
Statistical Inference for Partially
Observed Diffusion Processes

PhD thesis by

Anders Christian Jensen

Department of Mathematical Sciences
University of Copenhagen
Denmark

PhD School of Science - Faculty of Science - University of Copenhagen

Anders Christian Jensen
Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
DK-2100 København Ø
Denmark

anders@math.ku.dk
htpp://www.math.ku.dk/˜anders

PhD thesis submitted to the PhD School of Science, Faculty of Science, University of
Copenhagen, Denmark, in February 2014.

Academic advisor: Susanne Ditlevsen
University of Copenhagen, Denmark

Assessment Committee: Adeline Samson
l’Université Joseph Fourier, Grenoble

Niels Richard Hansen (chair)
Department of Mathematical Sciences, University of Copenhagen

Erik Lindström
Lund University

c©Anders Christian Jensen, 2014, except for chapter 5 which is based on the paper
Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo
model
c©Anders Christian Jensen, Susanne Ditlevsen, Mathieu Kessler and Omiros Papaspiliopou-

los

ISBN 978-87-7078-975-2

Preface

This dissertation is submitted in partial fulfillment of the requirements for the Ph.D. degree
at the Faculty of Science, University of Copenhagen, Denmark. The work was carried out
at the Department of Mathematical Sciences, University of Copenhagen, from March 2010
to February 2014. It was financed by the Department of Mathematical Sciences, and the
grant of S. Ditlevsen from the Danish Council for Independent Research | Natural Sciences.

I would like to express my gratitude to my supervisor Susanne Ditlevsen, for scientific
advise and her never failing positivity toward her students. Also a very special thanks
to Omiros Papaspilioupoulos who has been a big inspiration and for his patience during
numerous Skype conversations; always encouraging and full of support and good ideas.
Great thanks are also due to Mathieu Kessler for introducing me to the world of Bayesian
statistics and MCMC methods and for a really nice time during my stay at the Universidad
Polytécnica de Cartagena.

To everyone at the Department of Mathematics, thank you for creating a stimulating envi-
ronment. Special thanks are due to Massimiliano Tamborrino for interesting conversations
about everything and nothing and for his support during the last hectic weeks.

Finally I would like to thank my family for their help and patience all the way from the
start until the hectic periods at the final stage.

i

ii

Summary

This thesis is concerned with parameter estimation for multivariate diffusion models. It
gives a short introduction to diffusion models, and related mathematical concepts. We
then introduce the method of prediction-based estimating functions and describe in detail
the application for a two-dimensional Ornstein-Uhlenbeck where one coordinate is com-
pletely unobserved. This model does not have the Markov property and it makes parameter
inference more complicated. Next we take a Bayesian approach and introduce some ba-
sic Markov Chain Monte Carlo methods. In chapter five and six we describe a Bayesian
method to perform parameter inference in multivariate diffusion models that may be only
partially observed. The methodology is applied to the stochastic FitzHugh-Nagumo model
and the two-dimensional Ornstein-Uhlenbeck process. Chapter seven focus on parameter
identifiability in the partially observed Ornstein-Uhlenbeck process, while chapter eight
describes the details of an R-package that was developed in relations to the application of
the estimation procedure of chapters five and six.

iii

iv

Dansk resumé

Denne PhD afhandling omhandler parameter estimation for flerdimensionelle diffusions-
modeller. Der gives en introduktion til diffusionsmodeller og relaterede matematiske be-
greber. Derefter introduceres de s̊akaldte prædiktionsbaserede estimationsfunktioner, og
der præsenteres en anvendelse heraf p̊a en todimensional Ornstein-Uhlenbeck proces, hvor
en af koordinaterne er uobserveret. Da denne model ikke er markov er parameteresti-
mation ganske kompliceret. Vi skifter derefter fokus til et Bayesiansk setup og intro-
ducer nogle fundamentale Bayesianske metoder. I kapitel fem og seks introduceres en
Bayesiansk metode til parameterestimation som kan bruges i flerdimensionelle diffusions-
modeller som potentielt er partielt observerede. I afhandlingen demonstreres anvendelser
heraf, p̊a den stokastiske FitzHugh-Nagumo model og p̊a den todimensionelle Ornstein-
Uhlenbeck model. Kapitel otte beskriver detaljerne omkring implementeringen af estima-
tionsmetoderne, i en R-pakke som er udviklet som en del af denne afhandling.

v

vi

Contents

1 Introduction 1

2 Diffusions 5

2.1 Stochastic differential equations . 6

2.1.1 The Itô formula . 8

2.1.2 Reducible diffusions and the Lamperti transform 9

2.1.3 The Girsanov Theorem . 11

2.1.4 Diffusion bridges . 12

2.2 The continuous time likelihood for a diffusion bridge 12

2.3 Models . 13

2.3.1 The Ornstein-Uhlenbeck process . 13

2.3.2 The FitzHugh-Nagumo model . 15

2.3.3 The extended FitzHugh-Nagumo model 18

3 Estimating functions 19

3.1 Estimating Functions . 20

3.2 Martingale estimating functions . 21

3.3 Prediction-based estimating functions . 22

3.3.1 Differentiation in R . 26

3.4 Prediction-based Estimating Functions for the partially observed Ornstein-
Uhlenbeck process . 27

3.4.1 Moment calculations . 30

3.5 Implementation . 35

i

ii

4 Bayesian statistics and MCMC methods 39

4.1 The basic Bayesian framework . 40

4.2 Importance sampling . 40

4.3 The Metropolis-Hastings Algorithm . 42

4.3.1 Simulation of diffusion bridges . 44

4.4 Gibbs sampling . 45

5 Parameter estimation for multidimensional diffusions, fully observed 49

5.1 Statistical model . 52

5.2 Estimation of drift parameters with known diffusion 52

5.2.1 Sampling the latent path . 53

5.2.2 Sampling the drift parameter . 55

5.3 Estimation of both drift and diffusion parameters 57

5.3.1 Sampling the latent path . 59

5.3.2 Sampling the drift parameter . 59

5.3.3 Sampling the diffusion parameter . 60

5.4 Simulation study for the FitzHugh-Nagumo model 61

5.4.1 Estimation of the drift parameters 62

5.4.2 Estimation of the diffusion parameters 63

5.4.3 Changing the time scale parameter ε 64

5.4.4 Practical comments . 64

5.5 Discussion . 65

6 Parameter estimation for multidimensional diffusions, partially observed 69

6.1 Statistical model and notation . 70

6.1.1 Latent coordinates . 70

6.2 The estimation procedure . 71

6.2.1 Updating the latent path component at observation times 72

6.2.2 Updating the endpoints of the latent component 75

6.3 Simulation study . 75

6.3.1 The FitzHugh-Nagumo model . 76

6.3.2 The two-dimensional Ornstein-Uhlenbeck model 78

6.3.3 The extended FitzHugh-Nagumo model 79

iii

7 Parameter identifiability for partially observed diffusions 83

7.1 Linear transformation of latent coordinate 85

7.2 The two-dimensional Ornstein-Uhlenbeck process 86

8 Computer implementation 93

8.1 Developing R-packages in Windows . 94

8.1.1 Preliminaries . 95

8.1.2 Creating and building the package 96

8.2 The BIPOD-package . 97

9 Outlook 101

10 Appendix 103

10.A BIPOD manual . 103

iv

1
Introduction

1

2 Chapter 1. Introduction

Diffusion models form a flexible class of statistical models which can be used to model com-
plicated dynamics that are somehow influenced by noise. One such example is excitability
- a phenomenon observed in a variety of natural systems, such as neuronal dynamics, ion
channels, chemical reactions, or climate dynamics (Lindner et al. (2004); Keener and Sneyd
(2009); Berglund and Gentz (2006)). The stochastic FitzHugh-Nagumo model is a promi-
nent example of a two dimensional model, representing an excitable system. To validate
the practical use of a model, the first step is to estimate model parameters from experi-
mental data. This is, however not an easy task because of the inherent linearity necessary
to produce the excitable dynamics. The estimation procedure may be further complicated
by the fact that some coordinates are completely unobserved or because coordinates may
operate on different time scales.

Parameter estimation for diffusions has been an active area of research within the last
twenty years. For a frequentistic approach see for instance Ait-Sahalia (2002, 2008); Durham
and Gallant (2002); Beskos et al. (2009); Sørensen (2000). For Bayesian approaches see
Golightly and Wilkinson (2008); Elerian et al. (2001); Roberts and Stramer (2001); Pa-
paspiliopoulos and Roberts (2012). See also Sørensen (2004) for a review. Many papers
deal with parameter estimation mainly from a theoretical point of view and examples
and illustrations are typically one dimensional. From a practical point of view there is
still a great deal of work left for the end user in terms of programming as the theoretical
procedures do not always fit directly into the framework of existing software solutions -
especially when the models are multidimensional. Together with the improvement in com-
puter speed and storage, complicated and computationally heavy algorithms can now be
implemented on most computers. Even so, it is not always straightforward to implement
these algorithms, as some methods require a large amount of programming partly due to
the complexity of the theoretical method but also in order to minimize computation time.

During my PhD i have dealt with parameter estimation for multivariate diffusions and
chapter 2 gives an introduction to diffusions and some basic concepts needed in the sub-
sequent chapters. Starting from a frequentistic point of view I have been working with
prediction-based estimating functions (described in i.e. Sørensen (1999, 2000)) and they
are the topic of chapter 3. This approach to parameter estimation turned out to be quite
difficult and cumbersome to apply in practice to the models of interest. The main prob-
lem was related to the computation of the optimal weight matrix and this problem was
circumvented using simulations to approximate the weight. However, the results were not
all too promising and it motivated us to search for more optimal methods and strategies
for estimation.

Thus, focus was changed toward Bayesian methods for parameter inference and these
are introduced in chapter 4. In chapter 5 focus is on Bayesian parameter estimation for
multidimensional diffusions where all coordinates are (partially) observed. The chapter is
an updated version of Jensen et al. (2012) which builds upon the theoretical ideas from
Roberts and Stramer (2001).

Chapter 6 expand the ideas from chapter 5 and focus on parameter estimation for multidi-
mensional diffusions when some coordinates are completely unobserved. From a practical

3

point of view, this makes parameter estimation more difficult because less information is
available compared to the fully observed case. Furthermore, parameter identification prob-
lems arise, which are difficult to handle in general, without taking into account the specific
features of the model. For the FitzHugh–Nagumo model we build upon the original pro-
cedure in order to include also the scenario with latent coordinates and a small simulation
study is included to demonstrate the performance of the estimation method. Chapter 7
deals with parameter identifiability for the two-dimensional Ornstein-Uhlenbeck process.

The approach to parameter estimation in chapters 5 and 6 is highly computer intensive
and it requires a great amount of programming. This motivated the development of an
R-package, BIPOD (Bayesian Inference for Partially Observed Diffusions) which implements
these estimation procedures. The first version was implemented directly in R and it was
very slow. In order to improve performance in terms of speed, it was necessary to set up
the programming in a faster language than R and the key components are programmed
in C++. Doing so decreased computation times considerably, sometimes by a factor of 40
compared to a direct implementation in R.

The current version of the software supports the stochastic FitzHugh-Nagumo model, a
modified version of the FitzHugh-Nagumo model and the Ornstein–Uhlenbeck. Support
for the Cox–Ingersoll–Ross model is work in progress.

4 Chapter 1. Introduction

2
Diffusions

5

6 Chapter 2. Diffusions

2.1 Stochastic differential equations

This chapter introduces stochastic differential equations (SDE)’s and presents some of the
tools needed in the subsequent chapters. A complete introduction to SDE’s requires a fair
amount of measure theory, and stochastic integration theory. This is however not the focus
of this thesis, but the reader is referred to e.g. Rogers and Williams (2000), Karatzas and
Shreve (1991) or Jacobsen (2008).

It suffices to state that throughout we will consider filtered probability spaces (Ω,F , (Ft), P)
satisfying the following (usual) conditions:

• (Ω,F , P) is complete

• N ∈ F0 for all N ∈ F with P (N) = 0

• Ft = ∩s>tFs for all t ≥ 0

Consider the equation

dVt = b(Vt; θ) dt+ Σ(Vt;σ) dWt, (2.1)

where Wt is an m-dimensional Brownian motion with respect to P , and θ and σ are p1 and
p2-dimensional parameters, respectively. The functions b and Σ take values in (a subset of)
Rd and the set of d×m matrices, respectively. Let U be F0-measurable (often a constant)
and assume that the stochastic process (Vt) is adapted with respect to Ft. We say that
(Vt) solves the SDE (2.1) with initial condition U , if

V0 = U a.s. (2.2)

Vt = V0 +

∫ t

0
b(Vs; θ) ds+

∫ t

0
Σ(Vs;σ) dWs, (2.3)

where the first integral is the Lebesgue integral and the second integral is the Itô integral.
Unless otherwise stated, we shall consider U = v0 as fixed.

SDE’s appear naturally in many different situations, and for many theoretical and practical
purposes it is of interest to estimate the parameters guiding the solution process. A strong
Markov process solving an SDE is also known as an (Itô) diffusion and the functions b and
Σ are known as the drift and diffusion coefficients, respectively.

A necessary condition for the existence of a solution to (2.1) is that∫ t

0
|b(Vs; θ)|+ |Σ(Vs;σ)|2 ds <∞,

for all t > 0, with the matrix norm |Σ|2 := Tr(ΣΣT). There are Lipschitz type conditions
ensuring existence and uniqueness of a solution, though such conditions are often too
restrictive to hold for many practical diffusion models. See e.g. Jacobsen (2008) or Rogers
and Williams (2000). Throughout we will assume sufficient regularity of b and Σ such that
a unique weak non-explosive solution to (2.1) exists.

2.1. Stochastic differential equations 7

Example 2.1 (The Ornstein-Uhlenbeck process). One of the simplest diffusion models is
the Ornstein-Uhlenbeck process, defined by the equation

dVt = −B(Vt −A) dt+ Σ dWt, (2.4)

where A and B are real d× 1 and d× d matrices, respectively. The diffusion coefficient Σ
is a d× d matrix and Wt is a d-dimensional Brownian motion. To ensure that the solution
is non-explosive, it is required that the real part of the eigenvalues of B are positive. See
Jacobsen (1991).

In the one-dimensional case the condition simplifies to B > 0 and all parameters have a
very direct interpretation: The diffusion coefficient Σ is measuring the ’size’ of the noise,
A is the asymptotic mean level for the process and B decides how fast the system reacts
to perturbations; that is, how quickly the model returns to values around its asymptotic
mean. In Figure 2.1 left is shown a simulated path from the one-dimensional Ornstein-
Uhlenbeck process with parameters A = 0, B = 1, Σ = 1/2.

0 400 800

−
0.

00
2

0.
00

2
0.

00
6

Time

V
t

0 400 800

−
0.

01
0

0.
00

0
0.

01
0

Time

V
t(1

) ,V
t(2

)

−0.010 0.000 0.010

−
0.

01
0

0.
00

0
0.

00
5

0.
01

0

Vt
(1)

V
t(2

)

Figure 2.1: Simulation of two Ornstein-Uhlenbeck processes with positive real part
of the eigenvalue of B. Left: 1 dimensional model. Middle and right: Time plot and
phase portrait of the two dimensional Ornstein-Uhlenbeck model.

�

In the multidimensional version of the Ornstein-Uhlenbeck process, the eigenvalues may
very well be complex. In this case the process spiral toward the asymptotic mean level A.
This phenomenon is shown in Figure 2.1 middle and right for parameter values

A =

(
0
0

)
, B =

(
1 −10
10 1

)
, Σ =

(
1/2 0
0 3/10

)
.

8 Chapter 2. Diffusions

The Ornstein-Uhlenbeck process is one of the few diffusions where the transition density
can be derived explicitly. One way to do this is via the Itô formula.

2.1.1 The Itô formula

The Itô formula is very useful as it describes the result of transforming a diffusion (or
more generally, a continuous semi-martingale).

Theorem 2.2. Let

dVt = b(Vt; θ) dt+ Σ(Vt;σ) dWt

and define g : Rd × R+ 7→ Rq to be a two times continuous differentiable function. Let

Z
(k)
t = gk(Vt, t) and define Zt = g(Vt, t). Then the k’th coordinate of the transformed

process can be written

dZ
(k)
t =

∂gk
∂t

(Vt, t) dt+

d∑
i=1

∂gk
∂xi

(Vt, t) dV
(i)
t +

1

2

d∑
i,j=1

∂2gk
∂xi∂xj

(Vt, t) dV
(i)
t dV

(j)
t . (2.5)

Proof. See Øksendal (2007) for a sketch of the proof in the one-dimensional case.

Note that the function g may depend on the parameters θ or σ but for notational simplicity
this is hidden from the notation.

Equation (2.5) is written in terms of increments with respect to Vt. Sometimes it is more
useful to express the formula, using increments with respect to the Brownian motion Wt:

dZ
(k)
t =

∂gk
∂t

(Vt, t) +
d∑
i=1

bi(Vt; θ)
∂gk
∂xi

(Vt, t) +
1

2

d∑
i,j=1

Γij(Vt, σ)
∂2gk
∂xi∂xj

(Vt, t)

 dt+

d∑
i=1

m∑
l=1

Σil(Vt;σ)
∂gk
∂xi

(Vt, t) dW
(l)
t ,

where bi is the i’th coordinate of the drift function, Σij is the (i, j) coordinate of the
diffusion coefficient and

Γij(Vt;σ) :=

m∑
l=1

Σil(Vt;σ)Σjl(Vt;σ).

Example 2.3 (Derivation of the solution to the one-dimensional Ornstein-Uhlenbeck
process). Assume

dVt = −β(Vt − α) dt+ σ dWt, β > 0, α ∈ R, σ > 0, V0 = v0,

2.1. Stochastic differential equations 9

which is the one-dimensional Ornstein-Uhlenbeck process. The solution for this process
can be derived using Itô’s formula on the function g(xt, t) = xte

βt. With Zt := g(Vt, t), it
follows that

dZt =
(
βVte

βt − eβtβ(Vt − α)
)

dt+ eβtσ dWt

= αβeβt dt+ eβtσ dWt.

Then upon integration

Vte
βt = v0 + αβ

∫ t

0
eβs ds+ σ

∫ t

0
eβs dWs,

such that

Vt = v0e
−βt + α(1− e−βt) + σ

∫ t

0
e−β(t−s) dWs.

From this expression it is easy to derive the conditional moments that define the distribu-
tion of the process. The first conditional moment is

E(Vt | V0 = v0) = v0e
−βt + α(1− e−βt),

and the second central moment (using Itô’s isometry):

Var(Vt | V0 = v0) =
σ2

2β
(1− e−2βt).

As the process is Gaussian and time homogeneous we obtain the transition density

pt(x, y) =
(
πσ2(1− e−2βt)/β

)−1/2
exp

(−β(y − xeβt − α(1− e−βt))2

σ2(1− e−2βt)

)
.

�

2.1.2 Reducible diffusions and the Lamperti transform

A key concept in the methods to be described in chapter 5 and chapter 6 is that of a
reducible diffusion. A diffusion is reducible if there exists a one-to-one function g that
transforms the original diffusion V into another diffusion Z with unit diffusion coefficient
and this function is termed the Lamperti transform. Using Itô’s formula

dZ
(i)
t = ∇gi(g−1(Zt))

T b(g−1(Zt); θ) dt

+
1

2
Tr
{
∇2gi(g

−1(Zt))Σ(g−1(Zt);σ)Σ(g−1(Zt);σ)T
}

dt

+∇gi(g−1
i (Zt))

TΣ(g−1
i (Zt);σ) dWt,

10 Chapter 2. Diffusions

where ∇gi and ∇2gi are the Jacobian and the Hessian of gi, respectively. Unit diffusion
for Z is obtained exactly when

∇g(x)Σ(x;σ) = Id, (2.6)

where Id is the d-dimensional identity matrix. Because Σ is non singular, this is equivalent
to

∂gi(x)

∂xj
= Σ−1

ij (x;σ). (2.7)

When the second partial derivatives of g exist and are continuous, such that the partial
derivatives can be interchanged, this condition can be translated into a necessary and
sufficient condition on the diffusion matrix Σ:

∂Σ−1
ij (x;σ)

∂xk
=
∂Σ−1

ik (x;σ)

∂xj
, i, j, k = 1, 2, . . . , d. (2.8)

Clearly condition (2.8) is necessary, but it is also sufficient: Choosing g such that

gi(x) =

∫ xj

Σ−1
ij (u;σ) duj ,

for all j = 1, 2, . . . , d, will imply (2.7) and therefore also (2.6). Condition (2.8) is given
in Ait-Sahalia (2008) where also more general Σ are considered. The lower limit of the
integral is not specified as it is not important.

When Σ is diagonal, and Σii depends on x only through xi, then the transformation given
by

gi(x) =

∫ xi

Σ−1
ii (u;σ) dui

satisfies (2.6) and g is one-to-one. It follows that

dZ
(i)
t =

(
Σ−1
ii (g−1

i (Z
(i)
t);σ)bi(g

−1(Zt); θ)−
1

2

∂

∂xi
Σii(g

−1
i (Z

(i)
t);σ)

)
dt+ dW

(i)
t . (2.9)

In general, when (2.6) is satisfied, we obtain a diffusion Z

dZt = α(Zt; θ, σ) dt+ dWt,

where the new drift function α depends on both θ and σ. It also involves g−1, for which
a feasible expression is not always easy to find, but in the following two examples it is
possible.

Example 2.4 (Constant diffusion). Let Σ(x;σ) := Σ. Then g(x) = Σ−1x, and

dZt = Σ−1b(ΣVt; θ) dt+ dWt.

2.1. Stochastic differential equations 11

�

Example 2.5 (Square root diffusion). Consider Σij(x;σ) = σi
√
xi1(i=j) for xi > 0. Taking

gi(x) = 2
√
xi/σi gives g−1

i (g(x)) = g2
i (x)σ2

i /4, and

dZ
(i)
t =

1

2Z
(i)
t σ2

i

(
4bi(g

−1(Zt); θ)− σ2
i

)
dt+ dW

(i)
t .

�

2.1.3 The Girsanov Theorem

In both frequentistic and Bayesian statistics, the likelihood function is of great interest in
order to perform parameter inference. It is defined via the joint density of the observed
data, which is given with respect to some dominating measure. For discretely observed
data the density is typically given with respect to either the counting measure or the
Lebesgue measure. For continuously observed data the dominating measure is, in nature,
infinite dimensional and for a diffusion process as in (5.1), the likelihood for θ can be
derived using the Girsanov theorem. This theorem provides an expression for the likelihood
(or the Radon-Nikodym derivative) of one Itô process with respect to another when the
probability measures related to the two processes are not mutually singular.

Theorem 2.6 (Girsanov). Let (Ω,F ,Ft≥0, P0) be a filtered probability space and define
the drift-less d-dimensional Itô process,

dVt = Σ(Vt;σ) dWt, 0 ≤ t ≤ T,
such that Wt is a d-dimensional Brownian motion with respect to P0. Suppose there exists
’suitable’ functions h and b such that

Σ(Vt, σ)h(Vt; θ) = −b(Vt; θ).
Define for 0 ≤ t ≤ T ,

Mt := e−
∫ t
0 h(Vs;θ)T dWs− 1

2

∫ t
0 (hT h)(Vs;θ) ds,

and let

dPb := MT dP0, on FT .
If Mt is a martingale with respect to P0 and Ft, then Pb is a probability measure on FT ,
and

dVt = b(Vt; θ) dt+ Σ(Vt;σ) dW̃t,

where W̃t is a d-dimensional Brownian motion with respect to Pb.

See Øksendal (2007) for a proof. It is important to realize that Wt is the P0 Brownian
motion and that MT is the Radon-Nikodym derivative of dPb/ dP0 on [0, T]. For a formal
definition of ’suitable’ processes, see def. 3.3.2 in Øksendal (2007). Note that Mt is the
continuous time likelihood relative to the measures Pb and P0.

12 Chapter 2. Diffusions

2.1.4 Diffusion bridges

A diffusion bridge is a diffusion conditioned on start and end point. If the diffusion bridge,
started in v0, is conditioned to hit vT at time T , the corresponding bridge process can be
written as

dVt = (b(Vt; θ) + Γ(Vt;σ)∇Vt log(pt,T (Vt, vT , θ))) dt+ Σ(Vt;σ) dWt, (2.10)

as noted in Papaspiliopoulos et al. (2013) and references therein. Here pt,T (x, y) is the
transition density for (2.1) from x to y at time t and T , and ∇xg(x, y) is the partial
derivative of g with respect to x and Γ = ΣΣT . From a practical point of view this
is not so useful, as it involves an explicit expression for the transition density which in
most situations is intractable. However, for the Brownian motion the corresponding bridge
(ending at VT = vT at time T) is

dVt =
1

T − t(vT − Vt) dt+ dWt,

where Wt is the Brownian motion from the unconditional process. Any skeleton of this
bridge can be sampled exactly, as the distribution for any 0 ≤ s < t ≤ T is Gaussian with

(Vt | vs, vT) ∼ N
(
vs +

t− s
T − s(vT − vs);

(T − t)(t− s)
T − s

)
, (2.11)

which does not depend on V0, unless s = 0.

The Brownian bridge (Vt)0≤t≤T can be transformed into a standard Brownian bridge,
which is starting and ending at 0 on the interval from 0 to T : Define the function h by

h(Vt; t, v0, vT) = Vt −
(

1− t

T

)
v0 −

t

T
vT , 0 ≤ t ≤ T.

It can easily be verified that h(Vt; t, v0, vT) is a Brownian bridge starting and ending at 0.
This implies that conditional on the endpoints, v0, vT , there is a one-to-one correspondence
between the original Brownian motion and the one starting and ending at 0.

