if s is a pole of order n, then sy = o;(v) forn j’s), and for s € C
define
N(v)

P*(s,v) = b(w)*~1/?
j=1

*/ 1
7 (——l—z’t,y) <0,
e* \2

Proof. Fix v, and define ¢(s) := ¢(s,v), b := b(v) etc..
We note that, by (5.5) ¢*(s) is holomorphic for s € Hy s, and by (2.22) and
(2.24) we have

oj(v)—s

ng(s, v). (5.5)

Then we have

for all t € R.

prs)pt(l—s) = 1,
lo*(1/24+1t)| = 1.
Let § > 0. For 1/2 < Rs < 3/2, and [|Ss| > 0, ¢(s) is bounded (see [5]

equation (5.46) p. 381), and hence ¢*(s) is bounded for 1/2 < Rs < 3/2. For
Rs > 3/2 we have by Stirling’s formula ([8] formula (B.7) p. 198)

[(s—1/2)T(s) N <E>1/2 ( s(s —1/2) )s
I(s+k/2)T(s — k/2) s (s+k/2)(s—Fk/2)) ~

for s — oo, and

[(s—1/2)T(s) 1/9 s(s —1/2) *
bk < ((s+k/2)(s - k:/2)) ’

for Rs > 3/2.
We see that

<<s +S/S2_><i/—2)k/z>)s - ( +Sk/2)s ( - zlc@
(=) (15

which tends to e™#/2.eF/271/2 = ¢=1/2 wwhen s — oo, and is bounded for Rs > 3/2.
Since

o0

NV N RTINS S S ol
Dby Al len/b)s‘ﬁ*‘)(nzlwn/b)a)’

n=1 " n=ng+ =no+
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for s = o > 3/2, we have ¢*(s) is bounded for Rs > 1/2, and

* Ano —Ko/2
P (s) ~ —2s 0 for s — oc.
Vb
The Mobius transformation
-1 1
P =1--
s s

sends H,/, bijectively to the unit disc D, and its inverse is

1
1—2z

Z =

Since ¢* is bounded in the right half plane, the function @ : D — C given by

¢<z>:¢*(liz),

is bounded on the unit disc, and since |p*(s)| =1 for s = 1/2,

liﬁl |P(re)] =1 (5.8)
for t € (0,27). Hence ¢ is an inner function, and it can be written in the form

o) = een (- [ s )

where |c¢| = 1, B is the Blaschke product with the same zeros as ¢, and p is
a positive Borel measure on (—, 7], which is singular with respect to Lebesgue
measure (see [17] 17.15 p. 342).

The Blaschke product B : D — C is given by

p — 2
= el
1 —a,z

’fl

where ay, o, ... are the zeros (counted with multiplicity) of ¢ in D\{0}, and
k= 0if $(0) # 0, and k is the order of the zero in z = 0 otherwise (see [17] 15.21
Theorem p. 310). Note that

an— 2z |y

1—tnz an
is holomorphic in the open disc with center in 0 and radius |a,|™!, and that it
has modulus 1 for |z| = 1. So for any z € D, all the factors of B(z) has modulus
(strictly) smaller than 1, and hence |B(z)| < 1 (unless ¢ is zero free, in which
case there are no factors and B =1). So

()] < exp (— et dw)) |



5.1. A WEYL Law 65

For z = re® € D we have

€Zt+z ™ 1_7.,2
R— dt = 2.
/ /_W1+r2—2rcos(t—0) 8

Since p is singular with respect to Lebesgue measure we have

. (0 —€0+¢€)

lim&e————- = = 5.9

T * (59)
for almost all § € (—m,7) wrt. u (see [17] 7.15 Theorem p. 143). If (5.9) holds
for 0 € (—m,7m) and M € N, we can choose § > 0, such that for e < 4, we have

(@ —€,0+¢€) > 2eM. Hence

™ 0+6 2
e +re? 1—r
li %— du(t) = i du(t
L ) et — et u(t) E o—s 1+ 12 —2rcos(t—0) plt)
0+6 2
1—
> Mlim d dt
Ml Jo_s 1+72—2r cos(t —0)
™ 1 _
= Mlim r dt =27 M.

1 J_ 1412 —2rcos(t —0)
Since this holds for arbitrary M, we have

el + re'

and hence

e —I— ret
_ 7”626

i |57 <hmexp< / R du(t)) ~0.

By (5.8), this means that 6 = 0.
So p can be written on the form

H= m7r57r + m0507

where ¢, is the Dirac measure with mass in x, and m,, mg > 0. But

1= lim [3(—r)| < hmexp( /ﬂﬁ%eit du())

1l 11 - et + p
147
< limexp (—m7r ) ,
1 1—r

so m; =0, and pu = mgdp.

Hence
- 1 1
|o(r)] < exp (—mol i— :) = exp (mo — 2m01 — 7“> :
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but

1 lan,| (1 O\ K2
* ~ f 1
o) () e

so mo = 0. Hence p is the zero measure and ¢ = ¢B.
A point a € D is a zero of B if and only if it is on the form

|o(r)| =

for some zero p € Hyjp of ¢. Hence we have

oy — o (572 — (o le=D/e—(-1/s (b=
s =em () = o5 )};[11—<p—1><s—1>/<ps> (=Dl

EENEESAY Ys=1/p __ llo=1)/sl
- ( s ) pl;[ll/su/p—l/(ps) (p=1)/p

—1\* 1 _
_ C(s )Hp(p 1)‘0 31’
s ) alele=11 pts—

where the product is over the zeros of ¢ in Hy . If p is a zero of ¢, then so is p
by (2.23), and we have

plp—1)  p—s (p(p—l)_ p—s ) _ p—S  p—s
p(o=1)] p+s—=1]\|plp—=1)] p+s—1 pts—1 p+s—1
So we have
* Pn — S k Pn — S
= (=DM = (-1 7 5.10
©*(s) c(—1) § - c(-1) § PR (5.10)

where the p,’s are the zeros of ¢ in Hjs, and they are ordered such that if
Spn > 0, then p, = pny1.
Taking logarithmic derivatives in (5.10) we see, that

