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Summary

In spite of the principal starting point for this thesis being relatively concise, it so
happened that during the course of the thesis work, the subjects for our research
branched out considerably. Broadly speaking, this thesis is concerned with five main
topics: Exponential martingales, the general theory of processes, causality, indepen-
dent component analysis (ICA) and model selection for nonlinear regression.

In Chapter 1, we give an overview of the research project and its results, and the main
subjects of study are introduced. The remaining Chapters 2-10 are self-sufficient
manuscripts containing the main results of the research project.

Chapters 2-4 are concerned with the martingale property of exponential martin-
gales. Chapter 2 considers exponential martingales based on counting processes in
particular, with the purpose of constructing statistical models involving nonexplosive
counting processes with stochastic intensity. Of particular note is the construction of
counting processes interacting with diffusions. Chapters 3 and 4 are concerned with
the uniformly integrable martingale property from a more abstract point of view,
the results of the former being concerned with optimal constants in Novikov-type
criteria, and the results of the latter being concerned with a Novikov-type criterion
applying both the optional and predictable quadratic variation.

The results in Chapter 5 and Chapter 6 consider the general theory of processes.
Essentially no new results are proven here, instead simplified proofs are given of
known results, in particular the existence of the dual predictable projection and the
quadratic variation, and the applications of these proofs to obtain a simplified theory
of stochastic integration are discussed.

Chapter 7 and Chapter 8 center on causality for stochastic differential equations
(SDEs). Chapter 7 introduces a notion of causality for SDEs, and we prove that
for SDEs driven by Lévy processes, in constrast to results from Pearl’s interven-
tion calculus, it holds that postintervention distributions are identifiable from the
observational distribution. Chapter 8 considers causality for the particular case of
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Ornstein-Uhlenbeck SDEs, where explicit calculations may be made for the postin-
tervention distributions.

Chapter 9 concerns identifiability of the mixing matrix in ICA. It is a well-known
result that identifiability of the mixing matrix depends crucially on whether the
error distributions are Gaussian or not. We attempt to elucidate what happens in
the case where the error distributions are close to but not exactly Gaussian.

Finally, Chapter 10 discusses degrees of freedom in nonlinear regression. Our moti-
vating problem is that of L1-constrained and L1-penalized estimation in nonlinear
regression. Our objective is to obtain results leading to the calculation of the de-
grees of freedom of an estimator in order to enable sparse model selection by optimal
choice of the penalization parameter. We prove two results related to the degrees of
freedom, one theoretical result for constrained estimation, and one more practically
applicable for L1-penalized estimation.



Resumé

I løbet af den tid hvor nærværende afhandling er blevet udarbejdet, har dens forsk-
ningsemner bredt sig ud. Generelt omhandler afhandlingen fem hovedemner: Ekspo-
nentielle martingaler, generel proces teori, kausalitet, independent component ana-
lysis (ICA) og modelselektion for ikke-lineær regression.

I kapitel 1 giver vi et overblik over forskningsprojektet og dets resultater, og vi
introducerer de hovedfelter, projektet omhandler. De resterende kapitler kan læses
uafhængigt af hinanden og indeholder projektets hovedresultater.

Kapitlerne 2-4 omhandler martingalegenskaben for eksponentielle martingaler. Kapi-
tel 2 betragter eksponentielle martingaler baseret p̊a tælleprocesser. Vores m̊al er
at konstruere statistiske modeller baseret p̊a tælleprocesser med stokastisk inten-
sitet og uden eksplosion. I særdeleshed konstruerer vi fordelinger af interagerende
tælleprocesser og diffusioner. Kapitlerne 3 og 4 betragter egenskaben at være en
uniformt integrabel martingal fra et mere abstrakt synspunkt. Resultaterne i det
første af disse kapitler omhandler optimale konstanter i Novikov-type kriterier, og
resultaterne i det andet kapitel omhandler et Novikov-type kriterium som benytter
sig af b̊ade den optionelle og forudsigelige kvadratiske variation.

Resultaterne i kapitlerne 5 og 6 er relateret til generel proces teori. Grundlæggende
set bevises ingen nye resultater. I stedet gives simplificerede beviser af kendte resul-
tater. I særdeleshed bevises eksistensen af den duale forudsigelige projektion samt
den kvadratiske variation. Vi diskuterer ogs̊a hvordan disse resultater kan anvendes
til at give en simplificeret udlægning af teorien for stokastiske integraler.

Kapitel 7 og kapitel 8 omhandler et kausalitetsbegreb for stokastiske differential-
ligninger (SDEer). Kapitel 7 introducerer kausalitetsbegrebet. Endvidere viser vi her
at for SDEer drevet af Lévy processer er postinterventionsfordelinger identificerbare
fra den observationelle fordeling. Dette st̊ar i kontrast til resultaterne fra Pearl’s
interventionskalkyle. I kapitel 8 anvender vi vores kausalitetsbegreb p̊a Ornstein-
Uhlenbeck SDEer, hvor det er muligt at foretage eksplicitte udregninger.
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I kapitel 9 undersøger vi identifikation af blandingsmatricen i ICA. Det er et velkendt
resultat at identifikation af blandingsmatricen afhæger af hvorvidt fejlfordelingerne
er Gaussiske eller ej. Vi forsøger at belyse hvad der sker i tilfældet hvor fejlfordeling-
erne er tæt p̊a at være Gaussiske uden faktisk at være det.

Til sidst diskuterer vi i kapitel 10 frihedsgrader for estimatorer i ikke-lineær regres-
sion. Vores motivation er L1-begrænset og L1-penaliseret estimation i en ikke-lineær
regressionsmodel. Vores m̊al er at opn̊a resultater, der kan lede til udregning af fri-
hedsgraderne for en estimator og derefter til modelselektion ved optimalt valg af
penaliseringsparameteren. Vi viser to resultater relateret til frihedsgraderne: Et teo-
retisk resultat for begrænset estimation, og et mere praktisk anvendeligt resultat for
L1-penaliseret estimation.
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1

Overview of results

1.1 Introduction

In this chapter, we will give an overview of the results obtained in this thesis. The
first step towards this is a discussion of the objectives of the thesis, given in Section
1.2, where a description of the research project of the thesis is laid out in the context
of previously known results. The results of the thesis can in a natural manner be
divided into five categories:

• Exponential martingales

• The general theory of processes

• Causality and interventions

• Identifiability and ICA

• Model selection for nonlinear regression

Each of these subjects are covered separately in Sections 1.3-1.7, where we both
outline the results obtained under each headline, as well as discuss our results and
relate them to other literature. In Section 1.8, we review perspectives for future
research based on the results obtained here.

As mentioned in the summary, the results obtained are given in nine chapters, each
chapter corresponding to a manuscript for a paper. Some of these manuscripts are
published at the time of this writing. Table 1.1 describes the publication status of
each manuscript. The manuscripts “Exponential martingales and changes of measure
for counting processes”, “Causal interpretation of SDEs” and “On degrees of freedom
in nonlinear regression” are co-authored with my supervisor, Prof. Niels Richard
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4 Overview of results

Title Status

Exponential martingales and changes of measure for
counting processes

Under review

Optimal Novikov-type criteria for local martingales
with jumps

Elec. Comm. Prob. 18

An extended Novikov-type criterion for local martin-
gales with jumps

Under review

An elementary proof that the first hitting time of an
Fσ set by a jump process is a stopping time

Sem. Prob. 45

Proving existence results in martingale theory using a
subsequence principle

Comm. Stoch. Anal. 7

Causal interpretation of SDEs Under review

Intervention in Ornstein-Uhlenbeck SDEs Proc. 18th EYSM

Quantifying identifiability in ICA In preparation

On degrees of freedom in nonlinear regression In preparation

Table 1.1: Publication status for the manuscripts included in this dissertation.

Hansen, while the manuscript “Quantifying identifiability in ICA” is co-authored
with Prof. Marloes Maathuis and Benjamin Falkeborg.

Each of the manuscripts in Chapters 2-10 are designed to be read independently
of the others. As some of the chapters concern themselves with similar subjects,
some overlap in terms of introductory material and reviews of known results occur.
We hope that the benefit of self-sufficiency for each chapter exceeds the possible
inconvenience of repetition.

Finally, it should be noted that the vast majority of research results builds intimately
on the works of others, and this dissertation is no exception. Many of the ideas
employed here are variations or extensions of previously applied techniques. We
have endeavored to give credit where credit is due, but our human infirmities will
no doubt occassionally have lead us to fail in this respect, though not due to any
ill will. Apart from that, we have also at some points intentionally repeated proofs
of known results when we felt that the proofs we were able to find in the literature
were terse enough to merit expansion for the sake of readability. Examples of this
occurs in places such as Lemmas 3.2.2, 6.1.1, 6.5.1, 7.8.1 and 7.9.1, and presumably
in other locations as well. In general, this thesis is written under the assumption
that it is preferable to include trivial results rather than to exclude them, as this
ensures that the reader will not manually have to think through the trivialities on
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his or her own.

1.2 Objectives and description of the research project

Before beginning work on this thesis, we set up a series of objectives for the research
to be done. However, as time passed, we were led both to change our initial objectives
and to add new ones. In the following, we will outline the context of the initial
research objectives, describe how these objectives and our corresponding research
efforts changed with time, and describe how new objectives from other fields came
to be added.

The initial research project outlined for the thesis was concerned with the results
about causal inference outlined in [144, 37, 57]. Our objectives were to develop
estimation methods which would lead to a practical methodology for applying the
results developed by Røysland in [144]. In particular, we were interested in using
L1-penalized estimation, see [64], to estimate graphs describing the causality of the
system under observation, and applying our methods to neuronal data similar to
those analyzed in for example [132].

The interest of [144] is to estimate causal effects from observational studies in con-
tinuous time. In particular, the author of [144] considers the following model of a
clinical trial. Let (Ω,F , (Ft), P ) be a filtered probability space satisfying the usual
conditions, see [66]. Let NA, NC , ND and NL be counting processes, where the
former three are univariate, and the latter may be multivariate. For convenience,
we always assume that these counting processes have intensities, meaning that their
compensators are of the form

∫ t
0 λs ds for some nonnegative, predictable and locally

bounded process λ, see [66, 17] for the definition of compensators, predictability and
intensities. We then let

At =

∫ t

0
1(s≤TA) dNA

s , (1.1)

Ct =

∫ t

0
1(s≤TC) dNC

s , (1.2)

Dt =

∫ t

0
1(s≤TD) dND

s , (1.3)

Lt = L0 +

∫ t

0
HL
s dNL

s , (1.4)

where TA, TC and TD are the first jump times of the processes NA, NC and ND.
Also, L0 is bounded and F0 measurable and HL is a bounded and predictable matrix-
valued process. The processes A, C, D and L are then what [144] refers to as ob-
servable processes, meaning stochastic integral processes with respect to counting
processes. The processes A, C, D and L are meant to measure information about a
clinical trial of a patient. In particular,
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• A is the counting process for the event of initiating treatment

• C is the counting process for the event of censoring

• D is the counting process for a clinical event such as death

• L is a process measuring the patient’s multivariate health condition

As these processes are observable processes, we may apply the theory of local in-
dependence developed by Didelez in [37]. In [37], it is described how to define the
local independence graph for a collection of observable processes. [144] assumes that
under the probability measure P , the local independence graph is as given in Figure
1.2.1. In this graph, the presence of a directed edge from X to Y is interpreted
as the possibility of a causal influence of X on Y , while the absence of an edge is
interpreted as no causal influence from X to Y .

C L

��

vv ((
D

A

HHWW GG

Figure 1.2.1: The local independence graph of (A,C,D,L).

In words, the assumptions made in Figure 1.2.1 is that treatment and patient health
status influence each other, such that the health status may be influenced by the
treatment given, but the treatment may also depend on the health status. This
corresponds to that for example very sick patients may be more likely to receive
treatment. Furthermore, clinical events are influenced by the treatment, but is also
influenced by natural variation of the health status, and likewise for censoring. The
important point here is that the two-way influence between A and L essentially
confounds our ability to estimate the effect of the treatment A on the clinical event
D. Also, [144] notes that it would be preferable for the censoring not to be influenced
by the health status, since this by Theorem 1 of [144] and its comments would lead to
the possibility of unbiased estimation of treatment effect when the health status L is
unobserved. However, [144] also argues that this lack of influence cannot be assumed
in practical observational studies. These considerations leads to the definition of
what [144] calls a randomized trial measure P̃ under which the local independence
graph is as given in Figure 1.2.2.

The randomized trial measure is a probability measure which is meant to describe a
counterfactual experiment, that is, an experiment which in fact did not take place, in
which the results of the study were distributed as if the study was randomized such
that A is not influenced by L. It is furthermore assumed that L does not influence
C. The methodology proposed is now the following: If a randomized trial measure P̃
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C L
((
D

A

HHWW GG

Figure 1.2.2: The local independence graph of (A,C,D,L) under the counterfactual
randomized trial measure.

can be constructed which is absolutely continuous with respect to the observational
measure P , then reweighed data can be constructed which allows estimation to be
carried out under the randomized trial measure P̃ and which allows for unbiased
estimation of the treatment effect.

One of the first goals we set ourselves in this context was to try to obtain sufficient
conditions for the existence of the randomized trial measure. In Theorem 2 of [144],
a sufficient criterion is given. We sought to investigate whether such criteria could
be extended. As the construction of the randomized trial measure is based upon a
change of measure using a particular class of exponential martingales as the likeli-
hood ratio, this leads directly to the question of when such classes of exponential
martingales are true martingales. Answering this question thus became one objective
of the thesis. Our efforts in this direction are given in Chapter 2.

The literature regarding exponential martingales is rich, see for example the papers
[123, 95, 94, 24, 109, 79, 89, 135]. During our work with this problem, the results
of [135] came to our attention. In [135], it is recalled that a classical criterion, see
[123], for the exponential martingale E(M) of a continuous local martingale M with
initial value zero to be a uniformly integrable martingale is that

E exp(1
2 [M ]∞) <∞. (1.5)

The question is then asked in [135] whether this can be extended to the case where
M is not continuous, and it is shown that in general, when ∆M ≥ −1, such that
E(M) is nonnegative, E(M) is a uniformly integrable martingale if only

E exp(1
2〈M

c〉∞ + 〈Md〉∞) <∞, (1.6)

and argues that the constants 1
2 and 1 in front of 〈M c〉 and 〈Md〉 are optimal,

although the proof contains a flaw. Inspired by problems encountered in the case
where M is a stochatic integral with respect to a compensated counting process,
we asked what the optimal constants were in the case of M with ∆M1(∆M 6=0) ≥ a
for fixed a ≥ −1. Based on the results obtained there, we also derived a particular
sufficient criterion for the case ∆M ≥ 0, where a certain symmetry between the
cases of using predictable and optional quadratic variations appears. Details of our
results for the abstract setting are given in Chapters 3 and 4. A general overview of
our results on exponential martingales is given in Section 1.3.
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After our investigation of exponential martingales based on counting processes, we
did not further pursue work on the results of [144]. However, we did begin considering
another problem. The notion of influence or causality applied in [144] is based on
the notion of local independence of [37]. Building on this notion, Gégout-Petit and
Commenges in [27, 57] introduces a notion of influence between two processes in
a class they refer to as D′. This class is a subset of the space of semimartingales.
The authors refer to this notion of influence as weak conditional local independence
(WCLI), and proceed to propose that this notion is a good starting point for defining
the causal influence between two processes. Other notions of influence or causality
for continuous-time processes are discussed in [59, 54, 30, 131, 130].

We began considering whether it would be possible, instead of considering two pro-
cesses, to define a notion of causality for stochastic differential equations. Our hope
was to define a notion of causality which would fit well with the classical notion
of causality based on directed acyclic graphs (DAGs) as developed in for example
the books of Pearl and of Spirtes et al., [126, 161]. We also hoped for a notion of
causality which would generalize the results of [57] to the case of non-orthogonal lo-
cal martingales excluded there, and which at the same time would be easy to make
operational in the sense of being applicable to the practical estimation of causal
effects and the effects of interventions. Our results in this direction are outlined in
Section 1.5, and details of our results are given in Chapter 7 and Chapter 8.

At the same time as this, we also began to pursue a different set of research problems,
related to the general theory of processes and the theory of stochastic integration.
Since the introduction of the stochastic integral with respect to Brownian motion by
Itô in [78], the theory of stochastic integration for semimartingales has become an
extensive and well-developed theory, see [85] for a short history. Several monographs
are devoted to the introduction of the topic, see for example [36, 66, 143, 87, 83, 134],
each contributing with simplified and improved proofs. As the theory is technically
demanding, yet essential to several applied fields, most notably mathematical finance
and actuarial science, it is of considerable interest to obtain as many simplifications
of the proofs of the main results as possible. Our results in this direction include
a simple result on the stopping time property of a particular hitting time, and a
simplified proof of the existence of the dual predictable projection and the quadratic
variation, using methods similar to those pioneered in [13]. Our efforts in this regard
are discussed in Section 1.4, and our results are given in detail in Chapter 5 and
Chapter 6.

Based on our work on causality for stochastic differential equations, we were con-
fronted with the literature for causal inference in the DAG-based setting. The hos-
pitality of the Seminar für Statistik at ETH Zürich allowed for a gentle introduction
to these topics, in particular the results [156, 157] by Shimizu and colleagues on
the LiNGAM method for causal discovery in linear structural equation models. The
LiNGAM method is based on results related to independent component analysis
(ICA), a concept introduced by Comon in [28] and since then developed into a
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practical statistical method by the collaborative efforts of many, see for example
[23, 28, 74, 75, 76, 122]. Essentially, in its simplest form, ICA is concerned with the
following problem. Assume given a p-dimensional vector ε of independent mean zero
error variables and a real p× p matrix A, known as the mixing matrix. Define

X = Aε. (1.7)

If we observe samples from X, will we be able to identify A and the distribution
of ε, and if so, how? Answering this question is of use in several disciplines, see for
example, [29, 10, 12, 86, 172]. One notable result in this direction is that the amount
of information embedded in the distribution of X about A depends crucially upon
the number of Gaussian coordinates of ε. For example:

(1). If ε contains at most one Gaussian component, A can be identified up to scaling
and permutation of columns.

(2). If ε contains only Gaussian components, only AΣAt can be identified, where
Σ is the covariance matrix of ε.

The latter claim (2) is clear since ε, having independent coordinates, is multivariate
normal in this case, with mean zero and covariance matrix Σ, and so X is multivari-
ate normal with mean zero and covariance matrix AΣAt. Note that since we have
assumed that ε has independent coordinates, Σ is always diagonal. The former claim
(1) is non-trivial, see [28] for a proof.

These observations lead naturally to the following question: In what sense does
identification of A become harder as the coordinates of ε become closer to Gaussian
without ever becoming Gaussian? As none of the coordinates are Gaussian, we are
in scenario (1) given above. Nonetheless, as we move closer to scenario (2), we would
expect a quantitative shift towards it being more difficult to identify A from samples
of the distribution of X. The results we have obtained regarding the elucidation of
this question are discussed in Section 1.6, with details given in Chapter 9.

Finally, we also gave thought to the problem of model selection for nonlinear models.
This problem came to our attention in the following manner: During our work with
causality for SDEs, we often had in mind an application related to gene expression
networks. We pictured a network of p genes, each with an expression level Xi, such
that X followed an SDE of the form

dXt = BXt dt+ dWt. (1.8)

Here, we have put the mean reversion level to zero and the diffusion matrix to the
identity for tractability. According to our results on causality for SDEs, the zeroes
of the mean reversion speed matrix B controls the causal structure for the gene
expression network X. Observing X, we would therefore be particularly interested
in sparse estimation of B, as this would give us an understanding of the causal
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structure of the network. Now, given observations of X over equidistant time periods
tk = k∆ for k = 0 . . . , n, a natural loss function for the estimation of B is

R(B) =

n∑
k=1

‖Xtk − exp(∆B)Xtk−1
‖22. (1.9)

We may then consider λ ≥ 0 and obtain a sparse estimator B̂λ of B by letting

B̂λ ∈ argmin
B∈M(p,p)

R(B) + λ‖B‖1, (1.10)

where ‖ · ‖1 denotes the entrywise L1-norm, and M(p, p) denotes the space of real
p × p matrices. For any λ ≥ 0, this is a L1-penalized estimation problem, and can
be solved numerically. However, this raises the question of how to choose λ ≥ 0.
Inspired by the methodology outlined for example in the book [64] by Hastie et al.,
we posed the problem of calculating the degrees of freedom for an estimator of the
type (1.10). This would allow us to minimize an estimate of the generalization error
and thus perform sparse model selection, see Section 1.7 for details.

This problem, however, turned out to be more difficult than expected. Therefore, as
a first step, we considered the simpler problem of calculating the degrees of freedom
for estimators in nonlinear regression models with independent Gaussian errors. Our
results on this problem are given in Chapter 10. A discussion of our results can be
found in Section 1.7.

Summing up, the final research objectives which this thesis is organized around are:

• The investigation of sufficient criteria for the exponential martingale of a
stochastic integral with respect to a compensated counting process to be a
true martingale, with application to the existence of randomized trial mea-
sures as given in [144].

• Proof of optimal Novikov-type criteria for the exponential martingale of par-
ticular classes of local martingales to be uniformly integrable martingales.

• The design of a notion of causality for stochastic differential equations, and
investigation of its relationship to DAG-based causality, its relationship to
weak conditional local independence and its prospects for practical application.

• The development of simplified proofs in the general theory of processes and
its use in the development of a simplified account of the theory of stochastic
integration with respect to general semimartingales.

• The exploration of the asymptotic behaviour of the ICA model as the distribu-
tion of the error variables converge to Gaussian distributions in an appropriate
sense.
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• The elucidation of the concept and calculation of degrees of freedom for non-
linear regression models.

In the following sections, overviews and discussions of our progress in each of these
research objectives are given. Finally, Section 1.8 outlines opportunities for further
work.

1.3 Exponential martingales

As noted in the previous section, the initial motivation for our work with exponential
martingales was the construction of randomized trial measures as defined in [144].
Such randomized trial measures essentially correspond to distributions of counting
processes with particular intensities, and can be constructed using a change of mea-
sure. To see how this can be carried out, consider the following setup. Assume given
a filtered probability space (Ω,F , (Ft), P ) satisfying the usual conditions. For any
semimartingale X with initial value zero, we define

E(X)t = exp

(
Xt −

1

2
[Xc]t

) ∏
0<s≤t

(1 + ∆Xs) exp(−∆Xs), (1.11)

the stochastic exponential of X. This process is the unique solution in Z to the
stochastic integral equation

Zt = 1 +

∫ t

0
Zs− dXs. (1.12)

In the above, Xc denotes the continuous martingale part of X, see Proposition I.4.27
of [83], and [Xc] denotes the quadratic variation of the process Xc. If X is a local
martingale, E(X) is a local martingale as well, and if ∆X ≥ −1, E(X) is nonneg-
ative. Now assume given a d-dimensional counting process N with d-dimensional
intensity λ. Here, λ is generally a nonnegative, predictable and locally bounded pro-
cess. For convenience, we assume in this introductory section that λ is positive. This
assumption can be weakened, see Chapter 2. Also assume given another process µ
of this type, and define

M i
t = N i

t −
∫ t

0
λis ds (1.13)

γit = µit/λ
i
t (1.14)

H i
t = γit − 1. (1.15)

for t ≥ 0. The process M is then a local martingale, in the sense that each of its
coordinates M i are local martingales. We also put

(H ·M)t =

d∑
i=1

∫ t

0
H i
s dM i

s. (1.16)
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Note that

∆(H ·M) =
d∑
i=1

H i∆M i =
d∑
i=1

H i∆N i. (1.17)

Making the further assumption that none of the N i jump at the same time, we
obtain ∆(H ·M) ≥ −1, since H ≥ −1. Therefore, E(H ·M) is nonnegative. Next,
let T be a stopping time, and assume that E(H · M)T is a uniformly integrable
martingale. Then EE(H ·M)T = 1, so we may define a probability measure Q with
Radon-Nikodym derivative E(H ·M)T with respect to P . By Lemma 2.2.2, which
essentially is an application of Girsanov’s theorem, it holds that under Q, N is a
d-dimensional counting process with intensity 1[0,T ]µ+ 1(T,∞)λ.

This leads to the following conclusion: Using a change of measure with the exponen-
tial martingale E(H ·M), it is possible to construct a counting process with intensity
µ on [0, T ] from a counting process with intensity λ on [0, T ]. In general, we can-
not expect to change the intensity on the whole of R+, as most counting processes
with intensities differing on all of R+ have singular distributions. For example, the
distributions of two homogeneous Poisson processes with different intensities are
singular, see Proposition 3.24 of [92]. As many experiments are carried out over a
finite and deterministic time period, it is natural to restrict our attention to chang-
ing intensities over a deterministic time interval [0, t]. This corresponds to having
EE(H ·M)t = 1, and this is in particular the case if E(H ·M) is a martingale.

Therefore, summing up, a plan for achieving our objective of constructing random-
ized trial measures would be to derive sufficient criteria for E(H ·M) to be a mar-
tingale. This is the project we carry out in Chapter 2.

As noted earlier, there exist many abstract criteria for an exponential local martin-
gale to be a uniformly integrable martingale. We chose to work with the very general
results of Lépingle and Mémin given in [109]. Their main results are restated below.
We use the notation Π∗pA for the dual predictable projection, or compensator, of A,
see Definition 5.21 of [66].

Theorem ([109], Theorem III.1). Let M be a local martingale with initial value zero
and ∆M ≥ −1. Let R = inf{t ≥ 0 | ∆Mt = −1}. Define a process B by putting
Bt = 1

2 [M c]t∧R+
∑

0<s≤t∧R(1+∆Ms) log(1+∆Ms)−∆Ms. If B is locally integrable
and exp(Π∗pB∞) is integrable, then E(M) is a uniformly integrable martingale.

Theorem ([109], Theorem III.7). Let M be a local martingale with initial value zero
and ∆M > −1. Define At = 1

2 [M c]t +
∑

0<s≤t log(1 + ∆Ms)−∆Ms(1 + ∆Ms)
−1. If

exp(A∞) is integrable, then E(M) is a uniformly integrable martingale.

The criterion in Theorem III.1 of [109] is known as a predictable type of criterion,
involving an exponential moment of a predictable process, while the criterion in
Theorem III.7 of [109] is known as an optional type of criterion. These criteria can
immediately be translated into the following result.
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Theorem 1.3.1. It holds that E(H ·M) is a uniformly integrable martingale if one
of the following two conditions hold:

E exp

(
d∑
i=1

∫ ∞
0

(γis log γis − (γis − 1))λis ds

)
<∞ or (1.18)

E exp

(
d∑
i=1

∫ ∞
0

log γis −
γis − 1

γis
dN i

s

)
<∞. (1.19)

Barring the minor detail that we should focus on the martingale property and not
the uniformly martingale property, these conditions illustrate well how the change
of measure depends on the initial and final intensities λ and µ. To understand the
result, consider for convenience the case λ = 1. The functions being integrated in
the conditions (1.18) and (1.19) are then

ϕp(x) = x log x− (x− 1) (1.20)

ϕo(x) = log x− x− 1

x
, (1.21)

in particular, ϕo(x) = ϕp(x)/x. These functions are plotted in Figure 1.3.1.
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Figure 1.3.1: Black: The function ϕp (1.20). Red: The function ϕo (1.21).

Now, both of the functions ϕp and ϕo tend to infinity as their arguments tend to
infinity. This indicates that the change of measure to some new intensity becomes
increasingly difficult as the intensity heightens. The behaviour of the two functions
are markedly different as their arguments tend to zero, however. Here, ϕp tends to
one, while ϕo tends to infinity. This indicates that ϕo might be unsuitable for a
change of measure to a small intensity.
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To overcome this problem, we considered the heuristic idea of dividing the change of
measure up into two parts: A part corresponding to a change of measure to smaller
intensity, and a part corresponding to a change of measure to larger intensity. For
the change of measure to smaller intensity, Theorem III.1 of [109] can be applied.
Furthermore, we used a method of cutting up time intervals into small pieces to
further strengthen our sufficient criterion. We later found that a similar methodology
had been applied in the proof of Lemma 13 of [135]. The resulting criteria are given
as Theorem 2.2.4, restated here for convenience in a simplified version.

Theorem 2.2.4. It holds that E(H ·M) is a martingale if there is an ε > 0 such
that whenever 0 ≤ u ≤ t with t − u ≤ ε, one of the following two conditions are
satisfied:

E exp

(
d∑
i=1

∫ t

u
(γis log γis − (γis − 1))λis ds

)
<∞ or (2.4)

E exp

(
d∑
i=1

∫ t

u
λis ds+

∫ t

u
log+ γ

i
s dN i

s

)
<∞. (2.5)

In (2.5), the requirements for applying Theorem III.1 of [109] enter through the
presence of

∫ t
u λ

i
s ds. A major benefit of this, however, is that in the case λ = 1, this

term becomes deterministic and as such vanishes from the criterion. This leads to a
simple sufficient optional criterion for E(H ·M) to be a martingale in the case where
the initial measure is a standard homogeneous Poisson process.

We now discuss the consequences of Theorem 2.2.4. First note that Theorem 2.2.4
can be used to extend the criteria of Theorem 2 in [144] for the existence of ran-
domized trial measures. This is demonstrated in Example 2.3.1. As such, the results
provides a contribution towards our initial research objective.

Furthermore, note that by the results already discussed, the martingale property of
E(H ·M) implies for any t ≥ 0 the existence of a probability measure Q such that
under Q, N has intensity µ on [0, t]. As N is a càdlàg and piecewise constant process
with jumps of size one, this yields the construction of a nonexplosive counting process
on [0, t] with intensity µ. Therefore, Theorem 2.2.4 can be seen as giving criteria for
non-explosion of counting processes. As shown in Section 2.3, both of the criteria of
Theorem 2.2.4 are strong enough to replicate the classical result that there exists
counting processes with intensities of the form µt ≤ α+βNt− without explosion, see
Section 4.4 of [81]. As the calculations corresponding to the examples of Section 2.3
show, the reduction to arbitrarily small time intervals in Theorem 2.2.4 is essential to
achieve this result. Summing up, we have through purely martingale-based methods
achieved a replicate of one of the classical criteria for non-explosion. Several other
types of counting processes can also be constructed in this way, for example Hawkes
processes, again see Section 2.3 for details.

For intensities which are predictable with respect to the filtration generated by the
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counting process itself, we can also use methods such as given in [81] to obtain non-
explosion. However, Theorem 2.2.4 is also applicable in the case where the intensity
is predictable only with respect to other, larger filtrations. In particular, we may
consider intensities depending both on the counting process itself and other processes
such as diffusion processes. At first, we considered that this might be useful for joint
modeling of neuronal spike trains (as a counting process, see [169, 133, 115]) and
the membrane potential between spikes (as a diffusion process, see [18, 19, 105, 39]).
We later discovered that there in other contexts already had been interest in similar
models containing such interacting counting process and diffusion components, see
[58, 9].

In order to investigate the existence of such processes, we considered two classes of
intensities µ. First, we considered a specification given by:

µt = φ(Xt)

dXt = (A(Nt, Zt) +B(Nt, Zt)Xt) dt+ σ(Nt, Zt) dWt, (1.22)

where T in denotes the n’th jump time for N i, Zit = t−T i
N i
t
, A is vector valued and B

and σ are matrix valued functions, φ is a Lipschitz mapping with nonnegative coor-
dinates and W is an (Ft) Brownian motion independent of N . Second, we considered
a specfication given by:

µt = |Xt−|
dXt = (aNt + bNtXt) dt+ σ dWt + (ξNt −Xt−) dNt, (1.23)

where (an), (bn) and (ξn), are sequences in R. In Example 2.3.4 and Example 2.3.5,
we use (2.4) and (2.5), respectively, to prove that under certain regularity condi-
tions on the parameters in the intensity specification, a change of measure could
be applied to construct a counting process with intensity of the types given above.
Interpretations of the two types of intensities are given in Section 2.3. Note that
because of the diffusion component present in these intensity specifications, the pe-
riods of time where the intensity is very small is not easy to characterize. Therefore,
in order to develop in particular the latter example, the the fact that the criterion
(2.5) is insensitive to small intensities in contrast to (1.19) is essential.

Inspired by the work outlined above, we next considered another, more abstract
question. In [135], it was argued by Protter and Shimbo that when M is a local
martingale with initial value zero and ∆M ≥ −1, then E(M) is a uniformly inte-
grable martingale if only E exp(1

2〈M
c〉∞ + 〈Md〉∞) is finite, and the coefficients in

front of 〈M c〉 and 〈Md〉 are optimal. This is a predictable type of sufficient criterion.
Here, M c and Md denote the continuous and purely discontinuous martingale parts
of M , see Theorem 7.25 of [66], and 〈M〉 denotes the predictable quadratic variation
of M . Having noted that there seems to be a distinct difference between predictable
and optional sufficient requirements for E(M) to be a uniformly integrable martin-
gale, depending on the jump sizes of M , we proceeded to ask the following question:
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For a ≥ −1 and a local martingale M with initial value zero and jumps satisfying
∆M1(∆M 6=0) ≥ a, what are the optimal constants α(a) and β(a) such that

E exp(1
2〈M

c〉∞ + α(a)〈Md〉∞) <∞ (1.24)

and

E exp(1
2 [M c]∞ + β(a)[Md]∞) <∞ (1.25)

suffice to make E(M) a uniformly integrable martingale? As the results of [109] are
capable of giving sufficient criteria of this type as corollaries, the difficult part of this
question is to identify optimality of the constants. Using counterexamples similar to
those employed in [135, 109], the optimal constants are identified in Chapter 3, and
are given as

α(a) =
(1 + a) log(1 + a)− a

a2
and (1.26)

β(a) =
(1 + a) log(1 + a)− a

a2(1 + a)
, (1.27)

for a > −1 with a 6= 0, and α(0) = β(0) = 1
2 , α(−1) = 1. For a = −1, there exists no

optimal constant for the optional case. These functions are shown in Figure 1.3.2.

−1 0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x value

F
un

ct
io

n 
va

lu
e

Figure 1.3.2: Black: The function α (1.26). Red: The function β (1.27).

Noting that zero is the unique argument where α and β take the same value, we
proceeded next to wonder whether a particularly elegant sufficient criterion could
be obtained for this case, perhaps using simplified methods of proof. Inspired by
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the methods of Krylov in [101], we prove in Chapter 4 that for any 0 ≤ γ ≤ 1, the
criterion

lim inf
ε→0

ε logE exp

(
(1− ε)1

2
(γ[M ]∞ + (1− γ)〈M〉∞)

)
<∞ (1.28)

suffices to ensure that E(M) is a uniformly integrable martingale. This is a combined
predictable and optional type of criterion.

1.4 The general theory of processes

Inspiring our work on the general theory of processes was the gradual development
of simpler and simpler proofs of many of the main results of the theory of stochastic
integration with respect to semimartingales. Much work has been done on this by
many authors. For example, in the book [35] by Dellacherie and Meyer, arguably
one of the first relatively complete accounts of the general theory of processes and
its application to semimartingale theory, much time and effort was spent on proving
several of the most difficult theorems of the theory, for example the début theorem,
the section theorems, the Doob-Meyer theorem and the existence of the quadratic
variation. In later expositions such as [134, 87] by Protter and Kallenberg, respec-
tively, the dependence on the début theorem and the section theorems is removed,
using innovations by, among others, [136, 11]. This in particular removes the need
for the development of the Choquet theory of capacity ordinarily used for the proof
of the début theorem and the section theorems.

Our contributions consist of elementary proofs of two results. The first regards stop-
ping times and the début theorem, details can be found in Chapter 5. The début
theorem is the following landmark result, see [35], Section III.44 for a full proof.

Theorem (début theorem). Consider a filtered probability space (Ω,F , (Ft), P )
satisfying the usual conditions. Let X be a progressively measurable stochastic process
and let B be a Borel subset of the real numbers. Define

T = inf{t ≥ 0 | Xt ∈ B}, (1.29)

the first hitting time of B by X. Then T is a stopping time.

This theorem ensures that practically all of the “time-like” variables of use in the
general theory of processes in fact qualify as stopping times. That the assumption
of the usual conditions in fact is necessary for the result to hold is not obvious, but
can be seen from an example given in Section III of [34].

However, for many purposes, such as the development of the stochastic integral with
respect to a semimartingale, the full generality of the début theorem is not needed.
For example, a classical necessity for the development of this theory is the result
that the jumps of a càdlàg adapted process X can be covered by the graphs of a
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countable family of stopping times, meaning that there exists a sequence of stopping
times (Tn) such that

{(t, ω) | ∆Xt 6= 0} ⊆ ∪∞n=1[[Tn]], (1.30)

where [[T ]] = {(t, ω) | t = T (ω)}. In Chapter III of [66], this result is obtained by
putting T k0 = 0 and recursively defining

T kn+1 = inf{t > T kn | |XTkn
−Xt| ≥ 1/k}. (1.31)

It is then shown that each T kn is a stopping time, and that the family (T kn )n≥0,k≥1

covers the jumps of X. In Chapter 5, we prove, using only elementary methods, that
for any càdlàg adapted process X and any Fσ set U , meaning a countable union of
closed sets, the variable

T = inf{t ≥ 0 | ∆Xt ∈ U} (1.32)

is a stopping time. A family of stopping times satisfying (1.30) can then be obtained
by for example defining T k0 = 0 and recursively

T kn+1 = inf{t > T kn | |∆Xt| > 1/k}. (1.33)

The difficulty of showing that the variable T of (1.32) is a stopping time arises
from the fact that ∆X neither has right nor left limits. In order to circumvent this
problem, we consider the cases 0 ∈ U and 0 /∈ U separately, and in the latter case
employ a particular approximation procedure where the exclusion of 0 in the set U
essentially allows us to distinguish between whether the limit of particular sequences
Xpn and Xqn are equal to Xs− or Xs for lim pn = lim qn = s.

Our other contribution is related to the existence of the dual predictable projection
and the quadratic variation. To outline our results, we first recall the Doob-Meyer
theorem, see Chapter VI of [143] for a proof.

Theorem (Doob-Meyer decomposition). Consider a filtered probability space
(Ω,F , (Ft), P ) satisfying the usual conditions. Let X be a submartingale with initial
value zero such that {XT | T is a finite stopping time} is uniformly integrable. Then,
there exists a predictable, integrable increasing process A with initial value zero, such
that with

Mt = Xt −At, (1.34)

it holds that M is a uniformly integrable martingale.

In the statement of the above theorem, all processes are càdlàg as well. The theorem
has a localized version covering all submartingales, see Section III.3 of [134] for
details. The predictable process A is known as the compensator of X. In the case
where X is increasing, it is also known as the dual predictable projection of X.
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In [13], Beiglböck et al. gives a simplified proof of the Doob-Meyer decomposition
theorem using a subsequence principle. While Komlós is given as the source of this
subsequence principle, see [98], the result applied is also very similar to general
functional analytic results for reflexive Banach spaces: In such spaces, bounded se-
quences have the property that there exists a sequence of convex combinations of the
elements of the tail of the sequence which converge strongly. We sought to further
simplify the methods of [13] by restricting ourselves to the case in the Doob-Meyer
decomposition where the submartingale is pathwisely increasing. The interest in this
lies in the observation that the construction of both the quadratic variation and the
stochastic integral in fact can be carried out using only the existence of the compen-
sator for increasing and locally integrable processes, or more generally, processes of
locally integrable variation. Our efforts at this are outlined in Chapter 6.

Before describing our proof, we first state the theorem to be proven.

Theorem (existence of the compensator for locally integrable variation
processes). Consider a filtered probability space (Ω,F , (Ft), P ) satisfying the usual
conditions. Let A be an adapted process of locally integrable variation and initial value
zero. Then, there exists a predictable process Π∗pA of locally integrable variation with
initial value zero, such that with

Mt = At −Π∗pAt, (1.35)

it holds that M is a local martingale.

In order to prove the existence of the compensator Π∗pA of an adapted process A of
locally integrable variation with initial value zero, we first use monotone convergence
arguments similar to those employed by [11] to reduce to the case where At = ξ1(t≥T )

for ξ bounded and FT measurable. In this case, we can apply a simple L2 version
of the subsequence principle also used in [13], and the existence of the compensator
follows from the existence of discrete-time compensators and the limes superior
arguments of [84].

A different type of argument is needed for the existence of the quadratic variation
for a local martingale M with initial value zero. Again, we first state the result we
wish to obtain, a full proof can also be found in Chapter VI of [143].

Theorem (existence of the quadratic variation). Consider a filtered probability
space (Ω,F , (Ft), P ) satisfying the usual conditions. Let M be a local martingale with
initial value zero. Then, there exists an increasing adapted process [M ] with initial
value zero, such that

1. M2 − [M ] is a local martingale.

2. ∆[M ] = (∆M)2 up to indistinguishability.

To give a simplified proof of this theorem, we first note that by the fundamental
theorem of local martingales, see for example Theorem III.29 of [134], we can reduce
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the problem to the cases of M bounded or M of integrable variation. We note
that the proof of the fundamental theorem of local martingales only requires the
existence of the compensator for locally integrable variation processes, which we
already have obtained through elementary methods. The existence of the quadratic
variation for local martingales of integrable variation and the quadratic covariation
with a local martingale of integrable variation is not difficult, this can be obtained
through the ordinary integration-by-parts formula and the martingale properties of
integrals of predictable processes with respect to local martingales with paths of
integrable variation. The remaining challenge is then to obtain the existence of the
quadratic variation for a bounded martingale, and it is here that we again employ
the subsequence principle.

The fundamental idea of the proof builds on the same method as used in the con-
struction of the quadratic variation for continuous local martingales in for example
Section IV.30 of [143]. We consider a bounded martingale M , put tnk = k2−n and
note that for all n, it holds that

M2
t = Nn

t +Qnt , (1.36)

where

Nn
t = 2

∑
k:tnk−1<t

M t
tnk−1

(M t
tnk
−M t

tnk−1
), (1.37)

Qnt =
∑

k:tnk−1<t

(M t
tnk
−M t

tnk−1
)2. (1.38)

Here, Nn
t approximates 2

∫ t
0 Ms− dMs, while Qnt approximates [M ]t. We then use

the subsequence principle to choose a sequence of convex combinations of the tail
of (Nn) converging to a square-integrable martingale N . We may then prove that
there exists a modification [M ] of M2 − N satisfying the requirements to be the
quadratic variation of M .

In the case where M is continuous, this yields an even simpler proof, in fact almost
a one-page proof, of the existence of the quadratic variation.

1.5 Causality and interventions

Our work with causality and interventions concerns the development of these notions
for stochastic differential equations (SDEs). In order to properly understand the
context of our work, we begin by giving an exposition of some results from the theory
of causal inference in a non-time-dependent context. After doing so, we outline our
work on interventions in SDEs and discuss its ramifications.
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1.5.1 DAG-based causality

The notion of causality has long been under debate in the field of statistics, see
for example [62, 146, 147, 70, 139, 127, 33]. In the theory of causality based on
directed acyclic graphs (DAGs) as outlined by Pearl and Spirtes et al. respectively
in [126, 161], it is recognized that the distribution of a set of random variables in
general cannot be used to uniquely identify causal relationships between variables.
Therefore, in order to analyze causality in a formal framework, it is necessary to
extend the traditional framework of statistical inference, concerned with inference
of distributions, to a framework including a carrier of information about causality.
That carrier is the DAG.

In order to introduce the concept of a DAG, recall that a directed graph G on a set
of vertices V is a pair (V,E) with E ⊆ V × V . The elements of E are referred to
as edges, and if (α, β) ∈ E, we say that G contains the directed edge from α to β
and write that α → β in G. A path is defined to be an unbroken series of vertices
and edges such that no vertices are repeated except possibly the initial and terminal
vertices. We say that a path is in G if all its edges are in G. A directed cycle is
a path with the same initial and terminal vertices and all arrows pointing in the
same direction. For the purposes of this introductory subsection, we assume that
the vertex set V is finite.

Definition 1.5.1. We say that a directed graph G is a directed acyclic graph (DAG)
if G contains no directed cycles.
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Figure 1.5.1: Left: A graph which is a DAG. Right: A graph which is not a DAG.

Directed graphs lend themselves naturally to graphical representation. In Figure
1.5.1, two graphs are drawn, one which is a DAG and one which is not a DAG.
Directed arrows correspond to edges in the graph.

In a DAG G, there is a natural notion of parents, ancestors, descendants and non-
descendants. To describe this, we will refer to a path as a forward path if all the
edges in the path point in the forward direction, and refer to a path as a backward
path if all the edges in the path point in the backward direction, see [126, 107]. For
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any DAG G and α a vertex of G, we then use the following notation:

paG(α) = {β ∈ V | (β, α) ∈ E},
anG(α) = {β ∈ V | there is a forward path from β to α in G},
deG(α) = {β ∈ V | there is a forward path from α to β in G},
ndG(α) = V \ (deG(α) ∪ {α}).

We refer to paG(α) as the parents of α, to anG(α) as the ancestors of α, to deG(α)
as the descendants of α and to ndG(α) as the non-descendants of α. Note that none
of these sets contain α. These definitions make sense for any directed graph, but our
assumption that G is a DAG ensures that for example ancestors and descendants
do not overlap. If the DAG G is clear from the context, we write pa(α) instead of
paG(α) and so forth.

Another description of a DAG can be obtained using the notion of a topological
ordering.

Definition 1.5.2. Let G be a directed graph on V and let σ : {1, . . . , |V |} → V be
a bijective mapping. We say that σ is an topological ordering for G if it holds that
the existence of a forward path from σ(i) to σ(j) implies i < j.

It can be shown that a directed graph G is a DAG if and only if there exists a
topological ordering for G. This shows how DAGs essentially are graphs which allow
for an ordering of the vertices in the direction of the edges.
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Figure 1.5.2: A topological ordering for the DAG from Figure 1.5.1.

To see how a DAG can be used as a carrier of causal information, we introduce the
notion of a structural equation model (SEM). We will define this in a slightly dif-
ferent manner than in the literature in order to make our definition mathematically
precise. See Section 1.4.1 of [126] for an alternative formulation. In the following, fix
a background probability triple (Ω,F , P ). For convenience, we only consider SEMs
of variables taking values in R.

Definition 1.5.3. A structural equation model (SEM) is a triple of objects of the
type (G, (Uα)α∈V , (fα)α∈V ), where G is a DAG on V , (Uα)α∈V is a set of real random
variables defined on (Ω,F , P ) and fα is a function from Rpa(α) ×R to R for α ∈ V .
We say that a set of random variables (Xα)α∈V defined on (Ω,F , P ) is a solution to
the SEM if it holds that Xα = fα(Xpa(α), Uα) for all α ∈ V .
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In Definition 1.5.3, Xpa(α) denotes the subset (Xβ)β∈pa(α) of the family (Xβ)β∈V .
The idea behind Definition 1.5.3 is that when (Xα)α∈V is a solution to the SEM, then
(G, (Uα)α∈V , (fα)α∈V ) describes the mechanism yielding (Xα)α∈V from the error, or
noise, variables (Uα)α∈V . The inclusion in our modeling framework of a mechanism
and not just a set of variables is what allows us to define notions related to causality.
In particular, a directed edge from α to β in the graph G is interpreted as a possible
causal effect of Xα on Xβ, while the absence of such an edge is interpreted as the
absence of a causal of Xα on Xβ. In this way, we may think of the entire SEM as
a data-generating mechanism and as the DAG as describing the causal structure of
this mechanism.

It is not hard to prove that there always exists a unique solution to a SEM, obtained
by algorithmically determining the values Xα according to a topological ordering
implied by the DAG, beginning with nodes having no parents, moving on to eligible
children of these nodes and so forth. In the literature, it is regularly the case that a
SEM simply is defined as a set of variables satisfying a certain set of equations, as
this is less cumbersome than working with Definition 1.5.3.

Example 1.5.4. Consider a probability space endowed with four real noise variables
(U1, . . . , U4). Also consider a DAG G given by
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as well as functional relationships

f1(u1) = u1

f2(x1, u2) = 3x1 + u2

f3(x4, u3) = 8x4 + u3

f4(x1, x2, u4) = x1 − x2 + u4.

By evaluating the functions f1, . . . , f4 in the order of the first, second, fourth and
third functions, we find that there exists a unique set of variables X1, . . . , X4 such
that

X1 = U1

X2 = 3X1 + U2

X3 = 8X4 + U3

X4 = X1 −X2 + U4,

and this is then the solution to the SEM corresponding to the DAG G, the noise
variables U1, . . . , U4 and the functional relationships f1, . . . , f4. These variables are
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given by

X1 = U1

X2 = 3U1 + U2

X3 = 8U4 − 16U1 − 8U2 + U3

X4 = U4 − 2U1 − U2,

as can be obtained by a simple recursive calculation. ◦

In order to show how to endow this construction with a causal meaning, we define
the notion of an intervention in a SEM.

Definition 1.5.5. Consider a SEM (G, (Uα)α∈V , (fα)α∈V ). Assume given some ele-
ment β ∈ V and some xβ ∈ R. Let G′ be the graph obtained by removing all edges
of the form (α, β) from G. The postintervention SEM obtained by making the inter-
vention Xβ := xβ is the SEM with DAG G′, error variables (Uα)α∈V and functional
relationships fα for α 6= β and fβ(u) = xβ.

Note that the graph G′ in Definition 1.5.5 in fact is a DAG, as removing edges from
a DAG always preserves the DAG property. We also refer to the postintervention
SEM of Definition 1.5.5 as the SEM obtained by doing Xβ := xβ. Example 1.5.6
shows how this notion of intervention for SEMs works in a concrete case.

Example 1.5.6. Proceeding with the same SEM as described in Example 1.5.4, let
us consider making the intervention X4 := ζ. This results in the DAG G′ given by

•1 // •2
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and functional relationships

f1(u1) = u1

f2(x1, u2) = 3x1 + u2

f3(x4, u3) = 8x4 + u3

f4(u4) = ζ.

This SEM has a solution given by

X1 = U1

X2 = 3U1 + U2

X3 = 8ζ + U3

X4 = ζ,
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such that these variables satisfy

X1 = U1

X2 = 3X1 + U2

X3 = 8X4 + U3

X4 = ζ.

This is then the result of making the intervention X4 := ζ. ◦

Let us outline what has been achieved so far. We have defined the notion of a SEM
and the solution to a SEM, and we have defined a notion of intervention in a SEM,
resulting in a postintervention SEM and corresponding postintervention solution
variables. The idea behind these concepts is the following. Consider a set of vari-
ables (Xα)α∈V solving a SEM with DAG G. We interpret this as meaning that the
data-generating mechanism behind the variables is an algorithm which essentially
evaluates the values of the variables recursively in the order of an topological order-
ing for G. In a more suggestive language, parent variables are the causes of their
children, and so forth. This suggests that if we were to imagine making an exoge-
neous intervention in the system by, say, fixing Xβ at the value xβ, the causal links
from the parents, and more generally, the ancestors of Xβ, would be broken, while
the causal links from Xβ to its children and descendants would remain intact. This
is what the notion of intervention given in Definition 1.5.5 allows us to formalize,
and Example 1.5.6 shows this in action.

A classical concrete example which illustrates how the framework of SEMs and SEM
interventions parallel the functioning of causality in the real world is the sprinkler
example, see p. 15 of [126]. The idea of the example is outlined in Figure 1.5.3.

X1 (SEASON)

vv ''

X3 (SPRINKLER)

((

X2 (RAIN)

ww

X4 (WET)

��

X5 (SLIPPERY)

Figure 1.5.3: The DAG for the sprinkler example.

The figure uses a DAG G to depict the causal relationship between five variables:
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• X1 (SEASON): The season of the year

• X2 (RAIN): Whether it is raining

• X3 (SPRINKLER): Whether the sprinkler in the garden is turned on

• X4 (WET): Whether the pavement is wet

• X5 (SLIPPERY): Whether the pavement is slippery

Now imagine that the actual relationship between the five variables can be repre-
sented as a SEM with DAG G as described in Figure 1.5.3. This would mean, for
example, that whether it is raining is a function of the season and noise, and that
whether the pavement is wet is a function of whether the sprinkler is on, whether it
is raining and noise. For the sake of the example, let us explicitly assume that

X4 = X2 ∨X3 ∨ U4, (1.39)

such that X4 is equal to true when X2 or X3 is true, but X4 may also be true

due to other factors, represented by the noise variable U4. We now imagine that we
manually turn on the sprinkler, represented by X3, and ask how we would expect the
resulting system to behave. The natural answer is that the causal link from X1 to
X3 would be broken and that X4 would always be true. This precisely corresponds
to what would be the result of an intervention in the SEM according to Definition
1.5.5.

The conclusion is that the notion of a SEM and interventions in a SEM based on its
DAG is in accordance with how we ordinarily percieve the functioning of causality in
real-world situations. Thus, we appear to have taken the first step towards a useful
probabilistic model of causality.

While this is interesting in itself, we have not yet arrived at a statistically operational
definition. Next, we outline some important results which are essential to turning
the above notion of causality into a practically useful concept. The following three
definitions are essential in this regard. Recall that a path in a directed graph is
an unbroken series of vertices and edges such that no vertices are repeated except
possibly the initial and terminal vertices.

Definition 1.5.7. Let G be a DAG on a vertex set V . Let p be a path in G. Let
C ⊆ V . We say that p is blocked by C in G when it holds that one of the following
is true:

(1). p contains a chain of the form α→ γ → β where γ ∈ C.

(2). p contains a chain of the form α← γ ← β where γ ∈ C.

(3). p contains a fork of the form α← γ → β where γ ∈ C.
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(4). p contains a collider of the form α→ γ ← β with (de(γ) ∪ {γ}) ∩ C = ∅.

Definition 1.5.8. Let A, B and C be three disjoint sets in V . We say that C
d-separates A and B in G if C blocks every path between A and B in G.
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Figure 1.5.4: Left: {1, 4} and {3} are d-separated by {2, 5}, but not by ∅, {2} or
{5}. Right: {1} and {3} are d-separated by ∅, but not by any nonempty subset of
{2, 4, 5}.

Definition 1.5.9. Let (Xα)α∈V be a family of variables, and let G be a DAG. Let
A, B and C be disjoint subsets of V .

1. If XA ⊥⊥ XB | XC whenever C d-separates A and B, then we say that (Xα)α∈V
is global Markov with respect to G.

2. If C d-separates A and B whenever XA ⊥⊥ XB | XC , we say that (Xα)α∈V is
faithful with respect to G.

The intuitive meaning of Definition 1.5.9 is not clear at first sight. The following
result makes it easier to understand what the global Markov property is. Similar to
[126, 107], we use the following shorthand for densities: With p being the density
of (Xα)α∈V and A,B ⊆ V , we let p(xA) denote the density of Xα in xα, and let
p(xA | xB) denote a conditional density of XA given XB = xb, evaluated in xA.

Theorem 1.5.10 ([107], Section 3.2.2). Consider a family (Xα)α∈V of variables
having a joint density with respect to a product measure. Assume given a DAG G
on V . The following three properties are equivalent:

(1). The joint density p satisfies p(x) =
∏
α∈V p(xα | paG(α)) almost surely.

(2). With A, B and C disjoint, it holds that if C d-separates A from B, then
XA ⊥⊥ XB | XC .

(3). For all α ∈ V , it holds that Xα ⊥⊥ Xnd(α) | Xpa(α).

The three properties of Theorem 1.5.10 are referred to as the Markov factorization
property, the global Markov property and the local Markov property, respectively.
In the case where the family of variables (Xα)α∈V under consideration has a joint
density with respect to a product measure and satisfies one of these in this case
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equivalent properties with respect to a DAG G, we simply say that (Xα)α∈V is
Markov with respect to G. Theorem 1.5.10 shows that under the necessary regular-
ity conditions, the global Markov property is equivalent to Xα being conditionally
independent of its non-descendants given its parents. Thinking of such family re-
lationships as corresponding to a notion of time, this is analogous to the classical
Markov property for, say, discrete-time Markov chains.

Next, we recall two results which will help make causal inference a practical possi-
bility.

Theorem 1.5.11 ([126], Theorem 1.4.1). Assume that (Xα)α∈V satisfies a set of
structural equations with noise variables (Uα)α∈V , DAG G and structural relation-
ships (fα)α∈V , and assume that (Xα)α∈V has a density with respect to a product
measure. If the noise variables are independent, (Xα)α∈V is Markov with respect to
G.

Theorem 1.5.12 ([126], Section 3.2.3). Assume that (Xα)α∈V satisfies a set of
structural equations with noise variables (Uα)α∈V , DAG G and structural relation-
ships (fα)α∈V . Let (Yα)α∈V be the solution to the postintervention SEM from doing
Xβ := ζ. Assume that the noise variables are independent and that (Xα)α∈V has a
density p with respect to a product measure λV = ⊗α∈V λα. Then, for λβ almost all ζ,
(Yα)α∈V has density with respect to the product measure λ̃V obtained by exchanging
the β factor of λV with the Dirac measure in ζ, and the density is

q(x) = 1(xβ=ζ)

∏
α 6=β

p(xα | xpaG(α)). (1.40)

The following example shows what Theorem 1.5.11 and Theorem 1.5.12 state in a
practical situation.

Example 1.5.13. Consider again the SEM of Example 1.5.4. Assume that the four
noise variables U1, . . . , U4 are independent and follow standard normal distributions.
As we by the calculations in Example 1.5.4 have

X1

X2

X3

X4

 =


1 0 0 0
3 1 0 0
−16 −8 1 8
−2 −1 0 1



U1

U2

U3

U4

 , (1.41)

we find that (X1, . . . , X4) follows a multivariate normal distribution. In particular,
(X1, . . . , X4) has a density p with respect to the Lebesgue measure. Theorem 1.5.11
and Theorem 1.5.10 then show that (X1, . . . , X4) satisfies the local Markov property
with respect to the DAG of Example 1.5.4, leading to the decomposition

p(x) = p(x1)p(x2 | x1)p(x4 | x1, x2)p(x3 | x4). (1.42)
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Consider next the solution (Y1, . . . , Y4) to the postintervention SEM obtained by
doing X4 := ζ, as in Example 1.5.6. By the results obtained in that example, it
holds that 

Y1

Y2

Y3

Y4

 =


0
0
8ζ
ζ

+


1 0 0 0
3 1 0 0
0 0 1 0
0 0 0 0



U1

U2

U3

U4

 . (1.43)

In this case, the linear transformation of (U1, . . . , U4) is clearly singular, so the
vector of variables (Y1, . . . , Y4) does not have a density with respect to the Lebesgue
measure. However, (Y1, . . . , Y4) does have a density q with respect to λ⊗λ⊗λ⊗ δζ ,
where λ denotes the Lebesgue measure on (R,B) and δζ denotes the Dirac measure
in ζ. Theorem 1.5.11 and Theorem 1.5.10 then show that (X1, . . . , X4) satisfies the
local Markov property with respect to the DAG of Example 1.5.6, leading to

q(x) = q(x1)q(x4)q(x2 | x1)q(x3 | x4). (1.44)

In order to relate this to Theorem 1.5.12, note that as X1 = Y1, we must have
q(x1) = p(x1). And as both X2 = 3X1 + U2 and Y2 = 3Y1 + U2 we also obtain
q(x2 | x1) = p(x2 | x1). Likewise, as X3 = 8X4 + U3 and Y3 = 8Y4 + U3, we find
q(x3 | x4) = p(x3 | x4). And as Y4 = ζ, we obtain q(x4) = 1(x4=ζ), all in all leading
to

q(x) = 1(x4=ζ)p(x1)p(x2 | x1)p(x3 | x4), (1.45)

in accordance with Theorem 1.5.12. ◦

Theorem 1.5.11 is a statement about what the distribution of the solution to a SEM
is, given certain regularity conditions. This results opens up a pathway to causal
inference. To see how this is the case, assume that (Xα)α∈V is a set of observed
variables solving some SEM. This SEM represents the causal relationships between
the variables. Observing the distribution of (Xα)α∈V , we in particular observe all
conditional independence relationships between these variables. By Theorem 1.5.11,
(Xα)α∈V is Markov with respect to the true DAG G. This implies that we can reason,
based solely on the distribution of the observed variables, that the true DAG G for
the SEM of (Xα)α∈V must be in the set

{G | G is a DAG such that (Xα)α∈V is Markov with respect to G}. (1.46)

If this set is small, it is realistic to obtain nontrivial information about the causal
relationships between the observed variables. In fact, making one more assumption
allows us to go even further. Assume now that not only is (Xα)α∈V Markov with
respect to the true DAG G, but (Xα)α∈V is also faithful to the true DAG G. The
assumption of faithfulness is not an innocent one. In spite of faithfulness having
probability one in certain contexts, see Theorem 3.2 of [161], the reasonability of
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assuming faithfulnes is a topic under active debate, see [174, 22, 162]. Nevertheless,
if we do assume faithfulness, we find that the true DAG must be in the set

{G | XA ⊥⊥ XB | XC if and only if C d-separates A from B in G}. (1.47)

In this case, all candidate DAGs G share the same d-separation properties. The
equivalence class of DAGs all sharing the same d-separation properties can be char-
acterized and the set of equivalence classes can be shown to be injectively embedded
within a certain other class of graphs, called completed patterns by Verma and Pearl
in [171], where a characterization of the equivalence classes was first proven. In newer
literature, these completed patterns are often referred to as completed partially di-
rected acyclic graphs (CPDAGs). Under the assumption of the Markov property
and faithfulness, the true CPDAG is thus uniquely determined by the distribution
of the observed variables, and is thus amenable to be inferred from the distribution.
Causal inference for the CPDAG based on these ideas is carried out by for example
Maathuis et al. in [113].

Several questions, however, remain unanswered. A first question is how we, if we
actually know the true DAG G, can reason about the effect of possible interventions.
In the case of independent error variables, this is clarified by Theorem 1.5.12. This
theorem shows how the postintervention distribution depends on the observational
distribution, that is, the distribution of the (Xα)α∈V before any intervention, and
the DAG G. What is in fact more important is the objects absent in Theorem 1.5.12:
Given the observational density p and the DAG G, the functional relationships (fα)
of the SEM are not necessary to obtain the postintervention density. In other words,
if we know the DAG and the density, we can calculate postintervention distributions.
The back-door and front-door adjustment criteria developed in Section 3.3 of [126]
depend crucially on these results, as they essentially are results about conditions
under which (1.40) simplifies. In the context of estimating intervention effects, this
means that under the condition of the Markov property and faithfulness, the possible
postintervention distributions are limited to distributions calculated using (1.40) for
DAGs in the equivalence class of the CPDAG corresponding to the observational
distribution. This is also dicsussed in [113].

One important conclusion from all this, however, is that even under the conditions
of the Markov property and faithfulness, postintervention effects are not uniquely
determined from the observational distribution. And if we do not assume the Markov
property, in general corresponding to having error variables in the underlying SEM
which are not independent, even the formula (1.40) breaks down. See, however, [166]
for results on postintervention distributions in a semi-Markovian framework.

We have now discussed how Theorem 1.5.11 and Theorem 1.5.12 make causal in-
ference possible. One final important observation is the following: In the above, we
always assumed that there was some true underlying SEM for our observational vari-
ables (Xα)α∈V , and we sought to infer the DAG G of this SEM and postintervention
distributions for this SEM. However, several of our key concepts and results turned
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out only to depend on the DAG G and the observational distribution. In particular,
concepts depending only on the DAG G and the distribution are:

• The Markov property

• The faithfulness property

• The postintervention distribution

This means that these can be abstracted to a level relating only to the DAG and
the distribution. In our formulation, this is already the case for the Markov and
faithfulness properties of Definition 1.5.9. However, by these observations, we may
also make the following definition.

Definition 1.5.14. Assume that (Xα)α∈V is a set of variables with density p with
respect to the product measure λV = ⊗α∈V λ. Assume that (Xα)α∈V is Markov
with respect to G. We then define the postintervention distribution of (Xα)α∈V for
doing Xβ := ζ with respect to G as the distribution with density with respect to
the product measure λ̃V obtained by exchanging the β factor of λV with the Dirac
measure in ζ, where the density is

q(x) = 1(xβ=ζ)

∏
α 6=β

p(xα | xpaG(α)). (1.48)

See also Lauritzen’s exposition [108] for more on this. It is natural in Definition
1.5.14 to restrict ourselves to distributions satisfying the Markov property, since this
property is used when deriving Theorem 1.5.12 in the structural equation model
context. With Definition 1.5.14, all the important concepts for the reasoning on
causal inference carried through above, such as the estimation of the CPDAG and
possible postintervention distributions, can be abstracted from the context of SEMs
to the context of distributions and DAGs. This captures the fundamentals of an
operational statistical theory of causal inference.