2.2 The continuous time likelihood for a diffusion

bridge

In general it is very difficult to simulate a diffusion bridge, except for special cases as in
section (2.1.4), where the transition density for the Brownian bridge was found. As will
be discussed in chapter 4 some diffusion processes can be simulated using only samples
of a Brownian bridge and knowledge about the Radon-Nikodym derivative linking the
Brownian bridge with the diffusion bridge of interest. It is therefore important to have
an expression for the Radon-Nikodym derivative of a bridged diffusion with respect to a

2.3. Models 13

Brownian bridge. Consider all continuous functions on the interval from 0 to T starting
and ending in v0 and vT , respectively. Let P(0, T, v0, vT ; θ, σ) denote the measure of the
process

dVt = b(Vt; θ) dt+ Σ(Vt;σ) dWt, VT = vT , 0 ≤ t ≤ T, (2.12)

and let Q(0, T, v0, vT ;σ) denote the measure of

dVt = Σ(Vt;σ) dWt, 0 ≤ t ≤ T, VT = vT , 0 ≤ t ≤ T. (2.13)

The Radon-Nikodym derivative between these two measures are given in Papaspiliopoulos
and Roberts (2012) and it has the form

dP(0, T, v0, vT ; θ, σ)

dQ(0, T, v0, vT ;σ)
=
ϕ0,T (z0, zT)

p0,T (z0, zT)
G(0, T, V[0;T], b,Γ; θ, σ). (2.14)

Here p0,T (v0, vT) and ϕ0,T (v0, vT) are the transition densities for (2.12) and (2.13), respec-
tively, where we have not conditioned on the endpoint vT , and

G(0, T, V[0;T], b,Γ; θ, σ) (2.15)

= exp

(∫ T

0
b(Vs; θ, σ)TΓ(Vs;σ)−1 dVs −

1

2

∫ T

0
b(Vs; θ, σ)TΓ(Vs;σ)−1b(Vs; θ, σ) ds

)
(2.16)

is the Radon-Nikodym derivative related to the measures of the unconditional processes.
For a detailed derivation of the likelihood, see also Papaspiliopoulos et al. (2013).

2.3 Models

In this section we introduce the models that will be considered in subsequent chapters for
parameter estimation.

2.3.1 The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is especially interesting in its own right as one can com-
pute the transition density. The one-dimensional model was already introduced in Example
2.1 and 2.3 and the multi-dimensional version is

dVt = −B(Vt −A) dt+ Σ dWt, V0 = v0, t ∈ [0, T]. (2.17)

Using the Itô formula as in Example 2.3, or referring to Kloeden et al. (2003), p. 73ff, it
follows that the solution to (2.17) is given by

Vt = e−Btv0 +

∫ t

0
e−B(t−s)A ds+

∫ t

0
e−B(t−s)Σ dWs. (2.18)

14 Chapter 2. Diffusions

To keep things as simple as possible the asymptotic mean level A is now set to 0. In this
case the defining moments for the Gaussian distribution are

E(Vt | Vs) = e−BtVs,

Cov(Vs, Vt) =

∫ s

0
e−B(s−u)ΣΣT e−B

T (t−u)du,

for 0 < s ≤ t ≤ T , where Cov(Vt, Vt) = Var(Vt). Therefore the transition density is given
by

ps,t(x, y) = (2π)−d/2 det (Var(Vt | Vs))−1/2 e−
1
2

(x−y)T Var(Vt|Vs)−1(x−y).

Note that in the one-dimensional case, where Σ = σ and B = β, the moments simplify to

E(Vt | Vs) = e−β(t−s)Vs, (2.19)

Cov(Vs, Vt) =
σ2

2β

(
e−β(t−s) − e−β(s+t)

)
. (2.20)

Using (2.10), the bridge (conditioned on V0 = v0 and VT = vT) corresponding to the
diffusion (2.17) (with A = 0) is given by

dVt = (b(Vt; θ) + Γ(Vt;σ)∇Vt log(pt,T (Vt, vT))) dt+ Σ(Vt;σ) dWt

=
[
−BVt + ΣΣT Var(VT | Vt)−1(vT − Vt)

]
ds+ Σ dWt.

This expression can be used for simulation of the multidimensional Ornstein-Uhlenbeck
bridge via e.g. the Euler scheme or higher order simulation schemes. Another approach
which does not rely on approximations, is to use rules for conditional Gaussian distributions
directly on (Vt)t≥0. It follows that

E(Vs | Vt, V0) = E(Vs | V0) + Cov(Vt, Vs | V0) Var(Vt | V0)−1 (Vt − E(Vt | V0)) ,

Var(Vs | Vt, V0) = Var(Vs | V0)− Cov(Vt, Vs | V0) Var(Vt | V0)−1 Cov(Vt, Vs | V0),

where all moments can be evaluated using (2.19) and (2.20).

As the distribution of (Vt)0≤t≤T conditional on V0 and VT is Gaussian, the conditional
mean and variance define the transition density.

Conditions for stationarity

Consider again the general model in (2.17). The process is stationary when the real parts
of the eigenvalues of B are strictly positive, see Jacobsen (1991), Theorem 6.2. In the
two-dimensional case, the two eigenvalues λ+ and λ− are

λ± =
Tr(B)±

√
Tr(B)2 − 4 det(B)

2
.

2.3. Models 15

Conditions for stationarity now depend on the sign of Tr(B)2 − 4 det(B).

If Tr(B)2 − 4 det(B) ≤ 0: Then Re(λ±) = Tr(B)/2, and the stationarity condition is
Tr(B) > 0.

If Tr(B)2 − 4 det(B) > 0: Then Re(λ−) < Re(λ+), so it suffices to focus on Re(λ−). Thus

Re(λ−) =
Tr(B)−

√
Tr(B)2 − 4 det(B)

2
> 0

m
det(B) > 0,

when Tr(B)2 − 4 det(B) > 0. Thus the process is stationary if

Tr(B) > 0 when Tr(B)2 − 4 det(B) ≤ 0;
det(B) > 0 when Tr(B)2 − 4 det(B) > 0.

2.3.2 The FitzHugh-Nagumo model

The FitzHugh-Nagumo model is a two-dimensional model where the coordinates represent
the membrane potential of a neuron and a (latent) recovery variable modeling the ion
channel kinetics. It was first studied without noise, that is without any diffusion term,
but in order to account for various sources of noise it is natural to extend the model with
the diffusion term to obtain an SDE. The FitzHugh-Nagumo model is one of the simplest
models that can exhibit either excitatory or oscillatory behavior. It is defined in slightly
different ways in the literature and it has been studied in e.g. FitzHugh (1961); Nagumo
et al. (1962); Gerstner and Kistler (2002); Izhikevich (2007); Jensen et al. (2012). The
deterministic model is given as

d

dt
xt =

1

ε

(
xt − x3

t − yt + s
)

(2.21)

d

dt
yt = γxt − yt + β, (2.22)

with ε > 0 and γ, s, β ∈ R. In the modeling of neuronal spike generation in axons, x
describes the membrane potential and y is a recovery variable. The parameter ε is a time
scale separator, typically smaller than one, such that x is the fast, and y is the slow
variable. Furthermore, s denotes the input current and γ and β determines the location
of the fixed point(s). Note that the process has no dimension, but x and y must be on the
same (dimensionless) scale because of the common ε in the first coordinate of the drift
function.

The x and y null-clines are found by setting (2.21) and (2.22) equal to zero:

yt = xt − x3
t + s

yt = γxt + β.

16 Chapter 2. Diffusions

Since the null-clines are linear and cubic in xt the model has at most three fixed points
and when γ > 1 there is exactly one, located at the intersection of the two null-clines.
Depending on the parameter values, this fixed point is either stable or unstable and the
model exhibits qualitatively different behavior for different values of the parameter β. Fig-
ure 2.2 shows phase and time plots for two sets of parameter values, leading to excitatory
and oscillatory behavior, respectively. In both cases there is only one fixed point. The pa-

x

0.0

0.3

0.6

0.9

1.2

yt

Time

x,
y

−1.0

−0.5

0.0

0.5

1.0

xt,yt

0.0

0.3

0.6

0.9

1.2

−1.0 0.0 0.5 1.0

xt

yt x,
y

0 5 10 15 20

−1.0

−0.5

0.0

0.5

1.0

t

xt,yt

Figure 2.2: Deterministic FitzHugh-Nagumo model. Left: Phase portraits with x and
y null-clines (gray) and simulated trajectory (black). Right: Time plots of x (black)
and y (gray). For all plots ε = 0.1, s = 0.5, γ = 1.5. Top: β = 1.4, excitatory
behavior, fixed point is stable. Bottom: β = 0.6, oscillatory behavior, fixed point is
unstable.

rameters in the upper panels are chosen such that the fixed point is stable and the model
spikes one time and then relaxes to the resting state and stays there. In the lower panels
the fixed point is unstable and a limit cycle with spikes appears. A detailed exposition of
the dynamics of the model can be found in Gerstner and Kistler (2002); Izhikevich (2007).

Stochastic extension

We include additive noise in both coordinates and obtain the following stochastic model:

dXt =
1

ε

(
Xt −X3

t − Yt + s
)

dt+ σ1 dW
(1)
t (2.23)

dYt = (γXt − Yt + β) dt+ σ2 dW
(2)
t , (2.24)

2.3. Models 17

where (W
(1)
t ,W

(2)
t)T is a two-dimensional standard Brownian motion and t ∈ [0, T], (X0, Y0) =

(x0, y0). The parameters of the model are (θ, σ)T with the drift parameter θ = (ε, s, γ, β)T ∈
R+ × R3 and diffusion parameter σ = (σ1, σ2)T ∈ R2

+.

With Vt = (Xt, Yt) and

b(Vt; θ) =

 1
ε

(
V

(1)
t −

(
V

(1)
t

)3
− V (2)

t

)
+ s

γV
(1)
t − V (2)

t + β

 ,

Σ(σ) =

(
σ1 0
0 σ2

)
,

the model is on the general form from (2.1).

The qualitative behavior of the stochastic model is different from the deterministic model
because the random perturbations can affect the system and lead to emergence of repeated
spiking activity, also when the fixed point is stable, see Figure 2.3.

x

0.00

0.35

0.70

1.05

1.40

yt

Time

x,
y

−1.2

−0.6

0.0

0.6

1.2

xt,yt

0.00

0.35

0.70

1.05

1.40

−1.2 −0.6 0.0 0.6 1.2

xt

yt x,
y

0 5 10 15 20

−1.2

−0.6

0.0

0.6

1.2

t

xt,yt

Figure 2.3: Stochastic FitzHugh-Nagumo model. Left: Phase portraits with x and y
null-clines (gray) and simulated trajectory (black). Right: Time plots of x (black)
and y (gray). For all plots ε = 0.1, s = 0.5, γ = 1.5, σ1 = 0.5, σ2 = 0.3. Top: β = 1.4,
excitatory behavior, fixed point is stable. Bottom: β = 0.6, oscillatory behavior, fixed
point is unstable.

The FitzHugh-Nagumo model has some natural restrictions when it comes to modeling
real data. The local minimum and maximum are always located at ±1/

√
3 respectively,

with a distance between min and max equal to 2/
√

3 ≈ 1.15. Since the data trajectory

18 Chapter 2. Diffusions

tends to circle along the legs and around the knees of the cubic null-cline it is not possible
to have x values that in absolute values are much larger than 1 (relative to the size of
the noise). This problem can potentially be solved by a transformation of data. Another
option is to consider an extension of the FitzHugh-Nagumo model as in the next section.

2.3.3 The extended FitzHugh-Nagumo model

For the FitzHugh-Nagumo model the local minimum and maximum is located at x =
{±1/

√
3}, respectively, with a distance between min and max, L ≈ 2/

√
3 ≈ 1.15. Since

the data trajectory tends to circle along the legs and around the knees of the cubic null-
cline it is not possible to have x values that in absolute values are much larger than 1.

The range for a real data set do not always satisfy this rather strict condition even after
transformations, and the model must be modified to accommodate the specific situation.
The obvious approach is to add another parameter in front of either x or x3 in the first
coordinate. (To preserve linearity in the drift, we do not use a parameter α/ε but rather
just α.) In the first case we get (after a re-parametrization of ε into 1/ε)

dXt = (−αX3
t + ε(Xt − Yt) + s) dt+ σ1 dW

(1)
t (2.25)

dYt = (γXt − Yt + β) dt+ σ2 dW
(2)
t (2.26)

with α, ε > 0, γ > 1, and β, s ∈ R. For this model the minimum and maximum are
located at x = {±

√
ε/3α}. the spiking behavior of the original FitzHugh-Nagumo-model

is retained if the two null-clines intersect close to the left knee of the first null-cline. Hence
we need γx1 +β = y1, for (x1, y1) = (

√
ε/(3α),−(α/ε)x3

1 +x1 +s/ε). For reasonable values
of the diffusion matrix, this will give rise to the spiking behavior already described in the
FitzHugh-Nagumo model.

In the case where α ≈ 0 this model is approximately a two-dimensional Ornstein-Uhlenbeck
model as in (2.17) with A = (0, 0)T ,

B =

(
−1
ε

1
ε

−γ 1

)
,

and diffusion coefficient

σ =

(
σ1 0
0 σ2

)
.

The eigenvalues of B are

λ± =
1− 1

ε ±
√

(1− 1
ε)2 − 4 (γ−1)

ε

2
.

Note that the model (2.17) is parameterized with a minus in front of B and for 0 < ε <
1, γ > 1, the eigenvalues of B always have positive real parts, meaning that the diffusion
will be stationary.

3
Estimating functions

19

20 Chapter 3. Estimating functions

3.1 Estimating Functions

Let θ ∈ Θ be a p-dimensional unknown parameter and consider d-dimensional observations
X0, Xt1 , . . . , Xtn ∈ D ⊂ Rd from some distribution. The ti denotes time, and for notational
simplicity we primarily write Xi instead of Xti , and assume that we have equidistant
observations with time step ∆ = ti − ti−1 between observations. These observations could
in the simplest case be iid. variables but they are typically samples from some stochastic
process.

In many situations the preferred strategy for parameter estimation in statistical models
is maximum likelihood estimation because of the nice properties this estimator possesses.
However, it is not always possible to apply this strategy to a specific model, either because
the likelihood function is unknown or because it is too computational costly to evaluate.
To illustrate, consider a two-dimensional continuous time Markov model, with transition
density p(∆, x, y; θ) for going from x to y in the time period ∆. If both coordinates are
observed, the likelihood, L(θ), decomposes into a product of conditionals, such that

L(θ) =

n∏
i=1

p(∆, Xi−1, Xi; θ),

with X0 considered fix. If one coordinate is completely unobserved, inference should be
based solely on the marginal distribution of the observed coordinate and this likelihood is
typically no longer Markovian. In this case, one may take a more general approach and
use estimating functions.

Definition 3.1. An estimating function is a function of the unknown parameter and data:

(θ,X0, X1, . . . , Xn) 7→ Gn(θ,X0, X1, . . . , Xn).

An estimator related to the estimating function is a solution to

Gn(θ) = 0. (3.1)

Definition 3.1 is quite general and is also known as the generalized method of moments;
see e.g. Hansen (1982). Here we shall focus on the class of estimating functions of the
following form

Gn(θ) =
1

n

n∑
i=s+1

g(Xi−s, . . . , Xi; θ),

with s a fixed integer and g a function with values in Rp, where p is the dimension of the
parameter θ. Thus each term in the sum depends on the last s+ 1 observations up to time
point ti, and we want to find a parameter vector θ, such that Gn(θ) = 0.

Results on existence and uniqueness of a solution to (3.1) can be found in Sørensen (2012).

3.2. Martingale estimating functions 21

3.2 Martingale estimating functions

Consider the diffusion

dXt = b(Xt; θ)dt+ Σ(Xt; θ) dWt,

where Σ is a d× d dimensional matrix and W is a d-dimensional Brownian motion. Note
that we do not distinguish between drift and diffusion parameters. Assume this process
is observed for X0, X1, . . . , Xn and the aim is to estimate the parameter θ guiding the
process.

A martingale estimating function Gn is simply an estimating function as in definition 3.1
with the property

Eθ (Gn(θ) | Fn−1) = Gn−1(θ), n = 1, 2, . . . ,

where Fn is the σ-algebra generated by X0, X1, . . . , Xn.

Martingale estimating functions are particularly interesting from a mathematical point of
view because a well developed asymptotic theory is already in place for such functions,
see e.g. Hall and Heyde (1980).

In the following focus is on martingale estimating functions on the form

Gn(θ) =
n∑
i=1

a(Xi−1; θ)h(Xi−1, Xi; θ), (3.2)

where a is a weight matrix with dimensions p×N and h = (h1, . . . , hN)T is an N dimen-
sional function satisfying for all real valued hk functions∫

D
hk(x, y; θ)p(∆, x, y; θ) dy = 0,

for all ∆ > 0, θ ∈ Θ and x ∈ D. Here D denotes the state space of X and p is the time
homogeneous transition density going from x to y by time ∆. One argument for choosing
this class of estimating functions is that the score function (which would be the optimal
choice), under weak regularity conditions, is a martingale. In order to apply martingale
estimating functions to a given problem, it is necessary to compute the weight matrix a in
(3.2). Under certain differentiability and integrability conditions on hj given as Condition
1.8 in Sørensen (2012), the optimal weight matrix a∗ is given by

a∗(x; θ) = Bh(x; θ)Vh(x; θ)−1,

with

Bh(x; θ) =

∫
D
∂θh(x, y; θ)T p(x, y; θ) dy,

Vh(x; θ) =

∫
D
h(x, y; θ)h(x, y; θ)T p(∆, x, y; θ) dy.

22 Chapter 3. Estimating functions

According to Sørensen (2012) most martingale estimating function in the literature can
be written as

Gn(θ) =
n∑
i=1

a(Xi−1; θ)
(
f(Xi; θ)− πθ∆(f(θ))(Xi−1)

)
, (3.3)

where

πθs(f)(x) =

∫
D
f(y)p(s, x, y; θ) dy = Eθ(f(Xs) | X0 = x).

In the one dimensional case (d = 1) Kessler and Sørensen (1999) gave an explicit expres-
sion, under mild regularity conditions, for f(Xi; θ) − πθ∆(f(θ))(Xi−1) in (3.3), when the
fj ’s are eigenfunctions for the generator of the diffusion. That is, the fj ’s should satisfy

−λjf(x) =

d∑
k=1

bk(x; θ)∂xkf(x) +
1

2

d∑
k,l=1

(ΣΣT)kl(x; θ)∂2
xkxl

f(x),

for some real λj .

3.3 Prediction-based estimating functions

When the approach with martingale estimating functions is difficult to apply, for example
when only a subset of the coordinates in a diffusion is observed, another alternative is to
use prediction-based estimating functions. They were proposed in Sørensen (2000) and re-
cently reviewed in Sørensen (2011) and Sørensen (2012). They define a class of estimators
that generalize the class of martingale estimating functions in order to make frequentistic
inference about the parameters of a stochastic process. We assume that we have obser-
vations Xi, i = 1, . . . , N , from a stationary stochastic process governed by a parameter
vector θ ∈ Θ. The measure related to this process is denoted Pθ.

The procedure involves the definition of N ∈ N freely chosen functions fj

fj : Rs+1 7→ R, j = 1, . . . , N,

potentially depending on s+1, s ∈ N0, consecutive observations of data, (Xi, Xi−1, . . . , Xi−s),
i = s, . . . , N . These functions can be defined more generally by allowing for dependence
on θ as well, but to simplify notation we avoid this. In either case, the f functions should
satisfy that

Eθ (fj(Xs+1, Xs, . . . , X1))2 <∞.

The set of functions of X1, . . . , Xi−1 with finite variance under Pθ define an L2 space, Lθi−1.
Let Pθi−1,j denote a closed (linear) subspace of Lθi−1. The aim is to find the best prediction

of fj(Xi, . . . , Xi−s) in Pθi−1,j and minimize a weighted sum of differences between each

3.3. Prediction-based estimating functions 23

fj and these projections. The set Pθi−1,j can be thought of as a set of predictors for
fj(Xi, . . . , Xi−s) based on X1, . . . , Xi−1.

We define the prediction-based estimating function as

Gn(θ) =
n∑

i=s+1

N∑
j=1

Π
(i−1)
j

(
fj(Xi, Xi−1, . . . , Xi−s)− π̆(i−1)

j (θ)
)
, (3.4)

with p×1 dimensional weights Π
(i−1)
j and the l’th coordinate

(
Π

(i−1)
j

)
l
∈ Pθi−1,j . Further-

more π̆
(i−1)
j (θ) is the orthogonal projection in Lθi−1 of fj(Xi, . . . , Xi−s), onto the subspace

Pθi−1,j . Hence π̆
(i−1)
j solves

Eθ

(
π

(i−1)
j

(
fj(Xi, . . . , Xi−s)− π̆(i−1)

j (θ)
))

= 0, for all π
(i−1)
j ∈ Pθi−1,j .

For most applications it is practical to consider finite dimensional predictor spaces Pi−1,j .
Let the dimension be qj + 1. In order to introduce a more compact matrix type notation,
let hjk : Rr 7→ R, j = 1, . . . , N, k = 0, . . . , qj with r ≥ s and define a set of linearly
independent vectors that span the predictor space Pi−1,j :

Z
(i−1)
jk = hjk(Xi−1, . . . , Xi−r).

Furthermore we write Z
(i−1)
j = (Zj0, Z

(i−1)
j1 , . . . , Z

(i−1)
jqj

)T , with Zj0 = 1, and typically

hjk(x) will be the projection onto the k′th coordinate. In some situations we do not

include Zj0 in Z
(i−1)
j ; see the application in section 3.4. Let 0k denote the k dimensional

zero vector and define

Z(i−1) =


Z

(i−1)
1 0q1+1 · · · 0q1+1

0q2+1 Z
(i−1)
2 · · · 0q2+1

...
...

...

0qN+1 0qN+1 · · · Z
(i−1)
N

 ,

of dimension
∑N

j=1(qj + 1)×N , and

F (Xi, . . . , Xi−s) = (f1(Xi, . . . , Xi−s), f2(Xi, . . . , Xi−s), . . . , fN (Xi, . . . , Xi−s))
T ,

π̆(i−1)(θ) = (π̆
(i−1)
1 (θ), π̆

(i−1)
2 (θ), . . . π̆

(i−1)
N (θ))T .

We can now define the
∑N

j=1(qj + 1) dimensional vector

H(i)(θ) = Z(i−1)
(
F (Xi, . . . , Xi−s)− π̆(i−1)(θ)

)
.

Consider the p × 1 dimensional weights Π
(i−1)
j . As noted earlier, each coordinate is an

element of Pθi−1,j which is spanned by the elements of Z
(i−1)
j , and can therefore be written

24 Chapter 3. Estimating functions

as (
Π

(i−1)
j

)
l

=

qj∑
k=0

aljk(θ)Z
(i−1)
jk , l = 1, . . . , p.

The Z
(i−1)
jk ’s depend on index i and they are already incorporated into H(i)(θ) through

Z(i−1). With all this notation in place we can rewrite the p-dimensional prediction-based
estimating equation as

Gn(θ) = A(θ)
n∑

i=r+1

H(i)(θ), (3.5)

where

A(θ) =

 a110(θ) · · · a11q1(θ) · · · · · · a1N0(θ) · · · a1NqN (θ)
...

...
...

...
ap10(θ) · · · ap1q1(θ) · · · · · · apN0(θ) · · · a1pqN (θ)

 .

The expression for H(i)(θ) involves the orthogonal projection π̆
(i−1)
j (θ) and in order to

compute it, we use the following lemma.

Lemma 3.2. Let V be a Hilbert space with an inner product given by 〈·, ·〉. and let U be
a finite dimensional subspace of V , spanned by the basis (Zi)i. The orthogonal projection
of any x ∈ V onto U , πx is given by

πx = C−1b,

where Cij = 〈Zi, Zj〉 and bi = 〈x, Zi〉 for all i, j ≤ dim(U).

Proof. The orthogonal projection is characterized by the normal equation:

〈x− πx, v〉 = 0, ∀v ∈ U. (3.6)

Using that there exist (vi)i such that v =
∑

i viZi, it follows that

〈x, v〉 = 〈πx, v〉
⇓∑

i

vi 〈x, Zi〉 =
∑
i

vi 〈πx, Zi〉 ∀v ∈ U.

Therefore

〈x, Zi〉 = 〈πx, Zi〉 ∀i.

3.3. Prediction-based estimating functions 25

Since πx ∈ U we can write πx =
∑

j π
x
jZj , where subscript j denotes the j’th coordinate,

and it follows that

〈x, Zi〉︸ ︷︷ ︸
bi

=
∑
j

πxj 〈Zj , Zi〉︸ ︷︷ ︸
Cij

∀i, (3.7)

which is the coordinate-wise version of the vector equality

b = Cπx ⇒ C−1b = πx.

Note that the C matrix is invertible because the Zi’s are linearly independent.

Using Lemma 3.2 to find π̆
(i−1)
j , we get that the projection onto the space spanned by

Z
(i−1)
j1 , . . . , Z

(i−1)
jqj

is given by Ckj(θ) = Eθ(Z
(i−1)
k Z

(i−1)
j) and bj(θ) = Eθ(Z

(i−1)
j fj(Xi))

T

such that

π̆
(i−1)
j (θ) = ăTj Z

(i−1)
j ,

with ăj(θ)
T = (ăj0(θ), ăj∗(θ)

T) and ăj∗(θ) = Cj(θ)
−1bj(θ). Note that

ăj0(θ) = Eθ (fj(Xs+1, . . . , X1; θ))−
qj∑
k=1

ăjk(θ) Eθ(Z
(r)
jk).