(101 (S) — Z %(log(pn — S) — log(ﬁn + 5= 1))

n

-1 1
- ;(pn—s—pn+3_l)

B 1—2Rp
B Z(pn—s)(ﬁn—{—s—l)'

n
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Setting s = 1/2 + it, we get
/
e (1 . 1 —2%p,
Z4at) =
©* (2+Z) Z( —1/2—it)(pn — 1/2 + it)

N2t T

We note that by (2.22), we have p(1/2) = £1, and that by (5.10)

- ()-+(3)

N(v
i +s—1 Pn— 8
_ bl/stUJ n , 5.11
#(5) () o giTs pnt+s—1 ( )

So

We can use the trace formula to get a "smooth version” of Theorem 5.1.1,
which we will use to prove the theorem.

Lemma 5.1.4. If we for U > 0 define Hy : C — C by Hy(z) = e~ @/’ then
for U > 2 and |k| < 1, we have

iﬂwn(u)) - [ (Gri)a <o v, G2

where the implied constant is independent of v.

Proof. We are going to use the trace formula with h = Hy, and estimate the
geometric terms. The corresponding g will be Gy (z) = %6_(5"’(]/ 27,

We first estimate (2.28). To do so we note that |sinh(x)/ cosh(z)| — 1 when
x — to00, and that cosh(x) — 1 is positive on R except in = = 0, where it has a

double zero, so since sinh(z) has a zero at x = 0 can

xsinh(27x)
cosh(27wz) + cos(mk)’

be continuously extended to (z,k) = (0,£1), and it is thus uniformly bounded
for |x| < 1. Hence

w(F) /T‘HU(T) sinh(27r)dr < /(|7’| 1)e 0 g
R R

A cosh(27r) + cos(mk)
= 2/ (r+ 1)e /9 dr
0

= 2U/ (Uz + 1) de < U
0
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Since we only consider |k| < 1, the second term is 0.
When estimating (2.30) we get

v(7)l(70) 1(7)Gu(5l(v))
2 Ny - Nprm el < ZHZ N2 = Ny

where I denotes the set of conjugacy classes of primitive hyperbolic matrices
with positive trace in I'. We see that

U
exp(z/2)x?’
so when we apply partial summation and the prime geodesic theorem (Corollary
2.4.2) to the j = 1 term, we get

ZN 1/2 1/2<<Z ))

[v]er GF’

(1 1- 1
- lim L (1og 4) + / logt +1— 1 )nllog?)
A—o0 (A—l)l g t—l logt)

Gu(z) <Ue™ <

U
li U —dt
< Ao (log A)? (log A)? + /Nr t(logt)?

<1
1

og Np

where Np > 1 is the minimal norm of any hyperbolic element of I". To estimate
the 7 > 2 part, we note that

D Gull(y) < UY e U <y (e D)
Jj=2 j=2 =

|
A
<
S
e

So

[y]er”
and by partial summation
Z U — lim Ur(log A) +U/ (logt + 1)m (1)
N()l(v) A=oco Alog A N (tlogt)?

[v]eT”

U <1
li .
< A (log A)? * U/NF t(logt)? <U
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So (2.30) is O(U).
We estimate (2.31) in the following way

V(R)ieih-10 B ot p2if
VIR [ o etk a2 d
{XR; AMp sin 6 /R v(u)e cosh u — cos(20) "

Tr R<2
0<f(R)<m

< U/ e~ E=Du2 (v L )y < UL
R

In the same way we see that (2.33) and (2.34) is O(U).
We estimate (2.32) by

(0) 3 log[1 = o) < U3 [log([2ie; (0F)))

a;#0 a; #0

< U |14 ) log(a;(v*)™)
a; #0

With the help of formula (B.11) on p. 199 in [8], we can estimate (2.35)

Ko (GU(O) log2 + % /}R HU(der)

(1+r)
< [eom|MEn),
R ( +’H")
2 | T(14Ur)
—U+4U Ll SR B
+ /Re r1+aur) |7

< U+U/ e (|log(1 +iUr)| + |1 4 iUr|"")dr

<U+U/ +|Ur|)dr < U,

The term (2.36) is bounded since the entries of ®(3) are bounded. By col-
lecting all these terms we get the desired estimate. O]

We are now going to use these two lemmas to prove Theorem 5.1.1.

Proof of Theorem 5.1.1. We look at the relation between the logarithmic deriva-
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tive of ¢* and ¢,

So for s = 1/2 +it, we have by Lemma 5.1.3

*/ 1
0 < -7 <—+7jt,u>
©* \2
o;(v)—1/2

_ ﬁl 1 it.v ] —lo 1%
N _90<2+ § ) ostl )HZ(UJ-(V)—l/?)QHz'

For a > 0 we have

a a? 1
——dt= | ————dt = dt =
/RaQ—i—tz /Ra2+(at)2 /Rl+t2 ™

N(v)

N(v)
oj(v) —1/2 o;(v)—1/2 B
;/RHU(t) COE 1/2)2“26# < ;/R(Uj(y) _1/2)2“26# = TN(v),

/RHU(t)logb(V) dt = logb(l/)/RUHl(t) dt = Uy/mlogb(v).