1.5.2 A framework for causality and interventions for SDEs

We are now ready to describe our efforts at capturing notions such as causality and
interventions in the framework of stochastic differential equations (SDEs). Our work
is detailed in Chapter 7 and Chapter 8. Our starting point is the idea proposed by
Aalen et al. in Section 4.1 of [1], where it is suggested that in the SDE

dXt = dBt +AXt dt+ σ dWt, (1.49)

where B has finite variation and W is a multidimensional Brownian motion, inter-
ventions may be defined by putting certain elements of the matrix A equal to zero.
Inspired by this, we begin by defining the notion of an intervention formally in a
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semimartingale-based SDE framework. Let Z be a d-dimensional semimartingale,
and let a : Rp →M(p, d) be a continuous mapping, where M(p, d) denotes the space
of real p× d matrices. Consider the stochastic differential equation

dXt = a(Xt−) dZt, (1.50)

with initial condition X0. This is formally a stochastic integral equation, see Chapter
7 for details. We refer to Z as the driving semimartingale and to a as the coefficient
function. The following definition, replicated from Chapter 7, yields a notion of
intervention in such an SDE. We use Xm to denote the m’th coordinate of the
p-dimensional process X.

Definition 7.2.2. Consider some m ≤ p and ζ ∈ R. The stochastic differential
equation arising from (1.50) under the intervention Xm := ζ is

dXt = b(Xt−) dZt, (1.51)

where the initial condition is Xi
0 for coordinates i 6= m and ζ for the m’th coordinate,

and b : Rp → M(p, d) is given by letting bij(x) = aij(x) for i 6= m and bmj(x) = 0
for all x ∈ Rp and j ≤ d.

By Definition 7.2.2, intervening takes an SDE as its argument and yields another
SDE. It is important to note that intervening does not take an SDE solution and
yield another SDE solution. This is similar to how interventions in SEMs as given
in Definition 1.5.5 takes a SEM as its argument and yields another SEM, instead of
taking a set of variables and yielding another set of variables. Intuitively, in this way,
Definition 7.2.2 manages to include the causal mechanism and not only the resulting
variables. It is not obvious that Definition 7.2.2 will yield results corresponding to
real-world interventions. See, however, Example 7.2.1 for setup where this in fact
is the case. See also Subsection 1.7.1 for another idea of a possible application of
Definition 7.2.2. Example 1.5.15 shows how Definition 7.2.2 works in a concrete case.

Example 1.5.15. Consider the two-dimensional SDE given by

dX1
t = (θ1 −X1

t ) dZ1
t + dZ2

t , (1.52)

dX2
t = X1

t dZ2
t , (1.53)

with initial condition (X1
0 , X

2
0 ). This is an SDE of the type (1.50), with driving

semimartingale Z and

a(x) =

[
θ1 − x1 1

0 x1

]
. (1.54)

The result of making the intervention X1 := ζ is therefore an SDE of the type (1.51),
with

b(x) =

[
0 0
0 x1

]
, (1.55)
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and initial conditions (ζ,X2
0 ). This yields the SDE

dX1
t = 0, (1.56)

dX2
t = X1

t dZ2
t . (1.57)

Note that any solution of this SDE will satisfy that X1
t = ζ for all t ≥ 0 and

dX2
t = ζ dZ2

t . If we instead make the intervention X2 := ζ, we obtain the SDE

dX1
t = (θ1 −X1

t ) dZ1
t + dZ2

t , (1.58)

dX2
t = 0. (1.59)

with initial conditions (X1
0 , ζ). Here, any solution of this SDE satisfies X2

t = ζ for
all t ≥ 0 and dX1

t = (θ1−X1
t ) dZ1

t + dZ2
t . We see that due to the presence of x1 in

the second row of (1.54) and the absence of x2 in the first row of (1.54), there is an
assymmetry in effect of interventions: Interventions X1 := ζ influences X2, but not
vice versa. ◦

Note that Definition 7.2.2 yields a formalization of a particular type of intervention,
namely where the value of a coordinate of a process is set to constant at all times. It
is also possible to define interventions for example at a single timepoint, or interven-
tions where the resulting intervened coordinate is set to another stochastic process,
similar to the way various types of interventions are defined in [126].

As we saw in Example 1.5.15, the dependence structure of a(x) on its argument x
is important for the effect of interventions. This leads to the following definitions.

Definition 7.4.1. The signature of the SDE (1.50) is the graph S with vertex set
{1, . . . , p} and an edge from i to j if it holds that there is k such that the mapping
ajk is not independent of the i’th coordinate.

Definition 7.4.2. We say that Xj is locally unaffected by Xi in the SDE (1.50) if
there is no edge from i to j in the signature of (1.50).

The lack of independence for ajk of the i’th coordinate referred to in Definition
7.4.1 is a shorthand for the following condition: That there exists x ∈ Rp such that
xi 7→ ajk(x) is not constant. The signature for the SDE of Example 1.5.15 is depicted
in Figure 1.5.5. Recalling the conclusions of Example 1.5.15, we also see why it is
sensible to refer to the absence of edges in the signature as corresponding to local
unaffectedness: The absence of an edge from 2 to 1 in Figure 1.5.5 corresponds to
the intervention X2 := ζ not affecting X1.

Before proceeding, we fix some nomenclature. Assume that (1.50) and (1.51) have
unique solutions for all interventions, by Theorem V.7 of [134], this is the case
whenever the mapping a is Lipschitz. We refer to (1.50) as the observational SDE,
to the solution of (1.50) as the observational process, and to the distribution of
the solution of (1.50) as the observational distribution. We refer to (1.51) as the
postintervention SDE, to the solution of (1.51) as the postintervention process and
to the distribution of the solution to (1.51) as the postintervention distribution.
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•177

��
•2

Figure 1.5.5: The signature for the two-dimensional SDE (1.52-1.53).

Our first objective is to understand Definition 7.2.2. We will do this by identifying
a SEM such that interventions in this SEM in a limiting sense corresponds to in-
terventions made according to Definition 7.2.2. To do so, consider the Euler scheme
for (1.50) corresponding to a time endpoint T > 0 and step size ∆. Assume that
N = T/∆ is an integer. The Euler scheme for (1.50) is the set of variables (X∆)itk
for i ≤ p and k ≥ N where tk = k∆ given by X∆

0 = X0 and

(X∆
tk

)i = (X∆
tk−1

)i +
d∑
j=1

aij(X
∆
tk−1

)(Zjtk − Z
j
tk−1

). (1.60)

In other words, the Euler scheme is given by a discretization of (1.50). Under Lip-
schitz conditions on a, the Euler scheme always converges to the unique solution of
(1.50) in an appropriate sense, see Theorem V.16 of [134]. We now endow this set
of variables with noise variables, a DAG and a set of functional relationships corre-
sponding to the natural order in which the Euler scheme is calculated. The formal
definition is given in Definition 7.4.3. Here, we explain the definition by an example.

Example 1.5.16. Consider again the two-dimensional SDE (1.52)-(1.53) from Ex-
ample (1.5.15). Its Euler scheme is given by the recursion

(X∆)1
tk

= (X∆)1
tk−1

+ (θ1 − (X∆)1
tk−1

)(Z1
tk
− Z1

tk−1
) + Z2

tk
− Z2

tk−1
, (1.61)

(X∆)2
tk

= (X∆)2
tk−1

+ (X∆)1
tk−1

(Z2
tk
− Z2

tk−1
), (1.62)

and the DAG corresponding to its endowed SEM is shown in Figure 1.5.6. Note the
relationship between this DAG and the signature of Figure 1.5.5. In Figure 1.5.6, we
have also included the error variables of the SEM, which are the variables Ztk−Ztk−1

for k = 1, . . . , N . The dotted directed edges are meant to indicate that for each k,
Ztk − Ztk−1

is the error variable in the SEM corresponding to all of the variables
(X∆)itk , with functional relationships given by (1.61)-(1.62). In particular, several of
the primary variables of the SEM have the same error variables. This implies that in
general, the error variables are not independent, so the distribution of the family of
variables (X∆)itk for i = 1, . . . , p and k = 0, . . . , N will not be Markov with respect
to the DAG of the SEM.

The DAG in Figure 1.5.6 is constructed such that the directed edges correspond to
the natural recursive calculation of the variables in the SEM when given the initial
values X0. In detail, the DAG is constructed as follows: As (X∆)itk generally depends
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(X∆)1
0

//

$$

(X∆)1
∆

//

%%

(X∆)1
2∆

//

&&

(X∆)1
3∆

//

""(X∆)2
0

// (X∆)2
∆

// (X∆)2
2∆

// (X∆)2
3∆

//

Z∆ − Z0

FF

CC

Z2∆ − Z∆

FF

CC

Z3∆ − Z2∆

FF

CC

Figure 1.5.6: The DAG for the Euler SEM of (1.61-1.62).

on (X∆)itk−1
, there is always an arrow from (X∆)itk−1

to (X∆)itk . Furthermore, as

(X∆)2
tk

depends on (X∆)1
tk−1

, but (X∆)1
tk

does not depend on (X∆)2
tk−1

, there is

a directed edge from (X∆)1
tk−1

to (X∆)2
tk

, but no directed edge from (X∆)2
tk−1

to

(X∆)1
tk

. ◦

In Lemma 7.4.5, we argue that the Euler SEM for postintervention SDEs of the type
(1.51) obtained from applications of Definition 7.2.2 correspond to postintervention
SEMs, recall Definition 1.5.5, obtained from intervening in all variables in the same
row, meaning (X∆)itk for all k and some i, of the Euler SEM of (1.50). Essentially,
this means that the notion of intervention obtained from Definition 7.2.2 corresponds
to the limit of ordinary interventions in the Euler SEM. Now, the DAG of the Euler
SEM, as depicted in Figure 1.5.6, has the following properties:

• All directed edges point strictly forward in time

• The driving semimartingale Z occurs only as an error variable

Heuristically speaking, this means that the notion of intervention given in Definition
7.2.2 is justified when:

• Causality propagates forward in time

• There are no instantaneous dependencies

• The driving semimartingale is not directly affected by interventions

This, then, constitutes a rough guide to when the notion of intervention given in
Definition 7.2.2 is applicable. Some further points are worthy of notice. Since Defi-
nition 7.2.2 corresponds to intervention in the Euler SEM, assuming that Definition
7.2.2 is applicable corresponds to making an assumption on the true DAG of the
system. However, this does not actually correspond to assuming that the true DAG
is known. Rather, this corresponds to assuming that there is a fixed relationship be-
tween the true coefficient a in the SDE and the true DAG. This reduces estimation
of the DAG to estimation of a.
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Next, we state a theorem on identifiability of postintervention distributions of SDEs.
The theorem will use some notions from the theory of Lévy processes and Markov
processes, see Section 7.5 for an overview of this. Let D be a bounded neighborhood
of zero in Rd. Consider an SDE of the type

dXt = a(Xt−) dZt (1.63)

where Z is a d-dimensional Lévy process with D-characteristic triplet (α,C, ν),
a : Rp → M(p, d) is Lipschitz and bounded and X0 is some variable. Then, there
exists a unique Feller semigroup (Pt) with the property that any solution of (1.63),
independent of the initial distribution and the probability space on which the so-
lution exists, is a Feller process with semigroup (Pt). This result is folklore, and is
discussed formally in Lemma 7.5.1 and Section 7.8. Based on this result, it is possible
to speak of the semigroup of an SDE such as (1.63).

Theorem 7.5.3. Consider the SDEs

dXt = a(Xt−) dZt, (7.25)

dYt = ã(Yt−) dZ̃t, (7.26)

where Z is a d-dimensional Lévy process, Z̃ is a d̃-dimensional Lévy process and the
mappings a : Rp →M(p, d) and ã : Rp →M(p, d̃) are Lipschitz and bounded. Assume
that (7.25) and (7.26) have the same semigroup, and that the initial values have the
same distribution. Then, the postintervention distributions of doing Xm := ζ in
(7.25) and doing Y m := ζ in (7.26) are equal for all m and ζ ∈ R.

Theorem 7.5.3 is proven in Section 7.8. The theorem shows that for two SDEs
driven by Lévy processes having the same initial distribution and semigroup, the
postintervention distributions are the same. This theorem is one of our main results
on this subject.

Observational distribution

��

Feller semigroup of the observational SDE

��

Postintervention distribution

Figure 1.5.7: Line of inference for causality in SDEs.

The theorem points to the possibility of the line of inference depicted in Figure 1.5.7:
Under sufficient regularity conditions such as appropriate notions of irreducibility,
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the Feller semigroup of a Markov process is identifiable from the observational distri-
bution, and Theorem 7.5.3 allows for deducing postintervention distributions from
the Feller semigroup.

In the next subsections, we discuss the ramifications of Theorem 7.5.3. In particular,
we discuss the line of inference proposed in Figure 1.5.7, wediscuss how interven-
tion in SDEs work in practical cases, and we relate our theory to other theories of
causality.

1.5.3 Discussion of the identifiability theorem

In this subsection, we discuss Theorem 7.5.3 and its consequences. An important
first point in connection with this theorem is the following. Recall from our earlier
discussion of DAG-based causal inference that postintervention distributions can
be obtained from the DAG and the distribution as in Definition 1.5.14 when the
underlying variables satisfy the global Markov property with respect to the DAG.
As discussed in Example 1.5.16, the DAG of the Euler SEM is not generally Markov
with respect to its DAG because of dependency between the error variables. Thus,
Theorem 7.5.3 is a result on identifiability of postintervention distributions in the
absence of the Markov property.

Another thing to note about Theorem 7.5.3 is the following. Recall that the directed
edges of the Euler SEM for the SDE is determined by the signature of the SDE.
Furthermore, by Definition 7.4.1, the signature S of the SDE is determined by the
structure of how a(x) depends on its arguments, in the sense that S contains a
directed edge from i to j if it holds that there is k such that the mapping ajk is not
independent of the i’th coordinate. Now consider the particular case of an SDE of
the type

dXt = a(Xt) dWt, (1.64)

where a : Rp → M(p, p) and W is a p-dimensional standard Brownian motion. The
distribution of the solution X then depends only on a(x) through a(x)a(x)t. In
particular, if ã(x) = a(x)p(x) for some function p with p(x)p(x)t being the iden-
tity matrix for all x, then ã(x)ã(x)t = a(x)p(x)p(x)ta(x)t = a(x)a(x)t, and so the
distribution of the solution to the SDE

dXt = ã(Xt) dWt, (1.65)

is the same as that of the solution to (1.64), even though the signature corresponding
to ã may be different from the one corresponding to a. This is illustrated in Example
1.5.17.

Example 1.5.17. Consider the mapping a : R2 →M(2, 2) defined by putting

a(x) =

[
x1 0

x2
2/
√
x2

1 + x2
2 −x1x2/

√
x2

1 + x2
2

]
(1.66)



38 Overview of results

whenever x is not zero, and a(0) = 0. This mapping satisfies

a(x)a(x)t =

[
x1 0

x2
2/
√
x2

1 + x2
2 −x1x2/

√
x2

1 + x2
2

] [
x1 x2

2/
√
x2

1 + x2
2

0 −x1x2/
√
x2

1 + x2
2

]
=

[
x2

1 x1x
2
2/
√
x2

1 + x2
2

x1x
2
2/
√
x2

1 + x2
2 x2

2

]
(1.67)

whenever x 6= 0. We will construct another mapping ã which has a different signature
from a, but which has the same transpose product as a, in the sense of having
ã(x)ã(x)t = a(x)a(x)t. To do so, define p : R2 →M(2, 2) by

p(x) =
1√

x2
1 + x2

2

[
x1 x2

x2 −x1

]
, (1.68)

for x 6= 0 and let p(0) be the identity matrix. Put ã(x) = a(x)p(x). We then obtain
ã(0) = a(0) = 0 and

ã(x) =
1√

x2
1 + x2

2

[
x1 0

x2
2/
√
x2

1 + x2
2 −x1x2/

√
x2

1 + x2
2

] [
x1 x2

x2 −x1

]
=

1√
x2

1 + x2
2

[
x2

1 x1x2

0 (x3
2 + x2

1x2)/
√
x2

1 + x2
2

]
=

[
x2

1/
√
x2

1 + x2
2 x1x2/

√
x2

1 + x2
2

0 x2

]
. (1.69)

Note that the first row of a depends only on the first coordinate, while the second
row depends on both coordinates. On the other hand, the first row of ã depends on
both coordinates, while the second row of ã depends only on the second coordinate.
This translates into a and ã corresponding to different signatures, shown in Figure
1.5.8.

•1
%% %%

•2
yy

•1
%%

•2
yy

gg

Figure 1.5.8: Left: The signature corresponding to the coefficient function a. Right:
The signature corresponding to the coefficient function ã.

As p(x) is orthonormal for all x, it holds that ã(x)ã(x)t = a(x)a(x)t and so the
solutions to the two SDEs

dXt = a(Xt) dWt (1.70)

dXt = ã(Xt) dWt (1.71)
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have the same distribution. Thus, we have explicitly constructed two SDEs with
the same solution distributions but with different signatures. Note now that the
intervention X2 := ζ in (1.70) yields an SDE where the first coordinate satisfies

dX1
t = X1

t dW 1
t (1.72)

while the intervention X2 := ζ in (1.71) yields an SDE where the first coordinate
satisfies

dX1
t =

(X1
t )2√

(X1
t )2 + ζ2

dW 1
t +

X1
t ζ√

(X1
t )2 + ζ2

dW 2
t (1.73)

The distribution of the solution to (1.73) is a Markov process with generator

Af(x) =
x4 + (xζ)2

x2 + ζ2

∂2f

∂x2
(x) = x2∂

2f

∂x2
(x),

which is the generator of a geometric Brownian motion with zero drift. This is
the same as the generator of the solution to (1.72). Thus, as required in Theorem
7.5.3, the postintervention distributions are the same, even in this case where the
signatures are different. ◦

Example 1.5.17 illustrates a rather remarkable fact: For SDE models, the postin-
tervention distributions are identifiable from the observational distribution, even
when the signature and thus the resulting DAGs of the Euler SEMs are not iden-
tifiable from the observational distribution. One interpretation of this is that for
SDEs, the postintervention distributions will be the same for all signatures and thus
all resulting DAGs which are compatible with the observational distribution. From
this perspective, and in concordance with Theorem 7.5.3, the agreement of the two
postintervention distributions in Example 1.5.17 is not so much related to the de-
pendence structure of a(x), but rather on the dependence structure of a(x)a(x)t, or
equivalently, ã(x)ã(x)t.

Some observations which might give a hint as to what is happening in Example 1.5.17
are the following. Considering the first two columns of the Euler SEMs corresponding
to the two SDEs (1.70) and (1.71), we have constructed SEMs with DAGs as in
Figure 1.5.9.

The SEMs are constructed such that both the distributions and the postintervention
distributions of the variables are the same, in spite of the DAGs being different. In
particular, recalling the functional relationships of these SEMs, see Definition 7.4.3
for details, the conditional distribution of X∆

∆ given X∆
0 = x with ∆ = 1 will be a

normal distribution with mean x and variance

Σ =

[
x2

1 x1x
2
2/
√
x2

1 + x2
2

x1x
2
2/
√
x2

1 + x2
2 x2

2

]
. (1.74)



40 Overview of results

(X∆)1
0

//

%%

(X∆)1
∆

(X∆)2
0

// (X∆)2
∆

(X∆)1
0

// (X∆)1
∆

(X∆)2
0

//

99

(X∆)2
∆

Figure 1.5.9: Left: First two columns of the Euler SEM corresponding to the cof-
ficient function a of Example 1.5.17. Right: First two columns of the Euler SEM
corresponding to the cofficient function ã of Example 1.5.17.

Therefore, the conditional distribution of (X∆)2
∆ given (X∆)0 = x is a normal

distribution with mean x2 and variance x2
2, and likewise, the conditional distribution

of (X∆)1
∆ given (X∆)0 = x is a normal distribution with mean x1 and variance x2

1.
This implies that (X∆)2

∆⊥⊥(X∆)1
0 | (X∆)2

0 and (X∆)1
∆⊥⊥(X∆)2

0 | (X∆)1
0. However,

in the left graph of Figure 1.5.9, (X∆)2
∆ and (X∆)1

0 are not d-separated by (X∆)2
0,

and in the right graph of Figure 1.5.9, (X∆)1
∆ and (X∆)2

0 are not d-separated by
(X∆)1

0. Thus, neither of the two DAGs of Figure 1.5.9 are faithful to the underlying
distribution. The non-uniqueness of the signatures in Example 1.5.17 appears to be
related to this lack of faithfulness.

Theorem 7.5.3 has the following important consequence: As postintervention distri-
butions in the context of Lévy driven SDEs only depend on the initial condition
and the semigroup, we can abstract the notion of interventions from SDEs to Lévy
diffusion distributions, in the same way as we earlier in the context of distributions
having the Markov property abstracted the notion of intervention in a SEM to the
notion of intervention in a distribution and a DAG, see Definition 1.5.14. We now
outline how this can be done. In the following, let C0(Rp) denote the space of contin-
uous functions from Rp to R vanishing at infinity, and let C2

0 (Rp) denote the subset
of twice continuously differentiable elements of C0(Rp).

Definition 1.5.18. Let A : C2
0 (Rp) → C0(Rp) be linear. We say that A is a Lévy

diffusion operator if it can be written as

Af(x) =

p∑
i=1

d∑
j=1

aij(x)αj
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

(a(x)Ca(x)t)ij
∂2f

∂xi∂xj
(x)

+

∫
f(x+ a(x)y)− f(x)− 1D(y)

p∑
i=1

∂f

∂xi
(x)

d∑
j=1

aij(x)yj dν(y), (1.75)

for f ∈ C2
0 (Rp) and x ∈ Rp, where D is a bounded neighborhood of zero in Rd,

(α,C, ν) by a Lévy triplet and let a : Rp →M(p, d) is Lipschitz and bounded.
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Definition 1.5.19. Let (Pt(x, ·))t≥0,x∈Rp be a family of transition probabilities on
the measurable space (Rp,Bp). We say that (Pt(x, ·))t≥0,x∈Rp is a Lévy diffusion
family if it is a Feller semigroup whose generator is of the type (1.75). If µ is a
probability distribution on (Rp,Bp) and (Pt(x, ·))t≥0,x∈Rp is a Lévy diffusion family,
we say that (µ, (Pt(x, ·))t≥0,x∈Rp) is a Lévy diffusion pair.

In the above, Bp denotes the Borel-σ-algebra on Rp. In general, the distributions of
the solutions to SDEs such as (1.63) will be Feller processes with transition probabil-
ities of the type given in Definition 1.5.19. For notational convenience, we introduce
the sample space D([0,∞),Rp) of càdlàg paths from [0,∞) to Rp and let X◦ denote
the identity on this space. Also, we write A(D,α,C, ν, a) for the operator defined by
(1.75).

Definition 1.5.20. Let (µ, (Pt(x, ·))t≥0,x∈Rp) be a Lévy diffusion pair, where the
family of transition probabilities has generator whose restriction to C2

0 (Rp) is given as
A(D,α,C, ν, a), see (1.75). Let m ≤ p and ζ ∈ Rp. The postintervention Lévy diffu-
sion pair (ν, (Qt(x, ·))t≥0,x∈Rp) resulting from the intervention (X◦)m := ζ is given by
letting ν = π(µ), where the mapping π : Rp → Rp inserts ζ on the m’th coordinate,
and letting (Qt(x, ·))t≥0,x∈Rp be the unique family of Feller transition probabilities
with generator B whose restriction to C2

0 (Rp) is equal to A(D,α,C, ν, b), where b(x)
is obtained by exchanging the m’th row of a(x) with zeroes.

The uniqueness required for Definition 1.5.20 follows from the results in Section
7.8. Definition 1.5.20 yields a notion of intervention for Lévy diffusions. Given a
Lévy diffusion pair (µ, (Pt(x, ·))t≥0,x∈Rp), it holds due to Theorem 7.5.3 that the
postintervention Lévy diffusion pair can be interpreted as the distributional result of
considering an arbitrary Lévy driven SDE with initial distribution µ and semigroup
(Pt(x, ·))t≥0,x∈Rp and making an intervention according to Definition 7.2.2. In this
framework, we may thus observe a Lévy diffusion, estimate the initial distribution
and semigroup, and consider questions such as what the distributional effects would
be of making interventions of the type (X◦)m := ζ, and so forth, corresponding to
the latter half of the line of reasoning of Figure 1.5.7. This concludes our discussion
of Theorem 7.5.3.

1.5.4 An example based on Ornstein-Uhlenbeck processes

Next, we outline an example discussed in detail in Chapter 8. Consider a three-
dimensional Ornstein-Uhlenbeck process of the form

dXt = B(Xt −A) dt+ dWt, (1.76)
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where W is a three-dimensional Brownian motion and B is upper diagonal, meaning
that we have

B =

 b11 b12 b13

0 b22 b23

0 0 b33

 . (1.77)

We assume that the diagonal elements of B are all negative. As B is triangular, the
set of diagonal elements of B is equal to the set of eigenvalues of B. Therefore, B is
stable, meaning that all eigenvalues have strictly negative real parts. Furthermore,
all principal submatrices are stable as well. The interpretation of having B upper
diagonal is that the levels of all of X1, X2 and X3 influence the average change in
X1, while only the levels of X2 and X3 influence the average change in X2 and only
X3 influences the average change in X3. This is illustrated in Figure 1.5.10, where
the signature of (1.76) is depicted.

X1
		

X2
YY

77

X3
YY

gg

jj

Figure 1.5.10: The signature of (1.76).

As both B and its principal submatrices are stable, there exist stationary distri-
butions both for the observational distribution of X and for the postintervention
distributions. All these stationary distributions are normal distributions. The equa-
tions below show the stationary means for the case of no intervention, as well as
interventions in the second and third coordinates.

No intervention:

 A1

A2

A3

 (1.78)

X2 := ζ intervention:

 A1 − B12
B11

(ζ −A2)

ζ
A3

 (1.79)

X3 := ζ intervention:

 A1 −
(
B13
B11
− B12B23

B11B22

)
(ζ −A3)

A2 − B23
B22

(ζ −A3)

ζ

 . (1.80)

This shows not only that the stationary means in this case lend themselves to closed-
form calculation, but also that the results agree with intuition: For example, in the
case of the intervention X2 := ζ, the stationary mean of the first coordinate changes
based on the influence of X2 on X1 as illustrated in Figure 1.5.10, but there is no
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change in the stationary mean of the third coordinate, since there is no influence of
X2 on X3.

1.5.5 Relationship with weak conditional local independence

Recall that a notion of influence, referred to as weak conditional local independence
(WCLI) between two processes in a class of semimartingales is introduced by Gégout-
Petit and Commenges in [27, 57]. In this section, we briefly outline a connection
between our results and WCLI.

The notion of WCLI builds on the notion of semimartingale characteristics. For an
outline of semimartingale characteristics, see Chapter II of [83] or Chapter 7. In [57],
the following definition of weak conditional local independence is made.

Definition 1.5.21 ([57], Section 2). We define D′ to be the class of p-dimensional
special semimartingales X having decomposition X = X0 + M + A, where M is a
square integrable martingale and A is a predictable process with paths of bounded
variation, having characteristics (B,C, ν) satisfying that C is a deterministic diag-
onal matrix.

Definition 1.5.22 ([57], Definition 2). Let X be in D′. We say that Xk is WCLI
of Xj if and only if the characteristics Bk and νk of Xk are (F−jt )t≥0 predictable,

where (F−jt )t≥0 is the filtration generated by the processes X1, . . . , Xp excepting
Xj .

The definition is formally well-posed for all special semimartingales. However, [57]
chooses to restrict themselves to the class D′ to ensure the interpretability of WCLI.
This is explained in Remark 1 of [27], where the following example is considered.

Example 1.5.23. Assume that (X1, X2) solves

dX1
t = adt+ bdW 1

t (1.81)

dX2
t = X1

t dt+ exp(X1
t ) dW 2

t , (1.82)

where (W 1,W 2) is a two-dimensional Brownian motion. For this process, we have
that the quadratic covariations of the continuous martingale parts are

C =

[
b2t b

∫ t
0 exp(X1

s ) ds

b
∫ t

0 exp(X1
s ) ds

∫ t
0 exp(2X1

t ) ds

]
, (1.83)

which is neither diagonal nor deterministic, so (X1, X2) is not in D′. However,
we may still ask whether for example B2 and ν2 are (F−1

t )t≥0 predictable. We
will argue that the answer is yes. To see this, first note that as X2 is continuous,
the compensator ν2 of the jump measure of X2 is zero. Therefore, it is (F−1

t )t≥0

predictable. The predictable finite variation part B2 of X2 is B2
t =

∫ t
0 X

1
s ds. Now
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note that (F−1
t ) is the filtration generated by X2, so [X2] is (F−1

t )t≥0 adapted. Thus,
the process

∫ t
0 exp(2X1

t ) ds is (F−1
t ) adapted, and so the process exp(2X1

t ) is (F−1
t )

adapted, finally yielding that X1 is (F−1
t ) adapted. As B2 only depends on X1, this

yields that B2 is (F−1
t )t≥0 adapted. All in all, we find that if we extend Definition

1.5.22 to (1.81-1.82), X2 is WCLI of X1. ◦

In Example 1.5.23, it appears that Definition 1.5.22 does not provide an accurate
view of the dependence structure of (X1, X2), since we would not want to say that
X2 is WCLI of X1. The problem is basically that X1 can be reconstructed through
the quadratic variation of X2, and as a consequence, the measurability properties
of B2 and ν2 do not provide an accurate image of the structure of the dynamics of
(X1, X2).

Nonetheless, for our purposes, we will use Definition 1.5.22 for all special semimartin-
gales. This allows us to obtain the following result. Recall that the property of being
locally unaffected was given in Definition 7.4.2, stated above.

Theorem 7.6.1. Let X be the solution to (1.50). Assume that X is a special
semimartingale and that Z is a Lévy process. If Xi is locally unaffected by Xm in
(1.50), then Xi is WCLI of Xm.

Theorem 7.6.1 is proven in Section 7.9. Intuitively, Theorem 7.6.1 states that having
Xi locally unaffected by Xm yields that Xi in a sense is locally independent of Xm,
a notion made precise by having the characteristics of Xi (F−mt ) predictable.

The above discussion, in particular Example 1.5.23, also highlights the benefits of our
notion of causality and intervention for SDEs. By working in an SDE framework, we
gain access to a candidate SEM in which interventions can be defined and a notion
of causality abstracted: The SDE is more than the distribution, and so we have
more powerful tools than the semimartingale characteristics at our disposal. This
means that we are able to work with semimartingales without orthogonal martingale
parts, as Definition 1.5.21 otherwise restricts us to. In Example 7.2.1, we see the
importance of this: Natural situations occur where we observe processes without
orthogonal martingale parts.

1.5.6 Relationship with DAG-based causal inference

Finally, we relate our notions of causality and interventions for stochastic differential
equations to the DAG-based theory. In the DAG-based theory of causal inference, the
DAG is the carrier of information about causality. For SDEs, the causal relationships
between the coordinates of the SDE are summarized in the signature of the SDE. We
are interested in investigating whether there is a connection between the signature
and some appropriately chosen corresponding DAG.

To set the scene, we note that in several applications of DAG-based causal inference,
the data consist of observations from a continuous-time system assumed to be in
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equilibrium, see for example [112, 164, 120, 137]. This can in a natural sense be
translated into assuming that the underlying continuous-time system follows an
SDE, and that we observe samples from the stationary distribution. In the DAG-
based theory, we seek to infer the true DAG. This leads to the following question.

Question 1.5.24. When the true SDE has signature S, with respect to what DAGs
is the stationary distribution global Markov?

We are not able to give a full answer to this question, but we will make a few con-
siderations which elucidate the problem. We first make the simplifying assumption
that the underlying SDE is a p-dimensional Ornstein-Uhlenbeck process as in (1.76).
In this case, the signature S has an edge from i to j if and only if Bji is nonzero.

Lemma 1.5.25. If the Ornstein-Uhlenbeck process has a stationary distribution,
then the signature S is not a DAG.

Proof. Assume contrarily that S is a DAG. Then S has a node i with no parents.
This implies that the i’th row of B only contains zeroes. As a consequence, B is not
stable, and so there is no stationary distribution.

According to Lemma 1.5.25, we cannot expect that the true signature is a DAG.
This rules out the proposition that when S is a DAG, the stationary distribution is
global Markov with respect to S. We may instead consider a related question.

Question 1.5.26. Consider the case where we may obtain a DAG G from the
signature S by removing all loops (that is, edges with the same initial and terminal
vertex). Is the stationary distribution Markov with respect to S?

We provide an example to show that the answer is negative. Consider a three-
dimensional Ornstein-Uhlenbeck process with identity diffusion matrix, mean rever-
sion level A and mean reversion speed matrix given by

B =

 −1 −1 0
0 −1 −1
0 0 −1

 . (1.84)

The signature of this process is illustrated in Figure 1.5.11. We see that the result
G of removing all loops from the signature in fact is a DAG.

As B is stable, there exists a unique stationary distribution, which is a normal
distribution with mean A and variance Σ given as the solution to BΣ + ΣBt = −I,
see [80]. This is a Lyapounov equation with the solution and inverse of the solution
given by

Σ =


15
16 − 7

16
1
8

− 7
16

3
4 −1

4
1
8 −1

4
1
2

 and Σ−1 =


160
109

96
109

8
109

96
109

232
109

92
109

8
109

92
109

262
109

 . (1.85)
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Figure 1.5.11: Left: The signature S of the Ornstein-Uhlenbeck process under con-
sideration. Right: The DAG G obtained by removing loops from the signature.

Now let Z be a variable following a normal distribution with mean A and variance Σ.
Let i, j ∈ {1, 2, 3} with i 6= j and let k be the unique element of {1, 2, 3} \ {i, j}. By
Proposition 5.2 of [107], it holds that Zi and Zj are conditionally independent given
Zk if and only if (Σ−1)ij = 0. If Z were Markov with respect to the DAG G, it should
hold that X1 and X3 are conditionally independent given X2. However, (Σ−1)13 is
nonzero. Thus, the stationary distribution is not global Markov with respect to G,
and the answer to Question 1.5.26 is negative.

1.6 Identifiability and ICA

In this section, we outline our work on identifiability in ICA models. We begin by
outlining the LiNGAM method and ICA. After this, we describe our identifiability
result and consider the numerical evaluation of our result.

1.6.1 LiNGAM, ICA and problem statement

As mentioned in Section 1.2, our work on ICA was inspired by open problems related
to the LiNGAM method for causal discovery mentioned at a course given at the
Seminar für Statistik at ETH Zürich. The LiNGAM method was introduced by
Shimizu et al. in [156]. The fundamental idea of that paper is as follows. As in
Section 1.5, consider a SEM (G, (Ui), (fi)), with i = 1, . . . , p, corresponding to the
vertex set V = {1, . . . , p}, and consider a solution X = (X1, . . . , Xp) to the SEM.
In general, the DAG G is not identifiable from the distribution of X. In order to
overcome this, [156] considers what is known as a restricted structural equation
model. Working in the context of restricted structural equation models essentially
corresponds to restricting the functions fi allowed in the SEM, see for example
[128, 73, 180] for more on this. In [156], the restriction made is that all the functions
fi are assumed to be linear and that the coefficient of fi corresponding to the error
term is assumed to be equal to one. The resulting solution to the SEM then satisfies
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a set of equations of the form

X = BX + U, (1.86)

where B is a p × p matrix. The parental dependency structure of the fi forces a
certain acyclic structure on B, namely that Bij = 0 whenever j is not a parent of i
in the DAG G. This corresponds to the existence of a permutation of the rows and
columns of B resulting in a lower triangular matrix, see again [156]. In Appendix
A of [156], it is argued that when the components of U are independent and non-
Gaussian, the acyclic structure of B ensures that the DAG can be uniquely identified
from the distribution of X. This is in contrast to the general case discussed in Section
1.5, and is the essential benefit of considering SEMs with linear functions fi. The
results in [156] relies on rewriting (1.86) to

X = AU (1.87)

with A = (I − B)−1. In the case where the coordinates of U are independent and
non-Gaussian, a result in [28] states that A is identifiable from the distribution of X
up to scaling and permutation of columns. This result, however, relies essentially on
the assumption of non-Gaussianity. A natural question is therefore: How difficult is
it to estimate A in (1.87) from the distribution of X when the coordinates of U are
non-Gaussian but close to Gaussian? In its abstract form, this question is related
neither to LiNGAM nor to causal inference. Rather, it is related to the problem of
estimation of A in the model

X = Aε (1.88)

where ε has independent nondegenerate coordinates. The model (1.88) is known as
the independent component analysis (ICA) model, and in this context, A is known
as the mixing matrix. As a special case of the results given in [50], we obtain the
following for invertible A and B:

• If all coordinates of ε are standard Gaussian, Aε and Bε have the same distri-
bution precisely when AAt = BBt.

• If no coordinates of ε are Gaussian, Aε and Bε have the same distribution
whenever A = BΛP for some invertible diagonal matrix Λ and a permutation
matrix P .

We express this by saying that in the case of Gaussian errors, the mixing matrix is
identifiable from the distribution of X up to transpose products, while in the case
of non-Gaussian errors, the mixing matrix is identifiable from the distribution of X
up to scaling and column permutation.

Now consider the case where we only have finitely many samples X1, . . . , Xn from the
distribution of X, and the error distribution is non-Gaussian but close to Gaussian.
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Having only finitely many samples, our data might as well appear to be from a
distribution with or without Gaussian errors. It is therefore a priori unclear which
of the two above scenarios are reflected in our ability to identify the mixing matrix.
This leads to the following question.

Question 1.6.1. Consider the statistical model of distributions of the form Aε,
where ε has independent nondegenerate coordinates, and the true distribution of ε
is non-Gaussian but close to Gaussian. Assume given a true mixing matrix A and
samples X1, . . . , Xn from the true distribution. Will our ability to estimate the mixing
matrix based on X1, . . . , Xn primarily be up to transpose products or up to scaling
and permutation of columns?

Formal analysis of the ICA model can be done in several ways. Define, for A ∈
M(p, p), a mapping LA : Rp → Rp by LA(x) = Ax. We may then consider the
statistical model

{LA(R) | A ∈M(p, p), R ∈ P(p)}, (1.89)

where P(p) is the set of probability measures on (Rp,Bp) with independent non-
degenerate coordinates. This model is semiparametric. Alternatively, we may fix
R ∈ P(p) and consider the statistical model

{LA(R) | A ∈M(p, p)}, (1.90)

which is parametric. Work on quantifying the difficulty of identifying A from finitely
many samples of the distribution of X has been done by several authors, see for
example [5, 23, 77, 125]. In particular, in [23], Chen and Bickel presents an algo-
rithm for estimation of the mixing matrix in (1.89), and the asymptotic variance is
calculated. In [125], a Cramér-Rao lower bound is calculated by Ollila et al. for the
model (1.90) under certain restrictions on the error distribution.

We follow [125] by restricting our attention to (1.90). Furthermore, for simplicity,
we consider the case where all the coordinates of the error distribution have the
same distribution. In other words, we fix a nondegenerate distribution ζ on (R,B),
define R = ζ⊗p and consider the statistical model (1.90). In order to guide our
thinking, we first remark on the case where we do not have finitely many samples,
but where instead the full distribution of LA(ζ⊗p) is known. Because we have fixed
a probability measure ζ, some of the scaling indeterminacy for identifiability of the
mixing matrix vanishes, and the remaining indeterminacy can be split into two cases.
In the following, FA denotes the cumulative distribution function of LA(ζ⊗p). From
the results in for example [50], we obtain the following.

Lemma 9.3.5. Assume that ζ is a non-degenerate mean zero probability measure
on (R,B). Let A,B ∈M(p, p) be invertible. Then the following hold:

1. If ζ is Gaussian, then FA = FB if and only if AAt = BBt.
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2. If ζ is non-Gaussian and symmetric, then FA = FB if and only if A = BΛP
for some permutation matrix P and a diagonal matrix Λ satisfying Λ2 = I.

3. If ζ is non-symmetric, then FA = FB if and only if A = BP for some permu-
tation matrix P .

We conclude that concerning identifiability in (1.90), three different scenarios are
possible, leading to the following question.

Question 1.6.2. Fix a nondegenerate distribution ζ on (R,B), put R = ζ⊗p and
consider the statistical model (1.90). Assume given a true mixing matrix A and
samples X1, . . . , Xn from LA(R). Which of the three scenarios outlined in Lemma
9.3.5 reflect our ability to estimate the mixing matrix based on X1, . . . , Xn?

We expect that the scenario guiding identifiability of the mixing matrix in Question
1.6.2 depends on whether the number of observations or the closeness of ζ to Gaus-
sian or symmetric variables is dominant. That is, if ζ is non-symmetric but close to
Gaussian, while n is exceedingly large, the number of samples may be large enough
to nullify the effects of having errors close to Gaussian.

Based on this line of thinking, in order to elucidate Question 1.6.2, we choose to
restrict our attention to asymptotic scenarios, meaning that we consider a sequence
of error distributions Pe(βn) and investigate identifiability of the mixing matrix as n
tends to infinity and Pe(βn) correspondingly converges to some limiting distribution
ζ. The limiting behaviour of this sequence of models would then reflect the relative
dominance of the increase in the number of samples and the convergence of the
error distribution to, say, a Gaussian distribution. This is reflected in the following
question.

Question 1.6.3. Consider a family of nondegenerate distributions Pe(β) on (R,B)
for 0 ≤ β ≤ 1. Let (βn) be a sequence converging to zero. Put R(βn) = Pe(βn)⊗p and
consider the statistical model (1.90) based on R(βn). Assume given a true mixing
matrix A and samples Xn1, . . . , Xnn from LA(R(βn)). In view of Lemma 9.3.5, as n
tends to infinity, is our ability to estimate the mixing matrix based on Xn1, . . . , Xnn

determined by the properties of Pe(βn) or by the properties of the limit ζ of Pe(βn)?

In the hope of obtaining estimator-independent results related to Question 1.6.3, we
choose to consider the empirical cumulative distribution function FAβn ofXn1, . . . , Xnn.

Let Ix = (−∞, x1]× · · · × (−∞, xp], FAβn : Rp → [0, 1] is defined by

FAβn(x) =
1

n

n∑
k=1

1Ix(Xnk). (1.91)

For a cumulative distribution function F on Rp, we say that a random field W on
Rp is an F -Gaussian field if it is a p-dimensional mean zero Gaussian field with
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covariance function R : Rp×Rp → R given by R(x, y) = F (x∧ y)−F (x)F (y). Here,
x ∧ y denotes the coordinate wise minimum of x and y. By results from empirical
process theory, see for example [170], it holds in the case where the error distribution
does not depend on n that

√
n(FAβn − F

A) converges weakly in L∞(Rp) to an FA-

Gaussian field, so that FAβn converges to FA at rate 1/
√
n. Here, L∞(Rp) denotes

the space of bounded and Borel measurable functions from Rp to R. In the hope
that closeness of FAβn to FB reflects the inability to distinguish A and B based on
Xn1, . . . , Xnn, we may make a final reduction of our initial question to the following.

Question 1.6.4. Consider a family of nondegenerate distributions Pe(β) on (R,B)
for 0 ≤ β ≤ 1. Let (βn) be a sequence converging to zero. Put R(βn) = Pe(βn)⊗p and
consider the statistical model (1.90) based on R(βn). Assume given a true mixing
matrix A and samples Xn1, . . . , Xnn from LA(R(βn)). In view of Lemma 9.3.5, as
n tends to infinity, is the closeness of FAβn to FB determined by the properties of
Pe(βn) or by the properties of the limit ζ of Pe(βn)?

Our contribution consists of results related to Question 1.6.4 for particular asymp-
totic scenarios.

1.6.2 An identifiability result

We now outline the results obtained. For details and proofs, see Chapter 9. We first
make precise the asymptotic scenario we consider. Consider two distinct fixed mean
zero probability measures ξ and ζ on (R,B). Define Pe(β) = βξ + (1 − β)ζ. We
refer to Pe(β) as a contaminated ζ distribution. Fix a matrix A ∈ M(p, p). As be-
fore, we let FA be the cumulative distribution function of LA(ζ⊗p). Furthermore, we
let FAβ be the cumulative distribution function of LA(Pe(β)⊗p). Note in particular

that FA = FA0 . Consider a probability space (Ω,F , P ) endowed with a triangular
array (Xnk)1≤k≤n such that for each n, the variables Xn1, . . . , Xnn are independent
variables with cumulative distribution function FAβn . Let FAβn be the empirical cu-
mulative distribution function of Xn1, . . . , Xnn. Also assume that we are given an
FA-Gaussian field W on (Ω,F , P ). Let βn = n−ρ for some ρ > 0. Note that in this
case, Pe(βn) converges to ζ. Finally, define for all A ∈M(p, p),

Γ1(A) =

p∑
k=1

LA

(
ζ⊗(k−1) ⊗ ξ − ζ

‖ξ − ζ‖∞
⊗ ζ⊗(p−k)

)
. (1.92)

Here, ‖ · ‖∞ denotes the Kolmogorov norm on the space of signed measures, given
by

‖µ‖∞ = sup
x∈Rp

|µ((−∞, x1]× · · · × (−∞, xp])| (1.93)

for any signed measure µ on (Rp,Bp). The following is a simplified combination of
two of our main results, Theorem 9.4.3 and Theorem 9.4.5.
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Theorem 1.6.5. Assume that c is a continuity point of the distribution of ‖W‖∞.
Let A,B ∈M(p, p). The following holds:

1. If ρ > 1/2 and FA = FB, then

lim
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c) = P (‖W‖∞ > c). (1.94)

2. If 0 < ρ < 1/2 and either FA 6= FB or FA = FB and Γ1(A) 6= Γ1(B), then

lim
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c) = 1. (1.95)

Loosely speaking, Theorem 1.6.5 states that for the asymptotic scenarios considered,
the answer to Question 1.6.4 is: For ρ > 1/2, closeness of the empirical cumulative
distribution function FAβn to FB is solely determined by ζ, while for 0 < ρ < 1/2,

closeness of the empirical cumulative distribution function to FB is not solely de-
termined by ζ.

To understand the results of Theorem 1.6.5 in detail, consider the case where A,B ∈
M(p, p) are invertible. Assume that AAt = BBt while A 6= BΛP for all diagonal Λ
with Λ2 = I and all permutation matrices P . Let ζ be a nondegenerate Gaussian
distribution and let ξ be such that Pe(β) is non-Gaussian for all β ∈ (0, 1). These
assumptions imply the following:

1. For all n, FAβn 6= FBβn . From this, we would not expect FAβn and Fβn to be close.

2. FA = FB. From this, if FAβn and FBβn are close enough to FA and FB, respec-

tively, we would expect FAβn to be close to FBβn .

See also Corollary 9.4.4. Now assume that βn = n−ρ for ρ > 1/2. The first part of
Theorem 1.6.5 shows that (1.94) holds, indicating that in this asymptotic scenario,
the probability of having

√
n‖FAβn − F

B
βn
‖∞ > c does not tend to one. Therefore,

FAβn and FBβn cannot be distinguished at rate 1/
√
n, and so it is the latter of the two

above scenarios which dominates. This indicates that for βn = n−ρ with ρ > 1/2,
the effect of having an error distribution close to Gaussian is more important than
the increase in sample size.

On the other hand, if we consider βn = n−ρ and assume that FA = FB while also
having Γ1(A) 6= Γ1(B), the second part of Theorem 1.6.5 shows that (1.95) holds,
indicating that in this case, the probability of having

√
n‖FAβn − F

B
βn
‖∞ > c does in

fact tend to one, and so the first of the two above scenarios dominate, corresponding
to the effect of having an error distribution close to Gaussian being less impor-
tant than the increase in sample size. In this case, FAβn and FBβn are asymptotically

distinguishable at rate 1/
√
n.
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1.6.3 Numerical experiments

In this section, we carry out some numerical experiments related to the results out-
lined in the previous subsection. We will make two different numerical experiments:
One evaluating the results of Theorem 1.6.5, and one evaulating the applicability of
Theorem 1.6.5 to the practical application of ICA.

We begin by considering numerical confirmation of the results of Theorem 1.6.5. In
particular, we are interested in the numerical evaluation of

p(ρ) = lim
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c) (1.96)

for βn = n−ρ and varying ρ > 0, with appropriate choices of c, A, B, ξ and ζ.
According to Theorem 1.6.5, under suitable regularity conditions, we should see
that for ρ > 1/2, yielding a fast decrease in the level of contamination of the error
distribution, that (1.96) is constant and less than one, while for 0 < ρ < 1/2, (1.96)
is constant and equal to one. A simple strategy for the evaulation of (1.96) is Monte
Carlo simulation, using the approximation

p(ρ) ≈ 1

N

N∑
k=1

1(Zk>c) (1.97)

for some large N and n, where Z1, . . . , ZN are independent variables with distri-
bution

√
n‖FAβn − F

B
βn
‖∞. The simulation and evaluation of ‖FAβn − F

B
βn
‖∞ are not

straightforward, as we have to evaluate both a supremum taken over an unbounded
set and have to evaluate FBβn , which is not generally known in closed form. To make
our experiments feasible, we consider the scenario where p = 2, ζ is the standard
normal distribution and ξ is the standard exponential distribution. We furthermore
fix α ∈ (0, 1) and consider the two matrices

A =

[
1 0

α
√

1− α2

]
and B =

[ √
1− α2 α

0 1

]
.

Note that

AAt = BBt =

[
1 α
α 1

]
, (1.98)

while A 6= BΛP for all diagonal Λ with Λ2 = I and permutation matrices P .
Thus, we are in the scenario where FAβ 6= FBβ for 0 < β ≤ 1, while FA = FB.
For definiteness, we put α = 0.4 and c = 1.5. The key benefit of this setup is that
the cumulative distribution function FBβ can be calculated in semi-analytical form.

As for the supremum ‖FAβn − F
B
βn
‖∞, the fact that FAβn is an empirical cumulative

distribution function and FBβn is a cumulative distribution function implies that the
supremum can be reduced to a finite maximum. These observations make it feasible
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Figure 1.6.1: Plot of Monte Carlo estimates of p(ρ) for βn = n−ρ with ρ varying
from 0.25 to 0.75 and n = 50000.

to evaluate (1.97), even though this evaluation remains computationally intensive.
Figure 1.6.1 shows the results of the Monte Carlo simulations for evaluating p(ρ).

Figure 1.6.1 indicates that in accordance with Theorem 1.6.5, p(ρ) is the same for
ρ > 1/2. The figure, however, does not indicate that p(ρ) is one for 0 < ρ < 1/2,
as Theorem 1.6.5 states. To explain this, we note the following, also mentioned in
Section 9.5. Based on the results of Section 9.3, ‖FAβ − FBβ ‖∞ is asymptotically
linear in β as β tends to zero. Therefore, we would expect that for large n and some
constant k > 0, we have

P (
√
n‖FAβn − F

B
βn‖∞ > c) ≈ P (

√
n‖FAβn − F

B
βn‖∞ > c) ≈ 1(

√
nkβn>c). (1.99)

Thus, P (
√
n‖FAβn − F

B
βn
‖∞ > c) ≈ 1 when n1/2−ρ =

√
nβn > c/k, corresponding to

n > exp((log c/k)/(1/2−ρ)). For ρ < 1/2 close to 1/2, this latter number is extremely
large, making detection of the limiting value of 1 difficult. We therefore expect that
with larger values of n, our numerical results would have been in accordance with
Theorem 1.6.5. However, computational limitations make this infeasible.

Next, we investigate how our results translate into identifiability for ICA models in
practice. To this end, fix α, β and n. We continue to consider the scenario where
p = 2, ζ is the standard normal distribution and ξ is the standard exponential
distribution. Assume that X1, . . . , Xn are samples from the bivariate distribution
LA(Pe(β)⊗Pe(β)). Thus, A is the true mixing matrix. Further assume that we have
some estimate Â of the mixing matrix. We will use Â to devise a simple test of the
hypothesis that A is the true mixing matrix against the alternative that B is the
true mixing matrix. Recalling (1.98), we find that the distributions LA(ζ ⊗ ζ) and
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LB(ζ⊗ ζ) are the the same, and it will thus be impossible to devise a test with good
properties when ζ is the error distribution. As a corollary, for the error distribution
Pe(β) = βξ + (1− β)ζ, we expect that when β is small, any test will perform badly.
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Figure 1.6.2: Plot of Monte Carlo estimates of Q(n, βn) for βn = n−ρ with ρ varying
from 0.25 to 0.75 and n = 50000.

In order to be able to apply mainstream ICA estimators, we will assume that the
true error distribution is unknown. We can then only expect any estimator Â to
estimate the mixing matrix up to scaling and permutation of columns. To remove
part of the scaling indeterminacy, we assume that Â has rows of unit Euclidean
norm, since this is the case for both the candidates A and B of the mixing matrix.
We then calculate

dA = min ‖A− ÂΛP‖ (1.100)

dB = min ‖B − ÂΛP‖. (1.101)

where the minimum is taken over all 2 × 2 diagonal Λ with |Λii| = 1 and all 2 × 2
permutation matrices P , meaning that the minimum is over at most eight different
values. Here, the norm is the Frobenius norm, meaning the entrywise Euclidean
norm. If dA < dB, we accept the hypothesis that A is the true mixing matrix, while
if dB ≤ dA, we would accept the alternative that B is the true mixing matrix. Define

Q(n, β) = P (dA < dB), (1.102)

the probability of identifying the correct mixing matrix. We are interested in the
behaviour of Q(n, β) for various asymptotic scenarios in n and β. To make the
experiment concrete, we let the estimator Â be the result of the fastICA algorithm
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as implemented in the R package fastICA, applied to the data X1, . . . , Xn and with
normalized rows.

In Figure 1.6.2, we plot estimates of limnQ(n, βn) for the scenario βn = n−ρ with
ρ varying between 0.25 and 0.75. Note that even for ρ > 0.5, the probability of
identifying the correct mixing matrix is strictly above 1/2. At first glance, this might
seem to be at odds with the results of Theorem 1.6.5. However, Theorem 1.6.5 is
not a result about identification in ICA, but rather an indication of the behaviour
of identification in ICA. In particular, Theorem 1.6.5 indicates that for ρ > 1/2,
we should not be able to identify the correct mixing matrix at rate 1/

√
n, but the

theorem does not disallow identification entirely.

Ultimately, however, Figure 1.6.2 does not appear to have much of a relationship
with neither Figure 1.6.1 nor Theorem 1.6.5. We conclude that in order to obtain
information about practical identifiability in ICA from Theorem 1.6.5, a more subtle
approach is necessary.

1.6.4 Concluding comments

Compared to our most general research question, Question 1.6.1, our results on iden-
tification in ICA models, centered around Question 1.6.4, are inconclusive, mainly
because it is unclear how answers to Question 1.6.4 ultimately help to answer Ques-
tion 1.6.1. In particular, finite-sample results such as those required by Question
1.6.1 would be much more informative than the asymptotic results obtained when
answering Question 1.6.4.

Nonetheless, our efforts have aided in setting up a framework of analysis and some
ideas and techniques which may be helpful for future research efforts. It is our hope
that our current work will be a stepping stone towards more precise results on
identifiability in ICA.

1.7 Model selection in nonlinear regression

In this section, we outline our work on degrees of freedom in nonlinear regression.
Details can be found in Chapter 10. We commence by explaining our motivating
problem, an estimation problem for Ornstein-Uhlenbeck processes. After this, we
show how this type of estimation problem can be handled in the simple linear re-
gression case. Finally, we consider the extension of the methods from linear regression
to nonlinear regression. Ultimately, this does not solve our initial problem, but is a
step along the road to a solution.
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1.7.1 An estimation problem for Ornstein-Uhlenbeck processes

We first recall the motivating problem outlined in Section 1.2. We consider an
Ornstein-Uhlenbeck diffusion model on the form

dXt = BXt dt+ dWt, (1.103)

where W is a p-dimensional Brownian motion and B ∈ M(p, p). We are interested
in estimation of the mean reversion speed matrix B. As an application, we think of
the coordinates of X as expression levels of a set of p genes. Applying our notion of
causality for SDEs, the zeroes of B determine the signature of the SDE (1.103).

We hope that the underlying true parameter is sparse, corresponding to a sparse
causal structure. We would therefore like to obtain an estimate of B which is sparse
as well. We refer to this type of problem as a variable selection problem, or more
generally, as a model selection problem. The rationale behind this nomenclature is
that a sparse estimate of B would, through its zeroes, “select” a submodel of the
full model with reduced dimensionality.

Now assume that we observe X at equidistant timepoints tk = ∆k for k = 0, . . . , n.
By a loss function, we mean a function penalizing errors in prediction, see Chapter
3 of [96]. As the conditional mean of Xtk given Xtk−1

is exp(tB)Xtk−1
, a reasonable

loss function R : M(p, p) → [0,∞) for estimation of B based on the observations
Xt0 , . . . , Xtn is

R(B) =
n∑
k=1

‖Xtk − exp(∆B)Xtk−1
‖22, (1.104)

since this loss function compares conditional means with actual values. Note that ∆
in (1.104) does not refer to a jump, as previously in this chapter, but instead refers
to the distance between the timepoints where X is observed.

A simple estimator of B is then given by

B̂ ∈ argmin
B∈M(p,p)

R(B). (1.105)

In Figure 1.7.1, an example of a B matrix as well as an estimate based on (1.105)
for simulated data is shown. We see that while the example B matrix is sparse, the
estimate is not sparse at all, as no entries of the estimate is zero. In order to obtain
sparse estimates, we instead consider L1-penalized estimators of the form

B̂λ ∈ argmin
B∈M(p,p)

R(B) + λ‖B‖1, (1.106)

where ‖ · ‖1 denotes the entrywise L1-norm and λ ≥ 0. This is a nonsmooth re-
gression problem. A numerical algorithm for solving this problem may be obtained
by iteratively considering linear approximations of B 7→ Xtk − exp(∆B)Xtk−1

and
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Figure 1.7.1: Left: An example B matrix for the model (1.103). Right: The estimate
obtained by minization of the loss function (1.104) for simulated data.

applying a coordinate-wise minimization algorithm as outlined by Friedman et al. in
[56]. In Figure 1.7.2, we show examples of estimates obtained from solving (1.106)
for the same simulated data as applied in Figure 1.7.1, for varying levels of λ. We
see that as expected, increasing levels of λ yield ever sparser estimates of B. Thus,
based on (1.106), we obtain a family (B̂λ) of estimates of B with increasing levels
of sparsity.

In order to use this in practice, we need to be able to select a good level of sparsity,
or equivalently, we need to choose λ in some sensible way. In order to obtain a plan
for this, we consider the linear regression case and review a methodology which is
applicable there.

1.7.2 An example based on the LASSO

For the purposes of our example, we consider a linear regression model of the form

Y = Xβ + ε (1.107)

where X ∈M(n, p) and ε follows an n-dimensional Gaussian distribution with mean
zero and variance σIn, where In denotes the identity matrix. The LASSO estimator,
see for example the book [64] by Hastie et al. or the paper [167] by Tibshirani, is
given by

β̂λ ∈ argmin
β∈Rp

‖Y −Xβ‖22 + λ‖β‖1. (1.108)

Similarly to (1.106), β̂λ tends to increase in sparsity as λ increases. In order to see
this, we consider n = 100, p = 5000 and an artificially generated design matrixX and
true sparse parameter β, containing only 50 nonzero values. Efficient algorithms exist
for the calculation of the LASSO estimates for varying values of λ, see for example
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Figure 1.7.2: From left to right: Estimates of B obtained from (1.106) for λ equal to
0.05, 0.20, 0.30 and 0.50.

[56, 45, 64]. In Figure 1.7.3, we show selected coordinates of β̂λ for varying levels of
λ. The figure confirms that as expected, as λ increases, more and more coordinates
of β̂λ become zero.

As in the previous subsection, we now face the problem of making a good choice of
λ. As λ measures the sparsity of our parameter and thus heuristically speaking the
complexity of our model, we may think of the choice of λ as a problem of model
selection. In order to choose λ, we consider a function which measures the quality of
our estimator. One natural such measure of quality is the mean squared prediction
error, given by

MSPEβ(β̂λ) = Eβ‖Y −Xβ̂λ(Y )‖22, (1.109)

where ‖ · ‖2 denotes the Euclidean norm and Eβ denotes expectation given that β

is the true parameter. We write β̂λ(Y ) instead of just β̂λ to emphasize that β̂λ is a
function of Y . The mean squared prediction error can be estimated by the training
error, given by

err(β̂λ) = ‖Y −Xβ̂λ(Y )‖22. (1.110)
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Figure 1.7.3: LASSO estimates for selected coordinates of β̂λ as λ varies. For conve-
nience, the abscissa denotes log λ and not λ. The figure illustrates that as λ increases,
β̂λ becomes sparse.

We may then choose λ as the argument minimum of (1.110). However, it is immediate
that this will always favor λ = 0, as β̂λ(Y ) for λ = 0 in fact is the argument
minimum of ‖Y − Xβ‖22. Therefore, we need another quality measure. To obtain
this, we make the observation that in many cases, we would like our estimator to
be able to correctly predict future responses Y ∗, and not only responses Y already
observed. This leads to the idea of the generalization error, see for example the paper
[44] by Efron, given by

Errβ(β̂λ) = Eβ‖Y ∗ −Xβ̂λ(Y )‖22, (1.111)

where Y ∗ is independent of Y and has the same distribution as Y . The generalization
error measures the expected performance of β̂λ when used for prediction in a new
sample. We expect that if we choose λ as the argument minimum of (1.111), we
obtain a choice of λ which balances good prediction on our current sample, since
Y ∗ and Y after all follow the same distribution, with flexibility of the estimator,
as (1.111) favors not fitting too strongly to our observed response, Y . Of course, as
(1.111) is a mean with respect to β, it is not known. We can therefore not minimize
it over λ, but we may try to minimize estimates of it. A natural estimate to make is

Êrrβ(β̂λ) = ‖Y ∗ −Xβ̂λ(Y )‖22, (1.112)

but this latter is not observable, as we by definition do not observe the hypothetical
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future response Y ∗. However, as shown in [44], it holds that

Errβ(β̂λ) = Eβ‖Y −Xβ̂λ(Y )‖22 + 2
n∑
i=1

Covβ(Yi, Xβ̂λ(Y )i). (1.113)

Heuristically, (1.113) shows how the generalization error and the mean squared pre-
diction error differ: As we fit our estimate harder to our observed data Y , the co-
variance between our reponse and our predicted values in (1.113) increases, and so
the discrepancy between the mean squared prediction error and the generalization
error increases. In the expression (1.113) for the generalization error, the hypothet-
ical future response Y ∗ is no longer present. However, the covariance term does not
lend itself to simple estimation. To circumvent this, we may apply a result of Stein’s
paper [163], which shows that under suitable regularity conditions, it holds that

n∑
i=1

Covβ(Yi, Xβ̂λ(Y )i) = σ2Eβ(divXβ̂λ)(Y ), (1.114)

where div denotes the divergence, that is, the sum of the partial derivatives. It
should be noted that the regularity conditions necessary for (1.114) to hold are
not innocent. In particular, to prove (1.114), it is in [163] explicitly used that the
error variables ε are independent and follow identical Gaussian distributions. When
(1.114) is substituted in (1.113), we obtain

Errβ(β̂λ) = Eβ‖Y −Xβ̂λ(Y )‖22 + 2σ2Eβ(divXβ̂λ)(Y ). (1.115)

This implies that the generalization error may be estimated as

Êrrβ(β̂λ) = err(β̂λ) + 2σ̂2(divXβ̂λ)(Y ), (1.116)

where σ̂ is some estimator of σ. In general, it is not obvious how this estimator of
σ should be chosen. For the purposes of this example, we will somewhat unfairly
pretend that we know the true σ. To complete our program, then, it remains to
calculate the divergence. In [168], it is shown by Tibshirani and Taylor that

Eβ(divXβ̂λ)(Y ) = Eβ rank X(·,A), (1.117)

where X(·,A) denotes the submatrix of the design matrix X corresponding to the

columns A, where A is the stochastic set of nonzero elements of β̂λ. Combining
these results, we come to the conclusion that we for any λ ≥ 0 may obtain an
unbiased estimate of the generalization error corresponding to the LASSO estimate
by putting

Êrrβ(β̂λ) = err(β̂λ) + 2σ2rank X(·,A). (1.118)

In Figure 1.7.4, we plot this estimate of the generalization error for our data for
varying λ ≥ 0. Note that the function plotted has a jagged, discontinuous shape.
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Figure 1.7.4: The estimated generalization error (1.118) for varying levels of λ. The
vertical red line identifies the λ corresponding to the minimal generalization error
estimate.

The points of discontinuity occur when the number of nonzero variables changes,
leading to a change in the rank of X(·,A).

Picking the λ corresponding to the minimum estimated generalization error in this
case leads to choosing λ̂ = 0.0558. This yields a sparse estimate β̂λ̂ with 78 nonzero
entries, which should be compared with the number of nonzero entries in the true β
parameter, 50. What this example shows is that using the notion of generalization
error and rewriting the generalization error in terms of the training error plus a
divergence term, we are able to obtain a method for selecting λ through minimization
of the estimated generalization error. This allows us to select an estimate β̂λ̂ to use
for model selection and provides an alternative to for example the cross-validation
methods as described in [64].

