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Abstract

The extremogram is an asymptotic correlogram for extreme events constructed
from a regularly varying strictly stationary sequence. Correspondingly, the spec-
tral density generated from the extremogram is introduced as a frequency domain
analog of the extremogram. Its empirical estimator is the extremal periodogram.
The extremal periodogram shares numerous asymptotic properties with the peri-
odogram of a linear process in classical time series analysis: the asymptotic distri-
bution of the periodogram ordinates at the Fourier frequencies have a similar form
and smoothed versions of the periodogram are consistent estimators of the spec-
tral density. By proving a functional central limit theorem, the integrated extremal
periodogram can be used for constructing asymptotic tests for the hypothesis that
the data come from a strictly stationary sequence with a given extremogram or
extremal spectral density. A numerical method, the stationary bootstrap, can be
applied to the estimation of the integrated extremal periodogram.
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Summary

This thesis consists of three papers which are contained in Chapter 2–4.
Chapter 2 is based on the paper

[19] Mikosch, T. and Zhao, Y. (2013) A Fourier analysis of extreme events. Bernoulli,
to appear.

It yields the basic asymptotic theory for the extremal periodogram. These results include the
proof of the asymptotic independence of the extremal periodogram at distinct frequencies and
the consistency of the smoothed extremal periodogram. This chapter illustrates that there are
numerous similarities between the extremal periodogram and the periodogram of a stationary
sequence.

Chapter 3 is based on the paper

[10] Davis, R.A., Mikosch, T. and Zhao, Y. (2013) Measures of serial extremal de-
pendence and their estimation. Stoch. Proc. Appl., 123, 2575–2602.

It is a review of the recent developments on measuring extremal dependence in a time series. The
paper starts with a critique of the extremal index as a measure of the extremal cluster size, then
various regularly varying time series models and their extremograms and extremal periodograms
are discussed. In this framework, max-stable processes with Fréchet marginals get some special
attention.

Chapter 4 is based on the paper

[20] Mikosch, T. and Zhao, Y. (2013) The integrated periodogram of a dependent
extremal event sequence. Working paper.

It is devoted to the asymptotic properties of the integrated extremal periodogram and its appli-
cations for constructing goodness-of-fit tests for a time series model based on its extremes. The
main results are functional central limit theorems for the weighted integrated periodogram with
Gaussian limits and their stationary bootstrap analogs.
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Sammenfatning

Denne afhandling indeholder en introduktion til emnet i Kapitel 1 og tre videnskabelige artikler,
som findes i Kapitlerne 2–4.

Kapitel 2 er baseret p̊a artiklen

[19] Mikosch, T. and Zhao, Y. (2013) A Fourier analysis of extreme events. Bernoulli,
to appear.

Her er givet en fundamental asymptotisk teori for det ekstremale periodogram. Blandt resul-
taterne er en bevis af den asymptotiske uafhængighed for det ekstremale periodogram for forskel-
lige frekvenser og bevisen af konsistensen for det udglattede ekstremale periodogram. I kapitlen
ogs̊a sammenlignes egenskaberne af det ekstremale periodogram og det sadvanlige periodogram
af en stationær tidsrcekke.

Kapitel 3 er baseret p̊a artiklen

[10] Davis, R.A., Mikosch, T. and Zhao, Y. (2013) Measures of serial extremal de-
pendence and their estimation. Stoch. Proc. Appl., 123, 2575–2602.

Artiklen er en review af moderne metoder for m̊alingen af ekstremale afhængigheder i en tid-
srække. I begyndelsen undersøges den ekstremale indeks, som er et standardmål af den ek-
stremale cluster størrelse. Bagefter undersøges regulær varierende tidsrækker, deres extremogram
og ekstremale periodogram. Der er fokus p̊a egenskaberne af max-stabile processer med en
Fréchet marginalfordeling.

Kapitel 4 er baseret p̊a artiklen

[20] Mikosch, T. and Zhao, Y. (2013) The integrated periodogram of a dependent
extremal event sequence. Working paper.

Her undersøges de asymptotiske egenskaber af det integrerede ekstremale periodogram og an-
vendelser til goodness-of-fit tests for tidsrækkemodeller med ekstremale hændelser. Hovedresul-
taterne er funktionale centrale grænseværdisætninger for det udglættede integrerede periodogram
med gaussiske grænseprocesser. Der ogs̊a bevises funktionale centrale grænseværdisætninger for
det ekstremale periodogram ved anvendelsen af den stationære bootstrap metode.
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Chapter 1

Introduction

1.1 Basic motivation

When the financial crisis started in 2007 the general public learned from the media about the
inadequate use of probabilistic and statistical models in finance. In contrast to the original goals
of applying these models — increasing the profit and reducing the risk — it seemed that these
models fell short in achieving their objectives, in particular, they underestimated the risk. To
avoid similar mistakes in the future one needs to study the pitfalls of these models and to test
their reliability under stress situations. In this thesis, we will propose some statistical tools for
measuring serial extremal dependence in a (financial) time series and study its advantages and
limitations.

The hypothesis of (approximate) normality of the data has been the basis for building stochas-
tic models due to traditional preferences in probability theory and statistics which are at its best
under the (approximate) normality assumption. For example, this assumption is imposed on
some standard models in finance. The Nobel Prize winning model of Black-Scholes-Merton
which is used for pricing European-style options assumes that the log-price of the stock price is
a geometric Brownian motion. By the year 2007, the geometric Brownian motion was widely ac-
cepted as a feasible model for speculative prices despite the fact that real-life log-returns exhibit
significant deviations from the normality hypothesis.

Data in areas as diverse as insurance, finance, telecommunication and the earth sciences
typically fluctuate strongly in certain periods of time, and these fluctuations tend to occur in
clusters. This oberservation disagrees with the assumption of Gaussianity. The topics of this
thesis are closely related to time series analysis. Also in this area, the assumption of Gaussianity
is a classical paradigm. In this thesis, we will deal with time series models which are highly non-
Gaussian: they exhibit heavy tails in a sense which will be made precise later; rougly speaking,
we will deal with time series models whose marginal distributions have infinite moments of a
certain order.

This thesis is located at the boundary beetwen time series analysis and extreme value theory.
In the latter field one is particularly interested in events which happen far away from the median
of the underlying probability distribution and manifest themselves as natural or man made
catastrophes, big losses of an investment portfolio, huge files transferred via the Internet, etc.
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CHAPTER 1. INTRODUCTION 3

Classical extreme value theory deals with the extremes of iid sequences of univariate data (Xt)t∈Z.
The Fisher-Tippett theorem (Theorem 3.2.3 in Embrechts et al. [11]) gives the basis for the
asymptotic theory of the sequence of the maxima

Mn = max
i=1,...,n

Xi , n ≥ 1 .

This theorem states that the only possible non-degenerate limit laws H for the suitably normal-
ized and centered maxima Mn, i.e.

c−1
n (Mn − dn)

d→ Y ∼ H , (1.1.1)

for appropriate cn > 0 and dn ∈ R, n ≥ 1, are given by the following extreme value distributions
(also called max-stable distributions):

• Fréchet distribution:

Φα(x) =

{
0 , x ≤ 0

exp{−x−α} , x > 0
α > 0 .

• Weibull distribution:

Ψα(x) =

{
exp{−(−x)α} , x ≤ 0

1 , x > 0
α > 0 .

• Gumbel distribution:

Λ(x) = exp{−e−x} , x ∈ R .

In this thesis, we will be concerned mainly with the Fréchet distribution Φα and its maximum
domain of attraction, i.e. those distributions F of the Xi’s such that (1.1.1) holds for H = Φα
(we write F ∈ MDA(Φα)). It is easy to see that the right tail of Φα is of power law type:

Φα(x) ∼ x−α , x→∞ ,

and then, necessarily, the tail F = 1− F for F ∈ MDA(Φα) is of similar type.
If one wants to judge how well a model fits the time series of the data there are several

ways of doing this. Classical time series analysis is mostly concerned with fitting the covariance
structure of the data to a suitable model and to draw conclusions from the theoretical properties
of the fitted model about the data; see Brockwell and Davis [4]. When dealing with the serial
dependence of extremes, covariances are less informative: extremes happen in the tail of the
distribution and covariances do not contain a lot of information about the tails. The basic
theoretical tool of this thesis is the extremogram introduced in Davis and Mikosch [8] as an
alternative to the covariance function of the data: it is an asymptotic covariance function derived
from the sequence of the indicator functions of the extreme events in a time series. As such,
one can still use the notions of time series analysis in the extreme value context. In particular,
we will borrow tools and basic methodology from the Fourier analysis of time series and build a
corresponding theory for the extremal events in a time series.

In what follows, we will explain the essence of our findings.
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1.1.1 Some facts from time series analysis

Classical time series analysis is mostly concerned with the second order (or covariance) structure
of a univariate time series (Xt)t∈Z; see Brockwell and Davis [4] as a major reference. For this
reason, it is common to assume second order or covariance stationarity of the data, i.e.

γX(h) = cov(Xt, Xt+h) = cov(X0, Xh) , t ∈ Z , h ∈ Z ,

and we refer to γX and ρX(h) = γX(h)/γX(0) as the autocovariance and autocorrelation func-
tions of the time series (ACF and ACVF), respectively. In the context of extreme value theory
this kind of stationarity is less meaningful (the case of stationary Gaussian time series being an
exception) and therefore we will assume strict stationarity of the underlying time series whenever
we study the extremes of this series. Under this assumption, we will denote a generic element
of (Xt) by X.

The classical estimators of γX and ρX are their sample counterparts, given by

γ̃X(h) =
1

n

n∑
t=1

(Xt −Xn)(Xt+h −Xn) , and ρ̃X(h) = γ̃X(h)/γ̃X(0) , h ∈ Z ,

where Xn is the sample mean of X1, . . . , Xn. The sample autocorrelation function (sample ACF)
is the main tool in the time domain to judge about the dependence structure of the data. The
sample ACF plot is widely used as an exploratory tool and it is also a major building block
for many parameter estimation techniques in time series analysis. The time domain approach
is intuitive and simple to apply. Therefore its tools and estimators are contained in all major
software packages.

Early on, the time domain approach to a time series was supplemented by the frequency
domain approach. Based on fundamental theory (e.g. Herglotz’s Theorem 4.3.1 in Brockwell
and Davis [4]), the Fourier series based on the ACVF γX of the real-valued stationary time series
(Xt) given by

fX(λ) =

∞∑
h=−∞

γX(h) e−ihλ = γX(0) + 2

∞∑
h=1

γX(h) cos(hλ) , λ ∈ [0, π] , (1.1.2)

is the quantity of major interest. In view of the spectral representation of a stationary time
series (Theorem 4.8.2 in Brockwell and Davis [4]) the spectral density (or, more generally, spectral
distribution) completely characterizes the second order properties of a stationary time series and,
therefore, the spectral or frequency domain of time series analysis is just another language which
expresses the time domain theory in the world of Fourier analysis. Although less elementary
(the quantities of Fourier analysis often do not have a “straightforward” interpretation) Fourier
analysis is often very powerful.

This comment also applies to the estimation in the frequency domain. Estimation is fre-
quently based on the sample version of the spectral density, the periodogram, given by

In,X(λ) =
∣∣∣n−1/2

n∑
t=1

Xte
−itλ

∣∣∣2 =
∑
|h|<n

e−ihλγ̃X(h) , λ ∈ [0, π] ,

which is obtained by replacing the ACF by its sample version in (1.1.2). Calculations based
on the periodogram are often executed at the Fourier frequencies 2πj/n ∈ (0, π). The Fast
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Fourier Transform (FFT) is a fast and efficient way of calculating the periodogram at the Fourier
frequencies; see Section 10.7 of Brockwell and Davis [4].

For the sake of comparison with the periodogram for extremal events, we recall some of the
classical results in the frequency domain of time series analysis; see Chapter 10 in Brockwell
and Davis [4]. We will assume that (Xt) is a linear process with iid white noise with variance
σ2. Most of the results have to be formulated in terms of Fourier frequencies closest to a fixed
frequency λ ∈ (0, π), but for the ease of presentation we will neglect this fact.

For any frequency λ ∈ (0, π),

EIn,X(λ)→ fX(λ) , n→∞ ,

and the vector of the periodogram ordinates at the distinct frequencies 0 < λ1 < · · · < λh < π,
h ≥ 1, satisfies the limit relation(

In,X(λi)
)
i=1,...,h

d→ σ2
(
fX(λi)Ei

)
i=1,...,h

, n→∞ , (1.1.3)

where (Ei) is an iid standard exponential sequence. The proof of this fact is based on the
representation

In,X(λ) =
∣∣∣n−1/2

n∑
t=1

Xte
−itλ

∣∣∣2 =
(
n−1/2

n∑
t=1

Xt cos(tλ)
)2

+
(
n−1/2

n∑
t=1

Xt sin(tλ)
)2

= α2
n,X(λ) + β2

n,X(λ) , (1.1.4)

and an application of a multivariate central limit theorem to
(
αn,X(λi), βn,X(λi)

)
i=1,...,h

, The

representation of the limiting vector is then crucial for smoothing the periodogram which leads
to consistent estimation. For the periodogram of extremal events, similar ideas and methods of
proof apply; see Section 1.3 on page 12. The integrated periodogram

Jn,X(x) =

∫ x

0

In,X(λ)g(λ) dλ , x ∈ [0, π] ,

where g is a smooth function, shows a close relationship with the empirical distribution of an
iid sequence by numerous results. Therefore it is sometimes referred to as the the empirical
spectral distribution function; see for example Dahlhaus [5] and Dahlhaus and Polonik [6]. The
functional central limit theorem for the integrated periodogram can be taken as the basis for
constructing goodness-of-fit tests for iid sequences and linear processes. For example, for an iid
sequence (Xt) with mean zero and variance σ2 the following limit result holds in C[0, π], the
space of continuous functions on [0, π]:

√
n(Jn,X(·)− σ2·) d→ G ,

where the limit process G is a Brownian bridge on [0, π]. Then, similarly to the Kolmogorov-
Smirnov test, one can consider the supremum functional acting on the converging process to
obtain

√
n sup
λ∈[0,π]

∣∣Jn,X(λ)− σ2λ
∣∣ d→ sup

λ∈[0,π]

|G(λ)| .
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Thus, under the null hypothesis that (Xt) is iid the left-hand expression can be taken as a
goodness-of-fit test statistic and its limit distribution can be used to construct an asymptotic test
for this hypothesis. The corresponding test is called Grenander-Rosenblatt test; see Priestley [22]
for a general reference on the integrated periodogram. Similar results also hold for the integrated
periodogram for extremal events; see Section 1.4 on page 15.

1.1.2 Regular Variation

The notion of regular variation is basic in extreme value theory and limit theory for partial
sums of iid random variables. In multivariate extreme value theory, regular variation with index
α > 0 of the d-dimensional iid random vectors Xt, t ∈ R, with values in (0,∞)d is necessary
and sufficient for the fact that the suitably normalized sequence of component-wise maxima

(a−1
n maxt≤nX

(i)
t )i=1,...,d, t = 1, 2, . . . , converges in distribution to a d-dimensional extreme

value distribution H on (0,∞)d whose marginal distributions are Fréchet Φα-distributed; see
Resnick [24] for a general theory of multivariate extremes for iid sequences. Similarly, for a
general Rd-valued iid sequence (Xt), the sequence of suitably normalized and centered partial
sums a−1

n (X1 + · · · + Xn − bn) converges in distribution to an infinite variance α-stable limit
if and only if the distribution of X0 is regularly varying with index α. The index α is then
necessarily in the range α ∈ (0, 2). We refer to Rvačeva [26] and Resnick [25] for proofs of this
fact.

Various definitions of a d-dimensional regularly varying vector X exist; we refer to Resnick
[23, 24, 25]. We start with a definition in terms of spherical coordinates. We say that X is
regularly varying with index α > 0 and spectral measure P (Θ ∈ ·) on the Borel σ-field of the
unit sphere Sd−1 = {x ∈ Rd : |x| = 1} if 1 the following weak limits exist for every fixed t > 0:

P (|X| > tx ,X/|X| ∈ ·)
P (|X| > x)

w→ t−α P (Θ ∈ ·) , x→∞ . (1.1.5)

Relation (1.1.5) can be written in an equivalent form as a pair of conditions:

1. The norm |X| is regularly varying in the classical sense, i.e. P (|X| > tx)/P (|X| > x) →
t−α, t > 0, or, equivalently, P (|X| > x) = x−αL(x), x > 0, for a slowly varying function
L; cf. Bingham et al. [2] for an encyclopedia on regularly varying functions.

2. The angular component X/|X| is independent of |X| for large values of |X| in the sense
that

P (X/|X| ∈ · | |X| > x)
w→ P (Θ ∈ ·) , x→∞ . (1.1.6)

In any of these limit relations, it is possible to replace the converging parameter x by a sequence
(an) such that P (|X| > an) ∼ n−1. Then (1.1.5) and (1.1.6), respectively, read as

nP (|X| > tan, X/|X| ∈ ·)
w→ t−αP (Θ ∈ ·) and P (X/|X| ∈ · | |X| > an)

w→ P (Θ ∈ ·) .
1The choice of the norm | · | is relevant for defining the corresponding unit sphere and the spectral measure on

it, but the notion of regular variation of a vector does not depend on a particular choice of norm. In this chapter,
| · | will stand for the Euclidean norm.
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The convergence relation (1.1.5) can be understood as convergence on the particular sets {x ∈
Rd : |x| > t,x/|x| ∈ S} for Borel sets S ⊂ Sd−1 with a smooth boundary. This convergence can

be extended to the Borel σ-field on Rd0 = Rd \ {0}, R = R ∪ {∞,−∞}:

µx(·) =
P (x−1X ∈ ·)
P (|X| > x)

v→ µ(·) , x→∞ . (1.1.7)

Here
v→ refers to vague convergence of measures on the Borel σ-field on Rd0, i.e.

∫
Rd0
f dµx →∫

Rd0
f dµ as x → ∞ for any continuous and compactly supported f on Rd0; see Kallenberg [15],

Resnick [24]. This means in particular, that the support of f is bounded away from zero. In

view of (1.1.5), µ({x ∈ Rd0 : |x| > t,x/|x| ∈ S}) = t−αP (Θ ∈ S), and therefore µ is a Radon
measure (i.e. finite on sets bounded away from zero) satisfying µ(tA) = t−αµ(A), t > 0. In
particular, µ does not charge points containing infinite components. Again, the parameter x in
(1.1.7) can be replaced by a sequence (an) satisfying P (|X| > an) ∼ n−1 and then we get

nP (a−1
n X ∈ ·) v→ µ(·) , n→∞ .

For an iid sequence (Xt) with generic element X, the latter condition is equivalent to the con-
vergence of the point processes

Nn =

n∑
t=1

εa−1
n Xt

d→ N ,

where N is a Poisson random measure with mean measure µ and state space Rd0; see Resnick
[23, 24]. Since point process convergence is basic to extreme value theory, the notion of multi-
variate regular variation is very natural in the context of extreme value theory for multivariate
observations with heavy-tailed components; see also the recent monograph by Resnick [25] who
stresses the importance of the notion of regular variation as relevant for many applications in
finance, insurance and telecommunications.

Regularly varying stationary sequences. In the context of this thesis, the notion of a reg-
ularly varying strictly stationary sequence will be relevant. This notion was coined by Davis
and Hsing [7]. It simply means that the finite-dimensional distributions of an Rd-valued strictly
stationary sequence (Xt) are regularly varying for some index α > 0. In the context of time
series analysis, it is convenient to use the alternative definition

P (x−1(X1, . . . , Xh) ∈ ·)
P (|X0| > x)

v→ µh(·) , (1.1.8)

with non-null limit measures µh on Rdh0 , i.e. the converging measures are all normalized by
P (|X0| > x). This normalization is natural since it does not depend on h.
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1.2 The extremogram and its estimation

1.2.1 Definition and basic properties

To facilitate the application of the time domain and frequency domain approaches to the extremes
in a strictly stationary Rd-valued sequence, the extremogram

γAB(h) = lim
n→∞

n cov
(
I{a−1

n X0∈A}, I{a−1
n Xh∈B}

)
, h ≥ 0 , (1.2.1)

was introduced by Davis and Mikosch [8]. Here (an) is a suitably chosen normalization sequence
and A, B are two fixed sets bounded away from zero. The quantity γAB(h) measures the influence
of the extremal event {X0 ∈ anA} at time zero on the extremal event {Xh ∈ anB}, h lags apart.

For fixed n, (I{a−1
n Xt∈A}

) and (I{a−1
n Xt∈B

) constitute strictly stationary sequences and the limit

sequence (γAB(h)) inherits the property of covariance function from cov
(
I{a−1

n X0∈A}
, I{a−1

n Xh∈B}

)
.

Moreover, for any dimension d and suitable sets A, B, the limiting sequence(
γAA(h) γAB(h)
γBA(h) γBB(h)

)
, h ≥ 0 ,

is a matrix covariance function. In an asymptotic sense, one can use the notions of classical time
series analysis for the sequences of indicator functions (I{a−1

n Xt∈A}) and (I{a−1
n Xt∈B}). Of course,

there are several crucial differences to classical time series analysis. Firstly, the value of γAB(h)
cannot be negative and the strictly stationary sequences of indicator functions (I{a−1

n Xt∈A}) and

(I{a−1
n Xt∈B}) depend on n, i.e., we are dealing with an array of strictly stationary sequences.

Last but not least, the notion of autocovariance or cross-covariance function is only defined in
an asymptotic sense.

A motivating example is the so-called (upper) tail dependence coefficient of the vector (X0, Xh)
given as the limit:

ρ(h) = lim
x→∞

P (Xh > x | X0 > x) . (1.2.2)

Here we assume that X has infinite right endpoint. These pairwise tail dependence coefficients
have attracted some attention in the literature on quantitative risk management; see for example
McNeil et al. [17]. To avoid ambiguity, we assume that (an) satisfies the relation nP (|Xn| >
an) ∼ 1. With this choice of (an), γAB(h) = limn→∞ nP (a−1

n X0 ∈ A, a−1
n Xh ∈ B), which

coincides with ρ(h) if d = 1, X ≥ 0 a.s. and A = B = (1,∞). Indeed,

n cov(I{X0>an}, I{Xh>an}) ∼ P (Xh > an, X0 > an)− (P (X0 > an))2

P (X0 > an)

∼ P (Xh > an | X0 > an) .

The limit in (1.2.1) does not exist in general, but if the sequence (Xt) is strictly stationary

and regularly varying, there exist non-null limiting measures µh+1 on Rd(h+1)

0 such that

lim
n→∞

nP (a−1
n X0 ∈ A, a−1

n Xh ∈ B) → µh+1(A× Rd(h−1) ×B) = γAB(h) , h ≥ 0 ,

provided A× Rd(h−1) ×B is a continuity set with respect to the measure µh+1.
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1.2.2 The extremogram of some regularly varying time series models

Numerous real-valued time series models constitute regularly varying sequences; we give some
examples and the corresponding extremograms ρ in (1.2.2); these examples are taken from Davis
and Mikosch [8], Davis et al. [9, 10].

IID regularly varying sequence

The simplest example is an iid regularly varying sequence (Zt) with index α when Z is regularly
varying with the same index; the limit measures µh are concentrated on the axes and ρ(h) = 0,
h ≥ 1.

Regularly varying linear process

Building upon this iid regularly varying sequence (Zt), we can define a regularly varying (causal)
linear process

Xt =

∞∑
t=0

ψjZt−j , t ∈ Z . (1.2.3)

In the history of extreme value theory and in time series analysis a lot of attention was paid to
this model. The process (Xt) inherits regular variation under mild conditions on the determin-
istic sequence (ψi) which are close to those dictated by the 3-series theorem, ensuring the a.s.
convergence of the series in (1.2.3); see Mikosch and Samorodnitsky [18] for the case of the tails
of the marginals. The regular variation of the finite-dimensional distributions of (Xt) follows
since regular variation is preserved under affine transformations of regularly varying vectors. The
class (1.2.3) includes causal ARMA processes which are relevant for applications. We refer to
Chapter 7 of Embrechts et al. [11] for various applications of regularly varying linear processes.
Under the tail balance condition P (Z > x) ∼ pP (|Z| > x), P (Z ≤ −x) ∼ q P (|Z| > x), as
x→∞, for some p, q ≥ 0 with p+ q = 1,

ρ(h) =

∑∞
i=0

[
p (min(ψ+

i , ψ
+
i+h))α + q (min(ψ−i , ψ

−
i+h))α

]
∑∞
i=0

[
p (ψ+

i )α + q(ψ−i )α
] , h ≥ 1 .

Max-stable processes with Fréchet marginals

The class of max-stable processes has recently attracted some attention since it is a flexible class
for modeling heavy tails and spatio-temporal dependence. Since the finite-dimensional distri-
butions of max-stable processes are explicitly given it is often simple to verify properties (such
as regular variation) and to calculate certain quantities (e.g. mixing coefficients, extremogram).
We will focus on stationary ergodic max-stable processes (Xt) with Fréchet marginals given by

P (Xt ≤ x) = exp
{
− x−α

∫
E

fαt (y) ν(dy)
}
, x > 0 ,
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where the non-negative functions ft ∈ Lα(E, E , ν) and (E, E , ν) is a σ-finite measure space. The
corresponding tail dependence coefficient is given by

ρ(h) =

∫
E
fα0 (y) ∧ fαh (y) ν(dy)∫
E
fα0 (y) ν(dy)

, h ≥ 1 .

GARCH and stochastic volatility (SV) processes

They are well-known time series models for financial returns which are widely used in practice.
Both processes are defined via the relation

Xt = σtZt , t ∈ Z , (1.2.4)

where (σt) is a strictly stationary sequence of non-negative random variables and (Zt) is an
iid sequence. Depending on the dependence structure of the process (σt) one can achieve very
different tail and dependence behavior of the return sequence (Xt).

For the SV model, (σt) and (Zt) are independent. If we further assume that Z is regularly
varying with index α > 0 and E(σα+ε) < ∞ for some ε > 0 then (Xt) is regularly varying
with index α. This is a simple consequence of Breiman’s lemma [3] about the tail of products
of independent random variables. In this case, ρ(h) = 0, h ≥ 1, as in the iid case. Thus the
extremes in a regularly varying SV model are asymptotically independent at all lags, indicating
that the SV model does not exhibit extremal clustering through time.

This is in contrast to the GARCH model. For the ease of presentation, we focus on the
GARCH(1, 1) process. Assume that the iid noise sequence (Zt) has mean zero and unit variance
and the volatility sequence (σt) is given by the equations

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 = α0 + σ2

t−1Ct−1 , Ct = α1Z
2
t + β1 , t ∈ Z .

Here the parameters α0, α1, β1 > 0 are chosen such that (Xt) is strictly stationary and a unique
positive solution α to the equation ECκ/2 = 1, κ > 0, exists. Then the sequences (σt) and
(Xt) are regularly varying with index α (under additional regularity conditions); see Kesten [13],
Goldie [12]. Moreover,

ρ(h) = E(min(1, C0 · · ·Ch−1))α/2 , h ≥ 1 ,

and 0 < ρ(h)→ 0 as h→∞ at an exponential rate.
The examples of the GARCH and SV models show that their extremograms ρ could be used

for distinguishing between these two processes, i.e. it might be possible to dicriminate between
these processes solely based on their extremal behavior. This is similar to the ACVF and ACF
in classical time series analysis where the second order structure of a time series is taken as a
means to judge the goodness of fit of a stationary time series.

1.2.3 Estimation of the extremogram

For the sake of simplicity, we focus on the estimation of the extremogram in the case A = B; we
write γA = γAA and ρA = ρAA. For the estimation of the extremogram γAB we refer to Davis
et al. [8, 9]. Recall the fact that

γA(h) = lim
n→∞

nP (a−1
n X0 ∈ A, a−1

n Xh ∈ A)
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Natural estimators are obtained by replacing the probabilities in the limiting relation by their
empirical counterparts. We refer to such an estimator as the sample extremogram:

γ̃A(h) =
mn

n

n−h∑
t=1

I{a−1
m Xi∈A}I{a−1

m Xi+h∈A} , h ≥ 0 . (1.2.5)

Here m = mn → ∞ and m/n → 0. We can also define an estimator of the standardized
extremogram ρA(h) = γA(h)/γA(0) by

ρ̃A(h) = γ̃A(h)/γ̃A(0) , h ≥ 0 .

For the derivation of the consistency and asymptotic normality of the estimators, we introduce
mixing and anti-clustering conditions:

(M) The sequence (Xt) is strongly mixing with rate function (ξt) given by

ξt = sup
{
|P (A ∩B)− P (A)P (B)| : t ≥ 0 , A ∈ F0

−∞ , B ∈ F∞t
}
, t ≥ 1 ,

where F0
−∞ is the σ-algebra generated by {. . . , X−1, X0} and F∞t is the σ-algebra generated

by {Xt, Xt+1, . . .}. Moreover, there exist sequences m = mn →∞ and rn →∞ such that
mn/n→ 0, rn/mn → 0 and

lim
n→∞

mn

∞∑
h=rn

ξh = 0 , (1.2.6)

and for all ε > 0, an anti-clustering condition holds:

lim
k→∞

lim sup
n→∞

rn∑
h=k

P (|Xh| > εam | |X0| > εam) = 0 . (1.2.7)

(M1) The sequences (mn), (rn), kn = [n/mn] from (M) satisfy the growth conditions knξrn → 0,
and mn = o(n1/3).

Condition (1.2.6) is easily satisfied if the mixing rate (ξh) is geometric, i.e. exponentially
decaying to zero. Under mild conditions, the popular classes of ARMA, max-stable, GARCH
and stochastic volatility processes are strongly mixing with geometric rate; see Davis et al.
[8, 9, 10] , Mikosch and Zhao [19] for discussions of these examples.

Condition (1.2.7) is similar in spirit to condition (2.8) used in Davis and Hsing [7] for es-
tablishing convergence of a sequence of point processes to a limiting cluster point process. It is
much weaker than the anti-clustering condition D′(εan) of Leadbetter which is well known in
the extreme value literature; see Leadbetter et al. [16] or Embrechts et al. [11].

The quantities mn and rn have some straightforward interpretation as size in a large-small
block scheme: the sample X1, . . . , Xn consists of roughly kn large disjoint blocks of size mn.
After chopping off the first rn elements in each large block one aims at ensuring the asymptotic
independence of the resulting large blocks.

By applying this method, one can prove the following pre-asymptotic central limit theorem;
see Section 3 in Davis and Mikosch [8], cf. Section 2 in Mikosch and Zhao [20].
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Lemma 1.2.1. Assume that (Xt) is an Rd-valued strictly stationary regularly varying sequence

with index α > 0 . Let A ⊂ Rd0 be bounded away from zero and µ1(∂A) = 0. If the mixing
conditions (M), (M1) hold and

∑∞
l=1 γA(l) <∞ then for h ≥ 0,

γ̃A(h)
P→ γA(h) , (1.2.8)

(n/m)1/2
(
γ̃A(i)− Eγ̃A(i)

)
i=0,...,h

d→ (Zi)i=0,...,h , (1.2.9)

where (Zi)i=0,...,h is mean zero Gaussian with covariance matrix Σh = (σij)i,j=0,...,h whose
entries are given by

σij = γA(i, j) +

∞∑
l=1

[
γA(i, l, l + j) + γA(j, l, l + i)

]
, i, j = 0, . . . , h ,

and for u, s, t ≥ 0,

γA(u, s, t) = lim
n→∞

nP (a−1
n X0 ∈ A , a−1

n Xu ∈ A, a−1
n Xs ∈ A, a−1

n Xt ∈ A) ,

with the convention that γA(u, t) = γA(u, u, t).

Unlike the classical central limit theorem, the centering part Eγ̃A(h) in (1.2.9), called the
pre-asymptotic extremogram, in general cannot be replaced by its limit γA(h). It is difficult to
show that

(n/m)−1/2|Eγ̃A(h)− γA(h)| → 0 , n→∞ ,

even for “nice” models such as GARCH(1,1). For this well-studied model, the information about
the tail behavior is not sufficiently known. Meanwhile, the pre-asymptotic extremogram has a
very concrete interpretation in contrast to its less intuitive limit – the extremogram.

The covariance matrix Σh in (1.2.9) is in general unfamiliar and very hard to calculate.
Davis et al. [9] applied the stationary bootstrap introduced by Politis and Romano [21] for the
estimation of Σh. The algorithm will be explained in Section 1.4 below.

1.3 Extremal periodogram and smoothed extremal peri-
odogram

In this section we present the results of Chapter 2. Observing that the extremogram γA is an
ACVF of a stationary process, in analogy with the spectral density (1.1.2) of a stationary process
(see (1.1.2)) we define the following spectral density

fA(λ) =

∞∑
h=−∞

γA(h)e−ihλ = γA(0) + 2

∞∑
h=1

γA(h) cos(hλ) , λ ∈ Π = [0, π] . (1.3.1)

In classical time series analysis the periodogram is a natural estimator of the spectral density;
see (1.1.4). In analogy, we define the extremal periodogram of a strictly stationary regularly
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varying Rd-valued sequence (Xt) by

InA(λ) =
mn

n

∣∣∣ n∑
t=1

I{a−1
m Xt∈A}e

−itλ
∣∣∣2 (1.3.2)

=
mn

n

( n∑
t=1

I{a−1
m Xt∈A} cos(λt)

)2

+
mn

n

( n∑
t=1

I{a−1
m Xt∈A} sin(λt)

)2

= α2
nA(λ) + β2

nA(λ) , λ ∈ Π ,

where (am) is chosen such that mP (|X| > am) ∼ 1, A is bounded away from zero and the
sequence (mn) satisfies mn → ∞ with mn/n → 0 as n → ∞. As mentioned above, the se-
quence (I{a−1

m Xt∈A}) is strictly stationary for fixed n and therefore we expect that the extremal
periodogram shares the asymptotic properties of the periodogram of a stationary process.

Applying the large-small block technique, one can prove joint central limit theory for αnA(λ)
and βnA(λ); see Theorem 4.4 in Mikosch and Zhao [19] for details; cf. Theorem 2.4.4 in Chapter 2
of this thesis.

Theorem 1.3.1. Consider a strictly stationary Rd-valued sequence (Xt) which is regularly vary-

ing with index α > 0. Let A ⊂ Rd0 be bounded away from zero and µ1(∂A) = 0. Assume that the
mixing and anti-clustering conditions (M), (M1) hold and

∑
h≥1 γA(h) <∞. Consider any fixed

frequencies 0 < λ1 < · · · < λN < π for some N ≥ 1. Then the following central limit theorem
holds: (

αnA(λi), βnA(λi)
)
i=1,...,N

d→
(
(α(λi), β(λi)

)
i=1,...,N

, n→∞ , (1.3.3)

where the limiting vector has N(0,ΣN ) distribution with

ΣN = diag
(
fA(λ1), fA(λ1), . . . , fA(λN ), fA(λN )

)
.

The limit relation (1.3.3) remains valid if the frequencies λi, i = 1, . . . , N , are replaced by
distinct Fourier frequencies ωi(n) = 2πin/n → λi ∈ (0, π) for integers in ≥ 1 as n → ∞. The
limits λi do not have to be distinct.

As a corollary of Theorem 1.3.1 and as a consequence of the continuous mapping theorem,
we can derive the asymptotic distribution of the extremal periodogram ordinates. For any fixed
frequencies 0 < λ1 < · · · < λN < π and N ≥ 1,(

InA(λi)
)
i=1,...,N

d→
(
fA(λi)Ei

)
i=1,...,N

, n→∞ , (1.3.4)

where (Ei) is a sequence of iid standard exponential random variables. Similarly, for any distinct
Fourier frequencies ωi(n)→ λi ∈ (0, π) as n→∞, i = 1, . . . , N , where the limits λi do not have
to be distinct, the following relation hold:(

InA(ωi(n))
)
i=1,...,N

d→
(
fA(λi)Ei

)
i=1,...,N

, n→∞ .

As (1.3.4) shows, the raw periodogram is not a consistent estimator of the spectral density.
An intuitive idea is to smooth the raw periodogram by replacing the periodogram ordinates at
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Figure 1.1: Left: The normalized raw periodogram InA(ωi(n))/γ̃A(0) of an ARMA(1,1) process
Xt = 0.8Xt−1 + 0.1Zt−1 +Zt with iid t-distributed noise (Zt) of degree 3 and the corresponding
theoretical spectral density fA with A = (1,∞) (solid line). Right: The smoothed periodogram
with Daniell window, sn = 50.

Fourier frequencies by a weighted sum of periodgram ordinates at nearby Fourier frequencies.
The smoothed periodgram at a frequency λ is given by

f̃nA(λ) =
∑
|j|≤sn

wn(j)InA(λj) ,

where λ0 is the closest Fourier frequency to the frequency λ and λj = λ0 + 2jπ/n. Consistency

of this estimator means that the relations Ef̃nA(λ) = fA(λ) and var(f̃nA(λ))→ 0 hold. For this
purpose, we assume some conditions on the sequence (sn) and the weights (wn(j)). In view of the
asymptotic properties of the periodogram ordinates, we need sn → 0 and sn/n→ 0 as n→∞.
These conditions imply that the number of the periodogram ordinates taken into consideration
grows with n while the Fourier frequencies λj , |j| ≤ sn, converge to the frequency λ. To ensure

that Ef̃nA(λ) = fA(λ), the condition
∑
|j|≤sn wn(j) = 1 is required. We observe that

var(f̃nA(λ)) =
∑
|j|≤sn

w2
n(j)cjj +

∑
−sn≤j1 6=j2≤sn

wn(j1)wn(j2)cj1j2 ,

where cj1j2 = cov(InA(λj1), InA(λj2)). Under (M), (M1) and other mild conditions, it is shown
in Mikosch and Zhao [19] (cf. Theorem 2.5.1 in Chapter 2) that cj1j2 → 0 for j1 6= j2 and
cjj = var(InA(λj)) → f2

A(λ) uniformly for j, j1, j2 ∈ [−sn, sn] , j1 6= j2. Therefore, with the

condition
∑
|j|≤sn w

2
n(j)→ 0 as n→∞, it is enough to show that var(f̃nA(λ))→ 0.

Consistency of the extremal periodogram can also be achieved by reducing the number of
trigonometric functions in its definition. Using this approach, consistency was proved in Davis
and Mikosch [8]. However, it is more convenient to work with the complete periodogram for
various reasons. First, one does not have to choose the number of trigonometric functions
involved (this number is a theoretical quantity only) and, second, the complete periodogram can
be calculated by using all standard software for the frequency domain.
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Of course, the estimator f̃nA(λ) is determined by the choice of the sequence (sn) and, more
importantly, the choice of the weights (wn(j)). The simplest choice is wn(j) = (2sn + 1)−1 for
j ∈ [−sn, sn], which is called Daniel window. As a consequence we also have

f̃nA(λ)/γ̃A(0)
P→ fA(λ)/γA(0) .

