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Abstract

The Taylor coefficients of weight k Eisenstein series wrt. SL2(Z) are related
to values of L-functions for Hecke characters in the point k. We show some
congruences for Taylor coefficients of Eisenstein series of weight 4 and 6 and use
them to establish congruences for values of L-functions for Hecke characters in
the points 4 and 6.

It is well known, that all zeros of the Eisenstein series Ek wrt. SL2(Z) in the
standard fundamental domain has modulus 1. We show that this is also true for
ϑnEk, where ϑ is a certain differential operator.

We then proceed to study logarithms of multiplier systems. For automorphic
forms wrt. Hecke triangle groups and Fuchsian groups with no elliptic elements
and genus 0, we show that some logarithms of multiplier systems can be inter-
preted as a linking number.

Finally we show a ”twisted” version of the prime geodesics theorem, and
use this to show some results about the distribution of prime geodesics wrt.
logarithms of multiplier systems.

Resumé

Taylor-koefficienter for vægt k Eisenstein-rækker mht. SL2(Z) er relateret til
værdien af L-funktioner for Hecke-karakterer i k. Vi viser nogle kongruenser for
Taylor koefficienter for Eisenstein-rækkerne af vægt 4 og 6, og f̊ar dermed ogs̊a
kongruenser for L-funktioner for Hecke-karakterer i punkterne 4 og 6.

Det er velkendt, at alle nulpunkter for Eisenstein rækker Ek mht. SL2(Z)
har modulus 1. Vi viser, at dette ogs̊a gælder for ϑnEk, hvor ϑ er en given
differentialoperator.

Derefter studerer we logaritmer af multiplikator systemer. For automorfe
former mht. Hecke trekantsgrupper og genus 0 Fuchs-grupper uden elliptiske
elementer viser vi, at s̊adanne logaritmer af multiplikator systemer kan fortolkes
som et linkingtal.

Endelig beviser vi en ”twisted” version primgeodætsætningen og bruger denne
til at vise nogle resultater om fordelingen af primgeodæter mht. logartimer af
multiplikator systemer.
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Chapter 1

Introduction

1.1 Taylor Coefficients for Eisenstein Series

For any z0 in the upper half-plane, we can define

σz0 :=

(
−z0 z0

−1 1

)
.

σz0 acts as a Möbius transformation on H, it maps the unit disc D bijectively to
the upper half-plane H, and σz00 = z0. For any function f : H → C, and even
integer k, we can therefore define a function f |kσz : D→ C given by

(f |kσz0)(z) =
(detσz0)k/2f(σz0z)

(jσz0 (z))k
,

where jγ(z) = cz + d, when γ = ( a bc d ).
The function f |kσz0 is holomorphic, if f is holomorphic, and so it has a Taylor

expansion in 0. This Taylor series is convergent in all of D (opposed to Taylor
expansions of f , which will only converge in all of H, if f can be continued
analytically to all of C). If f is a weight k modular form wrt. SL2(Z), and we
set z0 = i, then for the Taylor expansion of f |kσi

(f |kσi)(z) =
∞∑
n=0

c(n, f)zn,

we have

4 - (2n+ k)⇒ c(n, f) = 0.

For even k ≥ 4 let Ek(z) be the holomorphic weight k Eisenstein series wrt.
SL2(Z), that is

Ek(z) =
1

2

∑
m,n∈Z

(m,n)=1

1

(mz + n)k
,

1



2 Chapter 1. Introduction

and let

(Ek|kσi)(z) =
∞∑
n=0

c(n,Ek)z
n.

For 4|(k + 2n), we then have

c(n,Ek) =
(k + n− 1)!i2−k/2

n!Bk(
√

2π)k

∑
λ∈Z[i]\{0}

(λ/λ)k/2+n

|λ|k

=
4(k + n− 1)!i2−k/2

n!Bk(
√

2π)k
L(k, ψk/2+n),

where Bk is the k’th Bernoulli number, and L(·, ψk/2+n) is the L-function for the
Hecke character ψk/2+n.

Now we define

An :=
−(2π)2n+612n/2−1n!

(Γ(1/4))4n+8
c(n,E4)

and

Bn :=
i(2π)2n+912(n−3)/2n!

(Γ(1/4))4n+12
c(n,E6).

We can prove the following congruence for An and Bn (which gives us congruences
for c(n,E4) and c(n,E6) and for L(4, ψn+2) and L(6, ψn+3)).

Theorem A. The numbers An and Bn are integers, and we have

A2n+1 = B2n = 0.

For n ≥ 1, we have

An ≡ An+72 (mod 13),

and if n is even, then 13 - An. For m ≥ 0, we have

B4m+1 ≡ 1 (mod 5)

B4m+3 ≡ 3 (mod 5).

To prove Theorem A we use the differential operator

ϑk =
1

2πi

d

dz
− kE2

12
,

where E2 is the weight 2 holomorphic Eisenstein series. This operator sends
weight k holomorphic modular forms to weight k+2 holomorphic modular forms,
and hence the operator

ϑnk := ϑk+2n−2 ◦ ϑk+2n−4 ◦ · · · ◦ ϑk
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sends weight k holomorphic modular forms to weight k+2m holomorphic modular
forms.

In 1970 F. K. C. Rankin and H. P. F. Swinnerton-Dyer ([13]) proved that for
k ≥ 4 all zeros of Ek in the standard fundamental domain

F = {z ∈ H | <z ≤ 1/2, |z| ≥ 1}

are located on the arc

A = {exp(it) | t ∈ [π/3, 2π/3]}.

Using this we prove the following theorem.

Theorem B. For k ≥ 4 and n ≥ 1 all the zeros of the function ϑnEk in F are
located on A.

1.2 Interpretations of Logarithms of Multiplier

Systems

Let Γ be a Fuchsian group. If a holomorphic function f : H→ C, transforms like

f(γz) = ν(γ)(jγ(z))kf(z),

for a all γ ∈ Γ and z ∈ H, and f is also holomorphic in the cusp, we say that f
is a weight k automorphic form with multipler system ν wrt. Γ. If ν ≡ 1, we say
that f is a weight k modular form wrt. Γ.

Let f be a weight k holomorphic automorphic form with multiplier system
ν wrt. Γ. If f has no zeros in H, then it has a holomorphic logarithm, and by
taking logarithms in the transformation equation we get

(log f)

(
az + b

cz + d

)
= (log f)(z) + k log(cz + d) + 2πikΦ

(
a b
c d

)
, (1.1)

where log f is a holomorphic logarithm, log(cz + d) is the main logarithm (i.e.
the logarithm that has imaginary part in (−π, π]) of cz+d, and exp(2πikΦ) = ν.
Since f is zero free, the power f t = exp(t(log f)) is well defined and holomorphic
for any t ∈ R. Furthermore if t ≥ 0 f t is a weight tk automorphic form with
multiplier system νt = exp(2πitkΦ) wrt. Γ (if t < 0 f t will have a pole in a cusp).

An example of such an zero free automorphic form is the Dedekind eta function
η, which is a weight 1/2 automorphic form with multiplier system νη wrt. Γ =

SL2(Z). In [2] É. Ghys gives an interpretation, for any hyperbolic γ ∈ SL2(Z)
with positive trace, of the logarithm πiΦη(γ) of νη(γ) as a linking number of a
trefoil knot and a closed curve (i.e. the number of times the curve winds around
the trefoil knot).
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Inspired by this we consider Fuchsian groups Γ for which Γ\H has finite
volume, genus zero and one or more cusps. For such a group there exists modular
forms, which are zero free in H (they do however have zeros in one or more cusps).
If n ≥ 3 is an integer, and we define the Hecke triangle group Hn, to be the group
generated by the 2 matrices(

0 −1
1 0

)
,

(
1 2 cos(π/n)
0 1

)
,

then Hn\H has volume π(n − 2)/n, genus 0 and one cusp, so Hn is a group of
the desired type.

The point ρn = exp(πi/n) is elliptic of order n wrt. to Hn and i are elliptic
of order 2, and there exists automorphic forms g and h wrt. Hn, such that g has
a simple zero in ρn and h has a simple zero in i, and the only other zeros are
Hn-translates of these. We define a function Λ̃ : SL2(R) → S3 (where S3 is the
unit sphere in C2) by

Λ̃(σ) =

(
g(σi)

(tjσ(i))4/(n−2)
,

h(σi)

(tjσ(i))2n/(n−2)

)
,

where t depends on σ and is given such that Λ̃(σ) ∈ S3. Furthermore we define
an equivalence relation ∼ on S3, given by (z1, z2) ∼ (ζz1, ζz2) for all n − 2’nd
roots of unity ζ, and we let κ be the set {(z1, z2) ∈ S3 | zn1 = z2

2}. We then show

that the function Λ̃0 : Hn\SL2(R)→ (S3\κ)/ ∼, given by

Λ̃0(Hnσ) = {x ∈ S3 | x ∼ Λ̃(σ)},

is well defined and a homeomorphism.
Any hyperbolic element of Hn corresponds to a geodesic fγ : R → SL2(R)

(PSL2(R) is a realization of the unit tangent bundle on H, so it also corresponds
to a geodesic on this unit tangent bundle), with fγ(t) = γfγ(t+ l) for some l > 0,
and Bγ : [0, l(n− 2)]→ S3\κ given by

Bγ(t) = Λ̃(fγn−2(t)),

is a closed curve. If n is odd, then the set κ is (the image of) one knot, and hence
it makes sense to talk about the linking number link(κ,Bγ) of κ and Bγ. When
n is even, then κ is two knots κ1, κ2, and we define

link(κ,Bγ) = link(κ1,Bγ) + link(κ2,Bγ).

Now let D be a weight k modular form wrt. Hn, that only has zeros in the
cusp, and define Φ : Hn → Q as in (1.1). Because Hn only has one cusp any
weight k′ modular forms, that only has zeros in the cusp, are on the form αDk′/k
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for some α ∈ C, so Φ is independent on which modular form we choose (as long
as it has no zeros in H).

We prove the following theorem, which displays a connection between multi-
plier systems values in hyperbolic elements and the closed geodesics corresponding
to the hyperbolic elements.

Theorem C. Let γ ∈ Hn be hyperbolic and have positive trace, then

link(κ,Bγ) = 4nΦ(γ).

For n = 3 Hn = SL2(Z) and Φ = Φη. This case of Theorem C, is proved by
Ghys in [2].

If Γ is a Fuchsian group with no elliptic elements and Γ\H has finite area and
genus zero, then we can make an interpretation much like the one in Theorem C
of logarithms of multiplier systems.

To do this we show that Γ\H has at least 3 cusps. We denote the cusps
a1, . . . , ah and define weight 2 modular forms F1, . . . , Fh, such that F1 has all its
zeros in a1, while for j 6= 1 Fj has a simple zero in aj and the rest of its zeros in
a1. We define Φj to be such that (1.1) holds for Fj and Φj. We then use F1 and

F2 to define a homeomorphism, which we also call Λ̃, between Γ\SL2(R) and

S3\
h⋃
j=1

κj,

where κj is a knot, that corresponds to the cusp aj.

If we let Aγ be the closed curve, that Λ̃ maps the closed geodesic associated
with γ to, then we can prove the following theorem.

Theorem D. Let γ ∈ Γ be hyperbolic and have positive trace, then

link(κj,Aγ) = 2Φj(γ). (1.2)

Since Fj has all but one zero in a1, it matters which cusp we choose to label
a1. So {Fj | 1 ≤ j ≤ h} depends on, which cusp we label a1, and {Φj | 1 ≤ j ≤ h}
depends on {Fj | 1 ≤ j ≤ h}. Hence the value of the right hand side of (1.2)

changes, if we change, which cusp is a1 (this also changes Λ̃, and hence it changes
Aγ and the left hand side of (1.2))

1.3 Distributions wrt. Logarithms of Multiplier

Systems

For any Fuchsian group Γ and hyperbolic element γ ∈ Γ, there is an associated
closed geodesic in Γ\H with length

l(γ) = 2 log

(
|Tr γ|+

√
(Tr γ)2 − 4

2

)
.
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Two hyperbolic elements γ, τ ∈ Γ have the same associated geodesic if and only
if ±τ is in the conjugacy class [γ], that is

±τ ∈ {σγσ−1 | σ ∈ Γ}.

If there is no τ ∈ Γ and n ≥ 2, such that γ = τn, then we say that γ is
primitive, and we say, that the associated geodesic is a prime geodesic. The
prime geodesics are the closed geodesics, that are not periodic (we can think of
this as they ”go once around”), while the geodesic associated with γn, will ”go n
times around” the geodesic associated with γ.

We will denote the set of conjugacy classes of primitive hyperbolic matrices
with positive trace Γ′. So there is a one-to-one correspondence between the
elements of Γ′ and the prime geodesics. When Γ\H has finite area, then the
prime geodesics theorem gives the following estimate on the number of prime
geodesics of bounded length on Γ\H∑

[γ]∈Γ′

l(γ)≤T

l(γ) ∼ eT .

In [18] and [10] Sarnak and Mozzochi gives an estimate of∑
[γ]∈SL2(Z)′

l(γ)≤T

νkη l(γ),

which depends on the power k. This can be seen as a ”twisted” version of the
prime geodesic theorem, and Sarnak and Mozzochi use this to prove a distribution
result for the prime geodesics on SL2(Z)\H.

Now let Γ be a cofinite Fuchsian group, i.e. let Γ\H have finite area, and let
f be a zero free modular form wrt. Γ. Then we can define Φ as in (1.1), and
let νt := exp(2πitΦ). We will assume that f r is not modular (i.e. does not have
trivial multiplier system) for 0 < r < 1 and we define N to be the weight of f .
Inspired by the work of Mozzochi and Sarnak, we use Selberg’s trace formula for
a suitable pair of test functions to prove following estimate (which can be viewed
as a ”twisted” version of the prime geodesics theorem).

Theorem E. There exists a δ > 0, such that for k ∈ (−1, N − 1]

∑
[γ]∈Γ′

l(γ)≤T

νk(γ)l(γ) =

{
eT (1−|k|/2)

1−|k|/2 +O(eT (1−δ)L(νk)) if |k| ≤ 1/2

O(eT (1−δ)L(νk)) otherwise

The function L(νk) in the theorem grows like − log |k|, when k approaches 0
(but is 0 in k = 0), and might grow in a similar fashion, when k approaches some
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(finitely many) other points in (−1, N − 1], but it is otherwise bounded. The
constant δ depends (only) on Γ, and so does the implied constant in the error
term.

By integrating the expression from Theorem E wrt. exp(−2πikn/N)dk, we
get a version of the prime geodesic theorem, where we only sum over prime
geodesics, with a specific Φ-value.

Theorem F. There exists a δ > 0, such that for n ∈ Z∑
[γ]∈Γ′

l(γ)≤log x
NΦ(γ)=n

l(γ) =
4

N

∫ x

2

log y

(4πn/N)2 + (log y)2
dy +O(x1−δ).

Again δ depends (only) on Γ, and so does the implied constant in the error
term.

As a consequence of this theorem we get an asymptotic relation between the
number of prime geodesics of bounded length and the number of prime geodesics
of bounded length with a given Φ-value.

Theorem G. For n ∈ Z ∑
[γ]∈Γ′

l(γ)≤x
NΦ(γ)=n

1 ∼ 4

Nx

∑
[γ]∈Γ′

l(γ)≤x

1.

We can use these results to prove that the prime geodesics are asymtotically
Cauchy distributed wrt. Φ/l, that is, we can show the following.

Theorem H. For x ∈ R we have

lim
t→∞

1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
Φ(γ)≤xl(γ)

1 =
arctan(4πx)

π
+

1

2
. (1.3)

Note that, when Φ can be interpreted as a linking number, Φ/l is the number
of times the geodesic winds around the knot divided by the length of the geodesic.

The Γ = SL2(Z) case of Theorem E-H was already proved by Sarnak and
Mozzochi in [10] and [18].

If the limit

d(A) = lim
M→∞

#{n ∈ A | |n| ≤M}
2M + 1

exists for a subset A ⊂ Z, then we say that A has natural density d(A), and we
conclude the thesis by proving the following theorem about such A.
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Theorem I. If A ⊂ Z has natural density d(A), then∑
[γ]∈Γ′

l(γ)≤T
NΦ(γ)∈A

1 ∼ d(A)
∑

[γ]∈Γ′

l(γ)≤T

1,

when T →∞.



Chapter 2

Prerequisites

We start out by recalling some properties of Fuchsian groups and automorphic
forms. Some general references for this section is [5], [7], [9], [15] and [16].

2.1 Hyperbolic Geometry and Fuchsian Groups

Let H = {z ∈ C | =z > 0} be the upper half plane, and equip it with the Poincaré
metric ds given by

ds2 =
dx2 + dy2

y2

(where z = x + iy). The geodesics on H is then the vertical half lines and
semicircles with center on the real axis.

The isometries on H is the functions on the form

z 7→ az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1

or

z 7→ az + b

cz + d
, a, b, c, d ∈ R, ad− bc = −1.

The first type of isometries are called Möbius transformations and are of special
interest to us. We note that Möbius transformations correspond to matrices in
SL2(R), so for

γ =

(
a b
c d

)
∈ SL2(R),

we define

γz =
az + b

cz + d
.

We see that γ1 and γ2 gives us the same Möbius transformation, if and
only if γ1 = ±γ2, so we can identify the set of Möbius transformations with

9
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PSL2(R) = SL2(R)/{±I}, where I is the identity matrix. Furthermore a simple
calculation shows that for γ1, γ2 ∈ SL2(R) and z ∈ H, we have

(γ1γ2)z = γ1(γ2z).

So this identification of matrices with Möbius transformations is a homomorphism
with kernel {±I}.

In the following we will often not distinguish between the matrix γ ∈ SL2(R),
the equivalence class {γ,−γ} ∈ PSL2(R) and the corresponding transformation.
Sometimes it is however important to make a distinction between γ and −γ (for
instance when we discuss multiplier systems).

The Möbius transformation for γ( a bc d ) ∈ SL2(R) is naturally extended to a
bijection on the Riemann sphere C ∪ {∞}, by

γz =


a/c if z =∞
∞ if z = −d/c
az+b
cz+d

otherwise
.

One can easily show that

i) The Möbius transformation γ has two fix points if |Trγ| < 2. One in the
upper half plane and its conjugate.

ii) The Möbius transformation γ has one fix points if |Trγ| = 2 and γ 6= ±I.
This fix point is on R ∪ {∞}.

iii) The Möbius transformation γ has two fix points if |Trγ| > 2. Both of these
are located on R ∪ {∞}.

We call a matrix/transformation elliptic, if it is of type i), parabolic if it is of type
ii), and hyperbolic if it of type iii). We call a point fixed by an elliptic matrix E
for an elliptic point, and we say that it has order m, if m is the smallest positive
integer such that Em = ±I.

The hyperbolic measure µ on H is given by

dµ(z) =
dxdy

y2
.

This measure is invariant under Möbius transformations.
A Fuchsian group Γ is a discrete subgroup of SL2(R) (to define discreteness

we can identify SL2(R) with a subspace of R4). We say that a measurable subset
F of H is a fundamental domain for Γ if ΓF = {γz | γ ∈ Γ, z ∈ F} = H, and

γz1 = z2 ⇒ z1, z2 ∈ ∂F

for γ ∈ Γ\{±1} and z1, z2 ∈ F . Since µ is invariant under Möbius transforma-
tions, we get that µ(F) = µ(G) if both F and G are fundamental domains for Γ,
and we define µ(Γ\H) := µ(F).
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We say that Γ is cocompact, if it has a compact fundamental domain, and that
Γ is cofinite if µ(Γ\H) < ∞. If Γ is cofinite, there exists a hyperbolic polygon,
which is a fundamental domain for Γ, this implies that Γ is finitely generated. If Γ
is cocompact, all of the vertices of this polygon is in H, but if Γ is not cocompact,
one or more of these vertices will be in R∪{∞}. Such a vertex a is called a cusp,
and its stabilizer Γa = {γ ∈ Γ | γa = a} is generated by a parabolic matrix. We
will consider two cusps a, b to be equivalent, if they are Γ equivalent, i.e. if there
exists a γ ∈ Γ such that γa = b. The cusps are exactly the (Γ-equivalence classes
of) points in R ∪ {∞}, that are fixed by some element of Γ.

If Γ is a Fuchsian group, then

±Γ = {γ | γ ∈ Γ ∨ −γ ∈ Γ}

is a Fuchsian group, and it generates the same set of Möbius transformations.
Because of this the difference between Γ and ±Γ is relatively small, but some
results are easier to state if we assume, that −I ∈ Γ. Hence we will in the rest
of the thesis only study Fuchsian groups, that contains −I, and when we write
Fuchsian group, it will be implicit, that this means Fuchsian group containing
−I.

As mentioned earlier cofinite Fuchsian groups are finitely generated, and the
following theorem by Fricke and Klein (see [8] p. 42) gives us some information
about a set of generators.

Theorem 2.1.1. Let Γ be a cofinite Fuchsian group. Let g denote the genus of
the surface Γ\H, h the number of its cusps, and let r be the number of conjugacy
classes of elliptic matrices in Γ. Then g, h, r < ∞, and Γ is generated by −I,
2g hyperbolic matrices A1, . . . , Ag, B1, . . . , Bg, r elliptic matrices (one from each
conjugacy class) E1, . . . , Er and h parabolic matrices (one from each conjugacy
class) P1, . . . , Ph. These matrices satisfy the identity

[A1, B1] · · · [Ag, Bg]E1 · · ·ErP1 · · ·Ph = I,

where [Aj, Bj] denotes the commutator AjBjA
−1
j B−1

j .

There is an important formula about the area of fundamental domains, called
the Gauss-Bonnet formula (see [8] p. 43), which states that

µ(Γ\H)

2π
= 2g − 2 + h+

r∑
j=1

(1− e−1
r ). (2.1)

Here g, h, r are as in Theorem 2.1.1, and e1, . . . , er are the smallest positive inte-
gers such that E

ej
j = ±I.

The Gauss defect formula is another important formula for calculating hyper-
bolic areas. This formula states that a hyperbolic triangle T (i.e. the area between
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three hyperbolic geodesics, that pairwise intersects each other in H ∪ R ∪ {∞}),
is given by

µ(T ) = π − α− β − γ, (2.2)

where α, β, γ is the angles of T .

2.2 Automorphic Forms and Functions

Let Γ be a Fuchsian group. If Γ has a cusp in a ∈ R ∪ {∞}, with stabilizer
Γa, then Γa is generated by −I and some matrix γa, where Tr γa = 2. We then
have a matrix σa ∈ SL2(R) such that σa(a) =∞ and σaγaσ

−1
a = ( 1 1

0 1 ). If we for
f : H→ C, have f(γaz) = f(z), then we see that f ◦σ−1

a is 1-periodic. So f ◦σ−1
a

has a Fourier expansion, if f is sufficiently nice. We write this expansion as

f(σ−1
a z) =

∑
n∈Z

bn exp(2πinz). (2.3)

If there is m ∈ Z, such that bn = 0 for n < m, we say that f is meromorphic at
a, and if bn = 0 for all negative n we say that f is holomorphic at a.

If f : H→ C is meromorphic, and

f(γz) = f(z), for z ∈ H and γ ∈ Γ,

then we call f an automorphic function (with respect to Γ), if f is also meromor-
phic in the cusps of Γ. If f has a zero (resp. a pole) at z0 of order m, then for
any γ ∈ Γ, f has a zero (resp. a pole) of order m at γz. Hence, if f 6≡ 0, we can
define a function µf on Γ\H, given by

µf (Γz) =


m if f has a zero of order m at z
−m if f has a pole of order m at z

0 otherwise
.

Let f 6≡ 0 have the Fourier expansion (2.3) in a, and let m ∈ Z be such that
bm 6= 0 and bn = 0 for n < m. We see that for γ ∈ Γ, we have σγa = σaγ

−1, and
since f is Γ-invariant, we get the same Fourier expansion in γa. So we can define
µf (Γa) to be m, and if m > 0 (resp. m < 0) we say that f has a zero (resp. pole)
of order m (resp −m) in a.