Since the left hand sides of (5.2) and (5.3) are increasing, it is enough to show
the theorem for U > 2. So assume that U > 2, and define Hj; : C — C by

Hy(x) forxeR

Hg(ac):{ Hy(z)—3 forz ¢ R~

If we assume that b(r) < 1 (and remember that b(v) is bounded from below),
then Lemma 5.1.2 and 5.1.4 gives us

and hence

0 < ZHg(rn(y))—iéHU(t)ii <%+@'t, u) dt
< S Hn) + - = /RHU(t)% (% Lit, u> dt — MSLJZ_T(”)
< S Hy(ra(v) - ﬁ/RHU(t)% (% Lt ,,) it — UISL\/;(”)

< U+ UL(v).
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Hence

1 1 UQD*, 1
0 < - 1—— —+at dt
e 2 47T/_U<,0* (2“’”)
*x/

< S Hp(ra(v)) —%/RHU(t):Z* (éﬂ't, y> dt
< U*+UL(v).

Which proves that (5.2) holds for b(v) < 1

We can now make the following estimate

U / 1
0 < / ﬁ(—ﬂ‘tu)‘dt
vle \2

1/2 USD*/ 1 .
< dt — - log b(v) d
i

( + 1, u) dt +0(U)

< 21—/

)<1/4

- O(U2 +ULWv)).

Hence we have proved Theorem 5.1.1 for b(v) < 1.

For b(v) > 1, we can make almost the same argument if we replace —p*' /¢

by —¢*' /o* 4+ logb(v). By Lemma 5.1.2 and 5.1.4

0 < i[—]{}(rn(y)) + % /R Hy(t) (—f; (% +it, ,,) —I—logb(u)) dt

n=0
< iH (r (1/))—L/H(zf)£ +it,v | dt
=~ ra U\I'n At = U © 9
< U*+UL(v).
Hence
1 1
0 < - 1+—/ <p* (§+it,u> + log b(v)dt

An (v )<U2+1/4

6

@
< > Hi(ra(v) /HU ( - ( + it y> —Hogb(y)) dt
12
n=0
< U*+UL(v).

Which proves that (5.2) holds for b(v) > 1
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Finally
U ! 1
0 < / ‘ (——I—z‘t,u)‘dt
gp 2
o 1/2 U gp*/ 1 .
< — = 1
< / Z _1/2 +t2dt+/_U o 2+Zt,1/ +logb(v) dt
< Z 1—/ ( +it, V)—i—logb(y)dt
V)<1/4 v
= O(U2 + UL(v)).
Which proves that (5.3) holds for b(r) > 1. O

5.2 Continuity of Small Eigenvalues

We recall some properties of the Laplace transform .Z( f) of a continuous function
f Ry — C defined by

L(f)(z) = /OOO e * f(t) dt, (5.13)

if f is sufficiently nice, so (5.13) converges absolutely in a half plane Rz > a (for
details on the Laplace transform see [21]). For a > ag we have

fw = 5- | T e (f)(2) de

27 —100

(see [21] Theorem 7.3 p. 66), and for p > 0

1 et L Z()(2) { folw) ifu>0
— et —— L dy = i
2m J . 2P 0 ifu<O

a—100

(see [21] Theorem 8.1 p. 73 and Theorem 8.2 p. 74), where

Y o(u—t)Pt
folu) = / ———f(t)dt.
We use the idea from [14] section 3.3 to show a similar result about continuity
of small eigenvalues as functions of the weight.

Theorem 5.2.1. Let I be an open interval containing 0, and for k € I let
v, : I' = S be a multiplier system of weight k, such that vy(7y) is continuous
as a function of the weight k, for any fixed v € I'. Denote the eigenvalues
corresponding to vy by Xo(k), A\ (k),..., and let T < 1/4 be such that T # \,(0)
for all n. Then there exists € > 0 such that |{\,(k) < T'}| is constant for |k| < e.
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Proof. We use the trace formula for h.(r) = e *, where z € C has positive
real part (this gives us g.(z) = (472)" Y2 exp(—22/(42))). We let f(u) = 1 and
T < 1/4, and multiply in the trace formula with £ (f)(z)e*"=1/%) /2, so that the
left hand side becomes

IO 2 (1))

z

n

We then integrate with respect to (2mi)~'dz from z = a —ico to z = a + ico (for
some positive a), so the left hand side becomes

T—Ap (k)
Z AT =M(k) = ) / Ldu= Y (T - (k).

n(k)<T An(k)<T V0 An (k)<T

When we make the multiplication and integration in (2.28), we get

1 u(F) /a+i00 ,,%(f)(z)ez(Tl/zl)/rhz(T) sinh(27r)dr

omi Arm z cosh(27r) 4 cos(mk)

b ) 1(F) / , sinh(27r) /a—Hoo ZL(f)(z)er T ho(r)dzdr = 0,
R a

—100

2mi 4w cosh(27r) 4 cos(7k) Jo_iso z
since
atico gp 2(T—1/4) atico ¢p 2(T—1/4—r2)
[T AN, g [ HD G o

Likewise we get 0 from (2.32), (2.35), (2.36) and (2.37) (where we use ¢.(0) =
(472)~1/2). If we look at weight k € [—1,1] (2.29) is zero.
By [5] p. 401-402 we can rewrite (2.31) to

v(R) cosh((2r(m — 0)) + e**™ cosh(270)
Z AMp sin 0 /R ha(r) cosh(27r) — cos(mk) dr

{Rr}
Tr R<2
0<0(R)<m

v(R) . . : : i(lk| = 1)
+ {ER} m&gn{k) EO iexp (i(k — Isign(k))0) h (T
Tr R<2 1<I<[k|
0<O(R)<m

and (2.33) to

Z (% B aj) %/_OO hz(r)cosh(;ri:)(l—gi—ﬂzos(wk) dr

aﬂé() o0
1 . (|k| =1
+ Z(§—Oéj)81gn Zh( (I ))
a; #0 l odd

L<I<Ik|
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so these terms also becomes zero after multiplication and integration, when |k| <
1.