The normalized smoothed extremal periodogram f̃nA(λ)/γ̃A(0) gives a satisfactory approxima-
tion to the spectral density. This fact is indicated in Figure 1.1.

Comparing the extremal periodogram with the periodogram of a linear process (see (1.1.4)),
we find several similarities: the asymptotic distribution of the periodogram ordinates at the
Fourier frequencies have a similar form and the smoothed version of the periodogram is a con-
sistent estimator of the spectral density. Unlike the periodogram of a linear process, the proof of
the asymptotic properties of the extremal periodogram is mainly based on regular variation, the
anti-clustering condition and conditions on mixing rates, such as (1.2.6) and (M1). These con-
ditions are satisfied by numerous classes of processes, including the regularly varying processes
introduced in Section 1.2.2. This fact implies wide application of the extremal periodogram.

1.4 Integrated extremal periodogram

1.4.1 Integrated extremal periodogram

In this section we present the main results of Chapter 4. We mentioned in Section 1.1.1 that
the integrated periodogram of a stationary sequence has properties similar to to the empirical
distribution of an iid sequence and therefore it can be used as the basis for testing the goodness
of fit of the underlying second order structure of the stationary process. We will go a similar way
for the extremal periodogram which bears some similarities with the periodogram of a stationary
sequence. We will study the integrated extremal periodogram

JnA(g) =

∫
Π

InA(λ)g(λ) dλ = c0(g)γ̃A(0) + 2

n−1∑
h=1

ch(g)γ̃A(h) , (1.4.1)

where g is non-negative and square integrable with respect to Lebesgue measure on Π (we write
γ ∈ L2

+(Π)) with corresponding Fourier coefficients

ch(g) =

∫
Π

cos(hλ)g(λ) dλ , h ∈ Z .

The integrated extremal periodogram JnA(g) is a natural estimator of

JA(g) =

∫
Π

fA(λ)g(λ) dλ ,

where fA is the spectral density defined in (1.3.1). This is confirmed by the following consistency
results; see Lemma 4.2.9 in Chapter 4.

Lemma 1.4.1. Consider an Rd-valued strictly stationary regularly varying sequence (Xt) with

index α > 0. Assume that the set A ⊂ Rd0 is bounded away from zero and µ1(∂A) = 0. If∑∞
l=1 γA(l) <∞ and (M) holds then the following asymptotic relations hold for g ∈ L2

+(Π).
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1. EJnA → JA(g) as n→∞.

2. If in addition, m log2 n/n = O(1) as n→∞, and there exists a constant c > 0 such that

|ch(g)| ≤ c/h , h ∈ Z , (1.4.2)

then E(JnA(g)− JA(g))2 → 0 as n→∞.

Condition (1.4.2) holds under mild smoothness conditions on g, e.g. if g is Lipschitz or has
bounded variation on Π; see Theorem 4.7 on p. 46 and Theorem 4.12 on p. 47 in Zygmund [27].

We are particularly interested in functions of the form h = gI[0,·], where the function g is
smooth. Abusing notation, we write for such functions

JnA(λ) =

∫ λ

0

InA(x) g(x) dx , λ ∈ Π ,

and

ψh(λ) =

∫ λ

0

cos(hx) g(x) dx , λ ∈ Π ,

suppressing the dependence on g in the notation.
The following result yields a functional central limit theorem for this integrated periodogram

in the space C(Π) of continuous functions on Π; see Theorem 4.3.1 in Chapter 4. It is one of
the main results in Chapter 4 of this thesis. This results is another confirmation of the parallel
worlds of extremogram and ACVF of a second order stationary process.

Theorem 1.4.2. Assume that (Xt) is an Rd-valued strictly stationary regularly varying sequence
with index α > 0 and the Borel set A is bounded away from zero with µ1(∂A) = 0. Let g be
non-negative β-Hölder continuous function with β ∈ (3/4, 1]. If the conditions (M), (M1) and∑∞
l=1 γA(l) <∞ hold then in C(Π),

(n/m)0.5(JnA − EJnA)
d→ G , n→∞ , (1.4.3)

and the limit process is given by the infinite series

G = ψ0Z0 + 2

∞∑
h=1

ψhZh ,

which converges in distribution in C(Π), and (Zh) is a mean zero Gaussian sequence such that
(Z0, . . . , Zh) has covariance matrix (Σh), h ≥ 0, given in Lemma 1.2.1.

This functional central limit theorem is pre-asymptotic, like the central limit theorem for the
sample extremogram γ̃A, i.e. in general one cannot center JnA by

∫ ·
0
fA(x) g(x) dx. This result

differs from classical theory for the periodogram of a stationary sequence (see Section 1.1.1): the
rate of convergence (n/m)0.5 is significantly smaller than the classical

√
n-rate. Moreover, the

limit process G has a rather unfamiliar covariance structure which is hardly tractable. In the
case of an iid sequence (Xt), Zh = 0 for h ≥ 1 and (1.4.3) collapses into

(n/m)0.5(JnA − EJnA)
d→ ψ0

√
γA(0)N

for a standard normal random variable N . However, for an iid sequence one can prove the
following functional limit theory; see Theorem 4.3.3 in Chapter 4.
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Theorem 1.4.3. Assume that (Xt) is an Rd-valued iid regularly varying sequence with index

α > 0 for some η ≥ 0 and the Borel set A ⊂ Rd0 is bounded away from zero, µ1(∂A) = 0 and
µ1(A) > 0. Also assume that the limits in (4.2.11) exist. Let g be a non-negative β-Hölder
continuous function with β ∈ (3/4, 1]. Then the relation

√
n
(
JnA − ψ0γ̃A(0)

) d→ G ,

holds in C(Π), where the limit process is given by the a.s. converging infinite series

G = 2

∞∑
h=1

ψη+h Zh ,

and (Zh) is a mean zero Gaussian sequence such that (Z1, . . . , Zh) has covariance matrix Σh,
h ≥ 1, given in Lemma 4.2.5.

In the case of an iid sequence and g = 1, the limiting process is a Brownian bridge and the
convergence rate is much faster than in the case of a dependent sequence.

The proof of Theorem 1.4.2 requires two ideas. Lemma 1.2.1 immediately yields that for
every fixed k ≥ 1,

ψ0

(
γ̃A(0)− Eγ̃A(0)

)
+ 2

k∑
h=1

ψh
(
γ̃A(h)− Eγ̃A(h)

) d→ ψ0Z0 + 2

k∑
h=1

ψhZh ,

Thus it remains to show that for any ε > 0,

lim
k→∞

lim sup
n→∞

P
(
(n/m)0.5 sup

λ∈Π

∣∣ n−1∑
h=k+1

ψh(λ)(γ̃A(h)− Eγ̃A(h))
∣∣ > ε

)
= 0 .

The proof of the latter relation borrows ideas from Theorem 3.2 in Klüppelberg and Mikosch [14]:
the time interval [k+1, n−1] and frequency interval Π are both divided into disjoint subintervals
of small size. On these subintervals, one can control the covariances of the increments of the
process under consideration and, finally, apply a maximal inequality for stochastic processes
provided in Billingsley [1].

An application of the continuous mapping theorem to Theorem 1.4.2 immediately yields the
following limit relations.

• Grenander-Rosenblatt test:

(n/m)0.5 sup
x∈Π
|JnA(x)− EJnA(x)| d→ sup

x∈Π
|G(x)| . (1.4.4)

• ω2- or Cramér-von Mises test:

(n/m)

∫
x∈Π

(
JnA(x)− EJnA(x)

)2

dx
d→
∫
x∈Π

G2(x) dx . (1.4.5)
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They are the analogs of the limit relations for the integrated periodogram in classical time series
analysis; see Section 1.1.1 above. As in classical theory, these limit results can be used to con-
struct asymptotic tests for the hypothesis that the data come from a strictly stationary sequence
(Xt) with a given extremogram or extremal spectral density. However, with the exception of an
iid sequence (Xt), the asymptotic distribution of the limiting random variables of the functionals
in (1.4.4) and (1.4.5) is untractable and therefore one needs to come up with confidence bands
in a different way. This is the content of the following subsection.

1.4.2 The bootstrapped integrated extremal periodogram

With a few exceptions, the limit processes G in Theorem 1.4.2 have an unfamiliar dependence
structure and then it is impossible to give confidence bands for the test statistics mentioned in
the previous section. One faces a similar problem when dealing with the sample extremograms
whose asymptotic covariance matrix is a complicated function of the measures µh in (1.1.2).
Davis et al. [9] proposed to apply the stationary bootstrap for constructing confidence bands
for the sample extremogram. The stationary bootstrap can also be used for the integrated
periodogram, as will be illustrated below.

The stationary bootstrap was introduced by Politis and Romano [21] as an alternative block
bootstrap method. First, we describe this procedure for a strictly stationary sequence (Yt).
Given a sample Y1, . . . , Yn, consider the bootstrapped sequence

YK1 , . . . , YK1+L1−1, . . . , YKN , . . . , YKN+LN−1, . . . , (1.4.6)

where (Yi), (Ki), (Li) are independent sequences, (Ki) is an iid sequence of random variables
uniformly distributed on {1, . . . , n}, (Li) is an iid sequence of geometrically distributed random
variables with distribution P (L1 = i) = θ(1 − θ)i−1, i = 1, 2, . . . , for some θ = θn ∈ (0, 1) such

that θn → 0 as n → ∞ and N = Nn = inf{i ≥ 1 :
∑i
j=1 Lj ≥ n}. If any element Yt in (1.4.6)

has an index t > n, we replace it by Yt mod n. As a matter of fact, (Yt)t≥1 constitutes a strictly
stationary sequence. The stationary bootstrap sample is now chosen as the block of the first
n elements in (1.4.6). In what follows, we write (Yt∗)t≥1 for the bootstrap sequence (1.4.6),
indicating that this sequence is nothing but the original Y -sequence sampled at the random
indices (K1, . . . ,K1 + L1 − 1,K2, . . . ,K2 + L2 − 1, . . .) with the convention that indices larger
than n are taken modulo n.

In what follows, the probability measure generated by the bootstrap procedure is denoted
by P ∗, i.e. P ∗(·) = P (· | (Xt)). The corresponding expected value, variance and covariance are
denoted by E∗, var∗ and cov∗.

We will apply the stationary bootstrap directly to (It). Write

In = n−1
n∑
t=1

It and Ît = It − In , t ∈ Z .

and define the corresponding bootstrap sample extremogram

γ̂∗A(h) =
m

n

n−h∑
t=1

Ît∗ Î(t+h)∗ , h = 0, . . . , n− 1 ,
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and the bootstrap periodogram

I∗nA(λ) =
m

n

∣∣∣∑
t=1

Ît∗e
−it λ

∣∣∣2 , λ ∈ Π .

In the definition of JnA in (1.4.1), we simply replace (It) by (Ît∗), resulting in its bootstrap
version

J∗nA(λ) =

∫ λ

0

I∗nA(x) g(x) dx = ψ0 γ̂
∗
A(0) + 2

n−1∑
h=1

ψh γ̂
∗
A(h) , λ ∈ Π .

Now we can formulate a bootstrap analog of Theorem 1.4.2 which shows the consistency of
the stationary bootstrap procedure. This theorem is another main result of Chapter 4 ; see
Theorem 4.4.2.

Theorem 1.4.4. Assume the conditions of Theorem 1.4.2 and the following conditions:

1.
∑∞
h=1 hξh <∞.

2. The growth conditions θ = θn → 0 and nθ2/m→∞.

3. The set A is bounded away from zero and a continuity set with respect to µ1.

Then

dP∗
(

(n/m)1/2
(
J∗nA − E∗J∗nA

)
, G
)

P→ 0 , n→∞ ,

where the Gaussian process G is defined in Theorem 1.4.2 and dP∗ is any metric which describes
weak convergence in C(Π) relative to the probability measure P ∗.

1.5 Directions of future research

Various interesting questions about the extremal periodogram and the integrated extremal peri-
odogram are open. They might become directions of future research. An important question is
about the choice of the threshold an in the definition of the extremogram (1.2.1), which affects the
value of the extremogram, the extremal periodogram and the integrated extremal periodogram.
In the data examples of this thesis, the quantity an is taken as a high empirical quantile of the
absolute values of the sample, considered as a constant. It is more realistic to assume that the
threshold an is random. This might lead to a different limit theory for the extremogram and
correspondingly for the extremal periodgram.

In classical time series analysis, the integrated periodogram can be used for constructing an
estimator of the parameters of ARMA process, which is called Whittle estimator. So far, a similar
estimator based on the integrated extremal periodogram is not available. Therefore, it is also
meaningful to develop such estimators for certain classes of heavy-tailed processes. Among these
classes are the max-stable processes with Fréchet marginals. The parameters of such processes
are typically estimated through a pairwise likelihood estimation procedure. Whittle estimation
based on the spectral density of max-stable processes might be an elegant alternative to pairwise
likelihood estimation.
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In Chapter 4, we already studied the integrated periodogram indexed by a special classes
of functions. As in classical time series analysis (e.g. Dahlhaus [5]) the integrated periodogram
indexed by classes of functions can be interpreted as an empirical spectral distribution indexed
by functions. Whittle estimation is closely related to this topic as well. It may be of interest
to prove functional central limit theory for large classes of index functions. The goal will be to
cover large classes of interesting statistical functionals as described in Dahlhaus [5].
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Chapter 2

A Fourier analysis of extreme
events

Abstract

The extremogram is an asymptotic correlogram for extreme events constructed from a regu-
larly varying stationary sequence. In this paper, we define a frequency domain analog of the
correlogram: a periodogram generated from a suitable sequence of indicator functions of rare
events. We derive basic properties of the periodogram such as the asymptotic independence at
the Fourier frequencies and use this property to show that weighted versions of the periodogram
are consistent estimators of a spectral density derived from the extremogram.

2.1 Introduction

In this paper we study an analog of the periodogram for extremal events. In classical time
series analysis, the periodogram is a method of moments estimator of the spectral density of a
second order stationary time series (Xt); see for example the standard monographs Brillinger
[8], Brockwell and Davis [9], Grenander and Rosenblatt [23], Hannan [26], Priestley [42]. The
notions of spectral density and periodogram are the respective frequency domain analogs of the
autocorrelation function and the sample autocorrelation function in the time domain. In the
context of extremal events these notions are not meaningful since second order characteristics
are not suited for describing the occurrence of rare events.

However, Davis and Mikosch [15] introduced a time domain analog of the autocorrelation
function, the extremogram for rare events. For an Rd-valued strictly stationary time series (Xt)
and a Borel set A bounded away from zero the extremogram at lag h ≥ 0 is given as the limit

ρA(h) = lim
x→∞

P (x−1Xh ∈ A | x−1X0 ∈ A) . (2.1.1)

This definition requires that the support of X (here and in what follows, X denotes a generic
element of any stationary sequence (Xt)) is unbounded and, more importantly, that the limit on
the right-hand side exists. In general, these limits do not exist. A sufficient condition for their

23
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existence is regular variation of all pairs (X0, Xh) or, more generally, regular variation of the
finite-dimensional distributions of the process (Xt). A precise definition of regular variation will
be given in Section 2.2.1. Since A is assumed to be bounded away from zero the probabilities
P (x−1X ∈ A) converge to zero as x→∞. Then the following calculation is straightforward for
A:

lim
x→∞

corr(I{x−1X0∈A}, I{x−1Xh∈A}) = lim
x→∞

P (x−1X0 ∈ A , x−1Xh ∈ A)− [P (x−1X ∈ A)]2

P (x−1X ∈ A)(1− P (x−1X ∈ A))

= lim
x→∞

P (x−1Xh ∈ A | x−1X0 ∈ A) = ρA(h) .

For fixed x, (I{x−1Xt∈A})t∈Z constitutes a strictly stationary sequence. The limit sequence
(ρA(h)) inherits the property of correlation function from (corr(I{x−1X0∈A}, I{x−1Xh∈A})). There-
fore, in an asymptotic sense, one can use the notions of classical time series analysis (such as the
autocorrelation function) for the sequences of indicator functions (I{x−1Xt∈A})t∈Z. Of course,
there are several crucial differences to classical time series analysis.

• The notion of autocorrelation function is only defined in an asymptotic sense.

• The strictly stationary sequence of indicator functions (I{x−1Xt∈A})t∈Z depends on the
threshold x, i.e., we are dealing with an array of strictly stationary processes.

• By definition, the values ρA(h) cannot be negative.

Davis and Mikosch [15, 16] introduced the extremogram and calculated the extremogram for
various standard regularly varying time series models such as the GARCH model, stochastic
volatility and linear processes with regularly varying noise, and infinite variance stable processes;
see also Section 2.3. They studied the basic asymptotic properties of the extremogram (consis-
tency, asymptotic normality) and also introduced a frequency domain analog of the correlation
function ρA given as the Fourier series

fA(λ) =
∑
h∈Z

ρA(h) e−i h λ , λ ∈ [0, π] . (2.1.2)

A natural estimator of fA(λ) is found by replacing the correlations ρA(h) by sample analogs. The
convergence in the mean square sense of such an analog of the classical periodogram estimator
towards the spectral density fA(λ) at a fixed frequency λ was shown in [15]. However, the
periodogram of (I{x−1Xt∈A})t∈Z used in [15] had to be truncated to achieve consistency; the
truncation level depended on some mixing rate which is unknown for real-life data. In this
paper, we overcome this inconvenience. In addition, we study the periodogram ordinates of
the indicator functions at finitely many frequencies. We show that the limiting vector of the
periodogram ordinates at distinct fixed or Fourier frequencies converges in distribution to a
vector of independent exponential random variables. This property parallels the asymptotic
theory for the periodogram of a second order stationary sequence; see e.g. Brockwell and Davis
[9], Chapter 10.

In classical time series analysis, the asymptotic independence of the periodogram at distinct
frequencies is the theoretical basis for consistent estimation of the spectral density via weighted
averages or kernel based methods. We show that weighted average estimators of the periodogram
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evaluated at Fourier frequencies in the neighborhood of a fixed non-zero frequency are consistent
estimators of the limiting spectral density.

The paper is organized as follows. In Section 2.2 we introduce basic notions and conditions
used throughout this paper. In Section 2.2.1 we define regular variation of a strictly station-
ary sequence. In Section 2.2.2 we consider those mixing conditions which are relevant for the
results of this paper. The periodogram of extreme events is introduced in Section 2.2.3. In
Section 2.3 we discuss some regularly varying strictly stationary sequences. Among them are
linear, stochastic volatility and max-moving average processes with regularly varying noise. We
give expressions for the extremogram and, if possible, for the corresponding spectral density.
In Section 2.4 we give the main results of this paper. We start in Section 2.4.1 by showing
that the periodogram ordinates of extreme events are asymptotically uncorrelated at distinct
fixed or Fourier frequencies in the interval (0, π). Next, in Section 2.4.2 we show that the peri-
odogram ordinates at distinct fixed or Fourier frequencies converge to independent exponential
random variables. This property is exploited in Section 2.5 to show that weighted averages
of periodogram ordinates evaluated at Fourier frequencies in a small neighborhood of a fixed
frequency yield consistent estimates of the underlying spectral density at the given frequency.
In Section 2.6 we give a short discussion of work related to the extremogram or the spectral
analysis of sequences of indicator functions. The proofs depend on various calculations involving
formulas for sums of trigonometric functions. Some of these formulas and related calculations
are given in the Appendix.

2.2 Preliminaries

2.2.1 Regular variation

It was mentioned in Section 2.1 that one needs conditions to ensure that the limits ρA(h) in (2.1.1)
exist. A sufficient condition for this to hold is regular variation of the strictly stationary sequence
(Xt). Regular variation is a convenient tool for modeling multivariate heavy-tail phenomena
and serial extremal dependence in a time series; see Resnick’s monographs [44, 45], Resnick
[43], Basrak and Segers [5, 4], Davis and Hsing [11], Embrechts et al. [20], Jakubowski [30, 31],
Bartkiewicz et al. [2], and the references therein. Regular variation is particularly useful for
modeling extremes in financial time series; see Basrak et al. [3], Mikosch and Stărică [39], Davis
and Mikosch [12, 13, 14] ; cf. Andersen et al. [1] and the references therein. See also the examples
in Section 2.3.

A random vector X with values in Rd for some d ≥ 1 is regularly varying if there exists a

non-null Radon measure µ on the Borel σ-field of Rd0 = Rd \ {0}, where R = R∪{∞,−∞}, such
that

P (x−1X ∈ ·)
P (|X| > x)

v→ µ(·) , x→∞ . (2.2.1)

Here
v→ denotes vague convergence on the Borel σ-field of Rd0; for definitions see Kallenberg [33],

Resnick [44, 43]. In this context, bounded sets are those which are bounded away from zero
and the Radon measure µ charges finite mass to these sets. Then, necessarily, there exists an

α ≥ 0 such that µ(tA) = t−αµ(A), t > 0, for all A in the Borel σ-field of Rd0. We refer to regular
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variation of X with limiting measure µ and index α. A multivariate t-distributed random vector
is regularly varying and the index α is the degree of freedom. Other well known multivariate
regularly varying distributions are the multivariate F - and Fréchet distributions; see Resnick
[44], Chapter 5, in particular Section 5.4.2.

We will often use an equivalent sequential version of (2.2.1): there exists (an) such that
an →∞ as n→∞ and

nP (a−1
n X ∈ ·) v→ µ(·) , n→∞ . (2.2.2)

A possible choice of (an) is given by the (1− 1/n)-quantile of |X|.
Now, a strictly stationary d-dimensional sequence (Xt) is regularly varying if the lagged

vectors Yh = vec(X0, . . . , Xh), h ≥ 0, are regularly varying with index α. Of course, the
limiting non-null Radon measures µh in (2.2.1) now depend on the lag h and the normalization
in (2.2.2) would also change with h. In the context of this paper it is convenient to choose the
normalizations of the rare event probabilities independently of h. In particular, we will use the
following relations for h ≥ 0,

P (x−1Yh ∈ ·)
P (|X0| > x)

v→ µh(·) , x→∞ .

n P (a−1
n Yh ∈ ·)

v→ µh(·) , n→∞ ,

where (an) satisfies nP (|X0| > an) → 1, as n → ∞. These relations are equivalent to the
definitions (2.2.1) and (2.2.2) of regular variation of Yh.

Now we are in the position to verify that the limits ρA(h) in (2.1.1) exist for any Borel set

A ⊂ Rd0 bounded away from zero. Write Ã = A × Rdh0 and B̃ = A × Rd(h−1)

0 × A. These sets

are bounded away from zero in Rd(h+1)

0 . If these sets are continuity sets with respect to µh we
obtain from the sequential definition of regular variation of Yh for h ≥ 0,

ρA(h) = lim
n→∞

P (a−1
n Xh ∈ A | a−1

n X0 ∈ A)

= lim
n→∞

nP (a−1
n Yh ∈ B̃)

nP (a−1
n Yh ∈ Ã)

=
µh(B̃)

µh(Ã)
.

2.2.2 The mixing and dependence conditions (M), (M1) and (M2)

The results in Davis and Mikosch [15, 16] were proved under the following mixing/dependence
condition on the sequence (Xt).

(M) The sequence (Xt) is strongly mixing with rate function (ξt). There exist m = mn → ∞
and rn →∞ such that mn/n→ 0 and rn/mn → 0 and

lim
n→∞

mn

∞∑
h=rn

ξh = 0 , (2.2.3)

and for all ε > 0,

lim
k→∞

lim sup
n→∞

mn

rn∑
h=k

P (|Xh| > εam , |X0| > εam) = 0 . (2.2.4)
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Condition (2.2.4) is similar in spirit to condition (2.8) used in Davis and Hsing [11] for establishing
convergence of a sequence of point processes to a limiting cluster point process. It is much weaker
than the anti-clustering condition D′(εan) of Leadbetter which is well known in the extreme value
literature; see Leadbetter et al. [34] or Embrechts et al. [20]. Since we choose (an) such that
nP (|X| > an)→ 1 as n→∞, (2.2.4) is equivalent to

lim
k→∞

lim sup
n→∞

∞∑
h=k

P (|Xh| > εam | |X0| > εam) = 0 , ε > 0 .

In addition, we also need the following technical condition, using the same notation as in (M).

(M1) The sequences (mn), (rn), kn = [n/mn] from (M) also satisfy the growth conditions
knξrn → 0, and mn = o(n1/3).

Remark 2.2.1. Some of the examples in Section 2.3 are strongly mixing with geometric rate,
i.e. there exists a ∈ (0, 1) such that ξh ≤ ah for sufficiently large h. Then (2.2.3) is satisfied if
mna

rn = o(1). If mn = nγ for some γ ∈ (0, 1) then (2.2.3) is satisfied for rn = c log n if c is chosen
sufficiently large and (M1) trivially holds as well. If ξh ≤ h−s for some s > 1 and sufficiently
large h then (2.2.3) is satisfied if mnr

−s+1
n = o(1). Thus, if mn = nγ for some γ ∈ (0, 1) and

rn = nδ for some δ ∈ (γ/(s− 1), γ), some s > 2, then (2.2.3) holds. Condition (M1) is satisfied
if (1 + s)−1 < γ < 1/3 and δ ∈ ((1− γ)/s, γ). Thus (2.2.3) and (M1) are always satisfied if s can
be chosen arbitrarily large.

For our main result on the smoothed periodogram (see Theorem 2.5.1) we finally need the
condition:

(M2) The sequences (mn), (rn) from (M) also satisfy the growth conditions

m2
nn

n∑
h=rn+1

ξh → 0, mnr
3
n/n→ 0 .

Remark 2.2.2. Condition (M2) is stronger than (2.2.3). If (Xt) is strongly mixing with ge-
ometric or polynomial rate, a similar argument as in Remark 2.2.1 shows that (M2) holds for
suitable choices of (rn) and (mn).

2.2.3 The periodogram of extreme events

In this section we recall some of the results from Davis and Mikosch [15] concerning the estimation
of the spectral density fA defined in (2.1.2). Write

It = I{Xt/am∈A} , Ĩt = It − p0 , p0 = EIt = P (a−1
m X ∈ A) , t = 1, . . . , n ,

for some sequence m = mn →∞ such that mn/n→ 0 as in condition (M) above. We suppress
the dependence of It on A and am. We introduce the estimators

InA(λ) =
mn

n

∣∣∣ n∑
t=1

Ĩt e−i t λ
∣∣∣2 , λ ∈ [0, π] , and P̂m(A) =

mn

n

n∑
t=1

It . (2.2.5)



CHAPTER 2. A FOURIER ANALYSIS OF EXTREMAL EVENTS 28

It follows from Theorem 3.1 in [15] that

P̂m(A) =
mn

n

n∑
t=1

It
L2

→ µ0(A) = lim
n→∞

mn P (a−1
m X ∈ A) , (2.2.6)

provided A is a continuity set with respect to the limiting measure µ0. The conditions mn →∞
and mn/n→ 0 cannot be avoided since we need that EP̂m(A) = mnP (a−1

m X ∈ A)→ µ0(A) and

then we also get var(P̂m(A)) = O(mn/n).
Davis and Mikosch [15], Theorem 5.1, also proved that the lag-window estimator or truncated

periodogram

f̂nA(λ) = γ̃n(0) + 2

rn∑
h=1

cos(λh)γ̃n(h) (2.2.7)

with γ̃n(0) = (m/n)
∑n
t=1 It and γ̃n(h) = (m/n)

∑n−h
t=1 ĨtĨt+h, h > 0, for fixed λ ∈ (0, π), satisfies

the relations

Ef̂nA(λ)→ µ0(A)fA(λ) and E
(
f̂nA(λ)− µ0(A)fA(λ)

)2 → 0 . (2.2.8)

under condition (M), if A is a µ0-continuity set and the sets A × Rk−1

0 × A are continuity sets
with respect to µk, k ≥ 1, and mnr

2
n = O(n). If we combine (2.2.6) and (2.2.8) we have for fixed

λ ∈ (0, π),

f̂nA(λ)

P̂m(A)

P→ fA(λ) . (2.2.9)

A natural self-normalized estimator of the spectral density fA(λ) in (2.1.2) is the following
analog of the periodogram

ĨnA(λ) =
InA(λ)

P̂m(A)
=

∣∣∣∑n
t=1 Ĩt e−itλ

∣∣∣2∑n
t=1 It

, λ ∈ [0, π] ,

In contrast to f̂nA(λ) one does not need to know the quantities mn and rn which appear in the

definition of f̂nA(λ) and are hard to determine for practical estimation purposes. We call ĨnA(λ)
the standardized periodogram. However, we know from theory for the classical periodogram of
the stationary process (Xt), given by

Jn,X(λ) = n−1
∣∣∣ n∑
t=1

Xt e−itλ
∣∣∣2 , λ ∈ [0, π] ,

that Jn,X(λ) is not a consistent estimator of the spectral density fX(λ) of the process (Xt) even
in the case when (Xt) is iid and has finite variance; see e.g. Proposition 10.3.2 in Brockwell and
Davis [9]. To achieve consistent estimation of fX(λ) one needs to truncate the periodogram,

similarly to f̂nA(λ), or to apply smoothing techniques to neighboring periodogram ordinates. A
similar observation applies to the periodogram for extremal events, In,A(λ); see Section 2.4.
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2.3 Examples

In this section we collect some examples of regularly varying stationary time series models, give
their extremograms (2.1.1) and, if possible, give an explicit expression of the corresponding
spectral density (2.1.2). However, in general, the extremogram is too complicated and one
cannot calculate the Fourier series (2.1.2). Some of the examples below are taken from Davis
and Mikosch [15].

2.3.1 IID sequence

Consider an iid real-valued sequence (Zt) such that

P (Z > x) ∼ p x−α L(x) and P (Z ≤ −x) ∼ q x−α L(x) , x→∞ , (2.3.1)

where α > 0, p, q ≥ 0, p+q = 1 and L is a slowly varying function. It is well known (e.g. Resnick
[43, 44]) that (Zt) is regularly varying with index α. The limiting measures µh are concentrated
on the axes:

µh(dx0, . . . , dxh) =

h∑
i=0

λα(dxi)
∏
i6=j

ε0 dxj ,

where εy denotes Dirac measure at y, λα(x,∞] = px−α, λα[−∞,−x] = qx−α, x > 0. Then for
any A bounded away from zero,

ρA(h) = 0 , h ≥ 1 , and fA ≡ 1 .

The conditions (M), (M1) and (M2) are trivially satisfied in this case.

2.3.2 Stochastic volatility model

Let (σt) be a strictly stationary sequence of non-negative random variables with Eσα+δ <∞ for
some δ > 0, independent of the iid regularly varying sequence (Zt) with index α > 0, satisfying
the tail balance condition (2.3.1). The process

Xt = σt Zt , t ∈ Z ,

is a stochastic volatility process. It is a regularly varying sequence with index α and limiting
measures concentrated on the axes. The extremogram and the spectral density coincide with
these quantities in the iid case; see Davis and Mikosch [12]. As discussed in Davis and Mikosch
[14], the process (Xt) inherits the strong mixing property and the same rate function from the
volatility process (σt). In particular, if (σt) is strongly mixing with geometric rate, (Xt) is
also strongly mixing with geometric rate, and then the conditions (2.2.3), (M1) and (M2) are
satisfied; see Remarks 2.2.1 and 2.2.2. Condition (2.2.4) also holds if Eσ4α <∞; see Davis and
Mikosch [15].

The situation of a vanishing ρA is rather incomplete information about tail dependence. Hill
[28] proposed to use an alternative lag-wise dependence measure of the form limx→∞ P (Xh >
x,X0 > x)/[P (X0 > x)]2 − 1 which in general does not vanish. This measure is in agreement
with the asymptotic tail independence conditions of Ledford and Tawn [35].



CHAPTER 2. A FOURIER ANALYSIS OF EXTREMAL EVENTS 30

The mentioned literature [12, 14] focuses on stochastic volatility processes with iid regu-
larly varying noise (Zt) with index α and stochastic volatility satisfying the moment condition
Eσα+δ < ∞ for some δ > 0. Mikosch and Rezapur [37] consider regularly varying stochas-
tic volatility processes with index α when the sequence (σt) is regularly varying with index α,
E|Z|α+δ < ∞ for some δ > 0 and they give examples with ρA 6= 0 and fA 6≡ 1 for A bounded
away from zero. The aforementioned comments about mixing also apply in this setting.

2.3.3 ARMA process

Consider the linear process

Xt =

∞∑
j=0

ψjZt−j , t ∈ Z , (2.3.2)

where (Zt) is an iid one-dimensional regularly varying sequence with index α > 0 and tail balance
condition (2.3.1). We choose the coefficients from the ARMA equation ψ(z) = 1 +

∑∞
i=1 ψiz

i =
θ(z)/φ(z), z ∈ C, where

φ(z) = 1− φ1z − · · · − φrzr and θ(z) = 1 + θ1z + · · ·+ θsz
s ,

for integers r, s ≥ 0, and the coefficients θi, φi are chosen such that φ(z) and θ(z) have no common
zeros and φ(z) 6= 0 for |z| ≤ 1. It is well known that X is regularly varying with index α; see e.g.
Appendix A3.3 in Embrechts et al. [20] or Mikosch and Samorodnitsky [38]. The proofs in the

latter references use the fact that X
(s)
t =

∑s
j=0 ψjZt−j , s ≥ 1, is regularly varying as a simple

consequence of the fact that linear combinations of iid regularly varying random variables are
regularly varying; see Feller [22], p. 278; cf. Lemma 1.3.1 in [20]. Moreover,

lim
s→∞

lim sup
n→∞

nP (a−1
n |Xt −X(s)

t | > ε) = 0 , ε > 0 . (2.3.3)

Then it follows from Lemma 3.6 in Jessen and Mikosch [32] that Xt is regularly varying.

The vector (X
(s)
0 , . . . , X

(s)
h ) is also regularly varying with index α. This fact follows from an

application of a multivariate version of Breiman’s lemma [7] (see Basrak et al. [3]) or the fact
that linear operations preserve regular variation; see Lemma 4.6 in [32]. Since (2.3.3) holds a
straightforward multivariate extension of Lemma 3.6 in [32] yields that (X0, . . . , Xh) is regularly
varying for every h ≥ 0.

The same arguments leading to the asymptotic tail behavior of Xt (see e.g. Appendix A3.3
in Embrechts et al. [20], Mikosch and Samorodnitsky [38]) yield for A = (1,∞),

ρA(h) =

∑∞
i=0

[
p (min(ψ+

i , ψ
+
i+h))α + q (min(ψ−i , ψ

−
i+h))α

]
∑∞
i=0

[
p (ψ+

i )α + q(ψ−i )α
] , h ≥ 1 . (2.3.4)

This formula was given in [15] for symmetric Z when p = q = 0.5.
Doukhan [19], Theorem 6 on p. 99, shows that (Xt) is β-mixing, hence strongly mixing, with

geometric rate if Z has a positive Lebesgue density in some neighborhood of the expected value
of Z (provided it exists) and Pham and Tran [41] proved the same statement under the condition
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that Z has a Lebesgue density and a finite pth moment for some p > 0. Hence (2.2.3), (M1) and
(M2) are satisfied under these conditions; see Remarks 2.2.1 and 2.2.2. Next we verify condition
(2.2.4). We observe that it trivially holds for an s-dependent sequence for any integer s ≥ 1.
Hence it is satisfied for any moving average of order s, in particular for the truncated sequence

(X
(s)
t ). For ease of presentation, we assume ε = 1. Since X

(h−1)
h and X0 are independent we

have

P (|Xh| > am | |X0| > am) ≤ P (|X(h−1)
h | > 0.5 am) + P (|Xh −X(h−1)

h | > 0.5 am, | |X0| > am)

≤ I1 + I2 .

Recall that there exist ϕ ∈ (0, 1) such that |ψi| ≤ ϕi for i sufficiently large; see Brockwell and
Davis [9], Chapter 3. We have for a positive constant c > 0, for every k ≥ 1,

rn∑
h=k+1

I1 ≤ rnP
( ∞∑
i=0

|ψi||Zi| > 0.5 am

)
∼ c rnP (|Z| > am) = o(1) as n→∞.

(Here and in what follows, c denotes any constant whose value is not of interest.) For sufficiently
large k, we have in view of the uniform convergence theorem for regularly varying functions (see
Bingham et al. [6], Section 1.2),

rn∑
h=k+1

I2 ≤ cmn

rn∑
h=k+1

P
( ∞∑
i=h+1

|ψi||Zi| > 0.5 am

)
≤ cmn

rn∑
h=k+1

P
(
ϕh

∞∑
i=0

ϕi|Zi| > 0.5 am

)
≤ c

rn∑
h=k+1

ϕαh ≤ c ϕα(k+1)/(1− ϕα) ,

and the right-hand side converges to zero as k →∞. Thus we proved that (M), (M1) and (M2)
hold for ARMA processes if the noise has some Lebesgue density.

If var(X) < ∞ relation (2.3.4) bears some similarity with the autocorrelation function of
(Xt) given by ρ(h) =

∑∞
i=1 ψiψi+h/

∑∞
i=1 ψ

2
i . Replacing ρA in (2.1.2) by ρ, one obtains the

well-known spectral density of a causal ARMA process (up to a constant multiple): fX(λ) =
(2π)−1|θ(e−iλ)|2/|φ(e−iλ)|2, λ ∈ [0, π]. Such a compact formula can in general not be derived for
fA. An exception is a causal ARMA(1,1) process; see Section 2.7.2. There are various analogies
between the functions ρ and ρA for causal invertible ARMA processes. In this case, ψh → 0 as
h → ∞ at an exponential rate and therefore both ρ(h) and ρA(h) decay exponentially fast to
zero as well. The latter property also makes the spectral densities fX and fA analytical functions
bounded away from infinity. We also mention that for an MA(q) process, ρ(h) = ρA(h) = 0 for
h > q.
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2.3.4 Max-moving averages

Consider a regularly varying iid sequence (Zt) with index α > 0 and tail balance parameters
p, q; see (2.3.1). For a real-valued sequence (ψj), the process

Xt =

∞∨
i=0

ψiZt−i, t ∈ Z , (2.3.5)

is a max-moving average. We will also assume that |ψj | ≤ c, j ≥ 0, for some constant c and
ψ0 = 1. Obviously, if X is finite a.s., (Xt) constitutes a strictly stationary process. The random
variable X does not assume the value ∞ if limx→∞ P (X > x) = 0. We have

P (X > x) = P
( ∞∨
i=0

ψiZi > x
)

= 1− lim
n→∞

n∏
i=0

P (ψiZ ≤ x) .

The product
∏∞
i=0 P (ψiZ ≤ x) converges if

∑∞
i=0 P (ψiZ > x) < ∞. By regular variation of Z,

this amounts to the condition

ψ+ =

∞∑
i=0

[p (ψ+
i )α + q (ψ−i )α] <∞ .

A Taylor expansion and regular variation of Z yield

P (X > x) = 1− e−(1+o(1))P (|Z|>x)ψ+ ∼ P (|Z| > x)ψ+ → 0 , x→∞ . (2.3.6)

We also have P (X ≤ −x) = O(P (|Z| > x)). Hence X is regularly varying with index α if
0 < ψ+ <∞. We always assume the latter condition.