1.7.3 Model selection in nonlinear regression

The next question to be posed is whether the program which helped us select λ in
the linear regression case can be carried through in a more general setting. For the
Ornstein-Uhlenbeck model (1.103) and the mean reversion speed matrix estimator
(1.106), a natural definition of the generalization error is

ErrB(B̂λ) = EB

n∑
k=1

‖X∗tk − exp(∆B̂λ(Xt0,...,tn))X∗tk−1
‖22, (1.119)
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where X∗ is independent of X and has the same distribution as X. This measures
the predictive performance of the estimator B̂λ, based on Xt0 , . . . , Xtn , when applied
to a new, independent set of data. Ideally, we would like to derive expressions for
(1.119) in terms of the training error and a type of bias correction term. We have
not been able to achieve this.

Instead of solving our main problem, we have considered a simpler problem, which
nonetheless covers a more general class of models than the linear regression model.
We chose to consider the nonlinear regression model

Y = ϕ(β) + ε (1.120)

where ϕ : Rp → Rn is continuous and ε follows an n-dimensional Gaussian distribu-
tion with mean zero and variance σIn. This model will take the place of the more
complicated Ornstein-Uhlenbeck model. Our goal is to consider estimators in the
model (1.120) and prove results which pave the way for estimation of the generaliza-
tion error for these estimators. For an estimator β̂ in the nonlinear regression model,
it is straightforward to define the training and generalization error as

errβ(β̂) = ‖Y − ϕ(β̂(Y ))‖22, (1.121)

Errβ(β̂) = Eβ‖Y ∗ − ϕ(β̂(Y ))‖22. (1.122)

The results of [44] also apply to this case, and yield

Errβ(β̂) = errβ(β̂) + 2
n∑
i=1

Covβ(Yi, ϕ(β̂)(Y )i). (1.123)

At this juncture, it is natural to introduce

dfβ(β̂) =
1

σ2

n∑
i=1

Covβ(Yi, ϕ(β̂)(Y )i). (1.124)

We refer to dfβ(β̂) as the degrees of freedom of the estimator β̂. We then obtain the
central identity

Errβ(β̂) = errβ(β̂) + 2σ2dfβ(β̂). (1.125)

Furthermore, if the regularity conditions required by [163] hold, we also obtain

dfβ(β̂) = Eβ(divϕ ◦ β̂)(Y ), (1.126)

which is known as the divergence form of the degrees of freedom, or simply as Stein’s
unbiased risk estimate (SURE). The term “degrees of freedom” is apt, because in
several cases, dfβ(β̂) reduces to something that sensibly can be interpreted as the
“dimension” of the model. The identity (1.125) shows that if we are to estimate the
generalization error, it suffices to calculate a workable expression for the degrees of
freedom.
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We will take an interest in calculating the degrees of freedom for select classes of
estimators in this model. We consider two types of estimators, namely

β̂(y) ∈ argmin
β∈K

‖y − ϕ(β)‖22 (1.127)

for compact K ⊆ Rp, and

β̂λ ∈ argmin
β∈Rp

‖Y − ϕ(β)‖22 + λ‖β‖1, (1.128)

for λ ≥ 0. These two classes are related, in the sense that they are both liable to
provide sparse estimates. Here, (1.127) yields sparse estimates when K is chosen as
for example a centered ball in the L1-norm. Obtaining expressions for the degrees
of freedom opens up the door to estimating the generalization error (1.125) and
choosing optimal λ for estimators of the types (1.127) and (1.128).

Before proceeding to the presentation of our results, we remark that the discussion
of degrees of freedom, both for various types of estimators in the linear regression
model, and for estimators in more complicated models, is not a novel undertaking.
Results related to this can be found for example in [38, 40, 42, 93, 99, 118, 155, 176],
which covers both general considerations on the nature of the degrees of freedom as
well as results in specific cases such as L1-penalized linear regression, support vector
regression, partial least squares and shape-restricted regression.

Our main contribution is the following two theorems related to the degrees of freedom
for (1.127) and (1.128). In the statement of the theorems, we neglect to detail the
regularity conditions required for the theorems to hold. For more precise statements,
see Section 10.3.

Theorem 10.3.1. Let β̂ be as in (1.127). Subject to regularity criteria, it holds that
df(β̂) =

∑n
i=1

∫
Rn ψ(y) dµi(y), where ψ is the density of Y and (µi)i≤n is a family

of nonnegative Radon measures corresponding to the partial derivatives of ϕ ◦ β̂ in
a generalized function sense.

Theorem 10.3.2. Let β̂ be as in (1.128). Subject to regularity criteria, it holds that
df(β̂) = Eβtr A(Y )(·,A)B(Y, β̂)−1

(A,A)A(Y )t(·,A) where B ∈ M(p, p) and A ∈ M(n, p)
are given by

Bij(y, β) =

n∑
k=1

∂ϕk
∂βi

(β)
∂ϕk
∂βj

(β)− (yk − ϕ(β)k)
∂2ϕk
∂βi∂βj

(β), (1.129)

Aki(β) =
∂ϕk
∂βi

(β), (1.130)

and A is the active set of the estimator, A = {i ≤ p | β̂i 6= 0}.

It is essential to point out that while the regularity required for the conclusions of
Theorem 10.3.1 to hold are quite innocent, the same cannot be said for Theorem
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10.3.2. Therefore, at present, Theorem 10.3.2 should be seen as a “moral theorem”
giving an expression for the natural candidate of the degrees of freedom of an L1-
penalized estimator in the nonlinear case.

Before concluding this section, we comment on the content of the two theorems, and
outline further work to be done. Consider first the case of the constrained estima-
tor (1.127). We will argue that heuristically, Theorem 10.3.1 leads to an extended
divergence formula for the degrees of freedom. To see this, we introduce, for any
nonempty compact set K ⊆ Rp, the metric projection onto K as the multifunction

prK(y) = argmin
x∈K

‖x− y‖22. (1.131)

We then obtain that ϕ(β̂(y)) ∈ prϕ(K)(y) for all y ∈ Rn. It is this property which
ensures the existence of the Radon measures occurring in Theorem 10.3.1. These
nonnegative Radon measures in fact corresponds to distributional second-order par-
tial derivatives of the convex mapping f : Rn → R given by

f(x) = ‖x‖2/2− dϕ(K)(x)2/2, (1.132)

where dϕ(K) = infy∈K ‖x−y‖2. Now let µi = µiac+µ
i
s be the Lebesgue decomposition

of µi with respect to the Lebesgue measure on Rn. By Alexandrov’s theorem, see
Theorem 6.4.1 of the book [52] by Evans and Gariepy, it holds for Lebesgue almost
all x ∈ Rn that

lim
y→x

f(y)− f(x)− (y − x)tDf(x)− 1
2(y − x)tD2f(x)(y − x)

‖y − x‖22
= 0, (1.133)

where Df(x) denotes the gradient of f , which exists Lebesgue almost everywhere
by Theorem 6.3.1 and Theorem 3.1.2 of [52], and D2fii(x) is the Lebesgue density
of µiac. As it can be shown that prϕ(K) is single-valued and equal to Df Lebesgue

almost everywhere, this indicates that D2f in fact Lebesgue almost everywhere is
the derivative of prϕ(K), or equivalently, ϕ ◦ β̂. Inserting this into the degrees of
freedom formula of Theorem 10.3.1, we obtain

df(β̂) = E div(ϕ ◦ β̂)(Y ) +

n∑
i=1

∫
Rn
ψ(y) dµis(y). (1.134)

As the first term of (1.134) exactly corresponds to the divergence form of the degrees
of freedom, this yields an extended divergence-type formla for constrained estima-
tors. In the case where the singular measures µis vanish, we reclaim the ordinary
divergence form of the degrees of freedom.

In order to rigorously prove (1.134), it would be necessary to argue that D2f in
fact can be identified with the derivative of prϕ(K). This multifunction is single-
valued almost everywhere. However, it may still be the case that the set where the
multifunction is not single-valued is dense in Rn, rendering the classical notion of
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differentiability invalid for prϕ(K). One plan for rigorously proving (1.134) would be
to apply extended differentiation theories for set-valued functions such as developed
in [141, 16].

As for Theorem 10.3.2, the main challenge is to obtain verifiable sufficient criteria
for the degrees of freedom formula to hold. It is at present unclear how to do this.

Further work in this direction involves degrees of freedom results for the case where
the variance of ε in (1.120) is not diagonal, or when there are more complicated
dependencies in the minimization problem corresponding to the estimator, as in
(1.104).

1.8 Directions for future research

In this section, we outline some possible topics for further research.

Nonexplosion criteria for counting processes. The results outlined in Section
1.3 give sufficient criteria ensuring the construction of nonexplosive counting pro-
cesses with particular stochastic intensities. It is of general interest to expand further
on the situations where these criteria can be applied. In particular, it would be of
interest to apply such criteria or related martingale methods to obtain criteria for
nonexplosion in the case where the candidate intensity exhibits high degrees of non-
monotonicity, as is for example the case for self-exciting processes such as Hawkes
processes.

Monotonicity properties of exponential martingales. As mentioned in Chap-
ter 2, the martingale property for exponential martingales E(M) is generally not
“monotone” in M in any natural sense. This is argued in [94], Example 1.13. Now
assume that N is a homogeneous Poisson process, with the same setup as in Chapter
2. In spite of the results of [94], as the martingale property of E(H ·M) with H = µ−1
heuristically corresponds to non-explosion of counting processes with intensity µ, it
is natural to conjecture the following. Consider nonnegative, predictable and locally
bounded processes µ and µ∗. Does it hold for this particular type of exponential
martingales that µ∗ ≤ µ implies that if E(H ·M) is a martingale, then E(H∗ ·M) is
a martingale as well? Here, H∗ = µ∗ − 1.

The relationship between the signature and distributions of SDEs. Exam-
ple 1.5.17 shows that for carefully chosen examples, two SDEs may have different
signatures, yet have the same distributions and postintervention distributions. This
is in some sense an irregular phenomenon. It would be of interest to understand
when this type of behaviour can occur, and whether it is unlikely to happen in prac-
tice, in the sense of for example having the parameters allowing this to occur being
of Lebesgue measure zero.

Optimization problems for postintervention distributions. The notion of
causality for SDEs outlined in Section 1.5 indicates optimization problems of interest.
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For example, assume given an Ornstein-Uhlenbeck SDE of the type

dXt = B(Xt −A) dt+ σ dWt (1.135)

where the parameters are assumed to have been estimated. If X corresponds to a
gene expression network, we might have an interest in understanding which genes to
knock out, similar to the problems considered in the data example of [113], in order
to optimize some particular feature of the postintervention distribution.

SDEs and DAG-based inference. The results of Subsection 1.5.6 indicate a
general lack of correspondence between the causal structure of an SDE and the
DAG-structure of its stationary distribution. Nonetheless, practical results show
that applying DAG-based causal inference to continuous-time systems assumed to
be in equilibrium can nonetheless yield good results, see for example [112, 120].
It is of interest to understand under which conditions estimation of the DAG for
the stationary distribution can yield good information about the signature of an
underlying SDE for the continuous-time system.

SDEs and more general types of interventions. Definition 7.2.2 yields a notion
of intervention in SDEs where a coordinate of the process is set to a constant value
at all timepoints. It would be of interest to consider extensions of this to the case
where the process is only intervened on at particular times, or where the resulting
intervened process is not set to a constant. Also, it would be of interest to extend
the notion of interventions to cases covering situations such as the one described in
Example 7.4.7.

Identifiability of the mixing matrix in ICA. Our results on identifiability in
ICA, outlined in Section 1.6, are hardly conclusive. It would be of interest to ex-
pand on the results obtained there, or alternatively, consider the same problem from
another perspective. We have obtained theoretical results for one type of scenario
where behaviour can be distinguished according to the asymptotic closeness of the
error distributions to a Gaussian distribution. It would be of interest both to obtain
more theoretically interesting scenarios of this type, as well as to obtain designs for
numerical experiments indicating how practical identifiability in ICA is determined
by the way in which the error distribution is close to but not quite Gaussian.

Degrees of freedom in nonlinear regression with independent Gaussian er-
rors. In Section 1.7, we obtained candidate expressions for the degrees of freedom for
constrained and L1-penalized estimators in the context of nonlinear regression with
independent Gaussian errors. Several extensions of these results would be beneficial.
Regarding constrained estimation and Theorem 10.3.1, rigorous proof is needed that
the density of the absolutely continuous part of µi in fact corresponds to the partial
derivative of ϕ ◦ β̂. Furthermore, it is of interest to obtain sufficient criteria on K
to ensure that the singular part of µi vanishes such that the ordinary divergence
form of the degrees of freedom can be reclaimed. As for L1-penalized estimation and
Theorem 10.3.2, it would be of interest to obtain verifiable sufficient criteria for the
degrees of freedom formula to hold. Also, it would be beneficial to investigate what



Directions for future research 67

results from the literature can be obtained as special cases of the degrees of freedom
formula of Theorem 10.3.2.

Degrees of freedom in extended models. Our initial motivation for considering
degrees of freedom was model selection for discretely observed Ornstein-Uhlenbeck
processes of the form (1.103). The training error estimators in this type of model
could naturally be taken to be of the form

‖Xtk − exp(∆B̂(Xt0 , . . . , Xtn))Xtk−1
‖22, (1.136)

while the generalization error is

E‖X∗tk − exp(∆B̂(Xt0 , . . . , Xtn))X∗tk−1
‖22, (1.137)

with X∗ having the same distribution as X while being independent of X. The
covariance and divergence calculations applied in Chapter 10 to relate the training
and generalization errors do not apply here. It would be of interest to understand the
relationship between the training and generalization errors in this more complicated
model. A first step in this direction could be to consider degrees of freedom in
nonlinear regression models Y = ϕ(β) + ε in the case where, instead of having ε be
multivariate normal with mean zero and variance σIn, we allow a general covariance
matrix Σ.
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Abstract. We give sufficient criteria for the Doléans-Dade exponential
of a stochastic integral with respect to a counting process local martingale
to be a true martingale. The criteria are sufficiently weak to be useful
and verifiable, as illustrated by several non-trivial examples, without
introducing artificial constraints. In particular, they make it possible
to construct nonexplosive point processes with intensities adapted to a
general filtration by a change of measure.

2.1 Introduction

The motivation for this paper is the problem of constructing nonexplosive dynamic
processes via a change of measure on the background probability space. The objective
is to derive verifiable conditions in a context of counting processes for the exponential

69
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martingale to be a true martingale without introducing artificial constraints. As
discussed recently by [60], it is of general interest to formulate a statistical model of
a dynamic counting process in terms of a family of candidate intensities, and it is
then essential to be able to verify that the intensities give well-defined nonexplosive
models. To this end, we need conditions on the candidate intensities. If the intensity
is adapted to the filtration generated by the counting process itself, precise results
are obtainable by transferring the problem to a canonical setup, see [81]. Exercise
4.4.5 in [81] gives the following result. For an intensity process λ such that

λt ≤ a(Nt−) (2.1)

for a sequence a(n) satisfying
∑∞

n=1
1

a(n) = ∞, it holds that there is a probability
space with a nonexplosive counting process N having intensity λ under P . The result
is mentioned in [60] as the Jacobsen condition.

Alternative approaches to ensure the existence of a nonexplosive counting process
with a given intensity are also surveyed in [60]. One of the most general, explicit
conditions mentioned in [60] is (25). This is a growth condition on λat with a > 1.
A consequence of our results is that (25) of [60] also is a sufficient criterion for
nonexplosion when a ≥ 1, and not only when a > 1.

Our starting point is the paper by Lépingle and Mémin, [109], and their general re-
sults, which we adapt to the specific case of Doléans-Dade exponentials of stochastic
integrals with respect to counting process local martingales. We also employ a reduc-
tion to arbitrarily small time intervals, which considerably improves the usefulness
of the criteria obtained. Furthermore, we illustrate how the criteria can be verified.
We consider, in particular, examples of interacting diffusion and jump processes for
which the general framework is suitable.

2.2 Summary of results

In this section, we state and discuss our main results, postponing proofs to Sec-
tion 2.4. Consider a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual
conditions, see [134], Section I.1 for the definition of this as well as other standard
probabilistic concepts. We say that N is a nonexplosive d-dimensional counting
process if N is càdlàg and piecewise constant with jumps of size one, and no coor-
dinates of N jump at the same time. We say that a process X is locally bounded if
there is a sequence of stopping times increasing almost surely to infinity such that
XTn1(Tn>0) is bounded. Let λ be a nonnegative, predictable and locally bounded
d-dimensional process. Then λ is almost surely integrable on compacts with respect
to the Lebesgue measure. We say that N is a counting process with intensity λ if it
holds that N i

t −
∫ t

0 λ
i
s ds is a local martingale for each i. Note in particular that since

the predictable σ-algebra considered is the one generated by the filtration (Ft)t≥0,
the intensity is allowed to depend on other processes than just N .
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We recall the definition of Doléans-Dade exponentials. In the following, all semi-
martingales X are assumed to have càdlàg paths, that is, X(ω) is càdlàg for all
ω ∈ Ω. By Xt−, we denote the limit of Xs as s tends to t from below, and we write
∆Xt = Xt − Xt− for the jump of X at t. Assume given a semimartingale X with
initial value zero. By Theorem II.37 of [134] and Theorem I.4.61 of [83], the stochas-
tic differential equation Zt = 1 +

∫ t
0 Zs− dXs has a càdlàg adapted solution, unique

up to indistinguishability, and the solution is

E(X)t = exp

(
Xt −

1

2
[Xc]t

) ∏
0<s≤t

(1 + ∆Xs) exp(−∆Xs), (2.2)

where Xc is the continuous martingale part of X, see Proposition I.4.27 of [83],
and [Xc] denotes the quadratic variation process. If X is a local martingale, E(X)
is a local martingale as well, and in this case, we refer to E(X) as an exponential
martingale. The case ∆X ≥ −1 is be of particular importance to us. In this case,
E(X) is nonnegative, and we may put R = inf{t ≥ 0 | ∆Xt = −1} and obtain

E(X)t = 1(t<R) exp

Xt −
1

2
[Xc]t +

∑
0<s≤t

log(1 + ∆Xs)−∆Xs

 . (2.3)

Now assume given a d-dimensional nonexplosive counting process N with nonneg-
ative, predictable and locally bounded intensity λ, and assume given another d-
dimensional nonnegative, predictable and locally bounded process µ.

Definition 2.2.1. We say that µ is λ-compatible if it holds for all ω ∈ Ω that
µit(ω) = 0 whenever λit(ω) = 0, and if the process γ defined by γit = µit(λ

i
t)
−1 for

i ≤ d is locally bounded.

In Definition 2.2.1, we use the convention that zero divided by zero is equal to
one. Now assume that µ is λ-compatible. Define M to be the d-dimensional local
martingale given by M i

t = N i
t −

∫ t
0 λ

i
s ds. Put γit = µit(λ

i
t)
−1 and H i

t = γit − 1 for
t ≥ 0. As we have assumed that µ is λ-compatible, γ and H are both well-defined
and locally bounded real-valued processes. We define (H ·M)t =

∑d
i=1

∫ t
0 H

i
s dM i

s,
H ·M is then a one-dimensional process.

The following lemma shows that given λ and µ, E(H ·M) is the relevant exponential
martingale to consider for changing the distribution of N from a counting process
with intensity λ to a counting process with intensity µ.

Lemma 2.2.2. Let T be a stopping time and assume that E(H ·M)T is a uniformly
integrable martingale. With Q being the probability measure with Radon-Nikodym
derivative E(H ·M)T with respect to P , it holds that N is a counting process under
Q with intensity 1[0,T ]µ + 1(T,∞)λ. In particular, if E(H · M) is a martingale, it
holds for any t ≥ 0 and with Qt being the probability measure with Radon-Nikodym
derivative E(H ·M)t with respect to P that N is a counting process under Qt with
intensity 1[0,t]µ+ 1(t,∞)λ.
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In general, we cannot expect E(H · M) to be a uniformly integrable martingale,
only an ordinary martingale, because the distributions of counting processes with
intensities which differ sufficiently in general will be singular. For example, the distri-
butions of two homogeneous Poisson processes with different intensities are singular,
see Proposition 3.24 of [92].

As an aside, note that the measure QT obtained in Lemma 2.2.2 of course always
will be absolutely continuous with respect to P . A natural question to ask is when
QT and P are equivalent. This is the case when the Radon-Nikodym derivative is
almost surely positive. Lemma 2.2.3 gives a condition for this.

Lemma 2.2.3. If the set of zeroes of µ has Lebesgue measure zero, E(H ·M) is
almost surely positive.

Finally, we state our sufficient criteria for E(H ·M) to be a true martingale. Defining
log+ x = max{0, log x} for x ≥ 0, with the convention that the logarithm of zero is
minus infinity, our main results are the following.

Theorem 2.2.4. Assume that λ and µ are nonnegative, predictable and locally
bounded. Assume that µ is λ-compatible. It holds that E(H ·M) is a martingale if
there is an ε > 0 such that whenever 0 ≤ u ≤ t with t− u ≤ ε, one of the following
two conditions are satisfied:

E exp

(
d∑
i=1

∫ t

u
(γis log γis − (γis − 1))λis ds

)
<∞ or (2.4)

E exp

(
d∑
i=1

∫ t

u
λis ds+

∫ t

u
log+ γ

i
s dN i

s

)
<∞. (2.5)

Corollary 2.2.5. Assume that λ = 1 and assume that µ is nonnegative, predictable
and locally bounded. Then µ is λ-compatible. It holds that E(H ·M) is a martingale
if there is an ε > 0 such that whenever 0 ≤ u ≤ t with t−u ≤ ε, one of the following
two conditions are satisfied:

E exp

(
d∑
i=1

∫ t

u
µis log+ µ

i
s ds

)
<∞ or E exp

(
d∑
i=1

∫ t

u
log+ µ

i
s dN i

s

)
<∞.

(2.6)

The immediate use of Theorem 2.2.4 and its corollary is as an existence result
for nonexplosive counting processes with particular intensities, as the change of
measure obtained from the martingale property of E(H ·M) yields the existence of
a nonexplosive counting process distribution with given intensity µ on a bounded
time interval [0, t]. That this is the case may be seen from Lemma 2.2.2, which shows
that under the measure Qt with Radon-Nikodym derivative E(H ·M)t with respect
to P , N is a counting process with intensity 1[0,t]µ+ 1(t,∞)λ.
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Note that it is not necessarily possible to use the family (Qt) to obtain the existence
of a limiting probability measure Q∞ under which N has intensity µ on all of R+.
Such a limiting probability would require extension results such as discussed in the
appendix of [55]. See also the discussion following Example 2.3.3.

As a specific application of our results, let us assume that we are interested in
constructing a statistical model for a nonexplosive counting processes. We assume
given a filtered probability space (Ω,F , (Ft)t≥0, P ) and a d-dimensional counting
process N such that under P , N has intensity λt = 1. Fix a timepoint t and let us
assume that we are interested in considering a statistical model on the time interval
[0, t] based on a family of intensities (µθ)θ∈Θ. If µθ satisfies the criteria of Corollary
2.2.5, then E(Hθ ·M) is a martingale, and so E(Hθ ·M)t has unit mean. Letting Qθ be
the probability measure with Radon-Nikodym derivative E(Hθ ·M)t with respect to
P , it holds that under Qθ, N is a counting process with intensity, and the intensity is
µθ on [0, t]. Furthermore, the family (Qθ)θ∈Θ is dominated by P , and the likelihood
function is known in explicit form. Thus, Corollary 2.2.5 has allowed us to construct
the statistical model and prove that explosion does not occur.

As regards checking the criteria in practice, an important property to note is that
the criteria only need to be checked locally, in the sense that it is only necessary
to find some ε > 0 such that the criteria hold for 0 ≤ u ≤ t with t − u ≤ ε.
This seemingly innocent property makes it possible to apply the criteria in several
interesting situations. In particular, it allows us to extend the criterion (25) of [60]
from a > 1 to a ≥ 1, see Example 2.3.3.

Instead of considering Theorem 2.2.4 as a criterion for nonexplosion, we may also
think of it simply as a sufficient criterion for the Doléans-Dade exponential E(M)
of a particular type of local martingale M to be a true martingale. For M a local
martingale with ∆M ≥ −1 and initial value zero, the question of when E(M) is a
uniformly integrable martingale or a true martingale has been treated many times
in the literature, see for example [123, 95, 94, 24] for results in the case of continuous
M , and [109, 79, 89] for results in the general case.

In particular, a considerable family of criteria related to this problem is discussed in
[89]. We remark that the proof of Theorem 2.2.4 applies Theorem III.1 and Theorem
III.7 of [109]. In the parlance of [89], Theorem III.1 of [109] corresponds to condition
I(0, 1). There exists a slight improvement of condition I(0, 1), namely condition
I(0, 1−), also proven in [89]. Applying this condition instead of condition I(0, 1)
does not lead to significant improvements of our results. We further remark that
Theorem III.7 of [109] does not have an analogue in the hierarchy of [89]. In general,
the criteria on which the results of Theorem 2.2.4 are built are among the strongest
known, and optimality properties of these criteria are known. Therefore, we expect
that no significant improvements of Theorem 2.2.4 are feasible.

The remainder of the paper is organized as follows. Section 2.3 gives some examples
of applications of the results. In Section 2.4, we present the proof of the main results.
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Section 2.5 contains supplementary results for Section 2.3.

2.3 Examples

In this section, we give examples where the conditions in Theorem 2.2.4 and Corol-
lary 2.2.5 may be verified. Our first example shows how Theorem 2.2.4 under certain
circumstances allows for changes of the intensity where the new intensity is an affine
function of the old intensity. Such criteria were also discussed in Theorem 2 of [144],
where the new intensity µ was assumed to be related to the initial intensity λ by
the relationship |µt − λt| ≤ θ

√
λt.

Example 2.3.1. Assume that d is equal to one. Assume that λs ≥ δ for some δ > 0
and that µt ≤ α + βλs. If there is ε > 0 such that for 0 ≤ u ≤ t with t − u ≤ ε,∫ t
u λs ds has an exponential moment of order (1 + (αδ−1 + β) log+(αδ−1 + β)), then
E(H ·M) is a martingale.

Proof of Example 2.3.1. By our assumptions, γt = αλ−1
t +β ≤ αδ−1 +β. Using that

x log x− (x− 1) ≤ 1 + x log x ≤ 1 + x log+ x for any x ≥ 0, we obtain∫ t

u
(γis log γis − (γis − 1))λs ds ≤ (1 + (αδ−1 + β) log+(αδ−1 + β))

∫ t

u
λs ds, (2.7)

so the first criterion of Theorem 2.2.4 yields the result. �

In the remainder of the examples, we assume that λ = 1, such that N is a d-
dimensional standard Poisson process. We consider particular cases where Corollary
2.2.5 may be applied. For Example 2.3.2 below, we first introduce some notation. Let
X be a semimartingale. If the quadratic variation process [X] is locally integrable,
the dual predictable projection Π∗p[X] is well-defined, see Definition 5.21 of [66] and
Section III.5 of [134]. In this case, we put 〈X〉 = Π∗p[X] and refer to 〈X〉 as the
predictable quadratic variation process of X.

Example 2.3.2. Assume that µ is a nonnegative, predictable and locally integrable
process, and assume that there is ε > 0 such that exp(ε〈H ·M〉t) is integrable for
all t ≥ 0. In this case, the first criterion of Corollary 2.2.5 may be applied to show
that E(H ·M) is a martingale.

Proof of Example 2.3.2. Let ε > 0 be given such that exp(ε〈H ·M〉t) is integrable
for all t ≥ 0. Pick K > 0 so large that x log+ x ≤ ε(x − 1)2 holds for x ≥ K,

then E exp(
∑d

i=1

∫ t
u µ

i
s log+ µ

i
s ds) ≤ exp(dtC)E exp(ε

∑d
i=1

∫ t
0 (H i

s)
2 ds), where we

define C = sup−1≤x≤K x log+ x. As N has no common jumps, however, we have

[H ·M ]t =
∑d

i=1

∫ t
0 (H i)2

s dN i
s. Therefore, as H is predictable, we obtain

〈H ·M〉t = Π∗p

d∑
i=1

∫ t

0
(H i)2

s dN i
s =

d∑
i=1

∫ t

0
(H i

s)
2 dΠ∗pN

i
s =

d∑
i=1

∫ t

0
(H i

s)
2 ds. (2.8)
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All in all, we conclude

E exp

(
d∑
i=1

∫ t

u
µis log+ µ

i
s ds

)
≤ exp(dtC)E exp (ε〈H ·M〉t) <∞, (2.9)

and the result follows by Corollary 2.2.5. �

Example 2.3.2 is noteworthy because of the following. In [135], applying the results
of [109], the following Novikov-type criterion is demonstrated: If M is a locally
square integrable local martingale with ∆M ≥ −1 and exp(1

2〈M
c〉∞ + 〈Md〉∞) is

integrable, then E(M) is a uniformly integrable martingale. Here, M c and Md denote
the continuous and purely discontinuous parts of the local martingale, respectively,
see Theorem 7.25 of [66]. Furthermore, [135] argue by example that the constant 1
in front of 〈Md〉∞ cannot in general be exchanged with 1−ε for any ε > 0. Example
2.3.2, however, shows that when proving the martingale property instead of the
uniformly integrable martingale property, for the particular type of local martingale
considered here, the constant 1 may in fact be exchanged with any positive number.
This is a consequence of the particular form of 〈H · M〉 combined with the fact
that we are endeavouring to prove the martingale property and not the uniformly
integrable martingale property.

Example 2.3.3. Assume that µ is a nonnegative, predictable and locally integrable
process satisfying µit ≤ α + β

∑d
j=1N

j
t−. Then both criteria of Corollary 2.2.5 may

be applied to obtain that E(H ·M) is a martingale.

Proof of Example 2.3.3. We begin by considering the use of the first moment condi-
tion of Corollary 2.2.5. As x log+ x is increasing in x, it suffices to consider the case
where α > 1 and β > 0, such that µ is positive. Fix ε > 0, and let 0 ≤ u ≤ t with
t− u ≤ ε. We then obtain, with NS

t =
∑d

j=1N
j
t ,

exp

(
d∑
i=1

∫ t

u
µis log+ µ

i
s ds

)
≤ exp

(
εd(α+ βNS

t ) log(α+ βNS
t )
)
. (2.10)

Now, for k large enough, εd(α + βk) log(α + βk) ≤ 4εdβk log k. Therefore, we find
that exp(

∑d
i=1

∫ t
u µ

i
s logµis ds) is integrable if only exp(4εdβNS

t logNS
t ) is integrable.

Now note that NS
t is Poisson distributed with parameter dt, so by choosing ε with

4εdβ < 1, we obtain the desired integrability using Lemma 2.5.1. The first moment
condition of Corollary 2.2.5 now yields the result.

Consider instead using the second moment condition of Corollary 2.2.5. Again, it
suffices to consider α > 1 and β > 0. We fix ε > 0 and consider 0 ≤ u ≤ t
satisfying |t − u| ≤ ε. We put NS

t =
∑d

j=1N
j
t and define a mapping ϕ : N0 → R

by ϕ(n) = E exp(
∫ t−u

0 log β(n + NS
s ) dNS

s ). Let m ∈ N be such that α ≤ βm, we
then obtain α+ βx ≤ β(m+ x). As NS is a Poisson process of rate d, we find that
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conditionally on NS
u , the processes s 7→ NS

s+u − NS
u and s 7→ NS

s have the same
distribution. Therefore, we obtain by conditioning on NS

u that

E exp

(
d∑
i=1

∫ t

u
logµis dN i

s

)
≤ E exp

 d∑
i=1

∫ t

u
log β

m+

d∑
j=1

N j
s

 dN i
s

 (2.11)

= E exp

(∫ t

u
log β(m+NS

s ) dNS
s

)
= E exp

(∫ t

u
log β(m+NS

u +NS
s −NS

u ) dNS
s

)
= E exp

(∫ t−u

0
log β(m+NS

u +NS
s+u −NS

u ) d(NS
s+u −NS

u )

)
= Eϕ(m+NS

u ).

Now note that

ϕ(n) = E exp

(∫ t−u

0
log β(n+NS

s ) dNS
s

)
= E exp

NS
t−u∑
k=1

log β(n+ k)


=
∞∑
p=0

exp

(
p∑

k=1

log β(n+ k)

)
((t− u)d)p

p!
exp(−(t− u)d)

= exp(−(t− u)d)
∞∑
p=0

βp

(
p∏

k=1

(n+ k)

)
((t− u)d)p

p!

= exp(−(t− u)d)
∞∑
p=0

(β(t− u)d)p
(n+ p)!

n!p!
. (2.12)

Whenever |x| < 1, we have
∑∞

p=0 x
p (n+p)!

n!p! = (1−x)−(n+1) by formula (15.1.8) of [3],
and we therefore conclude, whenever β(t− u)d < 1, that

ϕ(n) =
exp(−(t− u)d)

(1− β(t− u)d)n+1
. (2.13)

Therefore, in this case,

E exp

(
d∑
i=1

∫ t

u
logµis dN i

s

)
≤ Eϕ(m+NS

u ) = E
exp(−(t− u)d)

(1− β(t− u)d)m+NS
u+1

= exp(−td)

∞∑
p=0

(1− β(t− u)d)−(p+m+1) (ud)p

p!

=
1

(1− β(t− u)d)m+1
exp

(
−td+

ud

1− β(t− u)d

)
.

(2.14)

We conclude that the second moment condition of Corollary 2.2.5 yields the result,
using ε such that βεd < 1. �
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The above is the extension of criterion (25) of [60] from a > 1 to a ≥ 1 mentioned
earlier. For the case of intensities predictable with respect to the filtration gener-
ated by N , the existence of nonexplosive counting processes with intensities affinely
bounded by the total number of jumps as in Example 2.3.3 is well known, see Exam-
ple 4.4.5 of [81]. The abstract construction of Example 2.3.3 covers the general case
of intensities predictable with respect to (Ft) and yields a family (Ω,Ft, Qt)t≥0 of
probability spaces such that (Ns)s≤t has intensity µ on [0, t] under Qt, here Qt is the
measure with Radon-Nikodym derivative E(H ·M)t with respect to P . Additional
structure on the probability space is needed to guarantee the existence of the inverse
limit (Ω, σ(∪t≥0Ft), Q) with the restriction of Q to Ft being equal to Qt, such that
(Ns)s≥0 has intensity µ under Q, see [25] and [55].

If the process µ is exactly affine in the sense that µit = α+β
∑d

j=1N
j
t−, the martingale

property of E(H · M) may be obtained by direct calculation. However, this does
not in itself imply that the same result holds when we only have the inequality
µit ≤ α+ β

∑d
j=1N

j
t−. In general, such “monotonicity” properties of the martingale

property for exponential martingales do not hold, see for example [94], Example
1.13.

Next, we consider two examples involving intensities given as solutions to stochastic
differential equations. In both cases, we assume given a Brownian motion relative
to the given filtration (Ft), meaning in the d-dimensional case that (W i)2

t − t is
an (Ft) martingale for i ≤ d and W i

tW
j
t is an (Ft) martingale for i, j ≤ d with

i 6= j. We call such a process an (Ft)-Brownian motion. By Lévy’s characterisation
of Brownian motion for general filtered probability spaces, see Theorem IV.33.1 of
[143], this requirement ensures that the characteristic properties of the Brownian
motion interact well with the filtration (Ft). By M(d, d), we denote the set of d× d
matrices with real entries.

Example 2.3.4. Consider mappings A : Nd0 × Rd+ → Rd, B : Nd0 × Rd+ → M(d, d)
and σ : Nd0 × Rd+ → M(d, d) such that for all η ∈ Nd0, A(η, ·), B(η, ·) and σ(η, ·)
are continuous and bounded and such that σ always is positive definite. With T in
denoting the n’th jump time for N i and Zit = t − T i

N i
t
, let X be a solution to the

d-dimensional stochastic differential equation

dXt = (A(Nt, Zt) +B(Nt, Zt)Xt) dt+ σ(Nt, Zt) dWt (2.15)

with initial value x0 in Rd, where W is an (Ft) Brownian motion independent of
N . Let φ : Rd → Rd+ be Lipschitz and put µt = φ(Xt). Assume that δ > 0 and
cA, cB, cσ > 0 exist such that

sup
t≥0
‖A(η, t)‖2 ≤ cA‖η‖1−δ1 (2.16)

sup
t≥0
‖σ(η, t)‖2 ≤ cσ‖η‖(1−δ)/21 (2.17)

sup
t≥0
‖B(η, t)‖2 ≤ cB, (2.18)
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where ‖ · ‖2 in the first case denotes the Euclidean norm and in the two latter cases
denote the operator norm induced by the Euclidean norm, and ‖ · ‖1 denotes the
L1 norm in Nd0. Then, the first criterion of Corollary 2.2.5 may be applied to obtain
that E(H ·M) is a martingale.

Proof of Example 2.3.4. We need to show that the first criterion of Corollary 2.2.5
is applicable. We may assume without loss of generality that 0 < δ < 1. It suffices
to prove that for any t > 0, E exp(

∑d
i=1

∫ t
0 µ

i
s log+ µ

i
s ds) is finite. Fix t > 0. By

Jensen’s inequality, we find

E exp

(
d∑
i=1

∫ t

0
µis log+ µ

i
s ds

)
≤ 1

t

∫ t

0
E exp

(
t

d∑
i=1

µis log+ µ
i
s

)
ds. (2.19)

We wish to bound the expectation inside the integral by an expression depending
continuously on s. Recall that we have assumed that φ is Lipschitz, so there exists
γ > 0 such that ‖φ(x)‖∞ ≤ γ‖x‖2, yielding φi(x) ≤ γ‖x‖2 for all i ≤ d, and so
E exp(t

∑d
i=1 µ

i
s log+ µ

i
s) ≤ E exp(tdγ‖Xs‖2 log+ γ‖Xs‖2). Next, let 0 < ζ < 1. It

holds for all x ≥ 0 that log+ x ≤ ζ−1xζ . Therefore, defining ρ = tdγ1+ζζ−1, we
conclude

E exp

(
t

d∑
i=1

µis log+ µ
i
s

)
≤ E exp

(
ρ‖Xs‖ζ+1

2

)
. (2.20)

We will calculate this expectation by conditioning on N . Let η denote a counting
process path, and let (τn) denote the event times of η. By the explicit representation
in Lemma 2.5.2 as well as the results on pathwise stochastic integration in [90], it
holds that conditionally on N = η, Xs has the same distribution as Y η

s , where

Y η
s = C−1

s

(
x0 +

∫ s

0
CvA(ηv, v − τηv) dv +

∫ s

0
Cvσ(ηv, v − τηv) dWv

)
, (2.21)

which is a normal distribution with mean ξηs and variance Ση
s , where

ξηs = C−1
s

(
x0 +

∫ s

0
CvA(ηv, v − τηv) dv

)
(2.22)

Ση
s = C−1

s

∫ s

0
(Cvσ(ηv, v − τηv))t(Cvσ(ηv, v − τηv)) ds(C−1)ts, (2.23)

and where Cs = exp(−
∫ s

0 B(ηv, v−τηv) dv). With ‖·‖2 denoting the matrix operator
norm induced by the Euclidean norm, Lemma 2.5.3 yields

E exp(ρ‖Xs‖1+ζ
2 ) =

∫
E
(

exp(ρ‖Xs‖1+ζ
2 )

∣∣∣N = η
)

dN(P )(η) (2.24)

≤ kdE exp(a(ρ, ζ)‖ξNs ‖1+ζ) exp

(
b(ρ, ζ)‖ΣN

s ‖
1+ζ
1−ζ
2

)
,
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with a and b as in the statement of the lemma. Next, we consider bounds for ‖ξηs‖
and ‖Ση

s‖2. Note that ‖Cs‖2 ≤ exp(
∫ s

0 ‖B(ηv, v − τηv)‖2 dv) ≤ exp(scB), where we
have applied standard norm inequalities, see Theorem 10.10 of [68] and Lemma 1.4
of [51], and similarly, ‖C−1

s ‖2 ≤ exp(scB). Therefore, recalling that 0 < δ < 1 so
that x 7→ x1−δ is increasing,

‖ξηs‖2 ≤ exp(scB)
(
‖x0‖2 + scA exp(scB)‖ηs‖1−δ1

)
. (2.25)

Similarly, we obtain

‖Ση
s‖2 ≤ s exp(4scB)c2

σ‖ηs‖1−δ1 . (2.26)

In particular, for appropriate continuous functions aξ, bξ and bΣ from R+ to R,
depending on ζ, we obtain the two bounds

‖ξηs‖
1+ζ
2 ≤ aξ(s) + bξ(s)‖ηs‖

(1−δ)(1+ζ)
1 (2.27)

‖Ση
s‖

1+ζ
1−ζ
2 ≤ bΣ(s)‖ηs‖

(1−δ) 1+ζ
1−ζ

1 . (2.28)

We then conclude

E exp(ρ‖Xs‖1+ζ
2 )

≤ kdE exp

(
a(ρ, ζ)

(
aξ(s) + bξ(s)‖Ns‖(1−δ)(1+ζ)

1

)
+ b(ρ, ζ)bΣ(s)‖Ns‖

(1−δ) 1+ζ
1−ζ

1

)
≤ kd exp (a(ρ, ζ)aξ(s))E exp

(
(a(ρ, ζ)bξ(s) + b(ρ, ζ)bΣ(s))‖Ns‖

(1−δ) 1+ζ
1−ζ

1

)
. (2.29)

The above depends on given constants δ, cA, cB and cσ, as well as the constant ζ
which we may choose arbitrarily in (0, 1). We now choose ζ so small in (0, 1) that
(1 − δ)(1 + ζ)(1 − ζ)−1 ≤ 1. Recalling that for any Poisson distributed variable Z
with intensity λ and any c ∈ R, it holds that E exp(cZ) = exp((exp(c) − 1)λ), we
may conclude

E exp(ρ‖Xs‖1+ζ
2 )

≤ kd exp (a(ρ, ζ)aξ(s))E exp ((a(ρ, ζ)bξ(s) + b(ρ, ζ)bΣ(s))‖Ns‖1)

= kd exp (a(ρ, ζ)aξ(s)) exp((exp(a(ρ, ζ)bξ(s) + b(ρ, ζ)bΣ(s))− 1)ds). (2.30)

All in all, we may now define, for 0 ≤ s ≤ t,

ϕ(s) = kd exp (a(ρ, ζ)aξ(s)) exp((a(ρ, ζ) exp(bξ(s) + b(ρ, ζ)bΣ(s))− 1)ds), (2.31)

and obtain E exp(t
∑d

i=1 µ
i
s log+ µ

i
s) ≤ ϕ(s) for all such s. The functions aξ, bξ and bΣ

depends continuously on s. Therefore, ϕ is a continuous function of s. In particular,
the integral of ϕ over [0, t] is finite. Recalling our first estimates, this leads us to
conclude that for any t ≥ 0, it holds that E exp(

∑d
i=1

∫ t
0 µ

i
s log+ µ

i
s ds) is finite, and

so the first integrability criterion of Corollary 2.2.5 is satisfied. �
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Example 2.3.5. Let (ξn)n≥0, (an)n≥0 and (bn)n≥0 be sequences in R. Assume that
bn 6= 0 for n ≥ 0 and assume that X satisfies the one-dimensional stochastic differ-
ential equation

dXt = aNt + bNtXt dt+ σ dWt + (ξNt −Xt−) dNt, (2.32)

with initial value ξ0 and σ > 0, where W is an (Ft) Brownian motion independent
of N . Put µt = |Xt−|. Assume that there are α, β > 0 such that

|ξn| ≤ α+ βn (2.33)

|an/bn| ≤ α+ βn (2.34)

|bn| ≤ α. (2.35)

Then, the second criterion of Corollary 2.2.5 may be applied to obtain that E(H ·M)
is a martingale.

Proof of Example 2.3.5. We want to show that the second moment condition of
Corollary 2.2.5 is applicable. To this end, we first construct an explicit solution to
the stochastic differential equation defining X. With Tn denoting the n’th event
time for N , define the process Wn by Wn

t = WTn+t −WTn and define Fnt = FTn+t.
By Theorem I.12.1 of [142], Wn is independent of FTn and has the distribution of
a Brownian motion. Again using Theorem I.12.1 of [142] with the stopping time
Tn + s, we have for 0 ≤ s ≤ t that

E(Wn
t |Fns ) = E(WTn+t −WTn |FTn+s)

= E(WTn+t −WTn+s|FTn+s) +WTn+s −WTn

= WTn+s −WTn = Wn
s , (2.36)

and Lévy’s characterisation Theorem for Brownian motion relative to a filtration, see
[143], Theorem IV.33.1, shows that Wn is an (Fnt )-Brownian motion. We may then
use the Itô existence and uniqueness theorem, see Theorem 11.2 of [143], concluding
that on the same probability space that carries the Poisson process N , the Brownian
motion W and in particular the (Fnt )-Brownian motion Wn, there exist unique
processes Xn satisfying dXn

t = an + bnX
n
t dt + σ dWn

t with constant initial values
ξn. Whenever Tn ≤ t < Tn+1, we then have

Xn
t−Tn = ξn +

∫ t−Tn

0
an + bnX

n
s ds+

∫ t−Tn

0
σ dWn

s

= ξn +

∫ t

Tn

an + bnX
n
s−Tn ds+

∫ t

Tn

σ dWs. (2.37)

The process
∑∞

n=0X
n
t−Tn1[Tn,Tn+1)(t) thus satisfies the same stochastic differential

equation as X. By pathwise uniqueness for each Xn, Xt =
∑∞

n=0X
n
t−Tn1[Tn,Tn+1)(t).

The above deliberations yield an explicit representation for the stochastic differential
equation defining the intensity. Next, we check that the second moment condition
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of Corollary 2.2.5 is applicable. With Sk = Tk − Tk−1 denoting the sequence of
interarrival times, we then obtain for the moment condition to be investigated that

E exp

(∫ t

u
log+ |Xs−|dNs

)
≤ E exp

(∫ t

u
log(1 + |Xs−|) dNs

)
(2.38)

= E

Nt∏
k=Nu+1

(1 + |Xk−1
Tk−Tk−1

|) = E

Nt∏
k=Nu+1

(1 + |Xk−1
Sk
|).

In order to obtain the finiteness of this expression, we wish to condition on N . Given
a counting process trajectory η, we refer to the event times of η by (τn), τ0 = 0, and
we let (sn) be the corresponding interarrival times, sn = τn − τn−1. We then have

E

Nt∏
k=Nu+1

(1 + |Xk−1
Sk
|) =

∫
E

 ηt∏
k=ηu+1

(1 + |Xk−1
sk
|)

∣∣∣∣∣∣N = η

 dN(P )(η). (2.39)

Next, we argue that given N , the variables (Xk−1
sk

)k≥1 are mutually independent, in
the sense that it N(P ) almost surely holds that the conditional distribution of the
variables (Xk−1

sk
)k≥1 given N = η is the product measure of each of the marginal

conditional distributions.

Applying Theorem V.10.4 of [143] and the Doob-Dynkin Lemma, see the first lemma
of Section A.IV.3 of [41], there is a measurable mapping Gk−1 : C[0, sk] → R such
that Xk−1

sk
is the transformation under Gk−1 of the first sk coordinates of W k−1.

We apply this result to obtain the conditional independence of Xk−1
sk

given N = η.

As Xk−1
sk

is a transformation of (W k−1)sk , it will suffice to show that the processes

(W k−1)sk are conditionally independent given N = η. To this end, we recall that W
is independent of N , and note that (W k−1)skt = W(τk−1+t)∧τk −Wτk−1

. Therefore,

(W k−1)sk is Fτk measurable. By Theorem I.12.1 of [142], W k−1 is independent of
Fτk−1

. Inductively, it follows that conditionally on N = η, the sequence of processes
(W k−1)sk are mutually independent. Therefore, conditionally on N , the variables
(Xk−1

sk
)k≥1 are mutually independent.

Applying this conditional indepedence, we may now conclude

E

Nt∏
k=Nu+1

(1 + |Xk−1
Sk
|) =

∫
E

 ηt∏
k=ηu+1

(1 + |Xk−1
sk
|)

∣∣∣∣∣∣N = η

 dN(P )(η)

= E

Nt∏
k=Nu+1

E(1 + |Xk−1
Sk
||N). (2.40)

Next, we develop a simple bound for E(|Xk−1
Sk
||N). Consider again a counting process

path η, we then almost surely have E(|Xk−1
Sk
||N = η) = E|Xk−1

sk
|, where Xk−1

sk
is

given by Xk−1
sk

= ξk−1 +
∫ sk

0 ak−1 + bk−1X
k−1
t dt+σW k−1

sk
. By (3.42) of [61], we then
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find that Xk−1
sk

is normally distributed with mean and variance given by

EXk−1
sk

= −ak−1

bk−1
+ exp(skbk−1)

(
ξk−1 +

ak−1

bk−1

)
. (2.41)

V Xk−1
sk

= σ2

∫ sk

0
exp(2bk−1(sk − u)) du. (2.42)

By our assumptions on ak, bk and ξk, we then obtain

E|Xk−1
sk
| ≤ |EXk−1

sk
|+
√
V Xk−1

sk E(Xk−1
sk
− EXk−1

sk
)/

√
V Xk−1

sk (2.43)

≤
∣∣∣∣ak−1

bk−1

∣∣∣∣+ exp(skbk−1)

(
|ξk−1|+

∣∣∣∣ak−1

bk−1

∣∣∣∣)+
√

2/πσ
√
sk exp(2skbk−1)

≤ α+ β(k − 1) + 2 exp(skα)(α+ β(k − 1)) +
√

2/πσ
√
sk exp(2skα).

Therefore, we see that by defining α∗(v) = α+2α exp(vα)+
√

2/πσ
√
v exp(2vα) and

β∗(v) = β+ 2β exp(vα), we have E|Xk−1
sk
| ≤ α∗(sk) +β∗(sk)(k− 1). Next, note that

for k ≤ Nt, it holds that Tk ≤ TNt ≤ t. Therefore, for any k with Nu + 1 ≤ k ≤ Nt,
it holds that Sk ≤ t. As α∗ and β∗ are increasing, we then find

E

Nt∏
k=Nu+1

E(1 + |Xk−1
Sk
||N) ≤ E

Nt∏
k=Nu+1

(1 + α∗(Sk) + β∗(Sk)(k − 1))

≤ E
Nt∏

k=Nu+1

(1 + α∗(t) + β∗(t)(k − 1))

= E exp

(∫ t

u
log(1 + α∗(t) + β∗(t)Ns−) dNs

)
. (2.44)

Proceeding as in the the proof of Example 2.3.3 using the second moment condition
of Corollary 2.2.5, it follows that for ε > 0 small enough and 0 ≤ u ≤ t with t−u ≤ ε,
the above is finite, and so the moment condition is satisfied. �

Examples 2.3.4 and 2.3.5 show how Corollary 2.2.5 may be used to construct counting
processes with intensities not adapted to the filtration induced by N itself. Note that
by Corollary 11.5.3 of [158], W is always independent of N , so the independence
requirements in the above are mentioned only for clarity. Also note that in Example
2.3.4, the required bounds on the coefficients hold independently of the norms on
Nd0, Rd and M(d, d) chosen, since all norms on finite-dimensional vector spaces are
equivalent.

The interpretation of the two examples are as follows. In Example 2.3.4, the intensity
is a transformed diffusion process with mean reversion level, mean reversion speed
and diffusion coefficient which are deterministic between jumps. A simple example
may be obtained as follows. Let X be a solution to the one-dimensional stochastic
differential equation

dXt = β(α exp(−γ(t− TNt))−Xt) dt+ σ dWt, (2.45)
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where α, β, γ ≥ 0 and Tn is the n’th event time of N . Define µt = |Xt|. µ is then
a process of the type given in Example 2.3.4. Except when X is nonpositive, µ
behaves as a diffusion immediately after each jump of N , with a mean reversion
level α, reverting to this level at rate β, and furthermore, the mean reversion level
decreases exponentially with rate γ in t−TNt , which is the time since the last jump
of N .

In Example 2.3.5, the intensity is the absolute value of a linear diffusion process
with constant coefficients between jumps. Furthermore, the intensity is reset to the
level ξn at the n’th jump of N .

Example 2.3.6. Consider mappings φi : R→ [0,∞) and hij : [0,∞)→ R. Define

µit = φi

 d∑
j=1

∫ t−

0
hij(t− s) dN j

s

 . (2.46)

If φi is Borel measurable with φi(x) ≤ |x| and hij is bounded, then E(H ·M) is a
martingale.

Proof of Example 2.3.6. By Lemma 2.5.4, the process
∑d

j=1

∫ t−
0 hij(t − s) dN j

s is

predictable. As φi is Borel measurable, it then follows that µi is predictable. As φi

is nonnegative, µ is nonnegative. And by stopping at event times, we find that µ is
locally bounded. Thus, µ is nonnegative, predictable and locally bounded. Letting
c > 0 be such that ‖hji‖∞ ≤ c for all i, j ≤ d, we obtain

µit ≤

∣∣∣∣∣∣
d∑
j=1

∫ t−

0
hij(t− s) dN j

s

∣∣∣∣∣∣ ≤
d∑
j=1

∫ t−

0
|hij(t− s)| dN j

s ≤ c
d∑
j=1

N j
t−, (2.47)

and the result follows from Example 2.3.3. �

Example 2.3.6 yields a change of measure to a probability measure where the count-
ing process is a multidimensional Hawkes process. In general, many specifications
of φ and h will yield exploding counting processes and there will exist no measure
change yielding the required intensity change.

The above examples all give various types of sufficient criteria for the martingale
property of E(H ·M) using Corollary 2.2.5. As an aside, we may ask whether the
classical necessary and sufficient criterion for nonexplosion for piecewise constant
intensities, see Theorem 2.3.2 of [121], may be replicated as a criterion for the mar-
tingale property of E(H ·M). The following example shows that this is the case.

Example 2.3.7. Let d = 1, let (αn) be a sequence of positive numbers and let
µt = αNt− . Then E(H ·M) is a martingale if and only if

∑∞
n=0

1
αn

is divergent.

Proof of Example 2.3.7. Let Tn be the n’th jump time of N , then (Tn) is a localising
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sequence. We have

EE(µ ·M −M)Tn = E exp

(
Tn −

∫ Tn

0
µs ds+

∫ Tn

0
logµs dNs

)
= E exp

(
−

n∑
k=1

(αk−1 − 1)(Tn − Tn−1) +

n∑
k=1

logαk−1

)

=

n∏
k=1

αk−1(1− (1− αk−1))−1 = 1, (2.48)

so E(M)Tn is a uniformly integrable martingale by Lemma 2.4.2. Therefore, by
Lemma 2.5.5, E(µ·M−M) is a martingale if and only if limnEE(µ·M−M)Tn1(Tn≤t) is
zero for all t ≥ 0. Now let (Ω′,F ′, P ′) be an auxiliary probability space endowed with
a sequence (Un) of independent exponentially distributed variables, where Un has
intensity αn. Let Pn be the measure with Radon-Nikodym derivative E(µ ·M−M)Tn
with respect to P . By Lemma 2.2.2, under Pn, N has intensity µ1[0,Tn] + 1(Tn,∞). In
particular, the distribution of Tn under Pn is then the same as the distribution of∑n

k=1 Uk under P ′, and so

lim
n
EE(M)Tn1(Tn≤t) = lim

n
Pn(Tn ≤ t)

= lim
n
P ′

(
n∑
k=1

Uk ≤ t

)
= P ′

( ∞∑
k=1

Uk ≤ t

)
, (2.49)

since ∩∞n=1(
∑n

k=1 Uk ≤ t) = (
∑∞

k=1 Uk ≤ t). Now, as
∑∞

k=1
1
αk

diverges, Theorem

2.3.2 of [121] shows that
∑∞

k=1 Uk is almost surely infinite, so P ′(
∑∞

k=1 Uk ≤ t) = 0.
The result now follows from Lemma 2.5.5. �

2.4 Proofs of the main results

In this section, we present the proofs of the results stated in Section 2.2. We begin
by recalling some folklore results on supermartingales and exponential martingales.
For completeness, we give proofs of these results as well.

Lemma 2.4.1. Let X be a nonnegative supermartingale. Then X is a uniformly
integrable martingale if and only if EX∞ = EX0, and X is a martingale if and only
if it holds for all t ≥ 0 that EXt = EX0.

Proof. First note that for a nonnegative supermartingale X, 0 ≤ EXt ≤ EX0 for
all t ≥ 0. Therefore, (Xt)t≥0 is bounded in L1, and so X∞, the almost sure limit of
Xt, always exists, see Theorem II.69.1 of [142]. Now, if X is a uniformly integrable
martingale, it is immediate that EX∞ = EX0. Conversely, assume EX∞ = EX0.
Fix t ≥ 0. It then holds that EXt = EX∞, yielding E(Xt − E(X∞|Ft)) = 0.
As Xt ≥ E(X∞|Ft), this implies Xt = E(X∞|Ft), so X is a uniformly integrable
martingale. The martingale case follows by considering the stopped process Xt.
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Recall that if M is a local martingale with ∆M ≥ −1 and initial value zero, E(M)
is a nonnegative local martingale and a supermartingale, EE(M)t ≤ 1 and E(M)∞
always exists as an almost sure limit with EE(M)∞ ≤ 1. Applying Lemma 2.4.1 to
the case of Doléans-Dade exponentials then yields the following useful result.

Lemma 2.4.2. Let M be a local martingale with ∆M ≥ −1 and initial value zero.
E(M) is a uniformly integrable martingale if and only if EE(M)∞ = 1, and E(M)
is a martingale if and only if EE(M)t = 1 for all t ≥ 0.

Now consider given a d-dimensional nonexplosive counting process N with nonneg-
ative, predictable and locally bounded intensity λ as well as another nonnegative,
predictable and locally bounded process µ which is λ-compatible. As in Section 2.2,
M is the d-dimensional local martingale defined by M i

t = N i
t −

∫ t
0 λ

i
s ds. Further-

more, we also use the notation that γi = µit(λ
i
t)
−1 and H i

t = γit − 1. Recall that the
assumption that µ is λ-compatible by convention implies that both γ and H are
locally bounded. Integrals are vector integrals in the sense that H ·M denotes the
one-dimensional process defined by H ·M =

∑d
i=1H

i ·M i.

We first prove Lemma 2.2.2, the result stated in Section 2.2 as the reason for taking
interest in the martingale property of E(H ·M) when considering changing the in-
tensity of a counting process. Recall that Π∗p denotes the dual predictable projection,
see Definition 5.21 of [66].

Lemma 2.4.3. Let M be a local martingale with ∆M ≥ −1 and let T be a stop-
ping time. Assume that E(M)T is a uniformly integrable martingale. Let Q be the
probability measure having Radon-Nikodym derivative E(M)T with respect to P . If
L is a local martingale under P such that [L,MT ] is locally integrable under P , then
L − 〈L,MT 〉 is a local martingale under Q, where the angle bracket is calculated
under P .

Proof. First note that as Q has a density with respect to P , Q is absolutely con-
tinuous with respect to P . With Z being the likelihood process for Q with respect
to P , meaning that Zt = E( dQ

dP |Ft), we have Zt = E(E(M)T∞|Ft) = E(M)Tt up to
indistinguishability. In particular, Z0 = 1 almost surely. By an examination of the
proof of the predictable Girsanov theorem, Theorem III.41 of [134], we therefore
find that the theorem can be applied in spite of our not having assumed that F0

is a sub-σ-algebra of the P -completion of {∅,Ω}, as the theorem in [134] otherwise
requires.

Now consider a process L which is a local martingale under P such that [L,MT ] is
locally integrable under P . Note that [L, E(MT )] = [L, E(MT )− ·MT ] = E(M)T− ·
[L,MT ]. As E(M)− is left-continuous, it is locally bounded. Therefore, as [L,MT ]
is locally integrable, the process E(M)T− · [L,MT ] is locally integrable as well. Thus,
[L, E(MT )] is locally integrable under P , so the predictable covariation of this process
is well-defined under P . Then, Theorem III.41 of [134] applies and yields that the
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process given by Lu−
∫ u

0 E(MT )−1
s− d〈E(MT ), L〉s is a Q local martingale, where the

angle bracket is calculated under P . Noting that

Lu −
∫ u

0

1

E(MT )s−
d〈E(MT ), L〉s = Lu −

∫ u

0

1

E(MT )s−
d〈E(MT )− ·M t, L〉s

= Lu − 〈L,MT 〉u, (2.50)

the result follows.

Proof of Lemma 2.2.2. Fix a stopping time T . By definition, Q has Radon-Nikodym
derivative E(H ·M)T with respect to P . We wish to apply Lemma 2.4.3 in order
to prove the result. We first check that [M i, (H ·M)T ] is locally integrable under
P . Note that [M i,M j ]t =

∑
0<s≤t ∆M i

s∆M
j
s =

∑
0<s≤t ∆N i

s∆N
j
s = [N i, N j ], since

M i has finite variation, in particular [M i] = N i. As the coordinates of N have no
common jumps, we have [M i, (H ·M)T ] = H i1[0,T ] · [N i]. Because we have assumed
that H is locally bounded, this is locally integrable. From Lemma 2.4.3, we then
conclude that M i − 〈M i, (H · M)T 〉 is a local martingale under Q. Next, under
P , (Π∗pN

i)t =
∫ t

0 λ
i
s ds, and H and 1[0,T ] are predictable. Therefore, we obtain the

equalities 〈M i, (H ·M)T 〉s = Π∗p(H
i1[0,T ] · [N i])s =

∫ s
0 H

i
u1(u≤T )λ

i
u du, which allows

us to conclude that

M i
s − 〈M i, (H ·M)T 〉s = N i

s −
∫ s

0
λis ds−

∫ s

0
H i
u1(u≤T )λ

i
u du

= N i
t −

∫ s

0
µiu1[0,T ](u) + λiu1(T,∞)(u) du. (2.51)

This proves that under Q, N has intensity 1[0,T ]µ+ 1(T,∞)λ. The results for the case
where E(H ·M) is a martingale then follows by considering stopping times which
are constant. �

Next, we prove Lemma 2.2.3, which yields a sufficient criterion for the probability
measure Q constructed using an exponential martingale to be equivalent to our
starting probability measure P .

Lemma 2.4.4. Let N have intensity λ. If X is a process which is nonnegative,
predictable and locally bounded, and it holds almost surely that pathwisely, the set of
zeroes of X has Lebesgue measure zero, then it almost surely holds that the zeroes of
X are disjoint from the jump times of N i for all i.

Proof. As X is predictable, the set of zeroes of X is a predictable set. Thus, the in-
tegral process

∫ t
0 1(Xs=0) dM i

s is a local martingale. Let (Tn) be a localising sequence

such that
∫ t

0 1(Xs=0)1(t≤Tn) dN i
s is bounded and such that

∫ t
0 1(Xs=0)1(t≤Tn) dM i

s is

a true martingale. Then E
∫ t

0 1(Xs=0)1(t≤Tn) dM i
s = 0, and so by our assumptions,

E
∫ t

0 1(Xs=0)1(t≤Tn) dN i
s = 0 as well, leading us to conclude that

∫∞
0 1(Xs=0) dN i

s is
almost surely zero. This implies that almost surely, the set of zeroes of X is disjoint
from the jump times of N i. As the coordinate i was arbitrary, the result follows.
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Proof of Lemma 2.2.3. Note that ∆(H ·M)t =
∑d

i=1H
i
t∆N

i
t . By Lemma 2.4.4, the

set of zeroes of µi is disjoint from the jump times of N i. Therefore, the set of zeroes
of γi is disjoint from the jump times of N i as well, and so the set where H i is −1 is
disjoint from the jump times of N i. We conclude that almost surely, H ·M has no
jumps of size −1. Theorem I.4.61 of [83] then shows that E(H ·M) is almost surely
positive. �

Finally, we prove Theorem 2.2.4 and its corollary. We first state the two main theo-
rems of [109] which we will apply to integrals of compensated counting processes in
order to obtain our results. The two main theorems from that article are Theorem
III.1 and Theorem III.7, given below.

Theorem 2.4.5. Let M be a local martingale with initial value zero and jumps
satisfying ∆M ≥ −1. Let R = inf{t ≥ 0 | ∆Mt = −1}. Define B by putting
Bt = 1

2 [M c]t∧R+
∑

0<s≤t∧R(1+∆Ms) log(1+∆Ms)−∆Ms. If B is locally integrable
and exp(Π∗pB∞) is integrable, then E(M) is a uniformly integrable martingale.