This means that we have an expression for the predictors, and thus of H(i)(θ), when the
f functions have been chosen. Now we would like to find the ’best’ choice of the weight
matrix A(θ). The notion ’best’ refers to the Godambe optimal estimating function within
the class of estimating functions given by (3.5): It is the function that minimizes the
mean square error to the score function, which would ideally have defined the optimal
estimating equation. Under regularity conditions given in Sørensen (2011), the Godambe
optimal weight A∗(θ) can be found in the following way for general f ’s that may depend
on θ. Let

U(θ)T = Eθ

(
Z(i−1)∂θTF (Xi, . . . , Xi−s)

)
,

M̄n(θ) = Eθ

(
H(r+1)(θ)H(r+1)(θ)T

)
+
n−r−1∑
k=1

n− r − k
n− r

{
Eθ

(
H(r+1)(θ)H(r+1+k)(θ)T

)
+ Eθ

(
H(r+1+k)(θ)H(r+1)(θ)T

)}
,

D(θ) = Eθ

(
Z(i−1)(Z(i−1))T

)
.

Here ∂Tθ F denotes the partial derivative of F with respect to all entries of θ. Then

A∗(θ) = (U(θ)− ∂θă(θ)TD(θ))M̄n(θ)−1, (3.8)

26 Chapter 3. Estimating functions

where

ă(θ) = (ă1(θ), ă2(θ), . . . , ăN (θ)).

As already mentioned we only consider f ’s independent of θ and therefore we get that
U(θ) = 0.

One of the regularity conditions requires that p ≤ N +
∑N

j=1 qj . Note that A is a p ×(
N +

∑N
j=1 qj

)
matrix since it would not make sense to perform estimation with p pa-

rameters from a system with less than p equations. Unfortunately it is very difficult to
compute A∗(θ) due to the partial derivative involved in U(θ) and it may also be compli-
cated to recompute A∗ for each new evaluation in the optimization procedure. There are
some steps that can be taken in order to simplify matters. First, one could compute the
derivative of ă(θ) only once, for some initial value of θ, and then reuse this matrix. This
can be done at the cost of some efficiency. Secondly, one could compute M̄n for only the
first two terms (n = r + 2) and as an approximation assume that the correlation between
H i and H i+j is zero for any j ≥ 2.

3.3.1 Differentiation in R

Algebraic differentiation and evaluation is not a strong feature of R, although it would
be convenient in order to automatize the procedure of evaluating the derivative of ă(θ)
from (3.8), with respect to θ. One option is to use another program such as Maple and
then import the result back to R. This is not a practical solution because the estimating
function must be evaluated for many different values of θ. It is however possible to use R

directly. Following the idea of Niels Richard Hansen (personal correspondence) one could
do the following: Define all functions of interest in a list only once, say f and g.

simpleFun <- list(f=quote(theta1+3*theta2),g=quote(theta3+theta1))

Next, create a function that changes input from f, g notation to theta notation and use
deriv() to evaluate the result:

compDeriv <- function(expr,arglist,...) {

compFun <- do.call("substitute",list(substitute(expr),arglist))

return(deriv(compFun,...))

}

Finally make a function that finds the partial derivatives as a function of the parameters:

gradComp <- compDeriv(f^2*g,simpleFun,c("theta1","theta2","theta3"),TRUE)

> gradComp(2,3,4)

[1] 726

attr(,"gradient")

theta1 theta2 theta3

[1,] 253 396 121

3.4. Prediction-based Estimating Functions for the partially observed
Ornstein-Uhlenbeck process 27

This approach works fine for simple compositions of functions. The drawback is that
it does not support derivatives of composite functions like for instance ∂xf(g(x)). Thus
for applications the length of the expressions would easily turn into unmanageable sizes.
On the technical side, another potential problem with this solution is that the combined
behavior of do.call() and substitute() may change in future R versions, thus causing
the function to behave unexpectedly. (As of version 3.0.2 it works fine, though.)

3.4 Prediction-based Estimating Functions for the

partially observed Ornstein-Uhlenbeck process

Consider the stationary two-dimensional OU model with asymptotic mean equal to zero:

dVt = −BVt dt+ Σ dWt, (3.9)

where Vt = (Xt, Yt)
T and

B =

(
β11 β12

β21 β22

)
, Σ =

(
σ1 0
0 σ2

)
. (3.10)

Let θ = (β11, β12, β21, β22, σ
2
1, σ

2
2)T denote the parameters in the model and assume dis-

crete observations from the first coordinate are available at time points t0, t1, . . . , tn with
ti − ti−1 = ∆. As will be shown in chapter 7, not all parameters are identifiable from the
first marginal only, and we will assume that enough parameters are known a priori in order
to make the unknown parameters identifiable. In this section we write down the expres-
sions involved in applying prediction-based estimating functions to the two dimensional
Ornstein-Uhlenbeck model. First we define the functions to predict

f1(x) = x,

f2(x) = x2,

such that the number of functions to be predicted is N = 2. Next, define the space from
which the f functions are to be predicted:

Z
(i−1)
1 = (Xi−1, Xi−2)T ,

Z
(i−1)
2 = (1, Xi−1, X

2
i−1, Xi−2, X

2
i−2)T .

We do not include an intercept in Z
(i−1)
1 because the Xi’s have mean zero by assumption.

Then the dimension of the predictor spaces Pθi−1,j become 0 + q1 = 2, and 1 + q2 = 5.

Note for example that

Z
(2)
1 = (Z

(1)
11 , Z

(1)
21) = (X1, X0),

Z
(2)
2 = (Z

(1)
20 , Z

(1)
21 , . . . , Z

(1)
24) = (1, X1, X

2
1 , X0, X

2
0).

28 Chapter 3. Estimating functions

Note also that N − 1 + q1 + q2 = 7. This number should be larger than the number of
parameters to be estimated in the model.

The OU-process is assumed stationary and we can therefore denote for all i, h > 0

Eθ(Xi) = 0,

Varθ(Xi) := γ,

Eθ(X
p
i X

q
i+h) := ν(h, p, q).

For example Covθ(X0, X1) = ν(1, 1, 1) because Eθ(Xi) = 0, and γ = ν(0, 1, 1).

We get that

C1(θ) = Cov

(
X1

X0

)
=

(
γ ν(1, 1, 1)

ν(1, 1, 1) γ

)
.

Also, for i = 1, 2

b1(θ)i = Covθ(Z
(1)
1i , f1(X2)) = Covθ(X2−i, X2),

so that

b1(θ) =

(
ν(1, 1, 1)
ν(2, 1, 1)

)
.

Then

ă1∗(θ) = C1(θ)−1b1(θ) =
(
ν(1, 1, 1)2 − γ2

)−1
(
ν(1, 1, 1) (ν(2, 1, 1)− γ)
ν(1, 1, 1)2 − γν(2, 1, 1)

)
.

For the first entry of ă1(θ) it holds that

ă10(θ) = E (f1(X1))− ă11(θ) Eθ(X1)− ă12(θ) Eθ(X2) = 0,

and we do not include it in ă1(θ). Thus ă1(θ) = ă1∗(θ).

Similarly for j = 2, where we use that all odd moments of X are zero, as well as all
moments of Xp

i X
q
i+h, where p+ q odd:

C2(θ) = Cov


X1

X2
1

X0

X2
0

 =


γ 0 ν(1, 1, 1) 0
0 2γ2 0 ν(1, 2, 2)− γ2

ν(1, 1, 1) 0 γ 0
0 ν(1, 2, 2)− γ2 0 2γ2

 .

(3.11)

Also, for i = 1, 2, 3, 4

b2(θ)i = Covθ(Z
(1)
2i , f2(X2)),

3.4. Prediction-based Estimating Functions for the partially observed
Ornstein-Uhlenbeck process 29

so that

b2(θ) =


0

ν(1, 2, 2)− γ2

0
ν(2, 2, 2)− γ2

 . (3.12)

Then

ă2∗(θ) =
(
−3γ4 + ν(1, 2, 2)2 − 2ν(1, 2, 2)γ2

)−1×
0(

ν(1, 2, 2)− γ2
) (
ν(2, 2, 2)− 3γ2

)
0

ν(1, 2, 2)2 − 2ν(1, 2, 2)γ2 + 3γ4 − 2γ2ν(2, 2, 2)

 ,

and

ă20(θ) = γ (1− ă22(θ)− ă24(θ)) =
γ
(
3γ2 − ν(2, 2, 2)

)
γ2 + ν(1, 2, 2)

.

The first entry of ă2(θ) is 1, so that ă2(θ) = (1, ă2∗(θ))
T , and we can now compute

π̆j(θ), j = 1, 2:

π̆j(θ) = ăj(θ)
TZ

(i−1)
j .

Hence the estimating equation can be written

Gn(θ) = A∗n(θ)

n∑
i=3

Z
(i−1)
j

(
F (Xi)− π̆(i−1)(θ)

)

= A∗n(θ)
n∑
i=3



XiXi−1 − π̆(i−1)
1 (θ)Xi−1

XiXi−2 − π̆(i−1)
1 (θ)Xi−2

X2
i − π̆

(i−1)
2

X2
iXi−1 − π̆(i−1)

2 Xi−1

X2
iX

2
i−1 − π̆

(i−1)
2 X2

i−1

X2
iXi−2 − π̆(i−1)

2 Xi−2

X2
iX

2
i−2 − π̆

(i−1)
2 X2

i−2



= A∗n(θ)
n∑
i=3



Xi−1

(
Xi − ă1(θ)TZ

(i−1)
1

)
Xi−2

(
Xi − ă1(θ)TZ

(i−1)
1

)
X2
i − ă2(θ)TZ

(i−1)
2

Xi−1

(
X2
i − ă2(θ)TZ

(i−1)
2

)
X2
i−1

(
X2
i − ă2(θ)TZ

(i−1)
2

)
Xi−2

(
X2
i − ă2(θ)TZ

(i−1)
2

)
X2
i−2

(
X2
i − ă2(θ)TZ

(i−1)
2

)


. (3.13)

30 Chapter 3. Estimating functions

Note that the sum runs from r + 1 = 2 + 1, where r is the number of lags used in the
predictions.

The calculations related to A∗n(θ) are quite complicated, but it involves the derivative with
respect to θ of

ă(θ) =



ν(1,1,1)(ν(2,1,1)−γ)
ν(1,1,1)2−γ2

ν(1,1,1)2−γν(2,1,1)
ν(1,1,1)2−γ2

γ(3γ2−ν(2,2,2))
γ2+ν(1,2,2)

0
(ν(1,2,2)−γ2)(ν(2,2,2)−3γ2)
−3γ4+ν(1,2,2)2−2ν(1,2,2)γ2

0
ν(1,2,2)2−2ν(1,2,2)γ2+3γ4−2γ2ν(2,2,2)

−3γ4+ν(1,2,2)2−2ν(1,2,2)γ2


. (3.14)

Since two of the entries are zero, the rank of ∂θă(θ) will never be larger than five in this
setting.

3.4.1 Moment calculations

In the following we write Vti = (V
(1)
i , V

(2)
i) = (Xi, Yi) and change between the left and

right hand side notation. In order to compute Gn(θ) in (3.13) we need to compute the
terms involved in ăj(θ). This entails computing elements of the form

Eθ(X
p
i X

q
i−hX

r
i−h−kX

s
i−h−k−l), (3.15)

for p, q, r, s ∈ {0, 1, 2} and i > h > k > l > 0.

For the OU-model the first coordinate is

V
(1)
t =

2∑
j=1

(
e−B(t−t0)

)
1j
V

(j)
t0

+

∫ t

t0

(
e−B(t−s)Σ

)
1j

dW (j)
s ,

and we denote, because of stationarity, for all t ≥ 0

Eθ(Vt) = 0, Varθ(Vt) =

(
γ γ12

γ12 γ22

)
.

We will write (
e−Bt

)
ij

= aij(t),

and let

(Varθ(Vt | Vt−s))ij = ωij(t− s).

We shall repeatedly make use of the binomial theorem in the following to compute the
moments from (3.15), and we therefore state it here:

(a+ b)n =
n∑
i=0

(
n
i

)
an−ibi.

3.4. Prediction-based Estimating Functions for the partially observed
Ornstein-Uhlenbeck process 31

Single moments

For Xi ∼ N (0, γ),∀i, all higher order moments of Xi can be described as functions of γ.

Eθ(X
p
i) =

{
γp/2(p− 1)!!, p even

0, p odd

where (2n− 1)!! =
∏n
i=1(2i− 1), for n ∈ N0. For convenience let (−1)!! := 1. Thus

Eθ(X
2
i) = γ,

Eθ(X
4
i) = 3γ2,

Eθ(X
6
i) = 15γ3,

Eθ(X
8
i) = 105γ4.

Mixed moments of order 2: E
(
Xp
iX

q
i−h
)

Let q, p ∈ N0 and i > h, and note that for even m,

E

 2∑
j=1

∫ i∆

(i−h)∆
a1j(i∆− s)σj dW (j)

s

m = ω11(h∆)m/2(m− 1)!!, (3.16)

so that for p even,

E (Xp
i | Vi−h)

= E

 2∑
j=1

a1j(h∆)V
(j)
i−h +

∫ i∆

(i−h)∆
a1j(i∆− u)σj dW (j)

u

p

| Vi−h


=

p∑
m=0

(
p
m

)
E

 2∑
j=1

a1j(h∆)V
(j)
i−h

p−m 2∑
j=1

∫ i∆

(i−h)∆
a1j(i∆− u)σj dW (j)

u

m

| Vi−h


=

p∑
m=0

(
p
m

) 2∑
j=1

a1j(h∆)V
(j)
i−h

p−m

E

 2∑
j=1

∫ i∆

(i−h)∆
a1j(i∆− u)σj dW (j)

u

m
=

p∑
m=0

(
p
m

) 2∑
j=1

a1j(h∆)V
(j)
i−h

p−m

ω11(h∆)m/2(m− 1)!!1(m even)

=

bp/2c∑
m=0

(
p

2m

) 2∑
j=1

a1j(h∆)V
(j)
i−h

p−2m

ω11(h∆)m(2m− 1)!!,

32 Chapter 3. Estimating functions

where bxc = a means that a ∈ N0 and x− 1 ≤ a ≤ x. This leads to

E
(
Xp
i X

q
i−h
)

= E
(
Xq
i−h E (Xp

i | Vi−h)
)

= E

Xq
i−h

bp/2c∑
m=0

(
p

2m

) 2∑
j=1

a1j(h∆)V
(j)
i−h

p−2m

ω11(h∆)m(2m− 1)!!


=

bp/2c∑
m=0

(
p

2m

)
ω11(h∆)m(2m− 1)!! E

Xq
i−h

 2∑
j=1

a1j(h∆)V
(j)
i−h

p−2m
=

bp/2c∑
m=0

p−2m∑
l=0

g(p,m, l)ω11(h∆)ma11(h∆)p−2m−la12(h∆)l E

(
Xq+p−2m−l
i−h

(
V

(2)
i−h

)l)
,

where

g(p,m, l) =

(
p− 2m

l

)(
p

2m

)
(2m− 1)!!.

This leaves yet another mixed term to be evaluated.

First we need to evaluate the following conditional moment:

E
[(
V

(2)
i

)q
| V (1)

i

]
= E

[(
V

(2)
i − E

[
V

(2)
i | V (1)

i

]
+ E

[
V

(2)
i | V (1)

i

])q
| V (1)

i

]
=

q∑
m=0

(
q
m

)
E

[{
V

(2)
i − E

[
V

(2)
i | V (1)

i

]}q−m
| V (1)

i

]{
E
[
V

(2)
i | V (1)

i

]}m
=

q∑
m=0

(
q
m

)
Var

(
V

(2)
i | V (1)

i

)(q−m)/2
(q −m− 1)!!1(q−m even)

(
γ12V

(1)
i

γ

)m

=

q∑
m=0

(
q
m

)(
γ22 −

γ2
12

γ

)(q−m)/2
(
γ12V

(1)
i

γ

)m
(q −m− 1)!!1(q−m even). (3.17)

Here we have used the well known formula for finding the conditional mean and variance
of a multivariate Gaussian distribution. Thus

E
(
Xp
i

(
V

(2)
i

)q)
= E

[
Xp
i E
[(
V

(2)
i

)q
| Xi

]]
=

q∑
m=0

(
q
m

)(
γ22 −

γ2
12

γ

)(q−m)/2(
γ12

γ

)m
(q −m− 1)!! E

[
Xp+m
i

]
1(q−m even)

3.4. Prediction-based Estimating Functions for the partially observed
Ornstein-Uhlenbeck process 33

In conclusion, for p, q ∈ N0, h < i,

E
(
Xp
i X

q
i−h
)

=

bp/2c∑
m=0

p−2m∑
l=0

g(p,m, l)ω11(h∆)ma11(h∆)p−2m−la12(h∆)l E

(
Xq+p−2m−l
i−h

(
V

(2)
i−h

)l)

=

bp/2c∑
m=0

p−2m∑
l=0

g(p,m, l)ω11(h∆)ma11(h∆)p−2m−la12(h∆)l

l∑
n=0

(
l
n

)(
γ22 −

γ2
12

γ

)(l−n)/2(
γ12

γ

)n
(l − n− 1)!!

E
(
Xq+p−2m−l+n
i−h

)
1(l−n even)1(q+p−2m−l+n even)

=

bp/2c∑
m=0

p−2m∑
l=0

l∑
n=0

g̃(p,m, l, n)ω11(h∆)ma11(h∆)p−2m−la12(h∆)l

(
γ22 −

γ2
12

γ

)(l−n)/2(
γ12

γ

)n
E
(
Xq+p−2m−l+n
i−h

)
1(q+p−2m−l+n even)1(l−n even),

where

g̃(p,m, l, n) =

(
p− 2m

l

)(
p

2m

)(
l
n

)
(2m− 1)!!(l − n− 1)!!.

Example 3.3.

Eθ(X1X1+h) = a11(h∆)γ + a12(h∆)γ12.

�

Example 3.4.

Eθ(X
2
1X

2
1+h) = 3a11(h∆)2γ2 + 6a11(h∆)a12(h∆)γ12γ

+ a12(h∆)2γ22γ + 2a12(h∆)2γ2
12 + ω11(h∆)γ.

�

34 Chapter 3. Estimating functions

Mixed moments of order 3: E
(
Xp
iX

q
i−hX

r
i−h−k

)
Assume i > h > k and i > h+ k. Using (3.16) we get,

E
(
Xp
i X

q
i−hX

r
i−h−k

)
= E

 2∑
j=1

a1j(h∆)V
(j)
i−h +

∫ i∆

(i−h)∆
a1j(i∆− u)σj dW (j)

u

p

Xq
i−hX

r
i−h−k


=

p∑
m=0

(
p
m

)
ω11(h∆)m/2(m− 1)!! E

 2∑
j=1

a1j(h∆)V
(j)
i−h

p−m

Xq
i−hX

r
i−h−k

 1(m even)

=

p∑
m=0

(
p
m

)
ω11(h∆)m/2(m− 1)!!1(m even)

p−m∑
s=0

(
p−m
s

)
a11(h∆)p−m−sa12(h∆)s E

[
Xp−m−s+q
i−h

(
V

(2)
i−h

)s
Xr
i−h−k

]

=

bp/2c∑
m=0

p−2m∑
s=0

g(p,m, s)ω11(h∆)ma11(h∆)p−2m−sa12(h∆)s E
[
Xp−2m−s+q
i−h

(
V

(2)
i−h

)s
Xr
i−h−k

]
.

Using (3.17) we obtain

E
[
Xp
i

(
V

(2)
i

)s
Xr
i−k

]
= E

[
Xp
i X

r
i−k E

[(
V

(2)
i

)s
| V (1)

i

]]
=

s∑
m=0

(
s
m

)
(s−m− 1)!!

(
γ22 −

γ2
12

γ

) s−m
2
(
γ12

γ

)m
E
[
Xp+m
i Xr

i−k

]
1(s−m even).

In conclusion:

E
(
Xp
i X

q
i−hX

r
i−h−k

)
=

bp/2c∑
m=0

p−2m∑
s=0

s∑
l=0

g̃(p,m, s, l)ω11(h∆)ma11(h∆)p−2m−sa12(h∆)s

(
γ22 −

γ2
12

γ

) s−l
2
(
γ12

γ

)l
E
[
Xp−2m−s+q+l
i−h Xr

i−h−k

]
1(s−l even).

Mixed moments of order 4: E
(
Xp
iX

q
i−hX

r
i−h−kX

s
i−h−k−l

)
Let i > h > k > l, i > h + k, i > h + k + l, h > k + l. We only need these moments for
p, q, r, s ∈ {1, 2}.

3.5. Implementation 35

Assume p = 1. Then, using (3.17) it follows that,

E
(
XiX

q
i−hX

r
i−h−kX

s
i−h−k−l

)
= E

 2∑
j=1

a1j(h∆)V
(j)
i−h +

∫ i∆

(i−h)∆
a1j(i∆− u)σj dW (j)

u

Xq
i−hX

r
i−h−kX

s
i−h−k−l


= E

[
a11(h∆)Xq+1

i−hX
r
i−h−kX

s
i−h−k−l + a12(h∆)V

(2)
i−hX

q
i−hX

r
i−h−kX

s
i−h−k−l

]
= E

(
Xq+1
i−hX

r
i−h−kX

s
i−h−k−l

)(
a11(h∆) + a12(h∆)

γ12

γ

)
.

Assume p = 2. Now

E
(
X2
iX

q
i−hX

r
i−h−kX

s
i−h−k−l

)
= E

 2∑
j=1

a1j(h∆)V
(j)
i−h +

∫ i∆

(i−h)∆
a1j(i∆− u)σj dW (j)

u

2

Xq
i−hX

r
i−h−kX

s
i−h−k−l


= a2

11(h∆) E
[
Xq+2
i−hX

r
i−h−kX

s
i−h−k−l

]
+ a2

12(h∆) E

[(
V

(2)
i−h

)2
Xq
i−hX

r
i−h−kX

s
i−h−k−l

]
+ 2a11(h∆)a12(h∆) E

[
Xq+1
i−hV

(2)
i−hX

r
i−h−kX

s
i−h−k−l

]
+ ω11(h∆) E

(
Xq
i−hX

r
i−h−kX

s
i−h−k−l

)
= E

(
Xq
i−hX

r
i−h−kX

s
i−h−k−l

)(
ω11(h∆) + a2

12(h∆)

(
γ22 −

γ12

γ

))
+ E

(
Xq+2
i−hX

r
i−h−kX

s
i−h−k−l

)(
a11(h∆) + a12(h∆)

γ12

γ

)2

.

Now we have expressions for all mixed moments needed to compute Gn(θ) from (3.13).

3.5 Implementation

The method of prediction-based estimating functions was implemented in R and tested on
simulated data. We simulated the Ornstein-Uhlenbeck process from (3.9) and (3.10), for
1.000 observations with equidistant time step between observations, ∆ = 0.1, with

B =

(
5 1
−2 1

)
,Σ =

(
0.5 0
0 0.3

)
.

The second coordinate was assumed to be unobserved. The most involved computations
relates to finding A∗(θ) from (3.8). To simplify computations we approximated M̄n(θ) with
the empirical covariance matrix of H(θ) computed for 10.000 data sets with true parameter
values. The term ∂θă(θ) was found using Maple and evaluated in the true parameters. This

36 Chapter 3. Estimating functions

procedure is obviously not possible for real data, but is was done in order to investigate
how the procedure would behave for a fixed weight matrix, which potentially could simplify
computations.

The three drift parameters β11, β12 and β21 were estimated simultaneously for 5.000 data
sets. For each data set the estimating function G1000(θ) was 3 × 1 dimensional and the
solution was found by taking the sum of squared coordinates and finding the minimum. In
some cases this resulted in lack of convergence of the algorithm searching for the minimum,
and such estimates were removed from the final sample resulting in 3783 sets of estimates.
Visual inspection of some of the data sets where convergence was not reached, suggested
that this was an error that could be attributed to the ’squaring and summing’ procedure.

Figure 3.1 shows histograms of the marginal distribution of the three parameter estimators,
with the red horizontal line denoting the true parameter value. The results are not too

β11

F
re

qu
en

cy

0 5 10 15 20 25 30

0
50

0
10

00
15

00

β12

F
re

qu
en

cy

−5 0 5 10 15 20 25 30

0
20

0
40

0
60

0
80

0

β21

F
re

qu
en

cy

−10 −5 0 5

0
20

0
40

0
60

0
80

0

Figure 3.1: histograms of the estimates of the three parameters β11, β12, β21. Vertical
lines denote the true parameter value.

convincing, as the variances of the estimators are relatively large.

Figure 3.2 shows a pairs plot of the estimates for the three parameters. The red lines
are the true parameter values, the green are the mean of the estimates and the blue lines

3.5. Implementation 37

denote the medians of the estimates. Clearly there is a strong negative correlation between
β12 and β21.

0 5 10 15 20 25 30

0
5

10
15

20
25

30

β11

−5 0 5 10 15 20 25 −10 −5 0 5

0
5

10
15

20
25

30

β12

−
5

0
5

10
15

20
25

−10 −5 0 5

−
10

−
5

0
5

β21

Figure 3.2: Pairs plot of estimates of the three drift parameters β11, β12 and β21. Red
lines are true parameter values, green are means of estimators, and blue lines denote
the sample medians of the estimators.

In conclusion the method seems to work, although not as convincing as one might hope.
Thus we decide to try a Bayesian approach, which is the subject of chapters 4, 5 and 6.

38 Chapter 3. Estimating functions

4
Bayesian statistics and MCMC

methods

39

40 Chapter 4. Bayesian statistics and MCMC methods

4.1 The basic Bayesian framework

In this chapter we give a short introduction to some of the Bayesian ideas that are used in
the subsequent chapters. We will introduce the basic Bayesian framework and then move
on to some of the important MCMC methods typically used in the Bayesian setting.

Let θ denote the parameter of a statistical model with observations X = {X1, . . . , Xn}
and let π be generic notation for a distribution. The Bayesian approach requires one to
specify the prior belief in θ via a probability distribution on θ. After the data is observed,
this prior knowledge is updated using Bayes formula, to obtain the posterior distribution
of θ conditional on the observed data.

π(θ | X) =
π(x | θ)π(θ)∫
π(X, θ) dθ

. (4.1)

Here π(θ) denotes the prior distribution of θ, π(X | θ) is the distribution of data given
θ (the likelihood), π(θ | x) is the posterior of θ and finally π(X, θ) is the simultaneous
distribution of data and θ.