Hence for small weight

Sy = L [TRLOEET

270 ) yino z
A <T
where
_ vk (1)!(10)9:(1(7)) > g:(u)(1 — cosh(5u))
Fi(z) = ; N(7)/2 = N(y)~1/2 + Ko(k) o eu/2 _ o—u/2
Tr”;>2
We see that

LT g (u)(1 — cosh(su)

z eu/2 — e—u/2

— 0

uniformly for z €]a —ioco,a+ioco] and v € R, when £ — 0. Hence by dominated
convergence

dudz

aﬂw/wngx@¢@*“>gAMO—wwm@w>

2 eu/2 — g—u/2

a—100

is continuous as a function of k in k = 0, and it is zero at k = 0. Since Ky(k) is
constant for k € J\{0}, if J is a small interval around 0, we see that

/a—i-ioo KO /oo g(f) (Z)ez(T—1/4) gz(’u)(l — COSh(%U))

~ . Y — dudz,

—100
is continuous in k£ = 0.
Likewise dominated convergence implies that

ulo) 1 [T L(f) ()T
; N — N 2 /oo 2 9:(1(7)) dz,

is continuous at k = 0. So >, y<p(T — An(k)) is continuous at k = 0.
Defining N(T', k) = >_) )<r(T'— An(k)), we see that for 0 <e <1/4—T, we
have -

NIK = NT—ek) o g0y < N6 = NTE)

€ €

Since N(T, k) is continuous in k = 0, this gives us

N(T,0) — N(T — ¢,0)

liminf [{\, (k) < T} >
k—0

€
N(T ~N(T
limsup [(n(k) < T} < L +e0) = N({T.0)
k—0 €
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For € close to zero, the right hand sides are [{\,(0) < T}|, if T # A, (0) for all n,
S0

limsup [ {1, (k) < T} < {A,(0) < T} < liminf [{A, (k) < T}

But this means, that {\,(k) < T'}| is continuous in k = 0 (if T # A, (0)), so this
proves the theorem. O

Another way to state the theorem would be, that if 14 is as stated in the
theorem, and A\g(k) < A1(k) < ... are the corresponding eigenvalues, then A, (k)
is continuous in k = 0, if A,,(0) < 1/4. We get the following corollary to Theorem
5.2.1

Corollary 5.2.2. Let I C [—1,1] be closed, and for k € I let v, : T — S! be
a multiplier system of weight k, such that vi(Yy) is continuous as a function of
the weight k, for any fixred v € I'. Denote the eigenvalues corresponding to vy by
M(k) < (k) <.... IfOeTl andvy £ 1 orif 0 & I, then there exists a € > 0
so No(k) > ¢ forallk € I. If0 € I and vy = 1, then \g(0) = 0 and there exists
e>0s0M(k)>e¢ forallkel.

Proof. 1t follows from (2.17) and (2.18), that

s (1 ).

and that if f is the eigenfunction corresponding to Ag(k), then equality holds
exactly when y*/?f(z) is holomorphic and k < 0, y~*/2f(z) is holomorphic and
k> 0,or k=0and f, f are holomorphic. So if 0 € I, then \y(0) = 0 if there
exists an eigenfunction f of Ay such that f and f is holomorphic, and otherwise
Ao(0) is positive. But the only way, that both f and f can be holomorphic, is,
if f is constant, and the constant functions are automorphic forms if and only
if, the multiplier system is constant (and the weight is 0). So if vy = 1, then
0= >\0<0) < )\0(1), and if I 7_é 1lis 0 < )\0(0)

If 0 eI and vy =1, let A\;(0) = 2¢’. By Theorem 5.2.1 there exists 6 € (0, 1)
such that A\ (k) > ¢’ for |k| <¢. For 0 < |k| <1 we have

A(k) = Ao(k) > @ (1 — ’32') > g (1 - g) ="

so setting e = min{e’, "} gives the desired result for vy = 1. If we let vy # 1 and
Ao(0) = 2¢’ the same argument yields the other part of the proof, for 0 € I. If
0 ¢ I, define 0 = minge; |z|, and € = £”. O
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5.3 A "Twisted” Prime Geodesic Theorem

To each hyperbolic element v € T" of norm N(v) corresponds a geodesic on I'\H
of length I(y) = log(N(v)). We want to investigate sums over prime geodesics
of length at most T" for some 7" > 0. To do so, we would like to use the trace
formula with g = 17,7, since we then only would sum over hyperbolic geodesics
of length at most 7. We can however not choose g = 1|_7,7), since this is not
smooth, so we have to smooth it out. To do so we convolute with a cut-off
function K. supported on [—e, €], where € is some positive constant.

Following Sarnak (see [18]), we let K : R — [0, o[ be a smooth even function,
such that K(t) =0, for |t| > 1, and

AK@ﬁ:L

For T'> 1 and 0 < € < 1 define

K.(t) = %K’(E)

gre(t) = gr0) = 9(t) = 5-(1rm = KW
h(t) = he(t) = h(t) = 2mg(t) = 220 e,

so that h and g can be used in the trace formula. Then K, is supported on [—e, €|
and [ K. = 1. So gr.(t) is supported on [-T —e¢,T+¢|, it is (2r) " for |t| < T —e
and is between 0 and (27)~! for all ¢.

Estimations on the terms in the trace formula with Ar. and gr. gives us the
following lemma.

Lemma 5.3.1. For hy, and gr. defined as above we have

N _ v(7)!(0) .
nz_‘gwm = ; N7 = N 7adrel0) + OLE)T + ™),
Trz>2
where the implied constant is independent on the multiplier system v, and L is
defined by (5.4).

Proof. Since a multiplier system of weight £ is also a multiplier system of weight
k + 2, we can assume that |k| < 1. We are going to use the trace formula, so we
have to estimate the terms (2.28)-(2.29) and (2.31)-(2.37).