Let z ∈ H be a elliptic point i.e. a fix point for some elliptic matrix γz ∈ Γ.
We define ord(z) to be the order of γz (that is, ord(z) is the smallest n ∈ N such
that γnz = ±I). For all non-elliptic points z ∈ H we define ord(z) = 1. For any
z ∈ H and γ ∈ Γ we have ord(γz) = ord(z), so we can define ord(Γz) = ord(z).
Hence the following is well defined, for f 6≡ 0,

Deg(f) =
∑

a∈Γ\R∪{∞} cusp

µf (a) +
∑
z∈Γ\H

µf (z)

ord(z)
,
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and it can be shown that Deg(f) = 0 for all non-zero automorphic functions.
Especially any non-zero automorphic function that is holomorphic (in H and in
the cusps), will be zero free.

We now change the condition f(γz) = f(z) slightly. For γ = ( a bc d ), we define
jγ : C→ C by jγ(z) = cz + d, and note that

jγ1γ2(z) = jγ1(γ2z)jγ2(z). (2.4)

Let f : H→ C be holomorphic, and given such that

f(γz) = ν(γ)(jγ(z))kf(z) (2.5)

for all z ∈ H and γ ∈ Γ, where k ∈ R (we define (jγ(z))k = exp(k log(jγ(z)),
where log is the main logarithm), and ν is a function on Γ taking values in
S1 = {z ∈ C | |z| = 1}. If f 6≡ 0 and γ1, γ2 ∈ Γ, we see that

ν(γ1γ2) =
ν(γ1)(jγ1(γ2z))kf(γ2z)

(jγ1γ2(z))kf(z)
=
ν(γ1)ν(γ2)(jγ1(γ2z))k(jγ2(z))k

(jγ1γ2(z))k
,

and
f(z) = f((−I)z) = ν(−I) exp(kπi)f(z).

We note that

(jγ1(γ2z))k(jγ2(z))k

(jγ1γ2(z))k
= exp(ki(arg jγ1(γ2z) + arg jγ2(z)− arg jγ1γ2(z)))

and that by (2.4)

ω(γ1, γ2) :=
arg jγ1(γ2z) + arg jγ2(z)− arg jγ1γ2(z)

2π

is an integer between -1 and 1, and since it is continuous in z, it is independent
of z ∈ H. So if we define

wk(γ1, γ2) = exp(2πikω(γ1, γ2))

the following holds for ν

ν(−I) = exp(−kπi), (2.6)

ν(γ1γ2) = wk(γ1, γ2)ν(γ1)ν(γ2) (2.7)

A function such as ν is called a multiplier system.

Definition 2.2.1. Let k ∈ R, let Γ be a Fuchsian group, and let ν : Γ → S1.
If(2.6) and (2.7) holds for ν and k, when γ1, γ2 ∈ Γ, we say that ν is a weight k
multiplier system on Γ.
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Note that if ν is a weight k multiplier system, then it is also a weight k + 2n
multiplier system for all n ∈ Z.

When calculating values of multiplier systems it is useful, with some formulas
for ω. In § 2.6 in [7] we find the following formulas

ω(AB,C) + ω(A,B) = ω(A,BC) + ω(B,C) (2.8)

ω(DA,B) = ω(A,BD) = ω(A,B) (2.9)

ω(ADA−1, A) = ω(A,A−1DA) = 0 (2.10)

when A,B,C,D ∈ SL2(R), and D is on the form ( 1 ∗
0 1 ).

Let a be a cusp of Γ, and let f : H → C be a function, for which (2.5)
holds. We define f |γ(z) = (jγ(z))−kf(γz), and we let κa ∈ [0, 2π) be such that
exp(κai) = ν(γa). The function z 7→ exp(−κaiz)f |σ−1

a
(z) is then 1-periodic, and

it has a Fourier expansion

exp(−κaiz)f |σ−1
a

(z) =
∑
n∈Z

bn exp(2πinz).. (2.11)

If bn = 0 in (2.11) for n < 0, we say that f is holomorphic in a. We can show
that, if f is holomorphic in a, then f is holomorphic in γa for all γ ∈ Γ.

We can now state the definition of holomorphic automorphic forms.

Definition 2.2.2. We say that f : H→ C is a weight k (classical) holomorphic
automorphic form with multiplier system ν wrt. Γ, if the following holds:

i) f is holomorphic in H,

ii) f is holomorphic in the cusps,

iii) equation (2.5) holds for all z ∈ H and γ ∈ Γ.

If f is a weight k ∈ Z modular form with trivial multiplier system (i.e.
ν(γ) = 1 for all γ ∈ Γ), we call f a modular form. If ν is trivial, (2.6) im-
plies that k is even.

Let f be an automorphic form and a a cusp, and write f |σa on the form (2.11).
We say that f has a zero of order m in a if bm 6= 0 and bn = 0 for n < m, and it
can easily be shown, that f has a zero of order m in a, if and only if f has a zero
of order m in γa for any γ ∈ Γ. Furthermore if f has a zero of order m in z ∈ H,
then it follows from (2.5), that f has a zero of order m in γz for all γ ∈ Γ. So we
can define µf and Deg(f) just as we did for automorphic functions (but µf will
not assume negative values for automorphic forms).

For cofinite Fuchsian groups we have the following two theorems about the
number of zeros of the modular forms and the number of modular forms (see [20]
Proposition 2.16. p. 39 and Theorem 2.23. p. 46).
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Theorem 2.2.3. Let Γ be a cofinite Fuchsian group. Let g denote the genus of
the surface Γ\H, h the number of its cusps, and let r be the number of conjugacy
classes of elliptic matrices in Γ. If f 6= 0 is a weight k modular form, then

Deg(f) =
k

2

(
2g − 2 + h+

r∑
j=1

(1− e−1
r )

)

Theorem 2.2.4. Let Γ be a cofinite Fuchsian group. Let g denote the genus of
the surface Γ\H, h the number of its cusps, and let r be the number of conjugacy
classes of elliptic matrices in Γ. If Gk denotes the space of weight k modular
forms, then for even k

Dim(Gk) =


(k − 1)(g − 1) + kh

2
+
∑r

j=1

⌊
k(1−e−1

r )
2

⌋
if k > 2

g + h− 1 if k = 2 and h > 0
g if k = 2 and h = 0
1 if k = 0
0 if k < 0

.

We note that if we combine Theorem 2.2.3 with formula (2.1), then we get

Deg(f) = k · µ(Γ\H)

4π
.

Especially the degree is positive, if the weight is positive.
G0 is the space of holomorphic automorphic functions. It contains the con-

stant functions and according to Theorem 2.2.4, these are the only holomorphic
automorphic functions.

2.3 Spectral Theory of Automorphic Forms

This section is concerned with functions that transforms almost like holomorphic
automorphic forms. That is, functions f : H→ C, for which we have a multiplier
system ν on a cofinite Fuchsian group Γ, and a weight k ∈ R, such that for z ∈ H
and γ ∈ Γ

f(γz) = ν(γ)

(
jγ(z)

|jγ(z)

)k
f(z) (2.12)

(as in the previous sections xk means exp(k log x), where log is the main loga-
rithm).

If (2.12) holds for f : H → C and F1 and F2 are two fundamental domains
wrt. Γ, then ∫

F1

|f |2 dµ =

∫
F2

|f |2 dµ,
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and hence it makes sense to define

||f || =
(∫
F
|f |2 dµ

)1/2

,

for any fundamental domain F wrt. Γ. We define H(Γ, ν, k) to be the set of
functions f for which (2.12) holds, and ||f || < ∞. We can define an inner
product 〈·, ·〉 on H(Γ, ν, k) by

〈f, g〉 =

∫
F
fḡ dµ.

The following 3 differential operators are of interest

Kk = iy
∂

∂x
+ y

∂

∂y
+
k

2
= (z − z̄)

∂

∂z
+
k

2

Λk = iy
∂

∂x
− y ∂

∂y
+
k

2
= (z − z̄)

∂

∂z̄
+
k

2

∆k = y2

(
∂2

∂x2
+

∂2

∂y2

)
− iky ∂

∂x
.

We call Kk the (weight k) Maass raising operator, Λk the (weight k) Maass
lowering operator and ∆k the (weight k) Laplacian. If f is C1, then

Kk

((
jγ(z)

|jγ(z)

)−k
f(γz)

)
=

(
jγ(z)

|jγ(z)

)−k−2

(Kkf)(γz) (2.13)

Λk

((
jγ(z)

|jγ(z)

)−k
f(γz)

)
=

(
jγ(z)

|jγ(z)

)−k+2

(Λkf)(γz). (2.14)

Hence if (2.12) holds for f , then (2.12) with k replaced by k + 2 (resp. k − 2)
holds for Kkf (resp. Λkf). So the raising operator increases the weight by 2 and
the lowering operator decreases the weight by 2.

If f ∈ H(Γ, ν, k), g ∈ H(Γ, ν, k + 2) and f, g are C1 (in x, y), then we have
the following identity

〈Kkf, g〉 = 〈f,Λk+2g〉. (2.15)

Since

−∆k = Λk+2Kk −
k

2

(
1 +

k

2

)
= Kk−2Λk +

k

2

(
1− k

2

)
, (2.16)

(see [15] formula (3.4) p. 305) this means that if f, g ∈ H(Γ, ν, k) are C2, then

〈∆kf, g〉 = 〈f,∆kg〉.
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So if we define the subset D(Γ, ν, k) ⊂ H(Γ, ν, k) by

D(Γ, ν, k) = {f ∈ H(Γ, ν, k) | f is C2,∆kf ∈ H(Γ, ν, k)}

then ∆k is symmetric on D(Γ, ν, k).
The subset D(Γ, ν, k) is dense in H(Γ, ν, k), and when we consider D(Γ, ν, k)

to be the domain of ∆k, then this operator is essentially self-adjoint (see [15] Satz
3.2 p. 310). So ∆∗k = ∆∗∗k = ∆k, and we can extend ∆k to be an operator on
H(Γ, ν, k), by defining ∆k := ∆∗k.

When f, g ∈ D(Γ, ν, k), then by formula (2.15) and (2.16)

〈f,−∆kg〉 = 〈Kkf,Kkg〉 −
k

2

(
1 +

k

2

)
〈f, g〉, (2.17)

〈f,−∆kg〉 = 〈Λkf,Λkg〉+
k

2

(
1− k

2

)
〈f, g〉. (2.18)

So

〈f,−∆kf〉 ≥
|k|
2

(
1− |k|

2

)
||f ||2

for f ∈ D(Γ, ν, k), and when we take the closure, we get that the same in-
equality holds for f ∈ H(Γ, ν, k). Hence the spectrum of −∆k is contained in
[|k|/2(1− |k|/2),∞).

All the eigenfunctions of −∆k are in D(Γ, ν, k) (see [15] Satz 5.7a p. 325).
By (2.17) and (2.18) the smallest possible eigenvalue is |k|/2(1− |k|/2), and we
can only obtain this eigenvalue, if we for the corresponding eigenfunction f have
Λkf ≡ 0 or Kkf ≡ 0. On the other hand it follows from formula (2.16), that if
Λkf ≡ 0 or Kkf ≡ 0, then f is an eigenfunction with this eigenvalue.

If Λkf ≡ 0, then

0 = iy
∂f

∂x
(z)− y∂f

∂y
(z) +

k

2
f(z)

= iy1+k/2 ∂

∂x
(y−k/2f(z))− y1+k/2 ∂

∂y
(y−k/2f(z))

= y1+k/2 ∂

∂z̄
(y−k/2f(z)),

so y−k/2f(z) is holomorphic. If (2.12) holds for f , then (2.5) holds for y−k/2f(z),
since =(γz) = y|jγ(z)|−2 for γ ∈ SL2(R). If furthermore ||f || < ∞, then
y−k/2f(z) will be holomorphic in the cusps, and hence it will be a holomor-
phic automorphic form. On the other hand if y−k/2f(z) is weight k holomorphic
automorphic form wrt. Γ and with multiplier system ν, then f ∈ D(Γ, ν, k), and
Λkf ≡ 0 (by reversing the arguments).
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Similar arguments show that Kkf ≡ 0 and f ∈ D(Γ, ν, k), if and only if
yk/2f(z) is a weight−k holomorphic automorphic form wrt. Γ and with multiplier
system ν̄.

We let λ0 ≤ λ1 ≤ . . . be the eigenvalues of −∆k (on H(Γ, ν, k)), where we
have λ = λn for m different n’s if λ is an eigenvalue of multiplicity m. We define
rn := (λn − 1/4)1/2, so that(

1

2
+ irn

)(
1−

(
1

2
+ irn

))
=

(
1

2
+ irn

)(
1

2
− irn

)
= λn.

Let Γa, γa and σa be as in the start of section 2.2, and let T := ( 1 1
0 1 ). If ν is

a weight k ∈ R multiplier system on Γ, z ∈ H, s ∈ C and <s > 1, then we define

Ea(z, s, ν, k) =
∑

γ∈Γa\Γ

wk(σa, γ)ν(γ)

(
jσaγ(z)

|jσaγ(z)|

)k
(=(σaγz))s, (2.19)

if a is singular wrt. ν, i.e. if ν(γa) = 1 (we call a non-singular cusp regular).
Here the sum makes sense since

=(σaγaγz) = =(Tσaγz) = =(1 + σaγz) = =(σaγz),

jσaγaγ(z) = jTσaγ(z) = jσaγ(z)

and by (2.8), (2.9) and (2.10)

ω(σa, γaγ) + ω(γa, γ) = ω(σaγa, γ) + ω(σa, γa)

= ω(Tσa, γ) + ω(σa, σ
−1
a Tσa)

= ω(σa, γ),

so the terms in (2.19) do not change if we replace γ by γnaγ (i.e. takes another
representative in Γaγ).

It can easily be shown that formula (2.12) holds for Ea(·, s, ν, k).

If a and b are (not necessarily distinct) singular cusps, and we define a mul-
tiplier system νab on σaΓσ

−1
b by

νab(γ) = ν(σ−1
a γσb)wk(σa, σ

−1
a γσb)wk(γσb, σ

−1
b )

then we can rewrite (2.19) in the following way(
jσ−1
b

(z)

|jσ−1
b

(z)|

)−k
Ea(σ

−1
b z, s, ν, k) =

∑
γ∈Γ∞\σaΓσ−1

b

νab(γ)

(
jγ(z)

|jγ(z)|

)k
(=(γz))s

= E∞(z, s, νab, k).
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We have Kky
s = (k/2 + s)ys and Λky

s = (k/2− s)ys, so by (2.13) and (2.14)

KkEa(σ
−1
b z, s, ν, k) =

(
k

2
+ s

)
Ea(σ

−1
b z, s, ν, k + 2)

ΛkEa(σ
−1
b z, s, ν, k) =

(
k

2
− s
)
Ea(σ

−1
b z, s, ν, k − 2),

and hence by (2.16)

−∆kEa(σ
−1
b z, s, ν, k) = s(1− s)Ea(σ−1

b z, s, ν, k).

For <s > 1, the function(
jσ−1
b

(z)

|jσ−1
b

(z)|

)−k
Ea(σ

−1
b z, s, ν, k) = E∞(z, s, νab, k)

is 1-periodic in z, and it has a Fourier expansion. This Fourier expansion is given
by

E∞(z, s, νab, k) = δaby
s + ϕab(s, ν)y1−s +

∑
n∈Z\{0}

ϕab,n(y, s, ν)e2πinx,

where

ϕab(s, ν) =
π41−sΓ(2s− 1)

Γ(s+ k/2)Γ(s− k/2)
e−ikπ/2

∑
( ∗ ∗c d )∈Γ∞\σaΓσ−1

b /Γ∞
c>0

νab(
∗ ∗
c d )

c2s
(2.20)

(see [5] formula (5.20) and (5.22) p. 368), and ϕab,n(y, s, ν) is holomorphic in
s (see [5] formula (5.23) p. 369 for specific expressions). By formula (5.21) on
p.368 in [5], we have for <s > 1,

E∞(z, s, νaa, k) = ys +O(y1−s),

and hence

||Ea(·, s, ν, k)|| = ||E∞(·, s, νab, k)|| =∞.

So (2.12) holds for Ea(·, s, ν, k), and it is an eigenfunction of −∆k, but it is not
in H(Γ, ν, k).

The functions ϕab(s, ν) and Ea(z, s, ν, k) are holomorphic for <s > 1, and they
can be meromorphically extended to all s ∈ C (see [16] p. 293). Let a1, . . . , aK0

be all the singular cusps (wrt. ν) and define Φ(s, ν) to be the matrix given by

Φ(s, ν) = (ϕaiaj(s, ν))1≤i,j≤K0 .
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When we let E(z, s, ν, k) be the vector Ea1(z, s, ν, k)
...

EaK0
(z, s, ν, k)

 ,

we get

E(z, s, ν, k) = Φ(s, ν)E(z, 1− s, ν, k) (2.21)

(see [16] formula (10.19) p. 296).
The matrix Φ(s, ν) is called the scattering matrix, and we define

ϕ(s, ν) = det Φ(s, ν),

and call ϕ(s, ν) the scattering determinant. Formula (2.21) gives us

Φ(s, ν)Φ(1− s, ν) = I, (2.22)

where I as usual denotes the identity matrix (but in this case the K0×K0-identity
matrix), and we have (see [5] formula (5.24) p. 369)

ϕab(s, ν) = ϕba(s̄, ν). (2.23)

Hence for s = 1/2 + it we get

ϕ

(
1

2
+ it, ν

)
=

(
ϕ

(
1

2
− it, ν

))−1

=

(
ϕ

(
1

2
+ it, ν

))−1

,

so ∣∣∣∣ϕ(1

2
+ it, ν

)∣∣∣∣ = 1. (2.24)

Furthermore by (2.22) and (2.23)

Φ

(
1

2
+ it, ν

)
Φ

(
1

2
+ it, ν

)t
= Φ

(
1

2
+ it, ν

)
Φ

(
1

2
− it, ν

)
= I,

where Φt is the transposed of Φ. So by considering the entries in the diagonal,
we get ∑

b

∣∣∣∣ϕab(1

2
+ it, ν

)∣∣∣∣2 = 1. (2.25)

If Ea(z0, s, ν, k) has a pole in s = s0, then Ea(z, s, ν, k) has a pole in s = s0

for all z ∈ H, and <s0 6= 1/2, furthermore if <s0 > 1/2 (because of (2.21) it
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is enough to study the zeros and the poles s with <s ≥ 1/2), then the pole is
simple (for all z ∈ H), s0 ∈ (1/2, 1] and ϕaa(s) also has a simple pole in s = s0

(see [16] Satz 10.3 p. 297 and Satz 10.4 p. 299). Conversely if ϕaa(s) has a pole
in s = s0, with <s0 > 1/2, then it follows from the Maass-Selberg relations (see
[16] Lemma 11.2 p. 300-301), that Ea(z, s, ν, k) has a pole in s = s0.

The residue ha,s0(z) of Ea(z, s, ν, k) in s = s0 is in D(Γ, ν, k), and ha,s0 is an
eigenfunction of −∆k with eigenvalue s0(1 − s0) (see [16] Satz 11.2 a) p. 302).
If ha,s0(z) are the residue of Ea(z, s, ν, k) in s = s0, and hb,s0(z) is the residue of
Eb(z, s, ν, k) in s = s0, then

〈ha,s0 , hb,s0〉 = Res (ϕab(s), s = s0) (2.26)

(see [16] Satz 11.2 b) p. 302).

If κ : H2 → C is a suitable nice function, then

∫
F

∑
γ∈Γ

ν(γ)

(
jγ(z)

|jγ(z)|

)k
κ(z, γz) dµ(z), (2.27)

is well defined (as usual F is a fundamental domain for Γ). If we divide Γ into
conjugacy classes, we can rewrite (2.27) to the following

∑
C

∫
F

∑
γ∈C

ν(γ)

(
jγ(z)

|jγ(z)|

)k
κ(z, γz) dµ(z),

where the first sum is over the conjugacy classe C ⊂ Γ. Dividing this sum into
the four cases of the identity, hyperbolic, parabolic and elliptic matrices, lets us
express (2.27) in terms that relates to the geometry of Γ\H.

The function

K(z) =
∑
γ∈Γ

ν(γ)

(
jγ(z)

|jγ(z)|

)k
κ(z, γz)

is in H(Γ, ν, k) and can be expressed as a linear combination of eigenfunctions of
−∆k plus some integrals over Eisenstein series. We can use this to express (2.27)
in terms related to the spectrum of −∆k. Combining these expressions we get
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Selberg’s trace formula (see [5] Theorem 6.3 p. 412-413)

∞∑
n=0

h(rn) =
µ(F)

4π

∫
R
rh(r)

sinh(2πr)dr

cosh(2πr) + cos(πk)
(2.28)

+
µ(F)

4π

∑
l odd

1≤l≤|k|

(|k| − l)h
(
i(|k| − l)

2

)
(2.29)

+
∑
[γ]

Tr γ>2

ν(γ)l(γ0)

N(γ)1/2 −N(γ)−1/2
g(l(γ)) (2.30)

+
∑
{R}

TrR<2
0<θ(R)<π

ν(R)iei(k−1)θ

4MR sin θ

∫
R
g(u)e(k−1)u/2 (eu − e2iθ)du

coshu− cos(2θ)
(2.31)

−g(0)
∑
αj 6=0

log |1− e2πiαj(ν)| (2.32)

+
1

2

∑
αj(ν)6=0

(
1
2
− αj(ν)

)
PV

∫ ∞
−∞

g(u)e(k−1)u/2 (eu − 1)du

coshu− 1
(2.33)

+K0

∫ ∞
0

g(u)(1− cosh(k
2
u))

eu/2 − e−u/2 du (2.34)

−K0

(
g(0) log 2 +

1

2π

∫
R
h(r)

Γ′(1 + ir)

Γ(1 + ir)
dr

)
(2.35)

+
1

4
h(0)Tr (I − Φ(1

2
, ν)) (2.36)

+
1

4π

∫
R
h(t)

ϕ′

ϕ

(
1

2
+ it, ν

)
dt. (2.37)

Here h is any holomorphic even function defined on{
z ∈ C

∣∣∣∣ |y| < max

{ |k| − 1

2
,
1

2

}
+ δ

}
,

for some δ > 0, such that h(r) = O((1 + r)−2−δ), and

g(u) =
1

2π

∫
R
h(r)e−iru dr

(h and g comes from the Selberg/Harish-Chandra transform of κ). If there are
no singular cusps, then the scattering matrix is not defined, and we define the
terms (2.36) and (2.37) to be 0 in this case.

The term (2.37) and the left hand side of (2.28), comes from (2.27) expressed
in terms of the spectrum of −∆k, and hence we call these terms the spectral
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terms. The other terms originates from (2.27) expressed in terms related to the
geometry of Γ\H, and hence we call them geometric terms.

The term (2.30) is related to the hyperbolic conjugacy classes, and hence we
refer to it as the hyperbolic term. The γ0, that occurs in this term, is defined to
be the primitive hyperbolic matrix, which γ is a positive power of. The functions
l and N are the length and norm, which we will give a definition of in the next
section.

The term (2.31) is related to elliptic conjugacy classes, and we call it the
elliptic term. Here θ = θ(R) is defined to be in (0, 2π), such that R is a SL2(R)-
conjugate of (

cos θ − sin θ
sin θ cos θ

)
.

For a cusp a we define αa(ν) ∈ [0, 1) to be given by ν(γa) = exp(2πiαa(ν)),
if b is a cusp equivalent to a, then αa(ν) = αb(ν) so if we call the equivalence
classes of cusps c1, . . . , ch, we can define αj(ν) := αa(ν), where a is some cusp in
cj. So in (2.32) and (2.33) we sum over the regular cusps.

2.4 Closed Geodesics on Γ\H
We can identify the group PSL2(R) with SH (the unit tangent bundle on H).
The standard way to do this is to use the homeomorphism

±
(
a b
c d

)
7→
(
ai+ b

ci+ d
, (ci+ d)−2ζ

)
,

where ζ is the unit vector at i up along the imaginary axis. For t ∈ R the matrix

ϕt =

(
exp(t/2) 0

0 exp(−t/2)

)
,

sends i to exp(t)i. So the family {ϕt}t∈R moves i along the geodesic through i in
direction ζ, and dist(i, ϕti) = |t|.

Since Möbius transformations sends geodesics to geodesics and preserves dis-
tances, we see that fγ : R→ H, given by

fγ(t) = γφti, (2.38)

is a geodesic for any γ = ( a bc d ) ∈ SL2(R), and dist(γi, γϕti) = |t|. Furthermore
the geodesic (2.38) goes through γi in direction (ci+ d)−2ζ. For any given point
in H and any direction, there is a unique geodesic going through this point in
this direction, so we can write any geodesic in the form (2.38).