Theorem 2.4.6. Let M be a local martingale with initial value zero and ∆M > −1.
Define A by putting At = 1

2 [M c]t +
∑

0<s≤t log(1 + ∆Ms) − ∆Ms
1+∆Ms

. If exp(A∞) is
integrable, then E(M) is a uniformly integrable martingale.

The following two lemmas are ingredients for the proof of Theorem 2.2.4. The first
lemma allows us to restrict our attention to small deterministic time intervals when
proving the martingale property of exponential martingales. This technique is well-
known, see for example Corollary 3.5.14 of [91]. The second lemma decomposes
an exponential martingale into the product of two exponential martingales, corre-
sponding to successive changes of intensity from λ to µ and µ to µ + ν. This will,
colloquially speaking, allow us to consider the large and small parts of µ separately
when proving the martingale property.

Lemma 2.4.7. Let M be a local martingale with ∆M ≥ −1, and let ε > 0. If
E(M t −Mu) is a martingale whenever 0 ≤ u ≤ t with t − u ≤ ε, then E(M) is a
martingale.

Proof. Let ε > 0 be given such that E(M t −Mu) is a martingale for 0 ≤ u ≤ t with
t − u ≤ ε. By Lemma 2.4.2, to show that E(M) is a martingale, it suffices to show
EE(M)t = 1 for all t ≥ 0. Fix t ≥ 0 and note that [M t+ε−M t,M t] = 0, so Theorem
II.38 of [134] yields

E(M t+ε) = E(M t)E(M t+ε −M t). (2.52)

Therefore, we obtain

EE(M)t+ε = EE(M t+ε)t+ε = EE(M)tE(E(M t+ε −M t)t+ε|Ft)
= EE(M)tE(M t+ε −M t)t = EE(M)t. (2.53)

As EE(M)0 = 1, this implies EE(M)t = 1 for all t ≥ 0, and so we conclude that
E(M) is a martingale.
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Lemma 2.4.8. Let ν be nonnegative, predictable and locally bounded. Assume that
µ is λ-compatible and that µ + ν is µ-compatible. Then µ + ν is also λ-compatible.
Define three processes (Hµ+ν

λ )it = (µit + νit)(λ
i
t)
−1 − 1, (Hµ

λ )it = µit(λ
i
t)
−1 − 1 and

(Hµ+ν
µ )it = (µit + νit)(µ

i
t)
−1 − 1. Define d-dimensional processes Mλ and Mµ by

puting (Mλ)it = N i
t −

∫ t
0 λ

i
s ds and putting (Mµ)i = N i

t −
∫ t

0 µ
i
s ds. Then, it holds

that E(Hµ+ν
λ ·Mλ) = E(Hµ

λ ·M
λ)E(Hµ+ν

µ ·Mµ).

Proof. That µ + ν is λ-compatible follows as µ + ν is µ-compatible and µ is λ-
compatible. Furthermore, Mλ and Mµ are processes of finite variation, so we find

[Hµ
λ ·M

λ, Hµ+ν
µ ·Mµ]t =

∑
0<s≤t

∆(Hµ
λ ·M

λ)s∆(Hµ+ν
µ ·Mµ)s

=
d∑
i=1

∑
0<s≤t

(Hµ
λ )is(H

µ+ν
µ )is∆N

i
s

=
d∑
i=1

∫ t

0
(Hµ

λ )is(H
µ+ν
µ )is dN i

s. (2.54)

Therefore, E(Hµ
λ ·M

λ)E(Hµ+ν
µ ·Mµ) = E(Hµ

λ ·M
λ +Hµ+ν

µ ·Mµ +Hµ
λH

µ+ν
µ ·N) by

Theorem II.38 of [134]. We find

(Hµ
λ ·M

λ +Hµ+ν
µ ·Mµ +Hµ

λH
µ+ν
µ ·N)t (2.55)

=
d∑
i=1

∫ t

0
(Hµ

λ )is + (Hµ+ν
µ )is + (Hµ

λ )is(H
µ+ν
µ )is dN i

s −
∫ t

0
(Hµ

λ )isλ
i
s + (Hµ+ν

µ )isµ
i
s ds.

Now noting that

(Hµ
λ )it + (Hµ+ν

µ )it + (Hµ
λ )it(H

µ+ν
µ )it

=

(
µit
λit
− 1

)
+

(
µit + νit
µit

− 1

)
+

(
µit
λit
− 1

)(
µit + νit
µit

− 1

)
=
µit
λit

µit + νit
µit

− 1 =
µit + νit
λit

− 1 = (Hµ+ν
λ )it (2.56)

as well as (Hµ
λ )itλ

i
t + (Hµ+ν

µ )itµ
i
t = µit − λit + µit + νit − µit = µit + νit − λit, we may

conclude

Hµ
λ ·M

λ +Hµ+ν
µ ·Mµ +Hµ

λH
µ+ν
µ ·N

=
d∑
i=1

∫ t

0
(Hµ+ν

λ )is dN i
s −

d∑
i=1

∫ t

0
(Hµ+ν

λ )isλ
i
s ds = Hµ+ν

λ ·Mλ, (2.57)

yielding the desired result.
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Proof of Theorem 2.2.4. By Lemma 2.4.7, it suffices to show the martingale property
of E((H ·M)t− (H ·M)u) when 0 ≤ u ≤ t with t− u ≤ ε. Let such a pair of u and t
be given and let L = (H ·M)t − (H ·M)u. With R and B as in Theorem 2.4.5, we
have for r ≥ 0 that

Br =
d∑
i=1

∫ r

0
1[0,R](s)1(u,t](s)((1 +H i

s) log(1 +H i
s)−H i

s) dN i
s. (2.58)

From this, we obtain that B is locally integrable, and as 1[0,R] is a predictable
process, we have

(Π∗pB)∞ =

d∑
i=1

∫ t

u
1[0,R](s)(γ

i
s log γis − (γis − 1))λis ds

≤
d∑
i=1

∫ t

u
(γis log γis − (γis − 1))λis ds. (2.59)

Therefore, if the first integrability criterion is satisfied, E(L) is a uniformly integrable
martingale by Theorem 2.4.5, in particular a martingale. This proves the first claim.

Next, we consider the case where the second integrability criterion is satisfied. We
will use Lemma 2.4.8 to prove that E((H ·M)t − (H ·M)u) is a martingale in this
case. To this end, we define predictable d-dimensional processes µ− and µ+ by

(µ−)is = µis1(µis≤λis) + λis1(µis>λ
i
s)

(2.60)

(µ+)is = (µis − λis)1(µis>λ
i
s)
. (2.61)

We then have µ = µ+ + µ−. Also define two processes (γ∗)i = (µ−)i(λi)−1 and
(γ∗∗)i = µi((µ−)i)−1, and H∗ = γ∗ − 1 and H∗∗ = γ∗∗ − 1. Now, as λ and µ
are predictable, µ− and µ+ are predictable as well. Furthermore, µ− and µ+ are
both nonnegative and locally bounded. By inspection, µ− is λ-compatible and µ
is µ−-compatible. Now define (M−)it = N i

t −
∫ t

0 (1(u,t](s)(H
∗)is + 1)λis ds. Define

L∗ = (H∗ · M)t − (H∗ · M)u and L∗∗ = (H∗∗ · M−)t − (H∗∗ · M−)u. Note that
L∗ = H∗1(u,t] ·M , L∗∗ = H∗∗1(u,t] ·M− and L = H1(u,t] ·M . Invoking Lemma 2.4.8,
we obtain E(L) = E(L∗)E(L∗∗). We will apply Theorem 2.4.5 to the local martingale
L∗. By the same calculations as earlier, this can be done if we can prove that

E exp

(
d∑
i=1

∫ t

u
((γ∗)is log(γ∗)is − ((γ∗)is − 1))λis ds

)
<∞. (2.62)

However, we always have 0 ≤ (γ∗)i ≤ 1. As x log x ≤ 0 when 0 ≤ x ≤ 1, we obtain
(γ∗)is log(γ∗)is − (γ∗)is ≤ 0, and so it suffices to note that

E exp

(
d∑
i=1

∫ t

u
λis ds

)
≤ E exp

(
d∑
i=1

∫ t

u
λis ds+

∫ t

u
log+ γ

i
s dN i

s

)
<∞, (2.63)
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so Theorem 2.4.5 shows that E(L∗) is a uniformly integrable martingale. Let Q be the
measure with Radon-Nikodym derivative E(L∗)∞ with respect to P . We then have
EPE(L)∞ = EQE(L∗∗)∞. To show that E(L) is a uniformly integrable martingale,
it suffices to show that this is equal to one. To do so, we will apply Theorem 2.4.6
to show that E(L∗∗) is a uniformly integrable martingale under Q. To this end, first
note that by Lemma 2.2.2, N i has intensity (1(u,t](H

∗)i + 1)λi under Q. Therefore,
M− is a local martingale under Q, and so L∗∗ is a local martingale under Q as well.
Next, (H∗∗)it = (γ∗∗)it − 1 = 1(µit≤λit) + γit1(µit>λ

i
t)
− 1 ≥ 0, so ∆L∗∗ ≥ 0 > −1, and

therefore Theorem 2.4.6 is applicable. Now, with A as in Theorem 2.4.6, we have

A∞ =
1

2
[(L∗∗)c]∞ +

∑
0<s

log(1 + ∆L∗∗s )− ∆L∗∗s
1 + ∆L∗∗s

≤
d∑
i=1

∫ t

u
log

µis
(µ−)is

dN i
s =

d∑
i=1

∫ t

u
log+ γ

i
s dN i

s. (2.64)

Also, since −1 ≤ H∗ ≤ 0, we find that −1 ≤ ∆L∗ ≤ 0 and thus, whenever L∗ has
no jumps of size −1, we obtain

E(L∗)∞ = exp

(
L∗∞ +

∑
0<s

log(1 + ∆L∗s)−∆L∗s

)

≤ exp

(
L∗∞ −

∑
0<s

∆L∗s

)
= exp

(
−

d∑
i=1

∫ t

u
(H∗)isλ

i
s ds

)

≤ exp

(
d∑
i=1

∫ t

u
λis ds

)
, (2.65)

which leads to

EQ exp(A∞) = EE(L∗)∞ exp(A∞) ≤ E exp

(
d∑
i=1

∫ t

u
λis ds+

∫ t

u
log+ γ

i
s dN i

s

)
,

(2.66)

and this is finite by assumption. Theorem 2.4.6 then shows that L∗∗ is a uniformly
integrable martingale under Q, so EQE(L∗∗)∞ = 1. Therefore, EPE(L)∞ = 1. Thus,
E(L) is a uniformly integrable martingale, in particular a martingale. This completes
the proof. �

Proof of Corollary 2.2.5. First note that

x log x− (x− 1) ≤ 1 + x log x ≤ 1 + x log+ x (2.67)

for x ≥ 0. Therefore, as λ = 1, the first moment condition of Theorem 2.2.4 re-
duces to the first moment condition in the statement of the corollary. Furthermore,
E exp(

∑d
i=1

∫ t
u λ

i
s ds+

∫ t
u log+ γ

i
s dN i

s) = ed(t−u)E exp(
∑d

i=1

∫ t
u log+ γ

i
s dN i

s) as λ = 1
and the result for the second moment condition of the corollary follows. This com-
pletes the proof. �
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2.5 Supplementary results

Lemma 2.5.1. Let Z be Poisson distributed with parameter µ. Then exp(εZ logZ)
is integrable whenever 0 ≤ ε < 1.

Proof. This follows by an application of Stirling’s formula, see (6.11.2) of [182], and
comparison with a geometric series.

Lemma 2.5.2. Consider mappings A : Nd0 × Rd+ → Rd, B : Nd0 × Rd+ → M(d, d)
and σ : Nd0 × Rd+ → M(d, d) such that A(η, ·), B(η, ·) and σ(η, ·) are bounded and
continuous for η ∈ Nd0. Let W be a d-dimensional (Ft) Brownian motion. Let T in be
the n’th event time for N i and let Zit = t− T i

N i
t
. The stochatic differential equation

dXt = (A(Nt, Zt) +B(Nt, Zt)Xt) dt+ σ(Nt, Zt) dWt (2.68)

is exact, in the sense that for any initial value, it has a pathwise unique solution.
Defining Ct = exp(−

∫ t
0 B(Ns, Zs) ds), the solution is

Xt = C−1
t

(
X0 +

∫ t

0
CsA(Ns, Zs) ds+

∫ t

0
Csσ(Ns, Zs) dWs

)
. (2.69)

Proof. Let Ãs = A(Ns, Zs), and define B̃ and σ̃ analogously. Note that as N and Z
are adapted, Ã is adapted as well, since A(η, ·) is continuous and therefore Borel mea-
surable for all η ∈ Nd0. As the process also is right-continuous and locally bounded,
all integrals are well-defined, and similarly for B̃ and σ̃. Let X0 be some initial
value. Assume that X is a solution to the stochastic differential equation. Note that
each entry of Ct is differentiable as a function of t, and d

dtC
ij
t = (−B̃tCt)ij . The

integration-by-parts formula yields

(CtXt)i = Xi
0 +

d∑
j=1

∫ t

0
Cijs dXj

s −
∫ t

0
Xj
s (B̃sCs)

ij ds. (2.70)

This implies (CtXt)i = Xi
0 +

∑d
j=1

∫ t
0 C

ij
s Ã

j
s ds+

∫ t
0 C

ij
s
∑d

k=1 σ̃
jk
s dW k

s , since X is a
solution, leading to

Xt = C−1
t

(
X0 +

∫ t

0
CsA(Ns, Zs) ds+

∫ t

0
Csσ(Ns, Zs) dWs

)
. (2.71)

This proves pathwise uniqueness. Applying the integration-by-parts formula to the
above shows that the proposed solution in fact is a solution, yielding existence.

Lemma 2.5.3. Let X be a d-dimensional normally distributed variable with mean
ξ and positive definite variance Σ. Let c > 0 and 0 < ε < 1. Then exp(c‖X‖1+ε

2 ) is
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integrable. Furthermore, defining a(c, ε) = 21+εc and b(c, ε) = 16(1+ε)/(1−ε)c2/(1−ε),
it holds that

E exp(c‖X‖1+ε
2 ) ≤ kd exp(a(c, ε)‖ξ‖1+ε) exp

(
b(c, ε)‖Σ‖

1+ε
1−ε
2

)
, (2.72)

where kd = Admd−1(
√

2
√
πd−1)−1, Ad is the area of the unit sphere in d dimensions

and md is the d’th absolute moment of the standard normal distribution.

Proof. By [104], p. 181, Σ has a unique symmetric positive definite square root
Σ1/2 such that Σ = (Σ1/2)2. Furthermore, with Y = Σ−1/2(X − ξ), it holds that

X = ξ+Σ
1
2Y , where Y is d-dimensionally standard normally distributed. With ‖·‖2

denoting the operator norm induced by the Euclidean norm, we get

E exp(c‖X‖1+ε
2 ) = E exp(c‖ξ + Σ

1
2Y ‖1+ε

2 ) ≤ E exp(c(‖ξ‖2 + ‖Σ
1
2Y ‖2)1+ε)

≤ E exp(c21+ε(‖ξ‖1+ε
2 + ‖Σ

1
2Y ‖1+ε

2 ))

≤ exp(c21+ε‖ξ‖1+ε)E exp
(
c21+ε‖Σ‖(1+ε)/2

2 ‖Y ‖1+ε
2

)
. (2.73)

Switching to polar coordinates (see [150], page 149) we obtain, with Ad denoting the

area of the unit sphere in d dimensions and C = c21+ε‖Σ‖(1+ε)/2
2 ,

E exp
(
c21+ε‖Σ‖(1+ε)/2

2 ‖Y ‖1+ε
2

)
=

∫
Rd

exp
(
C‖x‖1+ε

2

) 1√
(2π)d

exp

(
−1

2
‖x‖22

)
dx

=
Ad√

(2π)d−1

∫ ∞
0

exp
(
Cr1+ε

) 1√
2π

exp

(
−1

2
r2

)
rd−1 dr. (2.74)

Using a change of variables, we obtain the bound∫ ∞
0

exp
(
Cr1+ε

) 1√
2π

exp

(
−1

2
r2

)
rd−1 dr

≤
∫ ∞

0
rd−1 1√

2π
exp

(
−1

4
r2

)
dr sup

s≥0
exp

(
Cs1+ε − 1

4
s2

)
= 2d/2

∫ ∞
0

rd−1 1√
2π

exp

(
−1

2
r2

)
dr sup

s≥0
exp

(
Cs1+ε − 1

4
s2

)
. (2.75)

With md denoting the d’th absolute moment of the standard normal distribution,
we have

∫∞
0 rd−1 1√

2π
exp

(
−1

2r
2
)

dr = 1
2md−1. Also, defining φ(r) = Cr1+ε− 1

4r
2 for

r ≥ 0, φ has a global maximum at r∗ = (2C(1 + ε))1/(1−ε) with φ(r∗) ≤ 4
1+ε
1−εC

2
1−ε .

As the exponential mapping is increasing, this allows us to conclude∫ ∞
0

exp
(
Cr1+ε

) 1√
2π

exp

(
−1

2
r2

)
rd−1 dr ≤ 2d/2−1md−1 exp

(
4

1+ε
1−εC

2
1−ε
)
. (2.76)
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Recalling our definition of C, we have 4
1+ε
1−εC

2
1−ε = 16

1+ε
1−ε c

2
1−ε ‖Σ‖

1+ε
1−ε
2 . Therefore,

defining a(c, ε) = 21+εc and b(c, ε) = 16(1+ε)/(1−ε)c2/(1−ε), we finally conclude

E exp(c‖X‖1+ε
2 ) ≤ Admd−1√

2
√
πd−1

exp(a(c, ε)‖ξ‖1+ε) exp

(
b(c, ε)‖Σ‖

1+ε
1−ε
2

)
, (2.77)

which proves the lemma.

Lemma 2.5.4. Let N be a point process, let h : R+ → R be Borel measurable and
define µt =

∫ t−
0 h(t− s) dNs. Then µ is a predictable process.

Proof. As h is Borel measurable, there exists a sequence of simple Borel measurable
functions hn : R+ → R converging pointwise to h. As N pathwisely only jumps
finitely many times on compact intervals, we have µt = limn→∞ µ

n
t , where the limit is

pointwise and µnt =
∫ t−

0 hn(t−s) dNs. Thus, it suffices to show that µn is predictable.
Assume for definiteness that hn =

∑mn
k=1 cnk1Ank , where cnk ∈ R and Ank is a Borel

set in R+. With Tn denoting the n’th event time for N , we have

µnt =
∞∑
n=1

hn(t− Tn)1(Tn<t) =
∞∑
n=1

mn∑
k=1

cnk1(t−Tn∈Ank)1(Tn<t) (2.78)

From this, we conclude that in order to show the result, it suffices to show that
for any stopping time T and any Borel set in R+, the process XA

t = 1(t−Tn∈A) is
predictable. Let T be a stopping time and let D be the class of Borel sets in R+

such that this holds. Then D is a Dynkin class. Furthermore, for a ≥ 0, we have
XA
t = 1(t−Tn∈(a,∞)) = 1(Tn+a<t). This shows that XA is left-continuous and adapted,

and so predictable. By Dynkin’s lemma, XA is predictable for all Borel sets A in
R+. This proves the lemma.

Lemma 2.5.5. Let (Tn) be a localising sequence and assume that E(M)Tn is a
martingale. E(M) is a martingale if and only if limnEE(M)Tn1(Tn≤t) = 0 for each
t ≥ 0.

Proof. By our assumptions on the martingale property of E(M)Tn , it holds that
EE(M)Tn1(Tn≤t) = 1 − EE(M)t1(Tn>t). By the dominated convergence theorem,
limnEE(M)t1(Tn>t) = EE(M)t. Thus, limnEE(M)Tn1(Tn≤t) = 1− EE(M)t, and so
Lemma 2.4.2 yields the result.
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Abstract. We consider local martingales M with initial value zero and
jumps larger than a for some a larger than or equal to −1, and prove
Novikov-type criteria for the exponential local martingale to be a uni-
formly integrable martingale. We obtain criteria using both the quadratic
variation and the predictable quadratic variation. We prove optimality
of the coefficients in the criteria. As a corollary, we obtain a verbatim ex-
tension of the classical Novikov criterion for continuous local martingales
to the case of local martingales with initial value zero and nonnegative
jumps.

3.1 Introduction

The motivation of this paper is the question of when an exponential local martingale
is a uniformly integrable martingale. Before introducing this problem, we fix our
notation and recall some results from stochastic analysis.
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Assume given a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual con-
ditions, see [134] for the definition of this and other probabilistic concepts such as
being a local martingale, locally integrable, locally square-integrable, and for the
quadratic variation and quadratic covariation et cetera. For any local martingale
M , we say that M has initial value zero if M0 = 0. For any local martingale M
with initial value zero, we denote by [M ] the quadratic variation of M , that is, the
unique increasing adapted process with initial value zero such that ∆[M ] = (∆M)2

and M2 − [M ] is a local martingale. If M furthermore is locally square integrable,
we denote by 〈M〉 the predictable quadratic variation of M , which is the unique
increasing predictable process with initial value zero such that [M ]− 〈M〉 is a local
martingale.

For any local martingale with initial value zero, there exists by Theorem 7.25 of [66]
a unique decomposition M = M c +Md, where M c is a continuous local martingale
and Md is a purely discontinuous local martingale, both with initial value zero. Here,
we say that a local martingale with initial value zero is purely discontinuous if it has
zero quadratic covariation with any continuous local martingale with initial value
zero. We refer to M c as the continuous martingale part of M , and refer to Md as
the purely discontinuous martingale part of M .

Let M be a local martingale with initial value zero and ∆M ≥ −1. The exponential
martingale of M , also known as the Doléans-Dade exponential of M , is the unique
càdlàg solution in Z to the stochastic differential equation Zt = 1 +

∫ t
0 Zs− dMs,

given explicitly as

E(M)t = exp

(
Mt −

1

2
[M c]t

) ∏
0<s≤t

(1 + ∆Ms) exp(−∆Ms), (3.1)

see Theorem II.37 of [134]. Applying Theorem 9.2 of [66], we find that Z always is a
local martingale with initial value one. Also, E(M) is always nonnegative. We wish
to understand when E(M) is a uniformly integrable martingale.

The question of when E(M) is a uniformly integrable martingale has been consid-
ered many times in the literature, and is not only of theoretical interest, but has
several applications in connection with other topics. In particular, exponential mar-
tingales are of use in mathematical finance, where checking uniform integrability
of a particular exponential martingale can be used to prove absence of arbitrage
and obtain equivalent martingale measures for option pricing. For more on this, see
[135] or chapters 10 and 11 of [15]. Also, exponential martingales arise naturally in
connection with maximum likelihood estimation for stochastic processes, where the
likelihood viewed as a stochastic process often is an exponential martingale which
is a true martingale, see for example the likelihood for parameter estimation for
Poisson processes given in (3.43) of [92] or the likelihood for parameter estimation
for diffusion processes given in Theorem 1.12 of [103]. Finally, exponential martin-
gales which are true martingales can be used in the explicit construction of various
probabilistic objects, for example solutions to stochastic differential equations, as in
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Section 5.3.B of [91].

Several sufficient criteria for E(M) to be a uniformly integrable martingale are
known. First results in this regard were obtained by [123] for the case of continuous
local martingales. Here, we are interested in the case where the local martingale M is
not necessarily continuous. Sufficient criteria for E(M) to be a uniformly integrable
martingale in this case have been obtained by [109, 79, 124, 175, 89].

We now explain the particular result to be obtained in this paper. In [123], the
following result was obtained: If M is a continuous local martingale with initial value
zero and exp(1

2 [M ]∞) is integrable, then E(M) is a uniformly integrable martingale.
This criterion is known as Novikov’s criterion. We wish to understand whether this
result can be extended to local martingales which are not continuous.

In the case with jumps, another process in addition to the quadratic variation process
is relevant: the predictable quadratic variation. As noted earlier, the predictable
quadratic variation is defined for any locally square-integrable local martingale M
with initial value zero, is denoted 〈M〉, and is the unique predictable, increasing
and locally integrable process with initial value zero such that [M ]− 〈M〉 is a local
martingale, see p. 124 of [134]. For a continuous local martingale M with initial
value zero, we have that M always is locally square integrable and 〈M〉 = [M ].

Using the predictable quadratic variation, the following result is demonstrated in
Theorem 9 of [135]. Let M be a locally square integrable local martingale with
initial value zero and ∆M ≥ −1. It then holds that if exp(1

2〈M
c〉∞ + 〈Md〉∞) is

integrable, then E(M) is a uniformly integrable martingale. This is an extension of
the classical Novikov criterion of [123] to the case with jumps. [135] also argue in
Example 10 that the constants in front of 〈M c〉 and 〈Md〉 are optimal, although
their argument contains a flaw, namely that the formula (28) in that paper does not
hold.

In this paper, we specialize our efforts to the case where M has jumps larger than
or equal to a for some a ≥ −1 and prove results of the same type, requiring
either that M is a locally square integrable local martingale and that the vari-
able exp(1

2〈M
c〉∞ + α(a)〈Md〉∞) is integrable for some α(a), or that the variable

exp(1
2 [M c]∞ + β(a)[Md]∞) is integrable for some β(a). For all a ≥ −1, we identify

the optimal values of α(a) and β(a), in particular giving an argument circumventing
the problems of Example 10 in [135]. Our results are stated as Theorem 3.2.4 and
Theorem 3.2.5. In particular, we obtain that for local martingales M with initial
value zero and ∆M ≥ 0, E(M) is a uniformly integrable martingale if exp(1

2 [M ]∞)
is integrable or if M is locally square integrable and exp(1

2〈M〉∞) is integrable, and
we obtain that both the constants in the exponents and the requirement on the
jumps of M are optimal. This result is stated as Corollary 3.2.6 and yields a verba-
tim extension of the Novikov criterion to local martingales M with initial value zero
and ∆M ≥ 0.
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3.2 Main results and proofs

In this section, we apply the results of [109] to obtain optimal constants in Novikov-
type criteria for local martingales with jumps. For a > −1 with a 6= 0, we define

α(a) =
(1 + a) log(1 + a)− a

a2
and (3.2)

β(a) =
(1 + a) log(1 + a)− a

a2(1 + a)
, (3.3)

and put α(0) = β(0) = 1
2 and α(−1) = 1. The functions α and β will yield the

optimal constants in the criteria we will be demonstrating. Before proving our main
results, Theorem 3.2.4 and Theorem 3.2.5, we state three lemmas.

Lemma 3.2.1. The functions α and β are continuous, positive and strictly decreas-
ing. Furthermore, β(a) tends to infinity as a tends to minus one.

Proof. We first prove the result on α. Define h(a) = (1+a) log(1+a)−a for a > −1
and h(−1) = 1. Note that h is differentiable with h′(a) = log(1+a). By the l’Hôpital
rule, we have

lim
a→−1

h(a) = 1 + lim
a→−1

log(1 + a)

(1 + a)−1
= 1− lim

a→−1

(1 + a)−1

(1 + a)−2
= 1, (3.4)

which yields that h and α are continuous at −1. Similarly,

lim
a→0

α(a) = lim
a→0

log(1 + a)

2a
= lim

a→0

1

2(1 + a)
=

1

2
, (3.5)

so α is continuous at 0. As h is zero at zero, h(a) is positive for a 6= 0, from which
is follows that α is positive. It remains to show that α is strictly decreasing. For
a ≥ −1 with a /∈ {−1, 0}, we have that α is differentiable with

α′(a) =
a2 log(1 + a)− 2((1 + a) log(1 + a)− a)a

a4

=
2a2 − a(2 + a) log(1 + a)

a4
. (3.6)

By the l’Hôpital rule, we obtain

lim
a→0

α′(a) = lim
a→0

4a− 2(1 + a) log(1 + a)− a(2 + a)(1 + a)−1

4a3

= lim
a→0

a(2 + a)(1 + a)−2 − 2 log(1 + a)

12a2

= − lim
a→0

2a(2 + a)(1 + a)−3

24a
= − 1

12
lim
a→0

2 + a

(1 + a)3
= −1

6
, (3.7)
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so defining α′(0) = −1
6 , we obtain that α′ is a continuous mapping on (−1,∞), and

as α′ is the derivative of α for a ≥ −1 with a /∈ {−1, 0}, α′ is also the derivative of
α for (1,∞). In order to show that α is strictly decreasing, it then suffices to show
that that 2a2−a(2 +a) log(1 +a) is negative for a > −1 with a 6= 0. Now, for a 6= 0,
note that

d

da
(2a− (2 + a) log(1 + a)) = 2− log(1 + a)− 2 + a

1 + a
and (3.8)

d2

da2
(2a− (2 + a) log(1 + a)) =

1

(1 + a)2
− 1

1 + a
= − a

(1 + a)2
. (3.9)

From this, we conclude that a 7→ 2a−(2+a) log(1+a) is positive for −1 < a < 0 and
negative for a > 0. Therefore, a 7→ 2a2 − a(2 + a) log(1 + a) is negative for a > −1
with a 6= 0. As a consequence, α is strictly decreasing. As β(a) = α(a)/(1 + a), the
results on β follow from those on α.

Lemma 3.2.2. Let N be a standard Poisson process, let b and λ be in R, and define
fb(λ) = exp(−λ) + λ(1 + b)− 1. With Lbt = exp(−λ(Nt − (1 + b)t)− tfb(λ)), Lb is a
nonnegative martingale with respect to the filtration induced by N .

Proof. Let Gt = σ(Ns)s≤t. Fix 0 ≤ s ≤ t. As Nt − Ns is independent of Gs and
follows a Poisson distribution with parameter t− s, we obtain

E(exp(−λ(Nt −Ns))|Gs) = exp((t− s)(exp(−λ)− 1)), (3.10)

which implies

E(Lbt |Gs) = E(exp(−λ(Nt −Ns))|Gs) exp(−λNs) exp(λ(1 + b)t− tfb(λ))

= exp((t− s)(exp(−λ)− 1)) exp(−λNs) exp(λ(1 + b)t− tfb(λ))

= exp(−λ(Ns − (1 + b)s)− sfb(λ)) = Lbs, (3.11)

proving the lemma.

Lemma 3.2.3. Let M be a local martingale with initial value zero and ∆M ≥ −1.
Then EE(M)∞ ≤ 1, and E(M) is a uniformly integrable martingale if and only if
EE(M)∞ = 1.

Proof. This follows from the the optional sampling theorem for nonnegative super-
martingales.

In the proof of Theorem 3.2.4, note that for a standard Poisson process N , it holds
that with Mt = Nt− t, 〈M〉t = t, since [M ]t = Nt by Definition VI.37.6 of [143] and
since 〈M〉 is the unique predictable and locally integrable increasing process making
[M ]− 〈M〉 a local martingale.
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Theorem 3.2.4. Fix a ≥ −1. Let M be a locally square integrable local martingale
with initial value zero and ∆M1(∆M 6=0) ≥ a. If exp(1

2〈M
c〉∞ + α(a)〈Md〉∞) is inte-

grable, then E(M) is a uniformly integrable martingale. Furthermore, for all a ≥ −1,
the coefficients 1

2 and α(a) in front of 〈M c〉∞ and 〈Md〉∞ are optimal in the sense
that the criterion is false if any of the coefficients are reduced.

Proof. Sufficiency. With h(x) = (1 + x) log(1 + x) − x, we find by Lemma 3.2.1
that for −1 ≤ a ≤ x, α(a) ≥ α(x), which implies h(x) ≤ α(a)x2. Letting a ≥ −1
and letting M be a locally square integrable local martingale with initial value zero,
∆M1(∆M 6=0) ≥ a and exp(1

2〈M
c〉∞+α(a)〈Md〉∞) integrable, we obtain for all t ≥ 0

the inequality (1 + ∆Mt) log(1 + ∆Mt)−∆Mt ≤ α(a)(∆Mt)
2, and so Theorem III.1

of [109] shows that E(M) is a uniformly integrable martingale. Thus, the condition
is sufficient.

As regards optimality of the coefficients, optimality of the coefficient 1
2 in front of

〈M c〉 is well-known, see [123]. It therefore suffices to to prove optimality of the
coefficient α(a) in front of 〈Md〉. To do so, we need to show the following: That for
each ε > 0, there exists a locally square integrable local martingale with initial value
zero and ∆M1(∆M 6=0) ≥ a such that exp(1

2〈M
c〉∞+(1−ε)α(a)〈Md〉∞) is integrable,

while E(M) is not a uniformly integrable martingale.

The case a > 0. Let ε, b > 0, put Tb = inf{t ≥ 0 | Nt − (1 + b)t = −1} and
define Mt = a(NTb

t − t ∧ Tb). We claim that we may choose b > 0 such that M
satisfies the requirements stated above. It holds that M is a locally square integrable
local martingale with initial value zero and ∆M1(∆M 6=0) ≥ a, and M is purely
discontinuous by Definition 7.21 of [66] since it is of locally integrable variation. In
particular, M c = 0, so it suffices to show that exp((1 − ε)α(a)〈M〉∞) is integrable
while E(M) is not a uniformly integrable martingale. To show this, we first argue
that Tb is almost surely finite. To this end, note that since t 7→ Nt− (1+b)t only has
nonnegative jumps, has initial value zero and decreases between jumps, the process
hits −1 if and only if it is less than or equal to −1 immediately before one of its
jumps. Therefore, with Un denoting the n’th jump time of N , we have

P (Tb =∞) = P (∩∞n=1(NUn− − (1 + b)Un > −1))

= P (∩∞n=1(n > Un(1 + b)))

≤ P (lim sup
n→∞

Un/n ≤ (1 + b)−1), (3.12)

which is zero, as limn→∞ Un/n = 1 almost surely by the law of large numbers, and
(1 + b)−1 < 1 as b > 0. Thus, Tb is almost surely finite, and by the path properties
of N , NTb = (1 + b)Tb − 1 almost surely. We then obtain

E(M)∞ = exp(a(NTb − Tb) +NTb(log(1 + a)− a))

= exp(NTb log(1 + a)− aTb)
= exp(((1 + b)Tb − 1) log(1 + a)− aTb)
= (1 + a)−1 exp(Tb((1 + b) log(1 + a)− a)). (3.13)
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Recalling Lemma 3.2.3, we wish to choose b > 0 such that EE(M)∞ < 1 and
E exp((1−ε)α〈M〉∞) <∞ holds simultaneously. Note that 〈M〉∞ = a2Tb. Therefore,
we need to select a positive b with the properties that

E exp(Tb((1 + b) log(1 + a)− a)) < 1 + a and (3.14)

E exp(Tba
2(1− ε)α(a)) <∞. (3.15)

Consider some b > 0 and let fb be as in Lemma 3.2.2. By that same lemma, the
process Lb defined by putting Lbt = exp(−λ(Nt − (1 + b)t)− tfb(λ)) is a martingale.
In particular, it is a nonnegative supermartingale with initial value one, so Theorem
II.77.5 of [142] yields 1 ≥ ELbTb = E exp(λ− Tbfb(λ)). As a consequence, we obtain
E exp(−Tbfb(λ)) ≤ exp(−λ). Note that f ′b(λ) = − exp(−λ)+1+b, such that fb takes
its minimum at − log(1 + b). Therefore, −fb takes its maximum at − log(1 + b), and
we find that the maximum is h(b). In particular, E exp(Tbh(b)) is finite. Next, define
λ by putting λ(b) = − log((1 + a) ba), we then have E exp(−Tbfb(λ(b))) ≤ (1 + a) ba ,
which is strictly less than 1 + a whenever b < a. Thus, if we can choose b ∈ (0, a)
such that

(1 + b) log(1 + a)− a ≤ −fb(λ(b)) and (3.16)

a2(1− ε)α(a) ≤ h(b), (3.17)

we will have achieved our end, since (3.16) implies (3.14) and (3.17) implies (3.15).
To this end, note that

−fb(λ(b)) = − exp(log((1 + a) ba)) + log((1 + a) ba)(1 + b) + 1

= 1− (1 + a) ba + (1 + b) log((1 + a) ba)

= 1− (1 + a) ba + (1 + b) log(1 + a) + (1 + b) log b
a , (3.18)

such that, by rearrangement, (3.16) is equivalent to

0 ≤ 1 + a− (1 + a) ba + (1 + b) log b
a , (3.19)

and therefore, as 1− b
a > 0 for 0 < b < a, equivalent to

(1 + b)
log b

a
b
a − 1

≤ 1 + a, (3.20)

which, as log x ≤ x − 1 for x > 0, is satisfied for all 0 < b < a. Thus, it suffices to
choose b ∈ (0, a) such that (3.17) is satisfied, corresponding to choosing b ∈ (0, a)
such that (1 − ε)h(a) ≤ h(b). As h is positive and continuous on (0,∞), this is
possible by choosing b close enough to a. With this choice of b, we now obtain M
yielding an example proving that the coefficient α(a) is optimal. This concludes the
proof of optimality in the case a > 0.

The case a = 0. Let ε > 0. To prove optimality, we wish to identify a locally square
integrable local martingale M with initial value zero and ∆M1(∆M 6=0) ≥ 0 such
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that exp((1 − ε)α(0)〈M〉∞) is integrable while E(M) is not a uniformly integrable
martingale. Recalling that α is positive and continuous, pick a > 0 so close to zero
that (1−ε)α(0) ≤ (1− 1

2ε)α(a). By what was already shown, there is a locally square
integrable local martingale M with initial value zero and ∆M1(∆M 6=0) ≥ a such

that exp((1− 1
2ε)α(a)〈M〉∞) is integrable while E(M) is not a uniformly integrable

martingale. As exp((1−ε)α(0)〈M〉∞) is integrable in this case, this shows that α(0)
is optimal.

The case −1 < a < 0. Let ε > 0, let −1 < b < 0, let c > 0 and define a stopping time
Tbc by putting Tbc = inf{t ≥ 0 | Nt− (1 + b)t ≥ c}. Also define a local martingale M
by Mt = a(NTbc

t − t ∧ Tbc). We claim that we can choose b ∈ (−1, 0) and c > 0 such
that M satisfies the requirements to show optimality. Similarly to the case a > 0,
M is a purely discontinuous locally square integrable local martingale with initial
value zero and ∆M1(∆M 6=0) ≥ a, so it suffices to show that exp((1−ε)α(a)〈M〉∞) is
integrable while E(M) is not a uniformly integrable martingale. We first investigate
some properties of Tbc. As t 7→ Nt− (1 + b)t only has nonnegative jumps, has initial
value zero and decreases between jumps, the process advances beyond c at some
point if and only it advances beyond c at one of its jump times. Therefore, with Un
denoting the n’th jump time of N ,

P (Tbc =∞) = P (∩∞n=1(NUn − (1 + b)Un < c))

= P (∩∞n=1(n− c < Un(1 + b)))

≤ P (lim inf
n→∞

Un/n ≥ (1 + b)−1), (3.21)

which is zero, as Un/n tends to one almost surely and (1 + b)−1 > 1. Thus, Tbc is
almost surely finite. Furthermore, by the path properties of N , NTbc ≥ (1 + b)Tbc+ c
and NTbc ≤ (1 + b)Tbc + c + 1 almost surely. Since log(1 + a) ≤ 0, we in particular
obtain NTbc log(1 + a) ≤ ((1 + b)Tbc + c) log(1 + a) almost surely. From this, we
conclude that

E(M)∞ = exp(a(NTbc − Tbc) +NTbc(log(1 + a)− a))

= exp(NTbc log(1 + a)− aTbc)
≤ exp(((1 + b)Tbc + c) log(1 + a)− aTbc)
= (1 + a)c exp(Tbc((1 + b) log(1 + a)− a)). (3.22)

We wish to choose −1 < b < 0 and c > 0 such that E exp((1 − ε)α(a)〈M〉∞) < ∞
and EE(M)∞ < 1 holds simultaneously. As 〈M〉∞ = a2Tbc, this is equivalent to
choosing −1 < b < 0 and c > 0 such that

E exp(Tbc((1 + b) log(1 + a)− a)) < (1 + a)−c and (3.23)

E exp(Tbca
2(1− ε)α(a)) <∞. (3.24)

Let fb and Lb be as in Lemma 3.2.2. The process Lb is then a nonnegative super-
martingale. As NTbc ≤ (1 + b)Tbc + c + 1, the optional stopping theorem allows us
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to conclude that for λ ≥ 0,

1 ≥ ELbTbc = E exp(−λ(NTbc − (1 + b)Tbc)− Tbcfb(λ))

≥ E exp(−(c+ 1)λ− Tbcfb(λ)), (3.25)

so that E exp(−Tbcfb(λ)) ≤ exp((c + 1)λ). As in the case a > 0, −fb takes its
maximum at − log(1 + b), and the maximum is h(b), leading us to conclude that
E exp(Tbch(b)) is finite. Put λ(b, c) = (c + 1)−1 log((1 + a)−c ba). For all b ∈ (a, 0),
b
a < 1, leading to E exp(−Tbcfb(λ(b, c))) ≤ (1 + a)−c ba < (1 + a)−c. Therefore, if we
can choose b ∈ (a, 0) and c > 0 such that

(1 + b) log(1 + a)− a ≤ −fb(λ(b, c)) and (3.26)

a2(1− ε)α(a) ≤ h(b), (3.27)

we will have obtained existence of a local maringale yielding the desired optimality
of α(a). We first note that a2(1−ε)α(a) ≤ h(b) is equivalent to (1−ε)h(a) ≤ h(b). As
h is continuous and positive on (−1, 0), we find that (3.27) is satisfied for a < b < 0
with b close enough to a. Next, we turn our attention to (3.26). We have

−fb(λ(b, c)) = − exp

(
− 1

c+ 1
log

(
(1 + a)−c

b

a

))
− 1 + b

c+ 1
log

(
(1 + a)−c

b

a

)
+ 1

= 1− (1 + a)
c
c+1

(
b

a

)− 1
(c+1)

− 1 + b

c+ 1
log

(
(1 + a)−c

b

a

)
= 1− (1 + a)

c
c+1

(a
b

) 1
c+1

+
c(1 + b)

c+ 1
log(1 + a) +

1 + b

c+ 1
log

a

b
, (3.28)

such that (3.26) is equivalent to

0 ≤ 1 + a− (1 + a)
c
c+1

(a
b

) 1
c+1

+
1 + b

c+ 1

(
log

a

b
− log(1 + a)

)
. (3.29)

Fixing a < b < 0, we wish to argue that for b close enough to a, (3.29) holds for
c large enough. To this end, let ρb(c) denote the right-hand side of (3.29). Then
limc→∞ ρb(c) = 0. We also note that d

dc
1
c+1 = − 1

(c+1)2
and d

dc
c
c+1 = 1

(c+1)2
, yielding

d

dc
(1 + a)

c
c+1

(a
b

) 1
c+1

=
d

dc
exp

(
c

c+ 1
log(1 + a) +

1

c+ 1
log

a

b

)
=

(
log(1 + a)

(c+ 1)2
−

log a
b

(c+ 1)2

)
exp

(
c

c+ 1
log(1 + a) +

1

c+ 1
log

a

b

)
=

log(1 + a)− log a
b

(c+ 1)2
exp

(
c

c+ 1
log(1 + a) +

1

c+ 1
log

a

b

)
(3.30)
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and

d

dc

1 + b

c+ 1

(
log

a

b
− log(1 + a)

)
= − 1 + b

(c+ 1)2

(
log

a

b
− log(1 + a)

)
= (1 + b)

log(1 + a)− log a
b

(c+ 1)2
, (3.31)

which leads to

ρ′b(c) =
log(1 + a)− log a

b

(c+ 1)2

(
1 + b− exp

(
c

c+ 1
log(1 + a) +

1

c+ 1
log

a

b

))
. (3.32)

Now note that for a < b, we obtain

lim
c→∞

1 + b− exp

(
c

c+ 1
log(1 + a) +

1

c+ 1
log

a

b

)
= 1 + b− (1 + a) > 0, (3.33)

and for b close enough to a, log(1 + a)− log a
b < 0, since a < 0. Therefore, for all c

large enough, ρ′b(c) < 0. Consider such a c, we then obtain

ρb(c) = lim
y→∞

ρb(c)− ρb(y) = − lim
y→∞

∫ y

c
ρ′b(z) dz > 0. (3.34)

Thus, we conclude that for b close enough to a, it holds that ρb(c) > 0 for c large
enough.

We now collect our conclusions in order to obtain b ∈ (a, 0) and c > 0 satisfying
(3.26) and (3.27). First choose b ∈ (a, 0) so close to a that (1 − ε)h(a) ≤ h(b)
and log(1 + a) − log a

b < 0. Pick c so large that ρb(c) > 0. By our deliberations,
(3.26) and (3.27) then both hold, demonstrating the existence of a locally square
integrable local martingale M with initial value zero and ∆M1(∆M 6=0) ≥ a such
that exp((1 − ε)α(a)〈M〉∞) is integrable while E(M) is not a uniformly integrable
martingale.

The case a = −1. Let ε > 0. We wish to identify a purely discontinous locally square
integrable local martingale M with ∆M1(∆M 6=0) ≥ −1 such that integrability of
exp((1− ε)α(−1)〈M〉∞) holds while E(M) is not a uniformly integrable martingale.
We proceed as in the case a = 0. By positivity and continuity of α, take a > 0 so
close to −1 that (1− ε)α(−1) ≤ (1 − 1

2ε)α(a). By what was shown in the previous
case, there exists a purely discontinuous locally square integrable local martingale
M with initial value zero and ∆M1(∆M 6=0) ≥ a such that exp((1− 1

2ε)α(a)〈M〉∞) is
integrable while E(M) is not a uniformly integrable martingale. As it then also holds
that exp((1− ε)α(−1)〈M〉∞) is integrable, this shows that α(−1) is optimal.

Theorem 3.2.5. Fix a > −1. Let M be a local martingale with initial vaule zero
and ∆M1(∆M 6=0) ≥ a. If exp(1

2 [M c]∞ + β(a)[Md]∞) is integrable, then E(M) is a

uniformly integrable martingale. Furthermore, for all a > −1, the coefficients 1
2 and

β(a) in front of [M c]∞ and [Md]∞ are optimal in the sense that the criterion is false
if any of the coefficients are reduced.
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Furthermore, there exists no β(−1) such that for M with ∆M1(∆M 6=0) ≥ −1, inte-

grability of exp(1
2 [M c]∞+β(−1)[Md]∞) suffices to ensure that E(M) is a uniformly

integrable martingale.

Proof. Sufficiency. We proceed in a manner closely related to the proof of Theorem
3.2.4. Defining g by putting g(x) = log(1 + x)− x/(1 + x), we find by Lemma 3.2.1
that for −1 < a ≤ x, β(a) ≥ β(x), yielding g(x) ≤ β(a)x2. Letting a > −1 and
letting M be a locally square integrable local martingale with initial value zero,
∆M1(∆M 6=0) ≥ a and exp(1

2 [M c]∞ + β(a)[Md]∞) integrable, we obtain for all t ≥ 0
that log(1 + ∆Mt) − ∆Mt/(1 + ∆Mt) ≤ β(a)(∆Mt)

2, and so Theorem III.7 of
[109] shows that E(M) is a uniformly integrable martingale. Thus, the condition is
sufficient.

As in Theorem 3.2.4, optimality of the 1
2 in front of [M c] follows from [123], so it

suffices to consider the coefficient β(a) in front of [Md]. Thus, for a > −1, we need
for each ε > 0, to find a locally square integrable local martingale with initial value
zero and ∆M1(∆M 6=0) ≥ a such that exp(1

2 [M c]∞+ (1− ε)β(a)[Md]∞) is integrable,
while E(M) is not a uniformly integrable martingale.

The case a > 0. Let ε, b > 0, put Tb = inf{t ≥ 0 | Nt − (1 + b)t = −1} and define
Mt = a(NTb

t − t ∧ Tb). Noting that [M ]∞ = a2NTb , we may argue as in the proof of
Theorem 3.2.4 and obtain that it suffices to identify b > 0 such that

E exp(Tb((1 + b) log(1 + a)− a)) < 1 + a and (3.35)

E exp(NTba
2(1− ε)β(a)) <∞. (3.36)

Let fb be as in Lemma 3.2.2. As in the proof of Theorem 3.2.4, we obtain that
E exp(Tbh(b)) is finite, where h(x) = (1 + x) log(1 + x) − x, and furthermore ob-
tain that with λ(b) = − log((1 + a) ba), E exp(−Tbfb(λ(b))) < 1 + a for b < a. As
NTb = (1 + b)Tb − 1 almost surely and g(b) = h(b)/(1 + b), we then also obtain that
E exp(NTbg(b)) is finite. Thus, if we can choose b ∈ (0, a) such that

(1 + b) log(1 + a)− a ≤ −fb(λ(b)) and (3.37)

a2(1− ε)β(a) ≤ g(b), (3.38)

we will obtain the desired result, as (3.37) implies (3.35) and (3.38) implies (3.36).
As earlier noted, (3.37) always holds for 0 < b < a. As for (3.38), this requirement is
equivalent to having that (1− ε)g(a) ≤ g(b) for some b ∈ (0, a), which by continuity
of g can be obtained by choosing b close enough to a. Choosing b in this manner,
we obtain M yielding an example proving that the coefficient β(a) is optimal. This
concludes the proof of optimality in the case a > 0.

The case a = 0. This follows similarly to the corresponding case in the proof of
Theorem 3.2.4.

The case −1 < a < 0. Let ε > 0, let −1 < b < 0, let c > 0 and define a stopping time
Tbc by putting Tbc = inf{t ≥ 0 | Nt − (1 + b)t ≥ c}. Also define a local martingale
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M by Mt = a(NTbc
t − t ∧ Tbc). As in the proof of Theorem 3.2.4, in order to obtain

the desired counterexample, it suffices to choose −1 < b < 0 and c > 0 such that

E exp(Tbc((1 + b) log(1 + a)− a)) < (1 + a)−c and (3.39)

E exp(Tbca
2(1− ε)β(a)) <∞. (3.40)

With fb as in Lemma 3.2.2, we find as in the proof of Theorem 3.2.4 that exp(Tbch(b))
has finite mean. Furthermore, defining λ(b, c) = (c + 1)−1 log((1 + a)−c ba), it holds
for b with a < b ≤ (1 + a)ca that λ(b, c) ≥ 0 and E exp(−Tbcfb(λ(b, c))) < (1 + a)−c.
Also, as NTbc ≤ (1+b)Tbc+c+1, E exp(NTbc(1+b)−1h(b)) and thus E exp(NTbcg(b))
is finite. Therefore, if we can choose b ∈ (a, 0) and c > 0 such that

(1 + b) log(1 + a)− a ≤ −fb(λ(b, c)) and (3.41)

a2(1− ε)β(a) ≤ g(b), (3.42)

we obtain the desired result. By arguments as in the proof of the corresponding case
of Theorem 3.2.4, we find that by first picking b close enough to a and then c large
enough, we can ensure that both (3.41) and (3.42) hold, yielding optimality for this
case.

The case a = −1. For this case, we need to show that for any γ ≥ 0, it does not
hold that finiteness of E exp(γ[Md]∞) implies that E(M) is a uniformly integrable
martingale. Let γ ≥ 0. By Lemma 3.2.1, β(a) tends to infinity as a tends to −1.
Therefore, we may pick a > −1 so small that β(a) ≥ γ. By what we already have
shown, there exists M with initial value zero and ∆M1(∆M 6=0) ≥ −1 such that

E exp(β(a)[Md]∞) and thus E exp(γ[Md]∞) is finite, while E(M) is not a uniformly
integrable martingale.

Corollary 3.2.6. Let M be a local martingale with initial value zero and ∆M ≥ 0.
If exp(1

2 [M ]∞) is integrable or if M is locally square integrable and exp(1
2〈M〉∞)

is integrable, then E(M) is a uniformly integrable martingale. Furthermore, this
criterion is optimal in the sense that if either the constant 1

2 is reduced, or the
requirement on the jumps is weakened to ∆M ≥ −ε for some ε > 0, the criterion
ceases to be sufficient.

Proof. That the constant 1
2 cannot be reduced follows from Theorem 3.2.4 and

Theorem 3.2.5. That the requirement on the jumps cannot be reduced follows by
combining Theorem 3.2.4 and Theorem 3.2.5 with the fact that α and β both are
strictly decreasing by Lemma 3.2.1.
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Abstract. For local martingales with nonnegative jumps, we prove a
sufficient criterion for the corresponding exponential martingale to be a
uniformly integrable martingale. The criterion is in terms of exponen-
tial moments of a convex combination of the optional and predictable
quadratic variation. The result extends earlier known criteria.

4.1 Introduction

In [123], Novikov introduced a sufficient criterion for the exponential martingale of
a continuous local martingale to be a uniformly integrable martingale. In this paper,
we prove a similar result in the case where the local martingale is not continuous,
but is assumed to have nonnegative jumps. The novelty of our criterion rests in that
our result is stronger than previously known results, in that it combines optional
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and predictable components and in that our proof of the criterion demonstrates a
straightforward two-step structure. We begin by fixing our notation and recalling
some results from stochastic analysis.

Assume given a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual con-
ditions, see [134] for the definition of this and other probabilistic concepts such as
localising sequences, local martingales, the quadratic covariation et cetera. For any
local martingale M , we say that M has initial value zero if M0 = 0. For any local
martingale M with initial value zero, we denote by [M ] the quadratic variation of
M , that is, the unique increasing adapted process with initial value zero such that
M2 − [M ] is a local martingale.

If A is an adapted increasing process with initial value zero, we say that A is inte-
grable if EA∞ is finite, and we say that A is locally integrable if ATn is integrable
for some localising sequence (Tn), that is, a sequence of stopping times increasing to
infinity. If A is an adapted process with initial value zero and paths of finite varia-
tion, we say that A is locally integrable if the variation process is locally integrable.
Whenever A is adapted, has initial value zero, is of finite variation and is locally
integrable, there exists a predictable process Π∗pA with those same properties such
that A−Π∗pA is a local martingale, see Definition VI.21.3 of [143]. We refer to Π∗pA
as the dual predictable projection of A, or simply as the compensator of A.

If M is locally square integrable, it holds that [M ] is locally integrable, and we
denote by 〈M〉 the compensator of [M ]. We refer to 〈M〉 as the predictable quadratic
variation of M . It then holds that M2 − 〈M〉 is a local martingale.

For any local martingale with initial value zero, there exists by Theorem 7.25 of [66]
a unique decomposition M = M c +Md, where M c is a continuous local martingale
and Md is a purely discontinuous local martingale, both with initial value zero. Here,
we say that a local martingale with initial value zero is purely discontinuous if it has
zero quadratic covariation with any continuous local martingale with initial value
zero. We refer to M c as the continuous martingale part of M , and refer to Md as
the purely discontinuous martingale part of M .

With M a local martingale with initial value zero and ∆M ≥ 0, the exponential
martingale of M , also known as the Doléans-Dade exponential of M , is given by

E(M)t = exp

(
Mt −

1

2
[M c]t

) ∏
0<s≤t

(1 + ∆Ms) exp(−∆Ms). (4.1)

The process E(M) is the unique càdlàg solution in Z to the stochastic differential
equation Zt = 1 +

∫ t
0 Zs− dMs, see Theorem II.37 of [134]. By Theorem 9.2 of

[66], E(M) is always a local martingale with initial value one. We are interested
in sufficient criteria to ensure that E(M) is a uniformly integrable martingale. This
is a classical question in probability theory, with applications in finance, stochatic
differential equations and statistical inference for continuously observed stochastic
processes, see for example [135, 15, 91, 92, 103]. For the case when M is continuous,
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sufficient criteria ensuring that E(M) is a uniformly integrable martingale have been
obtained in [123, 24, 94, 95, 119]. For the case when M has jumps, see [109, 79, 124,
175, 89].

We now explain the particular result to be obtained in this paper. In [123], the
following result was obtained: If M is a continuous local martingale with initial value
zero and exp(1

2 [M ]∞) is integrable, then E(M) is a uniformly integrable martingale.
This criterion is known as Novikov’s criterion. In [101], it was shown that for a
continuous local martingale M with initial value zero, the condition

lim inf
ε→0

ε logE exp

(
(1− ε)1

2
[M ]∞)

)
<∞ (4.2)

suffices to ensure that E(M) is a uniformly integrable martingale. This is an extension
of the result in [123]. And in [160], optimal constants α(a) and β(a) for a > −1 were
identified such that when ∆M1(∆M 6=0) ≥ a, integrability of exp(α(a)[M ]∞) and
exp(β(a)[M ]∞) suffices to ensure that E(M) is a uniformly integrable martingale,
and it was noted that for the case a = 0, α(a) = β(a) = 1

2 . Thus, the case where
∆M ≥ 0 presents a higher level of regularity than the general case. In this note, we
prove that when ∆M ≥ 0, the condition

lim inf
ε→0

ε logE exp

(
(1− ε)1

2
(α[M ]∞ + (1− α)〈M〉∞)

)
<∞ (4.3)

suffices to ensure that E(M) is a uniformly integrable martingale, thus extending the
results of [123] and [101]. Note that while sufficiency of simple Novikov-type criteria
such as those given in [160] follow from the results of [109], the condition (4.3) does
not. Also, to the best of the knowledge of the author, the condition (4.3) is the first
one obtained applying both the quadratic variation and the predictable quadratic
variation at the same time.

4.2 Main results and proofs

In this section, we will prove the following theorem.

Theorem 4.2.1. Let M be a locally square integrable local martingale with initial
value zero and ∆M ≥ 0. Fix 0 ≤ α ≤ 1 and assume that

lim inf
ε→0

ε logE exp

(
(1− ε)1

2
(α[M ]∞ + (1− α)〈M〉∞)

)
<∞. (4.4)

Then E(M) is a uniformly integrable martingale. If α = 1, the result also holds
without the assumption that M is locally square integrable. Furthermore, for all
0 ≤ α ≤ 1, the constant 1/2 in (4.4) is optimal.
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Optimality of the constant 1/2 is well known, see [123]. We begin by considering
the proof for the case α = 1, where local square integrability is not required. Our
proof in this case rests on the following two elementary martingale lemmas and the
following real analysis lemma.

Lemma 4.2.2. Let M be a local martingale with initial value zero and ∆M ≥ 0.
Then EE(M)∞ ≤ 1, and E(M) is a uniformly integrable martingale if and only if
EE(M)∞ = 1.

Proof. This follows from the the optional sampling theorem for nonnegative super-
martingales.

Lemma 4.2.3. Let M be a local martingale with initial value zero. Let C denote the
set of all bounded stopping times. If there exists a > 1 such that (MT )T∈C is bounded
in La, then M is a uniformly integrable martingale.

Proof. As (MT )T∈C is bounded in La, (MT )T∈C is uniformly integrable. Let (Tn) be
a localising sequence such that MTn is a uniformly integrable martingale for each
n ≥ 1. Let S be a bounded stopping time. Then (MTn∧S)n≥1 is uniformly integrable
as well. As MTn∧S converges almost surely to MS , we conclude that MS is integrable
and that MTn∧S converges in L1 to MS . As MTn is a uniformly integrable martingale,
EMTn

S = 0 by the optional stopping theorem, and thus EMS = 0. By Theorem
II.77.6 of [143], M is a martingale. And by our assumptions, (Mt)t≥0 is uniformly
integrable, so M is a uniformly integrable martingale.

Lemma 4.2.4. Let x ≥ 0. It then holds that

0 ≤ log
1 + λx

(1 + x)λ
≤ λ(1− λ)

2
x2 and (4.5)

0 ≤ log
(1 + x)a

1 + ax
≤ a(a− 1)

2
x2 (4.6)

for 0 ≤ λ ≤ 1 and a ≥ 1.

Proof. We first prove (4.5). To prove the lower inequality, it suffices to argue that
(1+λx)/(1+x)λ ≥ 1, which is equivalent to 1+λx−(1+x)λ ≥ 0. Fix 0 ≤ λ ≤ 1 and
define hλ(x) = 1 + λx− (1 + x)λ. Then h′λ(x) = λ− λ(1 + x)λ−1 ≥ 0 and hλ(0) = 0.
This implies the first inequality in (4.5). In order to prove the second inequality, we
define gλ by putting gλ(x) = 1

2λ(1−λ)x2− log(1 +λx) +λ log(1 +x). We then need
to prove gλ(x) ≥ 0. We obtain gλ(0) = 0 and

g′(x) = λ(1− λ)x− λ

1 + λx
+

λ

1 + x

=
λ(1− λ)x(1 + λx)(1 + x)− λ(1 + x) + λ(1 + λx)

(1 + λx)(1 + x)

=
(λ− λ2)(x2 + λx2 + λx3)

(1 + λx)(1 + x)
≥ 0, (4.7)
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so gλ(x) ≥ 0 for all 0 ≤ λ ≤ 1 and x ≥ 0, yielding the second inequality in (4.5).
Next, consider (4.6). For the lower inequality, note that (1 + x)a − (1 + ax) ≥ 0, so
that (1 + x)a/(1 + ax) ≥ 1. For the upper inequality, we may apply (4.5) to obtain

log
(1 + x)a

1 + ax
= a log

1 + x

(1 + ax)1/a
≤ a

1
a(1− 1

a)

2
(ax)2 =

a(a− 1)

2
x2, (4.8)

for a ≥ 1.

Proof of Theorem 4.2.1 for the case α = 1. In this case, we wish to show that
when lim infε→0 ε logE exp(((1−ε)/2)[M ]∞) is finite, E(M) is a uniformly integrable
martingale. We first prove that E(M) is a uniformly integrable martingale under the
stronger condition that exp((1 + ε)1

2 [M ]∞) is integrable for some ε > 0. Fix such an
ε > 0, and let a, r > 1. Applying (4.6) of Lemma 4.2.4, we then have

E(M)at = exp

aMt −
1

2
a[M c]t +

∑
0<s≤t

log(1 + ∆Ms)
a − a∆Ms


= E(arM)

1/r
t exp

a(ar − 1)

2
[M c]t +

∑
0<s≤t

log
(1 + ∆Ms)

a

(1 + ar∆Ms)1/r


≤ E(arM)

1/r
t exp

(
a(ar − 1)

2
[M ]t

)
. (4.9)

Now let T be a bounded stopping time. Note that as arM has nonnegative jumps,
E(arM) is a nonnegative supermartingale and so 0 ≤ EE(arM)T ≤ 1. Let y = ar
and let s be the dual exponent to r, such that s = r/(r − 1). Applying Hölder’s
inequality in (4.9), we obtain

EE(M)aT ≤
(
E exp

(
y(y − 1)

2(r − 1)
[M ]∞

))1/s

. (4.10)

Next, note that the mapping y 7→ y(y − 1) is increasing for y ≥ 1. Therefore,
infy>r>1 y(y − 1)/(2(r − 1)) = infr>1 r/2 = 1/2, and so there exists y > r > 1 such
that y(y− 1)/(2(r− 1)) ≤ (1 + ε)/2. Fixing such y > r > 1 and putting a = y/r, we
obtain a > 1 and (4.10) allows us to conclude that with the supremum being over
all bounded stopping times, we have

sup
T
EE(M)aT ≤

(
E exp

(
(1 + ε)

1

2
[M ]∞

))1/s

, (4.11)

where the right-hand side is finite by assumption. By Lemma 4.2.3, E(M) is a uni-
formly integrable martingale.

Next, we merely assume that lim infε→0 ε logE exp(((1 − ε)/2)[M ]∞) is finite. In
particular, for all ε > 0, exp(((1 − ε)/2)[M ]∞) is integrable. Therefore, [M ]∞ is
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integrable, so M is a square-integrable martingale and the limit M∞ exists. Fix
0 < λ < 1. As [λM ]t = λ2[M ]t, we have by our earlier results that E(λM) is a
uniformly integrable martingale. Using (4.5) of Lemma 4.2.4, we have

1 = E exp

(
λM∞ −

λ2

2
[M c]∞ +

∑
0<t

log(1 + λ∆Mt)− λ∆Mt

)

= EE(M)λ∞ exp

(
λ(1− λ)

2
[M c]∞ +

∑
0<t

log
1 + λ∆Mt

(1 + ∆Mt)λ

)

≤ EE(M)λ∞ exp

(
λ(1− λ)

2
[M ]∞

)
. (4.12)

Now fix γ ≥ 0. Applying Jensen’s inequality in (4.12) with the concave function
x 7→ xλ as well as Hölder’s inequality with the dual exponents 1

λ and 1
1−λ , we

obtain, with Fγ = ([M ]∞ > γ), that

1 ≤ EE(M)λ∞ exp

(
λγ(1− λ)

2

)
+ EE(M)λ∞ exp

(
λ(1− λ)

2
[M ]∞

)
1Fγ

≤ (EE(M)∞)λ exp

(
λγ(1− λ)

2

)
+ (EE(M)∞1Fγ )λ

(
E exp

(
λ

2
[M ]∞

))1−λ
.