We show that (Xt) is regularly varying. Consider the truncated max-moving average process
for s ≥ 0,

X
(s)
t =

s∨
i=0

ψiZt−i , t ∈ Z .

Regular variation of (X
(s)
0 , . . . , X

(s)
h ) is a consequence of regular variation of (Zt) and the fact

that regular variation is preserved under the max-operation acting on independent components.
Moreover,

lim
s→∞

lim sup
n→∞

nP
(
a−1
n

∞∨
i=s+1

ψiZt−i > x
)

= c lim
s→∞

∞∑
i=s+1

[p (ψ+
i )α + q (ψ−i )α] = 0 .

Then an application of Lemma 3.6 in Jessen and Mikosch [32] shows that (X0, . . . , Xh) is regularly
varying with index α for every h ≥ 0.

Next we determine the extremogram ρA corresponding to the set A = (1,∞). For h ≥ 1, we
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have

P (Xh > x,X0 > x) = P
( ∞∨
i=0

ψiZ−i > x ,

−1∨
i=−h

ψi+hZ−i ∨
∞∨
i=0

ψi+hZ−i > x
)

= P
( ∞∨
i=0

(ψiZ−i) ∧ (ψi+hZ−i) > x
)

+ o(P (|Z| > x))

∼ P (|Z| > x)

∞∑
i=0

[
p (min(ψ+

i , ψ
+
i+h))α + q (min(ψ−i , ψ

−
i+h))α

]
.

Finally, in view of (2.3.6), ρA(h) is given by (2.3.4), i.e., the linear process (2.3.2) and the
max-moving average (2.3.5) have the same extremogram provided the coefficients (ψj) and the
distribution of Z are the same. Hence their spectral densities fA are the same as well.

As for ARMA processes, mixing conditions for infinite max-moving processes are not easily
verified and additional conditions on the noise (Zt) are needed. Assume that (Zt) is iid with

common Fréchet distribution Ψα(x) = e−x
−α

, x > 0, for some α > 0. Then (Xt) constitutes a
stationary max-stable process. For such processes, Dombry and Eyi-Minko [18] proved rather
general sufficient conditions for β-mixing, implying strong mixing. An application of their Corol-
lary 2.2 implies that the condition |ψh| ≤ c0 e−c1h, h ≥ 1, for suitable constants c1, c2 > 0 implies
strong mixing of (Xt) with geometric rate function (ξh). In this situation, (M), (M1) and (M2)
are satisfied.

2.4 Basic properties of the periodogram

In this section we study some basic properties of the periodogram InA(λ) for extremal events
defined in (2.2.5). Notice that

InA(λ) =
1

2

[
(αn(λ))2 + (βn(λ))2

]
where αn(λ) and βn(λ) denote the normalized and centered cosine and sine transforms of
(It)t=1,...,n:

αn(λ) =
(2mn

n

)1/2 n∑
t=1

Ĩt cos(λt) ,

βn(λ) =
(2mn

n

)1/2 n∑
t=1

Ĩt sin(λt) .

Here we suppress the dependence of αn and βn on am and the set A which is bounded away
from zero. For practical purposes, the periodogram will typically be evaluated at some Fourier
frequencies λ = 2πj/n for some integer j. If λ ∈ (0, π) is such a Fourier frequency, then

n∑
t=1

e i λ t = 0 ,

and therefore the It’s in αn(λ) and βn(λ) are automatically centered by their (in general un-
known) expectations EIt = p0 = P (a−1

m X ∈ A).
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2.4.1 The periodogram ordinates at distinct frequencies are asymptot-
ically uncorrelated

Our first result is an analog of the fact that the sine and cosine transforms of a stationary
sequence at distinct fixed or Fourier frequencies in (0, π) are asymptotically uncorrelated.

Proposition 2.4.1. Consider a strictly stationary Rd-valued sequence (Xt) which is regularly

varying with index α > 0 and satisfies the mixing condition (M). Let A ⊂ Rd0 be bounded away

from zero such that A is a continuity set with respect to µ0 and A×Rdh0 and A×Rd(h−1)

0 ×A are
continuity sets with respect to the limiting measures µh for every h ≥ 1; see Section 2.2.1. Also
assume that

∑
h≥1 ρA(h) <∞. Let λ, ω be either any two Fourier or fixed frequencies in (0, π).

(1) If λ, ω are distinct then the covariances of the pairs (αn(λ), βn(ω)), (αn(λ), αn(ω)),
(βn(λ), βn(ω)) converge to zero as n→∞.

(2) The covariance of (αn(λ), βn(λ)) converges to zero as n→∞.

(3) If λ ∈ (0, π) is fixed and if (λn) are Fourier frequencies such that λn → λ then the asymp-
totic variances are given by

var(αn(λn)) ∼ var(αn(λ)) ∼ var(βn(λn)) ∼ var(βn(λ))

∼ µ0(A)
[
1 + 2

∞∑
h=1

cos(λh)ρA(h)
]

= µ0(A)fA(λ) .

Remark 2.4.2. The smoothness condition on the set A ensures that the extremogram ρA with
respect to A is well defined; see Section 2.2.1.

Remark 2.4.3. Since Eαn(λ) = Eβn(λ) = 0 an immediate consequence of part (3) is that

EInA(λ) =
1

2

[
var(αn(λ)) + var(βn(λ))

]
∼ µ0(A)

[
1 + 2

∞∑
h=1

cos(λh)ρA(h)
]

= µ0(A)fA(λ) .

Following the lines of the proof below, one can see that the error one encounters in the above
approximation is uniform for λ ∈ [a, b] ⊂ (0, π). The same remark applies to the quantities
EInA(λn) evaluated at Fourier frequencies λn → λ ∈ (0, π).

Proof. We start by calculating the asymptotic covariances. Any of the covariances can be written
in the form

J =
2mn

n
E

[ n∑
s=1

n∑
t=1

(IsIt − p2
0)f1(λs)f2(ωt)

]
=

2mn

n

( ∑
1≤t=s≤n

+
∑

1≤s6=t≤n

)
(p|s−t| − p2

0) f1(λs)f2(ωt)

= J1 + J2 ,

where f1 and f2 are cosine or sine functions and

p|t−s| = P (a−1
m Xs ∈ A, a−1

m Xt ∈ A) for any s, t.
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We estimate J1 separately for each possible combination of sine and cosine functions f1, f2. We
start with f1(x) = cosx and f2(x) = sinx. Then, if λ, ω are Fourier frequencies, so are λ ± ω
and therefore

J1 = (p0 − p2
0)

2mn

n

n∑
t=1

cos(λt) sin(ωt)

= (p0 − p2
0)
mn

n

n∑
t=1

[
sin((λ+ ω)t)− sin((ω − λ)t)

]
= 0 .

If λ, ω are fixed frequencies, we conclude from (2.7.2) that the sum on the right-hand side is
bounded. Hence J1 = O(n−1).

For f1(x) = f2(x) = cosx we get

J1 = (p0 − p2
0)

2mn

n

n∑
t=1

cos(λt) cos(ωt)

= (p0 − p2
0)
mn

n

n∑
t=1

[
cos((λ+ ω)t) + cos((ω − λ)t)

]
.

If λ, ω are Fourier frequencies, so are λ±ω and then the right-hand side vanishes unless λ+ω = π.
However, if λ + ω = π the second sum vanishes and the first sum is bounded. Therefore
J1 = O(n−1). If λ 6= ω are fixed it follows from (2.7.1) that the sum on the right-hand side is
bounded and therefore J1 = O(n−1).

For f1(x) = f2(x) = sinx we have

J1 = (p0 − p2
0)

2mn

n

n∑
t=1

sin(λt) sin(ωt)

= (p0 − p2
0)
mn

n

n∑
t=1

[
cos((λ− ω)t)− cos((λ+ ω)t)

]
.

The same arguments as above show that J1 = O(n−1) both for Fourier and fixed frequencies
λ 6= ω.

Next we consider J2. We start with cov(αn(λ), βn(λ)). If λ is a Fourier frequency, we have
sin(λn) = 0. Hence, by (2.7.7),

J2 =
2mn

n

n−1∑
h=1

(ph − p2
0)

n−h∑
s=1

[
sin(λs) cos(λ(s+ h)) + cos(λs) sin(λ(s+ h))

]
= −2mn

n

n−1∑
h=1

(ph − p2
0) sin(λh)

By definition of strong mixing, |ph − p2
0| ≤ ξh. Then, by condition (M),

|J2| ≤
2mn

n

∞∑
h=1

ξh = O(mn/n) .
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The same argument applies for a fixed frequency λ since the expressions in (2.7.7) are bounded
for every n and h < n.

If λ 6= ω are fixed frequencies we conclude from (2.7.8)–(2.7.10) and condition (M) that there
exist constants c(λ, ω) such that

|J2| =

∣∣∣∣2mn

n

n−1∑
h=1

(ph − p2
0)

n−h∑
s=1

(
f1(λs)f2(ω(s+ h)) + f1(λ(s+ h))f2(ωs)

)∣∣∣∣
≤ c(λ, ω)

mn

n

n−1∑
h=1

|ph − p2
0| ≤ c(λ, ω)

mn

n

∞∑
h=1

ξh = O(mn/n) .

Now we consider the case of two distinct Fourier frequencies λ, ω. We start with f1(x) = cosx
and f2(x) = sinx. If λ+ω and |λ−ω| are bounded away from zero we can use the argument for
general distinct frequencies. Now assume that λ+ω ≤ 0.1 say. Since λ, ω are Fourier frequencies
a glance at (2.7.8)–(2.7.10) shows that one has to find suitable bounds for

| sin((n− h+ 1)(λ+ ω)/2)|
| sin((λ+ ω)/2)|

=
| sin((−h+ 1)(λ+ ω)/2)|
| sin((λ+ ω)/2)|

.

If h(λ+ω) ≤ 0.1 Taylor expansions for the nominator and the denominator show that the right-
hand side is bounded by c h. If h(λ + ω) > 0.1 bound the nominator by 1 and Taylor expand
the denominator to conclude that the right-hand side is bounded by c h for some constant c > 0
as well. Then, by (2.7.8), for fixed k,

|J2| ≤ c
[mn

n

k∑
h=1

|ph − p2
0|+mn

rn∑
h=k+1

|ph − p2
0|+mn

∞∑
h=rn+1

ξh

]
.

The right-hand side vanishes by virtue of condition (M), first letting n → ∞ and then k → ∞.
The case of small |λ− ω|, |λ− ω| ≤ 0.1 say, can be treated analogously.

The remaining cases f1(x) = f2(x) = cosx and f1(x) = f2(x) = sinx can be treated in the
same way by exploiting (2.7.9) and (2.7.10).

Now we turn to the asymptotic variances. We restrict ourselves to αn(λ) for fixed λ ∈ (0, π);
the variance of βn(λ) and the case of Fourier frequencies can be treated analogously. Write

We have

var(αn(λ)) =
2mn

n

[
(p0 − p2

0)

n∑
t=1

(cos(λt))2 + 2

n−1∑
h=1

(ph − p2
0)

n−h∑
t=1

cos(λt) cos(λ(t+ h))
]
.

For any frequency λ ∈ (0, π) bounded away from zero and π, the relation n−1
∑n
t=1(cos(λt))2 ∼

0.5 holds. Moreover, cos(λt) cos(λ(t + h)) = 0.5[cos(λh) + cos(λ(2t + h))]. Similar calculations
as above yield

var(αn(λ)) ∼ mnp0 + 2mn

n−1∑
h=1

(ph − p2
0)(1− h/n) cos(λh) ∼ µ0(A)

[
1 + 2

∞∑
h=1

ρA(h) cos(λh)
]
.

This concludes the proof.
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2.4.2 Central limit theorem

Our next result shows that the periodogram ordinates at distinct frequencies are asymptotically
independent and exponentially distributed.

Theorem 2.4.4. Consider a strictly stationary Rd-valued sequence (Xt) which is regularly vary-

ing with index α > 0. Let A ⊂ Rd0 be bounded away satisfying the smoothness conditions of
Proposition 2.4.1. Assume that the conditions (M), (M1) and

∑
h≥1 ρA(h) <∞ hold. Consider

any fixed frequencies 0 < λ1 < · · · < λN < π for some N ≥ 1. Then the following central limit
theorem holds:

Zn =
(
αn(λi), βn(λi)

)
i=1,...,N

d→
(
(α(λi), β(λi)

)
i=1,...,N

, n→∞ , (2.4.1)

where the limiting vector has N(0,ΣN ) distribution with

ΣN = µ0(A) diag
(
fA(λ1), fA(λ1), . . . , fA(λN ), fA(λN )

)
.

The limit relation (2.4.1) remains valid if the frequencies λi, i = 1, . . . , N , are replaced by distinct
Fourier frequencies ωi(n)→ λi ∈ (0, π) as n→∞. The limits λi do not have to be distinct.

Then the following result is immediate.

Corollary 2.4.5. Assume the conditions of Theorem 2.4.4. Let (Ei) be a sequence of iid standard
exponential random variables.

1. Consider any fixed frequencies 0 < λ1 < · · · < λN < π for some N ≥ 1. Then the following
relations hold:(

InA(λi)
)
i=1,...,N

d→ µ0(A)
(
fA(λi)Ei

)
i=1,...,N

, n→∞ ,(
ĨnA(λi)

)
i=1,...,N

d→
(
fA(λi)Ei

)
i=1,...,N

, n→∞ .

2. Consider any distinct Fourier frequencies ωi(n) → λi ∈ (0, π) as n → ∞, i = 1, . . . , N .
The limits λi do not have to be distinct. Then the following relations hold:(

InA(ωi(n))
)
i=1,...,N

d→ µ0(A)
(
fA(λi)Ei

)
i=1,...,N

, n→∞ ,(
ĨnA(ωi(n))

)
i=1,...,N

d→
(
fA(λi)Ei

)
i=1,...,N

, n→∞ .

Proof of the Theorem 2.4.4. We will prove (2.4.1) by applying the Cramér-Wold device, i.e., we
will show that for any choice of constants c ∈ R2N ,

c′Zn
d→ N(0, c′ΣNc) . (2.4.2)

The proof of the result for distinct converging Fourier frequencies is analogous and therefore
omitted. We will prove (2.4.2) by applying the method of small and large blocks. The difficulty
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we encounter here is that, due to the presence of sine and cosine functions, we are dealing with
partial sums of non-stationary sequences. For t = 1, . . . , n, we write

Ynt =
(2mn

n

)1/2

Ĩt

N∑
j=1

[c2j−1 cos(λjt) + c2j sin(λjt)] , t = 1, . . . , n . (2.4.3)

For ease of presentation, we always assume that n/mn = kn is an integer; the general case can
be treated in a similar way. Consider the large blocks

Kni = {(i− 1)mn + 1, . . . , imn}, i = 1, . . . , kn ,

the index sets K̃ni, which consist of all but the first rn elements of Kni, and the small blocks
Jni = Kni \ K̃ni. In view of condition (M), rn/mn → 0 and mn →∞, the sets K̃ni and Jni are
non-empty for large n. For any set B ⊂ {1, . . . , n}, we write Sn(B) =

∑
t∈B Ynt. First we show

that the joint contribution of the sums over the small blocks to c′Zn is asymptotically negligible.

Lemma 2.4.6. Under the conditions of Theorem 2.4.4, the following relation holds:

var

( kn∑
i=1

Sn(Jni)

)
→ 0, n→∞ . (2.4.4)

Proof. We have

var

( kn∑
i=1

Sn(Jni)

)
≤

kn∑
i=1

var(Sn(Jni)) + 2
∑

1≤i1<i2≤kn

|cov
(
Sn(Jni1), Sn(Jni2)

)
|

= P1 + P2.

Due to the sum structure of Ynt given in (2.4.3) each of the sums Sn(Jni) can be written as a
sum of 2N subsums where each of these subsums only involves either the functions cos(λjt) or
sin(λjs) for some j ≤ N . Then each of the terms var(Sn(Jni)) and |cov

(
Sn(Jni1), Sn(Jni2)

)
| is

bounded by a linear combination of the variances/covariances of such subsums. In other words, it
suffices to prove (2.4.4) for N = 1. We give the corresponding calculations only for the functions
cos(λt) where λ stands for any of the frequencies λj . The calculations are similar to those in the
proof of Proposition 2.4.1. For any i ≤ kn and fixed k ≥ 1, condition (M) ensures that there is
a constant c(k) such that for large n,

var(Sn(Jni)) =
2mn

n

[ (i−1)mn+rn∑
s=(i−1)mn+1

var(Is)(cos(λs))2

+2

rn−1∑
h=1

(i−1)mn+rn−h∑
s=(i−1)mn+1

cov(Is, Is+h) cos(sλ) cos(λ(s+ h))
]

≤ 2mn

n

(
rn(p0 − p2

0) + 2

rn−1∑
h=1

(rn − h)|ph − p2
0|
)

≤ c
rn
n

(
mn

k∑
h=0

ph +mn

rn∑
h=k+1

ph

)
≤ c(k)(rn/n) ,
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and the right-hand side does not depend on i. Consequently, P1 ≤ c(k)knrn/n = c(k)rn/mn → 0
for every fixed k. Similarly, for i1 < i2,

|cov(Sn(Jni1), Sn(Jn,i2))| =
2mn

n

∣∣∣[ (i1−1)mn+rn∑
s=(i1−1)mn+1

(i2−1)mn+rn∑
t=(i2−1)mn+1

cov(It, Is) cos(λs) cos(λt)
]∣∣∣

≤ c
mn

n

(i2−i1)mn+rn−1∑
q=(i2−i1)mn−(rn−1)

(rn − |q − (i2 − i1)mn|) |pq − p2
0|

≤ c
mnrn
n

(i2−i1)mn+rn−1∑
q=(i2−i1)mn−(rn−1)

ξq ,

where (ξt) is the mixing rate function. Hence for large n, in view of condition (M),

|P2| ≤ c
mnrn
n

kn∑
i1=1

kn∑
i2=i1+1

(i2−i1)mn+rn−1∑
q=(i2−i1)mn−(rn−1)

ξq

≤ c
mnrn
n

kn−1∑
i1=1

∞∑
q=mn+1−rn

ξq ≤ crn
∞∑

q=rn+1

ξq = o(1) .

This proves (2.4.4).

Relation (2.4.4) implies that c′Zn and
∑kn
i=1 Sn(K̃ni) have the same limit distribution provided

such a limit exists. Let S̃n(K̃ni)
d
= Sn(K̃ni) for i = 1, . . . , kn and assume that (S̃n(K̃ni))i=1,...,kn

has independent components. A telescoping sum argument yields∣∣∣∣E kn∏
l=1

e itSn(K̃nl) − E
kn∏
s=1

e itS̃n(K̃ns)

∣∣∣∣
=

∣∣∣ kn∑
l=1

E
[(

e itSn(K̃nl) − e itS̃n(K̃nl)
) l−1∏
s=1

e itS̃n(K̃ns)
kn∏

s=l+1

e itSn(K̃ns)
]∣∣∣∣

≤
kn∑
l=1

∣∣∣∣E( l−1∏
s=1

e itS̃n(K̃ns)
(

e itSn(K̃nl) − e itS̃n(K̃nl)
) kn∏
s=l+1

e itSn(K̃ns)
)∣∣∣∣

≤ 4kn ξrn → 0.

In the last step we used Theorem 17.2.1 in Ibragimov and Linnik [29] and condition (M1). Hence,∑kn
l=1 Sn(K̃nl) and

∑kn
l=1 S̃n(K̃nl) have the same limits in distribution provided these limits exist.

In view of (2.4.4) and the last conclusion the central limit theorem (2.4.2) holds if and only if the

same limit relation holds for
∑kn
i=1 S̃n(Kni), where S̃n(Kni)

d
= Sn(Kni) and (S̃n(Kni))i=1,...,kn

has independent components. Thus we may apply a classical central limit theorem for triangular
arrays of independent random variables; see e.g. Theorem 4.1 in Petrov [40].
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According to this result, the central limit theorem

Zn =

kn∑
i=1

S̃n(Kni)
d→ N(0, c′ΣNc),

holds if and only if the following three conditions are satisfied: EZn = 0, var(Zn)→ c′ΣNc and
for every ε > 0,

kn∑
i=1

E
[
(Sn(Kni))

2I{|S(Kni)|>ε}

]
→ 0. (2.4.5)

The condition EZn = 0 holds since EĨt = 0, hence ES̃n(Kni) = 0 for every i. As for (6.8) in
Davis and Mikosch [15], a trivial bound of the left-hand side in (2.4.5) is given by

c
m3
n

n

kn∑
i=1

P (|Sn(Kni)| > ε) ≤ c m
3
n

n

kn∑
i=1

I{c (m3
n/n)0.5>ε} .

In view of (M1), m3
n/n = o(1), and therefore the right-hand side vanishes for sufficiently large

n. Therefore (2.4.5) holds.

Lemma 2.4.7. Under the conditions of Theorem 2.4.4,

var(Zn) =

kn∑
i=1

var(Sn(Kni))→ c′ΣNc .

Proof. We proceed in a similar way as for Proposition 2.4.1. It will be convenient to introduce
the following notation for λ ∈ (0, π),

α̃n(λ) =
(2mn

n

)1/2
kn∑
i=1

∑
t∈Kni

cos(λt)Ĩt(i) ,

β̃n(λ) =
(2mn

n

)1/2
kn∑
i=1

∑
t∈Kni

sin(λt)Ĩt(i) ,

where for each i ≤ kn,

(I1, . . . , Imn)
d
= (I(i−1)mn+1(i), . . . , Iimn(i))

the vectors on the right-hand side are mutually independent for i ≤ kn and the quantities Ĩt(i)

are the mean corrected versions of It(i), i.e., Ĩt(i) = It(i) − p0. The statement of the lemma is

proved if we can show that the pairs (α̃n(λ), β̃n(ω), (α̃n(λ), α̃n(ω), (β̃n(λ), β̃n(ω), (α̃n(λ), β̃n(λ)),
are asymptotically uncorrelated for λ 6= ω and that

var(α̃n(λ)) ∼ var(β̃n(λ)) ∼ µ0(A)
[
1 + 2

∞∑
h=1

ρA(h) cos(λh)
]
. (2.4.6)
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We check the asymptotic variance of α̃n(λ) and omit similar calculations for var(β̃n(λ)). By
independence of the sums over the blocks Kni we have for fixed k ≥ 1,

var(α̃n(λ)) = 2
mn

n

kn∑
i=1

var
( ∑
t∈Kni

cos(λt)Ĩt

)

= 2
mn

n

[ kn∑
i=1

∑
t∈Kni

var(It)(cos(λt))2 +

kn∑
i=1

∑
(i−1)mn+1≤t6=s≤imn

cov(It, Is) cos(λt) cos(λs)
]

= 2
mn

n
(p0 − p2

0)

n∑
t=1

(cos(λt))2

+2
mn

n

kn∑
i=1

mn−1∑
h=1

mn−h∑
t=1

(ph − p2
0)
(

cos(λh) + cos
(
λh+ 2λ(t+ (i− 1)mn)

)
= P1 + P21 + P22 .

Then we have by (M) and regular variation of (Xt),

P1 + P21 ∼ µ0(A) + 2

mn−1∑
h=1

(ph − p2
0)(mn − h) cos(λh) ∼ µ0(A)fA(λ) .

We have for fixed k ≥ 1,

2
mn

n

∣∣∣∣ kn∑
i=1

mn−1∑
h=k+1

mn−h∑
t=1

(ph − p2
0) cos(λh+ 2λ(t+ (i− 1)mn)

)∣∣∣∣ ≤ cmn

mn−1∑
h=k+1

|ph − p2
0|,

and the right-hand side is negligible in view of (M) by first letting n → ∞ and then k → ∞.
Thus it suffices to consider only finitely many h-terms in P22. In view of (2.7.1), for fixed k as
n→∞,∣∣∣∣∣2mn

n

kn∑
i=1

k∑
h=1

(ph − p2
0)

mn−h∑
t=1

cos(λh+ 2λ(t+ (i− 1)mn)
)∣∣∣∣∣ ≤ c

k∑
h=1

|ph − p2
0| = o(1) .

This proves (2.4.6).
Next we consider the case of two different frequencies λ, ω ∈ (0, π) and show that the following

covariances vanish as n→∞:

cov(α̃n(λ), α̃n(ω))

=
2mn

n

kn∑
i=1

cov
( mn∑
t=1

Ĩt cos(λ(t+ (i− 1)mn)),

mn∑
t=1

Ĩt cos(ω(t+ (i− 1)mn))
)

=
2mn

n

n∑
t=1

(p0 − p2
0) cos(λt) cos(ωt)

+
2mn

n

kn∑
i=1

mn−1∑
h=1

mn−h∑
t=1

(ph − p2
0)
[

cos(λ(t+ (i− 1)mn + h)) cos(ω(t+ (i− 1)mn)

+ cos(λ(t+ (i− 1)mn)) cos(ω(t+ (i− 1)mn + h))
]

= Q1 +Q2 .
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In view of (2.7.1) and since λ 6= ω,

|Q1| =
mn

n
(p0 − p2

0)
∣∣∣ n∑
t=1

(cos((λ+ ω)t) + cos((λ− ω)t))
∣∣∣ ≤ cmn

n
(p0 − p2

0) = O(n−1) .

Similarly, multiple application of (2.7.1), first summing over t, then over l, yields

|Q2| =
mn

n

∣∣∣ mn∑
h=1

(ph − p2
0)

kn−1∑
l=0

mn−h∑
t=1

(
cos((λ+ ω)(t+ h+ lmn) + λh)

+ cos((λ− ω)(t+ h+ lmn) + λh) + cos((λ+ ω)(t+ h+ lmn) + ωh)

+ cos((λ− ω)(t+ h+ lmn)− ωh)
)∣∣∣

≤ c0

mn∑
h=1

|ph − p2
0| ≤ c

rn
mn

(mnp0) + c
rn
m2
n

(mnp0)2 + c

mn∑
h=rn+1

ξh → 0 ,

where c0 = 4 max{1/ sin((λ+ω)/2), 1/ sin(|λ−ω|/2)}+4. Thus cov(α̃n(λ), α̃n(ω)) = o(1). Using

similar arguments, it also follows that the covariances of the pairs (α̃n(λ), β̃n(ω)), (β̃n(λ), β̃n(ω))

and (α̃n(λ), β̃n(λ)) are asymptotically negligible. This proves the lemma.

2.5 Smoothing the periodogram

Corollary 2.4.5 is analogous to the asymptotic theory for the periodogram of a stationary se-
quence; see Brockwell and Davis [9], Section 10.4, where the corresponding results are proved for
the periodogram ordinates of a general linear processes with iid innovations. These results are
then employed for showing that smoothed versions of the periodogram are consistent estimators
of the spectral density at a given frequency. Our next goal is to prove a similar result.

We start by introducing the smoothed periodogram. For a fixed frequency λ ∈ (0, π) define

λ0 = min{2πj/n : 2πj/n ≥ λ} , and λj = λ0 + 2πj/n , |j| ≤ sn .

Here we suppress the dependence of λj on n. In what follows, we will assume that sn →∞ and

sn/n → 0 as n → ∞. For a given set A ⊂ Rd0 bounded away from zero and any non-negative
weight function w = (wn(j))|j|≤sn satisfying the conditions∑

|j|≤sn wn(j) = 1 and
∑
|j|≤sn w

2
n(j)→ 0 as n→∞ , (2.5.1)

we introduce the smoothed periodogram

f̃nA(λ) =
∑
|j|≤sn

wn(j) InA(λj),

Theorem 2.5.1. Assume the conditions of Theorem 2.4.4, (2.5.1) on the weight function w and
(M2). Then for every fixed frequency λ ∈ (0, π), as n→∞,

f̃nA(λ)
L2

→ µ0(A) fA(λ) and
f̃nA(λ)

P̂m(A)

P→ fA(λ) .
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In Figures 2.1 and 2.2 we show the extremogram, the standardized periodogram and the corre-
sponding smoothed periodogram for some simulated and real-life data. The data underlying Fig-
ure 2.1 are simulated from an ARMA(1,1) process (Xt) with parameters φ = 0.8 and θ = 0.1 and
iid t-distributed noise (Zt) with 3 degrees of freedom, hence (Xt) is regularly varying with α = 3.
The top-left graph shows the sample extremogram based on a sample of size n = 31, 757 and the
threshold is chosen as the 98% empirical quantile of the data. The top-right graph visualizes the
theoretical spectral density fA for A = (1,∞) (see Appendix 2.7.2 for an expression) and the
raw periodogram which exhibits rather erratic behavior. The bottom graph shows the smoothed
periodogram with Daniell window wn(i) = 1/(2sn + 1), |i| ≤ sn = 50. We also show the curves
fA(λ)(1±1.96/

√
2sn + 1), which constitute a confidence band based on the following heuristic ar-

gument. In the proof of Theorem 2.5.1, we show that var(f̃nA(λ)) ∼
∑
|j|≤sn w

2
n(j)µ2

0(A)f2
nA(λ)

for every λ ∈ (0, π). Furthermore, we know that P̂m(A)
P→ µ0(A). Based on these calculations,

we take
∑
|j|≤sn w

2
n(j)f2

nA(λ) as a surrogate quantity for the unknown variance of f̃n(λ)/P̂m(A).
The data underlying Figure 2.2 are 5-min returns for the stock price of Bank of America

(BAC) with the sample size n = 31, 757, and am is chosen as the 98% empirical quantile of
the data. We provide the same type of analysis as in Figure 2.1 for these data. The largest
peak in the periodogram at the frequency 0.29 corresponds to an extremal cycle length of 6
hours, this is roughly the length of a trading day. We also show 95% pointwise confidence bands
for the smoothed periodogram. They are not asymptotic since we do not have a central limit
theorem for the smoothed periodogram yet. They are constructed from the distribution of the
corresponding smoothed periodograms based on 99 random permutations of the data. If the
data were iid, any permutation would not change the dependence structure of the data and one
would expect that the estimated spectral density stays inside the band, but this is obviously not
the case, indicating that the data exhibit some significant extremal dependence.

Proof. We mentioned in Remark 2.4.3 that

EInA(λ)→ µ0(A)fA(λ) as n→∞ uniformly on sets [a, b] ⊂ (0, π). (2.5.2)

Therefore, since max|j|≤sn |λj − λ| → 0 and fA is continuous, we have

Ef̃nA(λ) =
∑
|j|≤sn

wn(j)EInA(λj) → µ0(A) fA(λ) , n→∞ .

The statement of the theorem then follows if we can show that var(f̃n(λ))→ 0. We observe that

var
(
f̃nA(λ)

)
=
∑
|j|≤sn

w2
n(j) cjj +

∑
−sn≤j1 6=j2≤sn

wn(j1)wn(j2) cj1j2 .

In view of condition (2.5.1) it suffices to show that cj1j2 = cov(InA(λj1), InA(λj2))→ 0 and

cjj = var(InA(λj))→ (µ0(A) fA(λ))2 uniformly for j, j1, j2 ∈ [−sn, sn], j1 6= j2. (2.5.3)

We will only show (2.5.3); the proof of cj1,j2 → 0 for j1 6= j2 is similar and therefore omitted.
Since (2.5.2) holds we have to show that

E(I2
nA(λj))→ 2 (µ0(A) fA(λ))2 . (2.5.4)
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Figure 2.1: Top-Left: The sample extremogram of an ARMA(1,1) process with parameters
φ = 0.8, θ = 0.1 and iid t-distributed noise with 3 degrees of freedom. We choose A = (1,∞).
Top-Right: The corresponding raw periodogram and the theoretical spectral density fA (solid
line). Bottom: The smoothed periodogram with Daniell window, sn = 50.
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Figure 2.2: Left: The sample extremogram of 5-min returns of BAC stock price for A = (1,∞).
Right: The smoothed periodogram with Daniell window, sn = 50. The confidence bands are
constructed from the smoothed periodograms of 99 permutations of the data.

Recall f̂nA(λ) from (2.2.7) and define

ĝnA(λ) = 2

n−1∑
h=rn+1

cos(λh)γ̃n(h) .

We will study the decomposition

E(I2
nA(λj)) = Ef̂2

nA(λj) + 2E
(
f̂nA(λj)ĝnA(λj)

)
+ Eĝ2

nA(λj).

Following the lines of the proof of Theorem 5.1 in [15], we conclude that

Ef̂2
nA(λj)→ (µ0(A) fA(λ))2 , (2.5.5)

uniformly for the considered frequencies λj . Then (2.5.4) is proved if we can show that

E(f̂nA(λj)ĝnA(λj)) → 0 , (2.5.6)

Eĝ2
nA(λj) → (µ0(A) fA(λ))2 . (2.5.7)

Throughout we will use the notation, for h1, h2, h3 ≥ 0,

ph1h2h3 = P (X0 > am, Xh1 > am, Xh1+h2 > am, Xh1+h2+h3 > am) ,

ph1h2 = ph1h20 , ph1 = ph10 ,
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and we observe that

ph = (ph − p2
0) + p2

0 , (2.5.8)

ph1h2
= (ph1h2

− ph1
p0) + ph1

p0 = ph1h2
− p0ph2

+ p0ph2
(2.5.9)

= (ph1h2
− p0ph2

) + p0(ph2
− p2

0) + p3
0 ,

ph1h2h3
= (ph1h2h3

− p0ph2h3
) + p0ph2h3

(2.5.10)

= (ph1h2h3
− p0ph2h3

) + p0(ph2h3
− p0ph3

) + p2
0ph3

.

Proof of (2.5.6)

We have

E(f̂nA(λj)ĝnA(λj)) = E
[
2γ̃n(0)ĝnA(λj) + 4 ĝnA(λj)

rn∑
h=1

cos(λjh)γ̃n(h))
]

= J1 + J2 ,

where

J1 = 4
m2
n

n2

n∑
t1=1

n−1∑
h=rn+1

n−h∑
t2=1

E[It1It2It2+h] cos(λjh) ,

J2 = 8
m2
n

n2

n−1∑
t1=1

rn∑
h1=1

n−1∑
h2=rn+1

n−h2∑
t2=1

E[It1It1+h1It2It2+h2 ] cos(λjh1) cos(λjh2) .

Proof that J1 is negligible.

We observe, that depending on the values h, t1, t2, E[It1It2It2+h] may simplify: if t1 = t2 or
t1 = t2 + h, E[It1It2It2+h] = ph; if t1 < t2, E[It1It2It2+h] = pt2−t1,h; if t2 < t1 < t2 + h,
E[It1It2It2+h] = pt1−t2,h−t1+t2 ; if t1 > t2 + h, E[It1It2It2+h] = ph,t1−h−t2 . If we take into
account these different cases, we obtain

J1 = 4
m2
n

n2

n−1∑
h=rn+1

(n− h)(2ph) cos(λjh) + 4
m2
n

n2

n−2∑
h2=rn+1

n−h2−1∑
h1=1

(n− h1 − h2)ph1h2
cos(λjh2)

+4
m2
n

n2

n−1∑
h2=rn+1

h2−1∑
h1=1

(n− h2)ph1,h2−h1 cos(λjh2)

+4
m2
n

n2

n−2∑
h2=rn+1

n−h2−1∑
h1=1

(n− h1 − h2)ph2h1
cos(λjh2) =

4∑
i=1

J1i .

Applying (2.5.8), the mixing condition (M2) and Lemma 2.7.1 imply that

J11 ≤ cmn

∞∑
h=rn+1

ξh + c
(mnp0)2

n(sin(λj/2))2
= o(1) .
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As regards J12, apply (2.5.9) and split the h1-index set into h1 ≤ rn and h1 > rn. Then (M2)
and Lemma 2.7.1 imply that

|J12| ≤ cm2
n

n−1∑
h2=rn+1

ξh2

+c

∣∣∣∣m2
n

n2

n−2∑
h2=rn+1

(min(rn,n−h2−1)∑
h1=1

+

n−h2−1∑
h1=rn+1

)
(n− h1 − h2)(ph1

± p2
0)p0 cos(λjh2)

∣∣∣∣
≤ o(1) + c

rn
n

(mnp0)2(sin(λj/2))−2 + c (mnp0)mn

n−1∑
h1=rn+1

ξh1
+ c

(mnp0)3

mn
= o(1) .

Now consider J13. Abusing notation, we will write h2 instead of h2 − h1. Introduce the index
sets

K1 = {(h1, h2) : 1 ≤ hi ≤ rn , i = 1, 2} ,
K2 = {(h1, h2) : 1 ≤ h1 ≤ rn , rn < h2 < n− h1} ,
K3 = {(h1, h2) : rn < h1 ≤ n− 1 , 1 ≤ h2 ≤ min(rn, n− h1 − 1)} ,
K4 = {(h1, h2) : rn < h1 ≤ n− 1 , rn < h2 < n− h1} .

Now introduce the mixing coefficients ξh and use Lemma 2.7.1:

|J13| ≤ c
m2
n

n2

∣∣∣∣ n−2∑
h1=1

n−h1−1∑
h2=max(1,rn+1−h1)

(n− h1 − h2)ph1h2
cos(λj(h1 + h2))

∣∣∣∣
≤ c

m2
n

n2

4∑
i=1

∣∣∣∣∑
Ki

(n− h1 − h2)ph1h2
cos(λj(h1 + h2))

∣∣∣∣
≤ c

mnr
2
n

n
(mnp0) + c

[mnrn
n

mn

n−1∑
h2=rn+1

ξh2
+
rn
n

(mnp0)2(sin(λj/2))−2
]

+c
[mnrn

n
mn

n−1∑
h1=rn+1

ξh1
+
rn
n

(mnp0)2(sin(λj/2))−2
]

+c
[
m2
n

n−1∑
h1=rn+1

ξh1 + (mnp0)mn

n−1∑
h2=rn+1

ξh2 +
1

mn
(mnp0)3(sin(λj/2))−2

]
.

The right-hand side vanishes as n → ∞ by virtue of (M2). The same idea of proof applies to
the relation J14 = o(1). Thus we showed that J1 = o(1).

Proof that J2 is negligible.

We split the summation over disjoint index sets, depending on the ordering of {t1, t1 +h1, t2, t2 +
h2}: t1 = t2, t1 + h1 = t2 + h2, t1 + h1 = t2, t1 = t2 + h2, t1 < t2 < t1 + h1 < t2 + h2,
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t2 < t1 < t1 + h1 < t2 + h2, t2 < t1 < t2 + h2 < t1 + h1, t1 + h1 < t2 and t2 + h2 < t1. Consider
the index sets (we recycle the notation h1, h2 here)

L1 = {(h1, h2) : 1 ≤ h1 ≤ rn , rn < h2 < n} ,
L2 = {(h1, h2) : 1 ≤ h1 ≤ rn , rn < h2 < n− h1} ,
L3 = {(h1, h2, h3) : 2 ≤ h1 ≤ rn , rn < h2 < n− h1 − 1 , 1 ≤ h3 < h1} ,
L4 = {(h1, h2, h3) : 1 ≤ h1 ≤ rn , rn < h2 < n, 1 ≤ h3 < h2} ,
L5 = {(h1, h2, h3) : 1 ≤ h1 ≤ rn , rn < h2 < n− 1, h2 − h1 < h3 ≤ min(n, h2 + h1 − 1)} ,
L6 = {(h1, h2, h3) : 1 ≤ h1 ≤ rn , rn < h2 < n− h1 − 1, 1 ≤ h3 < n− h1 − h2} .