Since |k| <1 (2.29) is zero.

We now estimate (2.28),

'u(]:)/rh(r) sinh(27r)dr < /

A cosh(27r) + cos(mm)

rsinh(27r)

———|d
cosh(27r) — 1 "

h(r)
< /R|h('r)\(|fr\ +1)dr.
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By definition of h we have

/R|h(r)|(|r\+1)dr < T/_ll dr+2/1°°

< T+e—1/ |K(r)|dr < T+ ¢

sin(7'r)
r

K (er) sin(Tr)K (er)| dr

For fixed 0 is vio
o(k—1)u/2 et —e”
coshu — cos(26)

uniformly bounded when |k| <1 and u € R, so (2.31) can be estimated by

i(k—1)0 u _ 20
Z v(R)ie ( ) / ()2 e —e du
T AMpsing Jp cosh u — cos(20)

Tr R<2
0<O(R)<m

< Z (AMpsinf)~ /g(u)du < T.
R

{R}
Tr R<2
0<O(R)<m

Likewise (2.33) and (2.34) is O(T).
We note that g(0) = 1, and estimate (2.32) by

g9(0) Y log|l—euM|| < 3" [log|l — ™| < L(v).

o (V)#0 o (v)#0

Since I"(s)/T'(s) = logs — (25)™' + O(|s|™?) uniformly on vertical the line
Rs =1 (see [8] (B.11) p. 199), is

Ko (g(O)logQ—i—% h(?‘)%dr)

< 1+/R|10g(1+ir)h(r)\d7’+/_1\h(r)|dr
< T+/K(e7")d7"
< T+/(1+(er)2)1 dr

< T+e_1/(1+t2)_1dt < T+el,
R

since K is a Schwartz-function.
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(2.36) is trivially estimated by
1
'Zh(O)Tr (I — ®(1)| < Koh(0)/2 = K,T.

So the only thing left to do, is estimating (2.37). To do this we use Theorem
5.1.1. We see that

1 / 1 1
/ h(?")£ (— —I—ir) dr < QT/
-1 © \2 -1

Furthermore

"1
%(§—I—zr)‘ dr < TL(v).

1

€ S0/ (1 ) /'E_
h(r)y=— =+ ) dr <
/1 <)90 2 1
e’l /
1
:e/ £<—+ir>
1 v \2

< e 'L(v),

and likewise for the integral over [—e~!, —1]. Finally

[ee} / 1
/_1 h(r)% (a—l—ir) dr
o (1
© (2 HT)

= sup(K (z)z?) / e 2r?
(,0, 1 ‘ (3] 4o r 4,0, 1 ‘
— | =4 )| dr+ r€ — | =4 )| dedr
) 2 1 =1 | P 2

>0
A
< lim A7 / €2
here we have again used that K is a Schwartz function. Since we can make the
same estimate for | — oo, —€ 1], is

/Rh(r)% (% +2'7°> dr = O(¢ "' L(v)).

This proves the lemma. O

dr

< e 'L(v),

We chose g so that it was almost an indicator function, so that the hyperbolic
term in the trace formula (2.30) would approximately be a sum over the elements
of T (the set of conjugacy classes of primitive hyperbolic matrices with positive
trace in I') of length at most 7". The following lemma formalizes this.

Lemma 5.3.2. For hy, and gr. defined as above we have, that the hyperbolic
term in the trace formula (2.30) is

i v(9)l(7) oT/2¢ 4 T/
2m N(7)Y/2 — N(y)~1/2 +0( + ), (5.14)

where the implied constant is independent on the multiplier system v.
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Proof. We rewrite (2.30)

V('y)g(l - v(77)g(jl(7)(v)
%: N(y)1/? — 1/2 ;Ver, N(v) ”2 N ()%

We first want to estimate the 7 > 2 part, so that we are left with a sum over the
primitive geodesics.

Let N; be the norm of matrices with trace ¢ and let m(¢) be the number of
primitive conjugation classes with trace ¢, then

v(y l m(t)log Ny o=~ .
ZZ ((7 i/2 _ EL)(;YJ)/z < Z()Tthg(jlogNt)

=2 [yler t =2

m(t) log NV, T
Z (t)log )

< Nt IOgNt’

2log N¢<T'+e€

here the implied constant only depends on I'. By partial summation and the
prime geodesics theorem we get

" T (T+e)/2
oy "o ( ; ) g [T a(tet it = O(T log ).
2log Ne<T+e t !

This takes care of the non-primitive part of (2.30). To estimate the primitive
part, we use that g is defined so it is almost an indicator function, SO

)U(v)g(log N (v ()
Z N(7)1/2 N (v 1/2__ Z N (v 1/2 (7)71/2

[v]el” [y]er”
I(v)<T

[(7)
< .
2 N(7)1/2 = N(v)-1/2
s (7) (7)
T—e<l(y)<T+e

We then use (2.42) on this estimate

1(7) —(T-e)/2
Z N ()12 _P)/N<,-)/)1/2 < e Z I(7)

[ler” el
T—e<l(v)<T+e T—e<l(v)<T+e
< e (T—e€)/2 Z S_l(esj(T+€) . 6s](T )) +6T/4+56/4
1/2<s;<1
< Z S;le(T+e)/2(esje . efs]'e> + €T/4
1/2<s;<1

< eT?e + eT/4,

which proves the lemma. O
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If we have a zero free automorphic form f of weight ky > 0 wrt. [' with
multiplier system v, we can take logarithms F' and ¢ like we did in section
4.1. In this way we can get powers of f and v, and since f'/*0 has weight 1,
we can without loss of generality assume that f has weight 1. So we get, that
V¥ = exp(27ik®) is a weight k& multiplier system, and hence also a weight k + 2n
multiplier system for any n € Z. Especially if we for £ € R define £’ to be the
number in (—1,1], such that &' = k modulo 2, then v* is a weight &’ multiplier
system.