Hence the result of estimating θ in the Bayesian framework comes down to estimating the
posterior distribution of θ, which is fundamentally different from the frequentistic approach
where the parameter is considered (unknown but) fixed. In practice it is common to report
functionals of the posterior distribution, such as the median or the mean.

If the prior is uninformative, that is, when the prior is almost flat, such that any value of
θ a priori is equally likely to occur, it follows from (4.1) that

π(θ | X) ∝ π(x | θ),

because the denominator does not depend on θ. Here proportionality is with respect to θ.
This means that the posterior is proportional to the likelihood and the posterior mode (if
it exists) will correspond to the maximum likelihood estimate.

4.2 Importance sampling

Assume we are interested in some quantity Ef (h(X)), where f is a density function. For
example, taking h(x) = xp we can get all (existing) moments of h(X), or with h(x) = 1A(x)
we get P (h(X) ∈ A) for some measurable set A. We will assume that h is a square
integrable function with respect to f , and let X denote the state space of X.

We shall address the problem of computing Ef (h(X)) by simulation when moments of
h(X) under f are difficult to evaluate theoretically. In many applications f is difficult or
even impossible to sample from, but sometimes there exists a distribution with density g
such that g � f from which sampling is feasible. The idea is to use samples from g to
evaluate the quantity of interest. The g density may be defined on a larger state space
X̄ ⊇ X and in this case we define f(x) = 0 for x /∈ X .

4.2. Importance sampling 41

Thus we consider a sample X1, . . . , Xn distributed according to some distribution with
density g. Importance sampling is a method to evaluate functional moments from the
distribution f using samples from the distribution g. The idea is to express the object of
interest as

Ef (h(X)) =

∫
X

f(x)h(x)g(x)

g(x)
dx.

By the strong law of large numbers

1

n

n∑
i=1

f(Xi)h(Xi)

g(Xi)
→ Eg

(
f(Xi)h(Xi)

g(Xi)

)
=

∫
X
f(x)h(x) dx a.s.

Even though the empirical average of the fraction fh/g converges, it does not mean that
all g’s are equally good candidates to sample from. In order to assess whether a given g is
a good choice we make the following observation related to the variance:

Eg

{(
f(Xi)h(Xi)

g(Xi)

)2
}

=

∫
X

f(x)2h(x)2

g(x)
dx,

which must be finite in order for fh/g to have finite variance. It follows, since h is square
integrable with respect to f , that if f/g is bounded, the variance is finite. The following
example from Robert and Casella (2004) illustrates the methodology.

Example 4.1 (Cauchy tail probabilities). Consider as quantity of interest

p =

∫ ∞
2

1

π(1 + x2)
dx.

This immediately suggests the estimators

p̂1 =
1

n

n∑
i=1

1(Xi>2), p̂2 =
1

2n

n∑
i=1

1(|Xi|>2).

One may rewrite p as

p =
1

2
−
∫ 2

0

1

π(1 + x2)
dx =

∫ 1
2

0

x−2

π(1 + x−2)
dx,

giving rise to estimators

p̂3 =
1

2
− 1

n

n∑
i=1

2

π(1 + U2
i)
, p̂4 =

1

2n

n∑
i=1

1

π(1 + Y −2
i)

,

where Ui and Yi are uniformly distributed on [0, 2] and [0, 1
2], respectively.

One can compute the variance of these estimators and see that

Var(p̂1) ≈ 0.13

n
, Var(p̂2) ≈ 0.05

n
, Var(p̂3) ≈ 0.029

n
, Var(p̂4) ≈ 0.000096

n
.

42 Chapter 4. Bayesian statistics and MCMC methods

All four estimators converge toward p as n tends to infinity, but they have very different
variances. Interestingly the estimators p̂1 and p̂2, that samples from the Cauchy distribu-
tion, are the worst of the four options, while p̂4 is much better than all the other three.

�

The point of example 4.1 is that it may sometimes be more efficient to sample from a
distribution different from f in order to obtain the better estimator. Next, we give a
theoretical result about the optimal choice of the proposal density g. Note that it is not a
result to be used in applications, as it involves the integral of hf , which is the quantity of
interest.

Theorem 4.2. The choice of g that minimizes the variance of the estimator

1

m

m∑
i=1

f(Xi)

g(Xi)
h(Xi),

is given by

g∗(x) =
|h(x)|f(x)∫
|h(z)|f(z) dz

.

Proof. The proof is straightforward, focusing of the essential part of the variance as a
squared mean. Using Jensen’s inequality leads to the result.

4.3 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm first described in Metropolis et al. (1953) and later
generalized in Hastings (1970), is a powerful and simple simulation technique used to
obtain samples from a given distribution. It works under weak regularity conditions and
requires only partial knowledge of the distribution of interest, in the sense that any normal-
izing constant of the density can be ignored. Chib and Greenberg (1995) gives a detailed
introduction. Assume we want to sample from the target distribution Π with density π.
The idea of the Metropolis-Hastings algorithm is to sample from another distribution (the
candidate distribution) where sampling is easier, and then accept or reject these samples
according to information about the candidate and the target distributions.

The main component of the algorithm is a transition kernel, P , that satisfies

Π(A) =

∫
P (x,A)π(x) dx, (4.2)

4.3. The Metropolis-Hastings Algorithm 43

for all measurable sets A. If we can find such a P then Π is the invariant distribution for
P . We consider P on the form

P (x,A) =

∫
A
p(x, y) dy + r(x)δx(A),

for some integrable function p where r(x) = 1 −
∫
p(x, y) dy is the probability of staying

in x, p(x, x) = 0, and δx is the Dirac measure.

The detailed balance equation states that

π(x)p(x, y) = π(y)p(y, x),

and if this is satisfied by p(x, y), it follows, by an interchanging of integrals, that P and π
satisfies (4.2). Consider now a candidate distribution, with density q(x, y), specifying the
transition density for moving from x to y. If, for x 6= y,

π(x)q(x, y) > π(y)q(y, x), (4.3)

we move from x to y too often to satisfy the detailed balance equation. To correct for this,
we introduce the probability α(x, y), such that the move from x to y is made according to

p̃(x, y) = q(x, y)α(x, y).

For p̃ to satisfy the detailed balance equation, it must hold that

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x).

If (4.3) is true we want to maximize the probability of moving from y to x, so we put
α(y, x) = 1, which implies

α(x, y) =
π(y)q(y, x)

π(x)q(x, y)
.

Similar considerations apply if (4.3) is reversed. Thus

α(x, y) =

{
min

(
π(y)q(y,x)
π(x)q(x,y) , 1

)
, π(x)q(x, y) > 0

1, π(x)q(x, y) = 0
. (4.4)

This motivates the definition of the transition kernel for the Metropolis-Hastings algorithm:

P (x,A) :=

∫
A
q(x, y)α(x, y) dy + r̃(x)δx(A),

with r̃(x) := 1−
∫
q(x, y)α(x, y) dy, and it follows now that P has Π as invariant distribu-

tion. Under mild regularity conditions the algorithm generates (correlated) samples with
a distribution that converges to the invariant distribution; See Meyn and Tweedie (1993).
The algorithm is summarized in table 4.1.

The distribution q is known as the instrumental/proposal distribution and f is the target
density. Note that it suffices to know the ratio f/q only up to proportionality. A general
advice for implementation of the Metropolis-Hastings algorithm is to compute acceptance
probabilities on the log scale as opposed to the original scale. In this way one may avoid
running into numerical problems related to large values arisen from evaluation of the
exponential function.

44 Chapter 4. Bayesian statistics and MCMC methods

Initialize
1) Initialize x(0).

Iterate
At iteration t+ 1:
Sample Z ∼ q(x(t+1), x(t)) and U ∼ [0, 1]
if U < α(x(t), Z) put x(t+1) := Z
if U ≥ α(x(t), Z) put x(t+1) := x(t)

Table 4.1: The Metropolis-Hastings algorithm

Independence sampler

If the proposal is on the form q(x, y) = q(y) such that q does not depend on the current
state of the Markov chain we have an independence sampler. In this case it is not possible
to change the acceptance probability of the sampler, thus it is important to choose q not
’too far’ from the target distribution.

Random walk sampler

If the proposal q(x, y) = q(|x−y|) is symmetric in x and y we have a random walk sampler,
and the typical example is where q(x, y) is the Gaussian density with mean x and some
covariance Ω. For this proposal one can adjust the step size, in order to obtain an optimal
acceptance rate, by adjusting Ω; see Roberts et al. (1997) where it is shown that under
regularity conditions the optimal rate is 0.234 for one dimensional targets. The Ω may be
tuned in order to control the step size of the proposal. Consider for instance a univariate
Gaussian target initiated around its mean. Too large steps will increase the rejection rate
and it may be difficult for the chain to visit the tails. On the other hand too small steps
will increase the acceptance rate but it will take a long time to visit the tails. In general
the random walk will accept all proposals to states with larger density and only go the
states with smaller densities with a certain probability.

A drawback of the random walk occurs if the state space is bounded, in which case the
random walk will reject all proposals beyond the boundary. In practice, if the sampler
never gets close to the boundary, the problem can be neglected. Alternatively one may
do a one-to-one transformation of the variable that is to be sampled, to circumvent the
boundary problem.

4.3.1 Simulation of diffusion bridges

Direct simulation of a diffusion bridge is not easy. However if the distribution of the
bridge has a Radon-Nikodym derivative with respect to a Brownian bridge, one may use
the Metropolis-Hastings algorithm to sample diffusion bridges, using Brownian bridge

4.4. Gibbs sampling 45

proposals. It is important that the target f and the proposal g are densities with respect
to the same (dominating) measure λ. Assume h > 0 is also a density with respect to λ.
Then if we express f with respect to the measure with density h dλ, then

f(y)q(x | y)

f(x)q(y | x)
=

f(y)
h(y)q(x | y)

f(x)
h(x)q(y | x)

.

This acceptance probability is clearly different from (4.4), unless q is also expressed with
respect to the same dominating measure. This is almost obvious when the dominating
measure is the Lebesgue measure. In the setting of continuous time processes there is no
’standard’ dominating measure.

Example 4.3 (Sampling an Ornstein-Uhlenbeck bridge). In order to be able to compare
simulated bridges to true bridges we use the Ornstein-Uhlenbeck process as our target,
because for this process we can find the marginal distributions. Therefore consider the
2-dimensional OU model from (2.17) with

A =

(
0
0

)
, B =

(
4 1
2 3

)
, Σ =

(
1 0
0 1

)
,

for 0 ≤ t ≤ 1, starting and ending at (0, 0)T . The Metropolis-Hastings algorithm was
run for 20.000 iterations with an acceptance rate of 18%, using proposals from the stan-
dard Brownian bridge. Figure 4.2 shows comparisons between the marginal density of
the true OU bridge for the first coordinate, for each 0.1 time step and the output from
the Metropolis-Hastings sampler. Comparison of the results from the second coordinate is
similar (not shown). Thus the marginal distributions from the simulations are reasonably
close to the true marginal OU distributions.

4.4 Gibbs sampling

The Gibbs sampler, proposed in Geman and Geman (1984), effectively breaks down a
multivariate simulation problem to a series of one dimensional simulation problems. For a
detailed introduction see for example Casella and George (1992). Let d denote the number
of components that are to be sampled and assume that the marginal conditional distribu-
tions, generically denoted by π, exists. The Gibbs sampler iteratively simulate variables
from the conditional distributions of each component conditional on the current state of
all other d− 1 components, thereby updating one coordinate at the time. The result is a
correlated sample that approximates the simultaneous distribution of all d components.
The algorithm is given in table 4.3.

46 Chapter 4. Bayesian statistics and MCMC methods

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

t=0.1

D
en

si
ty

−1.0 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

t=0.2
D

en
si

ty

−1.0 0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

t=0.3

D
en

si
ty

−1.5 −0.5 0.5 1.5

0.
0

0.
5

1.
0

1.
5

t=0.4

D
en

si
ty

−1 0 1 2

0.
0

0.
5

1.
0

1.
5

t=0.5

D
en

si
ty

−1.5 −0.5 0.5 1.5

0.
0

0.
5

1.
0

1.
5

t=0.6
D

en
si

ty

−1.5 −0.5 0.5 1.5

0.
0

0.
5

1.
0

1.
5

t=0.7

D
en

si
ty

−1.0 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

t=0.8

D
en

si
ty

−1.0 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

t=0.9

D
en

si
ty

Figure 4.2: Comparison between marginal distributions of the OU process and the
output from the Metropolis-Hastings sampler.

4.4. Gibbs sampling 47

Initialize

1) Initialize x
(1)
1 , x

(1)
2 , . . . , x

(1)
d .

Iterate
At iteration t+ 1:

Sample X
(t+1)
1 ∼ π(· | x(t)

2 , x
(t)
3 , . . . , x

(t)
d)

Sample X
(t+1)
2 ∼ π(· | x(t+1)

1 , x
(t)
3 , . . . , x

(t)
d)

...

Sample X
(t+1)
d ∼ π(· | x(t+1)

1 , x
(t+1)
2 , . . . , x

(t+1)
d−1)

Table 4.3: The Gibbs sampler

48 Chapter 4. Bayesian statistics and MCMC methods

5
Parameter estimation for

multidimensional diffusions, fully
observed

49

50 Chapter 5. Multidimensional diffusions, fully observed

This chapter is an updated version of the article Jensen et al. (2012). The algorithms
described in that paper was implemented directly in R , resulting in relatively slow compu-
tation times. In this chapter all results and figures are produced using the newly developed
BIPOD-package for R , which is described more detailed in chapter 8.2. Since the random
number generator is different in the two approaches, the figures differ slightly from the
ones in the article.

Excitability is observed in a variety of natural systems, such as neuronal dynamics, car-
diovascular tissues, or climate dynamics. The stochastic FitzHugh-Nagumo model is a
prominent example representing an excitable system. To validate the practical use of a
model, the first step is to estimate model parameters from experimental data. This is not
an easy task because of the inherent non-linearity necessary to produce the excitable dy-
namics, and because the two coordinates of the model are moving on different time scales.
In this chapter we propose a Bayesian framework for parameter estimation, which can
handle multi-dimensional non-linear diffusions with time scale separation. The estimation
method is illustrated on simulated data.

An excitable system is characterized by a resting state from which it only escapes if per-
turbed by a sufficiently large stimulus. Weak stimuli only result in a small amplitude linear
response, whereas strong stimuli cause a highly non-linear response, where the system vari-
ables make a large excursion through state space, whereafter it returns to its resting state
after a refractory period. Under a continuous stimulus, the system can enter into an oscilla-
tory mode. Thus, an excitable system operates close to a bifurcation point, and is sensitive
to small perturbations, e.g. caused by noise. It is observed in many natural systems, such as
neuronal dynamics, ion channels, chemical reactions, climate dynamics or wildfires (Lind-
ner et al., 2004; Keener and Sneyd, 2009; Berglund and Gentz, 2006). Noise can have a
dramatic effect on excitable systems, inducing stochastic limit cycles on otherwise stable
dynamics. A prototype of an excitable system is the FitzHugh-Nagumo model, a minimal
representation of more realistic excitable systems, like the Hodgkin-Huxley model, model-
ing the firing mechanisms in a neuron (FitzHugh, 1961; Nagumo et al., 1962; Hodgkin and
Huxley, 1952). It is a generalization of the van der Pol equations. It allows for coordinates
to evolve on different time scales, and the time scale separation parameter is essential for
the understanding of the dynamical behavior of the system. The larger the time scale sep-
aration, the more an all-or-nothing response is observed to a perturbation, mimicking the
response of the simpler threshold models, like leaky integrate-and-fire models (Gerstner
and Kistler, 2002; Ditlevsen and Greenwood, 2013).

The FitzHugh-Nagumo model is defined by two coupled differential equations, representing
the neuronal membrane potential and a recovery variable, respectively, where the recovery
variable models the channel kinetics. Extending the model by adding a noise term governed
by Brownian motion results in a diffusion process. The noise term in the FitzHugh-Nagumo
model accounts for various sources of noise affecting the neuronal behavior, like random
opening and closing of ion channels or noisy presynaptic currents Gerstner and Kistler
(2002).

51

Diffusions are defined through stochastic differential equations, and for all but a few models
an explicit expression for the transition density is unattainable. This problem complicates
parameter estimation. Though many methods deal with this problem (see Sørensen (2004)
and also Hindriks et al. (2011); Kleinhans (2012)), they tend to be highly complicated to
implement and apply in practice, especially when the dimension of the diffusion is larger
than one. The Euler-Maruyama, the Milstein and other schemes offer easy-to-implement
approximations to the transition density. However, if the time-step between observations
is too large, the approximation will be inaccurate.

Within the last decade, novel Bayesian methods have been developed which can be used
for statistical inference, see Roberts and Stramer (2001); Papaspiliopoulos and Roberts
(2012); Beskos et al. (2006); Papaspiliopoulos et al. (2012); Wu and Noé (2011). We de-
scribe a Markov Chain Monte Carlo method and adapt it to the two-dimensional stochastic
FitzHugh-Nagumo model for parameter inference. Our approach involves imputation of
data from the distribution of the underlying diffusion process, and application of a Gibbs
sampler to iteratively update parameters and imputed data. We apply an independent
Metropolis-Hastings-step to update the imputed data conditional on parameters, and sam-
ple the parameters conditional on the imputed data directly. Parameter sampling relies
on a Gaussian prior for the parameters, and when this assumption is not met a Gaussian
random walk Metropolis-Hastings-step may be applied, see section 5.2.2 for details.

Typically, in experimental settings only the slow variable of the membrane potential is
observed through intracellular recordings in single neurons, whereas the channel kinetics
are unobserved. This largely complicates the statistical inference, e.g. because the observed
process is no longer Markov. One approach to this problem is to assume the channel
kinetics known (Huys et al., 2006; Huys and Paninski, 2009). We will not assume the
channel kinetics known, but instead assume that the recovery variable is observed.

Our methodology may be extended to the partially observed case and this is the topic
of chapter 6. However, the first goal, which is achieved in this chapter, is to make the
statistical procedure work in a computationally efficient manner in the two-dimensional
non-linear model with time scale separation.

The effects of noise on the FitzHugh-Nagumo model have been extensively studied (see
e.g. Lindner and Schimansky-Geier (1999); Lindner and Schimansky-Geier (2000); Lindner
et al. (2004); Lee DeVille et al. (2005); Berglund and Gentz (2006)), whereas papers
devoted to its comparison with experimental data are rare. Here we use simulated data to
estimate parameters of the stochastic FitzHugh-Nagumo model from discrete observations
of the state variables.

Section 5.2 describes the estimation procedure in the case where the diffusion coefficient is
assumed to be known. This approach simplifies the exposition and speeds up the practical
implementation considerably. Section 5.3 deals with the procedure when also the diffusion
coefficient is estimated, and section 5.4 includes a small simulation study.

52 Chapter 5. Multidimensional diffusions, fully observed

5.1 Statistical model

Consider the model

dVt = b(Vt; θ) dt+ Σ(σ) dBt, V0 = v0, (5.1)

with Vt a d-dimensional stochastic process, Bt a d-dimensional standard Brownian motion,
and functions b and Σ taking values in Rd and the set of d× d matrices, respectively. We
will also assume that Γ := ΣΣT is invertible. Note that the diffusion matrix in (5.1) does
not depend on Vt. For the models we consider it is not a problem, and one can easily
extend the methodology to include also state depend diffusion coefficients as long as Σ is
invertible in both arguments. The only complication is that the Lamperti transform, that
one needs to apply, gets more complicated.

We assume equidistant observations

Dn = {Vt0 , Vt1 , . . . , Vtn},

with ti − ti−1 = ∆, and t0 = 0, tn = T , and aim to make inference for the parameters θ
and σ governing the diffusion (5.1). The observation times are assumed equidistant only
for notational simplicity and because it is consistent with the type of experimental design
for which the analysis in this chapter is relevant for; it will be clear that our methodology
does not require this assumption.

Even though the theory is presented for multi-dimensional models with any dimension d,
we will focus solely on two-dimensional models for applications. For models where the drift
is not linear in θ, the estimation procedure we describe will still work, at the cost of an
additional Metropolis-Hastings-step, and this approach is described in section 5.2.2.

5.2 Estimation of drift parameters with known

diffusion

The aim of this section is to estimate the parameter vector θ governing the drift, while σ
is assumed known. This assumption simplifies the exposition, while at the same time, it
provides the foundation of the methodology used in the setting where also the diffusion is
unknown. For notational simplicity σ is neglected in this section.

Since the model is Markov, the distribution of θ conditional on the observed data Dn is

p(θ | Dn) ∝ p(θ)p(Dn | θ)

= p(θ)

n∏
i=1

p(Vti | Vti−1 , θ), (5.2)

where p(θ) is the prior distribution of θ, p(Dn | θ) is the distribution of the observed
data given θ and p(Vti | Vti−1 , θ) is the transition density of the process V , from Vti−1 to

5.2. Estimation of drift parameters with known diffusion 53

Vti , conditional on θ. Following standard convention in Bayesian statistics, proportionality
is understood with respect to the argument of the density on the left hand side of the
equation, i.e. θ in the above equation. For all but a few models, the transition density
is not explicitly known and this is indeed a problem in the FitzHugh-Nagumo model.
To overcome this difficulty, consider a theoretical data augmentation step that imputes
a latent data path V̄i on each interval (ti, ti+1), distributed according to the underlying
model (5.1). Denote the collection of latent paths V̄ := ∪n−1

i=0 V̄i, and change focus to the
posterior of θ and the imputed data conditional on the observed data:

p(θ, V̄ | Dn). (5.3)

A Gibbs sampler can be applied to obtain a sample from (5.3) from which marginal infer-
ence about the posterior of θ can be drawn. The algorithm alternates between updating
the parameter and the latent data while keeping the other fixed. After a suitable burn-in
period, the result is a sample (θ(k), V̄ (k))k from the distribution p(θ, V̄ | Dn), from which
summarized inference about the posterior of θ can be drawn, e.g. mean, variance and tail
probabilities. The algorithm is given in table 5.1.

Initialize
1) Initialize θ(0) and imputed data V̄ (0).

Iterate
At iteration k:
2a) Sample V̄ (k) from p(V | θ(k−1), Dn).
2b) Sample θ(k) from p(θ | V̄ (k), Dn).

Table 5.1: Gibbs sampler for p(θ, V̄ | Dn).

A few remarks are in order: On the theoretical level the imputed paths V̄ are infinite
dimensional. Therefore, each path is projected onto a discrete subset of the continuous
path, and the accuracy of the algorithm depends to some extend on the accuracy of this
approximation. The paths sampled from step 2a) in table 5.1 are conditioned on the
observed data Dn, and therefore a method for simulation of processes conditional on both
start and endpoint (diffusion bridges) is needed. Simulating a diffusion bridge is in general
not an easy task though much progress in this area has been achieved in the last decade;
see Beskos et al. (2006); Papaspiliopoulos and Roberts (2012); Bladt and Sørensen (2014);
Lindström (2012).

5.2.1 Sampling the latent path

Due to the Markov property, the following relation holds,

p(V̄ | θ,Dn) =
n∏
i=1

p(V̄i | Vti−1 , Vti , θ), (5.4)

54 Chapter 5. Multidimensional diffusions, fully observed

implying that paths V̄i may be sampled independently. Direct simulation of these bridges
(or the projection thereof) is not feasible. Instead, we follow Roberts and Stramer (2001)
and use a Metropolis-Hastings-step for this simulation, whereby we propose paths from
an alternative simpler model and accept them with the appropriate probability. Without
loss of generality, focus on a single term of the form

p(V̄ | V0, VT , θ) (5.5)

from (5.4). This is a diffusion bridge, and in Roberts and Stramer (2001) it is shown that
one can simulate these bridges with a Metropolis-Hastings-step, using proposals from a
Brownian bridge. Samples from the latter are easily generated, since the transition density
of a Brownian bridge is for t > s,

p(Vt | Vs = vs, V0 = v0, VT = vT)

∼ ϕ
(
Vt | vs +

t− s
T − s(vT − vs);

(T − t)(t− s)
T − s Γ

)
, (5.6)

where ϕ(· | µ; Ω) denotes the Gaussian density with mean µ and covariance matrix Ω. To
each proposal a weight is assigned, the logarithm of which is given by

log
(
ψ(V̄ , θ)

)
=

∫ T

0
b(V̄u; θ)TΓ−1 dV̄u −

1

2

∫ T

0
b(V̄u; θ)TΓ−1b(V̄u; θ) du. (5.7)

This is precisely (proportional to) the Radon-Nikodym derivative between the target
diffusion bridge measure and the proposal Brownian bridge measure. The algorithm for
simulating the bridge V̄ is given in table 5.2. Note that step 2) in table 5.2 involves an
approximation of the integral in (5.7). More details on diffusion bridge simulation can be
found in Papaspiliopoulos and Roberts (2012).

Initialize
1) Initialize a skeleton path (V̄ M)0 according to (5.6),
and compute the weight ψ0 = ψ((V̄ M)0, θ), using (5.7).

Iterate
2) Update the current value of ψk according to (V̄ M)k.

3) Generate a proposal skeleton path, Ṽ M according to

(5.6), and compute the weight ψ̃ = ψ(Ṽ M , θ),
using (5.7).

4) Let (V̄ M)k+1 =

{
Ṽ M with prob. min

(
1, ψ̃

ψk

)
(V̄ M)k otherwise

.

Table 5.2: Metropolis-Hastings-step for sampling from the diffusion bridge (5.5).

5.2. Estimation of drift parameters with known diffusion 55

5.2.2 Sampling the drift parameter

It follows directly from Theorem 2.6 (Cameron-Martin-Girsanov), that

log(p(V | θ)) =

∫ T

0
b(Vs; θ)

TΓ−1(σ)

(
dVs −

1

2
b(Vs; θ) ds

)
. (5.8)

In general, this likelihood is not easy to evaluate directly. One can use the Euler-Maruyama
scheme to obtain a Gaussian approximation of the density. This approximation can be
made arbitrarily accurate, as the Euler-Maruyama approximation can approximate the
true process arbitrarily well when the discretization goes to 0. In theory, it is not a problem
to allow for arbitrarily small ∆, but in applications one must consider computer and time
limitations. In the following we treat the sampling of drift parameters differently according
to whether the drift is linear in the parameters.