By our assumptions, we have that lim infλ→1(E exp((λ/2)[M ]∞))1−λ is finite. Let c
denote the value of the limes inferior. By the above, we then obtain

1 ≤ EE(M)∞ + cEE(M)∞1([M ]∞>γ). (4.13)

Letting γ tend to infinity, we obtain 1 ≤ EE(M)∞, which by Lemma 4.2.2 shows
that E(M) is a uniformly integrable martingale. �

For the remaining case of 0 ≤ α < 1, we need the following further inequalities.

Lemma 4.2.5. Let x ≥ 0. It then holds that

0 ≤ (1 + λx)− (1 + x)λ ≤ λ(1− λ)

2
x2 and (4.14)

0 ≤ (1 + x)a − (1 + ax) ≤ a(a− 1)

2
x2, (4.15)

for 0 ≤ λ ≤ 1 and 1 ≤ a ≤ 2.

Proof. Fix 0 ≤ λ ≤ 1. The lower inequality in (4.14) is equivalent to the statement
that (1 + λx)/(1 + x)λ ≥ 1, which follows from (4.5) of Lemma 4.2.4. Next, put

gλ(x) = λ(1−λ)
2 x2 + (1 + x)λ − (1 + λx). In order to obtain the upper inequality, we

need to prove gλ(x) ≥ 0. To this end, note that

g′λ(x) = λ(1− λ)x+ λ(1 + x)λ−1 − λ and (4.16)

g′′λ(x) = λ(1− λ)− λ(1− λ)(1 + x)λ−2. (4.17)
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As g′′λ(x) ≥ 0, g′λ(0) = 0 and gλ(0) = 0, we conclude that gλ is nonnegative and
thus (4.14) holds. Next, consider a with 1 ≤ a ≤ 2. Using (4.6) of Lemma 4.2.4,
we find that the lower inequality of (4.15) holds. For the upper inequality, define

ha(x) = a(a−1)
2 x2 + 1 + ax− (1 +x)a, we need to prove ha(x) ≥ 0. To do so, we note

that

h′a(x) = a(a− 1)x+ a− a(1 + x)a−1 and (4.18)

h′′a(x) = a(a− 1)− a(a− 1)(1 + x)a−2, (4.19)

such that h′′a(x) ≥ 0, h′a(0) = 0 and ha(0) = 0, yielding as in the previous case that
ha is nonnegative and so we obtain (4.15).

Lemma 4.2.6. Let x ≥ 0. It then holds that

0 ≤ log
1 + λx+ (1 +

√
1− αx)λ − (1 + λ

√
1− αx)

(1 + x)λ
≤ αλ(1− λ)

2
x2 (4.20)

for α, λ ∈ [0, 1].

Proof. Let β =
√

1− α, such that α = 1− β2. We need to prove that for x ≥ 0 and
β, λ ∈ [0, 1], it holds that

0 ≤ log
λ(1− β)x+ (1 + βx)λ

(1 + x)λ
≤ (1− β2)

λ(1− λ)

2
x2. (4.21)

Consider the first inequality in (4.21). To prove this, it suffices to show that for
x ≥ 0 and β, λ ∈ [0, 1] it holds that

1 ≤ λ(1− β)x+ (1 + βx)λ

(1 + x)λ
, (4.22)

which is equivalent to λ(1 − β)x + (1 + βx)λ − (1 + x)λ ≥ 0. As this holds for all
x ≥ 0, λ ∈ [0, 1] and β equal to one, it suffices to prove that the derivative with
respect to β of the left-hand side is nonpositive, meaning that we need to prove
λx ≥ xλ(1 + βx)λ−1. However, this follows as 0 ≤ (1 + βx)λ−1 ≤ 1. Thus, the first
inequality in (4.21) holds. Next, we consider the second inequality. We need to show
that for x ≥ 0 and λ, β ∈ [0, 1], it holds that

0 ≤ (1− β2)
λ(1− λ)

2
x2 − log

λ(1− β)x+ (1 + βx)λ

(1 + x)λ
. (4.23)

First note that the result holds when β is equal to one, x ≥ 0 and 0 ≤ λ ≤ 1.
It therefore suffices to prove that the derivative with respect to β is nonpositive,
meaning that we need to prove that for x ≥ 0 and β, λ ∈ [0, 1],

0 ≥ λx− xλ(1 + βx)λ−1

λ(1− β)x+ (1 + βx)λ
− βλ(1− λ)x2. (4.24)
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Multiplying by the denominator, which is positive, this is equivalent to

0 ≤ βλ(1− λ)x2(λ(1− β)x+ (1 + βx)λ)− (λx− xλ(1 + βx)λ−1). (4.25)

which follows if we can show 1 ≤ β(1−λ)x(λ(1−β)x+ (1 +βx)λ) + (1 +βx)λ−1. As
β(1− β)λ(1− λ)x2 ≥ 0, it thus suffices to show that for x ≥ 0 and λ, β ∈ [0, 1], we
have 1 ≤ β(1−λ)x(1+βx)λ+(1+βx)λ−1. However, as this holds for any β, λ ∈ [0, 1]
when x is zero, we find that it suffices to show that the derivative with respect to x
is nonnegative, so that we need to show

0 ≤ β(1− λ)((1 + βx)λ − xβλ(1 + βx)λ−1) + β(λ− 1)(1 + βx)λ−2 (4.26)

for x ≥ 0 and β, λ ∈ [0, 1]. To this end, as β(1 − λ) ≥ 0, it suffices to show that
0 ≤ (1 + βx)λ − xβλ(1 + βx)λ−1 − (1 + βx)λ−2 for x ≥ 0 and β, λ ∈ [0, 1]. To this
end, simply note that

(1 + βx)λ − xβλ(1 + βx)λ−1 − (1 + βx)λ−2

=(1 + βx)λ−2((1 + βx)2 − xβλ(1 + βx)− 1)

=(1 + βx)λ−2((1− λ)β2x2 + β(2− λ)x). (4.27)

As this is nonnegative, the result follows.

The upper inequality in Lemma 4.2.6 is not obvious. However, an indication that the
constant αλ(1−λ)

2 is the right one may be obtained by a simple argument as follows.
By the l’Hôpital rule, we have

lim
x→0

1

x2
log

1 + λx+ (1 +
√

1− αx)λ − (1 + λ
√

1− αx)

(1 + x)λ

= lim
x→0

1

x2
log

λ(1−
√

1− α)x+ (1 +
√

1− αx)λ

(1 + x)λ

= lim
x→0

1

2x

(
λ(1−

√
1− α) +

√
1− αλ(1 +

√
1− αx)λ−1

λ(1−
√

1− α)x+ (1 +
√

1− αx)λ
− λ

(1 + x)

)
. (4.28)

Identifying a common divisor and applying the l’Hôpital rule again, we obtain that
the above is equal to

1

2
lim
x→0

((1− α)λ(λ− 1)(1 +
√

1− αx)λ−2)(1 + x)

+
1

2
lim
x→0

(λ(1−
√

1− α) +
√

1− αλ(1 +
√

1− αx)λ−1)

−1

2
lim
x→0

λ(λ(1−
√

1− α) +
√

1− αλ(1 +
√

1− αx)λ−1), (4.29)

which by elementary calculations is equal to αλ(1−λ)
2 , the factor in front of x2 in

Lemma 4.2.6.
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Proof of Theorem 4.2.1 for the case 0 ≤ α < 1. We consider the case 0 < α < 1, the
remaining case of α = 0 follows by a similar method.

Fix ε > 0. We first prove that E(M) is a uniformly integrable martingale under
the stronger condition that exp((1 + ε)1

2(α[M ]∞ + (1 − α)〈M〉∞)) is integrable.
Assume given a, r > 1 with the property that ar ≤ 2. Define a process U by putting
Ut = ar

∑
0<s≤t log(1 + ∆Ms)−∆Ms. We have

E(M)at = exp

(
arMt −

1

2
[arM c]t + Ut

)1/r

exp

(
a(ar − 1)

2
[M c]t

)
. (4.30)

We wish to decompose the first factor in the right-hand side of (4.30) in two ways,
one involving an optional increasing factor and one involving a predictable increasing
factor. Put No

t = arMt. For the optional decomposition, we note that

Ut =

 ∑
0<s≤t

log(1 + ∆No
s )−∆No

s

+
∑

0<s≤t
log

(1 + ∆Ms)
ar

1 + ar∆Ms
, (4.31)

which yields

exp

(
arMt −

1

2
[arM c]t + Ut

)α/r
= E(No)

α/r
t exp

α
r

∑
0<s≤t

log
(1 + ∆Ms)

ar

1 + ar∆Ms

 .

Next, for 1 ≤ β ≤ 2, we define W β
t =

∑
0<s≤t(1 + ∆Ms)

β − (1 + β∆Ms). Note that
the sum is well-defined, increasing and locally integrable by (4.15) of Lemma 4.2.5,
as [M ] is locally integrable by our assumptions. Therefore, the compensator V β of
W β is well-defined, and is increasing and locally integrable as well. Also note that
(1 + ∆Ms)

β = 1 + β∆Ms + ∆W β. Further define two local martingales by putting
Np
t = arMt +W ar

t − V ar
t and N̄p

t =
∫ t

0 (1 + ∆V ar
s )−1 dNp

s , where N̄p is well-defined
as ∆V ar ≥ 0 and (1 + ∆V ar

s )−1 is predictable and locally bounded.

We begin by considering some properties of N̄p. First, we observe that

∆N̄p
t =

∆Np
t

1 + ∆V ar
t

=
ar∆Mt + ∆W ar

t −∆V ar
t

1 + ∆V ar
t

=
(1 + ∆Mt)

ar

1 + ∆V ar
t

− 1 > −1 (4.32)

Furthermore, define Aart =
∑

0<s≤t ∆V ar
s (1 + ∆V ar

s )−1. As ∆V ar is predictable and
nonnegative, the process Aar is well-defined, and is also predictable, increasing and
locally bounded, and [Aar, Np]t =

∑
0<s≤t ∆Aars ∆Np

s . By Proposition I.4.49 of [83],

[Aar, Np] is a local martingale. As the two local martingales
∫ t

0 A
ar
s dNp

s and [Aar, Np]
are purely discontinuous and have the same jumps, they are equal by the uniqueness
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part of Theorem 7.25 of [66], and we thus obtain

N̄p
t = Np

t −
∫ t

0

∆V ar
s

1 + ∆V ar
s

dNp
s

= arMt +W ar
t − V ar

t −
∑

0<s≤t
(1 + ∆V ar

s )−1∆V ar
s ∆Np

s . (4.33)

Also, as the function x 7→ log(1+x)−x is nonpositive for x ≥ 0 and V ar is increasing,
we obtain log(1 + ∆V ar)−∆V ar ≤ 0. Combining our observations, we get

ar log(1 + ∆Ms)− ar∆Ms − (log(1 + ∆N̄p
s )−∆N̄p

s )

=ar log(1 + ∆Ms)− ar∆Ms −
(

log
(1 + ∆Ms)

ar

1 + ∆V ar
s

−∆N̄p
s

)
=∆W ar

s −
∆V ar

s ∆Np
s

1 + ∆V ar
s

+ log(1 + ∆V ar
s )−∆V ar

s ≤ ∆W ar
s −

∆V ar
s ∆Np

s

1 + ∆V ar
s

, (4.34)

where the logarithm in first expression is well-defined by (4.32). This implies

Ut ≤

 ∑
0<s≤t

log(1 + ∆N̄p
s )−∆N̄p

s

+
∑

0<s≤t
∆W ar

s −
∆V ar

s ∆Np
s

1 + ∆V ar
s

= N̄p
t − arMt +

 ∑
0<s≤t

log(1 + ∆N̄p
s )−∆N̄p

s

+ V ar
t . (4.35)

Also noting that [(N̄p)c]t = [(Np)c]t = [arM c]t, we obtain the relationship

exp

(
arMt −

1

2
[arM c]t + Ut

)(1−α)/r

≤ E(N̄p)
(1−α)/r
t exp

(
1− α
r

V ar
t

)
.

Combining our results with (4.30), we obtain E(M)at ≤ E(No)
α/r
t E(Np)(1−α)/rXt,

where the process X is defined by

Xt = exp

a(ar − 1)

2
[M c]t +

α

r

∑
0<s≤t

log
(1 + ∆Ms)

ar

1 + ar∆Ms
+

1− α
r

Vt

 . (4.36)

Here, note that by (4.6) of Lemma 4.2.4 and (4.15) of Lemma 4.2.5, we have, as
1 ≤ ar ≤ 2, that ∑

0<s≤t
log

(1 + ∆Ms)
ar

1 + ar∆Ms
≤ ar(ar − 1)

2
[Md]t and (4.37)

V ar
t ≤

ar(ar − 1)

2
〈Md〉t, (4.38)
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leading to the inequality

E(M)at ≤ E(No)
α/r
t E(Np)(1−α)/r exp

(
a(ar − 1)

2
(α[M ]t + (1− α)〈M〉t

)
. (4.39)

Next, as ∆No
t ≥ 0 > −1 and ∆N̄p

t > −1, E(No) and E(N̄p) are nonnegative
supermartingales, and so for all bounded stopping times T , 0 ≤ EE(No)T ≤ 1 and
0 ≤ EE(Np)T ≤ 1. Now let s be the dual exponent of r, such that s = r/(r − 1).
Noting that 1

r/α + 1
r/(1−α) + 1

s = 1
r + 1

s = 1,we may then apply Hölder’s inequality

for triples of functions to the inequality (4.39), yielding for any bounded stopping
time T that

EE(M)aT ≤
(
E exp

(
y(y − 1)

2(r − 1)
(α[M ]∞ + (1− α)〈M〉∞

))1/s

, (4.40)

where y = ar. This holds for all a, r > 1 such that ar ≤ 2, and is a bound similar to
(4.10). Proceeding as in the proof of the case α = 1, we then obtain as a consequence
of Lemma 4.2.3 that E(M) is a uniformly integrable martingale.

Next, assume that lim infε→0 ε logE exp(((1−ε)/2)(α[M ]∞+(1−α)〈M〉∞) is finite.
In particular, for ε > 0, exp(((1− ε)/2)α[M ]∞) is integrable, so [M ]∞ is integrable.
As a consequence, M is a square-integrable martingale, and the limit M∞ exists.

Now fix 0 < λ < 1 and define

W λ(α)t =
∑

0<s≤t
(1 +

√
1− α∆Ms)

λ − (1 + λ
√

1− α∆Ms). (4.41)

Note that by Lemma 4.2.5, the terms in the sum in (4.41) are nonpositive and
bounded from below by −(1−α)1

2λ(1−λ)(∆Ms)
2. In particular, we find that W λ(α)

is well-defined, decreasing and integrable. Letting V λ(α) be the compensator of
W λ(α), V λ(α) is then decreasing and integrable as well, and W λ(α) − V λ(α) is a
uniformly integrable martingale. We show that V λ(α) is continuous. To this end, let
T be some predictable stopping time. By Theorem VI.12.6 of [143] and its proof, we
have E∆MT = 0 and E∆(W λ(α)− V λ(α))T = 0, so that

EV λ(α)T = EW λ(α)T

= E((1 +
√

1− α∆MT )λ − (1 + λ
√

1− α∆MT )) (4.42)

= E(1 +
√

1− α∆MT )λ − 1 ≥ 0, (4.43)

because of our assumption that ∆M ≥ 0. Thus, we know now that as V λ is de-
creasing, ∆V λ

T ≤ 0, and from the above, EV λ(α)T ≥ 0. We conclude that ∆V λ
T = 0

for all predictable stopping times. Lemma VI.19.2 of [143] then shows that V λ(α) is
continuous.

Let Lλt = λMt + W λ(α) − V λ(α). By our previous observations, Lλ is a uniformly
integrable martingale. In particular the limit Lλ∞ exists. Note that (Lλ)c = λM c, so
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it holds that [(Lλ)c]t = λ2[M c]t. Also note that by continuity of V λ(α), we have

∆Lλt = λ∆Mt + (1 +
√

1− α∆Mt)
λ − (1 + λ

√
1− α∆Mt)

= (λ− λ
√

1− α)∆Mt + (1 +
√

1− α∆Mt)
λ − 1

≥ λ(1−
√

1− α)∆Mt ≥ 0, (4.44)

and as W λ(α) has nonpositive jumps, we also have ∆Lλt ≤ λ∆Mt. Combining these
observations, we obtain [Lλ]t ≤ λ2[M ]t, yielding that Lλ is square-integrable. We
also obtain 〈Lλ〉t ≤ λ2〈M〉t. This implies

α[Lλ]∞ + (1− α)〈Lλ〉∞ ≤ λ2(α[M ]∞ + (1− α)〈M〉∞), (4.45)

so by what we already have shown, E(Lλ) is a uniformly integrable martingale. By
elementary calculations, we obtain

E(Lλ)∞ = E(M)λ∞ exp

(
λ(1− λ)

2
[M c]∞ +

∑
0<t

log
1 + ∆Lλt

(1 + ∆Mt)λ
− V λ(α)∞

)
.

By (4.14) of Lemma 4.2.5 and Lemma 4.2.6, we obtain the two inequalities

−V λ(α)∞ ≤ (1− α)
λ(1− λ)

2
〈Md〉∞ (4.46)∑

0<t

log
1 + ∆Lλt

(1 + ∆Mt)λ
≤ αλ(1− λ)

2
[Md]∞, (4.47)

so that combining our conclusions, we have

1 = EE(Lλ)∞

≤ EE(M)λ∞ exp

(
λ(1− λ)

2
([M c]∞ + α[Md]∞ + (1− α)〈Md〉∞)

)
= EE(M)λ∞ exp

(
λ(1− λ)

2
(α[M ]∞ + (1− α)〈M〉∞)

)
, (4.48)

which is a bound similar to (4.12). Therefore, proceeding as in the proof of the
case α = 1, we obtain as a consequence of Lemma 4.2.2 that E(M) is a uniformly
integrable martingale. �

We take a moment to reflect on the methods applied in the above proof, and make
the following observations. First, while the proof of the case 0 ≤ α < 1 is more
complicated than the proof of the case α = 1, both proofs follow very much the
same plan: Use Hölder’s inequality to argue that the result holds in a simple case
where 1

2 is exchanged with (1 + ε)1
2 in the exponent, then use Hölder’s inequality

again to obtain the general proof. Also, note that the local martingale N̄p used in
the first part of the proof of the case 0 ≤ α < 1 is related to general decompositions
of exponential martingales, see Lemma II.1 of [117].
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The comparatively simple structure of the proof is made possible by three main fac-
tors: The factor λ(1− λ) present in the real analysis inequalities allows us to apply
Hölder’s inequality in the second parts of the proofs. Some of these inequalities have
been noted earlier with a factor 1−λ instead of λ(1−λ), compare for example (4.14)
with (1.2) and (1.3) of [109], where the inequalities follow by a Taylor expansion ar-
gument. The more advanced triple-parameter inequality (4.20) allows us to obtain
a criterion combining the quadratic variation and the predictable quadratic varia-
tion. Finally, the assumption ∆M ≥ 0, apart from making most of the real analysis
inequalities applicable, also ensures that the compensator V λ(α) in the second part
of the proof of the case 0 ≤ α < 1 is continuous.
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Abstract. We give a short and elementary proof that the first hitting
time of a Fσ set by the jump process of a càdlàg adapted process is a
stopping time.

5.1 Introduction

For a stochastic process X and a subset B of the real numbers, the mapping T
defined by T = inf{t ≥ 0|Xt ∈ B} is called the first hitting time of B by X. In [159],
a short and elementary proof was given that the first hitting time of an open set by
the jump process of a càdlàg adapted process is a stopping time. A similar result is
proved by elementary means in [14], Proposition 1.3.14, where it is shown that the
first hitting time of [c,∞) for c > 0 by the jump process of a càdlàg adapted process
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is a stopping time. Using methods similar to both [14] and [159], we prove in this
note that the hitting time of an Fσ set, meaning a countable union of closed sets,
by the jump process of a càdlàg adapted process is a stopping time. As open sets
are Fσ sets, this result covers both the case of hitting an open and a closed set.

5.2 Main result

We assume given a filtered probability space (Ω,F , (Ft), P ) such that the filtration
(Ft)t≥0 is right-continuous in the sense that Ft = ∩s>tFs for all t ≥ 0. Also, we use
the convention that X0− = X0, so that there is no jump at the timepoint zero.

Theorem 5.2.1. Let X be a càdlàg adapted process, and let U be an Fσ set in R.
Define T = inf{t ≥ 0|∆Xt ∈ U}. Then T is a stopping time.

Proof. By the càdlàg property of X, ∆X is zero everywhere except for on a countable
set. Therefore, T is identically zero if U contains zero, and so it is immediate that
T is a stopping time in this case. We conclude that it suffices to prove the result in
the case where U does not contain zero. Therefore, assume that U is an Fσ set not
containing zero. By right-continuity of the filtration, it suffices to show (T < t) ∈ Ft
for t > 0, see Theorem I.1 of [134]. Fix t > 0. Assume that U = ∪∞n=1Fn, where Fn
is closed. As X0 −X0− = 0 and U does not contain zero, we have

(T < t) = (∃ s ∈ (0, t) : Xs −Xs− ∈ U)

= ∪s∈(0,t) ∪∞n=1 (Xs −Xs− ∈ Fn)

= ∪∞n=1 ∪s∈(0,t) (Xs −Xs− ∈ Fn)

= ∪∞n=1(∃ s ∈ (0, t) : Xs −Xs− ∈ Fn). (5.1)

Thus, it suffices to show that (∃ s ∈ (0, t) : Xs − Xs− ∈ F ) ∈ Ft for all closed F .
Assume given such a closed set F . We claim that

(∃ s ∈ (0, t) : Xs −Xs− ∈ F ) = ∩∞n=1 ∪(p,q)∈Θn (Xq −Xp ∈ Fn) , (5.2)

where Fn = {x ∈ R | ∃ y ∈ F : |x − y| ≤ 1/n} and Θn is the subset of Q2 defined
by Θn = {(p, q) ∈ Q2|0 < p < q < t, |p− q| ≤ 1/n}.

To prove this, we first consider the inclusion towards the right. Assume that there
is 0 < s < t such that Xs −Xs− ∈ F . Fix n ≥ 1. By the path properties of X, we
obtain that for p, q ∈ R with 0 < p < s < q < t and p and q close enough to s,
|Xq −Xs| ≤ 1/2n and |Xp−Xs−| ≤ 1/2n, yielding |(Xq −Xp)− (Xs−Xs−)| ≤ 1/n
and thus Xq − Xp ∈ Fn. By picking p and q in Q close enough to s, we obtain
(p, q) ∈ Θn as well. This proves the inclusion towards the right.

Next, consider the inclusion towards the left. Assume that for all n ≥ 1, there is
(pn, qn) ∈ Θn such that Xqn −Xpn ∈ Fn. We then also have limn |pn − qn| = 0. By
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taking two consecutive subsequences and relabeling, we may assume that in addition
to having limn |pn − qn| = 0 and 0 < pn < qn < t, both pn and qn are monotone.
As (Fn) is decreasing, we then also obtain Xqn −Xpn ∈ Fn for all n ≥ 1. As pn and
qn are bounded and monotone, they are convergent, and as limn |qn − pn| = 0, it
follows that the limit s is the same for both qn and pn.

We wish to argue that 0 < s < t, that Xs− = limnXpn and that Xs = limnXqn .
First note that as both (pn) and (qn) are monotone, the limits limnXpn and limnXqn

exist and are either equal to Xs or Xs−. As Xqn −Xpn ∈ Fn, we obtain

lim
n
Xqn − lim

n
Xpn = lim

n
Xqn −Xpn ∈ ∩∞n=1Fn = F,

where the final equality follows as F is closed. As F does not contain zero, we
conclude limnXqn − limnXpn 6= 0. From this, we immediately obtain 0 < s < t,
as if s = 0, we would obtain that both limnXqn and limnXpn were equal to Xs,
and if s = t, both limnXqn and limnXpn would be equal to Xs−, in both cases
yielding a contradiction. Also, we cannot have that both limits are Xs or that both
limits are Xs−, and so only two cases are possible, namely that Xs = limnXqn and
Xs− = limnXpn or that Xs = limnXpn and Xs− = limnXqn . We wish to argue that
the former holds. If Xs = Xs−, this is trivially the case. Assume that Xs 6= Xs− and
that Xs = limnXpn and Xs− = limnXqn . If qn ≥ s eventually or pn < s eventually,
we obtain Xs = Xs−, a contradiction. Therefore, qn < s infinitely often and pn ≥ s
infinitely often. By monotonicity, qn < s and pn ≥ s eventually, a contradiction with
pn < qn. We conclude Xs = limnXqn and Xs− = limnXpn , as desired.

From this, we conclude Xs − Xs− = limnXqn − limnXpn ∈ F . This proves the
existence of s ∈ (0, t) such that Xs −Xs− ∈ F , and so proves the inclusion towards
the right.

We have now shown (5.2). Now, as Xs is Ft measurable for all 0 ≤ s ≤ t, the
set ∩∞n=1 ∪(p,q)∈Θn (Xq − Xp ∈ Fn) is Ft measurable as well. We conclude that
(T < t) ∈ Ft and so T is a stopping time.
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Abstract. New proofs are given of the existence of the compensator
(or dual predictable projection) of a locally integrable càdlàg adapted
process of finite variation and of the existence of the quadratic variation
process for a càdlàg local martingale. Both proofs apply a functional
analytic subsequence principle. After presenting the proofs, we discuss
their application in giving a simplified account of the construction of the
stochastic integral of a locally bounded predictable process with respect
to a semimartingale.

6.1 Introduction

Assume given a filtered probability space (Ω,F , (Ft), P ) satisfying the usual condi-
tions, see [134], Section I.1, for the definition of this and other standard probabilistic
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concepts. For a locally integrable càdlàg adapted process A with initial value zero and
finite variation, the compensator, also known as the dual predictable projection, is
the unique locally integrable càdlag predictable process Π∗pA with initial value zero
and finite variation such that A − Π∗pA is a local martingale. For a càdlàg local
martingale M with initial value zero, the quadratic variation process is the unique
increasing càdlàg adapted process [M ] with initial value zero such that M2− [M ] is
a local martingale and ∆[M ] = (∆M)2. In both cases, uniqueness is up to indistin-
guishability.

For both the dual predictable projection and the quadratic variation, the proofs of
the existence of these processes are among the most difficult in classical martingale
theory, see for example [143], [66] or [134] for proofs. In this article, we give new
proofs of the existence of these processes. The proofs are facilitated by the following
lemma, first applied in this form to probability theory in [13]. We also give a short
proof of the lemma.

Lemma 6.1.1. Let (Xn) be sequence of variables bounded in L2. There exists a
sequence (Yn) such that each Yn is a convex combination of a finite set of elements
in {Xn, Xn+1, . . .} and (Yn) is convergent in L2.

Proof. Let αn be the infimum of EZ2, where Z ranges through all finite convex com-
binations of elements in {Xn, Xn+1, . . .}, and define α = supn αn. If Z =

∑Kn
k=n λkXk

for some convex weights λn, . . . , λKn , we obtain
√
EZ2 ≤ supn

√
EX2

n, in particular
we have αn ≤ supnEX

2
n and so α ≤ supnEX

2
n as well, proving that α is finite. For

each n, there is a variable Yn which is a finite convex combination of elements in
{Xn, Xn+1, . . .} such that E(Yn)2 ≤ αn + 1

n . Let m ≥ n, we then obtain

E(Yn − Ym)2 = 2EY 2
n + 2EY 2

m − E(Yn + Ym)2

= 2EY 2
n + 2EY 2

m − 4E(1
2(Yn + Ym))2

≤ 2(αn + 1
n) + 2(αm + 1

m)− 4αn

= 2( 1
n + 1

m) + 2(αm − αn). (6.1)

As (αn) is convergent, it is Cauchy. Therefore, the above shows that (Yn) is Cauchy
in L2, therefore convergent, proving the lemma.

Lemma 6.1.1 may be seen as a combination of variants of the following two classi-
cal results: Every bounded sequence in a reflexive Banach space contains a weakly
convergent subsequence (see Theorem 4.41-B of [165]), and every weakly convergent
sequence in a reflexive Banach space has a sequence of convex combinations of its
elements converging strongly to the weak limit (see Theorem 3.13 of [148]). In [13],
an L1 version of Lemma 6.1.1 is used to give a simple proof of the Doob-Meyer
theorem, building on the ideas of [84] and [136].

The remainder of the article is organized as follows. In Section 6.2, we give our
proof of the existence of the compensator, and in Section 6.3, we give our proof of
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the existence of the quadratic variation. In Section 6.4, we discuss how these results
may be used to give a simplified account of the theory of stochastic integration with
respect to semimartingales. In particular, the account proposed excludes the use of:
The début theorem, the section theorems and the Doob-Meyer theorem. Section 6.5
contains auxiliary results which are needed in the main proofs.

6.2 The existence of the compensator

In this section, we will show that for any càdlàg adapted process A with initial value
zero and paths of finite variation, locally integrable, there exists a càdlàg predictable
process Π∗pA with initial value zero and paths of finite variation, locally integrable,
unique up to indistinguishability, such that A−Π∗pA is a local martingale. We refer
to Π∗pA as the compensator of A. The proofs will use some basic facts from the
general theory of processes, some properties of monotone convergence for càdlàg
increasing mappings, and Lemma 6.1.1. Essential for the results are the results on
the limes superior of discrete approximations to the compensator, the proof of this
is based on the technique developed in [84] and also applied in [13]. Note that as the
existence of the compensator follows directly from the Doob-Meyer theorem, see for
example Section I.3b of [83], the interest of the proofs given in this section is that if
we restrict our attention to the compensator of a finite variation process instead of
a submartingale, the uniform integrability arguments applied in [136] may be done
away with, and furthermore we need only an L2 subsequence principle and not an L1

subsequence principle as in [13]. We begin by recalling some standard nomenclature
and fixing our notation.

By A, we denote the set of processes which are càdlàg adapted and increasing with
initial value zero. For A ∈ A, the limit A∞ of At for t tending to infinity always
exists in [0,∞]. We say that A is integrable if A∞ is integrable. The subset of
integrable processes in A is denoted by Ai. For A ∈ A, we say that A is locally
integrable if there exists a localising sequence (Tn) such that ATn ∈ Ai. The set of
such processes is denoted by Ai`. By V, we denote the set of processes which are
càdlàg adapted with initial value zero and has paths of finite variation. For A ∈ V,
VA denotes the process such that (VA)t is the variation of A over [0, t]. VA is then
an element of A. For A ∈ V, we say that A is integrable if VA is integrable, and we
say that A is locally integrable if VA is locally integrable. The corresponding spaces
of stochastic processes are denoted by V i and V i`, respectively. By D+, we denote
the set of nonnegative dyadic rationals, D+ = {k2−n|k ≥ 0, n ≥ 0}. The space of
square-integrable martingales with initial value zero is denoted byM2. Also, we say
that two processes X and Y are indistinguishable if their sample paths are almost
surely equal, and in this case, we say that X is a modification of Y and vice versa.
We say that a process X is càdlàg if it is right-continuous with left limits, and we
say that a process X is càglàd if it is left-continuous with right limits.

Our main goal in this section is to show that for any A ∈ V i`, there is a predictable
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element Π∗pA of V i`, unique up to indistinguishability, such that A − Π∗pA is a local
martingale. To prove the result, we first establish the existence of the compensator
for some simple elements of V i`, namely processes of the type ξ1[[T,∞[[, where T is
a stopping time with T > 0, ξ is bounded, nonnegative and FT measurable and
[[T,∞[[= {(t, ω) ∈ R+ × Ω | T (ω) ≤ t}. After this, we apply monotone convergence
arguments and localisation arguments to obtain the general existence result.

Lemma 6.2.1. Let T be a stopping time with T > 0 and let ξ be nonnegative,
bounded and FT measurable. Define A = ξ1[[T,∞[[. A is then an element of Ai,
and there exists a predictable process Π∗pA in Ai such that A − Π∗pA is a uniformly
integrable martingale.

Proof. Let tnk = k2−n for k, n ≥ 0. We define Ant = Atnk for tnk ≤ t < tnk+1, as well as

Bn
t =

k+1∑
i=1

E(Atni −Atni−1
|Ftni−1

) for tnk < t ≤ tnk+1, (6.2)

and Bn
0 = 0. Note that both An and Bn have initial value zero, since T > 0. Also

note that An is càdlàg adapted and Bn is càglàd adapted. Put Mn = An−Bn. Note
that Mn is adapted, but not necessarily càdlàg or càglàd. Also note that, with the
convention that a sum over an empty index set is zero, it holds that

Antnk
= Atnk and Bn

tnk
=

k∑
i=1

E(Atni −Atni−1
|Ftni−1

) (6.3)

for k ≥ 0. Therefore, (Btnk )k≥0 is the compensator of the discrete-time increasing
process (Atnk )k≥0, see Theorem II.54 of [142], so (Mn

tnk
)k≥0 is a discrete-time mar-

tingale with initial value zero. We next show that each element in this sequence
of discrete-time martingales is bounded in L2, and the limit variables constitute a
sequence bounded in L2 as well, this will allow us to apply Lemma 6.1.1. To this
end, note that since Bn has initial value zero,

(Bn
tnk

)2 = 2(Bn
tnk

)2 −
k−1∑
i=0

(Bn
tni+1

)2 − (Bn
tni

)2

=

k−1∑
i=0

2Bn
tnk

(Bn
tni+1
−Bn

tni
)− (Bn

tni+1
)2 + (Bn

tni
)2

=

k−1∑
i=0

2(Bn
tnk
−Bn

tni
)(Bn

tni+1
−Bn

tni
)− (Bn

tni+1
−Bn

tni
)2

≤
k−1∑
i=0

2(Bn
tnk
−Bn

tni
)(Bn

tni+1
−Bn

tni
). (6.4)
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Now let c be a bound for ξ. Applying that Bn
tni+1

is Ftni measurable, the martingale

property of (Mn
tnk

)k≥0 and the fact that A and B are increasing and A is bounded
by c, we find

E(Bn
tnk
−Bn

tni
)(Bn

tni+1
−Bn

tni
) = E(Bn

tni+1
−Bn

tni
)E(Bn

tnk
−Bn

tni
|Ftni )

= E(Bn
tni+1
−Bn

tni
)E(Antnk

−Antni |Ftni )

≤ cE(Bn
tni+1
−Bn

tni
). (6.5)

All in all, E(Bn
tnk

)2 ≤ 2c
∑k−1

i=0 E(Bn
tni+1
− Bn

tni
) = 2cEBn

tnk
= 2cEAntnk

≤ 2c2. Thus

E(Mn
tnk

)2 ≤ 4E(Antnk
)2 + 4E(Bn

tnk
)2 ≤ 12c2. We conclude that (Mn

tnk
)k≥0 is bounded

in L2, and so convergent almost surely and in L2 to a limit Mn
∞, and the sequence

(Mn
∞)n≥0 is bounded in L2 as well.

By Lemma 6.1.1, there exists a sequence of naturals (Kn) with Kn ≥ n and for
each n a finite sequence of reals λnn, . . . , λ

n
Kn

in the unit interval summing to one,

such that
∑Kn

i=n λ
n
iM

i
∞ is convergent in L2 to some variable M∞. Let M be a càdlàg

version of the process t 7→ E(M∞|Ft). Define B = A −M , we wish to argue that
there is a modification of B satisfying the requirements of the lemma.

To do so, first note that as (Mk
tnk

)k≥0 is a martingale, Doob’s inequality yields

lim
n→∞

E sup
k≥0

(
Mtnk
−

Kn∑
i=n

λniM
i
tnk

)2

= 0, (6.6)

and by picking a subsequence and relabeling, we may assume that the convergence is
almost sure as well. In particular,

∑Kn
i=n λ

n
iM

i
q converges almost surely to Mq for all

q ∈ D+. Now put Cn =
∑Kn

i=n λ
n
i B

i. Note that Cn is càdlàg, adapted and increasing,
and

lim
t→∞

Cnt = lim
m→∞

Cnm = lim
m→∞

Kn∑
i=n

λni B
i
m

= lim
m→∞

Am −
Kn∑
i=n

λniM
i
m = A∞ −

Kn∑
i=n

λniM
i
∞, (6.7)

showing that Cn ∈ Ai and that (Cn∞)n≥0 is bounded in L2. Also note that for each
q ∈ D+, it holds that Aq = limn→∞A

n
q almost surely. Therefore,

Bq = Aq −Mq = lim
n→∞

Anq −
Kn∑
i=n

λniM
i
q = lim

n→∞

Kn∑
i=n

λni B
i
q = lim

n→∞
Cnq , (6.8)

almost surely. From this, we obtain that B is almost surely increasing on D+. As
B is càdlàg, this shows that B is almost surely increasing on all of R+. Next, we
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show that Bt = lim supn→∞C
n
t almost surely, simultaneuously for all t ≥ 0, this

will allow us to show that B has a predictable modification. To this end, note that
for t ≥ 0 and q ∈ D+ with q ≥ t, lim supn→∞C

n
t ≤ lim supn→∞C

n
q = Bq. As B

is càdlàg, this yields lim supn→∞C
n
t ≤ Bt. This holds almost surely for all t ∈ R+

simultaneously. Similarly, lim infn→∞C
n
t ≥ Bt− almost surely, simultaneously for

all t ≥ 0. All in all, we conclude that almost surely, Bt = lim supn→∞C
n
t for all

continuity points t of B, simultaneously for all t ≥ 0. As the jumps of B can be
exhausted by a countable sequence of stopping times, we find that in order to show
the desired result on the limes superior, it suffices to show for any stopping time S
that BS = lim supn→∞C

n
S .

Fixing a stopping time S, we first note that as 0 ≤ CnS ≤ Cn∞, the sequence of
variables (CnS)n≥0 is bounded in L2 and thus in particular uniformly integrable.
Therefore, by Lemma 6.5.1, lim supn→∞EC

n
S ≤ E lim supn→∞C

n
S ≤ EBS . As

lim supn→∞C
n
S ≤ BS almost surely, we find that to show lim supn→∞C

n
S = BS

almost surely, it suffices to show that ECnS converges to EBS , and to this end, it
suffices to show that EBn

S converges to EBS . Now define Sn by putting Sn = ∞
whenever S = ∞ and Sn = tnk whenever tnk−1 < S ≤ tnk . (Sn) is then a sequence
of stopping times taking values in D+ and infinity and converging downwards to S,
and it holds that

Bn
S =

∞∑
k=0

Bn
tnk+1

1(tnk<S≤t
n
k+1) =

∞∑
k=0

Bn
tnk+1

1(Sn=tnk+1) = Bn
Sn . (6.9)

As (Mn
tnk

)k≥0 is a uniformly integrable discrete-time martingale, the optional sam-
pling theorem yields EBn

Sn
= EAnSn , and similarly, EBS = EAS . As A is càdlàg and

bounded and AnSn = ASn , the dominated convergence theorem allows us to obtain

lim
n→∞

EBn
S = lim

n→∞
EBn

Sn = lim
n→∞

EAnSn

= lim
n→∞

EASn = lim
n→∞

EAS = EBS . (6.10)

Recalling our earlier observations, we may now conclude that lim supn→∞C
n
t = Bt

almost surely for all points of discontinuity of B, and so all in all, the result holds
almost surely for all t ∈ R+ simultaneously.

We now apply this to show that B has a predictable modification. Let F be the
almost sure set where B = lim supn→∞C

n. Theorem 3.33 of [66] then shows that
1FC

n is a predictable càdlàg process, and 1FB = lim supn→∞ 1FC
n. Therefore, 1FB

is a predictable càdlàg process, and 1FB is almost surely increasing as well. Now let
Π∗pA be a modification of B such that Π∗pA is in Ai. Again using Theorem 3.33 of
[66], Π∗pA is predictable since B is predictable, and as A−Π∗pA is a modification of
the uniformly integrable martingale A − B, we conclude that Π∗pA satisfies all the
requirements to be the compensator of A.

With Lemma 6.2.1 in hand, the remainder of the proof for the existence of the
compensator merely consists of monotone convergence arguments.
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Lemma 6.2.2. Let An be a sequence of processes in Ai such that
∑∞

n=1A
n converges

pointwise to a process A. Assume for each n ≥ 1 that Bn is a predictable element
of Ai such that An −Bn is a uniformly integrable martingale. A is then in Ai, and∑∞

n=1B
n almost surely converges pointwise to a predictable process Π∗pA in Ai such

that A−Π∗pA is a uniformly integrable martingale.

Proof. Clearly, A is in Ai. With B =
∑∞

n=0B
n, B is a well-defined process with

values in [0,∞], since each Bn is nonnegative. We wish to argue that there is a
modification of B which is the compensator of A. First note that as each Bn is
increasing and nonnegative, so is B. Also, as An − Bn is a uniformly integrable
martingale, the optional sampling theorem and two applications of the monotone
convergence theorem yields for any bounded stopping time T that

EBT = lim
n→∞

n∑
k=1

EBk
T = lim

n→∞

n∑
k=1

EAkT = EAT , (6.11)

which in particular shows that B almost surely takes finite values. Therefore, by
Lemma 6.5.2, we obtain that B is almost surely nonnegative, càdlàg and increasing.
Also, by another two applications of the monotone convergence theorem, we obtain
for any stopping time T that EBT = limt→∞EBT∧t = limt→∞EAT∧t = EAT . This
holds in particular with T =∞, and therefore, the limit of Bt as t tends to infinity
is almost surely finite and is furthermore integrable. Lemma 6.5.2 then also shows
that

∑n
k=1B

k converges almost surely uniformly to B on R+.

We now let Π∗pA be a nonnegative càdlàg increasing adapted modification of B.
Then Π∗pA is in Ai, and E(Π∗pA)T = EAT for all stopping times T , so by Theorem

77.6 of [143], A− Π∗pA is a uniformly integrable martingale. Also,
∑n

k=1B
k almost

surely converges uniformly to Π∗pA on R+. In order to complete the proof, it remains
to show that Π∗pA is predictable. To this end, note that by uniform convergence,

Lemma 6.5.3 shows that for any stopping time T , ∆(Π∗pA)T = limn
∑n

k=1 ∆Bk
T . As

Bk is predictable, we find by Theorem 3.33 of [66] that if T is totally inacessible,
∆(Π∗pA)T is zero almost surely, and if T is predictable, ∆(Π∗pA)T is FT− measurable.
Therefore, Theorem 3.33 of [66] shows that Π∗pA is predictable.

Theorem 6.2.3. Let A ∈ V i`. There exists a predictable process Π∗pA in V i`, unique
up to indistinguishability, such that A−Π∗pA is a local martingale.

Proof. We first consider uniqueness. If A ∈ V i` and B and C are two predictable
processes in V i` such that A−B and A−C both are local martingales, we find that
B − C is a predictable local martingale with paths of finite variation. By Theorem
6.3 of [66], uniqueness follows.

As for existence, Lemma 6.2.1 establishes existence for the case where A = ξ1[[T,∞[[

where ξ is nonnegative, bounded and FT measurable. Using Lemma 6.2.2, this ex-
tends to the case where ξ ∈ L1(FT ). For general A ∈ Ai, there exists by Theo-
rem 3.32 of [66] a sequence of stopping times (Tn) covering the jumps of A. Put
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Ad =
∑∞

n=1 ∆ATn1[[Tn,∞[[. As A ∈ Ai, Ad is a well-defined element of Ai, and A−Ad
is a continuous element of Ai. As we have existence for each ∆ATn1[[Tn,∞[[, Lemma
6.2.2 allows us to obtain existence for A. Existence for A ∈ V i is then obtained
by decomposing A = A+ − A−, where A+, A− ∈ Ai, and extends to A ∈ V i` by a
localisation argument.

From the characterisation in Theorem 6.2.3, the usual properties of the compensator
such as linearity, positivity, idempotency and commutation with stopping, can then
be shown.

6.3 The existence of the quadratic variation

In this section, we will prove the existence of the quadratic variation process for a lo-
cal martingale by a reduction to the cases of bounded martingales and martingales of
integrable variation, applying Lemma 6.1.1 to obtain existence for bounded martin-
gales. Apart from Lemma 6.1.1, the proofs will also use the fundamental theorem of
local martingales as well as some properties of martingales with finite variation. Our
method of proof is direct and is simpler than the methods employed in for example
[87] or [83], where the quadratic covariation is defined through the integration-by-
parts formula and requires the construction and properties of the stochastic integral
for semimartingales.

Lemma 6.3.1. Let M be a bounded martingale with initial value zero. There exists
a process [M ] in Ai, unique up to indistinguishability, such that M2 − [M ] ∈ M2

and ∆[M ] = (∆M)2. We call [M ] the quadratic variation process of M .

Proof. We first consider uniqueness. Assume that A and B are two processes in Ai
such that M2 − A and M2 −B are in M2 and ∆A = ∆B = (∆M)2. In particular,
the process A−B is a continuous element of M2 and has paths of finite variation,
so Theorem 6.3 of [66] shows that A − B is almost surely zero, such that A and B
are indistinguishable. This proves uniqueness. Next, we consider the existence of the
process. Let tnk = k2−n for n, k ≥ 0, we then find

M2
t =

∞∑
k=1

M2
t∧tnk
−M2

t∧tnk−1

= 2

∞∑
k=1

M t
tnk−1

(M t
tnk
−M t

tnk−1
) +

∞∑
k=1

(M t
tnk
−M t

tnk−1
)2, (6.12)

where the terms in the sum are zero from a point onwards, namely for such k that
tnk−1 ≥ t. Define Nn

t = 2
∑∞

k=1M
t
tnk−1

(M t
tnk
−M t

tnk−1
). Our plan for the proof is to show

that (Nn) is a bounded sequence inM2. This will allow us to apply Lemma 6.1.1 in
order to obtain some N ∈M2 which is the limit of appropriate convex combinations
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of the (Nn). We then show that by putting [M ] equal to a modification of M2−N ,
we obtain a process with the desired qualities.

We first show that Nn is a martingale by applying Theorem II.77.6 of [143]. Clearly,
Nn is càdlàg and adapted with initial value zero, and so it suffices to prove that Nn

T

is integrable and that ENn
T = 0 for all bounded stopping times T . To this end, note

that as M is bounded, there is c > 0 such that |Mt| ≤ c for all t ≥ 0. Then Nn
T is

clearly integrable, as it is the sum of finitely many terms each bounded by 4c2, and
we have

ENn
T = E

∞∑
k=1

MT∧tnk−1
(MT∧tnk −MT∧tnk−1

) (6.13)

=

∞∑
k=1

EMT
tnk−1

(MT
tnk
−MT

tnk−1
) =

∞∑
k=1

EMT
tnk−1

E(MT
tnk
−MT

tnk−1
|Ftnk−1

),

where the interchange of summation and expectation is allowed, as the only nonzero
terms in the sum are for those k such that tnk−1 ≤ t, and there are only finitely

many such terms. As MT is a martingale, E(MT
tnk
−MT

tnk−1
|Ftnk−1

) = 0 by optional

sampling, so the above is zero and Nn is a martingale by Theorem II.77.6 of [143].
Next, we show that (Nn) is bounded in L2. Fix k ≥ 1, we first consider a bound for
the second moment of Nn

tnk
. To obtain this, note that for i < j,

E(Mtni−1
(Mtni

−Mtni−1
))(Mtnj−1

(Mtnj
−Mtnj−1

))

= E(Mtni−1
(Mtni

−Mtni−1
)E(Mtnj−1

(Mtnj
−Mtnj−1

)|Ftni )

= E(Mtni−1
(Mtni

−Mtni−1
)Mtnj−1

E(Mtnj
−Mtnj−1

|Ftni ), (6.14)

which is zero, as E(Mtnj
−Mtnj−1

|Ftni ) = 0, and by the same type of argument, we

obtain E(Mtni
−Mtni−1

)(Mtnj
−Mtnj−1

) = 0. In other words, the variables are pairwisely
orthogonal, and so

E(Nn
tnk

)2 = E

(
k∑
i=1

Mtni−1
(Mtni

−Mtni−1
)

)2

=

k∑
i=1

E
(
Mtni−1

(Mtni
−Mtni−1

)
)2

≤ c2
k∑
i=1

E(Mtni
−Mtni−1

)2 = c2E

(
k∑
i=1

Mtni
−Mtni−1

)2

= c2EM2
tnk
, (6.15)

which yields supt≥0E(Nn
t )2 = supk≥1E(Nn

tnk
)2 ≤ supk≥1 c

2EM2
tnk
≤ 4c2EM2

∞, and

this is finite. Thus, Nn ∈M2, and E(Nn
∞)2 = limtE(Nn

t )2 ≤ 4c2EM2
∞, so (Nn

∞)n≥1

is bounded in L2.

Now, by Lemma 6.1.1, there exists a sequence of naturals (Kn) with Kn ≥ n and
for each n a finite sequence of reals λnn, . . . , λ

n
Kn

in the unit interval summing to one,

such that
∑Kn

i=n λ
n
i N

i
∞ is convergent in L2 to some variable N∞. It then holds that
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there is N ∈ M2 such that E supt≥0(Nt −
∑Kn

i=n λ
n
i N

i
t )

2 tends to zero. By picking
a subsequence and relabeling, we may assume without loss of generality that we
also have almost sure convergence. Define A = M2 − N , we claim that there is a
modification of A satisfying the criteria of the theorem.

To prove this, first note that as M2 and N are càdlàg and adapted, so is A. We want
to show that A is almost surely increasing and that ∆A = (∆M)2 almost surely. We
first consider the jumps of A. To prove that ∆A = (∆M)2 almost surely, it suffices
to show that ∆AT = (∆MT )2 almost surely for any bounded stopping time T . Let T
be any bounded stopping time. As it holds that supt≥0(Nt−

∑Kn
i=n λ

n
i N

i
t )

2 converges
to zero almost surely, we find

AT = M2
T −NT = lim

n→∞

Kn∑
i=n

λni (M2
T −N i

T )

= lim
n→∞

Kn∑
i=n

λni

∞∑
k=1

(M
tik
T −M

tik−1

T )2, (6.16)

almost surely. In particular, we obtain

∆AT = lim
n→∞

Kn∑
i=n

λni

( ∞∑
k=1

(M
tik
T −M

tik−1

T )2 − (M
tik
T− −M

tik−1

T− )2

)
. (6.17)

Fix i, k ≥ 0. Note that

(M
tik
t −M

tik−1

t )2 − (M
tik
t− −M

tik−1

t− )2 = 0 when t ≤ tik−1 or t > tik

(M
tik
t −M

tik−1

t )2 = (Mt −Mtik−1
)2 when tik−1 < t ≤ tik

(M
tik
t− −M

tik−1

t− )2 = (Mt− −Mtik−1
)2 when tik−1 < t ≤ tik.

From these observations, we conclude that with s(t, i) denoting the unique tik−1 such
that tik−1 < t ≤ tik, we have

∆AT = lim
n→∞

Kn∑
i=n

λni ((MT −Ms(T,i))
2 − (MT− −Ms(T,i))

2). (6.18)

Here, it holds that

(MT −Ms(T,i))
2 − (MT− −Ms(T,i))

2

=M2
T − 2MTMs(T,i) +M2

s(T,i) − (M2
T− − 2MT−Ms(T,i) +M2

s(T,i))

=M2
T −M2

T− − 2∆MTMs(T,i)

=(MT −MT−)(MT +MT−)− 2∆MTMs(T,i)

=(∆MT )2 + 2∆MT (MT− −Ms(T,i)), (6.19)
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yielding ∆AT = (∆MT )2 +2∆MT limn→∞
∑Kn

i=n λ
n
i (MT−−Ms(T,i)). Now, we always

have s(T, i) < T and |s(T, i)− T | ≤ 2−i. Therefore, given ε > 0, there is n ≥ 1 such
that for all i ≥ n, |MT− − Ms(T,i)| ≤ ε. As the (λni )n≤i≤Kn are convex weights,

we obtain for n this large that |
∑Kn

i=n λ
n
i (MT− −Ms(T,i))| ≤ ε. This allows us to

conclude that
∑Kn

i=n λ
n
i (MT− −Ms(T,i)) converges almost surely to zero. Combining

this with our previous conclusions, we obtain ∆AT = (∆MT )2 almost surely. Since
this holds for any arbitrary stopping time, we now obtain ∆A = (∆M)2 up to
indistinguishability.

Next, we show that A is almost surely increasing. Consider elements p, q ∈ D+ with
p ≤ q, we will show that Ap ≤ Aq almost surely. There exists j ≥ 1 and naturals
np ≤ nq such that p = np2

−j and q = nq2
−j . By our previous results, we have

Ap = limn→∞
∑Kn

i=n λ
n
i

∑∞
k=1(Mp∧tik

−Mp∧tik−1
)2, and analogously for Aq. For i ≥ j,

p ∧ tik = np2
−j ∧ k2−i = (np2

i−j ∧ k)2−i, and analogously for q ∧ tik. Therefore, we
obtain that almost surely,

lim
n→∞

Kn∑
i=n

λni

∞∑
k=1

(Mp∧tik
−Mp∧tik−1

)2 = lim
n→∞

Kn∑
i=n

λni

np2i−j∑
k=1

(Mtik
−Mtik−1

)2

≤ lim
n→∞

Kn∑
i=n

λni

nq2i−j∑
k=1

(Mtik
−Mtik−1

)2

= lim
n→∞

Kn∑
i=n

λmi

∞∑
k=1

(Mq∧tik
−Mq∧tik−1

)2, (6.20)

allowing us to make the same calculations in reverse and conclude Ap ≤ Aq almost
surely. As D+ is countable, we conclude that A is inceasing on D+ almost surely,
and as A is càdlàg, we conclude that A is increasing almost surely. Furthermore, as
we have that A∞ = M2

∞ −N∞ and both M2
∞ and N∞ are integrable, we conclude

that A∞ is integrable.

Finally, let F be the almost sure set where A is increasing. Put [M ] = A1F . As
all null sets are in Ft for t ≥ 0, [M ] is adapted as A is adapted. Furthermore, [M ]
is càdlàg, increasing and [M ]∞ exists and is integrable. As M2 − [M ] = N up to
indistinguishability, we now have constructed a process [M ] which is in Ai such that
M2 − [M ] is in M2 and ∆[M ] = (∆M)2 up to indistinguishability. This concludes
the proof.

Theorem 6.3.2. Let M be a local martingale with initial value zero. There exists
[M ] ∈ A with the properties that M2 − [M ] is a local martingale with initial value
zero and ∆[M ] = (∆M)2.

Proof. We first consider the case where M = M b + M i, where M b and M i both
are local martingales with initial value zero, M b is bounded and M i is of integrable
variation. In this case,

∑
0<s≤t(∆M

i
t )

2 is absolutely convergent for any t ≥ 0, and
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we may therefore define a process Ai in A by putting Ait =
∑

0<s≤t(∆M
i
t )

2. As M b

is bounded,
∑

0<s≤t ∆M b
t ∆M i

t is almost surely absolutely convergent as well, and

so we may define a process Ax in V by putting Axt =
∑

0<s≤t ∆M b
t ∆M i

t . Finally, by

Theorem 6.3.1, there exists a process [M b] in Ai such that (M b)2 − [M b] is in M2

and ∆[M b] = (∆M b)2. We put At = [M b]t + 2Ax + Ai and claim that there is a
modification of A satisfying the criteria in the theorem.

To this end, first note that A clearly is càdlàg adapted of finite variation, and for
0 ≤ s ≤ t, we have [M b]t ≥ [M b]s+

∑
s<u≤t(∆M

b
u)2 almost surely, so that we obtain

At − As ≥
∑

s<u≤t(∆M
b
u + ∆M i

u)2 almost surely, showing that A is almost surely

increasing. To show that M2 −A is a local martingale, note that

M2 −A = (M b)2 − [M b] + 2(M bM i −Ax) + (M i)2 −Ai. (6.21)

Here, (M b)2 − [M b] is in M2 by Lemma 6.3.1, in particular a local martingale.
By the integration-by-parts formula, we have (M i)2

t − Ait = 2
∫ t

0 M
i
s− dM i

s, where
the integral is well-defined as Ms− is bounded on compacts. Using Theorem 6.5 of
[66], the integral process

∫ t
0 M

i
s− dM i

s is a local martingale, and so (M i)2 − Ai is a
local martingale. Therefore, in order to obtain that M2 − A is a local martingale,
it suffices to show that M bM i − Ax is a local martingale. By Theorem 5.32 of [66],
M b
tM

i
t −
∫ t

0 M
b
s dM i

s is a local martingale, so it suffices to show that
∫ t

0 M
b
s dM i

s−Axt
is a local martingale. As ∆M b is bounded, it is integrable, and so we have∫ t

0
M b
s dM i

s =

∫ t

0
∆M b

s dM i
s +

∫ t

0
M b
s− dM i

s = Axt +

∫ t

0
M b
s− dM i

s. (6.22)

As
∫ t

0 M
b
s− dM i

s is a local martingale, again by Theorem 6.5 of [66], we finally con-
clude that M bM i − Ax is a local martingale. Thus, M2 − A is a local martingale.
This proves existence in the case where M = M b + M i, where M b is bounded and
M i has integrable variation.

Finally, we consider the case of a general local martingale M with initial value zero.
By Theorem III.29 of [134], M = M b+M i, where M b is locally bounded and M i has
paths of finite variation. With (Tn) a localising sequence for both M b and M i, our
previous results then show the existence of a process An ∈ A such that (MTn)2−An
is a local martingale and ∆An = (∆MTn)2. By uniqueness, we may define [M ] by
putting [M ]t = Ant for t ≤ Tn. We then obtain that [M ] ∈ A, M2 − [M ] is a local
martingale and ∆[M ] = (∆M)2, and the proof is complete.

6.4 Discussion

The results given in Sections 6.2 and 6.3 yield comparatively simple proofs of the
existence of the compensator and the quadratic variation, two technical concepts
essential to martingale theory in general and stochastic calculus in particular. We
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will now discuss how these proofs may be used to give a simplified account of the
development of the basic results of stochastic integration theory. Specifically, the
question we ask is the following: How can one, starting from basic continuous-time
martingale theory, construct the stochastic integral of a locally bounded predictable
process with respect to a semimartingale, as simply as possible?

Since the publication of one of the first complete accounts of the general theory of
stochastic integration in [36], several others have followed, notably [66, 143, 87, 83,
134], each contributing with simplified and improved proofs. The accounts in [66]
and [143] make use of the predictable projection to prove the Doob-Meyer theorem,
and to obtain the uniqueness of this projection, they apply the difficult section
theorems. In [87] and [134], this dependence is removed, using the methods of, among
others, [136] and [11], respectively. In general, however, the methods in [87] and
[134] are not entirely comparable, as [87] follows the traditional path of starting with
continuous-time martingale theory, developing some general theory of processes, and
finally constructing the stochastic integral for semimartingales, while [134] begins by
defining a semimartingale as a “good integrator” in a suitable sense, and develops
the theory from there, in the end proving through the Bichteler-Dellacherie theorem
that the two methods are equivalent. The developement of the stochastic integral
we will suggest below follows in the tradition also seen in [87].

We suggest the following path to the construction of the stochastic integral:

1. Development of the predictable σ-algebra and predictable stopping times, in
particular the equivalence between, in the language of [143], being “previsible”
and being “announceable”.

2. Development of the main results on predictable processes, in particular the
characterization of predictable càdlàg processes as having jumps only at pre-
dictable times, and having the jump at a predictable time T being measurable
with respect to the σ-algebra FT−.

3. Proof of the existence of the compensator, leading to the fundamental theorem
of local martingales, meaning the decomposition of any local martingale into
a locally bounded and a locally integrable variation part. Development of the
quadratic variation process using these results.

4. Construction of the stochastic integral using the fundamental theorem of local
martingales and the quadratic variation process.

The proofs given in Sections 6.2 and 6.3 help make this comparatively short path
possible. We now comment on each of the points above, and afterwards compare the
path outlined with other accounts of the theory.

As regards point 1, the equivalence between a stopping time being previsible (having
a predictable graph) and being announceable (having an announcing sequence) is
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proved in [143] as part of the PFA theorem, which includes the introduction of FT−.
However, the equivalence between P (previsibility) and A (accessibility) may be done
without any reference to FT−, and this makes for a pleasant separation of concerns.

The main result in point 2, the characterization of predictable càdlàg functions, can
be found for example as Theorem 3.33 of [66]. The existence of the compensator
in point 3 may now be obtained as in Section 6.2, and the fundamental theorem of
local martingales may then be proven as in the proof of Theorem III.29 of [134].
After this, the existence of the quadratic variation may be obtained as in Section
6.3. Note that the traditional method for obtaining the quadratic variation is either
as the remainder term in the integration-by-parts formula (as in [83]), or through
a localisation to M2, applying the Doob-Meyer theorem. Our method removes the
need for the application of the Doob-Meyer theorem.

Finally, in point 4, these results may be combined to obtain the existence of the
stochastic integral of a locally bounded predictable process with respect to a semi-
martingale using the fundamental theorem of local martingales and a modification
of the methods given in Chapter IX of [66].

As for comparisons of the approach outlined above with other approaches, for exam-
ple [87], the main benefit of the above approach would be that the development of
the compensator is obtained in a very simple manner, in particular not necessitating
a decomposition into predictable and totally inaccessible parts, and without any
reference to “naturality”. Note, however, that the expulsion of “naturality” from
the proof of the Doob-Meyer theorem in [136] already was obtained in [84] and
[13]. In any case, focusing attention on the compensator instead of a general super-
martingale decomposition simplifies matters considerably. Furthermore, developing
the quadratic variation directly using the fundamental theorem of local martingales
allows for a very direct construction of the stochastic integral, while the method
given in [87] first develops a preliminary integral for local martingales which are
locally in M2.

6.5 Auxiliary results

Lemma 6.5.1. Let (Xn) be a uniformly integrable sequence of variables. It then
holds that

lim sup
n→∞

EXn ≤ E lim sup
n→∞

Xn. (6.23)

Proof. Since (Xn) is uniformly integrable, it holds that limλ→∞ supnEXn1(Xn>λ) is
zero. Let ε > 0 be given, we may then pick λ so large that EXn1(Xn>λ) ≤ ε for all n.
Now, the sequence (λ−Xn1(Xn≤λ))n≥1 is nonnegative, and Fatou’s lemma therefore
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yields

λ− E lim sup
n→∞

Xn1(Xn≤λ) = E lim inf
n→∞

(λ−Xn1(Xn≤λ))

≤ lim inf
n→∞

E(λ−Xn1(Xn≤λ))

= λ− lim sup
n→∞

EXn1(Xn≤λ). (6.24)

The terms involving the limes superior may be infinite and are therefore a priori
not amenable to arbitrary arithmetic manipulation. However, by subtracting λ and
multiplying by minus one, we yet find

lim sup
n→∞

EXn1(Xn≤λ) ≤ E lim sup
n→∞

Xn1(Xn≤λ). (6.25)

As we have ensured that EXn1(Xn>λ) ≤ ε for all n, this yields

lim sup
n→∞

EXn ≤ ε+ E lim sup
n→∞

Xn1(Xn≤λ) ≤ ε+ E lim sup
n→∞

Xn, (6.26)

and as ε > 0 was arbitrary, the result follows.

Lemma 6.5.2. Let (fn) be a sequence of nonnegative increasing càdlàg mappings
from R+ to R. Assume that

∑∞
n=1 fn converges pointwise to some mapping f from

R+ → R. Then, the convergence is uniform on compacts, and f is a nonnegative
increasing càdlàg mapping. If f(t) has a limit as t tends to infinity, the convergence
is uniform on R+.

Proof. Fix t ≥ 0. For m ≥ n, we have

sup
0≤s≤t

∣∣∣∣∣
m∑
k=1

fk(s)−
n∑
k=1

fk(s)

∣∣∣∣∣ = sup
0≤s≤t

m∑
k=n+1

fk(s) =
m∑

k=n+1

fk(t), (6.27)

which tends to zero as m and n tend to infinity. Therefore, (
∑n

k=1 fk) is uniformly
Cauchy on [0, t], and so has a càdlàg limit on [0, t]. As this limit must agree with
the pointwise limit, we conclude that

∑n
k=1 fk converges uniformly on compacts to

f , and therefore f is nonnegative, increasing and càdlàg.

It remains to consider the case where f(t) has a limit f(∞) as t tends to infinity. In
this case, we find that limt fn(t) ≤ limt f(t) = f(∞), so fn(t) has a limit fn(∞) as
t tends to infinity as well. Fixing n ≥ 1, we have

n∑
k=1

fk(∞) =
n∑
k=1

lim
t→∞

fk(t) = lim
t→∞

n∑
k=1

fk(t) ≤ lim
t→∞

f(t) = f(∞). (6.28)

Therefore, (fk(∞)) is absolutely summable. As we have

sup
t≥0

∣∣∣∣∣
m∑
k=1

fk(t)−
n∑
k=1

fk(t)

∣∣∣∣∣ = sup
t≥0

m∑
k=n+1

fk(t) =
m∑

k=n+1

fk(∞), (6.29)
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we find that (
∑n

k=1 fk) is uniformly Cauchy on R+, and therefore uniformly conver-
gent. As the limit must agree with the pointwise limit, we conclude that fn converges
uniformly to f on R+. This concludes the proof.