Now let Γ be a Fuchsian group, and let γ ∈ Γ be hyperbolic. Then γ can be
diagonalized, i.e.

A−1γA = ±
(
λ 0
0 λ−1

)
, (2.39)
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for λ = 1
2
(|Trγ| +

√
(Trγ)2 − 4) > 1 and some A ∈ SL2(R). The A in (2.39) is

not unique, but if A1 and A2 are two such A’s, then A1 = A2φt for some t ∈ R.
Since φt+s = φtφs, we have

γnAφt = (Aφ2 log λA
−1)nAφt = Aφ2n log λ+t,

and hence the points Aφti and Aφ2n log λ+ti on the geodesic {Aφsi | s ∈ R} are
Γ-equivalent.

In the following we will save some notation and assume, that the sign in (2.39)
is positive.

The hyperbolic metric on H induces a metric on Γ\H, hence Gσ : R → Γ\H,
given by

Gσ(t) = {τσφti | τ ∈ Γ}, (2.40)

is a geodesic, for any σ ∈ SL2(R). When σ is the A in (2.39), we get

{τAφti | τ ∈ Γ} = {τγAφti | τ ∈ Γ} = {τAφt+2 log λi | τ ∈ Γ},

so the geodesic Cγ : [0, 2 log λ]→ Γ\H, given by

Cγ(t) = {τAφti | τ ∈ Γ} (2.41)

is a closed curve.
When Tr γ = λ+λ−1, then the geodesic Cγ has length 2 log λ. So for hyperbolic

γ with trace λ+ λ−1, we define the length

l(γ) := 2 log λ,

and norm
N(γ) := exp(l(γ)) = λ2.

If f, g : [0, a]→ Γ\H are closed geodesics and

f(t) =

{
g(t+ b) if t+ b ≤ a

g(t+ b− a) if t+ b > a

for some b ∈ [0, a] (i.e. f is g except that it starts and ends in another point), then
we will consider f and g to be the same closed geodesic. So to each hyperbolic
element γ = AφlA

−1 in Γ, we can associate a unique closed geodesic Cγ of length
l.

Conversely if we have a curve C on Γ\H, then we can lift C to H, so we get
the set

CH = {z ∈ H | Γz ∈ C}.
We can choose a z0 ∈ CH, and a neighborhood U of z0. Then ΓU is a neighborhood
of Γz0 in Γ\H, and Γz is on a segment of CH, which is contained in ΓU . By lifting
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this segment to H we get infinitely many curves in H (one for each element in Γ).
If we assume, that C is a geodesic on Γ\H, then these curves becomes segments of
geodesics on H. If we name the geodesic through z0 C0, then the other geodesics
are on the form τC0 for τ ∈ Γ, and ΓC0 = CH. If we now assume C to be closed
and of length l, we can choose a point z1 on C0, and we denote by z2 the point
that is at distance l from z1 along C0 (in direction of the orientation). Moving
from z1 to z2 then corresponds to move l along C, i.e. once around C, from Γz1.
But then Γz1 = Γz2, so two points on C0, that are the l apart, are Γ equivalent.
Since this is true for any two points at distance l on C0, it follows by continuity
of the geodesic and discreteness of Γ, that there is a γ ∈ Γ that moves any point
on C0 l along C0. Furthermore C0 is on the form (2.38), so C is on the form (2.41)
for some A ∈ SL2(R), and λ = exp(l/2).

So to any hyperbolic matrix γ ∈ Γ we can associate a closed geodesic Cγ on
Γ\H, and for any closed geodesic C there is at least one hyperbolic matrix γ, such
that C = Cγ.

If γ = AφlA
−1, then for n ∈ N, we have γn = AφlnA

−1, and hence

Cγn(t+ jl) = Cγn(t) = Cγ(t),

for any j ∈ {0, . . . , n− 1}. So Cγn ”runs around” Cγ n times. If γ is a hyperbolic
matrix, and γ is not a positive power of another matrix, then we say that γ is
primitive, and we say that Cγ is a prime geodesic.

If γ = AφlA
−1 and Cγ runs around the same geodesic C0 n > 1 times, then

we must have 0 < t1 < t2 < l, such that

Cγ(t1) = Cγ(t2),

and small neighborhoods U1 3 t1 and U2 3 t2, such that

Cγ(U1) = Cγ(U2).

So
Aφt1i = γ0Aφt2i

for some γ0 ∈ Γ, and for s ∈ U1 there is r ∈ U2 such that

Aφsi = σAφri

for some σ ∈ Γ.
Since we can choose U1 and U2 arbitrarily small, and since Γ is discrete and

Möbius transformations are continuous, we see that σ = γ0 for all s ∈ U1. So γ0

moves all points Aφsi, with s ∈ U1 a fixed distance l0 < l (since it is an isometry)
along the geodesic t 7→ Aφti, and hence it does so for all s ∈ R, so it is hyperbolic
(it fixes both endpoints of the geodesic), and on the form Aφl0A

−1. Since Cγ runs
around the same geodesic C0 n times, we have l = l0n. So γ = γn0 , which means γ



26 Chapter 2. Prerequisites

is not primitive. Hence the prime geodesics are the closed geodesics, that ”goes
once around”.

If γ1, γ2 ∈ Γ are hyperbolic matrices with Cγ1 = Cγ2 , then we have γ1 =
A1φlA

−1
1 and γ2 = A2φlA

−1
2 , for some l > 0 and A1, A2 ∈ SL2(R). We note

that A1i = σA2φti for some σ ∈ Γ and t ∈ [0, l), so if we move along the
geodesic, we get A1φsi = σA2φt+si, for s ∈ [0, l− t]. Hence A1 = σA2φt and since
γ2 = (A2φt)φl(A2φt)

−1, we see that

γ1 = A1φlA
−1
1 = (σA2φt)φl(σA2φt)

−1 = σγ2σ
−1.

In other words γ1 is a Γ-conjugate of γ2.
If γ, σ ∈ Γ and γ is hyperbolic, then we can write γ = AφlA

−1. We then have
σγσ−1 = σAφl(σA)−1, and we see that for t ∈ [0, l]

Cσγσ−1(t) = {τσAφti | τ ∈ Γ} = {τAφti | τ ∈ Γ} = Cγ(t).

We have shown, that there is a one-to-one correspondence between closed
geodesics on Γ\H and conjugacy classes [γ] = {σγσ−1 | σ ∈ Γ} of hyperbolic
matrices γ ∈ Γ with positive trace.

Selberg’s trace formula gives us a correspondence between conjugacy classes
of elements in Γ and the spectrum of the operator ∆k. The elements in Γ (and
conjugacy classes of the elements) can be divided into the identity, elliptic ele-
ments, parabolic elements, and hyperbolic elements. To each elliptic elements
corresponds an elliptic point, to each conjugacy class of parabolic elements cor-
responds a cusp, and to conjugacy classes of the hyperbolic elements corresponds
closed geodesics. So we can also view the trace formula as a correspondence be-
tween the spectrum of ∆k and the geometry of Γ\H. Especially will (2.30), the
term we get from the hyperbolic matrices, be a sum over the closed geodesics
on Γ\H, where we sum expressions given by the length of the geodesics and the
multiplier system. The length of the geodesic is obviously closely related to the
geodesic itself, but it is not clear, how to interpret the multiplier system as some-
thing concerning the geodesic. In section 4 we will suggest how the multiplier
systems value for a hyperbolic matrix, can be interpreted as a number (rather)
closely related to the geodesic.

For now we will however ignore the multiplier system, by simply letting it be
1 for every element in Γ. For this to make sense, the weight k must be even,
so we will let k = 0. We can choose the g in the trace formula to depend on
s ∈ {z ∈ C | <z > 1} in such a way, that (2.30) becomes a function in s, that is
much like the logarithm of Riemann’s zeta function (and is known as Selberg’s
zeta function), but instead of being a sum over prime numbers, it is a sum over
prime geodesics. We can then proceed as in the proof of the prime number
theorem (for a different approach see chapter 10.8-9 p. 152-156 in [8]), to get an
estimate on the number of closed geodesics of a certain length. This estimate is
known as the prime geodesic theorem (see p. 155 of [8]).
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Theorem 2.4.1 (Prime geodesic theorem). Let 1 = s1 > s2 ≥ · · · ≥ sn > 1/2
be given, such that the discrete spectrum of ∆0 intersected with [0, 1/4) is given
by {s1(1− s1), . . . , sn(1− sn)}, then∑

[γ]∈Γ′

N(γ)≤X

l(γ) =
∑
j

s−1
j Xsj +OΓ(X3/4). (2.42)

We define
π(t) := #{[γ] ∈ Γ′ | l(γ) ≤ t}.

By using partial summation on Theorem 2.4.1 we get the following corollary.

Corollary 2.4.2. We have

π(logX) = li(X) +OΓ(Xs2 +X3/4), (2.43)

where s2 is as in Theorem 2.4.1.



Chapter 3

Taylor Coefficients for Eisenstein
Series

3.1 Modular Forms wrt. SL2(Z)

When no other reference is given, the results in this section can be found in Chap-
ter 2 and 5 in Don Zagier’s ”Elliptic Modular Forms and Their Applications”,
which is the first part of [1].

For even k ≥ 4 we define the Eisenstein Series of weight k wrt. SL2(Z)
Ek : H→ C by

Ek(z) =
1

2

∑
m,n∈Z

(m,n)=1

(mz + n)−k, (3.1)

where (m,n) denotes the greatest common divisor of m and n. Ek is a weight
k holomorphic modular form wrt. SL2(Z), and any holomorphic modular form
wrt. SL2(Z) can be written as a polynomial in E4 and E6.

In the rest of this chapter we will omit ”wrt. SL2(Z)” and just write ”modular
form”, when we consider modular forms wrt. SL2(Z).

We would like to define a weight 2 Eisenstein Series, but (3.1) does not make
sense for k = 2, since the sum is not absolutely convergent in this case. We can
however define E2 : H→ C by

E2(z) =
1

2

∑
m∈Z

∑
n∈Z

(m,n)=1

(mz + n)−2.

The function E2 is holomorphic and has a transformation equation much like the
one for modular forms. That is

E2(γz) = (cz + d)2E2(z) +
6

πi
c(cz + d) for γ =

(
a b
c d

)
∈ SL2(Z).

28
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Since(
=
(
az + b

cz + d

))−1

=
|cz + d|2

(ad− bc)=z =
(cz + d)2

(ad− bc)=z −
2ic(cz + d)2

(ad− bc) ,

we see that E∗2 : H→ C defined by

E∗2(x+ iy) = E2(x+ iy)− 3

πy
,

transforms like a weight 2 modular form. E∗2 is however not holomorphic.
We define a differential operator D by D := 1

2πi
d
dz

. If f is a weight k modular
form, we have

(jγ(z))−2Df(γz) = D(f ◦ γ)(z) = D(f · jkγ )(z) = Df(z)jkγ (z) +
ck

2πi
f(z)jk−1

γ ,

when γ = ( a bc d ) ∈ SL2(Z). So, much like E2, Df transforms in the following way

Df(γz) = Df(z)jk+2
γ (z) +

ck

2πi
f(z)jk+1

γ .

Because of this it makes sense to define two other (families of) differential
operators. For k ∈ N define ∂k and ϑk by

∂kf(z) = Df(z)− k

4π=z f(z), ϑkf = Df − k

12
E2f.

We then see that ∂k takes almost holomorphic (understood as polynomials in =z
with holomorphic functions as coefficients) modular forms of weight k to almost
holomorphic modular forms of weight k + 2, and ϑk takes holomorphic modular
forms of weight k to holomorphic modular forms of weight k+ 2. If f is a weight
k modular form, we will save notation by writing ∂f and ϑf instead of ∂kf and
ϑkf .

Since ϑ takes holomorphic modular forms of weight k to holomorphic modular
forms of k + 2, we have ϑE4 = cE6 for some c ∈ C. By comparing the constant
terms in the Fourier expansions of ϑE4 and E6, we see that c = −1/3. In the same
way we see that ϑE6 = −E2

4/2. Since ϑ(fg) = fϑg+gϑf , and since holomorphic
modular forms are polynomials in E4 and E6, we can write ϑ in the following way

ϑ =
−E6

3

∂

∂E4

− E2
4

2

∂

∂E6

. (3.2)

If f is a weight k modular form, then we define

∂nf := ∂k+2n−2 · · · ∂k+2∂kf,

ϑnf := ϑk+2n−2 · · ·ϑk+2ϑkf.
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So ∂n takes almost holomorphic modular forms of weight k to almost holomorphic
modular forms of weight k + 2n, and ϑn takes holomorphic modular forms of
weight k to holomorphic modular forms of weight k + 2n.

It turns out, that there is a (in some sense) better way to define powers of
ϑ than ϑn. For a modular form f of weight k, we define ϑ[n]f by ϑ[0]f = f ,
ϑ[1]f = ϑkf and for n ≥ 1

ϑ[n+1]f = ϑ(ϑ[n]f)− n(k + n− 1)
E4

144
ϑ[n−1]f.

Formula (4.3) in [11] gives us the following relation between the derivatives ∂m

and ϑ[m]

∂nf =
n∑

m=0

n!

m!

(
n+ k − 1
m+ k − 1

)(
E∗2
12

)n−m
ϑ[m]f.

For f : H→ C, σ ∈ GL2(C) and k ∈ Z even, we define f |kσ to be

(f |kσ)(z) =
det(σ)k/2f(σz)

jkσ(z)

(for σ ∈ SL2(R) this is consistent with the way we defined f |kσ in section 2.2).
For z0 = x0 + iy0 ∈ H define

σz0 =

(
−z0 z0

−1 1

)
.

We then have σz00 = z0, and z 7→ σz0z is a holomorphic bijection from the unit
disc D to H.

Now let f be a weight k holomorphic modular form. Then f |kσz0 is holomor-
phic in D, and so it has a Taylor expansion around 0

(f |kσz0)(z) =
∞∑
n=0

cz0(n, f)zn. (3.3)

We then have

f(z) =
(z0 − z0)k/2

(z − z0)k

∞∑
n=0

cz0(n, f)(σ−1
z0
z)n.

If z0 is an elliptic point (i.e. z0 is a SL2(Z)-translate of i or ρ exp(πi/3)), and

Γz0 := {γ ∈ SL2(Z) | γz0 = z0} = 〈γ0〉,

then

σ−1
z0
γ0σz0 =

(
j−1
γ0

(z0) 0
0 jγ0(z0)

)
,

furthermore jγ0(z0) = ±1 if z0 ∈ SL2(Z)i, and jγ0(z0) = ρ±1 if z0 ∈ SL2(Z)ρ (see
[6] section 4.1).
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Since

(f |kσz0)(σ−1
z0
γσz0z) =

det(σz0)k/2f(γσz0z)

jkσz0 (σ−1
z0
γσz0z)

= jk
σ−1
z0
γσz0

(z)(f |kσz0)(z),

we see that

j−kγ0
(z0)(f |kσz0)

(
z

j2
γ0

(z0)

)
= j−kγ0

(z0)(f |kσz0)(σ−1
z0
γ0σz0z)

= j−kγ0
(z0)jk

σ−1
z0
γ0σz0

(z)(f |kσz0)(z)

= (f |kσz0)(z).

By Cauchy’s integral formula we have

cz0(n, f) =
1

2πi

∫
Sr

f |kσz0(z)

zn+1
dz

where r > 0 is small, and Sr is the cirkel with radius r and center 0. Hence

cz0(n, f) =
1

2πi

∫
Sr

f |kσz0(z)

zn+1
dz =

1

2πi

∫
Sr

f |kσz0(j−2
γ0

(z0)z)

jkγ0
(z0)zn+1

dz

=
1

2πijk+2n
γ0

(z0)

∫
Sr

f |kσz0(z)

zn+1
dz = j−k−2n

γ0
(z0)cz0(n, f)

So if z0 ∈ SL2(Z)i and 4 does not divide k + 2n, then cz0(n, f) = 0, and likewise
if z0 ∈ SL2(Z)ρ and 6 does not divide k + 2n, then cz0(n, f) = 0.

Let z0 ∈ H and f be a holomorphic modular form. According to [11] formula
(3.7) we have

cz0(n, f) =
n∑

m=0

(
n+ k − 1
m+ k − 1

)
(z0 − z0)m+k/2

m!
f (m)(z0),

and by formula (3.9) in [11]

∂nf(z) =
n!

(−4π=z)n

n∑
m=0

(
n+ k − 1
m+ k − 1

)
(2i=z)m

m!
f (m)(z0),

so

cz0(n, f) =
(2πi)n(2i=z0)n+k/2

n!
∂nf(z0). (3.4)
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3.2 Values of L-Functions

In [1] (p. 89-90) Zagier shows a connection between ∂nEk(i), with ∂m and Ek as
in section 3.1, and L-series for Hecke characters. More precisely he shows, that
for 4|k + 2n

∂nEk(i) =
(k + n− 1)!

2ζ(k)(−4π)n(k − 1)!

∑
λ∈Z[i]\{0}

λ
n

λk+n

=
(k + n− 1)!

2ζ(k)(−4π)n(k − 1)!

∑
λ∈Z[i]\{0}

(λ/λ)k/2+n

|λ|k

=
2(k + n− 1)!

ζ(k)(−4π)n(k − 1)!

∑
a

ψk/2+n(a)

N(a)k
,

where the last sum runs over the ideals a of Z[i], N is the norm, and ψk/2+n is

the Hecke character given by ψk/2+n(a) = (λ/λ)k/2+n, where λ is a generator of a
(this is independent of the choice of λ, since 4|k + 2n).

We know that if 4 does not divide k + 2n, then ci(n,Ek) = 0, and hence by
(3.4) ∂nEk(i) = 0. Another way to see this is by noting

(a− bi)n
(a+ bi)k+n

=
(a− bi)k+2n

(a2 + b2)k+n
= − (ai+ b)k+2n

(a2 + b2)k+n
= − (b+ ai)n

(b− ai)k+n
,

for k + 2n ≡ 2 (mod 4). So the terms cancel out in the sum over Z[i]\{0}.
So when k + 2n ≡ 2 (mod 4), ∂nEk(i) = ci(n,Ek) = 0. But what happens,

when 4|k + 2n?
For

S =

(
0 −1
1 0

)
,

Si = i, and hence
E∗2(i) = E∗2(Si) = i2E∗2(i).

So E∗2(i) = 0. Hence

∂nEk(i) =
n∑

m=0

n!

m!

(
n+ k − 1
m+ k − 1

)(
E∗2(i)

12

)n−m
ϑ[m]Ek(i) = ϑ[n]Ek(i).

So we can study the holomorphic modular form ϑ[n]Ek instead of the almost
holomorphic modular form ∂nEk.

If f is a weight k holomorphic modular form, then f is a polynomial in E4

and E6. So we can write

f =
∑
a,b≥0

4a+6b=k

c(a, b)Ea
4E

b
6.
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We can then use (3.2) and get

−12ϑf =
∑

4a+6b=k

c(a, b)(6bEb−1
6 Ea+2

4 + 4aEb+1
6 Ea−1

4 )

= kE6E
−1
4 (−12)−nf − 6(E2

6E
−3
4 − 1)

∑
4a+6b=k+2n

c(a, b)bEb−1
6 Ea+2

4 .

For n ≥ 0 we write

(−12)nϑ[n]f =
∑
a,b≥0

4a+6b=k+2n

c(a, b)Ea
4E

b
6, (3.5)

and define a family of complex polynomials {pn}∞n=0, by

pn(t) =
∑
a,b≥0

4a+6b=k+2n

c(a, b)tb. (3.6)

So
(−12)nϑ[n]f = E

(k+2n)/4
4 pn(E6E

−3/2
4 ).

Since E6(i) = 0 and E4(i) = 12Ω4
−4, with Ω−4 = Γ(1/4)2/(4π3/2) (see [11] section

5.1) we especially have

ϑ[n]f(i) = (−1)n12k/4−n/2Ωk+2n
−4 pn(0). (3.7)

We can use the definition of ϑ[n] and our calculation of −12ϑf to get a recur-
rence relation on the pn’s

p1(t) = ktp0(t)− 6(t2 − 1)p′0(t),

pn+1(t) = (2n+ k)tpn(t)− 6(t2 − 1)p′n(t)− n(n+ k − 1)pn−1(t) for n ≥ 1.

Note that this implies, that pn(t) ∈ Z[t] for all n ∈ N, if p0 ∈ Z[t].
For m ∈ N we define an equivalence relation ≡m on Z[t], by∑

n

ant
n ≡m

∑
n

bnt
n,

if an ≡ bn (mod m) for 0 ≤ n ≤ m − 1. So there are mm equivalence classes
wrt. ≡m, and we see from the recurrence relation on {pn}n, that if we know,
which equivalence classes pn(t) and pn−1(t) are in, we can calculate which class
pn+1(t) is in. Furthermore if pn0(t) ≡m pn0+mn1(t) and pn0+1(t) ≡m pn0+mn1+1(t),
then pn(t) ≡m pn+n1m(t) for n ≥ n0. Especially pn(0) ≡ pn+n1m(0) (mod m) for
n ≥ n0.

If f = E4, then p0(t) = 1 and hence p1(t) = 4t. Running the following
commands in Maple calculates polynomials that are ≡13-equivalent to the first
1000 pn’s
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p[0] := 1; p[1] := 4*t; for i from 2 to 1000 do

p[i] := ‘mod‘(simplify((2*i+2)*t*p[i-1]

-6*(t^2-1)*(diff(p[i-1], t))-(i-1)*(i+2)*p[i-2]), 13) end do:

for i from 0 to 1000 do q[i] := taylor(p[i], t = 0, 13) end do;

We see that

p10(t) ≡13 p946(t) ≡13 4t4 + 11t2 + 11

p11(t) ≡13 p947(t) ≡13 7t3 + 6t,

and since 936 = 72 ·13, this means that pn(t) ≡13 pn+936(t) for n ≥ 10. Especially

pn(0) ≡ pn+936(0) (mod 13) (3.8)

for n ≥ 10.
After having run the previous commands in Maple, we can run these com-

mands

for i from 1 to 1000 do n[i]:=coeff(p[i],t,0) end do;

sum(’if’(n[j+72]-n[j]=0, 0, 1), j= 1 .. 928);

The first command finds pn(0) (mod 13) for 1 ≤ n ≤ 1000, and the second
calculates that

928∑
n=1

(1− δ[pn+72(0)]13[pn(0)]13) = 0,

where δ[pn+72(0)]13[pn(0)]13 = 1 if pn+72(0) ≡ pn(0) (mod 13) and 0 otherwise. Hence

pn(0) ≡ pn+72(0) (mod 13),

for 1 ≤ n ≤ 928 (we do however have p0(0) = 1 and p72(0) ≡ 11 (mod 13)). When
we combine this with (3.8), we see, that for any n,m ∈ N we have pn(0) ≡ pm(0)
(mod 13), when n ≡ m (mod 72).

If we run the following command in Maple

‘mod‘(coeff(product(p[2*n], n = 1 .. 36), t, 0),13);

we see, that
36∏
n=1

p2n(0) ≡ 5 (mod 13).

Especially 13 does not divide pn(0), when n ≤ 72 is even (when n is odd pn(0) = 0,
since ϑ[n]E4(i) = 0).

So we have proven, that for all n ≥ 0,

pn(0) = (−1)n12n/2−1Ω−4−2n
−4 ϑ[n]E4(i) = (−1)n12n/2−1Ω−4−2n

−4 ∂nE4(i)



3.2. Values of L-Functions 35

is an integer. If n is odd, we trivially have pn(0) = 0, but when n is even, 13 does
not divide pn(0), and pn(0) ≡ pm(0) (mod 13), when n ≡ m (mod 72).

By combining this with the relation between L-series and ∂nEk(i), and by
using that ζ(4) = π4/90, we see that

pn(0) = (−1)n12n/2−1Ω−4−2n
−4 ∂nE4(i) =

40 · Ω−4−2n
−4 · 3n/2(3 + n)!

(2π)n+4

∑
a

ψ2+n(a)

N(a)4

=
40 · Ω−4−2n

−4 · 3n/2(3 + n)!

(2π)n+4
L(ψ2+n, 4).

So we have proven the following.

Theorem 3.2.1. For even n ≥ 0, define

An :=
40 · Ω−4−2n

−4 · 3n/2(3 + n)!

(2π)n+4
L(ψ2+n, 4).