We write for short fh1h2
= cos(λj1h1) cos(λj1h2). Then

J2 = 8
m2
n

n2

[∑
L1

(n− h2)
(
ph1,h2−h1

+ ph2−h1,h1

)
fh1h2

+
∑
L2

(n− h1 − h2)
(
ph2h1 + ph1h2

)
fh1h2 +

∑
L3

(n− h2 − h3)ph3,h1−h3,h2−h1+h3 fh1h2

+
∑
L4

(n− h2)ph3,h1,h2−h1
fh1h2

+
∑
L5

(n− h1 − h3)ph3,h2−h3,h1−h2+h3
fh1h2

+
∑
L6

(n− h1 − h2 − h3)
(
ph1h3h2

+ ph2h3h1

)
fh1h2

]
=

6∑
i=1

J2i

The terms J2i, i = 1, 2, involve probabilities of the form pkl. These terms can be treated in the
same way as J1 and shown to be negligible. We omit details.

The remaining J2i’s contain probabilities of the form pkls. We illustrate how one can deal
with these pieces. We start with

|J23| = 8
∣∣∣m2

n

n2

rn−1∑
h1=1

rn−h1∑
h3=1

( rn∑
h2=rn+1−h3

+

n−h1−h3−1∑
h2=rn+1

)
(n− h1 − h2 − h3)ph1h3h2

fh1+h3,h2+h3

∣∣∣
≤ c

mnr
3
n

n
(mnp0) +

[
c
m2
n

n

rn−1∑
h1=1

rn−h1∑
h3=1

n−h1−h3−1∑
h2=rn+1

|ph1h3h2 − ph1h3p0|

+c
m2
n

n2
p0

rn−1∑
h1=1

rn−h1∑
h3=1

ph1h3
cos(λj1(h1 + h3))×

×
n−h1−h3−1∑
h2=rn+1

(n− h1 − h2 − h3) cos(λj1(h1 + h2))
]

≤ c
mnr

3
n

n
+ c

m2
nr

2
n

n

∞∑
h2=rn+1

ξh2 + c
r2
n

n
(mnp0)2 (sin(λj/2))−2 .

In the last step we used Lemma 2.7.1. The right-hand side in the latter relation converges to
zero in view of the assumptions on rn,mn and (M2). The remaining expressions J2i which
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contain probabilities pkls over index sets such that k, l > rn, s ≤ rn or k > rn, l, s ≤ rn can
be shown to be negligible by using similar arguments. We omit details. Those sums which
contain probabilities pkls over index sets such that k, l, s > rn are most difficult to deal with.
The corresponding bounds follow from the next lemma.

Lemma 2.5.2. Let λ, ω ∈ [a, b], 0 < a < b < π, possibly depending on n, and x1, x2 be real
numbers. Assume that

m2
nn

n∑
h=rn+1

ξh → 0 , n→∞ , (2.5.11)

where (ξt) is the mixing rate function. Then

Q0 =
m2
n

n2

∑
h1,h2,h3>rn

(n− h1 − h2 − h3)+ph1h2h3 cos(λh1 + x1) cos(ωh3 + x2)→ 0 , (2.5.12)

m2
n

n2

∑
h1,h2,h3>rn

(n− h1 − h2 − h3)+ph1h2h3 sin(λh1 + x1) sin(λh3 + x2)→ 0 . (2.5.13)

Proof. Recall (2.5.10). Write gh1h3 = cos(λh1 + x1) cos(ωh3 + x2). Then we have

|Q0| ≤
m2
n

n2

∑
h1,h2,h3>rn

(n− h1 − h2 − h3)+|ph1h2h3
− ph1

ph3
|

+
∣∣∣m2

n

n2

n−2rn−3∑
h3=rn+1

n−h3−rn−2∑
h1=rn+1

n−h1−h3−1∑
h2=rn+1

(n− h1 − h2 − h3)(ph1
− p2

0)(ph3
− p2

0)gh1h3

∣∣∣
+
∣∣∣m2

n

n2

n−2rn−3∑
h2=rn+1

n−h2−rn−2∑
h3=rn+1

n−h2−h3−1∑
h1=rn+1

(n− h1 − h2 − h3)p2
0(ph3

− p2
0)gh1h3

∣∣∣
+
∣∣∣m2

n

n2

n−2rn−3∑
h2=rn+1

n−h2−rn−2∑
h1=rn+1

n−h1−h2−1∑
h3=rn+1

(n− h1 − h2 − h3)p2
0(ph1

− p2
0)gh1h3

∣∣∣
+
∣∣∣m2

n

n2

n−2rn−3∑
h2=rn+1

n−h2−rn−2∑
h1=rn+1

n−h1−h2−1∑
h3=rn+1

(n− h1 − h2 − h3)p4
0gh1h3

∣∣∣ =

5∑
i=1

Qi .

By virtue of (2.5.11), Q1 is negligible. Similarly, Q2 ≤ m2
n(
∑n
h=rn+1 ξh)2 → 0. As to Q3, Lemma

2.7.1 and mixing imply that

Q3 ≤ c
(mnp0)2

n2

n−2rn−3∑
h2=rn+1

n−h2−rn−2∑
h3=rn+1

(n− h2 − h3)|ph3 − p2
0| (sin(λ/2))−2 ≤ cn

n∑
h3=rn+1

ξh3

→ 0 .

A similar bound applies to Q4. A double application of Lemma 2.7.1 yields

Q5 ≤ c
(mnp0)4

m2
n

(sin(ω/2) sin(λ/2))−2 → 0 .

Collecting these bounds, we proved (2.5.12). Similar arguments apply to (2.5.13).

Thus we showed that J1 and J2 are negligible as n→∞. Hence (2.5.6) holds.
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Proof of (2.5.7)

Following the steps for showing that J2 is negligible, we decompose Eĝ2
nA(λj) into sums over

disjoint index sets depending on the ordering of {t1, t1 + h1, t2, t2 + h2}: t1 = t2 and h1 = h2;
t1 = t2 and h1 > h2; t1 = t2 and h1 < h2; t1 + h1 = t2 + h2 and t1 > t2; t1 + h1 = t2 + h2 and
t1 < t2; t1 = t2 + h2; t2 = t1 + h1; t1 < t2 < t1 + h1 < t2 + h2; t2 < t1 < t2 + h2 < t1 + h1;
t1 < t2 < t2 + h2 < t1 + h1; t2 < t1 < t1 + h1 < t2 + h2; t1 > t2 + h2; t2 > t1 + h1. Consider the
index sets (we recycle the notation h1, h2 here)

B1 = {h : rn < h < n} ,
B2 = {(h1, h2) : rn < h1 < n− rn, 1 ≤ h2 < n− h1} ,
B3 = {(h1, h2) : rn < h1 < n− rn − 1, rn < h2 < n− h1} ,
B4 = {(h1, h2, h3) : 1 ≤ h1 < n− rn − 2, rn < h2 < n− h1 − 1, 1 ≤ h3 < n− h1 − h2} ,
B5 = {(h1, h2, h3) : 1 ≤ h1 < n− rn − 1,max(1, rn + 1− h1) ≤ h2 < n− h1 − 1,

max(1, rn + 1− h2) ≤ h3 < n− h1 − h2} ,
B6 = {(h1, h2, h3) : rn < h1 < n− rn − 2, rn < h3 < n− 1− h1, 1 ≤ h2 < n− h1 − h3} .

Then we have

Eĝ2
nA(λj) = 4

m2
n

n2

∑
B1

(n− h)phfhh + 4
m2
n

n2

∑
B2

(n− h1 − h2)(ph1h2 + ph2h1)fh1+h2,h1

+4
m2
n

n2

∑
B3

(n− h1 − h2)(ph1h2
+ ph2h1

)fh1h2

+8
m2
n

n2
(n− h1 − h2 − h3)

∑
B4

ph1h2h3
fh1+h2+h3,h2

+8
m2
n

n2

∑
B5

(n− h1 − h2 − h3)ph1h2h3fh1+h2,h2+h3

+8
m2
n

n2

∑
B6

(n− h1 − h2 − h3)ph1h2h3fh1h3 =

6∑
i=1

Gi .

Proof that G3 and G6 are negligible.

Using mixing and Lemma 2.7.1, we have as n→∞,

|G3| = 8
m2
n

n2

∣∣∣∑
B3

(n− h1 − h2)
(
(ph1h2

− p0ph2
) + p0(ph2

− p2
0) + p3

0

)
fh1h2

∣∣∣
≤ cm2

n

n∑
h1=rn+1

ξh1
+ c

mn

n

n∑
h2=rn+1

ξh2
+ c

(mnp0)3

mn(sin(λj/2))2
= G′3 → 0 .
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We also have

|G6| ≤ c
m2
n

n2

∣∣∣ n−rn−3∑
h1=rn+1

n−h1−2∑
h3=rn+1

( rn∑
h2=1

+

n−h1−h3−1∑
h2=rn+1

)
(n− h1 − h2 − h3) ph1h2h3

fh1h2

∣∣∣
= G61 +G62 .

By (2.5.12), G62 is negligible and the same arguments as for G3 show that G61 ≤ rnG
′
3 → 0.

Thus G6 is negligible as n→∞.

The non-negligible contributions of G1, G2, G4, G5.

First, observe that

Ef̂2
nA(λj1) = (mnp0)2 + 4m2

np0

rn∑
h=1

n− h
n

ph cos(λjh)

+4
m2
n

n2

rn∑
h1=1

rn∑
h2=1

(n− h1)(n− h2)ph1
ph2

fh1h2
= P1 + P2 + P3 ,

and we also know that (2.5.5) holds. Thus, (2.5.7) is proved if we can show that G1−P1, G2−P2

and G4 + G5 − P3 are negligible. Observe that cos2 λ = 0.5(1 + cos(2λ)). Then by mixing and
Lemma 2.7.1,

|G1 − P1| = 4
m2
n

n2

∣∣∣ n−1∑
h=rn+1

(n− h)
(
(ph − p2

0) + p2
0

)
0.5 (1 + cos(2λjh))− (mnp0)2

∣∣∣
≤ c

mn

n
mn

n−1∑
h=rn+1

ξh + c(mnp0)2
∣∣∣ 1

2n2

n−1∑
h=rn+1

(n− h)− 1
∣∣∣+ c

1

n
(mnp0)2 → 0 .

As to G2, we split the index set B2 into the disjoint parts for h2 ≤ rn and h2 > rn.
The sum over B2 restricted to h2 > rn can be shown to be bounded by cG′3. Recall that
2fh1+h2,h1

= cos(λjh2) + cos(λj(2h1 + h2)). Then

|G2 − P2| ≤ cG
′

3

+
∣∣∣2m2

n

n2

rn∑
h2=1

n−h2−1∑
h1=rn+1

(n− h1 − h2)(ph1h2
+ ph2h1

)
(

cos(λjh1) + cos(λj(2h2 + h1))
)

−4m2
np0

rn∑
h=1

n− h
n

ph cos(λjh)
∣∣∣

≤ cG
′

3 + c
r2
n

n
(mnp0)2 + c

mnrn
n

mn

n−1∑
h2=rn+1

ξh2 + c(mnp0)2 rn
n(sin(λj))2

→ 0 .

Here we used (2.5.9) to rewrite ph1h2
such that the mixing condition and Lemma 2.7.1 can be

applied.
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Finally we turn to G4 and G5. By virtue of (2.5.12) and (2.5.13), we can neglect those parts
of G4 + G5 which contain (h1, h2, h3)-indices with h1, h2, h3 > rn. Those parts of G4 + G5 for
which two indices out of (h1, h2, h3) exceed rn we can deal with like J23, and a similar argument
applies when either h1 > rn or h3 > rn . Thus we need to study those summands in G4 + G5

indexed on {1 ≤ h1, h3 ≤ rn, rn < h2 < n − h1 − h3}. We write G4+5 for the remaining sum.
Recall that

fh1+h2+h3,h2
+ fh1+h2,h2+h3

= fh1h3
+ cos(λj(h1 + 2h2 + h3)) .

Then we have

|G4+5 − P3| =

∣∣∣∣4m2
n

n2

rn∑
h1=1

rn∑
h3=1

n−h1−h3−1∑
h2=rn+1

(n− h1 − h2 − h3)
(
(ph1h2h3

− ph1
ph3

) + ph1
ph3

)
×

×
(
2fh1h3 + 2 cos(λj1(h1 + 2h2 + h3))

)
−4

m2
n

n2

n−1∑
h1=rn+1

n−1∑
h2=rn+1

(n− h1)(n− h2)ph1
ph2

fh1h2

∣∣∣∣
≤ c

r3
n

n
(mnp0)2 + c

mnr
2
n

n
mn

n−1∑
h3=rn+1

ξh3
+ c

r2
n

n(sin(λj1))2
(mnp0)2 .

Thus we also proved that G4 +G5 − P3 is negligible.
Collecting all the arguments above, we finally proved the theorem.

2.6 A discussion of related results and possible extensions

Extremogram-type quantities for time series have been introduced by various authors. Ledford
and Tawn [35] discussed ρ(1,∞) as a possible measure of extremal dependence for univariate
stationary processes with unit Fréchet marginals under the regular variation condition P (X0 >
x,Xt > x) = Lt(x)x−1/ηt , for slowly varying Lt and ηt ∈ (0, 1]. They were particularly interested
in the case of asymptotic independence when ρ(1,∞)(t) = 0 and P (X0 > x,Xt > x)/[P (X >
x)]2 → 1 as x→∞ and also suggested diagnostic conditions in this situation. Hill [28] proposed
the quantities limx→∞[P (X0 > x,Xt > x)/[P (X > x)]2 − 1] as alternative measure of serial
extremal dependence in the case when the extremogram vanishes. Fasen et al. [21] considered
lag-dependent tail dependence coefficients under regular variation conditions on the process (Xt).
These coefficients can be interpreted as special extremograms. Hill [27] showed a pre-asymptotic
functional central limit theorem for the sample extremogram of univariate time series over classes
of upper quadrants. His mixing and domain of maximum domain of attraction are not directly
comparable with strong mixing and regular variation od stationary sequences but the results are
similar in spirit to Theorem 3.2 in Davis and Mikosch [15], where multivariate time series can
be treated but uniform convergence over certain classes of sets was not considered.

Recently, various articles on the spectral analysis of indicator functions and their covariances
based on a strictly stationary time series were written; see e.g. Dette et al. [17] and the references
therein, Hagemann [25], Lee and Subba Rao [36]. The results are similar to those of classical
time series analysis. The aforementioned papers do not deal with the spectral analysis of serial
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extremal dependence. In particular, they do not involve sequences of indicator functions of the
form (I{a−1

m Xt∈A}) for sets A bounded away from zero. Therefore

these papers do not need additional conditions such as regular variation of (Xt) which are
typical for extreme value theory and they do not require to consider the normalization m/n of
the periodogram but use the classical 1/n constants.

The present paper focuses on the basic properties of the extremal periodogram. These prop-
erties parallel the results of classical time series analysis, but the proofs are different because
of the triangular array nature of the stochastic processes (I{a−1

m Xt∈A}). In particular, the cal-
culation of sufficiently high moments necessary to prove central limit theorems becomes rather
technical. The central limit theorem for the smoothed periodogram is still an open question.

The (smoothed) periodogram as such contains information about the length of random cycles
between extremal events {a−1

m Xt ∈ A}. But it also opens the door to the methods and procedures
of classical time series analysis, including the rich theory related to the integrated periodogram
with applications to parameter estimation (e.g. Whittle estimation), good-of-fit tests, change
point analysis, detection of long-range dependence effects and other problems. The solution to
these problems is again rather technical and will be treated in future work.

2.7 Appendix

2.7.1 Some trigonometric sum formulas

Equations (2.7.1) and (2.7.2) are given in Gradshteyn and Ryzhik [24], 1.341 on p. 29; (2.7.3)
and (2.7.4) are 1.352 on p. 31; and (2.7.5) and (2.7.6) are listed as 1.353 on p. 31. For any λ, x
and n ≥ 1, the following identities hold

n−1∑
k=0

cos(x+ kλ) =
cos(x+ (n− 1)λ/2) sin(nλ/2)

sin(λ/2)
, (2.7.1)

n−1∑
k=0

sin(x+ kλ) =
sin(x+ (n− 1)λ/2) sin(nλ/2)

sin(λ/2)
, (2.7.2)

n−1∑
k=1

k cos(kλ) =
n sin((2n− 1)λ/2)

2 sin(λ/2)
− 1− cosnλ

4(sin(λ/2))2
, (2.7.3)

n−1∑
k=1

k sin(kλ) =
sin(nλ)

4(sin(λ/2))2
− n cos((2n− 1)λ/2)

2 sin(λ/2)
, (2.7.4)

n−1∑
k=1

pk sin(kλ) =
p sin(λ)− pn sin(nλ) + pn+1 sin

(
(n− 1)λ

)
1− 2p cos(λ) + p2

, (2.7.5)

n−1∑
k=0

pk cos(kλ) =
1− p cos(λ)− pn cos(nλ) + pn+1 cos((n− 1)λ)

1− 2p cos(λ) + p2
. (2.7.6)
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Using these formulas, direct calculation yields for any frequency λ,

n−h∑
s=1

[
cos(λs) sin(λ(s+ h)) + cos(λ(s+ h)) sin(λs)

]
=

n−h∑
s=1

sin(2λs+ λh) =
sin(λn) sin(λ(n− h+ 1))

sinλ
− sin(λh) . (2.7.7)

For distinct frequencies λ, ω we then obtain

n−h∑
s=1

[
cos(λs) sin(ω(s+ h)) + cos(λ(s+ h)) sin(ωs)

]
= 0.5

n−h∑
s=1

[sin((λ+ ω)s+ ωh)− sin((λ− ω)s− ωh)]

+0.5

n−h∑
s=1

[sin((λ+ ω)s+ λh)− sin((λ− ω)s+ λh)]

= − sin(ωh)

+0.5
sin((n− h+ 1)(λ+ ω)/2)

sin((λ+ ω)/2)

[
sin(ωh+ (n− h)(λ+ ω)/2) + sin(λh+ (n− h)(λ+ ω)/2)

]
−0.5

sin((n− h+ 1)(λ− ω)/2)

sin((λ− ω)/2)

[
sin(−ωh+ (n− h)(λ− ω)/2) + sin(λh+ (n− h)(λ− ω)/2)

]
,

(2.7.8)

n−h∑
s=1

[
cos(λs) cos(ω(s+ h)) + cos(λ(s+ h)) cos(ωs)

]
= 0.5

n−h∑
s=1

[
cos((λ+ ω)s+ ωh) + cos((λ− ω)s− ωh) + cos((λ+ ω)s+ λh) + cos((λ− ω)s+ λh)

]
= − cos(ωh)− cos(λh)

+0.5
sin((n− h+ 1)(λ+ ω)/2)

sin((λ+ ω)/2)

[
cos(ωh+ (n− h)(λ+ ω)/2) + cos(λh+ (n− h)(λ+ ω)/2)

]
+0.5

sin((n− h+ 1)(λ− ω)/2)

sin((λ− ω)/2)

[
cos(−ωh+ (n− h)(λ− ω)/2) + cos(λh+ (n− h)(λ− ω)/2)

]
,

(2.7.9)
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n−h∑
s=1

[
sin(λs) sin(ω(s+ h)) + sin(λ(s+ h)) sin(ωs)

]
= 0.5

n−h∑
s=1

[
cos((λ+ ω)s+ ωh)− cos((λ− ω)s− ωh) + cos((λ+ ω)s+ λh)− cos((λ− ω)s+ λh)

]
= 0.5

sin((n− h+ 1)(λ− ω)/2)

sin((λ− ω)/2)

[
cos(−ωh+ (n− h)(λ− ω)/2) + cos(λh+ (n− h)(λ− ω)/2)

]
−0.5

sin((n− h+ 1)(λ+ ω)/2)

sin((λ+ ω)/2)

[
cos(ωh+ (n− h)(λ+ ω)/2) + cos(λh+ (n− h)(λ+ ω)/2)

]
.

(2.7.10)

Next assume the conditions of Theorem 2.5.1. Then a direct application of (2.7.1)–(2.7.4) yields
for λ ∈ (0, π) the following relations:

n∑
s=rn+1

(n− s) sin(λs+ x)

= n
( sin(x+ (n− 1))λ/2 sin(nλ/2)

sin(λ/2)
− sin(x+ rnλ/2) sin((rn + 1)λ/2)

sin(λ/2)

)
+ sin(x)

(n sin((2n− 1)λ/2)

2 sin(λ/2)
− (rn + 1) sin((2rn − 1)λ/2)

2 sin(λ/2)
− cos((rn + 1)λ)− cos(nλ)

4(sin(λ/2))2

)
+ cos(x)

(n cos((2n− 1)λ/2)

2 sin(λ/2)
− (rn + 1) cos((2rn − 1)λ/2)

2 sin(λ/2)
− sin(nλ)− sin((rn + 1)λ)

4(sin(λ/2))2

)
n∑

s=rn+1

(n− s) cos(λs+ x)

= n
(cos(x+ (n− 1)λ/2) sin(nλ/2)

sin(λ/2)
− cos(x+ rnλ/2) sin((rn + 1)λ/2)

sin(λ/2)

)
− cos(x)

(n sin((2n− 1)λ/2)

2 sin(λ/2)
− (rn + 1) sin((2rn − 1)λ/2)

2 sin(λ/2)
− cos((rn + 1)λ)− cos(nλ)

4(sin(λ/2))2

)
+ sin(x)

(n cos((2n− 1)λ/2)

2 sin(λ/2)
− (rn + 1) cos((2rn − 1)λ/2)

2 sin(λ/2)
− sin(nλ)− sin((rn + 1)λ)

4(sin(λ/2))2

)
Lemma 2.7.1. Under the assumptions of Theorem 2.5.1 the following relations hold uniformly
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for λ ∈ (0, 2π), as n→∞,

n−1∑
h=rn+1

(n− h) cos(λh+ x)

=
n cos(x+ (n− 1)λ/2) sin(nλ/2)

sin(λ/2)
− n− n sin((2n− 1)λ/2)

2 sin(λ/2)
+

1− cos(nλ)

4(sin(λ/2))2

−n cos(x+ rnλ/2) sin((rn + 1)λ/2)

sin(λ/2)
− n+

(rn + 1) sin((2rn + 1)λ/2)

2 sin(λ/2)
− 1− cos(rn + 1)λ

4(sin(λ/2))2

= O(n/(sin(λ/2))2) ,
n−1∑

h=rn+1

(n− h) sin(λh+ x)

=
n sin(x+ (n− 1)λ/2) sin(nλ/2)

sin(λ/2)
− sin(nλ)

4(sin(λ/2))2
+
n cos((2n− 1)λ/2)

2 sin(λ/2)

−n sin(x+ rnλ/2) sin((rn + 1)λ/2)

sin(λ/2)
+

sin(rnλ)

4(sin(λ/2))2
− n cos((2rn + 1)λ/2)

2 sin(λ/2)

= O(n/(sin(λ/2))2) .

2.7.2 The spectral density fA of an ARMA(1,1) process

In this section we calculate the spectral density fA for an ARMA(1,1) process and the set
A = (1,∞). The process (Xt) is given as the stationary causal solution to the difference equation

Xt = φXt−1 + Zt + θZt−1 , t ∈ Z ,

where 0 < |φ| < 1 and θ ∈ R. From Brockwell and Davis [10], (2.3.3), we obtain the coefficients
(ψj) of the linear process representation of (Xt) (cf. (2.3.2)):

ψ0 = 1 , ψj = φj−1(φ+ θ) , j ≥ 1 .

We assume that (Zt) is an iid regularly varying sequence with index α > 0.

The case φ ∈ (0, 1), θ + φ > 0, p > 0. A direct application of (2.3.4) yields that

ρA(h) =
min(1, ψαh ) +

∑∞
i=h+1 ψ

α
i∑∞

i=0 ψ
α
i

=
min(1, φα(h−1)(θ + φ)α) + φαh(θ + φ)α(1− φα)−1

1 + (θ + φ)α(1− φα)−1
, h ≥ 1 .
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Define h0 = min{h ≥ 0 : φαh(θ + φ)α < 1} and write (see Appendix 2.7.1)

L(1)(n, x, λ) =

n∑
h=1

cos(x+ hλ) =


cos(x+ nλ) sin((n+ 1)λ/2)

sin(λ/2)
− 1 , n ≥ 1 ,

0 , n = 0 ;

L(2)(n, x, α, λ) =

n∑
h=1

|φ|αh cos(x+ hλ)

=


|φ|α cos(x+ λ)− |φ|2α cos(x)− |φ|α(n+1) cos(x+ (n+ 1)λ) + |φ|α(n+2) cos(x+ nλ)

|1− |φ|αe−iλ|2 , n ≥ 1 ,

0 , n = 0 ,

|φ|α cos(x+ λ)− |φ|2α cos(x)

|1− |φ|αe−iλ|2 , n =∞ .

Then

ρA(h) =

{
c
(1)
α (φ, θ) + φαh c

(2)
α (φ, θ) , h ≤ h0 ,

φα (h−1)c
(2)
α (φ, θ) , h > h0 ,

where

c(1)
α (φ, θ) =

1− φα

1− φα + (φ+ θ)α
and c(2)

α (φ, θ) =
(φ+ θ)α

1− φα + (φ+ θ)α
.

The corresponding spectral density is given by

fA(λ) = 1 + 2c(1)
α (φ, θ)

h0∑
h=1

cos(hλ) + 2(1− φ−α)c(2)
α (φ, θ)

h0∑
h=1

φαh cos(hλ)

+2φ−αc(2)
α (φ, θ)

∞∑
h=1

φαh cos(hλ)

= 1 + 2c(1)
α (φ, θ)L(1)(h0, 0, λ) + 2(1− φ−α)c(2)

α (φ, θ)L(2)(h0, 0, α, λ)

+2φ−αc(2)
α (φ, θ)L(2)(∞, 0, α, λ) .

The case φ ∈ (0, 1), θ + φ < 0, q > 0. In view of (2.3.4) we have

ρA(h) =
q
∑∞
i=0 φ

αh+αi|φ+ θ|α

p+ q
∑∞
i=0 φ

αi|φ+ θ|α
=

qφαh|φ+ θ|α

p(1− φα) + q|φ+ θ|α
= φαhc(3)

α (φ, θ), h ≥ 1 ,

fA(λ) = 1 + 2 c(3)
α (φ, θ)L(2)(∞, 0, α, λ) .

The case φ ∈ (−1, 0), θ + φ > 0, p > 0. If h = 2k + 1 for integer k ≥ 0 the summand
p (min(ψ+

i , ψ
+
i+h))α + q (min(ψ−i , ψ

−
i+h))α in (2.3.4) vanishes for i ≥ 1. Thus

ρA(h) =
pmin(1, |ψh|α)

p+
∑∞
i=1

[
p|ψ2i−1|α + q|ψ2i|α

] .
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For h = 2k > 0,

ρA(h) =

∑∞
i=1

[
p|ψ2i+h−1|α + q|ψ2i+h|α

]
p+

∑∞
i=1

[
p|ψ2i−1|α + q|ψ2i|α

] .
Define k1 = min{k ≥ 0 : |φ|2k(θ + φ) < 1} . Then,

ρA(h) =


c
(4)
α (φ, θ) , h = 2k − 1 , 1 ≤ k ≤ k1 ,

φα (h−1)c
(5)
α (φ, θ) , h = 2k − 1 , k > k1 ,

φαhc
(6)
α (φ, θ) , h = 2k , k ≥ 1 .

where

c(4)
α =

p(1− |φ|2α)

p(1− |φ|2α + (φ+ θ)α) + q|φ|α (φ+ θ)α
,

c(5)
α =

p(φ+ θ)α(1− |φ|2α)

p(1− |φ|2α + (φ+ θ)α) + q|φ|α (φ+ θ)α
,

c(6)
α =

p(φ+ θ)α + q|φ|α(φ+ θ)α

p(1− |φ|2α + (φ+ θ)α) + q|φ|α (φ+ θ)α
.

The corresponding spectral density is

fA(λ) = 1 + 2c(4)
α (φ, θ)

k1∑
k=1

cos((2k − 1)λ) + 2|φ|−2αc(5)
α (φ, θ)

∞∑
k=k1+1

|φ|α(2k) cos((2k − 1)λ)

+2c(6)
α (φ, θ)

∞∑
k=1

|φ|2kα cos(2kλ)

= 1 + 2c(4)
α (φ, θ)L(1)(k1,−λ, 2λ) + 2|φ|−2αc(5)

α

[
L(2)(∞,−λ, 2α, 2λ)− L(2)(k1,−λ, 2α, 2λ)

]
+2c(6)

α (φ, θ)L(2)(∞, 0, α, 2λ) .

The case φ ∈ (−1, 0), θ + φ < 0, p > 0. If h = 2k + 1 for integer k ≥ 0 the summand
p (min(ψ+

i , ψ
+
i+h))α + q (min(ψ−i , ψ

−
i+h))α in (2.3.4) vanishes for i ≥ 0. Thus

ρA(h) = 0 .

For h = 2k > 0,

ρA(h) =
pmin(1, |ψh|α) +

∑∞
i=0

[
p|ψ2i+h+2|α + q|ψ2i+h+1|α

]
∑∞
i=0

[
p|ψ2i|α + q|ψ2i+1|α

] .

Define k2 = min{k ≥ 0 : |φ|2k+1|θ + φ| < 1}. Then

ρA(2k) =

{
c
(7)
α + |φ|2αk c(8)

α , k ≤ k2 ,

|φ|2αk c(9)
α , k > k2 .
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where

c(7)
α =

p(1− |φ|2α)

p(1− |φ|2α) + p|φ|α|φ+ θ|α + q|φ+ θ|α
,

c(8)
α =

p|φ|α|φ+ θ|α + q|φ+ θ|α

p(1− |φ|2α) + p|φ|α|φ+ θ|α + q|φ+ θ|α
,

c(9)
α =

p|φ|−α|φ+ θ|α + q|φ+ θ|α

p(1− |φ|2α) + p|φ|α|φ+ θ|α + q|φ+ θ|α
.

The corresponding spectral density is

fA(λ) = 1 + 2c(7)
α

k2∑
k=1

cos(2kλ) + 2(c(8)
α − c(9)

α )

k2∑
k=1

|φ|2kα cos(2kλ) + 2c(9)
α

∞∑
k=1

|φ|2kα cos(2kλ)

= 1 + 2c(7)
α L(1)(k2, 0, 2λ) + 2(c(8)

α − c(9)
α )L(2)(k2, 0, 2α, 2λ) + 2c(9)

α L(2)(∞, 0, 2α, 2λ) .
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Chapter 3

Measures of serial extremal
dependence and their estimation

Abstract

The goal of this paper is two-fold: 1. We review classical and recent measures of serial extremal
dependence in a strictly stationary time series as well as their estimation. 2. We discuss recent
concepts of heavy-tailed time series, including regular variation and max-stable processes.

Serial extremal dependence is typically characterized by clusters of exceedances of high
thresholds in the series. We start by discussing the notion of extremal index of a univariate
sequence, i.e. the reciprocal of the expected cluster size, which has attracted major attention in
the extremal value literature. Then we continue by introducing the extremogram which is an
asymptotic autocorrelation function for sequences of extremal events in a time series. In this
context, we discuss regular variation of a time series. This notion has been useful for describing
serial extremal dependence and heavy tails in a strictly stationary sequence. We briefly discuss
the tail process coined by Basrak and Segers to describe the dependence structure of regularly
varying sequences in a probabilistic way. Max-stable processes with Fréchet marginals are an
important class of regularly varying sequences. Recently, this class has attracted attention for
modeling and statistical purposes. We apply the extremogram to max-stable processes. Finally,
we discuss estimation of the extremogram both in the time and frequency domains.

3.1 Introduction

Measuring and estimating extremal dependence in a time series is a rather challenging problem.
Since many real-life time series, especially those arising in finance and environmental applica-
tions, are non-Gaussian their dependence structure is not determined by their autocorrelation
function. Correlations are moments of the observations and as such not well suited for describing
the dependence of extremes which typically arise from the tails of the underlying distribution.
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3.1.1 The extremal index as reciprocal of the expected extremal clus-
ter size

Extremal dependence in a real-valued strictly stationary sequence (Xt) can be described by the
phenomenon of extremal clustering. Given some sufficiently high threshold u = un, we would
expect that exceedances of this threshold should occur according to a homogeneous Poisson
process. if (Xt) is iid. On the other hand, for dependent (Xt) exhibiting extremal dependence,
exceedances of u should cluster in the sense that an exceedance of a high threshold is likely to
be surrounded by neighboring observations that also exceed the threshold. Although the notion
of extremal clustering is intuitively appealing, a precise formulation is not so easy.

The intuition about extremal clusters in a time series can be made precise using point process
theory. In the classical monograph by Leadbetter, Lindgren and Rootzén [40] the point process
of exceedances of u was used to describe clusters of extremes as an asymptotic phenomenon when
the threshold un converges to the right endpoint of the distribution F of X. (Here and in what
follows, Y denotes a generic element of any strictly stationary sequence (Yt).) To be more precise,
(un) has to satisfy the condition nF (un) = n (1− F (un))→ τ for some τ ∈ (0,∞). Under this
condition and mixing assumptions, the point processes of exceedances converge weakly to a
compound Poisson process (see Hsing et al. [31]):

Nn =

n∑
i=1

εi/n I{Xi>un}
d→ N =

∞∑
i=1

ξi εΓi , (3.1.1)

where the state space of the point processes is (0, 1], the points 0 < Γ1 < Γ2 < · · · constitute a
homogeneous Poisson process with intensity θτ on (0, 1] which is independent of an iid positive
integer-valued sequence (ξi). Here θ ∈ [0, 1] is the extremal index of the sequence (Xt). Thus, in
an asymptotic way, a cluster of extremes is located at the Poisson points Γi with corresponding
size ξi. The cluster size distribution P (ξ = k), k ≥ 1, contains plenty of information about the
distribution of the extremal clusters. However, most attention has been given to determine the
expected cluster size Eξ which can be interpreted as reciprocal of θ as the following heuristic
argument illustrates. Applying (3.1.1) on the set (0, 1] and taking expectations on both sides of
the limit relation, we observe that

ENn(0, 1] = nF (un)→ τ = EN(0, 1] = Eξ E#{i ≥ 1 : Γi ≤ 1} = Eξ (θ τ) , n→∞.

Thus θ = 1/Eξ with the convention that Eξ = ∞ for θ = 0. In the case of an iid sequence,
ξi ≡ 1 a.s., i.e. N collapses to a homogeneous Poisson process and θ = 1.

Writing Mn = max(X1, . . . , Xn), we also observe that

P (Mn ≤ un) = P (Nn(0, 1] = 0)→ P (N(0, 1] = 0) = P (#{i ≥ 1 : Γi ≤ 1} = 0) = e−θ τ ,

while for an iid sequence (X̃t) with the same marginal distribution F as for (Xt) and M̃n =

max(X̃1, . . . , X̃n) we have

P (M̃n ≤ un) = Fn(un) = e−nF (un)(1+o(1)) → e−τ .

If F belongs to the maximum domain of attraction of an extreme value distribution H (F ∈
MDA(H)) there exist constants cn > 0, dn ∈ R, n ≥ 1, such that P (c−1

n (M̃n − dn) ≤ x)→ H(x)
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for every x ∈ supp(H) (the support of H); cf. Embrechts et al. [20], Chapter 3. Thus, writing
un(x) = cn x + dn and τ = τ(x) = − logH(x) for x ∈ supp(H), the existence of an extremal
value index θ of the sequence (Xt) implies that

P (c−1
n (Mn − dn) ≤ x)→ Hθ(x) , x ∈ R . (3.1.2)

The concrete form of the extremal index is known for various standard time series models,
including linear processes with iid subexponential noise (cf. [20], Section 5.5), Markov processes
(see Leadbetter and Rootzén [41], Perfekt [53]) and financial time series models such as GARCH
(generalized autoregressive conditionally heteroscedastic) and SV (stochastic volatility) models;
cf. [11, 13, 14]. Expressions of the extremal index for regularly varying sequences (Xt) (see
Section 3.1.2 for a definition) in terms of the points of the limiting point process were given in
Davis and Hsing [8] and in terms of the limiting tail process in Basrak and Segers [2]; see (3.1.10)
below. However, for most models these concrete expressions of θ are too complex to be useful
in practice.

An exception are Gaussian stationary sequences (Xt). Writing γX(h) = cov(X0, Xh), h ≥ 0,
for the covariance function of (Xt), this sequence has extremal index θ = 1 under the very
weak condition γX(h) = o(1/ log h) as h → ∞ (so-called Berman’s condition); see Leadbetter
et al. [40], cf. Theorem 4.4.8 in Embrechts et al. [20]. Notice that Berman’s condition is
satisfied for fractional Gaussian noise and fractional Gaussian ARIMA processes (see Chapter 7
in Samorodnitsky and Taqqu [64], and Section 13.2 in Brockwell and Davis [5]). Subclasses of
the latter processes exhibit long range dependence in the sense that

∑
h |γX(h)| =∞.1

We conclude that any Gaussian stationary sequences which are relevant for applications do
not exhibit extremal clustering in the sense that θ = 1. If θ = 1 one often says that (Xt) exhibits
asymptotic independence of its extremes. However, the notion of asymptotic independence is
not well defined and may have rather different meanings in the extreme value context, as we will
observe later.

Due to the complexity of expressions for the extremal index it has been recognized early on
that θ needs to be estimated from real-life or simulated data. Various estimators were proposed
in the literature. Among them, the blocks and runs estimators are the most popular ones. These
estimators are non-parametric estimators of θ which, in different ways, define and count clusters
in the sample and use this information to build estimators of θ under mixing conditions. In
addition to the delicate choice of a threshold un, these estimation techniques also involve the
construction of blocks of constant (but increasing with the sample size n) length or of flexible

1This remark also indicates that long range dependence for extremes should not be defined via the covariance
function γX . As explained above (see (3.1.2)) the existence of a positive extremal index θ ensures that the type of
the limiting extreme value distribution H remains the same as in the iid case. This is easily checked since the only

possible non-degenerate limit distributions H are the types of the Fréchet distribution Φα(x) = e−x
−α

, x, α > 0,

the Weibull distribution Ψα(x) = e−(−x)α , x < 0, α > 0, and the Gumbel distribution Λ(x) = e−e−x , x ∈ R.
This is a consequence of the Fisher-Tippett theorem; cf. Embrechts et al. [20], Theorem 3.2.3. The notion of long
range dependence in an extreme value sense would be reasonable if in (3.1.2) a limit distribution occurred which
does not belong to the type of any of the three mentioned standard extreme value distributions. This, however,
can only be expected if a given stationary sequence (Xt) with F ∈ MDA(H) does not have an extremal index or
if θ = 0. Examples of sequences with zero extremal index are given in Leadbetter et al. [40] and Leadbetter [39],
but such examples are often considered pathological; see also the discussion in Samorodnitsky [63] who studied
infinite variance stable stationary sequences with zero extremal index and the boundary between short and long
range extremal dependence for these sequence.
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length depending on the local extremal behavior. These estimators often exhibit a rather large
uncertainty.