We will assume that ® only takes rational values, so there is an even m € N,
such that m® only takes integer values. We let N be the smallest such N.

Lemma 5.3.2 gives us an estimate of the right hand side of the trace formula
for the test functions gr. and hr., and we want to combine this estimate with
an estimate on the left hand side for the multiplier systems v*.

Before we do so, we define [ := (=1, N — 1] and P : (1,00) x I — C given by

()
Z N(vy 1/2 (7)71/2'

[yler”
Wy)<T
Lemma 5.3.3. There exists ¢ € [1/4,1/2), such that
2eT(1—1k[)/2 k\  Tec : <
O(L(v*)e'*) otherwise

with the implied constant only depending on the Fuchsian group T'.

Proof. We split I into the intervals I,, = (2n — 1,2n + 1], for 0 < n < N/2. We
fix an n, and for k € I, consider the multiplier system ¥, to be of weight &'.
By Corollary 5.2.2 and the definition of N there exists ¢, € (0,3/16], such that
M(k) > e, for k € I, if n =0 and A\g(k) > &, otherwise (where A\g(k) < A (k)
are the two smallest eigenvalues for v*). Since g, € (0,3/16], we can define
R, € (0,1/2], by

This means that

] =
7N
(NSRS

|

-~
1\3‘3’;0
N~
no

I

|
VR
NE
N~
no

+
w|§u

|

o0

3

and we see that 1 — R,, is decreasing as a function of ¢,,.
Since

~

1 1 1
K(eir) = %/ exp(—ert)K(t)dt < 2—exp(er) =5 + O(er)

. 1 1 1
K(eir) = P eXp( ert)K(t)dt > o exp(—er) = o + O(er)
-1
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for 0 <r <1/2,so0 for 0 <r < 1/2 we have

Tr _ —Tr .
h(ir) = %K(eir)
B el /(2mr) + O(ee + e 17 /1) for 1/T <r <1/2
a o(T) for 0 <r <1/T

So according to (5.2)

90T(1/2=Rn/2)

> h(rm)<<<T+W) oo

en<Am(k)<1/4 en<Am(k)<1/4
< (T+€T(1_R”)/2)L(Vk).

We now use (5.2) to estimate the contribution from the A, (k) > 1/4. We
start with the r,,(k) <1, which is easily estimated by

2sin(Tr, (k) ~
SO k) =Y TSR (er(k)
1/4< M (k) <5/4 1/4< M (k) <5/4 m
sin(T'r,,(k)) i
< 2T ——— 2 < TL .
= 2 ey STHY
1/4<Am (k) <5/4

The next part we estimate by

2
S h(ralk) < Zglrm(/ﬂ

1§T77L(k)S671 1§T’"L(k)§
1/e
D YRR BN SEST’
1<rm (k)<e=1 1 1<rm (k) <t

1/e
< €'+ L)+ / L(/*)dt < e ' L(VF).
1

To estimate the contribution from the large eigenvalues we use that K is a
Schwartz function, so

S b)) = 20 Y SR g )

e~ 1<rm (k) 1<erm (k) ETm( )
< e > (erm(k)7
1<erm (k)
= cfim |40 3 1) e ot Y a
oo 1<erm(k) 1 1<erm (k)<t

< e/ 2?2 13 LV dt < e TL(VF).
1
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So if we define
. max, (1 — R,)

2
then

Y hrmk)) < (74 L),
(k)

en<Am

for all n. This result combined with Lemma 5.3.1 and 5.3.2 proves that

P(T. k) = 2h((Mo(k) — 1/4)Y2) + R(T, ¢, k) if |k| <1 and A\o(k) < &g
e R(T, e, k) otherwise ’

where
R(T, e, k) = O(e™?e + L(*)(eTe + €71)).

If 0 <k <1 then k¥ = k and we have

Bl =5 (1-5 ) 7

If -1 <k <0 then &' = k and we have
—_— k
B (fE) = =5 (145 ) 1

So for k € Iy = (—1, 1], we have

We see that

so for |k| < 1/2

2rh((No(k) — 1/4)Y?) = 27k (Z_TZW)

9T (1—k[)/2
- el—W + O(GT(I_‘M)/ZE + T)

For 1/2 < |k| < 1 we have
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By setting € = e~ 7/* we get
2T L O(L(WF)eTe) if k| < 1/2 and Mo(k) < &
P(T,k) = L=k = O\ =50
O(L(v%)eT®) otherwise
Since k)2
2et VT
=0 Tc
when |k| < 1/2 and \g(k) > &o, this proves the lemma. O

Note that we in the proof of the lemma, showed that if R < 1/4 and R(1-R) <
A (k), for all k € I, and R(1 — R) < Ao(k), when |k| > 1, then ¢ = 1/2 — R can
be used in (5.15).

Lemma 5.3.3 leads us to the following ”twisted” version of the prime geodesic
theorem.