Then An ∈ Z, and An is not divisible by 13. Furthermore for n ≥ 2 we have

An ≡ An+72 (mod 13).

If we look at E6 instead of E4, we can in a similar way prove the following.

Theorem 3.2.2. For odd n ∈ N, define

Bn :=
14 · Ω−6−2n

−4 3(n+1)/2(n+ 5)!

(2π)n+6
L(ψ3+n, 6).

Then Bn ∈ Z, and for m ≥ 0 we have

B4m+1 ≡ 1 (mod 5),

B4m+3 ≡ 3 (mod 5).

Proof. If we let f = E6, and we define pn by (3.5) and(3.6), we get p0(t) = t and
p1(t) = 6.

We can then proceed, almost as we did for E4. Running the following com-
mands in Maple

p[0] := t; p[1] := 6; for i from 2 to 27 do

p[i] := ‘mod‘(simplify((2*i+4)*t*p[i-1]

-6*(t^2-1)*(diff(p[i-1], t))-(i-1)*(i+4)*p[i-2]), 5) end do:

gives us p5(t) ≡5 p25(t), and p6 ≡5 p26(t) , p4n+1(0) ≡ 1 (mod 5) and p4n+3(0) ≡ 3
(mod 5) for 0 ≤ n ≤ 6.

Hence by (3.7), we have

pn(0) = (−1)n12(n−3)/2Ω−6−2n
−4 ϑ[n]E6(i) = (−1)n12(n−3)/2Ω−6−2n

−4 ∂nE6(i)
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is 0 if n is odd, congruent to 1 (mod 5) if n ≡ 1 (mod 4), and congruent to 3
(mod 5) if n ≡ 3 (mod 4). Since ζ(6) = π6/945, we have

(−1)n12(n−3)/2Ω−6−2n
−4 ∂nE6(i) =

14 · Ω−6−2n
−4 3(n+1)/2(n+ 5)!

(2π)n+6

∑
a

ψ3+n(a)

N(a)6

=
14 · Ω−6−2n

−4 3(n+1)/2(n+ 5)!

(2π)n+6
L(ψ3+n, 6).

So Bn = pn(0), which proves the theorem.

A similar approach works for Eisenstein series of higher weight. From k = 12
the Eisenstein series Ek will not in general (if ever) have integer coefficients, when
written as a polynomial in E4 and E6. It will however have rational coefficients,
so we can multiply with a suitable constant to get something with integer co-
efficients. By proceeding as in this section, we can then construct congruences
modulo p (for some prime p) for polynomials related to ϑ[n]Ek(i) and L(ψk/2+n, k).
However, we might not be able to find a p, such that these values are non-zero
modulo p.

We could also consider Taylor coefficients for Ek in ρ instead of i, which in
the same way, could give us some congruences for some other L-functions.

3.3 Zeros of ϑnEk

Instead of studying of ϑ[n]Ek we can study zeros of ϑnEk.
In [13] F. K. C. Rankin and H. P. F. Swinnerton-Dyer proved that for any

even k ≥ 4 all zeros of Ek are in the set{
γeti

∣∣∣∣ γ ∈ SL2(Z), t ∈
[
π

2
,
2π

3

]}
.

They did this by showing, that eitk/2Ek(e
it) ∈ R for t ∈ (0, π), and eitk/2Ek(e

it) =
2 cos(tk/2) + R1(t), with R1(t) < 2 for t ∈ [π/2, 2π/3]. So if t ∈ [π/2, 2π/3],
then eitk/2Ek(e

it) is positive when tk/(2π) is an even integer, and negative when
tk/(2π) is odd. If we define θ = tk/(2π), we see that t ∈ [π/2, 2π/3] is equivalent
to θ ∈ [k/4, k/3], and hence Ek(e

it) has at least #([k/4, k/3] ∩ N) − 1 different
zeros t ∈ (π/2, 2π/3).

If we define s ∈ {0, 4, 6, 8, 10, 14} by s ≡ k (mod 12), we see (by considering
each possible value of s separately), that

#([k/4, k/3] ∩ N)− 1 =
k − s

12
.

By Theorem 2.2.3 we have Deg(Ek) = k/12, and since all points in {exp(it) | t ∈
[π/2, 2π/3]} are SL2(Z) inequivalent, we see, that

Deg(Ek) ≥
∑

x∈(π/2,2π/3)

µEk(e
ix) +

µEk(i)

2
+
µEk(ρ)

3
≥ k − s

12
+
µEk(i)

2
+
µEk(ρ)

3
.
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If a, b, c are non-negative integers and

a+
b

2
+
c

3
=

s

12
,

we see, that

(a, b, c) =



(0, 0, 0) if s = 0
(0, 0, 1) if s = 4
(0, 1, 0) if s = 6
(0, 0, 2) if s = 8
(0, 1, 1) if s = 10
(0, 1, 2) if s = 14

.

Hence we must have
µEk(i)

2
+
µEk(ρ)

3
=

s

12
.

So all Ek’s zeros are in {γ(eit) | γ ∈ SL2(Z), t ∈ [π/2, 2π/3]}, and they
are all simple, except if k ≡ 2 (mod 6), then there is a double zero in ρ (and
SL2(Z)-translates of ρ).

It turns out, that this can be generalized to ϑnEk, and that the zeros of ϑnEk
and ϑn+1Ek interlaces.

Theorem 3.3.1. For k ≥ 4 even and n ≥ 0 the modular form ϑnEk has only
zeros in {γ(eit) | γ ∈ SL2(Z), t ∈ [π/2, 2π/3]}. Except for a possible double
zero in SL2(Z)ρ, all these zeros are simple, and if π/2 ≤ t1 < t2 ≤ 2π/3 and
ϑnEk(e

it1) = ϑnEk(e
it2) = 0, then ϑn+1Ek(e

it) = 0 for some t ∈ (t1, t2).

Proof. Since Ek is a modular form wrt. SL2(Z), it can be expressed as a poly-
nomial in E4 and E6, so we have

Ek =
∑

4a+6b=k

c(a, b)Ea
4E

b
6.

Hence

eitk/2Ek(e
it) =

∑
4a+6b=k

c(a, b)(e2itE4)a(e3itE6)b,

and since eitk/2Ek(e
it), e2itE4(eit), e3itE6(eit) ∈ R for t ∈ [π/2, 2π/3], we see that

the c(a, b)’s are real. By (3.2) ϑnEk have real coefficient, when expressed as a
polynomial in E4 and E6. So eit(k/2+n)ϑnEk(e

it) ∈ R for t ∈ [π/2, 2π/3].

We define Fk,n : [π/2, 2π/3]→ R by

Fk,n(t) = eit(k/2+n)ϑnEk(e
it).
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We then have

Fk,n+1(t) = eit(k/2+n+1)ϑϑnEk(e
it)

=
−eit(k/2+n)

2π

d

dt
(ϑnEk(e

it))− (k + 2n)E2(eit)eit(k/2+n+1)

12
ϑnEk(e

it)

=
−1

2π
F ′k,n(t) +

(
i

4π
− E2(eit)eit

12

)
(k + 2n)Fk,n(t).

If t1 < · · · < tν are the different zeros of Fk,n, then we see that 2πFk,n+1(tj) =
−F ′k,n(tj), for j = 1, . . . , ν. Especially Fk,n+1(tj) 6= 0 unless j = ν and k+ 2n ≡ 2
(mod 6).

If 1 ≤ j < ν, then tj is a simple zero of Fk,n, so F ′k,n(tj) < 0 if Fk,n(tj + ε) < 0
for small ε and F ′k,n(tj) > 0 if Fk,n(tj + ε) > 0. If tj+1 6= 2π/3 or k + 2n 6≡ 2
(mod 6), then tj+1 is a simple zero of Fk,n and hence F ′k,n(tj+1) < 0 if Fk,n(tj+1−
ε) > 0 and F ′k,n(tj+1) > 0 if Fk,n(tj+1 − ε) < 0.

Since Fk,n does not have any zeros in (tj, tj+1), Fk,n(tj + ε) and Fk,n(tj+1 − ε)
have the same sign, and hence F ′k,n(tj) and F ′k,n(tj+1) have opposite signs, unless
k + 2n ≡ 2 (mod 6) and j + 1 = ν. Hence Fk,n+1 has a zero in (tj, tj + 1) unless
k + 2n ≡ 2 (mod 6) and j + 1 = ν.

If k + 2n ≡ 2 (mod 6), then Fk,n has a double zero in tν = 2π/3, and so
F ′k,n has a simple zero in 2π/3. So for t close to 2π/3 Fk,n+1(t) is approximately
−(2π)−1F ′k,n(t), especially Fk,n+1(t) and F ′k,n(t) has opposite signs.

If F ′k,n(tν−1) > 0, then Fk,n(t) > 0 for t ∈ (tν−1, 2π/3), and since Fk,n(2π/3) =
0, Fk,n(t) is descending for t close to 2π/3, so F ′k,n(t) < 0. So

Fk,n+1(tν−1) =
−1

2π
F ′k,n(tν−1) < 0,

and Fk,n+1(t) > 0 for t close to 2π/3 since −2πFk,n+1(t) ≈ Fk,n(t) < 0, and hence
Fk,n+1 has a zero in (tν−1, tν).

Likewise if F ′k,n(tν−1) < 0, then Fk,n+1(tν−1) > 0 and−2πFk,n+1(t) ≈ Fk,n(t) >
0 for t close to 2π/3. So Fk,n+1 has a zero in (tν−1, 2π/3).

So we have proven the interlacing property stated in the theorem. To prove
the rest of the theorem we proceed by induction. Rankin and Swinnerton-Dyer’s
result tells us, that the theorem is true for n = 0. Now assume that it is true
for some fixed n. If k + 2n ≡ 2 (mod 12), then ϑnEk has a (simple) zero in i
and a (double) zero in ρ, and (2n + k − 14)/12 other zeros on the arc between
these two points. Hence by the interlacing property ϑn+1Ek has (2n+ k − 2)/12
zeros in {exp(it) | t ∈ (π/2, 2π/3)}, and since it is a modular form of weight
k + 2n+ 2 ≡ 4 (mod 12), it also has a simple zero in ρ. Since

Deg(ϑn+1Ek) =
k + 2n+ 2

12
=
k + 2n− 2

12
+

1

3
,
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these are all the zeros of ϑn+1Ek, and they are all simple, and so the theorem
holds for ϑn+1Ek (if k + 2n ≡ 2 (mod 12)).

Similar considerations for k + 2n ≡ 0, 4, 6, 8, 10 (mod 12) shows that the
theorem is true for ϑn+1Ek, regardless of which congruence class k + 2n is in.
This completes the induction and the proof.



Chapter 4

An Interpretation of some
Multiplier Systems

4.1 Zero Free Automorphic Forms

Let f : H → C\{0} be a weight k0 > 0 holomorphic automorphic form wrt. a
cofinite Fuchsian group Γ, and multiplier system ν, and assume that f has no
zeros in H. Since f is zero free, there is a holomorphic logarithm F of f , and
hence we can define a function Φ : Γ→ R by

F (γz) = F (z) + k0 log(jγ(z)) + 2πik0Φ(γ),

for some z ∈ H (the definition is independent of which z ∈ H we choose, and
which logarithm F we choose). If we assume that Φ only takes rational values,
it follows from (2.7), that since Γ is cofinite and hence finitely generated, there
is an m ∈ N such that mΦ(γ) ∈ Z for all γ ∈ Γ. Let N be the smallest such m.
Since Φ(−I) = 1/2 modulo 1, we know that N is even.

We can define powers of ν by νt = exp(2πitk0Φ). Then exp(kF/k0) is a weight
k automorphic form with multiplier system νk/k0 .

We see, that fN := fN/k0 = exp(NF/k0) is a modular form of weight N , and
hence it has positive degree. So fN is zero free (in H) but has positive degree,
so it must have a zero in a cusp, and the sum of the multiplicities of the zeros
in the cusps must be the degree. This implies, that if Γ is cocompact, we do not
have this type of automorphic forms, since there are no cusps, and hence no zero
free modular forms.

If Γ\H has genus 0, and e1, . . . , er is the orders of the elliptic matrices, we can
choose k0/2 to be the lowest common multiple of e1, . . . , er. Then by Theorem
2.2.4 we have

Dim(Gk0) = 1− k0 +
k0h

2
+
k0

2

r∑
j=1

(1− e−1
r ).

40
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We can choose a cusp a and a basis f1, . . . , fDim(Gk0
) for Gk0 . By writing the fj’s

Fourier expansions in a, and solving a system of Dim(Gk0) − 1 linear equations
with Dim(Gk0) variables, we get a linear combination f 6≡ 0 of the fj’s, with the
first Dim(Gk0) − 1 Fourier coefficients in a equal to 0. So f has a zero in a of
order at least Dim(Gk0)− 1. Since f ∈ Gk0 and g = 0 we have by Theorem 2.2.3

Deg(f) =
k0

2

(
−2 + h+

r∑
j=1

(1− e−1
r )

)
= Dim(Gk0)− 1.

Hence all f ’s zeros are in a.
So f is zero free in H, and so we can take powers of f (note that even though

the multiplier system for f is trivial, this will not in general be the case for the
powers of f).

An explicit construction of a holomorphic logarithm of f can be found in [3],
this construction also works for g 6= 0, but it is not clear whether it produces
something, where Φ takes rational values on hyperbolic elements.

4.2 Hecke Triangle Groups and Knots

In [2] É. Ghys makes a connection between the logarithm of the multiplier system
for Dedekinds eta function and the linking number of prime geodesics with a
certain knot. In this section we will make a generalization of this, to multiplier
systems on Hecke Triangle groups.

For integer n ≥ 3 we define λn = 2 cos(π/n) and

S :=

(
0 −1
1 0

)
, Tn :=

(
1 λn
0 1

)
.

The Hecke triangle group Hn is the group generated by S and Tn (note that
H3 = SL2(Z)). It can be shown that,

Fn :=

{
z ∈ H | |z| ≥ 1, |<z| ≤ λn

2

}
is a fundamental domain for Hn.

We have S2 = −I, and

TnS =

(
λn −1
1 0

)
.

The Chebychev polynomials of the second kind are given by

U−1 = 0, U0(x) = 1, Um(x) = 2xUm−1(x)− Um−2(x) for m ∈ N.
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An equivalent way to define Um is, by

Um(cos(t)) =
sin((m+ 1)t)

sin t
.

We can show by induction, that for m ∈ N(
2x −1
1 0

)m
=

(
Um(x) −Um−1(x)
Um−1(x) −Um−2(x)

)
. (4.1)

If we replace x by cos(π/n) in (4.1), we see that (TnS)n = −I, and that for
0 < m < n (TnS)m 6= ±I.

So TnS is an elliptic matrix of order n, and we note that TnS fixes
ρn := exp(iπ/n).

The set Fn is a hyperbolic triangle, with vertices in ∞, ρn and −ρn. The
angle in ∞ is 0, and the angles in ρn and −ρn are π/n, so by formula (2.2)

µ(Fn) =
π(n− 2)

n
.

Since Fn has one cusp (in ∞), and we have two elliptic matrices in Hn of order
2 and n, formula (2.1) tells us that

µ(Hn\H) ≥ 2π

(
−2 + 1 +

1

2
+
n− 1

n

)
=
π(n− 2)

n
,

with equality if and only if g = 0 and we only have these two conjugacy classes
of elliptic matrices. Since we have µ(Fn) = µ(Hn\H), this must be the case.

We can now use Theorem 2.2.4 to see that there exists modular forms wrt.
Hn of weight 4 and 6 (one of each). These forms are unique up to multiplication
by a constant, and in Lemma 4.2.1 we show, that they do not have zeros in
the cusp. Hence there is a unique weight 4 modular form (wrt. Hn) E4, for
which the constant coefficient in the Fourier expansion is 1. Likewise there is
a unique weight 6 modular form E6, for which the constant coefficient in the
Fourier expansion is 1.

Lemma 4.2.1. The modular form E4 has a zero of multiplicity n− 2 in ρn, E6

has a zero of multiplicity 1 in i and a zero of multiplicity n−3 in ρn. If we define

G := E2
6 − E3

4 ,

D := Gn−2E−2n+6
4 ,

H := Gn−3E−2n+9
4 ,

then D has a zero of multiplicity n − 2 in the cusp, while H has a zero of mul-
tiplicity n − 3 in the cusp and a zero of multiplicity n in ρn. All other zeros of
E4, E6, D,H in H ∪ {∞} are Hn-translates of these zeros.
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Proof. By Theorem 2.2.3 E4 and E6 has degrees

Deg(E4) =
4µ(Fn)

4π
=
n− 2

n
,

Deg(E6) =
6µ(Fn)

4π
=

3(n− 2)

2n
.

If we differentiate the transformation formula for modular forms

f(γz) = (jγ(z))kf(z)

µ times, we get that

f (µ)(γz) = (jγ(z))k+2µf (µ)(z) +

µ−1∑
m=0

pm(z)f (m)(z), (4.2)

for some polynomials p0, . . . , pn−1 (depending on the choice of γ). If γ = S, z = i
and µ = µf (i) is the multiplicity of f ’s zero in i (µ = 0 if i is not a zero of f),
formula (4.2) becomes

f (µ)(i) = ik+2µf (µ)(i),

so 4|(k + 2µf (i)).
Likewise if γ = TnS, z = ρn and µ = µf (ρn) is the multiplicity of f ’s zero in

ρn, formula (4.2) becomes

f (µ)(ρn) = exp(iπ(k + 2µ)/n)f (µ)(ρn),

so 2n|(k + 2µf (ρn)).
Combining this with the degrees of E4 and E6 we see, that E4 has a zero of

multiplicity n − 2 in ρn, and all other zeros are Hn-translates of ρn, and E6 has
a zero of multiplicity 1 in i, a zero of multiplicity n− 3 in ρn and no other zeros
(except for Hn-translates).

It follows from the definition of G,E4, E6, that G has a zero in ∞. Since E3
4

has a zero of order 3n− 6 in ρn, andE2
6 has a zero of order 2n− 6 in ρn, G has a

zero of order 2n− 6 in ρn. By Theorem 2.2.3 and 2.1 we have

Deg(G) =
12µ(Fn)

4π
=

3(n− 2)

n
= 1 +

2n− 6

n
.

So G’s only zeros are in the cusp and in the Hn translates of ρn.
From the definition of D and H, it now follows, that the zeros of D and H

are as stated in the lemma.

We can choose a holomorphic n − 2’nd root g of E4 in the following way.
Choose ξ to be an n − 2’nd root of E4(i). For N ∈ N define BN to be the ball
consisting of all points in H, with hyperbolic distance to i less than N .
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There are a finite number of Hn-translates of ρn in BN . If we denote these
translates γ1ρn, . . . , γMN

ρn, we can for z ∈ BN write E4(z) in the following way

E4(z) = exp(ψN(z))

MN∏
j=1

(z − γjρn)n−2,

where ψN is some holomorphic function on BN . Hence we can choose m ∈ N
(depending on N) such that

ξ = exp

(
ψN(i) + 2πim

n− 2

)MN∏
j=1

(i− γjρn),

and define a holomorphic function gN : BN → C by

gN(z) = exp

(
ψN(z) + 2πim

n− 2

)MN∏
j=1

(z − γjρn).

So gn−2
N (z) = E4(z) for z ∈ BN and gN(i) = ξ. Hence for N1 < N2 and

z ∈ BN1 we have gN1(z) = gN2(z), and it makes sense to define g(z) to be gN(z),
for any N ∈ N, that is greater than the (hyperbolic) distance from i to z.

The function g has a simple zero in γρn for any γ ∈ Hn, and since we have

gn−2(γz) = E4(γz) = j4
γ(z)E4(z) = ((jγ(z))4/(n−2)g(z))n−2,

we see that

g(γz) = ν(γ)(jγ(z))4/(n−2)g(z),

for some n − 2’nd root of unity ν(γ) (ν(γ) is continuous as a function of z,
so it is independent on z). So g is an automorphic form of weight 4/(n − 2)
with multiplier system ν. If we define h := E6g

−n+3, we see that h is a weight
2n/(n − 2) automorphic form with multiplier system ν, and that h has simple
zeros in γi for γ ∈ Γ, and no other zeros.

We let GL+
2 (R) be the real 2×2-matrices with positive determinant and define

Λ : GL+
2 (R)→ C2 by

Λ(σ) =

(
g(σi)

(jσ(i))4/(n−2)
,

h(σi)

(jσ(i))2n/(n−2)

)
.

If we define ∼ to be the equivalence relation on C2 given by (z1, z2) ∼ (z3, z4) if
and only if, there is a n− 2’nd root of unity ζ, such that z1 = ζz3 and z2 = ζz4,
then we get the following lemma.

Lemma 4.2.2. For σ1, σ2 ∈ GL+
2 (R), Λ(σ1) ∼ Λ(σ2) if and only if σ1σ

−1
2 ∈ Hn.



4.2. Hecke Triangle Groups and Knots 45

Proof. If σ ∈ GL+
2 (R) and γ ∈ Hn, then we see that

g(γσi)

(jγσ(i))4/(n−2)
= ν(γ)

(
jγ(σi)

jγσ(i)

)4/(n−2)

g(σi)

= ν(γ) exp

(
8πi

n− 2
ω(γ, σ)

)
g(σi)

(jσ(i))4/(n−2)
,

h(γσi)

(jγσ(i))2n/(n−2)
= ν(γ)

(
jγ(σi)

jγσ(i)

)2n/(n−2)

h(σi)

= ν(γ) exp

(
4nπi

n− 2
ω(γ, σ)

)
h(σi)

(jσ(i))2n/(n−2)

= ν(γ) exp

(
8πi

n− 2
ω(γ, σ)

)
h(σi)

(jσ(i))2n/(n−2)
.

So

Λ(γσ) ∼ Λ(σ),

which proves the ”if” part.

Now define J = H/D. Then by Lemma 4.2.1 J is an automorphic function
with a simple pole in the cusp, and a zero of multiplicity n in γρn, for γ ∈ Hn,
and these are all the poles and zeros. For any z0 ∈ C, J − z0 is an automorphic
function, which has a single simple pole in the cusp, and hence

J−1(z0) = (J − z0)−1(0) = Hnz,

for some z ∈ H. So Hnz 7→ J(z) is a bijection between Hn\H and C.

We have

J =
E3

4

G
=

E3
4

E2
6 − E3

4

=
g3n−6

(hgn−3)2 − g3n−6
=

gn

h2 − gn .

If we choose σ1, σ2 ∈ GL+
2 (R) such that Λ(σ1) = (z1, z2) = ζΛ(σ2), with ζ a

n− 2’nd root of unity, then we see that

J(σ1i) =
gn(σ1i)ζ

−n(jσ1(i))−4n/(n−2)

(h2(σ1i)− gn(σ1i))ζ−n(jσ1(i))−4n/(n−2)
= J(σ2i)

so σ1i = γσ2i for some γ ∈ Hn. So if Λ(σ1) ∼ Λ(σ2), we see that σ1i ∈ Hnσ2i.

If σ1i = γσ2i then σ−1
2 γ−1σ1 fixes i and is hence on the form(

λ cos θ −λ sin θ
λ sin θ λ cos θ

)
, (4.3)
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for some λ > 0 and θ ∈ R. We see, that

g(σ1i)

(jσ1(i))4/(n−2)
=

g(γσ2i)

(jγσ2σ
−1
2 γ−1σ1

(i))4/(n−2)

=
ν(γ)(jγ(σ2i))

4/(n−2)g(σ2i)

(jγσ2(σ−1
2 γ−1σ1i)jσ−1

2 γ−1σ1
(i))4/(n−2)

=
ν(γ)(jγ(σ2i))

4/(n−2)g(σ2i)

(jγσ2(i)(iλ sin θ + λ cos θ))4/(n−2)

=
ν(γ) exp(8πiω(γ, σ2)/(n− 2))

(iλ sin θ + λ cos θ)4/(n−2)
· g(σ2i)

(jσ2(i))4/(n−2)
,

and likewise

h(σ1i)

(jσ1(i))2n/(n−2)
=

ν(γ) exp(8πiω(γ, σ2)/(n− 2))

(iλ sin θ + λ cos θ)2n/(n−2)
· h(σ2i)

(jσ2(i))2n/(n−2)
.