In Figures 3.1.1 and 3.1.2 we illustrate the estimation of θ for real and simulated data. We
choose the simple blocks estimator θ̂ = Kn/Nn of the extremal index θ, where Nn is the number
of exceedances of the threshold u = un in the sample X1, . . . , Xn and Kn is the number of blocks
of size s = sn, X(i−1)s+1, . . . , Xis, i = 1, . . . , [n/s], with at least one exceedance of u.

Aspects of bias, variance and optimal choice of blocks for the estimation of θ were discussed
in Smith and Weissman [65]. In a series of papers, Hsing [27, 28, 29, 30] studied the extremes of
stationary sequences, including the asymptotic behavior of their extremal index estimators. The
recent papers Robert [59, 60], Robert et al. [58], in particular [60], give historical accounts of
estimation of θ and some new technology for the estimation of θ and the cluster size distribution
P (ξ = k), k ≥ 1. The paper of Robert [60] is devoted to inference on the cluster size distribution.
The literature on this topic is sparse; Robert [60] mentions Hsing [28] as a historical reference.

3.1.2 The extremogram: an asymptotic correlogram for extreme events

Davis and Mikosch [13, 17] introduced another tool for measuring the extremal dependence in
a strictly stationary Rd-valued time series (Xt): the extremogram defined as a limiting sequence
given by

γAB(h) = lim
n→∞

n cov(I{a−1
n X0∈A}, I{a−1

n Xh∈B}) , h ≥ 0 . (3.1.3)

Here (an) is a suitably chosen normalization sequence and A,B are two fixed sets bounded away
from zero. The events {X0 ∈ anA} and {Xh ∈ anB} are considered as extreme ones and γAB(h)
measures the influence of the time zero extremal event {X0 ∈ anA} on the extremal event
{Xh ∈ anB}, h lags apart. The choice of (an) depends on the situation at hand. To avoid
ambiguity, we later assume that (an) satisfies the relation nP (|X| > an) ∼ 1. With this choice
of (an), γAB(h) = limn→∞ nP (a−1

n X0 ∈ A, a−1
n Xh ∈ B). Motivating examples of extremograms

are the limiting conditional probabilities limn→∞ P (a−1
n Xh ∈ B | a−1

n X0 ∈ A) in Davis and
Mikosch [13, 17].

A motivating example for d = 1 with A = B = (1,∞) is the so-called (upper) tail dependence
coefficient of the vector (X0, Xh) given as the limit

ρ(h) = lim
x→∞

P (Xh > x | X0 > x) . (3.1.4)

(Here we assume that X has infinite right endpoint.) These pairwise tail dependence coefficients
have attracted some attention in the literature on quantitative risk management; see for example
McNeil et al. [42]. Notice that ρ(h) coincides with γAA(h) if we choose (an) such that nP (X0 >
an) ∼ 1 as n→∞. Indeed,

n cov(I{X0>an}, I{Xh>an}) ∼ P (Xh > an, X0 > an)− (P (X0 > an))2

P (X0 > an)

∼ P (Xh > an | X0 > an) .
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Figure 3.1.1. Blocks estimator θ̂ of the extremal index θ for 31, 757 5-minute log-returns of
Bank of America stock prices. The blocks estimator as a function of the block size s and the u%
upper order statistics (top), for fixed u = 1.9% and running s (bottom left) and for fixed s = 10
and running u (bottom right).
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Figure 3.1.2. Blocks estimator θ̂ of the extremal index θ for a sample of size 20 000 from the
AR(1) process Xt = 0.8Xt−1 + Zt. The iid noise (Zt) has a common student distribution with
α = 2 degrees of freedom. The extremal index θ = 0.37 is known (indicated by dashed line); see
[20], Section 8.1. The blocks estimator as a function of the block size s and u% of the upper
order statistics (top), for fixed u = 2% and running s (bottom left) and for fixed s = 24 and
running u (bottom right).
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A similar calculation for any dimension d and suitable sets A,B shows that the limiting
sequence ( γAA(h) γAB(h)

γBA(h) γBB(h)

)
, h ≥ 0 , (3.1.5)

inherits the properties of a matrix covariance function. Notice that the entries of these matrices
cannot be negative. The interpretation of (3.1.5) as covariance function allows one to use the
classical notions of time series analysis in an asymptotic sense. For example, notions such as
long or short range dependence of extremal events can be made precise by specifying the rate
of decay of (3.1.5) as h → ∞. Davis and Mikosch [16], Mikosch and Zhao [51] introduced an
analog of the spectral density as a Fourier transform of the sequence (3.1.5). They showed that
the periodogram of the sequence of indicators I{a−1

n Xt∈A} of the extremal events {a−1
n Xt ∈ A},

t ∈ Z, has properties similar to the classical periodogram of a stationary sequence. In particular,
weighted averages of the periodogram are consistent estimators of the spectral density.

In the literature, the pairwise tail dependence coefficients (3.1.4) are mostly considered for
concrete examples of distributions, such as elliptical ones, including the multivariate t- and
Gaussian distributions; see e.g. McNeil et al. [42]. In these cases, one can verify that the limits
in (3.1.4) exist. For a Gaussian stationary sequence, ρ(h) = 0, h ≥ 1, unless Xt = X a.s. for all
t ∈ Z. The case ρ(h) = 0 for some h ≥ 1 is (again) referred to as asymptotic extremal dependence
in the vector (X0, Xh) although no extremal index is in view.

In general, it is not obvious whether the limits ρ(h) and, more generally, γAB(h) for h ≥ 0
exist. In this paper, we will use the notion of a regularly varying stationary sequence. It is a
sufficient condition for the existence of the limits γAB(h). Roughly speaking, a regularly varying
sequence of random variables (Xt) has power law tails for every lagged vector (X1, . . . , Xh),
h ≥ 1. In what follows, we make precise what regular variation means.

Regularly varying random vectors

The notion of regular variation is basic in extreme value theory and limit theory for partial
sums of iid random variables. In multivariate extreme value theory, regular variation with
index α > 0 of the d-dimensional iid random vectors Xt, t ∈ R, with values in (0,∞)d is
necessary and sufficient for the fact that the normalized sequence of component-wise maxima

(a−1
n maxt≤nX

(i)
t )i=1,...,d, t = 1, 2, . . . , converges in distribution to a d-dimensional extreme

value distribution H on (0,∞)d whose marginal distributions are Fréchet Φα-distributed; see
Resnick [56] for a general theory of multivariate extremes for iid sequences. Similarly, for a
general Rd-valued iid sequence (Xt), the sequence of suitably normalized and centered partial
sums a−1

n (X1+· · ·+Xn−bn) converges in distribution to an infinite variance α-stable limit if and
only if the distribution of X is regularly varying with index α. The index α is then necessarily
in the range α ∈ (0, 2). We refer to Rvačeva [62] and Resnick [57] for proofs of this fact.

Various definitions of a d-dimensional regularly varying vector X exist; we refer to Resnick
[55, 56, 57]. We start with a definition in terms of spherical coordinates. We say that X is
regularly varying with index α > 0 and spectral measure P (Θ ∈ ·) on the Borel σ-field of the
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unit sphere Sd−1 = {x ∈ Rd : |x| = 1} if 2 the following weak limits exist for every fixed t > 0:

P (|X| > tx ,X/|X| ∈ ·)
P (|X| > x)

w→ t−α P (Θ ∈ ·) , x→∞ . (3.1.6)

Relation (3.1.6) can be written in an equivalent form as a pair of conditions:

1. The norm |X| is regularly varying in the classical sense, i.e. P (|X| > tx)/P (|X| > x) →
t−α, t > 0, or, equivalently, P (|X| > x) = x−αL(x), x > 0, for a slowly varying function
L; cf. Bingham et al. [3] for an encyclopedia on regularly varying functions.

2. The angular component X/|X| is independent of |X| for large values of |X| in the sense
that

P (X/|X| ∈ · | |X| > x)
w→ P (Θ ∈ ·) , x→∞ . (3.1.7)

In any of these limit relations, it is possible to replace the converging parameter x by a sequence
(an) such that P (|X| > an) ∼ n−1. Then (3.1.6) and (3.1.7), respectively, read as

nP (|X| > tan, X/|X| ∈ ·)
w→ t−αP (Θ ∈ ·) and P (X/|X| ∈ · | |X| > an)

w→ P (Θ ∈ ·) .

The convergence relation (3.1.6) can be understood as convergence on the particular Borel sets
{x ∈ Rd : |x| > t,x/|x| ∈ S} for Borel sets S ⊂ Sd−1 with a smooth boundary. This convergence

can be extended to the Borel σ-field on Rd0 = Rd \ {0}, R = R ∪ {∞,−∞}:

µx(·) =
P (x−1X ∈ ·)
P (|X| > x)

v→ µ(·) , x→∞ . (3.1.8)

Here
v→ refers to vague convergence of measures on the Borel σ-field on Rd0, i.e.

∫
Rd0
f dµx →∫

Rd0
f dµ as x → ∞ for any continuous and compactly supported f on Rd0; see Kallenberg [36],

Resnick [56]. This means in particular, that the support of f is bounded away from zero. In

view of (3.1.6), µ({x ∈ Rd0 : |x| > t,x/|x| ∈ S}) = t−αP (Θ ∈ S), and therefore µ is a Radon
measure (i.e. finite on sets bounded away from zero) satisfying µ(tA) = t−αµ(A), t > 0. In
particular, µ does not charge points containing infinite components. Again, the parameter x in
(3.1.8) can be replaced by a sequence (an) satisfying P (|X| > an) ∼ n−1 and then we get

nP (a−1
n X ∈ ·) v→ µ(·) , n→∞ .

For an iid sequence (Xt) with generic element X, the latter condition is equivalent to the con-
vergence of the point processes

Nn =

n∑
t=1

εa−1
n Xt

d→ N ,

2The choice of the norm | · | is relevant for defining the corresponding unit sphere and the spectral measure on
it, but the notion of regular variation of a vector does not depend on a particular choice of norm. In this paper,
| · | will stand for the Euclidean norm.
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where N is a Poisson random measure with mean measure µ and state space Rd0; see Resnick
[55, 56]. Since point process convergence is basic to extreme value theory, the notion of multi-
variate regular variation is very natural in the context of extreme value theory for multivariate
observations with heavy-tailed components; see also the recent monograph by Resnick [57] who
stresses the importance of the notion of regular variation as relevant for many applications in
finance, insurance and telecommunications.3

Regularly varying stationary sequences

A strictly stationary sequence (Xt) is regularly varying with index α if its finite-dimensional
distributions are regularly varying with index α, i.e. for every h ≥ 1, there exist non-null Radon

measures µh on the Borel σ-field of Rh0 and a sequence (an) such that an →∞ and

nP (a−1
n (X1, . . . , Xh) ∈ ·) v→ µh(·) , n→∞ . (3.1.9)

Here and in what follows, we will choose the normalizing sequence (an) such that P (|X| > an) ∼
n−1, where we use the notation (an) in a way different from Section 3.1.2. Indeed, in the latter

section we defined the normalization (a
(h)
n ) such that P (|(X1, . . . , Xh)| > a

(h)
n ) ∼ n−1, but then

the normalization would depend on the dimension h. This is not desirable. However, notice that

1 = lim
n→∞

P (|(X1, . . . , Xh)| > a
(h)
n )

P (|X| > an)
.

Therefore, by the properties of regularly varying functions, there exist positive constants c
1/α
h =

limn→∞ an/a
(h)
n , h ≥ 1. Hence for sets A bounded away from zero such that µh(∂A) = 0 we

have

nP ((a(h)
n )−1(X1, . . . , Xh) ∈ A) = nP (a−1

n (an/a
(h)
n )(X1, . . . , Xh) ∈ A)

∼ ch [nP (a−1
n (X1, . . . , Xh) ∈ A)]

→ ch µh(A) ,

i.e. the limit measures of regular variation under the different normalizations only differ by some
positive constants.

The condition of regular variation on the sequence (Xt) seems to be a severe restriction since
the tails of the marginals are power laws. However, following Resnick [56], Proposition 5.10,
any multivariate distribution (with continuous marginals) in the maximum domain of attraction
(MDA) of a d-dimensional extreme value distribution can be transformed to a distribution G with
common Fréchet or Pareto marginals. Then G is in the MDA of an extreme value distribution
with Fréchet marginals or, equivalently, G is regularly varying.

For example, transforming the marginals of a Gaussian stationary sequence to unit Fréchet,
the resulting sequence is regularly varying with index α = 1. We mentioned before that the tail

3The notion of regular variation is essentially dimensionless; see for example relation (3.1.6) which immediately
extends to normed spaces and, more generally, to metric spaces. An account of the corresponding theory can be
found in Hult and Lindskog [32]. Applications of regular variation in function spaces to extreme value theory can
be found in de Haan and Tao [26], Davis and Mikosch [12], Meinguet and Segers [43], to large deviations in Hult
et al. [33], Mikosch and Wintenberger [49, 50], and to random sets in Mikosch et al. [44, 45].
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dependence coefficient ρ(h) = 0, h ≥ 1, for any non-trivial Gaussian stationary sequence. The
quantities ρ(h) remain invariant under monotone increasing transformations of the marginals.
Hence, the transformed Gaussian distribution with unit Fréchet marginals exhibits asymptotic
independence in the sense that the limit measures µh are concentrated on the axes.

The tail process

An insightful characterization of an Rd-valued regularly varying stationary sequence (Xt) was
given in Theorem 2.1 of Basrak and Segers [2]: there exists a sequence of Rd-valued random
vectors (Yt)t∈Z such that P (|Y0| > y) = y−α for y > 1 and for any h ≥ 0,

P (x−1(X−h, . . . , Xh) ∈ · | |X0| > x)
w→ P ((Y−h, . . . , Yh) ∈ ·) , x→∞ .

The process (Yt) is the tail process of (Xt). Writing Θt = Yt/|Y0| for t ∈ Z, one also has for
h ≥ 0,

P (|X0|−1(X−h, . . . , Xh) ∈ · | |X0| > x)
w→ P ((Θ−h, . . . ,Θh) ∈ ·) , x→∞ .

The process (Θt) is independent of |Y0| and called the spectral tail process of (Xt). Notice that
P (Θ0 ∈ ·) is the spectral measure of X.

Basrak and Segers [2] also gave an expression for the extremal index in terms of the spectral
tail process:

θ = E
[

sup
t≥0
|Θt|α − sup

t≥1
|Θt|α

]
. (3.1.10)

The extremogram revisited

Now consider an Rd-valued regularly varying stationary (Xt). Then the extremogram γAB(h),
h ≥ 0, is well defined. Indeed, for every h ≥ 0, the vector (X1, . . . , Xh+1) is regularly varying
with limit measure µh+1. Then, with normalization (an) such that P (|X| > an) ∼ n−1,

nP (a−1
n Xh ∈ B, a−1

n X0 ∈ A)→ µh+1(A× Rd(h−1) ×B) = γAB(h) , h ≥ 0 ,

provided A × Rd(h−1) × B is a continuity set with respect to the measure µh+1. Similarly, for
d = 1 and A = B = (1,∞),

ρ(h) =
µh+1(A× Rh−1 ×A)

µh+1(A× Rh)
, h ≥ 0 .

These limits can also be expressed in terms of the tail process. In the former case, assuming
that A is bounded away from zero, there exists δ > 0 such that A ⊂ {x ∈ Rd : |x| > δ}. Hence

P (a−1
n Xh ∈ B, a−1

n X0 ∈ A)

P (|X| > an)

=
P (a−1

n Xh ∈ B, a−1
n X0 ∈ A, |X0| > δan)

P (|X| > an)

=
P ((δan)−1Xh ∈ δ−1B, (δan)−1X0 ∈ δ−1A, |X0| > δan)

P (|X| > δan)

P (|X| > δan)

P (|X| > an)

→ P ((Y0, Yh) ∈ δ−1(A×B)) δ−α

= P ((Y0, Yh) ∈ A×B) = γAB(h) .
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Similarly, for d = 1 and A = B = (1,∞), assuming that limx→∞ P (X > x)/P (|X| > x) =
E(Θ0)α+ = P (Θ0 = 1) > 0,

P (Xh > an, X0 > an)

P (X > an)
=

P (Xh > an, X0 > an, |X0| > an)

P (|X| > an)

P (|X| > an)

P (X > an)

→ P (Yh > 1 | Y0 > 1)

=
P (|Y0|min(Θ0,Θh) > 1)

P (|Y0|Θ0 > 1)

=
E(min(Θ0,Θh))α+

E(Θ0)α+
= ρ(h) .

Examples of regularly varying sequences and their extremograms

In this section, we will introduce some important classes of real-valued strictly stationary reg-
ularly varying stationary sequences with index α > 0. We will also give the values of the
extremogram ρ(h), h ≥ 1, in (3.1.4). For the calculation of ρ in these examples, we refer to
[16, 17, 51].

IID sequence

An iid sequence (Zt) is regularly varying with index α if and only if Z is regularly varying with
the same index; the limit measures µh are concentrated on the axes and ρ(h) = 0, h ≥ 1.

Linear process

Historically, the class of linear processes with regularly varying iid real-valued noise (Zt) has
attracted attention in extreme value theory and in time series analysis. A (causal) linear process

Xt =

∞∑
t=0

ψjZt−j , t ∈ Z , (3.1.11)

inherits regular variation under conditions on the deterministic sequence (ψi) which are close to
those dictated by the 3-series theorem, ensuring the a.s. convergence of the series in (3.1.11).
This fact was proved in Mikosch and Samorodnitsky [47] for the distribution of X. The regular
variation of the finite-dimensional distributions of (Xt) follows since regular variation is preserved
under affine transformations of regularly varying vectors. The class (3.1.11) includes causal
ARMA processes which are relevant for applications. We refer to Chapter 7 of Embrechts et al.
[20] for various applications of regularly varying linear processes.

Under the tail balance condition P (Z > x) ∼ pP (|Z| > x), P (Z ≤ −x) ∼ q P (|Z| > x), as
x→∞, for some p, q ≥ 0 with p+ q = 1,

ρ(h) =

∑∞
i=0

[
p (min(ψ+

i , ψ
+
i+h))α + q (min(ψ−i , ψ

−
i+h))α

]
∑∞
i=0

[
p (ψ+

i )α + q(ψ−i )α
] , h ≥ 1 .
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Stochastic recurrence equations

Next to linear processes, solutions to the stochastic recurrence equation

Xt = AtXt−1 +Bt , t ∈ Z , (3.1.12)

have attracted some attention. Here (At, Bt), t ∈ Z, is an iid R2-valued sequence. An a.s unique
causal solution to (3.1.12) exists under the moment conditions E logA+ < 0 and E log |B| <∞.
It follows from work by Kesten [37] and Goldie [37] that X is regularly varying in the precise
sense that

P (X > x) ∼ c+x−α and P (X ≤ −x) ∼ c−x−α , x→∞ ,

for constants c+, c− ≥ 0 such that c+ + c− > 0 provided the equation

E|A|κ = 1 (3.1.13)

has a positive solution α (which is unique due to convexity), EBα < ∞ and further regularity
conditions on the distribution of A are satisfied. Iteration of (3.1.12) shows that the finite-
dimensional distributions of (Xt) are regularly varying with index α. This fact is rather surprising
since the distributions of A and B do not need to be heavy-tailed, in contrast to linear processes ,
where the noise (Zt) itself has to be heavy-tailed to ensure regular variation of (Xt). We mention
that the case of multivariate B and matrix-valued A has also been studied, starting with Kesten
[37]; see the recent paper Buraczewski et al. [7].

Assuming A > 0 a.s., similar calculations as in the proof of Lemma 2.1 in [16] yield

ρ(h) = E[min(1, A1 · · ·Ah)α] , h ≥ 1 . (3.1.14)

Models for returns

Log-returns Xt = logPt − logPt−1, t ∈ Z, of a speculative price series (Pt) are often modeled of
the form Xt = σtZt, where (σt) is a strictly stationary sequence of non-negative volatilities and
(Zt) is an iid multiplicative noise sequence. The feedback between (σt) and (Zt) can be modeled
in a rather flexible way.

Stochastic volatility models

The most simple approach is to assume that (σt) and (Zt) be independent. The resulting time
series model is frequently referred to as stochastic volatility model. Its probabilistic properties
are rather simple; see Davis and Mikosch [15]. In particular, regular variation of (Xt) results if
Eσα+δ <∞ for some δ > 0 and (Zt) is iid and regularly varying with index α. The corresponding
limit measures µh in (3.1.9) are then concentrated on the axes; see Davis and Mikosch [11, 14],4

and then also ρ(h) = 0, h ≥ 1, as in the iid case. The situation changes if E|Z|α+δ <∞ for some
δ > 0 and (σt) is regularly varying with index α. Then (Xt) is regularly varying with index α
and extremal clustering for this sequence is possible; see Mikosch and Rezapur [46].

4The fact that µh, h ≥ 1, is concentrated on the axes is also referred to as asymptotic extremal independence.
Recall that, in an extreme value context, various other situations are also referred to as asymptotic extremal
independence, among them the cases of unit extremal index and zero tail dependence coefficient. Asymptotic
independence in the sense of the limiting measures µh is much more complex than the other notions which are
just numerical characteristics. The fact that µh is concentrated on the axes means that it is very unlikely that
any two values Xt and Xs, s 6= t, are big at the same time, just as for independent random variables. On the
other hand, this kind of asymptotic independence heavily relies on the notion of multivariate regular variation.
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GARCH model

Among the models for returns Xt = σtZt, t ∈ Z, the GARCH family gained most popularity.
The simplest model of its kind (ARCH) was introduced by Engle [21] and the more sophisticated
GARCH model by Bollerslev [4]. For simplicity, we consider the GARCH(1, 1) case given by σ2

t =
α0 +σ2

t−1(α1Z
2
t−1 +β1), t ∈ Z, where α0, α1, β1 are positive constants with certain restrictions on

the values of α1 + β1, β1 < 1, to ensure strict stationarity. Typical choices are standard normal
or unit variance t-distributed Z. Notice that we can write σ2

t = Atσ
2
t−1 + Bt, where Bt = α0

and At = α1Z
2
t−1 +β1, t ∈ Z. Therefore regular variation of (σt) follows from the corresponding

theory for stochastic recurrence equations, and (Xt) inherits the same property; see Davis and
Mikosch [10] for the ARCH(1) case, Mikosch and Stărică [48] for the GARCH(1, 1), Basrak et
al. [1] for GARCH(p, q) and the review paper Davis and Mikosch [13]. Real-life log-returns are
typically heavy-tailed. The GARCH model captures this property and this was one of the reasons
that it became a benchmark model in financial time series analysis from which numerous other
models where derived. An expression of ρ for (X2

t ) is given by (3.1.14) with At = α1Z
2
t + β1.

Infinite variance stable sequence

Stable processes with infinite variance have become popular due to their attractive theoretical
and modeling properties; see Samorodnitsky and Taqqu [64]. The finite-dimensional distributions
of an α-stable process are jointly α-stable, hence they are regularly varying with index α ∈ (0, 2).
The class of infinite variance stationary stable processes has been intensively studied; see Rosiński
[61]. An expression of ρ is given in [16], Section 2.4.

Max-stable processes

This class of processes has recently attracted some attention since it is a flexible class for mod-
eling heavy tails and spatio-temporal dependence. Since the finite-dimensional distributions of
max-stable processes are explicitly given it is often simple to verify properties (such as regular
variation) and to calculate certain quantities (e.g. mixing coefficients, extremal index). We will
use this class of regularly varying processes to illustrate the general theory.

Following de Haan [23], a real-valued process (ξt)t∈T , T ⊂ R, is α-max-stable for some α > 0
if its finite-dimensional distributions satisfy the relation

P (ξt1 ≤ x1, . . . , ξtd ≤ xn) = exp
{
−
∫
Sd−1∩Rd+

max
i≤d

( si
xi

)α
Γtd(ds)

}
,

ti ∈ T , i = 1, 2, . . . , d , xi > 0 , d ≥ 1 ,

where Γtd are finite measures on the unit sphere. This means in particular that the marginal
distributions of the process ξ have a Fréchet distribution with parameter α given by5

Φα(x) = e−x
−α
, x > 0 . (3.1.15)

5The choice of Frechét Φα marginals is for convenience only; then results on regular variation are applicable.
Since Gumbel or Weibull distributed random variables can be obtained by suitable increasing transformations
of a Fréchet random variable any result for max-stable processes with Fréchet marginals can be formulated in
terms of the transformed processes with Gumbel or Weibull marginals; see for example Kabluchko et. al [35] who
formulated their results in terms of Gumbel distributions. Since the choice of the parameter α is also arbitrary
in this context, most results in the literature are formulated for processes with unit Fréchet Φ1 marginals.
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De Haan [23] also introduced the notion of α-max-stable integral. Given a σ-finite measure space
(E, E , ν), consider a Poisson random measure

∑∞
i=1 ε(Γi,Yi) with 0 < Γ1 < Γ2 < · · · on the state

space R+ × E with mean measure LEB × ν. For f ≥ 0 with f ∈ Lα(E, E , ν) the max-stable
integral is defined as ∫ ∨

E

f dMα
ν = sup

i≥1
Γ
−1/α
i f(Yi) .

Using the order statistics property of the homogeneous Poisson process with points (Γi), one
obtains

P
( ∫ ∨

E

f dMα
ν ≤ x

)
= exp

{
− x−α

∫
E

fα(y) ν(dy)
}
, x > 0 . (3.1.16)

Moreover, for any non-negative fi ∈ Lα(E, E , ν), i = 1, . . . , d, by (3.1.16),

P
(∫ ∨

E

fi dM
α
ν ≤ xi , i = 1, . . . , d

)
= P

(∫
E

max
i=1,...,d

fi
xi
dMα

ν ≤ 1
)

= exp
{
−
∫
E

max
i=1,...,d

(fi(y)

xi

)α
ν(dy)

}
, xi > 0 . (3.1.17)

The notions of max-stable process and integral bear some resemblance with the corresponding
α-stable ones; see Stoev and Taqqu [67], Kabluchko [34].

We will focus on stationary ergodic max-stable processes with integral representation

Xt =

∫ ∨
E

ft dM
α
ν , t ∈ R , ft ≥ 0 , ft ∈ Lα(E, E , ν) . (3.1.18)

As in the case of α-stable stationary ergodic processes (Rosiński [61]), the choice of (ft) is rather
sophisticated; see Stoev [66], Kabluchko [34] for details. De Haan [23] showed that any max-
stable process with countable index set T ⊂ R and stochastically continuous sample paths has
representation (3.1.18) and Kabluchko [34] proved this fact for any max-stable process on T
for sufficiently rich measure spaces (E, E , ν). In what follows, we will always assume that the
considered max-stable processes have representation (3.1.18).

Next we give some basic properties of a stationary max-stable process.

Proposition 3.1.3. The following statements hold for the skeleton process (Xt)t∈Z of the process
(3.1.18).

(1) The finite-dimensional distributions of (Xt) are regularly varying with index α and the
limit measures µh of the finite-dimensional distributions are given by its values on the
complements of the rectangles (0,x] = {y ∈ Rh : 0 < yi ≤ xi , i = 1, . . . , h}, h ≥ 1,
x = (x1, . . . , xh) with xi > 0, i = 1, . . . , h:

µh
(
(0,x]c

)
=

∫
E

maxi=1,...,h

(fi(y)

xi

)α
ν(dy)∫

E
fα0 (y) ν(dy)

. (3.1.19)
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(2) The sequence (Xt) has extremal index θ if and only if the limit

θ = lim
n→∞

1

n

∫
E

maxt=1,...,n f
α
t (y) ν(dy)∫

E
fα0 (y) ν(dy)

(3.1.20)

exists.

(3) The extremogram for the sets A = (a,∞) and B = (b,∞), a, b > 0, is given by

γAB(h) =

∫
E
fα0 (y) ∧

(
a
b fh(y)

)α
ν(dy)

aα
∫
E
fα0 (y)ν(dy)

, h ≥ 0 , (3.1.21)

and, for a = b = 1,

ρ(h) =

∫
E
fα0 (y) ∧ fαh (y) ν(dy)∫
E
fα0 (y) ν(dy)

, h ≥ 1 . (3.1.22)

(4) Let S1, S2 be finite disjoint subsets of Z and σ(C) the σ-field generated by (Xt)t∈C for any
C ⊂ Z. Recall the α-mixing coefficient relative to the sets S1, S2.

α(S1, S2) = sup
A∈σ(S1),B∈σ(S2)

|P (A ∩B)− P (A)P (B)| .

and for S0
−∞ = {. . . ,−1, 0}, S∞h = {h, h+1, . . .}, h ≥ 1, introduce the mixing rate function

αh = α(S0
−∞, S

∞
h ) , h ≥ 1 .

Then there exists a universal constant c > 0 such that

αh ≤ c
0∑

s1=−∞

∞∑
s2=0

∫
E

fα0 (y) ∧ fαh+s2(y) ν(dy) , h ≥ 1 . (3.1.23)

Remark 3.1.4. If the limit in (3.1.20) exists it belongs to the interval [0, 1]. Indeed, by sta-
tionarity of (Xt),∫

E

max
t=1,...,n

fαt (y) ν(dy) ≤
n∑
t=1

∫
E

fαt (y) ν(dy) = n

∫
E

fα0 (y) ν(dy) .

Remark 3.1.5. Part (4) is a consequence of Corollary 2.2 in Dombry and Eyi-Minko [19] proved
for β-mixing. If

∫
E
fα0 (y) ∧ fαh (y) ν(dy) ≤ c0 e−c1 h , h ≥ 1, for some constants c0, c1 > 0, then

we conclude that αh ≤ C e−c1 h, for some C > 0.

Proof. Part (1) Since the integrals
∫ ∨
E
fidM

α
ν , i = 1, . . . , h, are supported on (0,∞) it suffices

to show that there exists a non-null Radon measure µh on the Borel σ-field of Rd0 ∩ (0,∞]d such
that

nP
(
a−1
n (X1, . . . , Xh)) ∈ [0,x]c

)
→ µh

(
[0,x]c

)
, (3.1.24)
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where x is chosen such that [0,x]c is a µh-continuity set and

P (X > an) = 1− exp
{
− a−αn

∫
E

fα0 (x)ν(dx)
}
∼ n−1 ,

see Resnick [57], Theorem 6.1. A Taylor expansion argument shows that we can always choose

an = n1/α
( ∫

E

fα0 (x) ν(dx)
)1/α

.

An application of (3.1.17) and a Taylor expansion yield (3.1.24) with limit as specified in (3.1.19).
Part (2) Applying (3.1.17) for xi = x > 0, we obtain

P (a−1
n Mn ≤ x) = exp

{
− a−αn x−α

∫
E

max
t=1,...,n

fαt (y)ν(dy)
}
.

By definition of the extremal index, the right-hand side must converge to Φθα(x) for some θ ∈
[0, 1]. Equivalently, the limit θ in (3.1.20) exists.
Part (3) As regards the extremogram for sets A = (a,∞), B = (b,∞), a, b > 0, we have the
relation

P (Xh > bx,X0 > ax) = P (Xh > bx) + P (X0 > ax)− P ((Xh/b) ∨ (X0/a) > x)

= 1− exp
{
− x−α

∫
E

(f0(y)

a

)α
ν(dy)

}
− exp

{
− x−α

∫
E

(fh(y)

b

)α
ν(dy)

}
+ exp

{
− x−α

∫
E

(f0(y)

a

)α ∨ fh(y)

b

)α
ν(dy)

}
.

In view of stationarity,
∫
E
fαh (y) ν(dy) =

∫
E
fα0 (y) ν(dy). Using a Taylor expansion as x → ∞,

we obtain the desired formulas (3.1.21) and (3.1.22)
Part (4) We obtain from Corollary 2.2 in Dombry and Eyi-Minko [19] for any disjoint closed
countable subsets S1, S2 of R

α(S1, S2) ≤ c
∑
s1∈S1

∑
s2∈S2

∫
E

fα0 (y) ∧ fα|s1−s2|(y) ν(dy) .

Then (3.1.23) is immediate.

Next we consider two popular models of max-stable processes.

Example 3.1.6. The Brown-Resnick process (see [6]) has representation

Xt = sup
i≥1

Γ
−1/α
i eWi(t)−0.5σ2(t) , t ∈ R , (3.1.25)

where (Γi) is an enumeration of the points of a unit rate homogeneous Poisson process on
(0,∞) independent of the iid sequence (Wi) of sample continuous mean zero Gaussian processes
on R with stationary increments and variance function σ2. The max-stable process (3.1.25)
is stationary (Theorem 2 in Kabluchko et al. [35]) and its distribution only depends on the
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variogram V (h) = var(W (t+ h)−W (t)), t ∈ R, h ≥ 0. It follows from Example 2.1 in Dombry
and Eyi-Minko [19] that the functions (ft) in representation (3.1.18) satisfy the condition∫

E

fα0 (y) ∧ fαh (y)ν(dy) ≤ cΦ(0.5
√
V (h)) ,

where Φ is the standard normal distribution. For example, if W is standard Brownian motion,
V (h) = h, Φ(0.5

√
h) ∼ c e−h/8h−0.5, as h → ∞. An application of Remark 3.1.5 shows that

(αh) decays at an exponential rate.
Recently, the Brown-Resnick process has attracted some attention for modeling spatio-

temporal extremes; see [34, 35, 66, 52]. The processes (3.1.25) can be extended to random
fields on Rd. These fields found various applications for modeling spatio-temporal extremal ef-
fects; see Kabluchko et al. [35]. For further spatio-temporal applications of max-stable random
fields, see also Davis et al. [9].

Example 3.1.7. We consider de Haan and Pereira’s [25] max-moving process

Xt = sup
i≥1

Γ
−1/α
i f(t− Ui) , t ∈ R , (3.1.26)

where f is a continuous Lebesgue density on R such that
∫
R sup|h|≤1 f(x + h) dx < ∞ and∑∞

i=1 ε(Γi,Ui) are the points of a unit rate homogeneous Poisson random measure on (0,∞)×R.
The resulting process (Xt) is α-max-stable and stationary. According to Example 2.2 in

Dombry and Eyi-Minko [19],∫
E

fα0 (y) ∧ fαh (y)ν(dy) ≤ c
∫
R

min(f(−x), f(h− x)) dx , h ≥ 0 .

For example, if f is the standard normal density, this implies that (αh) decays to zero faster
than exponentially, i.e. the memory in this sequence is very short. In Figure 3.1.2 a simulation
of the corresponding process (3.1.26) for α = 5 is shown.

3.2 Estimation of the extremogram

3.2.1 Asymptotic theory

Natural estimators of the extremogram are obtained by replacing the probabilities in the limit
relations (3.1.3) and (3.1.4) with their empirical counterparts. In this context, one works with
quantities which are derived from the tail empirical process; see the monographs de Haan and
Ferreira [24], Resnick [57] for the underlying theory. For the introduction of the sample ex-
tremogram, consider an Rd-valued strictly stationary regularly varying process (Xt) and a Borel

set C ⊂ Rd0 bounded away from zero. Then, for any sequence m = mn →∞ with mn/n→ 0 as
n→∞, we define the following estimator of Pm(C) = mP (a−1

m X ∈ C):

P̂m(C) =
m

n

n∑
t=1

I{a−1
m Xt∈C}
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Figure 3.1.8. Max-stable process (3.1.26) where f is the standard normal density and α = 5.
Extremal clusters are clearly visible.

A possible choice of (am) is given by P (|X| > am) ∼ m−1. By definition of regular variation of
X, for any µ1-continuity set C,

E[P̂m(C)] = mPm(C)→ µ1(C) .

Here the condition mn → ∞ as n → ∞ was crucial for asymptotic unbiasedness. For the
calculation of the asymptotic variance of P̂m(C) we assume the following condition:

(M) The sequence (Xt) is α-mixing with rate function (αh) and there exists a sequence rn →∞
such that rn/mn → 0 as n→∞,

lim
n→∞

mn

∞∑
h=rn

αh = 0 (3.2.1)

and for every ε > 0,

lim
k→∞

lim sup
n→∞

mn

rn∑
h=k

P (|Xh| > εam , |X0| > εam) = 0 . (3.2.2)

This condition is technical: (3.2.1) imposes some rate on the mixing function (αh) and (3.2.2)
avoids “extremal long range dependence”; (3.2.2) is an asymptotic independence condition in the
spirit of the classical condition D′; see Leadbetter et al. [40], Embrechts et al. [20]. The quanti-
ties mn and rn have some straightforward interpretation as size in large-small block scheme: the
sample X1, . . . , Xn consists of roughly [n/mn] large disjoint blocks of size mn. After chopping
off the first rn elements in each large block one aims at ensuring the asymptotic independence
of the resulting large blocks.
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If C is a µ1-continuity set and C × Rd(h−1)

0 × C are µh+1-continuity sets for every h ≥ 1,
regular variation of X implies

var[P̂m(C)] ∼ m

n
V (C) , (3.2.3)

where

V (C) = µ1(C) + 2

∞∑
h=1

τh(C) and τh(C) = µh+1(C × Rd(h−1)

0 × C) , h ≥ 1 ,

and we also assume that the infinite series is finite. The asymptotic relation (3.2.3) indicates

that the condition mn/n → 0 is needed to ensure the consistency of the estimator P̂m(C).

Under additional conditions, (P̂m(C)) is asymptotically normal and this property also holds
jointly for finitely many sets C1, . . . , Ch. The complicated form of the asymptotic variance in
(3.2.3) suggests that it is difficult to apply this central limit theorem for constructing asymptotic
confidence bands.

The motivating examples of extremograms are limits of conditional probabilities

ρAB(h) = lim
x→∞

P (x−1Xh ∈ B | x−1X0 ∈ A) , h ≥ 0 ,

for sets A,B bounded away from zero. In Section 3.1.2 we mentioned the close relationship of ρAB
with a cross-correlation function. Replacing the probabilities in these conditional probabilities
by estimators of the type P̂m(C) and applying the corresponding central limit theory from [16],
Section 3, and the continuous mapping theorem, one obtains an asymptotic theory for the ratio
estimators

ρ̂AB(h) =

∑n−h
t=1 I{a−1

m Xt∈A ,a−1
m Xt+h∈B}∑n

t=1 I{a−1
m Xt∈A}

, h ≥ 0 .