Linear drift

When the model is linear in the drift parameters it can be written as

b(Vt; θ) = f0(Vt) +

p1∑
i=1

θifi(Vt), (5.9)

with fi a d× 1 vector for i = 0, . . . , p1. In this case, taking a Gaussian prior, the prior and
the posterior distribution will be conjugate, i.e., the prior and the posterior belong to the
same family of distributions. To see this, first note that

p(θ | V̄ , Dn) ∝ p(θ)p(V | θ),
where V denotes the union of observed and imputed data.

Then ∫ T

0
b(Vs; θ)

TΓ−1 dVs =

p1∑
i=1

θiIi + C1,

∫ T

0
b(Vs; θ)

TΓ−1b(Vs; θ) ds =

p1∑
i,j=1

θiθjRij + 2

p1∑
i=1

θi

∫ T

0
fi(Vs)

TΓ−1f0(Vs) ds+ C2,

where for i, j = 1, . . . , p1

Ii :=

∫ T

0
fi(Vs)

TΓ−1 dVs, (5.10)

Rij :=

∫ T

0
fi(Vs)

TΓ−1fj(Vs) ds (5.11)

C1 :=

∫ T

0
f0(Vs)

TΓ−1 dVs

C2 :=

∫ T

0
f0(Vs)

TΓ−1f0(Vs) ds,

56 Chapter 5. Multidimensional diffusions, fully observed

and these expressions do not depend on θ. It follows that

log(p(V | θ)) =

∫ T

0
b(Vs; θ)

TΓ−1 dVs −
1

2

∫ T

0
b(Vs; θ)

TΓ−1b(Vs; θ) ds

= −1

2

 p1∑
i,j=1

θiθjRij − 2

p1∑
i=1

θiFi − 2C1 + C2


= −1

2

(
θTRθ − 2θTF − 2C1 + C2

)
.

where

Fi :=

(
Ii −

∫ T

0
fi(Vs)

TΓ−1f0(Vs) ds

)
,

and F := (Fi)i=1,...,p1 and R := (Rij)i,j=1,...,p1 . So the log-likelihood from (5.8) is expo-
nentially quadratic in θ, and this means that with a Gaussian prior for θ ∼ N (µ,Ψ), the
posterior is conjugate

π(θ | Dn, Ṽ(0,T], σ) ∼ N (µ̃, Ψ̃), (5.12)

where

Ψ̃ = (R+ Ψ−1)−1, (5.13)

µ̃ = Ψ̃(F + Ψ−1µ). (5.14)

If there is no prior information about the parameters, it is natural to choose a prior
distribution with large variance. If the variance of the prior is taken to be infinite, the
posterior distribution is completely determined by the terms from the Radon-Nikodym
derivative:

Ψ̃ = R−1,

µ̃ = R−1F.

In this case, the k’th iteration of the Gibbs sampler simulates drift parameters as

θ(k) ∼ Np1(R−1F ;R−1). (5.15)

Having identified the moments in (5.13) and (5.14) is highly appealing, since it allows
for direct sampling from p(θ | V̄ , Dn). In practice, the integrals in (5.10) and (5.11) are
approximated by Riemann sums, and the accuracy will depend on the sparsity of the
imputed data.

In models where the assumptions of a Gaussian prior or linearity in the drift parameters are
not met, the distribution p(θ | V̄ , Dn) could be approximated by a Metropolis-Hastings-
step. This approach is described next.

5.3. Estimation of both drift and diffusion parameters 57

Non-linear drift

If a re-parametrization to obtain linearity in the drift parameters is not feasible, one can
still obtain approximate samples from the distribution p(θ | V̄ , Dn). One approach is to use
a Metropolis-Hastings-step, though it requires additional computational time. The interval
[ti, ti+1] is split into M sub-intervals defined by the time points tmi := ti + m∆/M,m =
0, . . . ,M , such that t0i = ti and tMi = ti+1. Assume the imputation of M − 1 data points
between each pair of successive observations and denote the collection of imputed data in
the interval (ti, ti+1) by V̄M

i . Thus we have n+ 1 observations, with M −1 imputed values
in each of the n intervals. By the Markov property it follows that

p(θ | V̄ , Dn) ≈ p(θ | ∪n−1
i=0 V̄

M
i , Dn)

∝ p(θ)p(∪n−1
i=0 V̄

M
i | Dn, θ)

= p(θ)
n−1∏
i=0

M∏
j=1

p(V
tji
| V

tj−1
i
, θ). (5.16)

Compared to (5.2), each transition now occurs on the time scale of ∆/M instead of ∆ and
therefore, when M is large enough, an Euler-Maruyama approximation is reasonable:

V
tji
≈ V

tj−1
i

+ b(V
tj−1
i

; θ)∆ + Σ(σ)∆B
tji
,

where ∆B
tji

= B
tji
−B

tj−1
i
∼ ϕ(· | 0; Id∆). Therefore

p(V
tji
| V

tj−1
i
, θ) ≈ ϕ(V

tji
| µi; Γ(σ)∆),

where µi = V
tj−1
i

+ b(V
tj−1
i

; θ)∆.

The density p(θ | V̄ , Dn) is therefore approximately known up to a proportionality con-
stant, and for simulations it is thus natural to use a Metropolis-Hastings-step. Motivated
by (5.16) define the proportional target distribution f by

f(θ) = p(θ)
n−1∏
i=0

M∏
j=1

ϕ(V
tji
| V

tj−1
i

; θ).

We suggest a Gaussian random walk for the proposal distribution ϕ(· | θ(k−1); Ω), to pro-
pose a new θ. Note that for this approach, parameters which are restricted to a true subset
of R requires a re-parameterization. The Metropolis-Hastings-step is given in table 5.3.

5.3 Estimation of both drift and diffusion param-

eters

When estimating diffusion parameters an important point related to the dependence be-
tween parameters and imputed data must be made. The quadratic variation identity im-

58 Chapter 5. Multidimensional diffusions, fully observed

Initialize
1) Initialize θ(0).

Iterate

2a) Generate a proposal θ̃ from ϕ(θ̃ | θ(k); Ω).

2b) Let θ(k+1) =

{
θ̃ with prob. min

(
1, f(θ̃)

f(θ(k))

)
θ(k) otherwise

.

Table 5.3: Metropolis-Hastings-step for sampling from p(θ | V̄ , Dn).

plies that for any t > 0

lim
M→∞

M∑
i=1

(
Vti/M − Vt(i−1)/M

) (
Vti/M − Vt(i−1)/M

)T
=

∫ t

0
Γ(σ) ds in probability.

Thus, an observed path of V completely identifies σ, and if Σ(σ) = Σ is constant the
limit is just tΓ(σ). When dealing with discrete-time observations Dn, there is only finite
information about σ, hence there will be statistical error associated with its estimation.
However, the identity implies that we cannot hope to apply a Gibbs sampler which itera-
tively would update paths and σ. Any value of σ would generate a path whose quadratic
variation would return exactly the same value for σ, hence it will be impossible to explore
the posterior distribution of σ in this way. Of course, in practice we only generate finite-
dimensional projections of the paths, hence we would not observe this reducible behavior.
Nevertheless, it is obvious, and actually proved in Roberts and Stramer (2001), that the
Gibbs sampler which updates σ and a projection of the path based on M intermediate
values for each pair of observations, has mixing time which is O(M). Therefore it becomes
worse as we reduce the approximation bias.

However, this problem is easy to overcome by a simple transformation as in Roberts and
Stramer (2001). The original article describes it for one-dimensional diffusions, but the
extension is immediate for the multi-dimensional setting we consider here: We apply the
one-to-one Lamperti transformation (see section 2.1.2)

x 7→ Σ−1(σ)x

to the process V , and obtain a new diffusion Z which has the form

dZt = α(Zt, θ, σ) dt+ dBt, Z0 = Σ−1(σ)V0, (5.17)

where α(Zt, θ, σ) = Σ−1(σ)b(Σ(σ)Zt, θ).

Sampling V̄ is equivalent to sampling Z conditionally on Zti−1 = Σ−1(σ)Vti−1 and Zti =
Σ−1(σ)Vti , and the quadratic variation of Z is now independent of σ. However, there

5.3. Estimation of both drift and diffusion parameters 59

is again a perfect dependence between Z and σ via the endpoints of Z: for given σ, Z
has σ-dependent endpoints, which then perfectly determine σ in the following iteration.
Therefore we need to remove the dependence on the endpoints as well.

Define Ṽ as

Ṽt = Zt −
(

1− t− ti−1

∆

)
Zti−1 −

t− ti−1

∆
Zti (5.18)

for ti−1 ≤ t ≤ ti. Note that Ṽti−1 = Ṽti = 0, and V̄ can be reconstructed from Ṽ and σ
by inverting the two transformations: adding first the endpoints to obtain Z and scaling
by Σ(σ) to obtain V̄ . To understand the intuition behind this transformation, consider
the measure of the process in (5.17), without the drift α, but conditional on Zti−1 and
Zti . Under this measure, Z is a Brownian bridge starting and ending at Zti−1 and Zti ,

respectively. Tilting it linearly as in (5.18) makes Ṽ a standard Brownian bridge. This
construction effectively allow us to sample Z from (5.17), using proposals from a Brownian
bridge.

Next we describe the individual steps for the Gibbs sampler. We apply it to (θ, σ, Ṽ)
and not (θ, σ, V̄). This approach will ensure that Ṽ and (θ, σ) are independent under the
proposal for updating Ṽ , and circumvent the problem with reducible behavior of the Gibbs
sampler. The parameters θ and σ are updated separately in order to take advantage of the
simple Gaussian conditional posterior for θ.

5.3.1 Sampling the latent path

As in section 5.2.1 we write p(Ṽ | θ,Dn) as a product of densities and for simplicity we
focus on a single term of the form p(Ṽ | V0, VT , θ, σ). Continuing along the lines of section
5.2.1 we note that p(Ṽ | V0, VT , θ, σ) can be simulated using a Metropolis-Hastings step
with proposals from a Brownian bridge. Thus for each proposal Ṽ we assign a weight, φ,
given by

log
(
φ(Ṽ , θ, σ)

)
=

∫ T

0
α(Zs, θ, σ)T dZs −

1

2

∫ T

0
α(Zs, θ, σ)Tα(Zs, θ, σ) ds, (5.19)

where Ṽ and Z are linked by the relation (5.18).

The algorithm for updating the bridge Ṽ is given in table 5.4.

5.3.2 Sampling the drift parameter

Sampling from p(θ | Ṽ , Dn, σ) is carried out in complete analogy to subsection 5.2.2 and
(5.12), using the process Σ(σ)Zt instead of V̄t.

60 Chapter 5. Multidimensional diffusions, fully observed

Initialize

1) Initialize a skeleton path (Ṽ M)0, sampled as a
standard Brownian bridge starting and ending at 0.
Compute Z according to (5.18) and approximate
the weight φ in (5.19), w0.

Iterate

2) Generate a proposal skeleton path, Ṽ M
P sampled as a

standard Brownian bridge starting and ending at 0.

Compute Z̃ according to (5.18) and approximate the
weight φ in (5.19), w̃.

3) Let (Ṽ M)k+1 =

{
Ṽ M
P with prob. min

(
1, w̃

wk

)
(Ṽ M)k otherwise

.

Table 5.4: Metropolis-Hastings-step for sampling from the diffusion bridge (5.17).

5.3.3 Sampling the diffusion parameter

The priors of θ and σ are assumed to be independent, and therefore

p(σ | Ṽ , Dn, θ) ∝ p(Ṽ | θ, σ,Dn)p(Dn | θ, σ)p(σ). (5.20)

Now redefine (5.19) for the specific time points ti−1 and ti:

log
(
φi(Ṽ , θ, σ)

)
=

∫ ti

ti−1

α(Zs, θ, σ)T dZs −
1

2

∫ ti

ti−1

α(Zs, θ, σ)Tα(Zs, θ, σ) ds.

Using (2.14) yields

p(Ṽ | θ, σ,Dn)

=
n∏
i=1

ϕ(Σ−1(σ)Vti | Σ−1(σ)Vti−1 ; ∆Id)

pti−1,ti(Σ
−1(σ)Vti−1 ,Σ

−1(σ)Vti)
φi(Ṽ , θ, σ),

where p is the transition density of (5.1), and Id is the d dimensional identity matrix.
Furthermore, with a change of variables,

p(Dn | θ, σ)

= |det(Σ−1(σ))|n
n∏
i=1

pti−1,ti(Σ
−1(σ)Vti−1 ,Σ

−1(σ)Vti),

so we obtain

p(σ | Ṽ , Dn, θ)

∝ p(σ)|det(Σ−1(σ))|n·
n∏
i=1

ϕ(Σ−1(σ)Vti | Σ−1(σ)Vti−1 ; ∆Id)φi(Ṽ , θ, σ), (5.21)

5.4. Simulation study for the FitzHugh-Nagumo model 61

which can be evaluated using a Riemann approximation of φi. Applying a Metropolis-
Hastings-step to sample from the distribution proportional to (5.21) is straightforward.
We use a Gaussian random walk, on the transformed diffusion parameter σ̄ = log(σ)
in order to account for the restriction to positive values in the original parametrization.
Therefore, define the proportional target function s(log(σ)) as the right hand side of (5.21),
and let ϕ(· | σ̄(k); Ω2) be the Gaussian proposal distribution, used to propose an update
of σ̄ from σ̄(k) to σ̄(k+1). The Metropolis-Hastings-step is summarized in table 5.5.

Initialize
1) Initialize σ̄(0).

Iterate
2a) Generate a proposal σ̃ from ϕ(· | σ̄(k); Ω2).

2b) Let σ̄(k+1) =

{
σ̃ with prob. min

(
1, s(σ̃)

s(σ̄(k))

)
σ̄(k) otherwise

.

Table 5.5: Metropolis-Hastings-step for sampling from p(σ | Ṽ , Dn, θ).

5.4 Simulation study for the FitzHugh-Nagumo

model

For the FitzHugh-Nagumo model (2.23)-(2.24), the re-parametrization

(ε̃, s̃, γ, β) = (1/ε, s/ε, γ, β) (5.22)

makes the model linear in the drift parameters. Note that ε is assumed positive, therefore
in principle the Gaussian prior should be truncated at 0. However, for small ε the effect
of the truncation is negligible and can be omitted.

Six data sets were generated, with parameter values resembling the situation in figure 2.3
with excitatory (β = 1.4) and oscillatory (β = 0.6) behavior, respectively. The choice
of parameter values for the excitatory data is inspired by the values used in Lindner
and Schimansky-Geier (1999). Parameters are given in table 5.6. Data was generated by

ε s γ β σ1 σ2

Oscillatory 0.1 0.5 1.5 0.6 0.5 0.3
Excitatory 0.1 0.5 1.5 1.4 0.5 0.3

Table 5.6: Parameter values for simulation study.

thinning simulations from an Euler-Maruyama-scheme of the FitzHugh-Nagumo model
(2.23)-(2.24), with 20,000 observations and a time step of 0.001.

62 Chapter 5. Multidimensional diffusions, fully observed

Two data sets were generated using subsamples from the FitzHugh-Nagumo data for every
100th observation such that the sample size was n = 200 and time step between consecutive
observations was ∆ = 0.1, implying a sample interval length of 20 time units. To investigate
data with higher frequency, an additional data set was created for the excitatory setting,
using subsamples for every 10th observation, leading to a step size of ∆ = 0.01.

Finally, three data sets were generated, to evaluate the estimation procedure for different
values of ε. We used ε equal to 0.5, 0.05, 0.01 and sample size n = 200 and ∆ = 0.1. All
other parameters were as in the excitatory data.

For all six data sets, four data points were imputed between consecutive observations
(M = 5) and we used 100,000 iterations of the Gibbs sampler. In all settings, the prior for
θ = (ε̃, s̃, γ, β) was taken to be independent Gaussian. In the estimation procedure, the
prior of θ enters only in the posterior distribution of (θ | V̄ , Dn), and with the variance of
the prior taken to be infinite, the prior contributes no information to the posterior. The
prior for log(σ) was taken to be independent Gaussian with mean (log(0.3)+2, log(0.5)+1)
and variance (5, 5).

For the Metropolis-Hastings-step, the covariance matrix of the random walk proposal, was
set to diag(0.03, 0.0075) for the data sets with sample size n = 200. For each iteration
a proposal parameter is either accepted or rejected, and acceptance rates were 20% and
21% for oscillatory and excitatory data, respectively.

5.4.1 Estimation of the drift parameters

Figure 5.7 shows density plots of the marginal posterior of each of the four drift parameters,
for the setting from table 5.6, with n = 200. The black curves represents the excitatory
data, and the gray curves represents oscillatory data. The vertical lines denote the pa-
rameter values used to generate data. For the oscillatory data the posterior distribution is
more narrow and the modes are closer to the true parameter values, indicating that the
estimation procedure performs better for the oscillatory data. In the lower right panel the
dashed gray line separates the domain of β that leads to either excitatory or oscillatory
behavior.

Figure 5.8 shows trace plots of the posterior for θ for the oscillatory data (n = 200).
The plot was thinned before plotting and contains only every 10th iteration of the Gibbs
sampler. For all four parameters the chain quickly reaches a stable regime, and trace plots
for the excitatory data show similar characteristics.

Figure 5.9 shows autocorrelation plots of the posterior for θ for the oscillatory data (n =
200). It is desirable that the autocorrelations die out quickly to obtain a variance close to
that provided by independent sampling from the target. For γ and β the autocorrelation
goes to zero very fast, but less so for ε̃ and s̃. The mixing of all parameters is much
improved in higher frequency data (not shown). For the excitatory data, the conclusions
remain the same. Increasing the frequency of data (n = 2000), while keeping the sample
length constant, has little effect in the precision of the estimates of θ, as we expect from

5.4. Simulation study for the FitzHugh-Nagumo model 63

6 7 8 9 10 11 12 13

0.0

0.2

0.4

0.6

0.8

ε~
3 4 5 6

0.0

0.5

1.0

1.5

s~

1.0 1.5 2.0 2.5

0

1

2

3

4

γ
0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

5

6

β

Estimated density plots

Figure 5.7: Density plots of the sample posterior of the drift parameters (n = 200).
Black and gray curves represents excitatory and oscillatory data and vertical lines
denotes parameter values used to generate simulated data. Dashed line represents pa-
rameter value where the regime changes between oscillatory and excitatory behavior.
The burn in period was 1000 iterations.

the theory anyway. Improved statistical precision for θ is achieved by increasing the time
period of observation.

5.4.2 Estimation of the diffusion parameters

Figure 5.10 shows density plots of the posterior for σ for both oscillatory and excitatory
data (n = 200). Also included is the situation where sampling frequency is increased to
n = 2000 in the excitatory regime. Black and gray solid lines represents excitatory and
oscillatory data, respectively, with n = 200. Black dashed line denotes excitatory data
with n = 2000. For all data sets, the mode of the posterior distribution is the same, but
the tails are larger for smaller sample size.

64 Chapter 5. Multidimensional diffusions, fully observed

xx

2

4

6

8

10

12

ε~

xx

5

6

7

8

9

10

s~

xx

1.0

1.2

1.4

1.6

1.8

2.0

γ

2

4

6

8

10

Iterations of Gibbs sampler
0

β

Figure 5.8: Trace plot for the four drift parameters. Horizontal lines denote param-
eter values used to generate simulated data. Data was thinned before plotting.

5.4.3 Changing the time scale parameter ε

The performance of the algorithm depends strongly on the size of the time scale separa-
tion. If the separation is large, it may become difficult to extract information from both
coordinates in the system. Figure 5.11 shows four density plots based on data sets with
ε̃ = 2, 10, 50 and 100, and all other parameters as in the excitatory setting from table 5.6
and n = 200. Clearly the estimates get worse for large values of ε̃.

5.4.4 Practical comments

A Gaussian random walk was used as proposal for updating the diffusion parameters. In
order to tune the covariance matrix for the proposal, the Gibbs sampler ran for 10,000
iterations, with a unit proposal variance, leading to a very low acceptance rate for the
parameters. Taking the diagonal of the empirical correlation matrix, Ψ̂, after a suitable
burn in period, we obtained a rough relation between the diagonal elements of the covari-
ance matrix. Thus, the covariance matrix was taken to be on the form λ · diag(Ψ̂) for
some λ > 0. Finally λ was tuned until the acceptance rate was relatively close to 0.23 as

5.5. Discussion 65

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Lag

C
or

re
la

tio
n

ε~
s~
γ
β

Lag

A
ut

oc
or

re
la

tio
n

Figure 5.9: Marginal autocorrelation plot for output of the Gibbs sampler. The burn
in period was 1000 iterations.

suggested in Roberts and Rosenthal (2001).

5.5 Discussion

We have introduced a Bayesian approach to parameter estimation in multivariate diffusion
models and the method has been applied to the FitzHugh-Nagumo model for estimation
of both drift and diffusion parameters. To the best of our knowledge, not many papers
have previously focused on parameter estimation in the FitzHugh-Nagumo model or other
excitatory models.

A few comment regarding the performance of the algorithm must be made. First, it is
sensitive to the size of the time scale separation, but it is expected that performance will
improve further if the latent paths are updated using proposals that resembles the true
paths ’better’ than the Brownian bridge. Second, figure 5.7 suggests that the estimation
procedure performs better for data in the oscillatory regime than data in the excitatory
regime with respect to all four drift parameters. This may intuitively be explained by the
fact that in the oscillatory setting, in the limit of no noise, the drift is observable, whereas
in the excitatory regime, only the location of the steady state can be observed. Thus, less
information about the drift is available in the latter case, even if the noise makes some
inference possible.

In this chapter we have focused on the setting where all coordinates are discretely observed
without measurement noise, and the diffusion matrix Γ is of full rank. In some applications
this is not the case. The methodology described here can be extended to work when the
observations are contaminated by measurement noise or when not all coordinates are
observed. The latter setting is the topic of chapter 6.

If only a subset of the coordinates includes noise (the hypo-elliptic setting) the problem
becomes much harder. The methodology breaks down, as it relies on the equivalence of
(Gaussian) measures. To solve this problem, one could make an approximation that in-
cludes a small amount of noise, however, this may result in numerical instabilities when

66 Chapter 5. Multidimensional diffusions, fully observed

0.40 0.45 0.50 0.55 0.60

0

10

20

30

40

50

σ1

0.24 0.26 0.28 0.30 0.32 0.34

0

20

40

60

80

σ2

Estimated density plots

Figure 5.10: Density plots of the sample posterior of the diffusion parameters. Solid
and gray curves represent excitatory and oscillatory data respectively for n = 200.
Black dashed curve represents excitatory data for n = 2000. Vertical lines denote
true parameter values.

inverting the diffusion matrix Γ. To effectively deal with the hypo-elliptic case, more so-
phisticated methods are required. See for instance Pokern et al. (2009) and Samson and
Thieullen (2012).

5.5. Discussion 67

1.0 1.5 2.0 2.5 3.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

ε~
6 7 8 9 10 11 12 13

0.0

0.1

0.2

0.3

0.4

0.5

ε~

14 15 16 17 18 19 20

0.0

0.1

0.2

0.3

0.4

0.5

ε~
20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

0.25

ε~

Estimated density plots

Figure 5.11: Density plots for output of the Gibbs sampler for different values of ε̃.
Vertical lines denote true values of ε̃.

68 Chapter 5. Multidimensional diffusions, fully observed

6
Parameter estimation for

multidimensional diffusions,
partially observed

69

70 Chapter 6. Multidimensional diffusions, partially observed

In this chapter we build upon the ideas of chapter 5 and describe a data augmentation
scheme and a Gibbs sampler which can be used for parameter estimation in discretely
observed multivariate Ito diffusions with (potentially) latent coordinates. It is required that
the Lamperti transform of the diffusion exists. For data augmentation, we apply a method
described by Roberts and Stramer (2001) and Papaspiliopoulos and Roberts (2012) among
others. The general idea is (theoretically) to impute continuous time data, distributed
according to the continuous time SDE, and then use a Gibbs sampler to iteratively update
imputed data and parameters.

We consider discretely observed data where some coordinates are completely unobserved.
This makes parameter estimation more difficult because less information is available com-
pared to the fully observed case. Furthermore, parameter identification problems arise,
which are difficult to handle in general, without taking into account the specific features
of the model. If there are no latent coordinates the framework reduce to the setup consid-
ered in chapter 5.

The estimation procedure is implemented in a new R-package called BIPOD and it currently
works for the 2-dimensional Ornstein-Uhlenbeck process, the FitzHugh-Nagumo model
and the extended FitzHugh-Nagumo model, with more models to come. See chapter 8 for
details.

6.1 Statistical model and notation

Consider the (multivariate) Ito diffusion model as in chapter 5

dVt = b(Vt; θ) dt+ Σ(Vt;σ) dBt, (6.1)

with Vt a d-dimensional stochastic process, Bt a d-dimensional standard Brownian motion,
and functions b and Σ taking values in Rd and the set of d× d matrices, respectively. We
will assume that a solution to (6.1) exists, that Σ is uniformly invertible in both arguments,
and that the dimension of θ and σ is p1 and p2, respectively.

6.1.1 Latent coordinates

In many applications of model (6.1) it is natural to consider latent coordinates. Therefore

the process V is split in two compartments, Vt = (V
(1)
t , V

(2)
t)T with V

(1)
t of dimension

d1 > 0 and V
(2)
t of dimension d2 ≥ 0, with d1 +d2 = d. The aim is to make inference for the

parameters θ and σ governing the diffusion (6.1) given a discretely observed sample from
V (1). In many cases this will not provide enough information to avoid model identification
problems: Consider a two-dimensional version of (6.1) with constant diffusion coefficient,
and

b(x, t) =

(
b1(x1) + x2 + µ1

b2(x1) + x2 + µ2

)
.