Since Λ(σ1) = ζΛ(σ2), with |ζ| = 1, we see that λ = 1, and

g(σ1i)

(jσ1(i))4/(n−2)
=

ζν(γ) exp(8πiω(γ, σ2)/(n− 2))

(iλ sin θ + λ cos θ)4/(n−2)
· g(σ1i)

(jσ1(i))4/(n−2)
,

h(σ1i)

(jσ1(i))4/(n−2)
=

ζν(γ) exp(8πiω(γ, σ2)/(n− 2))

(iλ sin θ + λ cos θ)2n/(n−2)
· h(σ1i)

(jσ1(i))4/(n−2)
.

So if σ1i 6∈ Hn({i, ρn}), then g(σ1i), h(σ1i) 6= 0, and hence

1 =
ζν(γ) exp(8πiω(γ, σ2)/(n− 2))

ζν(γ) exp(8πiω(γ, σ2)/(n− 2))
=

(i sin θ + cos θ)2n/(n−2)

(i sin θ + cos θ)4/(n−2)
= (i sin θ + cos θ)2.

Hence σ−1
2 γ−1σ1 = ±I, and so σ1σ

−1
2 = ±γ ∈ Hn.

If σ1i ∈ Hni, we see that g(σ1i) 6= 0. Then we have

1 = ζn−2 =

(
ν(γ) exp(8πiω(γ, σ2)/(n− 2))

(i sin θ + cos θ)4/(n−2)

)n−2

= e4iθ.

So 2θ/π ∈ Z and hence σ−1
2 γ−1σ1 = Sm for some m ∈ Z. We know that σ1i = γ1i

for some γ1 ∈ Hn, and hence γ−1
1 σ1 is on the form (4.3). Since matrices on the

form (4.3) commutes, we see

γ−1
1 γσ2 = γ−1

1 σ1S
−m = S−mγ−1

1 σ1,

so σ1σ
−1
2 = γ1S

mγ−1
1 γ ∈ Hn.

Likewise if σ1i = γ1ρn for some γ1 ∈ Hn, then h(σ1i) 6= 0, and σ−1
2 γ−1σ1 is on

the form (4.3), with λ = 1 and nθ/π ∈ Z. Now let

τ =

(
sin(π/n) cos(π/n)

0 1

)
,
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then τ−1γ−1
1 σ1 is on the form (4.3), so

τ−1γ−1
1 γσ2 = (τ−1γ−1

1 σ1)(σ−1
2 γ−1σ1)−1 = (σ−1

2 γ−1σ1)−1τ−1γ−1
1 σ1.

Hence σ1 = γ1τ(σ−1
2 γ−1σ1)τ−1γ−1

1 γσ2, and since

τ

(
cos(mπ/n) − sin(mπ/n)
sin(mπ/n) cos(mπ/n)

)
τ−1 =

(
τ

(
cos(π/n) − sin(π/n)
sin(π/n) cos(π/n)

)
τ−1

)m
= (TnS)m,

we have σ1σ
−1
2 = γ1(TnS)mγ−1

1 γ ∈ Hn.
So we have proved for all σ1, σ2 ∈ GL+

2 (R), that σ1σ
−1
2 ∈ Hn if Λ(σ1) ∼

Λ(σ2).

Due to Lemma 4.2.2, we can define a function Λ0 : Hn\GL+
2 (R)→ C2/ ∼ by

Λ0(Hnσ) = {e2πim/(n−2)Λ(σ) | m ∈ Z}.

We have the following lemma about Λ0.

Lemma 4.2.3. The function Λ0 maps Hn\GL+
2 (R) homeomorphically to

{(z1, z2) ∈ C2 | zn1 6= z2
2}/ ∼.

Proof. It follows from Lemma 4.2.2, that Λ0 is injective.
If Λ(σ) = (z1, z2), then we have

J(σi) =
gn

h2 − gn (σi) =
gn(σi)(jσ(i))4n/(n−2)

(h2(σi)− gn(σi))(jσ(i))4n/(n−2)
=

zn1
z2

2 − zn1
,

and since J ’s only pole is in the cusp, this shows that zn1 6= z2
2 .

On the other hand, if z1, z2 ∈ C\{0} and zn1 6= z2
2 , then there is a z ∈ H, such

that

J(z) =
zn1

z2
2 − zn1

.

Since z1, z2 6= 0, J(z) 6= 0,−1, and hence g(z), h(z) 6= 0. So we can define
z4 := h(z)z1/(g(z)z2), and let a, b, c, d ∈ R be such that, ci + d is a square root
of z4, and ai + b = z(ci + d). Then σ := ( a bc d ) is a 2 × 2-matrix that sends i to
z ∈ H, and hence σ ∈ GL+

2 .
We then see that

gn

h2 − gn (z) = J(z) =
zn1

z2
2 − zn1

,

and hence z2
2g

n(z) = h2(z)zn1 . This gives us

g(z)n−2

(ci+ d)4
=
gn(z)z2

2

h2(z)z2
1

= zn−2
1 ,
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so g(z)/(ci + d)4/(n−2) = ζz1 for some n − 2’nd root of unity ζ. We can then
conclude, that

h(z)

(ci+ d)2n/(n−2)
=

h(z)ζz1

(ci+ d)2g(z)
= ζz2,

and hence

Λ(σ) =

(
g(z)

(ci+ d)4/(n−2)
,

h(z)

(ci+ d)2n/(n−2)

)
∼ (z1, z2).

If z2 6= z1 = 0, then we can choose a, b, c, d ∈ R, such that ci + d is a 2n’th
root of z2−n

2 hn−2(ρn) and ai+ b = ρn(ci+ d). Then σ := ( a bc d ) ∈ GL+
2 (R), and

hn−2(σi)

(ci+ d)2n
= zn−2

2 .

So Λ(σ) ∼ (z1, z2).
Likewise if z1 6= z2 = 0, then we can choose a, b, c, d ∈ R, such that ci+ d is a

4’th root of z2−n
1 gn−2(i) and ai+ b = i(ci+ d). Then σ := ( a bc d ) ∈ GL+

2 (R), and

gn−2(σi)

(ci+ d)4
= zn−2

1 .

So Λ(σ) = (z1, z2).
This shows that Λ0 maps Hn\GL+

2 (R) surjectively to {(z1, z2) ∈ C2 | zn1 6=
z2

2}/ ∼.
Λ0 is continuous because Λ is continuous. To see that Λ−1

0 is continuous choose
(x, y), (s, t) ∈ {(z1, z2) ∈ C2 | zn1 6= z2

2}, such that (x, y) is ”close to” (ζs, ζt) for
some n− 2’nd root of unity ζ, and let σ1 and σ2 be such that

Λ(σ1) = (x, y), Λ(σ2) = (s, t).

Then

J(σ1) =
xn

y2 − xn ,

is close to

J(σ2) =
sn

t2 − sn =
(ζs)n

(ζt)2 − (ζs)n
,

and hence σ1 is close to γσ2 for some γ ∈ Hn.

Due to the identification of PSL2(R) with the unit tangent bundle on the
hyperbolic plane, Hn\SL2(R) can be identified with the unit tangent bundle on
Hn\H. Hence if we restrict Λ0 to Hn\SL2(R), Lemma 4.2.3 gives an identification
of the unit tangent bundle on Hn\H, with some subset of C2/ ∼. This subset is
however not particularly nice.
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We note that if Λ(σ) = (z1, z2), and t > 0, then

Λ

((
t 0
0 t

)
σ

)
=
( z1

t4/(n−2)
,

z2

t2n/(n−2)

)
. (4.4)

Hence it is natural to define a function Λ̃ : SL2(R)→ S3 by

Λ̃(σ) = Λ

((
t 0
0 t

)
σ

)
,

for t = t(σ) > 0 such that Λ(( t 0
0 t )σ) ∈ S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}.

We define
κ := {(z1, z2) ∈ S3 | zn1 = z2

2},
so the image of Λ̃ is contained in S3\κ.

Just like we defined Λ0, we can define Λ̃0 : Hn\SL2(R)→ (S3\κ)/ ∼, by

Λ̃0(Hnσ) = {e2πim/(n−2)Λ̃(σ) | m ∈ Z}.

We then get

Theorem 4.2.4. The function Λ̃0 is a homeomorphism.

Proof. We note that for σ ∈ SL2(R)

Λ̃0(Hnσ) = {e2πim/(n−2)Λ̃(σ) | m ∈ Z} = Λ0

(
Hn

(
t(σ) 0

0 t(σ)

)
σ

)
.

The function Ψ : Hn\SL2(R)→ Λ−1
0 ((S3\κ)/ ∼), given by

Ψ(Hnσ) = Hn

(
t(σ) 0

0 t(σ)

)
σ

is continuous, since t(σ) is continuous as a function of σ. If σ1, σ2 ∈ SL2(R), then

Ψ(Hnσ1) = Ψ(Hnσ2) ⇒ Hnσ1 =

(
t(σ2)/t(σ1) 0

0 t(σ2)/t(σ1)

)
Hnσ2

⇒ Hnσ1 = Hnσ2,

so Ψ is injective.
We see that Ψ−1, is given by

Ψ−1(Hnσ) = Hn

(
(detσ)−1/2 0

0 (det σ)−1/2

)
σ,

and hence that it is continuous. Since

Hn

(
(detσ)−1/2 0

0 (det σ)−1/2

)
σ,
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is well defined for any σ ∈ GL+
2 (R), and

Ψ

(
Hn

(
(detσ)−1/2 0

0 (det σ)−1/2

)
σ

)
= Hnσ,

when Hnσ ∈ Λ−1
0 ((S3\κ)/ ∼), by definition of Ψ, Ψ is surjective.

So Ψ is a homeomorphism and so is Λ0 by Lemma 4.2.3, so Λ̃0 = Λ0 ◦ Ψ is
also a homeomorphism.

The set κ = {(z1, z2) ∈ S3 | zn1 = z2
2}, can be rewritten to

{(r2 exp(2πix), rn exp(2πiy)) | nx ≡ 2y (mod 1)},

where r > 0 is given by r4 + r2n = 1. Hence for n odd κ is the knot

{(r2 exp(4πix), rn exp(2nπix)) | x ∈ [0, 1]},

so κ is a knot, that goes twice around a torus in one direction and n times around
in the other (this is sometimes called a (2, n)-torus knot).

For n even we get

κ = {(r2e2πix, rnenπix) | x ∈ [0, 1]} ∪ {(r2e2πix,−rnenπix) | x ∈ [0, 1]} = κ1 ∪ κ2.

So κ is a link of two trivial knots. If we define f : S3 → C by f(z1, z2) = z
n/2
1 +z2,

then κ2 is the preimage f−1(0). Hence the linking number of these two knots is
the winding number (around 0) of f taken on κ1 (or minus the winding number
depending on, which orientations we choose for the knots). This winding number
is

1

2πi

∫ 1

0

2rn(2 exp(nπix))nπi

2rn(2 exp(nπix))
dx =

n

2
.

If γ ∈ Hn is hyperbolic with positive trace, then we can write γ in the following
way

γ = A

(
λ 0
0 λ−1

)
A−1 = Aφ2 log λA

−1, A =

(
a b
c d

)
∈ SL2(R),

with λ > 1. We then have a closed geodesic Cγ : [0, 2 log λ]→ Hn\SL2(R) given
by

Cγ(t) = HnAφt.

So Aγ : [0, 2 log λ]→ (S3\κ)/ ∼ given by

Aγ(t) = Λ̃0(HnAφt)

is a closed curve.
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Furthermore for t ∈ R, there is some n− 2’nd root of unity ζ, such that

Λ̃(Aφt) = ζΛ̃(Aφt+2 log λ).

Since t 7→ Λ̃0(Aφt) is continuous, ζ is continuous in and hence independent of t.
So

Λ̃(Aφt) = ζn−2Λ̃(Aφt+2(n−2) log λ) = Λ̃(Aφt+2(n−2) log λ),

and the curve Bγ : [0, 2(n− 2) log λ]→ S3\κ

Bγ(t) = Λ̃(Aφt)

is closed.
The modular form D from Lemma 4.2.1 has weight 4n, and all its zeros are in

the cusp, hence D has a holomorphic logarithm d, and we can define a function
Φ : Hn → Q by

d(γz) = d(z) + 4n log(jγ(z)) + 8nπiΦ(γ).

Then

z 7→ exp

(
k

4n
d(z)

)
,

is a weight k automorphic form wrt. Hn, with multiplier system exp(2πikΦ).
We have the following theorem about Bγ and Φ.

Theorem 4.2.5. Let γ ∈ Hn be hyperbolic and have positive trace, then the
linking number of κ and Bγ is 4nΦ(γ).

If n is even, then we mean the linking number of κ1 and Bγ plus the linking
number of κ2 and Bγ, when we write the linking number of κ and Bγ.

Proof. If we define f : S3 → C by

f(z1, z2) = zn1 − z2
2 ,

then f−1(0) = κ. Hence the linking number of Bγ and κ is the winding number
around 0 of f ◦ Bγ (this defines an orientation on κ). This winding number is

1

2π
(= log(f ◦ Bγ)(2(n− 2) log λ)−= log(f ◦ Bγ)(0)) ,

when log(f ◦ Bγ) is a continuous logarithm.
We have

= log(f ◦ Bγ)(t) = arg f(Λ̃(Aφt)) = arg f(Λ(Aφt)),
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and

f(Λ(Aφt)) = (gn(Aφti)− h2(Aφti))(jAφt(i))
−4n/(n−2).

Since (gn − h2)n−2 is a modular form of weight 4n, with a zero of order n− 2 in
the cusp, we have (gn − h2)n−2 = αD, for some α ∈ C\{0}. Hence we can take
holomorphic logarithms

log(f(Λ(Aφt))) = log(gn − h2)(Aφti)−
4n

n− 2
log(jAφt(i))

=
1

n− 2
(d(Aφti) + logα)− 4n

n− 2
log(jAφt(i)).

We then get

(n− 2) log(f(Λ(Aφt+2 log λ))) = d(Aφt+2 log λi)− 4n log(jAφt+2 log λ
(i)) + logα

= d(γAφti)− 4n log(jγAφt(i)) + logα

= (n− 2) log(f(Λ(Aφt))) + 8nπi(Φ(γ) + ω(γ,Aφt)),

and

ω(γ,Aφt) = ω(Aφtφ2 log λ(Aφt)
−1, Aφt) = 0

by formula (2.10). Hence

log(f(Λ(Aφt))) = log(f(Λ(Aφt−2 log λ))) +
8nπiΦ(γ)

n− 2
,

and we can calculate the linking number of κ and Bγ

link(κ,Bγ) =
1

2πi
(log(f(Λ(Aφ2(n−2) log λ)))− log(f(Λ(Aφ0)))) = 4nΦ(γ).

The function Φ is a logarithm of the multiplier system for the zero free au-
tomorphic form h2 − gn divided by 2πik, where k = 4n/(n − 2) is the weight
of h2 − gn. Any zero free automorphic form wrt. Hn that is a power of some
modular form wrt. Hn, will be a power of D and hence of h2− gn, so if we in the
same way take a normalized logarithm of its multiplier system, we will again get
Φ. So Φ is the normalized logarithm of all ”suitably nice” zero free automorphic
forms wrt. Hn.

One way to calculate linking numbers between two knots is to look at a surface
which have boundary given by the first knot, such a surface is called a Seifert
surface, and take the number of times the other knot passes through this surface
in one direction, and subtract the number of times it passes through in the other
direction. So if we do this for κ and Bγ, we get 4nΦ(γ). If we move this from S3
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to S3/ ∼, κ becomes κ/ ∼, the Seifert surface becomes a surface with boundary
κ/ ∼, and Bγ becomes the closed curve that goes n − 2 times around Aγ. If we
for two closed curves in S3/ ∼ defines their linking number in the same way as
for S3, i.e. we see how many times the one curves goes trough a surface with
boundary given by the other curve in each direction and subtract these numbers,
then we can calculate a linking number for Aγ and κ/ ∼ in the following way.

Let S be a Seifert surface in S3 with boundary κ. Then

S0 := {{(e2πij/(n−2)z1, e
2πij/(n−2)z2) | j ∈ N} | (z1, z2) ∈ S3},

is a surface in S3/ ∼, with boundary κ/ ∼, and hence the linking number between
κ/ ∼ and Aγ is determined by how Aγ passes through S0. To calculate this, we
lift Aγ back to S3, and see how many times it intersects any of the surfaces

Sj := {(e2πij/(n−2)z1, e
2πij/(n−2)z2) | (z1, z2) ∈ S3},

for j ∈ {1, 2, . . . , n− 2} in each direction.
Any of the functions

Bγ|[2(j−1) log λ,2j log λ],

for j ∈ {1, 2, . . . , n−2} will be a lift of Aγ, and hence (n−2)link(κ/ ∼,Aγ) is the
number of times one of these curves passes through one of the Sj surfaces in the
positive direction minus the number of times it passes through in the negative
direction. In other words it is the number of times Bγ passes through one of the
n−2 Seifert surfaces in the positive direction minus the number of times it passes
through in the negative direction, so it is (n− 2)link(κ,Bγ). Hence

link (κ/ ∼,Aγ) = link (κ,Bγ) = 4nΦ(γ).

So by Theorem 4.2.4 the unit tangent bundle on Hn\H is homeomorphic to
S3/ ∼, with a knot removed. This homeomorphism sends the geodesic associated
with γ to Aγ, and because of Theorem 4.2.5 we can see that the 4n times the
normalized logarithm of multiplier systems Φ(γ) for ”nice” zero free automorphic
forms wrt. Hn, tells us the number of timesAγ ”winds around” the removed knot.

4.3 Groups with no Elliptic Elements

As in the previous sections we let g be the genus of Γ\H, h be the number of
cusps, and r be the number of conjugacy classes of elliptic elements in Γ. We will
assume that g = r = 0, and we will denote the cusps a1, . . . , ah. For such groups
there are an interpretation of logarithms of some multiplier systems for such Γ’s,
which is very similar to the one for Hecke triangle groups.

We have by (2.1)

0 <
µ(Γ\H)

2π
= −2 + h,
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and hence h ≥ 3. We can use Theorem 2.2.4, to show that for G2, i.e. the space
of modular forms of weight 2 wrt. Γ, we have

Dim(G2) = h− 1 ≥ 2.

Furthermore if F is a weight 2 modular form wrt. Γ, then Theorem 2.2.3, tells us
that Deg(F ) = h− 2. Since there are h− 1 linearly independent modular forms
of weight 2, we can use basic linear algebra to create weight 2 modular forms
F1, F2 wrt. Γ, such that F1 has all its h−2 zeros in the cusp a1, and F2 has h−3
zeros in a1 and 1 zero in a2.

Now define Λ : GL+
2 (R)→ C2 by

Λ(σ) =

(
F1(σi)

(jσ(i))2
,
F2(σi)

(jσ(i))2

)
.

We then get the following lemma.

Lemma 4.3.1. For σ1, σ2 ∈ GL+
2 (R), Λ(σ1) = Λ(σ2) if and only if σ1σ

−1
2 ∈ Γ.

Proof. If σ ∈ GL+
2 (R) and γ ∈ Γ, then we see that for s = 1, 2

Fs(γσi)

(jγσ(i))2
=

(jγ(σi))
2Fs(γσi)

(jγ(σi)jσ(i))2
=

Fs(σi)

(jσ(i))2
.

So

Λ(γσ) = Λ(σ),

which proves the ”if” part.

Now define J = F2/F1. Then J is an automorphic function with a simple
pole in a1, and a simple zero in a2, and these are all the poles and zeros. For any
z0 ∈ C, J − z0 is an automorphic function, which has a single simple pole in a1,
and hence

J−1(z0) = (J − z0)−1(0) = X,

for some X ∈ Γ\H ∪ {a2, . . . , ah} (when we define J(ai) to be the constant term
in the Fourier expansion in ai). So Γz 7→ J(z) is a bijection between Γ\H and
C\{J(a2), . . . , J(ah)}. Hence if J(σ1i) = J(σ2i), then there exists γ ∈ Γ such
that σ1i = γσ2i. Since

J(σi) =
F2(σi)

(jσ(i))2

(
F1(σi)

(jσ(i))2

)−1

.

we see that if Λ(σ1) = Λ(σ2), then J(σ1i) = J(σ2i).
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So if we assume that Λ(σ1) = Λ(σ2), we have σ1i = γσ2i, for some γ ∈ Γ. So
σ−1

2 γ−1σ1 fixes i and is hence on the form (4.3). We have

F1(σ1i)

(jσ1(i))2
=

F1(γσ2i)

(jγσ2σ
−1
2 γ−1σ1

(i))2

=
(jγ(σ2i))

2F1(σ2i)

(jγσ2(σ−1
2 γ−1σ1i)jσ−1

2 γ−1σ1
(i))2

=
(jγ(σ2i))

2F1(σ2i)

(jγσ2(i)(iλ sin θ + λ cos θ))2

=
F1(σ2i)

(jσ2(i)(iλ sin θ + λ cos θ))2
.

Since Λ(σ1) = Λ(σ2), we see that

(iλ sin θ + λ cos θ)2 = 1,

and hence σ−1
2 γ−1σ1 = ±I, so σ1σ

−1
2 = ±γ ∈ Γ.

Due to Lemma 4.3.1, we can define a function Λ0 : Γ\GL+
2 (R) → C2, given

by

Λ0(Γσ) = Λ(σ).

We have the following lemma about Λ0.

Lemma 4.3.2. The function Λ0 maps Γ\GL+
2 (R) homeomorphically to

Ω =

{
(z1, z2) ∈ C2

∣∣∣∣ z1 6= 0,
z2

z1

/∈ {J(a2), . . . , J(ah)}
}
.

Proof. It follows from Lemma 4.3.1, that Λ0 is injective.
If Λ(σ) = (z1, z2), then we have

J(σi) =
F2(σi)(jσ(i))2

F1(σi)(jσ(i))2
=
z2

z1

,

and since Γz 7→ J(z) is a bijection between ΓH and C\{J(a2), . . . , J(ah)}, we see
that z1 6= 0 and z2/z1 /∈ {J(a2), . . . , J(ah)}. Since J(a2) = 0 this is equivalent to
z1, z2 6= 0 and z2/z1 /∈ {J(a3), . . . , J(ah)}.

On the other hand, if z1, z2 ∈ C\{0} and z2/z1 /∈ {J(a3), . . . , J(ah)}, then
there is a z ∈ H, such that J(z) = z2/z1. Since z1, z2 6= 0, F1(z), F2(z) 6= 0 and
there is z0 ∈ C\{0}, such that

z0 =
F1(z)

z1

=
F2(z)

z2

.
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So we can let a, b, c, d ∈ R be such that, ci + d is a square root of z0, and
ai+ b = z(ci+ d). Then σ := ( a bc d ) is a 2× 2-matrix that sends i to z ∈ H, and
hence σ ∈ GL+

2 . We then see that

Λ(σ) =

(
F1(z)

z0

,
F2(z)

z0

)
= (z1, z2).

This shows that Λ0 maps Γ\GL+
2 (R) surjectively to Ω.

Λ0 is continuous because Λ is continuous. To see that Λ−1
0 is continuous choose

(x, y), (s, t) ∈ Ω, such that (x, y) is ”close to” (s, t), and let σ1 and σ2 be such
that

Λ(σ1) = (x, y), Λ(σ2) = (s, t).

Then J(σ1) = y/x is close to J(σ2) = t/s, and hence σ1 is close to γσ2 for some
γ ∈ Γ.

Due to the identification of PSL2(R) with the unit tangent bundle on the
hyperbolic plane, Γ\SL2(R) can be identified with the unit tangent bundle on
Γ\H. Hence if we restrict Λ0 to Γ\SL2(R), Lemma 4.3.2 gives an identification
of the unit tangent bundle on Γ\H, with some subset Λ0(Γ\SL2(R)) ⊂ C2.

We define || · || to be the norm on C2 given by

||(z1, z2)|| =
√
|z1|2 + |z2|2,

so S3 = {x ∈ C2 | ||x|| = 1}.
If σ ∈ GL+

2 (R) and Λ(σ) = (z1, z2), then z1 6= 0, and hence ||Λ(σ)|| 6= 0. So

it makes sense to define functions Λ̃ : GL+
2 (R)→ S3 ∩ Ω and Λ̃0 : Γ\GL+

2 (R)→
S3 ∩ Ω, by

Λ̃(σ) =

(
F1(σ(i))

(jσ(i))2||Λ(σ)|| ,
F2(σ(i))

(jσ(i))2||Λ(σ)||

)
Λ̃0(Γσ) = Λ̃(σ).