The latter estimators only depend on the high threshold am which one typically chooses as a high
empirical quantile of the data. These estimators can be interpreted as a sample cross-correlation
function.

We recall a central limit theorem for these estimators; see Corollary 3.4 in [16] and its
correction Theorem 4.3 in [18].

Theorem 3.2.1. Let (Xt) be an Rd-valued strictly stationary regularly varying sequence with
index α > 0. Assume that the following conditions are satisfied.

• The Borel sets A,B ⊂ Rd0 are bounded away from zero and µ1(A) > 0.

• The sets A, B are continuous with respect to µ1.

• Condition (M), (n/mn)αrn → 0 as n→∞.

• mn = o(n1/3) or

m4
n

n

mn∑
j=rn

αj → 0 and
mnr

3
n

n
→ 0 as n→∞. (3.2.4)
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Then the following central limit theorem holds for h ≥ 0√
n

mn

[
ρ̂AB(h)− ρAB,m(h)

]
h=0,...,m

d→ N(0, (µ1(A))−4Σ) . (3.2.5)

for some matrix Σ,6 where ρAB,m(h) = P (a−1
m Xh ∈ B | a−1

m X0 ∈ A).

Some comments are here in place.

• The conditions of this result are rather technical but the mixing and anti-clustering condi-
tions can be verified for standard time series models. For example, if (Xt) is α-mixing with
geometric rate, then one can simply choose sequences rn = [C log n] for a large constant
C > 0 or rn = nε, and mn = n2ε for suitable small ε > 0.

• The asymptotic variance is not of practical use. Therefore Davis et al. [17] suggest an alter-
native way of constructing confidence bands for ρ̂AB(h), by using the stationary bootstrap
introduced by Politis and Romano [54].

• Central limit theory and bootstrap consistency for the sample extremogram do not follow
from standard results for sequences of mixing stationary sequences. This is due to the
fact that we deal with sequences of indicator functions (I{a−1

m Yt∈C}) for certain strictly

stationary sequences (Yt) and sets C bounded away from zero. The sequences (I{a−1
m Yt∈C})

constitute a triangular array of row-wise strictly stationary sequences for which, to the best
of our knowledge, standard asymptotic theory is not available.

• The convergence rate
√
n/m in the central limit theorem (3.2.5) is due to the triangular

array structure; it can be significantly slower than standard
√
n-rates.

• We call ρAB,m in (3.2.5) the pre-asymptotic extremogram since, in general, one cannot
replace the centering constants ρAB,m(h) by their limits ρAB(h); see Example 3.2.2 below.
Moreover, it is in general very difficult to show that√

n

mn
|ρAB,m(h)− ρAB(h)| → 0 , as n→∞, (3.2.6)

even for “nice” models such as the GARCH(1, 1). For this well studied model one lacks
precise information about the tail behavior. The central limit theorem (3.2.5) (and related
bootstrap procedures) are then used to approximate the conditional probabilities ρAB,m(h).
These have a very concrete interpretation in contrast to their less intuitive limits ρAB(h).

• If (3.2.6) holds with a rather slow convergence rate one faces a bias problem. This problem
can be observed e.g. for a simulated stochastic volatility process (Xt) and A = B = (1,∞).
Then ρ(h) = ρAA(h) = 0 for h ≥ 1. If (Xt) is α-mixing with geometric rate it can be
verified that (3.2.6) and (3.2.4) hold for mn = nγ , γ ∈ (1/3, 1), and then (3.2.5) applies
with ρAA,m(h) replaced by ρ(h) = 0; see [16], Section 4.2. Also notice that ρ̂AA(h) is of
the order 1/m in the iid case and hence greater than zero.

6This matrix is complicated and irrelevant for our purposes; see [16], (3.15) and (3.16) for its value.
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• The formulation of the results in [16, 17, 18] related to Theorem 3.2.1 involve various
other continuity conditions on sets. These conditions can be avoided as a close inspection
of the proofs shows: these conditions follow from continuity of A and B with respect
to µ1. Indeed, one needs that sets of the form

⊗k
i=1 Ci are µk-continuity sets, where

Ci ∈ {A,B,R
d

0, A∩B}, i = 1, . . . , k, and at least one of the sets Ci does not coincide with

Rd0. Let S be the set of indices i such that Ci does not coincide with Rd0. Then

∂
( k⊗
i=1

Ci

)
⊂
⋃
i∈S

(Rd0)i−1 × ∂Ci × (Rd0)k−i−1 .

The sets in the union have µk-measure zero. For the sake of argument assume that i =
1 ∈ S. Then

lim
n→∞

nP (a−1
n (X1, . . . , Xk) ∈ ∂C1 × (Rd0)k−1) = lim

n→∞
nP (a−1

n X1 ∈ ∂C1)

= µ1(∂C1) = 0 .

• In applications one needs to choose the threshold am in some reasonable way. The choice
of a threshold is inherent to extreme value statistics to which no easy solution exists. In
[16] we advocated to choose am as a fixed high/low empirical quantile of the absolute
values of the data and to experiment with several quantile values. If the plot of the sample
extremogram is robust for a range of such quantiles one can choose a quantile from that
region. The theory in [16, 17, 51] is based on deterministic values am. The heuristic
method described above advocates the choice of a data dependent threshold. Recent work
by Kulik and Soulier [38] yields a theory for a modified sample extremogram with data
dependent threshold in the case of short and long memory stochastic volatility processes.

Example 3.2.2. In [16] we did not provide a concrete example of a sequence (Xt) for which
(3.2.6) does not hold. Such counterexamples can easily be constructed from max-stable strictly
stationary processes with Fréchet marginals; see Section 3.1.2. We assume the conditions of
Proposition 3.1.3. For simplicity choose α = 1, A = B = (1,∞) and am = m

∫
E
f0(x) ν(dx).

The function ρ is given in (3.1.22). By Taylor expansion,

ρAA,m(h) =
P (min(X0, Xh) > am)

P (X > am)
=

1− e−a
−1
m

∫
E
f0(x)∧fh(x) ν(dx)

1− e−a
−1
m

∫
E
f0(x) ν(dx)

= ρ(h)−m−1ch (1 + o(1)) ,

for some constant ch 6= 0. Hence

(n/mn)0.5|ρAA,m(h)− ρ(h)| ∼ ch (n/m3)0.5 ,

and the right-hand side converges to zero if and only if n1/3 = o(m) and the rate of convergence to
zero can be arbitrarily small. The latter condition is, of course, in contradiction with m = o(n1/3)
which is one possible sufficient condition for (3.2.5). Fortunately, the other sufficient condition
(3.2.4) can still be satisfied if m = o(n1/3) does not hold. For example, if αh decays to zero at a
geometric rate and one chooses rn = [C log n] for some C > 0 and mn = nγ for some γ ∈ (1/3, 1).
Particular cases with geometric decay of (αh) were mentioned in Examples 3.1.6 and 3.1.7.
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3.2.2 Cross-extremogram for bivariate time series

While the definition of the extremogram covers the case of multivariate time series, it is of limited
value if the index of regular variation is not the same across the component series. For example,
consider two regularly varying univariate strictly stationary time series (Xt) and (Yt) with tail
indices αX < αY . Then, assuming ((Xt, Yt))t∈Z stationary, this bivariate time series would be

regularly varying with index αX , and for Borel sets A,B bounded away from zero, Ã = A × R
and B̃ = R×B,

ρÃB̃(h) = lim
x→∞

P (Yh ∈ xB | X0 ∈ xA) = lim
x→∞

P ((Xh, Yh) ∈ xB̃ | (X0, Y0) ∈ xÃ) = 0 , h ∈ Z .

The asymptotic theory of Section 3.2.1 is applicable to the sets Ã = A× R and B̃ = R×B. In
this case, no extremal dependence between the two series would be measured. To avoid these
rather uninteresting cases and obtain a more meaningful measure of extremal dependence, we
transform the two series so that they have the same marginals. In extreme value theory, the
transformation to the unit Fréchet distribution is standard. For the sake of argument, assume
that both Xt and Yt are positive so that the focus of attention will be on extremal dependence
in the upper tails. The case of extremal dependence in the lower tails or upper and lower tails
is similar. Under the positivity constraint, if F1 and F2 denote the distribution functions of Xt

and Yt, respectively, and are continuous, then the two transformed series, X̃t = G1(Xt) and

Ỹt = G2(Yt) with Gi(z) = −1/ log(Fi(z)), i = 1, 2, have unit Fréchet marginals Φ1; see (3.1.15).

Now assuming that the bivariate time series ((X̃t, Ỹt))t∈Z is regularly varying, we define the
cross-extremogram by

ρÃB̃(h) = lim
x→∞

P (Ỹh ∈ xB | X̃0 ∈ xA) , h ∈ Z ,

At first glance, this may seem inconvenient since transformations to unit Fréchet marginals are
required. If one restricts attention to sets A and B that are intervals bounded away from 0 or
finite unions of such sets the transformation simplifies: if an denotes the (1−n−1)-quantile of Φ1,

then by monotonicity of Gi, {X̃h ∈ anA} = {Xh ∈ aX,nA} and {Ỹh ∈ anB} = {Yh ∈ aY,nB},
where aX,n and aY,n are the respective (1−n−1)-quantiles of the distributions of Xt and Yt. For
sets A and B of the required form, the cross-extremogram becomes

ρÃB̃(h) = lim
n→∞

P (Yh ∈ aY,nB | X0 ∈ aX,nA) . (3.2.7)

Thus we do not actually need to find the transformations converting the data to unit Fréchet,
only the component-wise quantiles, aX,n and aY,n, need to be calculated. Clearly, this notion of
extremogram extends to more than two time series.

3.3 An example: Equity indices

We consider daily log-returns equity indices of four countries: S&P 500 for US, FTSE 100 for
UK, DAX for Germany, Nikkei 225 for Japan. Figure 3.3.1 shows the sample extremogram
ρ̂ = ρ̂AA for the negative tails (A = B = (−∞,−1) with am estimated as the 96% empirical
quantiles of the absolute values of the negative data) applied to 6,443 log-returns of the FTSE
and S&P (April 4, 1984 to October 2, 2009), to 4,848 log-returns of the DAX (November 13, 1990



CHAPTER 3. MEASURES OF SERIAL EXTREMAL DEPENDENCE 85

to October 2, 2009) and to 6,333 log-returns of the Nikkei (August 23, 1984 to October 2, 2009).7

The solid horizontal lines in the plots represent 98% confidence bands. They correspond to the
maximum and minimum of the sample extremogram at lag 1 based on 99 random permutations of
the data. If the data were independent random permutations would not change the dependence
structure: values ρ̂AB(h) which are outside the confidence bands indicate that there is significant
extremal dependence at lag h. The sample extremograms for all four indices decay rather slowly
to zero, with S&P the slowest. Among the four indices, the Nikkei displays the least amount of
extremal dependence as measured by the extremogram. The top graphs in Figure 3.3.1 indicate
extremal dependence in the lower tail over a period of 40 days.
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Figure 3.3.1. The sample extremogram for the lower tails of the FTSE (top left), S&P (top
right), DAX (bottom left) and Nikkei. The solid lines represent 98% confidence bands based on
99 random permutations of the data.

We assume that the log-return series are modeled by a GARCH(1, 1) process (see Section 3.1.2
for its definition). Then we can estimate its parameters, calculate the volatility sequence (σ̂t) and

7As noted in the literature, the lower tails of returns tend to be heavier than the upper tails. Similar plots
(not shown here) of the sample extremogram for the upper tails also reveal extremal dependence, but to a lesser
extent than seen in the lower tails.
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the filtered sequence Ẑt = Xt/σ̂t, t = 1, . . . , n. Figure 3.3.2 shows the sample extremograms ρ̂ for
the filtered FTSE and S&P sequences. These plots confirm that much of the extremal dependence
(as measured by the extremogram) has been removed. Hence the extremal dependence in the
log-returns is due to the volatility sequences (σt), as suggested by the GARCH model.
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Figure 3.3.2. The sample extremograms for the filtered FTSE (left) and filtered S&P (right) series.

The bold lines represent 98% confidence bounds based on 99 random permutations of the series.

For a bivariate time series ((Xt, Yt))t∈Z the sample cross-extremogram is given by

ρ̂ÃB̃(h) =

∑n−h
t=1 I{Yt+h∈aY,m B,Xt∈aX,mA}∑n

t=1 I{Xt∈aX,mA}
,

where aX,m and aY,m are the (1 − m−1)-quantiles of the marginal distributions of X and Y ,
respectively. For applications, they need to be replaced by the corresponding empirical quantiles.

We calculate the sample cross-extremograms for the pairs of the log-returns series, again for
the negative tails, i.e. A = B = (−∞,−1), and aX,m and aY,m are chosen as the 96% empirical
quantiles of the negative values of the corresponding component samples. Since the samples have
different sizes we consider those periods for which we have observations on both indices.

The sample cross-extremogram of any pair of series exhibits a similar pattern of slow decay
as seen in the univariate sample extremograms (we do not include these figures). Figure 3.3.3
shows the sample cross-extremograms for the filtered series. For example, in the first row of
graphs, (Xt) is the filtered FTSE and (Yt) are the filtered S&P, DAX and Nikkei, respectively.
There are signs of various types of cross-extremal dependence in the filtered series. The spikes
at lag zero (except between the Nikkei and S&P) indicate the strong extremal dependence of the
multiplicative shocks, In the second row, there is evidence of significant extremal dependence
at lag one for each sample cross-extremogram: given the S&P has an extreme left tail event
in a shock at time t there will be a corresponding large left tail shock in the FTSE, the DAX
and the Nikkei at time t = 1. Given the dominance of the US stock market, one might expect
a carry-over effect of the shocks on the other exchanges on the next day. Since only marginal
GARCH models were fitted to the data, it may not seem all that surprising that the filtered
series exhibit serial dependence. We should note, however, that the dependence in the shocks
does not appear to last beyond one time lag.
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Figure 3.3.3. The sample cross-extremograms for the filtered FTSE, S&P, DAX and Nikkei series.

For the first row, (Xt) is the filtered FTSE and (Yt) are the filtered S&P, DAX and Nikkei (from left

to right). For the second, third and fourth rows, the Xt’s are the filtered S&P, DAX and Nikkei series,

respectively.
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3.4 A Fourier analysis of extreme events

Classical time series analysis studies the second order properties of stationary processes in the
time and frequency domains. The latter approach refers to spectral (or Fourier) analysis of the
time series. We mentioned in Section 3.1.2 that the extremograms γA = γAA and ρA = ρAA for
a set A bounded away from zero are covariance and correlations functions of some stationary
sequence. Then it is possible to study the corresponding spectral properties of the extremogram.
Research in this direction was started in [16] and continued in [51]. We recall some of the results.
Throughout we assume that (Xt) is a Rd-valued strictly stationary regularly varying sequence
with index α > 0 and A is a µ1-continuity set. In the comments following Theorem 3.2.1 we

mentioned the latter property also implies that the sets A× (Rd0)h×A are µh-continuity sets for
h ≥ 0, so the limits ρA(h) exist.

Assuming that ρA is square summable, we consider the corresponding spectral density cor-
responding to ρA (see Brockwell and Davis [5], Chapter 4):

fA(λ) = 1 + 2

∞∑
h=1

ρA(h) e−i h λ , λ ∈ [0, π] .

A natural estimator of the spectral density is obtained if we replace the quantities ρA(h) by the
sample versions

ρ̃A(h) =

m
n

∑n−h
t=1 (Ia−1

m Xt∈A − p0)(Ia−1
m Xt+h∈A − p0)

P̂m(A)
, h ≥ 1 .

where p0 = P (a−1
m X ∈ A):8

ĨnA(λ) = 1 + 2

∞∑
h=1

ρ̃A(h) e−i h λ =

m

n

∣∣∣∑n
t=1(I{a−1

m Xt∈A} − p0) e i h λ
∣∣∣2

m

n

∑n
t=1 I{a−1

m Xt∈A}

=
InA(λ)

P̂m(A)
.

We will refer to InA and its standardized version ĨnA as periodogram of the extreme event amA.
Indeed, if we replaced the normalization m/n by 1/n, InA is the periodogram of the sequence of
centered indicators (I{a−1

m Xt∈A}− p0). These sequences constitute a triangular array of row-wise
strictly stationary sequences for which standard asymptotic theory for the periodogram does not
apply; for an asymptotic theory of the periodogram of a strictly stationary linear process, see
Brockwell and Davis [5], Chapter 10. However, the periodogram of extreme events shares some
of the basic properties of the periodogram, as the following results from Mikosch and Zhao [51]
show.

Theorem 3.4.1. Let (Xt) be an Rd-valued strictly stationary regularly varying sequence with

index α > 0 satisfying condition (M), A ⊂ Rd0 be a µ1-continuity set and
∑
h≥1 ρA(h) <∞.

8The centering of the indicator functions with their expectation p0 is crucial for deriving asymptotic theory.
In applications, InA(λ) is typically evaluated at the Fourier frequencies ωj(n) = 2πj/n ∈ (0, π) and since∑n
h=1 e−i h ωj(n) = 0, centering in InA(ωj(n)) is not needed.
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• Assume λ ∈ (0, π) is fixed and ωn = 2πjn/n, jn ∈ Z, is any sequence of Fourier frequencies
such that ωn → λ. Then

lim
n→∞

EInA(λ) = lim
n→∞

EInA(ωn) = µ1(A) fA(λ) ,

• Assume in addition that the sequences (mn), (rn) from (M) also satisfy the growth condi-
tions (n/m)αrn → 0, and mn = o(n1/3). Let (Ei) be a sequence of iid standard exponential
random variables. Consider any fixed frequencies 0 < λ1 < · · · < λN < π for some N ≥ 1.
Then the following relations hold:(

InA(λi)
)
i=1,...,N

d→ µ1(A)
(
fA(λi)Ei

)
i=1,...,N

, n→∞ ,(
ĨnA(λi)

)
i=1,...,N

d→
(
fA(λi)Ei

)
i=1,...,N

, n→∞ .

Consider any distinct Fourier frequencies ωi(n) → λi ∈ (0, π) as n → ∞, i = 1, . . . , N .
The limits λi do not have to be distinct. Then the following relations hold:(

InA(ωi(n))
)
i=1,...,N

d→ µ1(A)
(
fA(λi)Ei

)
i=1,...,N

, n→∞ ,(
ĨnA(ωi(n))

)
i=1,...,N

d→
(
fA(λi)Ei

)
i=1,...,N

, n→∞ .

These properties are very similar to those of a strictly stationary weakly dependent sequence.
The asymptotic independence of the periodogram of the extreme event amA and consistency in
the mean of InA(λ) give raise to the hope that pointwise consistent smoothed periodogram
estimation of the spectral density fA(λ) is possible.

For a fixed frequency λ ∈ (0, π) define

λ0 = min{2πj/n : 2πj/n ≥ λ} , and λj = λ0 + 2πj/n , |j| ≤ s .

(We suppress the dependence of λj on n.) Assume that s = sn →∞ and sn/n→ 0 as n→∞.
Consider the non-negative weight function (wn(j))|j|≤s satisfying the conditions∑

|j|≤s wn(j) = 1 and
∑
|j|≤s w

2
n(j)→ 0 as n→∞ .

Introduce the corresponding smoothed periodogram

f̂nA(λ) =
∑
|j|≤sn

wn(j) InA(λj),

Under the conditions of the second item in Theorem 3.4.1 and some further restrictions on the
growth of (mn) and (αh) the following limit relations hold for a fixed frequency λ ∈ (0, π),

f̂nA(λ)
L2

→ µ1(A) fA(λ) and f̂nA(λ)/P̂m(A)
P→ fA(λ) .

In Figure 3.4 we illustrate how the smoothed periodogram f̂n,(−∞,−1) works for 5-minute log-
returns of Bank of America stock prices. We choose a simple Daniell window with wn(j) =
1/(2sn + 1) and sn = 52.
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Figure 3.4.2. The smoothed periodogram (corresponding to the losses) for 31, 757 5-minute
log-returns of Bank of America stock prices with Daniell window, sn = 52. The simultaneous
confidence bands are constructed by taking the 97.5% quantile of the maxima and the 2.5%
quantile of the minima over the Fourier frequencies calculated from the smoothed periodograms
of 10 000 random permutations of the data. If the data were iid, permutations would not change
the dependence structure. The fact that the periodogram is outside the confidence bands at
various frequencies indicates that there is significant extremal dependence in the data. The
peaks at various frequencies show that there are cycles of extremal behavior in the data. These
cycles cannot be detected by autocorrelation plots of the data, their absolute values or squares.
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Chapter 4

The integrated periodogram of a
dependent extremal event
sequence

Abstract

We investigate the asymptotic properties of the integrated periodogram calculated from a se-
quence of indicator functions of dependent extremal events. An event in Euclidean space is
extreme if it occurs far away from the origin. We use a regular variation condition on the under-
lying stationary sequence to make these notions precise. Our main result is a functional central
limit theorem for the integrated periodogram of the indicator functions of dependent extremal
events. The limiting process is a continuous Gaussian process whose covariance structure is in
general unfamiliar, but in the iid case a Brownian bridge appears. We indicate how the developed
theory can be used to detect periodic cycles of extremes in a stationary sequence.

4.1 Introduction

4.1.1 Regularly varying sequences

We consider a strictly stationary Rd-valued sequence (Xt) for some d ≥ 1 with a generic element
X and assume that its finite-dimensional distributions are regularly varying. This means that for

every h ≥ 1, there exists a non-null Radon measure µh on the Borel σ-field Bdh0 of Rdh0 = Rdh\{0},
R = {−∞,∞}, such that

P (x−1(X1, . . . , Xh) ∈ ·)
P (|X| > x)

v→ µh(·) , (4.1.1)

where
v→ denotes vague convergence in Bdh0 ; cf. Resnick [23, 24], Kallenberg [18]. The limiting

measure µh necessarily has the property µh(t·) = t−αµh(·), t > 0, for some α ≥ 0, the index of

96
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regular variation. In what follows, we assume that α > 0. Relation (4.1.1) is equivalent to the
sequential definition

nP (a−1
n (X1, . . . , Xh) ∈ ·) v→ µh(·) , n→∞ , (4.1.2)

where (an) is chosen such that P (|X| > an) ∼ n−1 as n → ∞. We will say that the sequence
(Xt) and any of the vectors (X1, . . . , Xh), h ≥ 1, are regularly varying with index α.

Examples of regularly varying strictly stationary sequences are linear and stochastic volatility
processes with iid regularly varying noise, GARCH processes, infinite variance stable processes
and max-stable processes with Fréchet marginals. These examples are discussed in Davis et al.
[7, 9, 10], Mikosch and Zhao [19].

4.1.2 The extremogram

Consider a µ1-continuity Borel set D0 = A ⊂ Rd0 bounded away from zero and such that

µ1(A) > 0. Then the sets Dh = A × Rd(h−1) × A are bounded away from zero as well and are
continuity sets with respect to the corresponding limiting measures µh+1, h ≥ 1. We conclude
from (4.1.2) that the limits

γA(h) = lim
n→∞

nP (a−1
n X0 ∈ A , a−1

n Xh ∈ A)→ µh+1(Dh) , h ≥ 0 , (4.1.3)

exist. For t ∈ Z, it is not difficult to see that

n cov(I{a−1
n Xt∈A}, I{a−1

n Xt+h∈A}) ∼ nEI{a−1
n Xt∈A ,a−1

n Xt+h∈A}

= nP (a−1
n X0 ∈ A , a−1

n Xh ∈ A)

→ γA(h) , n→∞ .

Hence γA constitutes the covariance function of a stationary process. We refer to γA as the
extremogram relative to the set A. We will also consider the standardized extremogram given as
the limiting sequence

ρA(h) = lim
n→∞

P (a−1
n Xh ∈ A | a−1

n X0 ∈ A) =
µh+1(Dh)

µ1(D0)
, h ≥ 0 .

The quantities ρA(h) have an intuitive interpretation as limiting conditional probabilities. More-
over, ρA is the autocorrelation function of a stationary process. The quantities ρA(h) are gen-
eralizations of the upper tail dependence coefficient of a two-dimensional vector (Y1, Y2) with
identical marginals given as the limit limx→∞ P (Y2 > x | Y1 > x).

The extremogram was introduced in Davis and Mikosch [7] as a measure of serial extremal
dependence in a strictly stationary sequence. There and in Davis et al. [9, 10] various aspects
of the estimation of the extremogram were discussed, including asymptotic theory and the use
of the stationary bootstrap for the construction of confidence bands.

4.1.3 The sample extremogram

Natural estimators of the extremograms γA and ρA are given by their respective sample analogs

γ̃A(h) =
m

n

n−h∑
t=1

ĨtĨt+h and ρ̃A(h) =
γ̃A(h)

γ̃A(0)
, h ≥ 0 .
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Here m = mn is any integer sequence satisfying the conditions mn →∞ and mn/n = o(1) and

It = I{a−1
m Xt∈A} , Ĩt = It − p0 , and p0 = EIt = P (a−1

m X ∈ A) , t ∈ Z .

It is shown in Davis and Mikosch [7] that the conditions mn →∞ and mn/n = o(1) are needed
for the validity of the asymptotic properties Eγ̃A(h) → γA(h) and var(γ̃A(h)) → 0 as n → ∞.
Moreover, under a mixing condition, the finite-dimensional distributions of γ̃A and ρ̃A satisfy a
central limit theorem with normalization (n/m)1/2; cf. Lemma 4.2.4 below.

4.1.4 Spectral density and periodogram

Since γA and ρA are the autocovariance and autocorrelation functions of a stationary process,
respectively, it is possible to enter the corresponding frequency domain. If γA is square summable
one can define the spectral densities

hA(λ) =
∑
h∈Z

γA(h) e−ihλ and fA(λ) =
∑
h∈Z

ρA(h) e−ihλ , λ ∈ [0, π] = Π .

A natural estimator of the spectral density is the periodogram. Since the sample autocovariances
γ̃A(h) are derived from the triangular array of the stationary sequences (Ĩt), an analog of the
classical periodogram for hA is given by

InA(λ) =
m

n

∣∣∣ n∑
t=1

Ĩt e−i t λ
∣∣∣2 = γ̃A(0) + 2

n−1∑
h=1

γ̃A(h) cos(hλ) , λ ∈ Π ,

and the periodogram for the standardized spectral density fA is obtained as the scaled peri-
odogram InA/γ̃A(0). Mikosch and Zhao [19] showed under mixing conditions that the extremal
periodogram ordinates InA(λ) share various of the classical properties of the periodogram ordi-
nates for a stationary sequence (cf. Brockwell and Davis [3]): consistency in the mean, conver-
gence in distribution to independent exponential random variables with expectation hA(λj) at
distinct fixed frequencies λj ∈ (0, π) and at distinct Fourier frequencies ωn(j) = 2πj/n ∈ (0, π)
provided these frequencies converge to a limit λj ∈ (0, π) as n→∞. The latter property ensures
that weighted versions of the periodogram InA at fixed frequencies λ ∈ (0, π) converge in mean
square to hA(λ).

For practical purposes, one will mostly work with the periodogram at the Fourier frequencies
ωn(j) ∈ (0, π). Then

InA(ωn(j)) =
m

n

∣∣∣ n∑
t=1

It e−i t ωn(j)
∣∣∣2 ,

i.e., centering of the indicator functions It is not needed. However, for proving asymptotic theory
it will be convenient to work with the extremal periodogram InA based on the centered quantities
Ĩt, t = 1, . . . , n.

4.1.5 The integrated periodogram

The integrated periodogram of a stationary sequence has a long history in time series analy-
sis, starting with classical work of Grenander and Rosenblatt [13], and was extensively used in
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the monographs Hannan [14], Priestley [22], Brockwell and Davis [3], to name a few references.
Dahlhaus [4] discovered a close relationship of the integrated periodogram, considered as a pro-
cess indexed by functions, and empirical process theory. Under entropy conditions, he proved
uniform convergence results over suitable classes of index functions; see also the survey paper
Dahlhaus and Polonik [5]. These papers gave some general theoretical background for various
periodogram based techniques such as Whittle estimation of the parameters of a FARIMA pro-
cess and goodness of fit tests for linear processes as mentioned in Grenander and Rosenblatt [13]
and Priestley [22].

In this paper, we will consider the integrated periodogram

JnA(g) =

∫
Π

InA(λ) g(λ) dλ = c0(g) γ̃A(0) + 2

n−1∑
h=1

ch(g) γ̃A(h) , (4.1.4)

and its standardized version

J◦nA(g) =
1

γ̃A(0)

∫
Π

InA(λ) g(λ) dλ = c0(g) + 2

n−1∑
h=1

ch(g) ρ̃A(h) ,

where g is non-negative and square integrable with respect to Lebesgue measure on Π (we write
g ∈ L2

+(Π)) with corresponding Fourier coefficients

ch(g) =

∫
Π

cos(hλ) g(λ) dλ , h ∈ Z .

We will understand JnA(g) and J◦nA(g) as natural estimators of

JA(g) =

∫
Π

hA(λ) g(λ) dλ = c0(g) γA(0) + 2

∞∑
h=1

ch(g) γA(h) , (4.1.5)

J◦A(g) =

∫
Π

fA(λ) g(λ) dλ = c0(g) + 2

∞∑
h=1

ch(g) ρA(h) ,

respectively. The latter identities holds if
∑∞
h=0 γA(h) <∞, a condition we assume throughout

this paper.
The main results of this paper (see Section 4.3) are functional central limit theorems for the

integrated periodogram JnA with g = hI[0,·] for a sufficiently smooth function h on Π. The limit
processes are Gaussian whose covariance structure strongly depends on the limit measures (µh).
The rate of convergence in these results is typically slower than

√
n. However, in the case of

an iid sequence, the limiting process is a Brownian bridge and the convergence rates are much
faster than in the case of a dependent sequence. These results differ from classical theory for
the periodogram of a stationary sequence (Xt) (see e.g. Dahlhaus [4], Klüppelberg and Mikosch
[17]), where the limiting process is completely determined by the covariance structure of (Xt).

The methods of proof combine classical techniques of weak convergence and strong mixing
(e.g. Billingsley [1]) with extreme value theory for dependent sequences (e.g. Davis and Mikosch
[7]). The proofs are rather technical.

The paper is organized as follows. We start in Section 4.2 with some moment calculations
and we also introduce the relevant mixing conditions and central limit theory for the sample
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extremogram. In Section 4.2.4 we provide a result about the mean square consistency of the
integrated periodogram; the proof is given in Section 4.5. The main results (Theorems 4.3.1
and 4.3.3) are functional central limit theorems for the integrated periodogram. They are given
in Section 4.3; the corresponding proofs are provided in Sections 4.6 and 4.7. The covariance
structure of the limiting Gaussian processes in Theorem 4.3.1 is rather complicated. Therefore
in Section 4.4 we supplement the asymptotic theory by consistency results for the stationary
bootstrap applied to the integrated periodogram of extremal events in a strictly stationary
sequence. The corresponding proofs are given in Section 4.8.

4.2 Preliminaries

4.2.1 Some moment calculations

Recall the notation and conditions of Section 4.1. We write

p0 = P (a−1
m X0 ∈ A) and ph = P (a−1

m X0 ∈ A, a−1
m Xh ∈ A) , h ≥ 1 ,

where as above, mn →∞ and mn/n = o(1) as n→∞. For integers s, t, u, v ≥ 0, we set

Γ(s, t, u, v) = EĨsĨtĨuĨv ,

Γ(s, t, u) = EĨsĨtĨu ,

Γ(s, t) = EĨsĨt = p|s−t| − p2
0 .

We will often have to calculate variances and covariances of the sample extremogram γ̃A. We
provide some of these formulas for further use.

Lemma 4.2.1. Let (Xt) be a strictly stationary sequence. Then, for 1 ≤ h ≤ n− 1,

(n/m)2Eγ̃2
A(h) = (n− h)E(Ĩ0Ĩh)2 + 2

n−h−1∑
t=1

(n− h− t)Γ(0, h, t, t+ h)

and for 1 ≤ h < h+ u ≤ n− 1,

(n/m)2Eγ̃A(h)γ̃A(h+ u) = (n− h− u)Γ(0, h, 0, h+ u)

+

n−h−u−1∑
t=1

(n− h− u− t)Γ(0, h, t, t+ h+ u)

+

n−h−1∑
t=1

min(n− h− u, n− h− t)Γ(0, h+ u, t, t+ h) .

4.2.2 Mixing conditions

The following two mixing conditions were introduced in Davis and Mikosch [7] for a strongly
mixing Rd-valued sequence (Xt) with rate function (ξh).
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Condition (M)

There exist integer sequences m = mn →∞ and rn →∞ such that mn/n→ 0, rn/mn → 0 and

lim
n→∞

mn

∞∑
h=rn

ξh = 0 , (4.2.1)

Moreover, an anti-clusterng condition holds:

lim
k→∞

lim sup
n→∞

rn∑
h=k

P (|Xh| > εam | |X0| > εam) = 0 , ε > 0 . (4.2.2)

Condition (M1)

Assume (M) and that the sequences (mn), (rn), kn = [n/mn] from (M) also satisfy the growth
conditions knξrn → 0, and mn = o(n1/3).

Remark 4.2.2. The condition mn = o(n1/3) in (M1) can be replaced by

m4
n

n

mn∑
j=rn

ξj → 0 and
mnr

3
n

n
→ 0 ,

which is often much weaker.

Condition (4.2.1) is easily satisfied if the mixing rate (ξh) is geometric, i.e. exponentially
decaying to zero. Under mild conditions, the popular classes of ARMA, max-stable, GARCH
and stochastic volatility processes are strongly mixing with geometric rate; cf. Davis et al.
[7, 9, 10, 19] for discussions of these examples. Condition (4.2.2) is similar to (2.8) in Davis and
Hsing [6]. It serves the purpose of establishing the convergence of a sequence of point processes to
a limiting cluster point process. This condition is much weaker than the anti-clustering condition
D′(εan) of Leadbetter; cf. Section 5.3.2 in Embrechts et al. [12].

The mixing rate (ξh) in conditions (M) and (M1) is useful for finding bounds on the moments
Γ(s, t, u, v) introduced above. In what follows, c will denote any (possibly different) constants
whose value is not of interest.

Lemma 4.2.3. Let (Xt) be a strongly mixing sequence with mixing rate (ξh). Then for integers
h, l, u ≥ 1 and for some constants c > 0,

|Γ(0, h, h+ l, h+ l + u)| ≤ c min(ξh, ξu) , (4.2.3)

|Γ(0, h, h+ l, h+ l + u)− (ph − p2
0)(pu − p2

0)| ≤ c ξl , (4.2.4)

|Γ(0, h, h+ l)| ≤ c min(ξh, ξl) , (4.2.5)

|Γ(0, h)| ≤ ξh . (4.2.6)

The proof of Lemma 4.2.3 follows by a direct application of Theorem 17.2.1 in Ibragimov and
Linnik [16]. Relation (4.2.3) combined with (4.2.1) will ensure that sums of Γ(0, h, h+ l, h+ l+u)
are asymptotically negligible if h or u exceed rn.
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4.2.3 Central limit theory for the sample extremogram

In this section we recall a central limit theorem for the extremogram from Davis and Mikosch
[7], Section 3.

Lemma 4.2.4. Assume that (Xt) is an Rd-valued strictly stationary regularly varying sequence
with index α > 0 and that the Borel set A satisfies the conditions of Section 4.1.2. If the mixing
conditions (M), (M1) hold and

∑∞
l=1 γA(l) <∞ then for h ≥ 0,

γ̃A(h)
P→ γA(h) , (4.2.7)

(n/m)1/2
(
γ̃A(i)− Eγ̃A(i)

)
i=0,...,h

d→ (Zi)i=0,...,h , (4.2.8)

where (Zi)i=0,...,h is mean zero Gaussian with covariance matrix Σh = (σij)i,j=0,...,h given by

σij = γA(i, j) +

∞∑
l=1

[
γA(i, l, l + j) + γA(j, l, l + i)

]
, i, j = 0, . . . , h ,

and for u, s, t ≥ 0,

γA(u, s, t) = lim
n→∞

nP (a−1
n X0 ∈ A , a−1

n Xu ∈ A, a−1
n Xs ∈ A, a−1

n Xt ∈ A) ,

with the convention that γA(u, t) = γA(u, u, t). Moreover, we have for h ≥ 1

ρ̃A(h)
P→ ρA(h) , (4.2.9)

(n/m)1/2
(
ρ̃A(i)− pi

p0

)
i=1,...,h

d→ 1

γA(0)

(
Zi − ρA(i)Z0

)
i=1,...,h

. (4.2.10)

Proof. The proof of (4.2.7) was given in Section 3 of Davis and Mikosch [7]. There we can also
find the proof of (4.2.8) in a more general context. Here we will calculate the covariance matrix
Σh explicitly. The expressions for σii, i ≥ 0, were derived in Davis and Mikosch [7] for i = 0 and
i ≥ 1 in Theorem 3.1 and Lemma 5.2, respectively. We notice that γA(i, l, l + i) ≤ γA(l) and
therefore the infinite series in σij are finite.

For i 6= j, similar calculations as for Lemma 4.2.1 yield for k ≥ 1 and rn/mn → 0,

m

n
cov
( n∑
t=1

ĨtĨt+i,

n∑
s=1

ĨsĨs+j
)

= mΓ(0, 0, i, j) +m

n∑
l=1

[
(1− l/n)

[
Γ(0, i, l, l + j) + Γ(0, j, l, l + i)

]
− (pi − p2

0)(pj − p2
0)
]

= mΓ(0, 0, i, j)

+m
( k∑
l=1

+

rn∑
l=k+1

+

n∑
l=rn+1

)[
(1− l/n)

[
Γ(0, i, l, l + j) + Γ(0, j, l, l + i)

]
− (pi − p2

0)(pj − p2
0)
]

= Q1 +Q2 +Q3 +Q4 .

By regular variation, for fixed k ≥ 1 as n→∞,

Q1 +Q2 → γA(i, j) +

k∑
l=1

[
γA(i, l, l + j) + γA(j, l, l + i)

]
,
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and the right-hand side converges to σij as k →∞. By (4.2.2) we have

lim
k→∞

lim sup
n→∞

|Q3| = 0 .

Using (4.2.4) and (4.2.1), we also have

|Q4| ≤ cmn

∞∑
l=rn+1

ξl → 0 , n→∞ .

This proves (4.2.7) and (4.2.8). Relations (4.2.9) and (4.2.10) follow by a continuous mapping
argument, observing that for 1 ≤ i ≤ h,( n
m

)1/2(
ρ̃A(i)− pi/p0

)
=

( n
m

)1/2 γ̃A(i)− Eγ̃A(i)

γ̃A(0)
− Eγ̃A(i)

(n/m)1/2
(
γ̃A(0)− Eγ̃A(0))

γ̃A(0)Eγ̃A(0)
+ oP (1)

d→ 1

γA(0)

(
Zi − ρA(i)Z0

)
.