6.2. The estimation procedure 71

Then the process Ṽ := (V (1), V (2) +γ)T , gives rise to a model with the same diffusion and
the new drift becomes

b̃(x, t) =

(
b1(x1) + x2 + (µ1 + γ)
b2(x1) + x2 + (µ2 + γ)

)
,

which is just a re-parametrization of the original model µi 7→ µi + γ. If γ := −µ1, there is

no information about µ1 in the first coordinate. Thus, if only V
(1)
t is (discretely) observed it

is impossible to identify µ1 without additional information about the parameters guiding

the latent coordinates V
(2)
t , either by assuming knowledge about V

(2)
t or some of the

parameters. If d2 = 0 all coordinates are discretely observed.

Define the discrete sample Dn = (D
(1)
n , D

(2)
n), where

D(i)
n = {V (i)

0 , V
(i)

1 , . . . , V (i)
n }, i = 1, 2,

with V
(i)
i := V

(i)
ti

, and t0 = 0 < t1 < . . . < tn = T equidistant time points such that ti −
ti−1 = ∆. In the following we think of D

(1)
n as discretely observed and D

(2)
n as unobserved.

Equidistant time steps are only for notational simplicity. Single subscripts Vi denote the
process V at time ti and interval subscripts V(i;j) will be used to denote the process V in
the time interval (ti; tj).

6.2 The estimation procedure

The aim is to estimate drift and diffusion parameters, θ and σ, in model (6.1) from discrete

observations D
(1)
n . The model is defined in continuous time and it is therefore natural to

consider data augmentation to obtain continuous time augmented data.

Recall the Lamperti transformed process

dZt = α(Zt; θ, σ) dt+ dWt, (6.2)

from section 2.1.2. Since V and Z are linked one-to-one (conditional on σ) by the Lamperti
transform, we can update Z instead of V in the Gibbs sampler.

Following the approach from chapter 5 it seems natural to construct a three component
Gibbs sampler that updates drift parameters, diffusion parameters, and the latent path
iteratively, always conditional on the observed data. We will pursue this approach, although
it is not straightforward to update the entire latent path in one step as in chapter 5. This

is because we have to update the endpoints Z
(2)
0 and Z

(2)
n and for other reasons which will

be described below. Thus we break down the step, to update the path, into four separate
steps.

First step is to update the latent path between observation times t0, t1, . . . , tn for both
path components. Every step of the Gibbs sampler conditions on the current value of all

72 Chapter 6. Multidimensional diffusions, partially observed

other components, such that this step is exactly the same as described in chapter 5 and it
will not be the focus here.

In the second step we update the latent path component at observation times t1, t2, . . . , tn−1,
except for the start and end point t0 and tn. The update of the latent component at these
two time points are handled separately in step three and four. It is important to state that
in both step two three and four, we do not update just one point of the path, as this would
lead to discontinuities. Instead we update a piece of the latent path. In the following we
give the details of step two three and four, but first we recall the linear transformation
from (5.18)

Ṽt = Zt −
(

1− t− ti−1

∆

)
Zti−1 −

t− ti−1

∆
Zti , (6.3)

which transformed a Brownian bridge starting and ending at Zi−1 and Zi into a standard
Brownian bridge, starting and ending in 0. We used this transformation in order to be
able to update the latent path on a common state space (continuous functions starting
and ending at zero). Without this transformation the endpoints of Z(i;i+1) would change
from one update to the next, when σ was updated.

6.2.1 Updating the latent path component at observation
times

In order to update Z
(2)
i , the latent component at time ti, i ∈ {1, . . . , n− 1}, we consider

the latent component on the double interval (ti−1; ti+1). If we are able to update on this

interval we may proceed by updating Z
(2)
(i;i+2) next, where Z

(2)
(i;i+1) was already updated in

the previous step, and so on. Thus we update in overlapping intervals, and it suffices to

focus on a single double interval in order to update the latent component Z
(2)
i .

To clarify, we want to sample Z
(2)
(i−1;i+1) conditional on Zi−1, Zi+1, Z

(1)
(i−1;i+1) and the pa-

rameters σ and θ, i.e. π(Z
(2)
(i−1;i+1) | Zi−1, Zi+1, Z

(1)
(i−1;i+1);σ, θ). Note that this conditional

distribution is proportional to π(Z(i−1;i+1) | Zi−1, Zi+1;σ, θ), when considered as a function

of Z
(2)
(i−1;i+1).

At first sight one could try to proceed almost as in chapter 5: Sample a skeleton of a

d2-dimensional standard Brownian bridge for the latent component V̄
(2)

(i−1;i+1) from time
ti−1 to time ti+1 starting and ending at zero. Then transform this process to start and

end at Z
(2)
i−1 and Z

(2)
i+1 at times ti−1 and ti+1 as in a d2-dimensional version of (6.3). This

path, combined with the fixed value of the first component Z
(1)
(i−1;i+1), is then used as the

proposal for the Metropolis-Hastings algorithm. The problem with this approach becomes
apparent in the next iteration of the Gibbs sampler, where we update Z(i;i+1). In chapter
5 we saw that this step involves the tilting from the standard Brownian bridge V̄(i;i+1) to
Z(i;i+1), which is a problem when V̄i is no longer 0, because it was updated in the previous
step. Hence V̄(i;i+1) is no longer defined on the space of continuous functions starting and
ending in 0 at times ti and ti+1, and the algorithm breaks down.

6.2. The estimation procedure 73

Independence sampler

Instead of proposing the Brownian bridge from 0 to 0 and then transforming it, we may

propose directly from the d2-dimensional Brownian bridge starting and ending at Z
(2)
i−1

and Z
(2)
i+1, respectively and then combine this path with the current value of Z

(1)
(i−1;i+1) to

get a d-dimensional path. That is, with Z̃
(2)
(i−1;i+1) the proposal, we construct Z̃(i−1;i+1) :=

(Z
(1)
(i−1;i+1),Z̃

(2)
(i−1;i+1))

T . If the proposal is accepted in the Metropolis-Hastings-algorithm,

we update the latent path V̄
(2)

(ti−1;ti+1) and V̄
(2)

(ti;ti+1) using (6.3).

In order to compute the acceptance ratio of the Metropolis-Hastings-algorithm, we find the
Radon-Nikodym derivative of the proposed process with respect to the Brownian bridge
measure. It is proportional to

G(ti−1, ti+1, Z[i−1;i+1]α, Id; θ, σ) (6.4)

= exp

(∫ ti+1

ti−1

α(Zs; θ, σ)T dZs −
1

2

∫ ti+1

ti−1

α(Zs; θ, σ)Tα(Zs; θ, σ) ds

)
,

as stated in section 2.2. Recall again that we only update the second path component so

the first component of the proposal is kept fixed at the current value of Z
(1)
(i−1;i+1).

Conditional on the endpoints Z
(2)
i−1 and Z

(2)
i+1 the proposal is sampled independently of

any parameters so the proposal density is proportional to one and it does not change the
acceptance probability of the Metropolis-Hastings-algorithm. The procedure is summarized
in table 6.1.

Initialize
1) Initialize a skeleton path Z(i−1;i+1) starting and ending at Zi−1 and Zi+1.

Iterate (step k)
2) For the current value of Z(i−1;i+1) approximate the weight in (6.4), and denote

it wk. Generate a proposal skeleton path, Z̃
(2)
(i−1;i+1) according to the Brownian

bridge distribution in (2.11) and approximate the weight in (6.4), denoted w̃,

using Z̃(i−1;i+1) := (Z
(1)
(i−1;i+1), Z̃

(2)
(i−1;i+1))

T .

3) Let (Z(i−1;i+1))k+1 =

{
Z̃(i−1;i+1) with prob. min

(
1, w̃

wk

)
(Z(i−1;i+1))k otherwise

.

4) Update V̄(i−1;i+1) according to (6.3).

Table 6.1: Independent Metropolis-Hastings sampler, generating latent component
at times t1, . . . , tn−1.

In order to reduce computational costs and speed up the process, one may realize that

it is not necessary to sample the entire path Z
(2)
(i−1;i+1), because the current value of the

74 Chapter 6. Multidimensional diffusions, partially observed

standard Brownian bridges Ṽ(i−1;i) and Ṽ(i;i+1) can be reused. Thus it suffices to sample

the single point Z
(2)
i , which, under the proposal, is distributed as the middle point of the

Brownian bridge starting and ending at Z
(2)
i−1 and Z

(2)
i+1 at times ti−1 and ti+1, respectively:

Z
(2)
i ∼ N

(
Z

(2)
i−1 + Z

(2)
i+1

2
;
∆

2
Id2

)
. (6.5)

Changing just this one point gives rise to a completely new path Z(i−1;i+1), since, by
construction, Z(i−1;i) and Z(i;i+1) are given by (6.3) which, in this setting, can be rewritten
as

Z
(2)
t = Ṽ

(2)
t +

(
1− t− ti−1

∆

)
Z

(2)
ti−1

+
t− ti

∆
Z

(2)
ti+1

, ti−1 ≤ t ≤ ti. (6.6)

The procedure is summarized in table 6.2.

Initialize

1) Initialize a starting value for Z
(2)
i .

Iterate (step k)
2) For the current value of Z(i−1;i+1) approximate the weight in (6.4), and denote

it wk. Sample Z̃
(2)
i according to (6.5) and compute Z̃

(2)
(i−1;i) using the current

value of Z
(1)
(i−1;i), Ṽ(i−1;i) and (6.6). Repeat for (i; i+ 1) and approximate the

weight in (6.4), denoted by w̃, using Z̃(i−1;i+1) := (Z̃
(1)
(i−1;i+1), Z̃

(2)
(i−1;i+1))

T .

3) Let (Z(i−1;i+1))k+1 =

{
Z̃(i−1;i+1), with prob. min

(
1, w̃

wk

)
(Z(i−1;i+1))k, otherwise

.

4) Update V̄(i−1;i+1) according to (6.3).

Table 6.2: Improved version of independent Metropolis-Hastings sampler, generating
latent component at times t1, . . . , tn−1.

Random walk sampler

There are other ways to sample the proposal than the independence sampler. For s ∈
(ti−1; ti+1) and ρ ∈ [0, 1], define the proposal as

Z̃s =

((
1− s− ti−1

ti+1 − ti−1

)
Zi−1 +

s− ti−1

ti+1 − ti−1
Zi+1

)
(1− ρ) + ρZs +

√
1− ρ2Ṽs. (6.7)

Conditional on Zi−1 and Zi+1 the distribution of Z̃t is the same as the distribution of Zt
under the proposal, and the random walk proposal is therefore as valid as the independence
sampler. Note the two extreme values of ρ: If ρ = 1 then Z̃t = Zt and the path remains

6.3. Simulation study 75

the same always. If ρ = 0, we are back at the independence sampler. The best value of
ρ depends on the type of model, but based solely on practical experience it is suggested
to use values around 0.5, which typically yields better results than the value 0. Note that
this type of proposal can also be used to update the latent component in chapter 5, even
though it is not described therein.

6.2.2 Updating the endpoints of the latent component

We sample Z
(2)
0 by proposing according to the distribution N (Z1; ∆). This is motivated

by the fact that a time reversed Brownian motion has the same distribution as the original

Brownian motion. We also put a prior distribution on Z
(2)
0 and assume that it is Gaussian.

Analogously to the argument given above we update the entire latent path in [0, t1) by

updating Z
(2)
0 and then obtaining Z

(2)
(0,1) via the transformation of V̄

(2)
(0,1) given in (6.6).

Combining the proposal with the value of Z
(1)
(0,1) we can compute the product of the prior

and the Radon-Nikodym-derivative for use in the acceptance probability of the Metropolis-
Hastings-algorithm.

The last endpoint is updated as the first endpoint except we do not include a prior. Thus

we sample Z
(2)
n ∼ N (Z

(2)
n−1; ∆) and re-compute Z

(2)
(n−1;n) from V̄

(2)
(n−1;n). Combining this

proposal with the fixed value of Z
(1)
(n−1;n) we can compute the Radon-Nikodym-derivative

for use in the acceptance probability of the Metropolis-Hastings-algorithm.

6.3 Simulation study

We will now focus on the application of the described Bayesian methods to perform pa-
rameter estimation in some 2-dimensional diffusion models where the second coordinate
is unobserved. Some general remarks are in place which apply to all simulations. Several
simulations were carried out for different models and parameter values and here we only
show a small sample of these. In general the performance in both the FitzHugh-Nagumo-
model and the extended version was good. the same was true for the Ornstein-Uhlenbeck,
although to a lesser extend.

For each data set we used 100 observations with a time step between observations of
size 0.1. Drift parameters were updated using uninformative prior although performance
only improved by choosing reasonable priors (not shown). The diffusion parameters were
updated with a random walk Metropolis-Hastings-step, after a re-parametrization to allow
for negative parameter values. Thus we used the log-transformation. In all simulations the
diffusion matrix was Σ = diag(0.5, 0.3) and the prior, on the log scale was taken to be
N (log(0.5) + 2, log(0.3) + 1); diag(5, 5)).

The random walk covariance was adjusted to obtain an acceptance rate between 15%
and 60%. Initial value for the latent path was set to 1 for all time points, and the prior

distribution on Z
(2)
0 was N (0.2; 10).

76 Chapter 6. Multidimensional diffusions, partially observed

4 data points were imputed between consecutive observations. Increasing this number lead
in general to more accurate estimates but also longer computation times and a stronger
autocorrelation meaning that the chain should run for a longer period in order to explore
the state space. Each chain was run for 30.000 iterations and the output was saved for
every 10’th iteration leading to a sample size for each simulation of 3.000.

6.3.1 The FitzHugh-Nagumo model

In this section the FitzHugh-Nagumo model is re-parameterized to obtain linearity in the
drift parameters. Thus we use ε instead of 1/ε. The model is

dXt = ε
(
Xt −X3

t − Yt + s
)

dt+ σ1 dW
(1)
t , (6.8)

dYt = (γXt − Yt + β) dt+ σ2 dW
(2)
t . (6.9)

Data from the FitzHugh-Nagumo model was simulated for two different sets of parameter
values ε = 10, θ2 = 5, θ3 = 1.5, σ1 = 0.5, σ2 = 0.3 fixed and θ4 = 0.6 or 1.4, as shown in
Figure 2.3 but for half the time length. Both data sets were simulated in order to investigate
the performance of the estimation procedure for both excitatory data and oscillatory data.

Identifiability of parameters

When only the first coordinate of the FitzHugh-Nagumo model is observed, not all pa-
rameters can be identified. First, the transformation Yt 7→ Yt − s/ε leads to the model

dXt = ε
(
Xt −X3

t − Yt
)

dt+ σ1 dB
(1)
t ,

dYt =
(
γXt − Yt + β − s

ε

)
dt+ σ2 dB

(2)
t .

On the other hand, the transformation Yt 7→ Yt − β leads to

dXt = ε
{(
Xt −X3

t − Yt
)
− εβ + s

}
dt+ σ1 dB

(1)
t

dYt = (γXt − Yt) dt+ σ2 dB
(2)
t .

It follows that when Y is unobserved it is impossible to distinguish between the two models
and one can therefore not identify both s and β. Therefore we decide to fix β.

In Figure 6.3 is shown trace plots for the oscillatory data set. With these parameters the
data set contains approximately 3.5 oscillations. Even though the parameters are initiated
far from their optimal values they move fast to the stationary regime. For the s parameter
there seems to be a strong autocorrelation and this is verified by an autocorrelation plot
(not shown).

Not only the parameters are updated in the Gibbs sampler, but also the latent coordinate.
We store for each observation the latent coordinate at times t0, t1, . . . , tn. Figure 6.4 shows

6.3. Simulation study 77

0 500 1500 2500

2

4

6

8

10

12

14

drift1

0 500 1500 2500

4

6

8

10

drift2

0 500 1500 2500

0.5

1.0

1.5

2.0

drift3

0 500 1500 2500

0.4

0.6

0.8

1.0

diff1

Figure 6.3: Trace plots for oscillatory data from the FitzHugh-Nagumo model. Gray
lines denote parameter values used to generate simulated data. drift1=ε, drift2=s,
drift3=γ, diff1=σ1.

path output from the Gibbs sampler. That is the imputed data for the latent coordinate at

observation times Z
(2)
i , i = 0, . . . , n. Black line denotes the true data points and the gray

lines are the 5% and 95% quantile of the marginal sample distribution. It seems that the
algorithm is able to replicate the latent data points quite well even though it was started
as a straight line with value equal to 1.

For the excitatory data the estimation procedure also performed well even though the data
only contained one spike. The trace plot is shown in Figure 6.5. The autocorrelation was
slightly larger for excitatory data than oscillatory data. See Figure 6.6. This is in line with
the conclusion from chapter 5, stating that in the fully observed case, performance was
better for the oscillatory data compared to the excitatory data.

78 Chapter 6. Multidimensional diffusions, partially observed

0 20 40 60 80 100

0.0

0.5

1.0

1.5

Figure 6.4: Sampled points D
(2)
n from Gibbs sampler. Black: True data. Gray lines:

5% to 95% quantile of marginal sample.

6.3.2 The two-dimensional Ornstein-Uhlenbeck model

The two dimensional Ornstein-Uhlenbeck process is given by

dVt = −B(Vt −A) dt+ Σ dBt,

with the restriction that the real part of the eigenvalues of the drift matrix B should be
positive to obtain stationarity. For the simulations we chose

A =

(
6
8

)
, B =

(
5 2
4 6

)
, Σ =

(
0.5 0
0 0.3

)
,

with eigenvalues 3±
√

2.

Figure 6.7 shows trace plots for the Ornstein-Uhlenbeck model. It seems that B21 is very
difficult to estimate compared to B11 and B12. This is confirmed by the autocorrelation
plot that shows a huge autocorrelation for B21 and almost none for B11 and B12. For the
Ornstein-Uhlenbeck process it was more difficult to estimate parameters, compared to the
FitzHugh-Nagumo model. In the Ornstein-Uhlenbeck case, the output of the Gibbs sampler

6.3. Simulation study 79

0 500 1500 2500

5

10

15

drift1

0 500 1500 2500

−2

0

2

4

6

8

10

12

drift2

0 500 1500 2500

0.0

0.5

1.0

1.5

2.0

2.5

drift3

0 500 1500 2500

0.4

0.6

0.8

1.0

diff1

Figure 6.5: Trace plots for excitatory data from the FitzHugh-Nagumo model. Gray
lines denote parameter values used to generate simulated data. drift1=ε, drift2=s,
drift3=γ, diff1=σ1.

was not always stable. Occasionally the output from the Gibbs sampler drifted away from
the state of the stationary distribution (not shown). This could either be attributed to a
programming bug or too little information in data to estimate three parameters at once.

6.3.3 The extended FitzHugh-Nagumo model

Consider again the extended version of the FitzHugh-Nagumo model.

dXt = (−αX3
t + ε(Xt − Yt) + s) dt+ σ1 dW

(1)
t

dYt = (γXt − Yt + β) dt+ σ2 dW
(2)
t

with α, ε > 0, γ > 1, and β, s ∈ R. For simulations we chose

α = 8 ε = 12, s = 5, γ = 1.5, β = 0.5, σ1 = 0.5, σ2 = 0.3.

and estimated α, ε, β and σ1. Figure 6.8 shows trace plots for the four parameters after a
burn in period of around 100 iterations. The samples are located around the value that

80 Chapter 6. Multidimensional diffusions, partially observed

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

drift1

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

drift2

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

drift3

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Lag

A
C

F

diff1

Figure 6.6: Autocorrelation plot for the estimated parameters of the excitatory
FitzHugh-Nagumo model. drift1=ε, drift2=s, drift3=γ, diff1=σ1

generated the simulated data, but there seems to be some very slow oscillations indicating
a large autocorrelation.

6.3. Simulation study 81

0 500 1500 2500

0

2

4

6

8

10

drift1

0 500 1500 2500

−10

−5

0

5

10

drift2

0 500 1500 2500

−5

0

5

10

drift3

Figure 6.7: Trace plots for the Ornstein-Uhlenbeck model. drift1=B11, drift2=B12,
drift3=B21.

82 Chapter 6. Multidimensional diffusions, partially observed

0 500 1000 2000 3000

6

7

8

9

10

drift1

0 500 1000 2000 3000

9

10

11

12

13

14

15

drift2

0 500 1000 2000 3000

0.0

0.2

0.4

0.6

0.8

1.0

drift5

0 500 1000 2000 3000

0.3

0.4

0.5

0.6

0.7

diff1

Figure 6.8: Trace plots for the extended FitzHugh-Nagumo model. drift1=α, drift2=ε,
drift5=β, diff1=σ1.

7
Parameter identifiability for
partially observed diffusions

83

84 Chapter 7. Parameter identifiability for partially observed diffusions

In this chapter we repeatedly use the notion of partially and fully observed data. Partially
observed data refers to the scenario where the statistical model has two compartments,
where one is completely unobserved, and the other is discretely observed; just as in chapter
6. The fully observed case refers to discretely observed data where both compartments are
discretely observed, and it was the case in chapter 5.

Parameter estimation for partially observed diffusions presents an additional challenge
compared to the scenario where all coordinates of the process is observed. In the fully
observed case the model is typically parameterized such that all parameters are identifiable.
In the partially observed model, the first problem is to recognize which parameters can be
estimated at all, since one can only hope to infer about parameters from the distribution
of the marginal component. Consider the simple example Zt = (Xt, Yt) where the X and
Y components are mutually independent. Clearly, if only Xt is observed, one can never
make inference about the parameters controlling Yt. In more complicated models, where the
components are not independent, one typically finds that not all parameters are identifiable
and it may be necessary to fix or standardize some parameters in order to identify others.
Different parameterizations may be natural depending on whether one has access to data
from the fully or the partially observed model. As an example, consider the drift matrix
of the Ornstein-Uhlenbeck model: In the fully observed case it is typically parameterized
directly in terms of the entries of the drift matrix, but in the marginally observed case it is
more natural to consider the eigenvalues and the entries of the eigenvectors as parameters.
Note that the eigenvectors only contain two parameters because the eigenvector is only
identified up to proportionality. Eigenvalues also contain only two parameters - either
complex conjugate or two reals.

Another issue arise in the case where the process is only partially observed, which may
also appear in the fully observed case: Assume we have a parametrization for the partially
observed case that is not over-parameterized, potentially by fixing some of the parameters
from the fully observed model. From a practical point of view, it is very interesting to know
how much information is available about the parameters of interest. Consider again the
zero mean Ornstein-Uhlenbeck model with unit diffusion matrix: If the entry of the drift
matrix b12 is zero, then the first marginal is just a one-dimensional Ornstein-Uhlenbeck
with parameters b11 and σ1, making inference about b21, b22 impossible in the marginal
model. If b12 6= 0 is numerically small (relative to the other parameters), only a small
amount of information is available about b21, b22. Even though information about the
parameters of the latent component theoretically may be extracted from the marginal
distribution, it is not always possible to do so in practice.

For general diffusions it is not easy to make strong statements about identifiability. In this
chapter we will primarily focus on parameter identification for the partially observed two-
dimensional Ornstein-Uhlenbeck process. However we start with a general remark about
linear transformations.

7.1. Linear transformation of latent coordinate 85

7.1 Linear transformation of latent coordinate

Consider the stochastic differential equation

dVt = b(Vt; θ) dt+ Σ(Vt;σ) dWt,

as in chapter 6. We assume again that Vt = (V
(1)
t , V

(2)
t)T with V

(1)
t discretely observed

and V
(2)
t unobserved. Such models are typically specified so that over parameterization is

not a problem. However, this does not automatically carry over to the case where one of
the compartments is unobserved.

Since the second component is unobserved, we consider transformations of the form g(x, y) =
(x, g2(x, y)). With z = (x, y) we may write g(z) or g(x, y) interchangeably to simplify no-
tation. Using Ito’s formula the components of the transformed drift b̃ become

b̃k(Zt; θ, σ) =

d∑
i=1

bi(g
−1(Zt); θ)

∂gk
∂xi

(g−1(Zt)) +
1

2

d∑
i,j=1

Γij(g
−1(Zt);σ)

∂2gk
∂xi∂xj

(g−1(Zt)),

where Zt denotes the transformed process k = 1, 2 and Γ = ΣΣT . The g function may
also depend on the parameters, but this is hidden for notational simplicity. The diffusion
function is given by

Σ̃(Zt; θ, σ) = ∇gk(g−1(Zt))Σ(g−1(Zt)).

Notice that in order to satisfy the quadratic variation identity in both parameterizations,
it should hold that (

ΣΣT
)

11
=
(

Σ̃Σ̃T
)

11
. (7.1)

Furthermore, for the marginal distribution of the first component to remain unchanged it
should hold that

b̃1(Zt; θ, σ) = b1(Vt; θ). (7.2)

Example 7.1. When b is affine in the parameters, (7.2) is satisfied when g(x, y) = (x, α+
βy). In this case

b̃1(Zt; θ, σ) =

d∑
i=1

bi

(
Z

(1)
t ,

Z
(2)
t − α
β

; θ

)
,

b̃2(Zt; θ, σ) =

d∑
i=1

βbi

(
Z

(1)
t ,

Z
(2)
t − α
β

; θ

)
,

and the new diffusion function Σ̃ becomes

Σ̃ij (Zt;σ) = Σij

(
Z

(1)
t ,

Z
(2)
t − α
β

;σ

)
β1(i=2) .

86 Chapter 7. Parameter identifiability for partially observed diffusions

Thus in order to satisfy (7.1), it is sufficient that Σ1j(Z
(1)
t , Z

(2)
t ;σ) does not depend on

Z
(2)
t for j = 1, 2.

�

7.2 The two-dimensional Ornstein-Uhlenbeck pro-

cess

Consider the process

dVt = −BVt dt+ Σ dWt,

where B and Σ are 2×2-matrices and Vt,Wt are 2×1-matrices with Wt a two-dimensional
standard Brownian motion.