We will now prove that the function Λ̃0 is a homeomorphism. Hence this shows,
that the unit tangent bundle on Γ\H is homeomorphic to S3 ∩ Ω (which seems
like a nicer set than Λ0(Γ\H)).

Theorem 4.3.3. The function Λ̃0 is a homeomorphism.

Proof. We note that for σ ∈ SL2(R)

Λ̃0(Γσ) = Λ̃(σ) = Λ

((√
||Λ(σ)|| 0

0
√
||Λ(σ)||

)−1

σ

)

= Λ0

(
Γ

(√
||Λ(σ)|| 0

0
√
||Λ(σ)||

)−1

σ

)
.
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The function Ψ : Γ\SL2(R)→ Λ−1
0 (S3 ∩ Ω), given by

Ψ(Γσ) = Γ

(√
||Λ(σ)|| 0

0
√
||Λ(σ)||

)−1

σ

is continuous, since ||Λ(σ)|| is continuous as a function of σ. If σ1, σ2 ∈ SL2(R),
then

Ψ(Γσ1) = Ψ(Γσ2) ⇒ Γσ1 =


(
||Λ(σ1)||
||Λ(σ2)||

)1/2

0

0
(
||Λ(σ1)||
||Λ(σ2)||

)1/2

Γσ2

⇒ Γσ1 = Γσ2,

so Ψ is injective.
We see that Ψ−1, is given by

Ψ−1(Γσ) = Γ

(√
detσ 0

0
√

detσ

)−1

σ,

so Ψ−1 is continuous.
Since ∣∣∣∣∣

∣∣∣∣∣Λ
((

t 0
0 t

)−1

σ

)∣∣∣∣∣
∣∣∣∣∣ = t−2||Λ(σ)||,

we have

Ψ

(
Γ

(√
detσ 0

0
√

detσ

)−1

σ

)
= Γ

(√
||Λ(σ)|| 0

0
√
||Λ(σ)||

)−1

σ.

So when Γσ ∈ Λ−1
0 (S3 ∩ Ω), we have

Ψ

(
Γ

(√
detσ 0

0
√

detσ

)−1

σ

)
= Γσ,

so Ψ is surjective.
So Ψ is a homeomorphism and so is Λ0 by Lemma 4.3.2, so Λ̃0 = Λ0 ◦ Ψ is

also a homeomorphism.

We define κ1 : [0, 2π]→ S3 by

κ1(t) = (0, exp(it)),

and for j = 2, . . . , h we define κj : [0, 2π]→ S3 by

κj(t) = (rj exp(it), J(aj)rj exp(it)),
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where
rj := (1 + |J(aj)|2)−1/2.

So for all j ∈ {1, . . . , h} κj is homotopic to a circle, and

S3\Ω =
h⋃
j=1

κj([0, 2π]).

If γ ∈ Γ is hyperbolic with positive trace, then we can write γ in the following
way

γ = A

(
λ 0
0 λ−1

)
A−1 = Aφ2 log λA

−1, A =

(
a b
c d

)
∈ SL2(R),

with λ > 1. We then have a closed geodesic Cγ : [0, 2 log λ] → Γ\SL2(R) given
by

Cγ(t) = ΓAφt.

So Aγ : [0, 2 log λ]→ S3\Ω given by

Aγ(t) = Λ̃0(ΓAφt)

is a closed curve.
For each cusp aj j 6= 1, there exists a weight 2 modular form Fj, which have

a simple zero in aj, and the rest in a1 (by the same argument that showed the
existence of F2). For j = 1, . . . , h Fj has a holomorphic logarithm dj, and we can
define a function Φj : Γ→ Q by

dj(γz) = dj(z) + 2 log(jγ(z)) + 4πiΦj(γ).

So exp(2πikΦj) is the multiplier system for D
k/2
j = exp(kdj/2)

We have the following theorem about Aγ and Φj.

Theorem 4.3.4. Let γ ∈ Γ be hyperbolic and have positive trace, and let
1 ≤ j ≤ h, then the linking number of κj and Aγ is 2Φj(γ).

Proof. If we define f1 : S3 → C by

f1(z1, z2) = z1,

and for j = 2, . . . , h define fj : S3 → C by

fj(z1, z2) = z1J(aj)− z2,

then f−1
j (0) = κj. Hence the linking number of Aγ and κj is the winding number

around 0 of fj ◦ Aγ. This winding number is

1

2π
(= log(fj ◦ Aγ)(2 log λ)−= log(f ◦ Aγ)(0))
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when log(fj ◦ Aγ) is a continuous logarithm.
For j = 1, . . . , h we have.

= log(fj ◦ Aγ)(t) = arg fj(Λ̃(Aφt)) = arg fj(Λ(Aφt)) = = log(fj(Λ(Aφt))).

Furthermore

f1(Λ(Aφt)) =
F1(Aφti)

(jAφt(i))
2
,

fj(Λ(Aφt)) =
J(aj)F1(Aφti)− F2(Aφti)

(jAφt(i))
2

for j 6= 1.
We have

log(f1(Λ(Aφt))) = logF1(Aφti)− 2 log(jAφt(i))

= d1(Aφti)− 2 log(jAφt(i)).

So we get

log(f1(Λ(Aφt+2 log λ))) = d1(Aφt+2 log λi)− 2 log(jAφt+2 log λ
(i))

= d1(γAφti)− 2 log(jγAφt(i))

= log(f1(Λ(Aφt))) + 4πi(Φ1(γ) + ω(γ,Aφt)),

and

ω(γ,Aφt) = ω(Aφtφ2 log λ(Aφt)
−1, Aφt) = 0

by formula (2.10). Hence

link(κ1,Aγ) =
1

2πi
(log(f1(Λ(Aφ2 log λ)))− log(f1(Λ(Aφ0)))) = 2Φ1(γ).

For j 6= 1 J(aj)F1 − F2 is a modular form of weight 2, with a zero of order 1
in aj and a zero of order h− 3 in the aj, so

J(aj)F1 − F2 = αDj

for some α ∈ C\{0}, and we can assume without loss of generality that α = 1.
Hence we can take holomorphic logarithms

log(fj(Λ(Aφt))) = log(J(aj)F1 − F2)(Aφti)− 2 log(jAφt(i))

= dj(Aφti)− 2 log(jAφt(i)).

We then get

log(fj(Λ(Aφt+2 log λ))) = dj(γAφti)− 2 log(jγAφt(i))

= log(fj(Λ(Aφt))) + 4πiΦj(γ).
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Hence

link(κj,Aγ) =
1

2πi
(log(fj(Λ(Aφ2 log λ)))− log(fj(Λ(Aφ0)))) = 2Φj(γ).

So just as for Hecke triangle groups we see, that we have a homeomorphism
between Γ\SL2(R) and the sphere with some knots removed, and that the linking
number of one of these knots and the image of a closed geodesic, is given by a
logarithm of a multiplier system. We can however choose this homeomorphism
in different ways by changing the numbering of the cusps, and we note, that
if h ≥ 4, then it is important which cusp we label a1, since the corresponding
function F1 has all its zeros in a1, while Fj only has one zero in cusp aj for j 6= 1.
The Φj’s depends on the Fj’s, and so the linking number of Aγ and the knot κj
corresponding to a certain cusp depends on which cusp we have labeled a1.

So we can give a geometric interpretation of some logarithms of multiplier
systems as linking numbers, but for h > 3 there are h different such interpreta-
tions, that are equally valid. It seems we could avoid this problem by taking a
h − 2’nd root g of F1, and choose a homeomorphism that used g and F2g

−h+3

instead of F1 and F2. This homeomorphism and the corresponding results would
be (even more) similar, to the homeomorphism we used, and the results we got
for Hecke triangle groups.

It is however not clear, that such a homeomorphism gives a better interpreta-
tion, but maybe it is more general. While the construction of the homeomorphism
for Hecke triangle groups uses some properties of these groups, it seems, that a
similar construction should be possible for many other cofinite groups.



Chapter 5

Distribution of Prime Geodesics

In this chapter we use Selberg’s trace formula to prove a twisted version of the
prime geodesic theorem, and then use this theorem to a show distribution result.
Before we can use the trace formula, we do however need some results related to
the spectral terms.

5.1 A Weyl Law

It is very well known, that for general groups and multiplier systems we can
estimate ∑

λn(ν)≤U2+1/4

1− 1

4π

∫ U

−U

ϕ′

ϕ

(
1

2
+ it, ν

)
dt ∼ µ(F)

4π
U2 (5.1)

(see [5] (ii) p. 414), but we do not know how the error term depends on the
weight and the multiplier system.

We are going to investigate this by making a similar estimate on∑
λn≤U2+1/4

1 +

∫ U

−U

∣∣∣∣ϕ′ϕ
(

1

2
+ it, ν

)∣∣∣∣ dt,
but one that not only depends on U , but also on the multiplier system. Since ν
is a multiplier system of weight k, if and only if it is a multiplier system of weight
k+ 2, we will only consider |k| ≤ 1 (it is however quite easy to extend the results
to all k ∈ R).

Theorem 5.1.1. For U > 0 and ν a multiplier system of weight k ∈ [−1, 1], we
have the following estimate ∑

λn(ν)≤U2+1/4

1 � U2 + (U + 1)L(ν), (5.2)

∫ U

−U

∣∣∣∣ϕ′ϕ
(

1

2
+ it, ν

)∣∣∣∣ dt � U2 + (U + 1)L(ν), (5.3)

61



62 Chapter 5. Distribution of Prime Geodesics

where

L(ν) = 1 +
∑
αj 6=0

log(αj(ν)−1), (5.4)

and the implied constants are independent of ν.

Before we prove this theorem we need some lemmas.

Lemma 5.1.2. If ϕ(s, ν) has a pole of order n in s = s0, with <s0 > 1/2,
then −∆k has n linearly independent eigenfunctions in D(Γ, ν, k) with eigenvalue
s0(1− s0).

Proof. Let ha,s0(z) be the residue of Ea(z, s, ν, k) in s = s0. If all these residues
are identically 0 then none of the Eisenstein series have a pole in s0, and hence
none of the functions ϕab has a residue in s0, so s0 is not a pole of ϕ.

If one or more of the ha,s0 ’s are not identically zero, then we can choose
a1, . . . , an, such that ha1,s0 , . . . , han,s0 is a basis for the space spanned by all the
ha,s0 ’s. By (2.26) we can make row operations on Φ(s, ν) and get a matrix, that
only has poles in s = s0 in the entries in line a1, . . . , an. Since ϕ(s, ν) is the
determinant of this matrix, ϕ(s, ν) has a pole of order at most n or no pole at
all in s = s0. Since ha1,s0 , . . . , han,s0 are n linearly independent eigenfunctions in
D(Γ, ν, k) with eigenvalue s0(1− s0), this proves the lemma.

By (2.20) the entries in the scattering matrix is some Γ-factors times a Dirich-
let series with coefficients depending (only) on ν. Hence the same is true for the
scattering determinant, and we can write

ϕ(s, ν) =

( √
π41−sΓ(2s− 1)

Γ(s+ k/2)Γ(s− k/2)

)K0(ν) ∞∑
n=1

an(ν)

bn(ν)s
,

where 0 < b1(ν) < b2(ν) < . . . and {an(ν)}n∈N ⊂ C. Note that the bn(ν)’s
only depends on, which cusps are singular wrt. ν. If n0 is the smallest n such
that an(ν) 6= 0, then we define b(ν) := bn0(ν). There are only finitely many
possibilities for which cusps are singular, and hence

0 < min
ν
b1(ν) ≤ inf

ν
b(ν).

In other words b(ν) is bounded from below.
Inspired by [19] (p. 655-656) we show the following.

Lemma 5.1.3. Let σ1(ν), . . . , σN(ν)(ν) be the poles of ϕ(·, ν) in the right half-
plane

H1/2 := {s ∈ C | <s ≥ 1/2}
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(such that if s0 is a pole of order n, then s0 = σj(ν) for n j’s), and for s ∈ C
define

ϕ∗(s, ν) := b(ν)s−1/2

N(ν)∏
j=1

σj(ν)− s
σj(ν) + s− 1

ϕ(s, ν). (5.5)

Then we have

ϕ∗′

ϕ∗

(
1

2
+ it, ν

)
< 0,

for all t ∈ R.

Proof. Fix ν, and define ϕ(s) := ϕ(s, ν), b := b(ν) etc..
We note that, by (5.5) ϕ∗(s) is holomorphic for s ∈ H1/2, and by (2.22) and

(2.24) we have

ϕ∗(s)ϕ∗(1− s) = 1, (5.6)

|ϕ∗(1/2 + it)| = 1. (5.7)

Let δ > 0. For 1/2 ≤ <s ≤ 3/2, and |=s| ≥ δ, ϕ(s) is bounded (see [5]
equation (5.46) p. 381), and hence ϕ∗(s) is bounded for 1/2 ≤ <s ≤ 3/2. For
<s ≥ 3/2 we have by Stirling’s formula ([8] formula (B.7) p. 198)

Γ(s− 1/2)Γ(s)

Γ(s+ k/2)Γ(s− k/2)
∼

(e
s

)1/2
(

s(s− 1/2)

(s+ k/2)(s− k/2)

)s
,

for <s→∞, and

Γ(s− 1/2)Γ(s)

Γ(s+ k/2)Γ(s− k/2)
� s−1/2

(
s(s− 1/2)

(s+ k/2)(s− k/2)

)s
,

for <s ≥ 3/2.
We see that(

s(s− 1/2)

(s+ k/2)(s− k/2)

)s
=

(
s

s+ k/2

)s(
s− 1/2

s− k/2

)s
=

(
1− k/2

s+ k/2

)s(
1 +

k/2− 1/2

s− k/2

)s
,

which tends to e−k/2 ·ek/2−1/2 = e−1/2, when s→∞, and is bounded for <s ≥ 3/2.
Since

bs−1/2

∞∑
n=1

an
bsn

=
an0√
b

+
1√
b

∞∑
n=n0+1

an
(bn/b)s

=
an0√
b

+O

(
∞∑

n=n0+1

|an|
(bn/b)σ

)
,
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for <s = σ ≥ 3/2, we have ϕ∗(s) is bounded for <s ≥ 1/2, and

ϕ∗(s) ∼ an0√
b
s−K0/2 for <s→∞.

The Möbius transformation

s 7→ s− 1

s
= 1− 1

s
,

sends H1/2 bijectively to the unit disc D, and its inverse is

z 7→ 1

1− z .

Since ϕ∗ is bounded in the right half plane, the function ϕ̃ : D→ C given by

ϕ̃(z) = ϕ∗
(

1

1− z

)
,

is bounded on the unit disc, and since |ϕ∗(s)| = 1 for <s = 1/2,

lim
r↑1
|ϕ̃(reit)| = 1 (5.8)

for t ∈ (0, 2π). Hence ϕ̃ is an inner function, and it can be written in the form

ϕ̃(z) = cB(z) exp

(
−
∫ π

−π

eit + z

eit − z dµ(t)

)
,

where |c| = 1, B is the Blaschke product with the same zeros as ϕ̃, and µ is
a positive Borel measure on (−π, π], which is singular with respect to Lebesgue
measure (see [17] 17.15 p. 342).

The Blaschke product B : D→ C is given by

B(z) = zk
∞∏
n=1

αn − z
1− αnz

· |αn|
αn

,

where α1, α2, . . . are the zeros (counted with multiplicity) of ϕ̃ in D\{0}, and
k = 0 if ϕ̃(0) 6= 0, and k is the order of the zero in z = 0 otherwise (see [17] 15.21
Theorem p. 310). Note that

αn − z
1− αnz

· |αn|
αn

is holomorphic in the open disc with center in 0 and radius |αn|−1, and that it
has modulus 1 for |z| = 1. So for any z ∈ D, all the factors of B(z) has modulus
(strictly) smaller than 1, and hence |B(z)| < 1 (unless ϕ̃ is zero free, in which
case there are no factors and B ≡ 1). So

|ϕ̃(z)| ≤ exp

(
−
∫ π

−π
<e

it + z

eit − z dµ(t)

)
.
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For z = reiθ ∈ D we have∫ π

−π
<e

it + z

eit − z dt =

∫ π

−π

1− r2

1 + r2 − 2r cos(t− θ) dt = 2π.

Since µ is singular with respect to Lebesgue measure we have

lim
ε↓0

µ(θ − ε, θ + ε)

2ε
=∞ (5.9)

for almost all θ ∈ (−π, π) wrt. µ (see [17] 7.15 Theorem p. 143). If (5.9) holds
for θ ∈ (−π, π) and M ∈ N, we can choose δ > 0, such that for ε ≤ δ, we have
µ(θ − ε, θ + ε) > 2εM . Hence

lim
r↑1

∫ π

−π
<e

it + reiθ

eit − reiθ dµ(t) = lim
r↑1

∫ θ+δ

θ−δ

1− r2

1 + r2 − 2r cos(t− θ) dµ(t)

≥ M lim
r↑1

∫ θ+δ

θ−δ

1− r2

1 + r2 − 2r cos(t− θ) dt

= M lim
r↑1

∫ π

−π

1− r2

1 + r2 − 2r cos(t− θ) dt = 2πM.

Since this holds for arbitrary M , we have

lim
r↑1

∫ π

−π
<e

it + reiθ

eit − reiθ dµ(t) =∞,

and hence

lim
r↑1
|ϕ̃(reiθ)| ≤ lim

r↑1
exp

(
−
∫ π

−π
<e

it + reiθ

eit − reiθ dµ(t)

)
= 0.

By (5.8), this means that θ = 0.
So µ can be written on the form

µ = mπδπ +m0δ0,

where δx is the Dirac measure with mass in x, and mπ,m0 ≥ 0. But

1 = lim
r↑1
|ϕ̃(−r)| ≤ lim

r↑1
exp

(
−
∫ π

−π
<e

it − r
eit + r

dµ(t)

)
≤ lim

r↑1
exp

(
−mπ

1 + r

1− r

)
,

so mπ = 0, and µ = m0δ0.
Hence

|ϕ̃(r)| ≤ exp

(
−m0

1 + r

1− r

)
= exp

(
m0 − 2m0

1

1− r

)
,
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but

|ϕ̃(r)| =
∣∣∣∣ϕ∗( 1

1− r

)∣∣∣∣ ∼ |an0|√
b

(
1

1− r

)−K0/2

for r ↑ 1,

so m0 = 0. Hence µ is the zero measure and ϕ̃ = cB.
A point α ∈ D is a zero of B if and only if it is on the form

α =
ρ− 1

ρ
,

for some zero ρ ∈ H1/2 of ϕ. Hence we have

ϕ∗(s) = cB

(
s− 1

s

)
= c

(
s− 1

s

)k∏
ρ6=1

(ρ− 1)/ρ− (s− 1)/s

1− (ρ̄− 1)(s− 1)/(ρ̄s)
· |(ρ− 1)/ρ|

(ρ− 1)/ρ

= c

(
s− 1

s

)k∏
ρ6=1

1/s− 1/ρ

1/s+ 1/ρ̄− 1/(ρ̄s)
· |(ρ− 1)/ρ|

(ρ− 1)/ρ

= c

(
s− 1

s

)k∏
ρ6=1

ρ(ρ− 1)

|ρ(ρ− 1)| ·
ρ− s

ρ̄+ s− 1
,

where the product is over the zeros of ϕ in H1/2. If ρ is a zero of ϕ, then so is ρ̄
by (2.23), and we have(

ρ(ρ− 1)

|ρ(ρ− 1)| ·
ρ− s

ρ̄+ s− 1

)(
ρ(ρ− 1)

|ρ(ρ− 1)| ·
ρ̄− s

ρ+ s− 1

)
=

ρ− s
ρ̄+ s− 1

· ρ̄− s
ρ+ s− 1

.

So we have

ϕ∗(s) = c(−1)k
∏
n

ρn − s
ρ̄n + s− 1

= c(−1)k
∏
n

ρn − s
ρn + s− 1

, (5.10)

where the ρn’s are the zeros of ϕ in H1/2, and they are ordered such that if
=ρn > 0, then ρn = ρ̄n+1.

Taking logarithmic derivatives in (5.10) we see, that

ϕ∗′

ϕ∗
(s) =

∑
n

d

ds
(log(ρn − s)− log(ρ̄n + s− 1))

=
∑
n

( −1

ρn − s
− 1

ρ̄n + s− 1

)
=

∑
n

1− 2<ρ
(ρn − s)(ρ̄n + s− 1)

.
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Setting s = 1/2 + it, we get

ϕ∗′

ϕ∗

(
1

2
+ it

)
=

∑
n

1− 2<ρn
(ρn − 1/2− it)(ρ̄n − 1/2 + it)

=
∑
n

1− 2<ρn
|1/2 + it− ρn|2

< 0.

We note that by (2.22), we have ϕ(1/2) = ±1, and that by (5.10)

c(−1)k = ϕ∗
(

1

2

)
= ϕ

(
1

2

)
.

So

ϕ(s) = ϕ

(
1

2

)
b1/2−s

N(ν)∏
j=1

σj + s− 1

σj − s
∏
n

ρn − s
ρ̄n + s− 1

. (5.11)

We can use the trace formula to get a ”smooth version” of Theorem 5.1.1,
which we will use to prove the theorem.

Lemma 5.1.4. If we for U > 0 define HU : C → C by HU(x) = e−(x/U)2
, then

for U ≥ 2 and |k| ≤ 1, we have

∞∑
n=0

HU(rn(ν))− 1

4π

∫
R
HU(t)

ϕ′

ϕ

(
1

2
+ it, ν

)
dt� U2 + UL(ν), (5.12)

where the implied constant is independent of ν.

Proof. We are going to use the trace formula with h = HU , and estimate the
geometric terms. The corresponding g will be GU(x) = U√

4π
e−(xU/2)2

.

We first estimate (2.28). To do so we note that | sinh(x)/ cosh(x)| → 1 when
x → ±∞, and that cosh(x)− 1 is positive on R except in x = 0, where it has a
double zero, so since sinh(x) has a zero at x = 0 can

x sinh(2πx)

cosh(2πx) + cos(πk)
,

be continuously extended to (x, k) = (0,±1), and it is thus uniformly bounded
for |x| ≤ 1. Hence

µ(F)

4π

∫
R
rHU(r)

sinh(2πr)dr

cosh(2πr) + cos(πk)
�

∫
R
(|r|+ 1)e−(r/U)2

dr

= 2

∫ ∞
0

(r + 1)e−(r/U)2

dr

= 2U

∫ ∞
0

(Ux+ 1)e−x
2

dx� U2.
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Since we only consider |k| ≤ 1, the second term is 0.
When estimating (2.30) we get∑

[γ]
Tr γ>2

ν(γ)l(γ0)

N(γ)1/2 −N(γ)−1/2
GU(l(γ)) �

∞∑
j=1

∑
[γ]∈Γ′

l(γ)GU(jl(γ))

N(γ)j/2 −N(γ)−j/2
,

where Γ′ denotes the set of conjugacy classes of primitive hyperbolic matrices
with positive trace in Γ. We see that

GU(x) ≤ Ue−x
2 � U

exp(x/2)x2
,

so when we apply partial summation and the prime geodesic theorem (Corollary
2.4.2) to the j = 1 term, we get∑

[γ]∈Γ′

l(γ)GU(l(γ))

N(γ)1/2 −N(γ)−1/2
�

∑
[γ]∈Γ′

U

(N(γ)− 1)l(γ)

= lim
A→∞

U

(A− 1) logA
π(logA) + U

∫ ∞
NΓ

(log t+ 1− t−1)π(log t)

((t− 1) log t)2
dt

� lim
A→∞

U

(logA)2
+ U

∫ ∞
NΓ

1

t(log t)2
dt

= U

∫ ∞
logNΓ

1

x2
dx� U,

where NΓ > 1 is the minimal norm of any hyperbolic element of Γ. To estimate
the j ≥ 2 part, we note that

∞∑
j=2

GU(jl(γ)) � U
∞∑
j=2

e−(jl(γ))2 ≤ U
∞∑
j=4

(e−(l(γ))2

)j

=
Ue−4(l(γ))2

1− e−(l(γ))2 � U(l(γ))−2.