Recall that a strictly stationary process (Xt) is η-dependent for some integer η ≥ 0 if (Xt)t≤0

and (Xt)t>η are independent. For such a process we observe that σhh = 0 for h > η and hence

(4.2.8) collapses into (n/m)0.5γ̃A(h)
P→ 0 for h > η. In particular, for an iid sequence (Xt),

Zh = 0 a.s. for h ≥ 1, while (n/m)0.5γ̃A(0)
d→ Z0 and Z0 is N(0, γA(0)) distributed.

In these cases, the rate of convergence in (4.2.8) can be improved.

Lemma 4.2.5. Assume that (Xt) is an Rd-valued η-dependent regularly varying strictly station-
ary sequence with index α > 0 for some η ≥ 0, and the Borel set A satisfies the conditions of
Section 4.1.2. Additionally, assume that for j ≥ i > η and 1 ≤ t ≤ η − (j − i), the following
limits exist:

γA(t, i, t+ j) = lim
n→∞

m2P (a−1
m X0 ∈ A, a−1

m Xt ∈ A, a−1
m Xi ∈ A, a−1

m Xt+j ∈ A) , (4.2.11)

Then for h ≥ 1,

n0.5
(
γ̃A(η + i)

)
i=1,...,h

d→ (Zi)i=1,...,h ,

where (Zi)i=1,...,h is Gaussian N(0,Σh) whose covariance matrix Σh = (σij)i,j=1,...,h is given by

σij = γA(0)γA(j − i) + 2

η−(j−i)∑
t=1

γ(t, i, t+ j) , 1 ≤ i ≤ j . (4.2.12)

Remark 4.2.6. Condition (4.2.11) is an additional asymptotic independence condition. Indeed,
regular variation of (Xt) only implies that the limits

lim
n→∞

mP (a−1
m X0 ∈ A, a−1

m Xt ∈ A, a−1
m Xi ∈ A, a−1

m Xt+j ∈ A)

exist and are finite. Then (4.2.11) implies that the latter limits must be zero. In Example 4.2.8
we consider some simple cases when (4.2.11) is satisfied.
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Remark 4.2.7. Assume j − i > η. Then, by η-dependence, γA(j − i) = 0 and the index set in
(4.2.12) is empty. Hence σij = 0 for j − i > η. In particular, if (Xt) is iid, σij = 0 for i 6= j and
σii = γ2

A(0).

Proof. We start by calculating the asymptotic covariances. Assume j ≥ i > η. Then, using the
independence of I0 and (IjIi, IiItIt+j) for t > η and of It+j and I0ItIi for t ≤ η and t ≥ η−(j−i),
we obtain

cov
(
n0.5γ̃A(i), n0.5γ̃A(j)

)
= m2EĨ2

0EĨiĨj +m2

η∑
t=1

EĨ0ĨiĨtĨt+j + o(1)

= γA(0)γA(j − i) +m2

η−(j−i)∑
t=1

EĨ0ĨiĨtĨt+j + o(1)

= γA(0)γA(j − i) + 2

η−(j−i)∑
t=1

γA(t, i, t+ j) .

This completes the calculation of Σh. Furthermore, we observe that for h ≥ 1,

n0.5
(
γ̃A(i)

)
i=η+1,...,η+h

= (m/n0.5)

n∑
t=1

(
ĨtĨt+i

)
i=η+1,...,η+h

+ oP (1) . (4.2.13)

The vector sequence (ĨtĨt+i)i=η+1,...,η+h, t = 1, 2, . . ., is strictly stationary and (h+η)-dependent.
Now an application of the central limit theorem for strongly mixing triangular arrays in Rio [25]
and the Cramér-Wold device to (4.2.13) conclude the proof.

The following examples fulfill the conditions of Lemma 4.2.5.

Example 4.2.8. An iid regularly varying sequence (Xt) is 0-dependent, and thus (4.2.11) holds.
Its limiting covariance matrix Σh is a diagonal matrix with entries γ2

A(0) = (µ1(A))2 on the main
diagonal.

We consider the stochastic volatility model Xt = σtZt where (σt) is independent of (Zt),
(σt) is a positive η-dependent strictly stationary sequence and (Zt) is a regularly varying iid
sequence with index α > 0; see Davis and Mikosch [8]. Assume that Eσα+ε <∞ for some ε > 0.
In this case, (Xt) is η-dependent, strictly stationary and regularly varying with index α. We will
show that (4.2.11) holds with γA(u, s, t) = 0 for 0 < u < s < t. Since A is bounded away from
zero, there exists a δ > 0 such that

γA(u, s, t) ≤ lim sup
n→∞

m2P (a−1
m min(|X0|, |Xu|, |Xs|, |Xt|) > δ)

≤ lim sup
n→∞

m2P (a−1
m max(σ0, σu, σs, σt) min(|Z0|, |Zu|, |Zs|, |Zt|) > δ)

≤ lim sup
n→∞

4m2P (a−1
m σ0 min(|Z0|, |Zu|, |Zs|, |Zt|) > δ)

≤ lim sup
n→∞

cm2(Eσα)4(P (|Z0| > amδ))
4 = 0 ,

where we used that P (σ0|Z0| > am) ∼ EσαP (|Z0| > amδ) by virtue of Breiman’s lemma; see
[2].
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4.2.4 Mean square consistency of the integrated periodogram

Recall the definitions of JnA(g) and JA(g) for g ∈ L2
+(Π) from (4.1.4) and (4.1.5), respectively.

The following elementary result deals with the convergence of the first and second moments of
JnA(g) for a given function g.

Lemma 4.2.9. Consider an Rd-valued strictly stationary regularly varying sequence (Xt) with

index α > 0. Assume that the Borel set A ⊂ Rd0 satisfies the conditions of Section 4.1.2,∑∞
l=1 γA(l) <∞ and (M) holds. Then the following asymptotic relations hold for g ∈ L2

+(Π).

1. EJnA(g)→ JA(g) as n→∞.

2. If in addition, m log2 n/n = O(1) as n→∞, and there exists a constant c > 0 such that

|ch(g)| ≤ c/h , h ∈ Z , (4.2.14)

then E(JnA(g)− JA(g))2 → 0 and J◦nA(g)
P→ J◦A(g) as n→∞.

The proof of the lemma is given in Section 4.5.

Remark 4.2.10. Condition (4.2.14) holds under mild smoothness conditions on g, e.g. if g is
Lipschitz or has bounded variation on Π; see Theorem 4.7 on p. 46 and Theorem 4.12 on p. 47
in Zygmund [27].

4.3 Functional central limit theorem for the integrated pe-
riodogram

Recall the definition of the spectral density hA from Section 4.1.4. In this section, we assume
that the weight function g is a non-negative continuous function. Abusing notation, we define
the empirical spectral distribution function with weight function g by

JnA(x) = JnA(gI[0,x]) =

∫ x

0

InA(λ) g(λ) dλ , x ∈ Π . (4.3.1)

Under the conditions of Lemma 4.2.9, again abusing notation, we have

JnA(x)
P→ JA(x) = JA(gI[0,x]) =

∫ x

0

hA(λ) g(λ) dλ , x ∈ Π .

In view of the monotonicity and continuity of the functions JnA and JA we also have

sup
x∈Π
|JnA(x)− JA(x)| P→ 0 . (4.3.2)

Our next goal is to complement this consistency result by a functional central limit theorem of
the type

(n/m)0.5(JnA − JA)
d→ G ,
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in C(Π), the space of continuous functions on Π equipped with the uniform topology, for a
suitable Gaussian limit process G.

However, this result is unlikely to hold in general, due to asymptotic bias problems. It is
mentioned in Davis and Mikosch [7] in relation with the central limit theorem for the sam-
ple extremogram (see Lemma 4.2.4 above) that the pre-asymptotic centerings Eγ̃A(i) = ((n −
i)/n)m(pi−p2

0) can in general not be replaced by their limits γA(i) due to the failure of the rela-
tion (n/m)0.5|m(pi− p2

0)− γA(i)| → 0 as n→∞. Therefore we will equip the empirical spectral
distribution function JnA with the pre-asymptotic centering EJnA. It follows from Lemma 4.2.9
that under (M), EJnA(x)→ JA(x) for every x ∈ Π, and again using monotonicity of EJnA and
JA, we have supx∈Π |EJnA(x)− JA(x)| → 0.

We observe that

JnA(x) = ψ0(x) γ̃A(0) + 2

n−1∑
h=1

ψh(x) γ̃A(h) ,

J◦nA(x) = ψ0(x) + 2

n−1∑
h=1

ψh(x) ρ̃A(h) ,

where

ψh(x) =

∫ x

0

cos(hλ) g(λ) dλ , x ∈ Π .

We also consider a Riemann sum approximation of the coefficients ψh(x) at the Fourier frequen-
cies ωn(i) = 2iπ/n ∈ Π given by

ψ̂h(x) =
2π

n

xn∑
i=1

g(ωn(i)) cos(hωn(i)) , x ∈ Π ,

where xn = [nx/2π]. The corresponding analogs of JnA and J◦nA are then given by

ĴnA(x) = ψ̂0(x)γ̃A(0) + 2

n−1∑
h=1

ψ̂h(x) γ̃A(h) ,

Ĵ◦nA(x) = ψ̂0(x) + 2

n−1∑
h=1

ψ̂h(x) ρ̃A(h) ,

Now we are ready to formulate the main result of this paper.

Theorem 4.3.1. Assume that (Xt) is an Rd-valued strictly stationary regularly varying sequence

with index α > 0 and the Borel set A ⊂ Rd0 is bounded away from zero, µ1(∂A) = 0 and
µ1(A) > 0. Let g be a non-negative β-Hölder continuous function with β ∈ (3/4, 1]. If the
conditions (M), (M1) and

∑∞
l=1 γA(l) <∞ hold then in C(Π),

(n/m)0.5(JnA − EJnA)
d→ G , n→∞ , (4.3.3)

(n/m)0.5(ĴnA − EĴnA)
d→ G , n→∞ , (4.3.4)
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where the limit process is given by the infinite series

G = ψ0Z0 + 2

∞∑
h=1

ψh Zh , (4.3.5)

which converges in distribution in C(Π), (Zh) is a mean zero Gaussian sequence such that
(Z0, . . . , Zh) has the covariance matrix (Σh), h ≥ 0, given in Lemma 4.2.4. Moreover, the
following limit relations hold

(n/m)0.5
(
J◦nA − EJnA/(mp0)

) d→ G◦ , n→∞ , (4.3.6)

(n/m)0.5
(
Ĵ◦nA − EĴnA/(mp0)

) d→ G◦ , n→∞ , (4.3.7)

where the limit process is given by the infinite series

G◦ =
2

γA(0)

∞∑
h=1

ψh(Zh − ρA(h)Z0) .

The proof of this result is given in Section 4.6.

Remark 4.3.2. For practical purposes, the discretized version ĴnA will be preferred to JnA
since it does not involve the calculation of integrals. Moreover, since

∑n
t=1 e iωn(j)t = 0 for

ωn(j) ∈ (0, π), centering of the indicators It with the unknown parameter p0 in the periodogram
ordinates InA(ωn(j)) = (m/n)|

∑n
t=1 Ite

iωn(j)t|2 is not needed.

For an η-dependent sequence (Xt), we know that Zh = 0 a.s. for h > η. Then we conclude
from Theorem 4.3.1 and Lemma 4.2.4 that the limit process G collapses into

G = ψ0Z0 + 2

η∑
h=1

ψhZh .

However, taking into account Lemma 4.2.5, a more sophisticated result with a different conver-
gence rate can be derived. The corresponding result for J◦nA is similar nd therefore omitted.

Theorem 4.3.3. Assume that (Xt) is an Rd-valued η-dependent regularly varying sequence with

index α > 0 for some η ≥ 0 and the Borel set A ⊂ Rd0 is bounded away from zero, µ1(∂A) = 0
and µ1(A) > 0. Also assume that the limits in (4.2.11) exist. Let g be a non-negative β-Hölder
continuous function with β ∈ (3/4, 1]. Then the relations

√
n
(
JnA − ψ0γ̃A(0)− 2

η∑
h=1

ψhγ̃A(h)
) d→ G ,

√
n
(
ĴnA − ψ̂0γ̃A(0)− 2

η∑
h=1

ψ̂hγ̃A(h)
) d→ G ,

hold in C(Π), where the limit process is given by the a.s. converging infinite series

G = 2

∞∑
h=1

ψη+h Zh ,
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and (Zh) is a mean zero Gaussian sequence such that (Z1, . . . , Zh) has covariance matrix Σh,
h ≥ 1, given in Lemma 4.2.5.

The proof is given in Section 4.7.

Example 4.3.4. Assume that (Xt) is an iid regularly varying sequence with index α > 0. Then
(Zh) is an iid mean zero Gaussian sequence with var(Z) = γ2

A(0) = (µ1(A))2. If we choose the
function g ≡ 1 we obtain

ψh(x) =

∫ x

0

cos(hλ)dλ =
sin(hx)

h
, h ≥ 0 , x ∈ Π ,

and

G(x) = 2

∞∑
h=1

sin(hx)

h
Zh , x ∈ Π .

We notice that G is a series representation of a Brownian bridge; see Hida [15].

As in classical limit theory for the empirical spectral distribution (see Grenander and Rosen-
blatt [13], Dahlhaus [4]), an application of the continuous mapping theorem to Theorems 4.3.1
and 4.3.3 yields limit theory for functionals of the integrated periodogram. These functionals can
be used for testing the goodness of fit of the spectral density of the time series model underlying
the data, under the null hypothesis that the model is correct. From Theorem 4.3.1 we get the
following limit results for the corresponding test statistics.

• Grenander-Rosenblatt test:

(n/m)0.5 sup
x∈Π

∣∣∣JnA(x)− EJnA(x)
∣∣∣ d→ sup

x∈Π
|G(x)| .

• ω2- or Cramér-von Mises test:

(n/m)

∫
x∈Π

(
JnA(x)− EJnA(x)

)2

dx
d→
∫
x∈Π

G2(x) dx .

If (Xt) is an η-dependent sequence satisfying the conditions of Theorem 4.3.3, the corresponding
limit results read as follows:

• Grenander-Rosenblatt test:

√
n sup
x∈Π

∣∣∣JnA(x)− ψ0(x)γ̃A(0)− 2

η∑
h=1

ψh(x)γ̃A(h)
∣∣∣ d→ sup

x∈Π
|G(x)| . (4.3.8)

• ω2-statistic or Cramér-von Mises test:

√
n

∫
x∈Π

(
JnA(x)− ψ0(x)γ̃A(0)− 2

η∑
h=1

ψh(x)γ̃A(h)
)2
dx

d→
∫
x∈Π

G
2
(x) dx . (4.3.9)

In Figures 4.1 we show the estimated densities in (4.3.8) and (4.3.9) when η = 0 and compare
them with the corresponding theoretical densities of the limits.
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Figure 4.1: We choose the set A = (1,∞), the threshold am such that p0 = P (X > am) = 0.05,
the sample size n = 10, 000 and g ≡ 1. The underlying sequence (Xt) is iid t-distributed
with α = 3 degrees of freedom. Left: Densities of the left-hand side in (4.3.8) with η = 0
(dotted line) and its limit supx∈Π |G(x)| (solid line). The density of supx∈Π |G(x)| is given
by 4π−2

∑∞
j=1(−1)j+1y exp

(
− j2y2/(π2)

)
, y > 0; see Shorack and Wellner [26]. Right: The

density of the left-hand side in (4.3.9) with η = 0 (dotted line) and its limit
∫
x∈Π

G
2
(x) dx (solid

line). We use the identity in law
∫
x∈Π

G
2
(x) dx

d
= 2π

∑∞
j=1(2/j2)N2

j for an iid standard normal
sequence (Nj) (see [26]) for the simulation of the limiting random variable.

4.4 The bootstrapped integrated periodogram

With a few exceptions, the limit processesG andG in Theorem 4.3.1 and 4.3.3 have an unfamiliar
dependence structure and then it is impossible to give confidence bands for the test statistics
mentioned in the previous section. One faces a similar problem when dealing with the sample
extremograms whose asymptotic covariance matrix is a complicated function of the measures µh
in (4.1.2). Davis et al. [9] proposed to apply the stationary bootstrap for constructing confidence
bands for the sample extremogram. The stationary bootstrap can also be used for the integrated
periodogram, as we will show below.

4.4.1 Stationary bootstrap

The stationary bootstrap was introduced by Politis and Romano [21] as an alternative block
bootstrap method. First, we describe this procedure for a strictly stationary sequence (Yt).
Given a sample Y1, . . . , Yn, consider the bootstrapped sequence

YK1
, . . . , YK1+L1−1, . . . , YKN , . . . , YKN+LN−1, . . . , (4.4.10)

where (Yi), (Ki), (Li) are independent sequences, (Ki) is an iid sequence of random variables
uniformly distributed on {1, . . . , n}, (Li) is an iid sequence of geometrically distributed random
variables with distribution P (L1 = i) = θ(1 − θ)i−1, i = 1, 2, . . . , for some θ = θn ∈ (0, 1) such

that θn → 0 as n → ∞ and N = Nn = inf{i ≥ 1 :
∑i
j=1 Lj ≥ n}. If any element Yt in (4.4.10)

has an index t > n, we replace it by Yt mod n. As a matter of fact, (Yt)t≥1 constitutes a strictly
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stationary sequence. The stationary bootstrap sample is now chosen as the block of the first
n elements in (4.4.10). In what follows, we write (Yt∗)t≥1 for the bootstrap sequence (4.4.10),
indicating that this sequence is nothing but the original Y -sequence sampled at the random
indices (K1, . . . ,K1 + L1 − 1,K2, . . . ,K2 + L2 − 1, . . .) with the convention that indices larger
than n are taken modulo n.

In what follows, the probability measure generated by the bootstrap procedure is denoted
by P ∗, i.e. P ∗(·) = P (· | (Xt)). The corresponding expected value, variance and covariance are
denoted by E∗, var∗ and cov∗.

4.4.2 The bootstrapped sample extremogram

Davis et al. [9] applied the stationary bootstrap to the sequence of lagged vectors

It(h) = (I2
t , ItIt+1, . . . , ItIt+h) , t = 1, 2, . . . ,

for fixed h ≥ 0 and showed consistency of the bootstrapped sample extremogram. In particular,
they showed the following result which we cite for further reference. A close inspection of
the proof in [9] shows that the results remain true if in It(h) we replace the quantities Is by Ĩs,

s = t, . . . , t+h. We denote the corresponding vector by Ĩt(h). Consider the stationary bootstrap

sequence (Ĩt∗(h)) and write

γ̃∗A(i) =
m

n

n−i∑
t=1

Ĩt∗ Ĩt∗+i, i = 0, . . . , h .

Theorem 4.4.1. Consider an Rd-valued strictly stationary regularly varying sequence (Xt) with
index α > 0 and assume the following conditions:

1. The mixing conditions (M), (M1) and in addition
∑∞
h=1 hξh <∞.

2. The growth conditions θ = θn → 0 and nθ2/m→∞.

3. The set A is bounded away from zero, µ1(∂A) = 0 and µ1(A) > 0.

Then the following bootstrap consistency results hold for h ≥ 0:

E∗
(
γ̃∗A(h)

) P→ γA(h) ,

var∗
(
(n/m)0.5γ̃∗A(h)

) P→ σhh ,

where the covariance matrix Σh = (σij) is given in Lemma 4.2.4. Moreover, writing dP∗ for any
metric describing weak convergence in Euclidean space relative to the probability measure P ∗ and
(Zi)i=0,...,h for an N(0,Σh) Gaussian vector, we also have

dP∗
(

(n/m)1/2
(
γ̃∗A(i)− γ̃A(i)

)
i=0,...,h

, (Zi)i=0,...,h

)
P→ 0 , n→∞ .

In what follows, we will abuse the notation dP∗ for a metric describing weak convergence
relative to P ∗ in any space of interest.
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4.4.3 The bootstrapped integrated periodogram

Bootstrapping the sequence (It(h)) has the advantage that we preserve the neighbors It∗+i of
It∗ from the original sequence (Is). However, this method depends on the lag h and creates
problems if the number of lags increases with the sample size n. In what follows, we will
apply the stationary bootstrap directly to (It). Then we have to re-define the bootstrap sample
extremogram at any lag h < n. Write

In = n−1
n∑
t=1

It and Ît = It − In , t ∈ Z ,

and define the corresponding bootstrap sample extremogram

γ̂∗A(h) =
m

n

n−h∑
t=1

Ît∗ Î(t+h)∗ , h = 0, . . . , n− 1 ,

and the bootstrap periodogram

I∗nA(λ) =
m

n

∣∣∣ n∑
t=1

Ît∗e
−it λ

∣∣∣2 , λ ∈ Π .

Note the crucial difference: in general, It∗I(t+h)∗ 6= It∗It∗+h, but, as we will see in Lemma 4.8.1,
the quantities γ̃∗A(h) and γ̂∗A(h) are asymptotically close for fixed h ≥ 0.

In what follows, we focus on the bootstrap for the continuous version JnA of the integrated
periodogram for a given smooth weight function g; bootstrap consistency can also be shown for
the discretized version ĴnA; we omit further details. In the definition of JnA in (4.3.1), we simply

replace (It) by (Ît∗), resulting in its bootstrap version

J∗nA(λ) =

∫ λ

0

I∗nA(x) g(x) dx = ψ0 γ̂
∗
A(0) + 2

n−1∑
h=1

ψh γ̂
∗
A(h) , λ ∈ Π .

Now we can formulate a bootstrap analog of Theorem 4.3.1 which shows the consistency of
the stationary bootstrap procedure.

Theorem 4.4.2. Assume the conditions of Theorem 4.3.1 and 4.4.1. Then

dP∗
(

(n/m)1/2
(
J∗nA − E∗J∗nA

)
, G
)

P→ 0 , n→∞ ,

where the Gaussian process G is defined in Theorem 4.3.1 and dP∗ is any metric which describes
weak convergence in C(Π) relative to the probability measure P ∗.

Remark 4.4.3. Recall that, in general, it is not possible to replace the centering EJnA of
JnA in the functional central limit theorem of Theorem 4.3.1 by its limit

∫ ·
0
hA(λ) g(λ) dλ. A

similar remark applies to Theorem 4.4.2. Although supλ∈Π |E∗J∗nA(λ)− JnA(λ)| P→ 0, under the
conditions of Theorem 4.4.2, it is in general not possible to replace the centering E∗J∗nA by JnA;
see Lemma 4.8.4.



CHAPTER 4. INTEGRATED EXTREMAL PERIODOGRAM 112

−10 −5 0 5 10

0
.0

0
0
.0

5
0
.1

0
0
.1

5

D
e
n
s
it
y

0 5 10 15

0
.0

0
.1

0
.2

0
.3

D
e
n
s
it
y

Figure 4.2: We choose the set A = (1,∞), the threshold am such that p0 = P (X > am) = 0.05
and the sample size n = 5, 000 and g ≡ 1. We apply the stationary bootstrap 10, 000 times
to an ARMA(1, 1) process Xt − 0.8Xt−1 = Nt + 0.1Nt−1 where the iid t-distributed noise (Nt)
has 3 degrees of freedom. Left: Densities of

√
n/m(J∗nA − E∗J∗nA) at the fixed frequencies

{6π/20, 7π/20, . . . , 15π/20}. Right: A comparison of the densities of supx∈Π

√
n/m|J∗nA(x) −

E∗J∗nA(x)| (dotted line) and the right-hand side in (4.3.8) (solid line).

In Figure 4.2 we present the results of applying the stationary bootstrap to an ARMA(1, 1)
process: the density of

√
n/m(J∗nA(x) − E∗J∗nA(x)) at fixed frequencies have shapes similar to

the normal distribution. Moreover, we illustrate that the Grenander-Rosenblatt statistic of this
process has a distribution which significantly differs from the distribution of the Grenander-
Rosenblatt statistic of an iid sequence defined in (4.3.8).

4.5 Proof of Lemma 4.2.9

Part 1. Recall the series representations of JnA(g) and JA(g) from (4.1.4) and (4.1.5), respec-
tively. Then for every fixed k ≥ 1, large n,

JnA(g)− JA(g) =
(
c0(g)[γ̃A(0)− γA(0)] + 2

k∑
h=1

ch(g) [γ̃A(h)− γA(h)]
)

+2

n−1∑
h=k+1

ch(g) [γ̃A(h)− γA(h)]− 2

∞∑
h=n

ch(g) γA(h)

= I1(k) + I2(k)− I3 .

Then I3 → 0 as n→∞ since (γA(h)) is summable and EI1(k) converges to zero as n→∞ due
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to regular variation, for every k. In view of (4.2.1) in (M),

∣∣∣E n−1∑
h=rn+1

γ̃A(h)ch(g)
∣∣∣ =

∣∣∣m
n

n−1∑
h=rn+1

(n− h) ch(g) (ph − p2
0)
∣∣∣

≤ cm

∞∑
h=rn+1

ξh → 0 , n→∞ ,

and (4.2.2) in (M) implies

lim
k→∞

lim sup
n→∞

∣∣∣E rn∑
h=k+1

γ̃A(h)ch(g)
∣∣∣ ≤ c lim

k→∞
lim sup
n→∞

m

rn∑
h=k+1

ph = 0 .

Since limk→∞
∑∞
h=k+1 γA(h) = 0, we have limk→∞ lim supn→∞ |EI2(k)| = 0. This proves Part

1.

Part 2. It follows from Theorem 3.1 in Davis and Mikosch [7] that γ̃A(h)
L2

→ γA(h), h ≥ 1.

Hence I1(k)
L2

→ 0 as n→∞ for fixed k ≥ 1. It remains to show that

lim
k→∞

lim sup
n→∞

var(I2(k)) = 0 .

We have

I2(k) = 2
( rn∑
h=k+1

+

n−1∑
h=rn+1

)
ch(g)

[
γ̃A(h)− γA(h)

]
= 2I21(k) + 2I22 .

In view of Lemma 4.2.1 we get the bound

var(I21(k)) ≤ m2

n

rn∑
h=k+1

rn−h∑
l=0

|ch(g)ch+l(g)| ×

(
|Γ(0, h, 0, h+ l)|+

n−h−l∑
t=1

|Γ(0, h, t, t+ h+ l)|+
n−h∑
t=1

|Γ(0, h+ l, t, t+ h)|
)

= Q1 +Q2 +Q3 .

Since |ch(g)| ≤ c/h (see (4.2.14)),

|Q1| ≤ c
m2

n

rn∑
h=k+1

|ch(g)|
rn∑
s=h

|cs(g)|ps

= c
m2

n

rn∑
s=k+1

|cs(g)|ps
s∑

h=k+1

|ch(g)|

≤ c
m2

n

rn∑
s=k+1

pss
−1 log s ,
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and the right-hand side converges to 0 by first letting n → ∞ and then k → ∞, using (4.2.2),
Since the structures of Q2 and Q3 are similar we restrict ourselves to showing Q2 → 0 as
n→∞, k →∞. We observe that

|Q2| ≤ c
m2

n

rn∑
h=k+1

rn∑
s=h

1

hs

( 2rn∑
t=1

+

n∑
t=2rn+1

)
|Γ(0, h, t, t+ s)|

≤ c
m log2 rn

n
m

3rn∑
h=k+1

ph + c
m log2 rn

n
m

n∑
h=rn+1

ξh + cn−1
(
m

rn∑
h=k+1

ph/h
)2

.

In the last step, we used (4.2.4). The right-hand side vanishes as n → ∞ and k → ∞. Finally,
we conclude that limk→∞ lim supn→∞ var(I21(k)) = 0.

Now we turn to bounding var(I22). In view of Lemma 4.2.1 we have

var(I22) ≤ m2

n

n−1∑
h=rn+1

n−1∑
s=h

|ch(g)cs(g)|
(
|Γ(0, h, 0, s)|+

n−s∑
t=1

|Γ(0, h, t, t+ s)|+
n−h∑
t=1

|Γ(0, s, t, t+ h)|
)

= Q4 +Q5 +Q6 .

We have by (4.2.14),

Q4 ≤ c
m2

n

n−1∑
h=rn+1

n−1∑
s=h

|ch(g)cs(g)| |EĨ0Ĩs|

≤ c
m2

n

n−1∑
h=rn+1

h−2
n−1∑
s=h

[(ps − p2
0) + p2

0]

≤ c
[ m
nrn

m

∞∑
h=rn+1

ξh +
(p0m)2

rn

]
= o(1) , n→∞ .

The terms Q5 and Q6 can be treated in a similar way; we focus on Q5. By (4.2.14),

Q5 ≤ cm2

n

n−1∑
h=rn+1

h+rn∑
s=h

(hs)−1
rn∑
t=1

|Γ(0, h, t, t+ s)|

+
cm2

n

n−1∑
h=rn+1

n−1∑
s=h+1

n−s∑
t=rn+1

(hs)−1|Γ(0, h, t, t+ s)|

+
cm2

n

n−1∑
h=rn+1

n−1∑
s=h+rn+1

rn∑
t=1

(hs)−1|Γ(0, h, t, t+ s)|

= Q51 +Q52 +Q53 ,

and

Q51 ≤ c
m2

n

n−1∑
h=rn+1

h+rn∑
s=h

(hs)−1
rn∑
t=1

[
(ph − p2

0) + p2
0

]
≤ c

(m
n
m

∞∑
h=rn+1

ξh + (mp0)2 rn
n

)
→ 0 , n→∞ .
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Next we consider Q52 and Q53. By (4.2.3), we have

Q52 ≤ c
2m2

n

n−1∑
h=rn+1

n−1∑
s=h

(hs)−1
n∑

t=rn+1

ξt ≤ c
m log2 n

n
m

∞∑
t=rn+1

ξt .

The right-hand side converges to zero by using the assumption m log2 n/n = O(1) and the
condition (4.2.1). Similarly, using (4.2.3), we obtain

Q53 ≤ c
m

n
m

∞∑
h=rn+1

ξh .

We conclude that var(I22)→ 0 as n→∞.

We proved above that E(JnA − JA(g))2 → 0, hence JnA(g)
P→ JA(g), combined with (4.2.7),

yields J◦nA(g)
P→ J◦A(g).

4.6 Proof of Theorem 4.3.1

We start by proving (4.3.3). An application of the continuous mapping theorem in C(Π) and
Lemma 4.2.4 yield in C(Π) for every k ≥ 1,

(m/n)0.5
(
ψ0 (γ̃A(0)− Eγ̃A(0)) + 2

k∑
h=1

ψh (γ̃A(h)− Eγ̃A(h))
)

d→ ψ0Z0 + 2

k∑
h=1

ψhZh .

Here (Zh) is mean zero Gaussian process with covariance structure specified in Lemma 4.2.4. In
view of Theorem 2 in Dehling et al. [11] relation (4.3.3) will follow if we can prove the following
result.

Lemma 4.6.1. Assume that the conditions of Theorem 4.3.1 hold. Then for any ε > 0,

lim
k→∞

lim sup
n→∞

P
(

(n/m)0.5 sup
λ∈Π

∣∣∣ n−1∑
h=k+1

ψh(λ) (γ̃A(h)− Eγ̃A(h))
∣∣∣ > ε

)
= 0 .

Proof of Lemma 4.6.1. We borrow the techniques of the proof of Theorem 3.2 in Klüppelberg
and Mikosch [17]. Without loss of generality we assume that k = 2a−1 and n = 2b+1 where a < b
are integers; if k or n do not have this representation we have to modify the proof slightly but
we omit details. For integer q > 0 and some constant κ > 0 to be chosen later, let εq = 2−2q/κ.
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We have for ε > 0,

Q = P
(

(n/m)0.5 sup
λ∈Π

∣∣∣ n−1∑
h=k+1

(γ̃A(h)− Eγ̃A(h))ψh(λ)
∣∣∣ > ε

)

≤ P
(

(n/m)0.5
b∑

q=a

sup
λ∈Π

∣∣∣ 2q+1−1∑
h=2q

(γ̃A(h)− Eγ̃A(h))ψh(λ)
∣∣∣ > ε)

≤ P
( b∑
q=a

εq > ε
)

+ P
( b⋃
q=a

{
(n/m)0.5 sup

λ∈Π

∣∣∣ 2q+1−1∑
h=2q

(γ̃A(h)− Eγ̃A(h))ψh(λ)
∣∣∣ > εq

})

≤
b∑

q=a

P
(

(n/m)0.5 sup
λ∈Π

∣∣∣ 2q+1−1∑
h=2q

(γ̃A(h)− Eγ̃A(h))ψh(λ)
∣∣∣ > εq

)

=

b∑
q=a

Qq .

In the last steps we used that P (
∑b
q=a εq > ε) vanishes for fixed ε and sufficiently large a. Next

we will bound the expressions Qq. Write Jqv = {(v − 1)2q + 1, . . . , v2q} and

Yqj(λ) = (n/m)0.5
2q+1−1∑
h=2q

(γ̃A(h)− Eγ̃nA(h))ψh(λ+ (j − 1)π2−2q) , j ∈ Jqv , λ ∈ [0, 2−2qπ] .

Then

Qq = P
(

(n/m)0.5 max
v=1,...,2q

max
j∈Jqv

sup
λ∈[(j−1)π2−2q+1,jπ2−2q+1]

∣∣∣ 2q+1−1∑
h=2q

(γ̃A(h)− Eγ̃A(h))ψh(λ)
∣∣∣ > εq

)

≤
2q∑
v=1

P
(

((n/m)0.5 max
j∈Jqv

sup
λ∈[0,2−2q+1π]

|Yqj(λ)| > εq
)

=

2q∑
v=1

Qqv .

We will bound each of the terms Qqv by twice applying the maximal inequality of Theorem
10.2 in Billingsley [1]. For this reason we have to control the variance of the increments of the
process Yqj both as a function of λ and j. In particular, we will derive the following bound

n

m
E
( 2q+1−1∑

h=2q

(γ̃A(h)− Eγ̃A(h)) dh(ω, λ, j, j′)
)2

≤ c |j − j′|2|λ− ω|2βKk,n , (4.6.1)

where β is the Hölder coefficient of the function g,

Kk,n ≤ c
[
m

∞∑
h=rn+1

ξh +m

rn∑
h=k+1

ph + rn/m
]
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and for j < j′ in Jqv, h ∈ {2q, . . . , 2q+1 − 1} and ω < λ in [0, 2−2q+1π],

dh(ω, λ, j, j′) (4.6.2)

=
(
ψh(λ+ (j′ − 1)π2−2q+1)− ψh(λ+ (j − 1)π2−2q+1)

)
−
(
ψh(ω + (j′ − 1)π2−2q+1)− ψh(ω + (j − 1)π2−2q+1)

)
=

∫ λ+(j′−1)π2−2q+1

λ+(j−1)π2−2q+1

g(x) cos(hx)dx−
∫ ω+(j′−1)π2−2q+1

ω+(j−1)π2−2q+1

g(x) cos(hx)dx

=

∫ (j′−1)π2−2q+1

(j−1)π2−2q+1

(
g(x+ λ)[cos(h(x+ λ))− cos(h(x+ ω))]

−[g(x+ λ)− g(x+ ω)] cos(h(x+ ω))
)
dx .

Since g is β-Hölder continuous we have

∣∣∣ ∫ (j′−1)π2−2q+1

(j−1)π2−2q+1

[g(x+ λ)− g(x+ ω)] cos(h(ω + x))dx
∣∣∣ ≤ c(λ− ω)β(j′ − j)2−2q .

Similarly,

∣∣∣ ∫ (j′−1)π2−2q

(j−1)π2−2q

g(x+ λ)[cos(h(λ+ x))− cos(h(ω + x))]dx
∣∣∣

=
∣∣∣ ∫ (j′−1)π2−2q

(j−1)π2−2q

g(x+ λ)(2 sin(h(λ− ω)/2) sin(h(λ+ ω + 2x)/2))dx
∣∣∣

≤ ch(λ− ω)(j′ − j)2−2q ≤ c(λ− ω)(j′ − j)2−q .

The last two inequalities yield for a constant c only depending on g,

|dh(ω, λ, j, j′)| ≤ c|λ− ω|β |j′ − j| 2−q . (4.6.3)

Using this bound, we have

n

m
E
( 2q+1−1∑

h=2q

(γ̃A(h)− Eγ̃A(h)) dh(ω, λ, j, j′)
)2

≤ c |j − j′|2|λ− ω|2β 2−2q n

m

2q+1−1∑
h=2q

2q+1−1∑
s=h

∣∣cov
(
γ̃A(h), γ̃A(s)

)∣∣ . (4.6.4)

In what follows, it will be convenient to write
∑(q)
h,l =

∑2q+1−1
h=2q

∑2q+1−h−1
l=0 . In view of Lemma 4.2.1
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we can bound the last term in (4.6.4) as follows:

n

m

(q)∑
h,l

∣∣cov(γ̃A(h), γ̃A(h+ l))
∣∣

=
m

n

(q)∑
h,l

∣∣∣(n− h− l)Γ(0, h, 0, h+ l) +

n−h−l−1∑
t=1

(n− h− l − t)Γ(0, h, t, t+ h+ l)

+

n−h−1∑
t=1

min(n− h− l, n− h− t)Γ(0, h+ l, t, t+ h)− (n− h)(n− h− l)(ph − p2
0)(ph+l − p2

0)
∣∣∣

≤ m

(q)∑
h,l

[
|Γ(0, h, 0, h+ l)|+

h+rn∑
t=1

|Γ(0, t, h, t+ h+ l)|+
h+l+rn∑
t=1

|Γ(0, h+ l, t, t+ h)|

+
1

n

∣∣∣ n−h−l−1∑
t=h+rn+1

(n− t− h− l)Γ(0, h, t, t+ h+ l) +

n−h−1∑
t=h+l+rn+1

(n− t− h)Γ(0, h+ l, t, t+ h)

−(n− h)(n− h− l)(ph − p2
0)(ph+l − p2

0)
∣∣∣]

= W1 +W2 +W3 +W4 .

We will treat two cases of interest for the sums
∑(q)
h,l : when 2q+1 − 1 ≤ rn and 2q > rn. If

2q ≤ rn < 2q+1 − 1 the sums
∑(q)
h,l can be split into two sums corresponding to h ≤ rn and

h > rn and these can be treated in a similar fashion.
We start by studying the case 2q+1 − 1 ≤ rn. Then rn ≥ 2q+1 − 1 ≥ h ≥ 2q > k and

consequently 2q+1 − h− 1 ≤ 2q. Thus,

W1 ≤ c2qm

rn∑
h=k+1

ph .

The terms W2, W3 have a similar structure and can be treated in the same way; we focus on
W2. Then we get the following bound from Lemma 4.2.1

W2 ≤ c 22q
[
m

rn∑
h=k+1

ph +m

2rn∑
h=rn+1

ξh + (rn/m)
]
.