From Example 7.1 it follows that a linear transformation of the latent coordinate in the
two-dimensional Ornstein-Uhlenbeck model case gives a transformed model, Zt,

dZt = −B
(

1 1
β

β 1

)[
Zt −

(
1 0
0 β

)
A+

(
α 0
0 αβ

)
B

(
1
1
β

)]
dt+ Σ

(
1 0
0 β

)
dWt,

and the parameters change from

{bij , ai, σi | i, j = 1, 2}

to

{b11, b22, b12/β, b21β, a1 + b12α/β, a2β + b22α, σ1, βσ2}.

Another more thorough way to approach the problem of parameter identifiability is to look
directly at the marginal distribution of the observed compartment as in Jacobsen (2011).
Here the first marginal for the two-dimensional Ornstein-Uhlenbeck was investigated to
find out which drift and diffusion matrices that were equivalent to a diagonal drift ma-
trix and arbitrary diffusion matrix, in the sense of same first marginal distribution. The
expression for the distribution of the first marginal is given in (7.4).

Define Γ = ΣΣT and let

C :=

∫ ∞
0

e−BsΓe−B
T s ds,

the variance of the stationary process. Assume the initial distribution is N (0, C) such that
the process is stationary with E(Vs) = 0 and cross covariance

E(VsV
T
s+t) = Ce−B

T t, s, t ≥ 0. (7.3)

7.2. The two-dimensional Ornstein-Uhlenbeck process 87

In order to evaluate (7.3) it is necessary to compute the matrix exponential, and since
λ1 6= λ2 and both are different from 0, one can find P such that B = PDP−1, with
D = diag(λj)j=1,2.

Then

Ce−B
T t =

∫ ∞
0

Pe−DsP−1Γ(P−1)T e−DsP T ds(P−1)T e−DtP T

= P

∫ ∞
0

e−DsP−1Γ(P−1)T e−Ds ds e−DtP T .

For the matrix integral we get that the (m,n)’th coordinate is(∫ ∞
0

e−DsP−1Γ(P−1)T e−Ds ds

)
mn

=

2∑
k,l=1

∫ ∞
0

(
e−Ds

)
mk

(
P−1Γ(P−1)T

)
kl

(
e−Ds

)
ln

ds

=
(
P−1Γ(P−1)T

)
mn

1

λm + λn
,

since ∫ ∞
0

(e−Ds)mk(e
−Ds)ln ds =

∫ ∞
0

e−(λm+λn)s1(m=k,l=n) ds

=
1

λm + λn
1(m=k,l=n).

Hence (
Ce−B

T t
)
ij

=
∑
m,n,r

Pim
(
P−1Γ(P−1)T

)
mn

1

λm + λn

(
e−Dt

)
nr
P Trj

=
∑
m,n

Pim
(
P−1Γ(P−1)T

)
mn

1

λm + λn
e−λntP Tnj

=
∑

m,n,k,r

PimP
−1
mkPjnP

−1
nr Γkr

1

λm + λn
e−λnt.

The marginal distribution of the first coordinate V
(1)
t is completely specified by (Ce−B

T t)11:

(Ce−B
T t)11 =

2∑
k,m,n,r

1

λr + λk
e−λktΓnmP1r(P

−1)rnP1k(P
−1)km. (7.4)

We now focus on which matrices B̃, Γ̃ that lead to the same marginal cross covariance as
B and Γ. First of all, the quadratic variation identity will identify Σ11 and therefore it
must hold that Γ̃11 = Γ11. From (7.4) it follows that the eigenvalues must be the same for
B and B̃, and they are

λ =
β11 + β22 ±

√
(β11 + β22)2 − 4(β11β22 − β12β21)

2
(7.5)

=
Tr(B)±

√
Tr(B)2 − 4 det(B)

2
.

88 Chapter 7. Parameter identifiability for partially observed diffusions

It follows that uniqueness of the eigenvalues is equivalent to

det(B) = det(B̃) and Tr(B) = Tr(B̃).

Therefore we can potentially write a candidate matrix B̃ in two ways because of the
symmetry of the problem. First as

B̃0(B, h, δ). =

(
b11 + h δ

0 b22 − h

)
, δ ∈ R, (7.6)

and second

B̃(B, h, α) :=

(
b11 + h b12b21−h(b11−b22)−h2

α
α b22 − h

)
, α 6= 0, h ∈ R. (7.7)

Note that B̃(B, 0, b21) = B, and assume also that B̃(B, h, α) 6= 0 as this would correspond
to (7.6) with the coordinates switched. Complex h values are not allowed to avoid a
complex B̃ matrix. Here we focus on candidates of the second form (7.7).

In order to find the matrix P̃ that is used to diagonalize B̃ we find that for an eigenvector
(v1, v2)T and an eigenvalue λ,

(b11 + h)v1 +
b12b21 − h(b11 − b22)− h2

α
v2 = λv1,

αv1 + (b22 − h)v2 = λv2.

Since the eigenvectors are only unique up to a proportionality constant, we are free to
choose P̃11 = P̃22 = 1. It follows that for λ1 − b22 + h 6= 0,

P̃ =

(
1 λ2−b22+h

α
α

λ1−b22+h 1

)
,

such that

P̃−1 =
λ1 − b22 + h

λ1 − λ2

(
1 −λ2−b22+h

α
− α
λ1−b22+h 1

)
,

Now one can see that

P̃ij =

(
λj − b22 + h

α

)j−i
, (7.8)

P̃−1
ij =

λ1 − b22 + h

λ1 − λ2

(
λj − b22 + h

α

)j−i
(−1)i+j . (7.9)

In order to compute (7.4) the following lemma is useful.

7.2. The two-dimensional Ornstein-Uhlenbeck process 89

Lemma 7.2. Let a1, a2 6= 0 and let i, r, n, j, k,m ∈ {1, 2}. Define

γ1(i, j, k,m, n, r) = (2− r)(1− i) + (r − 1)(n− 2) + (2− k)(1− j) + (k − 1)(m− 2),

γ2(i, j, k,m, n, r) = (r − 1)(2− i) + (2− r)(n− 1) + (k − 1)(2− j) + (2− k)(m− 1).

Then

ar−ir an−rn ak−jk am−km = a
γ1(i,j,k,m,n,r)
1 a

γ2(i,j,k,m,n,r)
2 .

Proof. First note that an−rn = an−r3−r , such that

ar−ir an−rn ak−jk am−km = ar−ir an−r3−ra
k−j
k am−k3−k .

Also

ar−ir = a
(2−r)(1−i)
1 a

(r−1)(2−i)
2 ,

such that

ar−ir an−r3−r = a
(2−r)(1−i)+(r−1)(n−2)
1 a

(r−1)(2−i)+(2−r)(n−1)
2 .

This motivates the definition of γ1, γ2 and the result follows.

An short calculation shows that γ1 ∈ {−2,−1, 0} and γ2 ∈ {0, 1, 2} with γ1 + γ2 =
n+m− i− j.
Now it follows from lemma 7.2 and equation (7.8) and (7.9) that

P̃ir(P̃
−1)rnP̃jk(P̃

−1)km

= (λ1 − b22 + h)γ1(i,j,k,m,n,r)+2 (λ2 − b22 + h)γ2(i,j,k,m,n,r) α
−(n+m−i−j)

(λ1 − λ2)2
(−1)k+m+n+r,

with 00 := 1. To emphasize the dependence on α and h, define

g(i, j, k,m, n, r, h, α,B) := P̃ir(P̃
−1)rnP̃jk(P̃

−1)km.

Then (
Ce−B̃

T t
)

11
=

2∑
k,m,n,r

e−λktΓ̃nm
λr + λk

g(1, 1, k,m, n, r, h, α,B). (7.10)

So for a given pair (B,Γ), a candidate pair (B̃, Γ̃) with the same first marginal distribution
should satisfy for each k = 1, 2,

2∑
m,n,r

1

λr + λk

{
Γ̃nmg(1, 1, k,m, n, r, h, α,B)− Γnmg(1, 1, k,m, n, r, 0, b21, B)

}
= 0, (7.11)

90 Chapter 7. Parameter identifiability for partially observed diffusions

where Γ̃11 = Γ11, due to the quadratic variation identity.

Solutions to (7.11) with respect to either α, h or Σ̃ can easily be found using a computer
with the following approach.

For notational simplicity, define P = (v1, v2)T where v1 = (1, x1)T and v2 = (x2, 1)T , and

let Γ := ΣΣT =

(
c1 c2

c2 c3

)
. We compute

Cov(V (1)
s , V

(1)
s+t)

=
(

1 0
)
P

∫ ∞
0

e−DsP−1Γ
(
P−1

)T
e−Ds ds e−DtP T

(
1
0

)
= (1− x1x2)−2

[(
c1 − 2x2c2 + x2

2c3

2λ1
+
x2c2 − x1x2c1 + x1x

2
2c2 − x2

2c3

λ1 + λ2

)
e−λ1t +(

x2
1x

2
2c1 − 2x1x

2
2c2 + x2

2c3

2λ2
+
x2c2 − x1x2c1 + x1x

2
2c2 − x2

2c3

λ1 + λ2

)
e−λ2t

]
.

A candidate B̃ would lead to the same expression with x1, x2 exchanged with x̃1 and x̃2,
so we obtain two equations:

(1− x1x2)−2
[
(λ1 + λ2)

(
c1 − 2x2c2 + x2

2c3

)
+ 2λ1

(
x2c2 − x1x2c1 + x1x

2
2c2 − x2

2c3

)]
,

= (1− x̃1x̃2)−2
[
(λ1 + λ2)

(
c1 − 2x̃2c2 + x̃2

2c3

)
+ 2λ1

(
x̃2c2 − x̃1x̃2c1 + x̃1x̃

2
2c2 − x̃2

2c3

)]
(7.12)

and

(1− x1x2)−2
[
(λ1 + λ2)

(
x2

1x
2
2c1 − 2x1x

2
2c2 + x2

2c3

)
+ 2λ2

(
x2c2 − x1x2c1 + x1x

2
2c2 − x2

2c3

)]
= (1− x̃1x̃2)−2

[
(λ1 + λ2)

(
x̃2

1x̃
2
2c1 − 2x̃1x̃

2
2c2 + x̃2

2c3

)
+ 2λ2

(
x̃2c2 − x̃1x̃2c1 + x̃1x̃

2
2c2 − x̃2

2c3

)]
,

(7.13)

where

x̃1 =
b12x1 − h

b̃12

, x̃2 =
b21x2 + h

α
, (7.14)

and

b̃12 =
b12b21 − h(b11 − b22)− h2

α
. (7.15)

Substituting (7.14) and (7.15) into (7.12) and (7.13), we obtain two equations in b̃12, b̃21, c12, c22

and h.

For fixed α and h we have two equations with two unknowns, Γ̃21 = Γ̃12 and Γ̃22. In
Jacobsen (2011) Γ̃12 and Γ̃22, with Γ̃11 = 1, was characterized for the diffusion with
diagonal B and unit Γ. It turns out that the solutions (Γ̃12, Γ̃22) span a one-dimensional
affine subspace of R2. As a special case, the situation where

B̃ =

(
λ1 δ
0 λ2

)
,

7.2. The two-dimensional Ornstein-Uhlenbeck process 91

was considered and the solution subspace was given as

Γ̃12 =
δ

2(λ1 − b22)

(
λ1

λ2
− 1

)
Γ̃22, (7.16)

Note that this corresponds to the situation from (7.6), though B̃12 = 0 and the function
g is not yet defined in this case. One can find

P1r(P
−1)rnP1k(P

−1)km =

(
δ

λ2 − b11 − h

)n+m−2

1(r≤n)1(k≤m), (7.17)

and verify the claim (7.16) by rearranging (7.11), where the first g is substituted by (7.17).

Example 7.3. Let Σ = Σ̃ = diag((2, 1)) and

B =

(
3 2
1 4

)
.

Tedious computations or a computer program like Maple, can show that the auto covari-
ance function for (Vt) is

Cov(V0, Vt) =

(
16
105e

−5t + 13
21e
−2t 16

105e
−5t − 13

42e
−2t

2
35e
−5t − 3

14e
−2t 2

35e
−5t + 3

28e
−2t

)
≈
(

0.152e−5t + 0.619e−2t 0.152e−5t − 0.310e−2t

0.057e−5t − 0.214e−2t 0.057e−5t + 0.107e−2t

)
,

with

Cov(V0, V0) =

(
27
35 −11

70
−11

70
23
140

)
≈
(

0.771 −0.157
−0.157 0.164

)
.

Furthermore, with h equal to

h =
1

3

(
377 + 12

√
987
)1/3

+
1

3
(
377 + 12

√
987
)1/3 +

2

3
≈ 3.737,

we get that

B̃ ≈
(

6.737 −8.229
1 0.263

)
,

with exact values that are possible to compute. The B̃ matrix induces a new process (Ṽt)
with covariance function

Cov(Ṽ0, Ṽt) ≈
(

0.152e−5t + 0.619e−2t 0.032e−5t + 0.356e−2t

−0.550e−5t + 0.939e−2t −0.116e−5t + 0.540e−2t

)
,

with

Cov(Ṽ0, Ṽ0) ≈
(

0.771 0.389
0.389 0.424

)
.

See figure 7.1 where both Vt and Ṽt are simulated for 400 observations, showing both
scatter plot, time plot and density plots.

92 Chapter 7. Parameter identifiability for partially observed diffusions

0 100 200 300 400

−2

−1

0

1

2

t

X

x1
x2

−2 −1 0 1 2

−2

−1

0

1

2

x1

x 2

0 100 200 300 400

−2

−1

0

1

2

t

X

x1
x2

−2 −1 0 1 2

−2

−1

0

1

2

x1

x 2

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Figure 7.1: Top: Simulations from (Vt). Middle: Simulations from (Ṽt). Bottom:
Density plots of first marginal for (Vt) (black) and (Ṽt) (gray).

In conclusion one should always be careful when it comes to parameter estimation in
models with latent components, because the natural model formulation, corresponding to
the fully observed case might contain parameters that are no identifiable.

8
Computer implementation

93

94 Chapter 8. Computer implementation

In this chapter we focus on the implementational aspects of the statistical methods de-
scribed in chapter 5 and 6. In general, implementation of computer intensive methods
can be a highly time consuming task for several reasons. For instance, one has to choose
how to structure the program and decide which programming language to use for the im-
plementation. The choice of language should in principle entail a good relation between
ease of implementation, speed, and perhaps also user friendliness. There are many op-
tions when it comes to choosing the right language for statistical computing, including
R, (WIN/open)BUGS, Python, JAVA, julia, C++ and many more, and they all have their
own strengths and drawbacks. Some are more difficult to debug than others, and some
are specialized in accomplishing specific types of operations such as linear algebra. It is
therefore important to consider if the task is to be carried out only once (or a small number
of times) relative to the amount of time it takes to do the implementation (including the
unavoidable and time consuming task of debugging). For example, implementing a Gibbs
sampler requires one to perform calculations based on an iterative procedure and thus
lends itself toward a loop statement. In our setting, each step in the loop is relatively time
consuming implying that the language should be fast. Initially, part of the algorithm was
coded directly in R, leading to a very slow program. After switching to C++ the speed up
was between a factor 20 and 40.

Another important aspect is whether the final software should be portable to other com-
puters with different compilers and/or operating systems. Additionally, one must also be
familiar with the estimation procedure and understand the potential limitations or re-
strictions of the methodology. For instance, it does not always make sense to estimate
all parameters in a partially observed model even though the software does not produce
an error cf. example 7.2. This is of course a design issue, which could be solved with a
thorough number of sanity checks, but it is easy to make a design failing to satisfy all
reasonable checks.

Here we focus on the choice made in relation to this thesis, namely a combination of C++
and R. The former has the advantage of being very fast and capable of handling large
data structures, whereas the latter one is excellent for graphics. Also R is an interpreted
language, making debugging and direct manipulation of objects easier than in C++. Fur-
thermore R directly supports all the (graphical) tools needed to evaluate results from the
MCMC routine, and it is available across different platforms (Windows, Linux, Mac) for
others to use. In relation to this thesis is developed a piece of software which is collected
in an R package. The package is available on CRAN (the official R-library repository) and
can also be found on www.math.ku.dk/~anders.

8.1 Developing R-packages in Windows

This section is a brief description on how to create and maintain an R package with included
C++ code on a Windows computer. It is targeted at people with little or no experience in
this matter, hence we will not go far into the technical details. There are many different
ways to accomplish the task, and in the following is outlined one specific solution. There

www.math.ku.dk/~anders

8.1. Developing R-packages in Windows 95

are many others. For detailed help the main reference is ’Writing R Extensions’ (R Core
Team, 2013).

A nice feature of R is the option to create a package containing all functionality related
to a certain task, and the ease of which one can share this software to other computers
and operating systems. Furthermore, the R language is a very nice tool for statistical
inference, although it has its limitations, one of them being the lack of speed for certain
tasks. The general progress in computational power within the last few decades, has made
implementation of highly computer intensive methods possible. However this progress
comes with a few challenges. For a person with programming knowledge limited to basic
use of R, it can be a challenge to start developing an R package, though it need not
be. The optimal development work flow is not entirely obvious, because all changes to
the package has to be compiled before use, and this is different from the behavior of a
standard interactive R session. For one, it makes debugging more cumbersome. On top of
this comes the need to include code from another programming language which one needs
to be familiar with.

Since the methods from chapter 5 and 6 are multivariate, a natural way to structure the
implementation is via matrix operations. The C++ Armadillo library (Sanderson, 2010)
supports matrix operations and has syntax that is somewhat familiar to R users. In order
to establish the connection between R and C++, including the Armadillo library, we use the
two R packages Rcpp (Eddelbuettel and Francois, 2011) and RcppArmadillo (Eddelbuettel
and Sanderson, 2014), which are designed to facilitate the gap between C++ and R.

8.1.1 Preliminaries

Some of the essential tools for building R packages are not pre-installed in a default Win-
dows setup. This can be accomplished by downloading and installing Rtools which is a
freely available collection of files that makes it possible to create and compile R-packages. It
includes a compiler (MinGW), Perl and some UNIX command line tools. Rtools must be
installed in C:/Rtools which will require Windows administrator rights. Next, one must
ensure that the following lines are included in the search path:

c:\Rtools\bin;

c:\Rtools\perl\bin;

c:\Rtools\MinGW\bin;

c:\progra~1\R\R_VERS\R\bin\i386

where the last path must be modified according to the location of R, and i386 should be
interchanged with x64 if one prefer the 64 bit version of R instead of 32 bit. In this way,
R is able to locate all the files needed to use Rtools. It is also recommended to have a
working installation of latex, but this is only to create the help files. The final preparation
step is to install the R packages Rcpp and RcppArmadillo. To ease the process of updating
a package, it is also recommended to install devtools which is designed to do exactly this.

96 Chapter 8. Computer implementation

8.1.2 Creating and building the package

An R package consists of a collection of files and folders ordered in a specific way. This file
structure can be generated automatically and the standard way to do this is to use the R

function package.skeleton. However, if the package should contain C++ code and link to
the Armadillo library, it is recommended to use the RcppArmadillo.package.skeleton

instead. This function automatically creates a package folder with three sub-folders, src,
R and man, which are more or less self explanatory: The man folder is for documentation
files for the functions in the package, the R folder is for the actual R code, and the
src folder holds the C++ source code. Three example files are automatically generated:
The rcpparma_hello_world.R function which calls rcpparma_hello_world.cpp which
in turn calls rcpparma_hello_world.h. By examining and modifying these files, basic
functionality can be obtained. Note that the R function use the R function .Call to call a
C++ function.

The package folder contains three files: A read-and-delete-me file, a DESCRIPTION file
with details about the package version, author etc., and NAMESPACE which defines
which of the package functions are made available to the R user. When using the RcppAr-

madillo.package.skeleton the default is that all functions starting with a letter becomes
available. Thus to hide a function, which is only for internal use, one may explicitly ensure
that it is not included or hide it by starting the function name with a period. If the package
use functionality from other R packages, it should be specified in the DESCRIPTION file.
Previously one had to manually edit the DESCRIPTION file and the src/MAKEVARS
to specify R library dependencies and locations of certain C++ libraries. This procedure
is now fully automatized: The RcppArmadillo.package.skeleton automatically links to
Rcpp and RcppArmadillo and ensures that R is able to find the BLAS and LAPACK libraries
which are necessary for some C++ functionality.

Next step is to create the actual R files that should be part of the package. This can be
done directly in RcppArmadillo.package.skeleton via the list argument: Start a clean
R session and load exactly the code that should be in the package. List the objects to
include in a character vector as in Listing 8.1.

Listing 8.1: Example for creating a minimal R package

library(RcppArmadillo)

a.fun <- function(x){x^2}

rcppArmadillo.package.skeleton(name="NameOfPackage",list=c("a.fun"))

This will create the folder structure for the package. Additional arguments can be given;
see the help page. One should also remember to update and edit the documentation files
in the /man directory.

When additional functionality is to be included the package must be completely unloaded
first, then compiled and re-installed. After closing R, this is done from the command line
using

8.2. The BIPOD-package 97

R CMD INSTALL --build "PathToPackage/NameOfPackage"

This will create and install a zip file containing the package for use on Windows. For
optional arguments to R CMD INSTALL see

R CMD INSTALL --help

This is however, not a fast way to debug or test new code. The R package devtools

can help to perform these steps automatically using the function load_all. Updating
package version and date must be done manually in the two files ’DESCRIPTION’ and
’man/NameOfPackage-package.Rd’.

8.2 The BIPOD-package

The BIPOD (Bayesian Inference for Partially Observed Diffusions) package implements
the Bayesian methods from chapter 5 and 6 in order to make parameter inference for
diffusion models. The implementation is relatively computer intensive and in order to
keep computational time at a minimum we take advantage of C++ which runs the MCMC
procedure considerably faster than R itself is able to do. As a positive side effect there
is also access to functions that can do fast simulations of 1 or 2-dimensional versions of
the Ornstein-Uhlenbeck process, the Brownian bridge and three additional processes via
the Euler-Maruyama scheme. All computational heavy code is written in C++ while the R

functions mainly work as wrappers.

The package contains five functions and full details can be found in the manual in appendix
10.A. The ShowModels function prints a given model description to the screen. This is
mainly relevant when specifying a list of possible known parameters that should not be
estimated. The result is printed to the screen showing how the parameters are ordered and
how many drift and diffusion parameters one may use. For the current implementation
the diffusion matrix must be diagonal. See Listing 8.2 for an example.

Listing 8.2: Application of the ShowModels functions
> ShowModels("FHN5")

$Model

[,1]

[1,] "dX_t = (- drift1 * X_t^3 + drift2 * (X_t - Y_t) + drift3) dt + diff1

dB1_t"

[2,] "dY_t = drift4 * X_t - Y_t + drift5) dt + diff2 dB2_t"

$Ndrift

[1] 5

$Ndiff

[1] 2

98 Chapter 8. Computer implementation

The BBSim simulates Brownian bridges and DiffSim simulates two-dimensional diffusion
processes. Both functions are faster than a naive R-implementation as they rely on C++-
code. The following code generates an Euler-Maruyama approximation to a sample path
from the FitzHugh-Nagumo model starting in (1, 1). The time step is 0.001 but the output
is thinned such that the actual time step is 0.1. The code is given in Listing (8.3). For the
Ornstein-Uhlenbeck data is simulated from the exact distribution.

Listing 8.3: Simulation of data from the FitzHugh-Nagumo model

DiffSim(n = 10000,

start = c(1,1),

Delta = .001,

driftpar = c(10,5,1.5,0.6),

Sigma = diag(c(.5,.3)),

thin = 100,

Model = "FHN")

The main function is Estfun and it runs a Gibbs sampler to estimate parameters in a dis-
cretely observed two-dimensional diffusion where one coordinate potentially is unobserved.
The current implementation handles the following models:

• The 2 dimensional Ornstein-Uhlenbeck process

• The stochastic FitzHugh-Nagumo model

• The extended stochastic FitzHugh-Nagumo model

The Estfun function takes 19 arguments. The first is data which takes the observed
data. If given as a vector it is treated as the first coordinate of the process with the
second coordinate latent, and if it is given as a two column matrix both coordinates are
treated as fully observed. The next argument Delta is needed in order to know the time
step between observations. The number of imputed data points is given by ImputeN, and
GibbsN specifies the number of iterations of the Gibbs sampler. The parKnown argument
is a named list with the parameters (if any) that are fixed and names can be found via
the ShowModels function. The arguments Start and LatentPathStart are the starting
values for the parameters of the Gibbs sampler and the latent path, respectively. Thus
LatentpathStart should be a vector as long as data or a single number. In the latter case
the path starts as the horisontal line through LatentpathStart.

Prior distributions on the parameters are specified separately for drift and diffusion. The
drift has three options: It can be Gaussian and sampled directly, because the posterior is
also Gaussian. It can be sampled using an MH step or the prior can be improper such
that sampling is performed as described in (5.15). The prior of the diffusion parameters
is assumed to be a two-dimensional Gaussian distribution with mean diffPriorMean and
covariance DiffPriorCovar, while DiffRW is the covariance matrix of the random walk
which updates the diffusion parameters. The Model argument specifies which model to use
for the estimation procedure.

8.2. The BIPOD-package 99

If the second coordinate is unobserved, the LatentMeanY0 and LatentVarY0 give the prior
Gaussian distribution on the latent second coordinate at time 0. Finally RWrhoPaths and
RWrho2PathPoints are values between 0 and 1 controlling the update of the latent path.
See (6.7).

The result is an object of class BIPOD, which is a list with several entries, including output
from the Gibbs sampler. The output related to the parameters are in $Drift and $Diff
respectively. For general information about computation time and parameters given to the
function, see $Info.

The package also supports some simple graphical aspects of the output. The plot.BIPOD

function is a wrapper function for several standard plot functions. Its primary argument is
type which is one of (trace, hist,acp, pairs,SDtrace, accept, movie,cover). It’s use is shown
in Listing (8.4), where we start by simulating a data set and next use the Estfun for for
estimation.