So
∞∑
j=2

∑
[γ]∈Γ′

l(γ)GU(jl(γ))

N(γ)j/2 −N(γ)−j/2
�

∑
[γ]∈Γ′

l(γ)

N(γ)

∞∑
j=2

GU(jl(γ))

�
∑

[γ]∈Γ′

U

N(γ)l(γ)
,

and by partial summation∑
[γ]∈Γ′

U

N(γ)l(γ)
= lim

A→∞

Uπ(logA)

A logA
+ U

∫ ∞
NΓ

(log t+ 1)π(t)

(t log t)2

� lim
A→∞

U

(logA)2
+ U

∫ ∞
NΓ

1

t(log t)2
� U.
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So (2.30) is O(U).

We estimate (2.31) in the following way

∑
{R}

TrR<2
0<θ(R)<π

ν(R)iei(k−1)θ

4MR sin θ

∫
R
GU(u)e(k−1)u/2 eu − e2iθ

coshu− cos(2θ)
du

� U

∫
R
e−u

2+(k−1)u/2(eu + 1)du � U.

In the same way we see that (2.33) and (2.34) is O(U).

We estimate (2.32) by

GU(0)
∑
αj 6=0

log |1− e2πiαj(ν
k)| � U

∑
αj 6=0

| log(|2πiαj(νk)|)|

� U

1 +
∑
αj 6=0

log(αj(ν
k)−1)

 .

With the help of formula (B.11) on p. 199 in [8], we can estimate (2.35)

K0

(
GU(0) log 2 +

1

2π

∫
R
HU(r)

Γ′(1 + ir)

Γ(1 + ir)
dr

)
� U +

∫
R
e−(r/U)2

∣∣∣∣Γ′(1 + ir)

Γ(1 + ir)

∣∣∣∣ dr
= U + U

∫
R
e−r

2

∣∣∣∣Γ′(1 + iUr)

Γ(1 + iUr)

∣∣∣∣ dr
� U + U

∫
R
e−r

2

(| log(1 + iUr)|+ |1 + iUr|−1)dr

� U + U

∫
R
e−r

2

(1 + |Ur|)dr � U2.

The term (2.36) is bounded since the entries of Φ(1
2
) are bounded. By col-

lecting all these terms we get the desired estimate.

We are now going to use these two lemmas to prove Theorem 5.1.1.

Proof of Theorem 5.1.1. We look at the relation between the logarithmic deriva-
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tive of ϕ∗ and ϕ,

−ϕ
∗′

ϕ∗
(s, ν) = −ϕ

′

ϕ
(s, ν)− d

ds

log

b(ν)s−1/2

N(ν)∏
j=1

σj(ν)− s
σj(ν) + s− 1


= −ϕ

′

ϕ
(s, ν)− log b(ν) +

N(ν)∑
j=1

(
1

σj(ν)− s +
1

σj(ν) + s− 1

)

= −ϕ
′

ϕ
(s, ν)− log b(ν) +

N(ν)∑
j=1

2σj(ν)− 1

(σj(ν)− s)(σj(ν) + s− 1)
.

So for s = 1/2 + it, we have by Lemma 5.1.3

0 < −ϕ
∗′

ϕ∗

(
1

2
+ it, ν

)
= −ϕ

′

ϕ

(
1

2
+ it, ν

)
− log b(ν) + 2

N(ν)∑
j=1

σj(ν)− 1/2

(σj(ν)− 1/2)2 + t2
.

For a > 0 we have∫
R

a

a2 + t2
dt =

∫
R

a2

a2 + (at)2
dt =

∫
R

1

1 + t2
dt = π,

and hence
N(ν)∑
j=1

∫
R
HU(t)

σj(ν)− 1/2

(σj(ν)− 1/2)2 + t2
dt ≤

N(ν)∑
j=1

∫
R

σj(ν)− 1/2

(σj(ν)− 1/2)2 + t2
dt = πN(ν),∫

R
HU(t) log b(ν) dt = log b(ν)

∫
R
UH1(t) dt = U

√
π log b(ν).

Since the left hand sides of (5.2) and (5.3) are increasing, it is enough to show
the theorem for U ≥ 2. So assume that U ≥ 2, and define H∗U : C→ C by

H∗U(x) =

{
HU(x) for x ∈ R

HU(x)− 1
2

for x /∈ R .

If we assume that b(ν) ≤ 1 (and remember that b(ν) is bounded from below),
then Lemma 5.1.2 and 5.1.4 gives us

0 <

∞∑
n=0

H∗U(rn(ν))− 1

4π

∫
R
HU(t)

ϕ∗′

ϕ∗

(
1

2
+ it, ν

)
dt

≤
∞∑
n=0

H∗U(rn(ν)) +
N(ν)

2
− 1

4π

∫
R
HU(t)

ϕ′

ϕ

(
1

2
+ it, ν

)
dt− U log b(ν)

2
√
π

≤
∞∑
n=0

HU(rn(ν))− 1

4π

∫
R
HU(t)

ϕ′

ϕ

(
1

2
+ it, ν

)
dt− U log b(ν)

2
√
π

� U2 + UL(ν).
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Hence

0 <
1

e

 ∑
λn(ν)≤U2+1/4

1− 1

4π

∫ U

−U

ϕ∗′

ϕ∗

(
1

2
+ it, ν

)
dt


≤

∞∑
n=0

H∗U(rn(ν))− 1

4π

∫
R
HU(t)

ϕ∗′

ϕ∗

(
1

2
+ it, ν

)
dt

� U2 + UL(ν).

Which proves that (5.2) holds for b(ν) ≤ 1.
We can now make the following estimate

0 <

∫ U

−U

∣∣∣∣ϕ′ϕ
(

1

2
+ it, ν

)∣∣∣∣ dt
≤

∫
R

2

N(ν)∑
j=1

σj(ν)− 1/2

(σj(ν)− 1/2)2 + t2
dt−

∫ U

−U

ϕ∗′

ϕ∗

(
1

2
+ it, ν

)
+ log b(ν) dt

≤ 2π
∑

λn(ν)≤1/4

1−
∫ U

−U

ϕ∗′

ϕ∗

(
1

2
+ it, ν

)
dt+O(U)

= O(U2 + UL(ν)).

Hence we have proved Theorem 5.1.1 for b(ν) ≤ 1.
For b(ν) > 1, we can make almost the same argument if we replace −ϕ∗′/ϕ∗

by −ϕ∗′/ϕ∗ + log b(ν). By Lemma 5.1.2 and 5.1.4

0 <
∞∑
n=0

H∗U(rn(ν)) +
1

4π

∫
R
HU(t)

(
−ϕ

∗′

ϕ∗

(
1

2
+ it, ν

)
+ log b(ν)

)
dt

≤
∞∑
n=0

HU(rn(ν))− 1

4π

∫
R
HU(t)

ϕ′

ϕ

(
1

2
+ it, ν

)
dt

� U2 + UL(ν).

Hence

0 <
1

e

 ∑
λn(ν)≤U2+1/4

1 +
1

4π

∫ U

−U
−ϕ

∗′

ϕ∗

(
1

2
+ it, ν

)
+ log b(ν)dt


≤

∞∑
n=0

H∗U(rn(ν)) +
1

4π

∫
R
HU(t)

(
−ϕ

∗′

ϕ∗

(
1

2
+ it, ν

)
+ log b(ν)

)
dt

� U2 + UL(ν).

Which proves that (5.2) holds for b(ν) ≥ 1.
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Finally

0 <

∫ U

−U

∣∣∣∣ϕ′ϕ
(

1

2
+ it, ν

)∣∣∣∣ dt
≤

∫
R

2

N(ν)∑
j=1

σj(ν)− 1/2

(σj(ν)− 1/2)2 + t2
dt+

∫ U

−U
−ϕ

∗′

ϕ∗

(
1

2
+ it, ν

)
+ log b(ν) dt

≤ 2π
∑

λn(ν)≤1/4

1−
∫ U

−U

ϕ∗′

ϕ∗

(
1

2
+ it, ν

)
+ log b(ν) dt

= O(U2 + UL(ν)).

Which proves that (5.3) holds for b(ν) ≥ 1.

5.2 Continuity of Small Eigenvalues

We recall some properties of the Laplace transform L (f) of a continuous function
f : R+ → C defined by

L (f)(z) =

∫ ∞
0

e−ztf(t) dt, (5.13)

if f is sufficiently nice, so (5.13) converges absolutely in a half plane <z > a0 (for
details on the Laplace transform see [21]). For a > a0 we have

f(u) =
1

2π

∫ a+i∞

a−i∞
ezuL (f)(z) dz

(see [21] Theorem 7.3 p. 66), and for ρ > 0

1

2π

∫ a+i∞

a−i∞
ezu

L (f)(z)

zρ
dz =

{
fρ(u) if u ≥ 0

0 if u < 0

(see [21] Theorem 8.1 p. 73 and Theorem 8.2 p. 74), where

fρ(u) =

∫ u

0

(u− t)ρ−1

Γ(ρ)
f(t) dt.

We use the idea from [14] section 3.3 to show a similar result about continuity
of small eigenvalues as functions of the weight.

Theorem 5.2.1. Let I be an open interval containing 0, and for k ∈ I let
νk : Γ → S1 be a multiplier system of weight k, such that νk(γ) is continuous
as a function of the weight k, for any fixed γ ∈ Γ. Denote the eigenvalues
corresponding to νk by λ0(k), λ1(k), . . . , and let T < 1/4 be such that T 6= λn(0)
for all n. Then there exists ε > 0 such that |{λn(k) < T}| is constant for |k| ≤ ε.
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Proof. We use the trace formula for hz(r) = e−zr
2
, where z ∈ C has positive

real part (this gives us gz(x) = (4πz)−1/2 exp(−x2/(4z))). We let f(u) = 1 and
T < 1/4, and multiply in the trace formula with L (f)(z)ez(T−1/4)/z, so that the
left hand side becomes ∑

n

ez(T−λn(k))L (f)(z)

z
.

We then integrate with respect to (2πi)−1dz from z = a− i∞ to z = a+ i∞ (for
some positive a), so the left hand side becomes

∑
λn(k)≤T

f1(T − λn(k)) =
∑

λn(k)≤T

∫ T−λn(k)

0

1 du =
∑

λn(k)≤T

(T − λn(k)).

When we make the multiplication and integration in (2.28), we get

1

2πi
· µ(F)

4π

∫ a+i∞

a−i∞

L (f)(z)ez(T−1/4)

z

∫
R
rhz(r)

sinh(2πr)dr

cosh(2πr) + cos(πk)
dz =

1

2πi
· µ(F)

4π

∫
R
r

sinh(2πr)

cosh(2πr) + cos(πk)

∫ a+i∞

a−i∞

L (f)(z)ez(T−1/4)

z
hz(r) dz dr = 0,

since∫ a+i∞

a−i∞

L (f)(z)ez(T−1/4)

z
hz(r) dz =

∫ a+i∞

a−i∞

L (f)(z)ez(T−1/4−r2)

z
dz = 0.

Likewise we get 0 from (2.32), (2.35), (2.36) and (2.37) (where we use gz(0) =
(4πz)−1/2). If we look at weight k ∈ [−1, 1] (2.29) is zero.

By [5] p. 401-402 we can rewrite (2.31) to∑
{R}

TrR<2
0<θ(R)<π

ν(R)

4MR sin θ

∫
R
hz(r)

cosh((2r(π − θ)) + eikπ cosh(2rθ)

cosh(2πr)− cos(πk)
dr

+
∑
{R}

TrR<2
0<θ(R)<π

ν(R)

2MR sin θ
sign(k)

∑
l odd

1≤l≤|k|

i exp (i(k − lsign(k))θ)h

(
i(|k| − l)

2

)

and (2.33) to ∑
αj 6=0

(
1

2
− αj

)
1

2

∫ ∞
−∞

hz(r)
sin(kπ)

cosh(2πr) + cos(πk)
dr

+
∑
αj 6=0

(
1

2
− αj

)
sign(k)

∑
l odd

1≤l≤|k|

h

(
i(|k| − l)

2

)



74 Chapter 5. Distribution of Prime Geodesics

so these terms also becomes zero after multiplication and integration, when |k| ≤
1.

Hence for small weight∑
λn≤T

(T − λn) =
1

2πi

∫ a+i∞

a−i∞

L (f)(z)ez(T−1/4)

z
Fk(z) dz

where

Fk(z) =
∑
[γ]

Tr γ>2

νk(γ)l(γ0)gz(l(γ))

N(γ)1/2 −N(γ)−1/2
+K0(k)

∫ ∞
0

gz(u)(1− cosh(k
2
u))

eu/2 − e−u/2 du.

We see that

L (f)(z)ez(T−1/4)

z
· gz(u)(1− cosh(k

2
u))

eu/2 − e−u/2 → 0

uniformly for z ∈]a− i∞, a+ i∞[ and u ∈ R+, when k → 0. Hence by dominated
convergence∫ a+i∞

a−i∞

∫ ∞
0

L (f)(z)ez(T−1/4)

z
· gz(u)(1− cosh(k

2
u))

eu/2 − e−u/2 du dz

is continuous as a function of k in k = 0, and it is zero at k = 0. Since K0(k) is
constant for k ∈ J\{0}, if J is a small interval around 0, we see that∫ a+i∞

a−i∞
K0

∫ ∞
0

L (f)(z)ez(T−1/4)

z
· gz(u)(1− cosh(k

2
u))

eu/2 − e−u/2 du dz,

is continuous in k = 0.
Likewise dominated convergence implies that∑

[γ]
Tr γ>2

νk(γ)l(γ0)

N(γ)1/2 −N(γ)−1/2

1

2πi

∫ a+i∞

a−i∞

L (f)(z)ez(T−1/4)

z
gz(l(γ)) dz,

is continuous at k = 0. So
∑

λn(k)≤T (T − λn(k)) is continuous at k = 0.

Defining N(T, k) =
∑

λn(k)≤T (T −λn(k)), we see that for 0 < ε < 1/4−T , we
have

N(T, k)−N(T − ε, k)

ε
≤ |{λn(k) ≤ T}| ≤ N(T + ε, k)−N(T, k)

ε
.

Since N(T, k) is continuous in k = 0, this gives us

lim inf
k→0

|{λn(k) ≤ T}| ≥ N(T, 0)−N(T − ε, 0)

ε

lim sup
k→0

|{λn(k) ≤ T}| ≤ N(T + ε, 0)−N(T, 0)

ε
.
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For ε close to zero, the right hand sides are |{λn(0) ≤ T}|, if T 6= λn(0) for all n,
so

lim sup
k→0

|{λn(k) ≤ T}| ≤ {λn(0) ≤ T}| ≤ lim inf
k→0

|{λn(k) ≤ T}|.

But this means, that {λn(k) ≤ T}| is continuous in k = 0 (if T 6= λn(0)), so this
proves the theorem.

Another way to state the theorem would be, that if νk is as stated in the
theorem, and λ0(k) ≤ λ1(k) ≤ . . . are the corresponding eigenvalues, then λn(k)
is continuous in k = 0, if λn(0) < 1/4. We get the following corollary to Theorem
5.2.1

Corollary 5.2.2. Let I ⊂ [−1, 1] be closed, and for k ∈ I let νk : Γ → S1 be
a multiplier system of weight k, such that νk(γ) is continuous as a function of
the weight k, for any fixed γ ∈ Γ. Denote the eigenvalues corresponding to νk by
λ0(k) ≤ λ1(k) ≤ . . . . If 0 ∈ I and ν0 6≡ 1 or if 0 /∈ I, then there exists a ε > 0
so λ0(k) ≥ ε for all k ∈ I. If 0 ∈ I and ν0 ≡ 1, then λ0(0) = 0 and there exists
ε > 0 so λ1(k) ≥ ε for all k ∈ I.

Proof. It follows from (2.17) and (2.18), that

λ0(k) ≥ |k|
2

(
1− |k|

2

)
,

and that if f is the eigenfunction corresponding to λ0(k), then equality holds
exactly when yk/2f(z) is holomorphic and k < 0, y−k/2f(z) is holomorphic and
k > 0, or k = 0 and f, f are holomorphic. So if 0 ∈ I, then λ0(0) = 0 if there
exists an eigenfunction f of ∆0 such that f and f is holomorphic, and otherwise
λ0(0) is positive. But the only way, that both f and f can be holomorphic, is,
if f is constant, and the constant functions are automorphic forms if and only
if, the multiplier system is constant (and the weight is 0). So if ν0 ≡ 1, then
0 = λ0(0) < λ0(1), and if ν0 6≡ 1 is 0 < λ0(0).

If 0 ∈ I and ν0 ≡ 1, let λ1(0) = 2ε′. By Theorem 5.2.1 there exists δ ∈ (0, 1)
such that λ1(k) ≥ ε′ for |k| ≤ δ. For δ ≤ |k| ≤ 1 we have

λ1(k) ≥ λ0(k) ≥ |k|
2

(
1− |k|

2

)
≥ δ

2

(
1− δ

2

)
= ε′′,

so setting ε = min{ε′, ε′′} gives the desired result for ν0 ≡ 1. If we let ν0 6≡ 1 and
λ0(0) = 2ε′ the same argument yields the other part of the proof, for 0 ∈ I. If
0 /∈ I, define δ = minx∈I |x|, and ε = ε′′.
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5.3 A ”Twisted” Prime Geodesic Theorem

To each hyperbolic element γ ∈ Γ of norm N(γ) corresponds a geodesic on Γ\H
of length l(γ) = log(N(γ)). We want to investigate sums over prime geodesics
of length at most T for some T > 0. To do so, we would like to use the trace
formula with g = 1[−T,T ], since we then only would sum over hyperbolic geodesics
of length at most T . We can however not choose g = 1[−T,T ], since this is not
smooth, so we have to smooth it out. To do so we convolute with a cut-off
function Kε supported on [−ε, ε], where ε is some positive constant.

Following Sarnak (see [18]), we let K : R→ [0,∞[ be a smooth even function,
such that K(t) = 0, for |t| ≥ 1, and∫

R
K(t)dt = 1.

For T > 1 and 0 < ε < 1 define

Kε(t) =
1

ε
K

(
t

ε

)
gT,ε(t) = gT (t) = g(t) =

1

2π
(1[−T,T ] ∗Kε)(t)

hT,ε(t) = hT (t) = h(t) = 2πĝ(t) =
2 sin(Tt)

t
K̂(εt),

so that h and g can be used in the trace formula. Then Kε is supported on [−ε, ε]
and

∫
Kε = 1. So gT,ε(t) is supported on [−T−ε, T +ε], it is (2π)−1 for |t| ≤ T−ε

and is between 0 and (2π)−1 for all t.
Estimations on the terms in the trace formula with hT,ε and gT,ε gives us the

following lemma.

Lemma 5.3.1. For hT,ε and gT,ε defined as above we have

∞∑
n=0

hT,ε(rn) =
∑
[γ]

Tr γ>2

ν(γ)l(γ0)

N(γ)1/2 −N(γ)−1/2
gT,ε(l(γ)) +O(L(ν)(T + ε−1)),

where the implied constant is independent on the multiplier system ν, and L is
defined by (5.4).

Proof. Since a multiplier system of weight k is also a multiplier system of weight
k ± 2, we can assume that |k| ≤ 1. We are going to use the trace formula, so we
have to estimate the terms (2.28)-(2.29) and (2.31)-(2.37).

Since |k| ≤ 1 (2.29) is zero.
We now estimate (2.28),

µ(F)

4π

∫
R
rh(r)

sinh(2πr)dr

cosh(2πr) + cos(πm)
�

∫
R

∣∣∣∣h(r)
r sinh(2πr)

cosh(2πr)− 1

∣∣∣∣ dr
�

∫
R
|h(r)|(|r|+ 1) dr.
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By definition of h we have∫
R
|h(r)|(|r|+ 1) dr � T

∫ 1

−1

∣∣∣∣sin(Tr)

Tr
K̂(εr)

∣∣∣∣ dr + 2

∫ ∞
1

∣∣∣sin(Tr)K̂(εr)
∣∣∣ dr

� T + ε−1

∫ ∞
ε

|K̂(r)| dr � T + ε−1.

For fixed θ is

e(k−1)u/2 eu − e2iθ

coshu− cos(2θ)

uniformly bounded when |k| ≤ 1 and u ∈ R, so (2.31) can be estimated by

∑
{R}

TrR<2
0<θ(R)<π

ν(R)iei(k−1)θ

4MR sin θ

∫
R
g(u)e(k−1)u/2 eu − e2iθ

coshu− cos(2θ)
du

�
∑
{R}

TrR<2
0<θ(R)<π

(4MR sin θ)−1

∫
R
g(u) du � T.

Likewise (2.33) and (2.34) is O(T ).
We note that g(0) = 1, and estimate (2.32) by∣∣∣∣∣∣g(0)

∑
αj(ν)6=0

log |1− e2πiαj(ν)|

∣∣∣∣∣∣ ≤
∑

αj(ν) 6=0

∣∣log |1− e2πiαj(ν)|
∣∣� L(ν).

Since Γ′(s)/Γ(s) = log s − (2s)−1 + O(|s|−2) uniformly on vertical the line
<s = 1 (see [8] (B.11) p. 199), is

K0

(
g(0) log 2 +

1

2π

∫
R
h(r)

Γ′(1 + ir)

Γ(1 + ir)
dr

)
� 1 +

∫
R
| log(1 + ir)h(r)| dr +

∫ 1

−1

|h(r)| dr

� T +

∫
R
K̂(εr) dr

� T +

∫
R
(1 + (εr)2)−1 dr

� T + ε−1

∫
R
(1 + t2)−1 dt � T + ε−1,

since K̂ is a Schwartz-function.
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(2.36) is trivially estimated by∣∣∣∣14h(0)Tr (I − Φ(1
2
))

∣∣∣∣ ≤ K0h(0)/2 = K0T.

So the only thing left to do, is estimating (2.37). To do this we use Theorem
5.1.1. We see that∫ 1

−1

h(r)
ϕ′

ϕ

(
1

2
+ ir

)
dr ≤ 2T

∫ 1

−1

∣∣∣∣ϕ′ϕ
(

1

2
+ ir

)∣∣∣∣ dr � TL(ν).

Furthermore∫ ε−1

1

h(r)
ϕ′

ϕ

(
1

2
+ ir

)
dr �

∫ ε−1

1

1

r

∣∣∣∣ϕ′ϕ
(

1

2
+ ir

)∣∣∣∣ dr
= ε

∫ ε−1

1

∣∣∣∣ϕ′ϕ
(

1

2
+ ir

)∣∣∣∣ dr +

∫ ε−1

1

r−2

∫ r

1

∣∣∣∣ϕ′ϕ
(

1

2
+ ix

)∣∣∣∣ dx dr
� ε−1L(ν),

and likewise for the integral over [−ε−1,−1]. Finally∫ ∞
ε−1

h(r)
ϕ′

ϕ

(
1

2
+ ir

)
dr

= sup
x>0

(K̂(x)x2)

∫ ∞
ε−1

ε−2r−3

∣∣∣∣ϕ′ϕ
(

1

2
+ ir

)∣∣∣∣ dr
� lim

A→∞
A−3

∫ A

ε−1

ε−2

∣∣∣∣ϕ′ϕ
(

1

2
+ ir

)∣∣∣∣ dr +

∫ ∞
ε−1

r−4ε−2

∫ r

ε−1

∣∣∣∣ϕ′ϕ
(

1

2
+ ix

)∣∣∣∣ dx dr
� ε−1L(ν),

here we have again used that K̂ is a Schwartz function. Since we can make the
same estimate for ]−∞,−ε−1], is∫

R
h(r)

ϕ′

ϕ

(
1

2
+ ir

)
dr = O(ε−1L(ν)).

This proves the lemma.

We chose g so that it was almost an indicator function, so that the hyperbolic
term in the trace formula (2.30) would approximately be a sum over the elements
of Γ′ (the set of conjugacy classes of primitive hyperbolic matrices with positive
trace in Γ) of length at most T . The following lemma formalizes this.

Lemma 5.3.2. For hT,ε and gT,ε defined as above we have, that the hyperbolic
term in the trace formula (2.30) is

1

2π

∑
[γ]∈Γ′

l(γ)≤T

ν(γ)l(γ)

N(γ)1/2 −N(γ)−1/2
+O(eT/2ε+ eT/4), (5.14)

where the implied constant is independent on the multiplier system ν.
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Proof. We rewrite (2.30)∑
[γ]

Tr γ>2

ν(γ)g(l(γ))l(γ0)

N(γ)1/2 −N(γ)−1/2
=
∞∑
j=1

∑
[γ]∈Γ′

ν(γj)g(jl(γ))l(γ)

N(γ)j/2 −N(γ)−j/2
.