Lemma 6.5.3. Let (fn) be a sequence of bounded càdlàg mappings from R+ to R.
If (fn) is Cauchy in the uniform norm, there is a bounded càdlàg mapping f from
R+ to R such that supt≥0 |fn(t) − f(t)| tends to zero. In this case, it holds that
supt≥0 |fn(t−)− f(t−)| and supt≥0 |∆fn(t)−∆f(t)| tends to zero as well.

Proof. Assume that (fn) is Cauchy in the uniform norm. As the space of bounded
functions from [0,∞) to R is complete under the uniform norm, fn converges uni-
formly to f . We show that f is càdlàg. Let t ≥ 0, we will show that f is right-
continuous at t. Take ε > 0 and take n so that supt≥0 |f(t) − fn(t)| ≤ ε. Let δ > 0
be such that |fn(t)− fn(s)| ≤ ε for s ∈ [t, t+ δ], then

|f(t)− f(s)| ≤ |f(t)− fn(t)|+ |fn(t)− fn(s)|+ |fn(s)− fn(t)| ≤ 3ε (6.30)

for such s. Therefore, f is right-continuous at t. Now let t > 0, we claim that f has
a left limit at t. First note that for n and m large enough, it holds for any t > 0
that |fn(t−)−fm(t−)| ≤ supt≥0 |fn(t)−fm(t)|. Therefore, the sequence (fn(t−))n≥1

is Cauchy, and so convergent to some limit ξ(t). Now let ε > 0 and take n so that
supt≥0 |f(t) − fn(t)| ≤ ε and |fn(t−) − ξ(t)| ≤ ε. Let δ > 0 be such that t − δ ≥ 0
and such that whenever s ∈ [t− δ, t), |fn(s)− fn(t−)| ≤ ε. Then

|f(s)− ξ(t)| ≤ |f(s)− fn(s)|+ |fn(s)− fn(t−)|+ |fn(t−)− ξ(t)| ≤ 3ε (6.31)

for any such s. Therefore, f has a left limit at t. This shows that f is càdlàg.

Finally, we have for any t > 0 and any sequence (sn) converging strictly upwards
to t that |f(t−) − fn(t−)| = limm |f(sm) − fn(sm)| ≤ supt≥0 |f(t) − fn(t)|, so we
conclude that supt≥0 |f(t−) − fn(t−)| converges to zero as well. As a consequence,
we also obtain that supt≥0 |∆f(t)−∆fn(t)| converges to zero.
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Abstract. We give a causal interpretation of stochastic differential
equations (SDEs) by defining the postintervention SDE resulting from
an intervention in an SDE. We show that under Lipschitz conditions,
the solution to the postintervention SDE is equal to a uniform limit in
probability of postintervention structural equation models based on the
Euler scheme of the original SDE, thus relating our definition to main-
stream causal concepts. We prove that when the driving noise in the SDE
is a Lévy process, the postintervention distribution is identifiable from
the semigroup of the SDE. Also for the case of Lévy driving noise, we
relate our results to the notion of weak conditional local independence
(WCLI) by proving that if a coordinate Xi is locally unaffected by an
intervention in another coordinate Xj , then Xi is WCLI of Xj .
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7.1 Introduction

The notion of causality has long been of interest to both statisticians and scientists
working in fields applying statistics. In general, causal models are models containing
families of possible distributions of the variables observed as well as appropriate
mathematical descriptions of causal structures in the data. Thus, claiming that a
causal model is true amounts to claiming more than statements about the distribu-
tion of the variables observed. Causal modeling has several goals, prominent among
them are:

1. Estimation of intervention effects from partially observed systems with a given
causal structure.

2. Identification of the causal structure from observational data.

One of the most developed theories of causal inference is the approach based on
directed acyclic graphs (DAGs) and finitely many variables with no explicit time
component, descibed in [161] and [126]. In recent years, there have been efforts to
develop similar notions of causality for stochastic processes, both in discrete time
and in continuous time. For discrete time results, see for example [46, 47, 48, 49]. As
discrete time models often are defined through explicit functional relationships be-
tween variables, as in for example autoregressive processes, such models fit directly
into the DAG-based framework. As for continuous time, early discussions of causal-
ity can be found in [59, 54, 30]. One of the most recent frameworks for causality in
continuous-time is based on the concept of weak conditional local independence. For
results related to this, see [37, 27, 57, 144, 145]. An alternative notion of causality
defined solely through filtrations is developed in [131, 130]. In Section 4.1 of [1] it is
noted that both ordinary differential equations and stochastic differential equations
(SDEs) allow for a natural interpretation in terms of “influence”, and that interven-
tions may be defined by substitutions in the differential equations. In this paper, we
make these ideas precise. Our main contributions are:

1. For a given SDE, we give a precise definition of the postintervention SDE
resulting from an intervention.

2. We show that under certain regularity assumptions, the solution of the postin-
tervention SDE is the limit of a sequence of interventions in structural equation
models based on the Euler scheme of the observational SDE.

3. We prove that for SDEs with a Lévy process as the driving semimartingale, the
postintervention distribution is identifiable from the semigroup of the SDE.

4. We relate our results to weak conditional local independence (WCLI) by show-
ing that for SDEs with a Lévy process as the driving semimartingale, Xi is
WCLI of Xj if Xi is locally unaffected by an intervention in Xj .
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Of particular note is that the identifiability result (3) in the list above corresponds
to a case where the error variables are not all independent, as is otherwise often
assumed to be the case when calculating intervention effects in the DAG-based
framework. For the DAG-based framework, in the case of independent errors, parts
of the causal structure may be learned from the observational distribution, as seen in
[171], and intervention distributions may be calculated by a truncated factorization
formula as in (3.10) of [126]. For dependent errors, such results are harder to come
by. In our case, we take advantage of the Markov nature of the solutions to SDEs
with Lévy noise in order to obtain our identifiability result for SDE models, and
we are also able to obtain explicit descriptions of the resulting postintervention
distributions. Also note that in many cases, the semigroup of the SDE is identifiable
from the observational distribution. Our identifiability implies that in such cases, the
postintervention distributions are identifiable from the observational distribution.

In matters of causality, it is important to distinguish clearly between definitions,
theorems and interpretations. Our definition of postintervention SDEs will be a
purely mathematical construct. It will, however, have a natural causal interpretation.
Given an SDE model, in order to use the definition of intervention given here to
predict the effects of real-world interventions, it is necessary that the SDE can
be sensibly interpreted as a data-generating mechanism with certain properties:
Specifically, as we will argue in Section 7.4, it is essentially sufficient that the driving
semimartingales are autonomous in the sense that they may be assumed not to be
directly affected by interventions. This is an assumption which is not testable from
a statistical viewpoint. It is, nonetheless, an assumption which may be justified by
other means in concrete cases.

The remainder of the paper is organized as follows. In Section 7.2, we motivate
and introduce our notion of intervention for SDEs. In Section 7.3, we review the
terminology of causal inference as developed in [126] and [161], based on structural
equation models and directed acyclic graphs. Section 7.4 shows that under certain
conditions, our notion of intervention is equivalent to taking a limit of interventions
in the context of structural equation models based on the Euler scheme of the SDE.
In Section 7.5, we give conditions for postintervention distributions to be identifiable
from the semigroup of the SDE. Section 7.6 relates our work to weak conditional
local independence. Finally, in Section 7.7, we discuss our results. Sections 7.8 and
7.9 contain proofs.

7.2 Interventions for stochastic differential equations

Consider a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual condi-
tions, see [134] for the definition of this and other notions related to continuous-time
stochastic processes. In this section, given an SDE, we define the notion of a postin-
tervention SDE. This notion yields a causal interpretation of stochastic differential
equations.
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In general, the precise meaning of “causation” is a point of contemporary debate,
see for example [33]. For our purposes, it suffices to take a practical standpoint: The
causal structure of a system is sufficiently elucidated if we know the effects of making
interventions in the system. To motivate our definition, we begin by investigating a
simple example.

Example 7.2.1. Chemical kinetics is concerned with the dynamic evolution of
the concentrations of chemicals given in terms of a number of coupled chemical
reactions, see [173]. This example considers two chemicals and we derive a simple
system of SDEs from the fundamental mechanisms of the chemical reactions. If the
concentration of one chemical is fixed – as an alternative to letting it evolve according
to the chemical reactions – the fundamental mechanisms allow us to obtain an SDE
for the concentrations of the remaining chemicals. This equation then describes the
effects of an intervention, and can be obtained from the original system by a purely
mechanical deletion and substitution process.

The chemicals are denoted x and y and the corresponding concentrations are denoted
X and Y , respectively. We assume that four reactions are possible, namely:

∅ a−−→ y

y
b12−−−−→ x

x
b11−−−−→ ∅

y
b22−−−−→ ∅

Here, the first reaction denotes the creation or influx of chemical y with constant
rate a, the second reaction denotes the change of y into x at rate b12Y , and the third
and fourth reactions denote degradation or outflux of x and y with rates b11X and
b22Y , respectively. We collect the rates into the vector

λ(X,Y ) =


a

b12Y
b11X
b22Y

 . (7.1)

The so-called stoichiometric matrix

S =

[
0 1 −1 0
1 −1 0 −1

]
(7.2)

collects the information about the number of molecules, for each of the two chemicals
(rows), which are created or destroyed by each of the four reactions (columns). The
rates λ(X,Y ) and the stoichiometric matrix S form the fundamental parameters
of the system. We are interested in using λ(X,Y ) and S to construct a dynamical
model for X and Y .

Several different stochastic and deterministic models are available. One stochastic
model is obtained by considering a Markov jump process on N2

0, where each coor-
dinate denotes the total number of molecules of each chemical x and y, and the
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transition rates are given in terms of S and λ(X,Y ). A system of SDEs approximat-
ing the Markov jump process, see [6], is given by[

Xt

Yt

]
=

[
X0

Y0 + at

]
+

∫ t

0
B

[
Xs

Ys

]
ds+

∫ t

0
Σ(Xs, Ys) dWs (7.3)

where Ws denotes a four-dimensional Wiener process,

Σ(X,Y ) = Sdiag
√
λ(X,Y )

=

[
0

√
b12Y −

√
b11X 0√

a −
√
b12Y 0 −

√
b22Y

]
(7.4)

and

B =

[
−b11 b12

−b12 −b22

]
. (7.5)

If we are able to fix the concentration Yt at a level ζ, we effectively remove the
first and last of the reactions and the second will have the constant rate b12ζ. By
arguments as above we then derive the SDE

Xt = X0 + tb12ζ −
∫
b11Xs ds+

∫ t

0
σ(Xs) dW̃s (7.6)

with W̃s a two-dimensional Wiener process and σ(x) = (
√
b12ζ,−

√
b11x). This SDE

describes the dynamics of the system after the intervention. We observe that this
SDE can be obtained from (7.3) by deleting the equation for Yt and substituting Yt
with ζ in the remaining equation.

It should be noted that due to the square root in the diffusion coefficient, the SDEs
in this example do not satisfy the usual Lipschitz conditions. To avoid technical
issues we may cap all entries in λ(X,Y ) at a lower level c and an upper level C with
0 < c ≤ C <∞. The resulting SDE will then have bounded Lipschitz coefficients. ◦

Example 7.2.1 illustrates how a model for the intervention in a system can be ob-
tained from a model for the entire system. In this particular example, the resulting
model for the intervention can be justified by reference to the fundamental mecha-
nisms – the chemical reactions – that drive the system, and interventions result in
SDEs modified by substitution and deletion. While noting that this correspondence
between interventions and substitution and deletion in the original equations may
not always be justified, we will use this principle as a general, purely probabilistic
definition of interventions in SDEs. Note also that in the example above, the matrix

Σ(X,Y )Σ(X,Y )t =

[
b12Y + b11X −b12Y
−b12Y a+ b12Y + b22Y

]
(7.7)
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is not diagonal, implying that the martingale parts of the semimartingale (X,Y )
are not orthogonal. This shows that there are naturally occuring situations where it
is necessary to consider models with non-orthogonal martingale parts – a situation
excluded in the WCLI framework of [57] and motivating our definition.

In order to formalize our definition in a general framework, let Z be a d-dimensional
semimartingale and assume that a : Rp → M(p, d) is a continuous mapping, where
M(p, d) denotes the space of real p×dmatrices. We consider the stochastic differential
equation

Xi
t = Xi

0 +
d∑
j=1

∫ t

0
aij(Xs−) dZjs , i ≤ p, (7.8)

which in matrix notation may be described more succintly as

dXt = a(Xt−) dZt. (7.9)

Definition 7.2.2. Consider some m ≤ p and ζ ∈ R. The stochastic differential
equation arising from (7.8) under the intervention Xm := ζ is

Y i
t = Y i

0 +

d∑
j=1

∫ t

0
bij(Ys−) dZjs , i ≤ p, (7.10)

where Y i
0 = Xi

0 for i 6= m and Y m
0 = ζ, and b : Rp → M(p, d) is given by letting

bij(x) = aij(x) for i 6= m and bmj(x) = 0 for all x ∈ Rp and j ≤ d.

By Definition 7.2.2, intervening takes an SDE as its argument and yields another
SDE. Note that existence and uniqueness of solutions are not required for Definition
7.2.2 to make sense, although we will mainly take interest in cases where both (7.8)
and (7.10) have unique solutions. By Theorem V.7 of [134], this is the case whenever
the mapping a is Lipschitz. Note also that the solution Y to (7.10) will satisfy that
Y m
t = ζ for all t ≥ 0, while the process U consisting of the coordinates of Y excluding

the m’th will satisfy the (p− 1)-dimensional SDE

U it = Xi
0 +

d∑
j=1

∫ t

0
cij(Us−) dZjs , i 6= m, (7.11)

where c : Rp−1 → M(p− 1, d) is defined by cij(x) = aij(x1, . . . , ζ, . . . , xp) for i 6= m
and j ≤ d, and the ζ is on the m’th coordinate. This is the same type of postin-
tervention structure as we obtained in Example 7.2.1 by reference to fundamental
mechanisms.

Assume that (7.8) and (7.10) have unique solutions for all interventions. We refer to
(7.8) as the observational SDE, to the solution of (7.8) as the observational process,
and to the distribution of the solution of (7.8) as the observational distribution.
We refer to (7.10) as the postintervention SDE, to the solution of (7.10) as the
postintervention process and to the distribution of the solution to (7.10) as the
postintervention distribution.
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7.3 Terminology of SEMs, DAGs and interventions

In this section, we review the basic notions related to intervention calculus for struc-
tural equation models. For a detailed overview, see [126] or [161]. We will use these
notions in Section 7.4 to interpret our definition of intervention for SDEs in terms
of intervention calculus for structural equation models.

Let V be a finite set, and let E be a subset of V × V . A directed graph G on V is a
pair (V,E). We refer to V as the vertex set, and refer to E as the edge set. Note that
by this definition, there can be at most one edge between any pair of vertices. A path
is an unbroken series of vertices and edges such that no vertices are repeated except
possibly the initial and terminal vertices. A directed cycle is a path with the same
initial and terminal vertices and all arrows pointing in the same direction. We say
that G is an acyclic directed graph (DAG) if G contains no directed cycles. Note that
this in particular excludes that the graph contains an edge with the same initial and
terminal vertex. For any graph G and i ∈ V , we write pa(i) = {j ∈ V | (j, i) ∈ E},
and refer to pa(i) as the parents of the vertex i. If we wish to emphazise the graph
G, we also write paG(i).

A structural equation model (SEM) consists of three components:

1. Two families (Xi)i∈V and (Ui)i∈V of random variables.

2. A directed acyclic graph G on V .

3. A set of functional relationships Xi = fi(XpaG(i), Ui).

We refer to (Xi)i∈V as the primary variables and (Ui)i∈V as the noise variables.
Note that we do not a priori assume that the noise variables are independent. The
idea behind a SEM is that the DAG provides the sequence in which the functional
relationships are evaluated, thus yielding an algorithm for obtaining the values of
(Xi)i∈V from (Ui)i∈V . A SEM does not only yield the distribution of the variables
(Xi)i∈V , but also a description of the data-generating mechanism. This is made pre-
cise by the notion of an intervention, see Definition 3.2.1 of [126]. For completeness,
we repeat the definition here.

Definition 7.3.1. Consider a SEM with primary variables (Xi)i∈V , noise variables
(Ui)i∈V , DAG G and functional relationships Xi = fi(XpaG(i), Ui). Let A be a subset
of V . The postintervention SEM obtained by doing Xi := xi for i ∈ A is the
SEM with primary variables (Xi)i∈V , noise variables (Ui)i∈V , DAG G′ obtained by
removing all edges with terminal vertices i ∈ A from G and functional relationships
obtained by substituting xi for Xi in all functional relationships with i /∈ A as well as
exchanging all equations corresponding to indicies i ∈ A with the simple equations
Xi = xi.

The idea behind Definition 7.3.1 is that if the algorithm implicit in a SEM represents
the data-generating mechanism for (Xi)i∈V , then an intervention in the system re-
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sulting in fixing Xi at the value xi for i ∈ A would yield a data-generating mechanism
corresponding to substituting the value xi in all functional relationships involving
Xi for i ∈ A.

7.4 Interpretation of postintervention SDEs

In this section, we show that under Lipschitz conditions on the coefficients in (7.8),
the solution to the postintervention SDE described in Definition 7.2.2 is the limit of
a sequence of postintervention SEMs as described in Definition 7.3.1 based on the
Euler scheme of (7.8). We use this to clarify the role of the driving semimartingales
Z1, . . . , Zd in relation to the causal interpretation of their SDE.

Definition 7.4.1. The signature of the SDE (7.8) is the graph S with vertex set
{1, . . . , p} and an edge from i to j if it holds that there is k such that the mapping
ajk is not independent of the i’th coordinate.

Letting aj· = (aj1, . . . , ajd), another way of describing the signature S in Definition
7.4.1 is that there is an edge from i to j if xi 7→ aj·(x) is not constant, or equivalently,
there is no edge from i to j if it holds for all k that ajk does not depend on the
i’th coordinate. From an intuitive viewpoint, the signature S defined in Definition
7.4.1 describes which coordinates of the SDE (7.8) are causally dependent on each
other in an infinitesimal sense: There is an edge from i to j if and only if Xi has an
infinitesimal causal effect on Xj . This motivates the following definition.

Definition 7.4.2. We say that Xj is locally unaffected by Xi in the SDE (7.8) if
there is no edge from i to j in the signature of (7.8).

Being locally unaffected is a property of two coordinates of an SDE. If there is no risk
of ambiguity, we leave out the SDE and simply state that Xj is locally unaffected
by Xi.

The signature is used in the following definition to define a SEM corresponding to
the Euler scheme for (7.8). With a slight abuse of notation we choose in Definition
7.4.3 for convenience to consider the initial variables X1

0 , . . . , X
p
0 as primary vari-

ables instead of noise variables. This is not a problem as it is nonetheless clear how
interventions for the SEM given in Definition 7.4.3 should be understood.

Definition 7.4.3. Fix T > 0 and consider ∆ > 0 such that T/∆ is a natural
number. Let N = T/∆ and tk = k∆. The Euler SEM over [0, T ] with step size ∆
for (7.8) consists of the following:

1. The primary variables are the p(N+1) variables in the set (X∆
tk

)0≤k≤N , indexed
by {0, . . . , N} × {1, . . . , p}.

2. The noise variable for the i’th coordinate of X∆
tk

is the d-dimensional variable
Ztk − Ztk−1

.



Interpretation of postintervention SDEs 149

3. The DAG is the graph G = (V,E) with vertex set {0, . . . , N} × {1, . . . , p}
defined by having ((i1, j1), (i2, j2)) be an edge of D if and only if i2 = i1 + 1
and either j2 = j1 or (j1, j2) is an edge in the signature of (7.8).

4. The functional relationships are given by:

(X∆
tk

)i = (X∆
tk−1

)i +
d∑
j=1

aij(X
∆
tk−1

)(Zjtk − Z
j
tk−1

). (7.12)

A visualization of the DAG for the SEM of Definition 7.4.3 is shown in Figure 7.4.1.
The figure shows how the signature S determines the DAG describing the algo-
rithm for calculating the variables in the Euler SEMs. For convenience, we have
also included the error variables of the Euler SEM in Figure 7.4.1, with dotted di-
rected edges to distinguish them from the primary variables. Making the intervention
(X∆)1

tk
:= ζ for all k corresponds to removing all edges of the DAG in Figure 7.4.1

with terminal vertex in the top row.

•177

��
•2

•3

GG

(X∆)1
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//

$$
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""(X∆)2
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(X∆)3
0

//
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(X∆)3
∆

//

99
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//

88

(X∆)3
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//
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Z∆ − Z0

FF

CC
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Z2∆ − Z∆

FF

CC

BB

Z3∆ − Z2∆

FF

CC

BB

Figure 7.4.1: The signature for a three-dimensional SDE (left) and the DAG for the
corresponding Euler SEM (right).

Combining the following two lemmas yields the main result of this section.

Lemma 7.4.4. Fix T > 0 and let (∆n)n≥1 be a sequence of positive numbers con-
verging to zero such that T/∆n is natural for all n ≥ 1. For each n, there exists a
pathwisely unique solution to the equation

(Xn
t )i = Xi

0 +
d∑
j=1

∫ t

0
aij(X

n
ηn(s−)) dZjs , i ≤ p, (7.13)

where ηn(t) = k∆n for k∆n ≤ t < (k + 1)∆n, satisfying that ((Xn)tk)0≤k≤T/∆n
are

the primary variables in the Euler SEM for (7.8), and sup0≤t≤T |Xt−Xn
t | converges

in probability to zero, where X is the solution to (7.8).
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Proof. By inspection, (7.13) has a unique solution, and ((Xn)tk)k≤T/∆n
is the pri-

mary variables in the Euler SEM for (7.8). That sup0≤t≤T |Xt − Xn
t | converges in

probability to zero is the corollary to Theorem V.16 of [134].

Lemma 7.4.5. Fix T > 0 and consider ∆ > 0 such that T/∆ is a natural number.
Fix m ≤ p and ζ ∈ R. The Euler SEM for (7.10) is equal to the postintervention
SEM obtained by making the intervention (X∆

tk
)m := ζ for 0 ≤ k ≤ T/∆ in the Euler

SEM for (7.8).

Proof. The functional relationships in the Euler SEM for (7.8) are

(X∆
tk

)i = (X∆
tk−1

)i +

d∑
j=1

aij(X
∆
tk−1

)(Zjtk − Z
j
tk−1

), (7.14)

while for (7.10) and i 6= m, they are

(Y ∆
tk

)i = (Y ∆
tk−1

)i +
d∑
j=1

bij(Y
∆
tk−1

)(Zjtk − Z
j
tk−1

)

= (Y ∆
tk−1

)i +
d∑
j=1

aij(Y
∆
tk−1

)(Zjtk − Z
j
tk−1

), (7.15)

and (Y ∆
tk

)m = (Y ∆
tk−1

)m, which, since (Y ∆)m0 = ζ, yields (Y ∆)mtk = ζ for all k. By

inspection, (7.15) is the result of substituting ζ for (X∆
tk−1

)m in (7.14). The result
follows.

Together, Lemma 7.4.4 and Lemma 7.4.5 states that the diagram in Figure 7.4.2
commutes: Defining interventions directly in terms of changing the terms in the
stochastic differential equation has the same effect as intervening in the Euler SEM
and taking the limit.

Euler SEM for observational SDE //

��

Observational SDE

��

Postintervention Euler SEM // Postintervention SDE

Figure 7.4.2: The interpretation of intervention in a stochastic differential equation
understood as the limit of interventions in the Euler SEMs.

These results clarify what Definition 7.2.2 means: Intuitively, we consider the semi-
martingale Z as “autonomous” and assume that interventions do not directly in-
fluence this semimartingale. This autonomy is made concrete by assuming that the
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family (Ztk−Ztk−1
)k≤N are the noise variables in the Euler SEM, such that there are

no arrows in the DAG for the SEM with terminal vertices in (Ztk −Ztk−1
)k≤N . The

lemmas show that when this condition holds true, the notion of intervention given in
Definition 7.2.2 is consistent with the result of intervention in the Euler SEM. Note
that this does not constitute a proof of causality. Rather, it gives guidelines as to
when it is reasonable to expect that our notion of intervention will reflect real-world
interventions: namely, when none of the coordinates Xi have a direct effect on the
driving semimartingales. Whether this is the case or not is in general not a testable
assumption.

Also note that as we are not using the Euler SEMs to draw any conclusions about the
distribution of the variables, we do not require independence of the noise variables
(Ztk − Ztk−1

)k≤N . In particular, the variables in the Euler SEM do not need to be
Markov with respect to the DAG in the sense of [126].

Concluding this section, we give two examples to illutrate the nature of interventions.
In Example 7.4.6, we calculate the postintervention SDE for an intervention in an
Ornstein-Uhlenbeck SDE, and in Example 7.4.7, we illustrate the necessity of a sharp
division between autonomous and non-autonomous interpretations of processes.

Example 7.4.6. Let x0 ∈ Rp, A ∈ Rp, B ∈M(p, p) and σ ∈M(p, d). The Ornstein-
Uhlenbeck SDE with initial value X0, mean reversion level A, mean reversion speed
B, diffusion matrix σ and d-dimensional driving noise is

Xt = X0 +

∫ t

0
B(Xs −A) ds+ σWt, (7.16)

where W is a d-dimensional (Ft) Brownian motion, see Section II.72 of [142]. Fix a
coordinate m ≤ p and ζ ∈ R. Making the intervention Xm := ζ, we obtain that the
postintervention process Y satisfies Y m

t = ζ, and for i 6= m,

Y i
t = Xi

0 +

∫ t

0

p∑
j 6=m

Bij(Y
j
s −Aj) +Bim(ζ −Am) ds+

d∑
j=1

σijW
j
t . (7.17)

Now let B̃ be the submatrix of B obtained by removing the m’th row and column
of B, and assume that B̃ is invertible. With Y −m denoting the p − 1 dimensional
process obtained by removing the m’th coordinate from Y , we then obtain

Y −mt = Y0 +

∫ t

0
B̃(Y −ms − Ã) ds+ σ̃Wt, (7.18)

where Y0 is obtained by removing the m’th coordinate from X0, σ̃ is obtained by
removing the m’th row of σ and Ã = α − B̃−1β, where α and β are obtained by
removing the m’th coordinate from A and from the vector whose i’th component
is Bim(ζ − Am), respectively. Thus, Y −m solves an (p − 1)-dimensional Ornstein-
Uhlenbeck SDE with initial value Y0, mean reversion level Ã, mean reversion speed
B̃ and diffusion matrix σ̃. ◦
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The next example shows that an SDE may not always be amenable to a causal
interpretation of the type given in Definition 7.2.2.

Example 7.4.7. Let X1 = W be a one-dimensional Wiener process, consider a
twice continuously differentiable function f : R→ R and let X2

t = f(X1
t ) for t ≥ 0.

If this relation constitutes the actual causal relation between X1 and X2, the result
of the intervention X1 := ζ should be that X2

t = f(ζ). However, by Itô’s lemma, we
obtain

X2
t = f(X1

0 ) +
1

2

∫ t

0
f ′′(X1

s ) d[X1]s +

∫ t

0
f ′(X1

s ) dX1
s (7.19)

= f(0) +
1

2

∫ t

0
f ′′(X1

s ) ds+

∫ t

0
f ′(X1

s ) dWs,

yielding the system of SDEs

X1
t =

∫ t

0
dWs (7.20)

X2
t = f(0) +

1

2

∫ t

0
f ′′(X1

s ) ds+

∫ t

0
f ′(X1

s ) dWs, (7.21)

which is of the form given in (7.8). Applying Definition 7.2.2 to this SDE, the
resulting postintervention SDE for X2 under the intervention X1 := ζ becomes

X2
t = f(0) +

1

2

∫ t

0
f ′′(ζ) ds+

∫ t

0
f ′(ζ) dWs, (7.22)

which yields the result X2
t = f(0)+ 1

2f
′′(ζ)t+f ′(ζ)Wt, in contradiction with the cor-

rect result, X2
t = f(ζ). The problem is that by substituting W for X1 in the SDE

derived from Itô’s lemma, the resulting SDE loses its causal interpretation. The
driving semimartingale W is not autonomous, and as a consequence, the postinter-
vention SDE does not give the desired result. This example also shows that whether
a process is autonomous or not is not something which may be determined simply
by investigation of the SDE in question, but is a judgement to be made from case
to case. ◦

Example 7.4.7 is not meant to put to question the appropriateness of Definition
7.2.2, but rather to show the limitations of this definition. We should note that it is
not the use of Itô’s lemma in itself which is the problem in Example 7.4.7, it is the
subsequent substitution of X1 by W . In fact, if we intervene directly in (7.19) by
replacing X1 by the constant ζ, the result would be that X2

t = f(ζ). We could thus
say that (7.19) retains the causal interpretation. However, Definition 7.2.2 does not
allow for such interventions on the integrators. To do so generally would complicate
matters considerably, and we will not pursue this any further.
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7.5 Identifiability of postintervention distributions

In this section, we formulate a result, Theorem 7.5.3, giving conditions for the postin-
tervention distributions to be uniquely determined by the semigroup of the SDE.
Our objective is to show that this uniqueness holds when the driving semimartin-
gale for the SDE is a Lévy process and the coefficients of the SDE are Lipschitz and
bounded. Before stating and proving our main result, we review some basic notions
of Markov process theory and Lévy processes.

Recall from Chapter 4 of [51] that a family of transition probabilities on Rp is a
family (Pt(x, ·))x∈Rp,t≥0 of probability measures on Rp such that (t, x) 7→ Pt(x,B)
is measurable for all Borel measurable B ⊆ Rp, P0(x, ·) is the Dirac measure in x
and for all t, s ≥ 0 it holds that Pt+s(x,B) =

∫
Rp Ps(y,B)Pt(x, dy). Given a càdlàg

stochastic process X with values in Rp, we say that X is an (Ft) Markov process
if there is a family Pt(x, ·) of transition probabilities on Rp such that for s, t ≥ 0
and B ∈ Bp, it holds that P (Xt+s ∈ B|Ft) = Ps(Xt, B) almost surely. In this case,
we say that X has transition probabilities (Pt(x, ·)). If this holds with the filtration
induced by the process itself, meaning that Ft is the σ-algebra generated by the
variables (Xs)s≤t, we simply say that X is a Markov process.

Let b(Rp) denote the space of bounded Borel measurable functions from Rp to
R. For a family of transition probabilities Pt(x, ·), we define Pt : b(Rp) → b(Rp)
by Ptf(x) =

∫
f(y)Pt(x, dy). The mapping Pt is then a linear operator on b(Rp).

Furthermore, P0 is the identity operator, ‖Pt‖ ≤ 1 for all t ≥ 0 where ‖·‖ denotes the
operator norm induced by the uniform norm on b(Rp), and it holds that Pt+s = PtPs
for t, s ≥ 0. All in all, this implies that (Pt) is a contraction semigroup of operators.

Next, let C0(Rp) denote the Banach space of continuous mappings from Rp to R
vanishing at infinity, endowed with the uniform norm, see Chapter 5 of [116]. Also,
let C2

0 (Rp) denote the subset of C0(Rp) which are twice continuously differentiable
with all partial derivatives in C0(Rp). We say that the semigroup (Pt) is Feller if Pt
maps C0(Rp) into itself and for all f ∈ C0(Rp), the mapping t 7→ Ptf from [0,∞)
to C0(Rp) is continuous at zero. The restriction of (Pt) to C0(Rp) is then a strongly
continuous contraction semigroup. In this case, we let D(A) be the set of f ∈ C0(Rp)
where limt→0 t

−1(Ptf − P0f) exists as a limit in C0(Rp), and when it exists, we let
Af denote the limit. We refer to D(A) as the domain of A, and we refer to A as the
generator of the semigroup. By Corollary 1.1.6 of [51], A is then a densely defined
and closed linear operator on C0(Rp). Finally, if X is a càdlàg Markov process with a
Feller semigroup, we say that X is a Feller process, and we say that X has generator
A, where A is the generator of the Feller semigroup.

Having reviewed the relevant notions of Markov process theory, we next recall
some basic results for Lévy processes, see [7] or [151] for an overview. Recall that
a Lévy measure on Rd is a measure ν assigning zero measure to {0} such that
x 7→ min{1, ‖x‖2} is integrable with respect to ν. A d-dimensional Lévy triplet is
a triplet (α,C, ν), where α is an element of Rd, C is a positive semidefinite d × d
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matrix and ν is a Lévy measure on Rd. Further recall by Theorem 1.2.14 of [7] that
for any bounded neighborhood D of zero in Rd and any d-dimensional Lévy process
X, there is a Lévy triplet (α,C, ν) such that

EeiuX1 = exp

(
iutα− 1

2
utCu−

∫
Rd
eiu

tx − 1− iutx1D(x) dν(x)

)
, (7.23)

and this triplet uniquely determines the distribution of X. We refer to (α,C, ν) as
the characteristics of X with respect to D, or as the D-characteristic triplet of X.
Conversely, for any bounded neighborhood D of zero in Rd and any Lévy triplet
(α,C, ν), there exists a Lévy process having (α,C, ν) as its D-characteristic triplet.

We are now ready to state our main result. Lemma 7.5.1 and Definition 7.5.2 intro-
duce the semigroup of an SDE, and Theorem 7.5.3 is the identifiability result. Let
D be a bounded neighborhood of zero in Rd. Consider the SDE

Xi
t = Xi

0 +

d∑
j=1

∫ t

0
aij(Xs−) dZjs , i ≤ p, (7.24)

where Z is a d-dimensional Lévy process with D-characteristic triplet (α,C, ν), the
mapping a : Rp →M(p, d) is Lipschitz and bounded and X0 is some variable.

Lemma 7.5.1. There exists a unique Feller semigroup (Pt) with the property that
any solution of (7.24), independent of the initial distribution and the probability
space on which the solution exists, is a Feller process with semigroup (Pt).

Definition 7.5.2. We refer to the semigroup of Lemma 7.5.1 as the semigroup of
the SDE (7.24).

Theorem 7.5.3. Consider the SDEs

Xi
t = Xi

0 +

d∑
j=1

∫ t

0
aij(Xs) dZjs , i ≤ p, (7.25)

and

Y i
t = Y i

0 +
d∑
j=1

∫ t

0
ãij(Ys) dZ̃js , i ≤ p, (7.26)

where Z is a d-dimensional Lévy process, Z̃ is a d̃-dimensional Lévy process and the
mappings a : Rp →M(p, d) and ã : Rp →M(p, d̃) are Lipschitz and bounded. Assume
that (7.25) and (7.26) have the same semigroup, and that the initial values have the
same distribution. Then, the postintervention distributions of doing Xm := ζ in
(7.25) and doing Y m := ζ in (7.26) are equal for all m and ζ.
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Lemma 7.5.1 and Theorem 7.5.3 are proven in Section 7.8. Note that the require-
ment that a and ã be bounded in Theorem 7.5.3 is only used to ensure the Feller
property. Theorem 7.5.3 states that for SDEs with a Lévy process as the driving
semimartingale, postintervention distributions are identifiable from the semigroup.
In the remainder of this section, we discuss the content of Theorem 7.5.3.

First, recall that a main theme of the DAG-based framework for causal inference as
in [161] and [126] is to identify conditions for when postintervention distributions are
identifiable from the observational distribution. Theorem 7.5.3 gives a criterion for
when postintervention distributions are identifiable from the semigroup of the SDE,
which is not exactly the same. Nonetheless, in a large family of naturally occurring
cases, the semigroup is identifiable from the observational distribution, for example,
if the solutions to (7.25) and (7.26) are irreducible.

Next, we comment on the relationship between the result of Theorem 7.5.3 and the
identifiability results of DAG-based causal inference. Consider the Euler SEM of
Definition 7.4.3, illustrated in Figure 7.4.1. In the DAG of this SEM, the orientation
of all arrows is assumed known: All orientations for arrows from primary variables
point forward in time. If the error variables for each primary variable were inde-
pendent, it would hold that the distribution of the variables would be Markov with
respect to the DAG in the sense of [126]. In this case, by the results of [171], we would
be able to identify the skeleton of the graph (that is, its undirected edges) from the
observational distribution. As all orientations are given, this leads to identifiability
of the entire graph. Using the truncated factorization (3.10) of [126], this leads to
identifiability of intervention distributions from the observational distribution. Thus,
in this case, identifiability would not be a surprising result.

However, when the driving semimartingale Z is a Lévy process, the error variables
are independent across time, but are not independent across coordinates: For each
k, the variables X1

∆k, . . . , X
p
∆k have the same d-dimensional error variable, namely

Z∆k − Z∆(k−1), and so the Euler SEM illustrated in Figure 7.4.1 is not Markov
with respect to its DAG. Therefore, our scenario differs from the conventional causal
modeling scenario of [126] in two ways: Both by considering a continuous-time model
with uncountably many variables and by considering a particular type of dependent
errors.

As the final result of this section, we give an example of a particularly simple case
where identifiability can be seen explicitly from the transition probabilities.

Example 7.5.4. Let W and W̃ be d-dimensional and d̃-dimensional Brownian mo-
tions, let B and B̃ be p×p matrices, and let σ and σ̃ be p×d and p×d̃ matrices. Con-
sider two processes X and Y being the unique solutions to the Ornstein-Uhlenbeck
SDEs

Xt = X0 +

∫ t

0
BXt dt+ σWt (7.27)



156 Causal interpretation of SDEs

and

Yt = Y0 +

∫ t

0
B̃Xt dt+ σ̃Wt. (7.28)

We will show by a direct analysis that if the SDEs have the same semigroup and the
initial distributions are are equal, then the postintervention distributions are equal
as well. For notational simplicity, we consider intervening on the first coordinate,
making the interventions X1 := ζ and Y 1 := ζ. It will suffice to show equality of dis-
tributions for the non-intervened coordinates in the postintervention distributions.
Consider block decompositions of the form

B =

[
B11 B12

B21 B22

]
and σ =

[
σ1

σ2

]
, (7.29)

where B11 is a 1× 1 matrix and B22 is a (p− 1)× (p− 1) matrix and σ1 is a 1× d
matrix and σ2 is a (p− 1)× d matrix. Also consider corresponding decompositions
of B̃ and σ̃.

Assume that the semigroups and the initial distributions are equal. In particular,
the transition probabilities for X and Y are the same. With Pt(x, ·) denoting the
transition probability of moving from state x in time t for X, the results of [80] show
that

Pt(x, ·) = N
(

exp(tB)x,

∫ t

0
exp(sB)σσt exp(sBt) ds

)
, (7.30)

where the right-hand side denotes a Gaussian distribution, and similarly for the
transition probabilities of Y . As these are equal for all x ∈ Rp and t ≥ 0, we obtain
exp(tB) = exp(tB̃) for all t ≥ 0, so by differentiating, B = B̃ as well. Likewise,
as
∫ t

0 exp(sB)σσt exp(sBt) ds =
∫ t

0 exp(sB̃)σ̃σ̃t exp(sB̃t) ds for all t ≥ 0, we obtain
σσt = σ̃σ̃t. Note that

σσt =

[
σ1σ

t
1 σ1σ

t
2

σ2σ
t
1 σ2σ

t
2

]
, (7.31)

and similarly for σ̃σ̃t. Therefore, we obtain in particular that σ2σ
t
2 = σ̃2σ̃

t
2.

Now, applying Definition 7.2.2 and recalling Example 7.4.6, the intervened processes
minus the first coordinate, X̃−1 and Ỹ −1 (note that the superscripts do not denote
reciprocals), are Ornstein-Uhlenbeck processes with initial values X−1

0 and Y −1
0 ,

mean reversion speeds B22 and B̃22, mean reversion levels −B−1
22 B21ζ and −B̃−1

22 B̃21ζ
and diffusion matrices σ2 and σ̃2. As X0 and Y0 have the same distribution, and we
know that B = B̃ and σ2σ

t
2 = σ̃2σ̃

t
2, we obtain that the distributions of X̃−1 and

Ỹ −1 must be equal. Thus, by direct calculation of transition probabilities, we see
that for the Ornstein-Uhlenbeck SDE with zero mean reversion level, intervention
distributions are identifiable from the observational distribution. ◦
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7.6 Interventions and WCLI

In this section, we discuss the relationship between postintervention processes and
weak conditional local independence (WCLI) of the observational process. We first
review some results on random measures and semimartingale characteristics, see [83]
for a detailed development of such results.

A random measure on R+ × Rd is a family of nonnegative measures (µ(ω, ·))ω∈Ω

such that µ(ω, {0} × Rd) = 0 for all ω. Put Ω̃d = Ω × R+ × Rd, Õd = O ⊗ Bd and
P̃d = P ⊗ Bd, where O and P denote the optional and predictable σ-algebras on
Ω×R+, respectively. A mapping from Ω̃d to R which is Õd measurable is called an
optional function, and a mapping from Ω̃d to R which is P̃d measurable is called a
predictable function. If we wish to make the filtration (Ft) explicit, we refer to (Ft)
optional and (Ft) predictable functions. Note that as Õd ⊆ F ⊗ B+ ⊗ Bd, it holds
that for any optional function W and any fixed ω ∈ Ω, (t, x) 7→W (ω, t, x) is B+⊗Bd
measurable. Therefore, the integral

∫
[0,t]×Rd |W (ω, s, x)| dµ(ω, ds, dx) is always well-

defined. We write (|W | ∗ µ)t(ω) for this integral. When (|W | ∗ µ)t(ω) is finite for all
ω and t ≥ 0, we furthermore define (W ∗ µ)t(ω) =

∫
[0,t]×RdW (ω, s, x) dµ(ω, ds, dx).

If W ∗ µ is optional for all nonnegative bounded optional µ-integrable functions
W , we say that µ is optional. If W ∗ µ is predictable for all nonnegative bounded
predictable µ-integrable functions W , we say that W is predictable. For any optional
random measure µ, we say that µ is P̃d-σ-finite if there is a partition (An)n≥1 of P̃d
measurable sets of Ω̃d such that E(1An ∗ µ)∞ is finite.

By Theorem II.1.8 of [83], for any optional P̃d-σ-finite random measure µ, there
exists a predictable random measure ν, unique up to indistinguishability, such that
for all nonnegative bounded P̃d measurable functions W , E(W ∗ ν)∞ = E(W ∗µ)∞.
We refer to ν as the compensator of µ. Furthermore, Theorem II.1.8 of [83] also
shows that if |W | ∗ µ is locally integrable, then |W | ∗ ν is locally integrable as well.

We now introduce the characteristics of a d-dimensional semimartingale X. For such
a semimartingale, we define the jump measure µX for X by letting µX(ω) be the
measure on B+ ⊗ Bd defined by

µX(ω)(A) =
∑
t≥0

1A(t,∆Xt(ω)). (7.32)

By Proposition II.1.16 of [83], µX is optional and P̃d-σ-finite. Therefore, the com-
pensator of µX exists, we denote it by νX . Furthermore, we define a mapping
hd : Rd → Rd by letting hd(x) = x1(‖x‖2≤1), the canonical truncation function.

Then Xt−
∑

0<s≤t ∆Xs− hd(∆Xs) is a special semimartingale, and we let B be its
predictable finite variation part. Finally, we let C be the process with values in the
real symmetric d × d matrices given by Cijt = [(Xi)c, (Xj)c]t, where (Xi)c denotes
the continuous martingale part of Xc, see Proposition I.4.27 of [83]. We then define
the hd-characteristics of X to be the triple (B,C, νX). For convenience, we will also
just refer to (B,C, νX) as the characteristics of X, supressing the dependence on
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hd. By Remark II.2.8 of [83], for fixed d, the hd-characteristics are unique up to
indistinguishability.

We are now ready to state the definition of weak conditional local independence.
In [57], the following definition of weak conditional local independence is made.
Assume that Y is a d-dimensional special semimartingale with a decomposition of
the form Y = Y0 + A + M , where A is predictable and of finite variation and M
is a local martingale. Let (B,C, ν) be the characteristics of Y . In [57] it is further
assumed that the coordinates of M have zero quadratic covariation and that the
characteristic C is deterministic. In this case, Definition 2 of [57] states that Xi is
weakly conditionally locally independent (WCLI) of Xm if the characteristics Bi

and νi of Xi are (F−mt ) predictable, where (F−mt )t≥0 is the usual augmentation of
the filtration induced by the processes X1, . . . , Xp excluding Xm. This definition
is well-posed whenever the characteristics (B,C, ν) are unique. Therefore, it can
be extended to all special semimartingales. Making this extension, we obtain the
following theorem.

Theorem 7.6.1. Let X be the solution to (7.8). Assume that X is a special semi-
martingale and that Z is a Lévy process. If Xi is locally unaffected by Xm in (7.8),
then Xi is WCLI of Xm.

Theorem 7.6.1 is proven in Section 7.9. Intuitively, Theorem 7.6.1 states that under
certain assumptions on the driving semimartingales, having Xi locally unaffected by
Xm yields that Xi in a sense is locally independent of Xm, a notion made precise
by having the characteristics of Xi (F−mt ) predictable.

7.7 Discussion

In this section, we will reflect on the results of the preceeding sections and discuss
opportunities for further work.

The definition of the postintervention SDE, Definition 7.2.2, is certainly a natural
way to define how interventions should affect stochastic dynamic systems. However,
the definition reflects unstated assumptions about causality, and it is important to
make precise when the definition can be assumed to reflect an actual real-world
intervention and when the definition is simply a mathematical construct. This is
clarified in Section 7.4, where we used the DAG-based intervention calculus to show
that the postintervention SDE of Definition 7.2.2 can be assumed to reflect real-world
interventions when the following hold:

1. The SDE reflects a data-generating mechanism in which the variables at a
given timepoint are obtained as a function of the previous timepoints and the
driving semimartingales.
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2. The driving semimartingales are not directly affected by interventions, in the
sense that they can be taken to be noise variables in the Euler SEMs.

In full generality, causal mechanisms of a model are not identifiable from the obser-
vational distribution, see [171]. However, when considering only restricted classes of
structural equation models, the underlying causal mechanisms may often be iden-
tifiable, see for example [180, 73, 129]. In such cases, linearity of the functional
relationships or Gaussianity of the noise variables often determine identifiability. In
our case, as shown in Section 7.5, identifiability holds whenever the driving semi-
martingale is a Lévy process. This ensures practical applicability of our results. The
proofs given in Section 7.5 use the Markov structure of the solution to the SDE.
In the case where the driving semimartingale has independent, but not stationary,
increments, the solution to the SDE will be a non-homogeneous Markov process,
thus also amenable to operator methods, though requiring more powerful technical
results. We expect that Theorem 7.5.3 extends to this case. Likewise, Theorem 7.6.1
also extends to the case of increments that are independent but not stationary, as
can be seen by the fact that Theorem II.4.15 of [83] also holds for such processes.

It should also be noted that identifiability holds independently of the dimension of
the driving Lévy process. This is useful, for instance, in relation to Example 7.2.1.
We do not need to use the specific SDE driven by a four-dimensional Wiener process.
We can replace the diffusion term in the SDE by a term involving the positive definite
square root of the diffusion matrix and a two-dimensional Wiener process without
affecting the postintervention distribution.

It is, however, important to be careful about the interpretation of the identifiability
result. The result states that when using Definition 7.2.2 to model interventions, the
postintervention distributions are identifiable. As discussed above, Definition 7.2.2
is not always useful as a notion of intervention: This requires that we are willing to
interpret the SDE in a particular way. As Example 7.4.7 shows, not all SDEs are
amenable to such an interpretation – this requires separate arguments, such as in
Example 7.2.1.

A complete theory of interventions in continuous time stochastic processes should be
able to cover cases such as Example 7.4.7. Our results should be seen as a step in the
direction of a complete theory and encourage further generalizations. Another oppor-
tunity for further research concerns latent variables: In the DAG-based framework
of [126], the back-door and front-door criteria shows how to calculate intervention
effects from the observational distribution in the presence of latent variables. For
an SDE, the causal structure is summarized in the signature, see Definition 7.4.1,
which does not need to be acyclic, reflecting the possibility of feedback loops. It is
an open question how to obtain similar results in terms of the signature in the case
of, for example, a diffusion model with some coordinates being unobserved.
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7.8 Proof of identifiability

In this section, we prove Lemma 7.5.1 and Theorem 7.5.3. We first consider Lemma
7.5.1, which will follow from the following two lemmas. Lemma 7.8.1 identifies the so-
lutions to the relevant SDE as Feller processes and identifies the generator on C2

0 (Rp),
and Lemma 7.8.2 shows that the semigroups of interest are identified uniquely by
the values of their generators on C2

0 (Rp).

Lemma 7.8.1. Let D be a bounded neighborhood of zero in Rd. Consider the
SDE (7.24), where Z is a d-dimensional Lévy process with D-characteristic triplet
(α,C, ν), and a : Rp → M(p, d) is Lipschitz and bounded. The solution of (7.24)
is a Feller process, and this Feller process has a generator whose domain includes
C2

0 (Rp) and for any f ∈ C2
0 (Rp) and x ∈ Rp, it holds that

Af(x) =

p∑
i=1

d∑
j=1

aij(x)αj
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

(a(x)Ca(x)t)ij
∂2f

∂xi∂xj
(x)

+

∫
f(x+ a(x)y)− f(x)− 1D(y)

p∑
i=1

∂f

∂xi
(x)

d∑
j=1

aij(x)yj dν(y). (7.33)

Proof. Applying Theorem 2.4.16 of [7], we have

Zt = αt+BWt +

∫
1[0,t]×D(s, x) dM( ds, dx)

+

∫
1[0,t]×Dc(s, x) dN( ds, dx), (7.34)

where C = BBt for some B ∈ M(d, d), W is a d-dimensional Brownian motion,
N is a Poisson random measure on R+ × (Rd \ {0}) with intensity measure m+ ⊗
ν, independent of W , and M is N minus its compensator. Here, m+ denotes the
Lebesgue measure on R+. We may then rewrite the SDE (7.24) as

Xt = X0 +

∫ t

0
b(Xs−) ds+

∫ t

0
σ(Xs−) dWs

+

∫
1[0,t]×D(s, x)F (Xs−, y) dM( ds, dy)

+

∫
1[0,t]×Dc(s, x)F (Xs−, y) dN( ds, dy) (7.35)

where b(x) = a(x)α, σ(x) = a(x)B and F (x, y) = a(x)y. Thus, the SDE is of the
type given as (6.12) in [7]. By Theorem 6.4.5 of [7], X is therefore a Markov process,
and by Theorem 6.7.4 of [7], it has a Feller transition semigroup with a generator A
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whose domain includes C2
0 (Rp), and for f ∈ C2

0 (Rp), it holds that

Af(x) =

p∑
i=1

bi(x)
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

(σ(x)σ(x)t)ij
∂2f

∂xi∂xj
(x)

+

∫
D
f(x+ F (x, y))− f(x)−

p∑
i=1

Fi(x, y)
∂f

∂xi
(x) dν(y)

+

∫
Dc
f(x+ F (x, y))− f(x) dν(y). (7.36)

Substituting our expressions for b, σ and F , we obtain

Af(x) =

p∑
i=1

d∑
j=1

aij(x)αj
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

(a(x)Ca(x)t)ij
∂2f

∂xi∂xj
(x)

+

∫
f(x+ a(x)y)− f(x)− 1D(y)

p∑
i=1

∂f

∂xi
(x)

d∑
j=1

aij(x)yj dν(y), (7.37)

which is equal to (7.33). This proves the result.

Lemma 7.8.2. Let (Pt) and (Qt) are two Feller semigroups with generators A and
B. Assume that D(A) and D(B) both contain C2

0 (Rp) and that on C2
0 (Rp), A and

B are of the type given in (7.33). If Af = Bf for f ∈ C2
0 (Rp), then (Pt) = (Qt).

Proof. We begin by considering the semigroup (Pt) and its generator A, and by
introducing some definitions. Let A0 denote the restriction of A to C2

c (Rp). Let µ be
some probability measure on (Rp,Bp). As in Section 4.3 of [51], a càdlàg process X
with values in Rp, defined on some probability space, is said to be a solution of the
martingale problem for (A,µ) if it holds that X0 has distribution µ and the process

f(Xt)−
∫ t

0
A0f(Xs) ds (7.38)

is a martingale with respect to the filtration induced by X, for all f ∈ C2
c (Rp).

Also, as in [102], X is said to be a weak solution of (7.24) if there exists a filtered
probability space (Ω̃, F̃ , (F̃t)t≥0, P̃ ) endowed with processes X̃ and Z̃, where Z̃ is
a d-dimensional Lévy process with D-characteristic triplet (α,C, ν) such that X̃
satisfies (7.24) and X and X̃ has the same distribution.

Now note that A0 is of the type given as (13) in [102]. As C is positive semidefinite,
we have C = LLt for some L ∈M(d, d). The condition (14) in [102] then in our case
translates into having

sup
x∈K
‖a(x)α‖2 + ‖a(x)L‖22 +

∫
D
‖a(x)u‖22 dν(u) +

∫
Dc
‖a(x)u‖2 ∧ 1 dν(u) (7.39)
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be finite for all compact K in Rp, which holds as a is bounded on compacts and
ν is a Lévy measure. Therefore, Theorem 2.3 of [102] is applicable and shows that
any process X which is a solution to the martingale problem for (A0, µ) is a weak
solution of (7.24). However, due to our assumption that a is Lipschitz and bounded,
Theorem 14.95 of [82] shows that for a fixed initial distribution, all solutions to the
SDE (7.24) have the same distribution. Therefore, it also holds that all solutions to
the martingale problem for (A0, µ) will have the same distribution.

Now let B0 be the restriction of B to C2
c (Rp). By our assumptions, A0 = B0, so the

martingale problem for (A0, µ) has the same solutions as the martingale problem
for (B0, µ). Fix x ∈ Rp and let Xx and Y x be solutions to two SDEs of the form
(7.24) with initial value x and generators A and B, respectively, such processes exist
by Theorem V.7 of [134]. By Lemma 7.8.1, Xx and Y x are Feller processes with
generators A and B, respectively, with respect to their own induced filtrations (FXt )
and (FYt ), respectively. By (III.10.12) of [142], it then holds for all f ∈ C2

c (Rp) and
all bounded stopping times T with respect to (FXt ) that

Ef(XT ) = E

∫ T

0
A0f(Xs) ds, (7.40)

which shows by Theorem II.77.6 of [142] that (7.38) is a martingale. Thus, Xx

solves the martingale problem for (A0, µ). Similarly, we find that Y x solves the
martingale problem for (B0, µ). However, by what we already have seen, the two
martingale problems have the same solutions, and moreover, all solutions have the
same distribution. Therefore, Xx and Y x have the same distribution. Letting P x

denote the common distribution, letting X◦ denote the identity mapping on the
space of càdlàg paths from [0,∞) to Rp and letting εx denoting the Dirac measure
in x, we therefore obtain by (4.1.10) of [51] for any B ∈ Bp and t ≥ 0 that

(Pt1B)(x) =

∫
(Pt1B)(y) dεx(y) = P x(X◦t ∈ B)

=

∫
(Qt1B)(y) dεx(y) = (Qt1B)(x). (7.41)

We may now conclude that (Pt1B)(x) = (Qt1B)(x) for all B ∈ Bp, x ∈ Rp and t ≥ 0,
and therefore, (Pt) = (Qt), as desired.

Proof of Lemma 7.5.1. By Lemma 7.8.1, there exists a solution to (7.24), and the
solution is a Feller process with a Feller semigroup (Pt) such that (Pt) has a generator
whose domain includes C2

0 (Rp) and such that the generator on this space is given
by (7.33).

We need to argue that all solutions to (7.24), independent of the initial distribution
and the probability space on which the solution exists, are Feller processes with
semigroup (Pt). To this end, let X be a solution of (7.24). By Lemma 7.8.1, the
solution is a Feller process, and has a Feller semigroup (Qt) whose generator agrees
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with the generator of (Pt) on the set C2
0 (Rp). By Lemma 7.8.2, (Pt) = (Qt), and the

lemma is proven. �

Next, we turn our attention to Theorem 7.5.3. In order to prove this result, we first
state some technical lemmas.

Lemma 7.8.3. Let E be a neighborhood of zero in Rp. On C2
0 (Rp), the generator

of the semigroup of (7.24) may be rewritten as

Af(x) =

p∑
i=1

βi(x)
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

(a(x)Ca(x)t)ij
∂2f

∂xi∂xj
(x)

+

∫
f(x+ y)− f(x)− 1E(y)

p∑
i=1

∂f

∂xi
(x)yi dTx(ν)(y), (7.42)

where Tx : Rd → Rp is defined by Tx(y) = a(x)y, and

βi(x) =

d∑
j=1

aij(x)αj +

∫
(1T−1

x (E)(y)− 1D(y))

d∑
j=1

aij(x)yj dν(y), (7.43)

whenever the integrals are well-defined and finite. This finiteness condition is in
particular satisfied if E is bounded.

Proof. Assume that the integrals∫
f(x+ y)− f(x)− 1E(y)

p∑
i=1

∂f

∂xi
(x)yi dTx(ν)(y) and (7.44)

∫
(1T−1

x (E)(y)− 1D(y))
d∑
j=1

aij(x)yj dν(y) (7.45)

are well-defined and finite. We then obtain∫
f(x+ a(x)y)− f(x)− 1D(y)

p∑
i=1

∂f

∂xi
(x)

d∑
j=1

aij(x)yj dν(y)

=

∫
f(x+ y)− f(x)− 1E(y)

p∑
i=1

∂f

∂xi
(x)yi dTx(ν)(y)

+

p∑
i=1

∂f

∂xi
(x)

∫
(1T−1

x (E)(y)− 1D(y))

d∑
j=1

aij(x)yj dν(y), (7.46)

which, when substituted in (7.33), yields the desired expression for the generator. It
remains to prove that (7.44) and (7.45) are well-defined finite in the case where E is
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bounded. As regards (7.44), note that by continuity of Tx, T−1
x (E) is a neighborhood

of zero in Rd. T−1
x (E) may be unbounded, but we nonetheless have

∫ ∣∣∣∣∣f(x+ y)− f(x)− 1E(y)

p∑
i=1

∂f

∂xi
(x)yi

∣∣∣∣∣ dTx(ν)(y)

=

∫ ∣∣∣∣∣f(x+ Tx(y))− f(x)− 1E(Tx(y))

p∑
i=1

∂f

∂xi
(x)Tx(y)i

∣∣∣∣∣ dν(y). (7.47)

Here, the mapping y 7→ f(x + Tx(y)) − f(x) is bounded as f ∈ C2
0 (Rp), and the

mapping y 7→ 1E(Tx(y))
∑p

i=1
∂f
∂xi

(x)Tx(y)i is bounded as E is bounded. Therefore,

the integrand is bounded. And a first order Taylor expansion shows that on T−1
x (E),

the integrand is bounded by y 7→ C‖y‖2 for some C > 0. As T−1
x (E) is a neighbor-

hood of zero in Rd, we conclude that the integrability properties of ν yields that the
integral is finite. As for (7.45), we obtain

∫
(1T−1

x (E)(y)− 1D(y))

∣∣∣∣∣∣
p∑
i=1

∂f

∂xi
(x)

d∑
j=1

aij(x)yj

∣∣∣∣∣∣ dν(y)

=

∫
1T−1

x (E)\D(y)

∣∣∣∣∣
p∑
i=1

∂f

∂xi
(x)Tx(y)i

∣∣∣∣∣ dν(y)

−
∫

1D\T−1
x (E)(y)

∣∣∣∣∣∣
p∑
i=1

∂f

∂xi
(x)

d∑
j=1

aij(x)yj

∣∣∣∣∣∣ dν(y), (7.48)

where again, both the final integrals are finite due to the integrability properties of
ν, and so the former integral is finite as well. This concludes the proof.

Lemma 7.8.4. Assume that X and Y are two Feller processes with generators
whose domain both contain C2

0 (Rp) such that the generators on this set are of the
type (7.33). If the generators are equal on C2

0 (Rp) the initial distributions of X and
Y are equal, then X and Y have the same distribution.

Proof. Let (Pt) and (Qt) be Feller transition semigroups of X and Y , respectively.
By Lemma 7.8.2, (Pt) = (Qt), yielding by Theorem 4.1.1 of [51] that X and Y have
the same distribution.

Lemma 7.8.5. Fix x ∈ Rp and let D be a bounded neighborhood of zero in Rp.
Let a, ã ∈ Rp and b, b̃ ∈ M(p, p), and let ν and ν̃ be two measures on Rp such
that x 7→ min{1, ‖x‖2} is integrable with respect to ν and ν̃. Consider two linear
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functionals A and Ã from C2
0 (Rp) to R, where A is given by

Af =

p∑
i=1

ai
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

bij
∂2f

∂xi∂xj
(x)

+

∫
f(x+ y)− f(x)− 1D(y)

p∑
i=1

∂f

∂xi
(x)yi dν(y), (7.49)

and Ã is given by the same expression, with ã, b̃ and ν̃ substituted for a, b and ν. It
then holds that A = Ã if and only if a = ã, b = b̃ and ν = ν̃ on Rp \ {0}.

Proof. It is immediate that if a = ã, b = b̃ and ν = ν̃ on Rp \ {0}, then A = Ã. We
need to prove the converse. Thus, assume that A = Ã. Fix a bounded neighborhood
B of x in Rp. Assume that B contains the open ball in the Euclidean metric centered
at x with radius δ > 0. Using approximate units such as defined in [63], we may
for 0 < γ < 1 construct a family of mappings (fγ) ⊆ C2

0 (Rp) with the following
properties: fγ is bounded by 1, fγ converges pointwise to 1B as γ tends to zero,
and for γ ≤ γ0, where γ0 is some positive number, fγ is constant and equal to one
on the open ball in the Euclidean metric centered at x with radius δ(1 − γ). Now
consider γ ≤ min{γ0, 1/2}, and consider y ∈ Rp with ‖y‖2 < δ/2. In particular,
‖y‖2 ≤ δ(1− γ), yielding fγ(x+ y) = fγ(x) = 1. Therefore, for such γ, we obtain

Afγ =

∫
fγ(x+ y)− fγ(x) dν(y) =

∫
1(‖y‖2≥δ/2)(fγ(x+ y)− fγ(x)) dν(y)

=

∫
1(‖y‖2≥δ/2)(fγ(x+ y)− 1) dν(y), (7.50)

and similarly, Ãfγ =
∫

1(‖y‖2≥δ/2)(fγ(x+y)−1) dν̃(y). As x 7→ {1, ‖x‖2} is integrable
with respect to ν and ν̃, both these measures are bounded on {y ∈ Rp | ‖y‖2 ≥ δ/2}.
Therefore, we may apply the dominated convergence theorem and obtain

lim
γ→0

Afγ = lim
γ→0

∫
1(‖y‖2≥δ/2)(fγ(x+ y)− 1) dν(y)

=

∫
1(‖y‖2≥δ/2)(1B(x+ y)− 1) dν(y)

=

∫
1B(x+ y)− 1 dν(y) = −

∫
1Bc(x+ y) dν(y), (7.51)

and similarly, limγ→0 Ãfγ = −
∫

1Bc(x+ y) dν̃(y). We thus obtain∫
1Bc(x+ y) dν(y) = − lim

γ→0
Afγ = − lim

γ→0
Ãfγ =

∫
1Bc(x+ y) dν̃(y). (7.52)

As B was an arbitrary bounded neighborhood of x, we conclude that ν and ν̃ agree
on all sets of the form Bc where B is a bounded neighborhood of zero. Therefore,
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ν = ν̃ on Rp \ {0}. This implies that for all f ∈ C2
0 (Rp), we have

d∑
i=1

(ai − ãi)
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

(bij − b̃ij)
∂2f

∂xi∂xj
(x) = 0. (7.53)

Fix i ≤ p. Again applying the approximation results of Chapter 2 of [63], there exists
f ∈ C2

0 (Rp) such that f(y) = yi in a neighborhood of x, implying ai − ãi = 0. As i
was arbitrary, we obtain a = ã. This implies that for all f ∈ C2

0 (Rp), we have

1

2

p∑
i=1

p∑
j=1

(bij − b̃ij)
∂2f

∂xi∂xj
(x) = 0. (7.54)

Fixing i, j ≤ p, by Chapter 2 of [63], there exists a function f ∈ C2
0 (Rp) such that

f(y) = yiyj in a neighborhood of x, implying bij − b̃ij = 0. This completes the
proof.

Note that in the statement of Lemma 7.8.5, the measures ν and ν̃ are not required
to be Lévy measures, as we do not require that the measures assign measure zero to
{0}. This will be important, as we in the proof of Theorem 7.5.3 will use the lemma
for linear transformations of Lévy measures. Such measures retain their integrability
properties, but may assign non-zero measure to {0} when the linear transformation
is non-injective.