In view of (4.2.4), we also have

W4 ≤ m

n

(q)∑
h,l

[
n−h−l∑

t=h+rn+1

(n− t− h− l)
∣∣Γ(0, h, t, t+ h+ l)− (ph − p2

0)(ph+l − p2
0)
∣∣

+

n−h∑
t=h+rn+l+1

(n− t− h)
∣∣Γ(0, h+ l, t, t+ h)− (ph − p2

0)(ph+l − p2
0)
∣∣

+cnrn
∣∣(ph − p2

0)(ph+l − p2
0)
∣∣]

≤ c22qm

n∑
h=rn+1

ξh + c
rn
m

(
m

rn∑
h=k+1

ph

)2

.
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Next we assume that 2q > rn. By (4.2.3) and (4.2.4),

W1 ≤ m

2q+1−1∑
h=2q

rn∑
l=0

|Γ(0, 0, h, h+ l)− (p0 − p2
0)(pl − p2

0)|+ 2qm

rn∑
l=0

(p0 − p2
0)(pl − p2

0)

+m

2q+1−1∑
h=2q

2q+1−h−1∑
l=rn+1

|Γ(0, 0, h, h+ l)|

≤ c 2qm

∞∑
h=rn+1

ξh +
2qrn
m

(mp0)2 .

We again focus on W2; W3 can be treated in a similar way.

W2 ≤ m

2q+1−1∑
h=2q

( rn∑
l=1

( rn∑
t=1

+

h∑
t=rn+1

+

h+rn∑
t=h+1

)
+

2q+1−1∑
l=rn+1

h+rn∑
t=1

))
|Γ(0, t, h, t+ h+ l)|

≤ c 22qm

∞∑
h=rn+1

ξh + c 22q rn
m

(mp0)2

To obtain the bounds for W4 we use (4.2.4):

W4 ≤ m

n

2q+1−1∑
h=2q

2q+1−h−1∑
l=0

[
n−h−l∑

t=h+rn+1

(n− t− h− l)
∣∣Γ(0, h, t, t+ h+ l)− (ph − p2

0)(ph+l − p2
0)
∣∣

+

n−h∑
t=h+rn+l+1

(n− t− h)
∣∣Γ(0, h+ l, t, t+ h)− (ph − p2

0)(ph+l − p2
0)
∣∣

+cn2q
∣∣(ph − p2

0)(ph+l − p2
0)
∣∣]

≤ c22qm

∞∑
t=rn+1

ξt + c(2q/m)

(
m

∞∑
h=rn+1

ξh

)2

.

Collecting the bounds for Wi, i ≤ 4, and using (4.6.4), we finally proved (4.6.1).
Using this bound, we can apply the maximal inequality of Theorem 10.2 in Billingsley [1]

with respect to the variable λ ≤ 2−2qπ and for fixed j, j′:

P ( max
0≤λ≤2−2qπ

|Yj(λ)− Yj′(λ)| > εq) ≤ cε−2
q (2−2qπ)2β (j − j′)2Kk,n

≤ c 24q(1−β+κ−1) ((j − j′)2−2q)2Kk,n .

Another application of this maximal inequality to max0≤λ≤2−2qπ |Yj(λ)| with respect to the
variable j ∈ Jqv yields

Qqv = P
(

max
j∈{(v−1)2q+1,...,v2q}

max
0≤λ≤2−2qπ

|Yj(λ)| > εq

)
≤ c24q(2−1−β+κ−1)Kk,n .
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Then we also have

Qq ≤
2q∑
v=1

Qqv ≤ c 24q(3/4−β+κ−1)Kk,n .

The right-hand side converges to zero as q →∞ provided β ∈ (3/4, 1] and κ is chosen sufficiently
large. Therefore we conclude for every ε > 0,

Q ≤
b∑

q=a

Qq ≤ cKk,n

∞∑
q=a

24q(3/4−β+κ−1) . (4.6.5)

The right-hand side converges to zero by first letting n → ∞ and then k → ∞. This concludes
the proof of (4.3.3).

Next we turn to the proof of (4.3.4). It will follow from (4.3.3) once we prove the following
lemma.

Lemma 4.6.2. Assume that the conditions of Theorem 4.3.1 hold. Then for any ε > 0,

lim sup
n→∞

P
(

(n/m)0.5 sup
λ∈Π

∣∣(ĴnA(λ)− EĴnA(λ)
)
−
(
JnA(λ)− EJnA(λ)

)∣∣ > ε
)

= 0 .

Proof of Lemma 4.6.2: For any fixed k ≥ 1 we have

P
(

(n/m)0.5 sup
λ∈Π

∣∣(ĴnA(λ)− EĴnA(λ)
)
−
(
JnA(λ)− EJnA(λ)

)∣∣ > ε
)

≤ P
(

(n/m)0.5 sup
λ∈Π

∣∣∣ k∑
h=0

(
γ̃A(h)− Eγ̃A(h)

)(
ψh(λ)− ψ̂h(λ)

)∣∣∣ > ε/3
)

+P
(

(n/m)0.5 sup
λ∈Π

∣∣∣ n∑
h=k+1

(
γ̃A(h)− Eγ̃A(h)

)
ψh(λ)

∣∣∣ > ε/3
)

+P
(

(n/m)0.5 sup
λ∈Π

∣∣∣ n∑
h=k+1

(
γ̃A(h)− Eγ̃A(h)

)
ψ̂h(λ)

∣∣∣ > ε/3)

= V1 + V2 + V3 .

An application of Chebyshev’s and Hölder’s inequalities yields,

V1 ≤ 9ε−2 n

m
E sup
λ∈Π

∣∣∣ k∑
h=0

(
γ̃A(h)− Eγ̃A(h)

)(
ψh(λ)− ψ̂h(λ)

)∣∣∣2
≤ c

n

m
E sup
λ∈Π

k∑
h=0

(
γ̃A(h)− Eγ̃A(h)

)2∣∣ψh(λ)− ψ̂h(λ)
∣∣ k∑
s=0

∣∣ψs(λ)− ψ̂s(λ)
∣∣

≤ c k
n

m

k∑
h=0

var
(
γ̃A(h)

)
sup
x∈Π

∣∣ψh(x)− ψ̂h(x)
∣∣ .
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Next we will study supλ∈Π |ψh(λ)− ψ̂h(λ)|. Trivially, for x ∈ Π, |
∫ x
ωn(xn)

cos(hλ) g(λ) dλ| ≤ c/n,

where the constant c only depends on g. We also have for the frequencies x ∈ Π,

|ψh(ωn(xn))− ψ̂h(ωn(xn))|

=
∣∣∣ xn∑
i=1

(∫ ωn(i)

ωn(i−1)

cos(hλ) g(λ) dλ− ωn(1) cos(hωn(i)) g(ωn(i))
)∣∣∣

≤
xn∑
i=1

∣∣∣ ∫ ωn(i)

ωn(i−1)

cos(hλ) (g(λ)− g(ωn(i))) dλ
∣∣∣ (4.6.6)

+
∣∣∣ xn∑
i=1

g(ωn(i))
( sin(hωn(i))− sin(hωn(i− 1))

h
− ωn(1) cos(hωn(i))

)∣∣∣ . (4.6.7)

Since g is β-Hölder continuous there exists a constant c > 0 such that

|g(λ)− g(ωn(i))| ≤ cn−β , λ ∈ [ωn(i− 1), ωn(i)] .

Therefore the term in (4.6.6) is bounded by c n−β . A Taylor expansion as z → 0 yields sin(z) =
z − z3/3! + o(z3). Then we have for h ≤ n,∣∣∣ sin(hωn(i))− sin(hωn(i− 1))

h
− ωn(1) cos(hωn(i))

∣∣∣
=

∣∣∣2h−1 sin(hωn(0.5)) cos(hθ(i+ 0.5))− ωn(1) cos(hωn(i))
∣∣∣

=
∣∣∣2h−1(sin(hωn(0.5))− hωn(0.5)) cos(hθ(i+ 0.5)) + ωn(1)(cos(hωn(i+ 0.5))− cos(hωn(i)))

∣∣∣
≤ c(hωn(1))3 + ωn(1)

∣∣∣2 sin(hωn(0.25) sin(hωn(i+ 0.25))
∣∣∣ ≤ c (h3n−3 + hn−2) .

Consequently, we have the bound c(k/n)(1 + k2/n) for (4.6.7) uniformly for x ∈ Π and h ≤ k,
Thus, uniformly for h ≤ k,

sup
x∈Π
|ψ̃h(x)− ψ̂h(x)| ≤ c

[
n−β + (k/n)(1 + k2/n)] .

As we have shown in Lemma 4.2.4, (n/m)
∑k
h=0 var

(
γ̃A(h)

)
≤ c k; see also Davis and Mikosch

[7], Lemma 5.2. Thus, as n→∞,

V1 ≤ c
[
k2n−β + (k3/n)(1 + k2/n)]→ 0 .

It follows from Lemma 4.6.1 that limk→∞ lim supn→∞ V2 = 0. We adapt the proof of Lemma
4.6.1 for the case V3. Abusing notation, consider

dh(ω, λ, j, j′) =
(
ψ̂h(λ+ (j′ − 1)π2−2q+1)− ψ̂h(λ+ (j − 1)π2−2q+1)

)
−
(
ψ̂h(ω + (j′ − 1)π2−2q+1)− ψ̂h(ω + (j − 1)π2−2q+1)

)
.

Recall that we assume n = 2b for some integer b and xn = [nx/(2π)]. Therefore for λ ∈ Π and
integer j,

(λ+ (j − 1)π2−2q+1)n = [nλ/(2π) + (j − 1)2−2q+b]

= [nλ/(2π)] + (j − 1)2−2q+b

= λn + (j − 1)2−2q+b .
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Thus we can write

dh(ω, λ, j, j′) =
2π

n

λn+(j′−1)2b−2q∑
i=λn+(j−1)2b−2q

g(ωn(i)) cos(hωn(i))− 2π

n

ωn+(j′−1)2b−2q∑
i=ωn+(j−1)2b−2q

g(ωn(i)) cos(hωn(i))

=
2π

n

(j′−1)2b−2q∑
i=(j−1)2b−2q

(
g(ωn(λn + i))[cos(hωn(λn + i))− cos(hωn(ωn + i))]

−[g(ωn(λn + i))− g(ωn(ωn + i))] cos(hωn(ωn + i))
)

= T1 + T2 .

Calculation yields

|T1| ≤ c|ωn(λn)− ωn(ωn)|
∣∣(j′ − j)2−2q

∣∣2q ≤ c∣∣(λn − ωn)/n
∣∣∣∣(j′ − j)2−2q

∣∣2q ,
|T2| ≤ c|ωn(λn)− ωn(ωn)|β

∣∣(j′ − j)2−2q
∣∣ ≤ c∣∣(λn − ωn)/n

∣∣β∣∣(j′ − j)2−2q
∣∣ .

Combining these bounds, we have,

|dh(ω, λ, j, j′)| ≤ c|(λn − ωn)/n|β
∣∣(j′ − j)2−2q

∣∣2q .
In the remaining argument we can follow the proof of Lemma 4.6.1; the only difference is
that we have to replace the supremum over λ, ω ∈ [0, j2−2q+1] by the corresponding quanti-
ties λn/n, ωn/n ∈ [0, j2−2q+1]. This proves limk→∞ lim supn→∞ V3 = 0 and concludes the proof
of the lemma.

The proofs of (4.3.6) and (4.3.7) are completely analogous. Instead of the relations (4.2.8)
one has to use (4.2.10).

4.7 Proof of Theorem 4.3.3

We adapt the proof of Theorem 4.3.1. We need to prove that

n

(q)∑
h,l

|cov(γ̃A(h), γ̃A(h+ l))| ≤ c2q ,
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where
∑(q)
h,l is defined in the proof of Lemma 4.6.1. Here h > η.

n

(q)∑
h,l

∣∣cov(γ̃A(h), γ̃A(h+ l))
∣∣

=
m2

n

(q)∑
h,l

∣∣∣(n− h− l)Γ(0, h, 0, h+ l) +

n−h−l−1∑
t=1

(n− h− l − t)Γ(0, h, t, t+ h+ l)

+

n−h−1∑
t=1

min(n− h− l, n− h− t)Γ(0, h+ l, t, t+ h)
∣∣∣

≤ m2
2q+1−1∑
h=2q

|Γ(0, 0, h, h)|+m2
2q+1−1∑
h=2q

2q+1−h−1∑
l=1

|Γ(0, 0, h, h+ l)|

+m2

(q)∑
h,l

n−h−l−1∑
t=1

|Γ(0, h, t, t+ h+ l)|+m2

(q)∑
h,l

n−h−l−1∑
t=1

|Γ(0, h+ l, t, t+ h)|

= m2
2q+1−1∑
h=2q

|Γ(0, 0, h, h)|+m2
2q+1−1∑
h=2q

η∑
l=1

|Γ(0, 0, h, h+ l)|

+m2
2q+1−1∑
h=2q

η∑
l=1

η∑
t=1

|Γ(0, h, t, t+ h+ l)|+m2
2q+1−1∑
h=2q

η∑
l=1

η∑
t=1

|Γ(0, h+ l, t, t+ h)|

≤ c2q

In the above calculation, we use the facts that for s ≤ t ≤ u ≤ v, Γ(s, t, u, v) = 0 where t− s > η
or v − u > η.

In the remaining argument we can follow the proof of Theorem 4.3.1; instead of Lemma 4.2.4
we use the central limit theory of Lemma 4.2.5.

4.8 Proof of Theorem 4.4.2

We will mimic the proof of Theorem 4.3.1. We start by proving a result for the bootstrapped
sample extremogram γ̂∗A analogous to Theorem 4.4.1.

Lemma 4.8.1. Under the conditions and with the notation of Theorem 4.4.1, for h ≥ 0,

dP∗
(

(n/m)0.5
(
γ̂∗A(i)− E∗γ̂∗A(i)

)
i=0,...,h

, (Zi)i=0,...,h

)
P→ 0 , n→∞ .
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Proof. We start by observing (see Lemma 4.8.3) that for h ≥ 0

E∗γ̃∗A(h) =
m

n
(n− h)E∗Ĩ1∗ Ĩ1∗+h

= (1− h/n)
[
γ̃A(h) +

m

n

n∑
t=n−h+1

ĨtĨt+h

]
,

E∗γ̂∗A(h) =
m

n
(n− h)E∗Î1∗ Î(1+h)∗

= (1− h/n) (1− θ)h
[
γ̂A(h) +

m

n

n∑
t=n−h+1

ÎtÎt+h

]
,

where we interpret indices larger than n modulo n, and therefore

(n/m)0.5
[
(1− θ)hE∗γ̃∗A(h)− E∗γ̂∗A(h)

]
= OP (m−1)

P→ 0 , (4.8.1)

where we used that I
2

n − p2
0 = OP (1/

√
mn). By virtue of Theorem 4.4.1 it suffices to show that

for any ε > 0 and h ≥ 0,

P ∗
(

(n/m)0.5
∣∣∣(1− θ)h(γ̃∗A(h)− E∗γ̃∗A(h)

)
−
(
γ̂∗A(h)− E∗γ̂∗A(h)

)∣∣∣ > ε
)

P→ 0 , n→∞ .

Markov’s inequality ensures that it suffices to prove that

n

m
var∗

(
(1− θ)hγ̃∗A(h)− γ̂∗A(h)

) P→ 0 , n→∞ .

We observe that

n

m
var∗

(
(1− θ)hγ̃∗A(h)− γ̂∗A(h)

)
= m

(
1− h

n

)
var∗

(
Î1∗ Î(1+h)∗ − (1− θ)hĨ1∗ Ĩ1∗+h

)
+2m

n−h−1∑
s=1

(
1− h+ s

n

)
×

cov∗
(
Î1∗ Î(1+h)∗ − (1− θ)hĨ1∗ Ĩ1∗+h, Î(1+s)∗ Î(1+s+h)∗ − (1− θ)hĨ(1+s)∗ Ĩ(1+s)∗+h

)
= m

(
1− h

n

)
var∗

(
Î1∗ Î(1+h)∗ − (1− θ)hĨ1∗ Ĩ1∗+h

)
+2m

n−h−1∑
s=1

(
1− h+ s

n

) [
cov∗(Î1∗ Î(1+h)∗ , Î(1+s)∗ Î(1+s+h)∗)

−(1− θ)hcov∗(Î1∗ Î(1+h)∗ , Ĩ(1+s)∗ Ĩ(1+s)∗+h)− (1− θ)hcov∗(Ĩ1∗ Ĩ1∗+h, Î(1+s)∗ Î(1+s+h)∗)

+(1− θ)2hcov∗(Ĩ1∗ Ĩ1∗+h, Ĩ(1+s)∗ Ĩ(1+s)∗+h)
]

= Q1 +Q2 .

We will show that the right-hand side converges to zero in P -probability, where we focus on
Q2 and omit the details for Q1. We start by looking at the summands in Q2 for fixed s ≤ h,
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using the structure of the covariances in Lemma 4.8.3. The expressions for the covariances in
Lemma 4.8.3 contain terms with normalization n−2. For example, by (4.8.7) a corresponding
term in Q2 is of the order

m
(
n−1

n∑
i=1

ĨiĨi+h

)2

= m−1
(m
n

n∑
i=1

ĨiĨi+h

)2

= OP (m−1) ,

since m
n

∑n
i=1 ĨiĨi+h

P→ γA(h); see Lemma 4.2.4. In the latter sums, the Ĩi’s can be exchanged

by the Ii’s or the Îi’s. Therefore all other terms in Q2 with normalization mn−2 converge to
zero in P -probability. Another appeal to Lemma 4.8.3 shows that it remains to consider those
expressions in Q2 that are normalized by mn−1 again for fixed s ≤ h. From (4.8.9) and (4.8.10)
we see that, on one hand, we have to deal with the differences

(1− θ)s+h m

n

n∑
i=1

ÎiÎi+sÎi+hÎi+s+h − (1− θ)s+2hm

n

n∑
i=1

ĨiĨi+hÎi+sÎi+s+h , (4.8.2)

but both sums are consistent estimators of limn→∞mP (a−1
m X0 ∈ A, a−1

m Xs ∈ A, a−1
m Xh ∈

A, a−1
m Xs+h ∈ A) (see [7], Theorem 3.1). Therefore (4.8.2) converges to zero in P -probability.

On the other hand, in view of (4.8.7) and (4.8.8) we have to deal with the differences, for s ≤ h,

(1− θ)s+2hm

n

n∑
i=1

ĨiĨi+sĨi+hĨi+s+h − (1− θ)2h m

n

n∑
i=1

ÎiÎi+hĨi+sĨi+s+h ,

which again converge to zero in P -probability. These arguments finish the proof for s ≤ h.
An inspection of the covariances in Lemma 4.8.3 shows that for s > h all expressions with

normalization n−2 do not depend s. The corresponding aggregated terms in Q2 are then given
by

2m

n−h−1∑
s=h+1

(
1− h+ s

n

)[
− (1− θ)s+h

(
n−1

n∑
i=1

ÎiÎi+h
)2

+(1− θ)s+h
(
n−1

n∑
i=1

ÎiÎi+h
)(
n−1

n∑
i=1

ĨiĨi+h
))

+ (1− θ)s+2h
(
n−1

n∑
i=1

ÎiÎi+h
)(
n−1

n∑
i=1

ĨiĨi+h
)

−(1− θ)s+2h
(
n−1

n∑
i=1

ĨiĨi+h
)2]

= −2m−1
(m
n

n∑
i=1

ÎiÎi+h −
m

n

n∑
i=1

ĨiĨi+h
)(m

n

n∑
i=1

ÎiÎi+h
) n−h−1∑
s=h+1

(
1− h+ s

n

)
(1− θ)s+h

−2m−1
(m
n

n∑
i=1

ĨiĨi+h −
m

n

n∑
i=1

ÎiÎi+h
)(m

n

n∑
i=1

ĨiĨi+h
) n−h−1∑
s=h+1

(
1− h+ s

n

)
(1− θ)s+2h

= OP (1/(θ
√
mn)) = oP (1) .

In the last step we used (4.8.1) and the assumption nθ2/m → ∞. Finally, we deal with the
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remaining terms in Q2. In view of Lemma 4.8.3 they are given by

2m

n−h−1∑
s=h+1

(
1− h+ s

n

)[
(1− θ)s+h n−1

n∑
i=1

ÎiÎi+sÎi+hÎi+s+h

−(1− θ)s+h n−1
n∑
i=1

ÎiÎi+hĨi+sĨi+s+h

−(1− θ)s+2h n−1
n∑
i=1

ĨiĨi+hÎi+sÎi+s+h + (1− θ)s+2h n−1
n∑
i=1

ĨiĨi+sĨi+hĨi+s+h

]
= 2m

n−h−1∑
s=h+1

(
1− h+ s

n

)
(1− θ)s+hn−1

n∑
i=1

ÎiÎi+h
(
Îi+sÎi+s+h − Ĩi+sĨi+s+h

)
+ 2m

n−h−1∑
s=h+1

(
1− h+ s

n

)
(1− θ)s+2h n−1

n∑
i=1

ĨiĨi+h
(
Ĩi+sĨi+s+h − Îi+sÎi+s+h

)
= J0 .

Using the assumption nθ2/m→∞, we have

E|J0| ≤ cm

n−h−1∑
s=h+1

(1− θ)s+hE|Î0Îh − Ĩ0Ĩh|

≤ cmE|p0 − In|
n−h−1∑
s=h+1

(1− θ)s+h

≤ c(m/n)0.5θ−1 = o(1) .

This finishes the proof of the lemma.

We conclude from Lemma 4.8.1 that for any k ≥ 1, as n→∞,

dP∗
(

(n/m)0.5
(
ψ0

(
γ̂∗A(0)− E∗γ̂∗A(0)

)
+ 2

k∑
h=1

ψh
(
γ̂∗A(h)− E∗γ̂∗A(h)

))
, ψ0 Z0 + 2

k∑
h=1

ψh Zh
)

P→ 0 ,

where the dependence structure of (Zh) is defined in Lemma 4.2.4.
The proof of the theorem is finished by the following result which parallels Lemma 4.6.1.

Lemma 4.8.2. Assume the conditions of Theorem 4.4.2. Then the following relation holds for
δ > 0,

lim
k→∞

lim sup
n→∞

P
(
dP∗

(
(n/m)0.5 sup

λ∈Π

∣∣∣ n−1∑
h=k+1

ψh(λ)
(
γ̂∗A(h)− E∗γ̂∗A(h)

)∣∣∣, 0) > δ
)

= 0 . (4.8.3)

Proof. We follow the lines of the proof of Lemma 4.6.1 and use the same notation. We again
assume without loss of generality that k = 2a − 1 and n = 2b+1 for integers a < b, a chosen
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sufficiently large, and we write εq = 2−2q/κ for κ > 0 to be chosen later. Then, for large a
depending on ε > 0, the steps of the proof lead to the inequality (cf. (4.6.5))

Q∗ = P ∗
(

(n/m) sup
λ∈Π

∣∣∣ n−1∑
h=k+1

(
γ̃∗A(h)− E∗γ̃∗A(h)

)
ψh(λ)

∣∣∣ > ε
)

≤ c

b∑
q=a

24q(0.25−β+κ−1)Kq ,

where β ∈ (3/4, 1] is the Hölder coefficient of the function g, the number κ > 0 can be chosen
arbitrarily large and

Kq =
n

m

2q+1−1∑
h=2q

2q+1−1∑
s=h

|cov∗(γ̂∗A(h), γ̂∗A(s)| .

By the Cauchy-Schwarz inequality, for s, h ∈ [2q, 2q+1) and h ≤ s,

(n/m)2|cov∗(γ̂∗A(h), γ̂∗A(s)|2 ≤ (n/m)var∗(γ̂∗A(h)) (n/m)var∗(γ̂∗A(s)) .

We will show that

(n/m)Evar∗(γ̂∗A(h)) ≤ c (4.8.4)

for some constant c, uniformly for k ≤ h ≤ n and n. Then

EQ∗ ≤ c
b∑

q=a

24q(3/4−β+κ−1) ≤ c
∞∑
q=a

24q(3/4−β+κ−1) .

The right-hand side converges since β ∈ (3/4, 1] and κ can be chosen arbitrarily large. Moreover,
the right-hand side converges to zero as k →∞.
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Thus it remains to show (4.8.4). In view of Lemma 4.8.3 we have

(n/m)Evar∗(γ̂∗A(h))

= (m/n)
[
(n− h)Evar∗(Î1∗ Î(1+h)∗) + 2

n−h−1∑
t=1

(n− h− t)Ecov∗(Î1∗ Î(1+h)∗ , Î(1+t)∗ Î(1+t+h)∗)
]

=
[
m(1− h/n)(1− θ)2h

[
E(Î1Î1+h)2 − E

(
n−1

n∑
i=1

ÎiÎi+h
)2]]

+2m

n−h−1∑
t=1

(1− (h+ t)/n)
[
n−1

n∑
i=1

EÎiÎi+hÎi+tÎi+t+h
]
(1− θ)t+h

+2m

min(h−1,n−h−1)∑
t=1

(1− (h+ t)/n)E
(
n−1

n∑
i=1

ÎiÎi+t
)2

((1− θ)2t − (1− θ)t+h)

−2m

min(h−1,n−h−1)∑
t=1

(1− (h+ t)/n)E
(
n−1

n∑
i=1

ÎiÎi+h
)2

(1− θ)2h

−2m

n−h−1∑
t=h

(1− (h+ t)/n)E
(
n−1

n∑
i=1

ÎiÎi+h
)2

(1− θ)t+h

≤ mE(Î1Î1+h)2

+2m

n−h−1∑
t=1

(1− (h+ t)/n)
(
n−1

n∑
i=1

EÎiÎi+hÎi+tÎi+t+h
)

(1− θ)t+h

+2m

min(h−1,n−h−1)∑
t=1

(1− (h+ t)/n)E
(
n−1

n∑
i=1

ÎiÎi+t
)2

(1− θ)2t

= V1 + V2 + V3 .

We observe that, for some constant c0 > 0,

V1 ≤ mE(Î1Î1+h)2 ≤ cm
[
EI1I1+h + (EIn)2

]
≤ cmp0 ≤ c0 .

For V2, we observe that for i ≤ n,

mθ−1
∣∣E[ÎiÎi+hÎi+tÎi+t+h − ĨiĨi+hĨi+tĨi+t+h]∣∣ ≤ cmθ−1E

∣∣In − p0

∣∣ = O(
√
m/nθ−1) = o(1) ,

by virtue of the condition nθ2/m → ∞. Therefore, for showing that |V2| ≤ c uniformly for

h, n, it suffices to show that |Ṽ2| ≤ c, where Ṽ2 is obtained from V2 by replacing the Ît’s by the

corresponding Ĩt’s. Taking into account EĨ1Ĩ1+t = pt − p2
0 and the Cauchy-Schwarz inequality,

we have for a fixed integer M > 0,

|Ṽ2| ≤ cm

n−h−1∑
t=1

∣∣∣n−1
n∑
i=1

EĨiĨi+hĨi+tĨi+t+h

∣∣∣
= cm

n−h−1∑
t=1

|EĨ1Ĩ1+hĨ1+tĨ1+t+h|

≤ (mp0)M + cm

rn∑
t=M+1

(pt + p2
0) + cm

∞∑
t=rn+1

ξt ≤ c ,
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in view of condition (M) and regular variation. A similar argument as for V2 shows that one

may replace the Ît’s in V3 by the corresponding Ĩt’s. We denote the resulting quantity by Ṽ3.
Then we have

Ṽ3 ≤ m

n∑
t=1

(1− θ)tE
(
n−1

n−t∑
i=1

ĨiĨi+t + n−1
n∑

i=n−t+1

ĨiĨi+t−n

)2

≤ cm

n∑
t=1

(1− θ)tE
(
n−1

n−t∑
i=1

ĨiĨi+t

)2

+ cm

n∑
t=1

(1− θ)tE
(
n−1

n∑
i=n−t+1

ĨiĨi+t−n

)2

= Ṽ31 + Ṽ32 .

We will only deal with Ṽ31, the other term can be bounded in a similar way. We observe that
for fixed M > 1, using condition (M),

Ṽ31 ≤ c
m

n

n∑
t=1

(1− θ)t
(
E(Ĩ1Ĩ1+t)

2 + 2

n−t−1∑
s=1

|EĨ1Ĩ1+tĨ1+sĨ1+s+t|
)

≤ o(1) + c
m

n

n∑
t=1

(1− θ)t
n−t−1∑
s=1

|EĨ1Ĩ1+tĨ1+sĨ1+s+t|

≤ o(1) + c
m

n

n∑
t=1

(1− θ)t
rn∑

s=M+1

(ps + p2
0) + c

m

n

n∑
t=1

(1− θ)t
∑

rn+1≤s≤n−t−1,s≤t

ξs

+c
m

n

n∑
t=1

(1− θ)t
∑

rn+1≤s≤n−t−1,s>t

(
|EĨ1Ĩ1+tĨ1+sĨ1+s+t − (pt − p2

0)2|+ (pt − p2
0)2
)
.

In view of condition (M), the first two terms on the right-hand side are negligible as n → ∞.
The third term is bounded by

c
m

n

n∑
t=1

(1− θ)t
∑

rn+1≤s≤n−t−1,s>t

ξs−t + cm

n∑
t=1

(1− θ)t(pt − p2
0)2 .

Multiple use of (M) again shows that the right-hand side is negligible. This proves (4.8.4).



CHAPTER 4. INTEGRATED EXTREMAL PERIODOGRAM 130

Lemma 4.8.3. Under the conditions of Theorem 4.4.2 the following relations hold for s, h ≥ 0:1

E∗Î1∗ = 0 , (4.8.5)

E∗Î1∗ Î(1+h)∗ = (1− θ)h n−1
n∑
i=1

ÎiÎi+h , E∗Ĩ1∗ Ĩ1∗+h = n−1
n∑
i=1

ĨiĨi+h , (4.8.6)

cov∗(Ĩ1∗ Ĩ1∗+h, Ĩ(1+s)∗ Ĩ(1+s)∗+h) (4.8.7)

= (1− θ)s
(
n−1

n∑
i=1

ĨiĨi+sĨi+hĨi+s+h −
(
n−1

n∑
i=1

ĨiĨi+h

)2)
,

cov∗
(
Î1∗ Î(1+h)∗ , Ĩ(1+s)∗ Ĩ(1+s)∗+h

)
(4.8.8)

= (1− θ)max(s,h)
(
n−1

n∑
i=1

ÎiÎi+hĨi+sĨi+s+h −
(
n−1

n∑
i=1

ÎiÎi+h

)(
n−1

n∑
i=1

ĨiĨi+h

))
,

cov∗
(
Ĩ1∗ Ĩ1∗+h, Î(1+s)∗ Î(1+s+h)∗

)
(4.8.9)

= (1− θ)s+h
(
n−1

n∑
i=1

ĨiĨi+hÎi+sÎi+s+h −
(
n−1

n∑
i=1

ÎiÎi+h

)(
n−1

n∑
i=1

ĨiĨi+h

))
,

cov∗
(
Î1∗ Î(1+h)∗ , Î(1+s)∗ Î(1+s+h)∗

)
(4.8.10)

=


(1− θ)s+h

[
n−1

∑n
i=1 ÎiÎi+sÎi+hÎi+s+h −

(
n−1

∑n
i=1 ÎiÎi+s

)2]
+(

n−1
∑n
i=1 ÎiÎi+s(1− θ)s

)2

−
(
n−1

∑n
i=1 ÎiÎi+h(1− θ)h

)2

, s < h ,

(1− θ)s+h
(
n−1

∑n
i=1 ÎiÎi+sÎi+hÎi+s+h −

(
n−1

∑n
i=1 ÎiÎi+h

)2)
, s ≥ h .

Proof. Relations (4.8.5) and (4.8.6) follow from the defining properties of the stationary boot-
strap; see Politis and Romano [21].

We will only show that (4.8.10) holds; (4.8.7)–(4.8.9) can be proved in a similar (and even
simpler) way but we omit further details. First assume s < h. Recall L1 from the construction
of the stationary bootstrap scheme. Consider the following decomposition

E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ ]

= E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | L1 ≤ s] P (L1 ≤ s)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | s < L1 ≤ h] P (s < L1 ≤ h)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | h < L1 ≤ s+ h] P (h < L1 ≤ s+ h)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | L1 > s+ h] P (L1 > s+ h)

= Q1 +Q2 +Q3 +Q4 .

We start with Q1. For L1 ≤ s < h, Î1∗ is independent of (Î(1+h)∗ , Î(1+s)∗ , Î(1+s+h)∗), given

(Xt), but E∗Î1∗ = 0 by (4.8.5) and therefore Q1 = 0. Similarly, for h < L1 ≤ s + h, Î(1+s+h)∗

is independent of (Î1∗ , Î(1+h)∗ , Î(1+s)∗), given (Xt), and since E∗Î(1+s+h)∗ = 0, Q3 = 0. Each

of the values i = 1, . . . , n has the same chance to be chosen by the bootstrap, i.e. P ∗(Î∗1 =

1If indices in the sums below exceed the value n they are interpreted in the circular sense, i.e. mod n.
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Îi) = n−1 for i = 1, . . . , n. Thus, for L1 > s + h and the chosen i, the natural ordering
(1∗, (1 + h)∗, (1 + s)∗, (1 + s+ h)∗) = (i, i+ h, i+ s, i+ s+ h) is preserved and therefore

Q4 = n−1
n∑
i=1

ÎiÎi+sÎi+hÎi+s+h P (L1 > s+ h)

= n−1
n∑
i=1

ÎiÎi+sÎi+hÎi+s+h (1− θ)s+h .

By a similar argument, (4.8.6) and using stationarity, we have

Q2 = E∗[Î1∗ Î(1+s)∗ | s < L1 ≤ h]E∗[Î(1+h)∗ Î(1+h+s)∗ ] P (s < L1 ≤ h)

= n−2
( n∑
i=1

ÎiÎi+s

)2

(1− θ)s
(

(1− θ)s − (1− θ)h)
)
.

Combining the above expressions and taking into account (4.8.6), we arrive at (4.8.10) for s < h.
We proceed with the case s > h. Then we have the corresponding decomposition

E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ ]

= E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | L1 ≤ h] P (L1 ≤ h)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | h < L1 ≤ s] P (h < L1 ≤ s)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | s < L1 ≤ s+ h] P (s < L1 ≤ s+ h)

+E∗[Î1∗ Î(1+h)∗ Î(1+s)∗ Î(1+s+h)∗ | L1 > s+ h] P (L1 > s+ h)

= Q′1 +Q′2 +Q′3 +Q′4 .

We observe that the left-hand side is symmetric in h, s and therefore the same arguments as
above show that Q′1 = Q′3 = 0, Q4 = Q′4 and

Q′2 = E∗[Î1∗ Î(1+h)∗ | h < L1 ≤ s]E∗[Î(1+s)∗ Î(1+s+h)∗ ] P (h < L1 ≤ s)

= n−2
( n∑
i=1

ÎiÎi+h

)2

(1− θ)h
(

(1− θ)h − (1− θ)s
)

The case h = s can be considered as a degenerate case, where Q′2 = 0. This completes the proof
of (4.8.10).

We conclude with a short discussion of the bias problem of the bootstrapped integrated
periodogram mentioned in Remark 4.4.3.

Lemma 4.8.4. Assume the conditions of Theorem 4.4.2 and the additional condition supx∈Π |ψh(x)| ≤
c/h for h ≥ 1 and a constant c. Then the following relation holds as n→∞,

(n/m)0.5 sup
λ∈Π

∣∣∣ψ0(λ)
(
E∗γ̂∗A(0)− γ̃A(0)

)
+ 2

n−1∑
h=1

ψh(λ)
(
E∗γ̂∗A(h)− (1− θ)hγ̃A(h)

)∣∣∣ P→ 0 .

(4.8.11)
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Proof. We observe that for h ≥ 0,

E∗γ̂∗A(h)− (1− θ)hγ̃A(h) = (1− θ)h
[
(γ̂A(h) + γ̂A(n− h))− γ̃A(h)

]
= (1− θ)h

[
γ̃A(n− h)−m(p0 − In)2

]
. (4.8.12)

For fixed h we have (n/m)0.5m(p0 − In)2 P→ 0 as n→∞ and

(n/m)0.5E|γ̃A(n− h)| ≤ c (m/n)0.5hp0 → 0 , n→∞ .

Therefore it suffices to show that

lim
k→∞

lim sup
n→∞

P
(

sup
λ∈Π

∣∣∣ n−1∑
h=k+1

ψh(λ)
(
E∗γ̂∗A(h)− (1− θ)hγ̃A(h)

)∣∣∣ > δ
)
, δ > 0 .

Keeping in mind (4.8.12), we have

(n/m)0.5m(p0 − In)2 sup
λ∈Π

∣∣∣ n−1∑
h=k+1

ψh(λ)(1− θ)h
∣∣∣ = OP (1/(θ

√
mn)) = oP (1) ,

where we used θ2n/m→∞, and

(n/m)0.5 sup
λ∈Π

∣∣∣ n−1∑
h=k+1

ψh(λ) (1− θ)hγ̃A(n− h)
∣∣∣

≤ (n/m)0.5 sup
λ∈Π

∣∣∣ n−k−1∑
h=1

ψn−h(λ) (1− θ)n−h[γ̃A(h)−m(1− h/n)(ph − p2
0)]
∣∣∣

+(n/m)0.5 sup
λ∈Π

∣∣∣ n−k−1∑
h=1

ψn−h(λ) (1− θ)n−hm(1− h/n)(ph − p2
0)
∣∣∣

= I1 + I2 .

Under the assumption supx∈Π |ψh(x)| ≤ c/h uniformly for h ≥ 1, we have for small ε > 0,

I2 ≤ (m/n)0.5c

∞∑
h=1

ξh → 0 , n→∞ .

Now we can adapt the proof of Lemma 4.6.1 to prove that

lim
k→∞

lim sup
n→∞

P (I1 > δ) = 0 , δ > 0 .

This proves (4.8.11).

However, under the assumptions of Theorem 4.3.1, it is in general not possible to replace
the quantities (1 − θ)hγ̃A(h) in (4.8.11) by γ̃A(h), i.e. in general we do not have the relation
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(n/m)0.5(E∗J∗nA − JnA)
P→ 0. Indeed, taking into account (4.8.11) and assuming η-dependence

for (Xt), we have Eγ̃A(h) = 0 for h > η and

(n/m)0.5(E∗J∗nA − JnA) = 2(n/m)0.5
n−1∑
h=1

ψh(λ) [(1− θ)h − 1]γ̃A(h) + oP (1)

= 2(n/m)0.5
n−1∑
h=1

ψh(λ) [(1− θ)h − 1]
(
γ̃A(h)− Eγ̃A(h)

)
+2(n/m)0.5

η∑
h=1

ψh(λ) [(1− θ)h − 1](1− h/n)m(ph − p2
0) + oP (1) .

An argument similar to the proof of Theorem 4.3.1 shows that the first term on the right-hand
side is stochastically bounded, while the second term may diverge (for example, if γA(η) > 0 and
ψη 6= 0) since it is of the order θ(n/m)0.5 which converges to infinity in view of the assumption
θ2n/m→∞ which is vital for the proof of the consistency of the stationary bootstrap.
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