We first want to estimate the j ≥ 2 part, so that we are left with a sum over the
primitive geodesics.

Let Nt be the norm of matrices with trace t and let m(t) be the number of
primitive conjugation classes with trace t, then

∞∑
j=2

∑
[γ]∈Γ′

ν(γj)g(jl(γ))l(γ)

N(γ)j/2 −N(γ)−j/2
�

∑
t

m(t) logNt

Nt

∞∑
j=2

g(j logNt)

�
∑

2 logNt≤T+ε

m(t) logNt

Nt

· T

logNt

,

here the implied constant only depends on Γ. By partial summation and the
prime geodesics theorem we get

T
∑

2 logNt≤T+ε

m(t)

Nt

= Tπ

(
T + ε

2

)
e−(T+ε)/2 + T

∫ (T+ε)/2

1

π(t)e−t dt = O(T log T ).

This takes care of the non-primitive part of (2.30). To estimate the primitive
part, we use that g is defined so it is almost an indicator function, so∑

[γ]∈Γ′

ν(γ)l(γ)g(logN(γ))

N(γ)1/2 −N(γ)−1/2
− 1

2π

∑
[γ]∈Γ′

l(γ)≤T

ν(γ)l(γ)

N(γ)1/2 −N(γ)−1/2

�
∑

[γ]∈Γ′

T−ε<l(γ)≤T+ε

l(γ)

N(γ)1/2 −N(γ)−1/2
.

We then use (2.42) on this estimate∑
[γ]∈Γ′

T−ε<l(γ)≤T+ε

l(γ)

N(γ)1/2 −N(γ)−1/2
� e−(T−ε)/2

∑
[γ]∈Γ′

T−ε<l(γ)≤T+ε

l(γ)

� e−(T−ε)/2
∑

1/2<sj≤1

s−1
j (esj(T+ε) − esj(T−ε)) + eT/4+5ε/4

�
∑

1/2<sj≤1

s−1
j e(T+ε)/2(esjε − e−sjε) + eT/4

� eT/2ε+ eT/4,

which proves the lemma.
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If we have a zero free automorphic form f of weight k0 > 0 wrt. Γ with
multiplier system ν, we can take logarithms F and Φ like we did in section
4.1. In this way we can get powers of f and ν, and since f 1/k0 has weight 1,
we can without loss of generality assume that f has weight 1. So we get, that
νk = exp(2πikΦ) is a weight k multiplier system, and hence also a weight k+ 2n
multiplier system for any n ∈ Z. Especially if we for k ∈ R define k′ to be the
number in (−1, 1], such that k′ ≡ k modulo 2, then νk is a weight k′ multiplier
system.

We will assume that Φ only takes rational values, so there is an even m ∈ N,
such that mΦ only takes integer values. We let N be the smallest such N .

Lemma 5.3.2 gives us an estimate of the right hand side of the trace formula
for the test functions gT,ε and hT,ε, and we want to combine this estimate with
an estimate on the left hand side for the multiplier systems νk.

Before we do so, we define I := (−1, N − 1] and P : (1,∞)× I → C given by

P (T, k) :=
∑

[γ]∈Γ′

l(γ)≤T

νk(γ)l(γ)

N(γ)1/2 −N(γ)−1/2
.

Lemma 5.3.3. There exists c ∈ [1/4, 1/2), such that

P (T, k) =

{
2eT (1−|k|)/2

1−|k| +O(L(νk)eTc) if |k| ≤ 1/2

O(L(νk)eTc) otherwise
, (5.15)

with the implied constant only depending on the Fuchsian group Γ.

Proof. We split I into the intervals In = (2n − 1, 2n + 1], for 0 ≤ n ≤ N/2. We
fix an n, and for k ∈ In consider the multiplier system νk, to be of weight k′.
By Corollary 5.2.2 and the definition of N there exists εn ∈ (0, 3/16], such that
λ1(k) ≥ εn for k ∈ In if n = 0 and λ0(k) ≥ εn otherwise (where λ0(k) ≤ λ1(k)
are the two smallest eigenvalues for νk). Since εn ∈ (0, 3/16], we can define
Rn ∈ (0, 1/2], by

εn =
Rn

2

(
1− Rn

2

)
.

This means that

1

4
+

(
i

2
− iRn

2

)2

= −
(
Rn

2

)2

+
Rn

2
= εn,

and we see that 1−Rn is decreasing as a function of εn.
Since

K̂(εir) =
1

2π

∫ 1

−1

exp(−εrt)K(t) dt ≤ 1

2π
exp(εr) =

1

2π
+O(εr)

K̂(εir) =
1

2π

∫ 1

−1

exp(−εrt)K(t) dt ≥ 1

2π
exp(−εr) =

1

2π
+O(εr)
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for 0 ≤ r ≤ 1/2, so for 0 ≤ r ≤ 1/2 we have

h(ir) =
eTr − e−Tr

r
K̂(εir)

=

{
eTr/(2πr) +O(eTrε+ e−Tr/r) for 1/T ≤ r ≤ 1/2

O(T ) for 0 ≤ r < 1/T

So according to (5.2)∑
εn≤λm(k)≤1/4

h(rm) �
(
T +

2eT (1/2−Rn/2)

1−Rn

) ∑
εn≤λm(k)≤1/4

1

� (T + eT (1−Rn)/2)L(νk).

We now use (5.2) to estimate the contribution from the λm(k) > 1/4. We
start with the rm(k) ≤ 1 , which is easily estimated by∑

1/4≤λm(k)≤5/4

h(rm(k)) =
∑

1/4≤λm(k)≤5/4

2 sin(Trm(k)

rm
K̂(εrm(k))

≤ 2T
∑

1/4≤λm(k)≤5/4

sin(Trm(k))

Trm(k)
� TL(νk).

The next part we estimate by∑
1≤rm(k)≤ε−1

h(rm(k)) ≤
∑

1≤rm(k)≤ε−1

2

rm(k)

= ε
∑

1≤rm(k)≤ε−1

1 +

∫ 1/ε

1

t−2
∑

1≤rm(k)≤t

1 dt

� ε−1 + L(νk) +

∫ 1/ε

1

L(νk) dt� ε−1L(νk).

To estimate the contribution from the large eigenvalues we use that K̂ is a
Schwartz function, so∑

ε−1<rm(k)

h(rm(k)) = 2ε
∑

1<εrm(k)

sin(Trm(k))

εrm(k)
K̂(εrm(k))

� ε
∑

1<εrm(k)

(εrm(k))−3

= ε lim
A→∞

A−3
∑

1<εrm(k)

1

+ ε

∫ ∞
1

t−4
∑

1≤εrm(k)≤t

1 dt

� ε

∫ ∞
1

t−2ε−2 + t−3ε−1L(νk) dt� ε−1L(νk).



82 Chapter 5. Distribution of Prime Geodesics

So if we define

c :=
maxn(1−Rn)

2
,

then ∑
εn≤λm(k)

h(rm(k))� (eTc + ε−1)L(νk).

for all n. This result combined with Lemma 5.3.1 and 5.3.2 proves that

P (T, k) =

{
2πh((λ0(k)− 1/4)1/2) +R(T, ε, k) if |k| ≤ 1 and λ0(k) ≤ ε0

R(T, ε, k) otherwise
,

where

R(T, ε, k) = O(eT/2ε+ L(νk)(eTc + ε−1)).

If 0 ≤ k ≤ 1 then k′ = k and we have

−∆k′(f(z)yk/2) =
k

2

(
1− k

2

)
f(z)yk/2.

If −1 < k ≤ 0 then k′ = k and we have

−∆k′(f(z)y−k/2) = −k
2

(
1 +

k

2

)
f(z)yk/2.

So for k ∈ I0 = (−1, 1], we have

λ0(k) =
|k|
2

(
1− |k|

2

)
.

We see that (
1− |k|

2

)2

= 1/4− |k|
2

(
1− |k|

2

)
so for |k| ≤ 1/2

2πh((λ0(k)− 1/4)1/2) = 2πh

(
i− i|k|

2

)
=

2eT (1−|k|)/2

1− |k| +O(eT (1−|k|)/2ε+ T ).

For 1/2 < |k| ≤ 1 we have

λ0(k) =
1

4
−
(

1− |k|
2

)2

>
1

4
−
(

1

4

)2

=
3

16
≥ ε0.
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By setting ε = e−T/4 we get

P (T, k) =

{
2eT (1−|k|)/2

1−|k| +O(L(νk)eTc) if |k| ≤ 1/2 and λ0(k) ≤ ε0

O(L(νk)eTc) otherwise
.

Since
2eT (1−|k|)/2

1− |k| = O(eTc),

when |k| ≤ 1/2 and λ0(k) ≥ ε0, this proves the lemma.

Note that we in the proof of the lemma, showed that ifR ≤ 1/4 andR(1−R) ≤
λ1(k), for all k ∈ I, and R(1− R) ≤ λ0(k), when |k| ≥ 1, then c = 1/2− R can
be used in (5.15).

Lemma 5.3.3 leads us to the following ”twisted” version of the prime geodesic
theorem.

Theorem 5.3.4. There exists δ ∈ (0, 1/4], such that for k ∈ (−1, N −1] we have

∑
[γ]∈Γ′

l(γ)≤T

νk(γ)l(γ) =

{
eT (1−|k|/2)

1−|k|/2 +O(eT (1−δ)L(νk)) if |k| ≤ 1/2

O(eT (1−δ)L(νk)) otherwise
. (5.16)

Proof. By partial summation we get∑
[γ]∈Γ′

l(γ)≤T

νk(γ)l(γ) = (eT/2 − e−T/2)P (T, k)−
∫ eT

NΓ

1 + x−1

2
√
x

P (log x, k) dx.

Since

(eT/2 − e−T/2)
2eT (1−|k|)/2

1− |k| =
2eT (1−|k|/2)

1− |k| +O(1),

(eT/2 − e−T/2)L(νk)eTc = O(L(νk)eT (1/2+c)),∫ eT

NΓ

1 + x−1

2
√
x

L(νk)xcdx = O(L(νk)eT (1/2+c)),∫ eT

NΓ

1 + x−1

2
√
x

2x(1−|k|)/2

1− |k| dx =

∫ eT

NΓ

x−|k|/2

1− |k|dx+O(1)

=
eT (1−|k|/2)

(1− |k|)(1− |k|/2)
+O(1),

we get for |k| > 1/2 ∑
[γ]∈Γ′

l(γ)≤T

νk(γ)l(γ) = O(L(νk)eT (1/2+c)),
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and for |k| ≤ 1/2

∑
[γ]∈Γ′

l(γ)≤T

νk(γ)l(γ) =
2eT (1−|k|/2)

1− |k| −
eT (1−|k|/2)

(1− |k|)(1− |k|/2)
+O(L(νk)eT (1/2+c))

=
eT (1−|k|/2)

1− |k|/2 +O(L(νk)eT (1/2+c)).

If we define δ = 1/2− c, then we get that δ ∈ (0, 1/4] and 1/2 + c = 1− δ, so

∑
[γ]∈Γ′

l(γ)≤T

νk(γ)l(γ) =

{
eT (1−|k|/2)

1−|k|/2 +O(eT (1−δ)L(νk)) if |k| ≤ 1/2

O(eT (1−δ)L(νk)) otherwise
. (5.17)

Since we can use c = 1/2− δ in Lemma 5.3.3 if δ ≤ 1/4 and δ(1− δ) ≤ λ1(k),
for all k ∈ I, and δ(1− δ) ≤ λ0(k), when |k| ≥ 1, we can use

1/2− (1/2− δ) = δ

in Theorem 5.3.4.

5.4 Prime Geodesics Distributed wrt. a Multi-

plier System

A simple integration of (5.16) gives us the following theorem.

Theorem 5.4.1. For n ∈ Z we have

∑
[γ]∈Γ′

N(γ)≤x
NΦ(γ)=n

l(γ) =
4

N

∫ x

2

log y

(4πn/N)2 + (log y)2
dy +O(x1−δ), (5.18)

for δ ∈ (0, 1/4] such that δ(1− δ) ≤ λ0(k) for all k ∈ (1, N − 1], and δ(1− δ) ≤
λ1(k) for all k ∈ (−1, 1].

Proof. For a fixed n ∈ Z, we integrate (5.16) wrt. e(−kn/N)dk (where e(x) =
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exp(2πix)), over (−1, N − 1]. The left hand side becomes∫ N−1

−1

∑
[γ]∈Γ′

l(γ)≤T

l(γ)e(k(Φ(γ)− n/N))dk

=
∑

[γ]∈Γ′

l(γ)≤T

l(γ)

∫ N−1

−1

e(k(Φ(γ)− n/N))dk

= N
∑

[γ]∈Γ′

l(γ)≤T
NΦ(γ)=n

l(γ).

From the error term we get∫ N−1

−1

eT (1−δ)L(νk)e(−kn/N)dk � eT (1−δ).

To integrate the main term on the right hand side we use that λ0(k) = 0 if
and only if νk ≡ 1. Hence

λ0(k) = 0⇔ νk ≡ 1⇔ N |k.

Especially for k ∈ (−1, N − 1], λ0(k) = 0 if and only if k = 0.
Now we can integrate the main term on the right hand side, and finish the

proof. ∫ 1/2

−1/2

eT (1−|k|/2)

1− |k|/2 e
(−kn

N

)
dk = 2<

∫ 1/2

0

eT (1−k/2)

1− k/2 e
(
kn

N

)
dk

= 2<
∫ 1/2

0

∫ eT

2

y−k/2dy e

(
kn

N

)
dk +O(1)

= 2<
∫ eT

2

∫ 1/2

0

ek(2πin/N−log y/2)dk dy +O(1)

= 2<
∫ eT

2

eπin/N−log y/4 − 1

2πin/N − log y/2
dy +O(1)

= 4<
∫ eT

2

4πin/N + log y

(4πn/N)2 + (log y)2
dy +O

(∫ eT

2

dy

y1/4

)

= 4

∫ eT

2

log y

(4πn/N)2 + (log y)2
dy +O(e3T/4).

By combining these estimates, and substituting eT by x, we get (5.18).
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If n = 0, we have∫ x

2

log y

(4πn/N)2 + (log y)2
dy =

∫ x

2

1

log y
dy = li(x),

and for fixed n, we have∫ x

2

log y

(4πn/N)2 + (log y)2
dy ∼ li(x).

Because of this likeness, we define

li(p, x) =

∫ x

2

log y

(4πp)2 + (log y)2
dy.

So the main term in (5.18) becomes 4li(n/N, x)/N .
We can use (5.18) to give some estimates on the number of prime geodesics

of a certain Φ-value and bounded length.

Corollary 5.4.2. For n ∈ Z we have∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)=n

1 =
4

Nt
li
( n
N
, et
)

+O

(
et

t3

)
, (5.19)

∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)=n

1 =
4π(t)

Nt

(
1−

(
4πn

Nt

)2

+O

(
n4

t4
+
n2

t3
+

1

t

))
, (5.20)

where π(t) in (5.20) is the number of prime geodesics, which has length at most
t.

Note that we have the constant π as well as the function that count the
number of prime geodesics of length at most t π(t) in these formulas.

Proof. By partial integration and equation (5.18) we get∑
[γ]∈Γ′

N(γ)≤x
NΦ(γ)=n

1 =
1

log x

∑
[γ]∈Γ′

N(γ)≤x
NΦ(γ)=n

l(γ) +

∫ x

NΓ

1

t(log t)2

∑
[γ]∈Γ′

N(γ)≤t
NΦ(γ)=n

l(γ)dt

=
4li(n/N, x)

N log x
+

∫ x

NΓ

4

Nt(log t)2
li
( n
N
, t
)
dt+O(x1−δ).

Estimating the second term we get∫ x

NΓ

4

Nt(log t)2
li
( n
N
, t
)
dt�

∫ x

NΓ

1

t(log t)2
li(t)dt�

∫ x

NΓ

1

(log t)3
dt.
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By partial integration we see that for m > 0, we have∫ x

2

(log t)−mdt =
x

(log x)m
− 2

2m
+

∫ x

2

t · m

t(log t)m+1
dt

=
x

(log x)m
− 2

2m
+m

∫ log x

logNΓ

eu

u4
du�m

x

(log x)3
.

When we combine these estimates, and substitutes x by et, we get (5.19).
We can (again) use intagration by parts to estimate li(p, x).

li
( p

4π
, x
)

=
x log x

p2 + (log x)2
−
∫ x

2

y · (p2 − (log y)2)/y

(p2 + (log y)2)2
dy +O(1)

=
x log x

p2 + (log x)2
+O

(∫ x

2

1

(log y)2
dy

)
=

x log x

p2 + (log x)2
+O

(
x

(log x)2

)
.

This estimate and (5.19) gives us∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)=n

1 =
4et

N((4πn/N)2 + t2)
+O

(
et

t3

)
. (5.21)

For 0 < r < 1 we have, that for all |t| ≤ r is (1 + t)−1 = 1− t+O(t2). Hence
(5.21) gives us∑

[γ]∈Γ′

l(γ)≤t
NΦ(γ)=n

1 =
4et

Nt2

(
1

1 + (4πn
Nt

)2
+O

(
1

t

))

=
4et

Nt2

(
1−

(
4πn

Nt

)2

+O

((n
t

)4

+
1

t

))
.

By (2.43) we get

et

t
= π(t) +O

(
et

t2

)
= π(t)

(
1 +O(t−1)

)
.

So ∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)=n

1 =
4π(t)

Nt

(
1 +O

(
1

t

))(
1−

(
4πn

Nt

)2

+O

((n
t

)4

+
1

t

))

=
4π(t)

Nt

(
1−

(
4πn

Nt

)2

+O

(
n4

t4
+
n2

t3
+

1

t

))
,

which is (5.20).
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The formula (5.20) tells us that the number of prime geodesics of length at
most t and with a given Φ-value n/N is asymptotic equivalent to 4π(t)/(Nt), for
all n ∈ Z. However (5.20) also tells us, that if n1, n2 ∈ Z and |n1| < |n2|, then
for large t ∑

[γ]∈Γ′

l(γ)≤t
NΦ(γ)=n1

1 >
∑

[γ]∈Γ′

l(γ)≤t
NΦ(γ)=n2

1.

We can use formula (5.20) to prove that the prime geodesics are asymptotically
Cauchy distributed wrt. the value of Φ/l. More precisely we have the following
theorem.

Theorem 5.4.3. For x ∈ R we have

lim
t→∞

1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
Φ(γ)≤xl(γ)

1 =
arctan(4πx)

π
+

1

2
. (5.22)

Proof. By (5.21) we have

t2e−t
∑

[γ]∈Γ′

l(γ)≤t
Φ(γ)≤xt

1 = t2e−t
∑
n≤xtN

∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)=n

1

=
4

N

∑
n≤xtN

(
1 +

(
4πn

Nt

)2
)−1

+O(t−1)

=
4

N

∫ xtN

−∞

(
1 +

(
4πu

Nt

)2
)−1

du+O(1)

=
t

π

∫ 4πx

−∞
(1 + s2)−1ds+O(1)

=
t arctan(4πx)

π
+
t

2
+O(1).

So

(π(t))−1
∑

[γ]∈Γ′

l(γ)≤t
Φ(γ)≤xt

1 ∼ te−1
∑

[γ]∈Γ′

l(γ)≤t
Φ(γ)≤xt

1 ∼ arctan(4πx)

π
+

1

2
.

So to prove the theorem, we need to prove that

lim
t→∞

(π(t))−1
∑

[γ]∈Γ′

l(γ)≤t
xl(γ)<Φ(γ)≤xt

1 = 0. (5.23)
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Let ε > 0, then

lim sup
t→∞

∑
xl(γ)<Φ(γ)≤xt 1

π(t)
≤ lim sup

t→∞
(π(t))−1

π(t(1− ε)) +
∑

[γ]∈Γ′

l(γ)≤t
xt(1−ε)<Φ(γ)≤xt

1


= lim sup

t→∞

et(1−ε)

et(1− ε) +
arctan 4πx− arctan 4πx(1− ε)

π

=
arctan 4πx− arctan 4πx(1− ε)

π
.

Since this is true for all ε > 0, equation (5.23) is true.

For A ⊂ Z define πA : R+ → N ∪ {0} by

πA(t) =
∑

[γ]∈Γ′

l(γ)≤t
NΦ(γ)∈A

1.

If the quantity

d(A) := lim
M→∞

#{n ∈ A | |n| ≤M}
2bMc+ 1

is well defined, we say that A has natural density d(A).

Theorem 5.4.4. Let A ⊂ Z have natural density d(A), then

lim
t→∞

πA(t)

π(t)
= d(A).

Proof. For K > 0, we have

1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)∈A
|NΦ(γ)|>Kt

1 ≤ 1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
|NΦ(γ)|>Kt

1→ 1

2
− 2 arctan(4πK/N)

π
.

For ε > 0, we can choose K so large, that 1
2
−2 arctan(4πK/N)/π < ε, and hence

lim
t→∞

1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)∈A
|NΦ(γ)|>Kt

1 ≤ lim
t→∞

1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
|NΦ(γ)|>Kt

1 < ε. (5.24)
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By definition of d(A), there exists M1 ∈ N so that

∣∣∣∣#{n ∈ A | |n| ≤M}
#{n ∈ Z | |n| ≤M} − d(A)

∣∣∣∣ < ε, (5.25)

for M ≥M1.

The equations (5.20) gives us

1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)∈A
|NΦ(γ)|≤M1

1 ≤ 1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
|NΦ(γ)|≤M1

1 = O

(
M1

t

)
,

so

lim
t→∞

1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)∈A
|NΦ(γ)|≤M1

1 = lim
t→∞

1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
|NΦ(γ)|≤M1

1 = 0. (5.26)

So all there is left, is to estimate the contribution, from the geodesics with
Φ-value between M1/N and Kt/N . Equation (5.19) gives us

∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)∈A

M1<|NΦ(γ)|≤Kt

1 =
4

Nt

∑
n∈A

M1<|n|≤Kt

li
( n
N
, et
)

+O

(
et

t2

)
.

If we let li′(x, t) denote the derivative of li wrt. x, and define

At := {n ∈ A | |n| ≤ t},
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then partial summation gives us

∑
n∈AKt
M1<|n|

li
( n
N
, et
)

= li

(
Kt

N
, et
) ∑

n∈AKt
M1<|n|

1− 1

N

∫ Kt

M1

li′
( x
N
, et
) ∑

n∈Ax
M1<|n|

1 dx

= li

(
Kt

N
, et
) ∑

n∈AKt

1−
∑

n∈AM1

1


− 1

N

∫ Kt

M1

li′
( x
N
, et
)∑

n∈Ax

1−
∑

n∈AM1

1

 dx

= d(A)

li(Kt
N
, et
) ∑

M1<|n|≤Kt

1 +O(ε)


− 1

N

∫ Kt

M1

li′
( x
N
, et
) ∑

M1<|n|≤Kt

1 +O(ε)

 dx


= d(A)

∑
M1<|n|≤Kt

li
( n
N
, et
)

+O

(
li

(
M1

N
, et
)
ε

)

= d(A)
∑

M1<|n|≤Kt

li
( n
N
, et
)

+O

(
etε

t

)
.

We now see that

1

π(t)

∑
[γ]∈Γ′

l(γ)≤t
NΦ(γ)∈A

M1<|NΦ(γ)|≤Kt

1 =
1

π(t)

4d(A)

Nt

∑
M1<|n|≤Kt

li
( n
N
, et
)

+O

(
et

t2

)

=
d(A)

π(t)

∑
[γ]∈Γ′

l(γ)≤t
M1<|NΦ(γ)|≤Kt

1 +O

(
1

t

)
.
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So (5.24) and (5.26) implies

∣∣∣∣ limt→∞

πA(t)

π(t)
− d(A)

∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣∣∣
lim
t→∞

d(A)

π(t)

∑
[γ]∈Γ′

l(γ)≤t
M1<|NΦ(γ)|≤Kt

1− d(A)

∣∣∣∣∣∣∣∣∣∣∣
+ ε

≤

∣∣∣∣∣∣∣∣ limt→∞

d(A)

π(t)

∑
[γ]∈Γ′

l(γ)≤t

1− d(A)

∣∣∣∣∣∣∣∣+ ε(1 + d(A))

= ε(1 + d(A)).

Since this is true for arbitrary ε > 0, we have proved the theorem.
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