Proof of Theorem 7.5.3. Fix a bounded neighborhood D of zero in Rd, a bounded
neighborhood D̃ of zero in Rd̃ and a bounded neighborhood E of zero in Rp. Assume
that Z has D-characteristics (α,C, ν) and that Z̃ has D̃-characteristics (α̃, C̃, ν̃). For

x ∈ Rp, define T ax : Rd → Rp by T ax (y) = a(x)y and T ãx : Rd̃ → Rp by T ãx (y) = ã(x)y.
Also define

βi(x) =
d∑
j=1

aij(x)αj +

∫
(1(Tax )−1(E)(y)− 1D(y))

d∑
j=1

aij(x)yj dν(y) (7.55)

β̃i(x) =
d̃∑
j=1

ãij(x)α̃j +

∫
(1(T ãx )−1(E)(y)− 1D̃(y))

d̃∑
j=1

ãij(x)yj dν̃(y). (7.56)

Let A : C2
0 (Rp) → C0(Rp) be given by (7.42), except with Tx exchanged with T ax ,

and let Ã : C2
0 (Rp)→ C0(Rp) be given similarly, except with β, a, C, T ax , ν, D and

α exchanged by β̃, ã, C̃, T ãx , ν̃, D̃ and α̃. By our assumptions and Lemma 7.8.3,
A = Ã. As a consequence, by the uniqueness result of Lemma 7.8.5, we find that for
all x ∈ Rp and i ≤ p, we have

βi(x) = β̃i(x), (7.57)

a(x)Ca(x)t = ã(x)C̃ã(x)t, (7.58)

T ax (ν) = T ãx (ν̃). (7.59)
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We will use these equalities to obtain equality of the postintervention distributions.
To this end, now assume that X0 and Y0 have the same distribution. We need to
show that the postintervention distributions of doing Xm := ζ in (7.25) and doing
Y m := ζ in (7.26) are equal for all m and ζ. To this end, fix k ≥ 1 and define two
mappings

ρk : M(p, k)→M(p, k) (7.60)

τk : M(k, p)→M(k, p) (7.61)

with ρk being the mapping substituting the entries on the m’th row with zeroes, and
τk being the mapping substituting the entries on the m’th column with zeroes. We
then find that the postintervention SDEs for doing Xm := ζ and Y m := ζ in (7.25)
and (7.26), respectively, are

Xi
t = (X∗0 )i +

d∑
j=1

∫ t

0
bij(Xs) dZjs (7.62)

Y i
t = (Y ∗0 )i +

d∑
j=1

∫ t

0
b̃ij(Ys) dZ̃js , (7.63)

for i ≤ p, where b : Rp →M(p, d) and b̃ : Rp →M(p, d̃) are given by the expressions
b(x) = ρd(a(x)) and b̃ = ρd̃(ã(x)), and (X∗0 )i and (Y ∗0 )i are equal to Xi

0 and Y i
0 ,

respectively, for i 6= m, and equal to ζ on the m’th coordinate. By Lemma 7.8.1, the
distribution of the first process has a generator B which on C2

0 (Rp) is equal to

Bf(x) =

p∑
i=1

γi(x)
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

(b(x)Cb(x)t)ij
∂2f

∂xi∂xj
(x)

+

∫
f(x+ y)− f(x)− 1E(y)

p∑
i=1

∂f

∂xi
(x)yi dT bx(ν)(y), (7.64)

and the distribution of the second process has a generator B̃ which on C2
0 (Rp) is

equal to

B̃f(x) =

p∑
i=1

γ̃i(x)
∂f

∂xi
(x) +

1

2

p∑
i=1

p∑
j=1

(b̃(x)C̃b̃(x)t)ij
∂2f

∂xi∂xj
(x)

+

∫
f(x+ y)− f(x)− 1E(y)

p∑
i=1

∂f

∂xi
(x)yi dT b̃x(ν̃)(y), (7.65)

where

γi(x) =

d∑
j=1

bij(x)αj +

∫
(1(T bx)−1(E)(y)− 1D(y))

d∑
j=1

bij(x)yj dν(y), (7.66)

γ̃i(x) =

d̃∑
j=1

b̃ij(x)α̃j +

∫
(1

(T b̃x)−1(E)
(y)− 1D̃(y))

d̃∑
j=1

b̃ij(x)yj dν̃(y). (7.67)
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As X0 and Y0 have the same distribution, we find that X∗0 and Y ∗0 have the same
distributions as well. Therefore, Lemma 7.8.4 shows that in order to prove the desired
result, it suffices to show that B = B̃ on C2

0 (Rp). To this end, note that for all y ∈ Rd,
T bx(y) = ρd(a(x))y = ρ1(a(x)y) = ρ1(T ax (y)), and similarly, T b̃x(y) = ρ1(T ãx (y)).
Therefore, (7.59) implies that for all x ∈ Rp,

T bx(ν) = (ρ1 ◦ T ax )(ν) = ρ1(T ax (ν))

= ρ1(T ãx (ν)) = (ρ1 ◦ T ãx )(ν̃) = T b̃x(ν̃). (7.68)

Also,

b(x)Cb(x)t = ρd(a(x))Cρd(a(x))t = ρd(a(x)C)τd(a(x)t)

= τp(ρd(a(x)C)a(x)t) = τp(ρp(a(x)Ca(x)t)), (7.69)

meaning that b(x)Cb(x)t is equal to a(x)Ca(x)t with zeroes substituted for the
entries on the m’th row and column. Similarly, b̃(x)Cb̃(x)t = τp(ρp(ã(x)Cã(x)t)). As
a consequence, (7.58) allows us to conclude that for all x ∈ Rp,

b(x)Cb(x)t = b̃(x)C̃b̃(x)t. (7.70)

Finally, note that γm(x) = 0 = γ̃m(x) and for i 6= m, we have

γi(x) =
d∑
j=1

bij(x)αj +

∫
(1(T bx)−1(E)(y)− 1D(y))

d∑
j=1

bij(x)yj dν(y)

=
d∑
j=1

aij(x)αj +

∫
(1(Tax )−1(ρ−1

1 (E))(y)− 1D(y))
d∑
j=1

aij(x)yj dν(y), (7.71)

and similarly for γ̃. In particular, as ρ−1
1 (E) is a neighborhood of zero in Rp, calcu-

lating backwards, this implies in particular by Lemma 7.8.1 that the latter integral
is finite even though ρ−1

1 (E) may not be bounded. Again applying Lemma 7.8.1,
(7.57) also holds with E substituted with ρ−1

1 (E), and so (7.71) shows that

γi(x) = γ̃i(x). (7.72)

Combining (7.68), (7.70) and (7.72), Lemma 7.8.5 shows that B and B̃ agree on
C2

0 (Rp), and thus Lemma 7.8.4 yields that the postintervention distributions are
equal. �

7.9 Proof of WCLI properties

In this section, we prove Theorem 7.6.1. To this end, we first state two lemmas. We
remark that the calculation of the characteristics in the proof of Lemma 7.9.1 is
similar to the results given as Proposition IX.5.3 of [83] and Lemma 2.5 of [88].
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Lemma 7.9.1. Let K be a d-dimensional predictable and locally bounded process,
and define Yt =

∑d
j=1

∫ t
0 K

j
s dZjs . Letting (BZ , CZ , νZ) be the hd-characteristics of

Z, it holds that the h1-characteristics (BY , CY , νY ) of Y are given by

BY
t =

d∑
j=1

∫ t

0
Kj
s d(BZ)js + ((h1 ◦H −H ◦ hd) ∗ νZ)t (7.73)

CYt =
d∑
j=1

d∑
k=1

Kj
sK

k
s d(CZ)jks (7.74)

νY (ω,A) =

∫
R+×Rd

1A(t,H(x)t(ω)) dνZ(ω, dt, dx), (7.75)

where A ∈ B and H(x)t(ω) =
∑d

j=1K
j
t (ω)xj.

Proof. We begin by calculating an expression for the first characteristic, BY . To
do so, we identify the predictable finite variation part of the special semimartingale
Yt −

∑
0<s≤t ∆Ys − h1(∆Ys). Note that (ω, t, x) 7→ H(x)t(ω) is predictable. By the

definition of BZ , there exists a d-dimensional local martingale M with the property
that Zt = Z0+BZ

t +Mt+
∑

0<s≤t ∆Zs−hd(∆Zs). We then obtain the decomposition

Yt = At +
∑d

j=1

∫ t
0 K

j
s dM j

s , where the latter is a local martingale and

At =
d∑
j=1

∫ t

0
Kj
s d(BZ)js +

d∑
j=1

∑
0<s≤t

Kj
s(∆Z

j
s − hdj (∆Z)s)

=
d∑
j=1

∫ t

0
Kj
s d(BZ)js +

∑
0<s≤t

H(∆Zs)s −H(hd(∆Zs))s

=
d∑
j=1

∫ t

0
Kj
s d(BZ)js + ((H −H ◦ hd) ∗ µZ)t, (7.76)

understanding that H −H ◦ hd here denotes (ω, t, x) 7→ H(x)t(ω) −H(hd(x))t(ω),
which is a predictable function, and the integral with respect to µZ is finite by taking
absolute values and calculating backwards. With similar notation, we also obtain

∑
0<s≤t

∆Ys − h1(∆Ys) =
∑

0<s≤t

d∑
j=1

Kj
s∆Z

j
s − h1

 d∑
j=1

Kj
s∆Z

j
s


=
∑

0<s≤t
H(∆Zs)− h1(H(∆Zs)) = ((H − h1 ◦H) ∗ µZ)t.

(7.77)

Therefore, we obtain Yt−
∑

0<s≤t ∆Ys−h1(∆Ys) = Ãt +
∑d

j=1

∫ t
0 K

j
s dM j

s , where Ã
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is the finite variation process given by

Ãt =

d∑
j=1

∫ t

0
Kj
s d(BZ)js + ((h1 ◦H −H ◦ hd) ∗ µZ)t. (7.78)

Now define BY
t =

∑d
j=1

∫ t
0 K

j
s d(BZ)js + ((h1 ◦H −H ◦hd) ∗ νZ)t, where the integral

with respect to νZ is well-defined as integrability with respect to µZ implies integra-
bility with respect to νZ . As h1 ◦H−H ◦hd is a predictable function, the latter term
is predictable. And as BZ is predictable, the process

∫ t
0 K

j
s d(BZ)js only jumps at pre-

dictable times T , and the jump is Kj
T∆(BZ)jT , which is FT− measurable by Corollary

3.23 of [66]. Therefore, Theorem 3.33 of [66] shows that
∫ t

0 K
j
s d(BZ)js is predictable,

and thus BY is predictable. Thus, BY is the predictable finite variation part of the
process Yt−

∑
0<s≤t ∆Ys−h1(∆Ys) and is therefore the first characteristic of Y . As

regards the process CY , note that by Theorem 9.3 of [66], Y c
t =

∑d
j=1

∫ t
0 K

j
s d(Zj)cs.

Thus, we immediately obtain CYt =
∑d

j=1

∑d
k=1K

j
sKk

s d(CZ)jks . It remains to cal-
culate the third characteristic. For all A ∈ B+ ⊗ B, we have

µY (ω,A) =
∑
0<t

1A(t,∆Yt(ω)) =
∑
0<t

1A

t, d∑
j=1

Kj
s(ω)∆Zjt (ω)


=
∑
0<t

1A(t,H(∆Z(ω)t)t(ω)) =

∫
R+×Rd

1A(t,H(x)t(ω)) dµZ(ω, dt, dx).

(7.79)

Now define νY (ω,A) =
∫
R+×Rd 1A(t,H(x)t(ω)) dνZ(ω, dt, dx). We wish to argue

that νY is the compensator of the jump measure of Y . To this end, we first show
that νY is predictable. By Section VI.16 of [143], P is generated by the family [[T,∞[[
for T a predictable stopping time. Therefore, P̃1 is generated by sets of the form
[[T,∞[[×C, where C ∈ B. By a monotone convergence argument, we then obtain
that in order to prove that νY is predictable, it suffices to show that 1[[T,∞[[×C ∗ νY
is predictable for all predictable stopping times T and all C ∈ B. To do so, fix a
predictable stopping time T and a set C ∈ B, we then have

(1[[T,∞[[×C ∗ νY )t(ω) =

∫
[0,t]×Rd

1[T (ω),∞)×C(t,H(x)t(ω)) dνZ(ω, dt, dx)

=

∫
[0,t]×Rd

1[[T,∞[[×C(ω, t,H(x)t(ω)) dνZ(ω, dt, dx). (7.80)

Now note that the mapping (ω, t, x) 7→ H(x)t(ω) is P ⊗ Bd-B measurable. From
this, we conclude that (ω, t, x) 7→ (ω, t,H(x)t(ω)) is P ⊗ Bd-P ⊗ B measurable. As
[[T,∞[[×C ∈ P ⊗ B, (ω, t, x) 7→ 1[[T,∞[[×C is P ⊗ B-B measurable. We conclude that

(ω, t, x) 7→ 1[[T,∞[[×C(ω, t,H(x)t(ω)) is P̃d-B measurable, thus a predictable function,

so as νZ is predictable, 1[[T,∞[[×C ∗ νY is predictable, so νY is predictable. It remains
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to prove that E(W ∗ νY )∞ = E(W ∗ µY )∞ for all nonnegative bounded predictable
functions W . Again, it suffices to consider predictable functions of the form 1[[T,∞[[×C .
However, rewriting the integrand as a predictable function as in (7.80), this follows
immediately from the fact that νZ is the compensator of µZ .

Lemma 7.9.2. Let X be the solution to (7.8). Assume that Z is a Lévy process and
assume that Xi is locally unaffected by Xm in (7.8). Let (B,C, ν) be the semimartin-
gale characteristics of Xi. Let (F−mt )t≥0 be the usual augmentation of the filtration
induced by the processes X1, . . . , Xp excluding Xm. Then B, C and ν are (F−mt )
predictable.

Proof. By Theorem II.4.15 of [83], Z being a Lévy process implies the existence
of a deterministic version (BZ , CZ , νZ) of the characteristics of Z. In particular,
BZ , CZ and νZ are all (F−mt ) predictable. And by the assumptions we have made,
Xi
t = xi0 +

∑d
j=1

∫ t
0 K

j
s dZjs , where Kj

s = aij(Ys−) and aij does not depend on the

m’th coordinate for all j. In particular,Kj
s is (F−mt ) predictable and locally bounded.

With H(x)t(ω) =
∑d

j=1K
j
t (ω)xj , we then find that (ω, t, x) 7→ H(x)t(ω) is a (F−mt )

predictable function. By (7.73) and Theorem 3.33 of [66], we then obtain that B
is (F−mt ) predictable. As regards the second characteristic, (7.74) shows that C is
continuous and (F−mt ) adapted, therefore (F−mt ) predictable. Finally, by the same
argument as in the proof of Lemma 7.9.1, we find that for any (F−mt ) predictable
stopping time and C ∈ B, 1[[T,∞[[×C ∗ ν is (F−mt ) predictable, and so ν is (F−mt )
predictable.

Proof of Theorem 7.6.1. As we have assumed that X is a special semimartingale,
this is immediate from Lemma 7.9.2. �
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Abstract. We introduce a notion of intervention for stochastic differ-
ential equations and a corresponding causal interpretation. For the case
of the Ornstein-Uhlenbeck SDE, we show that the SDE resulting from
a simple type of intervention again is an Ornstein-Uhlenbeck SDE. We
discuss criteria for the existence of a stationary distribution for the so-
lution to the intervened SDE. We illustrate the effect of interventions by
calculating the mean and variance in the stationary distribution of an
intervened process in a particularly simple case.

8.1 Introduction

Causal inference for continuous-time processes is a field in ongoing development.
Similar to causal inference for graphical models, see [126], one of the primary ob-
jectives for causal inference for continuous-time processes is to identify the effect of
an intervention given assumptions on the distribution and causal structure of the
observed continuous-time process.
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Several flavours of causal inference are available for continuous-time processes, see for
example [54, 57, 130]. In this paper, we outline a causal interpretation of stochastic
differential equations and a corresponding notion of intervention, we calculate the
distribution of an intervened Ornstein-Uhlenbeck SDE, and we calculate analytical
expressions for the mean and variance of the stationary distribution of the resulting
process for particular examples of interventions.

8.2 Causal interpretation of SDEs

Consider a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual condi-
tions, see [134] for the definition of this and other notions related to continuous-time
stochastic processes. Let Z be a d-dimensional semimartingale and assume that
a : Rp → M(p, d) is a Lipschitz mapping, where M(p, d) denotes the space of real
p× d matrices. Consider the stochastic differential equation (SDE)

Xi
t = xi0 +

d∑
j=1

∫ t

0
aij(Xs−) dZjs , i ≤ p. (8.1)

By the Lipschitz property of a, it holds by Theorem V.7 of [134] that there exists
a pathwisely unique solution to (8.1). The following definition yields a causal in-
terpretation of (8.1) based on simple substitution and inspired by ideas outlined in
Section 4.1 of [1].

Definition 8.2.1. Consider some m ≤ p and c ∈ R. The (p− 1)-dimensional inter-
vened SDE arising from the intervention Xm := c is defined to be

U it = xi0 +
d∑
j=1

∫ t

0
bij(Us−) dZjs for i ≤ p with i 6= m, (8.2)

where bij(y1, . . . , ym−1, ym+1, . . . , yp) = aij(y1, . . . , c, . . . , yp), and the c is on them’th
coordinate. Letting U be the unique solution to the SDE and defining Y by putting
Y = (U1, . . . , Um−1, c, Um+1, . . . , Up), we refer to Y as the intervened process and
write (X|Xm := c) for Y .

By Theorem V.16 and Theorem V.5 of [134], the solutions to both (8.1) and (8.2)
may be approximated by the Euler schemes for their respective SDEs. Making these
approximations and applying Pearl’s notion of intervention in an appropriate sense,
see [126], we may interpret Definition 8.2.1 as intervening in the system (8.1) un-
der the assumption that the driving semimartingales Z1, . . . , Zd are noise processes
unaffected by interventions, while the processes X1, . . . , Xp are affected by interven-
tions. Note that the operation of making an intervention takes a p-dimensional SDE
as its input and yields a (p− 1)-dimensional SDE as its output, and this operation
is crucially dependent on the coefficients in the SDE: These coefficients in a sense
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corresponds to the directed acyclic graphs of [126]. A major benefit of causality in
systems such as (8.1) as compared to the theory of [126] is the ability to capture
feedback systems and interventions in such feedback systems.

As the solutions to (8.1) and (8.2) are defined on the same probability space, we may
even consider the process Y −X, where Y = (X|Xm := c), allowing us to calculate
for example the variance of the effect of the intervention. As Y and X are never
observed simultaneously in practice, however, we will concentrate on analyzing the
differences between the laws of Y and X separately.

8.3 Intervention in Ornstein-Uhlenbeck SDEs

Recall that for an F0 measurable variable X0 and for A ∈ Rp, B ∈ M(p, p) and
σ ∈ M(p, d), the Ornstein-Uhlenbeck SDE with initial value X0, mean reversion
level A, mean reversion speed B, diffusion matrix σ and d-dimensional driving noise
is

Xt = X0 +

∫ t

0
B(Xs −A) ds+ σWt, (8.3)

where W is a d-dimensional (Ft) Brownian motion, see Section II.72 of [142]. The
unique solution to this equation is

Xt = exp(tB)

(
X0 −

∫ t

0
exp(−sB)BA ds+

∫ t

0
exp(−sB)σ dWs

)
(8.4)

where the matrix exponential is defined by exp(A) =
∑∞

n=0A
n/n!, see [68]. This is a

Gaussian homogeneous Markov process with continuous sample paths. The following
lemma shows that making an intervention in an Ornstein-Uhlenbeck SDE yields an
SDE whose nontrivial coordinates solve another Ornstein-Uhlenbeck SDE.

Lemma 8.3.1. Consider the Ornstein-Uhlenbeck SDE (8.3) with initial value x0.
Fix m ≤ p and c ∈ R, and let X be the unique solution to (8.3). Furthermore, let
Y = (X|Xm := c) and let Y −m be the p−1 dimensional process obtained by removing
the m’th coordinate from Y . Let B̃ be the submatrix of B obtained by removing the
m’th row and column of B, and assume that B̃ is invertible. Then Y −m solves

Y −mt = y0 +

∫ t

0
B̃(Y −ms − Ã) ds+ σ̃Wt, (8.5)

where y0 is obtained by removing the m’th coordinate from x0, σ̃ is obtained by
removing the m’th row of σ and Ã = α − B̃−1β, where α and β are obtained by
removing the m’th coordinate from A and from the vector whose i’th component is
bim(c − am), respectively, where bim is the entry corresponding to the i’th row and
the m’th column of B, and am is the m’th element of A.
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Proof. By Definition 8.2.1, we have

Y i
t =y0 +

∫ t

0
bim(c− am) +

∑
j 6=m

bij(Y
j
s − aj) ds+

p∑
j=1

σijW
j
t (8.6)

for i 6= m. Note that for any vector y, the system of equations in ã

bim(c− am) +
∑
j 6=m

bij(yj − aj) =
∑
j 6=m

bij(yj − ãj) for i 6= m, (8.7)

is equivalent to the system of equations

∑
j 6=m

bij ãj =

∑
j 6=m

bijaj

− bim(c− am) for i 6= m. (8.8)

Since we have assumed B̃ to be invertible, this system of equations has the unique
solution Ã = B̃−1(B̃α − β) = α − B̃−1β. For i 6= m, we therefore obtain that
Y i
t = y0 +

∫ t
0

∑
j 6=m bij(Y

j
s − ãj) ds+

∑p
j=1 σijW

j
t , proving the result. �

Recall that a principal submatrix of a matrix is a submatrix with the same rows
and columns removed. In words, Lemma 8.3.1 states that if a particular principal
submatrix B̃ of the mean reversion speed is invertible, then making the intervention
Xm := c in an Ornstein-Uhlenbeck SDE results in a new Ornstein-Uhlenbeck SDE
with mean reversion speed B̃ and modified mean reversion level involving the inverse
of B̃. Now assume that an Ornstein-Uhlenbeck SDE is given such that the solution
has a stationary initial distribution. A natural question to ask is what interventions
will yield intervened processes where stationary initial distributions also exist. In
the following, we consider this question.

Recall that a square matrix is called stable if its eigenvalues have negative real
parts and semistable if its eigenvalues have nonpositive real parts, see [31]. Theorem
4.1 of [178] yields necessary and sufficient criteria for the existence of a stationary
probability measure for the solution of (8.3). One criterion is expressed in terms of
the controllability subspace of of the matrix pair (B, σ), which is the span of the
columns in the matrices σ,Bσ, . . . , Bp−1σ. In the case where σ has full column span,
meaning that the columns of σ span all of Rp, the controllability subspace is all of
Rp, and Theorem 4.1 of [178] shows that the existence of a stationary probability
measure is equivalent to B being stable. The case where σ is not required to have
full column span is more involved.

In the following, we will restrict our attention to Ornstein-Uhlenbeck processes with
σ having full column span. By Theorem 4.1 of [178], it then holds that there exists
a stationary distribution if and only if B is stable. Furthermore, applying Theorem
2.4 and Theorem 2.12 of [80], it holds in the affirmative case that the stationary
distribution is the normal distribution with mean µ and variance Γ solving Bµ = BA
and σσt+BΓ+ΓBt = 0. Note that as B is stable, zero is not an eigenvalue of B, thus



Intervention in Ornstein-Uhlenbeck SDEs 177

B is invertible and µ = A. Also, stability of B yields that Γ =
∫∞

0 esBσσtesB
t
ds. For

the (p − 1)-dimensional Ornstein-Uhlenbeck process resulting from an intervention
according to Lemma 8.3.1, the diffusion matrix σ̃ is obtained by removing the m’th
row of σ. As the columns of σ span Rp, the columns of σ̃ span Rp−1. Therefore, it
also holds for the intervened process that there exists a stationary distribution if and
only if the mean reversion speed is stable. We conclude that for diffusion matrices
with full column span, the existence of stationary distributions for both the original
and the intervened SDE is determined solely by stability of the mean reversion speed
matrix B and the corresponding principal submatrices.

Consider a stable matrix B. It then holds that if all principal submatrices of B are
stable, all interventions will preseve stability of the system. We are thus lead to the
question of when a principal submatrix of a matrix is stable. That stability does not
in general lead to stability of principal submatrices may be seen from the following
example. Define B by putting

B =

[
1 7
−1 −3

]
.

The matrix B has eigenvalues −1 ± i
√

3 and is thus stable, while the principal
submatrix obtained by removing the second row and second column trivially has the
single eigenvalue 1 and thus is not stable, in fact not even semistable. Conversely,
−B has eigenvalues 1 ± i

√
3 and thus is neither stable nor semistable, while the

principal submatrix obtained by removing the second row and second column of −B
is stable.

There are classes of matrices satisfying that all principal submatrices are stable.
For example, by the inclusion principle for symmetric matrices, see Theorem 4.3.15
of [72], it follows that a principal submatrix of any symmetric stable matrix again
is stable. In general, though, it is difficult to ensure that all principal submatrices
are stable. However, there are criteria ensuring that all principal submatices are
semistable. For example, Lemma 2.4 of [67] shows that if B is stable and sign sym-
metric, then all principal submatrices of B is semistable. Here, sign symmetry is a
somewhat involved matrix criterion, it does however hold that any stable symmtric
matrix also is sign symmetric. Furthermore, by Theorem 1 of [31], either of the
follow three properties are also sufficient for having all principal submatrices being
semistable:

1. A−D is stable for all nonnegative diagonal D.

2. DA is stable for all positive diagonal D.

3. There is positive diagonal D such that AD +DAt is negative definite.
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8.4 An example of a particular intervention

Consider now a three-dimensional Ornstein-Uhlenbeck process X with σ being the
identity matrix of order three and upper diagonal mean reversion speed matrix
B, and assume that the diagonal elements of B all are negative. As the diagonal
elements of B in this case also are the eigenvalues, B is then stable, and all principal
submatrices are stable as well. The interpretation of having B upper diagonal is that
the levels of both X1, X2 and X3 influence the average change in X1, while only
the levels of X2 and X3 influence the average change in X2 and only X3 influences
the average change in X3. Figure 8.4.1 illustrates this, as well as the changes to the
dependence structure obtained by making interventions X2 := c or X3 := c.

X1
		

X2
YY

77

X3
YY

gg

jj

X1
		

X2

77

X3
YY

gg X1
		

X2
YY

77

X3

gg

jj

Figure 8.4.1: Graphical illustrations of the dependence structures of (X1, X2, X3)
(left), of the dependence when making the intervention X2 := c (middle) and of the
dependence when making the intervention X3 := c (right).

We will investigate the details of what happens to the system when making the
intervention X2 := c or X3 := c. To this end, we calculate the mean and variance in
the stationary distribution for the nontrivial coordinates in each of the intervened
processes. Consider first the case of the intervention X2 := c. Let µ and Γ denote
the mean and variance in the stationary distribution after intervention. Applying
Lemma 8.3.1, the SDE resulting from making this intervention is a two-dimensional
Ornstein-Uhlenbeck SDE with mean reversion speed and mean reversion level[

b11 b13

0 b33

]
and

[
a1

a3

]
−
[
b11 b13

0 b33

]−1 [
b12(c− a2)

0

]
. (8.9)

As we have [
b11 b13

0 b33

]−1

=

[
1
b11

− b13
b11b33

0 1
b33

]
, (8.10)

this immediately yields that

µ =

[
a1 − b12

b11
(c− a2)

a3

]
. (8.11)
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As for the variance, recall that we have the representation

Γ =

∫ ∞
0

exp

(
s

[
b11 b13

0 b33

])
exp

(
s

[
b11 0
b13 b33

])
ds. (8.12)

In order to calculate this integral, first consider the case b11 = b33. By Theorem 4.11
of [68], we in this case obtain

exp

(
s

[
b11 b13

0 b33

])
= esb11

[
1 sb13

0 1

]
, (8.13)

and similarly for the transpose. Applying that
∫∞

0 xαeβx dx = Γ(α+1)/(−β)α+1 for
all α > −1 and β < 0, we conclude

Γ =

∫ ∞
0

e2sb11

[
1 sb13

0 1

] [
1 0
sb13 1

]
ds

=

∫ ∞
0

e2sb11

[
1 + s2b213 sb13

sb13 1

]
ds =

 − 1
2b11
− b213

4b311

b13
4b211

b13
4b211

− 1
2b11

 . (8.14)

In the case b11 6= b33, we put ζ = b13/(b11 − b33) and Theorem 4.11 of [68] yields

exp

(
s

[
b11 b13

0 b33

])
=

[
esb11 ζ(esb11 − esb33)

0 esb33

]
, (8.15)

and we then obtain

exp

(
s

[
b11 b13

0 b33

])
exp

(
s

[
b11 0
b13 b33

])
=

[
esb11 ζ(esb11 − esb33)

0 esb33

] [
esb11 0

ζ(esb11 − esb33) esb33

]
=

[
(1 + ζ2)e2sb11 − 2ζ2es(b11+b33) + ζ2e2sb33 ζes(b11+b33) − ζe2sb33

ζes(b11+b33) − ζe2sb33 e2sb33

]
, (8.16)

implying that

Γ =

[
− (1+ζ2)

2b11
+ 2ζ2

b11+b33
− ζ2

2b33
− ζ
b11+b33

+ ζ
2b33

− ζ
b11+b33

+ ζ
2b33

− 1
2b33

]

=

 − 1
2b11
− ζ2

(
1

2b11
+ 2

b11+b33
− 1

2b33

)
ζ(b11−b33)

2b33(b11+b33)
ζ(b11−b33)

2b33(b11+b33) − 1
2b33


=

[
− 1

2b11
− b213

2b11b33(b11+b33)
b13

2b33(b11+b33)
b13

2b33(b11+b33) − 1
2b33

]
. (8.17)

Note in particular that (8.17) also yields the correct result in the case b11 = b33. Next,
considering the intervention X3 := c, we let ν and Σ denote the mean and variance
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in the stationary distribution of the nontrivial coordinates after intervention. By
Lemma 8.3.1, the result of making this interveniton is an Ornstein-Uhlenbeck SDE
with mean reversion speed and mean reversion level[

b11 b12

0 b22

]
and

[
a1

a2

]
−
[
b11 b12

0 b22

]−1 [
b13(c− a3)
b23(c− a3)

]
, (8.18)

yielding by calculations similar to the previous case that

ν =

[
a1 −

(
b13
b11
− b12b23

b11b22

)
(c− a3)

a2 − b23
b22

(c− a3)

]
(8.19)

and

Σ =

[
− 1

2b11
− b212

2b11b22(b11+b22)
b12

2b22(b11+b22)
b12

2b22(b11+b22) − 1
2b22

]
. (8.20)

We have now calculated the mean and variance in the stationary distribution for
both intervened processes. We next take a moment to interpret our results.

In the original system, all of X1, X2 and X3 negatively influenced themselves, and in
addition to this, X2 influenced X1 and X3 influenced X1 both directly and through
its influence on X2. Based on this, we would expect that making the intervention
X2 := c, the steady state of X3 would not be changed, while the steady state of X1

would change, depending on the level of influence b12 of X2 on X1. This is what we
see in (8.11). When making the intervention X3 := c, however, we obtain a change
in the steady state of X1 based both on the direct influence of X3 on X1, depending
on b13, but also on the indirect influence of X3 on X1 through X2, depending also
on b23 and b12. Furthermore, the steady state of X2 also changes. These results show
themselves in (8.19).

As for the steady state variance, the changes resulting from interventions are in both
cases of the same type, yielding moderately complicated analytical expressions, both
independent of c. This implies that while we in most cases will be able to obtain any
steady state mean for, say, X1, by picking c suitably, the steady state variance can
be influenced only by the type of intervention made, that is, on which parts of the
system the interventions are made. Furthermore, by considering explicit formulas
for the steady state variance in the original system, it may be seen that for example
positive covariances may turn negative and vice versa when making interventions.

Acknowledgements. The development of the notion of intervention for SDEs is
joint work with my thesis advisor, Niels Richard Hansen, whom I also thank for
valuable discussions and advice.
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Abstract. We are interested in identifiability of the mixing matrix in
the ICA model, when the error distribution is close to (but different
from) Gaussian. In particular, we consider n independent samples from
the ICA model X = Aε, where we assume that the coordinates of ε
are independent and identically distributed according to a contaminated
Gaussian distribution, and the amount of contamination is allowed to de-
pend on n. We then investigate how identifiability of the mixing matrix
depends on the amount of contamination. Our results suggest that iden-
tifiability becomes problematic if the amount of contamination decreases
at rate 1/

√
n or faster.

9.1 Introduction

We consider the p-dimensional independent component analysis (ICA) model

X = Aε, (9.1)

181
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where A is a p × p mixing matrix, ε is a p-dimensional error (or source) variable
with independent coordinates of mean zero, and X is a p-dimensional observational
variable. Based on observations of X, ICA aims to identify the mixing matrix A and
the distribution of the error variables ε. Theory and algorithms for ICA can be found
in, e.g., [23, 28, 74, 75, 76, 122]. ICA has applications in many different disciplines,
including blind source separation (e.g., [29]), face recognition (e.g., [10]), medical
imaging (e.g., [12, 86, 172]) and causal discovery using the LiNGAM method (e.g.,
[156, 157]).

Our focus is on identifying the mixing matrix. Identifiability is an issue, since two
different mixing matrices A and B may yield the same distribution of X, for example
if the distribution of ε is multivariate Gaussian. In this case, the mixing matrix
cannot be identified from X. In [28], it was shown that whenever at most one of the
components of ε is Gaussian, the mixing matrix is asymptotically identifiable up to
scaling and permutation of columns, see also Theorem 4 of [50]. In order to illustrate
the relevance of identifying the mixing matrix in (9.1), we give an example based on
causal inference.

Example 9.1.1. Consider a two-dimensional linear structucal equation model with
additive noise of the form[

X1

X2

]
=

[
B11 B12

B21 B22

] [
X1

X2

]
+

[
ε1

ε2

]
, (9.2)

see e.g. [156]. We assume that the coordinates of ε are independent, nondegenerate
and have second moment, and assume that B is strictly triangular, meaning that all
entries of B are zero except either B12 or B21. In the first case, X1 is a function of
X2 and vice versa for the second case. In the context of linear structural equation
models, identifying which row of B is zero corresponds to identifying whether X1 is
a cause of X2 or vice versa.

As B is strictly triangular, I −B is invertible. Letting A = (I −B)−1, we obtain[
X1

X2

]
=

[
A11 A12

A21 A22

] [
ε1

ε2

]
, (9.3)

where A is upper or lower triangular according to whether the same holds for B.
Thus, we have arrived at an ICA model of the form (9.1). By standardization, we
may assume that X and ε both have mean zero and unit variance. Let α ∈ R denote
the covariance between X1 and X2. From independence of ε1 and ε2, we obtain[

1 α
α 1

]
= V

[
X1

X2

]
=

[
A2

11 +A2
12 A11A21 +A12A22

A21A11 +A22A12 A2
21 +A2

22

]
. (9.4)

In the case where A is lower triangular, meaning that A12 = 0, this yields[
A2

11 A11A21

A21A11 A2
21 +A2

22

]
=

[
1 α
α 1

]
, (9.5)
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so that

A =

[
1 0

α
√

1− α2

]
, (9.6)

and similarly, for the case where A is upper triangular, we obtain

A =

[ √
1− α2 α

0 1

]
. (9.7)

Thus, A satisfies either (9.6) or (9.7). In the case where ε is jointly Gaussian, it is
immediate that we cannot distinguish whether A satisfies (9.6) or (9.7) from the
distribution of X alone. By the results of [28], distinguishing the cases (9.6) or (9.7)
from the distribution of X is possible when ε has non-Gaussian coordinates. Thus,
in this case, we may infer causal relationships from estimation of the mixing matrix
in an ICA model. However, if the distribution of ε is close to Gaussian, it may be
expected that based on samples from the distribution of X, identification of A and
thus identification of the causal relationship becomes difficult. ◦

Motivated by the above, we study asymptotic identifiability of the mixing matrix
under an asymptotic scenario where the distribution of ε depends on the sample
size n, and tends to a Gaussian distribution as n tends to infinity. In fact, we will
consider a general mean zero distribution ζ and an asymptotic scenario where the
distribution of ε tends to ζ. Results on asymptotic identifiability for the case of a
limiting Gaussian distribution then follow as a corollary.

Specifically, let ζ and ξ denote nondegenerate mean zero probability distributions
on (R,B) such that ξ 6= ζ. Fix p ∈ N and let A be a p × p matrix. Let (εn)
be a sequence of p-dimensional variables such that for each n, the coordinates of
εn = (εn1, . . . , εnp) are independent and identically distributed according to the
contaminated ζ distribution

Pe(βn) = βnξ + (1− βn)ζ. (9.8)

Here, scalar multiplication and addition of probability measures, or more generally
of signed measures, is defined pointwisely as in [150]. We investigate asymptotic
identifiability of the mixing matrix A based on n independent samples from the dis-
tribution of X = Aεn, where βn is allowed to tend to zero as n tends to infinity. Our
results suggest that when βn ∈ o(1/

√
n), asymptotic identifiability is determined

solely by the properties of the limiting distribution ζ of Pe(βn). In particular, in the
case where ζ is a Gaussian distribution, asymptotic identifiability becomes problem-
atic if βn ∈ o(1/

√
n). We also prove results showing, subject to certain regularity

conditions, that in the scenario with βn = n−ρ for some 0 < ρ < 1/2, asymptotic
identifiability properties remain as in the classical case where the distribution of ε
does not depend on n.
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9.2 Problem statement and main results

ICA can be used to estimate A when the distribution of ε is unknown. In this case,
we may think of the statistical model corresponding to ICA as the collection of
probability measures

{LA(R) | A ∈M(p, p), R ∈ P(p)}, (9.9)

where M(p, p) denotes the space of p × p matrices, LA : Rp → Rp is given by
LA(x) = Ax, LA(R) denotes the image measure of R under the transformation LA,
and Bp denotes the Borel-σ-algebra on Rp. Also, P(p) denotes the set of product
probability measures on (Rp,Bp), indicating that the error distribution has indepen-
dent coordinates. In other words, it is assumed that the distribution of X in (9.1) is
equal to LA(R) for some A ∈M(p, p) and R ∈ P(p). This is a semiparametric model,
where A is the parameter of interest and R is a nuisance parameter. Asymptotic dis-
tributions of estimates of the mixing matrix in this type of set-up are derived in e.g.
[5, 23, 77]. The difficulty of identifying A can then be appraised by considering for
example the asymptotic variance of the estimates.

Alternatively, one can consider estimation of A for a given error distribution. This
is the approach we take in this paper. When ε has the distribution of some fixed
R ∈ P(p), the statistical model corresponding to the ICA model (9.1) is the collection
of probability measures

{LA(R) | A ∈M(p, p)}. (9.10)

Asymptotic identifiability of A in (9.10) follows from the results of [28] and [50].
In particular, if no two coordinates of R are jointly Gaussian, the mixing matrix
A is asymptotically identifiable up to scaling and permutation of columns, in the
sense that LA(R) = LB(R) implies A = BΛP for some diagonal matrix Λ and
permutation matrix P .

We are interested in identifiability of the mixing matrix in (9.10) when the error
distributions are different from Gaussian but close to Gaussian. Some results in this
direction can be found in [125], where the authors calculated the Crámer-Rao lower
bound for the model (9.10), under the assumption that the coordinates of the error
distribution have certain regularity criteria such as finite variance and differentiable
Lebesgue densities. These results indicate how the minimum variance of an unbiased
estimator of the mixing matrix depends on the error distribution.

We consider the problem from the following different perspective. For p ≥ 1 and any
signed measure µ on (R,B), let µ⊗µ denote the product measure of µ with itself, and
let µ⊗p = ⊗pi=1µ denote the p-fold product measure. Fix two mean zero probability
measures ξ and ζ with ξ 6= ζ, and let Pe(β) be the contaminated distribution given
by

Pe(β) = βξ + (1− β)ζ. (9.11)
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Also, we write FA for the cumulative distribution function of LA(ζ⊗p), and we write
FAβ for the cumulative distribution function of LA(Pe(β)⊗p). In Section 9.3, we will

show that FAβ tends uniformly to FA at an asymptotically linear rate in β as β

tends to zero. As a consequence, whenever FA = FB, the distance ‖FAβ − FBβ ‖∞
tends to zero at an asymptotically linear rate as well. In Theorem 9.4.3, we use
this result to show that when FA = FB and β ∈ o(1/

√
n), identifiability of the

mixing matrix is determined by the properties of FA and not FAβ . In particular,

we argue in Corollary 9.4.4 that when ζ is a Gaussian distribution, β ∈ o(1/
√
n)

and AAt = BBt, distinguishing between the candidates A and B for the mixing
matrix becomes problematic. Finally, in Theorem 9.4.5, under suitable regularity
conditions, we prove that in the case of sufficiently slow convergence to the limiting
error distribution, meaning that βn = n−ρ for some 0 < ρ < 1/2, the asymptotic
identifiability issues of the previous results do not manifest themselves, even when
FA = FB. All proofs are given in Section 9.6.

9.3 An upper asymptotic distance bound

We begin by introducing some notation. For any measure µ on (Rp,Bp), let |µ|
denote the total variation measure of µ, see, e.g., [150]. We define two norms by

‖µ‖∞ = sup
x∈Rp

|µ((−∞, x1]× · · · × (−∞, xp])|, (9.12)

‖µ‖tv = |µ|(Rp), (9.13)

and refer to these as the uniform and the total variation norms, respectively. The
uniform norm for measures is also known as the Kolmogorov norm. Note that if
P and Q are two probability measures on (Rp,Bp) with cumulative distribution
functions F and G, it holds that ‖P − Q‖∞ = ‖F − G‖∞. Finally, we use the
notation f(s) ∼ g(s) for s → s0 when lims→s0 f(s)/g(s) = 1. As in the previous
section, let ξ and ζ be two mean zero probability distributions on (R,B) with ξ 6= ζ.
We aim to bound the distance

‖FAβ − FBβ ‖∞ = ‖LA(Pe(β)⊗p)− LB(Pe(β)⊗p)‖∞ (9.14)

for matrices A,B ∈ M(p, p) with FA = FB. The following theorem is a first step
towards this goal.

Theorem 9.3.1. Let Pe(β) = βξ + (1 − β)ζ for β ∈ (0, 1), and let A ∈ M(p, p).
Then

lim
β→0

LA(Pe(β)⊗p)− LA(ζ⊗p)

‖Pe(β)− ζ‖∞
=

p∑
k=1

LA(ζ⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k)), (9.15)

where ν = (ξ − ζ)/‖ξ − ζ‖∞ and convergence is in ‖ · ‖∞. In particular, FAβ tends

uniformly to FA as β tends to zero.
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The proof of Theorem 9.3.1 exploits properties of the contaminated distributions
Pe(β) for β ∈ (0, 1), in particular that ‖Pe(β)− ζ‖∞ is nonzero and linear in β, and
that (Pe(β) − ζ)/‖Pe(β) − ζ‖∞ is constant in β. As Lemma 9.3.2 shows, only con-
taminated distributions have these properties. This is our main reason for working
with this family of distributions.

Lemma 9.3.2. Let β 7→ Q(β) be a mapping from (0, 1) to the space of probability
measures on (R,B) with the properties that ‖Q(β) − ζ‖∞ is nonzero and linear in
β and (Q(β) − ζ)/‖Q(β) − ζ‖∞ is constant in β. Then Q(β) can be written as
a contaminated ζ distribution, in the sense that Q(β) = βξ + (1 − β)ζ for some
probability measure ξ on (R,B).

Due to the properties of contaminated distributions, Theorem 9.3.1 in fact also holds
for other norms than the uniform norm. However, the choice of the norm is important
when we wish to bound the norm of the right-hand side of (9.15). Such a bound is
achieved in Lemma 9.3.3.

Lemma 9.3.3. Let A ∈M(p, p). Then∥∥∥∥∥
p∑

k=1

LA

(
ζ⊗(k−1) ⊗ ξ − ζ

‖ξ − ζ‖∞
⊗ ζ⊗(p−k)

)∥∥∥∥∥
∞

≤ 2p. (9.16)

Combining Theorem 9.3.1 and Lemma 9.3.3 yields the following corollary, which we
give without proof.

Corollary 9.3.4. Let A,B ∈M(p, p) be such that FA = FB. Define

Γ(A,B, ν) =

p∑
k=1

LA

(
ζ⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k)

)
−

p∑
k=1

LB

(
ζ⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k)

)
. (9.17)

Then we have, for β → 0,

‖FAβ − FBβ ‖∞ ∼
∥∥∥∥Γ

(
A,B,

ξ − ζ
‖ξ − ζ‖∞

)∥∥∥∥
∞
‖Pe(β)− ζ‖∞ ≤ 4pβ‖ξ − ζ‖∞. (9.18)

Corollary 9.3.4 shows that in the case where FA = FB, as β tends to zero and the
error distributions Pe(β) become closer to ζ, the distance between the observational
distributions FAβ and FBβ decreases asymptotically linearly in β. Heuristically, this

suggests that when FA = FB and β is close to zero, the distributions FAβ and FBβ
are hard to distinguish.

Corollary 9.3.4 is stated under the condition that FA = FB. For later use, we
characterize the occurrence of this in the next lemma, in terms of ζ, A and B, for
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the case where A and B are invertible and ζ is non-degenerate, meaning that ζ is
not a Dirac measure. Recall that a probability distribution Q on (R,B) is said to
be symmetric if, for every random variable Y with distribution Q, Y and −Y have
the same distribution. The proof of Lemma 9.3.5, given in Section 9.6, is a simple
consequence of Theorem 4 of [50].

Lemma 9.3.5. Assume that ζ is a non-degenerate mean zero probability measure
on (R,B). Let A,B ∈M(p, p) be invertible. Then the following hold:

1. If ζ is Gaussian, then FA = FB if and only if AAt = BBt.

2. If ζ is non-Gaussian and symmetric, then FA = FB if and only if A = BΛP
for some permutation matrix P and a diagonal matrix Λ satisfying Λ2 = I.

3. If ζ is non-symmetric, then FA = FB if and only if A = BP for some permu-
tation matrix P .

9.4 Asymptotic identifiability

We now turn to asymptotic properties of ICA models. We will need some basic facts
about random fields in order to formulate our results, see [97, 111] for an overview.
Recall that a mapping R : Rp×Rp → R is said to be symmetric if R(x, y) = R(y, x)
for all x, y ∈ Rp, and is said to be positive semidefinite if for all n ≥ 1 and for all
x1, . . . , xn ∈ Rp and ξ1, . . . , ξn ∈ R, it holds that

n∑
i=1

n∑
j=1

ξiR(xi, xj)ξj ≥ 0. (9.19)

For any symmetric and positive semidefinite function R : Rp×Rp → R, there exists
a mean zero Gaussian random field W with covariance function R, taking its values
in RRp . In general, W will not have continuous paths. For a general random field
W , we associate with W its intrinsic pseudometric ρ on Rp, given by

ρ(x, y) =
√
E(W (x)−W (y))2. (9.20)

If the metric space (Rp, ρ) is separable, we say that W is separable. In this case,
‖W‖∞ = supx∈D |W (x)| with probability one, for any countable subset D of Rp
which is dense under the pseudometric ρ.

The following lemma describes some important properties of a class of Gaussian
fields particularly relevant to us. The result is well known, see for example [43]. For
completeness, we outline a short proof in Section 9.6 based on a strong approximation
result from the literature.
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Lemma 9.4.1. Let F be a cumulative distribution function on Rp. There exists a
p-dimensional separable mean zero Gaussian field W which has covariance function
R : Rp×Rp → R given by R(x, y) = F (x∧ y)−F (x)F (y) for x, y ∈ Rp, where x∧ y
is the coordinate wise minimum of x and y. With Q denoting the rationals, it holds
that ‖W‖∞ = supx∈Qp |W (x)| and ‖W‖∞ is almost surely finite.

For a fixed cumulative distribution function F , we refer to the Gaussian field de-
scribed in Lemma 9.4.1 as an F -Gaussian field. We are now ready to formulate our
results on asymptotic identifiability in ICA models. We first state a result, Theorem
9.4.2, concerning the classical asymptotic scenario, where the error distribution is
not contaminated and does not depend on the sample size n. Fix a mean zero proba-
bility distribution ζ on (R,B) and a matrix A ∈M(p, p). As in the previous section,
we let FA denote the cumulative distribution function of LA(ζ⊗p), corresponding
to the distribution of Aε when ε is a p-dimensional variable with independent coor-
dinates having distribution ζ. Consider a probability space (Ω,F , P ) endowed with
(Xk)k≥1 be independent variables with cumulative distribution function FA. Let FAn
be the empirical distribution function of X1, . . . , Xn. Also assume that we are given
an FA-Gaussian field W on (Ω,F , P ).

Theorem 9.4.2. Let c ≥ 0 be a continuity point of the distribution of ‖W‖∞. Then

lim
n→∞

P (
√
n‖FAn − FA‖∞ > c) = P (‖W‖∞ > c), (9.21)

while in the case where FA 6= FB, it holds that

lim
n→∞

P (
√
n‖FAn − FB‖∞ > c) = 1. (9.22)

The equations (9.21) and (9.22) roughly state that in the classical asymptotic sce-
nario,

√
n‖FAn −FA‖∞ converges in distribution to ‖W‖∞, while

√
n‖FAn −FB‖∞ is

not bounded in probability if FA 6= FB. Note that Lemma 9.3.5 gives us conditions
for FA = FB and FA 6= FB depending on ζ.

Next, we consider an asymptotic scenario where the distribution of the error vari-
able is contaminated and the amount of contamination depends on the sample size
n. As in Section 9.3, ξ and ζ are fixed mean zero probability measures on (R,B) with
ξ 6= ζ, Pe(β) = βξ + (1 − β)ζ, A ∈ M(p, p) is a fixed matrix, FA is the cumulative
distribution function of LA(ζ⊗p) and FAβ is the cumulative distribution function of

LA(Pe(β)⊗p). Thus, FAβ is the cumulative distribution function of Aε, where ε is a
p-dimensional variable with independent coordinates having distribution Pe(β). Con-
sider a sequence (βn) in (0, 1), and consider a probability space (Ω,F , P ) endowed
with a triangular array (Xnk)1≤k≤n such that for each n, the variables Xn1, . . . , Xnn

are independent variables with cumulative distribution function FAβn . Let FAβn be the
empirical distribution function of Xn1, . . . , Xnn. Also assume that we are given an
FA-Gaussian field W on (Ω,F , P ). We are interested in the asymptotic properties
of FAβn . Theorem 9.4.3 is our main result on this type of asymptotic scenarios.
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Theorem 9.4.3. Let limn
√
nβn = k for some k ≥ 0. If FA = FB, then

P (‖W‖∞ > c+ 4pk‖ξ − ζ‖∞) ≤ lim inf
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c)

≤ lim sup
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c)

≤ P (‖W‖∞ ≥ c− 4pk‖ξ − ζ‖∞). (9.23)

In particular, if k = 0 and c is a continuity point of the distribution of ‖W‖∞, we
have

lim
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c) = P (‖W‖∞ > c). (9.24)

Theorem 9.4.3 essentially shows that for the asymptotic scenario considered, the
convergence of FAβn to FA is fast enough to ensure that the asymptotic properties of

FAβn are determined by FA instead of FAβn . Corollary 9.4.4 applies this result to the
case where the error distributions become close to Gaussian without being Gaussian.

Corollary 9.4.4. Assume that limn
√
nβn = 0. Let A,B ∈ M(p, p) be invertible.

Assume that AAt = BBt while A 6= BΛP for all diagonal Λ with Λ2 = I and all
permutation matrices P . Let ζ be a nondegenerate Gaussian distribution and let ξ
be such that Pe(β) is non-Gaussian for all β ∈ (0, 1). Let c be a point of continuity
for the distribution of ‖W‖∞, with W an FA-Gaussian field. It then holds that:

1. FAβn 6= FBβn for all n ≥ 1.

2. limn→∞ P (
√
n‖FAβn − F

B
βn
‖∞ > c) = P (‖W‖∞ > c).

Statement (1) of Corollary 9.4.4 shows that for any finite n, we are in the case where,
were the error distribution not changing with n, it would be possible to asymptoti-
cally distinguish FAβn and FBβn at rate 1/

√
n as in (9.22) of the classical case. However,

statement (2) shows that as n increases and the error distributions becomes closer
to a Gaussian distribution, distinguishing FAβn and FBβn at rate 1/

√
n is nonetheless

not possible, with a limit result similar to (9.21). Note that by Lemma 9.3.5, having
A 6= BΛP for all diagonal Λ with Λ2 = I and all permutation matrices P , as in
Corollary 9.4.4, is the minimum requirement for non-Gaussian error distributions to
be able to asymptotically distinguish FA and FB in the classical scenario.

Theorem 9.4.3 and Corollary 9.4.4 cover the case βn = o(1/
√
n), in particular the

case βn = n−ρ for ρ > 1/2. We end the section with a result showing that under some
further regularity conditions, distinguishing FAβn and FBβn at rate 1/

√
n is possible

when 0 < ρ < 1/2.

Theorem 9.4.5. Let ρ ∈ (0, 1/2) and let βn = n−ρ. For all A ∈M(p, p), define

Γ1(A) =

p∑
k=1

LA

(
ζ⊗(k−1) ⊗ ξ − ζ

‖ξ − ζ‖∞
⊗ ζ⊗(p−k)

)
. (9.25)
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If either FA 6= FB or FA = FB and Γ1(A) 6= Γ1(B), then

lim
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c) = 1. (9.26)

9.5 Discussion

We studied identifiability of the ICA model for error distributions which have inde-
pendent coordinates following contaminated distributions. We argued in particular
that for contaminated Gaussian distributions, it holds that if the level of contamina-
tion decreases at rate 1/

√
n or faster, then asymptotic identifiability is determined

by the Gaussian limiting distribution rather than by the non-Gaussian contaminated
distribution. Combining this with Lemma 9.3.5, we obtain as a consquence that dis-
tinguishing A and B becomes difficult when AAt = BBt, rather than when A and B
are equal up to sign reversion and permutation of columns. The consequence of this
is that if we have n observations from an ICA model with a contaminated Gaussian
error distribution with contamination level on the order of 1/

√
n, we expect that

identifying the mixing matrix will be difficult.

The proof of our main theoretical result, Theorem 9.4.3, rests on two partial results:

1. That when Fn is a sequence of cumulative distribution functions converging
uniformly to F , then

√
n(Fn − Fn) converges weakly in L∞(Rp), where Fn is

an empirical process based on n independent observations of variables with
cumulative distribution function Fn.

2. That convergence of the distribution function of Xε for ε having distribution
Pe(βn)⊗p, with Pe(β) = βξ + (1− β)ζ, is asymptotically linear in β, implying
that rate 1/

√
n convergence of error distributions εn translates into rate 1/

√
n

convergence of observational distributions Aεn.

In Theorem 9.4.5, we also considered the case of slower rates of decrease in the level
of contamination, namely rates n−ρ for 0 < ρ < 1/2. Our results here indicate that
in such asymptotic scenarios, identifiability of the mixing matrix at rate 1/

√
n will

be possible, subject to some regularity conditions related to the Γ1 signed measures
of (9.25).

We have conducted numerical experiments to assess our results. We considered the
case where p = 2, ξ is the standard exponential distribution, ζ is the standard normal
distribution and

A =

[
1 0

α
√

1− α2

]
and B =

[ √
1− α2 α

0 1

]
, (9.27)

where α ∈ (0, 1) is fixed, see also Example 9.1.1. It then holds that AAt = BBt while
A 6= BΛP for diagonal Λ with Λ2 = I and permutation matrices P . Combining
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Theorem 9.4.3 and Theorem 9.4.5, we would expect that with

p(ρ) = lim
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c) (9.28)

for βn = n−ρ, we should have p(ρ) = 1 p(ρ) = P (‖W‖∞ > c) for 0 < ρ < 1/2 and
1/2 < ρ, respectively. By Monte Carlo simulations, we found that p(ρ) appears to
be constant for ρ > 1/2, in accordance with Theorem 9.4.3. However, our results did
not satisfactorily indicate p(ρ) = 1 for 0 < ρ < 1/2, as Theorem 9.4.5 would suggest.
We suggest that this is because we in our simulations considered too low a level of
n, namely 5 · 104. For large n, we would expect that for some constant k > 0,

P (
√
n‖FAβn − F

B
βn‖∞ > c) ≈ P (

√
n‖FAβn − F

B
βn‖∞ > c) ≈ 1(

√
nkβn>c), (9.29)

and thus, we obtain P (
√
n‖FAβn − F

B
βn
‖∞ > c) ≈ 1 when n1/2−ρ =

√
nβn > c/k,

corresponding to n > exp((log c/k)/(1/2− ρ)). For ρ < 1/2 close to 1/2, this latter
number grows extremely large, and so detection of the limiting value of 1 for p(ρ)
becomes difficult.

Our results also leave unanswered research questions, for example:

1. Is it possible to characterize the matrices A and B such that the regularity
condition Γ1(A) 6= Γ2(B) of Theorem 9.4.5 holds?

2. Together, Theorem 9.4.3 and Theorem 9.4.5 describe the behaviour of the
empirical process FAβn for asymptotic scenarios of the form βn = n−ρ for ρ > 0,

in particular describing the difficulty of using FAβn to distinguish FAβn and FBβn .
Is it possible to obtain finite-sample bounds instead of limiting behaviours in
these results?

3. How do Theorem 9.4.3 and Theorem 9.4.5 translate into results on the ability
of practical algorithms such as the fastICA algorithm, see [74], to distinguish
the correct mixing matrix?

4. Is it possible to use similar techniques to analyze identifiability of the mixing
matrix in asymptotic scenarios where p tends to infinity?

5. Do the present results extend to cases where the coordinates of the error dis-
tributions are not contaminated normal distributions, or when the coordinates
are not identically distributed?

In light of these unanswered questions, our presents results should be seen as a small
step towards a better understanding of the identifiability of the mixing matrix for
ICA for error distributions which are close to Gaussian but not Gaussian.
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9.6 Proofs

9.6.1 Proofs for Section 9.3

Proof of Theorem 9.3.1. First note that we have Pe(β)−ζ = β(ξ−ζ). Taking norms,
this implies ‖Pe(β)− ζ‖∞ = β‖ξ − ζ‖∞ and

Pe(β)− ζ
‖Pe(β)− ζ‖∞

=
ξ − ζ
‖ξ − ζ‖∞

. (9.30)

With ν = (ξ − ζ)/‖ξ − ζ‖∞, we then also have Pe(β) = ζ + β‖ξ − ζ‖∞ν. We begin
by analyzing Pe(β)⊗p. For Borel subsets C1, . . . , Cp of R, we have

Pe(β)⊗p(C1 × · · · × Cp) = (ζ + β‖ξ − ζ‖∞ν)⊗p(C1 × · · · × Cp)

=

p∏
k=1

(ζ(Ck) + β‖ξ − ζ‖∞ν(Ck))

=

p∑
k=0

βk‖ξ − ζ‖k∞
∑
α∈Sk

p∏
i=1

ζ(Ci)
1−αiν(Ci)

αi , (9.31)

where Sk = {α ∈ {0, 1}p |
∑p

i=1 αi = k}, and the last equality follows since

p∏
k=1

(ak + γbk) =

p∑
k=0

γk
∑
α∈Sk

p∏
i=1

a1−αi
i bαii , for a, b ∈ Rp and γ ∈ R. (9.32)

Defining µ0 = ζ and µ1 = ν, we then obtain

Pe(β)⊗p(C1 × · · · × Cp) =

p∑
k=0

βk‖ξ − ζ‖k∞
∑
α∈Sk

(⊗pi=1µαi)(C1 × · · · × Cp). (9.33)

Letting Γk =
∑

α∈Sk LA(⊗pi=1µαi), this yields

LA(Pe(β)⊗p) =

p∑
k=0

βk‖ξ − ζ‖k∞Γk. (9.34)

Next, note that Γ0 = LA(ζ⊗p), so that

lim
β→0

LA(Pe(β)⊗p)− LA(ζ⊗p)

‖Pe(β)− ζ‖∞
= lim
β→0

p∑
k=1

βk−1‖ξ − ζ‖k−1
∞ Γk

=Γ1 =

p∑
k=1

LA(ζ⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k)). (9.35)
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In particular, this shows that for any η > 0,

lim sup
β→0

‖LA(Pe(β)⊗p)− LA(ζ⊗p)‖∞ ≤ lim sup
β→0

(1 + η)‖Γ1‖∞‖Pe(β)− ζ‖∞

≤ lim sup
β→0

(1 + η)‖Γ1‖∞β‖ξ − ζ‖∞ = 0, (9.36)

so FAβ converges uniformly to FA. �

Proof of Lemma 9.3.2. Let α be such that ‖Q(β) − ζ‖∞ = αβ for some α > 0. Let
ξ = Q(1). With β > 0, we then have

Q(β)− ζ
‖Q(β)− ζ‖∞

=
Q(β)− ζ

αβ
, (9.37)

while

Q(1)− ζ
‖Q(1)− ζ‖∞

=
ξ − ζ
α

. (9.38)

By our assumptions, the right-hand sides in (9.37) and (9.38) are equal. This implies
Q(β) = βξ + (1− β)ζ. �

To prove Lemma 9.3.3, we first present a lemma relating the uniform norm of certain
measures on (Rp,Bp) to the uniform and total variation norms of some measures on
(R,B).

Lemma 9.6.1. Let µ1, . . . , µp be signed measures on (R,B), and let A ∈ M(p, p).
Then for any i ∈ {1, . . . , p}, it holds that

‖LA(µ1 ⊗ · · · ⊗ µp)‖∞ ≤ 2‖µi‖∞
p∏
k 6=i
‖µk‖tv. (9.39)

Proof. For any permutation π : {1, . . . , p} → {1, . . . , p} and corresponding permu-
tation matrix P , we have LA(µ1 ⊗ · · · ⊗ µp) = LAP−1(µπ(1) ⊗ · · · ⊗ µπ(p)). Hence, it
suffices to consider i = p. Let x ∈ Rp and define Ix = (−∞, x1] × · · · × (−∞, xp].
Then Fubini’s theorem for signed measures yields

|LA(µ1 ⊗ · · · ⊗ µp)(Ix)|

=

∣∣∣∣∫ · · · ∫ 1Ix(LA(y)) dµp(yp) · · · dµ1(y1)

∣∣∣∣
≤
∫
· · ·
∫ ∣∣∣∣∫ 1Ix(LA(y)) dµp(yp)

∣∣∣∣ d|µp−1|(yp−1) · · · d|µ1|(y1), (9.40)

where we have also used the triangle inequality for integrals with respect to signed
measures, which follows for example from Theorem 6.12 of [150]. We now analyze
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the innermost integral of (9.40). For fixed y1, . . . , yp−1, we have

{yp ∈ R | 1Ix(LA(y)) = 1}
={yp ∈ R | ∀ i ≤ p : (Ay)i ≤ xi}
= ∩pi=1 {yp ∈ R | aipyp ≤ xi − (ai1y1 + · · ·+ ai(p−1)yp−1)}. (9.41)

Hence, {yp ∈ R | 1Ix(LA(y)) = 1} is a finite intersection of intervals, and is therefore
itself an interval. This yields

|µp({yp ∈ R | 1Ix(LA(y)) = 1})| ≤ 2‖µp‖∞. (9.42)

This inequality is immediate when the interval is of the form (−∞, a] for some a ∈ R.
If the interval is of the form [a,∞), we have

|µp([a,∞))| ≤|µp(R)|+ |µp(−∞, a)|
= lim
b→∞

|µp((−∞, b])|+ |µp((−∞, a− 1/b])| ≤ 2‖µp‖∞, (9.43)

and similarly for other types of intervals, whether bounded or unbounded, open,
half-open or closed. Combining (9.40) and (9.42) yields

|LA(µ1 ⊗ · · · ⊗ µp)(Ix)|

≤
∫
· · ·
∫

2‖µp‖∞ d|µp−1|(yp−1) · · · d|µ1|(y1) = 2‖µp‖∞
p−1∏
k=1

‖µk‖tv. (9.44)

Proof of Lemma 9.3.3. Let ν = (ξ − ζ)/‖ξ − ζ‖∞. By Lemma 9.6.1, we have

‖LA(ζ⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k))‖∞ ≤ 2‖ν‖∞‖ζ‖p−1
tv = 2. (9.45)

Applying the triangle inequality, we therefore obtain∥∥∥∥∥
p∑

k=1

LA

(
ζ⊗(k−1) ⊗ ξ − ζ

‖ξ − ζ‖∞
⊗ ζ⊗(p−k)

)∥∥∥∥∥
∞

≤2p. (9.46)

�

Proof of Lemma 9.3.5. Proof of (1). With ζ Gaussian with mean zero and variance
σ2, LA(ζ⊗p) is Gaussian with mean zero and variance σ2AAt, and so the result is
immediate for this case.