Theorem 5.3.4. There exists 6 € (0,1/4], such that for k € (—1, N — 1] we have

T(1—k|/2) _ .
. O(eTO=-IL(W*)) if |k| <1/2
k() = ¢ 1-TkI/2 + - ) 5.16
Z/ vr()() O(eT =0 L (hY) otherwise (>16)
[ylel
I<T

Proof. By partial summation we get

T
e 1 -1
> ) = (@@ TPE ) - [ L Pogs, b do.
[yler” e 2V
IM<T
Since
9eT(1=Ik])/2 9T (1-Ik]/2)
T2 _ T2 T 2 T o
(GT/2 . €_T/2>L(l/k)6TC _ O(L(Vk)eT(1/2+C)),
T
e 1+SU_1
L(vM)atde = O(L(WF)eTV/2o),
T T
T 4 1o (1—lkD/2 /e o Ikl/2
de = dr + O(1)
/NF 2z 1— k| Ne 1=k
T(1—[kl/2)

= aoEa—Tm TOw:

we get for |k| > 1/2
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and for |k| <1/2

9T (-1k/2) T—[k]/2)

Vk Y l Y = — +O L Vk 6T(1/2+C)
2 ONO) = T - e O
y]er
(M<T

T (1=Ik]/2)
_ L(F)eT(/240)y

If we define § = 1/2 — ¢, then we get that 6 € (0,1/4] and 1/2+c=1-4, so

el UIk/2) TA=91wk)) i <
d o V) = T2 TOle PRILOA) HIM <12 g g
/ O(eTO=9) L(%)) otherwise
[ler
Iv)<T
O

Since we can use ¢ = 1/2 -0 in Lemma 5.3.3 if 6 < 1/4 and §(1 — ) < Ay (k),
for all k € I, and 0(1 — 0) < Ao(k), when |k| > 1, we can use

1/2—(1/2—6) =6

in Theorem 5.3.4.

5.4 Prime Geodesics Distributed wrt. a Multi-
plier System

A simple integration of (5.16) gives us the following theorem.

Theorem 5.4.1. For n € Z we have

logy
dy + O(z'™? 5.18
N/ (47n/N)? + (log y)? y+ 0, (5.18)
[vleF’
N(y)<z
N&(y)=n

for 6 € (0,1/4] such that 6(1 — 0) < Ao(k) for all k € (1, N — 1], and §(1 — ) <
A (k) for all k € (—1,1].

Proof. For a fixed n € Z, we integrate (5.16) wrt. e(—kn/N)dk (where e(x) =
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exp(2mix)), over (—1, N — 1]. The left hand side becomes

/lez v) —n/N))dk

[v]er”
I(m<T

= > Iy / e(k(®(y) —n/N))dk

[v]er’
I(v)<T

:NZ

[v]eT”
I(\)<T
N&(y)=n

From the error term we get

N-1
/ "I LW e(—kn/N)dk < €719,

-1

To integrate the main term on the right hand side we use that \o(k) = 0 if
and only if v* = 1. Hence

M(k) =0« v =1& Nk

Especially for k € (=1, N — 1], A\o(k) = 0 if and only if k£ = 0.
Now we can integrate the main term on the right hand side, and finish the

proof.
1/2 T(1—|k|/2) kn 1/2 JT(=k/2) [ n
e dk = 29‘%/ ( )dk:
/_1/2 1—|k|/2 ( ) T-k/2°
_ 9 y k2
%/ / dye(N)dk+O()

= 2R / / FCmin/N=1o8y/2) df: dy 4 O(1)

o Trzn/Nflogy/éL -1 y O
= 1
/ 2min/N —logy/2 y+00)

4min/N + logy /eT dy
= 4 _
3%/ (/N + (log 2 ¢ ( 2 Yy

logy 37/4
= 4/ dy + O(e317%).
, Tamn/N)2 + (oggp? @ T O

By combining these estimates, and substituting e by z, we get (5.18). O]
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If n =0, we have

v logy 1 .
dy = dy =1
/2 (den/N)2 + (logy)? "7 /2 logy "’ i),

and for fixed n, we have

' logy .
/2 (47n/N)? + (logy)? dy ~ li(z).

Because of this likeness, we define

, ; logy
li(p, ) = d
ip.) /2 (47p)? + (logy)® ¥

So the main term in (5.18) becomes 4li(n/N,z)/N.
We can use (5.18) to give some estimates on the number of prime geodesics
of a certain ®-value and bounded length.

Corollary 5.4.2. Forn € Z we have

4 n o, e
o= i (N,e) 40 (FS) , (5.19)
[y]er”

l(v)<t
N&(y)=n

4 (t) Arn\” nt n? 1
1l = —|1—-|(—— O — +- 5.20
[]gF' Nt ( (Nt) * (t4+t3+t o (5:20)
94

l(y)<t
N&(y)=n

where 7(t) in (5.20) is the number of prime geodesics, which has length at most
t.

Note that we have the constant 7 as well as the function that count the
number of prime geodesics of length at most ¢ 7(t) in these formulas.

Proof. By partial integration and equation (5.18) we get

Z L= lo;;x Z l(7)+/1: t(lolgt) W)t

~]er’ [v]er’ [~]er’
N(7)<r N(y)<z N(v)<t
N&(y)=n N&(y)=n N&(y)=n
4li(n/N v
_ 4(n/N,z) i (2 ) dt+ 0.
Nlogx ~np Nt(logt)? \N

Estimating the second term we get

* 4 n z 1 z 1
I T (L it o
/NF Nit(log )2 | (N’ > < /N Hlog 2 (Dl < /N (log £)?
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By partial integration we see that for m > 0, we have

z T 2 * m
logt)™™dt = - — t- ———dt
/2 (log:t) (logz)™ 2 +/2 llog £+
T 2 N logz eud <
= ——4+m —du &,, ———.
Qoga)™ 27 " fogm, ™ S loga)?

When we combine these estimates, and substitutes x by e, we get (5.19).
We can (again) use intagration by parts to estimate li(p, x).

” (g ) _ wlogu )2_/; -(pQ—(logy)Q)/ydijO(l)

p? + (logx
xlogx
P2+ (log 2)?
xlogx

47r’$

p* + (logz)?