Listing 8.4: Parameter estimation for the FitzHugh-Nagumo model

Data <- DiffSim(n = 10000,

start = c(0,0),

Delta = .001,

driftpar = c(10,5,1.5,.6),

Sigma = diag(c(.5,.3)),

seed = 1,

thin = 100,

Model = "FHN")

Result <- Estfun(data = Data[,1],

Delta = .001*100,

ImputeN = 20,

seed = 1,

GibbsN = 10000,

parKnown = list(

"drift3" = 1.5,

"drift4" = .6,

"diff2" = diffPar[2,2]

),

Start = c(1,10,1,10,1,1),

diffPriorMean = c(log(.5)+2,log(.3)+1),

diffPriorCovar= diag(c(5,5)),

driftPriorMean = NULL,

driftPriorCovar = NULL,

driftRW = NULL,

diffRW = diag(c(.03,.0075)),

LatentPathStart = 1,

RWrho2PathPoints=.5,

RWrhoPaths = .5,

Model="FHN",

LatentMeanY0 = .2,

LatentVarY0 = 10)

100 Chapter 8. Computer implementation

plot(Result,type="trace",theta=c(10,5,1.5,.6,.5,.3))

plot(Result,type="hist",theta=c(10,5,1.5,.6,.5,.3),subset=c(1,2,5),interval=100)

plot(Result,type="movie",truepath=Data[,2])

9
Outlook

101

102 Chapter 9. Outlook

In this thesis the primary focus has been parameter estimation for multivariate diffusions.
We have given an introduction to some of the useful tools needed in order to perform
parameter inference in such models, both from a frequentistic and a Bayesian point of
view. Special attention has been given to the stochastic FitzHugh-Nagumo model and the
two-dimensional Ornstein-Uhlenbeck model and for the latter model we investigated iden-
tifiability issues related to the situation where one coordinate is completely unobserved.
Identifiability problems arise in many context, and it is not an easy problem to solve for
diffusions in general, because explicit expressions for the transition density are typically
unknown. The approach we have taken for the Ornstein-Uhlenbeck does not apply directly
to other models, and different approaches must be pursued. In the same setup with the
Ornstein-Uhlenbeck process we also applied the method of prediction-based estimating
functions to estimate some of the parameters in the model. The results were not so con-
vincing, and it would require a certain amount of work, to use this approach in other
models.

Taking a different approach to parameter estimation for both the FitzHugh-Nagumo
model, the Ornstein-Uhlenbeck and the extended Ornstein-Uhlenbeck, we used Bayesian
methods to perform parameter inference. For all three models we have implemented a
computer intensive method for parameter estimation and collected everything in an R

package. The implemented method can be expanded to work for a larger class of diffusion
models. The ultimate aim is to be able to feed the computer any diffusion function, any
drift function and a data set, and then perform parameter estimation. One can come a
long way using R where it is easy to pass functions as arguments. It is a little more difficult
in C++ if the code must be compiled beforehand as is the case in an R package. Using the
current methodology it would also require that the computer could invert the diffusion
function, or alternatively, that one could specify it manually.

10
Appendix

10.A BIPOD manual

103

Package ‘BIPOD’
February 3, 2014

Type Package

Title BIPOD (Bayesian Inference for Partially Observed diffusions)

Version 0.2.0

Date 2014-01-26

Author Anders Chr. Jensen

Maintainer Anders Chr. Jensen <anders@math.ku.dk>

Description Bayesian parameter estimation for (partially observed) two-dimensional diffusions

License GPL-3

Depends Rcpp (>= 0.10.6), RcppArmadillo (>= 0.4.000)

LinkingTo Rcpp, RcppArmadillo

R topics documented:
BIPOD-package . 1
BBSim . 2
DiffSim . 3
Estfun . 4
plot.BIPOD . 6
ShowModels . 7

Index 9

BIPOD-package Bayesian parameter estimation in two-dimensional diffusion models
with affine drift.

Description

This package use data augmentation and a Gibbs sampler to sample from the joint posterior of
parameters and augmented data. The main function is ’Estfun’ which produce an object of class
’BIPOD’. See the help page for ’Estfun’ for an example.

Details

1

2 BBSim

Package: BIPOD
Type: Package
Version: 0.2.0
Date: 2014-01-26
License: GPL-3

BBSim DiffSim Estfun plot.BIPOD ShowModels

Author(s)

Anders Chr. Jensen

Maintainer: Anders Chr. Jensen <anders@math.ku.dk>

References

’Importance sampling techniques for estimation of diffusion models’ by Papaspiliopoulos and Roberts,
’Statistical Methods for Stochastic Differential Equations’, Monographs on Statistics and Applied
Probability, Chapman and Hall, 2012 and ’Markov chain Monte Carlo approach to parameter esti-
mation in the FitzHugh-Nagumo model’ by Jensen et al, Phys. Rev. E 2012.

BBSim Function for simulation of p dimensional Brownian bridge

Description

Simulation of p-dimensional driftless SDE with constant diffusion, conditional on end points:
dV_t=Sigma dW_t, conditional on V_0 and V_T. This function makes a call to C++ and it is there-
fore relatively fast.

Usage

BBSim(start, end, n, Sigma=diag(2), T, t0 = 0,seed = 1)

Arguments

start Numerical vector of length p: Starting point for the process

end Numerical vector of length p: Ending point for the process

n Positive integer: Number of time points where the process is simulated

Sigma p*p matrix: The diffusion matrix for the process

T Positive number: End of time interval.

t0 Non negative number, defaults to 0. Start of time interval.

seed Integer, defaults to 1. Specifies seed for random generator. If <=0 it is set
randomly.

Details

An n*p matrix with columns representing simulations for each coordinate.

DiffSim 3

Value

An n*p matrix

Examples

(tmp <- BBSim(start = c(1,2),
end = c(3,5),
n = 10,
Sigma = diag(2),
T = 2,
t0 = 0,
seed = 1))

matplot(tmp,type="l")

DiffSim Simulation of a 2-dimensional diffusion process. See the Model argu-
ment for options.

Description

Function for simulation of 2-dimensional diffusion processes, using the Euler-maruyama scheme.

Usage

DiffSim(n, start, Delta, driftpar, Sigma, seed=NULL, thin=1, Model)

Arguments

n positive integer: Length of simulation.

start Numerical vector: Starting point for the simulation.

Delta Numerical: Time interval between observations.

driftpar Numerical vector. Parameters of the FitzHugh-Nagumo model.

Sigma 2*2 diffusion matrix.

seed Integer: Gives the seed for the random number generator.

thin Integer: Output only every ’thin’ simulation.

Model Character specifying the model. Currently one of ’OU’, ’FHN’, ’FHN5’ and
’CIR’.

Value

An (n/thin) by 2 matrix.

4 Estfun

Examples

FH <- DiffSim(n = 10000,
start = c(1,1),
Delta = .001,
driftpar = c(10,0.6,1.5,0.0),
Sigma = diag(c(.5,.3)),
seed = 1,
thin = 100,
Model = "FHN")

matplot(FH,type="l")

Estfun Parameter estimation for some two dimensional diffusions.

Description

Applies a Gibbs sampler to parameters and augmented data for two-dimensional stochastic differ-
ential equations. Currently the Ornstein-Uhlenbeck, the stochastic FitzHugh-Nagumo model and
the extended FitzHugh-Nagumo model are implemented.

Usage

Estfun(data, Delta, ImputeN = 5, seed, GibbsN = 1000,
parKnown = list(), Start = c(0,0,0,0,1,1), diffPriorMean,
diffPriorCovar, diffRW=diag(2), LatentPathStart,Model = NULL,
driftPriorMean, driftPriorCovar, driftRW, LatentMeanY0 = 0,
LatentVarY0 = 1, RWrhoPaths = 1, RWrho2PathPoints = 1)

Arguments

data Data to estimate parameters from. Matrix or numeric. Dimensions must be n*1
or n*2 depending on whether second coordinate is observed.

Delta Positive numeric: Time between observations.

ImputeN Positive integer>=3: M-2 is the number of imputed data points between consec-
utive observed data.

seed Positive integer giving the seed for the random number generator. Defaults to
random.

GibbsN Positive integer: Number of iterations of the Gibbs sampler.

parKnown List of named values for the known drift and diffusion parameters.

Start Numerical vector with starting values for the drift and diffusion parameters in
the Gibbs sampler.

diffPriorMean numerical vector of length 2. Prior mean for diffusion coefficients

diffPriorCovar 2*2 matrix. Prior variance for diffusion coefficients.

diffRW Random walk variance for the MH step for the diffusion ocefficients.
LatentPathStart

Numeric of length one or same length as Data. Starting value for the latent path.
If LatentPathStart is a single number then all starting values take this value.

Estfun 5

Model Charater, specifying the model. Currently the only options are ’OU’,’FHN’ and
’FHN5’.

driftPriorMean prior mean for the drift parameters

driftPriorCovar

Prior covariance for the drift parameters

driftRW Covariance matrix for the RW update of the drift parameters

LatentMeanY0 Prior mean for the first data point of the unobserved coordinate.

LatentVarY0 Prior variance for the first data point of the unobserved coordinate. If 0, the
point is fixed at first value of LatentPathStart.

RWrhoPaths Numeric in [0,1]. Parameter for random walk update of the latent path between
observation times. The value 0 samples a BB, the value 1 keeps the current value
of the (skeleton) path

RWrho2PathPoints

Parameter for random walk update of the latent coordinate at observation times.
The value 0 samples a middle point of a BB, the value 1 keeps the current value
of the points

Details

More details for the help page will be added soon.

Value

An object of class BIPOD.

Drift Output of the Gibbs sampler for the drift parameters.

Diff Output of the Gibbs sampler for the diffusion parameters.

AccRate1 Accept/reject (1/0) for each path interval and each iteration of the sampler.

AccRate2 Accept/reject (1/0) for each path endpoint of the latent coordinate and each iter-
ation of the sampler. Only valid if second coordinate is latent.

LatentPath Output of the Gibbs sampler for the endpoints of the latent path. Only valid
when one coordinate is observed.

diffAcc Accept/reject (1/0) for the MH step of the diffusion coefficient.

Info List with information about the estimated model.

driftPriormu Prior mean of the drift parameters.

driftPriorOmega

Prior variance in the drift parameters.

driftRW Random Walk variance for updating drift parameters.

Author(s)

Anders Chr. Jensen

6 plot.BIPOD

Examples

Data <- DiffSim(n=10000,
start=c(0,0),
Delta=.001,
driftpar=c(10,5,1.5,.6),
Sigma=diag(c(.5,.3)),
seed=1,
thin=100,
Model="FHN")

A <- Estfun(data = Data[,1],
Delta = .001*100,
ImputeN = 10,
seed = 2,
GibbsN = 2000,
parKnown = list("drift3"=1.5,"drift4"=.6,"diff2"=.3),
Start=c(10,10,10,10,1,1),
diffPriorMean= c(0,0),
diffPriorCovar= diag(2),
diffRW = diag(c(.01,.02)),
LatentPathStart = .5,
Model="FHN",
driftPriorMean = NULL,
driftPriorCovar = NULL,
driftRW = diag(4),
LatentMeanY0 = 0,
LatentVarY0 = 1,
RWrhoPaths = 0,
RWrho2PathPoints = 0)

class(A);names(A)
plot(A,type="trace",interval=1,theta=c(10,5,1.5,.6,.5,.3),subset=c(1,2,5))
plot(A,type="movie",truepath=Data[,2],speed=.01,BY=10,interval=1)

plot.BIPOD Plot function for class BIPOD

Description

Graphical summaries of output from Gibbs sampler

Usage

S3 method for class 'BIPOD'
plot(x, theta = NULL, subset = NULL, type, lag = 20,

interval = NULL, treshold = 0.1, speed = 0.1, truepath = NULL,
BY = 1, prop = c(.05,.95), diffPriorMean = NULL,
diffPriorCovar = NULL, log = FALSE, ...)

Arguments

x x: An object of class BIPOD.

theta Optional numerical vector with true parameter values.

ShowModels 7

subset Numeric vector. Which parameters should be used for plotting. Defaults to all.

type Character choosing plotting type: Either "trace", "hist", "acp", "pairs","SDtrace",
"accept", "movie" or "cover". See details.

lag Positive integer: Number of lags used in autocorrelation plot

interval Positive integer or numericla vector: If integer, used as burn in for the Gibbs
sampler. If vector, used to subsample Gibbs output. Defaults to no subsampling
and no burn in.

treshold Positive numeric: Cut off for acceptance rate.

speed Positive number used for type="movie": How much time to pause between each
frame of the movie?

truepath Vector or matrix with latent data. Optional.

BY integer: Only relevant for type="movie". How many frames to skip for each
iteration?

prop Numeric vector with values between 0 and 1: Only relevant for type="cover".
Specifies quantiles for the sampled paths

diffPriorMean Numeric of length 2, only for type=="hist". The prior mean for the diffusion
coefficients.

diffPriorCovar 2*2 matrix, only for type=="hist". The prior covariance for the diffusion coeffi-
cients.

log Boolean, only for type=="hist". If TRUE, the prior density and the estimate of
the diffusion coefficients are log transformed before plotting.

... Additional arguments to be passed to matplot, density or acf.

Details

Different ’type’-argument gives different plots. More details to come...

ShowModels Prints form of supported stochastic differential equations

Description

Print function displaying the model structures currently supported. Used to fix the parametrization
of the parameters.

Usage

ShowModels(Model)

Arguments

Model Character specifying the model. Current options are "OU" for the Ornstein Uh-
lenbeck process, "FHN" for the stochastic FitzHugh-Nagumo process "FHN5"
for the extended FitzHugh-Nagumo model and "CIR" for the Cox-Ingersoll-
Ross model.

8 ShowModels

Details

This function is used to identity the parameter names in the supported models. This is necessary
when specifying the "parKnown" argument in the "Estfun" function.

Value

List with three entries:

Model A 2*1 Matrix with character entries.

Ndrift Numeric giving the number of drift parameters

Ndiff Numeric giving the number of diffusion parameters

Examples

ShowModels(Model="FHN")

Index

∗Topic \textasciitildekwd1
BBSim, 2
DiffSim, 3
Estfun, 4
plot.BIPOD, 6
ShowModels, 7

∗Topic \textasciitildekwd2
BBSim, 2
DiffSim, 3
Estfun, 4
plot.BIPOD, 6
ShowModels, 7

∗Topic package
BIPOD-package, 1

BBSim, 2
BIPOD-package, 1

DiffSim, 3

Estfun, 4

plot.BIPOD, 6

ShowModels, 7

9

Bibliography

Ait-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: a
closed-form approximation approach. Econometrica, 70(1):223–262. 2

Ait-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. The
annals of statistics, 36(2):906–937. 2, 10

Berglund, N. and Gentz, B. (2006). Noise-induced phenomena in slow-fast dynamical
systems. Probability and its Applications (New York). Springer-Verlag London Ltd.,
London. A sample-paths approach. 2, 50, 51

Beskos, A., Papaspiliopoulos, O., and Roberts, G. (2009). Monte Carlo maximum likeli-
hood estimation for discretely observed diffusion porcesses. The Annals of Statistics,
pages 223–245. 2

Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006). Retrospective exact sim-
ulation of diffusion sample paths with applications. Bernoulli, 12(6):1077–1098. 51,
53

Bladt, M. and Sørensen, M. (2014). Simple simulation of diffusion bridges with application
to likelihood inference for diffusions. To appear in Bernoulli. 53

Casella, G. and George, E. I. (1992). Explaining the gibbs sampler. The American Statis-
tician, 46(3):167–174. 45

Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings Algorithm.
The American Statistician, 49(4):327–335. 42

Ditlevsen, S. and Greenwood, P. (2013). The Morris-Lecar neuron model embeds a leaky
integrate-and-fire model. Journal of Mathematical Biology, 67(2):239–259. 50

Durham, G. B. and Gallant, A. R. (2002). Numerical Techniques for Maximum Likelihood
Estimation of Continuous-Time Diffusion Processes. Journal of Business & Economic
Statistics, 20(3):pp. 297–316. 2

Eddelbuettel, D. and Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal
of Statistical Software, 40(8):1–18. 95

113

114 Chapter 10. Appendix

Eddelbuettel, D. and Sanderson, C. (2014). RcppArmadillo: Accelerating R with high-
performance C++ linear algebra. Computational Statistics and Data Analysis, 71:1054–
1063. 95

Elerian, O., Chib, S., and Shephard, N. (2001). Likelihood Inference for Discretely Ob-
served Nonlinear Diffusions. Econometrica, 69(4):959–993. 2

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve
membrane. Biophys. J., 1:445–466. 15, 50

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell, 6:721–741.
45

Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models. Cambridge University Press.
15, 16, 50

Golightly, A. and Wilkinson, D. J. (2008). Baysian inference for nonlinear multivari-
ate diffusion models observed with error. Computational Statistics & Data Analysis,
52:1674–1693. 2

Hall, P. and Heyde, C. C. (1980). Martingale limit theory and its application. Probability
and mathematical statistics : a series of monographs and textbooks. Academic Press.
21

Hansen, L. P. (1982). Large sample properties of generalized method of moments estima-
tors. Econometrica, 50(4):1029–1054. 20

Hastings, W. K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their
Applications. Biometrika, 57(1):97–109. 42

Hindriks, R., Jansen, R., Bijma, F., Mansvelder, H., de Gunst, M., and van der Vaart,
A. (2011). Unbiased estimation from time series with application to hippocampal field
potentials in vitro. Physical Review E, 84. 51

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of physiology,
117(4):500–544. 50

Huys, Q. J. M., Ahrens, M. B., and Paninski, L. (2006). Efficient estimation of detailed
single-neuron models. J Neurophysiol, 96(2):872–90. 51

Huys, Q. J. M. and Paninski, L. (2009). Smoothing of, and parameter estimation from,
noisy biophysical recordings. PLoS Comput Biol, 5(5):e1000379. 51

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience. The MIT Press, Cambridge,
Massachusetts. 15, 16

10.A. BIPOD manual 115

Jacobsen, M. (1991). Homogeneous Gaussian Diffusions in Finite Dimensions. Preprint,
Institute of Mathematical Statistics, University of Copenhagen. 7, 14

Jacobsen, M. (2008). Stokastiske integraler. Lecture notes in Danish. 6

Jacobsen, M. (2011). The first marginal in 2-dimensional OU. Personal correspondance.
86, 90

Jensen, A. C., Ditlevsen, S., Kessler, M., and Papaspiliopoulos, O. (2012). Markov chain
Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model. Phys.
Rev. E, 86:041114. 2, 15, 50

Karatzas, I. and Shreve, S. (1991). Brownian motion and stochastic calculus. Springer,
2nd edition. 6

Keener, J. P. and Sneyd, J. (2009). Mathematical physiology. II. , Systems physiology.
Interdisciplinary applied mathematics. Springer, New York, London. 2, 50

Kessler, M. and Sørensen, M. (1999). Estimating Equations Based on Eigenfunctions for
a Discretely Observed Diffusion Process. Bernoulli, 5(2):299–314. 22

Kleinhans, D. (2012). Estimation of drift and diffusion functions from time series data: A
maximum likelihood framework. Physical Review E, 85(2):026705. 51

Kloeden, P. E., Platen, E., and Schurz, H. (2003). Numerical solution of SDE through
computer experiments. Springer. 13

Lee DeVille, R. E., Vanden-Eijnden, E., and Muratov, C. B. (2005). Two distinct mecha-
nisms of coherence in randomly perturbed dynamical systems. Phys. Rev. E, 72:031105.
51

Lindner, B., Ojalvo, G. J., Neiman, A., and Geier, S. L. (2004). Effects of noise in excitable
systems. Physics Reports-Review Section Of Physics Letters, 392:321–424. 2, 50, 51

Lindner, B. and Schimansky-Geier, L. (1999). Analytical approach to the stochastic
FitzHugh-Nagumo system and coherence resonance. Physical Review E, 60(6). 51,
61

Lindner, B. and Schimansky-Geier, L. (2000). Coherence and stochastic resonance in a
two-state system. Physical Review E, 61:6103–6110. 51

Lindström, E. (2012). A regularized bridge sampler for sparsely sampled diffusions. Statis-
tics and Computing, 22(2):615–623. 53

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of State Calculations by Fast Computing Machines. The Journal of Chemical
Physics, 21(6):1087–1092. 42

116 Chapter 10. Appendix

Meyn, S. and Tweedie, R. (1993). Markov Chains and Stochastic Stability. Springer-Verlag.
43

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An Active Pulse Transmission Line
Simulating Nerve Axon. Proceedings of the IRE, 50(10):2061–2070. 15, 50

Øksendal, B. (2007). Stochastic Differential equations. Springer. 8, 11

Papaspiliopoulos, O., Pokern, Y., Roberts, G. O., and Stuart, A. M. (2012). Nonparametric
estimation of diffusions: a differential equations approach. Biometrika, 99(3):511–531.
51

Papaspiliopoulos, O. and Roberts, G. O. (2012). Importance sampling techniques for esti-
mation of diffusion models. In Statistical Methods for Stochastic Differential Equations,
pages 311–337. Monographs on Statistics and Applied Probability, Chapman and Hall.
2, 13, 51, 53, 54, 70

Papaspiliopoulos, O., Roberts, G., O., and Stramer, O. (2013). Data Augmentation for
Diffusions. Journal of Computational and Graphical Statistics, 22(3):665–688. 12, 13

Pokern, Y., Stuart, A. M., and Wiberg, P. (2009). Parameter estimation for partially
observed hypoelliptic diffusions. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 71(1):49–73. 66

R Core Team (2013). Writing R Extensions. http://cran.revolution-computing.com/
doc/manuals/R-exts.pdf. Accessed: 2014-01-03. 95

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer. 41

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). Weak convergence and optimal
scaling of random walk Metropolis algorithms. Annals of Applied Probability, 7:110–
120. 44

Roberts, G. O. and Rosenthal, J. S. (2001). Optimal Scaling for Various Metropolis-
Hastings Algorithms. Statistical Science, 16(4):351–367. 65

Roberts, G. O. and Stramer, O. (2001). On inference for partially observed nonlinear
diffusion models using the Metropolis-Hastings algorithm. Biometrika, 88(3):603–621.
2, 51, 54, 58, 70

Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov processes, and martingales.
Vol. 2. Cambridge Mathematical Library. Cambridge University Press. Itô calculus,
Reprint of the second (1994) edition. 6

Samson, A. and Thieullen, M. (2012). A contrast estimator for completely or partially
observed hypoelliptic diffusion. Stochastic Processes and their Applications, 122(7):2521
– 2552. 66

http://cran.revolution-computing.com/doc/manuals/R-exts.pdf
http://cran.revolution-computing.com/doc/manuals/R-exts.pdf

10.A. BIPOD manual 117

Sanderson, C. (2010). Armadillo: An Open Source C++ Linear Algebra Library for Fast
Prototyping and Computationally Intensive Experiments. Technical report, NICTA. 95

Sørensen, H. (2004). Parametric Inference for Diffusion Processes Observed at Discrete
Points in Time: a Survey. International Statistical Review, 72(3):337–354. 2, 51

Sørensen, M. (1999). On Asymptotics of Estimating Functions. Brazilian Journal of
Probability and Statistics, 13:111–136. 2

Sørensen, M. (2000). Prediction-based estimating functions. Econometrics Journal, 3:123–
147. 2, 22

Sørensen, M. (2011). Prediction-based estimating functions: Review and new develop-
ments. Brazilian Journal of Probability and Statistics, 25(3):362–391. 22, 25

Sørensen, M. (2012). Estimating functions for diffusion-type processes. In Statistical
Methods for Stochastic Differential Equations, pages 1–99. Monographs on Statistics
and Applied Probability, Chapman and Hall. 20, 21, 22

Wu, H. and Noé, F. (2011). Bayesian framework for modeling diffusion processes with
nonlinear drift based on nonlinear and incomplete observations. Phys. Rev. E, 83:036705.
51

	Introduction
	Diffusions
	Stochastic differential equations
	The Itô formula
	Reducible diffusions and the Lamperti transform
	The Girsanov Theorem
	Diffusion bridges

	The continuous time likelihood for a diffusion bridge
	Models
	The Ornstein-Uhlenbeck process
	The FitzHugh-Nagumo model
	The extended FitzHugh-Nagumo model

	Estimating functions
	Estimating Functions
	Martingale estimating functions
	Prediction-based estimating functions
	Differentiation in R

	Prediction-based Estimating Functions for the partially observed Ornstein-Uhlenbeck process
	Moment calculations

	Implementation

	Bayesian statistics and MCMC methods
	The basic Bayesian framework
	Importance sampling
	The Metropolis-Hastings Algorithm
	Simulation of diffusion bridges

	Gibbs sampling

	Parameter estimation for multidimensional diffusions, fully observed
	Statistical model
	Estimation of drift parameters with known diffusion
	Sampling the latent path
	Sampling the drift parameter

	Estimation of both drift and diffusion parameters
	Sampling the latent path
	Sampling the drift parameter
	Sampling the diffusion parameter

	Simulation study for the FitzHugh-Nagumo model
	Estimation of the drift parameters
	Estimation of the diffusion parameters
	Changing the time scale parameter
	Practical comments

	Discussion

	Parameter estimation for multidimensional diffusions, partially observed
	Statistical model and notation
	Latent coordinates

	The estimation procedure
	Updating the latent path component at observation times
	Updating the endpoints of the latent component

	Simulation study
	The FitzHugh-Nagumo model
	The two-dimensional Ornstein-Uhlenbeck model
	The extended FitzHugh-Nagumo model

	Parameter identifiability for partially observed diffusions
	Linear transformation of latent coordinate
	The two-dimensional Ornstein-Uhlenbeck process

	Computer implementation
	Developing R-packages in Windows
	Preliminaries
	Creating and building the package

	The BIPOD-package

	Outlook
	Appendix
	BIPOD manual