Proof of (3). Now consider the case where ζ is not a symmetric distribution. As
LP (ζ⊗p) = ζ⊗p holds for any permutation matrix P , we obtain that if A = BP ,
then LA(ζ⊗p) = LB(ζ⊗p) and so FA = FB, proving one implication.

Conversely, assume that FA = FB, meaning that LA(ζ⊗p) = LB(ζ⊗p). As ζ is non-
degenerate and non-Gaussian and A and B are invertible, Theorem 4 of [50] shows
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that A = BΛP , where Λ ∈M(p, p) is an invertible diagonal matrix and P ∈M(p, p)
is a permutation matrix. This yields

ζ⊗p = LB−1(LB(ζ⊗p)) = LB−1(LA(ζ⊗p)) = LΛP (ζ⊗p) = LΛ(ζ⊗p). (9.47)

Now let Z be a random variable with distribution ζ. The above then yields that for
all i, ΛiiZ and Z have the same distribution. In particular, |Λii||Z| and |Z| have
the same distribution, so P (|Z| ≤ z/|Λii|) = P (|Z| ≤ z) for all z ∈ R. As Z is not
almost surely zero, there is z 6= 0 such that P (|Z| ≤ z − ε) < P (|Z| ≤ z + ε) for all
ε > 0. This yields |Λii| = 1. Next, let ϕ denote the characteristic function of Z. We
then have ϕ(Λiiθ) = ϕ(θ) for all θ ∈ R. As Z is not symmetric, there is a θ ∈ R such
that ϕ(θ) 6= ϕ(−θ). Therefore, Λii = −1 cannot hold, so we must have Λii = 1. We
conclude that Λ is the identity matrix and thus A = BP , as required.

Proof of (2). Finally, consider a symmetric probability measure ζ. It is then im-
mediate that when Λ and P are as in the statement of the lemma, it holds that
LΛP (ζ⊗p) = ζ⊗p and thus FA = FB whenever A = BΛP . The converse implication
follows as in the proof of (3). �

9.6.2 Proofs for Section 7.5

Proof of Lemma 9.4.1. The existence of the process W follows from the results cited
at the beginning of Section 7.5. To show separability, note that there exists for
any x ∈ Rp a sequence (xn) ⊆ Qp such that F (x) = limn→∞ F (xn). Therefore, Rp
endowed with the intrinsic pseudometric ρ of W is separable and Qp is a countable
dense subset. As a consequence, ‖W‖∞ = supx∈Qp |W (x)| almost surely holds. In
particular, completing the underlying probability space, we may take ‖W‖∞ to be
measurable.

In order to see that ‖W‖∞ is almost surely finite, note that by Theorem B of
[32], there exists a probability space (Ω,F , P ) endowed with a sequence of variables
(Xk), independent and with common cumulative distribution function F , as well
as a sequence of p-dimensional separable Gaussian fields (Wk) with the same finite-
dimensional distribution as W , such that with Fn denoting the empirical distribution
function of X1, . . . , Xn, it holds that

P
(
‖
√
n(Fn − F )−Wn‖∞ ≥ C1n

−1/(2(2p−1)) log n
)
≤ C2

n2
, (9.48)

for some C1, C2 > 0. As all the Wn have the same distribution, this yields in partic-
ular that

1− C2

n2
≤P

(
‖
√
n(Fn − F )−Wn‖∞ ≤ C1n

−1/(2(2p−1)) log n
)

≤P (‖W‖∞ <∞). (9.49)

Letting n tend to infinity, this implies P (‖W‖∞ <∞) = 1, as required. �
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Before proving Theorem 9.4.2 and Theorem 9.4.3, we show a result on empirical
processes. Recall that for a metric space (M,d), the ε-covering number N(ε,M, d)
is the minimum number of open balls of radius ε which is required to cover (M,d),
see e.g. Section 2.1.1 of [170].

Lemma 9.6.2. Fix a cumulative distribution function F . Define ρ : Rp × Rp by

ρ(x, y) =
√
F (x) + F (y)− 2F (x ∧ y), (9.50)

and let Ix = (−∞, x1]× · · · × (−∞, xp]. Let Z be a variable with cumulative distri-
bution function F . Then, the following holds:

1. ρ is a pseudometric.

2. ρ(x, y) =
√
E(1Ix(Z)− 1Iy(Z))2.

3. (Rp, ρ) is totally bounded.

Proof. First note that

ρ(x, y)2 =F (x) + F (y)− 2F (x ∧ y)

=E1Ix(Z) + E1Iy(Z)− 2E1Ix(Z)1Iy(Z)

=E(1Ix(Z)− 1Iy(Z))2, (9.51)

proving claim (2). It is then immediate that ρ is a pseudometric, proving claim (1).
Next, it holds that (Rp, ρ) is totally bounded if and only if N(ε,Rp, ρ) is finite for all
positive ε. Let Q be the distribution corresponding to the cumulative distribution
function F , and let L2(Rp,Bp, Q) be the space of Borel measurable functions from
Rp to R which are square-integrable with respect to Q. Let ‖ · ‖2,Q denote the usual
seminorm on L2(Rp,Bp, Q). Applying claim (2), it is immediate that

N(ε,Rp, ρ) = N(ε, (1Ix)x∈Rp , ‖ · ‖2,Q). (9.52)

Combining Example 2.6.1 and Exercise 2.6.9 of [170], we find that (1Ix)x∈Rp is a
Vapnik-Cervonenkis (VC) subgraph class with VC dimension p + 1. Furthermore,
(1Ix)x∈Rp has envelope function constant and equal to one. Therefore, Theorem 2.6.7
of [170] shows thatN(ε, (1Ix)x∈Rp , ‖·‖2,Q) and thusN(ε,Rp, ρ) is finite, and so (Rp, ρ)
is totally bounded.

Lemma 9.6.3. Let (Fn) be a sequence of cumulative distribution functions on Rp,
and let F be a cumulative distribution function on Rp. Let (Xnk)1≤k≤n be a triangular
array such that for each n, Xn1, . . . , Xnn are independent with distribution Fn. Let
Fn be the empirical distribution function of Xn1, . . . , Xnn. If Fn converges uniformly
to F , then

√
n(Fn − Fn) converges weakly in L∞(Rp) to an F -Gaussian field.
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Proof. For x, y ∈ Rp and n ≥ 1, let Rn(x, y) = Fn(x ∧ y) − Fn(x)Fn(y) and also
define R(x, y) = F (x ∧ y) − F (x)F (y). Let ρ be the pseudometric of Lemma 9.6.2
corresponding to the cumulative distribution function F . Let Znk be the random
field indexed by Rp given by Znk(x) = 1Ix(Xnk)/

√
n, where we as usual define

Ix = (−∞, x1]× · · · × (−∞, xp]. We then have

n∑
k=1

Znk(x)− EZnk(x) =
1√
n

n∑
k=1

1Ix(Xnk)− Fn(x)

=
√
n(Fn(x)− Fn(x)). (9.53)

We will apply Theorem 2.11.1 of [170] to prove that
∑n

k=1 Znk − EZnk and thus√
n(Fn−Fn) converges weakly in L∞(Rp). We may assume without loss of generality

that all variables are defined on a product probability space as described in Section
2.11.1 of [170], and as the fields (Znk) can be constructed using only countably
many variables, the measurability requirements in Theorem 2.11.1 of [170] can be
ensured. In order to apply Theorem 2.11.1 of [170], first note that by Lemma 9.6.2,
(Rp, ρ) is totally bounded and so can be applied in Theorem 2.11.1 of [170]. Also,
the covariance function of

∑n
k=1 Znk − EZnk is

Cov

(
n∑
k=1

Znk(x)− EZnk(x),
n∑
k=1

Znk(y)− EZnk(y)

)

=
n∑
k=1

n∑
i=1

EZnk(x)Zni(y)− EZnk(x)EZni(y)

=
1

n

n∑
k=1

E1Ix(Xnk)1Iy(Xnk)− E1Ix(Xnk)E1Iy(Xnk)

=Fn(x ∧ y)− Fn(x)Fn(y) = Rn(x, y). (9.54)

Note that

|R(x, y)−Rn(x, y)| ≤|F (x ∧ y)− Fn(x ∧ y)|+ |F (x)F (y)− Fn(x)Fn(y)|
≤|F (x ∧ y)− Fn(x ∧ y)|+ |F (x)− Fn(x)|+ |Fn(y)− Fn(y)|,

(9.55)

so as Fn converges uniformly to F ,Rn converges uniformly toR. Thus, the covariance
functions of

∑n
k=1 Znk−EZnk converge to R. Therefore, in order to apply Theorem

2.11.1 of [170], it only remains to confirm that the conditions of (2.11.2) in [170]
hold. Fixing η > 0, we have

n∑
k=1

E‖Znk‖2∞1(‖Znk‖∞>η) =
1

n

n∑
k=1

E1Ix(Xnk)1(1Ix (Xnk)>
√
nη)

≤P (1Ix(Xn1) >
√
nη),
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and so it is immediate that the first condition of (2.11.2) in [170] holds. Next, define
d2
n(x, y) =

∑n
k=1(Znk(x)− Znk(y))2. We then also have for x, y ∈ Rp that

d2
n(x, y) =

1

n

n∑
k=1

(1Ix(Xnk)− 1Iy(Xnk))
2, (9.56)

and therefore, Edn(x, y)2 = Fn(x) + Fn(y)− 2Fn(x ∧ y). Thus, (x, y) 7→ Edn(x, y)2

converges uniformly to ρ2 on Rp×Rp. Therefore, we conclude that for any sequence
(δn) of positive numbers tending to zero, it holds for all η > 0 that

lim sup
n→∞

sup
x,y:ρ(x,y)≤δn

Ed2
n(x, y) ≤ lim sup

n→∞
sup

x,y:ρ(x,y)≤δn
ρ(x, y)2

≤ lim sup
n→∞

δ2
n = 0. (9.57)

Hence, the second condition of (2.11.2) in [170] holds. In order to verify the final
condition of (2.11.2) in [170], first note that by (9.56), dn(x, y)2 = EPn(1Ix − 1Iy)

2,
where EPn denotes integration with respect to Pn and Pn is the empirical measure
on (Rp,Bp) in Xn1, . . . , Xnn. Thus, dn(x, y) is the L2(Rp,Bp,Pn) distance between
the mappings Ix and Iy, and so

N(ε,Rp, dn) = N(ε, (1Ix)x∈Rp , ‖ · ‖2,Pn) ≤ sup
Q
N(ε, (1Ix)x∈Rp , ‖ · ‖2,Q), (9.58)

where ‖ · ‖2,Q denotes the norm on L2(Rp,Bp, Q) and the supremum is over all
probability measures Q on (Rp,Bp). Thus, the third condition of (2.11.2) in [170] is
satisfied if only it holds that for all sequences (δn) of positive numbers tending to
zero,

lim
n→∞

∫ δn

0
sup
Q

√
logN(ε, (1Ix)x∈Rp , ‖ · ‖2,Q) dε = 0. (9.59)

However, Theorem 2.6.7 of [170] yields a constant K > 0 such that for 0 < ε < 1,

sup
Q
N(ε, (1Ix)x∈Rp , ‖ · ‖2,Q) ≤ K(p+ 1)(16e)p+1ε−2p. (9.60)

As a consequence, again for 0 < ε < 1,

sup
Q

√
logN(ε, (1Ix)x∈Rp , ‖ · ‖2,Q) ≤

√
logK(p+ 1)(16e)p+1 − 2p log ε. (9.61)

By elementary calculations, we obtain for 0 < c < d < 1 and a, b > 0 that∫ d

c

√
a− b log x dx =

[
x
√
a− b log x− ea/b

√
πb

2
erf

(√
a− b log x√

b

)]d
c

, (9.62)

where erf denotes the error function, erf(x) = (2/
√
π)
∫ x

0 exp(−y2) dy. Therefore,
we conclude that for all 0 < η < 1, the mapping x 7→

√
a− b log x is integrable over

[0, η]. Thus, (9.59) holds. Recalling (9.53), Theorem 2.11.1 of [170] now shows that√
n(Fn − Fn) converges weakly in L∞(Rp). By uniqueness of the finite-dimensional

distributions of the limit, we find that the limit is an F -Gaussian field.
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Proof of Theorem 9.4.2. By Lemma 9.6.3 and the continuous mapping theorem,√
n‖FAn − FA‖∞ converges weakly to ‖W‖∞. Therefore, equation (9.21) follows.

In order to prove equation (9.22), consider A and B such that FA 6= FB and let
‖FA − FB‖∞ = α. Whenever ‖FAn − FA‖∞ ≤ α/2, the reverse triangle inequality
yields

‖FAn − FB‖∞ =‖FAn − FA − (FB − FA)‖∞
≥|‖FAn − FA‖∞ − ‖FB − FA‖∞|
=|‖FAn − FA‖∞ − α| ≥ α/2. (9.63)

Since limn→∞ P (‖FAn − FA‖∞ ≤ α/2) = 1 by Lemma 9.6.3, we obtain

lim sup
n→∞

P (
√
n‖FAn − FB‖∞ ≤ c)

= lim sup
n→∞

P (‖FAn − FB‖∞ ≤ c/
√
n, ‖FAn − FA‖∞ ≤ α/2)

≤ lim sup
n→∞

P (‖FAn − FB‖∞ ≤ c/
√
n, ‖FAn − FB‖∞ ≥ α/2) = 0. (9.64)

Hence, limn→∞ P (
√
n‖FAn − FB‖∞ ≤ c) = 0 and so (9.22) holds. �

Proof of Theorem 9.4.3. First note that the triangle inequality yields

|
√
n‖FAβn − F

B
βn‖∞ −

√
n‖FAβn − F

A
βn‖∞| ≤

√
n‖FAβn − F

B
βn‖∞. (9.65)

Therefore, we have the inequalities

P (
√
n‖FAβn − F

A
βn‖∞ −

√
n‖FBβn − F

A
βn‖∞ > c)

≤P (
√
n‖FAβn − F

B
βn‖∞ > c)

≤P (
√
n‖FAβn − F

A
βn‖∞ +

√
n‖FBβn − F

A
βn‖∞ > c). (9.66)

Let η > 0. By Corollary 9.3.4, we can choose N ≥ 1 such that for n ≥ N ,

√
n‖FBβn − F

A
βn‖∞ ≤ 4p(1 + η)

√
nβn‖ξ − ζ‖∞. (9.67)

By our assumptions, limn
√
nβn = k. Letting γ > 0, we then find for n large that

√
n‖FBβn − F

A
βn‖∞ ≤ 4p(1 + η)(k + γ)‖ξ − ζ‖∞. (9.68)

For such n, the first inequality of (9.66) yields

P (
√
n‖FAβn − F

B
βn‖∞ > c)

≥P (‖
√
n(FAβn − F

A
βn)‖∞ > c+

√
n‖FBβn − F

A
βn‖∞)

≥P (‖
√
n(FAβn − F

A
βn)‖∞ > c+ 4p(1 + η)(k + γ)‖ξ − ζ‖∞). (9.69)
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Now recall from Theorem 9.3.1 that FAβn converges uniformly to FA. Therefore,

Lemma 9.6.3 and the continuous mapping theorem show that
√
n‖FAβn − FAβn‖∞

converges weakly to ‖W‖∞. As a consequence, (9.69) yields

lim inf
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c)

≥P (‖W‖∞ > c+ 4p(1 + η)(k + γ)‖ξ − ζ‖∞). (9.70)

Letting η and then γ tend to zero, we obtain

lim inf
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c) ≥P (‖W‖∞ > c+ 4pk‖ξ − ζ‖∞). (9.71)

Similarly, the second inequality of (9.66) yields

P (
√
n‖FAβn − F

B
βn‖∞ > c)

≤P (‖
√
n(FAβn − F

A
βn)‖∞ > c−

√
n‖FBβn − F

A
βn‖∞)

≤P (‖
√
n(FAβn − F

A
βn)‖∞ ≥ c− 4p(1 + η)(k + γ)‖ξ − ζ‖∞), (9.72)

and by similar arguments as previously, we obtain

lim sup
n→∞

P (
√
n‖FAβn − F

B
βn‖∞ > c) ≤P (‖W‖∞ ≥ c− 4pk‖ξ − ζ‖∞). (9.73)

Combining our results, we obtain (9.23). �

Proof of Corollary 9.4.4. As we have assumed that Pe(βn) is non-Gaussian, it follows
from Lemma 9.3.5 that FAβ 6= FBβ , since A 6= BΛP for all diagonal Λ with Λ2 = I and

all permutation matrices P . This shows (1). And as AAt = BBt and ζ is Gaussian,
Lemma 9.3.5 yields FA = FB, so Theorem 9.4.3 yields (2). �

Proof of Theorem 9.4.5. Note that for any x ∈ Rp, we have

P (
√
n‖FAβn − F

B
βn‖∞ > c)

≥P (
√
n|FAβn(x)− FBβn(x)| > c)

=P (|
√
n(FAβn(x)− FAβn(x)) +

√
n(FAβn(x)− FBβn(x))| > c). (9.74)

We first consider the case FA 6= FB. Let x ∈ Rp be such that FA(x) 6= FB(x). Then
limn F

A
βn

(x) − FBβn(x) 6= 0, so |
√
n(FAβn(x) − FBβn(x)| tends to infinity as n tends to

infinity. By the central limit theorem,
√
n(FAβn(x)−FAβn(x)) converges in distribution.

Therefore, (9.74) yields the result.

Next, consider the case FA = FB and Γ1(A) 6= Γ1(B). Let x ∈ Rp be such that
Γ1(A)(Ix) 6= Γ1(B)(Ix). Similarly to the proof of Theorem 9.3.1, we define measures
µ0 = ζ, µ1 = (ξ − ζ)/‖ξ − ζ‖∞ and also define Sk = {α ∈ {0, 1}p |

∑p
i=1 αi = k} and

Γk(A) =
∑

α∈Sk LA(⊗pi=1µαi). Note that Γk(A) with k = 1 corresponds to (9.25).
Then, we have

LA(Pe(β)⊗p) =

∞∑
k=0

βk‖ξ − ζ‖k∞Γk(A), (9.75)
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see (9.34). In particular, we obtain

FAβ (x)− FBβ (x) =LA(Pe(β)⊗p)(Ix)− LB(Pe(β)⊗p)(Ix)

=

p∑
k=1

βk‖ξ − ζ‖k∞(Γk(A)(Ix)− Γk(B)(Ix)), (9.76)

where we have used that Γ0(A) = Γ0(B), since FA = FB. Since βn = n−ρ, we obtain

√
n(FAβn(x)− FBβn(x)) =

p∑
k=1

n1/2−kρ‖ξ − ζ‖k∞(Γk(A)(Ix)− Γk(B)(Ix)). (9.77)

As ρ < 1/2, 1/2 − ρ > 0. As ‖ξ − ζ‖∞(Γ1(A)(Ix) − Γ1(B)(Ix)) 6= 0, we conclude
that as n tends to infinity, the term corresponding to k = 1 in the above tends to
infinity in absolute value. Since the right hand side of (9.77) is a sum with finitely
many terms, where the remaining terms are of lower degree in n, we conclude that
|
√
n(FAβn(x)−FBβn(x))| tends to infinity as n tends to infinity. As in the previous case,

since the ordinary central limit theorem shows that
√
n(FAβn(x)−FAβn(x)) converges

in distribution, (9.74) yields the result. �
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Abstract. The degrees of freedom of an estimator can be used to es-
timate the generalization error corresponding to the estimator. For the
linear regression model, the degrees of freedom are known for several
families of estimators, such as the ridge regression and LASSO estima-
tors. We consider constrained and L1-penalized estimators in nonlinear
regression models and prove SURE-type results on the degrees of free-
dom. In particular, for the case of L1-penalized estimation, we obtain an
explicit candidate for an unbiased estimator of the degrees of freedom,
allowing for sparse model selection in nonlinear regression.

10.1 Introduction

Consider the nonlinear regression model

Y = ϕ(β) + ε (10.1)

where ϕ : Rp → Rn, β ∈ Rp and ε is multivariate normal with mean zero and
variance matrix σ2In, where In denotes the identity matrix of order n. This is an

203
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extension of the ordinary linear regression model in the sense that this latter model is
recovered in the case ϕ(β) = Xβ for some design matrix X ∈M(n, p), where M(n, p)
is the space of real n× p matrices. The motivation for our results is the problem of
sparse estimation of β in the model (10.1) when observing the n-dimensional random
variable Y and σ2 > 0 is known.

Assume that we are in possession of a family of predictors or fitting procedures
gλ : Rn → Rn for λ ≥ 0, meaing that gλ(Y ) is an estimator of the mean of Y
based on the variable Y . We imagine that λ is a tuning parameter measuring the
level of complexity of our fitting procedure, in the sense that the complexity of gλ
is monotone in λ. We write g or gλ instead of gλ(Y ) when convenient. The mean
squared prediction error of the predictor gλ is

MSPEβ(gλ) = Eβ‖Y − gλ(Y )‖22, (10.2)

where ‖ · ‖2 denotes the Euclidean norm and Eβ denotes expectation given that β is
the true parameter. The mean squared prediction error is a measure of the quality
of the predictor gλ. It can be estimated by the training error, given by

err(gλ) = ‖Y − gλ(Y )‖22. (10.3)

However, a more useful measure of the quality of the predictor gλ is the generalization
error, which is given by

Errβ(gλ) = Eβ‖Y ∗ − gλ(Y )‖22, (10.4)

where Y ∗ is independent of Y and has the same distribution as Y . The notation
applied here is taken from [64]. The generalization error measures the expected
performance of our predictor g when used for prediction in a new sample. In general,
err is an downwards biased estimator of Err. This is known as the optimism of the
training error, see Section 7.4 of [64]. Heuristically, this is because gλ(Y ) is fit to the
data set Y , and so err only measures the in-sample error and not the extra-sample
error. We are interested in bias correction for the estimation of the generalization
error using the training error. It is convenient to write

Errβ(gλ) = Eβerr(gλ) + 2σ2dfβ(gλ), (10.5)

where dfβ(gλ) is known as the degrees of freedom of g. Estimating the degrees of
freedom thus allows for bias correction for estimation of Errβ. To investigate the
degrees of freedom, we employ both the covariance form of the degrees of freedom,
see [44], as well as Stein’s Unbiased Risk Estimate (SURE), introduced by [163].

To understand the usefulness of degrees of freedom, consider predictors based on
two particular families of estimators of β. The first family is a family of constrained
least squares estimators, given by the requirement that

β̂λ = argmin
β∈Bλ

‖Y − ϕ(β)‖22, (10.6)
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where Bλ is the closed ball of radius λ in Rp with center at the origin in the L1-
norm. The second family of estimators is the family of L1-penalized least squares
estimators, given by

β̂λ ∈ argmin
β∈Rp

‖Y − ϕ(β)‖22 + λ‖β‖1, (10.7)

where ‖ · ‖1 is the L1-norm on Rp. The use of the set inclusion operator in (10.7) is
necessary, as the argument minimum may not be unique. Both of these families of
estimators are applicable for model selection, in the sense that they yield estimates
where particular coordinates of β are exactly zero, see Chapter 3 of [64]. For any
estimator β̂λ, we may obtain a predictor gλ by putting gλ = ϕ ◦ β̂λ. Estimating the
generalization error for these predictors will allow for choosing the λ minimizing the
generalization error and thus yielding a method for model selection. Our objective
is to derive expressions for the degrees of freedom of gλ.

Our main results are two theorems, Theorem 10.3.1 and Theorem 10.3.2. Theo-
rem 10.3.1 yields an abstract expression for the degrees of freedom in the case of
constrained least squares estimators. Theorem 10.3.2 yields, under some regularity
conditions, an expression for the degrees of freedom in the L1-penalized case which
is easily adaptable to practical calculations.

The remainder of the article is organized as follows. In Section 10.2, we introduce
the degrees of freedom and its covariance and divergence forms, and review known
results. In Section 10.3, we state and discuss our main results. Sections 10.4 and
10.5 contain proofs of the main results.

10.2 Calculation of the degrees of freedom

In this section, we review known results on the degrees of freedom. We first give a
well-known lemma about the bias of the training error, see Section 2 of [44] for a
proof.

Lemma 10.2.1. Assume that Y and Y ∗ are independent n-dimensional variables
with the same distribution and with finite variance. Let g : Rn → Rn be some
measurable mapping. Assume that g(Y ) has finite variance. It then holds that

E‖Y ∗ − g(Y )‖22 = E‖Y − g(Y )‖22 + 2
n∑
i=1

Cov(Yi, gi(Y )). (10.8)

To understand the meaning of Lemma 10.2.1, consider the model (10.1). Assume
given a predictor g : Rn → Rn satisfying the regularity criteria of Lemma 10.2.1.
Following for example [176, 168], if we now define the degrees of freedom of the
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predictor g as

dfβ(g) =
1

σ2

n∑
i=1

Covβ(Yi, gi(Y )), (10.9)

then Lemma 10.2.1 shows that

Errβ(g) = Eβerr(g) + 2σ2dfβ(g). (10.10)

The formula (10.10) shows that the bias of the training error when estimating the
generalization error can be expressed through the degrees of freedom (10.9). For
particular models and particular predictors, the degrees of freedom can be calculated
explicitly. For example, by elementary calculations in the linear regression model
with ϕ(β) = Xβ, it holds for S ∈ M(n, n) and a linear predictor of the form
g(y) = Sy that

dfβ(g) = tr S, (10.11)

where tr denotes the trace of a matrix. In particular, in the case of p ≤ n and g
being the ordinary least squares predictor g(y) = X(XtX)−1Xty, see Section 3.2 of
[64], we obtain dfβ(g) = tr X(XtX)−1Xt = p. For more complicated models, it is
helpful to express the degrees of freedom in a different way. To this end, we follow
[163] and call a function g : Rp → R almost differentiable if there exists a function
∇h : Rp → R such that each ∇hi is locally integrable and for all y ∈ Rp, it holds
that

h(x+ y)− h(x) =

p∑
i=1

∫ 1

0
yi∇hi(x+ ty) dt. (10.12)

for Lebesgue almost all x ∈ Rp. In this case, we refer to ∇h as the gradient of h,
and we define the divergence of h as

div h =

p∑
i=1

(∇h)i, (10.13)

The following result is shown in Lemma 2 of [163].

Lemma 10.2.2. Let Y be a Gaussian variable with variance σ2In and consider
a measurable mapping g : Rn → Rn which is almost differentiable with (div g)(Y )
having finite mean. It then holds that

dfβ(g) = Eβ(div g)(Y ). (10.14)

The divergence form (10.14) of the degrees of freedom is known as Stein’s Unbiased
Risk Estimate (SURE). The following example shows that the requirement that g is
almost differentiable in Lemma 10.2.2 in general cannot be exchanged with a simpler
requirement such as for example simply having g be differentiable Lebesgue almost
everywhere.
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Example 10.2.3. Consider the case n = 1 and let Y be a Gaussian variable with
mean zero and variance σ2 > 0. Define g by

g(y) =


0 y < 0

c(y) 0 ≤ y ≤ 1
1 y > 1

(10.15)

where c : [0, 1] → [0, 1] is the Cantor function, see Chapter 2 of [21]. It then holds
that g is continuous and Lebesgue almost everywhere differentiable with g′ equal to
zero. Therefore, Eβ(div g)(Y ) = Eβg

′(Y ) = 0, while

1

σ2
Covβ(Y, g(Y )) =

1

σ2
EβY g(Y ) ≥ 1

σ2
Pβ(Y ≥ 1) > 0. (10.16)

In particular, the divergence formula (10.14) does not hold for g. ◦

Now consider the case where, instead of only a predictor, we have an estimator β̂ of
β at our disposal. In this case, we may construct a predictor g by putting g = ϕ ◦ β̂.
When the regularity criteria of Lemma 10.2.1 and Lemma 10.2.2 are satisfied, this
leads to the relationship

Err(ϕ ◦ β̂) = Eβerr(ϕ ◦ β̂) + 2σ2Eβ div(ϕ ◦ β̂)(Y ). (10.17)

The formula (10.17) implies that we may use err(ϕ ◦ β̂) + 2σ2 div(ϕ ◦ β̂) to estimate
the generalization error. The challenge in this respect is to obtain a simple expression
for div(ϕ ◦ β̂) which may be used for practical calculations.

In general, when we have an estimator β̂ at our disposal, we write

dfβ(β̂) = dfβ(ϕ ◦ β̂), (10.18)

meaning that the degrees of freedom of the estimator is the degrees of freedom of
the corresponding predictor. As β̂ takes its values in Rp and ϕ ◦ β̂ takes its values
in Rn, this notational ambiguity should not cause any confusion.

Next, we review previous work relevant to us. On an abstract level, our focus is
essentially model selection. By model selection, we mean the process of selecting
among a set of possible models. For a statistical model, any sparse estimator yields
a submodel of the original model corresponding to the reduced model where a set
of the original parameters are set to zero. Our interest in the generalization error
will often center around being able to perform model selection by selecting a sparse
estimator minimizing the generalization error across a family of estimators. The
subject of model selection is large, see [26, 20] for monographs giving an overview of
the field. The field covers both for example early criteria for linear regression such as
Mallow’s Cp, see [114], as well as general information criteria such as AIC and BIC,
introduced in [4] and [152] respectively. Of greater interest to us are criteria derived
from the training error optimism and its covariance and divergence representations,
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see for example [40, 44, 110, 118, 181, 168, 176]. We are mostly interested in results
concerning the explicit calculation of the the degrees of freedom (10.9) in particular
models.

Explicit expressions for the degrees of freedom are known in several models. Consider
for example a linear regression model of the form

Y = Xβ + ε (10.19)

where ε follows a normal distribution with mean zero and known variance σ2In, and
β ∈ Rp. As mentioned earlier, for a linear predictor of the form g(y) = Sy, where
S ∈M(n, n), it holds that

dfβ(g) = tr S, (10.20)

see Chapter 3 of [65]. In particular, this yields an explicit expression for the degrees
of freedom for the ridge regression predictor. Ridge regression is a shrinkage method,
with the ridge regression estimator being defined as

β̂ridλ = argmin
β∈Rp

‖Y −Xβ‖22 + λ‖β‖22, (10.21)

for some λ ≥ 0. Section 3.4 of [64] shows that

dfβ(β̂ridλ ) =

p∑
j=1

d2
j

d2
j + λ

, (10.22)

where dj are the singular values of the design matrix X. More difficult is the problem
of calculating degrees of freedom corresponding to the LASSO estimator, given by

β̂Lλ = argmin
β∈Rp

‖Y −Xβ‖22 + λ‖β‖1. (10.23)

The LASSO is an estimation method designed for variable selection by yielding
sparse estimates, see [167]. In this context, therefore, model selection through choice
of the shrinkage parameter λ is of particular interest. The degrees of freedom for β̂Lλ
has been calulcated in [181, 168]. To review the results, we introduce the active set
of β̂Lλ , given by

A = {i ≤ p | (β̂Lλ )i 6= 0}, (10.24)

that is, the coordinates of the LASSO estimate which are not zero. Note that A
depends on both λ, X and most importantly the response variable Y . In particular,
the dependence on Y renders A a random set. In [181], it is shown that when X has
full column rank, then

dfβ(β̂Lλ ) = Eβ|A|, (10.25)
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where |A| denotes the cardinality of A. Note that as X is an n × p matrix, the
assumption of full column rank forces p ≤ n. In [168], the case of general p and
n is considered. To state their results, we introduce the following notation: For an
n × p matrix X, X(R,C) denotes the submatrix of X corresponding to the rows
R ⊆ {1, . . . , n} and the columns C ⊆ {1, . . . , p}. The notation X(R,·) and X(·,C)

corresponds to submatrices with all colums and all rows, respectively. In [168], the
authors show that

dfβ(β̂Lλ ) = Eβ rank X(·,A). (10.26)

This result is particularly remarkable because of what is not stated: In the case
p > n, which is allowed in (10.26), the LASSO estimates may not be unique, and
therefore, the active set A is not a priori well-defined. However, in [168] it is shown
that almost surely, A is in fact independent of the LASSO solution considered. In
the case of X having full column rank, (10.26) reduces to the result (10.25).

Less explicit results are known in another type of models, namely shape-restricted
regression. In [118], simple linear regression models of the form (10.19) are consid-
ered, but the allowed parameters β are restricted to some set Ω ⊆ Rp and the least
squares estimate

β̂res = argmin
β∈Ω

‖Y −Xβ‖22 (10.27)

is analyzed. The authors of [118] consider the case where Ω is closed and convex, and
show that in this case, β̂res is an almost differentiable function of y, so that Lemma
10.2.2 may be invoked. In particular, the case where Ω is a convex polyhedron is
considered in detail.

10.3 Main results

In this section, we state and discuss our main results, Theorem 10.3.1 and Theorem
10.3.2. While our movitating remarks in Section 10.1 and our review of known results
in Section 10.2 were made in the context of a statistical model, such a model is in
fact not necessary for the statement of our results. Rather, all we need is an n-
dimensional Gaussian variable Y with variance σ2In, and a continuous mapping
ϕ : Rp → Rn. We therefore dismiss our previous model and simply consider given Y
and ϕ. As in Section 10.2, the degrees of freedom of a predictor g : Rn → Rn is then
defined to be

df(g) =
1

σ2

n∑
i=1

Cov(Yi, gi(Y )). (10.28)

We are now ready to present our results. Theorem 10.3.1 concerns constrained es-
timators for nonlinear regression, where the constraint is that β is restricted to a
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compact set. In practical cases, this set could be chosen for example to be a closed
ball centered at the origin in the L1 or L2 norm. Recall that a Radon measure on
(Rp,Bp), where Bp denotes the Borel-σ-algebra, is a positive measure which is finite
on compact sets, see [52]. By C∞c (Rn), we denote the space of mappings from Rn to
R with compact support which are differentiable infinitely often.

Theorem 10.3.1. Let K be a compact subset of Rp. Assume that for each y ∈ Rn,
it holds that β̂(y) ∈ argminβ∈K ‖y − ϕ(β)‖22 in such a way that β̂(y) is measurable
function of y. Then, there exists a unique family of nonnegative Radon measures
(µi)i≤n such that

df(β̂) =
n∑
i=1

∫
Rn
ψ(y) dµi(y), (10.29)

where ψ is the density of Y . The family of Radon measures is determined by having∫
Rn

(ϕ ◦ β̂)(y)i
∂φ

∂yi
(y) dy = −

∫
Rn
φ(y) dµi(x) (10.30)

for all φ ∈ C∞c (Rn).

We take a moment to understand the content of Theorem 10.3.1. For any nonempty
compact set K ⊆ Rn, introduce the metric projection onto K as

prK(x) = argmin
y∈K

‖x− y‖22. (10.31)

The function prK is generally a multifunction, meaning that its values are sets in
Rn. As K is nonempty and compact, prK(x) is nonempty for all x ∈ Rn. In Theorem
10.3.1, (ϕ ◦ β̂)(y) ∈ prϕ(K)(y) for all y ∈ Rn. If sufficient regularity conditions were
available, Lemma 10.2.2 would suggest that we could write

df(β̂) = E(div prϕ(K))(Y ). (10.32)

Two obstacles to this exist. First, while the results of [8] show that, heuristically
speaking, prϕ(K) is differentiable Lebesgue almost everywhere, this is not formally
well-defined as prϕ(K) is not even a single-valued function. Second, even if prϕ(K)

were single-valued and differentiable Lebesgue almost everywhere, Lemma 10.2.2
requires almost differentiability, which is not implied by simply being differentiable
Lebesgue almost everywhere, as Example 10.2.3 shows. The content of Theorem
10.3.1 is that by letting Radon measures take the place of ordinary derivatives, see
Chapter 7 of [148] for details on this, we may surmount the two obstacles outlined
and obtain a divergence-type expression for the degrees of freedom.

Our other main result, Theorem 10.3.2, is concerned with L1-penalized estimation.
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In order to state the theorem succintly, define B ∈M(p, p) and A ∈M(n, p) by

Bij(y, β) =

n∑
k=1

∂ϕk
∂βi

(β)
∂ϕk
∂βj

(β)− (yk − ϕ(β)k)
∂2ϕk
∂βi∂βj

(β), (10.33)

Aki(β) =
∂ϕk
∂βi

(β), (10.34)

and, as in Section 10.2, let A denote the active set of an estimator.

Theorem 10.3.2. Assume that ϕ is twice continuously differentiable. Fix y ∈ Rn
and λ ≥ 0. Assume that there exists a neighborhood U of y such that when defining
h : U × Rp → R by h(y, β) = 1

2‖y − ϕ(β)‖22 + λ‖β‖1, we have that:

1. For all z ∈ U , there is a unique argument minimum β̂λ(z) of β 7→ h(z, β).

2. The mapping β̂λ : U → Rp is differentiable.

3. The active set A = {i ≤ p | g(z)i 6= 0} does not depend on z.

4. H(A,A)(y, β̂λ(y)) is invertible, where H(y, β) is the Hessian of the mapping
β 7→ ‖y − ϕ(β)‖22.

Then ϕ ◦ β̂λ is differentiable at y, and

div(ϕ ◦ β̂λ)(y) = tr A(y)(·,A)B(y, β̂λ)−1
(A,A)A(y)t(·,A). (10.35)

If the regularity conditions of Theorem 10.3.2 are satisfied for Lebesgue almost all
y, and if Lemma 10.2.2 can be applied, (10.35) yields that

df(β̂λ) = Eβtr A(Y )(·,A)B(Y, β̂λ)−1
(A,A)A(Y )t(·,A), (10.36)

implying that

Êrr = err + 2σ2tr A(Y )(·,A)B(Y, β̂λ)−1
(A,A)A(Y )t(·,A) (10.37)

yields an unbiased estimate of the generalization error. Furthermore, (10.37) can be
calculated even when the regularity conditions are not satisfied, and so the virtue
of Theorem 10.3.2 is not just that it provides sufficient conditions for (10.35) to
hold, but also that it generally provides a candidate for the degrees of freedom.
Minimizing (10.37) for varying λ ≥ 0 allows for sparse model selection for L1-
penalized estimation in nonlinear regression.

In order to relate Theorem 10.3.2 to the results of [181, 168] discussed in Section
10.2, consider the ordinary linear regression case of ϕ(β) = Xβ for X ∈ M(n, p),
and let β̂λ ∈ argminβ∈Rp ‖Y −Xβ‖22 + λ‖β‖1 be the LASSO estimator. In this case,
we obtain B(y, u) = XtX and A(u) = X, yielding

df(β̂λ) = E tr X(·,A)(X
tX)−1

(A,A)X
t
(·,A)

= E tr (XtX)−1
(A,A)X

t
(·,A)X(·,A) = E|A|, (10.38)
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Note that for the calculation (10.38) to make sense, it is necessary that (XtX)(A,A) is
invertible. This is equivalent to having (XtX)(A,A) be of full rank, which is equivalent
to having X(·,A) be of full rank. Therefore, (10.38) is in accordance with both (10.25)
and (10.26).

10.4 Constrained nonlinear regression

In this section, we prove Theorem 10.3.1. Let ϕ : Rp → Rn be continuous and
consider the constrained least squares estimator

β̂λ(y) ∈ argmin
β∈K

‖y − ϕ(β)‖22, (10.39)

where K is some compact subset of Rp. It holds that ‖y − ϕ(β̂(y))‖22 ≤ ‖y − ϕ(β)‖22
for all β ∈ K. It then also holds that ‖y − ϕ(β̂(y))‖22 ≤ ‖x − y‖22 for all x ∈ ϕ(K),
so that

ϕ(β̂) ∈ argmin
x∈ϕ(K)

‖x− y‖22, (10.40)

where ϕ(K) is a compact subset of Rn as K is compact and ϕ is continuous. As in
Section 10.3, for any nonempty compact set K ⊆ Rp, we now introduce the metric
projection onto K as the multifunction

prK(x) = argmin
y∈K

‖x− y‖22. (10.41)

In special cases, prK is single-valued and thus corresponds to an ordinary function.
This is for example the case when K in addition to being compact also is convex,
see Theorem 4.10 of [150]. It is immediate that ϕ(β̂λ) is an element of the metric
projection of Y onto ϕ(K). Therefore, we may understand the properties of ϕ(β̂λ)
using the properties of metric projections.

In addition to the metric projection, we also define the metric distance function of
a compact set K by

dK(x) = inf
y∈K
‖x− y‖2. (10.42)

Metric distance functions and metric projections are connected and well-studied
objects. Main subjects of interest are questions of when the metric projection is
single-valued, see for example [69, 106, 138, 179, 177], and questions of continuity
and differentiability for both the metric distance and the metric projection, see for
example [2, 53, 71, 100, 153, 154]. One of the main difficulties of working with the
metric projection is that it generally is a multifunction. We will work with measur-
able selections of the multifunction, defined below. We will argue that any measur-
able selection of the metric projection is differentiable in a distributional sense, and
that the derivative is a tempered distribution induced by a Radon measure. This
will allow us to prove Theorem 10.3.1.
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Definition 10.4.1. By a selection prsK of prK , we mean a function prsK : Rn → R
such that prsK(x) ∈ prK(x) for all x ∈ Rn. If prsK is measurable, we say that prsK
is a measurable selection of prK .

In order to obtain our results, we first state a known result, first noted in [8]. For
completeness, we include a proof. Recall that for f : Rn → [−∞,∞] convex, the
subdifferential at x ∈ Rn is ∂f(x) = {y ∈ Rn | ∀ z ∈ Rn : f(z)− f(x) ≥ yt(z − x)},
see Section 23 of [140].

Lemma 10.4.2. Let K be a nonempty compact set, put f(x) = ‖x‖2/2−dK(x)2/2.
The function f is convex, and its subdifferential satisfies prK(x) ⊆ ∂f(x).

Proof. We first show that f is convex. To do so, first note that for all x, y ∈ Rn, it
holds that

1
2‖x‖

2
2 − 1

2‖x− y‖
2
2 = 1

2x
tx− 1

2(x− y)t(x− y) = xty − 1
2y

ty, (10.43)

and so it follows that

f(x) = 1
2‖x‖

2
2 − 1

2 inf
y∈K
‖x− y‖22

= sup
y∈K

1
2‖x‖

2
2 − 1

2‖x− y‖
2
2

= sup
y∈K

xty − 1
2y

ty. (10.44)

Thus, f is a pointwise supremum of affine functions. Therefore, by Theorem 5.5
of [140], f is convex. Next, in order to prove the result on the subdifferential, let
y ∈ prK(x). It then holds that ‖x−y‖2 = dK(x). Applying this and (10.43), we then
have

f(z) = sup
u∈K

ztu− 1
2u

tu = sup
u∈K

xtu− 1
2u

tu+ (z − x)tu

≥ xty − 1
2y

ty + (z − x)ty = 1
2‖x‖

2
2 − 1

2‖x− y‖
2
2 + yt(z − x)

= f(x) + yt(z − x), (10.45)

so y ∈ ∂f(x), as required.

We also make the following simple observation. For any subset A of Rn, we let
diam A denote the diameter of A, given by diam A = supx∈A ‖x‖2.

Lemma 10.4.3. Let K be a nonempty compact set. Then

diam prK(x) ≤ 2‖x‖2 + inf
u∈K
‖u‖2. (10.46)
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Proof. Let y ∈ prK(x). We then have

‖y‖2 ≤ ‖x‖2 + ‖y − x‖2 = ‖x‖2 + inf
u∈K
‖u− x‖2

≤ 2‖x‖2 + inf
u∈K
‖u‖2 (10.47)

and the result follows.

Applying Lemma 10.4.2, we obtain the following differentiability result. Let Cc(Rn)
denote the set of continuous mappings from Rn to R with compact support, let
Ckc (Rn) denote the subset of Cc(Rn) of mappings which are k times continuously dif-
ferentiable and let C∞c (Rn) denote the subset of Cc(Rn) of mappings which are differ-
entiable infinitely often. Note that for any measurable selection prsK , Lemma 10.4.3
shows that prsK has polynomial growth, and therefore in particular is Lebesgue
integrable on compact sets. From this, we find that all integrals used below are
well-defined.

Lemma 10.4.4. Let prsK be a measurable selection of prK . There exists a unique
family of nonnegative Radon measures (µi)i≤n such that for φ ∈ C2

c (Rn), it holds
that ∫

Rn
prsK(x)i

∂φ

∂xi
(x) dx = −

∫
Rn
φ(x) dµi(x). (10.48)

Proof. We first show uniqueness. Assume that there exists two families (µi) and (νi)
of nonnegative Radon measures satisfying the properties of the theorem. Then∫

Rn
φ(x) dµi(x) =

∫
Rn
φ(x) dνi(x) (10.49)

for all φ ∈ C2
c (Rn). Approximation with smooth functions yields that (10.49) also

holds for φ ∈ Cc(Rn). Theorem 2.14 of [150] then shows that µi = νi.

In order to prove existence, let f be the convex function from Lemma 10.4.2. By
Theorem 6.3.2 of [52], there exists a unique family of nonnegative Radon measures
µi such that for φ ∈ C2

c (Rn), it holds that∫
Rn
f(x)

∂2φ

∂x2
i

dx =

∫
Rn
φ(x) dµi(x). (10.50)

Next, let A be the set of points x ∈ Rn where f is differentiable. By Theorem 6.3.1
of [52], f is Lipschitz continuous on all compact subsets of Rn. Therefore, Theorem
3.1.2 of [52] shows that the complement of A has Lebesgue measure zero. Note that
with ei being the i’th unit vector of Rn, we have for any ψ ∈ C1

c (Rn) that∫
A

(
f(x+ hei)− f(x)

h

)
ψ(x) dx =

∫
Rn

(
f(x+ hei)− f(x)

h

)
ψ(x) dx

= −
∫
Rn
f(x)

ψ(x)− ψ(x− hei)
h

dx. (10.51)
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Now let K ′ be a compact set such that ψ is zero outside of K ′. Recalling that f is
Lipschitz continuous on all compact subsets of Rn, let C1 be the Lipschitz constant
of f over {x ∈ Rn | d(K ′, x) ≤ 1}. We then obtain for h ≤ 1 that

sup
x∈K′

∣∣∣∣f(x+ hei)− f(x)

h

∣∣∣∣ ≤ C1. (10.52)

Likewise, as ψ ∈ C1
c (Rn), ψ is Lipschitz on all of Rn. With C2 denoting the Lipschitz

constant, we have

sup
x∈K′

∣∣∣∣ψ(x)− ψ(x− hei)
h

∣∣∣∣ ≤ C2. (10.53)

Therefore, inserting the i’th partial derivative of φ in (10.51) and applying the
dominated convergence theorem, we obtain∫

A

∂f

∂xi
(x)

∂φ

∂xi
(x) dx = −

∫
Rn
f(x)

∂2φ

∂x2
i

(x) dx. (10.54)

Now, for x ∈ A, it holds that ∂f(x) consists of a single point, the gradient ∇f(x) of
f at x. As prK(x) ⊆ ∂f(x) by Lemma 10.4.2, this implies that prK(x) consists of a
single point, and thus prsK(x) = ∇f(x). Therefore,∫

A

∂f

∂xi
(x)

∂φ

∂xi
dx =

∫
A

prsK(x)i
∂φ

∂xi
dx =

∫
Rn

prsK(x)i
∂φ

∂xi
dx. (10.55)

Combining (10.50), (10.54) and (10.55), we obtain∫
Rn

prsK(x)i
∂φ

∂xi
dx =

∫
Rn
φ(x) dµi(x), (10.56)

as required.

Lemma 10.4.5. Let prsK be a measurable selection of prK , and let (µi) be the
family of nonnegative Radon measures of Lemma 10.4.4. For each i, it holds that∫

Rn

1

(1 + ‖x‖22)N
dµi(x) <∞, (10.57)

when N ≥ 1 + (n− 1)/2.

Proof. First note that∫
Rn

1

(1 + ‖x‖22)N
dx =

∫ ∞
0

Adr
n−1

(1 + r2)N
dr, (10.58)

where Ad is the area of the unit sphere in n dimensions. This integral is finite
whenever 2N − (n − 1) ≥ 2, corresponding to N ≥ (n − 1)/2. Also recall from the
proof of Lemma 10.4.4 that the measures µi satisfies∫

Rn
f(x)

∂2φ

∂x2
i

dx =

∫
Rn
φ(x) dµi(x), (10.59)
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for all φ ∈ C2
c (Rn), where f is the convex function from Lemma 10.4.2. Now fix

N ≥ 1 and define h : Rn → R by h(x) = (1 + ‖x‖22)−N . Note that

∂h

∂xi
(x) =

−2Nxi
(1 + ‖x‖22)N+1

, (10.60)

so that we obtain ∣∣∣∣ ∂h∂xi (x)

∣∣∣∣ ≤ 2N‖x‖2
(1 + ‖x‖22)N+1

≤ 2N

(1 + ‖x‖22)N
. (10.61)

From this, we also obtain that

∂2h

∂x2
i

= − ∂

∂xi

2Nxi
(1 + ‖x‖22)N+1

= − 2N

(1 + ‖x‖22)N+1
+

4N(N + 1)x2
i

(1 + ‖x‖22)N+2
, (10.62)

yielding ∣∣∣∣∂2h

∂x2
i

∣∣∣∣ ≤ 2N

(1 + ‖x‖22)N+1
+

4N(N + 1)x2
i

(1 + ‖x‖22)N+2
≤ 4N(N + 2)

(1 + ‖x‖22)N
. (10.63)

Combining (10.61) and (10.63), we conclude that both h and its first-order and
second-order partial derivatives are bounded by x 7→ 4N(N + 2)(1 + ‖x‖22)−N . Now
let ψ ∈ C∞c (Rn) be such that for all x ∈ Rn, ψ(x/k) increases to one as k tends
to infinity. Also define ψk(x) = ψ(x/k). Then x 7→ hψk is in C2

c (Rn), where the
multiplication is pointwise, and thus∫

Rn
hψk(x) dµi(x) =

∫
Rn
f(x)

∂2hψk
∂x2

i

(x) dx. (10.64)

Next, note that

∂2hψk
∂x2

i

(x) =
∂

∂xi

(
∂h

∂xi
(x)ψ(x/k) + h(x)

1

k

∂ψ

∂xi
(x/k)

)
=
∂2h

∂x2
i

(x)ψ(x/k) +
∂h

∂xi
(x)

1

k

∂ψ

∂xi
(x/k)

+
∂h

∂xi
(x)

1

k

∂ψ

∂xi
(x/k) + h(x)

1

k2

∂2ψ

∂x2
i

(x/k). (10.65)

Also note that from the definition of f , there is c,M > 0 such that whenever x
satisfies ‖x‖2 ≥M , it holds that |f(x)| ≤ c‖x‖22. Therefore, whenever ‖x‖2 ≥M , we
obtain ∣∣∣∣4N(N + 2)f(x)

(1 + ‖x‖22)2

∣∣∣∣ ≤ 4N(N + 2)c‖x‖22
(1 + ‖x‖22)N

≤ 4N(N + 2)c

(1 + ‖x‖2)N−1
. (10.66)

Combining (10.65) and (10.66) with our previous results from (10.61) and (10.63),
we then obtain for ‖x‖2 ≥M that∣∣∣∣f(x)

∂2hψk
∂xi∂xj

(x)

∣∣∣∣ ≤ C

(1 + ‖x‖22)N−1
, (10.67)
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where

C = 4N(N + 2)c

(
‖ψ‖∞ + 2

∥∥∥∥ ∂ψ∂xi
∥∥∥∥
∞

+

∥∥∥∥∂2ψ

∂x2
i

∥∥∥∥
∞

)
. (10.68)

Finally, assume that N ≥ 1 + (n− 1)/2. By (10.67), we then find that∫
Rn

1(‖x‖2≥M)hψk(x) dµi(x) ≤
∫
Rn

C

(1 + ‖x‖22)(n−1)/2
dx, (10.69)

which is finite by our earlier observations. As the monotone convergence theorem
yields ∫

Rn
1(‖x‖2≥M)h(x) dµi(x) = lim

k→∞

∫
Rn

1(‖x‖2≥M)hψk(x) dµi(x), (10.70)

we conclude that h is integrable with respect to µi.

The next theorem is our main result on differentiability of prsK . We introduce some
notation from the theory of distributions. We let D(Rn), the space of test functions,
denote C∞c (Rn), and we let S(Rn), the space of Schwartz functions, denote the space
of those φ ∈ C∞(Rn) such that

sup
|α|≤N

sup
x∈Rn

(1 + ‖x‖22)N |(Dαf)(x)| <∞, (10.71)

where we use standard multi-index notation and Dα denotes the partial derivative
operator corresponding to the multi-index α. The spaces D(Rn) and S(Rn) are
endowed with particular topologies whose details are not important to us here, see
Chapter 7 of [148] for precise definitions.

Theorem 10.4.6. Let prsK be a measurable selection of prK . There exists a unique
family of nonnegative Radon measures (µi) such that for φ ∈ S(Rn), it holds that∫

Rn
prsK(x)i

∂φ

∂xi
(x) dx = −

∫
Rn
φ(x) dµi(x). (10.72)

Proof. Uniqueness follows as in the proof of Lemma 10.4.4. As for existence, note
that by Lemma 10.4.4, there exists a family of nonnegative Radon measures µi such
that (10.72) holds whenever φ ∈ C2

c (Rn), in particular, it holds for all elements
φ ∈ D(Rn). It suffices to extend this to the case φ ∈ S(Rn). To this end, define
mappings Si, Ti : D(Rn)→ R by

Si(φ) =

∫
Rn

prsK(x)iφ(x) dx (10.73)

Ti(φ) =

∫
Rn
φ(x) dµi(x). (10.74)
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Now, by Lemma 10.4.3, prsK has polynomial growth. Therefore, Example 7.12(c) of
[148] shows that Si has a continuous extension to S(Rn). Likewise, by Lemma 10.4.5
it holds that that each measure µi satisfies that

∫
Rn(1 + ‖x‖22)−N dµi(x) is finite for

sufficiently large N . Therefore, by Example 7.12(b) of [148], it holds that Ti has a
continuous extension to S(Rn) as well.

Now let Di : S(Rn)→ S(Rn) denote the i’th first-order partial derivative operator.
By Theorem 7.4(b) of [148], Di is continuous. Therefore, defining Λi : S(Rn) → R
by

Λi = Si ◦Di + Ti, (10.75)

we find that Λi is continuous, and by (10.72) for φ ∈ D(Rn), Λi is zero on D(Rn).
By Theorem 7.10 of [148], D(Rn) is dense in S(Rn). As a consequence, Λi is zero on
all of S(Rn) and so (10.72) holds for all φ ∈ S(Rn).

The meaning of Theorem 10.4.6 is best understood through the theory of distri-
butions. A distribution, or generalized function, is a continuous linear functional
T on D(Rn). If T can be extended to a continuous linear functional on S(Rn), we
say that T is a tempered distribution. As in [148], we may associate a distribution
Ti : D(Rn)→ R to (prsK)i by defining

Ti(φ) =

∫
Rn

prsK(x)iφ(x) dx, (10.76)

where the integral is well-defined and Ti is continuous because of the polynomial
growth property of Lemma 10.4.3. The derivative of a distribution is always well-
defined and is given by the distribution DjTi defined by

DjTi(φ) = −
∫
Rn

prsK(x)i
∂φ

∂xj
(x) dx. (10.77)

Furthermore, we may also associate a distribution Si to any Radon measure µi by
defining

Si(φ) =

∫
Rn
φ(x) dµi(x). (10.78)

Succintly put, Theorem 10.4.6 then states that the i’th partial derivative derivative of
the distribution corresponding to prsK(x)i is a tempered distribution corresponding
to a nonnegative Radon measure µi. Using this result, we can prove Theorem 10.3.1.

Proof of Theorem 10.3.1. We have ϕ ◦ β̂ ∈ argminx∈ϕ(K) ‖x− y‖22, so ϕ ◦ β̂ is a
measurable selection of prϕ(K). By Theorem 10.4.6, there exists a unique family of

nonnegative Radon measures (µi) such that∫
Rn

(ϕ ◦ β̂)(x)i
∂φ

∂xi
(x) dx = −

∫
Rn
φ(x) dµi(x) (10.79)
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for all φ ∈ S(Rn). With ψ denoting the density of Y and ξ denoting the mean of Y ,
we have ψ ∈ S(Rn) and

∂

∂yi
ψ(y) =

∂

∂yi

1√
2πσ2

n exp

(
− 1

2σ2

n∑
i=1

(yi − ξi)2

)
= −yi − ξi

σ2
ψ(y). (10.80)

Therefore, (10.79) yields

Cov(Yi, (ϕ ◦ β̂)i(Y )) = Cov(Yi − ξi, (ϕ ◦ β̂)i(Y ))

=

∫
Rn

(ϕ ◦ β̂)i(y)(yi − ξi)ψ(y) dy

= −σ2

∫
Rn

(ϕ ◦ β̂)i(y)
∂

∂yi
ψ(y) dy

= σ2

∫
Rn
ψ(y) dµi(y) (10.81)

and so Lemma 10.2.1 allows us to conclude that

df(g) =
1

σ2

n∑
i=1

Cov(Yi, (ϕ ◦ β̂)i(Y )) =
n∑
i=1

∫
Rn
ψ(y) dµi(y), (10.82)

as required. �

10.5 L1-penalized nonlinear regression

In this section, we prove Theorem 10.3.2. As in Section 10.2, for X ∈ M(n, p),
X(R,C) denotes the submatrix of X corresponding to the rows R ⊆ {1, . . . , n} and
the columns C ⊆ {1, . . . , p}. The following lemma is a type of implicit differentiation
theorem for solution mappings of L1-penalized minimization problems, compare with
the classical results of Chapter 9 of [149].

Lemma 10.5.1. Fix y ∈ Rn and λ ≥ 0. Consider a neighborhood U of y and a
mapping f : U × Rp → R. Define h : U × Rp → R by h(y, β) = f(y, β) + λ‖β‖1.
Assume that the following hold:

1. For y ∈ U , the mapping β 7→ f(y, β) is twice continuously differentiable.

2. For y ∈ U , the argument minimum β̂(y) of β 7→ h(y, β) is unique.

3. The mapping β̂ : U → Rp is differentiable.

4. The active set A = {i ≤ p | β̂i(y) 6= 0} does not depend on y.

5. H(A,A)(y, β̂(y)) is invertible, where H(y, β) is the Hessian of β 7→ f(y, β).
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Let M(y) be the A× n matrix whose (i, k) entry is

M(y)ik =
∂2f

∂yk∂βi
(y, β̂(y)). (10.83)

Then, the derivative Dβ̂(y) ∈M(p, n) of β̂ at y satisfies:

Dβ̂(y)ik = −(H(A,A)(y, β̂(y))−1M(y))ik for i ∈ A, (10.84)

Dβ̂(y)ik = 0 for i ∈ Ac. (10.85)

Proof. The relationship (10.85) is immediate from our assumption that the active
set A does not depend on y. To prove (10.84), fix y ∈ U . As minima of differentiable
functions are stationary points, we find that as β̂(y) is the argument minimum of
β 7→ h(y, β), it holds that for all coordinates i such that β 7→ h(y, β) is differentiable
in the i’th coordinate at β̂(y), the derivative is zero. As β 7→ ‖β‖1 is differentiable
in the i’th coordinate precisely if that coordinate is nonzero, we obtain for i ∈ A
the two relationships

∂h

∂βi
(y, β̂(y)) = 0, (10.86)

∂h

∂βi
(y, β̂(y)) =

∂f

∂βi
(y, β̂(y)) + λsgn(β̂(y)i). (10.87)

Using the differentiability of f , the chain rule allows us to conclude that for all i ∈ A
and k ≤ n,

0 =
∂

∂yk

(
∂f

∂βi
(y, β̂(y)) + λsgn(β̂(y)i)

)
=

∂2f

∂yk∂βi
(y, β̂(y)) +

p∑
j=1

∂2f

∂βj∂βi
(y, β̂(y))

∂β̂j
∂yk

(y). (10.88)

Next, by our assumptions, β̂i(y) is zero for all y ∈ U and i ∈ Ac. Therefore, the
derivative of β̂i at y is zero for all i ∈ Ac, and so (10.88) yields

0 =
∂2f

∂yk∂βi
(y, β̂(y)) +

∑
j∈A

∂2f

∂βj∂βi
(y, β̂(y))

∂β̂j
∂yk

(y) (10.89)

for all k ≤ n and i ∈ A. Thus, 0 = M(y) +H(A,A)(y, β̂(y))(Dβ̂(y))(A,·), and so

(Dβ̂(y))(A,·) =−H(A,A)(y, β̂(y))−1M(y), (10.90)

proving (10.84).
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The proof of Theorem 10.3.2 now simply proceeds by applying Lemma 10.5.1 to
a particular choice of f . As in Section 10.3, define matrices B(y, u) ∈ M(p, p) and
A(u) ∈M(n, p) by

Bij(y, u) =

n∑
k=1

∂ϕk
∂βi

(u)
∂ϕk
∂βj

(u)− (yk − ϕ(u)k)
∂2ϕk
∂βi∂βj

(u), (10.91)

Aki(u) =
∂ϕk
∂βi

(u). (10.92)

Proof of Theorem 10.3.2. Let f(y, β) = ‖y − ϕ(β)‖22. By Lemma 10.5.1, the
formulas (10.84) and (10.85) hold for β̂ at y. In particular, ϕ ◦ β̂ is differentiable at
y, and

div(ϕ ◦ β̂)(y) =
n∑
k=1

∂

∂yk
(ϕ ◦ β̂)k(y) =

n∑
k=1

p∑
i=1

∂ϕk
∂βi

(β̂(y))
∂β̂i
∂yk

(y)

=
n∑
k=1

∑
i∈A

∂ϕk
∂βi

(β̂(y))
∂β̂i
∂yk

(y) =
n∑
k=1

∑
i∈A

A(y)ki
∂β̂i
∂yk

(y). (10.93)

Fix i, j ∈ A, we then have

∂2f

∂βi∂βj
f(y, β) =

∂2f

∂βi∂βj

n∑
k=1

(yk − ϕ(β)k)
2

=− 2
∂f

∂βi

n∑
k=1

(yk − ϕ(β)k)
∂ϕk
∂βj

(β)

=2
n∑
k=1

∂ϕk
∂βi

(β)
∂ϕk
∂βj

(β)− (yk − ϕ(β)k)
∂2ϕk
∂βi∂βj

(β), (10.94)

and for i ∈ A and k ≤ n,

∂2f

∂yk∂βi
(y, β̂(y)) =− 2

∂

∂yk

n∑
m=1

(ym − ϕ(β)m)
∂ϕm
∂βj

(β) = −2
∂ϕk
∂βj

(β). (10.95)

Therefore, by Lemma 10.5.1, we have for k ≤ n and i ∈ A that

∂β̂i
∂yk

(y) = (B(y)−1A(y)t)ik. (10.96)

Using this in (10.93), we obtain

div(ϕ ◦ β̂)(y) =

n∑
k=1

∑
i∈A

A(y)ki(B(y)−1A(y)t)ik

=

n∑
k=1

(A(y)B(y)−1A(y)t)kk = tr A(y)B(y)−1A(y)t, (10.97)

as desired. �
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[7] D. Applebaum, Lévy processes and stochastic calculus, second ed., Cambridge
Studies in Advanced Mathematics, vol. 116, Cambridge University Press, Cam-
bridge, 2009.

[8] E. Asplund, Differentiability of the metric projection in finite-dimensional Eu-
clidean space, Proc. Amer. Math. Soc. 38 (1973), 218–219.

223



224 Bibliography

[9] S. Azizpour, K. Giesecke, and G. Schwenkler, Exploring the sources of default
clustering, Preprint (2012), 1–28.

[10] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, Face recognition by in-
dependent component analysis, IEEE Transactions on Neural Networks 13
(2002), no. 6, 1450–1464.

[11] R. F. Bass, The Doob-Meyer decomposition revisited, Canad. Math. Bull. 39
(1996), no. 2, 138–150.

[12] C. F. Beckmann and S. M. Smith, Probabilistic independent component analy-
sis for functional magnetic resonance imaging, IEEE Transactions on Medical
Imaging 23 (2004), no. 2, 137–152.
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tions, Birkhäuser Boston Inc., Boston, MA, 2006, Marked point and piecewise
deterministic processes.

[82] J. Jacod, Calcul stochastique et problèmes de martingales, Lecture Notes in
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[129] J. Peters and P. Bühlmann, Identifiability of Gaussian structural equation mod-
els with same error variances, Preprint (2012), 1–11.
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[175] J. A. Yan, À propos de l’intégrabilité uniforme des martingales exponentielles,
Seminar on Probability, XVI, Lecture Notes in Math., vol. 920, Springer,
Berlin, 1982, pp. 338–347.

[176] J. Ye, On measuring and correcting the effects of data mining and model se-
lection, J. Amer. Statist. Assoc. 93 (1998), no. 441, 120–131.
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