(p?* + (logy)?)?

o, )
°tmar)

This estimate and (5.19) gives us

Z L 4et Lo (et>
- 2 2 FER
Ao N((4mn/N)? + 2) t

I(y)<t
N&(y)=n

For 0 < r < 1 we have, that for all [t] <ris (1+¢)"'=1—t+ O(¢*). Hence

(5.21) gives us
4et 1 1
1 = O\ -
2 Nt2(1+<‘§$—?)2+ (t))

[v]er”

l(y)<t
N&(y)=n

(5.21)

By (2.43) we get

t t
So
= - S0 (o ()) (- () v () +)
Nt t Nt t t
[]er’
I(y)<t
Ne(y)=n

which is (5.20).
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The formula (5.20) tells us that the number of prime geodesics of length at
most ¢ and with a given ®-value n/N is asymptotic equivalent to 4w (t)/(Nt), for
all n € Z. However (5.20) also tells us, that if ny,ne € Z and |ni| < |ng|, then

for large ¢
SIREES St
[v]er’ [y]er”
l(y)<t I(v)<t
N&(y)=n1 N&(y)=n2

We can use formula (5.20) to prove that the prime geodesics are asymptotically
Cauchy distributed wrt. the value of ®/I. More precisely we have the following
theorem.

Theorem 5.4.3. For x € R we have

1 arctan(4mz) 1
im —— i S (5.22)
t—o0 (1) [%, T 2
)<t
®(y)<=l(y)

Proof. By (5.21) we have

t2e Z 1 = %! Z Z 1

[y]er’ n<ztN - [y]eT”
I(y)<t l(y)<t
O(y)<zt NO(vy)=n
4 4\ 2\
™
= — 1 —_— Ot !
vy (1 (%)) o
n<ztN

:;@%4%ﬁywm
_ i/im(1+s2)—1ds+0(1)

m
tarctan(4drz) t

= 7 + 5 + 0(1)
So A |
t
(w3 L~ Y 1~ ST an(dra) + 5
pler pler m
I(v)<t I(v)<t
D(vy)<zxt D(vy)<axt

So to prove the theorem, we need to prove that

Jim (w(t) ™ > 1=o0. (5.23)
[y]er’

I(v)<t
zl(7)<P(y) <zt
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Let € > 0, then

1
lim sup st <ozar < limsup(7(t))™' | 7(t(1 —€)) + Z 1

t—o0 77'(75) t—o00 bler
I(n)<t
xt(1—e)<P(vy) <zt
. et1=¢) arctan 4wz — arctan 47z (1 — €)
= limsup
t—o0 et(l - 6) 7L

arctan 4mx — arctan 47z (1 — ¢€)

™

Since this is true for all € > 0, equation (5.23) is true. ]
For A C Z define m4 : Ry — NU {0} by

[y]eT”

I(y)<t
No(v)eA

If the quantity

_ o #HnEAl|n| < M}
diA) = Jim = 1

is well defined, we say that A has natural density d(A).
Theorem 5.4.4. Let A C Z have natural density d(A), then

7TA(75)

Jm Tt d(A).
Proof. For K > 0, we have
1 1 1 2arctan(4nK/N)
— 1< — 1= =-— .
7(t) Z — w(t) Z 2 T
[yler” [yler”
I(y)<t Uy)<t
Nd(y)eA IN®(v)|>K¢
IN®(7)|>Kt

For € > 0, we can choose K so large, that 1 —2arctan(4rK/N)/m < €, and hence

1 1
im — < lim — . .
tlgglo 7(t) Z = tliglo m(t) Z L=e (5:24)
[yler” [v]er”
Uy)<t I(v)<t
No(y)eA [N®(v)|>Kt

IN®(7)|> Kt
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By definition of d(A), there exists M; € N so that

#{n€Alln| <M}

Anez < A <e (5.25)

for M > Ml-
The equations (5.20) gives us

[v]er’ [v]er’
I(y)<t l(y)<t
No(7)eA [IN®(v)|<M:

[IN®(v)|<M:

SO

lim —— > | = fim —— > 1=o0. (5.26)

t—o0 t—o0
() oo () oo
()<t l(y)<t
Ne(y)eA [IN®(v)|<My
[N@(v)|<My

So all there is left, is to estimate the contribution, from the geodesics with
d-value between M;/N and Kt/N. Equation (5.19) gives us

S 1:]\% S li(%,et>—l—0(:—;>.

[y]er’ neA
I(y)<t Mi<|n|<Kt
NO(vy)eA

Mi<|N®(v)|<Kt

If we let li'(x,t) denote the derivative of li wrt. =, and define

Api={ne A||n| <t},
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then partial summation gives us

We now see that

[v]er”
)<t
NO(v)eA
Mi<|N®(v)|<Kt

(Kt , I L S
lz(ﬁ,e) Zl_ﬁ lz’(N,e> Zldz
nEAk My n€A;
Mi<|n]| Mi<|n|
Kt
ZZ(W,et) Z 1-— Z 1
nGAKt TLEAMl
1/Kt x
—— lz’(—,et) Zl— Z 1| dx
N My N neAy HEAjul
Kt
d(A) | 1i (W,et) > 1+40()
Mi<|n|<Kt
1 K x
-~ [ (5 Y. 1+40() | do
N Jan <N > M <|n|<Kt
M
aA) Y b (%,a) 40 (zz (Wl,et) e)
Mi<|n|<Kt
t
) Y i (%,et%o(%).
M, <|n|<Kt

- ST () o(%)

Mi<|n|<Kt

— Cfr(_f})) MZE;/ 1+O<%).

l(y)<t
Mi<|N®(v)|<Kt
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So (5.24) and (5.26) implies

. ma(t) d(A)
_ < ) E _
tlggo 7(t) A4 = tlggo m(t) L= d(A)] +e
[yler”
l(y)<t

Mi<|N®(y)|<Kt

% D 1—d(A)| + e(1+d(A))
[yler’
I(y)<t

= €(1+d(A)).

lim
t—oo T

IN

Since this is true for arbitrary € > 0, we have proved the theorem. O
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